

6.THERMODYNAMICS

Single Correct Answer Type

1.	Standard enthalpy of vapourisation $\Delta_{vap} H^{\circ}$ for water at 100 °C is 40.66 kJ mol ⁻¹ . The internal energy of vapourisation of water at 100 °C (in kJ mol ⁻¹) is:			
	^{a)} + 43.76	b) _{+ 40.66}	c) +37.56	d) _ 43.76
2.	The factor $\left(\frac{\partial Q}{\partial T}\right)_P - \left(\frac{\partial Q}{\partial T}\right)_P$	$_{v}$ is equal to :		
	a) γ	b) _R	c) $\frac{R}{M}$	d) ΔnRT
3.	Heat of combustion of a su	ibstance:	171	
	a) Is always positive		b) Is always negative	
	c) Is equal to heat of forma	ation	d) Nothing can be said with	nout reaction
4.	The heat of formations of combustion of carbon mon		6.4 kcal and -94.0 kcal res	
	a) –67.6 kcal	b) 36.5 kcal	c) –36.5kcal	d) – 46.5 kcal
5.	Which reaction either e spontaneously?a) One in which entropy cl		characteristics has the g	reater chance of occurring
	b) One is which entropy ch	nange is negative		
	c) One in which Gibbs ene	ergy change is negative		
	d) One in which equilibriu	m has been established		
6.	Net work done by the syste	em in a cyclic process is equal	to:	
	a) Zero	b) ΔU	c) _{ΔH}	d) _q
7.	A thermodynamic quantity	is that:		
	a) Which is used in thermo	ochemistry		
	b) Which obeys all the law	s of thermodynamics		
	c) Quantity which depends	s only on the state of the syste	m	
	d) Quantity which is used i	in measuring thermal change		
8.	The Gibbs energy change f	for a reversible reaction at equ	iilibrium is:	
	a) Zero	b) Small positive	c) Small negative	d) Large positive
9.	If, $S + O_2 \rightarrow SO_2$; $\Delta H = -$			
	$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3; \Delta H =$	=-98.7 kJ(ii)		
	$SO_3 + H_2O \rightarrow H_2SO_4; \Delta$			
	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O; \Delta H =$	$= -227.3 kJ \dots (iv)$		
	The enthalpy of formation	of $H_2 SO_4$ at 298 K will be:		

b) +320.5 kIc) -650.3 kId) -4337kI10. The heat required to raise the temperature of a body by 1 K is called b) Thermal capacity a) Specific heat c) Water equivalent d) None of these 11. A system absorbs 10 kJ of heat and does 4 kJ of work. The internal energy of the system a) Increases by 6 kJ b) Decreases by 6 kJ d) Increases by 14 kJ c) Decreases by 14 kJ 12. Which of the following statement is true? a) ΔH is positive for exothermic reactions b) ΔH is negative for endothermic reactions c) The enthalpy of fusion is negative d) The heat of neutralization of strong acid with strong base is always the same 13. The temperature at which the reaction, $Ag_2O(s) \rightarrow 2Ag(s) + \frac{1}{2}O_2(g)$ Is at equilibrium is ...; gives, $\Delta H = 30.5 \text{ kJ mo } l^{-1}$ and $\Delta S = 0.066 \text{ kJ } K^{-1} \text{ mo } l^{-1}$. a) 462.12 K b) 362.12 Kd) 562.12Kc) 262.12 K 14. During an adiabatic process: a) Pressure is maintained constant b) Gas is isothermally expanded c) There is perfect heat insulation d) The system changes heat with surroundings 15. If $CH_3COOH+OH^{-i=CH_3COO^{-i+H_iO+q,i}}$ and $H^{+i+OH^{-i=H_iO+q,i}}$ then the enthalpy change for the reaction, $CH_3COOH = CH_3COO^{-i+H^{+ii}i}$ is equal to : d) $-q_1 - q_2$ c) $q_2 - q_1$ b) $q_1 - q_2$ a) $q_1 + q_2$ 16. Which of the following statements is true? The entropy of the universe a) Increases and tends towards maximum value b) Decreases and tends to be zero c) Remains constant d) Decreases and increases with a periodic rate 17. The standard change is Gibbs energy for the reaction, $H_2 O \rightleftharpoons H^{+i + OH^{-i a 25 \circ Ci}}$ is: a) 100 kI c) 90kId) -100 kIb) -90 kI

18. Which is not characteristic of thermochemical equation?

a) -754.4 kJ

- a) It indicates physical state of reactants and products
- b) It indicates whether the reaction is exothermic or endothermic

- c) It indicates allotrope of reactants if present
- d) It indicates whether reaction would occur or not
- 19. For the reaction,
 - $\begin{aligned} H_2(g) + Cl_2(g) &\rightarrow 2 \, HCl(g) + x_1 k J \dots (i) \\ 2 \, HCl(g) &\rightarrow H_2(g) + Cl_2(g) x_2 k J \dots (ii) \\ \end{aligned}$ Which of the following statement is correct? a) x_1 and x_2 are numerically equal b) x_1 and x_2 are numerically different
 - c) $x_1 x_2 > 0$

d)
$$x_1 - x_2 < 0$$

- 20. For which process energy will be absorbed?
 - a) Separation of an electron from an electron
 - b) Separation of proton from a neutron
 - c) Separation of a neutron from neutron
 - d) Separation of an electron from a neutral atom
- 21. Which of the following is correct for an ideal gas :

a)
$$\left(\frac{\partial E}{\partial T}\right)_{V} = 0$$
 b) $\left(\frac{\partial E}{\partial P}\right)_{T} = 0$ c) $\left(\frac{\partial E}{\partial T}\right)_{P} = 0$ d) All of these

- 22. An exothermic reaction is one in which the reacting substances
 - a) Have more energy than the products
 - c) Are at a higher temperature than the product
- b) Have less energy than the products
- d) None of the above
- 23. Heat energy change during the chemical reaction, $CO + \frac{1}{2}O_2 \longrightarrow CO_2$ is known as :
 - a) Heat of combustion of CO
 - b) Latent heat of CO_2
 - c) Latent heat of vaporisation
 - d) Heat of formation of CO_2
- 24. Under the same conditions how many mL of 1 M KOH and $0.5 M H_2 S O_4$ solutions, respectively when mixed for a total volume of 100 mL produce the highest rise in temperature? a) 67 : 33 b) 33 : 67 c) 40 : 60 d) 50 : 50
- 25. The first law of thermodynamic is expressed as

a) $q - W = \Delta E$	b) $\Delta E = q - W$	c) $q = \Delta E - W$	d) $W = q + \Delta E$
q $m - \Delta L$	$\Delta L - q n$	$q - \Delta L m$	$m - q \cdot \Delta L$

- 26. One mole of a non-ideal gas undergoes a change of state $(2.0 atm, 3.0 L, 95 K) \rightarrow (4.0 atm, 5.0 L, 245 K)$ with a change in internal energy, $\Delta U = 30.0 L atm$. The change in enthalpy (ΔH) of the process in L atm is: a) 40.0
 - ^{b)} 42.3

c) 44.0

d) Not defined, because pressure is not constant

27. Which one of the following is an exothermic reaction?

a)
$$N_2(g) + O_2(g) + 180.8 \, kJ \rightarrow 2 \, NO(g)$$

c)
$$C(g) + H_2O \rightarrow CO(g) + H_2(g) - 131.1 kJ$$

28. If liquids A and B from an ideal solution, the:

a) Enthalpy of mixing is zero

- b) Entropy of mixing is zero
- c) Free energy of mixing is zero
- d) Free energy as well as the entropy of mixing are each zero

b) $\Lambda E - RT$

- 29. In which of the following cases entropy decreases?
 - a) Solid changing to liquid
 - b) Expansion of a gas
 - c) Crystals dissolve
 - d) Polymerisation

a) $\Lambda E - 2RT$

30. For the reaction $N_2 + 3H_2 \rightleftharpoons 2NH_3 : \Delta H$ is

b) $N_2(g) + 3H_2(g) - 92kJ \rightarrow 2NH_3(g)$

d)
$$C(graphite) + 2S(s) \rightarrow CS_2(l) - 91.9 kJ$$

d) $\Lambda E + 2RT$

31. When one mole of monoatomic ideal gas at T temperature undergoes adiabatic change under a constant external pressure of 1 atm change in volume is from 1 L to 2 L, the final temperature in Kelvin would be

c) $\Lambda E + RT$

a)
$$\frac{T}{2^{(2/3)}}$$
 b) $T + \frac{2}{3 \times 0.0821}$ c) T d) $T - \frac{2}{3 \times 0.0821}$

32. In the combustion of 2.0 g of methane, 25 kcal heat is liberated. Heat of combustion of methane would be

- a) 150 kcal b) 200 kcal c) 250 kcal d) 350 kcal
- 33. 1 mole of an ideal gas at $25 \,^{\circ}C$ is subjected to expand reversibly ten times of its initial volume. The change in entropy of expansion is:

a) $19.15JK^{-1}mol^{-1}$ b) $16.15JK^{-1}mol^{-1}$ c) $22.15JK^{-1}mol^{-1}$ d) None of these

34. The heat of formation (ΔH_f) of $H_2O(l)$ is equal to:

a) Zero

- b) Molar heat of combustion of $H_2(l)$
- c) Molar heat of combustion of $H_2(g)$
- d) Sum of heat of formation of $H_2O(g)$ and $O_2(g)$
- 35. The entropy change for the reaction given below, $2H_2(g)+O_2(g) \rightarrow 2H_2O(l)$

Is...at 300 K. Standard entropies of $H_2(g)$, $O_2(g)$ and $H_2O(l)$ are 126.6, 201.20 and 68.0 J $K^{-1}mol^{-1}$ respectively.

a) $-318.4 J K^{-1} mol^{-1}$ b) $318.4 J K^{-1} mol^{-1}$ c) $31.84 J K^{-1} mol^{-1}$ d) None of these

36.	Heat of combustion ΔH $C(s)+2H_2(g) \rightarrow CH_4(g)$		$_{4}(g)$ are -94,-68 and -	213 kcal/mole then ΔH for
	a) -17 kcal	b) –111 kcal	c) _170kcal	d) _{-85 kcal}
37.	A positive change in entha	lpy occurs in :		
	a) $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2(g)$	$_{2}O(g)$		
	b) $N_2(g) + 3H_2(g) \longrightarrow 2N$	$NH_3(g)$		
	c) $MgCO_3(s) \longrightarrow MgO(s)$, 200		
	d) $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2$	$_{2}O(l)$		
38.	A gas expands isothermally	y and reversibly. The work de	one by the gas is:	
	a) Zero	b) Minimum	c) Maximum	d) Equal to work done
39.	What is Δn for combustion	n of 1 mole of benzene, whe	n both the reactants and prod	ucts are gas at 298 K
	a) 0	b) 1	c) 0.5	d) 1.5
40.	Internal energy and pressur	re of a gas of unit volume are	e related as:	
	a) $P = \frac{2}{3}U$	b) $P = \frac{3}{2}U$	c) $P = \frac{U}{2}$	d) $_{P=2U}$
41.	A reaction accompanied w	ith the absorption of energy	is :	
	a) Burning of a candle	b) Rusting of iron	c) Electrolysis of water	d) Digestion of food
42.	The second law of thermoo	dynamics introduced the con-	cept of:	
	a) Third law of thermodyn	amics		
	b) Work			
	c) Entropy			
	d) Internal energy			
43.	The enthalpy change is neg	gative for :		
	a) $Cl^{-i(g)+aq \longrightarrow Cl^{-i(aq)i}i}$			
	b) $Cl(g) \longrightarrow Cl^{+i(g)+ei}$			
	c) $\frac{1}{2}Cl_2(g) \longrightarrow Cl(g)$			
	d) $\overline{Cl_2(l)} \longrightarrow Cl_2(g)$			
44.	Equal volumes of monoato specific heats of the mixture		me initial temperature and p	ressure are mixed. The ratio of
	a) 1	b) 2	c) 1.67	d) 1.2
45.	If, $C(s) + O_2(g) \rightarrow CO_2(g)$), $\Delta H = -393.5 kJ_{\text{and}}$		
	$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$	g), $\Delta H = -283.5 kJ$,		
	then the heat of formation	of CO is:		d)

- 46. Hess's law of constant heat summation is an application of :
 - a) Kirchhoff's law
 - b) First law of thermodynamics
 - c) Second law of thermodynamics
 - d) Entropy
- 47. The heat of reaction at constant pressure is equal to :

a)
$$\Sigma U_P - \Sigma U_R$$
 b) $\Sigma U_R - \Sigma U_P$ c) $\Sigma H_P - \Sigma H_R$ d) $\Sigma H_R - \Sigma H_P$

48. Select the correct limitations of III law of thermodynamics.

a) Glassy solids at zero kelvin has entropy greater than zero

- b) Solids having mixture of isotopes do not have entropy zero at zero kelvin
- c) Crystals of CO, N_2O , NO, H_2O , etc., do not have zero entropy at zero kelvin
- d) All of the above
- 49. Heat of formation of $H_2O(g)$ at 1 atm and 25°C is $-243 kJ \cdot \Delta U$ for the reaction,

$$H_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow H_{2}O(g) \text{ at } 25^{\circ}\text{C is :}$$

a) 241.8 kJ
b) -241.8 kJ
c) -243 kJ
d) 243 kJ

- 50. Molar heat capacity of a gas at constant temperature and pressure is :
 - a) (3/2)R
 - b) (5/2)R
 - c) Infinite
 - d) Depends upon atomicity of gas
- 51. If water is formed from H^{+ii} ions and OH^{-ii} , the heat of formation of water is :
 - a) 13.7 kcal d) +63.4 kcal b) +13.7 kcal c) -63.4 kcal
- 52. The process of evaporation of a liquid is accompanied by:
 - a) Increase in enthalpy
 - b) Decrease in Gibbs energy
 - c) Increase in entropy
 - d) All of the above
- 53. The work done during the process when 1 mole of gas is allowed to expand freely into vacuum is:
 - a) Zero d) Either of these b) + vec) -ve
- 54. The van't Hoff reaction isotherm is:

a)
$$\Delta G = RT \log_e K_p$$
 b) $-\Delta G = RT \log_e K_p$ c) $\Delta G = RT^2 \ln K_p$ d) None of these

55. Which species have negative value of specific heat?

. .

a) Ice b) Water c) Vapour d) Saturated vapour

56.	The standard heat of formation of sodium ions in aqueous solution from the following data will be: Heat of solution $NaOH(aq.)$ from $NaOH(s) = -470.7 kJ$ Heat of formation of $O H^{-i(aq.)i}$ From $O H^{-i(s)=-228.8 kJ i}$			
	a) $-251.9 kJ$	b) 241.9 <i>kJ</i>		d) _{251.9} <i>kJ</i>
57.	An ideal gas expands in vol $1 \times 10^5 N m^{-2}$. The work d		$10^{-2} m^3$ at 300 K against a co	onstant pressure of
	a) 270 kJ	b) -900 kJ	c) -900J	d) 900 kJ
58.	For the reaction $3O_2 \rightarrow 2$	$O_3; \Delta H = +ve$, we can say	:	
	a) O_3 is more stable than C_3	\mathcal{D}_2		
	b) O_3 is less stable than O_2			
	c) Both are equally stable			
	d) Formation of O_3 is exot	hermic		
59.	One mole of a gas absorbs change in internal energy is		_	from 298 K To 308 K. The
	a) 200 <i>J</i>	b) -200 <i>J</i>	c) $200 \times \frac{308}{298} J$	d) $_{200} \times \frac{298}{308} J$
60.	Which of the following hav (i) work (ii) Heat (iii) Energy (iv) Entropy			
	a) (i) , (ii) \land (iii)	b) (i) , $(ii) \land (iv)$	c) (ii) , (iii) \land (iv)	d) $(iii) \land (iv)$
61.	For an ideal gas, the relation given by :	on between the enthalpy cha	inge and internal energy char	nge at constant temperature is
		b) $\Delta H = \Delta U + \Delta nRT$	c) $\Delta U = \Delta H + P \Delta V$	d) $\Delta H = \Delta G + T \Delta S$
62.	Vibrational energy is:			
	• • •	b) Only potential	c) Only kinetic	d) None of the above
63.	partially kinetic The relation $\Delta G = \Delta H - T$	ΔS was given by		
	a) Boltzmann	b) Faraday	c) Gibbs-Helmholtz	d) Thomson
64.	Calculate the free energy cl	e		
	$2 CuO(s) \rightarrow C u_2O(s) + \frac{1}{2}$	$O_2(g)$		
	Given, $\Delta H = 145.6$ kJ per $\Delta S = 116$ J per mol per K a) 113.8 kJ per mol		c) 55.4 kJ per mol	d) 145.6 kJ per mol
65.	-	_	_	- F in CF_4 is 515 kJ mol ⁻¹ .
	The correct reason for high	er B — F bond dissociation ϕ	energy as compared to that o red to that between C and F in	f C - F is:
	b) Significant $p\pi - p\pi$ into between C and F in CF		BF_3 whereas there is no	possibility of such interaction
			F in BF_3 than that between	C and F in CF_4
	d) Smaller size of B-atom a	as compared to that of C-ator	m	

66. When water is added to quick lime, the reaction is :

	a) Explosive	b) Endothermic	c) Exothermic	d) None of these	
67.	An engine operating between of frictional losses, then we a) 165.85 J	en 150 °C and 25 °C takes 5 ork done by engine is b) 169.95 J	00 J heat from a higher temp c) 157.75 J	erature reservoir if there are d) 147.7 J	
68.	Least random state of wate	-	CJ 157.75 J	uj 147.7 J	
	a) Ice				
	b) Liquid water				
	c) Steam				
	d) All present in same rand	lom state			
69.	Given that standard heat $CH_4 + C_2H_4 \rightarrow C_3H_8$ is:		$C_3 H_{8are} - 17.9, 12.5, -2$	4.8 kcal/mol. The ΔH for	
70.		b) $-30.2 kcal mo l^{-1}$ lid surface is generally exother		d) $-19.4 kcal mo l^{-1}$	
	a) Enthalpy is positive				
	b) Entropy decreases				
	c) Entropy increases				
	d) Free energy increases				
71.	. Energy equivalent to one erg, one joule and one calorie are in order:				
72.	5	b) 1 <i>erg</i> >1 <i>cal</i> >1 <i>J</i> by is greater, then the ability f	5	d) 1J>1cal>1erg	
			c) Medium	d) None of these	
	a) Maximum	b) Minimum			
73.	a) Maximum For which change $\Delta H \neq \Delta$				
73.					
73.	For which change $\Delta H \neq \Delta$	U ?			
73.	For which change $\Delta H \neq \Delta$ a) $H_2 + I_2 \rightleftharpoons 2 HI$	U? +H ₂ O			
73.	For which change $\Delta H \neq \Delta$ a) $H_2 + I_2 \rightleftharpoons 2 HI$ b) $HCl + NaOH \rightarrow NaCl$	U? +H ₂ O			
	For which change $\Delta H \neq \Delta$ a) $H_2 + I_2 \rightleftharpoons 2 HI$ b) $HCl + NaOH \rightarrow NaCl$ c) $C(s) + O_2(g) \rightleftharpoons CO_2(g)$	U? +H ₂ O g)			
	For which change $\Delta H \neq \Delta$ a) $H_2 + I_2 \rightleftharpoons 2 HI$ b) $HCl + NaOH \rightarrow NaCl$ c) $C(s) + O_2(g) \rightleftharpoons CO_2(g)$ d) $N_2 + 3H_2 \rightarrow 2NH_3$	U? + H_2O g) is given by:			
	For which change $\Delta H \neq \Delta$ a) $H_2 + I_2 \rightleftharpoons 2 HI$ b) $HCl + NaOH \rightarrow NaCl$ c) $C(s) + O_2(g) \rightleftharpoons CO_2(g)$ d) $N_2 + 3H_2 \rightarrow 2NH_3$ Net work done by a system	U? + H_2O g) is given by: energy (ΔA)			
	For which change $\Delta H \neq \Delta$ a) $H_2 + I_2 \rightleftharpoons 2 HI$ b) $HCl + NaOH \rightarrow NaCl$ c) $C(s) + O_2(g) \rightleftharpoons CO_2(g)$ d) $N_2 + 3H_2 \rightarrow 2NH_3$ Net work done by a system a) Decrease in Helmholtz	U? + H_2O g) is given by: energy (ΔA) gy (ΔG)			
	For which change $\Delta H \neq \Delta$ a) $H_2 + I_2 \rightleftharpoons 2 HI$ b) $HCl + NaOH \rightarrow NaCl$ c) $C(s) + O_2(g) \rightleftharpoons CO_2(g)$ d) $N_2 + 3 H_2 \rightarrow 2N H_3$ Net work done by a system a) Decrease in <i>Helmholtz</i> b) Decrease in <i>Gibbs</i> energy c) Decrease in internal energy	U? + H_2O g) is given by: energy (ΔA) gy (ΔG) rgy			

The energy involved in the conversion of
$$\frac{1}{2}CL_1(g)LC1^{-1(opt)}$$
.
(using the data, $\Delta_{anv}H_{C_1}^*=240 kJm ol^{-1}, \Delta_{c_g}H_{C_2}^*=-349 kJm ol^{-1}, \Delta_{a_{av}}H_{C_1}^*=-301kJm ol^{-1}$; will be :
a) $+120 kJm ol^{-1}$ b) $+152 kJm ol^{-1}$ c) $-610 kJm ol^{-1}$ d) $-850 kJm ol^{-1}$
The taw of Lavoisier and Laplace is based on :
a) The principle of conservation of energy
b) Equivalence of mechanical and thermal energies
7. AH for the reaction given below represents,
 $CO_1(g)+H_2(g) \longrightarrow CO[g]+H_1O[g]; \Delta H = 40 kJ$:
a) Heat of formation b) Heat of combustion c) Heat of neutralisation d) Heat of reaction
78. A person requires 2870 kcal of energy to lead normal daily life. If heat of combustion of cane sugar is -1349 kcal, then his daily consumption of sugar is:
a) 728 g b) $0.728 g$ c) $342 g$ d) $0.342 g$
79. The enthalpy of hydrogenation of cyclobevene is $-119.5kJm ol^{-1}$. If resonance energy of benzene is
 $-150.4kJm ol^{-1}$ ib) $-358.5kJm ol^{-1}$ c) $-508.9kJm ol^{-1}$ d) $-208.1kJm ol^{-1}$
80. The incorrect expression among the following is:
a) file intermal process
a) $\frac{1}{m}$ is challapy of hydrogenation is $1\times 10^{-2}m^{3}$ that 300 K against a constant pressure of
 $1\times 10^{5} M m^{-7}$. The work done is
a) -900 J b) -900 kJ c) 270 kJ d) 900 kJ
82. $C+O_{-} = CO_{2}$.
Then the heat of formation ef CO is
a) $x - y$ b) $Y - 2x$ c) $x + y$ d) $2x - y$
83. The formation water from $H_2(g)$ and $O_2(g)$ is an exothermic reaction because :
a) The chemical energy of $H_2(g)$ and $O_2(g)$ is knot than that of water
b) The chemical energy of $H_2(g)$ and $O_2(g)$ is knot than that of water
b) The chemical energy of $H_2(g)$ and $O_2(g)$ is knot than that of water
b) The chemical energy of $H_2(g)$ and $O_2(g)$ is knot than that of water
84. Which statements are correct?
a) $2.303\log\frac{P_{-1}}{P_{-1}} = \frac{K_{max}}{T_{1}T_{2}}T_{1}}$ is *Clausius Clapeyron* equation

- b) $\frac{\Delta H_{vap}}{Boiling \ point} = 88 \ J \ mol^{-1} \ K^{-1}$ is called Trouton's rule
- c) Entropy is a measure of unavailable energy, *i.e.*, unavailable energy \dot{i} entropy × temperature
- d) All of the above
- 85. The work done in an open vessel at 300 K, when 112 g iron reacts with *dil*. *HCl* is:
 - a) 102 kcal b) 0.6 kcal c) 0.3 kcal d) 0.2 kcal

86. A solution of 500 mL of 2 *M KOH* is added to 500 mL of 2 *M HCl* and the mixture is well shaken. The rise in temperature T_1 is noted. The experiment is then repeated using 250 mL of each solution and rise in temperature T_2 is again noted. Assume all heat is taken up by the solution:

a)
$$T_1 = T_2$$

- b) T_1 is 2 time as larger as T_2
- c) T_2 is twice larger as T_1
- d) T_1 is 4 time as larger as T_2
- 87. When 1 mole of gas is heated at constant volume. Temperature is raised from $298 \wr 308 K$. Heat supplied to the gas is 500 J. Then which statement is correct?

a)
$$q = -W = 500 J$$
, $\Delta U = 0$

b)
$$q = \Delta U = 500 J$$
, $W = 0$

- c) $q = W = 500 J, \Delta U = 0$
- d) $\Delta U = 0, q = W = -500 J$
- 88. The heat of formation is the change in enthalpy accompanying the formation of a substance from its elements at 298 K and 1 atm pressure. Since, the enthalpies of elements in their most stable state are taken to be zero, the heat of formation of compounds is :
 - a) Always negative

b) Always positive

- c) Standard heat enthalpy of that compound
- d) Zero
- 89. If enthalpies of methane and ethane are respectively 320 and 360 cal then the bond energy of C-C bond is

a) 80 cal	b) 40 cal	c) 60 cal	d) 120 cal
-----------	-----------	-----------	------------

90. Which correctly represents the physical significance of Gibbs energy change?

a)
$$-\Delta G = W_{compression}$$

b) $\Delta G = W_{expansion}$

c)
$$\Delta G = -W_{expansion} = W_{non-expansion}$$

d)
$$-\Delta G = W_{expansio}$$

91. Heat of neutralisation of which acid-base reaction is -57.32 kJ for?

a) $CH_{3}COOH + NaOH$ b) $HCl + NH_{4}OH$ c) HCOOH + KOH

d) HNO_3 +LiOH

92. Entropy change of vaporisation at constant pressure is given by:

a)
$$\Delta S_{(v)} = \frac{\Delta H_v}{T}$$
 b) $\Delta S_v = \frac{\Delta U_v}{T}$
93. Given, $C + O_2 \rightarrow CO_2 + 94.2 \, kcal \dots (i)$
 $H_2 + \frac{1}{2}O_2 \rightarrow H_2O + 68.3 \, kcal \dots (ii)$
 $C H_4 + 2O_2 \rightarrow CO_2 + 2 \, H_2O + 210.8 \, kcal \dots (ii)$
The heat of formation in kcal will be :
a) 45.9
b) 47.8

c)
$$\Delta S_{(v)} = \frac{\Delta H_v}{\Delta T}$$

d) None of these

- iii)
 - c) -20.0
 - d) 47.3
- 94. The enthalpy of formation of HI is 30.4 kJ. Which statement is false according to this observation?
 - a) HI is an endothermic compound
 - b) For the reaction, $H_2(g) + I_2(g) \longrightarrow 2 HI(g); \Delta H = 60.8 kJ$
 - c) HI is a stable compound
 - d) HI is an unstable compound
- 95. Mark the correct statement
 - a) For a chemical reaction to be feasible, ΔG should be zero
 - b) Entropy is a measure of order in a system
 - c) For a chemical reaction to be feasible, ΔG should be positive
 - d) The total energy of an isolated system is constant
- 96. The entropy change for vaporisation of liquid water to steam at $100 \,^{\circ}C$ is... $J K^{-1} mo l^{-1}$. Given that heat of vaporisation is 40.8 $kJ mol^{-1}$. c) 110.38 a) 109.38 b) 100.38 d) 120.38

97. Given the bond energies of $N \equiv N$, H - H and N - H bonds as 945, 436 and 39 kJ mol^{-1} respectively, the enthalpy of the reaction, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ is : d) $_{105k1}$ a) -93kIb) 102kJ c) 90kI

98. When ammonium chloride is dissolved in water, the solution becomes cold. The change is:

- c) Super cooling a) Endothermic b) Exothermic d) None of these
- 99. The Gibbs energy change and standard Gibbs energy change are equal if reaction quotient is equal to:
 - a) Zero b) 1 d) <u>i</u>1 c) <u>i</u>1
- 100. The bond energy of H_2 is 104.3 kcal mo l^{-1} . It means : (N = Av.no.i)
 - a) 104.3 kcal heat is required to break up N bonds in N molecules of H_2
 - b) 104.3 kcal heat is required to break up N molecules to 2N atoms of H
 - c) 104.3 kcal heat is evolved during combination of 2N atoms of H to from N molecules of H_2
 - d) Heat of formation of H atom

$=\frac{1}{2} \times bond \ energy \ of \ H - H$					
101. For the process, CO_2	$_{2}(s) \longrightarrow CO_{2}(g):$				
a) Both $\Delta H \wedge \Delta S$ as	re + <i>ve</i>				
b) ΔH is – ve and Δ	ΔS is +ve				
c) ΔH is +ve and Δ	S is $-ve$				
d) Both $\Delta H \wedge \Delta S$ as	d) Both $\Delta H \wedge \Delta S$ are $-ve$				
102. The process, in which	h no heat enters or leaves th	e system is termed as			
a) Isochoric	b) Isobaric	c) Isothermal	d) Adiabatic		
103. The work done during the expansion of a gas from a volume of $4 dm^3 i 6 dm^3$ against a constant external pressure of 3 atm is					
a) -6 J	b) -608 J	c) +304 J	d) -304 J		
104. Which are correct to express work terms?					
a) Work ¿ Capacity factor × Intensity factor; where capacity factor is a measure of extent of work done and intensity factor is a measure of force responsible for work					

- b) Electrical work $i E \times nF$; E is intensity factor; nF is capacity factor
- c) Expansion work $i P \times \Delta V$; P is intensity factor; ΔV is capacity factor
- d) All of the above
- 105. Theenthalpy change for the transition of liquid water to steam is $\Delta H_{vap} = 37.3 \, kJ \, mo \, l^{-1}$ at 373 K. The entropy change for the process is

b) $100 J mol^{-1}K^{-1}$ c) $135.3 J mol^{-1}K^{-1}$ d) $75.5 J mol^{-1}K^{-1}$ a) $132.5 J mol^{-1} K^{-1}$

- 106. Which is not a spontaneous process?
 - a) Expansion of a gas into vacuum
 - b) Water flowing down hill
 - c) Heat flowing from colder body to a hotter body
 - d) Evaporation of water from clothes during drying
- 107. In a chemical reaction $\Delta H = 150 \, kJ$ and $\Delta S = 100 \, JK^{-1}$ at 300 K. The ΔG for the reaction is:

a) Zero b) 300 kIc) $_{330kI}$ d) 120 kJ 108. Enthalpy of $CH_4 + \frac{1}{2}O_2 \rightarrow CH_3OH$ is negative. If enthalpy of combustion of CH_4 and CH_3OH are x and y

respectively. Then which relation is correct?

a)
$$_{x>y}$$
 b) $_{x c) $_{x=y}$ d) $_{x\ge y}$$

109. The enthalpy and entropy change for the reaction,

 $Br_2(l) + Cl_2(g) \rightarrow 2BrCl(g)$ Are $30 kJ mol^{-1}$ and $105 J K^{-1} mol^{-1}$ respectively. The temperature at which the reaction will be in equilibrium is: c) $_{2857K}$ d) 273 K

a) 450 K b) 300 K

110. The gas in a refrigerator causes cooling on expansion because:

- a) Work done by the gas is converted into heat
- b) Heat of the gas is lost as work is done by the gas
- c) The heat is spread over a large space
- d) None of the above
- 111. ΔS is positive for the change:
 - a) Mixing of two gases b) Boiling of liquid c) Melting of solid d) All of these
- 112. In a flask, colourless $N_2 O_4(g)$ is in equilibrium with brown coloured $NO_2(g)$. At equilibrium when the flask is heated to 100 °C, the brown colour deepens and on cooling it becomes coloured. Which statement is incorrect about this observation?

a) The ΔH for the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ is +ve

- b) Paramagnetism increases on cooling
- c) The $\Delta H \Delta U$ at 100 °C is equal to 200 cal
- d) Dimerisation is reduced on heating
- 113. A gaseous reaction was carried out, first keeping the volume constant and next keeping the pressure constant. In the second experiment, there was an increase in volume. The heats of reaction were different, because :
 - a) In the first case the energy was spent to keep the volume constant
 - b) In the second case energy was spent to expand the gases
 - c) Specific heats of compressed gases is more
 - d) Specific heats of rarefied gases is more
- 114. The maximum work done in expanding 16 g oxygen at 300 K and occupying a volume of $5 dm^3$ isothermally until the volume become $25 dm^3$ is:

a)
$$2.01 \times 10^{3} J$$
 b) $+2.81 \times 10^{3} J$ c) $2.01 \times 10^{-3} J$ d) $+2.01 \times 10^{-6} J$

- 115. The heat of neutralization of strong base and a strong acid is 57 kJ. The heat released when 0.5 mole of HNO₃ solution is added to 0.20 mole of NaOH solution, is :
 a) 11.4 kJ
 b) 34.7 kJ
 c) 23.5 kJ
 d) 58.8 kJ
- 116. For which one of the following equations is $\Delta H_{reaction}^{\Box}$ equal to ΔH_{f}^{\Box} for the product?

a)
$$N_2(g) + O_3(g) \longrightarrow N_2O_3(g)$$

b) $CH_4(g) + 2Cl_2(g) \longrightarrow CH_2Cl_2(l) + 2HCl(g)$
c) $Xe(g) + 2F_2(g) \longrightarrow XeF_4(g)$
d) $2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$

- 117. If a chemical change is brought about by one or more methods in one or more steps, then the amount of heat absorbed or evolved during the complete course of reaction is same, whichever method was followed. This law is known as :
 - a) Le-Chatelier's principle
 - b) Hess's law
 - c) Joule-Thomson effect
 - d) Trouton's law

118. When a gas undergoes adiabatic expansion, it gets cooled due to					
a) Loss of kinetic energy		b) Fall in temperature			
c) Decrease in velocity		d) Energy used in doing v	work		
119. How much heat (in kJ) is		nium reacts with a stoichiom	the tric amount of Fe_2O_3 ?		
$2A l_2 + F e_2 O_3 \rightarrow 2Fe +$ a) 852 kJ	$A l_2 O_3; \Delta H^\circ = -852 kJ$ b) 426 kJ	c) -42.6 kJ	d) + 42.6 <i>kJ</i>		
120. Which reaction is endoth	ermic in nature?				
a) $CaCO_3 \rightarrow CaO+CO_3$	a) $CaCO_3 \rightarrow CaO + CO_2$				
b) $C + O_2 \rightarrow CO_2$					
c) $NaOH + HCl \rightarrow NaCl + H_2O$					
d) $CH_4 + 2O_2 \rightarrow CO_2 +$	$2H_2O$				
121. The enthalpy and entropy change for a chemical reaction are -2.5×10^3 caland 7.4 cal K ⁻¹ respectively. Predict					
that nature of reaction at a) Spontaneous	298 K is: b) Reversible	c) Irreversible	d) Non-spontaneous		
122. If 50 calorie are added t energy of system is:	o a system and system does	work of 30 calorie on surro	oundings, the change in internal		
a) 20 cal	b) 50 <i>cal</i>	c) 40 cal	d) _{30 cal}		
123. If a refrigerator's door is opened then, we get					
a) Room heated		b) Room cooled			
c) More amount of heat	is passed out	d) No effect on room			
124. When a bottle of perfume is opened, odourous molecules mix with air and slowly diffuse throughout the entire					

124. When a bottle of perfume is opened, odourous molecules mix with air and slowly diffuse throughout the entire room. The incorrect fact about the process is;

a)
$$\Delta G = -ve$$
 b) $\Delta H \approx 0$ c) $\Delta S = -ve$ d) $\Delta S = +ve$

- 125. Equilibrium constant of a reaction is related to:
 - a) Standard Gibbs energy change ΔG°
 - b) Gibbs energy change ΔG
 - c) Heat enthalpy
 - d) None of the above
- 126. 48 g of C (diamond) on complete combustion evolves 1584 kJ of heat. The standard heat of formation of gaseous carbon is 725 kJ/mol. The energies required for the process

(i)C (graphite) \rightarrow C((gas)		
(ii)C (diamond) \rightarrow C	C(gas)are:		
a) 725, 727	b) 717, 725	c) 725, 723	d) None of these

- 127. An example of closed system is:
 - a) Hot water present in an open beaker
 - b) Some amount of water present in equilibrium with its vapour in a closed and insulated beaker
 - c) Some amount of hot water enclosed in a closed container which is not insulated

d) None of the above

128. At 1 atm pressure, ΔS	$S = 75 JK^{-1} mol^{-1}; \Delta H = 30$	$0 kJ mol^{-1}$. The temperature	of the reaction at equilibrium is:			
^{a)} 400 K	b) 330 K	c) 200 <i>K</i>	d) 110 <i>K</i>			
129. 2.1 g of Fe combines w	vith S evolving 3.77 kJ. The	heat of formation of FeS in	kJ/mole is			
^{a)} –1.79	^{b)} -100.5	c) _{-3.77}	d) None of these			
130. In an isochoric process	s, the increase in internal ene	ergy is				
a) Equal to the heat ab	a) Equal to the heat absorbed					
b) Equal to the heat ev	rolved					
c) Equal to the work d	one					
d) Equal to the sum of	the heat adsorbed and work	a done				
131. The sublimation energy of vaporisation of I_2		and the enthalpy of fusio	n is 15.5 kJ/mol. The enthalpy			
a) 41.8 kJ/mol	b) -41.8 kJ/mol	c) 72.8 kJ/mol	d) -72.8 kJ/mol			
132. ΔG °for the reaction Z ($R=2.0 \ calmol^{-1}K$		The value of equilibrium con	stant of the reaction at $227 ^{\circ}C$ is			
a) 100	b) 10	c) 2	d) 0.01			
			$Cl(g) = 186.7 J mol^{-1} K^{-1}$ at 298			
K and 1 atm pressure, a) +540.3	the entropy change for the r b) +727.3	eaction $H_2(g) + C l_2(g) \to 2$ c) -166.9	HCl(g) is d) +19.8			
134. Bond energy of molecu	ule:					
a) Is always negative						
b) Is always positive						
c) Either positive or no	egative					
d) Depends upon the p	physical state of the system					
135. In which case of mixin	ng of a strong acid and a base	e each of $1N$ concentration,	temperature increase is highest?			
a) 20 mL acid - 20 mL	Lalkali					
b) 10 mL acid - 40 m.	Lalkali					
c) 25 mL acid - 25 mL	Lalkali					
d) 35 mL acid – 15 m	Lalkali					
136. ΔS^o will be highest fo	r the reaction					

a) $Ca(s) + \frac{1}{2}O_2(g) \rightarrow CaO(s)$ b) $CaCO_3(g) \rightarrow CaO(s) + CO_2(g)$ c) $C(g) + O_2(g) \rightarrow CO_2(g)$ d) $N_2(g) + O_2(g) \rightarrow 2NO(g)$

137. Bond dissociation enthalpy of H_2 , $C l_2$ and HCl are 434, 242 and 431 kJ $mo l^{-1}$ respectively. Enthalpy of formation of HCl is :

a) $-245 kJ mol^{-1}$ b) $-93 kJ mol^{-1}$ c) $245 kJ mol^{-1}$ d) $93 kJ mol^{-1}$

138. Joule-Thomson expansion is

a) Isobaric	b) Isoenthalpic	c) Isothermal	d) None of these
-------------	-----------------	---------------	------------------

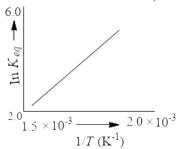
139. The energy absorbed by each molecule (A_2) of a substance is $4.4 \times 10^{-19} J$ and bond energy per molecule is $4.0 \times 10^{-19} J$. The kinetic energy of the molecule per atom will be :

a) $4.0 \times 10^{-20} J$ b) $2.0 \times 10^{-20} J$ c) $2.2 \times 10^{-19} J$ d) $2.0 \times 10^{-19} J$

140. Which one of the following is not a state function?

a) Enthalpy b) Entropy c) Work d) Free energy

141. Temperature and heat are:


a) Extensive properties

b) Intensive properties

c) Intensive and extensive properties respectively

d) Extensive and intensive properties respectively

142. A schematic plot of In K_{eq} versus inverse of temperature for a reaction is shown below

The reaction must be a) Exothermic

c) One with negligible enthalpy change

b) Endothermic

d) Highly spontaneous at ordinary temperature

143. For a reaction at 25 °C, enthalpy and entropy changes are $-11.7 \times 10^3 J mo l^{-1}$ and $-105 J mo l^{-1} K^{-1}$ respectively. What is the Gibbs free energy? a) 15.05 kJ b) 19.59 kJ c) 2.55 kJ d) 22.55 kJ

144. Which of the following equations correctly represents the standard heat of formation (ΔH_f^o) of methane?

a) C(diamond)+ $2H_2(g) \rightarrow CH_4(g)$	b) C(graphite) + $2H_2(g) \rightarrow CH_4(l)$
c) C(graphite) + 2 $H(g) \rightarrow C H_4(g)$	d) C(graphite) + 4H $\rightarrow CH_4(g)$

145. Combustion of glucose takes place according to the equation

 $C_6H_{12}O_6 + CO_2 \rightarrow 6CO_2 + 6H_2O; \Delta H = -72$ kcal. How much energy will be required for the production of 1.6 g of glucose (Molecular mass of glucose = 180)? a) 0.064 kcal b) 0.64 kcal c) 6.4 kcal d) 64 kcal

146. In an irreversible process taking place at constant T and P and in which only pressure volume work is being done, the change in Gibbs free energy (dG) and change in entropy

a) $(dS)_{V,E} < 0(dG)_{T,P} < 0$ b) $(dS)_{V,E} > 0(dG)_{T,P} < 0$ c) $(dS)_{V,E} > 0(dG)_{T,P} = 0$ Here's law states that

147. Hess's law states that

- a) The standard enthalpy of an overall reaction is the sum of the enthalpy changes in individual reactions.
- b) Enthalpy of formation of a compound is same as the enthalpy of decomposition of the compound into constituent elements, but with opposite sign.
- c) At constant temperature the pressure of a gas is inversely proportional to its volume.
- d) The mass of a gas dissolved per litre of a solvent is proportional to the pressure of the gas in equilibrium with the solution.

148. Internal energy is sum of

- a) Kinetic energy and potential energy b) All types of energy of the system
- c) Energy of internal system d) None of the above
- 149. Heat given to a system under isochoric process is equal to:
 - a) $_W$ b) q_p c) ΔU d) ΔH

150. All the naturally occurring processes, *i.e.*, spontaneous proceed spontaneously in a direction which leads to:

- a) Decrease of free energy
- b) Increase of free energy
- c) Decrease of entropy
- d) Increase of enthalpy
- 151. Which phenomena cannot be described as oxidation?
 - a) Oxidation of coal in air
 - b) Burning of magnesium in nitrogen
 - c) Reaction of antimony with chlorine
 - d) Lighting of an electric lamp
- 152. Heat of formation of H_2O is -188 kJ/mol and H_2O_2 is -286 kJ/mol. The enthalpy change for the reaction $2H_2O_2 \rightarrow 2H_2O+O_2$ is a) 196 kJ b) -196 kJ c) 984 kJ d) -984kJ
- 153. When 1g atom of carbon is converted into 1g molecule of CO_2 , the heat liberated is same:

a) Irrespective of whether the volume is kept constant or pressure is kept constant

- b) Irrespective of the temperature at which the reaction is carried out
- c) Whether the carbon is in the form of diamond or graphite
- d) None of the above
- 154. For the gas phase reaction,

 $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

Which of the following conditions are correct?

a) $\Delta H > 0 \land \Delta S > 0$	b) $\Delta H < 0 \land \Delta S < 0$	c) $\Delta H > 0 \land \Delta S < 0$	d) $\Delta H = 0 \wedge \Delta S < 0$
--------------------------------------	--------------------------------------	--------------------------------------	---------------------------------------

155. A system provided 50 joule of heat and work done on the system is 10J. The change in internal energy during the process is:

a) $_{40 J}$ b) $_{60 J}$ c) $_{80 J}$ d) $_{50 J}$

156. The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K_c is

a)
$$\Delta G = RT \in K_c$$

b) $-\Delta G = RT \in K_c$
c) $\Delta G^\circ = RT \in K_c$
d) $-\Delta G^\circ = RT \in K_c$

- 157. Identify the correct statement for change of Gibb's energy for a system (ΔG_{system}) at constant temperature and pressure:
 - a) If $\Delta G_{system} = 0$, the system is still moving in a particular direction
 - b) If $\Delta G_{system} = -ve$, the process is not spontaneous
 - c) If $\Delta G_{system} = +ve$, the process is spontaneous
 - d) If $\Delta G_{system} = 0$, the system has attained equilibrium
- 158. The standard heat of combustion of solid boron is :

a)
$$\Delta_f H(B_2O_3)$$
 b) $\frac{1}{2}\Delta_f \Delta H(B_2O_3)$ c) $-\Delta_f H^0(B_2O_3)$ d) $\frac{-1}{2}\Delta_f \Delta H(B_2O_3)$

159. During an isothermal expansion of an ideal gas its:

- a) Enthalpy decreases
- b) Internal energy decreases
- c) Internal energy increases
- d) Internal energy remains constant
- 160. The exchange of heat energy during chemical reaction at constant temperature and pressure occurs in form of:

a) Free energy b) internal energy c) Enunally u) bolid energy	a) Free energy	b) Internal energy	c) Enthalpy	d) Bond energy
---	----------------	--------------------	-------------	----------------

161. Using the data provided, calculate the multiple bond energy (kJ mol^{-1}) of a $C \equiv C$ bond in C_2H_2 . Given that the heat of formation of C_2H_2 is 225 kJ mol^{-1} (take the bond energy of C - H bond as 350 kJ mol^{-1} .) : $2C(s) \rightarrow 2C(g)\Delta H = 1410 kJ mol^{-1}$ $2C(s) \rightarrow 2C(g)\Delta H = 1410 kJ mol^{-1}$ $H_2(g) \rightarrow 2H(g)\Delta H = 330 kJ mol^{-1}$ a) 1165 b) 837 c) 865 d) 815

162. The molar heat capacity of water at constant pressure is $75 J K^{-1} mo l^{-1}$. When 1.0 kJ of heat is supplied to 100 g of water which is free to expand the increase in temperature of water is a) 2.4 K b) 3.6 K c) 4.8 K d) 1.2 K

163. For which of the process, ΔS is negative?

a) $H_2(g) \rightarrow 2H(g)$ b) $2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$ c) $N_2(1gatom) \rightarrow N_2(8gatom)$ d) $C_{(diamond)} \rightarrow C_{(graphite)}$

164. Given that, $C(g) + 4H(g) \rightarrow CH_4(g)$; $\Delta = -H = -166$ kJ. The bond energy C - H will be

a) -416 kJ/mol b) -41.6 kJ/mol c) 832 kJ/mol d) None of these

165. In an isobaric process, the ratio of heat supplied to the system (dθ) and work done by the system (dW) for diatomic gas is
a) 1:1
b) 7:2
c) 7:5
d) 5:7

166. An adiabatic process occurs in

	a) Open system		b) Closed system		
	c) Isolated system		d) In all the given system	1	
167	7. The heat of formation of v	vater is exothermic in nature	because :		
	a) $H_2(g)$ and $O_2(g)$ have	e higher temperature than wat	ter		
	b) $H_2(g)$ and $O_2(g)$ have	e lower temperature than wate	er		
	c) $H_2(g)$ and $O_2(g)$ have higher internal energy than water d) None of the above				
168	^{3.} In an adiabatic process				
	a) $p.\Delta V=0$	b) $q = +W$	c) $\Delta E = q$	d) $q = 0$	
169	9. A well stoppered thermos	flask containing some ice cub	bes is an example of:		
	a) Closed system	b) Open system	c) Isolated system	d) None of these	
17(). Internal energy is				
	a) Partly potential and part	tly kinetic	b) Totally kinetic		
	c) Totally potential		d) None of the above		
171. The enthalpy of formation of ammonia gas at 298 K is $-46.11 kJ mo l^{-1}$. The equation to which this value relates is:					

a)
$$\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \longrightarrow NH_3(g)$$

b) $N(g) + 3H(g) \longrightarrow NH_3(g)$
c) $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$
d) $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \longrightarrow NH_3(l)$
172. $C_{diamond} + O_2 \rightarrow CO_2; \Delta H = -395.3 \text{kJ/mol}$
 $C_{graphite} + O_2 \rightarrow CO_2; \Delta H = -393.4 \text{kJ/mol}$
 $C_{graphite} \rightarrow C_{diamond}; \Delta H = ?$
a) -3.8
b) -1.9
c) $+3.8$
d) $+1.9$

173. The heat evolved in the combustion of methane is given by the following equations $CH_4(g)+2O_2(g) \rightarrow CO_2(g)+H_2O(l); \Delta H=-890.3 kJ$

How many grams of methane would be required to produce 44.15 kJ of heat of combustion? a) 4 g b) 8 g c) 12 g d) 16 g

174. The calorific value of fat is :

a) Lesser than that of carbohydrate and protein

b) Lesser than that of protein but more than carbohydrates

c) Lesser than that of carbohydrate but more than protein

d) More than that of carbohydrate and protein

175. The standard heat of formation of $NO_2(g)$ and $N_2O_4(g)$ are 8.0 and 2.0 kcal mol^{-1} respectively. The heat of dimerization of NO_2 in kcal is :

^{a)} 10.0	b) -6.0	c) _{-12.0}	d) _{-14.0}	
$C(s)+O_2(g) \rightarrow CO_2(g);$				
	are at 25 °C then calculate Δ b) - 16.750 kcal	2 5	d) and t	
			d) $-393 kcal$	
177. 16 <i>g</i> oxygen gas expands		-		
^{a)} 260 kcal	^{b)} 180 kcal	c) 130 kcal	d) 272.8 kcal	
178. One mole of an ideal gas for this process is $R=2a$	-	mally from an initial volume	of 1 litre to 10 litre. The ΔU	
a) 163.7 cal		c) $1.0 J mol^{-1} K^{-1}$	d) $0.1 J mol^{-1} K^{-1}$	
179. Gibbs energy G , enthalpy	H and entropy S are related	by:		
a) $G=H+TS$	b) $G = H - TS$	c) $G-TS=H$	d) $S = H - G$	
180. In a closed insulated contain is true?	ainer a liquid is stirred with a	paddle to increase the tempo	erature, which of the following	
a) $\Delta U + W \neq 0, q = 0$	b) $\Delta U = W = q \neq 0$	c) $\Delta U = 0, W = q \neq 0$	d) $W=0, \Delta U=q \neq 0$	
is endothermic to the exte	ent of 1 kcal per mol. If the s		lid in water in the form of ions and $C l^{-\delta \delta}$ ions are in the ratio	
	of hydration of sodium ion? b) $-97.5 kcal/mol$	(c) or C is call mol	d) +100 kcal/mol	
182. Enthalpy of solution of <i>N</i>				
temperature of water a) Increases	$\frac{1}{10000}$ in water 15 – 41	b) Decreases	s dissorved in water, the	
c) Does not change		d) Fluctuates indefinitely		
183. Mark out the enthalphy of formation of carbon monoxide (CO) Given, $C(s)+O_2(g) \rightarrow CO(g)$, $\Delta H = -393.3$ kJ/mol				
$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2$	$(g), \Delta H = -282.8 kJ/mol$			
a) 110.5 kJ/mol	b) 676.1 kJ/mol	c) 282.8 kJ/mol	d) 300.0 kJ/mol	
184. Heat of neutralization of a	a strong acid and a strong base	e is equal to ΔH of :		
a) $H^{+\iota+OH^{-\iota=H_{i}O\iota}\iota}$				

b) $H_2O + H^{+i = H_3O^{+ii}i}$ c) $2H_2 + O_2 = 2H_2O$

d) $CH_3COOH + NaOH \longrightarrow CH_3COONa + H_2O$

185. The temperature of the system increases during an:

a) Isothermal expansion

b) Adiabatic compression

c) Adiabatic expansion

d) Isothermal compression

a) $N H_4 OH \wedge C H_3 COOH$

b) $N H_{\downarrow}OH \wedge HCl$

186. For an adiabatic expansion of a perfect gas $\Delta P/P$ is equal to:

a)
$$\Delta V/V$$
 b) $\gamma \frac{\Delta V}{V}$ c) $-\gamma \frac{\Delta V}{V}$ d) $-\gamma^2 \frac{\Delta V}{V}$

187. The heat evolved during neutralisation is maximum in the reaction of :

c) NaOH $\wedge C H_3 COOH$ d) $NaOH \wedge HCl$ 188. In which reaction ΔS is positive? a) $H_2O(l) \rightarrow H_2O(s)$ b) $3O_2(g) \to 2O_3(g)$ c) $H_2O(l) \rightarrow H_2O(g)$ d) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ 189. It is impossible to attain the lowest temperature known as zero degree absolute. This is a simple statement of: a) First law of thermodynamics b) Second law of thermodynamics c) Third law of thermodynamics d) None of the above 190. The total entropy change for a system and its surroundings increases, if the process is: a) Reversible b) Irreversible c) Exothermic d) Endothermic 191. Heat of formation of compound is defined as : a) Heat evolved to form one mole of the compound from its elements b) Heat required to form one molecule of a compound c) Change in heat content of the system when one molecule of a compound is formed d) None of the above 192. At absolute zero, the entropy of a perfect crystal is zero. This is ... of thermodynamics. a) First law b) Second law c) Third law d) None of these 193. Standard state Gibbs free energy changes for the isomerization reaction, *cis-2-pentene* \rightleftharpoons *trans-2-pentene* is -3.67 kJ/mol at 400K. If more *trans-2-pentene* is added to the reaction vessel, then: a) Equilibrium remains unaffected b) Additional trans-2-pentene is formed c) More *cis*-2-pentene is formed

d) Equilibrium is shifted in forward direction

- 194. If S° for H_2 , Cl_2 and HCl are 0.13, 0.22 and $0.19 kJK^{-1}mol^{-1}$ respectively. The total change in standard entropy for the reaction, $H_2 + Cl_2 \rightarrow 2 HCl$ is:
 - a) $30 JK^{-1}mol^{-1}$ b) $40 JK^{-1}mol^{-1}$ c) $60 JK^{-1}mol^{-1}$ d) $20 JK^{-1}mol^{-1}$

195. The total internal energy change for a reversible isothermal cycles is

a) Always 100 calories per degree b) Always negative

196. One mole of a gas occupying $3 dm^3$ expands against constant external pressure of 1 atm to a volume of $13 dm^3$. The work done is:

d) Always positive

a) $-10 a tm dm^3$ b) $-20 a tm dm^3$ c) $-39 a tm dm^3$ d) $-48 a tm dm^3$

197. The heat of combustion of methane is $-880 kJ mol^{-1}$. If 3.2 g of methan is burnt:

- a) -176 kJ of heat is evolved
- b) 176 *kJ* of heat is absorbed
- c) 88 kJ of heat is evolved
- d) None of above

c) Zero

198. Heat of solution is defined as :

- a) Heat required to dissolved one mole in excess of water
- b) Heat evolved, when one mole is dissolved in excess of water
- c) Change in heat content of the system when one mole of the solute is dissolved un excess of water, so that further dilution of solution does not bring any heat change
- d) None of the above
- 199. A mixture of two moles of carbon monoxide and one mole of oxygen, in a closed vessel is ignited to convert the carbon monoxide to carbon dioxide. If ΔH is the enthalpy change and ΔE is the change in internal energy, then
 - a) $\Delta H > \Delta E$
 - b) $\Delta H < \Delta E$
 - c) $\Delta H = \Delta E$
 - d) The relationship depends on the capacity of the vessel
- 200. Molar heat capacity is given by :
 - a) $\frac{dQ}{dT}$ b) $dQ \times dT$ c) $\Sigma Q \frac{1}{dT}$ d) None of these

201. Two mole of an ideal gas is expanded isothermally and reversibly from 1 L to 10 L at 300 K. The enthalpy change (in kJ) for the process is

a) 11.4 b) $_{-11.4}$ c) 0 d) 4.8

202. A gaseous system changes from state $A(P_1, V_1, T_1)$ to $B(P_2, V_2, T_2)$, B to $C(P_3, V_3, T_3)$ and finally from C to A. The whole process may be called:

- a) Reversible process b) Cyclic process c) Isobaric process d) Spontaneous process
- 203. One mole of ice is converted into water at 273 K. The entropies of $H_2O(s)$ and $H_2O(l)$ are 38.20 and $60.01 J mol^{-1} K^{-1}$ respectively. The enthalpy change for the conversion is:

a) 59.54 $J mol^{-1}$	b) 5954 $J mol^{-1}$	c) 595.4 $J mol^{-1}$	d) $320.6 J mol^{-1}$		
204. For a diatomic molecule AB, the electronegativity difference between A and $B=0.2028\sqrt{\Delta}$. [Where $\Delta=b$ ond energy of AB Geometric mean of the bond energies of $A_2 \wedge B_2$] The electronegativities of fluorine					
	and 3.0 respectively and the bond energy of $Cl-F$ is the bond energy of $Cl-F$ is		f $F - F: 38 kcal mo l^{-1}$ and		
a) 71 <i>kcal/mol</i>	b) 61 kcal/mol		d) 75 <i>kcal/mol</i>		
205. Any series of operation so	carried out that at the end, th	ne system is back to its state i	s called		
a) Boyle's cycle	b) Reversible process	c) Adiabatic process	d) Cyclic process		
206. The heat of neutralisation of HNO_3 solution is mixed a) 57.0 kJ	of a strong acid and a strong a ed with 0.2 mole of KOH is b) 11.4 kJ	alkali is 57.0 <i>kJ mol</i> ⁻¹ . The c) 28.5 kJ	heat released when 0.5 mole		
207. The Kirchhoff's equation	-	-	u) 57.7 KJ		
a) Pressure	b) Temperature	c) Volume	d) Molecularity		
-		c) volume	u) Molecularity		
208. Δ <i>n</i> values in $\Delta H = \Delta U +$	2				
a) Integer nature	b) Fractional value	c) Positive or negative	d) All of these		
209. AB , A_2 and B_2 are diaton	hic molecules. If the bond en AB from A_2 and B_2 is -100				
	b) $200 kJ mol^{-1}$		d) $300 kJ mol^{-1}$		
210. Which of the following	is an intensive property?				
a) Temperature	b) Viscosity	c) Surface tension	d) All of these		
211. The temperature of the sy	stem decreases in an				
a) Adiabatic compression		b) Isothermal compression	I		
c) Isothermal expansion		d) Adiabatic expansion			
212. If a refrigerator door is ke	pt open, then we get:				
a) Room cooled					
b) Room heated					
c) More heat is passed ou	t				
d) No effect on room					
213. The enthalpy of vaporization	tion of a liquid is 30 kJ mol	⁻¹ and entropy of vaporizati	on is 75 J mol^{-1} . The boiling		
point of liquid at 1 atm is a) 250 K	: b) 400 K	c) 450 K	d) 600 K		
214. Which is correct about the	e heat of combustion?				
a) The combustion be exc	thermic in some cases and en	dothermic in other cases			
b) Heat of combustion is a	always exothermic				
c) Its value change with te	emperature				
d) All of the above					

215. In an isothermal process

b) $q \neq 0 \land \Delta E = 0$ c) $a=0 \wedge \Delta E \neq 0$ d) $a \neq 0 \land \Delta E \neq 0$ a) $a=0 \wedge \Delta E=0$ 216. The enthalpy of combustion of H_2 , cyclohexane (C_6H_{10}) and cyclohexane (C_6H_{12}) are -241, -3800 and -3920 kJ per mol respectively. Heat of hydrogenation of cyclohexane is a) 121 kJ/mol d) -242kJ/mol b) -121 kJ/molc) +242 kJ/mol 217. For the isothermal expansion of an ideal gas b) E increases but H decreases a) E and H increases d) E and H are unaltered c) H increases but E decreases 218. Heat evolved in the reaction, $H_2 + Cl_2 \rightarrow 2 HCl is 182 kJ$. Bond energies of H - H and Cl - Cl are 430 and 242 kJ/mol respectively. The H-Cl bond energy is : b) $427 \, kJ \, mo \, l^{-1}$ c) $336 k I mol^{-1}$ a) $245 k I mol^{-1}$ d) $154 k I mol^{-1}$ 219. Which is not correct? a) In an exothermic reaction, the enthalpy of products is less than that of reactants b) $\Delta H_{\text{fusion}} = \Delta H_{\text{sublimation}} - \Delta H_{\text{vaporisation}}$ c) A reaction for which $\Delta H < 0$ and $\Delta S > 0$ is possible at all temperatures d) ΔH is less than ΔU for the reaction, $C(s) + (1/2)O_2(g) \rightarrow CO_2(g)$ 220. A cylinder of gas is assumed to contain 11.2 kg of butane $(C_4 H_{10})$. If a normal family needs 20000 kJ of energy per day. The cylinder will last (Given that ΔH for combustion of butane is -2658 kJ) d) 24 days a) 20 days b) 25 days c) 26 days 221. The enthalpy of formation of water from hydrogen and oxygen is $-286 kJ mol^{-1}$. The enthalpy of decomposition of water into hydrogen and oxygen is: b) $-143 kJ mol^{-1}$ c) +286 k I mol⁻¹ d) + 143 k I mol⁻¹ a) $-286 \, k \, I \, mol^{-1}$ 222. An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If T_i is the initial temperature and T_f is the final temperature, which of the following statements is correct? a) $(T_f)_{irrev} > (T_f)_{rev}$ b) $T_f > T_i$ for reversible process but $T_f = T_i$ for irreversible process c) $(T_f)_{rev} = (T_f)_{irrev}$ d) $T_f = T_i$ for both reversible and irreversible processes 223. Heat of fusion of a molecular solid is : a) Very high b) High c) Low d) None of these 224. Which plot represents for an exothermic reaction? b) | c) d) a) |

225. For a spontaneous chemical change the Gibbs energy change is:

a) Positive

b) Negative

c) Zero

- d) Depends whether the reaction is exothermic or endothermic
- 226. An ideal gas undergoing expansion in vacuum shows:
 - a) $\Delta U=0$ b) W=0 c) q=0 d) All of these
- 227. Select the incorrect statement
 - a) *PV* work is usually negligible for solid and liquid
 - b) For a closed system with P-V work only, an isobaric process that has q=+ve must have $\Delta T=+ve$.
 - c) For a cyclic process q=0
 - d) Black phosphorus is most stable form of P but $H^{\circ}_{f} = 0$ for white phosphorus.
- 228. Entropy decreases during:
 - a) Crystallization of sucrose from solution
 - b) Rusting of iron
 - c) Melting of ice

a) 20 ℃

- d) Vaporization of camphor
- 229. At 27 °C latent heat of I fusion of a compound is 2930 J/mol. Entropy change during fusion is:

^{a)} 9.77 J/mol K	^{b)} 10.77 J / mol K	^{c)} 9.07 J/mol K	d) 0.977 J/mol K		
230. The values of ΔH and					
$C_{(graphite)}$ + $CO_2(g)$	→ 2 <i>CO</i> (<i>g</i>)				
Are $170 kJ$ and $170 J$	K^{-1} respectively. this reaction	will be spontaneous at:			
^{a)} 510 K	^{b)} 710 K	^{c)} 910 K	d) ₁₁₁₀ <i>K</i>		
231. The temperature of 5 mL of a strong acid increases by 5 °C when 5 mL of strong base is added to it. If 10 mL of					
each is mixed and con	nplete neutralisation takes plac	e then rise in temperature	will be		

c) 5 ℃

232. When an ideal gas is compressed adiabatically and reversibly, the final temperature is:

b) 10 °C

- a) Higher than the initial temperature
- b) Lower than the initial temperature
- c) The same as the initial temperature
- d) Dependent on the rate of compression
- 233. In a closed insulated container, a liquid is stirred with a paddle to increase its temperature. In this process, which of the following is true
 - a) $\Delta E = W \neq 0, Q = 0$ b) $\Delta E \neq 0, Q = W = 0$ c) $\Delta E = W = Q = 0$ d) $\Delta E = 0, Q \neq 0, W = 0$

234. If the bond dissociation energies of XY, X_2 and Y_2 (all diatomic molecules) are in the ratio of 1: 1: 05 and ΔH for the formation of XY is -200 kJ mol^{-1} . The bond dissociation energy of X_2 will be

a) $100 kJ mo l^{-1}$ b) $800 kJ mo l^{-1}$ c) $300 kJ mo l^{-1}$ d) $400 kJ mo l^{-1}$

d) 2 ℃

235. The dissociation energy bond is:	y of CH_4 and C_2H_6 are res	pectively 360 and 620 kcal	/mol. The bond energy of $C-C$		
^{a)} 260 kcal/mol	^{b)} 180 kcal/mol	c) 130 kcal/mol	^{d)} 80 kcal /mol		
	nperature of the calorimeter in solar heat of decomposition fo	•	capacity of the system is 1.23		
a) —7.53 kJ/mol	b) — 398.1 kJ / mol	c) −16.1 kJ/mol	d) $-602 kJ/mol$		
	$I_2, Cl_2, Br_2 \text{ and } I_2 \text{ are } 155.4,$	243.6, 193.2 and 151.2 kJ	mol^{-1} respectively. The strongest		
bond is : a) $F - F$	b) Cl-Cl	c) Br-Br	d) _{I-I}		
238. The enthalpy changes of	f formation of the gaseous oxi	ides of nitrogen $(N_2 O \text{ and })$	NO) are positive because of:		
a) The high bond energy	gy of the nitrogen molecule				
b) The high electron af	anity of oxygen atoms				
c) The high electron af	anity of nitrogen atoms				
d) The tendency of oxy	gen to form Q^{2-ii}				
239. If 900 J/g of heat is exc	changed at boiling point of wat	ter then increase in entropy			
a) 43.4 J/mol	b) 87.2 J/mol	c) 900 J/mol	d) Zero		
240. A reaction occurs spon	aneously if:				
a) $T \Delta S = \Delta H$ and both ΔH and ΔS are positive					
b) $T \Delta S > \Delta H$ and bot	h ΔH and ΔS are positive				
c) $T \Delta S < \Delta H$ and bot	h ΔH and ΔS are positive				
d) $T \Delta S > \Delta H$ and ΔH	d) $T \Delta S > \Delta H$ and ΔH is positive and ΔS are negative				
241. $H_2(g) + Cl(g) = 2 HCl(g); \Delta H(298 K) = 22.06 kcal$. For this reaction, ΔU is equal to:					
a) $-22.06+2 \times 10^{-3}$	< 298 × 2 kcal				
b) $-22.06+2 \times 298 kc$	cal				
c) -22.06-2×298×	4 kcal				
d) –22.06 kcal					

242. The heat change taking place during the reaction $H_2O(l) \rightarrow H_2O(g)$ is: [Given, ΔH_f of $H_2O(g) = -57$ kcal, $\Delta H_f = H_2O(l) = -68.3$ kcal i

a) +11.3 kcal	b) –11.3 <i>kcal</i>	c) _115.3 <i>kcal</i>	d) +115.3 kcal
243. ΔH for $CaCO_3(s)$	$\rightarrow CaO(s) + CO_2(g)$ is 176 k	$J mol^{-1}$ at 1240 K. The ΔU	J for the change is equal to:
a) 160 kJ	b) 165.6 kJ	c) 186.3 kJ	d) 180.0 kJ

244. When one mole of monoatomic ideal gas at TK undergoes adiabatic change under a constant external pressure of 1 atm changes volume from 1 L to 2 L. The final temperature in Kelvin would be

a)
$$\frac{T}{2^{2/3}}$$
 b) $T + \frac{2}{3 \times 0.0821}$ c) T d) $T - \frac{2}{3 \times 0.0821}$

245. ΔH° , (298 K) of methanol is given by the chemical equation

a) $CH_4(g) + \frac{1}{2}O_2(g) \rightarrow$	$CH_{3}OH(g)$	b) $C(graphite) + \frac{1}{2}O_2(g)$	$+2H_2(g) \rightarrow CH_3OH(l)$
c) $C(diamond) + \frac{1}{2}O_2(d)$	$g) \rightarrow CH_3OH(l)$	d) $CO(g) + 2H_2(g) \rightarrow C$	$H_3OH(l)$
246. For the reaction, $C_2 H_4$		$H_2O; \Delta U = -1415 kJ$. The	en ΔH at 27°C is :
a) -1410 kJ	b) -1420 kJ	c) +1420 kJ	d) +1410 <i>KJ</i>
247. The heat of combustion ΔU at 25°C for the follo		bomb calorimeter is -670.48	$k cal mol^{-1}$ at 25°C. What is
$C_2H_5OH(l)+\frac{7}{2}O_2(g)$ -	$\rightarrow 2CO_2(g) + 3H_2O(g)$		
a) _335.24 <i>kcal</i>	b) –669.28 kcal	c) -670.48 kcal	d) +670.48 kcal
248. Which has the least entro	ру?		
a) Graphite	b) Diamond	c) $_{oldsymbol{N}_2}(g)$	d) $N_2 O(g)$
	s between temperature T and	400 K (T > 400 K). If efficiency	ciency of engine is 25%, the
temperature T is: a) $400 K$	b) 500 K	c) 533.3 K	d) 600 K
250. It is a general principle th	hat if a system has the less energy	rgy then it is:	
a) More stable	b) Less stable	c) Unstable	d) More unstable
251. For the reaction, $N_2(g)$ +	$3H_2(g) \rightarrow 2NH_3(g)$, which	is true?	
a) $\Delta H = \Delta U$	b) $\Delta H < \Delta U$	c) $\Delta H > \Delta U$	d) None of these
^{252.} $H_2 + \frac{1}{2}O_2 \rightarrow H_2O;$			
$\Delta H = -68.39$	()		
$K + aq. \rightarrow KOH(aq) + d$	$\frac{1}{2}H_2;$		
$\Delta H = -48 kca$ $KOH + aq. \rightarrow KOH aq$ $\Delta H = -14 kcal.$ The heat of formation (in ^{a)} -68.39+48-14); (iii)		
^{b)} -68.39-48+14			
c) 68.39-48+14			
d) 68.39+48+14			
253. Which of the following e	xpressions represents the first	law of thermodynamics?	
a) $\Delta E = -q + W$	b) $\Delta E = q - W$	c) $\Delta E = q + W$	d) $\Delta E = -q - W$

254. A thermodynamic state function is:

a) One which obeys all the laws of thermodynamics

b) A quantity which is used to measure thermal changes

c) A quantity whose value is independent of the path

- d) A quantity which is used to express pressure-volume work
- 255. When two atoms of hydrogen combine to form a molecule of hydrogen gas, the energy of the molecule is:
 - a) Greater than that of separate atoms
 - b) Equal to that of separate atoms
 - c) Lower than that of separate atoms
 - d) Sometimes lower and sometimes higher
- 256. The enthalpies of formation of N_2O and NO are 28 and 90 kJmo l^{-1} respectively. The enthalpy of the reaction, $2N_2O(g) + O_2(g) \longrightarrow 4NO(g)$ is equal to : a) 8 kJ d) 304 kJ b) 88 kJ c) -16kI257. Heat of combustion of CH_4 , C_2H_4 , C_2H_6 are -890, -1411and -1560 kJ/mol respectively. Which has the lowest calorific fuel value in kJ/g? d) All same c) $C_2 H_c$ a) CH_{4} b) $C_2 H_4$ 258. Given that $\Delta H_{r_{298K}} = -54.07 \text{ kJ mol}^{-1}$ and $\Delta S_{r_{298K}} = 10 \text{ J mol}^{-1}$ and $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$. The value of $\log_{10} K$ for a reaction, $A \rightleftharpoons B$ is: c) 95 d) 100 a) 5 b) 10 259. Hess's law is based on b) Law of conservation of energy a) Law of conservation of mass c) First law of thermodynamics d) None of the above 260. What is the entropy change (in $JK^{-1}mol^{-1}$) when one mole of ice is converted into water at 0 °C? (The enthalpy change for the conversion of ice to liquid water is $6.0 kJ mol^{-1} at 0 °C$) d) 21.98 b) 2.013 c) 2.198 a) 20.13261. Which is an extensive property of the system? a) Temperature c) Refractive index d) Viscosity b) Volume 262. For the reaction; $C_2H_5OH(l)+3O_2(g) \rightarrow 2CO_2(g)+3H_2O(l)$ which one is true? a) $\Delta H = \Delta U - RT$ b) $\Lambda H = \Lambda U + RT$ c) $\Delta H = \Delta U + 2 RT$ d) $\Delta H = \Delta U - 2RT$ 263. The heat atomisation of $PH_3(g)$ is 228 kcal per mol and that of $P_2H_4(g)$ is 335 kcal per mol. The energy of P - P bond is a) 102 kcal/mol b) 31 kcal/mol c) 26 kcal/mol d) 204 kcal/mol 264. If, $H_2(g)$ + $Cl_2(g) \rightarrow 2 HCl$; $\Delta H = -44 kcal$ $2 Na(s) + 2 HCl(g) \rightarrow 2 NaCl(s) + H_2(g);$ $\Delta H = -152 \, kcal$ then, $Na(s) + 0.5C l_2(q) \rightarrow NaCl(s); \Delta H = ?$ a) 108 kcal b) 196 kcal

c) –98 kcal

d) 54 kcal

265. From the reaction, $P_{(i)} \longrightarrow P_{(i)}; \Delta H = -18.4 \, kJ$ it following that :

a) Red P is readily formed from white P

b) White P is readily formed from red P

c) White P cannot be converted to red P

d) White P can be converted into red P and red P is more stable

266. If $H^{+i+OH^{-i-H,O+137i}}$ kcal then the heat of neutralization for complete neutralization of one mole of H_2SO_4 by a base will be :

^{a)}
$$-13.7 \, kcal$$
 ^{b)} $-27.4 \, kcal$ ^{c)} $-6.85 \, kcal$ ^{d)} $-3.425 \, kcal$

267. Assuming that water vapours are ideal gas. The change in internal energy (ΔU) when 1 mol of water is vaporized at 1 bar pressure and 100°C. (Given molar enthalpy of vaporization at 1 bar and 373 K is 41 kJ mol^{-1} and $R=8.3 J mol^{-1}K^{-1}$; will be:

a)
$$41.00 kJ mol^{-1}$$
 b) $4.100 kJ mol^{-1}$ c) $3.7904 kJ mol^{-1}$ d) $37.904 kJ mol^{-1}$

268. Change in entropy for a reaction is given by:

a) $2.303 nR \log_{10} \frac{V_2}{V}$	b) $nR \log_e \frac{V_2}{V}$	c) $nR \log_e \frac{P_1}{P_1}$	d) All of these
V_1	\mathcal{V}_{1}	P_2	

269. At constant pressure and temperature, the direction of any chemical reaction is one where, the ... decrease.

a) Entropy b) Enthalpy c) Gibbs energy d) None of these

270. Which of the following conditions will always lead to a non spontaneous change?

^{a)} Positive ΔH and positive ΔS	b) Negative ΔH and negative ΔS
c) Positive ΔH and negative ΔS	d) Negative ΔS and positive ΔS

271. Equal volume of two monoatomic gases, A and B, at same temperature and pressure are mixed. The ratio of specific heats (C_P/C_V) of the mixture will be: a) 0.83 b) 1.50 c) 3.3 d) 1.67

272. Two atoms of hydrogen combine to form a molecule of hydrogen gas, the energy of the H_2 molecule is :

a) Greater than that of separate atoms

b) Equal to that of separate atoms

c) Lower than that of separate atoms

d) Sometimes lower and sometimes higher

273. The heats of neutralization of four acids A, B, C and D are -13.7, -9.4, -11.2 and -12.4 kcal respectively when they are neutralized by a common base. The acidic character obeys the order :

^{a]} A>B>C>D	b $A > D > C > B$	$^{CJ}D>C>B>A$	a) $D>B>C>A$
^{274.} $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2$	$H_2O(l)$; $\Delta H = -68$ kcal. The	e heat change, for the decon	position of 3.6 g of water is
a) 136 kcal	b) 13.6 kcal	c) 1.36 kcal	d) 68 kcal

275. When 500 J heat is given to the gas X in an isobaric process its work done comes out as 142.8 J. The gas X is

:

a) _{O2}	b) $_{NH_3}$	c) _{He}	d) <i>SO</i> ₂		
	ocket fuel which undergoes con	mbustion according to the eq	uation		
$B_2H_6(g)$ +3 $O_2(g) \rightarrow B$					
	Calculate the enthalpy change for the combustion of diborane. Given				
$(\mathbf{i})^2 B(\mathbf{s}) + \frac{3}{2} O_2(\mathbf{g}) \to B$	(i) $2B(s) + \frac{3}{2}O_2(g) \rightarrow B_2O_3(s); \Delta H = -1273$ kJ per mol				
(ii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H$	$H_2 O(l)$; $\Delta H = -286$ kJ per mo	ol			
(iii) $H_2O(l) \rightarrow H_2O(g)$; $\Delta H = 44$ kJ per mol				
	$B_2H_6(g);\Delta H=36$ kJ per mol				
a) +2035 kJ per mol	b) –2035 kJ per mol	c) +2167 kJ per mol	d) –2167 kJ per mol		
277. To calculate the amount of work done in joules during reversible isothermal expansion of an ideal gas, the volume must be expressed in					
a) m^3 only	b) dm^3 only	c) $c m^3 only$	d) Any of these		
278. Calorific value of carbol	ydrates is approximately:				
a) 4.0 kcal/g	b) 16.0 kcal/g	c) 20 kcal/g	d) 9.0 kcal/g		
279. For a given substance	T_1 and T_2 are freezing point	t and melting point of a su	ubstance. Which of the graph		
	represents correctly, the variation of ΔS with temperature?				
	b) $\triangle S \begin{bmatrix} I_2 \\ I_1 \\ T_1 \end{bmatrix}$	$T_1 T_2$	T_1 T_2		
a) $\Delta S = T_1$	$ b \rangle \Delta S -T_1 T_1 $	c) △S	d) $\triangle S \xrightarrow{T_1 T_2}$		
T	T	T	Т		
280. Which is correct for an endothermic reaction?					
^{a)} ΔH is positive	^{b)} ΔH is negative	c) ΔE is negative	$d \Delta H = 0$		
281. When a solid melts, there is:					
a) An increase in enthalpy					
b) No change in enthalpy					
c) A decrease in enthalp	c) A decrease in enthalpy				
d) A decrease in internal energy					
282. Maximum entropy will be in which of the following?					

a) Ice	b) Liquid water	c) Snow	d) Water vapour

- 283. When enthalpy and entropy change for a chemical reaction are -2.5×10^3 cal and 7.4 cal deg⁻¹ respectively predict the reaction at 298 K is a) Spontaneous b) Reversible c) Irreversible d) Non-spontaneous
- 284. A closed flask contains water in all its three states, solids, liquid and vapour at $0 \,{}^{\circ}C$. In this situation the average KE of the water molecule will be: a) Maximum in vapour state

b) Maximum in solid state

c) Greater in the liquid than in vapour state

d) Same in all the three states

285. If $C(s)+O_2(g) \rightarrow CO_2(g); \Delta H = r$ and $CO(g)+\frac{1}{2}O_2 \rightarrow CO_2(g); \Delta H = s$ then, the heat of formation of CO is a) r+s b) r-s c) s-r d) rs

286. The value of ΔH for the reaction $Cu^{+i \langle g \rangle + I^{-i \langle g \rangle - Cu' \langle g \rangle i}}$ is $-446 kJ mo I^{-1}$. If the ionisation energy of Cu(g) is $745 kJ mo I^{-1}$, and the electron affinity of (I)g is -i295kJ mo I^{1} , then the value of ΔH^{\Box} for the formation of one mole of CuI(g) from Cu(g) and I(g) is :

^{a)}
$$-446 kJ mo l^{-1}$$
 ^{b)} $450 kJ mo l^{-1}$ ^{c)} $594 kJ mo l^{-1}$ ^{d)} $4 kJ mo l^{-1}$

287. The entropy of the universe:

- a) Increasing and tending towards maximum value
- b) Decreasing and tending to be zero
- c) Remains constant
- d) Decreasing and increasing with a periodic rate
- 288. The internal energy of a substance
 - a) Increases with increase in temperature
 - b) Decreases with increases in temperature
 - c) Can be calculated by the relation $E = mc^2$
 - d) Remains unaffected with change in temperature

289. ΔH_f of graphite is 0.23 kJ/mol and ΔH_f of diamond is 1.896 kJ/mole. $\Delta H_{transition}$ from graphite to diamond is :

a) 1.66 kJ/mole b) 2.1 kJ/mole c) 2.33 kJ/mole d) 1.5 kJ/mole

290. When two moles of hydrogen expands isothermally against a constant pressure of 1 atm, at 25°C from 15 L to 50 L, the work done (in litre atm) will be
a) 17.5 b) 35 c) 51.5 d) 70

291. Which value of heat of formation indicates that the product is the least stable?

a) $-94 kcal$ b) $-231.6 cal$ c) $+21.4 kcal$ d) $+64$	64.8 kcal
---	-----------

292. The heat of combustion for C, H₂and CH₄ are -349.0, -241.8 and -906.7 kJ respectively. The heat of formation of CH₄ is:
a) 174.1 kJ
b) 274.1 kJ
c) 374.1 kJ
d) 74.1 kJ

293. Given,

(i)
$$S+O_2 \rightarrow SO_2$$
, $\Delta H = -298.2 \text{ kJ}$
(ii) $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$, $\Delta H = -98.7 \text{ kJ}$
(iii) $SO_3 + H_2O \rightarrow H_2SO_4$, $\Delta H = -130.2 \text{ kJ}$
(iv) $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$, $\Delta H = -287.3 \text{ kJ}$
Then the enthalpy of formation of H_2SO_4 at 298 K will be

^{a)} -814.4 kJ ^{b)} +320.5 kJ ^{c)} -650.3 kJ ^{d)} -933.7 kJ

294. Based on the first law of thermodynamics, which one of the following is correct?

- a) For an isochoric process= $\Delta E = -Q$ b) For an adiabatic process= $\Delta E = -W$
- c) For an isothermal process=Q = +W d) For a cyclic process=Q = -W

295. According to Hess's law, the heat of reaction depends upon

- a) Initial condition of reactants b) Initial and final conditions of reactants
- c) Intermediate path of the reaction d) End conditions of reactants

296. In which case, a spontaneous reaction is possible at any temperature?

a) $\Delta H - ve$, $\Delta S + ve$ b) $\Delta H - ve$, $\Delta S - ve$ c) $\Delta H + ve$, $\Delta S + ve$ d) In none of the cases

297. Select the incorrect statement :

a) Combustion of F_2 is exothermic

- b) Combustion of N_2 to N_2O is endothermic
- c) A good fuel have higher calorific value
- d) Nutrition calorie = 10^3 calories or 1 cal or 1 kcal

298. The enthalpy change for the following reaction. $NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$ is -57 kJ. Predict the value of the enthalpy change in the following reaction :

Ba $(OH)_{a}$ + $H_{a}SO_{a}(aa) \rightarrow BaSO_{a}(s)$ +2 $H_{a}O(l)$

a)
$$-57 kJ$$
 b) $-76 kJ$ c) $-114 kJ$ d) $-228 kJ$

299. At 27°C one mole of an ideal gas is compressed isothermally and reversible from a pressure of 2 atm to 10 atm. The value of ΔE and q are (R=2 cal)
a) 0, -965.84 cal
b) -965.84 cal, -865.58 cal

c) +865.58 cal, -865.58 cal d) +965.84 cal, +865.58 cal

300. Change in entropy is negative for:

a) Bromine $(l) \longrightarrow$ Bromine (g)

b)
$$C(s) + H_2O(g) \longrightarrow CO(g) + H_2(g)$$

c)
$$N_2(g, 10 atm) \longrightarrow N_2(g, 1 atm)$$

d) $Fe(1 mol, 400 K) \longrightarrow Fe(1 mol, 300 K)$

301. Hess's law is related to:

a) Change in heat during a reaction

b) Rates of reaction

- c) Equilibrium constant
- d) Influence of pressure on volume of a gas

302. Heat of dissociation of benzene of elements is 5335 kJ/mol. The bond enthalpies of

$$-C-C-;C=C \text{ and } -C-H$$

$$|||| i$$

bonds are 347.3, 615 and 416.2 kJ respectively. Resonance energy of benzene is

ä	a) 1.15 kJ	b) 15.1 kJ	c) 937.2 kJ	d) 1511 kJ	
	303.2 mole of ideal gas at 27 °C temperature is expanded reversibly from 2 <i>litre</i> to 20 <i>litre</i> . Find entropy change $(R=2 cal/mol K)$.				
ĉ	a) 92.1	b) 0	c) 4	d) _{9.2}	
304. V	Work done by the system o	n surroundings is:			
â	a) Positive	b) Negative	c) Zero	d) None of these	
	What is ΔE for system the system?	hat does 500 cal of work of	n surrounding and 300 cal	of heat is absorbed by the	
	a) -200 cal	b) -300 cal	c) +200 cal	d) +300 cal	
306. V	Which fuel provides the hig	ghest calorific value?			
ä	a) Charcoal	b) Kerosene	c) Wood	d) Dung	
i (307. The value of ΔE for combustion of 16 g of CH_4 is -885389 J at 298 K. The ΔH combustion for CH_4 in $Jmol^{-1}$ at this temperature will be (Given that, $R=8.314 J K^{-1} mol^{-1}$ c)				
	^{a)} —55337 Human body is an examp	^{b)} -880430	c) _885389	d) _890348	
			c) Isolated system	d) None of these	
	a) Open system	b) Closed system	c) Isolated system		
(309. A hypothetical reaction $A \rightarrow 2B$, proceeds through following sequence of steps (i) $A \rightarrow C$; $\Delta H = q$ (ii) $C \rightarrow D$; $\Delta H = v$				
($(\text{iii})\frac{1}{2}D \to B; \Delta H = x$				
	Then the heat of reaction			4)	
	(q-v+2x)	b) $q+v-2x$	c) $q + v + 2x$	d) $q+2v-2x$	
		ubstances at absolute zero by	-	imics should be taken as	
â	a) 100		b) 50		
(c) Zero		d) Different for different substance		
311. Identify the state quantity among the following:					
â	a) q	b) $q - W$	c) q+W	d) _{q/W}	
312. For the following two reactions, $(i)CH_4(g)+2O_2(g) \rightarrow CO_2(g)+2H_2O$ $\Delta H = -890.4kJ$ $(ii)2HgO(s) \rightarrow 2Hg(l)+O_2(g)-181.6kJ$ Which one of the following statements is correct? a) Both of them are exothermic					
ł	b) Both of them are endothermic				
C	c) (i) is exothermic and (ii) is endothermic				
C	d) (i) is endothermic and (ii) is exothermic				

313. From the following data, the heat of formation of $Ca[OH]_2(s)$ at 18°C is kcal.

$$CaO(s]+H_2O(l) = Ca(OH)_2(s);$$

$$\Delta H = -15.26 kca1....(i)$$

$$H_2O(l) = H_2(g) + \frac{1}{2}O_2(g);$$

$$\Delta H = -68.37 kca1.....(ii)$$

$$Ca(s) + \frac{1}{2}O_2(g) = CaO(s);$$

$$\Delta H = -151.80 kca1.....(iii)$$

$$a) -98.69$$

$$b) -235.43$$

$$c) 194.91$$

$$d) 98.69$$

$$314 \text{ If } \frac{1}{2}X_2O(s) \longrightarrow X(s) + \frac{1}{4}O_2(g); \Delta H = 90 kJ \text{, then heat change during reaction of metal 'X with one more of O_2 to form oxide to maximum extent is:
a) 300 kJ b) -360 kJ c) -180 kJ d) +180 kJ$$

$$315. Decrease in Gibbs energy of a reacting system indicates to:
a) Exothermic reaction b) Equilibrium reaction c) Spontaneous reaction d) Slow reaction
$$316. S + \frac{3}{2}O_2 \rightarrow SO_3 + 2 k cal;$$
So $Q_2 + \frac{1}{2}O_2 = SO_3 + y k cal;$
The heat of formation of SO_2 is:
a) $y - 2x$ b) $(2x + y)$ c) $(x + y)$ d) $2x/y$

$$317. The standard molar heat of formation of ethane, CO_2 and water $|l|$ are respectively $-21.1 - 94.1$ and -68.3 kcal.
The standard molar heat of combustion of ethane will be
a) $-372 kcal$ b) $162 kcal$ c) $-240 kcal$ d) $183.5 kcal$

$$318. Among them intensive property is$$

a) Mass b) Volume c) Surface tension d) Enthalpy

$$319. Equal volume of C_2H_2 and H_2 are combusted under identical condition. The ratio of their heat of combustion is :
 $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow 2CO_2(g) + H_2O(g);$$$$$$$

- $\Delta H = -1300 \, kJ$ a) _{5.37/1}
- b) 1/5.37
- c) _{1/1}
- d) None of these
- 320. 1 *litre atmosphere* is equal to:

	a) 101.3 <i>J</i>	^{b)} 24.206 cal	c) $101.3 \times 10^7 erg$	d) All of these		
321. For the precipitation of $AgCl$ by Ag^{+ii} ions and HCl :						
	a) $\Delta H = 0$	b) $\Delta G = 0$	c) $\Delta G = -ve$	d) $\Delta H = \Delta G$		
322	322. When a certain amount of ethylene was burnt $6226kJ$ heat was evolved. If heat of combustion of ethylene is 1411 kJ, the volume of O_2 (at NTP) that entered into the reaction is:					
	^{a)} 296.5 mL	b) 296.5 <i>litre</i>		d) 22.4 litre		
323	323. The heat change for the reaction, $C(s)+2S(s) \longrightarrow CS_2(l)$ is called:					
	a) Heat of solution of CS_2					
	b) Heat of fusion of CS_2					
	c) Heat of formation of C	S_2				
	d) Heat of combustion of a	carbon				
324				respectively and the enthalpy		
		$) \rightarrow CaO(s) + CO_2(g)$ is 42 k b) $-202 kI$				
225	a) $-42kJ$	20210	c) +202 kJ	d) $-288 kJ$		
323	gas is equal to:	P vs log v for reversible adia	adatic process and reversible	isothermal process of an ideal		
	a) _γ	b) _{1-γ}	c) _{y-1}	d) $\frac{1}{v}$		
326	5. In which of the following	processes of neutralization ma	agnitude of $\Delta H_{neutralisation}$ is	γ less than that of $\Delta H_{ionisation}$ of		
	water? a) HCl+NaOH	b) H_2SO_4 +NaOH		d) HCIO +KOH		
327	a) $HCl + NaOH$ 327. A boiled egg show a/anin entropy. b) $H_2SO_4 + NaOH$ c) $CH_3COOH + NaOH$ d) $HClO_4 + KOH$					
	a) Increase	b) Decrease	c) No change	d) None of these		
328	328. Which unit represents largest amount of energy?					
020	a) Calorie	b) Joule	c) Erg	d) Electron volt		
220	-	2		-		
525	from carbon and oxygen g	carbon to CO_2 is -393 kJ/	mol. The heat released upon	formation of 35.2 g of CO_2		
	a) $+325 kJ$	b) $-31.5 kJ$	c) $-315 kJ$	d) +31.5 <i>kJ</i>		
330	330. A thermally isolated gaseous system can exchange energy with the surroundings. The mode of transference of					
	energy can be: a) Heat	b) Work	c) Heat and radiation	d) None of these		
331. Warming ammonium chloride with sodium hydroxide in a test tube is an example of:						
	a) Closed system	b) Isolated system	c) Open system	d) None of these		
332	332. Identify the correct statements regarding entropy					
	a) At $0 ^{\circ}C$, the entropy of	a perfectly crystalline	b) At absolute zero of tem	perature, the entropy of all		
substance is taken to be zero perfectly crystalline			perfectly crystalline sub	substance is positive		
	c) At absolute zero of temperature, the entropy of all crystalline substance is taken to be negatived) At absolute zero of temperature, the entropy of a perfectly crystalline substance is taken to be zero			· · ·		
333. The matter has highest entropy in:						

a) Solid state

d) Equal in all

^{334.} $H_2(g) + \frac{1}{2}O_2(g) = H_2O(l); \Delta H_{298K} = -68.32 \, kcal$. Heat of vaporization of water at 1 atm and 25°C is 10.52 kcal. The standard heat of formation (in kcal) of 1 mole of water vapour at 25°C is : a) -78.84 b) 78.84 c) +57.80 d) -57.80

335. For vaporization of water at 1 atmospheric pressure, the values of ΔH and ΔS are 40.63 kJ mol⁻¹ and 108.8 JK⁻¹mol⁻¹, respectively. The temperature when Gibbs energy change (ΔG) for this transformation will be zero, is: a) 273.4 K b) 393.4 K c) 373.4 K d) 293.4 K

336. For an adiabatic process:

a)
$$Q=+W$$
 b) $Q=0$ c) $\Delta U=q$ d) $P\Delta V=0$

337. The $\Delta H_{ionisation}^{\square}$ for HCN and CH_3COOH are 45.2 and 2.1 kJ mo l^{-1} . Which of the following correct?

- a) $pK a_{HCN} < pK a_{C H_{3}COOH}$ b) $pK a_{HCN} > pK a_{C H_{3}COOH}$ c) $pK a_{HCN} = pK a_{C H_{3}COOH}$
- d) None of the above

338. Which of the following taking place in the blast furnace is endothermic?

a) $CaCO_3 \rightarrow CaO + CO_2$ b) $2C + O_2 \rightarrow 2CO$ c) $C + O_2 \rightarrow CO_2$ d) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

339. Hess's law is used to calculate

a) Enthalpy of reaction b) Entropy of reaction

b) Temperature

c) Work done in reaction

340. For spontaneity of a cell, which is correct?

a)
$$\Delta G = 0, \Delta E = 0$$

b) $\Delta G = -ve, \Delta E = 0$
c) $\Delta G = +ve, \Delta E = +ve$
d) $\Delta G = -ve, \Delta E = +ve$
341. If heat of neutralisation is -13.7 kcal and $H_f^0 H_2 O = -68$ kcal, then enthalpy of $O H^{-ii}$ would be :

d) All of these

a)
$$54.3 kcal$$
 b) $-54.3 kcal$ c) $71.3 kcal$ d) $-71.3 kcal$

342. Work done in reversible isothermal process is given by:

a) 2.303
$$RT \log \frac{V_2}{V_1}$$
 b) $\frac{nR}{(\gamma - 1)} (T_2 - T_1)$ c) 2.303 $RT \log \frac{V_1}{V_2}$ d) None of these

343. Internal energy of an ideal gas depends on:

a) Pressure

c) Volume

d) None of these

344. For a given substance, melting point T_B and freezing point is T_A , which of the following represents correct variation of $\Delta S vs T$?

345. Bond energies of (H-H), (O = O) and (O-H) are 105, 120 and 220 kcal/mol respectively, then ΔH in the

reaction, $2H_2(g)+O_2(g)$) $\rightarrow 2 H_2 O(l)$:		
	b) -130	c) ₋₁₁₈	d) ₋₅₅₀
346. The apparatus generally u	sed for measuring heat change	es is:	
a) Voltameter	b) Voltmeter	c) Calorimeter	d) Coulometer
347. The enthalpy change for t	the process, $C(s) \longrightarrow C(g)$ is 1	known as enthalpy of :	
a) Fusion	b) Vaporisation	c) Combustion	d) Sublimation
respectively. Calculate the $CH_4(g)+2O_2(g)=CO_2$	the heat change (in kcal) in the f $I_2(g) + 2H_2O(l)$		-94.1 and -68.3 kcal mol ⁻¹
a) -144.5	b) -180.3	c) -248.6	d) _{-212.8}
349. Which is the best definition	on of heat of neutralization?		
acid is neutralized by dilute solution at a stat c) The heat set free or ab containing one gram-en of an acid neutralized	sorbed when a normal solution quivalent by a normal solution containin f a base at a stated temperature	 an acid is neutralized by stated temperature d) The heat set free when acid is neutralized by or g in dilute solution at a stee 	ne gram-equivalent of a base
a) Chemical energy	b) Activation energy	c) Frictional energy	d) None of these
351. Enthalpy change for the r The dissociation energy o a) +217.4 kJ		- 869.6 kJ c) -869.6 kJ	d) +434.8 <i>kJ</i>
352. Which of the following is	true for an adiabatic process?		
a) $\Delta H = 0$	b) $\Delta W = 0$	c) $\Delta q = 0$	$d_{\Delta V} = 0$
353. Which of the following	is an intensive property?		
a) Volume	b) Enthalpy	c) Surface tension	d) Free energy
354. $C_6 H_{12}(l) + 9O_2(g) = 6H$	$T_2 O(l) + 6 C O_2(g); \Delta H_{298K} =$	-936.9 kcal.Thus:	
a) $-936.9 = \Delta U - (2 \times 2)$	$10^{-3} \times 298 \times 3$ kcal		
b) +936.9 = $\Delta U + (2 \times 1)$	$0^{-3} \times 298 \times 3$ kcal		
c) $-936.9 = \Delta U - (2 \times 2)$	$10^{-3} \times 298 \times 2$ kcal		
d) -936.9 = $\Delta U + (2 \times 1)$	$0^{-3} \times 298 \times 2$ kcal		
pressure, P is variable, is		pansion ΔV (at constant ter c) $W = -P\Delta V$	mperature), when the opposing d) None of these
356. If a gas has 2 atm and 5 a			-
-	111 pressure at 50 G and 27 V	C respectively. Then it will	
a) Cool on expansion		b) Warm on expansion	

357. Two moles of helium gas expanded isothermally and irreversible at 27°C from volume 1 d m³ to 1 m³ at constant pressure of 100 k Pa. Calculate the work done.
a) 99900 kJ
b) 99900 J
c) 34464.65 kJ
d) 34464.65 J

358. The efficiency of heat engine is maximum when:

a) Temperature of source $\dot{\iota}$ temperature of sink

b) Temperature of sink $\dot{\iota}$ temperature of source

c) Temperature difference of source and sink is minimum

d) Temperature difference of source and sink is maximum

359. Which one of the following has ΔS° greater than zero?

a) $CaO + CO_2(g) \rightleftharpoons CaCO_3(s)$ b) $NaCl(aq) \rightleftharpoons NaCl(s)$ c) $NaNO_3(s) \rightleftharpoons Na^{+\iota(aq) + NO_3^{-\iota(aq)\iota}\iota}$ d) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

360. A spontaneous change is one in which the system suffers

a) A lowering of entropy b) No energy change

c) An increase in internal energy

361. Which of the following are not state functions?

(I)
$$q+w$$
 (II) q
(III) w (IV) $H-TS$
(II), (III) \wedge (IV) b) (I), (II) \wedge (III) c) (II) \wedge (III) d) (I) \wedge (IV)

d) A lowering of free energy

362. An isolated system is that system in which:

a) There is no exchange of energy with the surroundings

b) There is exchange of mass and energy with the surroundings

c) There is no exchange of mass and energy with the surroundings

d) There is exchange of mass with the surroundings

363. Thermodynamics is concerned with:

a) Total energy of a system

b) Energy changes in a system

c) Rate of chemical change

d) Mass changes in nuclear reactions

364. Which of the reactions defines $\Delta H^{\Box} f$?

a)
$$C_{(diamond)} + O_2(g) \to CO_2(g)$$

b) $\frac{1}{2}H_2(g) + \frac{1}{2}F_2(g) \to HF(g)$
c) $N_2(g) + 3H_2(g) \to 2NH_3(g)$
d) $CO(g) + \frac{1}{2}O_2(g) \to CO_2(g)$

365. A process is taking place at constant temperature and pressure. Then

a) $\Delta H = \Delta E$	b) $\Delta H = T \Delta S$	c) $\Delta H = 0$	$^{d)}\Delta S=0$			
366. An isothermal process is	associated with:					
a) Constant entropy						
b) Constant temperature						
c) Constant enthalpy						
d) Large change in heat of	content					
367. $C(s)+O_2(g) \rightarrow CO_2(g)$ $2CO(g)+O_2 \rightarrow 2CO_2(g)$ The heat of formation a) -26.4 kcal	g ; $\Delta H = -135.2$ kcal	c) 26.4 kcal	d) 229.2 kcal			
5.1	$g];$ $^{-1} therfore :$ $H^{\Box}_{298K} = +450 cal mol^{-1}$ $H^{\Box}_{298K} = -450 cal mol^{-1}$ in graphite					
369. Enthalpy change for a rea						
a) The physical states of						
	ants for the same products					
c) The nature of interme	-					
d) The differences in init	ial and final temperature of in	volved substances				
370. Which of the following is	s correct option for free expar	nsion of an ideal gas under ad	liabatic condition?			
a) $q=0, \Delta T < 0, w \neq 0$	b) $q=0, \Delta T \neq 0, w=0$	c) $q \neq 0, \Delta T = 0, w = 0$	d) $q=0, \Delta T=0, w=0$			
371. For a reaction at 25°	371. For a reaction at 25 °C enthalpy change (ΔH) and entropy change (ΔS) are $-11.7 \times 10^3 J mol^{-1}$ $-105 J mol^{-1} K^{-1}$ respectively. The reaction is:					
372. Which of the following	g is a path function?					
a) Internal energy	b) Enthalpy	c) Work	d) Entropy			
during the process is:			n internal energy of the system			
a) $_{32J}$	b) $_{40J}$	c) 36 <i>J</i>	d) ₄₄ <i>J</i>			
374. Heat of reaction at consta	*	a) –	d)			
a) $\Sigma U_P - \Sigma U_R$	K I	c) $\Sigma H_P - \Sigma H_R$	K I			
375. Boiling point of a liquid	is 50 K at 1 <i>atm</i> and ΔH_{vap} .	= 460.6 <i>cal mol</i> ⁻¹ . What wil	1 be its <i>b</i> . <i>p</i> . at 10 <i>atm</i> ?			

2)	h)	a)	4)
^{a)} 150 K	^{b)} 75 K	c) 100 K	^d) 200 K
376. The change in the enthalp	by during the reaction, NaOH	+ $HCl \rightarrow NaCl + H_2O$, is c	alled :
a) Heat of reaction	b) Heat of neutralization	c) Heat of formation	d) Heat of liquefaction
$S_{R \to M}$ is:			kcal. The heat of transition of
^{a)} 70.96 kcal	^{b)} 71.03 kcal	c) –70 <i>cal</i>	d) +70 cal
378. Hess law is applicable for	the determination of heat of		
a) Reaction	b) Formation	c) Transition	d) All of these
379. A heat engine absorbs heat (Q_1+Q_2) this data a) Violates 1st law of the	_	eat Q_2 at temperature T_2 , we	ork done by the engine is
b) Violates 1st law of the	rmodynamics if a_1 is –ve		
c) Violates 1st law of the	rmodynamics if a_2 is $-i_{ve}$		
d) Does not violates 1st la	aw of thermodynamics		
380. In which of the following	condition a chemical reaction	a can not occur?	
a) ΔH and ΔS increase	and $T \Delta S > \Delta H$	b) ΔH and ΔS decrease a	and $\Delta H > T \Delta S$
^{c)} ΔH increase and ΔS	decreases	d) ΔH decreases and ΔS	increases
5 1	$(g); \Delta H = -393.5 kJ \dots$	(ii)	
_	is formed from graphite, is :		d) a s
a) - 1.5 kJ	b) $+1.5 kJ$	^{c)} +3.0 <i>kJ</i>	d) –3.0 <i>kJ</i>
382. Entropy change of fusion	at constant pressure is given b	by:	
a) $\Delta S_{(f)} = \frac{\Delta H_f}{T}$	b) $\Delta S_{(f)} = \frac{\Delta G_f}{T}$	c) $\Delta S_{(f)} = \frac{\Delta H_f}{\Delta T}$	d) None of these
383. At 27 °C, one mole of an The values of ΔE and q and q		ermally and reversibly from a	a pressure of 2 atm to 10 atm.
a) 0, -965.84 cal	× /	^{b)} -965.84 cal, -865.58	8 cal
c) +865.58 <i>cal</i> ,-865.5	8 cal	d) –865.58 cal, –865.58	8 cal

384. When hydrogen and oxygen burn to form water in an oxyhydrogen torch, the entropy change is:

a) Negative

b) Positive

c) Zero

d) May be positive or negative

385. The temperature coefficient of $e \cdot m \cdot f$ of a cell can be given by:

a)
$$\left(\frac{\partial E}{\partial T}\right)_{P} = \frac{\Delta S}{nF}$$
 b) $\left(\frac{\partial E}{\partial T}\right)_{P} = \left(\frac{E_{2} - E_{1}}{T_{2} - T_{1}}\right)_{P}$ c) $\left(\frac{\partial E}{\partial T}\right)_{P} = \left[\frac{\Delta H}{nF} + E\right]\frac{1}{T}$ d) All of these

386. The internal energy of one mole of a gas is:

a) $\frac{3}{2}RT$	b) <u><i>KT</i></u>	c) $\frac{RT}{2}$	d) $\frac{3KT}{2}$		
387. The resultant heat change called	2	ether it takes place in one or several stages. This statement is			
a) Lavoisier and Laplace	law	b) Hess's law			
c) Joule's law		d) Le-Chatelier's principle	2		
388. ΔH for transition of cart	oon in the diamond form to ca	arbon in the graphite form, is	s - 453.5 cal. This suggests that		
: a) Graphite is chemically	different from diamond				
b) Graphite is as stable as	diamond				
c) Graphite is more stable	e than diamond				
d) Diamond is more stabl	e than graphite				
389. The enthalpy of fusion of	ice per mole is				
a) 18 kJ	b) 8 kJ	c) 80 kJ	d) 6 kJ		
390. For the reversible vaporis	ation of water at 100 $^{\circ}C$ and	1 atmospheric pressure, ΔG	is equal to:		
a) ΔH	b) Δ <i>S</i>	c) Zero	d) $\Delta H/T$		
	n of a liquid is $6 k Jmo l^{-1}$. If	the entropy change is $16 J mol^{-1} K^{-1}$, the boiling point of			
the liquid is a) 273 K	b) ₃₇₅ ℃	c) 375 K	^{d)} 102 ℃		
392. The enthalpy of fusion of	water is 1.435 kcal/mol. T	he molar entropy change for the melting of ice at $0 {}^{\circ}C$ is:			
a) 5.260 $cal/(mol K)$	b) 0.526 cal /(mol K)	c) $10.52 cal/(mol K)$	d) 21.04 cal /(mol K)		
393. Which of the following	is an endothermic reaction	n?			
a) $N_2(g)$ +3 $H_2(g)$ -92 k	$J \rightarrow 2 N H_3(g)$	b) $N_2(g)$ + $O_2(g)$ +180.8	$kJ \rightarrow 2 NO(g)$		
c) $H_2(g) + C l_2(g) \to 2 H$	Cl(g)+184.6 kJ	d) $C(graphite) + 2H_2(g) \rightarrow CH_4(g) + 74.8 kJ$			
394. The ΔG in the process of	melting of ice at $-15 ^{\circ}C$ is:				
a) $\Delta G = -ve$	b) $\Delta G = +ve$	c) $\Delta G = 0$	d) All of these		
395. A container has hydrogen		of 1 : 1 by weight, then			
a) Internal energy of the n	nixture decreases	b) Internal energy of the mixture increases			
c) Entropy of the mixture		d) Entropy of the mixture decreases			
396. Which one is not a sponta	neous process?				
a) Dissolution of $CuSO_4$					
b) Water flowing down th					
	ow potential to high potential				
d) None of the above					

397.1 mole of gas occupying 3 L volume is expanded against a constant external pressure of 1 atm to a volume of

15 *litre*. The work done by the system is:

a)
$$1.215 \times 10^{3} J$$
 b) $12.15 \times 10^{3} J$ c) $121.5 \times 10^{3} J$ d) None of these

398. The heat evolved during the combustion of 112 litre of water gas (mixture of equal volume of H_2 and CO) is :

$$H_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow H_{2}O(g); \Delta H = -241.8 \, kJ$$

$$CO(g) + \frac{1}{2}O_{2}(g) \rightarrow CO_{2}(g); \Delta H = -283 \, kJ$$
a) 241.8 kJ
b) 283 kJ
c) -1312 kJ
d) 1586 kJ

399. Work done in reversible adiabatic process is given by:

a) 2.303
$$RT \log \frac{V_2}{V_1}$$
 b) $\frac{nR}{(\gamma - 1)} (T_2 - T_1)$ c) 2.303 $RT \log \frac{V_1}{V_2}$ d) None of these

400. The H - H bond energy is 430 kJ mol^{-1} and Cl - Cl bond energy is 240 kJ mol^{-1} . ΔH for HCl is -90 kJ. The H - Cl bond energy is about:

a)
$$425 \text{ kJ } mol^{-1}$$
 b) $213 \text{ kJ } mol^{-1}$ c) $360 \text{ kJ } mol^{-1}$ d) $180 \text{ kJ } mol^{-1}$

401. Given,

$$\begin{split} N H_3(g) + 3 C l_2(g) &\rightleftharpoons NC l_3(g) + 3 HCl(g); -\Delta H_1 \\ N_2(g) + 3 H_2(g) &\rightleftharpoons 2 N H_3(g); -\Delta H_2 \\ H_2(g) + C l_2(g) &\rightleftharpoons 2 HCl(g); \Delta H_3 \\ \end{split}$$
The heat of formation of $NC l_3(g)$ in the terms of $\Delta H_1, \Delta H_2 \wedge \Delta H_3$ is:

a)
$$\Delta H_f = -\Delta H_1 + \frac{\Delta H_2}{2} - \frac{3}{2} \Delta H_3$$

b) $\Delta H_f = \Delta H_1 + \frac{\Delta H_2}{2} - \frac{3}{2} \Delta H_3$
c) $\Delta H_f = \Delta H_1 - \frac{\Delta H_2}{2} - \frac{3}{2} \Delta H_3$

d) None of the above

- 402. 50 mL of water takes 5 min to evaporate from a vessel on a heater connected to an electric source which delivers 400 W. The enthalpy of vaporisation of water is
 - a) 40.3 kJ per mol b) 43.2 kJ per mol c) 16.7 kJ per mol d) 180.4 kJ per mol
- 403. The work done by a system in an expansion against a constant external pressure is:

a)
$$\Delta P \cdot \Delta V$$
 b) $-P \cdot \Delta V$ c) Q d) $V \cdot \Delta P$

404. If, combustion of 4 g of CH_4 liberates 2.5 kcal of heat, the heat of combustion of CH_4 is :

a)
$$-2 \, kcal \, mo \, l^{-ii}$$
 b) $-10 \, kcal \, mo \, l^{-ii}$ c) $2.5 \, kcal \, mo \, l^{-1}$ d) $-5 \, kcal \, mo \, l^{-1}$

^{405.} A gas expands isothermally against a constant external pressure of 1 atm from a volume of $10 dm^3$ to a volume of $20 dm^3$. It absorbs 800 J of thermal energy from its surroundings. The ΔU is a) -312 I b) +123 I c) -213 I d) +231 I

406. Enthalpy of vaporisation for water is
$$186.5 kJ mol^{-1}$$
. The entropy change during vaorisation is ... $kJ K^{-1} mol^{-1}$.

a)
$$_{0.5}$$
 b) $_{1.0}$ c) $_{1.5}$ d) $_{2.0}$
407. ΔC_p for : $N_2(g) + 3H_2(g) \longrightarrow 2 N H_3(g)$ is :
a) $C_p N H_3 + C_p N_2 + C_p H_2$

b)
$$C_p N H_3 - C_p N_2 - C_p H_2$$

c) $2C_p N H_3 - C_p N_2 - 3C_p H_2$
d) $2C_p N H_3 + C_p N_2 - 3C_p H_2$

408. Which statement(s) is/are correct?

a)
$$\left(\frac{\partial H}{\partial T}\right)_{P} - \left(\frac{\partial U}{\partial T}\right)_{V} = R$$

b) $\left(\frac{\partial H}{\partial T}\right)_{P} > \left(\frac{\partial U}{\partial T}\right)_{V}$
c) $\left(\frac{\partial U}{\partial V}\right)_{T}$ for ideal gas is zero
d) All of the above

409. For a reversible process at T = 300 K, the volume of 2 mole of ideal gas is increased from 1 *litre* to 10 *litre*, the ΔH for isothermal change is:

a) 11.47 kJ b) 4.98 kJ c) 0 d) 2.49 kJ410. If $C(s)+2H_2(g) \rightarrow CH_4(g); \Delta H = -X_1 kcal$ $C(g)+4H(g) \rightarrow CH_4(g); \Delta H = -X_2 kcal$ $CH_4(g) \rightarrow CH_3(g)+H(g); \Delta H = +Y kcal$ The average bond energy of C-H bond in kcal mol^{-1} is : a) $\frac{X_1}{4}$ b) Yc) $\frac{X_2}{4}$ d) X_1

411. The enthalpy of formation of $H_2O(l)$ is given by :

a)
$$H^{+i(aq)+OH^{-i(aq)} \rightarrow H_1O(l;\Delta H = -X_1kL_L)}$$

b) $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l);\Delta H = -X_2kJ$
c) $CO_2(g) + H_2(g) \longrightarrow CO(g) + H_2O(l);\Delta H = -X_3kJ$
d) $C_2H_2(g) + \frac{5}{2}O_2(g) \longrightarrow 2CO_2(g) + H_2O(l);\Delta H = -X_4kJ$
A gas can expand from 100 mL to 250 mL under a constant pressure of 2 atm. The work done by gas is

412. A gas can expand from 100 mL to 250 mL under a constant pressure of 2 atm. The work done by gas is

a) 30.38 J b) 25 J c) 5 kg J d) 16 J

413. A system is changed from state A to state B by one path and from B to A by another path. If E_1 and E_2 are the corresponding changes in internal energy, then;

a)
$$U_1 + U_2 = +ve$$
 b) $U_1 + U_2 = -ve$ c) $U_1 + U_2 = 0$ d) None of these

414. Three moles of an ideal gas expanded spontaneously into vacuum. The work done will be:

a) Infinite b) 3 joules c) 9 joules d) Zero

415. Which of the following is always negative for exothermic reaction?

a) ΔH b) ΔS c) ΔG d) None of these

	_	_	ium when the flask is heated at ange in enthalpy, ΔH for this
a) Negative	b) Positive	c) Zero	d) Undefined
417. If gas at constant tempera	ture and pressure expands the	en its	
a) Internal energy increas	es and then decreases	b) Internal energy increase	es
c) Internal energy remain	s the same	d) Internal energy decreas	es
418. If the enthalpy change for $CH_4(g)+Cl_2(g) \rightarrow CH$ $\Delta H = -25$ kcal. Bond en energies of $H-H$	$G_3 Cl(g) + HCl(g)$, nergy of $C - H$ is 20 kcal		d energy of $C - Cl$ and bond en for the reaction :
$\frac{1}{2}H_2(g) + \frac{1}{2}Cl_2(g) \rightarrow H$	$Cl(g); \Delta H = ?$		
a) -22.5 kcal/mol	b) –20.5kcal/mol	c) _32.5kcal/mol	d) –12.5kcal/mol
419. Internal energy is an exam	ple of		
a) Path function	b) State function	c) Both (a) and (b)	d) None of these
420. In a closed container, a following is true?		-	
a) $\Delta E = W \neq 0$, $q = 0$	b) $\Delta E = W = q \neq 0$	c) $\Delta E = 0, W = q \neq 0$	d) $W=0, \Delta E=q \neq 0$
421. In a reaction, ΔH and spontaneous?	ΔS both are positive. In v	which of the following case	es, the reaction would not be
	b) $\Delta S = \frac{\Delta H}{T}$	c) $\Delta H = T \Delta S$	d) All of these
422. The bond dissociation energy formation of HClgas wou		1 HClare 104, 58 and 103 kca	al respectively. The enthalpy of
a) -44 kcal	b) 44 kcal	c) -22 kcal	d) 22 kcal
423. The internal energy cha A to B by a reversible p in internal energy?	e , e		ol. If the system goes from at would be the net change
a) 40 kJ	b) >40 kJ	c) <40 kJ	d) Zero
424. The enthalpy of vaporisat	ion of a substance is 840 J/mo	ol and its boiling point is -1	73 °C. Its entropy of
vaporisation is a) 4.8 J/mol/K	b) 12 J/mol/K	c) 210 J/mol/K	d) 49 J/mol/K
425. The ΔH_f^o of O_3 , CO_2 , N	H_{3} and HI are 142.2 - 393.	3, -46.2 and +25.9 kJ per	mol respectively. The order of
their increasing stabilities a) O_3, CO_2, NH_3, HI	will be b) CO_2 , NH_3 , HI , O_3	c) O_3 , HI , NH_3 , CO_2	d) $_{NH_{3}}, HI, CO_{2}, O_{3}$
426. For the reaction, C (gra	phic)		
$+\frac{1}{2}O_2(g) \rightarrow CO(g) \text{ at } 2$	298 K and 1 atm, $\Delta H = -2$	6.4 kcal. What is ΔE , if the	ne molar volume of graphite
is 0.0053 L?			
ن) a) -26.7 kcal	b) +26.7 kcal	c) -52.4 kcal	d) +52.4 kcal

427. For the reaction of one mole of zinc dust with one mole of sulphuric acid in a bomb calorimeter, ΔU and W correspond to

a) $\Delta U < 0, W = 0$ b) $\Delta U = 0, W < 0$ c) $\Delta U > 0, W = 0$ d) $\Delta U = 0, W > 0$

428. The quantity of heat measured for a reaction in a bomb calorimeter is equal to

a) ΔG b) ΔH c) $_{p\Delta V}$ d) ΔE

429. For the reactions:

 $C+O_2 \rightarrow CO_2; \Delta H = -393 kJ$ 2Zn+O₂ \rightarrow 2ZnO; $\Delta H = -412 kJ$

which one is correct?

a) Carbon can reduce ZnOto Zn

b) Oxidation of carbon is not feasible

c) Oxidation of Zn is not feasible

d) *Zn* liberates more heat than carbon during oxidation

430. The following two reactions are known

$$Fe_{2}O_{3}(s)+3CO_{[g]} \rightarrow 2Fe_{[s]}+3CO_{2[g]};$$

$$\Delta H = -26.8kJ$$

$$FeO_{[s]}+CO_{[g]} \rightarrow Fe_{[s]}+CO_{2[g]};$$

$$\Delta H = -16.5kJ$$
The value of ΔH for the following reaction

$$Fe_{2}O_{3[s]}+CO_{[g]} \rightarrow 2FeO_{[s]}+CO_{2[g]} \text{ is :}$$

a) $+10.3kJ$
b) $-43.3kJ$
c) $-10.3kJ$
d) $+6.2kJ$

431. The process in which pressure remains constant throughout a change is:

a) Adiabatic b) Isochoric c) Isobaric d) Isothermal

432. Entropy of vaporisation of water at 100 °C, if molar heat of vaporisation is 9710 cal mol⁻¹ will be:

a) $20 cal mol^{-1}K^{-1}$ b) $26.0 cal mol^{-1}K^{-1}$ c) $24 cal mol^{-1}K^{-1}$ d) $28.0 cal mol^{-1}K^{-1}$ 433. Which is an extensive property?

a) Temperature b) Chemical potential c) Gibb's free energy d) Molar volume

434. ΔE° of combustion of isobutylene is $-x kJ mol^{-1}$. The value of ΔH° is

a)
$$_{i\Delta E^{\circ}}$$
 b) $_{i\Delta E^{\circ}}$ c) = 0 d) $_{i\Delta E^{\circ}}$

435. Which of the following reaction defines ΔH_f^o ?

a) $C(diamond) + O_2(g) \to CO_2(g)$ b) $\frac{1}{2}H_2(g) + \frac{1}{2}F(g) \to HF(g)$ c) $N_2(l) + 3H_2(g) \to 2NH_3(g)$ d) $CO(g) + \frac{1}{2}O_2(g) \to CO_2(g)$

436. The heat change for the reaction, $H_2O(l) \longrightarrow H_2O(g)$ is called as :

a) Heat of vaporisation	b) Heat of solution	c) Heat of fusion	d) Heat of formation
437. The law of conservation o	of energy states that :		
a) The internal energy of	a system is constant		
b) The heat content of a s	ystem is constant		
c) Energy is neither create	ed nor destroyed		
d) There is an equivalence	e between energy and mass		
438. Heat of neutralization of I	HF is :		
a) 1. kJ	b) > 57.32 kJ	c) < 57.32 kJ	d) None of these
439. From the following bond of H - H bond energy : 431 C = C bond energy : 606 C - C bond energy : 336. C - H bond energy : 410. Enthalpy for the reaction, H H H H H C = C + H - H - C - C H	$37 kJ mol^{-1}$ $.10 kJ mol^{-1}$ $49 kJ mol^{-1}$ $.50 kJ mol^{-1}$ H C-H		
	b) $1523.6 kJ mol^{-1}$	c) $-243.6 kJ mol^{-1}$	d) $-120.0 kJ mol^{-1}$
440. The enthalpies of formation	on of organic substances can b	be conveniently determined f	rom :
a) Heats of combustion da	ata		
b) Boiling point			
c) Melting point			
d) Heats of neutralisation			
441. The free energy change for	or a reversible reaction at equi	librium is	
a) Large, positive	b) Small, negative	c) Small, positive	d) 0
442. In an irreversible process,	the value of $\Delta S_{system} + \Delta S_{surr}$	is:	
a) + <i>ve</i>	b) ve	c) ₆₀	d) All of these
443. A container has hydrogen	and oxygen mixture in ratio o	of 4:1 by weight, then:	
a) Entropy of these gases	increase		
b) Internal energy increase	es		
c) Internal energy of the g	zas decreases		
d) Entropy of the gases de	ecrease		
444. Equal volume of $1 M HC$ liberated respectively. What $x = y$	Cl and $1 M H_2 SO_4$ are neutral nich of the following is true? b) $x=0.5 y$	ised by dilute <i>NaOH</i> solution c) $x=0.4 y$	n and <i>x</i> and <i>y</i> kcal of heat are d) None of these

445. Identify the intensive quantity from the following

- a) Enthalpy and temperature b) Volume and temperature
- c) Enthalpy and volume d) Temperature and refractive index
- 446. A mixture of hydrogen and chlorine on exposure to ultra violet sunlight reacts with explosion. The step involved in the initiation of the reaction is :

a)
$$H_2 \rightarrow H' + H'$$
 b) $Cl' + Cl' \rightarrow Cl_2$ c) $H_2 + Cl_2 \rightarrow 2 HCl$ d) $Cl_2 \rightarrow Cl' + Cl'$

447. The amount of heat measured for a reaction in a bomb calorimeter is

a) ΔG b) ΔH c) ΔE d) $p \Delta V$

448. The mathematical form of the first law of thermodynamics when heat (q) is supplied and W is work done by the system (+ve) is:

a)
$$\Delta U = q + W$$

b) $\Delta U = q - W$
c) $\Delta U = -q + W$
d) $\Delta U = -q - W$

449. Which one of the following bonds has the highest average bond energy (kcal/mol)?

a) S=O b) $C \equiv C$ c) $C \equiv N$ d) $N \equiv N$

- 450. If gas, at constant temperature and pressure expands then its
 - a) Entropy increases and then decreases b) Internal energy increases
 - c) Internal energy remains the same d) Internal energy decreases
- 451. For a reaction, $\Delta H = 9.08 kJ mo l^{-1}$ and $\Delta S = 35.7 J K^{-1} mo l^{-1}$. Which of the following statement is correct for the reaction? a) Reversible and isothermal b) Reversible and exothermic
 - c) Spontaneous and endothermic d) Spontaneous and exothermic
- 452. The correct thermochemical equation is :

a)
$$C+O_2 \rightarrow CO_2$$
; $\Delta H = -94$ kcal

b)
$$C+O_2 \longrightarrow CO_2$$
; $\Delta H=+94$ kcal

- c) $C(s)+O_2(g) \longrightarrow CO_2(g); \Delta H = -94 kcal$
- d) $C(s)+O_2(g) \longrightarrow CO_2(g); \Delta H=+94 kcal$
- 453. In which of the following reactions, standard reaction entropy change (ΔS°) is positive and standard Gibbs's energy change (ΔG°) decreases sharply with increasing temperature?

a)
$$Mg(s) + \frac{1}{2}O_{2}(g) \rightarrow MgO(s)$$

b) $\frac{1}{2}C(graphite) + \frac{1}{2}O_{2}(g) \rightarrow \frac{1}{2}CO_{2}(g)$
c) $C(graphite) + \frac{1}{2}O_{2}(g) \rightarrow CO(g)$
d) $CO(g) + \frac{1}{2}O_{2}(g) \rightarrow CO_{2}(g)$

454. The heat of formation of methane C(s)+2H₂(g) → CH₄(g) at constant pressure is 18500 cal at 25°C. The heat of reaction at constant volume would be:
a) 19096 cal
b) 18798 cal
c) 18202 cal
d) 17904 cal

455. Minimum work is obtained when 1 kg of ... gas expanded under 500 kPa to 200 kPa pressure at 0°C.

a) Chlorine	b) Oxygen	c) Nitrogen	d) Methane
456. The temperature of the	e system decreases in an	2	
a) Adiabatic compress		b) Isothermal compress	ion
c) Isothermal expansion	n	d) Adiabatic expansion	
		-	⁻¹ respecively. The ΔH for the
reaction; $H_2(g) + Br_2(g)$		`	D
a) $-261 kJ$			d) $-103 kJ$
458. The absolute enthalpy of	f neutralisation of the reaction		$gCl_2(aq) + H_2O(l)$ will be
a) Greater than -57.33	$kJ mo l^{-1}$	b) 57.33 kJmo l^{-1}	
c) Less than $-57.33 kJ$	mol^{-1}	d) $-57.33 kJ mo l^{-1}$	
459. We believe in the laws	of thermodynamics because	se they are	
a) Theoretical		b) Derived based on ma	athematical analysis
c) Empirical and nobo	dy disproved	d) Mere statements	
460. The enthalpy of dissolut enthalpy of hydration fo $BaC l_2(s)+2 H_2 O \rightarrow B$ a) 29.4 kJ	r,	$2H_2O(s)$ are -20.6 and 8 c) -11.8kJ	.8 kJ per mol respectively. The d) 38.2 kJ
461. The enthalpies of the ele	ments in their standard states	are assumed to be	
a) Zero at 298 K		b) Unit at 298 K	
c) Zero at all temperatur	-e	d) Zero at 273 K	
462. The change in entropy,	ΔS is positive for an endoth	ermic reaction. If enthalpy	charge ΔH occurs at the same
temperature T , then the a) At all temperatures	reaction is feasible: b) When $\Delta H > T \Delta S$	c) When $\Delta H < T \Delta S$	d) Not feasible at all
	or the transition of liquid wat	er to steam is $30 kJ mol^{-1}$ at	$27 ^{\circ}C$, the entropy change for
	b) $10 J mol^{-1} K^{-1}$		
464. For the reaction, $C_3 H_8$	g)+5 O_2 \longrightarrow 3 $CO_2(g)$ +4 H	${}_{2}O(l)$ at constant temperature	re, $\Delta H - \Delta U$ is :
a) + RT	b) -3 RT	c) + 3RT	d) - <i>RT</i>
465. The total amount of ener	rgy in the universe is fixed, bu	t:	
a) Matter is increasing			
b) Gravitation is decreas	ing		
c) Disorder is increasing	5		
d) Lightening is increasi	ng		
*	n at 25°C in kcal/mol of each		n the same amount of water?

a) $HCl(\Delta H = -17.74)$

b) $HNO_3(\Delta H = -7.85)$ c) $_{NH_4}NO_3(\Delta H = +16.08)$ d) NaCl($\Delta H = +1.02$)

6.THERMODYNAMICS

: ANSWER KEY :

1)															
IJ	С	2)	b	3)	b	4)	а	169)	С	170)	а	171)	а	172)	d
5)	С	6)	d	7)	С	8)	а	173)	b	174)	d	175)	d	176)	С
9)	а	10)	b	11)	а	12)	d	177)	d	178)	d	179)	b	180)	а
13)	а	14)	С	15)	b	16)	а	181)	b	182)	а	183)	а	184)	а
17)	b	18)	d	19)	а	20)	d	185)	b	186)	С	187)	d	188)	d
21)	b	22)	а	23)	а	24)	d	189)	С	190)	b	191)	а	192)	С
25)	С	26)	С	27)	b	28)	а	193)	С	194)	а	195)	С	196)	а
29)	d	30)	а	31)	а	32)	b	197)	а	198)	С	199)	b	200)	d
33)	а	34)	С	35)	а	36)	а	201)	С	202)	b	203)	b	204)	а
37)	С	38)	С	39)	С	40)	а	205)	d	206)	b	207)	b	208)	d
41)	С	42)	С	43)	а	44)	d	209)	а	210)	d	211)	d	212)	b
45)	а	46)	b	47)	С	48)	d	213)	b	214)	d	215)	b	216)	b
49)	b	50)	С	51)	а	52)	d	217)	d	218)	а	219)	d	220)	С
53)	а	54)	b	55)	d	56)	С	221)	С	222)	а	223)	С	224)	а
57)	С	58)	b	59)	а	60)		225)	b	226)	d	227)	b	228)	а
61)	b	62)	а	63)	С	64)		229)	а	230)	d	231)	С	232)	b
65)	b	66)	С	67)	d	68)		233)	а	234)	b	235)	d	236)	d
69)	d	70)	b	71)	С	72)		237)	b	238)	а	239)	а	240)	b
73)	d	74)	а	75)	С	76)		241)	d	242)	а	243)	b	244)	а
77)	d	78)	а	79)	d	80)		245)	b	246)	b	247)	С	248)	b
81)	а	82)	а	83)	а	84)		249)	С	250)	а	251)	b	252)	b
85)	а	86)	а	87)	b	88)		253)	С	254)	С	255)	С	256)	d
89)	b	90)	d	91)	d	92)		257)	b	258)	b	259)	b	260)	d
93)	С	94)	С	95)	d	96)		261)	b	262)	а	263)	b	264)	С
97)	а	98)	а	99)	b	100)		265)	d	266)	b	267)	d	268)	d
101)	а	102)	d	103)	b	104)		269)	С	270)	С	271)	d	272)	С
105)	b	106)	С	107)	d	108)		273)	b	274)	b	275)	а	276)	b
109)	С	110)	b	111)	d	112)		277)	d	278)	а	279)	а	280)	а
113)	b	114)	а	115)	а	116)		281)	а	282)	d	283)	а	284)	d
117)	b	118)	а	119)	С	120)		285)	b	-	d	287)	а	288)	а
121)	а	122)	а	123)	а	124)		289)	а	290)	b	291)	d	292)	d
125)	а	126)	С	127)	С	128)		293)	а	294)	d	295)	b	296)	а
129)	b	130)	a	131)	а	132)		297)	а	298)	С	299)	a	300)	d
133)	d	134)	b	135)	С	136)		301)	а	302)	С	303)	d	304)	b
137)	b	138)	b	139)	b	140)		305)	а	306)	b	307)	b	308)	а
141)	С	142)	a	143)	b	144)		309)	C	310)	С	311)	С	312)	С
145)	b	146)	b	147)	a	148)		313)	b	314)	b	315)	С	316)	a
149)	С	150)	а	151)	d	152)		317)	а	318)	C	319)	а	320)	d
153)	a	154)	a	155)	b	156)		321)	С	322)	b	323)	С	324)	d
157)	d	158)	d	159)	d	160)		325)	а	326)	C	327)	а	328)	a
161)	d	162)	а	163)	С	164)		329)	С	330)	b	331)	С	332)	d
165)	b	166)	С	167)	С	168)	d	333)	С	334)	d	335)	С	336)	b

337)	b	338)	а	339)	а	340)	d	
341)	b	342)	а	343)	b	344)	а	
345)	d	346)	С	347)	d	348)	d	
349)	d	350)	а	351)	d	352)	С	
353)	С	354)	а	355)	а	356)	b	
357)	b	358)	d	359)	С	360)	d	
361)	С	362)	С	363)	b	364)	b	
365)	а	366)	b	367)	а	368)	d	
369)	С	370)	а	371)	b	372)	С	
373)	а	374)	а	375)	С	376)	b	
377)	d	378)	d	379)	d	380)	С	
381)	b	382)	а	383)	а	384)	а	
385)	d	386)	а	387)	b	388)	С	
389)	d	390)	С	391)	С	392)	а	
393)	b	394)	b	395)	С	396)	С	
397)	а	398)	С	399)	b	400)	а	
401)	а	402)	b	403)	b	404)	b	
405)	С	406)	а	407)	С	408)	d	
409)	b	410)	С	411)	b	412)	а	
413)	С	414)	d	415)	а	416)	b	
417)	С	418)	а	419)	b	420)	а	
421)	d	422)	С	423)	d	424)	а	
425)	С	426)	а	427)	а	428)	d	
429)	а	430)	d	431)	С	432)	b	
433)	С	434)	d	435)	С	436)	а	
437)	С	438)	b	439)	d	440)	а	
441)	d	442)	а	443)	а	444)	b	
445)	d	446)	d	447)	С	448)	b	
449)	d	450)	С	451)	С	452)	С	
453)	С	454)	а	455)	а	456)	d	
457)	d	458)	С	459)	d	460)	b	1
461)	а	462)	С	463)	а	464)	b	1
465)	С	466)	С					1
								1

: HINTS AND SOLUTIONS :

- 1 (c) $H_2O(l) \rightarrow H_2O(v)::\Delta n=1$ $\Delta H^\circ = \Delta U^\circ + \Delta nRT$ $40.66 \times 10^3 = \Delta U^\circ + 1 \times 8.314 \times 373$ $\therefore \Delta U^\circ = 37559 J = 37.56 kJ$
 - **(b)** $\left(\frac{\partial Q}{\partial T}\right)_p = C_p \wedge \left(\frac{\partial Q}{\partial T}\right)_V = C_v \wedge C_p - C_v = R.$
- 4 **(a)**

2

 $C(s) + \frac{1}{2}O_{2}(g) \rightarrow CO_{2}(g); \Delta H_{1} = -26.4$ $C(s) + \frac{1}{2}O_{2}(g) \rightarrow CO_{2}(g); \Delta H_{2} = -96.0$

We have to find for ΔH , for reaction

 $CO + \frac{1}{2}O_2 \rightarrow CO_2; \Delta H_1 = ?$ Eqs.(*ii*)-(*i*), we get $\Delta H = -94 - (-26.4) = -67.6$ kcal

- 5 (c) If $\Delta G = -ve$, process is spontaneous
- 6 (d) $\Delta U - W = q$ If cyclic process, then q = -W.
- 7 (c) e.g., U, H, S, etc.
- 8 (a) $\Delta G = 0$ for an equilibrium state.
- 9 (a) Find ΔH for, $H_2 + S + 2O_2 \rightarrow H_2SO_4$
- 11 (a) q=+10 kJ, W=-4 kJ $\therefore \Delta E=q+W$ & 10-4=6 kJSo, energy increases by 6 kJ

12 **(d)**

Heat of neutralisation is $-13.7 \text{ kcal e } q^{-1}$.

13 (a) $\Delta G = \Delta H - T \Delta S$ $\Delta G = 0, \text{ at equilibrium}$ $\therefore \Delta H = T \Delta S$ $i 30.5 = T \times 0.066$ T = 462.12 K

14 **(c)**

An adiabatic process is one in which exchange of heat is not taking place in between system and surroundings. This can be made by putting insulation at the boundries of system

15 **(b)**

$$CH_{3}COOH+OH^{-\iota \longrightarrow CH_{3}COO^{-\iota+H_{0}\circ+q,\iota}}$$

$$H^{+\iota+OH^{-\iota \longrightarrow H_{2}O*q,\iota}}$$

$$\frac{\iota}{CH_{3}COOH \rightarrow CH_{3}COO^{-\iota+H^{*\iota+(q,-q,\iota)}}\iota}$$

17 **(b)**

$$\Delta G^{\circ} = -2.303 RT \log K \left(K \text{ for } H_2 O = \frac{10^{-14}}{55.6} \right)$$

$$\dot{\iota} - 2.303 \times 8.314 \times 298 \times \log \frac{10^{-14}}{55.6}$$

$$\dot{\iota} - 89.84 kJ$$

18 **(d)**

The spontaneity of reaction cannot be decided by simply looking the chemical change. We need ΔG value for it.

19 **(a)**

 ΔH for a reaction is equal but opposite to backward reaction.

20 **(d)**

Follow definition of ionisation energy.

21 **(b)**

Internal energy of an ideal gas is function of

temperature and thus $\left(\frac{\partial E}{\partial P}\right)_T = 0$

22 (a)

For exothermic reactions $H_p < H_R$

23 **(a)**

Heat of combustion is defined as the amount of the energy released during complete combustion of 1 mole of a substance in oxygen or air.

24 **(d)**

50 Meq. of KOH and 50 Meq. Of H_2SO_4 will produce maximum heat.

25 **(c)**

The first law of thermodynamics can be expressed as :

$$\Delta E = q + W$$
$$q = \Delta E - W$$

26 **(c)**

H = U + PV $\therefore H_2 - H_1 = U_2 - U_1 + (P_2 V_2 - P_1 V_1)$ $\therefore \Delta H = 30 + (4 \times 5 - 2 \times 3)$ $\vdots 44 Latm$

27 **(b)**

The reactions in which products has lesser energy than reactants, then energy is released in the reaction and such reactions are known as exothermic reactions *e.g.*,

 N_2 +3 $H_2 \rightarrow 2NH_3$ +92kJ

In this equation energy is released, so, it is an example of exothermic reaction.

28 **(a)**

 $\Delta H_{mixing} = 0$ for ideal solutions.

29 **(d)**

In (a), (b), (c) randomness increase.

30 **(a)**

 $\Delta H = \Delta E + \Delta nRT$ Since, $\Delta n = 2 - 4 = -2$ Therefore, $\Delta H = \Delta E - 2RT$

31 (a)

$$\frac{T}{T_{final}} = \left(\frac{V_2}{V_1}\right)^{\gamma-1}$$

$$\begin{split} & \frac{T}{T_{final}} \! = \! \left(\frac{2}{1} \right)^{(5/3-1)} \! = \! 2^{(2/3)} \\ & T_{final} \! = \! \frac{T}{2^{[2/3]}} \end{split}$$

32 **(b)**

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ Molecular weight of $CH_4 = 12 + 4 = 16$ ∴On the combustion of 2.0 g of methane = 25.0 kcal ∴On the combustion of 16.0 g methane $i\frac{25 \times 16}{2} = 200$ kcal

33 **(a)**

$$\Delta S = \frac{q}{T} = \frac{2.303 \, nRT}{T} \log \frac{V_2}{V_1}$$

 $\& 2.303 \times 1 \times 8.314 \log 10$
 $\& 19.15 \, JK^{-1} mol^{-1}$

34 **(c)**

Heat of formation of
$$H_2O(l)$$

 $i.e., H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$

Is also heat of combustion of $H_2(g)$.

35 (a)

$$\Delta S_{reaction} = \sum S_{product} - \sum S_{reactant}$$

$$i \cdot 2 \times S_{H_2O} - \left[2 \times S_{H_2} + S_{O_2} \right]$$

$$i \cdot 2 \times 68 - \left[2 \times 126.6 + 201.20 \right]$$

$$i - 318.4 JK^{-1} mol^{-1}$$

36 **(a)**

Solve using Hess's law

37 **(c)**

Decomposition of $MgCO_3$ occurs only on heating.

38 (c)

Maximum work is obtained under reversible conditions (either isothermal or adiabatic).

39 **(c)**

$$C_6H_6(g) + \frac{15}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(g)$$

 $\Delta n = 6 + 3 - 1 - \frac{15}{2} = +0.5$

40 (a) $P \times 1 = RT$

Also internal energy, $U = \frac{3}{2}RT$

$$\therefore U = \frac{3}{2}P$$
$$\& P = \frac{2}{3}U$$

41 **(c)**

Electrical energy is used to bring in electrolysis.

42 **(c)**

The second law of thermodynamics has been defined as – the entropy of universe is always increasing in the course of every spontaneous process.

43 **(a)**

Rest all are endothermic process. Hydration is always exothermic.

44 **(d)**

For monoatomic gas, $\gamma_2 = \frac{C_p}{C_v} = 1.67$ For diatomic gas, $\gamma_2 = \frac{C_p}{C_v} = 1.40$ $\therefore \gamma_1 : \gamma_2 = \frac{1.67}{1.40} = 1.19 : 1$

45 **(a)**

$$C+O_2 \rightarrow CO_2; \Delta H = -393.5 \, kJ$$

$$CO + \frac{1}{2}O_2 \rightarrow CO_2; \Delta H = -283.5 \, kJ$$
On subtracting, $C + \frac{1}{2}O_2 \rightarrow CO; \Delta H - 110.0 \, kJ$

46 **(b)**

It is based on the fact that neither heat can be produced nor destroyed, i.e., Ist law of thermodynamics.

47 **(c)**

 $\Delta H = H_P - H_R$; Measurements at constant pressure give ΔH values.

48 **(d)**

These all are limitations of third law.

49 **(b)**

 $\Delta H = \Delta U + \Delta nRT$ $\Delta n = -1/2$ $\therefore -43 = \Delta U + (-1/2) \times 8.314 \times 298 \times 10^{-3}$ $\therefore \Delta U = -241.76 \, kJ$

50 **(c)**

Molar heat capacity = $\left(\frac{\delta Q}{\delta T}\right)_P$

If $\delta T = 0$ at constant temperature. Molar heat capacity = ∞

51 **(a)**

It is heat of neutralization of water.

52 **(d)**

Vapour phase has more heat enthalpy and the evaporation being spontaneous and thus, $\Delta G = -ve$. Also randomness or disorder is more in vapour phase.

53 **(a)**

$$W = -P_{ext.}(V_2 - V_1)$$

$$\therefore P_{ext.} = 0$$

$$\therefore W = 0$$

(b)
$$\Delta G = -RT \ln K_p = -2.303 RT \log_{10} K_p$$

55 **(d)**

54

Negative specific heat refers that in order to rise the temperature, certain quantity of heat is to be withdrawn from the body.

56 **(c)**

$$\therefore N a^{+\dot{\iota}(s)+aq. \rightarrow N a^{+\dot{\iota}(aq.); \Delta H = -241.9 \, kJ}}$$

57 **(c)**

$$W = -P\Delta V = -1 \times 10^{5} (1 \times 10^{-2} - 1 \times 10^{-3})$$

$$\dot{c} - 900 \text{ J}$$

58 **(b)** O_3 has more energy than O_2

59 (a) $q = \Delta U - W = \Delta U$ (:: W = 0, at constant volume)

60 **(a)**

 $q = \Delta U - W$: all have same units.

61 **(b)**

Energy change at constant pressure is called enthalpy change or change in heat content, i.e., ΔH Also, $\Delta H = \Delta U + \Delta nRT$ if $\Delta n=0$, $\Delta H = \Delta U$, i.e., heat change at constant volume.

62 **(a)**

Vibration energy has both components kinetic and

potential energy.

64 (a) Use $\Delta G = \Delta H - T \Delta S$ $\Delta G = 145.6 - 273 \times 0.116$ $\& 113.93 \, kJ / mol$

65 **(b)**

In $BF_3 p\pi - p\pi$ interaction leads to back bonding due to vacant *p*-orbitals of boron and completely filled *p*-orbitals of *F*. $CaO + H_2O \longrightarrow Ca(OH)_2$; $\Delta H = -ve$; the solution of lime heats up.

66 **(c)**

67 (d)

$$T_{2}=150+273=423 \text{ K},$$

$$T_{1}=25+273=298 \text{ K}$$

$$Q=500 \text{ K}$$

$$\frac{W}{Q} = \frac{T_{2}-T_{1}}{T_{2}}$$

$$∴ W = 500 \left(\frac{423-298}{423}\right) = 147.7 J$$

68 **(a)**

The order of randomness, Gas>Liquid>Solid.

69 **(d)**

 $\Delta H = H_{C_3H_8} - H_{CH_4} - H_{C_2H_4}$ i - 24.8 - (-17.9) - 12.5 i 19.4 kcal / mol

70 **(b)**

Due to randomness of particles is reduced since, entropy decreases

71 **(c)**

$$1 \, cal = 4.185 \, J = 4.18 \times 10^7 \, erg = \frac{4.18}{1.602} \times 10^{19} \, eV.$$

72 (a)

The change ΔS will be more and the *q* or *W* will be more because $\Delta S = \frac{q}{T}$ and work depends on *q*.

73 **(d)**

 $\Delta H = \Delta U + \Delta nRT$ For (a), (b), (c) $\Delta n = 0 \wedge for(d) \Delta n = -2$

74 **(a)**

Helmholtz free energy change ΔA represents network done.

75 **(c)**

$$\Delta H = \frac{1}{2} \times \Delta_{diss} \cdot H^{\Box}_{Cl_2} + \Delta_{eg} H^{\Box}_{Cl} + \Delta_{hyd} H^{\Box}_{Cl}$$

$$\dot{\iota} \frac{1}{2} \times 240 - 349 - 381$$

$$\dot{\iota} - 610 \, kJ \, mol^{-1}$$

76 **(a)**

The energy can neither be created nor destroyed.

77 (d)

Heat changes during any chemical reaction are referred as heat of reaction are referred as heat of reaction for that change. Amount of sugar needed $i \frac{2870 \times 342}{1349} = 727.6 g$

+ H₂
$$\rightarrow$$
 ; Δ H= -119.5 kJ
+ 3H₂ \rightarrow ; Δ H=3 x (-119.5)

 $\frac{1}{6}$ - 358.5 kJ mol⁻¹

The obs. $\Delta H = \Delta H + i$ Energy needed to disturb resonance $i - 358.5 + 150.4 = -208.1 \text{ kJ mo } l^{-1}$

80 **(b)**

 $\therefore \Delta G^{\circ} = -RT \ln K$ Also $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ $\therefore -RT \ln K = \Delta H^{\circ} - T \Delta S^{\circ}$ $\delta \ln K = \frac{T \Delta S^{\circ} - \Delta H^{\circ}}{RT}$

81 **(a)**

Work done due to change in volume against constant pressure,

$$W = -p(V_2 - V_1)$$

$$\dot{c} - 1 \times 10^5 N m^{-2} (1 \times 10^{-2} - 1 \times 10^{-3}) m^3$$

$$\dot{c} - 900 Nm = -900 J \quad (1 \text{ Nm} = 1 \text{ J})$$

82 **(a)**

$$C+O_2 \rightarrow CO_2; \Delta H = x \dots (i)$$

$$CO + \frac{1}{2}O_2 \rightarrow CO_2; \Delta H = y \dots (ii)$$

Eqs. (i) -(ii)

$$C + \frac{1}{2}O_2 \rightarrow CO, \Delta H = x - y$$

83 (a) $\Delta H = H_{product} - H_{reactant}; H_R > H_P. Thus, -ve.$

84 (d) These all are facts.

85 (a) $Fe+2 HCl \rightarrow FeCl_2+H_2$ $mole of Fe = \frac{112}{56} = 2, \therefore mole of H_2 formed = 2.$ now, work done $\& P(V_2 - V_1); V_2 = V_{H_2}$ and $V_1=0$ (for solid and liquid) $\& P \cdot V_{H_2} = P \cdot \frac{nRT}{P} = nRT$

78 **(a)**

$c2 \times 2 \times 300 = 1200$ cal = 1.2 kcal

86 **(a)**

No doubt, heat evolved in first process is twice to second but volume absorbing this heat is also twice in comparison to first.

87 **(b)**

At constant volume $P \Delta V = 0$, $\therefore q = \Delta U$.

88 **(c)**

 $C+O_2 \rightarrow CO_2$; $\Delta H^{\Box} f = ?$ if reaction is made at 25° C and 1 atm. $\Delta H^{\Box} f = H^{\Box}_{CO_2} - H^{\Box}_C - H^{\Box}_{O_2} = H^{\Box}_{CO_2} - 0 - 0$ $\Delta H^{\Box} f = H^{\Box}_{CO_2} i$ are assumed arbitrarily zero)

90 (d)

A decrease in Gibbs energy results for useful work done by the system, *i.e.*, work of expansion ($-W_{expansion}$) or $-\Delta G = W_{exp}$.

91 (d)

Strong acid (HNO_3 ⁱ and strong base (LiOH).

92 (a)

This is derived formula.

93 (c)

 $C+2H_2 \rightarrow CH_4$; $\Delta H=?$ Find ΔH by eqs. (i) $+ 2 \times$ (ii) – (iii)

94 **(c)**

Due to positive ΔH , HI is endothermic compound and unstable.

96 **(a)**

 $\Delta S = \frac{\Delta H_v}{T}$ $\Delta H = 40.8 \, kJ$ $T = 373 \, K$ $\therefore \Delta S = \frac{40.8 \times 10^3}{373} = 109.38 \, JK^{-1} \, mol^{-1}$

97 **(a)**

 $\Delta H = -2[3 \times e_{N-H}] + e_{N=N} + 3 \times e_{H-H}$ i - 2 × 3 × 391 + 945 + 436 × 3 = -93 kJ

98 **(a)**

The heat is provided by solvent and thus, feels cooler.

99 **(b)**

 $\Delta G = \Delta G \circ + 2.303 RT \log Q$ if Q=1, \Delta G = \Delta G \circ \c

100 (c)

Bond energy is the amount of heat required (or evolved) to break (or form) 1 mole bond. Also, $H_2 \rightarrow 2H$; $\Delta H = 104.3 kcal$

$$\therefore$$
 Heat of formatin for H atom $\frac{1}{2}H_2 \rightarrow H$

$$i.e.,equal i.\frac{1}{2} \times 104.3 kcal$$

101 **(a)**

Sublimation requires energy, *i.e.*, $\Delta H = +ve$, also, $\Delta S = +ve$.

103 **(b)**

Work done(
$$W$$
)= $-p_{ext}(V_2-V_1)$
 $i - 3 \times (6-4) = -6 L atm$
 $i - 6 \times 101.32 J(:.1 L)$
atm=101.32 J)

$$i - 607.92 \approx -608 J$$

104 **(d)**

These are the expressions to explain work.

105 **(b)**

$$\Delta S_{vap} = \frac{\Delta H_{vap}}{T} = \frac{37.3 \, kJ \, mo \, l^{-1}}{373 \, K} = 0.1 \, kJ \, mo \, l^{-1} K^{-1}$$

$$\dot{\iota} \, 100 \, J \, mo \, l^{-1} \, K^{-1}$$

106 **(c)**

Heat cannot be itself pass from colder to hotter body.

107 (d) $\Delta G = \Delta H - T \Delta S$ $\Delta G = 150 - \frac{100 \times 300}{10^{-3}} = 120 \, kJ$

108 (a)

$$CH_{4}+2O_{2} \rightarrow CO_{2}+2H_{2}O; \Delta H = -x$$

$$CH_{3}OH + \frac{3}{2}O_{2} \rightarrow CO_{2}+2H_{2}O; \Delta H = -y$$

$$\frac{----+i}{CH_{4}+\frac{1}{2}O_{2} \rightarrow CH_{3}OH; \Delta H = y-x}$$

$$\therefore y = -y$$

$$\therefore x > y$$

109 (c) $\Delta G = \Delta H - T \Delta S$ For $\Delta G = 0$ at equilibrium $T \Delta S = \Delta H$ $T = \frac{\Delta H}{\Delta S} = \frac{30 \times 10^3}{105} = 285.7 K$

110 **(b)**

The gives rise to cooling.

111 **(d)**

In every process randomness increases.

112 (c) $\Delta H - \Delta U = \Delta nRT = 1 \times 2 \times 373 = 746 \ cal.$

113 (b)

In first case it was equal to ΔU . It II case it is ΔH . The two values are related by $\Delta H = \Delta U + P \Delta V$

114 (a)

$$-W = +2.303 \, nRT \log \frac{V_2}{V_1}$$
$$-W = 2.303 \times \frac{16}{32} \times 300 \times 8.314 \log \frac{25}{5}$$
$$-W = 2.01 \times 10^3 J$$

115 (a)

0.2 mole of HNO_3 are neutralized by 0.2 mole of NaOH to give heat = $57 \times 0.2 = 11.4$ kJ

116 (c)

Heat of formation is given when compound is formed from its components.

117 (b)

The statement is definition of Hess's law.

118 (a)

When a gas undergoes adiabatic expansion, dq=0, it gets cooled due to loss of kinetic energy

119 (c)

 $2Al+Fe_2O_3 \rightarrow 2Fe+Al_2O_3; \Delta H^\circ = -852 \text{ kJ}$ \therefore 2 mol Al (=54 g) evolved heat \dot{c} -852 kJ $\therefore 2.7 \, g$ Al will evolve heat $i - \frac{852 \times 2.7}{54}$ i - 42.6 kJ

120 (a)

Decomposition of $CaCO_3$ is made on heating.

121 (a)

 $\Delta G = \Delta H - T \Delta S = -2500 - 298 \times 7.4 = -4705.21$ and thus, spontaneous.

122 (a)

 $q = \Delta U + W$ $50 = \Delta U + 30$ $\therefore \Delta U = 20 \, cal$

123 (a)

124 (c)

The compressor has to run for longer time releasing more heat to the surroundings

 $S_{v}^{\circ} - S_{L}^{\circ} = +ve$. Conversion of liquid to vapour occurs process.

125 (a) $-\Delta G^{\circ} = 2.303 RT \log K_{p}$

126 (c)

As graphite is thermodynamically more stable than diamond hence, more heat is required to convert graphite to gaseous carbon

127 (c)

Closed systems cannot exchange mass with surrounding. Only exchange of energy is possible.

128 (a)

 $\Delta G = \Delta H - T \Delta S$ at equilibrium,

$$\Delta G = 0, \therefore T = \frac{\Delta H}{\Delta S} = \frac{30 \times 10^3}{75} = 400 K$$

129 (b)

$$\Delta H$$
/mol of FeS^{*i*} $\frac{3.77 \times 56}{2.1} = 100.5$

130 (a)

For isochoric process, $\Delta V = 0$ so, $q_v = \Delta E ie$, heat given to a system under constant volume is used up in increasing ΔE

131 (a)

According to Hess's law total heat changes during a chemical reaction are independent of path of reaction.

Given,
$$I_2(s) \rightarrow I_2(g), \Delta H_1 = 57.3 \, kJ/mol$$

...(i)
 $I_2(s) \rightarrow I_2(l), \Delta H_2 = +15.5 \, kJ/mol$

$$I_2(s) \rightarrow I_2(l), \Delta H_2 = +15.5 \, kJ/$$

...(ii)

Required equation $I_2(l) \rightarrow I_2(g), \Delta H_1 = ?$ subtract Eq. (ii) from Eq. (i) $I_2(l) \rightarrow I_2(g), \Delta H = 57.3 + (-15.5)$ ÷ i+41.8 kJ/mol

132 (a) $\Delta G = -2.303 RT \log K$ $-4.606 = -2.303 \times 0.002 \times 500 \log K$

 $\log K = 2, K = 100$ 133 (d)

$$\Delta S^{o} = 2 S_{HCl}^{o} - (S_{H_{2}}^{o} + S_{Cl_{2}}^{o})$$

$$\delta 2 \times 186.7 - (130.6 + 223.0) = 19.8 J K^{-1} mol^{-1}$$

134 **(b)**

The energy required to break a bond.

135 (c)

25 Meq. Of acid and 25 Meq. of base (the maximum value of Meq.) react.

136 **(b)**

Eq.(b) shows largest phase change ie,gas \rightarrow solid

137 **(b)**

$$\frac{1}{2}H_{2} + \frac{1}{2}Cl_{2} \rightarrow 2HCl$$

$$\Delta H_{f} = -e_{H-Cl} + \left[\frac{1}{2}e_{H-H} + \frac{1}{2}e_{Cl-Cl}\right]$$

$$\dot{c} - 431 + \left[\frac{1}{2} \times 434 + \frac{1}{2} \times 240\right]$$

$$k - 93 kJ mol^{-1}$$

139 **(b)**

 $A_2 + E_{given} \rightarrow 2A + E_{i,i}$ ∴ $E_{i, permolecule = E_{given} - E_{used} \text{ for dissociation}.$ $i 4.4 \times 10^{-19} - 4.0 \times 10^{-19} = 4 \times 10^{-20} J$ The kinetic energy per atom

 $i \frac{4 \times 10^{-20}}{2} = 2 \times 10^{-20} J$

140 **(c)**

Macroscopic properties which determine the state of a system are referred as state functions. The change in the state properties depends only upon the initial and final state of the system. All thermodynamic functions are state functions except work and heat.

141 **(c)**

Temperature is a measure of intensity of energy, whereas heat is a measure of quantity of energy.

142 **(a)**

For exothermic reactions, K_{eq} varies inversely with Twhile in case of endothermic reactions, K_{eq} varies directly with T

143 **(b)**

 $\Delta G = \Delta H - T \Delta S$, T = 25 + 273 = 298 K $i - 11.7 \times 10^3 - 298 \times (-105) = 19590 J = 19.59 kJ$ Standard heat of formation of methane is represented by C(graphite)+2H(g) $\&CH_4(g)$ because the elements taken are in their standard state

145 **(b)**

$$\Delta H$$
 per 1.6 g $\frac{2}{6} \frac{72 \times 1.6}{180} = 0.64$ kcal

146 **(b)**
$$(dS)_{V,E>0}(dG)_{T,P<0}$$

147 **(a)**

According to second law of thermo chemistry the law states that the total heat change (ΔH) accompanying a chemical reaction is the same whether the reaction takes place in one or more steps.

It means that heat of a reaction depends only on the initial reactants and final products and not on intermediate products that may be formed. Now, $\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3$

Enthalpy change in a reaction is always constant and independent of the path followed.

148 **(b)**

Every system having some quantity of matter, is associated with a definite amount of energy. This energy is known as internal energy. It is sum of many type of energies, such as translation energy, rotational energy, vibrational energy, electronic energy and bonding energy of the molecule.

$$E = E_{trans} + E_{rot} + E_{vib} + E_{bonding} + E_{electronic}$$

149 **(c)**

For an isochoric process V = i constant; thus $\Delta V = 0$ from 1st law $q = \Delta U - W$ $i q_v = \Delta U$.

150 **(a)**

For a spontaneous process $\Delta G = -ve$ or $\dot{c}0$.

151 **(d)** It is a physical change.

152 (a)

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O; \Delta H = -188 \text{ kJ/mol} ...(i)$$

 $H_2 + O_2 \rightarrow H_2O_2; \Delta H = -286 \text{ kJ/mol} ...(ii)$
By Eq.(*i*)−(*ii*)

$2H_2O_2 \rightarrow 2H_2O+O_2;$
$\Delta H = 2(-188) - 2(-286) = +196 \text{ kJ}$

153 (a) $C + O_2(g) \longrightarrow C O_2(g)$ $\Delta n = 0$ $\therefore \Delta H = \Delta U$

154 **(a)**

 $\Delta H = +ve$ and $\Delta S = +ve$; the disorder increases with increase in moles. $PCl_5 \rightleftharpoons PCl_3 + Cl_2; \Delta H = +ve$ (dissociation)

155 **(b)**

 $q = \Delta U - W$; -W is work done by the system $\therefore \Delta U = q + W = 50 + 10 = 60$ (+W is work done on the system)

157 **(d)**

 $\Delta G_{system} = -ve$, the system is spontaneous ; $\Delta G_{system} = 0$, the system has attained equilibrium $\Delta G = +ve$, the system is non-spontaneous.

158 (d)

$$2B + \frac{3}{2}O_2 \longrightarrow B_2O_3; \Delta_f H^{\Box}(B_2O_3)$$

$$\therefore \Delta_C H^{\Box}(B) = \frac{1}{2}\Delta_f H^{\Box}(B_2O_3)$$

The heat is given out.

159 **(d)**

At isothermal condition $T = \dot{c}$ constant.

160 **(c)**

Heat changes at constant pressure are referred as ΔH . Heat changes at constant volume are referred as ΔU .

161 **(d)**

$$\begin{split} (i) & 2C(s) + H_2(g) \to H - C \equiv C - H(g) \Delta H = 225 k \\ (ii) & 2C(s) + 2C(g) \Delta H = 1410 k J mol^{-1} \\ (iii) & H_2(g) + 2H(g) \Delta H = 330 k J mol^{-1} \\ & \text{From equation (i) :} \\ & 225 = [2 \times \Delta H_{C(s) \to C(g)} + 1 \times e_{H-H}] - [2 \times e_{C-H} + 1 \times 225 = [1410 + 1 \times 330] - [2 \times 350 + 1 \times e_{C \equiv C}] \\ & 225 = [1410 + 330] - [700 + e_{C \equiv C}] \\ & 225 = 1740 - 700 - i e_{C \equiv C} \\ & e_{C \equiv C} = 1040 - 225 = 815 k J mol^{-1} \\ & BE_{C \equiv C} = 815 k J mol^{-1} \end{split}$$

162 **(a)**

Heat capacity of water per gram $i \frac{75}{18} = 4.17 \text{ J}$ $Q = mst = 100 \times 4.17 \times t = 1000$ $t = \frac{1000}{100 \times 4.17} = 2.4 \text{ K}$ When gas is compressed its entropy decreases so, ΔS is negative

164 **(b)**

Bond energy of C - H bond $\dot{c} \frac{-166}{4} = -41.5$

kJ/mol

165 **(b)**

$$\frac{-dQ}{dW} = \frac{dQ}{dQ - dE}; [::dE = dW + dQ: -dW = dQ - dE]$$
$$i \frac{nC_p dT}{nC_p dT - nC_v dT} = \frac{C_p}{(C_p - C_v)}$$
$$i \frac{7}{2} \text{ for diatomic gas}$$

166 **(c)**

In an adiabatic process, no exchange of heat takes place between the system and surroundings, *i.e.*, dQ=0. Such a condition exists when the system is thermally isolated.

167 **(c)**

$$\Delta H = H_P - H_R$$
$$H_{H_2O} - H_{H_2} - H_{O_2} = -ve$$

168 **(d)**

In the adiabatic process no heat enters or leaves the system *i.e.*, q=0.

169 **(c)**

An isolated system neither shows exchange of heat nor matter with surroundings.

170 **(a)**

The exact value of internal energy is not known as it includes all type of energies of molecules constituting the given mass of matter such as translational, vibrational and rotational. The kinetic and potential energy of the nuclei and electron with in the individual molecules and the manner in which the molecule are linked together, are

 $E = E_{translational} + E_{rotational} + E_{vibrational}$ Thus, we can say that internal energy is partly potential ad partly kinetic

171 **(a)**

Heat of formation of $N H_3$ is given by

$$\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \longrightarrow NH_3(g); \Delta H_f$$

163 **(c)**

By (ii)-(i) C(graphite) → C (diamond); $\Delta H = -393.4 - (-395.3) = +1.9$

173 **(b)**

 CH_4 required $i \frac{445.15 \times 16}{890.3} = 8 \text{ g}$

174 (d)

Calorific value : Fat > Carbohydrate > Protein

175 (d)

$$\begin{split} &\frac{1}{2}N_2 + O_2 \rightarrow NO_2; \Delta H = 8 \, kcal \dots (i) \\ &N_2 + 2O_2 \rightarrow N_2O_4; \Delta H = 2 \, kcal \dots (ii) \\ &By \; \text{eq. (i)} \times 2 - (\text{ii}) , \\ &2 \, NO_2 \rightarrow N_2O_4; \Delta H = -14.0 \, kcal \end{split}$$

176 **(c)**

Calculate it for the equation

2 Fe(s)+
$$\frac{3}{2}O_2(g)$$
 → F e₂O₃(s)
Eqs. 3(*ii*)-(*i*), we have
4 Fe(s)+3O₂(g) → 2 F e₂O₃(s)
Δ H °=3(-94050)-(-93657)
i-18493 cal=188.493 kcal
:: 2 moles F e₂O₃ has ΔH °=-188.493 kcal
:: 1 mole F e₂O₃ has ΔH °= $\frac{-188.493}{2}$
i-94.25 kcal/mol

177 (d)

At STP, $16 g O_2$ or $\frac{1}{2}$ mole O_2 will occupy 11.2 litre. Thus, if volume is doubled, it means $(V_2 - V_1) = 22.4 - 11.2 = 11.2$ litre

Now, $W = P \times (V_2 - V_1) = 1 \times 11.2$ litre atm $i \frac{1 \times 11.2 \times 2}{0.0821}$ i 272.84 kcal

178 **(d)**

For isothermal process $\Delta U = 0$.

179 **(b)**

Gibbs energy change ΔG is given by: $\Delta G = \Delta H - T \Delta G$ Also, G = H - TS

180 **(a)**

For insulated container q=0.

181 **(b)**

 $\Delta_{solution} = \Delta H_i + \Delta H_h$ or $1 = 180 + \Delta H_h$ $\Delta H_h = -179 \, k cal \, mol^{-1}$ The total $\Delta H_h = \Delta H_{h_{Na^{-1}} + \Delta H_{h_{a^{-1}} = \frac{61}{11} + \frac{5a}{11} = a^2}}$ Where a is total heat of hydration (ΔH_h) . Thus, $\Delta H_{h_{Na^{+1}}} = \frac{-6 \times 179}{11} = -97.63 \, k cal \, mol^{-1}i$.

182 **(a)**

Since, process is exothermic, heat is evolved, due to this temperature of water increases

183 (a)

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$$

This equation can be obtained by subtraction of

$$\begin{bmatrix} CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g) \end{bmatrix}$$
$$\begin{bmatrix} C(s) + \frac{1}{2}O_2(g) \rightarrow CO_2(g) \end{bmatrix}$$

from

Hence,
$$\Delta H_f = (CO) = [-393.3 - (-282.8)] \text{ kJ}$$

 $\& 110.5 \text{ kJ/mol}$

184 **(a)**

Heat of neutralisation is also defined as the heat of formation of H_2O from H^{+il} and OH^{-il} ions.

185 **(b)**

 $q = \Delta U - W$, if q = 0 for adiabatic process, than $-\Delta U = -W$ or $\Delta U = W$, *i.e.*, work done on the system or work of compression brings in an increase in temperature

186 **(c)**

$$PV^{r} = constant$$

$$P \cdot \gamma V^{\gamma-1} dV + V^{\gamma} \cdot dP = 0$$

$$\therefore \frac{dP}{P} = \frac{\gamma \cdot V^{r-1} dV}{V^{\gamma}} = -\gamma \left(\frac{dV}{V}\right)$$

187 (d)

Strong acid (HCl) and strong base (NaOH).

188 **(d)**

The randomness in gaseous state is more than liquid state.

189 **(c)**

The definition of third law of thermodynamics.

190 **(b)**

 $\Delta S = +ve$ for irreversible process.

191 **(a)**

It is the definition of heat of formation.

192 **(c)**

This is definition of third law of thermodynamics.

- 193 (c) Follow Le-*chatelier* principle.
- 194 (a) $\Delta S = S_P - S_R$ $i (2 \times 0.19) - 0.13 - 0.22$ $i 0.03 kJ K^{-1} mol^{-1}$ $i 30 J K^{-1} mol^{-1}$

196 **(a)**

$$W_{\rm exp} = -P \times \Delta V$$

$$\dot{c} - 1 \times (13 - 3) = -10 \, atm \, dm^3$$

197 **(a)**

Heat evolved during combustion of 3.2 g $CH_4 = \frac{880 \times 3.2}{16} = -176 kJ$

198 **(c)**

It is defined of heat of solution.

199 **(b)**

Formation of CO_2 from CO is an exothermic reaction. Heat is evolved from the system *ie*, energy is lowered thus exothermic reactions occur spontaneously on account of decrease in enthalpy of system. Thus, $\Delta E > \Delta H$

200 **(d)**

$$dQ = nS\Delta T$$
, $\therefore S = \frac{dQ}{dT}$ (for 1 mole).

201 **(c)**

 $\Delta H = n C_p \Delta T$ The process is isothermal therefore, $\Delta G = 0$ $\therefore \Delta H = 0$

202 **(b)**

The system returns to its original state, i.e., cyclic process.

203 **(b)**

 $\Delta G = \Delta H - T \Delta S; \text{ at equilibrium,}$ $\Delta G = 0, \therefore \Delta H = T \Delta S$ $\dot{c} \Delta H = 273 \times (60.01 - 38.20) = 5954.13 J \text{ mol}^{-1}$

204 **(a)**

$$E N_{F} E N_{Cl} = 0.2028 \sqrt{\Delta}$$

and $\Delta = \left[e_{F-Cl} - \left(e_{F-F} \times e_{Cl-Cl} \right)^{1/2} \right]$
 $\therefore E N_{F} E N_{Cl} = 0.2028 \left[e_{F-Cl} - \left(e_{F-F} \times e_{Cl-Cl} \right)^{1/2} \right]^{1/2}$

Or 1=0.2028 $\left[e_{F-Cl} - (38 \times 58)^{1/2}\right]^{1/2}$ $\therefore e_{F-Cl} = 71.26 \, kcal \, mo \, l^{-1}$.

206 **(b)**

0.2 mole will neutralize 0.2 mole of HNO_3 heat evolved $\dot{c} 51 \times 0.2 = 11.4$ kJ

207 **(b)**

Kirchhoff's equation is : $\Delta H_2 - \Delta H_1 = \Delta C_p (T_2 - T_1)$

208 **(d)**

 Δn depends on stoichiometry of reaction.

209 **(a)**

$$e_{A-A} = a \text{ Also, } \frac{1}{2}A_2 + \frac{1}{2}B_2 \rightarrow AB;$$

$$e_{A-B} = a \Delta H = -100 \text{ kJ mo } l^{-1}$$

$$e_{B-B} = 0.5 a$$

$$\therefore \Delta H = -[e_{A-B}] + \frac{1}{2}[e_{A-A} + e_{B-B}]$$

$$\delta a + \frac{1}{2}[a + 0.5 a]$$

$$-100 = -0.25 a$$

$$\therefore a = 400 \text{ kJ mo } l^{-1}$$

210 **(d)**

The properties of the system whose value is independent of the amount of substance present in the system are called intensive properties *e.g.*, viscosity, surface tension, temperature, pressure etc.

211 **(d)**

When a real gas is forced through a porous plug into a region of low pressure, it is found that due to expansion, the gas on the side of low pressure gets cooled

212 **(b)**

The room got heated because heat is lost to surroundings.

213 **(b)**

$$T_b = \frac{\Delta H}{\Delta S} = \frac{30 \times 10^3}{75} = 400 \, K$$

214 **(d)**

Heat of combustion is always exothermic; Few combustion reactions such as $F_2 i F_2 O$, $N_2 i N_2 O \wedge NO$ are endothermic but these reactions do not give heat of combustion

because the substance should be completely oxidized. In F_2O , F_2 is reduced and N_2O and NO are not completely oxidized state of N_2 . However, three reactions are exceptions but these do not represent heat of combustion. These are, $N_2 + O_2 \longrightarrow N_2 O; \Delta H = +ve$ $N_2 + O_2 \longrightarrow NO; \Delta H = +ve$ and $F_2 + (1/2)O_2 \longrightarrow F_2O; \Delta H = +ve$

215 **(b)**

For an isothermal process $\Delta T = 0 \land \Delta E = 0 \land q \neq 0$

216 (b)

Given: (i) $H_2 + \frac{1}{2}O_2 \rightarrow H_2O; \Delta H = -241_{kJ}$ (ii) $C_6H_{10} + \frac{17}{2}O_2 \rightarrow 6CO_2 + 5H_2O; \Delta H = -3800$ [226 (d) kJ (iii) C_6H_{12} +9 $O_2 \rightarrow 6CO_2$ +6 H_2O ; ΔH =-3920 kJ for the reaction $C_6 H_{10} + H_2 \rightarrow C_6 H_{12}$ [It is infact Eq.(i)+Eq.(ii) $-\dot{c}$ Eq.(iii)] Thus, $\Delta H = -241 - 3800 - (-3920) = -121 \text{ kJ}$

217 (d)

In isothermal reversible process, ideal gas has constant volume and so, $\Delta E = 0$ and $\Delta H = \Delta E = 0$

218 (a)

 $\Delta H = -2 \times e_{H-Cl} + e_{H-H} + e_{Cl-Cl}$ $:n182 = -2 \times a + 430 + 242$ $\therefore a = 245 \, kJ \, mol^{-1}$

219 (d)

 $\Delta H = \Delta U + \Delta nRT$ $\Delta n = +1/2$ Thus, $\Delta H > \Delta U$

220 (c)

Cylinder contains 11.2 kg or 193.10 mole butane. ¿ molecular mass of butane =58) : Energy released by 1 mole of butane i - 2658

:Energy released by 193.10 mole of butane

 $i - 2658 \times 193.10$

 $\frac{1}{6}5.13 \times 10^{5} \text{ kJ}$

$$\therefore \frac{5.13 \times 10^5}{20000} = 25.66 \lor 26 \, days$$

Heat of formation of $H_2O = -i$ heat of decomposition of water.

222 (a)

 $T_{fireversible} > T_{freversible}$ it is an adiabatic expansion and W(rev) is maximum.

223 (c)

Molecular solids are covalent compounds having low m.p.

224 (a)

 $\Delta H = H_p - H_p$ Thus, ΔH is negative because $H_P < H_R$.

225 (b)

 $\Delta G = -ve$ for a spontaneous change.

Ideal gas does not show intermolecular forces of attractions.

227 (b)

Rest all are correct.

228 (a) During solidification disorder decreases.

229 (a)

$$\Delta S = \frac{\Delta H_f}{T} = \frac{2930}{300} = 9.77 \, J \, mol^{-1} K^{-1}$$

230 (d)

 $\Delta G = \Delta H - T \Delta S$ The reaction will be spontaneous If $T \Delta S > \Delta H(i.e., \Delta G = -ve)$ $T > \frac{\Delta H}{\Delta S} = \frac{170}{170 \times 10^{-3}} = 1000 K$

231 (c)

 θ is independent of initial amount as long as relative amount is constant

232 (b)

 $q = \Delta U - W$, if adiabatic process q = 0, then $-\Delta U = -W$, *i.e.*, a decrease in free energy brings in work done by the system (-W).

233 (a)

As the system is closed and insulated, no heat enter or leave the system, ie, q=0 $\therefore \Delta E = q + W = W$

234 (b)

$$XY \rightarrow X(g) + Y(g); \Delta H = + akJ/mol ...(i)$$

$$X_{2} \rightarrow 2X; \Delta H = + akJ/mol ...(ii)$$

$$Y_{2} \rightarrow 2Y; \Delta H = + 0.5 a kJ/mol ...(iii)$$

$$\frac{1}{2} \times (ii) + \frac{1}{2} \times (iii) - (i) \text{ gives}$$

$$\frac{1}{2}X_{2} + \frac{1}{2}Y_{2} \rightarrow XY$$

$$\Delta H = \left(\frac{+a}{2} + \frac{0.5}{2}a - a\right)kJ/mol$$

$$\therefore -200 = \frac{+a}{2} + \frac{0.5a}{2} - a$$
or $a = 800$

235 (d)

 $CH_{4} \rightarrow C+4H; \Delta H=360 \text{ kcal/mol}$ $e_{C-H}=90 \text{ kcal}$ $C_{2}H_{6} \rightarrow 2C+6H; \Delta H=620 \text{ kcal/mol}$ $\therefore 620=e_{C-C}+6e_{C-H}$ $\therefore e_{C-C}=620-540=80 \text{ kcal/mol}$

236 (d)

Molecular weight of $N H_4 N O_3 = 80$ \therefore Molar heat of decomposition $H = ms \Delta t = 80 + 1.23 \times 6.12$ $\therefore 602 \text{ kJ/mol}$

237 **(b)**

Greater is bond energy more is stability to bond.

238 (a)

Due to high bond energy of $N \equiv N$, more heat is absorbed to break up N_2 molecule.

239 (a)

 $\Delta S_{vap} = \frac{(900 \times 18)}{373} = 43.4 J K^{-1} mol^{-1}$

240 **(b)**

For spontaneous reaction $\Delta G = -ve$. $\Delta G = \Delta H - T \Delta S$ $\Delta H = +ve$, $\Delta S = +ve$ and $T \Delta S > \Delta H$

241 (d)

 $\Delta n = 0$ $\therefore \Delta H = \Delta U$

242 (a)

$$H_{2} + \frac{1}{2}O_{2} \rightarrow H_{2}O(g); \Delta H = -57.0 \, kcal....(i)$$
$$H_{2} + \frac{1}{2}O_{2} \rightarrow H_{2}O(l); \Delta H = -68.3 \, kcal....(ii)$$

By eq. (i) and (ii), $H_2O(l) \rightarrow H_2O(g); \Delta H = +11.3kcal$

243 **(b)** $\Delta H = \Delta U + \Delta nRT$ $\therefore \Delta U = 176 - 1 \times 8.314 \times 1240 \times 10^{-3}$ $\& 165.6 \, kJ$

246 **(b)**

$$\Delta n = -2$$

$$\therefore \Delta H = \Delta U + \Delta nRT$$

$$\dot{c} - 1415 + (-2) \times 0.0083 \times 300$$

$$\dot{c} - 1420 \, kJ$$

247 (c)

Experimental determination of heats of reaction by bomb calorimeter represents its value at constant volume, i.e., ΔU .

248 **(b)**

Graphite possesses $s p^2$ -hybridisation and has flat layer structure whereas diamond possesses $s p^3$ hybridisation and has rigid tetrahedral nature.

249 **(c)**

$$n_{efficiency} = \frac{T_2 - T_1}{T_2}$$
$$i 0.25 = \frac{T - 400}{T}$$
$$\therefore T = 533.3 K$$

250 (a)

Lower is energy level of a system, more is its stability.

251 **(b)**

 $\Delta H = \Delta U + \Delta nRT$ Since, $\Delta n = -2$ Thus, $\Delta H < \Delta U$

252 **(b)**

$$K + \frac{1}{2}O_2 + \frac{1}{2}H_2 \rightarrow KOH; \Delta H = ?$$

Find ΔH by Eq. [(i) + (ii)] – (iii).

254 **(c)**

The fact for a quantity referred as state function.

255 (c)

Bond formation is always exothermic.

256 (d) $N_2 + \frac{1}{2}O_2 \longrightarrow N_2O; \Delta H = 28 kJ$ $\frac{1}{2}N_2 + \frac{1}{2}O_2 \rightarrow NO; \Delta H = 90 kJ$ By eq. $[4 \times (ii)] - \frac{1}{2}[2 \times (i)],$ $2N_2O + O_2 \rightarrow 4 NO; \Delta H = 304 kJ$

257 **(b)**

Calorific value = Heat of combustion per g of fuel, i.e., for C_2H_4 , it is $\frac{-1411}{28}$, the lowest value.

258 **(b)**

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

 $i - 54.07 - 298 \times 10 \times 10^{-3}$
 $i - 57.05 \, kJ$
Also, $\Delta G^{\circ} = 2.303 \, RT \log_{10} K$
 $\log_{10} K = \frac{-57.05 \times 10^{3}}{2.303 \times 8.314 \times 298}$

259 **(b)**

Hess's law is based upon law of conservation of energy *i.e.*, first law of thermodynamics.

260 **(d)**

$$\Delta S_f = \frac{\Delta H_f}{T} = \frac{6 \times 10^3}{273} = 21.98 J$$

261 **(b)**

Properties which are mass independent are intensive properties and others which are mass dependent are extensive properties.

262 **(a)**

 $\Delta n = 2 - 3 = -1 \therefore \Delta H = \Delta U - RT$

263 **(b)**

Step1. P-H bond energy from bond dissociation energy of $PH_3(g)$ containing 3 such P-H bonds $i \frac{228}{3} = 76$ kcal/mol

Step 2. The structure of
$$P_2H_4$$
 is
 $H \to P - P < H_{ie}$, it contains 4 $P - H_{ie}$ bonds and one

P-P bond, so P-P bond energy can be calculated by $4 \times P-H+P-P=i$ bond dissociation energy $\therefore P - P$ bond energy = 335 - 4(76) \therefore 31 kcal per mol

264 (c) By Eq. (i) + (ii), $2 Na+C l_2 \rightarrow 2 NaCl; \Delta H = -196 kcal$

265 **(d)**

Energy of red P is lesser than white P and thus, red P is more stable.

266 **(b)** $H_2SO_4 + 2NaOH \longrightarrow N a_2SO_4 + 2H_2O$ $\Delta H = 2 \times (-13.7)kcal$

267 **(d)**

 $H_2O(l) \rightleftharpoons H_2O(v); \Delta H = 41.0 \, kJ \, mo \, l^{-1}$ $\Delta H = \Delta U + \Delta nRT$ $41.0 = \Delta U + 1 \times 8.314 \times 373 \times 10^{-3}$ $\therefore \Delta U = 37.89 \, kJ \, mo \, l^{-1}$

268 **(d)**

These are derived formulae.

269 **(c)**

Spontaneous process shows a decrease in ΔG .

271 **(d)**

For monoatomic gases C_P : C_V is 1.67.

272 **(c)**

Bond formation is always exothermic.

273 **(b)**

Lower is heat of neutralisation, more is dissociation energy, weaker is acid.

274 **(b)**

Heat change for 3.6 g
$$H_2O = \frac{683.6}{18} = 13.6$$
 kcal

275 **(a)**

$$\therefore \Delta T = \frac{W}{nR} \therefore Q = n C_p (\Delta T) = n C_p \frac{W}{nR} = \frac{C_p W}{R}$$
$$C_p = \frac{QR}{W} = \frac{500 \times 2}{142.8} = 7$$

 $C_p=7$ indicates that the gas is diatomic. Thus, it should be O_2

276 **(b)** For the equation $B_2H_6(g) + 3O_2(g) \rightarrow B_2O_3(g) + 3H_2O(g)$

Eqs.(i) +3(ii)+3(iii)-
$$\dot{\iota}$$
(iv)
 $\Delta H = -1273+3(-286)+3(44)-36$
 $\dot{\iota} - 1273-858+132-36$
 $\dot{\iota} - 2035$ kJ/mol

277 (d)

As we know that,

Work done
$$(W) = 2.303 \, nRT \log \frac{V_2}{V_1}$$
.

Hence, $V_1 \wedge V_2$ are in ratio in the relation. So, unit may be expressed in any one of m^3 , $dm^3 \lor cm^3$.

278 (a)

Fuel value per g of substance produced on burning.

279 **(a)**

 T_1 and T_2 are same for a substance.

280 (a)

For an endothermic reactions ΔH is positive because in endothermic reaction heat is always absorbed.

281 (a)

Ice takes up heat to melt and thus, enthalpy change is +ve.

283 (a)

When $\Delta H = -ve$, $\Delta S = +ve$ and $\Delta G = -ve$ than reaction is spontaneous

284 **(d)**

KE = (3/2)RT

285 **(b)**

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g); \Delta H = r - s$$

286 (d)

$$Cu(g) \rightarrow Cu^{+i(g)+e, \Delta H = 745 \, kJ \, mo\Gamma^{-1}i}$$

$$I(g) + e \rightarrow I^{-i(g); \Delta H = -295 \, kJ \, mo\Gamma^{-1}i}$$

$$Adding Cu^{+i(g)+\frac{I^{-i(g)-CuI(g); \Delta H^{2} = -446 \, kJ \, mo\Gamma^{-1}}{Cu(g)+I(g) \rightarrow CuI(g); \Delta H^{2} = 4 \, kJ \, mo\Gamma^{-1}i}$$

287 (a)

Entropy of universe is tending towards maximum.

289 (a) $\Delta H_{(reaction)} = \Delta H_{f(diamond)} - \Delta H_{f(graphite)}$ = 1.896 -

0.23 = 1.666 kJ/ mol

290 **(b)**

$$p=1$$
 atm
 $\Delta V = (50-15)=35 L$
∴ $W = -p \cdot \Delta V = -1 \times 35$
 $i - 35Latm$
Hence, work done by the system on the
surroundings is equal to 35 L-atm.

291 (d)

The product possesses maximum energy and thus, least stable.

292 **(d)**

By eq. $[(i) + 2 \times (ii)] - (iii),$ $C + 2H_2 \longrightarrow CH_4; \Delta H = 74.1 kJ$

293 (a)

For the equation, $H_2+S+2O_2 \rightarrow H_2SO_4$ Eqs. (i) +(ii)+(iii)+(iv) $\Delta H = -287.3+(298.2)+(-98.7)+(-130.2)$ &814.4 kJ

294 **(d)**

...

(a) For isochoric process, $\Delta V = 0$

 $W = p \Delta V = 0$

 $\Delta E = Q$

(b) For adiabatic process, Q=0

 $\Delta E = W$

(c) For isothermal process, $\Delta T = 0$

$$E=0$$

O = -W

(d) For cyclic process, state functions like

$$\Delta E = 0$$
$$O = -W$$

Δ

- 296 **(a)** $\Delta G = \Delta H - T \Delta S = -ve - ve = -ve$
- 297 (a) $F_2 + \frac{1}{2}O_2 \longrightarrow F_2O; \Delta H = +ve.$

298 **(c)**

Two equivalent of each are used.

299 **(a)**

Isothermally (at constant temperature) and reversible work.

$$W = 2.303 \, nRT \log \frac{p_2}{p_1}$$

$$i \, 2.303 \times 1 \times 2 \times 300 \log \frac{10}{2}$$

$$i \, 2.303 \times 600 \times \log 5 = 965.84$$

At constant temperature, $\Delta E = 0$ $\Delta E = q + W$, q = -W = -965.84 cal

300 **(d)**

304 **(b)**

Work done by the system $\lor i$ work of expansion is negative. Work done on the system $\lor i$ work of compression positive.

305 **(a)**

From first law of thermodynamic. $\Delta E = q + W \text{ Given}, q = +300 \text{ cal}$ (::Heat is absorbed) W = -500 cal(::Work is done on surroundings) $\therefore \quad \Delta E = q + W = 300 + (-500)$ $\therefore -200 \text{ cal}$

306 **(b)**

An experimental fact.

307 **(b)**

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$ $\Delta n_g = 1 - 3 = -2$ The gaseous phase have more entropy and thus, ΔS is +ve in (a) and (b). Also decrease in pressure increases disorder and thus, ΔS is +ve in (c). In (d) the disorder decreases in liquid state due to decrease in temperature. Thus, $\Delta S = -ve$.

301 **(a)**

Hess's law states that the total change in heat enthalpy during the complete course of reaction is same, whether the change is brought in one step or in several steps by one method or other method.

302 **(c)**

First we calculate the expected bond dissociation energy of benzene molecules as $3 \times C - C + 3 \times C = C + 6 \times C - H$ \therefore Calculated value & 3(347.3) + 3(615) + 6(412.2)& 4397.8Resonance energy = Experimental value – calculated value & 5335 - 4397.8

¿937.2 kJ per mol

303 **(d)**

$$\Delta S = 2.303 \, nR \log \frac{V_2}{V_1}$$
$$\dot{c} 2.303 \times 2 \times 2 \log \frac{20}{2} = 9.2$$

We know that,

$$\Delta E = \Delta H + \Delta n_g RT$$

$$\therefore \qquad \Delta H = (-885389) - (-2) \times 8.314 \times 298$$

$$= -i \cdot 885389 + 4955.1440$$

$$= -i \cdot 880433.86 \text{ J mo } l^{-1}$$

308 (a)

Human body is an example of open system as it can exchange both mass and energy with the surroundings.

309 (c)

According to Hess's law, the total heat changes occurring during a chemical reaction are independent of path.

$$A \xrightarrow{\Delta H} B$$

$$C \xrightarrow{D} D$$

$$\Delta H = q + V + 2x$$

311 (c)

 $\therefore q_{|i|=\Delta U + (-W)i}$ $\therefore \Delta U = q + W; \Delta U \text{ is state function.}$

312 (c)

For exothermic reaction, $\Delta H = i$ for endothermic reaction, $\Delta H = i$

313 **(b)**

Find ΔH for, $Ca + O_2 + H_2 \rightarrow Ca[OH]_2$

314 **(b)**

For maximum extent of reaction, $4 X(s) + O_2(g) \longrightarrow 2 X_2 O(s); \Delta H = a$ Also, $X(s) + \frac{1}{4}O_2(g) \longrightarrow \frac{1}{2} X_2 O(s); \Delta H = -90 kJ$ $\therefore a = -90 \times 4 = -360 kJ$

315 (c)

For spontaneous process $\Delta G = -ve$

317 (a)
Given,
$$2C+3H_2 \rightarrow C_2H_6$$
; $\Delta H = -21.1$
 $C+O_2 \rightarrow CO_2$; $\Delta H = -94.1$
 $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$; $\Delta H = -68.3$
Eqs. 2(ii) + 3(iii) - \dot{c} (i)
 $C_2H_6 + \frac{3}{2}O_2 \rightarrow 2CO_2 + 3H_2O$
 $\Delta x = 2(-94.1) + 3(-68.3) - (-21.1)$
 $\dot{c} - 372 \, kcal$

318 (c)

Surface tension is an intensive property because it does not depend upon the quantity of matter present in the system

319 (a)

 $\frac{1300}{241.8} = \frac{5.37}{1}$

320 **(d)**

 $PV = 1 \times 1 \ lit - atm$ $i \ 10^{-3} \ m^3 \times 0.76 \times 13.6 \times 9.8 \times 10^3 \ Nm^{-2}$ $i \ 101.3 \ J$

321 **(c)**

 $Ag^{+i+C\Gamma^{i\to AgCli}i}$ is a spontaneous reaction.

322 **(b)**

$$C_2H_4+3O_2 \rightarrow 2CO_2+2H_2O$$

Thus, V_{O_2} used $ic \frac{6226 \times 3 \times 22.4}{1411}$
= 296.5 litre

323 (c)

 $C S_2$ is formed from its initial components carbon and hydrogen.

324 **(d)**

$$\begin{split} C+O_2 &\rightarrow CO_2(g); \Delta H = -94 \, kJ \dots (i) \\ C &a + \frac{1}{2}O_2 \rightarrow CaO(s); \Delta H = -152 \, kJ \dots (ii) \\ CaCO_3(s) &\rightarrow CaO(s) + CO_2(g); \Delta H = 42 \, kJ \dots \\ \text{By eq. [(i) + (ii)]- (iii),} \\ Ca+C + \frac{3}{2}O_2 \rightarrow CaCO_3; \Delta H = -288 \, kJ \,. \end{split}$$

325 **(a)**

 $PV^{\gamma} = i$ constant for adiabatic expansion and PV = i constant for isothermal expansion $\therefore \log P = -\gamma \log V$ slope = $-\gamma$

$$\log P = -\log V slope = -1$$

326 **(c)**

A part of heat is used in dissociation of CH_3COOH , a weak acid.

327 **(a)**

No doubt solidification shows a decrease in entropy but in egg proteins structure are disordered in solid state due to denaturation.

328 (a)

$$1 \, cal = 4.18 \, J = 4.18 \times 10^7 \, erg = \frac{4.18}{1.602} \times 10^{19} \, eV$$

329 **(c)**

C+O₂ → CO₂; $\Delta H = -393.5$ kJ/mol ::44 g of CO₂ formed by which heat released i - 393.5 kJ ::1 g of CO₂ formed by which heat released $i - \frac{-393.5}{44}$::35.2 g (given) of CO₂ formed by which heat released $i - \frac{393.5}{44} \times 35.2 = -314.8$ kJ

330 **(b)**

Only work can be done by a thermally isolated system between it and surroundings.

331 **(c)**

An open system is one which involves exchange of mass and energy.

333 **(c)**

Gaseous molecules have more random motion.

334 **(d)**

$$H_{2} + \frac{1}{2}O_{2} \rightarrow H_{2}O(l); \Delta H = -68.32 \, kcal$$
$$H_{2}O(l) \rightarrow H_{2}O(g); \Delta H = 10.52 \, kcal$$
$$\therefore H_{2} + \frac{1}{2}O_{2} \rightarrow H_{2}O(g); \Delta H = -57.80 \, kcal$$

335 **(c)**

$$\Delta G = \Delta H - T \Delta S$$

$$\Delta G = 0, \therefore \Delta H = T \Delta S$$

$$T = \frac{\Delta H}{\Delta S} = \frac{40.63 \times 10^3}{108.8} = 373.4 K$$

336 **(b)**

No exchange of heat in between system and

surroundings under adiabatic conditions.

337 **(b)**

More is heat of ionization of acid more is stability of acid or lesser is dissociation or

$$K \square_{a C H_3 COOH} > K_{a HCN} \cdot \text{Thus, } p K_{a_{HCN}} > p K_{a_{C H_3 COOH}}$$

338 **(a)**

Bond breaking process or decomposition processes are endothermic process.

339 **(a)**

Hess's law states that enthalpy changes during and process are independent of path. So, this law is used in calculating enthalpy.

340 (d)

 $\Delta G = \Delta H - T \Delta S : \Delta G = \Delta E + p \Delta V - T \Delta S$ For spontaneity $\Delta G = -ve$

341 **(b)**

 $H^{+\dot{\iota}+OH^{-\dot{\iota}\to H_iO;\Delta H=-13.7\,kcal\dot{\iota}}}$ Also, $\Delta H = H_f^{\Box} H_2 O - \dot{\iota}$ Or $-13.7 = -68.0 - \dot{\iota}] \dot{\iota}]$ $\therefore H_{OH^{\dot{\iota}}=-54.3\,kcal\dot{\iota}}$

342 **(a)**

This is the derived formula for W_{rev} is isothermal change.

343 **(b)**

Internal energy depends upon the temperature of gas and not on P and V.

344 **(a)**

 T_A and T_B are same for a liquid.

345 (d)

 $\Delta H = -2 \times [2 \times e_{O-H}] + 2 \times e_{H-H} + e_{O-O}$ $\delta - 4 \times 220 + 2 \times 105 + 120 = -550 \, kJ$

346 **(c)**

Heat measurements are made in calorimeter usually made of copper.

347 (d)

The process involves conversion of 1 mole of C(s) to C(g), *i.e.*, sublimation.

348 (d)

 $C+2H_2 \rightarrow CH_4; \Delta H = -17.9 \, kcal \dots (i)$ $C+O_2 \rightarrow CO_2; \Delta H = -94.1 \, kcal \dots (ii)$
$$\begin{split} H_{2} + \frac{1}{2}O_{2} &\to H_{2}O; \Delta H = -68.3 \, kcal.....(iii) \\ \text{Eqs. } [(ii) + 2 \times (iii)] - (i), \\ C \, H_{4} + 2O_{2} &\to 2 \, H_{2}O \end{split}$$

350 **(a)**

The branch deals with interconversion of heat and chemical energy.

351 **(d)**

2
$$H_2 \rightarrow 4H$$
; $\Delta H = -869.6 kJ$
∴ $e \square_{H-H} = \frac{969.6}{2} = +434.8 kJ$

353 **(c)**

The properties, which do not depend on the amount of substance, are called intensive property. *e.g.*, surface tension, viscosity etc.

354 (a)

Use $\Delta H = \Delta U + \Delta nRT$ $\Delta n = -3$

355 **(a)**

 $W_{rev} = -\int P dV \lor - \int P \Delta V$; note that opposing pressure is not constant throughout.

356 **(b)**

Joule-Thomson coefficient

$$\mu = \frac{dT}{dP} = \frac{27 - 30}{5 - 2} = -1$$

For all negative values of μ , the gas warms on expansion

357 **(b)**

$$W = -p\Delta V$$

Given, p+100 kPa=10⁵ Pa,
V₁=1 d m³=10⁻³ m³, V₂=1 m³
W=10⁵×(1-10⁻³) J
∴W=99900 J

358 **(d)**

The efficiency of engine is given as,

$$\eta = \frac{T_2 - T_1}{T_2}; \eta$$
 is more when $T_2 - T_1$ is maximum

360 **(d)**

A spontaneous change is accompanied by lowering of free energy

361 (c)

E and G(H-TS) are state functions. Also,

dependent and not state functions.

362 (c)

An isolated system neither shows exchange of heat nor matter with surroundings.

364 **(b)**

No doubt (a) and (b) both represent heat of 373 (a) formations but standard heat of formation $(\Delta H^{\perp} f \dot{c})$ for CO_2 will be from $C_{(graphite)} + O_2 \rightarrow CO_2$ as $C_{(araphite)}$ is most stable form of carbon.

365 (a)

For an isothermal process, $\Delta E = 0$ As the process is taking place at constant T and *p* hence, from equation,

 $\Delta H = \Delta E + \Delta p.V$ We have, $\Delta H = 0 + 0 \times V = 0$ Hence, for the process, $\Delta H = \Delta E = 0$

366 **(b)**

At isothermal condition $T = \frac{1}{2}$ constant.

367 (a)

The heat of formation of CO is calculated by using Hess's law. According to it, the total heat changes occurring during a chemical reaction are independent of path.

 $2CO(g)+O_2(g) \rightarrow 2CO_2(g);$ $\Delta H = -135.2$ kcal

(I)
$$CO_2(g) \rightarrow CO(g) + \frac{1}{2}O_2(g); \quad \Delta H = \frac{135.2}{2}$$

kcal

(II) $C(s) + O_2(g) \rightarrow CO_2(g); \quad \Delta H = -94$ kcal Required equation

$$C(s)+\frac{1}{2}O_2(g) \rightarrow CO(g); \qquad \Delta H = ?$$

Add Eqs. (I) and (II)

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g); \qquad \Delta H = -26.4 \text{ kcal}$$

368 (d)

Graphite possesses lesser energy than diamond.

370 (a)

Under adiabatic conditions work is done on the cost of internal energy of system.

371 (b)

 $\Delta G = \Delta H - T \Delta S$ $\therefore \Delta G = -11700 - 298 \times (-105)$ i + 19590 J = + 19.59 kJ

Thus, reaction is non-spontaneous.

372 (c)

Internal energy, enthalpy and entropy are state functions but work and heat are path functions.

 $q = \Delta U - W$; -W is work done by the system $\Delta U = 40 - 8 = 32 J (:-W = 8)$

374 (a)

At constant volume, heat of reaction is ΔU .

375 (c)

$$2.303 \log \frac{P_2}{P_1} = \frac{\Delta H}{R} \frac{[T_2 - T_1]}{T_1 T_2}$$

$$\therefore 2.303 \log \frac{10}{1} = \frac{460.6}{2} \times \frac{[T_2 - 50]}{50 \times T_2}$$

$$\therefore T_2 = 100 K$$

376 **(b)**

Heat of neutralization is defined as the energy released during neutralization of 1 eq. of an acid by 1 eq. of base.

377 (d)

 $S_{R} + O_{2} \rightarrow SO_{2}; \Delta H = -70.96....(i)$ $S_M + O_2 \rightarrow SO_2; \Delta H = -71.03....(ii)$ By eq. (i) - (ii), $S_R \rightarrow S_M$; $\Delta H = 0.07 \, kcal \lor 70 \, cal$

379 (d)

It does not violate the first law of thermodynamics but violates the II law of thermodynamics

380 (c)

If $\Delta H = +i$ ve and $\Delta S = -i$ ve then the reaction is spontaneous

381 (b)

By eq. (ii) – (i),

$$C_G \longrightarrow C_D; \Delta H = +1.5 \, kJ$$

382 (a)

This is derived formula.

383 (a)

$$W = 2.303 \, nRT \log \frac{12}{p_1}$$

$$i \, 2.303 \times 1 \times 2 \times 300 \log \frac{10}{2} = 965.84$$

At constant temperature, $\Delta E = 0$

 \boldsymbol{p}_{2}

$$\Delta E = q + W;$$

$$q = -W = -965.84 \, cal$$

384 (a) $H_2(g) + (1/2)O_2(g) \longrightarrow H_2O(g)$ $\Delta n = -1/2$ and thus, ΔS decreases or -ve

385 **(d)**

$$\Delta G = \Delta H + T \left[\frac{\partial \Delta G}{\partial T} \right]_{P} \text{ (Gibbs-Helmholtz equation)}$$

Also, $\Delta G = \Delta H - T \Delta S; \land -\Delta G = nF \cdot E$
 $\therefore \qquad \Delta G - \Delta H = -T \Delta S$
 $\delta - T \Delta S = T \left[\frac{\partial \Delta G}{\partial T} \right]_{P} = T \left(\frac{-nF \partial E}{\partial T} \right)_{P}$
 $\delta \left[\frac{\partial E}{\partial T} \right]_{P} = \frac{\partial S}{nF}; \text{ similarly derive for other values .}$

386 **(a)**

Internal energy of 1 mole of gas $i\frac{3}{2}RT$

388 **(c)**

 $C_D \longrightarrow C_G; \Delta H = -453.5 \, cal$, *i.e.*, Energy of C_G is less and thus, more stable.

390 **(c)**

At equilibrium $\Delta G = 0$.

391 **(c)**

$$\Delta S = 16 \text{ J mo } l^{-1} K^{-1}$$
$$T_{b.p} = \frac{\Delta H_{vapour}}{\Delta S_{vapour}} = \frac{6 \times 1000}{16}$$
$$i 375 K$$

$$\Delta S = \frac{\Delta H}{T} = \frac{1.435 \times 10^3}{273} = 5.260 \, cal \, mole^{-1} K^{-1}$$

393 **(b)**

Endothermic reactions are those in which heat energy is absorbed.

394 **(b)**

The melting of ice at $-15 \,^{\circ}C$ is not an spontaneous process.

395 **(c)**

Mixing of gases increases the entropy

396 **(c)**

Current flows from higher potential to lower one.

397 **(a)**

$$-W_{irr.} = P_{ext.} (V_2 - V_1)$$

 $i \cdot 1 \times (15 - 3) = 12 \ litre \ atm$
 $i \cdot \frac{12 \times 1.987 \times 4.184}{0.0821}$
 $i \cdot 1.215 \times 10^3 J$

398 (c)

 $\Delta H \text{ for combustion of 56 litre } H_2 = \frac{-24.1 \times 56}{22.4}$ $\Delta H \text{ for combustion of 56 litre } CO = \frac{-263 \times 56}{22.4}$ $\therefore Total \Delta H = -1312 \, kJ$

399 **(b)**

This is the derived formula for W_{rev} in adiabatic process.

400 **(a)**

$$\frac{1}{2}H_{2} + \frac{1}{2}Cl_{2} \rightarrow HCl; \Delta H = -90 \, kJ$$

$$\therefore \Delta H = \frac{1}{2}e_{H-H} + \frac{1}{2}e_{Cl-Cl}$$

or $-90 = \frac{1}{2}x430 + \frac{1}{2}x240 - e_{H-Cl}$

$$\therefore e_{H-Cl} = 425 \, kJ \, mol^{-1}$$

401 **(a)**

Find
$$\frac{1}{2}N_2 + \frac{3}{2}Cl_2 \longrightarrow NCl_3;$$

Multiply Eqs. (ii) by 1/2, (iii) 3/2 and subtract from Eq.(i); we get

$$\Delta H_f = -\Delta H_1 - \left[-\frac{\Delta H_2}{2} + \frac{3}{2} \Delta H_3 \right]$$

$$\dot{c} - \Delta H_1 + \frac{\Delta H_2}{2} - \frac{3}{2} \Delta H_3.$$

402 **(b)**

Work done in 1 s = 400 J Hence, work in 5 min (300 s) $\&400 \times 300 = 120 \text{ kJ}$ $\Delta H_{vap.}^{o} = \frac{120 \text{ kJ}}{50/18} = 43.2 \text{ kJ/mol}$

403 **(b)**

 W_{irr} . For a process at constant pressure $\dot{c} - P \cdot \Delta V$; note that work is irreversible if expansion is made at constant pressure.

404 **(b)**

$$\Delta H = \frac{2.5 \times 16}{4} = -10 \, kcl \, mo \, l^{-1}$$

405 (c) $W = \int_{1/1}^{1/2} p dV = -p(V_2 - V_1)$ $W = -1(20 - 10) = -10 dm^3 atm$ $i - 10 dm^3 \times \frac{8.314 JK^{-1} mol^{-1}}{0.0821 dm^3 K^{-1} mol^{-1}} = -1013 J$ From, 1st law of thermodynamics $\Delta U = q + W$ i 800 J + (-1013 J) = -213 J

406 (a)

 $\Delta S = \frac{\Delta H_{\nu}}{T}$ $\Delta H = 186.5 \, kJ$ $T = 373 \, K$ $\therefore \Delta S = \frac{186.5}{373} = 0.5 \, kJ \, K^{-1} \, mol^{-1}$

407 **(c)**

 $\Delta C_p = \Sigma C_p$ product $-\Sigma C_p$ reactant note C_p is for 1 mole.

408 (d)

$$\left(\frac{\partial H}{\partial T}\right)_{P} = C_{P}; \left(\frac{\partial U}{\partial T}\right)_{V} = C_{V}.$$

Also, $(\delta U/\delta V)T$ for ideal gas $\dot{\iota}0$.

409 **(b)**

 $T = 300 K, \Delta V = 10 - 1 = 9 litre$ $\therefore \Delta H = \Delta U + \Delta PV = \Delta U + 2 \times RT (\because PV = nRT)$ $i 0 + 2 \times 8.314 \times 300 = 4.98 kJ$ $(\because \Delta E = 0 \text{ for isothermal})$

410 **(c)**

Average bond energy =
$$\frac{\text{Heat of dissociation of } C}{42}$$

411 **(b)**

Follow definition of heat of formation.

412 **(a)**

 $V_1 = 100 \text{ mL}$ $V_2 = 250 \text{ mL}$ Pressure $p = 2atm \lor 2 \times 1.01 \times 10^5 N m^{-2}$ Work done by the gas $W = p \Delta V \lor p(V_2 - V_1)$ Put the value in given formula $W = 2 \times 1.01 \times 10^{5} (0.250 \times 10^{-3} - 0.100 \times 10^{-3})$ $\therefore 2 \times 1.01 \times 10^{5} \times 0.15 \times 10^{-3}$ = 30.30 J

413 (c) $\Delta U = 0$ for a cyclic process.

414 (d) $W = P \times \Delta V$

 $\dot{c} 0 \times \Delta V = 0$

416 **(b)**

On heating $N_2O_4 = 2 NO_2$, if NO_2 is formed more, it means $\Delta H = +ve$ because endothermic reactions are favoured with increase in temperature.

417 **(c)**

We know that internal energy of a gas depends upon its pressure and temperature. Thus, if a gas expands at constant temperature and pressure, than its internal energy remains same

418 (a)

$$CH_{4}(g)+Cl_{2}(g) \rightarrow CH_{3}Cl(g)+HCl(g); \Delta H=-2$$

Given, $e_{C-H}=20+e_{C-Cl}=20+a(e_{C-Cl}=a)$
and $e_{H-H}=e_{HCl}=b$
Now, ΔH reaction
 $i-[e_{C-Cl}+e_{H-Cl}]+[e_{C-H}+e_{Cl-Cl}]$
or $-25=-[a+b]+[20+a+e_{Cl-Cl}]$
 $\therefore e_{Cl-Cl}=-25-20+b=-45+b$
Now for, $H_{2}(g)+Cl_{2}(g) \rightarrow 2HCl(g); \Delta H_{1}=?$
 $\therefore \Delta H_{1}=-2[e_{H-Cl}]+[e_{H-H}+e_{Cl-Cl}]$
 $i-2[b]+[b+(-45+b)]$
 $\Delta H 1=-45 k c c l m c l^{-1}$
 $\therefore \Delta H$ formation for $HCl=-22.5 k c c l m c l^{-1}$

$$\begin{array}{c} 420 \quad \textbf{(a)} \\ \Delta E = q + W \end{array}$$

q=0

(\because Temperature is to be increase, no heat should enter or leave the system)

$$\Delta E = q + W = 0 + W \lor \Delta E = W$$
$$W \neq 0, q = 0$$

421 **(d)**

· · ·

 $\Delta G = +ve$ in each case.

422 **(c)**

Required equation is $\frac{1}{2}H_2 + \frac{1}{2}Cl_2 \rightarrow HCl$

$$\Delta H = \sum B E_{(products)} - \sum B E_{(reactants)}$$

$$\delta BE(HCl) - \left[\frac{1}{2}BE(H_2) + \frac{1}{2}BE(Cl_2)\right]$$

$$\delta - 103 - \left[\frac{1}{2}(-104) + \frac{1}{2}(-58)\right]$$

$$\delta - 103 - (-52 - 29) = -22 \text{ kcal}$$

423 (d)

In a cyclic process, $\Delta E = 0$.

424 (a)

$$\Delta S_{vap} = \frac{\Delta H_{vap}}{T_b} = \frac{840}{173} = 4.8 \text{ J/mol/K}$$

425 (c)

Energy absorbed $\propto \frac{1}{stability of compound}$ Energy released \propto stability of compound Thus, the order of stability is 142.2>25.9>-46.2>-393.2 *ie*, O_3 >HI>NH₃>CO₂

426 (a)

C (graphite)
$$+\frac{1}{2}O_2(g) \rightarrow CO(g)$$

 $\Delta n_g = 1 - \frac{1}{2} = \frac{1}{2}$
 $\Delta H = \Delta E + \Delta n_g RT$
 $\Delta E = \Delta E - \Delta n_g RT$
 $i - 26.4 - \frac{1}{2} \times 0.002 \times 298$

i - 26.7 kcal

427 **(a)**

Bomb calorimeter is commonly used to find the heat of combustion of organic substance which consists of a sealed combustion chamber called a bomb, if a process is run in a sealed container then no expansion or compression is allowed, so W=0 and $\Delta U=q$. Thus it has $\Delta U < 0$, W=0

428 (d)

Heat of combustion is usually measured by placing a known mass of a compound in a steel container called a constant volume bomb calorimeter.

$$\Delta E = C \times \Delta t \times \frac{M}{m}$$

Where, *C*=heat capacity of calorimeter, $\Delta t = (t_2 - t_1) m$ =mass of substance taken and *M* =molar mass of substance

429 **(a)**

 ΔH /mole for carbon is more and thus carbon can reduce *ZnO* to *Zn*.

430 **(d)**

$$Fe_2O_3+3CO \rightarrow 2Fe+3CO_2;$$

$$\Delta H = -26.8kJ$$

$$2FeO+2CO \rightarrow 2Fe+2C; \Delta H = -33.0kJ$$

$$- - - +$$

$$\overline{Fe_2O_3 + CO} \rightarrow 2FeO + CO_2; \Delta H = +6.2kJ$$

431 **(c)**

An isobaric process is one in which changes are made at constant pressure.

432 **(b)**

$$\Delta S_{vap} = \frac{\Delta H_{vap}}{T} = \frac{9710}{373} = 26.032 \, cal \, K^{-1} \, mol^{-1}$$

433 **(c)**

The property of the system whose value depends upon the amount of substance present in the system is called extensive property.

Gibb's free energy is an extensive property.

434 **(d)**

 $(CH_3)_2 C = CH_2(g) + 6O_2(g) \rightarrow 4CO_2(g) + 4H_2O$ $\Delta ng = 4 - 7 = -3(ie, \text{ negative})$ We know that $\Delta H = \Delta E + \Delta n_g RT$ $i\Delta E - [\Delta m] RT (::\Delta n_g = -ve)$ $::\Delta H < \Delta E$

436 **(a)**

The process involves conversion of 1 mole of H_2O from liquid to vapour state and thus, heat changes are called heat of vaporisation.

437 (c)

This is definition.

438 **(b)**

Due to extensive solvation of F^{-ii} ion on account of smaller size, observed value of heat of neutralization of *HF* appears more.

439 **(d)**

$$\Delta H_{reaction} = -\dot{c}_{]} + [l \square_{C=C} + 4 \times l \square_{C-H} + l \square_{H-H}]$$

$$\dot{c} [336.49 + 6 \times 410.50] + [606.10 + 4 \times 410.50 + 431.$$

$$\dot{c} 120.02 \, kJ \, mo \, l^{-1}$$

This is significance of Hess's law, e.g., Heat of formation cannot be determined experimentally for $6C+3H_2 \longrightarrow C_6H_6$; $\Delta H=?$ Because the reaction does not occur. However, if heat of combustion for $C, H_2 \wedge C_6H_6$ are determined experimentally as A, B, C, respectively, then we can calculate, $\Delta H=6A+3B-C$.

442 (a)

 $\Delta S_{total} = \Delta S_{sys.} + \Delta S_{surr.} = +ve.$

443 (a)

On mixing gases entropy increases due to increase in disorderness.

444 **(b)**

 $1 M H_2 SO_4 = 2 eq. H_2 SO_4$ 1 M HCl = 1 eq. HCl

Thus, for equal volume of two acids to be neutralized separately with NaOH, heat evolved will be twice in case of H_2SO_4 to that of HCl.

446 **(d)**

It is $C l_2$ molecule which dissociates to give free radicals on exposure to light.

447 (c)

Bomb calorimeter measures q_v which is equal to ΔE .

If work done by the system is positive, then $q = \Delta U + W$. However, new terminology has revealed that work done by the system is negative and work done on the system is positive. Thus, according to this, $q = \Delta E - W$.

449 **(d)**

B.E. of $S=O, C \equiv C, C \equiv N$ and $N \equiv N$ are 523, 839, 891 and 941 kJ mo $l^{-i \ 1i}$ respectively.

450 (c)

Internal energy of a gas depends upon its pressure and temperature. Thus, if a gas expands at constant temperature and pressure, then its internal energy remains same.

451 **(c)**

 ΔH and ΔS both are +ve for spontaneous change and ΔH =+ve for endothermic reaction

452 **(c)**

It provides information about physical states of reactants and products as well as about thermal changes. (d) is wrong because combustion is exothermic.

453 **(c)**

$$C_{(s)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{(g)}; \Delta n + \frac{1}{2};$$

Also the moles of gases increase and therefore entropy change (ΔS) is positive. An increase in temperature will cause more change in $T \Delta S$. Also it is a combustion reaction and thus $\Delta H = -ve$ Since $\Delta G = \Delta H - T \Delta S$ $\dot{\iota} - ve - (+ve) = -ve$

.....