

Single Correct Answer Type

		Single Correct	Answei Type	
1.	Nitric oxide is:			
	a) Acidic towards litmus			
	b) Basic towards litmus			
	c) Neutral towards litmus			
	d) Amphoteric			
2.	The last member of inert g	as family is:		
	a) Krypton	b) Radon	c) Xenon	d) Argon
3.	Helium –oxygen mixture is	s used by deep by sea divers	in preference to nitrogen oxy	gen mixture because
	a) Helium is much less sol	uble in blood than nitrogen		
	b) Nitrogen is much less so	bluble in blood than helium		
	c) Due to high pressure de	ep under the sea nitrogen and	l oxygen react to give poison	ous nitric oxide
	d) Nitrogen is highly solub	le in water		
4.	Among the fluorides below	, the one which does not exis	st is	
	a) <i>C F</i> 4	b) $_{HeF_4}$	c) _{Xe F 4}	d) _{S F 4}
5.	The percentage of nitrogen	in air remains almost consta	nt due to:	
	a) The fixation of nitrogen			
	b) The activity of symbioti	c bacteria		
	c) The effect of lightening	and bacteria		
	d) The nitrogen cycle in na	ture		
6.	The metal which does not	form ammonium nitrate by	reaction with dilute nitric acid	d is
	a) Al	b) Fe	c) Pb	d) Mg
7.	The following acids have b ClOH(I)BrOH(II)IOH	e	decreasing acid strength. Ide	ntify the correct order
	a) I>II>III	^{b)} II>I>III	c) III>II>I	d) I>III>II
8.	H_2 S exhibits:			
	a) Oxidizing properties	b) Reducing properties	c) Basic properties	d) None of these
9.	Liquid oxygen is:			
	a) Colourless	b) Pale yellow	c) Pale blue	d) Dark blue
10.	HNO_3 is manufactured by	:		
	a) Birkeland and Eyde's pr	ocess		

b)	Haber's	process
----	---------	---------

c) Contact's process

d) Fischer-Tropsch's process

1	1
Τ	1.

The decreasing values of bond angles from NH₃ (107 °) to SbH₃ (91 °) down the group 15 of the periodic table is due to a) Increasing *bp-bp* repulsion b) Increasing *p*- orbital character in sp^3 c) Decreasing *lp-bp* repulsion d) Decreasing electronegativity 12. Nitrogen is obtained when NaNO₂ react with a) NH₄Cl b) NH₄NO₃ c) $(NH_4)_2CO_3$ d) NH₄OH 13. Which of the following statement is wrong? a) The stability of hydrides increases from NH_3 to BiH_3 in group 15 of the periodic table b) Nitrogen cannot form $d\pi - p\pi$ bond c) Single N—N bond is weaker than the single P—P bond d) $N_2 O_4$ has two resonance structure 14. Which is monoatomic? a) Oxygen b) Fluorine c) Neon d) Nitrogen 15. Which gas can be collected over water? a) NH_3 b) N_2 c) SO_2 d) HCl 16. In the reaction, $2KI + H_2O_2 + O_3 \longrightarrow 2KOH + O_2 + i A$, the compound A is: a) KIO_3 b) I_2O_5 17. In the reaction, $MnO_4^{-\ell+I^{-\ell A lkaline solution[X] |X| is:\ell}}$ c) HIO₃ d) I_2 b) *IO* a) IO_2^{-ii} d) 10⁻ⁱⁱ c) I 18. Number of hydroxyl groups present in pyrosulphuric acid is: b) 4 d) 1 a) 3 c) 2 19. Which is not an acid salt? b) NaH_2PO_3 d) $N a_3 H P_2 O_6$ c) NaH_2PO_2 a) $Na_{4}P_{2}O_{7}$ 20. In fisher-Ringe's method of separation of noble gas mixture from air, Is used. a) 90% $CaC_2+10\% CaC_{1_2}$ b) Coconut charcoal c) Soda lime +potash solution d) 90% CaCO₃ +10% urea 21. The element which evolves two gases on reacting with conc. H_2SO_4 is: a) Si b) C c) S d) P 22. When conc. H_2SO_4 is added to dry KNO_3 , brown fumes are evolved. These fumes are of:

	a) <i>SO</i> ₂	b) _{SO3}	c) _{N2} O	d) _{NO2}	
23.	With cold and dilute sodium hydroxide fluorine reacts to give				
	a) NaF and OF ₂	b) NaF + O ₃	c) O_2 and O_3	d) NaF + O_2	
24.	The $X - X$ bond dissociat	ion energy is minimum in:			
	a) _{F2}	b) _{Cl₂}	c) _{Br₂}	d) _{I2}	
25.	Which of the following is a	not the characteristic of inter	halogen compounds?		
	a) They are more reactive	than halogens			
	b) They are quite unstable	but none of them is explosive	2		
	c) They are covalent in nat	ure			
	d) They have low boiling p	oints and are highly volatile			
26.	Which is soluble in water?				
	a) AgCl	b) AgBr	c) AgI	d) AgF	
27.	In the compounds of type	ECl_3 , where $E = B$, P, As, or	r Bi, the angle Cl– <i>E</i> –Cl for d	ifferent <i>E</i> are in the order :	
	a) $B > P = As = Bi$	b) $B > P > As > Bi$	c) $B < P = As = Bi$	d) B < P < As < Bi	
28.	Colour of iodine solution c	an be discharged by shaking	it with aqueous solution of:		
	a) H_2O_2	b) Sodium sulphide	c) Sodium thiosulphate	d) Sodium sulphate	
29.	Sulphuric acid has great aff	finity for water because			
	a) It hydrolyses the acid		b) It decomposes the acid		
	c) Acid forms hydrates with	th water	d) Acid decomposes water		
30.	Major credit for the discov	very of noble gases is given to):		
	a) Cavendish	b) Ramsay	c) Rayleigh	d) None of these	
31.	In XeF_2 , XeF_4 , XeF_6 , the	the number of lone pairs of X	e is respectively		
	a) 3, 2, 1	b) 1 ,2, 3	c) 2, 3, 1	d) 4, 1, 2	
32.	Which of the following has	<i>s pp-dp</i> bonding?			
	a) NO_{3}^{-ii}				
	b) SO_3^{2-ii}				
	c) BO_3^{3-ii}				
	d) CO_3^{2-ii}				
33.	Acidified iodates are red	uced $i \dots by SO_2$.			
	a) Iodites	b) Iodide	c) Iodine	d) None of these	
34.	Anhydrone is:				
	a) HClO4				
	b) HClO ₃				

	c) Anhydrous magnesium perchlorate			
	d) Anhydrous calcium perchlorate			
35.	$\frac{1}{6}$ Kipp's apparatus , H_2 S	S is prepared :		
	a) Continuously	b) By FeS+conc H_2SO_4	$_{1}$ c) By FeS+dil. $H_{2}SO_{4}$	d) By Fe+dil. H_2SO_4
36.	The mixture of conc. HC	$l \wedge HNO_3 \in the \ ratio 3:1 \ control of the r$		
	a) ClO ₂	b) _{NOCl}	c) _{NCl₃}	d) $_{N_2O_4}$
37.	Pure nitrogen can be prepa	red from		
	a) NH ₄ OH	b) $_{NH_4NO_2}$	c) $Ba(NO_3)_2$	d) $_{C a_{3}N_{2}}$
38.	Fluorine can be free from l	HF by passing the mixture the	rough:	
	a) H_2O	b) An alkaline solution	c) $Conc.H_2SO_4$	d) NaF
39.	Fluorine is usually obtained	l from:		
	a) Fluorspar	b) Fluorapatite	c) Cryolite	d) Tetrafluoromethane
40.	Mark the strongest acid			
	a) HI	b) HBr	^{c)} HCl	d) HF
41.	The most basic hydride is			
	a) _{N H3}	b) <i>P H</i> ₃	c) A_{SH_3}	d) SbH_3
42.	Cl_2 is used \in the extraction	n of :		
	a) Pt	b) Au	c) Both (a) and (b)	d) None of these
43.		ng lowest oxidation number o	of N:	
	a) $_{NH_3}$	b) N_3H	c) _{N₂H₄}	d) $_{N_2H_2}$
44.	Chlorine acts as a bleaching	g agent only in presence of		
	a) Dry air	b) Moisture	c) Sunlight	d) Pure oxygen
45.	Swimming pools are disinf	ected by bubbling through wa	ater with a controlled quantit	y of:
	a) Br ₂	b) <i>Cl</i> ₂	c) O ₂ enriched air	d) $_{N_{2}}$
46.	A glass tube containing mo	lten antimony breaks upon so	olidification of antimony due	to:
	a) Expansion	b) Exothermic reaction	c) Endothermic reaction	d) None of these
47.	Oxygen is paramagnetic. T	he unpaired electrons are pre	sent in :	
	a) Antibonding orbitals	b) Bonding orbitals	c) p – orbitals	d) <i>f</i> - orbitals
48.	By warming a paste of blea	ching powder with a solution	n of ammonia, we get:	
	a) _{H2}	b) _{N2}	c) N_2O_3	d) $N_2 O_4$
49.	H_3PO_2 has the name and	basicity respectively:		
	a) Phosphorous acid and tw	vo		
	b) Hypophosphorous acid a	and two		

d) Hypophosphoric acid and two

50. The correct order of acidic nature is:

	a) $Cl_2O_7 > SO_2 > P_4O_{10}$	b) $CO_2 > N_2O_5 > SO_3$	c) $N a_2 O > MgO > A l_2 O_3$	d) $K_2 O > CaO > MgO$	
51.	The van der Waal's forces are the greatest in:				
	a) Neon	b) Argon	c) Krypton	d) Xenon	
52.	Starch paper moistened with	h KI solution turns blue in oz	one because of:		
	a) Iodine liberation				
	b) Oxygen liberation				
	c) Alkali formation				
	d) Ozone reacts with litmus	paper			
53.	Which one is correct statem	nent?			
	a) Basicity of H_3PO_4 and H_2	³ PO ₃ is 3 and 3 respectively			
	b) Acidity of H ₃ PO ₄ and H ₃	PO ₃ is 3 and 3 respectively			
	c) Acidity of H_3PO_4 and H_3	PO ₃ is 3 and 2respectively			
	d) Basicity of H_3PO_4 and H	³ PO ₃ is 3 and 2 respectively			
54.	Ammonia water is a good c	leaning agent because it:			
	a) Is weakly basic				
	b) Emulsifies grease				
	c) Leaves no residue when	wiped out			
	d) All are true				
55.	A clathrate is defined as a:				
	a) Cage compound	b) Liquid crystal	c) Mixture	d) Solid solution	
56.	The acid employed for etch	ing of glass is			
	a) HCl	b) $HClO_4$	c) _{HF}	d) Aqua regia	
57.	H_2SO_4 reacts with sugar	\land acts as:			
	a) A dehydrating agent	b) An oxidizing agent	c) A sulphonating agent	d) None of these	
58.	Ordinary oxygen contains:				
59.	^{a)} Only O ¹⁶ isotope Metal halide which is insolu	b) Only O^{17} isotope uble in water is	c) A mixture of O^{16} , O^{17} \wedge	$(d^{(1)} Only O^{18} isotope)$	
	a) AgF	b) _{AgI}	c) _{KBr}	d) $CaCl_2$	
60.	Phosphine is:	2 1 91			
	a) Basic	b) Acidic	c) Amphoteric	d) Neutral	

61. Antimony dissolves in aquaregia to give:

d) $Sb(NO_3)_3$ c) $SbCl_{s}$ a) SbCl₂ b) Sb_2O_1

62. Dinitrogen pentoxide a colourless solid is prepared by

a) Heating NH₄NO₂ with an excess of oxygen

c) Dehydrating HNO_3 with P_4O_{10}

- 63. Ammonium compound not used as a fertilizer is:
 - a) $(NH_4)_2 SO_4$

b) $(NH_4)_2 CO_3$

- c) $NH_{4}NO_{3}$
- d) CAN(calcium ammonium nitrate)
- 64. At ordinary temperature and pressure, among halogens, chlorine is a gas, bromine is a liquid and iodine is a solid. This is because:

b) Dehydrating HNO₃ with CaO

d) Heating a mixture of HNO_2 and $Ca(NO_3)_2$

a) The specific heats are in the order $Cl_2 > Br_2 > I_2$

- b) Intermolecular forces among molecules of chlorine are the weakest and those of iodine the strongest
- c) The order of density is $I_2 > Br_2 > Cl_2$
- d) The order of stability is $I_2 > Br_2 > Cl_2$
- 65. Sulphur forms the chlorides $S_2 Cl_2$ and SCl_2 . The equivalent mass of Sulphur in SCl_2 is 16 g/mol. Therefore, the equivalent mass of Sulphur in $S_2 Cl_2$ is:
 - c) 64 g/mol d) 8 g/mol a) 32 g/mol b) 16 g/mol

66. Javelle water is:

- a) Aqueous solution of NaOCl
- b) Used as bleaching agent
- c) Both (a) and (b)
- d) None of the above
- 67. The strongest acid is:

a)
$$H_3PO_2$$
 b) H_3PO_3 c) $H_4P_2O_7$ d) H_3PO_4
68. Orthophosphoric acid on heating gives:
a) Phosphine
b) Phosphorus pentoxide
c) Phosphorus acid
d) Metaphosphoric acid
69. Which oxide is more acidic?
a) Al_2O_3 b) Na_2O c) MqO d) CaO

b) Na_2O c) MgO a) Al_2O_3

70. $SO_2 + H_2 S \rightarrow$ product, the final product is

	a) H_2SO_3	b) H_2SO_4	c) $H_2 S_2 O_3$	d) H_2O+S
71.	Which of the following is	not oxidised by O_3 ?		
	a) KI	b) <i>FeSO</i> ₄	c) _{KMnO4}	d) $K_2 MnO_4$
72.	The gas used for inflating the	he tyres of aeroplanes is:		
	a) H_2	b) He	c) _{N2}	d) Ar
73.	F_2 is formed by the reaction	on of $K_2 MnF_6$ with:		
	a) SbF_5	b) $_{MnF_3}$	c) $_{KrF_6}$	d) $_{MnF_4}$
74.	Which statement is not corr	rect for nitrogen?		
	a) It has a small size		b) It does not readily react	with O_2
	c) It is a typical non-metal		d) d -orbitals are available f	for bonding
75.	Which is not oxdised by M	$nO_2?$		
	a) F	b) Cl	c) I ₂	d) I
76.	Passing $H_2 S$ gas through n	itric acid produces:		
	a) Rhombic sulphur	b) Monoclinic sulphur	c) Colloidal sulphur	d) Plastic sulphur
77.	Schweitzer's reagent is:			
	a) $\left[Cu(NH_3)_4\right]SO_4$	b) $[Ag(NH_3)_2]Cl$	c) $[Cu(NH_3)_2]Cl$	d) $K_4 Fe(CN)_6$
78.	Industrial name of $H_2S_2O_7$	is		
	a) Pyrosulphuric acid	b) Marshall's acid	c) Oleum	d) All of these
79.	Which does not give oxyge	n on heating?		
	a) HgO	b) <i>KMnO</i> 4	c) KClO ₃	d) $(NH_4)_2 Cr_2 O_7$
80.	Which of the following pai	rs is obtained on heating amr	nonium dichromate?	
	a) N_2 and H_2O	b) N_2O and H_2O	c) NO ₂ and H_2O	d) NO and NO ₂
81.	Which reaction is not feasi	ble?		
	a) $2KI + Br_2 \rightarrow 2KBr + I_2$	2	b) $_2 KBr + I_2 \rightarrow 2KI + Br_2$	2
	c) $_{2 \text{ KBr}} + Cl_{2} \rightarrow 2 \text{ KCl} + Cl_{2}$	Br ₂	d) $_{2}H_{2}O+2F_{2} \rightarrow 4HF+$	O_2
82.	The conjugate base of H_2	PO_4^{-ii} is:		
	a) HPO_4^{2-ii}	b) P_2O_5	c) $H_{3}PO_{4}$	d) PO_{4}^{3-ii}
83.	Reaction of solid KMnO	$_4$ with conc . H_2 SO $_4$ produc	es manganese heptoxide (M	$(In_2O_7)\in$:
	a) Solution state	b) Solid state	c) Fine powder	d) None of these
84.	Caro's acid is:			
	a) $H_2 S_2 O_3$	b) $H_2 S_2 O_8$	c) $H_2 SO_3$	d) $H_2 SO_5$
85.	Which of the following is r	not oxidized by MnO_2 ?		
	a) _F ⁻ⁱⁱ	b) <i>Cl⁻ⁱⁱ</i>	c) Br ⁻ⁱⁱ	d) _I

86. Which is an ozonide?

	a) <i>KO</i> 3	b) _{NH4} O3	c) Cr_2O_3	d) Both (a) and (b)	
87.	Which statement is false for	r ozone?			
	a) It is obtained by silent electric discharge on oxygen				
	b) It is an endothermic com	pound			
	c) It can be obtained by the	e action of ultraviolet rays on	oxygen		
	d) It cannot be regarded as	an allotrope of oxygen			
88.	Which is true with regard to	the properties of PH_3 ?			
	a) PH_3 is insoluble in wate	er	b) $_{PH_{3}}$ has fishy smell		
	c) PH_3 is neutral towards	litmus	d) PH_3 is not much stable		
89.	Nitric acid is generally ligh	t yellow due to the presence	of:		
	a) $_{NH_3}$	b) NO	c) _{NO2}	d) N_2O_5	
90.	The lightning bolts in atmos	sphere cause the formation of	of:		
	a) NO	b) <i>O</i> ³	c) <i>CO</i> ₂	d) H_2O_2	
91.	The structure of IF_7 is:				
	a) Square pyramid				
	b) Trigonal bipyramid				
	c) Octahedral				
	d) Pentagonal bipyramid				
92.	What may be expected to h	appen, when phosphine gas i	is mixed with chlorine gas?		
	a) $PCl_5 \wedge HCl$ are formed	$h \wedge$ the mixture cools down			
	b) $PH_3 \cdot Cl_2$ is formed with	h warming up			
	c) The mixture cools down	only			
	d) $PH_3 \wedge HCl$ are formed				
93.	$HClO_4 + P_2O_5 \to (A) \land (B)$	B) $A \wedge B$ are			
	a) $HClO_3$, H_3PO_4	b) $C l_2 O_6 + HP O_3$	c) ClO_2 , H_2PO_4	d) Cl_2O_7 , HPO_3	
94.	The formula of zinc phosph				
	a) ZnHPO3	b) $Zn(PO_4)_3$	c) $Zn_2(PO_4)_3$	d) $Zn_3(PO_3)_2$	
95.	The bonds present in N_2O_1	₅ are:			
	a) Only ionic				
	b) Only covalent				
	c) Covalent and coordinate				
	d) Covalent and ionic				

96.	Uranium isotopes are usually separated by using compounds of the halogen:				
	a) _{F 2}	b) <i>Cl</i> ₂	c) _{Br₂}	d) _{I 2}	
97.	Which of the following halo	ogen oxides is ionic?			
	a) $I_4 O_9$	b) <i>I</i> ₂ <i>O</i> ₅	c) BrO ₂	d) ClO ₃	
98.	Which gas is used to improve	ve the atmosphere of crowde	d places?		
	a) H_2	b) <i>O</i> ₂	c) _{O3}	d) _{N2} O	
99.	Which of the following is re-	esponsible for depletion of th	ne ozone layer in the upper st	rata of atmosphere?	
	a) Polyhalogens	b) Ferrocene	c) Fullerenes	d) Freons	
100	$H_2SO_4 \wedge H_2SO_3$ can be d	istinguished by the addition	n of :		
	a) Litmus solution	b) <i>FeCl</i> ₃ solution	c) NaHSO ₄ solution	d) Magnesium powder	
101	$. \operatorname{NaNH}_2 + \operatorname{N}_2 O \longrightarrow X + \operatorname{NaO}^2$	$H + NH_3$ what is the X?			
	a) NaN ₂	b) Na ₃ N	c) NaN ₃	d) None of these	
102	. Ripening of fruits can be ca	arried out in presence of			
	a) $Na_{2}SO_{4}$	b) <i>NaCl</i>	c) <i>CaC</i> ₂	d) $CaC l_2$	
103	. Which is most thermodynamic	mically stable allotropic form	n of phosphorus?		
	a) Red	b) White	c) Black	d) Yellow	
104	F_2 is isolated by:				
	a) Electrolysis of HF				
	b) Electrolysis of KHF_2				
	c) Electrolysis of Na_3 Alf	6			
	d) Electrolysis of NaF/HF				
105	 105. Observe the following statements I. Bleaching powder is used in the preparation of chloroform. II. Bleaching powder decomposes in the presence of CoCl₂ to liberate O₂. III. Aqueous KHF₂ is used in the preparation of fluorine. The correct combination is 				
	a) I,II and III are correct		b) Only II is correct		
	c) Only I and III are correc	t	d) Only I and II are correct		
106	. Which form of P shows che	emiluminescence?			
	a) White P	b) Black P	c) Red P	d) None of these	
107	. Which of the following oxy	acids of phosphorus is a red	ucing agent and monobasic?		
	a) H ₃ PO ₂	b) H ₃ PO ₃	c) H ₃ PO ₄	d) $H_4P_2 O_6$	
108	Radon is a noble gas. Its rac	dioactivity is used in the treat	ment of:		
	a) Typhoid	b) Cancer	c) Cough and cold	d) Thyroid	

109. Which of the following statement is true?

- a) H_3PO_3 is a stronger acid than H_2SO_3
- b) In aqueous medium HF is a stronger acid than HCl
- c) HClO₄ is a weaker acid than HClO₃
- d) HNO₃ is a stronger acid than HNO₂

110. Number of lone pairs of electrons on Xe atoms in Xe F_2 , Xe $F_4 \wedge$ Xe O_3 molecule are respectively

a) 3, 2 and 1 b) 4, 3 and 2 c) 2, 3 and 1 d) 3, 2 and 0

111. When a lead storage battery is discharged:

- a) SO_2 is evolved
- b) Lead sulphate is consumed
- c) Lead is formed
- d) $H_2 SO_4$ is consumed
- 112. On heating silver nitrate strongly is obtained finally:

a) _{NO2}	p) O ⁵	c) Silver metal	d) All	
-------------------	-------------------	-----------------	--------	--

- 113. Pure phosphine is not combustible while impure phosphine is combustible, this combustibility is due to the presence of:
 - a) P_2H_4 b) N_2 c) PH_5 d) P_2O_5
- 114. *i* the contact process of H_2SO_4 , SO_3 dissolves \in sulphuric acid *i* give :
 - a) Permonosulphuric acid
 - b) Thiosulphuric acid
 - c) Pyrosulphuric acid
 - d) Perdisulphuric acid
- 115. When chlorine water is exposed to sunlight, O_2 is liberated. Hence:
 - a) Hydrogen has little affinity to O_2
 - b) Hydrogen has more affinity to O_2
 - c) Hydrogen has more affinity to chlorine
 - d) It is a reducing agent

116. The number of electrons in a halogen in its outermost orbit in comparison with corresponding noble gas is:

a) One electron less b) One electron more c) Two electrons less d) Two electrons more

117. The deep blue colour produced on adding excess of ammonia to copper sulphate solution is due to the presence of:

a) Cu^{2+ii} b) $\left[Cu(NH_3)_2\right]^{2+ii}$ c) $\left[Cu(NH_3)_4\right]^{2+ii}$ d) $\left[Cu(NH_3)_6\right]^{2+ii}$

118. Which of the following oxo-acids of chlorine is formed on shaking chlorine water with freshly precipitated yellow oxide of mercury?

a) $HCIO_3$ b) $HCIO_2$ c) HCIO d) $HCIO_4$

119. Phosphorus is present in bones as:				
a) $Ca_{3}(PO_{4})_{2}$	b) FePO	c) $Ca_{3}P_{2}$	d) $Cu_{3}P_{2}$	
120. Paramagnetic molecule is:	4	- 3 2	- 3 2	
a) Oxygen	b) Nitrogen	c) Hydrogen	d) Chlorine	
121. Which is a poison?				
a) Hg_2Cl_2	b) As_2O_3	c) NaHCO ₃	d) NaCl	
122. Which of the following is	a tribasic acid?			
a) H ₃ PO ₄	b) HPO ₃	c) H ₄ P ₂ O ₇	d) H ₄ p ₂ O ₆	
123. Presence of sulphide ion c	cannot be confirmed by:			
a) $BaCl_2$	b) $(CH_3COO)_2Pb$	c) _{Sodium} nitroprusside	d) $Dil.H_2SO_4$	
124. End product of the hydrol	ysis of XeF ₆ is			
a) XeF ₄ O	b) XeF ₂ O ₂	c) XeO ₃	d) XeO_3^{-ii}	
125. In PO_4^{3-ii} ion, the formal	charge on each oxygen atom	and P—O bond order respec	tively are:	
a) -0.75, 1.25	b) -3, 1.25	c) -0.75, 1.0	d) -0.75, 0.6	
126. The lightest, non-inflamm	able gas is:			
a) H_2	b) He	c) _{N2}	d) Ar	
127. Which of the following ch	loride is water insoluble?			
a) HCl	b) AgCl	c) Both a and b	d) None of the above	
128. Which radical can bring a	bout the highest oxidation sta	te of a transition metal?		
a) F^{-ii}	b) Cl ⁻ⁱⁱ	c) Br ⁻ⁱⁱ	d) _I -ii	
129. Excess of PCl ₅ reacts with	conc. H_2SO_4 giving			
a) Chlorosulphonic acid		b) Thionyl chloride		
c) Sulphuryl chloride		d) Sulphurous acid		
130. Conc. H_2SO_4 displaces H	ICl from sodium chloride bec	cause:		
a) Conc. $H_2 SO_4$ is strong	ger than HCl			
b) HClis a gas whereas H	$I_2 SO_4$ is a liquid			
^{c)} Sulphates are more so	luble in water than chlorides			
d) Sulphates are less solu	ble in water than chlorides			
131. Which of the following ha	logens can replace others for	m their salt solutions?		
a) _{I2}	b) Br_2	c) _{F2}	d) _{Cl₂}	
132. When a mixture of SO $_2$ \wedge	O_2 is <u>passed</u> the reaction	rate increases :		
a) Fe + Mo	b) $ZnO+Cr_2O_3$	c) _{V2} O ₅	d) _{zymase}	

a)) Sulphide	^{b)} Sulphite	c) Sulphate	d) Thiosulphate
134. T	he non-metal other than g	raphite having metallic lustre	e is:	
a)) _{I2}	b) Si	c) _{Cl₂}	d) Br_2
135. O	zone turns benzidine pape	er:		
a)) Violet	b) Brown	c) Blue	d) Red
136. B	leaching powder is obtained	ed by the interaction of Cl_2 w	with a:	
a)) Dilute solution of Ca	O ^{b)} Concentrated solution	o ^c) Dry CaO	d) Dry slaked lime
137. W	Which statement is incorrec	ct?		
a)) Chlorine can bleach a we	et piece of cloth		
b]) Iodine stain can be remo	oved by hypo solution		
c)) Bromine can be prepared	d from carnallite		
d) Bromine is liberated whe	en iodine is passed through a	n acidified KBr solution	
138. T	he bond Br—Cl is:			
a)) Polar	b) Non-polar	c) True covalent	d) Coordinate
139. W	Which element is extracted	commercially by the electro	lysis of an aqueous solutions	of one of its compounds?
a)) Sodium	b) Aluminium	c) Chlorine	d) Bromine
140. <i>C</i>	$\mathbb{CN}^{-\iota \cos \wedge N_2}$ are isoelectronic but $\in \infty$	ontrast ${}^{\iota}CN^{-\iota}$, N_2 is chemically inert bec	rause of :i	
a)) Low bond energy			
b]) Absence of bond polarity	У		
c)) Unsymmetrical electron	distribution		
d) Presence of more number	er of electrons in bonding or	oitals	
141. W	Which of the following gase	es exists more abundantly in	nature than the others?	
a)) Helium	b) Neon	c) Argon	d) Krypton
142. W	Which inert gas has the high	hest boiling point?		
a)) _{Xe}	b) _{Kr}	c) _{Ar}	d) _{Ne}
143. W	Which characteristic is not	correct about H_2SO_4 ?		
a)) Reducing agent	b) Oxidizing agent	c) Sulphonating agent	d) Highly viscous
144. <i>X</i>	ZeF_4 exists as under or	rdinary atmospheric conditio	ns.	
a]) Solid	b) Liquid	c) Gas	d) None of these
145. A	gas, that relights glowing	splinter, is		
a)) H ₂	b) O ₂	c) N ₂	d) NO ₂
146 т	be perceptered of n abarra	ator in the orbitals forming D	Dhandin Dia	

146. The percentage of *p*-character in the orbitals forming P-P bond in P_4 is

	a) 25	b) 33	c) 50	d) 75
14	47. Fermy's salt is:			
	a) HF	b) KHF 2	c) _{NaCl}	d) KClO ₃
14	48. Which among the followir	ng factors is the most importa	ant in making fluorine the stro	ongest oxidizing agent?
	a) Electron affinity		b) Ionisation enthalpy	
	c) Hydration enthalpy		d) Bond dissociation energy	gy
14	19. Halogens are:			
	a) Gases under ordinary co	onditions		
	b) Electronegative in nature	re		
	c) Fuming liquids			
	d) The gases found in atm	osphere		
15		-	black compound which reac	ts with H_2O_2 to form another
	compound. The colour of a) Black	the compound is: b) Yellow	c) White	d) pink
15	51. KF combines with HF to f	form KHF ₂ . The compound co	ontains the species	
	a) $K^{+i,F^{-ii}i}$ and H^{+ii}	b) K^{+ii}, F^{-ii} and HF	c) K^{+ii} and $[HF_2]^{-ii}$	d) $[_{KHF}]^{+ii}$ and F_2
15	52. Which compound does no		[-]	[]
	a) $(NH_4)_2 SO_4$	b) $(NH_4)_2 CO_3$	c) <i>NH</i> ₄ <i>NO</i> ₂	d) _{NH4} Cl
15	53. When conc. $H_2 SO_4$ is dis	tilled with P_4O_{10} , the produce	ct formed is:	
	a) SO ₂	b) _{S2O4}	c) _{SO3}	d) _{S2O3}
15	54. Radon was discovered by:			
	a) Dorn	b) Ramsay	c) Rayleigh	d) None of these
15	55. The general formula of h	ypophosphorous acid is:		
	O II	O II		
	a) _H —P—OH	b)	с) _{НО} — ^µ 	d) _{HO} _P_COOH
1	H 56. Ammonia on catalytic oxid	OH	OH	OH
1.	a) NO	-		
1	57. Which oxide reacts with 1	b) NO_2	c) N_2O_3	d) N_2O_5
1.			c) – -	d) w o
1	a) CO_2	b) CaO	c) ZnO	d) N_2O_5
1.	 58. O₂ is denser than air and th a) Spirit 		c) Mercury	d) Kerosene
1	59. The structural formula of 1	b) H_2O	cy moreury	
1.		The second se		

a) H H OH	b) Н ОН ОН	с)	d) HO OH OH
160. Which compound is prepa $\frac{Xe + 2F_2}{(1:5 \text{ volume ratio})} \xrightarrow{\text{Ni ve}}{673\text{K}, 5}$?	
a) XeF_2	b) $_{XeF_6}$	c) <i>XeF</i> 4	d) $_{XeOF_2}$
161. Which one of the followin	g oxides of nitrogen dimerise	es into a colourless solid /liqu	id on cooling?
a) N ₂ O	b) NO	c) N ₂ O ₃	d) NO ₂
162. Which ion cannot be preci	ipitated from water?		
a) Cl^{-ii}	b) NO_3^{-ii}	c) SO_4^{2-ii}	d) All of these
163. The correct order of solub	ility in water for He, Ne, An	r, Kr, Xe is	
^{a)} Xe>Kr>Ar>Ne>He		^{b)} Ar>Ne>He>Kr>Xe	
^{c)} He>Ne>Ar>Kr>Xe	2	d) Ne>Ar>Kr>He>Xe	
164. Ozone acts as:			
a) An oxidizing agent	b) A reducing agent	c) Bleaching agent	d) All of these
165. Correct order of reactivity	7		
a) I ₂ >Br ₂ >Cl ₂ >F ₂	b) Br ₂ >I ₂ >Cl ₂ >F ₂	c) Cl ₂ >Br ₂ >I ₂ >F ₂	d) F ₂ >Cl ₂ >Br ₂ >I ₂
166. On boiling an aqueous se	olution of KClO ₃ with iodin	e the product formed is:	
a) <i>KIO</i> 3	b) <i>KClO</i> 4	c) _{KIO4}	d) KCl
167. When bleaching powder is	s treated with carbon dioxide:		
a) Chlorine is evolved			
b) Calcium chloride is for	rmed		
c) No reaction occurs			
d) It absorbs the gas			
168. Which of the following pr HI < HBr < HCl < HF			d) D' - 1
a) Thermal stability	b) Reducing power	c) Ionic character	d) Dipole moment
169. ClO_2 is an anhydride of:			
a) Chlorous acid (HClO	_ /		
b) Chloric acid ($HClO_3 i$			
 c) Mixed anhydride of He d) None of the above 	ClO_2 and $HClO_3$		
170. Red P can be obtained by	white P by		
a) Heating it with a cataly	st in an inert atmosphere	b) Distilling it in an inert a	tmosphere

c) Dissolvin	g it in CS ₂ and	l crystallising	d) Melting it and pouring	the liquid into water
astatine (At)		-	quid and iodine exists as solid	crystals. Then the next halogen
b) Having h	igher electrone	egativity		
c) Solid wit	n higher IP			
d) Least ato	mic size			
172. A solution of	f chlorine in v	vater contains:		
a) HOCl on	ly			
b) HCl only				
c) HCl and	HOC1			
d) HCl, HO	Cl and chlorin	e		
173. Helium give	s a characteris	tic spectrum with:		
a) Orange a	nd red lines	b) Orange lines	c) Yellow lines	d) Green lines
174. Molecules o	f a noble gas c	lo not posses virbrational er	ergy because a noble gas	
a) Is monoa	tomic		b) Is chemically inert	
c) Has com	pletely filled sł	nells	d) Is diamagnetic	
175. H_2 S is far r	nore volatile th	han water because:		
a) Sulphur a	tom is more e	lectronegative than oxygen	atom	
b) Oxygen a	tom is more e	lectronegative than sulphur	atom	
_	_	of nearly 105 ° nded with sulphur		
176. Holme's sig	hals can be giv	en by using		
a) CaC_2 +C 177. Atomicity o	5	b) $CaC_2 + CaCN_2$ ombic sulphur is	c) $CaC_2 + Ca_3P_2$	d) Ca_3P_2 + $CaCN_2$
a) 8		b) 2	c) 4	d) 6
178. When chlori	ne is passed th	brough concentrated solutio	n of KOH, the compound for	med is
a) KClO ₄		b) KClO ₃	c) KClO ₂	d) KClO
179. The dipole r	noment of NF	F_3 is less than NH_3 because	:	
a) F is more	reactive than	Н		
b) _{NH 3} for	ns associated	molecules		
		nd polarity is less		

d) The resultant of the individual polarities is opposed by the polarity of lone pair

180. Which of the following oxides of nitrogen is the anhydride of nitrous acid?

a) NO	b) _{N2} O4	c) N_2O_3	d) _{N₂O₅}
Aqueous solution of Na ₂	S_2O_3 on reaction with Cl_2 gi	ves:	
a) $Na_2S_4O_6$	b) _{NaHSO4}	c) NaCl	d) NaOH
Halogen molecules are:			
a) Monoatomic \wedge form X	2—i ionsi 2		
b) Diatomic \wedge form X^{-iion}	15 ⁱ		
c) Diatomic \wedge form $X_2^{2-\iota\iota}$	ions		
d) Monoatomic \land form X	- ^{<i>ii</i>} ions		
Least stable oxide of chlori	ne is		
a) Cl ₂ O	b) ClO ₂	c) Cl ₂ O ₇	d) ClO ₃
Bromine water is decolouri	sed by:		
a) _{SO2}	b) $C_2 H_4$	c) $C_2 H_2$	d) All of these
Fluorine reacts with water t	to give		
a) HF , $O_2 \wedge O_3$	b) $_{HF \wedge F_2}$	c) $_{HF \wedge O_2}$	d) $_{HF \wedge O_3}$
	ons of four elements are given	ven below. Which element	does not belong to the same
	b) $[Kr] 4 d^{10} 5 s^2$	c) $[Ne]_{3s^2,3n^5}$	d) $[Ar] 3 d^{10} 4 s^2$
	[IG]+G ,00		[1] 5u ,+5
Among the noble gases, xer	non reacts with fluorine to give	· · · •	
Among the noble gases, xer a) It has highest ionisation	non reacts with fluorine to give	· · · •	ause
	non reacts with fluorine to give	e stable xenon fluorides beca	energy
a) It has highest ionisation	non reacts with fluorine to giv	ve stable xenon fluorides beca b) It has lowest ionisation e	energy
a) It has highest ionisationc) Its size is largest	non reacts with fluorine to giv	ve stable xenon fluorides beca b) It has lowest ionisation e	energy
a) It has highest ionisationc) Its size is largestWhich of the following is na) HF	non reacts with fluorine to giv energy nost volatile?	ve stable xenon fluorides becab) It has lowest ionisation ed) It is the most readily avac) HBr	ause energy ilable gas
a) It has highest ionisationc) Its size is largestWhich of the following is na) HF	non reacts with fluorine to givenergy nost volatile? b) HCl	ve stable xenon fluorides becab) It has lowest ionisation ed) It is the most readily avac) HBr	ause energy ilable gas
 a) It has highest ionisation c) Its size is largest Which of the following is n a) HF Which phosphorus reacts w 	non reacts with fluorine to given energy nost volatile? b) HCl vith KOH solution to produce b) Red phosphorus	ve stable xenon fluorides becab) It has lowest ionisation ed) It is the most readily avac) HBrphosphine gas?	ause energy ailable gas d) HI
 a) It has highest ionisation c) Its size is largest Which of the following is mailed a) HF Which phosphorus reacts was a) White phosphorus 	non reacts with fluorine to given energy nost volatile? b) HCl vith KOH solution to produce b) Red phosphorus	ve stable xenon fluorides becab) It has lowest ionisation ed) It is the most readily avac) HBrphosphine gas?	ause energy ailable gas d) HI
 a) It has highest ionisation c) Its size is largest Which of the following is n a) HF Which phosphorus reacts w a) White phosphorus In the treatment of leukaem 	non reacts with fluorine to givenergy nost volatile? b) HCl vith KOH solution to produce b) Red phosphorus nia is used.	 ve stable xenon fluorides beca b) It has lowest ionisation e d) It is the most readily ava c) HBr phosphine gas? c) Both a and b 	ause energy alable gas d) HI d) None of these
 a) It has highest ionisation c) Its size is largest Which of the following is mailed a) HF Which phosphorus reacts was a) White phosphorus In the treatment of leukaema a) White phosphorus 	non reacts with fluorine to givenergy nost volatile? b) HCl vith KOH solution to produce b) Red phosphorus nia is used.	 ve stable xenon fluorides beca b) It has lowest ionisation e d) It is the most readily ava c) HBr phosphine gas? c) Both a and b 	ause energy alable gas d) HI d) None of these
 a) It has highest ionisation c) Its size is largest Which of the following is mailer a) HF Which phosphorus reacts was a) White phosphorus In the treatment of leukaemailer a) White phosphorus Argon was discovered by: a) Cavendish 	non reacts with fluorine to givenergy nost volatile? b) HCl vith KOH solution to produce b) Red phosphorus nia is used. b) Red phosphorus	 c) HBr c) HBr c) Both a and b c) Scarlet phosphorus c) Rayleigh 	ause energy ailable gas d) HI d) None of these d) P^{32} isotope d) Thomson
 a) It has highest ionisation c) Its size is largest Which of the following is mailer a) HF Which phosphorus reacts was a) White phosphorus In the treatment of leukaemailer a) White phosphorus Argon was discovered by: a) Cavendish 	 non reacts with fluorine to givenergy nost volatile? b) HCl rith KOH solution to produce b) Red phosphorus nia is used. b) Red phosphorus b) Red phosphorus 	 c) HBr c) HBr c) Both a and b c) Scarlet phosphorus c) Rayleigh 	ause energy ailable gas d) HI d) None of these d) P^{32} isotope d) Thomson
 a) It has highest ionisation c) Its size is largest Which of the following is manual a) HF Which phosphorus reacts was a) White phosphorus In the treatment of leukaeman a) White phosphorus Argon was discovered by: a) Cavendish Among K, Ca, Fe and Zn , 	 non reacts with fluorine to givenergy nost volatile? b) HCl vith KOH solution to produce b) Red phosphorus nia is used. b) Red phosphorus b) Red phosphorus the element which can form a second seco	 ve stable xenon fluorides beca b) It has lowest ionisation e d) It is the most readily ava c) HBr c) Both a and b c) Scarlet phosphorus c) Rayleigh more than one binary compo 	ause energy ailable gas d) HI d) None of these d) P^{32} isotope d) Thomson und with chlorine is
	Halogen molecules are: a) Monoatomic \land form X b) Diatomic \land form $X_2^{-i.ion}$ c) Diatomic \land form $X_2^{2-i.i}$ d) Monoatomic \land form X Least stable oxide of chlori a) Cl ₂ O Bromine water is decolouri a) SO_2 Fluorine reacts with water to a) HF , $O_2 \land O_3$ The electronic configuration family as others?	Halogen molecules are: a) Monoatomic \land form $X_2^{2-i \text{ ions } i}$ b) Diatomic \land form $X_2^{2-i i}$ ions c) Diatomic \land form $X_2^{2-i i}$ ions d) Monoatomic \land form $X^{-i i}$ ions Least stable oxide of chlorine is a) Cl ₂ O b) ClO ₂ Bromine water is decolourised by: a) SO_2 b) C_2H_4 Fluorine reacts with water to give a) HF , $O_2 \land O_3$ b) $HF \land F_2$ The electronic configurations of four elements are give family as others?	Hallogen molecules are: a) Monoatomic $\land form X_2^{2-i i onsi}$ b) Diatomic $\land form X^{-i i onsi}$ c) Diatomic $\land form X_2^{-i i}$ ions d) Monoatomic $\land form X^{-i i i}$ ions Least stable oxide of chlorine is a) Cl ₂ O b) ClO ₂ c) Cl ₂ O ₇ Bromine water is decolourised by: a) SO ₂ b) C ₂ H ₄ c) C ₂ H ₂ Fluorine reacts with water to give a) HF, O ₂ $\land O_3$ b) HF $\land F_2$ c) HF $\land O_2$ The electronic configurations of four elements are given below. Which element

b) Red	plastics
--------	----------

c) Red dyes for plastics

d) Safety match-striking surface

194. On heating $(NH_4)_2 Cr_2 O_7$, the gas evolved is 'X'. The same gas is obtained by heating:

	a) $NH_4 NO_2$	b) <i>NH</i> ₄ <i>NO</i> ₃	c) $Mg_3N_2 + H_2O$	d) $Na_2O_2 + H_2O$
195	Ozone with KI solution pro	duces		
	a) <i>IO</i> 3	b) I_2	c) <i>Cl</i> ₂	d) _{HI}
196	Ammonium nitrate decomp	poses on heating into		
	a) Ammonia and nitric acid	1	b) Nitrous oxide and water	
	c) Nitrogen, hydrogen and	ozone	d) Nitric oxide, nitrogen di	oxide and hydrogen
197	What is a product obtained	in the reaction of $HgCl_2$ an	d $Hg(CN)_2$?	
	a) $(CN)_2$		b) $Hg(CN)Cl$	
	c) $Hg[Hg(CN)_2Cl_2]$		d) Addition compound Hg	$C l_2 \cdot Hg(CN)_2$
198		metal filament from getting b	ournt, when the electric curre	nt is switched on, the bulb is
	filled with: a) CH_{4}	b) An inert gas	c) <i>CO</i> ²	d) <i>Cl</i> ₂
199	Which of the following is in $\frac{1}{2}$	ncorrect?		
	a) O_2 is weaker oxidant the	na ^{b)} O ₂ has laraer bond lend	at ^{c)} Both $O_2 \land O_2$ are parar	ní ^{d)} O_2 is linear $\wedge O_3$ are is ar
200	Which of the following has		y y y y y y y y y y	
	a) $H_2S_2O_6$	b) H ₂ S ₂ O ₈	c) H ₂ S ₂ O ₃	d) $H_2S_4O_6$
201	. Which of the following is a	metalloid?		
	a) N	b) Bi	c) As	d) p
202	. The weakest acid is			
	a) HI	b) HBr	c) HCl	d) HF
203	$\frac{1}{2}$. $\frac{1}{6}$ the preparation of H_2 S	O ₄ :		
	a) SO_2 is dissolved $\in H_2S$	O_4		
	b) SO_2 is dissolved in wate	r		
	c) SO_3 is dissolved in conc			
	d) SO_3 is dissolved in dilut			
204	Which element is most met			
	a) Phosphorus	b) Arsenic	c) Antimony	d) Bismuth
205	Concentrated nitric acid rea	acts with iodine to give:		
	a) HI	b) HOI	c) HOIO ₂	d) HOIO3

206.	Electron	affinity for	a noble	gas is ap	proximatel	v equal to:
				0 ···· ··· ··· ···	F	,

		8		
	a) That of halogens			
	b) Zero			
	c) That of oxygen family			
	d) That of nitrogen family			
207	Ozonization of water is car	ried out to remove:		
	a) Bacterial impurities			
	b) Bad taste			
	c) Excess of chlorine prese	nt		
	d) Calcium and magnesium	a salt present in it		
208	. Welding of magnesium can	be done in an atmosphere of	f	
	a) <i>Xe</i>	b) _{He}	c) _{Kr}	d) _{Ne}
209	. Which noble gas is not four	nd in atmosphere?		
	a) Rn	b) Kr	c) Ne	d) Ar
210	Which of the following is n	ot oxidised by O ₃ ?		
	a) KI	b) FeSO ₄	c) KMnO ₄	d) K ₂ MnO ₄
211	The m. p. and b. p. is lowes	t for:		
	a) He	b) Ne	c) Xe	d) Ar
212	The reaction of the type 22	$X_2 + S \rightarrow S X_4$, is shown by so	ulphur when X is	
	a) Fluorine or chlorine		b) Chlorine only	
	c) Chlorine and bromine or	ıly	d) F, Cl, Br, all	
213	Chlorine, bromine and iodi	ne are placed in the seventh g	group of the periodic table be	ecause:
	a) They are non-metals			
	b) They are electronegative	;		
	c) The have seven electrons	s in the outermost shells of th	neir atoms	
	d) They are generally univa	lent		
214	Nitric acid whether diluted	or concentrated:		
	a) Reacts with Al to give H	I ₂		
	b) Reacts with Al to give N	NO ₂		
	c) Reacts with Al to give N	$H_4 NO_3$		
	d) Hardly affects Al			
215	$1. NH_3$ can be collected by th	e displacement of:		
	a) Mercury	b) Water	c) Brine	d) Conc. H_2

d) Conc. H_2SO_4

216. The number of *p*-electrons in bromine atom is:

- 217. Which species has the largest dipole moment?
 - a) $_{NH_3}$ b) $_{PH_3}$ c) $_{AsH_3}$ d) $_{SbH_3}$

218. A gas reacts with CaO, but not with $NaHCO_3$. The gas is:

a)
$$CO_2$$
 b) Cl_2 c) N_2 d) O_2

219. Nitrogen can be purified from the impurities of oxides of nitrogen and ammonia by passing through:

a) conc. HCl

b) Alkaline solution of pyrogallol

- c) A solution of $K_2 Cr_2 O_7$ acidified with $H_2 SO_4$
- d) A solution of KOH (aq.)

220. Which statement is correct?

- a) Noble gases are not found in nature
- b) Some compounds of noble gas elements are known
- c) Atmospheric air is free from noble gases
- d) None of the above
- 221. Calcium phosphide is:

a) Ca_3P b) Ca_3P_2 c) Ca_2P_3 d) CaP_2

222. Which of the following inert gas liquefies easily?

- a) $_{He}$ b) $_{Kr}$ c) $_{Ne}$ d) $_{Ar}$
- 223. Compounds containing coordinate bonds is:
 - a) O_3 b) SO_3 c) H_2SO_4 d) All of these

224. When Cl_2 water is added to an aqueous solution of potassium halide in presence of chloroform a violet colour is obtained. On adding more of Cl_2 water, the violet colour disappears and a colourless solution is obtained. This test confirms the presence of the following in aqueous solution: a) Iodide b) Bromide c) Chloride d) Iodide and bromide

225. Which forms strong $p\pi - p\pi$ bonds?

a) N	b) As	c) P	d) Bi
------	-------	------	-------

226. In OF_2 molecule, the total number of bond pairs and lone pairs of electrons present respectively are:

a) 2, 6

- b) 2, 8
- c) 2, 10
- d) 2, 9

227. Nitric acid may be kept in	n a bottle of:		
a) Ag	b) Sn	c) Pb	d) A1
228. The vapour density of NI	H_4Cl is almost half the expe	cted value because it:	
a) Is salt of a strong acid			
b) Sublimes on heating			
c) Dissociates completely	7		
d) None of the above			
229. The least stable hydride of	f 15th group elements is		
a) NH ₃	b) PH ₃	c) AsH ₃	d) BiH ₃
230. Which of the light effecti	ve in the formation of chloro	ophyll?	
a) Sodium lamp	b) Neon lamp	c) Mercury lamp	d) Argon lamp
231. Which of the following is	an explosive compound?		
a) XeO F_4	b) $XeOF_2$	c) XeF_2	d) <i>Xe O</i> ₃
232. The most abundant eleme	ent in the earth crust is		
a) O	b) Si	c) H	d) C
233. Blasting of TNT is done b	by mixing it with:		
a) NH4Cl	b) $_{NH_4}NO_3$	c) _{NH₄NO₂}	$d) (NH_4)_2 SO_4$
234. Man dies, when nitrous of	xide is inhaled in large quant	ities because it:	
a) Is poisonous			
b) Causes laughing hyster	ia		
c) Decomposes haemogle	obin		
d) Reacts with organic tis	sues		
235. The chemical used for co	oling in refrigerator is		
a) NH_4Cl	b) NH_4OH	c) _{liquid} NH_3	d) <i>CO</i> ₂
236. SO_2 can act as strong oxid	dizing agent in:		
a) Acidic medium	b) Basic medium	c) Neutral medium	d) None of these
237. Nitrogen gas is absorbed	by:		
a) Aluminium carbide	b) Calcium carbide	c) Ferrous sulphate	d) Calcium hydroxide
238. The reaction $3ClO^{-ii}$ (a	$q.) \rightarrow ClO_3^{-\iota+2Cl^{-\iota}\iota}(aq.)$ is a	an example of :	
a) Oxidation reaction			
b) Reduction reaction			
c) Disproportionation rea	ction		
d) Decomposition reaction	n		

239. liberates oxygen from water.

- a) P b) Na c) F_2 d) I_2
- 240. The hydroxide of which metal is soluble in excess of ammonia:
 - a) Cr b) Cu c) Fe d) Bi

241. The formation of $O_2^{+i[PtF6]^{-i\iota_i}}$ is the basis for the formation of xenon fluorides. This is because

- a) O_2 and Xe have comparable sizes
- b) Both O_2 and Xe are gases
- c) O_2 and Xe have comparable ionisation energies

d) Both a and c

242. In nitrogen family the H—M—H bond angle in the hydrides MH_3 gradually becomes closer to 90° on going from

- N to Sb. This shows that gradually:
- a) The basic strength of the hydrides increases
- b) Almost pure *p*-orbitals are used for *M*—H bonding
- c) The bond energies of *M*—H bond increase
- d) The bond pairs of electrons become farther apart from the central atom

243. Sequence of acidic character is:

- a) $SO_2 > CO_2 > CO > N_2O_5$
- b) $SO_2 > N_2O_5 > CO > CO_2$
- c) $N_2O_5 > SO_2 > i CO > CO_2$
- d) $N_2O_5 > SO_2 > i CO_2 i CO_2$

244. Phosphorus is manufactured by heating in a furnace.

a) Bone-ash, sodium chloride and coke

b) Bone-ash, silica and coke

- c) Bone-ash, silica and lime
- d) Bone-ash, coke and limestone

245. Which oxide of nitrogen is coloured gas?

a) N_2O b) NO_2 c) N_2C	D_5 d) NO
-------------------------------	-------------

246. In KI solution, I_2 readily dissolves and forms

a) _I	b) $K I_2^{-ii}$	c) <i>K I</i> ₃	d) <i>K I</i> ₂
7. Consider the follo	owing compounds		

247. Consider the follo	owing compounds		
Sulphur dioxide			
Hydrogen peroxic	le		
Ozone			
Among these con	npounds identify those that car	n act as bleaching agent.	
a) 1 and 3	b) 2 and 3	c) 1 and 2	d) 1,2 and 3

240. Different anotropic forms of supplur differ in:					
a) Crystalline structure	b) Molecular weight	c) Chemical properties	d) Chemical structure		
249. Monoatomic element of r	249. Monoatomic element of nitrogen family is:				
a) Bismuth	b) Phosphorus	c) Antimony	d) None of these		
250. Which noble gas was first of all detected in solar chromosphere?					
a) Helium	b) Neon	c) Argon	d) Krypton		
251. The acid used in lead stor	age battery is:				
a) Nitric acid	b) Sulphuric acid	c) Hydrochloric acid	d) Phosphoric acid		
252. Halogen used in the prepa	aration of insecticides is:				
a) _{I 2}	b) <i>Cl</i> ₂	c) _{Br₂}	d) $_{F_{2}}$		
253. Which halogen acid is a l	iquid?				
a) HF	b) HCl	c) HBr	d) HI		
254. Halon-1301 is	254. Halon-1301 is				
a) $CCl_2F \cdot CClF_2$	b) $C_2 F_4 B r_2$	c) $CC l_3 F$	d) CF_3Br		
255. Skin turns yellow in contact with conc. HNO_3 , because:					
a) Proteins are converted into xanthoproteins					
b) Water is removed by t	he acid				
c) Skin gets burnt					
d) Nitrocellulose is forme	ed				
256. The pair of species having	g identical shape for molecule	s of both species is			
a) Xe F_2 , $I F_2^{-ii}$	b) BF_{3}, NH_{3}	c) CF_4 , SF_4	d) PCl_5 , ICl_5		
257. Which of the following p	airs are correctly matched?				
1.haber process		Manufacture of ammonia			
2.le-blanc process		Manufacture of sulphuric	acid		
3.birkeland -Eyed proce	SS	Manufacture of nitric acie	d		
4. solvay process		Manufacture of sodium c	arbonate		

Select the correct answer using the codes given below a) 2,3 and 4 b) 1,2,3,and 4

258. Which molecule does not possess distorted geometry?

a) ClF	b) <i>IE</i>	c) _{IF}	d) _{IF-}
	$\sim 1\Gamma_3$	· · Ir 5	· · · · · · · · · · · · · · · · · · ·

c) 1,2and 4

259. Iodine displaces chlorine from which one of the compounds?

a) KCl b) $CaCl_2$ c) CCl_4 d) $KClO_3$

260. Which member of oxygen family has the highest catenation ability?

d) 1,3and 4

a)	Oxygen	b) Sulphur	c) Selenium	d) Tellurium	
261. When heated NH ₃ is passed over CuO gas evolved is					
a) [N_2	b) N ₂ O	c) HNO ₃	d) NO ₂	
262. The	e noble gas used in the p	reparation of first noble gas	compound was:		
a) [Xe	b) He	c) Cr	d) Rn	
263. P_2	O_5 is used extensively as	a:			
a) [Dehydrating agent	b) Catalytic agent	c) Reducing agent	d) Preservative	
264. Ox	ygen differs from sulphu	ır in:			
a) .	Allotropy				
b)]	Formation of ions				
c) [Number of electrons in t	the outermost orbit			
d)	Nature of hydrides				
265. Wł	nich of the following salt	would give SO ₂ with hot and	d dil.H ₂ SO ₄ and also decolou	rises Br ₂ water?	
a) [$Na_2 SO_3$	b) NaHSO4	c) Na ₂ SO ₄	d) Na ₂ S	
266. On	heating ammonium dich	promate, the gas evolved is:			
a)	Oxygen	b) Ammonia	c) Nitrogen	d) Nitric oxide	
267. Reg	267. Regular use of which of the following fertilizers increases the acidity of soil?				
a)	KNO ₃				
b)	NH_2CONH_2				
c)	$(\mathbf{NH}_4)_2 \mathbf{SO}_4$				
d) (Superphosphate of lime				
268. The	e halogen showing maxin	mum coordination number of	f sulphur in SX_n halides is		
a)	Cl	b) Br	c) F	d) I	
269. BC	Cl_3 is a planar molecule v	whereas NCl_3 is pyramidal b	ecause:		
a)	a) BCl_{3} has no lone pair of electrons but NCl_{3} has a lone pair of electrons				
b)	b) B—Cl bond is more polar than N—Cl bond				
c)]	c) Nitrogen atom is smaller than boron atom				
d) N—Cl bond is more covalent than B—Cl bond					
270. The	e bond angle in $Cl_2O_{\rm mo}$	blecule is:			
a)	180°	b) 105°	c) 90°	d) 111°	
271. Ma	271. Mark the wrong statement. Halogens are all coloured.				

a) This is due to absorption of visible light by their molecules resulting in the excitation of outer electrons to higher energy levels

b) The small F_2 molecules absorb high energy violet radiation and appear yellow

c) Large I_2 molecule absorb low energy yellow and green radiations and appear violet in colour

d) The excitation energy required by the small fluorine atoms is smaller than required by the large iodine atom

272. Which reaction can be used to prepare phosphoric acid?

	ed to propure phospholic dele	* •	
a) $P_2O_3 + H_2O20 ^{\circ}C$	b) $P_2O_3 + H_2O80^{\circ}C$	c) $P_2O_3 + H_2O25 ^{\circ}C$	d) P + conc. $HNO_3 \rightarrow$
273. Which gas is filled in elec	tric bulbs/tubes?	-	
a) O ₂	b) N_2	c) Ar	d) He
274. Iodine is formed when po	tassium iodide reacts with a s	solution of	
a) ZnSO ₄	b) $CuSO_4$	c) $(NH_4)_2 SO_4$	d) $_{Na_{2}}SO_{4}$
275. The interatomic distances	in H_2 and Cl_2 molecules are	e 74 and 198 pm respectively	The bond length of HCl is:
a) 272 pm	b) 136 pm	c) 124 pm	d) 248 pm
276. Mg on heating to redness	in an atmosphere of N_2 and the set of N_2 and	then on treating with H_2O g	ives:
a) $_{NH_3}$	b) H_2	c) N_2	d) _{O2}
277. The bleaching action of b	leaching powder is due to		
a) Nascent hydrogen	b) Nascent oxygen	c) Nascent chlorine	d) None of these
278. In the preparation of O_2 i	$KClO_3$, MnO_2 acts as:		
a) Activator	b) Catalyst	c) Oxidizing agent	d) Dehydrating agent
279. Which noble gas has high	est and least polarisability res	spectively?	
a) He, Xe	b) Ne, Kr	c) Kr, Ne	d) Xe, He
280. Nitrolim, a nitrogeneous f	fertilizer, is:		
a) $Ca_{3}H_{2}$	b) $Ca(CN)_2$	c) $CaCN_2$	d) $CaCN_2 + C$
^{281.} H_2 S cannot be dried by	<u>passing</u> . H_2 SO ₄ because:		
a) The acid oxidises it	CONC		
b) The acid combines wit	h $H_2 S$ to form a salt		
c) Both form complex	-		
d) It dissolves in the acid			
282. The chemical name of ble	eaching powder is:		
a) Calcium chloro hypoch	nlorite		
b) Calcium hypochlorite			
c) Calcium chlorate			
d) Calcium perchlorate			
283. The following are some st I. Reducing property Incr	e ,	p hydrides	

 II. Tendency to donate lone pair decreases from NH₃ to BiH₃ III. Thermal stability of hydrides decreases from NH₃ to BiH₃ IV. Bond angle of hydrides decreases from NH₃to BiH₃ 			
The correct statements are a) I, II, III and IV	b) I, III and IV	c) I, II, IV	d) I and IV
284. The deficiency of iodine in	diet causes		
a) Rickets	b) Night blindness	c) Beri –beri	d) Goitre
285. The number of $P - O - P$	bonds in cyclic metaphospho	ric acid is	
a) Zero	b) Three	c) Two	d) Four
286. Which noble gas is more so	oluble in water?		
a) He	b) Ar	c) Ne	d) Xe
287. An important method of fix	sation of atmospheric N_2 is:		
a) Fischer-Tropsch's proce	88		
b) Haber's process			
c) Frasch's process			
d) Solvay's process			
288. Which statement about not	le gases is not correct?		
a) Xe forms XeF ₆			
b) Ar is used in electric but	lbs		
c) Kr is obtained during ra	dioactive disintegration		
d) He has the lowest b. p. a	mong all the noble gases		
289. Noble gases are group of el	ements which exhibit very		
a) High chemical activity		b) Much paramagnetic prop	perties
c) Minimum electronegativ	vity	d) Low chemical activity	
290. On passing H_2 S through	acidified FeCl ₃ solution, F	eCl_3 is converted into:	
a) <i>FeCl</i> ₂	b) $Fe_{2}(SO_{4})_{3}$	c) FeS	d) FeSO4
291. $HPO_3 + H_2 O$ Heat ? The	product is:		
a) $H_4 P_2 O_7$	b) H_3PO_3	c) $H_{3}PO_{4}$	d) $P_{2}O_{5}$
292. Ozone reacts with:			
a) $C_{2}H_{4}$	b) $C_2 H_2$	c) $C_{6}H_{6}$	d) All of these
293. The inert gas abundantly for	ound in atmosphere is		
a) Xe	b) Kr	c) He	d) Ar
294. When SO_{2} gas is passed thr	ough cupric chloride solution	1:	
a) The solution becomes co	blourless		

c) No change takes place

- d) Solution becomes colourless and a white precipitate is formed
- 295. The reaction of chlorine with CO in the presence of sunlight gives:
 - a) $COCl_2$ b) CO_2Cl_2 c) HOCl d) $H_2Cl_2O_2$
- 296. The mixture of noble gases is separated by:
 - a) Ramsay-Rayleigh's first method
 - b) Ramsay-Rayleigh's second method
 - c) Fischer and Ringe's method
 - d) Dewar's coconut charcoal adsorption method
- 297. The boiling points of halogens increase with increase in molecular weight, it is because:
 - a) As the size increases molecules undergo association leading to higher stability
 - b) Bond strength increases due to increase in electronegativity
 - c) Van der Waals' forces increase with increase in number of electrons per mole
 - d) None of the above
- 298. NCl_3 on hydrolysis yields:

	a) N_2 and NOCl	b) NO and HCl	c) NH_3 and HOCl	d) N_2O and NH_3	
299	299. The strongest oxidizing agent is:				
	a) H_3PO_4	b) _{HNO3}	c) _{H₃PO₃}	d) _{HNO2}	
300	Increasing order of acid str	engths of hydrogen halides is	3:		
	a) HF < HCl < HBr < HI				
	b) HCl < HI < HBr < HF				
	c) HCl < HBr < HI < HF				
	d) None of these				
301	. Noble gases are sparingly s	oluble in water due to			
	a) Dipole-dipole interaction b) Dipole-induced dipole interaction			nteraction	
	c) Induced dipole-induced	dipole interaction	d) Hydrogen bonding		
302	. Oxidation state exhibited b	y sulphur			
	a) +6	b) +4	c) 0	d) All of these	
303	303. Low volatile nature of $H_2 SO_4$ is due i:				
	a) Hydrogen bonding	b) Van der Waals' forces	c) Strong bonds	d) None of these	
304	304. When Na_2S is added is sodium nitroprusside solution:				
	a) Beautiful violet colour is	s produced			

- b) $A complex [Fe(CN)_5 NOS]^{4-is formed i}$
- c) The complex $Na_4 [Fe(CN)_5 NOS]$ is formed
- d) All of the above
- 305. The reaction,

 $2SO_2 + O_2 + 2H_2O \longrightarrow 2H_2SO_4$

- is an example of :
- a) Synthesis of H_2SO_4
- b) Analysis of H_2SO_4
- c) Displacement reaction
- d) Double decomposition
- 306. The gases absorbed by alkaline *pyrogallol* and oil of turpentine respectively are:
- a) O_3, CH_4 b) O_2, O_3 c) SO_2, CH_4 d) N_2O, O_3 307. Ozone turns tetramethyl base paper: a) Green b) Violet c) Red d) Black 308. A student accidently splashes few drops of conc H_2SO_4 on his cotton shirt, after a while, the splashed parts
- blacken and holes appear. This is happened because sulphuric acida) Dehydrates the cotton with burningb) Causes the cotton react with airc) Heats up the cottond) Removes the elements of water from cotton309. Aquaregia is a mixture of:
- a) $3 HCl + HNO_3$ b) $3 HNO_3 + HCl$ c) $H_3PO_4 + H_2SO_4$ d) $HCl + CH_3COOH$ 310. The bond angle in H_2Sis :
 - a) 109 28' b) 104 51' c) 120' d) 92.5'
- 311. In the manufacture of sulphuric acid by contact process, tyndall box is used to
 - a) Filter dust particles b) Remove impurities
 - c) Convert SO₂ to SO₃ d) Test the presence of dust particles
- 312. The oxide insoluble in water is:

a)
$$TeO_2$$
 b) SO_2 c) PoO_2 d) SeO_2

313. Which indicates the common laboratory method for the preparation of chlorine?

a)
$$4 HCl+O_2 \longrightarrow 2H_2O+2Cl_2$$

b) $2 NaCl+2H_2O \longrightarrow 2 NaOH+H_2+Cl_2$
c) $MnO_2+4 HCl \longrightarrow MnCl_2+Cl+2H_2O$
d) $2 Mg_2OCl_2+O_2 \longrightarrow 4 MgO+2Cl_2$
314. The geometry of $Xe F_6$ is

a) Tetrahedral

b) Pentagonal bipyramidal

c) Octahedral d) Square planar 315. Chlorine acts as a bleaching agent only is presence of a) Dry air b) Moisture c) Sunlight d) Pure oxygen 316. Which one of the following pentafluorides cannot be formed? a) PF5 b) AsF₅ c) SbF5 d) BiF₅ 317. SO₂oxidises: b) $K_2 Cr_2 O_7$ d) All of these a) Mg c) KMnO₄ 318. Which of the following has highest proton affinity? a) NH_3 b) PH_3 c) H_2O d) H_2S 319. Nuclear fusion produces: a) Argon b) Deuterium c) Helium d) Krypton 320. Concentrated hydrochloric acid when kept in open air sometimes produces a cloud of white fumes. The explanation for it is that a) Concentrated hydrochloric acid emits strongly smelling HCl gas all the time b) Oxygen in air reacts with the emitted HCl gas to form a cloud of chlorine gas c) Strong affinity of HCl gas for moisture in air results in forming of droplets of liquid solution which appears like a cloudy smoke. d) Due to strong affinity for water, concentrated hydrochloric acid pulls moisture of air towards itself. This moisture forms droplets of water and hence the cloud. 321. In the dewar's method of separation of noble gases, the mixture of noble gases is kept in contact with coconut charcoal at 173 k. Which one of the following gaseous mixtures is not adsorbed on to the charcoal? c) He, Ne a) Ar, Kr b) Xe. Ar d) Xe, Kr 322. The type of hybrid orbitals used by chlorine atom in ClO_2^{-ii} is b) $s p^{2}$ c) $s p^{3}$ d) None of these a) sp 323. The oxidation state of N is highest in: a) $N_3 H$ b) NH_2 c) $N_{2}H_{4}$ d) NH₂OH 324. Formula of rhombic Sulphur is: c) _{S4} d) _{S₈} a) S_2 b) S 325. The noble gases are unreactive because they: a) Have the same number of electrons b) Have an atomicity of one c) Are gases with low densities

d) Have stable electronic configuration or closed valency shell

326. Phosphine reacts with copper sulphate solution to form: b) Copper phosphide c) Copper phosphate a) Copper d) Copper phosphite 327. Desicchlora is b) Anhydrous $CaCl_2$ a) Anhydrous $Ba[ClO_4]_2$ c) Anhydrous $Mg(ClO_4)_2$ d) Conc $H_2 S O_4$ 328. Who among the following first prepared a stable compound of noble gas? a) Neil Bartlett b) Reyleigh c) Ramsay d) Rutherford 329. On exposure to light electrical conductivity of selenium: a) Increases b) Decreases c) Remains same d) First decreases then increases 330. For H₃PO₃ and H₃PO₄ the correct choice is a) H₃PO₃ is dibasic and reducing b) H₃PO₃ is dibasic and non-reducing d) H₃PO₃ is tribasic and non reducing c) H_3PO_3 is tribasic and reducing 331. When chlorine reacts with dil. NaOH under cold conditions, the oxidation state of chlorine changes from zero to c) +5 and +3a) -1 and +5b) +1 and +4d) -1 and +1332. Yellow ammonium sulphide is: a) $(NH_{A})_{2}S$ b) $(NH_A)_2 S_x$ c) $(NH_4)_2 S_8$ d) $(NH_4)_2 S_4$ 333. Sulphuric acid is used: a) In lead storage batteries b) As a dehydrating agent c) In making fertilizers d) All of the above 334. Hydrolysis of NCl₃ gives NH₃ and X which of the following is X? a) HClO₄ b) HClO₃ c) HOCl d) HClO₂ 335. How many lone pairs are associated with xenon atom $i XeF_2$, $SeF_4 \wedge XeF_6$ respectively? a) 1, 2 and 3 b) 2, 3 and 1 c) 3, 2 and 1 d) 4, 3 and 2 336. Nitrous oxide a) Is an acidic oxide b) Is a mixed oxide c) Support the combustion of sulphur d) Highly soluble in hot water 337. The number of unpaired electrons in the p-subshell of oxygen atom is d) 4 a) 1 b) 2 c) 3

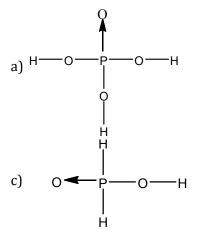
338. $(NH_4)_2 Cr_2 O_7$ on heating liberates a gas. The same gas will be obtained by

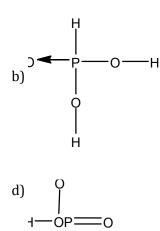
a) Heating NH_4NO_3		b) Heating NH_4NO_2	
c) Treating H_2O_2 with NaN O_2 d) Treating Mg_3N_2 with H_2O		H_2O	
339. Fluorapatite is a mineral of	f:		
a) F_2	b) <i>Br</i> ₂	c) P	d) As
340. Least malleable and ductile	e metal is:		
a) Au	b) Ag	c) Ni	d) Bi
341. Which of the following is	not correct?		
a) $3O_2$ Silent electric discharge $\Delta H = -284.5 KJ$ b) Ozone undergoes additi	• 2O ₃ ; on reaction with unsaturated	carbon compounds	
c) Sodium thiosulphate rea	acts with I_2 to form sodium te	etrathionate and sodium iodic	le.
d) Ozone oxidises lead sul	phide to lead sulphate		
342. Laughing gas is prepared b	by heating		
a) NH_4Cl	b) $_{NH_4NO_3}$	c) $N H_4 Cl + NaNO_3$	d) $(NH_4)_2 SO_4$
343. A certain element forms a	solid oxide which when disso	olved in water forms an acidi	c solution. The element is:
a) Neon	b) Sodium	c) Phosphorus	d) sulphur
344. NO_2 cannot be obtained by	heating :		
a) KNO ₃	b) $Pb(NO_3)_2$	c) $Cu(NO_3)_2$	d) $AgNO_3$
345. The product obtained by h	eating $(NH_4)_2 SO_4 \wedge KCNC$	D is	
a) Ammonia	b) Ammonium cyanide	c) Urea	d) Hydrocyanic acid
346. The silver halide, which is	least soluble in NH_4OH , is:		
a) AgF	b) AgCl	c) AgBr	d) AgI
347. Fermings salt is			
a) HF	b) KH F_2	c) _{NOCl}	d) KClO3
348. H ₃ PO ₃ is			
a) A dibasic acid	b) A tribasic acid	c) Monobasic	d) Neutral
349. Correct order of decreasin	g thermal stability is as		
a) NH ₃ >PH ₃ >AsH ₃ >SbH ₃		b) PH ₃ > NH ₃ > AsH ₃ > SbH	[₃
c) AsH ₃ > PH ₃ > NH ₃ > SbH ₃		d) SbH ₃ > AsH ₃ > PH ₃ > NH ₃	
350. Most electropositive halog	en is:		
a) F	b) Cl	c) Br	d) I

351. Argon is used

a) In filling airships

c) In high temperature welding


352. $K_2 CS_3$ can be called potassium :


a) Sulphocyanide b) Thiocarbide

353. Which of the following has S—S bond

a) $H_2 S_2 O_6$ b) $H_2 S_2 O_7$

354. The structure of orthophosphoric acid is

b) To obtain low temperature

^{c)} Thiocarbonate

c) $H_2 S_2 O_8$

d) In readiotherapy for treatment of cancer

d) Thiocyanate

d) Mustard gas

355. Bleaching action of chlorine is due to:

	a) Reduction	b) Oxidation	c) Chlorination	d) Hydrogenation	
356. In clatherates of xenon with water, the nature of bonding between xenon and water molecule is				nolecule is	
	a) Dipole induced dipole in	nteraction	b) Coordinate		
	c) Hydrogen bonding		d) Covalent		
357	Asthma patients use a mixt	ure of for respiration.			
	a) $O_2 \wedge H_2$	b) $O_2 \wedge He$	c) $O_2 \wedge Ar$	d) $O_2 \wedge Ne$	
358	B. When ammonium nitrate is	s heated at 250°C the gas evo	lved is		
	a) N ₂	b) NH ₃	c) N ₂ O ₃	d) N ₂ O	
359	9. Fluorine gas is stored in:				
	a) Copper vessels	b) Steel vessels	c) Both (a) and (b)	d) None of these	
360	D. Conc. HNO_3 reacts with in	on to:			
	a) Render iron passive				
	b) Give ferrous nitrate and nitric oxide				
	c) Give ferric nitrate and ammonium nitrate				
	d) Give ferric nitrate and nitrogen dioxide				
361	. Which one of the following	g statements is not true?			

b) Fluorine	b) Fluorine is the only halogen that does not show variable oxidation state			
c) HOCl is	c) HOCl is stronger acid than HOBr			
d) HF is a	stronger acid than HCl			
differentiat	 362. In <i>nitroprusside</i> ion, the iron and NO exist as Fe^{II} and NO⁺ⁱⁱⁱ rather than Fe^{III} and NO. These forms can be differentiated by: a) Estimating the concentration of iron 			
	ng the concentration of CN^{-ii} ng the solid state magnetic mome	ent		
d) Therma	lly decomposing the compound			
363. The colour	rless gas liberated by passing e	xcess of chlorine through NH_3	gas is :	
a) NCl ₃	b) HCl	c) $_{N_2}$	d) H_2	
364. The basicit	y of H ₃ PO ₄ is			
a) 2	b) 3	c) 4	d) 5	
365. A radioacti	ve element resembling iodine in p	properties is:		
a) Astatine	b) Lead	c) Radium	d) Thorium	
366. Which of t	he following form of interhalogen	n compounds does not exists?		
a) $_{IF_7}$	b) ClF_3	c) ICl	d) $BrCl_7$	
367. Which one	is true peroxide?			
a) NO ₂	b) MnO ₂	c) BaO ₂	d) SO ₂	
368. When a col	ourless gas is passed through bron	mine water, decolourization takes	s place. The gas is:	
a) HCl	b) HBr	c) H_2S	d) <i>SO</i> ₂	
 369. In case of nitrogen, NCl₃ is possible but not NCl₅ while in case of phosphorus, PCl₃ as well as PCl₅ are possible. It is due to a) Lower electronegativity of P but not in N 				
b) Lower tendency of H bond formation in P than N				
 c) Availability of vacant <i>d</i>-orbital in P but not in N d) Occurrence of P in solid while N in gaseous state at room temperature 				
370. The bonds present in pernitric acid are:				
a) Ionic bonds				
b) Covalent bonds				
c) Semipolar bonds or dative bonds				
d) Coordinate and covalent bonds				

a) Among halide ions, iodine is the most powerful reducing agent

371. In which of these processes platinum is used as a catalyst?

	a) Oxidation of ammonia to form HNO ₃		b) Hardening of oils	
	c) Productions of synthetic rubber		d) Synthesis of methanol	
37	2. D_3 line observed in the yel	llow region of the sun's spect	rum is due to	
	a) _{Na}	b) _{Ne}	c) _{Kr}	d) _{He}
37			oxide to form a halate which	a can be used in fireworks and
	safety matches. The gas an a) Br_2 , $KBrO_3$	d halate respectively are: b) <i>Cl</i> ₂ , <i>KClO</i> ₃	c) I_2 , NaIO ₃	d) Cl_2 , NaClO ₃
37-	4. Correct statement about wi	2 5	- 1 ₂ , 1010 ₃	· 01 ₂ , 110010 ₃
	a) It ignites at 240°C	b) It is violet-red solid	c) It is not poisonous	d) It ignites at 30°C
37	5. Ammonia reacts with exce	ss of chlorine to form:	-	-
	a) $N \square_2 \wedge NH_4 Cl$	b) _{NCl₃} ∧ HCl	c) $NH_4Cl \wedge NCl_3$	d) N_2 and HCl
37	6. The noble gas which can d	5	- 5	
	a) <i>Xe</i>	b) _{Ne}	c) _{Ar}	d) _{He}
37	7. Ozone depletes due to the			IIC
	a) Acrolein	b) Chlorine nitrate	c) Peroxy acetyl nitrate	d) $SO_2 \wedge SO_3$
37	8. A substance which gives a	yellow precipitate when boild	ed with an excess of nitric ac	id and ammonium molybdate
	and red precipitate with A_{i}			
27	a) Orthophosphate	b) Pyrophosphate	c) Metaphosphate	d) Hypophosphate
37	9. Nitrous acid reacts with H	-	,	Nee
	a) $NO_2 + SO_2$	b) $NO+SO_2$	c) NO+SO ₃	d) None of these
38	0. Among the properties (<i>a</i>) r towards metal species is:	reducing, (b) oxidising and (a)	c) complexing, the set of prop	perties shown by CN^{-60} ion
	a) <i>a</i> , <i>b</i> , <i>c</i>	b) <i>b</i> , <i>c</i>	c) <i>c</i> , <i>a</i>	d) <i>a</i> , <i>b</i>
38	1. Sea-weeds are important so	ources of:		
	a) Iron	b) Chlorine	c) Iodine	d) Bromine
38	2. CAN pellets are coated with	th calcium silicate because:		
	a) CAN is explosive	b) CAN is hygroscopic	c) CAN is water soluble	d) None of these
383. Yellow phosphorus is kept in:				
	a) Water	b) Ether	c) Alcohol	d) Kerosene
38	4. F_2 combines with all non-n	netals directly except:		
	a) _{N2}	b) P	c) Xe	d) Kr
385. Which one of the following has lowest bond dissociation energy?				
	a) Cl —Cl	b) F —F	c) Br —Br	d) I —I
386. Ozone reacts with moist iodine giving:				
	a) <i>HIO</i> 3	b) _{I4} O9	c) <i>IO</i> ²	d) I ₂ O ₅

387. On heating sodium as well as sulphur can be melted. Molten sodium and molten sulphur are used as:

a) Medium for extracting	metals			
b) Catalysts	b) Catalysts			
c) Metal refiners				
d) Electrodes in batteries				
388. Oxidation of metals by H	NO_3 does not depend on:			
a) Nature of metal	b) Conc. of HNO ₃	c) Temperature	d) Catalyst	
389. In froth floatation process	for the purification of ores, t	he particles of ore float becar	use	
a) Their surface is not eas	sily wetted by water	b) They are light		
c) They are insoluble		d) They bear electrostatic charge		
390. XeF_{6} on complete hydroly	ysis gives:			
a) <i>XeO</i> 3	b) _{XeO}	c) XeO_2	d) _{Xe}	
391. The zero group members	are collectively known as:			
a) Inert gases	b) Rare gases	c) Noble gases	d) All of these	
392. How many lone pair of el	ectrons are present on Xe in -	XeOF 4 ?		
a) 1	b) 2	c) 3	d) 4	
393. Hypophosphorous acid, H	I_3PO_2 is			
a) A monobasic acid	b) A Tribasic acid	c) A Dibasic acid	d) Not acidic at all	
^{394.} The ionization potential	of $X^{-i \text{ ion is equal } i}$:			
a) The electron affinity of X atom				
b) The electronegativity of X atom				
c) The ionization potential of X atom				
d) None of the above				
395. Which oxide of chlorine is most powerful oxidizing agent?				
a) Cl_2O	b) ClO ₂	c) Cl_2O_6	d) Cl_2O_7	
396. In Ostwald process of manufacturing of HNO ₃ catalyst used is				
a) MO	b) Fe	c) Mn	d) Pt	
397. In the reaction, $HNO_3 + P_4O_{10} \longrightarrow 4HP_4$	PO ₃ +X			
the product X is a) N ₂ O ₃	b) N ₂ O ₅	c) NO ₂	d) H ₂ O	
398. Given are H_3PO_2 , H_3PO_3 , H_3PO_4 and $H_4P_2O_7$ which of the above oxoacids results into two series of salts?				
a) H ₃ PO ₂	b) H ₃ PO ₃	c) H ₃ PO ₄	d) $H_4P_2O_7$	

399. Which of the following is a mixed anhydride?

a) NO	b) NO ₂	c) N ₂ O ₅	d) N ₂ O	
400. Pure N_2 can be obtained b	y:			
a) Heating barium azide	b) NH_3 and CuO	c) Both (a) and (b)	d) None of these	
401. Sulphur trioxide is dissolv	ed in heavy water to form a c	compound X. The hydridisati	on of sulphur in X is	
a) sp^2	b) <i>sp</i> ³	c) <i>sp</i>	d) dsp^2	
402. What happens i the colo	ur of litmus paper when a d	rop of $H_2 SO_4$ is added $\frac{1}{6}$ it	?	
a) It turns red to blue	b) It turns blue to red	c) It gets destroyed	d) It is unaffected	
403. Which noble gas does not	form clathrates?			
a) Xe	b) Kr	c) He	d) Ar	
404. Strongest reducing ager	tis:			
a) H_2O	b) H_2S	c) H_2Se	d) $H_2 Te$	
405. Most abundant element in	earth's crust is:			
a) O	b) Se	c) S	d) _{Te}	
406. Which reaction yields the	greatest quantity of chlorine	from a given quantity of hyd	rochloric acid?	
a) Warming conc . HCl v	vith MnO ₂			
b) Warming conc . HCl v	vith PbO ₂			
c) Mixing conc . HCl wi	th KMnO ₄			
^{d)} Treating bleaching po	d) Treating bleaching powder with HCl			
407. Superphosphate of lime is				
a) A mixture of normal ca	llcium phosphate and gypsun	1		
b) A mixture of primary calcium phosphate and gypsum				
c) Normal calcium phosphate				
d) Soluble calcium phospl	nate			
408. In Birkeland and Eyde pro	ocess, the temperature of the	electric arc is about:		
a) 1500°C	b) 4000° C	c) 3000°C	d) 2000°C	
409. Sulphides of which element are not precipitated in acidic or alkaline medium?				
a) K	^{b)} Ca	c) Al	d) All of these	
410. Select the correct stateme	nt.			
a) Sodium metal is stored	under kerosene			
b) One of the oxides of carbon is a basic oxide				
c) Metals can form only basic oxides				
d) To prevent combination of white phosphorus with oxygen it is kept in kerosene				
411. SO_2 is dried by :				

a) CuO	b) <i>HNO</i> ₃	c) P_2O_5	d) Anhyd. $CaCl_2$
412. When Zn reacts with v	ery dilute nitric acid it produc	ces?	
a) NO	b) $_{NH_4}NO_3$	c) _{NO2}	d) H_{2}
413. The geometry of H_2 S	\wedge its dipole moment are:		
a) Angular and non-ze	b) Angular and zero	c) Linear and zero	d) Linear and non-zero
414. Graham's salt is:			
a) Sodium aluminosili	cate		
b) Sodium hexametaph	osphate		
c) Ferrous ammonium	sulphate		
d) Potassium chromiun	n sulphate		
415. Yellow oils of sulphur	is/are		
a) H_2S	b) H_2S_1, H_2S_3	c) H_2SO_4	d) CS_2 , NH_2CSNH_2
416. In the atmosphere N_2	s present as element with O_2	because:	
a) N_2 is more reactive			
b) N_{2} is inert			
c) N_2 does not react wi	th O_2		
d) N_{2} is actively partic	pating in the reaction		
417. Percentage of argon in	air is about:		
a) 10 per cent			
b) 0.1 per cent			
c) Much less than 0.1 per cent			
d) 1 per cent			
418. Select the incorrect statement among the following			
a) O_3 is used as germicide for purification of air.			
b) In O ₃ ,O—O bond length is identical with that of molecular oxygen			
c) O_3 molecule is angular in shape.			
d) O_3 is an oxidizing ag	gent.		
419. For advertisement the	coloured dischared tubes cont	tain	
a) He	b) Ne	c) Ar	d) Kr
420. Which reaction cannot	be used for the preparation of	of the halogen acid?	
a) $2KBr + H_2SO_4 \longrightarrow K_2SO_4 + 2HBr$			
Conc. b) $NaCl+H_2SO_4 \longrightarrow NaHSO_4 + HCl$			
Con			

Conc.

c) _{NaHSO4} +NaCl—	$\rightarrow Na_2SO_4 + HCl$					
	$d) CaF_2 + H_2SO_4 \longrightarrow CaSO_4 + 2HF$					
Conc. 421. The principal source of	helium is:					
a) Air	b) Monazite sand	c) Radium	d) All of these			
422. Heat of vaporisation	of NH_3 is high due \mathcal{L} :					
a) Its basic nature	b) Its polar nature	c) Hydrogen bonding	d) Solubility in water			
423. Which is an essential tr	ace element involved in physiol	logy of thyroid glands?				
a) Fe	b) Ca	c) Na	d) I_2			
424. Which coagulates white	e of an egg?					
a) Orthophosphoric aci	d b) Metaphosphoric acid	c) Hypophosphoric acid	d) Pyrophosphoric acid			
425. The fluoride which doe	s not exist is:					
a) _{CF 4}	b) _{SF6}	c) _{HeF4}	d) $_{XeF_4}$			
426. The solubility of iodine	in water increases in presence	of				
a) Chloroform	b) Alcohol	c) Potassium iodide	d) Sodium hydroxide			
427. Sal volatile is:						
a) _{NH4} Cl	b) $(NH_4)_2 SO_4$	c) $(NH_4)_2 CO_3$	d) $_{NH_4NO_3}$			
428. Halogen acid used ∈ t	he preparation of ሪ regia is :					
a) HF	b) HBr	c) HCl	d) HI			
429. Bromine is liberated wh	ten an aqueous solution of KBn	r is treated with				
a) $DilH_2SO_4$	b) _{I2}	c) _{Cl₂}	d) _{SO2}			
430. In nitrogen family, the Sb. This shows that gra- a) The basic strength of	•	ydrides gradually becomes clo	oser to 90° on going from N to			
b) Almost pure <i>p</i> -orbita	b) Almost pure <i>p</i> -orbitals are used for <i>M</i> —H bonding					
c) The bond energies of <i>M</i> —H bond increase						
d) The bond pair-lone pair of electrons show lesser repulsion due to decreasing electronegativity trend						
431. NH_4Cl is used to clear	n metal surfaces because:					
a) It dissociates into NH_3 and HCl on heating						
b) $_{NH_3}$ forms a soluble	e complex with the metal					
c) $_{\rm NH_4}C_{\rm l}$ forms a volume	atile chloride					

d) None of the above

432. Which reagent can separate nitric oxide from nitrous oxide?

a) Sodium nitroprusside solution

b) $FeSO_4$ Solution

c) Nessler's reagent

d) Ammoniacal silver nitrate solution

```
433. The shape and hybridisation of ICl_3 is:
```

- a) Triangular planar, $s p^3$
- b) Pyramidal, $s p^3 d^2$
- c) Tetrahedral, $s p^3$

```
d) Bent T, s p^3 d
```

434. The anhydride of *pyrosulphuric* acid is:

- a) SO_2 b) S_2O_3 c) SO_3 d) S_2O_7
- 435. Which one is strongest oxidizing agent?
 - a) $HCIO_2$ b) $HCIO_2$ c) $HCIO_3$ d) $HCIO_4$

436. Which is not an oxo-acid of chlorine?

a) HCIO b) $HCIO_2$ c) $HCIO_3$ d) $HCIO_5$

437. A greenish-yellow coloured gas is liberated on heating a mixture of two substances which are:

a) KBr + HCl b) KI + HCl c) $MnO_2 + HCl$ d) $NaCl + H_2SO_4$

438. What are the products obtained when ammonia is reacted with excess chlorine?

a) N_2 and NCl_3 b) N_2 and HCl c) N_2 and NH_4Cl d) NCl_3 and HCl

439. PH_3 produces smoky rings when it comes in contact with air. This is because:

a) It is inflammable

b) It combines with water vapours

- c) It combines with nitrogen
- d) It contains impurity of P_2H_4

440. The least stable anion of oxo-acids of chlorine is

a) ClO ⁻ⁱⁱ	b) ClO_2^{-ii}	c) ClO_3^{-ii}	d) ClO_4^{-ii}
-----------------------	------------------	------------------	------------------

441. Among H_2O , H_2S , $H_2Se \wedge H_2Te$, the one with highest boiling point is :

a) H_2O	because of H-bonding	

b) H_2 Te because of high mol. wt.

c) H_2S because of H-bonding

d) H_2 Se because of low mol. wt.

442. Non-combustible hydride is:

a) $_{PH_3}$ b) $_{AsH_3}$ c) $_{SbH_3}$ d) $_{NH_3}$ 443. In $H_3PO_{3:}$

a) Each hydrogan atom is attached to ovygan atom					
	a) Each hydrogen atom is attached to oxygen atom				
	b) Two hydrogen atoms are attached to oxygen atoms				
	c) One atom of H is attached to oxygen atom				
d) None of the above					
444. In the known interhaloge	-	-			
a) 4	b) 5	c) 7	d) 8		
445. Which of the following is	s the life saving mixture for	an asthma patient?			
a) Mixture of helium and	l oxygen	b) Mixture of neon and o	xygen		
c) Mixture of xenon and	nitrogen	d) Mixture of argon and o	oxygen		
446. Which species is not kno	wn?				
a) XeF 6	b) $_{XeF_4}$	c) XeO_3	d) $_{KrF_6}$		
447. The reaction of the type 2	$2X_2 + S \longrightarrow SX_{4,}$ is shown by	sulphur when X is			
a) Fluorine or chlorine		b) Chlorine only			
c) Chlorine and bromine	only	d) F, Cl Br all			
448. Oxygen reacts with each	of the following elements re	adily, except:			
a) P	b) Na	c) S	d) Cl		
449. Cane sugar reacts with co	oncentrated HNO_3 to give:				
a) $CO_2 \wedge H_2O$	b) Oxalic acid	c) Carbonic acid	d) $CO \wedge H_2O$		
450. Phosgene is the name of:					
a) A phosphorus compou	ind				
b) A phosphonium comp	ound				
c) Carbonyl chloride					
d) Phosphorus halide					
451. H ₂ S is not a/an					
a) Reducing agent	b) Acidic	c) Oxidising agent	d) None of these		
452. The idea which prompted	Bartlett to prepare first even	r compound of noble gas was:			
a) High bond energy of 2	Ke—F				
b) Low bond energy of F	b) Low bond energy of F—F in F_2				
c) Ionization energies of	c) Ionization energies of O_2 and xenon were almost similar				
d) None of the above					
453. Which of the following s	tatements regarding sulphur	is incorrect?			
a) SO ₂ molecule is param	nagnetic.				
b) The vapour at 200°C of	consists mostly of S ₈ rings.				

c) At 600 C the gas mai	c) At 600 C the gas mainly consists of S_2 molecules.				
d) The oxidation state o	d) The oxidation state of sulphur is never less than +4 in its compounds.				
454. Which of the following	is a solid in nature?				
a) $N_2 O_3$	b) _{N2} O	c) _{NO}	d) N_2O_5		
455. On heating copper nitra	te strongly is finally obtai	ned.			
a) Copper	b) Copper oxide	c) Copper nitrite	d) Copper nitride		
456. Which of the following	dissolves in water but does no	ot give any oxyacid solution?			
a) SO ₂	b) OF ₂	c) SCl ₄	d) SO ₃		
457. The colour of I_2 is viole	et because it:				
a) Absorbs violet light					
b) Does not absorb light	t				
c) Absorbs yellow and g	green light				
d) None of the above					
458. Compounds formed when inorganic compounds and a) Interstitial compounds		ed in the cavities of crystal la	attices of certain organic and		
b) Clathrates					
c) Hydrates					
d) Picrates					
459. The mineral clevite on h	neating gives:				
a) He	b) Xe	c) Ar	d) Ra		
460. Bromine can be liberate	ed from potassium bromide so	lution by:			
a) Iodine solution	b) Chlorine water	c) Sodium chloride	d) Potassium iodide		
461. Which element is not co	onsidered as 'chalcogens'?				
a) Selenium	b) Oxygen	c) Sulphur	d) Polonium		
462. When lead nitrate is hea	ated it produces				
a) NO ₂	b) NO	c) N ₂ O ₅	d) N ₂ O		
463. Which is the most easily	y liquefiable rare gas?				
a) Xe	b) Kr	c) Ar	d) Ne		
464. The outermost electronic configuration of group 15 or VA elements is:					
a) $n s^2 n p^1$	b) $n s^2 n p^2$	c) $n s^2 n p^3$	d) $n s^2 n p^4$		
465. The noble gas used in at	tomic reactor, is				
a) Krypton	b) Oxygen	c) Neon	d) Helium		

466. Atom that requires	high energy	of excitation is:
-------------------------	-------------	-------------------

		N –	N -
a) F	b) Cl	c) Br	d) I
467. In modern process p	bhosphorus is manufactured b	y:	
a) Heating a mixtur	e of phosphorite mineral with	sand and coke in electric fur	mace
b) Heating calcium	phosphate with coke		
c) Heating bone-ash	with coke		
d) Heating the phos	phate mineral with sand		
468. Which property is n	nost important in making fluor	rine the strongest oxidising h	alogen?
a) Bond dissociation	n energy		
b) Ionisation enthal	ру		
c) Hydration enthal	ру		
d) Electron affinity			
469. Which has maximur	n vapour pressure or most vol	latile or low b.p.?	
a) HCl	b) HI	c) HF	d) HBr
470. Amphoteric oxide is	5:		
a) Sb_4O_6	b) _{N2} O5	c) Bi_2O_3	d) <i>Na</i> ₂ <i>O</i>
471. Bone black is polym	norphic form of		
a) Phosphorus	b) Sulphur	c) Carbon	d) Nitrogen
472. In which case, the or	rder of acidic strength is not c	correct?	
a) HI>HBr>HCl		b) HIO ₄ >HBrO ₄ >HC	CIO ₄
c) HCIO ₄ >HCIO ₃ >I	HCIO ₂	d) HF>H ₂ O>NH ₃	
473. Which compound de	oes not has S—S bond?		
a) Na ₂ S ₂ O ₄	b) Na ₂ S ₄ O ₆	c) Na ₂ S ₂ O ₃	d) Na ₂ S ₂ O ₇
474. The chamber acid co	ontains $H_2 SO_4$.		
a) 10.20%	b) 35.45%	c) 67.80%	d) 82.90%
475. Compound of Sulph	ur used in electrical transform	ner is:	
a) SO ₂	b) H_2S	c) <i>SO</i> ₃	d) $_{SF_6}$
476. The inert gases prod	lucing maximum number of c	compounds are	
a) He and Ne	b) Ar and Ne	c) Kr and Ne	d) Ar and Xe
477. The fertilizer named	d 'Nitrolim' is prepared by the	e use of :	
a) $CaO+N_2$	b) $CaC + N_2$	c) $CaC_2 + N$	d) $CaC_2 + N_2$
478. When <i>KBr</i> is treate	d with concentrated $H_2 SO_4$	reddish brown gas is evolved	. The gas is
a) Bromine		b) HCl	

		d) None of the choice	
c) Mixture of bromine and <i>HBr</i>		d) None of the above	
479. Sulphur trioxide can be ob	tained by which of the follow	wing reaction:	
a) $S+H_2SO_4\Delta$	b) $H_2 SO_4 + PC l_5 \Delta$	c) $CaSO_4 + C\Delta$	d) $Fe_2(SO_4)_3 \Delta$
480. The metallic form of phos	phorus is:		
a) White P	b) Red P	c) β-black P	d) α -black P
481. The atomic weight of nobl	e gases is obtained by using	the relationship:	
a) Atomic weight = equiva	alent weight × valency		
b) Atomic weight = equiva	alent weight/valency		
c) Atomic weight = \overline{Equi}	Valency valent weight		
d) $_{2\times \text{VD}=\text{molecular weight}}$			
482. When HNO_3 reacts with 1	netals, nitrogen dioxide is us	ually evolved if the acid is:	
a) Dilute	b) Very dilute	c) Moderately strong	d) Concentrated
483. Which one of the followin	g reaction of xenon compound	nds is not feasible?	
a) $XeO_3 + 6HF \rightarrow XeF_6 +$	3H ₂ O		
b) $3XeF_4 + 6H_2O \rightarrow 2Xe$	$+ XeO_3 + 12HF + 1.5O_2$		
c) $2XeF_2 + 2H_2O \rightarrow 2Xe$	+ 4HF+O ₂		
d) $XeF_6 + RbF \rightarrow Rb[XeF]$	57]		
484. Fixation of nitrogen mean	S:		
a) Reaction of nitrogen with	th oxygen		
b) Conversion of free atm	ospheric nitrogen into nitrog	en compounds	
c) Decomposition of nitro	geneous compounds to yield	free nitrogen	
d) The action of denitrifyi	ng bacteria on nitrogen com	pounds	
485. One mole of fluorine is rea			products formed are KF,
$H_2O \wedge O_2$. The molar rati a) 1 : 1 : 2	o of KF, H_2O and O_2 respe b) 2 : 1 : 0.5	ctively is: c) 1 : 2 : 1	d) 2 : 1 : 2
486. Slow acting nitrogenous fe	-	-	.,
a) NH ₂ CONH ₂	b) NH ₄ NO ₃	c) CaNCN	d) KNO ₃
487. Liquor ammonia is			
a) Ammonium hydroxide		b) Liquefied ammonia gas	
c) Concentrated solution of	of NH₃in water	d) A solution of NH_3 in all	cohol
488. In ramsay and rayleigh's is			
a) NaNO ₂ Only	b) NO and NO_2	c) NaNO ₃ Only	d) NaNO ₂ and NaNO ₃
489 Superphase of lime is	-	-	

489. Superphosphate of lime is used in:

a) Cement industry	b) Glass industry	c) Agriculture	d) metallurgy
490. Noble gases are:			
a) Colourless			
b) Odourless			
c) Tasteless and non-infla	mmable		
d) All of the above			
491. Nitric acid is used in the	manufacture of :		
a) TNT	b) Picric acid	c) _{NH4} NO3	d) All of these
492. The symbol Rn represent	:		
a) Radium	b) Radon	c) Rhenium	d) Rhodium
493. The gas which is absorbed	d by ferrous sulphate solution	giving blackish brown colou	r is:
a) $_{NH_3}$	b) _{N2}	c) CO	d) NO
494. Conc. HNO_3 is heated w	ith P_2O_5 to form:		
a) _{N2} O	b) NO	c) _{NO2}	d) N_2O_5
495. Cold fire is related to			
a) White P	b) Red P	c) <i>P H</i> ₃	d) $P_{2}O_{5}$
496. The non-existent species	is:		
a) XeF 5	b) BrF_5	c) <i>SbF</i> ₅	d) $_{PF_5}$
497. In Kroll and ICl process of	of the production of titanium,	the inert gas used is:	
a) Ne	b) Ar	c) Kr	d) Xe
498. A 500 g toothpaste sampl	e has 0.2 g fluoride concentra	tion. What is the concentration	on of F^{-ii} in ppm?
a) 250	b) 200	c) 400	d) 1000
499. <i>PC</i> l_3 on hydrolysis gives			
a) HPO_3	b) $H_{3}PO_{2}$	c) $H_{3}PO_{4}$	d) $H_{3}PO_{3}$
500. Which halogen does not s	show bleaching property?		
a) _{F2}	b) <i>Cl</i> ₂	c) _{Br₂}	d) I_2
501. Which of the following is	s called stranger gas?		
a) _{N2} O	b) _{Xe}	c) <i>Cl</i> ₂	d) N_2
502. Noble gases possess:			
a) High ionization potent	ial		
b) Zero electron affinity			
c) High electrical conduc	tance		
d) All of the above			

503. What would happen when a solution of potassium chromate is treated with an excess of dilute nitric acid?				
a) $Cr O_4^{2-ii}$ is reduced to	a) CrO_4^{2-ii} is reduced to +3 state of Cr		b) $Cr O_4^{2-ii}$ is oxidized to + 7 state of Cr	
c) $Cr_2O_7^{2-ii}$ and H_2O are	c) $Cr_2O_7^{2-ii}$ and H_2O are formed		ned	
504. A green yellow gas reacts matches. The gas and hala	te respectively are			
a) Br_2 , $KBrO_3$	b) Cl_2 , $KClO_3$	c) I_2 , NaIO ₃	d) Cl_2 , $NaClO_3$	
505. When plants and animals		-	-	
a) Nitrates	b) Nitrides	c) Ammonia	d) Elements of nitrogen	
506. Which of the following sp	becies is not a pseudohalide?			
a) CNO^{-ii}	b) $RCOO^{-ii}$	c) OCN^{-ii}	d) _{NNN} - ⁱⁱ	
507. Dilute HNO_3 reacts with	limestone to yield:			
a) $Ca(OH)_{2} \cdot Ca(NO_3)_2$ 508. Sulphur is soluble in:	b) CaO· Ca $(NO_3)_2$	c) $_{2\text{CaO}} \text{Ca}(NO_3)_2$	d) None of the above	
a) Water	b) Dilute HCl	c) Ether	d) _{CS2}	
509. Which of the following is	formed by xenon?		-	
a) XeF_7	b) $Xe F_4$	c) <i>Xe F</i> ₅	d) XeF_3	
510. The oxide which is solid a	t room temperature is:			
a) N_2O	b) NO	c) _{N₂O₄}	d) _{N2} O5	
511. Which hydride possesses	the maximum complex formi	ing nature?		
a) $_{NH_3}$	b) $_{PH_3}$	c) BiH ₃	d) SbH_3	
512. Bad conductor of electrici	ity is:			
a) H_2F_2	b) HCl	c) _{HBr}	d) HI	
513. The van der Waals' forces	in halogens decrease in the c	order:		
a) $F_2 > Cl_2 > Br_2 > I_2$	b) $I_2 > Br_2 > Cl_2 > F_2$	c) $Br_2 > Cl_2 > F_2 > I_2$	d) $Cl_2 > Br_2 > I_2 > F_2$	
514. The word argon means:				
a) Noble	b) Now	c) Strange	d) Lazy	
515. SO_2 reacts with chlorine to	o form:			
a) Sulphur monochloride				
b) Sulphur dichloride				
c) Sulphuryl chloride				
d) Sulphur trichloride				
516. Which hydride does not e	xist?			
a) SbH_3	b) AsH ₃	c) ${_{PH_{5}}}$	d) $N_2 H_4$	

517. Ozone is formed by the interaction of water with:

a) Chloride	b) Chlorine	c) Fluorine	d) Fluoride		
518. $PCl_5 \exists but NCl_5 does not because$:					
a) Nitrogen has no v	vacant 'd'orbitals				
b) Lower tendency of	of H-bond formation in P than I	N			
c) Lower electroneg	ativity of P than N				
d) Occurrence of P 519. Which reaction is no	in solid state while N_2 in gaseou ot valid?	us state at room temperature			
a) HCl + $F_2 \rightarrow HF$ +	+ Cl ₂	b) HF + $Cl_2 \rightarrow F_2$ + HC	1		
c) Zn + HCl →ZnC	$l_2 + H_2$	d) Al + HCl \rightarrow AlCl ₃ +	\cdot H ₂		
520. Arrange the acids (I	H_2SO_3 , (II) H_3PO_3 , and (III)	$HClO_{3}$ in the decreasing or	der of acidic nature.		
a) I>III>III	b) I>II>III	c) III>I>II	d) II>III>I		
521. With excess of chlor	rine, ammonia forms:				
a) _{NCl3}	b) NOCl ₂	c) N_2	d) _{NH4} Cl		
522. Oxalic acid when he	eated with conc H_2SO_4 , gives of	out			
a) $CO \wedge CO_2$	b) $CO_2 \wedge H_2S$	c) $H_2O \wedge CO_2$	d) Oxalic sulphate		
523. The anhydride of h	ypochlorous acid is:				
a) ClO ₃	b) ClO_2	c) Cl_2O_5	d) Cl_2O		
	% solution of NaOH , the pro	-			
a) OF_2	b) NaF	c) H_2O	d) All of these		
525. I_2 dissolves in KI sol	lution due to the formation of				
a) KI ₂ and I^{-ii}	b) $K^{+\iota,I^{-\iota\iota}\iota}$ and I_2	c) I_{3}^{-ii}	d) None of these		
	boiling points of the hydrides of	с .			
a) NH ₃ >PH ₃ >AsH ₃ >		b) PH ₃ <ash<sub>3< NH₃< \$</ash<sub>			
c) NH ₃ <ph<sub>3< SbH₃</ph<sub>		d) NH ₃ <ph<sub>3<a<sub>8H₃<s< td=""><td>bH₃</td></s<></a<sub></ph<sub>	bH ₃		
527. In which process sul	-				
a) Protection of gra	-				
b) Manufacture of H_2SO_4					
c) Manufacture of black shoe polish					
d) Vulcanization of rubber					
	levite is heated, it give off the in	-			
a) Helium	b) Xenon	c) Radon	d) Argon		
529. In $N H_3 \wedge P H_3$, the common is					

	a) Basic nature	b) Odour	c) Combustibility	d) None of these	
530). Oxygen is not readily react	ed with			
	a) P	b) _{Cl}	c) Na	d) S	
531	. Most acidic oxide among the	he following is			
	a) Cl ₂ O ₅	b) Cl ₂ O	c) Cl ₂ O ₃	d) Cl ₂ O ₇	
532	2. Which one has the highest	bond energy?			
	a) O—O	b) S—S	c) Se—Se	d) <i>Te</i> — <i>Te</i>	
533	3. $KMnO_4$ is prepared by :				
	a) Passing Cl_2 through K	$_{2}$ MnO ₄ solution			
	b) Passing O_2 through K_2	$_{2}MnO_{4}$ solution			
	c) Reaction of KOH with <i>F</i>	KMnO ₄			
	d) Fusing KON with Mno	O_2			
534	Bromine is prepared in the	laboratory by heating a mixt			
	a) $MgBr + H_2SO_4$	b) $MgBr_2 + Cl_2$	c) $KBr + MnO_2 + H_2SO_4$	d) KBr+HCl	
535	5. I_2 on rubbing with liquor I	_			
	a) _{NH4} I	b) _{N2}	c) $NH_4I + N_2 + I_2$	d) $\mathbf{\dot{c}}_{3} NH_{2}$	
536		concentrated H ₂ SO ₄ reddish b			
	a) Mixture of bromine and	HBr	b) HBr		
	c) Bromine		d) None of the above		
537	7. Which of the following not				
	a) He	b) Ne	c) Ar	d) Xe	
538	3. First stable compound of in	hert gas was prepared by:			
	a) Rayleigh and Ramsay				
	b) Bartlett				
	c) Frankland and Lockyer				
E 20	d) Cavendish	·			
555	9. The function of $Fe(OH)_3$ in	_	h) To datast sollsidel impu		
	a) To remove arsenic impuc) To remove moisture	шцу	b) To detect colloidal impud) To remove dust particles		
540). Which is incorrect for blea	ching powder?	u) To remove dust particles	>	
540	a) Highly soluble in water	ening powder :			
	b) Light yellow coloured powder				
	c) Oxidizing agent	owder			
	cy Oxidizing agoin				

d) Reacts with dilute acid to release chlorine
--

541. Molecule with a three ele	ctron bond is:		
a) Cl ₂	b) NO	c) _{<i>H</i>₂O}	d) <i>Cl</i> ₂ <i>O</i>
542. Phosphorus pentoxide ca	nnot be used to dry:		
a) Nitrogen	b) Ammonia	c) Hydrogen sulphide	d) Sulphur dioxide
543. Calcium cyanamide on tr	eatment with steam produces		
a) NH ₃ +CaO	b) NH ₃ + CaHCO ₃	c) NH ₃ + CaCO ₃	d) $NH_3 + Ca(OH)_2$
544. Which one of the followi	ng statements regarding heliu	m is incorrect?	
a) It is used to produce a	nd sustain powerful super cor	ducting magnets	
b) It is used in gas-cooled	l nuclear reactors		
c) It is used to fill gas bal	loons instead of hydrogen bed	cause it is lighter and non-infl	ammable
d) It is used as a cryogen	c agent for carrying out expe	riments at low temperature	
545. Hydrogen bromide is drie	ed by passing the gas through:		
a) Quick lime	b) Anhydrous $CaCl_2$	c) KOH pellets	d) Conc. H_2SO_4
546. The ion that cannot under	rgo disproportionation is:		
a) ClO_4^{-ii}	b) ClO_{3}^{-ii}	c) ClO_2^{-ii}	d) ClO ⁻ⁱⁱ
547. Which of the following is	s the most basic oxide?		
a) Bi_2O_3	b) SeO ₂	c) Al_2O_3	d) Sb_2O_3
a) Bi_2O_3 548. Which one is the anhydri	2	c) Al_2O_3	d) Sb_2O_3
2 0	2	c) Al_2O_3 c) Cl_2O	d) Sb_2O_3 d) Cl_2O_6
548. Which one is the anhydri	de of $HClO_4$? b) Cl_2O_7		
 548. Which one is the anhydri a) ClO₂ 549. Phosphine is generally pr 	de of $HClO_4$? b) Cl_2O_7		
 548. Which one is the anhydri a) ClO₂ 549. Phosphine is generally pr a) By heating phosphorus 	de of $HClO_4$? b) Cl_2O_7 epared in the laboratory?	c) <i>Cl</i> ₂ <i>O</i>	
 548. Which one is the anhydri a) ClO₂ 549. Phosphine is generally pr a) By heating phosphorus 	de of $HClO_4$? b) Cl_2O_7 epared in the laboratory? s in a current of hydrogen phorus with aqueous solution	c) <i>Cl</i> ₂ <i>O</i>	
 548. Which one is the anhydri a) ClO₂ 549. Phosphine is generally pr a) By heating phosphorus b) By heating white phos c) By decomposition of F 	de of $HClO_4$? b) Cl_2O_7 epared in the laboratory? s in a current of hydrogen phorus with aqueous solution	c) Cl_2O of caustic potash	
 548. Which one is the anhydri a) ClO₂ 549. Phosphine is generally pr a) By heating phosphorus b) By heating white phos c) By decomposition of F 	de of $HClO_4$? b) Cl_2O_7 epared in the laboratory? s in a current of hydrogen phorus with aqueous solution P_2H_4 at 110°C orus with an aqueous solutior	c) Cl_2O of caustic potash	
 548. Which one is the anhydri a) ClO₂ 549. Phosphine is generally pr a) By heating phosphorus b) By heating white phos c) By decomposition of <i>F</i> d) By heating red phosph 	de of $HClO_4$? b) Cl_2O_7 epared in the laboratory? s in a current of hydrogen phorus with aqueous solution P_2H_4 at 110°C orus with an aqueous solutior	c) Cl_2O of caustic potash	
548. Which one is the anhydri a) ClO_2 549. Phosphine is generally pr a) By heating phosphorus b) By heating white phos c) By decomposition of F d) By heating red phosph 550. In P_4O_6 the number of c	de of $HClO_4$? b) Cl_2O_7 epared in the laboratory? s in a current of hydrogen phorus with aqueous solution P_2H_4 at 110°C orus with an aqueous solution exygen atoms bonded to each b) 2	c) Cl_2O of caustic potash n of caustic soda P atom is:	d) <i>Cl</i> ₂ <i>O</i> ₆
548. Which one is the anhydri a) ClO_2 549. Phosphine is generally pr a) By heating phosphorus b) By heating white phos c) By decomposition of F d) By heating red phosph 550. In P_4O_6 the number of c a) 1.5 551. The most abundant inert a) He	de of $HClO_4$? b) Cl_2O_7 epared in the laboratory? s in a current of hydrogen phorus with aqueous solution P_2H_4 at 110°C orus with an aqueous solution oxygen atoms bonded to each b) 2 gas in air is: b) Ne	c) <i>Cl₂O</i> of caustic potash of caustic soda P atom is: c) 3 c) Ar	d) <i>C l₂O₆</i> d) 4 d) Kr
548. Which one is the anhydri a) ClO_2 549. Phosphine is generally pr a) By heating phosphorus b) By heating white phos c) By decomposition of F d) By heating red phosph 550. In P_4O_6 the number of co a) 1.5 551. The most abundant inert	de of $HClO_4$? b) Cl_2O_7 epared in the laboratory? s in a current of hydrogen phorus with aqueous solution P_2H_4 at 110°C orus with an aqueous solution oxygen atoms bonded to each b) 2 gas in air is: b) Ne SO_4 is added i dry KNO ₃ , bi	 c) C l₂O of caustic potash n of caustic soda P atom is: c) 3 c) Ar rown fumes evolve . These fit 	 d) C l₂O₆ d) 4 d) Kr umes are of :
548. Which one is the anhydri a) ClO_2 549. Phosphine is generally pr a) By heating phosphorus b) By heating white phos c) By decomposition of F d) By heating red phosph 550. In P_4O_6 the number of co a) 1.5 551. The most abundant inert a) He 552. When concentrated H_2 a) SO_2	de of $HClO_4$? b) Cl_2O_7 epared in the laboratory? s in a current of hydrogen phorus with aqueous solution P_2H_4 at 110°C orus with an aqueous solution b) 2 gas in air is: b) Ne SO_4 is added i dry KNO_3 , bi b) SO_3	 c) Cl₂O of caustic potash of caustic soda P atom is: c) 3 c) Ar rown fumes evolve . These for c) NO₂ 	 d) Cl₂O₆ d) 4 d) Kr umes are of : d) NO
548. Which one is the anhydri a) ClO_2 549. Phosphine is generally pr a) By heating phosphorus b) By heating white phos c) By decomposition of F d) By heating red phosph 550. In P_4O_6 the number of c a) 1.5 551. The most abundant inert a) He 552. When concentrated H_2	de of $HClO_4$? b) Cl_2O_7 epared in the laboratory? s in a current of hydrogen phorus with aqueous solution P_2H_4 at 110°C orus with an aqueous solution b) 2 gas in air is: b) Ne SO_4 is added i dry KNO_3 , bi b) SO_3	 c) Cl₂O of caustic potash of caustic soda P atom is: c) 3 c) Ar rown fumes evolve . These for c) NO₂ 	 d) Cl₂O₆ d) 4 d) Kr umes are of : d) NO

b) Reduction	
--------------	--

c) Neutralisation

d) Oxidation and reduction

554. The molecular formula of dithionic acid is

a) H ₂ S ₂ O ₄	b) H ₂ S ₂ O ₆	c) H ₂ S ₂ O ₅	d) $H_2S_2O_7$	
555. The correct order of pseudohalide ,polyhalide and interhalogen are				
a) Br I_2^{-i-i} , OC N^{-ii} , IF	⁵ b) _{IF5} , Br I_2^{-ii} , OC N^{-ii}	c) $OC N^{-ii}$, IF ₅ , Br I_2^{-ii}	d) $OC N^{-ii}$, $Br I_2^{-ii}$, IF_5	
556. The substance which is s hydride, the aqueous solut a) Al	olid at room temperature for ion of which is acidic, could b) Na	be		
557. When I_2 is passed through		c) <i>Br</i> ₂	d) _{I2}	
a) Cl_2 and Br_2 are evolved		b) Cl_2 is evolved		
c) Cl_2 , Br_2 and F_2 are evo		d) None of the above		
558. When I_2 is dissolved in C				
a) Colourless	b) Brown	c) Bluish green	d) Violet	
559. Oxide of nitrogen which i		, ,	,	
a) _{NO2}	b) _{N2} O	c) _{N2} O3	d) NO	
560. The correct order of reduc	-	2 5		
a) $NH_3 < PH_3 < A_8H_3 < SbH_3 < BiH_3$ b) $NH_3 > PH_3 > A_8H_3 > SbH_3 > BiH_3$				
c) NH ₃ <ph<sub>3<ash<sub>3<sbh<sub>3</sbh<sub></ash<sub></ph<sub>	<bih<sub>3</bih<sub>	d) SbH ₃ > BiH ₃ > AsH ₃ > N	H ₃ > PH ₃	
561. Available chlorine is liber	ated from bleaching powder v	when it:		
a) Is heated	b) Reacts with water	c) Reacts with acid	d) Reacts with alkali	
562. A salt of sulphurous acid	is called:			
a) Sulphate	b) Sulphurate	c) Sulphite	d) Sulphide	
563. The sides of safety match	es contains			
a) Red phosphorus + san	d powder	b) P ₄ S ₃		
c) $Ca_3(PO)_4$ + glass pieces	3	d) KClO ₃ , KNO ₃ , sulphur	+antimony	
564. Which compound is prepared by the following reaction? $\begin{array}{c} Xe + 2F_2 & \xrightarrow{Ni} \\ (2:1 \text{ volume ratio}) & 673K \end{array}$				
a) XeF_4	b) $_{XeF_2}$	c) $_{XeF_6}$	d) None of these	
565. The most stable hydride is	3			
a) NH ₃	b) PH ₃	c) AsH ₃	d) SbH ₃	
566. Thomas slag is:				

	a) $Ca_{3}(PO_{4})_{2}$	b) <i>CaCHNH</i> ₂	c) <i>CaSiO</i> ₃	d) $FeSiO_3$
567	. The second most electroneg	gative element in periodic tab	le is:	
	a) F	b) O	c) Cl	d) N
568	Among the $C - X$ bond (where $X = X$)	here $X = Cl, Br, I$) the correct	ct bond energy order is:	
	a) C—Cl > C—Br > C—I			
	b) $C-I > C-CI > C-Br$			
	c) C—Br > C—Cl > C—I			
	d) C—I > C—Br > C—Cl			
569	When heated to 800°C, N_2	Ogives:		
	a) <i>NO</i> + <i>O</i> ₂	b) $NO_2 + O_2$	c) $N_2 + O_2$	d) None of these
570	. The oxidation number of S	$S \in S_8, S_2 F_2 \wedge H_2 S$ are resp	ectively:	
	a) 0, +1, and -2	b) -2, +1, and -2	c) 0, +1 and +2	d) -2, +1, and +2
571	H_2SO_4 has very corrosive	e action on skin because :		
	a) It reacts with proteins			
	b) It acts as an oxidizing ag	ent		
	c) It acts as dehydrating age	ent		
	d) It acts as dehydrating age	ent and absorption of water is	s highly exothermic	
572	. Which oxide do not act as a	reducing agent?		
	a) N_2O_5	b) _{N2} O	c) _{NO}	d) NO_{2}
573	. Fuming sulphuric acid is			
	a) $H_2SO_4 + SO_3$	b) H ₂ SO ₄ + SO ₂	c) H ₂ SO ₄	d) $H_2SO_4 + SO_4$
574	. The weakest acid is:			
	a) H_2Se	b) H_2Te	c) H_2O	d) $H_2 S$
575	. HIO ₃ on heating gives :			
	a) _{I2}	b) <i>O</i> ²	c) I_2O_5	d) HI
576	Halogen used as an antisept	ic is:		
	a) Fluorine	b) Chlorine	c) Bromine	d) Iodine
577	HF is a weak acid but HCl i	is a strong acid because:		
	a) HF is less ionic than HC	1		
	b) HF attacks glass but HCl	l does not		
	c) Bond energy of HF is high	gher than HCl		
	d) Electron affinity of fluori	ne is lower than chlorine		

578. The product A in the foll $2KMnQ \longrightarrow A + MnQ$	e 1		
$2 KMnO_4 \longrightarrow A + MnO$ a) $K_2 Mn_2O_7$	b) $K_2 MnO_4$	c) _{K2} O	d) $K_2 O_2$
579. The element present in c	2 7	2	2 2
a) Bromine	b) Iodine	c) Fluorine	d) Chlorine
580. In the manufacture of br	omine from sea water, the me	other liquor containing bromid	e is treated with
a) Carbon dioxide	b) Chlorine	c) Iodine	d) Sulphur dioxide
581. Which of the following e	equations is not correctly form	nulated?	
a) $_{3Cu + 8 HNO_{3}(dil.)}$ –	$\rightarrow 3 Cu(NO_3)_2 + 2NO + 4H_2$	0	
b) $_{3Zn+8HNO_{3}}(very)$	$dil.) \longrightarrow 3 Zn (NO_3)_2 + 2 NO$	+4 H ₂ O	
c) $4Sn+10HNO_3(dil.$	$) \longrightarrow 4 Sn (NO_3)_2 + NH_4 NO_3$	$_{3}+3H_{2}O$	
d) $As+3HNO_3(dil.)-$	\rightarrow H ₃ AsO ₃ +3NO ₂		
582. P_4O_{10} has short \wedge long	P - O bonds. The number	of short $P - O$ bonds \in this of	compound is :
a) 1	b) 2	c) 3	d) 4
583. Which of the following a	cts as fluoro Lewis acids?		
a) RuF_5	b) SbF_5	c) AsF_5	d) All of these
584. A radioactive element X	decays to give two inert gase	s. X is:	
a) $_{_{92}}^{_{238}}U$	b) ²²⁶ / ₈₈ Ra	c) ₉₀ <i>Th</i>	d) ₈₉ <i>Ac</i>
585. Which one of the follow	ing can be purified by sublim	ation?	
a) F ₂	b) Cl ₂	c) _{Br2}	d) I ₂
586. Noble gases do not occur	in:		
a) Nature	b) Ores	c) Atmosphere	d) Sea water
587. Ammonia is:			
a) Polar solvent	b) Non-polar	c) Paramagnetic	d) None of these
588. The treatment of Cu with	n dilute HNO ₃ gives		
a) N ₂ O	b) NO	c) NH ₄ ⁺	d) NO ₂
589. Wrong statement about 1	HNO ₃ is:		
a) The proteins are conv	erted into xanthoproteins		
b) HNO_3 acts as a dehyd	lrating agent		
c) It exists in two canoni	cal forms		
d) HNO_3 acts as an oxid	izing agent		
590. Sulphur on boiling with	NaOH solution gives		
a) $Na_2SO_3+H_2S$	b) $N a_2 S_2 O_3 + N a_2 S_3$	c) $N a_2 S_2 O_3 + NaHSO_3$	d) $Na_2SO_3+SO_2$

591. Electronegativity of an i	nert gas is:		
a) High	b) Low	c) Negative	d) Zero
592. Good conductor of elect	ricity is:	-	
a) Yellow P	b) Red p	c) Violet P	d) Black P
593. Which burns to form an	oxide which is gas at room ter	nperature?	
a) Hydrogen	b) Phosphorus	c) Sodium	d) Sulphur
594. Helium was discovered l	by:		Sulphu
a) Frankland and Locky	er		
b) Rayleigh			
c) Ramsay			
d) None of these			
595. SO_2 does not act as			
a) Bleaching agent	b) Oxidising agent	c) Reducing agent	d) Dehydrating agent
596. NaOH + P_4 + $H_2O \rightarrow ?$			
a) $PH_3 + NaH_2PO_2$	b) PH ₃ + Na ₂ PO ₄	c) $PH_3 + Na_2HPO_2$	d) H ₃ PO ₄ + NaO
507 Derevy linkage is presen	t in:		
597. Peroxy linkage is presen			
a) Caro's acid	b) Pyrosulphuric acid	c) Sulphurous acid	d) Dithionic acid
	b) Pyrosulphuric acid	c) Sulphurous acid	d) Dithionic acid
a) Caro's acid	b) Pyrosulphuric acid	c) Sulphurous acid c) $C + O_2 \rightarrow CO_2$	d) <i>Dithionic acid</i> d) All of the above
 a) Caro's acid 598. Which requires catalyst? a) S+ O₂→SO₂ 	b) Pyrosulphuric acid	c) C + O ₂ \rightarrow CO ₂	
 a) Caro's acid 598. Which requires catalyst? a) S+ O₂→SO₂ 	b) <i>Pyrosulphuric acid</i> b) 2S O_2 + O_2 →2S O_3	c) C + O ₂ \rightarrow CO ₂	
 a) Caro's acid 598. Which requires catalyst? a) S+ O₂→SO₂ 599. Which of the following and <i>He</i> 	 b) <i>Pyrosulphuric acid</i> c) b) 2S O₂+ O₂→2SO₃ is used in very low temperature 	c) C + O ₂ \rightarrow CO ₂ e thermometers? c) H_2	d) All of the above
 a) Caro's acid 598. Which requires catalyst? a) S+ O₂→SO₂ 599. Which of the following and <i>He</i> 	 b) <i>Pyrosulphuric acid</i> c) b) 2S O₂+ O₂→2SO₃ is used in very low temperature b) <i>Ne</i> 	c) C + O ₂ \rightarrow CO ₂ e thermometers? c) H_2	d) All of the above
 a) Caro's acid 598. Which requires catalyst? a) S+ O₂→SO₂ 599. Which of the following if a) <i>He</i> 600. The noble gas forming n a) Xe 	 b) <i>Pyrosulphuric acid</i> b) 2S O₂+ O₂→2SO₃ is used in very low temperature b) <i>Ne</i> naximum number of compound 	c) C + O ₂ \rightarrow CO ₂ e thermometers? c) H_2 d is c) Ar	d) All of the above d) N_2
 a) Caro's acid 598. Which requires catalyst? a) S+ O₂→SO₂ 599. Which of the following if a) <i>He</i> 600. The noble gas forming n a) Xe 	b) <i>Pyrosulphuric acid</i> b) 2S $O_2 + O_2 \rightarrow 2SO_3$ is used in very low temperature b) <i>Ne</i> naximum number of compound b) Ne $_2O_4$, is a mixed anhydride beca	c) C + O ₂ \rightarrow CO ₂ e thermometers? c) H_2 d is c) Ar	d) All of the above d) N_2
 a) Caro's acid 598. Which requires catalyst² a) S+ O₂→SO₂ 599. Which of the following and <i>He</i> 600. The noble gas forming not and <i>Xe</i> 601. Dinitrogen tetroxide, N₂ 	b) <i>Pyrosulphuric acid</i> b) 2S $O_2 + O_2 \rightarrow 2SO_3$ is used in very low temperature b) <i>Ne</i> naximum number of compound b) Ne $_2O_4$, is a mixed anhydride beca and N_2O_5	c) C + O ₂ \rightarrow CO ₂ e thermometers? c) H_2 d is c) Ar	d) All of the above d) N_2
 a) Caro's acid 598. Which requires catalyst? a) S+ O₂→SO₂ 599. Which of the following is a) <i>He</i> 600. The noble gas forming management of N₂ O₃ a) Xe 	b) <i>Pyrosulphuric acid</i> b) 2S $O_2 + O_2 \rightarrow 2SO_3$ is used in very low temperature b) <i>Ne</i> naximum number of compound b) Ne ${}_2O_4$, is a mixed anhydride beca and N_2O_5 o oxides of nitrogen	c) C + O ₂ \rightarrow CO ₂ e thermometers? c) H_2 d is c) Ar	d) All of the above d) N_2
 a) Caro's acid 598. Which requires catalyst? a) S+ O₂→SO₂ 599. Which of the following is a) <i>He</i> 600. The noble gas forming noise and the second secon	b) <i>Pyrosulphuric acid</i> b) 2S $O_2 + O_2 \rightarrow 2SO_3$ is used in very low temperature b) <i>Ne</i> naximum number of compound b) Ne $_2O_4$, is a mixed anhydride beca and N_2O_5 o oxides of nitrogen form nitric acid	c) C + O ₂ \rightarrow CO ₂ e thermometers? c) H_2 d is c) Ar	d) All of the above d) N_2
a) Caro's acid 598. Which requires catalyst? a) S+ O ₂ \rightarrow SO ₂ 599. Which of the following is a) <i>He</i> 600. The noble gas forming m a) Xe 601. Dinitrogen tetroxide, N ₂ a) Is a mixture of N ₂ O ₃ b) Decomposes into two c) Reacts with water to f	b) <i>Pyrosulphuric acid</i> b) 2S $O_2 + O_2 \rightarrow 2SO_3$ is used in very low temperature b) <i>Ne</i> naximum number of compound b) Ne $_2O_4$, is a mixed anhydride beca and N_2O_5 o oxides of nitrogen form nitric acid form two acids	c) C + O ₂ \rightarrow CO ₂ e thermometers? c) H_2 d is c) Ar	d) All of the above d) N_2
a) Caro's acid 598. Which requires catalyst? a) S+ O ₂ \rightarrow SO ₂ 599. Which of the following is a) <i>He</i> 600. The noble gas forming m a) Xe 601. Dinitrogen tetroxide, N_2 a) Is a mixture of N_2O_3 b) Decomposes into two c) Reacts with water to form	b) <i>Pyrosulphuric acid</i> b) 2S $O_2 + O_2 \rightarrow 2SO_3$ is used in very low temperature b) <i>Ne</i> naximum number of compound b) Ne $_2O_4$, is a mixed anhydride beca and N_2O_5 o oxides of nitrogen form nitric acid form two acids	c) C + O ₂ \rightarrow CO ₂ e thermometers? c) H_2 d is c) Ar	d) All of the above d) N_2
a) Caro's acid 598. Which requires catalyst? a) S+ O ₂ \rightarrow SO ₂ 599. Which of the following if a) <i>He</i> 600. The noble gas forming n a) Xe 601. Dinitrogen tetroxide, N ₂ a) Is a mixture of N ₂ O ₃ b) Decomposes into two c) Reacts with water to f d) Reacts with water to f 602. A depolarizer used in dr a) KOH	b) <i>Pyrosulphuric acid</i> b) 2S $O_2 + O_2 \rightarrow 2SO_3$ is used in very low temperature b) <i>Ne</i> naximum number of compound b) Ne $_2O_4$, is a mixed anhydride beca and N_2O_5 o oxides of nitrogen form nitric acid form two acids y batteries is:	c) $C + O_2 \rightarrow CO_2$ e thermometers? c) H_2 d is c) Ar ause it: c) MnO_2	d) All of the above d) N_2 d) He

b) It is used as a cryogenic agent for carrying out experiments at low temperatures.

c) It is used to produce and sustain pow	verful superconducting magnets
--	--------------------------------

d) It is used in gas cooled nuclear reactors.

604. Which of the following is not obtained by direct reaction of constituent elements?

	a) XeO_3	b) XeF ₂	c) <i>Xe F</i> ₆	d) $_{Xe F_4}$
605	. White phosphorus is			
	a) A monoatomic gas		b) P ₄ a tetrahedral solid	
	c) P_8 , a crown		d) A linear diatomic molec	cule
606	Sides of match box have co	bating of		
	a) Potassium chlorate, red	lead	b) Antimony sulphide, red phosphorus	
	c) Potassium chlorate, anti	mony sulphide	d) Antimony sulphide, red	lead
607	A positive chromyl chlorid	e test is given by a salt conta	ining:	
	a) Br^{-ii}	b) <i>Cl⁻ⁱⁱ</i>	c) SO_3^{2-ii}	d) _I -22
608	B. Zinc and cold dil. HNO ₃ re	eacts to produce?		
	a) NO	b) NO ₂	c) NH ₄ NO ₃	d) ZnNO ₃
609	• In presence of moisture, S	O_2 can		
	a) Act as oxidant	b) Act as reductant	c) Gain electron	d) Not act as reductant
610	. Which has the highest mole	ar heat of vaporization?		
	a) _{HBr}	^{b)} HCl	c) HF	d) HI
611	SO_2 can be used as:			
	a) Bleaching agent	b) Disinfectant	c) Antichlor	d) All of these
612	. When sugar is treated with	concentrated sulphuric acid,	the sugar is charred. In this j	process, sugar is:
	a) Oxidized	b) Dehydrated	c) Reduced	d) sulphonated
613	Liquid ammonia is used fo	r refrigeration because		
	a) It is basic		b) It is a stable compound	
	c) It has a high dipole mon	nent	d) It has a high heat of vaporisation	
614	The smog is essentially cau	sed by the presence of		
	a) $O_2 \wedge N_2$		b) $O_2 \wedge O_3$	
	c) $O_3 \wedge N_2$		d) Oxides of sulphur and nitrogen	
615	Boiling of dil. HCl acid do	es not increase its concentrat	ion beyond 20.24 per cent be	cause hydrochloric acid:
	a) Is very volatile			
	b) Is extremely soluble in v	vater		
	c) Forms a constant boiling	g mixture		
	d) Forms a saturated soluti	on at this concentration		

 616. Concentrated hydrochloric acid when kept in open air sometimes produces a cloud of white fumes. The explanation for it is that: a) Strong affinity of HCl gas for moisture in air results in forming of droplets of liquid solution which appears like a cloudy smoke b) Due to strong affinity for water conc. HCl pulls moisture of air towards itself. The moisture forms droplets of water and hence the cloud c) conc. HCl emits strongly smelling gas all the time 				
d) O ₂	xygen in air reacts wi	th the emitted HCl gas to form	n a cloud of chlorine gas	
617. Atom	icity of phosphorus i	s:		
a) 1		b) 2	c) 3	d) 4
618. Each	of the following is tr	ue for white and red phospho	rus except that they	
a) Ca	n be oxidised by hea	ting in air	b) Are both soluble in CS	2
c) Co	onsists of same kind of	of atoms	d) Can be converted into o	ne another
619. The <i>l</i>	M—Cl bond energies	are different in:		
a) Po	Cl_5	b) PCl ₃	c) <i>CCl</i> ₄	d) _{NCl3}
620. Most	acidic oxide is:			
a) As	$5_{2}O_{3}$	b) $P_2 O_3$	c) Sb_2O_3	d) Bi_2O_3
621. King	of chemicals is:	_ 0	_ 0	
a) _H	NO ₃	b) H_2SO_4	c) HCl	d) None of these
622. Fluor	ine is the best oxidisi	ing agent because it has		
a) Hi	ghest electron affinity	y	b) Highest E_{i}°	
c) _{Hi}	ghest E_{oxid}°		d) Lowest electron affinity	
	h bond has the greate	est polarity?		
a) H-	—Cl	b) H—Br	c) H—I	d) H—F
624. Berth	elot's salt is:			
a) <i>K</i> (ClO_3	b) <i>KIO</i> 3	c) KBrO3	d) None of these
	5	ent among the following is:	5	
a) Oz	cone	b) Oxygen	c) Fluorine	d) Chlorine
626. All th	e elements of the ox	ygen family are:		
a) No	on-metals	b) Metalloids	c) Radioactive	d) Polymorphic
627. As th	e number of —OH g	roups increases in hypophosp	horus acid phosphorus acid a	nd phosphoric acid the acidic
streng a) Ind	gth creases		b) Decreases	
c) Re	mains nearly same		d) Remains appropriately s	same
628. Nitrio	e acid oxidizes sulphu	ar to:		
a) <i>S</i> (\mathcal{D}_2	b) <i>SO</i> ₃	c) H_2SO_3	d) $H_2 SO_4$

629. Which one is correct if HCl and HF are present together in liquid state?

- a) $HCl + HF \longrightarrow H_2 Cl^{+i+F^{-ii}i}$
- b) $HCl + HF \longrightarrow No reaction$
- c) $HCl + HF \longrightarrow H_2 F^{+i+Cl^{-ii}i}$
- d) None of the above

630. Red phosphorus is chemically unreactive because:

- a) It does not contain P—P bonds
- b) It does not contain tetrahedral P_4 molecules
- c) It does not catch fire in air even upto 400° C
- d) It has a polymeric structure
- 631. Which acid is not formed by the action of water on phosphorus pentoxide?

a)
$$HPO_3$$
 b) $H_4P_2O_7$ c) H_3PO_4 d) H_3PO_3

- 632. To make nitrogen dioxide free from oxygen it is passed through U-tube:
 - a) Containing FeSO₄solution
 - b) Containing NaOH solution
 - c) Kept in freezing mixture
 - d) Kept in boiling water
- 633. Sulphur does not combine with which of the following halogens to form a compound?

a) Cl_2	b) Br_2	c) _{I2}	d) $_{F_2}$	
634. If $Na_2 SO_3$ is $i \in air$, w	e get :	-	-	
a) _{Na2} S	b) <i>Na</i> ₂ <i>SO</i> ₄	c) _{NaHSO4}	d) _{NaHSO3}	
635. Which is planar molecu	le?			
a) XeO4	b) $_{XeF_4}$	c) XeOF 4	d) XeO_2F_2	
636. Bacteria convert molect	ılar nitrogen into:			
a) _{NO3}	b) Amino acids	c) _{NO2}	d) $_{NH_3}$	
637. Nitric acid (conc.) oxid	zes phosphorus to:			
a) H_3PO_4	b) $P_{2}O_{3}$	c) H_3PO_3	d) $H_4 P_2 O_7$	
638. The acidity of hydrides	of O, S, Se, Te varies in the or	rder		
a) $H_2O > H_2S > H_2Se >$	H ₂ Te	b) $H_2O < H_2S < H_2Se < H_2Se$	₂ Te	
c) $H_2S > H_2O > H_2Se > H_2Te$		d) $H_2Se>H_2S>H_2O>H_2'$	Те	
639. Which of the following is anhydride of perchloric acid?				
a) Cl ₂ O ₇	b) Cl ₂ O ₅	c) Cl ₂ O ₃	d) HCIO	

640. When plants and anima in the form of	ls decay the organic nitrogen is	converted into inorganic nitr	rogen .The inorganic nitrogen
a) Ammonia	b) Elements of nitrogen	c) Nitrates	d) Nitrides
641. Minimum bond length	will be in:		
a) H_2S	b) HF	c) _{<i>H</i>₂O}	d) ICI
642. Which of the following	has no action with starch solution	ion?	
a) $F_2 \wedge Cl_2$	b) _{Br2}	c) _{I2}	d) None of these
643. H_2 S on passing throu	gh KMnO ₄ solution gives :		
a) K_2SO_3	b) S	c) $K_2 MnO_4$	d) MnO ₂
644. What may be expected	to happen when phosphine gas	is mixed with chlorine gas?	
a) $PCl_5 \wedge HCl$ are for	med and the mixture cools dow	n	
b) $PH_3 \cdot Cl_2$ is formed	l with warming up		
c) PCl_3 and HCl are f	formed and the mixture warms	up	
d) The mixture only co	ols down		
645. The compound that giv	es chorine like smell is:		
a) CHCl ₃	b) <i>CaOCl</i> ₂	c) Chloretone	d) None of these
646. Hyponitrous acid is:			
a) _{HNO2}	b) _{HNO4}	c) $H_2 N_2 O_2$	d) CaN_2
647. P_4 +3NaOH+3H ₂ O $\rightarrow A$ ·	+3NaH ₂ PO ₂ here A is		
a) NH ₃	b) PH ₃	c) H ₃ PO ₄	d) H ₃ PO ₃
648. A gas X is passed through water to form a saturated solution. The aqueous solution on treatment with $AgNO_3$ gives a white precipitate. The saturated aqueous solutions also dissolves Mg ribbon with evolution of colourless			

gives a white precipitate. The saturated aqueous solutions also dissolves Mg ribbon with evolution of colourless gas Y. X and Y are respectively:

- a) CO_2, Cl_2 b) Cl_2, CO_2 c) Cl_2, H_2 d) H_2, Cl_2
- 649. In which reaction there is no change in valency and the oxidation state?

a)
$$SO_2 + H_2 S \longrightarrow 2H_2 O + 3S$$

$$O 2 Na + O \longrightarrow Na_2 O$$

c) $Na_2O_2 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O_2$

d)
$$4 KClO_3 \longrightarrow 3 KClO_4 + KCl$$

650. Oxygen gas can be prepared from solid $KMnO_4 by$:

a) Dissolving the solid in dil. HCl

- b) Dissolving the solid \in dil. H_2SO_4
- c) Treating the solid with H_2 gas
- d) Strongly heating the solid

651. In solid state of noble ga	ases, the atoms are held togeth	er by:			
a) Ionic bonds	b) Hydrogen bonds	c) Van der Waals' forces	d) Hydrophobic forces		
652. Potassium manganate	652. Potassium manganate $(K_2 MnO_4)$ is formed when :				
a) Chlorine is passed in	to aqueous $K_2 MnO_4$ solution				
b) Manganese dioxide is	s fused with potassium hydrox	ide in air			
c) Potassium permangat	nate reacts with conc. Sulphur	ic acid			
d) None of the above					
653. Phosphorus pentoxide is	s widely used as				
a) Bleaching agent	b) Dehydrating agent	c) Oxidising agent	d) Reducing agent		
654. In the reaction, HCOO	$HH_2SO_4CO+H_2O;H_2SO_4CO+H_2O$	D_4 acts as			
a) Reducing agent	b) Oxidising agent	c) Dehydrating agent	d) All of these		
655. Which are hydrolysed b	y water?				
a) XeF 2	b) $_{XeF_4}$	c) <i>XeF</i> ₆	d) All of these		
656. Weldon mud is:					
a) <i>MnO</i> ₂	b) $Mn(OH)_2$	c) $_2 CaO \cdot MnO_2$	d) Mn_2O_3		
657. In the manufacture of H	S_2SO_4 the nitrated acid from t	he Gay-Lussac's tower is cher	nically:		
a) $H_2SO_4 \cdot NO_2$	b) $H_2SO_4 \cdot NO$	c) $H_2 SO_4 \cdot 2NO$	d) $HSO_4 \cdot NO$		
658. In PCl_5 , phosphorus un	dergoes:				
a) $_{sp^2}$ -hybridisation	b) $_{s p^{3}-hybridisation}$	c) $s p^3 d$ -hybridisation	d) $s p^3 d^2$ -hybridisation		
659. The perhalate ion with r	naximum oxidizing power is:				
a) $ClO_4^{-\iota\iota}$	b) BrO_4^{-ii}	c) IO_4^{-ii}	d) ClO ⁻ⁱⁱ		
	ed repeatedly over heated cop		her reduction in volume takes		
a) 200 mL	v obtained will be approximate b) 20 mL	c) Zero	d) 10 mL		
661. What products are expe	cted from the disproportionati	on reaction of hypochlorous a	acid?		
a) HClO ₃ and Cl ₂ O	b) HClO ₂ and HClO ₄	c) HCl and Cl ₂ O	d) HCl and HClO ₃		
662. On exciting Cl_2 molecu	le by UV light, we get				
a) _{Cl}	b) <i>C l^{-i i}</i>	c) <i>Cl</i> + ^{<i>ii</i>}	d) All of these		
663. Smelling salt is:					
a) $(NH_4)_2 SO_4$	b) $(NH_4)_3 PO_4$	c) _{NH4} Cl	d) $(NH_4)_2 CO_3$		
664. Sulphate ion has g	eometry.		、		
a) Trigonal	^{b)} Square planar	^{c)} Tetrahedral	d) _i		
665. Sulphur in + 3 oxidation	state is present in				

a) Dithionous acid	b) Sulphurous acid	c) Thiosulphuric acid	d) Pyrosulphuric acid
666. Oleum is			
a) $_{\text{Fuming}} H_2 SO_4$	b) Oil of vitriol	c) Castor oil	d) Caro's acid
667. A helium atom on losing a	an electron becomes:		
a) α -particle			
b) Hydrogen atom			
c) Positively charged heli	um ion		
d) Negatively charged hel	ium ion		
668. Concentrated nitric acid o	n heating decomposes to give	2.	
a) $O_2 \wedge N_2$	b) NO	c) _{O2}	d) $NO_2 \wedge O_2$
669. Bromine is obtained on a	commercial scale from:		
a) Caliche	b) Carnallite	c) Common salt	d) Cryolite
670. The blue coloured gas is:			
a) F_2	b) O ³	c) NO	d) <i>Cl</i> ₂
671. The catalyst used in Habe	r's process for synthesis of N_{i}	H_3 is:	
a) Pt	b) $V_2 O_5$	c) Fe	d) Mo
672. The mixture of conc. HC	l and HNO_3 made in 3:1 rational states of the second states of the	io contains	
a) ClO_2	b) _{NOCl}	c) _{NC l₃}	d) $N_2 O_4$
673. $H_2 S$ does not produce me	etallic sulphide with		
a) $ZnCl_2$	b) $COC l_2$	c) $CuCl_2$	d) $CdC l_2$
674. Large deposits of sulphur	in nature are found in the for	m of:	
^{a)} Flowers of sulphur	b) $H_2 SO_4$	c) H_2SO_3	d) Free sulphur
675. Which of the following do	bes not exist?		
a) Kr $F^{-i[SbF_6]^{-i}i}$	b) $\left[Kr F_3 \right]^{-i \left[Sb F_4 \right]^{+i} i}$	c) Kr $F^{+i[MoOF_s]i}$	d) Kr $F^{+i[WOF_5]^{-ii}i}$
676. <i>i XeO</i> ₃ , Xe is:			
a) $_{s p^{3}-hybridized}$	b) $s p^2$ -hybridized	c) sp-hybridized	d) $_{s p^{3} d-hybridized}$
677. When H_2 S reacts with he	alogens, halogens :		
a) Are oxidized	b) Are reduced	c) Form Sulphur halides	d) None of these
678. Gaseous HCl is a poor con	nductor of electricity, while it	s aqueous solution is a good	conductor. This is because:
a) H_2O is a good conduction	tor of electricity		
b) A gas cannot conduct e	electricity, but a liquid can		

c) HCl gas does not obey Ohm's law, whereas the solution does

d) HCl ionizes in aqueous solution

679. Oxygen exhibits positive	679. Oxygen exhibits positive oxidation state in				
a) CO	b) F_2O	c) NO	d) $_{N_2O}$		
680. The poisson's ratio for ine	ert gases is:				
a) 1.40	b) 1.66	c) 1.34	d) None of these		
681. The noble gas which is not found in atmosphere?					
a) Ne	b) Ar	c) Rn	d) Kr		
682. Which is not correct for w	white phosphorus (P_4) ?				
a) Six P—P sigma bonds					
b) Four P—P single bond	S				
c) Four lone pair of electr	rons				
d) P—P—P angle of 60°					
683. Reaction of HNO ₃ with I,	S, P and C gives respectively	7			
a) HIO_{3} , H_2SO_{4} , H_3PO_4 and	d CO ₂	b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and	$d \operatorname{CO}_2$		
c) HIO_2 , H_2SO_4 , H_3PO_4 and	d CO	d) I_2O_5 , SO_2 , P_2O and CO_2	2		
684. Which of the following ca	annot be formed?				
a) He^{2+ii}	b) He^{+ii}	c) He	d) He_2		
685. Make the element which o	displaces three halogens from	their compounds			
a) Br	b) F	c) _{Cl}	d) I		
686. Which of the following pl	nosphorus is most stable?				
a) White	b) Red	c) Black	d) All stable		
687. Ozone reacts with dry iod	ine to give:				
a) <i>IO</i> ₂	b) _{I2O3}	c) I_2O_4	d) $I_4 O_9$		
688. Fluorine absorbs port	ion of light and appears yello	W.			
a) Yellow	b) Green	c) Violet	d) Red		
689. The hybridization and bor	nd angle in SO_3 are:				
a) $_{sp^2,120^\circ}$	b) $s p^3$,109° 28′	c) $_{sp^2}$,109° 28′	d) None of these		
690. The substance used in smo	oke screen is				
a) Sodium chloride	b) Sodium phosphate	c) Calcium fluoride	d) Calcium phosphide		
691. Which is cyclic phosphate?					
a) $Na_5P_3O_{10}$	b) $Na_6P_4O_{13}$	c) $Na_4P_4O_{12}$	d) $Na_7P_5O_{16}$		
692. PCl_5 does not react with:					
a) <i>CH</i> ₃ COOH	b) $C_2 H_5 N H_2$	c) C_6H_5OH	d) $H_2 SO_4$		
693. Elements O, S, Se and Te are usually known as:					

a) Metals	b) Rare earth metals	c) Coinage metals	d) Chalcogens			
694. Phosphine is produced by	694. Phosphine is produced by adding water to					
a) CaC_2	b) <i>HPO</i> ₃	c) $C a_3 P_2$	d) $P_4 O_{10}$			
695. Which of the following is	more soluble in water?					
a) _{N2}	b) _{O2}	c) _{Ar}	d) _{He}			
696. Which of the following co	ompound is tribasic acid?					
a) $H_3 P O_2$	b) $H_{3}PO_{3}$	c) $H_{3}PO_{4}$	d) $H_4 P_2 O_7$			
697. Which pair gives Cl_2 at ro	oom temperature?					
a) Conc . HCl+KMnO ₄	b) $NaCl+Conc.H_2SO_4$	c) $NaCl+MnO_2$	d) $NaCl+Conc.HNO_3$			
698. Which of the following ox	tide does not form acidic aque	eous solution?				
a) N ₂ O ₃	b) NO ₂	c) N ₂ O ₅	d) NO			
699. Which one below is a pseu	udohalide?					
a) I_{3}^{-ii}	b) _{I F} ⁻ⁱⁱ	c) _{ICl}	d) $C N^{-ii}$			
700. The Nessler's reagent con	tains:					
a) Hg_2^{2+ii}	b) <i>Hg</i> ²⁺⁶⁶	c) Hg_{2}^{-ii}	d) Hg_{4}^{2-ii}			
701. Interhalogen compounds a	ire:					
a) Ionic compounds						
b) Coordinate compounds						
c) Molecular compounds						
d) Covalent compounds						
702. Fluorine does not show po	sitive oxidation states because	2:				
a) It is a most electronega	tive element					
b) It forms only anions in	ionic compounds					
c) It cannot form multiple	bonds					
d) It shows non-bonded el	ectron pair repulsion due to si	mall size				
703. Poison for platinum, a catalyst in contact process of H_2SO_4 is:						
a) S	b) P	c) As	d) C			
704. The solubility of iodine in water is greatly increased by:						
a) Adding an acid						
b) Boiling the solution						
c) Cooling the solution						
d) Adding potassium iodio	d) Adding potassium iodide					
705. The catalyst used in the preparation of red P from yellow P is:						

	a) _{I2}	b) Ni	c) ZnO	d) Fe		
706	5. Which one of the following	g is present as an active ingre	dient in bleaching powder fo	r bleaching action?		
	a) $CaCl_2$	b) $CaOCl_2$	c) $Ca(OCl)_2$	d) CaO_2Cl		
707	7. Nitrogen dioxide					
	a) Does not dissolve in wat	ter				
	b) Dissolves in water form	ing nitric acid				
	c) Dissolves in water to for	rm a mixture of nitrous and n	itric acid			
	d) Dissolves in water to for	rm nitrous acid and gives off	oxygen			
708	3. The gas used in gas thermo	ometer is:				
	a) He	b) _{O2}	c) Xe	d) Ne		
709	D. Mixture of $O_2 \wedge N_2 O$ is us	sed as:				
	a) Fuel	b) Anaesthetic	c) In welding	d) Oxidizing agent		
710). Which of the following aci	ds does not attack Cu and Ag	<u>9</u> ?			
	a) Dilute HNO ₃	b) Dilute HCl	c) $Conc. H_2SO_4$	d) <mark>i regia</mark>		
711	. Number of isotopes of oxy	gen is:				
	a) 1	b) 3	c) 2	d) 0		
712	2. The angular shape of ozone	e molecule (O_3) consists of:				
	a) 2 sigma and 2 π -bonds					
	b) 1 sigma and 1 π -bond					
	c) 2 sigma and 1 π -bond					
	d) 1 sigma and 2 π -bonds					
713	B. Bromine vapour turns mois	st starch-iodide paper:				
	a) Brown	b) Red	c) Blue	d) Colourless		
714	• Nitric oxide is prepared by	the action of HNO_3 on				
	a) Cu	b) Sn	c) Zn	d) Fe		
715	715. The allotrope of Sulphur stables below 90°C is:					
	a) Rhombic sulphur	b) Monoclinic sulphur	c) Plastic sulphur	d) Flowers of sulphur		
716	716. Concentrated H_2SO_4 is not used to prepare HBr from KBr because it:					
	a) Oxidizes HBr					
	b) Reduces HBr					
	c) Causes disproportionation	on of HBr				
	d) Reacts too slowly with H	KBr				

- 717. There is an ozone layer at a height of about 29 kilometres above the surface of the earth. Which of the following statements is true?
 - a) It is harmful because ozone is dangerous to living organisms
 - b) It is beneficial because oxidation reactions can proceed faster in the presence of ozone
 - c) It is beneficial because ozone cuts out the ultraviolet radiation of the sun
 - d) It is harmful because ozone cuts out the important radiations of the sun which are vital for photosynthesis

718. Cl_2 on passing through Na_2SO_3 solution gives :

	a) _{Na2} S	b) <i>Na</i> ₂ <i>SO</i> ₄	c) _{NaHSO3}	d) _{NaHS}	
719	$O. SO_2$ reduces:				
	a) Mg	b) H_2S	c) _{KMnO4}	d) All of these	
720). The brown yellow colour o	ften shown by nitric acid car	n be removed by:		
	a) Bubbling air through the	e warm acid			
	b) Boiling the acid				
	c) Passing ammonia throug	gh acid			
	d) Adding a little Mg powe	ler			
721	. Which one will liberate Br	₂ from KBr?			
	a) I ₂	b) SO ₂	c) HI	d) Cl ₂	
722	2. The halide which does no	t give a precipitate with Ag	NO_3 is:		
	a) F^{-ii}	b) <i>Cl⁻ⁱⁱ</i>	c) Br^{-ii}	d) I ⁻ⁱⁱ	
723	B. HF present as impurity in g	gaseous F_2 , can be removed 1	by passing over:		
	a) $P_{2}O_{5}$	b) NaF	c) H_2SO_4	d) $CaCl_2$	
724	In pyrophosphoric acid t	he number of hydroxy group	s present are:		
	a) 4	b) 3	c) 5	d) 7	
725	5. Deep sea divers used to res	spirate is a mixture of			
	a) Oxygen and nitrogen	b) Oxygen and argon	c) Oxygen and hydrogen	d) Oxygen and helium	
726	5. Which of the following give	$Ves M^{3+i}$ ion most readily?			
	a) P	b) N	c) Sn	d) Bi	
727. Oxygen is more electronegative than sulphur, yet H_2S is acidic while H_2O is neutral. This is because:					
	a) Water is a highly associated compound				
	b) H—S bond is weaker than H—O bond				
	c) H_2S is a gas while H_2O is a liquid				
	d) The molecular weight of H_2S is more than that of H_2O				
728	728. HI reacts with $HNO_3 i$ form:				

a) O ₂	b) _{N2} O	c) HIO ₃	d) $_{NO_2+I_2}$			
729. Phosphate + conc. HNO	$_{3}+(NH_{4})_{2}MoO_{4}$ solution \rightarrow	Yellow precipitate.				
	The composition of yellow precipitate is: a) $(NH_4)_3 PO_4 \cdot MoO_3$ b) $(NH_4)_3 PO_4 \cdot 12 MoO_3$ c) $(NH_4)_2 PO_4 \cdot 12 MoO_3$ d) $NH_4 PO_4 \cdot MoO_3$					
()5	(1)3	()/2				
730. Density of nitrogen gas prepared from air is slightly greater than that of nitrogen prepared by chemical reaction from a compound of nitrogen because aerial nitrogen contains: a) CO_2						
b) Argon						
c) Some N_2 molecules an	halogous to O_2					
d) Greater amount of N_2	molecules derived from N^{15}	isotope				
731. Antichlor is a compound:						
a) Which absorbs chlorin	e					
b) Which removes Cl ₂ fro	om a material					
c) Which liberates Cl_2 from the compared of the compared o	om bleaching powder					
d) Which acts as a cataly	st in the manufacture of Cl_2					
732. When F_2 reacts with hot a	and concentrated NaOH then	following will be obtained				
a) O ₂	b) H ₂	c) Na ₂ O	d) Na			
733. The geometry of XeO F	⁴ molecule is					
a) Tetrahedral	b) Square pyramidal	c) Square planar	d) Octahedral			
734. Oleum is						
a) Castor oil	b) Oil of vitriol	c) Fuming H ₂ SO ₄	d) None of these			
735. Which reacts rapidly with	n oxygen in the air at ordinary	temperature?				
a) White P	b) Red P	c) N_2	d) _{N2} O			
736. The chief source of iodin	e in which it is present as sod	ium iodate is				
a) Carnallite		b) Sea weeds				
c) Caliche		d) Iodine never exists as so	odium iodate			
737. As the atomic number of	the halogens increases, the ha	llogens:				
a) Lose the outermost ele	ectrons less readily					
b) Become lighter in colo	pur					
c) Become less dense						
d) Gain electrons less readily						
738. An interhalogen compour	nd is:					
a) $_{I\!F_5}$	b) I_{3}^{-ii}	c) _{CN} -::	d) $(CN)_2$			
739. Phosphine is not collected in air because:						

a) It is poisonous						
b) It absorbs moisture	b) It absorbs moisture					
c) It catches fire spontane	c) It catches fire spontaneously in air					
d) It is combustible						
740. Bones glow in the dark, be	ecause:					
a) They contain a shining	material					
b) They contain red phosp	bhorus					
c) White phosphorus char	nges into red phosphorus					
d) White phosphorus und	ergoes slow combustion with	air				
741. Oxygen exhibits positive	oxidation state with:					
a) F	b) Br	c) Cl	d) I			
742. Which gives carbon with	conc. $H_2 SO_4$?					
a) Formic acid	b) Ethyl alcohol	c) Oxalic acid	d) Starch			
743. The atom larger in size as	compared to oxygen is:					
a) Ne	b) F	c) He	d) All of these			
744. In the reaction, $2 Aq + 2 H_2 SO_4 \longrightarrow A$	$Ag_2SO_4 + 2H_2O + SO_2, H_2S$	50 / is:				
a) Reducing agent	b) Oxidant	c) Catalyst	d) Dehydrating agent			
745. Among the phosphatic fer	tilizers, superphosphate of lin	me is a mixture of $Ca (H_2 PC)$	$(\mathbf{P}_4)_2$ and:			
a) $CaSO_4 \cdot 2H_2O$	b) $CaSO_4 \cdot H_2O$	c) $CaSO_4 \cdot \frac{1}{2}H_2O$	d) <i>CaSO</i> ₄			
746. What is the oxidising agen	nt chlorine water?					
a) HCl	b) HCIO ₂	c) HOCI	d) None of these			
747. Which of the following ha	alogens is solid at room tempe	erature?				
a) Iodine	b) Fluorine	c) Chlorine	d) Bromine			
748. Vegetable colouring matte	er in presence of moisture is b	bleached by SO ₂ due to:				
a) Oxidation	b) Reduction	c) Sulphonation	d) Unsaturation			
749. White phosphorus (P_4) d	oes not contain					
a) Six $P - P$ single bond		b) Four $P - P$ single bond				
c) Four lone pairs of elect	trons	d) $P - P - P$ angle of 60 °				
750. The anhydride of nitrous	acid is:					
a) $N_2 O_3$	b) NO	c) _{N2} O	d) _{N₂O₄}			
751. Xe F_2 on hydrolysis gives						
a) XeO_3	b) _{XeO}	c) _{Xe}	d) XeO_2			

752. Coconut charcoal at -180	$^{\circ}C$ is used to separate a mixtu	ure of:			
a) Ar and Kr	b) Ne and Ar	c) He and Kr	d) He and Ne		
753. Paramagnetic oxide of ch	lorine is:				
a) ClO ₃	b) Cl_2O_6	c) <i>Cl</i> ₂ <i>O</i>	d) None of these		
754. Decreasing order of redu	cing power of hydrogen halid	es is:			
^{a)} HI>HBr>HCl>HF					
^{b)} HF>HI>HBr>HC	!				
^{c)} HI>HF>HBr>HC	!				
d) None of these					
755. Nitrogen does not combin	ne directly with:				
a) Ca	b) Al	c) Ag	d) Mg		
756. Which of the following is	the strongest oxidising agent	?			
a) HOCI	b) HCIO ₂	c) HCIO ₃	d) HCIO ₄		
757. In case of halogen family	757. In case of halogen family, which trend occurs as the atomic number increases?				
a) Ionic radius decreases					
b) Ionization potential de	creases				
c) Covalent character ind) None of the above	$M X_2$ decreases (where $M = r$	netal and X=halogen)			
758. What is the product form	ed when phosphorus trioxide	is dissolved in water?			
a) HPO ₃	b) H ₃ PO ₄	c) H ₃ PO ₃	d) HPO ₂		
759. Approximately what perce	entage of air by volume gets	used in a process of combusti	ion?		
a) 20%	b) 10%	c) 35%	d) 55%		
760. There is no $S-S$ bond is					
a) $S_2 O_4^{2-ii}$	b) $S_2 O_3^{2-i}$	c) $S_2 O_5^{2-ii}$	d) $S_2 O_7^{2-ii}$		
761. The acidic nature of HF	can be increased in presence of	of:			
a) _{SbF5}	b) H_2O	c) HClO ₄	d) None of these		
762. Identify the incorrect stat	ement among the following				
a) Ozone reacts with SO ₂	to give SO ₃				
b) Silicon reacts with Nat	OH(aq) in the presence of air	to give Na_2SiO_3 and H_2O			
c) Cl_2 reacts with excess	of NH_3 to give N_2 and HCl				
d) Br_2 reacts with hot and	strong NaOH solution to giv	e NaBr, NaBrO ₄ and H_2O			
763. S—S bond is not present	in:				
a) $S_2 O_7^{2-ii}$	b) $S_4 O_6^{2-ii}$	c) $S_2 O_4^{2-ii}$	d) $S_2 O_3^{2-ii}$		

764. Which of the following oxides are acidic?

a) Mn_2O_7	b) CrO ₃	c) Both (a) and (b)	d) None of these		
• •	765. The pentavalence in phosphorus is more stable as compared to that of nitrogen even though they belong to the				
same group. It is due to a) Inert nature of nitrog	en	b) Reactivity of phosphe	Drus		
c) Larger size of phospl	norus atom	d) Dissimilar electronic	configuration		
766. Which of the following	is kept in water?				
a) White phosphorus	b) Sodium	c) Potassium	d) Calcium		
767. The formula of iodine a	cetate is:				
a) $I(CH_3COO)$	b) $I(CH_3COO)_3$	c) $I_2(CH_3COO)$	d) $(CH_3COO)_2 I$		
768. Phosphine is not evolve	d when:				
a) White phosphorus is	boiled with a strong solution of	of $Ba(OH)_2$			
b) Phosphorus acid is he	eated				
c) Calcium hypophosph	ite is heated				
d) Metaphosphoric acid	is heated				
769. The last orbit of argon w	vould have electrons				
a) 2	b) 6	c) 8	d) 18		
770. Xenon directly combine	s with:				
a) Oxygen	b) Rubidium	c) Fluorine	d) Chlorine		
771. Structure of $Xe F_5^{+ii}$ ion	ı is				
a) Trigonal bipyramidal	b) Square pyramidal	c) Octahedral	d) Pentagonal		
772. Thermal stability of hyd	rogen halide follows the order				
^{a)} HI>HBr>HCl>H	F				
^{b)} HI>HF>HBr>H0	Cl				
^{c)} HI>HBr>HF>H0	CI				
^{d)} HF>HCl>HBr>H	II				
773. Iodine is fromed when I	XI reacts with solution of				
a) CuSO ₄	b) (NH ₄) ₂ SO ₄	c) ZnSO ₄	d) FeSO ₄		
774. The strongest reducing a	agent among the following is				
a) $F^{-\iota\iota}$	b) <i>CI</i> ^{-<i>ii</i>}	c) Br^{-ii}	d) I11		
775. In Birkeland Eyde proce	ess, the raw material used is				
a) Air	b) _{NO2}	c) HNO_3	d) $_{NH_{3}}$		
776. Liquid flow from a higher to a lower level. Which of the following liquids can climb up the wall of the glass vessel in which it is placed?					

a) Alcohol	b) Liquid He	c) Liquid N_2	d) water
777. Which is not correct f	$o_{\rm OT}N_2O?$		
a) It is laughing gas a	nd is used as anaesthetic ager	nt	
b) It is nitrous oxide			
c) It is not a linear mo	olecule		
d) It is least reactive of	of all the oxides of nitrogen		
778. The strongest acidic o	xide is:		
a) SO ₂	b) _{SO3}	c) P ₂ O ₅	d) $_{Sb_2O_3}$
779. Apatite is an ore of	-		
a) Fluorine	b) Chlorine	c) Bromine	d) Iodine
780. The sulphur molecul	$e(S_8)$ possesses :		
a) Cubical structure			
b) Spherical structure			
c) Tetrahedral structu	re		
d) W-shaped ring stru	cture		
781. Copper turnings when	heated with concentrated su	Iphuric acid will give	
a) H_2S	b) <i>SO</i> ₂	c) _{SO3}	d) O_{2}
782. PCl_5 is prepared by the prepared by t	ne action of Cl_2 on:		
a) P_2O_3	b) $P_{2}O_{5}$	c) H_3PO_3	d) PCl_3
783. Chlorine water on coc	oling deposits greenish-yellow	w crystals of:	
a) $Cl_2 \cdot 2H_2O$	b) $Cl_2 \cdot H_2O$	c) $Cl_2 \cdot 3H_2O$	d) $Cl_2 \cdot 8H_2O$
784. Which inert gas have	highest boiling point?		
a) Xe	b) Ar	c) Kr	d) He
785. Metaphosphoric acid	is:		
a) H_3PO_2	b) HPO3	c) H_3PO_3	d) H_3PO_4
786. H_3PO_3 has non io	onisable P—H bonds		
a) 3	b) 1	c) 2	d) None of these
787. Dry bleach caused by			
a) Cl_2	b) <i>SO</i> ₂	c) H_2O_2	d) O_3
788. Ammonia is dried over	r		
a) Slaked lime		b) Calcium chloride	
c) Phosphorus pentor	vide	d) Quick lime	
789. The bond dissociation	energy of Cl ₂ ,Br ₂ and I ₂ follo	ow	

	a) Cl ₂ >I ₂ >Br ₂	b) I ₂ >Br ₂ >Cl ₂	c) $I_2=Cl_2=Br_2$	d) $Cl_2 > Br_2 > I_2$		
700		-	$C_{12} - C_{12} - D_{12}$	$u_{J} C_{12} D_{12} D_{12} D_{12}$		
790	Which is correct statemen	l?				
	a) Nitric oxide is isoelectr	conic with CO_2				
	b) Nitric oxide is diamagn	etic				
	c) Nitric oxide is an endot	hermic compound				
	d) Nitric oxide gas is used	as general anaesthetic				
791	. The noble gas which beha	ves abnormally in liquid state	is:			
	a) Xe	b) Ne	c) He	d) Ar		
792	2. Which of the following is	correct with reference to pro	tonic acids?			
	a) PH_3 is more basic than	NH ₃				
	b) PH_3 is less basic than NH_3					
	c) PH_3 is as basic as NH_3	3				
	d) PH_3 is amphoteric whi	le NH ₃ is basic				
793	Amongst the following, th	e basic oxide is				
	a) Bi_2O_3	b) Sb_2O_3	c) _{N2} O5	d) $P_{2}O_{5}$		
794	794. One gas bleaches the colour of the flowers by reduction while the other by oxidation. The gases are:					
	a) $CO \wedge CO_2$	b) $H_2S \wedge Br_2$	c) $SO_2 \wedge Cl_2$	d) $_{NH_3} \wedge SO_3$		
795	795. Cl_2O_6 is an anhydride of :					
	a) HClO ₃	b) HClO ₂	c) HClO ₄	d) Mixed anhydride of HC		
796	In the upper layers of the a	atmosphere ozone is formed b	by the:			

- a) Combination of oxygen molecules
- b) Action of electric discharge on oxygen molecules
- c) Action of ultraviolet rays on oxygen
- d) None of the above
- 797. Inert gases such as helium behave like ideal gases over a wide range of temperature. However, they condense into the solid state at very low temperatures. It indicates that at very low temperature there is a:a) Weak attractive force between the atoms
 - a) weak attractive force between the atoms
 - b) Weak repulsive force between the atoms
 - c) Strong attractive force between the atoms
 - d) Strong repulsive force between the atoms
- 798. Calcium phosphide is used in smoke screens because it:
 - a) Burns to form soot
 - b) Gives PH_3 which forms smoke

c) Immediately catche	es fire in air			
d) Is a gas which bring	gs tears in eyes			
799. The inert gas obtained	799. The inert gas obtained from monazite sand is:			
a) He	b) Ne	c) Ar	d) Kr	
800. Sulphur does not exist	t as S_2 molecule because			
a) It is less electroneg	ative	b) It is not able to cons	titute $p\pi$ - $p\pi$ bonds	
c) It has ability to exh	ibit catenation	d) Of tendency to show variable oxidation states.		
801. The oxide of nitrogen	which reacts with NaOH solu	ation giving both sodium nitra	ate and sodium nitrite is:	
a) _{NO2}	b) _{N2} O5	c) _{N2} O3	d) _{NO}	
802. Oxide of nitrogen use	802. Oxide of nitrogen used as catalyst in lead chamber process for the manufacture of H_2SO_4 is:			
a) NO	b) N_2O	c) N_2O_3	d) $_{N_2O_5}$	
803. The non-existent com	pound is:			
a) _{PH4} I	b) A_{SH_3}	c) SbCl ₂	d) As_2O_3	
804. A colourless gas on pa	804. A colourless gas on passing through bromine water decolourises it. The gas is:			
a) HCl	b) HBr	c) <i>CO</i> ₂	d) _{SO2}	
805. When silver chloride	dissolves in ammonia, it form	s?		
a) $Ag(NH_3)Cl$	b) $Ag(NH_3)_2 Cl$	c) $Ag(NH_3)_3Cl$	d) $Ag(NH_3)_4Cl$	
806. Which of the following	ng pairs has bleaching property	y?		
a) O_3 and NO_2	b) O_3 and H_2S	c) SO ₂ andCl ₂	d) Cl_2 and NO_2	
807. Which of the following	ig is not a hydride?			
a) HCl	b) <i>CaH</i> ₂	c) CsH	d) LiH	
808. Iron is dropped in dil	HNO ₃ it gives			
a) Ferric nitrate		b) Ferric nitrate and N	b) Ferric nitrate and NO ₂	
c) Ferrous nitrate and	c) Ferrous nitrate and ammonium nitrate		d) Ferrous nitrate and nitric oxide	
809. Pnicogens are the eler	nents of group?			
a) 15	b) 13	c) 8	d) Zero	
810. The percentage of ava	ilable chlorine in a commerci	al sample of bleaching powd	er is:	
a) 12%	b) 35%	c) 58%	d) 85%	
811. Complete fertilizer is	that supplies to the soil:			
a) S, K, and N	b) N, K and P	c) S, K and P	d) S and N	
812. The element which lit	perates O_2 from water is:			
a) Na	b) Ca	c) F	d) N	
813. $SF_6 \exists but OF_6 does n$	ot because:			

a) <i>d</i> -orbitals of sulphur are vacant and	are vacant and are available for bonding
---	--

b) More bonding electrons can be accommodated in orbitals with n = 3

c) Sulphur has larger ionization energy than oxygen

d) The difference of electronegativity is less between oxygen and fluorine

814. N_2O_4 molecule is completely changed *into* $2NO_2$ molecules at:

a) -¿10°C	b) 140 – 150°C	c) 420°C	d) _¿40°C
815. Out of (i) XeO_3 (ii) $XeOF_4$ and (iii) XeF_6 , the molecules having same number of lone pairs on Xe are:			
a) (i) and (ii) only	b) (i) and (iii) only	c) (ii) and (iii) only	d) (i), (ii) and (iii)
816. Chlorous acid and its salt	s (chlorites) are:		
a) Good oxidising agents			
b) Good reducing agents			
c) Good bleaching agents			
d) Good oxidising and blo	eaching agents		
817. Antimony burns in chlori	ne to form:		
a) <i>SbCl</i> ₃	b) <i>SbCl</i> ₂	c) SbOCl ₂	d) SbCl ₅
818. Bromargyrite is a mineral	of:		
a) Pb	b) Sn	c) _{I2}	d) _{Br₂}
819. Helium is used in gas ball	oons instead of hydrogen bec	ause:	
a) It is lighter than H_2			
b) It is non-combustible			
c) It is more abundant than H_2			
d) Its leakage can be dete	cted easily		
820. Reaction of PCl ₃ and Phl	MgBr would give		
a) Bromobenzene		b) Chlorobenzene	
c) Triphenylphosphite		d) Dichlorobenzene	
821. Which does not give amn	nonia with water?		
a) $Mg_{3}N_{2}$	b) AIN	c) CaCN ₂	d) $Ca(CN)_2$
822. Bond length is maximum in:			
a) HI	b) HBr	c) HCl	d) HF
823. Nitrogen molecule is chemically less active because it has a between two nitrogen atoms.			
a) Single bond	b) Double bond	c) Triple bond	d) Coordinate bond
824. If Cl_2 gas is passed into aqueous solution of KI containing some CCl_4 and the mixture is shaken, then:			
a) Upper layer becomes v	violet		

	,			
	c) Homogeneous violet layer is formed			
	d) None of the above			
	825. In NO_3^{-ii} ion, the num	nber of bond pair and lone pair o	of electrons on nitrogen atom	are:
	a) 2, 2	b) 3, 1	c) 1, 3	d) 4, 0
	826. Cl_2 is used \in the man	ufacture of :		
	a) Chloroform	b) _{CCl4}	c) Westron	d) All of these
	827. Which element shows	polymorphism?		
	a) O	b) S	c) Se	d) All of these
	828. N_2 O is formed on red	action with dil . HNO_3 with :		
	a) Cu	b) Hg	c) Ag	d) Fe
	829. The inert gases presen	it in atmosphere are:		
	a) He and Ne	b) He, Ne and Ar	c) He, Ne, Ar and Kr	d) He, Ne, Ar, Kr and Xe
	830. Orthophosphoric acid	is ionized insteps.		
	a) 1	b) 2	c) 3	d) 4
	831. In the clathrates of xea	non with water, the nature of bo	nding between xenon and wa	ter molecule is:
	a) Covalent			
	b) Hydrogen bonding			
	c) Coordinate			
	d) Dipole-induced dip	pole		
	832. Which one is least sol	uble in water?		
	a) BaF_2	b) CaF_2	c) SrF_2	d) MgF_2
	833. If $NO_2(N_2O_4)$ is disso	olved in NaOH, we get solution o	of ?	
	a) NaNO ₂		b) NaNO ₃	
	c) Mixture of NaNO	2 and NaNO ₃	d) NaNO4	
834. The bond angles $\in OF_2$, $OCl_2 \wedge OBr_2$ show the order :				
	2 2 2	b) $OF_2 > OB_2 > OCl_2$ as hybridisation and structure as:	c) $OBr_2 > OCl_2 > OF_2$	d) $OCl_2 > OBr_2 > OF_2$
	a) $_{s p}^{3}$ tetrahedral	b) $s p^3 d^2$ square planar	c) $sn^3 d^2$ pyramidal	d) $s p^3 d^3$ octahedral
	836. The atomicity of phosphorus is X and the PPP bond angle in the molecule is Y. what are X and Y?			
	a) _{X=4} , _{Y=90°}	b) _{X=4} , _{Y=60} °	c) _{X=3, Y=120°}	d) _{X=2, Y=180°}
	837. Bottle of PCl_5 is kep	,	-,	,
	a) Explodes	b) Get oxidized	c) Is volatilized	d) Reacts with moisture

b) Lower layer becomes violet

838. Sometimes a yellow turbidity appears while passing H_2S gas even in the absence of	II group radicals. This is
because: a) Sulphur is present I the mixture as impurity	

b) IV group radicals are precipitated as sulphides

c) Of the oxidation of H_2 Sgas by some acid radicals

d) III group radicals are precipitated as hydroxides

839. The oxidation of thiosulphate ion by iodine gives:

	a) SO_{3}^{2-ii}	b) SO_4^{2-ii}	c) $S_2 O_8^{2-ii}$	d) $S_4 O_6^{2-ii}$
840	Rain water sometimes cont	ains $NH_4 NO_3$ because light	ening in the sky causes the ai	r to react and produce oxides
	of nitrogen and: a) H_2	b) _{NH 3}	c) _{CO2}	d) Noble gases
841	• The number of molecules of	of water needed to convert on	the molecule of P_2O_5 into orth	ophosphoric acid is:
	a) 2	b) 3	c) 4	d) 5
842	. Which of the following is t	he correct order of increasing	g enthalpy of vaporization?	
	a) NH ₃ <ph<sub>3<ash<sub>3</ash<sub></ph<sub>	b) AsH ₃ <ph<sub>3<nh<sub>3</nh<sub></ph<sub>	c) PH ₃ <ash<sub>3<nh<sub>3</nh<sub></ash<sub>	d) NH ₃ <ash<sub>3<ph<sub>3</ph<sub></ash<sub>
843	. Which of the following wa	s previously known as muriat	ic acid?	
	a) Cl ₂	b) Br_2	c) _{HCl}	d) H_2SO_4
844	Which metal forms an amp	ohoteric oxide?		
	a) Cr	b) Fe	c) Cu	d) Zn
845	H_2SO_4 is added while pre-	paring a standard solution of	Mohr's salt to prevent:	
	a) Hydration	b) Reduction	c) Hydrolysis	d) Complex formation
846	846. The element which catches fire in air at $30 ^{\circ}C$ and is stored under water is			
	a) Sodium	b) Phosphorus	c) Magnesium	d) Zinc
847	847. Which are solid?			
	a) _{XeF2}	b) $_{XeF_4}$	c) <i>XeF</i> 6	d) All of these
848. Cl_2O is an anhydride of :				
	a) HClO4	b) <i>HOCl</i>	c) <i>Cl</i> ₂ <i>O</i> ₃	d) HClO ₂
849. Ammonium dichromate is used in some fireworks. The green coloured powder blown is:				
	a) CrO ₃	b) Cr_2O_3	c) Cr	d) $CrO(O_2)$
850. An element forms a gaseous oxide which on dissolving in water gives an acid solution. The element is:				
	a) S	b) Na	c) P	d) H
851. PCl ₃ and cold water reacts to produce which of the following ?				
	a) H ₃ PO ₃	b) H ₃ PO ₂	c) H ₄ P ₂ O ₇	d) H ₃ PO ₄
852	852. Ammonia on heating with carbon dioxide under pressure gives:			

a) NH ₄ HCO ₃	b) $(NH_4)_2 CO_3$	c) _{NH₂} COONH ₄	d) $(NH_4)_2 CO$	
853. The acid which forms two series of salts:				
a) H_3PO_4	b) H_3PO_3	c) H_3BO_3	d) $H_{3}PO_{2}$	
854. The structure of white phosphorus is:				
a) Square planar	b) Pyramidal	c) Tetrahedral	d) Trigonal planar	
855. Which of the following	is strongest oxidizing agent?			
a) I_2	b) Br_2	c) <i>Cl</i> ₂	d) F_2	
856. It 20% nitrogen is prese	nt in a compound, its minimu	m molecular weight can be:		
a) 144	b) 70	c) 100	d) 140	
857. Which sulphide is insolu	ble in yellow ammonium sul	phide?		
a) SnS	b) $A_{S_2S_3}$	c) Sb_2S_3	d) Bi_2S_3	
858. Which one is most basic	in character?			
a) F^{-ii}	b) <i>Cl⁻ⁱⁱ</i>	c) Br^{-ii}	d) _I -22	
859. Which oxide is alkaline	?			
a) P_2O_3	b) B_2O_3	c) Bi_2O_3	d) As_2O_3	
860. Fluorine oxidises HSO	\int_{1}^{1} to:			
a) $S_2 O_3^{2-ii}$	b) $S_2 O_8^{2-ii}$	c) $S_4 O_6^{2-ii}$	d) <i>SO</i> ₂	
861. Oleum is chemically				
a) H ₂ SO ₃	b) H ₂ SO ₅	c) H ₂ S ₂ O ₇	d) H ₂ S ₂ O ₈	
862. Among halogens maximum oxides are formed by:				
a) Fluorine	b) Chlorine	c) Bromine	d) Iodine	
863. Which statement is false	??			
a) Radon is obtained from	om the decay of radium.			
b) Helium is an inert ga	S.			
c) The most abundant n	oble gas in the atmosphere is	He.		
d) Xe is the most reactive	ve among the noble gases.			
864. Freons are used as:				
a) Refrigerant	b) Catalyst	c) Oxidant	d) None of these	
865. Sulphur molecule exists as:				
a) _{S2}	b) _{S4}	c) _{S₆}	d) _{S₈}	
866. Noble gases are adsorbe	d by			
a) Anhydrous calcium c	hloride	b) Ferric hydroxide		
c) Conc. H ₂ SO ₄		d) Activated coconut chan	rcoal	

867. Phosphorus when exposed to air burns spontaneously because:

a) The reaction is endothermic

b) The reaction is exothermic

c) The activation energy is very low

d) Air contains some catalytic agent

868. There is O—O bond is:

a) $S_2 O_8^{2-ii}$	b) $S_4 O_6^{2-ii}$	c) SO_3^{2-ii}	d) $S_2 O_7^{2-ii}$			
869. Freons are:						
a) CCl_2F_2	b) _{CFCl₃}	c) <i>CCIF</i> ₃	d) All of these			
870. Normality of pure sulphur	c acid is:					
a) 4 <i>N</i>	b) 12 <i>N</i>	c) 24 <i>N</i>	d) 36 <i>N</i>			
871. The number of $S-S$ bond	s in sulphur trioxide					
a) Three	b) Two	c) One	d) Zero			
872. The number of electrons p	resent in the valency shell of	P in PCl_{3} is:				
a) 12	b) 10	c) 8	d) 18			
873. A hydride of nitrogen which	ch is acidic is					
a) N ₃ H	b) N ₂ H ₂	c) NH ₃	d) N ₂ H ₄			
874. Which of the following co	mpound show sublimation?					
a) CaHP O_3	b) $_{NH_4Cl}$	c) BaSO ₄	d) $CaCO_3$			
875. The highest ionization pote	ential in a period is shown by:					
a) Alkaline earth metals	b) Alkali metals	c) Halogens	d) Noble gases			
876. $K_2[HgI_4]$ detects the ion	/group:					
a) $_{NH_2}$	b) NO	c) NH_4^{+ii}	d) <i>Cl⁻ⁱⁱ</i>			
877. The percentage of nitroger	n in urea is about:					
a) 70	b) 63	c) 47	d) 28			
878. Phosphate mineral of phos	phorus is:					
a) $Fe_{3}(PO_{4})_{2}H_{2}O$	b) $Ca_{3}(PO_{4})_{2}$	c) $_{3}Ca_{3}(PO_{4})_{2} \cdot CaF_{2}$	d) $3Ca_3(PO_4)_2 \cdot CaCl_2$			
879. Dithionic acid has the formula:						
a) $H_2 S_2 O_6$	b) H_2SO_5	c) $H_2 S_2 O_8$	d) $H_2 S_2 O_5$			
880. A person working with phosphorus suffers from a disease in which bones decay. It is known as						
a) Arthritis	b) Phossay jaw	c) Rickets	d) cancer			
881. A salt X gives white precipitates with lead acetate solution, insoluble in hot water and nitric acid. The salt X most probably contains:						

	a) Cl ⁻ⁱⁱ	b) Ba^{2+ii}	c) SO_4^{2-ii}	d) CO_3^{2-ii}
882	S-S bond is present in			
	a) $\alpha - (SO_3)_n$	b) $\gamma - (S_3O_9)$	c) $H_2 S_2 O_3$	d) $H_2 S_2 O_8$
883	. NH_3 molecule can enter int	o complex formation through	1:	
	a) Ionic bond			
	b) Covalent bond			
	c) Coordinate bond			
	d) Electron deficient bond			
884	Bromine can be liberated fr	rom KBr solution by the action	on of	
	a) KI	b) NaCl	c) Cl ₂	d) I ₂ soluation
885	. The oxidation state of Xe a	nd XeO_3 and the bond angle	in it respectively are	
	a) _{+6, 109°}	b) _{+8, 103} °	c) _{+6, 103°}	d) _{+8, 120°}
886		es, lead nitrate, silver nitrate,	, sodium nitrate and ammoniu	um nitrate; the one that
	decomposes without leaving a) Ammonium nitrate	g any solid residue is b) Sodium nitrate	c) Silver nitrate	d) Lead nitrate
887	. Ammonia and phosphine re	esemble each other in:		
	a) Solubility in water			
	b) Forming salt with acid			
	c) Stability			
	d) Reducing character			
888	In the compound of type PO	OX_3 , P atoms show multiple	bonding of the type:	
	a) $p\pi - d\pi$	b) $d\pi - d\pi$	c) $p\pi - p\pi$	d) No multiple bonding
889	. Tear gas is:			
	a) <i>COCl</i> ₂	b) <i>CaOCl</i> ₂	c) _{NH 3}	d) $CCl_3 \cdot NO_2$
890	. Which statement is not co	rrect about $(CN)_2$?		
	a) It is poisonous gas			
	b) It is called pseudohaloge	n		
	c) It is named as cyanogen			
	d) None of the above			
891	. When ammonium chloride	is heated with NaOH, a gas i	s evolved, which has	
	a) Pungent odour	b) Smell of rotten eggs	c) Smell of ammonia	d) No smell
892	. When phosphine is bubbled	through solution of silver ni	trateis precipitated.	
	a) Silver	b) Silver phosphide	c) Silver oxide	d) None of these

893. Hydrolysis of one mole of peroxodisulphuric acid produces:

a) Two moles of sulphuric acid

b) Two moles of peroxomonosulphuric acid

- c) One mole of sulphuric acid and one mole of peroxomonosulphuric acid
- d) One mole each of sulphuric acid, peroxomonosulphuric acid and hydrogen peroxide

894. Which has the same electronic configuration as of inert gas?

894	894. Which has the same electronic configuration as of inert gas?					
	a) Ag^{3+ii}	b) <i>Cu</i> ^{2+<i>ii</i>}	c) <i>Pb</i> ^{4+<i>ii</i>}	d) Ti^{4+ii}		
895	Glacial phosphoric acid is:					
	a) H_3PO_4	b) HPO3	c) $H_4 P_2 O_7$	d) $H_{3}PO_{2}$		
896	. Which of the following pai	irs is not correctly matched?				
	a) A halogen which is liqui	id at room temperature—bro	mine			
	b) The most electronegativ	e element—fluorine				
	c) The most reactive halog	en—fluorine				
	d) The strongest oxidizing	agent—iodine				
897	Nitrous oxide is known as					
	a) Laughing gas	b) Laboratory gas	c) Breathing gas	d) Exercising gas		
898	. The number of hydrogen a	tom (s) attached to phosphore	us atom in pyrophosphorus a	cid is		
	a) Zero	b) One	c) Two	d) Three		
899	Which of the following is a	not correct?				
	a) Ammonia is used as refr	rigerant				
	b) A mixture of Ca(CN) ₂ a	nd C is known as nitrolim				
	c) A mixture of $Ca(H_2PO_4)$) ₂ and CaSO ₄ . $2H_2O$ is known	n as superphosphate of lime			
	d) Hydrolysis of NCl ₃ give	NH ₃ and HOCl				
900	. Which halide does not hyd	rolyse?				
	a) <i>SbCl</i> ₃	b) _{AsCl₃}	c) PCl ₃	d) $_{N\!F_3}$		
901	. The noble gas mixture is co	poled in a coconut bulb at 17.	3k. the gases that are not abso	orbed are		
	a) Ne and Xe	b) He and xe	c) Ar and Kr	d) He and Ne		
902	In the reaction $H_2 S + O_3 \rightarrow O_3$, the products are:				
	a) H_2O, S, O_2	b) $H_2 SO_4 + O_2$	c) H_2O+S	d) $SO_2 + H_2$		
903	When PCl ₅ reacts with sulp sulphuric acid	bhuric acid, sulphuryl chlorid	$e(SO_2Cl_2)$ is formed as the	e final product .this shows that		
	a) Has two hydroxyl group	s in its structure	b) Is a derivative of sulphu	r dioxide		
	c) Is a dibasic acid		d) Has greater affinity for v	vater		

904. Caliche is:

904. Caliche is:							
a) Crude saltpetre	b) Impure nitre	c) Impure carnallite	d) Ashes of sea-weeds				
905. The number of paired ele	905. The number of paired electron in oxygen molecule are						
a) 14	b) 8	c) 16	d) 12				
906. The number of sigma bo	nds in $P_4 O_{10}$ is:						
a) 6	b) 16	c) 20	d) 7				
907. Bleaching action of SO_2	is due to						
a) Reduction	b) Hydrolysis	c) Oxidation	d) Acidic nature				
908. Nitrogen is produced wh	en $NaNO_2$ is heated with:						
a) NH ₄ Cl	b) $_{NH_4}NO_3$	c) $(NH_4)_2 CO_3$	d) _{NH4} OH				
909. The structural formula o	f hypophosphorous acid is						
a) H H OH	н b) H ОН		о))) (b) (b) (b)				
910. Which of the following of	compounds gives chlorine dio	xide when it reacts with SO_2	in the presence of acid?				
a) Sodium chloride	b) Sodium chlorate	c) Sodium perchlorate	d) Sodium chlorite				
911. The hydride of group 16	elements showing maximum	tendency for complex forma	tion is				
a) H ₂ Te	b) <i>H</i> ₂ <i>O</i>	c) H_2S	d) H_2Se				
912. The noble gas which for	ms interstitial compounds is						
a) Helium	b) Argon	c) Neon	d) Xenon				
913. Iodine may be liberated	from sodium iodate by:						
a) H_2SO_4	b) <i>NaHSO</i> ₃	c) _{KMnO4}	d) HCl				
914. Which oxide is of different	ent type than others?						
a) MnO ₂	b) PbO_2	c) TiO_2	d) Na_2O_2				
915. Oxide of nitrogen used as a catalyst in the lead chamber process for the manufacture of <i>sulphuric</i> acid is:							
a) NO	b) _{N2} O	c) $N_2 O_3$	d) N_2O_5				
916. When excess of KI is add	ded to copper sulphate solution	n:					
a) Cuprous iodide is for	ned						
b) I_2 is liberated							
c) Potassium iodide is or	kidized						
d) All of the above							

917. The spectrum of helium is similar to:

	a) H	b) Na	c) _{Li} ***	d) _{He} +ii	
918.	The reaction of P_4 with X	leads selectively to P_4O_6 the	21	iii	
	a) dry O ₂		b) A mixture of O ₂ and N ₂		
	c) Moist O ₂		d) O2in the presence of aqu	ueous NaOH	
919.	$PH_{4}I$ + NaOH forms:				
	a) PH3	b) _{NH 3}	c) $P_4 O_6$	d) $P_4 O_{10}$	
920.	When fluoride is heated w	with conc. $H_2 SO_4 \wedge MnO_2 t$	he gas evolved is :		
	a) HF	b) MnF_2	c) _{F2}	d) None of these	
921.	Which would quickly abso	rb oxygen?			
	a) Alkaline solution of pyr	ogallic acid			
	b) Concentrated sulphuric	acid			
	c) Lime water				
	d) Alkaline solution of cop	oper sulphate			
922.	The compound used as refu	rigerant is:			
	a) <i>CCl</i> ₄	b) COCl ₂	c) _{CF 4}	d) CF_2Cl_2	
923.	Phosphine is not obtained	by the reaction when:			
	a) White P is heated with I	NaOH			
	b) Red P is heated with Na	ЮН			
	c) Ca_3P_2 reacts with wate	r			
	d) Phosphorus trioxide is b	poiled with water			
924.	Nitrogen forms Oxides				
	a) 3	b) 4	c) 5	d) 6	
925.	Some of the reasons of rea	cting NH_3 with hydrogen ch	loride are given below. The i	ncorrect is:	
	a) The nitrogen atom of N	H_3 gains electrons			
	b) NH_3 can give a pair of	electrons			
	c) A proton in HCl can acc	cept an electron pair from N	H_3		
	d) The Cl^{-ii} ion formed has	as a stable configuration			
926.	The compound of Sulphur	that can be used as refrigeran	nt is:		
	a) $S_2 C l_2$	b) <i>SO</i> ₂	c) _{SO3}	d) H_2SO_4	
927.	Oxygen can be obtained from	om bleaching powder by:			
	a) Adding dilute acid				
	b) Passing carbon dioxide				
	c) Heating with a cobalt sa	lt			

d) Adding alkalies

b) Sulphuryl chloride — SO_2Cl_2

928. The catalyst used in the m	anufacture of ammonia is		
a) V ₂ O ₅	b) Pt	c) Fe	d) Ni(CO) ₄
929. F_2 is largely used ∈:			
a) Making Freon	b) Making Teflon	c) Rocket fuels	d) All of these
930. Substance used in Holme?	s signal is:		
a) $_{NH_3}$	b) <i>PH</i> 3	c) <i>PH</i> ₅	d) $P_{2}O_{5}$
931. Which one of the following	ng combines with Fe (II) ions	to form a brown complex?	
a) NO	b) _{N2} O	c) _{N₂O₃}	d) $_{N_2O_5}$
932. All the three atoms of ozo	one are used up when it reacts	with:	
a) H_2O_2	b) PbS	c) KI	d) _{SO2}
933. Which can act as an acid	in sulphuric acid?		
a) HNO3	b) H_3PO_4	c) HClO ₄	d) H_2O
934. SO_2 reduces cupric ion to	cuprous ion in presence of:		
a) KOH	b) H_2O	c) KCNS	d) $H_{2}SO_{4}$
935. On heating a salt with Nat	OH, smell of NH_3 is obtained	d. The salt contains:	
a) NH_4^{+ii}	b) NO_{3}^{-ii}	c) NO_2^{-ii}	d) <i>CH</i> ₃ <i>COO</i> ^{-<i>ii</i>}
936. The catalyst used in the m	anufacture of HNO_3 by Ostw	ald's process is:	
a) Platinum black	b) Finely divided nickel	c) Vanadium pentoxide	d) Platinum gauze
937. Which is used in vulcanis	ation of rubber?		
a) ${SF_6}$	b) _{SF 4}	c) _{SF2}	d) $S_2 C l_2$
938. Superphosphate of lime is	s obtained from the reaction of	of:	
a) Calcium carbonate wit	h phosphoric acid		
b) Calcium phosphate with	h hydrochloric acid		
c) Calcium phosphate with	h sulphuric acid		
d) Bones with gypsum			
939. The anhydride of orthop	phosphoric acid is:		
a) $P_4 O_{10}$	b) $P_{2}O_{5}$	c) $P_4 O_6$	d) $P_2 O_3$
940. Which is bad conductor of	f electricity?		
a) $H_2 F_2$	b) HCl	c) HBr	d) HI
941. Which compound has an	incorrect formula?		
a) Thionyl chloride — S	OCl ₂		

c) $Oleum - H_2 S_2 O_6$					
d) Phosphorus oxychlo	$ride - POCl_3$				
942. Chromium dissolves in d	il. $H_2 SO_4 i$ form $Cr(H_2O)_6^{2^2}$	+ <i>i</i> . <i>i</i> The colour of the ion is:			
a) Blue	b) Green	c) Yellow	d) Orange		
943. The oxide that is not redu	uced by hydrogen in the hot is	s:			
a) Ag_2O	b) Fe_2O_3	c) CuO	d) _{K2} O		
944. Bleaching action of SO ₂	is due to its				
a) Oxidizing property	b) Acidic property	c) Basic property	d) Reducing property		
945. The chloric acid and chlo	brates are:				
a) Good oxidizing agents	3				
b) Bleaching agents					
c) Undergo disproportion	nation on heating				
d) All of the above					
946. The oxidation number of	Exenon in XeO F_2 is				
a) Zero	b) 2	c) 4	d) 3		
947. Which metal liberates H	$_2$ with dil. nitric acid?				
a) Zn	b) Cu	c) Mn	d) Hg		
948. When dry chlorine is pas	sed over silver chlorate at 46	0 K, the product is:			
a) Cl_2O	b) ClO_2	c) ClO ₃	d) ClO ₄		
949. $FeCl_3$ solution on react	ion with SO_2 changes $\frac{1}{6}$:				
a) <i>FeCl</i> ₂	b) $Fe_{2}(SO_{4})_{3}$	c) $Fe_{2}(SO_{3})_{3}$	d) $FeSO_4$		
950. Which of the following i	s known as Berthelot's salt?				
a) $(NaPO_3)_6$	b) <i>NaOCl</i>	c) KClO ₃	d) $_{KHF_2}$		
951. Pb reacts with dilute HN	O ₃ gives				
a) NO	b) NH ₄ NO ₃	c) N ₂ O ₅	d) NO ₂		
952. The chemical used for co	ooling in refrigeration or in m	anufacture of ice is:			
a) CS_2	b) NH ₄ OH	c) _{NH₄} Cl	d) Liquid NH ₃		
953. If an allotropic form changes slowly to a stable form. It is called					
a) Enantiotropy	b) Dynamic allotropy	c) Monotropy	d) None of these		
954. The percentage of N_2 in	air is:				
a) 75% by weight	b) 78.7% by volume	c) Both (a) and (b)	d) None of these		
955. Xenon best reacts with:					
a) The most electroposit	ive element				

	b) The most electronegativ	va alamant			
	-	e element			
	c) The hydrogen halides				
	d) Non-metals				
956	5.98% H_2SO_4 is:				
	a) Pyrosulphuric acid	b) Oleum	c) Azeotropic mixture	d) None of these	
957	incorrect for this reaction?			it. Which of the statement is	
050	a) Evolved I_2 is reduced		c) $Na_2S_2O_3$ is oxidised	d) Cu_2I_2 is formed	
958	3. The gas used in the manufa				
	a) CO_2	b) N_2O	c) NO	d) $N_2 O_3$	
959	9. A white precipitate is obtain	ined on hydrolysis of:			
	a) PCl ₅	b) _{NCl₃}	c) BiCl ₃	d) AsCl ₃	
960). The equation, $2 KClO_3 \longrightarrow$	$2KCl+3O_2$ indicates all of	the following, except:		
	a) New compounds are for	rmed			
	b) The reaction is exothern	nic			
	c) The law of conservation	of mass is obeyed			
	d) The amount of KClO ₃	decomposes			
961	•		f available chlorine is 49. Th	ne volume of chlorine obtained	
	if 10 g of the sample is trea a) 1.5 litre	ated with HCl at NTP is: b) 3.0 litre	c) 15.0 litre	d) 150 litre	
962	2. Which one has the highest	percentage of nitrogen?			
	a) Calcium nitrate		b) Ammonium sulphate		
	c) Urea		d) Ammonium nitrate		
963	3. Which has maximum pH in	n aqueous solution?			
	a) NaClO	b) <i>NaClO</i> ₂	c) _{NaClO₃}	d) _{NaClO4}	
964	4. Which of the following is r	not a drying and dehydrating	agent?		
	a) Silica gel	b) $P_{2}O_{5}$	c) Conc. H_2SO_4	d) Hydrated CaCl ₂	
965	5. The compound that attacks	s pyrex glass is:			
	a) XeF 2	b) $_{XeF_4}$	c) <i>XeF</i> 6	d) None of these	
966	966. In the reaction $K + SO_2 \longrightarrow \dots$, the products are:				
	a) KO2+S	b) $K_2 SO_3 + K_2 S_2 O_3$	c) _{K2} SO4	d) None of these	
967	7. Cl(OH)is:				
	a) An oxide	b) A chloride	c) A hydride	d) An acid	
968	3. Which of the following occ	curs in free state?			

a) N	b) P	c) As	d) Sb		
969. Which one is not an ac	id salt?				
a) NaH_2PO_2	b) NaH_2PO_3	c) NaH_2PO_4	d) None of these		
970. Oxygen is gas but sulp	hur is solid because:				
a) Oxygen is compose	d of discrete molecules while s	ulphur is polymeric			
b) Molecular weight of	f sulphur is much higher than t	hat of oxygen			
c) Oxygen is a stronge	r oxidizing agent than sulphur				
d) Boiling point of sul	phur is much higher than that o	of oxygen			
971. In contact process imp	urities of arsenic are removed	by:			
a) $Al(OH)_3$	b) $Fe(OH)_3$	c) $Cr(OH)_3$	d) Fe_2O_3		
972. Concentrated sulphurio			4)		
a) Efflorescent	b) Hygroscopic	c) Oxidizing agent	d) Sulphonating agent		
973. Which halogen does no			d) -		
a) F_2 974. Which hydride is most	b) Cl_2	c) <i>Br</i> ₂	d) _{I2}		
		c)	d) a		
a) H_2O 975 The discovery of isoto	b) $H_2 S$ pes began with the experiment	c) $H_2 Te$	d) H_2Se		
a) Xe	b) Kr	c) Ar	d) Ne		
-	orine $Cl - O$ bond contains:				
		c)	d) None of these		
a) $d\pi - d\pi$ bonding 977. Arsenic acid is:	b) $p\pi - d\pi$ bonding	c) $p\pi - p\pi$ bonding			
a) H_3AsO_3	b) H_3AsO_4	c) H_2 AsO ₄	d) $HAsO_4$		
978. The halogen that is mo	st readily reduced is:				
a) Chlorine					
b) Bromine					
c) Iodine					
d) Fluorine					
979. The bond angle O—S—O i hybridization of sulphur \in SO ₂ are:					
a) 119.5', s p^3	b) 119.5', s p^2	c) $109^{\circ}28'$, sp^{3}	d) None of these		
980. Which of the element of nitrogen family produce maximum number of oxy-acids?					
a) N	b) P	c) As	d) Sb		
981. Halogens are placed in	the VIIA group or gp. 17 of th	ne periodic table, because:			
a) They are non-metal	S				

- c) They are electronegative
- d) They have 7 electrons in outermost orbit

982. Nitrosyl chloride is:

982. N	litrosyl chloride is:				
a) NOC1	b) _{NOCl₂}	c) NO_2Cl_2	d) $N_2 OCl_2$	
983. W	Which of the following give	es M^{3-ii} ion most readily?			
a) P	b) N	c) Sn	d) As	
984. T	here is very little differen	$ce \in acid$ strength \in the aci	$dsH_3PO_4, H_3PO_{3}, H_3PO_{3}$	₂ because:	
a]) Phosphorus in these acid	s exists in different oxidation	n states		
-) The hydrogen in these ac oxygen) Phosphorus is highly elec		hosphorus and have same nu	mber of unprotonated	
d) Phosphorus oxides are le	ess basic			
Т	hose having same number	-			
) (i) and (iii) only	b) (i) and (ii) only	c) (ii) and (iii) only	d) (i), (ii) and (iii)	
986. W	Which possesses highest pe	rcentage of ionic character?			
a) HCl	b) HBr	c) HF	d) HI	
987. Bleaching powder slowly loses its activity when it stands in air. This is due to:					
	⁾ Reaction with moisture t) Auto oxidation	o liberateO ₂			
c)) Loss of $CaCl_2$				
d) Formation of $Ca(OH)_2$	2			
988. W	Which statement is false?				
a) $_{NH_3}$ is a Lewis base				
bj) $_{NH_{3}}$ molecule is triangul	ar planar			
c)) $_{NH_{3}}$ does not act as redu	cing agent			
d) NH_{3} (liquid) is used as a	solvent			
989. T	he number of hydrogen at	om(s) attached to phosphoru	s atom in hypophorus acid is	?	
a) Three	b) One	c) Two	d) Zero	
990. W	Which one of the following	cations does not form a com	pplex with ammonia?		
a`		b) and		d) and	

a) Ag^{+ii} b) Cu^{2+ii} c) Cd^{2+ii} d) Pb^{2+ii}

991. In the laboratory H_2S gas is prepared by using black lumps and dil. H_2SO_4 . The black lumps are

a) $FeSO_4$ b) MnO_2 c) FeS d) $FeSO_3$

992. Nuclear fusion produces

a) Argon	b) Deuterium	c) Helium	d) Krypton			
993. Which possesses least stable covalent P—H bond?						
a) $_{PH_3}$	b) $P_{2}H_{6}$	c) $P_{2}H_{5}$	d) $_{PH_{6}^{+\iota\iota}}$			
994. The correct order of	the thermal stability of hydrog	ten halides $(H-X)$ is	-			
a) HI>HCI <hf>HI</hf>	Br b) HCI <hf>HBr<hi< td=""><td>c) HF>HCl>HBr>HI</td><td>d) HI>HBr>HCl>HF</td></hi<></hf>	c) HF>HCl>HBr>HI	d) HI>HBr>HCl>HF			
995. Noble gases can be	separated by:					
a) Passing them thro	ough some solutions					
b) Electrolysis of th	eir compounds					
c) Adsorption and d	esorption on coconut charcoal					
d) None of the above	e					
996. Which of the follow	ing statements is not valid for c	oxoacids of phosphorus?				
a) All oxoacids cont	ain tetrahedral four coordinated	d phosphorus				
b) All oxoacids cont	tains at least one $P=O$ unit and	one P-OH group				
c) Orthophosphoric	acid is used in the manufacture	e of triple superphosphate				
d) Hypophosphorou	s acid is a diprotic acid					
997. Which statement is	not true for astatine?					
a) It is less electrone	a) It is less electronegative than iodine					
b) It exhibits only -	b) It exhibits only -1 oxidation state					
c) Intermolecular fo	prces between the astatine molec	cules will be larger than betwee	en the iodine molecules			
d) It is composed of	diatomic molecules					
998. The only element in	VIA group or group 16 elemen	tts, which is definitely a metal,	is:			
a) Tellurium	b) Selenium	c) Sulphur	d) Polonium			
999. The increasing order	r of reactivity of halogens is:					
a) $I_2 < Br_2 < Cl_2, < B$	F_2 b) $Cl_2 < F_2 < Br_2 < I_2$	c) $Cl_2 < Br_2 < I_2 < F_2$	d) $I_2 < Cl_2 < Br_2 < F_2$			
100 Coconut charcoal at - $100^{\circ}C$ adsorbs a mixture of: 0.						
a) He and Kr	b) Ar, Kr and Xe	c) Kr and Xe	d) He and Ne			
100 Clathrates are1.						
a) Non-stoichiomet	ric compounds	b) Complex compounds				
c) Interstitial compo	bunds	d) Ionic compounds				
100 Two pungent smelling gases bleach a certain substance. The gases may be:2.						

			`	D.
	a) $Cl_2 \wedge SO_2$	b) $Cl_2 \wedge NH_3$	c) $NH_3 \wedge PH_3$	d) $O_2 \wedge CO_2$
100 3.	Nitrogen is an essential con	stituent of all:		
	a) Proteins	b) Fats	c) Proteins and fats	d) None of these
100	Mark the halogen which she	ows electropositive character		
4.				
	a) F	b) Cl	c) Br	d) I
100 5.	Which of the following is c	alled Berthelot's salt?		
	a) (NaPO ₃) ₆	b) NaOCl	c) KClO ₃	d) KHF ₂
100 6.	A compound which leaves l	behind no residue on heating	is:	
	a) $Cu(NO_3)_2$	b) KNO ₃	c) _{NH4} NO ₃	d) None of these
100 7.	Phosphine on reaction with	hydrobromic acid gives:		
	a) _{PBr3}	b) $_{PH_4Br}$	c) _{PBr₅}	d) $P_{2}H_{4}$
100 8.	Bleaching powder has the n	nolecular formula:		
	a) <i>CaClO</i> ₃	b) CaClO	c) CaOCl ₂	d) $Ca(OCl)_2$
100 9.	Six volumes of oxygen, on o	complete ozonisation, form .	Volumes of ozone.	
	a) 2	b) 4	c) 6	d) 3
101 0.	Iodine solution stained on c	lothes can be removed by:		
	a) <i>NaCl</i>	b) _{NaBr}	c) $Na_2S_2O_3$	d) $Na_{2}S_{4}O_{6}$
101 1.	The substance which does n	ot liberate oxygen on treatm	ent with ozone is	
	a) PbS	b) HCl	c) SO ₂	d) Hg
101 2.	In the reaction $CaS + H_2S$	\rightarrow , the products are:		
	a) $CaS_2 + H_2$	b) $CaS_3 + H_2$	c) $CaS_5 + H_2$	d) <i>Ca+S</i>
101 3.	HI cannot be prepared by	heating KI with conc . H_2	SO4 because :	
	a) H_2SO_4 is stronger acid t	han HI		
	b) HI is stronger acid than H	H_2SO_4		

c) H_2SO_4 is an oxidizing agent

d) HI is more volatile than	H_2SO_4
-----------------------------	-----------

101 Lead nitrate on heating gives lead oxide, nitrogen dioxide and oxygen. The reaction is known as:4.

	a) Combustion	b) Combination	c) Displacement	d) Decomposition
101 5.	Which hydride is the strong	gest base?		
	a) AsH3	b) _{<i>NH</i> 3}	c) <i>PH</i> ₃	d) _{SbH3}
101 6.	Which forms maximum co	mpounds with xenon?		
	a) F	b) Cl	c) Br	d) I
101 7.	Claude's process is used in	the manufacture of:		
	a) _{N2}	b) _{<i>NH</i> 3}	c) _{N2} O	d) _{NO2}
101 8.	Which is a saline oxide?			
	a) Na_2O_2	b) BaO ₂	c) _{Na2} O	d) Fe_2O_3
101 9.	Which set of elements has	the strong tendency to form a	anions?	
	a) N, O, F	b) P, S, Cl	c) As, Se, Br	d) Sb, Te, I
102 0.	Light blue colour of nitrous	s acid is due to dissolved:		
	a) O ₂	b) _{N2}	c) _{N2} O	d) $N_2 O_3$
102 1.	Which one of the following	g pairs of reactants does not f	form oxygen when they react	with each other?
	a) F ₂ , NaOH solution (hot,	conc.)	b) F ₂ , H ₂ O	
	c) Cl ₂ , NaOH solution (cold	d, dilute)	d) CaOCl ₂ , H ₂ SO ₄ , (dilute,	small amount)
102 2.		e	stics: (i) It is both a proton devite basic and acidic oxides.	onor and proton acceptor. (ii) (iv) It oxidses Fe at boiling
	a) H_2O	b) <i>CO</i> ₂	c) H_2O_2	d) NO
102 3.	Most unstable hydride is			
	a) NH ₃	b) PH ₃	c) AsH ₃	d) BiH ₃
102 4.	Phosphide ion has the elect	ronic structure similar to tha	t of:	
	a) Nitride ion	b) Chloride ion	c) Fluoride ion	d) Sodium ion
102 5.	The gaseous mixture used b	by deep sea divers for respira	tion is:	

	a) $N_2 + O_2 mixture$	b) $He + O_2 mixture$	c) $Ar+O_2$ mixture	d) $Ne+O_2 mixture$
102 6.	A gas that cannot be collect	ted over water is		
	a) <i>SO</i> ₂	b) _{N2}	c) _{O2}	d) <i>P H</i> ₃
102 7.	Which is used in the manuf	Facture of safe matchsticks?		
	a) Red phosphorus	b) Sulphur	c) Selenium	d) White phosphorus
102 8.	Bond angle in O_3 molecule	is:		
	a) 108° 29'	b) 108° 28′	c) 116° 90′	d) 120°
102 9.	The noble gas which shows	abnormal behaviour in liquio	d state and behave as super fl	uid is
	a) _{Ne}	b) He	c) _{Ar}	d) _{Xe}
103 0.	Which of the following is n	not hydrolysed?		
	a) _{PF3}	b) $SbCl_3$	c) $AsCl_3$	d) $_{NF_{3}}$
103 1.	NH_3 has a much higher box	iling point than PH_3 because	:	
	a) NH ₃ has a higher mole	cular weight		
	b) $_{NH_3}$ undergoes umbrell	a inversion		
	c) NH_3 forms hydrogen bo	ond		
103 2.		ds whereas PH_3 contains cov up 15 and third period of the		configuration will be
	a) $1s^2 2s^2 2p^3$	b) $1s^2 2s^2 2p^4$	c) $1s^2 2s^2 2p^6 3s^2 3p^3$	d) $1s^2 2s^2 2p^6 3s^2 3p^2$
103 3.	The reagent used for testing	g ammonia is:		
	a) Bayer's reagent	b) Nessler's reagent	c) Fenton's reagent	d) Molisch reagent
103 4.	Elements of nitrogen family	y having allotropic forms are	:	
	a) N, Sb, Bi	b) N, P, As, Sb	c) As, Sb, Bi	d) P, As, Bi
103 5.	An example of tetrabasic ad	cid is:		
	a) Orthophosphorus acid			
	b) Orthophosphoric acid			
	c) Metaphosphoric acid			

d) Pyrophosphoric acid

103 Phosphoric acid is syrupy liquid due to: 6. a) Strong covalent bond b) Van der Waals' forces c) Hydrogen bonding d) None of these 103 Two oxides of nitrogen NO and NO₂ react together at 253°K and form a compound of nitrogen X. X reacts with 7. water to yield another compound of nitrogen Y. The shape of the anion of Y molecule is c) Square planar a) Tetrahedral b) Triangular planar d) Pyramidal 103 The noble gas which forms maximum number of compounds is 8. a) Ar b) He c) Ne d) Xe 103 When conc. H_2SO_4 is heated with P_2O_5 , the acid is converted into 9. a) Sulphure trioxide b) Sulphur dioxide c) Sulphur d) A mixture of sulphur dioxide and sulphur trioxide 104 The most reactive allotropic form of phosphorus is: 0. a) Red phosphorus b) Yellow phosphorus c) Black phosphorus d) Violet phosphorus 104 P_2O_5 when treated with cold water gives: 1. a) Orthophosphoric acid b) Metaphosphoric acid c) Pyrophosphoric acid d) Hypophosphoric acid 104 Sodium pyrophosphate is represented by which of the following formula? 2. c) Na₄ P_2O_7 a) $Na_2P_2O_4$ b) Na₄ $P_2 O_5$ d) Na₂ $P_2 O_5$ 104 Which of the following(s) when heated give nitrogen gas? 3. b) Ba (N₃)₂ d) Both a and b a) $(NH_4)_2Cr_2O_7$ c) NH₄NO₃ 104 Ozone is readily dissolved in: 4. a) Water b) Turpentine oil c) Carbon disulphide d) Ammonia 104 When $AgNO_3$ is heated strongly, the products formed are 5. d) $NO_2 \wedge O_2$ b) $NO_2 \wedge N_2O$ c) $NO \wedge O_2$ a) $NO \wedge NO_{2}$ 104 Agron was discovered by 6.

	a) Rayleigh		b) Ramsay	
	c) Both (a) and (b)		d) Frankland and Lockeyer	
104		d as drying agent and desicca	-	
7.	Thosphorus compound use	a as arying agent and desicea	unig agent is.	
	a) _{PCl₃}	b) PCl_5	c) $P_4 O_{10}$	d) $P_4 O_6$
104 8.	How many bonding electro	n pairs are there in white pho	osphorus ?	
	a) 6	b) 12	c) 4	d) 8
104 9.	Which of the following doe	es not react with fluorine?		
	a) Kr	b) Ar	c) Xe	d) All of these
105 0.	Which of the following car in human?	uses damage to the building	containing calcium and respo	onsible for cough and choking
	a) Sulphur	b) Carbon	c) Nitrogen dioxide	d) Sulphur dioxide
105 1.	CIO^{-ii} disproportionate in	nto		
	a) CI^{-ii} and O	b) CI^{-ii} and CIO_3^{-ii}	c) CI and O	d) CI^{-ii} and O^{-ii}
105 2.	Hydrofluoric acid is not pre	eserved in glass bottles becau	se:	
	a) It reacts with the visible	part of light		
	b) It reacts with the sodium	n oxide of the glass composit	ion	
	c) It reacts with the alumin	ium oxide of the glass compo	osition	
	d) It reacts with the silicon	dioxide of glass		
105 3.	SO ₂ acts as temporary blead	ching agent but Cl ₂ acts as pe	rmanent bleaching agent. wh	y?
	a) Cl_2 bleaches due to redu	ction but SO ₂ due oxidation		
	b) Cl ₂ bleaches due to oxid	ation but SO ₂ due to reduction	on.	
	c) Both of the above			
	d) None of the above			
105 4.	Liquid ammonia bottles be	opened after cooling them in	n ice for some time. It is beca	use liquid NH_{3} :

- a) Brings tears in the eyes
- b) Has a high vapour pressure
- c) Is a corrosive liquid
- d) Is a mild explosive

105 is the compound which can remove both oxygen and nitrogen of the air when it is passed over it at $1000^{\circ}C$. 5.

a) CaC_2 b) $CaCl_2$ c) $CaCN_2$ d) $Ca(CN)_2$

105 The crystals of ferrous sulphate on heating give:6.

105 Which one of the following reactions does not occur ?7.

a)
$$F_2 + C I^{-i \longrightarrow 2F^{-i+Cl_i}i}$$

b) $Cl_2 + 2F^{-i \longrightarrow 2Cl_2^{-i+F}i}i$
c) $Br_2 + 2I^{-i \longrightarrow 2Br^{-i+l_i}i}$
d) $Cl_2 + 2Br^{-i \longrightarrow 2Cl^{-i+Br_i}i}i$

105 By the action of hot conc H_2SO_4 , phosphorus changes to 8.

a) Phosphorous acid	b) Metaphosphoric acid
c) Pyrophosphoric acid	d) Orthophosphoric acid
105 Which is an amphoteric oxide?	

a) SO_2 b) B_2O_3 c) ZnO d) Na_2O

106 Anhydride of nitric acid is:0.

9.

a) NO b) N_2O_3 c) N_2O_4 d) N_2O_5

106 Which of the following attacks glass:1.

a) HCl b) HF c) HI d) HBr

106 Which property of white phosphorus is common to red P? 2.

a) It is soluble in carbon disulphide

b) It shows chemiluminescence

c) It reacts with hot caustic soda solution to give phosphine

d) It burns when heated in air

106 Which one of the following pairs of substances when mixed, produces chlorine gas at room temperature?3.

a) $NaCl \wedge MnO_2$	b) $NaCl \wedge HNO_3(conc)$
c) $NaCl \wedge H_2SO_4(conc)$	d) $HCl(conc) \wedge KMnO_4$

106 4.	Oxygen is divalent , where	eas sulphur exhibits valency	y of 2,4 \wedge 6 due i:	
	a) S is bigger atom			
	b) Ionization potential of su	llphur is more		
	c) S being less electronegat	ive than O		
	d) Presence of <i>d</i> -orbitals in	S		
106 5.	Which of the following elements	ments is good conductor of e	lectricity?	
	a) As	b) Sb	c) Bi	d) All of these
106 6.	Which one is known as oil o	of vitriol?		
	a) $H_2 S_2 O_7$	b) $H_2 SO_3$	c) $H_2 S_2 O_8$	d) $H_2 SO_4$
106 7.	The electrolysis of brine so	lution to manufacture chlorin	e is carried out in the:	
	a) Dennis cell	b) Gray cell	c) Nelson cell	d) Solvay cell
106 8.	The correct order of acidic	strength is:		
	a) $Al_2O_3 < SiO_2 < P_2O_3 < SiO_2 < P_2O_3 < SiO_2 < SiO_2$	50_2		
	b) $SiO_2 < i SO_2 < i Al_2O_3$	$\langle i P_2 O_3$		
	c) $Al_2O_3 < SiO_2 < iSO_2 i$	P_2O_3		
	d) $SO_2 < P_2 O_3 i SiO_2 < A$	$l_2 O_3$		
106 9.	Ozone molecule has	geometry.		
	a) Linear	b) Triangular	c) Tetrahedral	d) None of these
107 0.	Which is not true for ozone	?		
	a) It oxidizes lead sulphide			
	b) It oxidizes potassium iod	lide		
	c) It oxidizes mercury			
	d) It cannot act as bleaching	g agent		
107 1.	The strongest oxidizing age	nt is:		
	a) HNO3	b) H_2SO_4	c) H_2SO_3	d) $H_2 S_2 O_3$
107 2.	The oxidation states of pho	sphorus vary from:		
	a) _{-1 to +3}	b) _{-3 to +3}	c) $-3 \text{ to } +5$	d) _5 to +1

107 The following element forms a molecule with eight of its own atoms3.

107 The correct order of acidic nature of oxides is in the order4.

a) $NO < N_2O < N_2O_3 < NO_2 < N_2O_5$ b) $N_2O < NO < N_2O_3 < NO_2 < N_2O_5$

c)
$$N_2O_5 < NO_2 < N_2O_3 < NO < N_2O$$

d) $N_2O_5 < N_2O_3 < NO_2 < NO < N_2O$

107 Bleaching powder is mixed calcium salt of:5.

a)
$$HCl \wedge HClO$$
 b) $HClO_2 \wedge HCl$ c) $HClO \wedge HClO_2$ d) $HCl \wedge HClO_3$

107 In compounds of type ECl_3 , where E=B, P, As or Bi the angles Cl-E-Cl for different E are in the order 6.

a) B > P > As > Bi b) B > P = As = Bi c) B < P = As = Bi d) B < P < As < Bi

107 Bleaching properties of bleaching powder are due to its:7.

a) Oxidizing properties

b) Reducing properties

c) Basic properties

d) Disinfecting properties

107 One mole of calcium phosphide on reaction with excess water gives

8.

a) One mole of phosphorus pentoxide	b) Two moles of phosphine
c) One mole of phosphine	d) Two moles of phosphoric acid

107 Which noble gas has the least tendency to form compounds?

9.

a) He b) Ne c) Kr

108 Mixture used on tips of matchsticks is: 0.

a) S + K	b) Antimony sulphide	c) $K_2 Cr_2 O_7 + S + i P$	d) $K_2 Cr_2 O_7 + K + S$
----------	----------------------	-----------------------------	---------------------------

108 A dark brown solid (X) reacts with NH_3 to form a mild explosive which decomposes to give a violet coloured

1. gas. (X) also reacts with H_2 to give an acid (Y). (Y) can also be prepared by heating its salt with H_3PO_4 . $X \wedge Y$ are a) Cl_2 , HClb) SO_2 , H_2SO_4 c) Br_2 , HBrd) I_2 , HI

108 The catalyst used in the manufacture of H_2SO_4 by contact process is 2.

a) V_2O_3 b) V_2O_5 c) FeO d) Cu

d) Xe

108 Which one is the strongest reducing agent?3.

	a) $_{NH_3}$	b) $As H_3$	c) SbH_3	d) _{P H₃}
108 4.	(i)Carbon monoxide is(ii)Potassium oxide is b(iii) Aluminium and zi(iv) Sulphur trioxide is	ng statements are correct? s neutral whereas SO_3 is acidi pasic whereas nitrous oxide is nc oxides are amphoteric. acidic whereas phosphorus p eutal whereas sulphur dioxid b) (i) and (iv)	s acidic. pentoxide is basic.	d) (ii) and (iv)
108 5.	Aqua fortis is:			
	a) HNO3	b) HNO ₂	c) $H_2 NO_2$	d) $H_2 N_2 O_2$
108 6.	Which among the following	g is the strongest acid?		
	a) HF	b) HCl	c) HBr	d) HI
108 7.	Which does not liberate O_2	on heating?		
	a) MgO	b) _{NaNO3}	c) $Pb_{3}O_{4}$	d) KClO ₃
108 8.	Late discovery of F_2 is du	e its :		
	a) High reactivity			
	b) High ionization potential	1		
	c) High electronegativity			
	d) High electron affinity			
108 9.	Peroxy acids are			
109 0.	a) $H_2S_2O_3$, $H_2S_4O_6$ The pale-yellow coloured g	b) $H_2S_4O_6, H_2SO_5$ as is:	c) $H_2 SO_5, H_2 S_2 O_8$	d) $H_2 S_2 O_3, H_2 S_2 O_8$
	a) Cl ₂	b) _{<i>F</i>₂}	c) _{Br2}	d) _{I2}
109 1.	Which of the following is a	a pseudohalogen?		
	a) <i>ICl</i> ₃	b) ICl_2^{-ii}	c) $(CN)_2$	d) N_{3}^{-ii}
109 2.	Cl_2 reacts with CS_2 in pre-	sence of I_2 catalyst to form		
	a) <i>CHC</i> l ₃	b) $C_2 H_5 Cl$	c) <i>CC I</i> ₄	d) $C_2 H_6$

109 *HBr* \land *HI* reduce sulphuric acid ; *HCl* can reduce *KMnO*₄ \land *HF* reduces : 3.

	a) $H_2 SO_4$	b) <i>KMnO</i> 4	c) $K_2 C r_2 O_7$	d) None of these
109 4.	A substance X when heated	d with sulphuric acid liberates	s a gas which turns starch pap	per blue. The substance is:
1.	^{a)} NaCl	b) _{NaBr}	c) _{NaI}	d) _{NaNO3}
109 5.	NO_2 is not obtained on hea	-	- Ivul	- nuno ₃
	a) AgNO ₃	b) KNO ₃	c) Cu(NO ₃) ₂	d) Pb(NO ₃) ₂
109 6.	Concentrated $H_2 SO_4$ has gr	reat affinity for:		
	a) _{H2} S	b) H_2O	c) <i>CO</i> ₂	d) O_{2}
109 7.	How can you synthesise nit	ric oxide in the laboratory?		
	a) Zinc with cold and dilut	e HNO ₃	b) Zinc with concentrated	HNO ₃
	c) Copper with cold and di	lute HNO ₃	d) Heating NH ₄ NO ₃	
109 8.	Number of $p\pi - d\pi$ bonds	present in XeO_4 are		
	a) Four	b) Two	c) Three	d) zero
109 9.	Which acid has P—P linka	ge?		
	Which acid has P—P linka a) Hypophosphoric acid	ge?		
		ge?		
	a) Hypophosphoric acid	ge?		
	a) Hypophosphoric acid b) Pyrophosphoric acid	ge?		
9.	a) Hypophosphoric acidb) Pyrophosphoric acidc) Metaphosphoric acidd) Orthophosphoric acid	ge'? ed hydrochloric acid on pota	ssium chlorate we get this m	ixture of gases:
9.	a) Hypophosphoric acidb) Pyrophosphoric acidc) Metaphosphoric acidd) Orthophosphoric acid	_	ssium chlorate we get this mit c) Cl_2+ClO_2	ixture of gases: d) $O_2 + Cl_2 + ClO_2$
9. 110 0.	a) Hypophosphoric acid b) Pyrophosphoric acid c) Metaphosphoric acid d) Orthophosphoric acid By the action of concentrat a) CO_2+Cl_2	ed hydrochloric acid on pota	c) $Cl_2 + ClO_2$	-
9. 110 0. 110	a) Hypophosphoric acid b) Pyrophosphoric acid c) Metaphosphoric acid d) Orthophosphoric acid By the action of concentrat a) CO_2+Cl_2	ted hydrochloric acid on pota b) $O_2 + ClO_2$ uid while H_2S as a gas become	c) $Cl_2 + ClO_2$	-

c) Bond angle $\in H_2O$ is larger

d) Size of 'O' atom is smaller than'S' atom

110 Ammonium salts are oxidized in the soil to nitrites by:

2.

a) Denitrifying bacteria			
b) Nitrifying bacteria			
c) Ammonifying bacteria			
d	l) Nitrosifying bacteria			
110 В 3.	Bleaching powder is a mixtu	ure of:		
a) Calcium hypochlorite an	d calcium chloride		
b) Calcium chlorate and cal	cium chloride		
c) Calcium hypochlorite an	d basic calcium chloride		
d	l) Calcium chlorate and cal	cium hydroxide		
110 y 4.	When $H_2 S$ gas is passed th	rough nitric acid, the produc	et is	
a) Rhombic S	b) Amorphous S	c) Prismatic S	d) None of these
110 T 5.	The chemical formula for ta	artar emetic is:		
a) CH(OH)COOH 	b) CH(OH)COONa 	c) CH(OH)COOK 	d) CH(OH)COOSbO
110 Io 6.	CH(OH)COOK odine imparts brown colou	CH(OH)COOK r to:	CH(OH)COOK	CH(OH)COOK
a) Water	b) Benzene	c) Alcohol	d) Chloroform
110 N 7.	Neon is extensively used in:			
a) Cold storage units			
b) Organic compounds			
c) Medicines			
d	l) Coloured electric dischar	rge lamps		
110 F 8.	Iuorine exhibits an oxidati	on state of only -1 because		
a) It can readily accept an e	electron	b) It is very strongly electro	onegative
c) It is a non metal		d) It belongs to halogen far	nily
110 y 9.	When oxygen is passed thro	bugh a solution of Na_2SO_3v	ve get :	
a	Na_2SO_4	b) _{Na2} S	c) _{NaHSO₄}	d) _{NaH}
	F_2 on treatment with methods	2	~	

	a) $CH_{2}F_{2}$	b) <i>CH</i> ₃ <i>F</i>	c) <i>CHF</i> ₃	d) All of these
111 1.	Coloured oxide is nitrogen	is:		
	a) _{N2} O	b) NO	c) $N_2 O_4$	d) _{NO2}
111 2.	Oxalic acid on dehydratic	on by conc. $H_2 SO_4 gives$:		
	a) $C+CO_2$	b) CO	c) <i>CO</i> ₂	d) $CO+CO_2$
111 3.	Which of the following is t	he life saving mixture for an	asthma patient?	
	a) Mixture of helium and o	oxygen	b) Mixture of neon and oxy	/gen
	c) Mixture of xenon and ni	trogen	d) Mixture of argon and ox	ygen
111 4.	SO_2 reacts with Cl_2 by yield	1:		
	a) Thionyl chloride			
	b) Carbonyl chloride			
	c) Sulphuryl chloride			
	d) Sulphur monochloride			
111 5.	Which element is used in the	ne preparation of pesticides?		
	a) Arsenic	b) Bismuth	c) Antimony	d) Nitrogen
111 6.	Which of the following is r	not a peroxy acid?		
	a) Perphosphoric acid	b) Pernitric acid	c) Perdisulphuric acid	d) Perchloric acid
111 7.	White phosphorus is:			
	a) Strong poison	b) Mild poison	c) Non-poisonous	d) None of these
111 8.	Which on heating with co	nc. $H_2 SO_4 gives violet vap$	ours ?	
	a) Iodide	b) Nitrate	c) Sulphate	d) Bromide
111 9.	Formation of ozonide is:			
	a) Addition reaction	b) Substitution reaction	c) Decomposition	d) None of these
112 0.	Which blue liquid is obtain	ed on reacting equimolar am	ounts of two gases at -30 °C	<i>C</i> ?
	a) N ₂ O ₄	b) _{N2} O	c) _{N₂O₃}	d) _{N₂O₅}

112 Which of the following is oxidised in air?1.

	a) <i>C H</i> 4	b) <i>H</i> ₂ <i>O</i>	c) _{NaCl}	d) White phosphorus
112 2.	Which statement is not cor	rect?		
	a) White and red phosphor	rus react with chlorine at room	m temperature	
	b) White phosphorus is me	tastable, while red phosphor	us is stable	
	c) White phosphorus is light	hter than red phosphorus		
	d) White phosphorus is hig	hly poisonous, while red pho	osphorus is not	
112 3.	Which element does not fo	rm stable diatomic molecule	s?	
	a) Iodine	b) Phosphorus	c) Nitrogen	d) Oxygen
112 4.	H_2 S is a:			
	a) Weak dibasic acid			
	b) Weak monobasic acid			
	c) Strong dibasic acid			
	d) Strong monobasic acid			
112 5.	Ozone oxidises moist sulp	phuri:		
	a) _{SO2}	b) <i>SO</i> ₃	c) H_2SO_4	d) None of these
112 6.	Which element reacts with	chlorine to give pentachlorio	de?	
	a) P	b) As	c) Sb	d) All of these
112 7.	Xenon hexafluoride reacts	with silica to form a xenon c	ompound X. The oxidation s	tate of xenon in X is
	a) +2	b) +4	c) +6	d) 0
112 8.	Anomalous behavior of ox	ygen is due to:		
	a) High electronegativity			
	b) Small atomic size			
	c) Non-availability of <i>d</i> -or	bitals		
	d) All of the above			
112 9.	In oxo-acids of halogen, X	=O bond is formed as a resu	lt of:	
	a) $d\pi - d\pi$ overlapping	b) $p\pi - p\pi$ overlapping	c) $d\pi - p\pi$ overlapping	d) either of these

113 Fuming nitric acid is:0.

a) $Conc. HNO_3 + NO_2$ b) $Conc. HNO_3 + NO_3$ c) $Conc. HNO_3 + N_2O_3$ d) $Conc. HNO_3 + NO_3$ 113 When $NaCl \lor KCl$ is heated with $conc. H_2SO_4 \land solid K_2Cr_2O_7$, we get : 1.

a) Chromic chloride

- b) Chromous chloride
- c) Chromyl chloride $(CrO_2 Cl_2)$
- d) Chromic sulphate

113 Ozone is used for purifying water because

- 2.
- a) It dissociates and release oxygen
- b) Do not leave any foul smell like chlorine.
- c) Kills bacteria, cyst, fungi and acts as a biocide.
- d) All of the above
- 113 Nitrogen is a relatively inactive element because:
- 3.
- a) Its atom has a stable electronic configuration
- b) It has a low atomic radius
- c) Its electronegativity is fairly high
- d) Dissociation energy of its molecule is fairly high

113 The following species will not exhibit disproportionation reaction 4.

a) CIO_{2}^{-ii} b) CIO_{2}^{-ii} c) CIO_{3}^{-ii} d) CIO_{4}^{-ii}

113 Which of the following is used to prepare Cl_2 gas at room temperature from concentrated HCl? 5.

a) MnO ₂	b) H ₂ S	c) KMnO ₄	d) Cr_2O_3

113 Arsine is:6.

a) Solid b) Liquid c) Supersaturate liquid d) Gas

113 The arrangement of oxygen atoms around phosphorus atoms in P_4O_{10} is: 7.

a) Pyramidal	b) Octahedral	c) Square planar	d) Tetrahedral
--------------	---------------	------------------	----------------

113 Most of the elementary gases are obtained by chemical reaction of their compounds. For example, chlorine is 8. obtained by allowing $KMnO_4$ to react with hydrochloric acid. Fluorine, however, can be obtained only by the electrolysis of a fluoride. This is because: a) Fluorine is a highly reactive gas

b) Fluorine is the strongest chemical oxidizing agent

c) Fluorine is highly poisonous

d) It is easy to electrolyse a fluoride

113 The number of different oxides of chlorine is:

9.

a) 3 b) 4 c) 5 d) 6

114 The gas which does not show oxidizing and bleaching properties is: 0.

a) Chlorine b) Ozone c) Sulphur dioxide d) Nitrous oxide

114 Ammonia is generally manufactured for fertilizers by the reaction:1.

a) $2 NH_4Cl + Ca(OH)_2 \longrightarrow CaCl_2 + 2H_2O + 2NH_3$

b) By passing an electric discharge in a mixture of N_2 and H_2

c) By reducing the byproduct nitric acid

d) By passing a mixture of N_2 and H_2 under high pressure and moderate temperature over a catalyst 114 Which halide of nitrogen is least basic? 2.

	a) _{NF3}	b) _{NCl₃}	c) _{¿3}	d) $_{NBr_3}$
114 3.	Reagent used & distinguis	sh $H_2O_2 \wedge O_3$ is:		
	a) PbS	b) Starch and iodine	c) KMnO4	d) Bleaching powder
114 4.	Which one liberates Br_{2} fr	rom KBr?		
	a) _{I2}	b) _{HI}	c) <i>Cl</i> ₂	d) <i>SO</i> ₂
114 5.	Which chloride is explosive	e?		
	a) _{PCl₃}	b) AsCl ₃	c) _{NCl₃}	d) $SbCl_3$
114 6.	Extra pure N ₂ can be obtain	ned by heating		
	a) NH ₃ with CuO	b) NH ₄ NO ₃	c) (NH ₄) ₂ Cr ₂ O ₇	d) $Ba(N_3)_2$
114 7.	Tincture of iodine is:			
	a) I_2 , KI \wedge rectified spirit			
	b) $I_2 \wedge rectified spirit$			
	c) KI and rectified spirit			

d) $I_2 \wedge water$

114 What are the products formed in the reaction of xenon hexafluoride with silicon dioxide?8.

	a) XeSiO ₄ +HF	b) XeF_2 +SiF ₄	c) XeOF ₄ +SiF ₄	d) $XeO_3 + SiF_2$
114 9.	Mixture of sand and iodine	can be separated by:		
	a) Dissolving in water and	filtering		
	b) Fractional crystallization	n		
	c) Sublimation			
	d) Separation is not possible	le		
115 0.	Cl ₂ gas is evolved as bypr	roduct∈the manufacture of	f all the following elements	except :
	a) Mg	b) Na	c) Al	d) K
115 1.	Which is more suitable fo	r storing concentrated H_2	SO ₄ ?	
	a) Copper vessel	b) Aluminium vessel	c) Earthen vessel	d) Glass vessel
115 2.	Sodium nitrate on heating	with zinc dust and caustic soo	da gives:	
	a) <i>NaNO</i> ₂	b) $_{N\!H_3}$	c) _{NO2}	d) _{N2} O
115 3.	Which of the following for	rms vortex ring?		
	a) P ₂ O ₅	b) PH ₃	c) NH ₃	d) P ₄ O ₁₀
115 4.	When radioactive minerals obtained is	like clevite, monazite and p	itchblende are heated to 1272	k in vacuo the noble gas
	a) Rn	b) Kr	c) He	d) Ne
115 5.	Diamagnetic oxide of chlo	rine is:		
	a) ClO ₃	b) Cl_2O_6	c) ClO ₂	d) None of these
115 6.	Best absorbent for SO_2 is	:		
	a) $H_{2}SO_{4}$	b) KOH(aq.)	c) Water	d) CaCl ₂ anhyd.
115 7.	ن which reaction does SO	₂ act as oxidizing agent ?		
	a) Acidified KMnO ₄	b) Acidified $K_2 Cr_2 O_7$	c) Acidified $C_2 H_5 OH$	d) $H_{2}S$

115 In one of the following reactions HNO_3 does not behave as an oxidizing agent Identify it 8.

	a) I_2 + 10HNO ₃ \rightarrow 2HIO ₃ +	$-10NO_2 + 4H_2O$		
	b) $3Cu + 8HNO_3 \rightarrow 3Cu(N)$	$(10^{3})_{2} + 2NO + 4H_{2}O$		
	c) $4Zn + 10HNO_3 \rightarrow 4Zn(4)$	$NO_{3})_{2} + NH_{4}NO_{3} + 3H_{2}O$		
	d) $2HNO_3 + P_2O_5 \rightarrow 2HPC$	$0_3 + N_2O_5$		
115	Bleaching powder is an exa	umple of:		
9.				
	a) An acidic salt	b) A complex salt	c) A double salt	d) A mixed salt
116 0.	Iron <i>sulphide</i> is heated in basicity of this acid is	air to form <i>A</i> . an oxide of su	<i>Ilphur</i> . <i>A</i> is dissolved in wat	er to give an acid. The
	a) 2	b) 3	c) 1	d) zero
116 1.	When ammonia is dissolve	d in water:		
	a) It loses a proton			
	b) It loses an electron			
	c) It gains a proton from w	rater molecule		
	d) It gains an electron from	n water molecule		
116 2.	The $S - S - S$ bond angle is	n S_8 molecule is		
	^{a)} 109.5°	b) ₁₀₅ °	c) ₁₁₀ °	d) ₆₀ °
116 3.	Which of the following is p	planar?		
	a) XeF_2	b) XeO_2F_2	c) XeO_3F	d) XeF_4
116 4.	Which oxide of N is neutra			
	a) $N_2 O_3$	b) _{N2} O5	c) _{N2} O4	d) _{N2} O
116 5.	I_2 can exist in the oxidation	n states:		-
	a) -1, +1, +3, +5	b) -1, +1, +3	c) +3, +5, +7	d) -1, +1, +3, +5, +7
116 6.	Ozone is manufactured by	carrying silent electric discha	arge using:	
	a) Siemens ozonizer			
	b) Brodie's ozonizer			
	c) Siemens and Halske's oz	zonizer		
	d) All of the above			
116	Which forms new compou	nd in air?		
7.				

116 8.	a) H_2O in air Which statement regarding	b) O_2 in air He is incorrect?	c) N_2 in air	d) Phosphorus in air
	a) It is used in gas cooled n	uclear reactor		
	b) It is used as a cryogenic	agent for carrying out experi	ment at low temperature	
	c) It is used to produce and	sustain powerful supercondu	acting magnets	
116 9.	d) It is used to fill gas balloo Reactivity of NO is due to:	ons instead of H_2 because it	is lighter and non-combustib	le
	a) Its low molecular weight	:		
	b) Its gaseous state			
	c) Odd electron			
	d) None of the above			
117 0.	Welding of magnesium can	be done in an atmosphere of		
	a) _{O2}	b) He	c) _{N2}	d) All of these
117 1.	Colloidal sulphur is obtaine	d by the action of HNO_3 on	:	
	a) H_2S	b) HgS	c) CaS ₂	d) CaS_2O_3
117 2.	Treatment of CS_2 with exc	tess of Cl_2 gives :		
	a) <i>CCl</i> ₄	b) CHCl ₃	c) Carbon black	d) C_2H_5Cl
117 3.	The oxygen family is chara	cterised by the electronic cor	figuration:	
	a) $n s^2 n p^4$	b) $n s^2 n p^2$	c) $n s^1 n p^3$	d) $n s^2 n p^5$
117 4.	Which one of the following	noble gases is used in miner	's cap lamps?	
	a) Helium	b) Neon	c) Argon	d) Krypton
117 5.	Colour of bromine in CS_2 i	s:		
	a) Green	b) Orange	c) Yellow	d) Red
117 6.	Bleaching powder on stand	ing forms mixture of:		
	a) $CaO+Cl_2$	b) $HOCl+Cl_2$	c) $CaCl_2 + Ca(ClO_3)_2$	d) $CaO+CaCl_2$
117 7.	Which statement is not corr	rect?		

	a) Xe is the most reactive a	mong the rare gases		
	b) He is an inert gas			
	c) Radon is obtained from	decay of radium		
	d) The most abundant rare	gas found in atmosphere is H	Ie	
117 8.	Which acid can combine w	ith its own salt again?		
	a) HF	b) HBr	c) HCl	d) HI
117 9.	Among the following the r SO_4, P_4O_{10}	number of compounds that ca	an react with PCl ₅ to give PO	Cl_3 is O_2 , CO_2 , SO_2 , H_2O , H_2
	a) 1	b) 2	c) 3	d) 4
118 0.	When water is added \in co	$nc.H_2SO_4$ the reaction is e	xothermic because:	
	a) H_2SO_4 is viscous			
	b) Hydrates of H_2SO_4 are	formed		
	c) H_2SO_4 is corrosive			
	d) None of the above			
118 1.	Polyanion formation is max	kimum in		
	a) Nitrogen	b) Sulphur	c) Oxygen	d) Boron
118 2.	a) Nitrogen The solubility of noble gase	*	c) Oxygen	d) Boron
	-	*	c) Oxygen	d) Boron
	The solubility of noble gase	*	c) Oxygen	d) Boron
	^{a)} <i>He>Ar>Kr>Ne>Xe</i>	*	c) Oxygen	d) Boron
	 a) He>Ar>Kr>Ne>Xe b) He>Ne>Ar>Kr>Kr>Xe 	*	c) Oxygen	d) Boron
2.	 ^{a)} He>Ar>Kr>Ne>Xe ^{b)} He>Ne>Ar>Kr>Kr>Xe ^{c)} Xe>Kr>Ar>Ne>He 	*	c) Oxygen	d) Boron
2.	 a) He>Ar>Kr>Ne>Xe b) He>Ne>Ar>Kr>Kr>Xe c) Xe>Kr>Ar>P<he< li=""> d) None of the above </he<>	*	c) Oxygen c) (<i>ClO</i> ₃) ₂	d) Boron d) None of these
2. 118 3.	^{a)} He>Ar>Kr>Ne>Xe ^{b)} He>Ne>Ar>Kr>Ne>Xe ^{c)} Xe>Kr>Ar>Kr>Xe ^{c)} Xe>Kr>Ar>Ne>He ^{d)} None of the above ^s Solid $Cl_2 O_6 \exists as$: ^{a)} $ClO_2^{+i \cdot ClO_4^{-i}i}$	es in water shows the order:	c) (<i>ClO</i> ₃) ₂	
2. 118 3.	^{a)} He>Ar>Kr>Ne>Xe ^{b)} He>Ne>Ar>Kr>Ne>Xe ^{c)} Xe>Kr>Ar>Kr>Xe ^{c)} Xe>Kr>Ar>Ne>He ^{d)} None of the above ^s Solid $Cl_2 O_6 \exists as$: ^{a)} $ClO_2^{+i \cdot ClO_4^{-i}i}$	b) Covalent species	c) (<i>ClO</i> ₃) ₂	
2. 118 3. 118 4.	The solubility of noble gase a) $He > Ar > Kr > Ne > Xe$ b) $He > Ne > Ar > Kr > Xe$ c) $Xe > Kr > Ar > Ne > He$ d) None of the above Solid $Cl_2 O_6 \exists as$: a) $ClO_2^{+i \cdot ClO_4^{-ii}i}$ Which of the element listed	es in water shows the order: b) Covalent species l below occurs in allotropic f b) Copper	c) $(ClO_3)_2$ forms?	d) None of these
2. 118 3. 118 4.	The solubility of noble gase a) $He > Ar > Kr > Ne > Xe$ b) $He > Ne > Ar > Kr > Xe$ c) $Xe > Kr > Ar > Ne > He$ d) None of the above Solid $Cl_2 O_6 \exists as$: a) $ClO_2^{+i \cdot ClO_4^{-i}i}$ Which of the element listed a) Sulphur	es in water shows the order: b) Covalent species l below occurs in allotropic f b) Copper	c) $(ClO_3)_2$ forms?	d) None of these

	a) Finely divided Pd and Pt			
	b) Colloidal Pd			
	c) Coconut charcoal			
	d) All of the above			
118 7.	In which of the following, N	NH ₃ is not used?		
	a) Tollen's reagent			
	b) Nessler's reagent			
	c) Group reagent for the an	alysis of IV group basic radi	cals	
	d) Group reagent for the an	alysis of III group basic radi	cals	
118 8.	The element than oxidizes w	water to oxygen with evolution	on of heat is:	
	a) Fluorine	b) Chlorine	c) Iodine	d) Bromine
118 9.	Which of the following con	npounds is not an "interpseud	lohalogen"?	
	a) Cl ₂ N ₃	b) BrCN	c) CICN	d) ICN
119 0.	Which is called stranger gas	5?		
	a) Kr	b) Xe	c) He	d) Ne
119 1.	-		c) He DH and $H_2C_2O_4$ by conc. H	-
	-			-
1.	The ratio of the gases obtain	ned on dehydration of HCOO	$OH and H_2C_2O_4 by conc. H$	$I_2 SO_4$ is:
1. 119 2.	The ratio of the gases obtain a) 1 : 2	ned on dehydration of HCO b) 2 : 1 b) $H_2S_4O_8$	$OH and H_2C_2O_4 by conc. H$	$I_2 SO_4$ is:
1. 119 2. 119	The ratio of the gases obtain a) 1 : 2 Peroxy compound is: a) $H_2S_2O_8$	the on dehydration of HCOO b) 2 : 1 b) $H_2S_4O_8$ the an antichlor is used to:	DH and $H_2C_2O_4$ by conc. For contract of the contract of t	$H_2 SO_4 is:$ d) 3 : 1
1. 119 2. 119	The ratio of the gases obtain a) 1 : 2 Peroxy compound is: a) $H_2S_2O_8$ During bleaching of chlorin	the don dehydration of HCOO b) 2 : 1 b) $H_2S_4O_8$ the an antichlor is used to:	DH and $H_2C_2O_4$ by conc. For contract of the contract of t	$H_2 SO_4 is:$ d) 3 : 1
1. 119 2. 119	The ratio of the gases obtain a) 1 : 2 Peroxy compound is: a) $H_2S_2O_8$ During bleaching of chlorin a) Enhance bleaching action	the don dehydration of HCOO b) 2 : 1 b) $H_2S_4O_8$ the an antichlor is used to: n	DH and $H_2C_2O_4$ by conc. For contract of the contract of t	$H_2 SO_4 is:$ d) 3 : 1
1. 119 2. 119	The ratio of the gases obtain a) 1 : 2 Peroxy compound is: a) $H_2S_2O_8$ During bleaching of chlorin a) Enhance bleaching action b) Eliminate last traces of b	the don dehydration of HCOO b) 2 : 1 b) $H_2S_4O_8$ the an antichlor is used to: n	DH and $H_2C_2O_4$ by conc. For contract of the contract of t	$H_2 SO_4 is:$ d) 3 : 1
1. 119 2. 119 3.	The ratio of the gases obtain a) 1 : 2 Peroxy compound is: a) $H_2S_2O_8$ During bleaching of chlorin a) Enhance bleaching action b) Eliminate last traces of b c) Remove greases from the	the don dehydration of HCOO b) 2 : 1 b) $H_2S_4O_8$ the an antichlor is used to: n bleaching agent e fibre	DH and $H_2C_2O_4$ by conc. For contract of the contract of t	$H_2 SO_4 is:$ d) 3 : 1
 1. 119 2. 119 3. 119 	The ratio of the gases obtain a) 1 : 2 Peroxy compound is: a) $H_2S_2O_8$ During bleaching of chlorin a) Enhance bleaching action b) Eliminate last traces of b c) Remove greases from the d) Liberate oxygen	the don dehydration of HCOO b) 2 : 1 b) $H_2S_4O_8$ the an antichlor is used to: n bleaching agent e fibre	DH and $H_2C_2O_4$ by conc. For contract of the contract of t	$H_2 SO_4 is:$ d) 3 : 1

	a) Al_2O_3	b) CuCl ₂	c) AICl ₃	d) $_{MnO_2}$
119 6.	Nitre cake is:			
0.	a) <i>NaHSO</i>	b) _{NaNO3}	c) _{NaNO2}	d) <i>Na</i> ₂ <i>SO</i> ₄
119	4	loons in place of hydrogen	2	· 1102004
7.				
	a) Incobusible		b) Lighter than hyd	rogen
	c) Radioactive		d) More abundant t	han hydrogen
119 8.	The O—O bond leng	th in ozone is:		
	a) 1.27 Å	b) 1.21 Å	c) 1.34 Å	d) 1.48 Å
119 9.	The reaction in the K	ipp's apparatus stops on clo	osing the outlet, because:	
	a) The acid becomes	weak		
	b) Gas starts coming	out form top		
	c) A protective film i	s formed on iron sulphide		
120 0.	d) The contact betwe middle chamber Sulphur hepto oxide i	-	broken by the presence of ga	as collected in the free
	a) $H_2 S_2 O_8$	b) $H_2 S_2 O_7$	c) H_2SO_4	d) $H_2 SO_5$
120 1.	Hydrolysis of PI_3 yie	elds:		
	a) Monobasic acid ar	nd a salt		
	b) Monobasic acid ar	nd dibasic acid		
	c) Dibasic acid and the	ribasic acid		
	d) Monobasic acid ar	nd tribasic acid		
120 2.	Which is not poisono	us?		
	a) _{NH 3}	b) $_{PH_3}$	c) AsH_3	d) SbH_3
	What is the number of	of sigma (σ) and pi (π) bond	ds present in sulphuric acid n	nolecule?
3.				
3.	a) 6σ, 2π	b) 6σ, 0π	c) 2σ, 4π	d) 2σ, 2π
			c) 2σ , 4π +6 and the hybridization state	

surface of the

120 The element evolving two different gases on reaction with conc. Sulphuric acid is 5.

0.					
	a) P	b) C	c) Hg	d) S	
120 6.	Which statement is correct?				
	a) Ozone is a resonance hybrid of oxygen				
	b) Ozone is an allotropic m	odification of oxygen			
	c) Ozone is an isomer of ox	ygen			
	d) Ozone has no relationshi	p with oxygen			
120 7.	When sulphur is boiled with $N a_2 S O_3$ solution, the compound formed is				
	a) Sodium thiosulphate	b) Sodium sulphate	c) Sodium sulphide	d) Sodium persulphate	
120 8.	Number of valence electron	is used in the Lewis structure	e of SO_4^{2-i} are:		
	a) 22	b) 20	c) 18	d) None of these	
120 9.	The shape of IF_7 molecule	is:			
	a) Octahedral				
	b) Pentagonal bipyramidal				
	c) Tetrahedral				
	d) Trigonal bipyramidal				
121 0.	The strongest acid amongst the following is				
	^{a)} HClO	b) $HClO_2$	c) HClO ₃	d) $HClO_4$	
121 1.	i ordinary Cl_2 gas $Cl^{35} \wedge C$	Cl^{37} are \in the ratio :			
	a) 1 : 3	b) 3 : 1	c) 1 : 1	d) 1 : 2	
121 2.	Which group is called buffer group of the periodic table?				
	a) I	b) VII	c) VIII	d) Zero	
121 3.	1 Gradual addition of electronic shells in the noble gases causes a decrease in their				
	a) Ionisation energy	b) Density	c) Boiling point	d) Atomic radius	
121 4.	Colour of iodine solution is disappeared by shaking it with aqueous solution of				
	a) $N a_2 S$	b) $N a_2 S_2 O_3$	c) _{N a2} S	d) $N a_2 SO_4$	

121 S—S bond is not present in 5.

	a) $H_2 S_2 O_4$	b) $H_2 S_2 O_6$	c) $H_2 S_2 O_8$	d) None of these	
121 6.	1 Which one among the following non-metals is liquid at $25 ^{\circ}C$?				
	a) Bromine	b) Sulphur	c) Phosphorus	d) carbon	
121 7.	21 A radioactive element is:				
	a) Sulphur	b) Polonium	c) Tellurium	d) Selenium	
121 8.	121 Metalloid among the following is:8.				
	a) O	b) S	c) Te	d) Po	
121	21 The basic character of hydrides of the V-group elements decreases in the order				

9.

a) $N H_3 > Sb H_3 > P H_3 > As H_3$	b) $SbH_3 > AsH_3 > PH_3 > NH_3$
c) $NH_{3} > PH_{3} > AsH_{3} > SbH_{3}$	d) $Sb H_3 > P H_3 > As H_3 > N H_3$

122 At room temperature, H_2O is liquid while H_2S is a gas. The reason is 0.

a) Electronegativity of O is greater than S

b) Difference in the bond angles of both the molecules

c) Association takes place in H_2O due to H-bonding while no H-bonding in H_2S

d) O and S belong to different periods

122 The correct order for decreasing acidic strength of oxoacids of gp.15 is:1.

a)
$$HNO_3 > H_3 SbO_4 > H_3 AsO_4 > H_3 PO_4$$

b) $H_3PO_4 > H_3AsO_4 > H_3SbO_4 > HNO_3$

- c) $HNO_3 > H_3PO_4 > H_3AsO_4 > H_3SbO_4$
- d) $HNO_3 > H_3 AsO_4 > H_3 PO_4 > H_3 SbO_4$
- 122 Chlorine gas can be dried by passing over:2.
 - a) Quick lime
 - b) Soda lime
 - c) Caustic potash sticks
 - d) Concentrated sulphuric acid
- 122 Which of the following bonds will be most polar?
- 3.

	a) N—Cl	b) O—F	c) N—F	d) N—N	
122 4.	The metal which forms amide on passing NH_3 on it at 300°C is:				
	a) Magnesium	b) Lead	c) Aluminium	d) sodium	
122 5.	The first noble gas compoun	nd obtained was:			
	a) XeF 2	b) $_{XeF_4}$	c) XePtF ₆	d) <i>XeOF</i> 4	
122 6.	Sulphurous acid can be used	d as:			
	a) Oxidizing agent	b) Reducing agent	c) Bleaching agent	d) All of these	
122 7.	The ease of liquefaction of	noble gases decreases in the	order:		
	^{a)} He>Ne>Ar>Kr>Xe				
	b) $Xe > Kr > Ar > Ne > He$				
	c) $Kr > Xe > He > Ar > Ne$				
	d) $Ar > Kr > Xe > He > Ne$				
122 8.	22 The reason why conc H_2SO_4 is used largely to prepare other acids is that conc H_2SO_4				
	a) Is highly ionised		b) Is dehydrating agent		
	c) Has high specific gravity	-	d) Has a high boiling point		
122 9.	c) Has high specific gravity	and density made by passing CO_{20} ver w	d) Has a high boiling point		
	c) Has high specific gravity	-	d) Has a high boiling point	d) Green candles	
9.	c) Has high specific gravity A cold, green flame can be	made by passing <i>CO</i> ₂ over w b) White P	d) Has a high boiling point arm:	d) Green candles	
9. 123	c) Has high specific gravityA cold, green flame can bea) Bronze	made by passing <i>CO</i> ₂ over w b) White P	d) Has a high boiling point arm:	d) Green candles d) K ₂ Cr ₂ O ₇	
9. 123 0.	c) Has high specific gravityA cold, green flame can bea) BronzeWhich one of the following	made by passing CO_{2} over w b) White P reacts with glass?	d) Has a high boiling point arm: c) Grey Sn		
9. 123 0. 123	 c) Has high specific gravity A cold, green flame can be a) Bronze Which one of the following a) H₂SO₄ 	made by passing CO_{2} over w b) White P reacts with glass?	d) Has a high boiling point arm: c) Grey Sn		
 9. 123 0. 123 1. 	 c) Has high specific gravity A cold, green flame can be a) Bronze Which one of the following a) H₂SO₄ Super halogen is: 	made by passing CO_{2} over w b) White P reacts with glass? b) HF b) Cl_2	 d) Has a high boiling point arm: c) Grey Sn c) HNO₃ 	d) K ₂ Cr ₂ O ₇	
 9. 123 0. 123 1. 123 	 c) Has high specific gravity A cold, green flame can be a) Bronze Which one of the following a) H₂SO₄ Super halogen is: a) F₂ 	made by passing CO_{2} over w b) White P reacts with glass? b) HF b) Cl_2	 d) Has a high boiling point arm: c) Grey Sn c) HNO₃ 	d) K ₂ Cr ₂ O ₇	
 9. 123 0. 123 1. 123 2. 	 c) Has high specific gravity A cold, green flame can be a) Bronze Which one of the following a) H₂SO₄ Super halogen is: a) F₂ The gas which is supporter 	made by passing CO_{2} over w b) White P reacts with glass? b) HF b) Cl_{2} of combustion is: b) $N_{2}O$	 d) Has a high boiling point arm: c) Grey Sn c) HNO₃ c) Br₂ 	d) $K_2Cr_2O_7$ d) I_2	

123 Which gives off oxygen on moderate heating?4.

	a) Cupric oxide	b) Mercuric oxide	c) Zinc oxide	d) Aluminium oxide	
123 5.	3 Which is the true covalent oxide of iodine?				
	a) _{I2} O4	b) _{I2O5}	c) I_2O_8	d) $I_4 O_9$	
123 6.	Which element out of He , Ar , $Kr \wedge Xe$ forms least number of compounds?				
	a) _{Kr}	b) _{Xe}	c) _{Ar}	d) _{He}	
123 7.	Which one is the anhydride	e of HCIO ₄ ?			
	a) ClO ₂	b) Cl ₂ O ₇	c) Cl ₂ O	d) Cl_2O_6	
123 8.	Dry bleaching is done by:				
	a) Cl ₂	b) _{SO2}	c) O ₃	d) H_2O_2	
123 9.	Which chemical contains c	hlorine?			
	a) Fischer salt	b) Epsom salt	c) Fermy's salt	d) Spirit of salt	
124 0.	4 Which reaction represents the oxidizing behaviour of H_2SO_4 ?				
	a) $2PCl_5 + H_2SO_4 \longrightarrow 2POCl_3 + 2HCl + SO_2Cl_2$				
	b) $2 NaOH + H_2 SO_4 \longrightarrow Na_2 SO_4 + 2H_2 O$				
	c) $NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl$				
	d) $_2HI + H_2SO_4 \longrightarrow I_2 + SO_2 + 2H_2O$				
124 1.	24 Which statement is wrong?				
	a) Oxygen and Sulphur belong to the same group of periodic table				
	b) Oxygen is a gas while Sulphur is solid				
	c) Both show +2, +4 and +6 oxidation states				
	d) H_2S shows no hydrogen bonding				
124 2.	Concentrated sulphuric aci	d can be reduced by			
	a) NaCl	b) NaF	c) NaOH	d) NaBr	
124 3.	A solution of $SO_2 \in water$	r reacts with H_2 S precipita	ting sulphur . Here SO $_2$ acts	5 as :	
	a) An oxidizing agent	b) A reducing agent	c) An acid	d) A catalyst	

124 Sulphuric acid has great affinity for water because 4. a) Acid decomposes water b) It hydrolyses the acid c) It decomposes the acid d) Acid forms hydrates with water 124 Correct order of electron affinities of halogens is 5. a) F>Cl>Br>I b) I>Br>Cl>F c) Cl>F>I>Br d) CI>F>Br>I 124 The correct order of acidity of halogenic acids is 6. b) HI<HBr<HCl<HF a) HF<HCl<HBr<HI c) HI<HCl<HBr<HF d) HF<HBr<HI<HCl 124 Pearl white is: 7. a) BiOCl b) SbOCl d) AsOCl c) NOCl 124 The nitrate which when heated gives-off a gas or a mixture of gases which cannot relight a glowing splinter is: 8. a) Sodium nitrate b) Ammonium nitrate c) Lead nitrate d) Potassium nitrate 124 H_2SO_4 acts as dehydrating agent in its reaction with: 9. d) $H_{2}C_{2}O_{4}$ a) $Ba(OH)_{2}$ b) Zn c) KOH 125 Nitric oxide is prepared by the action of cold dil. HNO_3 on : 0. a) Fe b) Cu c) Sn d) Zn 125 Which of the following halogen acids has the lowest melting point? 1. b) HCl a) HF c) HBr d) HI 125 The lone pair present on N family hydrides more easily participates in bond formation in: 2. b) PH_3 a) AsH_2 c) *NH* d) SbH₂ 125 Which does not react with KMnO₄ solution ? 3. d) H_2SO_3 a) O_3 b) H_2O_2 c) H_2S 125 Noble gases are prepared by the: 4. a) Condensation of gases of the air b) Fractionation of liquid oxygen

- c) Removal of nitrogen and oxygen from air
- d) Fractionation of liquid air
- 125 When an aqueous solution of hypochlorite is heated:5.
 - a) Chlorine is evolved
 - b) Chlorite is formed
 - c) Chlorate is formed
 - d) Chlorine peroxide is formed
- 125 Sodium chromite is:
- 6.

a) Na_2CrO_4 b) $Na_2Cr_2O_4$ c) $Na_2Cr_2O_7$ d) $Cr_2(SO_4)$	a) Na_2CrO_4
--	----------------

125 Liquor ammonia bottles are opened only after cooling because it has high vapour pressure and it is mild explosive.7.

	a) It is a mild explosive		b) It generates high vapour pressure		
	c) Both a and b		d) It is a lachrymatory		
125 8.	5 Which is the most volatile compound?				
	a) HCl	b) _{HI}	c) _{HBr}	d) _{HF}	
125 9.	In halogen's group which ele	ements has highest electron a	ffinity?		
	a) F	b) Cl	c) Br	d) I	
126 0.	6 Which halogens oxidises water to oxygen exothermally?				
	a) Fluorine	b) Chlorine	c) Bromine	d) Iodine	
126 1.	Chlorine is mixed with drin	king water so that:			
	a) Bacteria are killed				
	b) Dirt is removed				
	c) Water is cleaned				
	d) Suspension is removed				
126 2.	6 In smoke screens calcium phosphide is used, because it:				
	a) Catches fire easily				
	b) Burns and gives soot				
	c) Forms phosphine which	gives smoke			

d) None of the above

126 The non-metallic element whose molecules contain maximum number of its atoms is:3.

	a) O	b) Si	c) As	d) P	
126 4.	Aqua-regia is				
	a) 1:3 conc. HNO ₃ and con	nc. HCl	b) 1:2 conc. HNO ₃ and con	nc. HCl	
	c) 3:1 conc. HNO ₃ and con	nc. HCl	d) 2:1 conc. HNO ₃ and con	nc. HCl	
126 5.	126 XeO_2F_2 is obtained by partial bydrolysis of 5.				
	a) $XeOF_4$	b) $_{XeF_6}$	c) Both (a) and (b)	d) None of these	
126 6.	Interhalogen compounds a	re more reactive than the ind	ividual halogen because:		
	a) Two halogens are presen	nt in place of one			
	b) They are more ionic				
	c) Their bond energy is les	s than the bond energy of the	e halogen molecule		
	d) They carry more energy				
126 7.	126 Oxalic acid when heated with conc. H₂SO₄, gives7.				
	a) H_2O_2 and CO_2	b) CO and CO ₂	c) H_2O_2 and CO	d) CO ₂ and H ₂ S	
126 8.	Which of the following iso	topes is present in largest am	ount?		
	a) O ¹⁶	b) O ¹⁷	c) O ¹⁸	d) All in equal amounts	
126 9.	Who observed helium first	on the earth?			
	a) Lothar Meyer	b) Ramsay	c) Sheele	d) Rutherford	
127 0.	The group 15 or VA group	elements are commonly kno	wn as:		
	a) Halogens	b) Normal elements	c) Pnictogens	d) None of these	
127 1.	127 In the reduction of HNO_3 to N_2O , the number of mole of electrons involved per mole of HNO_3 is: 1.				
	a) 8	b) 4	c) 3	d) 6	
127 2.	⁷ Sulphuric acid reacts wit	hPCl ₅ i yield:			
	a) Thionyl chloride	b) Sulphuryl chloride	c) Phosphoric acid	d) Sulphur monochloride	

127 Which of the following compounds can not be stored in glass vessels?3.

0.						
	a) XeF_4	b) $_{Xe F_6}$	c) XeO_3	d) Xe F_2		
	Which is tribasic acid?					
4.						
	a) H ₃ PO ₂	b) H ₃ PO ₄	c) $H_4P_2O_7$	d) H ₃ PO ₃		
127 5.	Which substance chars whe	n warmed with conc. H_2SO	4?			
	a) Protein	b) Fat	c) Hydrocarbon	d) Carbohydrate		
127 6.	When fluoride is heated w	ith conc. $H_2SO_4 \wedge MnO_2t$	he gas evolved is :			
	a) HF	b) _{<i>F</i> ₂}	c) SF	d) None of these		
127 7.	The compound of sulphur u	used as a solvent in rubber ind	dustry is			
	a) $SO_2(OH)Cl$	b) <i>SO</i> ₂	c) <i>SO</i> ₃	d) $S_2 C l_2$		
127 8.	Which one can be used to to	est for $H_2 S$ gas?				
	a) A smell of rotten egg					
	b) A violet colouration with	n sodium nitroprusside				
	c) Turning lead acetate paper black					
	d) All of the above					
127 9.	When $H_2 S$ is passed through	gh nitric acid solution, the pr	oduct formed is:			
	a) Milk of Sulphur	b) colloidal Sulphur	c) γ – sulphur	d) β – sulphur		
128 0.	Sulphurous anhydride is:					
	a) _{SO2}	b) _{SO3}	c) HSO_3^{-ii}	d) SO_{3}^{2-ii}		
128 1.	The percentage of ozone in	ozonized oxygen is about:				
	a) 10%	b) 40%	c) 80%	d) 100%		
128 2.	The weakest acid among the	e following is:				
	a) HClO	b) _{HBr}	c) HClO ₃	d) HCl		
128 3.	White phosphorus may be s	separated from red phosphore	us by:			
	a) Sublimation	b) Distillation	c) Dissolving in CS_2	d) None of these		

128 The correct order of bond angles $\in H_2S$, NH_3 , $BF_3 \land SiH_4$ is: 4.

	a) $H_2S < NH_3 < BF_3 < SiH_3$	[_		
	b) $NH_3 < H_2 S < SiH_4 < BF_3$			
	c) $H_2S < NH_3 < SiH_4 < BF$			
	d) $H_2 S < SiH_4 < NH_3 < BF$	-		
128	Solid PCl_5 exists as:			
5.				
	a) PCl ₅	b) PCl_4^{+ii}	c) PCl_{6}^{-ii}	d) PCl_4^{+ii} and PCl_6^{-ii}
128 6.	Among the fluorides give	n below which will further i	react with F_2 ?	
	a) NaF	b) CaF_2	c) _{SF₆}	d) $_{I\!F_5}$
128 7.	Ammonia is soluble in wate	er because it is:		
	a) A polar molecule	b) Bronsted base	c) Both (a) and (b)	d) None of these
128 8.	Formula of iodine phospha	te is:		
	a) _{I3} PO4	b) $I_2(PO_4)_3$	c) <i>IPO</i> ₄	d) $I_2 PO_4$
128 9.	The tetrahedral nature of th	he three bonds in a chlorate io	on (ClO_3^{-ii}) is due to:	
	a) The presence of a lone p	pair of electrons		
	b) $_{s p^{3}}$ -hybridization			
	c) $_{sp^2}$ -hybridization			
	d) Trigonal bipyramidal sha	ape of ion		
129 0.	Which acid on keeping for	long time acquires brown co	lour?	
	a) HF	b) HCl	c) HBr	d) HI
129 1.	Potassium chlorate on heat	ing with conc. H_2SO_4 gives:		
	a) Chlorine dioxide	b) HClO ₄	c) KHSO4	d) All of these
129 2.	In the reaction, $HNO_3 + P_3$	$_4O_{10} \rightarrow 4 HPO_3 + x$, the pro-	bduct x is	
	a) _{NO2}	b) $_{N_2O_5}$	c) $N_2 O_3$	d) H_2O
129 3.	Which has the strongest bo	nd?		
	a) $F-Br$	b) $_{F-Cl}$	c) _{F-F}	d) $Cl - Br$

129 4.	129 The forces of cohesion in liquid helium are:4.				
	a) Covalent	b) Ionic	c) Van der Waals'	d) Metallic	
129 5.	When molten sulphur is suddenly cooled by pouring into water, it takes the form of				
	a) Milk of sulphur	b) Colloidal sulphur	c) Flower of sulphur	d) Plastic sulphur	
129 6.	Which does not react with	hH_2SO_4 i form H_2 ?			
	a) Al	b) Pb	c) Zn	d) Mg	
129 7.	-	burnt gave three oxides. The e third formed an aqueous so	•		
	a) C, S, O	b) C, H, Na	c) C, H, S	d) C, H, Ca	
129 8.	The starting material in Bin	keland and Eyde's process fo	or the manufacture of HNO_3	is:	
	a) _{NH 3}	b) _{NO2}	c) Air	d) Chile saltpetre	
129 9.	Anhydride of sulphuric aci	d is:			
	a) _{SO2}	b) _{SO3}	c) $H_2 S_2 O_3$	d) H_2SO_3	
130 0.	The essential element of ni	trogen fixation is:			
	a) Zn	b) Cu	c) Mo	d) B	
130 1.	30 Which one of the following configuration represents a noble gas?				
	a) $1s^2$, $2s^22p^6$, $3s^2$		b) $1s^2$, $2s^22p^6$, $3s^1$		
	c) $1s^2, 2s^2 2p^6$		d) $1s^2$, $2s^22p^6$, $3s^23p^6$,	$4s^2$	
130 2.	Which halogen do not form	n polyhalide ion?			
	a) F	b) Cl	c) Br	d) I	
130 3.	Oxygen is manufactured by	y fractional distillation of:			
	a) <i>H</i> ₂ <i>O</i>	b) H_2O_2	c) Na_2O_2	d) Liquid air	
130 4.	Which is not the property of	of nitrogen?			
	a) Hydrogen bonding	b) Catenation	c) Supporter of life	d) Low b.p.	
130 5.	Which metal loses its meni	scus after reaction with ozon	e?		
	a) Ag	b) Hg	c) _{Pb}	d) Cu	

130 The two electrons in helium atom: 6.

	a) Occupy different shells					
	b) Have different spins					
	c) Have the same spins					
	d) Occupy different subshe	lls of the same subshell				
130 7.	Which of the following is n	ot tetrahedral?				
	a) <i>SCl</i> ₄	b) SO_4^{2-ii}	c) <u>¿</u> (<i>CO</i>) ₄	d) $NiCl_4^{2-ii}$		
130 8.	The hydrolysis of PCl_{3} proc	luces:				
	a) H ₃ PO ₃ +HClO	b) $H_3 PO_3 + HCl$	c) H_3PO_4 + HCl	d) _{PH 3} + HClO		
130 9.	NaOH can absorb :					
	a) _{N2O5}	b) NO	c) _{N2} O	d) All of these		
131 0.	The electron affinity of halo	ogens shows the order:				
	a) I>Cl>F>Br	b) $Cl > F > Br > I$	c) $F > Cl > I > Br$	d) $F > I > Cl > Br$		
131 1.	On heating ozone its volum	es:				
	a) Decreases to half					
	b) Becomes double					
	c) Increases to 3/2 times					
	d) Remains unchanged					
131 2.	B1 Which non-metal does not combine directly with Cl_2 , $Br_2 \wedge I_2$?					
	a) Carbon	b) Nitrogen	c) Oxygen	d) All of these		
131 3.	Oleum or fuming H_2SO_4 is	:				
	a) A mixture of conc. H_2S	O_4 and oil				
	b) Sulphuric acid which give	ves fumes of sulphur dioxide				
	c) Sulphuric acid saturated with sulphur trioxide, <i>i.e.</i> , $H_2S_2O_7$					

d) A mixture of sulphuric acid and nitric acid

131 N_2 forms NCl₃, whereas P can form both PCl₃ and PCl₅ why?

4.

a) P has low lying 3d orbitals which can be used for bonding but N₂ does not have low lying 2d orbital

b) N₂ atom is larger than P in size

c) P is more reactive towards Cl than N_2

d) None of the above

131 Which of the following is pseudohalogen?5.

a)
$$_{IF_{7}}$$
 b) $_{(CN)_{2}}$ c) $_{ICl_{2}}$ d) $_{I_{3}}^{-ii}$

131 The decreasing order of b.p. or m.p. of halogens is:6.

a)
$$I_2 > Br_2 > Cl_2 > F_2$$
 b) $F_2 > Cl_2 > I_2 > Br_2$ c) $Cl_2 > Br_2 > I_2 > F_2$ d) $F_2 > I_2 > Cl_2 > Br_2$

131 Nitrogen (I) oxide is produced by:7.

a) Thermal decomposition of ammonium nitrate

b) Disproportionation of N_2O_4

c) Thermal decomposition of ammonium nitrite

d) None of the above

131 SO_3 on reacting with conc. HCl gives : 8.

131 An inorganic compound producing organic compound on heating is:9.

^{a)} Sodamide	^{b)} Ammonium cyanate	c) Sodalime	d) Potassium cyanide
132 Formula of calcium chl	orite is:		

0.

a) $CaClO_2$	b) $Ca(ClO_2)_2$	c) $Ca(ClO_3)_2$	d) $Ca(ClO_4)_2$

132 The gas not absorbed by coconut charcoal is1.

a) He b) Ne c) Ar d) Kr	a) He	b) Ne	c) Ar	d) Kr
-------------------------	-------	-------	-------	-------

132 A black sulphide when treated with ozone becomes white. The white compound is:2.

a) $ZnSO_4$ b) $CaSO_4$ c) $BaSO_4$ d) $PbSO_4$

132 Sulphur on oxidation with hot sulphuric acid gives:3.

a) SO ₃	b) _{SO2}	c) H_2SO_4	d) None of these
-530_3	-550_{2}	$H_{2}SO_{4}$	-j i tone of these

132 Which loses weight on exposure to the atmosphere?4.

a) Conc. H_2SO_4

b) NaOH

c) Anhyd. $AlCl_3$

d) Saturated aqueous solution of CO_2

132 The correct order of heat of formation of halogen acids is?5.

a) HI>HBr>HCl>HF b) HF>HCl>HBr>HI c) HCl>HF>HBr>HI d) HCl>HBr>HF>HI 132 The number of P-O-P bridges in the structure of phosphorus pentoxide and phosphorus trioxide are 6. respectively a) 5, 5 b) 6, 5 c) 5, 6 d) 6, 6 132 Rhombic and monoclinic sulphur are: 7. b) Isomers c) Isotopes d) Allotropes a) Isobars 132 Copper turning on heating with conc.H₂SO₄ produce 8. a) H₂S **b**) **O**₂ c) SO_3 d) SO_2 132 Which one of the following represents noble gas configuration? 9. a) 1s²,2s² 2p⁶,3s²3p⁶3d¹⁰, 4s² 4p⁶4d¹⁰, $5s^2,5p^6\,5d^6,6s^2 \\ b) \,1s^2,2s^2\,2p^6,3s^23p^63d^{10},4s^2\,4p^64d^{10} \\$ 5s²5p⁶ 5d¹, 6s² c) 1s²,2s²2p⁶,3s²3p⁶3d¹⁰, 4s² 4p⁶4d¹⁰ $, 5s^25p^6$ d) $1s^2 \cdot 2s^2 2p^6 \cdot 3s^2 3p^6 3d^{10} \cdot 4s^2 4p^6 4f^{14} \cdot 5s^2 5p^6 5d^1$ 133 Which of the following is more acidic in nature? 0. a) HCIO b) HCIO₂ c) HCIO₃ d) HCIO₄ 133 The lattice energy of lithium halides in the following order 1. b) LiI > LiBr > LiCI > LiFa) LiF > LiCl > LiBr > LiIc) LiCl>LiF>LiBr>LiI d) LiBr > LiCl > LiF > LiI133 Iodine readily dissolves in potassium iodide solution giving 2. c) KI_2^{-ii} a) _I-ii b) $K I^{-ii}$ d) KI₃ 133 Which one of the following is not true at room temperature and pressure? 3. a) P_4O_{10} is a white solid b) SO_2 is a colourless gas c) SO_3 is a colourless gas d) No2 is brown gas

133 4.	Amongst H_2O , H_2S , H_2	$Se \wedge H_2 Te$ one having highe	r b.pt. is				
	a) H_2S because of hydrog	en bonding	b) H_2Se because of lower	molecular weight			
	c) $H_2 Te$ because of higher	r molecular weight	d) H_2O because of hydrog	gen bonding			
133 5.	Which of the following act	d posses oxidising, reducing	and complex forming proper	ties?			
	^{a)} HCl	b) $H_2 SO_4$	c) $_{HNO_2}$	d) $_{HNO_3}$			
133 6.	The number of π -bonds pr	esent in NCl_3 is:					
	a) 1	b) 2	c) 3	d) None of these			
133 7.	Ammonium chloride is rer	noved from its mixture by:					
	a) Filtration	b) Distillation	c) Sublimation	d) A magnet			
133 8.	White smoke is formed wh	nen ammonia gas meets with:					
	a) Water	b) HCl	c) H_2SO_4	d) $_{HNO_3}$			
133 9.	B Pure Cl ₂ is prepared on h	eating :					
	a) _{Na} Cl	b) $PtCl_4$	c) <i>CuCl</i> ₂	d) All of these			
134 0.	Liquid ammonia is used in	refrigeration because of its					
	a) High dipole moment		b) High heat of vaporisation				
	c) High basicity		d) All of the above				
134 1.	The acid used in soft drink	s is:					
	a) H_3PO_4	b) H_3PO_3	c) HPO ₃	d) $H_{3}PO_{2}$			
134 2.	Which of the elements of g	group VA does not show allo	tropy?				
	a) N	b) Bi	c) P	d) As			
134 3.	In the electrothermal proce	ess, the compound displaced	by silica from calcium phosp	hate is			
	a) Calcium phosphide		b) Phosphine				
	c) Phosphorus		d) Phosphorus pentoxide				
134 4.	It is possible to obtain oxy	gen from air by fractional dis	stillation because:				
		6 1 4 1 6	· · · · · · · · · · · · · · · · · · ·				

a) Oxygen is in different group of periodic table from nitrogen

b) Oxygen	is more	active	than	nitrogen
-----------	---------	--------	------	----------

c) Oxygen has higher boiling point than nitrogen

d) Oxygen has lower density than nitrogen

134 NH_3 is an example of:

5.

a) Molecular hydride	b) Polymeric hydride	c) Metallic hydride	d) Interstitial hydride
134 When SO_2 reacts with nitr 6.	rous acid, the compound for	med is:	
a) H_2S	b) S	c) _{SO3}	d) H_2SO_4
134 Among the halogens, the o7.	one which is oxidized by nit	ric acid is	
a) Iodine	b) Bromine	c) Fluorine	d) Chlorine
134 Which is most basic of the8.	e following oxides?		
a) <i>Na</i> ₂ <i>O</i>	b) BaO	c) As_2O_3	d) Al_2O_3
134 Which is stronger acid?9.			
a) $H_2 SeO_4$	b) $H_2 SO_4$	c) $H_2 TeO_4$	d) H_2O
135 Ammonia on reaction with0.	h hypochlorite anion, can fo	rm	
a) NO	b) $N_{2}H_{4}$	c) _{N H₄Cl}	d) $_{HNO_2}$
135 Which of the following control1.	ompounds do not exist?		
a) N_4 , NCl_5 , PO_2	b) N_2 , NCl_3 , NO_2	c) PCl_5, P_2O_5, NCl_3	d) PO_2, P_4, NCl_3
135 Oxidation of ammonia b2.	y CuO yields :		
a) $_{N_2}$	b) N_2O_5	c) NO	d) _{NO2}
135 For chrome plating the ele3.	ectrolytic bath contains:		
a) $HClO_4 \wedge conc. H_2SC$	$D_4^{\rm b}$ Chromic acid \wedge conc	$(H^{c}) K_2 C r_2 O_7$	d) Chromic sulphate
135 At T (K), 100 L of dry ox4. volumes of oxygen and oz		ontainer. It is subjected to sit	-
a) 50	b) 60	c) 30	d) 40
135 What is the correct order5.	of occurrence (% by weight)) in air of Ne, Ar and Kr?	

a) Ne>Ar>Kr	b) Ar>Ne>Kr	c) Ar>Kr>Ne	d) Ne>Kr>Ar

the

135 The source of most of the6.	noble gases is:										
a) Decay of radioactive m	a) Decay of radioactive minerals										
b) The atmospheric air	b) The atmospheric air										
c) The natural gases comin	c) The natural gases coming out of the earth										
d) The decay of rocks											
135 Incorrect statement for py7.	rophosphorus acid $H_4 P_2 O_5$ is	S									
a) It contains p in +5 oxid	ation state	b) It is dibasic acid									
c) It is strongly reducing i	n nature	d) In contains one P—O—	-P bond								
135 SO ₂ + H ₂ S \rightarrow product. The 8.	final product is										
a) H ₂ O+S	b) H ₂ SO ₄	c) H ₂ SO ₃	d) $H_2S_2O_3$								
135 Pure HBr gas may be obta9. sulphuric acid because con	ined by heating sodium brom acentrated sulphuric acid is:	ide with syrupy phosphoric a	acid and not with concentrated								
a) More volatile	b) Less stable	c) A weaker acid	d) An oxidizing agent								
136 Fertilizer having the highe0.	st nitrogen percentage is:										
^{a)} Calcium cyanamide	a) Calcium <i>cyanamide</i> b) Urea c) Ammonium nitrate d) Ammonium sulphate										
136 Which gas is evolved by th1.	ne treatment of magnesium w	ith very dilute solution on H	NO ₃ ?								
a) N ₂	b) NO ₂	c) H ₂	d) H ₂ O								
136 In colour discharge tubes,2.	which is used?										
a) Ne	b) Ar	c) Kr	d) He								
136 Which of the following hy3.	drogen halides has the highes	st boiling point?									
a) HI	b) HBr	c) _{HCl}	d) HF								
136 Which of the following sta4.	atement is not true?										
a) <i>HF</i> is stronger than <i>He</i>b) Among halide ions, iod	Cl ide is the most powerful redu	icing agent									
c) Radon is obtained from	decay of Radium										
d) <i>Xe</i> is most reactive gas	among the rare gas										
136 In which of the following5.											

136 6.	Solubility of iodine in wate	r may be increased by adding	, ,					
	a) Chloroform		b) Potassium iodide					
	c) Carbon disulphide		d) Sodium thiosulphate					
136 7.	Platinum, palladium and iri	dium are called noble metals	because					
	a) Alfred nobel discovered	them						
	b) They are found in native	estate						
	c) They are shining lustrous	s and pleasing to look at						
	d) They are inert towards n	nany common reagents						
136 8.	Bleaching powder is disinfe activity is destroyed. It is de	ectant for purification of wate ue to disproportion into	er. When water born germs a	e killed. But disinfectant				
	a) $CaCl_2 \wedge Cl_2$	b) $CaCl_2 \wedge Ca(ClO_3)_2$	c) $CaO \wedge Cl_2$	d) $CaO, Cl_2 \wedge CaCl_2$				
136 9.	Marshall's acid is:							
	a) $H_2 S_2 O_5$	b) $H_2 S_2 O_8$	c) $H_2 SO_3$	d) $H_2 SO_5$				
137 0.	The word neon signifies:							
	a) New	b) Old	c) Strange	d) None of these				
137 1.	Paramagnetic oxide is:							
	a) NO	b) $N_2 O_4$	c) $P_4 O_6$	d) N_2O_5				
137 2.	Fluorosis disease is caused	due to the reaction of	with excess of fluorine in the	body.				
	a) Ca	b) Mg	c) Fe	d) K				
137 3.	Among the halogens, the or	ne which is oxidised by nitric	acid is					
	a) Fluorine	b) Iodine	c) Chlorine	d) Bromine				
137 4.	Which has the lowest boiling	ng point?						
	a) _{NH 3}	b) _{PH 3}	c) SbH ₃	d) _{BiH3}				
137 5.	The elements S, Se, Te can	have two positive oxidation s	states. Which one of the follo	wing is correct?				
	a) +4 and +6	b) +2 and +4	c) +4 and +8	d) +2 and +6				

a) As germicide

b) As oxidant

c) As cutting tool

d) As disinfectant

137 The basicity of orthophosphoric acid is6.

a) 2 b) 4 c) 3 d) 5

137 Which sulphide is used in the manufacture of "strike anywhere" matches?7.

a) P_2S_5 b) P_2S_3 c) Sb_2S_3 d) None of these

137 Euchlorine is a mixture of8.

a) $Cl_2 + ClO_2$ b) $Cl_2 + Cl_2O$ c) $Cl_2O_3 + ClO_2$ d) $Cl_2O + Cl_2O_3$

137 Liquid oxygen:

9.

a) Is an important constituent of rocket fuels

b) Is used for artificial respiration with CO_2

c) Mixed with finely divided carbon is explosive

d) All of the above

138 Acetic acid is added while preparing a standard solution of $CuSO_4 \cdot 5H_2O$ is prevent: 0.

a) Hydration b) Reduction c) Hydrolysis d) Complex formation 138 XeF_2 molecule is 1. b) Trigonal bipyramidal a) Square planar c) Trigonal planar d) Linear 138 Iodine is placed between two liquids C_6H_6 and water: 2. a) It dissolves more in $C_6 H_6$ b) It dissolves more in water c) It dissolves equally in both d) Does not dissolve in both 138 Which of the following oxide of nitrogen is the anhydride of HNO_3 ? 3. c) $N_2 O_5$ d) $N_{3}O_{4}$ b) $N_{2}O_{3}$ a) NO 138 The most stable allotropic form of sulphur is: 4. b) Monoclinic sulphur c) Plastic sulphur d) Flowers of sulphur a) Rhombic sulphur 138 Permonosulphuric acid is known as 5.

	a) Marshall's acid	b) Caro's acid	c) Sulphuric acid	d) None of these
138 6.	³ The reaction between copp	er and hot conc. H_2SO_4 give	28:	
	a) _{SO3}	b) _{SO2}	c) $Cu(OH)_2$	d) $_{H_{2}}$
138 7.	Chlorine bleaches only in the second se	ne:		
	a) Absence of acid	b) Presence of alkali	c) Absence of moisture	d) Presence of moisture
138 8.	B HNO ₃ oxidises:			
	a) H_2O_2	b) $H_2 S$	c) _{SO2}	d) All of these
138 9.	B The $P - P - P$ bond angle	in white phosphorus is		
		b)	a)	4)

a) 60°	b) 90 °	c) 120°	d) 109°28′

139 In the isolation of fluorine, a number of difficulties were encountered. Which statement is correct? 0.

a) The potential required for the discharge of the fluoride ions is the lowest

b) Fluorine reacts with most glass vessels

c) Electrolysis of aqueous HF gives ozonized oxygen

d) All of the above

1.

3.

139 Match List I with List II and select the answer using the codes given below:

Cod	le List	Code	List II
A	XeF ₄	1	Distorted octahedral
В	XeF ₆	2	Tetrahedral
С	XeO ₃	3	Square planar
D	XeO ₄	4	Trigonal pyramidal
a) A	$-\dot{\iota}4, B-\dot{\iota}1,$, <i>C</i> – <mark>i</mark> 3,1	$b \rightarrow A - i2, B$
	i 2		_ i 4
Whic	h of the fol	lowing	lements is radio

139 Which of the following elements is radioactive? 2.

d) Tellurium a) Oxygen b) Selenium c) Polonium 139 When SO₂ is passed through acidified solution of H_2S :

a) $H_2 SO_3$ is formed b) $H_2 SO_4$ is formed c) Sulphur sol is formed d) H_2SO_5 is formed 139 Which one of the following reactions of Xenon compounds is not feasible?4.

5.

a) N_2O_3 c) N_2O_4 d) N_2O_5

139 Which one is most electronegative?6.

a) O b) F c) H d)
$$Cl$$

¹³⁹
$$NH_3 gas is \frac{dried}{dried}$$

7. a) Anhydrous CaCl₂ b) P_2O_2 c) Quick lime d) Conc. H_2SO_2

139 The largest bond angle exists in:8.

a)
$$H_2Se$$
 b) NH_3 c) H_2O d) H_2S

139 Increasing order of strength of oxo-acids of chlorine is:9.

a) HClO< HClO₂< HClO₃< HClO₄
 b) HClO₄< HClO₂< HClO< HClO₃
 c) HClO< HClO₂< HClO₃< HClO₄

d) None of the above

140 The correct order of bond angles and stability of hydrides given below is:0.

a) NH₃>PH₃>AsH₃>SbH₃
b) NH₃>AsH₃>PH₃>SbH₃
c) SbH₃>AsH₃>PH₃>i NH₃

d)
$$PH_3 > i NH_3 > AsH_3 > SbH_3$$

140 The reaction of P_4 with aqueous NaOH gives 1.

a) $P(OH)_3$ b) P_2O_5 c) $P(OH)_5$ d) PH_3

140 $[X] + H_2 SO_4 \rightarrow [Y]$ a colourless gas with irritating smell. $[Y] + K_2 Cr_2 O_7 + H_2 SO_4 \rightarrow Green solution [X] and [Y] 2. are:$

a) $SO_{3}^{2-i, SO_{2}i}$ b) $Cl^{-i, HCli}$ c) $S^{2-i, H_{2}Si}$ d) $CO_{3}^{2-i, CO_{2}i}$

140 The smell of nitrogen dioxide is:3.

	a) Pleasant	b) Pungent	c) Not known	d) All are wrong	
140 4.	The gas obtained when ure	a reacts with nitrous acid is:			
	a) _{N2}	b) NO	c) _{N2} O	d) _{NO2}	
140 5.	The species that does not c	ontain peroxide ion is			
	a) PbO ₂	b) H ₂ O ₂	c) SeO ₂	d) BaO ₂	
140 6.	Phosphine is prepared by the	he reaction of			
	a) $P \wedge HNO_3$	b) $P \wedge H_2 So_4$	c) _{P∧NaOH}	d) $P \wedge H_2 S$	
140 7.	Which of the following do	pes not react with AgCl ?			
	a) $Na_2S_2O_3$	b) NH ₄ OH	c) _{NaNO3}	d) Na_2CO_3	
140 8.	The oxidizing property of 1	itric acid is due to:			
	a) Its concentration				
	b) The positive valency of	Ν			

c) Its dilution

d) The unstability of its molecule and the presence of nitrogen in its highest state of oxidation

140 The reaction showing endothermic nature and reduction of halogen is:9.

a)
$$F_2 + \frac{1}{2}O_2 \longrightarrow F_2O$$

b) $Cl_2 + O_2 \longrightarrow Cl_2O$
c) $F_2 + H_2O \longrightarrow 2HF + \frac{1}{2}O_2$
d) None of the above

141 Calcium carbide when heated with nitrogen forms:0.

a) Ca_3N_2 b) $Ca(CN)_2$ c) $CaCN_2$ d) $Ca(CNO)_2$

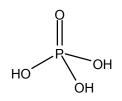
7.THE P-BLOCK ELEMENTS

: ANSWER KEY :

157) 161) 165)	c d d	158) 162) 166)	b b	159) 163) 167)	a a	160) 164) 168)	d	325) 329) 333)	d a d	326) 330) 334)	b a	327) 331) 335)	a d	328) 332) 336)	a b
153)	С	154)	а	155)	а	156)		321)	С	322)	С	323)	а	324)	d
149)	b	150)	С	, 151)	С	152)		317)	a	318)	а	319)	С	320)	b
145)	b	146)	d	147)	b	148)		313)	c	314)	b	315)	b	31 <u>2</u>) 316)	d
141)	c c	142)	a	143)	a	144)		309)	a	310)	d	307) 311)	d	312)	c c
133)	a d	134)	a a	133) 139)	с с	130) 140)		301) 305)	a	302) 306)	u b	303) 307)	a b	304) 308)	u d
129)	с а	130)	a a	131)	с с	132)		301)	с b	298) 302)	c d	299) 303)	a	300) 304)	a d
125) 129)	a c	126)	b a	127)	b c	128) 132)		293) 297)	u c	294) 298)	u c	295) 299)	a b	296) 300)	d a
121) 125)	b 2	122) 126)	a h	123) 127)	a h	124) 128)		289) 293)	d d	290) 294)	a d	291) 295)	C 2	292) 296)	d d
117) 121)	C h	118) 122)	C 2	119) 122)	a	120) 124)		285) 280)	b d	286) 200)	d	287) 201)	b c	288) 202)	C d
113) 117)	a	114) 119)	C	115)	c	116) 120)		281) 295)	a h	282) 286)	a d	283) 287)	a h	284) 289)	d
109)	d	110)	a	111)	d	112)		277)	b	278)	b	279) 202)	d	280) 284)	d
105)	d	106)	а	107)	a	108)		273)	C	274)	b	275)	b	276)	a
101)	С	102)	С	103)	С	104)	b	,	а	270)	b	271)	d	272)	d
97)	a	98)	С	99)	d	100)	b		а	266)	С	267)	С	268)	С
93)	d	94)	а	95)	С	96)	a	,	а	262)	а	263)	а	264)	d
89)	С	90)	а	91)	d	92)	a	,	d	258)	d	259)	d	260)	b
85)	а	86)	d	87)	d	88)	b	253)	а	254)	b	255)	а	256)	а
81)	b	82)	а	83)	а	84)	d	249)	а	250)	а	251)	b	252)	b
77)	а	78)	С	79)	d	80)	а	245)	b	246)	С	247)	d	248)	а
73)	а	74)	d	75)	а	76)	С	241)	d	242)	d	243)	d	244)	d
69)	а	70)	d	71)	С	72)	b	237)	b	238)	С	239)	С	240)	b
65)	а	66)	С	67)	С	68)	d	233)	b	234)	b	235)	С	236)	С
61)	с	62)	С	63)	b	64)	b	229)	d	230)	b	231)	d	232)	а
57)	a	58)	С	59)	b	60)	a		a	226)	b	227)	d	228)	С
53)	d	54)	d	55)	a	56)	С	221)	b	222)	b	223)	d	224)	a
49)	c c	50)	a	51)	d	52)	a	217)	a	211) 218)	b	219) 219)	d	220)	b
45)	a	46)	a	43) 47)	a	44) 48)	b	-	a C	210) 214)	d	211) 215)	a	212)	a
37) 41)	b a	38) 42)	a c	39) 43)	a a	40) 44)	a b	203)	с а	200) 210)	b c	207) 211)	a a	208) 212)	b a
33) 27)	C h	34) 29)	C	35) 20)	c	36) 40)	b	201) 205)	C C	202) 206)	d h	203) 207)	C O	204) 208)	d h
29) 22)	С	30)	b	31) 25)	а	32)	b	,	d	198)	b	199)	С	200)	b
25)	d	26)	d	27)	b	28)	C	193)	d	194)	a	195)	b	196)	b
21)	b	22)	d	23)	a	24)	d	,	a	190)	d	191)	C	192)	a
17)	а	18)	С	19)	а	20)	а	,	а	186)	С	187)	b	188)	d
13)	а	14)	С	15)	b	16)	d	181)	b	182)	b	183)	а	184)	d
9)	С	10)	а	11)	d	12)	d	177)	а	178)	b	179)	d	180)	С
5)	d	6)	С	7)	а	8)	b	173)	С	174)	а	175)	b	176)	d
1)	С	2)	b	3)	a	4)	υ	169)	С	170)	а	171)	а	172)	d

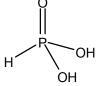
337)	b	338)	b	339)	С	340) d	l 537) d	538)	b	539)	a	540)	а
341)	а	342)	b	343)	С	344) a	541) b	542)	b	543)	С	544)	С
345)	С	346)	d	347)	b	348) a	545) b	546)	а	547)	а	548)	b
349)	а	350)	d	351)	С	352) c	549) b	550)	С	551)	С	552)	С
353)	а	354)	а	355)	b	356) a	553) d	554)	b	555)	d	556)	d
357)	b	358)	d	359)	С	360) a	557) d	558)	d	559)	b	560)	а
361)	d	362)	С	363)	b	364) b	561) c	562)	С	563)	а	564)	b
365)	а	366)	d	367)	С	368) d	l 565) a	566)	а	567)	b	568)	а
369)	С	370)	d	371)	а	372) d	l 569) c	570)	а	571)	d	572)	а
373)	b	374)	d	375)	b	376) d	l 573) a	574)	С	575)	С	576)	d
377)	b	378)	а	379)	а	380) c	577) c	578)	b	579)	b	580)	b
381)	С	382)	b	383)	а	384) a	581) b	582)	d	583)	d	584)	b
385)	d	386)	а	387)	d	388) d	l 585) d	586)	d	587)	а	588)	а
389)	а	390)	а	391)	d	392) a	589) b	590)	b	591)	d	592)	d
393)	а	394)	а	395)	а	396) d	l 593) d	594)	а	595)	d	596)	а
397)	b	398)	b	399)	b	400) a	597) a	598)	b	599)	а	600)	а
401)	b	402)	b	403)	С	404) d	l 601) d	602)	С	603)	С	604)	а
405)	а	406)	d	407)	b	408) c	605) b	606)	b	607)	b	608)	С
409)	d	410)	а	411)	С	412) b	609) b	610)	d	611)	d	612)	b
413)	а	414)	b	415)	b	416) b	613) d	614)	d	615)	С	616)	С
417)	d	418)	b	419)	b	420) a	617) d	618)	b	619)	а	620)	b
421)	b	422)	С	423)	d	424) b	621) b	622)	С	623)	d	624)	а
425)	С	426)	С	427)	С	428) c	625) c	626)	d	627)	С	628)	d
429)	С	430)	d	431)	а	432) b	629) a	630)	d	631)	d	632)	С
433)	d	434)	С	435)	а	436) d	l 633) c	634)	b	635)	b	636)	d
437)	С	438)	d	439)	d	440) a	637) a	638)	b	639)	а	640)	а
441)	а	442)	d	443)	b	444) d	641) b	642)	а	643)	b	644)	а
445)	а	446)	d	447)	а	448) d	645) b	646)	С	647)	b	648)	С
449)	b	450)	с	451)	С	452) c	649) c	650)	d	651)	С	652)	b
453)	d	454)	d	455)	b	456) b	653) b	654)	С	655)	d	656)	С
457)	С	458)	b	459)	а		657) d	658)	С	659)	b	660)	b
461)	d	462)	а	463)	а	464) c	661) d	662)	а	663)	С	664)	С
465)	d	466)	а	467)	а	468) c	665) a	666)	а	667)	С	668)	d
469)	а	470)	а	471)	а	472) b	669) b	670)	b	671)	С	672)	b
473)	d	474)	С	475)	d	-	673	-	-	d	675)	b	676)	а
477)	d	478)	а	479)	d	-	l 677	-	678)	d	679)	b	680)	b
481)	d	482)	d	483)	а	-	681	-	682)	b	683)	а	684)	d
485)	b	486)	С	487)	С	-	685) b	-	b	687)	d	688)	С
489)	С	490)	d	491)	d	-	689	-	690)	d	691)	С	692)	b
493)	d	494)	d	495)	а	-	693	-	694)	С	695)	С	696)	С
497)	b	498)	С	499)	d	-	697	-	698)	d	699)	d	700)	d
501)	b	502)	d	503)	С	-	701	-	702)	а	703)	С	704)	d
505)	С	506)	b	507)	d	-	1 705	-	706)	b	707)	с	708)	а
509)	b	510)	d	511)	а	-	709	-	-	b	711)	b	712)	а
513)	b	514)	d	515)	С	-	713	-	714)	а	, 715)	а	, 716)	а
517)	С	518)	a	519)	b	-	717	-	718)	b	719)	С	720)	a
521)	a	522)	a	523)	d	-	721	-	722)	а	723)	b	724)	а
525)	С	526)	b	527)	С	-	725	-	726)	d	727)	b	, 728)	d
529)	a	530)	b	531)	d	-	729	-	730)	b	731)	b	732)	a
533)	a	534)	c	535)	С	-	733	-	-	c	735)	a	736)	С
,				,		, -		-	,		,		,	
							I						Derela	07

737)	d	738)	а	739)	С	740)	d	937)	d	938) c	939)	а	940) a
741)	а	742)	d	743)	а	744)	b	941)	С	942) a	943)	d	944) d
745)	а	746)	С	747)	а	748)	b	945)	d	946) c	947)	С	948) b
749)	b	750)	а	751)	С	752)	d	949)	а	950) c	951)	а	952) d
753)	а	754)	а	755)	С	756)	d	953)	С	954) c	955)	b	956) c
757)	b	758)	С	759)	а	760)	d	957)	b	958) a	959)	С	960) b
761)	а	762)	d	763)	а	764)	С	961)	а	962) c	963)	а	964) d
765)	С	766)	а	767)	b	768)	d	965)	С	966) b	967)	d	968) a
769)	С	770)	С	771)	b	772)	d	969)	а	970) a	971)	b	972) a
773)	а	774)	d	775)	а	776)	b	973)	d	974) c	975)	d	976) b
777)	С	778)	b	779)	а	780)	d	977)	b	978) d	979)	b	980) b
781)	b	782)	d	783)	d	784)	а	981)	d	982) a	983)	b	984) b
785)	b	786)	b	787)	d	788)	d	985)	d	986) c	987)	b	988) b
789)	d	790)	С	791)	С	792)	b	989)	С	990) d	991)	С	992) c
793)	а	794)	С	795)	d	796)	С	993)	d	994) c	995)	С	996) d
797)	С	798)	b	799)	а	800)	b	997)	b	998) d	999)	а	1000) b
801)	а	802)	а	803)	С	804)	d	1001)	а	1002) a	1003)	а	1004) d
805)	b	806)	С	807)	а	808)	С	1005)	С	1006) c	1007)	b	1008) c
809)	а	810)	b	811)	b	812)	С	1009)	b	1010) c	1011)	С	1012) c
813)	а	814)	b	815)	d	816)	d	1013)	С	1014) d	1015)	b	1016) a
817)	а	818)	d	819)	b	820)	С	1017)	а	1018) c	1019)	а	1020) d
821)	d	822)	а	823)	С	824)	b	1021)	С	1022) a	1023)	d	1024) b
825)	d	826)	d	827)	d	828)	d	1025)	b	1026) a	1027)	а	1028) c
829)	d	830)	С	831)	d	832)	а	1029)	b	1030) d	1031)	С	1032) c
833)	С	834)	С	835)	b	836)	b	1033)	b	1034) b	1035)	d	1036) c
837)	d	838)	С	839)	d	840)	b	1037)	b	1038) d	1039)	а	1040) b
841)	b	842)	С	843)	С	844)	d	1041)	b	1042) c	1043)	d	1044) b
845)	С	846)	b	847)	d	848)	b	1045)	d	1046) c	1047)	С	1048) a
849)	b	850)	а	851)	а	852)	С	1049)	b	1050) d	1051)	b	1052) d
853)	b	854)	С	855)	d	856)		1053)		1054) b	1055)		1056) c
857)	d	858)	а	859)	С	860)		1057)		1058) d	1059)		1060) d
861)	С	862)	b	863)	С	864)		1061)		1062) d	1063)		1064) d
865)	d	866)	d	867)	С	868)		1065)		1066) d	1067)		1068) a
869)	d	870)	d	871)	d	872)		1069)		1070) d	1071)		1072) c
873)	а	874)	b	875)	d	876)		1073)		1074) b	1075)	а	1076) a
877)	С	878)	b	879)	а	,		1077)		1078) b	1079)		1080) c
881)	С	882)	С	883)	С	884)		1081)		1082) b	1083)		1084) c
885)	С	886)	а	887)	b	888)		1085)		1086) d	1087)		1088) a
889)	d	890)	d	891)	С	892)		1089)		1090) b	1091)		1092) c
893)	С	894)	d	895)	b	896)		1093)		1094) c	1095)		1096) b
897)	a	898)	С	899)	b	900)		1097)		1098) a	1099)		1100) c
901)	d	902)	а	903)	а	-		1101)		1102) b	1103)		1104) d
905)	а	906)	b	907)	а	908)		1105)		1106) c	1107)		1108) b
909)	а	910)	b	911)	b	-		1109)		1110) d	1111)		1112) d
913)	b	914)	d	915)	а	916)		1113)		1114) c	1115)		1116) d
917)	b	918)	b	919)	a	920)		1117)		1118) a	1119)		1120) c
921)	а	922)	d	923)	b	924)		1121)		1122) a	1123)		1124) a
925)	a	926)	b	927)	С	928)		1125)		1126) d	1127)		1128) d
929)	d	930)	b	931)	а	932)		1129)		1130) a	1131)		1132) c
933)	С	934)	С	935)	а	936)	d	1133)	d	1134) d	1135)	С	1136) d
													D I 400


1137) d	1138) b	1139) d	1140) d 1337) c	1338) b	1339) b	1340) b
1141) d	1142) a	1143) c	1144) c 1341) a	1342) b	1343) d	1344) c
1145) c	1146) d	1147) b	1148) c 1345) a	1346) d	1347) a	1348) a
1149) c	1150) c	1151) d	1152) b 1349) b	1350) b	1351) a	1352) a
1153) b	1154) c	1155) b	1156) b 1353) b	1354) d	1355) b	1356) b
1157) d	1158) d	1159) d	1160) a 1357) a	1358) a	1359) d	1360) b
1161) c	1162) b	1163) d	1164) d 1361) c	1362) b	1363) d	1364) a
1165) d	1166) c	1167) d	1168) d 1365) c	1366) b	1367) d	1368) b
1169) c	1170) b	1171) a	1172) a 1369) b	1370) a	1371) a	1372) a
1173) a	1174) d	1175) b	1176) c 1373) b	1374) b	1375) a	1376) c
1177) d	1178) a	1179) d	1180) b 1377) c	1378) a	1379) d	1380) c
1181) b	1182) c	1183) a	1184) a 1381) d	1382) a	1383) c	1384) a
1185) c	1186) d	1187) b	1188) a 1385) b	1386) b	1387) d	1388) d
1189) a	1190) b	1191) a	1192) a 1389) a	1390) d	1391) d	1392) c
1193) b	1194) a	1195) b	1196) a 1393) c	1394) d	1395) b	1396) b
1197) a	1198) a	1199) d	1200) a 1397) c	1398) b	1399) c	1400) a
1201) b	1202) a	1203) a	1204) b 1401) d	1402) a	1403) b	1404) a
1205) b	1206) b	1207) a	1208) d 1405) a	1406) c	1407) c	1408) d
1209) b	1210) d	1211) b	1212) d 1409) a	1410) c		
1213) a	1214) b	1215) c	1216) a			
1217) b	1218) c	1219) c	1220) c			
1221) c	1222) d	1223) c	1224) d			
1225) c	1226) d	1227) b	1228) d			
1229) b	1230) b	1231) a	1232) b			
1233) c	1234) b	1235) b	1236) d			
1237) b	1238) c	1239) d	1240) d			
1241) c	1242) d	1243) a	1244) d			
1245) d	1246) a	1247) a	1248) b			
1249) d	1250) b	1251) b	1252) c			
1253) a	1254) d	1255) c	1256) b			
1257) c	1258) a	1259) b	1260) a			
1261) a	1262) c	1263) d	1264) a			
1265) c	1266) c	1267) b 1271) b	1268) a			
1269) b 1272) b	1270) c 1274) h	1271) b 1275) d	1272) b			
1273) b 1277) d	1274) b 1279) d	1275) d 1270) h	1276) a			
1277) d 1281) a	1278) d 1282) d	1279) b 1283) c	1280) a 1284) c			
1281) a 1285) d	1282) d 1286) d	1283) c 1287) c	1284) c			
1285) u 1289) b	1286) d 1290) d	1287) c 1291) d	1288) c 1292) b			
1209) D 1293) c	1290) u 1294) c	1291) d 1295) d	1292) b 1296) b			
1293) C 1297) C	1294) c 1298) c	1295) u 1299) b	1300) c			
1297) C 1301) C	1298) C 1302) a	1299) b 1303) d	1300) C 1304) C			
1301) C 1305) b	1302) a 1306) b	1303) u 1307) a	1304) t			
1303) b 1309) a	1300) b 1310) b	1307) a 1311) c	1300) b 1312) d			
1309) a 1313) c	1310) b 1314) a	1311) C 1315) b	1312) u 1316) a			
1313) c 1317) a	1314) a	1313) b 1319) b	1310) a 1320) b			
1317) a 1321) a	1310) d	1313) b	1324) d			
1321) a 1325) b	1322) d 1326) d	1323) d	1324) d			
1329) c	1320) d 1330) d	1327) a	1320) d			
1323) c	1334) d	1335) c	1336) d			
, •		, -				

7.THE P-BLOCK ELEMENTS

: HINTS AND SOLUTIONS :


1	(c)		NaNO ₂ and NH ₄ OH.
	$N_2 O \wedge NO$ are neutral oxides of nitrogen.	13	(a)
2	(b) Zero group members are $_{2}He$, $_{10}Ne$, $_{18}Ar$, $_{36}Kr$, $_{54}Xe \wedge_{86}Rn$.		The stability of hydrides decreases down the gp., <i>i.e.</i> , from NH_3 to BiH_3 which can be observed from their bond dissociation enthalpy. The correct order
3	(a) In blood He is much less soluble than nitrogen, hence $He \rightarrow O_2$ mixture is used by deep sea divers in preference to $N_2 \rightarrow O_2$ mixture.		is $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$. Property $NH_3 PH_3$ $AsH_3 SbH_3 BiH_3$ $\Delta_{diss}H^{\circ}(E-H)/kJmol^{-1}$ 389 322 297
4	(b) He F_4 does not exist		255 —
5	(d) It is a fact, follow fixation of N_2 .	14 15	 (c) Noble gases are monoatomic. (b) Rest all are soluble in H₂O.
6	(c) Al, Fe, Mg all reduce dilute HNO ₃ into NH ₄ NO ₃ while pb gives NO with dilute nitric acid 3Pb+8HNO ₃ →3pb(NO ₃) ₂ +2NO+4H ₂ O dilute	16 17	(d) $2 KI + H_2O + O_3 \longrightarrow 2 KOH + O_2 + I_2$ (a) $2 KMnO_4 + KI + H_2O \longrightarrow 2 KOH + 2 MnO_2 + KIO_3$
7	(a) Acid strength decreases from <i>HClO</i> i <i>HIO</i> as the electronegativity of halogen decrease	18	Oxidant Reductant (c) Pyrosulphuric acid is $H_2S_2O_7 \lor H_2SO_4 + SO_3$ i $HO - SO_2 - OH + SO_3$.
8	(b) $S \in H_2 S$ has lowest oxidation number.	19	(a) $N a_4 P_2 O_7$ is a salt of strong acid and strong base, so
9	(c) It is a fact.		it is a neutral salt
10	(a) It is a fact.	20	(a) In Fischer Ringe's method, air free from moisture and CO_2 is passed over a heated mixture of $(800 \ ^\circ C)$ of
11	(d) NH ₃ >PH ₃ >AsH ₃ >SbH ₃ As the electronegativity of central atom decreases bonded electron polarises towards central atom more, so, repulsion increases and bond angle increases.		90% CaC ₂ +10% CaCl ₂ in an iron tube , when following reactions take place CaC ₂ +N ₂ ⁸⁰⁰ $^{\circ}C$ CaCN ₂ + c 2C+O \rightarrow 2CO C+O ₂ \rightarrow CO ₂
12	(d) NaNO ₂ + NH ₄ OH→ NH ₄ NO ₂ +NaOH NH ₄ NO ₂ →N ₂ +2H ₂ O ∵NH ₄ NO ₂ is unstable, so it is prepared by reaction of		$2CaC_2+3CO_2 \rightarrow 2 CaCO_3+ 5C$ $CuO+CO \rightarrow Cu+CO_2$ CO_2 gas is now absorbed by KOH solution .Thus, a mixture inert gases is obtained.

21	(b)		(i) F_2 + dil, cold NaOH		
22	$C + 2H_2SO_4 \longrightarrow CO_2 + 2SO_2 + 2H_2O$ (d)		$2F_2+2NaOH(cold)(dil) \longrightarrow 2NaF+H_2O+OF_2$		
	$4 KNO_3 + 4 H_2SO_4 \longrightarrow 4 KHSO_4 + 2 H_2O + 4 NO_2 +$		oxygen diflouride		
23	(a)		(ii) F_2 +hot ,conc.NaOH 4 F_2 +NaOH (hot)(dil) \rightarrow 4NaF+2 H_2 O+O ₂		
	F ₂ on reaction with NaOH gives different products				
	under different conditions.				
24	(d)				
	The bond energies of F_2 , Cl_2 , Br_2 , $\land I_2$ are 159,243	,193	$3 \wedge 151 J/mol.$		
26	(d)		$PtCl_4 873 K Pt + 2 Cl_2$		
	AgF is soluble in water and rest all halides of Ag are		$$ 2 AuCl ₃ 463 K 2 Au+3 Cl \square_2		
27	insoluble. (b)	43	(a)		
	BCl_3 is s p^2 -hybridized (120°). PCl_3 , $AsCl_3$, $BiCl_3$	10	N in NH_3 has -3 oxidation number, the lowest value		
	are $s p^2$ -hybridized with one lone pair. The bond		of oxidation number of N.		
	angle is contracted down the group.	44	(b)		
28	(c)		$Cl_2 + H_2O \rightarrow 2HCl + [O]$ nascent oxygen		
•	$2 Na_2 S_2 O_3 + I_2 \longrightarrow Na_2 S_4 O_6 + 2 NaI$	45	(a)		
29	(c) H_2SO_4 forms hydrate with water. That's why it has		Cl_2 has disinfectant \wedge antibacterial nature .		
	great affinity towards water.	46	(a) $Sb(l) \longrightarrow Sb(s)$. Vol. of $Sb(s) > Vol. of Sb(l)$		
30	(b)				
	Ramsay discovered many (Kr, Xe, Ne) of these gases.	47	(a)		
33	(c) $2 KIO_3 + 5 SO_2 + 4 H_2 O \longrightarrow K_2 SO_4 + 4 H_2 SO_4 + I_2$	48	Follow molecular orbital diagram for O_2 . (b)		
34	(c) $(R_2 + R_2) = (R_2 + R_2) + (R_2 + R_2$		$3 CaOCl_2 + 2 NH_3 \longrightarrow 3 CaCl_2 + N_2 + 3 H_2 O$		
~ -	Used as desiccant.	49	(c)		
35	(c) It is a fact. $FeS+H_2SO_4 \longrightarrow FeSO_4+H_2S\uparrow$		H_3PO_2 is monobasic acid.		
36	(b)	50	(a)		
~-	$HNO_3 + 3 HCl \longrightarrow NOCl + 2H_2O + 2Cl$		Acidic character of oxides increases along the period.		
37	(b) $N H_4 N O_2 \rightarrow N_2 + 2 H_2 O$	51	(d)		
		50	Due to higher at. weight.		
38	(a) Fluorine reacts with H_2O .	52	(a) $O_3 + 2KI + H_2O \longrightarrow 2KOH + O_2 + I_2$		
39	(a)		$I_2 + Starch \longrightarrow \dot{c}$		
	Fluorspar is CaF_2 .	53	(d)		
40	(a) HI is strongest acid because $H-I$ bond is weakest		Orthophosphoric acid (H ₃ PO ₄) is a tribasic acid because it has three replaceable hydrogen atoms.		
	bond		Hence the basicity of $H_3 PO_{3}$ is 3. Its structure is as		
41	(a)				
	NH_3 is a stronger base because lone pair is easily				
	available for donation				
42	(c)				
	It is used in extractions of metals like Au Pt $e \sigma$				

H₃PO₄ (tribasic acid)

While phosphorous $acid(H_3PO_4)$ dibasic acid because it has two replaceable hydrogen atoms. Hence the basicity of H_3PO_3 is 2 .Its structure is as

H₃PO₃ (dibasic acid)

54 (d)

These are facts.

55 (a)

Clathrate compounds are formed not by action of valence bonds but by molecules imprisonment. Inert gases do so with metals.

58 **(c)**

59

It is a fact.

(b) AgI is a covalent compound so it is insoluble in water

60 **(a)**

 PH_3 is basic \in nature.

61 **(c)**

It is a fact.

- 62 (c) 4 HNO₂+ $P_4O_{10} \rightarrow 2N_2O_5 + 4HPO_3$
- 63 **(b)** It is a fact.
- 65 **(a)**

Eq. of S = Eq. of Cl; $\frac{64}{E} = \frac{71}{35.5}$: E = 32

- 66 **(c)**
- It is a fact.

67 **(c)**

Although each possesses nearly same strength.

- $\begin{array}{c} 68 \quad \textbf{(d)} \\ 2 H_3 PO_4 \longrightarrow 2 HPO_3 + 2 H_2 O \end{array}$
- 69 (a) Al₂O₃ is amphoteric. Rest all are basic oxide.
 70 (d)

 SO_2 acts as an oxidising agent particularly when treated with stronger reducing agents. SO_2 oxidises H_2S into S $SO_2+2H_2S \rightarrow 2H_2O+S$

71 **(c)**

Mn in $KMnO_4$ has highest oxidation state. It acts only as strong oxidant.

72 **(b)**

He is lightest (after H_2), non-inflammable gas. 73 (a)

$$K_2 MnF_6 + 2SbF_5 \longrightarrow 2KSbF_6 + MnF_3 + \frac{1}{2}F_2$$

74 **(d)**

$$N_7 \rightarrow 1 s^2 2 s^2 2 p^3$$

d-orbitals are absent in nitrogen

75 **(a)**

Fluorine cannot be oxidized because it is the most electronegative element of periodic table.

76 **(c)**

 H_2S is oxidized to colloidal sulphur or amorphous sulphur by HNO_3 .

77 **(a)**

It is a fact.

78 **(c)**

 $H_2S_2O_7$ (pyrosulphuric acid) is industrially known as oleum.

79 **(d)**

80

82

$$(NH_4)_2 Cr_2 O_7 \longrightarrow N_2 + 4H_2 O + Cr_2 O_3$$

(a)

Ammonium dichromate on heating gives nitrogen, chromic oxide and water.

 $(NH_4)_2Cr_2O_7^{\Delta}N_2 + Cr_2O_3 + 4H_2O_3$

81 **(b)**

 I_2 cannot oxidise $Br^{-ii}Br_2$

(a)
$$H_2 PO_4^{-i-H^{+i}ii} HPO_4^{2-i} HPO_4^{2-i}$$

83 (a) $2 KMnO_4 + 2H_2SO_4 \longrightarrow (MnO_3)_2SO_4 + K_2SO_4 + 2H_2SO_4 \longrightarrow MnO_3)_2SO_4 + H_2O \longrightarrow Mn_2O_3 \longrightarrow MnO_4O_7 + H_2SO_4$ $(MnO_3)_2SO_4 + H_2O \longrightarrow MnO_3 \longrightarrow MnO_3O_7 + H_2SO_4$

Caro's acid is the name for $H_2SO_5 \lor$ peroxosulph 85 (a) $F^{-is oxidized only by electrolysis. i}$

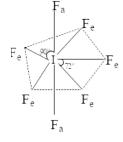
86 **(d)**

 $KO_3 \wedge NH_4O_3$ are ozonides.

87 **(d)**

 O_3 is an allotrope of O_2 .

88 **(b)**


 PH_3 is sparingly soluble in water and has fishy smell

89 **(c)**

 NO_2 on dissolution in HNO_3 imparts yellow colour.

91 (d)

The structure is pentagonal bipyramid having $sp^3 d^3$. Hybridization as given below:

 F_e : Equatorial fluorine

 F_a : Apical fluorine

 $F_e - I - F_e = 72^{\circ}$ (5 angles);

$$F_{e} - I - F_{a} = 90^{\circ} (10 \text{ angles})$$

$$F_e - i$$
 I bond length = 1.858 ± 0.004 Å

100 **(b)**

 $FeCl_3$ acts as oxidant whereas H_2SO_3 acts as reductant.

101 **(c)**

 $NaNH_2+N_2O^{190 \circ C} NaN_3+ NaOH+NH_3$

102 **(c)**

Calcium carbide is used for ripening of fruits

103 **(c)**

Black phosphorous is highest thermodynamic stable form in red , black , white and yellow allotropic forms of phosphorus because its ignition temperature is highest hence it is inert and has a layer structure.

104 **(b)**

On electrolysis F_2 is collected at ano de .

105 (d)

Reaction s of ethyl alcohol with bleaching powder to form chloroform takes place as $CH_3CH_2OH+Cl_2\rightarrow CH_3$. CHO+2HCl $CH_3CHO+3Cl_2\rightarrow CCl_3$. CHO+3HCl $2CCl_3$. CHO+Ca(OH)_2\rightarrow 2CHCl_3+(HCOO)_2Ca F_a-I bond length = 1.786 ± 0.007Å. 92 (a) PH₃+4Cl₂→ PCl₅+3HCl; Δ H=+ve 93 (d) 2HClO₄+P₂O₅ → Cl₂O₇+2HPO₃ 94 (a)

Salts of $H_3 PO_3$ are called as phosphite (HPO_3^{2-ii}).

96 **(a)**

 UF_6 is gas \wedge thus, rate of diffusion of uranium hexc isotopes is different.

97 **(a)**

It is $I(IO_3)_3$, i.e., iodine iodate.

98 **(c)**

Ozone readily decomposes to give $O_2 \wedge thus$, improves the percentage of O_2 at crowded places.

99 **(d)**

Chlorofluoro carbon or cfc' on exposure to UV rays in upper strata of atmosphere dissociates to give free chlorine radicals which results in decomposition of O_3 causing depletion of ozone layer.

$$Cl'+O_3 \longrightarrow ClO'+O_2$$
$$ClO'+O_3 \longrightarrow Cl'+2O_2$$

Decomposition of bleaching powder is catalysed by cobalt chloride.

$$2\text{CaOCl}_2^{\text{CoC}l_2}\text{CaCl}_2+\text{O}_2$$

106 **(a)**

Phosphorus glows in dark due to $P_4 + 5O_2 \longrightarrow P_4O_{10} + light$.

107 (a)

Hypophosphorus acid (H₃PO₂) is monobasic acid which act as reducing agent in this molecule two P-H bonds are responsible for its reducing character and one O-H bond is responsible for its monobasic acid character.

108 **(b)**

Radon is used in cancer therapy. 109 (d)

$$H \longrightarrow 0 \longrightarrow N = 0$$

Polarity along O—H in HNO₃ is more in comparison to --O—H in HNO₂.

110 (a)

The number of lone pairs of electron on Xe atom in Xe F_2 , Xe $F_4 \wedge$ Xe F_6 are 3, 2 and 1 respectively

111 (d)

During discharge of battery H_2SO_4 is used up. 112 (d)

 $AgNO_{3} \Delta Ag + NO_{2} + \frac{1}{2}O_{2}$

113 (a)

The spontaneous inflammability of phosphine with smoky rings (vortex rings) at the time of preparation is due to the presence of highly inflammable P_2H_4 . This property is used in *Holme*'s signal.

114 (c)

 $H_2SO_4 + SO_3 \longrightarrow H_2S_2O_7(Pyrosulphuric acid).$ 115 (c)

$$Cl_2 + H_2O \longrightarrow 2HCl + \frac{1}{2}O_2$$

116 (a)

Halogen
$$n s^2 n p^5$$
;noble gas $n s^2 n p^6$.
117 (c)

(c)

$$CuSO_4 + 4 NH_3 \longrightarrow [Cu(NH_3)_4]SO_4; Cu(NH_3)_4^{2+ii}$$

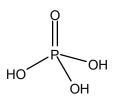
is blue in colour.

118 **(c)**

 $HgO+2Cl_2+H_2O \longrightarrow HgCl_2+2 HClO$ 119 (a)

Bones contain $Ca_3(PO_4)_2$.

120 (a)


 O_2 has two unpaired electrons.

121 **(b)**

 As_2O_3 is poison.

122 (a)

 H_3PO_4 is tribasic acid because it has three replaceable hydrogen atoms.

123 **(a)**

 $(CH_3COO)_2$ Pb gives black ppt, sodium nitroprusside gives violet colour, dil. H_2SO_4 produces rotten egg smell with S^{2-ii} ions.

The end product of the hydrolysis of XeF₆ is XeO₃
XeF₆
$$\frac{H2O}{-2HF}$$
 XeOF₄ $\frac{H2O}{-2HF}$ XeO₂F₂ $\frac{H2O}{-2HF}$ XeO₃

125 **(a)**

Formal charge on oxygen =
$$\frac{\text{Total charge}}{\text{NO. of atoms}} = \frac{-3}{4} = -i.075$$

Also bond order of each P—O bond is 1.25.

126 **(b)**

He is lightest (after H_2), non-inflammable gas.

127 **(b)**

AgCl is water insoluble chlorine.

128 (a)

 $F^{-i possesses smallest i i i}$

129 (c)

 PCl_5 reacts with conc. H_2SO_4 to give sulphuryl chloride by replacing its hydroxyl group with chlorine atoms.

sulphuryl chloride

$$SO_2(OH)_2 + 2PCl_5 \rightarrow SO_2Cl_2 + 2POCl_3 + 2HCl_3 + 2HC$$

H₂SO₄ sulphuric acid

130 **(a)**

$$NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl \uparrow$$

131 **(c)**

 I_2 is placed above Cl_2 , $Br_2 \wedge F_2$ in electrochemical series. The non-metal placed below, replaces the other from its salt solution.

132 **(c)**

$$V_2O_5$$
 is catalyst for the reaction, $SO_2 + \frac{1}{2}O_2 \longrightarrow SC$

133 **(a)**

M + S \rightarrow Metal sulphide

134 **(a)**

Iodine develops same metallic nature among halogens and forms some compounds like metals, *e.g.*, iodine phosphate.

135 (c)

It is a test for ozone.

136 **(d)**

$$3 Ca(OH)_2 + 2 Cl_2 \longrightarrow Ca(OCl)_2 + CaCl_2 \cdot Ca(OH)_2 \cdot$$

137 (d)

 I_2 is placed above Br_2 in electrochemical series and

	the halogen placed below replaces the other from its		$NH_4 NO_2 \Delta N_2 + 2H_2 O$
	salt solution.		→
138	(a)	153	(c)
	Both Br and Cl have different electronegativity.		$P_4O_{10}+2H_2SO_4 \longrightarrow 2SO_3+4HPO_3$
139	(c)		- 10 2 - 5 5
	It is a fact.	154	(a)
140			It is a fact.
	$CN^{-\iota is polar \land anionic species. N_2 is \iota} non-polar$	155	(a)
	molecule with high bond energy.		Hypophosphorous acid is $H_3 PO_2$.
	5 5,		
141	(c)	156	
			$4 NH_3 + 5O_2 \longrightarrow 4 NO + 6H_2O$
	Gas Abundance in air by	1	
	volume(ppm)	157	
	Helium 5.2	150	ZnO is amphoteric.
	Neon 18.2	158	
	Argon 93.4	150	It is a fact.
	Krypton 1.1	159	
	Xenon 0.09		$H_3 P O_2$ is hypophosphorus acid
142	· · · · · · · · · · · · · · · · · · ·	160	(c)
	Boiling points :	100	Follow methods of preparation of Xe fluorides.
	He Ne Ar Kr Xe Rn	161	
	-269, -246, -186, -153.6, -108.1, -62	101	NO_2 is brown reactive gas with pungent odour,
	-209, -240, -100, -155.0, -100.1, -02		paramagnetic but dimerise to solid N_2O_4 .
143	(a)		paramagnetic but dimense to solid $N_2O_{4.}$
	S in H_2SO_4 has +6 oxidation no. and thus, H_2SO_4	162	(b)
	can act only as oxidant and not reductant.		Nitrates of all the metals are water soluble.
144	•		
	XeF_4 is solid.	163	
145	•		Xe > Kr > Ar > Ne > He
115	Since fuels burn faster in the presence of oxygen.	164	(4)
		101	All are properties of ozone.
	When a glowing splinter comes in contact with	165	
	oxygen, it relights. This is also a test for oxygen.	100	Halogens are very reactive due to high
146	(d)		electronegativity, high electron affinity and
	In P_4 , each P is $s p^3$ hybridised so that the percentage		
	of <i>p</i> -character in these orbitals is 75%		comparatively low bond energies. The reactivity of
	or p character in these orbitals is 75%		halogen decreases with increase in atomic number.
148	(c)		The correct order of reactivity of halogens is
	F_2 has the most negative ΔG °value which is		$F_2 > Cl_2 > Br_2 > I_2$
	dependent on hydration enthalpy.	166	
			$2 KClO_3 + I_2 \longrightarrow 2 KIO_3 + Cl_2$
149		167	
	All are non-metals. F_2 , $Cl_2(gas)$, $Br_2(liquid)$, I_2	10/	$CaOCl_2 + CO_2 \longrightarrow CaCO_3 + Cl_2$
150		168	
	$Pb(CH_3COO)_2 + H_2S \longrightarrow PbS + 2CH_3COOH,$	100	
	$PbS+2H_2O_2 \longrightarrow PbSO_4+2H_2$		Reducing power increase in the order as $UE = UC = UE$
151			HF < HCl < HBr < HI
	$KF + HF \rightarrow KHF_2 \rightleftharpoons K^{+ii} + \left[HF_2\right]^{-ii}$	169	(c)
	$\mathbf{K}_{1} + \mathbf{I}_{1} \longrightarrow \mathbf{K}_{1} + \mathbf{I}_{2} $		$2ClO_2 + H_2O \longrightarrow HClO_3 + HClO_2$
152	(c)	170	
			Red p is obtained from white p by heating it with a
			red p is counted from white p by feating it will a
		•	

catalyst in an inert atmosphere.

172 (d)

 $Cl_2 + H_2O \longrightarrow HCl + HClO$; also some $Cl_2 \exists \in disserved$

173 **(c)**

This is a fact.

174 **(a)**

Since, noble gases are monoatomic, these do not possess vibrational energy as monoatomic molecules do not vibrate.

175 **(b)**

This causes H-bonding in H_2O .

177 (a)

Rhombic sulphur occurs in S_8 molecules giving an atomicity of 8

178 **(b)**

When chlorine is passed into hot concentrated solution of KOH, potassium chlorate is formed. $6KOH+3Cl_2 \rightarrow 5KCl+KCIO_3+3H_2O$

180 **(c)**

 $2 HNO_2 \rightarrow H_2O + N_2O_3$

181 **(b)**

 $4 Cl_2 + Na_2S_2O_3 + 5H_2O \longrightarrow 2 NaHSO_4 + 8 HCl$ 182 **(b)**

Halogens exist as X_2 and the ion possesses stable noble gas configuration $n s^2 n p^6$.

183 **(a)**

The stability of oxides increases with increase in oxidation state of halogen.

Oxide oxidation state of halogen

Cl_2O	+1
ClO_2	+4
ClO ₃	+6
Cl_2O_7	+7

 \therefore Cl₂O is least stable oxide of chlorine.

184 **(d)**

The colour of Br_2 water is discharged by an unsaturated molecule due to addition of Br_2 on C=C, or by SO_2 ; $SO_2+2H_2O+Br_2 \rightarrow 2HBr+H_2SO_4$ (d) Ha

185 **(a)**

 $2F_2+2H_2O \rightarrow 4HF+O_2$ $3F_2+3H_2O \rightarrow O_3+6HF$

186 **(c)**

Rest all are transition elements $(n-1)d^{10}ns^2$. Choice 199 (c) (c) represents chlorine. O_2

187 **(b)**

Fluorine is the strongest oxidizing agent and Xe has the lowest ionisation energy among the noble gases and has little tendency to lose electrons

188 **(d)**

The bond strength of H—X decreases from HF and HI because the dissociation energy of H—X bond decreases from HF to HI. Hydrogen halide :H—F H—Cl H—Br H—I Dissociation energy : 566 431 366 299 $(kJ \ mol^{-1})$ HI is most volatile.

189 **(a)**

White phosphorous on heating with aqueous solution of KOH produce phosphine (PH_3i gas $P_4 + 3KOH + 3H_2O \rightarrow 3KH_2PO_2 + PH_3$

190 **(d)**

 P^{32} is radioactive.

192 **(a)**

A binary compounds is that compound which is formed by two different elements. Metals or elements which shows variable oxidation states can form more than one binary compound. In the given compounds Fe shows +2 and +3 oxidation states. So, it can form two binary compounds with chlorine as $FeCl_2$ and $FeCl_3$.

193 **(d)**

Due to less reactivity.

194 (a)

$$(NH_4)_2 Cr_2 O_7 \bigtriangleup N_2 + Cr_2 O_3 + 4H_2 O$$

 $NH_4 NO_2 \bigtriangleup N_2 + 2H_2 O$

195 **(b)**

$$O_3 \rightarrow O_2 + [O]$$

$$\frac{2 KI + H_2 O + [O] \rightarrow 2 KOH + I_2}{2 KI + H_2 O + O_3 \rightarrow 2 KOH + I_2 + O_2}$$

 $HgC l_{2} + Hg (CN)_{2} \rightarrow HgC l_{2} \cdot Hg (CN)_{2}$ Mercuric Mercuric Addition compound Chloride cyanide

198 **(b)**

These do not support combustion.

 O_2 is paramagnetic; O_3 is diamagnetic.

- 200 (b) HF is the weakest acid. H₂S₂O₈ (Marshall's acid)has O—O linkage. 203 (c) Structure of $H_2S_2O_8$ is given as follows: 204 (d) 'š—o—o— ∥ 205 (c) 206 (b) 201 (c) N, P are non-metals, As, Sb are metalloids or semimetals, Bi is metal in gp. 15 202 (d) 207 (a) O_3 is antibacterial \in nature \wedge thus, used as sterilizing agent. 208 (b) Welding of Mg is done in the atmosphere of He due to its inert and non-inflammable nature 209 (a)

Follow contact process for H_2SO_4 .

Metallic character increases down the gp.

 $10 HNO_3 + I_2 \longrightarrow 2 HIO_3 + 10 NO_2 + 4 H_2O_3$

Noble gases have completely filled electronic configuration of outermost shell and thus, have no scope for addition of an electron in them.

Rn is radioactive.

210 (c)

(a) 2KI + H₂O + O₃ → 2KOH + O₂ + I₂ -oxidised (b) $2FeSO_4 + H_2SO_4 + O_3 \longrightarrow Fe_2(SO_4)_3 + H_2O + O_2$ ------oxidised-

(c) KMnO₄+O₃ \rightarrow no reaction

Because in KMnO₄, oxidation state of Mn is +7. Hence, it is the highest oxidation state of Mn, so KMnO₄ is not oxidized by ozone. (d)

211 (a)

Boiling points of H_2 , He, N_2Ar are: -259 °C, -268.98 °C, -195.8 °C, -185.7 °C respectively.

212 (a) Fluorine and chlorine are more electronegative than sulphur, so they can displace it form it salt

213 (c)

It is a reason for the given fact.

214 (d)

Al becomes passive in HNO_3 .

215 (a)

It reacts with rest of all reagents.

216 (a)

Br has the configuration. $1s^{2}, 2s^{2}2p^{6}, 3s^{2}3p^{6}3d^{10}, 4s^{2}4p^{5}$

217 (a)

Dipole moment of gp. 15 hydrides decreases down the gp.

218 **(b)**

 $2CaO+2Cl_2 \longrightarrow CaCl_2+Ca(ClO)_2$ 219 (d)

Oxides of nitrogen are acidic and are dissolved in KOH (alkali).

220 **(b)**

Compounds of Xe, Kr and Rn are known.

221 **(b)** It is a fact.

222 **(b)**

The maximum temperature at which gas can be liquefied is called its critical temperature. The gas which have high boiling point will change into liquid and so critical temperature of gas will be more

224 (a)

- $2 KI + Cl_{2} \longrightarrow I_{2} + 2 KCl$ $I_{2} + CCl_{4} \longrightarrow \text{Violet} \xrightarrow{\text{Excess of}} \text{Colourless} + I_{2}$
- 225 **(a)**

Only N_2 has $1\sigma + 2\pi$ bonds \in its molecule.

227 (d)

Only Al among these does not react with HNO_3 .

228 (c)

 $NH_4Cl \longrightarrow NH_3 + HCl$ $1 \qquad 0 \qquad 0$ $0 \qquad 1 \qquad 1$ $\therefore Calculated mol. wt. \propto 1 molecule$

Experimental mol. wt. ∝ 2 molecule

229 (d)

Thermal stability of hydrides of nitrogen family decreases gradually from NH₃ to BiH₃.

230 **(b)**

When an electric discharged is passed through *Ne* gas in a tube at low pressure, an orange red light is produced which is effective in the formation of chlorophyll and is used in green houses

231 **(d)**

 XeO_3 is an explosive compound when dry and its explosion power is 22 times more than TNT

232 (a)

The most abundant element in the earth crust is oxygen.

233 **(b)**

It is a fact.

234 **(b)**

It is a fact.

236 **(c)**

 SO_2 acts as reducing agent in aqueous medium, as acid in basic medium and oxidizing agent in neutral medium.

237 **(b)**

 $CaC_2 + N_2 \longrightarrow CaCN_2 + C$

238 (c)

Cl₂is oxidised <mark>ذ</mark>

239 **(c)**

$$F_2 + H_2 O \longrightarrow 2 HF + \frac{1}{2}O_2$$

240 **(b)**

Cu hydroxide forms complex with NH_3 .

241 **(d)**

The first ionisation energy of xenon is quite close to that of oxygen and the molecular diameter of xenon and oxygen are almost identical.

Based on the above facts it is suggested that since oxygen combines with PtF_{6} , so xenon should also form similar compounds with PtF_{6} .

242 (d)

The bond pair gets farther apart from central atom due to increasing bond length and thus, lone pair on central atom causes more contraction in bond angles.

243 (d)

CO is neutral.

244 **(d)**

$$Ca_{3}(PO_{4})_{2}+3SiO_{2} \longrightarrow 3CaSiO_{3}+P_{2}O_{5}$$
$$2P_{2}O_{5}+10C \longrightarrow P_{4}+10CO$$

245 **(b)** NO_2 is a brown coloured gas

246 (c) $KI + I_2 \rightarrow K I_3$

247 (d)

 $SO_2,\,H_2O$ ans O_3 all of these act as bleaching agent.

248 (a) Allotropes have different crystalline nature.
249 (a) P∃asP₄, Sb∃asSb₄.
250 (a) He was detected first in solar atmosphere.
251 (b) The electrolyte used ∈ battery is 38 % H₂SO₄.
252 (b) Cl₂ is used in preparation of DDT-an insecticide.

253 (a) Due to H-bonding, $HF \exists \in dimeric(H_2F_2) liquid state$.

 $HF \exists \in aimeric(H_2F)$ 254 **(b)**

Halon-1301 is CF_3Br . The first figure 1 represents

no. of C atoms, the second figure represents no. of F atoms, the third figure 0 represents the no. of Clatoms and last figure 1 represents the Br atom

255 (a)

It is a test for proteins.

256 (a)

Both $Xe F_2 \wedge I F_2^{-ii}$ are linear species but the central atoms $Xe \wedge I$ undergo s $p^3 d$ hybridisation with all the three equatorial positions occupied by lone pairs of electrons

257 (d)

HNO₃, solvay process — Na₂CO₃.

258 (d)

In rest all molecules the central non-metal atom possesses lone pair of electron which gives rise to distorted geometry.

259 (d)

 $2 KClO_3 + I_2 \longrightarrow 2 KIO_3 + Cl_2$

260 (b)

In VIA gp, sulphur possesses the maximum tendency for catenation. The catenation order : $C > Si \approx S > P$ > N > O

261 (a)

 $3CaO+2NH_3 \rightarrow 3Ca+N_2+3H_2O$

 \therefore N₂gas is evolved when CaO reacts with NH₃.

262 (a)

Bartlett prepared first compound of Xe as 276 (a) $Xe^{+i[PtF_6]^{-i}}$, a red orange crystalline solid. $Xe + PtF_6 \longrightarrow Xe^{+i[PtF_6]^{-ii}i}$

263 (a)

 P_2O_5 is very good dehydrating agent.

265 (a)

Na₂ SO₃ reacts with hot and dil, H₂SO₄ to give SO₂ gas which decolourise bromine water $Na_2SO_3 + H_2SO_4 \rightarrow Na_2SO_4 + SO_2 + H_2O_3$ $Br_2 + H_2O \rightarrow 2HBr + [O]$ $SO_2+[O] \rightarrow SO_3$

decolourisation of bromine water

266 (c)

$$(NH_4)_2 Cr_2 O_7 \longrightarrow N_2 + Cr_2 O_3 + 4H_2 O$$

267 (c)

268 (c)

$$(NH_4)_2 SO_4 + H_2 O \longrightarrow NH_4 OH + H_2 SO_4$$

Fluorine due to its very high electronegativity oxidises sulphur to its highest oxidation state and thus, forms SF_6 where S shows its maximum coordination number 269 (a) B in BCl_3 is p^2 -hybridised; N in NCl_3 has p^3 hybridisation with one lone pair of electron. 270 (b) Cl_2O has s p^3 -hybridized oxygen atom with two lone pairs. 271 (d) Excitation energy of F(2p-electrons) is more than excitation energy of iodine (5*p*electrons). 272 (d) Rest all will give $H_3 PO_3$. 273 (c) It is an use of Ar. 274 (b) $CuSO_4 + 2KI \rightarrow CuI_2 + K_2SO_4$ $2CuI_2 \rightarrow 2CuI + I_2$ Cuprous iodide 275 (b) Atomic radius of H^{+ii} + atomic radius of Cl =

 $\frac{74}{2} + \frac{198}{2}$

 $3Mg + N_2 \longrightarrow Mg_3N_2$ $Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$

277 (b)

In presence of slight amount of a dil acid, bleaching powder loses oxygen. Due to this nascent oxygen, it shows oxidizing and bleaching properties, $2 CaOC l_2 + H_2 SO_4 \rightarrow CaC l_2 + CaS O_4 + 2 HClO$

 $HClO \rightarrow HCl+[O]$

278 (b)

 $2 KClO_3 MnO_2 2 KCl + 3O_2$

279 (d)

Xe due to largest size more polarisable. He due to smallest size least polarisable.

280 (d)

Nitrolim is $CaCN_2 + C$.

281 (a)

 $H_2S+H_2SO_4 \longrightarrow SO_2+2H_2O+S$ This is a method to separate noble gases. 297 (c) 283 (a) It is a reason for the given fact. The reducing property of the hydrides of VA group 298 (c) increases from NH₃ to BiH₃ $NCl_3 + 3H_2O \longrightarrow NH_3 + 3HOCl$ NH₃<PH₃<AsH₃<SbH₃<BiH₃ The tendency to donate lone pair or basic strength 299 (b) decreases from NH₃ to BiH₃ HNO_3 is strongest oxidant among all. NH₃>PH₃>AsH₃>SbH₃>BiH₃ 300 (a) Thermal stability of VA group hydrides deceases Larger is the bond length, easier is its dissociation and from NH₃ to BiH₃ NH₃>PH₃>AsH₃>SbH₃>BiH₃ more is acidic nature in halogen acids. 301 (b) Bond angle of VA group hydrides decreases from $\mathrm{O}_{\mathsf{H}^{\delta^+}}^{\mathsf{H}^{\delta^+}}$ NH₃ to BiH₃. NH₃>PH₃>AsH₃>SbH₃>BiH₃ includes dipole in noble Dipole of water 284 (d) gases which interact and causes solubility in water The deficiency of iodine in diet causes goitre. 302 (d) 285 (b) Oxidation state of S is 0 in S_8 Oxidation state of S is +4in SF₄ Oxidation state of S is +6 in H₂SO₄ HO S shows 0,+4 and +6 oxidation states. 3-OH groups are present hence, it is tribasic In fact S shows 0, -2, +2, +4 and +6 oxidation states, 303 (a) 286 (d) H-bonding in H_2SO_4 makes it a viscous liquid. The solubility increases with increase is mol. wt. 287 (b) 304 (d) $Na_2Fe(CN)_5NO + Na_2S \longrightarrow [Na_4Fe(CN)_5NOS]$ Violet Complex It is a fact. 288 (c) 305 (a) He is obtained during radioactive decay. It is a fact. 289 (d) 306 **(b)** Zero group element show less chemical activity $Pyrogallol absorbs O_2$ because this group element have 8 electrons in Turpentine oil \wedge oil of cinnamon absorbs O_3 . outermost orbit 307 (b) A test for ozone. 290 (a) 308 (d) $2 FeCl_3 + H_2 S \longrightarrow 2 FeCl_2 + 2 HCl + S$ Concentrated $H_2 SO_4$ has dehydrating property. 291 (c) $HPO_3 + H_2O \longrightarrow H_3PO_4$ When cellulose comes in contact with conc H_2SO_4 , it removes water from cotton leaving only black 292 (d) carbon in the form of charred particles O_3 forms ozonides with each molecule having C=C $(C_6 H_{12} O_6)_x \rightarrow 6C + 6H_2 O_6$ bond or $C \equiv C$ bond. Charred particles 293 (d) Argon is found abundantly in the atmosphere. 309 (a) $3 HCl + HNO_3 \longrightarrow NOCl + 2H_2O + 2Cl$ 294 (d) $SO_2 + 2CuCl_2 + 2H_2OKCNSCu_2Cl_2 + H_2SO_4 + 2H_{310}$ (d) H_2 S has s p^3 -hybridization with two lone pair, 295 (a) $CO+Cl_2 \longrightarrow COCl_2$ having V-shaped geometry, *i.e.*, 296 (d)

311 **(d)**

Dust is a colloid which shows tyndall effect. Hence,tyndall box is used to test the presence of dust in gaseous mixture , as dust decreases the effectiveness of catalyst.

- 312 (c)
 - PoO_2 is insoluble oxide of gp. 16.
- 313 **(c)**
 - This is a laboratory method for preparation of Cl_2 .

314 **(b)**

Xe F_6 show s $p^3 d^3$ hybridisation, it will give pentagonal bipyramidal geometry, but due to presence of lone pair of electron, shape will be distorted octahedral

315 **(b)**

Bleaching action of Cl_2 is only in presence of moisture where nascent oxygen is displaced from H_2O

 $Cl_2+H_2O \rightarrow HCl+HClO$ $HClO \rightarrow HCl+[O]$

316 **(d)**

The +5 oxidation state of Bi is unstable due to inert pair effect. Thus, BiF₅cannot be formed.

317 (a)

323 (a)

N has $-\frac{1}{3}$, -3, -2, -1 oxidation states ∈ *i*. *N*₃ *H*, *NH*₃, *N*₂ *H*₄ ∧ *NH*₂ *OH* respectively.

324 **(d)**

 S_8 has puckered ring structure.

325 **(d)**

Ti has configuration

 $1s^2$, $2s^22p^6$, $3s^23p^63d^2$, $4s^2$. Thus, Ti^{4+ii} has configuration

$$1s^2, 2s^22p^6, 3s^23p^6$$
, *i.e.*, of Ar.

326 **(b)**

 $3CuSO_4 + 2PH_3 \longrightarrow Cu_3P_2 + 3H_2SO_4$ Black

327 **(a)**

Anhydrous $Ba(ClO_4)_2$ is an effective drying agent. It is used under the trade name desicchlora

328 **(a)**

Neil Bartlett prepared first noble gas compound, xenon hexafluoride (IV)

330 **(a)**

Mg is *reductant* and thus, can be oxidized. 318 (a)

 NH_3 is stronger base among all these.

319 (c)

$${}_{1}H^{1}+{}_{1}H^{2} \longrightarrow {}_{2}He^{3} + energy$$
. This is fusion.
320 (b)
 $2HCl+\frac{1}{2}O_{2} \rightarrow H_{2}O+Cl_{2}$

321 **(c)**

Only He and Ne are remained unadsorbed on the coconut charcoal at -100° c (173K) as their boiling points are less than -100° c .(He=4K, Ne=27K).

322 **(c)**

 $ClO_2^{-i has s p^{3}i}$ hybridisation and two lone pairs on halogen which produces V-shape bent structure

The structure of H_3PO_3 is given as $H_1 = 0$ $H_2 = 0$ H_3 $H_3 = 0$ H_3 H_3 $H_3 = 0$ H_3 H_3

In this structure two —OH group are present, so it is dibasic acid. In it one P—H bond is present, so it provides hydrogen and due to such hydrogen it acts as reducting agent.

331 **(d)**

When chlorine reacts with dilute and cold NaOH sodium chlorine and sodium hypochlorite are formed. $2NaOH(cold) + Cl_2 \rightarrow NaCl + NaClO + H_2O$ Sodium hypochloride Let oxidation state of Cl in NaCl is x+ 1 + x = 0X = -1Let oxidation state of Cl in NaClO is x. NaClO +1 + x- 2=0 x - 1=0 x= + 1 ∴ oxidation states

 \therefore oxidation states of chlorine changes from 0 to -1 and +1.

332 **(b)**

It is a fact. 333 (d)

These are uses of H_2SO_4 .

334 (c)

Hydrolysis of NCl₃ gives NH₃or NH₄OH and HCIO as NCl₃+4H₂O \rightarrow NH₄OH+3HOCl

335 (c)

 $Xe \in XeF_2$, XeF_4 , XeF_6 has sp^3d , $sp^3d^2 \wedge sp^3d^3$ hyle electrons respectively.

336 **(c)**

 N_2O is itself non-combustible but supports combustion $S+2N_2O \rightarrow SO_2+2N_2$

338 (b)

 $(NH_4)_2 Cr_2 O_7 \Delta N_2 \uparrow + Cr_2 O_3 + 4H_2 O$ $NH_4 NO_2 \rightarrow N_2 \uparrow + 2H_2 O$

339 **(c)**

Fluorapatite is $CaF_2 \cdot 3Ca_3(PO_4)_2$.

340 (d)

It is a fact.

341 (a)

The formation of ozone from oxygen is an endothermic reaction not exothermic reaction. $3O_2 \xrightarrow{\text{Electric}} 2O_3; \qquad \Delta H = 287 \text{ kJ}$

So, statement

$$3O_2 \xrightarrow{\text{Silent}}_{\text{discharge}} 2O_3; \qquad \Delta H = -284.5 \text{ kJ}$$

Is not correct statement.

342 **(b)**

 $N H_4 NO_3 \rightarrow N_2 O + 2 H_2 O$ (Laughing gas)

343 (c)

 P_2O_5 is solid acidic oxide.

344 (a)

$$KNO_3 \Delta KNO_2 + \frac{1}{2}O_2$$

345 (c)

$$(N H_4)_2 SO_4 + KCNO \rightarrow N H_4 CNO + K_2 SO_4$$

 \downarrow
 $N H_2 CON H_2$
urea

346 **(d)**

AgI is insoluble \in NH₄OH.

348 (a)

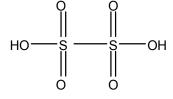
The structure of phosphorous acid H₃PO₃ is as follows

As it has two —groups, hence it shows dibasic character

349 (a)

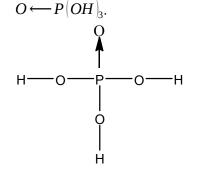
The thermal stability of the hydrides of nitrogen family or group15 elements decreases on moving downwards in the group. Therefore, NH₃is the most stable and BiH₃is the least stable. The stability of the hydride of group 15 elements decreases in the order. NH₃>PH₃>AsH₃>SbH₃> BiH₃

350 **(d)**


The electropositive character increases down the group, eg., $I(CH_3COO)_3$, IPO_4 , etc., are ionic.

352 **(c)**

 $K_2 CS_3$ is potassium thiocarbonate.


353 **(a)**

Only H₂S₂O₆contains S—S bond. Its structure is

354 **(a)**

Orthophosphoric $acid(H_3PO_4)$ is a tribasic acid. Hence, its structure can be represented as

	$(lp+\sigma bp=1+3=4i)$ Hence hybridization of p in H ₃ PO ₄ is sp ³ and thus it	367	The true peroxide contains $O_2^{2-i O }$	
355	is tetrahedral in shape. (b) $Cl_2 + H_2 O \longrightarrow 2 HCl + [O]$		∴Out of given choices only BaO ₂ h structure. ∴BaO ₂ is true peroxide.	has O_2^{2-66} in its
356	(a) Clatherate formation involves dipole induced dipole attraction $(\because water is polar molecule \land Xe is non - polar).$	368 369	$SO_2 + 2H_2O + Br_2 \longrightarrow 2HBr + H$	₂ SO ₄
357	(b) Divers use He + O_2 mixture for respiration in place of N_2+O_2 . The N_2 was found to dissolve in blood at high pressure during diving and after it, the N_2 gas	370 371	(d) Pernitric acid is HNO ₄ .	
250	comes out from blood causing painful nerve bursting. The mixture is also used for respiration by asthma patients.		Platinum acts as catalyst in the oxid to form nitric oxide .This reaction ostwald 's method of nitric acid pre	is used in the
358	Ammonium nitrate on heating at 250° C gives N ₂ O.		$4NH_3+5O_2 \rightarrow 4NO+6H_2O$ $2NO+O_2 \rightarrow 2NO_2$	
359			$4NO_2+O_2+2H_2O\rightarrow 4HNO_3$	
360	F_2 has low reactivity for $Cu \wedge steel$. (a) Due to the formation of thin oxide film on iron surface.	372	Frankland and Lockyer pointed ou observed in the yellow region of th	e sun's spectrum
361 362	HF is weaker acid due to H-bonding.		observed by Jonsen in 1868 was du which they named Helium. It was t to be discovered. The two known h of sodium	he first noble gas
) has five unpaired electrons $(3d^5)$. This can be obtained by measuring magnetic moment of molecule in solid state.	373	$3Cl_2(g)+6KOHaq$. $\Delta KClO_3+3$	
363	(b) $NH_3 + 3Cl_2 \longrightarrow NCl_3 + 3HCl$			(Used in fire- works and safety match box)
364	(b) Yhe structure of $H_3 P O_4$ is	374	It is a fact.	
			(b) $NH_3 + 3Cl_2 \longrightarrow NCl_3 + 3HCl$	
	HO OH OH	376	(d) <i>He</i> , because of its small size can d rubber, glass PVC etc. easily	iffuse through
366	It can loose three H ⁺ ions so its basicity is three.	378	(a)	
200	Chlorine, being only a slightly stronger oxidizing agent than bromine can not oxidise it to +7 oxidation state as is required for the formation of the		Orthophosphate + Amm. Molybda ppt	te HNO_3 yellow

compound $BrCl_7$

Page | 144

 $\downarrow + AgNO_3$

Red ppt

379 (a) $2 HNO_2 + H_2SO_4 \longrightarrow 2NO_2 + SO_2 + 2H_2O$

380 **(c)**

 $C N^{-ii}$ acts as complexing agent and reducing agent. $CuSO_4 + 2 KCN \longrightarrow Cu_2 (CN)_2 + K_2 SO_4 + (CN)_2$

(Reducing agent)

 $Cu_2(CN)_2$ +6 KCN \longrightarrow 2 $K_3 Cu(CN)_4$ (Complexing agent)

381 (c)

Laminaria-a sea-weed containing iodine as iodide. 382 **(b)**

It is a fact.

383 (a)

Yellow P is readily oxidized in air and thus, kept in water.

384 (a)

 N_2 does not combine directly with F_2 .

385 (d)

Lowest bond dissociation energy is of I_2 .

386 **(a)**

 $5O_3 + I_2 + H_2O \longrightarrow 2HIO_3 + 5O_2$

- 387 (d)
- This is a use of molten Na and S.
- 388 (d)

Catalyst has no role in oxidation by HNO_3 .

389 (a)

In the froth- floatation process, froths are produced by blowing air through water containing pine oil and ore. Ore particles are not wetted by water, hence these being lighter, comes out to the surface with froths and extracted . The impurities are watted by water and becomes heavy .Thus, these settle down.

```
390 (a)
```

 $XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$

391 **(d)**

Zero group members are less abundantly found and thus, called as rare gases; due to their least reactivity they are called inert gases; on account of some compounds formed by Kr, Xe, they are named noble gases.

392 (a)

 $Xe \in XeOF_4$ has s $p^3 d^3$ -

hybridisation with one lone pair of electron. 393 **(a)**

Hypophosphorous acid is a monobasic acid as it forms one type of salts e.g. sodium hydrogen phophite (NaH₂PO₂)

 $NaOH+ H_3PO_2 \rightarrow NaH_2PO_2+H_2O$

Hydrophosphorus acid has two hydrogen atoms attached to phosphorus and one hydrogen atom attached to oxygen atom(which is ionisable), i.e.,

394 (a)

$$\begin{array}{c} X + e \longrightarrow X^{-i;\Delta H = -A;i} \\ X^{-i \longrightarrow X + e;\Delta H = +A.i} \end{array}$$

395 (a)

Oxidizing nature of oxides decreases with increasing oxidation number of central atom.

396 **(d)**

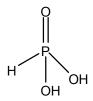
Oswald process of manufacturing of HNO3

 $2NO+O_2^{50 \circ C} 2NO_2(g)$

 $3NO_2+H_2O\rightarrow 2HNO_3+NO$

... Pt is catalyst in Oswald process.

397 **(b)**


 $4HNO_3 + P_4O_{10} \rightarrow 4HPO_3 + 2N_2O_5$

Dinitrogen pentoxide

The product is dinitrogen pentoxide (N_2O_5)

398 **(b)**

Phosphorus acid (H_3PO_3) is a diprotic acid. It forms two series of salt such as $NaH_2 PO_3$ and $Na_2 HPO_3$ but none of the type $NaPO_3$ with NaOH. Its structure is as

399 **(b)** +4 +5 $2 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow \text{HNO}_2 + \text{HNO}_3$ mixed acid anhydride

401 **(b)**

When SO_3 is dissolved in heavy water D_2SO_4 is formed as

 $SO_3 + D_2O \longrightarrow D_2SO_4$ (X)

The hybridization state of S in D₂SO₄ is sp³

403 (c)

He, Ne. Due to its very small size and low molecular weight, these possess weak forces of attraction.

404 **(d)**

The reducing nature of hydrides increases down the group.

405 (a)

Most abundant element is oxygen on earth's crust. 406 (d)

It is a fact.

407 **(b)**

Superphosphate of lime is a mixture of calcium dihydrogen phosphate and gypsum and is obtained by treating phosphatic rock with conc H_2SO_4 $Ca_3(PO_4)_2 + 2H_2SO_4 + 5H_2O \rightarrow Ca(H_2PO_4)_2 \cdot 2H_2SO_4$

superphosphate of lime

408 (c)

 $N_2+O_23000 \ ^{\circ}C_{2NO}$; very high temperature is required for dissociation of N_2 .

410 (a)

Some metals form amphoteric oxides, e. g., ZnO; white P is kept in water. Carbon forms neutral (CO) and acidic oxides (CO_2i) .

411 **(c)**

 SO_2 is an acidic oxide and can be dried by an acidic dehydrating agent.

412 **(b)**

 $4 Zn + 10 HN O_3 \longrightarrow 4 Zn (NO_3)_2 + NH_4 NO_3 + 3H_3$ (Very dil.)

413 **(a)**

 H_2S has V-shape geometry ($_{Sp}^3$ -hybridisation with two lone pair on S atom).

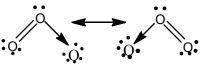
414 **(b)**

Graham's salt is $Na(PO_3)_6$ used as water softener.

416 **(b)**

 N_2 possesses high bond energy and thus, is inert.

417 (d)


It is due to heavier gas argon (at. wt. 40) present with

 N_2 (at. wt. 28) obtained from atmosphere. Ar is about 1% in air; the most abundant inert gas in atmosphere.

418 **(b)**

In O₃,O—O bond length is identical with that of molecular oxygen. It is found to be intermediate of O —O and O=O bond length.

This is due to reasonance.

In ozone, bond angle of O—O—O is 116.8° and bond length(O—O) is 1.278 Å.

419 (b)

For advertisement the coloured discharged tubes contains Ne.

420 (a)

HBr is strong reducing agent \land will be oxidized by

421 **(b)**

It is a fact.

422 **(c)**

Heat of vaporization of NH_3 is higher \in comparise

423 (d)

Deficiency of I_2 causes goitre disease which is rela 424 **(b)**

It is a fact.

425 (c)

Rest all are known.

426 **(c)**

Iodine has the least affinity for water and is only slightly soluble in it. However, it dissolves in 10% aqueous solution of *KI* due to the formation of a complex ion *ie*, I_3^{-ii}

$$I_2 + KI \rightleftharpoons KI_3$$

or $I_2 + I^{-i \rightleftharpoons I_3^{-ii} i}$

(Complex ion)

427 (c)

Commercial ammonium carbonate having $(NH_4)_2 CO_3$, NH_4HCO_3 and NH_4OCONH_2 is known as sal volatile.

428 **(c)**

Aqua regia is 1 part HNO_3 and 3 parts HCl.

429 **(c)**

A more electronegative halogen can displace less electronegative halogen $Cl_2+2 KBr \rightarrow 2 KCl+Br_2$

430 (d)

	As the electronegativity decreases from N to Sb , the repulsion between bond pair-lone pair decreases.		of I			orides (XeF_2, XeF_4, XeF_6) , fluorides known are $KrF_2, KrF_4 \wedge RnF_2$.
431	(a) Basic impurities on surface are removed by HCl, Acidic impurities are removed by NH_3 .	447	Ele that		phur) o	ents having more electronegativity can react with it to form compound of
432	(b) FeSO ₄ solution absorbs NO& give FeSO ₄ NO .		∵F sulp	uorii hur.	ne and	chlorine are more electronegative than
433	(d)		∴F	and	Cl can	form compound of SX_4 type with S.
	I in ICl_3 has $s p^3 d$ -hybridisation having two lone pair of electrons and thus, shape is bent T inspite of	448	Rea		•	oxygen with chlorine is minimum
434	trigonal bipyramidal. (c) Pyrosulphuric acid is $H_2S_2O_7$. Both $SO_3 \wedge H_2S_2O$	449	(b)		_	$O^{-1}_{0} = \frac{1}{6} H_{2} C_{2} O_{4}$
435			012	22	• II •	, , , , , , , , , , , , , , , , , , , ,
	The oxidizing power of oxo-acids of chlorine	450		CI	o call	ad abagana
	decreases with increase with increase in oxidation no. of chlorine.	451		CI ₂ I	s cuite	ed phosgene .
436	(d)				11 5	ate as a raducing agant bacques it can
437	Cl can exhibit maximum oxidation state of +7.		1.			cts as a reducing agent, because it can e PbO into PbS.
	$MnO_2 + 4 HCl \longrightarrow MnCl_2 + 2H_2O + Cl_2$ (Green-				DhO	
	yellow)				PUU+	$-H_2S \rightarrow PbS + H_2O$
438	(a) Ammonia on reaction with excess of chlorine gives		ació			cidic in nature . In chalcogens, the of hydride increases
	nitrogen trichloride.				O to H	-
	NH ₃ +3Cl ₂ →NCl ₃ +3HCl			(a)	it is 1	not an oxidizing agent.
	excess	450	\sim	(C)	11 15 1	lot all oxidizing agent.
439	(d) The spontaneous inflammability of phosphine with	452		s was	s a rea	son for the given fact.
	smoky rings (vortex rings) at the time of preparation	453			,	
	is due to the presence of highly inflammable P_2H_4 .		Oxi	datio	on state	es of sulphur are
	This property is used in Holme's signal.		-	i	H ₂	
440			2	n	S	
	The thermal stability of the anions of oxo-acids of chorine increase with increasing oxidation number of			i	S ₈	
	halogen		0	n		
442	-		$\begin{vmatrix} +\\ 2 \end{vmatrix}$	i	S_2O	
112	NH_{3} is non-combustible gas.			n		
444			+ 4	i n	SO 2	
111	e.g., IF_7 ; 7 atoms of F and one of I.					
445	(a)		+ 6	i n	SO 3	
	Mixture of helium and oxygen is the life saving mixture for asthma patient because helium is less	455	 (b)			
	soluble in blood than nitrogen.			NO	_)	$CuO + 2NO_2 + \frac{1}{2}O_2$
446	-		Ju	110	3/2	2 2
-						

OF₂ dissolves in water but does not give any oxyacid solution, while SO₂, SCl₄and SO₃ give oxyacid solution in water.

 $SO_2 + H_2O \rightarrow H_2SO_3$

Sulphurous acid

 $SCl_4 + 3H_2O \rightarrow H_2SO_3 + 4HCl$

Sulphurous acid

 $SO_3 + H_2O \rightarrow H_2SO_4$

Sulphuric acid

457 (c)

Thus, I_2 shows complementary colour.

458 (b)

This is a fact or definition of clathrates of inert gases. 459 (a)

It is a fact. The radioactive mineral, clevite, monazite, pitchblende, uranite give He either on heating to $1000^{\circ}C$ in vacuum or on heating with 472 (b) H_2SO_4 .

460 **(b)**

 Cl_2 +2 KBr \rightarrow 2 KCl+Br₂

461 (d)

In group 16 and period VI the oxyge, sulphur, selenium are chalcogens (ore forming) while polonium being radioactive forms a less number of compounds and is not considered as chalcogens.

462 (a)

Lead nitrate on ignition furnish lead oxide and nitrogen dioxide with evolution of O_2 gas.

 $2Pb(NO_3)_2 = \frac{300 - 400 \circ C}{2PbO + 4NO_2 + O_2}$

463 (a)

Xe is most easily liquefible rare gas because interatomic interactions increases with increasing atomic number.

464 (c)

It is a fact.

465 (d)

In atomic reactors, helium gas is used. It is also used in filling lighter air-crafts such as air ships weather balloons etc.

467 (a)

 $Ca_3(PO_4)_2 + 3SiO_2 \longrightarrow 3CaSiO_3 + P_2O_5$ $2P_2O_5 + 10C \longrightarrow P_4 + 10CO$

468 (c)

$$\frac{1}{2}F_2 + e + aq. \longrightarrow F^{-i(aq.);\Delta H = H_d - EA - H_h i}$$

Heat of hydration being exothermic and maximum for fluorine because of its smaller size and thus, more negative value for ΔH is obtained for reduction of F_2 . Thus, F_2 is strong oxidant.

469 (a)

The lower is b.p., more is vapour pressure; b.p. order is:

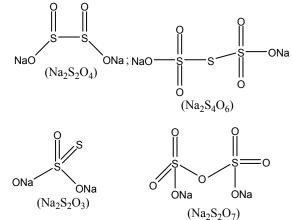
$$HCl < HBr < HI < HF$$
.

470 (a)

Sb is semi-metal and thus, forms amphoteric oxides.

471 (a)

Bone black is polymorphic form of phosphorus. The other forms of phosphorus. The other forms of phosphorus. The other forms of phosphorus and red phosphorus.


The acidic strength of oxy acids decreases downwards in a group.

The correct order of acidic strength of oxy - acids of halogen is

HIO₄>HBrO₄>HIO₄

473 (d)

The structure of the given compounds are as

474 (c)

It is a fact.

475 (d)

Due to its chemically inert nature.

476 (d)

The inert gases producing maximum number of compounds are Ar(argon) and Xe(xenon) due to their low ionisation energy.

477 **(d)**
$$CaC_2 + N_2 \longrightarrow CaCN_2 + C$$

478 (a) 493 (d) $2 KBr + 3 H_2 SO_4 + MnO_2 \rightarrow 2 KHSO_4 + MnSO_4 + 2$ $FeSO_4 \cdot NO$ is formed. 479 (d) 494 (d) $Fe_2(SO_4)_3$ on heating gives $SO_3Fe_2(SO_4)_3 \longrightarrow Fe_2(SO_4)_3$ $2 HNO_3 + P_2O_5 \longrightarrow N_2O_5 + 2 HPO_3$ 480 (d) 495 (a) It is a fact. The phenomenon of phosphorescence shown by 482 (d) white phosphorus is called cold fire It is a fact. 496 (a) Xe forms XeF_2 , $XeF_4 \lor XeF_6$ compounds with fluor 483 (a) 497 (b) XeF₆ has much tendency to hydrolyse. The reverse reaction is more spontaneous. To provide inert atmosphere. 498 (c) $XeF_6+3 H_2O \rightarrow XeO_3+6HF$ ppm of F = $\frac{Wt.of F}{Wt.of paste} \times 10^6 = \frac{0.2}{500} \times 10^6 = 400$ 484 **(b)** It is a fact. 499 (d) $3H_2O+PCl_3 \rightarrow H_3PO_3+3HCl$ 485 **(b)** $2F_2+4KOH \longrightarrow 4KF+O_2+2H_2O$ 500 (d) 486 (c) I_2 itself imparts violet colour. Slow acting nitrogenous fertilizer is one which 501 (b) decomposes slowly. out of given choices CaNCN (or Xe is meant stranger $CaC N_2$ or calcium cyanamide) decomposes very 502 (d) slowly. These are characteristics of noble gases. $CaNCN+2H_2O \rightarrow CaCO_3+NH_2CONH_2$ 503 (c) $2Cr_{\lambda}^{2-i+2H^{+i-Cr_2o_7^{2-i+H_2o_i}}i}$ $NH_2CONH_2 + H_2O \rightarrow CO_2 + NH_3$ $N H_3$ Nitrifying bacteria Soluble nitrates \rightarrow plants 504 **(b)** A halate will be formed from halogen and the 487 (c) greenish yellow gas is Cl_2 . The halate which is used Liquor ammonia is concentrated solution of ammonia in fireworks and safety matches is $KClO_3$ in water while liquid ammonia is liquefied ammonia $3Cl_2+6KOH \rightarrow KClO_3+5HCl+3H_2O$ gas. 505 (c) 488 (d) The inorganic nitrogen exists in the form of Rayleigh -ramsay separation method ammonia, which may be lost as gas to the N₂+O₂ Electric spark_{2NO} atmosphere, may be acted upon by nitrifying bacteria $2NO+O_2 \rightarrow 2NO_2$ or may be taken up directly by plants $2NaOH+2NO_2 \rightarrow NaNO_2+NaNO_3+H_2O$ 506 (b) 489 (c) Pseudohalides are uninegative groups which show As fertilizer. It is certain characteristics of halide ions, e.g., $Ca[H_2PO_4]_2 \cdot H_2O + 2(CaSO_4 \cdot 2H_2O).$ $CN^{-\iota\operatorname{,Sec}^{-\iota\operatorname{,Scn}^{-\operatorname{,Scn}^{-}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$ 490 (d) 507 (d) $CaCO_3 + 2HNO_3 \longrightarrow Ca(NO_3)_2 + H_2O + CO_2$ These are characteristics of noble gases. 491 (d) 508 (d) All are prepared using HNO_3 as one of the reagents. It is a fact. 492 (b) 509 **(b)** Rn is the symbol for radon.

510 **(d)**

 $N_2 O_5$ is $\frac{1}{6}$ crystalline solid which melts at 30 °C.

511 **(a)**

Lone pair density is maximum $in NH_3$ due to its small size.

512 **(a)**

 H_2F_2 is weakly ionized due to H-bonding.

513 **(b)**

Larger is size and mol. wt. more are van der Waals' forces among molecule.

515 **(c)**

 $SO_2 + Cl_2 \longrightarrow SO_2Cl_2$

516 **(c)**

 PH_5 is not known.

517 **(c)**

 $3H_2O+3F_2 \longrightarrow 6HF+O_3$

518 **(a)**

Nitrogen does not possess 2d-subshell and thus, cannot excite its 2s paired electron to get unpaired whereas phosphorus does so on account of availability of 3d-subshell.

519 **(b)**

A more electronegative halogen displaces less electronegative halogen from its halide. Fluorine is more electronegative than chlorine hence, it can displace Cl from HCl while chlorine cannot displace fluorine from HF. Therefore, the following reaction is not valid. $HF + Cl_2 \rightarrow F_2 + HCl$

520 **(c)**

More is the electronegativity of central atom (of nonmetal) more is acidic nature of oxo-acid.

521 **(a)**

$$2 NH_{3}+3 Cl_{2} \longrightarrow 2 NCl_{3}+3 HCl$$
522 (a)
COOH

$$COOH$$

$$Conc H_{2}SO_{4}H_{2}O+CO+CO_{2}$$

$$COOH$$

523 **(d)**

 $Cl_2O \wedge HClO \text{ both have } Cl \in +1 \text{ oxidation state}.$ 524 (d) $2F_2+2 NaOH \longrightarrow 2 NaF+OF_2+H_2O$

I₂ forms complex ion I_3^{-ii} in KI solution due to which it dissolves in it.

526 **(b)**

The boiling point of NH_3 is higher due to the presence of hydrogen bonding .the order of boiling point of hydrides of nitrogen family is as Hydride: $PH_3 < AsH_3 < NH_3 < SbH_3$ B.P. :185 218 239.6 256.

527 **(c)**

528 (a)

Rest all are uses of H_2SO_4 .

Clevite is uranium mineral, on heating it gives He

529 **(a)**

 $N\dot{H}_3 \wedge PH_3$ both are basic because of the presence of lone pair of electrons

530 **(b)**

Both O and Cl is electronegative elements so O does not readily react with Cl

531 **(d)**

In case of Cl_2O_7 , Cl has +7 oxidation state(oxidation state) and also have highest oxygen content . So it is most acidic.

532 **(b)**

Sulphur possesses maximum bond energy for catenation in VI gp. members.

533 **(a)**

$$2K_2MnO_4 + Cl_2 \longrightarrow 2KCl + 2KMnO_4$$

535 (c)

On rubbing liquor NH_3 with I_2 flakes, a dark brown ppt. of ammoniated nitrogen iodide, $NH_3 \cdot \dot{c}_{3}$ is obtained, which decomposes quickly on drying into $NH_4I + I_2 + N_2$.

$$8i_{3} \cdot NH_{3} \longrightarrow 5N_{2} + 9I_{2} + 6NH_{4}I$$

536 **(c)**

 $2KBr + 2H_2SO_4 + MnO_2 \xrightarrow{\Delta} 2KHSO_4.$ $\pm MnSO_4 + 2H_2O_4 + Br_2$

+MnSO₄+
$$2H_2O_-$$

537 **(d)**

Lower is the ionization potential of an element more would be its reducing power and also reactivity. As we move down the group, the reactivity of noble gases increase due to the decrease ionization energy. Hence, xenon is most reactive.

538 **(b)**

Bartlett	prepared	first	compound	of	Xe	as
$Xe^{+i[PtF_6]}$	a^{i} , a red of	range c	rystalline soli	id.		
Xe+PtF	$F_6 \longrightarrow Xe^{+i}$	$\left[PtF_6\right]^{-\iota\iota}\iota$				

539 (a)

The function of Fe(OH)₃ in the contact process is to remove arsenic impurity. Fe (OH)₃ is a positive sol, hence it removes arsenic impurity which is a negative sol.

540 (a)

A clear solution \in water is not formed because of C|554 (b)

542 **(b)**

 P_2O_5 reacts with $NH_3 \in$ presence of moisture.

543 (c)

Calcium cyanamide on treatment with steam produces NH₃ and CaCO₃. $CaNCN+3H_2O\rightarrow 2NH_3+CaCO_3$

544 (c)

Helium is twice as heavy as hydrogen, its lifting power is 92% of that of hydrogen. Helium has the lowest melting point of any element which makes liquid helium an ideal coolant for many extremely low temperature application such as crystals, a sophisticated measuring instrument based on super conducting magnet and cryogenic research where, temperature close to absolute zero are needed

545 (b)

Rest all react with HBr.

546 (a)

 $Cl \in ClO_4^{-\iota}$ has highest oxidation number \land can be reduced only \land not oxidized

547 (a)

 Bi_2O_3 is most basic; SeO_2 , $Al_2O_3 \wedge Sb_2O_3$ are am

548 (b)

 $2 HClO_4 \rightarrow H_2O + Cl_2O_7$

549 (b)

 P_4 +3 NaOH+3 $H_2O \rightarrow 3$ Na H_2PO_2 +P H_3

550 (c)

Each $P \in P_4O_6$ has 3P - O bonds;

552 (c) $4 KNO_3 + 4 H_2 SO_4 \longrightarrow 4 KHSO_4 + 4 NO_2 + 2 H_2 O +$ 553 (d)

atmosphere.

 P_4 +3 NaOH+3 $H_2O \rightarrow 3$ Na H_2PO_2 +P H_3

 N_2 (at. wt. 28) obtained from atmosphere. Ar is

about 1% in air; the most abundant inert gas in

P is oxidised (zero to + 1 oxidation state in NaH_2PO_2) as well as reduced (zero to - 3 oxidation state in PH_{3}).

H₂S₂O₄—dithionous acid H₂S₂O₆—dithionic acid H₂S₂O₅—disulphurous acid H₂S₂O₇— disulphuric acid

555 (d)

Pseudohalide they are comination of more than one electronegative atoms which one unit negative charge, e.g. $OC N^{-i, CN^{-ii}i}$.

Polyhalide ions the complex ions which are fromed by reaction of halogens among themselves are called polyhalide ions e.g., $I_3^{-i, Br I_2^{-i}i}$.

Interhalogens they are the compounds which are formed halogen react among themselves. one of the halogens behave as cation and other acts as aninon e. g. IF₅, ICl₅, BrF₃.

556 (d)

Iodine also forms ionic compounds in +3 state.

557 (d)

Upper halogen can replace lower halogen from their compounds solution because a more electronegation halogen displaces less electronegative halogen from its halide.

558 (d)

 $CC l_4 + I_2 \rightarrow Violet colour$

559 (b)

It is a fact.

560 (a)

The reducing character of the hydrides of group v elements depends upon the stability of hydrides. With progressive decrease in stability the reducing character of hydrides increases as we move down the group. Thus ammonia being stable has least reducing ability. The order of reducing abilities of V group hydrides is NH₃<PH₃<AsH₃<SbH₃<BiH₃

551 (c) It is due to heavier gas argon (at. wt. 40) present with

561 (c) $CaOCl_2 + 2CH_3COOH \longrightarrow (CH_3COO)_2Ca + Cl_{Availabl}_{chloring}$

Salts of H_2SO_3 or $SO_3^{2-i\,i}$ are called sulphite.

563 (a)

The head of match stick contains $KCIO_3KNO_3$, sulphur and antimony The sides of match box contains red phosphorus and sand powder. P_4S_3 is used in strike any where matches.

564 **(b)**

Follow methods of preparation of Xe fluorides.

565 **(a)**

Thermal stability of the hydrides decrease gradually from NH₃ to BiH₃ .This is due to the reason that atomic size of the element increases down the group and N—H bond strength decreases.

566 (a)

 $Ca_3(PO_4)_2$ is called Thomas slag.

567 **(b)**

The electronegativity order is F > O > N > Cl.

- 568 **(a)**
- The atomic size increases from Cl to I.
- 569 **(c)**

 $N_2 O \Delta N_2 + \frac{1}{2} O_2$

570 (a)

Find out oxidation no. in each.

571 **(d)**

It is a reason for the given fact.

572 **(a)**

 N_2O_5 is an anhydride of HNO_3 2 $HNO_3 \rightarrow N_2O_5 + H_2O$ Therefore, it can act only as oxidising agent

573 (a)

Oleum is fuming sulphuric acid. H₂ SO₄+SO₃ \rightarrow H₂S₂O₇

oleum or pyrosulphuric acid

574 **(c)**

The basic character of hydrides decreases down the group or acidic character increases down the group. Also H_2O is neutral.

575 (c)

 $2 HIO_3 \longrightarrow I_2O_5 + H_2O$

576 (d)

 I_2 possesses antiseptic nature.

578 **(b)**

$$2 KMnO_4 \Delta K_2 MnO_4 + MnO_2 + O_2$$

579 **(b)**

It is a fact.

580 **(b)**

Cl₂ being a stronger oxidizing agent, oxidises bromide present in the mother liquor to Br₂. $2Br^{-\iota+Cl_2 \longrightarrow Br_2+2Cl^{-\iota\iota}\iota}$

from mother liquor

bromide

581 **(b)**

$$4 Zn + 10 HNO_3 \longrightarrow 4 Zn (NO_3)_2 + NH_4 NO_3 + 3 H_2 C$$

V. dil.

582 **(d)**

 P_4O_{10} has 4P=O bonds in it which are shorter than P —O single bonds; each P atom has 3P—O and 1P=O bonds, *i.e.*, total 4P—O linkages.

583 **(d)**

Fluorides react with these fluoro Lewis acids to form adducts. For example, XeF_2 gives complexes of the type $XeF_2 \cdot 2MF_5 \wedge XeF_2 \cdot MF_5$

584 **(b)**

$$Ra^{226} \longrightarrow_{86} Rn^{222} + _2He^4$$

585 **(d)**

In the sublimation the solid substance converts into vapours directly. Iodine is found in solid state while F_2 and Cl_2 are found in gaseous state and Br_2 is found in liquid state. so, iodine can be purified by sublimation.

587 **(a)**

 NH_{3} is a polar molecule.

588 **(a)**

 $4Cu+10 \text{ HNO}_3 \rightarrow 4Cu(NO_3)_2 + 5H_2O + N_2O$

589 **(b)**

Rest all are characteristics of HNO_3 .

- 590 **(b)** 3S+4 NaOH Boiling N $a_2S_2O_3+N a_2S$
- 591 **(d)**

These do not possess the tendency to react. 592 (d) Black P is metallic form of P.

- 593 (d) SO_2 is gas.
- 594 **(a)**
- It Is a fact. 595 (d)

SO₂ acts as a reducing agent, oxidising agent and as a

bleaching agent. It does not act as dehydrating agent.

3NaOH+3H₂O Δ

596 (a)

P₄ +

 $3NaH_2PO_2$

white phosphorus

phosphine sod,

 $PH_3 +$

hypophosphate

598 **(b)**

Plantinished asbestos or vanadium pentaoxide ($V_2 O_5 \dot{c}$ is used as catalyst in the preparation of sulphur trioxide from SO₂ and oxygen. $2SO_2 + O_2 \xrightarrow{Pt, asbestos}_{or V_2O_5} 2SO_3 + Heat$

599 (a)

Liquid helium us used in very low temperature thermometer

600 (a)

Xenon forms maximum number of chemical compounds because it has lowest ionization potential among noble gases. (i.e., among the He, Ne, Kr and Xe).

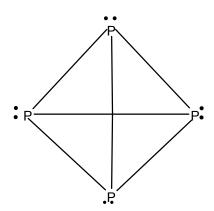
601 (d)

 $N_2O_4 + H_2O \longrightarrow HNO_2 + HNO_3$

602 **(c)**

 MnO_2 is used as depolariser \in Lechlanche cell.

603 **(c)**


Helium is not used to produce and sustain powerful superconducting magnets. All others are the uses of helium.

604 **(a)**

Xe F_2 , Xe $F_4 \wedge Xe F_6$ can be directly prepared Xe+ F_2 +*i* tube Xe F_2 ; Xe+ $2F_2673KXeF_4$ Xe+ $3F_2523-573KXeF_6$ Xe O_3 is obtained by the hydrolysis of Xe F_6 Xe F_6 + $3H_2O \rightarrow XeO_3$ +6HF

605 **(b)**

Phosphorus exists in several allotropic forms. out of them red and white are most common or red phosphorus is most stable form of phosphorus.white phosphorus or yellow phosphorus is the most reactive and poisonous allotrope of phosphorus . it is solid at room temperature it catches fire in air hence kept in water it has tetrahedral structure.

White phosphorus (tetrahedral solid)

606 **(b)**

Red phosphorus and antimony sulphide are used for coating of sides of match box

607 **(b)**

Chromyl chloride test is for $Cl^{-\iota\iota}$.

608 **(c)**

 $Zn + 10 HNO_3 \rightarrow 4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O_3$

Ammonium nitrate

 \therefore Zn reacts with cold dil HNO₃to produce NH₄NO₃ With dil. HNO₃it produces —N₂O(nitrous oxide) With conc. HNO₃it produces —NO₂(nitrous oxide)

609 **(b)**

In presence of moisture ,SO₂ acts as a reducing agent as it gives nascent hydrogen . It reduces hydrogen peroxide into water. SO₂+2H₂O \rightarrow H₂SO₄+2H H₂O₂+2H \rightarrow 2H₂O

610 **(d)**

Due to large size of iodine, in HI strong van der Waals' forces are present, Hence, it has highest molar heat of vaporization

611 **(d)**

 SO_2 has all these properties.

613 **(d)**

Liquid ammonia is used in refrigeration because it has high heat of vaporisation

615 **(c)**

20.24 % $HCl + H_2O$ mixture is azeotropic mixture k 616 (c) It is a fact.

617 (d)

P exists as P_4 .

618 **(b)**

White phosphorus is soluble in $C S_2$ whereas red phosphorus is insoluble in it

619 **(a)**

In PCl_5 two P—Cl bonds are axially located and three are equatorial. Thus, two P—Cl bonds are weaker than other three.

620 **(b)**

The acidic character of oxides decreases down the group.

621 **(b)**

King of chemicals is H_2SO_4 . The economy of a country is measured in terms of consumption of H_2SO_4 .

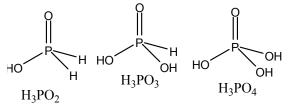
622 **(c)**

Fluorine has Highest $E_{i}^{\circ}(equalimeq + 2.9V)$ due to which it can easily accept an electron and hence it is the best oxidising agent.

623 (d)

F is most electronegative halogen.

624 **(a)**


- It is a fact.
- 625 **(c)**

The strongest oxidizing agent among all elements in 626 (d)

All the elements of gp. 16 show polymorphism or allotropy.

627 **(c)**

629 (a)

Although thre number of –OH groups is increasing in H_3PO_2 (1 OH group), H_3PO_3 (2 OH group) and H_3PO_4 (3 OH group), yet acidity does not increase much. This is due to the fact that the number of unprotonated oxygen, responsible for enhancement of acidity due to inductive effect, remains the same, as a result dissociation constant also remains nearly same.

628 **(d)**

 $6 HNO_3 + S \longrightarrow H_2SO_4 + 6 NO_2 + 2 H_2O$

In liquid state, HF shows proton donor tendency and HCl acts as proton acceptor.

630 **(d)**

It is a reason for the given fact.

631 **(d)**

Rest all acids have +5 oxidation state as in P_2O_5 . In H_3PO_3 oxidation state of P is +3.

632 **(c)**

 NO_{2} is converted into liquid state.

633 (c)

Rest all halogens react with Sulphur.

 $Na_2SO_3[O]Na_2SO_4$

635 **(b)**

 $Xe \in XeF_4 has sp^3 d^2$ -hybridisation with two lone pair of electrons giving rise to square planar geometry.

636 **(d)**

It is a fact. Follow fixation of N_2 .

637 **(a)**

 $P_4 + 20 HNO_3 \longrightarrow 4 H_3 PO_4 + 20 NO_2 + 4 H_2 O$

638 **(b)**

Theacidic nature increases from H_2O to H_2Te . The increase in acidic character of hydrides on moving down the group may be explained in terms of bond length of H—M bond, larger is bond length lesser is bond energy and thus easier is ionization of H—M bond or easier is proton donor nature. Hence, $H_2O < H_2S < H_2Se < H_2Te$

639 **(a)**

Chlorine heptaoxide (Cl_2O_7) is the anhydride of perchloric acid.

$$2\text{HCIO}_{4}^{\Delta}\text{Cl}_{2}\text{O}_{7} + \text{H}_{2}\text{O}_{7}$$

640 **(a)**

The inorganic nitrogen exists in the form of ammonia .which may be lost as gas to atmosphere may be acted upon by nitrifying bacteria or may be taken up directly by plants.

641 **(b)**

F has smallest size.

 $F_2 \wedge Cl_2$ have no action on starch solution; Br_2 turn 643 **(b)**

 $2 KMnO_4 + 5 H_2S + 3 H_2SO_4 \longrightarrow K_2SO_4 + 2 MnSO_4 | 658$ (c) 644 (a) $P \in PCl_5$ has $sp^3 d$ -hybridization. $PH_3 + 4Cl_2 \rightarrow PCl_5 + 3HCl$ 659 **(b)** 645 **(b)** Perhalates are strong oxidants and their oxidizing nature order is: $BrO_4^{-i>ClO_4^{-i>O_4^{-i+i}}i}$ Bleaching powder liberates Cl_2 on standing. 646 (c) 660 **(b)** Hyponitrous acid is $H_2 N_2 O_2 \vee HNO$. About 1/100th part of air is mixture of inert gases. 661 (d) 647 (b) 3HOCI→2HCl+HCIO₃ This is the laboratory method of preparing phosphine gas. 663 (c) P_4 +3NaOH+3H₂O \rightarrow PH₃+3NaH₂PO₂ NH_4 Cl_{sublimes} and decomposes partially to smell phosphine $NH_{3.}$ 648 (c) 664 (c) $Cl_2+H_2O \longrightarrow HOCl+HCl$ $S \in SO_4^{2-issp^3i}$ -hybridized. (X)665 (a) $AqNO_3 + HCl \longrightarrow AqCl + HNO_3$ Dithionous acid $(H_2S_2O_4)$ has sulphur in + 3 $Mg+2HCl \rightarrow MgCl_2+H_2$ oxidation state (Y)666 (a) 649 (c) Oleum is $H_2 S_2 O_7$ which is obtained by dissolving Each element on two sides of change has same oxidation no. SO_3 in H_2SO_4 and is also called as fuming 650 (d) sulphuric acid $2 KMnO_4 \Delta K_2 MnO_4 + 4 MnO_2 + O_2$ 667 (c) 651 (c) $\text{He} \rightarrow He^{+ii}$ A gas is converted into liquid or solid state by 668 (d) increasing van der Walls' forces. $HNO_3 \longrightarrow 4 NO_2 + 2 H_2O + O_2$ 652 (b) $2 MnO_2 + 4 KOH + O_2 \longrightarrow K_2 MnO_4 + 2H_2O$ 669 (b) 653 (b) Carnallite is K, Mg chloride and bromide. Phosphorus pentoxide acts as a powerful dehydrating 670 **(b)** agent. It dehydrates HNO₃ to N₂O₅, H₂SO₄ to SO₃, O_3 is a \dot{c} coloured gas. HCIO₄ to Cl₂O₇ etc. 671 (c) N_2 +3 $H_2Fe_2NH_3$ (Mo is promoter). 4 HNO₃ + $P_4O_{10} \rightarrow 2N_2O_5 + 4HPO_3$ $2H_2SO_4 + P_4O_{10} \rightarrow 2SO_3 + 4HPO_3$ 4 HCIO₄+ $P_4O_{10} \rightarrow 2Cl_2O_7 + 4 HPO_3$ 672 (b) $3 HCl + HNO_3 \rightarrow NOCl + 2H_2O + Cl_2$ 654 (c) H_2SO_4 acts as dehydrating agent in following 673 (b) reaction Phosgene does not contain any metal in it. Therefore, $HCOOH H_2 SO_4 CO + H_2 O$ it will not produce metal sulphide with H_2O . All others give corresponding metal sulphides such as 655 (d) Cds, Zns and CuS All these are hydrolysed in presence of water. 674 (d) 656 (c) Sulphur occurs in native form in the volcanic region. $2 CaO \cdot MnO_2$ is called weldon mud. 675 **(b)** 657 (d) $Kr F_2$ is a F^{-ii} donor and form complexes with F^{-ii} It is $a(2H_2SO_4+2NO+O_2 \rightarrow 2NO \cdot HSO_4+2H_2)$ acceptors where, only cationic species or Kr will be

present

676 (a) XeO_3 has sp³-hybrization with trigonal pyramid geometry. 677 (b) $Cl_2 + H_2 S \longrightarrow 2 HCl + S; S^{2-i \longrightarrow S^0 + 2e.i}$ 678 (d) 690 (d) It is a reason for the given fact. 679 (b) In F_2O the oxidation state of O is+2ie, positive whereas, in other compounds such as 691 (c) CO, NO, N_2O it is -2680 (b) 692 (b) Poisson's ratio $\gamma = \frac{C_p}{C_p} = 1.66$, because inert gases are by Cl. monoatomic. 681 (c) 693 (d) Noble gases are present in atmosphere in minute quantities except Rn, which is radioactive and is 694 (c) formed by decay of Ra. 682 (b) 695 (c) P_{A} has six P — P bonds, four lone pair of electrons Не 683 (a) $I_2+10 \text{ HNO}_3^{\Delta} 2\text{HIO}_3+10\text{NO}_2+4\text{H}_2\text{O}$ 696 (c) S+6 HNO₃^{Δ} H₂SO₄+6NO₂+2H₂O 1∨1 $P_4+20 HNO_3 \overset{\Delta}{_{-}} 4 H_3PO_4+20NO_2+4H_2O$ 1. C+4 HNO₃ Δ CO₂+4NO₂+2H₂O OH 684 (d) The bond order for $He_2 = 0$ and thus molecules is non-existent. 697 (a) 685 (b) $F_2 + 2Cl^{-\delta \rightarrow Cl_2 + 2F^{-\delta}\delta}$ 698 (d) $F_2 + 2Br^{-i \rightarrow Br_2 + 2F^{-ii}i}$ $F_{2}+2I^{-i \to I_{2}+2F^{-ii}i}$ 699 (d) 686 **(b)** Due to the less reactivity, red phosphorus is most stable 687 (d) $9O_3 + 2I_2 \longrightarrow I_4O_9 + 9O_2$ 688 (c) Yellow colour is complementary colour to violet. 689 (a)

 $SO_3 has sp^2$ -hybridization on S atom having

geometry.

$Ca_3P_2+6H_2O \rightarrow 3Ca(OH)_2+2PH_3$ PH_3 contain P_2H_4 an as impurity which on burning gives P_2O_5 and white smoke It is a fact. An important reaction of PCl_5 is to replace OH gp. Chalcogens are ore forming elements. $Ca_3P_2+6H_2O \rightarrow 3Ca(OH)_2+2PH_3$ Ar is more soluble in water than $O_2 \wedge N_2$ and also 0 HO - P - OHit ionizes in three steps because three -OH groups are present $2 KMnO_4 + 16 HCl \longrightarrow 2 KCl + 2 MnCl_2 + 8 H_2O + 5$ All other oxides of nitrogen except N₂O and NO are acidic nature. Pseudohalide ion and pseudohalognes There are certain monovalent negative ions made up of two or more electronegative atoms which exhibit properties similar to these of halide ions. Such ions are known as pseudohalide ions. Just as halide ions, pseudohalide ions have also corresponding dimeric molecules these are called pseudohalogens and show properties

similar to those of halogens, e g, $C l^{-i \wedge C N^{-i} i}$

700 (d)
Nessler's reagent is K₂ Hgl₄.
701 (d)
Due to smaller electronegativity differences in
between web halogens.
702 (a)
Traces of isom for Pt in contact process.
703 (c)
As acts as poison for Pt in contact process.
704 (d)
$$I_2 + 2KI \longrightarrow 2KI_3$$
 (Water soluble).
705 (a)
Traces of isodine accelerate the transformation of
white P into red P at relatively lower temperature.
712 (a)
 O_3 is a resonance hybrid of
 Q_1 is a resonance hybrid of
 Q_2 K/L + Br₂ → 2KBr + I₂
Starch + I₂ → Blue colour.
713 (c)
 $2KI + Br_2 → 2KBr + I_2$
Starch + I₂ → Blue colour.
714 (a)
 $3Cu + 8 HN O_3 → 3Cu [N O_3]_2 + 4 H_2 O + 2 NO
715 (a)Traces of inding the process which isresponsible for yellow colour of HNO3.
721 (d)Chorine can replace bromine from KBr solution, asit is placed above bromine in VIIA group in periodictable.
722 (a)As ff is water soluble.
723 (c) $2(K + 2KBr - 2KBr + I_2)$
Starch + I₂ → Blue colour.
714 (a)
 $3Cu + 8 HN O_3 → 3Cu [N O_3]_2 + 4 H_2 O + 2 NO
715 (a)
716 (a) $Mn \in KMnO_4$ can be reduced ; because only KMnO_4 is oxidant.
720 (b)
 $Ma \in KMnO_4$ can be reduced ; because only KMnO_4 is oxidant.
721 (d)
Chorine can replace bromine from KBr solution, as
it is placed above bromine in VIIA group in periodic
table.
723 (d)
 $2KI + HE - N = NEE F_2$
724 (d)
Chorine tar replace bromine from KBr solution, as
it is placed above bromine in VIIA group in periodic
table.
724 (b)
Nu F is HE - N = NEE F_2$
725 (c)
Nu F is a reason for the given fact.
726 (d)
Due to inert pair effect.
727 (b)
It is a reason for the given fact.
728 (d)
 $2 HI + 2 HNO_3 - H_2 + 2 NO_2 + 2 H_2 O_2 + 2 H_2$$

729 **(b)**

730 **(b)**

AgF is water soluble.

723 **(b)**

 $NaF + HF \longrightarrow NaHF_2$

725 (d)

An oxygen-helium mixture is used for artificial respiration in deep sea diving instead of air because

Page | 159

 $H_3PO_4 + 21HNO_3 + 12(NH_4)_2MoO_3 \longrightarrow (NH_4)_3[P]$

731 **(b)**

It is the nature and use of antichlor.

732 (a)

 F_2 on reaction with hot and conc. Alkali gives sodium fluoride and oxygen. 2 F_2 +4NaOH \rightarrow 4NaF+O₂+2H₂O

733 **(b)**

XeO F_4 gives $s p^3 d^3$ hybridisation. Due to presence of one lone pair it gives square pyramidal geometry

734 **(c)**

Oleum is obtained by dissolving sulphur trioxide in $\mathrm{H}_2\mathrm{SO}_4$

 SO_3 + H_2SO_4 (conc.) \rightarrow $H_2S_2O_7$

oleum

Oleum is also called fuming sulphuric acid because it fumes in moist air due to sulphur trioxide.

735 **(a)**

It is a characteristic of white phosphorus.

736 **(c)**

Caliche is crude chile salt petre $(NaNO_3)$ which contains about 0.02% iodine as sodium iodate $(NaIO_3)$, from which iodine is extracted

737 **(d)**

The electron affinity of halogens decreases down the group.

738 **(a)**

Interhalogen compounds are made up of two halogen atoms.

739 **(c)**

The spontaneous inflammability of phosphine with smoky rings (vortex rings) at the time of preparation is due to the presence of highly inflammable P_2H_4 . This property is used in *Holme's signal*.

740 **(d)**

 $P + O_2 \rightarrow$ phosphorus oxide + light, the phenomenon is called chemiluminescence, *i*. *e*., the phenomenon of emitting light as a result of chemical change.

741 **(a)**

 F_2O is formed.

F is more electronegative than oxygen.

Oxygen is second most electronegative element.

742 (d)

$$C_6 H_{12} O_5 |_n H_2 SO_4 C + H_2 O_5$$

743 **(a)**

Ne has van der Waals' radius, whereas in O_2 , covalent radius is reported.

744 **(b)**

$$Ag \longrightarrow Ag^{+i+ei}$$

745 **(a)**
 $Ca_3(PO_4)_2 + 2H_2SO_4 + 5H_2O \longrightarrow Ca(H_2PO_4)_2 \cdot H$

746 **(c)**

Chlorine acts as oxidising and bleaching agent in the presence of moisture. Chlorine reacts with water forming HCl and HCIOz. HCIO further decomposes to give nascent oxygen which is responsible for oxidising and bleaching properties of chlorine. Thus in chlorine water, oxidising agent is HOCI.

$$\frac{HCIO \longrightarrow HCl+HCIO}{HCIO \longrightarrow HCl+O}$$
$$\frac{HCIO \longrightarrow HCl+O}{Cl_2+H_2O \longrightarrow 2HCl+O}$$

7 (a)

$$F_2$$

 Cl_2
 $Br_2 \rightarrow liquid$
 $I_2 \rightarrow solid$

748 **(b)**

74

$$SO_2 + 2H_2O \longrightarrow H_2SO_4 + 2H$$

Coloured matter + H \rightarrow Colourless.

749 **(b)**

$$P_4$$
 molecules,

Bond angle $\frac{60}{60}$ Six P - P single bonds, lone pair = 4

750 **(a)**

N in N_2O_3 and HNO_2 has +3 oxidation state.

751 (c) $2XeF_2+2H_2O \rightarrow 2Xe+4HF+O_2$

752 **(d)**

—do— 753 **(a)**

 ClO_3 has 41 electrons \land thus, at least one electrons. 754 (a)

The reducing power of halide ions is:

 $I^{-i>Br^{-i>Cl^{i>r^{-i+l}}i}i}$

755 (c)

Rest all react directly with N_2 .

756 **(d)**

Perchloric acid $(HClO_4)$ is the strongest acid among these because the acidic character of oxoacid increases with increasing the oxidation number of a particular halogen atom.

757 **(b)**

Ionization potential decreases down the gp.

758 **(c)** When phosph

When phosphorus trioxide is dissolved in water phosphorous acid (H_3PO_3) is formed $P_4O_6+6H_2O\longrightarrow 4H_3PO_3$

759 **(a)**

It is a fact. Air contains 20% O_2 and supports in combustion.

760 **(d)**

 SbF_5 is a strong electron pair acceptor .

 $H_2F_2 + SbF_5 \rightleftharpoons [H_2F]^{+i[SbF_6]^{-ii}i}$

Lewis acid Lewis base

762 **(d)**

 Br_2 reacts with hot and strong NaOH solution to give NaBr, NaBrO₃ and H₂O.

765	Mn_2O_7 gives $HMnO_4 \wedge CrO_3$ gives H_2CrO_4 with H (c) Pentavalency in phosphorus is more stable than that of nitrogen due to the larger size of phosphorus atom
766	(a) ∴White phosphorus is most reactive and most important allotrope of phosphorus. It is insoluble in water. ∴It is kept in water to prevent it from catching fire.
767 768	$I(CH_3 COO)_3$ is an ionic compound.
769	(c) $Ar_{18} \rightarrow 2,8,8$
770	Xe reacts directly with fluorine to form fluorides.
772 773	It is an experimental fact.
774	(d) The reducing power of helide ions decreases in the

The reducing power of halide ions decreases in the order

 $\mathbf{I}^{-\dot{\iota}>Br^{-\iota>CI^{-\iota>F^{-\iota\iota}}\dot{\iota}}\dot{\iota}}$

Hence, I^{-ii} is the strongest reducing agent.

776 (b)

Liquid He is a unique liquid as it exists in two forms, He(I) and He(II). He(I) is a normal liquid with normal properties. On cooling to 2.19 K and 38 mm pressure it changes to He(II) with abrupt changes in many physical properties such as density, dielectric constant and specific heat. He(II) is super fluid or quantum 789 (d)

mechanical liquid. It has very high heat of conductance (600 times of Cu), low viscosity (1/100 of H_2 gas) and flat meniscus (a low surface tension).

777 (c) N_2 Ois linear molecule.

778 (b)

The acidic character of oxides increases with increase in non-metallic nature and oxidation number of central atom.

779 (a)

Apatite is $CaF_2 . 3Ca_3 (PO_4)_2$. It is an ore of fluorine with calcium.

780 (d)

 S_8 has puckered ring structure.

 $\rightarrow PCl_{\Box}$

$$Cu+2H_2SO_4 \rightarrow CuSO_4+2H_2O+SO_2$$

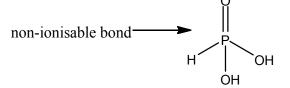
783 (d)

It is a fact.

784 (a)

The boiling point of inert gases increases with increases in molecular weight due to increase in van der Waal's forces.

∵Xe has largest size, among inert gases.


∴Xe has highest boiling point.

785 **(b)**

 HPO_{3} is called metaphosphoric acid.

786 **(b)**

Structure of H₃PO₃ is

788 (d)

Quick lime CaO is used to dry ammonia as with other given dehydrating agents ammonia reacts. $4NH_3+CaCl_2 \rightarrow CaCl_2.4NH_3$ $4NH_3+2P_2O_5 \rightarrow 4NH_4PO_3$

Ca(OH)₂ is never used as dehydrating agent.

The bond dissociation energy of Cl₂, Br₂,and I₂ is as Molecule : Cl₂ > Br₂ > I₂ Dissociation :242.6 192.8 151.1 Enthalpy $(kJ \ mo \ l^{-1})$

790 (c)

 $N_2 + O_2 Arc_{2NO}; \Delta H = +ve.$

791 **(c)**

Liquid He is a unique liquid as it exists in two forms, He(I) and He(II). He(I) is a normal liquid with normal properties. On cooling to 2.19 K and 38 mm pressure it changes to He(II) with abrupt changes in many physical properties such as density, dielectric constant and specific heat. He(II) is super fluid or quantum mechanical liquid. It has very high heat of conductance (600 times of Cu), low viscosity (1/100 of H_2 gas) and flat maniscus (a low surface tension).

792 **(b)**

The basic character of hydrides decreases down the gp.

793 (a)

Lower electronegativity and lower oxidation state of the central atom favours the formation of more basic oxide of element. Therefore, Bi_2O_3 is most basic oxide

794 **(c)**

 SO_2 bleaches by reduction, Cl_2 by oxidation.

 $Cl_2O_6 + H_2O \longrightarrow HClO_3 + HClO_4$ 796 (c) $3O_2UV 2O_3$

798 **(b)**

The spontaneous inflammability of phosphine with smoky rings (vortex rings) at the time of preparation is due to the presence of highly*inflammable* P_2H_4 . This property is used in Holme's signal.

 $Ca_{3}P_{2}+H_{2}O \longrightarrow 3Ca(OH)_{2}+PH_{3}$ $P_{2}H_{4}$ is also produced.

799 **(a)**

It is a fact.

800 **(b)**

Sulphur does not form $p\pi - p \pi$ bond due to its larger size, hence does not exist as S₂ molecules.

801 (a)

 $2 NaOH + 2 NO_2 \longrightarrow NaNO_2 + NaNO_3 + H_2O$

802 (a)
$$2SO_2 + O_2NO 2SO_3$$

```
804 (d)
```

 $SO_{2}+Br_{2}+H_{2}O \longrightarrow SO_{3}+2HBr$ 805 **(b)** $AgCl+2NH_{3} \longrightarrow Ag(NH_{3})_{2}Cl$

806 **(c)**

The pair of SO_2 and Cl_2 has bleaching property. In presence of moisture, SO_2 acts as a bleaching agent.

 $SO_2+2H_2O \rightarrow H_2SO_4+2[H]$

The nascent hydrogen bleaches the colour of the substance, thus SO_2 bleaches by reduction while Cl_2 bleaches by oxidation.

 $H_2O + Cl_2 \rightarrow HCl + HClO$

 $HClO \rightarrow HCl + [O]$

[O] + coloured substance \rightarrow colourless substances

807 **(a)**

HCl is better called chloride.

808 **(c)**

Iron is oxidized to ferrous nitrate and nitric acid is changed to ammonium nitrate.

 $4Fe+10 \text{ HNO}_3 \rightarrow 4Fe(\text{NO}_3)_2 + \text{NH}_4\text{NO}_3 + 3H_2\text{O}$ dil.

809 **(a)**

Members of group 15 or VA of periodic table are called pnicogens .they include N, P, As, Sb and Bi.

810 **(b)**

It is a fact.

$$F_2 + H_2 O \longrightarrow 2 HF + \frac{1}{2}O_2$$

813 **(a)**

It is a reason for given fact.

```
814 (b)
```

It is a fact.

815 **(d)**

Each has one lone pair on Xe atom.

816 (d) $HClO \longrightarrow HCl+[O]$. Thus, oxidizing \land bleaching \land 817 (a)

 $2Sb+3Cl_2 \rightarrow 2SbCl_3$

818 **(d)**

Bromargyrite is a mineral of bromine.

819 **(b)** He is lightest (after H_2), non-inflammable gas. 820 (c)

When phosphorus trichloride reacts with phenyl magnesium bromide (Grignard's reagent), all the three chlorine atoms of PCl₃ are replaced by phenyl group of phenyl magnesium bromide and triphenyl phosphine is obtained

821 (d)

Rest all reacts with water to give NH_3 .

822 (a)

Bond length increases with size of the atom involved in bonding.

823 **(c)**

 $N\equiv N$. This possesses high bond energy.

824 **(b)**

 $2 KI + Cl_2 \longrightarrow 2 KCl + I_2; I_2 + CCl_4 \longrightarrow Violet \ colour$ (lower layer because CCl_4 is heavier than water).

- 826 **(d)**
- Cl_2 reacts with C_2H_2i give westron \wedge westrosol $\wedge w$ 827 (d)

Each member of gp. 16 show polymorphism.

828 (d)

 $4 Fe + 10 HNO_3 \longrightarrow 4 Fe (NO_3)_2 + N_2O + 5 H_2O$ dil.

829 **(d)**

The abundance ratio is: Ar (0.93%); Ne (0.0018%); He (0.0005%); Kr (0.0001%); Xe (0.00001%); Rn much less.

830 **(c)**

 $H_{3}PO_{4} \rightleftharpoons H^{+\iota+H_{2}PO_{4}^{-\iota\iota}}$ $H_{2}PO_{4}^{-\iota \rightleftharpoons HPO_{4}^{2-\iota+H^{**}\iota}}$ $HPO_{4}^{2-\iota \rightleftharpoons H^{+\iota*PO_{4}^{1-\iota\iota}}}$

832 **(a)**

The solubility of alkaline earth metal fluorides decreases down the group.

833 **(c)**

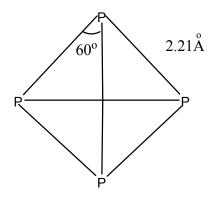
Nitrogen dioxide $(N O_2)$ exists as a dimer N₂O_{4.} When it is dissolved in sodium hydroxide or any other alkali, a mixture of nitrate and nitrite is obtained.

2NO₂+2NaOH→NaNO₂+NaNO₃+H₂O Sodium Sodium

834 **(c)**

O atom in each has $s p^{3}$ -hybridisation. Due to increase in electronegativity of halogen from Br to F, the lone pair-bond pair repulsion causes decrease in bond angle.

835 **(b)**


,CI

$$XeF_4$$
 has $sp^3 d^2$ -

hybridization of Xe atom having two positions occuelectrons.

836 **(b)**

White phosphate has the molecular formula p_4 both in solid and vapour state at moderate temperature. The four atoms present in the molecule are arranged at the corners of tetrahedron so the ppp bond angle is 60°. At higher temperature(above700 °C) it dissociates to give diatomic molecules as

837 **(d)**

 $4P + 5O_2 \rightarrow P_4O_{10} + light$. This phenomenon is called chemiluminescence

838 **(c)**

Oxidising agent such as $NO_3^{-i, SO_3^{2-i \text{ axidise}H,Si}}$ to give turbidity of S (colloidal) in water.

839 (d)

$$2S_2O_2^{2-i+I_2 \longrightarrow S_4O_6^{2-i+2\Gamma^{**}i}i}$$

840 **(b)**

It is a fact.

841 **(b)** $P_2O_5 + 3H_2O \longrightarrow 2H_3PO_4$

842 **(c)**

Order of increasing enthalpy of vaporisation is PH₃<AsH₃<NH₃ The enthalpy of NH₃ is higher due to the H- bonding.

843 (c)

Lavoisier named it as muriatic acid. Cl_2 was named as oxymuriatic gas or acid.

844 845 846	ZnO is amphoteric. (c) $FeSO_4 + 2H_2O \longrightarrow Fe(OH)_2 + H_2SO_4$; addition of H_2SO_4 to this solution reverses back the hydrolysis of $FeSO_4$.	848 849	$Cl_2O + H_2O \longrightarrow 2HClO$; Cl has +1 oxidation state & HOCl.
850	(a) SO ₂ is a gas anhydride of H_2 SO ₃ ; $P_2O_3 \land P_2O_5$ are	solia	ls.
851	PCl ₃ and cold water reacts to produce <i>ortho</i> phosphorus acid (phosphorus acid)H ₃ PO ₃ PCl ₃ +3HOH \rightarrow H ₃ PO ₃ +3HCI	862 863 864	Chlorine forms maximum (six) oxides.(c)Ar is most abundant noble gas in air.(a)
055	$H_3 PO_3$ is dibasic acid forming $NaH_2 PO_3 \wedge Na_2 H_1$	865	It is a use of freons. (d) S exists as octa-atomic in nature.
854	(c) It is a fact.	866	
855	(d) Fluorine is the stronger oxidizing agent. It will oxidise other halide ions to halogens in solution or even dry $F_2 + 2 X^{-i \rightarrow 2F^{-i + X_i i_j}}$		adsorption of different noble gases occur at different temperatures, hence charcoal is used to separate these gases. Helium is not adsorbed by charcoal (as it is very difficulty liquefiable gas).
	(b) If 20 g N then wt. is 100. If 14 g N then wt. is $\frac{100 \times 14}{20} = 70$	867 869	It is a reason for the given fact.
	Atleast one N atom in one molecule should be present to give minimum mol. wt.	870	Chloro-fluoro carbons are called freons.
857	(d) Sulphides of As, Sb, Sn are soluble in yellow ammonium sulphide.	872	N.
858	(a) Stronger is acid, weaker is its conjugate base. The acidic character (on the basis of bond length) of halogen acids is:	873	(a) N ₃ H is hydrazoic acid. It easily gives a proton. Its salts are called azides (N_3^{-ii}) .
859	$HF < HCl < HBr < HI.$ (c) $\underbrace{P_2 O_3 A_2 O_3 B_2 O_3}_{Acidic \ oxides} \underbrace{Bi_2 O_3}_{Alkaline}$	875 876	Ionisation energy increases along the period.
860	(b) $F_2 + 2 HSO_4^{-i \longrightarrow S_2O_8^{2-i+2HF_i}}$	877	
861		878	(b) Phosphate mineral is phosphorite , $Ca_3(PO_4)_2$.

879 (a) S forms two thionic acids. Dithionic acid $H_2 S_2 O_6$ and polythionic acid $H_2 S_n O_6$ (n=3, 4, 5, 6). 880 (b) The disease caused by the constant touch with white phosphorus is called phossy jaw 881 (c) $PbSO_{A}$ is insoluble \in water \land acids. 882 (c) $H_{2}S_{2}O_{3}$ 0 1∨1 HO - S - S - OH883 (c) N atom on NH_3 has one lone pair of electrons on it for coordination. 884 (c) $2KBr+Cl_2\rightarrow 2KCl+Br_2$ Hence, by the action of chlorine with KBr, bromine gas can be produced 885 (c) The oxidation state of Xe in XeO₃ can be calculated as $XeO_{3} x + (-2 \times 3i = 0)$ X = +6XeO₃ has Sp³ hybridisation with bond angle = 103° . 886 (a) $N H_4 N O_3(s) \Delta 2 H_2 O \uparrow + N_2 O \uparrow$ $NaNO_3(s)\Delta NaNO_2+O_2\uparrow$ $2 AgN O_3(s) \Delta 2 Ag(s) + 2 N O_2(g) + O_2(g)$ Lunar caustic $2 Pb(NO_3)_2 \rightarrow 2 PbO + 4 NO_2 \uparrow + O_2 \uparrow$ 887 (b) $NH_3 + HCl \longrightarrow NH_4Cl$ $PH_3 + HCl \longrightarrow PH_4Cl$ 888 (a) POX_3 has s p^3 -hybridized, P having vacant dorbitals. *p*-of O atom and d- of P undergoes $p\pi - d\pi$ bonding.

889 (d)

Nitrochloroform $CCl_3 \cdot NO_2$ is called tear gas. 890 (d)

891 (c) Ammonium salts on heating with NaOH, give ammonia gas which has characteristic smell. $NH_4Cl+NaOH^{\Delta} NH_3\uparrow+H_2O+NaCl$ 892 (b) $3AgNO_3 + PH_3 \longrightarrow Ag_3P + 3HNO_3$ 893 (c) $H_2S_2O_6+H_2O\longrightarrow H_2SO_4+H_2SO_5$ 894 (d) Ti has configuration $1s^2$, $2s^22p^6$, $3s^23p^63d^2$, $4s^2$. Thus, Ti^{4+ii} has configuration $1s^2$, $2s^22p^6$, $3s^23p^6$, *i.e.*, of Ar. 895 (b) It is a fact. 896 (d) Strongest oxidant is F_2 . 898 (c) Pyrophosphorous acid is $H_4 P_2 O_5$, 899 (b)

A mixture of calcium cyanmide $CaCN_2$ and coke (C) is called nitrolim. It is used as fertilizer and can be prepared by passing nitrogen on CaC_{2} . 110000

$$CaC_2+N_2$$
¹¹⁰⁰ CaCN_2+C

nitrolim

900 (d)

 NF_3 is not hydrolysed because neither N nor F has dorbitals.

901 (d)

When the mixture of noble gas is cooled in a coconut bulb at 173 k then Ar, Kr and Xe are adsorbed on charcoal while He and Ne are not adsorbed.

902 (a)

 $H_2S+O_3 \longrightarrow H_2O+O_2+S$ 903 (a)

All are the characteristics of $(CN)_2$.

PCl₅ attacks —OH group and replace it by —Cl group. Hence, reaction of PCl₅ with H₂SO₄ shows the presence of two —OH group in H₂SO₄.

904 **(a)**

Caliche is $NaNO_3 + NaIO_3(0.2\%)$.

905 **(a)**

 O_2 molecule has total number of 16 electrons out of which two electrons are unpaired giving a paramagnetic nature while 14 electrons are paired

906 **(b)**

Follow text.

907 (a)

 $2H_2O+SO_2 \rightarrow H_2SO_4+2[H]$ [nascent hydrogen] Coloured flower $+2[H] \rightarrow$ Colourless flower

908 (a)

 $NaNO_2 + NH_4Cl\Delta NaCl + N_2 + 2H_2O$

909 (a)

The formula of hypophosphorus acid is H₃PO₂.

910 **(b)**

Commercially chlorine dioxide is prepared by passing SO_2 gas into a mixture of sodium chloride and H_2SO_4 having NaCl in traces.

 $2NaClO_{3} + SO_{2} + H_{2}SO_{4} \xrightarrow{Trace}_{NaCl}$ solium chlorate $2ClO_{2} + 2NaHSO_{4}$ chlorine
dioxide

911 **(b)**

Oxygen due to its smaller size has more electron density in H_2O and thus, has more tendency to donate its lone pair for complex formation

912 **(a)**

Only *He* forms interstitial compounds since, the atomic size of *He* is smallest and matches the size of the interstices available is the lattice of most of the heavy metals

913 **(b)**

 $2 NaIO_3 + 5 NaHSO_3 \longrightarrow 2 Na_2 SO_4 + 3 NaHSO_4 + I_2$ 914 (d)

 Na_2O_2 is peroxide.

915 (a)
$$2SO_{2}+O_{2}NO 2SO_{3}$$

916 **(d)**

$$2Cu^{2+i+2I^{-i}\rightarrow Cu^{2+i+2i}_{k}i}$$

917 **(b)**

Both He and Na give yellow lines but of different wavelengths.

918 **(b)**

White phosphorus on reaction with limited supply of oxygen gives lower oxide P_4O_6 . Therefore, $air(O_2 + N_2)$ is a good source for controlled supply of oxygen and the best choice for controlled oxidation of white phosphorus into lower oxide P_4O_6 .

919 **(a)**

 $PH_4I + NaOH \longrightarrow NaI + PH_3 + H_2O$

920 **(d)**

HF is formed which is liquid.

- 921 **(a)**
- A characteristic of alkaline pyrogallolis ¿ absorb 922 (d)

Freons (chlorofluoro carbons) are used as refrigerant.

923 **(b)** Red P does not react with NaOH.

- 924 (c) $N_2O, NO, N_2O_3, N_2O_4 \land N_2O_5.$
- 925 **(a)**

$$NH_3 + HCl \longrightarrow NH_4^{+\iota + Cl^{-\iota\iota}\iota}$$

926 **(b)**

In household refrigeration, SO_2 is used as refrigerant. It is condensed by compression and cooling is caused when liquid SO_2 is allowed to evaporate.

927 **(c)**

 $2 CaOCl_2 CoC l_2 2 CaCl_2 + O_2$

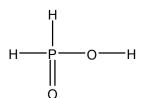
928 **(c)**

When nitrogen and hydrogen in the ratio of 1:3 are mixed at high temperature(750 K) at 200-250 atm pressure and in the presence of Fe and Mo, ammonia is obtained . This process is called Haber's process.

$$N_2(g) + 3H_2(g) \xrightarrow{Fe.Mo} 2NH_3(g)$$

750K,
200-250 atm

In this process finely divided iron (Fe) acts as catalyst and molybdenum (Mo) acts as catalyst promoter.


929 **(d)**

These are uses of F_2 .

 $Cl^{5+} \longrightarrow Cl^{7} + 2e$ 6e + Cl⁵⁺ $\longrightarrow Cl^{-}$ Disproportionation 930 (b) The spontaneous inflammability of phosphine with smoky rings (vortex rings) at the time of preparation 946 (c) is due to the presence of highly inflammable P_2H_4 . Suppose the oxidation state of $Xe \in XeOF_2$ is x This property is used in Holme's signal. x+(-2)+2(-1)=0;931 (a) x - 2 - 2 = 0 $FeSO_4 + NO \rightarrow FeSO_4 \cdot NO$ $\Rightarrow x = +4$ (brown) 947 (c) 932 (d) Only Mg and Mn liberate H_2 from dil. HNO₃. $3SO_2 + O_3 \longrightarrow 3SO_3 \in rest all cases O_2 is given out$ 948 (b) 933 (c) $2 AgClO_3 + Cl_2 \longrightarrow 2 AgCl + ClO_2 + O_2$ $HClO_4$ is strong acid: 949 (a) $HClO_4 + H_2SO_4 \longrightarrow ClO_4^{-\iota + H_3SO_4^{+\iota + \iota}}$ $2 FeCl_3 + SO_2 + 2H_2O \longrightarrow 2FeCl_2 + H_2SO_4 + 2HCl_2$ 934 (c) 950 (c) $SO_2+2CuCl_2+2H_2OKCNSCu_2Cl_2+H_2SO_4+2H_2$ $KClO_3$ is known as Berthelot's salt White 951 (a) 935 (a) All ammonium salts on heating with any alkali give Pb reacts with dilute HNO₃ to produce NO $3Pb+8 HNO_3 \rightarrow 3Pb(NO_3)_2+2NO+4H_2O$ NH_3 . dil. 936 (d) 952 (d) $4 NH_3 + 5O_2 Pt$ gauze $4 NO + 6H_2O$ Liquid NH_3 ; due $\frac{1}{6}$ high heat of evaporation. 937 (d) 953 (c) $S_2 Cl_2$ is used \in vulcanisation of rubber \land as chlorin (i)enantiotropy when two forms of a solid substance 938 (c) exist together in equilibrium with each other at a $Ca_{3}(PO_{4})_{2}+2H_{2}SO_{4}+5H_{2}O \longrightarrow Ca(H_{2}PO_{4})_{2}\cdot H$ particular temperature under normal pressure e,g, $S_R \rightleftharpoons S_M$ 939 (a) (ii)dynamic allotropy if different allotropic forms $P_4 O_{10} \wedge H_3 PO_4$ both have +5 oxidation state for P exist in equilibrium over a range of temperature. 940 (a) (iii)monotropy if an allotropic form change slowly to H_2F_2 being weak acid is slightly ionized. a stable form e.g., 941 (c) $O_3 \rightarrow O_2$ Oleum is $H_2S_2O_7$. : Monotropy is correct answer. 942 (a) 954 (c) $Cr + H_2 SO_4 \dot{\iota} \dot{\iota}$ These are facts. Dil. 944 (d) 955 (b) SO₂ acts as bleaching agent due to its reducing Xe reacts with P and O, the most electronegative property. elements. $SO_2 + 2H_2O \rightarrow H_2SO_4 + 2H$ 956 (c) Coloured matter +[H] \rightarrow colourless matter. Azeotropic mixture of $H_2SO_4 + H_2O$ contains 98.3 957 (b) 945 (d) $2 CuSO_4 + 4 KI \longrightarrow Cu_2I_2 + 2K_2SO_4 + I_2$ $HClO_3 \wedge ClO_3^{-i both possess these properties.i}$ $I_2 + 3 Na_2 S_2 O_3 \longrightarrow 2 Na_2 S_4 O_6 + 2 NaI$ ClO_{3}^{i} 958 (a) As a refrigerant.

959 **(c)** BiOCl is formed. 961 (a) 10 g bleaching powder will produce 4.9 g $Cl_{2}=$ $\frac{4.9 \times 22.4}{71}$ litre Cl_{2} .

In $Ca(NO_3)_{i}$, % of $N = \frac{20}{164} \times 100 = 17.07\%$ In $[NH_{a]_2}^{i}SO_4$;% of $N = \frac{20}{132} \times 100 = 21.21\%$ In NH_2CONH_2 ;% of $N = \frac{20}{132} \times 100 = 21.21\%$ In NH_2CONH_2 ;% of $N = \frac{20}{132} \times 100 = 21.21\%$ In NH_2CONH_2 ;% of $N = \frac{20}{160} \times 100 = 46.66\%$ In NH_4NO_3 ;% of $N = \frac{20}{60} \times 100 = 35.00\%$ 963 (a) $NaClO+H_2O \longrightarrow NaOH + HClO$; the HClO is maximum. 964 (d) Anhydrous $CaCl_2$ can be used as dehydrating agent. 965 (c) It is a characteristic of XeF_C : 971 (b) Arsenic purifier chamber \in contact process possesses $Fe(OH)_3$ which reacts with As_2SO_3 . 972 (a) H ₁ EO_2 , HP O_3 , H ₂ P_2O_3 , HP O_3 , H ₂ P_2O_3 , HP O_3 , H ₃ PC 973 (d) Rest all react with water. 974 (c) 10 Rest all react with water. 975 (d) 11 tis a fact. 976 (b) C1 is sp^{-1} hybridized having electrons of oxygen, gives rise to $p\pi - d\pi$ bronding to CI—O bond. 977 (b) Arsenic acid is H_3ASO_4. 978 (b) 979 (c) 979 (b) 970 (c) 970 (c) 970 (c) 970 (c) 970 (c) 970 (c) 977 (b) 978 (c) 979 (c) 979 (c) 979 (c) 979 (c) 979 (c) 979 (c) 979 (c) 970 (c) 9	962 (c)	2 <i>XeF</i> ₆ +
$\frac{2}{10} = \frac{2}{10} = \frac{2}{132} \times 100 = 21.21\%$ $\ln NH_4 _3 SO_4; \% of N = \frac{28}{132} \times 100 = 21.21\%$ $\ln NH_2 CONH_2; \% of N = \frac{28}{60} \times 100 = 46.66\%$ $\ln NH_4 NO_3; \% of N = \frac{28}{60} \times 100 = 35.00\%$ $\frac{3}{10} = \frac{28}{100} \times 100 = 35.00\%$ $\frac{3}{10} = \frac{28}{10} \times 100 = 35.00\%$ $\frac{3}{10} = \frac{2}{10} \times 100 = 35.00\%$ 3	In $Ca(NO_3)_2$; % of $N = \frac{20}{164} \times 100 = 17.07$ %	
$2XeO_2F_2 + SiO_2 - 2 XeO_3 + SiF_4.$ $1n N H_3CON H_2; \% of N = \frac{28}{60} \times 100 = 46.66\%$ $1n N H_4 NO_3; \% of N = \frac{28}{80} \times 100 = 35.00\%$ 963 (a) $NaClO + H_2O - NaOH + HClO; the HClO$ is is maximum. 964 (d) Anhydrous $CaCl_2$ can be used as dehydrating agent. 965 (c) It is a characteristic of XeF_4 : 971 (b) Arsenic purifier chamber \in contact process possesses $Fe OH _3$ which reacts with $A_5_2SO_3$. 972 (a) $H_2SO_4 is hygroscopic agent.$ 973 (d) Rest all react with water. 974 (c) The basic character of hydrides down the group. 975 (d) The basic character of hydrides down the group. 975 (d) The basic character of hydrides down the group. 976 (b) 977 (b) 978 (d) 977 (b) 978 (d) 979 (b) 979 (b) 979 (b) 979 (c) 978 (d) 979 (b) 979 (c) 979 (b) 970 (c) 979 (b) 970 (c) 970 (c) 97	104	T
In $N H_2 CON H_2$; % of $N = \frac{28}{60} \times 100 = 46.66\%$ In $N H_4 NO_3$; % of $N = \frac{28}{80} \times 100 = 35.00\%$ 963 (a) NaClO+ $H_2O \rightarrow NaOH + HClO$; the HClO is wakest acid among halogen oxo-acids and thus, pH is maximum. 964 (d) Anhydrous $CaCl_2$ can be used as dehydrating agent. 965 (c) It is a characteristic of XeF_6 : 971 (b) Arsenic purifier chamber \in contact process possesses $Fe OH _3$ which reacts with As_2SO_3 . 972 (a) H_2SO_2 is hygroscopic agent. 973 (d) Rest all react with water. 974 (c) The basic character of hydrides down the group. 975 (d) It is a fact. 976 (b) $Cl \ is \ p^3$ -hybridized having electrons in d -orbitals and p -electrons of oxygen, gives rise to $p\pi$ -dr $Fe \ e \rightarrow F^{-Lk}$ E_{gr}^{-L} is mostimum for fluorine. 979 (b) $SO_2hoss \ p^2$ -hybridization with one lone pair on S atom having geometry. 980 (b) Phosphorus, element of nitrogen family(V group). 980 (b) Phosphorus, element of nitrogen family(V group). 980 (c) Phosphorus element of nitrogen family(V group). 980 (b) Phosphorus element of nitrogen family(V group). 980 (b) Phosphorus element of nitrogen family(V group). 980 (c) 980 (c) 98	In $(NH_4)_2$ SO ₄ ; % of $N = \frac{23}{132} \times 100 = 21.21$ %	
$ \begin{array}{c} 4K + 3SO_2 \longrightarrow K_2SO_3 + K_2SO_3 \\ 4K + 3SO_2 \longrightarrow K_2SO_3 \\$	In N.H. CON.H. $\cdot\%$ of N = $\frac{28}{100}$ × 100 = 46.66%	2 2 2 3 7
In $N H_4 NO_3$; % of $N = \frac{20}{80} \times 100 = 35.00$ % 967 (d) 11 is an acid. $HCIO \rightarrow CIO^{-i+M^{-1}}$ 967 (d) 11 is an acid. $HCIO \rightarrow CIO^{-i+M^{-1}}$ 968 (a) Nitrogen gas is major component of air. 969 (a) H_3PO_2 is monobasic acid and only one H is replaceable. 970 (a) H_3PO_2 is monobasic acid and only one H is replaceable. 970 (a) H_3PO_2 is monobasic acid and only one H is replaceable. 970 (a) H_3PO_2 is monobasic acid and only one H is replaceable. 970 (a) H_3PO_2 is monobasic acid and only one H is replaceable. 970 (a) H_3PO_2 is monobasic acid and only one H is replaceable. 970 (a) H_3PO_2 is monobasic acid and only one H is replaceable. 970 (a) H_3PO_2, HPO_2, H_3PO_3, H_4P_2O_5, HPO_3, H_3PC 981 (d) Each member of gp. 17 possesses $ns^2 np^5$ configuration. 982 (a) NoCI is introsyl chloride. 983 (b) N is most electronegativity than other halogens. 976 (b) N is most electronegativity than other halogens. 977 (b) Arsenic acid is H_3ASO_4 . 978 (d) $F + e \rightarrow F^{-i4}$ $E_{ph}^{-i} is maximum for fluorine. 979 (b) SO_3 has sp^2-hybridization with one lone pair on S atom having geometry. 980 (b) Phosphorus, clement of nitrogen family(V group). 980 (b) Phosphorus, clement of nitrogen family(V group).$	100 - 40.00 / 0	
	In NH_4NO_3 ; % of $N = \frac{28}{22} \times 100 = 35.00$ %	
963 (a) NaClO + $H_2O \rightarrow NaOH + HClO$; the HClO is weakest acid among halogen oxo-acids and thus, pH is maximum. 964 (d) Anhydrous $CaCl_2$ can be used as dehydrating agent. 965 (c) It is a characteristic of XeF_c : 971 (b) 772 (a) H_2SO_4 is hygroscopic agent. 973 (d) Rest all react with water. 974 (c) 775 (d) 775 (d) 775 (d) 775 (d) 775 (d) 775 (d) 777 (b) 778 (d) 777 (b) 778 (d) 778 (d) 778 (d) 777 (b) 778 (d) 778 (d) 778 (d) 778 (d) 778 (d) 778 (d) 778 (d) 778 (d) 778 (d) 777 (b) 778 (d) 778 (d) 779 (b) 789 (d) 797 (b) 798 (d) 797 (b) 709 (b) 709 (b) 709 (b) 709 (b) 709 (b) 700 (a) 800 (c) 800 (c)	80	It is an acid. HClO \longrightarrow ClO ^{$-\iota + H^{+\iota,\iota}$}
weakest acid among halogen oxo-acids and thus, pH is maximum. 964 (d) Anhydrous $CaCl_2$ can be used as dehydrating agent. 965 (c) It is a characteristic of XeF_6 : 971 (b) Arsenic purifier chamber \in contact process possesses $Fe OH _3$ which reacts with As_2SO_3 . 972 (a) H_2SO_4 is hygroscopic agent. 973 (d) Rest all react with water. 974 (c) 975 (d) 11 is a fact. 976 (b) 977 (b) 978 (d) 977 (b) 978 (d) 977 (b) 979 (b) 977 (b) 979 (b) 977 (c) 978 (d) $F+e \rightarrow F^{-t4}$ $E_{b_0}^{h_2}$ is maximum for fluorine. 979 (b) 979 (b) 970 (a) 970 (a) 970 (a) 971 (b) 972 (c) 973 (c) 973 (c) 974 (c) 975 (c) 975 (c) 976 (c) 977 (c) 978 (c) 977 (c) 978 (c) 978 (c) 978 (c) 978 (c) 979 (b) 979 (b) 970 (c) 979 (c) 970 (c) 97		968 (a)
is maximum. 964 (d) Anhydrous <i>CaCl</i> ₂ can be used as dehydrating agent. 975 (c) 17 (b) Arsenic purifier chamber ∈ contact process possesses $Fe[OH]_3$ which reacts with As_2SO_3 . 972 (a) H_3SO_4 is hygroscopic agent. 973 (d) Rest all react with water. 974 (c) The basic character of hydrides down the group. 975 (d) C1 is $s p^3$ -hybridized having electrons in <i>d</i> -orbitals and <i>p</i> -clectrons of oxygen, gives rise to $p\pi$ -dat bonding to Cl—O bond. 977 (b) 978 (d) 977 (b) 978 (d) 979 (b) 979 (b) 979 (b) 979 (b) 979 (b) 970 (c) 970 (c)	-	Nitrogen gas is major component of air.
964 (d) Anhydrous $CaCl_2$ can be used as dehydrating agent. 965 (c) It is a characteristic of XeF_6 : 971 (b) Arsenic purifier chamber \in contact process possesses $Fe[OH]_3$ which reacts with As_2SO_3 . 972 (a) $H_3PO_2, HPO_2, H_3PO_3, H_4P_2O_5, HPO_3, H_3PC_3, H_3PC_3, H_3PO_2, HPO_3, H_4P_2O_5, HPO_3, H_3PC_3, H_3PO_2, HPO_2, H_3PO_3, H_4P_2O_5, HPO_3, H_3PC_3, H_3PO_2, HPO_2, H_3PO_3, H_4P_2O_5, HPO_3, H_3PC_3, H_3PO_2, HPO_3, H_4P_2O_5, HPO_3, H_3PC_3, H_3PO_2, HPO_2, H_3PO_3, H_4P_2O_5, HPO_3, H_3PC_3, H_3PO_2, HPO_3, H_4P_2O_5, HPO_3, H_3PC_3, H_3PO_2, HPO_3, H_4P_2O_5, HPO_3, H_3PC_3, H_3PO_2, HPO_3, H_4P_2O_5, HPO_3, H_3PC_3, H_3PO_3, H_4P_2O_5, HPO_3, H_3PC_3, H_3PO_3, H_4P_2O_5, HPO_3, H_3PC_3, H_3PO_3, H_4P_2O_5, HPO_3, H_3PC_3, H_3PO_3, H_3PC_3, H_3PO_3, H_4P_2O_5, HPO_3, H_3PC_3, H_3PO_3, H_4P_2O_5, HPO_3, H_3PC_3, H_3PO_3, H_3PC_3, H_3PO_3, H_4P_2O_5, HPO_3, H_3PC_3, H_3PO_3, H_3$		969 (a)
Anhydrous $CaCl_2$ can be used as dehydrating agent.replaceable.965(c) It is a characteristic of XeF_6 :970(a) It is a reason for the given fact.971(b) Arsenic purifier chamber \in contact process possesses $Fe OH _3$ which reacts with As_2SO_3 .972(a) H, SO_2 is hygroscopic agent.973(d) Rest all react with water.974(c) The basic character of hydrides down the group.975(d) Rest all react.976(b) Cl is $s p^3$ -hybridized having electrons in d-orbital and p-electrons of oxygen, gives rise to $p\pi$ -dr bonding to Cl—O bond.978(d) $F+e \longrightarrow F^{-1/2}$ E_{ap}^5 is maximum for fluorine.979(b) SO_2has s p^2-hybridization with one lone pair on S atom having geometry.980(b) Phosphorus, element of nitrogen family(V group).980(b) Phosphorus, element of nitrogen family(V group).		$H_3 PO_2$ is monobasic acid and only one H is
965 (c) It is a characteristic of XeF ₆ : 971 (b) Arsenic purifier chamber ∈ contact process possesses $Fe[OH]_3$ which reacts with As ₂ SO ₃ . 972 (a) H ₂ SO ₄ is hygroscopic agent. 973 (d) Rest all react with water. 974 (c) The basic character of hydrides down the group. 975 (d) It is a fact. 976 (b) C1 is s p ³ -hybridized having electrons in <i>d</i> -orbitals and <i>p</i> -electrons of oxygen, gives rise to $p\pi$ -dr bonding to C1—O bond. 977 (b) Arsenic acid is H ₃ ASO ₄ . 978 (d) F + e → F ^{-i±} E ^{lop} is maximum for fluorine. 979 (b) SO ₂ has s p ² -hybridization with one lone pair on S atom having geometry. 80 (b) Phosphorus, element of nitrogen family(V group), Phosphorus, element of nitrogen family(V group), 980 (b) Phosphorus, element of nitrogen family(V group),		replaceable.
It is a characteristic of XeF_6 : 171 (b) Arsenic purifier chamber \in contact process possesses $Fe [OH]_3$ which reacts with As_2SO_3 . 172 (a) H_2SO_4 is hygroscopic agent. 173 (d) Rest all react with water. 174 (c) 176 basic character of hydrides down the group. 175 (d) 177 (b) 178 is a fact. 176 (b) 179 (c) 179 (c) 170 is sp^3 -hybridized having electrons in <i>d</i> -orbitals 170 and <i>p</i> -electrons of oxygen, gives rise to $p\pi \cdot d\pi$ 177 (b) 177 (b) 178 (d) 179 (b) 179 (b) 170 (b) 170 (b) 170 (c) 170 (c) 181 (d) 183 (b) 183 (b) 183 (b) 183 (c) 184 (b) 171 (c) 184 (b) 171 (c) 184 (b) 171 (c) 184 (c) 185	965 (c)	970 (a)
971 (b) Arsenic purifier chamber \in contact process possesses $Fe [OH]_3$ which reacts with $As_2 SO_3$. 972 (a) H_2SO_4 is hygroscopic agent. 973 (d) Rest all react with water. 974 (c) 775 (d) 11 is a fact. 976 (b) Cl is $s p^3$ -hybridized having electrons in <i>d</i> -orbitals and <i>p</i> -electrons of oxygen, gives rise to $p\pi$ -dr bonding to Cl—O bond. 977 (b) Arsenic acid is H_3ASO_4 . 978 (d) $F+e \longrightarrow F^{-iL}$ E_{RP}^0 is maximum for fluorine. 979 (b) $SO_2has s p^3$ -hybridization with one lone pair on S atom having geometry. 980 (b) 980 (b) 980 (b) Phosphorus, element of nitrogen family(V group),		It is a reason for the given fact.
Arsenic purifier chamber \in contact process possesses $Fe[OH]_3$ which reacts with As_2SO_3 . 972 (a) H_2SO_4 is hygroscopic agent. 973 (d) Rest all react with water. 974 (c) 975 (d) 11 is a fact. 976 (b) 977 (b) Arsenic acid is H_3ASO_4 . 978 (d) $F+e \longrightarrow F^{-i4}$ E_{Re}^{0} is maximum for fluorine. 979 (b) SO_2 has s p^2 -hybridization with one lone pair on S atom having geometry. 980 (b) 980 (b) Phosphorus, element of nitrogen family(V group), Partice of the second of t	·	
972 (a) H_2SO_4 is hygroscopic agent. 973 (d) Rest all react with water. 974 (c) The basic character of hydrides down the group. 975 (d) Cl is sp^3 -hybridized having electrons in <i>d</i> -orbitals and <i>p</i> -electrons of oxygen, gives rise to $p\pi$ - $d\pi$ bonding to Cl—O bond. 977 (b) Arsenic acid is H_3ASO_4 . 978 (d) $F+e \rightarrow F^{-i\epsilon}$ E_{RF}^0 is maximum for fluorine. 979 (b) $SO_2has sp^2$ -hybridization with one lone pair on S atom having geometry. 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 983 (b) 984 (b) 985 (c) 985 (c) 986 (c) 988 (b) M_3 is pyramidal. 989 (c) Hypophosphorus acid(H_3PO_2) is amonobasic acid and has only one ionisable H two Hatoms are directly attached to phosphorus thus the correct statement is (c).		$F_{\rm SSES} = [OH]_{\rm S}$ which reacts with As $SO_{\rm SS}$
H ₂ SO ₄ is hygroscopic agent. H ₃ PO ₂ , HPO ₂ , HPO ₃ , H ₄ P ₂ O ₅ , HPO ₃ , H ₃ PC 973 (d) Rest all react with water. 974 (c) The basic character of hydrides down the group. 975 (d) It is a fact. 976 (b) C1 is $s p^3$ -hybridized having electrons in <i>d</i> -orbitals and <i>p</i> -electrons of oxygen, gives rise to $p\pi$ -dr bonding to C1—O bond. 977 (b) 978 (d) $F+e \rightarrow F^{-i.i}$ E_{RD}^0 is maximum for fluorine. 979 (b) SO ₂ has s p^2 -hybridization with one lone pair on S atom having geometry. 980 (b) Phosphorus, element of nitrogen family(V group), 980 (b) Phosphorus, element of nitrogen family(V group),		
973 (d) Rest all react with water. 974 (c) The basic character of hydrides down the group. 975 (d) 11 is a fact. 976 (b) C1 is $s p^3$ -hybridized having electrons in <i>d</i> -orbitals and <i>p</i> -electrons of oxygen, gives rise to $p\pi$ - $d\pi$ bonding to C1—O bond. 977 (b) Arsenic acid is H_3AsO_4 . 978 (d) $F+e \rightarrow F^{-ii}$ E_{RP}^{0} is maximum for fluorine. 979 (b) $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. 980 (b) Phosphorus, element of nitrogen family(V group), 981 (d) Each member of gp. 17 possesses $n s^2 n p^5$ configuration. 982 (a) NoCl is nitrosyl chloride. 983 (b) N is most electronegative among N-family. 984 (b) This is a reason for the given fact. 986 (c) F has more electronegativity than other halogens. 987 (b) On long standing it undergoes auto-oxidation as , $6 CaOCl_2 \rightarrow Ca[ClO_3]_2 + 5 CaCl_2$. 988 (b) NH_3 is pyramidal. 989 (c) Hypophosphorus acid(H_3PO_2) is amonobasic acid and has only one ionisable H two Hatoms are directly attached to phosphorus thus the correct statement is (c).		6
Rest all react with water. 974 (c) The basic character of hydrides down the group. 975 (d) It is a fact. 976 (b) Cl is $s p^3$ -hybridized having electrons in <i>d</i> -orbitals and <i>p</i> -electrons of oxygen, gives rise to $p\pi$ - $d\pi$ bonding to Cl—O bond. 977 (b) 977 (b) 978 (d) $F+e \rightarrow F^{-tL}$ E_{Rp}^{0} is maximum for fluorine. 979 (b) 979 (b) 979 (b) 970 (b) 970 (b) 970 (b) 970 (b) 970 (b) 970 (b) 970 (b) 970 (c) 970 (b) 970 (b) 970 (b) 970 (b) 970 (b) 970 (b) 970 (b) 970 (c) 970 (b) 970 (c) 970 (c) 980 (c		$H_{3}PO_{2}, HPO_{2}, H_{3}PO_{3}, H_{4}P_{2}O_{5}, HPO_{3}, H_{3}PC$
Free control of the probability		981 (d)
The basic character of hydrides down the group. 975 (d) 1t is a fact. 976 (b) C1 is $s p^3$ -hybridized having electrons in <i>d</i> -orbitals and <i>p</i> -electrons of oxygen, gives rise to $p\pi$ - $d\pi$ bonding to Cl—O bond. 977 (b) 977 (b) 978 (d) $F+e \rightarrow F^{-ii}$ E_{RP}^{0} is maximum for fluorine. 978 (d) $F+e \rightarrow F^{-ii}$ $SO_2 has s p^2$ -hybridization with one lone pair on S atom having geometry. 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (c) 989 (c) 980 (b) 980 (c) 980 (c) 9		
It is a fact. 976 (b) Cl is sp^{3} -hybridized having electrons in <i>d</i> -orbital and <i>p</i> -electrons of oxygen, gives rise to $p\pi$ - $d\pi$ bonding to Cl—O bond. 977 (b) 978 (d) $F+e \rightarrow F^{-il}$ E_{RP}^{0} is maximum for fluorine. 979 (b) $SO_{2}has sp^{2}$ -hybridization with one lone pair on S atom having geometry. 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (c) 980 (c) 980 (c) 980 (c) 980 (c) 980 (c) 980 (c) 980 (c) Hypophosphorus acid($H_{3}PO_{2}$) is amonobasic acid and has only one ionisable H two Hatoms are directly attached to phosphorus thus the correct statement is (c).		
976 (b) Cl is $s p^{3}$ -hybridized having electrons in <i>d</i> -orbitals and <i>p</i> -electrons of oxygen, gives rise to $p\pi$ - $d\pi$ bonding to Cl—O bond. 977 (b) Arsenic acid is $H_{3}AsO_{4}$. 988 (b) 778 (d) $F+e \rightarrow F^{-it}$ E_{Rp}^{0} is maximum for fluorine. 979 (b) $SO_{2}has s p^{2}$ -hybridization with one lone pair on S atom having geometry. 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (b) 980 (c) 980 (b) 980 (c) 980 (c) 989 (c) 980 (c)		
Cl is $s p^3$ -hybridized having electrons in <i>d</i> -orbitals and <i>p</i> -electrons of oxygen, gives rise to $p\pi$ - $d\pi$ bonding to Cl—O bond. 977 (b) Arsenic acid is H_3AsO_4 . 978 (d) $F+e \rightarrow F^{-it}$ E_{RP}^0 is maximum for fluorine. 979 (b) $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. 980 (b) Phosphorus, element of nitrogen family(V group), 980 (b) 980 (c) 980 (b) 980 (b) 980 (b) 980 (b) 980 (c) 980 (c) 980 (b) 980 (c) 980		NOCI is nitrosyl chioride.
and <i>p</i> -electrons of oxygen, gives rise to $p\pi$ - $d\pi$ bonding to Cl—O bond. 977 (b) Arsenic acid is H_3AsO_4 . 988 (b) 778 (d) $F+e \rightarrow F^{-i\ell}$ E_{RP}^0 is maximum for fluorine. 979 (b) SO_2 has $s p^2$ -hybridization with one lone pair on S atom having geometry. 980 (b) 980 (c) 980 (c) 980 (c) 980 (b) 980 (b) 980 (c) 980 (c) 9		
977 (b) Arsenic acid is H_3AsO_4 . 978 (d) $F+e \rightarrow F^{-i\ell}$ E_{RP}^0 is maximum for fluorine. 979 (b) $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. $SO_2has s p^2$ -hybridization with one lone pair on S $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. $SO_2has s p^2$ -hybridization with one lone pair on S $SO_2has s p^2$ -hybridization with one lone pair on S $SO_2has s p^2$ -hybridization with one lone pair on S $SO_2has s p^2$ -hybridization with one lone pair on S $SO_2has s p^2$ -hybridization with one lone pair on S $SO_2has s p^2$ -hybridization with one lone pair on S $SO_2has s p^2$ -hybridization with one lone pair on S $SO_2has s p^2$ -hybridization with one lone pair on S $SO_2has s p^2$ hybridization with one lone pair on S $SO_2has s p^2$ hybridization with one lone pair on S $SO_2has s p^2$ hybridization with one lone pair on S $SO_2has s p^2$ hybridization with one lone pair on S $SO_2has s p^2$ hybridization with one lone pair on S $SO_2has s p^2$ hybridization with one lone pair on S $SO_2has s p^2$ hybridization with one lone pair on S $SO_2has s p^2$ hybridization with one lone pair on S $SO_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O$	•	N is most electronegative among N-family.
Arsenic acid is H_3AsO_4 . 978 (d) $F+e \rightarrow F^{-i\ell}$ E_{RP}^0 is maximum for fluorine. 979 (b) $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. 980 (b) 980 (b) 980 (b) Phosphorus, element of nitrogen family(V group), Phosphorus, element of nitrogen family(V group), 978 (d) $F + e \rightarrow F^{-i\ell}$ $B = B = C + Cal(ClO_3)_2 + 5CaCl_2$. 988 (b) NH_3 is pyramidal. 989 (c) Hypophosphorus acid(H_3PO_2) is amonobasic acid and has only one ionisable H two Hatoms are directly attached to phosphorus thus the correct statement is (c).		984 (b)
978 (d) $F + e \rightarrow F^{-ii}$ E_{RP}^{0} is maximum for fluorine. 979 (b) SO_{2} has sp^{2} -hybridization with one lone pair on S atom having geometry. SO_{2} has sp^{2} -hybridization with one lone pair on S atom having geometry. SO_{2} has sp^{2} -hybridization with one lone pair on S MH_{3} is pyramidal. 989 (c) Hypophosphorus acid($H_{3}PO_{2}$) is amonobasic acid and has only one ionisable H two Hatoms are directly attached to phosphorus thus the correct statement is (c).		This is a reason for the given fact.
$F + e \rightarrow F^{-il}$ F^{-il} F^{-il	Arsenic acid is $\Pi_3 \Lambda_5 O_4$.	986 (c)
$\begin{array}{c} B_{RP}^{0} is maximum for fluorine. \\ Barbon (b) \\ Barbon (c) \\$		
979 (b) $SO_2has s p^2$ -hybridization with one lone pair on S atom having geometry. S = 0 O = 0 980 (b) Phosphorus, element of nitrogen family(V group), S = 0 O = 0		
SO ₂ has s p^2 -hybridization with one lone pair on S atom having geometry. Solution (D) 980 (b) 980 (b) Phosphorus, element of nitrogen family(V group), 988 (b) NH ₃ is pyramidal. 988 (c) Hypophosphorus acid(H ₃ PO ₂) is amonobasic acid and has only one ionisable H two Hatoms are directly attached to phosphorus thus the correct statement is (c).		
atom having geometry. VH_{3} is pyramidal. VH_{3} is pyramidal.		
989 (c) Hypophosphorus $acid(H_3PO_2)$ is amonobasic $acid$ and has only one ionisable H two Hatoms are directly attached to phosphorus thus the correct statement is (c).	- -	
Hypophosphorus $\operatorname{acid}(H_3PO_2)$ is amonobasic acid and has only one ionisable H two Hatoms are directly attached to phosphorus thus the correct statement is (c).	"S	989 (c)
980 (b) Phosphorus, element of nitrogen family(V group), Phosphorus, element of nitrogen family(V group),	119.5°	
980 (b) Phosphorus, element of nitrogen family(V group), attached to phosphorus thus the correct statement is (c).		
Phosphorus, element of nitrogen family(V group), (c).	980 (h)	
		(c).

990 (d) Rest all complex form $\textit{NH}_{3}, \textit{e.g.}, \textit{Ag}(\textit{NH}_{3})_{2}^{+i; \textit{Cu}(\textit{NH}_{3})_{4}^{2+i; \textit{Cd}(\textit{NH}_{3})_{4}^{3+i}i} \acute{c}}$

993 (d)

 $PH_6^{+is \, not \, known.i}$

994 (c)

In a group, $\Delta G f^{\circ}(HX)$ changes from negative to positive downwards. 4 $HF(g)\Delta G = -273.20 \, kJ \, mo \, l^{-1}1$ $HF(g)\Delta G = +1.72 kJ mol^{-1}$ having the tendency to $form I^{3+ii}$ cation. Thus HF is thermally stable and HI not. 100 (c) Thus, s HF>HCI>HBr>HI. Potassium chlorate $(KCLO_3)$ is known as Berthelot's 5 995 (c) salt. It is the salt of chlorine acid, HCIO₃. Coconut charcoal possesses characteristic property 100 (c) for adsorbing different noble gases at different $NH_4 NO_3 \Delta N_2 O(g) + 2H_2 O(g)$ 6 temperatures. 996 (d) 100 **(b)** Hypophosphorus acid is monoprotic acid as only o $PH_3 + HBr \longrightarrow PH_4Br$ 7 Attached on O areionisable. 100 (c) 8 H--P-OH $CaOCl_{2}$ It is а mixture н 997 (b) chlorohypochlorite. It also exhibits +1 oxidation states like Cl, Br and I. 100 **(b)** 998 (d) $6O_2 \rightarrow 4O_3$ 9 Metallic character increases down the group. 999 (a) 101 (c) $2 Na_2 S_2 O_3 + I_2 \longrightarrow Na_2 S_4 O_6 + 2 NaI$ The reactivity of halogens decreases down the gp. 0 100 **(b)** 101 (c) 0 It is a fact. 1 $3SO_2 + O_3 \rightarrow 2SO_3$ 100 (a) $2Hg + O_3 \rightarrow Hg_2O + O_3$ 1 Clathrates are non-stoichiometic compounds where 2HCl+ $O_3 \rightarrow Cl_2 + O_2 + H_2O$ the ratio of guest and host molecules does not $PbS + 4O_3 \rightarrow PbSO_4 + 4O_2$ correspond to ideal chemical formula 101 (c) 100 (a) $CaS+4H_2S \longrightarrow CaS_5+4H_2$ 2 2 Both possess pungent odour and act as bleaching Polysulphide agents. 101 (c) 100 (a) 3 H_2SO_4 is oxidant \wedge HI is strong reductant. 3

991 (c)

In laboratory H_2S is prepared by treating ferrous sulphide(black lumps) with dil .H₂SO₄ $FeS+H_2SO_4 \rightarrow FeSO_4+H_2S$

992 (c)

with

 $_1H^2 + _1H^2 \rightarrow _2He^4$

It is a fact.

100 (d)

The metallic character is developed to a considerable extent in I_2 . It is violet crystalline, lustrous solid

Simple representation of bleaching powder is of $Ca(OCl)_2 + CaCl_2 \cdot Ca(OH)_2 \cdot H_2O$, *i.e.*, calcium

101 4	(d) Decomposition involves breaking up of a molecule into its fragments. $Pb(NO_3)_2 \longrightarrow PbO + NO_2 + \frac{1}{2}O_2$
4.0.4	2
101 5	(b) Basic character of hydrides decreases down the gp.
101 6	(a) Fluorine forms Xe fluorides.
101 7	(a) It is a fact.
101 8	
101 9	(a) All are non-metals and possess strong electronegative nature.
102 0	(d) $N_2 O_3$ is blue coloured.
102 1	 (c) Cl₂+2NaOH→NaCl+NaClO+H₂O Cold,dil. Chlorine reacts with cold and dilute NaOH to give sodium hypochlorite.
102 2	(a) These are characteristics of H_2O .
102 3	(d) In VA group the thermal stability of hydrides decreases from NH ₃ to BiH ₃ hence, BiH ₃ is the most unstable hydride. NH ₃ > PH ₃ > AsH ₃ >SbH ₃ > BiH ₃
102 4	(b) Both P^{3-ii} and Cl^{-ii} has $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration.
102	Divers use $He+O_2$ mixture for respiration \in place of N_2+O_2 . The N_2 was found to dissolve in blood at high pressure during diving and after it, the N_2 gas comes out from blood causing painful nerve bursting. The mixture is also used for respiration by asthma patients.
102 6	(a) SO_2 is soluble in water

 $H_2O + SO_2 \rightarrow H_2SO_3$ sulphurous acid

102 (a)

Due to less reactivity of red phosphorus, it is used in 7 the manufactures of safe matchsticks

```
102 (c)
```

8 It is a fact.

103 (d)

Due to absence of d-orbitals in N-atom, it cannot 0 accept electrons from H_2O for hydrolysis of NF_3

103 (c)

1 It is a reason for the given fact.

103 (c)

2 General valence shell electronic configuration of 15 th group elements is $ns^2 np^3$ where *n*=period number.

103 **(b)**

 K_2 HgI₄ gives brown ppt. with NH₃. 3

103 (b)

4 Except Bi, rest all VA members show allotropy.

103 (d)

Pyrophosphoric acid is $H_4 P_2 O_7$ having 4H attached 5 on 4 oxygen atoms.

103 (c)

7

6 H_3PO_4 is syrupy liquid due to more sites available for H-bonding.

103 **(b)**
7
$$NO+NO_2^{253} \circ C_{N_2O_3}$$

 (X)
 $N_2O_3+H_2O\rightarrow 2HNO_2$
 (X) (Y)
 \therefore Anion of y is NO_2^{-ii}

103 (d) XeF_2 , $XeOF_2$, XeF_4 , $XeOF_4$, XeF_6 , XeO_3 8

103 (a)

9

When conc. H_2SO_4 is heated with P_2O_5 , the acid is

converted into sulphur trioxide.

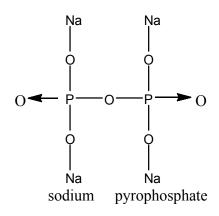
 $2 H_2SO_4 + 2 P_2O_5 \rightarrow 2SO_3 + 4HPO_3$

sulphur trioxide

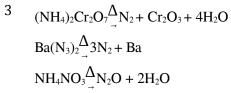
104 **(b)**

0 The reactivity of yellow or white phosphorus is maximum.

104 **(b)**


1 Metaphosphoric acid is HPO_3 ; $P_2O_5 + H_2O \longrightarrow 2 HPO_3$

104 **(c)**


2 Sodium pyrophosphate is represented by $Na_4P_2O_7$. It is sodium salt of pyrophosphoric acid ($H_4P_2O_7$). Which may be considered to be made up by two molecules of *ortho* phosphoric acid eliminating one molecule of H_2O .

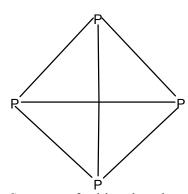
$$2 H_{3}PO_{4} - H_{2}O_{1}H_{4}P_{2}O_{7}$$

pyrophosphoric acid

104 **(d)**

104 **(b)**

4 It is a fact.


104 **(d)**

5
$$2 \operatorname{AgN} O_3 \rightarrow 2 \operatorname{AgN} O_2 + O_2$$

 \downarrow
 $2 \operatorname{Ag+2} N O_2$

104 (c) 7 P_4O_{10} is a dehydrating agent.

104 **(a)**

8 \therefore Bondings electrons in white phosphorus = 6

Structure of white phosphorus

104 **(b)**

9 Compounds of Ar with fluorine are not known because of higher ionization energy of Ar.

105 **(d)**

0 SO_2 dissolves in H_2O in presence of oxygen to give $H_2SO_42SO_2+2H_2O+O_2 \longrightarrow 2H_2SO_4$ $H_2SO_4 \lor H_2SO_3$ (solution of $SO_2 \in H_2O$) reacts with marble to damage it as well as responsible for cough and choking in human body.

105 **(b)**

1 The hypochlorites disproportionate on heating as follows.

 $3CIO^{-i \rightarrow 2CI^{-i+CIO_3^{-i}i}}$

105 **(d)**

2
$$SiO_2 + 4 HF \longrightarrow SiF_4 + 2 H_2O$$

 $SiF_4 + 2 HF \longrightarrow H_2 SiF_6$

105 **(b)**

Cl₂ acts as permanent bleaching agent because its bleaching action is due to oxidation
 Cl₂+H₂O→2HCl+[O]
 Organic colouring matter +[O]→colourless matter.
 While SO₂ acts as temporary bleaching agent because its bleaching action is due to reduction.
 SO₂+2H₂O→H₂SO₄+2[H]

Colouring matter $+2[H] \rightarrow$ colourless matter.

105 **(b)**

4 If not cooled properly, on opening the cork, the liquid will bump out.

105 (a) 5 $CaC_2 + \frac{5}{2}O_2 \longrightarrow CaO + 2CO_2$ $CaC_2 + N_2 \longrightarrow Ca(CN)_2.$ 105 (c) 6 $FeSO_4 \cdot 7H_2O\Delta FeSO_4 + 7H_2O_2$

	$2 FeSO_4 \Delta Fe_2O_3 + SO_2 + SO_3$	107	
105 7	(b) With progressive increase in atomic number, the reduction potential of halogen decreases thus oxidizing power also decreases. Hence a halogen with lower atomic number will oxidise the halide ion of higher atomic number and therefore will liberate them from their salt solution. $Cl_2 + 2 F^{-ii} \rightarrow 2 C I^{-ii} + F_2$ is not possible.	2 107 3 107 4	Sulphur exists as S_8 . (b) The acidic character of oxides increases with increase in the oxidation number of element. +1 $+2$ $+3$ $+4$ $+5N_2O NO. N_2O_3 NO2 N_2O_5$
105 8	-	107	Neutral Acidic character (a)
105 9 106 0	ZnO reacts with acids \land alkalies both.	5 107 6	Bleaching powder is $CaOCl_2$ having $Ca^{2+i, Cl^{-i, ACCl^{-imag}}}$ (a) B > P > As > Bi As we go down the group, bond angle decreases, since the repulsion between the bonded pairs of electrons decrease
106 1 106 2	$SiO_2 + 6 HF \longrightarrow [SiF_6]^{2-\iota+2H^{*\iota+2H,Ol}\iota}$	107 7 107 8	$CaOCl_{2}+H_{2}O \longrightarrow Ca(OH)_{2}+HOCl+HCl$ $HOCl \longrightarrow HCl+[O]$
3	(d) $2 KMnO_4 + 3H_2SO_4 + 10 HCl \rightarrow K_2SO_4 + 2MnSC$ (d) This is a reason for the given fact.	107 9 108 0	Due to highest IP, electrons are more tightly held with nucleus.
106 5 106	Bi is metal.	108 1	$X = I_2, Y = HI$
106 7 106 8 106 9	It is a method to get Cl_2 . (a) Acidic character of oxides increases along the period.		$3I_{2}+2NH_{3} \rightarrow NH_{3} \cdot NI_{3}$ (explosive) $8NI_{3} \cdot NH_{3} \rightarrow 5N_{2}+I_{2}+6NH_{4}I$ $I_{2}+H_{2} \rightarrow 2HI$ (Y) $3NaI+H_{3}PO_{4}\Delta Na_{3}PO_{4}+3HI$ \vec{J}
107	0 <u>1.278Å</u> 0 116.8° 0	108 2	(b) V_2O_5 (vanadium pentaoxide) is used as a catalyst in the manufacture of H_2SO_4 by contact process since, it is not easily poisoned.
0 107 1	O_3 is used as dry bleaching agent.	108 4	 (c) (i) carbon monoxide is neutral and SO₃ is acidic. (ii)aluminium and zinc oxides are amphoteric , so aluminium and zinc oxides react with both as acid

and base.	dil.	Nitric oxide
Al ₂ O ₃ + 6HCl \rightarrow 2AlCl ₃ +3H ₂ O(with acid) Al ₂ O ₃ +2NaOH +3H ₂ O \rightarrow 2NaAl(OH) ₄ (with base) ZnO +H ⁺ \rightarrow Zn ²⁺ +H ₂ O(in acid) ZnO+2 OH ^{-ii} +H ₂ O \rightarrow [Zn(OH) ₄] ²⁻ (in base) Hence, (i) and (iii) are correct. 108 (a) 5 It is a fact.	109 (a) 8 $Xe O_4$ is formed by promot electrons of Xe to higher en- eight unpaired orbitals hybridisation which form si atoms. The four unhybridised orbitals form four $p\pi - d\pi$	hergy. $5d$ orbitals giving idize to give $s p^3$ gma bonds with four O ed singly occupied $5d$
 108 (d) 6 Among halides of hydrogen intermolecular H-bonding is present. So when we go top to bottom in halogen group, size of I⁻ⁱⁱⁱ ion increases and the intermolecular H- bonding becomes weak and easily gives H⁺ in aqueous solution. So, it works as a strong acid. Acidity decreases in the order HI>HBr>HCI>HF 	110 (c) 0 $2 KClO_3 + 4 HCl \rightarrow 2 KC$ 110 (a) 1 H-bonding in H_2O develop 110 (b) 2 It is a fact. 110 (c) 3 It is a mixture of $Ca(OCl)_2$	s abnormal properties.
108 (a) 7 Rest all gives O_2 on heating. 108 (a)	110 (d) 4 $H_2S+2HNO_3 \rightarrow 2NO_2+$	
8 This was a reason for late discovery of F_2 .	110 (d)	idai suipiidi)
108 (c) 9 H_2SO_5 (Caro's acid) and $H_2S_2O_8$ (Marshall's acid) contain one peroxyacids $-O-O-i$ linkage	5 It is a fact.110 (c)	hanna
 109 (b) 0 F₂ is pale-yellow; Cl₂ is green-yellow; Br₂ is dark yellow-brown; I₂is violet . 109 (c) 1 (CN)₂ is called pseudohalogen. 	 Alcoholic solution of I₂ is (d) It is a use of Ne. (b) Fluorine exhibits an oxidation 	
109 (c) 2 $CS_2+3Cl_2I_2CCl_4+S_2Cl_2$	because it is very strongly e (maximum electronegativity	lectronegative element
$\stackrel{\rightarrow}{109} \textbf{(c)}$ $4 2 NaI + 2H_2SO_4 \longrightarrow Na_2SO_4 + SO_2 + H_2O + I_2$	110 (a) 9 $2 Na_2 SO_3 + O_2 \longrightarrow 2 Na_2 SO_3$ 111 (d)	O ₄
109 (b) 5 $KNO_{3} \xrightarrow{\Delta} KNO_{2} + \frac{1}{2}O_{2}$	0 F_2 reacts with CH_4 even \in 111 (d) 1 NO_2 is brown gas and N_2C	
109 (b) 6 H_2SO_4 is a very good hygroscopic agent.	111 (d) 2 $H_2C_2O_4H_2SO_4H_2O+C_4$	_
 109 (c) 7 NO (Nitric oxide) is synthesized in lab by copper with cold and dilute HNO₃. 3Cu+8 HNO₃→3Cu(NO₃)₂+2NO+4H₂O 	$ \begin{array}{c} 111 \textbf{(c)} \\ 4 SO_2 + Cl_2 \longrightarrow SO_2 Cl_2 \\ 111 \textbf{(d)} \end{array} $	
	6	

Perchloric acid is not a peroxy acid while perphosphoric acid, pernitric acid and perdisulphuric acid are the example of peroxy acid.

111 (a)

8 $2 NaI + 2H_2SO_4 \longrightarrow Na_2SO_4 + I_2 + SO_2 + 2H_2O$

- 111 (a)
- 9 Ozone undergoes addition reactions at C—C unsaturation.
- 112 **(c)**

 $0 \qquad NO(g) + NO_2(g) \rightarrow N_2O_3(l)$

112 (d)

1 $P_4 + 5O_2 \rightarrow P_4O_{10}$; white phosphorus gets easily oxidised because it is highly reactive

112 (a)

2 Red phosphorus is less reactive.

112 **(b)**

3 P forms tetra-atomic molecule.

112 (a)

 $4 H_2 S \rightleftharpoons H^{+\iota + HS^{-\iota\iota}}$ $HS^{-\iota \rightleftharpoons H^{+\iota + S^{\circ \iota\iota}}}$ 112 (c) $5 S + H_2 O + 3O_3 \longrightarrow H_2 SO_4 + 3O_2$

112 **(d)**

6 All show +5 covalency.

112 **(c)**

Xenon hexafluoride reacts with silica to form XeOF₄ as
 2 XeF₆+SiO₂→XeOF₄+SiF₄
 The oxidations state of xenon in XeOF₄ is calculated

as x^{-2-1} XeOF₄ $x+(-2)+4 \times (-1)=0$ x-2-4=0

x=+6

112 (d)

8 These are reasons for the given fact.

112 **(c)**

- 9 Halogen's *d*-orbital forms π-bonds with *p*-orbital of oxygen.
 113 (a)
- 0 It is a fact.
- 113 (c)

1

 $2 NaCl + K_2 Cr_2 O_7 + 4 H_2 SO_4 \longrightarrow Na_2 SO_4 + 2 KHS$ 113 (c)

2 Ozone is used for purifying water because ozone kills bacteria, cysts, mold ,parasites ,viruses, contaminates etc. It is one of the effective way of eliminating microorganism in the water. Ozone is most effective oxidant. It inactivates and oxidises organic matter, contaminates, pesticides, viruses and bacteria faster than chlorine. Ozone do not form TMH which have unpleasant odour and also carcinogenic. Ozone is very good biocide, ozone also absorts UV radiation.

113 **(d)**

3 Due to $N \equiv N$ bond.

113 (d)

4 In disproportionation reaction, compounds are simultaneously formed that contain a given element in a more oxidised and more reduced state than the intial one. CIO_4^{-ii} In oxidation number of Cl is +7 and it cannot increases it further so CIO_4^{-ii} will not get oxidized and so will not undergo disproportionation reaction.

113 **(c)**

5

 $2 Mn O_4^{-i+16H^{+i+10CI^{-i-2Mn}}}$

113 **(d)**

6 AsH_3 is gas.

113 **(d)**

7 P_4O_{10} is tetrahedral \in nature.

113 **(b)**

- 8 It is a reason for the given fact.
- 113 **(d)** 9 Cl_2O , $ClO_1, ClO_2, Cl_2O_6, Cl_2O_7, ClO_4$ are oxides c
- 114 (d) 0 N_2 O has neither oxidant nor reductant nature.

114 **(d)**

1 By Haber's process.

114 **(a)**

2 The basic character of halides of N is: $NF_3 < NCl_3 < NBr_3 < i_3$.

114 **(c)**

3 H_2O_2 decolourises KMnO₄ but O₃ not.

4

$$Cl_2 + 2 KBr \rightarrow Br_2 + 2 KCl$$

114 **(c)**

5 It is a fact.

114 **(d)**

6 $Ba(N_3)_2 \rightarrow Ba(s) + 3N_2(g)$

Azide salt of barium can be obtained in purest form as well as the decomposition product contain solid Ba as by product alongwith gaseous nitrogen hence to additional step of separation is required.

Other reaction are

 $NH_4 NO_3 Heat N_2O+2H_2O$ $2 NH_3 + 3CuO Heat 3Cu+3H_2O+N_2$ $(NH_4)_2Cr_2O_7 Heat Cr_2O_3 + 4H_2O + N_2$

114 **(b)**

7 I_2 +alcohol is tincture of iodine used as antiseptic.

114 **(c)**

8 $2 XeF_6 + SiO_2 \longrightarrow SiF_4 + 2 XeOF_4$

114 **(c)**

9 I_2 possesses sublimation nature.

115 **(c)**

0

Electrolysis of $MgCl_2$, NaCl, $KCl \in fused$ state gives Cl_2 as byproduct. Electrolysis of Al_2O_3 in fused state gives O_2 as byproduct.

115 **(d)**

1 Rest all reacts with H_2SO_4 .

115 **(b)**

2 $NaNO_3 + 8 H \longrightarrow NaOH + 2 H_2O + NH_3$ $Zn + 2 NaOH \longrightarrow Na_2 ZnO_2 + 2 H$

115 **(b)**

3 Phosphine forms vortex rings of P_2O_5 when it comes in contact of air .These rings are in the form of white smoke .They are used in making smoke screen in warfare.

115 **(c)**

These radioactive minerals have entrapped He atoms, 1
 produced from particle, which they give on heating in 7
 Vacuo.

115 **(b)**

5 Rest all $(ClO_3 = 41 \, electrons, ClO_2 = 33 \, electrons)$ have unpaired electrons.

115 **(b)**

6 SO_2 is acidic \wedge KOH is basic.

```
115 (d)
7 SO<sub>2</sub>+
```

$$SO_2+2H_2S \longrightarrow 2H_2O+3S; S^{2-ichangesi}S^0.$$

115 (d)

8

In the reaction, $2HNO_3+P_2O_5 \rightarrow 2HPO_3+N_2O_5$ HNO_3 does not behave as an oxidising agent because in this reaction P_2O_5 shows dehydrating property. It removes water molecule from HNO₃

115 **(d)**

9 A mixed salt is one which gives more than one type of cations or anions, *e*. g., $Ca^{2+i+OCI^{-i+CI^{-i}}i}$

0 $4 FeS+7O_2 \rightarrow 2Fe_2O_3+4SO_2$ $SO_2+H_2O \rightarrow H_2SO_3$ H_2SO_3 is dibasic acid. 116 (c)

$$NH_3 + H_2O \longrightarrow NH_4^{+i+OH^{-ii}i}$$

116 **(d)**

1

3

In the formation of $Xe F_4$, $s p^3 d^2$ hybridisation occurs which gives the molecule an octahedral structure. The xenon and four fluorine atoms are coplanar while the two equitorial positions are occupied by the two lone pairs of electron

116 **(d)**

4 N_2O and NO are neutral oxides of N.

116 **(d)**

5

-1 due to most electronegative nature and +3, +5, +7 due to excitation of *p*-electrons to *d*-orbitals; +1 also with less electronegative elements.

116 **(c)**

6 First two are simply methods of preparation of O_3 . Manufacture is done by (c) only.

$$P_4 + O_2 \longrightarrow P_4 O_{10} \lor P_4 O_6$$

116 **(d)**

8

9

Rest all are uses of He . He is heavier than H_2 .

```
116 (c)
```

```
It is a fact.
```

117 (b)

- In N_2 and O_2 , Mg will react on heating with them and 0 welding is not possible.
- 117 (a)
- HNO_3 oxidizes H_2S to colloidal sulphur. 1 $H_2S+2HNO_3 \longrightarrow 2NO_2+2H_2O+S$

117 (a)

 $CS_2 + 2Cl_2 \longrightarrow CCl_4 + 2S$ 2

- 117 (a)
- Each member of gp. 16 or VIA has $n s^2 n p^4$ 3 configuration with two unpaired *p*-electrons.
- 117 (d)
- 4 Krypton is used in miner's cap lamps.
- 117 (b)

Solution of $Br_2 \in CS_2$ is orange \in colour. 5

- 117 (c)
- On long standing it undergoes auto-oxidation as, 6 $6 CaOCl_2 \longrightarrow Ca[ClO_3]_2 + 5 CaCl_2$.
- 117 (d)
- 7 Ar is most abundant inert gas in air.
- 117 (a)
- $KF + HF \longrightarrow KHF_{2}$ 8

117 (d)

9 PCl₅ produces POCl₃ with the following reagents PCl₅+ SO₂→POCl₃+SOCl₂ $PCl_5+H_2O \rightarrow POCl_3+2HCl$ $6PCl_5+P_4O_{10} \rightarrow 10POCl_3$

118 **(b)**

0 On hydration, energy is given out.

118 **(b)**

1 Polyanion formation is maximum in sulphur. this is due to the fact that sulphur shows maximum catenation in the group.

118 (c)

2 The solubility of noble gases increases with increase in mol. wt. due to increase in van der Waals' forces. However, these are sparingly soluble.

118 (a)

3 It is a fact.

118 (a)

Sulphur is found in following allotropic forms : 4 (a)monoclinic (b)rhombic (c)plastic

118 (c)

5

$I_2 + 10 HN O_3 \rightarrow 2 HI O_3 + 10 NO_2 + 4 H_2 O_3$

118 (d)

6 All these adsorb inert gases.

118 **(b)**

7

8

Potassium tetraiodo mercurate (II) ie K₂[HgI₄]dissolve in KOH solution to give Nessler's reagent . Nessler's reagent is used to test NH_4^{+ii} ions.

118 (a)

$$F_2 + H_2 O \longrightarrow 2 HF + \frac{1}{2}O_2; \Delta H = -ve.$$

118 (a)

9 Pseudohalide ions combine together to form interpseudohalogen compounds. Cl₂N₃ is not an interpseudohalogen.

119 (a)

1

2

$$HCOOH H_2 SO_4 H_2 O + CO$$
$$\vec{H_2 C_2 O_4 H_2 S O_4 H_2 O} + CO + CO_2$$

$$H_2S_2O_8$$
 has $O-O$ bond \in it.

119 (a)

4 ClF_3 , where Cl is s $p^3 d$ hybridised, has a T-shape structure due to presence of two lone pairs of electrons on *Cl* atom

119 (b) 5

4
$$HCl+O_2CuCl_22H_2O+2Cl_2$$
 Deacon's process

- 119 (a)
- Nitre cake is $NaHSO_4$. 6

119 (a)

7 Helium(He) is a non-flammable(incombustible) gas and its lifting power is 93% as compared to flammable hydrogen gas, due to these reasons it is used in filling balloons and other lighter air -crafts.

119 (a)

8 It is a fact.

119 (d)

- 9 It is a reason for the given fact.
- 120 (a)

0

$$S_2O_7 + H_2O \rightarrow H_2S_2O_8$$

120 (b)

1
$$PI_3 + 3H_2O \longrightarrow +H_3PO_3 + i 3HI_{(Monobasic)}$$

120 (a)

2 Rest all are poisonous hydrides.

120 **(b)**

 $S \in SO_4^{2-issp^3i}$ -hybridized. 4

120 **(b)**

5 Only carbon reacts with conc. H₂SO₄ to give two different gases

 $C + 2H_2SO_4 \rightarrow CO_2 + 2SO_2 + 2H_2O$ While other elements react with conc. H₂SO₄ with the evolution of only one type of gas.

120 **(b)**

 O_3 is an allotrope of O_2 . 6

120 (a)

 $Na_2SO_3 + S \rightarrow Na_2S_2O_3$ 7

120 (d)

Each O and S has six valence electrons in it. 8

120 **(b)**

I atom in IF_7 possesses $p^3 d^3$ -hybridisation to 9 develop pentagonal bipyramidal shape.

121 (d)

0

 $^{+7}_{HClO_4} > \overset{+5}{HClO_3} > \overset{+3}{HClO_2} > \overset{+1}{HClO}$

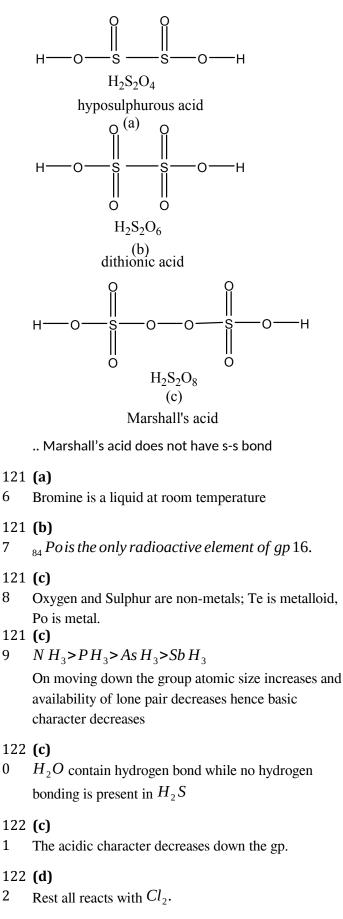
As the oxidation number of halogen increases, acidic character increases

121 (b)

1 The 3 : 1 ratio of Cl^{35} : Cl^{37} gives average at. wt. of 35.5 to chlorine.

121 (d)

2 Zero group is called as buffer group because it lies between highly electronegative halogens and highly electropositive alkali metal elements.


121 (a)

3 As the number of shells increases, size increases and the effective nuclear charge on the outermost electron decreases. Thus, IE decreases

121 **(b)**

- $2Na_2S_2O_3+I_2 \rightarrow 2NaI+Na_2S_4O_6$ 4
- 121 (c)

5

122 (c)

6

7

8

9

0

1

2

- Greater is electronegativity difference more is 3 polarity. Electronegativities of N, Cl, O, F are 3.0, 3.0, 3.5 and 4.0 respectively.
- 122 (d)

$$Na + NH_3 \longrightarrow NaNH_2 + \frac{1}{2}H_2$$

122 (c)

5 Bartlett prepared first compound of Xe as $Xe^{+i[PtF_6]^{-i\iota}i}$, a red orange crystalline solid. $Xe + PtF_6 \longrightarrow Xe^{+i[PtF_6]^{-i\iota}i}$

122 **(d)**

6 Oxidation number of S in H_2SO_3 is +4 which lies between minimum (-2) and maximum (+6) values and can thus increase or decrease.

122 **(b)**

- 7 The ease of liquefaction decreases with decrease in critical temperature. Also, critical temperature of a gas is lowered with increase in mol. mass.
- 122 **(d)**
- 8 Concentrated H_2SO_4 is less volatile, *ie*, it has high boiling point

122 **(b)**

9 4 P+5 CO_2 \longrightarrow 2 P_2O_5 +5C

123 **(b)**

0 Silica (SiO_2) is present in the glass. This silica reacts with hydrofluoric acid. SiO₂+4HF \rightarrow SiF₄+2H₂O SiF₄+2HF \rightarrow H₂SiF₆

fluorosilicic acid Note: HF is used for the etching of glass.

123 **(a)**

1 The most reactive nature of F_2 brings it the name super halogen.

123 **(b)**

2 N_2 O does not burn itself but supports combustion.

123 **(c)**

3 Carbon cannot expand its octet due to absence of *d*-orbitals.

123 **(b)**

4

 $HgO \longrightarrow Hg + \frac{1}{2}O_2$

123 **(b)**

5 I_2 forms I_2O , I_2O_3 , $I_2O_5 \land I_2O_7$ oxides.

123 **(d)**

6 Due to (i) Small atomic size (ii) High ionization energy (iii) Absence of *d*-orbital, helium does not form any compound 7 $2HCIO_4 \rightarrow Cl_2O_7 + H_2O$ Hence, Cl_2O_7 is the anhydride of $HCIO_4$

123 (c)

8 It is a fact.

- 123 (d) 9 Spirit of salt is a solution of HCl. 124 (d) 0 $2I^{-i \rightarrow I_2 + 2ei}$ $2e + S^{6+i \rightarrow S^{4+ii}i}$ 124 (c) 1 Oxygen shows only -2, -1 and +2 ($i F_2O$)oxidation states. 124 (d) 2 Concentrated sulphuric acid, being a strong acid,
 - Concentrated sulphuric acid, being a strong acid, oxidises bromides and iodides but not chlorides and fluorides since, the later are more electronegative.Hence it can be reduced only by NaBr among the given options.

$$\begin{array}{ccccc} +6 & -1 & +6 & -1 \\ H_2 \operatorname{SO}_4 + & \operatorname{NaBr} & \rightarrow & \operatorname{NaHSO}_4 & + & \operatorname{HBr} \\ -1 & +6 & 0 & +4 \\ 2\operatorname{HBr} & + H_2 \operatorname{SO}_4 \longrightarrow 2\operatorname{H}_2 \operatorname{O} + \operatorname{Br}_2 + & \operatorname{SO}_2 \end{array}$$

reduction

124 **(a)**

3

4

5

$$S^{4+i+4e \longrightarrow S;i}$$
$$S^{2-i \longrightarrow S+2ei}$$

124 **(d)**

The great affinity of $H_2 SO_4$ for water is because it forms hydrates with water

124 (d)

Usually electron affinities decreases on moving down a group but fluorine due to its smaller size has a low value of electrons affinity in comparison to chlorine because the incoming electon experience greater repulsion . Thus, the order of electron affaffinity is as Cl>F>Br>I.

124 **(a)**

6 The correct order of acidity strength of halogen acids is HF<HCl<HBr<HI

This is due to the reason that as the size of halogen increases H - X bond becomes weaker and thus, H - X easily donate proton. Hence, HI is the strongest acid and HF is the weakest acid.

124 **(a)**

7

It is a fact.

123 **(b)**

	$NH_4 NO_3 \longrightarrow N_2 O + 2H_2 O; N_2 O \text{does not burn and}$
	thus, does not supporter of combustion. Rest all nitrates give O_2 which is supporter of combustion.
124 9	(d) $H_2C_2O_4H_2SO_4CO+CO_2+H_2O$
125 0 :	(b) $3Cu+8HNO_3 \longrightarrow 3Cu(NO_3)_2+2NO+4H_2O$
125 1	(b) M . p . order : HCl < HBr < HF < HI . 158 186 190 222K
125 3	(a) O_3 has no action with KMnO ₄ .
125 4	(d) It is a method to obtain noble gases.
125 5 3	(c) 3 NaOCl → NaClO ₃ +2 NaCl
125	Hypochlorite Chlorate (b) <i>Chromite ion is</i> $Cr_2 O_4^{2-ii}$
125 7	
]	(a) Hydride HF HCl HBr HI B.pt(in K) 293 189 206 238 Because of having low boiling point HCl is more volatile
: 	(b) The energy liberated when an electron is added to an isolated gaseous atom is called electron affinity. Thus, as the size increase lesser energy is liberated and hence electron affinity decrease .But the electron affinity of Cl is higher than the electron affinity of F although F has smaller size. This is because the imcoming electron, in case of F experience a greater force of repulsion from the outer electrons of F. Thus to overcome the repulsion some relased energy is utilized . Hence lesser energy is released. Thus the electron affinity is highest for Cl.

Fluorine reacts with water liberating O_2 exothermally 2 F_2 +2 $H_2O \rightarrow 4HF+O_2$

126 **(c)**

2
$$Ca_3P_2+6H_2O \longrightarrow 3Ca(OH)_2+2PH_3$$

126 (d)

126 (a)

0

3 P exists as P_4 .

126 **(a)**

4 Aqua-regia is the mixture of 3 part conc. HCl and 1 part conc. HNO₃. It is a very strong acid which can dissolve noble metals.

126 **(c)**

5

 $XeO F_4 + H_2O \rightarrow XeO_2F_2 + 2 HF$ $Xe F_6 + 2H_2O \rightarrow XeO_2F_2 + 4 HF$

126 **(c)**

6 It is a reason for the given fact.

126 **(b)**

7 COOH +Conc.H₂SO₄
$$\rightarrow$$
CO+CO₂ +H₂O

| COOH

Oxalic acid

Concentrated H₂SO₄ is a strong dehydrating agent.

126 **(a)**

8 O^{16} is the most abundant isotope of oxygen.

126 **(b)**

9 Ramsay found it during decay of radio isotopes.

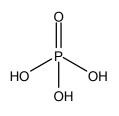
127 **(c)**

0 Group 15 members are called pnictogens, a collective name for this family.

127 **(b)** 1 $8e+2N^{5+i \longrightarrow N_2^{+ii}i}$

127 **(b)**

2 HO SO_2 —OH+2PCl₅ \rightarrow Cl SO_2 —Cl+2POCl₃ +2HCl


127 **(b)**

3 $Xe F_6$ cannot be stored in glass vessels because it reacts with SiO_2 of the glass to give highly explosive $Xe O_3$

$$2\,Xe\,F_6{+}3\,SiO_2\rightarrow 2\,Xe\,O_3{+}3\,Si\,F_4$$

127 **(b)** 4 H₃P

H₃PO₄ is tribasic acid.

 $\begin{vmatrix} 127 & (d) \\ 5 & C_{12}H_{22}O_{11}H_2SO_4 12C + 11H_2O; \\ \vec{J} & \vec{J} \end{vmatrix}$

The process is called charring.

 127 (a) 6 In case of fluorides and chlorides, HF and HCl gases are given out on heating with conc. H₂SO₄ ∧ MnO₂. In bromides and iodides Br₂ ∧ I₂ are given out. 127 (b) 	127 (d) 8 All these tests are used i detect the presence of H_2S .
9 On passing H_2 S through an oxidant, colloidal Sul	phur is formed .
128 (a) 0 SO_2 is anhydride of H_2SO_3 .	When molten sulphur is suddenly cooled by pouring into water it converts into plastic form
128 (a) 1 It is a fact.	129 (b) 6 Rest all react with $H_2SO_4 \&$ give H_2 .
 128 (d) 2 It is a fact. 	129 (c) 7 The oxides are CO_2 , $H_2O \wedge SO_2$ respectively.
 128 (c) 3 White phosphorus is soluble in CS₂ but red P is not. 128 (c) 	129 (c) 8 N_2 and O_2 present in air are allowed to react to form NO and then NO_2 .
4 The bond angles are 92 °, 106 ° 51 ′, 109 ° 28 ′ ∧ 128 (d)	129 (b) 9 Both SO ₃ \wedge H ₂ SO ₄ have Sulphur \in + 6 oxidation stc
5 In solid state PCl_5 is ionic having PCl_4^{+ii} and PCl_6^{-iii} ions.	130 (c) 0 It is a fact.
128 (d) 6 $IF_5 + F_2 \longrightarrow IF_7$	130 (c) 1 $1s^2 2s^2 2p^6 \rightarrow \text{Neon}$
128 (c)	It is noble gas
7 NH_3 is polar as well as base and thus, soluble in water.	130 (a)2 F does not have d-orbital in 2nd shell.
128 (c) 8 IPO_4 is an ionic compound \mathcal{L}_1	130 (d) 3 A commercial method to prepare O_2 .
128 (b) 9 $ClO_3^{-i has sp^3 i}$ -hybridization.	130 (c) 4 N_2 is not supporter of life.
129 (d)0 HI being least stable decomposes with time to yield	130 (b) 5 Hg reacts with O_3 to form HgO which sticks on walls.
 H₂+I₂. The I₂ is dissolved in HI to develop brown colour in solution. 129 (d) 	130 (b) 6 He has \parallel , $1 s^2$ configuration.
$1 3 \text{ KClO}_3 + 3 H_2 \text{ SO}_4 \longrightarrow 3 \text{ KHSO}_4 + HClO_4 + 2 ClO_2$	
The reaction occurs with explosion. 129 (b)	7 $SCl_4has sp^3d$ - <i>i</i> hybridization and possesses see-
2 $4 HNO_3 + P_4O_{10} \rightarrow 4 HPO_3 + 2N_2O_5$	saw structure. 130 (b)
129 (c)	$8 PCl_3 + 3H_2O \longrightarrow H_3PO_3 + 3HCl$
3 $F-F$ more strong bond compare to $F-Cl, F-Br \wedge Cl-Br$ bond	130 (a) 9 N_2O_5 is acidic. NaOH an alkali, can absorb acidic
129 (d) 5	

131 **(b)**

0 Notice that electron affinity of Cl is more than F.

 $1 \quad 2O_3 \longrightarrow 3O_2$

131 **(d)**

2 i

131 (c)

3 Oleumis $H_2S_2O_4 + SO_3$.

131 (a)

4 N_2 forms NCl₃, while P can form both PCl₃ and PCl₅ nitrogen does not give a pentahalide due to the non availability of 2*d*-orbital ,whereas p has low lying 3*d*orbital which can be used for bonding.

131 **(b)**

5 $(CN)_2$ is known as pseudohalogen

- 131 (a)
- 6 B.p. and m.p. decrease with decrease in mol. wt.
- 131 (a) 7 $NH_4NO_3 \longrightarrow N_2O+2H_2O$
- 131 (a)
- 8 $SO_3 + HCl \longrightarrow SO_2(OH) \underset{Chlorosulphonic acid}{Cl}$

131 **(b)**

9 $NH_4CNO - H^{+i} NH_2CONH_2i$

132 **(b)**

0 Salts of $HClO_2$ i

- 132 **(a)**
- 1 He gas is not adsorbed by coconut charcoal.

132 **(d)**

2 PbS is i which is oxidized i $PbSO_4$ by ozone.

132 **(b)**

3 $S+2H_2SO_4 \longrightarrow 3SO_2+2H_2O$

132 **(d)**

4 CO_2 gets evaporated slowly.

132 **(b)**

5 The order of bond dissociation energy of hydrogen halide (or halogen acid) is as Hydrogen halide dissociation HF >HCl >HBr >HI Bond dissociation Energy KJ mol⁻¹ 566 431 366 299 Bond dissociation energy ∝ heat of formation As bond dissociation energy decreases the heat of formation of halogen acids also decreases. Hence, the order of heat of formation of halogen acids is HF > HCl > HBr > HI

132 **(d)**

6

$$P_{2}O_{5}, ie, P_{4}O_{10}$$

$$P_{2}O_{5}, ie, P_{4}O_{10}$$

$$P_{2}O_{5} \Rightarrow Six P-O-P bridges$$

$$P_{2}O_{3}ie, P_{4}O_{6}$$

$$P_{2}O_{3}ie, P_{4}O_{6}$$

$$P_{2}O_{3}ie, P_{4}O_{6}$$

$$P_{2}O_{7}O = P bridges$$

132 (d)

7 $S_R \wedge S_M$ are allotropic forms of Sulphur.

132 **(d)**

 8 Copper turing on heating with conc.H₂SO₄ produce SO₂.
 Cu+2 H₂SO₄→CuSO₄+2H₂O+SO₂

132 **(c)**

9 Option(c) has noble gas configuration as it has 8 electrons in valence shell.

133 **(d)**

The acidity of oxyacids of halogens increases with increase in oxidation state of halogen.
 Oxidation state of Cl in HCIO=+1
 Oxidation state of Cl in HCIO₂=+3
 Oxidation state of Cl in HCIO₃=+5
 Oxidation state of Cl in HCIO₄=+7
 Hence, HCIO₄ has highest acidity among oxyacids of chlorine.

133 **(a)**

1 *LiF>LiCl>LiBr>LiI* (Lattice energy)

133 **(d)**

2 Iodine readily dissolves in potassium iodide solution giving KI₃.

 $KI + I_{2} \rightarrow KI_{3(aq)}$ $KI_{3}(aq) \rightleftharpoons K^{+i+ii_{aq}} + I_{3}^{-ii}(aq)$

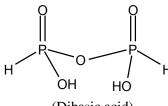
Note:
$$I_2$$
 is more soluble in an aqueous solution of KI than in pure water, it is due to the formation of

polyhalide ¿¿ ion).	5 HNO_2 can be either reduced to nitric acid (NO) or
 133 (c) 3 SO₃ is colourless, crystalline transparent solid at room temperature. 	oxidised to nitric acid and hence it acts both as an oxidising as well as reducing agent $2 HNO_2 \rightarrow 2NO+H_2O+O$ $HNO_2+O \rightarrow HNO_3$
133 (d)	
4 H_2O containing H-bond due to which it have highest	133 (d)
boiling point	6 $NCl_3 has sp^3$ -hybridized N atom.
133 (c)	
4 H_2O containing H-bond due to which it have highest boiling point	

133 **(c)**

7 NH_4 Cl has sublimation nature, i.e., tendency i convert directly into vapour state i solid state.

134	$P_4O_{10} + 10C \stackrel{\Delta}{\rightarrow} P_4 + 10CO$		$x \text{ vol } O_2 = \frac{2}{3} x \text{ vol } O_3$ $x + \frac{2}{3} x = 100 \text{L}$
134 3	(d) In electrothermal process silica is heated with calcium phosphate when phosphorus pentoxide is obtained .It is then reduced by coke in electric furnace to get white phosphorus. $2Ca_3(PO_4)_2+6SiO_2^{\Delta} 6CaSiO_3+P_4O_{10}$	135 3 135 4	It is a fact. (d) $3O_2 \rightarrow 2O_3$ $3vol O_2 = 2vol O_3$
	other elements are as follows $N \rightarrow \alpha$ and β nitrogen $As \rightarrow$ Yellow and Grey forms $P \rightarrow$ White, Red and Black forms $Sb \rightarrow$ Yellow and Grey forms	135 2	$PO_{2} \land NC l_{5} \text{ cannot exist}$ (a) $3CuO+2 NH_{3} \longrightarrow 3Cu+N_{2}+3H_{2}O$
134 1 134 2	As stabilizer.	9 135 0	The acidic character of oxo-acids decreases down the gp. (b) $3 N H_3 + OC l^{-i \rightarrow N H_2 - N H_2 + N H_4 Cl + O H^{-ii} i}$
134 0	(b) Liquid ammonia helps in cooling of things due to its high heat of vaporisation. Therefore, it is used in refrigeration.	134 8 134	Alkali metal oxides are most basic.
133 8 133 9	$NH_3 + HCl \longrightarrow NH_4Cl$ (White fumes)	134 7	Reducing properties increase from F to I so, it oxidise by nitric acid


The correct order of occurrence in air is Ar>Ne>Kr

135 **(b)**

6 Most of the noble gases are obtained from air.

135 **(a)**

7 In pyrophosphorous acid p is in +3 oxidation state.

(Dibasic acid)

135 **(a)**

8 In the reaction SO₂ and H₂S, SO₂ acts as oxidizing agent and H₂S acts as reducing agent. SO₂+2H₂S \rightarrow 2H₂O+3s \downarrow

135 **(d)**

9 HBr is strong reducing agent \land will be oxidized by .

136 **(b)**

0 About 46% N is present in urea.

136 **(c)**

136 **(b)**

9 Marshall 's acid is the name for $H_2S_2O_8 \lor$ perdisulphuric acid.

137	(a)	7	It is a fact.
0	Neon is Greek language signifies 'new'.	137	(d)
137	(a)	9	These are the uses of liquid oxygen.
1	Due to one unpaired electron in it.	138	(c)
137	(a)	0	$CuSO_4 + 2H_2O \longrightarrow Cu(OH)_2 + H_2SO_4;$
2	$Ca+F_2 \longrightarrow CaF_2$ (an insoluble compound responsi		Addition of CH_3COOH reverses the hydrolysis of
137	(b)		$CuSO_4$.
3	Nitric acid oxidises iodine into iodic $acid(HIO_3)$.	138	(d)
	$10HNO_3+I_2 \rightarrow 3HIO_3+10NO_2+4H_2O$		$Xe F_2$ has $s p^3 d$ hybridization with linear shape
	Iodic acid		$:-x_{e}$
137	(b)		
4	B.p. of molecules increases with increase in mol. wt.		
	NH_3 however shows H-bonding and has high b.p.	138	(a)
137	(a)	2	I_2 is more soluble $\in C_6H_6$ than \in water.
5	S, Se and Te are typically tetravalent in their	138	(c)
	compounds with oxygen. They show +6 oxidation	3	$2 HNO_3 \rightarrow N_2O_5 + H_2O$
	state in fluorides.		Nitric acid
137	(c)		

1 Magnesium and dilute HNO₃reacts to produce H_2 gas. Mg+2 HNO₃ \rightarrow Mg(NO₃)₂+H₂ \uparrow

136 **(d)**

3 In *HF*, the molecules aggregate because of intermolecular hydrogen bonding. Hence, it has highest boiling point

136 **(a)**

4 *HF* is a weak acid due to intermolecular hydrogen bonding

136 **(c)**

5 Rest all are uses of chlorine.

136 **(b)**

6 The solubility of I₂ in water increase by the addition of KI due to formation of polyhalide ion, i.e. I_3^{-ii} . KI+I₂ \rightarrow KI₃

136 **(d)**

7 Platinum, palladium and iridium are not attacked by strong acids. So these are called noble metals.

136 **(b)**

8

 $CaCl(OCl) \rightarrow Ca(ClO_3)_2 + CaCl_2$

138 (b) $Cu+2H_2SO_4 \longrightarrow CuSO_4+SO_2+2H_2O$ 138 (d)

 $Cl_2 + H_2 O \longrightarrow 2 HCl + [O]$ 7

138 (d)

6

8 HNO_3 is strong oxidant and oxidizes these all.

139 (d)

 $Xe \in XeF_4$, XeF_6 , $XeO_3 \land XeO_4$ possess sp^3d^2 , sp^3d^3 , $sp^3 \land sp^3$ -hybridisation respectively. 1

139 (c)

2 Polonium, the last member of oxygen family is radioactive

139 (c)

3 In cold solution S passes in colloidal state.

139 (d)

 $XeO_3 + 6 HF \longrightarrow XeF_6 + 3 H_2O$ is not possible 4 because F^{-ii} is strong reducing agent and XeO_3 is strong oxidant. However the reverse reaction occurs $XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$

139 **(b)**

Equimolar amounts of NO(g) and NO₂(g) at -30°c 5 give $N_2O_3(l)$ which is ablue liquid.

 $NO(g)+NO_2(g)^{-30 \circ C} N_2O_3(l)$ blue

139 (b)

Fluorine is the most electronegative element in 6 Periodic Table

139 (c)

 NH_3 reacts with rest of all. 7

139 **(b)**

8 NH_3 has one lone pair of electrons. Rest all two lone pairs on central atom. The angle contracts due to lone pair effect.

139 (c)

9 As the oxidation number of central atom in oxo-acids increases, acidic nature increases.

140 (a)

The bond angles and stability in hydrides decrease 0 from N to Sb due to decreasing electronegativity of central atom.

140 (d)

1 $P_4+3NaOH+3H_2O\rightarrow 3NaH_2PO_2+PH_3$ 138 (a) 9 White phosphorus exists as P_4 units where, four P atoms lie at the corners of a regular tetrahedron with $P-P-P=60^{\circ}$

139 (d)

0 All were difficulties in isolation of F_2 . 140 **(a)** $2-i+H_2SO_4 \longrightarrow \underset{smell}{SO_3} SO_4^{2-i+H_2Oi} i$ 2 $3SO_2 + K_2Cr_2O_7 + H_2SO_4 \longrightarrow K_2SO_4 + Cr_2(SO_4)_3$ $\overset{i}{\underset{\iota}{\iota}} + H_2O\iota$ 140 **(b)** 3 NO_2 is pungent smelling gas. 140 (a) $NH_2CONH_2 + HNO_2 \rightarrow 2N_2 + CO_2 + 3H_2O$ 4 140 (a) 5 The —O—O—linkage is called peroxide linkage. Except for PbO₂,all the given choices have -O-O-linkage because all are peroxide. $H_2O_2 \rightarrow hydrogen peroxide$ $BaO_2 \rightarrow barium peroxide$ $SeO_2 \rightarrow selenium peroxide$ 140 (c) P_4 +3 NaOH+3 $H_2O \rightarrow PH_3$ +3 Na H_2PO_2 6 140 **(c)** 7 Rest all react with AgCl. 140 (d) 8 It is a reason for the given fact. 140 (a) 9 $F_2 + \frac{1}{2}O_2 \longrightarrow F_2O$ is endothermic in nature and F_2 is reduced here, O_2 is oxidized. In (b) Cl_2 is oxidised. In (c) no doubt F_2 is reduce but it is exothermic reaction. 141 (c) $CaC_2 + N_2 \longrightarrow CaCN_2 + C$ 0