Single Correct Answer Type

1.	The Minerals having silicates chains are collectively called					
	a) Olivine	b) Zircon	c) Pyroxenes	d) Natrolite		
2.	Pyrex glass is a mixture of	:				
	a) Sodium borosilicate and	d barium borosilicate				
	b) Sodium silicate and cal	cium silicate				
	c) Sodium silicate and lea	d silicate				
	d) Sodium silicate and alu	minium borosilicate				
3.	Amorphous boron on burn	ning in air forms:				
	a) $B(OH)_3$					
	b) Mixture of B_2O_3 and B	BN				
	c) Only B_2O_3					
	d) Only BN					
4.	What is the state of hybrid	lization of carbon in fulleren	e?			
	a) $_{Sp}^2$	b) _{s p} ³	c) _{sp}	d) $s p^3 d$		
5.	Boron was isolated by:					
	a) Moseley	b) Davy	c) Rutherford	d) Moisson		
6.	Which reaction cannot give	re anhydrous $AlCl_3$?				
	a) Heating of $AlCl_3 \cdot 6H_2O$					
	b) Passing dry HCl over heated aluminium powder					
	c) Passing dry Cl_2 over heated aluminium powder					
	d) Heating a mixture of alumina and coke in a current of dry Cl_2					
7.	An aqueous solution of po	tash alum gives				
	a) Two types of ions	b) Only one type of ion	c) Four types of ion	d) Three types of ions		
8.	Which is neutral to litmus	?				
	a) ZnO	b) SnO	c) CO	d) SiO		
9.	Electrolytic reduction of alumina to aluminium by Hall-Heroult process is carried out:					
	a) In the presence of NaCl					
	b) In the presence of fluor	ite				
	c) In the presence of cryolite which forms a melt with lower melting temperature					

	d) In the presence of cryolite which forms a melt with higher melting temperature					
10.	The type of glass used in m	aking lenses and prism is				
	a) Pyrex glass	b) Quartz glass	c) Jena glass	d) Flint glass		
11.	Solid CO_2 is used as:					
	a) Poison	b) Fire extinguisher	c) Refrigerant	d) Artificial respirant		
12.	Coke is obtained from coal	by:				
	a) Cracking					
	b) Fractional distillation					
	c) Destructive distillation					
	d) None of these					
13.	The liquid field metal expan	nding on solidification is				
	a) Cu	b) <i>Ga</i>	c) Al	d) Zn		
14.	Solder is an alloy of					
	a) Pb+Sn	b) $Pb + Sn + Zn$	c) Pb+Zn	d) $Sn+Zn$		
15.	Graphite is used in nuclear	reactors:				
	a) As a lubricant	b) As a fuel	c) As moderator	d) None of these		
16.	BF_3 is an example of Lew	is acid because it behaves as:				
	a) Nucleophile	b) Electrophile	c) Free radical	d) lyophilic		
17.	What is the number of free	electrons present on each car	rbon atom in graphite?			
	a) 0	b) 3	c) 2	d) 1		
18.	CCl ₄ does not show hydrol	ysis but $SiCl_4$ is readily hyd	rolysed because:			
	a) Carbon cannot expand it	s octet but silicon can expand	1			
	b) Electronegativity of carb	oon is higher than of silicon				
	c) IP of carbon is higher th	an of silicon				
	d) Carbon forms double an	d triple bonds but not silicon				
19.	Lead pipes are corroded qu	ickly by				
	a) dil. H_2SO_4	b) Acetic acid	c) $_{\text{conc.}} H_2 SO_4$	d) Water		
20.	Purification of alumina is e	ssential because:				
	a) Impure alumina is a very	poor conductor of electricity	y			
	b) Impure alumina has a ve	b) Impure alumina has a very high melting point				
	c) Impure alumina cannot i	react with the oxidizing agent				
	d) It is difficult to purify alu	uminium metal				
21.	Structure of boric acid (H_3)	$_3BO_3$) is:				

	b) Tetragonal				
	c) Layer structure in which	BO_3 units are linked with	oxygen		
	d) Layer structure in which	BO ₃ units are linked by H-	-bonding		
22.	Producer gas is a mixture o	f:			
23.	a) $CO + N_2$ Which statement is false?	b) $CO + H_2$	c) $N_2 + CH_4$	d) $CO + H_2 + N_2$	
	a) Water gas is a mixture o	f hydrogen and carbon mon	oxide		
	b) Producer gas is a mixtur	e of carbon monoxide and r	nitrogen		
	c) Water gas is a mixture o	f water vapour and hydroge	n		
	d) Natural gas consists of n	nethane, ethane and gaseous	hydrocarbons		
24. Bauxite ore is made up of $Al_2O_3 + SiO_2 + TiO_2 + Fe_2O_3$. This ore is treated with conc. <i>NaOF</i> and 35 bar pressure for few hours and filtered hot. In the filtrate the species present, are a) $NaAl(OH)_4$ only b) $Na_2Ti(OH)_6$ only					
	c) $NaAl(OH)_4$ and Na_2SiO_3 both		d) $N a_2 Si O_3$ only		
25.	An element A dissolves both in acid and alkali. It is an example of				
	a) Amorphous nature of A		b) Allotropic nature of A		
	c) Amphoteric nature of A		d) Dimorphic nature of A		
26.	Which melts in boiling water	er?			
	a) Gun metal	b) Wood's metal	c) Monel metal	d) Bell metal	
27.	Hardest element of III A gr	oup of gp.13 is:			
	a) B	b) Ga	c) Al	d) In	
28.	Tin cry refers to:				
	a) Conversion of white to grey tin				
	b) Tin plating				
	c) Conversion of white tetrahedral tin to white rhombohedral tin				
	d) Emission of sound while bending a tin rod				
29.	The method of zone refining of metals is based on the principle of				
	a) Greater noble character of the solid metal than that of the impurity				
	b) Greater solubility of the impurity in the molten state than in the solid				
	c) Greater mobility of the J	oure metal than that of impu	urity		
	d) Higher melting point of	the impurity than that of the	e pure metal		
30.	The hybridization of boron	atom in orthoboric acid is:			

a) Trigonal

	a) _{sp}	b) sp^2	c) sp^3	$^{\rm d)}$ s p^3 d	
31.	Which is not an allotrope of	carbon?			
	a) Graphite	b) Diamond	c) Soot	d) Carborundum	
32.	Alum are used as mordant i	n dyeing because			
	a) Dye is adsorbed on Al (Cb) Dye is adsorbed on KOH	$(DH)_3$ which is deposited on fill formed due to hydrolysis	bre in the hydrolysis process		
	c) Both of the above				
	d) None of the above				
 33. Observe the following statements regarding purification of bauxite I. During Hall's process, silica is removed as Si (vapour). II. Bauxite ore contaminated with Fe₂O₃ is purified in Baeyer's process. III. During Serpeck's process, AlN is formed. The correct answer is a) I, II and III are correct b) Only I and III are correct 					
	c) Only I and III are correct		d) Only II and III are correct		
34.	Aluminium is not used				
	a) In silvery paints		b) As oxidizer in metallurgy		
	c) For making utensils		d) As a reducing agent		
35.	Molecular weight of anhydr	Molecular weight of anhydrous aluminium chloride is:			
	a) 133.5	b) 267.0	c) 241.5	d) 483.0	
36.	Mg_2C_3 has the following of	haracteristics:			
	a) It is called magnesium allylide				
	b) It contains $M g^{2+ii}$ and G c) It on hydrolysis gives prod) All of the above	-			
37.	Newton's alloy contains:				
	a) Bi, Sn, Pb	b) Bi, Fe, Cr	c) Bi, Sn, Cd	d) Pb, Sn, Cd	
38.	In III A group (thalium) sho	ow + 1 oxidation state while o	other members show + 3 oxid	lation state, why?	
	a) Presence of lone pair ofc) Inert pair effect	electron in Tl	b) Large ionic radius of Tl and Mone of the above	ion	
39.	The protective film of oxide	e on the surface of Al metal r	may be strengthened by:		
	a) Galvanizing	b) Cathodizing	c) Sheradizing	d) Anodizing	
40.	Which of the following is o	nly acidic in nature?			
	a) $Mg(OH)_2$	b) $Be(OH)_2$	c) $Al(OH)_3$	d) $B(OH)_3$	

41.	. Which poisonous gas is present in the exhaust of car?					
	a) Methane	b) Carbon monoxide	c) Acetylene	d) Ethane		
42.	A metallic oxide which imp	parts purple colour to pottery	is:			
	a) Lead oxide	b) Copper oxide	c) Sodium oxide	d) Manganese dioxide		
43.	The cryolite is:					
	a) _{NaAlO₃}	b) Na_3AlF_6	c) Na_3AlO_3	d) Na_2AlF_5		
44.	Quartz is made of silicon ar	nd oxygen joined in a networ	k arrangement that is similar	to:		
	a) Diamond	b) Graphite	c) _{O2}	d) None of these		
45.	Solid CO_2 is known as dry	ice, because				
	a) It evaporates at 40°C		b) It melts at 0°C			
	c) Its boiling points is more	e than 199°C	d) It evaporates at '-' 78°C	without melting		
46.			state as well as in solution of	non-polar solvents such as		
	benzene. When dissolved in a) $[Al(OH)_6]^{3-i+3HCli}$		c) $Al^{3+i+3Cl^{-ii}i}$	d) $[Al(H_2O)_6]^{3+\lambda+3CI^{-\lambda\lambda}}$		
47.	Hot conc HN O ₃ converts g	graphite into				
	a) Graphite oxide		b) Benzene hexacarboxylic	acid		
	c) Both (a) and (b)		d) None of the above			
48.	Which is correct oxidation	state of lead?				
	a) +3, +4	b) +4	c) +1, +2	d) +2, +4		
49.	Which of the following is a	three dimensional silicate?				
	a) Mica	b) Spodumene	c) Zeolite	d) None of these		
50.	Which of the following is a	Which of the following is a gas?				
	a) BF_3	b) BCl_3	c) BBr_3	d) BI_3		
51.	Plumbo-solvency means dissolution of lead in:					
	a) Hot water	b) Acids	c) Ordinary water	d) Alkalies		
52.	On doping Ge metal with a	little of ln, one gets:				
	a) <i>p</i> -type semiconductor					
	b) n-type semiconductorc) Insulator					
	d) Rectifier					
53.	Vapour density of which ga	as is near to air?				
	a) CO	b) CO ₂	c) <i>NH</i> ₃	d) <i>SO</i> ₂		
54	Muddy water can be purifie	ed through coagulation by usi	nσ	-		

	a) Common salt	b) Alums	c) Sand	d) Lime		
55.	The most abundant gas in ordinary air among the following is:					
	a) Argon	b) Helium	c) Carbon dioxide	d) Carbon monoxide		
56.	Corundum is:					
	a) SiO_2	b) Al_2O_3	c) <i>CaF</i> ₂	d) Cr_2O_3		
57.	Tin dissolves in dilute HNC	O_3 forming:	-	_ 0		
	a) Metastannic acid	b) Nitrous oxide	c) Ammonium nitrate	d) Stannic nitrate		
58.	The core of a non-luminous	s Bunsen burner flame is obse	erved to be yellow in colour.	This is because of:		
	a) Contamination from the	metal of the burner				
	b) Impurities in the fuel					
	c) Incomplete combustion					
	d) None of the above					
59.	The correct order of decrea	asing ionic nature of lead diha	alides is :			
	a) PbF ₂ >PbCl ₂ >PbBr ₂ >PbI ₂					
	b) $PbF_2 > PbBr_2 > PbCl_2 > PbI_2$					
	c) $PbF_2 < PbCl_2 > PbBr_2$	< PbI ₂				
	d) PbI ₂ <pbbr<sub>2 <pbcl<sub>2 <</pbcl<sub></pbbr<sub>	PbF_2				
60.	The correct Lewis acid ord	er for boron halides is:				
	a) $BF_3 > BCl_3 > BBr_3 > BI_3$					
	b) BCl ₃ >BF ₃ >BBr ₃ >BI ₃					
	c) $BI_3 > BBr_3 > BCl_3 > BF_3$					
	d) BBr ₃ >BCl ₃ >BI ₃ >BF ₃	3				
61.	=	petrol or diesel oil in automo	bile engines can be best detec	cted by testing the fuel gases		
	for the presence of : a) $CO + H_2O$	b) CO	c) <i>NO</i> ₂	d) <i>SO</i> ₂		
62.	-		1102			
	a) As a mordant in dyeing					
	b) As an insecticide					
	c) In the purification of wa	ter				
	d) In tanning of leather					
63.	$BC l_3 + H_2 O \rightarrow X$, the pro-	ducts formed in the reaction	are			
	a) B ₂ O ₃ +HOCl	b) H ₃ BO ₃ +HCl	c) B ₂ H ₆ +HCl	d) No reaction		
64.	Boric acid on heating at 150	3 3	2 0			

	a) B_2O_3	b) $H_2 B_4 O_7$	c) HBO ₂	d) H_2BO_3	
65.	Which one of the following oxides? a) $Al_2O_3 < MgO < Na_2O <$	g orders presents the correct set K_2O	sequence of the increasing ba	sic nature of the given	
	b) $MgO < K_2O < Al_2O_3 < R_2O < R_2O < Al_2O_3 < R_2O < R_2O$	Na_2O			
	c) $Na_2O < K_2O < MgO < A$	d_2O_3			
	d) $K_2 O < Na_2 O < Al_2 O_3 <$: MgO			
66.	Which fuel has the highest	calorific value?			
	a) Coal gas	b) Water gas	c) Producer gas	d) Carbon dioxide gas	
67.	Anodising can be done by e	electrolyzing dilute H_2SO_4 v	with Al an anode, this result i	s	
	a) The formation of protec	tive oxide layer	b) The formation of $A l_2 S$	$(SO_4)_3 \wedge SO_2 gas$	
c) The formation of $Al H_3$ and SO_2 gas d) The formation of $Al (HSO_3) \wedge H_2$ gas 68. Tin reacts with conc. H_2SO_4 to give:		$(SO_3) \wedge H_2 gas$			
	a) α- stannic acid.	b) Stannous sulphate	c) β – stannic acid	d) Stannic sulphate	
69.	The chemical formula of si	ndhur is			
	a) _{PbO}	b) <i>P b</i> ₃ <i>O</i> ₄	c) ZnO	d) $SnCl_2$	
70.	Aluminium oxide is not red	luced by chemical reactions s	ince		
	a) Aluminium oxide is reac	etive	b) Reducing agents contam	inate	
	c) Aluminium oxide is high	nly stable	d) The process pollutes the	environment	
71.	Aluminium reacts with caus	stic soda to form			
	a) Aluminium hydroxide		b) Aluminium oxide		
	c) Sodium meta-aluminate		d) Sodium tetra aluminate		
72.	PbO ₂ on reaction with HN	O ₃ gives gas:			
	a) NO ₂	b) O ₂	c) N ₂	d) N_2O	
73.	When orthoboric acid (H_3)	(BO_3) is heated the residue le	eft is:		
	a) Boron	b) Metaboric acid	c) Boric anhydride	d) borax	
74.	Which is a correct statemen	nt about diborane structure?			
	a) All HBH bond angles are	e equal	b) All $H-B$ bond lengths	are equal	
	c) It has two three-centre-2	electron bonds	d) All hydrogen and boron	d) All hydrogen and boron atoms are in one plane	
75.	Thermite is a mixture of				
	a) $Cr_2O_3 + Al_2O_3$	b) Fe_2O_3+Al	c) $Fe_2O_3 + Al_2O_3$	d) $A l_2 O_3 + 2 Cr$	
76.	White lead or basic lead can	rbonate is:			
	a) $Pb(OH)_2 \cdot 2 PbCO_3$				

	b) $Pb(OH)_2 \cdot Pb(CH_3CO)$	$ OO _2$			
	c) PbCO ₃				
	d) $PbCO_3 \cdot Pb(OH)_2$				
77.	Cane sugar reacts with con-	c. HNO ₃ to give:			
	a) $CO_2 \wedge H_2O$	b) Oxalic acid	c) $_{\text{CO and }H_2\text{O}}$	d) H_2CO_3	
78.	Man dies in an atmosphere	of carbon monoxide, becaus	e it:		
	a) Combines with the O₂ pb) Reduces the organic ma	present in the body to form C tter of tissues	${}^{\prime}O_{2}$		
	c) Combines with haemogld) Dries up the blood	obin of blood, making it inca	apable of absorbing O_2		
79.	Which has highest b.p.?				
	a) Diamond	b) Graphite	c) Charcoal	d) Lamp black	
80.	Carbon cannot be used in the	he reduction of $A l_2 O_3$ because	use		
	a) It is an expensive proposition				
	b) The enthalpy of formation of CO_2 is more than that of Al_2O_3 c) Pure carbon is not easily available				
81.	d) The enthalpy of formati Which of the following has				
	a) _{Pb}	b) B	c) Cu	d) Fe	
82.	Which of the following oxi	des is amphoteric in characte	er?		
	a) SnO_2	b) SiO_2	c) <i>CO</i> ₂	d) CaO	
83.	Water gas is produced by:				
	a) Passing steam through a red hot coke bed				
	b) Saturating hydrogen with moisture				
	c) Mixing oxygen and hydrogen in the ratio of 1:2				
84.	d) Heating a mixture of CO_2 and CH_4 in petroleum refineries CO forms a volatile compound with:				
	a) Nickel	b) Copper	c) Sodium	d) Aluminium	
85.	Red lead is:				
	a) PbO	b) Pb_3O_4	c) PbO ₂	d) HgS	
86.	The order of acidic strength	- '			
	a) $BF_3 < BCl_3 < BBr_3 < B$	I_3	b) BI ₃ <bbr<sub>3<bcl<sub>3<b< td=""><td>F_3</td></b<></bcl<sub></bbr<sub>	F_3	
	c) BC l ₃ < BB r ₃ < B I ₃ < B.	F_3	d) $BBr_3 < BCl_3 < BF_3 < B$	$^{\text{d}}$) $BBr_3 < BCl_3 < BF_3 < BI_3$	

87.	7. Heating an aqueous solution of aluminium chloride to dryness will give:				
	a) AlCl ₃	b) Al_2Cl_6	c) Al_2O_3	d) $Al(OH)Cl_2$	
88.	Buckminster fullerene is				
	a) Pure graphite	b) C-60	c) Diamond	d) C-90	
89.	Lead (IV) oxide is obtained	by:			
	a) Heating lead (II) oxide s	trongly in air			
	b) Heating lead strongly in	pure oxygen			
	c) Oxidizing lead with conc	c. HNO ₃			
	d) Heating Pb ₃ O ₄ with con	c. HNO ₃			
90.	1	icant extremely difficult to m	nelt. The reason for this anom	nalous behaviour is that,	
	graphite a) Is a non-crystalline subst	ance			
	b) Is an allotropic from of o	diamond			
	c) Has molecules of variable	le molecular masses like poly	ymers		
	d) Has carbon atoms arrang	ged in large plates of rings of	strongly bound carbon atoms	s with weak interplate bonds	
91.	The composition of the con	nmon glass is			
	a) Na_2O . CaO .6 SiO_2	b) $N a_2 O. A l_2 O_3. SiO_2$	c) $CaO.Al_2O_3.SiO_2$	d) Na_2O . CaO . $6SiO_2$	
92.	Aluminium becomes passiv	e in nitric acid because it:			
	a) Is a noble metal				
	b) Forms a thin film of oxid	de			
	c) Positive reduction poten	tial			
	d) None of the above				
93.		ituted silanes the one which	will give rise to cross linked s	ilicone polymer on hydrolysis	
	is a) R_4 Si	b) $RSiCl_3$	c) $R_2 SiC l_2$	d) $R_3 SiCl$	
94.	The thermal stability of CI	F_4 is		-	
	a) Less than SiF ₄	b) More than SiF ₄	c) Less than CC l ₄	d) Less than SiCl ₄	
95.	An oxide of an element is a	gas and dissolves in water to	give an acidic solution. The	element belongs to	
	a) II group	b) IV group	c) VIII group	d) Zero group	
96.	The C—X bond energy ord	der for carbon tetra halides is	S:		
	a) <i>CF</i> ₄ > <i>CCl</i> ₄ > <i>CBr</i> ₄ > <i>CI</i>	4			
	b) $CCl_4 > CBr_4 > CI_4 > CF_4$	4			
	c) <i>CI</i> ₄ > <i>CBr</i> ₄ > <i>CCl</i> ₄ > <i>CF</i>	4			
	d) None of the above				

<i>)</i> / .	An example of a major air pollutant is:					
	a) Oxygen	b) Carbon dioxide	c) Carbon monoxide	d) Helium		
98.	Pewter is an alloy of:					
	a) Pb and Sn	b) Pb, Sb and Sn	c) Pb, Bi and Sn	d) Pb, Bi, Sn and Cd		
99.	Rose metal is an alloy of.					
	a) $Sn + Pb + Bi$	b) Sn + Cu	c) $Sn + Sb + Cu$	d) None of these		
100	An insulator is:					
	a) Silicon	b) Graphite	c) Aluminium	d) Diamond		
101.	Boron nitride on reacting w	ith caustic alkali gives:				
	a) NH_3	b) N_2O	c) Na_3BO_3	d) NO_2		
102.	The different layers in grap	hite are held together by				
	a) Metallic bonding	b) Covalent bonding	c) Ionic bonding	d) Vander Waals' forces		
103.	Colemanite is a mineral of:					
	a) Mg	b) B	c) Al	d) Mn		
104.	.04. Which of the following is a mixed oxide?					
	a) Fe_2O_3	b) <i>PbO</i> ₂	c) BaO ₂	d) Pb_3O_4		
105.	In the sale of diamonds the	unit of weight is carat. One of	carat is equal to:			
	a) 100 mg	b) 300 mg	c) 400 mg	d) 200 mg		
106	Which gas present in atmos	phere darkens the surface pa	inted by white lead?			
	a) SO_2	b) NH_3	c) CO ₂	d) H_2S		
107	Which of the following is n	nost abundant in the earth cru	ast?			
	a) In	b) Ga	c) B	d) Al		
108.	Which form of carbon has	a two-dimensional sheet-like	structure?			
	a) Coal	b) Coke	c) Diamond	d) Graphite		
109.	Extraction of metal from the	ne ore cassiterite involves				
	a) Carbon reduction of an o	oxide ore	b) Self-reduction of a sulph	ide ore		
	c) Removal of copper impurity		d) Removal of iron impurity			
110.	An alumina-silica clay, calle	ed bentonite is dropped from	aeroplanes in the slurry form	n for:		
	a) Fertilizing the soil					
	b) Spreading water over fire	es				
	c) Cooling the soil					
	d) Fumigation					

111. Gun shots are made of lead with a little arsenic. The function of As is to increase:

	a) Range of fire	b) Power of fire	c) Brittleness	d) Weight of fire
112	The colour of blue glass is d	lue to the presence of oxide of	of	
	a) Cr	b) Co	c) Au	d) Ag
113	The glass having smallest co	pefficient of thermal expansion	on is:	
	a) Soda lime glass	b) Soft glass	c) Safety glass	d) Pyrex glass
114	Carborundum is obtained w	hen silica is heated at high te	emperature with	
	a) Carbon	b) Carbon monoxide	c) Carbon dioxide	d) Calcium carbonate
115	R_3SiCl on hydrolysis forms	s:		
	a) $R_3 SiOH$	b) $R_3 Si - O - Si R_3$	c) $R_2 Si = O$	d) None of these
116	Tin plague is the:			
	a) Conversion of stannous t	o stannic		
	b) Conversion of white tin t	to grey tin		
	c) Emission of sound while	bending a tin rod		
	d) Atmospheric oxidation o	of tin		
117	Water glass is:			
	a) Calcium silicate			
	b) Sodium, calcium silicate			
	c) Sodium silicate			
	d) Magnesium silicate			
118	If a person is injured by the	shot of a gun and all the pell	lets could not be removed, it	may cause poisoning by:
	a) Hg	b) Pb	c) Fe	d) As
119	Which property is common	in diamond and graphite?		
	a) Electrical conductivity			
	b) Relative atomic weight			
	c) Crystal structure			
	d) Density			
120	Carbon dioxide is used for e	extinguishing fire because:		
	a) It has a relatively high cr	itical temperature		
	b) In solid state, it is called	dry ice		
	c) It is neither combustible	nor a supporter of combustic	on	
	d) It is a colourless gas			
121	In which of the following th	ne inert pair effect is most pro	ominent?	
	a) Si	b) ¿	c) _{Pb}	d) C

122	122. One recently discovered allotrope of carbon $(e \cdot g \cdot , C_{60})$ is known as					
	a) Fluorine	b) Fullerene	c) Flourene	d) Freon		
123	Which oxide has three dime	ensional structure?				
	a) CO	b) <i>CO</i> ₂	c) SiO ₂	d) SO_2		
124	Diamond and graphite are:					
	a) Isomers	b) Isotopes	c) allotropes	d) Polymers		
125	. CO_2 is called dry ice or drik	told because:				
	a) It wets the surface					
	b) It does not melt					
	 c) At atmospheric pressure solid CO₂ changes directly into the gas and the liquid phase is not formed and does not wet the surface d) It is gaseous in nature 					
126	Minium is:					
	a) PbO	b) Pb_3O_4	c) PbO ₂	d) All of these		
127	Which of the following is c	alled alum?				
	a) $NaAlO_2$					
	b) $N a_2 S O_4 \cdot A l_2 (S O_4)_3 \cdot 2$	$24H_2O$				
	c) $KCl \cdot MgCl_2 \cdot 6H_2O$					
	d) $FeSO_4 \cdot (NH_4)_2 SO_4 \cdot G$	$6H_2O$				
128	The carbon of microphones	s used in public address system	ms is:			
	a) Graphite	b) Charcoal	c) Coke	d) Lamp black		
129	Aluminium is extracted by	the electrolysis of				
	a) Alumina		b) Bauxite			
	c) Molten cryolite		d) Alumina mixed with mo	Iten cryolite		
130	In Gold Schmidt reaction, c	ertain metallic oxides are red	duced to the metallic state by	-heating with:		
	a) Metallic magnesium	b) Metallic aluminium	c) Metallic iron	d) Sodium metal		
131	Formula for agate is					
	a) $N a_2 Si O_3$	b) $K_2O.SiO_2.Al_2O_3$	c) SiO_2	d) CaF_2		
132	Pure CO can be obtained fr	rom:				
	a) Sodium oxalate					
	b) Nickel tetracarbonyl					
	c) Formic acid					
	d) Carbon dioxide and hydrogen					

133. Which is used for the manu	atacture of optical instrument	ts?			
a) Water glass	b) Pyrex glass	c) Flint glass	d) Jena glass		
134. Red liquor is:					
$a)(CH_3COO)_3Al$	b) $Al(OH)_3$	c) $Al_2(CO_3)_3$	d) $A l_2 (SO_4)_3$		
135. Which element has a limite	ed coordination number of fo	ur?			
a) Sn	b) C	c) Si	d) Ge		
136. Aqueous ammonia is used as a precipitating reagent for $Al^{3+i\cdot i}$ ions as $AI(OH)_3$ rather than aqueous NaOH, because: a) $NH_4^{+i\cdot i}$ is a weak base b) NaOH is a very strong base					
c) NaOH forms $[Al(OH)_4]$	c) NaOH forms $\left[Al(OH)_4\right]^{-i\cdot i}$ ions				
d) NaOH forms $[Al(OH)_2]$] ^{+¿¿} ions				
137. In Goldschmidt aluminothe thermite contains a) 3 part of Al_2O_3 , and 4	•	b) $_3$ parts of Fe_2O_3 and 2	parts of Al		
c) $_{3 \text{ parts of}} F e_2 O_3 \text{ and } 1$	part of Al	d) $_{1 \text{ parts of}} F e_2 O_3 \text{ and } 1 \text{ part of } Al$			
138. During the electrolysis of c	ryolite, aluminium and fluori	ne are formed in molar ratio			
a) 1:2	b) 2:3	c) 1:1	d) 1:3		
139. Suppose you have to determ Which is the best absorbing a) Heated copper oxide	mine the percentage of carbon g material for the carbon diox	•			
c) Cold, solid calcium hydr	roxide	d) Heated charcoal			
140. The dissolution of $Al(OH)$	$\frac{1}{3}$ by a solution of NaOH resu	alts in the formation of:			
a) $\left[Al(H_20)_4(OH)\right]^{2+\delta\delta}$ 141. Prussic acid is the name of	b) $\left[Al(H_2O)_2(OH)_4\right]^{-ii}$:	c) $[Al(H_2O)_3(OH)_3]$	d) $[Al(H_2O)_6(OH)_3]$		
a) _{PH} ₃	b) HPO ₃	c) HCN	d) HNC		
142. Which gas is used in airate	d water?				
a) <i>CO</i> ₂	b) <i>SO</i> ₂	c) CO	d) Water vapours		
143. Which is not an ore of lead	?				
a) Galena	b) Anglesite	c) Calamine	d) Cerussite		
144. Borax on heating with coba	alt oxide forms a blue bead of	f:			
a) $Co(BO_2)_2$	b) $CoBO_2$	c) $C o_3 (B O_3)_2$	d) $N a_3 Co(BO_3)_2$		
145. Inorganic benzene is:			. ,		
a) BN	b) BF_4	c) B_2H_6	d) $B_3 N_3 H_6$		
146 The correct formula of bor	ax ic.				

	a) $Na_2[B_4O_5(OH)_4] \cdot 8H_2O$				
	b) $Na_2B_4O_7 \cdot 4H_2O$				
	c) $Na_2[B_4O_5(OH)_4] \cdot 10 H_2O$				
	d) $Na_2B_4O_7 \cdot 8H_2O$				
147	. The formula of mineral bor	rax is			
	a) $Na_2B_4O_7$	b) $N a_2 B_4 O_7.4 H_2 O$	c) $N a_2 B_4 O_7.5 H_2 O$	d) $N a_2 B_4 O_7.10 H_2 O$	
148	. The hardest compound of b	oron is:			
	a) Boron oxide	b) Boron nitride	c) Boron carbide	d) Boron hydride	
149	• For purification of alumina, and (ii) the impurity presen a) For (i) the Hall's process		useful when (i) the impurity	present is a lot iron oxides	
	b) For (i) Serpeck's proces	s; for (ii) Baeyer's process			
	c) For (i) Hall' process; for	(ii) Serpeck's process			
	d) For (i) Baeyer's process;	for (ii) Serpeck's process			
150	· Carbon reacts with conc. H	₂ SO ₄ to give:			
	a) CO_2 , SO_2 , H_2O	b) SO_2 , H_2O , CO	c) CO , H_2O	d) CO_2 , H_2O	
151	. Massicot is prepared by:				
	a) Heating tin in air all about	ut 300°C			
	b) Heating litharge				
	c) Heating red lead				
	d) Heating lead nitrate				
152	. Animal charcoal is used for	decolourisation of sugar bec	cause:		
	a) It oxidizes coloured mate	erial			
	b) It reduces coloured mate	rial			
	c) It converts coloured mate	erial into colourless			
	d) It adsorbs coloured mate	rial			
153	. Which is used as disinfecta	nt?			
	a) Boric acid	b) Sulphuric acid	c) Phosphorus acid	d) Phosphoric acid	
154	· Which gas is liberated when	$_{1} A l_{4} C_{3}$ is hydrolysed?			
	a) <i>CH</i> ₄	b) C_2H_2	c) C_2H_6	d) CO_2	
155	. The coal form containing m	naximum percentage of carbo	on is:		
	a) Lignite	b) Anthracite	c) Bituminous	d) Peat	
156	. Water softner is				

	a) Borax	b) Zeolite	c) Both (a) And (b)	d) None of these
157	. Carbon dioxide is a gas but	silica is a solid because:		
	 a) Carbon dioxide is compostructure b) CO₂ molecules are light 		₂ molecules whereas silica ha	s continuous tetrahedral
	c) CO_2 is more acidic than			
	d) Melting point of silica is			
158	. Alums are used for			
	a) Tanning of leather	b) Coagulation of blood	c) Purification of water	d) All of these
159	· On heating Al at 800°C in a	Air, Al_2O_3 is formed. The rea	action is:	
	a) An endothermic reaction	1		
	b) An exothermic reaction			
	c) Reduction of aluminium	l		
	d) None of the above			
160	. White lead is			
	a) PbCO ₃ PbO	b) <i>PbC O</i> ₃	c) $Pb(OH)_2.2PbCO_3$	d) $PbSO_4$. PbO
161	· Hot and conc. HNO ₃ react	t with carbon to form:		
	a) _{CO₂}	b) CO	c) C ₆ H ₅ COOH	d) $NO_2 + CO_2$
162	. Anodised aluminium is:			
	a) Al obtained at anode			
	b) Al prepared electrolytics	ally		
	c) Alloy of Al containing 9			
163	d) Al electrolytically coated $AlCl_3$ is	d with aluminium oxide		
	a) Anhydrous and ionic		b) Covalent and basic	
	c) Anhydrous and covalent		d) Co-ordinate and acidic	
164	. The variety of glass, used for	or the preservation of eggs is	:	
	a) Jena glass	b) Safety glass	c) Water glass	d) Bottle glass
165	. Which of the following is u	used for making optical instru	uments?	
	a) SiO ₂	b) _{Si}	c) Si H ₄	d) _{SiC}
166	. Tincal is			
	a) $N a_2 C O_3 . 10 H_2 O$	b) <i>NaN O</i> ₃	c) $N a_2 B_4 O_7 . 10 H_2 O$	d) _{NaCl}
167	. Tin (II) fluoride (anhydrous	s) can be obtained by:		

	a) Treating tin with F_2	b) Treating tin with HF	c) Dissolving SnO in HF	d) None of these	
168		he correct statement for red	lead?		
	a) It is an active form of lea	ad	b) It decomposes into Pbar	$nd CO_2$	
	c) Its molecular formula is	Pb_2O_3	d) It decomposes into PbO	$and O_2$	
169	. Potash alum dissolves in wa	ater to give a/an			
	a) Acidic solution of H_2S	${\sf O}_4$	b) Alkaline solution		
	c) Acidic solution of HCl		d) Neutral solution		
170	. Which is the least pure form	m of carbon?			
	a) Graphite	b) Lamp black	c) Wood charcoal	d) Animal charcoal	
171	. The calorific value of carbo	on is about kcal.			
	a) 7.8	b) 15.6	c) 47	d) 94	
172	. Aluminium metal is refined	by			
	a) Serpeck's process	b) Baeyer's process	c) Hall's process	d) Hoope's process	
173	173. The metal which does not form ammonium nitrate by reaction with $dil\ HN\ O_3$ is				
	a) Al	b) Fe	c) _{Pb}	d) Mg	
174	. Which one of the following	g metals work as a reduction	in smelting process?		
	a) _C	b) _{Al}	c) Zn	d) None of these	
175	The incorrect statement/s at I. $NC l_5$ does not exist wh II. Lead prefers to form the III. The three $C-O$ bonds IV. Both $O_2^{+i.i}$ and NO are a) I, III and IV b) I and IV c) II and III d) I and III	ile $PC l_5$ does. etravalent compounds are not equal in the carbona	te ion.		
176	. Which of the following is k	nown as inorganic benzene?			
	a) Borazine	b) Phosphonitrilicacid	c) Boron nitride	d) p- dichlorobenzene	
177	. Which element does not ex				
	a) C	b) Sn	c) Si	d) Pb	
178	. Carbon monoxide will not i	reduce:			
	a) Litharge	b) Cupric oxide	c) Zinc oxide	d) Ferric oxide	
179	. Graphite is made by heating	g coke with silica for many h	ours in a:		
	a) Blast furnace				

	b) Blast of steam under pressure				
	c) In presence of air				
	d) High electric arc furnace	e			
180	. When carbon monoxide is	passed over solid caustic soda	a heated to $200^{\circ}C$, it forms		
	a) Na_2CO_3	b) CH ₃ COONa	c) $NaHCO_3$	d) HCOONa	
181	. In purification of bauxite by	y hall's process			
	a) Bauxite ore is fused with	$_{1}Na_{2}CO_{3}$			
	b) Bauxite ore is heated with	th NaOH solution at 50 °C			
	c) Bauxite ore is heated with	th NaHCO ₃			
182	d) Bauxite ore is fused with . Which of the following is r	n coke and heated at 1800°C not a Lewis acid?	in a current of nitrogen		
	a) SiF_4	b) FeCl ₃	c) _{BF₃}	d) C_2H_4	
183	Sapphire is a mineral of:	-	-	- '	
	a) Cu	b) Zn	c) Al	d) Hg	
184	. Which is/are fire extinguish	ners?			
	a) Dry powder containing s	sand + $NaHCO_3$			
	b) $NaHCO_3 + H_2SO_4$				
	c) Foamite extinguishers co	ontaining $NaHCO_3 + Al_2 SO_3 + Al_2 $	O_4		
	d) All of these				
185	. Boron nitride has the struct	ure of the type			
	a) Graphite type		b) Diamond type		
	c) Both diamond and graph	nite type	d) NaCltype		
186	· The structure and hybridiza	ation of $Si(CH_3)_4$ is:			
	a) bent, sp	b) trigonal, $s p^2$	c) octahedral, $s p^3 d$	d) tetrahedral, $s p^3$	
187	Al_2O_3 can be converted to	anhydrous $AlCl_3$ by heating:			
	a) A mixture of Al_2O_3 and	l carbon in dry Cl_{2} gas			
	b) Al_2O_3 with Cl_2 gas				
	c) Al_2O_3 with HCl gas				
	d) Al_2O_3 with NaCl in solid state				
188	. Eka aluminium is:				
	a) Gallium	b) Germanium	c) Indium	d) Scandium	
189	. Elements of group IV used	in semiconductors are			
	a) C, Si, ¿	b) Si, \dot{c}, Sn	c) Si, ¿	d) B, Si, ¿	

190.	The acid used for etching t	the glass is:			
	a) Sulphuric acid	b) Perchloric acid	c) Hydrofluoric acid	d) Aqua-regia	
191.	The greatest percentage of	CO is in:			
	a) Coal gas	b) Producer gas	c) Water gas	d) Oil gas	
192.	92. The process used for purification of bauxite are containing iron oxide impurity is known as:				
	a) Hoope's process	b) Serpeck's process	c) Baeyer's process	d) Electrolytic process	
193.	Which statement is correct	?			
	a) BCl_3 and $AlCl_3$ are both Lewis acids and BCl_3 is stronger than $AlCl_3$				
	b) BCl ₃ and AlCl ₃ are bot	th Lewis acids and $AlCl_3$ is s	tronger than BCl_3		
	c) BCl ₃ and AlCl ₃ are bot	th equally strong Lewis acids			
194.	d) $_{\rm Both}$ $BCl_{\rm 3}$ and $AlCl_{\rm 3}$ are In the electrolysis of alumination $^{\circ}$				
	a) Lower the melting point	t of alumina			
	b) Increase the electrical co	onductivity			
	c) Both (a) and (b)				
	d) Remove impurities from alumina				
195.	Which is true for an eleme	ent R present in III group of the	he periodic table?		
	a) It has oxidation state of + 4 b) It is gas at room temperature				
	c) It forms R_2O_3		d) It forms RX_2		
196.	In III A group, Tl (thalium	,) shows +1 oxidation state w	hile other members show +3	oxidation state, why?	
	a) Presence of lone electro	on in Tl	b) Insert pair effect		
	c) Large ionic radius of Th	ion	d) None of the above		
197.	Which of the following ele	ements is a metalloid?			
	a) C	ن (d	c) Bi	d) <i>Sn</i>	
198.	Hydrogen forms a bridge i	n the chemical structure of:			
	a) Hydrogen peroxide	b) Lithium hydride	c) Diborane	d) Sodium peroxide	
199.	Which of the following is	a use of alum?			
	a) Making explosives	b) Bleaching clothes	c) Water softening	d) All of these	
200	Red lead in an example of	a/anoxide			
	a) Basic	b) Mixed	c) Super	d) Amphoteric	
201.	Carbon monoxide on heati	ng with sulphur gives:			
	a) COS	b) <i>SO</i> ₂	c) _{SO₃}	d) None of these	
202.	Crystalline varieties of car	bon is:			

	a) Graphite	b) Coke	c) Peat	d) Gas carbon	
203	. Formula of felspar is				
	a) $K_2O.Al_2O_3.6SiO_2$		b) K_2O_3 . $A l_2O_3$. $6 S i_2O_2$.2 <i>H</i> ₂ <i>O</i>	
	c) $Al_2O_3.2SiO_2.2H_2O$		d) $3 MgO.4 SiO_2.H_2O$		
204	The ratio of Fe_2O_3 and Al,	in thermite is			
	a) 1:3	b) 1:2	c) 3:1	d) None of these	
205	. The relative Lewis acid char	racter of boron trihalides is i	n the order		
	a) $BI_3 > BBr_3 > BF_3 > BC$	l_3	b) BI ₃ >BBr ₃ >BCl ₃ >BI	7 3	
	c) $BF_3 > BC l_3 > BB r_3 > B$	I_3	d) $BC l_3 > B F_3 > B I_3 > BB$	r_3	
206	. Alum is added to muddy wa	ter because			
	a) It acts as disinfectant				
	b) It results in coagulation o	of clay and sand			
	c) Clay is soluble in alum, h	ence removes it			
	d) It makes water alkaline which is good for health				
207	07. The reducing agent in thermite process is				
	a) MnO_2	b) BaO ₂	c) _{Mg}	d) Al	
208	08. There are two H-bridge bonds in diborane molecule because there are:				
	a) Only 12 electrons				
	b) 14 electrons				
	c) 2 electrons less than requ	ired for bonding			
	d) Two electrons more than	required for bonding			
209	· Name of structure of silicate	es in which three oxygen ato	ms of $\left[SiO_4\right]^{4-i\delta}$ are shared i	S	
	a) Pyrosilicate		b) Sheet silicate		
	c) Linear chain silicate		d) Three dimensional silica	te	
210	· Pb reacts with dilute HNO	3 produces			
	a) NO	b) NH_4NO_3	c) $N_2 O_5$	d) NO_2	
211	. Aluminium appears like gol	d when it is mixed with:			
	a) 90% Cu	b) 50% Ni	c) 90% Sn	d) 50% Co	
212	Purification of aluminium de	one by electrolytic refining is	s known as		
	a) Hoope's process	b) Serpeck's process	c) Hall's process	d) Baeyer's process	
213	. Which of the following is us	sed in making printer's ink, s	hoe polish, black varnish and	I paint?	
	a) Lamp black	b) Bone black	c) Carbon black	d) None of these	
214	. The hottest part of the Buns	en hurner flame is:			

a) Top of the outer zone	;				
b) A little below the tip	of the flame				
c) Above the inner zone					
d) Blue zone					
215. In the alumino-thermic p	process, aluminium acts as	s:			
a) An oxidizing agent	b) A flux	c) A reduction agent	d) A solder		
216. Diborane reacts with wa	ter to form:				
$^{a)}$ HBO $_{\scriptscriptstyle 2}$	b) H_3BO_3	c) $H_3BO_3 + H_2$	d) H_2		
217. The chief impurity prese	ent in red bauxite is				
a) SiO_2	b) Fe_2O_3	c) K_2SO_4	d) $_{\it NaF}$		
218. Be and Al exhibits many	properties which are sim	ilar but the two elements differ i	is:		
a) Exhibiting amphoteri	c nature in their oxides				
b) Forming polymeric h	ydrides				
c) Forming covalent hal	ides				
d) Exhibiting maximum	d) Exhibiting maximum covalency in compounds				
219. Borax bead test is respon	nded by:				
a) Divalent metals					
b) Heavy metals					
c) Light metals					
d) Metal which forms co	oloured metaborates				
220. A fibrous mineral which	can withstand red hot flar	mes without any damage is			
a) Talc	b) Glass wool	c) Soap stone	d) Asbestos		
221. Lead may be replaced fr	om its salt solution by:				
a) Cu	b) Au	c) Ag	d) Mg		
222. Unstable lead compound	ls are				
a) $PbCl_4$, $PbBr_4 \wedge Pb$	I_4	b) $PbCl_2$, $PbBr_2 \wedge Pb$	I_2		
c) PbO , $PbO_2 \wedge Pb_3C$)4	d) $PbCl_4^{2-\iota,PbCl_6^{2-\iota\iota}\iota}$			
223. Which acid is formed when	hen SiF ₄ reacts with wate	er?			
a) H_2SO_4	b) H_2SiF_4	c) H_2SiF_6	d) None of these		
224. Which of the following	reactions occurs at the cat	hode during the charging of lead	l accumulator?		
a) $Pb^{2+i\cdot i} + 2e \rightarrow Pb$					
b) $Pb^{2+i\cdot i}+SO_4^{2-i\cdot i} \longrightarrow P$	'bSO ₄				
c) $Pb \rightarrow Pb^{2+ii} + 2e$					

	d) $PbSO_4 + 2H_2O \longrightarrow PbO_4$	$O_2 + 4H^{+i + SO_4^{2-i+2ei}}$			
225	· The two type of bonds prese	ent in B_2H_6 are covalent and	l		
	a) Ionic	b) Coordinate	c) Hydrogen bridge	d) None of these	
226	. Which one shows most proi	nounced inert pair effect?			
	a) _{Si}	b) _{Sn}	c) _{Pb}	d) C	
227	. Which of the following is a	n ore of lead?			
	a) Galena	b) Calamine	c) Malachite	d) Dolomite	
228	buttons of their uniforms. V		winter suffered a serious processor converted to grey powder. Tremperatures	_	
	b) A change in the partial p	-	, and the second		
	c) A change in the crystallin				
	-	r vapour contained in the hur	nid air		
229	\cdot In SiF_6^{2-ll} and $SiCl_6^{2-ll}$ wh	-			
	a) SiF_6^{2-ii} because of small		b) SiF_6^{2-ii} because of large	size of F	
· · ·			d) $SiCl_6^{2-ii}$ because of large		
230	30. Which of the following has structure similar to graphite?				
	a) BN	b) B	c) _{B₄C}	d) B_2H_6	
231	Tin(II) chloride (anhydrous)) can be obtained:	4 -	2 6	
	a) By melting tin in an atmob) By treating tin with conc	osphere of $\operatorname{{\it Cl}}_2$. HCl and heating the produc	t to dryness		
	c) By treating tin with dil. I	HCl and heating the product t	o dryness		
	d) By treating tin with HCl(gas)			
232	. Which statement is not true	about potash alum?			
	a) Its empirical formula is Ib) Its aqueous solution is ba	\ '/2 =			
	c) It is used in dyeing indus	tries			
	d) On heating it melts and le	oses its water of crystallization	on		
233	Solder is an alloy of :				
	a) Pb, Sb and Sn	b) Pb and Sn	c) Pb, Bi and Sn	d) Sn, Sb and Cu	
234	The thermal stability order	for group 14 halides is:			
	a) $GeX_2 < SiX_2 < SnX_2 < S$	PbX_2			
	b) $SiX_2 < GeX_2 < PbX_2 <$	$\operatorname{Sn}X_2$			

c) $SiX_2 < GeX_2 < Sn^2$	$X_2 < PbX_2$		
d) $PbX_2 < SnX_2 < Ge^2$			
235. Mica is chemically:			
a) Potassium alumino s	silicate having sheet structure		
b) Calcium alumino sil	icate having fibrous structure		
c) Calcium magnesium	silicate having three dimension	onal network	
d) Hydrated sodium alu	umino silicate having three din	nensional network	
236. When tin is treated with	h concentrated nitric acid		
a) It is converted into s	tannous nitrate	b) It is converted into s	tannic nitrate
c) It is converted into r	metastannic acid	d) It becomes passive	
237. An element 'X' which of and acid-base character a) $X O_3$, basic 238. Pb and Sn are extracted	of its oxides? b) X_2O_3 , basic	has an outer electronic structure c) X_2O_3 , acidic	eture $s^2 p^1$. What is the formula d) $X O_2$, acidic
a) Carbon reduction an	nd self reduction		
b) Self reduction and carbon reduction			
c) Electrolysis and self reduction			
d) Self reduction and e	lectrolysis		
239. Boron readily dissolves	in:		
a) Conc. HCl			
b) Fused NaOH at 673	K		
c) Fused Na_2CO_3 at	1173K		
d) A mixture of conc. 240. The borax bead is chen	HNO_3 and conc. $H_2SO_4(1:$ nically:	2)	
a) B_2O_3	b) $N a_2 B_4 O_7$	c) $N a_3 B O_3$	d) $B_2O_3 + NaBO_2$
241. Inorganic benzene is	2 4 /	3 3	2 5 2
a) $B_3H_3N_3$	b) BH_3NH_3	c) $B_3 H_6 N_3$	d) $H_3 B_3 N_6$
242. Boric acid is prepared	3 3	3 0 3	3 3 0
a) Hydrochloric acid	b) Sodium hydroxide	c) Carbon dioxide	d) Sodium carbonate
243. Which of the following	does not contain silicon?		
a) Kaoline	b) Agate	c) Ruby	d) Quartz
244. Which one of the follo	wing statements about the zeol	ites is false?	
a) They are used as cat	ion exchangers.		

	b) They have open structure which enables them to take up small molecules.						
	c) Zeolites are aluminosilicates having three dimensional network.						
	d) Some of the SiO_4^{4-i} units are replaced by AlO_4^{5-i} and AlO_6^{9-i} ions in zeolites.						
245	Least stable hydride is :	1 2 4	v				
	a) Methane	b) Plumbane	c) Silane	d) Stibine			
246	. Which member of group	13 is liquid at 30°C?					
	a) B	b) Al	c) Ga	d) TI			
247	. Which fuel has the highes	t calorific value (kJ/kg)?					
	a) Charcoal	b) Kerosene	c) Wood	d) Cow dung			
248	Lead sulphate is soluble in	1:					
240	a) conc. HNO ₃	b) $KMnO_4/H^{+i.i.}$	c) $K_2 C r_2 O_7 / H^{+ii}$	d) None of these			
249	Dry ice is	h)	a)	4)			
250	a) $Solid H_2O$	b) Solid CO_2	c) Solid N_2O_4	d) Solid NH_3			
250		B_2H_6 is formed by the shari		4) 2 1 .			
251	a) 2 electrons	b) 4 electrons	c) 1 electrons	d) 3 electrons			
251		ng ores is best concentrated b		D. 16.1. 1.1.			
252	a) Magnetite	b) Cassiterite	c) Galena	d) Malachite			
252	•	suspended in oil and used as	•	Dist			
050	a) Fe	b) Sn	c) Ag	d) A1			
253	Aqueous solution of potas		2.5	D =			
~ - .	a) Alkaline	b) Acidic	c) Neutral	d) Soppy			
254	. In alumino thermic proces		•				
	a) Reducing agent	b) Oxidising agent	c) Catalyst	d) Electrolyte			
255	. Coal gas:						
	a) Burns with a smoky flan						
	b) Burns with non-smoky	flame					
	c) Is not used for lighting	purpose					
	d) Is not a good fuel						
256	. Which halide is least stabl	e and has doubtful existence	?				
	a) <i>CI</i> ₄	b) GeI 4	c) SnI ₄	d) PbI_4			
257	Carbon suboxide C_3O_2 has	as					
	a) Linear structure		b) Bent structure				
	c) Trigonal planar structur	re	d) Distorted tetrahedral structure				

258	. On strong heating lead nitra	te gives:		
	a) PbO , NO , O_2	b) PbO , NO , NO_2	c) PbO_2 , PbO , NO_2	d) PbO , NO_2 , O_2
259	. $Al I_3$, when react with CC	l_4 , gives		
	a) $AICl_3$	b) <i>C l</i> ₄	c) Al_4C_3	d) $A l_2 O_3$
260	. All alums contain:			
	a) One monovalent and one	e trivalent metal		
	b) Both monovalent metal			
	c) One divalent and one mo	onovalent metal		
	d) Both divalent metal			
261	. Moderate electrical conduct	tivity is shown by		
	a) Silica	b) Graphite	c) Diamond	d) Carborundum
262	. The molecules of aluminiur	n chloride in vapour state:		
	a) Have no shape			
	b) Are shaped like a plane t	riangle		
	c) Are round			
	d) Are like randomly broke	n bricks		
263	The correct order of increase	sing atomic radii, is		
	a) B <al<ga< td=""><td>b) $Ga < Al < B$</td><td>c) Al<b<ga< td=""><td>d) $B < Ga < Al$</td></b<ga<></td></al<ga<>	b) $Ga < Al < B$	c) Al <b<ga< td=""><td>d) $B < Ga < Al$</td></b<ga<>	d) $B < Ga < Al$
264	. Identify the statement that i	s not correct as far as structu	are of diborane is concerned	
	a) Each boron atom forms	four bonds in diborane		
	b) There are two bridging h	ydrogen atoms in diborane		
	c) The hydrogen atoms are	not in the same plane in dibo	orane	
	d) All B-iH bonds in dibo	orane are similar		
265	Which of the following is n	ot an ionic trihalide?		
	a) AlF_3	b) BF_3	c) ¿F ₃	d) GaF_3
266	Identify B in the following $H_4 Si O_4 1000 ^{\circ}C A Carbo$			
	a) Corundum	b) Quartz	c) Silica	d) Carborundum
267	. The stability of hydrides of	carbon family is in the order	•	
	a) $CH_4 > SiH_4 > UH_4 > Sn$	H_4 >Pb H_4	b) C H 4 < Si H 4 < 6 H 4 < Sn	H_4 < PbH_4
	c) $CH_4 > SnH_4 > iH_4 > Si$	H_4 >Pb H_4	d) None of the above	
268	The number of electrons pro	esent in the valency shell of g	group 13:	
	a) One	b) Two	c) Three	d) Zero

209	. The straight chain polymer	is formed by:			
	a) Hydrolysis of $(CH_3)_2$ Sie	Cl_2 followed by condensation	n polymerisation		
	b) Hydrolysis of $(CH_3)_3$ SiCl followed by condensation polymerisation				
	c) Hydrolysis of CH ₃ SiCl	3followed by condensation po	olymerisation		
		by addition polymerisation			
270). Moissan boron is				
	a) Amorphous boron of ult	ra purity	b) Crystalline boron of ultr	a purity	
	c) Amorphous boron of low purity d) Crystalline boron of low purity			purity	
271	271. Which of the boron compound is optically active?				
	a) Boron trifluoride	b) Boron anhydride	c) Borosalicylic acid	d) Sodium tetraborate	
272	2. Extraction of lead by reduc	tion methods is done by			
	a) Adding more galena into	reverberatory furnace			
		coke into the reverberatory	y furnace		
		From sulphidepresent in the			
	d) Adding more lead sulphate into reverberatory furnace				
273	273. Foramtion of in-numberable compounds of carbon is due to its				
	a) High reactivity b) Catenation tendency				
	c) Covalent and ionic tende	ency	d) Different valency		
274	. Moissan boron is				
	a) Amorphous boron of lov	w purity	b) Crystalline boron of low	purity	
	c) Amorphous boron ultra	purity	d) Crystalline boron of ultr	a purity	
275	Boric acid is used in carom	boards for smooth gliding of	f pawns because		
	a) H_3BO_3 molecules are 1	oosely chemically bonded an	d hence soft		
	b) Its low density makes it				
	c) It can be powered to a ve	ery small grain size			
	d) H-bonding in H_3BO_3 g	ives it a layered structure			
276	. Iodine is decolourised by:				
	a) $ZnCl_2$	b) $HgCl_2$	c) SnCl ₂	d) AlCl ₃	
277	. Quartz is an example of				
	a) Chain silicate		b) Sheet silicate		
	c) Cyclic silicate		d) Three dimensional netw	ork silicate	
278	3. In aluminates coordination	number of Al is:			
	a) 4	b) 6	c) 3	d) 1	

279	. Water as is				
	a) $CO+N_2$	b) $CO + CO_2 + CH_4$	c) $CO_2 + N_2$	d) CO+H ₂	
280	The inert form of carbon is	:			
	a) Diamond	b) Graphite	c) Coal	d) Charcoal	
281	. Calorific value of producer	gas is low because of			
282	a) High per cent of N_2 . Producer gas is the mixture	•	c) High per cent of CO	d) Low per cent of N_2	
	a) $CO+N_2$	b) <i>CO+H</i> ₂	c) CO+¿ water vapour	d) $N_2 + C H_4$	
283	. Which of the following has	the minimum heat of dissoc	1		
	a) $[(CH_3)_3 N \longrightarrow BF_3]$				
	b) $[(CH_3)_3 N \longrightarrow B(CH_3)]$	F ₂ ذ			
	c) $[(CH_3)_3 N \longrightarrow B(CH_3)_2$				
	d) $[(CH_3)_3 N \longrightarrow B(CH_3)_3]$				
284	284. The most reactive form of carbon is:				
	a) Diamond	b) Graphite	c) Coal	d) Charcoal	
285	. Which of the following con	npounds has peroxide linkage	e?		
	a) Pb_2O_3	b) <i>CO</i> ₂	c) <i>PbO</i> ₂	d) SiO_2	
286	. Which is not used as pigme	ent in paints?	_	-	
	a) Lead dioxide	b) White lead	c) Lead chromate	d) Pb_3O_4	
287	. Aluminium does not react v	with:			
	a) NaOH	b) HCl	c) N_2	d) HNO_3	
288	. Thallium shows different or	xidation states because:			
	a) Of its high reactivity				
	b) Of inert pair of electron				
	c) Of its amphoteric nature	•			
	d) It is a transition metal				
289	•	•	ezing winter suffered a seriou got converted to grey powder	-	
	a) A change in the crystalli	ne structure of tin	b) An interaction with nitro	gen of the air at very low	
		pressure of oxygen in the air	temperature ir d) An interaction with water vapour contained in th humid air		
290	The structure of BF_{3} is				
	a) Planar triangular	b) Pyramidal	c) Tetrahedral	d) T-shaped	

291	· Name the type of the struct	ure of silicate in which one of	exygen atom of $\left[SiO_4\right]^{4-ii}$ is	shared:
	a) Three dimensional	b) Linear chain silicate	c) Sheet silicate	d) Pyrosilicate
292	The IUPAC name of comp	lex $K_3[Al(C_2O_4)_3]$ is:		
	a) Potassium alumino-oxala	ate		
	b) Potassium trioxalatoalum	ninate (III)		
	c) Potassium aluminium (II	II) oxalate		
	d) Potassium trioxalatoalun	ninate (VI)		
293	. CO behaves as			
	a) Lewis acid	b) Lewis base	c) <i>Amphoteric</i> oxide	d) None of these
294	. Addition of excess of sodiu	m hydroxide solution to stan	nous chloride solution, we ob	otain:
	a) $Sn(OH)_2$	b) $SnO_2 \cdot H_2O$	c) Na_2SnO_3	d) Na_2SnO_2
295	. Ammonical CuCl absorbs:			
	a) <i>CO</i> ₂	b) _{SO₂}	c) H_2SO_4	d) CO
296	. Aluminium hydroxide is so	luble in excess at sodium hyo	droxide forming the ion	
	a) AlO_2^{3+ii}	b) AlO_2^{-ii}	c) AlO_2^{3-ii}	d) $Al_2O_3^{-\iota\iota}$
297	. The refractive index of diar	mond is highest among solids	s. Its value is:	
	a) 2.225	b) 3.235	c) 2.15	d) 2.417
298	. The correct statement with	respect to carbon monoxide	is:	
	a) It combines with water to	o give carbonic acid.		
	b) It reacts with haemoglob	in in red blood cells.		
	c) It is a powerful oxidizing	g agent.		
	d) It is used to prepare aera	ted drinks.		
299	. SiF_4 gets hydrolysed givin	g		
	a) SiO ₂	b) $Si(OH)_4$	c) $Si(OH)_2F_2$	d) $H_2 SiF_6$
300	. Highest electronegativity ar	mong the following is for:		
	a) C	b) Si	c) Sn	d) Pb
301	· Addition of SnC l ₂ to HgC	Cl_2 gives precipitate		
	a) White turning to red		b) White turning to grey	
	c) Black turning to white		d) None of the above	
302	. The stability of dihalides of	$Si, \geq, Sn \text{ and } Pb \text{ increases}$	steadily in the sequence	
	a) $i_{X_2} < Si_{X_2} < Sn_{X_2} < Pt$	$\mathcal{O}X_2$	b) $Si X_2 < i X_2 < Pb X_2 < Si$	$\mathfrak{1}X_2$
	c) $Si X_2 < i X_2 < Sn X_2 < Pt$	-	d) $Pb X_2 < Sn X_2 < \lambda X_2 < S$	iX_2
303	. PbOis			

	a) Acidic	b) Amphoteric	c) Basic	d) Neutral			
304.	04. Among the following the maximum covalent character is shown by the compound:						
	a) FeCl ₂	b) SnCl ₂	c) AlCl ₃	d) $MgCl_2$			
305.	Asbestos is chemically:	-	J	- -			
	a) Silicate of calcium and n	nagnesium					
	b) Calcium alumino silicate						
	c) Magnesium alumino silic	eates					
	d) Calcium silicate + calciu	m aluminates					
306.	Living in the atmosphere of	CO is dangerous because:					
	a) It reduces organic matter of tissues						
	b) Dries up the blood						
	^{c)} Combines with O_2 present inside to form CO_2						
307.	•	obin and makes it incapable t	to absorb O_2				
	a) four 2C-2e bonds and t	wo 3C–2e bonds					
	b) two 2C-2e bonds and tw						
	c) two 2C-2e bonds and two 3C-2e bonds						
	d) four 2C-2e bonds and tv						
308.	Borax is:						
	a) $Na_2B_4O_7$	b) $N a_2 B_4 O_7 \cdot 4 H_2 O$	c) $N a_2 B_4 O_7 \cdot 7 H_2 0$	d) $N a_2 B_4 O_7 \cdot 10 H_2 O$			
309.	Heating an aqueous solution	of aluminium chloride to dr	yness will give				
	a) $Al(OH)Cl_2$	b) Al_2O_3	c) Al_2Cl_6	d) $AlCl_3$			
310.	Hoope's process is used for	the purification of the metal					
	a) Cu	b) Al	c) Zn	d) Ag			
311.	Which of the following is the	ne electron deficient moleculo	e?				
	a) <i>PH</i> ₃	b) $C_2 H_6$	c) Si H ₄	d) B_2H_6			
312.	Which is false in case of bo	_ *	-	2 0			
	a) It is soluble in hot water						
	b) It acts as a tribasic acid						
	c) It has a planer structure						
	d) It acts as a monobasic ac	id					
313.	Bleaching powder on treatm	nent with CO_2 gives:					
	a) O ₂	b) <i>Cl</i> ₂	c) HCl	d) H_2			

314	14. A gas does not turn lime water milky, supports the combustion of burning magnesium. It has no smell and is colourless. It extinguishes a glowing splint but under some circumstances reacts with oxygen and hydrogen. It is not poisonous. The gas is likely to be:				
	a) Water vapour	b) Nitrogen	c) Carbon dioxide	d) Helium	
315	315. Carbon burns in air and forms two oxides CO and CO_2 . This shows that carbon has:				
	a) Two allotropic forms				
	b) Two oxidation states				
	c) Two isotopes				
	d) 4 electrons in valency sh	ell			
316	Which compound is solid?				
	a) <i>CO</i> ₂	b) <i>NH</i> ₃	c) <i>PH</i> ₃	d) SiO_2	
317	. The first I.P. of Al is smalle	er than that of Mg because:			
	a) Atomic size of Al>Mg				
	b) Al has one electron in p	-orbital			
	c) Atomic size of Al <mgs< td=""><td>S</td><td></td><td></td></mgs<>	S			
	d) Not known				
318	. Which type of forces bind	together the carbon atoms in	diamond?		
	a) Coulombic forces	b) Dipole-dipole forces	c) Van der Waals' forces	d) Covalent forces	
319	. Ordinary glass is:				
	a) Sodium silicate				
	b) Copper silicate				
	c) Calcium silicate				
	d) A mixture of calcium an	nd sodium silicates with silica	a		
320	Fluorine is more electronegenerate BF_3 has no dipole more a) BF_3 is spherically symmetrically	ment but PF_3 has?	nosphorus. What conclusion c	an be drawn from the fact	
	b) BF_3 molecule must be li				
		s larger than the atomic radi	us of B		
	d) The BF_3 molecule must	ha planar triangular			
321	The materials for manufact				
	a) Gypsum, sand and sodiu				
	b) Sodium carbonate and sa				
	c) Sodium carbonate, lime				
	d) Potassium carbonate, sa				

322	. The common semiconductor	or is:				
	a) Fe	b) Se	c) Ge	d) C		
323	. Alumina is					
	a) Acidic	b) Amphoteric	c) Basic	d) None of these		
324	In aqueous solution of GaC	Eldisproportionates to				
	a) $GaCl_2 \wedge GaCl_3$	b) Ga and $GaCl_3$	c) GaC l₂∧Ga	d) $GaCl_3 \wedge GaCl_5$		
325	. Which of the following doe	es not exist in free form?				
	a) BF_3	b) BH_3	c) _{BC l₃}	d) BBr_3		
326	Sodium oxalate on heating	with conc. H_2SO_4 gives:				
	a) CO only	b) CO and CO_2	c) CO_2 only	d) $SO_2 \wedge SO_3$		
327	correct statement?		com water gas (CO+ H_2), whit a catalyst followed by absorp			
	b) CO and H_2 are fractional	ally separated using difference	ees in their densities.			
	^{c)} CO is removed by absorption in aqueous Cu_2Cl_2 solution					
328	d) H_2 is removed through G . In the reaction B_2O_3+C+C					
	a) <i>CC l</i> ₂	b) BCl_3	c) BCl_2	d) B_2Cl_2		
329	. In electrolysis of aluminium	n oxide which of the following	ng is added to accelerate the p	process		
	a) Silica	b) Silicate	c) Cryolite	d) Nickel		
330	Silicon react with hot solution	ion of NaOH forming				
	a) $Si(OH)_4$	b) $Si(OH)_2$	c) SiO ₂	d) $N a_2 Si O_4$		
331	. Silicon is usually found in :					
	a) Sand	b) Coal	c) Lime	d) Lime stone		
332	Synthetic gas is a mixture of	of:				
	a) Steam and carbon mono	xide				
	b) Carbon monoxide and n	itrogen				
	c) Hydrogen and carbon m	onoxide				
	d) Hydrogen and methane					
333	. Lead pipes can be used for	:				
	a) Soft water					
	b) Hard water					
	c) Both hard and soft water	r				

	d) None of the above					
334.	34. Aluminium is not present in which of the following mineral?					
	a) Cryolite	b) Felspar	c) Fluorspar	d) Mica		
335.	35. Diborane does not undergo cleavage reaction with:					
	a) Trimethyl amine	b) Ammonia	c) CO	d) CO_2		
336.	6. Stannous oxide can be obtained by:					
	a) Heating tin strongly in ai	r				
	b) Heating meta-stannic aci	d				
	c) Heating tin(II) oxalate					
	d) None of the above					
337.	Sugar of lead is					
	a) $_{2}PbSO_{4} \cdot PbO$	b) $PbCO_3 \cdot Pb(OH)_2$	c) $PbCO_3$	d) $(CH_3COO)_2Pb$		
338.	The fraction by volume of o	carbon monoxide in produce	er gas is about:			
	a) 1/2	b) 1/3	c) 1/4	d) 2/3		
339.	39. The mass of carbon anode consumed (giving only carbon dioxide) in production of 270 kg of aluminium metal from bauxite by the Hall process is (Atomic mass of Al=27) a) 180 kg b) 270 kg c) 540 kg d) 90 kg					
340.	Carbon dioxide dissolves un	- 0	C	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>		
	a) An alkaline solution	1				
	b) An acidic solution					
	c) A neutral solution					
	d) A highly alkaline solution	n				
341.	NaBH ₄ is used in organic of	chemistry to convert:				
	a) $>_{C}=O$ to $>_{C}F$	ЮН				
	b) \searrow C=O to \searrow CH	2				
	c) $>_{C=O}$ to $-N$	•				
342.	$AlCl_3$ exists in dimer becau					
	a) Al has greater I.P.	b) Al has larger radius	c) High charge nucleus	d) Incomplete <i>p</i> –orbital		
343.	Which of the following is n	ot correct?		meompiece p oroitai		
	a) SiO_2 is used as acidic flu	X				

	b) The distance between the layers in graphite is 3.35×10^{-3} cm					
	c) SiO_2 reacts with Na_2CO_3 and liberates CO					
	d) The hybridisation of C in graphite is $s p^2$					
344.		ydrofluoric acid and a wet ro	d is brought in contact with v	apours evolving a white		
	deposit is due to a) SiF_4	b) <i>Si F</i> ₂	c) $H_4 SiO_4$	d) None of these		
345.	5. Which is not a characteristic property of carbon?					
	a) Catenation					
	b) Multiple bond formation					
	c) Availability of <i>d</i> -orbitals d) Highest electronegativity	C				
346	Which of the following is m	nore stable?				
	a) Pb^{4+ii}	b) Sn^{4+ii}	c) ¿4+&&	d) Si ^{4+i.i}		
347.	In diborane the two $H-B$	B-H angles are nearly				
	a) _{95°,120°}	b) 60°,120°	c) _{120°,180°}	d) _{95°,150°}		
348.	Among the various allotrope	es of carbon:				
	a) Diamond is the hardest a	and graphite is the softest				
	b) Diamond is the hardest and coke is the softest					
	c) Diamond is the hardest a	nd lamp black is the softest.				
	d) Coke is hardest and diam	nond is softest				
349.	Oxides of silicon are:					
	a) Liquids	b) Solids	c) Gases	d) None of these		
350.	Which metal is protected by	y a layer of its own oxide?				
	a) Fe	b) Au	c) Ag	d) Al		
351.	Which one of the following	statements about the zeolite	is false?			
	a) They are used as cation e	exchangers				
	b) Some of the $SiO_4^{4-i \text{ units at}}$	rereplaced by Al $O_4^{5-i\iota}$ and $AlO_6^{9-i\iota}$	ions in zeolite			
	c) They have open structure	e which enables them to take	up small molecules			
	d) Zeolites are aluminosilica	ates having three dimensiona	l structure			
352.	Alane is chemically:					
	a) AlH_3	b) $(AIH_3)_n$	c) LiAI H 4	d) None of these		
353.	Which of the following form	n dimerichalides?				
	a) Al	b) Mg	c) In	d) Ca		

354.	354. Pure H_2S gas can be obtained by the action of water on:				
	a) CuS	b) FeS	c) Flower of sulphur	d) Al_2S_3	
355.	BF_3 acts as acid according	to:			
	a) Lewis	b) Bronsted	c) Arrhenius	d) None of these	
356.	Which is used to produce si	moke screens?			
357.	a) Calcium <i>phosphide</i> Alumino-thermy is a proces	b) Sodium carbonate	c) _{Zinc} sulphide	d) Zinc phosphide	
		metal by heating with sodiun	1		
		metal oxides by heating with			
		metal by heating with carbo			
	d) None of the above	, ,			
358.	. In extraction of aluminium	the electrolyte is			
·			b) Pure alumina in molten s	state	
	c) Fused <i>cryolite</i> with fluorspar		d) Pure alumina with bauxite and molten <i>cryolite</i>		
359.	359. Nickeloy is an alloy containing:				
	a) ¿+Cu+Cr	b) Al+Cu+Cr	c)	d) None of these	
360.	By chlorinating carbon disu	lphide with chlorine in prese	nce of aluminium chloride, w	ve get:	
	a) Carbon tetrachloride	b) Chloroform	c) Chloral	d) Methylene chloride	
361.	The element which forms n	eutral as well as acidic oxide	s is:		
	a) Sn	b) Si	c) C	d) P	
362.	. Carborundum is the comme	ercial name of:			
	a) Al_2O_3	b) $Ca(H_2PO_4)_2$	c) H_3PO_4	d) SiC	
363.	. Which is amphoteric compo	ound?			
	a) Cr_2O_3	b) $M n_2 O_3$	c) Al_2O_3	d) Fe_2O_3	
364.	Which of the following is n	ot true about potash alum?			
	a) Its aqueous solution is ba	asic			
	b) It is used in dyeing indus	stries			
	c) On heating it melts in its	water of crystallization			
	d) Its empirical formula is	$KAl(SO_4)_2 \cdot 12 H_2O$			
365.					

	$^{a)}\left(Si_{4}O_{11}\right)_{n}^{-6n}$	$^{DJ} \left(Si_2O_{11} \right)_n^{-2n}$	$^{CJ}\left(Si_{2}O_{3}\right)$	$^{\text{d}} \left(SiO_4 \right)^{-4}$
366.	. Which of the following give	es propyne on hydrolysis?		
	a) La_4C_3	b) B_4C	c) Al_4C_3	d) Mg_2C_3
367.	Which has highest bond ene	ergy?		
	a) F—F	b) C—C	c) N—N	d) O—O
368.	Which is not correct?			
	a) $Ge(OH)_2$ is amphoteric			
	b) $GeCl_2$ is more stable that	n GeCl ₄		
	c) GeO ₂ is weakly acidic			
	d) $GeCl_4$ in HCl forms Ge	$\left[Cl_{2}\right]^{2-i}$ ion		
369.	The purest form of coal is			
	a) Peat	b) Anthracite	c) Bituminous	d) Lignite
370.	On the addition of mineral a	acid to an aqueous solution of	f borax, the compound forme	ed is:
	a) Borodihydride	b) Orthoboric acid	c) Metaboric acid	d) Pyroboric acid
371.	Bell metal is an alloy of:			
	a) Sn + Pb	b) Cu + Sn	c) Sn + Sb	d) None of these
372.	The anhydride of carbonic a	acid H_2CO_3 is:		
	a) C_2O_2	b) <i>CO</i> ₂	c) CO	d) Na_2CO_3
373.	In $A l_2 C l_6$, which statemen	t is incorrect?		
	a) Four Al-Cl bonds are of	same length and two of diffe	erent length	
	b) Six Al–Cl bonds are of s	ame length and two of different	ent length	
	c) The angle Cl-Al-Cl is 1	10° and 93°		
	d) The angle Al-Cl-Al is 8	7°		
374.	Carbon tetrachloride has zer	ro dipole moment because of	:	
	a) Planar structure			
	b) Smaller size of C and Cl	atoms		
	c) Regular tetrahedral struc	ture		
	d) None of the above			
375.	Pyrosilicate ion is:			
	a) SiO_2^{2-ii}	b) SiO_4^{2-ii}	c) $Si_2O_7^{6-ii}$	d) $Si_2O_6^{7-i\delta}$
376.	Diaspora is:			
	a) $Al_{2}O_{3}.2H_{2}O$	b) $Al_{2}O_{3}.3H_{2}O$	c) Al_2O_2	d) $Al_2O_2.H_2O$

Silicate structure unit of

377. The main constituents of coal gas are:					
	a) CH_4+CO+H_2	b) $CO_2 + CO + H_2$	c) CO+CO ₂	d) $CO+N_2$	
378	. Melting point is highest for	:			
	a) B	b) A1	c) Ga	d) In	
379	Producer gas, a fuel and als	o a source of nitrogen is obta	ined by:		
	a) Passing steam over incar	ndescent coke			
	b) Restricted supply of air t	through a bed of incandescen	t coke		
	c) Passing a mixture of stea	am and air over incandescent	coke		
	d) Spraying oil into hot reto	orts			
380	380. $CO_2 \land N_2$ are non-supporters of combustion. However, for putting out fires CO_2 is preferred over N_2 because CO_2 : a) Does not burn				
	b) Forms non-combustible	products with burning substa	nces		
	c) Is denser than nitrogen				
	d) Is a more reactive gas				
381	381. Solder is an alloy of lead with				
	a) Copper	b) Zinc	c) Nickel	d) Tin	
382	. CeO_2 is present in :				
	a) Crookes glass	b) Pyrex glass	c) Flint glass	d) All of these	
383	. The formula of potash alum	n is			
	a) K_2SO_4 . $Al_2(SO_4)_3.24$	H_2O	b) $K_2 SO_4$. $A l_2 (SO_4)_3$.18	H_2O	
	c) $K_2 SO_4 \cdot (NH_4)_2 SO_4 \cdot 1$	8 H ₂ O	d) $Na_2SO_4.Al_2(SO_4)_3.2$	$24H_2O$	
384	In diborane the two $H-B$	− <i>H</i> angles are nearly			
	a) 60°,120°	b) _{95°,120°}	c) 95°,150°	d) _{120°,180°}	
385	Aluminium chloride exists a benzene. When dissolved in a) $A l^{3+i+3Cl^{-i}\iota}$	as dimer, Al_2Cl_6 , in solid stowater, it gives $ b) \left[Al(H_2O)_6 \right]^{3+\lambda+3Cl^{-ii}\lambda} $	ate as well as in solution of n C) $\left[Al(OH)_{6}\right]^{3-\delta+3HCl\delta}$		
386	Which is correct for SiO_2 ?	[(2 /0]	[
	a) Linear, acidic	b) Linear, basic	c) Tetrahedral, acidic	d) Angular, disc	
387	H_3BO_3 is				
	a) Monobasic and weak Le	wis acid	b) Monobasic and weak Bro	onsted acid	
	c) Monobasic and strong Le	ewis acid	d) Tribasic and weak Brons	sted acid	
388	. CO ₂ is bubbled into an aqu	eous solution of Na_2CO_3 , to	give:		
	a) NaOH	b) <i>HCO</i> ₂ -i i	c) H ₂ O	d) OH^{-ii}	

305	7. The composition of the con	minon giass is			
	a) Na_2O . CaO . $6SiO_3$	b) Na_2O . Al_2O_3 . SiO_2	c) $CaO.Al_2O_3.SiO_2$	d) Na_2O . CaO .6 SiO_2	
390). Feldspar is:				
	a) Potassium sodium alum	ino silicate			
	b) A mixture of potassium	, aluminium and silicon oxide	es		
	c) Hydrated calcium silica	te			
	d) None of the above				
391	. Tungsten carbides is an exa	ample of:			
	a) A substitutional solid so	lution			
	b) Passive solid solution				
	c) Sandwich solid solution				
	d) Interstitial solid solution	1			
392	2. Carbogen is:				
	a) Mixture of O_2 +5-10 %	% CO ₂			
	b) Used by pneumonia pat	ients for respiration			
	c) Used by victims of CO	for respiration			
	d) All of the above				
393	3. The compound used in lead	d accumulators is:			
	a) PbO	b) Pb_2O_3	c) Pb_3O_4	d) PbO_2	
394	4. Which of the following is J	oseudoalum?			
	a) $(NH_4)_2 SO_4 \cdot Fe_2 (SO_4)_2$	$_{3}\cdot 24H_{2}O$			
	b) $K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24$	H_20			
	c) $MnSO_4 \cdot Al_2(SO_4)_3 \cdot 24$	H_2O			
	d) None of the above				
395	6. One that marks the paper l	ike lead is:			
	a) Ga	b) Ti	c) B	d) TI	
396	6. Which of the following und	dergoes sublimation?			
	a) AlCl ₃	b) NH_4Cl	c) Dry ice	d) All of these	
397	7. Which is used as mordant?				
	a) AlCl ₃	b) $Al_2(SO_4)_3$	c) Alum	d) Al_2O_3	
398	3. Which statement regarding	$_3H_3BO_3$ is not correct?			
	a) It is a strong tribasic aci	d			
	b) It is prepared by acidify	ring an aqueous solution of bo	orax		

	c) It has a layer structure in which planar BO_3 units are joined by H-bonds				
	d) It does not act as proton donor but acts on Lewis acid by accepting OH^{-ii} ions				
399	99. The elements of IV A group or group 14 have 4 electrons in their outermost orbit. They:				
	a) Form M^{4+ii} ions				
	b) $Form M^{4+i \lambda}$ and $M^{4-i \lambda}$ io	ns			
	c) Exhibit oxidation state o	of + 4 and +2			
	d) Exhibit oxidation state o	of + 4			
400	Orthoboric acid when heate	ed to red hot gives:			
	a) Metaboric acid	b) Pyroboric acid	c) Boron and water	d) Boric anhydride	
401	Elements showing the phen	omenon of allotropy is			
	a) lead	b) copper	c) tin	d) aluminium	
402	The function of fluorspar in	the electrolytic reduction of	f alumina dissolved in fused of	eryolite $(N a_3 Al F_6 \stackrel{?}{\iota} is)$	
	a) To decrease the rate of o	oxidation of carbonate the an	ode		
	b) To lower the temperatur	e of the melt and to make the	e fused mixture very conduct	ing	
	c) As a catalyst				
	d) None of the above				
403	Which can be directly brou	ght into solid state from gase	eous state?		
	a) CO	b) CO ₂	c) $_{PH_{_{3}}}$	d) <i>CO+H</i> ₂	
404	AlCl ₃ on hydrolysis gives:	-	Ü	_	
	a) $Al_2O_3 \cdot H_2O$	b) <i>Al</i> (<i>OH</i>) ₃	c) Al_2O_3	d) $AlCl_3 \cdot 6H_2O$	
405	Al reduces most of the met	allic oxides due to its greater	affinity for:	-	
	a) Oxygen	b) Metals	c) Electrons	d) Protons	
406	Annealing of glass is done t	to:			
	a) Make it more brittle				
	b) Make it opaque				
	c) Check it from becoming	g brittle			
	d) Make it transparent				
407	Boron carbide, B ₄ C is wide	ly used for:			
	a) Making acetylene				
	b) Making plaster of Paris				
	c) As a hardest substance a	fter diamond			
	d) Making boric acid				
408	Mark the correct statement	:			

	a) Water gas is used in the manufacture of methyl alcohol.				
	b) Water gas has the highest calorific value.				
	c) Water gas burns with luminous flame.				
	d) The production of water	gas is exothermic process.			
409	. Butter of tin is				
	a) $SnCl_2 \cdot 5H_2O$	b) $SnCl_2 \cdot 2H_2O$	c) $SnCl_4 \cdot 4H_2O$	d) $SnCl_4 \cdot 5H_2O$	
410	. In laboratory silicon can be	prepared by the reaction			
	a) Silica with magnesium				
	b) By heating carbon in elec-	ctric furnace			
	c) By heating potassium flu	osilicate with potassium			
	d) None of the above				
411	. Boric acid is polymeric bec	ause of:			
	a) Its acidic nature				
	b) Presence of hydrogen bo	onds			
	c) Its monobasic nature				
	d) Its geometry				
410	412. Which of the following shows variable valency?				
412	. Which of the following sho	ws variable valency?			
412	Which of the following shoa) B	ows variable valency? b) Al	c) TI	d) None of these	
	a) B	b) Al with respect to the property of	-		
	a) B . Which statement is correct carbon family?	b) Al with respect to the property of decreases	-		
	a) BWhich statement is correct carbon family?a) Their metallic character	b) Al with respect to the property of decreases ation state increases	-		
	a) BWhich statement is correct carbon family?a) Their metallic characterb) The stability of +2 oxida	b) Al with respect to the property of decreases ation state increases increases	-		
413	 a) B Which statement is correct carbon family? a) Their metallic character b) The stability of +2 oxida c) Their ionization energy in 	b) Al with respect to the property of decreases ation state increases increases	-		
413	 a) B Which statement is correct carbon family? a) Their metallic character b) The stability of +2 oxida c) Their ionization energy if d) Their atomic size decreases. Among the halides: 	b) Al with respect to the property of decreases ation state increases increases	-		
413	a) B . Which statement is correct carbon family? a) Their metallic character b) The stability of +2 oxida c) Their ionization energy if d) Their atomic size decrea . Among the halides: 1. BCl ₃ 2. AlCl ₃	b) Al with respect to the property of decreases ation state increases increases asses	-		
413	a) B Which statement is correct carbon family? a) Their metallic character b) The stability of +2 oxidation energy in the control of the c	b) Al with respect to the property of decreases ation state increases increases ases wis acid character is:	of the elements with increase	in atomic number in the	
413	a) B Which statement is correct carbon family? a) Their metallic character b) The stability of +2 oxidate) Their ionization energy in their atomic size decreases. Among the halides: 1. BCl ₃ 2. AlCl ₃ 3. GaCl ₃ 4. InCl ₃ The order of decreasing Letal 1, 2, 3, 4	b) Al with respect to the property of decreases ation state increases increases ases wis acid character is:	of the elements with increase	in atomic number in the	
413 414 415	a) B Which statement is correct carbon family? a) Their metallic character b) The stability of +2 oxidation energy in the control of the correct of the c	b) Al with respect to the property of decreases ation state increases increases uses wis acid character is: b) 4, 3, 2, 1	of the elements with increase c) 3, 4, 2, 1,	in atomic number in the d) 2, 3, 4, 1	
413 414 415	a) B Which statement is correct carbon family? a) Their metallic character b) The stability of +2 oxidate) Their ionization energy in their atomic size decreases. Among the halides: 1. BCl ₃ 2. AlCl ₃ 3. GaCl ₃ 4. InCl ₃ The order of decreasing Leta) 1, 2, 3, 4 Carbon is soluble in: a) Conc. HCl	b) Al with respect to the property of decreases ation state increases increases uses wis acid character is: b) 4, 3, 2, 1	of the elements with increase c) 3, 4, 2, 1,	in atomic number in the d) 2, 3, 4, 1	

	a) Oxide ion	b) Hydroxide ion	c) Aluminium ion	d) Potassium ion	
418	. Diamond and Emerald are :	:			
	a) C, C	b) $_{\mathrm{C},Al_2O_3}$	c) C, Si	d) Si, Al	
419	. Carborundum is				
	a) _{SiC}	b) $Al_2O_3.H_2O$	c) $Al_2(SO_4)_3$	d) $AlCl_3$	
420	. Which is not an alloy of alu	minium?			
	a) Magnalism	b) Duralumin	c) German silver	d) Aluminium bronze	
421	. Purification of alumina take	es place by			
	a) Bosch process	b) Hall's process	c) Hoope's process	d) Quartation process	
422	. Thermite a mixture used fo	r welding is:			
	a) Fe and Al				
	b) Ferric oxide and aluminium powder				
	c) Barium peroxide and magnesium powder				
	d) Cu and aluminium				
423	423. Which of the following on hydrolysis with water gives CH_4 ?				
	a) Be_2C	b) Al_4C_3	c) Mn_3C	d) All of these	
424	. The basic structural unit is	silicates is			
	a) SiO_2	b) $[Si_2O_7]^{2-ii}$	c) SiO ₄ tetrahedron	$d) \left[Si_2O_5 \right]^{2-ii}$	
425	. Good conductor of heat and	d current is:			
	a) Anthracite	b) Diamond	c) Charcoal	d) Graphite	
426	The structure of diborane (B_2H_6) contains			
	a) Four $2c-2e^{-it}$ bonds a	and four $3c-2e^{-it}$ bonds	b) Two $2c-2e^{-it}$ bonds a	nd two $3c-3e^{-ii}$ bonds	
	c) Two $2c-2e^{-i\delta}$ bonds a	and four $3c-2e^{-it}$ bonds	d) Four $2c-2e^{-it}$ bonds and two $3c-2e^{-it}$ bonds		
427	. Which element of group 14	forms only one hydride?			
	a) C	b) Si	c) Sn	d) Pb	
428	The stability of + 1 oxidation	on state increases in the seque	ence:		
	a) Ga < ln < Al < Tl	b) Al < Ga < In < Tl	c) Tl < In < Ga < Al	d) In < Tl < Ga < Al	
429	· Aluminium is extracted fro	m alumina (Al_2O_3) by elect	rolysis of a molten mixture o	f:	
	a) $A l_2 O_3 + N a_3 A l F_6 + C a$	aF_2			
	b) $Al_2O_3+KF+Na_3AlF$	76			
	c) $Al_2O_3 + HF + NaAlF_4$				
	d) $Al_2O_3+CaF_2+NaAlF_2$	1			
430	30. Ultra violet rays are not allowed to pass through:				

	a) Flint glass	b) Crown glass	c) Crookes glass	d) Safety glass
431.	Metal protected by a layer of	of its own oxide is:		
	a) Al	b) Ag	c) Au	d) Cu
432.	The fuel gas having volume	composition equal to 34% ($CH_4 + 48\% H_2 + 15\% O_2 + 30$	% CO is:
	a) Oil gas	b) Water gas	c) Coal gas	d) Petrol gas
433.	Glass having higher refracti	ve index is prepared of oxide	e of	I) Cu CO is: I) Petrol gas I) CaO I) Brown, blue I) H_2O I) None of these I) Fluoro silicate of Al
	a) _{NiO}	b) CoO	c) PbO	d) CaO
434.	The colour of copper metal	porate and chromium metabo	rates are respectively:	
	a) Blue, green	b) Green, blue	c) Red, green	d) Brown, blue
435.	Which gas is essential const	ituent of almost all fuel gase	s?	
	a) _{CO₂}	b) N_2	c) Co	d) H_2O
436.	When SnCl ₂ reacts with H	gCl_2 , the product formed are	: :	
	a) $Sn + HgCl_4$	b) $\operatorname{Sn} + \operatorname{Cl}_2 + \operatorname{Hg}_2 \operatorname{Cl}_2$	c) $SnCl_4$ and Hg_2	d) None of these
437.	The precious stone aquama	rine is:		
	a) Mg-Al silicate	b) Be-Al silicate	c) Na-Al silicate	d) Fluoro silicate of Al
438.	$B(OH)_3 + NaOH \rightleftharpoons NaBO$	$O_2 + Na[B(OH)_4] + H_2O$		
	How can this reaction is maaa) Addition of <i>cis</i> -1, 2-diol	de to proceed in forward dire	ection? b) Addition of borax	
	c) Addition of trans-1, 2-d	iol	d) Addition of $N a_2 HP O_4$	
439.	CO reacts with chlorine in J	presence of sunlight to gives:		
	a) COCl ₂	b) <i>CO</i> ₂	c) CCl ₄	d) CHCl ₃
440.	Silicon is			
	a) Semiconductor	b) Insulator	c) Conductor	d) None of these
441.	Aluminium vessels should r	not be washed with materials	containing washing soda sinc	e
	a) Washing soda reacts with	n aluminium to form soluble	aluminate	
	b) Washing soda reacts with	n aluminium to form insolub	le aluminium oxide	
	c) Washing soda is expensi	ve		
	d) Washing soda is easily d	ecomposed		
442.	When a mixture of sand and	$1 KNO_3$ is heated strongly the	he product(s) is/are:	
	a) NO ₂	b) O ₂	c) K_2SiO_3	d) All of these
443.	Aluminium deposited as va	porous on glass forms a good	mirror, essentially because:	
	a) It has better shine than A	a g		
	b) It does not scratch			

	c) Coating is much smoothe	er		
	d) It does not tarnish in air			
444.	CO is poisonous gas, antido	te for CO poisoning is		
	a) Carborundum	b) Carbogen	c) Carbonic acid	d) Pure oxygen
445.	When CO is heated with Na	nOH under pressure, we get:		
	a) Sodium benzoate	b) Sodium acetate	c) Sodium formate	d) Sodium oxalate
446.	Glass is a			
	a) Micro crystalline solid		b) Gel	
	c) Super cooled liquid		d) Polymeric mixture	
447.	Difference between diamon	d and graphite is due to:		
	a) Graphite combines with	oxygen to form carbon dioxi	de but diamond does not	
	b) The atoms in each have of	different masses		
	c) The crystal structure in d	liamond is different from tha	t in graphite	
	d) All of the above			
448.	Which element is used for I	making a transistor?		
	a) Sn	b) <i>Sb</i>	c) _{Si}	d) $_{Mg}$
449.	Which one of the following	compounds, is not a protonic	c acid?	
	a) $SO(OH)_2$	b) $SO_2(OH)_2$	c) $B(OH)_3$	d) $PO(OH)_3$
450.	Aluminium reacts with nitro	ogen to form:		
	a) AlN	b) Al_2N_3	c) $Al_2 N$	d) Al_4N_6
451.	Silica is a/an			
	a) Acidic flux only		b) Gangue only	
	c) Basic flux only		d) Both gangue and acidic f	lux
452.	Which one of the following	is the correct statement?		
	a) Boric acid is a protonic a	acid		
	b) Beryllium exhibits coord	ination number of six		
	c) Chlorides of both berylli	um and aluminium have brid	ged chloride structure in soli	d phase
	d) $B_2H_6.2NH_3$ is known	as inorganic benzene		
453.	Which of the following is a	mixed oxide?		
	a) Fe_2O_3	b) <i>PbO</i> ₂	c) Pb_3O_4	d) BaO_2
454.	Which metal burn in air at l	nigh temperature with the evo	olution of much heat?	
	a) Cu	b) <i>Pb</i>	c) Hg	d) A1
455.	Which is a true acid anhydr	ide?		

	a) Al_2O_3	b) CO	c) CaO	d) CO_2	
456.	Roasted tin stone ore after v	vashing with water is known	as		
	a) Block tin	b) White tin	c) Black tin	d) Granulated tin	
457.	Compound of lead used in r	match industry is:			
	a) PbO	b) PbO_2	c) PbCl ₂	d) None of these	
458.	Which gas has more percent	tage in coal gas?			
	a) CO	b) H	c) _{H₂}	d) CH_4	
459.	A particular elements belong	gs to group 13 and II period	of the periodic table. It is:		
	a) Gas, slightly metallic	b) Liquid, metallic	c) Solid, non-metallic	d) Solid, less metallic	
460.	In graphite, the sheets are he	eld by:			
	a) Ionic forces	b) Covalent forces	c) Van der Waals' forces	d) Metallic forces	
461.	Silicones have the general for	ormula			
	a) $(SiO_4)^{4-ii}$	b) SiO_6^{7-ii}	c) $(SiO_3)_n^{-2n}$	d) $(R_2 SiO)_n$	
462.	Water gas cannot be prepare	ed by a continuous process be	ecause:	, , , , , , , , , , , , , , , , , , ,	
a) More coke must be added from time to time					
	b) The furnace must be allowed to cool occasionally				
	c) It cannot be manufacture	d without producer gas			
	d) The reaction ceases when	coke is too cool			
463.	In silica (SiO_2) , each silico	n atom is bonded to			
	a) Two oxygen atoms		b) Four oxygen atoms		
	c) One silicon and two oxyg	gen atoms	d) One silicon and four oxy	gen atoms	
464.	Glass reacts with HF to prod	duce			
	a) H_2SiO_3	b) <i>Si F</i> ₄	c) $N a_3 Al F_6$	d) H_2SiF_6	
465.	Which glass has the highest	percentage of lead?			
	a) Soda glass	b) Flint glass	c) Jena glass	d) Pyrex glass	
466.	is because:	are made of carbon atoms. Eveen any two carbon atoms in	Diamond is extremely hard what diamond are stronger	nereas graphite is soft. This	
	b) Diamond is ionic wherea	s graphite is covalent			
	c) Each carbon atom in diar	mond is chemically bonded to	o a greater number of neighb	ouring carbon atoms	
	d) Certain atoms in diamond	d are smaller in size			
467.	is the byproduct obtain	ed in the Serpeck's process.			
	a) Oxygen	b) Ammonia	c) Nitrogen dioxide	d) Nitric oxide	

468. An ionic compound is:					
	a) CCl ₄	b) SnCl ₂	c) SiCl ₄	d) $CeCl_4$	
469	. Which one of the following	g is correct statement?			
	a) The hydroxide of Alumi	nium is more acidic than that	t of boron		
	b) The hydroxide of boron	is basic, while that of Alumi	nium is amphoteric		
	c) The hydroxide of boron	is acidic, while that of Alum	ninium is amphoteric		
	d) The hydroxide of boron	and Aluminium are amphoto	eric		
470	Density is highest for:				
	a) Si	b) Ge	c) Sn	d) Pb	
471	471. If the flame of a gas stove burns with yellow tips, the burner must be adjusted to provide:				
	a) More gas	b) More air	c) Less air	d) None of these	
472	. Purification of Al by electro	olysis method is called			
	a) Hall's process	b) Baeyer process	c) Ostwald process	d) Hoope's process	
473	473. Which element shows more pronounced inert pair effect?				
	a) N	b) Sn	c) Pb	d) C	
474	474. Teflon is:				
	a) Fluorocarbon	b) Hydrocarbon	c) Pesticide	d) Insecticide	
475	CO_2 in water behaves as				
	a) Weak dibasic acid H_2C	O_3	b) Weak monobasic acid H	О-іСООН	
	c) Weakdiacid base CO	$(OH)_2$	d) Weak monoacid base HO	HOO3	
476	. The tendency for catenation	n in Group 14 elements varies			
	a) $C \gg Si > \iota = Sn > Pb$		b) $C < i Si < i = Sn < Pb$		
	c) $C \gg Si < \iota < Sn < Pb$		d) $C \gg Si = \lambda = Sn > Pb$		
477	. Coordination number of alu	uminium is			
	a) 8	b) 6	c) 12	d) 4	
478	. The approximate compositi	ion of soda glass is:			
	a) SiO_2 75%, Na_2O 15%	,CaO 8%,Al ₂ O ₃ 2%			
	b) SiO_2 45%, Na_2O 4%,	CaO3%, K ₂ O 4%, PbO 4	14%		
	c) $SiO_280\%$, $Na_2O4\%$,	$CaO 0.5\%, K_2O 0.5\%, B_2$	$O_3 12\%$, $Al_2 O_3 3\%$		
	d) None of the above				
479	. Lead pipes are readily corre	oded by:			
	a) $H_2SO \square_4$	b) HCl	c) CH ₃ COOH	d) Pure water	
480	. Monosilane on coming in c	ontact with air burns with a lu	uminous flame producing vor	tex rings. These rings are of	

	a) SiO ₂	b) SiO	c) Si	d) H_2SiO_3		
481	. A colourless gas which burn	ns with blue flame and reduce	es CuO to Cu is:			
	a) N_2	b) CO	c) CO ₂	d) NO_2		
482	. Lapis lazuli is					
	a) Sodium alumino silicate		b) Copper sulphate			
	c) Zinc sulphate		d) Ferrous sulphate			
483	Bone black is an allotrope of	f:				
	a) P	b) C	c) S	d) Bone		
484	. The use of diamond as a gen	m depends on its:				
	a) Hardness	b) High refractive index	c) Purest form of carbon	d) Chemical inertness		
485	. PbO isoxide.					
	a) Basic	b) Acidic	c) Amphoteric	d) Neutral		
486	486. Common alum is					
	a) $K_2SO_4 \cdot Al$	$_{2}(SO_{4})_{3} \cdot 24H_{2}O$	b) $(NH_4)_2SO_4 \cdot FeSO_4 \cdot 6$	SH_2O		
	c) $K_2 SO_4 \cdot Cr_2 (SO_4)_3 \cdot 24$	H_2O	d) $K_2 SO_4 \cdot Fe_2 (SO_4)_3 \cdot 24H_2O$			
487	487. In silicon dioxide					
	a) There are double bonds b	between silicon and oxygen a	toms			
	b) Silicon atom is bonded to	o two oxygen atoms				
	c) Each silicon atom is surr	ounded by two oxygen atoms	s and each oxygen atom is bo	unded to two silicon atoms		
	d) Each silicon atom is surr	ounded by four oxygen atom	s and each oxygen atom is bo	ounded to two silicon atoms		
488	. Aqueous solution of sodium	silicate is:				
	a) Acidic	b) Alkaline	c) Neutral	d) Insoluble		
489	. Boron cannot form which o	ne of the following anions?				
	a) BF_6^{3-ii}	b) BH_4^{-ii}	c) $B(OH)_4^{-ii}$	d) BO_2^{-ii}		
490	During day time plants abso	orb:		-		
	a) Carbon dioxide	b) Carbon monoxide	c) Nitrogen	d) Oxygen		
491	Diamond is hard because					
	a) All the four valence elec	trons are bonded to each carb	oon atom by covalent bonds			
	b) It is a giant molecule					
	c) It is made up of carbon a	atoms				
	d) It cannot be burnt					
492	. The process used for purific	eation of bauxite ore containi	ng high silica content as imp	urity is:		
	a) Baeyer's process	b) Hall's process	c) Hoope's process	d) Serpeck's process		

493.	493. The geometry and the hybridisation present about the central atom in BF_3 is:			
	a) Linear, sp	b) Trigonal planar, s p ²	c) Tetrahedral, $s p^3$	d) Pyramidal, s p ³
494.	Aluminium is mainly extra	cted from:		
	a) Magnetite	b) Bauxite	c) Alumina	d) Haematite
495.	A metal, M forms chloride chlorides is correct? a) MCl_2 is more volatile t	s in its +2 and +4 oxidation so that MCl_4	tates. Which of the following	statements about these
	b) MCl_2 is more soluble in	n the anhydrous ethanol than	MCl_4	
	c) MCl_2 is more ionic that	$_{ m m}$ $MCl_{_4}$		
496.	d) MCl_2 is more easily hy Which is not a crystalline for	•		
	a) Quartz	b) Azurite	c) Crystobalite	d) Tridymite
497.	Which is likely to show ine	rt-pair effect?		
	a) _K	b) <i>Mg</i>	c) Al	d) $_{Pb}$
498.	A potter wishes to make a c	leep blue glaze. Which one of	f these available chemicals sh	nould be mixed?
	a) Iron oxide	b) Cuprous oxide	c) Cobalt oxide	d) Nickel oxide
	Specify the coordination general Specify the coordination general Specifical	; B : Pyramidal, $s p^3$; B : Planar, $s p^3$; B : Tetrahedral, $s p^3$	tion of N and B-atoms in a 1 c) 6σ , 6π	: 1 complex of $BF_3 \land NH_3$ d) 9σ , 9π
501.	a) Four allotropic forms b) Three allotropic forms c) Five allotropic forms d) Two allotropic forms	xists in:		
502.	Carbon suboxide C_3O_2 has	:		
	a) Bent structure		b) Trigonal planar structure	
	c) Linear structure		d) Distorted tetrahedral stru	cture
503.	Which of the following oxi	de is amphoteric?		
	a) CaO	b) <i>CO</i> ₂	c) SiO ₂	d) <i>SnO</i> ₂

504.	04. In graphite, electrons are:					
	a) Localized on each carbon atom					
	b) Spread out between the sheets					
	c) Localized on every third	carbon atom				
	d) Present in antibonding o	rbital				
505.	Which is formed when SiC	Cl_4 vapours are passed over l	not Mg?			
	a) $SiCl_2 + MgCl_2$	b) $Si+MgCl_2$	c) Mg_2Si+Cl_2	d) $_{MgSiCl_6}$		
506.	Which of the following doe	es not have a tetrahedral struc	cture?			
	a) BH_3	b) NH_4^{+ii}	c) BH_4^{-ii}	d) CH_4		
507.	Which of the following oxi	des is strongly basic?				
	a) Tl_2O	b) B_2O_3	c) Al_2O_3	d) Ga_2O_3		
508.	Aluminium metal is corrod	ed in coastal places near to the	he sea, because protective oxi	de film:		
	a) Is removed by seawater					
b) Reacts with seawaterc) Is attacked by salt present in seawater						
						d) Reacts with sand particle
509.	The most abundant metal in	n the earth crust				
	a) Al	b) <i>Ca</i>	c) _{Fe}	d) <i>Na</i>		
510.	Which mixed sulphate is no	ot an alum?				
	a) $K_2 SO_4 \cdot Al_2 (SO_4)_3 \cdot 24$	H_2O				
	b) $K_2 SO_4 \cdot Cr_2 (SO_4)_3 \cdot 24$	H_2O				
	c) $Na_2SO_4 \cdot Fe_2(SO_4)_3 \cdot 24$	$4H_2O$				
	d) $CuSO_4 \cdot Al_2(SO_4)_3 \cdot 24$	H_2O				
511.	$(Me)_2 SiCl_2$ on hydrolysis	will produce				
	a) $(Me)_2 Si(OH)_2$		b) $(Me)_2 Si = O$			
	ر) ن زن		d) $Me_2SiCl(OH)$			
512.	In the aluminothermic proc	ess, Al acts as a/an				
	a) Solder	b) Oxidizing agent	c) Reducing agent	d) Flux		
513.	Which is used as control ro	ds in nuclear reactors?				
	a) Al	b) Ga	c) Tl	d) B		
514.	Potash alum is water solubl	e and ionises in aqueous solu	ntion to give:			
	a) One type of ions	b) Two types of ions	c) Three types of ions	d) Four types of ions		
515.	. Which is covalent compound?					

	a) Aluminium oxide	b) Aluminium fluoride	c) Aluminium chloride	d) Aluminium sulphate		
516	. Lead sugar is:					
	a) $PbCl_2$	b) $Pb(NO_3)_2$	c) PbSO ₄	d) $(CH_3COO)_2Pb$		
517	. Which does not exist?					
	a) $[SnCl_6]^{2-ii}$	b) $[GeCl_6]^{2-i\epsilon}$	c) $[SiCl_6]^{2-ii}$	d) $[CCl_6]^{2-ii}$		
518	. Which form of carbon is us	sed in making boot polish, pr	inting ink, paint and black va	rnish?		
	a) Bone black	b) Graphite	c) Gas carbon	d) Lamp black		
519	. Which of the following sho	ows bond in silicone?				
	a) Si—C—Si—O—Si	b) Si—C—Si—C—Si	c)	d) Si— Si— Si— Si		
520	. Which of the following org	ano-silicon compound on hyd				
	a) R ₃ SiCl	b) $RSiCl_3$	c) SiCl ₄	d) $R_2 SiC l_2$		
521	. Which type of silicate is she	own in the given figure?				
	a) Orthosilicate	b) Pyrosilicate	c) Meta silicate	d) None of these		
522	. Tin sulphide is:					
	a) Yellow solid					
	b) Soluble in yellow ammor	nium sulphide				
	c) Precipitated by H_2S in a d) All of the above	acidic medium				
523	. CO_2 is liberated during:					
	a) Combustion of coke	b) Fermentation	c) Respiration	d) All of these		
524	. Which of the following glas	ss is used in making wind scr	een of automobiles?			
	a) Saftey	b) Jena	c) Crook's	d) Pyrex		
525	. Lead pipes are not suitable	for drinking water because				
	a) A layer of lead dioxide i	s deposited over pipes				
	b) Lead forms basic lead ca	arbonate				
	c) Lead reacts with water containing air to form $Pb(OH)_2$					

d) Lead reacts with air to form litharge

526. When sodium or potassium oxide is heated in a current of CO_2 at 360°C, we get:

	a) Sodium formate	b) Sodium oxalate	c) Sodium acetate	d) Sodium carbonate	
527	. Aluminium forms:				
	a) Electrovalent compound	ds only			
	b) Covalent compounds on	ıly			
	c) Electrovalent and covale	ent compounds both			
	d) Coordinate compounds	only			
528	. Chrome yellow is:				
	a) PbCrO ₄	b) $K_2Cr_2O_7$	c) PbMoO ₄	d) Pb_3O_4	
529	. Which oxidation states are	the most characteristics of le	ead and tin respectively?		
	a) +2, +4	b) +4, +4	c) +2, +2	d) +4, +2	
530	. The alloy used in preparati	on of balance beam:			
	a) Magnalium	b) Duralumin	c) Aluminium bronze	d) Nickeloy	
531	. The substance used to impa	art green colour to glass is:			
	a) <i>Cu</i> ₂ <i>O</i>	b) CdS	c) MnO_2	d) Cr_2O_3	
532	In the reaction: $BF_3 + 3Li$	$BH_4 \longrightarrow 3LiF + X$; X is:			
	a) $B_4 H_{10}$	b) B_2H_6	c) BH_3	d) $_{B_3H_8}$	
533	. Which metal powder if spr	read in air, becomes hazardou	is?		
	a) Al	b) B	c) Ca	d) K	
534	. Crystalline silicon was obta	ained by:			
	a) Berzelius	b) W∵hlar	c) Deville	d) Winkler	
535	. Aluminium is more reactive	e than iron but aluminium is	less easily corroded than iron	because:	
	a) Aluminium is a noble m	netal			
	b) Oxygen forms a protect	ive oxide layer			
	c) Iron undergoes reaction easily with water				
	d) Iron forms both mono a	nd divalent ions			
536	•		pitate on treatment with dil H0 precipitate is formed. The sulch $^{\rm C)}$ $Ag^{+i\delta}$ salt		
537	. Silicon hydrides are named	l as:			
	a) Silicones	b) Silicates	c) Silicols	d) Silanes	
538	H_2SO_4 is not used for the	preparation of CO ₂ from mar	ble chips because:		
	a) It does not react				
	b) Huge amount of heat is	evolved			

c) The reaction	c) The reaction is vigorous						
d) Calcium sulp	phate is sparingly soluble and gets	deposited on marble chips and sto	ps the reaction				
539. Which compour	nd can make fire proof clothes?						
a) Aluminium s	sulphate b) Ferrous sulphate	c) Magnesium sulphate	d) Cuprous sulphate				
540. B—F bond orde	er in BF_3 is:						
a) 1	b) 2	c) 3	d) 4/3				
541. A kettle which	becomes furred-up in use has insi	de it a deposit composed mainly of	of:				
a) Calcium cart	oonate						
b) Magnesium l	picarbonate						
c) Magnesium s	sulphate						
d) Sodium sulpl	hate						
542. Among the following	owing the hardest substance is:						
a) Peat	b) Lignite	c) Graphite	d) Anthracite				
543. Aluminium is o	btained by						
a) Reducing A	l_2O_3 with coke	b) Electrolysing Al_2O_3 d	is solved in $N a_3 Al F_6$				
c) Reducing A	l_2O_3 with chromium	d) Heating alumina with o	d) Heating alumina with cryolite				
544. Which of the fo	ollowing is not correct in case of b	oron nitride?					
a) It is also calle	ed borazon						
b) It is chemica	lly unreactive						
c) It is hard bec	cause it has diamond like structure						
d) It has magne	tic properties						
545. When sugar is t	reated with conc. H_2SO_4 , we get	a pure form of:					
a) Carbon	b) Hydrogen	c) Oxygen	d) None of these				
546. Borazole is obta	nined by reaction of:						
a) NH_3+B_2H	6 in 2 : 1 ratio						
b) $NH_3 + B_2H$	6 in 1 : 2 ratio						
c) $NH_3 + B_2H$	6 in 1 : 4 ratio						
d) $NH_3 + B_2H$	6 in 4 :1 ratio						
547. Percentage of le	ead in lead pencil is						
a) 20	b) 80	c) 70	d) Zero				
548. In B_2H_6 :							
a) There is a di	rect boron-boron bond						
b) The structure	e is similar to that of C_2H_6						

c) The boron atoms are	nnked through nydrogen b	nages	
d) All the atoms are in	one plane		
549. Zn on heating with bari	um carbonate gives :		
a) BaO	b) ZnO	c) CO	d) All of these
550. Covalency and hybridiz	exation of B in $BF_4^{-i \cdot i}$ is:		
a) _{5,sp}	b) $_{4,sp^3}$	c) $_{3,sp^3}$	d) $2, sp^2$
551. Hybridisation of boron	in diborane is:		
a) _{sp}	b) $_{sp}^2$	c) $s p^3$	d) $s p^3 d^2$
552. When tin is treated with	n concentrated nitric acid		
a) It is converted into s	tannous nitrate	b) It becomes passive	
c) It converted into star	nnic nitrate	d) It is converted into me	tastannic acid
553. The ability of a substan	ce to assume two or more c	rystalline structures is called:	
a) Isomerism	b) Amorphism	c) Polymorphism	d) Isomorphism
554. Glass is soluble in:			
a) HF	b) H_2SO_4	c) HClO ₄	d) Aqua-regia
555. $A l_2 O_3$ formation invol	ves large quantity of heat ev	volution which makes its use in:	
a) Deoxidizer	b) Confectionary	c) Indoor photography	d) Thermite welding
556. Duralumin is an alloy o	f:		
a) Al and Mg	b) Mg and Cu	c) Al, Mg, Mn and Cu	d) Al and Cu
557. Among the following the	ne purest form of carbon is	:	
a) Bituminous coal	b) Coal-tar	c) Coal gas	d) Graphite
558. Which of the following	anion is present in chain str	ructure of silicate?	
a) _{¿¿}	ن _{ې ۲} (d	c) $SiO_4^{4-i.i}$	d) $Si_2O_7^{6-ii}$
559. Tin reacts with:			
a) Hot conc. HCl	b) $Conc. HNO_3$	c) HgCl ₂ on heating	d) All of these
560. Which gas is responsible	le for green house effect?		
a) CO_2	b) SO_2	c) CO	d) SO_3
561. Al and Ga have the sam	ne covalent radii because of		
a) Greater sheilding po	wer of S-electrons of Ga ato	oms	
	r of S-electrons of Ga atom		
	r of d -electrons of Ga atom		
	wer of d -electrons of Ga at		
562. BC l_3 does not exist as			

	b) There is $p\pi - p\pi$ back t	bonding in BCl_3 but BH_3 do	pes not contain such multiple	bonding
		ms do not fit in between the		mall sized hydrogen atoms get
563	. Magnalium contains			
	a) Al+Mq	b) <i>Mq+Cu</i>	c) _{Mg+Fe}	d) $Mg + Ag$
564	. Crystalline form of silica is	3	Mg . I c	1719 - 719
	a) Crystalline silicon	b) Quartz	c) Rock	d) Talc
565	Borax is prepared by treating	ng colemanite with:		
	a) <i>NaNO</i> ₃	b) NaCl	c) Na_2CO_3	d) NaHCO ₃
566	. Which is not the property of	of diamond?	2 - 3	3
	a) It is insoluble in all solve	ents		
	b) It is an isomer of graphic	te		
	c) It is purest form of carbo	on		
	d) It is oxidized with a mix	ture of $K_2Cr_2O_7 \wedge H_2SO_4$	at 200° C	
567	. What happens when steam			
	a) $C + 2H_2O \rightarrow CO_2 + 2$	H_2		
	b) $C + H_2O \rightarrow Co + H_2$	2		
	c) Water vapour dissociates	s into $H_2 \wedge O_2$		
	d) None of the above	2 2		
568	. In the electrolytic method of	of obtaining aluminium from	purified bauxite, cryolite is a	added to the charge in order to
	a) Minimize the heat loss d	lue to radiation		
	b) Protect aluminium produ	uced from oxygen		
	c) Dissolve bauxite and ren	nder it conductor of electricit	ty	
	d) Lower the melting point	of bauxite		
569	. Boric acid when burnt with	ethyl alcohol gives a green o	edged flame due to the combu	ustion of:
	a) Boric anhydride	b) Metaboric acid	c) Ethyl borate	d) Orthoboric acid
570	. Purest form of silica is :			
	a) Quartz	b) Flint	c) Sandstone	d) Keiselguhr
571	Al. This disease		internal organs of the body if	food is contaminated with
	a) Induces senility in young	g persons	b) Causes memory loss	
	c) Both (a) and (b)		d) None of the above	

a) Chlorine is more electronegative than hydrogen

572.	In the reaction, $LiH + AlH_3$	$\longrightarrow LiAlH_4$, AlH_3 and LiF	A act as:	
	a) Lewis acid and Lewis ba	se		
	b) Lewis base and Lewis ac	id		
	c) Bronsted base and Brons	ed acid		
	d) None of the above			
573.	Metalloid among the follow	ing is:		
	a) Si	b) C	c) Ge	d) Pb
574.	The most abundant metal in	the earth crust is		
	a) Na	b) Al	c) Ca	d) Fe
575.	. Alumina may be converted	into anhydrous aluminium cl	nloride by:	
	a) Heating it with conc. HC	1		
	b) Heating in a current of de	ry chlorine		
	c) Heating it with rock salt			
	d) Mixing it with carbon and	d heating the mixture in a cu	rrent of dry chlorine	
576.	. Which metal is an importan	t component of transistors?		
	a) Ag	b) Ge	c) Os	d) Ra
577.	. When Al is added to potassi	ium hydroxide solution:		
	a) No reaction takes place			
	b) Oxygen is evolved			
	c) Water is produced			
	d) Hydrogen is evolved			
578.	. An acid among the followin	g is:		
	a) $B(OH)_3$	b) <i>Al</i> (<i>OH</i>) ₃	c) $Fe(OH)_3$	d) None of these
579.	. Which is not used as a refrig	gerant?		
	a) $_{NH_3}$	b) <i>CO</i> ₂	c) CCl_2F_2	d) CO
580.	. Which is used in high tempo	erature thermometry?		
	a) Na	b) Tl	c) Ga	d) Hg
581.	Which ore is best concentra	ted by froth floatation proces	ss?	
	a) Malachite	b) Cassiterite	c) Galena	d) Magnetite
582.	Buckminster-fullerene is a v	variety of		
	a) Boron	b) Carbon	c) Ammonia	d) Fluorine
583.	. Commercially important or	e of lead is:		
	a) Haematite	b) Sphalerite	c) Siderite	d) Galena

584	$584. (CH_3)_2 SiCl_2$ undergoes hydrolysis but $(CH_3)_2 CCl_2$ does not why?				
	a) Low lying d -orbitals pre	esent in Si but not in C	b) Only $3p$ orbital is involved in C d) $Si-Cl$ bond is more polar than $C-Cl$ bond		
	c) Silicon is more acidic				
585. The state of hybridization of boron and oxygen atoms in boric acid ¿) are respectively:		y:			
	a) $s p^3 \wedge s p^3$	b) $s p^2 \wedge s p^3$	c) $s p^3$ and $s p^2$	d) $_{Sp}^{2}$ and $_{Sp}^{2}$	
586	. Al-Bronze contains Al and	:			
	a) Zn	b) Sb	c) Cu	d) Ni	
587	. Which one of the following	g is used as an acid flux in me	etallurgy?		
	a) CaO	b) SiO_2	c) Na_2CO_3	d) SO_2	
588	3. In the electrolytic method	of obtaining aluminium from	purified bauxite, cryolite is a	added to the charge in order to	
a) Minimise the heat loss due to radiation					
	b) Protect aluminium prod	uced from oxygen			
	c) Dissolve bauxite and ren	nder it conductor of electrici	ty		
	d) Lower the melting point	of bauxite			
589	O. CO ₂ is not used in:				
	a) Making Na ₂ CO ₃	b) Fire extinguishers	c) Making aerated water	d) Disinfecting water	
590	Boron when heated with ca	arbon forms			
	a) B_4C	b) _{BC4}	c) $B_4 C_3$	d) B_2C_3	
591	· Activation of charcoal:				
	a) Can be achieved only w	ith charcoal from nut shells			
	b) Increases the adsorbing	power of the charcoal			
	c) Is accomplished by givin	ng powdered charcoal an elec	ctrical charge		
	d) Is achieved by heating the	he charcoal in air			
592	2. Stable compounds in +1 ox	tidation state are formed by:			
	a) B	b) A1	c) Ga	d) T1	
593	3. Which of the following is a	a good conductor of heat and	electricity?		
	a) Diamond	b) Graphite	c) Anthracite	d) Charcoal	
594	An aqueous solution of BC	Cl_{3} is:			
	a) Weak acid	b) Weak base	c) Neutral	d) Strong base	
595	. Which element occurs in fa	ree state?			
	a) C	b) Si	c) Ge	d) Sn	
596	6. C and Si belong to IV grou	p or group 14. The maximum	n coordination number of car	bon in commonly occurring	

compounds is 4, whereas that of silicon is 6. This is due to :

	a) Large size of silicon						
	b) Availability of vacant d-	orbitals in silicon					
	c) More electropositive nature of silicon						
	d) Silicon being vulnerable	to attack by nucleophilic					
597	Pyrene (a fire extinguisher)	is:					
	a) SiCl ₄	b) <i>CCl</i> ₄	c) GeCl ₄	d) $SbCl_5$			
598	Which does not exist?						
	a) B^{3+ii}	b) Al^{3+ii}	c) Ga^{3+ii}	d) ¿3+¿¿			
599	The reducing power of diva	alent species decreases in the	order:				
	a) $Ge > Sn > Pb$	b) $Sn > Ge > Pb$	c) $Pb > Sn > Ge$	d) None of these			
600	. The hardest substance amor	ngst the following					
	a) Be_2C	b) Tritonium	c) B_4C	d) Graphite			
601	The hybridization of carbon	n in carbon monoxide is:					
	a) sp^3	b) sp^2	c) _{sp}	d) dsp^2			
602		when cooled suddenly becon	me brittle, therefore these are	cooled slowly, this process i			
	known as: a) Tempering	b) Annealing	c) Quenching	d) Galvanising			
603	. Aluminium carbide reacts v	with dil. HCl to give:					
	a) C_2H_2	b) C_2H_4	c) <i>CH</i> ₄	d) $C_2 H_6$			
604		Lapis Lazuli' used as semipr	•	2 0			
	a) Sodium alumino silicate						
	b) Zinc cobaltate						
	c) Prussian blue						
	d) Basic copper carbonate						
605	. The correct order of decrea	asing hardness of the following	ng compounds is:				
	a) Diamond > Borazon > C	Carborundum > Corundum					
	b) Borazon > Diamond > C	Carborundum > Corundum					
	c) Corundum > Carborund	um > Borazon > Diamond					
	d) None of the above						
606	It is impossible to fuse strip glass and the metal. The pro a) Coefficient of expansion	operty concerned is:	to soda glass because of a diff	ference in the properties of			
	b) Melting point						
	c) Ignition point						

d) Heat of fusion			
607. The catalyst used in Frie	edel-Craft's reaction is:		
a) Finely divided nickel			
b) Finely divided platinu	um		
c) Anhydrous aluminium	m chloride		
d) Pt			
608. The metal used in acid s	torage batteries is:		
a) Copper	b) Tin	c) Magnesium	d) Lead
609. In Hall's process, the ore	e is mixed with:		
a) Coke	b) Calcium carbonate	c) Sodium hydroxide	d) Sodium carbonate
610. Sesquioxide of lead is:			
a) PbO	b) PbO_2	c) <i>Pb₂O</i>	d) Pb_2O_3
611. Tin (IV) chloride (anhyd	drous) can be obtained :		
a) By action of molten	tin and Cl_2		
b) By heating tin and co	nc. HCl and dehydrating the	product in an atmosphere of l	HCl(g)
c) By treating tin with d	il. HCl and heating the produ	act to dryness	
d) None of the above			
612. What product is formed	on heating lead nitrate?		
a) $PbO+NO+O_2$	b) $PbO + NO_2 + O_2$	c) $Pb+NO_2$	d) $PbO+N_2$
613. Which of the following	imparts green colour to flame	: :	
a) $B(OMe)_3$	b) Na(OMe)	c) $Al(OBr_2)_3$	d) $Sn(OH)_2$
614. Which among CH ₄ , SiF	H_4 , GeH_4 and SnH_4 is most	volatile?	
a) ${\it CH}_4$	b) SiH_4	c) GeH ₄	d) SnH_4
615. Destructive distillation of	of coal does not gives:		
a) C_2H_2	b) C_2H_4	c) Carbides	d) Coal gas
616. Red lead is an example of	of		
a) Basic oxide	b) Super oxide	c) Mixed oxide	d) Amphoteric
617. Which of the following	statements about H_3BO_3 is	not correct?	
a) It is prepared by acid	ifying an aqueous solution of	borax	
b) It has a layer structure	e in which planar BO_3 units	are joined by hydrogen bon	ds
c) It does not act as prot	ton donor but acts as Lewis ac	cid by accepting hydroxyl ion	ı
d) It is a strong tribasic	acid		
618. Cassiterite is an ore of			

	a) Iron	b) Lead	c) Mercury	d) Tin		
619	619. Hoope's process is used in the refining of:					
	a) Al	b) Zn	c) Ag	d) Cu		
620	0. B_2O_3 is:					
	a) Ionic	b) Basic	c) Acidic	d) Amphoteric		
621	Boron compounds behave a	as Lewis acid because of their	r:			
	a) Acidic nature	b) Covalent nature	c) Electron deficiency	d) Ionization property		
622	2. Which is pseudo solid?					
	a) Glass	b) Diamond	c) Sodium chloride	d) CaCO ₃		
623	3. The number of carbon com	pounds is very large because	it:			
	a) Is tetravalent					
	b) Forms double and triple	bonds				
	c) Is non-metal					
	d) shows catenation					
624	4. Which species does not exi	st?				
	a) $[BF_6]^{3-ii}$	b) $[AlF_6]^{3-ii}$	c) $[GaF^6]^{3-ii}$	d) $[InF_6]^{3-ii}$		
625	Boron halides behave as Le	ewis acids because of their	nature.	3		
	a) Proton donor	b) Covalent	c) Electron deficient	d) Ionising		
626	Boron differs from the other	er members of group 13 beca	use it:			
	a) Has much lesser radius					
	b) Is non-metal					
	c) Is covalent in its compou	unds				
	d) Has maximum covalence	y of $6(B_2H_6)$				
627	7. The purification method us	ed for mineral $A l_2 O_3 \cdot 2 H_2 O_3 \cdot 2$	O is:			
	a) Froth floatation	b) Leaching	c) Liquation	d) Magnetic separation		
628	3. Anhydrous AlC l ₃ is obtaine	ed from				
	a) Aluminium and chlorine	gas	b) Hydrogen chloride gas ar	nd Aluminium metal		
	c) Both of the above		d) None of the above			
629	O. Colour is imparted to glass	by mixing:				
	a) Synthetic dyes	b) Metal oxides	c) Oxides of non-metal	d) Coloured salt		
630). Mineral of aluminium that	does not contain oxygen is:				
	a) Corundum	b) Diaspore	c) Bauxite	d) Cryolite		
631	. When Al is added to KOH	solution				

	a) Hydrogen is evolved		b) Oxygen is evolved	
	c) Oxygen is evolved		d) No action takes place	
632	. The composition of mica is	::		
	a) $NaAlSiO_4.3H_2O$	b) $K_2O.3Al_2O_3.6SiO_2$.	$2^{\mathbf{c}}$ $K_2 HAl(SiO_4)_3$	d) $NaK. SiO_4.10 H_2O$
633	Lead chromate isin c	olour.		
	a) Red	b) Yellow	c) White	d) Black
634	· Pure boron is best prepared	l by		
	a) Heating B_2O_3 with H_2		b) Heating B_2O_3 with Na a	and K
	c) Heating KBF ₄ with Na	or K	d) Heating BBr_3 with H_2 i	s presence of a catalyst
635	• The role of fluorspar (CaF in fused cryolite (Na_3AlF a) As a catalyst		nantities in the electrolytic red	duction of alumina dissolved
	b) To make the fused mixtu	ure very conducting		
	c) To increase the temperat	ture of the melt		
	d) To decrease the rate of o	oxidation of carbon at the and	ode	
636	Litharge is not commonly u	used in:		
	a) Manufacture of special g	glasses		
	b) Glazing pottery			
	c) Preparing paints			
	d) Lead storage battery			
637	. The precious Ruby stone is	:		
	a) Alumina			
	b) Aluminium silicate			
	c) Sodium aluminium silica	ate		
	d) Sodium silicate			
638	. Wood charcoal is used in ga	as masks because it:		
	a) Is poisonous	b) Liquefies gas	c) Is porous	d) Adsorbs gases
639	. CO_2 is obtained by heating	:		
	a) Na_2CO_3	b) K_2CO_3	c) NaHCO ₃	d) None of these
540	Which is not correct?			
	a) Al acts as a reducing age	ent.		
	b) Al does not react with st	eam even at higher temperate	ure	
	c) Al forms a number of al	loys with other metals		

	d) Al is ionic in all its compounds					
641	641. On controlled hydrolysis and condensation, R_3SiCl yields					
	a) $R_3 Si - O - Si R_3$		ن _ي (d			
	^{c)} R ₃ SiOH		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
642	Semi water gas is mixture of	of:				
	a) Water gas and producer	gas				
	b) Water gas and CO_2					
	c) Producer gas and CO_2					
	d) Producer gas and oil gas					
643	Borax bead test is not given	•				
	a) An aluminium salt	b) A cobalt salt	c) A copper salt	d) A nickel salt		
644	In the preparation of amorp	phous silicon, HF acid is used	to remove			
	a)	h)	3	J) NT C (1		
	^{a)} Mg	b) Si O ₂	c) _{Si}	d) None of these		
645	Boric acid is not used:	$^{\mathrm{DJ}}$ Si O_2	c) Si	a) None of these		
645	•	^{DJ} SiO ₂	c) Si	d) None of these		
645	Boric acid is not used:	^{DJ} SiO ₂	c) _{Si}	d) None of these		
645	Boric acid is not used: a) As an antiseptic	-	c) _{Si}	d) None of these		
	Boric acid is not used: a) As an antiseptic b) As a flux in soldering c) In making optical glasses d) In making enamels and p	s pottery glazes	c) _{Si}	d) None of these		
	Boric acid is not used: a) As an antiseptic b) As a flux in soldering c) In making optical glasses	s pottery glazes	c) Si	d) None of these		
	Boric acid is not used: a) As an antiseptic b) As a flux in soldering c) In making optical glasses d) In making enamels and p	s pottery glazes	c) SiO ₂	d) None of these $^{\rm d}$		
646	Boric acid is not used: a) As an antiseptic b) As a flux in soldering c) In making optical glasses d) In making enamels and p Which of the following is a a) CO_2 Which of the following can	soottery glazes obtained by PbO_2 anot liberate H_2 with acids?	c) SiO ₂	d) GeO_2		
646	Boric acid is not used: a) As an antiseptic b) As a flux in soldering c) In making optical glasses d) In making enamels and p Which of the following is a a) CO_2 Which of the following can a) Al	b) PbO_2 anot liberate H_2 with acids?	c) <i>SiO</i> ₂			
646	Boric acid is not used: a) As an antiseptic b) As a flux in soldering c) In making optical glasses d) In making enamels and p Which of the following is a a) CO_2 Which of the following can a) Al	soottery glazes obtained by PbO_2 anot liberate H_2 with acids?	c) <i>SiO</i> ₂	d) GeO_2		
646 647 648	Boric acid is not used: a) As an antiseptic b) As a flux in soldering c) In making optical glasses d) In making enamels and p Which of the following is a a) CO_2 Which of the following can a) Al Which of the following con a) B_2O_3+HCl	soottery glazes mphoteric? b) PbO_2 mot liberate H_2 with acids? b) In mpounds are formed when B_1 b) B_2H_6+HCl	c) SiO_2 c) Ti $C l_3 is_{treated}$ with water? c) $H_3 BO_3 + HCl$	d) GeO_2		
646 647 648	Boric acid is not used: a) As an antiseptic b) As a flux in soldering c) In making optical glasses d) In making enamels and p Which of the following is a a) CO_2 Which of the following can a) Al Which of the following con a) B_2O_3+HCl	pottery glazes mphoteric? b) PbO_2 mot liberate H_2 with acids? b) In mpounds are formed when B_1 b) B_2H_6+HCl decesses does not involve a catal	c) SiO_2 c) Ti Cl_3i Streated with water? c) H_3BO_3 + HCl alyst?	d) <i>GeO</i> ₂		
646 647 648	Boric acid is not used: a) As an antiseptic b) As a flux in soldering c) In making optical glasses d) In making enamels and p Which of the following is a a) CO_2 Which of the following can a) Al Which of the following con a) B_2O_3+HCl	soottery glazes mphoteric? b) PbO_2 mot liberate H_2 with acids? b) In mpounds are formed when B_1 b) B_2H_6+HCl	c) SiO_2 c) Ti $C l_3 is_{treated}$ with water? c) $H_3 BO_3 + HCl$	d) GeO_2		
646 647 648	Boric acid is not used: a) As an antiseptic b) As a flux in soldering c) In making optical glasses d) In making enamels and p Which of the following is a a) CO_2 Which of the following can a) Al Which of the following con a) B_2O_3+HCl Which of the following pro a) Thermite process The metal which does not f	cottery glazes cottery glazes comphoteric? b) PbO_2 cont liberate H_2 with acids? b) In compounds are formed when B_1 coesses does not involve a cata b) Ostwald process form a polynuclear carbonyl in	c) SiO_2 c) Ti C l_3 is treated with water? c) $H_3BO_3 + HCl$ alyst? c) Contact process	d) GeO_2 d) B d) None of these d) Haber process		
646 647 648	Boric acid is not used: a) As an antiseptic b) As a flux in soldering c) In making optical glasses d) In making enamels and p Which of the following is a a) CO_2 Which of the following can a) Al Which of the following con a) B_2O_3+HCl Which of the following pro a) Thermite process	cottery glazes cottery glazes cottery glazes cottery glazes comphoteric? b) PbO_2 conot liberate H_2 with acids? b) In compounds are formed when B_1 cosses does not involve a cata b) Ostwald process	c) SiO_2 c) Ti C l_3 is treated with water? c) $H_3BO_3 + HCl$ alyst? c) Contact process	d) GeO_2 d) B d) None of these		

651	· What is formed when oxali	c acid is dehydrated by conc	$2.H_2SO_4$?	
	a) $C + CO_2$	b) CO	c) _{CO₂}	d) $CO + CO_2$
652	Tetra ethyl lead is used as:			
	a) Fire extinguisher	b) Antiknock compound	c) Pain killer	d) Mosquito killer
653	Lead is not affected by dilu	te HCl in cold, because:		
	a) Pb is less electronegative	e than H		
	b) PbO film is formed which	ch resists chemical attack by	acid	
	c) A protective coating of	$PbCl_2$ is formed on Pb surfa	ace	
		ent on Pb surface, which res		
654	. Which of the following sta	tement is correct with respec	et to the property of elements	in the carbon family with an
	increase in the atomic num a) Atomic size decreases	ber? Their	b) Stability of +2 oxidation	state increases
	c) Metallic character decre	eases	d) Ionization energy increa	ses
655. The chemical formula of phosgene or carbonyl chloride is:				
	a) PH_3	b) COCl ₂	c) POCl ₃	d) PCl_3
656	Carbon in CO_2 is:			
	a) _{s p} -hybridized	b) $_{Sp}^{2}$ -hybridized	c) $_{Sp^3}$ -hybridized	d) $ds p^3$ -hybridized
657	Ordinary sand (SiO_2) is at	tacked by:	•	
	a) conc. HCl	b) conc. HBr	c) hot KOH	d) None of these
658	. Which is not a mineral of a	ıluminium?		
	a) Anhydrite	b) Bauxite	c) Corundum	d) Diaspora
659	graphite.	cant extremely difficult to me	elt. The reason for this anoma ymers	lous behaviour is that
	b) Has carbon atoms arrang	ged in large plates of rings of	f strongly bound carbon atom	s with weak interplate bonds
	c) Is a non-crystalline subs	tance		
	d) Is an allotropic form of	diamond		
660	. Which does not react with	water?		
	a) $B_2 S_3$	b) _{B4} C	c) Al_4C_3	d) Al_2S_3
661	· Which of the following is o	obtained on heating, potassiu	m ferrocyanide with H_2SO_4	?
	a) <i>CO</i> ₂	b) CO	c) C_2H_2	d) $(CN)_2$
662	. The metallic character of the	he elements of IV A group o	r group 14 :	
	a) Decreases from top to b	ottom		
	b) Has no significance			

	c) Does not change			
	d) Increases from top to bo	ttom		
663	When a solution of sodium	hydroxide is added in excess	s to the solution of potash alu	m, we obtain:
	a) A white precipitate			
	b) Bluish white precipitate			
	c) A clear solution			
	d) A crystalline mass			
664	. Which of the following is b	petter fuel?		
	a) Solid	b) Liquid	c) Gaseous	d) Semi solid
665	. Flux is used to			
	a) Remove silica		b) Remove silica undesirab	le metal oxide
	c) Remove all impurities fr	rom ores	d) Reduce metal oxide	
666	. Al dissolves in molten NaC	OH with the formation of:		
	a) Sodium aluminate $(N a_3)$	AlO_3		
	b) Sodium meta-aluminate c) Aluminium hydroxide	$(NaAl O_2)$		
	d) Alumina			
667	Silicon carbide is used as:			
007	a) Dehydrating agent	b) Abrasive	c) Solvent	d) Catalyst
668	, ,	are alumina is not possible be	-	u) catalyst
	a) It is amphoteric	are unuminia is not possione of		
	b) It dissociates on fusion			
	c) It melts at very high tem	perature		
	d) None of the above	F		
669	-	e for weak acidic nature of E	3—F bonds in BF_2 is:	
	a) Large electronegativity of		o i condi ii 310.	
	b) Three centred two electors			
	c) $p\pi - d\pi$ back bonding	orn bonds in DT_3		
	d) $p\pi - p\pi$ back bonding			
670	1 1	sing C—O bond length in CO	CO_2^{2-i} and CO_2 is:	
			c) $CO_2 < CO_3^{2-i \cdot i} < CO$	d) $CO \cdot CO \cdot CO^{2-ii}$
671	5 -	5 -	ives a white ppt. soluble in ho	_ 3
	a) Ag^{+ii}	b) <i>Pb</i> ²⁺⁴⁴	c) H ^{2+&&}	d) Fe^{2+ii}

6/2. Thallium shows differen	ent oxidation sates because:								
a) It is a transition me	ta;								
b) Of inert pair effect									
c) Of its amphoteric c	haracter								
d) Of its high reactivit	y								
673. 'Lead Pencil' contains									
a) _{PbS}	b) _{FeS}	c) Graphite	d) Pb						
674. Which one is explosive	e?								
a) <i>PC l</i> 5									
b) $Pb(NO_3)_2$									
c) NH_4NO_3+Al po	wder								
d) $C_6H_5NO_2$									
675. Which of the following	g is formed when aluminium o	oxide and carbon is strongly	heated in dry chlorine gas?						
a) Aluminium chloride	2	b) Hydrate Aluminiu	b) Hydrate Aluminium chloride						
c) Anhydrous Alumin	ium chloride	d) None of the above	d) None of the above						
676. A salt which gives CO	H_2 with hot H_2SO_4 and also de	ecolourises acidified KMnC	O ₄ on warming is:						
a) $HCO_3^{-i \cdot i}$	b) CO_3^{2-ii}	c) Oxalate	d) acetate						
677. The structure of dibora	ane (B_2H_6) contains								
a) Four 2c-2e bonds as	nd two 3c-2e bonds	b) Two 2c-2e bonds as	b) Two 2c-2e bonds and four 3c-2e bonds						
c) Two 2c-2e bonds ar	nd two 3c-3e bonds	d) Four 2c-2e bonds a	nd four 3c-3e bonds						
678. Elements of group 13	form oxides of the general for	mula:							
a) M_4O_5	b) <i>MO</i>	c) M_2O_3	d) M_2O_4						
679. Quartz watches contain	1								
a) Hands made of qua	rtz	b) Silica coating on the	b) Silica coating on the numbers						
c) A crystal of quartz	as an essential component	d) A coating of quartz	d) A coating of quartz on the outer body						
680. Alumina on heating wi	th carbon in nitrogen atmosph	ere gives:							
a) Al + CO	b) $_{Al+CO_2}$	c) AlN + CO	d) $Al + CO + N_2$						
681. Carbon reacts with stro	ong electropositive metal oxide	es to form:							
a) Carbide	b) Carbonate	c) Hydroxide	d) Oxide						
682. Tetrahalides of IV A g	roup of group 14 elements are	::							
a) Ionic	b) Covalent	c) Polar	d) Coordinate covalent						
683. The percentage of carb	oon is least in:								
a) White cast iron	b) Grey cast iron	c) Wrought iron	d) Steel						

684	. Conc. HNO_3 can be stored	l in container of:										
	a) Cu	b) Al	c) Zn	d) Sn								
685	85. Water glass is											
	a) Glass made of water	b) Sodium silicate	c) Calcium formate	d) Pyrex glass								
686	86. Tendency of catenation is strongest in:											
	a) C b) O c) N d) Si											
687	87. On adding ammonium hydroxide solution to $Al_2(SO_4)_3$ (aq):											
	a) A precipitate is formed which does not dissolve in excess of ammonium hydroxide											
	b) A precipitate is formed which does not dissolve in excess of ammonia solution											
	c) No precipitate is formed											
	d) None of the above											
688	588. Borax bead test depends on the formation of:											
	a) Boron oxide b) Boron metal c) Metal metaborates d) All of these											
689	. Graphite is good conductor	of current but diamond is no	on-conductor because:									
	a) Diamond is hard and graphite is soft											
	b) Graphite and diamond ha	ave different atomic configur	ation									
	c) Graphite is composed of	positively charged carbon io	ons									
690	d) Graphite has hexagonal layer structure with mobile π -electrons while diamond has continuous tetrahedral covalent structure with no free electrons 690. When Sn (IV) chloride is treated with excess of conc. HCl, the complex $\left[SnCl_6\right]^{2-\delta}$ is formed. The oxidation											
	state of Sn in this complex a) +6		c) -2	d) +2								
691	. $SiH_4 + O_2$ mixture on bubb	ling through water and bubbl	es coming in contact with air	:								
	a) Burns with a luminous fla	ame										
	b) Vortex rings of finely divided silica are formed											
	c) $SiH_4 + 2O_2 \longrightarrow SiO_2 + 2H_2O$, reaction occurs d) All of the above											
692	692. The main component of glass which gives heat resistance to laboratory glassware is											
	a) PbO	b) MgO	c) B_2O_3	d) Al_2O_3								
693	. An element R is in group 1	3. Which is true with respect	_ 3	2 3								
	a) It is a gas at room tempe	rature										
	b) It has an oxidation state of +4											
	c) It forms an oxide of the type R_2O_3											
	d) It forms a halide of the type RX_2											

694. Bucky ball or buck minster fullerene is:

- a) An allotrope of carbon
- b) It is referred as C 60
- c) It has $s p^2$ -hybridized nature and resembles with soccer ball
- d) All of the above

: ANSWER KEY:

1)	c	2)	a	3)	b	4)	a	169)	a	170)	d	171)	a	172)	d
5)	b	6)	a	7)	d	8)	c	173)	c	174)	b	175)	c	176)	a
9)	c	10)	d	11)	c	12)	c	177)	d	178)	c	179)	d	180)	d
13)	b	14)	a	15)	c	16)	b	181)	a	182)	d	183)	c	184)	d
17)	d	18)	a	19)	b	20)	d	185)	a	186)	d	187)	a	188)	a
21)	d	22)	a	23)	c	24)	a	189)	c	190)	c	191)	c	192)	c
25)	c	26)	b	27)	a	28)	d	193)	a	194)	c	195)	c	196)	b
29)	b	30)	b	31)	d	32)	a	197)	b	198)	c	199)	c	200)	b
33)	d	34)	b	35)	b	36)	d	201)	a	202)	a	203)	a	204)	c
37)	a	38)	C	39)	d	40)	d	205)	b	206)	b	207)	d	208)	c
41)	b	42)	d	43)	b	44)	a	209)	b	210)	a	211)	a	212)	a
45)	d	46)	d	47)	b	48)	d	213)	a	214)	b	215)	c	216)	c
49)	c	50)	a	51)	c	52)	a	217)	b	218)	d	219)	d	220)	d
53)	a	54)	b	55)	a	56)	b	221)	d	222)	a	223)	c	224)	d
57)	c	58)	c	59)	a	60)	c	225)	c	226)	c	227)	a	228)	c
61)	b	62)	b	63)	b	64)	b	229)	a	230)	a	231)	d	232)	b
65)	a	66)	a	67)	a	68)	d	233)	b	234)	c	235)	a	236)	c
69)	b	70)	c	71)	c	72)	b	237)	c	238)	b	239)	d	240)	d
73)	c	74)	c	75)	b	76)	a	241)	c	242)	a	243)	c	244)	d
77)	b	78)	c	79)	a	80)	d	245)	b	246)	c	247)	b	248)	d
81)	a	82)	a	83)	a	84)	a	249)	b	250)	a	251)	c	252)	d
85)	b	86)	a	87)	c	88)	b	253)	b	254)	a	255)	b	256)	d
89)	d	90)	d	91)	a	92)	b	257)	a	258)	d	259)	a	260)	a
93)	b	94)	b	95)	b	96)	a	261)	b	262)	b	263)	d	264)	d
97)	c	98)	a	99)	a	100)	d	265)	b	266)	d	267)	a	268)	c
101)	a	102)	d	103)	b	104)	d	269)	a	270)	c	271)	c	272)	a
105)	d	106)	d	107)	d	108)	d	273)	b	274)	a	275)	d	276)	c
109)	a	110)	d	111)	c	112)	b	277)	d	278)	b	279)	d	280)	a
113)	d	114)	a	115)	b	116)	b	281)	a	282)	a	283)	d	284)	d
117)	c	118)	b	119)	b	120)	c	285)	c	286)	a	287)	d	288)	b
121)	c	122)	b	123)	c	124)	c	289)	a	290)	a	291)	d	292)	b
125)	c	126)	b	127)	b	128)	a	293)	b	294)	d	295)	d	296)	b
129)	d	130)	b	131)	c	132)	b	297)	d	298)	b	299)	d	300)	a
133)	c	134)	a	135)	b	136)	c	301)	b	302)	c	303)	b	304)	c
137)	c	138)	b	139)	c	140)	b	305)	a	306)	d	307)	a	308)	d
141)	c	142)	a	143)	c	144)	a	309)	b	310)	b	311)	d	312)	b
145)	d	146)	a	147)	d	148)	c	313)	b	314)	b	315)	b	316)	d
149)	d	150)	a	151)	d	152)	d	317)	b	318)	d	319)	d	320)	d
153)	a	154)	a	155)	b	156)	c	321)	c	322)	c	323)	b	324)	b
157)	a	158)	d	159)	b	160)		325)	b	326)	b	327)	a	328)	b
161)	d	162)	d	-	c	164)		329)	c	330)	d	331)	a	332)	c
165)	a	166)	c	167)		168)		333)	b	334)	c	335)	d	336)	c
-		-		-		-		1 -		•		•		_	

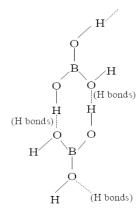
337)	d	338)	b	339)	d	340) 1	b 537) d	538)	d	539)	a	540)	d
341)	a	342)	d	343)	c	344)	c 541) a	542)	d	543)	b	544)	d
345)	c	346)	d	347)	a	348)	c 545) a	546)	a	547)	d	548)	c
349)	b	350)	d	351)	b	352) 1	b 549) d	550)	b	551)	c	552)	d
353)	a	354)	d	355)	a	356)	a 553) c	554)	a	555)	d	556)	С
357)	b	358)	d	359)	С	0.60	a 557		558)	b	559)	d	560)	a
361)	С	362)	d	363)	С		d 561		562)	b	563)	a	564)	b
365)	a	366)	d	367)	b	-	b 565		566)	b	567)	b	568)	d
369)	b	370)	b	371)	b	-	b 569		570)	a	571)	С	572)	a
373)	a	374)	c	375)	c		d 573		574)	b	57 5)	d	576)	b
377)	a	378)	a	379)	b	200	a 577		578)	a	579)	d	580)	c
381)	d	382)	a	383)	a	-	b 581		582)	b	583)	d	584)	a
385)	b	386)	c	387)	a	-	b 585		58 2)	c	587)	b	588)	d
389)	d	390)	a	391)	d	•	d 589		590)	a	591)	b	592)	d
393)	d	394)	c	395)	d		d 593		594)	a	59 5)	a	596)	b
397)	c	398)	a	399)	c		d 597		598)	a	599)	a	600)	C
401)		402)	_	403)	_		.		602)	b	603)		604)	
405)	c	406)	b	407)	b	400)	60-		606)		607)	c	608)	a d
-	a	-	c	411)	C h				-	a	-	c	-	
409)	d h	410)	a h	,	b	-	c 609		610)	d	611)	a	612)	b
413)	b	414)	b h	415)	c	,	c 613		614)	a	615)	c	616)	c
417)	C L	418)	b	419)	a	,	c 617		618)	d	619)	a	620)	c
421)	b	422)	b	423)	d	,	c 621		622)	a	623)	d	624)	a
425)	d	426)	d	427)	d	•	b 625		626)	b	627)	b	628)	C
429)	a	430)	С	431)	a	,	c 629		630)	d	631)	a	632)	b
433)	C	434)	a	435)	С	,	c 633		634)	d	635)	b	636)	d
437)	b	438)	a	439)	a	,	a 637		638)	d	639)	С	640)	d
441)	a	442)	d	443)	d	,	b 641		642)	a	643)	a	644)	b
445)	c	446)	C	447)	С	,	c 645		646)	b	647)	d	648)	C
449)	c	450)	a	451)	d	,	c 649		650)	a	651)	d	652)	b
453)	C	454)	d	455)	d	=	c 653		654)	b	655)	b	656)	a
457)	b	458)	C	459)	C	-	c 657		658)	a	659)	b	660)	a
461)	d	462)	d	463)	b	-	b 661		662)	d	663)	C	664)	C
465)	b	466)	C	467)	b	-	b 665		666)	a	667)	b	668)	C
469)	c	470)	d	471)	b	472)	d 669) d	670)	d	671)	b	672)	b
473)	c	474)	a	475)	a	476) a	a 673) c	674)	c	675)	C	676)	C
477)	b	478)	a	479)	C	480) a	a 677) a	678)	C	679)	c	680)	C
481)	b	482)	a	483)	b	484) 1	b 681) a	682)	b	683)	C	684)	b
485)	c	486)	a	487)	d	488) 1	b 685) b	686)	a	687)	a	688)	c
489)	a	490)	a	491)	a	492)	d 689) d	690)	b	691)	d	692)	c
493)	b	494)	b	495)	c	496) 1	b 693) c	694)	d				
497)	d	498)	c	499)	a	500) a	a							
501)	b	502)	c	503)	a	504) 1	b							
505)	b	506)	a	507)	a	508)	С							
509)	a	510)	d	511)	c	512)	С							
513)	d	514)	c	515)	c	516)	d							
517)	d	518)	d	519)	c	520) 1	b							
521)	d	522)	d	523)	d	524)	a							
525)	c	526)	d	527)	c		a							
529)	c	530)	a	531)	d	-	b							
533)	a	534)	c	535)	b	=	d							
,		,		•		,								

: HINTS AND SOLUTIONS :

17

- 2 (a) It is a fact.
- 3 $3B + \frac{1}{2}N_2 + \frac{3}{2}O_2 \longrightarrow B_2O_3 + BN \ \delta$
- 4 The state of hybridization of carbon in fullerene is $s p^2$ hybridised
- 5 (b) Davy isolated boron

7


(d)

- 6 (a) Rest all are the methods to prepare anhydrous $AlCl_3$. $2AlCl_2$: $6H_2O \xrightarrow{\triangle} Al_2O_3 + 6HCl + 9H_2O$
- Potash alum is double salt. Its chemical composition K_2SO_4 . $Al_2(SO_4)_3$.24 H_2O $K_2SO_4.\,A\,l_2\big(SO_4\big)_3.24\,H_2O\to 2\,K^{+\dot{c}+2A\,l^{3+\dot{c}+4SO_4^{3-b24ll_2O_5}}\dot{c}}$ ∴ It gives three types of ions on dissociation $K^{+i,Al^{3+ii}}$ and SO_4^{2-ii}
- 8 CO is neutral oxide of carbon.
- (c) Addition of cryolite makes the fused melt at lower melting temperature as well as good conductor of current.
- 11 (c) Solid CO₂ directly sublimes to gas by taking heat from surroundings to bring in cooling.
- 12 **(c)** Destructive distillation of coal (heated to nearly 1270 K) gives coke (solid residue 70%) and hot vapours and gases.
- 13 (b)

- Liquified Gaexpand on solidification, because it is less electropositive in nature and has the weak metallic bond
- 15 **(c)** To slow down the speed of neutrons.
- 16 **(b)** BF_3 is electron deficient compound.
 - Graphite has a two dimensional structure. In this case, only three of the four valence electrons of each carbon atom are involved in bonding. Thus, each carbon atom makes use of $s p^2$ -hybrid orbitals. Hence, the fourth valence of each carbon atom remains unsatisfied ie, the fourth valence electron remains unpaired or free. This free electron can easily move from one carbon to another under the influence of applied potential. So, in structure of graphite only one electron is free on each carbon atom.
- 18 (a) It is a reason for given fact.
- 19 (b) Organic acids dissolve lead in presence of oxygen

$$2CH_3COOH + \frac{1}{2}O_2 \longrightarrow Pb(CH_3COO)_2 + H_2O$$

- 20 (d) It is a fact.
- 21 (d) H_3BO_3 has layer structure with H-bonding.

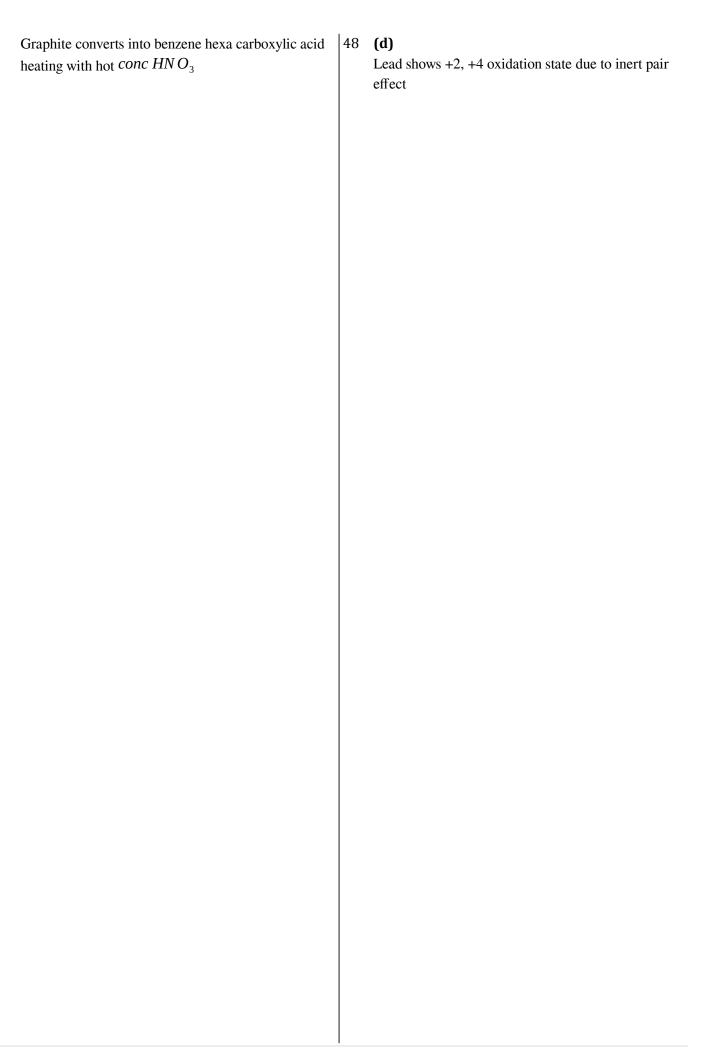
(a)

Producer gas (a mixture of $CO + N_2$) is prepared by incomplete combustion of coal in restricted supply of air.

- **(c)** Water gas is $CO + H_2$.
- 24 (a) In bauxite ore, only Al_2O_3 reacts with conc. NaOH and forms sodium meta aluminate.

$$Al_2O_3+2H_2O+2$$
 NaOH 500 $_i$

This further dissolves in water.


 $NaAl O_2 + 2 H_2 O \rightarrow NaAl (OH)_4$

- **(c)** *Amphoteric* substance can react with both acid and base
- **(b)**Wood's metal an alloy of Bi (50%), Pb (25%), Sn (12.5%) and Cd (12.5%) has m.p. 71°C.
- **(a)**The hardness progressively decreases with increase in at. no. in gp.13.
- **(d)**It is a reason for given fact.
- **(b)**The method of zone refining of metals is based on the principle of greater solubility of the impurity in the molten state than in the solid. Elements which are used as semiconductors like Si, Ge, Ga, etc are refined by this method.
- **(b)** In H_3BO_3 boron atom is $s p^2$ -hybridised.

- **(d)** Carborundum is SiC.
- Red bauxite which contains Fe_2O_3 as the main impurity, is refined either by Baeyer's process or by Hall's process. White bauxite containing SiO_2 impurity is refined by Serpeck's method. In Serpeck's

impurity is refined by Serpeck's method. In Serpeck's method, following reactions take place $Al_2O_3.2H_2O+3C+N_21800$ °C 2 AlN+3CO+2 E $AlN+3H_2O\longrightarrow Al(OH)_3+NH_3$ 2 $Al(OH)_3\Delta Al_2O_3+3H_2O$

- **(b)** $AlCl_3 exi sts as <math>Al_2Cl_6$.
- **(d)** $Mg_2C_3 + 4H_2O \longrightarrow 2Mg(OH)_2 + CH_3C \equiv CH$
- **(a)** It is a fact.
- **(d)** $4Al+3O_2 \longrightarrow 2Al_2O_3$ involves oxidation and the process of anodising will favour formation of Al_2O_3 .
- **(d)** Expect $B(OH)_3$ all other hydroxide are of metallic hydroxide having the basic nature, $B(OH)_3$ are the hydroxide of non-metal showing the acidic nature
- **(b)**Incomplete combustion of petrol leads to formation of CO.
- **(d)** MnO_2 imparts purple colour to glass.
- **(b)** Cryolite (Na_3AlF_6) is added to Al_2O_3 before electrolysis to lower the fusion temperature of bauxite in order to dissolve it and making good conductor of current.
- **(a)**Both possess giant molecular structure.
- **(d)** Solid CO_2 is known as dry ice because it evaporates at -i.78°C without changing in the liquid state
- **(b)**

49 **(c)**

Zeolite (permutit) is a three-dimensional silicate. It is used in removing hardness of water.

- 50 (a) BF_3 is gas.
- 51 **(c)**It is a fact.
- 52 **(a)**

Doping of gp.13 element (In) with Ge (gp.14 element) causes *p*-type semiconductor. Doping of gp.15 element (As) with Ge (gp.14 element) causes *n* -type semiconductor.

- 53 (a)Both CO and air have nearly same mol. wt. of CO, is28; of air it is ≈29.
- 54 **(b)**Muddy water can be purified through coagulation by using alums.
- 55 **(a)** The composition of dry air is: $N_2 = 78.08\%$; $O_2 = 20.95\%$; Ar = 0.93%; $CO_2 = 0.03\%$; Ne = 0.0018%; He = 0.0005%; Kr = 0.0001% and Xe = 0.00001%. In addition to these it also contains water vapours hydrocarbons, H_2O_2 , sulphur compounds.
- 56 **(b)**Diamond is an allotropic form of carbon, carborundum is SiC, corundum is Al_2O_3 , borazon is BN.
- 57 **(c)** $4 Sn + 10 HNO_3 \longrightarrow 4 Sn(NO_3)_2 + NH_4 NO_3 + 3 H_2 O$
- Incomplete combustion of gases leaves carbon residue to develop yellow colour.
- Larger anion are more easily deformed to produce covalent nature. Also note decreasing ionic nature and not increasing.
- 60 **(c)**The Lewis acid order for boron halides are explained in terms of back-bonding.
- 61 **(b)**Incomplete combustion of petrol gives out CO from

exhaust of auto vehicle.

- 62 **(b)**Alum is antibacterial and not insecticide.
- 63 **(b)** $BC l_3 + 3 H_2 O \rightarrow B(OH)_3 + 3 HCl$ Thus, the products are $B(OH)_3$ or $H_3 BO_3$ and HCl.
- $\begin{vmatrix}
 64 &$ **(b)** $\\
 4 & H_3 & BO_3 \longrightarrow H_2 & B_4 & O_7 + 5 & H_2 O
 \end{vmatrix}$
- As metallic character of element attached to oxygen atom increases, the difference between the electronegativity values of element and oxygen increases and thus basic character of oxides increases and *vice-versa*. Hence the increasing correct order of basic nature is $Al_2O_3 < Mgo < Na_2O < K_2O$.
- Calorific values are: Coal gas = $450 \&560 \text{ BTU/}ft^3$ (British thermal unit per cubic feet); water gas = $310 \text{ BTU/}ft^3$; producer gas = $103 \text{ BTU/}ft^3$; $CO_2 = 0$.
- 68 **(d)** $Sn+4H_2SO_4(Conc.) \longrightarrow Sn(SO_4)_2+2SO_2+4H_2C$
- 69 **(b)** The chemical formula of sindhur is Pb_3O_4 . It is also called red lead or trilead tetraoxide. Red lead is used as a red pigment in making antirust and also as an oxidising agent in glass and match industries.
- 70 **(c)**Aluminium oxide is highly stable therefore, it is not reduced by chemical reaction
- 71 **(c)**Aluminium reacts with caustic soda to form sodium meta aluminate. $2Al + 2NaOH + 2H_2O \longrightarrow 2NaAlO_2 + 3H_2 \uparrow$ sodium
 meta aluminate
- 72 **(b)** $PbO_{2} + 2HNO_{3} \rightarrow Pb(NO_{3})_{2} + H_{2}O + \frac{1}{2}O_{2}$
- 73 **(c)** $2H_3BO_3 \longrightarrow B_2O_3 + 3H_2O_3$
- 75 **(b)** Thermite is a mixture of $Fe_2O_3 + Al$.

76 **(a)**It is a fact; also known as white lead.

77 **(b)**
$$C_{12}H_{22}O_{11}+18[O] \longrightarrow 6H_2C_2O_4+5H_2O$$

78 **(c)**It is a reason for given fact.

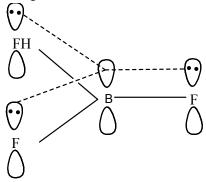
Diamond possesses the highest b.p. among all due to giant molecular structure. It does not melt and directly vaporise at 3773K.

80 **(d)** The enthalpy of formation of Al_2O_3 is very high and hence, it is not possible to reduce it by carbon.

82 **(a)**A species is amphoteric if it is soluble in acid (behaves as a base) as well as in base (behaves as an acid). $SnO_2 \text{ is an amphoteric oxide.}$ $SnO_2 + 4HCl \longrightarrow SnC l_4 + 2H_2O$

83 **(a)**

$$H_2O_+C \to CO_+H_2$$


84 (a) $(CO)_4$ is volatile gas at room temperature.

 $SnO_2 + 2 NaOH \longrightarrow N a_2 SnO_3 + H_2O$

85 **(b)**It is also known as minium or sindhur.

86 **(a)**Boron trihalides are Lewis acid. The order of their acidic strength is as $BF_3 < BC l_3 < BB r_3 < B I_3$

In the boron halides, a $p\pi$ - $p\pi$ back bonding arises due to empty orbital of boron and filled orbitals of halogen.

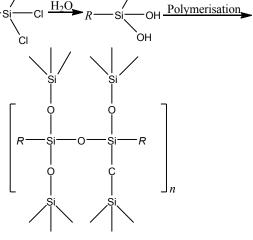
This $p\pi$ - $p\pi$ back bonding has maximum effect in

and this effect decreases as the size of halogen increases. Due to this effect, tendency of accepting lone pair of electron of boron decreases $i \cdot e$., Lewis acid character decreases.

87 **(c)**On heating $AlCl_3(aq)$ to dryness, Al_2O_3 is formed. $2AlCl_3 + 6H_2O \longrightarrow 2Al(OH)_3 + 6HCl$ $Al(OH)_3 \longrightarrow Al_2O_3 + 3H_2O$

88 **(b)**C-60 is called Buckminster fullerene. It is discovered in 1990 as a constituent of soot. Its shape is like a soccer ball.

89 **(d)** $Pb_{3}O_{4} + 4 HNO_{3} \stackrel{\Delta}{\rightarrow} Pb(NO_{3})_{2} + 2 H_{2}O_{+} 2 PbO_{2}$


90 (d)
C-atoms form covalently bonded plates (layers).
Layers are bonded weakly together, that's why one layer can slide over other cause lubricacy. Cannot be melted easily as large number of atoms being bonded strongly in the layer form big entity.

91 (a) The simplest glass is soda glass which is also called soft glass. Glass is super-cooled liquid mixture. The composition of soft glass is $Na_2O.CaO.6SiO_2$.

92 **(b)** Surface of Al forms Al_2O_3 in nitric acid and becomes passive.

(b) $R SiC l_3$ gives cross linked silicon polymer on hydrolysis. $R \longrightarrow Si \longrightarrow Cl \xrightarrow{H_2O} R \longrightarrow Si \longrightarrow OH \xrightarrow{Polymerisation}$

93

94 **(b)**

 CF_4 has more ionic character than CCl_4 , $SiF_4 \wedge SiCl_4$.

Hence, it has more lattice energy and thermal stability.

95 **(b)**

Carbon element belongs to IV A group.

$$C+O_2 \rightarrow CO_2$$

$$CO_2+H_2O \rightarrow H_2CO_3$$

carbonic acid

96 **(a)**

The C—X bond energy in CF_4 , CCl_4 , CBr_4 and CI_4 are 116, 81, 68 and 51 respectively.

97 **(c)**

CO and CO_2 are major air pollutant. However, CO_2 is used in photosynthesis and CO is left to pollute air.

98 **(a)**

It is a fact.

99 **(a)**

Rose metal contains Sn + Pb + Bi used in electric fuses.

28% 22% 50%

100 (d)

Diamond is bad conductor of current.

101 (a)

$$BN + 3NaOH \longrightarrow Na_3BO_3 + NH_3$$

102 (d)

Graphite has two dimensional sheet like structure in which the various layers are held together by weak vander Waals' forces

103 **(b)**

Colemanite is $Ca_2B_6O_{11} \cdot 5H_2O$.

104 (d)

 Pb_3O_4 is a mixed oxide. It can be represented as $2PbO-PbO_2$

105 (d)

It is a fact.

106 (d)

Due to formation of PbS (black).

107 (d)

Abundance in earth crust in ppm:

B (10), Al (81300), Ga (15), In (1),Tl (0.3).

108 (d)

Graphite possesses $s p^2$ -hybridization.

109 (a)

The important ore of tin is cassiterite (SnO_2) . Tin is extracted from cassiterite ore by carbon reduction method in a blast furnace.

$$SnO_2 + 2C \rightarrow Sn + 2CO$$

The product often contain traces of iron which is removed by blowing air through the melt to oxidise to FeO which then floats to the surface.

$$2Fe+O_2 \rightarrow 2FeO$$
.

110 (d)

Bentonite is spread to destroy the bacteria, insects and other pests by exposure to poisonous gas or smoke. This is called fumigation.

111 (c)

Addition of As in lead makes it brittle.

113 (d)

It is therefore used to prepare laboratory glass apparatuses.

114 (a)

Silica on heating with carbon at high temperature gives carborundum (silicon carbide)

$$SiO_2+3C\Delta SiC+2CO$$

carborundum

Carborundum is very hard substance.

115 **(b)**

$$R_3 SiCl + HOH \longrightarrow R \square_3 SiOH + HCl$$

 $R_3 SiOH + HOSi R_3 \longrightarrow R_3 Si \square_O _Si R_3$

116 **(b)**

White tin converts to grey tin a low temperature.

117 (c)

Water glass is sodium silicate.

118 **(b)**

Bullet of gun possesses lead in it.

119 **(b)**

Both have at. wt. equal to 12.

121 **(c)**

The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of

shells

122 **(b)**

Buckminster fullerene is $C - \dot{c}60$ (allotrope of carbon).

123 **(c)**

SiO₂ has giant molecular structure.

124 **(c)**

Diamond and graphite are crystalline allotropes of carbon.

125 **(c)**

It is a reason for given fact.

126 **(b)**

Minium is also known as red lead.

127 **(b)**

General formula of alum is, $M_2'SO \square_4 \cdot M_2'''(SO_4)_2 \cdot 24 H_2O$

128 (a)

Graphite is good conductor of current.

129 (d)

Alumina is mixed with molten cryolite to lower its melting point and to make it good conductor of electricity.

130 **(b)**

$$2Al + Fe_2O_3 \longrightarrow Al_2O_3 + 2Fe$$
; $\Delta H = -ve$;

The heat given out is used in welding. This is also called Gold Schmidt alumino thermic process.

131 **(c)**

Agate is SiO_2 .

132 **(b)**

$$\stackrel{\text{\tiny L}}{\sim} (CO)_4 \stackrel{\Delta}{\sim} _{Ni+} 4CO$$

133 (c)

Flint glasses are clear, transparent, potash lead glass.

135 **(b)**

Carbon cannot expand its octet due to inavailability of d-subshell in 2nd shell.

136 (c)

$$AlCl_3+3$$
 $NaOH \longrightarrow Al(OH)_3+3$ $NaCl$
 $Al(OH)_3+OH^{-\iota \longrightarrow Al(OH)_4^{-\iota(soluble)\iota}\iota}$

137 (c)

Goldschmidt in 1905 discovered a method for the

reduction of haematite (Fe_2O_3) with aluminium metal. The process is known as aluminothermic process, as in this process, large heat is produced. In this, Fe_2O_3 and aluminium are taken in 3:1 ratio and this mixture, known as thermite, is ignited to initiate the reaction, when Fe_2O_3 is reduced to molten Fe. $2Al+Fe_2O_3 \longrightarrow Al_2O_3+2Fe+3230\,kJ$

molten

138 **(b)**

Electrolysis of cryolite can be explained as $N a_3 Al F_6 \rightleftharpoons 3 NaF + Al F_3$

$$4AlF_3 \rightleftharpoons 4Al^{3+i+12F^{-ii}i}$$

$$+12e^{-iit}$$
 $\downarrow -12e^{-i}$ $4Al$ $6F_2$

(at cathode) (at anode)

So, the molar ratio of Al and F_2 is 4:6=2:3

139 **(c)**

 CO_2 get absorbed by $Ca(OH)_2$ to form insoluble $CaCO_3$

140 **(b)**

$$Al(OH)_3 + OH^{-\iota \longrightarrow \iota \iota}$$

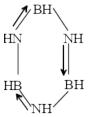
Coordination no. is six thus, it exists as

$$\left[Al(H_2O)_2(OH)_4\right]^{-i..i}$$

142 (a)

Carbon dioxide gas remains present in airated water and soft-drinks.

143 (c)


Calamine is an ore of Zn.

144 (a)

$$Na_2B_4O_7 \longrightarrow 2 NaBO_2 + B_2O_3$$

 $B_2O_3 + Co \longrightarrow Co \cdot O \cdot B_2O_3 \lor Co (BO_2)_2$
(Blue bead)

145 (d)

Inorganic benzene is borazole or $B_3N_3H_6$ having structure similar to C_6H_6 , i.e.,

146 (a)

Borax is

 $N\,a_2B_4O_7\!\cdot\!10\,H_2O\vee N\,a_2[\,B_4O_5(OH)_4\,]\!\cdot\!8\,H_2O$

147 **(d)**

The mineral borax is $N a_2 B_4 O_7$.10 $H_2 O$. It is used to detect coloured basic radicals in inorganic salt analysis.

148 (c)

Boron carbide also called norbide is hardest boron compound.

149 (d)

Iron oxide impurity – Baeyer's process Silica impurity -Serpeck's process

150 (a)

$$C+2H_2 SO_4 \longrightarrow CO_2+2SO_2+2H_2O$$

151 (d)

Massicot is PbO

$$Pb(NO_3)_2 \longrightarrow PbO + 2NO_2 + \frac{1}{2}O_2$$

152 (d)

A characteristic of charcoal.

153 (a)

Boric acid is used as disinfectant in eye wash under the name boric lotion.

154 (a)

$$A l_4 C_3 + 12 H_2 O \rightarrow 3 C H_4 + 4 Al (OH)_3$$

155 **(b)**

The purest variety of coal is anthracite.

156 (c)

Boron and zeolite are used as water softner

157 (a)

It is a reason for given fact.

158 (d)

Potash alum is used for tanning of leather, as mordant in dyeing and calico printing, for sizing paper, as a styptic to stop bleeding and purification of water.

159 **(b)**

Each combustion is exothermic.

160 (c)

Basic lead carbonate is generally known as white lead.

Formula of compound $PbCO_3$. $PbOPbCO_3$ Name of the compound

 $Pb(OH)_{2}.2PbCO_{3}$

Cerussite

 $PbSO_{4}.PbO$

White lead Lanarkite

161 **(d)**

$$C+4HNO_3 \longrightarrow CO_2+4NO_2+2H_2O$$

162 (d)

$$Al \longrightarrow Al^{3+i+3e.i}$$

164 (c)

Water glass is sodium silicate.

165 (a)

Silica (SiO_2) is used for making optical instruments.

166 (c)

Naturally occurring crude borax is called tincal. Thus, it is chemically $N a_2 B_4 O_7.10 H_2 O_1$.

167 (c)

SnO +HF
$$\rightarrow$$
 SnF₂ +H₂O

168 (d)

Generally red lead decompose into PbO and O_2

169 (a)

$$K_2(SO_4).Al_2(SO_4)_3.24H_2O$$
 gives

$$K_2 SO_4 + A l_2 (SO_4)_3 + 24 H_2 O$$

$$A l_2 (SO_4)_3$$
 undergoes hydrolysis to give $H_2 SO_4$

$$A l_2 (SO_4)_3 + 6 H_2 O \rightarrow 2 A l (OH)_3 + 3 H_2 SO_4$$

due to which aqueous solution of potash alum is acidic.

170 (d)

It is a fact.

171 (a)

Calorific value is the heat liberated by burning 1g fuel $=\frac{94}{12}$ = 7.8 kcal/g. Heat of combustion of carbon =

94 kcal mol^{-1}

172 (d)

Aluminium metal is refined by Hoope's electrolytic process.

173 (c)

Lead form nitric oxide and lead nitrate with dil HN O₂

$$3 Pb + 8 HN O_3 \longrightarrow 3 Pb (NO_3)_2 + 2 NO + 4 H_2 O$$

174 **(b)**

In smelting, carbon is used as a reducing agent but it is a non-metal. Al is also used as reducing agent and it is a metal.

$$2Al+Fe_2O_3 \rightarrow 2Fe+Al_2O_3$$

175 (c)

1.In nitrogen d-orbitals are absent, so it does not

form $NC l_5$. Thus, $NC l_5$ does not exist but $PC l_5$ does.

2. $Pb^{2+\delta\delta}$ is more stable than $Pb^{4+\delta\delta}$, due to inert pair effect.

3.In carbonate ion $(CO_3^{2-i\delta})$ all the three C-O bonds are identical due to resonance.

4.

5.
$$O_2^{+\ell\ell}$$
 (8+8-1=15)=
 $\sigma 1 s^2, \sigma * 1 s^2, \sigma 2 s^2, \sigma * 2 s^2, \sigma 2 p_s^2, \pi 2 p_y^2 \approx \pi 2 p_z^2,$

NO (7+8=15)

Hence, bo0th O_2^{+ii} and NO contains one unpaired electrons, so paramagnetic.

176 (a)

Borazine $B_3 N_3 H_6$ is isoelectronic to benzene and hence, is called inorganic benzene. Some physical properties of benzene and borazine are also similar

177 **(d)**

Only lead in group 14 does not have allotropes.

178 **(c)**

Zn is stronger oxidant than carbon.

179 (d)

It is a method for preparation of graphite SiO_2+3 *C* Furnace SiC+2 CO

$$SiC \rightarrow Si + C$$
Graphin

180 (d)

CO+NaOH 200 °C HCOONa

sodium formate

181 (a)

In Hall's process
$$A l_2 O_3 \cdot 2 H_2 O + N a_2 C O_3 \longrightarrow 2 NaAl O_2 + C O_2 + 2 I_2 O + 2 I_3 O + 2 I_4 O + 2 I_5 O +$$

182 **(d)**

 ${\rm In} C_2 H_4$, each carbon has complete octet and cannot expand it.

183 (c)

Sapphire is a natural crystalline form of blue transparent corundum (alumina, Al_2O_3); The colour being due to traces of cobalt and other metals.

184 (d)

All are used as fire extinguishers.

186 **(d)**

It is a fact.

187 **(a)**

$$Al_2O_3+3Cl_2+3C \longrightarrow 2AlCl_3+3CO$$
dry

188 **(a)**

Gallium when was not discovered, its properties were predicted by Mendeleef under the name eka aluminium.

190 (c)

HF reacts with silica present in glass and dissolves it to give marking on surface.

191 **(c)**

Water gas contains about 40% of CO.

192 (c)

This process is mainly used when bauxite contains Fe_2O_3 as main impurity.

193 (a)

 BCl_3 and $AlCl_3$ both are electron deficient compounds and can accept lone pair to act as Lewis acid. Also BCl_3 involves smaller boron atom and thus, attracts electron pair more easily.

194 (c)

Cryolite (Na_3AlF_6) is added to Al_2O_3 before electrolysis to lower the fusion temperature of bauxite in order to dissolve it and making good

conductor of current.	195 (c) $Al + III \ group \longrightarrow forms \ Al_2O_3$

196 **(b)**

In III group, Tl (thalium) show+1 oxidation state due to inert pair effect. The outer shell's' electrons $(n s^2)$ penetrate to (n-1)d electrons and thus, become closer to nucleus and are more effectively pulled towards the nucleus. This results in less availability of $n s^2$ electron pair for bonding or $n s^2$ electron pair becomes inert.

198 (c)

Diborane possesses four B–H covalent bonds and two three centred (two electrons) B–H–B or hydrogen bridge bonds. These bonds are also known as **banana bonds**.

199 (c)

Alums are used as water-softener. These are also used in tanning of leather, as mordant in dyeing and to stop bleeding.

201 (a)

CO + S *Heat* COS (Carbonyl sulphide)

203 (a)

Felspar is an ore of Al. Its composition is $KAlS i_3 O_8$ or $K_2 O$. $A l_2 O_3$.6 $Si O_2$.

204 **(c)**

Thermite is the mixture of Fe_2O_3 and Al. Due to great affinity of aluminium towards oxygen, it readily combines with oxygen. Hence, Goldshmidt used Al to reduce metal oxides in extraction. In thermite, the ratio of Fe_2O_3 and Al is taken 3:1 by weight.

$$Fe_2O_3 + 2 Al \rightarrow 2 Fe + Al_2O_3$$

$$(2 \times 56 + 3 \times 16 = 160) \qquad (2 \times 27 = 54)$$

205 **(b)**

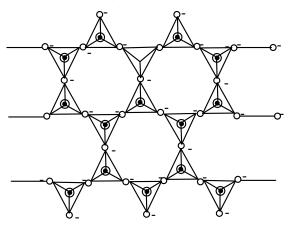
$$BI_3 > BBr_3 > BCl_3 > BF_3$$

This order can be easily explained on the basis of the tendency of the halogen atom to back donate its lone pair of electrons to the empty p-orbital of the boron atom through $p\pi - p\pi$ bonding.

206 **(b)**

Alum acts as coagulating agent, so it is used to purify water and separate mud from it.

207 (d)


Al is used as reducing agent in thermite process. $Cr_2O_3+2Al \rightarrow 2Cr+Al_2O_3$

208 (c)

Diborane possesses four B—H covalent bonds and two three centred (two electrons) B—H—B or hydrogen bridge bonds. These bonds are also known as **banana bonds**.

209 **(b)**

The structure of silicates has been found with the help of X-ray diffraction technique. All silicates have tetrahedral $SiO_4^{4-\delta L}$ ion as a basic building unit i.e., all silicates are composed of many units. Tetrahedral shape of $\left[SiO_4\right]^{4-\delta L}$ ion is due to sp^3 -hybridisation of Si-atom. Sheet silicates are formed when three oxygen atoms (bridging O-atoms) of each $\left(SiO_4\right)^{4-\delta L}$ unit are shared. Hence, the general formula of sheet silicates is $\left(Si_2O_5\right)^{2n-\delta L}$

210 (a)

Pb reacts with dilute HNO_3 and produces NO. $3Pb+8HNO_3 \rightarrow 3Pb(NO_3)_2+2NO+4H_2O$ dil.

211 (a)

It is a fact. The alloy is called Rolled gold.

213 (a)

Lamp black is used for all these purposes. Carbon black is used in making tyres. Bone black is used for decolourisation of sugar.

214 **(b)**

It is a fact.

2A1 $+Cr_2O_3 \longrightarrow Al_2O_3 + 2Cr$; $\Delta H = -ve$ Reductant Oxidant

216 **(c)**

 $B_2H_6+6H_2O\longrightarrow 2H_3BO_3+6H_2$

217 **(b)**

The main impurity in red bauxite is ferrite $(F e_2 O_3)$ and the main impurity in white bauxite is silica (SiO_2) .

218 (d)

Al shows maximum covalency of six whereas as boron shows four.

219 (d)

Metals forming coloured bead can be identified by boras bead test.

220 (d)

Asbestos can withstand red hot flames without any damage.

221 (d)

Mg is placed above lead in electrochemical series.

222 (a)

Lead is found to be stable in +2 oxidation state, due to inert pair effect hence,

 $PbCl_4$, $PbBr_4$ and PbI_4 are less stable compounds

223 (c)

$$SiF_4 + 4H_2O \rightarrow Si(OH)_4 + 4HF$$

 $SiF_4 + 2HF \rightarrow H_2SiF_6$

224 (d)

 H_2SO_4 is regenerated during charging.

225 (c)

Diborane possesses four B–H covalent bonds and two three centred (two electrons) B–H–B or hydrogen bridge bonds. These bonds are also known as **banana bonds**.

226 **(c)**

The reluctance of the *s*-electrons of the valence shell to take part in bonding is called inert pair effect. It increases on moving down in a group. Hence, Pb shows most pronounced inert pair effect.

227 (a)

Galena (PbS) is the ore of lead. Malachite is an ore of copper while dolomite is an ore of magnesium and calamine is an ore of zinc.

228 (c)

Grey tin is very brittle and easily crumbles down to a powder in very cold climates Grey tin \dot{c} white tin (cubic) (tetragonal)

229 (a)

In $SiF_6^{2-i\cdot l}$ and $SiCl_6^{2-i\cdot ,SiF_6^{2-i\cdot l}}$ is known due to the small size of F atoms. The small six F atoms can be easily accommodated around Si atom to form $SiF_6^{2-i\cdot l}$ while in $SiCl_6^{2-i\cdot l}$ six large Cl atoms cannot e accommodated around Si atom.

230 (a)

Boron nitride has similar structure to graphite.

231 (d)

$$Sn(s) + HCl(g) \rightarrow SnCl_2 + H_2$$

232 **(b)**

Alum form acidic solution on dissolution in water due to hydrolysis of Al^{3+ik} ions.

233 **(b)**

Solder is used in welding purposes.

234 (c)

The stability of group 14 tetrahalides decreases down the group whereas of dihalides increases down the group.

235 (a)

Mica is a group of minerals, the most important of which are muscotive $H \square_2 KAl_3 (SiO_4)_3$ and phlogopite $H_2 KMg_3 Al(SiO_4)_3$ having sheet structure.

236 (c)

Tin is oxidised to meta stannic acid when it is treated with nitric acid.

$$Sn+4HNO_3 \rightarrow H_2SnO_3+4NO_2+H_2O$$

237 (c)

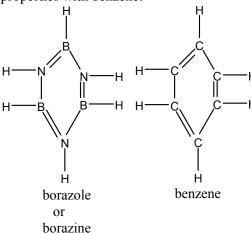
The outer electronic structure of 'X' is $s^2 p^1$, hence, element 'X' belongs to third group. It will be nonmetal because it is present in the first short period of third group. Its valency is +3 because it belongs to third group.

Hence, formula of its oxide will be X_2O_3 . The oxide will be acidic in nature because it is oxide of nonmetal.

239 (d)

Boron is oxidized to H_3BO_3 by mixture of HNO_3 and H_2SO_4 .

240 (d)


Borax on heating forms a glassy mass called borax bead.

Na₂B₄O₇·10H₂O
$$\xrightarrow{\triangle}$$
 Na₂B₄O₇ $\xrightarrow{740^{\circ}\text{C}}$ NaBO₂+B₂O₃.

Bead

241 (c)

Borazine, $B_3 N_3 H_6$ is also known as inorganic benzene due to its resemblance in structure and properties with benzene.

242 (a) $Na_2B_4O_7+2HCl+5H_2O\longrightarrow 2NaCl+4H_3BO_3$

243 **(c)**

Ruby is mineral of aluminium ie, Al_2O_3 . It does not contain silicon.

244 (d)

Zeolites are aluminosilicates having three dimensional open structure in which four or six membered rings predominates.

Thus, due to open chain structure, they have cavities and can take up water and other small molecules.

245 **(b)**

The stability and basic character of hydrides decreases down the group.

246 (c)

The m.p. are В A1 Ga Tl 2300°C 660°C 29.8°C 303°C

247 **(b)**

It is a fact.

248 (d)

 $PbSO_4$ is insoluble compound.

249 **(b)**

Solid CO_2 sublimes directly to the vapour state (without converting into liquid) at -78 °C under atmospheric pressure, hence used as a refrigerant and called dry ice or cardice. It is used to freeze metals, ice-cream and in laboratory as a coolant.

251 (c)

Froth-floatation is used to concentrate sulphide ores ¿ Galena¿PbS¿¿.

252 (d)

It is an use of Al which on coating prevents corrosion of surface coated.

253 **(b)**

Due to hydrolysis of $Al^{3+i\delta}$ ions.

254 (a)

In alumino thermic process, aluminium is used as reducing agent.

$$e.g.$$
, $Fe_2O_3+2Al3000$ °C $Al_2O_3+2Fe+185kcal$

255 **(b)**

It is a fact.

256 (d)

 $Pb^{4+i\delta}$ is strong oxidant and $I^{-i\delta}$ is strong reductant and thus, PbI₄ does not exist.

257 **(a)**

Carbon suboxide $(C_3O_2)i_s$ anhydride of malonic acid. It has linear structure. C-C bond length is 130 Å and C-O bond length is 120 Å.

258 **(d)**

$$Pb(NO_3)_2 \longrightarrow PbO + 2NO_2 + \frac{1}{2}O_2$$

259 (a)

Al I_3 , on reaction with CC l_4 , gives the AlC l_3 $4AlI_3+3CCl_4 \longrightarrow 4AlCl_3+3CI_4$

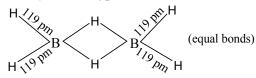
260 (a)

General formula of alum is,

261 **(b)**

In graphite carbon atom is $s p^2$ hybridised and has a delocalised π -electron cloud responsible for its high electrical conductivity.

262 **(b)**


Al atom in $AlCl_3$ is sp^2 -hybridised which lead for equilateral triangle geometry.

263 (d)

Atomic size increases in a group from top to bottom. But in IIIA group, gallium (Ga,1.35 Å) has size smaller than aluminium (1.43 Å). The reason is that in gallium d-electrons shield nuclear charge poorly and hence, due to greater effective nuclear charge ($Z_{\it eff}$) it has smaller size.

264 (d)

 B_2H_6 has two types of B-H bonds

265 **(b)**

 BF_3 is covalent molecule.

266 (d)

Orthosilicic acid (H_4SiO_4) , on heating at high temperature, loses two water molecules and gives silica (SiO_2) which on reduction with carbon gives carborundum (SiC) and CO.

$$H_4SiO_41000$$
 °C SiO_2 C $SiC+CO$

carborundum

267 (a)

The stability of hydrides of carbon family decreases down the group, hence order is $CH_4 > iH_4 > iH_4 > iSnH_4 > bH_4$

268 (c)

Gp. III A (Mendeleef's periodic table) or gp. 13th (Long form) elements possess 3 electrons in their valence shell having $n s^2 n p^1$ configuration.

270 (c)

Moissan boron is amorphous boron. It has 95-98% boron and is black in colour. It is prepared by reduction of B_2O_3 with Na or Mg.

271 **(c)**

It is a fact.

273 **(b)**

Generally IV group element shows catenation tendency and carbon has more catenation power

274 (a)

Moissan boron is amorphous boron, obtained by reduction of B_2O_3 with Na or Mg. It has 95.98% boron and black in colour

275 **(d)**

Boric acid is used in carom boards for smooth gliding of pawns because H-bonding in H_3BO_3 gives it a layered structure.

276 **(c)**

$$SnCl_2+I_2+2HCl \longrightarrow SnCl_4+2HI$$

277 (d)

Quartz is an example of three dimensional network of $(SiO_2)_n$ silicate.

278 **(b)**

Coordination no. of Al is six in complex state, e.g., $Al[H_2O]_6^{3+\iota;[Al[H_2O]_4|OH]_2]^{*\iota\iota}\iota}$

279 (d)

Water gas is a mixture of carbon monoxide and hydrogen. It is obtained by passing steam over red-hot coke. It is a good fuel gas.

$$C+H_2O \rightarrow CO+H_2$$

water gas

$$C + H_2O \longrightarrow \underbrace{CO + H_2}_{water\ gas}$$

280 (a)

Diamond is most inert form of carbon.

281 (a)

Producer gas is a mixture of $CO+N_2$. Its calorific value is low due to high percentage of nitrogen.

282 (a)

Producer gas is a mixture of $CO+N_2$.

283 (d)

The tendency of trimethyl boron to act as Lewis acid decreases due to + IE of CH_3 gp. and thus, coordination becomes weaker.

284 **(d)**

Charcoal is most reactive form of carbon.

286 (a)

It is a fact. Rest all are used in pigments.

287 (d)

It becomes passive in HNO_3 due to formation of oxide film on the surface.

288 **(b)**

Inert pair effect is the phenomenon in which outer shell $(n s^2)$ electrons penetrate t (n-1)d electrons and thus, becomes closer to nucleus and are more effectively pulled towards nucleus. This results in less availability of ns electrons for bonding. The inert pair effect begins when $n \ge 4$ and increases with increasing value of n.

289 (a)

As temperature decreases, white tin (β -form) changes to grey tin (α -form).

$$\alpha - \operatorname{Sn} \xrightarrow{15.2^{\circ}} \beta - \operatorname{Sn}$$
(grey) (white)

 α -Sn has a much lower density.

292 **(b)**

Follow the IUPAC rules for nomenclature of complexes.

294 (d)

$$SnCl_2+2NaOH \longrightarrow Sn(OH)_2+2NaCl$$

 $Sn(OH)_2+2NaOH \longrightarrow Na_2SnO_2+2H_2O$

295 (d)

$$CuCl$$
(Amm. sol.) + CO \rightarrow CuCl • CO

297 (d)

It is a fact.

298 **(b)**

It is a reason for given fact.

299 (d)

It is hydrolysed with water to form a $H_2 Si F_6$

300 (a)

Electronegativity decreases down the group.

301 **(b)**

Stannous chloride $(SnCl_2)$ is a good reducing agent. It reduces $HgCl_2$ into Hg (grey precipitate), in two steps.

$$SnCl_2+2HgCl_2 \rightarrow SnCl_4+Hg_2Cl_2 \downarrow$$

white

$$SnCl_2+Hg_2Cl_2 \rightarrow SnCl_4+2Hg\downarrow$$
 grev

302 (c)

Due to inert pair effect, the stability of +2 oxidation state increases as we move down this group. $\therefore Si X_2 < \dot{c} X_2 < Sn X_2 < Pb X_2$

303 **(b)**

It react with alkali as well as acid

304 (c)

 $AlCl_3$ will show maximum covalent character on account of higher polarising power of $Al^{3+i,i}$ because of its higher positive charge and smaller size (Fajan's rule).

305 (a)

It is a variety of fibrous silicate minerals mainly calcium, magnesium silicates.

307 **(a)**

 B_2H_6 has 4B—H bond (i.e., 2 centre-2 electron bonds) and two 3 centre-2 electron bone i.e., B—H —B bonds.

308 (d)

Borax or tincal is chemically sodium tetraborate decahydrate, i.e., $Na_2B_4O_7 \cdot 10H_2O_1$

309 **(b)**

Aqueous solution of $AlCl_3$ is acidic due to hydrolysis $AlCl_3+3H_2O \rightleftharpoons Al(OH)_3+3HCl$ On strongly heating $Al(OH)_3$ is converted into Al_2O_3 . $2Al(OH)_3\Delta Al_2O_3+3H_2O$

310 **(b)**

Hoope's process \Rightarrow Purification of AlHall and Heroult process \Rightarrow reduction of Al_2O_3 Baeyer's and Serpeck's process \Rightarrow concentration of bauxite ore

311 (d)

 B_2H_6

Empty sp2 orbital of B

Empty sp2 orbital of B

312 **(b)**

 H_3BO_3 is monobasic Lewis acid; $H_3BO_3 + H_2O \longrightarrow B(OH)_4^{-\iota + H^{+\iota \iota}}$

- 313 **(b)** $CaOCl_2+CO_2 \longrightarrow CaCO_3+Cl_2$
- 314 **(b)** These are characteristics of N_2 .
- 315 **(b)** In CO and CO_2 , carbon has +2 and +4 oxidation states respectively.
- 316 **(d)** SiO_2 possesses giant molecular, three dimensional network solid structure.
- 317 **(b)** $Mg:1s^2,2s^2$ Removal of $2s'e'M g^{+i:1s^2,2s^1i}$

 $Al: 1s^{2}, 2s^{2}2p^{1}$ Removal of $2p'e'Al^{+i:1s^{2}, 2s^{2}i}$

Removal of electron is easier from 2 *p*-subshell thus, lower IP for Al.

- 318 **(d)** Diamond is $s p^3$ -hybridized covalent molecule.
- 319 **(d)**It is a fact.

326 **(b)**

- 320 **(d)**This give rise to net dipole moment zero in BF_3 . BF_3 $(s p^2 \text{hybridization}) PF_3 (s p^3)$.
- 322 **(c)**Ge, Si are used as semiconductors.
- 323 **(b)**Alumina is *amphoteric* oxide, which reacts acid as well as base
- 325 **(b)**Boron from different hydride of general formula $B_n H_{n+4} \wedge B_n H_{n+6}$ but $B H_3$ is unknown

Sodium oxalate react with conc. H_2SO_4 to form CO and CO_2 gas

- 328 **(b)** $B_2O_3 + 3C + 3Cl_2 \longrightarrow 2BCl_3 + 3CO$
- 329 **(c)**Cryolite added to lower the melting point of alumina and to increase the electrical conductivity
- 331 **(a)**Sand contains silicates having silicon.
- 332 (c) Synthesis gas is CO $+3H_2$.
- 333 **(b)**Hard water deposits a protective film on the inner surface of lead pipes which resists further dissolution of Pb in water.
- 334 **(c)**Fluorspar is CaF₂.
- 335 **(d)** $B_2H_6 \text{ form addition product with } (CH_3)_3N \text{ , } NH_3$ and CO as:

$$B_{2}H_{6}+2N(CH_{3})_{3}\longrightarrow [2H_{3}B\leftarrow N(CH_{3})_{3}]$$

$$B_{2}H_{6}+2NH_{3}\longrightarrow [BH_{2}(NH_{3})_{2}]^{+i[BH_{4}]^{-i}i}$$

$$B_{2}H_{6}+2CO\longrightarrow 2[BH_{3}\cdot CO]$$

- $\begin{array}{c|c} 336 \text{ (c)} \\ SnC_2O_4\Delta SnO + CO + CO_2 \end{array}$
- 338 **(b)**CO in producer gas is 33%.
- 339 **(d)**In Hall and Heroult process $2A l_2 O_3 \longrightarrow 4Al + 3O_2$

 $4C+3O_2 \longrightarrow 2CO_2+2CO \uparrow$ $2Al_2O_3+4C \longrightarrow 4Al+2CO_2+2CO$

Only for removal of CO_2 , following equation is possible

$$2A l_2 O_3 + 3C \longrightarrow 4Al + 3CO_2$$

$$3 \times 12 \quad 4 \times 27$$

$$= 36 \text{ g} \quad = 108 \text{ g}$$

- ∴ For 108 g of Al, 36 g of C is required in above reaction.
- \therefore For 270×10^3 g of Al, required amount of C

$$\frac{36}{108} \times 270 \times 10^3$$
$$690 \, kg$$

340 **(b)**
$$CO_2 + H_2O \rightarrow H_2CO_3$$
 (An acid)

342 (d)

Al has six electrons in $AlCl_3$ and thus, acquires electron pair from Cl atom of another $AlCl_3$ molecule to exist as Al_2Cl_6 .

343 **(c)**

Silica reacts with metal carbonate forming silicate with the evolution of CO_2 .

$$N a_2 C O_3 + Si O_2 \rightarrow N a_2 Si O_3 + C O_2 \uparrow$$

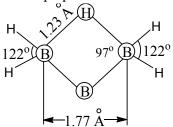
sodium silicate

344 **(c)**

Sand, on heating with HF, give silicon tetrafluoride vapours, which form silicic acid $(H_4 SiO_4)$, on coming in contact with water.

$$SiO_2+4HF \rightarrow SiF_4+2H_2O$$

 $3SiF_4+4H_2O \rightarrow 2H_2SiF_6+H_4SiO_4$
white


345 **(c)** 2nd-orbital has no d-subshell.

346 (d)

Inert pair effect increases down the gp. and thus, +4 ionic valence is not shown by lower elements.

347 (a)

Diltheyin 1921 proposed a bridge structure for diborane. Four hydrogen atoms, two on the left and two on the right known as terminal hydrogens and two boron atoms lie in the same plane. Two hydrogen atoms forming bridges, one above and other below, lie in a perpendicular to the rest of molecule

348 **(c)**It is a fact.

349 **(b)**

Silicon oxides are solids.

350 **(d)**

The thin protective layer of oxide, Al_2O_3 is formed which protects the metal form further attack if air and water and thus stable in air

351 **(b)**

Zeolite have SiO_4 and AlO_4 tetrahedrons linked together in a three dimensional open structure in which four or six membered ring predominate Due to open chain structure they have cavities and can take up water and other small molecules

352 **(b)**Alane is polymeric hydride of aluminium.

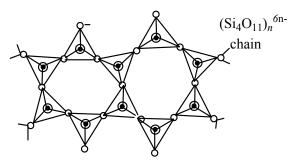
353 (a) $Al_2Cl_6, In_2Cl_6, Ca_2Cl_6$

354 **(d)** $Al_2S_3 + 6H_2O \longrightarrow 2Al(OH)_3 + 3H_2S(pure).$

355 **(a)**It can accept lone pair of electron.

359 **(c)**The alloy of Ni + Al + Cu is called nickeloy.

360 (a) $CS_2 + i 3Cl_2A lCl_3 CCl_4 + i S_2Cl_2$


361 **(c)**CO is neutral; CO_2 is acidic.

362 **(d)**Carborundum is chemically silicon carbide.

363 **(c)** Al_2O_3 although an oxide of metal but reacts with acids and alkalies both and thus, amphoteric.

365 **(a)**

Chain silicates Double chain silicates can be formed when two simple chains are joined together by shared oxygens. These minerals are called amphiboles, and they are well known. The most numerous and best known amphiboles are the asbestos minerals. These are based on the structural unit $(Si_4O_{11})_n^{6n-i\delta}$. The structure of amphiboles is

Stricture of amphiboles $(Si_4O_{11})_n^{6n}$

366 (d)

Propyne can be prepared by the hydrolysis of magnesium carbide

367 **(b)**

C—C bond energy is maximum as catenation is maximum in carbon.

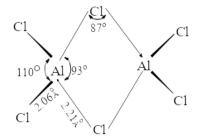
368 **(b)**

Ge possesses more tendency to show +4 oxidation state.

370 **(b)**

 $Na_2B_4O_7+H_2SO_4+5H_2O \longrightarrow Na_2SO_4+4H_3BO$

371 **(b)**


Bell metal has Cu 80% + Sn 20%.

372 **(b)**

Carbon in CO_2 and $H \square_2 CO \square_3$ bot has +4 oxidation state.

373 (a)

 $Al_2 Cl_6$ has the structure given below:

374 (c)

The resultant vector sum of all the four C—Cl bonds is zero in regular tetrahedral geometry.

375 (c)

It is a fact.

376 (d)

Diaspora is $Al_2O_3 \cdot H_2O$. It is an ore of Al.

377 (a)

Coal gas contains mainly CH_4 (23%), CO (11%), H_2

(56%) and some other gases H_2 , CO_2 , etc.

378 (a)

Melting point order: B > A1 ln Ga 2453K 953K

430K 303K

379 **(b)**

Producer gas (a mixture of CO + N_2) is prepared by incomplete combustion of coal in restricted supply of air.

380 (a)

 CO_2 is more denser than air and N_2 and thus, covers igniting materials more.

381 (d)

Solder is an alloy of tin and lead. Its melting point is quite low, hence, it is very useful in stitching in ICs in various electrical instruments.

382 (a)

CeO₂is used to cut off UV radiations when passed through glass.

383 (a)

Alum is a double salt having general formula $M_2SO_4M_2(SO_4)_3$. 24 H_2O where M is monovalent metal and M is trivalent metal. Potash alum has potassium (K) as monovalent metal. Potash

$$K_2 SO_4$$
. $A l_2 (SO_4)_3$.24 $H_2 O$.

384 **(b)**

In diborane, H-B-H (H-terminal) and H-B-H(H-bridged) bond angles are 120° and 97° respectively.

385 **(b)**

 $AlCl_3$ is covalent but in water, it becomes ionic due to large hydration energy of $A l^{3+i \cdot i}$.

$$AlCl_3+6H_2O \rightleftharpoons \left[Al\left(H_2O\right)_6\right]^{3+\lambda+3C\Gamma^{\iota\iota}\lambda}$$

386 (c)

 SiO_2 is acidic oxide having sp^3 -hybridisation and thus tetrahedral.

387 (a)

Central boron atom in H_3BO_3 is electron deficient, therefore it accepts a pair of electron, hence it is weak Lewis acid. There is no d-orbital of suitable

energy in boron atom. So, it can accommodate only one additional electron pair in its outermost shell. Thus, H_3BO_3 is a monobasic weak Lewis acid.

 $H_2O+B(OH)_3 \longrightarrow [B(OH)_4]^{-l+H^{+l}l}$

- 388 **(b)** $Na_2CO_3 + H_2O \rightarrow 2 NaHCO_3$
- 389 (d) Common glass $-Na_2O$. CaO.6 Si O_2
- 390 (a) Feldspar is pot. sod. alumino silicate.
- 391 (d) Small carbon atoms are present interstitial sites in lattice of tungsten atoms.
- 392 (d) These are characteristics of carbogen.
- 393 (d) Electrodes of lead accumulators are made up of lead anode and lead packed with lead dioxide as cathode.
- 394 (c) General formula of alum is, $M_{2}'SO_{4} \cdot M_{2}'''(SO_{4})_{3} \cdot 24 H_{2}O$
- 395 (d) Tl has marking nature.
- 396 (d) All can be directly converted from solid state to gas with.
- 397 (c) It is an use of alum.
- 398 (a) H_3BO_3 is monobasic acid.
- 399 (c) +4 due to $n s^2 n p^2$ -configuration and +2 due to inert pair effect.
- 403 **(b)** CO_2 is known as dry ice, i.e., $CO_2(g) \rightarrow CO_2(s)$.
- 404 **(b)** $AlCl_3+3H_2O\longrightarrow Al(OH)_3+3HCl$
- 405 (a) $2Al + Cr_2O_3 \longrightarrow Al_2O_3 + 2Cr$; $\Delta H = -ve$

406 (c)

The phenomenon of very slow regulated homogeneous cooling of glass to relieve strain is called annealing.

- 407 (c) B_4 C is next hardest to diamond.
- 408 (a) It is a use of water gas $CO + H_2 + H_2$ Catalyst CH_3OH
- 410 **(a)** $SiO_2 + 2Mg \longrightarrow Si + 2MgO$
- 412 (c) Due to inert pair effect.
- 413 **(b)** Due to inert pair effect which increases down the group.
- 414 **(b)** The acidic character of chlorides increases down the gp. BCl_3 is weak acid to show $p\pi - p\pi$ back bonding.
- 415 (c) $C+2H_2SO_4(Conc.) \longrightarrow 2H_2O+2SO_2+CO_2$ $C+4HNO_3(Conc.) \longrightarrow 2H_2O+4NO_2+CO_2$
- 416 **(c)** It is a fact.

(aluminium ion).

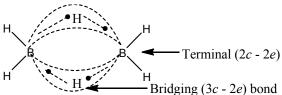
- 417 (c) Generally, the ion exchange tendency of a material depends on the extent of isomorphous substitution in the tetrahedral framework. Thus, the S_i^{4+ii} ions of feldspar and zeolite are replaced by Al^{3+ii}
- 419 (a) When silica is heated with carbon in electric furnace, it is reduced to carborundum or silicon carbide. $SiO_2 + 3C \rightarrow SiC + 2CO$
- 420 (c) German silver contains Cu, Zn and Ni.
- 421 **(b)** Hall's process is used for purification of alumina. Hoope's process is used for refining of alumina.
- 422 **(b)** $2Al + Fe_2O_3 \longrightarrow Al_2O_3 + 2Fe$; $\Delta H = -ve$;

The heat given out is used in welding. This is also called Gold-schmidt alumino thermic process.

423 **(d)**

Although Mn_3C is not real methanide but All Mn_3C , $Be_2C\wedge Al_4C_3$ on hydrolysis gives CH_4 . $Mn_3C+6H_2O \longrightarrow 3 \ Mn(OH)_2+CH_4+H_2$

424 **(c)**


The basic structural unit in silicates is SiO_4 tetrahedron. In $SiO_4^{4-i\cdot i}$ unit, silicon atom is bonded to four oxide ions tetrahedrally.

425 (d)

Graphite is good conductor of current due to the presence of mobile π -electron left on carbon after $s p^2$ -hybridization.

426 **(d)**

 (B_2H_6) has structure

427 **(d)**

Pb forms only one hydride as PbH_4 . Sn forms only two hydrides as SnH_4 and Sn_2H_6 . Rest all forms number of hydrides.

428 **(b)**

Due to lone pair effect.

429 (a)

Extraction of Al from Al_2O_3 is made by electrolytic reduction of molten mixture of alumina (Al_2O_3) , cryolite (Na_3AlF_6) and fluorspar CaF_2 in the ratio of 20:40:20 respectively.

430 **(c)**

Crookes glass contains CeO_2 which cuts off radiations.

431 (a)

Surface of Al forms Al_2O_3 on exposure to air and becomes passive.

432 **(c)**

These are the compositions of gases present in coal gas.

434 (a)

 $\operatorname{Cu}(BO_2)_2$ is blue and chromium metaborate is green.

435 **(c)**

Most of the fuel gases contain CO as one of the component.

436 **(c)**

$$SnCl_2 + HgCl_2 \rightarrow SnCl_4 + Hg_2 \underset{(i)}{Cl_2}$$

 $SnCl_2 + HgCl_2 \rightarrow SnCl_4 + \underset{(Grev)}{Hg}_2$

437 **(b)**

It is a fact.

438 **(a)**

$$B(OH)_3 + NaOH \rightleftharpoons NaBO_2 + Na^{+i[B(OH)_4]^{-i + H,Oi}i}$$

This reaction is reversible reaction because sodium metaborate, $N a^{+i \left[B(OH)_4\right]^{-i}}$ formed by the reaction between $B(OH)_3$ and NaOH gets hydrolysed to regenerate $B(OH)_3$ and NaOH.

$$Na^{+i[B(OH)_4]^{-iHydrolysis\ NaOH+B\ OH)_3}i}$$

If some quantity of polyhydroxy compounds like *cis*-1, 2-diol, catechol, glycerol etc is added to the reaction mixture then the $B(OH)_3$ combines with such polyhydroxy compounds to give chelated complex compound. Due to complex compound formation, stability increases and due to higher stability of complex, reaction moves in forward direction.

 $\begin{vmatrix} 439 \text{ (a)} \\ CO+Cl_2 \longrightarrow COCl_2 \text{ (Phosgene)} \end{vmatrix}$

440 (a)

Semiconductors are bad conductors of electricity at room temperature but become conductor of electricity at high temperature or when some impurities are added to them.

.. Si and Ge are semiconductors.

442 **(d)** $4 KNO_3 + 2SiO_3 \rightarrow K_2 SiO_3 + 4NO_2 + O_2$

444 (b)

Antidote for CO poisoning is carbogen. Carbogen is a mixture of 90% oxygen and 5-10% carbon dioxide.

447 (c)

Diamond has tetrahedral structure ($s p^3$ -hybridization).

Graphite has flatlayer structure $(s p^2)$.

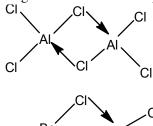
448 **(c)**Si is used in making transistor. It is a semiconductor.

449 (c)

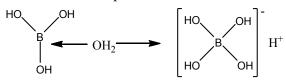
 $B(OH)_3$ is not protonic acid because it does not give proton on ionisation directly while it acts as Lewis

acid due to a acceptance of $OH^{-i\delta}$ from water and forms a hydrated species.

$$B(OH)_3 + H_2O \rightarrow [B(OH)_4]^{-\lambda + H^{*i\lambda}\lambda}$$


450 (a) $2Al + N_2 \longrightarrow 2AlN$

451 (d)


When SiO_2 (silica) is present as earthly impurity in an ore, it is called gangue and when it is added to remove basic impurities like CaO, FeO etc. It is called an acidic flux.

452 (c)

Chlorides of both beryllium and aluminium have bridged structures in solid phase.

Boric acid is not a protonic acid

Borazole, inorganic benzene contains $B_3N_3H_6$.

453 (c)

 $P b_3 O_4$ is a mixed oxide. It can be represented as $2 PbO \cdot Pb O_2$.

454 (d)

Aluminiummetal burn in air at high temperature. This reaction is highly exothermic $4Al+3O_2 \longrightarrow 2Al_2O_3$

455 (d)

 CO_2 is acid anhydride of H_2CO_3 .

456 (c)

Tin stone after roasting and washing is called black tin.

457 **(b)**

It acts as an oxidant.

458 (c)

Coal gas contains $56\% H_2$.

459 **(c)**

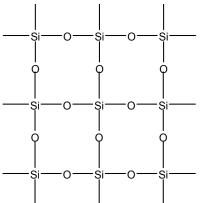
The element is boron.

460 **(c)**

It is a fact.

461 **(d)**

Silicones one organosilicon compounds having the general formula $(R_2SiO)_n$ which contain repeated R_2SiO units held by $Si-\dot{c}O-\dot{c}Si$ linkages


462 (d)

The reaction equilibrium for preparation of water gas is endothermic.

$$CO_2 + H_2 \longrightarrow CO + H_2O$$
; $\triangle H = 9$ kcal

463 **(b)**

In silica, silicon has large size, so the 3p-orbitals of Si does not overlap effectively with $2p - \dot{c}$ orbitals of oxygen. Therefore, Si=O are not formed. The tetravalency of Si is satisfied by the formation of Si-O bonds, thus it is surrounded by four oxygen atoms.

464 **(b)**

$$SiO_2+4HF \longrightarrow SiF_4+2H_2O$$

465 **(b)**

Flint glass or lead glass has composition of K_2O . PbO.6 SiO_2 .

It is used in making electric bulb and optical instruments.

466 (c)

It is a reason for given fact.

467 **(b)**

Serpeck's process involves:

$$Al_2O_3 + 3C + N_2 \longrightarrow 2AlN + 3CO$$
 $AlN + 3H_2O \longrightarrow Al(OH)_3 \downarrow + NH_3 \uparrow$
 $2Al(OH)_3 \stackrel{\triangle}{\longrightarrow} Al_2O_3 + 3H_2O$

468 **(b)**

The tendency of elements of p-block to show lower (+2) oxidation state, (i.e., ionic) increases down the gp.due inert pair effect.

469 (c)

$$B(OH)_3 \Longrightarrow H_3 BO_3$$
 boric acid
 $Al(OH)_3 \Longrightarrow$ amphoteric

470 (d)

Density of gp. 14 elements are: C (3.51); Si(2.34); Ge (5.32); Sn (7.26) and Pb (11.34) in g/cm^3 .

471 **(b)**

To provide sufficient air for complete combustion.

472 (d)

- 1. Ostwald process: It is used to manufacture HNO_3 .
- 2. Hoope's process It is the method used to purify aluminium. Pure Al makes anode and impure aluminium makes cathode in this reaction.
- 3. Hall's process It is used to purify bauxite having no specific impurity.
- 4. Baeyer's process It is used to purify bauxite having chief impurity of iron.
- :. Hoope's process is correct answer.

473 **(c)**

The inert pair effect increases with increase in no. of outermost shell down the group.

474 (a)

Teflon is a polymer of C_2F_4 .

475 (a)

$$CO_2 + H_2O \longrightarrow H_2CO_3$$

476 (a)

The correct decreasing order of catenation property of group 14 elements is as follows

 $C \gg Si > \mathcal{L} = Sn > Pb$

Catenation property is directly proportional to the bond energy.

477 **(b)**

$$Al(13)=1 s^2, 2 s^2 2 p^6, 3 s^2 3 p^1$$

: It can have maximum coordination number as 6.

478 (a)

It is a fact.

479 **(c)**

Water containing organic acids corrodes lead.

480 (a)

Monosilane $(e.g., Si H_4)$ on coming in contact with air burns with a luminous flame producing vortex ring. These rings are of silica. $Si H_4 + 2 O_2 \rightarrow Si O_2 + 2 H_2 O$

481 **(b)**

CO burns with blue flame.

482 (a)

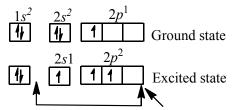
Lapis lazuli is a rock composed mainly of the following mineral, lazurite, hauynite sodalite, nosean, calcite pyrite. Lapis lazuli is actually sulphur containing, sodium aluminium silicate having chemical composition $3Na_2O \cdot 3Al_26SiO_2 \cdot 2Na_2S$

483 **(b)**

Bone black is amorphous form of carbon.

484 **(b)**

The property of diamond which makes its use as precious stone.


485 (c)

PbO reacts with acids and alkalies both.

488 **(b)**

$$Na_2SiO_3 + 2H_2O \longrightarrow 2NaOH + H_2SiO_3$$

Strong alkali Weak acid

489 (a)

Fourth lone pair is accommodated in this empty orbital

Maximum covalency = 4

Due to absence of 2d-orbital, maximum covalency is four.

Thus BF_6^{3-ii} is not formed,

Thus (a) is not formed.

 $BH_4^{-\iota\iota\iota}$

 $B(OH)^{-\frac{1}{4}\frac{1}{4}}$

and BO_2^{-ii} are formed.

490 (a)

Photosynthesis.

491 (a)

In diamond each carbon atom is linked to four other carbon atoms by sigma bond. Each σ C-C bond is formed by the overlapping of $s p^3$ hybrid orbitals of each carbon atom. Each carbon atom is present at the centre of a regular tetrahedron.

Each carbon atom is surrounded by four other carbon atoms present at the corners of a regular tetrahedron. Structure of diamond is a rigid three dimensional network. This explain high density and hardness of diamond.

492 (d)

This process is used when silica is present in considerable amount in bauxite ore.

493 **(b)**

Boron atom in BF_3 is sp^2 -hybridised and possesses trigonal planar structure.

494 **(b)**

Bauxite is $A l_2 O_3 \cdot 2 H_2 O$.

495 (c)

 $MC l_2$ oxidation state of M=+2

 $MC l_4$ oxidation state of M=+4

Higher the oxidation state, smaller the size.

Greater the polarizing power, greater the covalent characteristics.

Hence, MCl_4 is more covalent and MCl_2 is more ionic.

496 **(b)**

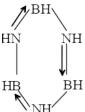
Azurite is basic copper carbonate; $2CuCO_3 \cdot Cu(OH)_2$; intense blue colour used as gemstone.

497 (d)

In the heavier elements of group IIIA, IVA and V A the $n \, s^2$ electrons have extra stability and hence, do not take part in bond formation. The reluctancy of selectron pair to take part in bond formation is known as the inert pair effect. The inert pair effect increases as the atomic number increases in the group.

Lead (Pb) is the element of group 14 (IV A) hence, it shows inert pair effect, hence for lead compounds +2 oxidation state is more predominant.

498 (c)


CoO imparts blue colour to glass.

499 (a)

In complex $[H_3 N \longrightarrow BF_3]$, both N and B attains $s p^2$ -hybridisation and acquires tetrahedral geometry.

500 (a)

Inorganic benzene is borazole or $B_3N_3H_6$ having structure similar to C_6H_6 , i.e.,

501 **(b)**

Sn exists in grey, white, rhombic forms.

502 (c)

Carbon suboxide has linear structure with $C-\dot{\epsilon}C$ bond length equal to 130 \mathring{A} and $C-\dot{\epsilon}O$ bond length equal to 120 \mathring{A}

$$O = C = C = C = O \Leftrightarrow (-iO - C) = C - C = O^{+ii} i$$

503 (a)

 SnO_2 , ZnO, BeO, As_2O_3 , Al_2O_3 are amphoteric oxides.

504 **(b)**

Due to $s p^2$ -hybridization one p-electron on each carbon forms π -bond.

505 **(b)**

$$SiCl_4 + 2Mg \rightarrow Si + 2MgCl_2$$

506 (a)

 BH_3 has $s p^3$ -hybridized boron but it exists as B_2H_6 .

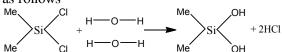
507 (a)

As we move down the group , the basic nature of the oxides of group 13 elements increases. Tl_2O in aqueous solution gives TIOH which is as strong a base as alkali metal hydroxides $Tl_2O+H_2O\longrightarrow 2$ TIOH

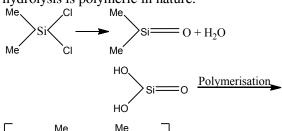
508 (c)

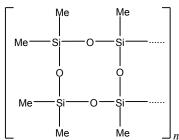
It is a reason for given fact.

509 (a)


The most abundant metal in the earth crust is aluminium.

510 **(d)**


General formula of alum is, $M_2'SO \square_4 \cdot M_2'' (SO_4)_3 \cdot 24 H_2 O$, Cu is bivalent.


511 (c)

 $M e_2 SiC l_2$ on hydrolysis will produce $M e_2 Si(OH)_2$ as follows

 $MeSi(OH)_2$ is unstable compound and it loses water molecule to give Me_2SiO . But silicon atom because of its very large size in comparison to oxygen, is unable to form π -bond. Thus, the product of hydrolysis is polymeric in nature.

512 **(c)**

Aluminium reduces $Fe_2O_3 \lor Cr_2O_3$ to respective metals and acts as a reducing agent

$$Fe_2O_3+2Al \longrightarrow Al_2O_3+2Fe$$

513 (d)

Boron absorbs neutrons.

$$_{5}B^{10} + _{0}n^{1} \longrightarrow _{5}B^{11} + \gamma$$

514 (c)

 $K^{+\dot{\iota},Al^{3+\iota\wedge SO_4^{2+\iota\iota}\dot{\iota}}\dot{\iota}}$ ions.

515 **(c)**

 $AlCl_3$ is covalent $\land \exists as Al_2Cl_6$.

516 (d)

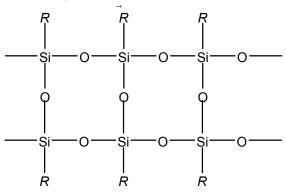
 $(CH_3COO)_2$ Pb is called lead sugar.

517 (d)

Carbon cannot expand its octet due to absence of $d-\dot{c}$ orbital in 2nd shell.

518 (d)

These are use of lamp black.


519 **(c)**

It is a fact.

520 **(b)**

 $RSiCl_33H_2ORSi(OH)_3+3HCl$

 $RSi(OH)_3$ Polymerization

Three dimensional structure of silicon.

521 (d)

When two oxygen of each $SiO_4^{4-\delta\delta}$ tetrahedron are shared with others, cyclic or ring structures are obtained. These silicates are known as cyclosilicates or cyclic silicates.

 $\left[Si_6O_{18}\right]^{12-i\cdot i}$ is an example of cyclosilicate. In this silicate six SiO_4 tetrahedra linked together.

522 **(d)**

These are facts about SnS.

$$SnS+ \qquad \left(NH_4\right)_2 \underbrace{SnS_3}_{\text{Camm.sulphide}} \xrightarrow{2} \left(NH_4\right)_2 \underbrace{SnS_3}_{\text{Soluble}}$$

523 **(d)**

These are facts.

525 (c)

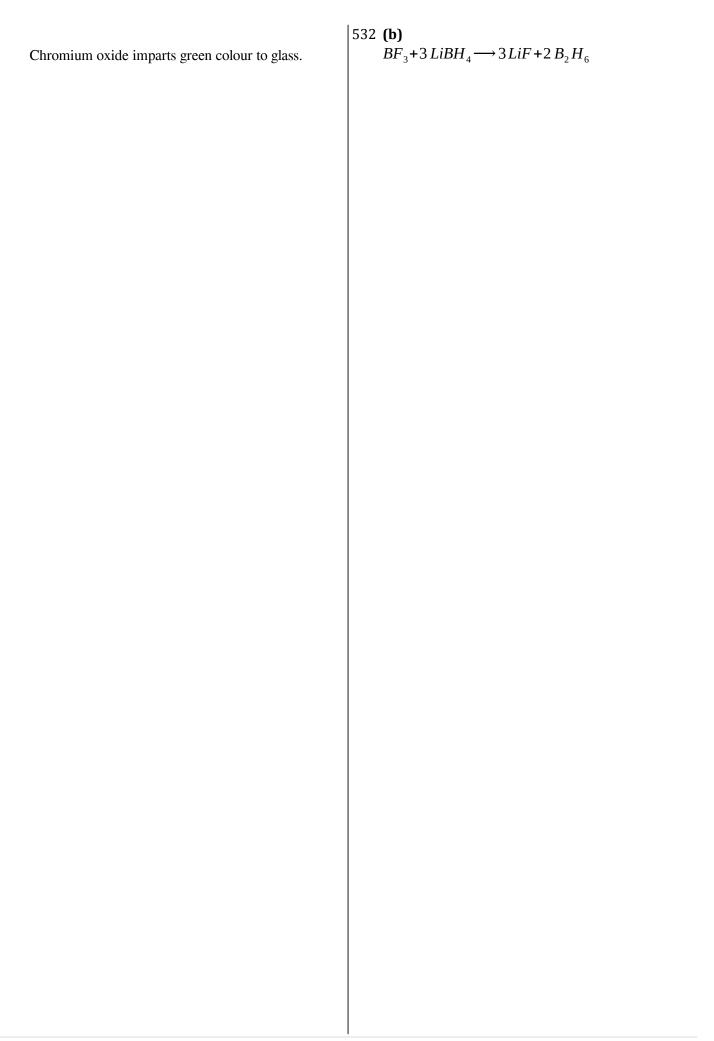
Lead react with water to form lead hydroxide $Pb(OH)_2$ hence, lead pipes are not suitable for drinking purpose

$$CO_2 + Na_2O \rightarrow Na_2CO_3$$

527 **(c)**

 $AlCl_3$ is covalent whereas AlF_3 is ionic.

528 (a)


Chrome yellow is lead chromate.

529 (c)

Due to inert pair effect.

530 **(a)**

Magnalium is Al +Mg + Cu.

533 **(a)**

Al powder (larger surface area) having more affinity for oxygen gives Al_2O_3 with highly exothermic reaction.

534 **(c)**

It is a fact.

535 **(b)**

The formation of oxide film on Al surface prevents it from further corrosion.

536 (d)

 $PbCl_2$ is soluble in hot water but insoluble in cold water.

$$Pb^{2+i.i} + 2HCl_{\rightarrow}^{\Delta} PbCl_{2}H_{2}S$$
 PbS soluble black

537 **(d)**

Like alkanes, these are called silanes.

538 **(d)**

It is a reason for given fact.

539 (a)

It is an use of $Al_2(SO_4)_3$.

540 (d)

Due to back bonding $(p\pi - p\pi)$ giving resonance, bond order in BF_3 is 1.33.

541 (a)

Kettle involves continuous use of boiling water in which if water is hard Ca, Mg bicarbonates are decomposed to Ca and Mg carbonates.

543 **(b)**

Aluminium is obtained by electrolysing alumina dissolved in cryolite $(N a_3 Al F_6)$

$$4 N a_3 Al F_6 \rightleftharpoons 12 N a^{+i + 4Al^{3+i + 12F^{-i}} i}$$

$$4 A l^{3+i + 12e^{-i - 4Ali} i}$$
 (at cathode)

$$12F^{-\iota \longrightarrow 6F_2 + 12e^{-\iota\iota}\iota}$$
 (at anode)

 $2Al_2O_3+6F_2 \longrightarrow 4AlF_3+3O_2$

544 (d)

It has no unpaired electrons.

545 (a)

$$C_{12}H_{22}O_{11}H_2SO_412C\!+\!11H_2O$$

549 **(d)**

$$Zn+BaCO_3\Delta ZnO+BaO+CO$$

550 **(b)**

B in $BF_4^{-\delta\delta}$ is sp^3 -hybridised having four hybrid orbitals.

551 **(c)**

 $s p^3$ hybridisation, but four bonds are neither linear nor in one plane.

552 **(d)**

Tin is oxidized to *meta*stannic acid when it is treated with nitric acid

$$Sn+4HNO_3 \longrightarrow H_2SnO_3+4NO_2+H_2O$$

553 **(c)**

This phenomenon for a substance is called polymorphism and also in case, an element does so it is called allotropy.

554 (a)

The SiO_2 present in glass reacts with HF SiO_2 +6 HF $\longrightarrow H_2 \underbrace{SiF}_{(Soluble)} 6$ +2 H_2O

556 **(c)**

It is a fact.

557 (d)

Among these, graphite is purest form.

558 **(b)**

Anions in chain silicate is ¿¿ or ¿¿.

559 (d)

$$Sn + 2HCl \rightarrow SnCl_2 + H_2$$

 $Sn + 4 HNO_3 \rightarrow SnO_2 + 4 NO_2 + 2 H_2O$
 $Sn + 2 HgCl_2 \rightarrow SnCl_2 + Hg_2Cl_2$

560 (a)

CO₂is major contributor to green house effect. This controls the earth's climate.

561 (c)

It is a reason for given fact.

563 (a)

Magnalium is an alloy of Al and Mg.

564 **(b)**

Crystalline form of silica is called quartz.

565 **(c)**

$$Ca_2B_6O_{11}+2Na_2CO_3 \longrightarrow 2CaCO_3 \downarrow +Na_2B_4O_7 + 1$$

566 **(b)**

Diamond is not isomer but allotrope of graphite.

567 **(b)**

A method to prepare water gas (CO $+H_2$).

568 (d)

In the electrolytic method, for the purification of bauxite, cryolite is added to lower the melting point of bauxite

570 **(a)**

Quartz is purest form of silica.

571 **(c)**

It causes senility and loss of memory

572 (a)

LiH has $H^{-i,i}$ ion which donates electron pair i acts as Lewis base) to AlH_3 (a Lewis acid).

573 **(c)**

C and Si are non-metals; Pb is metal.

575 (d)

$$Al_2O_3+3C+3Cl_2 \longrightarrow 2AlCl_3+3CO$$

576 **(b)**

Germanium chips are used in transistors.

577 (d)

$$2Al + 2KOH + 2H_2O \longrightarrow 2KAlO_2 + 3H_2$$

578 (a)

It is H_3BO_3 a monobasic Lewis acid (boric acid).

580 (c)

It is a fact.

581 (c)

Galena (PbS) is sulphide ore. Froth floatation method is usually used for sulphide ores.

582 **(b)**

A recently discovered family of carbon allotropes is buckminster fullerene. The most common fullerene has the formula C_{60} and contains hexagonal and pentagonal rings of carbon atoms.

Hence, in ketones the two valencies of carbonyl group are satisfied by alkyl groups.

583 (d)

Galena is PbS.

584 (a)

 $(CH_3)_2 SiCl_2$ undergoes hydrolysis but $(CH_3)_2 CCl_2$ does not because in Si, low lying *d*-orbital is present but in C, it does not present.

585 **(b)**

 $In H_3 BO_3$, B is $s p^2$ -hybridized and oxygen is $s p^2$ -hybridized having two lone pair on it.

586 (c)

Al-bronze is an alloy containing Al-Cu.

587 **(b)**

 SiO_2 (silica) is used as an acid flux in metallurgy. It reacts with gangue to form slag.

588 (d)

Cryolite $(N a_3 Al F_6)$ is added to alumina for its electrolysis to decrease its melting point and also increase its conductivity.

589 (d)

CO₂ does not possess disinfectant nature.

590 **(a**)

It Form boron carbide. The molecular formula of boron carbide is $B_{12}C_3$

$$4\,B + C\,\Delta\,B_4\,C$$

591 **(b)**

Activated charcoal possesses more adsorption power.

592 **(d)**

The influence of inert pair effect, (i.e., non-availability of ns electron pair for bonding) increases down the group.

593 **(b)**

Graphite is a good conductor of heat and electricity.

594 **(a**)

$$BCl_3+3H_2O\longrightarrow H_3BO_3+3HCl$$

595 (a)

Coal deposits are found very commonly.

596 **(b)**

Silicon can expand its octet by using 3d-orbitals.

597 **(b)**

Pyrene is chemically CCl_4 .

598 (a)

Boron being non-metal does not form cation.

599 (a)

The stability of +2 oxidation state shows the order $\dot{c}^{2+\dot{c}\dot{c}} < Sn^{2+\dot{c}\dot{c}} < Pb^{2+\dot{c}\dot{c}}$.

600 **(c)** $B_A C$ is the hardest substance along with diamond

601 **(c)** CO has *sp*-hybridization.

The phenomenon of very slow regulated homogeneous cooling of glass to relieve strain is called annealing.

603 (c) $Al_4C_3 + 12H_2 \underset{(Dil.HCl)}{O} \longrightarrow 4Al(OH)_3 + 3CH_4$ $Al(OH)_3 + 3HCl \longrightarrow AlCl_3 + 3H_2O$

604 **(a)**Lapis Lazuli is a name for sodium alumino silicate.

605 (a) Diamond is an allotropic form of carbon, carborundum is SiC, corundum is Al_2O_3 , borazon is BN.

606 **(a)**It is a reason for given fact.

607 **(c)**It is a fact.

608 **(d)** Electrodes of Pb (anode) and Pb + PbO_2 (cathode) are used in batteries.

609 **(d)**Hall's process involves:

 $Al_2O_3 + Na_2 CO_3 \longrightarrow 2NaAlO_2 + CO_2$ $2NaAlO_2 + CO_2 + 3H_2O \longrightarrow 2Al(OH)_3 \downarrow + Na_2CO_3$ $2Al(OH)_3 \stackrel{\triangle}{\longrightarrow} Al_2O_3 + 3H_2O$

610 **(d)**It is plumbus plumbate, *i.e.*, $PbO \cdot PbO_2$.

611 (a) $Sn(l)+2Cl_2(g) \longrightarrow SnCl_4(g)$

612 **(b)** $2 Pb(N O_3)_2 \Delta 2 PbO + 4 N O_2 + O_2$

613 **(a)**

Boron compound on heating form B_2O_3 which imparts green flame.

614 (a) CH_4 having lowest mol. wt. has lowest b.p.

615 (c)Destructive distillation of coal (heated to nearly 1270 K) gives coke (solid residue 70%) and hot vapours and gases.

616 **(c)**Red lead (Pb_3O_4) is a mixed oxide. Its structure is $2PbO.PbO_2$.

617 **(d)** H_3BO_3 ie, $B(OH)_3$ is weak non basic acid

618 **(d)** Cassiterite is an ore of $tin(SnO_2)$. It is also called tin stone.

619 **(a)**It is a method for refining of Al.

620 **(c)**B is non-metal and oxide of non-metals are acidic.

621 **(c)**Boron in its compounds has incomplete octet and thus, acts as Lewis acid.

622 **(a)**Glass is super cooled liquid.

623 **(d)**Catenation is the property of an element to unite with its atoms forming a long open or closed chain.

624 (a) $\left[BF_6\right]^{3-i}$ does not exist because boron does not have vacant d-subshells.

According to Lewis, the compound which can accept a lone pair of electron, are called acids. Boron halides, being electron deficient compounds, can accept a lone pair of electrons, so termed as Lewis acid.

626 **(b)**It is the only non-metal in gp.13.

627 **(b)**

Leaching involves washing out of soluble components from ore. $\begin{array}{c|c} 628 \text{ (c)} \\ 2Al + 6HCl \longrightarrow 2AlCl_3 + 3H_2 \\ 2Al + 3Cl_2 \text{ (dry gas)} \longrightarrow 2AlCl_3 \end{array}$

629 **(b)**

Metal oxides or some salts are fused with glass to impart colour to glass.

630 **(d)**

Cryolite is Na₃AlF₆.

631 **(a)**

 $2 KOH + 2 Al + 2 H_2 O \longrightarrow 2 KAl O_2 + 3 H_2$

632 **(b)**

It is a fact.

633 **(b)**

Due to the yellow colour of chromate ion.

635 **(b)**

Addition of CaF_2 to alumina dissolved in Na_3AlF_6 makes it more conducting.

636 **(d)**

PbO₂and not PbO is used in batteries.

637 **(a)**

Ruby stone is name for alumina (Al_2O_3) .

638 (d)

A property of wood charcoal to remove poisonous gases from surrounding.

639 **(c)**

 $2 NaHCO_3 \longrightarrow Na_2 CO_3 + H_2 O + CO_2$

640 **(d)**

Al too forms covalent compounds, e.g., $AlCl_3$.

641 (a)

 $R_3 SiCl$ on hydrolysis can only form a dimer. $R_3 SiCl H_2 O R_3 SiOH$

 $R_3 SiOH + R_3 SiOH - \overrightarrow{H_2} O R_3 Si - O - Si R_3$

642 (a)

It is a fact.

643 **(a)**

Borax bead test is given by elements which form coloured ion.

644 **(b)**

Amorphous silicon is prepared by the reduction of silica (rocks). Extra pure silicon is obtained by the removal of SiO_2 by HF.

 $SiO_2+4HF \rightarrow SiF_4+2H_2O$

645 **(b)**

Rest all are uses of boric acid.

646 **(b)**

 CO_2 , SiO_2 and GeO_2 are acidic oxides.

647 **(d)**

Boron does not react with acids.

648 (c)

 $BC l_3$ is completetely hydrolysed by water yielding boric acid and hydrochloric acid $BC l_3 + 3 H_2 O \longrightarrow H_2 B O_3 + 3 HCl$

649 (a)

The reaction itself occurs violently.

650 **(a)**

Alkali metals do not form carbonyls.

652 **(b)**

Antiknocks are used to increase octane no. of gasoline.

653 **(c)**

It is a reason for given fact.

654 **(b)**

In carbon family stability of +2 oxidation state increases on moving down the group in the Periodic Table with an increase in atomic number due to screening effect

655 **(b)**

Phosgene is carbonyl chloride, e_1 , $COCl_2$.

656 (a)

 CO_2 is linear and sp-hybridized.

657 **(c)**

 $SiO_2 + 2KOH \Delta K_2 SiO_3 + H_2O$

658 **(a)**

Anhydrite is naturally occurring $CaSO_4$.

659 **(b)**

A fact about graphite due to $s p^2$ -hybridisation.

660 (a)

Rest all react with water.

661 **(b)**

 $K_4 Fe(CN)_6 + 6 H_2 SO_4 + 6 H_2 O \longrightarrow$

662 (d)

The metallic character in each gp. increases down the gp.

663 (c)

 $Al(OH)_3$ formed as white precipitate gets dissolved in excess of NaOH to form soluble $NaAlO_2$.

665 **(b)**

Flux is mostly used in removal of silica and undesirable metal oxide.

666 (a)

$$2 Al + 6 NaOH \longrightarrow 2 Na_3 AlO_3 + 3 H_2$$

Fused

668 (c)

Melting point of Al_2O_3 is about 2000°C.

669 (d)

It is $p\pi - p\pi$ bonding involving B and F atom responsible for the acidic nature of boron halides as $BF_3 < BCl_3 < BBr_3 < BI_3$ smaller atom shows more back bonding.

670 **(d)**

Structures of CO_2 , CO and $CO_3^{2-i i}$ are

Bond multiplicity decreases the bond length. Thus, CO with a triple bond will have shortest C—O bond length. CO_2 with a double bond will have a larger C—O band length. $CO_3^{2-i\cdot i}$ is a resonance hybrid of three structure with a C—O length of more than a C—O double bond but less than a C—O single bond. Thus, C—O bond length is maximum in $CO_3^{2-i\cdot i\cdot i}$

671 **(b)**

 $PbCl_2$ is soluble in hot water.

672 **(b)**

Inert pair effect is the phenomenon in which outer shell $(n s^2)$ electrons penetrate to (n-1)d electrons and thus, becomes closer to nucleus and are more effectively pulled towards nucleus. This results in less availability of ns electrons for bonding. The inert pair effect begins when $n \ge 4$ and increases with increasing value of n.

674 (c)

It is used as explosive.

676 **(c)**

Oxalates are strong reducing agent and give CO_2 with conc. H_2SO_4 .

677 **(a)**

$$3c-2e$$
; $B-H-B$, $2c-2e$; $H-B-H$

678 **(c)**

Each has three electrons in its outer shell.

680 **(c)**

$$Al_2O_3+3C+N_2\longrightarrow 2AlN+3CO$$

681 **(a)**

$$2Al_2O_3 + 9C^{2000} \circ C Al_4C_3 + 6CO$$

682 **(b)**

+4 oxidation state of carbon family is covalent in nature.

683 **(c)**

Wrought iron is purest form of carbon.

684 **(b)**

Al becomes passive in conc. HNO_3 and thus, conc. HNO_3 can be stored in Al vessels.

685 **(b)**

Water gas is sodium silicate $N a_2 Si O_3$.

686 **(a)**

Bond energy for C—C is maximum.

687 (a)

$$Al_2(SO_4)_3$$
+6 $NH_4OH \longrightarrow 2$ $Al(OH)_3$ +3 $(NH_4)_2$ SO_4 $Al(OH)_3$ is insoluble in NH_4OH but soluble in NaOH.

688 (c)

Borax on heating forms a glassy mass called borax bead.

$$Na_2B_4O_7 \cdot 10H_2O \xrightarrow{\triangle} Na_2B_4O_7 \xrightarrow{740^{\circ}C} \underbrace{NaBO_2 + B_2O_3}_{Bead}$$

689 (d)

It is a reason for given fact.

690 **(b)**

$$a+6 \times (-1) = -2;$$
 :. $a = +4$

691 **(d)**

All these are characteristics noted during the process.

693 **(c)**

Gp. III A or gp.13 members have $n s^2 n p^1$ configuration.

694 **(d)**

These are characteristics of bucky ball.

