Single Correct Answer Type

1. If $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear, then R divides $P Q$ in the ratio
a) $3: 2$ internally
b) $3: 2$ externally
c) $2: 1$ internally
d) $2: 1$ externally
2. The radius of the circle of $x+2 y+2 z=15, x^{2}+y^{2}+z^{2}-2 y-4 z=11$ is
a) 2
b) $\sqrt{7}$
c) 3
d) $\sqrt{5}$
3. Let $A(1,-1,2)$ and $B(2,3,-1)$ be two points. If a point P divides $A B$ internally in the ratio $2: 3$, then the position vector of P is
a) $\frac{1}{\sqrt{5}}(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$
b) $\frac{1}{\sqrt{3}}(\hat{\mathbf{i}}+6 \hat{\mathbf{j}}+\hat{\mathbf{k}})$
c) $\frac{1}{\sqrt{3}}(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$
d) $\frac{1}{5}(7 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})$
4. The length of the perpendicular from the origin to the plane passing through the point \vec{a} and containing the line $\vec{r}=\vec{b}+\lambda \vec{c}$ is
a) $\frac{[\vec{a} \vec{b} \vec{c}]}{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}$
b) $\frac{[\vec{a} \vec{b} \vec{c}]}{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}|}$
c) $\frac{[\vec{a} \vec{b} \vec{c}]}{|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}$
d) $\frac{[\vec{a} \vec{b} \vec{c}]}{|\vec{c} \times \vec{a}+\vec{a} \times \vec{b}|}$
5. The line $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ meets the plane $2 x+3 y-z=-4$ in the point
a) $(1,2,3)$
b) $(-1,-1,-1)$
c) $(2,1,3)$
d) $(1,1,1)$
6. If the plane $2 x-y+z=0$ is parallel to the line $\frac{2 x-1}{2}=\frac{2-y}{2}=\frac{z+1}{a}$, then the value of a is
a) 4
b) -4
c) 2
d) -2
7. A line $A B$ in three-dimensional space makes angle 45° and 120° with the positive x-axis and the positive y axis respectively. If $A B$ makes an acute angle θ with the positive z-axis, then θ equals
a) 30°
b) 45°
c) 60°
d) 75°
8. The locus of a point which moves so that the difference of the squares of its distances from two given points is constant, is a
a) Straight line
b) Plane
c) Sphere
d) None of these
9. If lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-5}{1}=\frac{z-6}{-5}$ are mutually perpendicular, then k is equal to
a) $-\frac{10}{7}$
b) $-\frac{7}{10}$
c) -10
d) -7
10. The equation of the plane passing through a point $A(2,-1,3)$ and parallel to the vectors $\overrightarrow{\mathbf{a}}=(3,0,-1)$ and $\overrightarrow{\mathbf{b}}=(-3,2,2)$ is
a) $2 x-3 y+6 z-25=0$
b) $2 x-3 y+6 z+25=0$
c) $3 x-2 y+6 z-25=0$
d) $3 x-2 y+6 z+25=0$
11. The plane $2 x-(1+\lambda) y+3 \lambda z=0$ passes through the intersection of the planes
a) $2 x-y=0$ and $y+3 z=0$
b) $2 x-y=0$ and $y-3 z=0$
c) $2 x+3 z=0$ and $y=0$
d) None of the above
12. The angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z$ is
a) 30°
b) 45°
c) 90°
d) 0°
13. A And B are two give points. Let C divides $A B$ internally and D divides $A B$ externally in the same ratio. Then $A C, A B, A D$ are in
a) AP
b) GP
c) HP
d) None of these
14. The image (or reflection) of the point $(1,2,-1)$ in the plane $\vec{r} \cdot(3 \hat{\imath}-5 \hat{\jmath}+4 \hat{k})=5$ is
a) $(73 / 25,-6 / 5,39 / 25)$
b) $(73 / 25,6 / 5,39 / 25)$
c) $(-1,-2,1)$
d) None of these
15. The equation of the plane containing the two lines $\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z}{3}$ and $\frac{x}{-1}=\frac{y-2}{3}=\frac{z+1}{-1}$ is
a) $8 x+y-5 z-7=0$
b) $8 x+y+5 z-7=0$
c) $8 x-y-5 z-7=0$
d) None of these
16. A variable plane is at a distance, k from the origin and meets the coordinate axes in A, B, C. Then, the locus of the centroid of $\triangle A B C$ is
a) $x^{-2}+y^{-2}+z^{-2}=k^{-2}$
b) $x^{-2}+y^{-2}+z^{-2}=4 k^{-2}$
c) $x^{-2}+y^{-2}+z^{-2}=16 k^{-2}$
d) $x^{-2}+y^{-2}+z^{-2}=9 k^{-2}$
17. If α, β, γ are the angles which a directed line makes with the positive directions of the coordinate axes, then $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$ is equal to
a) 1
b) 2
c) 3
d) 4
18. The $x y$-plane divides the line joining the points ($-1,3,4$) and ($2,-5,6$)
a) Internally in the ratio $2: 3$
b) Externally in the ratio $2: 3$
c) Internally in the ratio $3: 2$
d) Externally in the ratio $3: 2$
19. The length of the perpendicular drawn from $(1,2,3)$ to the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$ is
a) 4
b) 5
c) 6
d) 7
20. The angle between the lines $\frac{x+4}{1}=\frac{y-3}{2}=\frac{z+2}{3}$ and $\frac{x}{3}=\frac{y-1}{-2}=\frac{z}{1}$, is
a) $\sin ^{-1} \frac{1}{7}$
b) $\cos ^{-1} \frac{2}{7}$
c) $\cos ^{-1} \frac{1}{7}$
d) None of these
21. Under what condition does a straight line does $\frac{x-x_{0}}{l}=\frac{y-y_{0}}{m}=\frac{z-z_{0}}{n}$ is parallel to the $x y$-plane?
a) $l=0$
b) $m=0$
c) $n=0$
d) $l=0, m=0$
22. The value of k such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies in the plane $2 x-4 y+z=7$, is
a) 7
b) -7
c) No real value
d) 4
23. The points $A(4,5,1), B(0,-1,-1), C(3,9,4)$ and $D(-4,4,4)$ are
a) Collinear
b) Coplanar
c) Non-coplanar
d) Non-colinear
24. The foot of perpendicular from point $P(1,3,4)$ in the plane $2 x-y+z+3=0$ is
a) $(3,5,-2)$
b) $(-3,5,2)$
c) $(3,-5,2)$
d) $(-1,4,3)$
25. The length of perpendicular from $Q(1,6,3)$ to the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ is
a) 3
b) $\sqrt{11}$
c) $\sqrt{13}$
d) 5
26. The angle between
$\overrightarrow{\mathbf{r}}=(1+2 \mu) \hat{\mathbf{i}}+(2+\mu) \hat{\mathbf{j}}+(2 \mu-1) \hat{\mathbf{k}}$
and the plane $3 x-2 y+6 z=0$ (where μ is a scalar) is
a) $\sin ^{-1}\left(\frac{15}{21}\right)$
b) $\cos ^{-1}\left(\frac{16}{21}\right)$
c) $\sin ^{-1}\left(\frac{16}{21}\right)$
d) $\frac{\pi}{2}$
27. The equation of sphere which passes through the circle $x^{2}+y^{2}+z^{2}=0$, the plane $2 x+3 y+4 z=5$ and
point $(1,2,3)$ is
a) $3\left(x^{2}+y^{2}+z^{2}\right)-2 x-3 y-4 z-22=0$
b) $\left(x^{2}+y^{2}+z^{2}\right)-2 x-3 y-4 z-22=0$
c) $3\left(x^{2}+y^{2}+z^{2}\right)+2 x+3 y+4 z-22=0$
d) $3\left(x^{2}+y^{2}+z^{2}\right)-2 x-3 y-4 z+9022=0$
28. The angle between the lines $x=1, y=2$ and $y=-1, z=0$ is
a) 30°
b) 60°
c) 90°
d) 0°
29. The point of intersection of the lines $\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1}, \frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4}$ is
a) $(2,10,4)$
b) $\left(21, \frac{5}{3}, \frac{10}{3}\right)$
c) $(5,7,-2)$
d) $(-3,3,6)$
30. A parallelopiped is formed by planes drown through the points $(2,3,5)$ and $(5,9,7)$ parallel to the coordinate planes. The length of a diagonal of the parallelopiped is
a) 7
b) $\sqrt{38}$
c) $\sqrt{155}$
d) None of these
31. If direction cosines of two lines are proportional to $(2,3,-6)$ and $(3,-4,5)$, then the acute angle between them is
a) $\cos ^{-1}\left(\frac{49}{36}\right)$
b) $\cos ^{-1}\left(\frac{18 \sqrt{2}}{35}\right)$
c) 96°
d) $\cos ^{-1}\left(\frac{18}{35}\right)$
32. The distance of the point $P(1,2,3)$ from the line which passes through the point $A(4,2,2)$ and parallel to the vector $2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ is
a) $\sqrt{10}$
b) $\sqrt{7}$
c) $\sqrt{5}$
d) 1
33. The angle between the lines $\frac{x-2}{3}=\frac{y+1}{-2}, z=2$ and $\frac{x-1}{1}=\frac{2 y+3}{3}=\frac{z+5}{2}$ is
a) $\pi / 2$
b) $\pi / 3$
c) $\pi / 6$
d) None of these
34. The equation of the plane containing the line $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$ is $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$, where
a) $a x_{1}+b y_{1}+c z_{1}=0$
b) $a l+b m+c n=0$
c) $a / l=b / m=c / n$
d) $l x_{1}+m y_{1}+n z_{1}=0$
35. If the lines $\frac{1-x}{3}=\frac{y-2}{2 \alpha}=\frac{z-3}{2}$
and
$\frac{x-1}{3 \alpha}=y-1=\frac{6-z}{5}$
are perpendicular, then the value of α is
a) $\frac{-10}{7}$
b) $\frac{10}{7}$
c) $\frac{-10}{11}$
d) $\frac{10}{11}$
36. The perpendicular distance of the point $(6,5,8)$ from y-axis is
a) 5 units
b) 6 units
c) 8 units
d) 10 units
37. The vectors of magnitude $a, 2 a, 3 a$ meet at a point and their directions are along the diagonals of three adjacent faces of a cube. Then, the magnitude of their resultant is
a) $5 a$
b) $6 a$
c) $10 a$
d) $9 a$
38. Cartesian form of the equation of line $\overrightarrow{\mathbf{r}}=3 \hat{\mathbf{\imath}}-5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}+\lambda(2 \hat{\mathbf{\imath}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}})$ is
a) $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+3}{7}$
b) $\frac{x-3}{2}=\frac{y+5}{1}=\frac{z-7}{-3}$
c) $\frac{x-2}{1}=\frac{y-1}{1}=\frac{z-7}{5}$
d) None of the above
39. The equation of the plane containing the lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{a_{2}}$ and $\vec{r}=\overrightarrow{a_{2}}+\lambda \overrightarrow{a_{1}}$, is
a) $\left[\vec{r} \overrightarrow{a_{1}} \overrightarrow{a_{2}}\right]=0$
b) $\left[\vec{r} \overrightarrow{a_{1}} \overrightarrow{a_{2}}\right]=\overrightarrow{a_{1}} \cdot \overrightarrow{a_{2}}$
c) $\left[\vec{r} \overrightarrow{a_{2}} \overrightarrow{a_{1}}\right]=\overrightarrow{a_{1}} \cdot \overrightarrow{a_{2}}$
d) None of these
40. The points $A(4,5,1), B(0,-1,-1), C(3,9,4)$ and $D(-4,4,4)$ are
a) Collinear
b) Coplanar
c) Non-coplanar
d) Non-collinear
41. The direction ratio of the line $x-y+z-5=0=x-3 y-6$ are
a) $3,1,-2$
b) $2,-4,1$
c) $\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}$
d) $\frac{2}{\sqrt{41}}, \frac{-4}{\sqrt{41}}, \frac{1}{\sqrt{41}}$
42. The value of k such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies in the plane $2 x-4 y+z=7$, is
a) 7
b) -7
c) No real value
d) 4
43. If M denotes the mid point of the line joining $A(4 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-10 \hat{\mathbf{k}})$ and $B(-\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}+\hat{\mathbf{k}})$, then equation of the plane through M and perpendicular to $A B$ is
a) $\overrightarrow{\mathbf{r}} \cdot(5 \hat{\mathbf{\imath}}+3 \hat{\mathbf{\jmath}}-11 \hat{\mathbf{k}})-\frac{135}{2}=0$
b) $\overrightarrow{\mathbf{r}} \cdot\left(\frac{3}{2} \hat{\mathbf{\imath}}+\frac{7}{2} \hat{\mathbf{\jmath}}-\frac{9}{2} \hat{\mathbf{k}}\right)+\frac{135}{2}=0$
c) $\overrightarrow{\mathbf{r}} \cdot(4 \hat{\mathbf{\imath}}+5 \hat{\mathbf{\jmath}}-10 \hat{\mathbf{k}})+4=0$
d) $\overrightarrow{\mathbf{r}} \cdot(-\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}+\hat{\mathbf{k}})+4=0$
44. The plane passing through the point $(5,1,2)$ perpendicular to the line $2(x-2)=y-4=z-5$ will meet the line in the point
a) $(1,2,3)$
b) $(2,3,1)$
c) $(1,3,2)$
d) $(3,2,1)$
45. The vector equation of the plane through the point $\hat{\imath}+2 \hat{\jmath}-\hat{k}$ and perpendicular to the line of intersection of the plane $\vec{r} \cdot(3 \hat{\imath}-\hat{\jmath}+\hat{k})=1$ and $\vec{r} \cdot(\hat{\imath}+4 \hat{\jmath}-2 \hat{k})=2$, is
a) $\vec{r} \cdot(2 \hat{\imath}+7 \hat{\jmath}-13 \hat{k})=1$
b) $\vec{r} \cdot(2 \hat{\imath}-7 \hat{\jmath}-13 \hat{k})=1$
c) $\vec{r} \cdot(2 \hat{\imath}+7 \hat{\jmath}+13 \hat{k})=0$
d) None of these
46. A plane which passes through the point $(3,2,0)$ and the line $\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}$ is
a) $x-y+z=1$
b) $x+y+z=5$
c) $x+2 y-z=0$
d) $2 x-y+z=5$
47. The equation $|x|=p,|y|=p,|z|=p$ in $x y z$ space represent
a) Cube
b) Rhombus
c) Sphere of radius p
d) Point (p, p, p)
48. The centre of the sphere passing through the origin and through the intersection points of the plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ with axes is
a) $\left(\frac{a}{2}, 0,0\right)$
b) $\left(0, \frac{a}{2}, 0\right)$
c) $\left(0,0, \frac{a}{2}\right)$
d) $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$
49. The shortest distance between the straight lines $\frac{x-6}{1}=\frac{2-y}{2}=\frac{z-2}{2}$ and $\frac{x+4}{3}=\frac{y}{-2}=\frac{1-z}{2}$ is
a) 9
b) $\frac{25}{3}$
c) $\frac{16}{3}$
d) 4
50. The equation of the plane containing the line
$\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$ is
a) $a x_{1}+b y_{1}+c z_{1}=0$
b) $a l+b m+c n=0$
c) $\frac{a}{l}=\frac{b}{m}=\frac{c}{n}$
d) $l x_{1}+m y_{1}+n z_{1}=0$
51. The coordinate the point of intersection of the line $\frac{x-1}{1}=\frac{y+2}{2}=\frac{z-2}{2}$ with the plane $3 x+4 y+5 z-25=0$ is
a) $(5,10,6)$
b) $(10,5,6)$
c) $(5,5,-6)$
d) $(5,10,-6)$
52. Equation of the plane which passes through the line of intersection of the planes $P=a x+b y+c z+d=$ $0, P^{\prime}=a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0$ and parallel to x-axis, is
a) $P a-P^{\prime} a^{\prime}=0$
b) $P / a=P^{\prime} / a^{\prime}=0$
c) $P a+P^{\prime} a^{\prime}=0$
d) $P / a=P^{\prime} /^{\prime} a^{\prime}$
53. The distance of the point $A(-2,3,1)$ from the line $P Q$ through $P(-3,5,2)$ which make equal angles with the axes is
a) $\frac{2}{\sqrt{3}}$
b) $\sqrt{\frac{14}{3}}$
c) $\frac{16}{\sqrt{3}}$
d) $\frac{5}{\sqrt{3}}$
54. A line with positive direction cosines passes through the point $P(2,-1,2)$ and makes equal angles with the
coordinate axes. The line meets the plane $2 x+y+z=9$ at point Q. The length of the line segment $P Q$ equals
a) 1
b) $\sqrt{2}$
c) $\sqrt{3}$
d) 2
55. A line with direction ratios proportional to $2,1,2$ meets each of the lines $x=y+a=z$ and $x+a=2 y=$ $2 z$. The coordinates of the points of intersection are given by
a) $(3 a, 3 a, 3 a),(a, a, a)$
b) $(3 a, 2 a, 3 a),(a, a, a)$
c) $(3 a, 2 a, 3 a),(a, a, 2 a)$
d) $(2 a, 3 a, 3 a),(2 a, a, a)$
56. The position vectors of two points P and Q are $3 \hat{\imath}+\hat{\jmath}+2 \hat{k}$ and $\hat{\imath}-2 \hat{\jmath}-4 \hat{k}$ respectively. The equation of the plane through Q and perpendicular to $P Q$, is
a) $\vec{r} \cdot(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})=28$
b) $\vec{r} \cdot(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})=32$
c) $\hat{r} \cdot(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})+28=0$
d) None of these
57. The equation of the line of intersection of the planes $x+2 y+z=3$ and $6 x+8 y+3 z=13$ can be written as
a) $\frac{x-2}{2}=\frac{y+1}{-3}=\frac{z-3}{4}$
b) $\frac{x-2}{2}=\frac{y+1}{3}=\frac{z-3}{4}$
c) $\frac{x+2}{2}=\frac{y-1}{-3}=\frac{z-3}{4}$
d) $\frac{x+2}{2}=\frac{y+2}{3}=\frac{z-3}{4}$
58. If the foot of the perpendicular from $(0,0,0)$ to a plane is $(1,2,2)$, then the equation of the plane is
a) $-x+2 y+8 z-9=0$
b) $x+2 y+2 z-9=0$
c) $x+y+z-5=0$
d) $x+2 y-3 z+1=0$
59. A plane pass through a fixed point (p, q) and cut the axes in A, B, C. Then, the locus of the centre of the sphere $O A B C$ is
a) $\frac{p}{x}+\frac{q}{y}+\frac{r}{z}=2$
b) $\frac{p}{x}+\frac{q}{y}+\frac{r}{z}=1$
c) $\frac{p}{x}+\frac{q}{y}+\frac{r}{z}=3$
d) None of these
60. The equation of the plane containing the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and the point ($0,7,-7$), is
a) $x+y+z=1$
b) $x+y+z=2$
c) $x+y+z=0$
d) None of these
61. The equation of the plane passing through the origin and containing the line $\frac{x-1}{5}=\frac{y-2}{4}=\frac{z-3}{5}$ is
a) $x+5 y-3 z=0$
b) $x-5 y+3 z=0$
c) $x-5 y-3 z=0$
d) $3 x-10 y+5 z=0$
62. The distance of the point $(2,3,-5)$ from the plane $x+2 y-2 z=9$ is
a) 4
b) 3
c) 2
d) 1
63. The ratio in which $y z$-palne divides the line segment joining $(-3,4,-2)$ and $(2,1,3)$ is
a) $-4: 1$
b) $3: 2$
c) $-2: 3$
d) $1: 4$
64. If the direction cosines of a line are $\left(\frac{1}{c}, \frac{1}{c}, \frac{1}{c}\right)$, then
a) $0<c<1$
b) $c>2$
c) $c= \pm \sqrt{2}$
d) $c= \pm \sqrt{3}$
65. If a line makes an angle of $\frac{\pi}{4}$ with the positive direction of x-axis and y-axis, then the angle that the line makes with the positive direction of the z-axis is
a) $\frac{\pi}{6}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{2}$
66. A plane makes intercepts a, b, c at A, B, C on the coordinate axes respectively. If the centroid of the $\triangle A B C$ is at $(3,2,1)$ then the equation of the plane is
a) $x+2 y+3 z=9$
b) $2 x-3 y-6 z=18$
c) $2 x+3 y+6 z=18$
d) $2 x+y+6 z=18$
67. The equation of the plane through the point, $(1,2,3)$ and parallel to the plane $x+2 y+5 z=0$ is
a) $(x-1)+2(y-2)+5(z-3)=0$
b) $x+2 y+5 z=14$
c) $x+2 y+5 z=6$
d) None of the above
68. If vertices of a triangle are $A(1,-1,2), B(2,0,-1)$ and $C(0,2,1)$, then the area f a triangle is
a) $\sqrt{6}$
b) $2 \sqrt{6}$
c) $3 \sqrt{6}$
d) $4 \sqrt{6}$
69. The equation of the plane through the intersection of the planes $x+y+z=1$ and $2 x+3 y-z+4=0$
and parallel to x-axis is
a) $y-3 z+6=0$
b) $3 y-z+6=0$
c) $y+3 z+6=0$
d) $3 y-2 z+6=0$
70. The angle between two planes $2 x-y+z=6$ and $x+2 y+3 z=3$ is
a) $\cos ^{-1}\left(\frac{1}{2} \sqrt{\frac{1}{7}}\right)$
b) $\cos ^{-1}\left(\frac{1}{2} \sqrt{\frac{2}{7}}\right)$
c) $\cos ^{-1}\left(\frac{1}{2} \sqrt{\frac{3}{7}}\right)$
d) $\cos ^{-1}\left(\frac{1}{2} \sqrt{\frac{4}{7}}\right)$
71. The projection of the line segment joining the points $(-1,0,3)$ and $(2,5,1)$ on the line whose direction ratios are $6,2,3$ is
a) $\frac{10}{7}$
b) $\frac{22}{7}$
c) $\frac{18}{7}$
d) None of these
72. If the foot of the perpendicular from the origin to a plane is (a, b, c), then equation of the plane is
a) $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
b) $a x+b y+c z=1$
c) $a x+b y+c z=a^{2}+b^{2}+c^{2}$
d) $a x+b y+c z=0$
73. A variable plane which remains at a constant distance p from the origin cuts the coordinate axes in A, B, C. The locus of the centroid of the tetrahedron $O A B C$ is $y^{2} z^{2}+z^{2} x^{2}+x^{2} y^{2}=k x^{2} y^{2} z^{2}$, where k is equal to
a) $9 p^{2}$
b) $\frac{9}{p^{2}}$
c) $\frac{7}{p^{2}}$
d) $\frac{16}{p^{2}}$
74. The equation of the plane through the intersection of the planes $x+y+z=1$ and $2 x+3 y-z+4=0$ and parallel to x-axis, is
a) $y-3 z+6=0$
b) $3 y-z+6=0$
c) $y+3 z+6=0$
d) $3 y-2 z+6=0$
75. The plane $2 x+3 y+4 z=1$ meets the coordinate axes in A, B, C The centroid of the triangle $A B C$ is
a) $(2,3,4)$
b) $\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right)$
c) $\left(\frac{1}{6}, \frac{1}{9}, \frac{1}{12}\right)$
d) $\left(\frac{3}{2}, \frac{3}{3}, \frac{3}{4}\right)$
76. The equation of the plane passing through the line $\frac{x-1}{5}=\frac{y+2}{6}=\frac{z-3}{4}$ and the point $(4,3,7)$ is
a) $4 x+8 y+7 z=41$
b) $4 x-8 y+7 z=41$
c) $4 x-8 y-7 z=41$
d) $4 x-8 y+7 z=39$
77. The distance of the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $x-y+z=5$ from the point $(-1,-5,-10)$ is
a) 13
b) 12
c) 11
d) 8
78. A variable plane passes through a fixed point (a, b, c) and meets the coordinate axes in P, Q, R. The locus of the point of intersection of the planes through P, Q, R parallel to the coordinate planes is
a) $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1$
b) $a x+b y+c z=1$
c) $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=-1$
d) $a x+b y+c z=-1$
79. The line passing the points $6 \vec{a}-4 \vec{b}+4 \vec{c},-4 \vec{c}$ and the line joining the points $-\vec{a}-2 \vec{b}-3 \vec{c}, \vec{a}+2 \vec{b}-5 \vec{c}$ intersect at
a) $-4 \vec{a}$
b) $4 \vec{a}-\vec{b}-\vec{c}$
c) $4 \vec{c}$
d) None of these
80. The vector equation of the plane through the point $(2,1,-1)$ and passing through the line of intersection of the plane $\vec{r} \cdot(\hat{\imath}+3 \hat{\jmath}-\hat{k})=0$ and $\vec{r} \cdot(\hat{\jmath}+2 \hat{k})=0$, is
a) $\vec{r} \cdot(\hat{\imath}+9 \hat{\jmath}+11 \hat{k})=0$
b) $\hat{r} \cdot(\hat{\imath}+9 \hat{\jmath}+11 \hat{k})=6$
c) $\hat{r} \cdot(\hat{\imath}-3 \hat{\jmath}-13 \hat{k})=0$
d) None of these
81. The distance between the planes given by $\vec{r} \cdot(\hat{\imath}+2 \hat{\jmath}-2 \hat{k})+5=0$ and $\vec{r} \cdot(\hat{\imath}+2 \hat{\jmath}-2 \hat{k})-8=0$ is
a) 1 unit
b) $\frac{13}{3}$ units
c) 13 units
d) None of these
82. A line joining points $(4,-1,2)$ and $(-3,2,3)$ meets the plane at the point $(-10,5,4)$ at 90°, then equation of the plane is
a) $7 x-3 y-z+89=0$
b) $7 x+3 y+z+89=0$
c) $7 x-3 y+z+89=0$
d) None of these
83. Two systems of rectangular axes have the same origin. If a plane cuts them at distance a, b, c and $\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{c}^{\prime}$
from the origin, then
a) $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$
b) $\frac{1}{a^{2}}+\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
c) $\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
d) $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
84. If $(2,-1,3)$ is the foot of the perpendicular drown from the origin to the plane, then the equation of the plane is
a) $2 x+y-3 z+6=0$
b) $2 x-y+3 z-14=0$
c) $2 x-y+3 z-13=0$
d) $2 x+y+3 z-10=0$
85. If projection of a line on x, y and z-axes are 6,2 and 3 respectively, then direction cosines of the line is
a) $\left(\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right)$
b) $\left(\frac{7}{6}, \frac{7}{2}, \frac{7}{3}\right)$
c) $\left(\frac{6}{11}, \frac{2}{11}, \frac{3}{11}\right)$
d) None of these
86. If the plane $3 x-2 y-z-18=0$ meets the coordinate axes in A, B, C then the centroid of $\triangle A B C$ is
a) $(2,3,-6)$
b) $(2,-3,6)$
c) $(-2,-3,6)$
d) $(2,-3,-6)$
87. If for a plane, the intercepts on the coordinate axes are $8,4,4$ then the length of the perpendicular from the origin on to the plane is
a) $\frac{8}{3}$
b) $\frac{3}{8}$
c) 3
d) $\frac{4}{3}$
88. The equation of the sphere concentric with the sphere
$2 x^{2}+2 y^{2}+2 z^{2}-6 x+2 y-4 z=1$ and double its radius is
a) $x^{2}+y^{2}+z^{2}-x+y-z=1$
b) $x^{2}+y^{2}+z^{2}-6 x+2 y-4 z=1$
c) $2 x^{2}+2 y^{2}+2 z^{2}-6 x+2 y-4 z-15=0$
d) $2 x^{2}+2 y^{2}+2 z^{2}-6 x+2 y-4 z-25=0$
89. The angle between the lines $\overrightarrow{\mathbf{r}}=(4 \hat{\mathbf{\imath}}-\hat{\mathbf{\jmath}})+s(2 \hat{\mathbf{\imath}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}})$ and $\overrightarrow{\mathbf{r}}=(\hat{\mathbf{\imath}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})+t(\hat{\mathbf{\imath}}+3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$ is
a) $3 \pi / 2$
b) $\pi / 3$
c) $2 \pi / 3$
d) $\pi / 6$
90. Equation of the plane, passing through the line of intersection of the plane $P \equiv a x+b y+c z+d=0, P^{\prime} \equiv$ $a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0$ and parallel to x-axis is
a) $P a-P^{\prime} a^{\prime}=0$
b) $P / a+P^{\prime} / a^{\prime}=0$
c) $P a+P^{\prime} a^{\prime}=0$
d) $P / a=P^{\prime} / a^{\prime}$
91. Equation of the plane through three points A, B, C with position vectors $-6 \hat{\mathbf{1}}+3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}, 3 \hat{\mathbf{\imath}}-2 \hat{\mathbf{\jmath}}+4 \hat{\mathbf{k}}, 5 \hat{\mathbf{i}}+$ $7 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ is
a) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}-\hat{\mathbf{\jmath}}-7 \hat{\mathbf{k}})+23=0$
b) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+7 \hat{\mathbf{k}})=23$
c) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}-7 \hat{\mathbf{k}})+23=0$
d) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{\imath}}-\hat{\mathbf{\jmath}}-7 \hat{\mathbf{k}})=23$
92. The equation of the plane in which the lines $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$ lie, is
a) $17 x-47 y-24 z+172=0$
b) $17 x+47 y-24 z+172=0$
c) $17 x+47 y+24 z+172=0$
d) $17 x-47 y+24 z+172=0$
93. The length of the perpendicular from the origin to the plane passing through three non-collinear points $\vec{a}, \vec{b}, \vec{c}$ is
a) $\frac{[\vec{a} \vec{b} \vec{c}]}{|\vec{a} \times \vec{b}+\vec{c} \times \vec{a}+\vec{b} \times \vec{c}|}$
b) $\frac{2[\vec{a} \vec{b} \vec{c}]}{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}$
c) $[\vec{a} \vec{b} \vec{c}]$
d) None of these
94. The shortest distance from the point $(1,2,-1)$ to the surface of the sphere $x^{2}+y^{2}+z^{2}=24$ is
a) $3 \sqrt{6}$
b) $\sqrt{6}$
c) $2 \sqrt{6}$
d) 2
95. A plane π makes intercepts 3 and 4 respectively on z-axis and x-axis. If π is parallel to y-axis, then its equation is
a) $3 x+4 z=12$
b) $3 z+4 x=12$
c) $3 y+4 z=12$
d) $3 z+4 y=12$
96. A line passes through two points $A(2,-3,-1)$ and $B(8,-1,2)$. The coordinates of a point on this line at a distance of 14 units from A are
a) $(14,1,5)$
b) $(-10,-7,7)$
c) $(86,25,41)$
d) None of these
97. The equation of the perpendicular from the point (α, β, γ) to the plane $a x+b y+c z+d=0$ is
a) $\frac{x-a}{a \alpha}=\frac{y-b}{b \beta}=\frac{z-c}{c \gamma}$
b) $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}$
c) $\frac{x-\alpha}{a}=\frac{y-\beta}{b}=\frac{z-\gamma}{c}$
d) $\frac{x}{\alpha}=\frac{y}{\beta}=\frac{z}{\gamma}$
98. The equation of the plane through the points $(2,2,1)$ and $(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z-1=0$, is
a) $3 x+4 y+5 z=9$
b) $3 x+4 y-5 z=9$
c) $3 x+4 y-5 z-9=0$
d) None of these
99. The perimeter of the triangle with verities at $(1,0,0) \cdot(0,1,0)$ and $(0,0,1)$ is
a) 3
b) 2
c) $2 \sqrt{2}$
d) $3 \sqrt{2}$
100. If the distance of the point $P(1,-2,1)$ from the plane $x+2 y-2 z=\alpha$, where $\alpha>0$, is 5 , then the foot of the perpendicular from P to the plane is
a) $\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$
b) $\left(\frac{4}{3},-\frac{4}{3}, \frac{1}{3}\right)$
c) $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$
d) $\left(\frac{2}{3},-\frac{1}{3}, \frac{5}{2}\right)$
101. If the lines
$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$
and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$
interested, then the value of k is
a) $\frac{3}{2}$
b) $\frac{9}{2}$
c) $-\frac{2}{9}$
d) $-\frac{3}{2}$
102. A point on x-axis which is equidistance from both the points $(1,2,3)$ and $(3,5,-2)$ is
a) $(-6,0,0)$
b) $(5,0,0)$
c) $(-5,0,0)$
d) $(6,0,0)$
103. The angle between the line $\frac{x+4}{1}=\frac{y-3}{2}=\frac{z+2}{3}$ and $\frac{x}{3}=\frac{y-1}{-2}=\frac{z}{1}$ is
a) $\sin ^{-1}\left(\frac{1}{7}\right)$
b) $\cos ^{-1}\left(\frac{2}{7}\right)$
c) $\cos ^{-1}\left(\frac{1}{7}\right)$
d) None of these
104. The points $(5,2,4),(6,-1,2)$ and $(8,-7, k)$ are collinear, if k is equal to
a) -2
b) 2
c) 3
d) -1
105. The equation of the plane through the point $(2,5,-3)$ perpendicular to the planes $x+2 y+2 z=1$ and $x-2 y+3 z=4$ is
a) $3 x-4 y+2 z-20=0$
b) $7 x-y+5 z=30$
c) $x-2 y+z=11$
d) $10 x-y-4 z=27$
106. The direction cosines of the line $4 x-4=1-3 y=2 z-1$ are
a) $\frac{3}{\sqrt{56}}, \frac{-4}{\sqrt{56}}, \frac{6}{\sqrt{56}}$
b) $\frac{3}{\sqrt{29}}, \frac{-4}{\sqrt{29}}, \frac{6}{\sqrt{29}}$
c) $\frac{3}{\sqrt{61}}, \frac{-4}{\sqrt{61}}, \frac{6}{\sqrt{61}}$
d) $4,-3,2$
107. Equation of the plane passing through the intersection of the planes $x+y+z=6$ and $2 x+3 y+4 z+5=$ 0 and the point $(1,1,1)$ is
a) $20 x+23 y+26 z-69=0$
b) $31 x+45 y+49 z+52=0$
c) $8 x+5 y+2 z-69=0$
d) $4 x+5 y+6 z-7=0$
108. The equation of the plane through the point $(0,-4,-6)$ and $(-2,9,3)$ and perpendicular to the plane $x-4 y-2 z=8$ is
a) $3 x+3 y-2 z=0$
b) $x-2 y+z=2$
c) $2 x+y-z=2$
d) $5 x-3 y+2 z=0$
109. If a line makes angle $\frac{\pi}{3}$ and $\frac{\pi}{4}$ with the x and y-axes respectively, then the angle made by the line and z-axis is
a) $\frac{\pi}{2}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{4}$
d) $\frac{5 \pi}{12}$
110. Let $(3,4,-1)$ and $(-1,2,3)$ are the end points of a diameter of sphere. Then the radius of the sphere is equal to
a) 1
b) 2
c) 3
d) 9
111. The points $(5,-4,2),(4,-3,1),(7,-6,4)$ and $(8,-7,5)$ are the vertices of
a) A rectangle
b) A square
c) A parallelogram
d) None of these
112. The equation of the plane containing the lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \vec{b}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \vec{b}$, is
a) $\vec{r} \cdot\left(\overrightarrow{a_{1}}-\overrightarrow{a_{2}}\right) \times \vec{b}=\left[\overrightarrow{a_{1}} \overrightarrow{a_{2}} \vec{b}\right]$
b) $\vec{r} \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \times \vec{b}=\left[\overrightarrow{a_{1}} \overrightarrow{a_{2}} \vec{b}\right]$
c) $\vec{r} \cdot\left(\overrightarrow{a_{1}}+\overrightarrow{a_{2}}\right) \times \vec{b}=\left[\overrightarrow{a_{2}} \overrightarrow{a_{1}} \vec{b}\right]$
d) None of these
113. If $\left(\frac{1}{2}, \frac{1}{3}, n\right)$ are the direction cosines of a line, then the value of n is
a) $\frac{\sqrt{23}}{6}$
b) $\frac{23}{6}$
c) $\frac{2}{3}$
d) $\frac{3}{2}$
114. The vector equation of the plane passing through the origin and the line of intersection of the plane $\vec{r} \cdot \vec{a}=\lambda$ and $\vec{r} \cdot \vec{b}=\mu$ is
a) $\vec{r} \cdot(\lambda \vec{a}-\mu \vec{b})=0$
b) $\vec{r} \cdot(\lambda \vec{b}-\mu \vec{a})=0$
c) $\vec{r} \cdot(\lambda \vec{a}+\mu \vec{b})=0$
d) $\vec{r} \cdot(\lambda \vec{b}+\mu \vec{a})=0$
115. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are direction cosines of the two lines inclined to each other at an angle, then the direction cosines of the external bisector of the angle between the lines are
a) $\frac{l_{1}+l_{2}}{2 \sin \theta / 2}, \frac{m_{1}+m_{2}}{2 \sin \theta / 2}, \frac{n_{1}+n_{2}}{2 \sin \theta / 2}$
b) $\frac{l_{1}+l_{2}}{2 \cos \theta / 2}, \frac{m_{1}+m_{2}}{2 \cos \theta / 2}, \frac{n_{1}+n_{2}}{2 \cos \theta / 2}$
c) $\frac{l_{1}-l_{2}}{2 \sin \theta / 2}, \frac{m_{1}-m_{2}}{2 \sin \theta / 2}, \frac{n_{1}-n_{2}}{2 \sin \theta / 2}$
d) $\frac{l_{1}-l_{2}}{2 \cos \theta / 2}, \frac{m_{1}-m_{2}}{2 \cos \theta / 2}, \frac{n_{1}-n_{2}}{2 \cos \theta / 2}$
116. The direction ratios of the normal to the plane passing through the points $(1,-2,3),(-1,2,-1)$ and parallel to the line $\frac{x-2}{2}=\frac{y+1}{3}=\frac{z}{4}$ are proportional to
a) $2,3,4$
b) $4,0,7$
c) $-2,0,-1$
d) $2,0,-1$
117. The position vector of a point at a distance of $3 \sqrt{11}$ units from $\hat{\imath}-\hat{\jmath}+2 \hat{k}$ on a line passing through the points $\hat{\imath}-\hat{\jmath}+2 \hat{k}$ and $3 \hat{\imath}+\hat{\jmath}+\hat{k}$ is
a) $10 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}$
b) $-8 \hat{\imath}-4 \hat{\jmath}-\hat{k}$
c) $8 \hat{\imath}+4 \hat{\jmath}+\hat{k}$
d) $-10 \hat{\imath}-2 \hat{\jmath}-5 \hat{k}$
118. The centre and radius of the sphere $x^{2}+y^{2}+z^{2}+3 x-4 z+1=0$ are
a) $\left(-\frac{3}{2}, 0,-2\right), \frac{\sqrt{21}}{2}$
b) $\left(\frac{3}{2}, 0,2\right), \sqrt{21}$
c) $\left(-\frac{3}{2}, 0,2\right) \cdot \frac{\sqrt{21}}{2}$
d) $\left(-\frac{3}{2}, 2,0\right), \frac{21}{2}$
119. The direction cosines of the line $6 x-2=3 y+1=2 z-2$ are
a) $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
b) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
c) $1,2,3$
d) None of these
120. The cartesian equation of the plane perpendicular to the line $\frac{x-1}{2}=\frac{y-3}{-1}=\frac{z-4}{2}$ and passing through the origin is
a) $2 x-y+2 z-7=0$
b) $2 x+y+2 z=0$
c) $2 x-y+2 z=0$
d) $2 x-y-z=0$
121. The point of intersection of the lines
$\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1}, \frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4}$
is
a) $(2,10,-4)$
b) $\left(21, \frac{5}{3}, \frac{10}{3}\right)$
c) $(5,-7,-2)$
d) $(-3,3,6)$
122. If the position vectors of the points A and B are $3 \hat{\imath}+\hat{\jmath}+2 \hat{k}$ and $\hat{\imath}-2 \hat{\jmath}-4 \hat{k}$ respectively, then the equation of the plane through B and perpendicular to $A B$ is
a) $2 x+3 y+6 z+28=0$
b) $3 x+2 y+6 z=28$
c) $2 x-3 y+6 z+28=0$
d) $3 x-2 y+6 z=28$
123. The point equidistant from the point $(a, 0,0),(0, b, 0),(0,0, c)$ ad $(0,0,0)$ is
а) $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$
b) (a, b, c)
c) $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$
d) None of these
124. If a plane meets the coordinate axes at A, B and C such that the centroid of the triangle is $(1,2,4)$, then the equation of the plane is
a) $x+2 y+4 z=12$
b) $4 x+2 y+z=12$
c) $x+2 y+4 z=3$
d) $4 x+2 y+z=3$
125. If the coordinates of the vertices of a $\triangle A B C$ are $A(-1,3,2), B(2,3,5)$ and $C(3,5,-2)$, then $\angle A$ is equal to
a) 45°
b) 60°
c) 90°
d) 30°
126. The distance between the line $\overrightarrow{\mathbf{r}}=2 \hat{\mathbf{\imath}}-2 \hat{\mathbf{\jmath}}+3 \hat{\mathbf{k}}+\lambda(\hat{\mathbf{\imath}}-\hat{\mathbf{\jmath}}+4 \hat{\mathbf{k}})$ and the plane $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{\imath}}+5 \hat{\mathbf{\jmath}}+\hat{\mathbf{k}})=5$ is
a) $\frac{10}{3}$
b) $\frac{3}{10}$
c) $\frac{10}{3 \sqrt{3}}$
d) $\frac{10}{9}$
127. A point on XOZ - plane divides the join of $(5,-3,-2)$ and $(1,2,-2)$ at
a) $\left(\frac{13}{5}, 0,-2\right)$
b) $\left(\frac{13}{5}, 0,2\right)$
c) $(5,0,2)$
d) $(5,0,-2)$
128. A plane makes intercepts $-6,3,4$ upon the coordinate axes. Then, the length of the perpendicular from the origin on it is
a) $\frac{2}{\sqrt{29}}$
b) $\frac{3}{\sqrt{29}}$
c) $\frac{4}{\sqrt{29}}$
d) $\frac{12}{\sqrt{29}}$
129. The equation of the plane counting the lines $\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z}{3}$ and $\frac{x}{2}=\frac{y-2}{-1}=\frac{z+1}{3}$ is
a) $8 x-y+5 z-8=0$
b) $8 x+y-5 z-7=0$
c) $x-8 y+3 z+6=0$
d) $8 x+y-5 z+7=0$
130. The equation of the plane which bisects the line joining $(2,3,4)$ and $(6,7,8)$, is
a) $x-y-z-15=0$
b) $x-y+z-15=0$
c) $x+y+z-15=0$
d) $x+y+z+15=0$
131. The distance between the points $(1,4,5)$ and $(2,2,3)$ is
a) 5
b) 4
c) 3
d) 2
132. The equation of the plane through the points $(1,2,3),(-1,4,2)$ and $(3,1,1)$ is
a) $5 x+y+12 z-23=0$
b) $5 x+6 y+2 z-23=0$
c) $x+6 y+2 z-13=0$
d) $x+y+z-13=0$
133. Equation of the plane parallel to the planes $x+2 y+3 z-5=0, x+2 y+3 z-7=0$ and equidistant from them is
a) $x+2 y+3 z-6=0$
b) $x+2 y+3 z-1=0$
c) $x+2 y+3 z-8=0$
d) $x+2 y+3 z-3=0$
134. The image of the point $(1,2,3)$ in lie $\frac{x}{2}=\frac{y-1}{3}=\frac{z-1}{3}$ is
a) $\left(1, \frac{5}{2}, \frac{5}{2}\right)$
b) $\left(1, \frac{9}{4}, \frac{11}{4}\right)$
c) $(1,3,2)$
d) $(3,1,2)$
135. If O is the origin and $O P=3$ with direction ratios $-1,2,-2$, then coordinates of P are
a) $(1,2,2)$
b) $(-1,2,-2)$
c) $(-3,6,-9)$
d) $(-1 / 3,2 / 3,-2 / 3)$
136. The equation of the sphere touching the three coordinate planes is
a) $x^{2}+y^{2}+z^{2}+2 a(x+y+z)+2 a^{2}=0$
b) $x^{2}+y^{2}+z^{2}-2 a(x+y+z)+2 a^{2}=0$
c) $x^{2}+y^{2}+z^{2} \pm 2 a(x+y+z)+2 a^{2}=0$
d) $x^{2}+y^{2}+z^{2} \pm 2 a x \pm 2 a y \pm 2 a z+2 a^{2}=0$
137. The angle between the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and the plane $3 x+2 y-3 z=4$ is
a) 45°
b) 0°
c) $\cos ^{-1}\left(\frac{24}{\sqrt{29} \sqrt{22}}\right)$
d) 90°
138. The equation of a line of intersection of planes $4 x+4 y-5 z=12$ and $8 x+12 y-13 z=32$ can be written as
a) $\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z}{4}$
b) $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z}{4}$
c) $\frac{x}{2}=\frac{y+1}{3}=\frac{z-2}{4}$
d) $\frac{x}{2}=\frac{y}{3}=\frac{z-2}{4}$
139. Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3 y-\alpha z+\beta=0$ Then (α, β) equals
a) $(6,-17)$
b) $(-6,7)$
c) $(5,-15)$
d) $(-5,15)$
140. If a line makes angles α, β, γ and δ with four diagonals of a cube, then the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma+$ $\sin ^{2} \delta$, is
a) $\frac{4}{3}$
b) $\frac{8}{3}$
c) $\frac{7}{3}$
d) 1
141. Find the direction ratio of
$\frac{3-x}{1}=\frac{y-2}{5}=\frac{2 z-3}{1}$
a) $1: 5: \frac{1}{2}$
b) $-1: 5: 1$
c) $-1: 5: \frac{1}{2}$
d) $1: 5: 1$
142. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are direction cosines of the two lines inclined to each other at an angle θ, then the direction cosines of internal bisector of the angle between these lines are
a) $\frac{l_{1}+l_{2}}{2 \sin \frac{\theta}{2}}, \frac{m_{1}+m_{2}}{2 \sin \frac{\theta}{2}}, \frac{n_{1}+n_{2}}{2 \sin \frac{\theta}{2}}$
b) $\frac{l_{1}+l_{2}}{2 \cos \frac{\theta}{2}} \frac{m_{1}+m_{2}}{2 \cos \frac{\theta}{2}}, \frac{n_{1}+n_{2}}{2 \cos \frac{\theta}{2}}$
c) $\frac{l_{1}-l_{2}}{2 \sin \frac{\theta}{2}}, \frac{m_{1}-m_{2}}{2 \sin \frac{\theta}{2}}, \frac{n_{1}-n_{2}}{2 \sin \frac{\theta}{2}}$
d) $\frac{l_{1}-l_{2}}{2 \cos \frac{\theta}{2}} \frac{m_{1}-m_{2}}{2 \cos \frac{\theta}{2}}, \frac{n_{1}-n_{2}}{2 \cos \frac{\theta}{2}}$
143. The plane $\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$, cuts the axes in A, B, C, then the area of the $\triangle A B C$, is
a) $\sqrt{29}$ sq units
b) $\sqrt{41}$ sq units
c) $\sqrt{61}$ sq units
d) None of these
144. If the planes $\vec{r} \cdot(2 \hat{\imath}-\lambda \hat{\jmath}+3 \hat{k})=0$ and $\vec{r} \cdot(\lambda \hat{\imath}+5 \hat{\jmath}-\hat{k})=5$ are perpendicular to each other, then value of $\lambda^{2}+\lambda$, is
a) 0
b) 2
c) 3
d) 1
145. If a sphere of radius r passes through the origin, then the extremities of the diameter parallel to x-axis lie on each of the spheres
a) $x^{2}+y^{2}+z^{2} \pm 2 r x=0$
b) $x^{2}+y^{2}+z^{2} \pm 2 r y=0$
c) $x^{2}+y^{2}+z^{2} \pm 2 r z=0$
d) $x^{2}+y^{2}+z^{2} \pm 2 r y \pm 2 r z=0$
146. If the distance of the point $(1,1,1)$ from the origin is half is distance from the plane $x+y+z+k=0$, then k is equal to
a) ± 3
b) ± 6
c) $-3,9$
d) $3,-9$
147. XOZ plane divides the join of $(2,3,1)$ and $(6,7,1)$ in the ratio
a) $3: 7$
b) $2: 7$
c) $-3: 7$
d) $-2: 7$
148. The point on the line $\frac{x-2}{1}=\frac{y+3}{-2}=\frac{z+5}{-2}$ at a distance of 6 from the point $(2,-3,-5)$ is
a) $(3,-5,-3)$
b) $(4,-7,-9)$
c) $(0,2,-1)$
d) $(-3,5,3)$
149. The direction ratios of a normal to the plane passing through $(0,0,1),(0,1,2)$ and $(1,2,3)$ are proportional to
a) $0,1,-1$
b) $1,0,-1$
c) $0,0,-1$
d) $1,0,0$
150. Ratio in which the $x y$-plane divides the join of $(1,2,3)$ and $(4,2,1)$ is
a) $3: 1$ internally
b) $3: 1$ externally
c) $1: 2$ internally
d) $2: 1$ externally
151. A vector \vec{r} is equally inclined with the coordinate axes. If the tip of \vec{r} is in the positive octant and $|\vec{r}|=6$, then \vec{r} is
a) $2 \sqrt{3}(\hat{\imath}-\hat{\jmath}+\hat{k})$
b) $2 \sqrt{3}(-\hat{\imath}+\hat{\jmath}+\hat{k})$
c) $2 \sqrt{3}(\hat{\imath}+\hat{\jmath}-\hat{k})$
d) $2 \sqrt{3}(\hat{\imath}+\hat{\jmath}+\hat{k})$
152. The angle between the planes $2 x-y+z=6$ and $x+y+2 z=3$ is
a) $\pi / 3$
b) $\cos ^{-1}(1 / 6)$
c) $\pi / 4$
d) $\pi / 6$
153. The vector equation of the plane through the point $2 \hat{\imath}-\hat{\jmath}-4 \hat{k}$ and parallel to the plane $\vec{r} \cdot(4 \hat{\imath}-12 \hat{\jmath}-$
$3 \hat{k})-7=0$, is
a) $\vec{r} \cdot(4 \hat{\imath}-12 \hat{\jmath}-3 \hat{k})=0$
b) $\vec{r} \cdot(4 \hat{\imath}-12 \hat{\jmath}-3 \hat{k})=32$
c) $\vec{r} \cdot(4 \hat{\imath}-12 \hat{\jmath}-3 \hat{k})=12$
d) None of these
154. An equation of the line passing through $3 \hat{\mathbf{\imath}}-5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$ and perpendicular to the plane $3 x-4 y=5 z=8$ is
a) $\frac{x-3}{3}=\frac{y+5}{-4}=\frac{z-7}{5}$
b) $\frac{x-3}{3}=\frac{y+4}{-5}=\frac{z-5}{7}$
c) $\overrightarrow{\mathbf{r}}=3 \hat{\mathbf{\imath}}+5 \hat{\mathbf{j}}-7 \hat{\mathbf{k}}+\lambda(3 \hat{\mathbf{\imath}}-4 \hat{\mathbf{\jmath}}-5 \hat{\mathbf{k}})$
d) $\begin{aligned} & \overrightarrow{\mathbf{r}}=3 \hat{\mathbf{\imath}}-4 \hat{\mathbf{\jmath}}-5 \hat{\mathbf{k}}+\mu(3 \hat{\mathbf{i}}+5 \hat{\mathbf{\jmath}}+7 \hat{\mathbf{k}}) \\ & \lambda, \mu \text { are parameters }\end{aligned}$
155. The equation of a line is $6 x-2=3 y-1=2 z-2$ The direction ratios of the line are
a) $1,2,3$
b) $1,1,1$
c) $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
d) $\frac{1}{3}, \frac{-1}{3}, \frac{1}{3}$
156. Angle between the line $\vec{r}=(2 \hat{\imath}-\hat{\jmath}+\hat{k})+\lambda(-\hat{\imath}+\hat{\jmath}+\hat{k})$ and the plane $\vec{r} \cdot(3 \hat{\imath}+2 \hat{\jmath}-\hat{k})=4$ is
a) $\cos ^{-1}\left(\frac{2}{\sqrt{42}}\right)$
b) $\cos ^{-1}\left(\frac{-2}{\sqrt{42}}\right)$
c) $\sin ^{-1}\left(\frac{2}{\sqrt{42}}\right)$
d) $\sin ^{-1}\left(\frac{-2}{\sqrt{42}}\right)$
157. A mirror and a source of light are situated at the origin O and at a point on $O X$ respectively. A ray of light from the source strikes the mirror and is reflected. If the direction ratios of the normal to the plane are proportional to $1,-1,1$, then direction cosines of the reflected ray are
a) $\frac{1}{2}, \frac{2}{3}, \frac{2}{3}$
b) $-\frac{1}{2}, \frac{2}{3}, \frac{2}{3}$
c) $-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}$
d) $-\frac{1}{2},-\frac{2}{3}, \frac{2}{3}$
158. If the direction ratio of two lines are given by $3 l m-4 l n+m n=0$ and $l+2 m+3 n=0$, then the angle between the line is
a) $\frac{\pi}{6}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{2}$
159. The points $A(-1,3,0), B(2,2,1)$ and $C(1,1,3)$ determine a plane. The distance from the plane to the point $D(5,7,8)$ is
a) $\sqrt{66}$
b) $\sqrt{71}$
c) $\sqrt{73}$
d) $\sqrt{76}$
160. The line of intersection of the planes $\vec{r} \cdot(3 \hat{\imath}-\hat{\jmath}+\hat{k})=1$ and $\vec{r} \cdot(\hat{\imath}+4 \hat{\jmath}-2 \hat{k})=2$ is parallel to the vector
a) $-2 \hat{\imath}+7 \hat{\jmath}+13 \hat{k}$
b) $2 \hat{\imath}+7 \hat{\jmath}-13 \hat{k}$
c) $-2 \hat{\imath}-7 \hat{\jmath}+13 \hat{k}$
d) $2 \hat{\imath}+7 \hat{\jmath}+13 \hat{k}$
161. The equation of the line of intersection of planes $4 x+4 y-5 z=12,8 x+12 y-13 z=32$ can be written as
a) $\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z}{4}$
b) $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z}{4}$
c) $\frac{x}{2}=\frac{y+1}{3}=\frac{z-2}{4}$
d) $\frac{x}{2}=\frac{y}{3}=\frac{z-2}{4}$
162. The vector equation of the line of intersection of the planes $\vec{r} \cdot(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})=0$ and $\vec{r} \cdot(3 \hat{\imath}+2 \hat{\jmath}+\hat{k})=0$, is
a) $\vec{r}=\lambda(\hat{\imath}+2 \hat{\jmath}+\hat{k})$
b) $\vec{r}=\lambda(\hat{\imath}-2 \hat{\jmath}+3 \hat{k})$
c) $\vec{r}=\lambda(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})$
d) None of these
163. Let a plane passes through the point $P(-1,-1,1)$ and also passes through a line joining the points $Q(0,1,1) Q(0,1,1)$ and $R(0,0,2)$. Then the distance of the plane from the point $(0,0,0)$ is
a) 3
b) 0
c) $\frac{1}{\sqrt{6}}$
d) $\frac{2}{\sqrt{6}}$
164. The direction cosines of the line passing through $P(2,3,-1)$ and the origin are
a) $\frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{1}{\sqrt{14}}$
b) $\frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{1}{\sqrt{14}}$
c) $\frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{1}{\sqrt{14}}$
d) $\frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}$
165. The shortest distance from the point $(1,2,-1)$ to the surface of the sphere $x^{2}+y^{2}+z^{2}=54$ is
a) $3 \sqrt{6}$
b) $2 \sqrt{6}$
c) $\sqrt{6}$
d) 2
166. The shortest distance between the lines
$\frac{x-2}{3}=\frac{y+3}{4}=\frac{z-1}{5}$ and
$\frac{x-5}{1}=\frac{y-1}{2}=\frac{z-6}{3}$ is
a) 3
b) 2
c) 1
d) 0
167. The image of the point $P(1,3,4)$ in the plane $2 x-y+z+3=0$ is
a) $(3,5,-2)$
b) $(-3,5,2)$
c) $(3,-5,2)$
d) $(-1,4,2)$
168. The vector from of the sphere $2\left(x^{2}+y^{2}+z^{2}\right)-4 x+6 y+8 z-5=0$ is
a) $\overrightarrow{\mathbf{r}} \cdot[\overrightarrow{\mathbf{r}}-(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})]=\frac{2}{5}$
b) $\overrightarrow{\mathbf{r}} \cdot[\overrightarrow{\mathbf{r}}-(2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}})]=\frac{1}{2}$
c) $\overrightarrow{\mathbf{r}} \cdot[\overrightarrow{\mathbf{r}}-(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})]=\frac{5}{2}$
d) $\overrightarrow{\mathbf{r}} \cdot[\overrightarrow{\mathbf{r}}-(2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}})]=\frac{5}{2}$
169. The angle between the line $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z+3}{-2}$ and the plane $x+y+4=0$, is
a) 0°
b) 30°
c) 45°
d) 90°
170. The equation to the straight line passing through the points $(4,-5,-2)$ and $(-1,5,3)$ is
a) $\frac{x-4}{1}=\frac{y+5}{-2}=\frac{z+2}{-1}$
b) $\frac{x+1}{1}=\frac{y-5}{2}=\frac{z-3}{-1}$
c) $\frac{x}{-1}=\frac{y}{5}=\frac{z}{3}$
d) $\frac{x}{4}=\frac{y}{-5}=\frac{z}{-2}$
171. The reflection of the plane $2 x-3 y+4 z-3=0$ in the plane $x-y+z-3=0$ is the plane
a) $4 x-3 y+2 z-15=0$
b) $x-3 y+2 z-15=0$
c) $4 x+3 y-2 z+15=0$
d) None of these
172. The equation of the plane passing through the line of intersection of the planes $x+y+z=6$ and $2 x+3 y+4 z+5=0$ and perpendicular to the plane $4 x+5 y-3 z=8$ is
a) $x+7 y+13 z-96=0$
b) $x+7 y+13 z+96=0$
c) $x+7 y-13 z-96=0$
d) $x-7 y+13 z+96=0$
173. The distance between the line $\vec{r}=2 \hat{\imath}-2 \hat{\jmath}+3 \hat{k}+\lambda(\hat{\imath}-\hat{\jmath}+4 \hat{k})$ and the plane $\vec{r} \cdot(\hat{\imath}+5 \hat{\jmath}+\hat{k})=5$, is
a) $\frac{10}{3 \sqrt{3}}$
b) $\frac{10}{3}$
c) $10 / 9$
d) None of these
174. The angle between the line $\frac{x-3}{2}=\frac{y-1}{1}=\frac{z+4}{-2}$ and the plane, $x+y+z+5=0$

Is
a) $\sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
b) $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
c) $\frac{\pi}{4}$
d) $\sin ^{-1}\left(\frac{1}{3 \sqrt{3}}\right)$
175. If for a plane, the intercepts on the coordinate axes are $8,4,4$, then the length of the perpendicular from the origin to the plane is
a) $8 / 3$
b) $3 / 8$
c) 3
d) $4 / 3$
176. A line makes acute angles of α, β and γ with the coordinate axes such that
$\cos \alpha \cos \beta=\cos \beta \cos \gamma=\frac{2}{9}$
And $\cos \gamma \cos \alpha=\frac{4}{9}$,
Then $\cos \alpha+\cos \beta+\cos \gamma$ is equal
To
a) $\frac{25}{9}$
b) $\frac{5}{9}$
c) $\frac{5}{3}$
d) $\frac{2}{3}$
177. The equation of the plane passing through the mid-point of the line segment of join of the points $P(1,2,3)$ and $Q(3,4,5)$ and perpendicular to it is
a) $x+y+z=9$
b) $x+y+z=-9$
c) $2 x+3 y+4 z=9$
d) $2 x+3 y+4 z=-9$
178. The intersection of the sphere $x^{2}+y^{2}+z^{2}+7 x-2 y-z=1$ and $x^{2}+y^{2}+z^{2}-3 x+3 y+4 z=-4$ is same as the intersection of one of the spheres and the plane is
a) $2 x-y-z=1$
b) $-2 x+y+z=1$
c) $2 x-y+z=1$
d) $2 x+y+z=1$
179. The equation of the plane which passes through the point $(2,-3,1)$ and perpendicular to the line joining points $(3,4,-1)$ and $(2,-1,5)$, is
a) $x+5 y-6 z+19=0$
b) $x-5 y+6 z-19=0$
c) $x+5 y+6 z+19=0$
d) $x-5 y-6 z-19=0$
180. The vector equation of the straight line
$\frac{1-x}{3}=\frac{y+1}{-2}=\frac{3-z}{-1}$ is
a) $\overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\lambda(3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})$
b) $\overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\lambda(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-\hat{\mathbf{k}})$
c) $\overrightarrow{\mathbf{r}}=(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-\hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}})$
d) $\overrightarrow{\mathbf{r}}=(3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}})$
181. The plane $\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$ cuts the coordinate axes in A, B, C then the area of the $\triangle A B C$ is
a) $\sqrt{29}$ sq units
b) $\sqrt{41}$ sq units
c) $\sqrt{61}$ sq units
d) None of these
182. A line makes acute angles of α, β and γ with the coordinate axes such that $\cos \alpha \cos \beta=\cos \beta \cos \gamma=\frac{2}{9}$ and $\cos \gamma \cos \alpha=\frac{4}{9}$, then $\cos \alpha+\cos \beta+\cos \gamma$ is equal to
a) $\frac{25}{9}$
b) $\frac{5}{9}$
c) $\frac{5}{3}$
d) $\frac{2}{3}$
183. The equation of the plane containing the line $\vec{r}=\hat{\imath}+\hat{\jmath}+\lambda(2 \hat{\imath}+\hat{\jmath}+4 \hat{k})$, is
a) $\vec{r} \cdot(\hat{\imath}+2 \hat{\jmath}-\hat{k})=3$
b) $\vec{r} \cdot(\hat{\imath}+2 \hat{\jmath}-\hat{k})=6$
c) $\vec{r} \cdot(-\hat{\imath}-2 \hat{\jmath}+\hat{k})$
d) None of these
184. If $O A$ is equally inclined to $O X, O Y$ and $O Z$ and if A is $\sqrt{3}$ units from the origin, then A is
a) $(3,3,3)$
b) $(-1,1,-1)$
c) $(-1,1,1)$
d) $(1,1,1)$
185. If a plane meets the coordinate axes at A, B and C such that the centroid of the triangle is $(1,2,4)$ then the equation of the plane is
a) $x+2 y+4 z=12$
b) $4 x+2 y+z=12$
c) $x+2 y+4 z=3$
d) $4 x+2 y+z=3$
186. The equation of the plane passing through the midpoint of the line of join of the points $(1,2,3)$ and $(3,4$, 5) and perpendicular to it is
a) $x+y+z=9$
b) $x+y+z=-9$
c) $2 x+3 y+4 z=9$
d) $2 x+3 y+4 z=-9$
187. The line passing through the points $(5,1, a)$ and $(3, b, 1)$ crosses the $y z$-plane at the point $\left(0, \frac{17}{2},-\frac{13}{2}\right)$. Then,
a) $a=8, b=2$
b) $a=2, b=8$
c) $a=4, b=6$
d) $a=6, b=4$
188. The image of the point $(5,4,6)$ in the plane $x+y+2 z-15=0$ is
a) $(3,2,2)$
b) $(2,3,2)$
c) $(2,2,3)$
d) $(-5,-4,-6)$
189. If α, β, γ be the angle which a line makes with the coordinate axes, then
a) $\sin ^{2} \alpha+\cos ^{2} \beta+\sin ^{2} \gamma=1$
b) $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=1$
c) $\cos ^{2} \alpha+\cos ^{2} \beta+\sin ^{2} \gamma=1$
d) $\sin ^{2} \alpha+\cos ^{2} \beta+\sin ^{2} \gamma=1$
190. The angle between the lines whose direction cosines are given by the equation $l^{2}+m^{2}-n^{2}=0, l+m+$ $n=0$, is
a) $\frac{\pi}{6}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{2}$
191. Equation of plane passing through the points $(2,2,1),(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z-1=0$, is
a) $3 x+4 y+5 z=9$
b) $3 x+4 y-5 z+9=0$
c) $3 x+4 y-5 z-9=0$
d) None of these
192. The vector equation of the plane passing through the origin and the line of intersection of the plane $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}=\lambda$ and $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{b}}=\mu$, is
a) $\overrightarrow{\mathbf{r}} \cdot(\lambda \overrightarrow{\mathbf{a}}-\mu \overrightarrow{\mathbf{b}})=0$
b) $\overrightarrow{\mathbf{r}} \cdot(\lambda \overrightarrow{\mathbf{b}}-\mu \overrightarrow{\mathbf{a}})=0$
c) $\overrightarrow{\mathbf{r}} \cdot(\lambda \overrightarrow{\mathbf{a}}+\mu \overrightarrow{\mathbf{b}})=0$
d) $\overrightarrow{\mathbf{r}} \cdot(\lambda \overrightarrow{\mathbf{b}}+\mu \overrightarrow{\mathbf{a}})=0$
193. The shortest distance between the lines $\vec{r}=(\hat{\imath}+2 \hat{\jmath}+\hat{k})+\lambda(2 \hat{\imath}+\hat{\jmath}+2 \hat{k})$ and, $\vec{r}=2 \hat{\imath}-\hat{\jmath}-\hat{k}+$ $\mu(2 \hat{\imath}+\hat{\jmath}+2 \hat{k})$, is
a) 0
b) $\sqrt{101} / 3$
c) $101 / 3$
d) None of these
194. A straight line which makes an angle of 60° with each of y and z-axes, this line makes with x-axis at an angle
a) 30°
b) 60°
c) 75°
d) 45°
195. If the straight lines $\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{3}$

Intersect at a point, then the integer k is equal to
a) -2
b) -5
c) 5
d) 2
196. The cosine of the angle A of the triangle with verities $A(1,-1,2), B(6,11,2), C(1,2,6)$ is
a) $63 / 65$
b) $36 / 65$
c) $16 / 65$
d) $13 / 64$
197. The angle between a line whose direction ratios are in the ratio 2:2:1 and a line joining $(3,1,4)$ to $(7,2$, 12) is
a) $\cos ^{-1}(2 / 3)$
b) $\cos ^{-1}(-2 / 3)$
c) $\tan ^{-1}(2 / 3)$
d) None of these
198. The equation of the plane passing through $(1,1,1)$ and $(1,-1,-1)$ and perpendicular to $2 x-y+z+5=$ 0 is
a) $2 x+5 y+z-8=0$
b) $x+y-z-1=0$
c) $2 x+5 y+z+4=0$
d) $x-y+z-1=0$
199. The distance of origin from the point of intersection of the line $\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and the plane $2 x+y-z=2$ is
a) $\sqrt{120}$
b) $\sqrt{83}$
c) $2 \sqrt{19}$
d) $\sqrt{78}$
200. Consider the following statements:

1. Line joining $(1,2,5)$; $(4,3,2)$ is parallel to the line joining $(5,1,-11),(8,2,-8)$
2. Three concurrent lines with $\mathrm{DC}^{\prime} s\left(l_{i}, m_{i}, n_{i}\right) i=1,2,3$ are

Coplanar, if $\left|\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right|=0$
3. The plane $x-2 y+z=21$ and the line $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-1}{3}$ are parallel

Which of these is/are correct?
a) (1) and (2)
b) (2) and (3)
c) (3) and (1)
d) (1), (2) and (3)
201. The distance of the point $P(2,3,4)$ from the line $1-x=\frac{y}{2}=\frac{1}{3}(1+z)$ is
a) $\frac{1}{7} \sqrt{35}$
b) $\frac{4}{7} \sqrt{35}$
c) $\frac{2}{7} \sqrt{35}$
d) $\frac{3}{7} \sqrt{35}$
202. The equation of the line of intersection of the planes $x+2 y+z=3$ and $6 x+8 y+3 z=13$ can be written as
a) $\frac{x-2}{2}=\frac{y+1}{-3}=\frac{z-3}{4}$
b) $\frac{x-2}{2}=\frac{y+1}{3}=\frac{z-3}{4}$
c) $\frac{x+2}{2}=\frac{y-1}{-3}=\frac{z-3}{4}$
d) $\frac{x+2}{2}=\frac{y+2}{3}=\frac{z-3}{4}$
203. A line makes an obtuse angle with the positive x-axis and angles $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with the positive y and z-axes respectively. Its direction cosine are
a) $-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{2}$
b) $\frac{1}{\sqrt{2}},-\frac{1}{2}, \frac{1}{2}$
c) $-\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}$
d) $\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}$
204. If $\overrightarrow{\mathbf{a}}$ is a constant vector and p is a real constant with $|\overrightarrow{\mathbf{a}}|^{2}>p$, then the locus of a point with position vector $\overrightarrow{\mathbf{r}}$ such that $|\overrightarrow{\mathbf{r}}|^{2}-2 \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}+p=0$ is
a) A sphere
b) An ellipse
c) A circle
d) A plane
205. The image of the point $P(1,3,4)$ in the plane $2 x-y+z+3=0$ is
a) $(3,5,-2)$
b) $(-3,5,2)$
c) $(3,-5,2)$
d) $(-1,4,2)$
206. The distance of the point $(1,-2,3)$ from the planes $x-y+z=5$ measured along the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$ is
a) 1
b) $\frac{6}{7}$
c) $\frac{7}{6}$
d) None of these
207. The coordinates of the foot of the perpendicular drawn from the point $A(1,0,3)$ to the join of the points $B(4,7,1)$ and $C(3,5,3)$ are
a) $(5 / 3,7 / 3,17 / 3)$
b) $(5,7,17)$
c) $(5 / 7,-7 / 3,17 / 3)$
d) $(-5 / 3,7 / 3,-17 / 3)$
208. The symmetric equation of lines $3 x+2 y+z-5=0$ and $x+y-2 z-3=0$, is
a) $\frac{x-1}{5}=\frac{y-4}{7}=\frac{z-0}{1}$
b) $\frac{x+1}{5}=\frac{y+4}{7}=\frac{z-0}{1}$
c) $\frac{x+1}{-5}=\frac{y-4}{7}=\frac{z-0}{1}$
d) $\frac{x-1}{-5}=\frac{y-4}{7}=\frac{z-0}{1}$
209. The distance of the point $P(a, b, c)$ from x-axis is
a) $\sqrt{b^{2}+c^{2}}$
b) $\sqrt{a^{2}+b^{2}}$
c) $\sqrt{a^{2}+c^{2}}$
d) None of these
210. P, Q, R, S Are four coplanar points on the sides $A B, B C, C D, D A$ of a skew quadrilateral. The product $\frac{A P}{P B} \cdot \frac{B Q}{Q C} \cdot \frac{C R}{R D} \cdot \frac{D S}{S A}$ equals
a) -2
b) -1
c) 2
d) 1
211. The shortest distance between the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$, is
a) $1 / \sqrt{6}$
b) $1 / 6$
c) $1 / 3$
d) $1 / \sqrt{3}$
212. A plane $x+y+z=-a \sqrt{3}$ touches the sphere $2 x^{2}+2 y^{2}+2 z^{2}-2 x+4 y-4 z+3=0$, then the value of a is
a) $\frac{1}{\sqrt{3}}$
b) $\frac{1}{2 \sqrt{3}}$
c) $1-\frac{1}{\sqrt{3}}$
d) $1+\frac{1}{\sqrt{3}}$
213. $A(3,2,0), B(5,3,2)$ and $C(-9,6,-3)$ are the vertices of a triangle $A B C$. If the bisector of $\angle A B C$ meets $B C$ at D, then coordinates of D are
a) $(19 / 8,57 / 16,17 / 16)$
b) $(-19 / 8,57 / 16,17 / 16)$
c) $(19 / 8,-57 / 16,17 / 16)$
d) None of these
214. The equation of the plane through the line of intersection of planes $a x+b y+c z+d=0, a^{\prime} x+b^{\prime} y+$ $c^{\prime} z+d^{\prime}=0$ and parallel to the line $y=0, z=0$ is
a) $\left(a b^{\prime}-a^{\prime} b\right) x+\left(b c^{\prime}-b^{\prime} c\right) y+\left(a d^{\prime}-a^{\prime} d\right)=0$
b) $\left(a b^{\prime}-a^{\prime} b\right) x+\left(b c^{\prime}-b^{\prime} c\right) y+\left(a d^{\prime}-a^{\prime} d\right) z=0$
c) $\left(a b^{\prime}-a^{\prime} b\right) y+\left(a c^{\prime}-a^{\prime} c\right) z+\left(a d^{\prime}-a^{\prime} d\right)=0$
d) None of these
215. If P is a point in space such that $\overrightarrow{O P}$ is inclined to $O X$ at 45° and $O Y$ to 60°, then $\overrightarrow{O P}$ is inclined to $O Z$ at
a) 75°
b) 60° or 120°
c) 75° or 105°
d) 255°
216. A variable plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ at a unit distance from origin cuts the coordinate axes at A, B and C.Centriod (x, y, z) satisfies the equation $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=k$. The value of k is
a) 9
b) 3
c) $\frac{1}{9}$
d) $\frac{1}{3}$
217. Equation of the plane containing the straight $\operatorname{lin} \frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is
a) $x+2 y-2 z=0$
b) $3 x+2 y-2 z=0$
c) $x-2 y+z=0$
d) $5 x+2 y-4 z=0$
218. The equation of the plane passing through the points ($0,1,2$) and ($-1,0,3$) and perpendicular to the plane $2 x+3 y+z=5$ is
a) $3 x-4 y+18 z+32=0$
b) $3 x+4 y-18 z+32=0$
c) $4 x+3 y-17 z+31=0$
d) $4 x-3 y+z+1=0$
219. The shortest distance between the skew lines $l_{1}: \overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}_{1}+\lambda \overrightarrow{\mathbf{b}}_{1} l_{2}: \overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}_{2}+\mu \overrightarrow{\mathbf{b}}_{2}$ is
a) $\frac{\left.\mid \overrightarrow{\mathbf{a}}_{2}-\overrightarrow{\mathbf{a}}_{1}\right) \cdot \overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2} \mid}{\left|\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}\right|}$
b) $\frac{\left.\mid \overrightarrow{\mathbf{a}}_{2}-\overrightarrow{\mathbf{a}}_{1}\right) \cdot \overrightarrow{\mathbf{a}}_{2} \times \overrightarrow{\mathbf{b}}_{2} \mid}{\left|\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}\right|}$
c) $\frac{\left.\mid \overrightarrow{\mathbf{a}}_{2}-\overrightarrow{\mathbf{b}}_{2}\right) \cdot \overrightarrow{\mathbf{a}}_{1} \times \overrightarrow{\mathbf{b}}_{1} \mid}{\left|\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}\right|}$
d) $\frac{\left.\mid \overrightarrow{\mathbf{a}}_{1}-\overrightarrow{\mathbf{b}}_{2}\right) \cdot \overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{a}}_{2} \mid}{\left|\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{a}}_{2}\right|}$
220. The perpendicular distance from the origin to the plane through the point $(2,3,-1)$ and perpendicular to
the vector $3 \hat{\imath}-4 \hat{\jmath}+7 \hat{k}$
a) $\frac{13}{\sqrt{74}}$
b) $\frac{-13}{\sqrt{74}}$
c) 13
d) None of these
221. The lines $\vec{r}=\vec{a}+\lambda(\vec{b} \times \vec{c})$ and $\vec{r}=\vec{b}+\mu(\vec{c} \times \vec{a})$ will intersect, if
a) $\vec{a} \times \vec{c}=\vec{b} \times \vec{c}$
b) $\vec{a} \cdot \vec{c}=\vec{b} \cdot \vec{c}$
c) $\vec{b} \times \vec{a}=\vec{c} \times \vec{a}$
d) None of these
222. The radius of the circle in which the sphere $x^{2}+y^{2}+z^{2}+2 x-2 y-4 z-19=0$ is cut by the plane $x+2 y+2 z+7=0$ is
a) 1
b) 2
c) 3
d) 4
223. A line passes through the points $(6,-7,-1)$ and $(2,-3,1)$. The direction cosines of the line so directed that the angle made by it with the positive direction of x-axis is acute, are
а) $\frac{2}{3},-\frac{2}{3},-\frac{1}{3}$
b) $-\frac{2}{3}, \frac{2}{3}, \frac{1}{3}$
c) $\frac{2}{3},-\frac{2}{3}, \frac{1}{3}$
d) $\frac{2}{3}, \frac{2}{3}, \frac{1}{3}$
224. If the angle between the line $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} z+4=0$ is such thatsin $\theta=$ 13 Then, value of λ is
a) $-\frac{4}{3}$
b) $\frac{3}{4}$
c) $\frac{-3}{5}$
d) $\frac{5}{3}$
225. The equation of the line passing through the point $(3,0,-4)$ and perpendicular to the plane $2 x-3 y+$ $5 z-7=0$ is
a) $\frac{x-2}{3}=\frac{y}{-3}=\frac{z+4}{5}$
b) $\frac{x-3}{2}=\frac{y}{-3}=\frac{z-4}{5}$
c) $\frac{x-3}{2}=\frac{-y}{3}=\frac{z+4}{5}$
d) $\frac{x+3}{2}=\frac{y}{3}=\frac{z-4}{5}$
226. If the plane $3 x+y+2 z+6=0$ is parallel to the line $\frac{3 x-1}{2 b}=3-y=\frac{z-1}{a}$, then the value of $3 a+3 b$ is
a) $\frac{1}{2}$
b) $\frac{3}{2}$
c) 3
d) 4
227. The equation of the plane which meets the axes in A, B, C such that the triangle $A B C$ is $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is given by
a) $x+y+z=1$
b) $x+y+z=2$
c) $\frac{x}{3}+\frac{y}{3}+\frac{z}{3}=3$
d) $x+y+z=\frac{1}{3}$
228. The equation to the plane through the points $(2,3,1)$ and $(4,-5,3)$ parallel to x-axis is
a) $x+y+4 z=7$
b) $x+4 z=7$
c) $y-4 z=7$
d) $y+4 z=-7$
229. The equation of the plane passing through the intersection of the planes $x+2 y+3 z+4=0$ and $4 x+3 y+2 z+1=0$ and the origin, is
a) $3 x+2 y+z+1=0$
b) $3 x+2 y+z=0$
c) $2 x+3 y+z=0$
d) $x+y+z=0$
230. The vector equation of a plane which contains the line $\vec{r}=2 \hat{\imath}+\lambda(\hat{\jmath}-\hat{k})$ and perpendicular to the plane $\vec{r} \cdot(\hat{\imath}+\hat{k})=3$, is
a) $\vec{r} \cdot(\hat{\imath}-\hat{\jmath}-\hat{k})=2$
b) $\vec{r} \cdot(\hat{\imath}+\hat{\jmath}-\hat{k})=2$
c) $\vec{r} \cdot(\hat{\imath}+\hat{\jmath}+\hat{k})=2$
d) None of these
231. The ratio in which the line joining $(2,4,5),(3,5,-4)$ is divided by the $y z$-plane is
a) $2: 3$
b) $3: 2$
c) $-2: 3$
d) $4:-3$
232. Distance between two parallel planes $4 x+2 y+4 z+5=0$ and $2 x+y+2 z-8=0$ is
a) $\frac{7}{2}$
b) $\frac{2}{7}$
c) $-\frac{7}{2}$
d) $-\frac{2}{7}$
233. The shortest distance between the lines $\vec{r}=(5 \hat{\imath}+7 \hat{\jmath}+3 \hat{k})+\lambda(5 \hat{\imath}-16 \hat{\jmath}+7 \hat{k})$ and $\vec{r}=9 \hat{\imath}+13 \hat{\jmath}+15 \hat{k}+$ $\mu(3 \hat{\imath}+8 \hat{\jmath}-5 \hat{k})$, is
a) 10 units
b) 12 units
c) 14 units
d) None of these
234. A plane which passes through the point $(3,2,0)$ and the line $\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}$, is
a) $x-y+z=1$
b) $x+y+z=5$
c) $x+2 y-z=0$
d) $2 x-y+z=5$
235. The equation of the plane through the point $(1,2,3)$ and parallel to the plane $x+2 y+5 z=0$ is
a) $(x-1)+2(y-2)+5(z-3)=0$
b) $x+2 y+5 z=14$
c) $x+2 y+5 z=6$
d) None of the above
236. Radius of the circle $\overrightarrow{\mathbf{r}^{2}}+\overrightarrow{\mathbf{r}} \cdot(2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-4 \hat{\mathbf{k}})-19=0$ and $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})+8=0$
a) 5
b) 4
c) 3
d) 2
237. If P be the point $(2,6,3)$, then the equation of the plane through P at right angle to $O P, O$ being the origin, is
a) $2 x+6 y+3 z=7$
b) $2 x-6 y+3 z=7$
c) $2 x+6 y-3 z=49$
d) $2 x+6 y+3 z=49$
238. If the coordinate of the verities of a triangle $A B C$ be $A(-1,3,2), B(2,3,5)$ and $C(3,5,-2)$, then $\angle A$ is equal to
a) 45°
b) 60°
c) 90°
d) 30°
239. The position vector of the point in which the line joining the points $\hat{\imath}-2 \hat{\jmath}+\hat{k}$ and $3 \hat{k}-2 \hat{\jmath}$ cuts the plane through the origin and the points $4 \hat{\jmath}$ and $2 \hat{\jmath}+\hat{k}$, is
a) $6 \hat{\imath}-10 \hat{\jmath}+3 \hat{k}$
b) $\frac{1}{5}(6 \hat{\imath}-10 \hat{\jmath}+3 \hat{k})$
c) $-6 \hat{\imath}+10 \hat{\jmath}-3 \hat{k}$
d) None of these
240. The plane of intersection of spheres $x^{2}+y^{2}+z^{2}+2 x+2 y+2 z=2$ and $2 x^{2}+2 y^{2}+2 z^{2}+4 x+2 y+4 z=0$ is
a) Parallel to $x z$-plane
b) Parallel to y-axis
c) $y=0$
d) None of these
241. The direction cosines of a line equally inclined to three mutually perpendicular lines having direction cosines as $l_{1}, m_{1}, n_{1} ; l_{2}, m_{2}, n_{2} ; l_{3}, m_{3}, n_{3}$ are
a) $l_{1}+l_{2}+l_{3}, m_{1}+m_{2}+m_{3}, n_{1}+n_{2}+n_{3}$
b) $\frac{l_{1}+l_{2}+l_{3}}{\sqrt{3}}, \frac{m_{1}+m_{2}+m_{3}}{\sqrt{3}}, \frac{n_{1}+n_{2}+n_{3}}{\sqrt{3}}$
c) $\frac{l_{1}+l_{2}+l_{3}}{3}, \frac{m_{1}+m_{2}+m_{3}}{3}, \frac{n_{1}+n_{2}+n_{3}}{3}$
d) None of these
242. A line makes angles of 45° and 60° with the x-axis and the z-axis respectively. The angle made by it with y-axis is
a) 30° or 150°
b) 60° or 120°
c) 45° or 135°
d) 90°
243. If the direction cosines of two lines are such that $l+m+n=0, l^{2}+m^{2}+n^{2}=0$, then the angle between them is
a) π
b) $\pi / 3$
c) $\pi / 4$
d) $\pi / 6$
244. The value of λ for which the lines $\frac{x-1}{1}=\frac{y-2}{\lambda}=\frac{z+1}{-1}$ and $\frac{x+1}{-\lambda}=\frac{y+1}{2}=\frac{z-2}{1}$ are perpendicular to each other is
a) 0
b) 1
c) -1
d) None of these
245. In a three dimensional $x y z$-space, the equation $x^{2}-5 x+6=0$ represents
a) Points
b) Plane
c) Curves
d) Pair of straight lines
246. Angle between the line $\frac{x+1}{1}=\frac{y}{2}=\frac{y-1}{1}$ and a normal to the plane $x-y+z=0$
is
a) 0°
b) 30°
c) 45°
d) 90°
247. The angle between the line $\frac{3 x-1}{3}=\frac{y+3}{-1}=\frac{5-2 z}{4}$ and the plane $3 x-3 y-6 z=10$ is equal to
a) $\frac{\pi}{6}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{2}$
248. The foot of the perpendicular drawn from a point with position vector $\hat{\imath}+4 \hat{k}$ on the line joining the points having position vectors as $-11 \hat{\jmath}+3 \hat{k}$ and $2 \hat{\imath}-3 \hat{\jmath}+\hat{k}$ has the position vector
a) $4 \hat{\imath}+5 \hat{\jmath}+5 \hat{k}$
b) $4 \hat{\imath}+5 \hat{\jmath}-5 \hat{k}$
c) $5 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$
d) $4 \hat{\imath}-5 \hat{\jmath}+5 \hat{k}$
249. What are the DR's of vector parallel to $(2,-1,1)$ and $(3,4,-1)$?
a) $(1,5-2)$
b) $(-2,-5,2)$
c) $(-1,5,2)$
d) $(-1,-5,-2)$
250. The point of intersection of the line $\frac{x-1}{3}=\frac{y+2}{4}=\frac{z-3}{-2}$ and plane $2 x-y+3 z-1=0$ is
a) $(10,-10,3)$
b) $(10,10,-3)$
c) $(-10,10,3)$
d) None of these
251. The equation of the plane containing the line
$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and the point $(0,7,-7)$ is
a) $x+y+z=1$
b) $x+y+z=2$
c) $x+y+z=0$
d) None of these
252. Equation of the plane passing through the point $(1,1,1)$ and perpendicular to each of the planes $x+2 y+3 z=7$ and $2 x-3 y+4 z=0$, is
a) $17 x-2 y+7 z=12$
b) $17 x+2 y-7 z=12$
c) $17 x+2 y+7 z=12$
d) $17 x-2 y-7 z=12$
253. The equation of the plane passing through $(1,1,1)$ and $(1,-1,-1)$ and perpendicular to $2 x-y+z+5=$ 0 is
a) $2 x+5 y+z-8=0$
b) $x+y-z-1=0$
c) $2 x+5 y+z+4=0$
d) $x-y+z-1=0$
254. If \vec{r} is a vector of magnitude 21 and has direction ratios proportional to $2,-3,6$, then \vec{r} is equal to
a) $6 \hat{\imath}-9 \hat{\jmath}+18 \hat{k}$
b) $6 \hat{\imath}+9 \hat{\jmath}+18 \hat{k}$
c) $6 \hat{\imath}-9 \hat{\jmath}-18 \hat{k}$
d) $6 \hat{\imath}+9 \hat{\jmath}-18 \hat{k}$
255. The line perpendicular to the plane $2 x-y+5 z=4$ passing through the point $(-1,0,1)$ is
а) $\frac{x+1}{2}=y=\frac{z-1}{-5}$
b) $\frac{x+1}{-2}=y=\frac{z-1}{-5}$
c) $\frac{x+1}{2}=-y=\frac{z-1}{5}$
d) $\frac{x+1}{2}=y=\frac{z-1}{5}$
256. The equation of the sphere whose centre is $(6,-1,2)$ and which touches the plane $2 x-y+2 z-2=0$, is
a) $x^{2}+y^{2}+z^{2}-12 x+2 y-4 z-16=0$
b) $x^{2}+y^{2}+z^{2}-12 x+2 y-4 z=0$
c) $x^{2}+y^{2}+z^{2}-12 x+2 y-4 z+16=0$
d) $x^{2}+y^{2}+z^{2}-12 x+2 y-4 z+6=0$
257. The equation of the plane passing through three non-collinear points with position vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ is
a) $\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=0$
b) $\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
c) $\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}))=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
d) $\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=0$
258. If the planes $x=c y+b z, y=a z+c x, z=b x+a y$ pass through a line, then $a^{2}+b^{2}+c^{2}+2 a b c$ is
a) 0
b) 1
c) 2
d) 3
259. The equation of the plane, which makes with coordinate axes, a triangle with its centroid (α, β, γ) is
a) $\alpha x+\beta y+\gamma z=3$
b) $\alpha x+\beta y+\gamma z=1$
c) $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=3$
d) $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=1$
260. The equation of the plane perpendicular to the line $\frac{x-1}{1}=\frac{y-2}{-1}=\frac{z+1}{2}$ and passing through the point $(2,3,1)$, is
a) $\vec{r}(\hat{\imath}+\hat{\jmath}+2 k)=1$
b) $\vec{r}(\hat{\imath}-\hat{\jmath}+2 k)=1$
c) $\vec{r}(\hat{\imath}-\hat{\jmath}+2 k)=7$
d) $\vec{r}(\hat{\imath}+\hat{\jmath}-2 k)=10$
261. Equation of a line passing through $(1,-2,3)$ and parallel to the plane $2 x+3 y+z+5=0$ is
a) $\frac{x-1}{-1}=\frac{y+2}{1}=\frac{z-3}{-1}$
b) $\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{1}$
c) $\frac{x+1}{-1}=\frac{y-2}{1}=\frac{z-3}{-1}$
d) None of these
262. The shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$ is
a) $\sqrt{30}$
b) $2 \sqrt{30}$
c) $5 \sqrt{30}$
d) $3 \sqrt{30}$
263. The point in the $x y$-plane which is equidistant from the point $(2,0,3)$ and $(0,3,2)$ and $(0,0,1)$, is
a) $(1,2,3)$
b) $(-3,2,0)$
c) $(3,-2,0)$
d) $(3,2,0)$
264. A sphere of constant radius $2 k$ passes through the origin and meets the axes in A, B, C. The locus of the centroid of the tetrahedron $A B C$ is
a) $x^{2}+y^{2}+z^{2}=4 k^{2}$
b) $x^{2}+y^{2}+z^{2}=k^{2}$
c) $2\left(x^{2}+y^{2}+z^{2}\right)=k^{2}$
d) None of these
265. The direction cosines of the line which is perpendicular to the lines whose direction cosines are proportional to
$(1,-1,2)$ and $(2,1,-1)$ are
a) $\frac{-2}{\sqrt{35}}, \frac{5}{\sqrt{35}}, \frac{3}{\sqrt{35}}$
b) $-\frac{1}{\sqrt{35}}, \frac{5}{\sqrt{35}}, \frac{3}{\sqrt{35}}$
c) $-\frac{1}{\sqrt{35}}, \frac{5}{\sqrt{35}}, \frac{3}{\sqrt{35}}$
d) None of these
266. The shortest distance between the lines $1+x=2 y=-12 z$ and $x=y+2=6 z-6$ is
a) 1
b) 2
c) 3
d) 4
267. The position vectors of points A and B are $\hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $3 \hat{\imath}+3 \hat{\jmath}+3 \hat{k}$ respectively. The equation of a plane is $\vec{r} \cdot(5 \hat{\imath}+2 \hat{\jmath}-7 \hat{k})+9=0$. The points A and B
a) Lie on the plane
b) Are on the same side of the plane
c) Are on the opposite side of the plane
d) None of these
268. The distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $x-y+z=5$ is
a) $\frac{14}{5}$
b) 11
c) 13
d) 15
269. The line segment adjoining the points A, B makes projection $1,4,3$ on x, y, z-axes respectively. Then, the direction cosines of $A B$ are
a) $1,4,3$
b) $1 / \sqrt{26}, 4 / \sqrt{26}, 3 / \sqrt{26}$
c) $-1 / \sqrt{26}, 4 / \sqrt{26}, 3 / \sqrt{26}$
d) $1 / \sqrt{26},-4 / \sqrt{26}, 3 / \sqrt{26}$
270. If the direction ratios of two lines are given by $3 l m+4 l n+m n=0$ and $l+2 m+3 n=0$, then the angle between the lines is
a) $\pi / 2$
b) $\pi / 3$
c) $\pi / 4$
d) $\pi / 6$
271. If $(2,3,5)$ is one end of a diameter of the sphere $x^{2}+y^{2}+z^{2}-6 x-12 y-2 z+20=0$, then the coordinates of the other end of the diameter are
a) $(4,9,-3)$
b) $(4,-3,3)$
c) $(4,3,5)$
d) $(4,3,-3)$
272. If Q is the image of the point $P(2,3,4)$ under the reflection in the plane $x-2 y+5 z=6$, then the equation of the line $P Q$ is
а) $\frac{x-2}{-1}=\frac{y-3}{2}=\frac{z-4}{5}$
b) $\frac{x-2}{1}=\frac{y-3}{-2}=\frac{z-4}{5}$
c) $\frac{x-2}{-1}=\frac{y-3}{-2}=\frac{z-4}{5}$
d) $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-4}{5}$
273. There is point $P(a, a, a)$ on the line passing through the origin and equally inclined with axes. The equation of plane perpendicular to $O P$ and passing through P cuts the intercepts on axes. The sum of whose reciprocals is
a) a
b) $\frac{3}{2 a}$
c) $\frac{3 a}{2}$
d) $\frac{1}{a}$
274. If P is a point in space such that $O P=12$ and $\overrightarrow{O P}$ is inclined at angles of 45° and 60° with $O X$ and $O Y$ respectively, then the position vector of P is
a) $6 \hat{\imath}+6 \hat{\jmath} \pm 6 \sqrt{2} \hat{k}$
b) $6 \hat{\imath}+6 \sqrt{2} \hat{\jmath} \pm 6 \hat{k}$
c) $6 \sqrt{2} \hat{\jmath}+6 \hat{\jmath} \pm 6 \hat{k}$
d) None of these
275. Equation of plane containing the lines
$\overrightarrow{\mathbf{r}}=\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}+\hat{\mathbf{k}}+\lambda(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$
And $\overrightarrow{\mathbf{r}}=\hat{\mathbf{\imath}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}+\mu(\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}+2 \hat{\mathbf{k}})$ is
a) $\overrightarrow{\mathbf{r}}=\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}+\hat{\mathbf{k}}+\lambda(\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+2 \hat{\mathbf{k}})$
b) $\overrightarrow{\mathbf{r}}=\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}}+\lambda(\hat{\mathbf{i}}+2 \hat{\mathbf{\jmath}}+\hat{\mathbf{k}})+\mu(\hat{\mathbf{i}}+2 \hat{\mathbf{\jmath}}+\hat{\mathbf{k}})$
c) $\overrightarrow{\mathbf{r}}=\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}+2 \hat{\mathbf{k}}+\lambda(\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}})+\mu(\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}+\hat{\mathbf{k}})$
d) $\overrightarrow{\mathbf{r}}=\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}+\hat{\mathbf{k}}+\lambda(\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}})+\mu(\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}+2 \hat{\mathbf{k}})$
276. Cosine of the angle between two diagonals of cube is equal to
a) $\frac{2}{\sqrt{6}}$
b) $\frac{1}{3}$
c) $\frac{1}{2}$
d) None of these
277. The equation of the plane which bisects the line joining $(2,3,4)$ and $(6,7,8)$ is
a) $x-y-z-15=0$
b) $x-y+z-15=0$
c) $x+y+z-15=0$
d) $x+y+z+15=0$
278. The distance of the point $(3,8,2)$ from the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}$ measured parallel to the plane $3 x+2 y-2 z=0$ is
a) 2
b) 3
c) 6
d) 7
279. The direction cosines l, m, n of two lines are connected by the relations $l+m+n=0, l m=0$, then the angle between them is
a) $\pi / 3$
b) $\pi / 4$
c) $\pi / 2$
d) 0
280. If a line lies in the octant $O X Y Z$ and it makes equal angles with the axes, then
a) $l=m=n=\frac{1}{\sqrt{3}}$
b) $l=m=n \pm \frac{1}{\sqrt{3}}$
c) $l=m=n=-\frac{1}{\sqrt{3}}$
d) $l=m=n= \pm \frac{1}{\sqrt{3}}$
281. The line joining the points $(1,1,2)$ and $(3,-2,1)$ meets the plane $3 x+2 y+z=6$ at the point
a) $(1,1,2)$
b) $(3,-2,1)$
c) $(2,-3,1)$
d) $(3,2,1)$
282. The points $A(5,-1,1), B(7,-4,7), C(1,-6,10)$ and $D(-1,-3,4)$ are vertices of a
a) Square
b) Rhombus
c) Rectangle
d) None of these
283. If $P(x, y, z)$ is a point on the line segment joining $Q(2,24)$ and $R(3,5,6)$ such that the projections of $O P$ on the axes are $\frac{13}{5}, \frac{19}{5}$ and $\frac{26}{5}$ respectively, then P divides $Q R$ in the ratio
a) $1: 2$
b) $3: 2$
c) $2: 3$
d) $1: 3$
284. If direction cosines of two lines are proportional to $(2,3-6)$ and $(3,-4,5)$ then the acute angle between then is
a) $\cos ^{-1}\left(\frac{49}{36}\right)$
b) $\cos ^{-1}\left(\frac{18 \sqrt{2}}{35}\right)$
c) 96°
d) $\cos ^{-1}\left(\frac{18}{35}\right)$
285. The cartesian equation of the plane $\vec{r}=(s-2 t) \hat{\imath}+(3-t) \hat{\jmath}+(2 s+t) \hat{k}$, is
a) $2 x-5 y-z-15=0$
b) $2 x-5 y+z-15=0$
c) $2 x-5 y-z+15=0$
d) $2 x+5 y-z+15=0$
286. The plane $2 x-2 y+z+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z-3=0$ at the point
a) $(1,-4,-2)$
b) $(-1,4,-2)$
c) $(-1,-4,2)$
d) $(1,4,-2)$
287. If θ is the angle between the planes $2 x-y+z-1=10$ and $x-2 y+z+2=0$ Then $\cos \theta$ is equal to
a) $2 / 3$
b) $3 / 4$
c) $4 / 5$
d) $5 / 6$
288. Let $(3,4,-1)$ and $(-1,2,3)$ are the end points of a diameter of sphere. Then, the radius of the sphere is equal to
a) 1
b) 2
c) 3
d) 9
289. Let $A(4,7,8), B(2,3,4)$ and $C(2,5,7)$ be the position vectors of the vertices of a $\triangle A B C$. The length of the internal bisector of the angle of A is
a) $\frac{3}{2} \sqrt{34}$
b) $\frac{2}{3} \sqrt{34}$
c) $\frac{1}{2} \sqrt{34}$
d) $\frac{1}{3} \sqrt{34}$
290. The distance of the plane $6 x-3 y+2 z-14=0$ from the origin is
a) 2
b) 1
c) 14
d) 8
291. In $\triangle A B C$ and mid points of the sides $A B, B C$ and $C A$ are respectively $(1,0,0),(0, m, 0)$ and $(0,0, n)$ Then, $\frac{A B^{2}+B C^{2}+C A^{2}}{\left(l^{2}+m^{2}+n^{2}\right)}$ is equal to
a) 2
b) 4
c) 8
d) 16
292. The angle between the straight line $\frac{x+1}{2}=\frac{y-2}{5}=\frac{z+3}{4}$ and $\frac{x-1}{1}=\frac{y+2}{2}=\frac{z-3}{-3}$ is
a) 45°
b) 30°
c) 60°
d) 90°
293. A plane passes through $(1,-2,1)$ and is perpendicular to two planes $2 x-2 y+z=0$ and $x-y+2 z=4$, then the distance of the plane from the point $(1,2,2)$ is
a) 0
b) 1
c) $\sqrt{2}$
d) $2 \sqrt{2}$
294. The line through $\hat{\imath}+3 \hat{\jmath}+2 \hat{k}$ and perpendicular to the lines $\vec{r}=(\hat{\imath}+2 \hat{\jmath}-\hat{k})+\lambda(2 \hat{\imath}+\hat{\jmath}+\hat{k})$ and, $\vec{r}=(2 \hat{\imath}+6 \hat{\jmath}+\hat{k})+\mu(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})$ is
a) $\vec{r}=(\hat{\imath}+2 \hat{\jmath}-\hat{k})+\lambda(-\hat{\imath}+5 \hat{\jmath}-3 \hat{k})$
b) $\vec{r}=\hat{\imath}+3 \hat{\jmath}+2 \hat{k}+\lambda(\hat{\imath}-5 \hat{\jmath}+3 \hat{k})$
c) $\vec{r}=\hat{\imath}+3 \hat{\jmath}+2 \hat{k}+\lambda(\hat{\imath}+5 \hat{\jmath}+3 \hat{k})$
d) $\vec{r}=\hat{\imath}+3 \hat{\jmath}+2 \hat{k}+\lambda(-\hat{\imath}-5 \hat{\jmath}-3 \hat{k})$
295. Let O be the origin and P be the point at a distance 3 units from origin. If direction ratios of $O P$ are $(1,-2,-2)$, then coordinates of P is given by
a) $(1,-2,-2)$
b) $(3,-6,-6)$
c) $(1 / 3,-2 / 3,-2 / 3)$
d) $(1 / 9,-2 / 9,-2 / 9)$
296. The direction cosines l, m, n of two lines are connected by the relation $l+m+n=0, l m=0$, then the angles between them is
a) $\pi / 3$
b) $\pi / 4$
c) $\pi / 2$
d) 0
297. Equation of plane containing the line $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and parallel to the line $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$ is
а) $\left|\begin{array}{ccc}x-x_{1} & y-y_{1} & z-z_{1} \\ a_{1} & b_{1} & c_{1} \\ x_{2} & y_{2} & z_{2}\end{array}\right|=0$
b) $\left|\begin{array}{ccc}x-x_{2} & y-y_{2} & z-z_{2} \\ a_{2} & b_{2} & c_{2} \\ x_{1} & y_{1} & z_{1}\end{array}\right|=0$
c) $\left|\begin{array}{ccc}x-x_{1} & y-y_{1} & z-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=0$
d) None of the above
298. The plane $2 x-(1+\lambda) y+3 z=0$ passes through the intersection of the planes
a) $2 x-y=0$ and $y+3 z=0$
b) $2 x-y=0$ and $y-3 z=0$
c) $2 x+3 z=0$ and $y=0$
d) None of the above
299. The radius of the sphere $x^{2}+y^{2}+z^{2}=x+2 y+3 z$ is
a) $\frac{\sqrt{14}}{2}$
b) $\sqrt{7}$
c) $\frac{7}{2}$
d) $\frac{\sqrt{7}}{2}$
300. If a plane meets the coordinate axes at A, B and C in such a way that the centroid of $\triangle A B C$ is at the point (1, 2,3) the equation of the plane is
a) $\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1$
b) $\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1$
c) $\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=\frac{1}{3}$
d) None of these
301. The triangle formed by the points $(0,7,10),(-1,6,6),(-4,9,6)$ is
a) Equilateral
b) Isosceles
c) Right angled
d) Right angled isosceles
302. The vector equation of plane passing through three non-collinear points having position vectors $\vec{a}, \vec{b}, \vec{c}$ is
a) $\vec{r} \cdot(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})=0$
b) $\vec{r} \times(\vec{a} \times \vec{b}+\vec{b} \times \vec{c})=\left[\begin{array}{ll}\vec{a} & \vec{b} \\ c\end{array}\right]$
c) $\vec{r} \cdot(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})+[\vec{a} \vec{b} \vec{c}]=0$
d) None of these
303. Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angle α with the positive x-axis, then $\cos \alpha$ equals
a) $\frac{1}{\sqrt{3}}$
b) $\frac{1}{2}$
c) 1
d) $\frac{1}{\sqrt{2}}$
304. The area of triangle whose vertices are $(1,2,3),(2,5,-1)$ and $(-1,1,2)$ is
a) 150 sq unit
b) 145 sq unit
c) $\frac{\sqrt{155}}{2}$ sq unit
d) $\frac{155}{2}$ sq unit
305. The angles between two planes $x+2 y+2 z=3$ and $-5 x+3 y+4 z=9$ is
a) $\cos ^{-1} \frac{9 \sqrt{2}}{20}$
b) $\cos ^{-1} \frac{3 \sqrt{2}}{5}$
c) $\cos ^{-1} \frac{3 \sqrt{2}}{10}$
d) $\cos ^{-1} \frac{19 \sqrt{2}}{30}$
306. The projection of the line joining the points $(3,4,5)$ and $(4,6,3)$ on the line joining the points $(-1,24)$ and $(1,0,5)$ is
a) $4 / 3$
b) $2 / 3$
c) $-4 / 3$
d) $1 / 2$
307. If the straight lines $x=1+s, y=-3-\lambda s, z=1+\lambda s$ and $x=\frac{t}{2}, y=1+t, z=2-t$ with parameters s and t respectively, are coplanar, then λ Equals
a) -2
b) -1
c) $-\frac{1}{2}$
d) 0
308. The angle between the planes $x+2 y+2 z=3$ and $-5 x+3 y+4 z=9$ is
a) $\cos ^{-1} \frac{9 \sqrt{2}}{20}$
b) $\cos ^{-1} \frac{3 \sqrt{2}}{5}$
c) $\cos ^{-1} \frac{3 \sqrt{2}}{10}$
d) $\cos ^{-1} \frac{19 \sqrt{2}}{30}$
309. The equation of the plane through the point $(2,3,1)$ and $(4,-5,3)$ and parallel to x-axis is
a) $y-4 z=7$
b) $y+4 z=7$
c) $y+4 z=-7$
d) $x+4 z=7$
310. If the direction ratio of two lines are given by $l+m+n=0, m n-2 l n+l m=0$, then the angle between the line is
a) $\frac{\pi}{4}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{2}$
d) 0
311. If a line in the space makes angle α, β and γ with the coordinate axes, then
$\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma+\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$
equals
a) -1
b) 0
c) 1
d) 2
312. The equation of the plane through the point $(2,-1,-3)$ and parallel to the lines $\frac{x-1}{3}=\frac{y+2}{2}=\frac{z}{-4}$ and $\frac{x}{2}=\frac{y-1}{-3}=\frac{z-2}{2}$ is
a) $8 x+14 y+13 z+37=0$
b) $8 x-14 y+13 z+37=0$
c) $8 x+14 y-13 z+37=0$
d) $8 x+14 y+13 z-37=0$
313. If A, B, C, D are the points $(2,3,-1),(3,5,-3),(1,2,3),(3,5,7)$ respectively, then the angle between $A B$ and $C D$ is
a) $\frac{\pi}{2}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{6}$
314. A line makes the same angle θ with each of the x and z axes. If the angle β, which it makes with y-axis, is such that $\sin ^{2} \theta$, then $\cos ^{2} \theta$ equals
a) $2 / 3$
b) $1 / 5$
c) $3 / 5$
d) $2 / 5$
315. The equation of the plane passing through the point $(1,1,1)$ and containing the line of intersection of the planes $x+y+z=6$ and $2 x+3 y+4 z=12$ is
a) $x+y+z=3$
b) $x+2 y+3 z=6$
c) $2 x+3 y+4 z=9$
d) $3 x+4 y+5 z=18$
316. The point in the $x y$-plane which is equidistant from the points $(2,0,3),(0,3,2)$ and $(0,0,1)$ is
a) $(1,2,3)$
b) $(-3,2,0)$
c) $(3,-2,0)$
d) $(3,2,0)$
317. Let $P(-7,1,-5)$ be a point on a plane and let O be the origin. If $O P$ is normal to the plane, then the equation of the plane is
a) $7 x-y+5 z+75=0$
b) $7 x+y-5 z+73=0$
c) $7 x+y+5 z+73=0$
d) $7 x-y-5 z+75=0$
318. The equation of the plane through the points $(1,2,3),(-1,4,2)$ and $(3,1,1)$ is
a) $5 x+y+12 z-23=0$
b) $5 x+6 y+2 z-23=0$
c) $x+6 y+2 z-13=0$
d) $x-y+z-13=0$
319. The line drown from $(4,-1,2)$ the point $(-3,2,3)$ meets a plane at right angle at the point $(-10,5,4)$, then the equation of plane is
a) $7 x+3 y+z+89=0$
b) $7 x-3 y-z+89=0$
c) $7 x-3 y+z+89=0$
d) None of these
320. The equation of the plane perpendicular to the line $\frac{x-1}{1}=\frac{y-2}{-1}=\frac{z+1}{2}$ and passing through the point $(2,3,1)$, is
a) $\vec{r} \cdot(\hat{\imath}+\hat{\jmath}+2 \hat{k})=1$
b) $\vec{r} \cdot(\hat{\imath}-\hat{\jmath}+2 \hat{k})=1$
c) $\vec{r} \cdot(\hat{\imath}-\hat{\jmath}+2 \hat{k})=7$
d) None of these
321. The acute angle between the line joining the points $(2,1,-3),(-3,1,7)$ and a line parallel to $\frac{x-1}{3}=\frac{y}{4}=\frac{z+3}{5}$
through the point $(-1,0,4)$ is
a) $\cos ^{-1}\left(\frac{1}{\sqrt{10}}\right)$
b) $\cos ^{-1}\left(\frac{1}{5 \sqrt{10}}\right)$
c) $\cos ^{-1}\left(\frac{7}{5 \sqrt{10}}\right)$
d) $\cos ^{-1}\left(\frac{3}{5 \sqrt{10}}\right)$
322. The shortest distance from the plane $12 x+4 y+3 z=327$ to the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-6 z=155$ is
a) 26
b) $11 \frac{4}{13}$
c) 13
d) 39
323. The projection of a directed line segment on the coordinate axes are $12,4,3$. The DC's of the line are
a) $\frac{12}{13},-\frac{4}{13}, \frac{3}{13}$
b) $-\frac{12}{13},-\frac{4}{13}, \frac{3}{13}$
c) $\frac{12}{13}, \frac{4}{13}, \frac{3}{13}$
d) None of these
324. The radius of the circle $x^{2}+y^{2}+z^{2}-2 y-4 z-11=0, x+2 y+2 z-15=0$ is
a) $\sqrt{3}$
b) $\sqrt{5}$
c) $\sqrt{7}$
d) 3
325. The coordinates of the foot of perpendicular drawn from point $P(1,0,3)$ to the join of points $A(4,7,1)$ and $B(3,5,3)$ is
a) $(5,7,1)$
b) $\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$
c) $\left(\frac{2}{3}, \frac{5}{3}, \frac{7}{3}\right)$
d) $\left(\frac{5}{3}, \frac{2}{3}, \frac{7}{3}\right)$
326. The position vector of the point where the line $\overrightarrow{\mathbf{r}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}+t(\hat{\mathbf{l}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})$ meets the plane $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})=5$ is
a) $5 \hat{\mathbf{\imath}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
b) $5 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
c) $2 \hat{\mathbf{i}}+\hat{\mathbf{\jmath}}+2 \hat{\mathbf{k}}$
d) $5 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
327. If O is the origin and A is the point (a, b, c) then the equation of the plane through A and at right angles to $O A$ is
a) $a(x-a)-b(y-b)-c(z-c)=0$
b) $a(x+a)+b(y+b)+c(z+c)=0$
c) $a(x-a)+b(y-b)+c(z-c)=0$
d) None of these above
328. Equation of a line passing through $(-1,2,-3)$ and perpendicular to the plane $2 x+3 y+z+5=0$ is
a) $\frac{x-1}{-1}=\frac{y+2}{1}=\frac{z-3}{-1}$
b) $\frac{x+1}{-1}=\frac{y-2}{1}=\frac{z+3}{1}$
c) $\frac{x+1}{2}=\frac{y-2}{3}=\frac{z+3}{1}$
d) None of these
329. The foot of the perpendicular from $(2,4,-1)$ to the line $x+5=\frac{1}{4}(y+3)=-\frac{1}{9}(z-6)$ is
a) $(-4,1,-3)$
b) $(4,-1,-3)$
c) $(-4,-1,3)$
d) $(-4,-1,-3)$
330. The angle between the lines whose direction cosines are $\left(\frac{\sqrt{3}}{4}, \frac{1}{4}, \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{\sqrt{3}}{4}, \frac{1}{4}, \frac{-\sqrt{3}}{2}\right)$ is
a) π
b) $\frac{\pi}{2}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{4}$
331. The value of k so that the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and, $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ may be perpendicular is given by
a) $-7 / 10$
b) $-10 / 7$
c) -10
d) $10 / 7$
332. The plane $x+2 y-z=4$ cut the sphere $x^{2}+y^{2}+z^{2}-x+z-2=0$ in a circle of radius
a) $\sqrt{2}$
b) 2
c) 1
d) 3
333. The angle between $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and the plane $3 x+2 y-3 z=4$, is
a) 45°
b) 0°
c) $\cos ^{-1}\left(\frac{24}{\sqrt{29} \sqrt{22}}\right)$
d) 90°
334. The lines
$\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$
And
$\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$
are coplanar, if
a) $k=0$ or -1
b) $k=1$ or -1
c) $k=0$ or -3
d) $k=3$ or -3
335. Equation of the plane passing through line $\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{4}$ and perpendicular to the plane $x+2 y+z=$

12 is given by $a x+b y+c z+4=0$, then
a) $a=-8, b=2, c=-5$
b) $a=-9, b=-2, c=-5$
c) $a=9, b=-2, c=-5$
d) None of the above
336. The intercepts of the plane $2 x-3 y+4 z=12$ on the coordinate axes are given by
a) $3,-2,15$
b) $6,-4,3$
c) $6,-4,-3$
d) $2,-3,4$
337. The equation of the straight line passing through the points $(4,-5,-2)$ and $(-1,5,3)$ is
a) $\frac{x-4}{1}=\frac{y+5}{-2}=\frac{z+2}{-1}$
b) $\frac{x+1}{1}=\frac{y-5}{2}=\frac{z-3}{-1}$
c) $\frac{x}{-1}=\frac{y}{5}=\frac{z}{3}$
d) $\frac{x}{4}=\frac{y}{-5}=\frac{z}{-2}$
338. The length of the perpendicular from the origin to the plane $3 x+4 y+12 z=52$ is
a) 3
b) -4
c) 5
d) None of these
339. If from a point $P(a, b, c)$ perpendiculars $P A, P B$ are drown to $y z$ and $z x$ plane, then the equation of the plane $O A B$ is
a) $b c x+c a y+a b z=0$
b) $b c x+c a y-a b z=0$
c) $b c x-c a y+a b z=0$
d) $-b c x+c a y+a b z=0$
340. The smallest radius of the sphere passing through $(1,0,0),(0,1,0)$ and $(0,0,1)$ is
a) $\sqrt{\frac{3}{5}}$
b) $\sqrt{\frac{3}{8}}$
c) $\sqrt{\frac{2}{3}}$
d) $\sqrt{\frac{5}{12}}$
341. The cartesian equation of the plane $\vec{r}=(1+\lambda-\mu) \hat{\imath}+(2-\lambda) \hat{\imath}+(3-2 \lambda+2 \mu) \hat{k}$, is
a) $2 x+y=5$
b) $2 x-y=5$
c) $2 x+z=5$
d) $2 x-z=5$
342. Foot of the perpendicular from $B(-2,1,4)$ to the plane is $(3,1,2)$. Then, the equation of the plane is
a) $4 x-2 y=11$
b) $5 x-2 y=10$
c) $5 x-2 z=11$
d) $5 x+2 z=11$
343. A straight line $\vec{r}=\vec{a}+\lambda \vec{b}$ meets the plane $\vec{r} \cdot \vec{n}=0$ in P. The position vector of P is
a) $\vec{a}+\frac{\vec{a} \cdot \vec{n}}{\vec{b} \cdot \vec{n}} \vec{b}$
b) $\vec{a}-\frac{\vec{a} \cdot \vec{n}}{\vec{b} \cdot \vec{n}} \vec{b}$
c) $\vec{a}-\frac{\vec{a} \cdot \vec{n}}{\vec{b} \cdot \vec{n}} \vec{b}$
d) None of these
344. A equation of the plane passing through the points $(3,2,-1),(3,4,2)$ and $(7,0,6)$ is $5 x+3 y-2 z=\lambda$, where λ is
a) 23
b) 21
c) 19
d) 27
345. The lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ are coplanar if
a) $\overrightarrow{a_{1}} \times \overrightarrow{a_{2}}=\overrightarrow{0}$
b) $\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=0$
c) $\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \times\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)=0$
d) $\left[\overrightarrow{a_{1}} \overrightarrow{b_{1}} \overrightarrow{b_{2}}\right]=\left[\overrightarrow{a_{2}} \overrightarrow{b_{1}} \overrightarrow{b_{2}}\right]$
346. The point of intersection of the lines
$\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ and
$\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5}$ is
а) $\left(\frac{1}{2}, \frac{1}{2}-\frac{3}{2}\right)$
b) $\left(-\frac{1}{2},-\frac{1}{2}, \frac{3}{2}\right)$
c) $\left(\frac{1}{2},-\frac{1}{2},-\frac{3}{2}\right)$
d) $\left(-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right)$
347. If a line makes angles α, β, γ with the coordinate axe, then
a) $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma-1=0$
b) $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma-2=0$
c) $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma+1=0$
d) $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma+1=0$
348. The centre of sphere passes through four points $(0,0,0),(0,2,0),(1,0,0)$ and $(0,0,4)$ is
a) $\left(\frac{1}{2}, 1,2\right)$
b) $\left(-\frac{1}{2}, 1,2\right)$
c) $\left(\frac{1}{2}, 1,-2\right)$
d) $\left(1, \frac{1}{2}, 2\right)$
349. A variable plane moves so that sum of the reciprocals of its intercepts on the coordinate axes is $1 / 2$ Then, the plane passes through
a) $\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)$
b) $(-1,1,1)$
c) $(2,2,2)$
d) $(0,0,0)$
350. The distance from the point $-\hat{\imath}+2 \hat{\jmath}+6 \hat{k}$ to the straight line through the point $(2,3,-4)$ and parallel to the vector $6 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}$, is
a) 7
b) 10
c) 9
d) None of these
351. The equation of the plane passing through the points $(a, 0,0),(0, b, 0)$ and $(0,0, c)$ is
a) $a x+b y+c z=0$
b) $a x+b y+c z=1$
c) $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
d) $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$
352. The distance between the planes $2 x-2 y+z+3=0$ and $4 x-4 y+2 z+5=0$ is
a) 3
b) 6
c) $\frac{1}{6}$
d) $\frac{1}{3}$
353. If $P=(0,1,2), Q=(4,-2,1), O=(0,0,0)$, then $\angle P O Q$ is equal to
a) $\frac{\pi}{6}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{2}$
354. The point of intersection of the line $\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z+3}{4}$ and the plane $2 x+4 y-z+1=0$ is
a) $\left(-\frac{10}{3}, \frac{3}{2},-\frac{5}{3}\right)$
b) $\left(-\frac{10}{3},-\frac{3}{2}, \frac{5}{3}\right)$
c) $\left(\frac{10}{3}, \frac{3}{2},-\frac{5}{3}\right)$
d) $\left(\frac{10}{3},-\frac{3}{2}, \frac{5}{3}\right)$
355. The point of intersection of the lines
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$
and
$\frac{x-4}{5}=\frac{y-1}{2} z$ is
a) $(0,0,0)$
b) $(1,1,1)$
c) $(-1,-1,-1)$
d) $(1,2,3)$
356. Which of the following is an equation of a sphere?
a) $x^{2}+y^{2}+z^{2}-2 x y-2 y z-6 z x=4$
b) $x^{2}+y^{2}+z^{2}+1=0$
c) $x^{2}+y^{2}+z^{2}-2 x-2 y-2 z+2=0$
d) $x^{2}+y^{2}+z^{2}-4 x-4 y-4 z+25=0$
357. The angle between the line $\frac{x}{1}=\frac{y}{0}=\frac{z}{-1}$ and $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}$ is equal to
a) $\pi-\cos ^{-1}\left(\frac{1}{5}\right)$
b) $\cos ^{-1}\left(\frac{1}{3}\right)$
c) $\cos ^{-1}\left(\frac{1}{2}\right)$
d) $\cos ^{-1}\left(\frac{1}{4}\right)$
358. A point moves such that the sum of its distance from points $(4,0,0)$ and $(-4,0,0)$ is 10 , then the locus of the point is
a) $9 x^{2}-25 y^{2}+25 z^{2}=225$
b) $9 x^{2}+25 y^{2}+25 z^{2}=225$
c) $9 x^{2}+25 y^{2}-25 z^{2}=225$
d) $9 x^{2}+25 y^{2}+25 z^{2}=225=0$
359. A plane makes intercepts 3 and 4 respectively on z-axis and x-axis. If plane is parallel to y-axis, then its equation is
a) $3 x+4 z=12$
b) $3 z+4 x=12$
c) $3 y+4 z=12$
d) $3 z+4 y=12$
360. If x coordinate of a point P of line joining the points $Q(2,2,1)$ and $R(5,2,-2)$ is 4 , then the z coordinate of P is
a) -2
b) -1
c) 1
d) 2
361. The two lines $x=a y+b, z=c y+d$ and $x=a^{\prime} y+b^{\prime}, z=c^{\prime} y+d^{\prime}$ are perpendicular to each other, if
a) $a a^{\prime}+c c^{\prime}=1$
b) $\frac{a}{a^{\prime}}+\frac{c}{c^{\prime}}=-1$
c) $\frac{a}{a^{\prime}}+\frac{c}{c^{\prime}}=1$
d) $a a^{\prime}+c c^{\prime}=-1$
362. The vector equation of the plane containing the lines $\vec{r}=(\hat{\imath}+\hat{\jmath})+\lambda(\hat{\imath}+2 \hat{\jmath}-\hat{k}) \& \vec{r}=(\hat{\imath}+\hat{\jmath})+\mu(-\hat{\imath}+\hat{\jmath}-$ $2 \hat{k})$, is
a) $\vec{r} \cdot(\hat{\imath}+\hat{\jmath}+\hat{k})=0$
b) $\vec{r} \cdot(\hat{\imath}-\hat{\jmath}-\hat{k})=0$
c) $\vec{r} \cdot(\hat{\imath}+\hat{\jmath}+\hat{k})=3$
d) None of these
363. The equation of the plane passing through $(2,3,4)$ and parallel to the plane $5 x-6 y+7 z=3$ is
a) $5 x-6 y+7 z+20=0$
b) $5 x-6 y+7 z-20=0$
c) $-5 x+6 y-7 z+3=0$
d) $5 x-6 y+7 z+3=0$
364. If the plane $2 a x-3 a y+4 a z+6=0$ passes through the mid point of the line joining the centres of the spheres $x^{2}+y^{2}+z^{2}+6 x-8 y-2 z=13$ and $x^{2}+y^{2}+z^{2}-10 x+4 y-2 z=8$, then a equals
a) -2
b) 2
c) -1
d) 1
365. The centre of sphere passes through four points $(0,0,0),(0,2,0),(1,0,0)$ and $(0,0,4)$ is
a) $\left(-\frac{1}{2}, 1,2\right)$
b) $\left(1, \frac{1}{2}, 2\right)$
c) $\left(\frac{1}{2}, 1,2\right)$
d) $\left(\frac{1}{2}, 1,-2\right)$
366. If the planes $x+2 y+k z=0$ and $2 x+y-2 z=0$, are at right angles, then the value of k is
a) 2
b) -2
c) $\frac{1}{2}$
d) $-\frac{1}{2}$

: ANSWER KEY :

1)	b	2)	b	3)	d	4)	c	189)	C	190)	c	191)	c	192)
5)	b	6)	b	7)	c	8)	b	193)	b	194)	d	195)	b	196)
9)	a	10)	a	11)	b	12)	C	197)	a	198)	b	199)	d	200)
13)	c	14)	a	15)	a	16)	d	201)	d	202)	a	203)	C	204)
17)	b	18)	b	19)	d	20)	c	205)	b	206)	C	207)	a	208)
21)	C	22)	a	23)	b	24)	d	209)	a	210)	d	211)	a	212)
25)	c	26)	C	27)	a	28)	c	213)	a	214)	C	215)	b	216)
29)	b	30)	a	31)	b	32)	a	217)	c	218)	d	219)	a	220)
33)	a	34)	b	35)	a	36)	d	221)	b	222)	c	223)	a	224)
37)	a	38)	b	39)	a	40)	b	225)	C	226)	b	227)	a	228)
41)	a	42)	a	43)	a	44)	a	229)	b	230)	a	231)	c	232)
45)	b	46)	a	47)	a	48)	d	233)	c	234)	a	235)	a	236)
49)	b	50)	b	51)	d	52)	d	237)	d	238)	c	239)	b	240)
53)	b	54)	C	55)	b	56)	c	241)	b	242)	b	243)	b	244)
57)	c	58)	b	59)	a	60)	c	245)	b	246)	a	247)	d	248)
61)	b	62)	b	63)	b	64)	d	249)	a	250)	b	251)	c	252)
65)	d	66)	C	67)	a	68)	b	253)	b	254)	a	255)	c	256)
69)	a	70)	c	71)	b	72)	c	257)	b	258)	b	259)	c	260)
73)	d	74)	a	75)	C	76)	b	261)	a	262)	d	263)	d	264)
77)	a	78)	a	79)	d	80)	a	265)	b	266)	b	267)	c	268)
81)	b	82)	a	83)	d	84)	b	269)	b	270)	a	271)	a	272)
85)	a	86)	d	87)	a	88)	d	273)	d	274)	c	275)	d	276)
89)	b	90)	d	91)	a	92)	a	277)	C	278)	d	279)	a	280)
93)	a	94)	b	95)	a	96)	a	281)	b	282)	b	283)	b	284)
97)	c	98)	b	99)	d	100)	a	285)	c	286)	b	287)	d	288)
101)	b	102)	d	103)	C	104)	a	289)	b	290)	a	291)	C	292)
105)	d	106)	c	107)	a	108)	c	293)	d	294)	d	295)	a	296)
109)	b	110)	c	111)	c	112)	b	297)	c	298)	b	299)	a	300)
113)	a	114)	b	115)	C	116)	d	301)	d	302)	d	303)	a	304)
117)	b	118)	C	119)	b	120)	c	305)	C	306)	C	307)	a	308)
121)	b	122)	a	123)	c	124)	b	309)	b	310)	C	311)	c	312)
125)	c	126)	c	127)	a	128)	d	313)	a	314)	c	315)	b	316)
129)	b	130)	C	131)	C	132)	b	317)	a	318)	b	319)	b	320)
133)	a	134)	c	135)	b	136)	b	321)	c	322)	c	323)	c	324)
137)	b	138)	b	139)	b	140)	b	325)	b	326)	b	327)	c	328)
141)	C	142)	b	143)	C	144)	d	329)	a	330)	C	331)	b	332)
145)	a	146)	d	147)	c	148)	b	333)	b	334)	C	335)	c	336)
149)	a	150)	b	151)	d	152)	a	337)	a	338)	d	339)	b	340)
153)	b	154)	a	155)	a	156)	d	341)	C	342)	C	343)	C	344)
157)	d	158)	d	159)	a	160)	a	345)	d	346)	c	347)	c	348)
161)	b	162)	b	163)	d	164)	c	349)	c	350)	a	351)	c	352)
165)	b	166)	d	167)	b	168)	d	353)	d	354)	d	355)	C	356)
169)	C	170)	a	171)	a	172)	b	357)	a	358)	b	359)	a	360)
173)	a	174)	d	175)	a	176)	c	361)	d	362)	b	363)	b	364)
177)	a	178)	a	179)	a	180)	a	365)	C	366)	a			
181)	c	182)	C	183)	a	184)								
185)	b	186)	a	187)	d	188)								

: HINTS AND SOLUTIONS :

1 (b)
Suppose R divides $P Q$ in the ratio $\lambda: 1$. Then, the coordinates of R are
$\left(\frac{5 \lambda+3}{\lambda+1}, \frac{4 \lambda+2}{\lambda+1}, \frac{-6 \lambda-4}{\lambda+1}\right)$
But, the coordinates of R are given as $(9,8,-10)$
$\therefore \frac{5 \lambda+3}{\lambda+1}=9, \frac{4 \lambda+2}{\lambda+1}=8$ and $\frac{-6 \lambda-4}{\lambda+1}=-10$
$\Rightarrow \lambda=-\frac{3}{2}$
Hence, R divides $P Q$ externally in the ratio $3: 2$
2 (b)
The centre and radius of given sphere are
$C(0,1,2)$ and $R=\sqrt{0+1+4+11}=4$
Now, perpendicular distance from centre to the plane,
$d=\frac{|0+2+4-15|}{\sqrt{1+4+4}}=3$
\therefore Radius of circle $=\sqrt{R^{2}-d^{2}}=\sqrt{16-9}=\sqrt{7}$
3
(d)
$\alpha=\frac{2 \cdot 2+3 \cdot 1}{2+3}=\frac{7}{5}$
$\beta=\frac{2 \cdot 3+3 \cdot(-1)}{2+3}=\frac{3}{5}$

and $\gamma=\frac{2(-1)+3 \cdot 2}{2+3}=\frac{4}{5}$
$\therefore \overrightarrow{\mathbf{O P}}=\frac{1}{5}(7 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})$
4 (c)
The given plane passes through \vec{a} and is parallel to the vectors $(\vec{b}-\vec{a})$ and \vec{c}. So it is normal to
$(\vec{b}-\vec{a}), \times \vec{c}$
$(\vec{r}-\vec{a}) \cdot((\vec{b}-\vec{a}) \times \vec{c})=0$
$\Rightarrow \vec{r} \cdot(\vec{b} \times \vec{c}+\vec{c} \times \vec{a})=[\vec{a} \vec{b} \vec{c}]$
The length of the perpendicular from the origin to this plane is
$\frac{[\vec{a} \vec{b} \vec{c}]}{|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}$
(b)

Any point on the line
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k \quad[\mathrm{say}]$
is $(2 k+1,3 k+2,4 k+3)$
which lies on the plane $2 x+3 y-z=-4$
$\therefore 2(2 k+1)+3(3 k+2)-4(4 k+3)=-4$
$\Rightarrow k=-1$
\therefore Required point is $(-1,-1,-1)$
6 (b)
Given line can be rewritten as
$\frac{x-\frac{1}{2}}{1}=\frac{y-2}{-2}=\frac{z+1}{a}$
If any line parallel to plane, then $a_{1} a_{2}+b_{1} b_{2}+$ $c_{1} c_{2}=0$
Here, $\left(a_{1}, b_{1}, c_{1}\right)=(2,-1,1)$
and $\left(a_{2}, b_{2}, c_{2}\right)=(1,-2, a)$
$\therefore 2(1)-2(-1)+a(1)=0$
$\Rightarrow a=-4$
7 (c)
$\cos ^{2} 45^{\circ}+\cos ^{2} 120^{\circ}+\cos ^{2} \theta=1$
$\Rightarrow \frac{1}{2}+\frac{1}{4}+\cos ^{2} \theta=1 \Rightarrow \cos ^{2} \theta=1-\frac{3}{4}=\frac{1}{4}$
$\Rightarrow \cos \theta=\frac{1}{2} \quad(\because \theta$ is acute $)$
$\Rightarrow \theta=60^{\circ}$
8 (b)
Let the position vectors of the given points A and B be \vec{a} and \vec{b} respectively and that of the variable point P be \vec{r}. It is given that
$P A^{2}-P B^{2}=k$ (Constant)
$\Rightarrow|\vec{A} P|^{2}-|\vec{B} P|^{2}=k$
$\Rightarrow|\vec{r}-\vec{a}|^{2}-|\vec{r}-\vec{b}|^{2}=k$
$\Rightarrow\left\{|\vec{r}|^{2}+|\vec{a}|^{2}-2 \vec{r} \cdot \vec{a}\right\}-\left\{|\vec{r}|^{2}+|\vec{b}|^{2}-2 \vec{r} \cdot \vec{b}\right\}$ $=k$
$\Rightarrow 2 \vec{r} \cdot(\vec{b}-\vec{a})=k+|\vec{b}|^{2}-|\vec{a}|^{2}$
$\Rightarrow \vec{r} \cdot(\vec{b}-\vec{a})=\lambda$, where, $\lambda=\frac{1}{2}\left\{k+|\vec{b}|^{2}-|\vec{a}|^{2}\right\}$
Clearly, it represents a plane
(a)

Equation of lines are
$\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$
And $\frac{x-1}{3 k}=\frac{y-5}{1}=\frac{z-6}{-5}$
These line are perpendicular to each other
$\therefore-3(3 k)+2 k+2(-5)=0$
$\Rightarrow-7 k-10=0$
$\Rightarrow k=-\frac{10}{7}$
(a)

The equation of any plane through $(2,-1,3)$ is $a(x-2)+b(y+1)+c(z-3)=0$

Since, Eq. (i), is parallel to $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$
$\therefore 3 a+0 b-c=0$
and $-3 a+2 b+2 c=0$
$\Rightarrow \frac{a}{2}=\frac{b}{3-6}=\frac{c}{6}=k \quad[$ say $]$
$\Rightarrow a=2 k, \quad b=-3 k, \quad c=6 k$
On putting the values of a, b and c in Eq. (i), we get
$2 k(x-2)-3 k(y+1)+6 k(z-3)=0$
$\Rightarrow 2 x-3 y+6 z-25=0$
11 (b)
We know that the equation of a plane passing
through the intersection of the planes
$a_{1} x+b_{1} y+c_{1} z+d_{1}=0$
And $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$ is
$\left(a_{1} x+b_{1} y+c_{1} z+d_{1}\right)$

$$
+\lambda\left(a_{2} x+b_{2} y+c_{2} z+d_{2}\right)=0
$$

Where λ is constant
Thus, the equation of plane $2 x-(1+\lambda) y+$
$3 \lambda z=0$ can be rewritten as
$(2 x-y)+\lambda(-y+3 z)=0$
So, it is clear that the equation of plane passes
through the intersection of the planes
$2 x-y=0$ and $y-3 z=0$
12 (c)
The given lines can be rewritten as
$\frac{x}{3}=\frac{y}{2}=\frac{z}{-6}$ and $\frac{x}{2}=\frac{y}{-12}=\frac{z}{-3}$
\therefore Angle between the lines is
$\theta=\cos ^{-1}\left(\frac{3 \times 2+2(-12)-6(-3)}{\sqrt{3^{2}+2^{2}+(-6)^{2}} \sqrt{(2)^{2}+(-12)^{2}+(-3)^{2}}}\right)$
$=0$
$\Rightarrow \theta=90^{\circ}$
14 (a)
We know that the image of the point $\left(x_{1}, y_{1}, z_{1}\right)$ in
the plane $a x+b y+c z+d=0$ is given by
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$

$$
=-2\left(\frac{a x_{1}+b y_{1}+c z_{1}+d}{a^{2}+b^{2}+c^{2}}\right)
$$

The equation of the plane is
$\vec{r} \cdot(3 \hat{\imath}-5 \hat{\jmath}+4 \hat{k})=5$ or, $3 x-5 y+4 z=5$
The image of $(1,2,-1)$ in this plane is given by $\frac{x-1}{3}=\frac{y-2}{-5}=\frac{z+1}{4}=-2\left(\frac{3-10-4-5}{\sqrt{9+25+16}}\right)$
$\Rightarrow x=\frac{73}{25}, y=-\frac{6}{5}, z=\frac{39}{25}$
15 (a)
We know that the equation of the plane containing the lines
$\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}}$ and $\frac{x-x_{2}}{l_{2}}=\frac{y-y_{2}}{m_{2}}=\frac{z-z_{2}}{n_{2}}$ is
$\left|\begin{array}{ccc}x-x_{1} & y-y_{1} & z-z_{1} \\ l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2}\end{array}\right|=0$
So, the equation of the plane containing the given lines is
$\left|\begin{array}{ccc}x-1 & y+1 & z \\ 2 & -1 & 3 \\ -1 & 3 & -1\end{array}\right|=0 \Rightarrow 8 x+y-5 z-7=0$
(d)

Let the equation of the variable plane be
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
This meets the coordinate axes at
$A(a, 0,0), B(0, b, 0)$ and $C(0,0, c)$
Let (α, β, γ) be the coordinates of the centroid of $\triangle A B C$. Then,
$\alpha=\frac{a}{3}, \beta=\frac{b}{3}, \gamma=\frac{c}{3} \Rightarrow a=3 \alpha, b=3 \beta, c=3 \gamma$
... (i)
The plane is at a distance, k from the origin
$\therefore\left|\frac{\frac{0}{a}+\frac{0}{b}+\frac{0}{c}-1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}\right|=k$
$\Rightarrow \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{k^{2}} \Rightarrow \alpha^{-2}+\beta^{-2}+\gamma^{-2}=9 k^{-2}$
Hence, the locus of (α, β, γ) is $x^{-2}+y^{-2}+z^{-2}=$
$9 k^{-2}$
17 (b)
The direction cosines of the line are
$l=\cos \alpha, m=\cos \beta, n=\cos \gamma$
Now,
$l^{2}+m^{2}+n^{2}=1$
$\Rightarrow \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\Rightarrow 1-\sin ^{2} \alpha+1-\sin ^{2} \beta+1-\sin ^{2} \gamma=1$
$\Rightarrow \sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$
18 (b)
Suppose $x y$-plane divides at the line joining the given points in the ratio $\lambda: 1$. The
coordinate of the points of division
are $\left[\frac{2 \lambda-1}{\lambda+1}, \frac{-5 \lambda+3}{\lambda+1}, \frac{6 \lambda+4}{\lambda+1}\right]$ Since the point lies
on the $x y$-plane
$\therefore \frac{6 \lambda+4}{\lambda+1}=0 \Rightarrow \lambda=\frac{-2}{3}$
(d)

Direction cosines of given line are $\frac{3}{\sqrt{17}}, \frac{2}{\sqrt{17}},-\frac{2}{\sqrt{17}}$

$(6,7,7)$
$\therefore A M=\left\lvert\, 6-1 \cdot \frac{3}{\sqrt{17}}+(7-2) \cdot \frac{2}{\sqrt{17}}+(7-3)\right.$
$\left.\cdot-\frac{2}{\sqrt{17}} \right\rvert\,$
$=\sqrt{17}$
$A P=\sqrt{(6-1)^{2}+(7-2)^{2}+(7-3)^{2}}$
$=\sqrt{25+25+16}=\sqrt{66}$
\therefore Length of perpendicular
$P M=\sqrt{A P^{2}-A M^{2}}$
$=\sqrt{66-17}=\sqrt{49}=7$
20 (c)
Let θ be the angle between the given linear. Then, $\cos \theta=\frac{1 \times 3+(-2) \times 2+1 \times 3}{\sqrt{1+4+9} \sqrt{9+4+1}}=\frac{1}{7} \Rightarrow \theta$

$$
=\cos ^{-1}\left(\frac{1}{7}\right)
$$

21 (c)
Since, the given line is parallel to the $x y$-plane, it means that the normal line is perpendicular to z axis
\therefore Dr's of z coordinate is zero
ie, $n=0$
22 (a)
Since, the line lie in the plane, therefore its point $(4,2, k)$ should lie in the given plane
$\Rightarrow 2(4)-4(2)+1(k)=7 \Rightarrow k=7$
24 (d)
The foot of the point $\left(x_{1}, y_{1}, z_{1}\right)$ in the plane
$a x+b y+c z+d=0$ is given by
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
$=-\frac{\left(a x_{1}+b y_{1}+c z_{1}+d\right)}{a^{2}+b^{2}+c^{2}}$
$\frac{x-1}{2}=\frac{y-3}{(-1)}=\frac{z-4}{1}=\frac{2-3+4+3}{6}$
$\Rightarrow x=-1, y=4, z=3$
25 (c)
Given, $\frac{\mathrm{x}}{1}=\frac{\mathrm{y}-1}{2}=\frac{\mathrm{z}-2}{3}=\lambda \quad$ [say]
Any point on the line is $P(\lambda, 2 \lambda,+1,3 \lambda+2)$
Therefore, direction ratios of $P Q$ are $\lambda-1,2 \lambda-$ $5,3 \lambda-1$
$\because P Q$ is perpendicular to the given line
Therefore, $1(\lambda-1)+2(2 \lambda-5)+3(3 \lambda-1)=0$
$\Rightarrow \lambda=1$
\therefore The coordinate of P are $(1,3,5)$
\therefore Length of perpendicular
$=\sqrt{(1-1)^{2}+(3-6)^{2}+(5-3)^{2}}$
$=\sqrt{13}$
26
(c)

The given line is
$\overrightarrow{\mathbf{r}}=(1+2 \mu) \hat{\mathbf{i}}+(2+\mu) \hat{\mathbf{j}}+(2 \mu-1) \hat{\mathbf{k}}$
$=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})+\mu(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
Vector equation of line written in cartesian from is
$\frac{x-1}{2}=\frac{y-2}{1}=\frac{z+1}{2}$
\therefore Angle between line and a plane is given by
$\therefore \sin \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$=\frac{2 \times 3+1 \times(-2)+2 \times 6}{\sqrt{4+1+4} \sqrt{9+4+36}}=\frac{16}{21}$
$\Rightarrow \theta=\sin ^{-1}\left(\frac{16}{21}\right)$
(a)

The equation of circle and plane are
$x^{2}+y^{2}+z^{2}=9$
And $2 x+3 y+4 z-5=0$
Respectively.
\therefore Equation of sphere is
$x^{2}+y^{2}+z^{2}-9+\lambda(2 x+3 y+4 z-5)=0$
...(iii)
Which passes through $(1,2,3)$
$\therefore 1+4+9-9+\lambda(2+6+12-5)=0$
$\Rightarrow 5+\lambda(15)=0$
$\Rightarrow \lambda=-\frac{1}{3}$
\therefore From Eq. (iii)
$\therefore x^{2}+y^{2}+z^{2}-9-\frac{1}{3}(2 x-3 y+4 z-5)=0$
$\Rightarrow 2\left(x^{2}+y^{2}+z^{2}\right)-2 x-3 y-4 z-22=0$
$28 \quad$ (c)
Given lines are $\frac{x-1}{0}=\frac{y-2}{0}=\frac{z}{1}$
and $\frac{x}{1}=\frac{y+1}{0}=\frac{z}{0}$
$\therefore \cos \theta=0 \cdot 1+0 \cdot 0+1 \cdot 0=0$
$\Rightarrow \theta=90^{\circ}$
29 (b)
We have, equation of lines are
$\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1}$
And $\frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4}$
\therefore Any point on line $\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1}=k$
is $(3 k+5,7-k, k-2)$

It should lie on
$\frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4}$
$\Rightarrow \frac{3 k+5+3}{-36}=\frac{7-k-3}{2}=\frac{k-2-6}{4}$
On solving, we get $k=\frac{16}{3}$
$\therefore x=16+5=21, y=7-\frac{16}{3}=\frac{5}{3}$
And $z=\frac{16}{3}-2=\frac{10}{3}$
\therefore Coordinate of point are $(21,5 / 3,10 / 3)$
30 (a)
The length of the edges are given by
$a=5-2=3$
$b=9-3=6$
$c=7-5=2$
So, length of the diagonal $=\sqrt{9+36+4}=7$
31 (b)
We know, $\cos \theta=\frac{\left|a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right|}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$=\frac{|(2)(3)+(3)(-4)+(-6)(5)|}{\sqrt{2^{2}+3^{2}+(-6)^{2}} \sqrt{3^{2}+(-4)^{2}+(5)^{2}}}$
$=\frac{|6-12-30|}{\sqrt{4+9+36} \sqrt{9+16+25}}$
$=\frac{36}{7 \cdot 5 \sqrt{2}}=\frac{18 \sqrt{2}}{35}$
$\Rightarrow \theta=\cos ^{-1}\left(\frac{18 \sqrt{2}}{35}\right)$
32 (a)
The equation of line which passes through the point $A(4,2,2)$ and parallel to the vector
$2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ is
$\frac{x-4}{2}=\frac{y-2}{3}=\frac{z-2}{6}$
Distance of point P from the line
$=\sqrt{\sum\left(x_{1}-x_{2}\right)^{2}-\left(\sum l\left(x_{1}-x_{2}\right)\right)^{2}}$
$=\sqrt{(1-4)^{2}+(2-2)^{2}+(3-2)^{2}-\{2(1-4)+3(2-2)+}$
$=\sqrt{9+0+1-(-6+0+6)^{2}}$
$=\sqrt{10}$
34 (b)
If the given plane contains the given line, then normal to the plane must be perpendicular to the line and the condition for the same is
$a l+b m+c n=0$
35 (a)
Given lines can be rewritten as
$\frac{x-1}{-3}=\frac{y-2}{2 \alpha}=\frac{z-3}{2}$
and $\frac{x-1}{3 \alpha}=\frac{y-1}{1}=\frac{z-6}{-5}$
since, lines are perpendicular.
$\therefore a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\Rightarrow(-3)(3 \alpha)+2 \alpha(1)+2(-5)=0$
$\Rightarrow-9 \alpha+2 \alpha-10=0$
$\Rightarrow \alpha=-\frac{10}{7}$
(d)

Perpendicular distance of the point $(6,5,8)$ from y-axis $=\sqrt{6^{2}+8^{2}}=10$ units
37 (a)
Let the sides of the cube be along the axes, then diagonals have direction cosine as
$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}},\right)$ and $\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
\therefore Resultant vector is
$\frac{a}{\sqrt{2}}(\hat{\mathbf{i}}+\hat{\mathbf{j}})+\frac{2 a}{\sqrt{2}}(\hat{\mathbf{i}}+\hat{\mathbf{k}})+\frac{3 a}{\sqrt{2}}(\hat{\mathbf{j}}+\hat{\mathbf{k}})$
$=\frac{a}{\sqrt{2}}(3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})$
\Rightarrow Magnitude of the resultant
$=\frac{a}{\sqrt{2}} \sqrt{9+16+25}=\frac{a}{\sqrt{2}} \cdot \sqrt{50}=5 a$
(b)

Line is passing through $(3,-5,7)$ and parallel to
$(2,1,-3)$, then equation of line is $\frac{x-3}{2}=\frac{y+5}{1}=\frac{z-7}{-3}$
39 (a)
The required plane passes through a point having position vector $\overrightarrow{a_{1}}$ and is parallel to the vectors $\overrightarrow{a_{1}}$ and $\overrightarrow{a_{2}}$. So, it is normal to $\overrightarrow{a_{1}} \times \overrightarrow{a_{2}}$
Thus, the equation on the plane is
$\left(\vec{r}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{a_{1}} \times \overrightarrow{a_{2}}\right)=0$
$\Rightarrow\left[\vec{r} \overrightarrow{a_{1}} \overrightarrow{a_{2}}\right]=\left[\overrightarrow{a_{1}} \overrightarrow{a_{1}} \overrightarrow{a_{2}}\right]$
$\Rightarrow\left[\vec{r} \overrightarrow{a_{1}} \overrightarrow{a_{2}}\right]=0$
Hence, the required plane is $\left[\vec{r} \overrightarrow{a_{1}} \overrightarrow{a_{2}}\right]=0$
40 (b)
The equation of any plane through $A(4,5,1)$ is
$a(x-4)+b(y-5)+c(z-1)=0$
The points $B(0,-1,-1)$ and $C(3,9,4)$ lies on Eq.
(i)
$\Rightarrow a(0-4)+b(-1-5)+c(-1-1)=0$
$\Rightarrow 2 a+3 b+c=0$
and $a(3-4)+b(9-5)+c(4-1)=0$
$\Rightarrow a-4 b-3 c=0$
On solving Eqs, (i) and (iii), we get
$\frac{a}{5}=\frac{b}{-7}=\frac{c}{11}$
\therefore Equation of plane is
$5(x-4)-7(y-5)+11(z-1)=0$
$\Rightarrow 5 x-7 y+11 z+4=0$

Also, point $D(-4,4,4)$ lies on it, then
$-20-28+44+4=0 \Rightarrow 0=0$
Hence, points A, B, C and D are coplanar.

Alternate

DR's of $A B(-4,-6,-2), A C=(-1,4,3)$
and $A D(-8,-1,3)$,
Now $\left|\begin{array}{ccc}-4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3\end{array}\right|=-4(15)+6(21)-2(33)$ $=0$
41 (a)
If l, m, n are the direction cosines of the line, then
$1 \cdot l-1 \cdot m+1 \cdot n=0$
and $1 \cdot l-3 \cdot m+0 \cdot n=0$
$\therefore \frac{l}{0+3}=\frac{m}{1-0}=\frac{n}{-3+1}$
Hence, the direction ratios of the line are $3,1,-2$
42 (a)
Since, line lies in a plane, it means point $(4,2, k)$
lies in a plane.
$\therefore 8-8+k=7$
$\Rightarrow k=7$
43 (a)
Since, M is the mid point of $A(4 \hat{\mathbf{1}}+5 \hat{\mathbf{j}}-10 \hat{\mathbf{k}})$ and
$B(-\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}+\hat{\mathbf{k}})$
\therefore Coordinate of point M are $\left(\frac{3}{2}, \frac{7}{2},-\frac{9}{2}\right)$
$\left(\overrightarrow{\mathbf{r}}-\left(\frac{3}{2} \hat{\mathbf{l}}+\frac{7}{2} \hat{\mathbf{j}}-\frac{9}{2} \hat{\mathbf{k}}\right)\right) \cdot \overrightarrow{\mathbf{A B}}=0$
$\left(\overrightarrow{\mathbf{r}}-\left(\frac{3}{2} \hat{\mathbf{i}}+\frac{7}{2} \hat{\mathbf{\jmath}}-\frac{9}{2} \hat{\mathbf{k}}\right)\right) \cdot(5 \hat{\mathbf{\imath}}-3 \hat{\mathbf{\jmath}}+11 \hat{\mathbf{k}})=0$
$\overrightarrow{\mathbf{r}} \cdot(5 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-11 \hat{\mathbf{k}})-\frac{135}{2}=0$
44 (a)
Equation of the plane through $(5,1,2)$ is
$a(x-5)+b(y-1)+c(z-2)=0$
Given plane (i) is perpendicular to the line
$\frac{x-2}{1 / 2}=\frac{y-4}{1}=\frac{z-5}{1}$
\therefore Equation of normal of Eq. (i) and straight line
(ii) are parallel
ie, $\frac{a}{1 / 2}=\frac{b}{1}=\frac{c}{1}=k \quad$ (say)
$\therefore a=\frac{k}{2}, b=k, c=k$
From Eq. (i),
$\frac{k}{2}(x-5)+k(y-1)+k(z-2)=0$
Or $x+2 y+2 z=11$
Any point on Eq. (ii) is $\left(2+\frac{\lambda}{2}, 4+\lambda, 5+\lambda\right)$
Which lies on Eq. (iii), then $\lambda=-2$
\therefore Required point is $(1,2,3)$

45 (b)
The line of intersection of the plane
$\vec{r} \cdot(3 \hat{\imath}-\hat{\jmath}+\hat{k})=1$ and $\vec{r} \cdot(\hat{\imath}+4 \hat{\jmath}-2 \hat{k})=2$
is common to both the planes. Therefore, it is perpendicular to normal to the two planes i.e. $\overrightarrow{n_{1}}=3 \hat{\imath}-\hat{\jmath}+\hat{k}$ and $\overrightarrow{n_{2}}=\hat{\imath}+4 \hat{\jmath}-2 \hat{k}$
Hence, it is parallel to the vector $\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}=-2 \hat{\imath}+$ $7 \hat{\jmath}+13 \hat{k}$. Thus, we have to find the equation of the plane passing through $\vec{a}=\hat{\imath}+2 \hat{\jmath}-\hat{k}$ and normal to the vector $\vec{n}=\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}$
The equation of the required plane is
$(\vec{r}-\vec{a}) \cdot \vec{n}=0$
$\Rightarrow \vec{r} \cdot \vec{n}=\vec{a} \cdot \vec{n}$
$\Rightarrow \vec{r} \cdot(-2 \hat{\imath}+7 \hat{\jmath}+13 \hat{k})$

$$
=(\hat{\imath}+2 \hat{\jmath}-\hat{k}) \cdot(-2 \hat{\imath}+7 \hat{\jmath}+13 \hat{k})
$$

$\Rightarrow \vec{r} \cdot(2 \hat{\imath}-7 \hat{\jmath}-13 \hat{k})=1$
46 (a)
Any plane passing through $(3,2,0)$ is
$a(x-3)+b(y-2)+c(z-0) \ldots(i)$
Plane is passing through the line
$\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}$
$\therefore a(3-3)+b(6-2)+c(4-0)=0$
$\Rightarrow 0 a+4 b+4 c=0$
Since, the given plane is passing through the line, therefore the DR's of the normal is perpendicular to the line,
$\therefore a+5 b+4 c=0$
On solving Eqs. (ii) and (iii), we get
$\frac{a}{16-20}=\frac{b}{4-0}=\frac{c}{0-4}$
$\Rightarrow \frac{a}{-1}=\frac{b}{1}=\frac{c}{-1}$
On putting the values of a, b and c in Eq. (i), we get
$x-y+z=1$
47 (a)
Since, we are given the equal intercept of the coordinate axes ie, $|x|=|y|=|z|=p$
Therefore, it make a cube
48 (d)
Let the equation of sphere passing through origin be
$x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z=0$
Also, it passes through $(a, 0,0),(0, b, 0),(0,0, c)$
$\Rightarrow a^{2}+2 u a=0 \Rightarrow u=-\frac{a}{2}$
Similarly, $v=-\frac{b}{2}, w=-\frac{c}{2}$
\therefore Centre $(-u,-v,-w)=\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$

49 (b)
Given lines can be rewritten as
$\frac{x-6}{1}=\frac{y-2}{-2}=\frac{z-2}{2}$ and
$\frac{x+4}{3}=\frac{y}{-2}=\frac{z-1}{-2}$
Here, $x_{1}=6, y_{1}=2, z_{1}=2$
$x_{2}=-4, y_{2}=0, z_{2}=1$
$a_{1}=1, b_{1}=-2, c_{1}=2$
and $a_{2}=3, b_{2}=-2, c_{2}=-2$
Now, $\left|\begin{array}{ccc}x_{2}-y_{2} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|$
$=\left|\begin{array}{ccc}-10 & -2 & -1 \\ 1 & -2 & 2 \\ 3 & -2 & -2\end{array}\right|$
$=-10(4+4)+2(-2-6)-1(-2+6)$
$=-100$
and $\sqrt{\left(b_{1} c_{2}-c_{1} b_{2}\right)^{2}+\left(c_{1} a_{2}-a_{1} c_{2}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}$
$=\sqrt{(4+4)^{2}+(6+2)^{2}+(-2+6)^{2}}$
$=\sqrt{64+64+16}=12$
\therefore Required shortest distance $=1 \frac{-100}{12}=\frac{25}{3}$ [neglect(-ve)sign]
50 (b)
Required plane contains the given line, so normal to the plane must be perpendicular to the line and the condition for the same is $a l+b m+c n=0$.
51 (d)
Given line is
$\frac{x-1}{1}=\frac{y+2}{3}=\frac{z-2}{-2}=r \quad$ [say]
$\therefore x=r+1, \quad y=3 r-2, \quad z=-2 r+2$
These values of x and z will satisfy the plane
$3 x+4 y+5 z-25=0$
$\therefore 3(r+1)+4(3 r-2)+5(-2 r+2)-25=0$
$\Rightarrow 3 r+3+12 r-8-10 r+10-25=0$
$\Rightarrow r=4$
$\therefore x=5, \quad y=10$ and $z=-6$
52 (d)
Given that equation of planes are
$P \equiv a x+b y+c z+d=0$
And $P^{\prime} \equiv a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0$
Equation of intersection of planes is
$P+\lambda P^{\prime}=0$
$\Rightarrow a x+b y+c z+d+\lambda\left(a^{\prime} x+b^{\prime} y+c^{\prime} z+d\right)=0$
$\Rightarrow a+\lambda a^{\prime}=0$
$\Rightarrow \lambda=-\frac{a}{a^{\prime}}$
\therefore From Eq. (iii), we get
$P-\frac{a}{a^{\prime}} P^{\prime}=0 \Rightarrow \frac{P}{a}=\frac{P^{\prime}}{a^{\prime}}$
(b)

Here, $\alpha=\beta=\gamma$
$\because \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\therefore \cos \alpha=\frac{1}{\sqrt{3}}$
DC' of $P Q$ are $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

$P M=$ Projection of $A P$ on $P Q$

$$
\begin{gathered}
=\left|(-2+3) \frac{1}{\sqrt{3}}+(3-5) \cdot \frac{1}{\sqrt{3}}+(1-2) \cdot \frac{1}{\sqrt{3}}\right| \\
=\frac{2}{\sqrt{3}}
\end{gathered}
$$

And $A P=\sqrt{(-2+3)^{2}+(3-5)^{2}+(1-2)^{2}}=$ $\sqrt{6}$
$A M=\sqrt{(A P)^{2}-(P M)^{2}}$
$=\sqrt{6-\frac{4}{3}}=\sqrt{\frac{14}{3}}$
54 (c)
Since, $l=m=n=\frac{1}{\sqrt{3}}$

\therefore Equation of line is $\frac{x-2}{1 / \sqrt{3}}=\frac{y+1}{1 / \sqrt{3}}=\frac{z-2}{1 / \sqrt{3}}$
$\Rightarrow x-2=y+1=z-2=r \quad$ [say]
\therefore Any point on the line is
$Q=(r+2, r-1, r+2)$
$\because Q$ lies on the plane $2 x+y+z=9$
$\therefore 2(r+2)+(r-1)+(r+2)=9$
$\Rightarrow 4 r+5=9 \Rightarrow r=1$
\therefore Coordinate $Q(3,0,3)$
$\therefore P Q=\sqrt{(3-2)^{2}+(0+1)^{2}+(3-2)^{2}}=\sqrt{3}$
55 (b)
Let the equation of line $A B$ be
$\frac{x-0}{1}=\frac{y+a}{1}=\frac{z-0}{1}=k \quad[$ say $]$

\therefore Coordinate of E are $(k, k-a, k)$.
Also, the equation of the other line $C D$ is
$\frac{x+a}{2}=\frac{y-0}{1}=\frac{z-0}{1}=\lambda \quad[\mathrm{say}]$
\therefore Coordinates of F are $(2 \lambda-a, \lambda, \lambda)$
Direction ratio of $F E$ are $\{(k-2 \lambda+a),(k-\lambda-$
a, $k-\lambda$
$\therefore \frac{k-2 \lambda+a}{2}=\frac{k-\lambda-a}{1}=\frac{k-\lambda}{2}$
From Ist and IInd terms,
$k-2 \lambda+a=2 k-2 \lambda-2 a$
$\Rightarrow k=3 a$
From IInd and IIIrd terms,
$2 k-2 \lambda-2 a=k-\lambda$
$\Rightarrow \lambda=k-2 a=3 a-2 a$
$\Rightarrow \lambda=a$
\therefore Coordinate of $E=(3 a, 2 a, 3 a)$ and coordinate of $F=(a, a, a)$
57 (c)
Let the DR's of a required line be a, b and c Since, the normal to the given planes $x+2 y+z=3$ and $6 x+8 y+3 z=13$ are perpendicular to the line.
$\therefore a+2 b+c=0$
and $6 a+8 b+3 c=0$
$\Rightarrow \frac{a}{6-8}=\frac{b}{6-3}=\frac{c}{8-12}$
$\Rightarrow \frac{a}{2}=\frac{b}{-3}=\frac{c}{4}$
Hence, option (c) is the required solution.
58 (b)
Let $A(1,2,2)$ be the foot of the perpendicular from $O(0,0,0)$ on the plane, then direction ratios of $O A$ are $(1,2,2)$,
\therefore Equation of the plane is
$1(x-1)+2(y-2)+2(z-2)=0$
$\Rightarrow x+2 y+2 z-9=0$
59 (a)
Let the coordinates of
A, B and C be $(a, 0,0),(0, b, 0),(0,0, c)$
respectively
Then, equation of the plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
Also, it passes through (p, q, r)
$\therefore \frac{p}{a}+\frac{q}{b}+\frac{r}{c}=1$
Also, equation of sphere passes through A, B, C will be
$x^{2}+y^{2}+z^{2}-a x-b y-c z=0$
If its centre $\left(x_{1}, y_{1}, z_{1}\right)$, then
$x_{1}=\frac{a}{2}, y_{1}=\frac{b}{2}, z_{1}=\frac{c}{2}$
$\Rightarrow a=2 x_{1}, b=2 y_{1}, c=2 z_{1}$
\therefore Locus of centre of sphere is
$\frac{p}{x}+\frac{q}{y}+\frac{r}{z}=2$

60 (c)
The position vector of any point on the given line is

$$
\begin{aligned}
\hat{\imath}+\hat{\jmath}+\lambda(2 \hat{\imath}+\hat{\jmath} & +4 \hat{k}) \\
& =(2 \lambda+1) \hat{\imath}+(\lambda+1) \hat{\jmath}+4 \lambda \hat{k}
\end{aligned}
$$

Clearly, this point lies on the plane \vec{r}.
$(\hat{\imath}+2 \hat{\jmath}-\hat{k})=3$
Hence, the plane $\vec{r} \cdot(\hat{\imath}+2 \hat{\jmath}-\hat{k})=3$ contains the given line
61 (b)
The equation of the plane through given line is
$a(x-1)+b(y-2)+c(z-3)=0 \ldots(i)$
Since, the straight line lie on the plane.
\therefore DR's of the plane is perpendicular to the line $i e$,
$5 a+4 b+5 c=0 \ldots$ (ii)
Since, the plane passes through $(0,0,0)$, we get
$-a-2 b-3 c=0$
$\Rightarrow a+2 b+3 c=0$
On solving Eqs. (ii) and (ii), we get
$\frac{a}{2}=\frac{b}{-10}=\frac{c}{6}$
From Eq. (i),
$2(x-1)-10(y-2)+6(z-3)=0$
$\Rightarrow 2 x-10 y+6 z=0$
$\Rightarrow x-5 y+3 z=0$
62 (b)
The distance of the point $(2,3,-5)$ from the plane $x+2 y-2 z=9$ is
$D=\frac{|2(1)+2(3)-2(-5)-9|}{\sqrt{1^{2}+2^{2}+(-2)^{2}}}$
$=\frac{|2+6+10-9|}{\sqrt{1+4+4}}=3$
63 (b)
The ratio in which $y z$-plane divide the line segment
$=x_{1}: x_{2}=-(-3): 2=3: 2$
(d)

Since, DC^{\prime} sof a line are $\left(\frac{1}{c}, \frac{1}{c}, \frac{1}{c}\right)$
$\therefore\left(\frac{1}{c}\right)^{2}+\left(\frac{1}{c}\right)^{2}+\left(\frac{1}{c}\right)^{2}=1$
$\Rightarrow c^{2}=3 \Rightarrow c= \pm \sqrt{3}$
(d)

Let $\alpha=\frac{\pi}{4}, \beta=\frac{\pi}{4}$
We know, $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\therefore \cos ^{2} \frac{\pi}{4}+\cos ^{2} \frac{\pi}{4}+\cos ^{2} \gamma=1$
$\Rightarrow \frac{1}{2}+\frac{1}{2}+\cos ^{2} \gamma=1$
$\Rightarrow \cos ^{2} \gamma=0 \Rightarrow \gamma=\frac{\pi}{2}$
66 (c)
Equation of plane is
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
Also, $3=\frac{a+0+0}{3}$
$\Rightarrow a=9$ and similarly $b=6$ and $c=3$
\therefore Equation of required plane is
$\frac{x}{9}+\frac{y}{6}+\frac{z}{3}=1$
$\Rightarrow 2 x+3 y+6 z=18$
67 (a)
Equation of any plane passing through the point $(1,2,3)$ is
$a(x-1)+b(y-2)+c(z-3)=0$
Since, the above plane is parallel to $x+2 y+5 z=$ 0
$\therefore 1(x-1)+2(y-2)+5(z-3)=0$
(b)

If we have two vectors $\overrightarrow{\mathbf{A B}}$ and $\overrightarrow{\mathbf{A C}}$, then area of triangle
$\Delta=\frac{1}{2}|\overrightarrow{\mathbf{A B}} \times \overrightarrow{\mathbf{A C}}|$
$=\frac{1}{2}\left\|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}\end{array}\right\|$
$=\frac{1}{2}\left\|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & -3 \\ -1 & 3 & -1\end{array}\right\|$
$=\frac{1}{2}|\hat{\mathbf{i}}(-1+9)-\hat{\mathbf{j}}(-1-3)+\hat{\mathbf{k}}(3+1)|$
$=\frac{1}{2} \sqrt{8^{2}+4^{2}+4^{2}}=\frac{1}{2} \sqrt{64+16+16}$
$=\frac{\sqrt{96}}{2}=\frac{4 \sqrt{6}}{2}=2 \sqrt{6}$
69 (a)
The equation of the plane through the
intersection of given planes is
$(x+y+z-1)+k(2 x+3 y-z+4)=0$
$\Rightarrow x(1+2 k)+y(1+3 k)+z(1-k)$

$$
-1(1-4 k)=0
$$

\because Plane is parallel to x-axis $x(1+2 k)=0$
$\Rightarrow k=-\frac{1}{2}$
Put $k=-1 / 2$ in Eq. (i) we get the required equation of plane which is
$2(x+y+z-1)-2 x-3 y+z-4=0$
$\Rightarrow y-3 z+6=0$
70 (c)
Direction ratios of given planes are
$a_{1}=2, b_{1}=-1, c_{1}=1$
and $a_{2}=1, b_{2}=2, c_{2}=3$
$\therefore \cos \theta=\frac{2(1)-1(2)+1(3)}{\sqrt{2^{2}+1^{2}+1^{2}} \sqrt{1^{2}+2^{2}+3^{2}}}$
$=\frac{3}{\sqrt{6} \sqrt{14}}$
$\Rightarrow \theta=\cos ^{-1}\left(\frac{1}{2} \sqrt{\frac{3}{7}}\right)$
71 (b)
Projection
$=[2-(-1)] \frac{6}{7}+[5-0] \frac{2}{7}+[1-3] \frac{3}{7}$
$=\frac{18+10-6}{7}=\frac{22}{7}$

(c)

Let P be the foot of the perpendicular from the origin on the plane, then direction ratios of $O P$, the normal to the plane are $a-0, b-0, c-$
0 ie, a, b, c. Also, since, it passes through (a, b, c), the equation of the plane is
$a(x-a)+b(y-b)+c(z-c)=0$
$\Rightarrow a x+b y+c z=a^{2}+b^{2}+c^{2}$
73 (d)
Let equation of plane is
$l x+m y+n z=p$
Or $\frac{x}{\left(\frac{p}{l}\right)}+\frac{y}{\left(\frac{p}{m}\right)}+\frac{z}{\left(\frac{p}{n}\right)}=1$
Coordinate of A, B, C are $\left(\frac{p}{l}, 0,0\right),\left(0, \frac{p}{m}, 0\right)$ and ($0,0, \frac{p}{n}$) respectively
\therefore Centroid of $O A B C$ is $\left(\frac{p}{4 l}, \frac{p}{4 m}, \frac{1}{4 n}\right)$
$x_{1}=\frac{p}{4 l}, y_{1}=\frac{p}{4 m}, z_{1}=\frac{p}{4 n}$
$\because l^{2}+m^{2}+n^{2}=1$
$\Rightarrow \frac{p^{2}}{16 x_{1}^{2}}+\frac{p^{2}}{16 y_{1}^{2}}+\frac{p^{2}}{16 z_{1}^{2}}=1$
Or $x_{1}^{2} y_{1}^{2}+y_{1}^{2} z_{1}^{2}+z_{1}^{2} x^{2}=\frac{16}{p^{2}} x_{1}^{2} y_{1}^{2} z_{1}^{2}$
\therefore Locus is $x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}=\frac{16}{p^{2}} x^{2} y^{2} z^{2}$
Hence, $k=\frac{16}{p^{2}}$
$74 \quad$ (a)
The equation of any plane through the intersection of the plane $x+y+z=1$ and
$2 x+3 y-z+4=0$ is
$(x+y+z-1)+\lambda(2 x+3 y-z+4)=0$
$\Rightarrow(1+2 \lambda) x+(1+3 \lambda) y+(1-\lambda) z+4 \lambda-1$

$$
=0
$$

Since, the plane parallel to x-axis
Therefore, DR's of the above plane ie, the coefficient of x is zero
$\therefore 1+2 \lambda=0 \Rightarrow \lambda=-\frac{1}{2}$
Hence, the required equation will be $y-3 z+6=$ 0

75 (c)
Given equation can be rewritten as
$\frac{x}{\frac{1}{2}}+\frac{y}{\frac{1}{3}}+\frac{z}{\frac{1}{4}}=1$
\therefore The coordinate of $\triangle A B C$ is
$A\left(\frac{1}{2}, 0,0\right), B\left(0, \frac{1}{3}, 0\right), C\left(0,0, \frac{1}{4}\right)$
Centroid of traingle
$=\left(\frac{\frac{1}{2}+0+0}{3}, \frac{0+\frac{1}{3}+0}{3}, \frac{0+0+\frac{1}{4}}{3}\right)$
$=\left(\frac{1}{6}, \frac{1}{9}, \frac{1}{12}\right)$
76 (b)
Lane through given line is
$A(x-1)+B(y+2)+C(z-3)=0$
Where A, B and C are the DR's of the normal to the plane. Since the straight line lie on the plane
\therefore DR's of plane is perpendicular to the line $i e$,
$5 A+6 B+4 C=0$
Since, it passes through $(4,3,7)$, we get
$3 A+5 B+4 C=0$
On solving Eqs. (ii) and (iii), we get
$\frac{A}{4}=\frac{B}{-8}=\frac{C}{7}$
\therefore Equation of required plane is
$4 x-8 y+7 z=41$
77 (a)
Given line is
$\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}=k$ (say)
Any point on the line is $(3 k+2,4 k-1,12 k+2)$
This point lies on the plane $x-y+z=5$
$\therefore 3 k+2-(4 k-1)+12 k+2=5$
$\Rightarrow 11 k=0 \Rightarrow k=0$
\therefore Intersection point is $(2,-1,2)$
\therefore Distance, between points $(2-1,2)$ and
$(-1,-5,-10)$
$=\sqrt{(-1-2)^{2}+(-5+1)^{2}+(-10-2)^{2}}$
$=\sqrt{9+16+144}=13$
79 (d)
The equations of the lines joining
$6 \vec{a}-4 \vec{b}+4 \vec{c},-4 \vec{c}$ and $-\vec{a}-2 \vec{b}-3 \vec{c}, \vec{a}+2 \vec{b}-5 \vec{c}$ are respectively
$\vec{r}=6 \vec{a}-4 \vec{b}+4 \vec{c}+m(-6 \vec{a}-4 \vec{b}-8 \vec{c})$
and, $\vec{r}=-\vec{a}-2 \vec{b}-3 \vec{c}+n(2 \vec{a}+4 \vec{b}-2 \vec{c})$

For the point of intersection, the equations (i) and (ii) should give the same value of \vec{r}

Hence, equating the coeff. of vectors \vec{a}, \vec{b} and \vec{c} in the two expressions for \vec{r}, we get
$6 m+2 n=7,2 m-2 n=1$ and $8 m-2 n=7$
Solving first two equations, we get $m=1, n=1 / 2$
These values of m and n also satisfy the third equation
Hence, the lines intersect
Putting the value of m in (i), we obtain that the position vector of the point of intersection as $-4 \vec{C}$
(a)

The vector equation of a plane through the line of intersection of the planes $\vec{r} \cdot(\hat{\imath}+3 \hat{\jmath}-\hat{k})=0$ and $\vec{r} \cdot(\hat{\jmath}+2 \hat{k})=0$ can be written as
$\{\vec{r} \cdot(\hat{\imath}+3 \hat{\jmath}+-\hat{k})\}+\lambda\{\vec{r} \cdot(\hat{\jmath}+2 \hat{k})\}=0$
This passes through $2 \hat{\imath}+\hat{\jmath}-\hat{k}$

$$
\begin{aligned}
& \therefore(2 \hat{\imath}+\hat{\jmath}-\hat{k}) \cdot(\hat{\imath}+3 \hat{\jmath}-\hat{k})+\lambda(2 \hat{\imath}+\hat{\jmath}-\hat{k}) \\
& \cdot(\hat{\jmath}+2 \hat{k})=0 \\
& \Rightarrow(2+3+1)+\lambda(0+1-2)=0 \Rightarrow \lambda=6
\end{aligned}
$$

Putting the value of λ in (i), we get the equation of the required plane as
$\vec{r} \cdot(\hat{\imath}+9 \hat{\jmath}+11 \hat{k})=0$
81 (b)
We know that the distance between the parallel planes $\vec{r} \cdot \vec{n}=d_{1}$ and $\vec{r} \cdot \vec{n}=d_{2}$ is given by
$\frac{\left|d_{1}-d_{2}\right|}{|\vec{n}|}$
Given planes are $\vec{r} \cdot(\hat{\imath}+2 \hat{\jmath}-2 \hat{k})=-5$ and
$\vec{r} \cdot(\hat{\imath}+2 \hat{\jmath}-2 \hat{k})=8$
\therefore Required distance $=\frac{|-5-8|}{\sqrt{1+4+4}}=\frac{13}{3}$
82 (a)
\because A line joining points $(4,-1,2)$ and $(-3,2,3)$
meets the plane at 90°, then this line is normal to the plane
Also, DR's of normal are $<-7,3,1>$
\therefore DR's of plane are $<-7,3,1>$ and point $(-10,5,4)$
lies on the plane
Hence, equation of plane is
$-7(x+10)+3(y-5)+1(z-4)=0$
$\Rightarrow 7 x-3 y-z+89=0$
83 (d)
Consider $O X, O Y, O Z$ and $O x, O y, O z$ are two system of rectangular axes.
Let their corresponding equation of plane be
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
and $\frac{x}{a^{\prime}}+\frac{y}{b^{\prime}}+\frac{z}{c^{\prime}}=1$

Length of perpendicular from origin to Eqs. (i) and (ii) must be same
$\therefore \frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}=\frac{1}{\sqrt{\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}}}$
$\Rightarrow \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$
84 (b)
Let the equation of any plane passing through
$P(2,-1,3)$ is
$a(x-2)+b(y+1)+c(z-3)=0$
\therefore DR's of $O P=2,-1,3$
Since, the line $O P$ is perpendicular to the plane, therefore the DR's of the normal to the plane is proportional to the DR's of $O P$.
\therefore Required equation of plane is
$2(x-2)-1(y+1)+3(z-3)=0$
$\Rightarrow 2 x-y+3 z-14=0$
85 (a)
Direction cosines
$=\left(\frac{6}{\sqrt{36+4+9}}, \frac{2}{\sqrt{36+4+9}}, \frac{3}{\sqrt{36+4+9}}\right)$
$=\left(\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right)$
86
(d)

Given, equation can be rewritten as
$\frac{x}{18 / 3}-\frac{y}{18 / 2}-\frac{z}{18}=1$
$\Rightarrow \frac{x}{6}-\frac{y}{9}-\frac{z}{18}=1$
\therefore Points of coordinates axes are
$A(6,0,0), B(0,-9,0)$ and $C(0,0,-18)$
\therefore Centroid of a triangle
$=\left(\frac{6+0+0}{3}, \frac{0-9+0}{3}, \frac{0+0-18}{3}\right)$
$=(2,-3,-6)$
87 (a)
Equation of plane is $\frac{x}{8}+\frac{y}{4}+\frac{z}{4}=1$
$\Rightarrow x+2 y+2 z=8$
Length of perpendicular from origin to
$x+2 y+2 z-8=0$
$=\left|\frac{-8}{\sqrt{1+4+4}}\right|=\frac{8}{3}$
88 (d)
Given equation of sphere is
$x^{2}+y^{2}+z^{2}-3 x+y-2 z-\frac{1}{2}=0$
where centre is $\left(\frac{3}{2},-\frac{1}{2}, 1\right)$
and radius of sphere is $\sqrt{\frac{9}{4}+\frac{1}{4}+1+\frac{1}{2}}=2$
equation of family of concentric sphere is
$x^{2}+y^{2}+z^{2}-3 x+y-2 z+\lambda=0$
\therefore According to question,
$\sqrt{\frac{9}{4}+\frac{1}{4}+1-\lambda}=4$
$\Rightarrow \frac{14}{4}-\lambda=16$
$\Rightarrow \lambda=-\frac{25}{2}$
\therefore From Eq. (i),
$x^{2}+y^{2}+z^{2}-3 x+y-2 z-\frac{25}{2}=0$
$\Rightarrow 2 x^{2}+2 y^{2}+2 z^{2}-6 x+2 y-4 z-25=0$
89 (b)
Equation of first line is $\frac{x-4}{2}=\frac{y+1}{1}=\frac{z}{-3}$ and second line is $\frac{x-1}{1}=\frac{y+1}{-3}=\frac{z-2}{2}$
Angle between the lines
$\theta=\cos ^{-1}\left(\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|\right)$
$=\cos ^{-1}\left(\left|\frac{2-3-6}{\sqrt{14} \sqrt{14}}\right|\right)=\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$
(d)

Since, $P+\lambda P^{\prime}=0 \ldots$...(i)
$\Rightarrow a x+b y+c z+d+\lambda\left(a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}\right)$

$$
=0
$$

For parallel to x - axis, coefficient of $x=0$
$\Rightarrow a+\lambda a^{\prime}=0 \Rightarrow \lambda=-\frac{a}{a^{\prime}}$
\therefore From Eq. (i), we get
$P-\frac{a}{a^{\prime}} P^{\prime}=0$
$\Rightarrow \frac{P}{a}=\frac{P^{\prime}}{a^{\prime}}$
91 (a)
Equation of the plane passing through three
points A, B, C with position vectors a, b, c is
$\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$
So, that if a, b, c represents the given vectors, then
$(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})$
$=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{\jmath}} & \hat{\mathbf{k}} \\ -6 & 3 & 2 \\ 3 & -2 & 4\end{array}\right|+\left|\begin{array}{ccc}\hat{\mathbf{1}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 3 & -2 & 4 \\ 5 & 7 & 3\end{array}\right|+\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 5 & 7 & 3 \\ -6 & 3 & 2\end{array}\right|$
$=[\hat{\mathbf{1}}(12+4-6-28+14-9)$

$$
\begin{aligned}
& -\hat{\mathbf{\jmath}}(-24-6+9-20+10+18) \\
& +\hat{\mathbf{k}}(12-9+21+10+15+42)]
\end{aligned}
$$

$=-13 \hat{\mathbf{i}}+13 \hat{\mathbf{j}}+91 \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\left|\begin{array}{ccc}-6 & 3 & 2 \\ 3 & -2 & 4 \\ 5 & 7 & 3\end{array}\right|=299$
so, the required equation of the plane is
$\overrightarrow{\mathbf{r}} \cdot(-13 \hat{\mathbf{\imath}}-13 \hat{\mathbf{\jmath}}+91 \hat{\mathbf{k}})=299$

Or $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{\imath}}-\hat{\mathbf{\jmath}}-7 \hat{\mathbf{k}})=-23$
Or $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{\imath}}-\hat{\mathbf{\jmath}}-7 \hat{\mathbf{k}})+23=0$
92 (a)
The equation of plane, in which the line
$\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ lies is
$A(x-5)+B(y-7)+C(z+3)=0$
Where A, B and C are the direction ratios of the plane. Since, the first line lie on the plane
\therefore Direction ratios of normal to the plane is perpendicular to the direction ratios of line $i e$,
$4 A+4 B-5 C=0$
Since, line $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$ lies in this plane. The direction ratios is also perpendicular to this line
$\therefore 7 A+B+3 C=0$
From Eqs. (ii) and (iii), we get
$\frac{A}{17}=\frac{B}{-47}=\frac{C}{-24}$
\therefore The required equation of plane is
$17(x-5)-47(y-7)+(-24)(z+3)=0$
$\Rightarrow 17 x-47 y-24 z+172=0$
93 (a)
The vector equation of the plane passing through points $\vec{a}, \vec{b}, \vec{c}$ is
$\vec{r} \cdot(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})=[\vec{a} \vec{b} \vec{c}]$
Therefore, the length of the perpendicular from the origin to this plane is given by
$\frac{[\vec{a} \vec{b} \vec{c}]}{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}$
94
(b)
\because Centre of sphere is $(0,0,0)$, then the shortest
distance between $(1,2,-1)$ and surface of sphere $=\sqrt{24}-\sqrt{6}=2 \sqrt{6}-\sqrt{6}=\sqrt{6}$
95 (a)
Given, $a=4, c=3$
Equation of the plane π is
$\frac{x}{4}+\frac{y}{b}+\frac{z}{3}=1$
Since, π is parallel to y-axis
\therefore Coefficient of $y=0$ ie,$\frac{1}{b}=0$
Thus, the equation of plane π is
$\frac{x}{4}+\frac{z}{3}=1$
$\Rightarrow 3 x+4 z-12=0$
96 (a)
The equation of a line passing through
$A(2,-3,-1)$ and $B(8,-1,2)$ is
$\frac{x-2}{6}=\frac{y+3}{2}=\frac{z-1}{3} \Rightarrow \frac{x-2}{\frac{6}{7}}=\frac{y+3}{\frac{2}{7}}=\frac{z-1}{\frac{3}{7}}$

The coordinates of points on this line at a distance r from A are given by $\left(2 \pm \frac{6 r}{7},-3 \pm \frac{2 r}{7}, 1 \pm \frac{3 r}{7}\right)$
Putting $r=14$, we get the required points as $(4,1$,
5) and (-10, -7, -7)

97
(c)

Equation of line which is passing through (α, β, γ) and perpendicular to plane
$a x+b y+c z+d=0$
is $\frac{x-\alpha}{a}=\frac{y-\beta}{b}=\frac{z-\gamma}{c}$
99 (d)
Let $A=(1,0,0) B=(0,1,0)$ and $C=(0,0,1)$
Now, $A B=\sqrt{(0-1)^{2}+(1-0)^{2}+0^{2}}=\sqrt{2}$
$B C=\sqrt{0^{2}+(0-1)^{2}+(1-0)^{2}}=\sqrt{2}$
and $C A=\sqrt{(1-0)^{2}+0^{2}+(0-1)^{2}}=\sqrt{2}$
\therefore Perimeter of trangle $=A B+B C+C A$
$=\sqrt{2}+\sqrt{2}+\sqrt{2}=3 \sqrt{2}$
100 (a)
Distance of point P from plane $=5$
$\therefore 5\left|\frac{1-4-2-\alpha}{3}\right|$
$\alpha=10$
Foot perpendicular
$\frac{x-1}{1}=\frac{y+2}{2}=\frac{z-1}{-2}-\frac{(1-4-2-10)}{1+4+4}=\frac{5}{3}$
$\Rightarrow x=\frac{8}{3}, y=\frac{4}{3}, z-\frac{7}{3}$
Thus, the foot of the perpendicular is
$A\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$
101 (b)
Given, $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}=\lambda$
and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}=\mu$
$\Rightarrow x=2 \lambda+1, y=3 \lambda-1, z=4 \lambda+1$
and $x=\mu+3, y=2 \mu+k, z=\mu$
As the lines intersect they must have a point in common.
$\therefore 2 \lambda+1=\mu+3,3 \lambda-1=2 \mu+k, 4 \lambda+1=\mu$
$\Rightarrow \lambda=-\frac{3}{2}$ and $\mu=-5$
$\therefore k=3 \lambda-2 \mu-1$
$\Rightarrow k=3\left(-\frac{3}{2}\right)-2(-5)-1$
$\Rightarrow k=\frac{9}{2}$
102 (d)
Let the point on x-axis is $A(x, 0,0)$
Given, $B=(1,2,3$,) and $C=(3,5,-2)$
Since, $|A B|=|A C|$
$\Rightarrow \sqrt{(x-1)^{2}+(0-2)^{2}+(0-3)^{2}}$
$=\sqrt{(x-3)^{2}+(0-5)^{2}+(0+2)^{2}}$
$\Rightarrow x^{2}+1-2 x+4+9=x^{2}+9-6 x+25+4$
$\Rightarrow x=6$
\therefore Required point is $(6,0,0)$
103 (c)
Angle between two lines given by
$\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$\therefore \cos \theta \frac{1 \times 3+2 \times-2+3 \times 1}{\sqrt{1^{2}+2^{2}+3^{2}} \sqrt{3^{2}+(-2)^{2}+1^{2}}}$

$$
=\frac{2}{\sqrt{14} \sqrt{14}}
$$

$\therefore \quad \theta=\cos ^{-1}\left(\frac{1}{7}\right)$
104 (a)
Let the give points are A, B and C respectively
\therefore Direction ratios of $A B$ and $B C$ are $1,-3,-2$ and
2, $-6, K-2$ respectively
Since given points are collinear
$\therefore \frac{2}{1}=\frac{-6}{-3}=\frac{K-2}{-2}$
$\Rightarrow K-2=-4$
$\Rightarrow K=-2$
105 (d)
Equation of plane through $(2,5,-3)$ is
$a(x-2)+b(y-5)+c(z+3)=0$
Which is perpendicular to
$x+2 y+2 z=1$
and $x-2 y+3 z=4$
then $a+2 b+2 c=0$
and $a-2 b+3 c=0$
On eliminating a, b, c from Eqs.(i), (ii) and (iii), we get
$\left|\begin{array}{ccc}x-2 & y-5 & z+3 \\ 1 & 2 & 2 \\ 1 & -2 & 3\end{array}\right|=0$
$\Rightarrow 10 x-y-4 z-27=0$
106 (c)
Given line can be rewritten as
$\frac{x-1}{\frac{1}{4}}=\frac{y-\frac{1}{3}}{-\frac{1}{3}}=\frac{z-\frac{1}{2}}{\frac{1}{2}}$
\therefore Direction cosines are

$$
\begin{aligned}
& \frac{\frac{1}{4}}{\sqrt{\frac{1}{16}+\frac{1}{9}+\frac{1}{4}}}, \frac{\frac{-1}{3}}{\sqrt{\frac{1}{16}+\frac{1}{9}+\frac{1}{4}}}, \frac{\frac{1}{2}}{\sqrt{\frac{1}{16}+\frac{1}{9}+\frac{1}{4}}} \\
& =\frac{3}{\sqrt{16}}, \frac{-4}{\sqrt{16}}, \frac{6}{\sqrt{16}}
\end{aligned}
$$

Equation of required plane is
$(x+y+z-6)+\lambda(2 x+3 y+4 z+5)=0$
Which is passing through $(1,1,1)$
$\Rightarrow-3+14 \lambda=0$
$\Rightarrow \lambda=\frac{3}{14}$
\therefore Required plane is $20 x+23 y+26 z=69$
108 (c)
Equation of plane through $(0,-4,-6)$ is
$a(x-0)+b(y+4)+c(z+6)=0$
Point ($-2,9,3$) lies on Eq. (i), then
$-2 a+13 b+9 c=0$
Also required plane is perpendicular to
$x-4 y-2 z=8$
$\therefore a-4 b-2 c=0$
From Eqs. (i), (ii), (iii) we get
$\left|\begin{array}{ccc}x & y+4 & z+6 \\ -2 & 13 & 9 \\ 1 & -4 & -2\end{array}\right|=0$
ie, $2 x+y-z-2=0$
109 (b)
Let α, β, γ be the angles with x-axis, z-axis respectively, then direction cosines are $\cos \alpha, \cos \beta$, and $\cos \gamma$
Given, $\quad \alpha=\frac{\pi}{3}, \quad \beta=\frac{\pi}{4}$
$\therefore l=\cos \frac{\pi}{3}=\frac{1}{2}$,

$$
m=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \text { and } n=\cos \gamma
$$

Using $l^{2}+m^{2}+n^{2}=1$
$\Rightarrow \frac{1}{4}+\frac{1}{2}+n^{2}=1 \Rightarrow n=\frac{1}{2}$
$\therefore \cos \gamma=\frac{1}{2} \Rightarrow \gamma=\frac{\pi}{3}$
110 (c)
Given $(3,4,-1)$ and $(-1,2,3)$ are the end points of diameter of sphere
\therefore Radius $=\frac{1}{2}$ (length of the diameter)
$=\frac{1}{2} \sqrt{(3+1)^{2}+(4-2)^{2}+(-1-3)^{2}}$
$=3$

111 (c)
Let $A(5,-4,2), B(4,-3,1), C(7,-6,4)$ and $D(8,-7,5)$
Then, $A B=\sqrt{(4-5)^{2}+(-3+4)^{2}+(1-2)^{2}}$
$=\sqrt{1+1+1}=\sqrt{3}$
$B C \sqrt{(7-4)^{2}+(-6+3)^{2}+(4-1)^{2}}$
$=\sqrt{9+9+9}=3 \sqrt{3}$
$C D=\sqrt{(8-7)^{2}+(-7+6)^{2}+(5-4)^{2}}$
$=\sqrt{1+1+1}=\sqrt{3}$
$A D=\sqrt{(8-5)^{2}+(-7+4)^{2}+(5-2)^{2}}$
$=\sqrt{9+9+9}=3 \sqrt{3}$
Position vector $\mathrm{f} \overrightarrow{\mathbf{A B}}=(4-5) \hat{\mathbf{\imath}}+(-3+4) \hat{\mathbf{\jmath}}+$ $(1-2) \hat{\mathbf{k}}$
$=-\hat{\mathbf{i}}+\hat{\mathbf{\jmath}}-\hat{\mathbf{k}}$
And position vector of $\overrightarrow{\mathbf{B C}}=(7-4) \hat{\mathbf{l}}+$
$(-6+3) \hat{\mathbf{j}}+(4-1) \hat{\mathbf{k}}$
$=3 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
Now, $\overrightarrow{\mathbf{A B}} \cdot \overrightarrow{\mathbf{B C}}=(-\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}-\hat{\mathbf{k}}) \cdot(3 \hat{\mathbf{\imath}}-3 \hat{\mathbf{\jmath}}+3 \hat{\mathbf{k}})$
$=-3-3-3 \neq 0$
$\therefore \square A B C D$ is parallelogram
112 (b)
The required plane passes through the points having position vectors $\overrightarrow{a_{1}}$ and $\overrightarrow{a_{2}}$ and is parallel to the vector \vec{b}. Therefore, it is normal to the vector $\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \times \vec{b}$
So, the equation of the required plane is
$\left(\vec{r}-\overrightarrow{a_{1}}\right) \cdot\left\{\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \times \vec{b}\right\}=0$
$\Rightarrow \vec{r} \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \times \vec{b}-\overrightarrow{a_{1}} \cdot\left(\overrightarrow{a_{2}} \times \vec{b}\right)=0$
$\Rightarrow \vec{r} \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \times \vec{b}=\left[\overrightarrow{a_{1}} \overrightarrow{a_{2}} \vec{b}\right]$
113 (a)
If $\left(\frac{1}{2}, \frac{1}{3}, n\right)$ are the DC's of line, then using the relation $l^{2}+m^{2}+n^{2}=1$, we get
$\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{3}\right)^{2}+n^{2}=1$
115 (c)
$\Rightarrow n^{2}=1-\frac{1}{4}-\frac{1}{9}$
$\Rightarrow n^{2}=\frac{23}{36}$
$\Rightarrow n=\frac{\sqrt{23}}{6}$
114 (b)
The equation of a plane through the line of intersection of the planes $\vec{r} \cdot \vec{a}=\lambda$ and $\vec{r} \cdot \vec{b}=\mu$ can be written as
$(\vec{r} \cdot \vec{a}-\lambda)+k(\vec{r} \cdot \vec{b}-\mu)=0$
Or, $\vec{r} \cdot(\vec{a}+k \vec{b})=\lambda+k \mu$
This passes through the origin
$\therefore \overrightarrow{0} \cdot(\vec{a}+k \vec{b})=\lambda+\mu k \Rightarrow k=\frac{-\lambda}{\mu}$
Putting the value of k in (i), we get the equation of the required plane as
$\vec{r} \cdot(\mu \vec{a}-\lambda \vec{b})=0 \Rightarrow \vec{r} \cdot(\lambda \vec{b}-\mu \vec{a})=0$

In Fig. $O E$ is the external bisector
The co-ordinates of E are $\left(\frac{l_{1}-l_{2}}{2}, \frac{m_{1}-m_{2}}{2}, \frac{n_{1}-n_{2}}{2}\right)$
Therefore, direction ratios of $O E$ are proportional to
$\frac{l_{1}-l_{2}}{2}, \frac{m_{1}-m_{2}}{2}, \frac{n_{1}-n_{2}}{2}$
116 (d)
The equation of a plane passing through $(1,-2,3)$ is
$a(x-1)+b(y+2)+c(z-3)=0$
It passes through $(-1,2,-1)$ and is parallel to the given line
$\therefore a(-2)+b(4)+c(-4)=0$ and, $2 a+3 b+4 c=$ 0
$\Rightarrow \frac{a}{28}=\frac{b}{0}=\frac{c}{-14} \Rightarrow \frac{a}{2}=\frac{b}{0}=\frac{c}{-1}$
Hence, $a: b: c=2: 0:-1$
ALITER Let $P(1,-2,3)$ and $Q(-1,2,-1)$ be the given points
Given line is parallel to the vector $\vec{b}=2 \hat{\imath}+3 \hat{\jmath}+$ $4 \hat{k}$
\therefore Normal to the plane is parallel to the vector
$\vec{P} Q \times \vec{b}=28 \hat{\imath}-14 \hat{k}=14(2 \hat{\imath}+0 \hat{\jmath}-\hat{k})$
117 (b)
The equation of a line passing through the points $A(\hat{\imath}-\hat{\jmath}+2 \hat{k})$ and $B(3 \hat{\imath}+\hat{\jmath}+\hat{k})$ is given by
$\vec{r}=(\hat{\imath}-\hat{\jmath}+2 \hat{k})+\lambda(3 \hat{\imath}+\hat{\jmath}+\hat{k})$
The position vector of a variable point P on the
line, is $(\hat{\imath}-\hat{\jmath}+2 \hat{k})+\lambda(3 \hat{\imath}+\hat{\jmath}+\hat{k})$
$\therefore \vec{A} P=\lambda(3 \hat{\imath}+\hat{\jmath}+\hat{k}) \Rightarrow|\vec{A} P|=|\lambda| \sqrt{11}$
Now, $|\lambda| \sqrt{11}=3 \sqrt{11}, \Rightarrow \lambda= \pm 3$
Thus, the position vectors of P are
$10 \hat{\imath}+2 \hat{\jmath}+5 \hat{k}$ and $-8 \hat{\imath}-4 \hat{\jmath}-\hat{k}$
118 (c)
The given equation of sphere is
$x^{2}+y^{2}+z^{2}+3 x-4 z+1=0$
\therefore Coordinates of centre of sphere $=\left(-\frac{3}{2}, 0,2\right)$
and radius of sphere $=\sqrt{u^{2}+v^{2}+w^{2}-d}$
$=\sqrt{\frac{9}{4}+4-1}=\frac{\sqrt{21}}{2}$
120 (c)
It is given that the line
$\frac{x-1}{2}=\frac{y-3}{-1}=\frac{z-4}{2}$
Is perpendicular to the required. This means that the normal to the plane is parallel to the line. So, its direction ratios are proportional to $2,-1,2$ The plane passes through the origin Hence, its equation is
$2(x-0)-(y-0)+2(z-0)=0 \Rightarrow 2 x-y+2 z$ $=0$
121 (b)
Given equation of lines are
$\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1}=k[$ say $] \ldots$. (i)
and $\frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4}$
Any point on the line (i) is $P(3 k+5,-k+7, k-$ 2

This point is satisfied the Eq. (ii),
$\therefore \frac{3 k+5+3}{-36}=\frac{-k+7-3}{2}=\frac{k-2-6}{4}$
$\Rightarrow \frac{3 k+8}{-36}=\frac{-k+4}{2}=\frac{k-8}{4}$
$\Rightarrow 3 k+8=18 k-72 \Rightarrow k=\frac{16}{3}$
$\therefore P\left(16+5,-\frac{16}{3}+7, \frac{16}{3}-2\right)$
ie, $P\left(21, \frac{5}{3}, \frac{10}{3}\right)$

122 (a)
We have, $\vec{A} B=-2 \hat{\imath}-3 \hat{\jmath}-6 \hat{k}$
So, vector equation of the plane is
$\{\vec{r}-(\hat{\imath}-2 \hat{\jmath}-4 \hat{k})\} \cdot \vec{A} B=0$
$\Rightarrow \vec{r} \cdot(-2 \hat{\imath}-3 \hat{\jmath}-6 \hat{k})$

$$
=(\hat{\imath}-2 \hat{\jmath}-4 \hat{k}) \cdot(-2 \hat{\imath}-3 \hat{\jmath}-6 \hat{k})
$$

$\Rightarrow-2 x-3 y-6 z=-2+6+24$

$$
\Rightarrow 2 x+3 y+6 x+28=0
$$

123 (c)
Let point is (α, β, γ)
$\therefore(\alpha-\alpha)^{2}+\beta^{2}+\gamma^{2}=\alpha^{2}+(\beta-b)^{2}+\gamma^{2}$
$=\alpha^{2}+\beta^{2}+(\gamma-c)^{2}$
$=\alpha^{2}+\beta^{2}+\gamma^{2}$
We get, $\alpha=\frac{a}{2}, \beta=\frac{b}{2}$ and $\gamma=\frac{c}{2}$
\therefore Required point is $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$
124 (b)
Let equation of plane is $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=1$, then
$A(\alpha, 0,0), B(0, \beta, 0)$ and $C(0,0, \gamma)$ are the points
on coordinate axes
Since, the centroid of a triangle is $(1,2,4)$
Now, $\frac{\alpha}{3}=1$
$\therefore \alpha=3, \frac{\beta}{3}=2 \Rightarrow \beta=6$
And $\frac{\gamma}{3}=4 \Rightarrow \gamma=12$
\therefore Equation of plane is
$\frac{x}{3}+\frac{y}{6}+\frac{z}{12}=1$
$\Rightarrow 4 x+2 y+z=12$
125 (c)
\because Vertices of $\triangle A B C$ are $A(-1,3,2), B(2,3,5)$ and
$C(3,5,-2)$
$\Rightarrow A B=\sqrt{9+0+9}=\sqrt{18}$
$C A=\sqrt{16+4+16}=6$
And $B C=\sqrt{1+4+49}=\sqrt{54}$
$\because A B^{2}+C A^{2}=B C^{2}$
$\triangle A B C$ is right angled triangle at A
$\therefore \angle A=90^{\circ}$
127 (a)
Let the point $P(x, y, z)$ divides the line joining the points A and B in the ratio $m: 1$.
$A \underset{(5,-3,-2)}{\stackrel{\mathrm{m}}{\mathrm{m}} \quad 1}{ }_{(1,2,-2)} B$
Since, point P is on XOZ-plane
$\therefore y$ coordinate $=0$
$\Rightarrow \frac{2 m-3}{m+1}=0 \Rightarrow m=\frac{3}{2}$
Now, $\quad x=\frac{3+2 \times 5}{3+2}=\frac{13}{5}$
and $z=\frac{3 \times(-2)+2 \times(-2)}{5}=-2$
\therefore Required points is $\left(\frac{13}{5}, 0,-2\right)$
128 (d)
Let the equation of plane is $-\frac{x}{6}+\frac{y}{3}+\frac{z}{4}=1$
\therefore The perpendicular distance from origin to the above plane

$$
\begin{aligned}
& =\frac{|0+0+0-1|}{\sqrt{\left(\frac{1}{6}\right)^{2}+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{4}\right)^{2}}} \\
& =\frac{1}{\sqrt{\frac{4+16+9}{144}}} \\
& =\frac{12}{\sqrt{29}}
\end{aligned}
$$

129 (b)
Equation of plane is $a(x-1)+b((y+1)+c z=$ 0
(\because plane is passing through $(1,2,-1)$)
Above plane also passing through ($0,2,-1$)
$\therefore-a+3 b-c=0$
Also $2 a-b+3 c=0$
$\Rightarrow \frac{a}{8}=\frac{b}{1}=\frac{c}{-5}$
Hence, equation of plane is
$8 x+y-5 z-7=0$
130 (c)
\because Mid point of line joining $(2,3,4)$ and $(6,7,8)$ is $(4,5,6)$. This point satisfied the equation
$x+y+z-15=0$
$\therefore x+y+z-15=0$ is required equation of plane
131 (c)
The distance between given points
$=\sqrt{(2-1)^{2}+(2-4)^{2}+(3-5)^{2}}$
$=\sqrt{1+4+4}=3$
132 (b)
Equation of plane through $(1,2,3)$ is
$a(x-1)+b(y-2)+c(z-3)=0$
\because It passes through $(-1,4,2)$ and $(3,1,1)$
$\therefore-2 a+2 b-c=0$ and $2 a-b-2 c=0$
$\Rightarrow \frac{a}{-5}=\frac{b}{-6}=\frac{c}{-2}$
\therefore Equation of plane is
$-5 x-6 y-2 z+5+12+6=0$
$\Rightarrow 5 x+6 y+2 z-23=0$

Alternate

Equation plane is

$$
\begin{aligned}
& \left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array}\right|=0 \\
& \Rightarrow\left|\begin{array}{ccc}
x-1 & y-2 & z-3 \\
-2 & 2 & -1 \\
2 & -1 & -2
\end{array}\right|=0 \\
& \Rightarrow(x-1)(-4-1)-(y-2)(4+2) \\
& \quad+(z-3)(2-4)=0 \\
& \Rightarrow-5 x+5-6 y+12-2 z+6=0 \\
& \Rightarrow 5 x+6 y+2 z-23=0
\end{aligned}
$$

133 (a)
Given planes are parallel to each other but only $x+y+3 z-6=0$ is equidistant
from $x+2 y+3 z-5=0$ and $x+2 y+3 z-7=$ 0 having distance $\frac{1}{\sqrt{14}}$
134 (c)
Equation of given line is $\frac{x}{2}=\frac{y-1}{3}=\frac{z-1}{3}=k$ (say)

Any point on the line is $M(2 k, 3 k+1,3 k+1)$
Direction ratio of $P M$ are $(2 \mathrm{k}-1,3 k-1,3 k-2)$
since, the line PMis perpendicular to $A B$
$\therefore 2(2 k-1)+3(3 k-1)+3(3 k-2)=0$
$\Rightarrow 22 k-11=0$
$\Rightarrow k=\frac{1}{2}$
\therefore Point M is $\left(1, \frac{5}{2}, \frac{5}{2}\right)$
Let the image of P about the line $A B$ is Q, where M is the mid point of $P Q$
$\therefore \frac{x_{1}+1}{2}=1, \frac{y_{1}+2}{2}=\frac{5}{2}, \frac{z_{1}+3}{2}=\frac{5}{2}$
$\Rightarrow x_{1}=1, y_{1}=3, z_{1}=2$
135 (b)
The equation of straight line passing through origin and direction cosine (l, m, n) is
$\frac{x}{l}=\frac{y}{m}=\frac{z}{n}=r \quad$ (say)
Coordinates of any point P are ($l r, m r, n r$)
Here, $l=\frac{-1}{\sqrt{1^{2}+2^{2}+2^{2}}}=\frac{-1}{3}, m=\frac{2}{3}, n=\frac{-2}{3}$
and $r=3$
(given)
\therefore Coordinates of P are $(-1,2,-2)$
136 (b)
Since, the given sphere touching the three coordinates planes. So, it is clear that centre is (a, a, a) and radius is a
\therefore The equation of sphere at the centre (a, a, a)
and radius a is
$(x-a)^{2}+(y-a)^{2}+(z-a)^{2}=a^{2}$
$\Rightarrow x^{2}+y^{2}+z^{2}-2 a x-2 a y-2 a z+3 a^{2}=a^{2}$
$\therefore x^{2}+y^{2}+z^{2}-2 a(x+y+z)+2 a^{2}=0$ is the required equation of sphere

Angle between the plane and line is given by
$\sin \theta=\frac{a a^{\prime}+b b^{\prime}+c c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{a^{\prime 2}+b^{\prime 2}+c^{\prime 2}}}$
$\therefore \sin \theta=\frac{2 \times \frac{3}{4}+3 \times \frac{2}{4}-4 \times \frac{3}{4}}{\sqrt{2^{2}+3^{2}+4^{2}} \sqrt{\left(\frac{3}{4}\right)^{2}+\left(\frac{2}{4}\right)^{2}+\left(\frac{-3}{4}\right)^{2}}}$
$=\frac{\frac{6}{4}+\frac{6}{4}-\frac{12}{4}}{\sqrt{4+9+16} \sqrt{\frac{9}{16}+\frac{4}{16}+\frac{9}{16}}}=0$
$\therefore \sin \theta=\sin 0^{\circ}$
$\Rightarrow \theta=0^{\circ}$
138 (b)
Given that equation of planes are,
$4 x+4 y-5 z=12$
And $8 x+12 y-13 z=32$
Let direction ratios of the line are (l, m, n)
\therefore Eqs. (i) and (ii) becomes
$4 l+4 m-5 n=0$
And $8 l+12 m-13 n=0$
$\Rightarrow \frac{l}{8}=\frac{m}{12}=\frac{n}{16} \Rightarrow \frac{l}{2}=\frac{m}{3}=\frac{n}{4}$
Now, we take intersection point with $z=0$ given by
$4 x+4 y=12$
and $8 x+12 y=32$
On solving Eqs. (v) and (vi), we get (1, 2, 0)
\therefore Required line is $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z}{4}$
139 (b)
DR's of given line are $(3,-5,2)$
DR's of normal to the plane $=(1,3,-\alpha)$
\therefore Line is perpendicular to the normal
$\Rightarrow 3(1)-5(3)+2(-\alpha)=0$
$\Rightarrow 3-15-2 \alpha=0$
$\Rightarrow 2 \alpha=-12$
$\Rightarrow \alpha=-6$
Also point $(2,1,-2)$ lies on the plane
$2+3+6(-2)+\beta=0$
$\Rightarrow \beta=7$
$\therefore(\alpha, \beta)=(-6,7)$
140 (b)
We know
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$
where α, β, γ and δ are the angles with diagonals
of cube.
$\therefore 1-\sin ^{2} \alpha+1-\sin ^{2} \beta+1-\sin ^{2} \gamma+1-\sin ^{2} \delta$

$$
=\frac{4}{3}
$$

$\Rightarrow \sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma+\sin ^{2} \delta=\frac{8}{3}$
141 (c)
Given equation of line is
$\frac{3-x}{1}=\frac{y-2}{5}=\frac{2 z-3}{1}$
$\Rightarrow \frac{x-3}{-1}=\frac{y-2}{5}=\frac{z-\frac{3}{2}}{\frac{1}{2}}$
\therefore Direction ratios of line are $-1,5, \frac{1}{2}$
142 (b)
$\because \overrightarrow{\mathbf{O C}}=\left(\frac{l_{1}+l_{2}}{2}, \frac{m_{1}+m_{2}}{2}, \frac{n_{1}+n_{2}}{2}\right)$
And $|\overrightarrow{\mathbf{O C}}|=\cos \frac{\theta}{2}$
So, direction cosines of internal angle bisector are

$\frac{l_{1}+l_{2}}{2 \cos \frac{\theta}{2}}, \frac{m_{1}+m_{2}}{2 \cos \frac{\theta}{2}}, \frac{n_{1}+n_{2}}{2 \cos \frac{\theta}{2}}$
143 (c)
The given equation of plane is $\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$
On comparing with $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$, we get
$a=2, b=3, c=4$
Area of $\triangle A B C=\frac{1}{2} \sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}$
$\Delta=\frac{1}{2} \sqrt{4 \times 9+9 \times 16+16 \times 4}$
$=\frac{1}{2} \sqrt{36+144+64}=\frac{1}{2} \sqrt{244}=\sqrt{61}$
145 (a)
Let (u, v, w) be the centre of the sphere with radius r. Since, it passes through the origin
$\therefore u^{2}+v^{2}+w^{2}=r^{2}$. Equation of the diameter parallel to x-axis is
$\frac{x-u}{1}=\frac{y-v}{0}=\frac{z-w}{0}$
As it passes through u, v, w and direction ratios of x-axis are $1,0,0$
The extremities of diameter are the points on Eq.
(i) at a distance r from the centre (u, v, w)
\therefore The required extremities are $P(r+u, v, w)$ and
$Q(-r+u, v, w)$
P lies on the sphere $x^{2}+y^{2}+z^{2}-2 r x=0$ as $(r+u)^{2}+v^{2}+w^{2}-2 r(r+u)=0$

Because $u^{2}+v^{2}+w^{2}=r^{2}$
and similarly Q lies on the sphere $x^{2}+y^{2}+z^{2}+$ $2 r x=0$
146
(d)

Distance of a point $(1,1,1)$ from $x+y+z+k=0$ is
$\left|\frac{1+1+1+k}{\sqrt{3}}\right|=\left|\frac{3+k}{\sqrt{3}}\right|$
According to question
$\left|\frac{3+k}{\sqrt{3}}\right|= \pm 2 \sqrt{3} \Rightarrow k=3,-9$
147 (c)
Since, given points divide the $X O Z$-plane.
\therefore Required ratio $=-y_{1}: y_{2}=-3: 7$
148 (b)
DC's of the given line are $\frac{1}{3},-\frac{2}{3},-\frac{2}{3}$
Hence, the equation of line can be point in the form
$\frac{x-2}{1 / 3}=\frac{y+3}{-2 / 3}=\frac{z+5}{-2 / 3}=r$
\therefore Point is $\left(2+\frac{r}{3},-3-\frac{2 r}{3},-5-\frac{2 r}{3}\right)$
$\therefore r= \pm 6$
Points are $(4,-7,-9)$ and $(0,1,-1)$
149 (a)
The plane passes through $A(0,0,1), B(0,1,2)$ and $C(1,2,3)$. Therefore, a vector normal to the plane is given by
$\vec{n}=\vec{A} B \times \vec{A} C=\left|\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 0 & 1 & 1 \\ 1 & 2 & 2\end{array}\right|=0 \hat{\imath}+\hat{\jmath}-\hat{k}$
Hence, direction ratios of normal to the plane are proportional to $0,1,-1$
150 (b)
Suppose $x y$-plane divides the join of $(1,2,3)$ and $(4,2,1)$ in the ratio $\lambda: 1$. Then, the coordinates of the point of division are
$\left(\frac{4 \lambda+1}{\lambda+1}, \frac{2 \lambda+2}{\lambda+1}, \frac{\lambda+3}{\lambda+1}\right)$
This point lies on $x y$-plane
$\therefore z$-coordinate $=0 \Rightarrow \frac{\lambda+3}{\lambda+1}=0 \Rightarrow \lambda=-3$
Hence, $x y$-plane divides the join of $(1,2,3)$ and $(4,2,1)$ externally in the ratio $3: 1$
ALTER We know that the $X Y$-plane divides the segment joining $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ in the ratio $\left(-z_{1}\right): z_{2}$
$\therefore X Y$-plane divides the join of $(1,2,3)$ and $(4,2$,

1) in the ratio $-3: 1$ i.e. $3: 1$ externally

151 (d)
Let l, m, n be the direction cosines of \vec{r}. Then,
$l=m=n \quad$ [Given]
$\therefore l^{2}+m^{2}+n^{2}=1 \Rightarrow 3 l^{2}=1 \Rightarrow l=\frac{1}{\sqrt{3}}=m$

$$
=n
$$

Now, $\vec{r}=|\vec{r}|(l \hat{\imath}+m \hat{\jmath}+n \hat{k})$
$\Rightarrow \vec{r}=6\left(\frac{1}{\sqrt{3}} \hat{\imath}+\frac{1}{\sqrt{3}} \hat{\jmath}+\frac{1}{\sqrt{3}} \hat{k}\right)=2 \sqrt{3}(\hat{\imath}+\hat{\jmath}+\hat{k})$
152 (a)
Since, direction ratio of given planes are $(2,-1,1)$ and (1, 1, 2)
$\therefore \theta \cos ^{-1}\left(\frac{2 \times 1-1 \times 1+1 \times 2}{\sqrt{4+1+1} \sqrt{1+1+4}}\right)$
$=\cos ^{-1}\left(\frac{3}{\sqrt{6} \sqrt{6}}\right)$
$=\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$
153 (b)
The equation of a plane parallel to the plane
$\vec{r} \cdot(4 \hat{\imath}-12 \hat{\jmath}-3 \hat{k})-7=0$ is,
$\vec{r} \cdot(4 \hat{\imath}-12 \hat{\jmath}-3 \hat{k})+\lambda=0$
This passes through $2 \hat{\imath}-\hat{\jmath}-4 \hat{k}$
$\therefore(2 \hat{\imath}-\hat{\jmath}-4 \hat{k}) \cdot(4 \hat{\imath}-12 \hat{\jmath}-3 \hat{k})+\lambda=0$
$\Rightarrow 8+12+12+\lambda=0$
$\Rightarrow \lambda=-32$
So, the required plane is $\vec{r} \cdot(4 \hat{\imath}-12 \hat{\jmath}-3 \hat{k})-$ $32=0$
154 (a)
Equation of the give plane can be writer as
$(3 \hat{\mathbf{\imath}}-4 \hat{\mathbf{\jmath}}+5 \hat{\mathbf{k}}) \cdot(x \hat{\mathbf{\imath}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}})=8$
So, that the normal to the given plane is
$3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ and the required line being perpendicular to the plane is parallel to this normal and since, it passes through $3 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$, its equation is
$\overrightarrow{\mathbf{r}}=3 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}+\lambda(3 \hat{\mathbf{\imath}}-4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})$
Where λ is a parameter
Since, this lie passes through the vector
$3 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$ ie, the point $(3,-5,7)$ and is parallel to $3 \hat{\mathbf{1}}-4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$, its direction ratios are $3,-4,5$
Its cartesian equation is $\frac{x-3}{3}=\frac{y+5}{-4}=\frac{z-7}{5}$
155 (a)
Given lines can be rewritten as
$\frac{x-\frac{1}{3}}{1}=\frac{y-\frac{1}{3}}{2}=\frac{z-1}{3}$
This shows that DR's of given equation are (1, 2, 3).

156

(d)

Given line is parallel to $\vec{b}=-\hat{\imath}+\hat{\jmath}+\hat{k}$ and the given plane is normal to $\vec{n}=3 \hat{\imath}+2 \hat{\jmath}-\hat{k}$
Let θ be the angle between the given line and
given plane. Then,
$\sin \theta=\frac{\vec{b} \cdot \vec{n}}{|\vec{b}||\vec{n}|}$
$\Rightarrow \sin \theta=\frac{-3+2-1}{\sqrt{3} \sqrt{14}} \Rightarrow \theta=\sin ^{-1}\left(\frac{-2}{\sqrt{42}}\right)$
(d)

Let the source of light be situated at $A(a, 0,0)$,
where, $a \neq 0$
Let $O A$ be the incident ray, $O B$ be the reflected ray and $O N$ be the normal to the mirror at O
$\therefore \angle A O N=\angle N O B=\frac{\theta}{2}$ (say)
Direction ratios of $\vec{O} A$ are proportional to $a, 0,0$ and so its direction cosines are $1,0,0$
Direction cosines of $O N$ are $\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
$\therefore \cos \frac{\theta}{2}=\frac{1}{\sqrt{3}}$

Let l, m, n be the direction cosines of the reflected ray $O B$. Then,
$\frac{l+1}{2 \cos \theta / 2}=\frac{1}{\sqrt{3}}, \frac{m+0}{2 \cos \theta / 2}=-\frac{1}{\sqrt{3}}$ and,$\frac{n+0}{2 \cos \theta / 2}$

$$
=\frac{1}{\sqrt{3}}
$$

$\Rightarrow l=\frac{2}{3}-1, m=-\frac{2}{3}, n=\frac{2}{3}$
$\Rightarrow l=-\frac{1}{3}, m=-\frac{2}{3}, n=\frac{2}{3}$
Hence, direction cosines of the reflected ray are $-\frac{1}{3},-\frac{2}{3}, \frac{2}{3}$
158 (d)
Given, $3 l m-4 l n+m n=0$.....(i)
and $l+2 m+3 n=0 \ldots$ (ii)
From Eq. (ii), $l=-(2 m+3 n)$ putting in Eq. (i)
$-3(2 m+3 n) m+4(2 m+3 n) n+m n=0$
$\Rightarrow-6 m^{2}+12 n^{2}=0$
$\Rightarrow m= \pm \sqrt{2} n$
Now, $\quad m=\sqrt{2} n$
$\Rightarrow l=-(2 \sqrt{2} n+3 n)=-(2 \sqrt{2}+3) n$
$\therefore l: m: n=-(3+2 \sqrt{2}) n: \sqrt{2} n: n$
$=-(3+2 \sqrt{2}): \sqrt{2}: 1$
Also, $\quad m=-\sqrt{2} n \Longrightarrow l=-(-2 \sqrt{2}+3) n$
$\therefore l: m: n=-(3-2 \sqrt{2}) n:-\sqrt{2}: n$
$=-(3-2 \sqrt{2}):-\sqrt{2}: 1$
$=\cos \theta$
$=\frac{(3+2 \sqrt{2})(3-2 \sqrt{2})+(\sqrt{2})(-\sqrt{2})+1 \cdot 1}{\sqrt{(3+2 \sqrt{2})^{2}+(\sqrt{2})^{2}+1^{2}} \sqrt{(3-2 \sqrt{2})^{2}+(-\sqrt{2})^{2}+1^{2}}}$
$=0$
$\Rightarrow \theta=\frac{\pi}{2}$

159 (a)
Equation of plane passing through $(-1,3,0)$ is
$A(x+1)+B(y-3)+C(z-0)=0 \ldots$ (i)
Also, plane (i) is passing through the points (2, 2 , 1) and ($1,1,3$)
$3 A-B+C=0$
And $2 A-2 B+3 C=0$
On solving Eqs. (i) and (iii), we get
$\frac{A}{-3+2}=\frac{B}{2-9}=\frac{C}{-6+2}$
$\therefore A: B: C=-1:-7:-4$
$\Rightarrow A: B: C=1: 7: 4$
From Eq. (i), $1(x+1)+7(y-3)+4(z)=0$
$\Rightarrow x+7 y+4 z-20=0$
\therefore Distance from the plane to the point $(5,7,8)$
$=\frac{1 \times 5+7 \times 7+4 \times 8-20}{\sqrt{1^{2}+7^{2}+4^{2}}}$
$=\frac{5+49+32-20}{\sqrt{66}}=\frac{66}{\sqrt{66}}=\sqrt{66}$
160 (a)
The line of intersection of the plane \vec{r}.
$(3 \hat{\imath}-\hat{\jmath}+\hat{k})=1$ and $\vec{r} \cdot(\hat{\imath}+4 \hat{\jmath}-2 \hat{k})=2$ is perpendicular to each of the normal vectors
$\overrightarrow{n_{1}}=3 \hat{\imath}-\hat{\jmath}+\hat{k}$ and $\overrightarrow{n_{2}}=\hat{\imath}+4 \hat{\jmath}-2 \hat{k}$ and hence it is parallel to the vector
$\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}=(3 \hat{\imath}-\hat{\jmath}+\hat{k}) \times(\hat{\imath}+4 \hat{\jmath}-2 \hat{k})$

$$
=-2 \hat{\imath}+7 \hat{\jmath}+13 \hat{k}
$$

161 (b)
Let DR's of line be (l, m, n), Also, normal to the plane are perpendicular to the required line.
$\therefore 4 l+4 m-5 n=0$
and $8 l+12 m-13 n=0$
$\Rightarrow \frac{l}{8}=\frac{m}{12}=\frac{n}{16} \Rightarrow \frac{l}{2}=\frac{m}{3}=\frac{n}{4}$
Intersection point with $z=0$ is given by
$4 x+4 y=12 \ldots$ (i)
and $8 x+12 y=32$...(ii)
on solving Eqs. (i) and (ii), we get $(1,2,0)$
\therefore Required lines is $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z}{4}$

162 (b)
The line of intersection of the planes \vec{r}.
$(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})=0$ and $\vec{r} \cdot(3 \hat{\imath}+2 \hat{\jmath}+\hat{k})=0$ is parallel to the vector
$(\hat{\imath}+2 \hat{\jmath}+3 \hat{k}) \times(3 \hat{\imath}+2 \hat{\jmath}+\hat{k})=-4 \hat{\imath}+8 \hat{\jmath}-4 \hat{k}$
Since both the planes $\vec{r} \cdot(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})=0$ and $\vec{r} \cdot(3 \hat{\imath}+2 \hat{\jmath}+\hat{k})=0$ pass through the origin.
Therefore, their line of intersection will also pass through the origin. Thus, the required line passes through the origin and is parallel to the vector $-4 \hat{\imath}+8 \hat{\jmath}-4 \hat{k}$
Hence, its equation is
$\vec{r}=\overrightarrow{0}+\lambda^{\prime}(=-4 \hat{\imath}+8 \hat{\jmath}-4 \hat{k})$
$\Rightarrow \vec{r}=\lambda(\hat{\imath}-2 \hat{\jmath}+\hat{k})$, where, $\lambda=-4 \lambda^{\prime}$
163 (d)
Let the equation of plane passing through the
point $P(-1,-1,1)$ is
$a(x+1)+b(y+1)+c(z-1)=0$
Which passes through the points
$Q(0,1,1)$ and $R(0,0,2)$
$\therefore a+2 b+0 c=0$
and $a+b+c=0$
$\Rightarrow \frac{a}{2-0}=-\frac{b}{1-0}=\frac{c}{1-2}$
$\Rightarrow \frac{a}{2}=\frac{b}{-1}=\frac{c}{-1}$
From Eq. (i)
$2(x+1)-1(y+1)-1(z-1)=0$
$\Rightarrow 2 x-y-z+2=0$
\therefore Distance of plane from point $(0,0,0)$
$=\frac{0+0+0+2}{\sqrt{2^{2}+(-1)^{2}+(-1)^{2}}}$
$=\frac{2}{\sqrt{6}}$
164 (c)
The direction cosines of $P O$
$=\left(\frac{2}{\sqrt{4+9+1}}, \frac{3}{\sqrt{4+9+1}}, \frac{1}{\sqrt{4+9+1}}\right)$
or $\left(\frac{-2}{\sqrt{4+9+1}}, \frac{-3}{\sqrt{4+9+1}}, \frac{1}{\sqrt{4+9+1}}\right)$
$=\left(\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}\right)$ or $\left(\frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{1}{\sqrt{14}}\right)$
165 (b)
The centre and radius of given sphere are $(0,0,0)$ and $\sqrt{54} i e, 3 \sqrt{6}$.
Distance between $(1,2,-1)$ and $(0,0,0)$ is $\sqrt{6}$
\therefore Shortest distance between point $(1,2,-1)$ and
surface of the sphere
$=3 \sqrt{6}-\sqrt{6}=2 \sqrt{6}$
166 (d)
Shortest distance
$=\frac{\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|}{\sqrt{\sum\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}}}$
Now, $\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|$
$=\left|\begin{array}{ccc}5-2 & 1+3 & 6-1 \\ 3 & 4 & 5 \\ 1 & 2 & 3\end{array}\right|=\left|\begin{array}{lll}3 & 4 & 5 \\ 3 & 4 & 5 \\ 1 & 2 & 3\end{array}\right|$
$=0[\because$ two rows are identical $]$
\therefore Shortest distance $=0$
167 (b)
Here, $\left(x_{1}, y_{1}, z_{1}\right)=(1,2,3)$
and $a=2, b=-1, c=1, d=3$
$\therefore \frac{x-1}{2}=\frac{y-3}{-1}=\frac{z-4}{1}$
$=-2\left(\frac{2-3+4+3}{2^{2}+(-1)^{2}+(1)^{2}}\right)=-2$
$\Rightarrow x=-3, \quad y=5$ and $z=2$
168
Given, equation can be rewritten as
$x^{2}+y^{2}+z^{2}-2 x+3 y+4 z-\frac{5}{2}=0$
Let $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$
\therefore Given equation written in vector form is
$\overrightarrow{\mathbf{r}} \cdot[\overrightarrow{\mathbf{r}}-(2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}})]=\frac{5}{2}$
169 (c)
Direction ratio of the line and the normal to the plane are $2,1,-2$ and $1,1,0$ respectively
\therefore Their direction cosines are
$\frac{2}{3}, \frac{1}{3},-\frac{2}{3}$ and $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0$
If θ is the angle between the line and the plane, then
$\cos \left(90^{\circ}-\theta\right)=\frac{2}{3} \cdot \frac{1}{\sqrt{2}}+\frac{1}{3} \cdot \frac{1}{\sqrt{2}}+\left(-\frac{2}{3}\right) \times 0$
$\Rightarrow \sin \theta=\frac{1}{\sqrt{2}}$
$\Rightarrow \theta=45^{\circ}$
170 (a)
We know, if the line is passing through $\left(x_{1}, y_{1}, z_{1}\right)$
and $\left(x_{2}, y_{2}, z_{2}\right)$, then equation of line is
$\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
Since, the line passing through $(4,-5,-2)$ and $(-1,5,3)$
\therefore The equation of straight line is
$\frac{x-4}{1}=\frac{y+5}{-2}=\frac{z+2}{-1}$
Which is the required straight line
171 (a)
Reflection of plane $2 x-3 y+4 z-3=0$ in the plane
$x-y+z-3=0$ is
$2(2+3+4)(x-y+z-3)$
$=3(2 x-3 y+4 z-3)$
$\Rightarrow 4 x-3 y+2 z-15=0$
172 (b)
The intersection of two planes is
$(x+y+z-6)+\lambda(2 x+3 y+4 z+5)=0$
$\Rightarrow(1+2 \lambda) x+(1+3 \lambda) y+(1+4 \lambda) z+$ $(-6+5 \lambda)=0 \ldots$ (i)
Since, this plane is perpendicular to the plane
$4 x+5 y-3 z-8=0$
$\therefore(1+2 \lambda) 4+(1+3 \lambda) 5+(1+4 \lambda)(-3)=0$
$\Rightarrow \lambda=-\frac{6}{11}$
On putting the value of λ in Eq. (i), we get
$\left(-\frac{1}{11}\right) x+\left(-\frac{7}{11}\right) y+\left(-\frac{13}{11}\right) z+\left(-\frac{96}{11}\right)=0$
$\Rightarrow x+7 y+13 z+96=0$
173 (a)
The given line is $\vec{r}=2 \hat{\imath}-2 \hat{\jmath}+3 \hat{k}+\lambda(\hat{\imath}-\hat{\jmath}+4 \hat{k})$ or, $\vec{r}=\vec{a}+\lambda \vec{b}$, where $\vec{a}=2 \hat{\imath}-2 \hat{\jmath}+3 \hat{k}, \vec{b}=\hat{\imath}-$ $\hat{\jmath}-4 \hat{k}$
The given plane is $\vec{r} \cdot(\hat{\imath}+5 \hat{\jmath}+\hat{k})=5$
We have, $\vec{b} \cdot \vec{n}=(\hat{\imath}-\hat{\jmath}+4 \hat{k}) \cdot(\hat{\imath}+5 \hat{\jmath}+\hat{k})=1-$ $5+4=0$
Therefore, the line is parallel to the plane. Thus, the distance between the line and the plane is equal to the length of the perpendicular from a point $\vec{a}=2 \hat{\imath}-2 \hat{\jmath}+3 \hat{k}$ on the line to given plane
Hence,
Required distance
$=\left|\frac{(2 \hat{\imath}-2 \hat{\jmath}+3 \hat{k}) \cdot(\hat{\imath}+5 \hat{\jmath}+\hat{k})-5}{\sqrt{1+25+1}}\right|$
\Rightarrow Required distance $=\left|\frac{2-10+3-5}{\sqrt{27}}\right|=\frac{10}{3 \sqrt{3}}$
174 (d)
\because Direction ratios of lines and planes are
$\left(a_{1}, b_{1}, c_{1}\right)=(2,1,-2)$ and $\left(a_{2}, b_{2}, c_{2}\right)=(1,1,1)$
$\therefore \sin \theta=\frac{2+1-2}{\sqrt{4+1+4} \sqrt{1+1+1}}$
$\Rightarrow \theta=\sin ^{-1}\left(\frac{1}{3 \sqrt{3}}\right)$

Equation of plane is $\frac{x}{8}+\frac{y}{4}+\frac{z}{4}=1$
$\Rightarrow x+2 y+2 z=8$
Length of perpendicular from origin to the plane $x+2 y+2 z-8=0$ is
$\left|\frac{-8}{\sqrt{1+4+4}}\right|=\frac{8}{3}$
176 (c)
Given, $\cos \alpha \cos \beta \cos \gamma=\frac{2}{9}$
and $\cos \gamma \cos \alpha=\frac{4}{9}$
Then, $\cos \alpha=\frac{2}{3}, \cos \beta=\frac{1}{3}$ and $\cos \gamma=\frac{2}{3}$
$\therefore \cos \alpha+\cos \beta+\cos \gamma=\frac{2}{3}+\frac{1}{3}+\frac{2}{3}=\frac{5}{3}$
177 (a)
The coordinates of the mid-point of $P Q$ are (2,3,
4). The direction ratios of $P Q$ are proportional to
$3-1,4-2,5-3$ i.e. $1,1,1$
So, equation of the required plane is
$1 \times(x-2)+1 \times(y-3)+1 \times(z-4)=0$ or, $x+y+z=9$
178 (a)
Given sphere are
$S_{1} \equiv x^{2}+y^{2}+z^{2}+7 x-2 y-z=1$
and $S_{2} \equiv x^{2}+y^{2}+z^{2}-3 x+3 y+4 z=-4$
required equation of plane is
$\left(x^{2}+y^{2}+z^{2}+7 x-2 y-z-1\right)-\left(x^{2}+y^{2}+\right.$ $z 2-3 x+3 y+4 z+4=0$
$\left[\because S_{1}-S_{2}=0\right]$
$\Rightarrow 10 x-5 y-5 z=5$
$\Rightarrow 2 x-y-z=1$
180 (a)
Given line is
$\frac{x-1}{-3}=\frac{y+1}{-2}=\frac{z-3}{1}$
\Rightarrow Line is passing through $(1,-1,3)$ and having direction ratios $-3,-2,1$ ie, $3,2,-1$
\therefore Vector equation of the line is
$\overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\lambda(3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})$
181 (c)
Equation of the plane is $\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$
Here, $a=2, \quad b=3, \quad c=4$
\therefore Area of $\triangle A B C=\frac{1}{2} \sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}$
$=\frac{1}{2} \sqrt{2^{2} \cdot 3^{2}+3^{2} \cdot 4^{2}+4^{2} \cdot 2^{2}}$
$=\frac{1}{2} \sqrt{244}=\sqrt{61}$ sq units
182 (c)
$\because \cos \alpha \cos \beta=\cos \beta \cos \gamma=\frac{2}{9}$ and $\cos \gamma \cos \alpha=\frac{4}{9}$,

Then $\cos \alpha=\frac{2}{3}, \cos \beta=\frac{1}{3}$ and $\cos \gamma=\frac{2}{3}$
$\therefore \cos \alpha+\cos \beta+\cos \gamma=\frac{2}{3}+\frac{1}{3}+\frac{2}{3}=\frac{5}{3}$
183 (a)
The equation of a plane passing through $(2,2,1)$
is $a(x-2)+b(y-2)+c(z-1)=0$
This passes through $(9,3,6)$ and is perpendicular to the plane
$2 x+6 y+6 z-1=0$
$\therefore 7 a+1 \cdot b+5 c=0$ and $2 a+6 b+6 c=0$
$\Rightarrow \frac{a}{-24}=\frac{b}{-32}=\frac{c}{40} \Rightarrow \frac{a}{3}=\frac{b}{4}=\frac{c}{-5}$
So, equation of the required plane is
$3(x-2)+4(y-2)-5(z-1)=0$ or,
$3 x+4 y-5 z=9$
184 (d)
Since, $O A$ is equally inclined to $O X, O Y$ and $O Z$
So, coordinate of A are (a, a, a)
Also, $O A=\sqrt{3}$
$\therefore \sqrt{(a-0)^{2}+(a-0)^{2}+(a-0)^{2}}=\sqrt{3}$
$\Rightarrow \sqrt{3 a^{2}}=\sqrt{3} \Rightarrow a= \pm 1$
\therefore Coordinate of A are $(1,1,1)$ or $(-1,-1,-1)$.
185 (b)
Let equation of plane is
$\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=$
1 , then $A(\alpha, 0,0), B(0, \beta, 0)$ and $C(0,0, \gamma)$ are the points on coordinate
axes.
\therefore Centroid of $\triangle A B C=\left(\frac{\alpha}{3}, \frac{\beta}{3}, \frac{\gamma}{3}\right)$
But $\frac{\alpha}{3}=1$
$\Rightarrow \alpha=3, \frac{\beta}{3}=2$
$\Rightarrow \beta=6$ and $\frac{\gamma}{3}=4$
$\Rightarrow \gamma=12$
\therefore Equation of plane is
$\frac{x}{3}+\frac{y}{6}+\frac{z}{12}=1$
$\Rightarrow 4 x+2 y+z=12$
186 (a)
The DR's of the joining of the points $(1,2,3)$ and $(3,4,5)$ are $(2,2,2)$
Also, the midpoint of the join of the points $(1,2,3)$ and $(3,4,5)$ is $(2,3,4)$
\therefore Equation of plane is
$2(x-2)+2(y-3)+2(z-4)=0$
$\Rightarrow x+y+z=9$
187 (d)
Equation of the line passing through
$(5,1, a)$ and $(3, b, 1)$ is
$\frac{x-3}{5-3}=\frac{y-b}{1-b}=\frac{z-1}{a-1}$
Also, point $\left(0, \frac{17}{2},-\frac{13}{2}\right)$ satisfies Eq. (i), we get
$-\frac{3}{2}=\frac{\frac{17}{2}-b}{1-b}=\frac{-\frac{13}{2}-1}{a-1}$
From Ist and IIIrd terms $a-1=\frac{\left(-\frac{15}{2}\right)}{\left(-\frac{3}{2}\right)} \Rightarrow a=6$ From Ist and IIIed terms $-3(1-b)=2\left(\frac{17}{2}-b\right)$

$$
\Rightarrow b=4
$$

188 (a)
The image (x, y, z) of a point $\left(x_{1}, y_{1}, z_{1}\right)$ in a plane
$a x+b y+c z+d=0$ is
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
$=\frac{-2\left(a x_{1}+b y_{1}+c z_{1}+d\right)}{a^{2}+b^{2}+c^{2}}$
Here, $\left(x_{1}, y_{1}, z_{1}\right)=(5,4,6)$
$a=1, \quad b=1, c=2, d=-15$
$\therefore \frac{x-5}{1}=\frac{y-4}{1}=\frac{z-6}{2}$
$=\frac{-2(5+4+12-15)}{1+1+4}=-2$
$\Rightarrow x=3, y=2, z=2$
189 (c)
If α, β, γ are the angles which the line makes with coordinate axes, then
$l=\cos \alpha, m=\cos \beta, \quad n=\cos \gamma$
$\therefore l^{2}+m^{2}+n^{2}=\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
190 (c)
We are given by $l^{2}+m^{2}-n^{2}=0$ and
$l+m+n=0$ and we have $l^{2}+m^{2}+n^{2}=1$
So that, $2 n^{2}=1$
$\Rightarrow n= \pm \frac{1}{\sqrt{2}}$
And $l+m=-n$
$\Rightarrow(l+m)^{2}=n^{2}=l^{2}+m^{2}$
$\Rightarrow 2 l m=0$
\Rightarrow Either $l=0$ or $m=0$, if $l=0, m+n=0$
$\Rightarrow m=-n=\mp \frac{1}{\sqrt{2}}$
So, the direction cosines of one of the lines are
$0, \mp \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}$ and if $m=0, l+n=0 \Rightarrow l=-n=$
$\mp \frac{1}{\sqrt{2}}$ and the direction cosines of the other line are
$\mp \frac{1}{\sqrt{2}}, 0, \pm \frac{1}{\sqrt{2}}$
Hence, the required angle is

$$
\begin{gathered}
\cos ^{-1}\left[0 \times \mp \frac{1}{\sqrt{2}}+\mp \frac{1}{\sqrt{2}} \times 0+\left(\mp \frac{1}{\sqrt{2}}\right)\left(\pm \frac{1}{\sqrt{2}}\right)\right] \\
=\cos ^{-1} \frac{1}{2}=\frac{\pi}{3}
\end{gathered}
$$

191 (c)
Equation of a plane passing through $(2,2,1)$ is
$a(x-2)+b(y-2)+c(z-1)=0$
This passes through $(9,3,6)$ and is perpendicular to $2 x+6 y+6 z-1=0$
$\therefore 7 a+b+5 c=0$ and, $2 a+6 b+6 c=0$
Solving these two by cross-multiplication, we get
$\frac{a}{-24}=\frac{b}{-32}=\frac{c}{40} \Rightarrow \frac{a}{-3}=\frac{b}{-4}=\frac{c}{5}$
Substituting the values of a, b, c in (i), we get
$3 x+4 y-5 z-9=0$ as the required plane
(b)

The equation of a plane through the line of intersection of the planes $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}=\lambda$ and $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{b}}=\mu$
can be written as
$(\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}=\lambda)+k(\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{b}}=\mu)=0$
$\Rightarrow \overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{a}}+k \overrightarrow{\mathbf{b}})=\lambda+k \mu$
This plane passes through the origin, therefore
$\overrightarrow{\mathbf{0}} \cdot(\overrightarrow{\mathbf{a}}+k \overrightarrow{\mathbf{b}})=\lambda+\mu k$
$\Rightarrow k=-\frac{\lambda}{\mu}$
On putting the value of k in Eq. (i), the equation of the required plane is
$\overrightarrow{\mathbf{r}} \cdot(\mu \overrightarrow{\mathbf{a}}-\lambda \overrightarrow{\mathbf{b}})=0$
$\Rightarrow \overrightarrow{\mathbf{r}} \cdot(\lambda \overrightarrow{\mathbf{b}}-\mu \overrightarrow{\mathbf{a}})=0$
194 (d)
Clearly, $\cos ^{2} \alpha+\cos ^{2} 60^{\circ}+\cos ^{2} 60^{\circ}=1$ where α is the angle which the straight line makes with x axis
$\therefore \cos ^{2} \alpha=1-\frac{1}{4}-\frac{1}{4}=\frac{1}{2}$
$\Rightarrow \cos \alpha=\frac{1}{\sqrt{2}} \Rightarrow \alpha=45^{\circ}$
195 (b)
Since two lines intersect at a point. Then shortest distance between them is zero.
$\therefore\left|\begin{array}{ccc}k & 2 & 3 \\ 3 & k & 2 \\ 1 & 1 & -2\end{array}\right|=0$
$\left[\therefore\left|\begin{array}{ccc}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1}\end{array}\right|=0\right]$
$\Rightarrow k(-2 k-2)-2(-6-2)+3(3-k)=0$
$\Rightarrow 2 k^{2}+5 k-25=0$
$\Rightarrow(2 k-5)(k+5)=0$
$\Rightarrow k=\frac{5}{2},-5$

Hence, integer value of k is -5
196 (b)
Direction ratio of $A B=(6-1,11+1,2-2)$
$=(5,12,0)$
Direction ratios of $A C=(1-1,2+1,6-2)=$ $(0,3,4)$
Now, $\cos A=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$\Rightarrow \cos A=\frac{5 \times 0+12 \times 3+0 \times 4}{\sqrt{25+144+0} \sqrt{0+9+16}}=\frac{36}{65}$
197 (a)
Let $a_{1}=2 x, b_{1}=2 x, c_{1}=x$
And $a_{2}=7-3=4, b_{2}=2-1=1$
$c_{2}=12-4=8$
$\therefore \cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$=\frac{2 x \times 4+2 x \times 1+x \times 8}{\sqrt{4 x^{2}+4 x^{2}+x^{2}} \sqrt{16+1+64}}$
$=\frac{18 x}{3 x \times 9}=\frac{2}{3}$
$\Rightarrow \theta=\cos ^{-1}\left(\frac{2}{3}\right)$
198 (b)
Any planes passing through $(1,1,1)$ is
$a(x-1)+b(y-1)+c(y-1)=0 \ldots$ (i)
Since, it is passing through $(1,-1,1)$, we get
$a \cdot 0+b(-2)+c(-2)=0$
$\Rightarrow 0 \cdot a-2 b-2 c=0$
$\Rightarrow 0 \cdot a+b+c=0$
Eq. (i) is perpendicular to $2 x-y+z+5=0$ is
$2 a-b+c=0$
From Eqs. (ii) and (iii), we get
$a=b=1, c=-1$
On substituting the value of a, b and c in Eq. (i), we get
$x+y-z-1=0$
199 (d)
Given equation of line is
$\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\lambda \quad[\mathrm{say}]$
Any point on the line is $P(2 \lambda, 3 \lambda+2,4 \lambda+3)$.
Also, this point lies in the plan.
$\therefore 2(2 \lambda)+(3 \lambda+2)-(4 \lambda+3)=2$
$\Rightarrow \lambda=1$
\therefore Coordinate of P are $(2,5,7)$
\therefore Required distance
$=\sqrt{(2-0)^{2}+(5-0)^{2}+(7-0)^{2}}$
$=\sqrt{78}$
200 (d)
(1) Direction ratio of the joining the points (1, 2,
$5)$ and $(4,3,2)$ is $(3,1,-3)$ and direction ratios of the joining the points $(5,1,-11)$ and $(8,2,-8)$ is $(3,1,3)$
\therefore These are parallel
(2) It is true
(3) Direction ratios of the plane $x-2 y+z=21$
are $(1,-2,1)$ and direction ratios of the line
$\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-1}{3}$ are $(1,2,3)$. If they are parallel, then
$1(1)-2(2)+1(3)=0$
201 (d)
Given, $\frac{x-1}{-1}=\frac{y-0}{2}=\frac{z+1}{3}=r$ [say] ... (i)
Then, coordinate of any point N on the line (i) are $(-r+1,2 r, 3 r-1) \ldots$ (ii)
Let N be the foot of the perpendicular to line(i)
\therefore Direction ratios of $P N$ are
$(-r+1-2,2 r-3,3 r-1-4)=(-r-1,2 r-$
3, $3 r-5$
$\because P N$ is perpendicular to line (i)
\therefore Using the condition,
$a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\Rightarrow-1(-r-1)+2(2 r-3)+3(3 r-5)=0$
$\Rightarrow r+1+4 r-6+9 r-15=0$
$\Rightarrow r=\frac{10}{7}$
Then, from Eq.(ii), we get
$N=\left(-\frac{10}{7}+1, \frac{20}{7}, \frac{30}{7}-1\right)=\left(-\frac{3}{7}, \frac{20}{7}, \frac{23}{7}\right)$
Now, perpendicular distance
$P N=\sqrt{\left(-\frac{3}{7}-2\right)^{2}+\left(\frac{20}{7}-3\right)^{2}+\left(\frac{23}{7}-4\right)^{2}}$
$=\frac{1}{7} \sqrt{289+1+25}$
$=\frac{3}{7} \sqrt{35}$
203 (c)
Let, $m=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}$
and $n=\cos \frac{\pi}{3}=\frac{1}{2}$
$\because l^{2}+m^{2}+n^{2}=1$
$\Rightarrow l=\sqrt{1-\left(m^{2}+n^{2}\right)}$
$=\sqrt{1-\left(\frac{1}{2}+\frac{1}{4}\right)}$
$=\sqrt{1-\frac{3}{4}}$
$\Rightarrow l= \pm \frac{1}{2}$

Since, line makes an obtuse angle, so we take
$l=-\frac{1}{2}$
\therefore Direction cosines are $-\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}$
204 (a)
Let $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{a}}=a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}}$, where a, b, c are constant.
Now, $\overrightarrow{|\mathbf{r}|^{2}}-2 \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}+p=0$
$\Rightarrow x^{2}+y^{2}+z^{2}-2(a x+b y+c z)+p=0$
Which represent a sphere,
Where radius $=\sqrt{a^{2}+b^{2}+c^{2}-p}=$ + ve $\left[\because|\vec{a}|^{2}>p\right]$
205 (b)
The image of the point $\left(x_{1}, y_{1}, z_{1}\right)$ in the plane
$a x+b y+c z+d=0$ is
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
$=\frac{-2\left(a x_{1}+b y_{1}+c z_{1}+d\right)}{a^{2}+b^{2}+c^{2}}$

$\therefore \frac{x-1}{2}=\frac{y-3}{-1}=\frac{z-4}{1}=-2\left(\frac{2-3+4+3}{6}\right)$
Therefore, image of the point is $(-3,5,2)$
207 (a)
Let D be the foot of the perpendicular and let it divide $B C$ in the ratio $\lambda: 1$. Then, the coordinates of D are
$\left(\frac{3 \lambda+4}{\lambda+1}, \frac{5 \lambda+7}{\lambda+1}, \frac{3 \lambda+1}{\lambda+1}\right)$
Now, $\overrightarrow{A D} \perp \vec{B} C$
$\Rightarrow \overrightarrow{A D} \cdot B \vec{C}=0$
$\Rightarrow-(2 \lambda+3)-2(5 \lambda+7)-4=0 \Rightarrow \lambda=-7 / 4$
So, the coordinates of D are $(5 / 3,7 / 3,17 / 3)$
208 (c)
Let a, b, c be the direction ratios of required line.
$\therefore 3 a+2 b+c=0$ and $a+b-2 c=0$
$\Rightarrow \frac{a}{-4-1}=\frac{b}{1+6}=\frac{c}{3-2}$
$\Rightarrow \frac{a}{-5}=\frac{b}{7}=\frac{c}{1}$
In order to find a point on the required line we put $z=0$ in the two given equations to obtain,
$3 x+2 y=5$ and $x+y=3$
\therefore Coordinate of point on required line are $(-1,4,0)$
Hence, required line is
$\frac{x+1}{-5}=\frac{y-4}{7}=\frac{z-0}{1}$
209 (a)
Let the coordinate of a point Q on x-axis be ($a, 0,0$)
\therefore Distance, $P Q$
$=\sqrt{(a-a)^{2}+(b-0)^{2}+(c-0)^{2}}$ $\sqrt{b^{2}+c^{2}}$
210 (d)
Let the vertices A, B, C, D of quadrilateral be $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right),\left(x_{3}, y_{3}, z_{3}\right)$ and $\left(x_{4}, y_{4}, z_{4}\right)$ the equation of plane $P Q R S$ be $u \equiv a x+b y+c z+d=0$
Let $u_{r}=a_{r} x+b_{r} y+c_{r} z+d$
Where $r=1,2,3,4$
Then, $\frac{A P}{P B} \cdot \frac{B Q}{Q C} \cdot \frac{C R}{R D} \cdot \frac{D S}{S A}$
$=\left(-\frac{u_{1}}{u_{2}}\right)\left(-\frac{u_{2}}{u_{3}}\right)\left(-\frac{u_{3}}{u_{4}}\right)\left(-\frac{u_{4}}{u_{1}}\right)=1$
211 (a)
The vector equations of the given lines are
$\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$
Where,
$\overrightarrow{a_{1}}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}, \overrightarrow{b_{1}}=2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}$
$\overrightarrow{a_{2}}=2 \hat{\imath}+4 \hat{\jmath}+5 \hat{k}, \overrightarrow{b_{2}}=3 \hat{\imath}+4 \hat{\jmath}+5 \hat{k}$

$$
\begin{aligned}
& \therefore \overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=\left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & 3 & 4 \\
3 & 4 & 5
\end{array}\right|=-\hat{\imath}+2 \hat{\jmath}-\hat{k} \\
& \begin{aligned}
\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}}\right. & \left.\times \overrightarrow{b_{2}}\right) \\
& =(\hat{\imath}+2 \hat{\jmath}+2 \hat{k}) \cdot(-\hat{\imath}+2 \hat{\jmath}-\hat{k}) \\
& =1
\end{aligned}
\end{aligned}
$$

\therefore Required S. D. $=\frac{\left|\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)\right|}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}$

$$
=\frac{1}{\sqrt{1+4+1}}=\frac{1}{\sqrt{6}}
$$

212 (a)
Given, equation of sphere is
$x^{2}+y^{2}+z^{2}-x+2 y-2 z+\frac{3}{2}=0$
The centre of sphere is $\left(\frac{1}{2},-1,1\right)$.
The plane $x+y+z+a \sqrt{3}=0$ will touch the sphere, if

$$
\begin{aligned}
& \left|\frac{\frac{1}{2}-1+1+a \sqrt{3}}{\sqrt{1+1+1}}\right|=\sqrt{\frac{1}{4}+1+1-\frac{3}{2}} \\
& \Rightarrow a \sqrt{3}+\frac{1}{2}= \pm \frac{3}{2} \Rightarrow a \sqrt{3}=1,-2 \\
& \Rightarrow a=\frac{1}{\sqrt{3}},-\frac{2}{\sqrt{3}}
\end{aligned}
$$

213 (a)
D divides $B C$ in the ratio $=A B: A C$ i.e. $3: 13$
Therefore, coordinates of D are
$\left(\frac{3 \times-9+13 \times 5}{3+13}, \frac{3 \times 6+13 \times 3}{3+13}\right.$,
$\left.\frac{3 \times-3+13 \times 2}{3+13}\right)$
or, $\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$

214 (c)
The equation of a plane through the line of intersection of the planes
$a x+b y+c z+d=0$ and $a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=$ 0 is
$(a x+b y+c z+d)+\lambda\left(a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}\right)=0$ $\Rightarrow x\left(a+\lambda a^{\prime}\right)+y\left(b+\lambda b^{\prime}\right)+z\left(c+\lambda c^{\prime}\right)+d+$
$\lambda d^{\prime}=0$
This parallel to x-axis i.e., $\frac{x}{1}=\frac{y}{0}=\frac{z}{0}$
$\therefore 1+\left(a+\lambda a^{\prime}\right)+0\left(b+\lambda b^{\prime}\right)+0\left(c+\lambda c^{\prime}\right)=0$

$$
\Rightarrow \lambda-\frac{a}{a^{\prime}}
$$

Putting the value of λ in (i), the required plane is $y\left(a^{\prime} b-a b^{\prime}\right)+z\left(a^{\prime} c-a c^{\prime}\right)+a^{\prime} d-a d^{\prime}=0$
215 (b)
We have, $\alpha=45^{\circ}$ and $\beta=60^{\circ}$
Suppose $\overrightarrow{O P}$ makes angle γ with $O Z$. Then,
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\Rightarrow\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\cos ^{2} \gamma=1$
$\Rightarrow \cos ^{2} \gamma=\frac{1}{4} \Rightarrow \cos \gamma= \pm \frac{1}{2} \Rightarrow \gamma=60^{\circ}, 120^{\circ}$
216 (a)
As $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ cuts the coordinate axes at $A(a, 0,0), B(0, b, 0), C(0,0, c)$
Since, distance from origin $=1$
$\Rightarrow \frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}=1$
$\Rightarrow \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=1$
\therefore Centroid $P(x, y, z)$
$=\left(\frac{a+0+0}{3}, \frac{0+b+0}{3}, \frac{0+0+c}{3}\right)$
$\Rightarrow x=\frac{a}{3}, y=\frac{b}{3}, z=\frac{c}{3}$
From Eqs. (i) and (ii),
$\frac{1}{9 x^{2}}+\frac{1}{9 y^{2}}+\frac{1}{9 z^{2}}=1$
$\Rightarrow \frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=9=\mathrm{k} \quad$ (given)
$\Rightarrow k=9$

217 (c)

Equation of plane containing the $\operatorname{line} \frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ is
$a(x-0)+b(y-0)+c(z-0)=0 \quad$...(i)
and $2 a+3 b+4 c=0$
Another equation of the plane containing the other two lines is
$a_{1}(x-0)+b_{1}(y-0)+c_{1}(z-0)=0$
Also, $3 a_{1}+4 b_{1}+2 c_{1}=0$
and $4 a_{1}+2 b_{1}+3 c_{1}=0$
on solving we get
$\frac{a_{1}}{8}=\frac{b_{1}}{-1}=\frac{c}{-10}$
\therefore Eq. (iii) becomes
$8 x-y-10 c=0$
Since, the plane (i) is perpendicular to the plane
(ii)
$\therefore 8 a-b-10 c=0$...(v)
On solving Eqs. (ii) and (v), we get
$\frac{a}{-26}=\frac{b}{52}=\frac{c}{-26}$ or $\frac{a}{1}=\frac{b}{-2}=\frac{c}{1}$
\therefore From Eq. (i)
$x-2 y+z=0$

Alternate

Let $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$,
$\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=4 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{c}}$
$=26(-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})$
\Rightarrow Direction ratio of normal to the required plane (passing through origin) is $1,-2,1$
\Rightarrow Equation of required plane is $x-2 y+z=0$
218 (d)
Any plane passing through $(0,1,2)$ is
$a(x-0)+b(y-1)+c(z-2)=0$
$\Rightarrow a x+b(y-1)+c(z-2)=0$
Since, it is passing through $(-1,0,3)$, we get
$-a-b+c=0$
Also, Eq. is perpendicular to $2 x+3 y+z=5$
$\therefore 2 a+3 b+c=0$
On solving Eqs. (ii) and (iii), we get
$\frac{a}{-4}=\frac{b}{3}=\frac{c}{-1}$
\therefore From Eq. (i)
$-4 x+3(y-1)-1(z-2)=0$
$\Rightarrow 4 x-3 y+z+1=0$
219 (a)
Let $P Q$ be the shortest distance vector between l_{1} and l_{2}. Now, l_{1} passes through $A_{1}\left(\overrightarrow{\mathbf{a}}_{1}\right)$ and is parallel to $\overrightarrow{\mathbf{b}}_{1}$ and l_{2} passes through $A_{2}\left(\overrightarrow{\mathbf{a}}_{2}\right)$ and is parallel to $\overrightarrow{\mathbf{b}}_{2}$. Since, $P Q$ is perpendicular to both l_{1} and l_{2} it is parallel to $\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}$

Let $\widehat{\mathbf{n}}$ be the unit vector along $P Q$
Then, $\widehat{\mathbf{n}}=\frac{\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}}{\left|\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}\right|}$
Let d be the shortest distance between the given lines l_{1} and l_{2}
$|\overrightarrow{\mathbf{P Q}}|=d$ and $\overrightarrow{\mathbf{P Q}}=d \widehat{\mathbf{n}}$
Next $P Q$ being the line of shortest distance between l_{1} and l_{2} is the projection of the line joining the points $A_{1}\left(\overrightarrow{\mathbf{a}}_{1}\right)$ and $A_{2}\left(\overrightarrow{\mathbf{a}}_{2}\right)$ on $\widehat{\mathbf{n}}$
$|\overrightarrow{\mathbf{P Q}}|=\left|\overrightarrow{\mathbf{A}_{1}} \overrightarrow{\mathbf{A}_{2}} \cdot \widehat{\mathbf{n}}\right|$
$\Rightarrow d=\left|\frac{\left(\overrightarrow{\mathbf{a}}_{2}-\overrightarrow{\mathbf{a}}_{1}\right) \cdot \overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}}{\left|\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}\right|}\right|$
221 (b)
The lines $\vec{r}=\vec{a}+\lambda(\vec{b} \times \vec{c})$ and $\vec{r}=\vec{b}+\mu(\vec{c} \times \vec{a})$ pass through points \vec{a} and \vec{b} respectively and are parallel to vectors $\vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ respectively. Therefore, they will intersect, if
$\vec{a}-\vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ are coplanar
$\Rightarrow(\vec{a}-\vec{b}) \cdot\{(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})\}=0$
$\Rightarrow(\vec{a}-\vec{b}) \cdot\{[\vec{b} \vec{c} \vec{a}] \vec{c}-[\vec{b} \vec{c} \vec{c}] \vec{a}\}=0$
$\Rightarrow(\vec{a}-\vec{b}) \cdot \vec{c}[\vec{b} \vec{c} \vec{a}]=0$
$\Rightarrow \vec{a} \cdot \vec{c}-\vec{b} \cdot \vec{c}=0 \Rightarrow \vec{a} \cdot \vec{c}=\vec{b} \cdot \vec{c}$
222 (c)
The centre and the radius of given sphere are
$C(-1,1,2)$
and $R=\sqrt{(-1)^{2}+(1)^{2}+(2)^{2}+19}=5$
length of perpendicular from centre C on the plan,
$d=\frac{-1 \times 1+1 \times 2+2 \times 2+7}{\sqrt{1^{2}+2^{2}+2^{2}}}=4$
\therefore Radius of circle $=\sqrt{R^{2}-d^{2}}=\sqrt{25-16}=3$
223 (a)
Let l, m, n be the direction cosines of the given line. Then, as it makes an acute angle with x-axis.

Therefore, $l>0$. The lines passes through $(6,-7,-1)$ and $(2,-3,1)$. Therefore, its direction ratios are
$6-2,-7+3,-1-1$ or, $4,-4,-2$ or, $2,-2,-1$
Hence, direction cosines of the given line are
$\frac{2}{3},-\frac{2}{3},-\frac{1}{3}$
224 (d)
Here DR's of line and a plane are
$a_{1}=1, b_{1}=2, c_{1}=2$ and the plane $a_{2}=2, b_{2}=$ -1 and $c_{2}=\sqrt{\lambda}$.
$\because \sin \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|$
$\Rightarrow \frac{1}{3}=\left|\frac{2-2+2 \sqrt{\lambda}}{\sqrt{1+4+4} \sqrt{4+1+\lambda}}\right|$
$\Rightarrow \sqrt{5+\lambda}=2 \sqrt{\lambda}$
$\Rightarrow \lambda=\frac{5}{3}$

225 (c)

Direction ratio of normal to the given plane is
$2,-3,5$ which is the direction ratio of line passing through $(3,0,-4)$
\therefore Equation of required line
$\frac{x-3}{2}=\frac{y-0}{-3}=\frac{z+4}{5}$
$\Rightarrow \frac{x-3}{2}=\frac{-y}{3}=\frac{z+4}{5}$
226
(b)

Given line can be rewritten as
$\frac{x-\frac{1}{3}}{\frac{2 b}{3}}=\frac{y-3}{-1}=\frac{z-1}{a}$
Given plane $3 x+y+2 z+6=0$ is parallel to the above line
$\therefore \frac{2 b}{3} \cdot 3+1 \cdot(-1)+2 \cdot a=0$
$\Rightarrow 2 a+2 b=1$
$\Rightarrow 3 a+3 b=\frac{3}{2}$
227 (a)
Let the equation of plane be
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
Then, coordinates of A, B and C are
($a, 0,0$), ($0, b, 0$) and ($0,0, c$) rspectively.
The centroid of a $\triangle A B C$ is $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$ but it is given
$\therefore \frac{a}{3}=\frac{1}{3}, \frac{b}{3}=\frac{1}{3}, \frac{c}{3}=\frac{1}{3}$
$\Rightarrow a=b=c=1$
\therefore From Eq. (i)
$x+y+z=1$
228 (c)
We know that the equation of a plane parallel to x-axis is
$b y+c z+d=0$
Since, it passes through the points $(2,3,1)$ and
$(4,-5,3)$
$\therefore 3 b+c+d=0$
and $-5 b+3 c+d=0$
$\Rightarrow \frac{b}{1-3}=\frac{c}{-8}=\frac{d}{14}$
$\Rightarrow \frac{b}{-2}=\frac{c}{-8}=\frac{d}{14}$
\therefore Equation of plane is $-2 y-8 z+14=0$
$\Rightarrow y+4 z=7$
229 (b)
Equation of plane passing through the intersection of given planes, is
$(x+2 y+3 z+4)+\lambda(4 x+3 y+2 z+1)=0$...(i)
Plane (i) is passing through the origin $i e,(0,0,0)$
$\therefore 4+\lambda=0 \Rightarrow \lambda=-4$
On putting the value of λ in Eq. (i), we get
$(x+2 y+3 z+4)-4(4 x+3 y+2 z+1)=0$
$\Rightarrow-15 x-10 y-5 z=0$
$\Rightarrow 3 x+2 y+z=0$
230 (a)
Since the required plane contains the line
$\vec{r}=2 \hat{\imath}+\lambda(\hat{\jmath}-\hat{k})$ and is perpendicular to the
plane $\vec{r} \cdot(\hat{\imath}+\hat{k})=3$. Therefore, it passes through
the point $\vec{a}=2 \hat{\imath}$ and is parallel to the vectors
$\vec{b}=\hat{\jmath}-\hat{k}$ and $\vec{c}=\hat{\imath}+\hat{k}$. Hence, it is perpendicular to the vector
$\vec{n}=\vec{b} \times \vec{c}=(\hat{\jmath}-\hat{k}) \times(\hat{\imath}+\hat{k})=\hat{\imath}-\hat{\jmath}-\hat{k}$
Therefore, the equation of the required plane is
$(\vec{r}-\vec{a}) \cdot \vec{n}=0$
$\Rightarrow(\vec{r}-2 \hat{\imath}) \cdot(\hat{\imath}-\hat{\jmath}-\hat{k})=0$
$\Rightarrow \vec{r} \cdot(\hat{\imath}-\hat{\jmath}-\hat{k})=2$
231 (c)
Let the point R divides the line joining the points $P(2,4,5)$ and $Q(3,5,-4)$ in the ratio m : n Then,
the coordinate of R is $\left(\frac{3 m+2 n}{m+n}, \frac{5 m+4 n}{m+n}, \frac{-4 m+}{m+}\right.$ For $y z$-plane, x-coordinate will be zero.
$\therefore \frac{3 m+2 n}{m+n}=0 \Rightarrow \frac{m}{n}=\frac{-2}{3}$
Alternate The ratio in which $y z$-plane divides the line segment $=-x_{1}: x_{2}=-2: 3$
232 (a)
Given, planes are $2 x+y+2 z+\frac{5}{2}=0$
and $2 x+y+2 z-8=0$
\therefore Distance $=\left|\frac{\frac{5}{2}-(-8)}{\sqrt{2^{2}+1^{2}+2^{2}}}\right|=\frac{7}{2}$
235 (a)
Equation of plane passing through the point (1, 2, 3) is
$A(x-1)+B(y-2)+C(z-3)=0$
Since, plane (i) is parallel to plane $x+2 y+5 z=$ 0
$\Rightarrow A=1, B=2, C=5$
Putting these values in Eq. (i), we get
$(x-1)+2(y-2)+5(z-3)=0$ is the required plane
236 (b)
Required circle is intersection of sphere
$x^{2}+y^{2}+z^{2}+2 x-2 y-4 z-19=0$
and plane $x-2 y+2 z+8=0$
Centre of sphere is $(-1,1,2)$
$P=$ length of the perpendicular from,
$(-1,1,2)$ to the plane
$=\frac{-1-2+4+8}{\sqrt{1+4+4}}$
$=\frac{9}{3}=3$
$R=$ radius of sphere
$=\sqrt{1+1+4+19}=5$
Radius of the circle $=\sqrt{R^{2}-P^{2}}$
$=\sqrt{25-9}=4$

(d)

Distance of point $P(2,6,3)$ from origin
$O P=\sqrt{(0-2)^{2}+(0-6)^{2}+(0-3)^{2}}$
$=\sqrt{4+36+9}=7$
Now, DR's of $O P=2-0,6-0,3-0=2,6,3$
\therefore DC's of $O P$ are $\frac{2}{7}, \frac{6}{7}, \frac{3}{7}$
\therefore Equation of plane in normal form is
$l x+m y+n z=p$
$\Rightarrow \frac{2}{7} x+\frac{6}{7} y+\frac{3}{7} z=7$
$\Rightarrow 2 x+6 y+3 z=49$
238 (c)
Now, $\quad A B=\sqrt{3^{2}+0+3^{2}}=\sqrt{18}$
$C A=\sqrt{16+4+16}=6$
and $B C=\sqrt{1+4+49}=\sqrt{54}$
$\because A B^{2}+C A^{2}=B C^{2}$
$\therefore \triangle A B C$ is right angled triangle, right angled at,
A..

Thus, $\angle A=90^{\circ}$
239 (b)

The vector equation of the line joining the points $\hat{\imath}-2 \hat{\jmath}+\hat{k}$ and $-2 \hat{\jmath}+3 \hat{k}$ is
$\vec{r}=(\hat{\imath}-2 \hat{\jmath}+\hat{k})+\lambda(-\hat{\imath}+2 \hat{k})$
Using $\vec{r} \cdot(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})=[\vec{a} \vec{b} \vec{c}]$ the vector equation of the plane through the origin, $4 \hat{\jmath}$ and $2 \hat{\imath}+\hat{k}$
$\vec{r} \cdot(4 \hat{\imath}-8 \hat{k})=0$
The position vector of any point on (i) is
$(\hat{\imath}-2 \hat{\jmath}+\hat{k})+\lambda(-\hat{\imath}+2 \hat{k})$
If it lies on (ii), then
$\{(\hat{\imath}-2 \hat{\jmath}+\hat{k})+\lambda(-\hat{\imath}+2 \hat{k})\} \cdot(4 \hat{\imath}-8 \hat{k})=0$
$\Rightarrow-4-20 \lambda=0 \Rightarrow \lambda=-1 / 5$
Putting the value of λ in $(\hat{\imath}-2 \hat{\jmath}+\hat{k})+$
$\lambda(-\hat{\imath}+2 \hat{k})$, we get the position vector of the
required point as $\frac{1}{5}(6 \hat{\imath}-10 \hat{\jmath}+3 \hat{k})$
240 (d)
Given equation of sphere are
$x^{2}+y^{2}+z^{2}+2 x+2 y+2 z=2$
Whose centre is $C_{1}=(-1,-1,-1)$ and radius
$=\sqrt{5}$
And $2 x^{2}+2 y^{2}+2 z^{2}+4 x+2 y+4 z=0$
Whose centre is $C_{2}=\left(-1,-\frac{1}{2},-1\right)$ and radius
$=\sqrt{\frac{9}{4}}=\frac{3}{2}$
Also, $C_{1} C_{2}=\sqrt{0+\frac{1}{4}+0}=\frac{1}{2}$
$C_{1} C_{2}<\left|r_{1}-r_{2}\right|$
So, second sphere is completely inside of first sphere
242 (b)
$\because \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\Rightarrow \cos ^{2} 45^{\circ}+\cos ^{2} \beta+\cos ^{2} 60^{\circ}=1$
$\Rightarrow \cos ^{2} \beta=\frac{1}{4}$
$\Rightarrow \cos \beta= \pm \frac{1}{2}$
$\Rightarrow \beta=60^{\circ}$ or 120°
243 (b)
Given, $l+m+n=0 \ldots$...(i)
and $l^{2}+m^{2}-n^{2}=0$
$\therefore l^{2}+m^{2}-(-l-m)^{2}=0$
$\Rightarrow 2 l m=0$
$\Rightarrow l=0$ or $m=0$
if $l=0$, then $n=-m$
$\Rightarrow l: m: n=0: 1:-1$
and if $m=0$, then $n=-1$
$\Rightarrow l: m: n=1: 0:-1$
$\therefore \cos \theta=\frac{0+0+1}{\sqrt{0+1+1} \sqrt{0+1+1}}=\frac{1}{2}$
$\Rightarrow \theta=\frac{\pi}{3}$
244 (b)
The given lines are parallel to the vectors $\overrightarrow{b_{1}}=\hat{\imath}+\lambda \hat{\jmath}-\hat{k}$ and $\overrightarrow{b_{2}}=-\lambda \hat{\imath}+2 \hat{\jmath}+\hat{k}$
respectively. The lines will be perpendicular to each other, if
$\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}=0 \Rightarrow-\lambda+2 \lambda-1=0 \Rightarrow \lambda=1$
245 (b)
Given equation is $x^{2}-5 x+6=0$
$\Rightarrow(x-2)(x-3)=0$
$\Rightarrow(x-2)=0$ or $(x-3)=0$
Which represents a plane
246 (a)
$\because \sin \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$=\frac{1 \times 1+2 \times-1+1 \times 1}{\sqrt{1+4+1} \sqrt{1+1+1}}=0$
$\Rightarrow \theta=0^{\circ}$
247
(d)

Given line and plane can be rewritten as
$\frac{3 x-1}{3}=\frac{y+3}{-1}=\frac{5-2 z}{4}$
$\frac{x-\frac{1}{3}}{1}=\frac{y+3}{-1}=\frac{\left(z-\frac{5}{2}\right)}{-2}$
and $x-y-2 z=0$
here, $a_{1}=1, b_{1}=-1 . c_{1}=-2$
and $a_{2}=1, b_{2}=-1, c_{2}=-2$
$\therefore \sin \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$=\frac{1 \times 1+(-1) \times(-1)+(-2) \times(-2)}{\sqrt{1+1+4} \sqrt{1+1+4}}$
$=\frac{6}{\sqrt{6} \sqrt{6}}=1$
$\Rightarrow \theta=\frac{\pi}{2}$
248 (b)
Let $A B$ be the given line and the let its direction cosines of $A B$ be l, m, n. Then,
Projection of $A B$ on x-axis $=A B l=12$ (given)
Projection of $A B$ on y-axis $=A B m=4$ (given)
Projection of $A B$ on z-axis $=A B n=3$ (given)
$\therefore(A B)^{2}\left(l^{2}+m^{2}+n^{2}\right)=12^{2}+4^{2}+3^{2} \Rightarrow A B$

$$
=13
$$

Hence, direction cosines of $A B$ are $\frac{12}{13}, \frac{4}{13}, \frac{3}{13}$
249 (a)
Required DR's are (3-2,4+1,-1-1)
$i e,(1,5,-2)$.
250 (b)
Any point on the line
$\frac{x-1}{3}=\frac{y+2}{4}+\frac{z-3}{-2}=k$ [say]
is $(3 k+1,4 k-2,-2 k+3)$.
If the given line intersect the plane $2 x-y+3 z-$ $1=0$, then any point on the line lies in the plane.
$\therefore 2(3 k+1)-(4 k-2)+3(-2 k+3)-1=0$
$\Rightarrow k=3$
\therefore Point is $(9+1,12-2,-6+3) i e,(10,10,-3)$.
251 (c)
The equation of plane containing the line
$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ is
$a(x+1)+b(y-3)+c(z+2)=0$
Alos, $-3 a+2 b+c=0$....(ii)
Also, plane passes through $(0,7,-7)$
$\therefore a+4 b-5 c=0$
From Eqs. (ii) and (iii),
$\frac{a}{-14}=\frac{b}{-14}=\frac{c}{-14}$
$\Rightarrow \frac{a}{1}=\frac{b}{1}=\frac{c}{1}$
252
(b)

The equation of the plane containing the line
$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ is
$a(x+1)+b(y-3)+c(z+2)=0$
Where, $-3 a+2 b+c=0 \quad$...(ii)
This passes through $(0,7,-7)$
$\therefore a+4 b-5 c=0$
From (ii) and (iii), we have
$\frac{a}{-14}=\frac{b}{-14}=\frac{c}{-14} \Rightarrow \frac{a}{1}=\frac{b}{1}=\frac{c}{1}$
So, the required plane is $x+y+z=0$
253 (b)
Let the equation of plane passing through $(1,1,1)$ is
$a(x-1)+b(y-1)+c(z-1)=0$
\because It is also passing through $(1,-1,-1)$
$\therefore b+c=0$
Since, the Eq. (i) is perpendicular to the plane
$2 x-y+z+5=0$
$\therefore 2 a-b+c=0$
Since, Eqs, (ii) and (iii) are identical
$\therefore \frac{a}{1+1}=\frac{b}{2-0}=\frac{c}{-2+0}$
$\Rightarrow \frac{a}{1}=\frac{b}{1}=\frac{c}{-1}$
\therefore Required equation of plane is $x+y-z-1=0$

254 (a)

It is given that the direction ratios of \vec{r} are proportional to $2,-3,6$. Therefore, its direction cosines are
$l=\frac{2}{7}, m=\frac{-3}{7}, n=\frac{6}{7}$
$\therefore \vec{r}=|\vec{r}|(l \hat{\imath}+m \widehat{\jmath}+n \hat{k})$
$\Rightarrow \vec{r}=21\left(\frac{2}{7} \hat{\imath}-\frac{3}{7} \hat{\jmath}+\frac{6}{7} \hat{k}\right)=6 \hat{\imath}-9 \hat{\jmath}+18 \hat{k}$
255 (c)
The line perpendicular to the plane $2 x-y+5 z=$ 4 and passing through the point $(-1,0,1)$ is given by
$\frac{x+1}{2}=\frac{y-0}{-1}=\frac{z-1}{5}$
$\Rightarrow \frac{x+1}{2}=-y=\frac{z-1}{5}$
256 (c)
Radius of sphere is perpendicular distance from
($6,-1,2$) to
$2 x-y+2 z-2=0$
ie, $\left|\frac{12+1+4-2}{\sqrt{4+1+4}}\right|=5$
\therefore Equation of sphere is
$(x-6)^{2}+(y+1)^{2}+(z-2)^{2}=25$
$\Rightarrow x^{2}+y^{2}+z^{2}-12 x+2 y-4 z+16=0$
257 (b)
Let $P(\overrightarrow{\mathbf{r}})$ be any point on plane
Clearly $\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{a}}$ will be in linear combination of
$\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}$
$\Rightarrow \overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}$ will be coplanar
$\Rightarrow(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{a}}) \cdot\{(\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{a}}) \times(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}})\}=0$
$\Rightarrow(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{a}}) \cdot\{\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}\}=0$
$=\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
258 (b)
Since, the given plane are
$x-c y-b z=0$
$c x-y+a z=0$
and $b x+a y-z=0$
passes through a line
$\therefore\left|\begin{array}{ccc}1 & -c & -b \\ c & -1 & a \\ b & a & -1\end{array}\right|=0$
$\Rightarrow 1\left(1-a^{2}\right)+c(-c-a b)-b(a c+b)=0$
$\Rightarrow 1-a^{2}-c^{2}-a b c-a b c-b^{2}=0$
$\Rightarrow a^{2}+b^{2}+c^{2}+2 a b c=1$
259 (c)
Let the verities of triangle be $A(a, 0,0), B(0, b, 0)$ and $C(0,0, c)$ and the equation of plane is
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
\because Centroid of $\triangle A B C$ is (α, β, γ)
$\therefore \frac{a+0+0}{3}=\alpha$
$\Rightarrow a=3 \alpha$

Similarly, $b=3 \beta$ and $c=3 \gamma$
\therefore From Eq. (i),
$\frac{x}{3 \alpha}+\frac{y}{3 \beta}+\frac{z}{3 \gamma}=1$
$=\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=3$
261 (a)
We observe that the line given in option (a) passes through $(1,-2,3)$. Also, it is normal to the plane $2 x+3 y+z=0$
262

(d)

The shortest distance between the lines
$\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$
And $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$ is given by
Shortest distance $=\frac{\left\|\begin{array}{ccc}\alpha-\alpha^{\prime} & \beta-\beta^{\prime} & \gamma-\gamma^{\prime} \\ l & m & n \\ l^{\prime} & m^{\prime} & n^{\prime}\end{array}\right\|}{\sqrt{\sum\left(m n^{\prime}-n m^{\prime}\right)^{2}}}$
$=\frac{\left\|\begin{array}{ccc}6 & 15 & -3 \\ 3 & -1 & 1 \\ -3 & 2 & 4\end{array}\right\|}{\sqrt{(-4-2)^{2}+(12+3)^{2}+(6-3)^{2}}}$
$=\frac{270}{\sqrt{270}}=\sqrt{270}=3 \sqrt{30}$
264 (b)
Equation of sphere $O A B C$ is
$x^{2}+y^{2}+z^{2}-a x-b y-c z=0$
Where $\sqrt{\frac{a^{2}+b^{2}+c^{2}}{4}}=2 k$
$\Rightarrow a^{2}+b^{2}+c^{2}=16 k^{2}$
Let (α, β, γ) be the centroid of the tetrahedron
$O A B C$, then $\alpha=\frac{a}{4}, \beta=\frac{b}{4}, \gamma=\frac{c}{4}$
From Eq. (i), $\alpha^{2}+\beta^{2}+\gamma^{2}=k^{2}$
Locus is $x^{2}+y^{2}+z^{2}=k^{2}$
265 (b)
Let DR's of required line be a, b, c
According to given condition,
$a(1)+b(-1)+c(2)=0$
$\Rightarrow a-b+2 c=0$
and $a(2)+b(1)+c(-1)=0$
$\Rightarrow 2 a+b-c=0 \quad$....(ii)
From Eqs. (i) and (ii),
$\frac{a}{1-2}=\frac{b}{4+1}=\frac{c}{1+2}$
$\Rightarrow \frac{a}{-1}=\frac{b}{5}=\frac{c}{3}$
\therefore Required DC's are
$l=-\frac{1}{\sqrt{1^{2}+5^{2}+3^{2}}}$
$m=\frac{5}{\sqrt{1^{2}+5^{2}+3^{2}}}, n=\frac{3}{\sqrt{1^{2}+5^{2}+3^{2}}}$
$\Rightarrow l=-\frac{1}{\sqrt{35}}, m=\frac{5}{\sqrt{35}}, n=\frac{3}{\sqrt{35}}$
266 (b)
The shortest distance, between two lines is
$d=\frac{\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{1}-z_{2} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|}{\sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-a_{1} c_{2}\right)^{2}+\left(a_{1} b_{2}-b_{1} a_{2}\right)^{2}}}$
Given lines are $\frac{x+1}{12}=\frac{y}{6}=\frac{z}{-1}$ and $\frac{x}{6}=\frac{y+2}{6}=\frac{z-1}{1}$
$\therefore d=\frac{\left|\begin{array}{ccc}1 & -2 & 1 \\ 12 & 6 & -1 \\ 6 & 6 & 1\end{array}\right|}{\sqrt{(6+6)^{2}+(-6-12)^{2}+(72-36)^{2}}}$
$=\frac{1(6+6)+2(12+6)+1(72-36)}{\sqrt{144+324+1296}}$
$=\frac{84}{42}=2$
267 (c)
The position vectors of two given points are $\vec{a}=\hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $\vec{b}=3 \hat{\imath}+3 \hat{\jmath}+3 \hat{k}$ and the equation of the given plane is
$\vec{r} \cdot(5 \hat{\imath}+2 \hat{\jmath}-7 \hat{k})+9=0$ or, $\vec{r} \cdot \vec{n}+d=0$
We have,
$\vec{a} \cdot \vec{n}+d=(\hat{\imath}-\hat{\jmath}+3 \hat{k}) \cdot(5 \hat{\imath}+2 \hat{\jmath}-7 \hat{k})+9$
$=5-2-21+9<0$
and, $\vec{b} \cdot \vec{n}+d=(3 \hat{\imath}+3 \hat{\jmath}+3 \hat{k}) \cdot(5 \hat{\imath}+2 \hat{\jmath}-7 \hat{k})+$ 9
$=15+6-21+9>0$
So, the points \vec{a} and \vec{b} are on the opposite sides of the plane
268 (c)
Clearly point $(2,-1,2)$ lies on the line as well as plane
\therefore Required distance of point $(-1,-5,-10)$
$=\sqrt{(-1-2)^{2}+(-5+1)^{2}+(-10-2)^{2}}$
$=\sqrt{9+16+144}$
$=\sqrt{169}=13$
269 (b)
$\mathrm{DC}^{\prime} \mathrm{s}$ of $A B$
$=\frac{1}{\sqrt{1^{2}+4^{2}+3^{2}}}, \frac{4}{\sqrt{1^{2}+4^{2}+3^{2}}}, \frac{3}{\sqrt{1^{2}+4^{2}+3^{2}}}$
$=\frac{1}{\sqrt{26}}, \frac{4}{\sqrt{26}}, \frac{3}{\sqrt{26}}$
270 (a)
By solving two equations, we get

$$
\begin{aligned}
& \left(l_{1}, m_{1}, n_{1}\right)=(2 \sqrt{2}-3-\sqrt{2}, 1) \\
& \left(l_{2}, m_{2}, n_{2}\right)=(-2 \sqrt{2}-3, \sqrt{2}, 1) \\
& \text { Now, } \cos \theta=\frac{-(2 \sqrt{2}-3)(2 \sqrt{2}+3)-\sqrt{2}(\sqrt{2})+1(1)}{\left[\begin{array}{c}
(2 \sqrt{2}-3)^{2}+(-\sqrt{2})^{2}+1^{2} \\
\left.\times \sqrt{(-2 \sqrt{2}-3)^{2}+\left(\sqrt{2}^{2}\right)^{2}+1^{2}}\right]
\end{array}\right.}
\end{aligned}
$$

$\Rightarrow \cos \theta=0^{\circ}$
$\Rightarrow \theta=\frac{\pi}{2}$
\therefore The angle between them is $\frac{\pi}{2}$
271 (a)
Centre of a given sphere is $(3,6,1)$.
Since, one end of diameter are $(2,3,5)$ and let the other end of diameter are (α, β, γ), then
$\frac{\alpha+2}{2}=3, \frac{\beta+3}{2}=6, \frac{\gamma+5}{2}=1$
$\Rightarrow \alpha=4, \beta=9$ and $\gamma=-3$.
272 (b)
Since, point Q is the image of P, therefore $P Q$ perpendicular to the plane
$x-2 y+5 z=6$
\therefore Required equation of line is
$\frac{x-2}{1}=\frac{y-3}{-2}=\frac{z-4}{5}$
273
(d)
$\because O P=\sqrt{a^{2}+a^{2}+a^{2}}=\sqrt{3} a$
\therefore DC's of $O P$ are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
Equation of plane is
$x+y+z=3 a$
$\Rightarrow \frac{x}{3 a}+\frac{y}{3 a}+\frac{z}{3 a}=1$
\therefore Intersection on axes are $3 a, 3 a$ and $3 a$ respectively
Sum of their reciprocals $=\frac{1}{3 a}+\frac{1}{3 a}+\frac{1}{3 a}=\frac{1}{a}$
274 (c)
Let l, m, n be the direction cosines of $\vec{O} P$. It is given that $l=45^{\circ}=\frac{1}{\sqrt{2}}$ and $m=\cos 60^{\circ}=\frac{1}{2}$
$\therefore l^{2}+m^{2}+n^{2}=1 \Rightarrow \frac{1}{2}+\frac{1}{4}+n^{2}=1 \Rightarrow n= \pm \frac{1}{2}$
Now, $\vec{r}=|\vec{r}|(l \hat{\imath}+m \hat{\jmath}+n \hat{k})$
$\Rightarrow \vec{r}=12\left(\frac{1}{\sqrt{2}} \hat{\imath}+\frac{1}{2} \hat{\jmath} \pm \frac{1}{2} \hat{k}\right)=6 \sqrt{2} \hat{\imath}+6 \hat{\jmath} \pm 6 \hat{k}$
276 (b)
Let $O A, O B, O C$ be the sides of a cube such that
$O A=O B=O C=a$

$$
O A=O B=O C=a
$$

\therefore Direction ratios of $O E$ are $(a-0, a-$ Oie a, a, a
\therefore Direction cosines of AF are $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
Similarly, direction of $A F$ are $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.
\therefore Angle between $O E$ and $A F$ is
$\cos ^{-1}\left[-\frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}\right] \cos ^{-1}\left(\frac{1}{3}\right)$
277 (c)
\because Midpoint of line joining $(2,3,4)$ and $(6,7,8)$ is (4,
$5,6)$. This point is satisfied by one of the option
ie, $x+y+z-15=0$
278 (d)
Equation of the plane passing through $P(3,8,2)$
and parallel to
$3 x+2 y-2 z+15=0$ is
$3(x-3)+2(y-8)-2(z-2)=0$
$\Rightarrow 3 x+2 y-2 z-21=0$
Given line is
$\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}=r \quad[$ say $]$
Any point of the line is
$Q(2 r+1,4 r+3,3 r+2)$
This point is lies on the above plane
$\therefore 3(2 r+1)+2(4 r+3)-2(3 r+2)-21=0$
$\Rightarrow 8 r-16=0 \Rightarrow r=2$
\therefore Coordinate of $Q(5,11,8)$
\therefore Distance between P and Q
$=\sqrt{(5-3)^{2}+(11-8)^{2}+(8-2)^{2}}$
$=\sqrt{4+9+36}=7$
(a)

Given, $l+m+n=0$
and $l m=0$
\Rightarrow Either $m=0$ or $l=0$
If $l=0$, then put in Eq. (i), we get $m=-n$
\therefore Direction ratios are $0,-n, n$ ie, $0,-1,1$
If $m=0$, then put in Eq. (i), we get $l=-n$
\therefore Direction ratios are $-n, 0, n, i e,-1,0,1$
$\therefore \cos \theta=\frac{0 \times(-1)+(-1) \times 0+1 \times 1}{\sqrt{0^{2}+(-1)^{2}+1^{2}} \sqrt{(-1)^{2}+0^{2}+1^{2}}}$ $=\frac{1}{2}$
$\Rightarrow \theta=\frac{\pi}{3 \pi}$

280 (a)

Since, it is given that line makes equal angle with the coordinate axes
$\therefore l=m=n$
We know, $l^{2}+m^{2}+n^{2}=1$
$\Rightarrow 3 l^{2}=1$
$\Rightarrow l^{2}=\frac{1}{3}$
$\Rightarrow l=\frac{1}{\sqrt{3}} \quad$ (neglect - ve sign)
281 (b)
The straight line joining the points $(1,1,2)$ and $(3,-2,1)$ is
$\frac{x-1}{2}=\frac{y-1}{-3}=\frac{z-2}{-1}=r \quad$ (say)
\therefore Point is $(2 r+1,1-3 r, 2-r)$ which lies on
$3 x+2 y+z=6$
$\therefore 3(2 r+1)+2(1-3 r)+2-r=6$
$\Rightarrow r=1$
Required points is $(3,-2,1)$
282 (b)
Given that, $A(5,-1,1), B(7,-4,7), C(1,-6,10)$ and $D(-1,-3,4)$
Now, $A B=\sqrt{(7-5)^{2}+(-4+1)^{2}+(7-1)^{2}}$
$=\sqrt{4+9+36}=7$
$B C=\sqrt{(1-7)^{2}+(-6+4)^{2}+(10-7)^{2}}$
$=\sqrt{36+4+9}=7$
$C D=\sqrt{(-1-1)^{2}+(-3+6)^{2}+(4-10)^{2}}$
$=\sqrt{4+9+36}=7$
$D A=\sqrt{(5+1)^{2}+(-1+3)^{2}+(1-4)^{2}}$
$=\sqrt{36+4+9}=7$
$\therefore A B=B C=C D=D A=7$,
Also, $\overrightarrow{\mathbf{A B}} \cdot \overrightarrow{\mathbf{B C}} \neq 0$ (These are not perpendicular)
$\therefore A B C D$ is not square. It is rhombus
283 (b)
The coordinate of P are
$\left(\frac{3 \lambda+2}{\lambda+1}, \frac{5 \lambda+2}{\lambda+1}, \frac{6 \lambda+4}{\lambda+1}\right)$
$Q(2,2,4) \stackrel{P}{\mathbf{k}^{\bullet} \xrightarrow{\bullet}(\mathrm{x}, \mathrm{y}, \mathrm{z})}{ }_{1} R(3,5,6)$
Since, the projection of $O P$ on x-axis is
$\frac{3 \lambda+2}{\lambda+1}=\frac{13}{5}$
$\Rightarrow 15 \lambda+10=13 \lambda+13$
$\Rightarrow \lambda=\frac{3}{2}$
284 (b)
Since, direction cosines of two lines are
proportional to $(2,3,-6)$ and $(3,-4,5)$
$\therefore \cos =\frac{|2 \times 3+3 \times(-4)-6 \times 5|}{\sqrt{2^{2}+3^{2}+(-6)^{2}} \sqrt{3^{2}+(-4)^{2}+5^{2}}}$
$=\frac{|6-12-13|}{\sqrt{49} \sqrt{50}}$
$\Rightarrow \theta=\cos ^{-1}\left(\frac{18 \sqrt{2}}{35}\right)$
287 (d)
Here, $a_{1}=2, b_{1}=-1, c_{1}=1$
and $a_{2}=1, b_{2}=-2, c_{2}=1$
$\therefore \cos \theta=\left|\frac{(2 \times 1)+(-1 \times-2)+(1 \times 1)}{\sqrt{4+1+1} \sqrt{1+4+1}}\right|=\frac{5}{6}$
288 (c)
If $(3,4,-1)$ and $(-1,2,3)$ are the end points of a sphere, then the length of diameter
(3, 4, -1)
 $(-1,2,3)$
$d=\sqrt{(-1-3)^{2}+(2-4)^{2}+(3+1)^{2}}$
$=\sqrt{16+4+16}$
$=\sqrt{36}=6$
So, radius, $r=\frac{d}{2}=\frac{6}{2}=3$
289 (b)
$\overrightarrow{\mathbf{O A}}=4 \hat{\mathbf{\imath}}+7 \hat{\mathbf{\jmath}}+8 \hat{\mathbf{k}}, \overrightarrow{\mathbf{O B}}=2 \hat{\mathbf{\imath}}+3 \hat{\mathbf{\jmath}}+4 \hat{\mathbf{k}}$

And $\overrightarrow{\mathbf{O C}}=2 \hat{\mathbf{\imath}}+5 \hat{\mathbf{\jmath}}+7 \hat{\mathbf{k}}$,
$\therefore \overrightarrow{\mathbf{A B}}=-2 \hat{\mathbf{\imath}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$
$\Rightarrow|\overrightarrow{\mathbf{A B}}|=6$
And $\overrightarrow{\mathbf{A C}}=-2 \hat{\mathbf{i}}-2 \hat{\mathbf{\jmath}}-\hat{\mathbf{k}}$
$\Rightarrow|\overrightarrow{\mathbf{A C}}|=3$
Now, $\overrightarrow{\mathbf{A D}}=\frac{2 \overrightarrow{\mathbf{A C}}+\overrightarrow{\mathbf{A B}}}{3}$
$\Rightarrow \overrightarrow{\mathbf{A D}}=\frac{-4 \hat{\mathbf{\imath}}-4 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}-2 \hat{\mathbf{i}}}{3}$
$\Rightarrow \overrightarrow{\mathbf{A D}}=\frac{1}{3}(-6 \hat{\mathbf{1}}-8 \hat{\mathbf{j}}-6 \hat{\mathbf{k}})$
Hence, the length of internal bisector of
$\angle A=\frac{2}{3} \sqrt{34}$
290 (a)
The distance from origin $(0,0,0)$ to the plane $6 x-3 y+2 z-14=0$ is
$d=\frac{|6(0)-3(0)+2(0)-14|}{\sqrt{36+9+4}}=2$
291 (c)
From the figure

$\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right) \quad(l, 0,0) \quad\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$
$x_{1}+x_{2}=2 l, y_{1}+y_{2}=0, z_{1}+z_{2}=0$,
$x_{2}+x_{3}=0, y_{2}+y_{3}=2 m, z_{2}+z_{3}=0$,
and
$x_{1}+x_{3}=0, y_{1}+y_{3}=0, \quad z_{1}+z_{3}=2 n$

On solving, we get the coordinate are
$A(l,-m, n), B(l, m,-n)$ and $C(-l, m n)$.
$\therefore \frac{A B^{2}+B C^{2}+C A^{2}}{l^{2}+m^{2}+n^{2}}$
$=\frac{\left(4 m^{2}+4 n^{2}\right)+\left(4 l^{2}+4 n^{2}\right)+\left(4 l^{2}+4 m^{2}\right)}{l^{2}+m^{2}+n^{2}}=8$
292 (d)
The direction ratio of the line are
$a_{1}=2, b_{1}=5, c_{1}=4$
And $a_{2}=1, b_{2}=2, c_{2}=-3$
$\therefore \cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$=\frac{2.1+5.2+4(-3)}{\sqrt{2^{2}+5^{2}+4^{2}} \sqrt{1^{2}+2^{2}+(-3)^{2}}}$
$\Rightarrow \theta=\cos ^{-1} \frac{(2+10-12)}{\sqrt{4+25+16} \sqrt{1+4+9}}$
$=\cos ^{-1}(0)$
$\Rightarrow \theta=90^{\circ}$
293 (d)
Let the equation of plane be,
$a(x-1)+b(y+2)+c(z-1)=0$
Which is perpendicular to $2 x-2 y+z=$
0 and $x-y+2 z=4$
$\therefore 2 a-2 b+c=0$ and $a-b+2 c=0$
$\Rightarrow \frac{a}{-3}=\frac{b}{-3}=\frac{c}{0}$
$\Rightarrow \frac{a}{1}=\frac{b}{1}=\frac{c}{0}$
\therefore The equation of plane is,
$1(x-1)+1(y+2)+0(z-1)=0$
$\Rightarrow x+y+1$
$=0$, its distance from the point $(1,2,2)$ is $\frac{\mid 1+2+}{\sqrt{2}}$
$=2 \sqrt{2}$
294 (d)
The required line passes through the point
$\hat{\imath}+3 \hat{\jmath}+2 \hat{k}$ and is perpendicular to the lines
$\vec{r}=(\hat{\imath}+2 \hat{\jmath}-\hat{k})+\lambda(2 \hat{\imath}+\hat{\jmath}+\hat{k})$
and, $\vec{r}=(2 \hat{\imath}+6 \hat{\jmath}+\hat{k})+\mu(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})$
Therefore, it is parallel to the vector
$\vec{b}=(2 \hat{\imath}+\hat{\jmath}+\hat{k}) \times(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})=(\hat{\imath}+5 \hat{\jmath}+3 \hat{k})$
Hence, the equation of the required line is
$\vec{r}=(\hat{\imath}+3 j+2 \hat{k})+\lambda^{\prime}(\hat{\imath}-5 j+3 k)$
$\Rightarrow \vec{r}=(\hat{\imath}+3 \hat{\jmath}+2 \hat{k})+\lambda(-\hat{\imath}+3 \hat{\jmath}-3 \hat{k})$, where
$\lambda=-\lambda^{\prime}$
295
(a)
\because Direction cosines
of $O P$ are $\left(\frac{1}{3}, \frac{-2}{3}, \frac{-2}{3}\right)$, also $O P=r=3$
Now, point P is given by $P(l r, m r, n r)$
ie, $P(x, y, z)=P\left[\frac{1}{3}(3),-\left(\frac{2}{3}\right) 3,\left(-\frac{2}{3}\right) 3\right]$
$=P(1,-2,-2)$
296 (a)
Given that, $l+m+n=0$
And $l m=0$
\therefore From Eq. (i) $\Rightarrow l=-(m+n)$
And from Eq.(ii) $\Rightarrow-(m+n) m=0$
$\Rightarrow-\left(m^{2}+m n\right)=0$
$\Rightarrow m^{2}+m n=0$
$\Rightarrow m=0, m+n=0$
If $m=0, l+m+n=0 \quad$ [from Eq. (i)]
Then, $\frac{l_{1}}{-1}=\frac{m_{1}}{0}=\frac{n_{1}}{1}$
And if $l+m+n=0$
Then $\frac{l_{2}}{0}=\frac{m_{2}}{-1}=\frac{n_{2}}{1}$
$\therefore\left(l_{1}, m_{1}, n_{1}\right)=(-1,0,1)$
And $\left(l_{2}, m_{2}, n_{2}\right)=(0,-1,1)$
\therefore Angle between them is given by
$\cos \theta=\frac{0+0+1}{\sqrt{1+0+1} \sqrt{0+1+1}}=\frac{1}{2}=\frac{\pi}{3}$
298 (b)
Given equation can be rewritten as
$(2 x-y) \lambda+(-y+3 z)=0$
So, it is clear that the equation of the plane passes through the intersection of planes $2 x-y=$ 0 and $y-3 z=0$
299 (a)
Given equation of sphere is
$x^{2}+y^{2}+z^{2}-x-2 y-3 z=0$
\therefore Centre is $\left(\frac{1}{2}, 1, \frac{3}{2}\right)$
\therefore Radius $=\sqrt{\left(\frac{1}{2}\right)^{2}+(1)^{2}+\left(\frac{3}{2}\right)^{2}-0}=\frac{\sqrt{14}}{2}$

300 (b)
Let the plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the coordinate axes at A, B and C, the coordinates of the centroid of $\triangle A B C$ are $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$
Given, $\frac{a}{3}=1, \frac{b}{3}=2, \frac{c}{3}=3$
$\Rightarrow a=3, b=6, c=9$
Hence, the equation of the plane is
$\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1$

301 (d)
Let $A(0,7,10), B(-1,6,6)$ and $C(-4,9,6)$
Then, $A B=\sqrt{(-1-0)^{2}+(6-7)^{2}+(6-10)^{2}}$
$=\sqrt{1+1+16}=\sqrt{18}=3 \sqrt{2}$
$B C=\sqrt{(-4+1)^{2}+(9-6)^{2}+(6-6)^{2}}$
$=\sqrt{9+9+0}=\sqrt{18}=3 \sqrt{2}$
$A C=\sqrt{(-4-0)^{2}+(9-7)^{2}+(6-10)^{2}}$
$=\sqrt{16+4+16}=\sqrt{36}=6$
Clearly, $A C^{2}=A B^{2}+B C^{2}$
Hence, triangle is right angled. Also, $A B=B C$
\therefore Triangle is right angled isosceles
303 (a)
Let the direction cosines of the line L be l, m, n.
Since, the line intersect the given planes, then the normal to the planes are perpendicular to the line L
$\therefore 2 l+3 m+n=0$...(i)
and $l+3 m+2 n=0 \ldots$...(ii)
From Eqs. (i) and (ii), we get
$\frac{l}{3}=\frac{m}{-3}=\frac{n}{3}=k \quad[$ say $]$
We, know, $l^{2}+m^{2}+n^{2}=1$
$\therefore(3 k)^{2}+(-3 k)^{2}+(3 k)^{2}=1$
$\Rightarrow k=\frac{1}{3 \sqrt{3}}$
$\therefore l=\frac{1}{\sqrt{3}} \Rightarrow \cos \alpha=\frac{1}{\sqrt{3}}$
304 (c)
Let the vertices of $\triangle A B C$ are $A(1,2,3), B(2,5,-1)$ and $C(-1,1,2)$
Area of triangle $=\frac{1}{2}|\overrightarrow{\mathbf{A B}} \times \overrightarrow{\mathbf{A C}}|$
$=\frac{1}{2}\left\|\begin{array}{ccc}\hat{\mathbf{\imath}} & \hat{\mathbf{\jmath}} & \hat{\mathbf{k}} \\ x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}\end{array}\right\|$
Here $,\left(x_{1}, y_{1}, z_{1}\right)=(1,2,3),\left(x_{2}, y_{2}, z_{2}\right)=(2,5,-1)$
And $\left(x_{3}, y_{3}, z_{3}\right)=(-1,1,2)$
\therefore Area of triangle $=\frac{1}{2}\left\|\begin{array}{ccc}\hat{\boldsymbol{\imath}} & \hat{\boldsymbol{\jmath}} & \widehat{\boldsymbol{k}} \\ 1 & 2 & -4 \\ -2 & -1 & -1\end{array}\right\|$
$=\frac{1}{2}|(-7 \hat{\mathbf{i}}+9 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})|$
$=\frac{1}{2} \sqrt{(-7)^{2}+(9)^{2}+(5)^{2}}$
$=\frac{1}{2} \sqrt{49+81+25}$
$=\frac{\sqrt{155}}{2}$ sq unit
305 (c)
We know that the angle between two planes
$a_{1} x+b_{1} y+c_{1} z+d_{1}=0$

And $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$ is given by
$\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
From the given equations of planes on comparing both with standard equation of plane
$i e, a x+b y+c z+d=0$ respectively, we get
$a_{1}=1, b_{1}=2, c_{1}=2$
And $a_{2}=-5, b_{2}=3$ and $c_{2}=4$
On putting these values in Eq. (i), we get
$\cos \theta=\frac{1 \times(-5)+2 \times 3+2 \times 4}{\sqrt{1^{2}+2^{2}+2^{2}} \sqrt{(-5)^{2}+3^{2}+4^{2}}}$
$=\frac{-5+6+8}{\sqrt{9} \sqrt{50}}=\frac{9}{3 \sqrt{50}}=\frac{3}{5 \sqrt{2}}=\frac{3 \sqrt{2}}{10}$
$\Rightarrow \cos ^{-1}\left(\frac{3 \sqrt{2}}{10}\right)$
306 (c)
Let $A=(3,4,5), B=(4,6,3), C=(-1,2,4), D \equiv$ $(1,0,5)$
For $A B, x_{2}-x_{1}=4-3=1, y_{2}-y_{1}=6-4=2$
$z_{2}-z_{1}=3-5=-2$
Let l, m, n for $C D$ are $\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}$.
\therefore Projection of $A B$ on $C D=\sum\left(x_{2}-x_{1}\right)$
$=\frac{2(1)}{3}+\left(-\frac{2}{3}\right) 2+\left(\frac{1}{3}\right)(-2)$
$=-\frac{4}{3}$
307 (a)
Given lines can be rewritten as
$\frac{x-1}{1}=\frac{y+3}{-\lambda}=\frac{z-1}{\lambda}=s$
and $\frac{x-0}{1}=\frac{y-1}{2}=\frac{z-2}{-2}=\frac{t}{2}$
Since, two lines are coplanar.

$$
\begin{aligned}
& \therefore\left|\begin{array}{ccc}
1-0 & -3-1 & 1-2 \\
1 & -\lambda & \lambda \\
1 & 2 & -2
\end{array}\right|=0 \\
& \Rightarrow\left|\begin{array}{ccc}
1 & -4 & -1 \\
1 & -\lambda & \lambda \\
1 & 2 & -2
\end{array}\right|=0 \\
& \Rightarrow 1(2 \lambda-2 \lambda)+4(-2-\lambda)-1(2+\lambda)=0 \\
& \Rightarrow-8-4 \lambda-2-\lambda=0 \\
& \Rightarrow \lambda=-2
\end{aligned}
$$

308 (c)
The direction ratios of given plane are $(1,2,2)$ and $(-5,3,4)$.
The angle between two planes is given by
$\theta=\cos ^{-1}\left(\frac{1(-5)+2(3)+2(4)}{\sqrt{1+4+4} \sqrt{25+9+16}}\right)$
$=\cos ^{-1}\left(\frac{9}{3 \cdot 5 \sqrt{2}}\right)$
$\Rightarrow \cos ^{-1}\left(\frac{3 \sqrt{2}}{10}\right)$
309 (b)
The equation of a plane passing through $(2,3,1)$ is
$a(x-2)+b(y-3)+c(z-1)=0$
It passes through $(4,-5,3)$ and is parallel to x axis
$2 a-8 b+2 c=0$
and, $a \times 1+b \times 0+c \times 0=0$
$\therefore \frac{a}{0}=\frac{b}{2}=\frac{c}{8} \Rightarrow \frac{a}{0}=\frac{b}{1}=\frac{c}{4}$
Substituting the values of a, b, c in (i), we get $y+4 z=7$ as the equation of the required plane

Given lines are
$l+m+n=0 \Rightarrow l=-(m+n)$
and $m n-2 \ln +l m=0$
$\Rightarrow m n+2(m+n) n-(m+n) m=0$ [from Eq.
(i)]
$\Rightarrow m n+2 m n+2 n^{2}-m^{2}-n m=0$
$\Rightarrow 2\left(\frac{n}{m}\right)^{2}+\frac{2 n}{m}-1=0$
This is quadratic equation in $\left(\frac{n}{m}\right)$,
$\therefore \frac{n_{1} n_{2}}{m_{1} m_{2}}=\frac{-1}{2}$
[where $\frac{n_{1}}{m_{1}}, \frac{n_{2}}{m_{2}}$ are the roots of the equation]
From, Eq, (i)
$m=-(n+l)$
On putting in Eq. (ii), we get
$-(n+l) n-2 l n-l(n+l)=0$
$\Rightarrow l^{2}+4 l n+n^{2}=0$
$\Rightarrow\left(\frac{l}{n}\right)^{2}+\frac{4 l}{n}+1=0$
$\Rightarrow \frac{l_{1} l_{2}}{n_{1} n_{2}}=1$
[where $\frac{l_{1}}{n_{1}}, \frac{l_{2}}{n_{2}}$ are the roots of the equation]
\therefore From Eqs. (iii) and (iv)
$l_{1} l_{2}=-\frac{1}{2} m_{1} m_{2}=n_{1} n_{2}$
$\Rightarrow \frac{l_{1} l_{2}}{1}=\frac{m_{1} m_{2}}{-2}=\frac{n_{1} n_{2}}{1}=k \quad[\mathrm{say}]$
Now, $l_{1} l_{2}+m_{1} m_{2}=k-2 k+k=0$
$\therefore \cos \theta=0 \Rightarrow \theta=90^{\circ}$

311 (c)
$\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma+\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$
$=\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)+\left(\cos ^{2} \beta-\sin ^{2} \beta\right)$
$+\left(\cos ^{2} \gamma-\sin ^{2} \gamma\right)+\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$
$=\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma$
$=1$
312 (a)
Equation of plane passing through $(2,-1,-3)$ is
$a(x-2)+b(y+1)+c(z+3)=0 \ldots(\mathrm{i})$
Now, given lines are parallel to it.
$\therefore 3 a+2 b-4 c=0$
and $2 a-3 b+2 c=0$.
Elimination of a, b and c from Eqs. (i), (ii) and (iii), gives

$$
\begin{aligned}
& \left|\begin{array}{ccc}
x-2 & y+1 & z+3 \\
3 & 2 & -4 \\
2 & -3 & 2
\end{array}\right|=0 \\
& \Rightarrow(x-2)(4-12)-(y+1)(6+8) \\
& \Rightarrow 8 x+14 y+13 z+37=0
\end{aligned}
$$

313 (a)
DR's of $A B=\{(3-2),(5-3),(-3+1)\}$
$=\{1,2,-2\}$
DR's of $C D=\{(3-1),(5-2),(7-3)\}$
$=\{2,3,4\}$
\therefore Angle between $A B$ and $C D$ is given by
$\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$=\frac{1 \times 2+2 \times 3+4 \times(-2)}{\sqrt{1+4+4} \sqrt{4+9+16}}=0$
$\Rightarrow \theta=\frac{\pi}{2}$
314 (c)
Since, $l^{2}+m^{2}+n^{2}=1$
$\Rightarrow \cos ^{2} \theta+\cos ^{2} \beta+\cos ^{2} \theta=1$
$[\therefore l=\cos \theta, m=\cos \beta$, given $]$
$\Rightarrow \cos ^{2} \theta+\cos ^{2} \beta$
But $\sin ^{2} \beta=3 \sin ^{2} \theta$
$\therefore 3 \sin ^{2} \theta=2 \cos ^{2} \theta$
$\Rightarrow 3=5 \cos ^{2} \theta$
$\Rightarrow \cos ^{2} \theta=\frac{3}{5}$

315 (b)

Equation of plane containing the line of intersection of planes is
$(x+y+z-6)+\lambda(2 x+3 y+4 z-12)=0$
Since, it passes through the point $(1,1,1)$,
$\therefore(1+1+1-6)+\lambda(2+3+4-12)=0$
$\Rightarrow-3+\lambda(-3)=0$
$\Rightarrow \lambda=-1$
Hence, required equation of plane is
$(x+y+z-6)-(2 x+3 y+4 z-12)=0$
ie, $\quad x+2 y+3 z=6$
316 (d)
Let the point in $x y$-plane be $P\left(x_{1}, y_{1}, 0\right)$. Let the
given points are $A(2,0,3) B(0,3,2)$
And $C(0,0,1)$
According to the given condition,
$A P^{2}=B P^{2}=C P^{2}$
$\therefore\left(x_{1}-2\right)^{2}+y_{1}^{2}+9=x_{1}^{2}+\left(y_{1}-3\right)^{2}+4$
$=x_{1}^{2}+y_{1}^{2}+1$
From Ist and IInd terms,
$x_{1}^{2}+4-4 x_{1}+y_{1}^{2}+9=x_{1}^{2}+y_{1}^{2}-6 y_{1}+9+4$
$\Rightarrow 4 x_{1}-6 y_{1}=0 \ldots .$. (i)
From IInd and IIIrd terms,
$x_{1}^{2}+y_{1}^{2}+9-6 y_{1}+4=x_{1}^{2}+y_{1}^{2}+1$
$\Rightarrow 6 y_{1}=12 \Rightarrow y_{1}=2$
On putting the value of y_{1} in Eq.(i), we get $x_{1}=3$
Hence, required point is $(3,2,0)$.
317 (a)
Equation of any plane passing through $(-7,1,-5)$ is
$a(x+7)+b(y-1)+c(z+5)=0$
The DR's of normal to above plane are
$a=-7, \quad b=1, \quad c=-5$
\therefore From Eq. (i) we get
$-7(x+7)+1(y-1)-5(z+1)=0$
$\Rightarrow 7 x-y+5 z+75=0$
318 (b)
Equation of plane through $(1,2,3)$ is
$a(x-1)+b(y-2)+c(z-3)=0$
It passes through $(-1,4,2)$ and $(3,1,1)$, so
$-2 a+2 b-c=0$
And $2 a-b-2 c=0$
From Eqs. (ii) and (iii),
$\frac{a}{-5}=\frac{b}{-6}=\frac{c}{-2}$
\therefore Equation of plane is
$-5 x-6 y-2 z+5+12+6=0$
$\Rightarrow 5 x+6 y+2 z-23=0$
319 (b)
Since, the line passing through the points $(4,-1,2)$ and $(-3,2,3)$. So, the DR's of the line is $(4+3,-1-2,2-3) i e,(7,-3,-1)$
Since, the line is perpendicular to the plane therefore DR's of this line is proportional to the normal of the plane.
\therefore Required equation plane is
$7(x+10)-3(y-5)-1(z-4)=0$
$\Rightarrow 7 x-3 y-z+89=0$
(b)

The given line is parallel to the vector
$\vec{n}=\hat{\imath}-\hat{\jmath}+2 \hat{k}$. The required plane passes through the point $(2,3,1)$ i.e. $2 \hat{\imath}+3 \hat{\jmath}+\hat{k}$ and is perpendicular to the vector $\vec{n}=\hat{\imath}-\hat{\jmath}+2 \hat{k}$. So, its
equation is

$$
\begin{array}{r}
\{\vec{r}-(2 \hat{\imath}+3 \hat{\jmath}+\hat{k})\} \cdot\{\hat{\imath}-\hat{\jmath}+2 \hat{k}\}=0 \\
\Rightarrow \vec{r} \cdot(\hat{\imath}+\hat{\jmath}+2 \hat{k})=1
\end{array}
$$

321 (c)
Direction ratio of the line joining the points
$(2,1,-3)$ and $(-3,1,7)$ are $\left(a_{1}, b_{1}, c_{1}\right) i e$, $(-5,0,10)$
Direction ratio of the line parallel to the
line $\frac{x-1}{3}=\frac{y}{4}=\frac{z+3}{5}$
are $\left(a_{2}, b_{2}, c_{2}\right) i e,(3,4,5)$
Angle between two lines given by
$\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$\therefore \cos \theta \frac{(-5 \times 3)+(0 \times 4)+(10 \times 5)}{\sqrt{25+0+100} \sqrt{9+16+25}}$
$=\frac{35}{25 \sqrt{10}}$
$\Rightarrow \theta=\cos ^{-1}\left(\frac{7}{5 \sqrt{10}}\right)$
322 (c)
The centre of the given sphere is $C(-2,1,3)$. The
distance from the centre of sphere to the plane
$=\left|\frac{-2 \times 12+4 \times 1+3 \times 3-327}{\sqrt{144+16+9}}\right|$
$=\left|\frac{-24+4+9-327}{\sqrt{169}}\right|=26$
\therefore Shortest distance
$=26-\sqrt{4+1+9+155}=13$
323 (c)
DC's of line
$=\left(\frac{12}{\sqrt{12^{2}+4^{2}+3^{2}}}, \frac{4}{\sqrt{12^{2}+4^{2}+3^{2}}}, \frac{3}{\sqrt{12^{2}+4^{2}+3^{2}}}\right)$
$=\left(\frac{12}{13}, \frac{4}{13}, \frac{3}{13}\right)$
324 (c)
Since, the centre of sphere $x^{2}+y^{2}+z^{2}-2 y-$ $4 z-11=0$ is $(0,1,2)$ and radius is 4
Distance of a plane $x+2 y+2 z-15=0$ from (0 ,
1,2)

$=\frac{|0+2+4-15|}{\sqrt{1+4+4}}=\frac{9}{3}=3$
Now, $N P=\sqrt{O P^{2}-O N^{2}}$
$=\sqrt{4^{2}-3^{2}}=\sqrt{16-9}=\sqrt{7}$
\therefore Radius of circle $=\sqrt{7}$
325 (b)
Let D be the foot of perpendicular drawn from
$P(1,0,3)$ on the line $A B$ joining $(4,7,1)$ and $(3,5$,
3)

If D divides $A B$ in ratio λ : 1 , then the coordinate of D
$=\left(\frac{3 \lambda+4}{\lambda+1}, \frac{5 \lambda+7}{\lambda+1}, \frac{3 \lambda+1}{\lambda+1}\right) \quad \ldots$ (i)
DR's of $P D$ are $\frac{2 \lambda+3}{\lambda+1}, \frac{5 \lambda+7}{\lambda+1}, \frac{-2}{\lambda+1}$
Dr's of $A B$ are $-1,-2,2$
$\because P D$ is perpendicular to $A B$
$\therefore-\frac{(2 \lambda+3)}{\lambda+1}-\frac{2(5 \lambda+7)}{\lambda+1}-\frac{4}{\lambda+1}=0$
$\Rightarrow \lambda=\frac{-7}{4}$
On putting the value of λ in Eq. (i), we get the point $D\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$
326 (b)
$\overrightarrow{\mathbf{r}}=(\hat{\mathbf{\imath}}-\hat{\mathbf{j}}+\hat{\mathbf{k}})+t(\hat{\mathbf{\imath}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})$
$=(1+t) \hat{\mathbf{\imath}}-(1-\mathrm{t}) \hat{\mathbf{\jmath}}+(1-\mathrm{t}) \hat{\mathbf{k}}$
Also $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})=5$
$\Rightarrow(1+t)-(1-t)+(1-t)=5$
$\Rightarrow 1+t=5 \Rightarrow t=4$
$\therefore \overrightarrow{\mathbf{r}}=(1+4) \hat{\mathbf{\imath}}-(1-4) \hat{\mathbf{\jmath}}+(1-4) \hat{\mathbf{k}}$

$$
=5 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}
$$

327 (c)
Equation of any plane passing through (a, b, c) is
$a^{\prime}(x-a)+b^{\prime}(y-b)+c^{\prime}(z-c)=0 \ldots .(\mathrm{i})$
DR's of $O A=(a, b, c)$
Since, plane (i) is perpendicular to the line $O A$,
therefore its
DR's is proportional to (a, b, c)
\therefore Required equation of plane is
$a(x-a)+b(y-b)+c(z-c)=0$
328 (c)
The required line passes through $(-1,2,-3)$ and is perpendicular to the plane $2 x+3 y+z+5=0$.
Therefore, it is parallel to the normal to the plane whose direction ratios are proportional to $2,3,1$
Hence, direction ratios of the line are proportional to $2,3,1$ and so its equation is
$\frac{x+1}{2}=\frac{y-2}{3}=\frac{z+3}{1}$
329 (a)
In a given options, only option (a) satisfies the given equation of line.
330 (c)
$\cos \theta=\left|l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right|$
$=\left|\frac{\sqrt{3}}{4} \times \frac{\sqrt{3}}{4}+\frac{1}{4} \times \frac{1}{4}+\frac{\sqrt{3}}{2} \times\left(\frac{-\sqrt{3}}{2}\right)\right|$
$=\left|\frac{3}{16}+\frac{1}{16}-\frac{3}{4}\right|$
$=\left|-\frac{2}{4}\right|=\frac{1}{2}$
$=\theta=\frac{\pi}{3}$
331 (b)
Given lines will be perpendicular, if
$-3 \times 3 k+2 k \times 1+2 \times-5=0 \Rightarrow-7 k-10=0$

$$
\Rightarrow k=-\frac{10}{7}
$$

332 (c)
The centre of sphere is $\left(\frac{1}{2}, 0,-\frac{1}{2}\right)$
and radius $=\sqrt{\frac{1}{4}+\frac{1}{4}+2}=\frac{\sqrt{10}}{2}$
distance from centre of sphere to the given plane
$=\left|\frac{\frac{1}{2}+\frac{1}{2}-4}{\sqrt{1+4+1}}\right|=\frac{3}{\sqrt{6}}$
So, radius of circle $=\sqrt{\frac{10}{4}-\frac{9}{6}}$
$=1$
333 (b)
$\sin \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$=\frac{2 \times 3+3 \times 2-4 \times 3}{\sqrt{2^{2}+3^{2}+4^{2}} \sqrt{(3)^{2}+(2)^{2}+(-3)^{2}}}$
$=\frac{6+6-12}{\sqrt{4+9+16} \sqrt{9+4+9}}=0$
$\Rightarrow \theta=0^{\circ}$

If two lines are coplanar, then
$\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=0$
$\therefore\left|\begin{array}{ccc}-1 & 1 & 1 \\ 1 & 1 & -k \\ k & 2 & 1\end{array}\right|=0$
$\Rightarrow-1(1+2 k)-1\left(1+k^{2}\right)+1(2-k)=0$
$\Rightarrow-k^{2}-3 k=0$
$\Rightarrow k=0$ or -3

Equation of any plane passing through given line is
$a(x-1)+b(y+1)+c(z-3)=0$
Above plane is perpendicular to the plane
$x+2 y+z=12$
$\therefore a+2 b+c=0$
Also, normal to the plane is perpendicular to the line
$\therefore 2 a-b+4 c=0$
$\Rightarrow \frac{a}{8+1}=\frac{b}{2-4}=\frac{c}{-1-4}$
$\Rightarrow \frac{a}{9}=\frac{b}{-2}=\frac{c}{-5}$
$\therefore 9(x-1)-2(y+1)-5(z-3)=0$
$\Rightarrow 9 x-2 y-5 z+4=0$
$\therefore a=9, b=-2, c=-5$
336 (b)
Plane can be rewritten as
$\frac{x}{6}+\frac{y}{-4}+\frac{z}{3}=1$
\therefore Intercepts are $6,-4,3$
337 (a)
Equation of straight line passing through
$(4,-5,-2)$ and $(-1,5,3)$ is
$\frac{x-4}{-5}=\frac{y+5}{10}=\frac{z+2}{5}$
$\Rightarrow \frac{x-4}{1}=\frac{y+5}{-2}=\frac{z+2}{-1}$
338 (d)
The length of the perpendicular from origin to the plane is
$p=\left|\frac{0+0+0-52}{\sqrt{9+16+144}}\right|$
$=\left|\frac{-52}{13}\right|=4$
339 (b)
Since, $P A, P B$ are perpendicular drawn from
$P(a, b, c)$ on $y z$ and $z x$-planes.
$\therefore A(0, b, c)$ and $B(a, 0, c)$ are the points on $y z$ and $x z$-plances.
The equation of plane passing through $(0,0,0)$ is
$A x+B y+C z=0$
Which also passes through points A and B
$\therefore A \cdot 0+B \cdot b+C \cdot c=0$
and $A \cdot a+B \cdot 0+C \cdot c=0$
$\Rightarrow \frac{A}{b c-0}=\frac{B}{a c-0}=\frac{C}{0-a b}=\lambda \quad[$ say $]$
$\Rightarrow A=\lambda b c, \quad B=\lambda a c, \quad C=-\lambda a b$
\therefore Required equation is
$b c x+a c y-a b z=0$
340 (c)
Let the equation of the sphere be
$x^{2}+y^{2}+z^{2}+24 x+2 v x+2 w z+d=0$
Since, above sphere passes through $(1,0,0),(0,1$,
$0)$ and ($0,0,1$)
$\therefore u=v=w=-\frac{d+1}{2}$
Let r be the radius of sphere
$\therefore r^{2}=u^{2}+v^{2}+w^{2}-d$
$=3\left(\frac{d+1}{2}\right)^{2}-d$
$=\frac{3}{4}\left(d^{2}+\frac{2}{3} d+1\right)$
$=\frac{3}{4}\left[\left(d+\frac{1}{3}\right)^{2}+\frac{8}{9}\right]$
Clearly at $d=-\frac{1}{3}, r^{2}$ attains minimum and minimum value of $r^{2}=\frac{2}{3}$
\Rightarrow Minimum value of $r=\sqrt{\frac{2}{3}}$
341 (c)
We have,
$\vec{r}=(1+\lambda-\mu)+\hat{\imath}+(2-\lambda) \hat{\imath}+(3-2 \lambda+2 \mu) \hat{k}$
$\Rightarrow \vec{r}=(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})+\lambda(\hat{\imath}-\hat{\jmath}-2 \hat{k})+$
$\mu(-\hat{\imath}+2 \hat{k})$ which is a plane passing through
$\vec{a}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ and parallel to the vectors
$\vec{b}=\hat{\imath}-\hat{\jmath}-2 \hat{k}$ and $\vec{c}=-\hat{\imath}+2 \hat{k}$
Therefore, it is normal to the vector
$\vec{n}=\vec{b} \times \vec{c}=-2 \hat{\imath}-\hat{k}$
Hence, its vector equation is
$(\vec{r}-\vec{a}) \cdot \vec{n}=0$
$\Rightarrow \vec{r} \cdot \vec{n}=\vec{a} \cdot \vec{n}$
$\Rightarrow \vec{r} \cdot(=-2 \hat{\imath}-\hat{k})=-2-3$
$\Rightarrow \vec{r} \cdot(2 \hat{\imath}+\hat{k})=5$
So, the Cartesian equation of the plane is
$(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot(2 \hat{\imath}+\hat{k})=5 \Rightarrow 2 x+z=5$
(c)

Given, $A(3,1,2)$ be the foot of the perpendicular from $B(-2,1,4)$ on the plane, then direction ratios of $B A$, which is the normal to plane are
$(3+2,1-1,2-4) i e$,
($5,0,-2$)
\therefore The equation of plane is
$5(x-3)+0(y-1)-2(z-2)=0$
$\Rightarrow 5 x-2 z=11$
343 (c)
The straight line $\vec{r}=\vec{a}+\lambda \vec{b}$ meets the plane $\vec{r} \cdot \vec{n}=0$ in P for which λ is given by
$(\vec{a}+\lambda \vec{b}) \cdot \vec{n}=0 \Rightarrow \lambda=-\frac{\vec{a} \cdot \vec{n}}{\vec{b} \cdot \vec{n}}$
Thus, the position vector of P is $\vec{r}=\vec{a}\left(\frac{\vec{a} \cdot \vec{n}}{\vec{b} \cdot \vec{n}}\right) \vec{b}$ [Putting the value of λ in \vec{r}

$$
=\vec{a}+\lambda \vec{b}]
$$

344 (a)
Equation of plane through $(3,2,-1)$ is
$a(x-3)+b(y-2)+c(z+1)=0$
Also, $(3,4,2)$ and $(7,0,6)$ lie on Eq. (i), then
$0 \cdot a+2 b+3 c=0$
And $4 a-2 b+7 c=0$
On eliminating a, b, c from Eqs. (i), (ii) and (iii), we get
$\left|\begin{array}{ccc}x-3 & y-2 & z+1 \\ 0 & 2 & 3 \\ 4 & -2 & 7\end{array}\right|=0$
We get, $5 x+3 y-2 z=23$
$\therefore \lambda=23$
345 (d)
Given lines pass through points $P\left(\overrightarrow{a_{1}}\right)$ and $Q\left(\overrightarrow{a_{2}}\right)$ and are parallel to vectors $\overrightarrow{b_{1}}$ and $\overrightarrow{b_{2}}$ respectively If the lines are coplanar, then
$\vec{P} Q \perp\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)$
$\Rightarrow \vec{P} Q \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)=0$
$\Rightarrow\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)=0 \Rightarrow\left[\overrightarrow{a_{1}} \overrightarrow{b_{1}} \overrightarrow{b_{2}}\right]$

$$
=\left[\overrightarrow{a_{2}} \overrightarrow{b_{1}} \overrightarrow{b_{2}}\right]
$$

346 (c)
Let, $\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}=\lambda$
Any point on the line is $(3 \lambda-1,5 \lambda-3,7 \lambda-5)$
Again let
$\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5}=\mu$
Any point on the line is $(\mu+2,3 \mu+4,5 \mu+6)$
For intersection, they have a common point.
$\therefore(3 \lambda-1)=(\mu+2)$,
$(5 \lambda-3)=(3 \mu+4)$,
$(7 \lambda-5)=(5 \mu+6)$
From first two, we have
$\mu=3 \lambda-3$
and $3 \mu=5 \lambda-7 \quad$... (iv)
From Eqs. (iii), and (iv), we have
$3(3 \lambda-3)=5 \lambda-7 \Rightarrow \lambda=\frac{1}{2}$
Point of intersection is
$\left(\frac{3}{2}-1, \frac{5}{2}-3, \frac{7}{2}-5\right)$
$=\left(\frac{1}{2},-\frac{1}{2},-\frac{3}{2}\right)$
347 (c)
Since, $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=2$
$\left[\because l^{2}+m^{2}+n^{2}=1\right]$
$\Rightarrow 1+\cos 2 \alpha+1+\cos 2 \beta+1+\cos 2 \gamma=2$
$\Rightarrow \cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma+1=0$
348 (a)
Let the equation of sphere passing through origin is
$x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z=0$
It passes through $(0,2,0)$
$\therefore 4+4 v=0 \Rightarrow v=-1$
Also, it passes through ($1,0,0$)
$\therefore 1+2 u=0$
$\Rightarrow u=\frac{-1}{2}$

And it passes through ($0,0,4$)
$\therefore 16+8 w \Rightarrow w=-2$
\therefore Centre of sphere is $(-u,-v,-w)=\left(\frac{1}{2}, 1,2\right)$
349 (c)
Let $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
Then, $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}$
On comparing Eqs. (i) and (ii), we get
$x=2, \quad y=2, \quad z=2$
350 (a)
We have,
$\vec{A} P=-3 \hat{\imath}-\hat{\jmath}+10 \hat{k} \Rightarrow|\vec{A} P|=\sqrt{9+1+100}$ $=\sqrt{110}$

Now,
$A N=$ Projection of $\vec{A} P$ on $6 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}$
$\Rightarrow A N=\left|\frac{\vec{A} P \cdot(6 \hat{\imath}+3 \hat{\jmath}-4 \hat{k})}{|6 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}|}\right|=\left|\frac{-18-3-40}{\sqrt{61}}\right|$

$$
=\sqrt{61}
$$

$\therefore P N=\sqrt{A P^{2}-A N^{2}}=\sqrt{110-61}=7$

Given points on the plane are
$(a, 0,0),(0, b, 0)$ and ($0,0, c$)
\therefore Length of intercept with x-axis, y-axis and z-axis are a, b and c respectively.
\therefore Equation of the plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
352 (c)
Since, the planes $2 x-2 y+z+3=0$ and $2 x-$ $2 y+z+\frac{5}{2}=0$ are parallel to each other.
\therefore Distance between them $=\frac{\left|c_{2}-c_{1}\right|}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}$
$=\frac{\left|\frac{5}{2}-3\right|}{\sqrt{4+4+1}}$
$=\frac{1}{6}$
353
(d)

Direction ratio of $O P$ and $O Q$ are $(0,1,2)$ and

$$
(4,-2,1)
$$

Let $\angle P O Q=\theta$, then
$\cos \theta \frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$\Rightarrow \cos \theta=\frac{0-2 \times 1+2 \times 1}{\sqrt{0+1+4} \sqrt{16+4+1}}=0$
$\Rightarrow \theta=\frac{\pi}{2}$
354 (d)
Given equation line is
$\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z+3}{4}=\lambda \quad[$ say $]$
Any point on the line is $P(2 \lambda+1,-3 \lambda+2,4 \lambda-3)$
Since, these point lies on the given plane.
$\therefore 2(2 \lambda+1)+4(-3 \lambda+2)-(4 \lambda-3)+1=0$
$\Rightarrow \lambda=\frac{7}{6}$
\therefore Required point is $P\left(\frac{10}{3},-\frac{3}{2}, \frac{5}{3}\right)$
355 (c)
Given lines are
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=r($ say $)$
and $\frac{x-4}{5}=\frac{y-1}{2}=z$
Any point on the line (i) is $(2 r+1,3 r+2,4 r+$ 3,
If they intersect, then the point satisfies the second line, we get
$\frac{2 r+1-4}{5}=\frac{3 r+2-1}{2}=4 r+3$
$\Rightarrow \frac{2 r-3}{5}=\frac{3 r+1}{2} \Rightarrow r=-1$
\therefore Required point is $(-1,-1,-1)$
356 (c)
Clearly in option (a), it is not a sphere as it
contains $x y, y z$ and $z x$ terms. In options (b) and (d)
$u^{2}+v^{2}+w^{2}-c^{2}<0$
So, option (c) is sphere
357 (a)
$\because \cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$=\frac{1 \times 3+0 \times 4-1 \times 5}{\sqrt{1+0+1} \sqrt{9+16+25}}=-\frac{1}{5}$
$\Rightarrow \theta=\pi-\cos ^{-1}\left(\frac{1}{5}\right)$

(b)

Let the point is P whose coordinate are (x, y, z)
and the given points are $A(4,0,0)$ and $(-4,0,0)$
$\because P A+P B=10$
$\therefore \sqrt{(x-4)^{2}+y^{2}+z^{2}}+\sqrt{(x+4)^{2}+y^{2}+z^{2}}=$

10
Also, $\left[(x+4)^{2}+y^{2}+z^{2}\right]+\left[(x-4)^{2}+y^{2}+\right.$ $z 2=16 x$
And

$$
\left.\begin{array}{l}
{\left[\sqrt{(x+4)^{2}+y^{2}+z^{2}}+\sqrt{(x-4)^{2}+y^{2}+z^{2}}\right]} \\
{\left[\sqrt{(x+4)^{2}+y^{2}+z^{2}}\right.} \\
\left.\quad-\sqrt{(x-4)^{2}+y^{2}+z^{2}}\right] 16 x
\end{array}\right] \begin{aligned}
& \Rightarrow \\
& {\left[\sqrt{(x+4)^{2}+y^{2}+z^{2}}-\sqrt{(x-4)^{2}+y^{2}+z^{2}}\right]=} \\
& \frac{16 x}{10} \ldots \text { (ii) }
\end{aligned}
$$

On solving Eqs.(i) and (ii), we get
$2 \sqrt{(x+4)^{2}+y^{2}+z^{2}}=\frac{16 x}{10}+10$
$\Rightarrow(x+4)^{2}+y^{2}+z^{2}=\left(\frac{4 x}{5}+5\right)^{2}$
$\Rightarrow x^{2}+8 x+16+y^{2}+z^{2}=\frac{16 x^{2}+625+200 x}{25}$
$\Rightarrow\left[25 x^{2}+400+200 x+25 y^{2}+25 z^{2}\right]-16 x^{2}$

$$
-625-200 x]=0
$$

$\Rightarrow 9 x^{2}+25 y^{2}+25 z^{2}=225$
359 (a)
Plane intercept on x-axis at $a=4$
Plane intercept on z-axis at $c=3$
Required equation is $\frac{x}{4}+\frac{z}{3}=1$ or $3 x+4 z=12$
360 (d)
Suppose P divides $Q R$ in the ratio λ : 1. Then,
coordinates of P are $\left(\frac{5 \lambda+2}{\lambda+1}, \frac{2 \lambda+2}{\lambda+1}, \frac{-2 \lambda+1}{\lambda+1}\right)$
Since, the x coordinates of P is 4
ie, $\frac{5 \lambda+2}{\lambda+1}=4 \Rightarrow \lambda=2$
So, z coordinate of P is $\frac{-2 \lambda+1}{\lambda+1}=\frac{-4+1}{2+1}=-1$
361 (d)
Given lines can be rewritten as
$\frac{x-b}{a}=\frac{y-0}{1}=\frac{z-d}{c}$
and $\frac{x-b^{\prime}}{a^{\prime}}=\frac{y-0}{1}=\frac{z-d^{\prime}}{\mathrm{c}^{\prime}}$
These lines will perpendicular, if
$a a^{\prime}+1+c c^{\prime}=0$
362 (b)
Given two lines $\vec{r}=(\hat{\imath}+\hat{\jmath})+\lambda(\hat{\imath}+2 \hat{\jmath}-$ k and $r=i+j+\mu(-i+j-2 k)$ pass through $a=i+j$ and, are parallel to the vectors $\vec{b}=\hat{\imath}+2 \hat{\jmath}-\hat{k}$ and $\vec{c}=-\hat{\imath}+\hat{\jmath}-2 \hat{k}$ respectively. Therefore, the plane containing them passes through $\vec{a}=\hat{\imath}+\hat{\jmath}$ and is perpendicular to \vec{n} given by
$\vec{n}=\vec{b} \times \vec{c}=(\hat{\imath}+2 \hat{\jmath}-\hat{k}) \times(-\hat{\imath}+\hat{\jmath}-2 \hat{k})$

$$
=-3 \hat{\imath}+3 \hat{\jmath}+3 \hat{k}
$$

Hence, the equation of the required plane is

$$
\begin{aligned}
(\vec{r}-\vec{a}) \cdot \vec{n}=0 & \Rightarrow \vec{r} \cdot \vec{n}=\vec{a} \cdot \vec{n} \Rightarrow \vec{r} \cdot(\hat{\imath}-\hat{\jmath}-\hat{k}) \\
& =0
\end{aligned}
$$

363 (b)
Equation of any plane passing through $(2,3,4)$ is
$A(x-2)+B(y-3)+C(z-4)=0 \ldots(i)$
Plane (i) is parallel to $5 x-6 y+7 z=3$
\therefore DR's of this plane is same as the Eq. (i)
ie, $A=5, B=-6, C=7$
$\therefore 5(x-2)-6(y-3)+7(z-4)=0$
$\therefore 5 x-6 y+7 z-20=0$ is the required plane
364 (a)
Centre of given sphere are
$C_{1}(-3,4,1)$ and $C_{2}(5,-2,1)$
So, midpoint of $C_{1} C_{2}$
$\equiv P\left(\frac{5-3}{2}, \frac{4-2}{2}, \frac{1+1}{2}\right)=P(1,1,1)$
Now, the plane $2 a x-3 a y+4 a z+6=0$ passes through the point P.
$\therefore 2 a(1)-3 a(1)+4 a(1)+6=0$
$\Rightarrow a=-2$
365 (c)
Let the equation of sphere passing through $(0,0$,
$0)$ be
$x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z=0$
Also, it passes through $(0,2,0),(1,0,0),(0,0,4)$
respectively are
$4+4 v=0$
$\Rightarrow v=-1$
$1+2 u=0 \Rightarrow u=-\frac{1}{2}$
and $16+8 w \Rightarrow w=-2$
\therefore Centre is $(-u,-v,-w)=\left(\frac{1}{2}, 1,2\right)$
366 (a)
Here $a_{1}=1, b_{1}=2, c_{2}=k$
and $a_{2}=2, b_{2}=1, c_{2}=-2$
Since, two planes are perpendicular, then
$a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\Rightarrow 2 \cdot 1+1 \cdot 2-2(k)=0$
$\Rightarrow k=2$

