

11.THREE DIMENSIONAL GEOMETRY

Single Correct Answer Type

- 1. If P(3, 2, -4), Q(5, 4, -6) and R(9, 8, -10) are collinear, then R divides PQ in the ratioa) 3:2 internallyb) 3:2 externallyc) 2:1 internallyd) 2:1 externally
- 2. The radius of the circle of x + 2y + 2z = 15, $x^2 + y^2 + z^2 2y 4z = 11$ is a) 2 b) $\sqrt{7}$ c) 3 d) $\sqrt{5}$
- 3. Let A(1, -1, 2) and B(2, 3, -1) be two points. If a point *P* divides *AB* internally in the ratio 2:3, then the position vector of *P* is

a)
$$\frac{1}{\sqrt{5}}(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$$

b)
$$\frac{1}{\sqrt{3}}(\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + \hat{\mathbf{k}})$$

c)
$$\frac{1}{\sqrt{3}}(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$$

d)
$$\frac{1}{5}(7\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}})$$

4. The length of the perpendicular from the origin to the plane passing through the point \vec{a} and containing the line $\vec{r} = \vec{b} + \lambda \vec{c}$ is

a)
$$\frac{\left[\vec{a} \ \vec{b} \ \vec{c}\right]}{\left[\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\right]}$$
b)
$$\frac{\left[\vec{a} \ \vec{b} \ \vec{c}\right]}{\left[\vec{a} \times \vec{b} + \vec{b} \times \vec{c}\right]}$$
c)
$$\frac{\left[\vec{a} \ \vec{b} \ \vec{c}\right]}{\left[\vec{b} \times \vec{c} + \vec{c} \times \vec{a}\right]}$$
d)
$$\frac{\left[\vec{a} \ \vec{b} \ \vec{c}\right]}{\left[\vec{c} \times \vec{a} + \vec{a} \times \vec{b}\right]}$$
5. The line
$$\frac{x-1}{2} = \frac{y-2}{2} = \frac{x-3}{4}$$
 meets the plane $2x + 3y - z = -4$ in the point
a) $(1, 2, 3)$
b) $(-1, -1, -1)$
c) $(2, 1, 3)$
d) $(1, 1, 1)$
6. If the plane $2x - y + z = 0$ is parallel to the line
$$\frac{2x-1}{2} = \frac{2-y}{2} = \frac{z+1}{4}$$
, then the value of a is
a) 4
b) -4
c) 2
c) d -2
7. A line *AB* in three-dimensional space makes angle 45° and 120° with the positive *x*-axis and the positive *y*-axis respectively. If *AB* makes an acute angle θ with the positive *z*-axis, then θ equals
a) 30°
b) 45°
c) 60°
d) 75°
8. The locus of a point which moves so that the difference of the squares of its distances from two given points is constant, is a
a) Straight line
b) Plane
c) Sphere
d) None of these
9. If lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-5}{1} = \frac{z-6}{-5}$ are mutually perpendicular, then *k* is equal to
a) $-\frac{10}{7}$
b) $-\frac{7}{10}$
c) -10
d) -7
10. The equation of the plane passing through a point $A(2, -1, 3)$ and parallel to the vectors $\vec{a} = (3, 0, -1)$ and $\vec{b} = (-3, 2, 2)$ is
a) $2x - 3y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$
c) $3x - 2y + 6z - 25 = 0$

a) 2x - y = 0 and y + 3z = 0b) 2x - y = 0 and y - 3z = 0c) 2x + 3z = 0 and y = 0d) None of the above 12. The angle between the lines 2x = 3y = -z and 6x = -y = -4z is a) 30° b) 45° c) 90° d) 0° 13. *A* And *B* are two give points. Let *C* divides *AB* internally and *D* divides *AB* externally in the same ratio. Then AC, AB, AD are in a) AP b) GP c) HP d) None of these 14. The image (or reflection) of the point (1, 2, -1) in the plane $\vec{r} \cdot (3\hat{\iota} - 5\hat{\jmath} + 4\hat{k}) = 5$ is a) (73/25, -6/5, 39/25) b) (73/25,6/5,39/25) c) (-1, -2, 1)d) None of these 15. The equation of the plane containing the two lines $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{3}$ and $\frac{x}{-1} = \frac{y-2}{3} = \frac{z+1}{-1}$ is a) 8x + y - 5z - 7 = 0 b) 8x + y + 5z - 7 = 0 c) 8x - y - 5z - 7 = 0 d) None of these 16. A variable plane is at a distance, *k* from the origin and meets the coordinate axes in *A*, *B*, *C*. Then, the locus of the centroid of $\triangle ABC$ is a) $x^{-2} + y^{-2} + z^{-2} = k^{-2}$ b) $x^{-2} + v^{-2} + z^{-2} = 4k^{-2}$ c) $x^{-2} + y^{-2} + z^{-2} = 16k^{-2}$ d) $x^{-2} + v^{-2} + z^{-2} = 9k^{-2}$ 17. If α , β , γ are the angles which a directed line makes with the positive directions of the coordinate axes, then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$ is equal to a) 1 d) 4 b) 2 c) 3 18. The *xy*-plane divides the line joining the points (-1,3,4) and (2,-5,6)a) Internally in the ratio 2:3 b) Externally in the ratio 2 : 3 c) Internally in the ratio 3:2 d) Externally in the ratio 3 : 2 19. The length of the perpendicular drawn from (1, 2, 3) to the line $\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$ is a) 4 b) 5 d) 7 20. The angle between the lines $\frac{x+4}{1} = \frac{y-3}{2} = \frac{z+2}{3}$ and $\frac{x}{3} = \frac{y-1}{-2} = \frac{z}{1}$, is 20. The angle between the lines $\frac{1}{1} - \frac{2}{3}$ 3 $\frac{3}{2} - \frac{2}{4}$ a) $\sin^{-1}\frac{1}{7}$ b) $\cos^{-1}\frac{2}{7}$ c) $\cos^{-1}\frac{1}{7}$ d) None of these 21. Under what condition does a straight line does $\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$ is parallel to the *xy*-plane? a) l = 0 b) m = 0 c) n = 0 d) l = 0, m = 022. The value of *k* such that $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ lies in the plane 2x - 4y + z = 7, is b) -7 c) No real value d) 4 d) None of these 23. The points A(4, 5, 1), B(0, -1, -1), C(3, 9, 4) and D(-4, 4, 4) are a) Collinear b) Coplanar c) Non-coplanar d) Non-colinear 24. The foot of perpendicular from point P(1,3,4) in the plane 2x - y + z + 3 = 0 is a) (3, 5, −2) b) (-3, 5, 2) c) (3, −5, 2) d) (-1, 4, 3)25. The length of perpendicular from Q(1,6,3) to the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ is a) 3 b) $\sqrt{11}$ c) $\sqrt{13}$ d) 5 26. The angle between $\vec{\mathbf{r}} = (1+2\mu)\hat{\mathbf{i}} + (2+\mu)\hat{\mathbf{j}} + (2\mu-1)\hat{\mathbf{k}}$ and the plane 3x - 2y + 6z = 0 (where μ is a scalar) is a) $\sin^{-1}\left(\frac{15}{21}\right)$ b) $\cos^{-1}\left(\frac{16}{21}\right)$ c) $\sin^{-1}\left(\frac{16}{21}\right)$ d) $\frac{\pi}{2}$ 27. The equation of sphere which passes through the circle $x^2 + y^2 + z^2 = 0$, the plane 2x + 3y + 4z = 5 and

	point (1, 2, 3) is			
	a) $3(x^2 + y^2 + z^2) - 2x$	-3v - 4z - 22 = 0	b) $(x^2 + y^2 + z^2) - 2x - $	3y - 4z - 22 = 0
	c) $3(x^2 + y^2 + z^2) + 2x$	+3y + 4z - 22 = 0	d) $3(x^2 + y^2 + z^2) - 2x - $	-3y - 4z + 9022 = 0
28.	The angle between the lin	hes $x = 1, y = 2$ and $y = -3$	1, z = 0 is	
	a) 30°	b) 60°	c) 90°	d) 0°
29.	The point of intersection	of the lines $\frac{x-5}{3} = \frac{y-7}{-1} = \frac{z+3}{1}$	$\frac{2}{x+3}, \frac{x+3}{-36} = \frac{y-3}{2} = \frac{z-6}{4}$ is	
	a) (2, 10, 4)	b) $\left(21, \frac{5}{3}, \frac{10}{3}\right)$	c) (5, 7, -2)	d) (-3, 3, 6)
30.	A parallelopiped is forme coordinate planes. The let	d by planes drown through ngth of a diagonal of the pa	the points (2, 3, 5) and (5, rallelopiped is	9, 7) parallel to the
	a) 7	b) $\sqrt{38}$	c) $\sqrt{155}$	d) None of these
31.	If direction cosines of two them is	b lines are proportional to ((2, 3, -6) and $(3, -4, 5)$, the	n the acute angle between
	a) $\cos^{-1}\left(\frac{49}{36}\right)$	b) $\cos^{-1}\left(\frac{18\sqrt{2}}{35}\right)$	c) 96°	d) $\cos^{-1}\left(\frac{18}{35}\right)$
32.	The distance of the point vector $2\hat{i} + 3\hat{j} + 6\hat{k}$ is	P(1,2,3) from the line whic	ch passes through the point	A(4,2,2) and parallel to the
	a) $\sqrt{10}$	b) √7	c) √5	d) 1
33.	The angle between the lir	$x = \frac{x-2}{2} = \frac{y+1}{2}$, $z = 2$ and $\frac{x-2}{2}$	$\frac{1}{2} = \frac{2y+3}{z+5} = \frac{z+5}{z+5}$ is	
	a) $\pi/2$	3 - 2' 1 b) $\pi/3$	$3 2^{-1}$	d) None of these
34.	The equation of the plane	e containing the line $\frac{x-x_1}{l} =$	$\frac{y-y_1}{m} = \frac{z-z_1}{n}$ is $a(x-x_1) + b$	$b(y - y_1) + c(z - z_1) = 0,$
	where			
	a) $a x_1 + b y_1 + c z_1 = 0$			
	b) $al + bm + cn = 0$			
	c) $a/l = b/m = c/n$			
. .	d) $l x_1 + m y_1 + n z_1 = 0$	-)		
35.	If the lines $\frac{1-x}{3} = \frac{y-z}{2\alpha}$	$r = \frac{2-3}{2}$		
	and	-		
	$\frac{x-1}{3\alpha} = y-1 = \frac{6-z}{5}$			
	are perpendicular, then the	he value of α is		
	(-10)	h) $\frac{10}{10}$	c) $\frac{-10}{-10}$	d) $\frac{10}{10}$
	7	7	11	11
36.	The perpendicular distan	ce of the point (6, 5, 8) from	n y-axis is	
27	a) 5 units	b) 6 units	c) 8 units	a) 10 units
37.	adjacent faces of a cube T	<i>a, 2a, 3a</i> meet at a point ai	nd their directions are along	g the diagonals of three
	aujacent faces of a cube. I	b) 6a	c) 10a	d) 9 <i>a</i>
38	Cartesian form of the equ	ation of line $\vec{\mathbf{r}} = 3\hat{\mathbf{i}} = 5\hat{\mathbf{i}} + \hat{\mathbf{i}}$	$2\hat{\mathbf{k}} + \lambda(2\hat{\mathbf{i}} + \hat{\mathbf{i}} - 3\hat{\mathbf{k}})$ is	u) Ju
50.	x-2 $y-1$ $z+3$	ation of fine $\mathbf{I} = \mathbf{J}\mathbf{I} = \mathbf{J}\mathbf{J} + \mathbf{J}$	x - 3 v + 5 z - 7	
	a) $\frac{1}{3} = \frac{1}{-5} = \frac{1}{7}$		b) $\frac{x}{2} = \frac{y}{1} = \frac{z}{-3}$	
	c) $\frac{x-2}{1} = \frac{y-1}{1} = \frac{z-7}{5}$		d) None of the above	
39.	The equation of the plane	containing the lines $\vec{r} = \overline{a}$	$\vec{a}_1 + \lambda \vec{a}_2$ and $\vec{r} = \vec{a}_2 + \lambda \vec{a}_1$,	is
	a) $[\vec{r} \ \vec{a_1} \ \vec{a_2}] = 0$	b) $[\vec{r} \ \vec{a_1} \ \vec{a_2}] = \vec{a_1} \cdot \vec{a_2}$	c) $[\vec{r} \overrightarrow{a_2} \overrightarrow{a_1}] = \overrightarrow{a_1} \cdot \overrightarrow{a_2}$	d) None of these
40.	The points <i>A</i> (4,5,1), <i>B</i> (0,	-1, -1, $C(3, 9, 4)$ and $D(-1)$	4, 4, 4) are	
	a) Collinear	b) Coplanar	c) Non-coplanar	d) Non-collinear

41. The direction ratio of the line x - y + z - 5 = 0 = x - 3y - 6 are

		3 1 _2	2 _4 1
	a) 3, 1, -2 b) 2, -4, 1	c) $\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}$	d) $\frac{2}{\sqrt{41}}, \frac{4}{\sqrt{41}}, \frac{1}{\sqrt{41}}$
42.	The value of k such that $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ lies in the	the plane $2x - 4y + z = 7$, is	
	a) 7 b) -7	c) No real value	d) 4
43.	If <i>M</i> denotes the mid point of the line joining		
	$A(4\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - 10\hat{\mathbf{k}})$ and $B(-\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}})$, then equation	ion of the plane through M as	nd perpendicular to <i>AB</i> is
	a) $\vec{\mathbf{r}} \cdot (5\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 11\hat{\mathbf{k}}) - \frac{135}{2} = 0$	b) $\vec{\mathbf{r}} \cdot \left(\frac{3}{2}\hat{\mathbf{i}} + \frac{7}{2}\hat{\mathbf{j}} - \frac{9}{2}\hat{\mathbf{k}}\right) +$	$\frac{135}{2} = 0$
	c) $\vec{\mathbf{r}} \cdot (4\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - 10\hat{\mathbf{k}}) + 4 = 0$	d) $\vec{\mathbf{r}} \cdot (-\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}) + 4$	= 0
44.	The plane passing through the point (5, 1, 2) per	bendicular to the line $2(x - 2)$	(2) = y - 4 = z - 5 will meet
	the line in the point		
	a) (1, 2, 3) b) (2, 3, 1)	c) (1, 3, 2)	d) (3, 2, 1)
45.	The vector equation of the plane through the point	It $\hat{i} + 2\hat{j} - \hat{k}$ and perpendicu	lar to the line of intersection
	of the plane $\vec{r} \cdot (3\hat{\imath} - \hat{\jmath} + \hat{k}) = 1$ and $\vec{r} \cdot (\hat{\imath} + 4\hat{\jmath} - 2\hat{\imath})$	(2k) = 2, is	
	a) $\vec{r} \cdot (2\hat{\iota} + 7\hat{j} - 13\hat{k}) = 1$		
	b) $\vec{r} \cdot (2\hat{\iota} - 7\hat{j} - 13\hat{k}) = 1$		
	c) $\vec{r} \cdot (2\hat{\iota} + 7\hat{j} + 13\hat{k}) = 0$		
	d) None of these	1.1.1	
46.	A plane which passes through the point $(3, 2, 0)$ a $r = 3$ $v = 6$ $z = 4$	ind the line	
	$\frac{x-3}{1} = \frac{y-3}{5} = \frac{x-1}{4}$ is		
	a) $x - y + z = 1$ b) $x + y + z = 5$	c) $x + 2y - z = 0$	d) $2x - y + z = 5$
47.	The equation $ x = p$, $ y = p$, $ z = p$ in xyz space	e represent	
40	a) Cube b) Rhombus	c) Sphere of radius <i>p</i>	d) Point (<i>p</i> , <i>p</i> , <i>p</i>)
48.	The centre of the sphere passing through the orig $x - y - z$	in and through the intersect	ion points of the plane
	$\frac{a}{a} + \frac{b}{b} + \frac{c}{c} = 1$ with axes is		
	a) $\left(\frac{a}{a}, 0, 0\right)$ b) $\left(0, \frac{a}{a}, 0\right)$	c) $(0, 0, \frac{a}{2})$	d) $\left(\frac{a}{a}, \frac{b}{a}, \frac{c}{a}\right)$
49	The shortest distance between the straight lines	2	\$\2'2'2)
17.	x-6 $2-y$ $z-2$, $x+4$ y $1-z$		
	$-\frac{1}{1} = \frac{-2}{2} = \frac{-2}{2}$ and $-\frac{-2}{3} = \frac{-2}{-2} = \frac{-2}{2}$	S	
	a) 9 b) $\frac{25}{2}$	c) $\frac{16}{2}$	d) 4
50.	3 The equation of the plane containing the line	3	
501	$\frac{x - x_1}{x_1} - \frac{y - y_1}{x_1} - \frac{z - z_1}{z_1}$ is		
	l m n	a h a	
	a) $ax_1 + by_1 + cz_1 = 0$ b) $al + bm + cn = 0$	c) $\frac{a}{l} = \frac{b}{m} = \frac{c}{n}$	d) $lx_1 + my_1 + nz_1 = 0$
51.	The coordinate the point of intersection of the lin	e	
	$\frac{x-1}{1} = \frac{y+2}{2} = \frac{z-2}{2}$ with the plane $3x + 4y + 5z - 25$	5 = 0 is	
	a) (5, 10, 6) b) (10, 5, 6)	c) (5, 5, -6)	d) (5, 10, -6)
52.	Equation of the plane which passes through the li	ne of intersection of the plar	$\operatorname{hes} P = ax + by + cz + d =$
	0, $P' = a'x + b'y + c'z + d' = 0$ and parallel to x	c-axis, is	<u>ין וו'ת הות (ב</u>
52	a) $Pa - Pa = 0$ b) $P/a = P/a' = 0$ The dictance of the point $A(-2, 2, 1)$ from the line	CJ Pa + Pa = 0	a) $P/a = P/a^{2}$
55.	the axes is	- r y un ough r (-3, 5, 2) Will	ch make equal angles with
	2	16	5
	a) $\frac{2}{\sqrt{3}}$ b) $\left \frac{14}{3}\right $	c) $\frac{10}{\sqrt{3}}$	d) $\frac{3}{\sqrt{3}}$

 $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ 54. A line with positive direction cosines passes through the point *P*(2, -1,2) and makes equal angles with the coordinate axes. The line meets the plane 2x + y + z = 9 at point Q. The length of the line segment PQ equals

- a) 1 b) $\sqrt{2}$ c) $\sqrt{3}$ d) 2
- 55. A line with direction ratios proportional to 2, 1, 2 meets each of the lines x = y + a = z and x + a = 2y = z2z. The coordinates of the points of intersection are given by

a) (3a, 3a, 3a), (a, a, a)b) (3a, 2a, 3a), (a, a, a) c) (3a, 2a, 3a), (a, a, 2a) d) (2a, 3a, 3a), (2a, a, a) 56. The position vectors of two points *P* and *Q* are $3\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} - 2\hat{j} - 4\hat{k}$ respectively. The equation of the plane through Q and perpendicular to PQ, is

a) $\vec{r} \cdot (2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}) = 28$

b) $\vec{r} \cdot (2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}) = 32$

c)
$$\hat{r} \cdot (2\,\hat{\imath} + 3\,\hat{\jmath} + 6\,\hat{k}) + 28 = 0$$

d) None of these

57. The equation of the line of intersection of the planes x + 2y + z = 3 and 6x + 8y + 3z = 13 can be written as

a)
$$\frac{x-2}{2} = \frac{y+1}{-3} = \frac{z-3}{4}$$

b) $\frac{x-2}{2} = \frac{y+1}{3} = \frac{z-3}{4}$
c) $\frac{x+2}{2} = \frac{y-1}{-3} = \frac{z-3}{4}$
d) $\frac{x+2}{2} = \frac{y+2}{3} = \frac{z-3}{4}$

58. If the foot of the perpendicular from (0, 0, 0) to a plane is (1, 2, 2), then the equation of the plane is a) -x + 2y + 8z - 9 = 0b) x + 2y + 2z - 9 = 0c) x + y + z - 5 = 0d) x + 2y - 3z + 1 = 0

59. A plane pass through a fixed point (*p*, *q*) and cut the axes in *A*, *B*, *C*. Then, the locus of the centre of the sphere OABC is

a)
$$\frac{p}{x} + \frac{q}{y} + \frac{r}{z} = 2$$
 b) $\frac{p}{x} + \frac{q}{y} + \frac{r}{z} = 1$ c) $\frac{p}{x} + \frac{q}{y} + \frac{r}{z} = 3$ d) None of these
The equation of the plane containing the line $\frac{x+1}{y} - \frac{y-3}{z} - \frac{z+2}{z}$ and the point (0, 7, -7) is

The equation of the plane containing the line $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$ and the point (0, 7, -7), is 60. a) x + y + z = 1b) x + y + z = 2 c) x + y + z = 0d) None of these

61. The equation of the plane passing through the origin and containing the line $\frac{x-1}{5} = \frac{y-2}{4} = \frac{z-3}{5}$ is b) x - 5y + 3z = 0 c) x - 5y - 3z = 0d) 3x - 10y + 5z = 0a) x + 5y - 3z = 062. The distance of the point (2, 3, -5) from the plane x + 2y - 2z = 9 is

d) 1 a) 4 b) 3 c) 2 63. The ratio in which *yz*-palne divides the line segment joining (-3,4,-2) and (2,1,3) is c) -2:3a) -4:1 b) 3 : 2 d) 1:4

64. If the direction cosines of a line are $\left(\frac{1}{c}, \frac{1}{c}, \frac{1}{c}\right)$, then b) *c* > 2 a) 0 < *c* < 1

c) $c = \pm \sqrt{2}$ 65. If a line makes an angle of $\frac{\pi}{4}$ with the positive direction of *x*-axis and *y*-axis, then the angle that the line makes with the positive direction of the *z*-axis is

a)
$$\frac{\pi}{6}$$
 b) $\frac{\pi}{3}$ c) $\frac{\pi}{4}$ d) $\frac{\pi}{2}$

66. A plane makes intercepts *a*, *b*, *c* at *A*, *B*, *C* on the coordinate axes respectively. If the centroid of the $\triangle ABC$ is at (3,2,1) then the equation of the plane is

a) x + 2y + 3z = 9b) 2x - 3y - 6z = 18 c) 2x + 3y + 6z = 18d) 2x + y + 6z = 1867. The equation of the plane through the point, (1, 2, 3) and parallel to the plane x + 2y + 5z = 0 is a) (x-1) + 2(y-2) + 5(z-3) = 0b) x + 2y + 5z = 14c) x + 2y + 5z = 6d) None of the above

- 68. If vertices of a triangle are A(1, -1, 2), B(2, 0, -1) and C(0, 2, 1), then the area f a triangle is b) $2\sqrt{6}$ c) $3\sqrt{6}$ a) √6 d) $4\sqrt{6}$
- 69. The equation of the plane through the intersection of the planes x + y + z = 1 and 2x + 3y z + 4 = 0

d) $c = \pm \sqrt{3}$

and parallel to x-axis is
a)
$$y - 3z + 6 = 0$$
 b) $3y - z + 6 = 0$ c) $y + 3z + 6 = 0$ d) $3y - 2z + 6 = 0$
70. The angle between two planes $2x - y + z = 6$ and $x + 2y + 3z = 3$ is
a) $\cos^{-1}\left(\frac{1}{2}, \sqrt{\frac{1}{7}}\right)$ b) $\cos^{-1}\left(\frac{1}{2}, \sqrt{\frac{2}{7}}\right)$ c) $\cos^{-1}\left(\frac{1}{2}, \sqrt{\frac{3}{7}}\right)$ d) $\cos^{-1}\left(\frac{1}{2}, \sqrt{\frac{4}{7}}\right)$
71. The projection of the line segment joining the points (-1,0,3) and (25,1) on the line whose direction
ratios are 6.2,3 is
a) $\frac{10}{7}$ b) $\frac{22}{7}$ c) $\frac{18}{7}$ d) None of these
72. If the foot of the perpendicular from the origin to a plane is (*a*, *b*, *c*), then equation of the plane is
a) $\frac{x}{4} + \frac{y}{b} + \frac{z}{c} = 1$ b) $\frac{22}{c}$ d) $\frac{2}{ax + by + cz} = 0$
73. A variable plane which remains at a constant distance *p* from the origin cuts the coordinate axes in *A*, *B*, *C*.
The locus of the centroid of the transhort distance *p* from the origin cuts the coordinate axes in *A*, *B*, *C*.
The locus of the centroid of the transhort distance *p* from the origin cuts the coordinate axes in *A*, *B*, *C*.
The locus of the centroid of the transhort distance *p* from the origin cuts the coordinate axes in *A*, *B*, *C*.
The locus of the centroid of the transhort distance *p* from the origin cuts the coordinate axes in *A*, *B*, *C*.
The locus of the centroid of the transhort distance *p* from the origin cuts the coordinate axes in *A*, *B*, *C*.
The locus of the plane which remains at a constant distance *p* from the origin cuts the coordinate axes in *A*, *B*, *C*.
The locus of the plane plane through the intersection of the planes $x + y + z = 1$ and $2x + 3y - z + 4 = 0$
and parallel to x-axis, is
a) $y - 3z + 6 = 0$ b) $3y - z + 6 = 0$ c) $y + 3z + 6 = 0$ d) $3y - 2z + 6 = 0$
75. The plane $2x + 3y + 4z = 1$ meets the coordinate axes in *A*, *B*, *C*. The cutroid of the trangle *ABC* is
a) $(\frac{1}{2}, \frac{1}{3}, \frac{1}{4})$ c) $(\frac{1}{2}, \frac{1}{3}, \frac{1}{4})$ c) $(\frac{1}{2}, \frac{1}{3}, \frac{1}{2})$ d) $(\frac{3}{2}, \frac{3}{3}, \frac{3}{4})$
76. The equation of the plane passing thro

83. Two systems of rectangular axes have the same origin. If a plane cuts them at distance a, b, c and a', b', c'

from the origin, then

a)
$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2} = 0$$

b) $\frac{1}{a^2} + \frac{1}{b^2} - \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} - \frac{1}{c'^2} = 0$
c) $\frac{1}{a^2} - \frac{1}{b^2} - \frac{1}{c^2} + \frac{1}{a'^2} - \frac{1}{b'^2} - \frac{1}{c'^2} = 0$
d) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} - \frac{1}{a'^2} - \frac{1}{b'^2} - \frac{1}{c'^2} = 0$

84. If (2, -1, 3) is the foot of the perpendicular drown from the origin to the plane, then the equation of the plane is

a) 2x + y - 3z + 6 = 0 b) 2x - y + 3z - 14 = 0 c) 2x - y + 3z - 13 = 0 d) 2x + y + 3z - 10 = 085. If projection of a line on *x*, *y* and *z*-axes are 6,2 and 3 respectively, then direction cosines of the line is

- a) $\left(\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right)$ b) $\left(\frac{7}{6}, \frac{7}{2}, \frac{7}{3}\right)$ c) $\left(\frac{6}{11}, \frac{2}{11}, \frac{3}{11}\right)$ d) None of these
- 86. If the plane 3x 2y z 18 = 0 meets the coordinate axes in *A*, *B*, *C* then the centroid of $\triangle ABC$ is a) (2,3,-6) b) (2,-3,6) c) (-2,-3,6) d) (2,-3,-6)
- 87. If for a plane, the intercepts on the coordinate axes are 8, 4, 4 then the length of the perpendicular from the origin on to the plane is

c) 3

a)
$$\frac{8}{3}$$

d) $\frac{4}{3}$

88. The equation of the sphere concentric with the sphere $2x^2 + 2y^2 + 2z^2 - 6x + 2y - 4z = 1$ and double its radius is a) $x^2 + y^2 + z^2 - x + y - z = 1$ b) $x^2 + y^2 + z^2 - 6x + 2y - 4z = 1$ c) $2x^2 + 2y^2 + 2z^2 - 6x + 2y - 4z - 15 = 0$ d) $2x^2 + 2y^2 + 2z^2 - 6x + 2y - 4z - 25 = 0$ 89. The angle between the lines $\vec{\mathbf{r}} = (4\hat{\mathbf{i}} - \hat{\mathbf{j}}) + s(2\hat{\mathbf{i}} + \hat{\mathbf{j}} - 3\hat{\mathbf{k}})$ and $\vec{\mathbf{r}} = (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) + t(\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ is

b) $\frac{3}{8}$

a) $3\pi/2$ b) $\pi/3$ c) $2\pi/3$ d) $\pi/6$ 90. Equation of the plane, passing through the line of intersection of the plane $P \equiv ax + by + cz + d = 0, P' \equiv a'x + b'y + c'z + d' = 0$ and parallel to *x*-axis is

a)
$$Pa - P'a' = 0$$
 b) $P/a + P'/a' = 0$ c) $Pa + P'a' = 0$ d) $P/a = P'/a'$

91. Equation of the plane through three points *A*, *B*, *C* with position vectors $-6\hat{i} + 3\hat{j} + 2\hat{k}$, $3\hat{i} - 2\hat{j} + 4\hat{k}$, $5\hat{i} + 7\hat{j} + 3\hat{k}$ is

- a) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} \hat{\mathbf{j}} 7\hat{\mathbf{k}}) + 23 = 0$ b) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} + 7\hat{\mathbf{k}}) = 23$ c) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} - 7\hat{\mathbf{k}}) + 23 = 0$ d) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} - \hat{\mathbf{j}} - 7\hat{\mathbf{k}}) = 23$ 92. The equation of the plane in which the lines $\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}$ and $\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}$ lie, is a) 17x - 47y - 24z + 172 = 0b) 17x + 47y - 24z + 172 = 0c) 17x + 47y + 24z + 172 = 0d) 17x - 47y + 24z + 172 = 0
- 93. The length of the perpendicular from the origin to the plane passing through three non-collinear points $\vec{a}, \vec{b}, \vec{c}$ is

a)
$$\frac{\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}}{\begin{vmatrix} \vec{a} \times \vec{b} + \vec{c} \times \vec{a} + \vec{b} \times \vec{c} \end{vmatrix}}$$

b)
$$\frac{2\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}}{\begin{vmatrix} \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \end{vmatrix}}$$

c)
$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$$

c) [*ā b č*]

d) None of these

- 94. The shortest distance from the point (1, 2, -1) to the surface of the sphere $x^2 + y^2 + z^2 = 24$ is a) $3\sqrt{6}$ b) $\sqrt{6}$ c) $2\sqrt{6}$ d) 2
- 95. A plane π makes intercepts 3 and 4 respectively on *z*-axis and *x*-axis. If π is parallel to *y*-axis, then its equation is

a)
$$3x + 4z = 12$$
 b) $3z + 4x = 12$ c) $3y + 4z = 12$ d) $3z + 4y = 12$

96. A line passes through two points A(2, -3, -1) and B(8, -1, 2). The coordinates of a point on this line at a distance of 14 units from A are

97. The equation of the perpendicular from the point (α , β , γ) to the plane ax + by + cz + d = 0 is a) $\frac{x-a}{a\alpha} = \frac{y-b}{b\beta} = \frac{z-c}{c\gamma}$ b) $\frac{x}{a} = \frac{y}{b} = \frac{z}{c}$ c) $\frac{x-\alpha}{a} = \frac{y-\beta}{b} = \frac{z-\gamma}{c}$ d) $\frac{x}{\alpha} = \frac{y}{\beta} = \frac{z}{\gamma}$ 98. The equation of the plane through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z - 1 = 0, is a) 3x + 4y + 5z = 9b) 3x + 4y - 5z = 9 c) 3x + 4y - 5z - 9 = 0 d) None of these 99. The perimeter of the triangle with verities at (1,0,0).(0,1,0) and (0,0,1) is b) 2 a) 3 c) $2\sqrt{2}$ d) $3\sqrt{2}$ 100. If the distance of the point P(1, -2, 1) from the plane $x + 2y - 2z = \alpha$, where $\alpha > 0$, is 5, then the foot of the perpendicular from *P* to the plane is b) $\left(\frac{4}{3}, -\frac{4}{3}, \frac{1}{3}\right)$ c) $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$ d) $\left(\frac{2}{3}, -\frac{1}{3}, \frac{5}{2}\right)$ a) $\left(\frac{8}{3}, \frac{4}{3}, -\frac{7}{3}\right)$ 101. If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ interested, then the value of k is a) $\frac{3}{2}$ d) $-\frac{3}{2}$ b) $\frac{9}{2}$ c) $-\frac{2}{\alpha}$ 102. A point on x-axis which is equidistance from both the points (1, 2, 3) and (3, 5, -2) is b) (5, 0, 0) a) (-6, 0, 0)c) (-5, 0, 0)d) (6, 0, 0) 103. The angle between the line $\frac{x+4}{1} = \frac{y-3}{2} = \frac{z+2}{3}$ and $\frac{x}{3} = \frac{y-1}{-2} = \frac{z}{1}$ is b) $\cos^{-1}\left(\frac{2}{7}\right)$ a) $\sin^{-1}\left(\frac{1}{7}\right)$ c) $\cos^{-1}\left(\frac{1}{7}\right)$ d) None of these 104. The points (5, 2, 4), (6, -1, 2) and (8, -7, k) are collinear, if k is equal to b) 2 a) -2 c) 3 d) −1 105. The equation of the plane through the point (2, 5, -3) perpendicular to the planes x + 2y + 2z = 1 and x - 2y + 3z = 4 is a) 3x - 4y + 2z - 20 = 0b) 7x - y + 5z = 30c) x - 2y + z = 11d) 10x - y - 4z = 27106. The direction cosines of the line 4x - 4 = 1 - 3y = 2z - 1 are a) $\frac{3}{\sqrt{56}}, \frac{-4}{\sqrt{56}}, \frac{6}{\sqrt{56}}$ b) $\frac{3}{\sqrt{29}}, \frac{-4}{\sqrt{29}}, \frac{6}{\sqrt{29}}$ c) $\frac{3}{\sqrt{61}}, \frac{-4}{\sqrt{61}}, \frac{6}{\sqrt{61}}$ d) 4, -3,2 107. Equation of the plane passing through the intersection of the planes x + y + z = 6 and 2x + 3y + 4z + 5 = 60 and the point (1, 1, 1) is a) 20x + 23y + 26z - 69 = 0b) 31x + 45y + 49z + 52 = 0d) 4x + 5y + 6z - 7 = 0c) 8x + 5y + 2z - 69 = 0108. The equation of the plane through the point (0, -4, -6) and (-2, 9, 3) and perpendicular to the plane x - 4y - 2z = 8 is a) 3x + 3y - 2z = 0 b) x - 2y + z = 2 c) 2x + y - z = 2 d) 5x - 3y + 2z = 0109. If a line makes angle $\frac{\pi}{3}$ and $\frac{\pi}{4}$ with the *x* and *y*-axes respectively, then the angle made by the line and *z*-axis is a) $\frac{\pi}{2}$ c) $\frac{\pi}{4}$ d) $\frac{5\pi}{12}$ b) $\frac{\pi}{3}$ 110. Let (3, 4, -1) and (-1, 2, 3) are the end points of a diameter of sphere. Then the radius of the sphere is equal to b) 2 c) 3 d) 9 a) 1

111. The points (5, -4, 2), (4, -3, 1), (7, -6, 4) and (8, -7, 5) are the vertices of

a) A rectangle b) A square c) A parallelogram d) None of these 112. The equation of the plane containing the lines $\vec{r} = \vec{a_1} + \lambda \vec{b}$ and $\vec{r} = \vec{a_2} + \mu \vec{b}$, is

a) $\vec{r} \cdot (\vec{a_1} - \vec{a_2}) \times \vec{b} = [\vec{a_1} \ \vec{a_2} \ \vec{b}]$ b) $\vec{r} \cdot (\vec{a_2} - \vec{a_1}) \times \vec{b} = [\vec{a_1} \ \vec{a_2} \ \vec{b}]$ c) $\vec{r} \cdot (\vec{a_1} + \vec{a_2}) \times \vec{b} = [\vec{a_2} \ \vec{a_1} \ \vec{b}]$

d) None of these

113. If $\left(\frac{1}{2}, \frac{1}{3}, n\right)$ are the direction cosines of a line, then the value of n is

a)
$$\frac{\sqrt{23}}{6}$$
 b) $\frac{23}{6}$ c) $\frac{2}{3}$ d) $\frac{3}{2}$

114. The vector equation of the plane passing through the origin and the line of intersection of the plane

$$\vec{r} \cdot \vec{a} = \lambda$$
 and $\vec{r} \cdot \vec{b} = \mu$ is
a) $\vec{r} \cdot (\lambda \vec{a} - \mu \vec{b}) = 0$ b) $\vec{r} \cdot (\lambda \vec{b} - \mu \vec{a}) = 0$ c) $\vec{r} \cdot (\lambda \vec{a} + \mu \vec{b}) = 0$ d) $\vec{r} \cdot (\lambda \vec{b} + \mu \vec{a}) = 0$
If l_{a} m_{a} n_{a} and l_{a} m_{a} n_{a} are direction cosines of the two lines inclined to each other at an angle, then the

115. If l_1 , m_1 , n_1 and l_2 , m_2 , n_2 are direction cosines of the two lines inclined to each other at an angle , then the direction cosines of the external bisector of the angle between the lines are

a)
$$\frac{l_1 + l_2}{2 \sin \theta/2}$$
, $\frac{m_1 + m_2}{2 \sin \theta/2}$, $\frac{m_1 + m_2}{2 \sin \theta/2}$, $\frac{m_1 + m_2}{2 \sin \theta/2}$
b) $\frac{l_1 + l_2}{2 \cos \theta/2}$, $\frac{m_1 + m_2}{2 \cos \theta/2}$, $\frac{m_1 + m_2}{2 \cos \theta/2}$, $\frac{m_1 - m_2}{2 \sin \theta/2}$, $\frac{m_1 - m_2}{2 \sin \theta/2}$, $\frac{m_1 - m_2}{2 \sin \theta/2}$
d) $\frac{l_1 - l_2}{2 \cos \theta/2}$, $\frac{m_1 - m_2}{2 \cos \theta/2}$, $\frac{m_1 - m_2}{2 \cos \theta/2}$

116. The direction ratios of the normal to the plane passing through the points (1, -2, 3), (-1, 2, -1) and parallel to the line $\frac{x-2}{2} = \frac{y+1}{3} = \frac{z}{4}$ are proportional to a) 2, 3, 4 b) 4, 0, 7 c) -2, 0, -1 d) 2, 0, -1

117. The position vector of a point at a distance of $3\sqrt{11}$ units from $\hat{i} - \hat{j} + 2\hat{k}$ on a line passing through the points $\hat{i} - \hat{i} + 2\hat{k}$ and $3\hat{i} + \hat{i} + \hat{k}$ is

points
$$i - j + 2k$$
 and $3i + j + k$ is
a) $10\hat{i} + 2\hat{j} - 5\hat{k}$ b) $-8\hat{i} - 4\hat{j} - \hat{k}$ c) $8\hat{i} + 4\hat{j} + \hat{k}$ d) $-10\hat{i} - 2\hat{j} - 5\hat{k}$
118. The centre and radius of the sphere $x^2 + y^2 + z^2 + 3x - 4z + 1 = 0$ are

a) $\left(-\frac{3}{2}, 0, -2\right), \frac{\sqrt{21}}{2}$ b) $\left(\frac{3}{2}, 0, 2\right), \sqrt{21}$ c) $\left(-\frac{3}{2}, 0, 2\right) \cdot \frac{\sqrt{21}}{2}$ d) $\left(-\frac{3}{2}, 2, 0\right), \frac{21}{2}$ The direction cosines of the line 6 x = 2 = 3 y + 1 = 2 z = 2 are

119. The direction cosines of the line 6x - 2 = 3y + 1 = 2z - 2 are

a)
$$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$$
 b) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$ c) 1, 2, 3 d) None of these

120. The cartesian equation of the plane perpendicular to the line $\frac{x-1}{2} = \frac{y-3}{-1} = \frac{z-4}{2}$ and passing through the origin is

a)
$$2x - y + 2z - 7 = 0$$
 b) $2x + y + 2z = 0$ c) $2x - y + 2z = 0$ d) $2x - y - z = 0$
121. The point of intersection of the lines

$$\frac{x-5}{3} = \frac{y-7}{-1} = \frac{z+2}{1}, \frac{x+3}{-36} = \frac{y-3}{2} = \frac{z-6}{4}$$
is
a) (2, 10, -4)
b) $\left(21, \frac{5}{3}, \frac{10}{3}\right)$
c) (5, -7, -2)
d) (-3,3,6)
122. If the position vectors of the points *A* and *B* are $3\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} - 2\hat{j} - 4\hat{k}$ respectively, then the equation

of the plane through *B* and perpendicular to *AB* is a) 2x + 3y + 6z + 28 = 0

a)
$$2x + 3y + 6z + 28 =$$

b) $3x + 2y + 6z = 28$

c) 2x - 3y + 6z + 28 = 0

d) 3x - 2y + 6z = 28

- 123. The point equidistant from the point (a, 0, 0), (0, b, 0), (0, 0, c) ad (0, 0, 0) is
 - c) $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$ a) $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$ b) (*a*, *b*, *c*) d) None of these
- 124. If a plane meets the coordinate axes at A, B and C such that the centroid of the triangle is (1,2,4), then the equation of the plane is
- a) x + 2y + 4z = 12b) 4x + 2y + z = 12c) x + 2y + 4z = 3d) 4x + 2y + z = 3125. If the coordinates of the vertices of a \triangle ABC are A(-1, 3, 2), B(2, 3, 5) and C(3, 5, -2), then $\angle A$ is equal to a) 45° b) 60° c) 90° d) 30°

9

126. The distance between the line

$$\vec{\mathbf{r}} = 2\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}} + \lambda(\hat{\mathbf{i}} - \hat{\mathbf{j}} + 4\hat{\mathbf{k}})$$
 and the plane $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + \hat{\mathbf{k}}) = 5$ is

a)
$$\frac{10}{3}$$
 b) $\frac{3}{10}$ c) $\frac{10}{3\sqrt{3}}$ d) $\frac{10}{9}$

127. A point on *XOZ* - plane divides the join of (5, -3, -2) and (1, 2, -2) at

a) $\left(\frac{13}{5}, 0, -2\right)$ b) $\left(\frac{13}{5}, 0, 2\right)$ c) (5,0,2)

- 128. A plane makes intercepts -6,3,4 upon the coordinate axes. Then, the length of the perpendicular from the origin on it is
- a) $\frac{2}{\sqrt{29}}$ b) $\frac{3}{\sqrt{20}}$ d) $\frac{12}{\sqrt{20}}$ c) $\frac{4}{\sqrt{20}}$ 129. The equation of the plane counting the lines $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{3}$ and $\frac{x}{2} = \frac{y-2}{-1} = \frac{z+1}{3}$ is a) 8x - y + 5z - 8 = 0 b) 8x + y - 5z - 7 = 0c) x - 8y + 3z + 6 = 0 d) 8x + y - 5z + 7 = 0130. The equation of the plane which bisects the line joining (2, 3, 4) and (6, 7, 8), is a) x - y - z - 15 = 0b) x - y + z - 15 = 0c) x + y + z - 15 = 0d) x + y + z + 15 = 0131. The distance between the points (1,4,5) and (2,2,3) is a) 5 b) 4 d) 2 c) 3 132. The equation of the plane through the points (1, 2, 3), (-1, 4, 2) and (3, 1, 1) is a) 5x + y + 12z - 23 = 0b) 5x + 6y + 2z - 23 = 0c) x + 6y + 2z - 13 = 0d) x + y + z - 13 = 0133. Equation of the plane parallel to the planes x + 2y + 3z - 5 = 0, x + 2y + 3z - 7 = 0 and equidistant from them is a) x + 2y + 3z - 6 = 0b) x + 2y + 3z - 1 = 0c) x + 2y + 3z - 8 = 0d) x + 2y + 3z - 3 = 0134. The image of the point (1, 2, 3) in lie $\frac{x}{2} = \frac{y-1}{3} = \frac{z-1}{3}$ is c) (1, 3, 2) a) $\left(1, \frac{5}{2}, \frac{5}{2}\right)$ b) $\left(1, \frac{9}{4}, \frac{11}{4}\right)$ d) (3, 1, 2) 135. If *O* is the origin and OP = 3 with direction ratios -1, 2, -2, then coordinates of *P* are b) (−1, 2, −2) c) (-3, 6, -9)d) (-1/3, 2/3, -2/3)a) (1, 2, 2) 136. The equation of the sphere touching the three coordinate planes is a) $x^{2} + y^{2} + z^{2} + 2a(x + y + z) + 2a^{2} = 0$ b) $x^2 + y^2 + z^2 - 2a(x + y + z) + 2a^2 = 0$ d) $x^2 + y^2 + z^2 \pm 2ax \pm 2ay \pm 2az + 2a^2 = 0$ c) $x^2 + y^2 + z^2 \pm 2a(x + y + z) + 2a^2 = 0$ 137. The angle between the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and the plane 3x + 2y - 3z = 4 is c) $\cos^{-1}\left(\frac{24}{\sqrt{20}}\right)$ d) 90° b) 0° a) 45°

138. The equation of a line of intersection of planes 4x + 4y - 5z = 12 and 8x + 12y - 13z = 32 can be written as a) $\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z}{4}$ b) $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z}{4}$ c) $\frac{x}{2} = \frac{y+1}{3} = \frac{z-2}{4}$ d) $\frac{x}{2} = \frac{y}{3} = \frac{z-2}{4}$ 139. Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$ Then (α, β) equals a) (6, -17) b) (-6,7) c) (5, −15) d) (-5,15) 140. If a line makes angles α , β , γ and δ with four diagonals of a cube, then the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \beta + \sin$ $\sin^2\delta$, is a) $\frac{4}{2}$ b) $\frac{8}{2}$ c) $\frac{7}{2}$ d) 1 141. Find the direction ratio of $\frac{3-x}{1} = \frac{y-2}{5} = \frac{2z-3}{1}$ a) 1: 5: $\frac{1}{2}$ c) $-1:5:\frac{1}{2}$ b) -1:5:1 d) 1:5:1 142. If l_1, m_1, n_1 and l_2, m_2, n_2 are direction cosines of the two lines inclined to each other at an angle θ , then the direction cosines of internal bisector of the angle between these lines are a) $\frac{l_1 + l_2}{2\sin\frac{\theta}{2}}, \frac{m_1 + m_2}{2\sin\frac{\theta}{2}}, \frac{m_1 + n_2}{2\sin\frac{\theta}{2}}$ b) $\frac{l_1 + l_2}{2\cos\frac{\theta}{2}}, \frac{m_1 + m_2}{2\cos\frac{\theta}{2}}, \frac{n_1 + n_2}{2\cos\frac{\theta}{2}}$ c) $\frac{l_1 - l_2}{2\sin\frac{\theta}{2}}, \frac{m_1 - m_2}{2\sin\frac{\theta}{2}}, \frac{n_1 - n_2}{2\sin\frac{\theta}{2}}$ d) $\frac{l_1 - l_2}{2\cos\frac{\theta}{2}}, \frac{m_1 - m_2}{2\cos\frac{\theta}{2}}, \frac{n_1 - n_2}{2\cos\frac{\theta}{2}}$ 143. The plane $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$, cuts the axes in *A*, *B*, *C*, then the area of the $\triangle ABC$, is a) $\sqrt{29}$ sq units b) $\sqrt{41}$ sq units c) $\sqrt{61}$ sq units d) None of these 144. If the planes $\vec{r} \cdot (2\hat{\imath} - \lambda\hat{\jmath} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda\hat{\imath} + 5\hat{\jmath} - \hat{k}) = 5$ are perpendicular to each other, then value of $\lambda^2 + \lambda$, is a) 0 b) 2 d) 1 c) 3 145. If a sphere of radius *r* passes through the origin, then the extremities of the diameter parallel to *x*-axis lie on each of the spheres a) $x^2 + y^2 + z^2 + 2rx = 0$ b) $x^2 + y^2 + z^2 + 2ry = 0$ c) $x^2 + y^2 + z^2 \pm 2rz = 0$ d) $x^2 + y^2 + z^2 \pm 2ry \pm 2rz = 0$ 146. If the distance of the point (1, 1,1) from the origin is half is distance from the plane x + y + z + k = 0, then k is equal to a) ±3 b) ±6 c) -3,9d) 3, −9 147. *XOZ* plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio a) 3:7 148. The point on the line $\frac{x-2}{1} = \frac{y+3}{-2} = \frac{z+5}{-2}$ at a distance of 6 from the point (2, -3, -5) is d) −2:7 a) 3:7 c) -3:7a) (3, -5, -3) c) (0, 2, -1)d) (-3, 5, 3) b) (4, -7, -9)149. The direction ratios of a normal to the plane passing through (0, 0, 1), (0, 1, 2) and (1, 2, 3) are proportional to a) 0, 1, -1 b) 1, 0, −1 c) 0, 0, −1 d) 1, 0, 0 150. Ratio in which the *xy*-plane divides the join of (1, 2, 3) and (4, 2, 1) is a) 3 : 1 internally b) 3 : 1 externally c) 1 : 2 internally d) 2 : 1 externally 151. A vector \vec{r} is equally inclined with the coordinate axes. If the tip of \vec{r} is in the positive octant and $|\vec{r}| = 6$, then \vec{r} is a) $2\sqrt{3}(\hat{\iota} - \hat{\jmath} + \hat{k})$ b) $2\sqrt{3}(-\hat{\imath} + \hat{\jmath} + \hat{k})$ c) $2\sqrt{3}(\hat{\imath} + \hat{\jmath} - \hat{k})$ d) $2\sqrt{3}(\hat{i} + \hat{j} + \hat{k})$ 152. The angle between the planes 2x - y + z = 6 and x + y + 2z = 3 is b) $\cos^{-1}(1/6)$ a) π/3 c) π/4 d) $\pi/6$ 153. The vector equation of the plane through the point $2\hat{i} - \hat{j} - 4\hat{k}$ and parallel to the plane $\vec{r} \cdot (4\hat{i} - 12\hat{j} - 12\hat{j})$

	$3\hat{k}) - 7 = 0$, is					
	a) $\vec{r} \cdot (4\hat{\imath} - 12\hat{\jmath} - 3\hat{k}) = 0$					
	b) $\vec{r} \cdot (4\hat{\imath} - 12\hat{\jmath} - 3\hat{k}) = 32$					
	c) $\vec{r} \cdot (4\hat{i} - 12\hat{i} - 3\hat{k}) =$	12				
	d) None of these					
154.	An equation of the line pa	ssing through $3\hat{\mathbf{i}} - 5\hat{\mathbf{i}} + 7\hat{\mathbf{k}}$	and perpendicular to the p	lane $3x - 4y = 5z = 8$ is		
	x-3 $y+5$ $z-7$		x-3 $y+4$ $z-5$			
	a) $\frac{1}{3} = \frac{1}{-4} = \frac{1}{5}$		b) $\frac{1}{3} = \frac{1}{-5} = \frac{1}{7}$			
	c) $\vec{\mathbf{r}} = 3\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - 7\hat{\mathbf{k}} + \lambda(3)$	$\hat{\mathbf{i}} - 4\hat{\mathbf{j}} - 5\hat{\mathbf{k}}$)	d) $\vec{\mathbf{r}} = 3\hat{\mathbf{i}} - 4\hat{\mathbf{j}} - 5\hat{\mathbf{k}} + \mu(3)$ λ, μ are parameters	$\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$		
155.	The equation of a line is 6.	x - 2 = 3y - 1 = 2z - 2 T	he direction ratios of the lin	ne are		
	a) 1,2,3	b) 1 ,1, 1	c) $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	d) $\frac{1}{3}, \frac{-1}{3}, \frac{1}{3}$		
156.	Angle between the line \vec{r} =	$= (2\hat{\imath} - \hat{\jmath} + \hat{k}) + \lambda(-\hat{\imath} + \hat{\jmath} + \lambda)$	\hat{k} and the plane $\vec{r} \cdot (3\hat{\iota} + \hat{k})$	$2\hat{j}-\hat{k})=4$ is		
	a) $\cos^{-1}\left(\frac{2}{\sqrt{42}}\right)$	b) $\cos^{-1}\left(\frac{-2}{\sqrt{42}}\right)$	c) $\sin^{-1}\left(\frac{2}{\sqrt{42}}\right)$	d) $\sin^{-1}\left(\frac{-2}{\sqrt{42}}\right)$		
157.	A mirror and a source of l	ight are situated at the orig	in <i>O</i> and at a point on <i>OX</i> r	espectively. A ray of light		
	from the source strikes th	e mirror and is reflected. If	the direction ratios of the	normal to the plane are		
	proportional to $1, -1, 1, th$	nen direction cosines of the	reflected ray are			
	1 2 2	h) $-\frac{1}{2} \frac{2}{2}$	$(1) - \frac{1}{2} - \frac{2}{2} - \frac{2}{2}$	d) $-\frac{1}{2}$ $-\frac{2}{2}$		
	$\frac{1}{2}, \frac{1}{3}, \frac{1}{3}$	$\frac{1}{2}, \frac{1}{3}, \frac{1}{3}$	$c_{j} = \frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}$	$\frac{1}{2}, \frac{1}{3}, \frac{1}{3}$		
158.	If the direction ratio of tw	o lines are given by $3lm - 1$	4ln + mn = 0 and			
	l + 2m + 3n = 0, then the	π angle between the line is	π	π		
	a) $\frac{1}{6}$	b) $\frac{\pi}{4}$	c) $\frac{1}{3}$	d) $\frac{\pi}{2}$		
159.	The points $A(-1, 3, 0), B(2)$	2,2,1) and <i>C</i> (1,1,3) determi	ine a plane. The distance fro	om the plane to the point		
	D(5,7,8) is					
	a) √ <u>66</u>	b) √71	c) $\sqrt{73}$	d) √76		
160.	The line of intersection of	the planes $\vec{r} \cdot (3\hat{\iota} - \hat{\jmath} + \hat{k})$	$= 1 \text{ and } \vec{r} \cdot (\hat{\iota} + 4\hat{\jmath} - 2\hat{k}) =$	2 is parallel to the vector		
	a) $-2\hat{\imath} + 7\hat{\jmath} + 13\hat{k}$	b) $2\hat{\imath} + 7\hat{\jmath} - 13\hat{k}$	c) $-2\hat{\imath} - 7\hat{\jmath} + 13\hat{k}$	d) $2\hat{\imath} + 7\hat{\jmath} + 13\hat{k}$		
161.	The equation of the line of	f intersection of planes				
	4x + 4y - 5z = 12,8x +	12y - 13z = 32 can be wr	ritten as			
	a) $\frac{x-1}{x-1} = \frac{y+2}{x-1} = \frac{z}{x-1}$	b) $\frac{x-1}{x-1} = \frac{y-2}{x-1} = \frac{z}{x-1}$	c) $\frac{x}{-1} = \frac{y+1}{-1} = \frac{z-2}{-1}$	d) $\frac{x}{-1} = \frac{y}{-1} = \frac{z-2}{-1}$		
1()	2 -3 4	2 3 4	2 3 4	2 3 4		
162.	I ne vector equation of the	e line of intersection of the	$planes r \cdot (l+2j+3k) = 0$	$J \text{ and } r \cdot (3l + 2j + k) = 0,$		
	$\frac{1}{1}$	$1 \rightarrow 1(2 - 22 + 2\hat{1})$	$1 \rightarrow 1(2 + 22 - 2\hat{1})$	d) None of these		
1()	a) $r = \lambda (l + 2j + K)$	$D f r = \lambda (l - 2j + 3k)$	c) $r = \lambda (l + 2j - 3k)$	u) None of these		
163.	Let a plane passes through $Q(0, 1, 1)Q(0, 1, 1)$ and $Q(0, 1, 1)Q(0, 1, 1)$	In the point $P(-1, -1, 1)$ and $P(-1, -1, 1)$ and $P(-1, -1, 1)$	d also passes through a line of the plane from the point ((0, 0, 0) is		
	Q(0, 1, 1)Q(0, 1, 1)allu A(0)	b) 0	1	2		
	a) 5	0)0	c) $\frac{1}{\sqrt{6}}$	d) $\frac{2}{\sqrt{6}}$		
164	The direction cosines of th	he line passing through $P(2)$	2.31) and the origin are	γo		
1011	2 -3 1	2 -3 1	-2 -3 1	. 2 -3 -1		
	a) $\frac{1}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{1}{\sqrt{14}}$	b) $\overline{\sqrt{14}}$, $\overline{\sqrt{14}}$, $\overline{\sqrt{14}}$	c) $\overline{\sqrt{14}}$, $\overline{\sqrt{14}}$, $\overline{\sqrt{14}}$	d) $\overline{\sqrt{14}}$, $\overline{\sqrt{14}}$, $\overline{\sqrt{14}}$		
165.	The shortest distance from	n the point $(1, 2, -1)$ to the	e surface of the sphere			
	$x^2 + y^2 + z^2 = 54$ is					
	a) 3√6	b) 2√6	c) $\sqrt{6}$	d) 2		
166.	The shortest distance betw	ween the lines				
	$\frac{x-2}{2} = \frac{y+3}{4} = \frac{z-1}{5}$ and					
	3 4 5					

Page | 12

	$\frac{x-5}{x-5} = \frac{y-1}{x-5} = \frac{z-6}{x-5}$ is			
	1 2 3			
1.00	a) 3	b) 2	c) 1	d) 0
167.	The image of the point $P($	1, 3, 4) in the plane $2x - y$	+ z + 3 = 0 is	1) (1 4 2)
1.00	a) $(3, 5, -2)$	b) $(-3, 5, 2)$	c) $(3, -5, 2)$	d) (-1, 4, 2)
168.	The vector from of the spl	here $2(x^2 + y^2 + z^2) - 4x$	+ 6y + 8z - 5 = 0 is	1
	a) $\vec{\mathbf{r}} \cdot \left[\vec{\mathbf{r}} - \left(2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}\right)\right] =$	<u>2</u> 5	b) $\vec{\mathbf{r}} \cdot \left[\vec{\mathbf{r}} - \left(2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 4\hat{\mathbf{k}}\right)\right]$	$=\frac{1}{2}$
	c) $\vec{\mathbf{r}} \cdot \left[\vec{\mathbf{r}} - \left(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}}\right)\right]$	$=\frac{5}{2}$	d) $\vec{\mathbf{r}} \cdot \left[\vec{\mathbf{r}} - \left(2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 4\hat{\mathbf{k}} \right) \right]$	$=\frac{5}{2}$
169.	The angle between the lin	$e\frac{x-1}{2} = \frac{y-2}{1} = \frac{z+3}{-2}$ and the	plane $x + y + 4 = 0$, is	
	a) 0°	b) 30°	c) 45°	d) 90°
170.	The equation to the straig	ht line passing through the	e points $(4, -5, -2)$ and (-2)	1, 5, 3) is
	x - 4 - y + 5 - z + 2		x+1 y-5 z-3	
	a) $\frac{1}{1} = \frac{-2}{-2} = \frac{-1}{-1}$		$0 \frac{1}{1} = \frac{1}{2} = \frac{1}{-1}$	
	c) $\frac{x}{1} = \frac{y}{z} = \frac{z}{z}$		d) $\frac{x}{t} = \frac{y}{z} = \frac{z}{z}$	
171	-1 5 3 The reflection of the plane	2α 2α 4π $2-0$ in 4π	4 -5 -2	is the plane
1/1.	The reflection of the plane 2^{1}	2x - 3y + 4z - 3 = 0 in (the plane $x - y + z - 3 = 0$	is the plane
	a) $4x - 3y + 2z - 15 = 0$		b) $x - 3y + 2z - 15 = 0$	
170	C) $4x + 3y - 2z + 15 = 0$	naacing through the line of	d) None of these	$u + u + \pi - C$ and
1/2.	The equation of the plane $2\pi + 2\pi + 4\pi + 5 = 0$ and	passing through the line of	intersection of the planes $a_1 a_2 = 0$ is	x + y + z = 6 and
	2x + 5y + 4z + 5 = 0 and a) $x + 7x + 12z = 0(-0)$	i per pendicular to the plan	$e^{4x} + 5y - 5z = 0$ is	
	a) $x + 7y + 152 - 96 = 0$		$\begin{array}{c} \text{U} \\ \text{U} \\ x + 7y + 13z + 96 = 0 \\ \text{d} \\ x - 7y + 12z + 96 = 0 \end{array}$	
170	c) $x + 7y - 13z - 96 = 0$		$a_{1}x - 7y + 13z + 96 = 0$	
1/3.	1 ne distance between the	$\lim r = 2l - 2j + 3\kappa + \lambda($	(1 - j + 4k) and the plane r	(l+5j+k) = 5, 15
	a) $\frac{10}{2\sqrt{2}}$	b) $\frac{10}{2}$	c) 10/9	d) None of these
174	$3\sqrt{3}$	$3 x - 3 y - 1 z + 4 \dots$		
174.	I ne angle between the lin	$e_{\frac{2}{2}} = \frac{1}{1} = \frac{1}{-2}$ and the	plane, $x + y + z + 5 = 0$	
	Is			
	a) $\sin^{-1}\left(\frac{2}{\sqrt{2}}\right)$	b) $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$	c) $\frac{\pi}{4}$	d) $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$
100	$\sqrt{3}$	√3/ 		(3\/3/
175.	If for a plane, the intercep the origin to the plane is	ts on the coordinate axes a	ire 8, 4, 4, then the length of	the perpendicular from
	a) 8/3	b) 3/8	c) 3	d) 4/3
176.	A line makes acute angles	of α , β and γ with the coordinates of α and γ and γ and γ are constants of α and γ and γ are constants of α and γ and γ are constants of α are constants of α and γ are constants of α are constants	dinate axes such that	
	$\cos \alpha \cos \beta = \cos \beta \cos \gamma$	_ 2		
	And $\cos y \cos \alpha = \frac{4}{2}$	9		
	And $\cos \gamma \cos \alpha = \frac{1}{9}$,			
	Then $\cos \alpha + \cos \beta + \cos \gamma$	is equal		
	То	-	-	2
	a) $\frac{25}{2}$	b) $\frac{5}{2}$	c) $\frac{5}{2}$	d) $\frac{2}{2}$
177	9 The equation of the plane	9	3 Joint of the line segment of	3 ioin of the points $P(1, 2, 3)$
1//.	and $O(3, 4, 5)$ and perpen	dicular to it is	onit of the fine segment of	join of the points T(1, 2, 3)
	and $Q(3, 4, 3)$ and perpendent	b) $r \pm y \pm z = -9$	c) $2x \pm 3y \pm 4z = 0$	d) $2x \pm 3y \pm 4z = -9$
170	a) $x + y + z = 9$ The intersection of the en	UJ x + y + 2 = -9 hore $x^2 + y^2 + z^2 + 7x = 2$	$C_{J} 2x + 3y + 4z = 9$	$u_{j} 2x + 3y + 4z = -9$
170.	The intersection of the spin- $u^2 + u^2 + z^2 - 2u + 2$	$\frac{1}{4\pi} = 4 \text{ is some as the in}$	2y - 2 - 1 allu	
	$x + y + z^ 3x + 3y +$	-4z = -4 is same as the m	tersection of one of the sph	eres
	and the plane is	b) $2x + x + z = 1$	a) $2x + x - 1$	d) $2x + x + z = 1$
170	a) $2x - y - z = 1$ The equation of the plane	y - 2x + y + z = 1	y + z = 1	$u_J 2x + y + z = 1$
1/9.	points $(3, 4, -1)$ and $(2, -1)$	1,5), is	point (2 , -3 , 1) and perper	furcular to the line joining

	a) $x + 5y - 6z + 19 = 0$		b) $x - 5y + 6z - 19 = 0$	
100	c) $x + 5y + 6z + 19 = 0$	a stars i slot live s	d) $x - 5y - 6z - 19 = 0$	
180	1 - r + v + 1 + 3 - z	e straight line		
	$\frac{1}{3} = \frac{y+1}{-2} = \frac{5}{-1}$ is			
	a) $\vec{\mathbf{r}} = (\hat{\mathbf{i}} - \hat{\mathbf{i}} + 3\hat{\mathbf{k}}) + \lambda(3\hat{\mathbf{i}})$	$(+2\hat{\mathbf{i}}-\hat{\mathbf{k}})$	b) $\vec{\mathbf{r}} = (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 3\hat{\mathbf{k}}) + \lambda(3\hat{\mathbf{j}})$	$(-2\hat{\mathbf{i}}-\hat{\mathbf{k}})$
	c) $\vec{\mathbf{r}} = (3\hat{\mathbf{i}} - 2\hat{\mathbf{i}} - \hat{\mathbf{k}}) + \lambda(\hat{\mathbf{i}})$	$-\hat{\mathbf{i}}+3\hat{\mathbf{k}}$	d) $\vec{\mathbf{r}} = (3\hat{\mathbf{i}} + 2\hat{\mathbf{i}} - \hat{\mathbf{k}}) + \lambda(\hat{\mathbf{i}})$	$\hat{\mathbf{i}} - \hat{\mathbf{i}} + 3\hat{\mathbf{k}}$
181	The plane $\frac{x}{y} \pm \frac{y}{z} \pm \frac{z}{z} = 1$ cu	f = condinate axes in A	B C then the area of the A	
101	$\frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = 1$ cu	its the coordinate axes in A	b, b, c then the area of the b	
	1S			d) Nono of these
400	a) $\sqrt{29}$ sq units	b) $\sqrt{41}$ sq units	c) $\sqrt{61}$ sq units	a) None of these
182	• A line makes acute angles	of α , β and γ with the coor	dinate axes such that $\cos \alpha$	$\cos\beta = \cos\beta\cos\gamma = \frac{2}{9}$ and
	$\cos\gamma\cos\alpha = \frac{4}{9}$, then $\cos\alpha$	$+\cos\beta +\cos\gamma$ is equal to		
	a) $\frac{25}{9}$	b) $\frac{5}{9}$	c) $\frac{5}{3}$	d) $\frac{2}{3}$
183	. The equation of the plane	containing the line $\vec{r} = \hat{\iota} + \hat{\iota}$	$\hat{i} + \lambda(2\hat{i} + \hat{i} + 4\hat{k})$, is	5
	a) $\vec{r} \cdot (\hat{i} + 2\hat{i} - \hat{k}) = 3$	b) $\vec{r} \cdot (\hat{i} + 2\hat{i} - \hat{k}) = 6$	c) $\vec{r} \cdot (-\hat{i} - 2\hat{i} + \hat{k})$	d) None of these
184	If 0.4 is equally inclined to	OX OV and OZ and if A is	$\sqrt{3}$ units from the origin the	$a_{\rm r}$
101	(3, 3, 3)	b) $(-1, 1, -1)$	$\sqrt{3}$ units from the origin, the c) (-1, 1, 1)	d) $(1 \ 1 \ 1)$
185	If a plane meets the coord	linate axes at A. B and C su	ch that the centroid of the	triangle is $(1, 2, 4)$ then the
100	equation of the plane is			
	a) $x + 2y + 4z = 12$	b) $4x + 2y + z = 12$	c) $x + 2y + 4z = 3$	d) $4x + 2y + z = 3$
186	. The equation of the plane	passing through the midpo	oint of the line of join of the	points (1, 2, 3) and (3, 4,
	5) and perpendicular to it	is	,	
	a) $x + y + z = 9$	b) $x + y + z = -9$	c) $2x + 3y + 4z = 9$	d) $2x + 3y + 4z = -9$
187	. The line passing through t	the points $(5,1,a)$ and $(3,b)$, 1) crosses the <i>yz</i> -plane at	the
	point $\left(0, \frac{17}{2}, -\frac{13}{2}\right)$. Then	,		
	a) <i>a</i> = 8, <i>b</i> = 2	b) <i>a</i> = 2, <i>b</i> = 8	c) <i>a</i> = 4, <i>b</i> =6	d) <i>a</i> = 6, <i>b</i> = 4
188	. The image of the point (5,	4, 6) in the plane $x + y + y$	2z - 15 = 0 is	
	a) (3, 2, 2)	b) (2, 3, 2)	c) (2, 2, 3)	d) (-5, -4, -6)
189	. If α , β , γ be the angle whic	h a line makes with the coo	ordinate axes, then	
	a) $\sin^2 \alpha + \cos^2 \beta + \sin^2 \gamma$	= 1	b) $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$	= 1
	c) $\cos^2 \alpha + \cos^2 \beta + \sin^2 \gamma$	= 1	d) $\sin^2 \alpha + \cos^2 \beta + \sin^2 \gamma$	= 1
190	. The angle between the lin	es whose direction cosines	are given by the equation	$l^2 + m^2 - n^2 = 0, l + m + m$
	n = 0, is	π	π	π
	a) $\frac{\pi}{6}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{3}$	d) $\frac{\pi}{2}$
191	. Equation of plane passing	through the points $(2, 2, 1)$), (9, 3, 6) and perpendicul	ar to the plane
	2x + 6y + 6z - 1 = 0, is			1
	a) $3x + 4y + 5z = 9$	b) $3x + 4y - 5z + 9 = 0$	c) $3x + 4y - 5z - 9 = 0$	d) None of these
192	. The vector equation of the	e plane passing through the	e origin and the line of inter	rsection of the plane
	$\vec{\mathbf{r}} \cdot \vec{\mathbf{a}} = \lambda$ and $\vec{\mathbf{r}} \cdot \vec{\mathbf{b}} = \mu$, is			
	a) $\vec{\mathbf{r}} \cdot (\lambda \vec{\mathbf{a}} - \mu \vec{\mathbf{b}}) = 0$	b) $\vec{\mathbf{r}} \cdot (\lambda \vec{\mathbf{b}} - \mu \vec{\mathbf{a}}) = 0$	c) $\vec{\mathbf{r}} \cdot (\lambda \vec{\mathbf{a}} + \mu \vec{\mathbf{b}}) = 0$	d) $\vec{\mathbf{r}} \cdot (\lambda \vec{\mathbf{b}} + \mu \vec{\mathbf{a}}) = 0$
193	The shortest distance bety	ween the lines $\vec{r} = (\hat{\imath} + 2\hat{\imath} - \hat{\imath})$	$(\hat{k}) + \lambda(2\hat{i} + \hat{j} + 2\hat{k})$ and,	$\vec{r} = 2\hat{\imath} - \hat{\imath} - \hat{k} + \hat{k}$
	$u(2\hat{i} + \hat{i} + 2\hat{k})$, is			, , , , , , , , , , , , , , , , , , ,
	a) 0	h) $\sqrt{101}/3$	c) 101/3	d) None of these
194	A straight line which make	es an angle of 60° with eac	of v and z-axes this line r	nakes with r -axis at an
- / I	angle		and 2 and 5, this fille i	nanco many and at an
	a) 30°	b) 60°	c) 75°	d) 45°

195. If the straight lines $\frac{x-1}{k} = \frac{y-2}{2} = \frac{z-3}{3}$ and $\frac{x-2}{3} = \frac{y-3}{k} = \frac{z-1}{3}$ Intersect at a point, then the integer k is equal to a) –2 b) -5 c) 5 d) 2 196. The cosine of the angle A of the triangle with verities A(1, -1, 2), B(6, 11, 2), C(1, 2, 6) is a) 63/65 b) 36/65 c) 16/65 d) 13/64 197. The angle between a line whose direction ratios are in the ratio 2:2:1 and a line joining (3, 1, 4) to (7, 2, 12) is a) $\cos^{-1}(2/3)$ b) $\cos^{-1}(-2/3)$ c) $\tan^{-1}(2/3)$ d) None of these 198. The equation of the plane passing through (1, 1, 1) and (1, -1, -1) and perpendicular to 2x - y + z + 5 =0 is a) 2x + 5y + z - 8 = 0 b) x + y - z - 1 = 0c) 2x + 5y + z + 4 = 0 d) x - y + z - 1 = 0199. The distance of origin from the point of intersection of the line $\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and the plane 2x + y - z = 2 is b) √83 c) $2\sqrt{19}$ d) $\sqrt{78}$ a) $\sqrt{120}$ 200. Consider the following statements: 1. Line joining (1, 2, 5); (4, 3, 2) is parallel to the line joining (5, 1, -11), (8, 2, -8)2. Three concurrent lines with $DC's(l_i, m_i, n_i)i = 1,2,3$ are Coplanar, if $\begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{vmatrix} = 0$ 3. The plane x - 2y + z = 21 and the line $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-1}{3}$ are parallel Which of these is/are correct? c) (3) and (1) a) (1) and (2) b) (2) and (3) d) (1), (2) and (3) 201. The distance of the point P(2, 3, 4) from the line $1-x = \frac{y}{2} = \frac{1}{3}(1+z)$ is c) $\frac{2}{7}\sqrt{35}$ b) $\frac{4}{7}\sqrt{35}$ a) $\frac{1}{7}\sqrt{35}$ d) $\frac{3}{7}\sqrt{35}$ 202. The equation of the line of intersection of the planes x + 2y + z = 3 and 6x + 8y + 3z = 13 can be written as a) $\frac{x-2}{2} = \frac{y+1}{-3} = \frac{z-3}{4}$ b) $\frac{x-2}{2} = \frac{y+1}{3} = \frac{z-3}{4}$ c) $\frac{x+2}{2} = \frac{y-1}{2} = \frac{z-3}{4}$ d) $\frac{x+2}{2} = \frac{y+2}{3} = \frac{z-3}{4}$ 203. A line makes an obtuse angle with the positive x-axis and angles $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with the positive y and z-axes respectively. Its direction cosine are a) $-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{2}$ b) $\frac{1}{\sqrt{2}}, -\frac{1}{2}, \frac{1}{2}$ c) $-\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}$ d) $\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}$ 204. If \vec{a} is a constant vector and p is a real constant with $|\vec{a}|^2 > p$, then the locus of a point with position vector $\vec{\mathbf{r}}$ such that $|\vec{\mathbf{r}}|^2 - 2\vec{\mathbf{r}}\cdot\vec{\mathbf{a}} + p = 0$ is a) A sphere b) An ellipse c) A circle d) A plane 205. The image of the point P(1, 3, 4) in the plane 2x - y + z + 3 = 0 is a) (3, 5, -2)b) (-3, 5, 2)c) (3, -5, 2)206. The distance of the point (1, -2, 3) from the planes x - y + z = 5 measured along the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$ is c) $\frac{7}{6}$ d) None of these a) 1 b) $\frac{6}{7}$

207. The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points *B*(4,7,1) and *C*(3,5,3) are a) (5/3, 7/3, 17/3) b) (5, 7, 17) c) (5/7, -7/3, 17/3) d) (-5/3, 7/3, -17/3)208. The symmetric equation of lines 3x + 2y + z - 5 = 0 and x + y - 2z - 3 = 0, is a) $\frac{x-1}{5} = \frac{y-4}{7} = \frac{z-0}{1}$ b) $\frac{x+1}{5} = \frac{y+4}{7} = \frac{z-0}{1}$ d) $\frac{x-1}{-5} = \frac{y-4}{7} = \frac{z-0}{1}$ c) $\frac{x+1}{-5} = \frac{y-4}{7} = \frac{z-0}{1}$ 209. The distance of the point P(a, b, c) from *x*-axis is a) $\sqrt{b^2 + c^2}$ b) $\sqrt{a^2 + b^2}$ c) $\sqrt{a^2 + c^2}$ d) None of these 210. *P*, *Q*, *R*, *S* Are four coplanar points on the sides *AB*, *BC*, *CD*, *DA* of a skew quadrilateral. The product $\frac{AP}{PB} \cdot \frac{BQ}{QC} \cdot \frac{CR}{RD} \cdot \frac{DS}{SA}$ equals a) –2 b) -1 d) 1 211. The shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$, is d) $1/\sqrt{3}$ a) 1/√6 b) 1/6 212. A plane $x + y + z = -a\sqrt{3}$ touches the sphere $2x^{2} + 2y^{2} + 2z^{2} - 2x + 4y - 4z + 3 = 0$, then the value of *a* is a) $\frac{1}{\sqrt{3}}$ b) $\frac{1}{2\sqrt{3}}$ c) $1 - \frac{1}{\sqrt{3}}$ d) 1 + $\frac{1}{\sqrt{3}}$ 213. A(3, 2, 0), B(5, 3, 2) and C(-9, 6, -3) are the vertices of a triangle ABC. If the bisector of $\angle ABC$ meets BC at *D*, then coordinates of *D* are a) (19/8, 57/16, 17/16) b) (-19/8, 57/16, 17/16) c) (19/8, -57/16, 17/16) d) None of these 214. The equation of the plane through the line of intersection of planes ax + by + cz + d = 0, a'x + b'y + cz + d = 0, a'y + cz + d = 0, c'z + d' = 0 and parallel to the line y = 0, z = 0 is a) (ab' - a'b)x + (bc' - b'c)y + (ad' - a'd) = 0b) (ab' - a'b)x + (bc' - b'c)y + (ad' - a'd)z = 0c) (ab' - a'b)y + (ac' - a'c)z + (ad' - a'd) = 0d) None of these 215. If P is a point in space such that \vec{OP} is inclined to OX at 45° and OY to 60°, then \vec{OP} is inclined to OZ at a) 75° b) 60° or 120° c) 75° or 105° d) 255° 216. A variable plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ at a unit distance from origin cuts the coordinate axes at *A*, *B* and *C*.Centriod (x, y, z) satisfies the equation $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = k$. The value of k is a) 9 b) 3 c) $\frac{1}{9}$ d) $\frac{1}{3}$ 217. Equation of the plane containing the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is b) 3x + 2y - 2z = 0d) 5x + 2y - 4z = 0a) x + 2y - 2z = 0c) x - 2y + z = 0218. The equation of the plane passing through the points (0, 1, 2) and (-1, 0, 3) and perpendicular to the plane 2x + 3y + z = 5 is a) 3x - 4y + 18z + 32 = 0b) 3x + 4y - 18z + 32 = 0d) 4x - 3y + z + 1 = 0c) 4x + 3y - 17z + 31 = 0^{219.} The shortest distance between the skew lines $l_1: \vec{\mathbf{r}} = \vec{\mathbf{a}}_1 + \lambda \vec{\mathbf{b}}_1 \, l_2: \vec{\mathbf{r}} = \vec{\mathbf{a}}_2 + \mu \vec{\mathbf{b}}_2$ is a) $\frac{|\vec{\mathbf{a}}_2 - \vec{\mathbf{a}}_1) \cdot \vec{\mathbf{b}}_1 \times \vec{\mathbf{b}}_2|}{|\vec{\mathbf{b}}_1 \times \vec{\mathbf{b}}_2|}$ b) $\frac{|\vec{\mathbf{a}}_2 - \vec{\mathbf{a}}_1) \cdot \vec{\mathbf{a}}_2 \times \vec{\mathbf{b}}_2|}{|\vec{\mathbf{b}}_1 \times \vec{\mathbf{b}}_2|}$ c) $\frac{|\vec{\mathbf{a}}_2 - \vec{\mathbf{b}}_2) \cdot \vec{\mathbf{a}}_1 \times \vec{\mathbf{b}}_1|}{|\vec{\mathbf{b}}_1 \times \vec{\mathbf{b}}_2|}$ d) $\frac{|\vec{\mathbf{a}}_1 - \vec{\mathbf{b}}_2) \cdot \vec{\mathbf{b}}_1 \times \vec{\mathbf{a}}_2|}{|\vec{\mathbf{b}}_1 \times \vec{\mathbf{b}}_2|}$ 220. The perpendicular distance from the origin to the plane through the point (2, 3, -1) and perpendicular to

	the vector $3\hat{i} - 4\hat{j} + 7\hat{k}$			
	a) $\frac{13}{\sqrt{74}}$	b) $\frac{-13}{\sqrt{74}}$	c) 13	d) None of these
221	The lines $\vec{r} = \vec{a} + \lambda (\vec{b} \times \vec{c})$	\vec{r}) and $\vec{r} = \vec{b} + \mu(\vec{c} \times \vec{a})$ will	l intersect, if	
	a) $\vec{a} \times \vec{c} = \vec{b} \times \vec{c}$	b) $\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c}$	c) $\vec{b} \times \vec{a} = \vec{c} \times \vec{a}$	d) None of these
222	. The radius of the circle in	which the sphere $x^2 + y^2$	$+z^{2}+2x-2y-4z-19$	= 0
	is cut by the plane $x + 2y$	z + 2z + 7 = 0 is		
	a) 1	b) 2	c) 3	d) 4
223	. A line passes through the	points $(6, -7, -1)$ and $(2, -7, -1)$	-3, 1). The direction cosine	es of the line so directed
	that the angle made by it	with the positive direction	of <i>x</i> -axis is acute, are	
	a) $\frac{2}{2}$, $-\frac{2}{2}$, $-\frac{1}{2}$	b) $-\frac{2}{2},\frac{2}{2},\frac{1}{2}$	c) $\frac{2}{2}$, $-\frac{2}{2}$, $\frac{1}{2}$	d) $\frac{2}{2}$, $\frac{2}{2}$, $\frac{1}{2}$
วว 4		$3^{+}3^{+}3^{-}3^{-}$	3^{\prime} 3^{\prime} 3^{\prime}	3,3,3
224	• If the angle between the I	$\operatorname{ine} \frac{1}{1} = \frac{1}{2} = \frac{1}{2}$ and the	e plane $2x - y + \sqrt{\lambda z} + 4 =$	$= 0$ is such that $\sin \theta =$
	13 Then, value of λ is			
	4	ы ³	-3	പ ⁵
	$a_{3} = \frac{1}{3}$	<u> 4</u>	5	$\frac{1}{3}$
225	. The equation of the line p	bassing through the point (3	3, 0, -4) and perpendicular	to the plane $2x - 3y + $
	5z - 7 = 0 is	<i>x</i> 2 <i>x</i> 7 <i>4</i>		
	a) $\frac{x-z}{2} = \frac{y}{2} = \frac{z+4}{5}$	b) $\frac{x-5}{2} = \frac{y}{2} = \frac{z-4}{5}$	c) $\frac{x-5}{2} = \frac{-y}{2} = \frac{z+4}{5}$	d) $\frac{x+3}{2} = \frac{y}{2} = \frac{z-4}{5}$
226	3 -3 -3 If the plane $3x + y + 2z + 3$	2 -3 -3 -3 -3 -3 -5 + 6 = 0 is parallel to the lin	2 3 3 P	2 3 3
	$\frac{3x-1}{2} - 3 - y - \frac{z-1}{2}$ then	the value of $3a \pm 3h$ is		
	2b $2b$ $y = 3$ $y = a$, then a	2		۷ (۲
	a) $\frac{1}{2}$	b) $\frac{3}{2}$	c) 3	a) 4
227	. The equation of the plane	which meets the axes in A	, <i>B</i> , <i>C</i> such that the triangle	ABC is
	$\begin{pmatrix} 1 & 1 & 1 \\ \end{pmatrix}_{ia given by}$			
	$\left(\overline{3},\overline{3},\overline{3}\right)$ is given by		<i>x</i> , <i>y</i> , <i>z</i> ,	1
	a) $x + y + z = 1$	b) $x + y + z = 2$	c) $\frac{x}{2} + \frac{y}{2} + \frac{z}{2} = 3$	d) $x + y + z = \frac{1}{2}$
228	The equation to the plane	e through the points (2, 3, 1)	3 3 $3) and (4 -5 3) narallel to 3$	r-axis is
220	a) $x + y + 4z = 7$	b) $r + 4z = 7$	c) $v - 4z = 7$	d) $v + 4z = -7$
229	The equation of the plane	$\frac{1}{2}$ passing through the inters	section of the planes $x + 2x$	v + 3z + 4 = 0 and
	4x + 3y + 2z + 1 = 0 and	d the origin, is		
	a) $3x + 2y + z + 1 = 0$	b) $3x + 2y + z = 0$	c) $2x + 3y + z = 0$	d) $x + y + z = 0$
230	The vector equation of a	plane which contains the lin	ne $\vec{r} = 2\hat{\imath} + \lambda(\hat{\jmath} - \hat{k})$ and pe	erpendicular to the plane
	$\vec{r} \cdot (\hat{\imath} + \hat{k}) = 3$, is			
	a) $\vec{r} \cdot (\hat{i} - \hat{i} - \hat{k}) = 2$	h) $\vec{r} \cdot (\hat{i} + \hat{i} - \hat{k}) = 2$	c) $\vec{r} \cdot (\hat{i} + \hat{i} + \hat{k}) = 2$	d) None of these
231	The ratio in which the line	e ioining (2.4.5), (3.5, -4) i	is divided by the yz -nlane i	\$
201	a) $2:3$	b) 3 : 2	c) $-2:3$	d) 4: -3
232	. Distance between two pa	rallel planes $4x + 2y + 4z$	+5 = 0 and $2x + y + 2z - 2z = 0$	8 = 0
	1	1 2		
	is			
	is 2) ⁷	b) ²	7	d) 2
	is a) $\frac{7}{2}$	b) $\frac{2}{7}$	c) $-\frac{7}{2}$	d) $-\frac{2}{7}$
233	is a) $\frac{7}{2}$ The shortest distance bet	b) $\frac{2}{7}$ ween the lines $\vec{r} = (5\hat{\imath} + 7)$	c) $-\frac{7}{2}$ $\hat{j} + 3\hat{k}$ + $\lambda(5\hat{i} - 16\hat{j} + 7\hat{k})$	d) $-\frac{2}{7}$ and, $\vec{r} = 9\hat{\imath} + 13\hat{\jmath} + 15\hat{k} + 13\hat{\jmath}$
233	is a) $\frac{7}{2}$ The shortest distance bet $\mu(3\hat{\imath} + 8\hat{\jmath} - 5\hat{k})$, is	b) $\frac{2}{7}$ ween the lines $\vec{r} = (5\hat{\imath} + 7)$	c) $-\frac{7}{2}$ $\hat{j} + 3\hat{k}$ + λ (5 $\hat{i} - 16\hat{j} + 7\hat{k}$)	d) $-\frac{2}{7}$ and, $\vec{r} = 9\hat{\imath} + 13\hat{\jmath} + 15\hat{k} + 13\hat{j}$
233	is a) $\frac{7}{2}$ The shortest distance bet $\mu(3\hat{\imath} + 8\hat{\jmath} - 5\hat{k})$, is a) 10 units	b) $\frac{2}{7}$ ween the lines $\vec{r} = (5\hat{\imath} + 7)$ b) 12 units	c) $-\frac{7}{2}$ $\hat{j} + 3\hat{k} + \lambda(5\hat{i} - 16\hat{j} + 7\hat{k})$ c) 14 units	d) $-\frac{2}{7}$ and, $\vec{r} = 9\hat{\imath} + 13\hat{\jmath} + 15\hat{k} +$ d) None of these
233 234	is a) $\frac{7}{2}$ The shortest distance bet $\mu(3\hat{i} + 8\hat{j} - 5\hat{k})$, is a) 10 units A plane which passes three	b) $\frac{2}{7}$ ween the lines $\vec{r} = (5\hat{\imath} + 7)$ b) 12 units ough the point (3, 2, 0) and	c) $-\frac{7}{2}$ $\hat{j} + 3\hat{k}$ + $\lambda(5\hat{i} - 16\hat{j} + 7\hat{k})$ c) 14 units the line $\frac{x-3}{1} = \frac{y-6}{5} = \frac{z-4}{4}$, is	d) $-\frac{2}{7}$ and, $\vec{r} = 9\hat{\imath} + 13\hat{\jmath} + 15\hat{k} + 13\hat{j}$ d) None of these
233 234	is a) $\frac{7}{2}$ The shortest distance bet $\mu(3\hat{\imath} + 8\hat{\jmath} - 5\hat{k})$, is a) 10 units A plane which passes throw a) $x - y + z = 1$	b) $\frac{2}{7}$ ween the lines $\vec{r} = (5\hat{i} + 7)$ b) 12 units ough the point (3, 2, 0) and b) $x + y + z = 5$	c) $-\frac{7}{2}$ $\hat{j} + 3\hat{k}$ + $\lambda(5\hat{i} - 16\hat{j} + 7\hat{k})$ c) 14 units the line $\frac{x-3}{1} = \frac{y-6}{5} = \frac{z-4}{4}$, is c) $x + 2y - z = 0$	d) $-\frac{2}{7}$ and, $\vec{r} = 9\hat{\imath} + 13\hat{\jmath} + 15\hat{k} + 13\hat{j}$ d) None of these d) $2x - y + z = 5$

Page | 17

	a) $(x-1) + 2(y-2) + 5$	(z-3)=0	b) $x + 2y + 5z = 14$	
	c) $x + 2y + 5z = 6$		d) None of the above	
236	• Radius of the circle $\overrightarrow{\mathbf{r}^2} + \overrightarrow{\mathbf{r}}$	$\mathbf{\hat{i}} \cdot \left(2\mathbf{\hat{i}} - 2\mathbf{\hat{j}} - 4\mathbf{\hat{k}}\right) - 19 = 0$	and $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}) + 8 =$	0
	a) 5	b) 4	c) 3	d) 2
237	. If <i>P</i> be the point (2, 6, 3),	then the equation of the pla	ane through <i>P</i> at right angle	e to OP, O being the origin,
	is			
	a) $2x + 6y + 3z = 7$	b) $2x - 6y + 3z = 7$	c) $2x + 6y - 3z = 49$	d) $2x + 6y + 3z = 49$
238	. If the coordinate of the ve	rities of a triangle ABC be	A(-1,3,2), B(2,3,5) and $C(3)$	$(5, -2)$, then $\angle A$ is equal t
	a) 45°	b) 60°	c) 90°	d) 30°
239	. The position vector of the	point in which the line join	ning the points $\hat{\iota} - 2\hat{j} + \hat{k}$ as	nd 3 $\hat{k} - 2\hat{j}$ cuts the plane
	through the origin and the	e points 4 \hat{j} and 2 $\hat{j} + \hat{k}$, is		

a)
$$6\hat{\imath} - 10\hat{\jmath} + 3\hat{k}$$
 b) $\frac{1}{5}(6\hat{\imath} - 10\hat{\jmath} + 3\hat{k})$ c) $-6\hat{\imath} + 10\hat{\jmath} - 3\hat{k}$ d) None of these

240. The plane of intersection of spheres $x^2 + y^2 + z^2 + 2x + 2y + 2z = 2$ and $2x^{2} + 2y^{2} + 2z^{2} + 4x + 2y + 4z = 0$ is

a) Parallel to xz-plane b) Parallel to y-axis c) y = 0d) None of these 241. The direction cosines of a line equally inclined to three mutually perpendicular lines having direction cosines as l. m. n. l. m. n. l. m. n. are

cosines as
$$t_1, m_1, m_1, t_2, m_2, t_3, m_3, m_3, m_3$$
 are
a) $l_1 + l_2 + l_3, m_1 + m_2 + m_3, n_1 + n_2 + n_3$
b) $\frac{l_1 + l_2 + l_3}{\sqrt{3}}, \frac{m_1 + m_2 + m_3}{\sqrt{3}}, \frac{n_1 + n_2 + n_3}{\sqrt{3}}$
c) $\frac{l_1 + l_2 + l_3}{3}, \frac{m_1 + m_2 + m_3}{3}, \frac{n_1 + n_2 + n_3}{3}$
d) None of these

242. A line makes angles of 45° and 60° with the *x*-axis and the *z*-axis respectively. The angle made by it with y-axis is

a) 30° or 150° b) 60° or 120° c) 45° or 135° d) 90° 243. If the direction cosines of two lines are such that l + m + n = 0, $l^2 + m^2 + n^2 = 0$, then the angle between them is d) $\pi/6$ a) π b) $\pi/3$ 244. The value of λ for which the lines $\frac{x-1}{1} = \frac{y-2}{\lambda} = \frac{z+1}{-1}$ and $\frac{x+1}{-\lambda} = \frac{y+1}{2} = \frac{z-2}{1}$ are perpendicular to each other is d) None of these a) 0 245. In a three dimensional *xyz*-space, the equation $x^2 - 5x + 6 = 0$ represents b) Plane c) Curves 246. Angle between the line $\frac{x+1}{1} = \frac{y}{2} = \frac{y-1}{1}$ and a normal to the plane x - y + z = 0 is a) Points d) Pair of straight lines is a) 0° d) 90° c) 45° 247. The angle between the line $\frac{3x-1}{3} = \frac{y+3}{-1} = \frac{5-2z}{4}$ and the plane 3x - 3y - 6z = 10 is equal to a) $\frac{\pi}{6}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$ 248. The foot of the perpendicular drawn from a point with position vector $\hat{i} + 4\hat{k}$ on the line joining the points having position vectors as $-11\hat{j} + 3\hat{k}$ and $2\hat{i} - 3\hat{j} + \hat{k}$ has the position vector a) $4\hat{i} + 5\hat{j} + 5\hat{k}$ b) $4\hat{i} + 5\hat{j} - 5\hat{k}$ c) $5\hat{i} + 4\hat{j} - 5\hat{k}$ d) $4\hat{i} - 5\hat{j} + 5\hat{k}$ 249. What are the DR's of vector parallel to (2, -1, 1) and (3, 4, -1)? d) (-1, -5, -2)a) (1,5-2)b) (-2, -5, 2)c) (-1,5,2) 250. The point of intersection of the line $\frac{x-1}{2} = \frac{y+2}{4} = \frac{z-3}{-2}$ and plane 2x - y + 3z - 1 = 0 is

a)
$$(10, -10, 3)$$
 b) $(10, 10, -3)$ c) $(-10, 10, 3)$ d) None of these 251. The equation of the plane containing the line

equal to

 $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$ and the point (0, 7, -7) is b) x + y + z = 2 c) x + y + z = 0a) x + y + z = 1d) None of these 252. Equation of the plane passing through the point (1, 1, 1) and perpendicular to each of the planes x + 2y + 3z = 7 and 2x - 3y + 4z = 0, is a) 17x - 2y + 7z = 12 b) 17x + 2y - 7z = 12 c) 17x + 2y + 7z = 12 d) 17x - 2y - 7z = 12253. The equation of the plane passing through (1, 1, 1) and (1, -1, -1) and perpendicular to 2x - y + z + 5 =0 is a) 2x + 5y + z - 8 = 0b) x + y - z - 1 = 0c) 2x + 5y + z + 4 = 0d) x - y + z - 1 = 0254. If \vec{r} is a vector of magnitude 21 and has direction ratios proportional to 2, -3, 6, then \vec{r} is equal to a) $6\hat{i} - 9\hat{j} + 18\hat{k}$ b) $6\hat{i} + 9\hat{j} + 18\hat{k}$ c) $6\hat{\imath} - 9\hat{\jmath} - 18\hat{k}$ d) $6\hat{i} + 9\hat{j} - 18\hat{k}$ 255. The line perpendicular to the plane 2x - y + 5z = 4 passing through the point (-1, 0, 1) is a) $\frac{x+1}{2} = y = \frac{z-1}{-5}$ b) $\frac{x+1}{-2} = y = \frac{z-1}{-5}$ c) $\frac{x+1}{2} = -y = \frac{z-1}{5}$ d) $\frac{x+1}{2} = y = \frac{z-1}{5}$ 256. The equation of the sphere whose centre is (6, -1, 2) and which touches the plane 2x - y + 2z - 2 = 0, is a) $x^{2} + y^{2} + z^{2} - 12x + 2y - 4z - 16 = 0$ b) $x^{2} + y^{2} + z^{2} - 12x + 2y - 4z = 0$ c) $x^{2} + y^{2} + z^{2} - 12x + 2y - 4z + 16 = 0$ d) $x^{2} + y^{2} + z^{2} - 12x + 2y - 4z + 6 = 0$ 257. The equation of the plane passing through three non-collinear points with position vectors $\vec{a}, \vec{b}, \vec{c}$ is a) $\vec{\mathbf{r}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}} + \vec{\mathbf{c}} \times \vec{\mathbf{a}} + \vec{\mathbf{a}} \times \vec{\mathbf{b}}) = 0$ b) $\vec{\mathbf{r}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}} + \vec{\mathbf{c}} \times \vec{\mathbf{a}} + \vec{\mathbf{a}} \times \vec{\mathbf{b}}) = [\vec{\mathbf{a}} \, \vec{\mathbf{b}} \, \vec{\mathbf{c}}]$ c) $\vec{\mathbf{r}} \cdot (\vec{\mathbf{a}} \times (\vec{\mathbf{b}} + \vec{\mathbf{c}})) = [\vec{\mathbf{a}} \, \vec{\mathbf{b}} \, \vec{\mathbf{c}}]$ d) $\vec{\mathbf{r}} \cdot (\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}}) = 0$ 258. If the planes x = cy + bz, y = az + cx, z = bx + ay pass through a line, then $a^2 + b^2 + c^2 + 2abc$ is c) 2 a) () b) 1 d) 3 259. The equation of the plane, which makes with coordinate axes, a triangle with its centroid (α , β , γ) is a) $\alpha x + \beta y + \gamma z = 3$ b) $\alpha x + \beta y + \gamma z = 1$ c) $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3$ d) $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 1$ 260. The equation of the plane perpendicular to the line $\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z+1}{2}$ and passing through the point (2, 3, 1), b) $\vec{r} \cdot (\hat{\imath} - \hat{\jmath} + 2k) = 1$ c) $\vec{r} \cdot (\hat{\imath} - \hat{\jmath} + 2k) = 7$ d) $\vec{r} \cdot (\hat{\imath} + \hat{\jmath} - 2k) = 10$ a) $\overrightarrow{r} \cdot (\hat{\imath} + \hat{\jmath} + 2k) = 1$ 261. Equation of a line passing through (1, -2, 3) and parallel to the plane 2x + 3y + z + 5 = 0 is a) $\frac{x-1}{-1} = \frac{y+2}{1} = \frac{z-3}{-1}$ b) $\frac{x-1}{2} = \frac{y+2}{2} = \frac{z-3}{4}$ c) $\frac{x+1}{-1} = \frac{y-2}{1} = \frac{z-3}{-1}$ d) None of these 262. The shortest distance between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$ is b) 2√<u>30</u> a) $\sqrt{30}$ c) $5\sqrt{30}$ d) $3\sqrt{30}$ 263. The point in the xy –plane which is equidistant from the point (2, 0, 3) and (0, 3, 2) and (0, 0, 1), is c) (3, −2, 0) a) (1, 2, 3) b) (-3, 2, 0)d) (3, 2, 0) 264. A sphere of constant radius 2k passes through the origin and meets the axes in A, B, C. The locus of the centroid of the tetrahedron ABC is b) $x^2 + v^2 + z^2 = k^2$ a) $x^2 + y^2 + z^2 = 4k^2$ c) $2(x^2 + v^2 + z^2) = k^2$ d) None of these 265. The direction cosines of the line which is perpendicular to the lines whose direction cosines are proportional to (1, -1, 2) and (2, 1, -1) are a) $\frac{-2}{\sqrt{35}}, \frac{5}{\sqrt{35}}, \frac{3}{\sqrt{35}}$ b) $-\frac{1}{\sqrt{35}}, \frac{5}{\sqrt{35}}, \frac{3}{\sqrt{35}}$ c) $-\frac{1}{\sqrt{35}}, \frac{5}{\sqrt{35}}, \frac{3}{\sqrt{35}}$ d) None of these

266. The shortest distance between the lines 1 + x = 2y = -12z and x = y + 2 = 6z - 6 is

	a) 1	b) 2	c) 3	d) 4		
267.	The position vectors of po	bints A and B are $\hat{i} - \hat{j} + 3\hat{k}$	\hat{k} and 3 \hat{i} + 3 \hat{j} + 3 \hat{k} respec	tively. The equation of a		
	plane is $\vec{r} \cdot (5\hat{i} + 2\hat{i} - 7\hat{k}) + 9 = 0$. The points A and B					
	a) Lie on the plane					
	b) Are on the same side of	f the plane				
	c) Are on the opposite sid	e of the plane				
	d) None of these					
268.	The distance of the point ((-1, -5, -10) from the poi	int of intersection of the lin	$e\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and the		
	plane $x - y + z = 5$ is	12.44	240	N 45		
	a) $\frac{14}{r}$	b) 11	c) 13	d) 15		
269	The line segment adjoinin	g the points A, B makes pro	ojection 1, 4, 3 on x, y, z-ax	es respectively. Then, the		
2071	direction cosines of <i>AB</i> ar	e	ojootion 1, 1, 0 on w, y, 2 un			
	a) 1, 4, 3		b) $1/\sqrt{26}$, $4/\sqrt{26}$, $3/\sqrt{26}$			
	c) $-1/\sqrt{26} 4/\sqrt{26} 3/\sqrt{26}$	-	d) $1/\sqrt{26} - 4/\sqrt{26} - 3/\sqrt{26}$	5		
270.	If the direction ratios of tw	, wo lines are given by 3 <i>lm</i> +	-4ln + mn = 0 and $l + 2m$	+3n = 0, then the angle		
2701	between the lines is			i of the the the		
	a) $\pi/2$	b) π/3	c) π/4	d) $\pi/6$		
271.	If (2, 3, 5) is one end of a d	liameter of the sphere	<i>,</i> ,			
	$x^2 + y^2 + z^2 - 6x - 12y$	-2z + 20 = 0, then the co	ordinates of the other end	of the diameter are		
	a) (4, 9, -3)	b) (4, -3, 3)	c) (4, 3, 5)	d) (4, 3, -3)		
272.	If Q is the image of the point	int $P(2, 3, 4)$ under the refl	ection in the plane			
	x - 2y + 5z = 6, then the	e equation of the line PQ is				
	a) $\frac{x-2}{z} = \frac{y-3}{z} = \frac{z-4}{z}$	b) $\frac{x-2}{z-4} = \frac{y-3}{z-4} = \frac{z-4}{z-4}$	c) $\frac{x-2}{z-4} = \frac{y-3}{z-4} = \frac{z-4}{z-4}$	d) $\frac{x-2}{z-4} = \frac{y-3}{z-4} = \frac{z-4}{z-4}$		
272	-1 2 5 There is point $P(a, a, a)$ or	1 -2 5	-1 -2 5	1 2 5		
273.	of plane perpendicular to	OP and passing through P	cuts the intercents on axes	The sum of whose		
	reciprocals is		cuts the intercepts on axes	. The sum of whose		
	Note of the second seco	. 3	, 3a	., 1		
	a) <i>a</i>	b) $\frac{1}{2a}$	c) $\frac{1}{2}$	$\frac{d}{a}$		
274.	If <i>P</i> is a point in space suc respectively, then the pos	h that $OP = 12$ and \vec{OP} is i ition vector of P is	nclined at angles of 45° and	d 60° with <i>OX</i> and <i>OY</i>		
	a) $6\hat{i} + 6\hat{j} + 6\sqrt{2}\hat{k}$	b) $6\hat{i} + 6\sqrt{2}\hat{i} + 6\hat{k}$	c) $6\sqrt{2}\hat{i} + 6\hat{i} + 6\hat{k}$	d) None of these		
275.	Equation of plane contain	ing the lines		,		
	$\vec{\mathbf{r}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}} + \lambda(\hat{\mathbf{i}} + \hat{\mathbf{j}} +$	k)				
	And $\vec{\mathbf{r}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}} + \mu(\hat{\mathbf{i}} + \hat{\mathbf{k}})$	$(1 + 2\hat{i} + 2\hat{k})$ is				
	a) $\vec{\mathbf{r}} = \hat{\mathbf{i}} + 2\hat{\mathbf{i}} + \hat{\mathbf{k}} + \lambda(\hat{\mathbf{i}} + \hat{\mathbf{i}})$	$\hat{\mathbf{k}} + 2\hat{\mathbf{k}}$	b) $\vec{\mathbf{r}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}} + \lambda(\hat{\mathbf{i}} + 2\hat{\mathbf{j}})$	$\hat{\mathbf{i}} + \hat{\mathbf{k}} + \mu(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}})$		
	c) $\vec{\mathbf{r}} = \hat{\mathbf{i}} + 2\hat{\mathbf{i}} + 2\hat{\mathbf{k}} + \lambda(\hat{\mathbf{i}} + \hat{\mathbf{k}})$	$(\hat{\mathbf{i}} + \hat{\mathbf{k}}) + \mu(\hat{\mathbf{i}} + 2\hat{\mathbf{i}} + \hat{\mathbf{k}})$	d) $\vec{\mathbf{r}} = \hat{\mathbf{i}} + 2\hat{\mathbf{i}} + \hat{\mathbf{k}} + \lambda(\hat{\mathbf{i}} + \hat{\mathbf{i}})$	$(\hat{i} + \hat{k}) + \mu(\hat{i} + 2\hat{i} + 2\hat{k})$		
276	Cosine of the angle betwee	en two diagonals of cube is	$= \frac{1}{2} + $, , , , , , , , , ,		
270.	2	1	. 1	d) None of these		
	a) $\frac{1}{\sqrt{6}}$	b) $\frac{1}{3}$	c) $\frac{-}{2}$			
277.	The equation of the plane	which bisects the line join	ing (2, 3, 4) and (6, 7, 8) is			
	a) $x - y - z - 15 = 0$	b) $x - y + z - 15 = 0$	c) $x + y + z - 15 = 0$	d) $x + y + z + 15 = 0$		
278.	The distance of the point ($(3, 8, 2)$ from the line $\frac{x-1}{2} =$	$\frac{y-3}{z} = \frac{z-2}{z}$ measured			
	parallel to the plane $3x +$	2v - 2z = 0 is	4 3			
	a) 2	b) 3	c) 6	d) 7		
279.	The direction cosines <i>l</i> . <i>m</i>	, \vec{n} of two lines are connect	ed by the relations $l + m + m$	n = 0, lm = 0, then the		
	angle between them is		-			
	a) π/3	b) π/4	c) π/2	d) 0		

280. If a line lies in the octant OXYZ and it makes equal angles with the axes, then

a)
$$l = m = n = \frac{1}{\sqrt{3}}$$
 b) $l = m = n \pm \frac{1}{\sqrt{3}}$ c) $l = m = n = -\frac{1}{\sqrt{3}}$ d) $l = m = n = \pm \frac{1}{\sqrt{3}}$

- 281. The line joining the points (1, 1, 2) and (3, -2, 1) meets the plane 3x + 2y + z = 6 at the pointa) (1, 1, 2)b) (3, -2, 1)c) (2, -3, 1)d) (3, 2, 1)
- 282. The points *A*(5, −1,1), *B*(7, −4,7), *C*(1, −6,10) and *D*(−1, −3, 4) are vertices of a a) Square b) Rhombus c) Rectangle d) None of these

283. If P(x, y, z) is a point on the line segment joining Q(2,24) and R(3,5,6) such that the projections of *OP* on the axes are $\frac{13}{5}$, $\frac{19}{5}$ and $\frac{26}{5}$ respectively, then *P* divides *QR* in the ratio

- a) 1:2
- b) 3:2
- c) 2:3
- d) 1:3
- 284. If direction cosines of two lines are proportional to (2, 3 6) and (3, -4, 5) then the acute angle between then is

a)
$$\cos^{-1}\left(\frac{49}{36}\right)$$
 b) $\cos^{-1}\left(\frac{18\sqrt{2}}{35}\right)$ c) 96° d) $\cos^{-1}\left(\frac{18}{35}\right)$

285. The cartesian equation of the plane $\vec{r} = (s - 2t)\hat{i} + (3 - t)\hat{j} + (2s + t)\hat{k}$, is

- a) 2x 5y z 15 = 0
- b) 2x 5y + z 15 = 0
- c) 2x 5y z + 15 = 0
- d) 2x + 5y z + 15 = 0
- 286. The plane 2x 2y + z + 12 = 0 touches the sphere $x^2 + y^2 + z^2 2x 4y + 2z 3 = 0$ at the point a) (1, -4, -2) b) (-1, 4, -2) c) (-1, -4, 2) d) (1, 4, -2)
- 287. If θ is the angle between the planes 2x y + z 1 = 10 and x 2y + z + 2 = 0 Then cos θ is equal to a) 2/3 b) 3/4 c) 4/5 d) 5/6
- 288. Let (3, 4, -1) and (-1, 2, 3) are the end points of a diameter of sphere. Then, the radius of the sphere is equal to
- a) 1
 b) 2
 c) 3
 d) 9
 289. Let A(4,7,8), B(2,3,4) and C(2,5,7) be the position vectors of the vertices of a Δ ABC. The length of the internal bisector of the angle of A is

a)
$$\frac{3}{2}\sqrt{34}$$
 b) $\frac{2}{3}\sqrt{34}$ c) $\frac{1}{2}\sqrt{34}$ d) $\frac{1}{3}\sqrt{34}$
290. The distance of the plane $6x - 3y + 2z - 14 = 0$ from the origin is
a) 2 b) 1 c) 14 d) 8

291. In $\triangle ABC$ and mid points of the sides AB, BC and CA are respectively (1,0,0), (0, m, 0) and (0,0, n) Then, $AB^2 + BC^2 + CA^2$

$$\frac{AB^2 + BC^2 + CA^2}{(l^2 + m^2 + n^2)}$$
 is equal to
a) 2. b)

a) 2 b) 4 c) 8 d) 16 292. The angle between the straight line $\frac{x+1}{2} = \frac{y-2}{5} = \frac{z+3}{4}$ and $\frac{x-1}{1} = \frac{y+2}{2} = \frac{z-3}{-3}$ is a) 45° b) 30° c) 60° d) 90°

293. A plane passes through (1, -2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4, then the distance of the plane from the point (1, 2, 2) is a) 0 b) 1 c) $\sqrt{2}$ d) $2\sqrt{2}$

a) 0 b) 1 c) $\sqrt{2}$ d) $2\sqrt{2}$ 294. The line through $\hat{i} + 3\hat{j} + 2\hat{k}$ and perpendicular to the lines $\vec{r} = (\hat{i} + 2\hat{j} - \hat{k}) + \lambda(2\hat{i} + \hat{j} + \hat{k})$ and, $\vec{r} = (2\hat{i} + 6\hat{j} + \hat{k}) + \mu(\hat{i} + 2\hat{j} + 3\hat{k})$ is a) $\vec{r} = (\hat{i} + 2\hat{j} - \hat{k}) + \lambda(-\hat{i} + 5\hat{j} - 3\hat{k})$ b) $\vec{r} = \hat{i} + 3\hat{j} + 2\hat{k} + \lambda(\hat{i} - 5\hat{j} + 3\hat{k})$

c) $\vec{r} = \hat{i} + 3\hat{j} + 2\hat{k} + \lambda(\hat{i} + 5\hat{j} + 3\hat{k})$ d) $\vec{r} = \hat{\iota} + 3\hat{\iota} + 2\hat{k} + \lambda(-\hat{\iota} - 5\hat{\iota} - 3\hat{k})$ 295. Let *O* be the origin and *P* be the point at a distance 3 units from origin. If direction ratios of *OP* are (1, -2, -2), then coordinates of *P* is given by a) (1, −2, −2) b) (3, -6, -6)c) (1/3, -2/3, -2/3)d) (1/9, -2/9, -2/9)296. The direction cosines l, m, n of two lines are connected by the relation l + m + n = 0, lm = 0, then the angles between them is a) $\pi/3$ b) $\pi/4$ 297. Equation of plane containing the line $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$ and parallel to the line $\frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}$ is a) $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ a_1 & b_1 & c_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = 0$ b) $\begin{vmatrix} x - x_2 & y - y_2 & z - z_2 \\ a_2 & b_2 & c_2 \\ x_1 & y_1 & z_1 \end{vmatrix} = 0$ c) $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$ d) None of the above 298. The plane $2x - (1 + \lambda)y + 3z = 0$ passes through the intersection of the planes a) 2x - y = 0 and y + 3z = 0b) 2x - y = 0 and y - 3z = 0c) 2x + 3z = 0 and y = 0d) None of the above 299. The radius of the sphere $x^2 + y^2 + z^2 = x + 2y + 3z$ is a) $\frac{\sqrt{14}}{2}$ c) $\frac{7}{2}$ b) √7 d) $\frac{\sqrt{7}}{2}$ 300. If a plane meets the coordinate axes at A, B and C in such a way that the centroid of $\triangle ABC$ is at the point (1, 2, 3) the equation of the plane is a) $\frac{x}{1} + \frac{y}{2} + \frac{z}{2} = 1$ b) $\frac{x}{3} + \frac{y}{6} + \frac{z}{9} = 1$ c) $\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = \frac{1}{3}$ d) None of these 301. The triangle formed by the points (0, 7, 10), (-1, 6, 6), (-4, 9, 6) is a) Equilateral b) Isosceles c) Right angled d) Right angled isosceles 302. The vector equation of plane passing through three non-collinear points having position vectors $\vec{a}, \vec{b}, \vec{c}$ is a) $\vec{r} \cdot (\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = 0$ b) $\vec{r} \times (\vec{a} \times \vec{b} + \vec{b} \times \vec{c}) = [\vec{a} \ \vec{b} \ \vec{c}]$ c) $\vec{r} \cdot (\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}) + [\vec{a} \ \vec{b} \ \vec{c}] = 0$ d) None of these 303. Let *L* be the line of intersection of the planes 2x + 3y + z = 1 and x + 3y + 2z = 2. If *L* makes an angle α with the positive *x*-axis, then $\cos \alpha$ equals c) 1 a) $\frac{1}{\sqrt{3}}$ b) $\frac{1}{2}$ d) $\frac{1}{\sqrt{2}}$ 304. The area of triangle whose vertices are (1, 2, 3), (2, 5, -1) and (-1, 1, 2) is c) $\frac{\sqrt{155}}{2}$ sq unit d) $\frac{155}{2}$ sq unit a) 150 sq unit b) 145 sq unit 305. The angles between two planes x + 2y + 2z = 3 and -5x + 3y + 4z = 9 is a) $\cos^{-1}\frac{9\sqrt{2}}{20}$ b) $\cos^{-1}\frac{3\sqrt{2}}{5}$ c) $\cos^{-1}\frac{3\sqrt{2}}{10}$ d) $\cos^{-1}\frac{19\sqrt{2}}{30}$ 306. The projection of the line joining the points (3, 4, 5) and (4, 6, 3) on the line joining the points (-1, 2, 4)and (1, 0, 5) is a) 4/3 b) 2/3 c) -4/3d) 1/2 307. If the straight lines x = 1 + s, $y = -3 - \lambda s$, $z = 1 + \lambda s$ and $x = \frac{t}{2}$, y = 1 + t, z = 2 - t with parameters s and t respectively, are coplanar, then λ Equals c) $-\frac{1}{2}$ a) -2 b) -1 d) 0

308.	. The angle between the planes $x + 2y + 2z = 3$ and $-5x + 3y + 4z = 9$ is			
	a) $\cos^{-1}\frac{9\sqrt{2}}{20}$	b) $\cos^{-1}\frac{3\sqrt{2}}{5}$	c) $\cos^{-1}\frac{3\sqrt{2}}{10}$	d) $\cos^{-1} \frac{19\sqrt{2}}{30}$
309.	The equation of the plane	through the point (2, 3, 1)	and $(4, -5, 3)$ and parallel	to <i>x</i> -axis is
	a) $y - 4z = 7$	b) $y + 4z = 7$	c) $y + 4z = -7$	d) $x + 4z = 7$
310.	If the direction ratio of tw	o lines are given by $l + m$ -	+n=0,mn-2ln+lm=0	0, then the angle between
	the line is			
	a) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$	c) $\frac{\pi}{2}$	d) 0
211	4 If a line in the space make	5 cangle a Band wwith the	² Z	
511.	If a line in the space make $\cos 2\alpha + \cos 2\alpha$	s angle u, p and y with the $\frac{1}{2}$	cool uniale axes, then	
	$\cos 2u + \cos 2p + \cos 2\gamma$	τ sin u τ sin p τ sin γ		
	a) 1	b) ()	a) 1	d) 2
312	$a_j = 1$	through the point $(2 - 1 - 1)$	-3) and narallel to the lines	u) 2
512.	x-1 $y+2$ z x $y-2$	-1 z-2.	-5) and paramet to the intes	
	$\frac{1}{3} = \frac{1}{2} = \frac{1}{-4}$ and $\frac{1}{2} = \frac{1}{-4}$	$\frac{1}{-3} = \frac{1}{2}$ IS		
	a) $8x + 14y + 13z + 37 =$	= 0	b) $8x - 14y + 13z + 37 =$	= 0
	c) $8x + 14y - 13z + 37 =$	= 0	d) $8x + 14y + 13z - 37 =$	= 0
313.	If A, B, C, D are the points	(2,3,-1), (3,5,-3), (1,2,3)	, (3,5,7) respectively, then t	the angle between AB and
	CDis			
	a) $\frac{\pi}{2}$	b) $\frac{\pi}{2}$	c) $\frac{\pi}{c}$	d) $\frac{\pi}{c}$
21/	² Z	3 3 and 3	⁴ z avos If the angle & which	6 h it makes with a axis is
514.	A fine makes the same ang $cuch that cin2 \Omega than coc2$	anu anu ann ann ann ann ann ann ann ann	z axes. If the aligie p, which	ii it iiiakes witii <i>y</i> -axis, is
	such that shi 0 , then cos	b) 1 /E	a) 2/E	d) 2/E
215	a) $2/3$	UJ 1/3	(1, 1, 1) and containing the	uj 2/5
515.	n lanes $x \pm y \pm z = 6$ and $\frac{1}{2}$	passing through the point $2x \pm 2y \pm 4z = 12$ is	(1, 1, 1) and containing the	line of linter section of the
	planes $x + y + z = 0$ and x	2x + 3y + 4z = 1215 b) $x + 2y + 2z = 6$	c) $2x + 3y + 4z = 0$	d) $2x \pm 4y \pm 5z = 18$
316	a) $x + y + z = 5$ The point in the <i>xy</i> -plane	bJ x + 2y + 3z = 0 which is equidistant from t	(1) 2x + 3y + 4z = 9	$d \int 3x + 4y + 5z = 10$
510.	(1,2,3)	b) (-320)	(0, 0, 2, 2, 0)	$\frac{10}{(0,0,1)} \frac{13}{13}$
317	$I_{1}(1,2,3)$	t on a plane and let Obe the	$C_{1}(0, 2, 0)$	be plane then the equation
517.	of the plane is	t on a plane and let obe the		ine plane, then the equation
	a) $7x - y + 5z + 75 = 0$	h) $7r + v - 5z + 73 = 0$	c) $7x + y + 5z + 73 = 0$	d) $7r - v - 5z + 75 = 0$
318	The equation of the plane	through the points $(1 \ 2 \ 3)$	(-1 4 2) and $(3 1 1)$ is	aj 1 x y 52 + 10 0
010	a) $5x + y + 12z - 23 = 0$		b) $5x + 6y + 2z - 23 = 0$	
	c) $x + 6y + 2z - 13 = 0$		d) $x - y + z - 13 = 0$	
319.	The line drown from $(4, -$	(-1.2) the point $(-3.2.3)$ me	ets a plane at right angle at	the point $(-10.5.4)$, then
	the equation of plane is	, , , , , , , , , , , , , , , , , , ,		
	a) $7x + 3y + z + 89 = 0$		b) $7x - 3y - z + 89 = 0$	
	c) $7x - 3y + z + 89 = 0$		d) None of these	
320.	The equation of the plane	perpendicular to the line $\frac{x}{x}$	$\frac{-1}{z} = \frac{y-2}{z} = \frac{z+1}{z}$ and passing	σ through the point (2, 3, 1)
	in the equation of the plane	perpendicular to the line	1 -1 2 and pubbility	, un ough the point (2 , 0, 1),
	$\frac{15}{2} = \hat{k} + \hat{k} + \hat{k} + \hat{k} = 1$	h) \vec{x} $(\hat{x} + 2\hat{y}) = 1$	$a) \vec{x} (\hat{c} + 2\hat{b}) = 7$	d) None of these
221	a) $T \cdot (l+j+2k) = 1$	$b(r \cdot (l - j + 2\kappa)) = 1$	$(l - j + 2\kappa) = 7$	
321.	The acute angle between t x = 1 $y = z + 3$	the line joining the points (2,1,-3), (-3,1,7) and a line	e parallel to
	$\frac{x-1}{2} = \frac{y}{4} = \frac{z+3}{5}$			
	3 4 3 through the point (-104)	is		
	1 (1)	(1)	(7)	(3)
222	a) $\cos^{-1}\left(\frac{1}{\sqrt{10}}\right)$	b) $\cos^{-1}\left(\frac{1}{5\sqrt{10}}\right)$	c) $\cos^{-1}\left(\frac{1}{5\sqrt{10}}\right)$	d) $\cos^{-1}\left(\frac{1}{5\sqrt{10}}\right)$
322.	i ne snortest distance from	In the plane $12x + 4y + 3z$	= 327 to the sphere	

 $x^{2} + y^{2} + z^{2} + 4x - 2y - 6z = 155$ is

a) 26 b)
$$11\frac{4}{13}$$
 c) 13 d) 39

323. The projection of a directed line segment on the coordinate axes are 12, 4, 3. The DC's of the line are c) $\frac{12}{13}, \frac{4}{13}, \frac{3}{13}$ b) $-\frac{12}{13}, -\frac{4}{13}, \frac{3}{13}$ a) $\frac{12}{13}$, $-\frac{4}{13}$, $\frac{3}{13}$ d) None of these 324. The radius of the circle $x^2 + y^2 + z^2 - 2y - 4z - 11 = 0$, x + 2y + 2z - 15 = 0 is c) $\sqrt{7}$ d) 3 a) √<u>3</u> b) $\sqrt{5}$ 325. The coordinates of the foot of perpendicular drawn from point P(1, 0, 3) to the join of points A(4, 7, 1) and B(3, 5, 3) is a) (5, 7, 1) b) $\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$ c) $\left(\frac{2}{3}, \frac{5}{3}, \frac{7}{3}\right)$ d) $\left(\frac{5}{3}, \frac{2}{3}, \frac{7}{3}\right)$ 326. The position vector of the point where the line $\vec{\mathbf{r}} = \hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}} + t(\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}})$ meets the plane $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) = 5$ is a) $5\hat{i} + \hat{j} - \hat{k}$ b) $5\hat{i} + 3\hat{j} - 3\hat{k}$ c) $2\hat{i} + \hat{j} + 2\hat{k}$ d) $5\hat{i} + \hat{j} + \hat{k}$ 327. If O is the origin and A is the point (a, b, c) then the equation of the plane through A and at right angles to OA is a) a(x-a) - b(y-b) - c(z-c) = 0b) a(x + a) + b(y + b) + c(z + c) = 0c) a(x-a) + b(y-b) + c(z-c) = 0d) None of these above 328. Equation of a line passing through (-1, 2, -3) and perpendicular to the plane 2x + 3y + z + 5 = 0 is a) $\frac{x-1}{-1} = \frac{y+2}{1} = \frac{z-3}{-1}$ b) $\frac{x+1}{-1} = \frac{y-2}{1} = \frac{z+3}{1}$ c) $\frac{x+1}{2} = \frac{y-2}{3} = \frac{z+3}{1}$ d) None of these 329. The foot of the perpendicular from (2,4, -1) to the line $x + 5 = \frac{1}{4}(y + 3) = -\frac{1}{9}(z - 6)$ is c) (-4, -1,3) d) (-4, -1, -3) a) (-4, 1, -3)b) (4, -1, -3)330. The angle between the lines whose direction cosines are $\left(\frac{\sqrt{3}}{4},\frac{1}{4},\frac{\sqrt{3}}{2}\right)$ and $\left(\frac{\sqrt{3}}{4},\frac{1}{4},\frac{-\sqrt{3}}{2}\right)$ is c) $\frac{\pi}{2}$ d) $\frac{\pi}{\Lambda}$ b) $\frac{\pi}{2}$ a) π 331. The value of k so that the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and, $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-5}$ may be perpendicular is given by a) -10/7 c) -10 d) 10/7332. The plane x + 2y - z = 4 cut the sphere $x^2 + y^2 + z^2 - x + z - 2 = 0$ in a circle of radius b) -10/7 d) 3 a) $\sqrt{2}$ 333. The angle between $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and the plane 3x + 2y - 3z = 4, is c) $\cos^{-1}\left(\frac{24}{\sqrt{20}/22}\right)$ b) 0° d) 90° a) 45° 334. The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar, if b) k = 1 or - 1a) k = 0 or - 1c) k = 0 or - 3d) k = 3 or - 3335. Equation of the plane passing through line $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{4}$ and perpendicular to the plane x + 2y + z =

12 is given by $ax + by + by = by + by + by + by + by + by$	12 is given by $ax + by + cz + 4 = 0$, then				
a) $a = -8, b = 2, c = -5$		b) $a = -9, b = -2, c = -3$	5		
c) $a = 9, b = -2, c = -5$		d) None of the above			
336. The intercepts of the plan	the $2x - 3y + 4z = 12$ on the	e coordinate axes are given	by		
a) 3, –2, 15	b) 6, -4, 3	c) 6, −4, −3	d) 2, -3, 4		
337. The equation of the strai	ght line passing through the	points $(4, -5, -2)$ and (-1)	,5,3) is		
x - 4 - y + 5 - z + 2		b) $x + 1 - y - 5 - z - 3$			
$a_{j} - \frac{1}{1} = -2 = -1$		$0 \int \frac{1}{1} = \frac{2}{2} = \frac{-1}{-1}$			
c) $\frac{x}{1} = \frac{y}{5} = \frac{z}{2}$		d) $\frac{x}{4} = \frac{y}{5} = \frac{z}{2}$			
-1 5 3 229 The length of the norman	dicular from the origin to th	$^{-1}4 - 5 - 2$	'2 ic		
sso. The length of the perpen		x = prane 5x + 4y + 12z = 5	d) None of these		
a_{J} of	UJ -4	UJJ	u) None of the		
339. II from a point $P(a, b, c)$	perpendiculars PA, PB are c	frown to yz and zx plane, t	nen the equation of the		
plane <i>OAB</i> is					
a) $bcx + cay + abz = 0$		b) $bcx + cay - abz = 0$			
c) $bcx - cay + abz = 0$		a) - bcx + cay + abz = 0			
340. The smallest radius of th	e sphere passing through (1	l, 0, 0), (0, 1, 0) and (0, 0, 1)) 15		
3	3	2	J) 5		
$a_{j} \sqrt{\frac{1}{5}}$		$\frac{c}{3}$	$\left \frac{1}{12}\right $		
V 241 The contractor equation of	$\int \int dx dx dx = (1 + 1 - u)^2$		N N fr in		
541. The cartesian equation o	I the plane $r = (1 + \lambda - \mu)i$	$+ (2 - \lambda)l + (3 - 2\lambda + 2)$	L) K , IS		
a) $2x + y = 5$	$b \int 2x - y = 5$	c) $2x + z = 5$	a) $2x - z = 5$		
342. Foot of the perpendicular	r from $B(-2, 1, 4)$ to the pla	the is $(3, 1, 2)$. Then, the equ	lation of the plane is		
a) $4x - 2y = 11$	b) $5x - 2y = 10$	c) $5x - 2z = 11$	d) $5x + 2z = 11$		
343. A straight line $\vec{r} = \vec{a} + \lambda$	b meets the plane $\vec{r} \cdot \vec{n} = 0$	in <i>P</i> . The position vector of	P is		
a) $\vec{a} + \frac{\vec{a} \cdot \vec{n}}{\vec{b}}$	h) $\vec{a} - \frac{\vec{a} \cdot \vec{n}}{\vec{b}}$	c) $\vec{a} - \frac{\vec{a} \cdot \vec{n}}{\vec{b}}$	d) None of these		
$\vec{b} \cdot \vec{n}$	$\vec{b} \cdot \vec{n}$	$\vec{b} \cdot \vec{n}$			
344. A equation of the plane p	assing through the points (3	3, 2, −1), (3, 4, 2) and (7, 0,	6) is $5x + 3y - 2z = \lambda$,		
where λ is					
a) 23	b) 21	c) 19	d) 27		
345. The lines $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ a	nd $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ are coplan	ar if			
a) $\vec{a_1} \times \vec{a_2} = \vec{0}$					
b) $\overrightarrow{h} \times \overrightarrow{h} = 0$					
$D_1 \wedge D_2 = 0$	0				
c) $(a_2 - a_1) \times (b_1 \times b_2)$	= 0				
d) $\left[\overrightarrow{a_1} b_1 b_2\right] = \left[\overrightarrow{a_2} b_1 b_2\right]$]				
346. The point of intersection	of the lines				
$\frac{x+1}{2} - \frac{y+3}{2} - \frac{z+5}{2}$	ad				
$\frac{-3}{3} = \frac{-5}{5} = \frac{-7}{7}$ at	lu				
$\frac{x-2}{2} = \frac{y-4}{2} = \frac{z-6}{2}$ is					
1 3 5	4 1 1 2	1 1 2	4 1 1 2		
a) $\left(\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}\right)$	b) $\left(-\frac{1}{2}, -\frac{1}{2}, \frac{3}{2}\right)$	c) $\left(\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}\right)$	d) $\left(-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right)$		
$\langle 2 \ 2 \ 2 \rangle$	$\langle Z Z Z \rangle$	$\langle Z Z Z \rangle$			
a) $\cos 2\alpha \pm \cos 2\beta \pm \cos 2\beta$	$p, \gamma = 1 - 0$	b) $\cos 2\alpha \pm \cos 2\beta \pm \cos 2$	y - 2 = 0		
a) $\cos 2\alpha + \cos 2\beta + \cos \beta$	$2\gamma - 1 = 0$ $2\gamma + 1 = 0$	d) $\cos 2\alpha + \cos 2\beta + \cos 2$	y - 2 = 0 y + 1 = 0		
248 The centre of sphere pace	∠γ Γ I — U ses through four points (0 ($(0.5 2 \text{ m} \pm 0.05 2 \text{ m} \pm 0.05$	(0, 0, 4) is		
$/1$ \	/ 1	(0, 0), (0, 2, 0), (1, 0, 0) and (/1	(0,0,7) 13		
a) $\left(\frac{1}{2}, 1, 2\right)$	b) $\left(-\frac{1}{2}, 1, 2\right)$	c) $\left(\frac{1}{2}, 1, -2\right)$	d) $\left(1,\frac{1}{2},2\right)$		
349. A variable plane moves s	o that sum of the reciprocal	s of its intercepts on the co	ordinate axes is 1/2 Then,		

the plane passes through

a) $\left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right)$,)	b) (-1, 1, 1)	c) (2, 2, 2)	d) (0, 0, 0)
350. The distance	e from the poi	int $-\hat{\imath} + 2\hat{\jmath} + 6\hat{k}$ to the stra	ight line through the point	(2, 3, -4) and parallel to
the vector 6	$\hat{\iota} + 3\hat{j} - 4\hat{k}$, is	3		
a) 7		b) 10	c) 9	d) None of these
351. The equatio	n of the plane	passing through the points	(a, 0, 0), (0, b, 0) and $(0, 0, 0)$	<i>c</i>) is
a) <i>ax</i> + <i>by</i> -	cz = 0	b) $ax + by + cz = 1$	c) $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$	$d)\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$
352. The distance	e between the	= planes 2x - 2y + z + 3 =	0 and $4x - 4y + 2z + 5 =$	0 is
a) 3		b) 6	c) $\frac{1}{6}$	d) $\frac{1}{3}$
353. If $P = (0,1,2)$	(2), Q = (4, -2)	(1), $0 = (0,0,0)$, then $\angle PO(0,0)$	2 is equal to	π
a) $\frac{\pi}{6}$		b) $\frac{\pi}{4}$	c) $\frac{\pi}{3}$	d) $\frac{\pi}{2}$
354. The point of	intersection	of the line	5	L
$\frac{x-1}{x} = \frac{y-2}{x} = \frac{y-2}{x}$	$\frac{z+3}{2}$ and the r	blane $2x + 4y - z + 1 = 0$ i	S	
2 $^{-3}$ $^{-3}$ $^{-3}$	4 5\	(10 3 5)	(10 3 5)	(10 3 5)
a) $\left(-\frac{1}{3}, \frac{1}{2}\right)$	$-\frac{1}{3}$	b) $\left(-\frac{1}{3}, -\frac{1}{2}, \frac{1}{3}\right)$	c) $\left(\frac{1}{3}, \frac{1}{2}, -\frac{1}{3}\right)$	d) $\left(\frac{1}{3}, -\frac{1}{2}, \frac{1}{3}\right)$
355. The point of	intersection	of the lines		
$\frac{x-1}{x-1} = \frac{y-1}{x-1}$	$\frac{2}{z-3} = \frac{z-3}{z-3}$			
2 3	4			
and $x = 4$ $y = $	- 1			
$\frac{x}{5} = \frac{y}{2}$	-z is			
a) (0, 0, 0)		b) (1, 1, 1)	c) (-1, -1, -1)	d) (1, 2, 3)
356. Which of the	e following is	an equation of a sphere?		
a) $x^2 + y^2 + y$	$z^2 - 2xy - $	2yz - 6zx = 4	b) $x^2 + y^2 + z^2 + 1 = 0$	
c) $x^2 + y^2 + y^2$	$-z^2 - 2x - 2$	y - 2z + 2 = 0	d) $x^2 + y^2 + z^2 - 4x - 4z$	y - 4z + 25 = 0
357. The angle be	etween the lin	10		
$\frac{x}{1} = \frac{y}{0} = \frac{z}{-1}$	and $\frac{x}{3} = \frac{y}{4} =$	$\frac{2}{5}$ is equal to		
1 0 1	$(1)^{(1)}$	(h) $c_{1} = 1 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	(1)	$(1) = (1)^{1}$
a) $\pi - \cos^{-2}$	$\left(\frac{1}{5}\right)$	$\frac{1}{3}$	$\frac{1}{2}$	$(1)\cos^{-1}\left(\frac{1}{4}\right)$
358. A point mov	es such that t	he sum of its distance from	points $(4, 0, 0)$ and $(-4, 0, 0)$	0) is 10, then the locus of
the point is		005		
a) $9x^2 - 25$	$y^2 + 25z^2 =$	225	b) $9x^2 + 25y^2 + 25z^2 = 1$ d) $9x^2 + 25y^2 + 25z^2 = 1$	225 - 0
$c_{3} 9x^{2} + 25$	$y^2 - 25z^2 =$	225 2 and 4 respectively on 7	$u_{j} 9x^{2} + 25y^{2} + 25z^{2} = 0$	225 = 0
equation is	les intercepts	5 and 4 respectively on 2-a	x is and x -axis. If plane is p	aranei to y-axis, then its
a) $3x + 4z =$	= 12	b) $3z + 4x = 12$	c) $3v + 4z = 12$	d) $3z + 4y = 12$
360. If <i>x</i> coordinates $360.$	ate of a point.	<i>P</i> of line joining the points	Q(2, 2, 1) and $R(5, 2, -2)$ is	4, then the z coordinate of
P is		, , ,		
a) —2		b) -1	c) 1	d) 2
361. The two line	as x = ay + b	z = cy + d and $x = a' y + d$	b', z = c' y + d' are perpendent	ndicular to each other, if
a) <i>aa'</i> + <i>cc'</i>	= 1	b) $\frac{a}{a'} + \frac{c}{c'} = -1$	c) $\frac{a}{a'} + \frac{c}{c'} = 1$	d) $aa' + cc' = -1$
362. The vector e	equation of th	e plane containing the lines	$s\vec{r} = (\hat{\imath} + \hat{\jmath}) + \lambda(\hat{\imath} + 2\hat{\jmath} - \hat{k})$	$\& \vec{r} = (\hat{\imath} + \hat{\jmath}) + \mu(-\hat{\imath} + \hat{\jmath} - \hat{\imath})$
$2\hat{k}$), is				
a) $\vec{r} \cdot (\hat{\iota} + \hat{j} \cdot \hat{\iota})$	$(\hat{k}) = 0$	b) $\vec{r} \cdot (\hat{\iota} - \hat{j} - \hat{k}) = 0$	c) $\vec{r} \cdot (\hat{\iota} + \hat{j} + \hat{k}) = 3$	d) None of these
363. The equatio	n of the plane	passing through (2, 3, 4) a	nd parallel to the plane $5x$	-6y + 7z = 3 is
a) 5 <i>x</i> – 6 <i>y</i> -	+7z + 20 = 0)	b) $5x - 6y + 7z - 20 = 0$)
c) $-5x + 6y$	y - 7z + 3 =	0	d) $5x - 6y + 7z + 3 = 0$	

- 364. If the plane 2ax 3ay + 4az + 6 = 0 passes through the mid point of the line joining the centres of the spheres $x^2 + y^2 + z^2 + 6x 8y 2z = 13$ and $x^2 + y^2 + z^2 10x + 4y 2z = 8$, then *a* equals
 - $x^{2} + y^{2} + z^{2} 10x + 4y 2z = 8$, then *a* equals a) -2 b) 2 c) -1 d) 1

365. The centre of sphere passes through four points (0, 0, 0), (0,2,0), (1,0, 0)and (0, 0, 4) is

a)
$$\left(-\frac{1}{2}, 1, 2\right)$$
 b) $\left(1, \frac{1}{2}, 2\right)$ c) $\left(\frac{1}{2}, 1, 2\right)$ d) $\left(\frac{1}{2}, 1, -2\right)$
366. If the planes $x + 2y + kz = 0$ and $2x + y - 2z = 0$, are at right angles, then the value of k is
a) 2 b) -2 c) $\frac{1}{2}$ d) $-\frac{1}{2}$

11.THREE DIMENSIONAL GEOMETRY

: ANSWER KEY :															
1)	b	2)	b	3)	d	4)	С	189)	С	190)	С	191)	С	192)	b
5)	b	6)	b	7)	с	8)	b	193)	b	194)	d	195)	b	196)	b
9)	а	10)	а	11)	b	12)	С	197)	а	198)	b	199)	d	200)	d
13)	С	14)	а	15)	а	16)	d	201)	d	202)	а	203)	С	204)	a
17)	b	18)	b	19)	d	20)	С	205)	b	206)	С	207)	а	208)	С
21)	С	22)	а	23)	b	24)	d	209)	а	210)	d	211)	а	212)	а
25)	С	26)	С	27)	а	28)	С	213)	а	214)	С	215)	b	216)	а
29)	b	30)	а	31)	b	32)	а	217)	С	218)	d	219)	а	220)	а
33)	а	34)	b	35)	а	36)	d	221)	b	222)	С	223)	а	224)	d
37)	а	38)	b	39)	а	40)	b	225)	С	226)	b	227)	а	228)	С
41)	а	42)	а	43)	а	44)	а	229)	b	230)	а	231)	С	232)	а
45)	b	46)	а	47)	а	48)	d	233)	С	234)	а	235)	а	236)	b
49)	b	50)	b	51)	d	52)	d	237)	d	238)	С	239)	b	240)	d
53)	b	54)	С	55)	b	56)	С	241)	b	242)	b	243)	b	244)	b
57)	С	58)	b	59)	а	60)	С	245)	b	246)	а	247)	d	248)	b
61)	b	62)	b	63)	b	64)	d	249)	а	250)	b	251)	С	252)	b
65)	d	66)	С	67)	а	68)	b	253)	b	254)	а	255)	С	256)	С
69)	а	70)	С	71)	b	72)	С	257)	b	258)	b	259)	С	260)	b
73)	d	74)	а	75)	С	76)	b	261)	а	262)	d	263)	d	264)	b
77)	а	78)	а	79)	d	80)	а	265)	b	266)	b	267)	С	268)	С
81)	b	82)	а	83)	d	84)	b	269)	b	270)	а	271)	а	272)	b
85)	а	86)	d	87)	а	88)	d	273)	d	274)	С	275)	d	276)	b
89)	b	90)	d	91)	а	92)	а	277)	С	278)	d	279)	а	280)	а
93)	а	94)	b	95)	а	96)	а	281)	b	282)	b	283)	b	284)	b
97)	С	98)	b	99)	d	100)	а	285)	С	286)	b	287)	d	288)	С
101)	b	102)	d	103)	С	104)	а	289)	b	290)	a	291)	С	292)	d
105)	d	106)	С	107)	а	108)	C	293)	d	294)	d	295)	а	296)	a
109)	b	110)	C	111)	С	112)	b	297)	С	298)	b	299)	а	300)	b
113)	a	114)	b	115)	C	116)	d	301)	d	302)	d	303)	а	304)	С
117)	b	118)	С	119)	b	120)	C	305)	C	306)	С	307)	а	308)	С
121)	b	122)	а	123)	С	124)	b	309)	b	310)	С	311)	C	312)	a
125)	C	126)	С	127)	а	128)	a	313)	а	314)	C	315)	b	316)	a L
129)	D	130)	C	131) 125)	C h	132)	b	317)	a	318)	D	319)	D	320)	D
133)	a h	134)	C h	135)	D	130)	D	321)	C	322)	C	323)	C	324J	C
13/)	D	138)	D	139)	D	140J 144)	D	325)	D	320)	D	327)	C h	328)	C
141) 145)	C	142)	D d	143)	C	144)	a h	329)	a L	33UJ 224)	C	331J 225)	D	332)	C h
145)	a	140)	u h	147)	C d	140J 152)	D	333J	D	334J 220)	C d	220)	C h	330J 240)	D
149)	a h	150)	D	151J 155)	u	154J 156)	a d	33/J 241)	a	330J 242)	u c	222J	U C	340J 244)	C
155)	U d	154)	d d	155)	a	150)	u	341J 24E)	L d	342J 246)	C	343J 247)	C	344J 240)	a
157)	u h	150)	u h	163)	d d	164)	a	345)	u c	340J 350)	ι n	347J 351)	C C	340J 352)	d
165)	b h	166)	Ь	103J 167)	u h	169)	с Л	377)	с Л	350)	a d	322)	c c	334J 356)	ι r
160)	U C	170)	u a	171)	и 2	172)	u h	3555	u a	334J 358J	u h	3333	L D	320)	с d
173)	L A	174)	a d	175)	a	176)	л С	361)	a d	2621	h	262)	a h	300J 2641	u a
177)	и Я	178)	a a	179)	a	180)	с я	365)	u r	366)	a	5055	0	5045	u
181)	C	182)	c c	183)	a	184)	d	5055	Ľ	5005	u				
185)	h	186)	a	187)	d	188)	u a								
1005		100)	u	10/)	u	1005	u	I							

: HINTS AND SOLUTIONS :

6

7

8

9

1 **(b)**

Suppose *R* divides *PQ* in the ratio λ : 1. Then, the coordinates of *R* are $\left(\frac{5\lambda+3}{4\lambda+2}, \frac{-6\lambda-4}{-6\lambda-4}\right)$

$$\left(\overline{\lambda+1}, \overline{\lambda+1}, \overline{\lambda+1}\right)$$

But, the coordinates of *R* are given as $(9, 8, -10)$
$$\therefore \frac{5\lambda+3}{\lambda+1} = 9, \frac{4\lambda+2}{\lambda+1} = 8 \text{ and } \frac{-6\lambda-4}{\lambda+1} = -10$$

$$\Rightarrow \lambda = -\frac{3}{2}$$

Hence, *R* divides *PQ* externally in the ratio 3 : 2 **(b)** The centre and radius of given sphere are C(0, 1, 2) and $R = \sqrt{0 + 1 + 4 + 11} = 4$

Now, perpendicular distance from centre to the plane,

$$d = \frac{|0+2+4-15|}{\sqrt{1+4+4}} = 3$$

$$\therefore \text{ Radius of circle} = \sqrt{R^2 - d^2} = \sqrt{16 - 9} = \sqrt{7}$$

2

$$\alpha = \frac{2 \cdot 2 + 3 \cdot 1}{2 + 3} = \frac{7}{5}$$

$$\beta = \frac{2 \cdot 3 + 3 \cdot (-1)}{2 + 3} = \frac{3}{5}$$

$$A \frac{2}{(1, -1, 2)} \xrightarrow{P} (\alpha, \beta, \pi) (2, 3, -1)} B$$

and $\gamma = \frac{2(-1) + 3 \cdot 2}{2 + 3} = \frac{4}{5}$

$$\therefore \ \overrightarrow{OP} = \frac{1}{5} (7\hat{i} + 3\hat{j} + 4\hat{k})$$

4 **(c)**

5

The given plane passes through \vec{a} and is parallel to the vectors $(\vec{b} - \vec{a})$ and \vec{c} . So it is normal to $(\vec{b} - \vec{a}) \times \vec{c}$

$$(\vec{r} - \vec{a}) \cdot \left((\vec{b} - \vec{a}) \times \vec{c} \right) = 0$$

$$\Rightarrow \vec{r} \cdot (\vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = [\vec{a} \ \vec{b} \ \vec{c}]$$

The length of the perpendicular from the origin to this plane is $\begin{bmatrix} x & z \\ z & z \end{bmatrix}$

$$\frac{\left[\vec{a} \ b \ \vec{c}\right]}{\left|\vec{b} \times \vec{c} + \vec{c} \times \vec{a}\right|}$$
(b)

Any point on the line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} = k \text{ [say]}$ is (2k+1, 3k+2, 4k+3)which lies on the plane 2x + 3y - z = -4

 $\therefore 2(2k+1) + 3(3k+2) - 4(4k+3) = -4$ $\Rightarrow k = -1$ \therefore Required point is (-1, -1, -1)(b) Given line can be rewritten as $\frac{x-\frac{1}{2}}{\frac{1}{2}} = \frac{y-2}{-2} = \frac{z+1}{a}$ If any line parallel to plane, then $a_1a_2 + b_1b_2 + b_1b_2$ $c_1 c_2 = 0$ Here, $(a_1, b_1, c_1) = (2, -1, 1)$ and $(a_2, b_2, c_2) = (1, -2, a)$ $\therefore 2(1) - 2(-1) + a(1) = 0$ $\Rightarrow a = -4$ (c) $\cos^2 45^\circ + \cos^2 120^\circ + \cos^2 \theta = 1$ $\Rightarrow \frac{1}{2} + \frac{1}{4} + \cos^2\theta = 1 \Rightarrow \cos^2\theta = 1 - \frac{3}{4} = \frac{1}{4}$ $\Rightarrow \cos \theta = \frac{1}{2}$ (:: θ is acute) $\Rightarrow \theta = 60^{\circ}$ (b) Let the position vectors of the given points A and *B* be \vec{a} and \vec{b} respectively and that of the variable point *P* be \vec{r} . It is given that $PA^2 - PB^2 = k$ (Constant) $\Rightarrow \left| \vec{A} P \right|^2 - \left| \vec{B} P \right|^2 = k$ $\Rightarrow |\vec{r} - \vec{a}|^2 - |\vec{r} - \vec{b}|^2 = k$ $\Rightarrow \{ |\vec{r}|^2 + |\vec{a}|^2 - 2\,\vec{r}\cdot\vec{a} \} - \{ |\vec{r}|^2 + |\vec{b}|^2 - 2\,\vec{r}\cdot\vec{b} \}$ $\Rightarrow 2\vec{r} \cdot (\vec{b} - \vec{a}) = k + |\vec{b}|^2 - |\vec{a}|^2$ $\Rightarrow \vec{r} \cdot (\vec{b} - \vec{a}) = \lambda$, where, $\lambda = \frac{1}{2} \{k + |\vec{b}|^2 - |\vec{a}|^2\}$ Clearly, it represents a plane (a) Equation of lines are $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2} \quad \dots(i)$ And $\frac{x-1}{3k} = \frac{y-5}{1} = \frac{z-6}{-5}$...(ii) These line are perpendicular to each other $\therefore -3(3k) + 2k + 2(-5) = 0$ $\Rightarrow -7k - 10 = 0$

 $\Rightarrow k = -\frac{10}{7}$ 10 (a)

The equation of any plane through (2, -1, 3) is a(x-2) + b(y+1) + c(z-3) = 0 ...(i)

Since, Eq. (i), is parallel to \vec{a} and \vec{b} $\therefore 3a + 0b - c = 0$ and -3a + 2b + 2c = 0 $\Rightarrow \frac{a}{2} = \frac{b}{3-6} = \frac{c}{6} = k$ [say] b = -3k, $\Rightarrow a = 2k$, c = 6kOn putting the values of *a*, *b* and *c* in Eq. (i), we get 2k(x-2) - 3k(y+1) + 6k(z-3) = 0 $\Rightarrow 2x - 3y + 6z - 25 = 0$ 11 **(b)** We know that the equation of a plane passing through the intersection of the planes $a_1x + b_1y + c_1z + d_1 = 0$ And $a_2x + b_2y + c_2z + d_2 = 0$ is $(a_1x + b_1y + c_1z + d_1)$ $+\lambda(a_2x + b_2y + c_2z + d_2) = 0$ Where λ is constant Thus, the equation of plane $2x - (1 + \lambda)y + \lambda$ $3\lambda z = 0$ can be rewritten as $(2x - y) + \lambda(-y + 3z) = 0$ So, it is clear that the equation of plane passes through the intersection of the planes 2x - y = 0 and y - 3z = 012 (c) The given lines can be rewritten as $\frac{x}{3} = \frac{y}{2} = \frac{z}{-6}$ and $\frac{x}{2} = \frac{y}{-12} = \frac{z}{-3}$ \therefore Angle between the line $\theta = \cos^{-1} \left(\frac{3 \times 2 + 2(-12) - 6(-3)}{\sqrt{3^2 + 2^2 + (-6)^2} \sqrt{(2)^2 + (-12)^2 + (-3)^2}} \right)$ = 0 $\Rightarrow \theta = 90^{\circ}$ 14 (a) We know that the image of the point (x_1, y_1, z_1) in the plane ax + by + cz + d = 0 is given by $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$ $= -2\left(\frac{ax_1+by_1+cz_1+d}{a^2+b^2+c^2}\right)$ The equation of the plane is $\vec{r} \cdot (3\hat{\iota} - 5\hat{\jmath} + 4\hat{k}) = 5 \text{ or, } 3x - 5y + 4z = 5$ The image of (1, 2, -1) in this plane is given by $\frac{x-1}{3} = \frac{y-2}{-5} = \frac{z+1}{4} = -2\left(\frac{3-10-4-5}{\sqrt{9+25+16}}\right)$ $\Rightarrow x = \frac{73}{25}, y = -\frac{6}{5}, z = \frac{39}{25}$

15 (a)

We know that the equation of the plane containing the lines

 $\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$ and $\frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$ is

 $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0$ So, the equation of the plane containing the given lines is $\begin{vmatrix} x - 1 & y + 1 & z \\ 2 & -1 & 3 \\ -1 & 3 & -1 \end{vmatrix} = 0 \Rightarrow 8x + y - 5z - 7 = 0$ 16 **(d)** Let the equation of the variable plane be $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ This meets the coordinate axes at A(a, 0, 0), B(0, b, 0) and C(0, 0, c)Let (α, β, γ) be the coordinates of the centroid of ΔABC . Then, $\alpha = \frac{a}{3}, \beta = \frac{b}{3}, \gamma = \frac{c}{3} \Rightarrow a = 3 \alpha, b = 3 \beta, c = 3 \gamma$... (i) The plane is at a distance, *k* from the origin $\therefore \left| \frac{\frac{0}{a} + \frac{0}{b} + \frac{0}{c} - 1}{\sqrt{\frac{1}{a^2} + \frac{1}{h^2} + \frac{1}{c^2}}} \right| = k$ $\Rightarrow \frac{1}{\alpha^2} + \frac{1}{h^2} + \frac{1}{c^2} = \frac{1}{k^2} \Rightarrow \alpha^{-2} + \beta^{-2} + \gamma^{-2} = 9k^{-2}$ Hence, the locus of (α, β, γ) is $x^{-2} + y^{-2} + z^{-2} =$ $9k^{-2}$ 17 **(b)** The direction cosines of the line are $l = \cos \alpha$, $m = \cos \beta$, $n = \cos \gamma$ Now. $l^2 + m^2 + n^2 = 1$ $\Rightarrow \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ $\Rightarrow 1 - \sin^2 \alpha + 1 - \sin^2 \beta + 1 - \sin^2 \gamma = 1$ $\Rightarrow \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$ (b)

18

Suppose *xy*-plane divides at the line joining the given points in the ratio λ : 1 . The coordinate of the points of division are $\left[\frac{2\lambda-1}{\lambda+1}, \frac{-5\lambda+3}{\lambda+1}, \frac{6\lambda+4}{\lambda+1}\right]$ Since the point lies on the xy-plane $\therefore \frac{6\lambda + 4}{\lambda + 1} = 0 \Longrightarrow \lambda = \frac{-2}{3}$

19 (d)

Direction cosines of given line are $\frac{3}{\sqrt{17}}$, $\frac{2}{\sqrt{17}}$, $-\frac{2}{\sqrt{17}}$

$$P(1, 2, 3)$$

$$A = P(1, 2, 3)$$

$$A = P(1, 2, 3)$$

$$M = Q$$

$$A = Q$$

$$A = \frac{1}{\sqrt{17}} + (7 - 2) \cdot \frac{2}{\sqrt{17}} + (7 - 3)$$

$$-\frac{2}{\sqrt{17}}$$

$$= \sqrt{17}$$

$$AP = \sqrt{(6 - 1)^2 + (7 - 2)^2 + (7 - 3)^2}$$

$$= \sqrt{25 + 25 + 16} = \sqrt{66}$$

$$\therefore \text{ Length of perpendicular}$$

$$PM = \sqrt{AP^2 - AM^2}$$

$$= \sqrt{66 - 17} = \sqrt{49} = 7$$
(c)
Let θ be the angle between the given linear. Th

Let θ be the angle between the given linear. Then, $1 \times 3 + (-2) \times 2 + 1 \times 3 = 1$

$$\cos \theta = \frac{1 \times 3 + (-2) \times 2 + 1 \times 3}{\sqrt{1 + 4 + 9}\sqrt{9 + 4 + 1}} = \frac{1}{7} \Rightarrow \theta$$
$$= \cos^{-1}\left(\frac{1}{7}\right)$$

21 **(c)**

Since, the given line is parallel to the xy-plane, it means that the normal line is perpendicular to z-axis

 $\therefore \text{ Dr's of } z \text{ coordinate is zero} \\ ie, n = 0 \\ (z)$

Since, the line lie in the plane, therefore its point (4, 2, k) should lie in the given plane $\Rightarrow 2(4) - 4(2) + 1(k) = 7 \Rightarrow k = 7$

24 **(d)**

The foot of the point (x_1, y_1, z_1) in the plane ax + by + cz + d = 0 is given by $\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$ $= -\frac{(ax_1 + by_1 + cz_1 + d)}{a^2 + b^2 + c^2}$ $\frac{x - 1}{2} = \frac{y - 3}{(-1)} = \frac{z - 4}{1} = \frac{2 - 3 + 4 + 3}{6}$ $\Rightarrow x = -1, y = 4, z = 3$ 25 (c) Given, $\frac{x}{1} = \frac{y - 1}{2} = \frac{z - 2}{3} = \lambda$ [say] Any point on the line is $P(\lambda, 2\lambda, +1, 3\lambda + 2)$ Therefore, direction ratios of PQ are $\lambda - 1, 2\lambda - 2$

5, $3\lambda - 1$ $\therefore PQ$ is perpendicular to the given line Therefore, $1(\lambda - 1) + 2(2\lambda - 5) + 3(3\lambda - 1) = 0$

 $\Rightarrow \lambda = 1$ \therefore The coordinate of *P* are(1, 3, 5) \therefore Length of perpendicular $=\sqrt{(1-1)^2 + (3-6)^2 + (5-3)^2}$ $=\sqrt{13}$ 26 (c) The given line is $\vec{\mathbf{r}} = (1+2\mu)\hat{\mathbf{i}} + (2+\mu)\hat{\mathbf{j}} + (2\mu-1)\hat{\mathbf{k}}$ $= (\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}) + \mu(2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ Vector equation of line written in cartesian from $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z+1}{2}$ ∴ Angle between line and a plane is given by $\therefore \sin \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$ $=\frac{2\times3+1\times(-2)+2\times6}{\sqrt{4+1+4}\sqrt{9+4+36}}=\frac{16}{21}$ $\Rightarrow \theta = \sin^{-1}\left(\frac{16}{21}\right)$ 27 (a) The equation of circle and plane are $x^2 + y^2 + z^2 = 9$...(i) And 2x + 3y + 4z - 5 = 0 ...(ii) Respectively. ∴ Equation of sphere is $x^{2} + y^{2} + z^{2} - 9 + \lambda(2x + 3y + 4z - 5) = 0$...(iii) Which passes through (1, 2, 3) $\therefore 1 + 4 + 9 - 9 + \lambda(2 + 6 + 12 - 5) = 0$ \Rightarrow 5 + λ (15) = 0 $\Rightarrow \lambda = -\frac{1}{2}$ ∴ From Eq. (iii) $\therefore x^{2} + y^{2} + z^{2} - 9 - \frac{1}{2}(2x - 3y + 4z - 5) = 0$ $\Rightarrow 2(x^2 + y^2 + z^2) - 2x - 3y - 4z - 22 = 0$ 28 (c) Given lines are $\frac{x-1}{0} = \frac{y-2}{0} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y+1}{0} = \frac{z}{0}$ $\therefore \cos \theta = 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 = 0$ $\Rightarrow \theta = 90^{\circ}$ 29 **(b)** We have, equation of lines are $\frac{x-5}{3} = \frac{y-7}{-1} = \frac{z+2}{1}$...(i) And $\frac{x+3}{-36} = \frac{y-3}{2} = \frac{z-6}{4}$...(ii) $\therefore \text{ Any point on line } \frac{x-5}{3} = \frac{y-7}{-1} = \frac{z+2}{1} = k$ is (3k + 5, 7 - k, k - 2)

It should lie on

$$\frac{x+3}{-36} = \frac{y-3}{2} = \frac{z-6}{4}$$

$$\Rightarrow \frac{3k+5+3}{-36} = \frac{7-k-3}{2} = \frac{k-2-6}{4}$$
On solving, we get $k = \frac{16}{3}$
 $\therefore x = 16+5 = 21, y = 7 - \frac{16}{3} = \frac{5}{3}$
And $z = \frac{16}{3} - 2 = \frac{10}{3}$
 \therefore Coordinate of point are (21, 5/3, 10/3)
(a)
The length of the edges are given by
 $a = 5-2 = 3$
 $b = 9-3 = 6$
 $c = 7-5 = 2$
So, length of the diagonal = $\sqrt{9+36+4} = 7$
31 (b)
We know, $\cos \theta = \frac{|a_1a_2+b_1b_2+c_1c_2|}{\sqrt{a_1^2+b_1^2+c_1^2}\sqrt{a_2^2+b_2^2+c_2^2}}$
 $= \frac{|(2)(3) + (3)(-4) + (-6)(5)|}{\sqrt{2^2+3^2+(-6)^2}\sqrt{3^2+(-4)^2+(5)^2}}$
 $= \frac{36}{7\cdot5\sqrt{2}} = \frac{18\sqrt{2}}{35}$
 $\Rightarrow \theta = \cos^{-1}\left(\frac{18\sqrt{2}}{35}\right)$
32 (a)
The equation of line which passes through the point $A(4, 2, 2)$ and parallel to the vector $2\hat{1}+3\hat{1}+6\hat{k}$ is
 $\frac{x-4}{2} = \frac{y-2}{3} = \frac{z-2}{6}$
Distance of point P from the line
 $= \sqrt{\sum(x_1-x_2)^2 - (\sum l(x_1-x_2))^2}$
 $= \sqrt{(1-4)^2+(2-2)^2+(3-2)^2-(2(1-4)+3(2-2))^2}$
 $= \sqrt{10}$
34 (b)

If the given plane contains the given line, then normal to the plane must be perpendicular to the line and the condition for the same is al + bm + m = 0

al + bm + cn = 0

35 **(a)**

Given lines can be rewritten as $\frac{x-1}{-3} = \frac{y-2}{2\alpha} = \frac{z-3}{2}$

and
$$\frac{x-1}{3\alpha} = \frac{y-1}{1} = \frac{z-6}{-5}$$

since, lines are perpendicular.
 $\therefore a_1a_2 + b_1b_2 + c_1c_2 = 0$
 $\Rightarrow (-3)(3\alpha) + 2\alpha(1) + 2(-5) = 0$
 $\Rightarrow -9\alpha + 2\alpha - 10 = 0$
 $\Rightarrow \alpha = -\frac{10}{7}$

36 **(d)**

Perpendicular distance of the point (6, 5, 8) from y-axis = $\sqrt{6^2 + 8^2} = 10$ units

37 **(a)**

Let the sides of the cube be along the axes, then diagonals have direction cosine as

$$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, \right) \text{ and } \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

$$\therefore \text{ Resultant vector is}$$

$$\frac{a}{\sqrt{2}}(\hat{\mathbf{i}} + \hat{\mathbf{j}}) + \frac{2a}{\sqrt{2}}(\hat{\mathbf{i}} + \hat{\mathbf{k}}) + \frac{3a}{\sqrt{2}}(\hat{\mathbf{j}} + \hat{\mathbf{k}})$$

$$= \frac{a}{\sqrt{2}}(3\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 5\hat{\mathbf{k}})$$

$$\Rightarrow \text{ Magnitude of the resultant}$$

$$= \frac{a}{\sqrt{2}}\sqrt{9 + 16 + 25} = \frac{a}{\sqrt{2}} \cdot \sqrt{50} = 5a$$

(b)

Line is passing through (3, -5, 7) and parallel to (2, 1, -3), then equation of line is $\frac{x-3}{2} = \frac{y+5}{1} = \frac{z-7}{-3}$

39 **(a)**

38

The required plane passes through a point having position vector $\overrightarrow{a_1}$ and is parallel to the vectors $\overrightarrow{a_1}$ and $\overrightarrow{a_2}$. So, it is normal to $\overrightarrow{a_1} \times \overrightarrow{a_2}$ Thus, the equation on the plane is $(\overrightarrow{r} - \overrightarrow{a_1}) \cdot (\overrightarrow{a_1} \times \overrightarrow{a_2}) = 0$ $\Rightarrow [\overrightarrow{r} \ \overrightarrow{a_1} \ \overrightarrow{a_2}] = [\overrightarrow{a_1} \ \overrightarrow{a_1} \ \overrightarrow{a_2}]$ $\Rightarrow [\overrightarrow{r} \ \overrightarrow{a_1} \ \overrightarrow{a_2}] = 0$ Hence, the required plane is $[\overrightarrow{r} \ \overrightarrow{a_1} \ \overrightarrow{a_2}] = 0$

40 **(b)**

2) +

The equation of any plane through A(4, 5, 1) is a(x-4) + b(y-5) + c(z-1) = 0 ...(i) The points B(0, -1, -1) and C(3, 9, 4) lies on Eq. (i) $\Rightarrow a(0-4) + b(-1-5) + c(-1-1) = 0$ $\Rightarrow 2a + 3b + c = 0$ (ii) and a(3-4) + b(9-5) + c(4-1) = 0 $\Rightarrow a - 4b - 3c = 0$ (iii) On solving Eqs, (i) and (iii), we get $\frac{a}{5} = \frac{b}{-7} = \frac{c}{11}$ \therefore Equation of plane is 5(x-4) - 7(y-5) + 11(z-1) = 0 $\Rightarrow 5x - 7y + 11z + 4 = 0$

Also, point D(-4, 4, 4) lies on it, then $-20 - 28 + 44 + 4 = 0 \implies 0 = 0$ Hence, points A, B, C and D are coplanar. Alternate DR's of AB(-4, -6, -2), AC = (-1, 4, 3)and AD(-8, -1, 3), Now $\begin{vmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix} = -4(15) + 6(21) - 2(33)$ 41 (a) If *l*, *m*, *n* are the direction cosines of the line, then $1 \cdot l - 1 \cdot m + 1 \cdot n = 0$ and $1 \cdot l - 3 \cdot m + 0 \cdot n = 0$ $\therefore \frac{l}{0+3} = \frac{m}{1-0} = \frac{n}{-3+1}$ Hence, the direction ratios of the line are 3, 1, -242 (a) Since, line lies in a plane, it means point (4,2,k)lies in a plane. :: 8 - 8 + k = 7 $\implies k = 7$ 43 (a) Since, *M* is the mid point of $A(4\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - 10\hat{\mathbf{k}})$ and $B(-\hat{\mathbf{i}}+2\hat{\mathbf{j}}+\hat{\mathbf{k}})$: Coordinate of point M are $\left(\frac{3}{2}, \frac{7}{2}, -\frac{9}{2}\right)$ $\left(\vec{\mathbf{r}} - \left(\frac{3}{2}\hat{\mathbf{i}} + \frac{7}{2}\hat{\mathbf{j}} - \frac{9}{2}\hat{\mathbf{k}}\right)\right) \cdot \overrightarrow{\mathbf{AB}} = 0$ $\left(\vec{\mathbf{r}} - \left(\frac{3}{2}\hat{\mathbf{i}} + \frac{7}{2}\hat{\mathbf{j}} - \frac{9}{2}\hat{\mathbf{k}}\right)\right) \cdot \left(5\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 11\hat{\mathbf{k}}\right) = 0$ $\vec{\mathbf{r}} \cdot \left(5\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 11\hat{\mathbf{k}}\right) - \frac{135}{2} = 0$ 44 (a) Equation of the plane through (5, 1, 2) is a(x-5) + b(y-1) + c(z-2) = 0 ...(i) Given plane (i) is perpendicular to the line $\frac{x-2}{1/2} = \frac{y-4}{1} = \frac{z-5}{1}$: Equation of normal of Eq. (i) and straight line (ii) are parallel $ie, \frac{a}{1/2} = \frac{b}{1} = \frac{c}{1} = k$ (say) $\therefore a = \frac{k}{2}, b = k, c = k$ From Eq. (i), $\frac{k}{2}(x-5) + k(y-1) + k(z-2) = 0$ 0r x + 2v + 2z = 11Any point on Eq. (ii) is $\left(2 + \frac{\lambda}{2}, 4 + \lambda, 5 + \lambda\right)$ Which lies on Eq. (iii), then $\lambda = -2$ \therefore Required point is (1, 2, 3)

45 **(b)** The line of intersection of the plane $\vec{r} \cdot (3\hat{\imath} - \hat{\imath} + \hat{k}) = 1$ and $\vec{r} \cdot (\hat{\imath} + 4\hat{\imath} - 2\hat{k}) = 2$ is common to both the planes. Therefore, it is perpendicular to normal to the two planes i.e., $\overrightarrow{n_1} = 3\hat{\imath} - \hat{\jmath} + \hat{k}$ and $\overrightarrow{n_2} = \hat{\imath} + 4\hat{\jmath} - 2\hat{k}$ Hence, it is parallel to the vector $\overrightarrow{n_1} \times \overrightarrow{n_2} = -2\hat{\imath} + \hat{\imath}$ $7\hat{i} + 13\hat{k}$. Thus, we have to find the equation of the plane passing through $\vec{a} = \hat{i} + 2\hat{j} - \hat{k}$ and normal to the vector $\vec{n} = \vec{n_1} \times \vec{n_2}$ The equation of the required plane is $(\vec{r} - \vec{a}) \cdot \vec{n} = 0$ $\Rightarrow \vec{r} \cdot \vec{n} = \vec{a} \cdot \vec{n}$ $\Rightarrow \vec{r} \cdot (-2\hat{\imath} + 7\hat{\jmath} + 13\hat{k})$ $= (\hat{\imath} + 2\hat{\jmath} - \hat{k}) \cdot (-2\hat{\imath} + 7\hat{\jmath} + 13\hat{k})$ $\Rightarrow \vec{r} \cdot (2\hat{\iota} - 7\hat{\jmath} - 13\hat{k}) = 1$ 46 (a) Any plane passing through (3, 2, 0) is a(x-3) + b(y-2) + c(z-0)...(i) Plane is passing through the line $\frac{x-3}{1} = \frac{y-6}{5} = \frac{z-4}{4}$ $\therefore a(3-3) + b(6-2) + c(4-0) = 0$ $\Rightarrow 0a + 4b + 4c = 0$...(ii) Since, the given plane is passing through the line, therefore the DR's of the normal is perpendicular to the line, a + 5b + 4c = 0 ...(iii) On solving Eqs. (ii) and (iii), we get $\frac{a}{16-20} = \frac{b}{4-0} = \frac{c}{0-4}$ $\Rightarrow \frac{a}{-1} = \frac{b}{1} = \frac{c}{-1}$ On putting the values of *a*, *b* and *c* in Eq. (i), we get x - y + z = 1(a) Since, we are given the equal intercept of the coordinate axes *ie*, |x| = |y| = |z| = pTherefore, it make a cube (d) Let the equation of sphere passing through origin he $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz = 0$ Also, it passes through (*a*, 0, 0), (0, *b*, 0), (0, 0, *c*) $\Rightarrow a^2 + 2ua = 0 \Rightarrow u = -\frac{a}{2}$ Similarly, $v = -\frac{b}{2}, w = -\frac{c}{2}$ $\therefore \text{ Centre } (-u, -v, -w) = \left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$

47

48

49 **(b)**

Given lines can be rewritten as

$$\frac{x-6}{1} = \frac{y-2}{-2} = \frac{z-2}{2} \text{ and}$$

$$\frac{x+4}{3} = \frac{y}{-2} = \frac{z-1}{-2}$$
Here, $x_1 = 6, y_1 = 2, z_1 = 2$
 $x_2 = -4, y_2 = 0, z_2 = 1$
 $a_1 = 1, b_1 = -2, c_1 = 2$
and $a_2 = 3, b_2 = -2, c_2 = -2$
Now, $\begin{vmatrix} x_2 - y_2 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$
 $= \begin{vmatrix} -10 & -2 & -1 \\ 1 & -2 & 2 \\ 3 & -2 & -2 \end{vmatrix}$
 $= -10(4+4) + 2(-2-6) - 1(-2+6)$
 $= -100$
and $\sqrt{(b_1c_2 - c_1b_2)^2 + (c_1a_2 - a_1c_2)^2 + (a_1b_2 - a_2b_1)^2}$
 $= \sqrt{(4+4)^2 + (6+2)^2 + (-2+6)^2}$
 $= \sqrt{64+64+16} = 12$
 \therefore Required shortest distance $= 1 \frac{-100}{12} = \frac{25}{3}$
[neglect(-ve)sign]

50 **(b)**

Required plane contains the given line, so normal to the plane must be perpendicular to the line and the condition for the same is al + bm + cn = 0.

51 **(d)**

Given line is $\frac{x-1}{1} = \frac{y+2}{3} = \frac{z-2}{-2} = r \text{ [say]}$ $\therefore x = r+1, \quad y = 3r-2, \quad z = -2r+2$ These values of x and z will satisfy the plane 3x + 4y + 5z - 25 = 0 $\therefore 3(r+1) + 4(3r-2) + 5(-2r+2) - 25 = 0$ $\implies 3r+3+12r-8-10r+10-25 = 0$ $\implies r = 4$ $\therefore x = 5, \quad y = 10 \text{ and } z = -6$

52 **(d)**

Given that equation of planes are $P \equiv ax + by + cz + d = 0$...(i) And $P' \equiv a' x + b'y + c'z + d' = 0$...(ii) Equation of intersection of planes is $P + \lambda P' = 0$ (iii) $\Rightarrow ax + by + cz + d + \lambda(a'x + b'y + c'z + d) = 0$ $\Rightarrow a + \lambda a' = 0$ $\Rightarrow \lambda = -\frac{a}{a'}$ \therefore From Eq. (iii), we get $P - \frac{a}{a'}P' = 0 \Rightarrow \frac{P}{a} = \frac{P'}{a'}$ (b)

In the queue period

$$: \cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma = 1$$

$$: \cos \alpha = \frac{1}{\sqrt{3}}$$
DC' of PQ are $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

$$P(-3, 5, 2) \qquad M \qquad Q$$
PM = Projection of AP on PQ

$$= \left| (-2 + 3) \frac{1}{\sqrt{3}} + (3 - 5) \cdot \frac{1}{\sqrt{3}} + (1 - 2) \cdot \frac{1}{\sqrt{3}} \right|$$

$$= \frac{2}{\sqrt{3}}$$
And $AP = \sqrt{(-2 + 3)^{2} + (3 - 5)^{2} + (1 - 2)^{2}} = \sqrt{6}$
AM = $\sqrt{(AP)^{2} - (PM)^{2}}$

$$= \sqrt{6} - \frac{4}{3} = \sqrt{\frac{14}{3}}$$
(c)
Since, $l = m = n = \frac{1}{\sqrt{3}}$

$$P(2, -1, 2)$$

$$Q = y + 1 = z - 2 = r \quad [say]$$

$$\therefore Any point on the line is
 $Q = (r + 2, r - 1, r + 2)$

$$\therefore Q \text{ lies on the plane } 2x + y + z = 9$$

$$\therefore 2(r + 2) + (r - 1) + (r + 2) = 9$$

$$\Rightarrow 4r + 5 = 9 \Rightarrow r = 1$$

$$\therefore \text{ Coordinate } Q(3, 0, 3)$$

$$\therefore PQ = \sqrt{(3 - 2)^{2} + (0 + 1)^{2} + (3 - 2)^{2}} = \sqrt{3}$$
(b)
Let the equation of line AB be

$$\frac{x - 0}{1} = \frac{y + a}{1} = \frac{z - 0}{1} = k \quad [say]$$

$$A = \frac{E}{\sqrt{2}} = \frac{B}{\sqrt{2}}$$

$$A = \frac{B}{\sqrt{2}} = \frac{B}{\sqrt{2}$$$$

Here $\alpha = \beta = \gamma$

54

55

$$\frac{x+a}{2} = \frac{y-0}{1} = \frac{z-0}{1} = \lambda \text{ [say]}$$

$$\therefore \text{ Coordinates of } F \text{ are } (2\lambda - a, \lambda, \lambda)$$

Direction ratio of FE are $\{(k - 2\lambda + a), (k - \lambda - a, k - \lambda), (k - \lambda - a, k - \lambda)$

$$\therefore \frac{k-2\lambda + a}{2} = \frac{k-\lambda - a}{1} = \frac{k-\lambda}{2}$$

From Ist and IInd terms,
 $k - 2\lambda + a = 2k - 2\lambda - 2a$

$$\Rightarrow k = 3a$$

From IInd and IIIrd terms,
 $2k - 2\lambda - 2a = k - \lambda$

$$\Rightarrow \lambda = k - 2a = 3a - 2a$$

$$\Rightarrow \lambda = a$$

$$\therefore \text{ Coordinate of } E = (3a, 2a, 3a) \text{ and coordinate of } F = (a, a, a)$$

57 **(c)**

Let the DR's of a required line be *a*, *b* and *c* Since, the normal to the given planes x + 2y + z = 3 and 6x + 8y + 3z = 13 are perpendicular to the line. $\therefore a + 2b + c = 0$ and 6a + 8b + 3c = 0 $\Rightarrow \frac{a}{6-8} = \frac{b}{6-3} = \frac{c}{8-12}$ $\Rightarrow \frac{a}{2} = \frac{b}{-3} = \frac{c}{4}$ Hence, option (c) is the required solution. (b)

58 **(b)**

Let A(1, 2, 2) be the foot of the perpendicular from O(0, 0, 0) on the plane, then direction ratios of OA are (1, 2, 2), \therefore Equation of the plane is 1(x - 1) + 2(y - 2) + 2(z - 2) = 0 $\implies x + 2y + 2z - 9 = 0$

59 **(a)**

Let the coordinates of A, B and C be (a, 0, 0), (0, b, 0), (0, 0, c)respectively Then, equation of the plane is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ Also, it passes through (p, q, r) $\therefore \frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1$ Also, equation of sphere passes through A, B, C will be $x^2 + y^2 + z^2 - ax - by - cz = 0$ If its centre (x_1, y_1, z_1) , then $x_1 = \frac{a}{2}, y_1 = \frac{b}{2}, z_1 = \frac{c}{2}$ $\Rightarrow a = 2x_1, b = 2y_1, c = 2z_1$ \therefore Locus of centre of sphere is $\frac{p}{r} + \frac{q}{v} + \frac{r}{z} = 2$ 60 **(c)**

The position vector of any point on the given line is

 $\hat{\iota} + \hat{\jmath} + \lambda(2\hat{\iota} + \hat{\jmath} + 4\hat{k})$ $= (2\lambda + 1)\hat{\imath} + (\lambda + 1)\hat{\jmath} + 4\lambda\,\hat{k}$ Clearly, this point lies on the plane \vec{r} . $(\hat{\imath} + 2\hat{\jmath} - \hat{k}) = 3$ Hence, the plane $\vec{r} \cdot (\hat{\iota} + 2\hat{\jmath} - \hat{k}) = 3$ contains the given line 61 **(b)** The equation of the plane through given line is a(x-1) + b(y-2) + c(z-3) = 0...(i) Since, the straight line lie on the plane. : DR's of the plane is perpendicular to the line *ie*, 5a + 4b + 5c = 0 ...(ii) Since, the plane passes through (0, 0, 0), we get -a - 2b - 3c = 0 $\Rightarrow a + 2b + 3c = 0$ (iii) On solving Eqs. (ii) and (ii), we get $\frac{a}{2} = \frac{b}{-10} = \frac{c}{6}$ From Eq. (i), 2(x-1) - 10(y-2) + 6(z-3) = 0 $\Rightarrow 2x - 10y + 6z = 0$ $\Rightarrow x - 5y + 3z = 0$

62 **(b)**

The distance of the point (2, 3, -5) from the plane x + 2y - 2z = 9 is $D = \frac{|2(1) + 2(3) - 2(-5) - 9|}{\sqrt{1^2 + 2^2 + (-2)^2}}$ $= \frac{|2 + 6 + 10 - 9|}{\sqrt{1 + 4 + 4}} = 3$

The ratio in which *yz*-plane divide the line segment

= 1

$$= x_1: x_2 = -(-3): 2 = 3: 2$$

Since, DC'sof a line are
$$\left(\frac{1}{c}, \frac{1}{c}, \frac{1}{c}\right)$$

$$\therefore \left(\frac{-}{c}\right)^{+} \left(\frac{-}{c}\right)^{-} + \left(\frac{-}{c}\right)^{-} = \\ \Rightarrow c^{2} = 3 \Rightarrow c = \pm \sqrt{3}$$

(d)

65

Let
$$\alpha = \frac{\pi}{4}, \beta = \frac{\pi}{4}$$

We know, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$
 $\therefore \cos^2 \frac{\pi}{4} + \cos^2 \frac{\pi}{4} + \cos^2 \gamma = 1$
 $\Rightarrow \frac{1}{2} + \frac{1}{2} + \cos^2 \gamma = 1$

$$\Rightarrow \cos^{2}\gamma = 0 \Rightarrow \gamma = \frac{\pi}{2}$$
66 (c)
Equation of plane is
 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$
Also, $3 = \frac{a+0+0}{3}$
 $\Rightarrow a = 9$ and similarly $b = 6$ and $c = 3$
 \therefore Equation of required plane is
 $\frac{x}{9} + \frac{y}{6} + \frac{z}{3} = 1$
 $\Rightarrow 2x + 3y + 6z = 18$
67 (a)
Equation of any plane passing through the point
(1, 2, 3) is
 $a(x - 1) + b(y - 2) + c(z - 3) = 0$
Since, the above plane is parallel to $x + 2y + 5z = 0$
 $\therefore 1(x - 1) + 2(y - 2) + 5(z - 3) = 0$
68 (b)

68 (b)

If we have two vectors \overrightarrow{AB} and \overrightarrow{AC} , then area of triangle

$$\Delta = \frac{1}{2} |\vec{AB} \times \vec{AC}|$$

$$= \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -3 \\ -1 & 3 & -1 \end{vmatrix}$$

$$= \frac{1}{2} |\hat{i}(-1+9) - \hat{j}(-1-3) + \hat{k}(3+1)|$$

$$= \frac{1}{2}\sqrt{8^2 + 4^2 + 4^2} = \frac{1}{2}\sqrt{64 + 16 + 16}$$

$$= \frac{\sqrt{96}}{2} = \frac{4\sqrt{6}}{2} = 2\sqrt{6}$$

69 (a)

The equation of the plane through the intersection of given planes is (x + y + z - 1) + k(2x + 3y - z + 4) = 0(i) $\Rightarrow x(1+2k) + y(1+3k) + z(1-k)$ -1(1-4k) = 0: Plane is parallel to *x*-axis x(1+2k) = 0 $\implies k = -\frac{1}{2}$ Put k = -1/2 in Eq. (i) we get the required equation of plane which is 2(x + y + z - 1) - 2x - 3y + z - 4 = 0 $\Rightarrow y - 3z + 6 = 0$ 70 (c) Direction ratios of given planes are $a_1 = 2, b_1 = -1, c_1 = 1$

and
$$a_2 = 1, b_2 = 2, c_2 = 3$$

 $\therefore \cos \theta = \frac{2(1) - 1(2) + 1(3)}{\sqrt{2^2 + 1^2 + 1^2} \sqrt{1^2 + 2^2 + 3^2}}$
 $= \frac{3}{\sqrt{6}\sqrt{14}}$
 $\implies \theta = \cos^{-1}\left(\frac{1}{2}\sqrt{\frac{3}{7}}\right)$

71 **(b)**

Projection
=
$$[2 - (-1)]\frac{6}{7} + [5 - 0]\frac{2}{7} + [1 - 3]\frac{3}{7}$$

= $\frac{18 + 10 - 6}{7} = \frac{22}{7}$

Let *P* be the foot of the perpendicular from the origin on the plane, then direction ratios of OP, the normal to the plane are a - 0, b - 0, c - 00 *ie*, *a*, *b*, *c*. Also, since, it passes through (*a*, *b*, *c*), the equation of the plane is a(x-a) + b(y-b) + c(z-c) = 0 $\Rightarrow ax + by + cz = a^2 + b^2 + c^2$

73 (d)

Let equation of plane is lx + my + nz = p $\operatorname{Or} \frac{x}{\left(\frac{p}{l}\right)} + \frac{y}{\left(\frac{p}{m}\right)} + \frac{z}{\left(\frac{p}{n}\right)} = 1$ Coordinate of A, B, C are $\left(\frac{p}{l}, 0, 0\right)$, $\left(0, \frac{p}{m}, 0\right)$ and $(0, 0, \frac{p}{n})$ respectively : Centroid of OABC is $\left(\frac{p}{4l}, \frac{p}{4m}, \frac{1}{4n}\right)$ $x_1 = \frac{p}{4l}, y_1 = \frac{p}{4m}, z_1 = \frac{p}{4n}$:: $l^2 + m^2 + n^2 = 1$ $\Rightarrow \frac{p^2}{16x_1^2} + \frac{p^2}{16y_1^2} + \frac{p^2}{16z_1^2} = 1$ Or $x_1^2 y_1^2 + y_1^2 z_1^2 + z_1^2 x^2 = \frac{16}{p^2} x_1^2 y_1^2 z_1^2$: Locus is $x^2y^2 + y^2z^2 + z^2x^2 = \frac{16}{n^2}x^2y^2z^2$ Hence, $k = \frac{16}{n^2}$

74 (a)

The equation of any plane through the intersection of the plane x + y + z = 1 and 2x + 3y - z + 4 = 0 is $(x + y + z - 1) + \lambda(2x + 3y - z + 4) = 0$ $\Rightarrow (1+2\lambda)x + (1+3\lambda)y + (1-\lambda)z + 4\lambda - 1$ = 0Since, the plane parallel to *x*-axis

Therefore, DR's of the above plane ie, the coefficient of *x* is zero

$$\therefore 1 + 2\lambda = 0 \Rightarrow \lambda = -\frac{1}{2}$$
Hence, the required equation will be $y - 3z + 6 = 0$
75 (c)
Given equation can be rewritten as
$$\frac{x}{1} + \frac{y}{1} + \frac{z}{1} = 1$$

$$\therefore$$
 The coordinate of ΔABC is
$$A\left(\frac{1}{2}, 0, 0\right), B\left(0, \frac{1}{3}, 0\right), C\left(0, 0, \frac{1}{4}\right)$$
Centroid of traingle
$$= \left(\frac{1}{2} + 0 + 0, 0 + \frac{1}{3} + 0, 0 + 0 + \frac{1}{4}\right)$$
Centroid of traingle
$$= \left(\frac{1}{6}, \frac{1}{9}, \frac{1}{12}\right)$$
76 (b)
Lane through given line is
$$A(x - 1) + B(y + 2) + C(z - 3) = 0 \dots(i)$$
Where A, B and C are the DR's of the normal to
the plane. Since the straight line lie on the plane
$$\therefore$$
 DR's of plane is perpendicular to the line ie ,
 $5A + 6B + 4C = 0 \dots(ii)$
Since, it passes through (4, 3, 7), we get
 $3A + 5B + 4C = 0 \dots(iii)$
On solving Eqs. (ii) and (iii), we get
$$\frac{A}{4} = \frac{B}{-8} = \frac{C}{7}$$

$$\therefore$$
 Equation of required plane is
 $4x - 8y + 7z = 41$
77 (a)
Given line is
 $\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{12} = k (say)$
Any point on the line is $(3k + 2, 4k - 1, 12k + 2)$
This point lies on the plane $x - y + z = 5$

$$\therefore 3k + 2 - (4k - 1) + 12k + 2 = 5$$

$$\Rightarrow 11k = 0 \Rightarrow k = 0$$

$$\therefore$$
 Intersection point is $(2, -1, 2)$

$$\therefore$$
 Distance, between points $(2 - 1, 2)$ and
 $(-1, -5, -10)$

$$= \sqrt{(-1 - 2)^2 + (-5 + 1)^2 + (-10 - 2)^2}$$

$$= \sqrt{9 + 16 + 144} = 13$$
79 (d)
The equations of the lines joining
 $6\vec{a} - 4\vec{b} + 4\vec{c} + m(-6\vec{a} - 4\vec{b} - 8\vec{c}) \dots(i)$
and, $\vec{r} = -\vec{a} - 2\vec{b} - 3\vec{c} + n(2\vec{a} + 4\vec{b} - 2\vec{c}) \dots(i)$

For the point of intersection, the equations (i) and (ii) should give the same value of \vec{r} Hence, equating the coeff. of vectors \vec{a} , \vec{b} and \vec{c} in the two expressions for \vec{r} , we get 6m + 2n = 7, 2m - 2n = 1 and 8m - 2n = 7Solving first two equations, we get m = 1, n = 1/2These values of m and n also satisfy the third equation Hence, the lines intersect Putting the value of m in (i), we obtain that the position vector of the point of intersection as $-4\vec{c}$ 80 (a) The vector equation of a plane through the line of intersection of the planes $\vec{r} \cdot (\hat{\imath} + 3\hat{\jmath} - \hat{k}) = 0$ and $\vec{r} \cdot (\hat{i} + 2\hat{k}) = 0$ can be written as $\{\vec{r}\cdot(\hat{\iota}+3\hat{j}+-\hat{k})\}+\lambda\{\vec{r}\cdot(\hat{j}+2\hat{k})\}=0$...(i) This passes through $2\hat{i} + \hat{j} - \hat{k}$ $\therefore (2\hat{\imath} + \hat{\jmath} - \hat{k}) \cdot (\hat{\imath} + 3\hat{\jmath} - \hat{k}) + \lambda(2\hat{\imath} + \hat{\jmath} - \hat{k})$ $\cdot (\hat{j} + 2\hat{k}) = 0$ $\Rightarrow (2+3+1) + \lambda(0+1-2) = 0 \Rightarrow \lambda = 6$ Putting the value of λ in (i), we get the equation of the required plane as $\vec{r} \cdot (\hat{\imath} + 9\hat{\jmath} + 11\hat{k}) = 0$ 81 (b) We know that the distance between the parallel planes $\vec{r} \cdot \vec{n} = d_1$ and $\vec{r} \cdot \vec{n} = d_2$ is given by $|d_1 - d_2|$ $|\vec{n}|$ Given planes are $\vec{r} \cdot (\hat{\imath} + 2\hat{\jmath} - 2\hat{k}) = -5$ and $\vec{r} \cdot \left(\hat{\iota} + 2\hat{j} - 2\hat{k}\right) = 8$ $\therefore \text{ Required distance} = \frac{|-5-8|}{\sqrt{1+4+4}} = \frac{13}{3}$ 82 (a) \therefore A line joining points (4, -1, 2) and (-3, 2, 3) meets the plane at 90°, then this line is normal to the plane Also, DR's of normal are < -7, 3, 1 > \therefore DR's of plane are <-7,3,1>and point (-10, 5, 4) lies on the plane Hence, equation of plane is -7(x+10) + 3(y-5) + 1(z-4) = 0 $\Rightarrow 7x - 3y - z + 89 = 0$ 83 (d) Consider *OX*, *OY*, *OZ* and *Ox*, *Oy*, *Oz* are two system of rectangular axes. Let their corresponding equation of plane be $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ (i)

a b c
and
$$\frac{x}{a'} + \frac{y}{b'} + \frac{z}{c'} = 1$$
 (ii)

Length of perpendicular from origin to Eqs. (i) and (ii) must be same

$$\therefore \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}} = \frac{1}{\sqrt{\frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2}}}$$

$$\Rightarrow \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} - \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2} = 0$$

84 **(b)**

Let the equation of any plane passing through P(2, -1, 3) is a(x-2) + b(y+1) + c(z-3) = 0(i) \therefore DR's of OP = 2, -1, 3Since, the line OP is perpendicular to the plane, therefore the DR's of the normal to the plane is proportional to the DR's of OP. \therefore Required equation of plane is 2(x-2) - 1(y+1) + 3(z-3) = 0 $\Rightarrow 2x - y + 3z - 14 = 0$ (a) Direction cosines

$$= \left(\frac{6}{\sqrt{36+4+9}}, \frac{2}{\sqrt{36+4+9}}, \frac{3}{\sqrt{36+4+9}}\right)$$
$$= \left(\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right)$$

85

Given, equation can be rewritten as $\frac{x}{18/3} - \frac{y}{18/2} - \frac{z}{18} = 1$ $\Rightarrow \frac{x}{6} - \frac{y}{9} - \frac{z}{18} = 1$ $\therefore \text{ Points of coordinates axes are}$ A(6, 0, 0), B(0, -9, 0) and C(0, 0, -18) $\therefore \text{ Centroid of a triangle}$ $= \left(\frac{6+0+0}{3}, \frac{0-9+0}{3}, \frac{0+0-18}{3}\right)$ = (2, -3, -6)

87 **(a)**

Equation of plane is $\frac{x}{8} + \frac{y}{4} + \frac{z}{4} = 1$ $\Rightarrow x + 2y + 2z = 8$ Length of perpendicular from origin to x + 2y + 2z - 8 = 0 $= \left|\frac{-8}{\sqrt{1+4+4}}\right| = \frac{8}{3}$

88 (d)

Given equation of sphere is

$$x^{2} + y^{2} + z^{2} - 3x + y - 2z - \frac{1}{2} = 0$$

where centre is $\left(\frac{3}{2}, -\frac{1}{2}, 1\right)$
and radius of sphere is $\sqrt{\frac{9}{4} + \frac{1}{4} + 1 + \frac{1}{2}} = 2$

equation of family of concentric sphere is $x^2 + y^2 + z^2 - 3x + y - 2z + \lambda = 0$ (i) \therefore According to question,

$$\sqrt{\frac{9}{4} + \frac{1}{4} + 1 - \lambda} = 4$$

$$\Rightarrow \frac{14}{4} - \lambda = 16$$

$$\Rightarrow \lambda = -\frac{25}{2}$$

$$\therefore \text{ From Eq. (i),}$$

$$x^{2} + y^{2} + z^{2} - 3x + y - 2z - \frac{25}{2} = 0$$

$$\Rightarrow 2x^{2} + 2y^{2} + 2z^{2} - 6x + 2y - 4z - 25 = 0$$

(b)
Equation of first line is $\frac{x-4}{2} = \frac{y+1}{1} = \frac{z}{-3}$ and second
line is $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z-2}{2}$

Angle between the lines

$$\theta = \cos^{-1} \left(\left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \right| \right)$$
$$= \cos^{-1} \left(\left| \frac{2 - 3 - 6}{\sqrt{14} \sqrt{14}} \right| \right) = \cos^{-1} \left(\frac{1}{2} \right) = \frac{\pi}{3}$$

90 (d)

91

89

Since,
$$P + \lambda P' = 0$$
(i)
 $\Rightarrow ax + by + cz + d + \lambda(a'x + b'y + c'z + d')$
 $= 0$
For parallel to $x - axis$, coefficient of $x = 0$
 $\Rightarrow a + \lambda a' = 0 \Rightarrow \lambda = -\frac{a}{a'}$
 \therefore From Eq. (i), we get
 $P - \frac{a}{a'}P' = 0$
 $\Rightarrow \frac{P}{a} = \frac{P'}{a'}$
(a)
Equation of the plane passing through three

Equation of the plane passing through three points *A*, *B*, *C* with position vectors *a*, *b*, *c* is $\vec{\mathbf{r}} \cdot (\vec{\mathbf{a}} \times \vec{\mathbf{b}} + \vec{\mathbf{b}} \times \vec{\mathbf{c}} + \vec{\mathbf{c}} \times \vec{\mathbf{a}}) = \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \times \vec{\mathbf{c}}$ So, that if *a*, *b*, *c* represents the given vectors, then $(\vec{\mathbf{a}} \times \vec{\mathbf{b}} + \vec{\mathbf{b}} \times \vec{\mathbf{c}} + \vec{\mathbf{c}} \times \vec{\mathbf{a}})$ $= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -6 & 3 & 2 \\ 3 & -2 & 4 \end{vmatrix} + \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 3 & -2 & 4 \\ 5 & 7 & 3 \end{vmatrix} + \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 5 & 7 & 3 \\ -6 & 3 & 2 \end{vmatrix}$ $= [\hat{\mathbf{i}}(12 + 4 - 6 - 28 + 14 - 9) - \hat{\mathbf{j}}(-24 - 6 + 9 - 20 + 10 + 18) + \hat{\mathbf{k}}(12 - 9 + 21 + 10 + 15 + 42)]$ $= -13\hat{\mathbf{i}} + 13\hat{\mathbf{j}} + 91\hat{\mathbf{k}}$ and $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \begin{vmatrix} -6 & 3 & 2 \\ 3 & -2 & 4 \\ 5 & 7 & 3 \end{vmatrix} = 299$ so, the required equation of the plane is

 $\vec{\mathbf{r}} \cdot \left(-13\hat{\mathbf{i}} - 13\hat{\mathbf{j}} + 91\hat{\mathbf{k}}\right) = 299$

Or $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} - \hat{\mathbf{i}} - 7\hat{\mathbf{k}}) = -23$ Or $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} - \hat{\mathbf{j}} - 7\hat{\mathbf{k}}) + 23 = 0$ 92 (a) The equation of plane, in which the line $\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}$ lies is A(x-5) + B(y-7) + C(z+3) = 0 ...(i) Where *A*, *B* and *C* are the direction ratios of the plane. Since, the first line lie on the plane : Direction ratios of normal to the plane is perpendicular to the direction ratios of line ie, 99 4A + 4B - 5C = 0(ii) Since, line $\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}$ lies in this plane. The direction ratios is also perpendicular to this line $\therefore 7A + B + 3C = 0$...(iii) From Eqs. (ii) and (iii), we get $\frac{A}{17} = \frac{B}{-47} = \frac{C}{-24}$ ∴ The required equation of plane is 17(x-5) - 47(y-7) + (-24)(z+3) = 0 $\Rightarrow 17x - 47y - 24z + 172 = 0$ 93 (a) The vector equation of the plane passing through points $\vec{a}, \vec{b}, \vec{c}$ is $\vec{r} \cdot (\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = [\vec{a} \ \vec{b} \ \vec{c}]$ Therefore, the length of the perpendicular from the origin to this plane is given by $\frac{\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}}{\begin{vmatrix} \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \end{vmatrix}}$ 94 (b) \therefore Centre of sphere is (0, 0, 0), then the shortest distance between (1, 2, -1) and surface of sphere $=\sqrt{24}-\sqrt{6}=2\sqrt{6}-\sqrt{6}=\sqrt{6}$ 95 (a) Given, a = 4, c = 3Equation of the plane π is $\frac{x}{4} + \frac{y}{b} + \frac{z}{3} = 1$ Since, π is parallel to *y*-axis $\therefore \text{ Coefficient of } y = 0 \text{ ie}, \frac{1}{h} = 0$ Thus, the equation of plane π is $\frac{x}{4} + \frac{z}{3} = 1$ $\Rightarrow 3x + 4z - 12 = 0$ 96 (a) The equation of a line passing through *A*(2, −3, −1) and *B*(8, −1, 2) is $\frac{x-2}{6} = \frac{y+3}{2} = \frac{z-1}{3} \Rightarrow \frac{x-2}{\frac{6}{7}} = \frac{y+3}{\frac{2}{7}} = \frac{z-1}{\frac{3}{7}}$

The coordinates of points on this line at a distance *r* from *A* are given by $\left(2 \pm \frac{6r}{7}, -3 \pm \frac{2r}{7}, 1 \pm \frac{3r}{7}\right)$ Putting r = 14, we get the required points as (4, 1, 5) and (-10, -7, -7)97 (c) Equation of line which is passing through (α, β, γ) and perpendicular to plane ax + by + cz + d = 0is $\frac{x-\alpha}{\alpha} = \frac{y-\beta}{b} = \frac{z-\gamma}{c}$ (d) Let A = (1, 0, 0)B = (0, 1, 0) and C = (0, 0, 1)Now, $AB = \sqrt{(0-1)^2 + (1-0)^2 + 0^2} = \sqrt{2}$ $BC = \sqrt{0^2 + (0-1)^2 + (1-0)^2} = \sqrt{2}$ and $CA = \sqrt{(1-0)^2 + 0^2 + (0-1)^2} = \sqrt{2}$ \therefore Perimeter of trangle= AB + BC + CA $=\sqrt{2}+\sqrt{2}+\sqrt{2}=3\sqrt{2}$ 100 (a) Distance of point *P* from plane=5 $\therefore 5 \left| \frac{1-4-2-\alpha}{3} \right|$ $\alpha = 10$ Foot perpendicular $\frac{x-1}{1} = \frac{y+2}{2} = \frac{z-1}{-2} - \frac{(1-4-2-10)}{1+4+4} = \frac{5}{3}$ $\Rightarrow x = \frac{8}{3}, y = \frac{4}{3}, z = \frac{7}{3}$ Thus, the foot of the perpendicular is $A\left(\frac{8}{3},\frac{4}{3},-\frac{7}{3}\right)$ 101 (b) Given, $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4} = \lambda$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1} = \mu$ $\Rightarrow x = 2\lambda + 1, y = 3\lambda - 1, z = 4\lambda + 1$ and $x = \mu + 3$, $y = 2\mu + k$, $z = \mu$ As the lines intersect they must have a point in common. $\therefore 2\lambda + 1 = \mu + 3, 3\lambda - 1 = 2\mu + k, 4\lambda + 1 = \mu$ $\Rightarrow \lambda = -\frac{3}{2} \text{ and } \mu = -5$ $\therefore k = 3\lambda - 2\mu - 1$ $\implies k = 3\left(-\frac{3}{2}\right) - 2(-5) - 1$ $\Rightarrow k = \frac{9}{2}$ Let the point on *x*-axis is A(x, 0, 0)

102 (d)

Given, B = (1, 2, 3) and C = (3, 5, -2)Since, |AB| = |AC|

$$\Rightarrow \sqrt{(x-1)^2 + (0-2)^2 + (0-3)^2} = \sqrt{(x-3)^2 + (0-5)^2 + (0+2)^2} \Rightarrow x^2 + 1 - 2x + 4 + 9 = x^2 + 9 - 6x + 25 + 4 \Rightarrow x = 6 \(\therefore\) Required point is (6, 0, 0)$$

103 (c)

Angle between two lines given by

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

$$\therefore \cos \theta \frac{1 \times 3 + 2 \times -2 + 3 \times 1}{\sqrt{1^2 + 2^2 + 3^2} \sqrt{3^2 + (-2)^2 + 1^2}}$$

$$= \frac{2}{\sqrt{14}\sqrt{14}}$$

$$\therefore \ \theta = \cos^{-1}\left(\frac{1}{7}\right)$$

104 (a)

Let the give points are *A*, *B* and *C* respectively : Direction ratios of AB and BC are 1, -3, -2 and 2, -6, K - 2 respectively Since given points are collinear $\therefore \frac{2}{1} = \frac{-6}{-3} = \frac{K-2}{-2}$ $\Rightarrow K - 2 = -4$ $\Rightarrow K = -2$ 105 (d) Equation of plane through (2, 5, -3) is a(x-2) + b(y-5) + c(z+3) = 0 ...(i) Which is perpendicular to x + 2y + 2z = 1and x - 2y + 3z = 4then a + 2b + 2c = 0 ...(ii) and a - 2b + 3c = 0 ...(iii) On eliminating *a*, *b*, *c* from Eqs.(i), (ii) and (iii), we get $\begin{vmatrix} x - 2 & y - 5 & z + 3 \\ 1 & 2 & 2 \\ 1 & -2 & 3 \end{vmatrix} = 0$ $\Rightarrow 10x - y - 4z - 27 = 0$ 106 (c) Given line can be rewritten as $\frac{x-1}{\frac{1}{4}} = \frac{y-\frac{1}{3}}{-\frac{1}{2}} = \frac{z-\frac{1}{2}}{\frac{1}{2}}$: Direction cosines are $\frac{\frac{1}{4}}{\sqrt{\frac{1}{16} + \frac{1}{9} + \frac{1}{4}}}, \frac{\frac{-1}{3}}{\sqrt{\frac{1}{16} + \frac{1}{9} + \frac{1}{4}}}, \frac{\frac{1}{2}}{\sqrt{\frac{1}{16} + \frac{1}{9} + \frac{1}{4}}}$ $=\frac{3}{\sqrt{16}},\frac{-4}{\sqrt{16}},\frac{6}{\sqrt{16}}$

 $(x + y + z - 6) + \lambda(2x + 3y + 4z + 5) = 0$ Which is passing through (1, 1, 1) $\Rightarrow -3 + 14\lambda = 0$ $\Rightarrow \lambda = \frac{3}{14}$ 108 (c) -2a + 13b + 9c = 0 ...(ii) x - 4y - 2z = 8a - 4b - 2c = 0 ...(iii) From Eqs. (i), (ii), (iii) we get $\begin{vmatrix} x & y+4 & z+6 \\ -2 & 13 & 9 \end{vmatrix} = 0$ -2-21 -4 ie, 2x + y - z - 2 = 0109 **(b)** $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ Given, $\alpha = \frac{\pi}{3}$, $\beta = \frac{\pi}{4}$ $\therefore l = \cos\frac{\pi}{3} = \frac{1}{2},$ Using $l^2 + m^2 + n^2 = 1$ $\Rightarrow \frac{1}{4} + \frac{1}{2} + n^2 = 1 \Rightarrow n = \frac{1}{2}$ $\therefore \cos \gamma = \frac{1}{2} \Longrightarrow \gamma = \frac{\pi}{2}$ 110 (c) diameter of sphere Dedius 1 =

 \therefore Required plane is 20x + 23y + 26z = 69Equation of plane through (0, -4, -6) is a(x-0) + b(y+4) + c(z+6) = 0 ...(i) Point (-2, 9, 3) lies on Eq. (i), then Also required plane is perpendicular to Let α , β , γ be the angles with *x*-axis, *z*-axis respectively, then direction cosines are $m = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$ and $n = \cos \gamma$ Given (3, 4, -1) and (-1, 2, 3) are the end points of

Radius =
$$\frac{1}{2}$$
 (length of the diameter)
= $\frac{1}{2}\sqrt{(3+1)^2 + (4-2)^2 + (-1-3)^2}$
= 3

107 (a)

Equation of required plane is

111 (c)

Let A(5, -4, 2), B(4, -3, 1), C(7, -6, 4) and D(8, -7, 5)Then, $AB = \sqrt{(4-5)^2 + (-3+4)^2 + (1-2)^2}$ $=\sqrt{1+1+1} = \sqrt{3}$ $BC\sqrt{(7-4)^2 + (-6+3)^2 + (4-1)^2}$ $=\sqrt{9+9+9}=3\sqrt{3}$ $CD = \sqrt{(8-7)^2 + (-7+6)^2 + (5-4)^2}$ $=\sqrt{1+1+1}=\sqrt{3}$ $AD = \sqrt{(8-5)^2 + (-7+4)^2 + (5-2)^2}$ $=\sqrt{9+9+9}=3\sqrt{3}$ Position vector $\mathbf{f} \overrightarrow{\mathbf{AB}} = (4-5)\mathbf{\hat{i}} + (-3+4)\mathbf{\hat{j}} + (-3+4)\mathbf{\hat{j}}$ $(1-2)\hat{k}$ $= -\hat{i} + \hat{j} - \hat{k}$ And position vector of $\overrightarrow{\mathbf{BC}} = (7-4)\hat{\mathbf{i}} + \hat{\mathbf{i}}$ $(-6+3)\hat{i} + (4-1)\hat{k}$ $= 3\hat{i} - 3\hat{j} + 3\hat{k}$ Now, $\overrightarrow{AB} \cdot \overrightarrow{BC} = (-\hat{\imath} + \hat{\jmath} - \hat{k}) \cdot (3\hat{\imath} - 3\hat{\jmath} + 3\hat{k})$ $= -3 - 3 - 3 \neq 0$ $\therefore \square ABCD$ is parallelogram

112 **(b)**

The required plane passes through the points having position vectors $\vec{a_1}$ and $\vec{a_2}$ and is parallel to the vector \vec{b} . Therefore, it is normal to the vector $(\vec{a_2} - \vec{a_1}) \times \vec{b}$ So, the equation of the required plane is $(\vec{r} - \vec{a_1}) \cdot \{(\vec{a_2} - \vec{a_1}) \times \vec{b}\} = 0$ $\Rightarrow \vec{r} \cdot (\vec{a_2} - \vec{a_1}) \times \vec{b} - \vec{a_1} \cdot (\vec{a_2} \times \vec{b}) = 0$ $\Rightarrow \vec{r} \cdot (\vec{a_2} - \vec{a_1}) \times \vec{b} = [\vec{a_1} \cdot \vec{a_2} \cdot \vec{b}]$ 113 (a) If $(\frac{1}{2}, \frac{1}{3}, n)$ are the DC's of line, then using the relation $l^2 + m^2 + n^2 = 1$, we get $(\frac{1}{2})^2 + (\frac{1}{3})^2 + n^2 = 1$

115 **(c)**

$$\Rightarrow n^{2} = 1 - \frac{1}{4} - \frac{1}{9}$$
$$\Rightarrow n^{2} = \frac{23}{36}$$
$$\Rightarrow n = \frac{\sqrt{23}}{6}$$

114 **(b)**

The equation of a plane through the line of intersection of the planes $\vec{r} \cdot \vec{a} = \lambda$ and $\vec{r} \cdot \vec{b} = \mu$ can be written as

 $(\vec{r} \cdot \vec{a} - \lambda) + k(\vec{r} \cdot \vec{b} - \mu) = 0$ Or, $\vec{r} \cdot (\vec{a} + k\vec{b}) = \lambda + k\mu$... (i)

This passes through the origin

$$\therefore \vec{0} \cdot (\vec{a} + k\vec{b}) = \lambda + \mu \, k \Rightarrow k = \frac{-\lambda}{\mu}$$

Putting the value of *k* in (i), we get the equation of the required plane as

 $\vec{r} \cdot (\mu \vec{a} - \lambda \vec{b}) = 0 \Rightarrow \vec{r} \cdot (\lambda \vec{b} - \mu \vec{a}) = 0$

In Fig. OE is the external bisector The co-ordinates of *E* are $\left(\frac{l_1-l_2}{2}, \frac{m_1-m_2}{2}, \frac{n_1-n_2}{2}\right)$ Therefore, direction ratios of *OE* are proportional to $\frac{l_1-l_2}{2}, \frac{m_1-m_2}{2}, \frac{n_1-n_2}{2}$ The equation of a plane passing through (1, -2, 3)

116 (d)

is a(x-1) + b(y+2) + c(z-3) = 0It passes through (-1, 2, -1) and is parallel to the

given line $\therefore a(-2) + b(4) + c(-4) = 0$ and, 2a + 3b + 4c =0

$$\Rightarrow \frac{a}{28} = \frac{b}{0} = \frac{c}{-14} \Rightarrow \frac{a}{2} = \frac{b}{0} = \frac{c}{-1}$$

Hence, a : b : c = 2 : 0 : -1

<u>ALITER</u> Let P(1, -2, 3) and Q(-1, 2, -1) be the given points

Given line is parallel to the vector $\vec{b} = 2\hat{\imath} + 3\hat{\imath} + \hat{\imath}$ 4k

: Normal to the plane is parallel to the vector $\vec{P}Q \times \vec{b} = 28\hat{\imath} - 14\hat{k} = 14(2\hat{\imath} + 0\hat{\jmath} - \hat{k})$

117 (b)

The equation of a line passing through the points $A(\hat{\imath} - \hat{\jmath} + 2\hat{k})$ and $B(3\hat{\imath} + \hat{\jmath} + \hat{k})$ is given by $\vec{r} = (\hat{\imath} - \hat{\jmath} + 2\hat{k}) + \lambda(3\hat{\imath} + \hat{\jmath} + \hat{k})$ The position vector of a variable point *P* on the line, is $(\hat{\imath} - \hat{\jmath} + 2\hat{k}) + \lambda(3\hat{\imath} + \hat{\jmath} + \hat{k})$ $\therefore \vec{A}P = \lambda (3\hat{\imath} + \hat{\jmath} + \hat{k}) \Rightarrow |\vec{A}P| = |\lambda|\sqrt{11}$ Now, $|\lambda|\sqrt{11} = 3\sqrt{11}$, $\Rightarrow \lambda = \pm 3$ Thus, the position vectors of *P* are $10\hat{i} + 2\hat{j} + 5\hat{k}$ and $-8\hat{i} - 4\hat{j} - \hat{k}$ 118 (c) The given equation of sphere is $x^2 + y^2 + z^2 + 3x - 4z + 1 = 0$: Coordinates of centre of sphere = $\left(-\frac{3}{2}, 0, 2\right)$

and radius of sphere = $\sqrt{u^2 + v^2 + w^2 - d}$ $\left|\frac{9}{4} + 4 - 1\right| = \frac{\sqrt{21}}{2}$ =

120 (c)

It is given that the line $\frac{x-1}{2} = \frac{y-3}{-1} = \frac{z-4}{2}$

Is perpendicular to the required. This means that the normal to the plane is parallel to the line. So, its direction ratios are proportional to 2, -1, 2The plane passes through the origin Hence, its equation is

$$2(x-0) - (y-0) + 2(z-0) = 0 \Rightarrow 2x - y + 2z$$

= 0

121 (b)

Given equation of lines are

$$\frac{x-5}{3} = \frac{y-7}{-1} = \frac{z+2}{1} = k \text{ [say] (i)}$$
and $\frac{x+3}{-36} = \frac{y-3}{2} = \frac{z-6}{4}$ (ii)
Any point on the line (i) is $P(3k+5, -k+7, k-2)$
This point is satisfied the Eq. (ii),

$$\therefore \frac{3k+5+3}{-36} = \frac{-k+7-3}{2} = \frac{k-2-6}{4}$$

$$\Rightarrow \frac{3k+8}{-36} = \frac{-k+4}{2} = \frac{k-8}{4}$$

$$\Rightarrow 3k+8 = 18k-72 \Rightarrow k = \frac{16}{3}$$

$$\therefore P\left(16+5, -\frac{16}{3}+7, \frac{16}{3}-2\right)$$
 $ie, P\left(21, \frac{5}{3}, \frac{10}{3}\right)$

122 (a) We have, $\vec{AB} = -2\hat{\imath} - 3\hat{\imath} - 6\hat{k}$ So, vector equation of the plane is $\{\vec{r} - (\hat{\iota} - 2\hat{\jmath} - 4\hat{k})\} \cdot \vec{A}B = 0$ $\Rightarrow \vec{r} \cdot (-2\hat{\iota} - 3\hat{\jmath} - 6\hat{k})$ $= (\hat{\imath} - 2\hat{\jmath} - 4\hat{k}) \cdot (-2\hat{\imath} - 3\hat{\jmath} - 6\hat{k})$ $\Rightarrow -2x - 3y - 6z = -2 + 6 + 24$ $\Rightarrow 2x + 3y + 6x + 28 = 0$ 123 (c) Let point is (α, β, γ) $\therefore (\alpha - \alpha)^2 + \beta^2 + \gamma^2 = \alpha^2 + (\beta - b)^2 + \gamma^2$ $= \alpha^2 + \beta^2 + (\gamma - c)^2$ $= \alpha^2 + \beta^2 + \gamma^2$ We get, $\alpha = \frac{a}{2}$, $\beta = \frac{b}{2}$ and $\gamma = \frac{c}{2}$ \therefore Required point is $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$ 124 (b) Let equation of plane is $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 1$, then $A(\alpha, 0, 0), B(0, \beta, 0)$ and $C(0, 0, \gamma)$ are the points on coordinate axes Since, the centroid of a triangle is (1, 2, 4)Now, $\frac{\alpha}{2} = 1$ $\therefore \alpha = 3, \frac{\beta}{3} = 2 \Rightarrow \beta = 6$ And $\frac{\gamma}{3} = 4 \Rightarrow \gamma = 12$: Equation of plane is $\frac{x}{3} + \frac{y}{6} + \frac{z}{12} = 1$ \Rightarrow 4x + 2v + z = 12 125 (c) : Vertices of $\triangle ABC$ are A(-1, 3, 2), B(2, 3, 5) and C(3, 5, -2) $\Rightarrow AB = \sqrt{9 + 0 + 9} = \sqrt{18}$ $CA = \sqrt{16 + 4 + 16} = 6$ And $BC = \sqrt{1 + 4 + 49} = \sqrt{54}$ $:: AB^2 + CA^2 = BC^2$ \triangle *ABC* is right angled triangle at *A* $\therefore \ \angle A = 90^{\circ}$ 127 (a) Let the point P(x, y, z) divides the line joining the points A and B in the ratio m: 1. $A \stackrel{\text{m}}{\underbrace{(5,-3,-2)}} P \stackrel{1}{\underbrace{(1,2,-2)}} B$ Since, point *P* is on *XOZ*-plane \therefore *y* coordinate = 0 $\Rightarrow \frac{2m-3}{m+1} = 0 \Rightarrow m = \frac{3}{2}$

Now, $x = \frac{3+2\times 5}{3+2} = \frac{13}{5}$

and $z = \frac{3 \times (-2) + 2 \times (-2)}{5} = -2$ \therefore Required points is $\left(\frac{13}{5}, 0, -2\right)$ 128 (d) Let the equation of plane is $-\frac{x}{6} + \frac{y}{3} + \frac{z}{4} = 1$: The perpendicular distance from origin to the above plane $\frac{|0+0+0-1|}{\sqrt{\left(\frac{1}{6}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{4}\right)^2}}$ $\frac{1}{\sqrt{\frac{4+16+9}{144}}}$ $=\frac{-}{\sqrt{29}}$ 129 (b) Equation of plane is a(x - 1) + b((y + 1) + cz =(: plane is passing through (1, 2, -1)) Above plane also passing through (0, 2, -1) $\therefore -a + 3b - c = 0$ Also 2a - b + 3c = 0 $\Rightarrow \frac{a}{8} = \frac{b}{1} = \frac{c}{-5}$ Hence, equation of plane is 8x + y - 5z - 7 = 0130 (c) \therefore Mid point of line joining (2, 3, 4) and (6, 7, 8) is (4, 5, 6). This point satisfied the equation x + y + z - 15 = 0 $\therefore x + y + z - 15 = 0$ is required equation of plane 131 (c) The distance between given points $=\sqrt{(2-1)^2+(2-4)^2+(3-5)^2}$ $=\sqrt{1+4+4}=3$ 132 **(b)** Equation of plane through (1, 2, 3) is a(x-1) + b(y-2) + c(z-3) = 0(i) \therefore It passes through (-1, 4, 2) and (3, 1, 1) $\therefore -2a + 2b - c = 0$ and 2a - b - 2c = 0 $\Rightarrow \frac{a}{-5} = \frac{b}{-6} = \frac{c}{-2}$ ∴ Equation of plane is -5x - 6y - 2z + 5 + 12 + 6 = 0 \Rightarrow 5x + 6y + 2z - 23 = 0 Alternate Equation plane is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} x - 1 & y - 2 & z - 3 \\ -2 & 2 & -1 & -2 \end{vmatrix} = 0$$

$$\Rightarrow (x - 1)(-4 - 1) - (y - 2)(4 + 2) + (z - 3)(2 - 4) = 0$$

$$\Rightarrow -5x + 5 - 6y + 12 - 2z + 6 = 0$$

$$\Rightarrow 5x + 6y + 2z - 23 = 0$$
133 (a)
Given planes are parallel to each other but only $x + y + 3z - 6 = 0$ is equidistant from $x + 2y + 3z - 5 = 0$ and $x + 2y + 3z - 7 = 0$ having distance $\frac{1}{\sqrt{14}}$
134 (c)
Equation of given line is $\frac{x}{2} = \frac{y - 1}{3} = \frac{z - 1}{3} = k$ (say)
$$A - \frac{P(1, 2, 3)}{M} = B$$

$$\therefore 2(2k - 1) + 3(3k - 1) + 3(3k - 2) = 0$$

$$\Rightarrow 22k - 11 = 0$$

$$\Rightarrow k = \frac{1}{2}$$

$$\therefore Point M is $\left(1, \frac{5}{2}, \frac{5}{2}\right)$
Let the image of P about the line AB is Q, where M is the mid point of FQ
$$\therefore \frac{x_1 + 1}{2} = 1, \frac{y_1 + 2}{2} = \frac{5}{2}, \frac{z_1 + 3}{2} = \frac{5}{2}$$

$$\Rightarrow x_1 = 1, y_1 = 3, z_1 = 2$$
135 (b)
The equation of straight line passing through origin and direction cosine (l, m, n) is
$$\frac{x}{l} = \frac{y}{n} = \frac{z}{n} = r$$
 (say)
Coordinates of P are $(-1, 2, -2)$
136 (b)
Since, the given sphere touching the three coordinates planes. So, it is clear that centre is (a, a, a) and radius is a

$$\therefore$$
 The equation of sphere at the centre $(a, a, a)$$$

: Line is perpendicular to the normal

 $\Rightarrow 3(1) - 5(3) + 2(-\alpha) = 0$ $\Rightarrow 3 - 15 - 2\alpha = 0$ $\Rightarrow 2\alpha = -12$ $\Rightarrow \alpha = -6$ Also point (2, 1, -2) lies on the plane $2 + 3 + 6(-2) + \beta = 0$ $\Rightarrow \beta = 7$ $\therefore (\alpha, \beta) = (-6, 7)$ 140 **(b)** We know

and radius *a* is

 $\therefore \sin \theta = \sin 0^{\circ}$ $\Rightarrow \theta = 0^{\circ}$

137 (b)

138 (b)

bv

139 (b)

М

 $(x-a)^2 + (y-a)^2 + (z-a)^2 = a^2$

required equation of sphere

 $\Rightarrow x^{2} + y^{2} + z^{2} - 2ax - 2ay - 2az + 3a^{2} = a^{2}$ $\therefore x^{2} + y^{2} + z^{2} - 2a(x + y + z) + 2a^{2} = 0$ is the

Angle between the plane and line is given by

 $\therefore \sin \theta = \frac{2 \times \frac{3}{4} + 3 \times \frac{2}{4} - 4 \times \frac{3}{4}}{\sqrt{2^2 + 3^2 + 4^2} \sqrt{\left(\frac{3}{4}\right)^2 + \left(\frac{2}{4}\right)^2 + \left(\frac{-3}{4}\right)^2}}$

 $\sin \theta = \frac{aa' + bb' + cc'}{\sqrt{a^2 + b^2 + c^2}\sqrt{a'^2 + b'^2 + c'^2}}$

 $\frac{\frac{6}{4} + \frac{6}{4} - \frac{12}{4}}{\sqrt{4+9+16}\sqrt{\frac{9}{16} + \frac{4}{16} + \frac{9}{16}}} = 0$

Given that equation of planes are,

And 8x + 12y - 13z = 32 ...(ii)

And 8l + 12m - 13n = 0 ...(iv)

 \therefore Required line is $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z}{4}$

DR's of given line are (3, -5, 2)

 $\Rightarrow \frac{l}{8} = \frac{m}{12} = \frac{n}{16} \Rightarrow \frac{l}{2} = \frac{m}{3} = \frac{n}{4}$

4x + 4y = 12 ...(v) and 8x + 12y = 32 ...(vi)

Let direction ratios of the line are (l, m, n)

Now, we take intersection point with z = 0 given

On solving Eqs. (v) and (vi), we get (1, 2, 0)

DR's of normal to the plane = $(1, 3, -\alpha)$

4x + 4y - 5z = 12 ...(i)

 \therefore Eqs. (i) and (ii) becomes 4l + 4m - 5n = 0 ...(iii)

 $\cos^2\alpha + \cos^2\beta + \cos^2\gamma + \cos^2\delta = \frac{4}{3}$ where α , β , γ and δ are the angles with diagonals

of cube.

$$\therefore 1 - \sin^2 \alpha + 1 - \sin^2 \beta + 1 - \sin^2 \gamma + 1 - \sin^2 \delta$$

$$= \frac{4}{3}$$

$$\implies \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta = \frac{8}{3}$$

141 (c)

Given equation of line is $\frac{3-x}{1} = \frac{y-2}{5} = \frac{2z-3}{1}$ $\implies \frac{x-3}{-1} = \frac{y-2}{5} = \frac{z-\frac{3}{2}}{\frac{1}{2}}$

 \therefore Direction ratios of line are $-1, 5, \frac{1}{2}$

142 **(b)**

$$\overrightarrow{\mathbf{OC}} = \left(\frac{l_1 + l_2}{2}, \frac{m_1 + m_2}{2}, \frac{n_1 + n_2}{2}\right)$$

And $|\overrightarrow{\mathbf{OC}}| = \cos\frac{\theta}{2}$

So, direction cosines of internal angle bisector are

143 (c)

The given equation of plane is $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ On comparing with $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, we get a = 2, b = 3, c = 4Area of $\triangle ABC = \frac{1}{2}\sqrt{a^2b^2 + b^2c^2 + c^2a^2}$ $\triangle = \frac{1}{2}\sqrt{4 \times 9 + 9 \times 16 + 16 \times 4}$ $= \frac{1}{2}\sqrt{36 + 144 + 64} = \frac{1}{2}\sqrt{244} = \sqrt{61}$

145 (a)

Let (u, v, w) be the centre of the sphere with radius r. Since, it passes through the origin $\therefore u^2 + v^2 + w^2 = r^2$. Equation of the diameter parallel to x-axis is $\frac{x-u}{1} = \frac{y-v}{0} = \frac{z-w}{0}$...(i) As it passes through u, v, w and direction ratios of x- axis are 1, 0, 0

The extremities of diameter are the points on Eq. (i) at a distance r from the centre (u, v, w)

:. The required extremities are P(r + u, v, w) and Q(-r + u, v, w)

P lies on the sphere $x^2 + y^2 + z^2 - 2rx = 0$ as $(r + u)^2 + v^2 + w^2 - 2r(r + u) = 0$ Because $u^2 + v^2 + w^2 = r^2$ and similarly Q lies on the sphere $x^2 + y^2 + z^2 + 2rx = 0$

146 **(d)**

Distance of a point (1,1,1) from x + y + z + k = 0 is

$$\frac{1+1+1+k}{\sqrt{3}} = \left| \frac{3+k}{\sqrt{3}} \right|$$

According to question

$$\left|\frac{3+k}{\sqrt{3}}\right| = \pm 2\sqrt{3} \Rightarrow k = 3, -9$$

147 (c)

Since, given points divide the *XOZ*-plane.

 $\therefore \text{ Required ratio} = -y_1 : y_2 = -3:7$

148 **(b)**

DC's of the given line are $\frac{1}{3}$, $-\frac{2}{3}$, $-\frac{2}{3}$ Hence, the equation of line can be point in the form

$$\frac{x-2}{1/3} = \frac{y+3}{-2/3} = \frac{z+5}{-2/3} = r$$

$$\therefore \text{ Point is } \left(2 + \frac{r}{3}, -3 - \frac{2r}{3}, -5 - \frac{2r}{3}\right)$$

$$\therefore r = \pm 6$$

Points are (4, -7, -9) and (0, 1, -1)

149 **(a)**

The plane passes through A(0, 0, 1), B(0, 1, 2) and C(1, 2, 3). Therefore, a vector normal to the plane is given by

$$\vec{n} = \vec{A}B \times \vec{A}C = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 1 \\ 1 & 2 & 2 \end{vmatrix} = 0 \ \hat{i} + \hat{j} - \hat{k}$$

Hence, direction ratios of normal to the plane are proportional to 0, 1, -1

150 **(b)**

Suppose *xy*-plane divides the join of (1, 2, 3) and (4, 2, 1) in the ratio $\lambda : 1$. Then, the coordinates of the point of division are

$$\left(\frac{4\lambda+1}{\lambda+1}, \frac{2\lambda+2}{\lambda+1}, \frac{\lambda+3}{\lambda+1}\right)$$

This point lies on *xy*-plane

$$\cdot z$$
-coordinate = $0 \Rightarrow \frac{\lambda+3}{\lambda+1} = 0 \Rightarrow \lambda = -3$

Hence, *xy*-plane divides the join of (1, 2, 3) and (4, 2, 1) externally in the ratio 3 : 1

<u>ALTER</u> We know that the *XY*-plane divides the segment joining $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ in the ratio $(-z_1) : z_2$

 \therefore *XY*-plane divides the join of (1, 2, 3) and (4, 2, 1) in the ratio -3:1 i.e. 3:1 externally

151 **(d)**

Let l, m, n be the direction cosines of \vec{r} . Then, l = m = n [Given]

$$\therefore l^2 + m^2 + n^2 = 1 \Rightarrow 3 l^2 = 1 \Rightarrow l = \frac{1}{\sqrt{3}} = m$$

Now,
$$\vec{r} = |\vec{r}| (l \,\hat{\imath} + m \,\hat{\jmath} + n \,\hat{k})$$

 $\Rightarrow \vec{r} = 6 \left(\frac{1}{\sqrt{3}} \hat{\imath} + \frac{1}{\sqrt{3}} \hat{\jmath} + \frac{1}{\sqrt{3}} \hat{k} \right) = 2\sqrt{3} (\hat{\imath} + \hat{\jmath} + \hat{k})$

152 (a)

Since, direction ratio of given planes are (2, -1, 1)and (1, 1, 2)

$$\begin{aligned} &\therefore \ \theta \cos^{-1} \left(\frac{2 \times 1 - 1 \times 1 + 1 \times 2}{\sqrt{4 + 1 + 1} \sqrt{1 + 1 + 4}} \right) \\ &= \cos^{-1} \left(\frac{3}{\sqrt{6} \sqrt{6}} \right) \\ &= \cos^{-1} \left(\frac{1}{2} \right) = \frac{\pi}{3} \end{aligned}$$

= n

153 **(b)**

The equation of a plane parallel to the plane $\vec{r} \cdot (4\hat{\iota} - 12\hat{\jmath} - 3\hat{k}) - 7 = 0$ is, $\vec{r} \cdot (4\hat{\iota} - 12\hat{\jmath} - 3\hat{k}) + \lambda = 0$ This passes through $2\hat{\iota} - \hat{\jmath} - 4\hat{k}$ $\therefore (2\hat{\iota} - \hat{\jmath} - 4\hat{k}) \cdot (4\hat{\iota} - 12\hat{\jmath} - 3\hat{k}) + \lambda = 0$ $\Rightarrow 8 + 12 + 12 + \lambda = 0$ $\Rightarrow \lambda = -32$ So, the required plane is $\vec{r} \cdot (4\hat{\iota} - 12\hat{\jmath} - 3\hat{k}) - 32 = 0$

154 (a)

Equation of the give plane can be writer as $(3\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 5\hat{\mathbf{k}}) \cdot (x \hat{\mathbf{i}} + y \hat{\mathbf{j}} + z\hat{\mathbf{k}}) = 8$ So, that the normal to the given plane is $3\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ and the required line being perpendicular to the plane is parallel to this normal and since, it passes through $3\hat{\mathbf{i}} - 5\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$, its equation is $\vec{\mathbf{r}} = 3\hat{\mathbf{i}} - 5\hat{\mathbf{j}} + 7\hat{\mathbf{k}} + \lambda(3\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 5\hat{\mathbf{k}})$ Where λ is a parameter Since, this lie passes through the vector $3\hat{\mathbf{i}} - 5\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$ *ie*, the point (3, -5, 7) and is parallel to $3\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$, its direction ratios are 3, -4, 5Its cartesian equation is $\frac{x-3}{3} = \frac{y+5}{-4} = \frac{z-7}{5}$

155 (a)

Given lines can be rewritten as

$$\frac{x-\frac{1}{3}}{1} = \frac{y-\frac{1}{3}}{2} = \frac{z-1}{3}$$

This shows that DR's of given equation are (1,

2,

3).

156 (d)

Given line is parallel to $\vec{b} = -\hat{\imath} + \hat{\jmath} + \hat{k}$ and the given plane is normal to $\vec{n} = 3\hat{\imath} + 2\hat{\jmath} - \hat{k}$ Let θ be the angle between the given line and given plane. Then,

$$\sin \theta = \frac{\vec{b} \cdot \vec{n}}{|\vec{b}| |\vec{n}|}$$

$$\Rightarrow \sin \theta = \frac{-3 + 2 - 1}{\sqrt{3}\sqrt{14}} \Rightarrow \theta = \sin^{-1}\left(\frac{-2}{\sqrt{42}}\right)$$

157 **(d)**

Let the source of light be situated at A(a, 0, 0), where, $a \neq 0$

Let *OA* be the incident ray, *OB* be the reflected ray and *ON* be the normal to the mirror at *O*

$$\therefore \angle AON = \angle NOB = \frac{\theta}{2} \quad (say)$$

Direction ratios of $\vec{O}A$ are proportional to a, 0, 0 and so its direction cosines are 1, 0, 0

Direction cosines of *ON* are $\frac{1}{\sqrt{3}}$, $-\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$

Let *l*, *m*, *n* be the direction cosines of the reflected ray *OB*. Then,

$$\frac{l+1}{2\cos\theta/2} = \frac{1}{\sqrt{3}}, \frac{m+0}{2\cos\theta/2} = -\frac{1}{\sqrt{3}} \text{ and }, \frac{n+0}{2\cos\theta/2}$$
$$= \frac{1}{\sqrt{3}}$$
$$\Rightarrow l = \frac{2}{3} - 1, m = -\frac{2}{3}, n = \frac{2}{3}$$
$$\Rightarrow l = -\frac{1}{3}, m = -\frac{2}{3}, n = \frac{2}{3}$$
Hence, direction cosines of the reflected ray are
$$-\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}$$
158 (d)
Given, $3lm - 4ln + mn = 0$ (i)
and $l + 2m + 3n = 0$...(ii)
From Eq. (ii), $l = -(2m + 3n)$ putting in Eq. (i)
 $-3(2m + 3n)m + 4(2m + 3n)n + mn = 0$
$$\Rightarrow -6m^2 + 12n^2 = 0$$
$$\Rightarrow m = \pm\sqrt{2n}$$
Now, $m = \sqrt{2n}$
$$\Rightarrow l = -(2\sqrt{2n} + 3n) = -(2\sqrt{2} + 3)n$$

 $\therefore l:m:n=-(3+2\sqrt{2})n:\sqrt{2}n:n$

$$= -(3 + 2\sqrt{2}): \sqrt{2}: 1$$
Also, $m = -\sqrt{2}n \implies l = -(-2\sqrt{2} + 3)n$

$$\therefore l: m: n = -(3 - 2\sqrt{2})n: -\sqrt{2}: n$$

$$= -(3 - 2\sqrt{2}): -\sqrt{2}: 1$$

$$= \cos \theta$$

$$= \frac{(3 + 2\sqrt{2})(3 - 2\sqrt{2}) + (\sqrt{2})(-\sqrt{2}) + 1 \cdot 1}{\sqrt{(3 + 2\sqrt{2})^2 + (\sqrt{2})^2 + 1^2}} \sqrt{(3 - 2\sqrt{2})^2 + (-\sqrt{2})^2 + 1^2}$$

$$= 0$$

$$\implies \theta = \frac{\pi}{2}$$

159 (a)

Equation of plane passing through (-1, 3, 0) is A(x + 1) + B(y - 3) + C(z - 0) = 0....(i) Also, plane (i) is passing through the points (2, 2, 1) and (1,1,3) 3A - B + C = 0 ...(ii) And 2A - 2B + 3C = 0 ...(iii) On solving Eqs. (i) and (iii), we get $\frac{A}{-3+2} = \frac{B}{2-9} = \frac{C}{-6+2}$ $\therefore A: B: C = -1: -7: -4$ \Rightarrow A: B: C = 1: 7: 4 From Eq. (i), 1(x + 1) + 7(y - 3) + 4(z) = 0 $\Rightarrow x + 7y + 4z - 20 = 0$ \therefore Distance from the plane to the point (5, 7, 8) $1 \times 5 + 7 \times 7 + 4 \times 8 - 20$ $\sqrt{1^2 + 7^2 + 4^2}$ $=\frac{5+49+32-20}{\sqrt{66}}=\frac{66}{\sqrt{66}}=\sqrt{66}$

160 **(a)**

The line of intersection of the plane $\vec{r} \cdot (3\hat{\imath} - \hat{\jmath} + \hat{k}) = 1$ and $\vec{r} \cdot (\hat{\imath} + 4\hat{\jmath} - 2\hat{k}) = 2$ is perpendicular to each of the normal vectors $\vec{n_1} = 3\hat{\imath} - \hat{\jmath} + \hat{k}$ and $\vec{n_2} = \hat{\imath} + 4\hat{\jmath} - 2\hat{k}$ and hence it is parallel to the vector $\vec{n_1} \times \vec{n_2} = (3\hat{\imath} - \hat{\jmath} + \hat{k}) \times (\hat{\imath} + 4\hat{\jmath} - 2\hat{k})$ $= -2\hat{\imath} + 7\hat{\jmath} + 13\hat{k}$

161 **(b)**

Let DR's of line be (l, m, n), Also, normal to the plane are perpendicular to the required line. $\therefore 4l + 4m - 5n = 0$ and 8l + 12m - 13n = 0 $\Rightarrow \frac{l}{8} = \frac{m}{12} = \frac{n}{16} \Rightarrow \frac{l}{2} = \frac{m}{3} = \frac{n}{4}$ Intersection point with z = 0 is given by 4x + 4y = 12(i) and 8x + 12y = 32 ...(ii) on solving Eqs. (i) and (ii), we get (1,2, 0) $\therefore \text{Required lines is} \frac{x-1}{2} = \frac{y-2}{3} = \frac{z}{4}$

162 **(b)** The line of intersection of the planes \vec{r} . $(\hat{\imath} + 2\hat{\jmath} + 3\hat{k}) = 0$ and $\vec{r} \cdot (3\hat{\imath} + 2\hat{\jmath} + \hat{k}) = 0$ is parallel to the vector $(\hat{\imath} + 2\hat{\jmath} + 3\hat{k}) \times (3\hat{\imath} + 2\hat{\jmath} + \hat{k}) = -4\hat{\imath} + 8\hat{\jmath} - 4\hat{k}$ Since both the planes $\vec{r} \cdot (\hat{\imath} + 2\hat{\jmath} + 3\hat{k}) = 0$ and $\vec{r} \cdot (3\hat{\imath} + 2\hat{\jmath} + \hat{k}) = 0$ pass through the origin. Therefore, their line of intersection will also pass through the origin. Thus, the required line passes through the origin and is parallel to the vector $-4\hat{i}+8\hat{j}-4\hat{k}$ Hence, its equation is $\vec{r} = \vec{0} + \lambda' (= -4\hat{i} + 8\hat{j} - 4\hat{k})$ $\Rightarrow \vec{r} = \lambda(\hat{\imath} - 2\hat{\imath} + \hat{k})$, where, $\lambda = -4\lambda'$ 163 (d) Let the equation of plane passing through the point P(-1, -1, 1) is a(x + 1) + b(y + 1) + c(z - 1) = 0... (i) Which passes through the points Q(0, 1, 1) and R(0, 0, 2) $\therefore a + 2b + 0c = 0$ and a + b + c = 0 $\Rightarrow \frac{a}{2-0} = -\frac{b}{1-0} = \frac{c}{1-2}$ $\Rightarrow \frac{a}{2} = \frac{b}{-1} = \frac{c}{-1}$ From Eq. (i) 2(x+1) - 1(y+1) - 1(z-1) = 0 $\Rightarrow 2x - y - z + 2 = 0$ \therefore Distance of plane from point (0, 0, 0) 0 + 0 + 0 + 2 $\overline{\sqrt{2^2 + (-1)^2 + (-1)^2}}$ 164 (c) The direction cosines of PO $=\left(\frac{2}{\sqrt{4+9+1}},\frac{3}{\sqrt{4+9+1}},\frac{1}{\sqrt{4+9+1}}\right)$ or $\left(\frac{-2}{\sqrt{4+9+1}}, \frac{-3}{\sqrt{4+9+1}}, \frac{1}{\sqrt{4+9+1}}\right)$ $=\left(\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}},\frac{1}{\sqrt{14}}\right)$ or $\left(\frac{-2}{\sqrt{14}},\frac{-3}{\sqrt{14}},\frac{1}{\sqrt{14}}\right)$ 165 **(b)** The centre and radius of given sphere are (0, 0, 0)and $\sqrt{54}$ ie, $3\sqrt{6}$. Distance between (1,2,-1) and (0,0,0) is $\sqrt{6}$

 \therefore Shortest distance between point (1, 2, -1) and

surface of the sphere
=
$$3\sqrt{6} - \sqrt{6} = 2\sqrt{6}$$

166 (d)
Shortest distance
= $\frac{\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_2 & b_2 & c_2 \end{vmatrix}}{\sqrt{2(m_1n_2 - m_2n_1)^2}}$
Now, $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$
= $\begin{vmatrix} 5 - 2 & 1 + 3 & 6 - 1 \\ 3 & 4 & 5 \\ 1 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 3 & 4 & 5 \\ 3 & 4 & 5 \\ 1 & 2 & 3 \end{vmatrix}$
= 0 [: two rows are identical]
: Shortest distance = 0
167 (b)
Here, $(x_1, y_1, z_1) = (1, 2, 3)$
and $a = 2, b = -1, c = 1, d = 3$
: $\frac{x - 1}{2} = \frac{y - 3}{-1} = \frac{z - 4}{1}$
= $-2\left(\frac{2 - 3 + 4 + 3}{2^2 + (-1)^2 + (1)^2}\right) = -2$
 $\Rightarrow x = -3, \quad y = 5 \text{ and } z = 2$
168 (d)
Given, equation can be rewritten as
 $x^2 + y^2 + z^2 - 2x + 3y + 4z - \frac{5}{2} = 0$
Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$
: Given equation written in vector form is
 $\vec{r} \cdot [\vec{r} - (2\hat{i} - 3\hat{j} - 4\hat{k})] = \frac{5}{2}$
169 (c)
Direction ratio of the line and the normal to the
plane are 2, 1, -2 and 1, 1, 0 respectively
: Their direction cosines are
 $\frac{2}{3} \cdot \frac{1}{3}, -\frac{2}{3}$ and $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0$
If θ is the angle between the line and the plane, then
 $\cos(90^\circ - \theta) = \frac{2}{3} \cdot \frac{1}{\sqrt{2}} + \frac{1}{3} \cdot \frac{1}{\sqrt{2}} + \left(-\frac{2}{3}\right) \times 0$
 $\Rightarrow \sin \theta = \frac{1}{\sqrt{2}}$
 $\Rightarrow \theta = 45^\circ$
170 (a)
We know, if the line is passing through (x_1, y_1, z_1)
and (x_2, y_2, x_2) , then equation of line is
 $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$
Since, the line passing through $(4, -5, -2)$ and
 $(-1, 5, 3)$

: The equation of straight line is $\frac{x-4}{1} = \frac{y+5}{-2} = \frac{z+2}{-1}$ Which is the required straight line 171 (a) Reflection of plane 2x - 3y + 4z - 3 = 0 in the plane x - y + z - 3 = 0 is 2(2+3+4)(x-y+z-3)= 3(2x - 3y + 4z - 3) $\Rightarrow 4x - 3y + 2z - 15 = 0$ 172 **(b)** The intersection of two planes is $(x + y + z - 6) + \lambda(2x + 3y + 4z + 5) = 0$ $\Rightarrow (1+2\lambda)x + (1+3\lambda)y + (1+4\lambda)z +$ $(-6+5\lambda) = 0$...(i) Since, this plane is perpendicular to the plane 4x + 5y - 3z - 8 = 0 $\therefore (1+2\lambda)4 + (1+3\lambda)5 + (1+4\lambda)(-3) = 0$ $\Rightarrow \lambda = -\frac{6}{11}$ On putting the value of λ in Eq. (i), we get $\left(-\frac{1}{11}\right)x + \left(-\frac{7}{11}\right)y + \left(-\frac{13}{11}\right)z + \left(-\frac{96}{11}\right) = 0$ $\Rightarrow x + 7y + 13z + 96 = 0$ 173 (a) The given line is $\vec{r} = 2\hat{\imath} - 2\hat{\jmath} + 3\hat{k} + \lambda(\hat{\imath} - \hat{\jmath} + 4\hat{k})$ or, $\vec{r} = \vec{a} + \lambda \vec{b}$, where $\vec{a} = 2\hat{\imath} - 2\hat{\jmath} + 3\hat{k}$, $\vec{b} = \hat{\imath} - \hat{\imath}$ $\hat{i} - 4\hat{k}$ The given plane is $\vec{r} \cdot (\hat{\imath} + 5\hat{\jmath} + \hat{k}) = 5$ We have, $\vec{b} \cdot \vec{n} = (\hat{i} - \hat{j} + 4\hat{k}) \cdot (\hat{i} + 5\hat{j} + \hat{k}) = 1 - 1$ 5 + 4 = 0Therefore, the line is parallel to the plane. Thus, the distance between the line and the plane is equal to the length of the perpendicular from a point $\vec{a} = 2\hat{\imath} - 2\hat{\jmath} + 3\hat{k}$ on the line to the given plane Hence, Required distance $= \left| \frac{(2\hat{\imath} - 2\hat{\jmath} + 3\hat{k}) \cdot (\hat{\imath} + 5\hat{\jmath} + \hat{k}) - 5}{\sqrt{1 + 25 + 1}} \right|$ \Rightarrow Required distance $= \left| \frac{2-10+3-5}{\sqrt{27}} \right| = \frac{10}{2\sqrt{27}}$ 174 (d) : Direction ratios of lines and planes are $(a_1, b_1, c_1) = (2, 1, -2) \text{ and } (a_2, b_2, c_2) = (1, 1, 1)$ $\therefore \sin \theta = \frac{2+1-2}{\sqrt{4+1+4}\sqrt{1+1+1}}$ $\implies \theta = \sin^{-1}\left(\frac{1}{3\sqrt{3}}\right)$ 175 (a)

Equation of plane is $\frac{x}{8} + \frac{y}{4} + \frac{z}{4} = 1$ $\Rightarrow x + 2y + 2z = 8$ Length of perpendicular from origin to the plane x + 2y + 2z - 8 = 0 is $\left|\frac{-8}{\sqrt{1+4+4}}\right| = \frac{8}{3}$ 176 (c) Given, $\cos \alpha \cos \beta \cos \gamma = \frac{2}{9}$ and $\cos \gamma \cos \alpha = \frac{4}{\alpha}$ Then, $\cos \alpha = \frac{2}{3}$, $\cos \beta = \frac{1}{3}$ and $\cos \gamma = \frac{2}{3}$ $\therefore \cos \alpha + \cos \beta + \cos \gamma = \frac{2}{3} + \frac{1}{3} + \frac{2}{3} = \frac{5}{3}$ 177 (a) The coordinates of the mid-point of PQ are (2, 3, 4). The direction ratios of PQ are proportional to 3 - 1, 4 - 2, 5 - 3 i.e. 1, 1, 1 So, equation of the required plane is $1 \times (x - 2) + 1 \times (y - 3) + 1 \times (z - 4) = 0$ or, x + y + z = 9178 (a) Given sphere are $S_1 \equiv x^2 + y^2 + z^2 + 7x - 2y - z = 1$ and $S_2 \equiv x^2 + y^2 + z^2 - 3x + 3y + 4z = -4$ required equation of plane is $(x^{2} + y^{2} + z^{2} + 7x - 2y - z - 1) - (x^{2} + y^{2} + z^{2})$ *z2–3x+3y+4z+4=0* $[:: S_1 - S_2 = 0]$ $\Rightarrow 10x - 5y - 5z = 5$ $\Rightarrow 2x - y - z = 1$ 180 (a) Given line is $\frac{x-1}{-3} = \frac{y+1}{-2} = \frac{z-3}{1}$ \Rightarrow Line is passing through (1, -1, 3) and having direction ratios -3, -2, 1 *ie*, 3, 2, -1 : Vector equation of the line is $\vec{\mathbf{r}} = (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 3\hat{\mathbf{k}}) + \lambda(3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}})$ 181 (c) Equation of the plane is $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ b = 3, c = 4Here, a = 2, $\therefore \text{ Area of } \Delta ABC = \frac{1}{2}\sqrt{a^2b^2 + b^2c^2 + c^2a^2}$ $=\frac{1}{2}\sqrt{2^2\cdot 3^2+3^2\cdot 4^2+4^2\cdot 2^2}$ $=\frac{1}{2}\sqrt{244}=\sqrt{61}$ sq units 182 (c) $\because \cos \alpha \cos \beta = \cos \beta \cos \gamma = \frac{2}{9} \text{ and } \cos \gamma \cos \alpha = \frac{4}{9}$

Then $\cos \alpha = \frac{2}{3}$, $\cos \beta = \frac{1}{3}$ and $\cos \gamma = \frac{2}{3}$ $\therefore \cos \alpha + \cos \beta + \cos \gamma = \frac{2}{2} + \frac{1}{2} + \frac{2}{2} = \frac{5}{2}$ 183 (a) The equation of a plane passing through (2, 2, 1)is a(x-2) + b(y-2) + c(z-1) = 0This passes through (9, 3, 6) and is perpendicular to the plane 2x + 6y + 6z - 1 = 0 \therefore 7*a* + 1 \cdot *b* + 5*c* = 0 and 2*a* + 6*b* + 6*c* = 0 $\Rightarrow \frac{a}{-24} = \frac{b}{-32} = \frac{c}{40} \Rightarrow \frac{a}{3} = \frac{b}{4} = \frac{c}{-5}$ So, equation of the required plane is 3(x-2) + 4(y-2) - 5(z-1) = 0 or, 3x + 4y - 5z = 9184 (d) Since, OA is equally inclined to OX, OY and OZ So, coordinate of A are (a, a, a)Also, $OA = \sqrt{3}$ $\therefore \sqrt{(a-0)^2 + (a-0)^2 + (a-0)^2} = \sqrt{3}$ $\Rightarrow \sqrt{3a^2} = \sqrt{3} \Rightarrow a = +1$: Coordinate of *A* are (1, 1, 1) or (-1, -1, -1). 185 (b) Let equation of plane is $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} =$ 1, then $A(\alpha, 0, 0)$, $B(0, \beta, 0)$ and $C(0, 0, \gamma)$ are the points on coordinate axes. $\therefore \text{Centroid of } \Delta ABC = \left(\frac{\alpha}{3}, \frac{\beta}{3}, \frac{\gamma}{3}\right)$ But $\frac{\alpha}{2} = 1$ $\Rightarrow \alpha = 3, \frac{\beta}{3} = 2$ $\Rightarrow \beta = 6 \text{ and } \frac{\gamma}{3} = 4$ $\Rightarrow \gamma = 12$: Equation of plane is $\frac{x}{3} + \frac{y}{6} + \frac{z}{12} = 1$ $\Rightarrow 4x + 2y + z = 12$ 186 (a) The DR's of the joining of the points (1, 2, 3) and (3, 4, 5) are (2, 2, 2) Also, the midpoint of the join of the points (1, 2, 3) and (3, 4, 5) is (2, 3, 4) ∴ Equation of plane is 2(x-2) + 2(y-3) + 2(z-4) = 0 $\Rightarrow x + y + z = 9$ 187 (d)

Equation of the line passing through

(5, 1, *a*) and (3, *b*, 1) is $\frac{x-3}{5-3} = \frac{y-b}{1-b} = \frac{z-1}{a-1}$ (i) Also, point $\left(0, \frac{17}{2}, -\frac{13}{2}\right)$ satisfies Eq. (i), we get $-\frac{3}{2} = \frac{\frac{17}{2} - b}{1 - b} = \frac{-\frac{13}{2} - 1}{a - 1}$ From Ist and IIIrd terms $a - 1 = \frac{\left(-\frac{15}{2}\right)}{\left(-\frac{3}{2}\right)} \Longrightarrow a = 6$ From Ist and IIIed terms $-3(1-b) = 2\left(\frac{17}{2}-b\right)$ $\implies h = 4$ 188 (a) The image (x, y, z) of a point (x_1, y_1, z_1) in a plane ax + by + cz + d = 0 is $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$ $=\frac{-2(ax_1+by_1+cz_1+d)}{a^2+b^2+c^2}$ Here, $(x_1, y_1, z_1) = (5, 4, 6)$ a = 1, b = 1, c = 2, d = -15 $\therefore \frac{x-5}{1} = \frac{y-4}{1} = \frac{z-6}{2}$ $=\frac{-2(5+4+12-15)}{1+1+4}=-2$ $\Rightarrow x = 3, y = 2, z = 2$ 189 (c) If α , β , γ are the angles which the line makes with coordinate axes, then $l = \cos \alpha, m = \cos \beta,$ $n = \cos \gamma$ $\therefore l^2 + m^2 + n^2 = \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ 190 (c) We are given by $l^2 + m^2 - n^2 = 0$ and l + m + n = 0 and we have $l^2 + m^2 + n^2 = 1$ So that, $2n^2 = 1$ $\Rightarrow n = \pm \frac{1}{\sqrt{2}}$ And l + m = -n $\Rightarrow (l+m)^2 = n^2 = l^2 + m^2$ $\Rightarrow 2lm = 0$ \Rightarrow Either l = 0 or m = 0, if l = 0, m + n = 0 $\Rightarrow m = -n = \mp \frac{1}{\sqrt{2}}$ So, the direction cosines of one of the lines are $0, \pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}$ and if $m = 0, l + n = 0 \implies l = -n =$ $\mp \frac{1}{\sqrt{2}}$ and the direction cosines of the other line are $\mp \frac{1}{\sqrt{2}}, 0, \pm \frac{1}{\sqrt{2}}$ Hence, the required angle is

$$\cos^{-1}\left[0 \times \mp \frac{1}{\sqrt{2}} + \mp \frac{1}{\sqrt{2}} \times 0 + \left(\mp \frac{1}{\sqrt{2}}\right) \left(\pm \frac{1}{\sqrt{2}}\right)\right]$$
$$= \cos^{-1}\frac{1}{2} = \frac{\pi}{3}$$

Equation of a plane passing through (2, 2, 1) is a(x-2) + b(y-2) + c(z-1) = 0 ... (i) This passes through (9, 3, 6) and is perpendicular to 2x + 6y + 6z - 1 = 0 \therefore 7*a* + *b* + 5*c* = 0 and, 2*a* + 6*b* + 6*c* = 0 Solving these two by cross-multiplication, we get $\frac{a}{-24} = \frac{b}{-32} = \frac{c}{40} \Rightarrow \frac{a}{-3} = \frac{b}{-4} = \frac{c}{5}$ Substituting the values of *a*, *b*, *c* in (i), we get 3x + 4y - 5z - 9 = 0 as the required plane 192 (b) The equation of a plane through the line of intersection of the planes $\vec{\mathbf{r}} \cdot \vec{\mathbf{a}} = \lambda$ and $\vec{\mathbf{r}} \cdot \vec{\mathbf{b}} = \mu$ can be written as $(\vec{\mathbf{r}} \cdot \vec{\mathbf{a}} = \lambda) + k(\vec{\mathbf{r}} \cdot \vec{\mathbf{b}} = \mu) = 0$ $\Rightarrow \vec{\mathbf{r}} \cdot (\vec{\mathbf{a}} + k \vec{\mathbf{b}}) = \lambda + k\mu \quad \dots (i)$ This plane passes through the origin, therefore $\vec{\mathbf{O}} \cdot (\vec{\mathbf{a}} + k \vec{\mathbf{b}}) = \lambda + \mu k$ $\Rightarrow k = -\frac{\lambda}{\mu}$ On putting the value of *k* in Eq. (i), the equation of the required plane is $\vec{\mathbf{r}} \cdot (\mu \, \vec{\mathbf{a}} - \lambda \, \vec{\mathbf{b}}) = 0$ $\Rightarrow \vec{\mathbf{r}} \cdot (\lambda \vec{\mathbf{b}} - \mu \vec{\mathbf{a}}) = 0$ 194 (d) Clearly, $\cos^2 \alpha + \cos^2 60^\circ + \cos^2 60^\circ = 1$ where α

Clearly, $\cos^2 \alpha + \cos^2 60^\circ + \cos^2 60^\circ = 1$ where α is the angle which the straight line makes with *x*-axis

$$\therefore \cos^2 \alpha = 1 - \frac{1}{4} - \frac{1}{4} = \frac{1}{2}$$
$$\implies \cos \alpha = \frac{1}{\sqrt{2}} \implies \alpha = 45^\circ$$

195 **(b)**

Since two lines intersect at a point. Then shortest distance between them is zero.

$$\begin{vmatrix} k & 2 & 3 \\ 3 & k & 2 \\ 1 & 1 & -2 \end{vmatrix} = 0$$

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \end{vmatrix} = 0$$

$$\Rightarrow k(-2k-2) - 2(-6-2) + 3(3-k) = 0$$

$$\Rightarrow 2k^2 + 5k - 25 = 0$$

$$\Rightarrow (2k-5)(k+5) = 0$$

$$\Rightarrow k = \frac{5}{2}, -5$$

Hence, integer value of k is -5

196 (b)

Direction ratio of AB = (6 - 1, 11 + 1, 2 - 2)=(5, 12, 0)Direction ratios of AC = (1 - 1, 2 + 1, 6 - 2) =(0, 3, 4)Now, $\cos A = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$ $\Rightarrow \cos A = \frac{5 \times 0 + 12 \times 3 + 0 \times 4}{\sqrt{25 + 144 + 0}\sqrt{0 + 9 + 16}} = \frac{36}{65}$ 197 (a) Let $a_1 = 2x$, $b_1 = 2x$, $c_1 = x$ And $a_2 = 7 - 3 = 4$, $b_2 = 2 - 1 = 1$ $c_2 = 12 - 4 = 8$ $\therefore \cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$ $2x \times 4 + 2x \times 1 + x \times$ $= \frac{2x + 4x^{2} + 2x + 1 + x + 6}{\sqrt{4x^{2} + 4x^{2} + x^{2}}\sqrt{16 + 1 + 64}}$ $= \frac{18x}{3x \times 9} = \frac{2}{3}$ $\Rightarrow \theta = \cos^{-1}\left(\frac{2}{3}\right)$

198 (b)

Any planes passing through (1,1,1) is a(x-1) + b(y-1) + c(y-1) = 0...(i) Since, it is passing through (1, -1, 1), we get $a \cdot 0 + b(-2) + c(-2) = 0$ $\Rightarrow 0 \cdot a - 2b - 2c = 0$ $\Rightarrow 0 \cdot a + b + c = 0$...(ii) Eq. (i) is perpendicular to 2x - y + z + 5 = 0 is 2a - b + c = 0 ...(iii) From Eqs. (ii) and (iii), we get a = b = 1, c = -1On substituting the value of *a*, *b* and *c* in Eq. (i), we get x + y - z - 1 = 0199 (d) Given equation of line is $\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4} = \lambda$ [say] Any point on the line is $P(2\lambda, 3\lambda + 2, 4\lambda + 3)$. Also, this point lies in the plan. $\therefore 2(2\lambda) + (3\lambda + 2) - (4\lambda + 3) = 2$ $\Rightarrow \lambda = 1$ \therefore Coordinate of *P* are (2, 5, 7)

∴ Required distance

$$= \sqrt{(2-0)^2 + (5-0)^2 + (7-0)^2}$$
$$= \sqrt{78}$$

200 (d)

(1) Direction ratio of the joining the points (1, 2,

5) and (4, 3, 2) is (3, 1, -3) and direction ratios of the joining the points (5, 1, -11) and (8, 2, -8) is (3, 1, 3)∴ These are parallel (2) It is true (3) Direction ratios of the plane x - 2y + z = 21are (1, -2, 1) and direction ratios of the line $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-1}{3}$ are (1, 2, 3). If they are parallel, then 1(1)-2(2) + 1(3) = 0201 (d) Given, $\frac{x-1}{-1} = \frac{y-0}{2} = \frac{z+1}{3} = r$ [say] ... (i) Then, coordinate of any point *N* on the line (i) are (-r+1, 2r, 3r-1)(ii) Let *N* be the foot of the perpendicular to line(i) : Direction ratios of *PN* are (-r + 1 - 2, 2r - 3, 3r - 1 - 4) = (-r - 1, 2r - 1)*3, 3r–5*(iii) : *PN* is perpendicular to line (i) \therefore Using the condition, $a_1a_2 + b_1b_2 + c_1c_2 = 0$ $\Rightarrow -1(-r-1) + 2(2r-3) + 3(3r-5) = 0$ \Rightarrow r + 1 + 4r - 6 + 9r - 15 = 0 $\Rightarrow r = \frac{10}{7}$ Then, from Eq.(ii), we get $N = \left(-\frac{10}{7} + 1, \frac{20}{7}, \frac{30}{7} - 1\right) = \left(-\frac{3}{7}, \frac{20}{7}, \frac{23}{7}\right)$ Now, perpendicular distance $PN = \sqrt{\left(-\frac{3}{7} - 2\right)^2 + \left(\frac{20}{7} - 3\right)^2 + \left(\frac{23}{7} - 4\right)^2}$ $=\frac{1}{7}\sqrt{289+1+25}$ $=\frac{3}{7}\sqrt{35}$ 203 (c) Let, $m = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$ and $n = \cos \frac{\pi}{2} = \frac{1}{2}$ $: l^2 + m^2 + n^2 = 1$ $\Rightarrow l = \sqrt{1 - (m^2 + n^2)}$ = $1 - \left(\frac{1}{2} + \frac{1}{4}\right)$ $= 1 - \frac{3}{4}$ $\Rightarrow l = \pm \frac{1}{2}$

Since, line makes an obtuse angle, so we take

 $l = -\frac{1}{2}$ $\therefore \text{ Direction cosines are } -\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}$ 204 (a) Let $\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ and $\vec{\mathbf{a}} = a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$, where a, b, c are constant. Now, $|\vec{\mathbf{r}}|^2 - 2\vec{\mathbf{r}}\cdot\vec{\mathbf{a}} + p = 0$ $\Rightarrow x^2 + y^2 + z^2 - 2(ax + by + cz) + p = 0$ Which represent a sphere, Where radius= $\sqrt{a^2 + b^2 + c^2 - p} = +ve [\because |\vec{\mathbf{a}}|^2 > p]$ 205 (b)

The image of the point (x_1, y_1, z_1) in the plane ax + by + cz + d = 0 is $\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$

$$= \frac{a \qquad b \qquad c}{-2(ax_1 + by_1 + cz_1 + d)}$$

$$= \frac{A}{a^2 + b^2 + c^2}$$

$$A$$

$$M$$

$$R(r)$$

$$B$$

$$\therefore \frac{x - 1}{2} = \frac{y - 3}{-1} = \frac{z - 4}{1} = -2\left(\frac{2 - 3 + 4 + 3}{6}\right)$$
Therefore, image of the point is (-3, 5, 2)

207 (a)

Let *D* be the foot of the perpendicular and let it divide *BC* in the ratio $\lambda : 1$. Then, the coordinates of *D* are

$$\left(\frac{3\lambda+4}{\lambda+1}, \frac{5\lambda+7}{\lambda+1}, \frac{3\lambda+1}{\lambda+1}\right)$$

Now, $\vec{A}D \perp \vec{B}C$
 $\Rightarrow \vec{A}D \cdot \vec{BC} = 0$
 $\Rightarrow -(2\lambda+3) - 2(5\lambda+7) - 4 = 0 \Rightarrow \lambda = -7/4$
So, the coordinates of *D* are (5/3, 7/3, 17/3)

208 **(c)**

Let a, b, c be the direction ratios of required line. $\therefore 3a + 2b + c = 0$ and a + b - 2c = 0

$$\Rightarrow \frac{a}{-4-1} = \frac{b}{1+6} = \frac{c}{3-2}$$
$$\Rightarrow \frac{a}{-5} = \frac{b}{7} = \frac{c}{1}$$

In order to find a point on the required line we put z = 0 in the two given equations to obtain, 3x + 2y = 5 and x + y = 3 \therefore Coordinate of point on required line are (-1,4,0)Hence, required line is

 $\frac{x+1}{-5} = \frac{y-4}{7} = \frac{z-0}{1}$ 209 (a) Let the coordinate of a point *Q* on *x*-axis be (a, 0, 0) \therefore Distance, PQ $= \sqrt{(a-a)^2 + (b-0)^2 + (c-0)^2}$ $\sqrt{b^2 + c^2}$ 210 (d) Let the vertices A, B, C, D of quadrilateral be $(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3)$ and (x_4, y_4, z_4) the equation of plane *PQRS* be $u \equiv ax + by + cz + d = 0$ Let $u_r = a_r x + b_r y + c_r z + d$ Where r = 1, 2, 3, 4Then, $\frac{AP}{PB} \cdot \frac{BQ}{OC} \cdot \frac{CR}{RD} \cdot \frac{DS}{SA}$ $=\left(-\frac{u_1}{u_2}\right)\left(-\frac{u_2}{u_2}\right)\left(-\frac{u_3}{u_4}\right)\left(-\frac{u_4}{u_4}\right)=1$ 211 (a) The vector equations of the given lines are $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ Where. $\overrightarrow{a_1} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}, \overrightarrow{b_1} = 2\hat{\imath} + 3\hat{\jmath} + 4\hat{k}$ $\vec{a_2} = 2\hat{\imath} + 4\hat{\jmath} + 5\hat{k}, \vec{b_2} = 3\hat{\imath} + 4\hat{\jmath} + 5\hat{k}$ $\therefore \overrightarrow{b_1} \times \overrightarrow{b_2} = \begin{vmatrix} \hat{\imath} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = -\hat{\imath} + 2\hat{j} - \hat{k}$ $(\overrightarrow{a_2} - \overrightarrow{a_1}) \cdot (\overrightarrow{b_1} \times \overrightarrow{b_2})$ $= (\hat{\imath} + 2\hat{\jmath} + 2\hat{k}) \cdot (-\hat{\imath} + 2\hat{\jmath} - \hat{k})$ $\therefore \text{ Required S. D.} = \frac{\left| (\overrightarrow{a_2} - \overrightarrow{a_1}) \cdot (\overrightarrow{b_1} \times \overrightarrow{b_2}) \right|}{\left| \overrightarrow{b_1} \times \overrightarrow{b_2} \right|}$ $=\frac{1}{\sqrt{1+4+1}}=\frac{1}{\sqrt{6}}$ 212 (a) Given, equation of sphere is $x^{2} + y^{2} + z^{2} - x + 2y - 2z + \frac{3}{2} = 0$ The centre of sphere is $\left(\frac{1}{2}, -1, 1\right)$. The plane $x + y + z + a\sqrt{3} = 0$ will touch the sphere, if $\frac{\left|\frac{1}{2}-1+1+a\sqrt{3}\right|}{\sqrt{1+1+1}} = \frac{1}{4} + 1 + 1 - \frac{3}{2}$

$$a\sqrt{3} + \frac{1}{2} = \pm \frac{3}{2} \implies a\sqrt{3} = 1, -2$$
$$\implies a = \frac{1}{\sqrt{3}}, -\frac{2}{\sqrt{3}}$$

213 **(a)**

D divides *BC* in the ratio = AB : AC i.e. 3 : 13Therefore, coordinates of D are $\left(\frac{3 \times -9 + 13 \times 5}{3 + 13}, \frac{3 \times 6 + 13 \times 3}{3 + 13}\right)$ $\frac{3 \times -3 + 13}{3 \times -3 + 13 \times 2}$ or, $\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$ 214 (c) The equation of a plane through the line of intersection of the planes ax + by + cz + d = 0 and a'x + b'y + c'z + d' =0 is $(ax + by + cz + d) + \lambda(a'x + b'y + c'z + d') = 0$ $\Rightarrow x(a + \lambda a') + y(b + \lambda b') + z(c + \lambda c') + d + d$ $\lambda d' = 0$...(i) This parallel to x-axis i.e., $\frac{x}{1} = \frac{y}{0} = \frac{z}{0}$ $\therefore 1 + (a + \lambda a') + 0(b + \lambda b') + 0(c + \lambda c') = 0$ $\Rightarrow \lambda - \frac{a}{a'}$ Putting the value of λ in (i), the required plane is y(a'b - ab') + z(a'c - ac') + a'd - ad' = 0215 **(b)** We have, $\alpha = 45^{\circ}$ and $\beta = 60^{\circ}$ Suppose $\vec{O}P$ makes angle γ with OZ. Then, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ $\Rightarrow \left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{2}\right)^2 + \cos^2 \gamma = 1$ $\Rightarrow \cos^2 \gamma = \frac{1}{4} \Rightarrow \cos \gamma = \pm \frac{1}{2} \Rightarrow \gamma = 60^\circ, 120^\circ$ 216 (a) As $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ cuts the coordinate axes at A(a, 0, 0), B(0, b, 0), C(0, 0, c)Since, distance from origin = 1 $\Rightarrow \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}} = 1$ $\Rightarrow \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = 1$ (i) \therefore Centroid P(x, y, z) $=\left(\frac{a+0+0}{3}, \frac{0+b+0}{3}, \frac{0+0+c}{3}\right)$ $\Rightarrow x = \frac{a}{2}, y = \frac{b}{2}, z = \frac{c}{2}$...(ii) From Eqs. (i) and (ii), $\frac{1}{9x^2} + \frac{1}{9y^2} + \frac{1}{9z^2} = 1$ $\implies \frac{1}{x^2} + \frac{1}{v^2} + \frac{1}{z^2} = 9 = k \quad \text{(given)}$ $\Rightarrow k = 9$

217 (c)

Equation of plane containing the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ is a(x-0) + b(y-0) + c(z-0) = 0 ...(i) and 2a + 3b + 4c = 0(ii) Another equation of the plane containing the other two lines is $a_1(x-0) + b_1(y-0) + c_1(z-0) = 0$ (iii) Also, $3a_1 + 4b_1 + 2c_1 = 0$ and $4a_1 + 2b_1 + 3c_1 = 0$ on solving we get $\frac{a_1}{8} = \frac{b_1}{-1} = \frac{c}{-10}$ ∴ Eq. (iii) becomes 8x - y - 10c = 0 ...(iv) Since, the plane (i) is perpendicular to the plane (ii) $\therefore 8a - b - 10c = 0 \dots (v)$ On solving Eqs. (ii) and (v), we get $\frac{a}{-26} = \frac{b}{52} = \frac{c}{-26}$ or $\frac{a}{1} = \frac{b}{-2} = \frac{c}{1}$ ∴ From Eq. (i) x - 2y + z = 0Alternate Let $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$, $\mathbf{\vec{b}} = 3\mathbf{\hat{i}} + 4\mathbf{\hat{j}} + 2\mathbf{\hat{k}}$ and $\mathbf{\vec{c}} = 4\mathbf{\hat{i}} + 2\mathbf{\hat{j}} + 3\mathbf{\hat{k}}$ $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = (\vec{\mathbf{a}} \cdot \vec{\mathbf{c}})\vec{\mathbf{b}} - (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})\vec{\mathbf{c}}$ $= 26(-\hat{i} + 2\hat{j} - \hat{k})$ \Rightarrow Direction ratio of normal to the required plane (passing through origin) is 1, -2, 1 \Rightarrow Equation of required plane is x - 2y + z = 0218 (d) Any plane passing through (0, 1, 2) is a(x-0) + b(y-1) + c(z-2) = 0 $\Rightarrow ax + b(y-1) + c(z-2) = 0 \dots (i)$ Since, it is passing through (-1, 0, 3), we get -a - b + c = 0(ii) Also, Eq. is perpendicular to 2x + 3y + z = 5 $\therefore 2a + 3b + c = 0$ (iii) On solving Eqs. (ii) and (iii), we get $\frac{a}{-4} = \frac{b}{3} = \frac{c}{-1}$ ∴From Eq. (i)

$$-4x + 3(y - 1) - 1(z - 2) = 0$$

$$\Rightarrow 4x - 3y + z + 1 = 0$$

219 (a)

Let PQ be the shortest distance vector between l_1 and l_2 . Now, l_1 passes through $A_1(\vec{a}_1)$ and is parallel to $\vec{\mathbf{b}}_1$ and l_2 passes through $A_2(\vec{\mathbf{a}}_2)$ and is parallel to $\mathbf{\hat{b}}_2$. Since, PQ is perpendicular to both l_1 224 (d) and l_2 it is parallel to $\mathbf{\hat{b}}_1 \times \mathbf{\hat{b}}_2$

Let $\hat{\mathbf{n}}$ be the unit vector along *PQ*

Then, $\hat{\mathbf{n}} = \frac{\vec{\mathbf{b}}_1 \times \vec{\mathbf{b}}_2}{|\vec{\mathbf{b}}_1 \times \vec{\mathbf{b}}_2|}$

Let *d* be the shortest distance between the given lines l_1 and l_2

 $|\overline{\mathbf{PQ}}| = d$ and $\overline{\mathbf{PQ}} = d \hat{\mathbf{n}}$

Next PQ being the line of shortest distance between l_1 and l_2 is the projection of the line joining the points $A_1(\vec{a}_1)$ and $A_2(\vec{a}_2)$ on $\hat{\mathbf{n}}$

$$\begin{aligned} \left| \overrightarrow{\mathbf{PQ}} \right| &= \left| \overrightarrow{\mathbf{A}_1} \, \overrightarrow{\mathbf{A}_2} \cdot \widehat{\mathbf{n}} \right| \\ \Rightarrow d &= \left| \frac{(\overrightarrow{\mathbf{a}_2} - \overrightarrow{\mathbf{a}_1}) \cdot \overrightarrow{\mathbf{b}}_1 \times \overrightarrow{\mathbf{b}}_2}{\left| \overrightarrow{\mathbf{b}}_1 \times \overrightarrow{\mathbf{b}}_2 \right|} \right| \end{aligned}$$

221 (b)

The lines $\vec{r} = \vec{a} + \lambda (\vec{b} \times \vec{c})$ and $\vec{r} = \vec{b} + \mu (\vec{c} \times \vec{a})$ pass through points \vec{a} and \vec{b} respectively and are parallel to vectors $\vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ respectively. Therefore, they will intersect, if $\vec{a} - \vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ are coplanar $\Rightarrow (\vec{a} - \vec{b}) \cdot \{ (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) \} = 0$ $\Rightarrow (\vec{a} - \vec{b}) \cdot \{ [\vec{b} \ \vec{c} \ \vec{a}] \vec{c} - [\vec{b} \ \vec{c} \ \vec{c}] \vec{a} \} = 0$ $\Rightarrow (\vec{a} - \vec{b}) \cdot \vec{c} [\vec{b} \ \vec{c} \ \vec{a}] = 0$

222 (c)

The centre and the radius of given sphere are C(-1, 1, 2)and $R = \sqrt{(-1)^2 + (1)^2 + (2)^2 + 19} = 5$

length of perpendicular from centre *C* on the plan, $-1 \times 1 + 1 \times 2 + 2 \times 2 + 7$

$$d = \frac{1}{\sqrt{1^2 + 2^2 + 2^2}} = 4$$

$$\therefore \text{ Radius of circle} = \sqrt{R^2 - d^2} = \sqrt{25 - 16} = 3$$

 $\Rightarrow \vec{a} \cdot \vec{c} - \vec{b} \cdot \vec{c} = 0 \Rightarrow \vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c}$

223 (a)

Let *l*, *m*, *n* be the direction cosines of the given line. Then, as it makes an acute angle with *x*-axis.

Therefore, l > 0. The lines passes through (6, -7, -1) and (2, -3, 1). Therefore, its direction ratios are 6 - 2, -7 + 3, -1 - 1 or, 4, -4, -2 or, 2, -2, -1 Hence, direction cosines of the given line are $\frac{2}{3}, -\frac{2}{3}, -\frac{1}{3}$ Here DR's of line and a plane are $a_1 = 1, b_1 = 2, c_1 = 2$ and the plane $a_2 = 2, b_2 =$ 1 and $a = \sqrt{3}$

$$\begin{aligned} &:: \sin \theta = \left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \right| \\ &:= \frac{1}{3} = \left| \frac{2 - 2 + 2\sqrt{\lambda}}{\sqrt{1 + 4 + 4}\sqrt{4 + 1 + \lambda}} \right| \\ &:= \sqrt{5 + \lambda} = 2\sqrt{\lambda} \\ &:= \lambda = \frac{5}{3} \end{aligned}$$

225 (c)

Direction ratio of normal to the given plane is 2, -3, 5 which is the direction ratio of line passing through (3, 0, -4)

: Equation of required line
$$x - 3$$
 $v - 0$ $z + 4$

$$\frac{1}{2} = \frac{y}{-3} = \frac{5}{5}$$
$$\Rightarrow \frac{x-3}{2} = \frac{-y}{3} = \frac{z+4}{5}$$

226 (b)

x

Given line can be rewritten as

$$\frac{x - \frac{1}{3}}{\frac{2b}{2}} = \frac{y - 3}{-1} = \frac{z - 1}{a}$$

Given plane3x + y + 2z + 6 = 0 is parallel to the above line

$$\frac{2b}{3} \cdot 3 + 1 \cdot (-1) + 2 \cdot a = 0$$
$$\Rightarrow 2a + 2b = 1$$
$$\Rightarrow 3a + 3b = \frac{3}{2}$$

227 (a)

Let the equation of plane be $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ (i)

Then, coordinates of A, B and C are (*a*, 0, 0), (0, *b*, 0) and (0, 0, c) rspectively.

The centroid of a $\triangle ABC$ is $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$ but it is given $\therefore \frac{a}{3} = \frac{1}{3}, \frac{b}{3} = \frac{1}{3}, \frac{c}{3} = \frac{1}{3}$ $\Rightarrow a = b = c = 1$ ∴ From Eq. (i)

x + y + z = 1228 (c) We know that the equation of a plane parallel to x-axis is by + cz + d = 0Since, it passes through the points (2, 3, 1) and (4, -5, 3) $\therefore 3b + c + d = 0$ and -5b + 3c + d = 0 $\Rightarrow \frac{b}{1-3} = \frac{c}{-8} = \frac{d}{14}$ $\Rightarrow \frac{b}{-2} = \frac{c}{-8} = \frac{d}{14}$ \therefore Equation of plane is -2y - 8z + 14 = 0 $\Rightarrow v + 4z = 7$ 229 **(b)** Equation of plane passing through the intersection of given planes, is $(x + 2y + 3z + 4) + \lambda(4x + 3y + 2z + 1) = 0$...(i) Plane (i) is passing through the origin $ie_{1}(0,0,0)$ $\therefore 4 + \lambda = 0 \Rightarrow \lambda = -4$ On putting the value of λ in Eq. (i), we get (x + 2y + 3z + 4) - 4(4x + 3y + 2z + 1) = 0 $\Rightarrow -15x - 10y - 5z = 0$ $\Rightarrow 3x + 2y + z = 0$ 230 (a) Since the required plane contains the line $\vec{r} = 2\hat{\imath} + \lambda(\hat{\jmath} - \hat{k})$ and is perpendicular to the plane $\vec{r} \cdot (\hat{\iota} + \hat{k}) = 3$. Therefore, it passes through the point $\vec{a} = 2\hat{i}$ and is parallel to the vectors $\vec{b} = \hat{\imath} - \hat{k}$ and $\vec{c} = \hat{\imath} + \hat{k}$. Hence, it is perpendicular to the vector $\vec{n} = \vec{b} \times \vec{c} = (\hat{j} - \hat{k}) \times (\hat{\iota} + \hat{k}) = \hat{\iota} - \hat{j} - \hat{k}$ Therefore, the equation of the required plane is $(\vec{r} - \vec{a}) \cdot \vec{n} = 0$ $\Rightarrow (\vec{r} - 2\hat{\imath}) \cdot (\hat{\imath} - \hat{\jmath} - \hat{k}) = 0$ $\Rightarrow \vec{r} \cdot (\hat{\iota} - \hat{\jmath} - \hat{k}) = 2$ 231 (c) Let the point *R* divides the line joining the points P(2,4,5) and Q(3,5,-4) in the ratio m:n Then, the coordinate of R is $\left(\frac{3m+2n}{m+n}, \frac{5m+4n}{m+n}, \frac{-4m+m}{m+n}\right)$ For *yz*-plane, *x*-coordinate will be zero. $\therefore \frac{3m+2n}{m+n} = 0 \implies \frac{m}{n} = \frac{-2}{3}$ Alternate The ratio in which yz-plane divides the line segment = $-x_1: x_2 = -2: 3$ 232 (a) Given, planes are $2x + y + 2z + \frac{5}{2} = 0$

and 2x + y + 2z - 8 = 0 $\therefore \text{ Distance} = \left| \frac{\frac{5}{2} - (-8)}{\sqrt{2^2 + 1^2 + 2^2}} \right| = \frac{7}{2}$ 235 (a) Equation of plane passing through the point (1, 2, 3) is A(x-1) + B(y-2) + C(z-3) = 0 ...(i) Since, plane (i) is parallel to plane x + 2y + 5z =0 $\Rightarrow A = 1, B = 2, C = 5$ Putting these values in Eq. (i), we get (x-1) + 2(y-2) + 5(z-3) = 0 is the required plane 236 (b) Required circle is intersection of sphere $x^2 + y^2 + z^2 + 2x - 2y - 4z - 19 = 0$ and plane x - 2y + 2z + 8 = 0Centre of sphere is (-1, 1, 2)P =length of the perpendicular from, (-1, 1, 2) to the plane $=\frac{-1-2+4+8}{\sqrt{1+4+4}}$ $=\frac{9}{2}=3$ R = radius of sphere $=\sqrt{1+1+4+19}=5$ Radius of the circle = $\sqrt{R^2 - P^2}$ $=\sqrt{25-9}=4$ 237 (d) Distance of point P(2, 6, 3) from origin $OP = \sqrt{(0-2)^2 + (0-6)^2 + (0-3)^2}$ $=\sqrt{4+36+9}=7$ Now, DR's of OP = 2 - 0, 6 - 0, 3 - 0 = 2, 6, 3 \therefore DC's of *OP* are $\frac{2}{7}, \frac{6}{7}, \frac{3}{7}$: Equation of plane in normal form is lx + my + nz = p $\Rightarrow \frac{2}{7}x + \frac{6}{7}y + \frac{3}{7}z = 7$ $\Rightarrow 2x + 6y + 3z = 49$ 238 (c) Now, $AB = \sqrt{3^2 + 0 + 3^2} = \sqrt{18}$ $CA = \sqrt{16 + 4 + 16} = 6$ and $BC = \sqrt{1 + 4 + 49} = \sqrt{54}$ $\therefore AB^2 + CA^2 = BC^2$ $\therefore \Delta ABC$ is right angled triangle, right angled at, А.. Thus, $\angle A = 90^{\circ}$ 239 (b)

The vector equation of the line joining the points $\hat{\iota} - 2\hat{\jmath} + \hat{k}$ and $-2\hat{\jmath} + 3\hat{k}$ is $\vec{r} = (\hat{\iota} - 2\hat{\jmath} + \hat{k}) + \lambda(-\hat{\iota} + 2\hat{k})$...(i) Using $\vec{r} \cdot (\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = [\vec{a} \ \vec{b} \ \vec{c}]$ the vector equation of the plane through the origin, $4\hat{j}$ and $2\hat{\imath} + \hat{k}$ $\vec{r} \cdot (4\hat{\imath} - 8\hat{k}) = 0$...(ii) The position vector of any point on (i) is $(\hat{\imath}-2\hat{\jmath}+\hat{k})+\lambda(-\hat{\imath}+2\hat{k})$ If it lies on (ii), then $\{(\hat{\imath} - 2\hat{\jmath} + \hat{k}) + \lambda(-\hat{\imath} + 2\hat{k})\} \cdot (4\hat{\imath} - 8\hat{k}) = 0$ $\Rightarrow -4 - 20\lambda = 0 \Rightarrow \lambda = -1/5$ Putting the value of λ in $(\hat{i} - 2\hat{j} + \hat{k}) +$ $\lambda(-\hat{\imath}+2\hat{k})$, we get the position vector of the required point as $\frac{1}{5}(6\hat{\imath} - 10\hat{\jmath} + 3\hat{k})$

240 (d)

Given equation of sphere are

 $x^{2} + y^{2} + z^{2} + 2x + 2y + 2z = 2$ Whose centre is $C_{1} = (-1, -1, -1)$ and radius $= \sqrt{5}$ And $2x^{2} + 2y^{2} + 2z^{2} + 4x + 2y + 4z = 0$ Whose centre is $C_{2} = (-1, -\frac{1}{2}, -1)$ and radius $= \sqrt{\frac{9}{4}} = \frac{3}{2}$ Also, $C_{1}C_{2} = \sqrt{0 + \frac{1}{4} + 0} = \frac{1}{2}$ $C_{1}C_{2} < |r_{1} - r_{2}|$ So, second sphere is completely inside of first sphere

242 **(b)**

$$\therefore \cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma = 1$$

$$\Rightarrow \cos^{2} 45^{\circ} + \cos^{2} \beta + \cos^{2} 60^{\circ} = 1$$

$$\Rightarrow \cos^{2} \beta = \frac{1}{4}$$

$$\Rightarrow \cos \beta = \pm \frac{1}{2}$$

$$\Rightarrow \beta = 60^{\circ} \text{ or } 120^{\circ}$$

243 (b)
Given, $l + m + n = 0$ (i)
and $l^{2} + m^{2} - n^{2} = 0$ (ii)

$$\therefore l^{2} + m^{2} - (-l - m)^{2} = 0$$

$$\Rightarrow 2lm = 0$$

$$\Rightarrow l = 0 \text{ or } m = 0$$

if $l = 0$, then $n = -m$

$$\Rightarrow l : m : n = 0 : 1 : -1$$

and if $m = 0$, then $n = -1$

$$\Rightarrow l : m : n = 1 : 0 : -1$$

$$\therefore \cos \theta = \frac{0 + 0 + 1}{\sqrt{0 + 1 + 1}\sqrt{0 + 1 + 1}} = \frac{1}{2}$$

 $\Rightarrow \theta = \frac{\pi}{2}$ 244 (b) The given lines are parallel to the vectors $\overrightarrow{b_1} = \hat{\imath} + \lambda \hat{\jmath} - \hat{k}$ and $\overrightarrow{b_2} = -\lambda \hat{\imath} + 2\hat{\jmath} + \hat{k}$ respectively. The lines will be perpendicular to each other, if $\overrightarrow{b_1} \cdot \overrightarrow{b_2} = 0 \Rightarrow -\lambda + 2\lambda - 1 = 0 \Rightarrow \lambda = 1$ 245 (b) Given equation is $x^2 - 5x + 6 = 0$ $\Rightarrow (x-2)(x-3) = 0$ \Rightarrow (x - 2) = 0 or (x - 3) = 0 Which represents a plane 246 (a) $: \sin \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$ $=\frac{1\times1+2\times-1+1\times1}{\sqrt{1+4+1}\sqrt{1+1+1}}=0$ $\Rightarrow \theta = 0$ 247 (d) Given line and plane can be rewritten as $\frac{3x-1}{3} = \frac{y+3}{-1} = \frac{5-2z}{4}$ $\frac{x-\frac{1}{3}}{1} = \frac{y+3}{-1} = \frac{\left(z-\frac{5}{2}\right)}{-2}$ and x - y - 2z = 0here, $a_1 = 1, b_1 = -1, c_1 = -2$ and $a_2 = 1, b_2 = -1, c_2 = -2$ $\therefore \sin \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$ $=\frac{1\times1+(-1)\times(-1)+(-2)\times(-2)}{\sqrt{1+1+4}\sqrt{1+1+4}}$ $=\frac{6}{\sqrt{6}\sqrt{6}}=1$ $\Rightarrow \theta = \frac{\pi}{2}$ 248 (b) Let *AB* be the given line and the let its direction cosines of *AB* be *l*, *m*, *n*. Then, Projection of *AB* on *x*-axis = *AB* l = 12 (given) Projection of *AB* on *y*-axis = AB m = 4 (given) Projection of *AB* on *z*-axis = *AB* n = 3 (given) $\therefore (AB)^2(l^2 + m^2 + n^2) = 12^2 + 4^2 + 3^2 \Rightarrow AB$ = 13Hence, direction cosines of *AB* are $\frac{12}{13}$, $\frac{4}{13}$, $\frac{3}{13}$ 249 (a) Required DR's are (3 - 2, 4 + 1, -1 - 1)*ie*, (1, 5, −2). 250 **(b)** Any point on the line

 $\frac{x-1}{3} = \frac{y+2}{4} + \frac{z-3}{-2} = k \text{ [say]}$ is (3k + 1, 4k - 2, -2k + 3). 1 = 0, then any point on the line lies in the plane. $\therefore 2(3k+1) - (4k-2) + 3(-2k+3) - 1 = 0$ $\Rightarrow k = 3$: Point is (9 + 1, 12 - 2, -6 + 3)ie, (10, 10, -3). 251 (c) The equation of plane containing the line $\frac{x+1}{-2} = \frac{y-3}{2} = \frac{z+2}{1}$ is a(x + 1) + b(y - 3) + c(z + 2) = 0(i) Alos, -3a + 2b + c = 0(ii) Also, plane passes through (0, 7, -7)a + 4b - 5c = 0(iii) From Eqs. (ii) and (iii), $\frac{a}{-14} = \frac{b}{-14} = \frac{c}{-14}$ $\Rightarrow \frac{a}{1} = \frac{b}{1} = \frac{c}{1}$ 252 (b) The equation of the plane containing the line $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$ is a(x + 1) + b(y - 3) + c(z + 2) = 0...(i) Where, -3a + 2b + c = 0 ...(ii) This passes through (0, 7, -7) $\therefore a + 4b - 5c = 0$ From (ii) and (iii), we have $\frac{a}{-14} = \frac{b}{-14} = \frac{c}{-14} \Rightarrow \frac{a}{1} = \frac{b}{1} = \frac{c}{1}$ So, the required plane is x + y + z = 0253 (b) Let the equation of plane passing through (1, 1, 1)is a(x-1) + b(y-1) + c(z-1) = 0....(i) : It is also passing through (1, -1, -1) $\therefore b + c = 0$ (ii) Since, the Eq. (i) is perpendicular to the plane 2x - y + z + 5 = 0 $\therefore 2a - b + c = 0$ (iii) Since, Eqs, (ii) and (iii) are identical $\therefore \frac{a}{1+1} = \frac{b}{2-0} = \frac{c}{-2+0}$ $\Rightarrow \frac{a}{1} = \frac{b}{1} = \frac{c}{-1}$: Required equation of plane is x + y - z - 1 = 0254 (a) It is given that the direction ratios of \vec{r} are proportional to 2, -3, 6. Therefore, its direction cosines are

 $l = \frac{2}{7}, m = \frac{-3}{7}, n = \frac{6}{7}$ $\therefore \vec{r} = |\vec{r}| (l\,\hat{\imath} + m\,\hat{\jmath} + n\,\hat{k})$ $\Rightarrow \vec{r} = 21\left(\frac{2}{7}\hat{\imath} - \frac{3}{7}\hat{\jmath} + \frac{6}{7}\hat{k}\right) = 6\hat{\imath} - 9\hat{\jmath} + 18\hat{k}$ 255 (c) The line perpendicular to the plane 2x - y + 5z =4 and passing through the point (-1, 0, 1) is given $\frac{x+1}{2} = \frac{y-0}{-1} = \frac{z-1}{5}$ $\Rightarrow \frac{x+1}{2} = -y = \frac{z-1}{5}$ 256 (c) Radius of sphere is perpendicular distance from (6, -1, 2)to 2x - y + 2z - 2 = 0*ie*, $\left|\frac{12+1+4-2}{\sqrt{4+1+4}}\right| = 5$ ∴ Equation of sphere is $(x-6)^{2} + (y+1)^{2} + (z-2)^{2} = 25$ $\Rightarrow x^{2} + y^{2} + z^{2} - 12x + 2y - 4z + 16 = 0$ 257 (b) Let $P(\vec{\mathbf{r}})$ be any point on plane Clearly $\vec{\mathbf{r}} - \vec{\mathbf{a}}$ will be in linear combination of $\vec{\mathbf{b}} - \vec{\mathbf{a}}$ and $\vec{\mathbf{c}} - \vec{\mathbf{a}}$ $\Rightarrow \vec{r} - \vec{a}, \vec{b} - \vec{a}, \vec{c} - \vec{a}$ will be coplanar $\Rightarrow (\vec{\mathbf{r}} - \vec{\mathbf{a}}) \cdot \{ (\vec{\mathbf{b}} - \vec{\mathbf{a}}) \times (\vec{\mathbf{c}} - \vec{\mathbf{a}}) \} = 0$ $\Rightarrow (\vec{\mathbf{r}} - \vec{\mathbf{a}}) \cdot \{\vec{\mathbf{b}} \times \vec{\mathbf{c}} + \vec{\mathbf{a}} \times \vec{\mathbf{b}} + \vec{\mathbf{c}} \times \vec{\mathbf{a}}\} = 0$ $= \vec{\mathbf{r}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}} + \vec{\mathbf{c}} \times \vec{\mathbf{a}} + \vec{\mathbf{a}} \times \vec{\mathbf{b}}) = [\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]$ 258 (b) Since, the given plane are x - cy - bz = 0cx - y + az = 0and bx + ay - z = 0passes through a line $\therefore \begin{vmatrix} 1 & -c & -b \\ c & -1 & a \\ b & a & -1 \end{vmatrix} = 0$ $\Rightarrow 1(1-a^2) + c(-c-ab) - b(ac+b) = 0$ $\implies 1 - a^2 - c^2 - abc - abc - b^2 = 0$ $\Rightarrow a^2 + b^2 + c^2 + 2abc = 1$ 259 (c) Let the verities of triangle be A(a, 0, 0), B(0, b, 0)and C(0, 0, c) and the equation of plane is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$... (i) \therefore Centroid of $\triangle ABC$ is (α, β, γ) $\therefore \frac{a+0+0}{3} = \alpha$

 $\Rightarrow a = 3\alpha$

Similarly, $b = 3\beta$ and $c = 3\gamma$ \therefore From Eq. (i), $\frac{x}{3\alpha} + \frac{y}{3\beta} + \frac{z}{3\gamma} = 1$ $= \frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3$

261 **(a)**

We observe that the line given in option (a) passes through (1, -2, 3). Also, it is normal to the plane 2x + 3y + z = 0

262 (d)

The shortest distance between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ And $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$ is given by Shortest distance $= \frac{\begin{vmatrix} a-a' & \beta-\beta' & \gamma-\gamma' \\ l & m & n \\ l' & m' & n' \end{vmatrix}}{\sqrt{\Sigma(mn'-nm')^2}}$ $= \frac{\begin{vmatrix} 6 & 15 & -3 \\ 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix}}{\sqrt{(-4-2)^2 + (12+3)^2 + (6-3)^2}}$ $= \frac{270}{\sqrt{270}} = \sqrt{270} = 3\sqrt{30}$

264 **(b)**

Equation of sphere *OABC* is $x^{2} + y^{2} + z^{2} - ax - by - cz = 0$ Where $\sqrt{\frac{a^{2}+b^{2}+c^{2}}{4}} = 2k$ $\Rightarrow a^{2} + b^{2} + c^{2} = 16k^{2}$...(i) Let (α, β, γ) be the centroid of the tetrahedron *OABC*, then $\alpha = \frac{a}{4}, \beta = \frac{b}{4}, \gamma = \frac{c}{4}$ From Eq. (i), $\alpha^{2} + \beta^{2} + \gamma^{2} = k^{2}$ Locus is $x^{2} + y^{2} + z^{2} = k^{2}$ 265 **(b)** Let DR's of required line be *a*, *b*, *c* According to given condition,

a(1) + b(-1) + c(2) = 0 $\Rightarrow a - b + 2c = 0 \quad \dots(i)$ and a(2) + b(1) + c(-1) = 0 $\Rightarrow 2a + b - c = 0 \quad \dots(ii)$ From Eqs. (i) and (ii), $\frac{a}{1-2} = \frac{b}{4+1} = \frac{c}{1+2}$ $\Rightarrow \frac{a}{-1} = \frac{b}{5} = \frac{c}{3}$

→ -1 - 5 - 3
∴ Required DC's are

$$l = -\frac{1}{\sqrt{1^2 + 5^2 + 3^2}},$$

 $m = \frac{5}{\sqrt{1^2 + 5^2 + 3^2}}, n = \frac{3}{\sqrt{1^2 + 5^2 + 3^2}}$

$$\Rightarrow l = -\frac{1}{\sqrt{35}}, m = \frac{5}{\sqrt{35}}, n = \frac{3}{\sqrt{35}}$$

266 **(b)**

The shortest distance, between two lines is

 $d = \frac{\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_1 - z_2 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}}{\sqrt{(b_1 c_2 - b_2 c_1)^2 + (c_1 a_2 - a_1 c_2)^2 + (a_1 b_2 - b_1 a_2)^2}}$ Given lines are $\frac{x+1}{12} = \frac{y}{6} = \frac{z}{-1}$ and $\frac{x}{6} = \frac{y+2}{-1} = \frac{z-1}{1}$ $\therefore d = \frac{\begin{vmatrix} 1 & -2 & 1 \\ 12 & 6 & -1 \\ 6 & 6 & 1 \end{vmatrix}}{\sqrt{(6+6)^2 + (-6-12)^2 + (72-36)^2}}$ $= \frac{1(6+6) + 2(12+6) + 1(72-36)}{\sqrt{144+324+1296}}$ $= \frac{84}{42} = 2$ 267 (c) The position vectors of two given points are $\vec{a} = \hat{\imath} - \hat{\imath} + 3\hat{k}$ and $\vec{b} = 3\hat{\imath} + 3\hat{\imath} + 3\hat{k}$ and the equation of the given plane is $\vec{r} \cdot (5\hat{\imath} + 2\hat{\jmath} - 7\hat{k}) + 9 = 0 \text{ or, } \vec{r} \cdot \vec{n} + d = 0$ We have, $\vec{a} \cdot \vec{n} + d = (\hat{\imath} - \hat{\jmath} + 3\hat{k}) \cdot (5\hat{\imath} + 2\hat{\jmath} - 7\hat{k}) + 9$ = 5 - 2 - 21 + 9 < 0and, $\vec{b} \cdot \vec{n} + d = (3\hat{\imath} + 3\hat{\jmath} + 3\hat{k}) \cdot (5\hat{\imath} + 2\hat{\jmath} - 7\hat{k}) + (3\hat{\imath} + 3\hat{\imath}) \cdot (3\hat{\imath} + 3\hat{\imath}) + (3\hat{\imath})$ = 15 + 6 - 21 + 9 > 0So, the points \vec{a} and \vec{b} are on the opposite sides of the plane 268 (c) Clearly point (2, -1, 2) lies on the line as well as plane : Required distance of point (-1, -5, -10) $=\sqrt{(-1-2)^2 + (-5+1)^2 + (-10-2)^2}$ $=\sqrt{9+16+144}$ $=\sqrt{169} = 13$ 269 **(b)** DC's of AB $=\frac{1}{\sqrt{1^2+4^2+3^2}},\frac{4}{\sqrt{1^2+4^2+3^2}},\frac{3}{\sqrt{1^2+4^2+3^2}}$ $=\frac{1}{\sqrt{26}},\frac{4}{\sqrt{26}},\frac{3}{\sqrt{26}}$ 270 (a) By solving two equations, we get $(l_1, m_1, n_1) = (2\sqrt{2} - 3 - \sqrt{2}, 1)$ $(l_2, m_2, n_2) = (-2\sqrt{2} - 3, \sqrt{2}, 1)$ Now, $\cos \theta = \frac{-(2\sqrt{2}-3)(2\sqrt{2}+3)-\sqrt{2}(\sqrt{2})+1(1)}{\left[(2\sqrt{2}-3)^2 + (-\sqrt{2})^2 + 1^2 \\ \times \sqrt{(-2\sqrt{2}-3)^2 + (\sqrt{2})^2 + 1^2} \right]}$

 $\Rightarrow \cos \theta = 0^{\circ}$ $\Rightarrow \theta = \frac{\pi}{2}$ \therefore The angle between them is $\frac{\pi}{2}$ 271 (a) Centre of a given sphere is (3, 6, 1). Since, one end of diameter are (2, 3, 5) and let the other end of diameter are (α, β, γ) , then $\frac{\alpha+2}{2} = 3, \frac{\beta+3}{2} = 6, \frac{\gamma+5}{2} = 1$ $\Rightarrow \alpha = 4$, $\beta = 9$ and $\gamma = -3$ 272 (b) Since, point *Q* is the image of *P*, therefore *PQ* perpendicular to the plane x - 2y + 5z = 6∴ Required equation of line is $\frac{x-2}{1} = \frac{y-3}{-2} = \frac{z-4}{5}$ 273 (d) $: OP = \sqrt{a^2 + a^2 + a^2} = \sqrt{3} a$ \therefore DC's of OP are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$ Equation of plane is x + y + z = 3a $\Rightarrow \frac{x}{3a} + \frac{y}{3a} + \frac{z}{3a} = 1$ \therefore Intersection on axes are 3a, 3a and 3a respectively Sum of their reciprocals = $\frac{1}{3a} + \frac{1}{3a} + \frac{1}{3a} = \frac{1}{a}$ 274 (c) Let *l*, *m*, *n* be the direction cosines of $\vec{O}P$. It is given that $l = 45^\circ = \frac{1}{\sqrt{2}}$ and $m = \cos 60^\circ = \frac{1}{2}$ $\therefore l^2 + m^2 + n^2 = 1 \Rightarrow \frac{1}{2} + \frac{1}{4} + n^2 = 1 \Rightarrow n = \pm \frac{1}{2}$ Now, $\vec{r} = |\vec{r}|(l\hat{\imath} + m\hat{\jmath} + n\hat{k})$ $\Rightarrow \vec{r} = 12\left(\frac{1}{\sqrt{2}}\hat{\imath} + \frac{1}{2}\hat{\jmath} \pm \frac{1}{2}\hat{k}\right) = 6\sqrt{2}\hat{\imath} + 6\hat{\jmath} \pm 6\hat{k}$ 276 (b) Let OA, OB, OC be the sides of a cube such that OA = OB = OC = aOA = OB = OC = aC (0,0,a) G (a,0,a) (0,0,0) A (a,0,0, (a,á,a) (0,a,a) B (0,a,0) D(a, a, 0)OE∴ Direction ratios of are (a-0, a-Oie a, a, a

 \therefore Direction cosines of AF are $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ Similarly, direction of AF are $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$. \therefore Angle between *OE* and *AF* is $\cos^{-1}\left[-\frac{1}{\sqrt{3}}\cdot\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}\cdot\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}\cdot\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}\cdot\frac{1}{\sqrt{3}}\right]\cos^{-1}\left(\frac{1}{3}\right)$ 277 (c) \therefore Midpoint of line joining (2,3,4) and (6,7,8) is (4, 5, 6). This point is satisfied by one of the option *ie*, x + y + z - 15 = 0278 (d) Equation of the plane passing through P(3, 8, 2)and parallel to 3x + 2y - 2z + 15 = 0 is 3(x-3) + 2(y-8) - 2(z-2) = 0 \Rightarrow 3x + 2y - 2z - 21 = 0(i) Given line is $\frac{x-1}{2} = \frac{y-3}{4} = \frac{z-2}{3} = r$ [say] Any point of the line is Q(2r+1, 4r+3, 3r+2)This point is lies on the above plane $\therefore 3(2r+1) + 2(4r+3) - 2(3r+2) - 21 = 0$ $\Rightarrow 8r - 16 = 0 \Rightarrow r = 2$ \therefore Coordinate of Q(5, 11, 8) \therefore Distance between *P* and *Q* $=\sqrt{(5-3)^2 + (11-8)^2 + (8-2)^2}$ $=\sqrt{4+9+36}=7$ 279 (a) Given, l + m + n = 0(i) and lm = 0 \Rightarrow Either m = 0 or l = 0If l = 0, then put in Eq. (i), we get m = -n: Direction ratios are 0, -n, n ie, 0, -1, 1If m = 0, then put in Eq. (i), we get l = -n \therefore Direction ratios are -n, 0, n, ie, -1, 0, 1 $\therefore \cos \theta = \frac{0 \times (-1) + (-1) \times 0 + 1 \times 1}{\sqrt{0^2 + (-1)^2 + 1^2} \sqrt{(-1)^2 + 0^2 + 1^2}}$ $=\frac{1}{2}$ $\Rightarrow \theta = \frac{\pi}{2\pi}$ 280 (a) Since, it is given that line makes equal angle with the coordinate axes

$$l = m = n$$
We know, $l^2 + m^2 + n^2 = 1$

$$\Rightarrow 3l^2 = 1$$

$$\Rightarrow l^2 = \frac{1}{3}$$

$$\Rightarrow l = \frac{1}{\sqrt{3}}$$
 (neglect - ve sign)

281 **(b)**

The straight line joining the points (1,1,2) and (3,-2,1) is $\frac{x-1}{2} = \frac{y-1}{-3} = \frac{z-2}{-1} = r$ (say) \therefore Point is (2r + 1, 1 - 3r, 2 - r) which lies on 3x + 2y + z = 6 $\therefore 3(2r + 1) + 2(1 - 3r) + 2 - r = 6$ $\Rightarrow r = 1$ Required points is (3, -2, 1) **(b)**

282 **(b)**

Given that,
$$A(5, -1, 1)$$
, $B(7, -4, 7)$, $C(1, -6, 10)$
and $D(-1, -3, 4)$
Now, $AB = \sqrt{(7-5)^2 + (-4+1)^2 + (7-1)^2}$
 $= \sqrt{4+9+36} = 7$
 $BC = \sqrt{(1-7)^2 + (-6+4)^2 + (10-7)^2}$
 $= \sqrt{36+4+9} = 7$
 $CD = \sqrt{(-1-1)^2 + (-3+6)^2 + (4-10)^2}$
 $= \sqrt{4+9+36} = 7$
 $DA = \sqrt{(5+1)^2 + (-1+3)^2 + (1-4)^2}$
 $= \sqrt{36+4+9} = 7$
 $\therefore AB = BC = CD = DA = 7$,
Also, $\overrightarrow{AB} \cdot \overrightarrow{BC} \neq 0$ (These are not perpendicular)
 $\therefore ABCD$ is not square. It is rhombus

283 **(b)**

The coordinate of *P* are $\left(\frac{3\lambda+2}{\lambda+1}, \frac{5\lambda+2}{\lambda+1}, \frac{6\lambda+4}{\lambda+1}\right)$ $Q(2,2,4) \xrightarrow{P(x,y,z)}{1} R(3,5,6)$

Since, the projection of *OP* on *x*-axis is $\frac{3\lambda + 2}{\lambda + 1} = \frac{13}{5}$ $\Rightarrow 15\lambda + 10 = 13\lambda + 13$ $\Rightarrow \lambda = \frac{3}{2}$

284 **(b)**

Since, direction cosines of two lines are proportional to (2, 3, -6) and (3, -4, 5) $|2 \times 3 + 3 \times (-4) - 6 \times 5|$

$$\therefore \cos = \frac{12 \times 3 + 3 \times (-1) - 6 \times 3}{\sqrt{2^2 + 3^2 + (-6)^2} \sqrt{3^2 + (-4)^2 + 5^2}}$$
$$= \frac{|6 - 12 - 13|}{\sqrt{49} \sqrt{50}}$$
$$\Rightarrow \theta = \cos^{-1} \left(\frac{18\sqrt{2}}{35}\right)$$

287 (d)

Here, $a_1 = 2$, $b_1 = -1$, $c_1 = 1$ and $a_2 = 1$, $b_2 = -2$, $c_2 = 1$

$$\therefore \cos \theta = \left| \frac{(2 \times 1) + (-1 \times -2) + (1 \times 1)}{\sqrt{4 + 1 + 1} \sqrt{1 + 4 + 1}} \right| = \frac{5}{6}$$

288 **(c)** If (3

If (3, 4, -1) and (-1, 2, 3) are the end points of a
sphere, then the length of diameter
(3, 4, -1) (-1, 2, 3)
$$d = \sqrt{(-1-3)^2 + (2-4)^2 + (3+1)^2}$$

 $= \sqrt{16+4+16}$
 $= \sqrt{36} = 6$
So, radius, $r = \frac{d}{2} = \frac{6}{2} = 3$
(b)
 $\overrightarrow{OA} = 4\hat{i} + 7\hat{j} + 8\hat{k}, \overrightarrow{OB} = 2\hat{i} + 3\hat{j} + 4\hat{k}$

Hence, the length of internal bisector of $\angle A = \frac{2}{3}\sqrt{34}$

The distance from origin (0, 0, 0) to the plane 6x - 3y + 2z - 14 = 0 is

$$d = \frac{|6(0) - 3(0) + 2(0) - 14|}{\sqrt{36 + 9 + 4}} = 2$$

291 **(c)**

From the figure

$$C(x_3, y_3, z_3)$$

$$(0, m, 0)$$

$$B$$

$$(x_2, y_2, z_2)$$

$$(l, 0, 0)$$

$$(x_1, y_1, z_1)$$

$$x_1 + x_2 = 2l, y_1 + y_2 = 0, z_1 + z_2 = 0,$$

$$x_2 + x_3 = 0, y_2 + y_3 = 2m, z_2 + z_3 = 0,$$
and
$$x_1 + x_3 = 0, y_1 + y_3 = 0,$$

$$z_1 + z_3 = 2n$$

On solving, we get the coordinate are

$$A(l, -m, n), B(l, m, -n) \text{ and } C(-l, m n).$$

 $\therefore \frac{AB^2 + BC^2 + CA^2}{l^2 + m^2 + n^2}$
 $= \frac{(4m^2 + 4n^2) + (4l^2 + 4n^2) + (4l^2 + 4m^2)}{l^2 + m^2 + n^2} = 8$

The direction ratio of the line are

$$a_{1} = 2, b_{1} = 5, c_{1} = 4$$
And $a_{2} = 1, b_{2} = 2, c_{2} = -3$

$$\therefore \cos \theta = \frac{a_{1}a_{2} + b_{1}b_{2} + c_{1}c_{2}}{\sqrt{a_{1}^{2} + b_{1}^{2} + c_{1}^{2}}\sqrt{a_{2}^{2} + b_{2}^{2} + c_{2}^{2}}}$$

$$= \frac{2.1 + 5.2 + 4(-3)}{\sqrt{2^{2} + 5^{2} + 4^{2}}\sqrt{1^{2} + 2^{2} + (-3)^{2}}}$$

$$\Rightarrow \theta = \cos^{-1}\frac{(2 + 10 - 12)}{\sqrt{4 + 25 + 16}\sqrt{1 + 4 + 9}}$$

$$= \cos^{-1}(0)$$

$$\Rightarrow \theta = 90^{\circ}$$

293 (d)

Let the equation of plane be, a(x-1) + b(y+2) + c(z-1) = 0Which is perpendicular to 2x - 2y + z =0 and x - y + 2z = 4 $\therefore 2a - 2b + c = 0 \text{ and } a - b + 2c = 0$ $\Rightarrow \frac{a}{-3} = \frac{b}{-3} = \frac{c}{0}$ $\Rightarrow \frac{a}{1} = \frac{b}{1} = \frac{c}{0}$ $\therefore \text{ The equation of plane is,}$ 1(x-1) + 1(y+2) + 0(z-1) = 0 $\Rightarrow x + y + 1$ $= 0, \text{ its distance from the point } (1, 2, 2) \text{ is } \frac{|1+2+1|}{\sqrt{2}}$

$$= 2\sqrt{2}$$

294 (d) The required line passes through the point $\hat{i} + 3\hat{j} + 2\hat{k}$ and is perpendicular to the lines $\vec{r} = (\hat{i} + 2\hat{j} - \hat{k}) + \lambda(2\hat{i} + \hat{j} + \hat{k})$ and, $\vec{r} = (2\hat{i} + 6\hat{j} + \hat{k}) + \mu(\hat{i} + 2\hat{j} + 3\hat{k})$ Therefore, it is parallel to the vector $\vec{b} = (2\hat{i} + \hat{j} + \hat{k}) \times (\hat{i} + 2\hat{j} + 3\hat{k}) = (\hat{i} + 5\hat{j} + 3\hat{k})$ Hence, the equation of the required line is $\vec{r} = (\hat{i} + 3\hat{j} + 2\hat{k}) + \lambda'(\hat{i} - 5\hat{j} + 3\hat{k})$ $\Rightarrow \vec{r} = (\hat{i} + 3\hat{j} + 2\hat{k}) + \lambda(-\hat{i} + 3\hat{j} - 3\hat{k})$, where $\lambda = -\lambda'$ 295 (a)

: Direction cosines of *OP* are $(\frac{1}{3}, \frac{-2}{3}, \frac{-2}{3})$, also *OP* = r = 3Now, point *P* is given by P(lr, mr, nr)

$$ie, P(x, y, z) = P\left[\frac{1}{3}(3), -\left(\frac{2}{3}\right)3, \left(-\frac{2}{3}\right)3\right]$$

$$= P(1, -2, -2)$$
96 (a)
Given that, $l + m + n = 0$...(i)
And $lm = 0$...(ii)
 \therefore From Eq. (i) $\Rightarrow l = -(m + n)$
And from Eq.(ii) $\Rightarrow -(m + n)m = 0$
 $\Rightarrow -(m^2 + mn) = 0$
 $\Rightarrow m^2 + mn = 0$
 $\Rightarrow m = 0, m + n = 0$ [from Eq. (i)]
Then, $\frac{l_1}{-1} = \frac{m_1}{0} = \frac{n_1}{1}$
And if $l + m + n = 0$ [from Eq. (i)]
Then, $\frac{l_2}{-1} = \frac{m_2}{-1} = \frac{n_2}{1}$
 $\therefore (l_1, m_1, n_1) = (-1, 0, 1)$
And $(l_2, m_2, n_2) = (0, -1, 1)$
 \therefore Angle between them is given by
 $\cos \theta = \frac{0 + 0 + 1}{\sqrt{1 + 0 + 1}\sqrt{0 + 1 + 1}} = \frac{1}{2} = \frac{\pi}{3}$
98 (b)
Given equation can be rewritten as
 $(2x - y)\lambda + (-y + 3z) = 0$
So, it is clear that the equation of the plane passes
through the intersection of planes $2x - y = 0$
and $y - 3z = 0$
99 (a)
Given equation of sphere is
 $x^2 + y^2 + z^2 - x - 2y - 3z = 0$
 \therefore Centre is $(\frac{1}{2}, 1, \frac{3}{2})$
 \therefore Radius $= \sqrt{(\frac{1}{2})^2 + (1)^2 + (\frac{3}{2})^2 - 0} = \frac{\sqrt{14}}{2}$

300 **(b)**

2

2

2

Let the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the coordinate axes at *A*, *B* and *C*, the coordinates of the centroid of $\triangle ABC$ are $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$ Given, $\frac{a}{3} = 1, \frac{b}{3} = 2, \frac{c}{3} = 3$ $\Rightarrow a = 3, b = 6, c = 9$ Hence, the equation of the plane is $\frac{x}{3} + \frac{y}{6} + \frac{z}{9} = 1$

Let
$$A(0, 7, 10), B(-1, 6, 6)$$
 and $C(-4, 9, 6)$
Then, $AB = \sqrt{(-1-0)^2 + (6-7)^2 + (6-10)^2}$
 $= \sqrt{1+1+16} = \sqrt{18} = 3\sqrt{2}$
 $BC = \sqrt{(-4+1)^2 + (9-6)^2 + (6-6)^2}$
 $= \sqrt{9+9+0} = \sqrt{18} = 3\sqrt{2}$
 $AC = \sqrt{(-4-0)^2 + (9-7)^2 + (6-10)^2}$
 $= \sqrt{16+4+16} = \sqrt{36} = 6$
Clearly, $AC^2 = AB^2 + BC^2$
Hence, triangle is right angled. Also, $AB = BC$
 \therefore Triangle is right angled isosceles

303 (a)

Let the direction cosines of the line L be l, m, n. Since, the line intersect the given planes, then the normal to the planes are perpendicular to the line L

$$\therefore 2l + 3m + n = 0 \dots (i)$$

and $l + 3m + 2n = 0 \dots (ii)$
From Eqs. (i) and (ii), we get
$$\frac{l}{3} = \frac{m}{-3} = \frac{n}{3} = k \quad [say]$$

We, know, $l^2 + m^2 + n^2 = 1$
$$\therefore (3k)^2 + (-3k)^2 + (3k)^2 = 1$$

$$\Rightarrow k = \frac{1}{3\sqrt{3}}$$

$$\therefore l = \frac{1}{\sqrt{3}} \Rightarrow \cos \alpha = \frac{1}{\sqrt{3}}$$

304 (c)

Let the vertices of $\triangle ABC$ are A(1, 2, 3), B(2, 5, -1)and C(-1, 1, 2)Area of triangle $= \frac{1}{2} |\overline{AB} \times \overline{AC}|$ $= \frac{1}{2} \left\| \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} \right\|$ Here, $(x_1, y_1, z_1) = (1, 2, 3), (x_2, y_2, z_2) = (2, 5, -1)$ And $(x_3, y_3, z_3) = (-1, 1, 2)$ \therefore Area of triangle $= \frac{1}{2} \left\| \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 2 & -4 \\ -2 & -1 & -1 \end{vmatrix} \right\|$ $= \frac{1}{2} |(-7\hat{\mathbf{i}} + 9\hat{\mathbf{j}} + 5\hat{\mathbf{k}})|$ $= \frac{1}{2} \sqrt{(-7)^2 + (9)^2 + (5)^2}$ $= \frac{1}{2} \sqrt{49 + 81 + 25}$ $= \frac{\sqrt{155}}{2}$ sq unit 305 (c) We know that the angle between two planes

 $a_1x + b_1y + c_1z + d_1 = 0$

And $a_2x + b_2y + c_2z + d_2 = 0$ is given by $\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \qquad \dots (i)$ From the given equations of planes on comparing both with standard equation of plane *ie*, ax + by + cz + d = 0 respectively, we get $a_1 = 1, b_1 = 2, c_1 = 2$ And $a_2 = -5$, $b_2 = 3$ and $c_2 = 4$ On putting these values in Eq. (i), we get $\cos \theta = \frac{1 \times (-5) + 2 \times 3 + 2 \times 4}{\sqrt{1^2 + 2^2 + 2^2} \sqrt{(-5)^2 + 3^2 + 4^2}}$ $=\frac{-5+6+8}{\sqrt{9}\sqrt{50}}=\frac{9}{3\sqrt{50}}=\frac{3}{5\sqrt{2}}=\frac{3\sqrt{2}}{10}$ $\Rightarrow \cos^{-1}\left(\frac{3\sqrt{2}}{10}\right)$ 306 (c) Let $A = (3,4,5), B = (4,6,3), C = (-1,2,4), D \equiv$ (1, 0, 5)For AB, $x_2 - x_1 = 4 - 3 = 1$, $y_2 - y_1 = 6 - 4 = 2$ $z_2 - z_1 = 3 - 5 = -2$ Let *l*, *m*, *n* for *CD* are $\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}$. : Projection of AB on $CD = \sum (x_2 - x_1)$ $=\frac{2(1)}{3}+\left(-\frac{2}{3}\right)2+\left(\frac{1}{3}\right)(-2)$ $=-\frac{4}{3}$ 307 (a) Given lines can be rewritten as $\frac{x-1}{1} = \frac{y+3}{-\lambda} = \frac{z-1}{\lambda} = s$ and $\frac{x-0}{1} = \frac{y-1}{2} = \frac{z-2}{-2} = \frac{t}{2}$ $\begin{vmatrix} 1-0 & -3-1 & 1-2 \\ 1 & -\lambda & \lambda \\ 1 & 2 & -2 \end{vmatrix} = 0$ $\Rightarrow \begin{vmatrix} 1 & -4 & -1 \\ 1 & -\lambda & \lambda \\ 1 & 2 & -2 \end{vmatrix} = 0$ $\Rightarrow 1(2\lambda - 2\lambda) + 4(-2 - \lambda) - 1(2 + \lambda) = 0$ $\Rightarrow -8 - 4\lambda - 2 - \lambda = 0$ $\Rightarrow \lambda = -2$ 308 (c) The direction ratios of given plane are (1,2,2) and (-5, 3, 4).The angle between two planes is given by $\theta = \cos^{-1}\left(\frac{1(-5) + 2(3) + 2(4)}{\sqrt{1 + 4 + 4}\sqrt{25 + 9 + 16}}\right)$ $=\cos^{-1}\left(\frac{9}{3\cdot5\sqrt{2}}\right)$

$$\Rightarrow \cos^{-1}\left(\frac{3\sqrt{2}}{10}\right)$$

309 (b) The equation of a plane passing through (2, 3, 1)is a(x-2) + b(y-3) + c(z-1) = 0 ... (i) It passes through (4, -5, 3) and is parallel to *x*axis 2a - 8b + 2c = 0and, $a \times 1 + b \times 0 + c \times 0 = 0$ $\therefore \frac{a}{0} = \frac{b}{2} = \frac{c}{8} \Rightarrow \frac{a}{0} = \frac{b}{1} = \frac{c}{4}$ Substituting the values of *a*, *b*, *c* in (i), we get y + 4z = 7 as the equation of the required plane 310 (c) Given lines are $l + m + n = 0 \implies l = -(m + n)$ (i) and $mn - 2 \ln + lm = 0$ (ii) $\Rightarrow mn + 2(m+n)n - (m+n)m = 0$ [from Eq. (i)] $\Rightarrow mn + 2mn + 2n^2 - m^2 - nm = 0$ $\Rightarrow 2\left(\frac{n}{m}\right)^2 + \frac{2n}{m} - 1 = 0$ This is quadratic equation in $\left(\frac{n}{m}\right)$, $\therefore \frac{n_1 n_2}{m_1 m_2} = \frac{-1}{2} \quad \dots \dots (\text{iii})$ [where $\frac{n_1}{m_1}, \frac{n_2}{m_2}$ are the roots of the equation] From, Eq, (i) m = -(n+l)On putting in Eq. (ii), we get -(n+l)n - 2ln - l(n+l) = 0 $\implies l^2 + 4ln + n^2 = 0$ $\Rightarrow \left(\frac{l}{n}\right)^2 + \frac{4l}{n} + 1 = 0$ $\Rightarrow \frac{l_1 l_2}{n_1 n_2} = 1$ (iv) [where $\frac{l_1}{n_1}, \frac{l_2}{n_2}$ are the roots of the equation] : From Eqs. (iii) and (iv) $l_1 l_2 = -\frac{1}{2}m_1 m_2 = n_1 n_2$ $\Rightarrow \frac{l_1 l_2}{1} = \frac{m_1 m_2}{-2} = \frac{n_1 n_2}{1} = k$ [say] Now, $l_1 l_2 + m_1 m_2 = k - 2k + k = 0$ $\therefore \cos \theta = 0 \implies \theta = 90^{\circ}$ 311 (c) $\cos 2\alpha + \cos 2\beta + \cos 2\gamma + \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$

 $= (\cos^2\alpha - \sin^2\alpha) + (\cos^2\beta - \sin^2\beta)$

 $+(\cos^2\gamma - \sin^2\gamma) + \sin^2\alpha + \sin^2\beta + \sin^2\gamma$

 $=\cos^2\alpha + \cos^2\beta + \cos^2\gamma$ = 1 312 (a) Equation of plane passing through (2, -1, -3) is a(x-2) + b(y+1) + c(z+3) = 0...(i) Now, given lines are parallel to it. $\therefore 3a + 2b - 4c = 0$ (ii) and 2a - 3b + 2c = 0 ...(iii) Elimination of *a*, *b* and *c* from Eqs. (i), (ii) and (iii), gives $\begin{vmatrix} x - 2 & y + 1 & z + 3 \\ 3 & 2 & -4 \\ 2 & -3 & 2 \end{vmatrix} = 0$ $\Rightarrow (x-2)(4-12) - (y+1)(6+8)$ $\Rightarrow 8x + 14y + 13z + 37 = 0$ 313 (a) DR's of $AB = \{(3-2), (5-3), (-3+1)\}$ $= \{1, 2, -2\}$ DR's of $CD = \{(3-1), (5-2), (7-3)\}$ $= \{2, 3, 4\}$: Angle between *AB* and *CD* is given by $\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$ $= \frac{1 \times 2 + 2 \times 3 + 4 \times (-2)}{\sqrt{1 + 4} + 4 \sqrt{4 + 9} + 16} = 0$ $\Rightarrow \theta = \frac{\pi}{2}$ 314 (c) Since, $l^2 + m^2 + n^2 = 1$ $\Rightarrow \cos^2\theta + \cos^2\beta + \cos^2\theta = 1$ [$\therefore l = \cos \theta, m = \cos \beta, \text{given}$] $\Rightarrow \cos^2\theta + \cos^2\beta$ But $\sin^2\beta = 3\sin^2\theta$ $\therefore 3\sin^2\theta = 2\cos^2\theta$ $\Rightarrow 3 = 5 \cos^2 \theta$ $\Rightarrow \cos^2\theta = \frac{3}{5}$ 315 (b) Equation of plane containing the line of intersection of planes is $(x + y + z - 6) + \lambda(2x + 3y + 4z - 12) = 0$ Since, it passes through the point (1, 1, 1), $\therefore (1 + 1 + 1 - 6) + \lambda (2 + 3 + 4 - 12) = 0$ $\Rightarrow -3 + \lambda(-3) = 0$ $\Rightarrow \lambda = -1$ Hence, required equation of plane is (x + y + z - 6) - (2x + 3y + 4z - 12) = 0x + 2y + 3z = 6ie, 316 (d)

Let the point in *xy*-plane be $P(x_1, y_1, 0)$. Let the

given points are A(2, 0, 3)B(0, 3, 2)And *C*(0, 0, 1) According to the given condition, $AP^2 = BP^2 = CP^2$ $\therefore (x_1 - 2)^2 + y_1^2 + 9 = x_1^2 + (y_1 - 3)^2 + 4$ $= x_1^2 + y_1^2 + 1$ From Ist and IInd terms, $x_1^2 + 4 - 4x_1 + y_1^2 + 9 = x_1^2 + y_1^2 - 6y_1 + 9 + 4$ $\Rightarrow 4x_1 - 6y_1 = 0 \dots (i)$ From IInd and IIIrd terms $x_1^2 + y_1^2 + 9 - 6y_1 + 4 = x_1^2 + y_1^2 + 1$ $\Rightarrow 6y_1 = 12 \Rightarrow y_1 = 2$ On putting the value of y_1 in Eq.(i), we get $x_1 = 3$ Hence, required point is (3, 2, 0). 317 (a) Equation of any plane passing through (-7, 1, -5)is a(x + 7) + b(y - 1) + c(z + 5) = 0(i) The DR's of normal to above plane are a = -7. b = 1.c = -5 \therefore From Eq. (i) we get -7(x+7) + 1(y-1) - 5(z+1) = 0 \Rightarrow 7x - y + 5z + 75 = 0 318 (b) Equation of plane through (1, 2, 3) is a(x-1) + b(y-2) + c(z-3) = 0 ...(i) It passes through (-1, 4, 2) and (3, 1, 1), so -2a + 2b - c = 0 ...(ii) And 2a - b - 2c = 0 ...(iii) From Eqs. (ii) and (iii), $\frac{a}{-5} = \frac{b}{-6} = \frac{c}{-2}$ \therefore Equation of plane is -5x - 6y - 2z + 5 + 12 + 6 = 0 $\Rightarrow 5x + 6y + 2z - 23 = 0$ 319 **(b)** Since, the line passing through the points (4, -1, 2) and (-3, 2, 3). So, the DR's of the line is (4+3, -1-2, 2-3)ie, (7, -3, -1)Since, the line is perpendicular to the plane therefore DR's of this line is proportional to the normal of the plane. ∴ Required equation plane is 7(x+10) - 3(y-5) - 1(z-4) = 0 \Rightarrow 7x - 3y - z + 89 = 0 320 **(b)** The given line is parallel to the vector $\vec{n} = \hat{i} - \hat{j} + 2\hat{k}$. The required plane passes through the point (2, 3, 1) i.e. $2\hat{i} + 3\hat{j} + \hat{k}$ and is perpendicular to the vector $\vec{n} = \hat{i} - \hat{j} + 2\hat{k}$. So, its

equation is $\{\vec{r} - (2\hat{\imath} + 3\hat{\jmath} + \hat{k})\} \cdot \{\hat{\imath} - \hat{\jmath} + 2\hat{k}\} = 0$ $\Rightarrow \vec{r} \cdot (\hat{\imath} + \hat{\jmath} + 2\hat{k}) = 1$

321 **(c)**

Direction ratio of the line joining the points (2, 1, -3) and (-3, 1, 7) are $(a_1, b_1, c_1)ie$, (-5, 0, 10)Direction ratio of the line parallel to the $line\frac{x-1}{3} = \frac{y}{4} = \frac{z+3}{5}$ are $(a_2, b_2, c_2)ie, (3, 4, 5)$ Angle between two lines given by $\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$ $\therefore \cos \theta \frac{(-5 \times 3) + (0 \times 4) + (10 \times 5)}{\sqrt{25 + 0 + 100}\sqrt{9 + 16 + 25}}$ $\Rightarrow \theta = \cos^{-1}\left(\frac{7}{\epsilon_{\star}/10}\right)$ 322 (c) The centre of the given sphere is C(-2,1,3). The distance from the centre of sphere to the plane $= \left| \frac{-2 \times 12 + 4 \times 1 + 3 \times 3 - 327}{\sqrt{144 + 16 + 9}} \right|$ $= \left| \frac{-24 + 4 + 9 - 327}{\sqrt{169}} \right| = 26$: Shortest distance $= 26 - \sqrt{4 + 1 + 9 + 155} = 13$ 323 (c) DC's of line $= \left(\frac{12}{\sqrt{12^2 + 4^2 + 3^2}}, \frac{4}{\sqrt{12^2 + 4^2 + 3^2}}, \frac{3}{\sqrt{12^2 + 4^2 + 3^2}}\right)$ $=\left(\frac{12}{13},\frac{4}{13},\frac{3}{13}\right)$ 324 (c) 4z - 11 = 0 is (0, 1, 2) and radius is 4 Distance of a plane x + 2y + 2z - 15 = 0 from (0, 1,2) $=\frac{|0+2+4-15|}{\sqrt{1+4+4}}=\frac{9}{3}=3$ Now, $NP = \sqrt{OP^2 - ON^2}$ $=\sqrt{4^2-3^2}=\sqrt{16-9}=\sqrt{7}$ \therefore Radius of circle = $\sqrt{7}$ 325 (b) Let *D* be the foot of perpendicular drawn from

P(1,0,3) on the line *AB* joining (4,7,1) and (3, 5, 3) If *D* divides *AB* in ratio λ : 1, then the coordinate of $= \left(\frac{3\lambda+4}{\lambda+1}, \frac{5\lambda+7}{\lambda+1}, \frac{3\lambda+1}{\lambda+1}\right) \quad \dots(i)$ DR's of *PD* are $\frac{2\lambda+3}{\lambda+1}$, $\frac{5\lambda+7}{\lambda+1}$, $\frac{-2}{\lambda+1}$ Dr's of *AB* are -1, -2, 2 \therefore PD is perpendicular to AB $\therefore -\frac{(2\lambda+3)}{\lambda+1} - \frac{2(5\lambda+7)}{\lambda+1} - \frac{4}{\lambda+1} = 0$ $\Rightarrow \lambda = \frac{-7}{4}$ On putting the value of λ in Eq. (i), we get the point $D\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$ 326 (b) $\vec{\mathbf{r}} = (\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}) + t(\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}})$ $= (1+t)\hat{i} - (1-t)\hat{j} + (1-t)\hat{k}$ Also $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) = 5$ $\Rightarrow (1+t) - (1-t) + (1-t) = 5$ $\Rightarrow 1 + t = 5 \Rightarrow t = 4$ $\vec{\mathbf{r}} = (1+4)\hat{\mathbf{i}} - (1-4)\hat{\mathbf{j}} + (1-4)\hat{\mathbf{k}}$ $=5\hat{i}+3\hat{j}-3\hat{k}$ 327 (c) Equation of any plane passing through (a, b, c) is a'(x-a) + b'(y-b) + c'(z-c) = 0....(i) DR's of OA = (a, b, c)Since, plane (i) is perpendicular to the line OA, therefore its DR's is proportional to (a, b, c)∴ Required equation of plane is a(x-a) + b(y-b) + c(z-c) = 0328 (c) The required line passes through (-1, 2, -3) and is perpendicular to the plane 2x + 3y + z + 5 = 0. Therefore, it is parallel to the normal to the plane whose direction ratios are proportional to 2, 3, 1 Hence, direction ratios of the line are proportional to 2, 3, 1 and so its equation is $\frac{x+1}{2} = \frac{y-2}{3} = \frac{z+3}{1}$ 329 (a) In a given options, only option (a) satisfies the given equation of line. 330 (c) $\cos \theta = |l_1 l_2 + m_1 m_2 + n_1 n_2|$ $= \left| \frac{\sqrt{3}}{4} \times \frac{\sqrt{3}}{4} + \frac{1}{4} \times \frac{1}{4} + \frac{\sqrt{3}}{2} \times \left(\frac{-\sqrt{3}}{2} \right) \right|$ $=\left|\frac{3}{16}+\frac{1}{16}-\frac{3}{4}\right|$

$$= \left| -\frac{2}{4} \right| =$$
$$= \theta = \frac{\pi}{3}$$

 $\overline{2}$

331 **(b)**

Given lines will be perpendicular, if $-3 \times 3k + 2k \times 1 + 2 \times -5 = 0 \Rightarrow -7k - 10 = 0$ $\Rightarrow k = -\frac{10}{7}$

332 (c)

The centre of sphere is
$$\left(\frac{1}{2}, 0, -\frac{1}{2}\right)$$

and radius = $\sqrt{\frac{1}{4} + \frac{1}{4} + 2} = \frac{\sqrt{10}}{2}$

distance from centre of sphere to the given plane

$$= \left| \frac{\frac{1}{2} + \frac{1}{2} - 4}{\sqrt{1 + 4} + 1} \right| = \frac{3}{\sqrt{6}}$$

So, radius of circle = $\sqrt{\frac{10}{4} - \frac{9}{6}}$ = 1

333 **(b)**

$$\sin \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$
$$= \frac{2 \times 3 + 3 \times 2 - 4 \times 3}{\sqrt{2^2 + 3^2 + 4^2} \sqrt{(3)^2 + (2)^2 + (-3)^2}}$$
$$= \frac{6 + 6 - 12}{\sqrt{4 + 9 + 16} \sqrt{9 + 4 + 9}} = 0$$
$$\implies \theta = 0^\circ$$

334 (c)

If two lines are coplanar, then

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

$$\therefore \begin{vmatrix} -1 & 1 & 1 \\ 1 & 1 & -k \\ k & 2 & 1 \end{vmatrix} = 0$$

$$\Rightarrow -1(1 + 2k) - 1(1 + k^2) + 1(2 - k) = 0$$

$$\Rightarrow -k^2 - 3k = 0$$

$$\Rightarrow k = 0 \text{ or } -3$$

335 (c)

Equation of any plane passing through given line is

$$a(x-1) + b(y+1) + c(z-3) = 0 \dots (i)$$

Above plane is perpendicular to the plane
$$x + 2y + z = 12$$

$$\therefore a + 2b + c = 0$$

Also, normal to the plane is perpendicular to the
line
$$\therefore 2a - b + 4c = 0$$

$$\Rightarrow \frac{a}{8+1} = \frac{b}{2-4} = \frac{c}{-1-4}$$

$$\Rightarrow \frac{a}{9} = \frac{b}{-2} = \frac{c}{-5}$$

$$\Rightarrow 9(x-1) - 2(y+1) - 5(z-3) = 0$$

$$\Rightarrow 9x - 2y - 5z + 4 = 0$$

$$\Rightarrow a = 9, b = -2, c = -5$$

336 **(b)**
Plane can be rewritten as

$$\frac{x}{6} + \frac{y}{-4} + \frac{z}{3} = 1$$

$$\Rightarrow \text{ Intercepts are 6, -4, 3}$$

337 **(a)**
Equation of straight line passing through

$$(4, -5, -2) \text{ and } (-1, 5, 3) \text{ is}$$

$$\frac{x-4}{-5} = \frac{y+5}{10} = \frac{z+2}{5}$$

$$\Rightarrow \frac{x-4}{1} = \frac{y+5}{-2} = \frac{z+2}{-1}$$

The length of the perpendicular from origin to the plane is

 $p = \left| \frac{0 + 0 + 0 - 52}{\sqrt{9 + 16 + 144}} \right|$ $= \left| \frac{-52}{13} \right| = 4$

339 **(b)**

Since, *PA*, *PB* are perpendicular drawn from P(a, b, c) on *yz* and *zx*-planes.

 $\therefore A(0, b, c)$ and B(a, 0, c) are the points on yz and xz-plances. The equation of plane passing through (0, 0, 0) is

Ax + By + Cz = 0Which also passes through points *A* and *B*

 $\therefore A \cdot 0 + B \cdot b + C \cdot c = 0$ and $A \cdot a + B \cdot 0 + C \cdot c = 0$ $A \quad B \quad C$

$$\Rightarrow \frac{1}{bc - 0} = \frac{1}{ac - 0} = \frac{1}{0 - ab} = \lambda \quad [say]$$

$$\Rightarrow A = \lambda bc, \quad B = \lambda ac, \quad C = -\lambda ab$$

$$\therefore \text{ Required equation is}$$

$$bcx + acy - abz = 0$$

340 **(c)**

Let the equation of the sphere be $x^{2} + y^{2} + z^{2} + 24x + 2vx + 2wz + d = 0$ Since, above sphere passes through (1, 0, 0), (0, 1, 0) and (0, 0, 1) $\therefore u = v = w = -\frac{d+1}{2}$ Let *r* be the radius of sphere $\therefore r^{2} = u^{2} + v^{2} + w^{2} - d$ $= 3\left(\frac{d+1}{2}\right)^{2} - d$ $= \frac{3}{4}\left(d^{2} + \frac{2}{2}d + 1\right)$

 $=\frac{3}{4}\left[\left(d+\frac{1}{3}\right)^2+\frac{8}{9}\right]$ Clearly at $d = -\frac{1}{3}$, r^2 attains minimum and minimum value of $r^2 = \frac{2}{2}$ \Rightarrow Minimum value of $r = \sqrt{\frac{2}{3}}$ 341 (c) We have, $\vec{r} = (1 + \lambda - \mu) + \hat{\iota} + (2 - \lambda)\hat{\iota} + (3 - 2\lambda + 2\mu)\hat{k}$ $\Rightarrow \vec{r} = (\hat{\iota} + 2\hat{\jmath} + 3\hat{k}) + \lambda(\hat{\iota} - \hat{\jmath} - 2\hat{k}) +$ $\mu(-\hat{\iota}+2\hat{k})$ which is a plane passing through $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and parallel to the vectors $\vec{b} = \hat{\imath} - \hat{\imath} - 2\hat{k}$ and $\vec{c} = -\hat{\imath} + 2\hat{k}$ Therefore, it is normal to the vector $\vec{n} = \vec{b} \times \vec{c} = -2\hat{\imath} - \hat{k}$ Hence, its vector equation is $(\vec{r} - \vec{a}) \cdot \vec{n} = 0$ $\Rightarrow \vec{r} \cdot \vec{n} = \vec{a} \cdot \vec{n}$ $\Rightarrow \vec{r} \cdot (= -2\hat{\iota} - \hat{k}) = -2 - 3$ $\Rightarrow \vec{r} \cdot (2\hat{\imath} + \hat{k}) = 5$ So, the Cartesian equation of the plane is $(x\hat{\imath} + y\hat{\jmath} + z\hat{k}) \cdot (2\hat{\imath} + \hat{k}) = 5 \Rightarrow 2x + z = 5$ 342 (c) Given, A(3, 1, 2) be the foot of the perpendicular from B(-2, 1, 4) on the plane, then direction ratios of BA, which is the normal to plane are (3+2, 1-1, 2-4)ie, (5, 0, -2) \therefore The equation of plane is 5(x-3) + 0(y-1) - 2(z-2) = 0 $\Rightarrow 5x - 2z = 11$ 343 (c) The straight line $\vec{r} = \vec{a} + \lambda \vec{b}$ meets the plane $\vec{r} \cdot \vec{n} = 0$ in P for which λ is given by $(\vec{a} + \lambda \vec{b}) \cdot \vec{n} = 0 \Rightarrow \lambda = -\frac{\vec{a} \cdot \vec{n}}{\vec{b} \cdot \vec{n}}$ Thus, the position vector of P is $\vec{r} = \vec{a} \left(\frac{\vec{a} \cdot \vec{n}}{\vec{b} \cdot \vec{n}} \right) \vec{b}$ [Putting the value of λ in \vec{r} $= \vec{a} + \lambda \vec{b}$ 344 (a) Equation of plane through (3, 2, -1) is a(x-3) + b(y-2) + c(z+1) = 0 ...(i) Also, (3, 4, 2) and (7, 0, 6) lie on Eq. (i), then $0 \cdot a + 2b + 3c = 0$...(ii) And 4a - 2b + 7c = 0 ...(iii)

On eliminating *a*, *b*, *c* from Eqs. (i), (ii) and (iii),

we get

$$\begin{vmatrix} x - 3 & y - 2 & z + 1 \\ 0 & 2 & 3 \\ 4 & -2 & 7 \end{vmatrix} = 0$$

We get, $5x + 3y - 2z = 23$
 $\therefore \lambda = 23$

Given lines pass through points $P(\overrightarrow{a_1})$ and $Q(\overrightarrow{a_2})$ and are parallel to vectors $\overrightarrow{b_1}$ and $\overrightarrow{b_2}$ respectively If the lines are coplanar, then

 $\vec{P}Q \perp (\vec{b_1} \times \vec{b_2})$ $\Rightarrow \vec{P}Q \cdot (\vec{b_1} \times \vec{b_2}) = 0$ $\Rightarrow (\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2}) = 0 \Rightarrow [\vec{a_1} \vec{b_1} \vec{b_2}]$ $= [\vec{a_2} \vec{b_1} \vec{b_2}]$

346 (c)

Let, $\frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7} = \lambda$ (i) Any point on the line is $(3\lambda - 1, 5\lambda - 3, 7\lambda - 5)$ Again let $\frac{x-2}{1} = \frac{y-4}{2} = \frac{z-6}{5} = \mu \quad \dots \text{(ii)}$ Any point on the line is $(\mu+2, 3\mu+4, 5\mu+6)$ For intersection, they have a common point. $\therefore (3\lambda - 1) = (\mu + 2),$ $(5\lambda - 3) = (3\mu + 4)$ $(7\lambda - 5) = (5\mu + 6)$ From first two, we have $\mu = 3\lambda - 3$ (iii) and $3\mu = 5\lambda - 7$... (iv) From Eqs. (iii), and (iv), we have $3(3\lambda - 3) = 5\lambda - 7 \Longrightarrow \lambda = \frac{1}{2}$ Point of intersection is $\left(\frac{3}{2}-1,\frac{5}{2}-3,\frac{7}{2}-5\right)$ $=\left(\frac{1}{2},-\frac{1}{2},-\frac{3}{2}\right)$ 347 (c) Since, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 2$ $[: l^2 + m^2 + n^2 = 1]$ \Rightarrow 1 + cos 2 α + 1 + cos 2 β + 1 + cos 2 γ = 2 $\Rightarrow \cos 2\alpha + \cos 2\beta + \cos 2\gamma + 1 = 0$ 348 (a) Let the equation of sphere passing through origin $x^{2} + y^{2} + z^{2} + 2ux + 2vy + 2wz = 0$ It passes through (0, 2, 0) $\therefore 4 + 4\nu = 0 \Rightarrow \nu = -1$ Also, it passes through (1, 0, 0) $\therefore 1 + 2u = 0$ $\Rightarrow u = \frac{-1}{2}$

And it passes through (0, 0, 4) $\therefore 16 + 8w \Rightarrow w = -2$ \therefore Centre of sphere is $(-u, -v, -w) = \left(\frac{1}{2}, 1, 2\right)$ 349 (c) $\operatorname{Let} \frac{x}{c} + \frac{y}{b} + \frac{z}{c} = 1 \quad \dots (i)$ Then, $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2}$... (ii) On comparing Eqs. (i) and (ii), we get x = 2. $y = 2, \qquad z = 2$ 350 (a) We have. $\vec{A}P = -3\hat{\imath} - \hat{\jmath} + 10\hat{k} \Rightarrow |\vec{A}P| = \sqrt{9 + 1 + 100}$ $=\sqrt{110}$ P(-i + 2j + 6k)N A(2, 3, -4) $\overrightarrow{6i+3i-4k}$ Now, AN = Projection of $\vec{A}P$ on $6\hat{i} + 3\hat{j} - 4\hat{k}$ $\Rightarrow AN = \left| \frac{\vec{A}P \cdot (6\hat{\imath} + 3\hat{\jmath} - 4\hat{k})}{|6\hat{\imath} + 3\hat{\jmath} - 4\hat{k}|} \right| = \left| \frac{-18 - 3 - 40}{\sqrt{61}} \right|$ $\therefore PN = \sqrt{AP^2 - AN^2} = \sqrt{110 - 61} = 7$ 351 (c) Given points on the plane are (a, 0, 0), (0, b, 0) and (0, 0, c): Length of intercept with x-axis, y-axis and z-axis are *a*, *b* and *c* respectively. : Equation of the plane is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ 352 (c) Since, the planes 2x - 2y + z + 3 = 0 and 2x - 2y + z + 3 = 0 $2y + z + \frac{5}{2} = 0$ are parallel to each other. :Distance between them = $\frac{|c_2 - c_1|}{\sqrt{a_1^2 + b_1^2 + c_1^2}}$ $=\frac{\left|\frac{5}{2}-3\right|}{\sqrt{4+4+1}}$ 353 (d) Direction ratio of *OP* and *OQ* are (0, 1, 2) and

$$(4, -2, 1)$$

Let $\angle POQ = \theta$, then
 $\cos \theta \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$
 $\Rightarrow \cos \theta = \frac{0 - 2 \times 1 + 2 \times 1}{\sqrt{0 + 1 + 4} \sqrt{16 + 4 + 1}} = 0$
 $\Rightarrow \theta = \frac{\pi}{2}$

Given equation line is $\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z+3}{4} = \lambda \quad [say]$ Any point on the line is $P(2\lambda + 1, -3\lambda + 2, 4\lambda - 3)$ Since, these point lies on the given plane. $\therefore 2(2\lambda + 1) + 4(-3\lambda + 2) - (4\lambda - 3) + 1 = 0$ $\Rightarrow \lambda = \frac{7}{6}$

: Required point is
$$P\left(\frac{10}{3}, -\frac{3}{2}, \frac{5}{3}\right)$$

355 **(c)**

Given lines are

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} = r(\text{say}) \dots \dots (i)$$

and $\frac{x-4}{5} = \frac{y-1}{2} = z \dots \dots (ii)$

Any point on the line (i) is (2r + 1, 3r + 2, 4r + 3, 3r + 2, 4r + 3, 3r + 3

If they intersect, then the point satisfies the second line, we get

$$\frac{2r+1-4}{5} = \frac{3r+2-1}{2} = 4r+3$$
$$\Rightarrow \frac{2r-3}{5} = \frac{3r+1}{2} \Rightarrow r = -1$$
$$\therefore \text{ Required point is } (-1, -1, -1)$$

356 (c)

Clearly in option (a), it is not a sphere as it contains xy, yz and zx terms. In options (b) and (d)

$$u^2 + v^2 + w^2 - c^2 < 0$$

So, option (c) is sphere

357 **(a)**

$$\begin{aligned} &: \cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \\ &= \frac{1 \times 3 + 0 \times 4 - 1 \times 5}{\sqrt{1 + 0 + 1} \sqrt{9 + 16 + 25}} = -\frac{1}{5} \\ &\implies \theta = \pi - \cos^{-1}\left(\frac{1}{5}\right) \end{aligned}$$

358 **(b)**

Let the point is *P* whose coordinate are (x, y, z)and the given points are A(4, 0, 0) and (-4, 0, 0) $\therefore PA + PB = 10$ $\therefore \sqrt{(x-4)^2 + y^2 + z^2} + \sqrt{(x+4)^2 + y^2 + z^2} =$

10 ...(i)
Also,
$$[(x + 4)^2 + y^2 + z^2] + [(x - 4)^2 + y^2 + z^2 - 16x$$

And
 $\left[\sqrt{(x + 4)^2 + y^2 + z^2} + \sqrt{(x - 4)^2 + y^2 + z^2}\right]$
 $\left[\sqrt{(x + 4)^2 + y^2 + z^2} - \sqrt{(x - 4)^2 + y^2 + z^2}\right] = \frac{16x}{10}$
 $\Rightarrow \left[\sqrt{(x + 4)^2 + y^2 + z^2} - \sqrt{(x - 4)^2 + y^2 + z^2}\right] = \frac{16x}{10}$
On solving Eqs.(i) and (ii), we get
 $2\sqrt{(x + 4)^2 + y^2 + z^2} = \frac{16x}{10} + 10$
 $\Rightarrow (x + 4)^2 + y^2 + z^2 = \left(\frac{4x}{5} + 5\right)^2$
 $\Rightarrow x^2 + 8x + 16 + y^2 + z^2 = \frac{16x^2 + 625 + 200x}{25}$
 $\Rightarrow [25x^2 + 400 + 200x + 25y^2 + 25z^2] - 16x^2 - 625 - 200x] = 0$
 $\Rightarrow 9x^2 + 25y^2 + 25z^2 = 225$
359 (a)
Plane intercept on x-axis at $a = 4$
Plane intercept on x-axis at $a = 4$
Plane intercept on z -axis at $c = 3$
Required equation is $\frac{x}{4} + \frac{z}{3} = 1$ or $3x + 4z = 12$
360 (d)
Suppose P divides QR in the ratio λ : 1. Then, coordinates of P are $\left(\frac{5\lambda + 2}{\lambda + 1}, \frac{2\lambda + 2}{\lambda + 1}, \frac{-2\lambda + 1}{\lambda + 1}\right)$
Since, the x coordinates of P is 4
 $ie, \frac{5\lambda + 2}{\lambda + 1} = 4 \Rightarrow \lambda = 2$
So, z coordinate of P is $\frac{-2\lambda + 1}{\lambda + 1} = \frac{-4 + 1}{2 + 1} = -1$
361 (d)
Given lines can be rewritten as
 $\frac{x - b}{a} = \frac{y - 0}{1} = \frac{z - d}{c}$
and $\frac{x - b'}{a'} = \frac{y - 0}{1} = \frac{z - d'}{c'}$
These lines will perpendicular, if
 $aa' + 1 + cc' = 0$
362 (b)
Given two lines $\vec{r} = (i + f) + \lambda(i + 2f) - k$ and $\vec{r} = i + j - 2\hat{k}$ respectively. Therefore, the plane containing them passes through $\vec{a} = i + f$ and is

perpendicular to \vec{n} given by

$$\vec{n} = \vec{b} \times \vec{c} = (\hat{\iota} + 2\hat{\jmath} - \hat{k}) \times (-\hat{\iota} + \hat{\jmath} - 2\hat{k})$$
$$= -3\hat{\iota} + 3\hat{\jmath} + 3\hat{k}$$

Hence, the equation of the required plane is $(\vec{r} - \vec{a}) \cdot \vec{n} = 0 \Rightarrow \vec{r} \cdot \vec{n} = \vec{a} \cdot \vec{n} \Rightarrow \vec{r} \cdot (\hat{\iota} - \hat{\jmath} - \hat{k})$ = 0

363 **(b)**

Equation of any plane passing through (2, 3, 4) is A(x-2) + B(y-3) + C(z-4) = 0 ...(i) Plane (i) is parallel to 5x - 6y + 7z = 3 \therefore DR's of this plane is same as the Eq. (i) ie, A = 5, B = -6, C = 7 $\therefore 5(x-2) - 6(y-3) + 7(z-4) = 0$ \therefore 5x - 6y + 7z - 20 = 0 is the required plane 364 (a) Centre of given sphere are $C_1(-3, 4, 1)$ and $C_2(5, -2, 1)$ So, midpoint of C_1C_2 $\equiv P\left(\frac{5-3}{2}, \frac{4-2}{2}, \frac{1+1}{2}\right) = P(1, 1, 1)$ Now, the plane 2ax - 3ay + 4az + 6 = 0 passes through the point *P*. $\therefore 2a(1) - 3a(1) + 4a(1) + 6 = 0$ $\Rightarrow a = -2$ 365 (c) Let the equation of sphere passing through (0, 0, 0)0) be

0) be $x^{2} + y^{2} + z^{2} + 2ux + 2vy + 2wz = 0$

Also, it passes through (0, 2, 0), (1, 0, 0), (0, 0, 4)

respectively are

$$4 + 4v = 0$$

 $\Rightarrow v = -1$
 $1 + 2u = 0 \Rightarrow u = -\frac{1}{2}$
and $16 + 8w \Rightarrow w = -2$
 \therefore Centre is $(-u, -v, -w) = (\frac{1}{2}, 1, 2)$
366 (a)

Here $a_1 = 1, b_1 = 2, c_2 = k$ and $a_2 = 2, b_2 = 1, c_2 = -2$ Since, two planes are perpendicular, then $a_1a_2 + b_1b_2 + c_1c_2 = 0$ $\Rightarrow 2 \cdot 1 + 1 \cdot 2 - 2(k) = 0$ $\Rightarrow k = 2$

