Single Correct Answer Type

1.	On strongly heating $AgNO_3$ we get:			
	a) $AgNO_2$	b) Silver nitride	c) Ag	d) Ag_2O
2.	Transition metals in their c	compounds show:		
	a) Ionic bonds			
	b) Covalent bonds			
	c) Ionic and covalent bond	s		
	d) Ionic and coordinate bo	nds		
3.	$4 K_2 Cr_2 O_7 Heat 4 K_2 Cr$	$O_4 + 3O_2 + X$ In the above r	eaction, X is	
	a) CrO ₃	b) Cr_2O_7	c) Cr_2O_3	d) CrO_5
4.	Cynaide process is used fo	r the extraction of		
	a) Au	b) Ag	c) Cu	d) Both (a) and (b)
5.	The colour of zinc sulphide	e is:		
	a) Yellow	b) White	c) Brown	d) Black
6.	The metal extracted by cya	anide process is		
	a) Silver	b) Copper	c) Iron	d) Sodium
7.	Which metal gives hydroge	en gas on heating with hot co	ncentrated alkali?	
	a) Ag	b) Ni	c) Zn	d) Cu
8.	Which of the following me	etal ions is not coloured?		
	a) Ti ³⁺ⁱⁱ	b) $Fe^{3+i\epsilon}$	c) V ²⁺ⁱⁱ	d) Zn^{2+ii}
9.	The process of extraction of	of Au and Ag ores is based or	n their solubility in:	
	a) NH_3	b) HCl	c) HNO_3	d) KCN
10.	In the process of extraction Roasted gold ore $-i + H_2O O_2[X] + OH^{-ii} i$ $+ CN$ $[X] + Zn \longrightarrow [Y] + Au$	n of gold,		
	Identify the complexes $[X]$ a) $X = [Au(CN)_2]^{-\lambda, Y = [Zn]}$	$(CN)_4^{2-i\lambda}$	b) $X = [Au(CN)_4]^{3-i,Y=[Zn]}$	
	c) $X = [Au(CN)_2]^{-i, Y=[Zn]}$		d) $X = [Au(CN)_4]^{-\iota, Y = [Zn]\iota}$	$(CN)_4^2^{2-\iota\iota}$
11.	To dissolve argentite ore w	which of the following is used	?	
	a) $Na[Ag(CN)_2]$	b) _{NaCN}	c) _{NaCl}	^{d)} HCl

12. The magnetic moment μ , of transition metals is related to the number of unpaired elelctroos n as

	a) $\mu = n(n+2)^2$	b) $\mu = n^2(n+2)$	c) $\mu = \frac{n}{(n+2)}$	$^{\rm d)}\mu = \sqrt{n(n+2)}$	
13.	3. Melting of Zn metal and then pouring it into cold water gives:				
	a) Zn dust	b) Granulated Zn	c) Hard Zn metal	d) Soft Zn metal	
14.	Percentage of gold in Fool's	s gold is			
	a) Zero	b) 8	c) 16	d) 30	
15.	Copper sulphate is commer	cially made from copper scr	ap by:		
	a) Dissolving in hot concen	trated sulphuric acid			
	b) Action of dilute sulphuri	ic acid and air			
	c) Heating with sodium sul	phate			
	d) Heating with sulphur				
16.	Which of the following con	npounds has colour but no ur	npaired electrons?		
	a) KMnO ₄				
	b) $K_2 MnO_4$				
	c) MnSO ₄				
	d) $MnCl_2$				
17.	Mercury forms amalgams v	vith all except:			
	a) Al	b) Zn	c) Ni	d) Fe	
18.	Granulated Zn is obtained by	py:			
	a) Suddenly cooling molter	ı Zn			
	b) Adding molten Zn to wa	ter			
	c) Heating Zn 100 to 150°C				
	d) Dropping molten Zn drop by drop				
19.	In the first transition series,	the differentiating electron e	enters:		
	a) _{5d-orbital}	b) _{4d-orbital}	c) _{3d-orbital}	d) _{2d-orbital}	
20.	Identity the ore not contain	ing iron.			
	a) Limonite	b) Siderite	c) Carnallite	d) Chalcopyrites	
21.	Purest form of iron is				
	a) Cast iron	b) Pig form	c) Wrought iron	d) Steel	
22.	Which metal adsorbs hydro	gen?			
	a) Pd	b) K	c) Al	d) Zn	
23.	The most abundant ore of i	ron is:			
	a) Haematite	b) Limonite	c) Magnetite	d) Siderite	

24.	Metallic silver may be obta	ined from AgCl by		
	a) Heating it in the current	of H_2	b) Fusing it with sand	
	c) Treating with carbon mo	onoxide	d) Fusing it with Na_2CO_3	
25.	Choose the correct statement	nt.		
	a) Transition elements have	e low melting points.		
	b) Transition elements do n	ot have catalytic activity.		
	c) Transition elements exhi	bit variable oxidation states.		
	d) Transition elements show	w inert pair effect.		
26.	Bessemer's converter is use	d in the manufacture of:		
	a) Cast iron	b) Pig iron	c) Steel	d) Wrought iron
27.	Number of electrons preser	nt in the outermost orbit of F	e atom is:	
	a) 3	b) 1	c) 2	d) 4
28.	Which will reduce acidified	potassium dichromate solut	ion?	
	a) Potash alum	b) Mohr's salt	c) Chile saltpetre	d) White vitriol
29.	The lanthanoids contraction	relates to		
	a) Atomic radii		b) Atomic as well as $M^{3+i\delta}$	radii
	c) Valence electrons		d) Oxidation states	
30.	Transition metals show para	amagnetism due to		
	a) High lattice energy		b) Characteristics configura	ntion
	c) Variable oxidation states	5	d) Unpaired electrons	
31.	'Mercury' tree can be prepa	red:		
	a) By mixing up mercuric thiocyanate and gum			
	b) By adding Nessler's reagent to a ammonium salt solution			
	c) By pouring little mercury into $AgNO_3$ solution			
	d) By heating mercuric chlo	oride		
32.		dded to a solution of $HgCl_2$, a white ppt. turning to grey	is obtained. This grey colou
	is due to the formation of: a) Hg_2Cl_2	b) $SnCl_4$	c) _{Sn}	d) <i>H g</i> ₂
33.	52 2	ompound that is both parama		11 9 ₂
	a) $(NH_4)_2(TiCl_6)$	b) K ₂ Cr ₂ O ₂	c) $K_3[Cu(CN)_4]$	d) <i>VOS O</i> ₄
34.	All the metals form oxides		113L Ou (O11 /4]	4
	a) Copper	b) Barium	c) Silver	d) Lead
35.	Cinnabar is an ore of:			

	a) Lead	b) Zinc	c) Silver	d) Mercury	
36.	Heating mixture of Cu_2O and Cu_2S will give				
	a) Cu_2SO_3	b) CuO+CuS	c) $Cu+SO_3$	d) $Cu+SO_2$	
37.	The substance that sublime	es on heating is:			
	a) $MgCl_2$	b) AgCl	c) HgC l ₂	d) NaCl	
38.	Actinides				
	a) Have variable valency		b) Include element 12		
	c) Are all synthetic elemen	nts	d) Have only short lived iso	otopes	
39.	The $3d$ -transition series co	ontains elements from atomic	e number:		
	a) 22 to 30	b) 21 to 30	c) 21 to 31	d) 21 to 29	
40.	Which of the following is a	not a characteristic of transiti	on elements?		
	a) Variable oxidation state	s	b) Formation of coloured c	compounds	
	c) Formation of interstitial compounds		d) Natural radioactivity		
41.	An element which is highly	y toxic for plants and animals	s is:		
	a) Au	b) Mn	c) Hg	d) Ca	
42.	Native silver metal forms a	water soluble complex with	a dilute aqueous solution of l	NaCN in presence of:	
	a) Nitrogen	b) Oxygen	c) <i>CO</i> ₂	d) Ar	
43.	Calamine is		2		
	a) CaCO ₃	b) MgCO ₃	c) $ZnCO_3$	d) $CaCO_3$ + CaO	
44.	Which series of elements h	nave nearly the same atomic r	-	J	
	a) F, Cl, Br, I	b) Na, K, Rb, Cs	c) Li, Be, B, C	d) Fe, Co, Ni, Cu	
45.	Which transition elements	exhibit +8 oxidation states?			
	a) Cu, Zn	b) Ru, Os	c) Ag, Au	d) Cu, Cr	
46.	When I^{-ii} is oxidized by MnO_4^{-ii} in alkaline medium, $I^{-i convets into i}$				
	a) IO_2^{-ii}	b) ₁₂	c) IO_4^{-ii}	d) <i>IO</i> ^{-¿¿}	
47.	Which of the following compounds is used as the starting material for the preparation of potassium dichromate?				
	a) K_2SO_4 . $Cr_2(SO_4)_3$.24 H_2O (Chrome alum)				
	b) $PbCrO_4$ (Chrome yellow)				
	c) $FeCr_2O_4$ (Chromite)	,			
	d) PbCr O ₄ . PbO (Chron	ne red)			
48.			by maintaining the cutting edg	ge of the blade?	
	a) Mn	b) Al	c) W	d) C	
49.	Which form of iron is leas	t ductile?			

	a) Hard steel	b) Cast iron	c) Mild steel	d) Wrought steel	
50.	Amalgams are:				
	a) Always solid				
	b) Highly coloured alloys				
	c) Alloys which contain me	ercury as one of the contents			
	d) Compounds of mercury				
51.	Which of the following is a	poison?			
	a) Hg_2Cl_2	b) BaSO ₄	c) $HgCl_2$	d) $NaHCO_3$	
52.	Addition of high proportion	ns of manganese makes steel	useful in making rails of rail	roads because manganese;	
	a) Gives hardness to steel a	nd can remove oxygen and su	ılphur		
	b) Helps the formation of o	oxides of iron			
	c) Can show highest oxidat	ion state of +7			
	d) None of the above				
	 B. Pick out the correct statements from the following. I. Cobalt (III) is more stable in octahedral complexes. II. Zinc forms coloured ions or complexes. III. Most of the <i>d</i>-block elements and their compounds are ferromagnetic. IV. Osmium shows (VIII) oxidation state. V. Cobalt (II) is more stable in octahedral complexes. a) 1 and 2 b) 1 and 3 c) 2 and 4 d) 1 and 4 				
54.	Ferrous sulphate on heating	gives:			
	a) <i>SO</i> ₃	b) <i>SO</i> ₂	c) Fe_2O_3	d) All of these	
55.	Hydrometallurgy is based o	-	- 2 - 3		
	a) Calcination	b) Roasting	c) Oxidation	d) Reduction	
56.	In context with the transitio	on elements, which of the following	owing statements is incorrec	t?	
	a) In addition to the normal	l oxidation state, the zero oxid	dation state is also shown by	these elements in complexes.	
	b) In the highest oxidation s	state, the transition metal sho	ws basic character and form	cationic complexes.	
57.	 c) In the highest oxidation state of the first five transition elements (Sc to Mn), all the 4 s and 4 delectrons are used for bonding. d) Once the d⁵ configuration is exceeded, the tendency to involve all the 3 d electrons in bonding decreases. 				
57.	properties? a) Mn and W	pairs of elements is called 'c b) Mo and Tc	c) Fe and Re	d) Hf and Zr	
58.	Which one of the following	g exist in the oxidation state o	ther than +3?		
	a) B	b) Al	c) Ce	d) Ga	
59.	Excess of KI reacts with Cu incorrect for this reaction?	uSO_4 solution and then Na_2	S_2O_3 solution is added to it.	Which of the statement is	

	a) CuI_2 is formed	b) $N a_2 S_2 O_3$ is oxidised	c) Cu_2I_2 is formed	d) Evolved I_2 is reduced		
60.	Which is formed when i	ron reacts with carbon?				
	a) FeC_2	b) Fe_3C	c) FeC_3	d) Fe_2C		
61.	From sodium agrentocya	nnide $Na[Ag(CN)_2]$, silver is	precipitated by adding a po	owder of:		
	a) Tin	b) Zinc	c) Mercury	d) Calcium		
62.	Which is used for electric	ical purposes?				
	a) German silver	b) Beryllium bronze	c) Constantan	d) Fool's gold		
63.	Monel metal is an alloy	of?				
	a) Cu, Ni, Fe, Mn	b) Cu, Sn, Zn	c) Cu, Sn, P	d) Cu, Zn		
64.	Which metal is not used	for making coins?				
	a) Gold	b) Silver	c) Nickel	d) Tungsten		
65.	Which is not true?					
	a) ZnS is white solid which turns yellow on exposure to light					
	b) ZnS is precipitated on passing H_2S to aqueous Na_2ZnO_2					
	c) Basic zinc carbonate is $ZnCO_3.3Zn(OH)_2$					
	d) $HgC l_2$ reacts with $N H_3(g)$ to give $[Hg(N H_3)_4 \stackrel{!}{\iota}C l_2]$					
66.	Gold is extracted by hydrometallurgical process, based on its property					
	a) Of being electropositive		b) Of being less reactive	2		
	c) To form complexes which are water soluble d) To form salts which are water soluble					
67.	Which is less reactive?					
	a) Fe	b) Ni	c) Pt	d) Co		
68.	Thermal decomposition of zinc nitrate gives:					
	a) Zn	b) ZnO	c) $Zn(NO_2)_2$	d) NO		
69.	Copper nitrate on strongly heating gives:					
	a) Cu	b) Cupric oxide	c) Cuprous oxide	d) cupric nitrate		
70.	Which compound is used as a purgative in medicine?					
	a) $HgCl_2$	b) Hg_2Cl_2	c) CuCl	d) $CuCl_2$		
71.	Correct formula of calor	mel is				
	a) $HgCl_2$	b) $HgCl_2.H_2O$	c) Hg_2Cl_2	d) $HgSO_4$		
72.	The reaction of $K_2Cr_2O_7$ with NaCl and conc H_2SO_4 gives					
	a) CrO_2Cl_2	b) Cr_2O_3	c) <i>CrC l</i> ₃	d) $CroCl_2$		
73.		metal ion $M^{x+i,i}(Z=25)$ has a secompound and the oxidation second				

	a) 4 and 2	b) 5 and 3	c) 3 and 2	d) 4 and 3	
74.	From an aqueous sol	ution of zinc sulphate, norma	al zinc carbonate may be pr	recipitated by:	
	a) $_{\text{Passing }}CO_2$				
	b) Warming with NaHCO ₃				
	c) Adding $N a_2 C O$	3			
	d) Boiling with CaC	CO_3			
75.	The catalyst used for	the hydrogenation of vegeta	able oils for making margar	ine is:	
	a) Cu	b) Na	c) Ni	d) Zn	
76.	Which of the follow	ing compound is expected to	be coloured?		
	a) Ag_2SO_4	b) CuF_2	c) $_{MgF_2}$	d) CuCl	
77.	Copper can be extra	cted from:			
	a) Kupfer-nickel	b) Dolomite	c) Malachite	d) Galena	
78.		copper with zinc impurity is t	to be done by electrolysis us	sing electrodes as	
		Pure zinc	b) Pure zinc	Pure copper	
	c) Pure copper	Impure copper	d) Pure zinc	Impure zinc	
79.	Molten Ag absorbs a	about times of O_2 :			
	a) 10	b) 20	c) 40	d) 80	
80.	Which of the follow	ing ion is diamagnetic?			
	a) Nd^{3+i}	b) La^{3+ii}	c) Tb^{3+i}	d) Er^{3+ii}	
81.	1. A red solid is insoluble in water. However, it becomes soluble if some KI is added to water. Heating the red solid in a test tube results in liberation of some violet coloured fumes and droplets of a metal appear on the cooler par of the test tube. The red solid is a) $(NH_4)_2 Cr_2 O_7$ b) HgI_2 c) HgO d) $Pb_3 O_4$				
82.	(/=	_	3	ion state is achieved by which one of	
	them?	$b)(n-1)d^5,ns^1$	$^{\mathrm{c})}(n-1)d^{3}$, ns^{2}	$^{\mathrm{d})}(n-1)d^{5}$, ns^{2}	
83.	The oxidation number	er of Mn in the product of all	kaline oxidative fusion of	MnO_2 is	
	a) 2	b) 3	c) 4	d) 6	
84.	Iron sheets are galva	nized mainly to:			
	a) Harden the surface				
	b) Increase lustre				
	c) Prevent action of	water			
	d) Prevent action of	oxygen and water			
85.	Copper metal is not	used:			

	a) in taps and water conne	CHOIIS			
	b) As an alloy in high speed drills				
	c) In electric motor coils				
	d) In brass utensils				
86.	In the equation, $4M + 8CN^{-i+2H_2O+O_2 \rightarrow 4}$ [Identify the metal M a) Copper	$M(CN)_2^{-i+4OH^{-i}i}$ \dot{c}	c) Silver	d) Zinc	
87.	Vapour phase refining of n	ickel is carried out by using			
	a) _{I2}	b) <i>Cl</i> ₂	c) HCl	d) CO	
88.	Lanthanide contraction is of	-	1101		
	a) Shielding by 4 f -electron c) Effective nuclear charge	2	b) Atomic number d) Size of 4 <i>f</i> -orbitals		
89.	Which of the following ior			15	
90.	a) Cu^{+ii} Pig iron:	b) Cu^{2+ii}	c) V ⁵⁺ⁱⁱ	d) _{T i} ^{4+&&}	
	a) Contains carbon and other impurities				
	b) Is pure form of iron				
	c) Is same as wrought iron				
	d) Is same as steel				
91.	In aqueous solution $E u^{2+\delta}$	ion acts as			
	a) An oxidizing agent	b) A reducing agent	c) An acid	d) All of these	
92.	Transition elements form complexes because of:				
	a) Small cation size	b) Vacant <i>d</i> -orbitals	c) Large ionic charge	d) All are correct	
93.	Philosopher's wool on heating with BaO at 1100° C produce				
	a) $Ba+ZnCl_2$	b) BaCdO ₂	c) $BaZnO_2$	d) $BaO_2 + Zn$	
94.	Which of the following tri	valent ion has the largest ator	mic radii in the lanthanide se	ries?	
	a) Ce	b) Pm	c) La	d) Lu	
95.	Ferrous ion changes to X in X and its magnetic momenta, 6 and 6.93	· ·	hydrogen peroxide. The nur c) 5 and 4.9	mber of d -electrons present in d) 4 and 5.92	
96.	Which of the following is	amphoteric oxide?			
	a) SO ₂	b) B_2O_3	c) ZnO	d) $N a_2 O$	
97.	The valence shell electroni	c configuration of Cr^{2+ii} ion	n is		

	a) $4 s^0 3 d^4$	b) $3 p^6 4 s^2$	c) $4s^23d^2$	d) $4s^23d^0$			
98.	Which of the following ore	is an ore of copper?					
	a) Argentite	b) Haematite	c) Malachite	d) Calamine			
99.	Chinese white is:						
	a) ZnS	b) $ZnCO_3$	c) ZnS+BaSO ₄	d) ZnO			
100	incorrect?	ortant member of the lanthar states of cerium are +3 and +	nides. Which of the following	statement about cerium is			
	b) Cerium (IV) acts as an o	b) Cerium (IV) acts as an oxidizing agent					
	c) The +4 oxidation state o	f cerium is not known in solu	utions				
	d) The +3 oxidation state o	f cerium is more stable than	the +4 oxidation state				
101	. If orange-red colour is abso	orbed from white light, the ol	bserved colour is:				
	a) Yellow	b) Orange	c) Blue	d) Violet			
102	. Which forms interstitial co	mpounds?					
	a) Fe	b) Ni	c) Co	d) All of these			
103	. Steel that is resistant to acid	ds is:					
	a) Carbon steel	b) Molybdenum steel	c) Stainless steel	d) Nickel alloy steel			
104	. Hardness of transition elem	nents is due to:					
	a) Large atomic size						
	b) Metallic bonding						
	c) Covalent bonds						
	d) High ionization energy						
105	. Which does not possess allo	otropic forms?					
	a) C	b) Sn	c) Fe	d) P			
106	. When hydrogen peroxide is	s added to acidified potassium	n dichromate, a blue colour is	produced due to formation			
	of a) CrO_3	b) Cr ₂ O ₃	c) CrO ₅	d) CrO_4^{2-ii}			
107	In the extraction of Ag, Ag	g_2S is dissolved in:					
	a) HCl	b) <i>HN O</i> ₃	c) KCN	d) H_2SO_4			
108	. The meniscus of mercury in	n a glass tube is:					
	a) Convex upwards	b) Concave	c) Plane	d) Convex inwards			
109	. The iron obtained from the	blast furnace is called:					
	a) Pig iron	b) Cast iron	c) Wrought iron	d) Steel			
110	0. Which one of the following has strongest metallic bonding?						

	a) Fe	b) Sc	c) V	d) Cr	
111.	The alloy which contains ni	ckel is:			
	a) Brass	b) Bell metal	c) Bronze	d) German silver	
112.	A hard and resistant alloy go	enerally used in tip of nib of	pen is:		
	a) Os, Ir	b) Pt, Cr	c) V, Fe	d) Fe, Cr	
113.	The extraction of which of	the following metals involves	bessemerization?		
	a) Fe	b) Ag	c) Al	d) Cu	
114.	CuCl absorbs				
	a) <i>CO</i> ₂	b) <i>SO</i> ₂	c) H_2SO_4	d) <i>CO</i>	
115.	. CrO ₃ dissolves in aqueous 1	NaOH to give			
	a) CrO_4^{2-ii}	b) $Cr(OH)_3^{-\iota\iota}$	c) CrO_7^{2-ii}	d) $Cr(OH)_2$	
116.	One of the following metals	s is obtained by leaching its o	re with dilute cyanide solutio	n. Identify it.	
	a) Titanium	b) Vanadium	c) Silver	d) Zinc	
117.	German silver alloy contain	ns			
	a) Zinc, silver and copper		b) Nickel ,silver and copper		
	c) Germanium ,silver and c	opper	d) Zinc, nickel and copper		
118.	Copper metal of high purity	is obtained by:			
	a) Carbon reduction	b) Hydrogen reduction	c) Electrolytic method	d) Thermite process	
119.	The solubility of silver bron	nide in hypo solution is due to	o the formation of:		
	a) Ag_2SO_3	b) $Ag_2S_2O_3$	c) $[Ag(S_2O_3)$ \dot{c}	d) $[Ag(S_2O_3)_2$ i \square^3	
120.	Which of the following is a	ferrous alloy?			
	a) Invar	b) Solder	c) Magnalium	d) Type metal	
121.	21. Consider the following statements. (I) $La(OH)_3$ is the least basic among hydroxides of lanthanides (II) Zr^{4+il} and Hf^{4+il} possess almost the same ionic radii (III) Ce^{4+il} can act as an oxidizing agent Which of the above is/are true? a) (I) and (III) b) (II) and (III) c) (II) only d) (I) only				
122.	Iodide of Millon's base is:				
		b) $_{\mathrm{Hg}}$ $<_{\mathrm{O}$ $$ $_{\mathrm{Hg}}$ $$ $_{\mathrm{I}}$		(d) $Hg(NH_2)I+Hg$	
123.		ed for making automobile par			
	a) Stainless steel	b) Nickel steel	c) Tungsten steel	d) Chromium steel	
124.	Which is used as substitute	for platinum in jewellery?			

	a) Rolled gold	b) White gold	c) Purple of Cassius	d) Faraday's gold
125	. The highest oxidation state	exhibited by transition metal	s is	
	a) +7	b) +8	c) +6	d) +5
126	. Cl_2 + HgO → ?			
	a) Cl ₂ O+HgCl	b) $Cl_2O+HgCl_2$	^{c)} ClO+HgCl	d) ClO+HgCl ₂
127	$Zn+conc$. $HNO_3 \longrightarrow Zn$ $NO_3 \longrightarrow Zn$	$NO_3 _2 + X + H_2 O(A)$ $O_3 _2 + Y + H_2 O(B)$ ompounds X and Y respective		
100	a) NO ₂ ∧NO	b) $NO_2 \wedge NO_2$	c) NO \(\lambda\) NO ₂	d) $NO_2 \wedge NH_4 NO_3$
128	-	ctronic configurations belong	to transition elements?	
	a) KL $3s^2p^6d^5$, $4s^1$ b) KL $3s^2p^6d^{10}$, $4s^2p^3$			
	c) KL3 $s^2 p^6 d^{10}$, 4 $s^2 4 p^1$			
	d) KLM4 $s^2 p^6 d^{10}$, $5 s^2 5 p$	1		
129	The magnetic moment of a	transition metal ion is $\sqrt{15}B$	M. Therefore, the number of	unpaired electrons present in
	it, is a) 3	b) 4	c) 1	d) 2
130	. Which is not true in case of	transition metals?		
	a) They are malleable and o	ductile		
	b) They have high melting	and boiling points		
	c) They crystallise with boo	dy centred cubic and hexagor	al close packed structure only	y
	d) They show variable oxid	ation states although not alwa	ays	
131	Formation of coloured solu	tion is possible when metal io	on in the compound contains	
	a) Paired electrons		b) Lone pair of electrons	
	c) Unpaired electrons		d) None of these	
132	. Carbon in wrought iron is p	present as		
	a) Silicon carbide		b) Iron carbide	
	c) Graphite		d) Partly iron carbide and p	artly as graphite
133	• An element is in M^{3+ii} for	m. Its electronic configuration	n is $[Ar]3d^1$, the ion is	
	a) $C a^{2+ii}$	b) _{S c} +ii	c) Ti^{4+ii}	d) _{T i} 3+66
134	Each transition series conta	ins:		
	a) 12 elements	b) 10 elements	c) 14 elements	d) 8 elements
135	Lanthanide contraction is c	aused due to		

	a) The appreciable shielding on outer electrons by $4f$ -electrons from the nuclear charge.				
	b) The appreciable shielding on outer electrons by $5d$ -electrons from the nuclear charge.				
	c) The same effective nuclear charge from Ce to Lu.				
	d) The imperfect shielding	on outer electrons by $4f$ -elec	ctrons from the nuclear charg	ge.	
136	The properties of Zr and Hf				
	a) Both belong to <i>d</i> -block		b) Both belong to same grou	up of Periodic Table	
	c) Both have similar radii		d) Both have same number	of electrons	
137	37. In nitroprusside ion, the iron and NO exist as Fe^{11} and NO^{+ii} rather than Fe^{III} and NO. These forms can be differentiated by: a) Estimating the concentration of iron				
	b) Measuring the concentra	tion of CN^{-ii} .			
	c) Measuring the solid state	magnetic moment			
	d) Thermally decomposing	the compound			
138	Railway wagon axles are ma	ade by heating rods of iron en	mbedded in charcoal powder.	The process is known as	
	a) Case hardening	b) Tempering	c) Sheradizing	d) Annealing	
139	A substance which is not pa	ramagnetic is:			
	a) $Cr(Cl O_4)_3$	b) $KMn O_4$	c) TiC l ₃	d) $VOBr_2$	
140	Which pair of compounds is	s expected to show similar co	olour in aqueous medium?		
	a) FeCl ₃ ∧CuCl ₂	b) $VOCl_2 \wedge CuCl_2$	c) $VOCl_2 \wedge FeCl_2$	d) $FeCl_2 \land MnCl_2$	
141	Lunar caustic is chemically:				
	a) Silver chloride	b) Silver nitrate	c) Sodium hydroxide	d) Potassium nitrate	
142	Lanthanoids and actinoids r	esembles in:			
	a) Electronic configuration				
	b) Oxidation state				
	c) Ionisation energy				
	d) Formation of complex				
143	Horn silver is:				
	a) AgCl	b) Ag_2S	c) SnS	d) $AgNO_3$	
144	Silver nitrate solution gives	a red precipitate with:			
	a) Sodium iodide	b) Potassium chloride	c) Calcium nitrate	d) Sodium chromate	
145	them?	-	s, the highest oxidation state	·	
	,	b) $(n-1)d^5ns^1$,	$^{\mathrm{d})}(n-1)d^{5}ns^{2}$	
146	Powdered silver ore is treate	ed with NaCN solution and a	ir is bubbled through the mix	ture to give:	

	a) AgCN	b) Ag	c) $Ag(CN)_2$	d) $Na[Ag(CN)_2]$
147.	Chromium has most stable	oxidation state of:		
	a) +5	b) +3	c) +2	d) +4
148.	Cuprous salts are generally	colourless while cuprous oxid	de is:	
	a) Green	b) Blue	c) Red	d) Yellow
149.	Which of the following man	nganese oxide is amphoteric?		
	a) MnO_2	b) $M n_2 O_3$	c) $M n_2 O_7$	d) MnO
150.	Impurities of Cu and Ag fro	om gold are removed by		
	a) Boiling impure gold withc) Electrolytically	$dil.H_2SO_4$	b) Boiling impure gold with d) Both (b) and (c)	$1 \text{ conc.} H_2 SO_4$
151.	Identify the incorrect staten	nent among the following		
	properties among themse		partially filled orbital.	filled d -orbitals and no other qually shielded.
152.	Which of the following ions	s form most stable complex c	compound?	
	a) $M n^{2+ii}$	b) $N i^{2+ii}$	c) Fe^{2+ii}	d) Cu^{2+ii}
153.	Silver halides are used in ph	otography because they are:		
	a) Photosensitive			
	b) Soluble in hyposolution			
	c) Soluble in NH_4OH d) Insoluble in acids			
154.	$(NH_4)_2 Cr_2 O_7$ on heating g	ives a gas which is also given	by	
155.	a) Heating NH ₄ NO ₂ Gold dissolves in aqua regia	b) Heating NH ₄ NO ₃ forming:	c) $Mg_3N_2+H_2O$	d) $Na(Comp.) + H_2O_2$
	a) Auric chloride	b) Aurous chloride	c) Chloroauric acid	d) Aurous nitrate
156.	Essential constituent of an a	malgam is:		
	a) Fe	b) An alkali metal	c) Silver	d) Mercury
157.	In blast furnace, iron oxide	is reduced by		
	a) Hot blast of air	b) Carbon monoxide	c) Carbon	d) Silica
158.	In M is element of actinoid	s series, the degree of comple	ex formation decreases in the	e order
	a) $M^{4+i>M^{3+i>MO_2^{3+i>M}O_2^{5+i}}i}i$		b) $MO_2^{+i>MO_2^{2+i>M^{3+i>M^{4+i}}}i}$	
	c) $M^{4+i>MO_2^{2+i>M^{3+i>MO_2^{2+i}}i}}$		d) $MO_2^{2+i>MO_2^{+i>M^{*i>M^{*ii}}}i}i$	
159.	Stainless steel has iron and			

;	a) Cr	b) Cu	c) Co	d) Zn
	The correct statement(s) am (i) All the $d \wedge f$ -block elements (ii) All $d \wedge f$ -block elements (iii) All $d \wedge f$ -block elements (i) only	ents are metals s form coloured ions	c) (ii) and (ii)	d) All of these
161.	Which of the following pair	will have effective magnetic	e moment equal?	
		b) Cr^{2+ii} and Fe^{2+ii}	c) Cr^{3+ii} and Mn^{2+ii}	d) V^{2+ii} and Sc^{3+ii}
	a) FeC l ₃	b) HgC l ₂	c) CaC l ₂	d) $MgCl_2$
	Aufbau law is not valid for:	3 2	Sucr ₂	- 1 vig C t ₂
;	a) Cu and Ar	b) Cu and Cr	c) Cr and Ar	d) Fe and Ag
164.	Which of the following state	ements is not true for Mohr's	s salt?	
	a) It decolourises <i>KMnO</i> ₄ b) It is a double salt	solution		
	c) Oxidation state of iron is	s +3		
	d) It is a primary standard			
165.	The $3d$ -block element that 6	exhibits maximum number o	f oxidation states is	
;	a) Sc	b) Ti	c) Mn	d) Zn
1	following ions will have larg	gest value of magnetic mome	Fe^{2+it} are 3, 4, 5 and 6 respect (μ) ?	-
			smelting process of copper ex	
;	$a) 2 FeS + 3O_2 \longrightarrow 2 FeO +$	+2 <i>SO</i> ₂↑	b) $Cu_2O + FeS \longrightarrow Cu_2S +$	·FeO
	c) $2Cu_2S+3O_2 \longrightarrow 2Cu_2$	2	d) $FeO+SiO_2 \longrightarrow FeSiO_3$	
	Which of the following is m	-	2 3	
;	a) V^{3+ii}	b) Ti ^{3+¿¿}	c) $Mn^{3+i\cdot i}$	d) Cr ³⁺ⁱⁱ
169.	The white anhydrous coppe	r sulphate on heating decomp	poses to give:	G.
	a) $CuSO_4.5H_2O$ NH_3 does not form comple		c) $CuO+SO_3$	d) <i>SO</i> ₃
	a) AgI	b) AgBr	c) AgCl	d) None of these
	Which sulphide has a yellow	C	, ,	,
	a) CuS	b) PbS	c) ZnS	d) CdS
		ot a property of transition ele	-	-
	a) Fixed valency	b) Catalytic property	c) Paramagnetism	d) Colour

173. Fe^{2+ii} ion can be distingu	ished by Fe^{3+ii} ion by:			
a) $BaCl_2$	b) $AgNO_3$	c) N H ₄ SCN	d) None of these	
174. Which one of the following	ng transition metal ions is diar	nagnetic?		
a) Co^{2+ii}	b) ¿2+¿¿	c) $Cu^{2+i\cdot i}$	d) Zn^{2+ii}	
175. Elements of group 11 and	12 are:			
a) Normal elements	b) Transition elements	c) Alkaline earth metals	d) Alkali metals	
176. Hard steel contains:				
a) No carbon	b) 0.6-1.5% carbon	c) 5% carbon	d) 0.5-0.2% carbon	
177. Iron, once dipped in conce	entrated H_2SO_4 , does not dis	splace copper from sulphate s	olution, because:	
a) It is less reactive than c	copper			
b) A layer of sulphate is deposited on it				
c) A layer of oxide is dep	osited on it			
d) None of the above				
178. Which shows a jump in se	econd ionization potential?			
a) Co	b) Ni	c) Zn	d) Cu	
179. Manganese steel contains:				
a) Fe + C + Mn	b) $Fe + C + Al$	c) Fe + Mn	d) Fe + Mn+ Cr	
180. Which sets are the transiti	on elements?			
a) Ti, Zr, Hf	b) V, Nb, Ta	c) Rh, Rb, Pd	d) All of these	
181. The extraction of nickel in	nvolves:			
a) The formation of \dot{c} (CO	$\left(O\right) _{4}$			
b) The decomposition of	$\mathcal{L}(CO)_4$			
c) The formation and the	rmal decomposition of $\frac{1}{6}[CO]$	4		
d) The formation and cata	alytic decomposition of $\dot{c}(CO)$	$\left(\cdot \right)_{4}$		
182. Cu_2O is:				
a) Black oxide of copper	b) Copper(II) oxide	c) Red oxide of copper	d) Cupric oxide	
183. Number of electrons trans			nt to give	
$Mn O_2$, $M n^{2+\delta, Mn[OH]_3 \delta}$ and 1	d $Mn O_4^{2-i\delta}$, are respectively b) 4, 3, 1 and 5	c) 1, 3, 4 and 5	d) 5, 4, 3 and 1	
184. When metallic copper cor				
chemically known as				
a) Copper carbonate-copp	•	b) Copper carbonate-coppe	•	
c) Copper sulphate-coppe	er sulphide	d) Copper sulphide-copper	carbonate	
185. German silver is an alloy	5. German silver is an alloy of:			

	a) Copper, zinc and nickel			
	b) Copper and silver			
	c) Copper and tin			
	d) Copper, zinc and silver			
186	. Incorrect statement is			
	a) Atomic radii of Zr and H	If are same because of lanth	anide contraction	
	b) Zn and Hg do not show	variable valency		
	c) Across the lanthanides so	eries, the basicity of lanthani	de hydroxides decreases	
	d) Protactinium is transurar	nic element		
187	is the best conductor o	of electricity among coinage	metals:	
	a) Ag	b) Cu	c) Au	d) All of these
188	$\cdot Cu^{2+ii}$ ions give precipitate	with $K_4 Fe(CN)_6$. The cold	our of precipitate is:	
	a) Blue	b) Green	c) Red	d) Brown
189	. Across the lanthanide series	s, the basicity of lanthanide h	nydroxides	
	a) Increases		b) Decreases	
	c) First increases and then	decreases	d) First decreases and then	increases
190	. A blue colouration is not ob	otained when:		
	a) Ammonium hydroxide d	lissolves in copper sulphate		
	b) Copper sulphate solutionc) Ferric chloride reacts wi			
191	d) Anhydrous white CuS Co. Useful lanthanoid member	₄ is dissolved in water		
	a) Cerium	b) Lanthanum	c) Neodymium	d) Lutetium
192	. Which of the following has	got incompletely filled f -sul	bshell?	
	a) Gadolinium	b) Lutetium	c) Lawrencium	d) Tantalum
193	. Silver nitrate is usually supp	plied in coloured bottles beca	ause it is:	
	a) Oxidized in air			
	b) Decomposed in sunlight			
	c) Explodes in sunlight			
	d) Reactive towards air in s	unlight		
194	. Mercury is purified by:			
	a) Solidifying			
	b) Distillation in vacuum			

	reatment with dil. HN	O_3		
	lectrolytic method			
195. Pt b	lack is			
	t metal mixed with Mr	_		
	elvety black power obt t metal coated with bla	tained by reduction of $PtCl_4$ ck colour	with glucose or sodium form	nate
d) N	one of the above			
196. 'Нус	lride gap' is referred to	which region of the Periodic	Table?	
a) C	broups 3, 4 and 5	b) Groups 5, 6 and 7	c) Groups 4, 5 and 6	d) Groups 7, 8 and 9
197. Whi	ch of the following ele	ctronic configuration represen	nts the maximum magnetic m	noment?
a) d	3	b) d^2	c) d ⁸	d) d^6
198. Vola	tile metals Zn, Cd and	Hg are purified by:		
a) L	iquation	b) Distillation	c) Cupellation	d) Electrolysis
199. Zinc	, cadmium and mercur	y are:		
a) <i>d</i>	-block elements	b) <i>p</i> -block elements	c) s-block elements	d) <i>f</i> -block elements
200. Sele	ct the incorrect stateme	ent about transition elements		
a) _T	he last electron enters i	in the d -orbital		
		between s and p -block ellement on element with smallest atom		
d) T	heir common oxidation	1 state is +3		
201. Whi	ch of the following typ	es of metals form the most e	fficient catalysts?	
a) A	lkali metals		b) Alkaline earth metals	
c) T	ransition metals		d) All of these	
202. In th	the reaction $SnCl_2 + 2H$	$IgCl_2 \longrightarrow A + SnCl_4$, A is:		
a) _F	Ig_2Cl_2	b) Hg	c) HgCl	d) $HgCl_3$
		nich combination of salt?		3
a) A	mmonium sulphate and	d potash.	b) Ammonium sulphate and	d ferrous sulphate.
c) A	mmonium sulphate and	d copper sulphate.	d) Ammonium sulphate and	d magnesium sulphate.
204. Max	imum oxidation state i	s presented by:		
	$CrO_2Cl_2 \wedge MnO_4^{-ii}$ chanides are	b) <i>MnO</i> ₂	c) $[Fe(CN)_6]^{3-i\wedge[Co(CN)_6]^{3-i\delta}}$	ն d) MnO
a) _{1.}	4 elements in the sixth	period (atomic no. = 90 to 10)3) that are filling $4f$ sub leve	el.
			o 103) that are filling $5f$ sub left	

	c) 14 elements in the sixth period (atomic no. = 58 to 71) that are filling $4f$ sub-level.				
	d) 14 elements in the sev	venth period (atomic no. = 58	3 to 71) that are filling $4f$ sub-	·level.	
206	. By annealing, steel				
	a) Becomes soft		b) Becomes liquid		
	c) Becomes hard and bri	ttle	d) Is covered with a thin	film of Fe_3O_4	
207	Which chromium compo	ound is widely used in tannin	g of leather?		
	a) Cr_2O_3	b) CrO_2Cl_2	c) CrC l ₃	d) $K_2 SO_4 \cdot Cr_2 (SO_4)_3 \cdot 24$	
208	Purple of cassius is			, ,,,	
	a) Copper solution	b) Platinum solution	c) Gold solution	d) Copper solution	
209	Which is obtained when	SO_2 is bubbled through a so	olution of $CuCl_2$?		
	a) Cu	b) Cu_2Cl_2	c) CuS O ₄	d) CuS	
210	Substance which do not	react with cold water but rea	ct with steam are:		
	$^{a)}$ C, Ca, SO_2	b) $_{\text{Fe, Al, }}Cl_{2}$	c) CO_2 , Na, Mg	d) C, Fe, Mg	
211	Which metal has the high	hest melting point?			
	a) Pt	b) W	c) Pd	d) Au	
212	. Choose the correct react	ion to prepare mercurous chl	oride (calomel)		
	a) $HgCl_2+Hg\Delta$	b) $Hg+Cl_2 \longrightarrow$	c) $HgCl_2+SnCl_2 \longrightarrow$	d) Both (a) and (c)	
213	Density, malleability and	ductility in coinage metals i	ncrease in the order:		
	a) Cu, Ag, Au	b) Au, Ag, Cu	c) Ag, Au, Cu	d) Ag, Cu, Au	
214	An acidified solution of	$KMn O_4$ oxidizes:			
	a) Sulphates	b) Sulphites	c) Nitrates	d) Ferric salts	
215	. Magnetite is:				
	a) $2Fe_2O_3.3H_2O$	b) FeS_2	c) Fe_3O_4	d) Fe_2O_3	
216	. Least paramagnetic prop	erty is shown by			
	a) Fe	b) Mn	c) Ni	d) Cu	
217	. Platinum, Palladium, irri	dium, etc., are called noble i	metals because:		
	a) Alfred Nobel discove	red them			
	b) They are inert toward	s many common reagents			
	c) They are shining, lust	rous and pleasing to look			
	d) They are found in nat	ive state			
218	. Silver obtained from arg	entiferous lead is purified by	:		
	a) Distillation	b) Froth floatation	c) Cupellation	d) Reaction with KCN	
219	. Paris green is:				

	a) $Cu(CH_3COO)_2$	b) $C u_3 (As O_3)_2.2 H_2 O$	^{c)} $Cu(CH_3COO)_2.3Cu(A_3COO)_2$	$A^{\mathbf{d}} Co (Al O_2)_2$
220	. Variable valency is shown b	у		
	a) Normal elements	b) Transition elements	c) Typical elements	d) None of these
221	. Which statement about Hg	is correct?		
	a) Hg is the only liquid met	al		
	b) $Hg^{2+i\cdot i}$ salts are more state) Hg forms no amalgam w			
	d) All of the above			
222	. Most abundant transition ele	ement is:		
	a) Fe	b) Sc	c) Os	d) None of these
223	. Which one of the following	acts as an oxidizing agent?		
	a) $N p^{4+ii}$	b) Sm^{2+ii}	c) Eu^{2+ii}	d) Yb^{2+ii}
224	. Which of the oxide of mang	ganese is amphoteric?		
	a) MnO ₂	b) Mn_2O_3	c) Mn_2O_7	d) _{MnO}
225	· Which one of the following	reactions will occur on heati	ng AgNO ₃ above its melting	point?
	a) $2 AgNO_3 \longrightarrow 2 Ag + 2 N$	$O_2 + O_2$	b) $2 AgNO_3 \longrightarrow 2 Ag + N_2$	+3 <i>O</i> ₂
	c) $2 AgNO_3 \longrightarrow 2 AgNO_2$	$+O_2$	d) $_2 AgNO_3 \longrightarrow 2 Ag + 2 N$	O+2O ₂
226	. Which of the following is p	aramagnetic?		
	a) $CuCl_2$	b) $CaCl_2$	c) $CdC l_2$	d) None of these
227	. Which does not give a preci	pitate with excess of NaOH?	•	
	a) $HgCl_2$	b) $HgNO_3$	c) FeSO ₄	d) $ZnSO_4$
228	. Thermite is a mixture of iro	on oxide and:		
	a) Zn powder	b) K metal	c) Na–Hg	d) Al powder
229	. Ruby copper is:			
	a) Cu_2O	b) $Cu(OH)_2$	c) CuCl ₂	d) Cu_2Cl_2
230	The actinoids showing +7 o	xidation state are		
	a) U, Np	b) Pu, Am	c) Np, Pu	d) Am, Cm
231	. Which match is incorrect?			
	a) Ammonia soda process -	- manufacture of potassium c	arbonate	
	b) Bessemer's process – ma	nufacture of steel		
	c) Mac Arthur and Forest p	rocess – extraction of silver		
	d) Dow's process – manufac	cture of phenol		

232. Carbon content of

	a) Steel is in between those	of cast iron and wrought iron	n.	
	b) Cast iron is in between the	nose of steel and wrought iron	n.	
	c) Wrought iron is in between	en those of steel and cast iron	n.	
	d) Steel is higher than that of	of pig iron.		
233	. Which of the following pair	r is coloured in aqueous solut	ion?	
	a) $Sc^{3+i,Co^{2+ii}i}$	b) $i^{2+i,Cu^{+i}i}$	c) $i^{2+i,T^{3+i}i}$	d) $Sc^{3+i,T^{3+ii}i}$
234	. $ZnSO_4$ on heating to $800^{\circ}C$	C gives:		
	a) $ZnO+SO_2+O_2$	b) $Zn+SO_2$	c) $ZnS+O_2$	d) $Zn + SO_2 + O_2$
235	. The ionization potential of	transition metals is than I	9-block elements.	
	a) Less	b) More	c) Equal	d) None of these
236	. Spiegeleisn is an alloy of			
	a) Fe, Co and Cr	b) Fe, Co and Mg	c) Fe, Mg and C	d) Fe, C and Mn
237	. Which of the following grow	up of transition metals is calle	ed coinage metals?	
	a) Cu, Ag, Au	b) Ru, Rh, Pd	c) Fe, CO, Ni	d) Os, Ir, Pt
238	. Cadmipone is a mixture of:			
	a) CdS and BaSO ₄	b) CaS O ₄ and BaS	c) CaS and ZnSO ₄	d) CaSO ₄ and ZnS
239	. Which one of the following	does not correctly represent	the correct order of the prop	erty indicated against it?
	a) Ti < V < Cr < Mn : incre	easing number of oxidation st	ates	
	b) $Ti^{3+i < V^{3+i < C^{2^{ni < 40^{3^{ni}}}}i}}i$: increase	sing magnetic moment		
	c) Ti < V < Cr < Mn : incre	easing melting points		
	d) Ti < V < Mn < Cr : incre	easing 2 nd ionization enthalpy		
240	. In chromite ore, the oxidation	on number of iron and chrom	nium are respectively.	
	a) +3,+2	b) +3,+6	c) +2,+6	d) +2,+3
241	. The compound which gives	oxygen on moderate heating	is:	
	a) Zinc oxide	b) Mercuric oxide	c) Aluminium oxide	d) Ferric oxide
242	. The form of iron having the	e highest carbon content is		
	a) Cast iron	b) Wrought iron	c) Stainless steel	d) Mild steel
243	. An ore of silver is:			
	a) Argentite	b) Stibnite	c) Haematite	d) Bauxite
244	. Roasting of HgS in air prod	uces:		
	a) HgO	b) $HgSO_3$	c) HgSO ₄	d) Hg
245	. Transuranic elements begin	s with		
	a) Np	b) Cm	c) Pu	d) U

210		eases due to dissolution leavi	white ppt. On addition of exce ng behind a white gelatinous	
	a) $Zn(OH)_2$	b) $Al(OH)_3$	c) $Mg(OH)_2$	d) $Ca(OH)_2$
247	. Which of the following is r	not correct about transition n	netals?	
	a) Their compounds are ge	nerally coloured.	b) They can form ionic or	covalent compounds.
	c) Their melting and boilin	g points are high.	d) They do not exhibit vari	able valency.
248	· Which one of the following	g does not decolourise an aci	dified $KMnO_4$ solution?	
	a) _{SO₂}	b) $FeCl_3$	c) H_2O_2	d) $FeSO_4$
249	. Which of the following pai	rs of elements cannot form a	an alloy?	
	a) Zn, Cu	b) Fe, Hg	c) Fe, C	d) Hg, Na
250	. Which is known as purple of	of Cassius?		
	a) Colloidal silver solution			
	b) Colloidal gold solution			
	c) Aqueous solution of soa	p		
	d) As_2S_3 colloidal solution	I.		
251	. Which of the following ion	ic species will impart colour	to an aqueous solution?	
	a) Cu^{+ii}	b) Zn^{2+ii}	c) Cr^{3+ii}	d) Ti^{4+ii}
252	The outer electronic config	uration of Gd (At. No 64) is		
	a) $4f^35d^56s^2$	b) $4f^85d^06s^2$	c) $4f^45d^46s^2$	d) $4f^75d^1s^2$
	11 54 55		-	· ·
253	Mercury is a liquid metal b	•		
253	•	ecause S-orbital.		
253	a) It has a completely filled b) It has a small atomic size	ecause S-orbital.	d overlapping of orbitals.	
253	a) It has a completely filled b) It has a small atomic size c) It has a completely filled	ecause S-orbital.		
	a) It has a completely filled b) It has a small atomic size c) It has a completely filled	ecause S-orbital. e. d -orbital that prevents $d-d$ d - orbital that causes $d-d$		
254	a) It has a completely filled b) It has a small atomic size c) It has a completely filled d) It has a completely filled d. Composition of azurite min a) $CuCO_3$. CuO	ecause S-orbital. d-orbital that prevents $d-d$ d- orbital that causes $d-d$ neral is b) $Cu(HCO_3)_2$. $Cu(OH)_2$		
254	a) It has a completely filled b) It has a small atomic size c) It has a completely filled d) It has a completely filled d. Composition of azurite min a) $CuCO_3$. CuO	ecause S-orbital. d-orbital that prevents $d-d$ d- orbital that causes $d-d$ neral is b) $Cu(HCO_3)_2$. $Cu(OH)_2$	c) 2 CuCO ₃ . Cu(OH) ₂	
254	Mercury is a liquid metal be a) It has a completely filled b) It has a small atomic size c It has a completely filled d It has a completely filled d . Composition of azurite minal $CuCO_3$. CuO . What would happen when a a) $Cr^{3+i\wedge Cr_2O_7^{2-iareformedi}}$.	ecause S-orbital. d-orbital that prevents $d-d$ d- orbital that causes $d-d$ neral is b) $Cu(HCO_3)_2$. $Cu(OH)_2$	c) 2 CuCO ₃ . Cu(OH) ₂	
254	Mercury is a liquid metal be a) It has a completely filled b) It has a small atomic size c It has a completely filled d) It has a completely filled composition of azurite min a) $CuCO_3$. CuO What would happen when a a) $Cr^{3+i\wedge Cr_2O_7^{2-iareformed i}}$ b) $Cr_2O_7^{2-i\wedge H_2O}$ are formed in the second control of the sec	ecause S-orbital. a. d -orbital that prevents $d-d$ orbital that causes $d-d$ neral is b) $Cu(HCO_3)_2$. $Cu(OH)_2$ a solution of potassium chron	c) 2 CuCO ₃ . Cu(OH) ₂	
254	Mercury is a liquid metal be a) It has a completely filled b) It has a small atomic size c It has a completely filled d It has a completely filled d . Composition of azurite minal $CuCO_3$. CuO . What would happen when a a) $Cr^{3+i\wedge Cr_2O_7^{2-iareformedi}}$.	ecause S-orbital. a. d -orbital that prevents $d-d$ orbital that causes $d-d$ neral is b) $Cu(HCO_3)_2$. $Cu(OH)_2$ a solution of potassium chron	c) 2 CuCO ₃ . Cu(OH) ₂	

	a) Zn acts as an oxidising ag	gent when react with HNO_3		
	b) HNO_3 is weaker acid th	$_{\rm lan}H_{_2}SO_{_4}$ and HCl		
	c) In electrochemical series	Zn is above hydrogen		
	d) NO_3^{-ii} ion is reduced in	preference to hydronium ion	1	
257.	Which of the following is a	lso known as "Fools gold"?		
	a) Wurtzite	b) Iron pyrites	c) Chalcocite	d) Silver glance
258.	When steam is passed over	heated iron, one of the produ	acts is:	
	a) FeO	b) Fe_2O_3	c) Fe_3O_4	d) $FeSO_4$
259.	In the electrolytic refining o	of zinc		
	a) Graphite is at the anode.		b) The impure metal is at the	ne cathode.
	c) The metal ion get reduce	ed at the anode.	d) Acidified zinc sulphate is	s the electrolyte.
260.	Which pair of lanthanides is	s used in glass, blowers, gogg	gles?	
	a) Np, Pu	b) Pu, Gd	c) Fm, Ho	d) Pr, Ho
261.	-	s forms a volatile compound	and this property is taken adv	vantage for its extraction.
	This metal is a) Iron	b) Nickel	c) Cobalt	d) Tungsten
262.	Pig iron is converted into st	eel by reducing the amount of	of carbon contained in it, in a	:
	a) Blast furnace	b) Pyrite burner	c) Bessemer's converter	d) None of these
263.	Which one of the following	forms a complex of coordin	nation number 2 with excess of	of CN^{-ii} ions?
	a) Cu ⁺ⁱⁱ	b) $A q^{+ii}$	c) _{/.} 2+ii	d) Fe^{2+ii}
264.	The radius of La^{3+ii} (Atom	5	06 Å. Which one of the follow	ving given values will be
	closest to the radius of Lu^{3}			
	(Atomic number of Lu=71) a) 1.60 Å	b) 1.40 Å	c) 1.06 Å	d) 0.85 Å
265.	When oxyhaemoglobin char	nges to deoxyhaemoglobin, I	Fe^{2+ii} ion changes from	
	a) Diamagnetic to paramag	netic	b) Paramagnetic to diamagn	netic
	c) Diamagnetic to ferromag	gnetic	d) Paramagnetic to ferroma	ignetic
266.	Which statement is incorrect	et?		
	a) Silver glance mainly con	tains silver sulphide		
	b) Gold is found in native s	tate		
	c) Zinc blende mainly conta	ains zinc chloride		
	d) Copper pyrites also conta	$ain Fe_2S_3$		
267.	Amongst $TiF_6^{2-i\iota}$, $CoF_6^{3-i\iota}$	$^{\iota}$, Cu_2Cl_2 and $NiCl_4^{2-\iota\iota}$		
		Cu=29,Ni=28) the colourless b) $TiF_6^{2-i\ell}$ and $CoF_6^{3-i\ell}$,	species are c) Cu_2Cl_2 and $NiCl_4^{2-ii}$	d) TiF_6^{2-ii} and Cu_2Cl_2

C	among the following series onfiguration is: $T i^{3+i,V^{2+i},C^{2^{3+i,Ms^{4+i}}i}} i$	of transition metal ions, the	one where all metal ions have	$e \ 3 d^2$ electronic
	$T t$ $T i^{+\dot{\iota}, V^{4+\dot{\iota}, Cr^{6i_{i,M}s^{7i_{\dot{\iota}}}}\dot{\iota}\dot{\iota}}\dot{\iota}$			
	$Ti^{4+\dot{\iota}, V^{3+\dot{\iota}, C^{2+\dot{\iota}, Me^{3+\dot{\iota}}\dot{\iota}}\dot{\iota}}\dot{\iota}}$			
) $Ti^{2+i,V^{3+i,Cr^{4+i,Mb^{5+i}i}}i}$			
269. C	Calomel (Hg_2Cl_2) on reacti	ion with ammonium hydroxid	de gives	
a]) _{HgO}		b) <i>Hg</i> ₂ <i>O</i>	
c)) NH ₂ — Hg — Hg — Cl		d) $HgNH_2Cl$	
270. S	teel resistant to acid is:			
a]) Carbon steel	b) Molybdenum steel	c) Stainless steel	d) Nickel steel
271. N	Ion-stoichiometric compou	ands are formed by:		
a]) Alkali metals			
b) Transition elements			
c)) Noble gases			
ď) More than one of the abo	ove elements		
272. d	-block elements generally	form:		
a]) Covalent hydrides	b) Metallic hydrides	c) Interstitial hydrides	d) Salt-like hydrides
273. T	The element present in red b	blood cells of human blood is	:	
a]) Fe	b) Ra	c) Co	d) All of these
274. T	The element which exhibit b	ooth vertical and horizontal si	imilarities are:	
a ²) Inert gas elements			
b) Representative elements			
c)) Rare elements			
ď) Transition elements			
275. W	Which occurs in nature in fr	ree state?		
a ²) Fe	b) Co	c) Ni	d) Pt
276. H	H_2S is passed in aqueous so	olution of to give a white	precipitate of ZnS.	
a ²) $ZnCl_2$	b) $Zn(NO_3)_2$	c) $(CH_3COO)_2Zn$	d) None of these
277. W	Which of the following are	d-block elements but not reg	arded as transition elements?	
a]) Cu, Ag, Au	b) Zn, Cd, Hg	c) Fe, Co, Ni	d) Ru, Rh, Pd
278. W	Which is the least soluble in	water?		
a ²) AgCl	b) Ag_2S	c) AgI	d) AgBr

279. Which of the following	g elements is alloyed with cop	per to form brass?	
a) Bismuth	b) Zinc	c) Lead	d) Antimony
280. When KMn O ₄ reacts	with acidified $FeSO_4$:		
a) _{Only} FeSO ₄ is oxi	dized		
b) _{Only} <i>KMn O</i> _{4is ox}			
•	and $KMnO_4$ is reduced		
d) None of the above	·		
281. The nitrate of which n	netal leaves metallic globule or	n heating strongly?	
a) $Cu(NO_3)_2$	b) $AgNO_3$	c) $NaNO_3$	d) $Pb(NO_3)_2$
282. Mond process is used	in the extraction of:	J	()/2
a) Co	b) Ni	c) Mo	d) Zn
283. Blue colour/precipitate	e will be obtained when $K_4[F]$	$e(CN)_6$] reacts with:	
a) Fe(II) ions	b) Cu(II) ions	c) Fe(III) ions	d) Cu(I) ions
284. Two of the constituent	ts of German silver are		
a) Ag + Cu	b) $Ag + Zn$	c) Cu + Zn	d) Cu + Sn
285. A metal is left exposed	d to air for sometime. It become	nes coated with basic green c	arbonate. The metal is:
a) K	b) Cu	c) Zn	d) Al
286. Zn and Cd do not show	w variable valency, because:		
a) They have only two	electrons in outermost subshe	lls	
b) Their d-subshells a	re complete		
c) Their d -subshells a			
d) They are relatively			
287. One of the important	uses of ferrous sulphate is in th	ie:	
a) Manufacture of blu	e-black ink		
b) Manufacture of cha	alks		
c) Preparation of hydrony	rogen sulphide		
d) Preparation of sulp	hur dioxide		
288. Blue vitriol is:			
a) $CuSO_4.7H_2O$	b) $ZnSO_4.7H_2O$	c) CuS O ₄ .5 H ₂ O	d) $FeSO_4.7H_2O$
289. Zn does not show vari		7 2	7 2
a) Complete d -subsherm	b) Inert pair effect	c) 4 s ² -subshell	d) None of these
•	g statement (s) is/are correct w	. 5	and ferric ions?
a) $_{F\rho}^{3+ii}$ given brow	n colour with ammonium thioc	evanate	

	b) Fe^{3+ii} gives brown of	colour with potassium ferricya	nide	
		our with potassium thiocyanate		
		cipitate with potassium ferricy		
291.	In vapour state $Cu(NO)$	$(u_3)_2$ and $Cu_2(CH_3COO)_4.2H_3$	I_2O exist as:	
	a) Dimer, monomer	b) Monomer, dimer	c) Monomer, monome	r d) Dimer, dimer
292.	Which oxide is least stal	ble at room temperature?		
	a) CuO	b) $_{Ag_{_{2}}O}$	c) ZnO	d) Sb_2O_3
293.	Metal Ore			
	a) Zinc	Calamine	b) Silver	Ilmenite
		Cassiterite	d) Tin	Azurite
294.		e scale from haematite(Fe_2O_3):	
	a) By reduction			
	b) By oxidation			
	c) By reduction followe	d by oxidation		
	d) By oxidation followe	d by reduction		
295.	Which oxide of mangan	ese is amphoteric?		
	a) MnO	b) MnO_2	c) $M n_2 O_7$	d) $M n_2 O_3$
296.	Which among the follow	ving metals does not dissolve in	n aqua regia?	
	a) Pt	b) Pd	c) Au	d) Ir
297.	The one which has lowe	st ox. no. of Hg:		
	a) $Hg(NO_2)_2$	b) $HgCl_2$	c) $Hg(NO_3)_2$	d) Hg_2Cl_2
298.	The fraction of chlorine	precipitated by AgNO ₃ solut	ion from $\left[Co(NH_3)_5Cl\right]$	Cl_2 is:
	a) 1/2	b) 2/3	c) 1/3	d) 1/4
299.	Which statement is corr	ect?		
	a) Cd rods are used in a	tomic reactors to slow down no	uclear reaction	
	b) Cd is a good absorbe	r of neutrons		
	c) CdS is used as pigme	nt		
	d) All of the above			
300.	Acidified solution of chi	romic acid on treatment with h	ydrogen peroxide yields	
	a) $CrO_5 + H_2O$		b) $H_2Cr_2O_7 + H_2O +$	$-O_2$
	c) $Cr_2O_3 + H_2O + O_2$		d) $CrO_3 + H_2O + O_2$	
301.	Substance used in glazin	g pottery is:		

	a) ZnO	b) $ZnCl_2$	c) Alum	d) Calome	
302.	The brown ring complex co	mpound is formulated as $[Fe]$	$e(H_2O)_5(NO)]SO_4$. The oxi	idation state of iron is:	
	a) +1	b) +2	c) +3	d) +4	
303.	For the four successive tran which of the following orde a) Cr > Mn > Co > Fe		and Co), the stability of +2 or	xidation state will be there in	
	b) Mn > Fe > Cr > Co				
	c) Fe > Mn > Co > Cr				
304.	d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = Which of the following met	25, Fe = 26, Co = 27) chods can't be used to prepare	e anhydrous zinc chloride?		
	a) Passing dry chlorine over heated zinc				
	b) Passing dry hydrogen chl	loride over heated zinc			
	c) Heating the crystal of Zrad) Distilling metallic zinc w				
305.	Prussian blue is due to form	nation of			
306.	[b) $Fe_2[Fe (CN)_6]$ ving ions, the colour is not du	.[d) $Fe_3[Fe(CN)_6]$	
	a) CrO_4^{2-ii}	b) $Cu(NH_3)^{2+i\delta}$	c) $Ti(H_2O)_6^{3+ii}$	d) CoF_6^{3-ii}	
307.	Which of the following state	(3/4	(2-)6	6	
	a) $La(OH)_3$ is less basic that	an $Lu(OH)_3$			
	b) In lanthanide series ionic c) Zn, Cd, Hg are colourless	radius of $L n^{3+i \cdot i}$ ions decreases and are diamagnetic	ase		
	d) Mn shows maximum oxid	dation state is +7			
308.	Which of the following lant	hanide is commonly used?			
	a) Lanthanum	b) Nobelium	c) Thorium	d) Cerium	
309.	Blueprint papers have a coa	ting of:			
	a) Mixture of potassium fer	rricyanide and ammonium fe	rric citrate or ferric oxalate		
	b) Sodium nitroprusside				
	c) Prussian blue				
	d) None of the above				
310.	Colour in transition metal co	ompounds is attributed to:			
	a) Small sized metal ions				
	b) Absorption of light in the	e UV region			

	Complete <i>ns</i> -subshell			
	d) $d-d$ transition			
311	. Which is not ferromagnetic	?		
	a) Fe	b) Co	c) Ni	d) V
312	. Various methods have been	employed for protecting iro	n from rusting. Which of the	following is incorrect?
	a) Zinc plating is more peri	manent than chrome plating		
	b) Zinc protects iron but ge	ets corroded itself		
	c) Tin plating is cheap but	unreliable		
	d) None of the above			
313	A clock spring is heated to cause the metal to become: a) Soft and ductile	a high temperature and then	suddenly plunged into cold w	vater. This treatment will
	b) More springy than before	e		
	c) Hard and brittle (case ha	rdening)		
	d) Strongly magnetic			
314	. Which has the lowest meltin	ng point?		
	a) Cs	b) Na	c) Hg	d) Sn
315	. The temperature of the slag	zone in the metallurgy of iro	on using blast furnace is	
	a) _{1200-1500°c}	b) _{1500-1600°} c	c) _{400-700°} c	d) _{800-1000°c}
316	•	ten Ag, which is evolved on	cooling and the silver particle	es are scattered; the
	phenomenon is known as: a) Silvering of mirror	b) Spitting of silver	c) Frosting of silver	d) Hairing of silver
317	. Which of the following stat	ements regarding copper salt	es is not true?	-
	a) Copper(I) Disproportion	ates into Cu and Cu(II) in aq	ueous solution	
	b) Copper(I) can be stabilist $Cu(CN)_2^{-i.i}$ c) Copper(I) oxide is red po		uble complex compounds suc	th as $CuCl_2^{-i.i}$ and
	d) Hydrated CuS O ₄ is Cu	$(H_2O)_4$ i SO_4 . H_2O		
318	. Which compound cannot be	, .		
	a) $Zn(OH)_2$	b) $Cd(OH)_2$	c) $Hg(OH)_2$	d) $HgCl_2$
319	The colour of solution obtain	ined by adding excess of KI is	in the solution of $HgCl_2$ is:	
	a) Orange	b) Brown	c) Red	d) Colourless
320	. Which of the following is the	he correct sequence of atomi	c weights of given elements?	
	a) Co>¿>Fe	b) Fe>Co>i	c) _{Fe>i} >Co	d) ¿>Co>Fe
321	. Which of the following is k	nown as lunar caustic when i	n the fused state?	

a) Silver nitrate	b) Silver sulphate	c) Silver chloride	d) Sodium sulphate
322. Silver chloride dissolv	es in a solution of ammonia bu	at not in water because:	
a) Ammonia is a bette	er solvent than water		
b) Silver ion forms a c	complex ion with ammonia		
c) Ammonia is a stron	nger base than water		
d) The dipole moment	t of water molecule is higher th	nan that of ammonia molec	ule
323. Which metal is ferrom	nagnetic?		
a) Cr	b) Fe	c) Zn	d) Al
324. Which of the followin	g is called white vitriol?		
a) $ZnCl_2$	b) $MgSO_4 \cdot 7H_2O$	c) $Al_2(SO_4)_3$	d) $ZnSO_4 \cdot 7H_2O$
325. The process of heating	g of steel to temperature much	below redness and then slo	wly cooling is called:
a) Annealing	b) Hardening	c) Tempering	d) Case hardening
326. "925 fine silver" mean	s an alloy of		
a) 7.5 % of Ag and 92	2.5 % Cu	b) 92.5 % Ag and 7.5	% Cu
c) 80% Ag and 20% C	Cu	d) 90% Ag and 10% (Cu
327. The compound used in	n preservation of wood is:		
a) NaCl	b) $HgCl_2$	c) $ZnCl_2$	d) $CaCl_2$
328. In photography we use	e		
a) AgI	b) $_{N\!H_3}$	^{c)} AgCl	d) $_{AgBr}$
329. Brass, bronze and Ger	man silver have one common i	metal. This is	
a) Zn	b) Fe	c) Al	d) Cu
330. Transition metal used	for making joins in jewellery i	is	
a) Zn	b) Cu	c) Ag	d) Cd
331. Which of the followin	g elements has the maximum f	first ionization potential?	
a) V	b) Ti	c) Mn	d) Cr
332. Fulminating gold is:			
a) CuFe S ₂			
b) FeS_2			
c) $Au(NH_2)=NH\lor$	AuN_2H_3		
d) $AuCl_3$			
333. The transition metal pr	resent in vitamin B_{12} is:		
a) Fe	b) Co	c) Ni	d) Na
334. The most convenient r	method to protect bottom of sh	ip made of iron is	

	a) Coating with red lead ox	ide	b) Connecting with 'Pb' blo	ck
	c) Connecting with 'Mg' blo	ock	d) White tin plating	
335.	The reaction $MnO_4^{-i+e \longrightarrow Mn}$	nO_4^{2-ii} takes place in:		
	a) Basic medium			
	b) Acidic medium			
	c) Neutral medium			
	d) Both acidic and basic me	edium		
336.	. Which metal is used in mak	ring cathode containers of dr	y cell?	
	a) Zn	b) Bi	c) Cr	d) Fe
337.	. Railway wagon axles are ma	ade by heating iron rods emb	edded in charcoal powder. The	nis process is known as
	a) Tempering	b) Case hardening	c) Sherardising	d) Annealing
338.	. The methods chiefly used for	or the extraction of lead and	tin from their ores are respec	tively
	a) Self reduction and carbo	n reduction	b) Self reduction and electron	olytic reduction
	c) carbon reduction and sel	f reduction	d) Cyanide process and carl	oon reduction
339.	The most stable oxidation s	tate of lanthanides is		
	a) +2	b) +4	c) 0	d) +3
340.	In context of the lanthanoid	ls, which of the following sta	tements is not correct?	
	a) There is a gradual decrea	ase in the radii of the membe	ers with increasing atomic nur	mber in the series.
	b) All the members exhibit	+3 oxidation state.		
	c) Because of similar prope	erties the separation of lantha	noids is not easy.	
	d) A vailability of $4f$ -electron	rons results in the formation	of compounds in +4 state for	all members of the series.
341.	The matte obtained in the e	xtraction of copper contains:		
	a) FeSiO ₂	b) $SiO_2 + FeS$	c) $FeS+Cu_2S$	d) $CuS + SiO_2 + FeO$
342.	The electronic configuration	n of actinoids can to be assig	ned with degree of certainty b	pecause of
	a) Overlapping of inner orb	pitals		
	b) Free movement of electr	ons over all the orbitals		
	c) Small energy differenced) None of the above	between $5f$ and $6d$ levels		
343.	In Mac Arthur forrest meth	od, silver is extracted from t	the solution of $Na[Ag(CN)_2]$	by the use of
	a) Fe	b) Mg	c) Cu	d) Zn
344.	Transition elements are colo	oured		
	a) Due to unpaired d -ellect	rons	b) Due to small size	
	c) Due to metallic nature		d) All of the above	

oxidation states?	e elements with the following ou	ter orbital configurations may	exhibit the largest number of			
a) $3d^2 4s^2$	b) $3d^34s^2$	c) $3d^54s^1$	d) $3d^54s^2$			
346. Lanthanide cont	raction occurs because					
a) f -orbitals are	incompletely filled					
b) f -orbital elec	trons are easily lost					
c) f -orbital do n	ot come out on the surface of ato	om and are buried inside				
d) f -orbital elec	tron are poor shielders of nuclear	charge				
347. Silver nitrate pro	oduces a black stain on skin due t	0:				
a) Its corrosive a	action					
b) Its reduction	to metallic silver					
c) Its strong red	c) Its strong reducing action					
d) The formatio	n of a complex compound					
348. The most stable	ion is:					
a) Mn^{2+ii}	b) Sc^{4+ii}	c) Fe ²⁺ⁱⁱ	d) _{Mn} ³+&			
349. The +3 ion of w	hich one of the following has hal	f-filled $4f$ sunshell?				
a) La	b) Lu	c) Gd	d) Ce			
350. Calomel may be	freed from traces of metallic me	ercury by washing with:				
a) $_{\rm dil.}$ HN O_3	b) dil. H_2SO_4	c) Water	d) Aqua regia			
351. One of the follow	wing is false for Hg:					
a) It can evolve	hydrogen from H_2S					
b) It is metal						
c) It has high sp	ecific heat					
d) It is less react	ive than H_2					
352. Brass is an alloy	of:					
a) Zn and Cu	b) Cu and Sn	c) Zn and Sn	d) Cu, Zn and sn			
353. Maximum paran	nagnetism in 3 <i>d</i> -series is shown l	oy:				
a) Mn	b) Co	c) Ni	d) Fe			
354. The metal used to	for making armoured steel for tar	nks and domestic safes is:				
a) Manganese	b) Aluminium	c) Lead	d) Chromium			
355. Which of the fo	llowing metals has been used in n	naking boats because it has re	esistance to corrosion by seawater?			
a) W	b) Cu	c) Ni	d) Ti			
356. Which are conta	ins both iron and copper?					

	a) Cuprite	b) Chalcocite	c) Chalcopyrite	d) Malachite
357	$V. K_2 C r_2 O_7 \Delta K_2 C r O_4 + O$	$_{2}^{+}X$. In the above reaction X	Y is	
	a) <i>CrO</i> ₃	b) Cr_2O_7	c) Cr_2O_3	d) <i>Cr O</i> ₅
358	B. Blood red colour solution i	s produced when ferric chlor	ide solution is treated with:	
	a) KCN	b) KSCN	c) KCNO	d) $K_3[Fe(CN)_6]$
359	The group of metals which	is known as ferrous metals i	s:	
	a) Fe, Co, Ni	b) Ru, Rh, Pd	c) Os, Ir, Pt	d) Cr, Mn, Cu
360	1. In the chemical reaction; $Ag_2O+H_2O+2e^{-it} \rightarrow 2$ a) Water is oxidised	$Ag + 2OH^{-ii}$ b) Electrons are reduced	c) Silver is oxidised	d) Silver is reduced
361	. Which is not correct for tra	ansition metals?		
	a) Variable oxidation state	s		
	b) Complex formation			
	c) Partially filled <i>d</i> -orbitals d) All the ions are colourle			
362	2. Magnetic moment of $[Ag]$	$(CN)_2^{-i}$ is zero. How many	unpaired electrons are there?	
	a) Zero	b) 4	c) 3	d) 1
363	3. The first man-made atom is	s:		
	a) Os	b) Na	c) Zr	d) Tc
364	Amongst the following, the	e lowest degree of paramagne	etism per mole of the compou	nd at 298 K will be shown by
	a) $MnSO_4.4H_2O$	b) $NiSO_4.6H_2O$	c) FeSO ₄ .6 H ₂ O	d) $CuSO_4.5H_2O$
365	Which compound does not	dissolve in hot, dil. HNO_3 ?		
	a) HgS	b) PbS	c) CuS	d) CdS
366	b. Heteropoly acids are formed	ed by:		
	a) Be	b) Fe	c) Mo	d) Cr
367	collected consists of	•	evolved are cooled, the substa	ance on sublimation thus
	a) Mercury and mercury (I		b) Mercury (II) chloride	
266	c) Mercury (I) and mercur	y (II) chloride	d) Mercury	
368	3. Steel contains:	1) 0.5 1.5% G) 0.12.0.25@G	D 1 200 C
266	a) 2.5–4.5%C	b) 0.5–1.5%C	c) 0.12–0.25%C	d) 1–2%C
369	-	hotography because they are:		
	a) Photosensitive			
	b) Soluble in hypo solution	l		

	c) Soluble in NH_4OH			
	d) Insoluble in acids			
370	•	following treatments would	ured with some minute drops restore it to its original condi	·
	b) Place it in cold dilute hy	drochloric acid		
	c) Heat it gently in a sand-l	oath		
	d) Heat it in chlorine			
371	. Oxidation state of Hg in an	nalgam is:		
	a) Zero	b) One	c) Two	d) Three
372	. In the manufacture of iron	from an iron oxide ore, limes	stone is added because it acts	as:
	a) An oxidizing agent	b) A reducing agent	c) A flux	d) A precipitating agent
373	The coordination number of	of copper in the complex form	med by adding excess of NH	I_3 to $CuSO_4$ solution is:
	a) 4	b) 2	c) 6	d) 5
374	. In order to refine "blister co	opper" it is melted in a furnac	ce and is stirred with green lo	gs of wood. The purpose is:
	a) To expel the dissolved gases in the blister copper			
	b) To bring the impurities t	to surfaces and oxidise them		
	c) To increase the carbon c	content of copper		
	d) To reduce the metallic o	xide impurities with hydroca	arbon gases liberated from the	e wood
375	. Permanent magnets are gen	erally made of alloys of		
	a) Mn	b) Co	c) Pb	d) Zn
376	. Which metal sulphide is no	t black?		
	a) NiS	b) CoS	c) CuS	d) ZnS
377	. The white solid that turns b	lack on addition of NH_4OI	H is:	
	a) AgCl	b) $PbCl_2$	c) Hg_2Cl_2	d) Hg_2I_2
378	3. Which of the following rep	resents ammonium molybda	te?	
	a) $(NH_4)_2 MoO_4$	b) $(NH_4)MoO_2$	c) $(NH_4)_2MoO_3$	d) $N H_4.12 Mo O_3$
379	. Gold and silver are called n	oble metals, because:		
	a) They do not normally re	act		
	b) Even acids cannot dissol	ve them		
	c) They are used in jewelle	ry		
	d) They are worn by noble	men		
380	The colour of $_{co}Sm^{3+ii}$ is y	vellow. The expected colour	of $c D v^{3+ii}$ is	

a) Yellow	b) Red	c) Blue	d) Green
381. Which is not an ore of iron	n?		
a) Haematite	b) Magnetite	c) Cassiterite	d) Limonite
382. On adding excess of NH_3	solution to CuSO ₄ solution	, the dark blue colour is due	to
a) $\left[Cu(NH_3)\right]^{+ii}$	b) $\left[Cu(NH_3)_4\right]^{2+ii}$	c) $\left[Cu(NH_3)_2\right]^{2+ii}$	d) None of these
383. Other forms of iron can be	L ' ' J	, ,-,	
a) Cast iron	b) Wrought iron	c) Pig iron	d) Steel
384. The variety of iron having	highest melting point is:		
a) Pig iron	b) Cast iron	c) Wrought iron	d) Steel
385. Most of the transition met	als are paramagnetic due to the	he presence of:	
a) Completed d -orbitals	b) Completed <i>f</i> -orbitals	c) Unpaired electrons	d) None of these
386. Spelter is:			
a) Impure Cu	b) Impure zinc	c) ZnO	d) CuO
387. Which of the following is	philosopher's wool?		
^{a)} ZnO	b) HgO	c) Ag_2O	d) CuO
388. The density of transition n	netalsin a series.		
a) Gradually increases	b) Gradually decreases	c) Remains constant	d) None of these
389. Silver containing lead as in	mpurity is purified by		
a) Poling	b) Cupellation	c) Lavigation	d) Distillation
390. Which of the following ele	ements is present as the impu	rity to the maximum extent i	n the pig iron?
a) Phosphorus	b) Manganese	c) Carbon	d) Silicon
391. The magnetic moment of	$Cu^{2+i\delta}$ ion is		
a) 2.73	b) Zero	c) 1.93	d) 1.73
392. Percentage of nickel in nic	ckel steel is:		
a) 1.5%	b) 3.5%	c) 6.5%	d) 8.5%
393. The formula of mercurous	s ion is:		
a) Hg^{+ii}	b) Hg_2^{+ii}	c) $Hg_2^{2+i\cdot i}$	d) None of these
394. Which pair consists only a	cidic oxides?		
$a) CrO_3, Mn_2O_7$	b) ZnO_2 , Al_2O_3	^{c)} CaO, ZnO	d) Na_2O , Al_2O_3
395. The extraction of which of	f the following metals involve	es bessemerization?	
a) Fe	b) Ag	c) Al	d) Cu
396. Nessler's reagent is:			
a) KHg I 4	b) $K_2 Hg I_4$	c) K_2 Hg I_4 + NaOH	d) $KHgI_4+NaOH$

397	97. Mac Arthur and Forest cyanide process is used in the extraction of:					
	a) Cu	b) Ag and Au	c) Fe	d) Cr		
398	. Which is the chief ore of co	opper?				
	a) Galena	b) Copper pyrites	c) Sphalerite	d) Siderite		
399	. Spiegeleisen is an alloy of:					
	a) Fe and Mn	b) Fe, Mn and C	c) Fe, Mn and Cr	d) Fe and Cr		
400	00. Among the following ions (hydrated), the colourless metal ion is					
	a) <i>Cu</i> +ii	b) <i>Cu</i> ^{2+&&}	c) Fe ²⁺ⁱⁱ	d) Mn^{2+ii}		
401	. Transition elements exhibit	positive oxidation states only	y. This is because of:			
	a) Their large size of the at	oms				
	b) Their electropositive nature					
	c) Their electronegative nature					
	d) Their paramagnetic natu	re				
402	. Transition metal with low o	xidation number will act as				
	a) An oxidizing agent	b) A base	c) An acid	d) None of these		
403	. The composition of bell me	etal is				
	a) Cu + Sn	b) Cu + Ni	c) Cu + Zn	d) Cu + Ag		
404	. The most correct statement	for transition metals is:				
	a) They possess low b.p.					
	b) They exhibit inert pair et	ffect				
	c) They exhibit variable ox	idation states				
	d) They do not possess cata	lytic property				
405		rolytic refining of copper, sor	me metals present as impurity	settle as 'anode mud'.		
	These are a) Fe and Ni	b) Ag and Au	c) Pb and Zn	d) Se and Ag		
406	_	_	nly magnetic moment of $\sqrt{15}$	Bohr Magnetons. The		
	number of unpaired electronal 2	ns in the compound are: b) 4	c) 5	d) 3		
407	. Lightest transition element	is:				
	a) Fe	b) Sc	c) Os	d) Co		
408	. $AuCl_3$ when heated in air g	ives:				
	a) Gold oxide	b) Gold perchlorate	c) Gold nitride	d) AuCl		
409	. White vitriol is:					
	a) $CuSO_4.5H_2O$	b) FeSO ₄ .7 H ₂ O	c) $ZnSO_4.7H_2O$	d) $NiSO_4.5H_2O$		

410	410. The metal which liberates hydrogen from hot NaOH solution is:				
	a) Zn	b) Cu	c) Ag	d) Fe	
411	· A yellow precipitate will be	e obtained if $AgNO_3$ is adde	ed to a solution of:		
	a) <i>KI O</i> ₃	b) KI	c) <i>CH I</i> ₃	d) CH_2I_2	
412	. Which form of iron has low	west percentage of carbon?			
	a) Cast iron				
	b) Wrought iron				
	c) Steel				
	d) All have same percentage				
413	413. The element that does not form a nitride is:				
	a) Al	b) Mg	c) Ag	d) Ca	
414	414. When dil. H_2SO_4 is added to aqueous solution of potassium chromate, yellow colour of solution turns to orange colour. It indicates a) Chromate ions are reduced.				
	b) Chromate ions are oxidised.				
	c) Mono centric complex is converted into dicentric complex.				
	d) Oxygen gets removed fr	rom chromate ions.			
415	. Copper exhibits only +2 ox	cidation state in its stable con	npounds. Why?		
	a) Copper is transition met	al in +2 state.			
	b) +2 state compounds of c	copper are formed by exother	rmic reactions.		
	c) Electron configuration o d) Copper gives coloured c	of copper in +2 state is $[Ar]$ 3 compounds in +2 state.	$d^9 4 s^0 .$		
416	. In blast furnace the highest	temperature is in:			
	a) Reduction zone	b) Slag zone	c) Combustion zone	d) Fusion zone	
417	. Anhydrous ferric chloride	is prepared by			
	a) Dissolving $Fe(OH)_3$ in	concentrated HCl.	b) Dissolving $Fe(OH)_3$ in	dilute <i>HCl</i> .	
	c) Passing dry HCl over he	eated iron scrap.	d) Passing dry Cl_2 gas over heated iron scrap.		
418	. Green vitriol is				
	a) $FeSO_4.7H_2O$	b) $ZnSO_4.7H_2O$	c) $CuSO_4.5H_2O$	d) $CaSO_4 . \frac{1}{2} H_2 O$	
419	. Photographic films or plate	s have as an essential ing	redient.	-	
	a) Silver bromide	b) Silver oxide	c) Silver thiosulphate	d) Silver nitrate	
420	20. During the extraction of gold the following reactions take place $Au + CN \xrightarrow{-\delta + H_2OO_2[X]\delta} [X] + Au$				

	a) $Au(CN)_2$ $-i \wedge [Zn(CN)_6]^{4-i\epsilon}$		b) $\left[A_{II}(CN)\right]^{2-i} \wedge \left[Zn(CN)_{4}\right]^{2-i}$;
	c) $\left[Au(CN)_{4}\right]^{3-i\wedge\left[Zn(CN)_{4}\right]^{2-i\delta}}$	i	b) $\left[Au(CN)_4\right]^{2-\iota \wedge \left[Zn(CN)_4\right]^{2-\iota \iota}}$ d) $\left[Au(CN)_2\right]^{-\iota \wedge \left[Zn(CN)_4\right]^{2-\iota \iota}}$	
421	Second series of transition ϵ			
	a) Yttrium	b) Chromium	c) Zinc	d) Scandium
422	The electronic configuration	n of chromium is		
	a) $[Ne]3 s^2 3 p^6 3 d^4 4 s^2$		b) $[Ne]3 s^2 3 p^6 3 d^5 4 s^1$	
	c) $[Ne]3 s^2 3 p^5 3 d^5 4 s^2$		d) $[Ne]3 s^2 3 p^5 3 d^6 4 s^1$	
423	· 1	ongs to the actinoid series of	•	
	a) Y	b) Ta	c) U	d) Lu
424	Which of the following state	ements is not true in regard to	o transition elements?	
	a) All their ions are colourle	ess		
	b) They show variable valer	ncy		
	c) They readily form compl	lex compounds		
	d) Their ions contain partial	lly filled d -elelctron levels		
425	. Sterling silver:			
	a) Is an alloy of Ag + Cu			
	b) Contains 80% Ag + 20%	Cu		
	c) Is used in jewellery			
	d) All of the above			
426	. The impurity of sulphur ma	kes the iron:		
	a) Fibrous	b) Red short	c) Cold short	d) Malleable
427	In Cu $(Z = 29)$:			
	a) 13 electrons have spin in	one direction and 16 electro	ns in other direction	
	b) 14 electrons have spin in	one direction and 15 electro	ns in other direction	
	c) All the electrons have sp	in in one direction		
	d) None of the above			
428	. Which of the following has	the maximum number of unj	paired d -elelments?	
	a) Fe^{2+ii}	b) <i>Cu</i> + <i>ii</i>	c) Zn	d) Ni^{3+ii}
429	Zn cannot displace the follo	wing ions from their aqueous	s solutions:	
	a) Ag^{+ii}	b) $Cu^{2+i\cdot i}$	c) $Fe^{2+i\hbar}$	d) Na^{+ii}
430	The lanthanide contraction	is responsible for the fact tha	t	
	a) Zr and Zn have the same	oxidation state	b) Zr and Hf have about the	same radius

	c) Zr and Nb have similar o	exidation state	d) Zr and Y have about the	same radius
431.	Prussian blue is formed who	en:		
	a) Ferrous sulphate reacts w	with $FeCl_3$		
	b) Ferric sulphate reacts wit			
	c) Ferrous ammonium sulpl			
	d) Ammonium sulphate rea			
	On the extraction of iron, the			
	a) CO	b) FeSiO ₃	c) MgSiO ₃	d) CaSiO ₃
433.	In the purification of copper	by electrolysis, which is inc	correct?	-
	a) Acidic solution of Cu(II)	sulphate is used		
	b) H_3O^{+ii} ion is discharged c) Anode is made of Impure			
	d) OH^{-ii} is discharged at a $HgCl_2$ is reduced to Hg_2 0			
	a) C H ₃ COOH	b) <i>CC l</i> ₄	c) HCOOH	d) NH_3
435.	Among the following the co	empound that is both paramage	gnetic and coloured is	
	a) $K_2Cr_2O_7$	b) $(NH_4)_2[TiCl_6]$	c) _{VOSO4}	d) $K_3[Cu(CN)_4]$
436.	Ferrous sulphate ($FeSO_4.7$	(H_2O) is known as		
	a) Vermillion	b) Glauber's salt	c) Green vitriol	d) Mohr's salt
437.	Identify the reaction that do	es not take place in a blast fu	arnace.	
	a) $CaCO_3 \longrightarrow CaO + CO_2$		b) $CaO + SiO_2 \longrightarrow CaSiO_3$	3
	c) $_2Fe_2O_3+3C\longrightarrow 4Fe+$	-3 <i>CO</i> ₂	d) $CO_2 + C \longrightarrow 2CO$	
438.	The number of incomplete	orbitals in inner transition ele	ements is:	
	a) 3	b) 4	c) 2	d) 1
	The final step in the metallum The reaction taking place is a) $Cu_2S+O_2 \longrightarrow 2Cu+SO_2$:	l from Cu pyrites takes place	in a Bessemer converter.
	b) $4Cu_2O+FeS\longrightarrow 8Cu$	+FeSO ₄		
	c) $2Cu_2O+Cu_2S\longrightarrow 6C$	u+SO ₂		
	d) $Cu_2S+2FeO \longrightarrow 2Cu$	O+2Fe+SO ₂		
440.	The smelting of iron in a bla	ast furnace involves the follo	wing processes:	
	a) Combustion	b) Reduction	c) Slag formation	d) All of these
441.	The flux used in the smelting	g of copper is:		

	a) Limestone	b) Magnesia	c) Silica	d) Coke	
442	The magnetic moment of a	salt containing $Zn^{2+i,i}$ ion is			
	a) 0	b) 1.87	c) 5.92	d) 2	
443	The common metal in brass	, bronze and german silver is	::		
	a) Cu	b) Mg	c) Al	d) Zn	
444	Which of the following is no	ot a member of 3 <i>d</i> -transition	n series?		
	a) _{Fe}	b) <i>Co</i>	c) _{Au}	d) <i>Cu</i>	
445	The formula of azurite is				
446	a) $CuCO_3$. $Cu(OH)_2$ The formula of haematite is	b) 2 CuCO ₃ . Cu(OH) ₂	c) $CuCO_3.2Cu(OH)_2$	d) $CuSO_4$. $Cu(OH)_2$	
	a) Fe_3O_4	b) Fe_2O_3	c) FeCO ₃	d) FeS_2	
447	. A substance which turns blu	ne when treated with water is	:		
	a) CuSO ₄	b) $CuSO_4.5H_2O$	c) $\cos O_4$	d) $Au_2(SO_4)_3$	
448	Which metal does not form	amalgam?			
	a) Fe	b) Cu	c) Ag	d) Zn	
449	Which of the following is co	orrect?			
	a) Calomel is mercuric chlo	oride			
	b) Calomel is widely used a	s an antiseptic			
	c) Calomel is used medicall	ly as purgative			
	d) Calomel is freely soluble	in water			
450	. The process used in obtaining	ng metallic silver from argen	tite is:		
	a) Fused mixture of Ag_2S and KCl is electrolysed				
	b) Ag_2S is reduced with C	О			
	c) Ag_2S is roasted to Ag_2	O which is reduced with C			
	d) Treating with NaCN solu	ntion followed by metal displ	acement with zinc		
451	Which one of the following	pairs of substances on reacti	ion will not evolve H_2 gas?		
	a) Iron and H_2SO_4 (aq) b) Iron and steam				
	c) Copper and HCl(g)				
	d) Sodium and ethyl alcoho	1			
452	. Which statement about grou	up 12 elements is wrong?			
	a) Zinc forms an alloy with	copper			
	b) $Zn_2^{2+i\delta}$ is stable				

c) Mercury gives c	compounds with +1 and +2 valence	eies		
d) Hg is a liquid el	ement			
453. Which of the follow	wing is coated over iron articles t	o protect iron from corrosic	on?	
a) Paint	b) Zinc metal	c) Tin metal	d) All of these	
454. The gas obtained b	y reactions of $K_4 Fe(CN)_6$ with	conc. H_2SO_4 is		
a) H_2S	b) <i>CO</i>	c) NO_2	d) CO_2	
455. Blister copper is				
a) Impure Cu		b) Cu alloy		
c) Pure Cu		d) Cu having 1% imp	urity	
456. Effective magnetic	moment of Sc^{3+ii} ion is			
a) 1.73	b) 0	c) 5.92	d) 2.83	
457. ZnS containing min	nute traces of MnS becomes:			
a) Deliquescent	b) Phosphorescent	c) Hygroscopic	d) None of these	
458. Platinum metal can	be dissolved in:			
a) Hot concentrate	d hydrochloric acid			
b) Hot concentrate	d nitric acid			
c) Hot dilute sulph	uric acid			
d) A mixture of hy	drochloric and nitric acids			
459. Ruthenium carbon	yl is:			
a) $Ru(CO)_4$	b) $Ru(CO)_5$	c) $Ru(CO)_8$	d) $Ru(CO)_6$	
460. Preparation of look	king mirrors involves the use of:			
a) Red lead				
b) Ammoniacal sil	ver nitrate			
c) Ammoniacal Ag	gNO_3 + $\dot{c}_{\rm red}$ lead			
d) Ammoniacal Ag	gNO_3 + \dot{c}_{red} lead + HCHO			
461. In the dichromate of	dianion:			
a) 4 Cr—O bonds	are equivalent			
b) 6 Cr—O bonds	are equivalent			
c) all Cr—O bonds	s are equivalent			
d) all Cr—O bonds	s are non-equivalent			
462. In the electrolytic p	purification of copper some gold i	is found in the:		
a) Cathode	b) Cathode mud	c) Anode mud	d) None of these	
463. Percentage of gold	in 21.6 carat gold is:			

	a) 21.6	b) 90	c) 10	d) 70
464	An explosion takes place w	hen conc. H_2SO_4 is added t	$_{0}$ KMn O_{4} . Which of the foll	owing is formed?
	a) $M n_2 O_7$	b) MnO_2	c) Mn SO ₄	d) $M n_2 O_3$
465	. Which statement is not corn	rect?		
	a) $Fe(CO)_5$ reacts with Br b) Carbonyl complexes are	C_2Cl_4 usually formed with transition	on metals	
	c) All transition metals form	n mono metallic carbonyls		
466		$(CO)_4$ to give Ni is used in thation state of the first transition	ne extraction of Ni by Mond's on series of elements?	s process
	a) +2	b) +6	c) +8	d) +4
467	. Which of the following is c	orrect?		
	a) Duralumin : Al+Cu+M	Ig+Ag	b) German silver: Cu+Zn+	+ <i>C</i>
	c) Gun metal: $Cu + Zn + Sn$		d) Solder: $Pb + Al$	
468. As percentage of carbon increase in iron, its hardness:				
	a) Decreases	b) Increases	c) Remains same	d) None of these
469	. Which oxide of Mn is acidi	c in nature?		
	a) MnO	b) $M n_2 O_7$	c) $M n_2 O_3$	d) MnO_2
470	· Corrosive sublimate (<i>HgC</i>	I_2) can be used to distinguish	h between	
	a) Formic acid and acetic a	cid	b) Acetaldehyde and butano	one
	c) Formaldehyde and propa	nnone	d) All of the above	
471	. KMnO ₄ in basic medium is	s used as		
	a) Strong oxidising agent		b) Strong reducing agent	
	c) Strong hydrogenating ag	ent	d) Poor reducing agent	
472	. d-block elements are arrang	ged inof periodic table.		
	a) Three series	b) Six series	c) Two series	d) Four series
473	. Which one of the following	metals is extracted by a carb	oon reduction process?	
	a) Copper	b) Iron	c) Aluminium	d) Magnesium
474	The spin only magnetic mor	ment of Mn^{4+ii} ion is nearly		
	a) 3 BM	b) 6 BM	c) 4 BM	d) 5 BM
475	. Coinage alloy has the comp	osition of:		
	a) Ag + Cu + Ni	b) $Au + Ag + Cu$	c) $Au + Zn + Ag$	d) Ag + Fe + Cu
476	. Which of the following is u	sed for sterilization of surgic	eal instruments?	
	a) $HgCl_2$	b) $ZnCl_2$	c) Hg_2Cl_2	d) ZnO

	a) Loss of electrons by Fe				
	b) Gain of electrons by Fe				
	c) Neither gain nor loss of electrons				
	d) Hydration of Fe				
478	A chocolate brown coloured solution containing:	d compound with acetic acid	and potassium ferrocyanide	is obtained from a salt	
	a) Cu	b) Cd	c) Sn	d) Hg	
479	. What is the oxidation state of	of iron in Mohr's salt?			
	a) +3	b) 0	c) +2	d) +1	
480	. Chrome green is				
	a) Chromium nitrate	b) Chromium sulphate	c) Chromium oxide	d) Chromium chloride	
481	. Which lanthanoid compoun	d is used as a most powerful	liquid lasers after dissolving	it in selenium oxychloride?	
	a) Cerium oxide	b) Neodymium oxide	c) Promethium sulphate	d) Ceric sulphate	
482	. A transition metal ion exists	s in its highest oxidation state	e. It is expected to behave as		
	a) A chelating agent		b) A central metal in a coor	dination compound	
	c) An oxidising agent		d) A reducing agent		
483	. For d -block elements the first	rst ionisation potential is of the	he order		
	a) Zn>Fe>Cu>Cr		b) $Sc = Ti < V = Cr$		
	c) Zn <cu<¿<co< td=""><td></td><td>d) $V > Cr > Mn > Fe$</td><td></td></cu<¿<co<>		d) $V > Cr > Mn > Fe$		
484	. Metallic bond is stronger in	transition metals than alkali	and alkaline earth metals bec	cause of:	
	a) More number of electron	ns including d -electrons			
	b) Large size of the atoms				
	c) Paramagnetism				
	d) Diamagnetism				
485	. Automobile engine blocks a	are made up of:			
	a) Stainless steel				
	b) Nickel-chromium steel				
	c) Cast iron				
	d) Wrought iron				
486	. Silver amalgam is used in:				
	a) Silvering of mirror	b) Filling of teeth	c) Both (a) and (b)	d) None of these	
487	. Which statement is not corr	rect?			

477. Rusting of iron in moist air involves:

	a) Potassium dichromate oxidises a secondary alcohol into a ketone					
	b) Potassium permanagnate is a weaker oxidising substance than potassium dichromate					
	c) Potassium permanganate is a stronger oxidizing substance					
	d) All of the above statement are correct					
488	. The pair of metals which di	issolve in NaOH(aq.) is:				
	a) Al, Cu	b) Zn, Cd	c) Pb, Sn	d) Zn, Al		
489	. The catalytic activity of the	transition metals and their c	ompounds is ascribed to their	•		
	a) Magnetic behavior					
	b) Chemical reactivity					
	c) Ability to adopt multiple	e oxidation states and their co	omplexing ability			
490	d) Unfilled <i>d</i> -orbitals Acidified potassium dichronium: a) Increases from +3 to +6	mate is treated with hydroger	n sulphide. In the reaction the	oxidation number of		
	b) Decreases from +6 to +3	3				
	c) Remains unchanged	,				
	d) Decreases from +6 to +2)				
491	· Zinc reacts with conc. H_2S					
	a) $ZnSO_4$	b) <i>ZnCO</i> ₃	c) Zn	d) None of these		
492	-	cal process carbon is used for	-	3		
	a) Na	b) Ag	c) Fe	d) Hg		
493		_		and X . This compound X can		
170			toning in photography. The c) Hg	_		
494	. Lithopone, a white pigment	t, consists of:				
	a) Al_2O_3 and $CaCO_3$	b) $_{\text{BaS}}$ and $PbSO_4$	c) ZnS and BaSO ₄	d) PbS and MgO		
495	. The aqueous solution conta	ining which one of the follow	ving ions will be colourless?			
	a) Ti^{3+ii}	b) $M n^{2+i \cdot i}$	c) Sc ³⁺ⁱⁱ	d) Fe^{2+ii}		
496	. Among the lanthanoids whi	ch was obtained by synthetic	methods?			
	a) Lu	b) Pm	c) Pr	d) Gd		
497	. The tendency to show comp	plex formation is maximum i	n:			
498	a) $_{\text{S-block elements}}$. 5 f -level is successively filled	b) <i>p</i> -block elements	c) d -block elements	d) f -block elements		
	a) Lanthanoids	b) Actinoids	c) Rare gases	d) Transition elements		

499	499. Potassium manganate $(K \& \& 2 Mn O_4) \&$ is formed when:			
	a) Cl_2 is passed into an aqu	ueous KMnO ₄ solution		
	b) MnO_2 is fused with KO	H in air		
	c) Formaldehyde reacts wit	th KMnO ₄ in presence of str	ong alkali	
	d) KMn O ₄ reacts with con	centrated H_2SO_4		
500	The sandstone in some iron	ores is removed by:		
	a) Carbon filters	b) Compressed air	c) Limestone	d) Sulphuric acid
501	. Copper sulphate solution re	eacts with KCN and gives		
	a) $K_3[Cu(CN)_4]$	b) CuCN	c) $Cu(CN)_2$	d) $K_2[Cu(CN)_4]$
502	. Which of the following ion:	s has the highest magnetic me	oment?	
	a) $T i^{3+i}$	b) Sc^{3+ii}	c) $M n^{2+i \cdot i}$	d) Zn^{2+ii}
503	· The colour of Mohr's salt, (NH_4 ₂ $SO_4Fe(SO_4).6H_2$	O is:	
	a) White	b) Green	c) Violet	d) Blue
504	• Of the ions $Zn^{2+i,Ni^{2+il}i}$ and	$d C r^{3+ii}$, (atomic number of	Zn=30, Ni=28, Cr=24)	
	a) All three are coloured			
	b) All three are colourless			
	c) Only Zn^{2+i} is colourles	as and $N i^{2+ii}$ and $C r^{3+ii}$ are	coloured	
	d) Only $N i^{2+ii}$ is coloured	and Zn^{2+ii} and Cr^{3+ii} are of	colourless	
505	. A reagent that can separate	Fe from Zn is:		
	a) NaOH	b) HCl	c) H_2S	d) $NaNO_2$
506	$.$ $KMnO_4$ in basic medium is	s reduced to		
	a) $K_2 MnO_4$	b) MnO_2	c) $Mn(OH)_2$	d) Mn^{2+ii}
507	. Which of the following eler	ments does not belong to the	first transition series?	
	a) Ag	b) Fe	c) Cu	d) V
508	Transition metals form com	nplexes in their zero oxidation	n state. The example of the a	bove fact is:
	a) $M n_2(CO)_{10}$	b) $\left[Cu(NH_3)_4\right]Cl_2$	c) $Zn_2[Fe(CN)_6]$	d) $[Ag(NH_3)_2]OH$
509	. Which one of the following	g properties would you not ex	pect copper to exhibit?	
	a) Malleability			
	b) High thermal conductivi	ty		
	c) Low electrical conductiv	vity		
	d) Ductility			
510	. Calomel is:			
	a) Hg_2Cl_2 and Hg	b) $HgCl_2$	c) Hg+HgCl ₂	d) Hg_2Cl_2

511.	Which of the following read	ctions represents developing	in photography?	
	a) $AgNO_3 + NaBr \longrightarrow Ag$	$Br + NaNO_3$		
	b) $AgBr + 2 NH_3 \longrightarrow [Ag$	$(NH_3)_2$ Br		
	c) $AgBr + 2Na_2S_2O_3 \longrightarrow$	$Na_3[Ag(S_2O_3)_2]+NaBr$		
512.	d) $C_6H_4(OH)_2 + 2AgBr^x$ Extraction for zinc from zinc	$\longrightarrow C_6H_4O_2+2HBr+2A_0$ nc blende is achieved by	g	
	a) Electrolytic reduction			
	b) Roasting followed by red	duction with carbon		
	c) Roasting followed by red	duction with another metal		
	d) Roasting followed by sel	f reduction		
513.	Chromium compound used	in tanning of leather is:		
	a) Cr_2O_3	b) CrO_2Cl_2	c) CrC l ₃	d) $K_2SO_4.Cr_2(SO_4)_3.24$
514.	$FeSO_4.(NH_4)_2SO_4.6H_2$	O is called		
	a) Green salt	b) Glauber's salt	c) Mohr's salt	d) Alum
515.	515. When MnO_2 is fused with KOH, a coloured compound formed, the product and its colour is			
	a) $K_2 MnO_4$, i colour	b) $KMnO_4$, $\stackrel{\iota}{\iota}$	c) Mn_2O_3 , brown	d) Mn_3O_4 , \ddot{c}
516.	Anhydrous CuC l ₂ and Cul	Br_2 exist as:		
	a) Monomer	b) Dimer	c) Trimer	d) polymer
517.	From a solution of CuS O ₄ .	, the metal used to recover co	opper is:	
	a) Na	b) Ag	c) Hg	d) Fe
518.	When MnO_4 is fused with	KOH, a coloured compound	is formed. The product and	its colour is
	a) $K_2 MnO_4$, purple colour	r	b) $M n_2 O_3$, brown	
	c) $M n_2 O_4$, black		d) $KMn O_4$, purple	
519.	incorrect?	ortant member of the lanthanistate of cerium are +3 and +4	ides. Which of the following 1.	statements about cerium is
	b) The +3 oxidation state of	f cerium is more stable than	the +4 oxidation state.	
	c) The +4 oxidation state of	f cerium is not known in solu	utions.	
	d) Cerium (IV) acts as an o	xidizing agent.		
520.	Which metal is used for fila	ament of electric bulb?		
	a) Pt	b) Fe	c) W	d) Cu
521.	Zinc does not show variable	e valency like d -block eleme	nts because	
	a) It is low melting			

	d-orbital is complete			
	c) It is a soft metal			
=0.0	d) Two electrons are presen			
522	. In haemoglobin the iron sh			
	a) +2	b) +3	c) +1	d) +4
523	3. The term 'fool's gold' is use	ed for a mineral which shines	like gold. It is:	
	a) Iron pyrite	b) Copper glance	c) Cinnabar	d) Cadmium sulphide
524	An aqueous solution of Cu	SO_4 and NH_4OH gives a constant	leep blue complex of:	
	a) Cuprammonium sulphat	e		
	b) Cuprammonium hydrox	ide		
	c) Sodium hexametaphosp	hate		
	d) None of the above			
525	Blow holes of steel are rem	oved by adding:		
	a) C	b) Ni	c) Sand	d) Spiegeleisen
526	A mixture of TiO_2 and Ba	SO ₄ is called		
	a) Titanox	b) Lithopone	c) White pigment	d) None of these
527	. Which of the following has	s highest b.p.?		
	a) Cr	b) Ti	c) Fe	d) Co
528	B. Which group of metals is k	nown as Pt-metals?		
	a) Fe, Co, Ni	b) Ag, Au, Cu	c) Zn, Cd, Hg	d) Ru, Rh, Pd
529	The compound $ZnFe_2O_4$	is		
	a) A normal spinel compou	and	b) Interstitial compound	
	c) Coordination compound	I	d) Double salt compound	
530	. Iron exhibits +2 and +3 oxi	dation states. Which of the f	ollowing statements about iro	on is incorrect?
	a) Ferrous compounds are	relatively more ionic than the	e corresponding ferric compo	ounds.
	b) Ferrous compounds are	less volatile than the correspo	onding ferric compounds.	
	c) Ferrous compounds are	more easily hydrolysed than	the corresponding ferric com	pounds.
	d) Ferrous oxide is more ba	asic in nature than the ferric	oxide.	
531	. Iron is manufactured from	the ore		
	a) Haematite	b) Cryolite	c) Bauxite	d) Chalcopyrite
532	2. After partial roasting the su	alphide ore of copper is reduce	ced by:	
	a) Reduction by carbon	b) Electrolysis	c) Self reduction	d) Cyanide process
533	3. The bonds presents in the s	tructure of dichromate ion ar	re.	

Four equivalent $Cr - O$ bonds only.					
b) Six equivalent Cr—C	b) Six equivalent $Cr - O$ bonds and one $O - O$ bond.				
c) Six equivalent Cr — C	bonds and one $Cr - Cr$ both	nd.			
d) Six equivalent $Cr - C$	bonds and one $Cr - O - C$	Er bond.			
534. $Cu^{2+i i}$ ions would be red	uced to cuprous ion if their so	plutions are mixed with an aq	ueous:		
a) KI solution	b) KCl solution	c) K_2CO_3 solution	d) $K_2 SO_4$ solution		
535. Which one of the following	ng elements constitutes a maj	or impurity in pig iron?			
a) Silicon	b) Oxygen	c) Sulphur	d) Graphite		
536. Percentage of silver in Go	erman silver is:				
a) 1.5%	b) 2.5%	c) 10%	d) Zero percent		
537. Oxford process is used in	extraction of:				
a) Fe	b) Co	c) Pt	d) Ni		
538. One of the product forme	ed when $K_2 C r_2 O_7$ reacts with	th conc H_2SO_4 in cold is			
a) CrO_3	b) $Cr_2(SO_4)_3$	c) Cr_2O_3	d) CrO_4Cl_2		
539. Addition of $K_4[Fe(CN)]$	$_{6}$] solution to $FeC l_{3}$ solution	gives:			
a) Ferro-ferricyanide	b) Ferri – ferrocyanide	c) Ferri-ferricyanide	d) None of these		
540. The reaction between cop	pper and hot concentrated sulp	phuric acid produces:			
a) <i>SO</i> ₂	b) <i>SO</i> ₃	c) H_2	d) Cu^{+i} ions		
541. Red hot steel rod on sudd	enly immersing in water beco	omes:			
a) Soft and malleable	b) Hard and brittle	c) Tough and ductile	d) Fibrous		
542. Which of the following is	s obtained when auric chloride	e reacts with sodium chloride	?		
a) Na[AuCl]	b) $Na[AuCl_2]$	c) $Na[AuCl_3]$	d) $Na[AuCl_4]$		
543. Lanthanum is grouped wi	th f -block elements because				
a) It has partially filled f -	orbitals				
b) It has both partially fill	d ed f and d -orbitals				
	nanum are very similar to the	elements of 4 f-block			
d) It is just before Ce in t	the Periodic Table				
544. The point of dissimilarity	between lanthanides and acti	nides is			
a) Three outermost shells	are partially filled	b) They show oxidation st	rate of +3 (common)		
c) They are called inner t	ransition elements	d) They are radioactive in	nature		
545. Which of the following is	s called white vitriol?				
a) $ZnCl_2$	b) $MgSO_4.7H_2O$	c) $A l_2 (SO_4)_3$	d) $ZnSO_4.7H_2O$		
546. Which metal is purified b	v Pattinson's process?	, ,,,			

	a) Ag	b) Au	c) Fe	d) Sb
547	. Which of the following have	e highest melting points?		
	a) <i>p</i> -block elements	b) s- block elements	c) <i>d</i> -block elements	d) None of the above
548	Ferric oxide in furnace is re	educed by:		
	a) C	b) H_2	c) CO	d) CO_2
549	. Which statement is incorrec	et?		
	a) Iron belongs to 3 <i>d</i> -transi	tion series of the periodic tab	ple	
	b) Iron belongs to <i>f</i> -block of	of the periodic table		
	c) Iron belongs to first trans	ition series		
	d) Iron belongs to group VI	II of the periodic table		
550	. In India, iron is obtained fro	om the ore:		
	a) Cassiterite	b) Azurite	c) Haematite	d) Cryolite
551	The Fe^{2+ii} ion is:			
	a) Blue	b) Light green	c) Very dark green	d) Yellow
552	. Which ion in aqueous medi	um has orange colour?		
	a) $Cr_2O_7^{2-il}$	b) <i>Cr</i> ³⁺ⁱⁱ	c) $MnO_4^{-i \cdot i}$	d) MnO_4^{2-ii}
553	. The compound widely used	in making reference electroc	le is:	
	a) $ZnCl_2$	b) <i>CuS O</i> ₄	c) Hg_2Cl_2	d) $HgCl_2$
554	. Which statement is incorrec	et about transition elements		
	a) All elements form compl	lexes		
	b) All are paramagnetic			
	c) All show variable valence	y		
	d) All are not coloured ions			
555	. The magnetic moment of a	transition metal ion is 3.87 B	M. The number of unpaired	electrons present in it is
	a) 2	b) 3	c) 4	d) 5
556	. Which of the following is a	lanthanoid?		
	a) Ta	b) Rh	c) Th	d) Lu
557	. The flux used in soldering is	: :		
	a) HgO	b) ZnO	c) CdO	d) None of these
558	Ferric sulphate on heating g	ives:		
	a) $SO_2 \wedge SO_3$	b) SO_2 only	c) SO_3 only	d) S only
559	. The raw materials fed into t	- *	•	
	a) $_{\text{FeO}}$, $CaCO_3$ and coke			

b) Fe_2O_3 , CaO and	coke		
c) Fe_2O_3 , $CaCO_3$			
d) Fe_3O_4 , $Ca OH$	₂ and coke		
560. Which statement abo	out corrosive sublimate is incor	rect?	
a) It is prepared by h	eating mercury in chlorine		
b) It reduces stannic	chloride		
c) It oxidizes stannou	us chloride		
d) It sublimes readily	1		
561. Chalcopyrites is an or	re of		
a) Gallium	b) Copper	c) Calcium	d) Magnesium
562. Siderite is an ore of			
a) Cu	b) Al	c) Ag	d) Fe
563. Which one of the following	lowing metals, is extracted on s	smelting of its ore in blast fu	rnace?
a) Iron	b) Sodium	c) Potassium	d) Magnesium
564. Chromium is used in	making:		
a) Bronze	b) Brass	c) Stainless steel	d) Electrodes
565. Which lanthanide con	mpound is used as a pigment?		
a) CeO_2	b) $Ce(OH)_3$	c) $Lu(OH)_3$	d) $Tb(OH)_3$
566. In the extraction of Z	In, the formation of blue flame	is due to the burning of:	
a) ZnO	b) C	c) Zn	d) CO
567. Among the following	g the coloured compound is		
a) CuCl	b) $K_3[Cu(CN)_4]$	c) CuF_2	d) $[Cu(CH_3CN)_4]BF_4$
568. What is the correct of	rder of spin only magnetic mor	ment (in BM) of $Mn^{2+i\delta}$, Cr	$V^{2+i\ell}$ and $V^{2+i\ell}$?
a) $Mn^{2+i>ii} V^{2+i>ii}$	$Cr^{2+i\lambda} \stackrel{b)}{V} V^{2+i>i\lambda} Cr^{2+i>i\lambda} M$	$(n^{2+ii})^{c}Mn^{2+ii}>Cr^{2+i>ii}V$	V^{2+ii} d) $Cr^{2+i>ii}$ $V^{2+i>ii}$ Mn^{2+ii}
569. Stainless steel contain	ns:		
a) 50%Cr	b) 2.5%Cr	c) 14%Cr	d) 2%Cr
570. KMnO ₄ (acidic/alka	line) is not decolourized by		
a) Mohr salt	b) Oxalic acid	c) Benzene	d) Propene
571. A solution of $Cr(N)$	O_3 ₂ slowly turns green when co	oncentrated HCl is added to	it. It is due to the formation of:
a) $CrCl_3$	b) Cr_2O_3	c) CrO_4^{2-ii}	d) Chloro complexes
572. Which is not an ore of	of gold?		
a) Syvanite	b) Calaverite	c) Covellite	d) Bismuth aurite
573. Silver iodide is used to	to produce artificial rain becaus	se:	

	b) Its structure is ice-like				
	c) It can easily be sprayed at high altitude				
	d) It is insoluble in rain wa	ter			
574	The chemical formula of a	zurite is:			
	a) $Cu(OH)_2.2 CuCO_3$	b) $CuSO_4.3Cu(OH)_2$	c) $Cu(OH)_2$. $CuCO_3$	d) $CuFeS_2$	
575	The magnetic moment (in)	BM) of $Zn^{2+i,i}$ ion according	to spin-only formula is		
	a) Zero	b) 1.73	c) 2.84	d) 3.87	
576	. Zinc reacts with very dilute	e nitric acid to produce:			
	a) NO	b) NH_4NO_3	c) <i>NO</i> ₂	d) H_2	
577	. Which of the following ma	y be colourless?			
	a) Fe^{3+ii}	b) C r ³⁺ⁱⁱ	c) $Cu^{2+i\delta}$	d) Cu^{+ii}	
578	Fe ore is concentrated by:				
	a) Magnetic treatment	b) Froth floatation	c) Electrolysis	d) Roasting	
579	. In the extraction of copper	, the metal formed in the Be	ssemer's converter is due to the	he reaction:	
	a) $Cu_2S \longrightarrow 2Cu+S$				
	b) $2Cu_2O \longrightarrow 4Cu + O_2$				
	c) $2Cu_2S+3O_2 \longrightarrow 2Cu$	a_2O+2SO_2			
	d) $2Cu_2O+Cu_2S\longrightarrow 6C$	$Cu+SO_2$			
580	In the case of d -block elem	nents:			
	a) Outermost and penultim	nate shells are incomplete			
	b) Both penultimate and pr	repenultimate shells are incom	mplete		
	c) Outermost shell is incom	mplete			
	d) Innermost shell is incom	plete			
581	. In electrorefining of copper	r, some gold is deposited as			
	a) Cathode	b) Electrode	c) Cathode mud	d) Anode mud	
582	. What effect is noticed on si	haking dilute sulphuric acid	with a small quantity of anhy	drous copper sulphate?	
	a) The white solid dissolves to form a colourless solution				
	b) The white solid dissolve	es to form a green solution			
	c) The white solid turns blu	ue but does not dissolve			
	d) The white solid dissolve	es to form a blue solution			
583	. A magnetic moment of 1.7	3 BM will be shown by one	among the following compou	ınds:	
	a) $\left[Cu(NH_3)_4\right]^{2+ii}$	b) $\left[\frac{\iota}{\iota} (CN)_4 \right]^{2-\iota\iota}$	c) TiC l ₄	$^{ m d)} [{\it CoC} l_6]^{4-ii}$	

a) It is easily prepared

504	504. In general, the transition elements exhibit their highest oxidation states in their compounds with elements like:					
	a) C	b) S	c) S and P	d) F and O		
585	. Silver, mercury and lead ha	ve been placed in same group	of qualitative analysis, beca	use they form:		
	a) Carbonates soluble in dilute HNO_3 b) Nitrates					
	c) Insoluble chlorides					
	d) Same type of coloured co	ompounds				
586	$K_2Cr_2O_7$ on strong heating	g gives:				
	a) K_2CrO_4	b) Cr_2O_3	c) O ₂	d) All of these		
587	$.$ KMn O_4 on heating above 2	200°C gives:				
	a) $K_2 MnO_3 + O_2 + MnO_2$	b) $K_2 Mn O_4 + Mn O_2 + O_2$	c) $MnO_2 + O_2$	d) None of the above		
588	The number of ions formed	on dissolving one molecule	of $FeSO_4(NH_4)_2SO_4.6H$	₂ O is:		
	a) 4	b) 5	c) 3	d) 6		
589	• Acidic nature of $Zn(OH)_2$	is shown from the formation	of the following compound	with the formula:		
	a) $N a_2 Zn O_2$	b) Na_2CO_3	c) $NaZnO_2$	d) None of these		
590	The reason for the stability	of $Gd^{3+i\cdot i}$ ion is				
	a) Half-filled $4f$ sunshell					
	b) Completely filled $4f$ sub	oshell				
	c) Possesses the general ele	ctronic configuration of noble	e gases			
	d) Empty $4f$ subshell					
591	. Rio Tinto process is used fo	or extraction of:				
	a) Cu	b) Ag	c) Al	d) Au		
592	. An alloy of Co, Ni and Fe u	ised in permanent magnets is:	:			
	a) Invar	b) Nichrome	c) Alnico	d) None of these		
593	Bordeaux mixture consists of	of lime and:				
	a) $FeSO_4$	b) <i>CuS O</i> ₄	c) $Cu(NO_3)_2$	d) $AgNO_3$		
594	594. Larger number of oxidation states are exhibited by the actinoides than those by the lanthanoides, the main reason being a) $4f$ - orbitals more diffused than the $5f$ -orbitals					
		between $5f$ and $6d$ than betw	ween $4f$ and $5d$ -orbitals			
	c) More energy difference b	between $5f$ and $6d$ than betw	ween $4f$ and $5d$ -orbitals.			
	d) More reactive nature of t	the actinoides than the lantha	noides			
595	595. F_2 is formed by reacting $K_2 MnF_6$ with					

a)	MnF_4	b) SbF_5	c) $KSbF_6$	d) MnF_3		
596. A 1	26. A reducing in atomic size with increase in atomic number is a characteristic of elements of					
a)	f-block	b) d-block	c) High atomic masses	d) Radioactive series		
597. WI	hich method is based on d	istribution law?				
a)	Mond's process	b) Parkes process	c) Cupellation process	d) Poling process		
598. Scl	hweitzer's reagent used fo	r dissolving cellulose in the n	nanufacture of artificial silk	is:		
a)	$CuSO_4.5H_2O$	b) CuI	c) $Cu(NH_3)_4SO_4$	d) $Cu(CH_3COO)_2$. $Cu(OI$		
599. Fo	rmation of coloured ions l	by transition metals signifies				
a)	Absorption of light from	UV range				
b)	Emission of light					
	Presence of unpaired elec Complimentary colours to					
	-	le affected by temperature ch	nanges, contains 36%:			
	•	b) Ni	c) Cu	d) A1		
601. WI	hich of the following pair magnetic moment?	of transition metal ions, have	-			
	$Ti^{2+\iota \wedge V^{2+\iota\iota}\iota}$ hich of the following is no	10	Cr ²⁺⁶ / _C r	d) $Co^{2+i\wedge T^{2+i}i}$		
	_		c) Erbium	d) Americium		
		ated with BaO at 1100°C given		a) / interioran		
	_		_	d) n=0 + 7=		
	$BaZnO_2$ ass is an alloy of Cu with	b) $Ba + Zn O_2$	c) BaCdO ₂	d) BaO_2+Zn		
a)		b) Sn	c) Ag	d) Zn		
-	tinides and lanthanides re		-,)		
	Formation of complexes		b) Oxidation state			
	Ionization energy		d) Electronic configuration			
	prous chloride is obtained	from cupric chloride:	, E			
	By heating cupric chloride	_				
		ric chloride containing HCl				
		e with conc. HCl and copper	turnings			
	By passing H_{2} Over CuC_{1}		Ç.			
	71 6 =	² 2 wrought iron and steel are dif	ferent because they have:			
	Different contents of sulp	-	·			

	b) Different contents of c	earbon			
	c) Traces of different ele	ments			
	d) Traces of different iron oxides				
608	. Variable valency is a gen	eral feature ofelement	ts.		
	a) _{s-block}	b) p-block	c) _{d-block}	d) All of these	
609	. The inner transition elem	ents are the elements in w	hich the added electrons go	to:	
	a) $(n-1id-i)$ orbitals				
	b) $(n-2if$ -orbitals				
	c) $(n-1id$ -orbitals and	(n-3) f-orbitals			
	d) $(n-1id$ -orbitals and				
610	. The compound insoluable	e in water is			
	a) Mercurous nitrate		b) Mercurous chloride	e	
	c) Mercuric nitrate		d) Mercurous perchlo	rate	
611	. A carbonate ore is				
	a) Carnallite	b) Limonite	c) Siderite	d) Horn silver	
612	. Near the top of a blast fu	rnace employed for the ex	traction of iron the metal ox	ides are reduced to spongy iron by	
	a) Carbon	b) CO	c) <i>CO</i> ₂	d) Limestone	
613	. Black Jack is an ore of				
	a) Cr	b) Sn	c) Zn	d) Ni	
614	. Which of the following s	tatements is correct?			
	a) Manganese salt gives v	violet borax bead test in the	e reducing flame		
	b) Ferric ions give a deep	green precipitate on addi	ng potassium ferricyanide so	olution	
	_		we get a precipitate of K_2 on onia solution dissolves only	\	
615	. The element showing oxi	dation states of $+2$, $+3$, $+4$	l, +6 and +7 is:		
	a) Cr	b) Mn	c) Co	d) V	
616	. When H_2S is passed thro	ough $HgCl_2$ we get:			
	a) HgS	b) $_{\text{HgS}} + Hg_2S$	c) Hg_2S+Hg	d) Hg_2S	
617	. Which gas is absorbed by	E	02	- 2	
	a) <i>CO</i> ₂	b) CO	c) _{SO₂}	d) SO_3	
618	Standard reduction poten	tial of most of the transition	on elements is generally:	-	
	a) Negative	b) Positive	c) Zero	d) None of these	
619	. Auric chloride on reactio	n with ferrous sulphate ch	anges to:		

a	a) Au	b) AuCl	c) Au_2SO_4	d) $Au_3(SO_4)_2$
620. V	Which of the following is de	eliquescent?		
a	$^{(1)}$ $ZnCl_2$	b) Hg_2Cl_2	c) HgCl ₂	d) $CdCl_2$
621. V	Which of the following is co	orrect?		
a	Duralumin: $Al + Cu + Mg$	g+Ag	b) German silver : $Cu + Zn - Cu + $	+C
c	Gun metal : $CU + Zn + Sn$	1	d) Solder: $Pb + Al$	
n		hydrogen from dilute acids. in the form of steam. The m b) Potassium	It will react with water to for etal is probably c) Copper	rm hydrogen only when the d) Mercury
623. (Calomel reacts with ammon	ium hydroxide to form:		
a	$^{(1)}$ $Hq(NH_2)Cl$	b) $H_2N-Hg-Hg-C$	I ^{c)} Ha _o O	d) HgO
	An example of double salt is	2 3 3	92-	
a	a) Bleaching powder	b) $K_4[Fe(CN)_6]$	с) Нуро	d) Potash alum
625. E	Bronze is a mixture of	41 (/01		
a	n) Pb+Sn	b) Cu+Sn	c) Cu+Zn	d) <i>Pb+Zn</i>
626. T	The element present in gun i	metal is		
a	a) Co	b) Cu	c) Sc	d) Ti
627. p	Pure conc. HNO ₃ makes ir	on passive as the surface is c	overed with protective layer	of:
a	$P(NO_3)_3$	b) Fe_3O_4	c) FeO	d) Fe_2O_3
628. T	Thermite process is used in	reduction of		
a	Cr_2O_3	b) Al_2O_3	c) <i>PbO</i> ₂	d) CuO
	-	e smelting process in the extr	action of copper from coppe	r pyrites is composed mainly
	of: Cu_2S	b) FeSiO ₃	c) CuSiO ₃	d) SiO_2
630. T	The mineral from which cop	oper is manufactured is:	J	-
a	a) Galena	b) Pyrite	c) Malachite	d) Chalcopyrite
631. N	Metal oxides which decomp	oses on heating is		
a	a) ZnO	b) CuO	c) Al_2O_3	d) HgO
632. T	The correct formula for diam	mmine silver (I) chloride is:		
a	$[Ag, (NH_3i)]$ Cl	b) $[Ag, (NH_3)_2]Cl$	c) [Ag, $(NH_2)_2$]Cl	d) [Ag, $(NH_4)_2$]Cl
633. V	Which metal is used to add	to gold to make it hard?		
a	ı) Cu	b) Ag	c) Ni	d) Zn
634. (On igniting Fe_2O_3 at 14000	9°C, the product obtained is		
a	Fe_2O_3 melt	b) FeO	c) Fe_2O_3	d) Metallic iron

	a) $ZnCl_2$	b) ZnO	c) $ZnCO_3$	d) $ZnSO_4$	
636	636. An aqueous solution of $FeSO_4$, $Al_2(SO_4)_3$ and chrome alum is heated with excess of Na_2O_2 and filtered. The materials obtained are: a) A colourless filtrate and a green residue				
	b) A yellow filtrate and a g	reen residue			
	c) A yellow filtrate and a b	rown residue			
	d) A green filtrate and a bro	own residue			
637	Y. A transition element X has	the configuration $[Ar]d^4$ in	its +3 oxidation state. Its ator	mic number is	
	a) 25	b) 26	c) 22	d) 19	
638	B. The carbon content of:				
	a) Cast iron is in between t	hat of steel and wrought iron			
	b) Pig iron is in between th	at of steel and wrought iron			
	c) Steel is in between that of	of cast iron and wrought iron			
	d) Wrought iron is in between	een that of steel and cast iron			
639	O. If a compound absorbs viol	let colour from light, it will b	e :		
	a) Yellow	b) Orange	c) Blue	d) Green	
640). Which of the two have alm	ost similar size?			
	a) $_{22}Ti \wedge _{40}Zr$	b) $_{41}Nb \wedge_{73}Ta$	c) $_{39}Y \wedge_{57}La$	d) $_{20}Ca \wedge_{31}Ir$	
641	- A white precipitate is form	ed on adding KI to CuSO _{4 So}	olution. It is of		
	a) Cu_2I_2	b) <i>CuI</i> ₂	c) Cu_2S	d) Cu_2SO_4	
642	2. Which of the following is o	coloured compound?			
	a) CuF_2	b) CuI	c) _{NaCl}	d) $MgCl_2$	
643		ion gives a white ppt. which	ch on adding excess of NaOI	H dissolves. In this solution Zr	
	exists in: a) Cationic part	b) Anionic part	c) Both (a) and (b)	d) None of these	
644	$A. MnO_4^{-i i}$ reacts with bromi	de ion in alkaline medium to	give		
	a) _{MnBr} ,	b) MnOBr ₂	c) MnO_2 , BrO_3^{-ii}	d) MnO, BrO	
645	5. Cyanide process is used to	2	1002, 2003	Into , Bro	
	a) Ag	b) Ni	c) Pt	d) Zn	
646	b. Which of the following we	ights less when weighted in n	nagnetic field?		
	a) $ScCl_3$	b) FeCl ₃	c) TiCl ₃	d) VCl_3	
647	3	ed in the treatment of steel is	3	. = -3	
	a) Heating steel in an atmosphere of ammonia				

 $635. \, Cosmetic powders and zinc ointments contain:$

	b) Heating steel to a bright redness and then cooling					
	c) Heating steel to bright redness and then cooling by plunging in air					
	d) None of the above					
648.	Duraluminium is an alloy c	ontains:				
	a) Mg + Al					
	b) $Mg + Cu + Al + Mn + S$	i				
	c) Mg + Cu					
	d) Cu + Al					
649.	Gun metal is					
	a) Cu+Zn	b) $Cu+Sn+Zn$	c) Cu+Sn	d) $Zn+Sn$		
650.	The tempering of steel make	xes it:				
	a) Hard	b) Soft	c) Heavy	d) Brittle		
651.	Copper sulphate solution re	eacts with KCN to give				
	a) CuCN	b) $Cu(CN)_2$	c) $K_3[Cu(CN)_4]$	d) $K_2[Cu(CN)_4]$		
652.	The metallic oxide which is	mpart purple colour to potter	ry is			
	a) Copper oxide	b) Chromium oxide	c) Lead oxide	d) Manganese oxide		
653.	Formation of interstitial co	mpounds makes the transition	on metal:			
	a) More soft	b) More ductile	c) More metallic	d) More brittle		
654.	The purest zinc is made by					
	a) Electrolytic refining		b) Zone refining			
	c) The van- Arkel method		d) The Mond process			
655.	Which of the following ion (At. no. V=23, Cr=24, Mn=	s has a magnetic moment of =25, Fe=26)	5.93 BM?			
	a) Mn^{2+ii}	b) Fe^{2+ii}	c) Cr^{2+ii}	d) V^{3+ii}		
656.	$K_2 Cr_2 O_7 \Delta K_2 CrO_4 + O_2$	+X				
	In the above reaction X is a) CrO_3	b) Cr_2O_7	c) Cr_2O_3	d) <i>CrO</i> ₅		
657.	Soft and pliable steel is obt	ained by:				
	a) Tempering	b) Nitriding	c) Annealing	d) None of these		
658.	The highest magnetic mom	ent is shown by the transition	n metal ion with the outer ele	ctronic configuration		
	a) $3d^2$	b) $3d^{7}$	c) $3d^5$	d) $3d^9$		
659.	Which substance can be use	ed in the preparation of mak	ing ink?			
	a) Ag	b) $AgNO_3$	c) AgBr	d) $PbCO_{3}$ $Pb(OH)_{2}$		
660.	Which of the following compounds volatilises on heating?					

	a) $MgCl_2$	b) HgCl ₂	c) CaCl ₂	d) $FeCl_3$	
661	. Identify the statement whic	h is not correct regarding cop	oper sulphate		
	a) It reacts with NaOH and	I glucose to give Cu_2O	b) It gives CuOon strong he	eating in air	
	c) It reacts with KClto give	$e C u_2 C l_2$	d) It reacts with KI to give	iodine	
662	In solid $CuSO_4.5H_2O$, co	opper is coordinated to:			
	a) 4 water molecules	b) 5 water molecules	c) 1 sulphate molecule	d) 1 water molecule	
663	The grey cast iron contains:				
	a) Iron carbide	b) Silicon carbide	c) Silicon dioxide	d) Graphite	
		in is added to cone. $AgNO_3$ street pair? $a_3 \left[Ag \left(S_2O_3 \right)_2 \right]$ and Y is Ag_2S Ag_2S $Na_3 \left[\left(S_2O_3 \right)_2 \right]$	VO_3 solution a soluble compsolution a white ppt. turning y		
	a) Mn_2O_3	b) <i>MnO</i> ₂	c) Mn_2O_7	d) MnO	
666	A developer used in photog	2	mm ₂ o /	Millo	
	a) A weak acid	b) A weak base	c) A mild reducing agent	d) An oxidizing agent	
667	. Potassium permanganate ac	ets as an oxidant in alkaline a	nd acidic media. The final pro	oducts formed from KMnO	
	in the two conditions are re a) $MnO^{2-i \wedge Mn^{3+ii}i}$	spectively b) $Mn^{3+i \wedge Mn^{2+i \cdot i}}$	c) $Mn^{2+i\wedge Mn^{3+i}i}$	d) $MnO_2 \wedge Mn^{2+i}$	
668	3. The general electronic conf	iguration of transition elemen	nt is:		
669	a) $(n-1)d^{1-5}$. Mohr's salt is a:	b) $(n-1)d^{1-10}ns^1$	c) $(n-1)d^{1-10}ns^{0-2}$	d) None of these	
	a) Normal salt	b) Acid salt	c) Basic salt	d) Double salt	
670	Gun metal is an alloy of:				
	a) Cu and Al	b) Cu, Sn and Zn	c) Cu, Zn and Ni	d) Cu and Sn	
671	71. A metal gives two chlorides ' $A \wedge$ ' B '. ' A ' gives black precipitate with NH_4OH and ' B ' gives white. With KI ' B ' gives a red precipitate soluble in excess of KI. ' A ' and ' B ' are respectively: a) $HgCl_2 \wedge Hg_2Cl_2$ b) $Hg_2Cl_2 \wedge HgCl_2$ c) $HgCl_2 \wedge ZnCl_2$ d) $ZnCl_2 \wedge HgCl_2$				
672	. Which of the following tran	nsition metal ions will have de	efinite value of magnetic mor	ment?	
	a) Sc^{3+ii}	b) Ti ^{3+¿¿}	c) Cu ^{3+&&}	d) Zn^{2+ii}	
673	. In comparison to ferrous sa	lts, ferric salts are:			
	a) More stable	b) Less stable	c) Equally stable	d) None of these	

	a) CuFeS ₂	b) FeS_2	c) CuS_2	d) <i>Cu</i> ₂ <i>O</i>		
675.	The material used for the lin	ning of Bessemer's converter	in the extraction of copper is	s:		
	a) Silica	b) Lime	c) Iron	d) Cu		
676.	76. Articles made of copper and bronze slowly tarnish in air and turn green. The green colour is due to the formation of:a) Copper oxide					
	b) Copper sulphide					
	c) Copper oxalate					
	d) Basic copper carbonate					
677.	Which of the following state	ements concerning transition	elements is false?			
	a) They are all metals.					
b) They easily form complex coordination compounds.						
	c) Compounds containing their ions are mostly coloured.					
	d) They show multiple oxid	ation states always differing	by units of two.			
678.	Among Sc(III), Ti(IV), Pd(I	II) and Cu(II) ions				
	a) All are paramagnetic					
	b) All are diamagnetic					
	c) Sc (III), Ti (IV) are para	magnetic and Pd(II), Cu(II) a	re diamagnetic			
	d) Sc (III), Ti (IV) are diam	agnetic and Pd(II), Cu(II) are	e paramagnetic			
679.	Nessler's reagent is					
	a) $K_2 Hg I_4$	b) $K_2 Hg I_4 + KOH$	c) $K_2 Hg I_4 + Hg$	d) $K_2 Hg I_2 + KOH$		
680.		ment of Fe^{2+ii} ion (in BM) i	s approximately.			
	a) 4	b) 7	c) 5	d) 6		
681.	Which of the following is no	ot correct about transition me	etals?			
	a) Their compounds are gen	nerally coloured	b) They can form ionic or c	ovalent compounds		
	c) Their melting and boiling	g points are high	d) They do not exhibit varia	able valency		
682.	In the metallurgy of iron, w	hen limestone is added to the	e blast furnace, the calcium ic	on ends up as:		
	a) Slag	b) Gangue	c) Metallic calcium	d) Calcium carbonate		
683.	KI and CuSO ₄ solutions on	mixing produce				
684.	a) $Cu_2I_2+K_2SO_4$ Which one of the following	b) $Cu_2I_2+I_2+K_2SO_4$ statements is false?	c) $CuI_2 + K_2SO_4$	d) $CuI_2 + I_2 + K_2 SO_4$		
a) During roasting moisture is removed from the ore						

674. Fool's gold is

	b) The ore is freed from almost all nonmetallic impurities.				
	c) Calcination of ore is carried out in the absence of any blast of air.				
	d) The concentrated zince blend is subjected to calcination during its extraction by pyrometallurgy.				
685	85. Knowing that the chemistry of lanthanoids (Ln) is dominated by its +3 oxidation state, which of the following statements is incorrect? a) Because of the large size of the Ln (III) ions the bonding in its compounds is predominantly ionic in character				
	b) The ionic sizes of Ln (III) decrease in general with increasing atomic number.				
	c) Ln (III) compounds are §	generally colourless.			
	d) Ln(III) hydroxide are ma	ainly basic in character.			
686	Bell metal is an alloy of:				
	a) Zinc and copper	b) Copper and nickel	c) Zinc and lead	d) Copper and tin	
687	Chemical name of vermilio	n is:			
	a) Mercuric sulphide	b) Mercurous sulphide	c) Zinc sulphide	d) Cadmium sulphide	
688	. The stainless steel develope	d in India contains the follow	ving special components:		
	a) Vanadium and cobalt				
	b) Nickel and magnesium				
	c) Manganese and chromium				
	d) Aluminium and zinc				
689	. Maximum number of oxida	tion states of the transition n	netals is derived from the fol	lowing configuration:	
	a) ns-electrons				
	b) $(n-1)d$ -electrons				
	c) $(n+1)d$ -electrons				
	d) $ns + (n-1)d$ -electrons				
690	. It is always advisable not to	cover egg yolk or mustard w	with silver cutlery because:		
	a) Silver reacts with water of	of egg yolk to form AgOH			
	b) Silver reacts with sulphu	r of egg yolk forming black	Ag_2S		
	c) Silver reacts with egg yolk forming Ag_2SO_4 which is a poisonous substance d) Silver attracts UV light of the atmosphere, thereby spoiling the food				
691	Which of the following is n	ot oxidized by O_3 ?			
	a) FeSO ₄	b) <i>KMn O</i> ₄	c) _{KI}	d) $K_2 Mn O_4$	
692	Mercury is transported in m	netal containers made of:			
	a) Silver	b) Lead	c) Iron	d) Aluminium	
693	Which may be consumed in	the elemental form by huma	an beings?		

	a) Zn	b) Cu	c) Ag and Cu	d) Fe	
694	1. Which one of the elements	is a <i>d</i> -block element?			
	a) As	b) Pt	c) Pb	d) Ra	
695	5. Which metal does not react	with $CuSO_4$ solution?			
	a) Fe	b) Zn	c) Mg	d) Ag	
696	5. Transition metal ions show	colour because			
	a) They absorb light		b) They emit light		
	c) They are paramagnetic		d) They exhibit $d - d$ trans	sition	
697	697. Rinnmann's green is:				
	a) ZnO.CoO	b) A green pigment	c) Both (a) and (b)	d) None of these	
698	3. Which of the following ion	s is colourless in solution?			
	a) V^{3+ii}	b) Cr ³⁺⁴⁴	c) Co ²⁺ⁱⁱ	d) $Sc^{3+i\delta}$	
699	9. Pig iron is manufactured us	sing:			
	a) An electric furnace				
	b) A blast furnace				
	c) An open hearth furnace				
	d) None of the above				
700). Blue vitriol is				
	a) $CuSO_4$	b) $CuSO_4 \cdot 5H_2O$	c) Cu_2SO_4	d) $CuSO_4 \cdot H_2O$	
701	LEach coinage metal has:				
	a) 18 electrons in their pen	ultimate shell			
	b) 8 electrons in the outerm	nost shell			
	c) 2 electrons in the outerm	nost shell			
	d) 8 electrons in penultima	te shell			
702	2. Gold exhibits the variable of	exidation states of:			
	a) +2, +3	b) +1, +3	c) +2, +4	d) +1, +2	
703	703. Transition metals and their oxides are used in industrial processes as:				
	a) Detergents	b) Insecticides	c) Catalysis	d) None of these	
704	4. Gravity separation process	is used for the concentration	of		
	a) Calamine	b) Haematite	c) Chalcopyrite	d) Bauxite	
705	5. The composition of malach	ite is			
	a) CuFeS ₂	b) CuCO ₃	c) $CuCO_3.Cu(OH)_2$	d) $Cu(OH)_2$	
706	5. The atomic numbers of var	nadium (V), chromium (Cr), 1	manganese(Mn), and iron (Fe	e) are respectively 23, 24, 25	

	and 26. Which one of these a) V	e may be expected to have the b) Cr	e highest second ionisation en c) Mn	nthalpy? d) Fe		
707		pigment than lead white because		4,10		
	a) Has more covering power		ause II.			
	b) Is not blackened by the a c) Is soluble in water	ection of H_2S				
	d) Becomes yellow when he	eated				
708	•	en H_2S is passed through an	acidified solution of:			
		b) Cd^{2+ii} ions	c) Cu^{2+ii} ions	d) ¿2+66 ions		
709	. Which metal does not react		Gu Tons	g rons		
	a) K	b) Na	c) Ca	d) Cu		
710	. Verdigris is					
	a) Basic lead	b) Basic copper acetate	c) Basic lead acetate	d) None of the above		
711	. The percentage of carbon is	s same in:				
	a) Cast iron and pig iron					
	b) Cast iron and steel					
	c) Pig iron and steel					
	d) Pig iron and wrought iro	n				
712	$. FeSO_4 \cdot (NH_4)_2 SO_4 \cdot 6H$	₂ O is called:				
	a) Green salt	b) Glauber's salt	c) Mohr's salt	d) Alum		
713	· Which do not decolourise <i>I</i>	KMnO ₄ aqueous solution?				
	a) $C_2 O_4^{2-ii}$	b) HSO_3^{-ii}	c) CO_3^{2-ii}	d) SO_3^{2-ii}		
714	. Among the following pair of	of ions, the lower oxidation st	ate in aqueous solution is mo	re stable in		
	a) $V^{2+i,VO^{2+ii}i}$	b) $Cr^{2+i,Cr^{3+ii}i}$	c) $Ti^{+i,Ti^{3+ii}i}$	d) $Cu^{+i,Cu^{2+ii}i}$		
715	Green vitriol is formed by					
	a) $FeS_2 + H_2O + O_2$	b) $FeS_2+H_2O+CO_2$	c) $FeS_2 + CO + CO_2$	d) $FeS_2 + CO$		
716	Densities of transition meta	ls are:				
	a) Low	b) Very low	c) High	d) Very high		
717	. Mercury sulphide on heatin	g with aquaregia yields:				
	a) $Hg(NO_3)_2$	b) $HgCl_2$	c) $Hg(NO_2)_2$	d) Hg_2Cl_2		
718	. All metal chlorides are solu	ble in water except those of:				
	a) Ag, Pb, Hg	b) Na, K, Ca	c) Zn, Cu, Cd	d) Ba, Sr, Li		
719	$K_3[Co(NO_2)_6]$ is:					

a) Fischer's salt	b) Thenard's blue	c) Rinnmann's green	d) Blue vitriol
720. Group 11 or IB ele	ements are commonly known as:		
a) Coinage metals			
b) Transition meta	ls		
c) Typical elemen	ts		
d) Representative	elements		
721. Most common oxi	dation states of Ce (cerium) are		
a) +3, +4	b) +2, +3	c) +2, +4	d) +3, +5
722. The metal present	in insulin is:		
a) Cu	b) Fe	c) Zn	d) Mg
723. Transition element	s form alloys easily because they	have:	
a) Same atomic nu	ımber		
b) Same electronic	configuration		
c) Nearly same ato	omic size		
d) None of the abo	ove		
724. Muntz metal is an	alloy of:		
a) Cu and Sn	b) Cu and Zn	c) Ag and Zn	d) Zn and Mn
725. A metal forms a vo	olatile carbonyl compound and th	is property is taken advantages	s of its extraction. The metal is:
a) Iron	b) Nickel	c) Cobalt	d) Titanium
to about 1900°C at temperature (f blast furnace to produce iron from the bottom of the furnace. The rather 500° C) is: $ \longrightarrow 2F e_3 O_4 + C O_2 $		-
b) $Fe_2O_3 + CO -$	$\rightarrow 2 FeO+CO_2$		
c) $Fe_2O_3 + 3CO_2$	\longrightarrow 2Fe+3CO ₂		
d) Fe_2O_3+CO-	$\rightarrow 2 Fe + CO_2 + \frac{1}{2}O_2$		
727. Adam's catalyst is:	2		
a) Pt and PtO	b) Pt	c) $_{\text{Pt and }} Pt O_2$	d) Pt_2O and PtO
728. Which one of the	following statement is not true wi	_	
a) They readily for	rm complex compounds.	b) They show variable o	xidation states.
c) All their ions ar	re colourless.	d) Their ions contain pa	rtially filled d-electrons
729. The element which	n forms a coloured chloride is:	- Ions contain pu	y
a) Sb	b) Na	c) Zn	d) Cr

730. In wh	ich of the following m	etallic bond is strongest?					
a) V		b) Fe	c) Cr	d) Sc			
731. Which	n metal cation forms s	tronger complex salt?					
a) Zn	2+ċċ	b) Cd^{2+ii}	c) Hg^{2+ii}	d) All of same strength			
732. The e	quilibrium $C r_2 O_7^{2-\iota_+}$	$2e \rightleftharpoons 2CrO_4^{2-i\dot{\iota}}\dot{\iota}$:	S				
a) Ex	ists in acidic medium						
b) Ex	ists in basic medium						
c) Ex	ists in neutral medium						
d) Do	es not exist						
733. Atom	ic radii of Ti, Zr and	Hf vary					
a) _{Ti} ;	>Zr>Hf	b) $Ti < Zr < Hf$	c) $Ti < Hf < Zr$	d) $Ti < Zr = HF$			
		ransition metal monoxide fol	lows the order				
	o of Ti =22, V=23, C1 D> <i>VO>CrO>FeO</i>	=24, Fe=26)	b) VO>CrO>TiO>FeO				
c) Cr	O>VO>FeO>TiO		^{d)} TiO>FeO>VO>CrO				
735. Mn O	2 dissolves in water to	give an acid. The colour of t	the acid is				
a) Gro	een	b) Blue	c) Violet	d) Red			
736. Which	n of the following is us	sed as indelible ink?					
a) _{Aq}	ueous CuSO _{4 Solutio}	n	b) Aqueous AgNO ₃ solution	on			
c) _{Aq}	ueous NaCl solution		d) Aqueous NaOH solution				
737. Which	n belongs to the actinion	des series?					
a) Ce		b) Cf	c) Ca	d) Cs			
738. Puddi	ng process is used in t	he manufacture of:					
a) Ste	el	b) Cast iron	c) Wrought iron	d) Pig iron			
739. Which	n method is used to rea	move lead impurities from si	lver?				
a) Lea	aching with dilute Nac	CN solution					
b) Paı	kes process						
c) Lea	aching with dilute Na	CN in presence of air					
740. Which	_		oduced when ammonium dich	nromate is used in fire			
works a) <i>Cr</i>		b) <i>CrO</i> ₃	c) Cr_2O_3	d) $CrO(O_2)$			
	n of the following is an	3	2 3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
a) V_2	O_3	b) CuO	c) V_2O_5	d) _{NiO}			

742. <i>N</i>	H_3 forms complex with:											
a)	CuS O ₄	b) CdS O ₄	c) AgCl	d) All of these								
743. Tra	ansition metals are less re	active because of their:										
a)	High ionization potential	and low melting point										
b)	b) High ionization potential and high melting point											
c)	c) Low ionization potential and low melting point											
d)	Low ionization potential	and high melting point										
744. Th	e metal that does not disp	blace hydrogen from an acid	is:									
a)	Hg	b) Zn	c) Al	d) Ca								
745. Per	rcentage of gold in 18 car	rat gold is										
a)	75.0%	b) 20.0%	c) 80.0%	d) 38.67%								
746. _{Th}	e correct order of ionic ra	adii of $Y^{3+i,La^{3+i,Eu^{3+i,Lu^{3+i}}i}}$ is										
a)	$Y^{3+i<\iota\iota} La^{3+i<\iota\iota} Eu^{3+i<\iota}$	Lu^{3+ii}	b) $Lu^{3+i<\iota\iota} Eu^{3+i<\iota\iota} La^{3+i\iota} \dot{\iota} Y^{3+i\iota}$									
c)	$La^{3+i < Eu^{3+i < ii}} Lu^{3+ii} i Y^3$	3+¿¿	d) Y^{3+i									
747. Co	inage metals show the pro-	operties of										
a)	Inert elements	b) Normal elements	c) Typical elements	d) Transitional elements								
748. WI	hen steel is heated red ho	t and then slowly cooled, the	process is known as:									
a)	Annealing	b) Hardening	c) Tempering	d) Nitriding								
749. WI	hich form contains the ma	aximum percentage of carbon	n?									
a)	Wrought iron	b) Cast iron	c) Malleable iron	d) Steel								
			moved as slag by mixing the	contaminated copper ore								
_	th silica and coke. The more FeSiO ₃	olecular formula of slag is b) Fe_2O_3	c) FeSi(solid)	d) FeSi (vapour)								
	3	2 3	for the four successive eleme	\ 1 /								
_	Mn>Cr>Fe>Co		b) Cr>Fe>Mn>Co									
	Fe>Mn>Cr>Co		d) Cr>Mn>Fe>Co									
752. WI	hich of the following is th	ne chief ore of copper?										
a)	Cu_2S	b) <i>Cu</i> ₂ <i>O</i>	c) CuFeS ₂	d) $CuCO_3$. $Cu(OH)_2$								
753. Th	e catalytic activity of tran	nsition metals and their comp	oounds is ascribed mainly to:	<u> </u>								
a)	Their magnetic behavior											
b)	Their unfilled d -orbitals											
	Their ability to adopt var	iable oxidation states										
d)	Their chemical reactivity	,										

754	. Which is used for stopping	bleeding?		
	a) Ferric chloride	b) Mohr's salt	c) Green vitriol	d) Sodium nitroprusside
755	On heating $ZnCl_2$. H_2Oth	he compound obtained is:		
	a) $ZnCl_2$	b) Zn(OH)Cl	c) $Zn(OH)_2$	d) ZnO
756	Yellow mercury (II) oxide	is obtained when		
	a) Hg is heated in excess or	f air at 623 K	b) $HgCl_2$ is treated with N	aOH solution
	c) <i>HgS</i> is roasted in air		d) $Hg(NO_3)_2$ is heated in J	presence of Hg
757	· From gold aurocyanide Na	$[Au(CN)_2]$, gold can be pred	cipitated by adding powder o	f:
	a) Zn	b) Hg	c) Ag	d) None of these
758	• Arrange $Ce^{3+i,La^{3+i,Pm^{3+i}i}i}$ an	$d Y b^{3+ii}$ in increasing order	of their ionic radii	
	a) $Y b^{3+i < Pm^{3+i < Ce^{3i < d^{3+i}}i}i}$		b) $Ce^{3+i < Yb^{3+i < Pm^{3+i < t}s^{3+i}i}i}i$	
	c) $Y b^{3+i < Pm^{3+i < La^{3nicc}i^{3nil}i}i}$		d) $Pm^{3+i < La^{3+i < Ce^{3i < r}\delta^{ni}i}i}$	
759	. Black HgS:			
	a) Dissolves in conc. HCl o	on boiling		
	b) Dissolves in boiling HCl	+ a crystal of KClO ₃		
	c) Dissolves in NaOH			
	d) None of the above			
760	. The actinoids exhibit more	number of oxidation states in	n general than the lanthanoids	s. This is because
	a) The $5f$ -orbitals are more	be buried than the $4f$ -orbitals		
	b) There is a similarity between	ween $4f$ and $5f$ -orbitals in th	eir angular part of the wave	function.
	c) The actinoids are more i	reactive than the lanthanoids.		
	d) The $5f$ -orbitals extend to	further from the nucleus than	the $4f$ -orbitals.	
761	. Hair dyes contain			
	a) Copper nitrate	b) Gold chloride	c) Silver nitrate	d) Copper sulphate
762	. A scarlet red precipitate is	obtained on treating mercuric	chloride solution with:	
	a) H_2S	b) KI	c) NaOH	d) NH_4OH
763	. Which of the following star	tements is wrong?		
	a) An acidified solution of	$K_2Cr_2O_7$ liberates iodine fi	rom iodides	
	b) In acidic solution dichro	mate ions are converted to ch	nromate ions	
	c) Ammonium dichromate	on heating undergoes exothe	rmic decomposition to give	Cr_2O_3
	d) Potassium dichromate is	s used as a titrant for $Fe^{2+i\lambda}$ i	ons	
764	. In the electroplating of gold	d the electrolyte used is:		
	a) Gold chloride			

	b) Gold nitrate						
	c) Gold sulphate						
	d) Potassium aurocyanide						
765	. Silver is extracted from arg	entiferous lead by:					
	a) Mond's process	b) Parkes process	c) Haber's process	d) Bergius process			
766	Aqua regia reacts with Pt to	yield:					
	a) $Pt(NO_3)_4$	b) H_2 PtC l_6	c) PtCl ₄	d) $PtCl_2$			
767	Agrentite is an ore of						
	a) Fe	b) Al	c) Cu	d) Ag			
768	. Transition elements exhibit	s variable valencies because t	hey release electrons from the	ne following orbits			
	a) _{ns}	b) ns and np	c) $(n-1)d$ and ns	$^{\mathrm{d})}(n-1)d$			
769		irrors, plates of float glasses a		by floating molten glass over			
	a liquid metal which does n a) Na	ot solidify before glass. The b) Mg	metal can be: c) Hg	d) Sn			
770	. How is limestone used in Fe	e extraction?					
	a) Oxidation of Fe ore		b) Reduction of Fe ore				
	c) Formation of slag		d) Purification of Fe forme	d			
771	** **	g during reduction of CuO. T	re of <i>CuO+FeO</i> is formed. <i>FeO</i> is present as impurities. The flux added to form slag is b) Lime stone, which is a basic flux				
	c) SiO ₂ , which is a basic flu	ux	d) CaO, which is a basic fl	ux			
772		noment [in units of Bohr mag	gneton, (μ_{β})]of $\zeta^{2+i\delta}$ in aque	eous solution would be			
	(Atomic number of Ni=28) a) 2.84	b) 4.90	c) 0	d) 1.73			
773	. Which of the following is u	sed as purgative?					
	a) HgS	b) <i>Hg₂Cl₂</i>	c) HgCl ₂	d) ZnSO ₄			
774	The formula of sodium nitr	32 2	92	4			
	a) $Na_{\downarrow}[Fe(CN)_{\vdash}NOS]$	b) $Na_2[Fe(CN)_5NO]$	c) $NaFe[Fe(CN)_c]$	d) $N a_2 [Fe(CN)_6 NO_2]$			
775	45 (75 3	ample of non typical transitio	2 (/03	21 (/0 21			
	a) Zn, Cd, Hg	b) Sc, Ti, V	c) Cu, Ag, Au	d) Cr, Fe, Mn			
776	When calomel reacts with I	NH_4OH solution, the compo	ound formed is				
	a) $NH_2 - Hg - Cl$	b) $Hg_2Cl_2NH_3$	c) $Hg(NH_3)_2Cl_2$	d) $_{HgCl_{2}NH_{3}}$			
777.	The highest magnetic mome	ent is shown by the transition	metal ion with the configura	ntion			
	a) $3d^2$	b) 3 <i>d</i> ⁵	c) 3 <i>d</i> ⁷	d) 3 d ⁹			
778	. Identify the alloy containing	g a non-metal as a constituent	t in it:				

a) Bell metal	b) Bronze	c) Invar	d) Steel
779. Chemical name of cor	rosive sublimate is:		
a) Mercurous chloride	e b) Zinc chloride	c) Mercuric chloride	d) Aluminium chloride
		$Na_2S_2O_3$ solution is added to it.	Which of the statements is
incorrect for this react a) Cu_2I_2 formed	tion?	b) Cul ₂ is formed	
c) $Na_2S_2O_3$ is oxidis	ed	d) Evolved I_2 is reduced	
781. Cuprous ion is colourl	less, while cupric ion is colou	red because	
a) Both have half-fille	d p and d -orbiatls		
b) Cuprous ion has a c	completed d -orbital and cupr	ic ion has incomplete d -orbital	
c) Cuprous ion has inc	complete d -orbital and cupric	c ion has a complete d -orbital	
d) Both have unpaired	l electrons in d -orbital		
782. Which one of the follo	owing is a diamagnetic ion?		
a) Co^{2+ii}	b) $Cu^{2+i\delta}$	c) $M n^{2+i i}$	d) Sc^{3+ii}
783. Which of the following	g oxides of chromium is amp	photeric in nature?	
a) CrO	b) Cr_2O_3	c) CrO_3	d) CrO_5
784. Cast iron is manufactu	ared by remelting:		
a) Pig iron and pourin	g into moulds		
b) Steel and pouring in	nto moulds		
c) Wrought iron and p	oouring into moulds		
d) Iron ore and pourin	g into moulds		
785. The number of $3d$ -ele	ectrons in Cu^{+ii} ion is:		
a) 8	b) 10	c) 6	d) 12
786. In the extraction of Fe	e from Fe_2O_3 , the reducing a	agent used is	
a) C	b) Al	c) Electrolytic reduction	d) Cu
787. Transition elements ar	re good conductors of current	because:	
a) They are metals			
b) They are all solids			
c) They have free elec	ctrons in outer energy orbits		
d) All of the above			
788. A compound is yellow	when hot and white when co	old. The compound is:	
a) Al_2O_3	b) PbO	c) CaO	d) ZnO
	photographic effect reacts weating gives brown vapours.	ith the solution of a sodium salt (<i>B</i>) to give a pale yellow ppt.

	Identify A , B and C . a) $AgNO_3$, $NaBr$, $AgBr$	b) AgNO ₃ , NaCl, AgCl ₂	c) $AgNO_3$, $NaBr$, $AgCl_2$	d) AgCl, NaBr, AgBr ₂									
790	. Silver possesses metallic lus	stre because:											
	a) It is a noble metal												
	b) It is coated with the oxide of silver												
	c) Valency electrons absorb white light completely												
	d) Valency electrons absorb	and eject white light											
791	· Magnetic moment of manga	anese in $(NH_4)_2 MnBr_2 is$											
	a) 3.87 BM	b) 5.91 BM	c) 4.89 BM	d) 2.82 BM									
792	. Which transition metal is us	sed for the reduction of steam	n to hydrogen?										
	a) Mg	b) Fe	c) Sc	d) Pt									
793	. The transition elements are	more metallic than the repre	sentative elements because th	ney have									
	a) Electron pairs in <i>d</i> -orbit	als	b) Availability of <i>d</i> -orbitals for bonding										
	c) The electron in d -orbital	ls	d) Unpaired electron in metallic orbitals										
794	Cerium can show the oxida	tion state of +4 because:											
	a) It resembles alkali metal	s											
	b) It has very low value of	IE											
	c) Of its tendency to attain	noble gas configuration of xe	enon										
	d) Of its tendency to attain	f° configuration											

: ANSWER KEY:

1)	c	2)	c	3)	c	4)	d	169)	c	170)	a	171)	d	172)	a
5)	b	6)	a	7)	c	8)	d	173)	c	174)	d	175)	b	176)	b
9)	d	10)	a	11)	b	12)	d	177)	c	178)	d	179)	a	180)	d
13)	b	14)	a	15)	b	16)	a	181)	c	182)	c	183)	a	184)	b
17)	d	18)	b	19)	c	20)	c	185)	a	186)	d	187)	a	188)	d
21)	c	22)	a	23)	a	24)	d	189)	b	190)	b	191)	a	192)	a
25)	c	26)	c	27)	c	28)	b	193)	b	194)	b	195)	b	196)	d
29)	b	30)	d	31)	c	32)	d	197)	d	198)	a	199)	a	200)	c
33)	d	34)	c	35)	d	36)	d	201)	c	202)	a	203)	b	204)	a
37)	c	38)	a	39)	b	40)	d	205)	c	206)	a	207)	d	208)	c
41)	c	42)	b	43)	c	44)	d	209)	b	210)	d	211)	b	212)	d
45)	b	46)	a	47)	c	48)	c	213)	a	214)	b	215)	c	216)	d
49)	b	50)	c	51)	c	52)	a	217)	b	218)	c	219)	c	220)	b
53)	d	54)	d	55)	d	56)	b	221)	d	222)	a	223)	a	224)	a
57)	d	58)	c	59)	a	60)	b	225)	c	226)	a	227)	d	228)	d
61)	b	62)	c	63)	a	64)	d	229)	a	230)	c	231)	a	232)	a
65)	d	66)	b	67)	c	68)	b	233)	c	234)	a	235)	a	236)	d
69)	b	70)	b	71)	c	72)	a	237)	a	238)	a	239)	C	240)	d
73)	d	74)	b	75)	c	76)	b	241)	b	242)	a	243)	a	244)	d
77)	c	78)	c	79)	b	80)	b	245)	a	246)	a	247)	d	248)	b
81)	b	82)	d	83)	d	84)	d	249)	b	250)	b	251)	c	252)	d
85)	b	86)	c	87)	d	88)	c	253)	c	254)	c	255)	b	256)	d
89)	b	90)	a	91)	b	92)	d	257)	b	258)	c	259)	d	260)	b
93)	c	94)	c	95)	b	96)	c	261)	b	262)	c	263)	b	264)	d
97)	a	98)	c	99)	d	100)	c	265)	a	266)	c	267)	d	268)	d
101)	c	102)	d	103)	b	104)	c	269)	d	270)	b	271)	b	272)	c
105)	c	106)	c	107)	c	108)	a	273)	a	274)	d	275)	d	276)	c
109)	a	110)	d	111)	d	112)	b	277)	b	278)	b	279)	b	280)	c
113)	d	114)	d	115)	a	116)	c	281)	b	282)	b	283)	c	284)	c
117)	d	118)	c	119)	d	120)	a	285)	b	286)	b	287)	a	288)	c
121)	d	122)	b	123)	a	124)	a	289)	a	290)	c	291)	b	292)	b
125)	b	126)	b	127)	d	128)	a	293)	a	294)	b	295)	b	296)	d
129)	a	130)	c	131)	c	132)	d	297)	d	298)	b	299)	d	300)	a
133)	d	134)	b	135)	d	136)	c	301)	a	302)	a	303)	b	304)	c
137)	c	138)	a	139)	b	140)	b	305)	c	306)	a	307)	a	308)	d
141)	b	142)	a	143)	a	144)	d	309)	a	310)	d	311)	d	312)	b
145)	d	146)	d	147)	b	148)	c	313)	c	314)	c	315)	d	316)	b
149)	a	150)	d	151)	d	152)	d	317)	c	318)	c	319)	d	320)	a
153)	a	154)	a	155)	c	156)	d	321)	a	322)	b	323)	b	324)	d
157)	b	158)	b	159)	a	160)		325)	c	326)	b	327)	c	328)	d
161)	b	-	b	163)	b	164)	c	329)	d	330)	d	331)	c	332)	c
_	c	166)	c	167)		168)		_	b	_	d	335)	a		a
-		-		-		-				-		-		-	

337)	a	338)	a	339)	d	340) d	537)	d	538)	a	539)	b	540)	a
341)	c	342)	c	343)	d	344) a	541)	b	542)	d	543)	c	544)	d
345)	d	346)	d	347)	b	348) a	545)	d	546)	a	547)	c	548)	c
349)	c	350)	a	351)	d	352) a	549)	b	550)	c	551)	b	552)	a
353)	a	354)	a	355)	d	356) c	553)	c	554)	b	555)	b	556)	d
357)	c	358)	b	359)	a	360) d	557)	С	558)	c	559)	c	560)	b
361)	d	362)	a	363)	d	364) d	561)	b	562)	d	563)	a	564)	c
365)	a	366)	c	367)	a	368) b	565)	a	566)	d	567)	c	568)	c
369)	a	370)	С	371)	a	372) c	569)	С	570)	С	571)	d	572)	С
373)	a	374)	d	375)	b	376) d	573)	b	574)	a	575)	a	576)	b
377)	С	378)	a	379)	a	380) a	577)	d	578)	a	579)	d	580)	a
381)	С	382)	b	383)	С	384) c		d	582)	d	583)	a	584)	d
385)	c	386)	b	387)	a	388) a		С	586)	d	587)	a	588)	b
389)	b	390)	С	391)	d	392) b		a	590)	a	591)	a	592)	c
393)	c	394)	a	395)	d	396) c		b	594)	b	595)	b	596)	a
397)	b	398)	b	399)	b	400) a		b	598)	С	599)	d	600)	b
401)	b	402)	a	403)	a	404) c		С	602)	c	603)	a	604)	d
405)	b	406)	d	407)	b	408) d	1	d	606)	c	607)	b	608)	c
409)	c	410)	a	411)	b	412) b	1	b	610)	b	611)	c	612)	b
413)	c	414)	c	415)	b	416) c		c	614)	d	615)	b	616)	a
417)	d	418)	a	419)	a	420) d	1	b	618)	a	619)	a	620)	a
421)	a	422)	b	423)	c	424) c		c	622)	a	623)	a	624)	d
425)	a d	426)	b	423)	b	424) c		b	626)	a b	627)	a b	628)	
429)	d	430)	b	431)	_	432) d		b	630)	d	631)	d	632)	a b
433)	u b	434)		431)	b				634)	_	635)		636)	
-		-	c	-	c	-	1	a	-	d	,	b h	-	C b
437)	c	438)	a	439)	c	440) d		a	638)	c	639)	b h	640)	b
441)	C h	442)	a L	443)	a	444) c	1	a	642)	a	643)	b	644)	C h
445)	b	446)	b	447) 451)	a	448) a	'	a	646)	a h	647)	a	648)	b
449)	C	450)	d b	451) 455)	C	-	649) 653)	b	650) 654)	b h	651)	c	652)	d
453)	d L	454)	b a	•	d L	-	_	d	•	b	655)	a L	656)	C h
457)	b L	458)	d	459) 463)	b h	-	657)	c	658)	C	659)	b	660)	b b
461)	b	462)	c	463)	b	-	661)	C	662)	a	663)	d	664)	b
465)	C	466)	a	467)	C	•	665)	C	666)	C	667)	d	668)	C
469)	b	470)	a	471)	a		669)	d	670)	b	671)	b	672)	b
473)	b	474)	С	475)	a	-	673)	a	674)	b	675)	b	676)	d
477)	a	478)	a	479)	c	=	677)	d	678)	d	679)	b	680)	b
481)	b	482)	С	483)	a	=	681)	d	682)	a	683)	b	684)	b
485)	С	486)	C	487)	b	=	685)	C	686)	d	687)	a	688)	С
489)	С	490)	b	491)	a	-	689)	d	690)	b	691)	b	692)	c
493)	a	494)	C	495)	c	=	693)	С	694)	b	695)	d	696)	d
497)	С	498)	b	499)	b	500) c	1	С	698)	d	699) - 222	b	700) 7 04)	b
501)	a	502)	C	503)	b	504) c	1	a	702)	b	703)	c	704)	b
505)	a	506)	b	507)	a	-	705)	c	706)	b	707)	b	708)	b
509)	c	510)	d	511)	d	•	709)	d	710)	b	711)	a	712)	c
513)	d	514)	С	515)	a	-	713)	C	714)	С	715)	a	716)	d
517)	d	518)	a	519)	C	•	717)	b	718)	a	719)	a	720)	a
521)	b	522)	b	523)	a	-	721)	a	722)	С	723)	С	724)	b
525)	d	526)	a	527)	b	•	725)	b	726)	C	727)	a	728) 7 28)	c
529)	a	530)	С	531)	a	-	729)	d	730)	C	731)	С	732)	b
533)	d	534)	a	535)	d	536) d	733)	d	734)	a	735)	С	736)	b
							1							

737)	b	738)	c	739)	b	740)	c
741)	b	742)	d	743)	b	744)	a
745)	a	746)	d	747)	d	748)	a
749)	b	750)	a	751)	a	752)	c
753)	c	754)	a	755)	b	756)	b
757)	a	758)	a	759)	b	760)	d
761)	c	762)	b	763)	b	764)	d
765)	b	766)	b	767)	d	768)	c
769)	c	770)	c	771)	a	772)	a
773)	b	774)	b	775)	a	776)	a
777)	b	778)	d	779)	c	780)	b
781)	b	782)	d	783)	b	784)	a
785)	b	786)	a	787)	d	788)	d
789)	a	790)	d	791)	b	792)	b
793)	b	794)	d				

: HINTS AND SOLUTIONS :

(b)

- 1 (c) $AgNO_3 \longrightarrow Ag + NO_2 + \frac{1}{2}O_2$
- **(c)**Transition elements show covalency as well as ionic valency, $e \cdot g \cdot M n^{2+i \cdot l}$ ionic, $M n^{7+i \cdot l}$ covalent.
- **(c)** Potassium dichromate on heating gives oxygen and chromic oxide (Cr_2O_3) . $4 K_2Cr_2O_7\Delta 4 K_2CrO_4+3O_2+2 Cr_2O_3$
- **(d)**Cyanide process is used for the extraction of silver and gold.
- **(b)** ZnS is white in colour.
- **(a)**Silver metal is extracted by cyanide process. $Ag_2S + 4 NaCN \rightleftharpoons 2 Na[Ag(CN)_2] + Na_2S$ Argentite sodium argentocyanide $2 Na[Ag(CN)_2] + Zn \longrightarrow Na_2[Zn(CN)_4] + 2 Ag \downarrow$ Sodium tetracyano ppt.
 Zincate (II)
- **(c)** $Zn+2NaOH \longrightarrow Na_2ZnO_2+H_2$ \therefore Zn liberates hydrogen with hot conc. alkali.
- **(d)** $Zn^{2+\delta\delta}$ ion possess $(n-1)d^{10}$ configuration. There are no unpaired electrons in (n-1)d- subshell due to which d-d transitions are not possible. Hence, $Zn^{2+\delta\delta}$ ions are colourless.
- **(d)**Au and Ag salts are soluble in KCN due to complex formation others not.
- **(a)**

- $Au+4CN^{-i+H_2O+\frac{1}{2}O_2\longrightarrow 2\,i\,i}$ $i \ gold \ \text{ore} \ (X)$ $2\left[Au\left(CN\right)_2\right]^{-i+Zn\longrightarrow\left[Zn\left(CN\right)_2\right]^{-i+2Aui,i}}$ (X) $Hence, [X] = \left[Au\left(CN\right)_2\right]^{-i,Y=\left[Zn\left(CN\right)_4\right]^{-i\,i}}$
- **(b)** Argentite is an ore of Ag having composition Ag_2S . It dissolves in NaCN due to formation of soluble complex.

 Ag_2S+4 $NaCN \longrightarrow 2$ $Na[Ag(CN)_2]+NaCl$ \therefore NaCN is used to dissolve argentite.

- **(d)**Magnetic moment of transition metal is $\mu = \sqrt{n(n+2)}$
- It is a fact.

 14 (a)
- Fool's gold is $CuFeS_2$ which does not contain Au at all
- **(b)** $Cu + H_2SO_4 + \frac{1}{2}O_2 \longrightarrow CuSO_4 + H_2O$
- **(d)**Hg does not form amalgam with iron.
- **(b)**It is a process to get Zn granules.
- **(c)**Filling of differentiating electrons takes place in 3*d* in first transition series.
- **(c)**Limonite Fe_2O_3 .3 H_2O Siderite $FeCO_3$ Carnallite KCl. $MgCl_2$.6 H_2O

Chalcopyrites CuFeS₂

21 **(c)**

Wrought iron is the purest form of iron and contains carbon and other impurities from 0.2% to 0.5%.

22 **(a**)

Pd, Pt absorb H_2 in considerable amount.

23 **(a)**

It is a fact.

24 **(d)**

On fusing AgCl with Na_2CO_3 , metallic silver is obtained.

 $2 AgCl + Na_2 CO_3 Fuse 2 Ag \downarrow + 2 NaCl + CO_2 + \frac{1}{2}O_1$

metallic silver

25 **(c)**

Transition metals exhibit variable oxidation states due to participation of (n-1)d-electron in bond formation.

26 **(c)**

In Bessemer's converter impurities of C, Mn, Si, P in pig iron are oxidized to produce steel.

27 **(c)**

 $_{26}Fe$ has the configuration $1s^2, 2s^22 p^6, 3s^23 p^63 d^6, 4s^2$.

28 **(b**)

 $Fe^{2+i \cdot l}$ gets oxidized to $Fe^{3+i \cdot l}$ and $Cr_2^{6+i \cdot l}$ gets reduced to $Cr_2^{3+i \cdot l}$.

29 **(b)**

Lanthanide contraction relates to decrease in atomic as well as ionic size of $M^{3+\delta\delta}$ ions

31 **(c**)

It is a fact. The idea is used in chemical exhibitions.

32 **(d)**

$$\begin{split} &SnC\,l_2 + 2\,HgC\,l_2 {\longrightarrow} SnC\,l_4 + H\,g_2C\,l_2 \\ &H\,g_2C\,l_2 + SnC\,l_2 {\longrightarrow} SnC\,l_4 + H\,g_2 \end{split}$$

33 **(d)**

 $V^{4+i} \rightarrow 3d^{1}, 4s^{0}i$

One unpaired electron, therefore, it is paramagnetic and coloured compound

34 **(c)**

All bivalent metal cations form oxide of type MO. Copper forms two types of oxides *i.e.*, Cu_2O , CuO

Barium forms BaO

Silver forms Ag_2O

Lead forms PbO, PbO₂

Hence, silver cannot form MO type of oxide because it forms monovalent cation $(Ag^{+i.i.})$.

35 **(d)**

Cinnabar is HgS.

36 **(d)**

Following reaction takes place during bessemerisation $2 Cu_2O + Cu_2S \longrightarrow 6 Cu + SO_2$

37 **(c)**

Corrosive sublimate is $HgC l_2$ because it has corrosion nature and sublimation nature.

38 **(a)**

Actinides have variable valency due to very small difference in energies of 5f, 6d and 7s orbitals

39 **(b)**

3d-series contains $_{21}$ Sci_{30} Zn in all 10 elements.

40 **(d)**

Natural radioactivity is not a characteristic of transition elements.

General properties of transition elements are

- (i) Formation of coloured salts
- (ii) Formation of complex salts
- (iii) Magnetic properties
- (iv) Formation of interstitial compounds
- (v) Formation of alloys etc.
- 41 **(c)**

 $HgC l_2$ is dangerous poison; the antidote being white of an egg which is coagulated by the salt in the system and is eliminated by the system with salts absorbed in it, also Hg itself is very poisonous.

42 **(b**)

 $4 Ag + 8 NaCN + 2 H_2 O + O_2 \longrightarrow 4 Na \left[Ag(CN)_2 \right] + 4$

43 **(c)**

Calamine is the carbonate ore of zinc ($ZnCO_3$).

44 **(d)**

Due to shielding effect.

45 **(b)**

Both show +8 oxidation states.

46 **(a)**

When I^{-il} is oxidised by MnO_4^{-il} in alkaline medium I^{-il} converts into IO_3^{-il} .

2KMnO₄ + H₂O alkaline 2MnO₂ + 2KOH + 3[O]
KI + 3[O]
$$\longrightarrow$$
 KIO₃

Hence,

$$2KMnO_4 + KI + H_2O \longrightarrow 2KOH + 2MnO_2 + KIO_3$$

47 **(c)**

$$4\operatorname{\mathit{Fe}}\big(\operatorname{\mathit{Cr}}O_{2}\big)_{2} + 8\operatorname{\mathit{K}}_{2}\operatorname{\mathit{C}}O_{3} + 7\operatorname{\mathit{O}}_{2} \longrightarrow 8\operatorname{\mathit{K}}_{2}\operatorname{\mathit{Cr}}O_{4} + 2\operatorname{\mathit{F}}$$

$$2 K_2 Cr O_4 + H_2 SO_4 \longrightarrow K_2 C r_2 O_7 + K_2 SO_4 + H_2 O$$

48 **(c)**

Tungsten steel contains 14–20% W, 3–8% Cr; used for high speed tools as well as for cutting purposes and maintain the cutting edge of the blade.

49 **(b)**

Cast iron or pig iron contains 2 to 4.5% of carbon. It is least ductile and least pure form of iron. It is brittle and cannot be welded.

50 **(c)**

Hg-alloys with other metals are called amalgams.

51 **(c)**

 $HgC l_2$ is dangerous poison, the antidote being white of an egg which is coagulated by the salt in the system and is eliminated by the system with salts absorbed in it, also Hg itself is very poisonous.

52 **(a)**

It is characteristic of Mn steel.

53 **(d**)

 $CO^{3+\delta\delta}$ have higher charge density than $CO^{2+\delta\delta}$, so $CO^{3+\delta\delta}$ is more stable in octahedral complexes.

(ii) Zn exhibits only +2 oxidation state. So,

$$Zn^{2+\frac{1}{6}} = [Ar]3d^{10}, 4s^0$$

Since, it does not contain any unpaired electron, its compounds are colourless.

- (iii) d-block elements are generally paramagnetic and sometimes diamagnetic, but not ferromagnetic.
- (iv) Osmium and ruthenium are VIII group elements, so can exhibit the highest oxidation state +8 in their oxides, e.g., OsO_4 .

Hence, statement 1 and 4 are correct.

54 **(d)** $2 FeSO_4 \Delta F e_2 O_3 + SO_2 + SO_3$.

55 **(d)**

Hydrometallurgy is based on reduction. In this process, more electropositive Zn metal is used to precipitate gold, silver etc. from their complex salt solutions.

$$2 K Au(CN)_2 + Zn \longrightarrow K_2 Zn(CN)_4 + 2 Au$$

 $2 Na Ag(CN)_2 + Zn \longrightarrow Na_2 Zn(CN)_4 + 2 Ag$

Alkali metals or aluminium can also reduce complex salts.

$$K_2 TiF_6 + 4K \longrightarrow 6KF + Ti$$

 $K_2 ZrF_6 + 2Al \longrightarrow 2AlF_3 + 2K + Zr$

56 **(b**)

As oxidation state increases, electronegativity increases thus acidic characteristic increases not basic.

57 **(d)**

Zr and Hf possess similar atomic size and hence are called twins of Periodic Table. It is due to lanthanide contraction.

58 **(c)**

Boron(B), aluminium(Al) and gallium, (Ga) are present in IIIA group. They show +3 oxidation state. While cerium(Ce) is a lanthanoid. It is present in lanthanide series. It shows +3 and +4 oxidation states.

60 **(b)** Iron carbide or Fe_3C .

61 **(b)**

2
$$Na[Ag(CN)_2] + Zn \longrightarrow N a_2 Zn(CN)_4 + 2 Ag$$

This is extraction of Ag by cyanide process.

62 **(c)**Constantan is an alloy of Cu and Ni.

63 **(a)**

Monel metal or constantan is an alloy of Cu, Ni, Fe, Mn.

64 **(d)**

It is a fact. Rest all are coinage metals.

65 **(d)** $HgC l_2 + 2 N H_3 \longrightarrow Hg(N H_3)_2 C l_2.$

66 **(b)**

Hydrometallurgy is the process of dissolving the

metal or its ore by the action of a suitable chemical reagent followed by recovery of the metal either by electrolysis or by the use of a suitable precipitating agent.

$$4 Au + 8 KCN + 2 H2O + O2 \longrightarrow 4 K [Au (CN)2] + 4 K$$
air

2*K*¿

67 **(c)** Pt is noble metal.

68 **(b)**

$$Zn(NO_3)_2 \longrightarrow ZnO + 2NO_2 + \frac{1}{2}O_2$$

69 **(b)**

$$Cu(NO_3)_2 \longrightarrow CuO + 2NO_2 + \frac{1}{2}O_2$$

72 (a)
$$NaCl + H_2SO_4 + K_2Cr_2O_7 \rightarrow CrO_2Cl_2 + K_2SO_4 +$$
 chromyl chloride

$$\mu = \sqrt{n(n+2)} = \sqrt{24}$$
$$\Rightarrow n^2 + 2n - 24 = 0$$

$$(n+6)(n-64)=0$$

[: n = -66not possible.]

Here, n is the number of unpaired electrons.

The electronic configuration of the metal ion M^{x+bb} is $Z(25) = 1 s^2, 2 s^2, 2 p^6, 3 s^2, 3 p^6, 4 s^2, 3 d^5$

Since, four unpaired electrons are present, the oxidation state must be +3.

$$\therefore Z^{3+\delta\delta}(25)=1s^2,2s^2,2p^6,3s^2,3p^6,3d^4$$

74 **(b)**

$$ZnSO_4 + 2 NaHCO_3 \longrightarrow ZnCO_3 + CO_2 + H_2O + N \in \mathbb{R}$$

75 **(c)**

$$Oil + H_2 : Ghee$$

$$(Unsaturated) \rightarrow (Saturated)$$

76 **(b)** Ag_2SO_4 contains $Ag^{+il}(4d^{10})$ and is colourless. CuF_2 contains $Cu^{2+il}(3d^9)$ and is coloured due to the presence of one unpaired electron in d-orbital of Cu^{2+il} .

 MgF_2 contains $Mg^{2+i,i}$ and is colourless n/2 CuCl contains $Cu^{+i,i}$ (3 d^{10}) and is colourless.

77 **(c)**Malachite is an ore of Cu containing $CuCO_3$. $Cu(OH)_2$ (green colour)

78 (c)
Pure copper as a cathode and impure copper as anode is used in refining of impure copper.

80 **(b)**Paramagnetism is shown by the positive ions of lanthanides except $L a^{3+\delta(4f^0)\delta}$ and $L u^{3+\delta(4f^{14})\delta}$. These

81 **(b)**

$$HgI_{2}+2KI \longrightarrow K_{2}HgI_{4}$$
soluble
$$HgI_{2}\Delta Hg+I_{2}$$

ions are diamagnetic

82 **(d)**Maximum axidation

Maximum oxidation state exhibited by d-block elements (O.S.) =no of ns electrons + no. of (n-1)d electrons.

(b)
$$O.S.=5+1=6$$

(d)
$$O.S=5+2=7$$

 $(n-1) d^5 n s^2$ configuration will achieve the highest oxidation state.

83 **(d)**

$$2 MnO_2 + 4 KOH + O_2$$
Fusion $2 K_2 MnO_4 + 2 H_2 O$

Oxidation number of Mn in
$$K_2MnO_4$$
 is $2 \times (1) + x + 4(-2) = 0$

$$x=+6$$

84 **(d)**

The process is called galvanisation and it protects iron from corrosion against the action of water and O_2 .

85 **(b)**Rest all are uses of Cu and its alloys.

86 (c)

$$4 A g + 8 C N^{-\dot{\iota} + 2 H_2 O + O_2 \longrightarrow 4 \left[A g | C N \right]^{-\dot{\iota} + 4 O H^{-\dot{\iota}}} \dot{\iota}}$$

This process is called cyanide process. It is used in the extraction of silver from argentite $(A g_2 S)$.

87 (d)

The refining of nickel is carried out by using CO. This process is called Mond's process.

88 **(c)**

Lanthanide contraction is due to the imperfect shielding of f-electrons due to the diffused shape of f-orbitals. Therefore, as the atomic number increases effective nuclear charge increases and this results in contraction of size of the 4f-subshell."

90 **(a)**

In Bessemer's converter impurities of C, Mn, Si, P in pig iron are oxidized to produce steel.

92 **(d)**

These are reasons for the given fact.

93 **(c)**

Philosopher's wool on heating with BaO at 1100° C produce $BaZnO_{2}$.

BaO+ZnO1100 °C $BaZnO_2$

95 **(b)**

Ferrous ion $(Fe^{2+i\lambda})$ changes to ferric ion $Fe^{3+i\lambda}$ on reacting with acidified H_2O_2 as.

$$2K_4[Fe(CN)_6] + H_2SO_4H_2O_2 \longrightarrow$$

$$2K_3[Fe(CN)_6] + K_2SO_4 + 2H_2O$$

Electronic configuration of $Fe^{3+i=i\hbar}$

$$1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5$$

Number of d-electrons = 5

Magnetic moment= $\sqrt{n(n+2)}$

$$=\sqrt{5(5+2)}=5.92BM$$

96 **(c)**

It reacts with alkalies and acids both.

98 **(c)**

Argentite Ag_2S Haematite Fe_2O_3 Malachite $Cu(OH)_2$. $CuCO_3$ Calamine $ZnCO_3$

99 **(d)**

ZnO is also called Chinese white.

101 (c)

-do-

102 (d)

The transition metals form a large number of interstitial compounds in which small atoms like

hydrogen, carbon, boron and nitrogen occupy interstitial sites in their lattices

103 **(b)**

It is a fact.

104 (c)

The presence of unfilled d-orbitals favours covalent bonding.

105 (c)

Fe does not show allotropy.

106 **(c)**

Acidified potassium dichromate is oxidized to unstable blue chromium peroxide, which is soluble in ether and produces blue coloured solution.

$$K_2 Cr_2 O_7 + H_2 SO_4 + 4 H_2 O_2 \longrightarrow 2 CrO_5 + K_2 SO_4 +$$

blue colour

107 **(c)**

$$A g_2 S + 4 KCN(aq.) \longrightarrow 2 K [Ag(CN)_2](aq.) + K_2 S$$

108 (a)

It is a fact.

109 **(a)**

It is a fact.

110 (d)

Strength of metallic bond depends upon number of unpaired electrons. As number of unpaired electrons increase, the bond strength also increases. So, Cr, Mo, show stronger bonding due to maximum number of unpaired electrons.

111 (d)

German silver contains Cu, Zn and Ni.

112 **(b)**

It is a fact.

113 (d)

The extraction to Cu metal involves bessemerisation. In this process, copper matte obtained from smelting transfered to a Bessemer converter (lined with silica) and a hot air blast is brown to obtain blister copper.

114 (d)

115 (a)

 CrO_3 dissolves in aqueous NaOH to give sodium chromate.

$$CrO_3 + 2 NaOH \longrightarrow Na_2 CrO_4 + H_2 O$$

Sodium chromate

116 **(c)**

Silver metal is obtained by Mac-Arthur Forrest process which is called cyanide process. The concentrated ore of argentite is treated with dilute NaCN solution and a current of O_2 is continuously passed. Silver sulphide goes into solution in the form of soluble complex sodium argentocyanide.

$$2Ag_2S+8NaCN+O_2+2H_2O \longrightarrow$$

$$4 Na[Ag(CN)_{2}]+4 NaOH+2 S$$

The soluble complex is treated with zinc dust, when silver gets precipitated.

$$2 Na[Ag(CN)_2] + Zn \longrightarrow Na_2$$

117 (d)

German silver alloy contains zinc, copper and nickel.

118 **(c)**

Follow electrorefining of Cu to get 100% pure Cu.

$$AgBr + 2Na_2S_2O_3 \longrightarrow Na_3[Ag[S_2O_3]_2] + NaBr.$$
Soluble

120 (a)

Invar is Ni-Fe alloy used in clock pendulum.

121 (d)

The basic character of hydroxides decreases from $La(OH)_3$ to $Lu(OH)_3$. Due to smaller size of Lu, the Lu— OH bond attains more covalent character.

122 **(b)**

It is called iodide of Millon's base.

123 **(a)**

It is a fact.

124 (a)

It is a fact.

125 **(b)**

Maximum oxidation state of transition metals = number of electrons in $(n-1 \dot{c} d)$ orbitals + number of electrons in ns orbital.

The electronic configuration of

Os=[xe]
$$4f^{14}$$
, $5d^6$. $6s^2$

- :. Maximum oxidation state 6+2=8
- ...The highest oxidation state exhibited by transition metal is +8 e.g., OsO_4 .

$$2 Cl_2 + HgO \longrightarrow Cl_2 O + HgCl_2$$
mercuric mercuric

128 **(a)** oxide chloride 3*d* is partially filled.

$$\mu = \sqrt{n(n+2)}$$

$$\Rightarrow \sqrt{15} = \sqrt{n(n+2)}$$

$$\therefore n = 3$$

130 **(c)**

These show fcc, hep and bcc structures.

131 (c)

Formation of coloured solution is possible when metal ion in the compound contains unpaired electrons $e \cdot g$.,

 Cu^{+il} :3 d^{10} 4 s^0 colourless Cu^{2+il} :3 d^9 4 s^0 blue

132 **(d)**

In wrought iron, carbon is present as Fe_3C (cementite) ie, iron carbide and graphite

- 133 **(d)** $[Ar]3s^{1}+3=Ti, \text{ it means } M^{3+i,i} \text{ from } Ti^{3+i,i} \text{ ion }$
- 134 **(b)** From $(n-1)d^{1} \dot{c}(n-1)d^{10}$.

135 **(d)**

Lanthanoid contraction is due to ineffective shielding produced by larger f-subshell.

136 **(c)**

Zr and Hf have similar radii, therefore they show similar properties

137 **(c)** $Fe^{2+i(3d^6)i}$ and $Fe^{3+i(3d^5)i}$ will

 $Fe^{2+\lambda(3d^6)\lambda}$ and $Fe^{3+\lambda(3d^5)\lambda}$ will show different magnetic moment.

The process of hardening the surface of wrought iron by depositing a surface layer of steel on it is called case-hardening. It is done by heating wrought iron in contact with potassium ferricyanide

Alternatively, case hardening can also be done by heating wrought iron with charcoal and then plunging it in a suitable oil

139 **(b)**

KMn O₄ has no unpaired electron. Rest all have unpaired electrons.

140 **(b)**

Colour of transition metal ion salt is due to d-d transition of unpaired electrons of d-orbital. Metal ion salt having similar number of unpaired electrons in d-orbitals shows similar colour in aqueous medium.

In $VOCl_2$ vanadium is present as $V^{4+i\cdot l}$ and in $CuCl_2$, copper is present as $Cu^{2+i\cdot l}$.

So,
$${}_{23}V=1 s^2$$
, $2 s^2 2 p^6$, $3 s^2 3 p^6 3 d^3$, $4 s^2$
 $V^{4+\lambda=1} s^2$, $2 s^2 2 p^6$, $3 s^2 3 p^6 3 d^4 \lambda$

$3d^1$

Number of unpaired electrons =1 and ${}_{29}$ Cu =1 ${}_{8}^{2}$, 2 ${}_{8}^{2}$ 2 ${}_{9}^{6}$, 3 ${}_{8}^{2}$ 3 ${}_{9}^{6}$ 3 ${}_{6}^{10}$, 4 ${}_{8}^{10}$ $Cu^{2+i=1s^{2},2s^{2}2p^{6},3s^{2}3p^{6}3d^{9}i}$

$$3d^9$$

11	11	11	11	1

Number of unpaired electron =1 Hence, $VOC I_2$ and $CuC I_2$ show similar colour.

141 **(b)**

 $Ag^{+i\cdot +e \longrightarrow Agi}$; finely divided Ag is black in colour and thus. $AgNO_3$ causes black stain on skin. It is therefore, called lunar caustic.

142 **(a)**Rest all properties are different.

143 **(a)**AgCl is called in ore form as horn silver.

144 (d)

$$N a_2 Cr O_4 + 2 AgN O_3 \longrightarrow A g_2 Cr O_4 + 2 NaN O_3$$

$$(n-1)d^8ns^2$$

$$(n-1)d^8$$
 $n s^2$

4(as in Ni)

$$(n-1)d^5ns^1$$

$$(n-1)d^5$$
 $n s^1$

6(as in Cr)

$$(n-1)d^3ns^2$$

$$(n-1)d^3$$
 $n s^2$

5(as in V)

$$(n-1)d^5ns^2$$

$$(n-1)d^3$$
 $n s^2$

7(as in Mn)

146 **(d)**

$$4 NaCN + A g_2 S \longrightarrow 2 NaAg (CN)_2 + N a_2 S$$

 Cr^{3+ii} is a more stable state (3 d^3 -configuration).

- 148 (c) Cu_2O is red oxide.
- 149 (a) MnO and $M n_2 O_3$ are basic, MnO_2 is amphoteric, $M n_2 O_7$ basic.

150 (d) Impurities of Cu and Ag from gold are removed by boiling impure gold with conc. H_2SO_4 and also by electrolytic method.

$$Cu+2H_2SO_4Heat\ CuSO_4+SO_2+2H_2O$$

 $2Ag+2H_2SO_4Heat\ Ag_2SO_4+SO_2+2H_2O$

This method is called parting. Conc. HNO₃ can also be used for this purpose.

- 151 (d) 4f and 5f-belongs to different shell, experience different amount of shielding.
- 152 (d) The magnitude of stability constants for some divalent metal ions of the first transition series with oxygen or nitrogen donor ligands increases in the

$$M n^{2+i < F e^{2+i < C o^{2+i < R o^{2+i < R}} e^{2+i < R} o^{2+i < R}} d^{2+i < R}$$

153 (a) Silver halides are photosensitive and are easily

reduced to Ag by mild reducing agent (hydroquinone, ferrous oxalate, etc.)

154 (a) Ammounium dichromate on heating gives N_2 gas which is also given by heating of NH_4NO_2 . $(NH_4)_2 Cr_2 O_7 \Delta Cr_2 O_3 + 4 H_2 O + N_2 \uparrow$ $NH_4NO_2\Delta 2H_2O+N_2\uparrow$

- 155 (c) $2 Au + 3 HN O_3 + 11 HCl \longrightarrow 2 HAuC l_4 + 3 NOCl + 6$
- 156 (d) Hg-alloys with other metals are called amalgams.
- 157 **(b)** In the blast furnace, iron oxide is reduced by

$$3Fe_2O_3+CO300-400^{\circ}C2Fe_3O_4+CO_2$$
 $Fe_3O_4+CO500-600^{\circ}C3FeO+CO_2$
 $FeO+CO700^{\circ}CFe+CO_2$

158 **(b)**

The higher the charge on the metal ion, smaller is the ionic size and more is the complex forming ability. Thus, the degree of complex formation decreases in the order

$$M^{^{4+\dot{\iota}>M\,O_2^{2+\dot{\iota}>M^{^{3+\dot{\iota}>MO_2^{2+\dot{\iota}}\dot{\iota}}\dot{\iota}}\dot{\iota}}\dot{\iota}}$$

The higher tendency of complex formation of MO_2^{2+ii} as compared to M^{3+ii} is due to high concentration of charge on metal atom M in $MO_2^{2+\delta\delta}$

159 (a) Stainless steel is an alloy of iron with chromium and nickel. Its composition is 82% Fe and 18% Cr +Ni. It resists corrosion and used for making automobile parts and utensils.

160 **(a)** It is a fact.

161 **(b)** Cr^{2+ii} and Fe^{2+ii} $Cr^{2+\dot{\epsilon}-3d^4\dot{\epsilon}}$

1	1	1	1	
			_	

(4 unpaired electrons)

 Fe^{2+i-3d^6i}

	11	1	1	1	1		
(4 unpaired electrons)							

162 **(b)**

 $HgCl_2$ is easily volatile. It is insoluble in water and soluble in acids

163 **(b)** In Cu configuration is $3d^{10}$, $4s^{1}$ and not $3d^{9}$, $4s^{2}$. In Cr configuration is $3d^5$, $4s^1$ and not $3d^4$, $4s^2$.

164 (c) Fe is in +2 oxidation state in Mohr's salt.

165 (c) Mn exhibits the maximum number of oxidation states. $Mn(Z=25)[Ar]3d^5.4s^2$

It can show +2, +3, +4, +5, +6 and +7 oxidation states.

166 **(c)**

Magnetic moment $(\mu) = \sqrt{n(n+2)}$ BM where, 'n' is the number of unpaired electrons.

$$_{23}V^{2+ii} = [Ar]3d^3$$
 (n=3)

$$_{24}Cr^{2+\dot{\iota}\dot{\iota}}$$
=[Ar]3 d^4 (n=4)

$$_{25}Mn^{2+ii}$$
=[Ar]3 d^5 (n=5)

$$_{26}Fe^{2+ii}$$
=[Ar]3 d^6 (n=4)

Hence magnetic moment will be maximum for $Mn^{2+\delta\delta}$ (equal to 5.92 BM).

167 **(b)**

The reaction,

$$2 FeS + 3 O_2 \longrightarrow 2 FeO + 2 SO_2 \uparrow$$

Occurs during roasting of pyrites ore. Roasting is the process of heating concentrated ore in the stream of air to convert it into oxide.

168 **(d)**

 $M n^{2+i \cdot V^{4+i \cdot Ti^{n+i} \cdot i}}$ and $C r^{3+i \cdot i}$ are stable oxidation state of respective elements.

169 (c)

$$CuSO_{4}\,1000\,K\,CuO\,+SO_{3}\,\uparrow$$

170 **(a)**

AgI is insoluble in NH_3 .

171 (d)

CdS is yellow in colour (Follow II gp qualitative analysis).

173 (c)

 $Fe(CNS)_3$ is a red-coloured substance.

174 **(d)**

 $Zn^{2+\delta\delta}$ ions have all paired electrons so, it is diamagnetic.

175 **(b)**

Elements belonging to gp.3 to gp.12 are d-block elements.

176 **(b)**

It is a fact.

177 (c)

The formation of thin layer of oxide makes it passive.

178 (d)

Cu; Removal of next electron takes place from 4 ssubshell and the removal of next electron takes place
from completely filled $3 d^{10}$.

179 **(a)**

It is a fact.

180 (d)

All are transition elements.

181 **(c)**

Mond's process involves extraction of Ni. $\iota+4CO335K\ni(CO)_4$ (Volatile);

 $\frac{1}{6}(CO)_4450 K \ni +4CO$

182 **(c)**

 Cu_2O is red oxide of Cu.CuO is black oxide of Cu.

183 (a)

 $M n^{7+i+3e \longrightarrow M n^{4+ii}i}$

 $M n^{7+i+5e \longrightarrow M n^{2+ii}}$

 $M n^{7+i+4} e^{\longrightarrow M n^{3+i}}$

 $M n^{7+i+e \longrightarrow M n^{6+ii}}$

184 **(b)**

 $Cu + O_2 + CO_2 + H_2O \rightarrow Cu(OH)_2 \cdot CuCO_3$

185 (a)

German silver is an alloy of Cu + Zn + Ni (2:1:1 respectively).

187 (a)

Ag is best conductor of electricity among all metals.

188 (d)

 $Cu^{^{2+\dot{\iota}+Fe}(CN)_{6}^{4-\iota \longrightarrow Cu_{_{2}}[Fe(CN)_{6}]\dot{\iota}}}$

189 **(b)**

Basicity of lanthanide hydroxides decreases along the lanthanides series from left to right

190 **(b)**

 $CuSO_4 + 4NH_4OH \longrightarrow Cu(NH_3)_4SO_4 + 4H_2O$

 $4 \ FeC \ l_3 + 3 \ N \ a_4 Fe (CN)_6 \longrightarrow Fe_4 \big[Fe (CN)_6 \big]_3 + 12 \ N$

 $CuSO_4 + aq. \longrightarrow CuSO_4.5 H_2 O_{Hydrated(l)}$

 $2 CuSO_4 + K_4 Fe(CN)_6 \longrightarrow Cu_2 Fe(CN)_6 + 2 K_2 SO_4$

191 (a)

Cerium is used in gas mantles, glass polishing and in pyrophasic alloys for lighter flints.

192 (a)

Gadolinium (Z=64) [Xe] $4f^7$, $5d^1$, $6s^2$ Lutetium(Z=71)[Xe] $4f^{14}$, $5d^1$, $6s^2$ Lawrencium(Z=103)[Rn] $5f^{14}$, $6d^1$, $7s^2$ Tantalum(Z=73) [Xe] $4f^{14}$, $5d^3$, $6s^2$ Hence, gadolinium has got incompletely filled f-subshell.

193 **(b)**

 $AgNO_3hvAg+NO_2+\frac{1}{2}O_2$; brown coloured bottles cut the passage of light through it.

194 **(b)**

Hg has low b.p. like other members of gp. 12.

196 **(d)**

Elements having electronegativity in the range of 1.35 $-\dot{c}$ 1.82 do not form stable hydride. Thus, leads to hydride gap. These are present in the middle of the Periodic Table *i.e.*, belongs to groups 7, 8 and 9.

197 (d)

Magnetic moment depends upon the number of unpaired electron.

 d^3 : 3 Unpaired electron

 d^2 : 2 Unpaired electron

d⁸: 2 Unpaired electron

d⁶: 4 Unpaired electron

198 (a)

The b.p. of Zn, Cd, Hg are 1193, 1040, 1129.7K, comparatively lower values, and are called volatile metals. These are therefore, purified by distillation.

199 (a)

The differentiating electrons enter the ns-orbital but they have configuration $(n-1)d^{10}ns^2$.

201 (c)

Many of the d-block (transition) elements and their compounds act as catalyst. Catalytic property is probably due to the utilisation of (n-1) d-orbitals or formation of interstitial compounds.

202 **(a)**

 $2 HgCl_2 + SnCl_2 \longrightarrow SnCl_4 + Hg_2Cl_2$ (white) $Hg_2Cl_2 + SnCl_2 \longrightarrow SnCl_4 + Hg_2$ (Grey)

203 **(b)**

Mohr salt is $FeSO_4$. $(NH_4)_2SO_4$.6 H_2O \therefore It is double salt having $FeSO_4 \land \c (NH_4)_2SO_4$.

204 (a)

Mn in $MnO_4^{-i,i}$ has +7 and Cr in CrO_2Cl_2 has +6

oxidation state, the highest for Mn and Cr respectively.

205 (c)

Lanthanides are the 14 elements of IIIB group and sixth period (At. no.=58 to 71) that are filling 4f-subshell of antipenultimate shell from 1 to 14. Actually, they are placed below the Periodic Table in horizontal row as lanthanide series.

206 (a)

When the quenched steel is heated to temperature below red hot and then allowed to cool slowly. It becomes soft. This process is known as annealing

207 (d)

It is a use of chrome alum.

208 (c)

We know that by reducing auric chloride by stannous chloride, the colloidal solution of gold is obtained. It is known as purple of cassius

209 **(b)**

 $2CuCl_2+SO_2+2H_2O\longrightarrow Cu_2Cl_2+2HCl+H_2SO$

210 (d)

C, Fe, Mg react with hot water to give H_2 .

211 **(b)**

Tungsten is the highest m.p. metal (3410°C).

212 (d)

Mercurous chloride (calomel) is prepared by heating $HgCl_2$ and Hg in iron vessel.

$$HgCl_2 + Hg \Delta Hg_2 Cl_2$$

It can also be prepared by the reduction of mercury (II) chloride by tin (II) chloride in a limited quantity. $2 HgCl_2 + SnCl_2 \Delta Hg_2 Cl_2 + SnCl_4$

213 (a)

It is a fact.

214 **(b)**

$$SO_3^{2-\iota+H_2O\longrightarrow SO_4^{2-\iota+2H^{-\iota}2i\iota}\iota}\iota$$

$$MnO_4^{-\iota+8H^{*\iota+5e\longrightarrow Mn^{2\iota+4H_2O\iota}\iota}\iota}\iota.$$

215 (c)

It is a fact.

216 (d)

The element having unpaired electron is paramagnetic. More the number of unpaired

electrons, more will be paramagnetic character.

Mn (25)=
$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^5$

∴5 unpaired electrons

Fe
$$(26)$$
= $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^6$

∴4 unpaired electrons

Ni (28)=
$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^8$

∴2 unpaired electrons

Cu (29)=
$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^{10}$

∴1 unpaired electrons

:. Mn has maximum and Cu has least paramagnetic property.

217 **(b)**

It is a reason for the given fact.

218 (c)

The cupellation step in Parke's process is used to purify Ag from lead.

219 (c)

It is a fact.

221 **(d)**

All are facts about Hg.

222 (a)

The most abundant transition metal is Fe.

223 (a)

All those inner-transition elements having +2 oxidation state, changes to +3, and act as reducing agents. While those having +4 tend to change to +3 and act as oxidizing agents. Therefore, $N p^{4+i \cdot i}$ acts as an oxidizing agent

224 (a)

Oxide of Mn in its intermediate oxidation state *i.e.*, +4 is MnO_2 . This is amphoteric in character.

225 **(c)**

Silver nitrate decomposes to silve nitrite on heating above its melting point $(212 \, ^{\circ}C)$.

$$2 AgNO_3$$
i 212 °C2 $AgNO_2$ + O_2

On heating above $450 \,^{\circ}C$ (red hot), silver nitrate decomposes to metallic silver, oxide of nitrogen and oxygen.

$$2 AgNO_3$$
 $\stackrel{?}{\circ}$ $450 \, {}^{\circ}C \, 2 \, Ag + 2 \, NO_2 + O_2$

226 **(a)**

 Cu^{2+ii} has one unpaired electron.

227 (d)

$ZnSO_4$ forms soluble zincates.	

228 **(d)**

Thermite is Fe_2O_3+Al used for welding.

229 (a)

 Cu_2O is called ruby copper.

230 **(c)**

Np and Puin $Np O_3^{+ii}$ and $Pu O_3^{+ii}$ oxocations show +7 oxidation state which are not so stable

231 (a)

Ammonia soda process is for manufacture of $N a_2 C O_3$.

232 (a)

Steel is the most important commercial variety of iron having percentage of carbon 0.25-2 (between cast iron wrought iron).

233 (c)

 $_{28}N\,i^{2+i\,i}$ has two unpaired electrons, $_{22}T\,i^{3+i\,i}$, has one unpaired electron.

235 (a)

Ionization energy increases along the period and therefore, they have lesser values than p-block and more value of IE than s-block elements.

237 (a)

Cu, Ag, Au group of element are called coinage metals as these are used in minting coins.

238 (a)

Cadmipone is $CdS + BaSO_4$.

239 (c)

Correct order of melting points is $Mn(1246 C) < Ti(1668 C) < V \approx Cr(1907 C)$

240 (d)

Actual composition of chromite ore $(FeC r_2 O_4)$ is FeO. Cr_2O_3 . In FeO, the oxidation state of Fe is +2 while in Cr_2O_3 , the oxidation state of Cr is +3.

241 **(b)**

$$HgO \Delta Hg + \frac{1}{2}O_2$$

242 (a)

Cast iron has the highest percentage of carbon. It contains 2 to 4.5 % of carbon along with impurities such as sulphur, silicon, phosphorus etc. It is the least pure form of iron.

243 (a)

Argentite is Ag_2S .

244 (d)

$$2 HgS+3O_2 \longrightarrow 2 HgO+2 SO_2$$
,
 $2 HgO+HgS \longrightarrow 3 Hg+SO_2$

245 (a)

Transuranic elements start after uranium and begin with Np (Neptunium)

246 (a)

All these compounds are less soluble in water and only $Zn(OH)_2$ is soluble in NH_4Cl+NH_4OH due to formation of tetramine zinc (II) complex. $Zn^{2+i\cdot +4NH_4OH\longrightarrow \left[Zn(NH_3]_4\right]^{2+i\cdot +2H_3Oi}i\cdot}$

247 (d)

Transition metals can form ionic or covalent compounds and their melting and boiling points are high. Their compounds are generally coloured and they usually exhibit variable valency.

248 **(b)**

Both $KMn O_4$ and $FeC l_3$ are oxidant and thus, no reaction.

249 **(b)**

Alloy is a homogeneous mixture of two or more metals. Mercury forms amalgams (alloy) with gold, silver and tin. But it does not react with iron or platinum.

250 **(b)**

Purple of Cassius is the trade name for gold sol. in water.

252 **(d)**

Gd(64) $[Xe]_{54}$ $4 f^{7}$ $5 d^{1}$

11

All the electrons of 4f-orbital are unpaired, hence stable.

Thus, Gd(64) has EC as $|Xe|_{54} 4 f^7 5 d^1 6 s^2$ Instead of $|Xe|_{54} 4 f^8 6 s^2$

253 **(c)**

The electronic configuration of mercury (80) is [Xe] $4f^{10}$, $5d^{10}$, $6s^2$. Its *d*-subshell is completely filled, thus it prevents the overlapping of *d*-orbitals (d-d

overlapping).

Hence, it is liquid metal at room temperature.

254 (c)

Azurite is the ore of copper, its molecular formula is $Cu(OH)_2.2 CuCO_3$.

$$CrO_{4}^{2-i+2H^{+i}\rightarrow Cr_{2}O_{7}^{2-i+H_{2}O_{4}}}i$$

256 (d)

$$Zn+2HCl \longrightarrow ZnCl_2+H_2$$

 $Zn+H_2SO_4 \longrightarrow ZnSO_4+H_2$

$$4 Zn + 10 HN O_3 \longrightarrow 4 Zn (N O_3)_2 + N_2 O + 5 H_2 O$$

Thus, NO_3^{-il} ions are reduced to N_2O whereas in first two reactions H^{+il} is reduced to H_2 .

257 **(b)**

Siderite — $FeCO_3$, calcite (or limestone) — $CaCO_3$, silver glance(or argentite) — Ag_2S , fool's gold (or iron pyrites) — FeS_2 .

258 **(c)**

$$3 Fe + 4 H_2 O \longrightarrow F e_3 O_4 + 4 H_2$$

259 (d)

In the electrolytic refining of zinc, anode is made up of impure zinc while a strip of pure zinc acts as cathode. An acidified solution of zinc sulphate acts as electrolyte. When electricity is passed, following reactions occur.

At cathode

$$Zn^{2+i+2e^{-i\rightarrow z_n i}}$$

pure

At anode

$$Zn \longrightarrow Zn^{2+i+2e^{-ii}i}$$

impure

261 **(b)**

Ni combines with CO to form volatile $\mathcal{L}(CO)_4$ which decomposes to give pure Ni metal and CO on heating. $\mathcal{L}(CO)_4$ Heat \Rightarrow + 4 CO \uparrow

Volatile metal

262 (c)

In Bessemer's converter impurities of C, Mn, Si, P in pig iron are oxidized to produce steel.

263 **(b)**

j

264 (d)

Due to lanthanide contraction there occurs net decrease in size. Only one 0.85 Å is smaller one.

265 **(a)**

When oxyhaemoglobin changes to deoxyhaemoglobin, $Fe^{2+i\delta}$ ion changes from diamagnetic to paramagnetic.

266 (c)

Zn blende is ZnS.

267 (d)

Transitional metal ion having unpaired electrons are coloured while those which have no unpaired electron are colourless.

$$TiF_6^{2-\frac{1}{6}}$$

 $Ti^{4+i.i}$:[Ar]3 d^0 ;0 unpaired electrons; colourless Cu_2Cl_2

 Cu^{+il} :[Ar]3 d^{10} ;0 unpaired electrons; colourless CoF_6^{3-il} ,

 CO^{3+il} :[Ar]3 d^6 ;4 unpaired electrons; coloured $NiCl_4^{2-il}$

 ζ^{2+ii} :[Ar]3 d^8 ;2 unpaired electrons; coloured

268 (d)

$$Ti:3d^{2}4s^{2}; V:3d^{3}4s^{2}; Cr:3d^{5}4s^{1};$$

 $Mn:3d^{5}4s^{2};$
 $Ti^{2+\iota:3d^{2}; V^{3+\iota:3d'; Cr^{4+\iota 2}}\iota_{\iota}}$ $Mn^{5+\iota:3d^{2}\iota}$

269 (d)

$$Hg_2Cl_2+2NH_3 \longrightarrow HgNH_2Cl+Hg+NH_4Cl$$

white black

270 **(b)**

Molybdenum steel is resistant to acid.

271 **(b)**

A characteristic of transition elements.

272 **(c)**

A characteristic hydride formation by d-block elements.

273 **(a)**

RBCs contain Fe in haemoglobin.

275 (d)

Pt is a noble metal.

276 **(c)**

ZnS (white), is precipitated in weak acidic medium

solution.

277 **(b)**

Zn, Cd, Hg are d-block elements but not regarded as transition elements because these do not have partially filled d-orbitals in their most common oxidation states

278 **(b)**

The solubility order is $AgF > AgCl > AgBr > AgI > Ag_2S$

279 **(b)**

Brass is an alloy of copper and zinc (60- $\dot{\epsilon}$ 80% Cu and 40 $-\dot{\epsilon}$ 20% Zn).

- 280 (c) $F \rho^{2+\hat{\lambda} \longrightarrow F} e^{3+\hat{\lambda}+e;Mn^{2\pi i} \hat{\lambda} Mn^{2\pi i} \hat{\lambda}} \hat{\lambda}$
- 281 **(b)**

Ag salts on strong heating form Ag.

282 **(b)**

Mond's process involves extraction of Ni. $\dot{c}+4CO335K\ni (CO)_4 \text{ (Volatile)};$ $\dot{c}(CO)_4 450K\ni +4CO$

283 **(c)**

 $2 F e_2(SO_4)_3 + 3 K_4[Fe(CN)_6] \longrightarrow F e_4[Fe(CN)_6]_3 + (Prussian i)$

284 (c)

German silver is an alloy of copper, zinc and nickel. It is used in utensils and resistance wire.

285 **(b)**

Due to the formation of $CuCO_3$. $Cu(OH)_2$; green

286 **(b)**

It is a reason for the given fact.

287 (a)

 $FeSO_4$ is mostly used in manufacture of blue-black ink, as a mordant in dyeing and tanning industries.

It is a trade name for $CuSO_4.5H_2O$.

289 (a) The elements having incomplete d-

The elements having incomplete d-orbital can show variable oxidation state (because the electrons move the two levels of d itself)

- ∴Zn has completely filled d-orbital.
- ...It does not show variable oxidation state. It always show +2 oxidation state.
- 291 **(b)**It is a fact.
- 292 **(b)**

 $Ag_2O\Delta 2Ag + \frac{1}{2}O_2$

293 **(a)**

Calamine $(ZnCO_3)$ is an ore of zinc.

294 **(b)**

Haematite $(F e_2 O_3)$ having FeO is first oxidized to $F e_2 O_3$ and then reduced to Fe by Co.

295 **(b)**

 MnO_2 forms amphoteric oxide due to intermediate oxidation state

296 **(d)**

Ir does not dissolve in aqua regia as it is much more noble than Au and Pt

297 **(d)**Hg has +1 oxidation state in Hg_2Cl_2 .

298 **(b)**

- [$Co(NH_3)_5 Cl$] Cl_2 ionizes to i and Cl^{-ii} . These $2Cl^{-ii}$ react with Ag^{+ii} to form white ppt. of AgCl.
- 299 **(d)**All are facts.
- 300 (a) $K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2 \rightarrow K_2SO_4 + 2CrO_5 + 5$
- 301 (a) White vitriol is $ZnSO_4.7H_2O_1$
- 302 **(a)**No in iron complex has +1 oxidation number.
- 303 **(b)** $M n^{2+i \cdot i}$ is most stable as it has half-filled *d*-orbitals.
- 304 (c) $ZnCl_{2} \cdot 2H_{2}O\overrightarrow{\Delta}Zn(OH)Cl + HCl + H_{2}O$ $Zn(OH)Cl \rightarrow ZnO + HCl$
- 305 (c) $3 Fe(CN)_2 + 4 Fe(CN)_3 \rightarrow Fe_4[Fe(CN)_6]_3 \text{ or}$

 $Fe_7C_{18}N_{18}$

Prussian blue

306 **(a)**

 CrO_4^{2-ii} has no unpaired d-ielectron.

307 (a)

 $La(OH)_3$ is more basic than $Lu(OH)_3$. This is because ionic size of $La^{3+\delta\delta}$ ion is more than $Lu^{3+\delta\delta}$ ion

308 (d)

Cerium is commonly used in manufacture of alloys of lanthanide. It is also used in dying cotton or fabrics, for scavenging oxygen and sulphur from other metals and also used as catalyst.

309 (a)

—do—

310 **(d)**

It is a reason for the given fact.

311 **(d)**

It is a fact.

312 **(b)**

Zn does not show corrosion.

313 (c)

The process is called hardening of steel and it develops hard and brittle nature in steel.

314 (c)

Lowest m.p. among all metals is of Hg (-38.9°C).

315 (d)

The temperature of the slag zone in the metallurgy of iron using blast furnace is $800-1000^{\circ}$ C.

316 **(b)**

The phenomenon is called spitting of Ag.

317 (c)

 Cu_2O has completely filled $d-\dot{c}$ orbitals in $Cu^{+\dot{c}\dot{c}}$ and thus, does not show (d-d) transition.

318 (c)

 $Hg(OH)_2$ does not exist.

319 (d)

 $K_2 Hg I_4$, a colourless complex, is formed, 4 $KI + HgC l_2 \longrightarrow K_2 Hg I_4 + 2 KCl$

320 (a)

The atomic weight of Co, Ni and Fe are 59.90, 58.60, 55.85 respectively. Therefore, Co > Ni > Fe is the correct sequence of atomic weights

321 **(a)**

Silver nitrate is commercially known as lunar caustic.

322 **(b)**

The complex formed is $Ag(NH_3)_2Cl$ which ionizes in $Ag(NH_3)_2^{+i.i}$ and $Cl^{-i.i}$.

323 **(b)**

Fe is ferromagnetic, i.e., retains magnetic properties if field is removed

324 (d)

Zinc sulphate $(ZnSO_4 \cdot 7H_2O)$ is called white vitriol. It when heated with barium sulphide, forms a white pigment lithopone

325 (c)

This is definition of tempering of steel. The product obtained is neither so hard nor so brittle. It is softer than steel.

326 **(b)**

"925 fine silver" means 925, parts of pure Ag in 1000 parts of an alloy. Therefore, in percentage it will be 92.5% Ag and 7.5% Cu

327 (c)

It is a property of $ZnCl_2$.

328 (d)

AgBr, silver bromide is used in photography.

329 (d)

Brass is an alloy of Cu and Zn.
Bronze is an alloy of Cu and Sn.
German silver is an alloy of Cu, Zn and Ni.
Hence, Cu is the common metal in brass, bronze and German silver.

331 (c)

Among the given, manganese has the most stable electronic configuration, thus it is very hard to remove an electron from is outer shell. Hence, a large amount of energy is required. Therefore, manganese has the maximum first ionization potential

332 (c)

It is a fact.

333 **(b)**

Vitamin B_{12} is $C_{63}H_{88}Co N_{14}O_{14}P$.

334 (d)

By white tin plating, iron can be protected by water

335 (a)

$$2 KMnO_4 + 2 KOH \longrightarrow 2 K_2 MnO_4 + H_2 O + O$$

or $MnO_4^{-\dot{\iota} + e \rightarrow MnO_4^{2-\dot{\iota}\dot{\iota}}\dot{\iota}}$.

336 (a)

Zn acts as cathode and carbon as anode in dry cells.

337 (a)

Annealing is the process of cooling a hot molten metal slowly. Railway wagon axles are made by heating iron rods embeded in charcoal powder (annealing) so that those might not break due to sudden change in temperature.

338 (a)

The methods chiefly used for the extraction of lead and tin from their ores are respectively self reduction and carbon reduction. (Because the process of heating the ore strongly in the presence of excess of air is called roasting. It is mainly used in case of sulphide ores and the process of extracting a metal by fusion of the oxide ore with carbon is known as smelting.)

339 (d)

The general electronic configuration for lanthanides is $[Xe](n-2i f^{1-14}(n-1)d^{1}n s^{2}.$

- \therefore After the loss of both of the 6 s-electrons and also the solitary d-electrons, the lanthanoids gain stable configurations.
- \therefore (+3) oxidation state is most common among lanthanides.

340 (d)

- A) There is gradual decrease in the radii of the lanthanoids with increasing atomic number-a case of lanthanide contraction, thus true.
- B) Ionization potential for the formation of $Lu^{3+\delta\delta}$ is comparatively low, hence +3 state is favourable, thus true.
- C) Due to lanthanide contraction -&Zr and Hf; Nb and Ta, Mo and W have the same size and thus similar propertites and thus separation is not easy, thus true.
- D) Formation of +4 state requires very high energy, thus incorrect.

341 (c)

After smelting in blast furnace, the slag is removed

from slag hole of the furnace while a molten mass containing mostly $Cu_2S+\dot{c}$ little FeS is called matte; it contains 80% metal.

342 (c)

There is very small difference in energies of 5f, 6d and 7s orbitals of actinoids, therefore their electronic configuration cannot assigned with a degree of certainty

343 **(d)**

In Mac-Arthur-Forrest method silver is extracted from the solution of sodium argentocyanide by using zinc.

$$2 Na[Ag(CN)_2] + Zn \longrightarrow Na_2[Zn(CN)_4] + 2 Ag \downarrow$$

345 (d)

It is Mn and exhibits +7 oxidation state.

346 (d)

The size of lanthanides are smaller than expected. This is associated with the filling with the filling up of 4f orbitals which must be filled before the 5d orbitals. The electrons in f-orbitals are not effective in screening other electrons from the nuclear charge

347 **(b)**

 $Ag^{+i+e \longrightarrow Agi}$; finely divided Ag is black in colour and thus. $AgNO_3$ causes black stain on skin. It is therefore, called lunar caustic.

348 **(a)**

Due to $3d^5$ configuration.

349 (c

 $Gd = [Xe] 4 f^7 5 d^1 6 s^2,$ $G d^{3+\delta=|Xe|} 4 f^7 \delta$ (half-filled)

350 **(a)**

 $3 Hg + 8 HN O_3(dil.) \longrightarrow 3 Hg(N O_3)_2 + 2 NO_{Soluble \land washe}$

351 **(d)**

 $E^{\circ}_{OPof Hg} > E^{\circ}_{OPof H}$. Thus, Hg is less reactive than H_{2} .

352 **(a)**

Brass is an alloy of Cu + Zn (60-80% + 40-20% respectively).

353 (a)

Maximum number of unpaired electrons are in Mn.

355 (d)

It is a use of Ti alloys.

356 **(c)**

Ore Chemical composition

Cuprite Cu₂O

Chalcocite Cu₂S

Chalcopyrite CuFeS₂

 $Malachite Cu(OH)_2$. $CuCO_3$

In these ores, chalcopyrite ($CuFeS_2$) Contains both iron and copper.

357 **(c)**

Potassium dichromate, on heating give oxygen and chromic oxide $[Cr_2O_3]$

$$4\,K_{2}C\,r_{2}O_{7}\Delta\,4\,K_{2}Cr_{2}O_{4} + 3\,O_{2} + 2\,C\,r_{2}O_{3}$$

358 **(b)**

$$3 KCNS + FeC l_3 \longrightarrow 3 KCl + Fe(CNS)_3$$
.

Blood-i colour

359 **(a)**

Fe, Co, Ni are called ferrous metals.

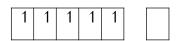
360 (d)

$$A q^{+i+e \longrightarrow Agi}$$
, i.e., $A q^{+ii}$ is reduced.

361 **(d**)

Most of the transition metal cations are coloured.

362 (a)


 $Ag(CN)_2^{-i\cdot i}$ does not contain unpaired electrons.

363 (d)

It is a fact.

364 **(d)**

In
$$MnSO_4.4H_2O$$
, Mn is present as $Mn^{2+i\delta}$
 $Mn^{2+i\delta} = 3d^5 4s^0$

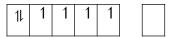

(Unpaired electrons =5)

In $CuSO_4.5H_2O$, Cu is present as $Cu^{2+i.i}$

$$Cu^{2+i\cdot i}=$$

$$3d^9$$

$$4s^0$$



(Unpaired electrons =1)

In $FeSO_4$.6 H_2O , Fe is present as $Fe^{2+i\delta}$

$$Fe^{2+i=3d^6i}$$

$$4s^{\circ}$$

(Unpaired electrons =4)

In $NiSO_4.6H_2O$ Ni is present as $\zeta^{2+\ell\ell}$

$$i^{2+ii} = 3d^8$$

$$4s^0$$

(Unpaired electrons =2)

Since, paramagnetic character \propto unpaired electrons . Thus, $CuSO_4.5H_2O$ has the lowest degree of paramagnetism among the given at 298 K.

365 (a)

HgS is insoluble in hot dil. HNO_3 .

366 (c)

A number of molybdic acids are known $H_2Mo O_4$, $H_6M o_7 O_{24}$.

367 (a)

$$H g_2 C l_2 \Delta Hg + Hg C l_2$$

368 **(b)**

It is a fact.

369 (a)

AgBr decomposes on exposure to light.

370 (c)

Hg is volatile metal.

371 **(a)**

In amalgam, Hg has zero oxidation state.

372 (c)

Haematite contains SiO_2 (acidic) non-fusible impurity and this basic flux $CaCO_3$ is used. $CaCO_3 \longrightarrow CaO + CO_2$, $CaO + SiO_2 \longrightarrow CaSiO_3$

373 **(a)**

Cu forms $Cu(NH_3)_4^{2+ii}$ complex.

374 (d)

It is a reason for given fact.

375 **(b)**

Permanent magnets are generally made up of alloys of Al, Ni and Co

376 (d)

ZnS is white. (Follow II gp. qualitative analysis).

377 (c) $H g_2 c l_2 + 2N H_4 OH \longrightarrow \underbrace{Hg + Hg(N H_2)Cl}_{f} + N H_1$ 391 (d)

378 (a)

The chemical formula for ammonium molybdate is $(N H_{4})_{2} Mo O_{4}$.

379 (a) It is a reason for the given fact.

380 (a) The electronic configuration of $_{62}Sm^{3+44}$ is $4f^4$ and that of $_{66}Dy^{3+ii}$ is $4f^9$. The colour of f^n and f^{14-n} are often identical

381 (c) Cassiterite is an ore of Sn.

382 **(b)** $CuSO_4 + 4NH_3 \rightarrow \left[Cu(NH_3)_4 \right]^{2+i SO_4^{2-i}}$

383 (c) Pig iron is formed during metallurgical operations. All other forms are then prepared by using it.

384 (c) —do—

390 (c)

385 (c) An element is paramagnetic if it has unpaired electron.

386 **(b)** Commercial zinc, about 97% pure containing lead and other impurities is called spelter.

387 (a) ZnO is known as philosopher's wool because it is very light, white, soft wooly powder.

388 (a) The density of transition elements gradually increases along the period or in a series, e.g., 3d-series: $_{21}Sc(3.0g/mL)$ to $_{29}Cu(8.9g/mL)$. $_{30}Znhas 7.1g/mL$.

389 **(b)** Silver containing lead as impurity is purified by cupellation process.

Pig iron contains about 4% carbon. P, Mn and Si are in less percentage.

The electronic configurations of $Cu^{2+\delta\delta}$ is Cu^{2+i} :[Ar] $3d^9$

Hence, it has one unpaired electron.

Magnetic moment($\mu \dot{c} = \sqrt{n(n+2)}$ $\sqrt{1(1+2)}$

=1.73

392 **(b)**

Ni-steel contains 3.5% Ni and is used in making cables, automobiles and aeroplane parts, armour plates, propeller shafts, etc.

393 (c) Hg exists as Hq_2^{2+ii} and not Hq^{+ii} .

394 (a) CrO_3 and Mn_2O_7 are acidic oxide. Since, they react with water and form the acids.

 $e.g., CrO_3+H_2O\longrightarrow H_2CrO_4$ chromic acid $Mn_2O_7 + H_2O \longrightarrow 2HMnO_4$ permanganic acid

395 (d)

Copper metallurgy involves bessmerization. In Bessemer convertor, the impurities of ferric oxide forms slag with silica and copper oxide is reduced to give blister copper.

 $FeO+SiO_2 \longrightarrow FeSiO_3$

 $Cu_2S+2Cu_2O\longrightarrow 6Cu+SO_2$

396 (c) It is a fact.

397 **(b)** It is a fact $4 Au + 8 KCN + 2 H_2 O + O_2 \longrightarrow 4 K [Au(CN)_2] + 4 K$ $2K[Au(CN)_2 + Zn \longrightarrow K_2[Zn(CN)_4] + 2Au$

398 (b) The chief ore of copper is copper pyrite, $CuFeS_2$.

400 (a) Transitional metal ions having electronic configuration $(n-1)d^0 \vee (n-1)d^{10}$ are colourless while those have $(n-1)d^{1-9}$ are coloured.

 $Cu^{+i:[Ar]3d^{10}:colourlessi}$

 $Cu^{2+i:[Ar]3d^9:colouredi}$

 $Fe^{2+i\cdot[Ar]3d^6:colouredi}$

 $Mn^{2+i:[Ar]3d^5:colouredi}$

401 **(b)**

It is a reason for the given fact.

402 (a)

Transition metal which have low oxidation number acts as reducing agent because of greater tendency to lose the electron. Moreover, they behave like a base

403 (a)

The composition of bell metal is Cu (80%) and Sn (20%).

404 **(c)**

The main characteristic feature of transition elements.

406 **(d)** $\mu = \sqrt{n(n+2)} = \sqrt{15}$ ∴n = 3

Thus, 3 unparied electron in $_{24}$ M, i.e., $_{24}$ M^{3+ii} , or $1s^2$, $2s^22p^6$, $3s^23p^63d^3$ for Cr^{3+ii} .

407 **(b)**

Density of transition elements increases along the period.

408 **(d)**

 $AuCl_3hv \lor \Delta AuCl + Cl_2$

409 (c

White vitriol is $ZnSO_4.7H_2O$.

410 (a)

 $Zn+2NaOH \longrightarrow N a_2ZnO_2+H_2$

411 **(b)**

 $KI + AgN O_3 \longrightarrow AgI + KN O_3$

412 **(b)**

Wrought iron is the purest form of iron.

413 **(c**)

Rest all form nitrides as AlN, $M g_3 N_2$, $C a_3 N_2$.

414 (c)

Yellow colour of the potassium chromate changes to orange on acidification. It is due to the formation of

dichromate ions

 $2CrO_4^{2-} + 2H^{+}$ acid $Cr_2O_7^{2-} + 2H_2O$ yellow orange

415 **(b)**

The Stability of $Cu^{2+i\cdot l}$ (aq) rather than $Cu^{+i\cdot l}$ (aq) is due to much more negative $\Delta_{hyd}\,H^0$ of $Cu^{2+i\cdot l}$ (aq) than $Cu^{+i\cdot l}$, which more than compensates for 2nd ionization enthalpy of Cu.

416 (c)

At the bottom: 1775K.

417 **(d)**

 $2Fe+3Cl_2\Delta 2FeCl_3$

418 **(a)**

Green vitriol is $FeSO_4.7H_2O$.

419 **(a)**

It is a fact.

420 **(d)**

 $4 Au + 8 CN^{-\iota + 2 H_2O + O_2 \longrightarrow 4 \left[Au(CN)_2 \right]^{-\iota + 4OH^{-\iota} \iota} \iota$ soluble $2 \left[Au(CN)_2 \right]^{-\iota + Zn \longrightarrow 2 Au(s) \downarrow + \left[Zn(CN)_4 \right]^{2-\iota \iota} \iota$

421 (a)

3d-series conatins $_{21}Sc$ to $_{30}Zn$; 4d-series contains $_{39}Y$ to $_{48}Cd$ and 5d-series contains $_{57}La$ and $_{72}Hg$ to $_{80}Hg$; 6d-series contains $_{89}Ac$, $_{104}Ku$ and $_{105}Ha$.

423 **(c)**

 $_{92}U$ is a member of actinoid series (90 to 103).

424 (c)

"All their ions are colourless" this sentence is false because they are 90% coloured and only few are colourless

425 (d)

These are facts about sterling silver.

426 **(b)**

Steel or iron containing excessive quantities of S is brittle while hot (hot or red short), whereas excessive quantities of phosphorus make it brittle white cold (cold short).

427 **(b)**

 $_{29}Cu:1s^2,2s^22p^6,3s^23p^63d^{10},4s^1i.e.,14$ electrons have spin in one direction and 15 in other

direction.

428 (a)

$$Fe^{2+i=[Ar]3d^64s^0\Rightarrow 4i}$$
 unpaired electrons $Cu^{+i=[Ar]3d^{10}4s^0\Rightarrow 0i}$ unpaired electrons $Zn=[Ar]3d^{10}4s^2\Rightarrow 0$ unpaired electrons $Ni^{3+i=[Ar]3d^74s^0\Rightarrow 3i}$ unpaired electrons

429 (d)

$$E^{\circ}_{OP \, of \, Na} > E^{\circ}_{OP \, of \, Zn}$$
.

430 **(b)**

Lanthanide contraction, cancels almost exactly the normal size increase on descending a group of transition elements, thus Nb and Ta, Zr and Hf have same covalent and ionic radii.

431 **(b)**

$$2 \operatorname{F} e_{2}(SO_{4})_{3} + 3 \operatorname{K}_{4}[\operatorname{Fe}(CN)_{6}] \longrightarrow \operatorname{F} e_{4}[\operatorname{Fe}(CN)_{6}]_{3} + 441 \text{ (c)}$$
The

432 (d)

In the iron silica is present as impurity, so for the removal of impurity of silica limestone is used. $CaCO_3\Delta CaO + CO_2$

$$\overrightarrow{CaO} + \overrightarrow{SiO}_2 \longrightarrow CaSiO_3$$
slag

433 **(b)**

 Cu^{2+ii} is discharged at cathode.

434 **(c)**

HCOOH is a reducing agent. $HCOOH + 2 HgCl_2 \longrightarrow H g_2 Cl_2 + 2 HCl + CO_2$

435 (c)

VOSO₄ is paramagnetic as well as coloured compound.

The oxidation state of vanadium in $VOSO_4$ is +4.

V [
$$Z$$
=23]=[Ar]3 d^34s^2
V^{4+ ii} [Z =23]=[Ar]3 d^14s^0

It has one unpaired electron hence, it is paramagnetic in nature.

436 **(c)**

Ferrous sulphate ($FeSO_4.7H_2O$) is known as green vitriol.

437 (c)

The reaction takes place in blast furnace are $3 Fe_2O_3 + CO \longrightarrow 2 Fe_3O_4 + CO_2$

$$CaCO_3 \longrightarrow CaO + CO_2$$

 $C + CO_2 \longrightarrow 2CO$
 $CaO + SiO_2 \longrightarrow CaSiO_3$
 $2C + O_2 \longrightarrow 2CO$

Hence, the reaction $2 Fe_2 O_3 + 3 C \longrightarrow 4 Fe + 3 CO_2$ does not take place in blast furnace.

438 (a)

Inner transition elements or f-block elements have 3 incomplete shells,

i.e.,
$$(n-2)s^2p^6d^{10}f^{1-14}$$
, $(n-1)s^2p^6$, ns^{1-2} .

439 (c)

This involves auto reduction.

440 (d)

Follow extraction of iron.

The gangue of FeO comes out as slag with acidic flux SiO_{2} .

442 (a)

Magnetic moment of $Zn^{2+i\mu_{effctive}} = \sqrt{n(n+2)}BM$ Where, n=number of unpaired electrons $_{30}$ Zn=1 s^2 , 2 s^2 , 2 p^6 , 3 s^2 , 3 p^6 , 3 d^{10} , 4 s^2 $Zn^{2+ii}=1s^2,2s^2,2p^6,3s^2,3p^6,3d^{10}$

So, magnetic moment of Zn^{2+ii} =zero.

443 (a)

Cu is present in all these alloys.

444 (c)

Au is a number of 5d-series. Fe, Co and Cu all are the members of 3d-series.

445 **(b)**

Azurite $[2CuCO_3.Cu(OH)_2]$ is an ore of copper.

446 **(b)**

It is a fact.

447 (a)

$$CuSO_4(anhydrous) + aq. \longrightarrow CuSO_4.5 H_2O(aq.)$$

448 (a)

Fe and Pt do not form amalgam with Hg.

449 (c)

Rest all are wrong reporting.

450 (d)

$$A g_2 S + 4 NaCN \longrightarrow 2 Na [Ag(CN)_2] + N a_2 S$$

 $2 Na [Ag(CN)_2] + Zn \longrightarrow N a_2 [Zn(CN)_4] + 2 Ag$

451 **(c)**

Cu is placed below H in electrochemical series.

452 **(b)**

Zn forms only Zn^{2+ii} ion.

453 (d)

All these protect iron against corrosion.

454 **(b)**

$$K_4[Fe(CN)_6] + 6H_2SO_4 + 6H_2O\Delta 2K_2SO_4 + FeSO_4 + 3(NH_4)_2SO_4 + 6CO\uparrow$$

455 (d)

Blister copper is obtained by the process of bessemerisation from the copper matte in the metallurgy of Cu. It is impure. Blister copper contains about 98 to 99% pure copper and 1 to 2% impurities like Ag, Au, Zn, Ni etc.

456 **(b)**

Magnetic moment depends upon number of unpaired electrons. In $Sc^{3+i.i}$, there is no unpaired electron. So, its effective magnetic moment is zero.

457 **(b)**

An impure sample of ZnS containing traces of MnS, CuS or Ag_2S , etc., is phosphorescent.

458 (d)

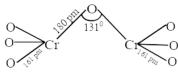
Pt dissolves in aqua regia
$$(HNO_3 + HCl)$$

 $3 HCl + HNO_3 \longrightarrow 2 H_2O + NOCl + 2 Cl$
 $Pt + 4 Cl \longrightarrow PtCl_4$;
 $PtCl_4 + 2 HCl \longrightarrow H_2 PtCl_6$.

459 **(b)**

Ru forms penta carbonyl.

460 (d)


The process of depositing a thin uniform layer of silver on clean glass surface is called silvering of mirror. The thin film is protected by coating of red lead and turpentine mixture.

$$2 AgN O_3 + 2 N H_4 OH \longrightarrow A g_2 O + 2 N H_4 N O_3 + H_4 OH \longrightarrow A g_2 O + 2 N H_4 OH$$

 $Ag_2O+HCHO \longrightarrow 2Ag+HCOOH$.

461 **(b)**

 $Cr_2O_7^{2-ii}$ has the structures.

462 **(c)**

Anode mud left during electrolytic purification of Cu contains Au and Ag.

463 **(b)**

24 carat gold means 100% Au.

464 **(a)**

$$2 KMnO_4 + 2 H_2 SO_4 \longrightarrow M n_2 O_7 + 2 KHSO_4 + H_2 C$$

465 **(c)**

Polymetallic carbonyls are also known for transition metals, .g., $Co_2(CO)_3$.

466 (a)

Due to loss of $n s^2$ -electrons.

467 (c)

Gun metal has a composition of Cu=88% Sn=10%, Zn=2%

468 **(b)**

It is a fact.

469 **(b)**

In water it gives $HMnO_4$ (an acid).

470 (a)

Corrosive sublimate gives black ppt. of calomel with formic acid but it does not react with acetic acid. $2 HCOOH + 2 HgCl_2 \longrightarrow Hg_2Cl_2 + CO_2 + H_2O$ $CH_3COOH + HgCl_2 \longrightarrow No reaction$

471 (a)

In basic medium, the following reaction takes place $2 \, KMnO_4 + 2 \, KOH \longrightarrow 2 \, K_2 MnO_4 + H_2O + [O]$ Due to the presence of nascent oxygen [O], $KMnO_4$ (in basic medium) behaves like an strong oxidizing agent.

472 **(d)**

3d, $4d \land 5d$ -series are complete and 6d-series incomplete.

473 **(b)**

The less electropositive metals such as Fe, Zn, Sn etc

are extracted from their oxides by reduction with carbon or coal.

$$Fe_2O_3+3C \longrightarrow 2Fe+3CO$$

 $Fe_2O_3+3CO \longrightarrow 2Fe+3CO_2$
iron

474 (c)

The electronic configuration of Mn is $_{25}$ Mn =[Ar] $3d^54s^2$ $Mn^{4+i.i}$ =[Ar] $3d^3$

Thus, three unpaired electrons are present. Spin only magnetic moment, $\mu = \sqrt{n(n+2)}$

$$n=3$$
 $μ=√3(3+2)$
 $=√15=3.87$
≈4 BM

475 **(a)**

It is a fact.

476 (a)

Due to poisonous nature of $HgCl_2$, its 0.1% solution is used as antiseptic for sterilizing hands and instruments in surgery.

477 **(a)**

$$Fe \longrightarrow Fe^{2+i+2ei}$$

478 (a)

 $Cu^{2+i.i}$ salts form chocolate brown ppt. of $Cu_2 Fe(CN)_6$ with $K_4 Fe(CN)_6$.

479 (c)

Mohr salt $\&(NH_4)_2SO_4$. $FeSO_4$.6 H_2O Here, Fe is present as $FeSO_4$. Therefore, its oxidation state can be calculated with in only $FeSO_4$. x+(-&2)=0 x=+2

481 **(b)**

Neodymium oxide $(N d_2 O_3)$ dissolved in selenium oxychloride is one of the most powerful liquid lasers known so far

482 (c)

A transition metal ion exists in its highest oxidation state. It is expected to behave as an oxidizing agent.

483 (a)

The ionisation energies increase with increasing atomic number. The trend is irregular among d-block

elements.

Ele	S	T	V	С	M	Fe	С	N	С	Z
me	c	i		r	n		o	i	u	n
nt										
IE(6	6	6	6	7	76	7	7	74	90
kJ/n	3	5	5	5	1	2	5	3	5	5
	1	6	0	2	7		8	6		

 \therefore Zn>Fe>Cu>Cr is correct order.

484 **(a)**

It is a reason for the given fact.

486 (c)

These are uses of Ag.

487 **(b)**

In acidic medium, $KMn O_4$ gives 5 oxygen while, acidic $K_2 C r_2 O_7$ gives 3 oxygen

488 **(d)**

$$Zn+2NaOH \longrightarrow N \ a_2ZnO_2+H_2;$$

 $2Al+2NaOH+2H_2O \longrightarrow 2NaAlO_2+3H_2$

489 (c)

The ability of transition elements to adopt multiple oxidation states and complexing ascribed their catalytic activity

$$6e + Cr_2^{6+i \longrightarrow 2Cr^{3+i;S^{3-i-\theta+2ei}i}i}$$

$$Zn+2H_2SO_{(Conc.)}^4 \longrightarrow ZnSO_4+2H_2O+SO_2$$

492 (c)

Carbon is generally used for the reduction of oxides of moderately reactive metals like Fe, Zn, etc. *e.g.*, $Fe_2O_3+3C\longrightarrow 2Fe+3CO$

Note Highly reactive metals like Na are produced by electrolytic reduction while less reactive metals like Ag and Hg are obtained by autoreduction.

493 (a)

Except Au all other metals, i.e., Ag, Hg and Cu are dissolved in conc. H_2SO_4 or conc. HNO_3 . The compound X is $AuCl_3$ which forms a complex with HCl.

 $AuCl_3 + HCl \longrightarrow H[AuCl_4]$

It is used for toning in photography.

494 (c)

Lithopone is used as white pigment and contains $ZnS + BaSO_{4}$

495 (c)

 $_{21}Sc(3d^{1}4s^{2})$ has no unpaired electron in Sc^{3+ii} ion.

497 (c)

-do-

498 **(b)**

4f-level is successively filled in lanthanoids and 5flevel is successively filled in actinoids.

499 (b)

$$2 Mn O_2 + 4 KOH + O_2 \longrightarrow 2 K_2 Mn O_4 + 2 H_2 O_1$$

500 **(c)**

Haematite conatins SiO₂ (acidic) non-fusible impurity and this basic flux $CaCO_3$ is used. $CaCO_3 \longrightarrow CaO + CO_2$ $CaO + SiO_2 \longrightarrow CaSiO_3$.

501 (a)

$$CuSO_4 + 2 KCN \longrightarrow K_2 SO_4 + Cu(CN)_2$$
 cupric cyanide

(unstable)

$$2Cu(CN)2 \longrightarrow 2CuCN + (CN)_2$$

white ppt

$$3 KCN + CuCN \longrightarrow K_3 [Cu(CN)_4]$$

potassium cuprocyanide (soluble complex)

502 (c)

$$Ti^{3+\iota \to 3d^{1},4s^{0}\iota}$$

$$Sc^{3+\iota \to 3d^{0}\iota}$$

$$M n^{2+i \rightarrow 3d^5, 4s^0i}$$

$$Zn^{2+i \to 3d^{10}, 4s^0i}$$

In $M n^{2+i \cdot i}$ number of unpaired electrons = 5. So, it has maximum magnetic moment according to the formula

$$\mu = \sqrt{n(n+2)}BM$$

503 **(b)**

Mohr's salt is green in colour due to $Fe^{2+i \cdot i}$ ions which are green.

504 (c)

 Ni^{2+ii} and Cr^{2+ii} are coloured due to presence of unpaired electrons. But $Zn^{2+i\delta}$ is colourless because of absence of unpaired electrons

505 (a)

Zn gets dissolved in NaOH, forming $N a_2 Zn O_2$.

506 **(b)**

In basic medium potassium permanganate is reduced to first manganate and than to manganese dioxide (colourless).

$$2 KMnO_4 + 2 KOH \longrightarrow 2 K_2 MnO_4 + H_2O + O$$

$$2 K_2 MnO_4 + 2 H_2O \longrightarrow 2 MnO_2 + 4 KOH + 2O$$

$$2 KMnO_4 + H_2O \longrightarrow 2 MnO_2 + 2 KOH + 3[O]$$

507 (a)

Ag belongs to second (4d) transition series. Remaining all are in first transition series

508 (a)

Mn in carbonyl has zero oxidation state.

509 (c)

Copper is good conductor of current.

510 (d)

Calomel is the name for Hg_2Cl_2 .

511 (d)

Developing involves the decomposition of AgBr to $Aq \cdot AqBr^{x}$ a molecule of AgBr exposed to light is reduced to Ag by:

$$C_6H_4(OH)_2+2AgBr^x\longrightarrow C_6H_4O_2+2HBr+2Ag$$

512 **(b)**

Zinc blende is roasted and then treated with coke for the reduction.

$$2ZnS+3O_2\Delta 2ZnO+2SO_2\uparrow$$

$$ZnO+C\Delta Zn+CO\uparrow$$

513 (d)

This is chrome alum used in tanning leather, mordant in dyeing and in photography for hardening of negative.

514 (c)

$$FeSO_4$$
. $(NH_4)_2 SO_4$. 6 H_2O is called Mohr's salt.

515 (a)

$$2 MnO_2 + 4 KOH + O_2 \longrightarrow 2 K_2 MnO_4 + 2 H_2O$$
purple colour

516 (d)

 $CuC l_2$ and $CuB r_2$ exist as $(CuC l_2)_x$ and $(CuB r_2)_x$ polymeric bridge structure.

517 **(d)**

Na will react with water; Ag, Hg are placed below Cu in electrochemical series.

518 (a)

$$2 Mn O_2 + 4 KOH + O_2 \rightarrow 2 K_2 Mn O_4 + 2 H_2 O$$
purple green

519 (c)

+3 and +4 states are shown by Ce in aqueous solutions. Thus statement (c) is incorrect.

520 **(c)**

Tungsten filaments are used in bulbs.

522 **(b)**

It is a fact.

523 (a)

Fool's gold is $CuFeS_2$ or FeS_2 .

524 (a)

$$Cu(NH_3)_4SO_4$$

525 (d)

Follow Bessemer's process in Fe extraction.

526 (a)

A mixture of TiO_2 and $BaSO_4$ is called titanox

527 **(b)**

The b.p. of Ti, Cr, Fe and Co are 3260, 2665, 3000 and 2900 K respectively.

528 (d)

It is a fact.

530 **(c)**

Ferric compounds are more easily hydrolysed than ferrous salts.

531 (a)

The important ores of iron are haematite $(F e_2 O_3)$, magnetite $(F e_3 O_4)$ and iron pyrites $(F e S_2)$. Iron is manufactured from haematite ore.

532 **(c)**

The process is called auto reduction.

534 (a)

$$2Cu^{2+\dot{\iota}+4KI\longrightarrow Cu_2I_2+I_2+4K^{+\dot{\iota}\dot{\iota}\dot{\iota}}}$$

535 **(d)**

It is a fact.

536 (d)

German silver is an alloy of Cu + Zn + Ni (2:1:1 respectively).

537 **(d)**

It is a method for extraction of Ni.

538 (a)

$$K_2Cr_2O_7+2H_2SO_4Cold 2CrO_3+2KHSO_4+H_2$$

 CrO_3 is highly acidic and oxidising and is called chromic acid

539 **(b)**

$$4 \operatorname{FeC} l_3 + 3 K_4 [\operatorname{Fe}(CN)_6] \longrightarrow \operatorname{Fe}_4 [\operatorname{Fe}(CN)_6]_3 + 1$$

$$\operatorname{Ferri-ferrocyanide}_{(\operatorname{Prussian} i)}$$

540 **(a)**

$$Cu+2H_2SO_4 \longrightarrow CuSO_4+SO_2+2H_2O$$

541 **(b)**

The process is called hardening of steel and it develops hard and brittle nature in steel.

542 **(d)**

$$AuCl_3 + NaCl \longrightarrow Na[AuCl_4]$$

sodium
chloroaurate

545 **(d)**

Zinc sulphate hepta hydrate $(ZnSO_4.7 H_2O)$ is called white vitriol. When it is heated with barium sulphide, it forms a white pigment lithopone.

546 **(a)**

Silver (Ag) metal is purified by Pattinson's process.

547 **(c)**

d-block elements have higher melting point due to greater forces of attraction between two atoms.

548 **(c)**

$$Fe_2O_3+3CO \longrightarrow 2Fe+3CO_2$$

549 **(b)**

Iron is d-block element $(3d^6, 4s^2)$.

550 (c)

It is a fact.

551 **(b)**

 $Fe^{2+i\delta}$ is light green in colour.

552 (a)

 $Cr_2O_7^{2-i\ell}$ has orange colour in aq. Medium.

553 **(c)**

Reference electrodes are calomel electrodes.

554 **(b)**

All cations formed by transition metals are not coloured and are not paramagnetic, $g ., Zn^{2+i\delta}$.

555 **(b)**

3.87= $\sqrt{n(n+2)}$, where, *n* is the number of unpaired electron

$$(3.87)^2 = n(n+2)$$

 $15=n^2+2n$

$$n^2 + 2n - 15 = 0$$

∴ n ≅ 3

556 (d)

Lutetium-71 belongs to lanthanoids, the elements from 58 to 71.

557 **(c)**

It is a fact.

558 **(c)**

 $Fe_2(SO_4)_3 \longrightarrow Fe_2O_3 + 3SO_3.$

559 (c)

It is a fact.

560 **(b)**

 $2 SnCl_2 + 2 HgCl_2 \longrightarrow 2 SnCl_4 + H g_2$; $SnCl_2$ is oxidized.

561 **(b)**

Chalcopyriteor copper pyrite is $CuFeS_2$.

: It is ore of copper and iron.

562 (d)

Siderite $(FeCO_3)$ is an ore of iron.

563 (a)

The process of extraction of metal by heating roasted ore with coke in the presence of a flux is called smelting. It is done in blast furnace. Iron is extracted by this process.

$$Fe_2O_3+3C$$
 $\stackrel{.}{c}$ 1123 $K2$ $Fe+3$ CO

 $Fe_2O_3 + 3CO1123K2Fe + 3CO_2$

564 **(c)**

Stainless steel contains 11.5% Cr.

565 (a)

Ceria or cerium oxide, CeO_2 , a lanthanide compound is used as a pigment and as a polishing agent for glass.

566 (d)

 $ZnO+C \longrightarrow Zn+CO$

 $2CO + O_2 \longrightarrow 2CO_2$ (Blue flame on burning of CO).

567 **(c)**

In CuF_2 , $Cu^{2+i\cdot i}$ ion exist, having d^9 configuration. Unpaired electron causes colour (d-d) transition. In the crystalline form, CuF_2 is blue coloured.

568 **(c)**

Spin only magnetic moments depend upon the number of unpaired electrons, more the number of unpaired electron, greater will be the spin only magnetic moment.

$$_{25}$$
Mn=1 s^2 ,2 s^2 2 p^6 ,3 s^2 3 p^6 3 d^5 4 s^2
M $p^{2+i=1}s^2$,2 s^2 2 p^6 ,3 s^2 3 p^6 3 d^5 ,4 s^0 i

1 1 1 1 1

Number of unpaired electrons=5 ${}_{24}\text{Cr}=1 \, {}_{8}^{2}, 2 \, {}_{8}^{2} \, 2 \, {}_{9}^{6}, 3 \, {}_{8}^{2} \, 3 \, {}_{9}^{6} \, 3 \, {}_{6}^{5}, 4 \, {}_{8}^{1}$ ${}_{6}^{2} \, {}_{8}^{2} \, {}_{1}^{2} \, {}_{8}^{2} \, {}_{1}^{2} \, {}_{8}^{2} \, {}_{1}^{2} \, {}_{8}^{2} \, {}_{1}^{2}$

1 1 1 1

Number of unpaired electron=4 $23V=1 s^2, 2 s^2 2 p^6, 3 s^2 3 p^6 3 d^3, 4 s^2$ $V^{2+i=1s^2, 2s^2 2 p^6, 3 s^2 3 p^6 3 d^3, 4 s^0 i}$

1 1 1

Number of unpaired electrons =3

So, the correct order of spin only magnetic moment is

$$Mn^{2+\dot{\iota}>Cr^{2+\dot{\iota}>V^{2+\dot{\iota}}\dot{\iota}}\dot{\iota}}$$

569 **(c)**

Stainless steel contains 11-15% Cr.

570 **(c)**

Aromatic compounds which have $\dot{\iota} \lor \equiv$ bond in the side chain decolourise acidic/ alkaline $KMnO_4$. Benzene does not delcolourise the acidic/alkaline $KMnO_4$ due to the delocalization of π -electrons.

While propene decolourized the alkaline $KMnO_4$ due to the presence of = bond. Ferrous ammonium

sulphate and oxalic acid decolourized the $KMnO_4$ in acidic medium.

$$\begin{split} 2 \, KMnO_4 + 10 \, FeSO_4 + 8 \, H_2 SO_4 &\longrightarrow \\ K_2 \, SO_4 + 2 \, MnSO_4 + 5 \, Fe_2 \big(SO_4 \big)_3 + 8 \, H_2 \, O \\ 2 \, KMnO_4 + 5 \, C_2 \, H_2 O_4 + 3 \, H_2 SO_4 &\longrightarrow \\ K_2 \, SO_4 + 2 \, MnSO_4 + 10 \, CO_2 + 8 \, H_2 O \end{split}$$

571 **(d)**

The complex formation imparts colour.

572 **(c)** Syvanite (AuAgT e_4); calaverite (AuT e_2), bismuth aurite ($BiAu_2$).

573 **(b)**It is a reason for the given fact.

574 (a) Azurite is $Cu(OH)_2.2 CuCO_3$.

575 **(a)** $Zn^{2+\delta\delta} (Z=30): [Ar] 3 d^{10} 4 s^{0}; \text{ zero unpaired electron.}$ Hence, its magnetic moment is zero. $\mu = \sqrt{n(n+2)} = \sqrt{0(0+2)}$ $\mu = 0$

576 **(b)** $4 Zn + 10 HN O_3 \longrightarrow 4 Zn(N O_3)_2 + N H_4 N O_3 + 3 H$

577 **(d)**Cu $3d^{10} 4s^{1}$

 $Cu^{+ii} \\ 3d^{10} \\ 4s^{0}$

 $Cu^{+\delta \delta}$ is colourless due to the absence of unpaired electron

578 **(a)**Fe ores possess magnetic nature.

579 **(d)**The process is called auto reduction.

580 (a) Transition elements have (n-1)d and ns-shell

incomplete.

581 **(d)**

In electrorefining of copper, some gold is deposited as anode mud.

582 **(d)** $Cu^{2+i(aq.)i} \text{ is blue in colour.}$

583 **(a)**

The magnetic moment $\dot{c}\sqrt{n(n+2)}$ BM where n is no. of unpaired electron. Thus, n=1.

584 **(d)**

The highest oxidation state of transition elements is exhibited in their compounds with F and O, the most electronegative elements.

585 **(c)**I gp. reagent is dil. HCl. The chlorides of Ag, Pb, Hg being insoluble are precipitated out.

586 **(d)** $4 K_2 C r_2 O_7 \stackrel{?}{6} 671 C 4 K_2 C r O_4 + 2 C r_2 O_3 + 3 O_2.$

587 **(a)** $2 KMnO_{4} 200 C K_{2} MnO_{4} + MnO_{2} + O_{2}$ $2 K_{2} MnO_{4} Above 200 C 2 K_{2} MnO_{3} + O_{2}$

588 **(b)** $Fe^{2+i\cdot,2SO_4^{2-i\cdot,2NH_4^{**}i}i}.$

589 **(a)** $2 NaOH + Zn (OH)_2 \longrightarrow N a_2 Zn O_2 + 2 H_2 O$ Alkali
Acid
N a_2 Zn O_2 + 2 H_2 O

591 **(a)**It is a fact.

592 **(c)**

Alnico is a series of alloys based on iron containing Ni, Al, Co and Cu. They are used to make permanent magnets.

593 **(b)**Bordeaux mixture is $CaO + CuSO_4$.

594 **(b)**Lanthanoids [Xe] $4f^{1-14}5d^{0-1}6s^2$ Actinoides [Rn] $5f^{1-14}6d^{0-1}7s^2$

Lanthanoides and actinoides use core d and f-orbitals also to show higher oxidation state. As actinoides have comparatively low energy difference between f

and *d*-orbitals, show more oxidation states.

595 **(b)**

$$K_2 MnF_6 + 2SbF_5 \rightarrow 2KSbF_6 + MnF_3 + \frac{1}{2}F_2$$

In this reaction, the stronger Lewis acid SbF_6 displaces the weaker one, MnF_4 from its salt. MnF_4 is unstable and readily decomposes to give MnF_3 and fluorine

596 (a)

A reduction in atomic size with increase in atomic number is a characteristics of elements of f-block. This is due to lanthanide contraction

597 **(b)**

Parke's process is based on the fact that molten lead and zinc are nearly immiscible. Zinc being lighter forms the upper layer and molten lead forms the lower layer. Ag is more soluble in molten Zn than molten Pb.

598 **(c)**It is a use of this reagent.

599 (d)

Transition metals due to the presence of partially, filled d-orbitals, are coloured.

The unpaired electron present in partially filled dorbital is excited to the higher energy d-orbital by
absorbing energy from visible light and thus exhibits
the complementary colour. Due to which the
transition metal ions appear coloured.

600 **(b)**It contains 36% Ni.

601 **(c)** Cr^{2+il} (Z=24): [Ar]3 $d^4 4 s^0$; four unpaired electrons Fe^{2+il} (Z=26): [Ar]3 $d^6 4 s^0$; four unpaired electrons. Cr^{2+il} and Fe^{2+il} have same number of unpaired electrons, hence they have the same value of magnetic moment.

602 **(c)** Erbium is a lanthanide

603 **(a)** $BaO + ZnO \longrightarrow BaZnO_2$

604 **(d)**

Brass is an alloy of copper with zinc.

606 (c) $CuCl_2+CuHClCu_2Cl_2$

607 **(b)**

Cast iron or pig iron (2-5% C); wrought iron (0.1 to 0.5% C), steel (0.1 to 1.5% C).

608 **(c)** d-block elements invariably show variable valence.

609 **(b)**

This is characteristic of inner transition elements.

610 **(b)**

Mercurous chloride is insoluble in water while rest are soluble in water

611 **(c)**

Carnallite KCl, $MgCl_2$, $6H_2O$ Limonite $2Fe_2O_3$, $3H_2O$ Siderite $FeCO_3$ Horn & AgCl

: Siderite is carbonate ore.

612 **(b)**It is a facts, $Fe_2O_3+3CO \longrightarrow 2Fe+3CO_2$.

613 **(c)**

Black Jack is an ore of zinc. Other ores of zinc are zincite (ZnO), calamine ($ZnCO_3$), zinc blende or black jack (ZnS).

614 **(d)**

AgI is insoluble in NH_4OH but AgCl is soluble in NH_4OH due to the formation of $[Ag(NH_3)_2]Cl$

615 **(b)**

e.g., $MnCl_2$, $Mn(OH)_3$, MnO_2 , K_2MnO_4 , $KMnO_2$

616 **(a)** $HgC l_2 + H_2 S \longrightarrow HgS + 2 HCl$

617 **(b)**

CuCl forms coordinated product with CO. $CuCl+CO \longrightarrow CuCl$. CO

618 (a) Except Cu, Hg, Ag, Pt and Au, where E_{RP}° are +ve.

619 (a) $AuCl_3 + 3 FeSO_4 \longrightarrow Au + Fe_2(SO_4)_3 + FeCl_3$

- 620 **(a)** $ZnCl_2$ is deliquescent.
- 622 **(a)** $Fe+H_2SO_4 \longrightarrow FeSO_4+H_2 \uparrow$ dil. $3Fe+4H_2O \longrightarrow 4H_2 \uparrow + Fe_3O_4$ hot steam
- 623 (a) $H g_2 C l_2 + 2 N H_4 OH \longrightarrow \underbrace{Hg + Hg (N H_2) Cl}_{i} + N H$
- 624 **(d)**Bleaching powder is mixed salt, $K_4 Fe(CN)_6$ is complex salt, hypo is normal salt.
- 625 **(b)** Bronze is a mixture of $Cu \wedge Sn$.
- 626 **(b)**Gun metal is an alloy of Cu, Sn and Zn. It is used to make cartridge of rifles and pistols.
- 627 **(b)** $\mu_{eff} \text{ value of } 1.73 \text{ BM corresponds to one unpaired}$ electron. $T i^{3+ i = 3d^{1}(Ti = [Ar]3d^{2}4s^{2})i}$
- Thermite process is used for the reduction of oxides of less electropositive metals. Oxides of less electropositive metals such as Cr_2O_3 , Mn_3O_4 etc are reduced by using Al. This process is called thermite process.
- 629 **(b)**Copper ores contain FeO as non-fusible mass.

 Thus, $FeO + SiO_{Acidic flux}^2 \longrightarrow FeSiO_{3}$.

 Slag

 $Cr_2O_3+2Al \longrightarrow Al_2O_3+2Cr+Heat$

- 630 **(d)**Chalcopyrite is CuFe S₂
- 632 **(b)**It is $Ag(NH_3)_2Cl$.
- 633 **(a)**Cu is added in Au to prepare ornaments.
- 634 **(d)** On igniting at 1400°c. Fe_2O_3 get reduced to metallic Fe.

$$3Fe_2O_3CO_2$$

 $Fe_3O_4+CO\longrightarrow 3$
 $FeO+CO\longrightarrow Fe+O$

637 **(a)**

- 635 **(b)**These are uses of ZnO. It is also used for glazing purposes.
- 636 **(c)** $Fe(OH)_3$ is formed as brown residue. Also colourless or light yellow solution will be left.
 - Given, $X=[Ar]d^4$ The complete configuration of the ion, $X^{3+\lambda=1s^2,2s^2,2p^6,3s^23p^6,3d^4\lambda}$ $X=1s^2,2s^2,2p^6,3s^2,3p^6,3d^54s^2$ The atomic number of the element is 25 and the element is Mn.
- 638 **(c)**Cast iron or pig iron (2–5% C); wrought iron (0.1 to 0.5% C), steel (0.1 to 1.5% C).
- 639 **(b)**Follow complementary colour concept.
- 640 **(b)** $_{41}Nb$ and $_{73}Ta$ have similar atomic size.
- 641 (a)
 A white precipitate of cuprous iodide is formed on adding KI to $CuSO_4$ solution. $2 CuSO_4 + 4 KI \longrightarrow 2 CuI + I_2$ white ppt.
- 642 (a)The *d* -block elements form coloured compounds.These compounds have ions with unpaired electron in *d*-subshell.
 - i) Na and Mg belong to s-block , so NaCl and $\ensuremath{\mathit{MgCl}}\xspace_2$ are colourless compounds.
 - ii) CuF_2 Oxidation state of Cu in CuF_2 is +2 $Cu^{2+i,i}=1 s^2 . 2 s^2 . 2 p^6 . 3 s^2 . 3 p^6 . 4 s^0 . 3 d^9$

_				
11	41	11	11	1
		-	-	' '

- $\therefore CuF_2$ in which Cu has one unpaired electron is coloured.
- iii)*CuI*Oxidation state of Cu in *CuI* =+1

 Cu^{+ib} =1 s², 2 s², 2 p⁶, 3 s², 3 p⁶, 4 s⁰, 3 d¹⁰ It has no unpaired electron. So, CuI is colourless. :.Only CuF_2 is coloured among given choices.

643 **(b)** $2 NaOH + Zn^{2+\lambda \longrightarrow N} a_2 ZnO_2 + 2H^{+\lambda,N}a_2 ZnO_3 gives 2Na^{\lambda - \lambda [2nO_3]^{2-\lambda}}\lambda i \text{ ions.}$

644 **(c)** $2 MnO_4^{-i+Br^{-i+H,Oi}i} \longrightarrow 2 MnO_2 + BrO_3^{-i+2OH^{-ii}i}$

Cyanide process is used for extraction of silver (Ag). $4 Ag + 8 NaCN + 2 H_2 O + O_2 \rightleftharpoons 4 Na[Ag(CN)_2] + 4$ $2 Na[Ag(CN)_2] + 4 NaOH + Zn \longrightarrow$ $Na_2 ZnO_2 + 2 H_2 O + 4 NaCN + 2 Ag$

character so, will weightless in magnetic field

647 **(a)**

It is the definition of nitriding of steel.

648 **(b)**A light hard aluminium alloy containing 4% Cu and small amounts of Mg, Mn and Si.

649 **(b)** Gun metal is an alloy of Cu+Sn+Zn.

This is definition of tempering of steel. The product obtained is neither so hard nor so brittle. It is softer than steel.

651 (c) $CuSO_4 + 2 KCN \rightarrow Cu(CN)_2 + K_2 SO_4$ $2 Cu(CN)_2 \rightarrow C u_2(CN)_2 + (CN)_2$ $Cu_2(CN)_2 + 6 KCN \rightarrow 2 K_3 [Cu(CN)_4]$

652 **(d)** MnO_2 imparts purple colour to pottery

653 **(d)**It is a fact.

654 **(b)**

Purest zinc is made by zone refining method.

655 **(a)**

Magnetic moment = $\sqrt{n(n+2)}BM$ Where, n = number of unpaired electrons 5.93= $\sqrt{n(n+2)}$ n = 5

 $Mn^{2+i.i}$ ion $(3d^5)$ has 5 unpaired electrons and magnetic moment is 5.93 BM.

Potassium dichromate, on heating gives oxygen and chromic oxide (Cr_2O_3) .

 $4\,K_{2}Cr_{2}O_{7}\Delta\,4\,K_{2}CrO_{4}\!+\!3O_{2}\!+\!2\,Cr_{2}O_{3}$

Annealing is the process of heating steel to bright red and then cooling it slowly. Steel thus, becomes soft and pliable.

659 **(b)**It is a fact.

660 **(b)** $HgCl_2$ compound is easily volatile. They are insoluble in water and soluble in acids.

Among all the given reactions, $CuSO_4$ does not react with KCl to give Cu_2Cl_2

662 (a)
It is $[Cu(H_2O)_4]SO_4.H_2O$; one H_2O is held by sulphate ion by H-bonding.

663 **(d)**It is a fact.

664 **(b)** $AgNO_{3} + 2Na_{2}S_{2} \underbrace{O}_{Excess} \longrightarrow Na_{3} \left[Ag \left(S_{2}O_{3} \right)_{2} \right] + NaN + Na_{2}S_{2} \underbrace{O}_{Soluble} \longrightarrow Ag_{2}S_{2}O_{3} + 2NaNO_{3}$ $2AgNO_{3} + Na_{2}S_{2}\underbrace{O}_{Dil} \longrightarrow Ag_{2}S_{2}O_{3} + 2NaNO_{3}$ $Ag_{2}S_{2}O_{3} \longrightarrow Ag_{2}S + SO_{3}$

665 **(c)** Mn_2O_7 is an acidic oxide of manganese. It dissolve in water to give violet coloured solution of permanganic acid. $Mn_2O_7+H_2O\longrightarrow 2HMnO_4$

666 **(c)**A developer is a weak reducing agent, *e* . *g* . Ferrous

oxalate; the parts affected by light on photographic plate are reduced to the maximum extent whereas part not affected by light remains unaffected.

667 **(d)**

In acidic medium,

+7+2

 $KMnO_{\Lambda} \longrightarrow MnSO_{\Lambda}$

In weak basic medium

 $KMnO_4 \longrightarrow MnO_2$

668 (c)

Transition metals are *d*-block elements.

669 (d)

It is $FeSo_4$. $(NH_4)_2SO_4$.6 H_2O . Gives test of each ion in solution.

670 **(b)**

Gun metal is an alloy of Cu + Sn + Zn (87:10:3 respectively).

672 **(b)**

Value of magnetic moment depends upon number of unpaired electrons. All except $T_1^{3+\delta \vee 3d^1\delta}$ have either fully filled d-subshell (i.e., $Zn^{2+\delta,Cu^{*i\delta}}$ or empty dsubshell (ie, Sc^{3+ii}). As such only Ti^{3+ii} has a net value of magnetic moment.

Magnetic moment of $T_i^{3+i} = \sqrt{n(n+2)BM}$ $=\sqrt{1(1+2)}BM$ $=\sqrt{3} = 1.73BM$

673 **(a)**

 Fe^{3+ii} is more stable than Fe^{2+ii} because of halffilled nature.

674 **(b)**

Fool's gold is FeS_2 .

675 **(b)**

Bessemer's converter is provided with basic lining of lime or MgO to withstand high temperature.

676 **(d)**

Verdigris is $CuCO_3$. $Cu(OH)_2$ or $CuSO_4$. $Cu(OH)_2$; these are green deposits formed on copper on exposure to air. Used as paints and pigments.

677 (d)

Transition element exhibit variable oxidation states because their d-electrons also take part in bonding

along with s-electrons. However, the difference between two oxidation states is not always two.

678 (d)

 $S_C^{3+\lambda[3d^0],T_I^{4+\lambda(3d^0)\lambda}}$ are diamagnetic due to absence of unpaired electrons. While $P d^{2+i(4d^8), Cu^{2+i(3d^8)i}i}$ contain two, and one unpaired electron respectively. Hence, these are paramagnetic

679 **(b)**

$$2 KI + Hg I_2 \rightarrow \underbrace{K_2 Hg I_4 + KOH}_{Nessle \ r' \ s \ reagent}$$

680 **(b)**

₂₆Fe =[Ar]3
$$d^5$$
4 s^2 ; $Fe^{2+iλ}$ =[Ar]3 d^6
Number of unpaired electrons, n =4
 μ = $\sqrt{n(n+2)}$ = $\frac{i}{λ}\sqrt{4(4+2)}$ =4.89 $\frac{i}{λ}$

681 (d)

$$_{30}Zn \rightarrow [Ar]3d^{10}4s^2$$

 \therefore It d-orbital is complete

: It does not show variable valency

682 (a)

$$CaCO_3 + SiO_2 \longrightarrow CaSiO_3 + CO_2.$$

683 **(b)**

$$CuSO_4 + 2 KI \longrightarrow Cul_2 + K_2 SO_4$$

 $2 Cul_2 \longrightarrow Cu_2 I_2 + I_2$

cuprous iodide

white ppt.

684 **(b)**

The nonmetallic impurities such as mica, earth particles etc associated with ore. These impurities are known as gangue.

685 (c)

The most common oxidation state of lanthanoid is +3. Lanthanoids in +3 oxidation state usually have unpaired electrons in f-subshell and impart characteristic colour in solid as well as in solution state due to f - f transition. (Except lanthanum and lutetium)

686 (d)

Bell metal is an alloy of Cu + Sn (80:20).

687 (a)

Vermilion is HgS, a red variety used as pigment.

688 (c)

It is a fact.

689 (d)

In transition metals, electrons from penultimate dsubshell also take part in bonding.

690 **(b)**

Both mustard and egg yolk contain sulphur in form of |702| (b) compounds in large amount which reacts with Ag. $2Ag+S \longrightarrow Ag_2S(black)$

691 **(b)**

 $KMnO_4$ will not oxidised further by ozone as manganese is already present in its highest possible oxidation state, ie, +7

692 (c)

Hg does not form amalgam with iron.

693 (c)

Sweets, pans (betel leaves), etc., covered by Ag foils are used as eatable items. Cu in form of dissolved Cu if water placed in Cu vessel.

694 **(b)**

Only Pt belongs to d-block.

695 (d)

 E_{OP}° of $Cu > E_{OP}^{\circ}$ of Ag.

696 (d)

Only those transition metal ions which contain unpaired electrons, are coloured. Since colour appears when the unpaired d-electron absorb energy and gets excited to the higher energy d-orbital. Hence, the reason of appearance of colour is d-d transition.

697 (c)

These are facts.

698 (d)

 $V(23i = i Ar i 3 d^3, 4 s^2)$ V^{3+ii} =[Ar] $3d^2$, $4s^0$ (two unpaired electrons) $Cr(24)=[Ar] 3 d^5, 4 s^1$ $Cr^{3+i} = [Ar] 3d^3, 4s^0$ (three unpaired electrons) $Co(27) = [Ar] 3d^7, 4s^2$ CO^{3+ii} =[Ar] $3d^7$, $4s^0$ (three unpaired electrons) $Sc(21) = [Ar] 3d^{1}, 4s^{2}$ $Sc^{3+i.i}$ =[Ar] $3d^0$, $4s^2$ (no unpaired electrons) Thus, in $Sc^{3+i\delta}$ no unpaired *d*-electron is present. Hence, no d-d transition is possible and it is colourless ion.

699 **(b)**

Follow metallurgy of iron.

701 (a)

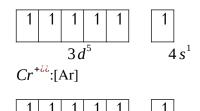
Follow electronic configuration $(n-1)s^2 p^6 d^{10} n s^1$ of coinage family.

It is a fact.

703 (c)

Transition metals and their compounds are very good catalysts, e.g., CuCl₂ in Deacon's process, Ni in hydrogenation of oils.

704 **(b)**


Gravity separation process is used for the concentration of haematite.

705 (c)

Malachite is an ore of copper. Its composition is $CuCO_3$. $Cu(OH)_2$.

706 **(b)**

Cr:[Ar]

This is stable EC, hence formation of Cr^{2+ik} by second IP requires maximum enthalpy.

707 **(b)**

It is a reason for the given fact.

708 **(b)**

CdS is yellow solid.

709 (d)

-do-

710 **(b)**

Basic copper acetate (verdigris $-|CH_3COO|_2Cu \cdot Cu |OH|_2$) is blue green powder used in green pigment and in dyes. Also in manufacture of insecticides and fungicides

711 (a)

Pig iron on heating in a vertical furnace and then pouring into moulds gives cast iron. Both contain 2-5% carbon.

713 **(c)**

Potassium permanganate is a powerful oxidizing agent in neutral, alkaline or acidic solution because it liberates nascent oxygen. The aqueous solutions of $KMnO_4$ can be decolourized by $C_2O_4^{2-i.i}$, $HSO_3^{-i.i}$ and $SO_3^{2-i.i}$ while $CO_3^{2-i.i}$ cannot decolourise $KMnO_4$ aqueous solution.

714 **(c)**

 Ti^{+il} ions are more stable than Ti^{3+il} and thus Ti^{3+il} ions charge to Ti^{+il} ions thereby acting as oxidizing agents Ti^{3+il} compounds $+2e^{-i-Ti^{+il}}$ compounds (less stable oxidizing agent) (More stable oxidising agent)

715 (a)

Green vitriol is formed by oxidation of iron pyrite in presence of air and water.

$$2 FeS_2 + 2H_2O + 7O_2 \longrightarrow 2 FeSO_4 + 2H_2SO_4$$

pyrites green vitriol

716 (d)

Transition elements have high densities.

717 **(b)** $3 HgS + 2 HN O_3 + 6 HCl \longrightarrow 3 HgCl_2 + 3 S + 2 NO +$

718 (a)

Chlorides of Ag, Pb and Hg are insoluble in water.

719 **(a)**

Fischer's salt is $K_3[Co(NO_2)_6]$.

720 (a)

Cu, Ag and Au have been used in coins since ancient times.

721 (a)

Cerium $Ce_{58} = [Xe] 4f^1$, $5d^1$, $6s^2$ It most stable oxidation state is +3but +4 is also existing.

722 **(c)**

The hormone insulin excreted from pancreas contains Zn.

723 **(c)**

It is a reason for the given fact.

724 **(b)**

Muntz metal is Cu + Zn alloy (3:2) respectively more stronger than brass.

725 **(b)**

 $\mathcal{L}(CO)_4$ is a gas which decomposes to Ni and CO on strong heating.

726 **(c)**

At 500°C Fe_2O_3 is reduced by CO to Fe and CO_2 .

727 (a)

It is a fact.

728 (c)

Most of the transition metal ions due to presence of unpaired d-electrons are coloured.

729 **(d)**

Cr ions are coloured.

730 (c)

Strength of metallic bond depends upon number of upon number of unpaired electron. As number of unpaired electron increases, the bond strength increases. So, Cr, Mo, W show stronger bonding due to maximum number of unpaired electrons

731 **(c)**

 Hg^{2+ii} complex salts are more stable.

732 **(b**)

 $2e+Cr_2O_7^{2-i=2CrO_4^{2-i}i}$ exists in basic medium.

733 (d)

Ti, Zr and Hf belong to IV B group of Periodic Table and in a group atomic radii increases on moving down. However, the transition metals of 4 d-series have nearly the same radii as metals of 5 d-series. Hence the order of atomic radii is $Ti < Zr \approx HF$

Due to nearly equal atomic radii, Zr and Hf are called chemical twins.

734 (a)

Basic character of oxides decreases from left to right in a period of Periodic Table

735 (c)

 $M n_2 O_7 + H_2 O \rightarrow 2 HMn O_4$ $HMn O_4$ is permanganic acid, which is violet in

736 **(b)**

colour

Aqueous silver nitrate solution is used as indelible

ink.

737 **(b)**

The fourteen elements which follow actinium from thorium(Z=90) to lawrencium (z=103) are called actinoids. They involve the filling of 5f-subshell. Californium (Cf) has the atomic number 98 and its configuration is as

$$Cf(Z=98): [Rn] 5 f^{10}, 6 d^{0}, 7 s^{2}$$

Hence, it is a member of actinide series.

738 **(c)**

Wrought iron is obtained from pig iron by removing its impurities by pudding process in which cast iron is heated on the hearth of reverberatory furnace.

739 **(b)**

Follow text.

740 **(c)**

Ammonium dichromate on heating gives green coloured powder of Cr_2O_3 .

$$2(NH_4)_2Cr_2O_7\Delta 2(NH_4)_2CrO_4+Cr_2O_3+3O_2$$

chromic

oxide

741 **(b)**

CuO is amphoteric.

742 (d)

All these form soluble complexes with NH_3 .

743 **(b)**

It is a reason for the low reactivity of transition elements.

744 (a)

$$E^{\circ}_{OPofH} > E^{\circ}_{OPofHa}$$
.

745 (a)

∴ 24 carat gold 6 100 %

$$\therefore 18 \operatorname{carat gold} \dot{c} \frac{100 \times 18}{24} = 75 \%$$

746 (d)

Ionic radii of lanthanide decreases with increase in atomic numbe.

$$Y^{3+i<\iota\iota} Lu^{3+i<\iota\iota} Fu^{3+\iota< La^{3+\iota\iota}}$$

Because Eu and Lu are the members of lanthanide series (so they show lanthanide contraction) and La is the representative element. $Y^{3+i\cdot i}$ ion has lower ionic radii as comparison to $La^{3+i\cdot i}$ because it lies

immediately above in Periodic Table.

747 (d)

Coinage metals (Cu, Ag, Au) shows the properties of transitional elements as in their common oxidation states they possess partially filled d-subshells

748 (a)

Annealing is the process of heating steel to bright red and then cooling it slowly. Steel thus, becomes soft and pliable.

749 **(b)**

Cast iron or pig iron (2-5% C); wrought iron (0.1 to 0.5% C), stell (0.1 to 1.5% C).

750 **(a)**

During the extraction of copper, the impurity (FeS) is removed as slag by mixing the contaminated copper ore with silica and coke.

$$2FeS+3O_2 \longrightarrow 2FeO+2SO_2$$

$$FeO+SiO_2 \longrightarrow FeSiO_3$$

silica ferrous silicate (slag)

751 (a)

Usually across the first transition series, the negative values for standard electrode potential decrease except for Mn due to stable d^5 –configuration. So, correct order: Mn > Cr > Fe > Co

752 (c)

Copper pyrite $(CuFe S_2)$ is the chief ore of copper.

753 **(c)**

It is a fact.

754 (a)

 $FeC l_3$ acts as coagulating agent for blood.

755 **(b)**

$$ZnCl_2$$
. $H_2O \longrightarrow Zn(OH)Cl+HCl$

756 **(b)**

$$HgC l_2+2 NaOH \rightarrow HgO+H_2O+2 NaCl$$
 yellow

757 **(a)**

$$2 Na[Au(CN)_2] + Zn \longrightarrow N a_2[Zn(CN)_4] + 2 Au.$$

758 (a)

Due to lanthanoid contraction order will be $Y b^{3+i < Pm^{3+i < Ce^{3+i + i}}i} i$

759 **(b)**

$$HgS+2HCl+3[O] \longrightarrow HgCl_2+H_2O+SO_2$$

760 (d)

The actinoids (5f-elements) exhibits more number of oxidation states in general than the lanthanoid because 5f-orbitals extend farther from the nucleus than the 4f-orbitals.

761 **(c)**

Silver nitrate is used in making hair dyes because it reduced to metallic silver and finely divided silver is black in colour.

762 **(b)**

$$2 Kl + HgC l_2 \longrightarrow Hg \lim_{Scarleti} c + 2 KC$$

763 **(b)** $Cr_2O_7^{2-il}$ changes to CrO_4^{2-il} in basic medium .

764 **(d)**

For electroplating of gold, electrolyte used is a mixture of 3.4% AuCN, 19% KCN and $N a_3 PO_4$ a buffer or K[Au(CN)₂].

765 **(b)**

Parke's process for desilverisation of lead involves extraction of Ag from Ag-Pb mixture.

766 **(b)**

Pt dissolves in aqua regia $(HNO_3 + HCl)$ $3 HCl + HNO_3 \longrightarrow 2 H_2O + NOCl + 2 Cl$ $Pt + 4 Cl \longrightarrow PtCl_4$; $PtCl_4 + 2 HCl \longrightarrow H_2 PtCl_6$.

767 (d)

Argentite is Ag_2S , an ore of silver.

768 (c)

Variable valency is due to the participation of electron from (n-1)d and ns levels in bond formation

769 **(c)**

Hg is liquid at room temperature.

770 **(c)**

In Fe extraction limestone is used for the formation of slag. The central zone where the temperature varies from 800-1000°C; the lime-stone present in the charge decomposes into calcium oxide and carbon

dioxide.

$$CaO_31000\,^{\circ}C\,CaO+CO_2$$

The calcium oxide acts as flux and combines with silica present as an impurity to form a fusible slag of $CaSiO_3$.

$$CaO + SiO_2 \longrightarrow CaSiO_3$$

771 **(a)**

The compounds which combine with impurities present in ore (at high temperature) and remove them as a fusible substance (slag), are known as flux. When basic impurities are present, an acidic flux is used and *vice-versa*.

$$FeO+SiO_2 \rightarrow FeSiO_3$$

basic impurity acidic flux slag

$$\zeta^{2+ii}=[Ar]3d^8$$

11 11	11	1	1
-------	----	---	---

Number of unpaired electrons=2

Hence, magnetic moment=
$$\sqrt{n(n+2)}$$

$$=\sqrt{8}=2.84$$

773 **(b)**

HgS is used in ayurvedic medicine as makardhwaja. $HgCl_2$ is poisonous and its antidote is egg white. $ZnSO_4$ is used in eye lotion.

 Hg_2Cl_2 is used as purgative in medicine and in making standard calomel electrode.

774 **(b)**

It is the desired chemical formula.

775 (a)

The differentiating electrons enter the ns-orbital but they have configuration $(n-1)d^{10}ns^2$.

$$HgCl_2+2\,NH_3\,H_2O\,Hg+NH_2HgCl+NH_4Cl$$

mercurio

amino chloride

:. $HgC l_{20n}$ reaction with $N H_4 OH(\dot{c} N H_3 + H_2 O)$ forms mercuric amino chloride.

777 **(b)**

Magnetic moment = $\sqrt{n(n+2)}BM$

Where, n is the number of unpaired electrons.

Maximum the value of unpaired electron, greater the

value of magnetic moment. So, $3d^5$ has highest value of magnetic moment.

778 **(d)**

Carbon (non-metal) is present in steel.

779 **(c)**

Corrosive sublimate is $HgC l_2$ because it has corrosion nature and sublimation nature.

$$CuSO_4+2KI \longrightarrow Cul_2+K_2SO_4$$

unstable
 $2CuI_2 \longrightarrow Cu_2I_2+I_2$
Thus, CuI_2 is not formed.

781 **(b)**

Cuprous ion \dot{c} (completely filled d-subshell) $3d^{10}$

11	11	11	11	1
----	----	----	----	---

Cupric ion \dot{c} (one unpaired electron) $3d^9$

1 1	11	11	1
-----	----	----	---

783 **(b)**

 Cr_2O_3 is amphoteric as it reacts with acid and alkalies both.

784 (a)

Pig iron on heating in a vertical furnace and then pouring into moulds gives cast iron. Both contain 2-5% carbon.

785 **(b)**

$$_{29}Cu^{+i.i}$$
 has configuration $1s^2, 2s^22p^6, 3s^23p^63d^{10}$.

786 (a)

In the blast furnace, iron ore is reduced by coke and carbon monoxide at different temperatures.

$$C+O_2 \longrightarrow CO_2$$

 CO_2+C 1500 °C 2 CO

$$3 Fe_2O_3+CO 400 °C 2 Fe_3O_4+CO_2$$

 $Fe_3O_4+CO 600 °C 3 FeO+CO_2$
 $FeO+CO 700 °C Fe+CO_2$

787 (d)

These are reasons for the given fact.

788 (d)

ZnO possess this characteristics.

789 **(a)**

A solid [AgNO&&3(A)]&silver nitrate which has photographic effects reacts with the solution of NaBr(B) to give a pale yellow ppt. of AgBr which is difficulty soluble in $NH_4OH.NaBr(B)$ on heating gives brown vapours of bromine.

$$AgNO_3 + NaBr \longrightarrow AgBr + NaNO_3$$

'A' 'B' 'C'
light yellow ppt.

790 **(d)**

It is a reason for the given fact.

791 **(b)**

$$_{25}$$
Mn=1 s^2 ,2 s^2 ,2 p^6 ,3 s^2 ,3 p^6 ,4 s^2 ,3 d^5

1	1	1	1	1
	ı		- 1	
1				

: Number of unpaired electrons in Mn =5

$$\therefore \text{Magnetic moment of Mn} = \sqrt{n(n+2)}$$

$$\sqrt{5(5+2)} = \sqrt{35} = 5.91 BM$$

$$3 Fe + i 4 H_2 O \longrightarrow Fe_3 O_4 + 4 H_2 i$$

793 **(b)**

Transition elements are more metallic than representative elements due to the availability of d-orbitals for bonding

794 (d)

Cerium can attain +4 oxidation state by losing ns and (n-2)f-electrons to have $f \circ$ configuration.