

10.THE S-BLOCK ELEMENTS

Single Correct Answer Type

1.	KO_2 is used in space and s	ubmarines because it		
	a) Absorbs CO_2 and increa	ses O_2 concentration	b) Absorbs moisture	
	c) Absorbs CO_2	-	d) Produces ozone	
2.	A metal M readily forms it	_	water soluble. It forms its ox I_2 which is soluble in <i>NaOF</i> c) <i>Ca</i>	
3.	Which of the following exist	sts in polymeric form?		
	a) AIC I ₃	b) $BeCl_2$	c) _{B2} H ₆	d) _{SiC}
4.	The element which on burn	ing in air gives peroxide is		
	a) Lithium	b) Sodium	c) Rubidium	d) Caesium
5.	Electric cookers have a coa	ting ofthat protects them	against fire.	
	a) Heavy lead	b) Magnesium oxide	c) Zinc oxide	d) Sodium sulphate
6.	Limestone is not used in wh	nich of the following manufa	cturing processes?	
	a) Phosphorus from phosph	norite		
	b) Ordinary (soda lime) gla	SS		
	c) Iron from haematite			
	d) Solvay process of sodium	n carbonate		
7.	$N a_2 S_2 O_3$ is reduced by I_2	to		
	a) _{N a2} S	b) $N a_2 SO_4$	c) NaHSO ₃	d) $_{Na_{2}S_{4}O_{6}}$
8.	If CO_2 is passed in excess	into lime water, the milkines	s first formed disappears due	to:
	a) Reversal of original reac	tion		
	b) Formation of volatile cal	cium derivative		
	c) Formation of soluble cal	cium bicarbonate		
	d) Formation of soluble ma	gnesium hydroxide		
9.	Which of the following con	npounds is a peroxide:		
	a) KO_2	b) BaO_2	c) MnO_2	d) _{NO2}
10.	Milk of lime is:			
	a) $CaCO_3$	b) $CaHCO_3$	c) $Ca(OH)_2$	d) $CaSO_4 \cdot 2H_2O$
11.	Initial setting of cement is r	nainly due to		
	a) Hydration and gel forma	tion	b) Dehydration and gel form	mation

	c) Hydration and hydrolysis	S	d) Dehydration and oxidati	on
12.	Celestine is an ore of:			
	^{a)} Ba	b) _{Ca}	c) _{Sr}	d) _{Mg}
13.	Phosphine, acetylene and an	mmonia can be formed by tre	eating water with	
	a) $Mg_{3}P_{2}, Al_{4}C_{3}, Li_{3}N$	b) $C a_3 P_2$, $Ca C_2$, $M g_3 N$	$_{2}^{c}$ C $a_{3}P_{2}$, CaC $_{2}$, CaC N	$_{2}^{d} C a_{3} P_{2}, M g_{2} C, N H_{4} N$
14.	Magnesia is:			
	^{a)} MgO	b) $CuSO_4$	c) FeSO ₄	d) $MgSO_4$
15.	Which one of the following	processes is used for manuf	acture of calcium?	
	a) Reduction of CaO with	carbon		
	b) Reduction of CaO with	hydrogen		
	c) Electrolysis of a mixture	of anhydrous $CaCl_2 \wedge KCl$		
	d) Electrolysis of molten C	$a\left(OH\right)_{2}$		
16.	Which substance gives a difference of the substance gives a difference of the substance of	fferent flame colouration from	n the others?	
	a) Nitre	b) Caustic potash	c) Potassium chloride	d) Table salt
17.	An alloy of $Na + K$ is:			
	a) Liquid at room temperat	ure		
	b) Used in specially designed	ed thermometers		
	c) Both (a) and (b)			
	d) None of the above			
18.	Carnallite is			
	a) $MgCO_3$. $CaCO_3$	b) $MgSO_4.7H_2O$	c) KAIS i_3O_8	d) KCl. MgC l_2 . 6 H_2O
19.	Sodium carbonate solution	in water is alkaline due to:		
	a) Hydrolysis of $N a^{+ii}$			
	b) Hydrolysis of CO_3^{2-ii}			
	c) Hydrolysis of both Na^+	CO_3^{2-ii} ions		
	d) None of the above			
20.	-	ction does not liberate gaseou	-	
	a) $AICl_3 + NaOH \rightarrow$		b) $NaOH + P(i) + H_2O \rightarrow$	
0.4	c) $Al+NaOH\Delta$		d) $Zn+NaOH \Delta$	
21.	When one mole of bleaching that is liberated will be:	ng powder is completely deco	Supposed in presence of CO_2	then the mass of chlorine gas
	a) 35.45 g	b) 70.90 g	c) 17.72 g	d) 88.60 g
22.	Which of the following con	npounds on reaction with Na	OH and H_2O_2 gives vellow	v colour?

^{22.} Which of the following compounds on reaction with NaOH and H_2O_2 gives yellow colour?

	a) $Zn(OH)_2$	b) $Cr(OH)_3$	c) $Al(OH)_3$	d) None of these
23.	Which of the following co	mpounds has the lowest mel	ing point?	
	a) CaF_2	b) $CaCl_2$	c) $CaBr_2$	d) CaI_2
24.	The outermost electron is	most loosely held in:		
	a) _{Li}	b) _{Na}	c) _K	d) _{Cs}
25.	On heating quick lime with	h coke in an electric furnace	we get:	
	a) $Ca \wedge CO_2$	b) $CaCO_3$	^{c)} CaO	d) CaC_2
26.	Which salt will not impart	colour to flame?		
	a) _{LiCl}	b) $MgCl_2$	c) $CaCl_2$	d) _{<i>Kl</i>}
27.	Shine at freshly cut sodiun	n is because of		
	a) Due to oscillation of free	ee electrons	b) Due to weak metallic b	onding
	c) Due to by absorption of	light in crystal lattice	d) Due to presence of free	valency at the surface
28.	Ionic compound BaSO ₄ is	insoluble in water due to		
	a) High lattice energy		b) Low lattice energy	
	c) Low hydration energy		d) Both (a) and (c)	
29.	Gypsum is added to clinke	r during cement manufacture	e to:	
	a) Decrease the rate of set	ting of cement		
	b) Make the cement imper	rvious		
	c) Bind the particles of cal	lcium silicate		
	d) To facilitate the format	ion of colloidal gel		
30.	Amongst the following hyperbolic sectors and the following hyperbolic sectors and the following hyperbolic sectors are also been as the following	droxides, the one which has t	he lowest value of K_{sp} is:	
	a) $Mg(OH)_2$	b) $Ca(OH)_2$	c) $Ba(OH)_2$	d) $Be(OH)_2$
31.	Which is most basic in cha	uracter?		
	^{a)} CsOH	^{b)} KOH	c) _{NaOH}	d) LiOH
32.	Which of the following ac	ts as reducing agent as well a	s oxidising agent?	
	a) $N a_2 O$	b) $N a_2 O_2$	c) $NaNO_3$	d) KNO_3
33.	Which of the following is	correct?		
	a) In the Castner's process	of sodium extraction, NaCl	is used as an electrolyte.	
	b) Sodium reduces CO_2 to	o carbon.		
	c) Mg reacts with cold wat	ter and liberate hydrogen gas		
	d) Magnalium is an alloy c	of Mg and Zn.		
34.	Which is quick lime?			
	a) <i>CaCO</i> ₃	b) $Ca(OH)_2 + H_2O$	c) $Ca(OH)_2$	d) CaO

35. Pearl ash and caustic potash are chemically:

55.	i cari asii and caustic potas	if are enemicany.		
	a) $K_2 C O_3 \wedge KOH$	b) $KOH \wedge K_2CO_3$	c) $N a_2 C O_3 \wedge KOH$	d) $N a_2 C O_3 \wedge NaOH$
36.	When sodium is heated in	flame it gives:		
	a) Golden yellow colour	b) Crimson red colour	c) Brick red colour	d) Violet colour
37.	Among the following, which	ch has minimum solubility in	water?	
	a) KOH	b) CsOH	c) LiOH	d) RbOH
38.	On strong heating $MgCl_2$.	$6 H_2 O$, the product obtained	d is	
	a) $MgCl_2$	b) MgO	c) $MgCl_2.2H_2O$	d) $MgCl_2.4H_2O$
39.	Sodium chloride imparts a	golden yellow colour to the l	Bunsen flame. This can be int	erpreted due to:
	a) Low ionization potentia	l of sodium		
	b) Photosensitivity of sodi	um		
	c) Sublimation of metallic	sodium to give yellow vapou	ır	
	d) Emission of excess of en	nergy absorbed as a radiation	in the visible region	
40.	Which property increases i	n magnitude as the atomic n	umber of alkali metals increa	ses?
	a) Electronegativity			
	b) First ionization energy			
	c) Ionic radius			
	d) Melting point			
41.	Bleaching powder is obtain	ed by the interaction of chlo	rine and	
	a) Dry calcium oxide		b) Dry slaked lime	
	c) conc.solution of Ca	$OH)_2$	d) dilute solution of Ca	$(\mathbf{D}\mathbf{H})_2$
42.	Ca , $Sr \wedge Ba$ dissolve in liquid	uid ammonia giving a		
	a) Highly conducting	b) Highly reducing	c) Paramagnetic	d) All are correct
43.	The ionic conductances of	following cations in a given	concentration are in the order	r
	a) $L i^{+i < N a^{+i < K^{+i + i + i + i + i + i + i + i + i + i $		b) $L i^{+i>Na^{+i>K^{i>k^{+i+\ell}}i}}$	
	c) $L i^{+i < Na^{+i > K^{i > k^{i + i + i^{-i + i^{-i + i^{-i + i^{-i + i^{-i + i^{-i^{-i}}}}}}i}}$		d) $L i^{+i = N a^{+i < K^* \times B^{+i < c}} i}$	
44.	Which can undergo both or	xidation and reduction?		
	a) Ba^{2+ii}	b) $BaCl_2$	c) Ba^{+ii}	d) BaH_2
45.	Which component of ceme	ent sets at the slowest rate?		
	a) Dicalcium silicate			
	b) Tricalcium silicate			
	c) Tricalcium aluminate			
	d) Tetracalcium alumino fe	errite		

46.	Scarlet flame colour of Bunsen flame is characteristic of:				
	a) _{Sn}	^{b)} _K	c) _{Sb}	d) _{Sr}	
47.	Which pair of the following	g chlorides do not impart col	our to the flame?		
	a) BeC $l_2 \wedge SrC l_2$	b) BeC $l_2 \wedge MgC l_2$	c) $CaCl_2 \wedge BaCl_2$	d) $BaCl_2 \wedge SrCl_2$	
48.	Which one of the following	g electrolytes is used in Dowr	i's process of extracting sodiu	um metal?	
	^{a)} NaCl+KCl+KF	b) NaCl	c) _{NaOH+KCl+KF}	d) NaCl+NaOH	
49.	When KCl is heated with a	conc. $H_2 SO_4$ and solid $K_2 C$	Cr_2O_7 , we get:		
	a) Chromyl chloride	b) Chromous chloride	c) Chromic chloride	d) Chromic oxide	
50.	In the presence of cobalt ch	nloride, bleaching powder de	composes to form		
	a) $CaCO_3 \wedge O_3$	b) $ClO_2 \wedge CaO$	c) $Cl_2O \wedge CaO$	d) $CaCl_2 \wedge O_2$	
51.	The highest oxidation poter	ntial stands for:			
	a) Li	b) Be	c) Ba	d) Ra	
52.	^	ng gives a colourless gas. The olution of Y , Z is formed. Z b) $N a_2 C O_3$		to obtain Y. Excess CO_2 is X. The compound X is: d) K_2CO_3	
53.	KO_2 is used in oxygen cyl	inder in space air craft and su	ubmarines because it:		
	 a) Absorbs CO₂ and incre b) Eliminate moisture 	ase O_2 content			
	c) Absorbs CO_2				
	d) Produces O_2				
54.	The oxide, which is best so	luble in H_2O is			
	a) $Ba(OH)_2$	b) $Sr(OH)_2$	c) $Ca(OH)_2$	d) $Mg(OH)_2$	
55.	Melting point is highest for				
	a) Be	b) <i>Mg</i>	c) _{Sr}	d) <i>Ca</i>	
56.	On dissolving moderate and does not occur? a) Blue coloured solution is	ount of sodium metal in liqu s obtained	id NH_3 at low temperature,	which one of the following	
	b) Na^{+ii} ions are formed if	in solution			
	c) Liquid ammonia becom	es good conductor of electric	bity		
	d) Liquid $N H_3$ remains di	amagnetic			
57.	Which ion forms hydroxide	e easily soluble in water?			
	a) Zn^{2+ii}	b) Ba^{2+ii}	c) Mg^{2+ii}	d) _{Al³⁺ⁱⁱ}	
58.	One of the important use of	f quicklime is:			

a) As a purgative

Page | 5

b) In bleaching silk

c) In drying gases and alcohol

d) In dyeing cotton

- 59. Which out of the following statements is not correct for anhydrous calcium chloride?
 - a) It is prepared by heating hydrated calcium chloride above 533 K
 - b) It is used for drying alcohols and NH_3
 - c) It is used as a dehydrating agent to control snow and ice on highway and pavements
 - d) When mixed in concrete, it gives quicker initial setting and improves its strength
- 60. On heating washing soda, we get:
 - a) CO b) $CO+CO_2$ c) CO_2 d) $H_2O(v)$
- 61. Sodium forms $N a^{+ii}$ and not $N a^{2+ii}$ because:
 - a) Sodium contains only one electron in outermost shell
 - b) First ionization potential is small and the difference in first and second ionization potentials is very large
 - c) Radius of Na^{+ii} is much smaller than of Na^{+ii}
 - d) None of the above
- 62. Na_2CO_3 can be manufactured by Solvay process but K_2CO_3 cannot be prepared because:
 - a) $K_2 C O_3$ is more soluble
 - b) $K_2 C O_3$ is less soluble
 - c) KHC O_3 is more soluble than NaHC O_3
 - d) KHC O_3 is less soluble than NaHC O_3
- 63. Which of the following is incorrect?
 - a) Mg burns in air releasing dazzling light rich in UV rays
 - b) $CaCl_2 \cdot 6H_2O$ when mixed with ice gives, freezing mixture
 - c) *Mg* cannot form complexes
 - d) Be can form complexes due to its very small size
- 64. When sodium chloride solution is electrolysed, the gas that is liberated at the cathode is
 - a) Oxygen b) Chlorine c) Hydrogen d) Air
- 65. Manufacture of NaOH is done by:
 - a) Castner- Kellner process
 - b) Solvay process
 - c) Brine process
 - d) Mond's process
- 66. Which one of the following statements is true for all the alkali metals?

- a) Their nitrates decompose on heating to give $NO_2 \wedge O_2$.
- b) Their carbonates decompose on heating to give CO_2 and the metal oxide.
- c) They react with oxygen to give mainly the oxide M_2O .
- d) They react with halogens to give the halides MX.
- 67. Strongest reducing agent among the following is:
 - a) K b) Na c) Al d) Mg
- 68. The compound which is not soluble in dil. *HCl* is:

a)
$$BaSO_4$$
 b) MnS c) ZnS d) $BaCO_3$

- 69. Which alkali metal is most metallic in character?
 - a) $_{Li}$ b) $_{Na}$ c) $_K$ d) $_{Cs}$
- 70. KI and $CuSO_4$ solution when mixed, give

a) $CuI_2 + K_2SO_4$ b) $Cu_2I_2 + K_2SO_4$ c) $K_2SO_4 + Cu_2I_2 + I_2$ d) $K_2SO_4 + CuI_2 + I_2$

71. Sodium is manufactured by the electrolysis of a fused mixture of sodium and calcium chlorides in a steel cell using a graphite anode and an iron cathode. Calcium is not liberated since:a) It belongs to a higher group in the periodic table

- b) It combines with the liberated chlorine to form calcium chloride again
- c) Its discharge potential under these conditions is higher than that of sodium
- d) It is more readily fusible than sodium chloride
- 72. One mole of magnesium nitride on the reaction with excess water gives:
 - a) Two mole of nitric acid
 - b) One mole of nitric acid
 - c) Two mole of ammonia
 - d) One mole of ammonia
- 73. Which of the following statements is correct for $CsBr_3$?
 - a) It is a covalent compound
 - b) It contains $C s^{2+ii}$ and $B r^{-ii}$ ions
 - c) It contains $C s^{+i, Br^{-i \wedge Br, i}}$ lattice molecules
 - d) It contains $C s^{+ii}$ and Br_3^{-ii} ions
- 74. Which of the following is known as dead burnt plaster?
 - a) Gypsum b) Plaster of Paris

c) Anhydrite

d) None of these

- 75. Which of the compounds of cement sets at the slowest rate?
 - a) Dicalcium silicate
 - b) Tricalcium silicate

- c) Tricalcium aluminate
- d) Tetracalcium aluminoferrate
- 76. The alkali metal that reacts with nitrogen directly to form nitride is
 - a) $_{Li}$ b) $_K$ c) $_{Na}$ d) $_{Rb}$
- 77. Alkali metals are powerful reducing agents because:
 - a) These are metals
 - b) These are monovalent
 - c) Their ionic radii is large
 - d) Of low ionisation enthalpy
- 78. Elements of group 1 and group VI in the periodic table have one thing common. That is with the increasing atomic number, the:
 - a) Maximum valency increases
 - b) Reactivity increases
 - c) Atomic radius increases
 - d) Oxidizing power increases
- 79. The solubility in water of sulphates down the Be group is Be > Mg > Ca > Sr > Ba. This is due to:
 - a) Increase in m. p.
 - b) High ionisation energy
 - c) Higher co-ordination number
 - d) All of the above
- 80. The non-metal which is not affected by NaOH:
 - a) C b) S_i c) P d) S_i
- 81. Beryllium shows diagonal relationship with aluminium. Which of the following similarity is incorrect?
 - a) Be_2C like AlC_3 yields methane on hydrolysis
 - b) Be like Al is rendered passive by HNO_3
 - c) $Be(OH)_2$ like $Al(OH)_3$ is basic
 - d) Be forms beryllates and Al forms aluminates
- 82. Which statement is correct for alkaline earth metals?
 - a) They are diatomic and form ions of the type M^{2-ii}
 - b) They are highly electronegative elements
 - c) They are monoatomic and form ions of the type M^{2+ii}
 - d) They are diatomic and form ions of the type M^{2+i}
- 83. Milk of magnesia is used as

	a) Antichlor	b) Antacid	c) Antiseptic	d) Food preservative		
84.	In a sodium chloride crystal, each chloride ion is surrounded by:					
	a) $4 N a^{+i i i ons i}$	b) $6 N a^{+i ionsi}$	c) $1Na^{+iioni}$	d) $_{2Na^{+ionsi}}$		
85.	Alkaline earth metals are de	enser than alkali metals, beca	use metallic bonding in alkal	ine earth's metal is		
	a) Weaker	b) Stronger	c) Volatile	d) Not present		
86.	The ion having maximum v	value of hydration energy is:				
	a) $L i^{+ii}$	b) <i>N a</i> + <i>i i</i>	c) K+11	d) $C s^{+ii}$		
87.	Magnesium metal is prepar	ed by:				
	a) Reduction of MgO by c	coke				
	b) Electrolysis of aqueous sc) Displacement of Mg by	solution of $Mg(NO_3)_2$ iron from magnesium sulpha	te solution			
	d) Electrolysis of molten m	agnesium chloride				
88.	Which of the following hyd	droxides is amphoteric in nati	ure?			
	a) $Be(OH)_2$	b) $Mg(OH)_2$	c) $Ca(OH)_2$	d) $Ba(OH)_2$		
89.	Black ash is:					
	a) NaOH+CaS	b) NaHC O_3 + cos	c) Na_2CO_3+CaS	d) Na_2CO_3 +cos		
90.	Sodium carbonate is:					
	a) Efflorescent	b) Deliquescent	c) Hygroscopic	d) Oxidant		
91.	How many elements are inc	cluded in IA group?				
	a) 4	b) 5	c) 6	d) 7		
92.	Which category of salts of	alkaline earth metals is not fo	ound in solid state, but found	in solution state?		
	a) Carbonates	b) Bicarbonates	c) Hydroxides	d) Sulphates		
93.	$K_2 CS_3$ can be called as po	otassium:				
	a) Sulphocyanide	b) Thiocarbide	c) Thiocarbonate	d) Thiocyanate		
94.	Which is not true in respect	t of berryllium chemistry?				
	a) Beryllium is amphoteric		b) It forms unusual carbide	Be_2C		
	c) $Be(OH)_2$ is basic		d) Beryllium halides are ele	ectron deficient		
95.	and B respectively are:	h dilute HCl and B with cond	-	-		
06	a) NaBr, NaN O_3	^D NaN O_3 , NaBr d C, the products formed are	c) $NaBr$, $NaNO_2$	d) $_{NaNO_2}$, NaBr		
50.		_		d) a constant		
97	a) $Ca \wedge CO$	b) $CaC_2 \wedge CO$ ving minerals, the composition	c) $Ca(OH)_2$	d) $CaC_2 \wedge CO_2$		
57.	For which one of the follow	ving inmerals, the compositio	ni given is incorrect?			

- a) Glauber's salt $-Na_2SO_4.10H_2O$
- c) Carnallite $KCl.MgCl_2.6H_2O$

b) Borax –
$$Na_2B_4O_7.7H_2O$$

^{b)} LiOH < NaOH < KOH < RbOH < CsOH

d) Soda ash – $N a_2 C O_3$

d) None of the above

98. The stability of the following alkali metal chlorides follows the order:

- a) LiCl>KCl>NaCl>CsCl
- b) CsCl>KCl>NaCl>LiCl
- c) NaCl>KCl>LiCl>CsCl

99. The solubility of alkali metal hydroxide is

- a) LiOH < KOH < NaOH < RbOH < CsOH
- ^{c)} CsOH < RbOH < KOH < NaOH < LiOH
- 100. Which of the statements is not true?
 - a) $K_2 C r_2 O_7$ solution in acidic medium is orange
 - b) $K_2 C r_2 O_7$ solution becomes yellow on increasing the *pH* beyond 7
 - c) On passing H_2S through acidified $K_2Cr_2O_7$ solution, a milky colour is observed
 - d) $Na_2Cr_2O_7$ is perferred over $K_2Cr_2O_7$ in volumetric analysis
- 101. Gypsum, $CaSO_4 \cdot 2H_2O$ on heating to about 120 °C forms a compound which has the chemical composition represented by
 - a) $CaSO_4$. H_2O b) $2 CaSO_4$. $3 H_2O$ c) $2 CaSO_4$. H_2O d) $CaSO_4$

102. Which of the following hydrogen compounds is most ionic?

- a) HF b) C_{SH} c) HI d) LiH
- 103. Which sequence of reactions shows correct chemical relation between sodium and its compounds?
 - a) $Na + O_2 \rightarrow Na_2O HCl(aq) NaCl CO_2 Na_2 CO_3 \Delta Nb) NaO_2 Na_2O H_2O NaOH CO_2 Na_2CO_3 \Delta Na$ c) $Na + H_2O \rightarrow NaOH HCl NaCl CO_2 Na_2CO_3 \Delta Nd) \xrightarrow{Na+H_2O} NaOH CO_2 Na_2CO_3 HCl NaCl Electron (molten)$

104. The salt added to table salt to make it flow freely in rainy season is:

a) $_{KCl}$ b) $_{NH_4Cl}$ c) $_{Ca_3(PO_4)_2}$ d) $_{NaHCO_3}$

105. Lithopone is

a) $BaO+ZnSO_4$ b) $BaS+ZnSO_4$ c) $ZnS+BaSO_4$ d) $ZnO+BaSO_4$

106. Sodium is heated in air at 300 °C to form $X \cdot X$ absorbs CO_2 and forms Na_2CO_3 and Y? Which of the following is Y?

a) H_2 b) O_2 c) H_2O_2 d) O_3

107. When Na reacts with liquid NH_3 the following substance is formed

a) $Na(NH_3)_x]^{-ii}$ b) $[e(NH_3)_y]^{-ii}$ c) $NaNH_2$ d) $Na_x(NH_3)_y$

108. Sodium bicarbonate solution on adding to magnesium sulphate solution forms:

a) Magnesium bica	arbonate		
b) Magnesium hyd	roxide		
c) Basic magnesiur	n carbonate		
d) Magnesium cart	oonate		
109. Which pair of elem	nents would form the most ior	ic bond?	
a) H,Cl	b) K, Cl	c) _{B,N}	d) C, O
	urns in the atmosphere of CO	₂ because:	,
a) Magnesium acts	as an oxidizing agent		
b) Magnesium has	2 electrons in the outermost of	orbit	
c) Magnesium actsd) None of the abo	as a reducing agent and remove	oves oxygen from CO_2	
111. Potassium when he	ated strongly in oxygen, it for	ms:	
a) K_2O	b) <i>KO</i> ₂	c) K_2O_2	d) _{KO}
112. Ordinary blackboar	rd chalk is made up of:		
a) $CaCO_3$	b) Gypsum	c) Fluorspar	d) $C a_3 (P O_4)_2$
113. Caustic soda solution	on is an absorbent for:		
a) $_{NH_3}$	b) <i>CO</i> ₂	c) CO	d) $_{N_2O}$
5	b) CO_2 wing represents the compositi		d) _{N2} O
5	wing represents the compositi		d) _{N2} O
114. Which of the follow a) $K_2O.Al_2O_3.6$	wing represents the compositi	on of carnallite mineral?	-
114. Which of the follow a) $K_2O.Al_2O_3.6$ c) $K_2SO_4.MgSO_4$	wing represents the compositi δSiO_2	on of carnallite mineral? b) _{KNO3} d) KCl. MgC l ₂ . 6 H	-
114. Which of the follow a) $K_2O.Al_2O_3.6$ c) $K_2SO_4.MgSO_4$	wing represents the compositi $SSiO_2$ D_4 . MgC l_2 . 6 H_2O	on of carnallite mineral? b) _{KNO3} d) KCl. MgC l ₂ . 6 H	-
114. Which of the follow a) K_2O . Al_2O_3 . (c) K_2SO_4 . $MgSO$ 115. The element that for a) Mg 116. Which alkali metal	wing represents the compositi $5 SiO_2$ $D_4. MgC l_2. 6 H_2O$ prms a solid basic oxide at roc	on of carnallite mineral? b) KNO_3 d) $KCl \cdot MgC l_2 \cdot 6 H$ om temperature is: c) H	T ₂ O
114. Which of the follow a) K_2O . Al_2O_3 . (c) K_2SO_4 . $MgSO$ 115. The element that for a) Mg	wing represents the compositi $5 SiO_2$ $D_4. MgC l_2. 6 H_2O$ forms a solid basic oxide at roc b) S	on of carnallite mineral? b) KNO_3 d) $KCl \cdot MgC l_2 \cdot 6 H$ om temperature is: c) H	T ₂ O
114. Which of the follow a) K_2O . Al_2O_3 . (c) K_2SO_4 . $MgSO$ 115. The element that for a) Mg 116. Which alkali metal a) Na 117. Which gives apple	wing represents the compositi $5 SiO_2$ $D_4. MgC l_2. 6 H_2O$ forms a solid basic oxide at room b) S is frequently used in solar cell b) Li green colour in fireworks?	on of carnallite mineral? b) KNO_3 d) $KCl.MgCl_2.6H$ om temperature is: c) H lls? c) K	d) _P
114. Which of the follow a) $K_2 O. A l_2 O_3.6$ c) $K_2 S O_4. Mg S O_4$ 115. The element that for a) Mg 116. Which alkali metal a) Na 117. Which gives apple a) Na	wing represents the compositi $5 SiO_2$ $D_4. MgC l_2. 6 H_2O$ forms a solid basic oxide at roc b) S is frequently used in solar cell b) Li green colour in fireworks? b) K	on of carnallite mineral? b) KNO_3 d) $KCl.MgCl_2.6H$ om temperature is: c) H lls? c) K c) Ba	d) _P
114. Which of the follow a) $K_2 O. A l_2 O_3.6$ c) $K_2 S O_4. Mg S O_4$ 115. The element that for a) Mg 116. Which alkali metal a) Na 117. Which gives apple a) Na	wing represents the compositi $5 SiO_2$ $D_4. MgC l_2. 6 H_2O$ forms a solid basic oxide at roc b) S is frequently used in solar cell b) Li green colour in fireworks? b) K omposes above 800°C and down	on of carnallite mineral? b) KNO_3 d) $KCl.MgCl_2.6H$ om temperature is: c) H lls? c) K c) Ba	d) _P d) _{Cs}
114. Which of the follow a) $K_2 O. A l_2 O_3.6$ c) $K_2 S O_4. Mg S O_4$ 115. The element that for a) Mg 116. Which alkali metal a) Na 117. Which gives apple a) Na 118. Sodium nitrate dec a) N_2	wing represents the compositi $5 SiO_2$ $D_4. MgC l_2. 6 H_2O$ forms a solid basic oxide at roc b) S is frequently used in solar cell b) Li green colour in fireworks? b) K omposes above 800°C and dow b) O_2	on of carnallite mineral? b) KNO_3 d) $KCl \cdot MgCl_2 \cdot 6H$ om temperature is: c) H lls? c) K c) Ba es not give: c) NO_2	$d_{2}O$ d) P d) Cs d) Ca d) $Na_{2}O$
114. Which of the follow a) $K_2 O. A l_2 O_3.6$ c) $K_2 S O_4. Mg S O_4$ 115. The element that for a) Mg 116. Which alkali metal a) Na 117. Which gives apple a) Na 118. Sodium nitrate dec a) N_2 119. Which of the follow	wing represents the compositi $5 SiO_2$ D_4 . $MgC l_2$. $6 H_2O$ forms a solid basic oxide at room b) S is frequently used in solar cells b) Li green colour in fireworks? b) K omposes above 800°C and down b) O_2 wing process is used in the extension	on of carnallite mineral? b) KNO_3 d) $KCl \cdot MgCl_2 \cdot 6H$ om temperature is: c) H lls? c) K c) Ba es not give:	$d_{2}O$ d) P d) Cs d) Ca d) $Na_{2}O$
114. Which of the follow a) $K_2 O. A l_2 O_3.6$ c) $K_2 S O_4. Mg S O_4$ 115. The element that for a) Mg 116. Which alkali metal a) Na 117. Which gives apple a) Na 118. Sodium nitrate dec a) N_2 119. Which of the follow a) Fused salt electro	wing represents the compositi $5 SiO_2$ D_4 . $MgC l_2$. $6 H_2O$ forms a solid basic oxide at room b) S is frequently used in solar cells b) Li green colour in fireworks? b) K omposes above 800°C and down b) O_2 wing process is used in the extension	on of carnallite mineral? b) KNO_3 d) $KCl \cdot MgCl_2 \cdot 6H$ om temperature is: c) H lls? c) K c) Ba es not give: c) NO_2	$d_{2}O$ d) P d) Cs d) Ca d) $Na_{2}O$
114. Which of the follow a) $K_2 O. A l_2 O_3.6$ c) $K_2 S O_4. Mg S O_4$ 115. The element that for a) Mg 116. Which alkali metal a) Na 117. Which gives apple a) Na 118. Sodium nitrate dec a) N_2 119. Which of the follow	wing represents the compositi $5 SiO_2$ $D_4. MgC l_2. 6 H_2O$ forms a solid basic oxide at roc b) S is frequently used in solar cell b) Li green colour in fireworks? b) K omposes above 800°C and dow b) O_2 wing process is used in the extra rolysis	on of carnallite mineral? b) KNO_3 d) $KCl \cdot MgCl_2 \cdot 6H$ om temperature is: c) H lls? c) K c) Ba es not give: c) NO_2	$d_{2}O$ d) P d) Cs d) Ca d) $Na_{2}O$

d) Thermite reduction

120. In the replacement reaction \rightarrow CF \rightarrow CF				
The reaction will be most a) <i>Na</i>	favourable if M happens to b) K	be: ^{c)} <i>Rb</i>	d) _{Li}	
121. The substance used in Ho	lme's signal of the ship is a m			
a) $CaC_2 + Ca_3P_2$	b) $C a_3 (PO_4)_2 + Pb_3O_4$	c) $H_3 PO_4 + CaCl_2$	d) _{N H3} + HOCl	
122. Causticisation process is	used for the preparation of:		-	
a) Caustic soda	b) Caustic potash	c) Baryta	d) Slaked lime	
123. Which of the following a	lkali metal ion in aqueous sol	ution is the best conductor of	f electricity?	
a) _{L i} +¿,	b) N a ^{+¿,}	c) _{C s} + <i>ii</i>	d) K+44	
124. Indian saltpetre is:				
a) KNO_3	b) $_{NaNO_3}$	c) _{NaCl}	d) $_{Na_{2}}CO_{3}$	
125. The action of dilute HN of	O_3 on magnesium gives:			
a) _{NO}	b) H_2	c) _{NO2}	d) $_{NH_4NO_3}$	
126. Brine is chemically:				
a) Conc. Solution of Na_{2}	$_{2}CO_{3}$			
b) Conc. Solution of <i>N</i> a	$_{2}SO_{4}$			
c) Conc. Solution of NaCl				
d) Conc. Solution of alum				
127. The atomic numbers of fo	our elements are given below.	Which is an alkaline earth r	netal?	
a) 10	b) 20	c) 30	d) 40	
128. The plaster of Paris is:				
a) $CaSO_4 \cdot 2H_2O$	b) $CaSO_4$	c) $2CaSO_4 \cdot 2H_2O$	d) $_2CaSO_4 \cdot H_2O$	
129. The ashes of plants contain	in alkali metals, 90% of whic	h is:		
a) _{Li}	^{b)} _K	c) _{Na}	d) _{Rb}	
130. At high temperature nitrogen combines with CaC_2 to give:				
a) Calcium cyanide	b) Calcium cyanamide	c) Calcium carbonate	d) Calcium nitride	
131. Superphosphate of lime is	s a mixture of:			
a) Primary calcium phosp	phate and Epsom			
b) Primary magnesium pl	nosphate and Epsom			
c) Primary magnesium pl	nosphate and gypsum			
d) Primary calcium phosp	phate and gypsum			
100 1 111 1 1 6		1 . 1 . 1 . 1 . 1 . 0		

132. A solid is a compound of group 1 element and it gives a bright red colour in the flame test. The solid is

^{a)} LiBr	b) CsCl	c) <i>KCl</i>	d) _{NaCl}		
	133. When sodium metal is dissolved in liquid ammonia, a blue solution is formed. The blue colour is due to:				
a) Solvated Na^{+ii} ions	b) Solvated electrons	c) Solvated NH_2^{-ii} ions	d) Solvated protons		
134. The chemical which is use	ed for plastering the broken b	-			
a) $(CaSO_4)_2$. H_2O	b) $MgSO_4.7H_2O$	c) $FeSO_4.7H_2O$	d) $CuSO_4.5H_2O$		
135. Magnesium burns in CO_2	to form:				
^a) MgO∧CO	b) $MgCO_3$	c) $MgO \wedge C$	d) MgO_2		
136. Which one is not a correc	t formula?				
a) H_2S	b) $_{NaHSO_4}$	c) _{SiO2}	d) $_{NaSiO_3}$		
137. Plaster of Paris on making	g paste with little water sets to	o hard mass due to formation	of		
a) $CaSO_4$	b) $CaSO_4.1/2H_2O$	c) $CaSO_4 \cdot H_2O$	d) $CaSO_4.2H_2O$		
138. The most reactive elemen	t among the following is:				
a) Mg	b) Ca	c) Sr	d) Ba		
139. Which removes temporary	y hardness of water and is use	ed in the manufacture of blea	ching powder?		
a) Slaked lime $Ca(OH)_2$	b) Plaster of Paris	c) Epsom	d) hydrolith		
140. A piece of magnesium rib	bon was heated to redness in	an atmosphere of N_2 and the	en treated with H_2O , the gas		
evolved is: a) Ammonia	b) Hydrogen	c) Nitrogen	d) Oxygen		
141. Gypsum is:					
a) $MgSO_4 \cdot 7H_2O$	b) $CaSO_4 \cdot H_2O$	c) $CaSO_4 \cdot 2H_2O$	d) $CaSO_4 \cdot 3H_2O$		
142. Identify the correct statement:					
a) Elemental sodium can be prepared and isolated by electrolysing an aqueous solution of sodium chloride					
b) Elemental sodium is a	strong oxidising agent				
c) Elemental sodium is in	soluble in ammonia				
d) Elemental sodium is ea	d) Elemental sodium is easily oxidised				
143. Water glass is:					
a) Another name for sodium silicate					
b) A special form of glass to store water only					
c) Hydrated form of glass	5				
d) Hydrated silica					
144. LiAl H_4 is obtained by rea	acting an excess ofwith an	the thereal solution of $AlCl_3$:			
a) LiCl	b) _{LiH}	c) Li	d) LiOH		
145. The correct order regarding the solubility of alkaline earth metal chlorides in water is:					

- a) $BeCl_2 < MgCl_2 < CaCl_2 < SrCl_2 < BaCl_2$
- b) $MgCl_2 > CaCl_2 > BeCl_2 > BaCl_2 > SrCl_2$
- c) $BaCl_2 > MgCl_2 > CaCl_2 > BeCl_2 > SrCl_2$
- d) $BeCl_2 > MgCl_2 > CaCl_2 > SrCl_2 > BaCl_2$

146. The correct order of solubility of fluorides at alkaline earth metals is:

- a) $MgF_2 > BaF_2 > SrF_2 > CaF_2 > BeF_2$
- b) $BeF_2 > MgF_2 > CaF_2 > SrF_2 > BaF_2$
- c) $BaF_2 > SrF_2 > CaF_2 > MgF_2 > BeF_2$
- d) None of the above

147. The ease of adsorption of the hydrates alkali metal ions on an ion-exchange resins follows the order:

- c) $L i^{+i < K^{+i < Na^{+i < Na^{+i < i > i}}}i}$
- d) $Rb^{+i < K^{+i < Nd^{* \times l^{*i}}i}i}$

148. The hydration energy of $M g^{2+ib}$ ions is larger than that of:

a) Al ³⁺ⁱⁱ	b) _{N a} + ^{¿¿}	c) Be^{2+ii}	d) Mg^{3+ii}	
149. Chile saltpetre is the ore of:				
a) Iodine	b) Bromine	c) Sodium	d) Magnesium	
150. Thomas slag is				

a) $C a_3 (PO_4)_2 \cdot 2H_2 O$ b) $C a_3 (PO_4)_2 \cdot CaSiO_3$ c) $MgSiO_3$ d) $CaSiO_3$

151. Sodium carbonate is manufactured by Solvay process. The products those are recycled are:

a) $CO_2 \wedge NH_3$ b) $CO_2 \wedge NH_4Cl$ c) NaCl and CaO d) $CaCl_2 \wedge Cao$

- 152. Based on lattice energy and other considerations which one of the following alkali metal chlorides is expected to have the highest melting point?
 - a) *RbCl* b) *KCl* c) *NaCl* d) *LiCl*
- 153. Sodium carbonate on heating gives:
 - a) Water vapours
 - b) Carbon dioxide
 - c) Carbon dioxide + water vapour
 - d) None of the above

154. The correct order of hydration energy of alkaline earth metal ions is:

a)
$$Be^{2+i>Mg^{2+i>Ca^{3}>d^{2+i+i}i_{1}}i}$$

b) $Ba^{2+i>Be^{2+i>Ca^{3}>de^{2+i+i}i_{1}}i}$

c)
$$Ma^{2+i>Be^{2+i>Ba^{2+i>Ba^{2+i>\delta^{2+i>\delta^{2+i>\delta^{2+i}>\delta^{2+i}>\delta^{2+i}>\delta^{2+i}>\delta^{2+i}>\delta^{2+i}>\delta^{2+i}>\delta^{2+i}\delta^{2+i>\delta^{2+i>\delta^{2+i>\delta^{2+i>\delta^{2+i}\delta^{2+i>\delta^{2+i>\delta^{2+i>\delta^{2+i}\delta^{2+i}\delta^{2+i>\delta^{2+i}$$

d) None of the above

155. Which one has highest lattice energy?

a) $_{NaBr}$ b) $_{NaF}$ c) $_{NaCl}$ d) $_{Nal}$

156. When CO_2 is bubbled into an aqueous solution of Na_2CO_3 , the following is formed:

a)
$$H_2O$$
 b) OH^{-ii} c) $NaHCO_3$ d) $NaOH$

- 157. The decomposition temperature is maximum for
 - a) $SrCO_3$ b) $CaCO_3$ c) $MgCO_3$ d) $BaCO_3$

158. A metal carbonate is sparingly soluble in water and evolves CO_2 on heating. The metal is:

- a) An alkali metal
- b) A noble metal
- c) An alkaline earth metal
- d) None of these
- 159. Anhydrous mixture of KF and HF contains which type of ions?

a) $K^{+\iota, H^{+\iota, F^{+\iota}, i}}$	b) $(KF)^{+i(HF)^{-ii}i}$	c) $KH^{+\iota,F^{-\iota\iota}\iota}$	d) $K^{+i(HF_2)^{-ii}i}$
--	---------------------------	---------------------------------------	--------------------------

160. Microcosmic salt is

	a) $N a_4 P_2 O_7$	b) $Na(NH_4)HPO_4$	c) $Na(NH_3)HPO_4.4H_2C^{d}MgNH_4PO_4$
--	--------------------	--------------------	--

161. Sodium burns in dry air to give:

a) $_{Na_2O}$ b) $_{Na_2O_2}$ c) $_{NaO_2}$ d) $_{Na_3N}$ 162. The byproduct of Solvay process is:

a) CO_2	b) $CaCl_2$	c) $_{NH_3}$	d) $CaCO_3$
-----------	-------------	--------------	-------------

163. Select the incorrect statement

a) Be can form complexes due to its very small size

b) *Mg* cannot form complexes

c) Mg burns in air releasing dazzling light rich in UV rays

d) $CaCl_2.6H_2O$ when mixed with ice gives freezing mixture

164. Acidified solution of sodium thiosulphate is unstable because in thiosulphate:

a) The sulphur atoms are at unstable oxidation state of +2

- b) The two sulphur atoms are in different oxidation states of +5 and -1
- c) The S = S bond are unstable bonds
- d) Thio compounds contain sulphur in zero oxidation state

165. From which mineral Ra is obtained?

a) Limestone	
--------------	--

b) Rutile

c) Pitch blende

d) Haematite

166. Metals belonging to the same group in the periodic table are:

- a) Magnesium and sodium
- b) Magnesium and copper
- c) Magnesium and barium
- d) Magnesium and potassium
- 167. In the extraction of sodium by Down's process, cathode and anode are respectively
 - a) Copper and nickel b) Copper and chromium
 - c) Nickel and chromium d) Iron and graphite

168. Which of the following statements is false regarding saline hydrides?

- a) In the molten state they conduct electricity
- b) They dissolve in water giving off hydrogen
- c) They are used as reducing agents
- d) They are covalent in nature

169. Among the alkali metals caesium is the most reactive because

- a) Its incomplete shell is nearest to the nucleus.
- b) It has a single electrons in the valence shell.
- c) It is the heaviest alkali metal.

d) The outermost electron is more loosely bound than the outermost electron of the other alkali metals.

170. Soda ash is chemically:

	a) $Na_2CO_3.H_2O$	^{b)} NaOH	c) NaHCO ₃	d) $N a_2 C O_3$ (anhydrous)
--	--------------------	--------------------	-----------------------	------------------------------

171. Which of the following ions, will have maximum hydration energy?

a) Sr^{2+ii}	b) Ba ²⁺ⁱⁱ	c) Ca ²⁺ⁱⁱ	d) Mg^{2+ii}
172. Chlorophyll contai	ns:		
a) Na	b) K	c) Mg	d) Mn
173. Oxygen can be obt	ained by heating:		
a) Na_2O	b) Fe_2O_3	c) $Fe_{3}O_{4}$	d) BaO_2

174. Which of the following pairs of substances would give same gaseous product in reaction with water?

a) $Na \wedge Na_2O_2$ b) $Ca \wedge CaH_2$ c) $Ca \wedge CaO$ d) $Ba \wedge BaO_2$

175. Which of the following is not correct?

a) Iodine oxidises sodium thiosulphate to sodium tetrathionate.

b) Sodium thiosulphate is soluble in water.

c) Ozone is used to identify the presence of unsaturation in alkenes.

d) Sodium thiosulphate reacts with iodine to form sodium sulphate.

176. Which of the following is	not an ore of magnesium?					
a) Carnallite	b) Dolomite	c) Calamine	d) Sea water			
177. The chloride that can be e	xtracted with ether:					
a) _{Na} Cl	b) _{LiCl}	c) $BaCl_2$	d) $CaCl_2$			
178. Iceland spar is:		2	2			
a) CaSiO ₄	b) $CaCO_3$	c) CaF_2	d) NaAI F_6			
179. Which will react with acid	and alkalies both $i.e.$, (amp	hoteric)				
^{a)} MgO	^{b)} CaO	c) BaO	d) BeO			
180. Fire extinguishers contain	$H_2 SO_4$ and:					
a) NaHCO ₃ \wedge N a_2CO_3	b) $NaHCO_3$ solution	c) $N a_2 C O_3$	d) $CaCO_3$			
181. The raw materials in Solva	y process are:					
a) NaOH , CaO \wedge N $H_{_3}$						
b) Na_2CO_3 , $CaCO_3 \land N$	b) Na_2CO_3 , $CaCO_3 \wedge NH_3$					
c) Na_2SO_4 , $CaCO_3 \wedge N$	I H ₃					
d) $NaCl, NH_3, CaCO_3$						
182. One mole of magnesium n	itride on the reaction with an	excess of water gives				
a) One mole of NH_3	b) Two moles of NH_3	c) One mole of HNO_3	d) Two moles of HNO_3			
183. Slaked lime is:						
3) < < <						
a) $CaCO_3$	b) CaO	c) $Ca(OH)_2$	d) $Ca(C_2O_4)$			
184. Sodium thiosulphate is pre-		c) $Ca(OH)_2$	d) $Ca(C_2O_4)$			
184. Sodium thiosulphate is pre		(/ <u>/</u>	d) $Ca(C_2O_4)$			
184. Sodium thiosulphate is pre	epared by on with S in alkaline medium	(/ <u>/</u>	d) $Ca(C_2O_4)$			
184. Sodium thiosulphate is pre a) Boiling Na_2SO_3 solution b) Reducing Na_2SO_4 solution	epared by on with S in alkaline medium	(/ <u>/</u>	d) $Ca(C_2O_4)$			
184. Sodium thiosulphate is pre a) Boiling Na_2SO_3 solution b) Reducing Na_2SO_4 solution	epared by on with S in alkaline medium ation with H_2S on with S in acidic medium	(/ <u>/</u>	d) $Ca(C_2O_4)$			
184. Sodium thiosulphate is pre a) Boiling $Na_2 SO_3$ solution b) Reducing $Na_2 SO_4$ solution c) Boiling $Na_2 SO_3$ solution	epared by on with S in alkaline medium ation with H_2S on with S in acidic medium olution with <i>NaOH</i>	(/ <u>/</u>	d) $Ca(C_2O_4)$			
184. Sodium thiosulphate is pre- a) Boiling $Na_2 SO_3$ solution b) Reducing $Na_2 SO_4$ solution c) Boiling $Na_2 SO_3$ solution d) Neutralising $H_2 S_2 O_3$ solution	epared by on with S in alkaline medium ation with H_2S on with S in acidic medium olution with <i>NaOH</i> Be F_2 is not. It is because:	(/ <u>/</u>	d) $Ca(C_2O_4)$			
184. Sodium thiosulphate is pre- a) Boiling Na_2SO_3 solution b) Reducing Na_2SO_4 solution c) Boiling Na_2SO_3 solution d) Neutralising $H_2S_2O_3$ solution 185. H_2O is dipolar whereas E a) The electronegativity of	epared by on with S in alkaline medium ation with H_2S on with S in acidic medium olution with <i>NaOH</i> Be F_2 is not. It is because:		d) $Ca(C_2O_4)$			
184. Sodium thiosulphate is pre- a) Boiling Na_2SO_3 solution b) Reducing Na_2SO_4 solution c) Boiling Na_2SO_3 solution d) Neutralising $H_2S_2O_3$ solution 185. H_2O is dipolar whereas E a) The electronegativity of	epared by on with S in alkaline medium ation with H_2S on with S in acidic medium olution with <i>NaOH</i> Be F_2 is not. It is because: f F is greater than O ng whereas $Be F_2$ is discrete		d) $Ca(C_2O_4)$			
184. Sodium thiosulphate is pre- a) Boiling $Na_2 SO_3$ solution b) Reducing $Na_2 SO_4$ solution c) Boiling $Na_2 SO_3$ solution d) Neutralising $H_2 S_2 O_3$ solution d) Neutralising $H_2 S_2 O_3$ solution a) The electronegativity of b) $H_2 O$ involves H-bondian	epared by on with S in alkaline medium ation with H_2S on with S in acidic medium solution with <i>NaOH</i> Be F_2 is not. It is because: f F is greater than O ng whereas $Be F_2$ is discrete F_2 is angular		d) <i>Ca</i> (<i>C</i> ₂ <i>O</i> ₄)			
184. Sodium thiosulphate is pre- a) Boiling $Na_2 SO_3$ solution b) Reducing $Na_2 SO_4$ solution c) Boiling $Na_2 SO_3$ solution d) Neutralising $H_2 S_2 O_3$ solution d) Neutralising $H_2 S_2 O_3$ solution for the electronegativity of b) $H_2 O$ is dipolar whereas H_2 a) The electronegativity of b) $H_2 O$ involves H-bondin c) $H_2 O$ is linear and Be H	epared by on with S in alkaline medium ation with H_2S on with S in acidic medium olution with <i>NaOH</i> $Be F_2$ is not. It is because: f F is greater than O ng whereas $Be F_2$ is discrete F_2 is angular EF_2 is linear		d) <i>Ca</i> (<i>C</i> ₂ <i>O</i> ₄)			

c) Dehydration

d) Hydration to yield another hydrate

187. The following compounds have been arranged in order of their increasing thermal stabilities. Identify the correct

	,	<i>MgCO</i> ₃ (<i>II</i>) <i>BeCO</i> ₃ (<i>IV</i>) b) <i>IV</i> < <i>II</i> < <i>III</i> < <i>I</i>	c) IV <ii<i<iii< th=""><th>d)</th></ii<i<iii<>	d)	
188. The only	element which is	radioactive among alkali met	als is:		
a) Cs		b) _{Fr}	c) _{Rb}	d) Li	
189. The pair of	of compounds wh	nich cannot exist together in s	olution is:		
a) <i>NaHC</i> 190. Potassium	5	b) $N a_2 CO_3 \wedge NaHCO_3$	c) $N a_2 C O_3 \wedge NaOH$	d) <i>NaHCO</i> ₃ ∧ <i>NaCl</i>	
a) Alcoho	ol	b) Kerosene	c) Liquid ammonia	d) Water	
191. Which on	e of the alkali me	etals, forms only, the normal	oxide, M_2O on heating in ai	r?	
a) _{Li}		b) _{Na}	c) _{Rb}	d) K	
192. Common	table salt become	es moist and does not pour ea	sily in rainy season because:		
a) It cont	ains magnesium o	chloride			
b) It cont	ains magnesium o	carbonate			
c) It melt	s slightly in rainy	season			
d) Sodiur	n chloride is hygr	roscopic			
193. The calci	um salt used as m	anure is:			
a) CaC_2		b) $CaC N_2$	c) $CaCO_3$	d) $CaSO_4$	
194. The produ		usion of $BaSO_{4}$ and $Na_{2}CC$	₃ is		
a) BaCC) ₃	^{b)} BaO	c) $Ba(OH)_2$	d) $BaHSO_4$	
195. Lithium i	odide is:				
a) Ionic		b) Covalent	c) Partially covalent	d) None of these	
196. Mg burns	in CO to produc	e			
a) MgO-	- <i>CO</i>	b) <i>MgO</i> ₂	c) MgO+C	d) <i>MgCO</i> ₃	
197. A mixture of $Al(OH)_3$ and $Fe(OH)_3$ can be separated easily by treating it with:					
a) HCl		b) $_{NH_4OH}$	c) HNO_3	d) _{NaOH}	
198. Gypsum o	on heating at 120	-230°C gives:			
a) Hemih	ydrate	b) Monohydrate	c) Dehydrates	d) Anhydrous salt	
199. Sodium n	netal cannot be st	ored under:			
a) Benzer	ie	b) Kerosene	c) Alcohol	d) Toluene	
200. Which ion	has closed shell	electronic configuration?			
	i nus ciosca silen	checulonic configuration.			

201. Which out of the following compounds is called photographer's fixer?

a)
$$Na_2SO_3$$
 b) $Na_2S_2O_3.5H_2O$ c) Na_2SO_4 d) Na_2S

202. Be F_2 is soluble in water whereas fluorides of other alkaline earth metals are insoluble because of:

- a) Ionic nature of BeF_2
- b) Covalent nature of BeF_2
- c) Greater hydration energy of Be^{2+il} ion as compared to its lattice energy
- d) None of the above

203. Sodium thiosulphate, $N a_2 S_2 O_3 .5 H_2 O$ is used in photography to:

- a) Reduce the silver bromide grains to metallic silver
- b) Convert the metallic silver to silver salt
- c) Remove undecomposed AgBr as soluble silver thiosulphate complex
- d) Remove reduced silver
- 204. Hypo is used in:

a) Iodimetric titrations b) Iodometric titrations c) Photography d) All of these

205. Which of the following is an epsom salt?

- a) $2CaSO_4 H_2O$ b) $MgSO_4 TH_2O$ c) $MgSO_4 H_2O$ d) $BaSO_4 H_2O$
- 206. Magnesium form $M q^{2+ii}$ and not $M q^{+ii}$ because:
 - a) Magnesium (II) carbonate is insoluble in water
 - b) Generally higher oxidation states are preferred by metals
 - c) Ionic radius of Mg(II) is smaller than of Mg (I)
 - d) Hydration energy of divalent magnesium ion is higher

207. Which on mixing with water gives a hissing sound and becomes very hard?

- a) Slaked lime
- b) Quick lime
- c) Limestone
- d) Superphosphate of lime
- 208. Molecular formula of Glauber's salt is

a) $MgSO_4.7H_2O$ b) $CuSO_4.5H_2O$ c) $FeSO_4.7H_2O$ d) $Na_2SO_4.10H_2O$

- 209. Dead burnt is:
 - a) $CaSO_4$ b) Na_2CO_3

210. Bleaching powder is obtained by interaction of Cl_2 and:

a) $dil. Ca(OH)_2(aq)$ b) dry CaO c) $conc. Ca(OH)_2(aq)$ d) Dry slaked lime

c) Anhydrous Na_2SO_4 d) Anhydrous $CuSO_4$

211. Baking soda is:

211	. Baking soda is:						
	a) $NaHCO_3$	b) NaHC $O_3 \cdot 6 H_2 O$	c) $N a_2 C O_3$	d) $_{Na_{2}CO_{3}} \cdot 10H_{2}O$			
212	212. Which statement is false for alkali metals?						
	a) Lithium is the strongest	reducing agent					
	b) Sodium is amphoteric in	n nature					
	c) $L i^{+ii}$ is exceptionally s	mall					
	d) All alkali metals give bl	ue solution in liquid ammoni	a				
213	. Most abundant salt of sodi	um in nature is:					
	a) $_{NaNO_3}$	b) Na_2SO_4	c) _{NaOH}	d) _{NaCl}			
214	. Which alkaline earth meta	l forms peroxide on burning	in air?				
	a) Be	^{b)} Ca	c) _{Sr}	d) _{Ba}			
215	. In the manufacture of sodi	um hydroxide, byproduct ob	tained is:				
	a) _{O2}	b) <i>C l</i> ₂	c) $N a_2 C O_3$	d) _{NaCl}			
216	Alkaline earth metal oxide	having the co-ordination nur	nber four is:				
	a) BeO	^{b)} MgO	c) _{SrO}	d) CaO			
217	. What are the products form	ned when an aqueous solution	n of magnesium bicarbonate	is boiled?			
	a) MgO, H_2O, CO_2	b) $Mg(HCO_3)_2$, H_2O	c) $Mg(OH)_2$, H_2O	d) Mg , CO_2 , H_2O			
218		bluble MSO_4 and inert MO_4	. MO in aqueous solution for	rms insoluble $M(OH)_2$ soluble			
	in NaOH. Metal M is a) Be	b) Mg	c) Ca	d) Si			
219	. Alkali metals are character	rised by:					
a) Good conductors of heat and electricity							
	b) High melting points						
	c) Low oxidation potential	ls					
	d) High ionisation potentials						
220	. Sodium thiosulphate is use	ed in photography					
	a) As AgBr grain is reduc	ed to non-metallic silver	b) To convert metallic silv	er into silver salt			
	c) To remove reduced silv		d) To remove undecompose $Na_3 \left[Ag \left(S_2 O_3 \right)_2 \right]$ (a con-	sed AgBr in the form of mplex salt)			
221	. In which of the following,	sodium carbonate is not used	!?				
	a) In soap making	b) In paper making	c) In tyre making	d) In baking of bread			
222	. Alkaline earth metals are r	not found free in nature becau	use of their:				
	a) Low melting point						

b) High boiling point

c) Thermal instability

d) Great chemical activity

223. The principal products obtained on heating iodine with concentrated caustic soda solution are:

a) NaOI + NaI	b) $NalO_3 + Nal$	c) NaOI + NaIO ₃ + NaI	d) NaIO \pm Nal
224. NaOCl is used as a bleach	5	5	-
a) NaCl with H_2O		b) $N H_{A}Cl with NaOH$	
c) Cl_2 with cold and dilut	e NaOH	d) Cl_2 with hot and concer	ntrated NaOH
225. The compound insoluble i		C 12 with not and concer	
a) Calcium oxide	b) Calcium carbonate	c) Calcium hydroxide	d) Calcium oxalate
226. Sodium carbonate contain	s:		
a) 5 molecules of crystalli	ne water		
b) 10 molecules of crystal	line water		
c) 3 molecules of crystalli	ne water		
d) No molecule of crystal	line water		
227. Sodium carbonate reacts v	with SO_2 in aqueous solution	to give:	
a) <i>NaHCO</i> 3	b) NaHS O_3	c) Na_2SO_3	d) $NaHSO_4$
228. A sudden large jump between associated with the electron a^{1} 1 s ² , 2 s ² 2 p ⁶ , 3 s ¹		-	
229. Which of the following re	acts with water with high rate	??	
a) Li	b) Rb	c) Na	d) K
230. The substance used as pig	ment in paint is		
a) Borax	b) Alumina	c) Lithopone	d) None of these
231. Acidic solution of $S_2 O_3^{2-\alpha}$	is converted to in p	presence of I_2	
a) $S_4 O_6^{2-i+I^{-i}i}$	b) $SO_4^{2-i+I^{-i}i}$	c) $SO_3 + I^{-ii}$	d) $S_4 O_6^{2-i+I_3^{-i}i}$
232. Soda lime is			
^{a)} NaOH	b) NaOH∧CaO	c) CaO	d) Na_2CO_3
233. Lithopone is a mixture of:	:		
a) Barium sulphate and zi	nc sulphide		
b) Barium sulphide and zi	nc sulphide		
c) Calcium sulphate and z	inc sulphide		
d) Calcium sulphide and z	zinc sulphide		
234. Alkali metal chloride solu	ble in pyridine is:		

	a) LiCl	b) <i>CsCl</i>	c) _{NaCl}	d) _{KCl}	
235	5. The characteristic colours g	given by calcium, strontium a	and barium in the flame test a	re respectively	
	a) Brick red, apple green, o	crimson	b) Crimson, apple green, b	rick red	
	c) Crimson, brick red, app	le green	d) Brick red, crimson, appl	e green	
236	5. Sodium thiosulphate is for	med when:			
	a) NaOH is neutralised by	$_{T}H_{2}SO_{4}$			
	b) $N a_2 S$ is boiled with S				
	c) $N a_2 S O_3$ is boiled with	Na_2S and I_2			
	d) $N a_2 S O_4$ is boiled with	Na_2S			
237	7. In the following reaction, $NaOH+S \rightarrow A+N a_2S+$	H_2O ; Ais			
	a) Na_2SO_4	b) Na_2SO_3	c) $_{Na_{2}S}$	d) $N a_2 S_2 O_3$	
238	238. Sodium peroxide which is a yellow solid, when exposed to air becomes white due to the formation of				
	a) H_2O_2	b) $_{Na_{2}}O$	c) $Na_2O\wedge O_3$	d) NaOH $\wedge Na_2CO_3$	
239	9. Sedimentary rocks laid dow	vn under water mainly contai	n:		
	a) CaO	b) $Ca(OH)_2$	c) $CaCO_3$	d) $CaSO_4$	
240	D. Potash alum is used in puri	fication of water because:			
	a) It kills the micro-organized	sms			
	b) It precipitates the colloid	dal matter			
	c) It removes the hardness	of water			
	d) It catalyses the removal	of impurities			
241	The main constituent of bo	nes is:			
	a) $CaCO_3$	b) CaF_2	c) $CaSO_4$	d) $Ca_{3}(PO_{4})_{2}$	
242	2. Mortar is a mixture of:				
	a) $CaCO_3 \wedge CaO$				
	b) Slaked lime and water				
	c) Slaked lime, sand and w	ater			
	d) None of the above				

243. Sodium cannot be extracted by the electrolysis of brine solution because:

a) Sodium liberated reacts with water to produce $NaOH + H_2$

b) Sodium being more electropositive than hydrogen, H_2 is liberated at cathode and not sodium

c) Electrolysis cannot take place with brine solution

d) None of the above

244. The function of sand in mortar is:

a) To decrease the hardne	SS				
b) To make the mass com	pact				
c) To decrease the plastic	ity of the mass				
d) To prevent the excess s	hrinkage because of which c	racks may result			
245. The most homogeneous fa	mily in periodic table is of:				
a) Alkali metals	b) Alkaline earth metals	c) Volatile metals	d) Coinage metals		
246. Pick out the statement (s) which is (are) not true about the diagonal relationship of Li and Mg. (i) Polarising powers of $L i^{+i \wedge Mg^{2^{+ii}}i}$ are almost same. (ii) L like Li, Mg decomposes water very fast. (iii) $LiCl \wedge MgCl_2$ are deliquescent. (iv) Like Li, Mg does not form solid bicarbonates. a) (i) and (ii) b) (ii) and (iii) c) Only (ii) d) Only (i)					
247. Which is most basic in cha	aracter?				
a) NaOH	^{b)} KOH	c) _{RbOH}	^{d)} LiOH		
248. On strong heating sodium	bicarbonate changes into				
a) Sodium monoxide	b) Sodium hydroxide	c) Sodium carbonate	d) Sodium peroxide		
249. Fusion mixture is comprised of:					
a) $K_2 CO_3 + N a_2 CO_3$ 250. Which of the following w	b) $KHSO_4 + NaHSO_4$ ill liberate hydrogen by its re	2 5 7	d) $KHSO_4 + N a_2 SO_3$		
a) Copper	b) Phosphorus	c) Mercury	d) Magnesium		
251. Baking powder contains	5 1	5	, ,		
a) NaHCO ₃ , Ca $ H_2$ PC	\mathbf{D} and starch	b) NaHCO ₃ , Ca (H_2PO)			
c) NaHCO ₃ , and starch		d) NaHC O_3	2/2		
252. In the hardening stage of J	plaster of Paris, the compoun	5			
a) $CaSO_4$		b) Orthorhombic $CaSO_4$.2H ₂ O		
c) $CaSO_4 \cdot H_2O$					
253. Magnesium has polarising	power closer to that of:				
a) _{Li}	b) _{Na}	c) _K	d) _{Cs}		
254. Calcium does not combine	e directly with:				
a) _{O2}	b) N_2	c) H_2	d) Carbon		
255. A fire of lithium, sodium a	and potassium can be extingu	iished by			
a) _{H2} O	b) Nitrogen	c) <i>CO</i> ₂	d) Asbestose blanket		
256. Halides of alkaline earth r $SrCl_2 \cdot 2H_2O$. This show	netals form hydrates such as /s that halides of group 2 eler		H_2O , $BaCl_2 \cdot 2H_2O$ and		

a) Are hygroscopic in nature	a) Ar	e hygrosc	opic in	nature
------------------------------	-------	-----------	---------	--------

b) Act as dehydrating agent

- c) Can absorb moisture from air
- d) All of the above

257. The process associated with sodium carbonate manufacture is known as process.

	a) Chamber	b) Haber	c) Leblanc	d) Castner		
258	B. Thomas slag is					
	a) CaSiO ₃	b) $C a_3 (PO_4)_2$	c) $MnSiO_3$	d) $CaCO_3$		
259	. The formula of Norwegian	saltpetre is:				
	a) $_{NaNO_3}$	b) KNO_3	c) $Ca(NO_3)_2 \cdot CaO$	d) $Ba(NO_3)_2$		
260	O. Calcium is extracted by the	e electrolysis of:				
	a) Fused mixture of CaC	$I_2 \wedge CaF_2$				
	b) $CaC l_2$ solution					
	c) Fused mixture of CaC	$I_2 \wedge NaF$				
	d) $C a_3 (PO_4)_2$ solution					
261		queous solution of Zn^{2+ii} ior		s and on adding excess		
	a) Cationic part	solves. In this solution zinc ex b) Anionic part	xists in the: c) Both in cationic and	d) There is no zinc left in		
262	2. Out of following which co	mpound is used for preservat	anionic parts	the solution		
	a) NaCl	b) <i>HqC l</i> ₂	c) $ZnCl_2$	d) $CaCl_2$		
263	B. $Ba(OH)_2$ is used to estimate	0 2	\mathcal{L}			
	a) _{N2}	b) <i>CO</i> 2	^{c)} CO	d) _{N2} O		
264	2	differs from other alkali meta		2		
	a) Small size of lithium ato	om and Li^{+ii} ion				
	b) Extremely high electrop					
	c) Greater hardness of <i>Li</i>					
	d) Hydration of $L i^{+ll}$ ion					
265. An ore of potassium is:						
	a) Carnallite	b) Cryolite	c) Bauxite	d) Dolomite		
266	. Order of increasing density	y is				
	^{a)} Li <k<na<rb<cs< td=""><td></td><td>^{b)} Li<na<k<rb<cs< td=""><td></td></na<k<rb<cs<></td></k<na<rb<cs<>		^{b)} Li <na<k<rb<cs< td=""><td></td></na<k<rb<cs<>			

c) Cs<Rb<K<Na<Li

267. The highly efficient method of obtaining beryllium is:

d) K<Li<Na<Rb<Cs

a) Reduction of beryllium halide with Mg	
--	--

- b) Reduction of beryllium oxide with carbon
- c) Electrolysis of fused beryllium chloride
- d) Dissociation of beryllium carbide

268. In curing cement plasters water is sprinkled from time to time. This helps in

- a) Keeping it cool
- b) Developing interlocking needle-like crystals of hydrated silicates
- c) Hydrating sand and gravel mixed with cement
- d) Converting sand into silicic acid
- 269. Which decomposes on heating?
 - a) NaOH b) KOH c) LiOH d) CaOH
- 270. The solubility of silver bromide in hypo solution due to the formation of

$a) \left[Ag \left(S_2 O_3 \right)_2 \right]^{3-ii}$	b) Ag_2SO_3	c) $\left[Ag(S_2O_3)\right]^{-ii}$	d) $Ag_2S_2O_3$
--	---------------	------------------------------------	-----------------

- 271. Which element of IA group is most abundantly found in combined state?
 - a) Li b) Na c) Cs d) K
- 272. Alkaline earth metal compounds are les soluble in water than corresponding alkali metal compounds because former have:

a) Lower lattice energy

b) Higher I.P.

c) Higher covalent character

- d) Lower covalent character
- 273. Fluorspar is:
- c) $_{H_2F_2}$ d) $CaCO_3$ a) CaF_{2} b) CaO 274. The most soluble compound in water is: b) MnS c) $K_2 S$ a) CuS d) ZnS 275. Calcium is obtained by a) Electrolysis of molten CaCl₂ b) Roasting of lime stone c) Reduction of $CaCl_2$ with carbon d) Electrolysis of a solution of $CaCl_2$ in water 276. The main reason for using a mercury electrolytic cell in NaOH manufacture is that: a) Hq is toxic
 - b) $N a^{+ii}$ is discharged at cathode
 - c) *Hg* has a high vapour pressure
 - d) *Hg* is a good conductor of electricity

277. The ionic mobility of alkali metal ions in aqueous solution is maximum for

a)
$$K^{+ii}$$
 b) Rb^{+ii} c) Li^{+ii} d) Na^{+ii}

278. The products of the electrolysis of concentrated aqueous solution of common salt are:

a) $Na + Cl_2$ b) $H_2 + O_2$ c) $NaOH + H_2 + Cl_2$ d) $NaOH + Cl_2 + O_2$

279. In the Down's cell KCl is added in NaCl to:

a) Lower its m.p.

b) Dissolve more of NaCl

- c) Increase conductivity
- d) Increase the dissociation

280. $Na_2CO_3 + Fe_2O_3 \longrightarrow A + CO_2$; A is:

a)
$$NaFeO_2$$
 b) Na_3FeO_3 c) Fe_3O_4 d) Na_2FeO_2

281. Blanc fixe used in paints is:

- a) Finely divided $BaSO_4$
- b) Paste of $Ba(OH)_2$
- c) Suspension of $Ca(OH)_2$
- d) $MgCl_2 \cdot 5 MgO \cdot 5H_2O$

282. Calcium cyanide reacts with steam to form ammonia and:

a)
$$CaO$$
 b) $Ca(HCO_3)_2$ c) $CaCO_3$ d) $Ca(OH)_2$

283. Which salt on heating does not give brown coloured gas is?

a) $LiNO_3$ b) KNO_3 c) $Pb(NO_3)_2$ d) $AgNO_3$

284. The biggest ion is:

a) Al^{3+ii} b) Ba^{2+ii} c) Na^{+ii} d) Mg^{2+ii}

285. The primary standard solution for estimation of $N a_2 S_2 O_3$ is

a)
$$I_2$$
 solution b) $KMnO_4$ c) $K_2Cr_2O_7$ d) Oxalic acid

286. Which on heating with NaOH solution gives inflammable gas?

a) $_{S}$ b) $_{Zn}$ c) $_{NH_4Cl}$ d) $_{I_2}$

287. Hypo is chemically:

a)
$$Na_2S_2O_3 \cdot 2H_2O$$
 b) $Na_2S_2O_3 \cdot 3H_2O$ c) $Na_2S_2O_3 \cdot 4H_2O$ d) $Na_2S_2O_3 \cdot 5H_2O$

288. Which alkaline earth metal is the most abundant in the earth's crust?

a) Mg b) Ca c) Sr d) Ba

289. A compound X on heating gives a colourless gas. This residue is dissolved in water to obtain Y. Excess CO_2 is bubbled through aqueous solution of Y when Z is formed. Z on gentle heating gives back X. The X is a) $CaCO_3$ b) $Ca(HCO_3)_2$ c) Na_2CO_3 d) $NaHCO_3$

290. The formula of the product formed, when sodium thiosulphate solution is added to silver bromide is

a)	$Ag_2S_2O_3$	b) Ag_2S	c) $N a_3 [Ag(S_2O_3)_2]$	d) $A a_{2} [Na(S_{2}O_{2})_{2}]$
	oncrete is a mixture of:			
a)	Cement, lime and water			
b)	Cement, sand and water			
c)	Cement, sand, gravel and	d water		
d)	Cement, slaked lime and	l water		
292. Th	ne reaction of water with	sodium and potassium is:		
a)	Reversible			
b)	Irreversible and endothe	rmic		
c)	Exothermic			
d)	Endothermic			
293. WI	hich one is the highest m	elting point halide?		
a)	NaCl	b) _{NaBr}	c) _{NaF}	d) _{Nal}
294. Be	eryllium shows diagonal r	elationship with		
a)	Mg	b) Na	c) B	d) A1
295. WJ	hich metal dissolves in N	aOH with the evolution of	H ₂ ?	
a)	Ве	^{b)} Ca	c) _{Mg}	d) _{Sr}
296. WI	hich one of the following	g order of stability is correct?	?	
a)	$MgCO_3 > CaCO_3 > Src$	$CO_3 > BaCO_3$	b) $BaCO_3 > SrCO_3 > CaC$	$CO_3 > MgCO_3$
c)	$MgCO_3 > BaCO_3 > Sr($	$CO_3 > CaCO_3$	d) $CaCO_3 > BaCO_3 > Mg$	$CO_3 > SrCO_3$
297. Ba	ryta water is:			
a)	BaO	b) $Ca(OH)_2$	c) $Ba(OH)_2$	d) $BaSO_4$
298. WJ	hich reagent would enabl	e you to remove SO_4^{2-ii} ion	s from solution containing bo	oth SO_4^{2-ii} and Cl^{-ii} ions?
a)	NaOH	b) Pb^{2+ii}	c) $Ba(OH)_2$	d) BaSO ₄
	India, at the occasion of ay be present?	marriages, the fireworks use	d give green flame. Which or	e of the following radicals
	Na	^{b)} <i>K</i>	c) _{Ba}	d) <i>Ca</i>
300. A s	substance which gives a	brick red flame and breaks de	own on heating giving oxygen	n and a brown gas is:
a)	Calcium carbonate			
b)	Magnesium nitrate			
c)	Magnesium carbonate			
d)	Calcium nitrate			

301. When chlorine is passed through concentrated solution of KOH, the compound formed is:

a) K	clO	b) $KClO_2$	c) KClO ₃	d) _{KClO4}
302. Whic	ch of the following do	es not illustrate the anomalou	s properties of lithium?	
a) Li	is much softer than th	ne other group first metals		
b) Ti	ne m.p. and b.p. of Li	are comparatively high		
c) _{Li}	forms a nitride Li_3N	unlike group first metals		
		mpounds are more heavily hy	drated than those of the rest	of the group elements
		il. HCl to give colourless gas	s that decolourises aqueous be	romine. The solid is most
	y to be: odium carbonate	b) Sodium chloride	c) Sodium acetate	d) Sodium thiosulphate
304. Out o	of the following metal	s that cannot be obtained by e	electrolysis of the aqueous so	lution of is salts is
a) A	g	b) Cr	c) Cu	d) Mg
305. The	correct increasing cov	alent character is:		
a) _N	aCl <licl<becl,< td=""><td>b) BeCl₂<nacl<licl< td=""><td>c) BeCl₂<licl<nacl< td=""><td>d) LiCl<nacl<becl<sub>2</nacl<becl<sub></td></licl<nacl<></td></nacl<licl<></td></licl<becl,<>	b) BeCl ₂ <nacl<licl< td=""><td>c) BeCl₂<licl<nacl< td=""><td>d) LiCl<nacl<becl<sub>2</nacl<becl<sub></td></licl<nacl<></td></nacl<licl<>	c) BeCl ₂ <licl<nacl< td=""><td>d) LiCl<nacl<becl<sub>2</nacl<becl<sub></td></licl<nacl<>	d) LiCl <nacl<becl<sub>2</nacl<becl<sub>
306. Portl	and cement hasin	its composition:	-	_
a) _M	aximum amount of Si	iO ₂		
b) _M	inimum amount of A	l_2O_3		
c) _M	inimum amount of F	e_2O_3		
d) _M	aximum amount of C	aO		
307. The	reaction of sodium wit	th water is highly exothermic	. The rate of reaction is lowe	red by:
a) Lo	owering the temperatu	re		
b) M	ixing with alcohol			
c) M	ixing with acetic acid			
d) M	aking an amalgam			
308. Whic	ch of the following car	bonates decomposes at lowes	st temperature?	
a) _M	lgCO ₃	b) $CaCO_3$	c) SrCO ₃	d) $BaCO_3$
309. Ca C	$C_2 + N_2 \rightarrow A$, product	Ais		
a) <i>C</i>	aCN_2	b) $CaC N_2 \wedge C$	c) $CaC N_2 + N_2$	d) None of these
310. The metal present in Grignard reagent is:				
a) C	а	b) _{<i>Mg</i>}	c) _{Zn}	d) _{Fe}
311. The	characteristic not relat	ed to alkali metal is		
a) H	igh ionisation energy		b) Their ions are isoelectro	nic with noble gases
c) Lo	ow melting point		d) Low electronegativity	

312. A colourless salt gives violet colour to Bunsen flame and also turns moisture litmus paper blue. It is:

a)
$$Na_2CO_3$$
 b) KNO_3 c) K_2CO_3 d) $Cu(OH)_2$

313. Which possesses highest lattice energy?

a)
$$NaCl$$
 b) LiF c) Csl d) KF

314. Which of the following has the largest size in aqueous solution?

a)
$$Rb^{+ii}$$
 b) Na^{+ii} c) K^{+ii} d) Li^{+ii}

315. On prolonged exposure to air, sodium finally changes to:

a)
$$N a_2 CO_3$$
 b) $N a_2 O$ c) $NaOH$ d) $NaHCO_3$

316. The compound which is insoluble in hot water and $N H_3$ is:

a) $PbCl_2$ b) AgCl c) $BaSO_4$ d) None of these

317. Which of the following statements are correct for alkali metal compounds?

(i) Superoxides are paramagnetic in nature.

(ii) The basic strength of hydroxides increases down the group.

(iii) The conductivity of chlorides in their aqueous solutions decreases down the group.

- (iv) The basic nature of carbonates in aqueous solutions is due to cationic hydrolysis.
- a) (i), (ii), and (iii) only

b) (i), and (ii), only

c) (ii), (iii) and (iv) only

d) (iii) and (iv) only

318. Flash bulbs contain wire or foil of Mg packed in an atmosphere of:

- a) SO_3 b) O_2 c) Air d) N_2
- 319. The main product obtained when a solution of sodium carbonate reacts with mercuric chloride is
 - a) $Hg(OH)_2$ b) $HgCO_3$. HgO c) $HgCO_3$ d) $HgCO_3$. $Hg(OH)_2$

320. Milk of magnesia is:

a) $Mg(OH)_2$	b) $Ca(OH)_2$	c) $Ba(OH)_2$	d) None of these
---------------	---------------	---------------	------------------

321. What would you observe if excess of dilute *NaOH* solution is added and shaken with an aqueous solution of aluminium chloride?

a) A permanent white precipitate is formed immediately

b) No change at first but a white precipitate is formed on standing

c) A white precipitate is formed which later dissolves

d) A green precipitate which turns red on standing in air

322. Which property of $N a_2 S_2 O_3$ makes it useful in photography?

- a) Photochemical property b) Complex formation property
- c) Oxidising agent d) Reducing agent

323. Ca on exposure in moist air forms a layer on surface of:

	a) $CaCO_3$	b) $Ca(OH)_2$	c) $CaCO_3 \cdot Ca(OH)_2$	d) CaO		
324	324. Which of the following is different from the other three?					
	a) MgO	b) SnO	c) _{ZnO}	d) Cr_2O_3		
325	5. Salt used as a purgative is:					
	a) <i>NaCl</i>	b) $MgSO_4 \cdot 7H_2O$	c) $C a_3 A l_2 O_6$	d) $MgCl_2 \cdot 6H_2O$		
326	5. Tin dissolves in boiling car	ustic soda solution because of	f the formation of soluble:			
	a) $Sn(OH)_2$	b) $Sn(OH)_4$	c) $N a_2 Sn O_3$	d) None of these		
327	7. Alkali metals contain:					
	a) 7 valence electrons	b) 1 valence electron	c) 4 valence electrons	d) 2 valence electrons		
328	3. The wire of flash bulbs are	made up of:				
	a) Mg	b) Ba	c) _{Cu}	d) _{Ag}		
329	9. Addition of excess of sodi	um hydroxide solution to a so	olution of nickel sulphate res	ults in the formation of a:		
	a) Green precipitate	b) Pink colouration	c) Blue precipitate	d) Violet colouration		
330). Several blocks of Mg are	fixed to the bottom of a ship	to:			
	a) Prevent action of water	and salt				
	b) Prevent puncturing by u	under sea rocks				
	c) Keep away the sharks					
	d) Make the ship lighter					
331	. An inorganic compound fi	rst melts then resolidifies and	then liberates a gas. It may b	De:		
	a) <i>KClO</i> ₃	b) <i>KMn O</i> 4	c) Al_2O_3	d) MnO_2		
332	2. Sodium sulphate is soluble	in water whereas barium sul	phate is sparingly soluble bee	cause:		
	a) The hydration energy o	f sodium sulphate is more that	an its lattice energy			
	b) The lattice energy has n	o role to play in solubility				
	c) The hydration energy o	f sodium sulphate is less than	its lattice energy			
	d) None of the above					
333	3. NaCl crystals possesses:					
	a) Simple cubic lattice					
	b) Face centred cubic lattice					
	c) Body centred cubic latt	ice				
	d) Octahedral lattice					
334	4. The carbonate that will no	t decompose on heating is				
	a) $N a_2 C O_3$	b) $CaCO_3$	c) $BaCO_3$	d) $SrCO_3$		
335	5. The $C a^{2+ii}$ ion has the same	me number of electrons as:				

335. The $C a^{2+66}$ ion has the same number of electrons as:

a) Mq^{2+ii}	b) $C_2 H_6$	c) Cu^{2+ii}	d) _{Ne}	
336. When washing soda is h		0 u		
a) CO_2 is released		b) $CO+CO_2$ is released		
c) CO is released		d) Water vapour is releas	ed	
337. Which one of the follow	wing substances is used in the	laboratory for a fast drying of	f neutral gases?	
a) Phosphorus pentoxid	le	b) Active charcoal		
c) Anhydrous calcium	chloride	d) $N a_3 PO_4$		
338. The active constituent of	of bleaching powder is:			
a) $Ca(OCl)_2$	b) Ca(OCl)Cl	c) $Ca(ClO_2)_2$	d) $Ca(ClO_2)Cl$	
339. Sodium metabisulphite	is not:			
a) An antichlor	b) A bleaching agent	c) An oxidizing agent	d) A reducing agent	
340. Which of the following	substances is used in the labo	ratory for fast drying of neutr	ral gases?	
a) Sodium sulphate		b) Phosphorus pentoxide		
c) Sodium phosphate		d) Anhydrous calcium ch	lloride	
341. Sodium thiosulphate is	a			
a) Reducing agent	b) Oxidising agent	c) Complexing agent	d) Bleaching agent	
342. Alkaline earth metal sal	ts are:			
a) Paramagnetic	b) Diamagnetic	c) Ferromagnetic	d) All of these	
343. Molten NaCl conducts	electricity due to the presence	e of:		
a) Free molecules	b) Free electrons	c) Free ions	d) Atoms	
344. The oxide of which me	tal is most stable to heat?			
a) _K	b) Ag	c) Hg	d) All of these	
	iosulphate on addition of few	drops of ferric chloride gives	s violet colour due to the	
formation of a) $N a_2 S_4 O_6$	b) $Fe_{2}(SO_{4})_{3}$	c) $Fe_2(S_2O_3)_3$	d) $Fe_2(S_2O_3)_2$	
346. Excess of $N a^{+ii}$ ions in	()3	_(_ 0)5	_(_ 5/2	
a) Diabetes	b) Anaemia	c) Low blood pressure	d) High blood pressure	
347. Which has lowest therm	nal stability?			
a) Li_2CO_3	b) Na_2CO_3	c) $K_2 C O_3$	d) Rb_2CO_3	
348. When NaCl is dissolve	348. When <i>NaCl</i> is dissolved in water, the sodium ions become:			
a) Oxidized	b) Reduced	c) Hydrolysed	d) Hydrated	
349. The difference of water	molecules in gypsum and pla	ster of Paris is		
a) <u>5</u> 2	b) 2	c) $\frac{1}{2}$	d) $1\frac{1}{2}$	

350. A radioactive element X decays giving two inert gases is:

a) ${}^{238}_{92}U$ b) ${}^{226}_{88}Ra$ c) ${}^{239}_{90}Th$ d) ${}^{227}_{93}Np$ 351. The chloride ion is isoelectronic with potassium. The size of chloride ion is:			
e			
e			
361. Bleaching powder is a compound having the molecular formula			
anion X is:			
3			

363. Which of the following is not known?

a) _{K2} O	b) $K_2 O_2$	c) KO4	d) _{KO3}
364. The first ionization ener	gies of alkaline earth metals a	re higher than those of the al	kali metals. This is because:
a) There is increase in t	he nuclear charge of the alkali	ne earth metals	
b) There is decrease in t	he nuclear charge of the alkal	ine earth metals	
c) There is no change in	the nuclear charge		
d) None of the above			
365. NaOH is prepared by t	he method:		
a) Down's cell	b) Castner cell	c) Solvay process	d) Castner - kellner cell
366. Commonly used laborat	ory desiccant is:		
a) Calcium chloride	b) Sodium carbonate	c) Sodium chloride	d) Potassium nitrate
367. An aqueous solution of	KI does not give a precipitate	with:	
a) Mg^{2+ii}	b) $P b^{2+ii}$	c) Hg^{2+ii}	d) Cu^{2+ii}
368. Both Be and Al become	passive on reaction with conc	. Nitric acid due to:	
a) The non-reactive nation	ure of the metal		
b) The non-reactive nation	ure of the acid		
c) The formation of an	inert layer of oxide on the surf	face of the metals	
d) None of the above			
369. Which of the following	metals is extracted by the elec	trometallurgical method?	
a) Fe	b) Cu	c) Ni	d) Na
370. When K_2O is added to	water, the solution is basic bed	cause it contains a significant	concentration of:
a) O_2^{2-ii}	b) O ³⁻ⁱⁱ	c) OH^{-ii}	d) K ⁺ⁱⁱ
371. The metal, that is extrac	ted from sea water is:		
a) Cl	b) _{Ca}	c) _{Mg}	d) _{Br}
372. A metal ' <i>M</i> ' reacts with N_2 to give a compound ' <i>A</i> '(M_3N). ' <i>A</i> ' on heating at high temperature gives back ' <i>M</i> ' \wedge ' <i>A</i> ' on reacting with H_2O gives a gas <i>B</i> .' <i>B</i> ' turns $CuSO_4$ solution blue on passing through it. $M \wedge B$			
can be a) $Al \wedge NH_3$	b) $_{Li \wedge NH_3}$	c) $Na \wedge NH_3$	d) $Mg \wedge NH_3$
373. The salts of which alkaline earth metal are used in the form of manure?			
a) Mg	b) Ca	c) Ba	d) Sr
374. Mixture of $MgCl_2 \wedge MgCl_2 \wedge MgC$	gO is called		
a) Portland cement	b) Sorel's cement	c) Double salt	d) None of these
375. Which has maximum el	ectropositive character?		

a) Mg	b) Al	c) P	d) S	
376. Which one of the follow	ing reactions occur at the and	ode, in the Castner process o	f extracting sodium metal?	
a) $H_2 \rightarrow 2 H^{+i+2e^{-ii}i}$		b) $2Cl^{-i \rightarrow Cl_2+2e^{-ii}i}$		
c) $4 OH^{-i \rightarrow 2H_2O+O_2+4e^{-i}}$	c) $4 OH^{-i \rightarrow 2H_2O+O_2+4e^{-ii}i}$			
377. Calcium is obtained by				
a) Electrolysis of molter	$_{1} CaC l_{2}$	b) Electrolysis of solution	on of $CaCl_2$ in water	
c) Reduction of $CaCl_2$	with carbon	d) Roasting of lime stone		
378. Mg keeps on burning in:				
a) _{N2}	b) <i>C O</i> ₂	c) O ₂	d) All of these	
379. Baking soda or baking p	owder is:			
a) Washing soda	b) Caustic soda	c) Soda ash	d) Sodium bicarbonate	
380. The most basic oxide an	ong the following is:			
a) Na_2O	^{b)} BaO	c) As_2O_3	d) $A l_2 O_3$	
381. Bleaching powder is obta	ained by treating chlorine wi	th		
a) $CaCO_3$	b) $Ca(OH)_2$	c) CaO	d) None of these	
382. Siedlitz powder contains	:			
a) $CaCO_3$	b) $MgCO_3$	c) NaHC O_3	d) $_{KNO_3}$	
383. Sodium bicarbonate is m	anufactured by:			
a) Cyanide process	b) Thermite process	c) Contact process	d) Solvay process	
384. Sodium reacts with wate	r more vigorously than lithiu	m because it:		
a) Has higher atomic we	ight			
b) Is more electronegative	ve			
c) Is more electropositiv	e			
d) Is a metal				
385. Which one of the follow	ing on hydrolysis, gives the c	corresponding metallic hydro	$ide, H_2O_2 \land O_2?$	
a) Li_2O	b) $N a_2 O_2$	c) <i>NaO</i> ₂	d) $N a_2 O$	
386. The alkali metals:				
a) Form salt like hydride				
b) Form salts which are	predominantly covalent			
c) Show decreased chem	nical reactivity with dry oxyg	en in going from Li to Cs		
e	ronegativity from Li to Cs			
387. Alkali metals are soft an		d low density. This is because	se:	
a) Interatomic bonds are	weak			

b) Interatomic bonds are	b) Interatomic bonds are strong			
c) Of their ionization po	c) Of their ionization potential			
d) Of their position in th	e periodic table			
388. The starting material use	d in Solvay's process are			
a) Sodium sulphate	b) Brine solution	c) Carnallite	d) All of these	
389. In Down's method for the	e extraction of sodium, the m	elting point of the electrolyte	is lowered by adding	
a) Potassium chloride		b) Calcium chloride		
c) Both calcium chloride	and potassium fluoride	d) Potassium fluoride only	у	
390. In the alkaline earth meta	als, the element forming pred	ominantly covalent compound	d is	
a) <i>Ca</i>	b) _{Sr}	c) _{Mg}	d) _{Be}	
391. Which is used to remove	N_2 from air?			
a) <i>Mg</i>	b) P	c) $H_2 SO_4$	d) $CaCl_2$	
392. Elements of IIA group ha	aving electronic configuration	$n n s^2$ are called alkaline earth	elements because:	
a) They only occur in ear	rth			
b) Their salts form only a	alkaline solution			
c) They are form divalen	t cations only			
d) Their oxides are non-f	usible like earth matter			
393. The right order of the sol	ubility of sulphates of alkalin	ne earth metals in water is		
^{a)} Be>Ca>Mg>Ba>S	5r	^{b)} Mg>Be>Ba>Ca>S	r	
^{c)} Be>Mg>Ca>Sr>E	Ba	^{d)} Mg>Ca>Ba>Be>S	r	
394. Lithium is the only alkali metal which is not placed in kerosene but is wrapped in paraffin wax, because:				
a) It reacts with kerosene	2			
b) It floats to the surface	of kerosene because of low of	lensity		
c) It does not react with	air and H_2O			

- d) None of the above
- 395. In which of the following processes, fused sodium hydroxide is electrolysed at 330 °C temperature for extraction of sodium?

a) Castner's process b) Cyanide process c) Down's process d) Both (b) and (c)

396. When sulphur is heated with NaOH(aq) the compounds formed are:

- a) Na_2S+H_2O
- b) $Na_2SO_3+H_2O$
- c) $Na_2S + Na_2S_2O_3 + H_2O$
- d) $_{Na_{2}S_{2}O_{3}+H_{2}O}$

397. Colemnite is

a)
$$Ca[B_2O_4(OH)_2].2H_2O$$

b) $Ca_2B_6O_{11}.5H_2O$
c) $Ca(OH)_2$
d) $Na_2B_4O_7.2H_2O$

398. Ionic hydrides:

a) Conduct electricity in fused state

b) Are formed with elements of high ionization energy

c) Do not exist

d) Occupy the vacant spaces in metallic lattice

399. The chemical formula of plaster of Paris is

a)
$$CaSO_4 \cdot \frac{1}{2}H_2O$$
 b) $CaSO_4 \cdot H_2O$ c) $CaSO_4 \cdot 2H_2O$ d) $CaSO_4 \cdot 3H_2O$

400. Alloys of which metal are light and strong and are used in the manufacture of aeroplane parts?

a) Cr c) _{Fe} d) Mg b) Sn

401. When magnesium is burnt in air, compounds of magnesium formed are magnesium oxide and:

a)
$$Mg(NO_3)$$
 b) $Mg(NO_2)_2$ c) $Mg(NO_3)_2$ d) Mg_3N_2

402. The decreasing order of second ionization energy of K, Ca and Ba is:

	a) Ca>Ba>K	b) $Ba > K > Ca$	c) K>Ca>Ba	d) K>Ba>Ca
403	3. Setting of plaster of Paris i	is		
	a) Dehydration		b) Oxidation with atmosph	eric oxygen
	c) Combination with atmo	spheric CO_2	d) Hydration to yield anoth	er hydrate
404	4. Which of the following me	etals has stable carbonates?		
	a) _{Al}	b) _{Si}	c) _{Mg}	d) _{Na}
405	5. Beryllium hydride is obtair	ned by:		
	a) Heating Be in atmosphe	there of H_2		
	b) The action of $BeCl_2$ with	ith LiAI H ₄		
	c) The action of Be with C	Ca H ₂		
	d) None of the above			
406	5. When hydrated $MgCl_2.6$	H_2O is strongly heated:		
	a) MgO is formed			
	b) $Mg(OH)_2$ is formed			
	c) $Mg(OH)Cl$ is formed			
	d) Anhydrous $MgCl_2$ is for	ormed		
407	7. The weakest base among the	he following is:		

a) _{NaOH}	b) $Ca(OH)_2$	^{c)} KOH	d) $Ba(OH)_2$
408. The element which does	s not dissolve in caustic soda i	s:	
a) Silicon	b) Aluminium	c) Zinc	d) Cadmium
409. Magnesium can displace	2:		
a) Cs	b) <i>Cu</i>	c) _{Rb}	d) _K
410. The colour of iodine sol	ution is discharged by shakin	g it with aqueous solution of:	
a) H_2SO_4	b) Sodium sulphide	c) Sodium sulphate	d) Sodium thiosulphate
411. Mg burns with a brillian	t flame. This property is used	in:	
a) Fireworks			
b) Military signals			
c) Photographic flash bu	ılbs		
d) All of the above			
412. The products obtained of	on heating $LiNO_3$ will be		
a) $LiNO_2 + O_2$	b) $Li_2O + NO_2 + O_2$	c) $Li_{3}N+O_{2}$	d) $Li_2O+OH+O_2$
413. Bleaching action of blea	ching powder is due to the lil	peration of	
a) _{O2}	b) <i>OC l</i> ^{-<i>ii</i>}	c) <i>Cl</i> ₂	d) <i>Cl</i> ^{-<i>i i</i>}
414. Barium burns in air to fe	orm		
a) Ba_2O_2	b) BaO_2	c) $Ba(OH)_2$	d) _{BaO}
415. The lightest metal amon	g these is		
a) Li	b) Mg	c) Ca	d) Na
416. A gas reacts with CaO	and not with $NaHCO_3$ is:		
a) CO_2	b) _{C l₂}	c) _{O2}	d) _{N2}
417. Which of the following	hydroxides is insoluble in wa	ter?	
a) $Ba(OH)_2$	b) $Ca(OH)_2$	c) $Be(OH)_2$	d) $Mg(OH)_2$
418. Complex forming tende	ncy is more for		
a) Na^{+ii}	b) K+44	c) Li^{+ii}	d) Rb^{+ii}
419. NO_2 is obtained by hea	ting:		
a) C_{SNO_3}	b) $_{KNO_3}$	c) $LiNO_3$	d) $_{NaNO_3}$
420. Alkali metals act as			
a) Good dehydrating ag	ent	b) Good reducing agent	
c) Good oxidising agent	t	d) None of these	
421. The mineral of magnesi	um is:		
a) Bauxite	b) Malachite	c) Carnallite	d) Haematite

422. Mortar is a mixture of a) Cement, sand and water b) $MgCl_2$, tar and lime c) Lime, Portland cement and water d) None of the above 423. In between the metals A and B, both form oxide but B also forms nitride, when both burn in air. So A and B are: b) Ma.Ca c) Li, Na d) K, Mga) Cs. K 424. Calcium hydride on hydrolysis gives: d) CaO only a) $CaO + H_2$ b) $Ca(OH)_2$ only c) $Ca(OH)_2 + H_2$ 425. $Be(OH)_2$ is insoluble in water, while $Ba(OH)_2$ is highly soluble due to a) Lattice energy difference b) Common ion effect c) Bond order d) Hard acid 426. The number and types of bonds between two carbon atoms in CaC_2 are: a) One sigma, one pi b) One sigma, two pi c) Two sigma, one pi d) Two sigma, two pi 427. Which of the following alkaline earth metal sulphate has hydration enthalpy by higher than its lattice enthalpy: b) BeSO₄ c) BaSO d) SrSO a) CaSO 428. NaOH is not used in: d) Synthetic fibre b) Synthetic petrol c) Paper a) Soap 429. Cement does not contain a) Calcium b) Aluminium c) Sulphur d) Iron 430. A solution of KOH in water is called: a) Potash lye c) Salt cake d) None of these b) Soda lye 431. Sodium has....as compared to potassium: a) Less electronegativity b) More ionization enthalpy c) Large atomic radius d) Lower melting point 432. Sodium peroxide in contact with moist air turns white due to the formation of: b) $N a_2 C O_3$ a) Na_2O c) NaHC O_{2} d) NaOH 433. When $SiCl_4$ vapours are passed over hot Mg, the products formed are: a) $SiCl_2 + MgCl_2$ b) Mq_2Si+Cl_2 c) $Si + MqC l_2$ d) $MqSiCl_6$ 434. Which alkaline earth metal nitride is volatile? b) $M q_{3} N_{2}$ d) None of these c) $C a_{3} N_{2}$ a) Be_3N_3 435. Which alkali metal bicarbonates does not exist as solid? b) KHC O_3 d) NaHC O_{3} a) $LiHCO_3$ c) C_{sHCO_3}

436. Na_2SO_3 and $NaHCO_3$ may be distinguished by treating their aqueous solution with:

a) Litmus solution b) Dil. Acid c) $_{MqO}$ d) $_{MgSO_4}$

437. The cation which forms a yellow precipitate with potassium chromate in acetic acid is:

a) NH_4^{+ii} b) Ba^{2+ii} c) Ca^{2+ii} d) Na^{+ii}

438. The alkali metal which acts as a nutrient for plants is:

439. Glauber's salt is

a) $Na_2CO_3.10H_2O$ b) $Na_2SO_4.10H_2O$ c) $MgSO_4.7H_2O$ d) $CaSO_4.5H_2O$

440. Excess of dilute sodium hydroxide solution is gradually added with shaking to an aqueous solution of zinc sulphate. What would you observe?

a) A light blue precipitate is first formed which finally dissolves to give a deep blue solution

- b) A white precipitate appears which dissolves to give a colourless solution
- c) A white precipitate is formed which does not dissolve
- d) No change takes place and the solution remains clear
- 441. Which of the following metals is most reactive towards water?
 - a) Na b) K c) Rb d) Cs

442. Some large white transparent crystals are left out in a bowl for several days. They are then observed to have changed their form into white powder. The crystals may have been of:

a) Ammonium chloride b) Sodium chloride c) Sodium carbonate d) Calcium oxide

443. Which of the following is not soluble in NaOH?

a) $Fe(OH)_3$	b) $Zn(OH)_2$	c) $Al(OH)_3$	d) $Sn(OH)_2$

444. Which of the following metal carbonates is decomposed on heating?

- a) $_{Na_2CO_3}$ b) $_{MgCO_3}$ c) $_{K_2CO_3}$ d) $_{Rb_2CO_3}$
- 445. The dark red colour of bombs in fireworks is due to the presence of
 - a) $_{Na}$ b) $_{Sr}$ c) $_{Ba}$ d) $_{K}$

446. Which metal does not form ionic hydride?

a) Na b) Rb c) Ca d) Be

447. Which compound is used in photography?

a) $N a_2 S O_5$ b) $N a_2 S_2 O_8$ c) $N a_2 S_2 O_6$ d) $N a_2 S_2 O_3$

448. The weakest base among *NaOH*, $Ca(OH)_2$, *KOH* and $Be(OH)_2$ is:

a) NaOH b) $Ca(OH)_2$ c) KOH d) $Be(OH)_2$

449. Which chloride is covalent and soluble in ether?

a) $BeCl_2$ b) $CaCl_2$ c) $CrCl_3$ d) $BaCl_2$

450. Slaked lime $[Ca(OH)_2]$ is used in the manufacture of

a) Fire bricks	b) Cement	c) Medicine	d) Pigment
451. Which one of the follow	ing is the highest melting hali	de?	
a) <i>NaCl</i>	b) _{NaI}	c) _{NaBr}	d) _{NaF}
452. The chemical formula of	f feldspar is		
a) KAIS i_3O_8		b) $N a_3 A l F_6$	
c) NaAl O_2		d) $K_2 SO_4$. $Al_2(SO_4)_3$.	$Al(OH)_{3}$
453. Which of the following	properties of lithium does not	show diagonal relationship w	vith magnesium?
a) Formation of Li^{+ii} is)n	b) Formation of Li_3N	
c) Solubility of LiHCO	3	d) Thermal decompositio	n of Li_2CO_3
454. Lithium is strongest redu	acing agent among alkali meta	ls due to which of the follow	ing factor?
a) Ionization energy	b) Electron affinity	c) Hydration energy	d) Lattice energy
455. Li, Na among alkali met	als show properties of:		
a) Noble gases			
b) Transition metal			
c) Inner transition metal	8		
d) Representative eleme	nts		
456. Caesium oxide will be:			
a) Very strongly basic	b) Acidic	c) Weakly basic	d) Amphoteric
457. When ammoniacal solut	ion of common salt is saturate	d with carbon dioxide, we ge	t:
a) NH_4HCO_3	b) $(NH_4)_2 CO_3$	c) NaHCO ₃	d) $MgCO_3$
458. Microcosmic salt has the	e formula:		
a) $Na_2HPO_4 \cdot 2H_2O$			

- b) $(NH_4)_2 HPO_4 \cdot 2H_2O$
- c) $Na(NH_4)HPO_4 \cdot 4H_2O$
- d) None of these
- 459. The alkali metals form salt-like hydrides by the direct synthesis at elevated temperature. The thermal stability of these hydrides decreases in which of the following orders?

a) KH>NaH>LiH>CsH>RbH

- b) NaH>LiH>KH>RbH>CsH
- c) LiH>NaH>KH>RbH>CsH
- d) CsH > RbH > KH > NaH > LiH

460. Which of the following has minimum values of cation-anion size ratio?

a) $_{NaCl}$ b) $_{KCl}$ c) $_{MgCl_2}$ d) $_{CaF_2}$

461. Chemical A is used for water softening to remove temporary hardness. A reacts with sodium carbonate to

generate caustic soda	. When CO_2 is bubbled through	gh A , it turns cloudy. Wh	nat is A?
a) $CaCO_3$	b) CaO	c) $Ca(OH)_2$	d) $Ca(HCO_3)_2$
462. Fusion of AgCl with	$1 N a_2 C O_3$ gives:		
a) Ag_2CO_3	b) Silver carbide	c) _{Ag}	d) $_{Ag_{2}}$
463. Which alkaline earth	metal forms complex salts?		
a) Be	b) <i>Mg</i>	c) Ca	d) _{Ba}
464. Which electronic con	figuration represents the config	guration of the most electro	opositive element?
a) $[He] 2 s^1$	b) $[Xe]6s^1$	c) $[He] 2 s^2$	d) $[Xe] 6 s^2$
465. Le-blanc process is e	mployed in the manufacture of	2	
a) Baking soda	b) Washing soda	c) Potash	d) Plaster of Paris
	phosphate in presence of $N H_2$	$_{4}Cl$ and $NH_{4}OH$ gives a	white ppt. with a solution of
Mg^{2+ii} ion. The prec	cipitate is: b) $Mg_3(PO_4)_2$	C) MANH DO	d) $M_{qHP}O_{A}$
()=	earth metal hydroxides increas		
a) Hydration energy		()200 (/2 0000000
b) Lattice energy > h			
	is equal to lattice energy		
d) None of the above			
468. When a crystal of cau	ustic soda is exposed to air, a li	quid layer is deposited bec	cause:
a) Crystal melts	-		
b) Crystal loses water	r		
c) Crystal absorbs m	oisture and CO_{2}		
d) Crystal sublimes			
469. The most soluble half	ide in water is:		
a) CaF_2	b) $CaCl_2$	c) $CaBr_2$	d) CaI_2
470. Which does not form	2	2	2
a) Li_2SO_4	b) Na_2SO_4	c) $K_2 SO_4$	d) Rb_2SO_4
	chibited by sodium is due to:	2 -	2 -
a) Diffusion of Na^{+1}	^{i i} ions		
b) Oscillation of loos	e electrons		
c) Excitation of free	protons		
d) Existence of body	centred cubic lattice		

472. The activity of alkaline earth metals as reducing agents

a) Decreases	from	Be to	Ва
--------------	------	-------	----

b) Increases from Be to Ba

c) Increases from Be to Ca and decreases from Ca to Ba

d) Decreases from Be to Ca and increases from Ca to Ba

473. The reaction of sodium thiosulphate with I_2 gives:

a) Sodium sulphide	b) Sodium sulphite	c) Sodium sulphate	d) Sodium tetrathionate
474. The main constituent of a	egg-shells is:	•	
a) $CaCO_3$	b) $CaSiO_3$	c) $CaSO_4 \cdot \frac{1}{2}H_2O$	d) $CaSO_4 \cdot 2H_2O$
475. Which of the following is	s weakest base?	_	
a) $Zn(OH)_2$	b) NaOH	c) $Ca(OH)_2$	d) KOH
476. Nitrates of I group (except	pt $LiNO_3$) on heating give:		
a) O ₂	b) _{N2}	c) _{NO}	d) <i>NO</i> ₂
477. Which alkali metal emits	largest wavelength in the flam	ne test?	
a) _{Na}	b) _{Li}	c) _K	d) _{Cs}
478. The solubilities of carbon	nates decrease down the magn	esium group due to decrease	in
a) Lattice energies of sol	ids	b) Hydration energies of a	cations
c) Interionic attraction		d) Entropy of solution for	mation
479. The bleaching action of bleaching powder is due to the formation of:			
a) $CaCl_2$	b) $CaSO_4$	^{c)} HClO	d) $Ca(ClO_3)_2$
480. Which is industrially pre-	pared by the electrolysis of aq	ueous NaCl?	
a) $N a_2 C O_3$	b) $_{NaHCO_3}$	c) _{Na} OH	d) <i>NaOCl</i>
481. Which alkaline earth met	al shows some anomalous bel	naviour and has the same elec	ctronegativity as aluminium?
a) Ba	b) _{Sr}	^{c)} Ca	d) _{Be}
482. Oxone is name given to:			
a) Ozone	b) Sodium peroxide	c) Sodium oxide	d) Sodamide
483. Barium is extracted from	its ore:		
a) Dolomite	b) Witherite	c) Carnallite	d) Gypsum
484. A chloride dissolves appreciably in cold water. When placed on a platinum wire in Bunsen flame, no distinctive			
colour is noticed. Which a) $M q^{2+ii}$	b) Ba^{2+ii}	c) Pb^{2+ii}	d) $C a^{2+ii}$
485. Which of the following s	Du	10	04
a) BeSO ₄	b) <i>MgSO</i> ₄	c) BaSO ₄	d) $CaSO_4$
486. The chemistry of lithium groups. The reason is:	U 4	-	7

a) Both have nearly	the same size
---------------------	---------------

- b) The ratio of their charge to size is nearly the same
- c) Both have similar electronic configuration
- d) Both are found together in nature
- 487. Solvay process is used for the manufacture of

a) _{Na} OH	b) $_{Na_{2}}CO_{3}$	c) $_{NH_3}$	d) _{NaCl}
---------------------	----------------------	--------------	--------------------

488. Consider the following abbreviations for hydrated alkali ions.

400	$X = \left[Li \left(H_2 O \right)_n \right]^{+ii}$	previations for hydrated alkal	I IONS.	
	$Y = \left[K (H_2 O)_n \right]^{+i.i}$			
	$Z = \left[Cs(H_2O)_n \right]^{+ii}$			
		f size of these hydrated alkal	i ions?	
	a) $X > Y > Z$	b) $Z > Y > X$	c) $X = Y = Z$	d) $Z > X > Y$
489	. Which hydride is most stab	ble?		
	a) CsH	b) _{NaH}	c) _{KH}	d) _{LiH}
490	. Least abundant metal in IIA	A group is:		
	a) Sr	b) Ca	c) Ra	d) Be
491	. Ra is placed at the bottom	of alkaline earth metals. The	element should:	
	a) Have the highest atomic	volume		
	b) Possess the minimum de	ensity		
	c) Be less easily ionizable			
	d) Be least electropositive			
492	. Who discovered radium?			
	a) Bohr	b) Fermi	c) Curie	d) Rutherford
493	. Which gives least basic oxi	de?		
	a) Mg	b) Ba	c) Be	d) Ra
494	. The decomposition temper	ature is maximum for		
	a) MgCO3	b) $CaCO_3$	c) $BaCO_3$	d) $SrCO_3$
495	Which liberates SO_2 with	dilute $H_2 SO_4$?		
	a) Na_2SO_4	b) $NaHSO_4$	c) $N a_2 SO_3$	d) $_{Na_{2}}S$
496	. Gun powder is:			
	a) KNO_3 +Charcoal+S	b) $NaNO_3 + KNO_3 + S$	c) $NaNO_3 + S$	d) None of these
497	. Sorrel's cement is			
	a) Portland cement + Mg	0	b) $MgCl_2$. $CaSiO_3$.2 H_2C)

498. Zinc carbonate can be ob	tained from a solution of zind	c chloride by adding:	
a) <i>NaHCO</i> ₃	b) $_{Na_{2}}CO_{3}$	c) $CaCO_3$	d) $MgCO_3$
499. Calcium phosphide is:			
a) $C a_{3} F_{2}$	b) $C a_2 P_3$	c) CaP_2	d) $C a_{3}P$
500. Which alkali metal reacts	with nitrogen to form nitride	e?	
a) _{Li}	b) _{Na}	c) _{Cs}	d) None of these
501. The metal ion, that plays	an important role in muscle c	contraction, is	
a) Be^{2+ii}	b) <i>Mg</i> ^{2+<i>ii</i>}	c) $C a^{2+ii}$	d) Ba^{2+ii}
502. Which of the following o	n thermal decomposition yiel	lds a basic as well as an acidic	oxide?
a) KClO ₃	b) $CaCO_3$	c) $_{NH_{4}NO_{3}}$	d) <i>NaNO</i> ₃
503. Sorel's cement is			
a) Portland cement + Mg	0	b) $MgCl_2$. $CaSiO_3$. $2H_2$	0
c) $CaSiO_3$. $MgCO_3$		d) $MgCl_2.5MgO.xH_2$	C
504. When KI is added to acid	ified solution of sodium nitri	te then	
a) NO gas is liberated and I_2 is set free		b) N_2 gas is liberated and HI is produced	
c) N_2O gas is liberated a	nd I_2 is set free	d) N_2 gas is liberated and HOI is produced	
505. Baryta is:			
^{a)} BaO	b) BaSO ₄	c) $BaCO_3$	d) $Ba(OH)_2$
506. Which pair cannot exist t	ogether in solution?		
a) <i>NaHCO</i> ₃∧ <i>NaOH</i>	b) $NaHCO_3 \wedge NaCl$	c) NaHCO ₃ \wedge N a_2CO_3	d) $NaCl \wedge Na_2CO_3$
507. $CaC l_2$ is used as			
a) Disinfectant	b) Desiccating agent	c) Medicine	d) None of these
508. When carbon monoxide i	s passed over solid caustic so	da heated to $200 ^\circ C$, it forms	
a) Na_2CO_3	b) NaHC O_3	c) HCOONa	d) $CH_3 COONa$
509. When HCl gas is passed	through saturated solution of	$BaCl_2$ a white ppt. is obtained	ed. This is due to:
a) Impurities in $BaCl_2$			
b) Impurities in HCl			
c) Precipitation of BaC	2		
d) Formation of complex			
510. NaOH is prepared by the	electrolysis of:		
a) Aqueous solution of so	odium chloride with platinum	electrode	
b) Molten sodium chloride with graphite anode and iron cathode			

c) Sodium carbonate with platinum electrodes

d) Sodium carbonate	with nickel	electrodes
---------------------	-------------	------------

511. Oxygen is obtained from bleaching powder by:

a) The action of dilute acid

b) The action of alkali

- c) Heating it with lime
- d) Heating it with cobalt salt
- 512. Aqueous solution of $Na_2S_2O_3$ on reaction with Cl_2 gives

a) $Na_2S_4O_6$	b) NaHS O_4	c) _{Na} Cl	^{d)} NaOH
-----------------	---------------	---------------------	--------------------

513. Washing soda is:

a) Na_2CO_3	b) $Na_2CO_3 \cdot H_2O$	c) $Na_2CO_3 \cdot 7H_2O$	d) $Na_2CO_3 \cdot 10H_2O$
---------------	--------------------------	---------------------------	----------------------------

514. Element found in plant systems which forms an important constituent of photosynthesis is:

- a) Fe
 b) Cu
 c) Na
 d) Mg
 515. Chlorine reacts with 'X ' to form bleaching powder. 'X ' is
 a) Dry slaked lime
 b) Sodium hydroxide
 c) Acetone
 d) Chloral
 516. Hesenclever's process is a method for the manufacture of:
 - a) $_{NaOH}$ b) $_{HNO_3}$ c) $_{H_2SO_4}$ d) Bleaching powder

517. The most dangerous method of preparing hydrogen would be by the action of HCl on:

a) Zn b) Fe c) K d) Al

518. Which ion forms a hydroxide highly soluble in water?

a) $N i^{2+ii}$ b) K^{+ii} c) $Z n^{2+ii}$ d) $A l^{3+ii}$

519. Which one of the following is formed on dissolving I_2 in aqueous solution of KI?

a) KIO_4 b) KIO c) KI_3 d) KIO_3

520. Beryllium and aluminium exhibit many properties which are similar. But, the two elements differ in

- a) Exhibiting maximum covalency in compounds b) Forming polymeric hydrides
- c) Forming covalent halides d) Exhibiting amphoteric nature in their oxides
- 521. Electrolysis of fused $KCl \cdot MgC l_2 \cdot 6H_2O$ gives:
 - a) Potassium only
 - b) Magnesium only
 - c) Magnesium and chlorine
 - d) Potassium, magnesium and chlorine
- 522. The metal X is prepared by the electrolysis of fused chloride. It reacts with hydrogen to form a colourless solid from which hydrogen is released on treatment with water. The metal is:
 - a) Al b) Ca c) Cu d) Zn

523. The molecular formula of	notash alum is										
a) $KAl_2S_4H_{48}O_{40}$	b) $K_2 A l_2 S_4 H_{48} O_{39}$	C) KALCHO	d) KALSH O								
524. Dolomite is a carbonate o		c) $K_2 A l_2 S_4 H_{48} O_{40}$	d) $KAl_2S_4H_{48}O_{40}$								
a) Ca	b) Mg	c) Both Ca and Mg	d) Neither Ca nor Mg								
525. Which is known as crystal carbonate?											
a) Na_2CO_3	b) $Na_2CO_3 \cdot H_2O$	c) $Na_2CO_3 \cdot 10H_2O$	d) None of these								
526. Which is used in preparat		$a_2 C O_3 \cdot 10 H_2 O$									
a) Limestone, clay and sa	_										
	b) Limestone, gypsum and sand										
c) Limestone, gypsum and											
d) Limestone, clay and gy											
527. The most electropositive	-										
a) Na	b) K	c) Rb	d) Cs								
528. Caustic soda is:	-		-								
a) Efflorescent	b) Deliquescent	c) Hygroscopic	d) Oxidant								
529. Photoelectric effect is maximum in											
a) Cs	b) Na	c) K	d) Li								
530. The solubilities of carbon	ates of magnesium group dec	reases down due to decrease	in:								
a) Inter ionic attractions											
b) Entropy of solution for	rmation										
c) Lattice energy											
d) Hydration energy of ca	ntion										
531. Highly pure dilute solutio	n of sodium in liquid ammon	ia:									
a) Shows blue colour											
b) Do not exhibit electric	al conductivity										
c) Produces sodium amid	e										
d) Produces hydrogen gas	3										
532. Tincal is:											
a) $Na_2CO_3 \cdot 10H_2O$	b) NaN O ₃	c) $Na_2B_4O_7 \cdot 10H_2O$	d) _{NaCl}								
533. In the Castner's process for	or the extraction of sodium, the	ne anode is made of me	tal								
a) Sodium	b) Nickel	c) Copper	d) Iron								
534. Which one of the following is true?											
a) NaOH is used in the co	oncentration of bauxite ore.										

c) Manganous hydroxide is soluble in excess of NaOH solution.

d) NaOH solution does not react with Cl.

535. Anhydrous magnesium chloride can be prepared by heating $MgCl_2 \cdot 2H_2O$:

a) In a current of dry HCl gas

b) With carbon

c) Until it fuses

d) With lime

536. The yellow light for illumination of lamps is from:

a) Mercury vapour lamp

b) Sodium vapour lamp

c) Neon gas lamp

d) None of these

537. Thomas slag is referred to as

a) Calcium silicate b) Calcium phosphate c) Barium phosphate d) Strontium silicate

538. Among the following, which is water insoluble?

a) Sodium fluoride b) Potassium fluoride c) Beryllium fluoride d) Magnesium fluoride

539. Which of the following oxides is formed when potassium metal is burnt is excess of air?

a) KO_2 b) K_2O_2 c) KO d) K_2O

540. Calcium cyanamide reacts with steam to form ammonia and.....

a) $Ca(OH)_2$ b) CaO	c) $Ca(HCO_3)_2$	d) $CaCO_3$
------------------------	------------------	-------------

541. Thermal decomposition of which compound yields a basic and acidic oxide simultaneously?

a) KClO ₃	b) NH_4NO_3	c) $_{NaNO_3}$	d) $CaCO_3$
----------------------	---------------	----------------	-------------

542. Which one of the following will dissolve in water most readily?

2 5 2	a) _{I2}	b) $BaCO_3$	c) _{KF}	d) PbI_2
-------	------------------	-------------	------------------	------------

543. Which group of elements lose electrons more readily?

a) Li, Na, K b) F_2, Cl_2, Br_2 c) N, P, As d) O, S, Sc

544. The nitride ion in lithium nitride is composed of:

a) 7 protons +7 electrons

b) 10 protons +7 electrons

c) 7 protons +10 electrons

d) 10 protons +10 electrons

545. A firework gave bright crimson light. It is probably a salt of:

a) Ca	b) Sr	c) Ba	d) Mg							
546. One of the elements present in carnallite shows flame colouration. The colour of the flame is										
a) Orange b) Green c) Yellow d) Lilac										
547. Which of the following dissolves in hot conc. NaOH solution?										
a) Fe	a) Fe b) Zn c) Cu d) Ag									
548. Alkali metals have high oxidation potential and hence, they behave as										
a) Oxidising agents	b) Lewis bases	c) Reducing agents	d) Electrolytes							
549. The electrolyte employed in the extraction of sodium by Down's electrolysis method is:										
a) An aqueous solution o	f NaCl									
b) Molten NaCl										
c) Molten NaOH										
d) A molten mixture of <i>l</i>	$MgCl_2$ and $NaCl$									
550. Which of the following r	epresents calcium chlorite?									
a) $Ca(ClO_2)_2$	b) $CaClO_2$	c) $Ca(ClO_3)_2$	d) $Ca(ClO_4)_2$							
551. Which compound gives acetylene on reaction with water?										
a) Al_4C_3	c) CaC_2	d) CaH_2								
552. Which represents nitrolir	ne?									
a) $CaC N_2 + C$	b) $CaC_2 + N_2$	c) $Ca(CN)_{2}+Ca(NO_{3})_{2}$	d) None of these							
553. The substance not likely	to contain $CaCO_3$ is									
a) A marble statue	b) Calcined gypsum	c) Sea shells	d) Dolomite							
554. What are the metal ions p	present in carnallite?									
a) Mg, K	b) Al, Na	c) Na, Mg	d) Zn, Mg							
555. Sodium reacts with water	less vigorously than potassium	m because:								
a) It has higher atomic w	eight									
b) It is less electropositiv	e									
c) It is more electronegat	ive									
d) It is a metal										
556. In which of the following	reactions, MgO is not formed	d?								
a) $Mg + CO_2 \rightarrow$	b) $Mg+dil.HNO_3 \rightarrow$	c) $Mg + NO \Delta$	d) $Mg + B_2O_3 \rightarrow$							
557. Which metal is present ir	chlorophyll?									
a) <i>Ca</i>	b) _{Co}	c) Zn	d) Mg							
558. $LiAIH_4$ is used as:										
a) An oxidizing agent	b) A reducing agent	c) A mordant	d) A water softener							

559. Which metal does not form ionic hydride?

	^{a)} Ba	b) <i>Mg</i>	c) _{Ca}	d) _{Sr}				
560). Which of the following me	tal carbonates decomposes of	n heating?					
	a) $MgCO_3$	b) $N a_2 C O_3$	c) $K_2 C O_3$	d) Rb_2CO_3				
561	1. Magnesium has polarizing	power closer to that of:						
	a) Lithium	b) Sodium	c) Potassium	d) Caesium				
562	2. The ionic carbide is:							
	a) CaC_2	b) ZnC	c) _{SiC}	d) TiC				
563. The correct order of solubility of the sulphates of alkaline earth metals in water is								
	^{a)} Be>Ca>Mg>Ba>Sr		^{b)} Mg>Be>Ba>Ca>Sr					
	^{c)} Be>Mg>Ca>Sr>Ba		d) Mg>Ca>Ba>Be>Sr					
FG	Compared with the allesting	a south motals, the alless is mate	le arbibit					

564. Compared with the alkaline earth metals, the alkali metals exhibit

a) Greater hardness	b) Smaller ionic radii
c) Lower ionisation energies	d) Highest boiling points

10.THE S-BLOCK ELEMENTS

: ANSWER KEY :

1)	а	2)	а	3)	b	4)	b	169)	d	170)	d	171)	d	172)	С
5)	b	6)	а	7)	d	8)	С	173)	d	174)	b	175)	d	176)	С
9)	b	10)	С	11)	а	12)	С	177)	b	178)	b	179)	d	180)	а
13)	С	14)	а	15)	С	16)	d	181)	d	182)	b	183)	С	184)	а
17)	С	18)	d	19)	b	20)	а	185)	d	186)	d	187)	b	188)	b
21)	b	22)	b	23)	d	24)	d	189)	а	190)	b	191)	а	192)	а
25)	d	26)	b	27)	а	28)	d	193)	b	194)	а	195)	b	196)	С
29)	а	30)	d	31)	а	32)	b	197)	d	198)	а	199)	С	200)	b
33)	b	34)	d	35)	а	36)	а	201)	b	202)	С	203)	С	204)	d
37)	С	38)	b	39)	d	40)	С	205)	b	206)	d	207)	b	208)	d
41)	b	42)	d	43)	а	44)	С	209)	а	210)	а	211)	а	212)	b
45)	а	46)	d	47)	b	48)	а	213)	d	214)	d	215)	b	216)	С
49)	а	50)	d	51)	а	52)	а	217)	а	218)	а	219)	а	220)	d
53)	а	54)	а	55)	а	56)	d	221)	С	222)	d	223)	b	224)	С
57)	b	58)	С	59)	b	60)	d		d	226)	b	227)	С	228)	d
61)	а	62)	С	63)	С	64)	С	229)	b	230)	С	231)	а	232)	b
65)	а	66)	d	67)	а	68)	а	233)	а	234)	а	235)	d	236)	С
69)	d	70)	С	71)	С	72)	С	237)	d	238)	d	239)	С	240)	b
73)	d	74)	С	75)	а	76)	а	241)	d	242)	С	243)	b	244)	d
77)	d	78)	С	79)	С	80)	а	245)	а	246)	С	247)	С	248)	С
81)	С	82)	С	83)	b	84)	b	249)	а	250)	d	251)	а	252)	d
85)	b	86)	а	87)	d	88)	a	253)	а	254)	d	255)	С	256)	d
89)	С	90)	а	91)	С	92)	b	257)	С	258)	b	259)	С	260)	а
93)	С	94)	С	95)	d	96)	b	261)	b	262)	d	263)	b	264)	а
97)	b	98)	d	99)	b	100)	d	265)	а	266)	а	267)	b	268)	b
101)	С	102)	b	103)	d	104)	С	269)	С	270)	а	271)	b	272)	С
105)	С	106)	b	107)	b	108)	d	273)	а	274)	С	275)	а	276)	b
109)	b	110)	С	111)	b	112)	b		b	278)	С	279)	а	280)	а
113)	b	114)	d	115)	а	116)	d	,	а	282)	С	283)	b	284)	b
117)	С	118)	а	119)	а	120)		285)	а	286)	b	287)	d	288)	b
121)	a	122)	а	123)	С	124)		289)	а	290)	С	291)	С	292)	С
125)	b	126)	С	127)	b	128)		293)	С	294)	d	295)	а	296)	b
129)	b	130)	b	131)	d	132)		297)	С	298)	С	299)	С	300)	d
133)	b	134)	а	135)	С	136)		301)	С	302)	а	303)	d	304)	d
137)	d	138)	d	139)	а	140)		305)	а	306)	d	307)	d	308)	а
141)	С	142)	d	143)	а	144)		309)	b	310)	b	311)	а	312)	С
145)	d	146)	b	147)	d	148)	b	313)	b	314)	d	315)	a	316)	С
149)	С	150)	b	151)	a	152)	С	317)	b	318)	b	319)	b	320)	а
153)	d	154)	а	155)	b	156)		321)	С	322)	b	323)	С	324)	а
157)	d	158)	C	159)	d	160)	b		b	326)	С	327)	b	328)	а
161)	b	162)	b	163)	b	164)		329)	a	330)	d	331)	a	332)	a
165)	С	166)	С	167)	d	168)	d	333)	b	334)	а	335)	b	336)	d

337)	С	338)	b	339)	С	340)	d	537)	b	538)	d	539)	а	540)	d
341)	а	342)	b	343)	С	344)	a	541)	d	542)	С	543)	а	544)	С
345)	С	346)	d	347)	а	348)	d	545)	b	546)	d	547)	b	548)	С
349)	d	350)	b	351)	а	352)	a	549)	b	550)	а	551)	С	552)	а
353)	С	354)	а	355)	d	356)	С	553)	b	554)	а	555)	b	556)	b
357)	b	358)	С	359)	С	360)	d	557)	d	558)	b	559)	b	560)	а
361)	С	362)	а	363)	С	364)	a	561)	а	562)	а	563)	С	564)	С
365)	d	366)	а	367)	а	368)	С								
369)	d	370)	С	371)	С	372)	b								
373)	b	374)	b	375)	а	376)	С								
377)	а	378)	d	379)	d	380)	a								
381)	b	382)	С	383)	d	384)	С								
385)	b	386)	а	387)	а	388)	b								
389)	С	390)	d	391)	а	392)	d								
393)	С	394)	b	395)	а	396)	С								
397)	b	398)	а	399)	а	400)	d								
401)	d	402)	С	403)	d	404)	d								
405)	b	406)	а	407)	b	408)	d								
409)	b	410)	d	411)	d	412)	b								
413)	С	414)	d	415)	а	416)	a								
417)	С	418)	С	419)	С	420)	b								
421)	С	422)	а	423)	d	424)	С								
425)	а	426)	b	427)	b	428)	b								
429)	С	430)	а	431)	b	432)	d								
433)	С	434)	а	435)	а	436)	d								
437)	b	438)	b	439)	b	440)	b								
441)	d	442)	С	443)	а	444)	b								
445)	b	446)	d	447)	d	448)	d								
449)	а	450)	а	451)	d	452)	a								
453)	а	454)	С	455)	d	456)	a								
457)	С	458)	С	459)	С	460)	С								
461)	С	462)	С	463)	а	464)	b								
465)	С	466)	С	467)	а	468)	С								
469)	d	470)	а	471)	b	472)	b								
473)	d	474)	а	475)	а	476)	a								
477)	b	478)	b	479)	С	480)	С								
481)	d	482)	b	483)	b	484)	a								
485)	а	486)	b	487)	b	488)	a								
489)	d	490)	С	491)	а	492)	С								
493)	С	494)	С	495)	С	496)	a								
497)	С	498)	а	499)	а	500)	a								
501)	С	502)	b	503)	d	504)	a								
505)	а	506)	С	507)	b	508)	С								
509)	С	510)	b	511)	а	512)	b								
513)	d	514)	d	515)	а	516)	d								
517)	С	518)	b	519)	С	520)	а								
521)	d	522)	b	523)	С	524)	С								
525)	b	526)	d	527)	d	528)	b								
529)	а	530)	d	531)	а	532)	С								
533)	b	534)	а	535)	а	536)	b								
							•								

: HINTS AND SOLUTIONS :

1 (a)

 KO_2 absorbs CO_2 and increases O_2 concentration so, it is used in space and submarines.

3 **(b)**

 $BeCl_2$ exists in polymeric form.

4 **(b)**

Alkali metals on burning in air give monoxide, peroxide or superoxide.

Li forms monoxide.

$$2Li + \frac{1}{2}O_2 \to Li_2O$$

Na form peroxide as well as monoxide. 2 $Na+O_2 \rightarrow N a_2O_2$

 $2 Na + \frac{1}{2}O_2 \rightarrow N a_2O$ K, Rb, and Cs form superoxide. $M(iK, Rb, Cs) + O_2 \rightarrow M O_2$

5 **(b)**

It is a fact.

6 **(a)**

Lime stone is not used in the extraction of phosphorus from phosphorite $[Ca_3(PO_4)_2]$

7 **(d)**

 $N a_2 S_2 O_3 r 2 N a^{+i + S_2 O_3^{-ii} i}$

 $S_2 O_3^{2-\iota+I_2 \longrightarrow S_4 O_6^{2-\iota+\Gamma^{\iota\iota}\iota}\iota}$

 $i.e., 2Na_2S_2O_3+I_2 \longrightarrow Na_2S_4O_6+2NaI_6$

- 8 (c) $Ca(OH)_2 + CO_2 \longrightarrow CaC \underset{Insoluble}{O}{O}_3 + H_2O$ $CaCO_3 + CO_2 + H_2O \longrightarrow Ca(HCO_3)_2$ Soluble
- 9 **(b)** $BaO_2 + H_2SO_4 \longrightarrow H_2O_2 + BaSO_4$

10 **(c)**

 $Ca(OH)_2$ is also known as milk of lime.

12 (c) Celestine is $SrSO_4$.

13 (c) $C a_3 P_2 + 6 H_2 O \rightarrow 3 Ca (OH)_2 + P H_3 \uparrow$ phosphine $CaC_2 + 2H_2 O \rightarrow Ca (OH)_2 + C_2 H_2 \uparrow$ acetylene $CaC N_2 + 3H_2 O \rightarrow CaC O_3 + 2N H_3 \uparrow$

14 **(a)**

MgO is called magnesia.

15 **(c)**

Calcium is obtained by electrolysis of a fused mass of $CaC l_2$ and KCl at about 700 °C in an electrolytic cell made of graphite anode and iron cathode. $CaC l_2 \rightleftharpoons C a^{2+i+2Cl^{-il}i}$

At anode $2Cl^{-\iota \rightarrow Cl_2+2e^{-\iota\iota}\iota}$

At cathode $C a^{2+\dot{\iota}+2e^{-\dot{\iota}-Ca\dot{\iota}}\dot{\iota}}$

16 **(d)**

NaCl is table salt; rest all are potassium salts.

17 **(c)**

A characteristic feature of Na-K alloy.

18 **(d)**

Carnallite is an ore of potassium and magnesium *i.e.*, $KCl.MgCl_2.6H_2O$.

- 19 **(b)** $CO_{3}^{2-i+H_{2}O \Rightarrow HCO_{3}^{-i+OH^{-i}i}i}.$
- 20 **(a)**

When $AlCl_3$ reacts with NaOH, it forms sodium

sodium meta aluminate (soluble)21(b) $CaOCI_2+CO_2 \rightarrow CaCO_3+CI_2$ 1 mol of $CI_2=2 \times 35.5 gCI_2=71.0 gCI_2$ 22(b)Due to formation of Na_2CrO_4 .23(d) CaI_2 has maximum covalent character due to large size of anion and possesses lowest lattice energy. Thus melting point is lowest.24(d)CaO $Ca(OH)_2 - (slakedic)$ 25(d) $CaO+3C \rightarrow CaC_2 + CO$ 26(b)Mg and Be do not impart colour of flame.28(d) $BaSO_4$ has high lattice energy and low hydration energy.		meta aluminate $(NaAlO_2)$. This reaction does not give gaseous product. $AlCl_3+4NaOH \rightarrow NaAlO_2+2H_2O+3NaCl$	32	:. CsOH is most basic. (b) O_2^{1-ii} can be oxidised to O_2 and can be reduced to $O_2^{2-i.i}$
Due to formation of N a ₂ CrO ₄ .37(u)23(d) Ca I ₂ has maximum covalent character due to large size of anion and possesses lowest lattice energy. Thus melting point is lowest.Ga(OH) ₂ -(slakedč)24(d) Farther away is shell from the nucleus, more loosely are held electrons.Ga(OH) ₂ +H ₂ O - an aqueous suspension of Ca(O CaCO ₃ (¿ stone)25(d) CaO+3C → Ca C ₂ +CO35(a) Pearl ash is K ₂ CO ₃ ; caustic potash is KOH.26(b) Mg and Be do not impart colour of flame.36(a) It is a fact.28(d)38(b) On strong heating, MgCl ₂ . 6 H ₂ Ois hydrolysed by is own water of crystallisation. MgCl ₂ . 6 H ₂ O∆ MgO+2 HCl+2 H ₂ O30(d) Be OH ₂ is insoluble in water and thus, possess lowest K _w value.38(b)31(a) 	21	(b) $CaOCl_2 + CO_2 \longrightarrow CaCO_3 + Cl_2$	33	(b) Alkali metals are electropositive, hence they can reduce CO_2 .
23(d) $Ca I_2$ has maximum covalent character due to large size of anion and possesses lowest lattice energy. Thus melting point is lowest. $Ca OH _2 - slakedl $ 24(d) Farther away is shell from the nucleus, more loosely are held electrons. $Ca OH _2 + H_2O - an aqueous suspension of Ca O24(d)CaO+3C \rightarrow Ca C2+COCa OH _2 + H_2O - an aqueous suspension of Ca O25(d)CaO+3C \rightarrow Ca C2+COCa OH _2 + H_2O - an aqueous suspension of Ca O26(b)Mg and Be do not impart colour of flame.3628(d)BaSO_4 has high lattice energy and low hydrationenergy.3729(a)It is a fact.3830(d)Be OH _2 is insoluble in water and thus, possesslowest K_{sp} value.3931(a)(i) As we go down in group, in group. I, ionisationpotential decreases and dissociation M - OH bondtecomes easier.40(ii) The hydroxide which can give OH^{-tt} ion mosteasity will have highest basicity$	22		34	(d)
Farther away is shell from the nucleus, more loosely are held electrons. 25 (d) Ca $O + 3C \rightarrow Ca C_2 + CO$ 26 (b) Mg and Be do not impart colour of flame. 28 (d) BaSO ₄ has high lattice energy and low hydration energy. 29 (a) It is a fact. 30 (d) Be $(OH)_2$ is insoluble in water and thus, possess lowest K_{sp} value. 31 (a) (i) As we go down in group, in group. I, ionisation potential decreases and dissociation $ M - OH $ bond becomes easier. (ii) The hydroxide which can give $O H^{-iti}$ ion most easily will have highest basicity. \therefore Ionisation energy of Cs is least among Li, Na, K, \therefore CSOH furnishes $O H^{-iti}$ most easily. T = T + T + T + T + T + T + T + T + T +	23	(d) $Ca I_2$ has maximum covalent character due to large size of anion and possesses lowest lattice energy.		· - ,
 25 (d) CaO+3C → CaC₂+CO 26 (b) Mg and Be do not impart colour of flame. 28 (d) BaSO₄ has high lattice energy and low hydration energy. 29 (a) It is a fact. 30 (d) Be¹OH¹₂ is insoluble in water and thus, possess lowest K_{sp} value. 31 (a) (i) As we go down in group, in group. I, ionisation potential decreases and dissociation $M - OH$ bond becomes easier. (ii) The hydroxide which can give OH^{-it} ion most easily will have highest basicity. ∴ Ionisation energy of Cs is least among Li, Na, K, Cs ∴ CsOH furnishes OH^{-it} most easily. 36 (a) It is a fact. 37 (c) The solubility of hydroxides increases down the group. 38 (b) On strong heating, $MgCl_2 \cdot 6H_2O$ is hydrolysed by its own water of crystallisation. $MgCl_2 \cdot 6H_2O\Delta MgO+2HCl+2H_2O$ 39 (d) It is a fact. 40 (c) Ionic radius increases down the gp. 41 (b) Ca¹OH¹₂+Cl₂ → CaOCl₂+H₂O <i>bleaching powder</i> 42 (d) All are fact. It is the ammonia solvated electron [N H₃]_x. e responsible for these properties. 	24	Farther away is shell from the nucleus, more loosely	35	(a)
 26 (b) Mg and Be do not impart colour of flame. 28 (d) BaSO₄ has high lattice energy and low hydration energy. 29 (a) It is a fact. 30 (d) Be $OH _2$ is insoluble in water and thus, possess lowest K_{sp} value. 31 (a) (i) As we go down in group, in group. I, ionisation potential decreases and dissociation $(M - OH)$ bond becomes easier. (ii) The hydroxide which can give OH^{-it} ion most easily will have highest basicity. ∴ Ionisation energy of Cs is least among Li, Na, K, Cs ∴ CsOH furnishes OH^{-it} most easily. 37 (c) The solubility of hydroxides increases down the group. 38 (b) On strong heating, $MgCl_2 \cdot 6H_2O$ is hydrolysed by its own water of crystallisation. $MgCl_2 \cdot 6H_2O\Delta MgO + 2 HCl + 2H_2O$ - 39 (d) It is a fact. 40 (c) Ionic radius increases down the gp. 41 (b) $Ca OH _2 + Cl_2 - CaOCl_2 + H_2O$ bleaching powder 42 (d) All are fact. It is the ammonia solvated electron $[NH_3]_x \cdot e$ responsible for these properties. 	25		36	(a)
 28 (d) group. 28 (d) group. 29 (a) It is a fact. 30 (d) Be [OH]₂ is insoluble in water and thus, possess lowest K_{sp} value. 31 (a) (i) As we go down in group, in group. I, ionisation potential decreases and dissociation $(M - OH)$ bond becomes easier. (ii) The hydroxide which can give OH^{-it} ion most easily will have highest basicity. ∴ Ionisation energy of Cs is least among Li, Na, K, Cs ∴ CsOH furnishes OH^{-it} most easily. 38 (b) On strong heating, $MgCl_2, 6H_2O$ is $MgO+2HCl+2H_2O$ 39 (d) It is a fact. 40 (c) Ionic radius increases down the gp. 41 (b) $Ca[OH]_2+Cl_2 → CaOCl_2+H_2O$ 42 (d) All are fact. It is the ammonia solvated electron $[NH_3]_x$, <i>e</i> responsible for these properties. 	26		37	(c)
energy. energy. 29 (a) It is a fact. 30 (d) $Be[OH]_2$ is insoluble in water and thus, possess lowest K_{sp} value. 31 (a) (i) As we go down in group, in group. I, ionisation potential decreases and dissociation $(M - OH)$ bond becomes easier. (ii) The hydroxide which can give OH^{-ii} ion most easily will have highest basicity. \therefore Ionisation energy of Cs is least among Li, Na, K, Cs \therefore CsOH furnishes OH^{-ii} most easily. Decrease of the term of term of the term of the term of the term of term of term of term of the term of term of the term of term	28	(d)		
29(a) It is a fact.On strong heating, $MgCl_2 \cdot 5H_2O$ is hydrolysed by its own water of crystallisation.30(d) $Be OH _2$ is insoluble in water and thus, possess lowest K_{sp} value.39(d) It is a fact.31(a)(i) As we go down in group, in group. I, ionisation potential decreases and dissociation $(M - OH)$ bond becomes easier.40(c) Ionic radius increases down the gp.(ii) The hydroxide which can give $O H^{-it}$ ion most easily will have highest basicity.41(b) $Ca OH _2 + Cl_2 \rightarrow CaOCl_2 + H_2O$ 42(d) All are fact. It is the ammonia solvated electron $(N H_3)_x$. <i>e</i> responsible for these properties.			38	(b)
30 (d) Be $[OH]_2$ is insoluble in water and thus, possess lowest K_{sp} value. 31 (a) (i) As we go down in group, in group. I, ionisation potential decreases and dissociation $(M - OH)$ bond becomes easier. (ii) The hydroxide which can give OH^{-it} ion most easily will have highest basicity. ∴ Ionisation energy of Cs is least among Li, Na, K, Cs ∴ CsOH furnishes OH^{-it} most easily. \therefore CsOH furnishes OH^{-it} most easily. \therefore CsOH furnishes OH^{-it} most easily. $MgCl_2.6H_2O\Delta MgO+2HCl+2H_2O$ J J J J J J J J	29	(a)		On strong heating, $MgCl_2.6H_2O$ is hydrolysed by its own water of crystallisation.
$Be[OH]_2 \text{ is insoluble in water and thus, possess} \\ lowest K_{sp} value. 39 (d) \\ It is a fact. 40 (c) \\ Ionic radius increases down the gp. 41 (b) \\ Ca[OH]_2+Cl_2 → CaOCl_2+H_2O \\ Ca[OH]_2+Cl_2 → CaOCl_2+H_2O \\ Ca[OH]_2+Cl_2 → CaOCl_2+H_2O \\ Determine becomes easier. 41 (b) \\ Ca[OH]_2+Cl_2 → CaOCl_2+H_2O \\ Determine becomes easier. 42 (d) \\ All are fact. It is the ammonia solvated electron [N H_3]_x. e responsible for these properties. 41 (N H_3)_x. e responsible for these properties. 42 (d) \\ All are fact. It is the ammonia solvated electron [N H_3]_x. e responsible for these properties. 41 (N H_3)_x. e responsible for these properties. 42 (d) \\ All are fact. It is the ammonia solvated electron [N H_3]_x. e responsible for these properties. 41 (N H_3)_x. e responsible for these properties. 42 (b) \\ All are fact. A H All are fa$	30			$MgCl_2.6H_2O\Delta MgO+2HCl+2H_2O$
(i) As we go down in group, in group. I, ionisation potential decreases and dissociation $(M - OH)$ bond becomes easier. (ii) The hydroxide which can give $O H^{-ii}$ ion most easily will have highest basicity. \therefore Ionisation energy of Cs is least among Li, Na, K, Cs \therefore CsOH furnishes $O H^{-ii}$ most easily.		$Be(OH)_2$ is insoluble in water and thus, possess	39	
(i) As we go down in group, in group. I, ionisation potential decreases and dissociation $(M - OH)$ bond becomes easier. (ii) The hydroxide which can give OH^{-ii} ion most easily will have highest basicity. \therefore Ionisation energy of Cs is least among Li, Na, K, Cs \therefore CsOH furnishes OH^{-ii} most easily. (i) As we go down in group. I, ionisation (M - OH) bond becomes easier. (ii) The hydroxide which can give OH^{-ii} ion most easily will have highest basicity. (ii) The hydroxide which can give OH^{-ii} ion most easily will have highest basicity. (iii) The hydroxide which can give OH^{-ii} ion most easily will have highest basicity. (iv) CsOH furnishes OH^{-ii} most easily. (iv) CsOH furnishes OH^{-ii} most easily.	31	(a)	40	
(ii) The hydroxide which can give OH^{-ii} ion most easily will have highest basicity. \therefore Ionisation energy of Cs is least among Li, Na, K, Cs \therefore CsOH furnishes OH^{-ii} most easily. $Ca OH _2 + Cl_2 \rightarrow CaOCl_2 + H_2O$ $bleaching powder 42 (d) All are fact. It is the ammonia solvated electron (NH_3)_x. e responsible for these properties.$			41	
easily will have highest basicity. \therefore Ionisation energy of Cs is least among Li, Na, K, Cs \therefore CsOH furnishes $O H^{-ii}$ most easily. \therefore CsOH furnishes $O H^{-ii}$ most easily.				$Ca(OH)_2 + Cl_2 \rightarrow CaOCl_2 + H_2O$
\therefore Ionisation energy of Cs is least among Li, Na, K, Cs \therefore CsOH furnishes $O H^{-ii}$ most easily.				bleaching powder
$\therefore \text{ CsOH furnishes } OH^{-ii} \text{ most easily.} $ 43 (a)			42	All are fact. It is the ammonia solvated electron
		\therefore CsOH furnishes OH^{-ii} most easily.	43	(a)

Conductance of an ion is dependent upon its size – as follows :

Ionic conductance $\propto \frac{1}{\text{ionic } lll}$

Thus, ionic conductance in aqueous solution increases in the order-

 $Cs^{+i < Rb^{+i < K^{+i < Na^{+i < i + i < i + i < i + i < i}}i}$

- 44 (c) $Ba^{+i+e \longrightarrow Bai}$ $Be^{+i \longrightarrow Be^{2+i+ei}}$
- 45 (a)

It is a fact.

46 **(d)**

Scarlet red flame-Sr; Chrimson red-Ca; Apple green-Ba

47 **(b)**

Among the alkaline earth metals, the size of beryllium and magnesium metals is very small. Therefore, the electrons in these metals are bounded more strongly and are not excited by the energy of flame to higher energy states. Hence, these metals or their salts do not impart any colour to the flame.

48 **(a)**

50

(d)

Sodium metal is manufactured by the electrolysis of fused sodium chloride mixed with KCl and KF.

On electrolysis ;

At iron cathode

 $N a^{+\dot{\iota}+e^{-\dot{\iota} \longrightarrow Na[s]|metallic \ sodium|\dot{\iota}}\dot{\iota}}$

At graphite anode :

 $2Cl^{-i \longrightarrow Cl_2(g) + 2e^{-ii}}$

NaCl melts at 800 °C. It is difficult to attain and maintain its melting point. So, KCl and KF are mixed to lower the melting point of NaCl to about 600 °C. KCl and KF are themselves not electrolysed under the voltage conditions used for sodium.

49 (a) $4 KCl + 6 H_2 SO_4 + K_2 Cr_2 O_7 \longrightarrow 2 Cr O_2 C l_2 + 6 Kl$ $2 CaOC l_2 CoC l_2 2 CaC l_2 + O_2$

In presence of $CoC l_2$ (which act as catalyst) bleaching powder gives out oxygen.

(a) Li has the highest E_{OP}^{\Box} , among all elements.

52 **(a)**

51

$$CaC \underset{(X)}{O_3} \Delta CaO + CO_2$$

$$CaO + H_2O \longrightarrow Ca(OH)_2$$

$$Ca(OH)_2 + C \underset{(Excess)}{O_2} \longrightarrow Ca(HCO_3)_2$$

$$Ca(HCO_3)_2 \Delta CaC \underset{(X)}{O_3} + H_2O + CO_2$$

53 **(a)**

$$2KO_2 + CO_2 \longrightarrow K_2CO_3 + \frac{3}{2}O_2$$

54 **(a)**

55

decreasing order of solubility

- (a) M.p. order is Mq<Ra<Ba<Sr<Ca<Be.
- 56 **(d)**

$$Na + (x + y)NH_{3} \longrightarrow [Na(NH_{3})_{x}]^{+i+[e[NH_{3}]_{y}]^{-i}}$$

Paramagnetic

57 **(b)**

The solubility of alkaline earth metal hydroxides increase down the gp. $Zn(OH)_2 \wedge Al(OH)_3$ are insoluble.

58 **(c)**

Quicklime or *CaO* s very good hygroscopic substance.

59 **(b)**

Anhydrous $CaCl_2$ is not used to dry alcohol as it forms $CaCl_2 \cdot 4C_2H_5OH$ and also reacts with NH_3 .

60 **(d)**

$$Na_2CO_3 \cdot 10H_2 \underset{Washing soda}{\longrightarrow} Na_2CO_3 \cdot H_2 \underset{Soda ash}{O} +$$

61 **(a)**

It is a reason for given fact.

62 **(c)**

It is a reason for the given fact.

63 **(c)**

Mg forms complex, e.g., chlorophyll is a complex of Mg.

 $2 NaCl+2H_2 O Electrolysis 2 NaOH+Cl_2+H_2$

anode cathode

- 65 (a) It is also a method for manufacture of *NaOH*.
- 66 **(d)**

Alkali metals react with halogen to give halides. They are normally represented by $M^{+iX^{-i,i}}$

67 **(a)**

Alkali metals are strongest reducing agents. Also, their reducing power increases down the group.

68 **(a)**

 $BaSO_4$ is insoluble in acid. Refer test of $SO_4^{2-i\,i}$.

69 **(d)**

The metallic character increases down the group.

70 **(c)**

 $2 KI + CuSO_4 \longrightarrow Cul_2 + K_2SO_4$

unstable

 $2Cu_2I_2 \longrightarrow Cu_2I_2 + I_2$

Hence, solution contains Cu_2I_2 , $I_2 \wedge K_2SO_4$.

71 (c) It is a reason for given fact for given fact

- 72 (c) $Mg_3N_2 + 6H_2O \longrightarrow 3Mg(OH)_2 + 2NH_3$
- 73 **(d)** $CsBr_3 \longrightarrow Cs^{+i+Br_3^{-ii}i}$

74 **(c)**

$$CaSO_4.2H_2O120^{\circ}CaSO_4.\frac{1}{2}H_2O200^{\circ}CaSO_4$$

gypsum plaster of Paris anhydrite or dead burnt plaster

The anhydrous $CaSO_4$ is called dead burnt plaster because it does not set like plaster of Paris when moistened with water.

75 **(a)**

It is a fact.

 $6Li + N_2 \rightarrow 2Li_3N$

lithiumnitride

78 **(c)**

Atomic radii increase down the group.

79 **(c)**

It is a fact.

- 80 (a) Carbon has no reaction with *NaOH*.
- 81 (c) Both $Be(OH)_2$ and $Al(OH)_3$ are amphoteric.

82 **(c)**

It is a fact.

84 **(b)**

It is a fact.

85 **(b)**

Alkaline earth metals $(n s^2)$ are denser than alkali metal $(n s^1)$ because metallic bonding in alkaline earth metal is stronger

86 **(a)**

Smaller is ion, more is hydration energy.

87 **(d)**

Alkali and alkaline earth metals are extracted by the electrolysis of their fused salt.

88 **(a)**

 $Be(OH)_2$ has minimum basicity and has amphoteric character as it dissolves both in acid and in alkali.

 $Be(OH_2)+2HCl \longrightarrow BeCl_2+2H_2O$

$$Be(OH_2)+2NaOH \longrightarrow Na_2BeO_2+2H_2O$$

89 **(c)**

Black ash is Na_2CO_3+CaS .

90 **(a)**

 Na_2CO_3 loses water on standing in air.

91 (c) *Li*, *Na*, *K*, *Rb*, *Cs*, *Fr* are I group members. 92 **(b)**

Bicarbonates of alkaline earth metals exist only in solution state.

93 **(c)**

 K_2CO_3 is potassium carbonate; K_2CS_2 is pot. Thiocarbonate.

94 **(c)**

 $Be(OH)_2$ is amphoteric as it reacts with both acids and bases.

95 **(d)**

 $NaNO_2$ gives NO_2 (brown) with dil. Acids whereas NaBr and $NaNO_2$ both give brown vapours Br_2 and NO_2 respectively with conc. acids.

96 **(b)**

 $CaO+3C \longrightarrow CaC_2+CO$

97 **(b)**

Borax- $Na_{2}B_{4}O_{7}$. 10 $H_{2}O$.

98 **(d)**

More negative is heat of formation, greater is stability $\Delta H_f = -97.7$, -98.6, -103.5, -104.2 kcal for Li(respectively.

99 **(b)**

The solubility of alkali metal hydroxides increases from top to bottom. Hence, the order of their solubility is as

LiOH < NaOH < KOH < RbOH < CsOH

100 **(d)**

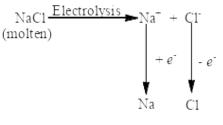
 $Na_2Cr_2O_7$ is deliquescent and therefore not used as primary standard in volumetric analysis.

101 **(c)**

 $2(CaSO_4 \cdot 2H_2O)120 \circ C2CaSO_4 \cdot H_2O + 3H_2O$

gypsum

plaster of Paris


102 **(b)**

Amongst the elements listed, caesium is the most electropositive, therefore, *CsH* shall be most ionic

103 (d)

 $2 Na+2 H_2 O \rightarrow 2 NaOH+H_2 \uparrow$

 $2 NaOH + CO_2 \rightarrow N a_2 CO_3 + H_2O$ $N a_2 CO_3 + 2 HCl \rightarrow 2 NaCl + H_2O + CO_2$

104 **(c)**

Both Ca and P are needed for human system. Also they prevent moisture absorbing power of other components present in table salt.

105 **(c)**

 $ZnS + BaSO_4$ is lithopone. It is used as white pigment

106 **(b)**

The reaction is as follows

 $2 Na + O_2 300 \circ C N a_2 O_2$

sodium peroxide (X)

$$2 N a_2 O_2 + 2 C O_2 \rightarrow 2 N a_2 C O_3 + O_2 \uparrow$$
(Y)

Sodium peroxide is used in the purification of air in submarines because it combines with $CO_2 i$ give O_2 .

107 **(b)**

$$Na + (x + y)NH_3 \rightarrow [Na(NH_3)x] + [e(NH_3)y]$$

Sodium dissolves in liquid ammonia to produce deep blue colour in solution.

The blue coloured solution possesses high conducting power, stromy reducing nature due to ammoniated electrons. The cation is also solvated by ammonia.

108 (d) NaHCO \downarrow MaSO $\longrightarrow h$

 $NaHCO_3 + MgSO_4 \longrightarrow MgCO_3 + NaHSO_4$

109 **(b)**

K belongs to strong electropositive group and Cl belongs to strong electronegative group.

110 **(c)**

Mg is more powerful reductant than carbon.

111 **(b)**

Li forms Li_2O , Na forms Na_2O_2 and rest all alkali metals forms superoxides MO_2 .

113	(b)
	Caustic soda (an alkali) can absorb acidic oxides.
114	(d) Carnallite $-KCl \cdot MgCl_2 \cdot 6H_2O$ It is an ore of magnesium.
115	(a) Metal oxides are basic; non-metal oxides are acidic.

116 **(d)**

Cs has lowest ionisation energy and thus easily show photoelectric effect, the principle used in solar cells.

117 (c)

Ba imparts green colour to flame.

118 (a)

 $NaNO_3$ decomposes on heating above 800°C to give O_2

$$2 \operatorname{NaNO}_3 \longrightarrow \operatorname{Na_2O} + 2 \operatorname{NO_2} + \frac{1}{2} \operatorname{O_2}$$

119 (a)

Highly electropositive metals (e.g., alkali and alkaline earth metals and Al) are extracted by the electrolysis of their fused salts.

Cathode: $M g^{2+i+2e \rightarrow Mgi}$ Anode: $2C\Gamma^{i \rightarrow Cl_2+2ei}$

120 **(c)**

$$\rightarrow$$
C-I+MF \rightarrow \rightarrow C-F+MI

It is Swart reaction that uses highly soluble metal fluorides. So, the correct choice is RbF.

121 (a)

In Holme's signal of the ship mixture of $CaC_2 \wedge Ca_3P_2$ is used.

122 **(a)**

The process is also known as Gossage process.

123 (c)

 $C s^{+i(aq)i}$ is the smallest alkali metal cation in solution state.

124 (a)

Indian saltpetre is KNO_{3} .

125 **(b)**

 $Mg + 2HNO_3 \longrightarrow Mg(NO_3)_2 + H_2$

126 (c) It is a fact.
127 (b)

It is $_{20}Ca$.

128 **(d)** It is a fact.

129 **(b)** It is a fact

- 130 **(b)** $CaC_2 + N_2 \longrightarrow CaC N_2 + C_2$
- 131 **(d)** It is a fact.

132 **(a)**

Lithium salts impart bright red colour to the flame

133 **(b)**

$$Na + \dot{\iota}(x+y)NH_3 \longrightarrow \left[Na(NH_3)_x\right]^{+\dot{\iota} + \left[e(NH_3)_y\right]^{-\dot{\iota}}\dot{\iota}};$$

This ammoniated electron is responsible for blue colour of solution, reducing nature and good conductor nature of solution.

134 **(a)**

 $(CaSO_4)_2$. H_2O is plaster of Paris. Since, on adding water, it sets into a hard mass due to the formation of gypsum, it is used for plastering the broken bones.

$$CaSO_4$$
₂. $H_2O + 1\frac{1}{2}H_2O \longrightarrow 2CaSO_4.2H_2O$

hard mass

135 (c)

$$2Mg+CO_2 \longrightarrow 2MgO+C$$

Mg is more powerful reductant than carbon.

136 **(d)**

It should be Na_2CO_3+CaS .

137 (d)

Plaster of Paris is a whit powder. It changes into a hard mass called gypsum on mixing with water. There is a slight increase in volume during this process.

$$CaSO_4 \cdot \frac{1}{2}H_2O + 1\frac{1}{2}H_2O \rightarrow CaSO_4 \cdot 2H_2O + Hec$$

Plaster of Paris gypsum

138 **(d)**

Ba possesses lowest ionization potential.

139 (a)

 $Ca \left(HCO_{3}\right)_{2} + Ca \left(OH\right)_{2} \longrightarrow 2 CaCO_{3} + 2H_{2}O$ Hardness \in water

140 **(a)**

 $3 Mg + N_2 \longrightarrow M g_3 N_2 6 H_2 O 3 Mg (OH)_2 + 2 N H_3$

141 **(c)**

Gypsum is $CaSO_4 \cdot 2H_2O_1$.

142 (d)

Due to lower IP values alkali metals are strong reducing agent.

143 (a)

Water glass is $N a_2 SiO_3$.

144 **(b)**

 $4 LiH + AlC l_3 \longrightarrow LiAl H_4 + 3 LiCl$

145 (d)

The solubility of alkaline earth metal chlorides decreases down the group.

146 **(b)**

It is a fact.

147 (d)

The ease of adsorption of hydrated alkali metal cations depends upon their size in hydrated form and on the charge carried by them.

148 **(b)**

 Mg^{2+ii} is smaller than Na^{+ii} and larger than all others. Smaller is ion, more is hydration energy.

149 **(c)**

Chile saltpetre is $NaNO_{3}$.

150 **(b)**

Thomas slag or phosphatic slag is a mixture of calcium phosphate and calcium silicate $[C a_3 (P O_4)_2, CaSi O_3]$. It is used as manure.

151 (a)

Follow Solvay process for $N a_2 C O_3$.

152 **(c)**

As we go down in the group, ionic character increases hence, melting point of halides should increase but NaCl has the highest melting point $(800 \text{ }^{\circ}C)$ due to its high lattice energy.

153 **(d)**

 Na_2CO_3 is thermally stable.

154 **(a)**

Smaller is ion, more is hydration energy.

155 **(b)**

The ionic character order is, NaF>NaCl>NaBr>Nal (Fajan's rule).

156 **(c)**

 $Na_2CO_3+CO_2+H_2O\longrightarrow 2NaHCO_3$

157 (d)

Barium salts are quite stable because of great electropositive nature of Ba. Hence, Ba compounds possess high decomposition temperature.

158 **(c)**

Alkaline earth metal carbonates are insoluble in water and lose CO_2 on heating.

159 **(d)**

Due to H-bonding $K^{+\iota F^{-\iota+HF \longrightarrow K^{n|\ell-H}-r|^{n_{\iota}}\iota}}$ or $K^{+\iota [HF_2]^{-\iota\iota}\iota}$

160 **(b)**

Microcosmic salt is $Na(NH_4)HPO_4$. It is white crystalline solid.

It is obtained when $N H_4 Cl \wedge N a_2 HP O_4$ are dissolved in hot water and cooled.

 $N H_4 Cl + N a_2 HPO_4 \rightarrow Na(N H_4) HPO_4 + NaCl$

It is separated by fractional crystallisation.

It is used for the detection of certain basic radicals which forms coloured mixed phosphate with $NaPO_3$.

 $Na(NH_4)HPO_4\Delta NaPO_3+NH_3+H_2O$

$$NaPO_3 + CoO \rightarrow NaCo. PO_4$$

blue bead

161 **(b)**

Li forms Li_2O , Na forms Na_2O_2 and rest all alkali metals forms superoxides MO_2

162 **(b)**

An intermediate reaction in Solvay process gives $CaC l_2$.

$$Ca |OH|_2 + 2NH_4Cl \longrightarrow CaCl_2 + 2NH_3 + 2H_2O$$

163 **(b)**

Ti and Cu transition metals show variable valency. 174 (b) *Pb*so variable valency due to inert pair effect, while barium shows fixed valency

164 **(b)**

The disproportionation occurs as: $Na_2S_2O_3+2HCl \rightarrow 2NaCl+SO_2+S+H_2O$

165 (c)

Mme Curie and her husband Piere Curie isolated radium from pitch blende.

166 (c)

Be, Mg, Ca, Sr, Ba, Ra are alkaline earth metals in II gp.

167 (d)

In the Down's process of extraction of sodium.

Anode – Graphite

Cathode - Iron

Electrolyte - Mixture of NaCl, KCl and KF

168 (d)

Saline hydrides are ionic in nature.

169 (d)

Alkali metals have a tendency to lose the single valence electron and form positive ion and gain inert gas configuration but in case of caesium, the distance of the valence electron is maximum. So, force of attraction by the nucleus is least, hence, it is more reactive.

170 (d)

Soda ash is chemically anhydrous Na_2CO_3 .

171 (d)

Hydration energy of smaller cations are higher than those of larger cations, hence $M q^{2+ii}$ has maximum hydration energy among these.

172 (c)

Chlorophyll –'a' is $C_{55}H_{72}O_5N_4Mg$; Chlorophyll-'b' is $C_{55}H_{70}O_6N_4Mg$; Both are green plant pigment.

173 (d)

 $BaO_2 \Delta BaO + \frac{1}{2}O_2$

The given substances react with water in the following manner $Na + H_2O \longrightarrow NaOH + H_2(g)$ $2 N a_2 O_2 + 2 H_2 O \longrightarrow 4 NaOH + O_2(g) + H_2(g)$ $Ca+H_2O \longrightarrow CaO+H_2$ $CaH_2+2H_2O \longrightarrow Ca(OH)_2+2H_2$

 $CaO + H_2O \longrightarrow Ca(OH)_2$ $CaC_2+2H_2O \longrightarrow Ca(OH)_2+C_2H_2$ $Ba+2H_2O \longrightarrow Ba(OH)_2+H_2$ $BaO_2 + H_2O \longrightarrow Ba^{2+i+O_2+H_2O_2i}$

Hence, Ca and $Ca H_2$ is the pair that gives same gaseous product on reaction with water

175 (d)

$$2 N a_2 S_2 O_3 + I_2 \longrightarrow N a_2 S_4 O_6 + 2 NaI$$

sodium thiosulphate sodium tetrathionate

176 (c)

Carnallite $(KCl. MgCl_2.6H_2O)$, dolomite $(MgCO_3, CaCO_3)$ and sea water are the ores of magnesium, calamine $(ZnCO_3)$ is an ore of zinc.

177 (b)

LiCl is covalent in nature and thus, soluble in weak polar organic solvents.

178 (b)

 $CaCO_3$ is called Iceland spar.

179 (d)

 $BeO+2HCl \longrightarrow BeCl_2+H_2O;$ $BeO+2 NaOH \longrightarrow N a_2 BeO_2+H_2O_1$

180 (a)

These react with $H_2 SO_4$ to give CO_2 used for extinguishing fire.

181 (d)

Solvay process is based on electrolysis of brine NaCl solution.

182 (b)

One mole of magnesium nitride on the reaction with an excess of water gives two moles of ammonia.

$$M g_3 N_2 + 6 H_2 O \rightarrow 3 Mg |OH|_2 + 2 N H_3$$

1 mol 2 mol

2 mol

183 (c)

White wash in our houses is made by slaked lime, $Ca (OH)_2$.

184 **(a)**

 $Na_2SO_3 + SNaOHNa_2S_2O_3$

so dium thio sulphate

185 **(d)**

Be F_2 is linear (sp-hybridization), H_2O is angular i-hybridization).

186 **(d)**

On hydration plaster of Paris, converts into gypsum.

$$CaSO_4 \cdot \frac{1}{2}H_2O + \frac{3}{2}H_2O \rightarrow CaSO_4 \cdot 2H_2O$$

plaster of Paris gypsum

187 **(b)**

The stability of carbonates of alkaline earth metals increases down the group due to increasing electropositive character of metals.

188 **(b)**

Francium (at. No. 87) is radioactive. Sodium isotopes are also radioactive (N^{24}) .

189 (a)

 $NaHC \underset{Acid \ salt}{O} * * NaOH \longrightarrow N a_2CO_3 + H_2O$

190 **(b)**

Alkali metals are highly reactive metals. They react with alcohol as

 $2C_2H_5OH + 2K \rightarrow 2C_2H_5OK + H_2$

With water as

 $2K+2H_2O \rightarrow 2KOH+H_2$

With ammonia as

$$K + (x + y) NH_3 \rightarrow \left[K (NH_3)_x \right]^{+ \iota + \left[e (NH_3)_y \right]^{- \iota} \iota}$$

ammoniated ammoniated

cation electrons

191 **(a)**

192 (a)

Only Li forms monoxide: $4 Li + O_2 \longrightarrow 2 Li_2 O_1$.

 $MgCl_2$ is hygroscopic.

193 **(b)**

It is calcium cyanamide used under the name nitrolime.

194 **(a)**

On fusion of $N a_2 C O_3 \wedge BaS O_4$ barium carbonate is obtained

$$N a_2 C O_3 + Ba S O_4 \rightarrow Ba C O_3 + N a_2 S O_4$$

195 **(b)**

According to Fajan's rule, smaller is cation and larger is anion then more is covalent nature.

197 **(d)**

 $Al(OH)_3$ is soluble in NaOH(aq.) whereas $Fe(OH)_3$ is insoluble.

199 **(c)**

Na reacts with alcohol;

$$Na + C_2 H_5 OH \longrightarrow C_2 H_5 ONa + \frac{1}{2} H_2$$

200 **(b)**

 $L i^{+ii}$ has $1 s^2$ configuration, *i.e.*, nearest noble gas configuration.

201 **(b)**

 $Na_2S_2O_3.5H_2O(Hypo)$. It is called photographer's fixer because it removes the excess AgBr in the form of soluble silver complex.

202 **(c)**

For an ionic compound to be soluble in water its hydration energy should be more than its lattice energy.

203 **(c)**

$$N a_2 S_2 O_3 + \underset{Unexposed}{AgBr} \longrightarrow N a_3 Ag (S_2 O_3)_2 + NaBr$$

The property is used for fixing in photography.

204 **(d)**

 $N a_2 S_2 O_3$ reacts with AgBr (photography) and with I_2 (iodometric and iodimetric titrations).

205 **(b)**

Magnesium sulphate heptahydrate $[MgSO_4.7H_2O]$ is called epsom salt.

206 **(d)**

It is a reason for given fact.

207 **(b)** $CaO + H_2O \longrightarrow Ca(OH)_2 + Energy (heat + sound)$

208 **(d)**

Sodium sulphate decahydrate $(N a_2 S O_4.10 H_2 O)$ is also known as Glauber's salt.

209 (a)

Dead burnt is $CaSO_4$.

210 (a)

 $3Ca(OH)_2 + 2Cl_2 \longrightarrow Ca(OCl)_2 \cdot CaCl_2 \cdot Ca(OH)_2$

211 (a)

Baking soda is sodium bicarbonate.

212 **(b)**

Na is basic in nature and forms basic oxides.

213 (d)

NaCl as deposits on sea shores.

214 (d)

Ba and Ra on burning in air forms peroxides $(M O_2)$. Rest all give oxides (MO).

215 **(b)**

Due to anodic reaction as: $2CI^{-i \rightarrow Cl_2+2ei}$.

216 (c)

It is a fact.

217 (a)

 $Mg(HCO_3)_2\Delta MgO+H_2O+2CO_2$

aqueous solution of

(products)

magnesium bicarbonate

218 (a)

Metal M is Be.

 $BeO+H_2O \longrightarrow Be(OH)_2.$

 $Be(OH)_2 + 2 NaOH \longrightarrow N a_2 BeO_2 + 2 H_2O$

Soluble

219 (a)

All metals show metallic bonding involving oscillation of electrons in them and thus, are good

conductor of heat and electricity.

221 (c) Rest all involve use of $N a_2 C O_3$.

222 (d) It is a reason for given fact.

(b)

$$3I_2 + 6 NaOH \longrightarrow 5NaI + NaIO_3 + 3H_2O$$

(conc.)

224 (c)

223

NaOCl is used as a bleaching agent and sterilising agent. It is formed by the action of Cl_2 with cold and dilute NaOH.

 $2 NaOH + C l_2 \longrightarrow NaCl + NaOCl + H_2O$

Cold and dil.

$$6 NaOH + 3 C l_2 \longrightarrow 5 NaCl + NaCl O_3 + 3 H_2 O$$

Hot and conc.

225 (d) CaC_2O_4 is insoluble in acetic acid.

226 **(b)** $N a_2 C O_3 \cdot 10 H_2 O_1$

227 (c) $N a_2 CO_3 + SO_2 \longrightarrow N a_2 SO_3 + CO_2$

228 **(d)**

Jump in IP is noticed during the change of shell.

229 **(b)**

 $2Rb+2H_2O \rightarrow 2RbOH+H_2$

As we go down the group reactivity with H_2O increases

ie,Li<Na<K<Rb<Cs

231 (a)

Thiosulphate \dot{c} is oxidised to tetrathionate \dot{c} ion by iodine.

$$I_2 + 2S_2O_3^{2-i \to S_4O_6^{2-i+2I^{-i}i}i}$$

232 **(b)**

233 (a) It is a fact and lithopone is used as paint.234 (a)

LiCl is covalent in nature and thus, soluble inorganic solvents.

235 **(d)**

Ca – brick red colour

Sr – crimson red

Ba – green.

236 **(c)**

 $Na_2S + I_2 + Na_2SO_3 \longrightarrow Na_2S_2O_3 + 2NaI$

237 **(d)**

 $6 NaOH + 4 S \Delta N a_2 S_2 O_3 + 2 N a_2 S + 3 H_2 O$

sod. thiosulphate

238 **(d)**

Sodium peroxide reacts with moisture and CO_2 of air (when exposed to air) and becomes white due to the formation of NaOH and Na_2CO_3 .

 $2 N a_2 O_2 + 2 H_2 O \rightarrow 4 NaOH + O_2$

 $2 NaOH + CO_2 \rightarrow N a_2 CO_3 + H_2 O$

239 **(c)**

It is a fact.

240 **(b)**

 $A l^{3+ii}$ is very good coagulant for negatively charged dispersions in water.

241 **(d)**

Bones contain $C a_3 (P O_4)_2$.

242 **(c)**

It is a fact.

243 **(b)**

It is a reason for given fact.

244 **(d)**

It is a fact.

245 **(a)**

Alkali metals' family has closest resemblances in its members.

246 **(c)**

Lithium and magnesium shows diagonal relationship. Some points of similarity are

(i) Polarising power of $L i^{+i \wedge M g^{+i \iota}}$ are almost same.

(ii) Like Li, Mg decomposes water very slowly.

(iii) LiCl and $MgCl_2$ are deliquescent.

(iv) Like Li, Mg do not form solid bicarbonates.

247 **(c)**

```
LiOH < NaOH < KOH < RbOH
```

248 **(c)**

Sodium bicarbonate decomposes on strong heating and gives sodium carbonate.

 $2 NaHCO_3 \Delta N a_2 CO_3 + CO_2 + H_2O$

249 **(a)**

Fusion mixture contains $K_2 CO_3$ and $Na_2 CO_3$.

250 (d) $Mg+2HCl \longrightarrow MgC l_2+H_2; E_{OP_{Mg}}^{\Box} > E_{OP_H}^{\Box}$

251 **(a)**

Baking powder contains $NaHCO_3$, $Ca(H_2PO_2)_2$ and starch.

252 **(d)**

Plaster of Paris absorb water to form monoclinic gypsum which is a hard substance.

$$CaSO_4.\frac{1}{2}H_2O3/2H_2OCaSO_4.2H_2O$$

monoclinic gypsum

253 **(a)**

Li and Mg show diagonal relationship.

254 **(d)**

It is a fact.

255 **(c)**

∴ Carbon dioxide does not help in burning and it reacts with alkali metals to form carbonates.

 $\therefore CO_2$ is used to extinguish fire of lithium, sodium

and potassium.

256 (d)

Halides of alkaline earth metals possess all these properties.

257 (c)

Le blanc method is for the manufacture of $N a_2 C O_3$.

258 **(b)**

Thomas slag is $C a_3 (PO_4)_2$. It is used as a fertilizer. It has 14-18% of P_2O_5 .

$$6 CaO + P_4 O_{10} \longrightarrow 2C a_3 (PO_4)_2$$

phosphatic

slag

or Thomas

slag

259 (c) Norwegian saltpetre is basic calcium nitrate.

260 (a)

Alkali and alkaline earth metals are extracted by the electrolysis of their fused salt.

261 **(b)**

 $Zn^{2+i+2NaOH \longrightarrow 2Na^{+i+Zn|OH|,i}i}$ $Zn(OH)_{2}+2NaOH \longrightarrow Na_{2}ZnO_{2}+2H_{2}O$ Thus, $Na_{2}ZnO_{2}$ forms $2Na^{+ii}$ and $[ZnO_{2}]^{2-ii}$ ions.

262 (d)

From the given compounds, only $CaC l_2$ is used to preserve wood. NaCl, however is also a preservative but not for wood.

263 **(b)**

 CO_2 is an acidic oxide and thus, reacts with $Ba(OH)_2$ to give insoluble $BaCO_3$.

264 **(a)**

It is a reason for given fact.

265 (a)

Carnallite is KCl. MgC $l_2.6 H_2O$

266 **(a)**

The density of alkali metal is as :

Element: Li Na K Rb Cs

Density: 0.53 0.97 0.68 1.53 1.90 Hence, the order of increasing density is as

Li<K<Na<Rb<Cs

$$\begin{array}{c} 67 \quad \textbf{(b)} \\ BeO+C \longrightarrow Be+CO \end{array}$$

268 **(b)**

2

$$CaSO_4$$
. $\frac{1}{2}H_2O+1\frac{1}{2}H_2O$ Setting

$$CaSO_4.2H_2OH ardening CaSO_4.2H_2O$$

269 **(c)**

The stability of hydroxides of first group elements increases down the group.

270 (a)

The solubility of silver bromide in hypo solution due to the formation of $N a_3 Ag (S_2 O_3)_2$.

$$AgBr+2Na_{2}S_{2}O_{3} \longrightarrow Na_{3}Ag(S_{2}O_{3})_{2}+2NaBr$$

Sod. argentothiosulphate

```
(colourless)
```

271 **(b)** The abundance ratio is *Na*>*K*>*Li*>*Cs*>*Fr*

- 272 (c) It is a reason for given fact.
- 273 (a) Fluorspar $(Ca F_2)$ is an ore of calcium.
- 274 **(c)**

Alkali metal compounds are more ionic and soluble in water.

275 **(a)**

 $CaCl_2 \rightarrow Ca^{2+i 2Cl^{-ii}i}$

(molten) cathode anode

Cathode $Ca^{2+i+2e^{-i-Cai}i}$

Anode
$$2Cl^{-i \rightarrow 2e^{-i+Cl_2i}}$$

276 **(b)**

 Na^{+ii} is preferentially discharged on Hg electrode.

277 **(b)**

 Li^{+ii} is having largest hydrated ionic size while Rb^{+ii} is having smallest.

Smaller the size, greater the mobility.

278 (c)

 $2Cl^{-i \longrightarrow Cl_2+2ei}$ At anode : $2 H^{+i+2e \longrightarrow H_2i}$ At cathode:

279 (a)

The m.p. of *NaCl* is lowered on addition of *KCl*.

280 (a)

 $Na_2CO_3 + Fe_2O_3 \longrightarrow 2NaFeO_2$

281 (a)

Blanc fixe is finely divided $BaSO_4$.

282 (c)

 $CaC N_2 + 3H_2O \longrightarrow CaC O_3 + 2NH_3$

283 (b)

 $KNO_3 \longrightarrow KNO_2 + \frac{1}{2}O_2$

Rest all give NO_2

284 (b)

Cationic radius increases down the group and decreases along the period.

285 (a)

Standard solution of iodine is used to estimate $N a_2 S_2 O_3$ (hypo) solution. It is oxidised to sodium tetrathionate by iodine.

$$2 N a_2 S_2 O_3 + I_2 \rightarrow N a_2 S_4 O_6 + 2 NaI$$

286 (b)

 $Zn+2NaOH \longrightarrow N a_2ZnO_2+H_2$

287 (d)

It is chemical formula of hypo.

288 (b)

Abundance ratio is Ca > Mg > Be > Sr Ba > Ra.

289 (a)

 $CaCO_{3}\Delta CaO+CO_{2}$

(X)

$$CaO + H_2O \longrightarrow Ca(OH)_2$$

$$(Y)$$

$$Ca(OH)_2 + 2CO_2 \longrightarrow Ca(HCO_3)_2$$

$$(Z)$$

$$Ca(HCO_3)_2 \triangle CaCO_3 \rightarrow CO_2 + H_2O$$

$$(X)$$

290 (c)

When sodium thiosulphate solution is added to AgBr, then sodium argentothiosulphate is obtained.

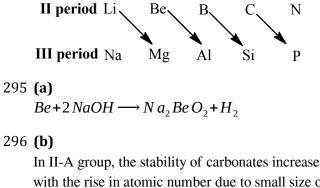
$$AgBr+2Na_{2}S_{2}O_{3} \longrightarrow Na_{3}\left[Ag\left(S_{2}O_{3}\right)_{2}\right]+NaBr$$

(colourless)

sodium argentothiosulphate

291 (c)

It is a fact


$$Na + H_2O \longrightarrow NaOH + \frac{1}{2}H_2; \Delta H = -ve$$

293 (c)

NaF possesses most ionic character.

294 (d)

The elements of IInd period show similar properites as the elements of III period which are diagonally placed to them.

with the rise in atomic number due to small size of the resulting oxide ion.

i.e., $BeCO_3 < MgCO_3 < CaCO_3 < SrCO_3 < BaCO_3$

297 (c)

Aqueous solution of baryta (BaO) is called baryta water, *i.e.*, $Ba[OH]_2$.

298 **(c)**

 Ba^{2+ii} forms insoluble $BaSO_4$, Pb^{2+ii} forms $PbCl_2 \wedge PbSO_4$ both insoluble in cold water.

299 (c)

Na K Ba Ca Sr

yellow pale violet apple green brick red crimson

300 (d)

$$Ca(NO_3)_2 \longrightarrow CaO + 2NO_2 + \frac{1}{2}O_2$$

Ca imparts brick red colour to flame.

301 (c)

 $6 KOH + 3 C l_2 \longrightarrow KCl O_3 + 5 KCl + 3 H_2 O$

302 (a)

Li is much softer than the other group first metals. Actually, Li is harder than other alkali metals

303 (d)

 $N a_2 S_2 O_3 + 2 HCl \longrightarrow 2 NaCl + SO_2 + S + H_2 O$ $SO_2 + Br_2 + 2 H_2 O \longrightarrow H_2 SO_4 + 2 HBr$

304 (d)

Magnesium (Mg) cannot be obtained by the electrolysis of its aqueous salt solution because when it is liberated at cathode, at once reacts with H_2O to give metal hydroxide and hydrogen.

305 (a)

Follow Fajan's rule.

306 **(d)**

It is a fact.

307 (d)

Hg covers surface of sodium to an extent and thus, surface area available for reaction decreases.

308 (a)

On moving down the second group the thermal stability of alkaline earth metal carbonates increases. Hence, $MgCO_3$, being the carbonate of upper element, decomposes at lowest temperature.

309 **(b)**

When calcium carbide reacts with nitrogen at 1000 °C, calcium cyanamide and carbon is formed. $CaC_2 + N_2 1000$ °C CaC $N_2 + C$

calcium cyanamide

310 **(b)**

Grignard reagents are R Mg X.

311 (a)

Alkali metals have low ionisation energy. They posses minimum value of ionisation energy in their period.

312 (c)

Violet colour to flame is characteristic of potassium. Also aqueous solution of $K_2 C O_3$ is alkaline.

313 **(b)**

LiF has smallest cation and smallest anion. Thus, coulombic forces are strongest.

314 **(d)**

The order of the size of hydrated ions of I group metals is,

 $L i^{+i(aq.) > N a^{+i(aq.) > K^{+i(aq.) > K^{+i(aq.) > K^{+i(aq.) - K^{+i(ad.) -$

315 (a)

$$NaO_2Na_2O_2H_2ONaOHCO_2Na_2CO_3$$

316 **(c)**

 $BaSO_4$ is insoluble in NH_3 and hot water.

317 **(b)**

(i) The alkali metal superoxides contain O_2^{-ii} ion, which has an unpaired electron, hence they are paramagnetic in nature.

(ii) The basic character of alkali metal hydroxides increases on moving down the group.

(iii) The conductivity of alkali metal chlorides in their aqueous solution increases on moving down the group because in aqueous solution alkali metal chlorides ionize to give alkali metal ions. On moving down the group the size of alkali metal ion increases, thus degree of hydration decreases, due to this reason their conductivity in aqueous solution increases on moving down the group.

(iv) DIAGRAM

 $CO_3^{2-\iota+2H_2O \rightarrow H_2CO_3+2OH^{-\iota\iota}\iota}$

Thus, basic nature of carbonates in aqueous solution is due to anionic hydrolysis.

318 **(b)**

 $2 Mg + O_2 \longrightarrow 2 MgO + Light$

319 **(b)**

Basic mercuric carbonate is abtained in this reaction.

$$Na_2CO_3 + 2HgCl_2 \rightarrow HgCO_3$$
. $HgO + 2NaCl + Cl_2$

320 (a)

A suspension of $Mg(OH)_2$ in water is used as antacid under the name of milk of magnesia.

321 **(c)**

$$AlC l_3 + 3 NaOH \longrightarrow Al(OH)_3 + 3 NaCl$$
$$Al(OH)_3 + 3 NaOH \longrightarrow N a_3 Al O_{Soluble}^3 + 3 H_2O$$

322 **(b)**

Sodium thiosulphate $(N a_2 S_2 O_3)$ is useful in photography due to its complex formation property. It is used in photography as a fixer since, it dissolves unexposed silver bromide.

323 (c)

 $Ca+H_2O \longrightarrow CaO+H_2;$ $CaO+H_2O \longrightarrow Ca(OH)_2$ $Ca(OH)_2+CO_2 \longrightarrow CaCO_3+H_2O$

324 (a)

MgO is basic; rest all are amphoteric.

325 **(b)**

Epsom salt is used as purgative.

326 (c)

 $Sn+2NaOH+H_2O \longrightarrow Na_2SnO_3+2H_2.$

327 **(b)**

Alkali metals have $n s^1$ configuration.

328 (a)

It is an use of Mg.

329 **(a)**

 $\mathbf{i}(OH)_2$ is green insoluble mass in alkaline medium.

330 **(d)**

Mg due to lightness and toughness is used in ships.

332 (a)

For an ionic compound if lattice energy $\dot{\iota}$ its hydration energy, it is water soluble.

333 **(b)**

NaCl has fcc structure.

334 **(a)**

 $N a_2 C O_3$ will not decompose on heating.

All alkali metal (IA group) carbonates (except Li_2CO_3) are highly stable and not decomposes on heating. Carbonates of alkaline earth metals (II A

group) decompose into CO_2 and metal oxide.

335 **(b)**

Both have 18 electrons.

336 (d)

 $Na_2CO_3.10\,H_2O\Delta Na_2CO_3.H_2O\Delta Na_2CO_3{+}H_2$

337 **(c)**

Anhydrous $CaC l_2$ is used for fast drying of neutral gases.

339 **(c)**

It is a fact.

340 (d)

Anhydrous calcium chloride is used in the laboratory for fast drying of neutral gases

341 (a)

The presence of excess of sulphur makes sodium thiosulphate a useful reducing agent.

 $2Na_2S_2O_3+I_3 \rightarrow Na_2S_4O_6+2NaI$

This reaction is applied in volumetric estimation of iodine. In this reaction sodium thiosulphate acts as a reducing agent.

342 **(b)**

The alkaline earth metal salts do not contain unpaired electrons.

343 **(c)**

Molten NaCl has $N a^{+ii}$ and $C l^{-ii}$ ions.

344 **(a)**

 $Ag \wedge Hg$ oxides decompose on heating.

345 **(c)**

When a few drops of $FeC l_3$ solution is added to hypo solution, a violet colour of ferric thiosulphate is obtained.

$3Na_2S_2O_3+2FeCl_3 \rightleftharpoons Fe_2(S_2O_3)_3+6NaCl$

violet colour

This colour disappears quickly due to reduction of ferric chloride by thiosulphate.

$$2\operatorname{FeC} l_3 + 2\operatorname{N} a_2 S_2 O_3 \rightarrow 2\operatorname{FeC} l_2 + \operatorname{N} a_2 S_4 O_6 + 2\operatorname{Na}$$

346 (d)

High blood pressure is developed if $N a^{+ii}$ becomes more in human blood.

347 (a)

 Li_2CO_3 decomposes on heating: $Li_2CO_3 \longrightarrow Li_2O+CO_2.$

 $\begin{vmatrix} 348 \text{ (d)} \\ NaCl+H_2O \longrightarrow Na^{+i(aq)+C\Gamma^{i(aq)i}i} \end{vmatrix}$

349	(d)				
	Formula of gypsum $i CaSO_4$. $2H_2O$				
	Formula of plaster of Paris $\dot{c} CaSO_4 \cdot \frac{1}{2}H_2O$				
	Difference of water molecule $\dot{i} 2 H_2 O - \frac{1}{2} H_2 O$				
	$\frac{1}{2}H_2O$				
350					
351	(a) Effective nuclear charge (ENC) of $K^{+i>ENCi}$ of Cl^{-ii} and thus, shells are pulled more effectively in K^{+ii} ion.				
352	(a) The lattice energy of alkali metal halides decreases down the group due to increase in size of alkali metals. Thus, <i>LiCl NaCl KCl RbCl CsCl</i> 883°C 808°C 772°C 717°C 645°C				
353	(c) $Na + NH_3 \longrightarrow NaNH_2 + \frac{1}{2}H_2$				
354	-				
	Alkali metals are strongest reducing agent among elements of Periodic Table. The reducing character decreases down the group.				

 \therefore Li is strongest reducing agent among Li, Na, Mg and Ca.

355 **(d)**

Due to small size of $N a^{+i,i}$ it is heavily hydrated and become large molecule.

Ionic conductance increases down the group in alkali metals. Order of ionic conductance

 $Na^{+i < K^{+i < Rb^{*i < cs^{*ii}i}i}i}$

356 **(c)**

$$CO + NaOH \frac{200^{0}C}{High P} HCOONa$$

The only reaction in which carbon monoxide (a neutral oxide of carbon) acts as an acid.

357 **(b)** Be and Mg salts possess covalent nature.

358 **(c)** Beryl is an ore of Be, *i.e.*, (BeO).

360 **(d)**

These are various names for NaCl.

- 362 (a) $2 NaHCO_3 + MgCl_2 \longrightarrow MgCO_3 + 2NaCl + H_2O$
- 363 (c) K_2O is pot. Oxide; K_2O_2 is pot. Peroxide; KO_3 is ozonide.

364 **(a)**

It is reason for the given fact.

365 **(d)**

Follow text.

366 **(a)**

 $CaC l_2$ is hygroscopic in nature.

367 **(a)**

KI reacts with $Pb^{2+i,Hg^{2+i\wedge Cu^{2+i}}i}$ to give insoluble iodides of Pb, $Hg \wedge Cu$.

368 **(c)**

Both *Be* and *Al* are rendered passive due to the formation of inert, insoluble and imprevious oxide layer on their surface.

370 **(c)**

$$K_2 O + H_2 O \longrightarrow 2 \underset{Alkali}{KOH}$$

371 **(c)**

Mg is found in sea water.

372 **(b)**

The formula of 'A' is M_3N . It suggests that M is a monovalent metal. $6Li + N_2 \rightarrow 2Li_3N \Delta 6Li + N_2$ (M)(A) ithium nitride $Li_3N + 3H_2O \rightarrow 3LiOH + NH_3$ (B)

$$(B)$$

$$CuSO_4 + 4NH_3 \rightarrow [Cu(H_3)_4]SO_4$$
blue solution

Hence, $M \wedge B$ are Li and $N H_3$ respectively.

373 **(b)**

Salts of calcium are used in the form of manure *e.g.*, triple superphosphate of lime $[Ca(H_2PO_4)_2H_2O]$.

374 **(b)**

Mixture of $MgCl_2$ and MgO is called Sorel's cement. It is $MgCl_2.5MgO.xH_2O$.

375 (a)

The electropositive character increase down the gp. and decreases along the period.

376 **(c)**

In Castner process the process of extracting sodium metal can be written as,

 $4 NaOH \longrightarrow 4 N a^{+i+4OH^{-ii}i}$

Its oxidation reaction which occurs at anode is

$$4OH^{-i \longrightarrow 2H_2O+O_2+4e^{-ii}}$$

377 **(a)**

Calcium is manufactured by the electrolysis of a molten mixture of calcium chloride containing some CaF_2 .

 $CaCl_{2} \rightleftharpoons Ca^{2+i+2Cl^{-ii}i}$ $Ca^{2+i+2e^{-i-Ca(at cathode)i}i}$

378 (d)

 $3 Mg + N_2 \longrightarrow M g_3 N_2$ $2 Mg + O_2 \longrightarrow MgO$ $2 Mg + CO_2 \longrightarrow 2 MgO + C$

379 **(d)**

Baking soda is $NaHCO_{3.}$

380 **(a)**

The basic character of oxides decreases along the period.

381 **(b)**

382 (c)

Bleaching powder is obtained by treating chlorine with slaked lime.

 $Ca(OH)_2 + Cl_2 \rightarrow CaOCl_2 + H_2O$

Slaked lime

```
lime bleaching powder
```

Siedlitz powder contains $NaHCO_{3.}$

383 **(d)**

 $NaHCO_3$ is manufactured as byproduct in Solvay process for Na_2CO_3 .

384 **(c)**

It is a reason for given fact.

385 **(b)**

 $N a_2 O_2 + 2H_2 O \rightarrow H_2 O_2 + 2NaOH$ $2H_2 O_2 NaOH 2H_2 O + O_2$

Water used during the reaction reacts with $N a_2 O_2$ to from NaOH which tends to decompose $H_2 O_2$.

386 **(a)**

A characteristics of alkali metals.

387 **(a)**

It is a reason for given fact.

388 **(b)**

When CO_2 gas is passed through a brine solution (28% NaCl) saturated with ammonia, it gives sodium bicarbonate which on drying and heating gives sodium carbonate.

389 **(c)**

In Down process, sodium is manufactured by the electrolysis of fused sodium chloride in the presence of $CaC l_2$ and KF using graphite anode and iron cathode.

$$NaCl \rightleftharpoons Na^{+i+Cl^{-ii}}$$

 $N a^{+\dot{\iota}+e^{-\dot{\iota} \longrightarrow Na|at \ cathode|\dot{\iota}|\dot{\iota}|}}$

 $2Cl^{-i \rightarrow Cl_2 + 2e^{-i(atanode)i}}$

 $CaC l_2$ + KF lower the melting point from the 1085 K to 850 K.

390 **(d)**

From Be to Ba ionic character increases

- 391 (a) Mg combines directly with N_2 .
- 392 (d) It is a fact.

On moving down the group, lattice energy remains almost constant as the sulphate is so big that small increase in size of the cations does not make difference. Hydration energy causes decrease in the solubility of the sulphates as the ionic size increases. Thus, the correct order is

Be>Mg>Ca>Sr>Ba

394 **(b)**

It is a reason for given fact.

396 **(c)**

 $4S+6NaOH \longrightarrow Na_2S_2O_3+2Na_2S+3H_2O$

398 (a)

On fusion ions are separated from each other. NaH $\Delta N a^{+i + H^{-i}i}$

399 **(a)**

Plaster of Paris $CaSO_4$. $\frac{1}{2}H_2O$, gypsum $CaSO_4$. $2H_2O$.

400 (d)

Mg alloys are lighter.

401 **(d)**

 $5 Mg + Air(N_2 + O_2) \longrightarrow M g_3 N_2 + 2 MgO_1$

402 **(c)**

The effective nuclear charge order $K^{+i>Ca^{+i>Ba^{+i}}}$

403 **(d)**

Setting of plaster of Paris is exothermic process

$$CaSO_4 \cdot \frac{1}{2}H_2OH_2OCaSO_4 \cdot 2H_2O$$

orthorhombic

Heating $CaSO_4 \cdot 2H_2O$

mono

orthorhombic

gypsum

404 (d)

When carbonates are heated, they decompose to form

the oxide. Sodium carbonate and potassium carbonate do not decompose. The carbonate become more difficult to decompose as we go down the 1st group

405 **(b)**

Hydrides of alkaline earth metals (except Be) are obtained by heating them in hydrogen. Be H_2 is obtained by

 $2 BeCl_2 + LiAlH_4 \longrightarrow 2 BeH_2 + LiCl + AlCl_3$

407 **(b)**

The basic character of metal oxides and hydroxides decreases along the period and increases down the gp.

408 **(d)**

Cd does not react with NaOH.

- 409 **(b)** E_{OP}^{\Box} of $Mg > E_{OP}^{\Box}$ of Cu.
- 410 **(d)**

$$2 N a_2 S_2 O_3 + I_2 \longrightarrow N a_2 S_4 O_6 + 2 NaI$$

411 **(d)**

These are uses of Mg.

412 **(b)**

 $LiNO_3$ behaves differently from other alkali metal nitrates.

$$2 LiN O_{3} \Delta L i_{2}O + 2 N O_{2} + \frac{1}{2}O_{2}$$

NaN O_{3} \Delta NaN O_{2} + \frac{1}{2}O_{2}

413 **(c)**

Bleaching action of bleaching powder is due to Cl_2 , it liberate with dilute acids or even CO_2 . $CaOCl_2+CO_2 \rightarrow CaCO_3+Cl_2$

414 **(d)**

Alkaline earth metals combine directly with O_2 to form oxides which when further heated in presence of excess of O_2 form peroxides. Thus, *BaO* is formed

416 **(a)**

 $CaO + CO_2 \longrightarrow CaCO_3$; CO_2 does not react with $NaHCO_3$.

417 **(c)**

The solubility of hydroxides of alkaline earth metals in water increases on moving down the group 418 (c)

The complex forming tendency is more in $L i^{+ii}$ due to its small size. The tendency of complex formation decreases as the size increases.

$$2 LiNO_3 \longrightarrow Li_2O + 2NO_2 + \frac{1}{2}O_2$$

420 **(b)**

Alkali metals have only one electron in their ultimate shell, hence they can easily donate electron and act as reductant *e.g.*,

$$Fe_2O_3 + 6Na \rightarrow 2Fe + 2Na_2O$$

421 **(c)**

Carnallite is $KCl \cdot MgC l_2 \cdot 6 H_2O_1$.

423 (d)

 $K+O_2 \longrightarrow KO_2; 2Mg+O_2 \longrightarrow 2MgO;$ $3Mg+N_2 \longrightarrow Mg_3N_2.$

- 424 (c) $CaH_2+2H_2O \longrightarrow Ca(OH)_2+2H_2$
- 426 **(b)**

 $C_2^{2-is[C=C]^{2-i}i}$

427 **(b)** BeS O_4 is soluble in water.

428 **(b)**

In rest all NaOH is used.

429 **(c)**

Cement is mixture of Ca and Al silicates. It has some Fe_2O_3 also. It does not have sulphur.

430 **(a)**

KOH(aq.) is potash lye; NaOH(aq.) is soda lye; anhydrous Na_2SO_4 is salt cake.

431 **(b)**

Ionization enthalpy decreases down the group.

432 **(d)**

$$N a_2 O_2 + H_2 O \longrightarrow 2 NaOH + \frac{1}{2}O_2$$

433 (c) $SiCl_4 + 2Mg \longrightarrow 2MgCl_2 + Si$

434 **(a)**

Except Be_3N_2 , rest all are non-volatile nitrides.

435 (a) $LiHCO_3$ is not stable in solid state.

- 436 (d) $N a_2 CO_3$ reacts with $MgSO_4$ to give basic magnesium carbonate. $2 MgSO_4 + 2 N a_2 CO_3 + H_2O \longrightarrow MgCO_3 \cdot MgOF$
- 437 **(b)**

 $BaCrO_4$ is yellow solid, insoluble in CH_3COOH .

438 (b)K is used as fertilizer (NPK) for nutrition of plants.

439 **(b)**

(a) $N a_2 C O_3$. 10 $H_2 O - i$ Washing soda or sol soda.

(b)
$$N a_2 SO_4$$
. 10 $H_2 O - \dot{c}$ Glauber's salt.

(c) $MgSO_4.7H_2O-i$ Epsom salt

440 **(b)** $ZnSO_4 + 2NaOH \longrightarrow Zn(OH)_2 + Na_2SO_4$ $Zn(OH)_2 + 2NaOH \longrightarrow Na_2ZnO_{soluble}^2 + 2H_2O$

442 **(c)**

Due to efflorescence (to give out H_2O) nature of $Na_2CO_3 \cdot 10 H_2O_1$.

443 **(a)**

 $Fe(OH)_3$ is not soluble in NaOH

(b)
$$Zn(OH)_2$$
+ $NaOH \rightarrow Na_2ZnO_2$ + $2H_2O$

sod. Zincate

(soluble)

(c)
$$Al(OH)_3$$
 + NaOH \rightarrow NaAlO₂ + 2 H₂O

sod. aluminate

(soluble)

(d)
$$Sn(OH)_2 + NaOH \rightarrow N a_2 Sn O_2 + 2H_2 O$$

sod. stannate

(soluble)

444 **(b)**

$$MgCO_3Heat MgO+CO_2$$

The metal oxide of which is stable, has unstable carbonate

445 **(b)**

Due to the presence of Sr, the bombs becomes dark red in colour

446 (d)

Be forms polymeric hydride.

447 (d)

Hypo or sodium thiosulphate $(N a_2 S_2 O_3)$ is used in the fixing of image. It dissolves unaffected AgBr but leaves metallic silver unchanged.

$$2 N a_2 S_2 O_3 + AgBr \rightarrow N a_3 [Ag(S_2 O_3)_2] + NaBr$$

Hypo soluble

448 **(d)**

Alkali metal hydroxides are more stronger base than alkaline earth metal hydroxides. Also basic character of hydroxides of alkaline earth metals increase down the gp.

449 **(a)**

BeC l_2 is covalent in nature.

451 **(d)**

Because of the smaller size of F-ions, NaF has the highest lattice energy and hence, the highest melting point

452 **(a)**

The chemical formula of feldspar is $KAIS i_3O_8$.

453 **(a)**

Formation of $L i^{+iii}$ ion is the property of first group elements, *i.e.*, alkali metals, not that of second group elements.

454 **(c)**

Higher heat of hydration for $L i^{+\delta i}$ shows more negative ΔH for the reaction, $Li(s) + Aq \longrightarrow L i^{+\delta(aq.);\Delta H = HS + IE - H_h \delta}$

455 **(d)**

The members of II and III period in periodic table are referred as representative elements.

456 **(a)**

The basic character of oxides increases down the gp.

457 **(c)**

 $NaCl + NH_4OH + CO_2 \longrightarrow NaHCO_3 + NH_4Cl$

458 **(c)**

It is sodium ammonium hydrogen phosphate.

459 **(c)**

The thermal stability of hydrides decreases from *LiH*

to CsH.

460 (c) Mg^{2+ii} is smallest cation; Cl^{-ii} is larger than F^{-ii} .

461 **(c)**

$$Ca (OH)_{2} + Ca (HCO_{3})_{2} \rightarrow 2 CaCO_{3} \downarrow + H_{2}O$$
(A)

Temporary hardness of water is removed by $Ca(OH)_2$. It converts bicarbonates into insoluble calcium and magnesium carbonate which are removed by filtration.

$$Ca(OH)_2 + Na_2CO_3 \longrightarrow CaCO_3 + 2NaOH$$

A sodium carbonate caustic soda

 $Ca(OH)_2$ +2 $CO_2 \rightarrow Ca(HCO_3)_2$

(cloudy)

462 **(c)**

AgC1 + Na₂CO₃
$$\longrightarrow$$
 Ag₂CO₃ + 2NaC1
 $\downarrow \Delta$
 $2Ag + CO2 + $\frac{1}{2}O_2$$

463 **(a)**

Be being smallest alkaline earth metal have highest charge size ratio and thus, forms complex salts, *e*.g., $[BeF_3]^{-\iota,[BeF_4]^{2-\iota}\iota}$

464 **(b)**

The electropositive character increases down the group; (a) and (b) are 1 group elements.

465 **(c)**

In Le-blanc process, potassium chloride of carnallite is converted to K_2SO_4 which is then heated with coal and lime stone to give K_2CO_3 . (Potash or pearl ash)

466 **(c)**

It is a method to precipitate $M g^{2+ii}$ ion in VI gp, of qualitative analysis.

```
467 (a)
```

For an ionic compound to be soluble in water its hydration energy should be more than its lattice energy.

468 **(c)**

NaOH absorbs moisture and CO_2 from air to form Na_2CO_3 ; $2 NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$

469 **(d)**

The solubility order: $CaF_2 < CaCl_2 < CaBr_2 < CaI_2$.

470 (a)

Li does not form double salts.

471 **(b)**

It is a fact.

472 **(b)**

The standard oxidation potential increases from Be to Ba, hence their reducing property also increases from Be to Ba.

473 **(d)**

 $Na_2S_4O_6$ is sodium tetrathionate.

474 (a)

Egg-shells are made up of $CaCO_3$.

475 (a)

The hydroxides of alkali and alkaline earth metals are strong bases. Thus, $Zn(OH)_2$ is the weakest base

476 (a)

 $MNO_{3} \mathop{\Delta}\limits_{\vec{}} MNO_{2} + \frac{1}{2}O_{2}$

477 **(b)**

Li has highest ionisation enthalpy and use larger energy of flame and thus emits red light (longer wave length).

478 **(b)**

Solubilities of carbonates decrease down the group because lattice energy decrease is almost constant while decrease in hydration energy downs sharply, finally difference of hydration energy and lattice energy decrease thus solubility decreases.

479 **(c)**

In presence of dil. acids, bleaching powder loses oxygen.

 $2 CaOC l_{2} + H_{2}SO_{4} \longrightarrow CaC l_{2} + CaS O_{4} + 2 HClO$ $HClO \longrightarrow HCl + [O]$

This oxygen is used for oxidation—bleaching.

480 **(c)**

Cathode: $2H_2O+2e \longrightarrow H_2+2OH^{-ii}$ Anode: $2Cl^{-i \longrightarrow Cl_2+2ei}$

481 **(d)**

Due to small size and almost same charge mass ratio.

482 **(b)**

Oxone is $N a_2 O_2 + dil$. HCl, used for bleaching of delicate fibres.

483 **(b)**

Witherite is $BaSO_{3}$.

484 **(a)**

 $PbCl_2$ is insoluble in cold water. Mg^{2+ii} and Pb^{2+ii} do not show flame colour.

485 (a)

 $BeSO_4$ is most soluble because hydration energy is more than lattice energy

 $BeSO_4 > MgSO_4 > CaSO_4 > SrSO_4 > BaSO_4$

Hydration energy decreases, hence solubility decreases

486 **(b)**

Li-Mg shows diagonal relationship due to this fact.

487 **(b)**

Solvay process is used for the manufacture of Na_2CO_3 .

488 (a)

All alkali metal salts are soluble in water. The degree of hydration depends upon the size of the cation. Smaller the size of cation, greater is its charge density and hence, greater is its tendency to withdraw electrons from molecules which are thus polarised. $L i^{+ii}$ ion being smallest in size among alkali metal ions is the most extensively hydrated while $C s^{+ii}$ ion the largest alkali metal ion is the least hydrated. The size of hydrated alkali ions is as

 $L i^{+i>Na^{+i>K^{*i>K^{*i>K^{*i>K^{*i>k}>i}}c_s^{*ii}i_i}i_i}$

(Relative ionic radii in water)

(Relative degree of hydration)

489 **(d)**

The stability and basic character of hydrides decreases down the group.

490	(c) <i>Ra</i> is radioactive and thus, decays instantaneously.	505	(a) Baryta is <i>BaO</i> .
491		506	(c)
492	(c) Mme Curie and her husband Piere Curie isolated radium from pitch blende.		: $NaHCO_3$ is more soluble than Na_2CO_3 in water. : Na_2CO_3 cannot exist in water along with $NaHCO_3$.
493	(c) The basic character of metal oxides and hydroxides decreases along the period and increases down the gp	507	(b) <i>CaC</i> l_2 is used as desiccating agent.
494	(c) Greater the electropositive character, more will be stability and high decomposition temperature.	508	(c) When carbon monoxide is passed over solid caustic soda at 200 °C, sodium formate is obtained. CO+NaOH 200 °C/10 atm HCOONa
	∴ Among given choices barium has highest electropositive character and hence, highest decomposition temperature.	509	sodium formate
495	(c) $N a_2 SO_3 + H_2 SO_4 \longrightarrow N a_2 SO_4 + H_2 O + SO_2$	510	
496	(a) Gun powder is an explosive mixture containing $KNO_3+Charcoal+S$	511	At cathode: $2H^{+i+2e \rightarrow H_2i}$ (a)
498	$ZnCl_2+2NaHCO_3+ \longrightarrow ZnCO_3+2NaCl+H_2O+$		In presence of dil. Acids, bleaching powder loses oxygen. $2 CaOCl_2 + H_2SO_4 \longrightarrow CaCl_2 + CaSO_4 + 2 HClO$ $HClO \longrightarrow HCl + [O]$
499	(a) P^{3-ii} ions are phosphide ion.		This oxygen is used for oxidation—bleaching.
500	(a) Only Li combines directly with nitrogen to form lithium nitride, $6Li + N_2 \longrightarrow 2Li_3N$	512	(b) Sodium thiosulphate, $N a_2 S_2 O_3$ gets oxidised by chlorine water. $N a_2 S_2 O_3 + 4C l_2 + 5H_2 O \rightarrow 2 NaHSO_4 + 8 HCl$
502	(b) $CaCO_{3} \Delta CaO_{4} + C O_{Acidic oxide}^{2}$	513	(d) Washing soda is chemically $N a_2 C O_3 \cdot 10 H_2 O_1$
503		514	(d) Mg is present in chlorophyll.
504	Sorel's cement $-MgCl_2$. $5MgO.xH_2O$. (a)	515	(a) $Cl_2+Ca(OH)_2 \rightarrow CaOCl_2+H_2O$ Compound 'X' is dry slaked lime.
	When KI is added to acidified solution of sodium nitrite NO gas is liberated and I_2 is set free.	516	

 $2I^{-i+4H^{+i+2NO_2^{-i-2NO+l_2+2H_2Oi}}i}$

(new method) are the commercial method to obtain

bleaching powder by:

$$2Cl_{2}+3Ca (OH)_{2} \longrightarrow \underbrace{Ca(OCl_{2})+CaCl_{2}\cdot Ca(OH)}_{Bleaching powder}$$

517 **(c)**

K reacts with HCl violently.

518 **(b)**

Alkali metal hydroxide are highly soluble in water.

- 519 **(c)** $KI + I_2 \longrightarrow K I_3$
- 520 **(a)**

Be (Z=4) has maximum covalency of 4 while Al(Z=13) has maximum covalency of 6.

521 **(d)**

At Cathode: $K^{+\iota+e \longrightarrow K \land Mg^{2+\iota+2e \longrightarrow Mg\iota}}$ At Anode: $2Cl^{-\iota \longrightarrow Cl_2+2e\iota}$

522 **(b)**

Only *Ca* in given choices reacts with water to give H_{2} .

523 **(c)**

The composition of potash alum is

$$K_2 SO_4$$
. $Al_2 (SO_4)_3$. 24 $H_2 C$

or $K_2 A l_2 S_4 H_{48} O_{40}$

It is a double salt of potassium sulphate and aluminium sulphat.

524 **(c)**

Dolomite is $CaCO_3 \cdot MgCO_3$.

525 **(b)**

Crystal carbonate is monohydrate of $N a_2 CO$, *i.e.*, $N a_2 CO_3 H_2 O$

526 **(d)**

It is a fact.

527 **(d)**

Electropositive character increases as we move down the group because of the increase in atomic size, atoms have more tendency to lose electrons. Hence, Cs is most electropositive element in alkali metals.

528 **(b)**

A deliquescent substance absorbs water to the extent that it forms a saturated solution.

529 **(a)**

Group first elements are so highly electropositive that they emit electron, even when exposed to light (photoelectric effect) and this character increases on moving down the group from lithium towards caesium

530 **(d)**

The hydration energy of cations decrease with increase in size of cation.

531 **(a)**

Due to ammonia solvated electrons.

532 **(c)**

Tincal is also known as borax; a natural mineral of $Na \wedge B$.

534 **(a)**

Baeyer's process or concentration of bauxite ore-Impure bauxite is treated with NaOH with which it forms water soluble sodium meta aluminate complex. Al_2O_3 . $2H_2O+2NaOH$ 420 - 425 K 2NaAl O_2+3

sod.

metaaluminate

Impurities such as Fe_2O_3 , TiO_2 and silica are left behind. Pure alumina is recovered from solution. $NaAlO_2 + 2H_2O \rightarrow Al(OH)_3 + NaOH$ $2Al(OH)_3 \Delta Al_2O_3 + 2H_2O$

535 **(a)**

 $MgCl_2 \cdot 2H_2ODry HCl MgCl_2 + 2H_2O$

536 **(b)**

Sodium vapours on heating emit yellow light.

540 (d)

$$CaC N_2 + 3H_2O \longrightarrow CaC O_3 + NH_3$$

541 (d)

$$CaCO_3 \longrightarrow CaO + CO_{(Acid)^2}$$

542 **(c)**

All the alkali halides except lithium fluoride are freely soluble in water. I_2 (non-polar) is least soluble in water. Group IIA carbonates $(BaCO_3)$ are insoluble in water. PbI_2 is sparingly soluble in cold water but quite soluble in hot water. KF (most polar) 5 is most readily soluble in water.

543 (a)

I group elements possess lowest ionization enthalpy.

544 **(c)**

 N^{3-ii} has 7 p, 10 e \wedge 7 n.

545 **(b)**

Sr imparts crimson red light to flame.

546 **(d)**

The formula of carnallite is $KCl.MgCl_2.6H_2O$. In this formula only potassium gives colour (lilac) to flame, whereas magnesium does not give flame colouration.

547 **(b)**

Zn dissolves in conc. NaOH due to the formation of sodium zincate.

 $Zn+2NaOH \rightarrow Na_2ZnO_2+2H_2O+3NaCl$

549 **(b)**

Alkali metals cannot be obtained by electrolysis of their aqueous salt solutions.

550 (a)

Salts of $HClO_2$ are chlorites.

551 (c)

 $CaC_2+2H_2O \longrightarrow Ca(OH)_2+C_2H_2$

552 (a)

Nitrolim is $CaC N_2 + C_1$.

553 **(b)**

Calcined gypsum does not contain $CaCO_3$.

554 **(a)**

Formula of carnallite is $KCl \cdot MgC l_2 \cdot 6H_2O$ so, carnallite contains K and Mg.

555 **(b)**

The reactivity of alkali metals increases down the group.

556 **(b)**

$$Mg + 2 HN O_3 \longrightarrow Mg (N O_3)_2 + H_2 \uparrow$$

dil.

Hence, MgO is not formed in this reaction.

558 **(b)** It is used as reducing agent in organic reactions.

559 **(b)** Be, Mg form polymeric hydrides.

560 **(a)**

On heating, it decomposes with evolution of CO_2 . $MgCO_3\Delta MgO+CO_2$

561 **(a)**

Lithium and magnesium shows diagonal relationship.

562 (a) $C a^{2+ii}$ and C_2^{2-ii} ions.

563 **(c)**

The solubility of sulphates of alkaline earth metals decreases regularly on moving down the group because solubility product decreases from $BeSO_4 i BaSO_4$. Hence, the order of solubility of their sulphates is

$$BeSO_4 > MgSO_4 > CaSO_4 > SrSO_4 > BaSO_4$$

 K_{sp} : very high 102.4 × 10⁻⁵ 7.6 × 10⁻⁷ 1.5 × 10⁻⁹

564 (c)

Because of the larger size and smaller nuclear charge, alkali metals have low ionisation potential relative to alkaline earth metals

DCAM classes Dynamic Classes for Academic Mastery