Single Correct Answer Type

1. A small sphere of mass m, moving with a constant velocity v, hits another stationary sphere of same mass. If e be the coefficient of restitution, then ratio of velocities v_{1} and v_{2} of two spheres after collision will be
a) $\frac{1-e}{1+e}$
b) $\frac{1+e}{1-e}$
c) $\frac{e+1}{e-1}$
d) $\frac{e-1}{e+1}$
2. Two blocks m_{1} and $m_{2}\left(m_{2}>m_{1}\right)$ are connected with a spring of force constant k and are inclined at a angel θ with horizontal. If the system is released from rest, which one of the following statements is/are correct?

a) $\frac{\left(m_{1}+m_{2}\right)}{k}$
if there is
no
friction anywhere

There will be no compress ion or elongatio
n in the spring if
there is no friction any where

	Maximu
If m_{1} is	m
smooth	elongatio
and m_{2} is	n in the
rough	spring is

c) there will d) $\frac{\left(m_{1}-m_{2}\right)}{k}$ be compress if all the ion in the surfaces spring are smooth
3. When a meteorite burns in the atmosphere, then

a) The	b)	The	c)
momentu	The	d) The	
mergy of	conservat	momentu	
m	meteorite	ion	m of
conservat	remains	principle	meteorite
ion	constant	of	remains
principle		momentu	constant
is		m is	
applicabl		applicabl	
e to the		e to a	
meteorite		system	
system		consistin	
		g of	
		meteorite	
		s, earth	
		and air	
		molecule	

s
4. A constant torque acting on a uniform circular wheel changes its angular momentum form A_{0} to $4 A_{0}$ in 4 s . The magnitude of this torque is
a) $\frac{3 A_{0}}{4}$
b) A_{0}
c) $4 A_{0}$
d) $12 A_{0}$
5. The moment of inertia of a flywheel having kinetic energy 360 J and angular speed of 20 rads^{-1} is
a) $18 \mathrm{~kg} \mathrm{~m}^{2}$
b) $1.8 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{c}$
c) $\left.2.5 \mathrm{kgm}^{2} \mathrm{~d}\right) 9 \mathrm{~kg} \mathrm{~m}^{2}$
6. If the angular momentum of a rotating body about a fixed axis is increased by 10%. Its kinetic energy will be increased by
a) 10%
b) 20%
c) 21%
d) 5%
7. Two discs have same mass and thickness. Their materials have densities d_{1} and d_{2}. The ratio of their moments of inertia about central axis will be
a) $d_{1}: d_{2}$
b) $d_{1} d_{2}: 1$
c) $1: d_{1}: d_{2}$
d) $d_{2}: d_{1}$
8. If the moment of inertia of a disc about an axis tangential and parallel to its surface be I, then what will be the moment of inertia about the axis tangential but perpendicular to the surface?
a) $\frac{6}{5} I$
b) $\frac{3}{4} I$
c) $\frac{3}{2} I$
d) $\frac{5}{4} I$
9. Two bodies of 6 kg and 4 kg masses have their velocity $5 \hat{i}-2 \hat{j}+10 \hat{k}$ and $10 \hat{i}-2 \hat{j}+5 \hat{k}$ respectively.
Then the velocity of their centre of mass is
a) $5 \hat{i}+2 \hat{j}-8 \hat{k} b$
b) $7 \hat{i}+2 \hat{j}-8 \hat{k}$
$-2 \hat{j}+8 \hat{k}$
d) $5 \hat{i}-2 \hat{j}+8 \hat{k}$
10. Two particles of equal mass have velocities $\mathrm{v}_{1}=4$ $\hat{\text { iand }} \mathrm{v}_{2}=4 \hat{\mathrm{j}} \mathrm{ms}^{-1}$. First particle has an acceleration $\mathrm{a}_{1}=(5 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}) \mathrm{ms}^{-2}$, while the acceleration of the other particle is zero. The centre of mass of the two particles moves in a path of
a) Straight
b) Parabola
c) Circle
d) Ellipse line
11. In which case application of angular velocity is useful
a) When a
b) When
c) When
d) None of body is velocity accelerati these rotating

of body	on of
is in a	body is
straight	in a
line	straight

12. A small block of mass M moves with velocity 5 ms^{-1} towards n another block of same mass M placed at a distance of 2 m on a rough horizontal
surface. Coefficient of friction between the block and ground is 0.25 . Collision between the two blocks is elastic, the separation between the blocks, when both of them come to rest, is $(\mathrm{g}=10$ $m s^{-2}$)
a) 3 m
b) 4 m
c) 2 m
d) 1.5 m
13. Two rigid bodies A and B rotate with rotational kinetic energies E_{A} and E_{B} respectively. The moments of inertia of A and B about the axis of rotation are I_{A} and I_{B} respectively. If $I_{A}=I_{B} / 4$ and $E_{A}=100 E_{B}$ the ratio of angular momentum $\left(L_{A}\right)$ of A to the angular momentum $\left(L_{B}\right)$ of B is
a) 25
b) $5 / 4$
c) 5
d) $1 / 4$
14. In a two block system an initial velocity v (with respect to the ground) is given to block A. Choose the correct statement.

15. A solid sphere of mass m rolls down an inclined plane without slipping, starting from rest at the top of an inclined plane. The linear speed of the sphere at the bottom of the inclined plane is v. The kinetic energy of the sphere at the bottom is
a) $\frac{7}{10} m v^{2}$
b) $\frac{2}{5} m v^{2}$
c) $\frac{5}{3} m v^{2}$
d) $\frac{1}{2} m v^{2}$
16. The moment of inertia of a solid sphere of mass M and radius R about the tangent on its surface is
a) $\frac{7}{5} M R^{2}$
b) $\frac{4}{5} M R^{2}$
c) $\frac{2}{5} M R^{2}$
d) $\frac{1}{2} M R^{2}$
17. Torque applied on a particle is zero, then its angular momentum will be
a) Equal in
b) Equal in
c) Both (a)
(a) d) Neither direction magnitud and (b) (a) nor e (b)
18. Moment of inertia of a circular loop of radius R about the axis of rotation parallel to horizontal
diameter at a distance $R / 2$ from it is
a) $M R^{2}$
b) $\frac{1}{2} M R^{2}$
c) $2 M R^{2}$
d) $\frac{3}{4} M R^{2}$
19. When a uniform solid sphere and a disc of the same mass and of the same radius rolls down an inclined smooth plane from rest to the same distance, then the ratio of the time taken by them is
a) $15: 14$
b) $15^{2}: 14^{2}$ c) $\sqrt{14}: \sqrt{15}$ d) $14: 15$
20. A body of mass M at rest explodes into three pieces, two of which of mass $M / 4$ each are thrown off in mutually perpendicular directions with speeds of $3 \mathrm{~ms}^{-1}$ and $4 \mathrm{~m} \mathrm{~s}^{-1}$ respectively. Then the third piece will be thrown off with a speed of
a) $1.5 \mathrm{~m} \mathrm{~s}^{-1}$
b) $2 \mathrm{~m} \mathrm{~s}^{-1}$
c) $2.5 \mathrm{~m} \mathrm{~s}^{-1}$
d) $3.0 \mathrm{~m} \mathrm{~s}^{-1}$
21. The moment of inertia of a circular ring of mass 1 kg about an axis passing through its centre and perpendicular to its plane is $4 \mathrm{~kg}-\mathrm{m}^{2}$. The diameter of the ring is
a) 2 m
b) 4 m
c) 5 m
d) 6 m
22. A solid disc rolls clockwise without slipping over a horizontal path with a constant speed v. Then the magnitude of the velocities of points A, B and C (see figure) with respect to a standing observer are respectively

a) ${ }_{v}^{v, v}$ and
b) $\begin{aligned} & 2 v, \sqrt{2 v} \\ & \text { and zero }\end{aligned}$
c) $\begin{aligned} & 2 v, 2 v \\ & \text { and zero }\end{aligned}$
d) $\begin{aligned} & 2 v, \sqrt{2 v} \\ & \text { and } \sqrt{2} v\end{aligned}$
23. What remains constant in the field of central force
a) Potential b) Kinetic
c) Angular
d) Linear energy energy momentu momentu $\mathrm{m} \quad \mathrm{m}$
24. A 2 kg mass is rotating on a circular path of radius 0.8 m with angular velocity of $44 \mathrm{rad} / \mathrm{sec}$. If radius of path becomes 1 m . Then the value of angular velocity will be
a) 28.16 racb$) 35.16 \mathrm{racc}) 19.28 \mathrm{racd}) 8.12 \mathrm{rad} /$
25. A set of n identical cubical blocks lies at rest parallel to each other along a line on a smooth horizontal surface. The separation between the near surfaces of any two adjacent blocks is L. The block at one end is given a speed v towards the next one at time $t=0$. All collision are completely
elastic. Then

26. A body of mass 3 kg is moving with a velocity of 4 $\mathrm{m} \mathrm{s}^{-1}$ towards right, collides head on with a body of mass 4 kg moving in opposite direction with a velocity of $3 \mathrm{~m} \mathrm{~s}^{-1}$. After collision the two bodies stick together and move with a common velocity, which is

$$
12 \mathrm{~ms}^{-1} \quad 12 \mathrm{~ms}^{-1} \quad \frac{12}{7} \mathrm{~ms}^{-1}
$$

a) Zero
b) towards
left
right
d)
towards
left
27. Moment of inertia of a thin rod of mass M and length L about an axis passing through its centre is $\frac{M L^{2}}{M}$. Its moment of inertia about a parallel axis at a distance of $\frac{L}{4}$ from this axis is given by
a) $\frac{M L^{2}}{48}$
b) $\frac{M L^{3}}{48}$
c) $\frac{M L^{2}}{12}$
d) $\frac{7 M L^{2}}{48}$
28. A particle of mass $m=5$ units is moving with a uniform speed $v=3 \sqrt{2} \mathrm{~m}$ in the $X O Y$ plane along the line $Y=X+4$. The magnitude of the angular momentum about origin is
a) Zero
b) 60 unit
c) 7.5 unit
d) $40 \sqrt{2} u n i$
29. A torque of $30 \mathrm{~N}-\mathrm{m}$ is applied on a 5 kg wheel whose moment of inertia is $2 \mathrm{~kg}-\mathrm{m}^{2}$ for 10 sec . The angle covered by the wheel in 10 sec will be
a) 750 rad .
$1500 \mathrm{rad}_{\mathrm{c}}$
c)
d)
30. The moment of inertia of a uniform circular disc of radius R and mass M about an axis touching the disc at its diameter and normal to the disc is
a) $M R^{2}$
b) $\frac{2}{5} M R^{2}$
c) $\frac{3}{2} M R^{2}$
d) $\frac{1}{2} M R^{2}$
31. Two masses of 200 g and 300 g are attached to the 20 cm and 70 cm marks of a light metre rod respectively. The moment of inertia of the system about an axis passing through 50 cm mark is
a) 0.15 kg mb$) 0.03 \mathrm{~kg} \mathrm{mc}) 0.3 \mathrm{~kg} \mathrm{~m}^{2}$ d) Zero
32. A ladder rests against a frictionless vertical wall, with its upper end 6 m above the ground and the lower end $4 m$ away from the wall. The weight of the ladder is 500 N and its C.G. at $1 / 3 \mathrm{rd}$ distance from the lower end. Wall's reaction will be, (in newton)
a) 111
b) 333
c) 222
d) 129
33. A circular disk of moment of inertia I_{t} is rotating in a horizontal plane, about its symmetry axis, with a constant angular speed ω_{1}. Another disk of moment of inertia I_{b} is dropped coaxially onto the rotating disk. Initially the second disk has zero angular speed. Eventually both the disks rotate with a constant angular speed ω_{1}. The energy lost by the initially rotating disc to friction is
a) $\frac{1}{2} \frac{I_{b} I_{t}}{\left(I_{t}+I_{b},\right.}$ b) $\frac{1}{2} \frac{I_{b}^{2}}{\left(I_{t}+I_{b},\right.}$ c) $\frac{1}{2} \frac{I_{t}^{2}}{\left(I_{t}+I_{b},\right.}$ d) $\frac{I_{b}-I_{t}}{\left(I_{t}+I_{b}\right)}$ a
34. Three masses of $2 \mathrm{~kg}, 4 \mathrm{~kg}$ and 4 kg are placed at the three points $(1,0,0),(1,1,0)$ and $(0,1,0)$ respectively. The position vector of its centre of mass is
a) $\frac{3}{4} \hat{i}+\frac{4}{5} \hat{j}$
b) $(3 \hat{i}+\hat{j})$
c) $\frac{2}{5} \hat{i}+\frac{4}{5} \hat{j}$
d) $\frac{1}{5} \hat{i}+\frac{4}{5} \hat{j}$
35. A thin wire of mass M and length L is bent to form a circular ring. The moment of inertia about its axis is
a) $\frac{1}{4 \pi^{2}}$
b) $\frac{1}{12} M L^{2}$
c) $\frac{1}{3 \pi^{2}} M L_{\text {d) }}^{2} \frac{1}{\pi^{2}} M L^{2}$
36. Two bodies of masses 2 kg and 4 kg are moving with velocities $20 \mathrm{~m} \mathrm{~s}^{-1}$ and $10 \mathrm{~m} \mathrm{~s}^{-1}$ towards each other due to mutual gravitation attraction. What is the velocity of their centre of mass?
a) $5 \mathrm{~m} \mathrm{~s}^{-1}$
b) $6 \mathrm{~m} \mathrm{~s}^{-1}$
c) $8 \mathrm{~m} \mathrm{~s}^{-1}$
d) Zero
37. A body is rotating with angular velocity $30 \mathrm{rads}^{-1}$. If its kinetic energy is 360 J , then its moment of inertia is
a) $0.8 \mathrm{kgm}^{2}$ b)
b) $0.4 \mathrm{kgm}^{2}$
c) $1 \mathrm{kgm}^{2}$
d) $1.2 \mathrm{kgm}^{2}$
38. A round disc of moment of inertia I_{2} about its axis perpendicular to its plane and passing through its centre is placed over another disc of moment of inertia I_{1} rotating with an angular velocity ω about the same axis. The final angular velocity of the combination of discs is
a) $\frac{I_{2} \omega}{I_{1}+I_{2}}$
b) ω
c) $\frac{I_{1} \omega}{I_{1}+I_{2}}$
d) $\frac{\left(I_{1}+I_{2}\right) \omega}{I_{1}}$
39. A solid sphere is rotating about a diameter at an angular velocity ω. If it cools so that its radius reduces to $\frac{1}{n}$ of its original value, its angular
velocity becomes
a) $\frac{\omega}{n}$
b) $\frac{\omega}{n^{2}}$
c) $n \omega$
d) $n^{2} \omega$
40. Two particles of masses m_{1} and m_{2} in projectile motion have velocities \vec{v}_{1} and \vec{v}_{2} respectively at time $t=0$. They collide at time $t=0$. their velocities become \vec{v}_{1} and \vec{v}_{2} at time $2 t_{0}$, while still moving in air. The value of $\left|\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)-\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)\right|$ is
a) Zero
b) $\left(m_{1}+m_{2}\right)$ (c) $2\left(m_{1}+m_{2} \mathrm{~d}\right) \frac{1}{2}\left(m_{1}+m\right.$
41. A thin wire of length l and mass m is bent in the form of semicircle. Its moment of inertia about an axis joining its free ends will be

a) $m l^{2}$
b) Zero
c) $m l^{2} / \pi^{2}$
d) $\begin{aligned} & \text { None } \\ & \text { these }\end{aligned}$
42. A round uniform body of radius R, mass M and moment of inertia I, rolls down (without slipping) an inclined plane making an angle θ with the horizontal. Then its acceleration is a) $\frac{g \sin \theta}{1+I / M R}$ b) $\frac{g \sin \theta}{1+M R^{2} /}$ c) $\frac{g \sin \theta}{1-I / M F}$ d) $\frac{g \sin \theta}{1-M R^{2} /}$
43. The moment of inertia of a circular disc about an axis passing through the circumference perpendicular to the plane of the disc is
a) $M R^{2}$
b) $\frac{3}{2} M R^{2}$
c) $\frac{M R^{2}}{2}$
d) $\frac{4}{3} M R^{2}$
44. A particle is projected with $200 \mathrm{~m} \mathrm{~s}^{-1}$, at an angle of 60°. At the highest point it explodes into three particles of equal masses. One goes vertically upward with velocity $100 \mathrm{~m} \mathrm{~s}^{-1}$, the second particle goes vertically downward with the same velocity as the first. Then what is the velocity of the third particle?
120
200
a) ms^{-1}

- b) $\begin{aligned} & \mathrm{m} \mathrm{s}^{-1} \\ & \text { with } 30^{\circ}\end{aligned}$
c) vertically d)
upwards ho

45. Two point objects of masses 1.5 g and 2.5 g respectively are at a distance of 16 cm apart, the centre of gravity is at a distance x from the object of mass 1.5 g where x is
a) 10 cm
b) 6 cm
c) 13 cm
d) 3 cm
46. The centre of mass of a system cannot change its state of motion, unless there is external force
acting on it. Yet the internal force of the brakes can bring a car to rest. Then
a) The
b) The
c) The car
d) The car brakes stop the wheels
friction is is between the brake pads and road driver the wheel pressing stop the car the pedal
47. What is moment of inertia in terms of angular momentum (L) and kinetic energy (K) ?
a) $\frac{L^{2}}{K}$
b) $\frac{L^{2}}{2 K}$
c) $\frac{L}{2 K^{2}}$
d) $\frac{L}{2 K}$
48. A body A of mass M while falling vertically downwards under gravity breaks into two parts; a body B of mass $\frac{1}{3} M$ and a body C of mass $\frac{2}{3}$
M. The centre of mass of bodies B and C taken together shifts compared to that of body A towards

Depends

a)
on height
${ }^{\text {b) }} \begin{aligned} & \text { Does not } \\ & \text { shift }\end{aligned}$
c) Body C
d) Body B
breaking
49. A man turns on a rotating table with an angular speed ω. He is holding two equal masses at arm's length. Without moving his arms, he just drops the two masses. How will his angular speed change

50. A string is wound round the rim of a mounted fly wheel of mass 20 kg and radius 20 cm . A steady pull of 25 N is applied on the cord. Neglecting friction and mass of the string, the angular acceleration of the wheel is
a) $50 \mathrm{~s}^{-2}$
b) $25 \mathrm{~s}^{-2}$
c) $12.5 \mathrm{~s}^{-2}$
d) $6.25 \mathrm{~s}^{-2}$
51. A horizontal force F is applied such that the block remains stationary then which of the following statement is false

$f=m g \quad F=N$
[where f [where N
a) is the
b) is the friction normal force] force]
c) $\begin{aligned} & \text { not } \\ & \text { produce } \\ & \text { torque }\end{aligned}$

52. A solid cylinder is rolling down on an inclined plane of angle θ. The coefficient of static friction between the plane and cylinder is μ_{s}. The condition for the cylinder not to slip is
a) $\tan \theta \geq 3 \mathrm{fb}) \tan \theta>3 /$ c) $\tan \theta \leq 3 /$ d) $\tan \theta<3 \mu$
53. A mass of 10 kg connected at the end of a rod of negligible mass is rotating in a circle of radius 30 cm with an angular velocity of $10 \mathrm{rad} / \mathrm{sec}$. If this mass is brought to rest in 10 sec by a brake, what is the magnitude of the torque applied
a) $0.9 \mathrm{~N}-\mathrm{m}$
b) $1.2 \mathrm{~N}-\mathrm{m}$
c) $2.3 \mathrm{~N}-\mathrm{m}$
d) $0.5 \mathrm{~N}-\mathrm{m}$
54. Two bodies having masses m_{1} and m_{2} and velocities \vec{u}_{1} and \vec{u}_{2} collide and form a composite system of $m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}=0\left(m_{1} \neq m_{2}\right)$. The velocity of the composite system is
a) Zero
b) $\vec{u}_{1}+\vec{u}_{2}$
c) $\vec{u}_{1}-\vec{u}_{2}$
d) $\frac{\vec{u}_{1}+\vec{u}_{2}}{2}$
55. A non-uniform thin rod of length L is placed along X-axis as such its one of ends is at the origin. The linear mass density of rod is $l=l_{0} x$. The distance of centre of mass of rod from the origin is
a) $\frac{L}{2}$
b) $\frac{2 L}{3}$
c) $\frac{L}{4}$
d) $\frac{L}{5}$
56. Two negatively charges particles having charges e_{1} and e_{2} and masses m_{1} and m_{2} respectively are projected one after another into a region with equal initial velocity. The electric field E is along the y-axis, while the direction of projection makes an angle a with the y-axis. If the ranges of the two particles along the x-axis are equal then one can conclude that

$e_{1}=e_{2}$
a) and
$m_{l}=l$
b) $e_{1}=e_{2} \mathrm{onl}$ c) ${\underset{\text { only }}{ }}_{m_{1}=m_{2}}$
d) $e_{1} m_{1}=e_{2}$
57. A bomb is kept stationary at a point. It suddenly explodes into two fragments of masses 1 g and 3 g . The total KE of the fragments is $6.4 \times 10^{4} \mathrm{~J}$. what is the KE of the smaller fragment?
a) ${ }_{J}^{2.5 \times 10^{4}}$
b) ${ }_{\mathrm{J}}^{3.5 \times 10}$
$\frac{4.8 \times 10^{4}}{\mathrm{~J}}$
d) 5.2×10^{4}
58. The radius of gyration of a body about an axis at a distance 6 cm from its centre of mass is 10 cm . Then its radius of gyration about a parallel axis through its centre of mass will be
a) 80 cm
b) 8 cm
c) 0.8 cm
d) 80 cm
59. A uniform rod of mass m and length l is suspended by means of two light inextensible strings as shown in figure. Tension in one string immediately after the other string is cut is

a) $\frac{\mathrm{mg}}{2}$
b) $m g$
c) 2 mg
d) $\frac{\mathrm{mg}}{4}$
60. $A B C$ is a triangular plate of uniform thickness. The sides are in the ratio shown in the figure. $I_{A B}, I_{B C}, I_{C A}$ are the moments of inertia of the plate about $A B, B C, C A$ respectively. Which one of the following relations is correct

$I_{C A}$ is
a) maximu b) $I_{A B}>I_{B C}$ c) $I_{B C}>I_{A B}$ d) $I_{A B}+I_{B C}=$ m
61. A bullet of mass 0.01 kg and travelling at a speed of $500 \mathrm{~m} \mathrm{~s}^{-1}$ strikes a block of mass 2 kg , which is suspended by a string of length 5 m . The centre of gravity of the block is found to rise a vertical distance of 0.1 m . What is the speed of the bullet after it emerges from the block?
a) $580 \mathrm{~m} \mathrm{~s}^{-1}$ b)
b) $220 \mathrm{~m} \mathrm{~s}^{-1}$ c) $1.4 \mathrm{~m} \mathrm{~s}^{-1}$
d) $7.8 \mathrm{~m} \mathrm{~s}^{-1}$
62. A rigid body of mass m rotates with the angular velocity ω about an axis at a distance ' a ' from the centre of mass G. The radius of gyration about G is K. Then kinetic energy of rotation of the body about new parallel axis is
a) $\left.\left.\frac{1}{2} m K^{2} \omega \mathrm{~b}\right) \frac{1}{2} m a^{2} \omega^{2} \mathrm{c}\right) \frac{1}{2} m\left(a^{2}+\mathrm{d}\right) \frac{1}{2} m(a+K$
63. Point masses $1,2,3$ and 4 kg are lying at the point $(0,0,0),(2,0,0),(0,3,0)$ and $(-2,-2,0)$ respectively. The moment of inertia of this system
about X-axis will be
a) $43 \mathrm{~kg}-\mathrm{m}^{2}$
b) $34 \mathrm{~kg}-\mathrm{m}^{2}$ c) $27 \mathrm{~kg}-\mathrm{m}^{2}$
d) $72 \mathrm{~kg}-\mathrm{m}^{2}$
64. A particle is moving in the $x-y$ plane with a constant velocity along a line parallel to x-axis away from the origin. The magnitude of its angular momentum about the origin
a) Is zero
b) Remains
c) Goes on
d) Goes on increasin decreasin $\mathrm{g} \quad \mathrm{g}$
65. A thin horizontal circular disc is rotating about a vertical axis passing through its centre. An insect is at rest at a point near the rim of the disc. The insect now moves along a diameter of the disc to reach other end. During the journey of the insect, the angular speed of the disc
a) Remains b)
b) Continuo c unchange usly d decreases increases usly
od) First increases and then decreases
66. A cord is wound round the circumference of wheel of radius r. The axis of the wheel is horizontal and moment of inertia about it is I. A weight mg is attached to the end of the cord and falls from the rest. After falling through a distance h, the angular velocity of the wheel will be
a) $\sqrt{\frac{2 g h}{I+m r}}$
b) $\left[\frac{2 m g h}{I+m r^{2}}\right]$
$\left.\left.r^{2}\right] c\right)\left[\frac{2 m g h}{I+2 m r}\right.$
$\sqrt{2 g h}$
67. A disc is of mass M and radius r. The moment of inertia of it about an axis tangential to its edge and in plane of the disc or parallel to its diameter is
a) $\frac{5}{4} M r^{2}$
b) $\frac{M r^{2}}{4}$
c) $\frac{3}{2} M r^{2}$
d) $\frac{M r^{2}}{2}$
68. A coin is of mass 4.8 kg and radius one metre rolling on a horizontal surface without sliding with angular velocity 600 rotation $/ \mathrm{min}$. What is total kinetic energy of the coin?
a) 360 J
b) $1440 \pi^{2} J$ c)
4000
$\pi^{2} J$
d) $600 \pi^{2} J$
69. An automobile engine develops 100 kW when rotating at a speed of $1800 \mathrm{rev} / \mathrm{min}$. What torque does it deliver
a) $350 \mathrm{~N}-\mathrm{m}$ b) $440 \mathrm{~N}-\mathrm{m}$ c) $531 \mathrm{~N}-\mathrm{m}$ d
d) $628 \mathrm{~N}-\mathrm{m}$
70. A solid sphere (mass $2 M$) and a thin hollow spherical shell (mass M) both of the same size, roll down an inclined plane, then
a) Solid
b) Hollow
c) Both will d
d) None of
sphere
will
reach the spherical reach at these
bottom shell will the same
first reach the time bottom
first
71. A cricket bat is cut at the location of its centre of mass as shown. Then

a) The two
pieces
b) The
c) The
handle
d) Mass of will have the same mass handle piece is double
bottom piece will have larger mass
piece will have the mass of
bottom piece
72. A gas molecule of mass m strikes the wall of the container with a speed v at an angle θ with the normal to the wall at the point of collision. The impulse of the gas molecule has a magnitude
a) $3 m v$
b) ${ }_{m v \cos \theta^{\text {c) } m v}}$
d) Zero
73. Four spheres of diameter $2 a$ and mass M are placed with their centres on the four corners of a square of side b. Then the moment of inertia of the system about an axis along one of the sides of the square is
a) $\frac{4}{5} M a^{2}+b$
b) $\left.\frac{8}{5} M a^{2}+c\right) \frac{8}{5} M a^{2}$
d) $\frac{4}{5} M a^{2}+$
74. A sphere and a hollow cylinder roll without slipping down two separate inclined planes and travel the same distance in the same time. If the angle of the plane down which the sphere rolls is 30°. The angle of the other plane is
a) 60°
b) 53°
c) 37°
d) 45°
75. A spherical shell has mass M and radius R.

Moment of inertia about its diameter will be
a) $\frac{2}{5} M R^{2}$
b) $\frac{2}{3} M R^{2}$
c) $\frac{1}{2} M R^{2}$
d) $M R^{2}$
76. The radius of gyration of a disc of mass 50 g and radius 2.5 cm , about an axis passing through its centre of gravity and perpendicular to the plane, is
a) 0.52 cm
b) 1.76 cm
c) 3.54 cm
d) 6.54 cm
77. When two blocks A and B coupled by a spring on a frictionless table are stretched and the released, then

nal to	nal to
their	their
masses	masses

78. Two spheres of equal masses, one of which is a thin spherical shell and the other a solid, have the same moment of inertia about their respective diameters. The ratio of their radii will be
a) $5: 7$
b) $3: 5$
c) $\sqrt{3}: \sqrt{5}$
d) $\sqrt{3}: \sqrt{7}$
79. A man is standing at the edge of a circular plate which is rotating with a constant angular speed about a perpendicular axis passing through the centre. If the man walks towards the axis along the radius, its angular velocity
a) Decrease b)
Remains
c) Increases
d) Informati s constant on is incomple te
80. The moment of inertia of a circular ring about an axis passing through its centre and normal to its plane is $200 \mathrm{~g} \times \mathrm{cm}^{2}$. Then its moment of inertia about a diameter is
a) $400 g \times c$ b) $300 g \times c$ c) $200 g \times c$ d) $100 g \times c$
81. A constant torque of $1000 \mathrm{~N}-\mathrm{m}$, turns a wheel of moment of inertia $200 \mathrm{~kg}-\mathrm{m}^{2}$ about an axis through the centre. Angular velocity of the wheel after $3 s$ will be
a) $15 \mathrm{rad} / \mathrm{s}$
b) $10 \mathrm{rad} / \mathrm{s} \mathrm{c)} 5 \mathrm{rad} / \mathrm{s}$
d) $1 \mathrm{rad} / \mathrm{s}$
82. Two particles of masses 1 kg and 2 kg are located at $x_{1}=0, y_{1}=0$ and $x_{2}=1, y_{2}=0$ respectively.
The centre of mass of the system is at
a) $x=1, y=\mathrm{b}) x=2, y=$ c) $\left.x=\frac{1}{3}, y=\mathrm{d}\right) x=\frac{2}{3}, y=$
83. Two wheels A and B are mounted on the same axle. Moment of inertia of A is $6 \mathrm{~kg} \mathrm{~m}^{2}$ and it is rotating at 600 rpm when B is at rest. What is moment of inertia of B, if their combined speed is 400 rpm ?
a) $8 \mathrm{~kg} \mathrm{~m}^{2}$
b) $4 \mathrm{~kg} \mathrm{~m}^{2}$
c) $3 \mathrm{~kg} \mathrm{~m}^{2}$
d) $5 \mathrm{~kg} \mathrm{~m}^{2}$
84. Three identical rods, each of length x, are joined to form a rigid equilateral triangle. Its radius of gyration about an axis passing through a corner and perpendicular to the triangle is
a) $\frac{x}{\sqrt{3}}$
b) $\frac{x}{2}$
c) $\sqrt{\frac{3}{2}} x$
d) $\frac{x}{\sqrt{2}}$
85. A body of mass m slides down an incline and reaches the bottom with a velocity v. If the same mass were in the form of a ring which rolls down this incline, the velocity of the ring at bottom would have been
a) v
b) $\sqrt{2} v$
c) $\frac{1}{\sqrt{2}} \mathrm{v}$
d) $\sqrt{\frac{2}{5}} v$
86. An isolated particle of mass m is moving in a horizontal plane $(x-y)$, along the x-axis, at a certain height above the ground. It suddenly explodes into two fragments of masses $m / 4$ and $3 \mathrm{~m} / 4$. An instant later, the smaller fragment is at $y=+15 \mathrm{~cm}$. The larger fragment at the instant is at
a) $\begin{aligned} & y=-5 \\ & \mathrm{~cm}\end{aligned}$
b) $\begin{aligned} & y=+20 \\ & m\end{aligned}$
c) $\begin{aligned} & y=+5 \\ & \mathrm{~cm}\end{aligned}$
d) $\begin{aligned} & y=-20 \\ & \mathrm{~cm}\end{aligned}$
87. Two practical A and B initially at rest, move towards each other, under mutual force of attraction. At an instance when the speed of A is v and speed B is $2 v$, the speed of centre of mass (CM) is
a) Zero
b) v
c) 2.5 v
d) $4 v$
88. When a mass is rotating in a plane about a fixed point, its angular momentum is directed along

A line	The line
perpendi	making
an angle	

a) cular to
b) of 45° toc)
The
the plane
of
the plane radius
d) tangent to the orbit rotation
of
rotation
89. A pulley of radius $2 m$ is rotated about its axis by a force $F=\left(20 t-5 t^{2}\right)$ newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is $10 \mathrm{~kg} \mathrm{~m}^{2}$, the number of rotations made by the pulley before its direction of motion if reversed, is
a) Less thanb) More
c) More
d) More 3 than 3 than 6 than 9
but less
than 6 but less than 9
90. A couple produces
a) No
b) Linear
c) Purely
d) Purely motion
and rotational linear rotational motion motion motion
91. A wheel of moment of inertia $5 \times 10^{-3} \mathrm{~kg}-\mathrm{m}^{2}$ is making 20 revolutions $/ \mathrm{sec}$. The torque required to stop it in 10 sec is
a) $2 \pi \times 10^{-}$
b) $2 \pi \times 10^{2}$ c) $4 \pi \times 10^{-}$
d) $4 \pi \times 10^{2}$
92. A ring starts to roll down the inclined plane of height h without slipping. The velocity with it reaches the ground is
a) $\sqrt{\frac{10 g h}{7}}$
b) $\sqrt{\frac{4 g h}{7}}$
c) $\sqrt{\frac{4 g h}{3}}$
d) $\sqrt{g h}$
93. In the above question, find the angular speed at the bottom
a) $68 \mathrm{rad} / \mathrm{stb}) 8.5 \mathrm{rad} / \mathrm{sc}) 17 \mathrm{rad} / \mathrm{sid}) 34 \mathrm{rad} / \mathrm{s}($
94. A body rolls down an inclined plane. If its kinetic energy of rotation is 40% of its kinetic energy of translation, then the body is
a) Solid
b) Solid
c) Disc
d) Ring
cylinder
sphere
95. A thin hollow cylinder open at both ends:
(i) Sliding without rolling
(ii) Rolls without slipping, with the same speed

The ratio of kinetic energy in the two cases is
a) $1: 1$
b) $4: 1$
c) $1: 2$
d) $2: 1$
96. The maximum and minimum distances of a comet from the sun are $1.4 \times 10^{12} \mathrm{~m}$ and $6 \times 10^{10} \mathrm{~m}$ respectively. If its velocity nearest to the sun is $7 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$, what is the velocity in the farthest position? Assume the paths of comet in both instantaneous positions are circular
a) $3 \times 10^{3} \mathrm{mb}$
b) $5 \times 10^{3} \mathrm{~m}$
$\mathrm{mc}) 7 \times 10^{3} \mathrm{md}$
d) $7 \times 10^{3} \mathrm{~m}$
97. In rotational motion of a rigid body, all particles move with
a) Same
b) Same
c) With
d) With linear \& linear angular velocity differen
angular
velocity

different	different
linear	linear
velocities	velocities
and same	and
angular	different
velocities	angular
	velocities

98. A small part of the rim of a fly wheel breaks off while it is rotating at a constant angular speed.
Then its radius of gyration will
a) Increase
b) Decrease c) Remain
d) Nothing
unchange definite d can be said
99. The moment of inertia of a uniform circular ring, having a mass M and a radius R, about an axis tangential to the ring and perpendicular to its plane, is
a) $2 M R^{2}$
b) $\frac{3}{2} M R^{2}$
c) $\frac{1}{2} M R^{2}$
d) $M R^{2}$
100. A particle of mass m collides with another stationary particle of mass M. If the particle m stops just after collision, the coefficient of restitution of collision is equal to
a) 1
b) $\frac{m}{M}$
c) $\frac{M-m}{M+m}$
d) $\frac{m}{M+m}$
101. A spherical solid ball of 1 kg mass and radius 3 cm is rotating about an axis passing through its centre with an angular velocity of 50 radian $/ \mathrm{s}$. The kinetic energy of rotation is
a) 4500 J
b) 90 J
c) 910 J
d) $\frac{9}{20} \mathrm{~J}$
102. A thin circular ring of mass M and radius R rotates about an axis through its centre and perpendicular to its plane, with a constant angular velocity ω. Four small spheres each of mass m (negligible radius) are kept gently to the opposite ends of two mutually perpendicular diameters of the. The new angular velocity of the ring will be
a) 4ω
b) $\frac{M}{4 m} \omega$
c) $\left(\frac{M+4 m}{M} \mathrm{~d}\right)\left(\frac{M}{M+4 m}\right.$
103. An athlete throws a discus from rest to a final angular velocity of $15 \mathrm{rads}^{-1}$ in 0.270 s before releasing it. During acceleration, discus moves a circular arc of radius 0.810 m Acceleration of discus before it is released is $\ldots . \mathrm{ms}^{-2}$
a) 45
b) 182
c) 187
d) 192
104. A ballet dancer, dancing on a smooth floor is spinning about a vertical axis with her arms folded with an angular velocity of $20 \mathrm{rad} / \mathrm{s}$. When she stretches her arms fully, the spinning speed decrease in $10 \mathrm{rad} / \mathrm{s}$. If I is the initial moment of inertia of the dancer, the new moment of inertia is
a) $2 I$
b) 3 I
c) $I / 2$
d) $I / 3$
105. Four point masses P, Q, R and S with respective masses $1 \mathrm{~kg}, 1 \mathrm{~kg}, 2 \mathrm{~kg}$ form the corners of a square of side a. The center of mass of the system will be farthest from
a) P only
b) R and S
c) R only
d) P and Q
106. A thin uniform circular disc of mass m and radius R is rotating in a horizontal plane about an axis passing through its centre and perpendicular to the plane with an angular velocity ω. Another disc of same dimensions but of mass $\frac{1}{4} m$ is placed gently on the first disc co-axially. The angular velocity of the system is
a) $\sqrt{2} \omega$
b) $\frac{4}{5} \omega$
c) $\frac{3}{4} \omega$
d) $\frac{1}{3} \omega$
107. A solid cylinder 30 cm in diameter at the top of an inclined plane 2.0 m high is released and rolls down the incline without loss of energy due to friction. Its linear speed at the bottom is
a) $5.29 \mathrm{~m} / \mathrm{sb}$) $\left.\left.4.1 \times 10^{3} \mathrm{c}\right) 51 \mathrm{~m} / \mathrm{sec} \mathrm{d}\right) 51 \mathrm{~cm} / \mathrm{se}$
108. A metre stick is held vertically with one end on the floor and is then allowed to fall. If the end
touching the floor is not allowed to slip, the other end will hit the ground with a velocity of
$\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

a) $3.2 \mathrm{~m} / \mathrm{s}$
b) $5.4 \mathrm{~m} / \mathrm{s}$
c) $7.6 \mathrm{~m} / \mathrm{s}$
d) $9.2 \mathrm{~m} / \mathrm{s}$
109. The centre of mass of a body
a) Lies
b) May lie
c) Lies
d) Lies
always
outside within, always always the body on the inside on the surface of the of the body body
110. Two bodies of identical mass m are moving with constant velocity v but in the opposite directions and stick to each other, the velocity of the compound body after collision is
a) v
b) $2 v$
c) Zero
d) $\frac{v}{2}$
111. A solid sphere of mass 1 kg , radius 10 cm rolls down an inclined plane of height 7 m . the velocity of its centre as it reaches the ground level is
a) $7 \mathrm{~m} / \mathrm{s}$
b) $10 \mathrm{~m} / \mathrm{s}$
c) $15 \mathrm{~m} / \mathrm{s}$
d) $20 \mathrm{~m} / \mathrm{s}$
112. Consider a two particle system with particles having masses m_{1} and m_{2}. If the first particles is pushed towards the centre of mass through a distance d, by what distance should the second particle be moved, so as to keep the centre of mass at the same position?
a) $\frac{m_{2}}{m_{1}} d$
b) $\frac{m_{1}}{m_{1}+m_{2}}$
c) $\frac{m_{1}}{m_{2}} d$
d) d
113. The graph between the angular momentum L and angular velocity ω will be
a) L

114. A ring of radius r and mass m rotates about an axis passing through its centre and perpendicular to its plane with angular velocity ω. Its kinetic energy is
a) $m r \omega^{2}$
b) $m r \omega^{2} / 2$ c) $m r^{2} \omega^{2}$
d) $\frac{m r^{2} \omega^{2}}{2}$
115. A bullet of mass m hits a target of mass M
hanging by a string and gets embedded in it. If the block rises to a height h as a result of this collision, the velocity of the bullet before collision is

$$
\text { a) } v=\sqrt{2 g k}^{\mathrm{b})} v={\sqrt{2 g r_{\mathrm{c}}}} v=\left(1+\frac{N}{n} \mathrm{~d}\right) v=\sqrt{2 g k}
$$

116. The instantaneous angular-position of a point on a rotating wheel is given by the equation $\theta(t)=2 t^{3}-6 t^{2}$. The torque on the wheel becomes zero at
a) $t=2 s$
b)
$t: c) t=0.2 \mathrm{~s}$
d) $t=0.25 \mathrm{~s}$
117. A wheel is rolling along the ground with a speed of $2 \mathrm{~m} \mathrm{~s}^{-1}$. The magnitude of the velocity of the points at the extremities of the horizontal diameter of the wheel is equal to

$$
\text { a) } 2 \sqrt{10} m \text { sb) } 2 \sqrt{3} \mathrm{~ms}^{-} \text {c) } 2 \sqrt{2} \mathrm{~ms}^{-} \text {d) } 2 \mathrm{~ms}^{-1}
$$

118. A force $\vec{F}=4 \hat{i}-5 \hat{j}+3 \hat{k}$ is acting a point
$\vec{r}_{1}=\hat{i}+2 \hat{j}+3 \hat{k}$. The torque acting about a point $\vec{r}_{2}=3 \hat{i}-2 \hat{j}-3 \hat{k}$ is
a) Zero
b) $42 \hat{i}-30^{\prime}$ c
'c) $42 \hat{i}+30 \hat{j}$ d) $42 \hat{i}+30 \hat{j}$
119. A thin rod of length ' L ' lying along the x-axis with its ends at $x=0$ and $x=L$. Its linear density (mass/length) varies with x as $k\left(\frac{x}{L}\right)^{n}$, where n can be zero or any positive number. If the position $x_{c m}$ of the centre of mass of the rod is plotted against ' n ', which of the following graphs best approximates the dependence of $X_{c m}$ on n
a)

b)

d) L

120. The moment of inertia of two spheres of equal masses about their diameters are equal. If one of them is solid and other is hollow, the ratio of their radii is
a) $\sqrt{3}: \sqrt{5}$
b) $3: 5$
c) $\sqrt{5}: \sqrt{3}$
d) $5: 3$
121. A circular disc X of radius R is made from an iron plate of thickness t, and another disc Y of radius $4 R$ is made from an iron plate of thickness $t / 4$. Then the relation between the moment of inertia I_{X} and I_{Y} is
a) $I_{Y}=32 I$
${ }_{\lambda,}$ b) $I_{Y}=16 I_{\lambda}$ c) $I_{Y}=I_{X}$
d) $I_{Y}=64 I_{\lambda}$
122. The moment of inertia of a body does not depend upon
a) The
b) The massc
c) The
d) The axis angular of the distributi of velocity of the
on of rotation mass in of the
body
the body body
123. The centre of mass of three particles of masses 1 $\mathrm{kg}, 2 \mathrm{~kg}$ and 3 kg is at $(2,2,2)$. The position of the fourth mass of 4 kg to be places in the system as that the new centre of mass is at $(0,0,0)$ is
a) $(-3,-3,-3)$ b) $(-3,3,-3)$ c) $(2,3,-3)$
d) $(2,-2,3)$
124. A solid sphere is rolling on a frictionless surface, shown in figure with a transnational velocity $v \mathrm{~m} / \mathrm{s}$. If sphere climbs up to height h then value of v should be

a) $\left.\geq \sqrt{\frac{10}{7} g h b}\right) \geq \sqrt{2 g h}$
c) $2 g h$
d) $\frac{10}{7} \mathrm{gh}$
125. A loded spring gun of mass M fires a shot of mass m with a velocity v at an angle of elevation θ. The gun was initially at rest on a horizontal frictionless surface. After firing, the centre of mass of gunshot system

	Moves	Moves
	with a	with
Moves	velocity	velocity
with a	$m v$ Remain	($M-m$)
a) velocity	b) $\overline{M \cos \theta}$ c) $\begin{aligned} & \text { Remain } \\ & \text { at rest }\end{aligned}$	d) $\overline{(M+m)}$
$\underline{m v}$	in the	in the
M	horizonta	horizonta
	1	1
	direction	direction

126. A solid sphere of mass M and radius R spins about an axis passing through its centre making 600 rpm . Its KE of rotation is
a) $2 / 5 \pi^{2} M$
$\mathrm{Mb}) \frac{2}{5} \pi M^{2} R_{\mathrm{c})} 80 \pi^{2} M$
ld) $80 \pi R$
127. A metre stick of mass 400 g is pivoted at one end and displaced through an angle 60°. The increase in its potential energy is
a) 2 J
b) 3 J
c) 0 J
d) 1 J
128. A small mass attached to a string rotates on a frictionless table top as shown. If the tension on the string is increased by pulling the string causing the radius of the circular motion to decrease by a factor of 2 , the kinetic energy of the mass will

a) Increase b) Decrease c)
by a by a constant by a
factor of factor of factor of
4
2
129. Two observers are situated in different inertial reference frames. Then
a) The
b) The
c) The
d) None of
momentu momentu kinetic the above
m of a
body by m of a
both
observers by both
may be
same observers energy measured by both observers must be must be same same
130. A bullet of mass m leaves a gun of mass M kept on a smooth horizontal surface. If the speed of the bullet relative to the gun is v, the recoil speed of the gun will be
a) $\frac{m}{M} v$
b) $\frac{m}{M+m}, v$ c) $\frac{m}{M+m} v$
d) $\frac{M}{m} v$
131. A rod of mass m and length l is made to stand at an angle of 60° with the vertical potential energy of the rod in this position is
a) mgl
b) $\frac{m g l}{2}$
c) $\frac{m g l}{3}$
d) $\frac{m g l}{4}$
132. The ratio of rotational and translatory kinetic energies of a sphere is
a) $\frac{2}{9}$
b) $\frac{2}{7}$
c) $\frac{2}{5}$
d) $\frac{7}{2}$
133. In the absence of external torque for a body revolving about any axis, the quantity that remains constant is
a) Kinetic
b) Potential c
c) Linear
d) Angular energy energy momentu momentu $\mathrm{m} \quad \mathrm{m}$
134. A uniform disk of mass M and radius R is mounted on a fixed horizontal axis. A block of mass m hangs from a mass less string that is wrapped around the rim of the disk. The magnitude of the acceleration of the falling block (m) is
a) $\frac{2 M}{M+2 m}$
(b) $\frac{2 m}{M+2 m}$ (c) $\frac{M+2 m}{2 M}$
(d) $\frac{2 M+m}{2 M}$,
135. A straight rod of length L has one of its ends at the origin and the other at $x=L$. If the mass per unit length of the rod is given by $A x$ where A is constant, where is its mass centre?
a) $L / 3$
b) $L / 2$
c) $2 L / 3$
d) $3 \mathrm{~L} / 4$
136. A particle performs uniform circular motion with an angular momentum L, if the frequency of particles motion is doubled and its KE is halved, the angular momentum becomes
a) $4 L$
b) 0.5 L
c) $2 L$
d) 0.25 L
137. The moment of momentum is called
a) Couple
b) Torque
c) Impulse
d) Angular
momentu m
138. The radius of gyration of a uniform rod of length L about on axis passing through its centre of mass and perpendicular to its length is
a) $L / \sqrt{12}$
b) $L^{2} / 12$
c) $L / \sqrt{3}$
d) $L / \sqrt{2}$
139. A rupee coin starting from rest rolls down a distance of 1 m on an inclined plane at angle of 30° with the horizontal. Assuming that $g=9.81$ $\mathrm{m} \mathrm{s}^{-1}$, time taken is
a) 0.68 s
b) 0.6 s
c) 0.5 s
d) 0.7 s
140. A solid sphere of mass M, radius R and having moment of inertia about an axis passing through the centre of mass as I, is recast into a disc of thickness t, whose moment of inertia about an axis passing through its edge and perpendicular to its plane remains I. Then, radius of the disc will be
a) $\frac{2 R}{\sqrt{15}}$
b) $R \sqrt{\frac{2}{15}}$
c) $\frac{4 R}{\sqrt{15}}$
d) $\frac{R}{4}$
141. Four point masses, each of value m, are placed at the corners of a square $A B C D$ of side l. The moment of inertia of this system about an axis passing through A and parallel to $B D$ is
a) $2 \mathrm{ml}^{2}$
b) $\sqrt{3} \mathrm{ml}^{2}$
c) $3 m l^{2}$
d) $m l^{2}$
142. In an elastic collision
a) Only KE
if system is conserve
Only
c) Both KE
d) Neither momentu and momentu KE nor m is m are $\begin{array}{lll}d & \text { conserve } & c \\ & d & d\end{array}$ $\begin{array}{lll}d & \text { conserve } & \text { con } \\ & d & d\end{array}$ momentu conserve conserve
143. Two bodies A and B of definite shape
(dimensions of bodies are not ignored). A is moving with speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$ and B is in rest, collide elastically. The

144. The moment of inertia of a thin uniform rod length L and mass M about an axis passing through a point at a distance of $1 / 3$ from one of its ends and perpendicular to the rod is
a) $\frac{M L^{2}}{12}$
b) $\frac{M L^{2}}{9}$
c) $\frac{7 M L^{2}}{48}$
d) $\frac{M L^{2}}{48}$
145. A solid sphere, disc and solid cylinder all of the same mass and made up of same material are
allowed to roll down (from rest) on inclined plane, then
a) Solid
b) Solid
c) Disc will
d) All of sphere sphere reach the them reache the reaches bottom reach the bottom at bottom first the first the same time
146. A system of three particles having masses $m_{1}=1$
kg and $m_{3}=4 \mathrm{~kg}$ respectively is connected by two light springs. The acceleration of the three particles at any instant are $1 \mathrm{~m} \mathrm{~s}^{-2}, 2 \mathrm{~ms}^{-2}$ and 0.5 $\mathrm{m} \mathrm{s}^{-2}$ respectively directed as shown in the figure. The net external force acting on the system is
a) 1 N
b) 7 N
c) 3 N
d) None of these
147. A bullet of mass 50 g is fired from a gun of mass 2 kg . If the total kinetic energy produced is 2050 J , the kinetic energy of the bullet and the gun respectively are
a) $200 \mathrm{~J}, 5 \mathrm{Jb}) 2000 \mathrm{~J}$,
c) $5 \mathrm{~J}, 200 \mathrm{~J}$
d) 50 J , 50 J
2000 J
148. The radius of gyration of a solid sphere of radius r about a certain axis is r. The distance of this axis from the centre of the sphere is
a) r
b) $0.5 r$
c) $\sqrt{0.6} r$
d) $\sqrt{0.4} r$
149. The flywheel is so constructed that the entire mass of it is concentrated at its rim, because
a) It
b) It
c) It
d) It saves increases increases increases the the the speed the flywheel power moment fan from of inertia breakage
150. In the figure (i) half of the meter scale is made of wood while the other half, of steel. The wooden part is pivoted at O. A force F is applied at the end of steel part. In figure (ii) the steel part is pivoted at O and the same force is applied at the wooden end

(i)

(ii)
a) More
b) More
c) Same
d) Informati accelerati accelerati accelerati on is
on will be produce in (i)
on will be produced produced in (ii) be in both
on will incomple te condition
151. In a metallic triangular sheet $A B C, A B=B C=1$. If M is its moment of inertia about $A C$.

a) $\frac{M I^{2}}{4}$
b) $\frac{M l^{2}}{12}$
c) $\frac{M l^{2}}{6}$
d) $\frac{M l^{2}}{18}$
152. Moment of inertia of a ring of mass $m=3 \mathrm{gm}$ and radius $r=1 \mathrm{~cm}$ about an axis passing through its edge and parallel to its natural axis is
a) 10 g -
b) 100 g -
c) $6 \mathrm{~g}-\mathrm{cm}^{2}$
d) $1 \mathrm{~g}-\mathrm{cm}^{2}$
153. A parallel undergoes uniform circular motion.

About which point on the plane of the circle, will the angular momentum of the particle remain conserved
a) Centre ofb
On the
c) Inside
d) Outside the circle circumfe the circle the circle rence of the circle
154. A wheel of mass 8 kg and radius 40 cm is rolling on a horizontal road with angular velocity of $15 \mathrm{rad} \mathrm{s}^{-1}$. The moment of inertia of the wheel about its axis is $0.64 \mathrm{~kg} \mathrm{~m}^{-2}$. Total KE of wheel is
a) 288 J
b) 216 J
c) 72 J
d) 144 J
155. Moment of inertia of a hollow cylinder of mass M and radius r about its own axis is
a) $\frac{2}{3} M r^{2}$
b) $\frac{2}{5} M r^{2}$
c) $\frac{1}{3} M r^{2}$
d) $M r^{2}$
156. Consider a body, shown in figure, consisting of two identical balls, each of mass M connected by a light rigid rod. If an impulse $J=M V$ is imparted to the body at one of its ends, what would be its angular velocity

a) V / L
b) $2 \mathrm{~V} / \mathrm{L}$
c) $V / 3 \mathrm{~L}$
d) $V / 4 L$
157. A flywheel rotates with a uniform angular acceleration. Its angular velocity increases from $20 \mathrm{rrad} \mathrm{s}^{-1}$ to $40 \mathrm{\pi rad} \mathrm{~s}^{-1}$ in 10 s . how many rotations did it make in this period?
a) 80
b) 100
c) 120
d) 150
158. Three identical sphere lie at rest along a line on a smooth horizontal surface. The separation between any two adjacent spheres is L. The first sphere is moved with a velocity u towards the second sphere at time $t=0$. The coefficient of
restitution for collision between any two blocks is $1 / 3$. Then choose the correct statement The
The third The third sphere
a)
will start
b) at $t=\frac{5 L}{2 u}$ will start
moving sphere c) system will have a final
speed $u / 3$

The centre of mass of
the system will have a final speed u
159. The moment of inertia of a body about a given axis is $2.4 \mathrm{~kg}-\mathrm{m}^{2}$. To produce a rotational kinetic energy of 750 J , an angular acceleration of $5 \mathrm{rad} / \mathrm{s}^{2}$ must be applied about that axis for
a) 6 sec
b) 5 sec
c) 4 sec
d) 3 sec
160. Two bodies with moment of inertia I_{1} and I_{2} (such that $I_{1}>I_{2} \dot{\text { i have equal angular velocity. If }}$ their kinetic energy of rotation are E_{1} and E_{2} then
a) $E_{1} \geq E_{2}$
b) $E_{1}>E_{2}$
c) $E_{1}<E_{2}$
d) $E_{1}=E_{2}$
161. Two bodies of moment of inertia I_{1} and I_{2} $\left(I_{1}>I_{2}\right)$ have equal angular momenta. If E_{1}, E_{2} are their kinetic energies of rotation, then
a) $E_{1}>E_{2}$
b) $E_{1}=E_{2}$
c) $E_{1}<E_{2}$
d) $\begin{aligned} & \text { Cannot } \\ & \text { be said }\end{aligned}$
162.2 bodies of different masses of 2 kg and 4 kg are moving with velocities $20 \mathrm{~m} / \mathrm{s}$ and $10 \mathrm{~m} / \mathrm{s}$ towards each other due to mutual gravitational attraction. What is the velocity of their centre of mass
a) $5 \mathrm{~m} / \mathrm{s}$
b) $6 \mathrm{~m} / \mathrm{s}$
c) $8 \mathrm{~m} / \mathrm{s}$
d) Zero
163. Two bodies of mass m and 4 m are moving with equal linear momentum. The ratio their kinetic energies is
a) $1: 4$
b) $4: 1$
c) $1: 1$
d) $1: 12$
164. A person standing on a rotating platform has his hands lowered. He suddenly outstretch his arms. The angular momentum
a) Becomes b zero
b) Increases c
c) Decrease d)
d) Remains body is rolling down an inclined plane. Its translational and rotational kinetic energies are equal. The body is a
a) Solid
b) Hollow
c) Solid
d) Hollow sphere sphere cylinder cylinder
166. Four particles of masses $m, 2 m, 3 m$ and $4 m$ are arranged at the corners of a parallelogram with each inside equal to a and one of the angle between two adjacent sides is 60°. The parallelogram lies in the $x-y$ plane with mass m at
the origin and 4 m on the x-axis. The centre of mass of the arrangement will be located at
a) $\left(\frac{\sqrt{3}}{2} a, 0 . \mathrm{b}\right)(0.95 a,-\mathrm{c})\left(\frac{3 a}{4}, \frac{a}{2}\right)$ d) $\left(\frac{a}{2}, \frac{3 a}{4}\right)$
167. The angular momentum of a system of particles is conserved

a) When no b) When no c)	When no d)	When	
external	external	external	axis of
force	torque	impulse	rotation
acts upon	acts on	acts upon	remains
the	the	the	same
system	system	system	

168. A wheel of moment of inertia $2.5 \mathrm{Kg}-\mathrm{m}^{2}$ has an initial angular velocity of $40 \mathrm{rads}^{-1}$. A constant torque of 10 Nm acts on the wheel. The time during which the wheel is accelerated to 60 rads ${ }^{-1}$ is
a) 4 s
b) 6 s
c) 5 s
d) 2.5 s
169. A boy and a man carry a uniform rod of length L, horizontally in such a way that boy gets $\frac{1}{4}$ th load. If the boy is at one end of the rod, the distance of the man from the other end is
a) $\frac{L}{3}$
b) $\frac{L}{4}$
c) $\frac{2 L}{3}$
d) $\frac{3 L}{4}$
170. A body is rolling down an inclined plane. If K.E. of rotation is 40% of K.E. in translatory state, then the body is a
a) Ring
b) Cylinder
c) Hollow
d) Solid ball ball
171. The ration of moments of inertia of circular ring and a circular disc having the same mass and radii about an axis passing through the centre and perpendicular to its plane is
a) $1: 1$
b) $2: 1$
c) $1: 2$
d) $4: 1$
172. Moment of inertia of rod of mass M and length L about an axis passing through a point midway between centre and end is
a) $\frac{M L^{2}}{6}$
b) $\frac{M L^{2}}{12}$
c) $\frac{7 M L^{2}}{24}$
d) $\frac{7 M L^{2}}{48}$
173. From a circular disc of radius R and mass $9 M$, a small disc of mass M and radius $\frac{R}{3}$ is removed concentrically. The moment of inertia of the remaining disc about an axis perpendicular to the plane of the disc and passing through its centre is
a) $\frac{40}{9} M R^{2}$
b) $M R^{2}$
c) $4 M R^{2}$
d) $\frac{4}{9} M R^{2}$
174. The moment of inertia of a uniform ring of mass M and radius r about a tangent lying in its own plane is
a) $2 M r^{2}$
b) $3 / 2 M r^{2}$ c) $M r^{2}$
d) $1 / 2 M r^{2}$
175. A flywheel is in the form of solid circular wheel of mass 72 kg and radius of 0.5 m and it takes $70 r . p . m$, then the energy of revolution is
a) 24 J
b) 240 J
c) 2.4 J
d) 2400 J
176. Three bricks each of length L and mass M are arranged as shown from the wall. The distance of the centre of mass of the system from the wall is

a) $L / 4$
b) $L / 2$
c) $(3 / 2) L$
d) $(11 / 12) I$
177. The distance between the carbon atom and the oxygen atom in a carbon monoxide molecule is 1.1 \AA. Given, mass of carbon atom is 12 a.m.u. and mass of oxygen atom is 16 a.m.u., calculate the position of the centre of mass of the carbon monoxide molecule
$6.3 \AA$
$1 \AA$ from
$0.63 \AA$
$0.12 \AA$
a) from the carbon
b) oxygen
c) from the
carbon
d) from the
oxygen
178. A T shaped object with dimension shown in the figure, is lying on a smooth floor. A force F is applied at the point P parallel to $A B$, such that the object has only the translational motion without rotation. Find the location of P with respect to C.

a) $\frac{2}{3} l$
b) $\frac{3}{2} l$
c) $\frac{4}{3} l$
d) l
179. The moment of inertia of semicircular ring about an axis which is perpendicular to the plane of the ring and passes through the centre
a) $M R^{2}$
b) $\frac{M R^{2}}{2}$
c) $\frac{M R^{2}}{4}$
d) $\begin{aligned} & \text { None of } \\ & \text { these }\end{aligned}$
180. A system consisting of two masses connected by a massless rod lies along the x-axis. A 0.4 kg mass is at a distance $x=2 \mathrm{~m}$ while a 0.6 kg mass is at a distance $x=7 \mathrm{~m}$. The x-coordinate of the centre of mass is
a) 5 m
b) 3.5 m
c) 4.5 m
d) 4 m
181. A man weighing 80 kg is standing in a trolley
weighing 320 kg . The trolley is resting on frictionless horizontal rails. If the man starts walking on the trolley with a speed of $1 \mathrm{~m} / \mathrm{s}$, then after 4 sec his displacement relative to the ground will be
a) 5 m
b) 4.8 m
c) 3.2 m
d) 3.0 m
182. In the given figure four identical spheres of equal mass m are suspended by wires of equal length l_{0}, so that all spheres are almost touching to each other. If the sphere 1 is released from the horizontal position and all collisions are elastic, the velocity of sphere 4 just after collision is

a) $\sqrt{2 g l_{0}}$
b) $\sqrt{3 g l_{0}}$
c) $\sqrt{g l_{0}}$
d) $\sqrt{\frac{g l_{0}}{2}}$
183. A solid cylinder has mass M, length L and radius
R. The moment of inertia of this cylinder about a generator is
a) $M\left(\frac{L^{2}}{12}+\right.$ b) $\frac{M L^{2}}{4}$
c) $\frac{1}{2} M R^{2}$
d) $\frac{3}{2} M R^{2}$
184. A sphere rolls down on an inclined plane of inclination θ. What is the acceleration as the sphere reaches bottom
a) $\frac{5}{7} g \sin \theta$
b) $\frac{3}{5} g \sin \theta$
c) $\frac{2}{7} g \sin \theta$
d) $\frac{2}{5} g \sin \theta$
185. Centre of mass of 3 particles $10 \mathrm{~kg}, 20 \mathrm{~kg}$ and 30 kg is at $(0,0,0)$. Where should a particle of mass 40 kg be placed so that the combination centre of mass will be at $(3,3,3)$
a) $(0,0,0)$
b) $(7.5,7.5$, c) $(1,2,3)$
d) $(4,4,4)$ 7.5)
186. Moment of inertia of a disc about its own axis is I . Its moment of inertia about a tangential axis in its plane is
a) $\frac{5}{2} I$
b) 3 I
c) $\frac{3}{2} I$
d) $2 I$
187. Turning effect is produced by
a) Tangenti b
) Radial
c) Transver
d) None of
al
compone
compone
se these
nt of nt of compone force force nt of force
188. A uniform cylinder has a radius R and length L. If the moment of inertia of this cylinder about an axis passing through its centre and normal to its circular face is equal to the moment of inertia of the same cylinder about an axis passing through its
centre and perpendicular to its length, then
a) $L=R$
b) $L=\sqrt{3} R$ c) $L=\frac{R}{\sqrt{3}}$
d) $L=\sqrt{\frac{3}{2}} R$
189. Very thin ring of radius R is rotated about its centre. It's radius will
a) Increase
b) Decrease c)
Change d) None of
depends these
on the
material
190. A mass is revolving in a circle which is in the plane of paper. The direction of angular acceleration is
a) Upward
b) Towards
c) Tangenti
d) At right the the al angle to radius radius angular velocity
191. The speed of a homogeneous solid sphere after rolling down an inclined plane of vertical height h , form rest without sliding, is
a) $\sqrt{\frac{10}{7} g h}$
b) $\sqrt{g h}$
c) $\sqrt{\frac{6}{5} g h}$
d) $\sqrt{\frac{4}{3} g h}$
192. The moment of inertia of a circular disc of mass M and radius R about an axis passing through the center of mass is I_{0}. The moment of inertia of another circular disc of same mass and thickness but half the density about the same axis is
a) $\frac{I_{0}}{8}$
b) $\frac{I_{0}}{4}$
c) $8 I_{0}$
d) $2 I_{0}$
193. The curve between $\log _{e} L$ and $\log _{e} P$ is (L is the angular momentum and P is the linear momentum)
a)

194. A ball of mass m moving with a velocity u collides head on with another ball of mass m initially at rest. If the coefficient of restitution be e then the ratio of the final and initial velocities of the first ball is
a) $\frac{1-e}{1+e}$
b) $\frac{1+e}{1-e}$
c) $\frac{1+e}{2}$
d) $\frac{1-e}{2}$
195. The motion of planets in the solar system is an example of conservation of
a) Mass
b) Moment
c) Angular
d) Kinetic um momentu energy m
196. Three identical spheres of mass M each are placed at the corners of an equilateral triangle of side $2 m$. Taking one of the corner as the origin, the position vector of the centre of mass is
a) $\sqrt{3}(\hat{i}-\hat{j})$
b) $\frac{\widehat{i}}{\sqrt{3}}+\hat{j}$
c) $\frac{\hat{i}+\hat{j}}{3}$
d) $\hat{i}+i \frac{\widehat{j}}{\sqrt{3}}$
197. Two thin discs each of mass M and radius R are placed at either end of a rod of mass m, length l and radius r. Moment of inertia of the system about an axis passing through the centre of rod and perpendicular to its length is

a) $\frac{m L^{2}}{12}+\frac{1}{4}$ b) $\frac{M L^{2}}{12}+\frac{1}{2}$ c) $\frac{1}{2} m L^{2}+-$ d) $\frac{m L^{2}}{12}+M$
198. If a cycle wheel of radius 4 m completes one revolution in two second, the acceleration of the cycle in $\mathrm{m} \mathrm{s}^{-2}$ is
a) 4
b) $4 \pi^{2}$
c) $2 \pi^{2}$
d) π^{2}
199. In a rectangle $A B C D(B C=2 A B)$. The moment of inertia along which axes will be minimum

a) $B C$
b) $B D$
c) $H F$
d) $E G$
200. A wheel having moment of inertia $2 \mathrm{~kg}-\mathrm{m}^{2}$ about its vertical axis, rotates at the rate of 60 rpm about this axis. The torque which can stop the wheel's rotation in one minute would be

$$
\text { a) } \left.\left.\frac{2 \pi}{15} N-n_{\text {b) }} \frac{\pi}{12} N-m_{\text {c }}\right) \frac{\pi}{15} N-m_{\text {d }}\right) \frac{\pi}{18} N-m
$$

201. Three identical balls A, B and C are lying on a horizontal frictionless table as shown in figure. If ball A is imparted a velocity v towards B and C and the collisions are perfectly elastic, then finally Ball A
comes to
rest and
balls B
a)
and C
roll out
with sped
$v / 2$ each

Ball A

 and B are a rest andb) ball C roll out with speed v

All the three balls roll c) out with speed v/3 each rest
202. Moment of inertia of a solid cylinder of length L and diameter D about an axis passing through its centre of gravity and perpendicular to its geometric axis is
а) $M\left(\frac{D^{2}}{4}+\right.$ b) $M\left(\frac{L^{2}}{16}+\right.$-c) $M\left(\frac{D^{2}}{4}+\right.$ d) $M\left(\frac{L^{2}}{12}+-\right.$
203. The M.I. of a body about the given axis is
$1.2 \mathrm{~kg} \times \mathrm{m}^{2}$ initially the body is at rest. In order to produce a rotational kinetic energy of 1500 J , an angular acceleration of $25 \mathrm{rad} / \mathrm{s} \mathrm{ec}^{2}$ must be applied about that axis for duration of
a) 4 sec
b) 2 sec
c) 8 sec
d) 10 sec
204. A circular disc is to be made by using iron and aluminium, so that it acquires maximum moment of inertia about its geometrical axis. It is possible with
a) Iron and
b) Aluminiuc)
Iron at
d) Either (a) aluminiu m layers in alternate order m at interior or (c) interior and and iron aluminiu surroundi m ng it surroundi ng it
205. The distance between the centres of carbon and oxygen atoms in the carbon monoxide molecule is $1.130 A$. Locate the centre of mass of the molecule relative to the carbon atom.
a) $5.428 \AA$
b) $1.130 \AA$
c) $0.6457 \AA$
d) $0.3260 \AA$
206. Two particles of masses m_{1} and m_{2} initially at rest start moving towards each other under their mutual force of attraction. The speed of the centre of mass at any time t, when they are at a distance r apart, is
a) Zero
b) $\left(G \frac{m_{1} m_{2}}{r^{2}} \mathrm{c}\right)\left(G \frac{m_{1} m_{2}}{r^{2}} \mathrm{~d}\right)\left(G \frac{m_{1} m_{2}}{r^{2}}\right.$
207. A sphere of mass 0.5 kg and diameter 1 m rolls without sliding with a constant velocity of $5 \mathrm{~m} / \mathrm{s}$, calculate what is the ratio of the rotational K.E. to the total kinetic energy of the sphere
a) $\frac{7}{10}$
b) $\frac{5}{7}$
c) $\frac{2}{7}$
d) $\frac{1}{2}$
208. The moment of inertia of a uniform horizontal cylinder of mass M about an axis passing through its edge and perpendicular to the axis of the cylinder when its length is 6 times its radius R is
a) $\frac{39}{4} M R^{2}$
b) $\frac{39}{4} M R$
c) $\frac{49}{4} M R$
d) $\frac{49}{4} M R^{2}$
209. A 1 m long rod has a mass of 0.12 kg . What is the moment of inertia about an axis passing through the centre and perpendicular to the length of rod
a) 0.01 kg -
b) ${ }_{-m^{2}}^{0.001 \mathrm{~kg}}$
c) $1 \mathrm{~kg}-\mathrm{m}^{2}$
d) $10 \mathrm{~kg}-\mathrm{m}^{2}$
210. About which axis in the following figure the moment of inertia of the rectangular lamina is
maximum?

a) 1
b) 2
c) 3
d) 4
211. A ring starts to roll down the inclined plane of height h without slipping. The velocity with which it reaches the ground is
a) $\sqrt{\frac{10 g h}{7}}$
b) $\sqrt{\frac{4 g h}{7}}$
c) $\sqrt{\frac{4 g h}{3}}$
d) $\sqrt{g h}$
212. The angular momentum of particle

| a) Is | b) Along | c) Inclined d) | Has no |
| :--- | :--- | :--- | :--- | :--- |
| perpendi | the plane | at any | particular |
| cular to | of | angle | direction |
| the plane | motion | with the | |
| of the | | plane | |

surface
in which
it moves
213. Four balls each of radius 10 cm and mass 1 kg , $2 \mathrm{~kg}, 3 \mathrm{~kg}$ and 4 kg are attached to the periphery of massless plate of radius 1 m . What is moment of inertia of the system about the centre of plate?

a) $\begin{aligned} & 12.04 \mathrm{~kg}- \\ & \mathrm{m}^{2}\end{aligned}$
b) $\begin{aligned} & 10.04 \mathrm{~kg}- \\ & \mathrm{m}^{2}\end{aligned}$
11.50 kg
$\mathrm{~m}^{2}$
d) $\begin{aligned} & 5.04 \mathrm{~kg}- \\ & m^{2}\end{aligned}$
214. A constant torque of $1000 \mathrm{~N}-\mathrm{m}$ turns a wheel of moment of inertia $200 \mathrm{~kg}-\mathrm{m}^{2}$ about an axis through its centre. Its angular velocity after 3 sec is

$$
\text { a) } 1 \mathrm{rad} / \mathrm{sec}(\mathrm{~b}) 5 \mathrm{rad} / \mathrm{sec}(\mathrm{c}) 10 \mathrm{rad} / \mathrm{s} \epsilon \mathrm{~d}) 15 \mathrm{rad} / \mathrm{s} \epsilon
$$

215. A circular disc of radius R is removed from a bigger circular disc of radius $2 R$, such that the circumference of the discs coincide. The center of mass of the new disc is $\frac{\alpha}{R}$ from the center of the bigger disc the value of α is
a) $\frac{1}{3}$
b) $\frac{1}{2}$
c) $\frac{1}{6}$
d) $\frac{1}{4}$
216. If solid sphere and solid cylinder of same radius and density rotate about their own axis, the moment of inertia will be greater for $(L=R)$
a) Solid
b) Solid
c) Both
d) Equal sphere cylinder both
217. The moment of inertia of a thin rod of mass M and length L, about an axis perpendicular to the
rod at a distance $\frac{L}{4}$ from one end is
а) $\frac{M L^{2}}{6}$
b) $\frac{M L^{2}}{12}$
c) $\frac{7 M L^{2}}{24}$
d) $\frac{7 M L^{2}}{48}$
218. The moments of inertia of two freely rotating bodies A and B are I_{A} and I_{B} respectively. $I_{A}>I_{B}$ and their angular momenta are equal. If K_{A} and K_{B} are their kinetic energies, then
a) $K_{A}=K_{B}$
b) $K_{A}>K_{B}$
c) $K_{A}<K_{B}$
d) $K_{A}=2 K$
219. The radius of gyration of a thin uniform circular disc (of radius R) about an axis passing through its centre and lying in its plane is
a) R
b) $\frac{R}{\sqrt{2}}$
c) $\frac{R}{4}$
d) $\frac{R}{2}$
220. The position of a particle is given by $r=\hat{i}+2 \hat{j}-\hat{k}$ and its linear momentum is given by $p=3 \hat{i}+4 \hat{j}$ $-2+\hat{k}$ then its angular momentum, about the origin is perpendicular to
a) $y z$-plane b) z-axis
c) y-axis
d) X-axis
221. Moment of inertia of a uniform circular disc about a diameter is I. Its moment of inertia about an axis \perp to its plane and passing through a point on its will be
a) $5 I$
b) 3 I
c) $6 I$
d) $4 I$
222. The angular velocity of a wheel increases from 100 rps to 300 rps in 10 s . The number of revolutions made during that time is
a) 600
b) 1500
c) 1000
d) 2000
223. If linear density of a rod of length 3 m varies as λ $=2+x$, then the position of the centre of gravity of the rod is
a) $\frac{7}{3} m$
b) $\frac{12}{7} \mathrm{~m}$
c) $\frac{10}{7} m$
d) $\frac{9}{7} m$
224. A wheel of mass 10 kg has a moment of inertia of $160 \mathrm{~kg}-\mathrm{m}^{2}$ about its own axis, the radius of gyration will be
a) 10 m
b) 8 m
c) 6 m
d) 4 m
225. Five particles of mass 2 kg are attached to the rim of a circular disc of radius 0.1 m \& negligible mass. Moment of inertia of the system about the axis passing through the centre of the disc \& perpendicular to its plane is
a) $1 \mathrm{~kg}-\mathrm{m}^{2}$
b) $\begin{aligned} & 0.1 \mathrm{~kg} \text { - } \\ & \mathrm{m}^{2}\end{aligned}$
c) $2 \mathrm{~kg}-\mathrm{m}^{2}$
$0.2 \mathrm{~kg}-$
m^{2}
226. If the external torque acting on a system $\vec{\tau}=0$, then
a) $\omega=0$
b) $\alpha=0$
c) $J=0$
d) $F=0$
227. A dancer is standing on a stool rotating about the vertical axis passing through its centre. She pulls her arms towards the body reducing her moment
of inertia by factor of n. The new angular speed of turn table is proportional to
a) n
b) n^{-1}
c) n^{0}
d) n^{2}
228. Two spherical bodies of the same mass M are moving with velocities v_{1} and v_{2}. These collide perfectly inelastically

$$
\text { a) } \frac{1}{2} M\left(v _ { 1 } - \text { b) } \frac { 1 } { 2 } M \left(v _ { 1 } ^ { 2 } - \text { c) } \frac { 1 } { 4 } M \left(v _ { 1 } - \text { d) } 2 M \left(v_{1}^{2}-\right.\right.\right.\right.
$$

229. A mass m is moving with a constant velocity along a line parallel to X-axis. Its angular momentum with respect to origin an Z-axis is
a) Zero
b) Remains
c) Goes on
d) Goes on constant increasin g g
230. A swimmer while jumping into water from a height easily forms a loop in the air, if
a) He pulls
b) He
c) He keeps d
d) None of
his arm
and legs
spreads
himself
the above
in
and legs
231. A pulley fixed to the ceiling carries a string with blocks of masses m and $3 m$ attached to its ends. The masses of string and pulley are negligible. When the system is released, the acceleration of center of mass will be
a) Zero
b) $\frac{-g}{4}$
c) $\frac{g}{2}$
d) $\frac{-g}{2}$
232. One solid sphere A and another hollow sphere B are of same mass and same outer radius. Their moments of inertia about their diameters are respectively I_{A} and I_{B} such that
a) $I_{A}=I_{B}$
b) $I_{A}>I_{B}$
c) $I_{A}<I_{B}$
d) $\frac{I_{A}}{I_{B}}=\frac{d_{A}}{d_{B}}$
233. A uniform rod of length $2 L$ is placed with one end in contact with the horizontal and is then inclined at an angle α to the horizontal and allowed to fall without slipping at contact point. When it becomes horizontal, its angular velocity will be

$$
\text { a) } \omega=\sqrt{\frac{3 g}{2}} \text { b) } \omega=\sqrt{\frac{2}{3 g}} \text { c) } \omega=\sqrt{\frac{6 g}{2}} \text { d) } \omega=\sqrt{\frac{2}{g s i}}
$$

234. A solid cylinder (SC) a hollow cylinder (HC) and a solid sphere (S) of the same mass and radius are released simultaneously from the same height of incline. The order in which these bodies reach the bottom of the incline is
a) SC, HC,
SC, S,
c) S, SC,
d) HC, SC, $S \quad \mathrm{HC} \quad \mathrm{HC} \quad \mathrm{S}$
235. Masses $8,2,4,2 \mathrm{~kg}$ are placed at the corners A, B, C, D respectively of a square $A B C D$ of diagonal 80 cm . The distance of centre of mass
from A will be
a) 20 cm
b) 30 cm
c) 40 cm
d) 60 cm
236. The moment of inertia of a solid sphere about an axis passing through centre of gravity is $\frac{2}{5} M R^{2}$, then its radius of gyration about a parallel axis at a distance $2 R$ from first axis is
a) $5 R$
b) $\sqrt{\frac{22}{5}} R$
c) $\frac{5}{2} R$
d) $\sqrt{\frac{12}{5}} R$
237. A small disc of radius 2 cm is cut from a disc of radius 6 cm . If the distance between their centres is 3.2 cm , what is the shift in the centre of mass of the disc
a) 0.4 cm
b) 2.4 cm
c) 1.8 cm
d) 1.2 cm
238. A solid cylinder of mass M and radius R rolls without slipping down an inclined plane of length L and height h. What is the speed of its centre of mass when the cylinder reaches its bottom
a) $\sqrt{\frac{3}{4} g h}$
b) $\sqrt{\frac{4}{3} g h}$
c) $\sqrt{4 g h}$
d) $\sqrt{2 g h}$
239. Which is a vector quantity
a) Work
b) Power
c) Torque
d) Gravitati onal constant
240. What is the moment of inertia of solid sphere of density ρ and radius R about its diameter?
a) $\frac{105}{176} R^{5}$
ρ b) $\frac{105}{176} R^{2} \rho$ c) $\frac{176}{105} R^{5} \rho$
d) $\frac{176}{105} R^{2} \rho$
241. A fly wheel of moment of inertia $3 \times 10^{2} \mathrm{kgm}^{2}$ is rotating with uniform angular speed of $4.6 \mathrm{rad} \mathrm{s}^{-1}$. If a torque of $6.9 \times 10^{2} \mathrm{~N} \mathrm{~m}$ retards the wheel, then the time in which the wheel comes to rest is
a) 1.5 s
b) 2 s
c) 0.5 s
d) 1 s
242. The moment of inertia of a circular disc of radius 2 m and mass 1 kg about an axis passing through the centre of mass but perpendicular to the plane of the disc is $2 \mathrm{kgm}^{2}$. Its moment of inertia about an axis parallel to this axis but passing through the edge of the disc is \qquad . (see the given figure)

a) $8 \mathrm{~kg} \mathrm{~m}^{2}$
b) $4 \mathrm{~kg} \mathrm{~m}^{2}$
c) $10 \mathrm{~kg} \mathrm{~m}^{2}$
d) $6 \mathrm{~kg} \mathrm{~m}^{2}$
243. Four particles each of mass m are lying symmetrically on the rim of a disc of mass M and radius R. Moment of inertia of this system about an axis passing through one of the particles and perpendicular to plane of disc is
a) $16 m R^{2}$
b) $(3 M+16 \mathrm{c})(3 M+12 \mathrm{~d})$ Zero
244. A solid sphere of mass 500 g and radius 10 cm rolls without slipping with the velocity $20 \mathrm{~cm} / \mathrm{s}$. The total kinetic energy of the sphere will be
a) 0.014 J
b) 0.028 J
c) 280 J
d) 140 J
245. A thin uniform square lamina of side a is placed in the $x y$-plane with its sides parallel to x and y axis and with its centre coinciding with origin. Its moment of inertia about an axis passing through a point on the y-axis at a distance $y=2 a$ and parallel to x-axis is equal to its moment of inertia about an axis passing through a point on the x axis at a distance $x=d$ and perpendicular to $x y$ plane. Then value of d is
a) $\frac{7}{3} a$
b) $\sqrt{\frac{47}{12} a}$
c) $\frac{9}{5} a$
d) $\sqrt{\frac{51}{12} a}$
246. In the given figure, two bodies of mass m_{1} and m_{2} are connected by massless spring of force constant k and are placed on a smooth surface (shown in figure), then

a) The accelerat
b) The
c) The
d) None of
on of $\begin{array}{lll}\text { centre of } & \text { centre of } & \text { remains } \\ \text { mass } & \text { mass } & \text { in rest }\end{array}$
mass mass must be may be zero at zero at every every instant instant
247. A horizontal platform is rotating with uniform angular velocity around the vertical axis passing through its centre. At some instant of time a viscous fluid of mass ' m ' is dropped at the centre and is allowed to spread out and finally fall. The angular velocity during this period
a) Decrease b
s
continuo
) Decrease c)
) Remains
d) Increases usly increases s initially unaltered continuo and usly again
248. Out of the given bodies (of same mass) for which the moment of inertia will be maximum about the axis passing through its centre of gravity and perpendicular to its plane
a) Disc of
b) Ring of radius a radius a
c) Square
d) Four rods lamina of of length side $2 a \quad 2 a$
making a
square
249. The rectangular block shown in the figure is rotated in turn about $x-x, y-y$ and $z-z$ axes passing through its centre of mass O. Its moment of inertia is

Same	$\begin{array}{l}\text { Equal } \\ \text { about }\end{array}$		Maximu
about all	baximu	about c) $x-x$ and $)$	m about
abe			
the three	m about		
axes	$z-z$ axis	$y-y$	$\begin{array}{l}\text { axis } \\ \text { axes }\end{array}$

250. A uniform rod of length L and mass 1.8 kg is made to rest on two measuring scale at its two ends. A uniform block of mass 2.7 kg is placed on the rod at a distance $L / 4$ from the left end. The force experienced by the measuring scale on the right end is
a) 18 N
b) 27 N
c) 29 N
d) 45 N
251. The moment of inertia of a flywheel having kinetic energy 360 J and angular speed of $20 \mathrm{rad} / \mathrm{s}$ is
a) $18 \mathrm{~kg} \mathrm{~m}^{2}$
${ }^{2}$ b) $1.8 \mathrm{~kg} \mathrm{~m}^{2}$
${ }^{2}$ c) $2.5 \mathrm{kgm}^{2}$ d) $9 \mathrm{~kg} \mathrm{~m}^{2}$
252. The angular momentum of a wheel changes from $2 L$ to $5 L$ in 3 seconds. What is the magnitude of the torque acting on it
a) L
b) $L / 2$
c) $L / 3$
d) $L / 5$
253. When the angle of inclination of an inclined plane is θ, an object slides down with uniform velocity. If the same object is pushed up with a initial velocity u on the same inclined plane; it goes up the plane and stops at a certain distance on the plane. Thereafter the body

Slides	Slides	Slides
down the	down the	down the
inclined	inclined	inclined
plane and	plane and	plane and
reaches	reaches	

Stays at
rest on
the
a) reaches
ground
with velocity
u.
b) the
ground
with
velocity
less than greater
u. than u.
d) plane and will not slide down.
254. Moment of inertia of ring about its diameter is I.

Then, moment of inertia about an axis passing through centre perpendicular to its plane is
a) $2 I$
b) $\frac{I}{2}$
c) $\frac{3}{2} I$
d) I
255. Three identical metal balls each of radius r are placed touching each other on a horizontal surface such that an equilateral triangle is formed, when centres of three balls are joined. The centre of the mass of system is located at
a) Horizont b)
b) Centre of c) Line
d) Point of
al
surface $\begin{array}{ll}\text { one of } & \text { jointing } \\ \text { the balls } & \begin{array}{l}\text { centres } \\ \text { of any }\end{array}\end{array}$ intersecti of any medians two balls
256. Two bodies have their moments of inertia I and $2 I$ respectively about their axis of rotation. If their kinetic energies of rotation are equal, their angular momentum will be in the ratio
a) $1: 2$
b) $\sqrt{2}: 1$
c) $2: 1$
d) $1: \sqrt{2}$
257. A wheel rotates with a constant angular velocity of 300 rpm . The angle through which the wheel rotates in 1 s is
a) $\pi \mathrm{rad}$
b) $5 \pi \mathrm{rad}$
c) $10 \pi \mathrm{rad} \mathrm{d)} 20 \pi \mathrm{rad}$
258. Identify the increasing order of the angular velocities of the following :
1.Earth rotating about its own axis
2.Hour's hand of a clock
3.Second's hand of a clock
4. Flywheel of radius 2 m making 300 rpm
a) $1,2,3,4$ b) $2,3,4,1$ c) $3,4,1,2$ d) $4,1,2,3$
259. A ball strikes a horizontal floor at an angle
$\theta=45^{\circ}$. The coefficient of restitution between the ball and the floor is $e=1 / 2$. The fraction of its kinetic energy lost in collision in
a) $5 / 8$
b) $3 / 8$
c) $3 / 4$
d) $1 / 4$
260. A force of 200 N acts tangentially on the rim of a wheel 25 cm in radius. Find the torque
a) 50 Nm
b) 150 Nm
c) 75 Nm
d) 39 Nm
261. Moment of inertia of a sphere of mass M and radius R is I. Keeping M constant if a graph is plotted between I and R, then its form would be
a) 1

262. Four bodies of equal mass start moving with same speed are shown in the figure. In which of the following combination the centre of mass will remain at origin?

a) $c d$
b) $a b$
c) $a c$
d) $b d$
263. A solid sphere of radius R has moment of inertia I about its geometrical axis. If it is melted into a disc of radius r and thickness t. If its moment of inertia about the tangential axis (which is perpendicular to plane of the disc), is also equal to I, then the value of r is equal to

a) $\frac{2}{\sqrt{15}} R$
b) $\frac{2}{\sqrt{5}} R$
c) $\frac{3}{\sqrt{15}} R$
d) $\frac{\sqrt{3}}{\sqrt{15}} R$
264. One circular ring and one circular disc, both are having the same mass and radius. The ratio of their moments of inertia about the axes passing through their centres and perpendicular to their planes, will be
a) $1: 1$
b) $2: 1$
c) $1: 2$
d) $4: 1$
265. Moment of inertia of ring of mass M and radius Rabout an axis passing through the centre and perpendicular to the plane is I. What is the moment of inertia about its diameter?
a) I
b) $\frac{I}{2}$
c) $\frac{I}{\sqrt{2}}$
d) $I+M R^{2}$
266. A uniform cylinder has a radius R and length L. If the moment of inertia of this cylinder about an axis passing through its centre and normal to its circular face is equal to the moment of inertia of the same cylinder about an axis passing through its centre and perpendicular to its length, then
a) $L=R$
b) $L=\sqrt{3} R$
R c) $L=\frac{R}{\sqrt{3}}$
d) $L=\sqrt{\frac{3}{2}} R$
267. A ball falls freely from a height of 45 m . When the ball is at a height of 25 m , it explodes into two equal pieces. One of them moves horizontally with a speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$. The distance between the two pieces when both strike the ground is
a) 10 m
b) 20 m
c) 15 m
d) 30 m
268. A body comes running and sits on a rotating platform. What is conserved
a) Linear
b) Kinetic
c) Angular d) None of momentu energy momentu the above
269. According to the theorem of parallel axes
$I=I_{c m}+M x^{2}$, the graph between I and x will be
a)

270. A uniform rod $A B$ of length l and mass m is free to rotate about point A. The rod is released from rest in horizontal position. Given that the moment of inertia of the rod about A is $\frac{\mathrm{ml}^{2}}{3}$ the initial angular acceleration of the rod will be

a) $\frac{2 g}{3 l}$
b) $m g \frac{l}{2}$
c) $\frac{3}{2} g l$
d) $\frac{3 g}{2 l}$
271. A small disc of radius 2 cm is cut from a disc of radius 6 cm . If the distance between their centres is 3.2 cm , what is the shift in the centre of mass of the disc?
a) 0.4 cm
b) 2.4 cm
c) 1.8 cm
d) 1.2 cm
272. Two spheres of masses $2 M$ and M are initially at rest at a distance R apart. Due to mutual force of attraction, they approach each other. When they are at separation $R / 2$, the acceleration of the centre of mass of spheres would be
a) $0 \mathrm{~m} / \mathrm{s}^{2}$
b) $\mathrm{gm} / \mathrm{s}^{2}$
c) $3 \mathrm{gm} / \mathrm{s}^{2}$
d) $12 \mathrm{gm} / \mathrm{s}^{2}$
273. A ring of radius 0.5 m and mass 10 kg is rotating about its diameter with angular velocity of $20 \mathrm{rad} / \mathrm{s}$. Its kinetic energy is
a) 10 J
b) 100 J
c) 500 J
d) 250 J
274. A body of moment of inertia of $3 \mathrm{~kg}-\mathrm{m}^{2}$ rotating with an angular velocity of $2 \mathrm{rad} / \mathrm{sec}$ has the same kinetic energy as a mass of 12 kg moving a velocity of
a) $8 \mathrm{~m} / \mathrm{s}$
b) $0.5 \mathrm{~m} / \mathrm{s}$
c) $2 \mathrm{~m} / \mathrm{s}$
d) $1 \mathrm{~m} / \mathrm{s}$
275. Before jumping in water from above a swimmer bends his body to
a) Increase b)
b) Decrease c)
Decrease d
d) Reduce moment moment the the of inertia of inertia angular angular momentu velocity m
276. A cart of mass M is tied by one end of a massless rope of length 10 m . The other end of the rope is in the hands of a man of mass M. The entire
system is on a smooth horizontal surface. The man is at $x=0$ and the cart at $x=10 \mathrm{~m}$. If the man pulls the cart by the rope, the man and the cart will meet at the point

They will
a) $x=0$
b) $x=5 \mathrm{~m}$
c) $x=10 \mathrm{~m}$
d) never
meet
277. Four thin rods of same mass M and same length l, form a square as shown in figure. Moment of inertia of this system about an axis through centre O and perpendicular to its plane is

a) $\frac{4}{3} M l^{2}$
b) $\frac{M l^{2}}{3}$
c) $\frac{M l^{2}}{6}$
d) $\frac{2}{3} M l^{2}$
278. Three identical spheres of mass M each are placed at the corners of an equilateral triangle of side 2 m . Taking one of the corners as the origin, the position vector of the centre of mass is
a) $\sqrt{3}(\hat{i}-\hat{j})$ b $\frac{i}{\sqrt{3}}+\hat{j}$
c) $\hat{i}+\hat{j} / 3$
d) $\hat{i}+\hat{j} / \sqrt{3}$
279. When a disc is rotating with angular velocity ω, a particle situated at a distance of 4 cm just begins to slip. If the angular velocity is doubled, at what distance will the particle start to slip?
a) 1 cm
b) 2 cm
c) 3 cm
d) 4 cm
280. A solid sphere and a hollow sphere of the same material and of a same size can be distinguished without weighing
a) By
b) By
c) By
d) By
determin rolling rotating applying ing their them moments of inertia
about
ously on
their
coaxial
an inclined
them equal about a torque on common them axes
281. As disc like reel with massless thread unrolls itself while falling vertically downwards the acceleration of its fall is
a) g
b) $\frac{g}{2}$
c) Zero
d) $\left(\frac{2}{3}\right) g$
282. Two stars of mass m_{1} and m_{2} are part of a binary star system. The radii of their orbits are r_{1} and r_{2} respectively, measured from the C.M. of the
system. The magnitude of acceleration of m_{1} is
a) $\frac{m_{1} m_{2} G}{\left(r_{1}+r_{2}\right)^{2}}$
b) $\frac{m_{1} G}{\left(r_{1}+r_{2}\right)^{2}}$
c) $\frac{m_{2} G}{\left(r_{1}+r_{2}\right)^{2}}$
d) $\frac{\left(m_{1}+m_{2}\right)}{\left(r_{1}+r_{2}\right)^{2}}$
283. Two thin uniform circular rings each of radius 10 cm and mass 0.1 kg are arranged such that they have a common centre and their planes are perpendicular to each other. The moment of inertia of this system about an axis passing through their common centre and perpendicular to the plane of one of the rings in $\mathrm{kg} \mathrm{m}^{-2}$ is
a) 15×10^{-3}
${ }^{3}$ b) 5×10^{-3}
c) $1.5 \times 10^{-}$d) 18×10^{-4}
284. A solid sphere, disc and solid cylinder all of the same mass are made of the same material are allowed to roll down (from rest) on an inclined plane, then
a) Solid
sphere
b) Solid
c) Disc will
d) All reach
reaches
the
bottom
first sphere reach the the bottom bottom at first the same

$$
\frac{m M v}{(m+M)} \quad \frac{1}{1} M v^{2}
$$

$$
\frac{1}{2} \frac{m^{2} v^{2}}{(M+m)}
$$

290. From a disc of radius R, a concentric circular portion of radius r is cut out so as to leave an annular disc of mass M. The moment of inertia of this annular disc about the axis perpendicular to its plane and passing through its centre of gravity is
a) $\frac{1}{2} M\left(R^{2}+\right.$ b) $\frac{1}{2} M\left(R^{2}-\right.$ c) $\frac{1}{2} M\left(R^{4}+\mathrm{d}\right) \frac{1}{2} M^{\prime}\left(R^{4}\right.$
291. The moment of inertia of a rod about an axis through its centre and perpendicular to it is $\frac{1}{2} M L^{2}$ (where M is the mass and L is the length of the rod). The rod is bent in the middle so that the two halves makes an angular of 60°. The same axis would be
a) $\frac{1}{48} M L^{2}$
b) $\frac{1}{12} M L^{2}$
c) $\frac{1}{24} M L^{2}$
d) $\frac{M L^{2}}{8 \sqrt{3}}$
292. If the angular momentum of a rotating body about a fixed axis is increased by 10%. Its kinetic energy will be increased by
a) 10%
b) 20%
c) 21%
d) 5%
293. From an inclined plane a sphere, a disc, a ring and a spherical shell are rolled without slipping. The order of their reaching at the base will be
a) Ring,
b) Shell,
c) Sphere,
d) Ring,
shell,
disc,
sphere
sphere, disc, sphere, ratio of ratio of ratio of inverse masses square of masses masses of particles masses of of particles of particles particles
294. Angular momentum is conserved
a) Always
b) Never
c) When
d) When external external force is torque is absent absent
295. A straight rod of length L has one of its ends at the origin and the other at $x=L$. If the mass per unit length of the rod is given by $A x$ is constant, where is its mass centre?
a) $L / 3$
b) $L / 2$
c) $2 L / 3$
d) $3 L / 4$
296. A bag of mass M hangs by a long thread and a bullet (mass m) comes horizontally with velocity v and gets caught in the bag. For the combined system of bag and bullet, the correct option is
a) Momentub) Kinetic c) Momentud) Kinetic m is energy is m is $m v$ energy is

A cylinder rolls down an inclined plane of inclination 30°, the acceleration of cylinder is
a) $g / 3$
b) g
c) $\mathrm{g} / 2$
d) $2 \mathrm{~g} / 3$
295. A disc is rolling on the inclined plane, what is the ration of its rotational KE to the total KE?
a) $1: 3$
b) $3: 1$
c) $1: 2$
d) $2: 1$
296. Angular momentum L of body with mass moment of inertia I and angular velocity $\omega \mathrm{rad} / \mathrm{sec}$ is equal to
a) $\frac{I}{\omega}$
b) $I \omega^{2}$
c) $I \omega$
d) $\begin{aligned} & \text { None of } \\ & \text { these }\end{aligned}$
297. If a force acts on a body at a point away from the centre of mass, then
a) Linear
b) Angular
c) Both
d) None of accelerati accelerati change these on on changes changes
298. The speed of a homogenous solid sphere after rolling down an inclined plane of vertical height h from rest without sliding is
a) $\sqrt{\frac{10}{7} g h}$ b) $\sqrt{\frac{4}{3} g h}$
c) $\sqrt{g h}$
d) $\sqrt{\frac{6 g h}{5}}$
299. A solid cylinder is rolling down on an inclined plane of angle θ. The coefficient of static fraction between the plane and cylinder is μ_{s}. Then condition for the cylinder not to slip is
a) $\tan \theta \geq 3$
(b) $\tan \theta>3 / \mathrm{c}) \tan \theta \geq 3$
$\mu \mathrm{d}) \tan \theta<3 \mu$
300. Two blocks of masses m_{1} and m_{2} are connected by a massless spring and placed at smooth surface. The spring initially stretched and released. then
a) The
b) The
c) The
d) Both (b) momentu magnitud mechanic and (c) m of $\quad e$ of
each particle m of al energy are correct.
remains both remains constant bodies constant separatel are same y to each other
301. A particle performs uniform circular motion with an angular momentum L. If the frequency of particle's motion is doubled and its KE is halved, the angular momentum becomes
a) $\frac{L}{2}$
b) $2 L$
c) $4 L$
d) $\frac{L}{4}$
302. A circular platform is free to rotate in a horizontal plane about a vertical axis passing through its centre. A tortoise is sitting at the edge of the platform. Now the platform is given an angular velocity ω_{0}. When the tortoise moves along a chord of the platform with a constant velocity (w.r.t. the platform), the angular velocity of the platform will vary with the time t as
a)

303. Particles of masses $m, 2 m, 3 m, \ldots \ldots, n m$ grams are placed on the same line at distances l,2l,3l, \qquad ., nl cm from a fixed point. The distance of centre of mass of the particles from the fixed point in centimeters is
a) $\frac{(2 n+1) l}{3}$ b) $\frac{l}{n+1}$
c) $\left.\frac{n\left(n^{2}+1\right) l}{2} d\right) \frac{2 l}{n\left(n^{2}+1\right)}$
304. A small object of mass m is attached to a light string which passes through a hollow tube. The tube is hold by one hand and the string by the other. The object is set into rotation in a circle of radius R and velocity v. The string is then pulled
down, shortening the radius of path of r. What is conserved
a) Angular
b) Linear
c) Kinetic
d) None of momentu momentu energy the above m m
305. Two rods each of mass m and length l are joined at the centre to form a cross. The moment of inertia of this cross about an axis passing through the common centre of the rods and perpendicular to the plane formed by them, is
a) $\mathrm{ml}^{2} / 12$
b) $\mathrm{ml}^{2} / 6$
c) $\mathrm{ml}^{2} / 3$
d) $\mathrm{ml}^{2} / 2$
306. The vector product of the force (F) and distance ($r)$ from the centre of action represents
a) KE
b) PE
c) Work
d) Torque
307. A rod of length l is hinged at one end and kept horizontal. It is allowed to fall. The velocity of the other end of the rod is
a) $\sqrt{3 g l}$
b) $\sqrt{2 g l}$
c) $2 M l^{2}$
d) None of
308. A solid cylinder rolls down an inclined plane of height 3 m and reaches the bottom of plane with angular velocity of $2 \sqrt{2} \mathrm{rad} . \mathrm{s}^{-1}$. The radius of cylinder must be [Take $g=10 \mathrm{~ms}^{-2}$]
a) 5 cm
b) 0.5 cm
c) $\sqrt{10} \mathrm{~cm}$
d) $\sqrt{5} \mathrm{~m}$
309. When two bodies collide elastically, the force of interaction between them is
a) Conservab
) Non-
c) Either
d) Zero tive conservat conservat ive ive or nonconservat ive
310. A disc of moment of inertia $\frac{9.8}{\pi^{2}} \mathrm{kgm}^{2}$ is rotating of 600 rpm . If the frequency of rotation changes from 600 rpm to 300 rpm , then what is the work done
a) 1467 J
b) 1452 J
c) 1567 J
d) 1632 J
311. The distance of the centre of mass of the T shaped plate from O is

a) 7 m
b) 2.7 m
c) 4 m
d) 1 m
312. The moment of inertia of a circular ring of radius r and mass M about diameter is
a) $M r^{2}$
b) $\frac{1}{2} M r^{2}$
c) $\frac{3}{2} M r^{2}$
d) $\frac{1}{4} M r^{2}$
313. A solid sphere of mass 1 kg , radius 10 cm rolls down an inclined plane of height 7 m . The velocity of its centre as it reaches the ground level is
a) $7 \mathrm{~m} / \mathrm{s}$
b) $10 \mathrm{~m} / \mathrm{s}$
c) $15 \mathrm{~m} / \mathrm{s}$
d) $20 \mathrm{~m} / \mathrm{s}$
314. Two discs have same mass and thickness. Their materials are of densities ρ_{1} and ρ_{2}. The ratio of their moment of inertia about central axis will be
a) $\rho_{1}: \rho_{2}$
b) $\rho_{1} \rho_{2}: 1$
c) $1: \rho_{1} \rho_{2}$
d) $\rho_{2}: \rho_{1}$
315. A flywheel rotating about a fixed axis has a kinetic energy of 360 joule when its angular speed is $30 \mathrm{rad} / \mathrm{sec}$. The moment of inertia of the wheel about the axis of rotation is
a) $0.6 \mathrm{~kg} \times r \mathrm{~b}) 0.15 \mathrm{~kg} \times \mathrm{c}) 0.8 \mathrm{~kg} \times r \mathrm{~d}) 0.75 \mathrm{~kg} \times$
316. A particle of mass m moving with a velocity ($3 \hat{i}+2 \hat{j}) \mathrm{m} \mathrm{s}^{-1}$ collides with a stationary body mass M and finally moves with a velocity $(-2 \hat{i}+\hat{j})$ $m s^{-1}$. If $\frac{m}{M}=\frac{1}{13}$, then

The impulse received	The velocity of the M	The coefficien t of	Al
a) by each is	is $\frac{1}{13}(5$	c) restitutio	d) above are correct
, m($5 i$			

317. The principle of conservation of angular momentum, states that angular momentum
a) Always
b) Is the remains product
c) Remains
d) None of conserve d

of	d until
moment	the
of inertia	torque
and	acting on
velocity	it
	remains

318. Two rings of the same radius and mass are placed such that their centres are at a common point and their planes are perpendicular to each other. The moment of inertia of the system about an axis passing through the centre and perpendicular to the plane of one of the rings is (mass of the ring i m and radius $i r$)
a) $\frac{1}{2} m r^{2}$
b) $m r^{2}$
c) $\frac{3}{2} m r^{2}$
d) $2 m r^{2}$
319. When a torque acting upon a system is zero, then
which of the following will be constant
a) Force
b) Linear
c) Angular d) Linear momentu momentu impulse m m
320. The instantaneous velocity of a point B of the given rod of length 0.5 m is $3 \mathrm{~ms}^{-1}$ in the represented direction. The angular velocity of the rod for minimum velocity of end A is

a) $\begin{aligned} & 1.5 \\ & r_{a d s}{ }^{-1}\end{aligned}$
b) $\begin{aligned} & 5.2 \\ & \mathrm{rads}^{-1}\end{aligned}$
c) $\begin{aligned} & 2.5 \\ & \text { rads }^{-1}\end{aligned}$
d) $\begin{aligned} & \text { None of } \\ & \text { these }\end{aligned}$
321. A solid sphere rolls down two different inclined planes of same length, but of different
inclinations. In both cases
a) Speed
b) Speed
c) Speed
d) Speed
and time
of
will be will be and time same, but different, of descent will be descent of both are time of but time of same will be descent different different will be same
322. The blocks A and B, each of mass m, are connected by massless spring of natural length L and spring constant k. The blocks are initially resting on a smooth horizontal floor with the spring at its natural length, as shown in figure. A third identical block C, also of mass m, moves on the floor with a speed v along the line joining A and B, and collides with A. Then

The KE o
the
$A-B$
system,
at
a) maximu b)
m
compress ion of the spring, is zero $\quad \frac{1}{4} m v^{2}$
323. A reel of thread unrolls itself falling down under gravity. Neglecting mass of the thread, the acceleration of the reel is
a) g
b) $g / 2$
c) $2 \mathrm{~g} / 3$
d) $4 \mathrm{~g} / 3$
324. A ' T ' shaped object with dimensions shown in the figure, is lying on a smooth floor. A force ' \vec{F} ' is applied at the point P parallel to $A B$, such that the object has only the translational motion without rotation. Find the location of P with respect to C

a) $\frac{4}{3} l$
b) l
c) $\frac{2}{3} l$
d) $\frac{3}{2} l$
325. If the external forces acting on a system have zero resultant, the center of mass
a) May
b) May
c) Must not
d) None of move but Accelerat move the above not e
accelerat
e
326. A bomb at rest explodes in air into two equal fragments. If one of the fragments is moving vertically upwards with velocity v_{0}, then the other fragment will move
a)

a) | Verticall |
| :--- |
| y up with |
| velocity |
| v_{0} |

Vertical
y down b) with velocity v_{0}

In
arb
c)
dir
wit
 velocity $\quad v_{0}$ v_{0}
327. A body is rolling down an inclined plane. Its translational and rotational kinetic energies are equal. The body is a
a) Solid
b) Hollow
c) Solid
d) Hollow
sphere
sphere cylinder cylinder
328. A drum of radius R and mass M, rolls down without slipping along an inclined plane of angle θ
. The frictional force
a) Converts b)
b) Dissipate
c) Decrease
d) Decrease nal as heat rotational rotational energy to rotational energy motion and translatio nal motions
329. A solid sphere of mass 2 kg rolls on a smooth horizontal surface at $10 \mathrm{~ms}^{-1}$. It then rolls up a smooth inclined plane of inclination 30° with the
horizontal. The height attained by the sphere before it stops is
a) 700 cm
b) 701 cm
c) 7.1 m
d) None of these
330. Two bodies are projected from roof with same speed in different directions. If air resistance is not taken into account then
a) They
b) They
c) They
d) Both (a)
reach at
ground reach at reach at
and (c)
with ground ground are with correct

same

magnitu same
kinetic same
e of energy
momenta
if bodies
have
same
masses
331. A cylinder rolls down an inclined plane of inclination 30°, the acceleration of cylinder is
a) $\frac{g}{3}$
b) g
c) $\frac{g}{2}$
d) $\frac{2 g}{3}$
332. A ball moving with a certain velocity hits another identical ball at rest. If the plane is frictionless and collision is elastic, the angle between the directions in which the balls move after collision, will be
a) 30°
b) 60°
c) 90°
d) 120°
333. A ring of radius R is first rotated with an angular velocity ω_{0} and then carefully placed on a rough horizontal surface. The coefficient of friction between the surface and the ring is μ. Time after which its angular speed if reduced to half is
a) $\frac{\omega_{0} \mu R}{2 g}$
b) $\frac{2 \omega_{0} R}{\mu g}$
c) $\frac{\omega_{0} R}{2 \mu g}$
d) $\frac{\omega_{0} g}{2 \mu R}$
334. A small object of uniform density roll up a curved surface with an initial velocity v. If reaches up to a maximum height of $\frac{3 v^{2}}{4 g}$ with respect to the initial position. The object is

a) Ring
b) Solid
c) Hollow
d) Disc sphere sphere
335. A cylinder of 500 g and radius 10 cm has moment of inertia (about its natural axis)
a) $2.5 \times 10^{-}$
b) $2 \times 10^{-3} \mathrm{kc}$
$5 \times 10^{-3} k d$) $3.5 \times 10^{-}$

$$
-m^{2} \quad-m^{2} \quad-m^{2} \quad-m^{2}
$$

336. Two objects of masses 200 g and 500 g possess velocities $10 \hat{i} \mathrm{~m} / \mathrm{s}$ and $3 \hat{i}+5 \hat{j} \mathrm{~m} / \mathrm{s}$ respectively. The velocity of their centre of mass in m / s is
a) $5 \hat{i}-25 \hat{j}$
b) $\frac{5}{7} \hat{i}-25 \hat{j}$ c) $5 \hat{i}+\frac{25}{7} \hat{j}$
d) $25 \hat{i}-\frac{5}{7} \hat{j}$
337. The moment of inertia of a sphere of mass M and radius R about an axis passing through its centre is $\frac{2}{5} M R^{2}$. The radius of gyration of the sphere about a parallel axis to the above and tangent to the sphere is
a) $\frac{7}{5} R$
b) $\frac{3}{5} R$
c) $\left(\sqrt{\frac{7}{5}}\right) R$
d) $\left(\sqrt{\frac{3}{5}}\right) R$
338. A thin uniform rod of length land mass m is swinging freely about a horizontal axis passing through its end. Its maximum angular speed is ω. Its centre of mass rises to maximum height of
a) $\frac{1}{3} \frac{l^{2} \omega^{2}}{g}$
b) $\frac{1}{6} \frac{l \omega}{g}$
c) $\frac{1}{2} \frac{l^{2} \omega^{2}}{g}$
d) $\frac{1}{6} \frac{l^{2} \omega^{2}}{g}$
339. A circular disc rolls down an inclined plane. The ration of rotational kinetic energy to total kinetic energy is
a) $\frac{1}{2}$
b) $\frac{1}{3}$
c) $\frac{2}{3}$
d) $\frac{3}{4}$
340. Two particles of masses m_{1} and m_{2} in projectile motion have velocities \vec{v}_{1} and \vec{v}_{2} respectively at time $t=0$. They collide at time t_{0}. Their velocities become $\vec{v}^{\prime}{ }_{1}$ and $\vec{v}^{\prime}{ }_{2}$ at time $2 t_{0}$ while still moving in air. The value of
$\left[\left(m_{1} \vec{v}_{1}^{\prime}+m_{2} \vec{v}^{\prime}{ }_{2}\right)-\left(m_{1} \vec{v}_{1}-m_{2} \vec{v}_{2}\right)\right]$ is
a) Zero
b) $\left(m_{1}+m_{2}\right)$ (c) ${ }_{\left(m_{1}+m_{2}\right)}^{2}$
d) $\frac{1}{2}\left(m_{1}+m\right.$
341. In case of explosion of a bomb, which of the following changes?
a) Kinetic
b) Mechani c)
Chemicald) Energy energy
cal energy
energy
342. There are two identical balls of same material, one being solid and the other being hollow. How will you distinguish them without weighing?
a) By
b) By
c) By
d) By any
spinning etermin rolling
them
using moment down an methods
equal torques plane
343. Two blocks A and B are connected by a massless string (shown in figure). A force of 30 N is
applied on block B. The distance travelled by centre of mass in 2 s starting from rest is

a) 1 m
b) 2 m
c) 3 m
d) None of these
344. Calculate the angular momentum of a body whose rotational energy is 10 Joule. If the angular momentum vector coincides with the axis of rotation and its moment of inertia about this axis is $8 \times 10^{-7} \mathrm{~kg} \mathrm{~m}^{2}$
a) 4×10^{-3}
kb) $\left.\left.2 \times 10^{-3} \mathrm{kc}\right) 6 \times 10^{-3} \mathrm{kd}\right)$
None of
these
345. The acceleration of the centre of mass of a uniform solid disc rolling down an inclined plane of angle α is
a) $g \sin \alpha$
b) $\begin{aligned} & 2 / 3 \mathrm{~g} \sin \\ & \alpha\end{aligned}$
c) $\begin{aligned} & 1 / 2 \mathrm{~g} \sin \\ & \alpha\end{aligned}$
d) $\begin{aligned} & 1 / 3 \mathrm{~g} \sin \\ & \alpha\end{aligned}$
346. (1) Centre of gravity (C. G.) of a body is the point at which the weight of the body acts
(2) Centre of mass coincides with the centre of gravity if the earth is assumed to have infinitely large radius
(3) To evaluate the gravitational field intensity due to any body at an external point, the centre mass of the body can be considered to be concentrated at its C.G.
(4) The radius of gyration of any body rotating about an axis is the length of the perpendicular dropped from the C.G. of the body to the axis Which one of the following pairs of statements is correct
a) (4) and
b) (1) and
c) (2) and
d) (3) and (1)
(2)
(3)
(4)
347. The ratio of the radii of gyration of a circular disc to that of a circular ring, each of same mass and radius, around their respective axes is
a) $\sqrt{2}: 1$
b) $\sqrt{2}: \sqrt{3}$
c) $\sqrt{3}: \sqrt{2}$
d) $1: \sqrt{2}$
348. The centre of mass of a system of two particles divides. The distance between them is
a) In
b) In direct
c) In
d) In direct
inverse
ratio of ration of inverse ration of square of masses masses of of particles of of
particles particles
349. If the earth is a point mass of $6 \times 10^{24} \mathrm{~kg}$ revolving around the sun at a distance of
$1.5 \times 10^{8} \mathrm{~km}$ and in time $T=3.14 \times 10^{7} \mathrm{~s}$, then the angular momentum of the earth around the sun is
a) $1.2 \times 10^{1 \varepsilon}$
b) $1.8 \times 10^{2 s} \mathrm{c}$
c) $1.5 \times 10^{3 i} \mathrm{~d}$
d) 2.7×10^{41}
350. Three stationary particles A, B, C of masses m_{A}, m_{B} and m_{C} are under the action of same constant force for the same time. If $m_{A}>m_{B}>m_{C}$, the variation of momentum of particles with time for each will be correctly shown as
a)

d)

351. Three point masses each of mass m are placed at the corners of an equilateral triangle of side ' a '. Then the moment of inertia of this system about an axis passing along one side of the triangle is
a) $m a^{2}$
b) $3 m a^{2}$
c) $3 / 4 m a^{2}$ d) $2 / 3 m a^{2}$
352. From a circular ring of mass M and R, an arc corresponding to a 90° sector is removed. The moment of inertia of the remaining part of the ring about an axis passing through the ring and perpendicular to the plane of ring is k times $M R^{2}$. Then the value of k is
a) $\frac{3}{4}$
b) $\frac{7}{8}$
c) $\frac{1}{4}$
d) 1
353. Radius of gyration of uniform thin rod of length L about an axis passing normally through its centre of mass is
a) $\frac{L}{\sqrt{12}}$
b) $\frac{L}{12}$
c) $\sqrt{12} L$
d) 12 L
354. The moment of inertia of a dumb-bell, consisting of point masses $m_{1}=2.0 \mathrm{~kg}$ and $m_{2}=1.0 \mathrm{~kg}$, fixed to the ends of a rigid massless rod of length $L=0.6 \mathrm{~m}$, about an axis passing through the centre of mass and perpendicular to its length, is
a) 0.72 kg mb$) 0.36 \mathrm{~kg} \mathrm{mc}) 0.27 \mathrm{~kg} \mathrm{md}) 0.24 \mathrm{~kg} \mathrm{~m}$
355. Two solid spheres (A and B) are made of metals of different densities ρ_{A} and ρ_{B} respectively. If their masses are equal, the ratio of their moments of inertia $\left(I_{B} / I_{A}\right)$ about their respective diameters is
a) $\left(\frac{\rho_{B}}{\rho_{A}}\right)^{2 / 3}$
b) $\left(\frac{\rho_{A}}{\rho_{B}}\right)^{2 / 3}$
c) $\frac{\rho_{A}}{\rho_{B}}$
d) $\frac{\rho_{B}}{\rho_{A}}$
356. A solid sphere is given a kinetic energy E. What fraction of kinetic energy is associated with rotation?
a) $3 / 7$
b) $5 / 7$
c) $1 / 2$
d) $2 / 7$
357. The moment of inertia of a rectangular lamina about an axis perpendicular to the plane and passing through its centre of mass is
a) $\frac{M}{12}\left(l^{2}+b\right.$
b) $\frac{M}{3}\left(l^{2}+b_{c}^{i}\right) \frac{2 M l}{12}$
d) $\frac{M(l+b)}{12}$
358. Moment of inertia of big drop in I. If 8 droplets are formed from big drop, then moment of inertia of small droplet is
a) $\frac{I}{32}$
b) $\frac{I}{16}$
c) $\frac{I}{8}$
d) $\frac{I}{4}$
359. A binary star consists of two stars A (mass 2.2 M_{s}) and B (mass $11 M_{s}$), where M_{s} is the mass of the sun. They are separated by distance d and are rotating about their centre of mass, which is stationary. The ratio of the total angular momentum of the binary star to the angular momentum of star B about the centre of mass is
a) 7
b) 6
c) 9
d) 10
360. Three rods each of length L and mass M are placed along X, Y and Z axes in such a way that one end of each rod is at the origin. The moment of inertia of the system about Z-axis is
a) $\frac{M L^{2}}{3}$
b) $\frac{2 M L^{2}}{3}$
c) $\frac{3 M L^{2}}{2}$
d) $\frac{2 M L^{2}}{12}$
361. The total kinetic energy of a body of mass 10 kg and radius 0.5 m moving with a velocity of $2 \mathrm{~m} / \mathrm{s}$ without slipping is 32.8 joule. The radius of gyration of the body is
a) 0.25 m
b) 0.2 m
c) 0.5 m
d) 0.4 m
362. A body having moment of inertia about its axis of rotation equal to $3 \mathrm{~kg}-\mathrm{m}^{2}$ is rotating with angular velocity equal to $3 \mathrm{rad} / \mathrm{s}$. Kinetic energy of this rotating body is the same as that of body of mass 27 kg moving with a speed of
a) $1.0 \mathrm{~m} / \mathrm{s}$
b) $0.5 \mathrm{~m} / \mathrm{s}$
c) $1.5 \mathrm{~m} / \mathrm{s}$
d) $2.0 \mathrm{~m} / \mathrm{s}$
363. A bullet of mass 5 g moving with a velocity 10 $\mathrm{m} \mathrm{s}^{-1}$ strikes a stationary body of mass 955 g and enters it. The percentage loss of kinetic energy of the bullet is
a) 85
b) 0.05
c) 99.5
d) None of the above
364. A diatomic molecule is formed by two atoms which may be treated as mass points m_{1} and m_{2}, joined by a massless rod of length r. Then the moment of inertia of the molecule about an axis passing through the centre of mass and perpendicular to rod is
a) zero
b) $\left(m_{1}+m_{2}\right)$ ic $\left(\frac{m_{1}+m_{2}}{m_{1} m_{2}}\right)$ d) $\left(\frac{m_{1} m_{2}}{m_{1}+m_{2}}\right)$
365. A disc starting from rest acquires in 10 sec an angular velocity of 240 revolutions/minute. Its angular acceleration (assuming constant) is a) $1.52 \mathrm{rad} / \mathrm{b}) 2.51 \mathrm{rad} / \mathrm{c}) 3.11 \mathrm{rad} / \mathrm{d}) 3.76 \mathrm{rad} /$
366. A flywheel gains a speed of $540 r$.p.m. in 6 sec. Its angular acceleration will be
a) $3 \pi \mathrm{rad} / \mathrm{sb}$) $9 \pi \mathrm{rad} / \mathrm{sc}) 18 \pi \mathrm{rad} / \mathrm{d}) 54 \pi \mathrm{rad} /$
367. Two spheres each of mass M and radius $R / 2$ are connected with a massless rod of length $2 R$ as shown in the figure. What will b be the moment of inertia of the system about an axis passing through the centre of one of the sphere and perpendicular to the rod

a) $\frac{21}{5} M R^{2}$
b) $\frac{2}{5} M R^{2}$
c) $\frac{5}{2} M R^{2}$
d) $\frac{5}{21} M R^{2}$
368. Two rings have their moments of inertia in the ratio $2: 1$ and their diameters are in the ratio $2: 1$.

The ratio of their masses will be
a) $2: 1$
b) $1: 2$
c) $1: 4$
d) $1: 1$
369. The moment of inertia of a straight thin rod of mass M and length l about an axis perpendicular to its length and passing through its one end, is
a) $M l^{2} / 12$
b) $M l^{2} / 3$
c) $M l^{2} / 2$
d) $M l^{2}$
370. The position of a particle is given by: $\vec{r}=(\hat{i}+2 \hat{j}-\hat{k})$ and momentum $\vec{P}=(3 \hat{i}+4 \hat{j}-2 \hat{k})$. The angular momentum is perpendicular to

> Line at equal
a) X - axis
b) Y - axis
c) Z-axis
d) angles to all the three axes
371. A sphere of mass m and radius r rolls on a horizontal plane without slipping with the speed u. Now if it rolls up vertically, the maximum height it would attain will be
a) $3 u^{2} / 4 g$
b) $5 u^{2} / 2 g$
c) $\left.7 u^{2} / 10 g \mathrm{~d}\right) u^{2} / 2 g$
372. A 10 kg body hangs at rest from a rope wrapped around a cylinder 0.2 m in diameter. The torque applied about the horizontal axis of the cylinder is
a) $98 \mathrm{~N}-\mathrm{m}$
19.6 N
b) m
c) $196 \mathrm{~N}-\mathrm{md}$) $9.8 \mathrm{~N}-\mathrm{m}$
373. The moment of inertia of a circular disc about one of its diameter is I. What will be its moment of inertia about a tangent parallel to the diameter?
a) $4 I$
b) $2 I$
c) $\frac{3}{2} I$
d) 3 I
374. A thin metal disc of radius of 0.25 m and mass 2 kg starts from rest and rolls down on an inclined plane. If its rotational kinetic energy is 4 J at the foot of inclined plane, then the linear velocity at the same point, is in ms^{-1}.
a) 2
b) $2 \sqrt{2}$
c) $2 \sqrt{3}$
d) $3 \sqrt{2}$
375. A ball rests upon a flat piece of paper on a table top. The paper is pulled horizontally but quickly towards right as shown. Relative to its initial position with respect to the table, the ball

(1) Remains stationary if there is no friction between the paper and the ball
(2) Moves to the left and starts rolling backwards, $i . e .$, to the left it there is a friction between the paper and the ball
(3) Moves forward, i.e ., in the direction in 'which the paper is pulled.
Here, the correct statement/s is/are
a) Both (1)
b) Only
(3) c
c) Only (1
d) Only (2) and (2)
376. A rectangular block has a square base measuring $a \times a$, and its height is h. Its moves on a horizontal surface in a direction perpendicular to one of its edges. The coefficient of friction is μ. It will topple if
a) $\mu>h / a$
b) $\mu>a / h$
c) $\mu>\frac{2 a}{h}$
d) $\mu>\frac{a}{2 h}$
377. Centre of mass is a point
a) Which is b)
geometri
b) From
c) Where
d) Which is geometri which c centre distance of a body of particles the whole mass of the origin of reference the body frame are same is supposed
to
concentr ated
378. When a ceiling fan is switched on, it makes 10 revolutions in the first 3 seconds. Assuming a uniform angular acceleration, how many rotation it will make in the next 3 seconds
a) 10
b) 20
c) 30
d) 40
379. A thin rod of length L is lying along the x-axis with its ends at $x=0$ and $x=L$. Its linear density
(mass\length) varies with x as $\mathrm{k}\left(\frac{x}{L}\right)^{n}$, when n can be zero or any positive number. If the position $x_{C M}$ of the centre of mass of the rod is plotted against n, which of the following graphs best approximates the dependence of $x_{C M}$ on n ?

380. A 2 kg body and a 3 kg body are moving along the x-axis. At a particular instant the 2 kg body has a velocity of $3 \mathrm{~m} \mathrm{~s}^{-1}$ and the 3 kg body has the velocity of $2 \mathrm{~m} \mathrm{~s}^{-1}$. The velocity of the centre of mass at that instant is
a) $5 \mathrm{~m} \mathrm{~s}^{-1}$
b) $1 \mathrm{~m} \mathrm{~s}^{-1}$
c) 0
d) None of
381. Consider a uniform square plate of side ' a ' and mass ' m '. The moment of inertia of this plate about an axis perpendicular to its plane and passing through one of its corners is
a) $\frac{1}{12} m a^{2}$
b) $\frac{7}{12} m a^{2}$
c) $\frac{2}{3} m a^{2}$
d) $\frac{5}{6} m a^{2}$
382. A circular disc of radius R and thickness $\frac{R}{6}$ has moment of inertia I about an axis passing through its centre and perpendicular to its plane. It is melted and recasted into a solid sphere. The moment of inertia of the sphere about its diameter as axis of rotation is
a) I
b) $\frac{2 I}{3}$
c) $\frac{I}{5}$
d) $\frac{I}{10}$
383. A solid cylinder on moving with constant speed v_{0} reaches the bottom of an incline of 30°. A hollow cylinder of same mass and radius moving with the same constant speed V_{0} reaches the bottom of a different incline of θ. There is no slipping and both of them go through the same distance in the same time ; θ is then equal to
a) 37°
b) 30°
c) 42°
d) 45°
384. The centre of mass of triangle shown in figure has coordinates

a) $\left.\left.\left.x=\frac{h}{2}, y=\mathrm{b}\right) x=\frac{b}{2}, y=\mathrm{c}\right) x=\frac{b}{3}, y=\mathrm{d}\right) x=\frac{h}{3}, y=$
385. A body of mass M moving with a speed u has a head-on collision with a body of mass m originally at rest. If $M \gg m$, the speed of the body of mass m after collision will be nearly
a) $\frac{u m}{M}$
b) $\frac{u M}{m}$
c) $\frac{u}{2}$
d) $2 u$
386. A smooth steel ball strikes a fixed smooth steel plate at an angle θ with the vertical. If the coefficient of restitution is e, the angle at which the rebounce will take place is
a) θ
b) $\tan ^{-1}\left[\frac{\tan }{\epsilon} \mathrm{c}\right) e \tan \theta$
d) $\tan ^{-1}\left[\frac{\epsilon}{\tan }\right.$
387. If the earth shrinks such that its mass does not change but radius decreases to one quarter of its original value then one complete day will take
a) 96 h
b) 48 h
c) 6 h
d) 1.5 h
388. A circular turn table has a block of ice placed at its centre. The system rotates with an angular speed ω about an axis passing through the centre of the table. If the ice melts on its own without any evaporation, the speed of rotation of the system

389. Two blocks of masses 10 kg and 4 kg connected by a spring of negligible mass and placed on a frictionless horizontal surface. An impulse gives a velocity of $14 \mathrm{~m} \mathrm{~s}^{-1}$ to the heavier block in the direction of the lighter block. The velocity of the centre of mass is
a) $30 \mathrm{~m} \mathrm{~s}^{-1}$ b) $20 \mathrm{~m} \mathrm{~s}^{-1}$
c) $10 \mathrm{~m} \mathrm{~s}^{-1}$
d) $5 \mathrm{~m} \mathrm{~s}^{-1}$
390. A spherical hollow is made in a lead sphere of radius R such that its surface touches the outside surface of lead sphere and passes through the centre. What is the shift in the centre of lead sphere as a result of this hollowing?

a) $\frac{R}{7}$
b) $\frac{R}{14}$
c) $\frac{R}{2}$
d) R
391. If the earth is treated as a sphere of radius R and mass M; its angular momentum about axis of rotation with period T is
а) $\frac{\pi M R^{3}}{T}$
b) $\frac{M R^{2} \pi}{T}$
c) $\frac{2 \pi M R^{3}}{5 T}$ d) $\frac{4 \pi M R^{2}}{5 T}$
392. Two masses m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are connected by massless flexible and inextensible string passed over massless and frictionless pulley. The acceleration of centre of mass is
a) $\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right.$ b) $\frac{m_{1}-m_{2}}{m_{1}+m_{2}}$ gc) $\frac{m_{1}+m_{2}}{m_{1}-m_{2}}$ gd
gd) Zero
393. A man of mass M stands at one end of a plank of length which is at rest on a frictionless horizontal surface. The man walks to he other end of the plank. If mass of the plank is $M / 3$, the distance that the man moves relative to ground is
a) L
b) $L / 4$
c) $3 L / 4$
d) $L / 3$
394. Two discs of same thickness but of different radii are made of two different materials such that their masses are same. The densities of the materials are in the ratio 1:3. The moments of inertia of these discs about the respective axes passing through their centres and perpendicular to their planes will be in the ratio
a) $1: 3$
b) $3: 1$
c) $1: 9$
d) $9: 1$
395. A bullet of mass M hits a block of mass M^{\prime}. The transfer to energy is maximum, when
a) $M=M$
b) $M=2 M$
c) $M^{\prime}<i M$ d) $M^{\prime}>i M$
396. Which relation is not correct of the following

Torque $=$	Torque $=$	Moment of inertia	Liner Momentu
Moment	Dipole	$=$	$\mathrm{m}=$
of inertia	moment	c)	Torque $/ \mathrm{ad}$ d)

397. If a ball is dropped from rest, its bounces from the floor. The coefficient of restitution is 0.5 and the speed just before the first bounce is $5 \mathrm{~m} \mathrm{~s}^{-1}$. The total time taken by the ball to come to rest is
a) 2 s
b) 1 s
c) 0.5 s
d) 0.25 s
398. Angular momentum of a system of particles changes when
a) Force
b) Torque
c) Directiond) None of

acts on a	acts on a	of	these
body	body	velocity changes	

399. The moment of inertia of meter scale of mass 0.6 kg about an axis perpendicular to the scale and located at the 20 cm position on the scale in kg m^{2} is (Breadth o the scale is negligible)
a) 0.078
b) 0.104
c) 0.148
d) 0.208
400. A particle moves in the $x-y$ plane under the action of a force F such that the value of its linear momentum \vec{P} at any time t is $p_{x}=2 \cos$ $t, p_{y} 2 \sin t$
The angel θ between \vec{F} and \vec{P} at a given time t will be
a) 90°
b) 0°
c) 180°
d) 30°
401. The moment of inertia of a circular ring of mass 1 kg about an axis passing through centre and perpendicular to its plane is $4 \mathrm{~kg}-\mathrm{m}^{2}$. The diameter of the ring is
a) 2 m
b) 4 m
c) 5 m
d) 6 m
402. A particle of mass 1 kg is projected with an initial velocity $10 \mathrm{~ms}^{-1}$ at an angle of projection 45^{0} with the horizontal. The average torque acting on the projectile, between the time at which it is projected and the time at which it strikes the ground, about the point of projection in newtonmetre is
a) 25
b) 50
c) 75
d) 100
403. Four spheres of diameter $2 a$ and mass M are placed with their centres on the four corners of a square of side b. Then the moment of inertia of the system about an axis along one of the sides of the square is
a) $\frac{4}{5} M a^{2}+$ b

+ b) $\frac{8}{5} M a^{2}+c$ c) $\frac{8}{5} M a^{2}$
d) $\frac{4}{5} M a^{2}+$

404. A wheel has angular acceleration of $3.0 \mathrm{rad} / \mathrm{s} \mathrm{ec}^{2}$ and an initial angular speed of $2.00 \mathrm{rad} / \mathrm{sec}$. In a time of 2 sec it has rotated through an angle (In radian) of
a) 6
b) 10
c) 12
d) 4
405. When a sphere of moment of inertia I about its centre of gravity and mass ' m ' rolls from rest down an inclined plane without slipping, its kinetic energy is
a) $\frac{1}{2} I \omega^{2}$
b) $\frac{1}{2} m v^{2}$
c) $I \omega+m v$
d) $\frac{1}{2} I \omega^{2}+\frac{1}{2}$
406. A thin uniform circular ring is rolling down an inclined plane of inclination 30° without slipping. Its linear acceleration along the inclined plane will be
a) $g / 2$
b) $g / 3$
c) $g / 4$
d) $2 g / 3$
407. A circular disc of radius R rolls without slipping along the horizontal surface with constant velocity v_{0}. We consider a point A on the surface of the disc. Then the acceleration of the point A is
a) Constant b) Constant c) Constant d) Constant in in in magnitud direction magnitud e as well e
as

direction

408. A torque of 50 Nm acting on a wheel at rest rotates it through 200 radians in 5 sec. Calculate the angular acceleration produced
a) $8 \mathrm{rad} \mathrm{secb)} 4 \mathrm{rad} \mathrm{secc)} 16 \mathrm{rad} \mathrm{sed}) 12 \mathrm{rad} \mathrm{se}$
409. A round uniform body of radius R, mass M and moment of inertia I, rolls down (without slipping) an inclined plane making an angle θ with the horizontal. Then its acceleration is
a) $\left.\left.\left.\frac{g \sin \theta}{1+\frac{I}{M R^{2}}} \mathrm{~b}\right) \frac{g \sin \theta}{1+\frac{M R^{2}}{I}} \mathrm{c}\right) \frac{g \sin \theta}{1-\frac{I}{M R^{2}}} \mathrm{~d}\right) \frac{g \sin \theta}{1-\frac{M R^{2}}{I}}$
410. A tap can be operated easily using two fingers because
a) The
b) This
c) The
d) The
force
helps
available applicati rotational effect is
force by
for the operation angular will be forces more
caused finger by the overcom couple es formed friction and other finger provides the force for the operation
411. The angular momentum of a system of particles is not conserved

a) When a	b) When a	c)	When a
d)	None of		
net	net	net	these
external	external	external	
force	torque is	impulse	
acts upon	acting	is acting	
the	upon the	upon the	
system	system	system	

412. Two discs of moment of inertia I_{1} and I_{2} and angular speeds ω_{1} and ω_{2} are rotating along collinear axes passing through their centre of mass and perpendicular to their plane. If the two are made to rotate combindly along the same axis the
rotational $K E$ of system will be
a) $\frac{I_{1} \omega_{1}+I_{2}}{2\left(I_{1}+I_{:}\right.}$b) $\left.\left.\frac{\left(I_{1}+I_{2}\right)(\mathrm{c}}{2} \mathrm{c}\right) \frac{\left(I_{1} \omega_{1}+I_{2}\right.}{2\left(I_{1}+j\right.} \mathrm{d}\right)$ None of
413. A uniform rod of length ' $2 L$ ' has mass per unit length ' m '. The moment of inertia of the rod about an axis passing through its centre and perpendicular to its length is
a) $\frac{2}{3} m L^{2}$
b) $\frac{1}{3} m L^{2}$
c) $\frac{2}{3} m L^{3}$
d) $\frac{4}{3} m L^{3}$
414. A wheel of radius 0.4 m can rotate freely about its axis as shown in the figure. A string is wrapped over its rim and a mass of 4 kg is hung. An angular acceleration of $8 \mathrm{rad}-\mathrm{s}^{-2}$ is produced in it due to the torque. Then, moment of inertia of the wheel is $\left(g=10 \mathrm{~ms}^{-2}\right)$

a) $2 \mathrm{~kg}-\mathrm{m}^{2}$ b) $1 \mathrm{~kg}-\mathrm{m}^{2}$ c) $4 \mathrm{~kg}-\mathrm{m}^{2}$ d) $8 \mathrm{~kg}-\mathrm{m}^{2}$
415. Three particles, each of mass m gram, are situated at the vertices of an equilateral triangle $A B C$ of side $l \mathrm{~cm}$ (as shown in the figure). The moment of inertia of the system about a line $A X$ perpendicular to $A B$ and in the plane of $A B C$, in gram-c m ${ }^{2}$ units will be

a) $\frac{3}{4} m l^{2}$
b) $2 \mathrm{ml}^{2}$
c) $\frac{5}{4} m l^{2}$
d) $\frac{3}{2} m l^{2}$
416. Four particles each of mass m are placed at the corners of a square of side length l. The radius of gyration of the system about an axis perpendicular to the square and passing through its centre is
a) $\frac{l}{\sqrt{2}}$
b) $\frac{l}{2}$
c) l
d) $(\sqrt{2}) l$
417. A ladder is leaned against a smooth wall and it is allowed to slip on a frictionless floor. Which figure represents trace of its centre of mass
a)

418. A ball rolls without slipping. The radius of
gyration of the ball about an axis passing through its centre of mass is K. If radius of the ball be R, then the fraction of total energy associated with its rotational energy will be
a) $\frac{K^{2}}{R^{2}}$
b) $\frac{K^{2}}{K^{2}+R^{2}}$
c) $\frac{R^{2}}{K^{2}+R^{2}}$
d) $\frac{K^{2}+R^{2}}{R^{2}}$
419. A cylinder rolls up an inclined plane, reaches some height, and then rolls down (without slipping throughout these motions). The directions of the frictional force acting on the cylinder are
a) Up the
b) Up the
c) Down
d) Down
incline
while
ascendin
g and
down the
incline descendi
while
descendi
ng
the
incline
while ascendin g and up the incline while $\quad n g$ descendi ng
420. If the angular momentum of any rotating body increases by 200%, then the increase in its kinetic energy
a) 400%
b) 800%
c) 200%
d) 100%
421. Three point masses m_{1}, m_{2}, m_{3} are located at the vertices of an equilateral triangle of length ' a '. The moment of inertia of the system about an axis along the altitude of the triangle passing through m_{1} is
a) $\left.\left.\left(m_{2}+m_{3}\right)^{\text {'b }}\right)\left(m_{1}+m_{2}+c\right)\left(m_{1}+m_{2}\right)^{\prime}-\mathrm{d}\right)\left(m_{2}+m_{3}\right)$ (
422. Two point objects of mass 1.5 g and 2.5 g respectively are at a distance of 16 cm apart, the centre of gravity is at a distance x from the object of mass 1.5 g , where x is
a) 10 cm
b) 6 cm
c) 13 cm
d) 3 cm
423. A thin uniform rod mass m and length l is hinged at the lower end to a level floor and stands vertically. It is now allowed to fall, then its upper end will strike the floor with a velocity given by
a) $\sqrt{2 g l}$
b) $\sqrt{3 g l}$
c) $\sqrt{5 g l}$
d) $\sqrt{m g l}$
424. A solid sphere is rotating in free space. If the radius of the sphere is increased keeping mass same which one of the following will not be affected?
a) Momen
b) Angular
c) Angular
d) Rotation of inertia momentu velocity al kinetic m energy
425. A circular disc rolls down an inclined plane. The
ratio of rotational kinetic energy to total kinetic energy is
a) $\frac{1}{2}$
b) $\frac{1}{3}$
c) $\frac{2}{3}$
d) $\frac{3}{4}$
426. A car is moving at a speed of $72 \mathrm{~km} / \mathrm{hr}$. The radius of its wheels is 0.25 m . If the wheels are stopped in 20 rotations by applying brakes, then angular retardation produced by the brakes is

$$
\text { a) }-25.5 \mathrm{rab})-29.5 \mathrm{rac})-33.5 \mathrm{rad})-45.5 r a
$$

427. A bomb dropped from an aeroplane explodes in air. Its total
a) Moment
b) Kinetic
c) Kinetic
d) Kinetic um increases decreases energy energy increases decreases
428. A disc is rolling (without slipping) on a horizontal surface C is its centre and Q and P are two points equidistant from C. Let v_{P}, v_{Q} and v_{C} be the magnitude of velocities of pints P, Q and C respectively, then

$$
\text { a) } v_{Q}>v_{C}>\text { lb) } v_{Q}<v_{C}<v_{Q}=v_{P},
$$

429. Two balls each of mass m are placed on the vertices A and B of an equilateral triangle $A B C$ of side 1 m . A ball of mass 2 m is placed at vertex C. The centre of mass of this system from vertex A (located at origin) is

$$
\text { a) }\left(\frac{1}{2} m, \frac{1}{2} n_{\mathrm{b}}\right)\left(\frac{1}{2} m, \sqrt{3}_{\mathrm{c}}\right)\left(\frac{1}{2} m, \frac{\sqrt{3}}{4} \mathrm{~d}\right)\left(\frac{\sqrt{3}}{4} m, \frac{\sqrt{ }}{4}\right.
$$

430. A uniform heavy disc is rotating at constant angular velocity ω about a vertical axis through its centre and perpendicular to the plane of the disc. Let L be its angular momentum. A lump of plasticine is dropped vertically on the disc and sticks to it. Which will be constant
a) ω
b)
ω and L
c) L only
d) Neither
ω nor L
431. If a bullet is fired from a gun, then
a) The
b) The
c) The
d) The non-

mechanic	mechanic	mechanic	mechanic
al energy	al energy	al energy	al energy
of bullet-	is	may be	is
gun	converte	conserve	converte
system	d into	d	d into
remains	non-		mechanic
constant	mechanic		al energy
	al energy		

432. A diver in a swimming pool bends his head before diving, because it
a) Decrease b)
) Decrease c
) Increases
d) Increases shis $\quad s$ his his his linear moment angular moment velocity of inertia velocity of inertia
433. Moment of inertia of a thin circular disc of mass M and radius R about any diameter is
a) $\frac{M R^{2}}{4}$
b) $\frac{M R^{2}}{2}$
c) $M R^{2}$
d) $2 M R^{2}$
434. Two balls of masses 2 g and 6 g are moving with KE in the ratio of $3: 1$. What is the ratio of their liner momenta?
a) $1: 1$
b) $2: 1$
c) $1: 2$
d) None of these
435. If the torque of the rotational motion be zero, then the constant quantity will be
a) Angular
b) Linear
c) Angular
d) Centripet m m accelerati a on accelerati on
436. A door 1.6 m wide requires a force of 1 N to be applied at the free end to open or close it. The force that is required at a point 0.4 m distance from the hinges for opening or closing the door is
a) 1.2 N
b) 3.6 N
c) 2.4 N
d) 4 N
437. A hemispherical bowl or radius R is kept on a horizontal table. A small sphere of radius $r(r \ll R)$ is placed at the highest point at the inside of the bowl and let go. The sphere rolls without slipping. Its velocity at the lowest point is
a) $\sqrt{5 g R / 7}$ b) $\sqrt{3 g R / 2}$ c) $\sqrt{4 g R / 3}$ d) $\sqrt{10 g R / '}$
438. What is the magnitude of torque acting on a particle moving is the $x y$-plane about the origin if its angular momentum is $4.0 \sqrt{t} \mathrm{~kg}-\mathrm{m}^{2} \mathrm{~s}^{-1}$?
a) $8 t^{3 / 2}$
b) $4.0 / \sqrt{t}$
c) $2.0 / \sqrt{t}$
d) $3 / 2 \sqrt{t}$
439. Particle of mass 4 m which is at rest explodes into three fragments. Two of the fragments each of mass m are found to move with a speed v each in mutually perpendicular directions. Calculate the energy released in the process of explosion.
a) $\frac{1}{2} m v^{2}$
b) $\frac{3}{2} m v^{2}$
c) $\frac{5}{2} m v^{2}$
d) $3 m v^{2}$
440. If linear velocity is constant then angular velocity is proportional to
a) $1 / r$
b) $1 / r^{2}$
c) $1 / r^{3}$
d) $1 / r^{5}$
441. Four identical spheres each of mass M and radius 10 cm each are placed on a horizontal surface touching one another so that their centres are located at the corners of a square of side 20 cm . What is the distance of their centre of mass from centre of any sphere?
a) 5 cm
b) 10 cm
c) 20 cm
d) $10 \sqrt{2} \mathrm{~cm}$
442. The moment of inertia of a thin uniform rod of mass M and length L about an axis passing through its midpoint and perpendicular to its length is I_{0}. Its moment of inertia about an axis passing through one of its ends and perpendicular to its length is

$$
\text { a) } I_{0}+M L^{2} \text { b) } I_{0}+\frac{M L^{2}}{2} \text { c) } I_{0}+\frac{M L^{2}}{4} \text { d) } I_{0}+2 M I
$$

443. If the polar ice caps melt suddenly

444. If all of a sudden the radius of the earth decreases, then
a) The
b) The
c) The
d) The angular
 periodic energy time of and earth will will become increase increase m will greater remain than that constant of the
sun
445. The moments of inertia of two freely rotating bodies A and B are I_{A} and I_{B} respectively. $I_{A}>I_{B}$ and their angular momenta are equal. If
K_{A} and K_{B} are their kinetic energies, then

$$
\text { a) } K_{A}=K_{B} \text { b) } K_{A} \neq K_{B} \text { c) } K_{A}<K_{B} \text { d) } K_{A}=2 K
$$

446. A body in equilibrium may not have
a) Moment
b) Velocity
c) Acceleratd
d) Kinetic um ion energy
447. A hollow sphere of diameter 0.2 m and mass 2 kg is rolling on an inclined plane with velocity $v=0.5 \mathrm{~m} / \mathrm{s}$. The kinetic energy of the sphere is
a) 0.1 J
b) 0.3 J
c) 0.5 J
d) 0.42 J
448. A motor is rotating at a constant angular velocity of 600 rpm . The angular displacement per second is
a) $\frac{3}{50 \pi} \mathrm{rad}$
b) $\frac{3 \pi}{50} \mathrm{rad}$
c) $\frac{25 \pi}{3} \mathrm{rad}$
d) $\frac{50 \pi}{3} \mathrm{rad}$
449. A pulley of radius 2 m is rotating about its axis by a force $F=\left(20 \mathrm{t}-5 t^{2}\right) \mathrm{N}$ (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis rotation is 10 kgm^{2}, the number of rotations made by the pulley before its direction of motion if reserved, is
a) More
b) More
c) More
d) Less than
than 3
than 6
than 9 3
but less but less
than 6
than 9
450. The moment of inertia about an axis of a body which is rotating with angular velocity $1 \mathrm{rads}^{-1}$ is numerically equal to
a) One-
b) Half of
c) Rotation
d) Twice
fourth of the al kinetic the its rotational energy rotational rotational kinetic kinetic
kinetic energy energy energy
451. A solid sphere rolls down without slipping on an inclined plane at angle 60° over a distance of 10 m . the acceleration $\left(i \mathrm{~m} \mathrm{~s}^{-2}\right)$ is
a) 4
b) 5
c) 6
d) 7
452. An example of inelastic collision is

Scatterin Collision g of α - of ideal
a) particle
from a
b) gas
c) steel balls ${ }_{\text {d) }}$ bullet lying on a with a frictionle wooden ss table block

Collision Collision of two of a
453. In an orbital motion, the angular momentum vector is
a) Along
b) Parallel
c) In the
the
radius
vector to the orbital
d) Perpendi cular to the orbital plane
454. A ring of mass 10 kg and diameter 0.4 m is rotated about its axis. If it makes 2100 revolutions
per minute, then its angular momentum will be

$$
\text { a) } 44 \mathrm{~kg} \times m \text { b) } 88 \mathrm{~kg} \times m \mathrm{c}) 4.4 \mathrm{~kg} \times r \mathrm{~d}) 0.4 \mathrm{~kg} \times r
$$

455. A marble and a cube have the same mass starting from rest, the marble rolls and the cube slides down a frictionless ramp. When they arrive at the bottom, the ratio of speed of the cube to the centre of mass and speed of the marble is
a) $7: 5$
b) $\sqrt{7}: \sqrt{5}$
c) $\sqrt{2}: 1$
d) $5: 2$
456. Two solid discs of radii r and $2 r$ roll from the top of an inclined plane without slipping. Then
a) The
b) The
c) The time d)
bigger disc will maller differenc Both the reach the horizont disc will e of reaching of the discs at 1 level first first first discs will reach at the same time the horizonta 1 level will depend on the inclinatio n of the plane
457. A thin horizontal circular disc is rotating about a vertical axis passing through its centre. An insect is at rest at a point near the rim of the disc. The insect now moves along a diameter of the disc to reach its other end. During the journey of the insect, the angular speed of the disc
a) Continuob) Continuoc) first
d) Remains usly usly increases unchange decreases increases and then d decreases
458. If there is change of angular momentum from J to $5 J$ in 5 s , then the torque is
a) $\frac{3 \mathrm{~J}}{5}$
b) $\frac{4 \mathrm{~J}}{5}$
c) $\frac{5 \mathrm{~J}}{4}$
d) $\begin{aligned} & \text { None of } \\ & \text { these }\end{aligned}$
459. Two boys of masses 10 kg and 8 kg are moving along a vertical rope, the former climbing up with acceleration of $2 \mathrm{~m} \mathrm{~s}^{-1}$. 2 while later coming down with uniform velocity of $2 \mathrm{~m} \mathrm{~s}^{-1}$. Then tension in rope at fixed support will be(Take $g=10 \mathrm{~ms}^{-2}$)
a) 200 N
b) 120 N
c) 180 N
d) 160 N
460. Angular momentum of the particle rotating with a central force is constant due to
a) Constant b
b) Constant c
Zero
d) Constant force linear torque torque momentu
461. The mass of the earth is increasing at the rate of 1 part in 5×10^{19} per day by the attraction of meteors falling normally on the earth's surface. Assuming that the density of earth is uniform, the rate of change o the period of rotation of the earth is
a) $2.0 \times 10^{-}$
b) 2.66×10 c) 4.33×10 d) 5.66×10
462. In a one dimensional collision between two identical particles A and B, B is stationary and A has momentum p before impact. During impact B gives an impulse J to A. Then coefficient of restitution between the two is
a) $\frac{2 J}{P}-1$
b) $\frac{2 J}{P}+1$
c) $\frac{J}{P}+1$
d) $\frac{J}{P}-1$
463. An annular ring with inner and outer radii R_{1} and R_{2} is rolling without slipping with a uniform angular speed. The ratio of the forces experienced by the two particles situated on the inner and outer parts of the ring, $\frac{F_{1}}{F_{2}}$ is
a) $\frac{R_{2}}{R_{1}}$
b) $\left(\frac{R_{1}}{R_{2}}\right)^{2}$
c) 1
d) $\frac{R_{1}}{R_{1}}$
464. A thin circular ring of mass M and radius r is rotating about its axis with a constant angular velocity ω. Four objects each of mass m, are kept gently to the opposite ends of two perpendicular diameters of the ring. The angular velocity of the ring will be
a) $\frac{M \omega}{M+4 m}$
b) $\left.\left.\frac{(M+4 m}{M} \mathrm{c}\right) \frac{(M-4 m}{M+4 r} \mathrm{~d}\right) \frac{M \omega}{4 m}$
465. Consider a uniform square of this plate of side a and mass m. The moment of inertia of this plate about an axis perpendicular to its plane and passing through one of its corners is
a) $5 / 6 \mathrm{ma}^{2}$
b) $1 / 12 \mathrm{ma}^{2} \mathrm{c}$
c) $7 / 12 \mathrm{ma}^{2} \mathrm{~d}$
d) $2 / 3 m a^{2}$
466. The radius of a rotating disc is suddenly reduced to half without any change in its mass. Then its angular velocity will be
a) Four
b) Double
c) Half
d) Unchang
times ed
467. Look at the drawing given in the figure, which has been drawn with ink of uniform line-thickness. The mass of ink used to draw each of the two inner circles, and each of the two line segments is m. The mass of ink used to draw the outer circle is 6 m . The coordinates of the centres of the different parts are : outer circle $(0,0)$ left inner circle $(-a, a)$, right inner circle (a, a) vertical line $(0,0)$ and horizontal line $(0,-a)$. The y -
coordinate of the centre of mass of the ink in the drawing is

a) $\frac{a}{10}$
b) $\frac{a}{8}$
c) $\frac{a}{12}$
d) $\frac{a}{3}$
468. $A B C$ is an equilateral triangle with O as its centre. \vec{F}_{1}, \vec{F}_{2} and \vec{F}_{3} represent three forces acting along the sides $A B, B C$ and $A C$ respectively. If the total torque about O is zero then the magnitude of \vec{F}_{3} is

a) $F_{1}+F_{2}$
b) $F_{1}-F_{2}$
c) $\frac{F_{1}+F_{2}}{2}$
d) $2\left(F_{1}+F_{2}\right.$
469. A ball of mass m moving with velocity v collides with another ball of mass $2 m$ and sticks to it. The velocity v collides with of the final system is
a) $v / 3$
b) $v / 2$
c) $2 v$
d) $3 v$
470. A disc of moment of inertia $5 \mathrm{~kg}-\mathrm{m}^{2}$ is acted upon by a constant torque of 40 Nm . Starting from rest the time taken by it to acquire an angular velocity of $24 \mathrm{rads}^{-1}$ is
a) 3 s
b) 4 s
c) 2.5 s
d) 120 s
471. A circular disc of mass 0.41 kg and radius 10 m rolls without slipping with a velocity of $2 \mathrm{~m} / \mathrm{s}$. The total kinetic energy of disc is
a) 0.41 J
b) 1.23 J
c) 0.82 J
d) 2.4 J
472. If rotational kinetic energy is 50% of translational kinetic energy, then the body is
a) Ring
b) Cylinder
c) Hollow
d) Solid sphere sphere
473. When a ceiling fan is switched off, its angular velocity falls to half while it makes 36 rotations. How many rotations will it make before coming to rest?
a) 24
b) 36
c) 18
d) 12
474. Two solid cylinders P and Q of same mass and same radius start rolling down a fixed inclined plane from the same height at the same time. Cylinder P has most of its mass concentrated near its surface, while Q has most of its mass concentrated near the axis. Which statement (s) is
(are) correct

475. Two carts on horizontal straight rails are pushed apart by an explosion of a powder charge Q placed between the carts. Suppose the coefficient of friction between carts and rails are identical. If the 200 kg cart travels a distance of 36 m and stops, the distance covered by the cart weighing 300 kg is
a) 32 m
b) 24 m
c) 16 m
d) 12 m
476. The moment of inertia of thin circular disc about an axis passing through its centre and perpendicular to its plane is I. Then, the moment of inertia of the disc about an axis parallel to its diameter and touching the edge of the rim is
a) I
b) $2 I$
c) $\frac{3}{2} I$
d) $\frac{5}{2} I$
477. A sphere of mass 50 g and diameter 20 cm rolls without slipping with a velocity of $5 \mathrm{~cm} / \mathrm{sec}$. Its total kinetic energy is
a) 625 erg
b) 250 erg
c) 875 erg
d) 875 joule
478. Two persons of masses 55 kg and 65 kg respectively, are at the opposite ends of a boat. The length of the boat is 3.0 m and weighs 100 kg . The 55 kg man walks up to the 65 kg man and sits with him. If the boat is in still water the centre of mass of the system shifts by
a) 3.0 m
b) 2.3 m
c) Zero
d) 0.75 m
479. Two particles of masses m_{1} and m_{2} are connected by a rigid massless rod of length r to constitute a dumb-bell which is free to move in the plane. The moment of inertia of the dumb-bell about an axis perpendicular to the plane passing through the centre of mass is
a) $\frac{m_{1} m_{2} r^{2}}{m_{1}+m_{2}}$ b) $\left(m_{1}+m_{2}\right)$ ic) $\frac{m_{1} m_{2} r^{2}}{m_{1}-m_{2}}$ d) $\left(m_{1}-m_{2}\right)$
480. Three identical thin rods each of length l and mass M are joined together to form a letter H. What is the moment of inertia of the system about one of the sides of H ?
a) $M \frac{l^{2}}{4}$
b) $M \frac{l^{2}}{3}$
c) $2 \frac{M l^{2}}{3}$
d) $4 \frac{M I^{2}}{3}$
481. A circular thin disc of mass 2 kg has a diameter 0.2 m . Calculate its moment of inertia about an axis passing through the edge and perpendicular to the plane of the disc (in $\mathrm{kg}-\mathrm{m}^{2}$)
a) 0.01
b) 0.03
c) 0.02
d) 3
482. Two bodies of mass 1 kg and 3 kg have position vectors $\hat{i}+2 \hat{j}+\hat{k}$ and $-3 \hat{i}-2 \hat{j}+\hat{k}$, respectively. The centre of mass of this system has a position vector

$$
\text { a) }-2 \hat{i}+2 \hat{k} \mathrm{~b})-2 \hat{i}-\hat{j}+\mathrm{c}) 2 \hat{i}-\hat{j}-\hat{k} \mathrm{~d})-\hat{i}+\hat{j}+\hat{k}
$$

483. A circular disc of mass 0.41 kg and radius 10 m rolls without slippling with a velocity of $2 \mathrm{~m} \mathrm{~s}^{-1}$. The total kinetic energy of disc is
a) 0.41 J
b) 1.23 J
c) 0.82 J
d) 2.45 J
484. Two bodies A and B have masses M and m respectively, where $M>m$ and they are at a distance d apart. Equal force is applied to them so that they approach each other. The position where they hit each other is
a) $\begin{aligned} & \text { Nearer to } \\ & B\end{aligned} \quad$ b) $\begin{aligned} & \text { Nearer to } \\ & A\end{aligned} \quad$ c) $\begin{aligned} & \text { distance } \\ & \text { from } A\end{aligned}$ and B

Cannot

d) be
decided
485. The moment of inertia of a sphere of radius R and mass M about a tangent to the sphere is
a) $M R^{2}$
b) $\frac{2}{5} M R^{2}$
c) $\frac{12}{5} M R^{2}$ d) $\frac{7}{5} M R^{2}$
486. A cockroach is moving with velocity v in anticlockwise direction on the rim of a disc of radius R of mass m. The moment of inertia of the disc about the axis is I and it is rotating in clockwise direction with an angular velocity ω. If the cockroach stops, the angular velocity of the disc will be
a) $\frac{I \omega}{I+m R^{2}}$
b) $\left.\left.\frac{I \omega+m v R}{I+m R^{2}} \mathrm{c}\right) \frac{I \omega-m v F}{I+m R^{2}} \mathrm{~d}\right) \frac{I \omega-m v F}{I}$
487. Moment of inertia of a ring of mass M and radius R about an axis passing through the centre and perpendicular to the plane is I. What is the moment of inertia about its diameter
a) I
b) $\frac{I}{2}$
c) $\frac{I}{\sqrt{2}}$
d) $I+M R^{2}$
488. A thin metal disc of radius 0.25 m and mass 2 kg starts from rest and rolls down an inclined plane. If its rotational kinetic energy is 4 J at the foot of the inclined plane, then its linear velocity at the same point is
a) $1.2 \mathrm{~m} \mathrm{~s}^{-1}$ b) $2 \sqrt{2} \mathrm{~ms}$
c) $20 \mathrm{~m} \mathrm{~s}^{-1}$
d) $2 \mathrm{~ms}^{-1}$
489. A hoop of mass M and radius R is suspended to a peg in a wall. Its moment of inertia about the peg is
a) $2 M R^{2}$
b) $M R^{2}$
c) $\frac{M R^{2}}{2}$
d) $\frac{3}{2} M R^{2}$
490. In the HCl molecule, the separation between the nuclei of the two atoms is about
$1.27 \AA\left(1 \AA=10^{-10} \mathrm{~m}\right)$. The approximate location of the centre of mass of the molecule, assuming the chlorine atom to be about 35.5 times massive as hydrogen is
a) $1 \AA$
b) $2.5 \AA$
c) $1.24 \AA$
d) $1.5 \AA$
491. A sphere of mass m and radius r rolls on a horizontal plane without slipping with the speed u. Now, if it rolls up vertically, the maximum height it would attain will be
a) $\frac{3 u^{2}}{4 g}$
b) $\frac{5 u^{2}}{2 g}$
c) $\frac{7 u^{2}}{10 g}$
d) $\frac{u^{2}}{2 g}$
492. If a hollow cylinder and a solid cylinder are allowed to roll down an inclined plane, which will take more time to reach the bottom
a) Hollow
b) Solid
c) Same for d)
d) One
cylinder cylinder both whose density is more
493. Analogue of mass in rotational motion is
a) Moment b)
b) Angular
c) Torque
d) None of of inertia momentu these m
494. Moment of inertia of an object does not depend upon
a) Mass of
b) Mass
c) Angular
d) Axis of
object distributi velocity rotation on
495. A uniform disc of mass 2 kg and radius 15 cm is revolving around the central axis by $4 \mathrm{rads}^{-1}$. The linear momentum of disc will be
a) $1.2 \mathrm{~kg}-\mathrm{nb}) 1.0 \mathrm{~kg}-n \mathrm{c}) 0.6 \mathrm{~kg}-n \mathrm{~d}) \begin{aligned} & \text { None of } \\ & \text { these }\end{aligned}$
496. A particle of mass m moves along line $P C$ with velocity V as shown. What is the angular momentum of the particle about O

a) $m v L$
b) $m v l$
c) $m v r$
d) Zero
497. A sphere of mass 10 kg and radius 0.5 m rotates about a tangent. The moment of inertia of the solid sphere is
a) $5 \mathrm{~kg}-\mathrm{m}^{2}$
b) $\begin{aligned} & 2.7 \mathrm{~kg}-~ \\ & \mathrm{~m}^{2}\end{aligned}$
c) $\begin{aligned} & 3.5 \mathrm{~kg}- \\ & m^{2}\end{aligned}$
d)
$4.5 \mathrm{~kg}-$
m^{2}
498. The angular momentum of a particle describing uniform circular motion in L. If its kinetic energy is halved and angular velocity doubled, its new angular momentum is
a) $4 L$
b) $\frac{L}{4}$
c) $\frac{L}{2}$
d) $2 L$
499. Three identical blocks A, B and C are placed on horizontal frictionless surface. The blocks A and C are at rest. But A is approaching towards B with a speed $10 \mathrm{~m} \mathrm{~s}^{-1}$. The coefficient of restitution for all collisions is 0.5 . The speed of the block C just after collision is

a) $5.6 \mathrm{~m} \mathrm{~s}^{-1}$ b) $6 \mathrm{~m} \mathrm{~s}^{-1}$
c) $8 \mathrm{~m} \mathrm{~s}^{-1}$
d) $10 \mathrm{~m} \mathrm{~s}^{-1}$
500. A bomb of mass 9 kg explodes into two pieces of masses 3 kg and 6 kg . The velocity of mass 3 kg is $16 \mathrm{~m} \mathrm{~s}^{-1}$. The kinetic energy of mass 6 kg in joule is
a) 96
b) 384
c) 192
d) 768
501. A ring solid sphere and a disc are rolling down from the top of the same height, then the sequence to reach on surface is
a) Ring,
b) Sphere,
c) Disc,
disc,
disc, ring ring,
d) Sphere, ring, disc sphere sphere
502. A thick uniform bar lies on a frictionless horizontal surface and is free to move in any way on the surface. It mass is 0.16 kg and length is 1.7 m . Two particles each of mass 0.08 kg are moving on the same surface and towards the bar in the direction perpendicular to the bar, one with a velocity of $10 \mathrm{~ms}^{-1}$ and other with velocity $6 \mathrm{~m} \mathrm{~s}^{-1}$. If collision between particles and bar is completely inelastic, both particles strike with the bar simultaneously. The velocity of centre of mass after collision is
a) $2 \mathrm{~m} \mathrm{~s}^{-1}$
b) $4 \mathrm{~m} \mathrm{~s}^{-1}$
c) $10 \mathrm{~m} \mathrm{~s}^{-1}$
d) $167 \mathrm{~m} \mathrm{~s}^{-1}$
503. If the radius of the earth contracts to half of its present day value without change in mass, then the length of the day will be
a) 24 h
b) 48 h
c) 6 h
d) 12 h
504. A body of mass M moving with velocity $\mathrm{vm} \mathrm{s}^{-1}$ suddenly breaks into two pieces. One part having mass $M / 4$ remains stationary. The velocity of the other part will be
a) v
b) $2 v$
c) $\frac{3 v}{4}$
d) $\frac{4 v}{3}$
505. A non-zero external force acts on a systems of particles. The velocity and acceleration of the centre of mass are found to be V_{0} and a_{0} at an instant t. It is possible that
a) $v_{0}=0, a_{0}$ b) $v_{0}=0, a_{0}$ c) $v_{0} \neq 0, a_{0}$ d) $v_{0} \neq 0, a_{0}$ 506. A rod of length L and mass M is bent to form a semi-circular ring as shown in figure. The moment of inertia about $X Y$ is

a) $\frac{M L^{2}}{2 \pi^{2}}$
b) $\frac{M L^{2}}{\pi^{2}}$
c) $\frac{M L^{2}}{4 \pi^{2}}$
d) $\frac{2 M L^{2}}{\pi^{2}}$
507. In a bicycle the radius of rear wheel is twice the radius of front wheel. If r_{F} and r_{r} are the radius, v_{F} and v_{r}, are speeds of top most points of wheel, then
a) $v_{r}=2 v_{F}$
b) $v_{F}=2 v_{r}$
c) $v_{F}=v_{r}$
d) $v_{F}>v_{r}$
508. Consider a body, shown in figure, consisting of two identical balls, each of mass M connected by a light rigid rod. If an impulse $J=M v$ is impared to the body at one of its ends, what would be its angular velocity?

a) v / L
b) $2 v / L$
c) $v / 3 L$
d) $v / 4 L$
509. A drum of radius R and mass M, rolls down without slipping along an inclined plane of angle θ . The frictional force
a) Converts b)
Dissipate c)
Decrease
) Decrease
s energy s the s the
nal as heat rotational rotational
energy to motion
and translatio nal motion
510. A disc of mass 2 kg and radius 0.2 m is rotating with angular velocity $30 \mathrm{rads}^{-1}$. What is angular velocity, if a mass of 0.25 kg is put on periphery of the disc?
a) $\left.\left.\left.24 \mathrm{rads}^{-1} \mathrm{~b}\right) 36 \mathrm{rads}^{-1} \mathrm{c}\right) 15 \mathrm{rads}^{-1} \mathrm{~d}\right) 26 \mathrm{rads}^{-1}$
511. A uniform rod of length $8 a$ and mass $6 m$ lies on a smooth horizontal surface. Two point masses m and $2 m$ moving in the same plane with speed $2 v$
and v respectively strike the rod perpendicular at distances a and $2 a$ form the mid point of the rod in the opposite directions and stick to the rod. The angular velocity of the system immediately after the collision is
a) $\frac{6 v}{32 a}$
b) $\frac{6 v}{33 a}$
c) $\frac{6 v}{40 a}$
d) $\frac{6 v}{41 a}$
512. The angle turned by a body undergoing circular motion depends on time as $\theta=\theta_{0}+i \theta_{1} t+\theta_{2} t^{2}$. Then the angular acceleration of the body is
a) θ_{1}
b) θ_{2}
c) $2 \theta_{1}$
d) $2 \theta_{2}$
513. Consider a system of two particles having masses m_{1} and m_{2}. If the particle of mass m_{1} is pushed towards the centre of mass of particles through a distance d, by what distance would be particle of mass m_{2} move so as to keep the centre of mass of particles at the original position
a) $\frac{m_{1}}{m_{1}+m_{2}} d$ b) $\frac{m_{1}}{m_{2}} d$
c) d
d) $\frac{m_{2}}{m_{1}} d$
514. A solid sphere rolls down without slipping on an inclined plane at angle 60° over a distance of 10 m . The acceleration (in ms^{-2}) is
a) 4
b) 5
c) 6
d) 7
515. The centre of mass of a system of three particles of masses $1 g, 2 g$ and $3 g$ is taken as the origin of a coordinate system. The position vector of a fourth particle of mass $4 g$ such that the centre of mass of the four particle system lies at the point $(1,2,3)$ is $\alpha(\hat{i}+2 \hat{j}+3 \hat{k})$, where α is a constant. The value of α is
a) $\frac{10}{3}$
b) $\frac{5}{2}$
c) $\frac{1}{2}$
d) $\frac{2}{5}$
516. Circular hole of radius 1 cm is cut off from a disc of radius 6 cm . The centre of hole is 3 m from the centre of the disc. The position of centre of mass of the remaining disc from the centre of disc is
a) $\frac{-3}{35} \mathrm{~cm}$
b) $\overline{35} \mathrm{~cm}$
c) $\frac{3}{10} \mathrm{~cm}$
d) $\begin{aligned} & \text { None of } \\ & \text { these }\end{aligned}$
517. A ball of mass m_{1} is a moving with velocity v. It collides head on elastically with a stationary ball of mass m_{2}. The velocity of ball becomes $v / 3$ after collision. Then the value of the ratio $\frac{m_{2}}{m_{1}}$ is
a) 1
b) 2
c) 3
d) 4
518. A circular platform is free to rotate in a horizontal plane about a vertical axis passing through its centre. A tortoise is sitting at the edge of the platform. Now, the platform is given an angular velocity ω_{0}. When the tortoise moves along a
chord of the platform with a constant velocity (with respect to the platform), the angular velocity
of the platform $\omega(t)$ will vary with time t as
a)
(t)
0

519. The rotational kinetic energy of a body is E and its moment of inertia is I. The angular momentum is
a) $E I$
b) $2 \sqrt{E I}$
c) $\sqrt{2 E I}$
d) E / I
520. Two spherical bodies of masses M and $5 M$ in free space with initial separation between their centres equal to $12 R$. If they attract each other due to gravitational force only, then the distance covered by the smaller body just before collision is
a) $2.5 R$
b) $4.5 R$
c) $7.5 R$
d) $1.5 R$
521. Two bodies of mass M and m are moving with same kinetic energy. If they are stopped by same retarding force, then If $M>m$, the time

Both bodies cover a) same distance before coming to rest	the time taken to come to rest for body of b) mass M is more than that of body of mass m	If $m>M$, then body of mass m c) has more d) All of the momentu above m than that of mass M

522. Moment of inertia depends on
a) Distribut b) Mass ion of particles
c) Position d) All of of axis of these rotation
523. From a uniform wire, two circular loops are made
(i) P of radius r and (ii) Q of radius $n r$. If the moment of inertia of Q about an axis passing through its centre and perpendicular to its plane is 8 times that of P about a similar axis, the value of n is (diameter of the wire is very much smaller than r or $n r$)
a) 8
b) 6
c) 4
d) 2
524. Two perfectly elastic objects A and B of identical mass are moving with velocities $15 \mathrm{~m} \mathrm{~s}^{-1}$ and 10 $\mathrm{m} \mathrm{s}^{-1}$ respectively, collide along the direction of line joining them. Their velocities after collision are respectively
525. A wheel has a speed of 1200 revolutions per minute and is made to slow down at a rate of 4 radians $/ s^{2}$. The number of revolutions it makes before coming to rest is
a) 143
b) 272
c) 314
d) 722
a) ${ }_{\left., 15 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~b}\right)}^{20} \mathrm{~ms}^{-1}, 5 n^{\text {c) }}{ }_{m \mathrm{~s}^{-1}, 25}^{0}{ }^{\text {d) }}$
5
$\mathrm{~ms}^{-1}, 20$
526. Three rods each of length L and mass M are placed along X, Y and Z axes in such a way that one end of each of the rod is at the origin. The moment of inertia of this system about Z axis is
a) $\frac{2 M L^{2}}{3}$
b) $\frac{4 M L^{2}}{3}$
c) $\frac{5 M L^{2}}{3}$
d) $\frac{M L^{2}}{3}$
527. The diameter of a flywheel is increased by 1%. Increase in its moment of inertia about the central axis is
a) 1%
b) 0.5%
c) 2%
d) 4%
528. Consider the following two statements
I. Linear momentum of a system of particles is zero.
II. Kinetic energy of a system of particles is zero.

Then
a) I implies b)
b) I does
c) I implies
d) I does II and II not imply II but II not imply implies I II and II does not II but II does not imply I implies I imply I
529. A thin uniform rod, pivoted at O, is rotating in the horizontal plane with constant angular speed ω, as shown in the figure. At time, $t=0$, a small insect starts from O and moves with constant speed v with respect to the rod towards the other end. It reaches the end of the rod at $t=T$ and stops. The angular speed of the system remains ω throughout. The magnitude of the torque i on the system about O, as a function of time is best represented by which plot

a)

b)

530. A cylinder of mass M, length L and radius R. If its moment of inertia about an axis passing through its centre and perpendicular to its axis is
minimum, the ratio L / R must be equal to
a) $3 / 2$
b) $2 / 3$
c) $\sqrt{2 / 3}$
d) $\sqrt{3 / 2}$
531. By keeping moment of inertia of a body constant, if we double the time period, then angular momentum of body
a) Remains
b) Becomes c) Doubles
d) quadrupl constant half
es
532. A wheel is rotating at $900 r$. p.m. about its axis. When the power is cut-off, it comes to rest in 1 minute. The angular retardation in radian $/ s^{2}$ is
a) $\pi / 2$
b) $\pi / 4$
c) $\pi / 6$
d) $\pi / 8$
533. A solid sphere is rotating in free space. If the radius of sphere is increased keeping mass same which one of the following will not be affected?
a) Angular
b) Angular
c) Moment
d) Rotation velocity momentu of inertia al m

Kinetic energy
534. The motion of the centre of mass is the result of
a) Internal
b) External
c) Attractiv
d) Repulsiv
forces
forces
e forces
e forces
535. A particle of mass M is moving in a horizontal circle of radius R with uniform speed v. When it moves from one point to a diametrically opposite point, its

Momentu Momentu
a) ${ }_{\text {not }}$ does
change
b) m changes
c) changes
d) None of by $M v^{2}$
the above
536. A stone of mass m tied to string of length l is rotating along a circular path with constant speed v. The torque on the stone is
a) mlv
b) $\frac{m v}{l}$
c) $\frac{m v^{2}}{l}$
d) Zero
537. A child is standing with folded hands at the centre of a platform rotating about its central axis. The kinetic energy of the system is K. The child stretches his arms so that the moment of inertia of the system doubles. The kinetic energy of the system now is
a) $2 K$
b) $\frac{K}{2}$
c) $\frac{K}{4}$
d) $4 K$
538. The total kinetic energy of rolling solid sphere having translational velocity V is
a) $\frac{7}{10} m v^{2}$
b) $\frac{1}{2} m v^{2}$
c) $\frac{2}{5} m v^{2}$
d) $\frac{10}{7} m v^{2}$
539. A system consists of 3 particles each of mass m located at point $(1,1),(2,2)$ and $(3,3)$. The coordinates of the center of mass are
a) $(6,6)$
b) $(3,3)$
c) $(1,1)$
d) $(2,2)$
540. Find the velocity of centre of the system shown in the figure.

a) $\left(\frac{2+2 \sqrt{3}}{3}\right.$ b) $4 \hat{i}$
c) $\left(\frac{2-2 \sqrt{3}}{3}\right.$ d) $\begin{array}{l}\text { None of } \\ \text { these }\end{array}$
541. A boy stands over the centre of a horizontal platform which is rotating freely with a speed of 2 revolutions/sec about a vertical axis through the centre of the platform and straight up through the boy. He holds 2 kg masses in each of his hands close to his body. The combined moment of inertia of the system is $1 \mathrm{~kg} \times$ metr e^{2}. The boy now stretches his arms so as to hold the masses of inertia of the system increases to $2 \mathrm{~kg} \times$ metr e^{2}. The kinetic energy of the system in the latter case as compared with that in the previous case will
a) Remains
b) Decrease c) Increase
d) Remains unchange uncertain d
542. The moment of inertia of a metre scale of mass 0.6 kg about an axis perpendicular to the scale and located at the 20 cm position on the scale in $\mathrm{kg} \mathrm{m}^{2}$ is (Breadth of the scale is negligible)
a) 0.074
b) 0.104
c) 0.148
d) 0.208
543. A wheel of moment of inertia $5 \times 10^{-3} \mathrm{~kg}-\mathrm{m}^{2}$ is making 20 revolutions per second. It is stopped in 20 seconds, then the angular retardation is
a) π radian b) 2π radiaic) 4π radiad) 8π radia
544. Two uniform thin rods each of mass M and length l are placed along X and Y axis with one end of each at the origin. Moment of inertia of the system about Z-axis is
a) $\frac{3}{2} M l^{2}$
b) $\frac{2}{3} M l^{2}$
c) $2 M l^{2}$
d) $\begin{aligned} & \text { None of } \\ & \text { these }\end{aligned}$
545. A body is dropped and observed to bounce a height greater than the dropping height. Then
a) The collision
b) There is
c) It is not
d) This type additiona possible of is elastic l source
of energy
during
collision phenome non does not occur in nature
546. The masses of five balls at rest and lying at equal distances in a straight line are in geometrical progression with ratio 2 and their coefficients of
restitution are each $2 / 3$. If the first ball be started towards the second with velocity u, then the velocity communicated to 5 th ball is
a) $\frac{5}{9} u$
b) $\left(\frac{5}{9}\right)^{2} u$
c) $\left(\frac{5}{9}\right)^{3} u$
d) $\left(\frac{5}{9}\right)^{4} u$
547. A body moves with constant velocity v in a straight line parallel to x-axis. The angular momentum with respect to origin is
a) Zero
b) Constant
c) Continuo d)
d) Continuo
usly usly increases decrease
548. A radioactive nucleus of mass number A, initially at rest, emits on α-particle with a speed v. What will be the recoil speed of the daughter nucleus?
a) $\frac{2 v}{(A-4)}$
b) $\frac{2 v}{(A+4)}$
c) $\frac{4 v}{(A-4)}$
d) $\frac{4 v}{(A+4)}$
549. Two identical masses A and B are hanging stationary by a light pulley (shown in the figure). A shell C moving upwards with velocity V collides with the block B and gets stick to it. Then

550. A bomb travelling in a parabolic path under gravity, explodes in mid air. The centre of mass of fragments will move
a) Verticall b)
b) Verticall
c) In an
d) In the
$y \quad y \quad$ irregula parabolic
upwards downwar path and then ds
downwar
ds path as the unexplod ed bomb
would have travelled
551. Three identical spheres, each of mass 1 kg are kept as shown in figure below, touching each other, with their centers on a straight line. If their centres are marked P, Q, R respectively, the distance of centre of mass of the system from P is

a) $\frac{P Q+P R}{3}$ b
b) $\frac{P Q+P R}{3}$ c)
$\frac{P Q+Q R}{3}$
$\frac{P R+Q R}{3}$
552. Radius of gyration of a body depends upon
a) Mass andb) Mass
c) Size of
d) Mass of size of distribu body body body on and axis of rotation
553. A machine gun fires a steady stream of bullets at the rate of n per minute into a stationary target in which the bullets get beaded. If each bullet has a mass $m a$ and arrive at the target with a velocity v, the average force on the target is
a) 60 mnv
b) $\frac{60 v}{m n}$
c) $\frac{m n v}{60}$
d) $\frac{m v}{60 n}$
554. An angular ring with inner and outer radii R_{1} and R_{2} is roiling without slipping with a uniform angular speed. The ratio of the forces experienced by the two particles situated on the inner and outer parts of the ring. F_{1} / F_{2} is
a) R_{1} / R_{2}
b) 1
c) $\left(\frac{R_{1}}{R_{2}}\right)^{2}$
d) $\frac{R_{2}}{R_{1}}$
555. Three rings each of mass M and radius R are arranged as shown in the figure. The moment of inertia of the system about $Y Y^{\prime}$ will be

a) $3 M R^{2}$
b) $\frac{3}{2} M R^{2}$
c) $5 M R^{2}$
d) $\frac{7}{2} M R^{2}$
556. A shell is fired from a cannon with a velocity v at an angle θ with the horizontal direction. At the highest point in its path, it explodes into two
pieces, one retraces its path to the cannon and the speed of the other piece immediately after the explosion is
a) $3 v \cos \theta$
b) $2 v \cos \theta$ c) $\left.\left(\frac{3}{2}\right) v \cos \mathrm{~d}\right)\left(\frac{\sqrt{3}}{2}\right) v \mathrm{cc}$
557. Two homogeneous spheres A and B of masses m and $2 m$ having radii $2 a$ and a respectively are placed in touch. The distance of centre of mass from first sphere is
a) a
b) $2 a$
c) $3 a$
d) $\begin{aligned} & \text { None of } \\ & \text { these }\end{aligned}$
558. A solid homogeneous sphere is moving on a rough horizontal surface partly rolling and partly sliding. During this kind of motion of the sphere
a) Total
b) The
kinetic
energy is
angular
c) Only the
d) Angular momentu rotation
conserve m of the
d

sphere	about the	centre of
about the	centre of	mass is
point of	mass is	conserve
contact	conserve	d
with the	d	
plane is		
conserve		
d		

559. A circular disc of radius R and thickness $\frac{R}{6}$ has moment of inertia I about an axis passing through its centre and perpendicular to its plane. It is melted and recasted into a solid sphere. The moment of inertia of the sphere about its diameter as axis of rotation is
a) I
b) $\frac{2 I}{8}$
c) $\frac{I}{5}$
d) $\frac{I}{10}$
560. Two circular iron discs are of the same thickness. The diameter of A is twice that of B. The moment of inertia of A as compared to that of B is
a) Twice as
b) Four
c) 8 times
d) 16 times large times as
as large as large large
561. For the given uniform square lamina $A B C D$, whose centre is O

$$
\text { a) } \left.\sqrt{2} I_{A C}=\text { b) } I_{A D}=4 I_{I} \mathrm{c}\right) I_{A C}=I_{E F} \text { d) } I_{A C}=\sqrt{2} j
$$

562. A ring of mass m and radius r is melted and then moulded into a sphere. The moment of inertia of the sphere will be
a) More
b) Less thanc
that of
Equal to
d) None of than that that of the above of the the ring the ring ring
563. Three rods of the same mass are placed as shown in figure. What will be the coordinates of centre of mass of the system?

a) $\left[\frac{a}{2}, \frac{a}{2}\right]$
b) $\left[\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right.$ c) $\sqrt{2} a, \sqrt{2}$ (d) $\left[\frac{a}{3}, \frac{a}{3}\right]$
564. A solid sphere is rolling without slipping on a horizontal surface. The ratio of its rotational kinetic energy to its translational kinetic energy is
a) $2 / 9$
b) $2 / 7$
c) $2 / 5$
d) $7 / 2$
565. A wheel rotates with a constant acceleration of 2.0 radian $/ \mathrm{sec}^{2}$. If the wheel starts from rest the number of revolutions it makes in the first ten seconds will be approximately
a) 8
b) 16
c) 24
d) 32
566. A nucleus reptures into two nuclear parts which have their velocity ratio equal to $2: 1$. What will be the ratio of their nuclear size?
a) $2^{1 / 3}: 1$
b) $1: 2^{1 / 3}$
c) $3^{1 / 2}: 1$
d) $1: 3^{1 / 2}$
567. A symmetrical body is rotating about its axis of symmetry, its moment of inertia about the axis of rotation being $4 \mathrm{~kg}-\mathrm{m}^{2}$ and its rate of rotation 2 $\mathrm{rev} / \mathrm{s}$. The angular momentum is
a) $\begin{aligned} & 1.257 \mathrm{~kg} \\ & m^{2} \mathrm{~s}^{-1}\end{aligned}$
b) $\begin{aligned} & 12.57 \mathrm{~kg} \\ & \mathrm{~m}^{2} \mathrm{~s}^{-1}\end{aligned}$
c) $\begin{aligned} & 13.57 \mathrm{~kg} \\ & \mathrm{~m}^{2} \mathrm{~s}^{-1}\end{aligned}$
d) $\begin{aligned} & 20 \mathrm{~kg} \\ & m^{2} \mathrm{~s}^{-1}\end{aligned}$
568. Identify the correct statement for the rotational motion of a rigid body.
a) Individuab) The
c) The
d) Individua
$1 \quad$ centre of centre of 1
particles mass of mass of particles of the the body the body and

body do	remains	moves	centre of
not	unchange	uniforml	mass the
undergo	d.	y in a	body
accelerat		circular	undergo
ed		path.	an
motion.			accelerat
		ed	
		motion.	

569. Of the two eggs which have identical sizes, shapes and weights, one is raw, and other is half boiled. The ratio between the moment of inertia of the raw to the half boiled egg bout central axis is
a) One
b) Greater than one
c) Less thand) Not one compara ble
570. A bullet of mass m is fired with a velocity of 50 $\mathrm{m} \mathrm{s}^{-1}$ at an angle θ with the horizontal. At the highest point of its trajectory, it collides had on with a bob of massless string of length $l=10 / 3 \mathrm{~m}$ and gets embedded in the bob. After the collision, the string moves to an angle of 120°. What is the angle θ ?

a) $\cos ^{-1}\left(\frac{4}{5}\right)$ b) $\cos ^{-1}\left(\frac{5}{4}\right)$ c) $\sin ^{-1}\left(\frac{4}{5}\right)$ d) $\sin ^{-1}\left(\frac{5}{4}\right)$
571. If the torque is zero, what will be the value of angular momentum?
a) Constant b) Changingc) Constant d) Zero

in	in
magnitud	magnitud
e but	e but
changing	constant
is	in
direction	direction

572. As a part of a maintenance inspection the compressor of a jet engine is made to spin according to the graph as shown. The number of revolutions made by the compressor during the test is

a) 9000
b) 16570
c) 12750
d) 11250
573. If a force $10 \hat{i}+15 \hat{j}+25 \hat{k}$ acts on a system and gives an acceleration $2 \hat{i}+3 \hat{j}-5 \hat{k}$ to the centre of mass of the system, the mass of the system is

Given
a) 5 units
b) $\begin{aligned} & \sqrt{38} \\ & \text { units }\end{aligned}$
c) $\begin{aligned} & 5 \sqrt{38} \\ & \text { units }\end{aligned}$
d) data is correct
574. Four similar point masses (m each) are symmetrically placed on the circumference of a disc of mass M and radius R. Moment of inertia of the system about an axis passing through centre O and perpendicular to the plane of the disc will be
a) $M R^{2}+4$
b) $M R^{2}+\frac{8}{5}$ c) $m R^{2}+4$
(d) $\frac{M R^{2}}{2}+4$
575. A point P on the rim of wheel is initially at rest and in contact with the ground. Find the displacement of the point P if the radius of the wheel is 5 m and the wheel rolls forward through half a revolution
a) 5 m
b) 10 m
c) 2.5 m
d) $5\left(\sqrt{\left(\pi^{2}+\right.}\right.$
576. The moment of inertia of a solid cylinder of mass M and radius R about a line parallel to the axis of the cylinder and lying on the surface of the cylinder is
a) $\frac{2}{5} M R^{2}$
b) $\frac{3}{5} M R^{2}$
c) $\frac{3}{2} M R^{2}$
d) $\frac{5}{2} M R^{2}$
577. One quarter of the disc of mass m is removed. If r be the radius of the disc, the new moment of inertia is
a) $\frac{3}{2} m r^{2}$
b) $\frac{m r^{2}}{2}$
c) $\frac{3}{8} m r^{2}$
d) $\begin{aligned} & \text { None of } \\ & \text { these }\end{aligned}$
578. A uniform disc of mass M and radius R is mounted on a fixed horizontal axis. A block of mass m hangs from a massless string that is wrapped around the rim of the disc. The magnitude of the acceleration of the falling block (m) is
a) $\frac{2 M}{M+2 m}$
(b) $\frac{2 m}{M+2 m}$ (c) $\frac{M+2 m}{2 M}$
(d) $\frac{2 M+m}{2 M}$ (
579. If ' I ' is the moment of inertia of a body and ' ω ' is its angular velocity, then its rotational kinetic energy is
a) $\frac{1}{2} \times I \omega$
b) $\frac{1}{2} \times I^{2} \omega$
c) $\frac{1}{2} \times I \omega^{2}$
d) $\frac{1}{2} \times I^{2} \omega^{2}$
580. A disc is rotating with an angular speed of ω. If a child sits on it, which of the following is conserved
a) Kinetic
b) Potential c) Linear
d) Angular energy energy momentu momentu
$\mathrm{m} \quad \mathrm{m}$
581. From a circular disc of radius R and mass $9 M$, a small disc of radius $R / 3$ is removed from the disc. The moment of inertia of the remaining disc about an axis perpendicular to the plane of the disc and passing through O is

a) $4 M R^{2}$
b) $\frac{40}{9} M R^{2}$
c) $10 M R^{2}$
d) $\frac{37}{9} M R^{2}$
582. A T joint is formed by two identical rods A and Beach of mass m and length L in the $X Y$ plane as shown. Its moment of inertia about axis coinciding with A is

a) $\frac{2 m L^{2}}{3}$
b) $\frac{m L^{2}}{12}$
c) $\frac{m L^{2}}{6}$
d) None of
583. Where will be the centre of mass on combining two masses m and ($M>m$)
a) ${ }_{m}$
b) $\begin{aligned} & \text { Towards } \\ & M\end{aligned}$
c) ${ }_{m}{ }^{\text {Between }}{ }^{\text {dnd }}{ }^{\text {d }}{ }_{\mathrm{e}}^{\text {Anywher }}$
584. Identify the correct statement for the rotational motion of a rigid body
a) Individuab) The
c) The
d) Individua
1
particles
of the
body do
not
undergo
accelerat
ed mass of centre of 1 mass of particles and centre of mass of the body undergo an accelerat ed motion
585. Two blocks of masses 10 kg and 4 kg are connected by a spring of negligible mass and placed on frictionless horizontal surface. An
impulsive force gives a velocity of $14 \mathrm{~m} \mathrm{~s}^{-1}$ to the heavier block in the direction of the lighter block. The velocity of centre of mass of the system at that very moment is

a) $30 \mathrm{~m} \mathrm{~s}^{-1}$
b) $20 \mathrm{~m} \mathrm{~s}^{-1}$
c) $10 \mathrm{~m} \mathrm{~s}^{-1}$
d) $5 \mathrm{~m} \mathrm{~s}^{-1}$
586. A T shape with dimensions shown in Figure is lying on a smooth floor. A force \vec{F} is applied at the point P parallel to $A B$, such that the object has only the translation motion without rotation. Find the location of P with respect to C Dd
a) l
b) $\frac{4}{3} l$
c) $\frac{3}{2} l$
d) $\frac{2}{3} l$
587. A meter stick is hold vertically with one end on the floor and is then allowed to fall. Assuming that the end on the floor the stick does not slip, the velocity of the other end when it hits the floor, will be
a) 10.8 ms
b) $5.4 \mathrm{~ms}^{-1}$
c) $\left.2.5 \mathrm{~ms}^{-1} \mathrm{~d}\right)$
None of these
588. A spacecraft of mass M is moving with velocity v in free space when it explodes and breaks in two. After the explosion, a mass m of the spacecraft is left stationary. What is the velocity of other part?
a) $\frac{M v}{(M-m)}$ b)
b) $\frac{m v}{(M+m)}$
c) $\frac{m v}{(M-m)}$ d) $\frac{(M+m) \text {, }}{M}$
589. A particle moves along a circle of radius $\frac{20}{\pi} m$ with constant tangential acceleration. If the velocity of the particle is $80 \mathrm{~m} / \mathrm{s}$ at the end of the second revolution after motion has begin, the tangential acceleration is
a) $640 \pi \mathrm{~m} /$ b) $160 \pi \mathrm{~m} / \mathrm{c}) 40 \pi \mathrm{~m} / \mathrm{s}$ d) $40 \mathrm{~m} / \mathrm{s}^{2}$
590. A thin rod of length L and mass M is bent at the middle point O at an angle of 60°. The moment of inertia of the rod about an axis passing through O and perpendicular to the plane of the rod will be

a) $\frac{M L^{2}}{6}$
b) $\frac{M L^{2}}{12}$
c) $\frac{M L^{2}}{24}$
d) $\frac{M L^{2}}{3}$
591. Four point masses, each of value m, are placed at the corners of a square ABCD of side l. The moment of inertia of this system about an axis
passing through A and parallel to BD is
a) $\sqrt{3} \mathrm{ml}^{2}$
b) $3 m l^{2}$
c) ml^{2}
d) $2 \mathrm{ml}^{2}$
592. There is a uniform circular disc of radius R and a concentric disc of radius r (where $r<R$) is cut off from it. The distance of the new position of centre of mass of hollow disc from the centre of disc is
a) $\frac{R-r}{2}$
b) $R-r$
c) Zero
d) $\sqrt{R^{2}-r^{2}}$
593. A particle of mass m moves in the $X Y$ plane with a velocity v along the straight line $A B$. If the angular momentum of the particle with respect to origin O is L_{A} when it is at A and L_{B} when it is at B, then

The relationsh ip between L_{A} and
a) $L_{A}>L_{B}$
b) $L_{A}=L_{B}$
c) L_{B}
d) $L_{A}<L_{B}$
depends
upon the
slope of
the line
$A B$
594. A particle of mass $m=5$ units is moving with a uniform speed $v=3 \sqrt{2}$ units in the XOY plane along the straight line $Y=X+4$. The magnitude of the angular momentum about origin is
a) Zero
b) 60 units
c) 75 units
d) $40 \sqrt{2} u n i$
595. If the radius r of earth suddenly changes to x times the present values, the new period of rotation would be
a) $d T / d t=(\mathrm{b}) d T / d t=(\mathrm{c}) d T / d t=(\mathrm{d}) d T / d t=$
596. Four particles of mass $1 \mathrm{~kg}, 2 \mathrm{~kg}, 3 \mathrm{~kg}$ and 4 kg are placed at the corners A, B, C and D respectively of a square $A B C D$ of edge X-axis and edge $A D$ is taken along Y-axis, the coordinates of centre of mass in SI is
a) $(1,1)$
b) $(5,7)$
c) $(0.5,0.7)$
d) None of these
597. The moment of inertia of a circular disc of radius 2 m and mass 2 kg , about an axis passing through its centre of mass is $2 \mathrm{~kg}-m^{2}$. Its moment of
inertia about an axis parallel to this axis and passing through its edge (in $\mathrm{KM}-\mathrm{m}^{2}$) is
a) 10
b) 8
c) 6
d) 4
598. A constant torque of $31.4 N-m$ is exerted on a pivoted wheel. If angular acceleration of wheel is $4 \pi \mathrm{rad} / \mathrm{sec}^{2}$, then the moment of inertia of the wheel is
a) $2.5 \mathrm{~kg}-n$ b) $3.5 \mathrm{~kg}-n \mathrm{c}) 4.5 \mathrm{~kg}-r \mathrm{~d}$) $5.5 \mathrm{~kg}-n$
599. Moment of inertia of a disc about an axis which is tangent and parallel to its plane is I. Then the moment of inertia of disc about a tangent, but perpendicular to its plane will be
a) $\frac{3 I}{4}$
b) $\frac{5 I}{6}$
c) $\frac{3 I}{2}$
d) $\frac{6 I}{5}$
600. The moment of inertia of uniform rectangular plate about an axis passing through its centre and parallel to its length l is \dot{b} breadth of rectangular plate)
a) $\frac{M b^{2}}{4}$
b) $\frac{M b^{3}}{6}$
c) $\frac{M b^{3}}{12}$
d) $\frac{M b^{2}}{12}$
601. In an elastic head on collision between two particles
a) Velocity
b) Velocity
c) The
d) Maximu

of	of the	maximu	m
separatio	target is	m	transfer
n is equal	always	velocity	of
to the	more	of the	kinetic
velocity	than the	target is	energy
of	velocity	double to	occurs
approach	of the projectil e	that of the	when
		projectil e	of both projectile
			and target are
			equal

602. A neutron travelling with velocity u and kinetic energy K collides head on elastically with the nucleus of an atom of mass number A at rest. The fraction of its kinetic energy retained by the neutron even after the collision is
a) $\left(\frac{1-A}{A+1}\right)^{2}$
b) $\left(\frac{A+1}{A-1}\right)^{2}$
c) $\left(\frac{A-1}{A}\right)^{2}$
d) $\left(\frac{A+1}{A}\right)^{2}$
603. The ratio of angular speeds of minute hand and hour hand of a watch is
a) $1: 12$
b) $6: 1$
c) $12: 1$
d) $1: 6$
604. A spring pong ball of mass m is floating in air by a jet of water emerging out of a nozzle. If the water strikes the ping pong ball with a speed v and just after collision water falls dead, the rate of flow of water in the nozzle is equal to
a) $\frac{2 m g}{v}$
b) $\frac{m}{g}$
c) $\frac{m g}{v}$
d) $\frac{2 m}{v g}$
605. The moment of inertia of a uniform rod about a perpendicular axis passing through one end is I_{1}. The same rod is bent into a ring and its moment of inertia about a diameter is I_{2}. Then $\frac{I_{1}}{I_{2}}$ is
a) $\frac{\pi^{2}}{3}$
b) $\frac{2 \pi^{2}}{3}$
c) $\frac{4 \pi^{2}}{3}$
d) $\frac{8 \pi^{2}}{3}$
606. An inclined plane makes an angle of 30° with the horizontal. A solid sphere rolling down this inclined plane from rest without slipping has a linear acceleration equal to
a) $\frac{g}{3}$
b) $\frac{2 g}{3}$
c) $\frac{5 g}{7}$
d) $\frac{5 g}{14}$
607. A force of- $\mathrm{F} \hat{k}$ acts on O, the origin of the coordinate system. The torque about the point (1, $-1)$ is

a) $F(\hat{i}-\hat{j})$
b) $-F(\hat{i}+\hat{j})$ c) $F(\hat{i}+\hat{j})$
d) $-F(\hat{i}-\hat{j}$
608. Angular momentum of a body is defined as the product of
a) Mass and
angular velocity

$$
\begin{array}{ll}
\text { Centripetc) } & \text { Linear } \\
\text { al force } & \text { velocity } \\
\text { and } & \text { and } \\
\text { radius } & \text { angular }
\end{array}
$$

d) Moment

609. A disc is rolling (without slipping) on a horizontal surface. C is its centre and Q and P are two points equidistant from C. Let v_{P}, v_{Q} and v_{C} be the magnitude of velocities of points P, Q and C respectively, then

$$
\text { a) } v_{Q}>v_{C}>\text { lb) } v_{Q}<v_{C}<\text { lc) } v_{Q}=v_{P}, \text {,d) } v_{Q}<v_{C}>1
$$

610. A particle with position vector r has a linear momentum p. Which of the following statements is true in respect of its angular momentum L about the origin
a) L acts
b) L acts
c) L is
d) L is along p
b) along r
c) maximu
maximu

m when	m when
p and r	p is
are	perpendi
parallel	cular to r

611. The direction of the angular velocity vector is along
a) The
b) The tangent inward
to the radius
c) The outward
d) The axis of radius rotation circular path
612. A solid sphere, a hollow sphere and a ring are released from top of an inclined plane (frictionless) so that they slide down the plane. Then maximum acceleration down the plane is for (no rolling)
a) Solid sphere
b) Hollow
c) Ring
d) All same
613. A solid sphere rolls down two different inclined planes of same height, but of different inclinations. In both cases,
a) Speed and time
b) Speed
c) Speed
d) Speed
of
descent
will be
same
will be will be and time same, but different, of descent
both are different same
614. The ratio of the radii of gyration of a circular disc about a tangential axis in the plane of the disc and of a circular ring of the same radius about a tangential axis in the plane of the ring is
a) $\sqrt{3}: \sqrt{5}$
b) $\sqrt{12}: \sqrt{3}$
c) $1: \sqrt{3}$
d) $\sqrt{5}: \sqrt{6}$
615. Four holes of radius R are cut from a thin square plate of side $4 R$ and mass M. The moment of inertia of the remaining portion about Z-axis is

$$
\text { a) } \frac{\pi}{12} M R^{2} \text { b) }\left(\frac{4}{3}-\frac{\pi}{4}\right) I_{\mathrm{c}}\left(\frac{4}{3}-\frac{\pi}{6}\right) I_{\mathrm{d})}\left(\frac{8}{3}-\frac{10 \pi}{16}\right.
$$

616. A machine gun fires 120 shoots per minute. If the mass of each bullet is 10 g and the muzzle velocity is $800 \mathrm{~m} \mathrm{~s}^{-1}$, the average recoil force on the machine gun is
a) 120 N
b) 8 N
c) 16 N
d) 12 N
617. A man of 50 kg mass is standing in a gravity free space at a height of 10 m above the floor. He
throws a stone of 0.5 kg mass downwards with a speed of $2 \mathrm{~m} / \mathrm{s}$. When the stone reaches the floor, the distance of the man above the floor will be
a) 20 m
b) 9.9 m
c) 10.1 m
d) 10 m
618. A particle of mass m is rotating in a plane in circular path of radius r. Its angular momentum is L. The central force acting on the particle is
a) $L^{2} / m r$
b) $L^{2} \mathrm{~m} / r$
c) $L^{2} / m^{2} r^{2}$
d) $L^{2} / m r^{3}$
619. The wheel of a car is rotating at the rate of 1200 revolutions per minute. On pressing the accelerator for 10 seconds. It starts rotating at 4500 revolutions per minute. The angular acceleration of the wheel is
a) 30 radiarb) 1880 deg c) 40 radiard) 1980 deg
620. For spheres each of mass M and radius R are placed with their centers on the four corners A, B, C and D of a square of side b. The spheres A and B are hollow and C and D are solids. The moment of inertia of the system about side $A D$ of square is
a) $\left.\frac{8}{3} M R^{2}+{ }^{\text {cb }}\right) \frac{8}{5} M R^{2}+{ }_{\text {cc) }} \frac{32}{15} M R^{2}+$ d) $32 M R^{2}+$
621. If momentum of a body remains constant, then mass-speed graph of body is
a) Circle
b) Straight
c) Rectangu
d) Parabola line lar hyperbol
a
622. Two circular rings have their masses in the ratio of $1: 2$ and their diameters in the ratio of $2: 1$. The ratio of their moment of inertia is
a) $1: 4$
b) $2: 1$
c) $4: 1$
d) $\sqrt{2}: 1$
623. A particle is projected with a speed v at 45° with the horizontal. The magnitude of angular momentum of the projectille about the point of projection when the particle is at its maximum height h is
a) Zero
b) $\frac{m v h^{2}}{\sqrt{2}}$
c) $\frac{m v^{2} h}{\sqrt{2}}$
d) $\frac{m v^{2} h}{\sqrt{2}}$
624. Let \mathbf{F} be the force acting on a particle having position vector r and τ be the torque of this force about the origin. Then
a) $r . \tau=0 \wedge$ b) $r . \tau \neq 0 \wedge$ c) $r . \tau \neq 0 \wedge d) r . \tau=0 \wedge$
625. If kinetic energy of a body remains constant, then momentum-mass graph is

626. Moment of inertia of a disc about a diameter is I.

Find the moment of inertia of disc about an axis perpendicular to its plane and passing through its rim?
a) $6 I$
b) $4 I$
c) $2 I$
d) $8 I$
627. The moment of inertia of wheel about the axis of rotation is 3.0 MKS units. Its kinetic energy will be 600 J if period of rotation is
a) 0.05 s
b) 0.314 s
c) 3.18 s
d) 20 s
628. A tennis ball bounces down flight of stairs striking each step in turn and rebounding to the height of the step above. The coefficient of restitution has a value
a) $1 / 2$
b) 1
c) $1 / \sqrt{2}$
d) $1 / 2 \sqrt{2}$
629. A body is rolling without slipping on a horizontal surface and its rotational kinetic energy is equal to the translational kinetic energy. The body is
a) Disc
b) Sphere
c) Cylinder
d) Ring
630. Two rings of radius R and $n R$ made up of same material have the ratio of moment of inertia about an axis passing through centre is $1: 8$. The value of n is
a) 2
b) $2 \sqrt{2}$
c) 4
d) $\frac{1}{2}$
631. A homogeneous disc of mass 2 kg and radius 15 cm is rotating about its axis (which is fixed) with an angular velocity of 4 radian/s. The linear momentum of the disc is
a) 1.2 kg -
b) $\begin{aligned} & 1.0 \mathrm{~kg}- \\ & \mathrm{m} / \mathrm{s}\end{aligned}$
c) $\begin{aligned} & 0.6 \mathrm{~kg} \\ & \mathrm{~m} / \mathrm{s}\end{aligned}$
d) $\begin{aligned} & \text { None of } \\ & \text { the above }\end{aligned}$
632. The center of mass of three particles of masses 1 $\mathrm{kg}, 2 \mathrm{~kg}$ and 3 kg at $(3,3,3)$ with reference to a fixed coordinate system. Where should a fourth particle of mass 4 kg should be placed, so that the center of mass of the system of all particles shifts to a point $(1,1,1)$?
a) $(-1,-1,-b$
$(-2,-2,-c$
c) $(2,2,2)$
d) $(1,1,1)$ 1)
2)
633. Moment of inertia along the diameter of a ring is
a) $\frac{3}{2} M R^{2}$
b) $\frac{1}{2} M R^{2}$
c) $M R^{2}$
d) $2 M R^{2}$
634. What constant force, tangential to the equator should be applied to the earth to stop its rotation in one day
a) 1.3×10^{2} b) 8.26×10 c) $1.3 \times 10^{2 \varepsilon}$ d)
None of these
635. When the distance between earth and sun is halved, the duration of year will become
a) More
b) Less
c) Can't be d) None of determin the above ed
636. A thin circular ring of mass m and radius R is rotating about its axis with a constant angular
velocity ω. Two objects each of mass M are attached gently to the opposite ends of a diameter of the ring the ring. The ring now rotates with an angular velocity ω^{\prime} is equal to
a) $\frac{\omega(m+2 \Lambda}{m}$
$\left.\frac{\omega(m-2 i}{(m+2 N)} c\right) \frac{\omega m}{(m+M)}$
d) $\frac{\omega m}{(m+2 M)}$
637. Three point masses, each of mass m are placed at the corners of an equilateral triangle of side l. Moment of inertia of this system about an axis along one side of triangle is
a) $3 m l^{2}$
b) $\frac{3}{2} m l^{2}$
c) $m l^{2}$
d) $\frac{3}{4} m l^{2}$
638. The two bodies of mass m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ respectively are tied to the ends of a massless string, which passes over a light and frictionless pulley. The masses are initially at rest and the released. Then acceleration of the centre of mass of the system is

a) $\left[\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right.$ b) $\left[\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right.$ c) $g \quad$ d) zero
639. A particle is moving in a circular path. The correct statement out of the following is
a) Angular b)
b) Angular
c) Linear
d) Both will
momentu
m will be conserve m will
d but not be be not be linear d momentu m will not be conserve d
640. A mass m hangs with the help of a string wrapped around a pulley on a frictionless bearing. The pulley has mass m and radius R. Assuming pulley to be a perfect uniform circular disc, the acceleration of the mass m, if the string does not slip on the pulley, is
a) g
b) $\frac{2}{3} g$
c) $\frac{g}{3}$
d) $\frac{3}{2} g$
641. Ratio of total kinetic energy and rotational kinetic energy in the motion of a disc is
a) $1: 1$
b) $2: 7$
c) $1: 2$
d) $3: 1$
642. What remains constant when the earth revolves around the sun
a) Angular
b) Linear
c) Angular
d) Linear momentu momentu kinetic kinetic $m \quad m \quad$ energy energy
643. A system consists of three particles, each of mass m and located at $(1,1)(2,2)$ and $(3,3)$. The coordinates of the centre of mass are
a) $(1,1)$
b) $(2,2)$
c) $(3,3)$
d) $(6,6)$
644. Choose the correct statement about the centre of mass $(C M)$ of a system of two particles

The $C M$	The $C M$	
lies on	lies on	The $C M$
the line	the line	is on the
joining	joining	line
them at a	them at a	joining
point	point	them at a
whose	whose	point
distance	distance	whose

a) the two	b) from	c) from
particles	each	each
midway	particle is	particle is
between	inversely	proportio
them	proportio	nal to the
	nal to the	square of
	mass of	the mass
	that	of that
	particle	particle

distan
from
each particle is proportio nal to the mass of that particle
645. An inclined plane makes an angle of 30° with the horizontal. A solid sphere rolling down the inclined plane from rest without slipping has a linear acceleration equal to
a) $5 \mathrm{~g} / 14$
b) $5 \mathrm{~g} / 4$
c) $2 \mathrm{~g} / 3$
d) $g / 3$
646. A uniform rod $A B$ of length l and mass m is free to rotate about point A. The rod is released from rest in the horizontal position. Given that the moment of inertia of the rod about A is $\frac{\mathrm{ml}^{2}}{3}$, the initial angular acceleration of the rod will be

a) $\frac{2 g}{3 l}$
b) $m g \frac{l}{2}$
c) $\frac{3}{2} g l$
d) $\frac{3 g}{2 l}$

: ANSWER KEY :

1)	a	2)	b	3)	c	4)	a	169)	a	170)	d	171)	b	172)
5)	b	6)	C	7)	d	8)	a	173)	a	174)	b	175)	b	176)
9)	C	10)	a	11)	a	12)	a	177)	c	178)	C	179)	a	180)
13)	c	14)	d	15)	a	16)	a	181)	c	182)	a	183)	d	184)
17)	c	18)	d	19)	c	20)	c	185)	b	186)	a	187)	c	188)
21)	b	22)	b	23)	C	24)	a	189)	a	190)	a	191)	a	192)
25)	d	26)	a	27)	d	28)	b	193)	a	194)	d	195)	c	196)
29)	a	30)	C	31)	b	32)	a	197)	a	198)	b	199)	d	200)
33)	a	34)	a	35)	a	36)	d	201)	b	202)	d	203)	b	204)
37)	a	38)	c	39)	d	40)	c	205)	c	206)	a	207)	c	208)
41)	d	42)	a	43)	b	44)	d	209)	a	210)	C	211)	d	212)
45)	a	46)	c	47)	b	48)	b	213)	b	214)	d	215)	a	216)
49)	b	50)	c	51)	d	52)	c	217)	d	218)	c	219)	d	220)
53)	a	54)	a	55)	b	56)	a	221)	c	222)	d	223)	b	224)
57)	c	58)	b	59)	d	60)	c	225)	b	226)	b	227)	a	228)
61)	b	62)	c	63)	a	64)	b	229)	b	230)	a	231)	c	232)
65)	d	66)	b	67)	a	68)	b	233)	a	234)	C	235)	b	236)
69)	c	70)	a	71)	b	72)	b	237)	a	238)	b	239)	c	240)
73)	b	74)	d	75)	b	76)	b	241)	b	242)	d	243)	b	244)
77)	c	78)	C	79)	C	80)	d	245)	b	246)	a	247)	b	248)
81)	a	82)	d	83)	c	84)	a	249)	b	250)	a	251)	b	252)
85)	c	86)	a	87)	a	88)	a	253)	d	254)	a	255)	d	256)
89)	b	90)	C	91)	a	92)	d	257)	c	258)	a	259)	b	260)
93)	d	94)	b	95)	c	96)	a	261)	d	262)	c	263)	a	264)
97)	c	98)	b	99)	a	100)	b	265)	b	266)	b	267)	b	268)
101)	d	102)	d	103)	a	104)	a	269)	C	270)	d	271)	a	272)
105)	d	106)	b	107)	a	108)	b	273)	d	274)	d	275)	b	276)
109)	b	110)	c	111)	b	112)	c	277)	a	278)	c	279)	a	280)
113)	a	114)	d	115)	c	116)	b	281)	d	282)	C	283)	c	284)
117)	c	118)	d	119)	d	120)	c	285)	a	286)	c	287)	d	288)
121)	d	122)	a	123)	a	124)	b	289)	c	290)	a	291)	b	292)
125)	c	126)	c	127)	d	128)	a	293)	c	294)	a	295)	a	296)
129)	a	130)	b	131)	d	132)	c	297)	c	298)	a	299)	c	300)
133)	d	134)	b	135)	c	136)	d	301)	d	302)	C	303)	a	304)
137)	d	138)	a	139)	d	140)	a	305)	b	306)	d	307)	a	308)
141)	c	142)	C	143)	b	144)	b	309)	a	310)	a	311)	b	312)
145)	a	146)	c	147)	b	148)	d	313)	b	314)	d	315)	c	316)
149)	c	150)	b	151)	b	152)	c	317)	d	318)	C	319)	c	320)
153)	a	154)	b	155)	d	156)	a	321)	b	322)	d	323)	c	324)
157)	d	158)	a	159)	b	160)	b	325)	a	326)	b	327)	d	328)
161)	c	162)	d	163)	b	164)	d	329)	c	330)	d	331)	a	332)
165)	d	166)	b	167)	b	168)	c	333)	c	334)	d	335)	a	336)

337)	c	338)	d	339)	b	340)	c	537)	b	538)	a	539)	d	540)
341)	a	342)	d	343)	b	344)	a	541)	b	542)	b	543)	b	544)
345)	b	346)	a	347)	d	348)	c	545)	b	546)	d	547)	b	548)
349)	d	350)	d	351)	C	352)	a	549)	d	550)	d	551)	b	552)
353)	a	354)	c	355)	a	356)	d	553)	c	554)	a	555)	d	556)
357)	a	358)	a	359)	b	360)	b	557)	b	558)	b	559)	c	560)
361)	d	362)	a	363)	d	364)	d	561)	b	562)	b	563)	d	564)
365)	b	366)	a	367)	a	368)	b	565)	b	566)	b	567)	b	568)
369)	b	370)	a	371)	c	372)	d	569)	b	570)	a	571)	C	572)
373)	d	374)	b	375)	a	376)	b	573)	d	574)	d	575)	d	576)
377)	c	378)	c	379)	a	380)	d	577)	c	578)	b	579)	C	580)
381)	c	382)	c	383)	c	384)	c	581)	a	582)	c	583)	b	584)
385)	d	386)	b	387)	d	388)	d	585)	c	586)	b	587)	b	588)
389)	c	390)	b	391)	d	392)	a	589)	d	590)	b	591)	b	592)
393)	c	394)	b	395)	a	396)	d	593)	b	594)	b	595)	b	596)
397)	c	398)	b	399)	a	400)	a	597)	a	598)	a	599)	d	600)
401)	b	402)	b	403)	b	404)	b	601)	a	602)	a	603)	c	604)
405)	d	406)	c	407)	a	408)	c	605)	d	606)	d	607)	c	608)
409)	a	410)	c	411)	b	412)	c	609)	a	610)	d	611)	d	612)
413)	c	414)	a	415)	c	416)	a	613)	b	614)	d	615)	d	616)
417)	a	418)	b	419)	b	420)	b	617)	C	618)	d	619)	d	620)
421)	a	422)	a	423)	b	424)	b	621)	c	622)	b	623)	d	624)
425)	b	426)	a	427)	c	428)	a	625)	c	626)	a	627)	b	628)
429)	c	430)	c	431)	b	432)	a	629)	d	630)	a	631)	d	632)
433)	a	434)	a	435)	a	436)	d	633)	b	634)	a	635)	b	636)
437)	d	438)	c	439)	b	440)	a	637)	d	638)	a	639)	a	640)
441)	d	442)	c	443)	a	444)	b	641)	d	642)	a	643)	b	644)
445)	C	446)	c	447)	d	448)	d	645)	a	646)	d			
449)	a	450)	d	451)	c	452)	d							
453)	d	454)	b	455)	b	456)	d							
457)	c	458)	b	459)	b	460)	c							
461)	a	462)	a	463)	d	464)	a							
465)	d	466)	a	467)	a	468)	a							
469)	b	470)	a	471)	b	472)	b							
473)	d	474)	d	475)	c	476)	d							
477)	c	478)	c	479)	a	480)	d							
481)	b	482)	b	483)	b	484)	b							
485)	d	486)	c	487)	b	488)	b							
489)	a	490)	c	491)	c	492)	a							
493)	a	494)	c	495)	d	496)	b							
497)	c	498)	b	499)	a	500)	c							
501)	b	502)	b	503)	c	504)	d							
505)	b	506)	a	507)	C	508)	a							
509)	a	510)	a	511)	d	512)	d							
513)	b	514)	c	515)	b	516)	a							
517)	b	518)	b	519)	c	520)	c							
521)	d	522)	d	523)	d	524)	a							
525)	c	526)	a	527)	c	528)	a							
529)	b	530)	d	531)	b	532)	a							
533)	b	534)	b	535)	b	536)	d							

: HINTS AND SOLUTIONS :

Single Correct Answer Type

1 (a)
As in Q. $6 \longrightarrow v_{1}=\frac{v}{2}(1-e)$
Similarly it is found that $v_{2}=\frac{v}{2}(1+e)$
Hence, $\frac{v_{1}}{v_{2}}=\frac{(1-e)}{(1+e)}$
2 (b)
If the surface is smooth, then relative acceleration between blocks is zero. So, no compression or elongation takes place in spring. Hence, spring force on blocks is zero.
$4 \quad$ (a)

$$
c=\frac{d L}{d t}=\frac{L_{2}-L_{1}}{\Delta t}=\frac{4 A_{0}-A_{0}}{4}=\frac{3 A_{0}}{4}
$$

5 (b)
Rotational kinetic energy of flywheel

$$
K=360 \mathrm{~J}
$$

Angular speed of flywheel $(\omega)=20 \mathrm{rad} \mathrm{s}^{-1}$
Rotational kinetic energy, $K=\frac{1}{2} I \omega^{2}$
$\therefore \quad$ Moment of inertia, $I=\frac{2 K}{\omega^{2}}$
$i \frac{2 \times 360}{(20)^{2}}=1.8 \mathrm{~kg}-\mathrm{m}^{2}$
6

(c)

Kinetic energy $K=\frac{J^{2}}{2 I}$
where J is angular momentum and I the moment of inertia.

$$
\begin{aligned}
& \therefore K_{1}=\frac{J^{2}}{2 I}, K_{2}=\frac{\left(J+\frac{10}{100} J\right)^{2}}{2 I} \\
& \therefore \quad \frac{K_{1}}{K_{2}}=\frac{(100)^{2}}{(110)^{2}}=\frac{100}{121} \\
& \quad \% \text { change } i \frac{K_{2}-K_{1}}{K_{1}}=\frac{K_{2}}{K_{1}}-1
\end{aligned}
$$

$$
i \frac{121}{100}-1=21 \%
$$

(d)

As $m_{1}=m_{2} \therefore \pi R_{1}^{2} x d_{1}=\pi R_{2}^{2} x d_{2}$
$\frac{R_{1}^{2}}{R_{2}^{2}}=\frac{d_{2}}{d_{1}}$
Now, $\frac{I_{1}}{I_{2}}=\frac{\frac{1}{2} m R_{1}^{2}}{\frac{1}{2} m R_{2}^{2}}=\frac{R_{1}^{2}}{R_{2}^{2}}=\frac{d_{2}}{d_{1}}$
$8 \quad$ (a)
MI of disc about tangent in a plane
i $\frac{5}{4} M R^{2}=I$
$\therefore m R^{2}=\frac{4}{5} I$
MI of disc about tangent I to plane $I^{\prime}=\frac{3}{2} m R^{2}$
$\therefore I^{\prime}=\frac{3}{2}\left(\frac{4}{5} I\right)$
i $\frac{6}{5} I$
9 (c)
Given, $m_{1}=6 \mathrm{~kg}, m_{2}=4 \mathrm{~kg}$

$$
v_{1}=5 \hat{i}-2 \hat{j}+10 \hat{k}, v_{2}=10 \hat{i}-2 \hat{j}+5 \hat{k}
$$

The velocity of centre of mass is

$$
\begin{aligned}
v= & \frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}} \\
& i \frac{6(5 \hat{i}-2 \hat{j}+10 \hat{k})+4(10 \hat{i}-2 \hat{j}+5 \hat{k})}{6+4} \\
& i \frac{70 \hat{i}-20 \hat{j}+80 \hat{k}}{10}=7 \hat{i}-2 \hat{j}+8 \hat{k}
\end{aligned}
$$

10 (a)
$v_{C M}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}=\frac{v_{1}+v_{2}}{2} \quad\left(\right.$ as $\left.m_{1}=m_{2}\right)$
and $\quad a_{C M}=\frac{m_{1} a_{1}+m_{2} a_{2}}{m_{1}+m_{2}}$

$$
i \frac{a_{1}+0}{2}=\frac{a_{1}}{2}
$$

The centre of mass of two particles will move with the mean velocity of two particles having common acceleration $\frac{a}{2}$.

Hence, path of CM will be a straight line.
11 (a)
Angular velocity is related to the rotating body
12 (a)
Retardation due to friction
$a=\mu g=(0.25)(10)$
$i 2.5 \mathrm{~m} \mathrm{~s}^{-2}$
Collision is elastic, i.e. after collision first block comes to rest and the second block acquires the velocity of first block. Or we can understand it is this manner that second block is permanently at rest while only the first block moves. Distance travelled by it will be
$s=\frac{v^{2}}{2 a}=\frac{(5)^{2}}{(2)(2.5)}=5 \mathrm{~m}$
\therefore Final separation will be $(s-2)=3 \mathrm{~m}$
13 (c)
Rotational kinetic energy $E=\frac{L^{2}}{2 I} \therefore L=\sqrt{2 E I}$
$\Rightarrow \frac{L_{A}}{L_{B}}=\sqrt{\frac{E_{A}}{E_{B}} \times \frac{I_{A}}{I_{B}}}=\sqrt{100 \times \frac{1}{4}}=5$
14 (d)
Due to presence of contact (frictional) force momenta of blocks A and B separately change but total sum of momenta of A and B taken together is constant because no net external force is acting on the system.

15 (a)
Total KE at bottom;

$$
\begin{aligned}
& i \frac{1}{2} m v^{2}\left[1+\frac{K^{2}}{R^{2}}\right] \\
& i \frac{1}{2} m v^{2}\left[1+\frac{2}{5}\right]=\frac{7}{10} m v^{2}
\end{aligned}
$$

16
(a)

Moment of inertia of the solid sphere of mass M and radius R about is tangent

$$
I=I_{0}+M R^{2}
$$

(According to theorem of parallel axis)

$$
\begin{gathered}
i \frac{2}{5} M R^{2}+M R^{2}\left(\because I_{0}=\frac{2}{5} M R^{2}\right) \\
I=\frac{7}{5} M R^{2}
\end{gathered}
$$

17 (c)
$\vec{\tau}=\frac{d \vec{L}}{d t}$, if $\tau=0$ then $\vec{L}=i$ constant $i . e . L$ remains constant in magnitude and as well as in direction

18 (d)
Applying theorem of parallel axes
$I=I_{0}+M(R / 2)^{2}=\frac{1}{2} M R^{2}+\frac{M R^{2}}{4}=\frac{3}{4} M R^{2}$

19 (c)
$t=\frac{1}{\sin \theta} \sqrt{\frac{2 h}{g}\left(1+\frac{K^{2}}{R^{2}}\right)}$
$\Rightarrow \frac{t_{S}}{t_{D}}=\sqrt{\frac{1+\left(\frac{K^{2}}{R^{2}}\right)_{S}}{1+\left(\frac{K^{2}}{R^{2}}\right)_{D}}}$
$i_{1} \sqrt{\frac{1+\frac{2}{5}}{1+\frac{1}{2}}}=\sqrt{\frac{14}{15}}$
20 (c)
As there is no external force, hence
$\vec{p}=\vec{p}_{1}+\vec{p}_{2}+\vec{p}_{3}=i$ constant
$\Rightarrow\left|\vec{p}_{3}\right|=\left|\vec{p}_{1}+\vec{p}_{2}\right|=\frac{m}{4} \sqrt{(3)^{2}+(4)^{2}}=\frac{5 m}{4}$
[since V_{1} and V_{2} are mutually perpendicular]
$\therefore p_{3}=\frac{m}{2} v_{3}=\frac{5 m}{4}$
$\Rightarrow v_{3}=\frac{5}{2}=2.5 \mathrm{~m} \mathrm{~s}^{-1}$
21 (b)
Moment of inertia of circular ring about an axis passing through its centre of mass and perpendicular to its plane

$$
I=M R^{2}
$$

Here, $\quad I=4 \mathrm{~kg}-\mathrm{m}^{2}, m=1 \mathrm{~kg}$

$$
R^{2}=\frac{4}{1}=4
$$

or $\quad R=2 \mathrm{~m}$
Therefore, diameter of ring $=4 \mathrm{~m}$.

23 (c)
In the field central force, Torque $=0 \therefore$ angular momentum remains constant

24 (a)
Angular momentum, $L=m r^{2} \omega=i$ constant
$\frac{\omega_{2}}{\omega_{1}}=\left(\frac{r_{1}}{r_{2}}\right)^{2}=\left(\frac{0.8}{1}\right)^{2}=0.64 \Rightarrow \omega_{2}=44 \times 0.64=28.16$
25 (d)
Time taken by first block to reach second block $i \frac{L}{v}$
Since collision is 100% elastic, now first block comes to rest and 2nd block starts moving towards the 3rd block with a velocity v and takes time $\dot{L} \frac{L}{v}$ to reach 3rd block and so on
\therefore Total time $i t+t+\ldots(n-1)$ time $i(n-1) \frac{L}{v}$
Finally only the last nth block is in motion velocity v, hence final velocity of centre of mass
$v_{C M}=\frac{m v}{n m}=\frac{v}{n}$
26 (a)

27 (d)
Apply parallel axis theorem
$I=I_{C M}+M h^{2}$
$i \frac{M L^{2}}{12}+M\left(\frac{L}{4}\right)^{2}$
$i \frac{7 M L^{2}}{48}$
28
(b)

Angular momentum about origin

$$
\begin{gathered}
|L|=i r \times m v \vee i \\
i i
\end{gathered}
$$

$i \frac{a}{\sqrt{2}} \times 5 \times 3 \sqrt{2}$

$$
|L|=60 \text { unit }
$$

29 (a)

$$
\alpha=\frac{\tau}{I}=\frac{30}{2}=15 \mathrm{rad} / \mathrm{s}^{2}
$$

$$
\because \theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}=0+\frac{1}{2} \times(15) \times(10)^{2}=750 \mathrm{rad}
$$

30 (c)
The moment of inertia about an axis passing through centre of mass of disc and perpendicular to its plane is

$$
I_{C M}=\frac{1}{2} M R^{2}
$$

where M is the mass of disc and R its radius. According to theorem of parallel axis, moment of inertia of circular disc about an axis touching the disc about an axis touching the disc at its diameter and normal to the disc is

$$
\begin{aligned}
& I=I_{C M}+M R^{2} \\
& \quad i \frac{1}{2} M R^{2}+M R^{2} \\
& \quad i \frac{3}{2} M R^{2}
\end{aligned}
$$

31 (b)
$I=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}$
$i \frac{200}{1000}\left(\frac{30}{100}\right)^{2}+\frac{300}{1000}\left(\frac{20}{100}\right)^{2}=0.03 \mathrm{~kg} \mathrm{~m}^{2}$
33 (a)
By conservation of angular momentum
$I_{t} \omega_{i}=\left(I_{t}+I_{b}\right) \omega_{f} \Rightarrow \omega_{f}=\left(\frac{I_{t}}{I_{t}+I_{b}}\right) \omega_{i}$
Loss in kinetic energy $i \frac{1}{2} I_{t} \omega_{i}^{2}-\frac{1}{2}\left(I_{t}+I_{b}\right)\left(\omega_{f}^{2}\right)$
$i \frac{1}{2}\left(\frac{I_{b} I_{t}}{I_{b}+I_{t}}\right) \omega_{i}^{2}$

For centre of mass,
$x_{c m}=\frac{2 \times 1+4 \times 1+4 \times 0}{2+4+4}=\frac{6}{10}=\frac{3}{5}$
$y_{c m}=\frac{2 \times 0+4 \times 1+4 \times 1}{2+4+4}=\frac{8}{10}=\frac{4}{5}$
\therefore Coordinate for $c m=\left(\frac{3}{5} \hat{i}, \frac{4}{5} \hat{j}\right)$
Where \hat{i} and \hat{j} are unit vector along x and y axis
35 (a)
Here a thin wire of length L is bent to form a circular ring.

Then, $2 \pi r=L(r$ is the radius of ring $)$
$\Rightarrow \quad r=\frac{L}{2 \pi}$
Hence, the moment of inertia of the ring about its axis

$$
I=M r^{2} \Rightarrow \quad I=M\left(\frac{L}{2 \pi}\right)^{2} \Rightarrow \quad I=\frac{M L^{2}}{4 \pi^{2}}
$$

36 (d)
Since net force acting on the system is zero, hence position of centre of mass of the system remains unchanged ie, velocity of the centre of mass is zero

37 (a)
Rotational kinetic energy $K_{R}=\frac{1}{2} I \omega^{2}$
\therefore Its moment of inertia $i \frac{2 K_{R}}{\omega^{2}}$

$$
\begin{aligned}
& i 2 \times \frac{360}{(30)^{2}} \\
& i 0.8 \mathrm{~kg}-\mathrm{m}^{2}
\end{aligned}
$$

38 (c)
The angular momentum of a disc of moment of inertia I_{1} and rotating about its axis with angular velocity ω is

$$
L_{1}=I_{1} \omega
$$

When a round disc of moment of inertia I_{2} is placed on first disc, then angular momentum of the combination is

$$
L_{2}=\left(I_{1}+I_{2}\right) \omega^{\prime}
$$

In the absence of any external torque, angular momentum remains conserved, ie.,

$$
\begin{aligned}
L_{1} & =L_{2} \\
I_{1} \omega & =\left(I_{1}+I_{2}\right) \omega^{\prime} \\
\Rightarrow \quad \omega^{\prime} & =\frac{I_{1} \omega}{I_{1}+I_{2}}
\end{aligned}
$$

39 (d)
On applying law of conservation of angular momentum
$I_{1} \omega_{1}=I_{2} \omega_{2}$
For solid sphere,
$I=\frac{2}{5} m r^{2} \Rightarrow \frac{2}{5} m r_{1}^{2} \omega_{1}=\frac{2}{5} m r_{2}^{2} \omega_{2}$
$r^{2} \omega=\left(\frac{r}{n}\right)^{2} \omega_{2} \Rightarrow \omega_{2}=n^{2} \omega$
40 (c)
As is clear from the equation,
$\left|\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)-\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)\right|$
$=$ change in linear momentum of the two particles $=$ external force on the system \times time interval
$\dot{b}\left[\left(m_{1}+m_{2}\right) g\right] \times\left(2 t_{0}\right) 2\left(m_{1}+m_{2}\right) g t_{0}$
41 (d)
$\pi r=l \therefore r=l / \pi$
Moment of inertia of a ring about its diameter
$i \frac{1}{2} M r^{2}$
\therefore Moment of inertia of semicircle
$i \frac{1}{2}\left[m\left(\frac{l}{\pi}\right)^{2}\right]=\frac{m l^{2}}{2 \pi^{2}}$
42 (a)
Assuming that no energy is used up against friction, the loss in potential energy is equal to the total gain in the kinetic energy.

Thus, $M g h=\frac{1}{2} I\left(v^{2} / R^{2}\right)+\frac{1}{2} M v^{2}$
or $\quad \frac{1}{2} v^{2}\left(M+I / R^{2}\right)=M g h$
or

$$
v^{2}=\frac{2 M g h}{M+I / R^{2}}=\frac{2 g h}{1+I / M R^{2}}
$$

If s be the distance covered along the plane,

$$
\begin{aligned}
h & =s \sin \theta \\
v^{2} & =\frac{2 g s \sin \theta}{1+I / M R^{2}}
\end{aligned}
$$

Now, $\quad v^{2}=2$ as
$\therefore \quad 2 a s=\frac{2 g s \sin \theta}{1+I / M R^{2}}$ or
$a=\frac{g \sin \theta}{1+I / M R^{2}}$

44 (d)

At the highest point momentum of particle before
explosion $\vec{p}=m v \cos 60^{\circ}$
i $\mathrm{m} \times 200 \frac{1}{2}=100 \mathrm{~m}$ horizontally
Now as three is no external force during explosion, hence
$\vec{p}=\vec{p}_{1}+\vec{p}_{2}+\vec{p}_{3}$
However, since velocities of two fragments, of masses $\mathrm{m} / 3$ each, are $100 \mathrm{~m} \mathrm{~s}^{-1}$ downward and $100 \mathrm{~m} \mathrm{~s}^{-1}$ upward.
hence, $\vec{p}_{1}=-\vec{p}_{2}$ or $\vec{p}_{1}+\vec{p}_{2}$
$\vec{p}_{3}=\frac{m}{3} \cdot v_{3}=\vec{p}=100 \mathrm{~m}$ horizontally
$v_{3}=300 \mathrm{~m} \mathrm{~s}^{-1}$ horizontally
45 (a)
Taking the moment of forces about centre of gravity G

(1.5) $g x=2.5 g(16-x) \Rightarrow 3 x=80-5 x$
$\Rightarrow 8 x=80 \Rightarrow x=10 \mathrm{~cm}$
46 (c)
The car is stopped by the contact force exerted due to road

47 (b)
Angular momentum of a rigid body about a fixed axis is given by

$$
L=I \omega
$$

Where I is moment of inertia and ω is angular velocity about that axis.
Kinetic energy of body is given by

$$
K=\frac{1}{2} I \omega^{2}
$$

$$
\begin{array}{ll}
\therefore & K=\frac{1}{2 l}(I \omega)^{2}=\frac{L^{2}}{2 l} \\
\Rightarrow & I=\frac{L^{2}}{2 K}
\end{array}
$$

48 (b)
Since, the acceleration of centre of mass in both the cases is same equal to g . So, the centre of mass of the bodies B and C taken together does not shift compared to that of body A.

49 (b)
In this process I decreases and ω increases
50 (c)
Here, $M=20 \mathrm{~kg}, R=20 \mathrm{~cm}=\frac{1}{5} \mathrm{~m}$
Moment of inertia of flywheel about its axis is

$I=\frac{1}{2} M R^{2}=\frac{1}{2} \times 20 \mathrm{~kg} \times\left(\frac{1}{5} \mathrm{~m}\right)^{2}$
$i 0.4 \mathrm{~kg} \mathrm{~m}^{2}$
As $\tau=I \alpha$
Where α is the angular acceleration
$\therefore \alpha=\frac{\tau}{I}=\frac{F R}{I}=\frac{25 \times \frac{1}{5}}{0.4}=\frac{5 \mathrm{Nm}}{0.4 \mathrm{~kg} \mathrm{~m}^{2}}=12.5 \mathrm{~s}^{-2}$
51 (d)
As the block remains stationary therefore
For translatory equilibrium
$\sum F_{x}=0 \therefore F=N$
and $\sum F_{y}=0 \therefore f=m g$

For rotational equilibrium $\sum \tau=0$
By taking the torque of different forces about point 0
$\overrightarrow{\tau_{F}}+\vec{\tau}_{f}+\vec{\tau}_{N}+\overrightarrow{\tau_{m g}}=0$
As F and $m g$ passing through point O
$\therefore \vec{\tau}_{1}+\vec{\tau}_{N}=0$

As $\vec{\tau}_{f} \neq 0 \therefore \overrightarrow{\tau_{N}} \neq 0$ and torque by friction and normal reaction will be in opposite direction

52 (c)
Linear acceleration for rolling $a=\frac{g \sin \theta}{\left(1+K^{2} / R^{2}\right)}$
For cylinder $\frac{K^{2}}{R^{2}}=\frac{1}{2}$
$\therefore a_{\text {cylinder }}=\frac{2}{3} g \sin \theta$
For rotation, the torque $f R=I \alpha=\left(M R^{2} \alpha\right) / 2$
(where $f=i$ force of friction)
But $R \alpha=a \therefore f=\frac{M}{2} a$

$\therefore f=\frac{M}{2} . \frac{2}{3} g \sin \theta=\frac{M}{3} g \sin \theta$
$\mu_{s}=f / N$ where N is normal reaction, $M g \cos \theta$
$\mu_{s}=\frac{\frac{M}{3} g \sin \theta}{M g \cos \theta}=\frac{\tan \theta}{3}$
\therefore For rolling without slipping of a roller down the inclined plane, $\tan \theta \geq 3 \mu_{s}$

53 (a)
$\omega_{1}=10 \mathrm{Rad} / \mathrm{s}, \omega_{2}=0, t=10 \mathrm{~s}$
$\therefore \alpha=\frac{\omega_{2}-\omega_{1}}{\tau}=\frac{0-10}{10}=-1 \mathrm{rad} / \mathrm{s}^{2}$
Negative sign means retardation
Now $I=m r^{2}=10 \times(0.3)^{2}=0.9 \mathrm{~kg}-\mathrm{m}^{2}$
\therefore Torque $\tau=I \alpha=0.9 \times(1)=0.9 \mathrm{~N}-\mathrm{m}$
54 (a)
Since net momentum of the composite system is zero, hence resultant velocity of the composite system should also be zero.

55 (b)
The mass of considered element is

$d m=\lambda d x=\lambda_{0} x d x$
$\therefore x_{C M}=\frac{\int_{0}^{L} x d m}{\int d m}=\frac{\int_{0}^{L} x\left(\lambda_{0} x d x\right)}{\int_{0}^{L} \lambda_{0} x d x}$
$i \frac{\lambda\left[\frac{x^{3}}{3}\right]_{0}^{L}}{\lambda_{0}\left[\frac{x^{2}}{2}\right]_{0}^{L}}=\frac{\lambda_{0} \frac{L^{3}}{3}}{\lambda_{0} \frac{L^{2}}{2}}=\frac{2}{3} L$
56 (a)
Here, effected gravitational acceleration is
$g^{\prime}=\frac{m g-q E}{m}$
$\therefore R=\frac{v_{0}^{2} \sin 2 \alpha}{g^{\prime}}$
It means, g ' for both particles are same
This is possible when
$m_{1}=m_{2}$ and $e_{1}=e_{2}$
57 (c)

As the momentum of both fragments are equal therefore
$\frac{E_{1}}{E_{2}}=\frac{m_{2}}{m_{1}}=\frac{3}{1}$
$E_{1}=3 E_{2}$
According to problem
$E_{1}+E_{2}=6.4 \times 10^{4} \mathrm{~J}$
By solving equation (i) and (ii) we get
$E_{1}=4.8 \times 10^{4} \mathrm{~J}$ and
$E_{2}=1.6 \times 10^{4} \mathrm{~J}$
58 (b)
From the theorem of parallel axis, the moment of inertia I is equal to

$$
I=I_{C M}+M a^{2}
$$

where $I_{C M}$ moment of inertia is about centre of mass and a the distance of axis from centre.

$$
\begin{array}{lc}
\therefore & I=M K^{2}+M \times(6)^{2} \\
& M K_{1}^{2}=M K^{2}+36 M \\
\Rightarrow & K_{1}^{2}=K^{2}+36 \\
\Rightarrow & (10)^{2}=K^{2}+36 \\
\Rightarrow & K^{2}=100-36=64 \\
\Rightarrow & K=8 \mathrm{~cm}
\end{array}
$$

When one string is cut off, the rod will rotate about the other point A. Let a be the linear acceleration of centre of mass of the rod and α be the linear acceleration of centre of mass of the rod and α be the angular acceleration of the rod about A. As is clear from figure,

$m g-T=m a$
$\alpha=\frac{\tau}{I}=\frac{m g(l / 2)}{m l^{2} / 3}=\frac{3 g}{4}$
$a=r \alpha=\frac{l}{2} \alpha=\frac{l}{2} \frac{3 g}{2 l}=\frac{3 g}{4}$
From Eq. (i), $T=m g-m a=m g-\frac{3 m g}{4}=\frac{m g}{4}$
60 (c)
Distribution of mass about $B C$ axis is more than that about $A B$ axis, i.e radius of gyration about $B C$ axis is more than that about $A B$ axis
i.e. $K_{B C}>K_{A B} \therefore I_{B C}>I_{A B}>I_{C A}$

61 (b)
The speed acquired by block, on account of collision of bullet with it, be $v_{0} \mathrm{~m} \mathrm{~s}^{-1}$. Since the block rise by 0.1 m , hence
$0.1=\frac{v_{0}^{2}}{2 g}$
$\Rightarrow v_{0}^{2}=2 \times g \times 0.1$ or $v_{0}=\sqrt{2} \mathrm{~m} \mathrm{~s}^{-1}$
Now as per conservation of momentum law for collision between bullet and block,
$m u=m u+M v_{0}$
$\Rightarrow v=u-\frac{M}{m} v_{0}=500-\frac{2 \mathrm{~kg}}{0.01 \mathrm{~kg}} \times \sqrt{2} \mathrm{~m} \mathrm{~s}^{-1}$
$i(500-200 \sqrt{2}) \mathrm{ms}^{-1}$
$¿ 220 \mathrm{~m} \mathrm{~s}^{-1}$
62 (c)
M.I. of body about centre of mass $i I_{c m}=m K^{2}$
M.I. of a body about new parallel axis

$I_{\text {new }}=I_{c m}+m a^{2}=m K^{2}+m a^{2}$
$I_{\text {new }}=m\left(K^{2}+a^{2}\right)$
$K_{R}=\frac{1}{2} I_{\text {new }} \omega^{2}=\frac{1}{2} m\left(K^{2}+a^{2}\right) \omega^{2}$

Moment of inertia of the whole system about the axis of rotation will be equal to the sum of the moments of inertia of all the particles.

$I=I_{1}+I_{2}+I_{3}+I_{4}$ $\therefore I=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{3} r_{3}^{2}+m_{4} r_{4}^{2}$
$I=(1 \times 0)+(2 \times 0)+\left(3 \times 3^{2}\right)+4(-2)^{2}$ $I=0+0+27+16=43 \mathrm{~kg}-\mathrm{m}^{2}$

(b)

Angular momentum¿(Linear momentum) \times (perpendicular distance to line of motion
from the axis) or angular momentum is moment of momentum.
Here, the angle goes on decreasing from 90° but the perpendicular distance to the line of motion remains constant. Therefore, angular momentum is also constant (linear momentum $p=m v$ is constant).

65

From angular momentum conservation about vertical axis passing through centre. When insect is coming from circumference to centre. Moment of inertia first decrease then increase. So angular velocity increase then decrease

We know $v=\sqrt{\frac{2 g h}{1+\frac{k^{2}}{r^{2}}}} \therefore \omega=\frac{v}{r}=\sqrt{\frac{2 g h}{r^{2}+k^{2}}}$
$\Rightarrow \omega=\sqrt{\frac{2 m g h}{m r^{2}+m k^{2}}}=\sqrt{\frac{2 m g h}{m r^{2}+I}}=\sqrt{\frac{2 m g h}{I+m r^{2}}}$
(b)

Angular velocity is given by

$$
\omega=i 600 \text { rotation } / \mathrm{min}
$$

$$
i \frac{600 \times 2 \pi}{60} \mathrm{rad} \mathrm{~s}^{-1}=20 \pi \mathrm{rad} \mathrm{~s}^{-1}
$$

Kinetic energy of coin which is due to rotation and translation is

$$
\begin{gathered}
K=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2} \\
i \frac{1}{2} \times \frac{1}{2} m r^{2} \omega^{2}+\frac{1}{2} m(\omega r)^{2} \\
i \frac{1}{4} \times 4.8 \times(1)^{2}(20 \pi)^{2}+\frac{1}{2} \times 4.8 \times(20 \pi \times 1)^{2} \\
i 480 \pi^{2}+960 \pi^{2}=1440 \pi^{2} J
\end{gathered}
$$

69 (c)
$\omega=2 \pi n=\frac{2 \pi \times 1800}{60}=60 \pi \mathrm{rad} / \mathrm{s}$
$P=\tau \times \omega \Rightarrow \tau=\frac{P}{\omega}=\frac{100 \times 10^{3}}{60 \pi}=531 \mathrm{~N}-\mathrm{m}$
70 (a)
Time of descent $t=\frac{1}{\sin \theta} \sqrt{\frac{2 h}{g}\left(1+\frac{K^{2}}{R^{2}}\right)}$
For solid sphere $\frac{K^{2}}{R^{2}}=\frac{2}{5}$
For hollow sphere $\frac{K^{2}}{R^{2}}=\frac{2}{3}$
As $\left(\frac{K^{2}}{R^{2}}\right)_{\text {Hollow }}>\left(\frac{K^{2}}{R^{2}}\right)_{\text {Solid }}$
i.e . solid sphere will take less time so it will reach the bottom first

71 (b)
Centre of mass is closer to massive part of the body therefore the bottom piece of bat has larger mass

(b)

From adjoining figure the component of momentum along X-axis (parallel to the wall of container) remains unchanged even after the collision.

\therefore Impulse $=$ change in momentum of gas molecule along y-axis, ie, in a direction normal to the wall $=$ $2 m v, i 2 m v \cos \theta$

73 (b)

$I_{1}=\frac{2}{5} M a^{2}=i$ M.I. of sphere 1 about $A B$ axis $I_{2}=\frac{2}{5} M a^{2}=i$ M.I. of sphere 2 about $A B$ axis
$I_{3}=\frac{2}{5} M a^{2}+M b^{2}=i$ M.I. of sphere 3 about $A B$ axis
$I_{4}=\frac{2}{5} M a^{2}+M b^{2}=i$ M.I. of sphere 4 about $A B$ axis
M.I. of system about axis $A B$
$I_{\text {system }}=I_{1}+I_{2}+I_{3}+I_{4}$
$i 2\left(\frac{2}{5} M a^{2}\right)+2\left(\frac{2}{5} M a^{2}+M b^{2}\right)$
$i \frac{8}{5} M a^{2}+2 M b^{2}$
74
(d)
$t=\sqrt{\frac{2 l\left(1+K^{2} / R^{2}\right)}{g \sin \theta}}=$ same
$\therefore \frac{2 l\left(1+K_{1}^{2}+R^{2}\right)}{g \sin \theta}=\frac{2 l\left(1+K_{2}^{2} / R^{2}\right)}{g \sin \theta_{2}}$
For sphere, $K_{1}^{2}=\frac{2}{5} R^{2}, \theta_{1}=30^{\circ}$,
For hollow cylinder, $K_{2}^{2}=R^{2}, \theta_{2}=$?
$\frac{1+\frac{2}{5}}{\sin 30^{\circ}}=\frac{1+1}{\sin \theta_{2}}$
$\sin \theta_{2}=\frac{5}{7}=0.7143$
$\theta=45^{\circ}$
$\frac{1}{2} M R^{2}=M K^{2} \Rightarrow K=\frac{R}{\sqrt{2}}=\frac{2.5}{\sqrt{2}}=1.76 \mathrm{~cm}$
77 (c)
When spring is massless then according to
momentum conservation principle
$\vec{p}_{i}=\vec{p}_{f}$ or $0=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{1}$
$\therefore m_{1} \vec{v}_{1}=-m_{2} \vec{v}_{1}$
$\therefore m_{1} v_{1}=m_{2} v_{2}$ or $p_{1}=p_{2}$
$\therefore K_{1}=\frac{p_{1}^{2}}{2 m_{1}}, K_{2}=\frac{p_{2}^{2}}{2 m_{2}}$
$\therefore \frac{K_{1}}{K_{2}}=\frac{m_{2}}{m_{1}}\left(\because p_{1}=p_{2}\right)$
78 (c)
Let the radii of the thin spherical and the solid sphere are R_{1} and R_{2} respectively.
Then the moment of inertia of the spherical shell about their diameter

$$
I=\frac{2}{3} M R_{1}^{2}
$$

...(i)
and the moment of inertia of the solid sphere is given by

$$
I=\frac{2}{5} M R_{2}^{2}
$$

...(ii)
Given that the masses and moment of inertia for both the bodies are equal, then from Eqs. (i) and (ii)

$$
\begin{aligned}
& \frac{2}{3} M R_{1}^{2}=\frac{2}{5} M R_{2}^{2} \Rightarrow \frac{R_{1}^{2}}{R_{2}^{2}}=\frac{3}{5} \\
\Rightarrow & \frac{R_{1}}{R_{2}}=\sqrt{\frac{3}{5}} \Rightarrow R_{1}: R_{2}=\sqrt{3}: \sqrt{5}
\end{aligned}
$$

79 (c)
As man walks towards axis of rotation. Moment of inertia of system decreases so that angular velocity increases

80 (d)

$$
\begin{aligned}
& I_{z}=I_{x}+I_{y} \\
& 200=I_{D}+I_{D}=2 I_{D} \\
& \therefore I_{D}=100 \mathrm{~g} \times \mathrm{cm}^{2}
\end{aligned}
$$

(a)
$\alpha=\frac{\tau}{I}=\frac{1000}{200}=5 \mathrm{Rad} / \mathrm{sec}^{2}$
From $\omega=\omega_{0}+\alpha t=0+5 \times 3=15 \mathrm{rad} / \mathrm{s}$
83 (c)
Applying the principle of conservation of angular momentum,
$\left(I_{1}+I_{2}\right) \omega=I_{1} \omega_{1}+I_{2} \omega_{2}$
$\left(6+I_{2}\right) \frac{400}{60} \times 2 \pi=6 \times \frac{600}{60} \times 2 \pi+I_{2} \times 0$
Which gives, $I_{2}=3 \mathrm{kgm}^{2}$
84 (a)
The radius of gyration is the distance from the axis of rotation at which if whole mass of the body is supposed to be concentrated.
Here, the whole mass of the equilateral triangle acts at point O. So the distance $O A$ is the radius of gyration of
this system. Now from triangle $A D B$

$$
x^{2}=B D^{2}+\left(\frac{x}{2}\right)^{2}
$$

or $\quad B D^{2}=x^{2}-\frac{x^{2}}{4}$
or $\quad B D^{2}=\frac{3 x^{2}}{4}$
or $\quad B D=\sqrt{3} \frac{x}{2}$
Hence, the distance, $O B=\frac{\sqrt{3} x}{2} \times \frac{2}{3}$

$$
\Rightarrow \quad O B=\frac{x}{\sqrt{3}}
$$

But, the distances $O A, O B \wedge O C$ are the same.
So, $\quad O A=\frac{x}{\sqrt{3}}$
Hence, the radius of gyration of this system is $\frac{x}{\sqrt{3}}$.
(c)

When body of mass m slides down an inclined plane
then $v=\sqrt{2 g h}$
When it is in the form of ring then,
$v_{\text {Ring }}=\sqrt{\frac{2 g h}{\left(1+\frac{K^{2}}{R^{2}}\right)}}=\sqrt{\frac{2 g h}{1+1}}=\frac{\sqrt{2 g h}}{\sqrt{2}}=\frac{v}{\sqrt{2}}$
86 (a)
Since there is no external force acting on the particle,
Hence
$y_{C M}=\frac{m_{1} y_{1}+m_{2} y_{2}}{m_{1}+m_{2}}=0$, hence
$\left(\frac{m}{4}\right) \times(+15)+\left(\frac{3 m}{4}\right)\left(y_{2}\right)=0 \Rightarrow y_{2}=-5 \mathrm{~cm}$
87 (a)
As initially both the particles were at rest therefore velocity of centre of mass was zero and there is no external force on the system so speed of centre of mass remains constant ie, it should be equal to zero.

88 (a)
It's always in axial direction
89 (b)
To reverse the direction $\int \tau d \theta=0$ (work done is zero)
$\tau=\left(20 t-5 t^{2}\right) 2=40 t-10 t^{2}$
$\alpha=\frac{\tau}{I}=\frac{40 t-10 t^{2}}{10}=4 t-t^{2}$
$\omega=\int_{0}^{t} \alpha d t=2 t^{2}-\frac{t^{3}}{3}$
ω is zero at
$2 t^{2}-\frac{t^{3}}{3}=0 \Rightarrow t^{3}=6 t^{2} \Rightarrow t=6 \mathrm{sec}$
$\theta=\int \omega d t=\int_{0}^{6}\left(2 t^{2}-\frac{t^{3}}{3}\right) d t$
$\dot{i}\left[\frac{2 t^{3}}{3}-\frac{t^{4}}{12}\right]_{0}^{6}=216\left[\frac{2}{3}-\frac{1}{2}\right]=36 \mathrm{rad}$
No. of revolution $\frac{36}{2 \pi}$ is less than 6

90 (c)

A couple consists of two equal and opposite forces acting at a separation, so that net force becomes zero. When a couple acts on a body it rotates the body but does not produce any translatory motion. Hence, only rotational motion is produced.
(a)
$\alpha=\frac{2 \pi\left(n_{2}-n_{1}\right)}{t}=\frac{2 \pi(0-20)}{10}=-4 \pi \mathrm{rad} / \mathrm{s}^{2}$
Negative sign means retardation
Now $\tau=I \alpha=5 \times 10^{-3} \times 4 \pi=2 \pi \times 10^{-2} N-m$
92 (d)
For a ring $K^{2}=r^{2}$ then

$$
\begin{aligned}
& v^{2}=\sqrt{\frac{2 g h}{1+\frac{K^{2}}{r^{2}}}} \\
& \therefore \quad v^{2}=\frac{2 g h}{2}=g h \\
& v=\sqrt{g h}
\end{aligned}
$$

93 (d)
Angular speed $\omega=\frac{v}{R}=\frac{5.29}{0.15}=34 \mathrm{rad} / \mathrm{s}$
94 (b)
$\frac{1}{2} I \omega^{2}=40 \%$ of $\frac{1}{2} m v^{2}$
$\frac{1}{2} I \omega^{2}=\frac{40}{100}\left(\frac{1}{2} m r^{2} \omega^{2}\right)$

$$
I=\frac{2}{5} m r^{2}
$$

So, the body is solid sphere.
95 (c)
When hollow cylinder slides with out rolling, it
possess only translational kinetic energy, $K_{\tau}=\frac{1}{2} m v^{2}$
When it rolls without slipping, it possess both types
of kinetic energy,
$K_{N}=\frac{1}{2} m v^{2}\left(1+\frac{K^{2}}{R^{2}}\right)$
$\therefore \frac{K_{T}}{K_{N}}=\frac{1}{\left(1+\frac{K^{2}}{R^{2}}\right)}=\frac{1}{2} \quad\left[\right.$ For hollow cylinder $\left.\frac{K^{2}}{R^{2}}=1\right]$
96 (a)
As a real velocity of comet is constant, therefore,
$r_{1} v_{1}=r_{2} v_{2} \vee v_{2}=\frac{r_{1} v_{1}}{r_{2}}$
$i \frac{6 \times 10^{10} \times 7 \times 10^{4}}{1.4 \times 10^{12}}=3 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
97 (c)
As the body is rigid therefore angular velocity of all particles will be same i.e. $\omega=\dot{i}$ constant

From $v=r \omega, v \propto r$ (if $\omega=\dot{i}$ constant)
It means linear velocity of that particle will be more, whose distance from the centre is more,
i.e. $v_{A}<v_{B}<v_{C}$ but $\omega_{A}=\omega_{B}=\omega_{C}$

100 (b)
As net horizontal force acting on the system is zero, hence momentum must remain conserved. Hence
$m u+0=0+m v_{2} \Rightarrow v_{2}=\frac{m u}{M}$
As per definition,
$e=\frac{-\left(v_{1}-v_{2}\right)}{\left(u_{2}-u_{1}\right)}=\frac{v_{2}-0}{o-u}=\frac{v_{2}}{u}=\frac{\frac{m u}{M}}{u}=\frac{m}{M}$
101 (d)
$K_{R}=\frac{1}{2} I \omega^{2}=\frac{1}{2} \times\left(\frac{2}{5} M R^{2}\right) \times(50)^{2}$
$i \frac{1}{2} \times \frac{2}{5} \times 1 \times(0.03)^{2} \times(50)^{2}=\frac{9}{20} J$
102 (d)
According to conservation of angular momentum,

$$
I \omega=\dot{i} c o n s t a n t
$$

$i e$, we can write

$$
\begin{array}{ll}
& I_{1} \omega_{1}=I_{2} \omega_{2} \\
\text { or } & M R^{2} \omega=(M+4 m) R^{2} \omega_{2}
\end{array}
$$

or

$$
\omega_{2}=\left(\frac{M}{M+4 m}\right) \omega
$$

103 (a)
$\omega=\omega_{0}+\alpha t$
$\Rightarrow \omega=0+\alpha t$
$\Rightarrow \quad \alpha=\frac{15}{0.270} \mathrm{rad} \mathrm{s}^{-2}$
Now, $a=r, \alpha=0.81 \times \frac{15}{0.270}=45 \mathrm{~m} \mathrm{~s}^{-2}$
104 (a)
Angular momentum of system remains constant
$I \propto \frac{1}{\omega} \Rightarrow \frac{I_{2}}{I_{1}}=\frac{\omega_{1}}{\omega_{2}}=\frac{20}{10} \Rightarrow I_{2}=2 I_{1}=2 I$

(d)

Centre of mass C_{1} of the point masses placed at
corners $P \wedge S$ from point P

Therefore, distance of centre of mass C_{1} from point S

$$
i a-\frac{2 a}{3}=\frac{a}{3}
$$

Similarly, centre of mass C_{2} of point masses placed at corners $Q \wedge R, \dot{\text { point }} Q=\frac{2 a}{3}$
Distance of centre of mass C_{2} from point
$R=a-\frac{2 a}{3}=\frac{a}{3}$
Centre of mass of all four point masses is at the mid point of the line joining C_{1} and C_{2}, which is farthest from points $P \wedge Q$.

106 (b)
Using conservation of angular momentum

$$
\begin{aligned}
\left(\frac{1}{2} m R^{2}\right) \omega & =\left\{\frac{1}{2} m R^{2}+\frac{1}{2}\left(\frac{m}{4}\right) R^{2}\right\} \omega^{\prime} \\
\left(\frac{1}{2} m R^{2}\right) \omega & =\frac{5}{8} m R^{2} \omega^{\prime} \\
\omega^{\prime} & =\frac{4}{5} \omega
\end{aligned}
$$

107 (a)

$$
v=\sqrt{\frac{2 g h}{1+\frac{K^{2}}{R^{2}}}}=\sqrt{\frac{2 \times 10 \times 2}{1+\frac{1}{2}}}=\sqrt{26.66}=5.29 \mathrm{~m} / \mathrm{s} \approx i
$$

108 (b)
In this process potential energy of the metre stick will be converted into rotational kinetic energy

P.E. of meter stick $i m g\left(\frac{l}{2}\right)$

Because its centre of gravity lies at the middle point of the rod
Rotational kinetic energy $E=\frac{1}{2} I \omega^{2}$
$I=i$ M.I. of metre stick about point $A=\frac{m l^{2}}{3}$
$\omega=i$ Angular speed of the rod while striking the ground
$v_{B}=i$ Velocity of end B of metre stick while striking the ground
By the law of conservation of energy,
$m g\left(\frac{l}{2}\right)=\frac{1}{2} I \omega^{2}=\frac{1}{2} \frac{m l^{2}}{3}\left(\frac{v_{B}}{l}\right)^{2}$
By solving we get,
$v_{B}=\sqrt{3 \mathrm{gl}}=\sqrt{3 \times 10 \times 1}=5.4 \mathrm{~m} / \mathrm{s}$
109 (b)
Depends on the distribution of mass in the body
110 (c)
$m v-m v=(m+m) v$
$v=0$
111 (b)
When a body of mass m and radius R rolls down on inclined plane of height h and angle of inclination θ, it losses potential energy. However, it acquires both linear and angular speeds.
Velocity at the lowest point $v=\sqrt{\frac{2 g h}{1+\frac{K^{2}}{R^{2}}}}$
For solid sphere $\frac{K^{2}}{R^{2}}=\frac{2}{5}$
$\therefore \quad v=\sqrt{\frac{2 \times 10 \times 7}{1+\frac{2}{5}}}=10 \mathrm{~m} / \mathrm{s}$

112 (c)

To keep the centre of mass at the position, velocity of centre of mass is zero, so

$$
\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}=0
$$

where $v_{1} \wedge v_{2}$ are velocities of particles 1 and 2
respectively.
$\Rightarrow m_{1} \frac{d r_{1}}{d t}+m_{2} \frac{d r_{2}}{d t}=0$
$\left[\because v_{1}=\frac{d r_{1}}{d t} \wedge v_{2}=\frac{d r_{2}}{d t}\right]$
$\Rightarrow m d r_{1}+m_{2} d r_{2}=0 i$ represent the change in displacement of particles]
Let 2 nd particle has been displaced by distance x.
$\Rightarrow \quad m_{1}(d)+m_{2}(x)=0$
$\Rightarrow \quad x=\frac{-m_{1} d}{m_{2}}$
Negative sign shows that both the particles have to move in opposite directions.
So, $\frac{m_{1} d}{m_{2}}$ is the distance moved by 2 nd particle to keep centre of mass at the same position.

113 (a)
$L=I \omega \therefore L \propto \omega$ (If $I=i$ constant)
So graph between L and ω will be straight line with constant slope

114 (d)
$K_{R}=\frac{1}{2} I \omega^{2}=\frac{1}{2} m r^{2} \omega^{2}$
115 (c)
If initial velocity of bullet be v then after collision combined velocity of bullet and target is
$v^{\prime}=\frac{m v}{(M+v)}$ and $h=\frac{v^{\prime 2}}{2 g}$ or $v^{\prime}=\sqrt{2 g h}$
$\therefore \frac{m v}{(M+m)}=\sqrt{2 g h}$
$\Rightarrow v=\left(\frac{M+m}{m}\right) \cdot \sqrt{2 g h}=\left(1+\frac{M}{m}\right) \sqrt{2 g h}$
116 (b)
Torque zero means, α zero
$\therefore \frac{d^{2} \theta}{d t^{2}}=0 \Rightarrow 12 t-12=0$
$\therefore t=1$ second

117 (c)

$v_{t}=i$ velocity due to translator motion
$v_{R}=i$ velocity due to rotational motion

$v_{N}=\sqrt{v_{t}^{2}+v_{R}^{2}}=\sqrt{v^{2}+v^{2}}=\sqrt{2 v}=2 \sqrt{2} \mathrm{~m} / \mathrm{s}$
118 (d)
Position vector of the point at which force is acting $\vec{r}_{1}=\hat{i}+2 \hat{j}+3 \hat{k}$
But we have to calculate the torque about another point. So its position vector about that another point $\overrightarrow{r_{1}^{\prime}}=\overrightarrow{r_{1}}-\overrightarrow{r_{2}}=(\hat{i}+2 \hat{j}+3 \hat{k})-(3 \hat{i}-2 \hat{j}-3 \hat{k})$ $i-2 \hat{i}+4 \hat{j}+6 \hat{k}$
Now, $\vec{\tau}=\overrightarrow{r_{1}^{\prime}} \times \vec{F}=(-2 \hat{i}+4 \hat{j}+6 \hat{k}) \times(4 \hat{i}-5 \hat{j}+3 \hat{k})$
$\vec{\tau}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ -2 & 4 & 6 \\ 4 & -5 & 3\end{array}\right|=\hat{i}(12+30)-\hat{j}(-6-24)+\hat{k}(10-$ $i(42 \hat{i}+30 \hat{j}-6 \hat{k}) N-m$

119 (d)
$x_{c m}=\frac{\int x d m}{\int d m}, x_{c m}=\frac{\int_{0}^{L} x k\left(\frac{x}{L}\right)^{n} d x}{\int_{0}^{L} k\left(\frac{x}{L}\right)^{n} d x}=\left(\frac{n+1}{n+2}\right) L$
120 (c)
$I_{s}=\frac{2}{5} M R_{s}^{2}, I_{h}=\frac{2}{3} M R_{h}^{2}$
As, $I_{s}=I_{h}$
$\therefore \frac{2}{5} M R_{s}^{2}=\frac{2}{3} M R_{h}^{2}$
$\therefore \frac{R_{s}}{R_{h}}=\frac{\sqrt{5}}{\sqrt{3}}$

121 (d)

Mass of disc $(X), m_{X}=\pi R^{2} t \rho$
Where, $\rho=i$ density of material of disc

$$
\begin{gathered}
\therefore \quad I_{X}=\frac{1}{2} m_{X} R^{2}=\frac{1}{2} \pi R^{2} t \rho R^{2} \\
I_{X}=\frac{1}{2} \pi \rho t R^{4}
\end{gathered}
$$

...(i)
Mass of disc (Y)

$$
m_{Y}=\pi(4 R)^{2} \frac{t}{4} \rho=4 \pi R^{2} t \rho
$$

and

$$
I_{Y}=\frac{1}{2} m_{Y}(4 R)^{2}=\frac{1}{2} 4 \pi R^{2} \rho t .16 R^{2}
$$

$\Rightarrow \quad I_{Y}=32 \pi t \rho R^{4}$
$\therefore \quad \frac{I_{Y}}{I_{X}}=\frac{32 \pi t \rho R^{4}}{\frac{1}{2} \pi \rho t R^{4}}=64$
$\therefore \quad I_{Y}=64 I_{X}$
123 (a)
$m_{1}=1 \mathrm{~kg}, m_{2}=2 \mathrm{~kg}, m_{3}=3 \mathrm{~kg}$
Position of centre of mass (2, 2, 2,)

$$
m_{4}=4 \mathrm{~kg}
$$

New position of centre of mass $(0,0,0)$.
For initial position

$$
\begin{aligned}
& X_{C M}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}} \\
& 2=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{1+2+3} \\
& m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}=12
\end{aligned}
$$

Similarly, $m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}=12$
and

$$
m_{1} z_{1}+m_{2} z_{2}+m_{3} z_{3}=12
$$

For new position,

$$
\begin{gathered}
X_{C M}^{\prime}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4}}{m_{1}+m_{2}+m_{3}+m_{4}} \\
0=\frac{12+4 \times x_{4}}{1+2+3+4} \\
4 x_{4}=-12 \\
x_{4}=-3
\end{gathered}
$$

Similarly, $y_{4}=-3$

$$
z_{4}=-3
$$

\therefore Position of fourth mass (-3, -3, -3)

124 (b)

As body is moving on a frictionless surface. Its mechanical energy is conserved. When body climbes up the inclined plane it keeps on rotating with same angular speed, as no friction force is present to provide retarding torque so
$\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2} \geq \frac{1}{2} I \omega^{2}+m g h \Rightarrow v \geq \sqrt{2 g h}$
125 (c)
Since gun-shot system is an isolated closed system, its centre of mass must remain at rest.

126 (c)
KE of rotation $i \frac{1}{2} I \omega^{2}=\frac{1}{2} \times \frac{2}{5} M R^{2} i$
$i \frac{1}{5} \times 4 \pi^{2} n^{2} M R^{2}$
$i 0.8 \pi^{2}\left(\frac{600}{60}\right)^{2} M R^{2}=80 \pi^{2} M R^{2}$
127 (d)
Centre of mass of a stick lies at the mid point and when the stick is displaced through an angle 60° it rises upto height ' h ' from the initial position

From the figure $h=\frac{l}{2}-\frac{l}{2} \cos \theta=\frac{l}{2}(1-\cos \theta)$
Hence the increment in potential energy of the stick $i m g h=m g \frac{l}{2}(1-\cos \theta)=0.4 \times 10 \times \frac{1}{2}\left(1-\cos 60^{\circ}\right.$

128 (a)
$K . E .=\frac{L^{2}}{2 I}$
\because From angular momentum conservation about centre
$L \rightarrow$ constant
$I=m r^{2}$
$K . E .,=\frac{L^{2}}{2\left(m r^{\prime 2}\right)} r^{\prime}=\frac{r}{2}$
K.E'. ¿ 4 K.E.
K.E. is increased by a factor of 4

129 (a)
The velocity of a body in different reference frames may be same or different. So, momentum and kinetic energy of a body may be same or different in different reference frames

130 (b)
Speed of the bullet relative to ground $\vec{v}_{b}=\vec{v}+\vec{v}_{r}$,
where V_{r} is recoil velocity of gun. Now for gun-bullet system applying the conservation law of momentum, we get
$m \vec{v}_{b}+M \vec{v}_{r}=0$ or $m\left(\vec{v}+\vec{v}_{r}\right)+M \vec{v}_{r}=0$
$\Rightarrow \vec{v}_{r}=\frac{-m \vec{v}}{m+M}$ or $\quad v_{r}=\frac{m v}{m+M}$

131 (d)

For any uniform rod, the mass is concentrated at its centre

Height of the mass from ground is, $h=(l / 2) \sin 30^{\circ}$ Potential energy of the $\operatorname{rod} i m g h$
$i m \times g \times \frac{l}{2} \sin 30^{\circ}=m \times g \times \frac{l}{2} \times \frac{1}{2}=\frac{m g l}{4}$
132 (c)
$\frac{\text { Rotational kinetic energy }}{\text { Translatory kinetic energy }}=\frac{\frac{1}{2} m v^{2} \frac{K^{2}}{R^{2}}}{\frac{1}{2} m v^{2}}=\frac{K^{2}}{R^{2}}=\frac{2}{5}$
133 (d)
In the absence of external torque for a body revolving about any axis, the angular momentum remains constant. This is known as law of conservation of angular momentum, $\vec{\tau}=\frac{d \vec{L}}{d t}$
As $\vec{\tau}=0 \therefore \frac{d \vec{L}}{d t}=0$ or $\vec{L}=\dot{i}$ constant
134 (b)
Using $a=\frac{g}{1+\frac{I}{m R^{2}}}$
$a=\frac{g}{1+\frac{M R^{2}}{2 m R^{2}}}\left[I=\frac{1}{2} M R^{2}\right]$
$\Rightarrow a=\frac{2 m}{M+2 m} g$

135 (c)
Let the mass of an element of length $d x$ of the rod located at a distance x away from left end is $\frac{M}{L} d x$.
The x-coordinate of the centre of mass is given by

Total mass of $\operatorname{rod} i \int_{0}^{L} A x d x=\frac{A L^{2}}{2}$
$X_{c m}=\frac{1}{M} \int x d m=\frac{1}{\left(\frac{A L^{2}}{2}\right)} \int_{0}^{L} x(A x d x)$
$i \frac{2 A}{A L^{2}}\left[\frac{x^{3}}{3}\right]_{0}^{L}=\left[\frac{2}{L^{2}}\right]\left[\frac{L^{3}}{3}\right]=\frac{2 L}{3}$
Hence, the centre of mass is at $\left(\frac{2 L}{3}, 0,0\right)$
136 (d)
From $E=\frac{1}{2} r \omega^{2}$, we find that when frequency (n) is doubled, $\omega=2 \pi n$ is doubled, ω^{2} becomes 4 times.
As E reduces to half, I must have been reduced to $\frac{1}{8}$ th. From $L=I \omega, L$ becomes $\frac{1}{8} \times 2=\frac{1}{4}$ times ie, 0.25 L

138 (a)
$I=M K^{2}=\frac{M L^{2}}{12}$
$\therefore K=\frac{L}{\sqrt{12}}$
139 (d)
Here, $l=1 \mathrm{~m}, \theta=30^{\circ}, g=9.81 \mathrm{~m} \mathrm{~s}^{-2}, t=$?
$t=\sqrt{\frac{2 l\left(1+K^{2} / R^{2}\right)}{g \sin \theta}}$
For a rupee coin, $K^{2}=\frac{1}{2} R^{2}$
$t=\sqrt{\frac{2 \times 1(1+1 / 2)}{9.81 \sin 30^{\circ}}}=\sqrt{\frac{6}{9.81}}=0.78 \mathrm{~s}$
140 (a)
$\frac{2}{5} M R^{2}=\frac{3}{2} M r^{2} \Rightarrow r=\frac{2 R}{\sqrt{15}}$
141 (c)
The situation is shown in figure

$$
I_{X X}=m \times D P^{2}+m \times B Q^{2}+m \times C A^{2}
$$

$$
\begin{aligned}
& i m \times 2 \times\left(\frac{\sqrt{2} l}{2}\right)^{2}+m \times(\sqrt{2} l)^{2} \\
& i 3 m l^{2}
\end{aligned}
$$

143 (b)

(a) This is only possible when collision is head on elastic.
(b) When collision is oblique elastic, then in this case, both bodies move perpendicular to each other after collision
(c) Since, in elastic collision, kinetic energy of system remains constant so, this is not possible.
(d) The same reason as (b).

144 (b)
$I_{C M}=\frac{M L^{2}}{12}$ (about middle point)

$$
\begin{aligned}
\therefore \quad I= & I_{C M}+M x^{2} \\
& i \frac{M L^{2}}{12}+M\left(\frac{L}{6}\right)^{2} \\
I= & \frac{M L^{2}}{9}
\end{aligned}
$$

145 (a)

Because its M.I. (or value of $\frac{K^{2}}{R^{2}}$) is minimum for sphere

146 (c)
$\therefore \vec{a}_{C M}=\frac{\vec{F}_{e q}}{\left(m_{1}+m_{2}+m_{3}\right)}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}+m_{3} \vec{a}_{3}}{\left(m_{1}+m_{2}+m_{3}\right)}$
$\therefore \vec{F}_{e q}=m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}+m_{3} \vec{a}_{3}$
$i 1 \times 1+2 \times 2+4 \times(-0.5)=1+4-2=3 \mathrm{~N}$
147 (b)
Since there is no external force acting on rifle bullet system, hence
$p_{b}=p_{g}$ and hence $\frac{K_{b}}{K_{g}}=\frac{m_{g}}{m_{b}}=\frac{2 \mathrm{~kg}}{50 \mathrm{~g}}=\frac{4}{1}$
Or $K_{g}=\frac{K_{b}}{4}$
Now total energy $K_{b}+K_{g}$ or $\frac{+K_{b}}{40}=\frac{41}{40}, K_{b}=2050$
$\Rightarrow K_{b}=\frac{2050 \times 40}{41}=2000 \mathrm{~J}$
And $K_{g}=2050-2000=50 \mathrm{~J}$.
148 (d)
$I=\frac{2}{5} m r^{2}=m k^{2}$
$k^{2}=\frac{2}{5} r^{2} \Rightarrow k=r \sqrt{0.4}$
150 (b)
As $\tau=I \alpha$
$\alpha \propto \frac{1}{I}$ (τ is constant)
MI of figure (ii) is smaller hence acceleration is greater

151 (b)
Moment of inertia of triangle sheet $A B C$ about $A C=\frac{1}{2}$ moment of inertia of square $A B C D$ about ABC

$\frac{1}{2}(2 M) \frac{l^{2}}{12}=\frac{M l^{2}}{12}$
152 (c)
$I=2 M R^{2}=2 \times 3 \times(1)^{2}=6 \mathrm{~g}-\mathrm{cm}^{2}$
153 (a)
Force does not produce any torque because it passes through the centre (Point of rotation) and we know that if $\tau=0$ then $L=i$ constant

154 (b)
Here, $m=8 \mathrm{~kg}, r=40 \mathrm{~cm}=\frac{2}{5} m$,
$\omega=12 \mathrm{rad} \mathrm{s}^{-1}, I=0.64 \mathrm{~kg} \mathrm{~m}^{2}$
Total $K E=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2}$
$i \frac{1}{2} I \omega^{2}+\frac{1}{2} m r^{2} \omega^{2}$
$i \frac{1}{2} \times 0.64 \times 15^{2}+\frac{1}{2} \times 8 \times\left(\frac{2}{5}\right)^{2} \times 15^{2}=216 \mathrm{~J}$
155 (d)
Moment of inertia of a hollow cylinder of mass M
and radius r about its own axis is $M r^{2}$

156 (a)

Given system of two particles will rotate about its centre of mass
Initial angular momentum $\& M V\left(\frac{L}{2}\right)$
Final angular momentum $\dot{2 I} \omega=2 M\left(\frac{L}{2}\right)^{2} \omega$
By the law of conservation of angular momentum
$M V\left(\frac{L}{2}\right)=2 M\left(\frac{L}{2}\right)^{2} \omega \Rightarrow \omega=\frac{V}{L}$
157 (d)
As $\omega_{2}=\omega_{1}+\alpha t \therefore 40 \pi=20 \pi+\alpha \times 10$
or $\alpha=2 \pi \mathrm{rad} \mathrm{s}{ }^{-1}$
From, $\omega_{2}^{2}-\omega_{1}^{2}=2 \alpha \theta$
$(40 \pi)^{2}-(20 \pi)^{2}=2 \times 2 \pi \theta, \Rightarrow \theta=\frac{1200 \pi^{2}}{4 \pi}=300 \pi$
Number of rotations completed
$i \frac{\theta}{2 \pi}=\frac{300}{2 \pi}=150$
158 (a)
First sphere will take a time t_{1}, to start motion in second sphere on colliding with it, where $t_{1}=\frac{L}{u}$ Now speed of second sphere will be
$v_{2}=\frac{u}{2}(1+e)=\frac{2}{3} u$
Hence time taken by second sphere to start motion in third sphere $t_{2}=\frac{L}{2 / 3 u}=\frac{3 L}{2 u}$
\therefore Total time $t=t_{1}+t_{2}=\frac{L}{u}+\frac{3 L}{2 u}=\frac{5 L}{2 u}$
159 (b)
$\frac{1}{2} I \omega^{2}=750 \mathrm{~J} \Rightarrow \omega^{2}=\frac{750 \times 2}{2.4}=625 \Rightarrow \omega=25 \mathrm{rad} / \mathrm{s}$
$\alpha=\frac{\omega_{2}-\omega_{1}}{t} \Rightarrow 5=\frac{25-0}{t} \Rightarrow t=5 \mathrm{~s}$
160 (b)
$E=K_{R}=\frac{1}{2} I \omega^{2}$
If angular velocities are equal then $E \propto I$
As $I_{1}>I_{2}$ therefore $E_{1}>E_{2}$
161 (c)
$I_{1} \omega_{1}=I_{2} \omega_{2}: \therefore \frac{\omega_{1}}{\omega_{2}}=\frac{I_{2}}{I_{1}}$
Now, $\frac{E_{1}}{E_{2}}=\frac{\frac{1}{2} I_{1} \omega_{1}^{2}}{\frac{1}{2} I_{2} \omega_{2}^{2}}=\frac{I_{1}}{I_{2}} \times\left(\frac{I_{2}}{I_{1}}\right)^{2}=\frac{I_{2}}{I_{1}}$
As $I_{1}>I_{2} \therefore E_{1}<E_{2}$
162 (d)
$m_{1}=2 \mathrm{~kg}, m_{2}=4 \mathrm{~kg}, \vec{v}_{1}=20 \mathrm{~m} / \mathrm{s}, \vec{v}_{2}=-10 \mathrm{~m} / \mathrm{s}$
$\vec{v}_{c m}=\frac{m_{1} \overrightarrow{1}_{1}+m_{2} \vec{v}_{2}}{m_{1}+m_{2}}=\frac{2 \times 20-4 \times 10}{2+4}=0 \mathrm{~m} / \mathrm{s}$
163 (b)
$\frac{K_{1}}{K_{2}}=\frac{\frac{p_{1}^{2}}{2 m_{1}}}{\frac{p_{2}^{2}}{2 m_{2}}}=\frac{m_{2}}{m_{1}}=\frac{4 m}{m}=4: 1\left(\because p_{1}=p_{2}\right)$
164 (d)
When the hands outstretched, moment of inertia increases and angular velocity decreases so that angular momentum remains unchanged

165 (d)
$K_{T}=K_{R} \Rightarrow \frac{1}{2} m v^{2}=\frac{1}{2} m v^{2}\left(\frac{K^{2}}{R^{2}}\right) \Rightarrow \frac{K^{2}}{R^{2}}=1$
This value of K^{2} / R^{2} match with hollow cylinder
166 (b)
Let $m_{1}=m, m_{2}=2 m, m_{3}=3 m, m_{4}=4 m$

$\vec{r}_{1}=0 \hat{i}+0 \hat{j}$
$\vec{r}_{2}=a \cos 60 \hat{i}+a \sin 60 \hat{j}=\frac{a}{2} i+\frac{a \sqrt{3}}{2} \hat{j}$
$\vec{r}_{3}=i$
$\vec{r}_{4}=a \hat{i}+0 \hat{j}$
By substituting above value in the following formula $\vec{r}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+m_{3} \vec{r}_{3}+m_{4} \vec{r}_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}=0.95 a \hat{i}+\frac{\sqrt{3}}{4} a \hat{j}$
So the location of centre of mass $\left[0.95 a, \frac{\sqrt{3}}{4} a\right]$

(c)

$$
I_{d i s c}=\frac{1}{2} M R^{2}
$$

Hence, $\quad \frac{I_{\text {ring }}}{I_{\text {disc }}}=\frac{M R^{2}}{\frac{1}{2} M R^{2}}=\frac{2}{1}$
172 (d)
$I=I_{C M}+M x^{2}$
$i \frac{M L^{2}}{12}+M\left[\frac{L}{4}\right]^{2}$
$i \frac{M L^{2}}{12}+\frac{M L^{2}}{16}=\frac{7 M L^{2}}{48}$

173 (a)
$I=I_{1}-I_{2}=\frac{9 M R^{2}}{2}-\frac{M R^{2}}{18}$
$i \frac{81 M R^{2}-M R^{2}}{18}=\frac{40 M R^{2}}{9}$

175 (b)
$K_{R}=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{1}{2} M R^{2}\right)(2 \pi n)^{2}$
$i \frac{1}{2}\left(\frac{1}{2} \times 72 \times(0.5)^{2}\right) \times 4 \pi^{2} \times\left(\frac{70}{60}\right)^{2}=240 J$
176 (d)

From figure, $x_{1}=\frac{L}{2}, x_{2}=\frac{L}{2}+\frac{L}{2}=L$
$x_{3}=\frac{L}{2}+\frac{L}{4}+\frac{L}{2}=\frac{5 L}{4}$
$\therefore X_{C M}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}$
$i \frac{M \times \frac{L}{2}+M \times L+M \times \frac{5 L}{4}}{M+M+M}=\frac{\frac{11}{4} M L}{3 M}=\frac{11 L}{12}$
$m_{1}=12, m_{2}=16$
$\vec{r}_{1}=0 \hat{i}+0 \hat{j}, r_{2}=1.1 \hat{i}+0 \hat{j}$
$\vec{r}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}}$
$\vec{r}=\frac{16 \times 1.1}{28} \hat{i}=0.63 \hat{i} i . e .0 .36 \AA$ from carbon atom

178 (c)
For translator motion the force should be applied on the centre of mass of the body so we have to calculate the location of centre of mass of T shaped object.
Let mass of $\operatorname{rod} A B$ is m so the mass of $\operatorname{rod} C D$ will be $2 m$.

Let y_{1} is the centre of mass of rod $A B$ and y_{2} is the centre of mass of rod $C D$. We can consider that whole mass of the rod is placed at their respective centre of mass $i e$, mass m is placed at y_{1} and mass
$2 m$ is placed at y_{2}.
Taking point c at the origin position vector of points $y_{1} \wedge y_{2}$ can be written as

$$
r_{1}=2 l j, r_{2}=l j
$$

$$
\text { and } \quad m_{1}=m \wedge m_{2}=2 m
$$

Position vector of centre of mass of the system
$r_{C M}=\frac{m_{1} r_{1}+m_{2} r_{2}}{m+m_{2}}=\frac{m 2 l \hat{j}+2 m l \hat{j}}{m+2 m}=\frac{4 m l \hat{j}}{3 m}=\frac{4 l \hat{j}}{3}$
180 (a)
$x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}=\frac{0.4 \times 2+0.6 \times 7}{0.4+0.6}=5 \mathrm{~m}$

181 (c)

Displacement of the man with respect to trolley in
4 sec
$x_{m T}=4 m \Rightarrow x_{m T}=x_{m}+x_{T} \Rightarrow x_{T}=4-x_{m}$
Position of centre of mass remain constant
$\Rightarrow\left(4-x_{m}\right) 320=x_{m} \times 80 \Rightarrow x_{m}=\frac{16}{5}=3.2 \mathrm{~m}$

Alternatively: If the man starts walking on the trolley in the forward direction then whole system will move
in backward direction with same momentum.
Momentum of man in forward direction $=$
Momentum of system (man + trolley) in backward direction
$\Rightarrow 80 \times 1=(80+320) \times v \Rightarrow v=0.2 \mathrm{~m} / \mathrm{s}$
So the velocity of man w.r.t. ground
$1.0-0.2=0.8 \mathrm{~m} / \mathrm{s}$
\therefore Displacement of man w.r.t. ground
$i 0.8 \times 4=3.2 \mathrm{~m}$
182 (a)
When the sphere 1 is released from horizontal position, then from energy conservation, potential energy at height $l_{0}=i$ kinetic energy at bottom
Or $m g l_{0}=\frac{1}{2} m v^{2}$
Or $v=\sqrt{2 g l_{0}}$
Since, all collisions are elastic, so velocity of sphere 1 is transferred to sphere 2 , then from 2 to 3 and finally from 3 to 4 . Hence, just after collision, the sphere 4 attains a velocity equal to $\sqrt{2 g l_{0}}$

183 (d)
Generator axis of a cylinder is a line lying on it's surface and parallel to axis of cylinder

By parallel axis theorem
$I=\frac{M R^{2}}{2}+M R^{2}=\frac{3}{2} M R^{2}$
184 (a)
$a=\frac{g \sin \theta}{1+\frac{K^{2}}{R^{2}}}=\frac{g \sin \theta}{1+\frac{2}{5}}=\frac{5}{7} g \sin \theta$
185 (b)
$X=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}$
$X=\frac{0+40 x_{4}}{100} \Rightarrow 3=\frac{40 x_{4}}{100}$
$x_{4}=\frac{300}{40}=7.5$
Similarly $y_{4}=7.5$ and $z_{4}=7.5$
186 (a)
$\frac{1}{2} M R^{2}=I \Rightarrow M R^{2}=2 I$

Moment of inertia of disc about a tangent in a plane ¿ $\frac{5}{4} M R^{2}=\frac{5}{4}(2 I)=\frac{5}{2} I$
(c)

$\vec{\tau}=\vec{r} \times \vec{F}=r F \sin \phi \therefore \tau=r F \sin \phi$
$F \sin \phi=i$ transverse component of force
$F \cos \phi=i$ radial component of force
188 (b)
M.I. of a cylinder about its centre and parallel to its length $i \frac{M R^{2}}{2}$
M.I. about its centre and perpendicular to its length
i $M\left(\frac{L^{2}}{12}+\frac{R^{2}}{4}\right)$
According to problem, $\frac{M L^{2}}{12}+\frac{M R^{2}}{4}=\frac{M R^{2}}{2}$
By solving we get $L=\sqrt{3} R$
189 (a)
Due to centrifugal force
190 (a)
Angular acceleration is a axial vector
191 (a)

$$
v=\sqrt{\frac{2 g h}{1+\frac{K^{2}}{R^{2}}}}=\sqrt{\frac{2 g h}{1+\frac{2}{5}}}=\sqrt{\frac{10}{7} g h}
$$

192 (d)

For circular disc 1
Mass $\dot{i} M$, radius $R_{1}=R$
Moment of inertia $I_{1}=I_{0}$
For circular disc 2 , of same thickness t, mass $\dot{\&} M$
But density $i \frac{1}{2} \times$ density of circular disc 1
Let radius $\dot{i} R_{2}$
Then $\pi R_{2}^{2} t \times \frac{\rho}{2}=\pi R_{1}^{2} t \times \rho=M \Rightarrow R_{2}^{2}=2 R_{1}^{2}$
$R_{2}=\sqrt{2} R_{1}=\sqrt{2} R$
\because The given axis passes through the centre of mass
\because Moment of inertia $I \propto(\text { Radius })^{2}$
$\Rightarrow \frac{I_{1}}{I_{2}}=\left(\frac{R_{1}}{R_{2}}\right)^{2} \Rightarrow \frac{I_{0}}{I_{2}}=\left(\frac{R}{\sqrt{2} R}\right)^{2} \Rightarrow I_{2}=2 I_{0}$
193 (a)
$L=r P \Rightarrow \log _{e} L=\log _{e} P+\log _{e} r$
If graph is drawn between $\log _{e} L$ and $\log _{e} P$ then it will be straight line which will not pass through the origin

194 (d)
Here $m_{1}=m_{2}=m, u_{1}=u$ and $u_{2}=0$
$\therefore v_{1}=u_{1} \frac{\left(m_{1}-e m_{2}\right)}{\left(m_{1}+m_{2}\right)}+u_{2} \frac{(1+e) m_{2}}{\left(m_{1}+m_{2}\right)}=\frac{u(1-e)}{2}$
$\Rightarrow \frac{v_{1}}{u}=\left(\frac{1-e}{2}\right)$

195 (c)

From Kepler's second law of motion, a line joining any planet to the sun sweeps out equal areas in equal intervals of time. Let any instant t, the planet is in position A. Then area swept out by $S A$ is

$d A=$ area of the curved triangle $S A B$

$$
i \frac{1}{2}(A B \times S A)=\frac{1}{2}(r d \theta \times r)=\frac{1}{2} r^{2} d \theta
$$

The instantaneous areal speed is

$$
\frac{d A}{d t}=\frac{1}{2} r^{2} \frac{d \theta}{d t}=\frac{1}{2} r^{2} \omega
$$

Let J be angular momentum, I the moment of inertia and m the mass, then

$$
\begin{aligned}
J & =I \omega=m r^{2} \omega \\
\therefore \quad \frac{d A}{d t} & =\frac{J}{2 m}=i_{\mathrm{constant}}
\end{aligned}
$$

Hence, angular momentum of the planet is conserved.
196 (b)
The x coordinate of centre of mass is

$$
\begin{aligned}
\dot{x} & =\frac{\sum m_{i} x_{i}}{\sum m_{i}} \\
& i \frac{m \times 0+m \times 1+m \times 2}{m+m+m}=1 \\
\dot{y} & =\frac{\sum m_{i} y_{i}}{\sum m_{i}} \\
& i m \times 0+m i \dot{i} \\
y & =\frac{\sqrt{3} m}{3 m}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Position vector of centre of mass is $\left(\hat{i}+\frac{\hat{j}}{\sqrt{3}}\right)$.
197 (a)
Moment of inertia of rod about the given axis $\dot{\delta} \frac{M L^{2}}{12}$
Moment of inertia of each disc about its diameter $i \frac{M R^{2}}{4}$

Using theorem of parallel axes, moment of inertia of each disc about the given axis
$i \frac{M R^{2}}{4}+M\left(\frac{L}{2}\right)^{2}=\frac{M R^{2}}{4}+\frac{M L^{2}}{4}$
\therefore For theorem of parallel axes, moment of inertia about the given axis is
$I=\frac{m L^{2}}{12}+\left(\frac{M R^{2}}{4}+\frac{M L^{2}}{4}\right)$
$I=\frac{m L^{2}}{12}+\frac{M R^{2}}{4}+\frac{M L^{2}}{4}$
198 (b)
Here, $r=4 m, T=2 s, a=$?
$a=r \omega^{2}=r\left(\frac{2 \pi}{T}\right)^{2}=\frac{4 \pi^{2} r}{T^{2}}=4 \pi^{2} \times \frac{4}{2^{2}}=4 \pi^{2} \mathrm{~ms}^{-2}$
199 (d)
About $E G$, the maximum distance from the axis is the least i.e. distribution of mass is minimum
$\alpha=\frac{2 \pi\left(n_{2}-n_{1}\right)}{t}=\frac{2 \pi\left(0-\frac{60}{60}\right)}{60}=\frac{-2 \pi}{60}=\frac{-\pi}{30} \mathrm{rad} / \mathrm{s}$ $\therefore \tau=I \alpha=\frac{2 \times \pi}{30}=\frac{\pi}{15} N-m$

201 (b)
When two identical balls collide head on elastically, they exchange their velocities. Hence when A collides with B, A transfers its whole velocity to B. When B collides with C, B transfers its whole velocity to C. Hence finally A and B will be at rest and only C will be moving forward with speed v

202 (d)
$I=M\left(\frac{L^{2}}{12}+\frac{r^{2}}{4}\right)=M\left(\frac{L^{2}}{12}+\frac{D^{2}}{16}\right)$
203 (b)
Rotational kinetic energy $i \frac{1}{2} I \omega^{2}=1500$
$\Rightarrow \frac{1}{2} \times 1.2 \times \omega^{2}=1500$
$\Rightarrow \omega^{2}=\frac{3000}{1.2} \Rightarrow \omega=50 \mathrm{rad} / \mathrm{s}$
Initially the body was at rest and after $t \mathrm{sec}$ its angular velocity becomes $50 \mathrm{rad} / \mathrm{s}$
$\omega=\omega_{0}+\alpha t \Rightarrow 50=0+25 \times t \Rightarrow t=2 s$
204 (b)
By doing so the distribution of mass can be made away from the axis of rotation

205 (c)
$X_{C M}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}$

$\therefore \quad X_{C M}=\frac{(12 \times 0)+(16 \times 1.13)}{12+16}=0.6457 \AA$
206 (a)
As initially both the particles were at rest therefore velocity of centre of mass was zero and there is no external force on the system so speed of centre of mass remains constant $i . e$. it should be equal to zero

207 (c)
$\frac{K_{R}}{K_{N}}=\frac{K^{2} / R^{2}}{1+K^{2} / R^{2}}=\frac{2 / 5}{1+2 / 5}=2 / 7$

208 (d)
Moment of inertia of cylinder about an axis through the centre and perpendicular to its axis is
$I_{c}=M\left(\frac{R^{2}}{4}+\frac{L^{2}}{12}\right)$
Using theorem of parallel axes, moment of inertia of the cylinder about an axis through its edge would be
$I=I_{c}+M\left(\frac{L}{2}\right)^{2}=M\left(\frac{R^{2}}{4}+\frac{L^{2}}{12}+\frac{L^{2}}{4}\right)$
$i M\left(\frac{R^{2}}{4}+\frac{L^{2}}{3}\right)$
When $L=6 R, I_{h}=\frac{49}{4} M R^{2}$
209 (a)
$I=\frac{M L^{2}}{12}=\frac{0.12 \times 1^{2}}{12}=0.01 \mathrm{~kg}-\mathrm{m}^{2}$
210 (c)
The moment of inertia is maximum about axis 3, because rms distance of mass is maximum for this axis

211 (d)
$v=\sqrt{\frac{2 g h}{1+\frac{k^{2}}{R^{2}}}}$
Where k is the radius of gyration
For ring, $\frac{k^{2}}{R^{2}}=1$
$\therefore v=\sqrt{\frac{2 g h}{1+1}}=\sqrt{g h}$
213 (b)
Moment of inertia of the system about the centre of plane is given by

$$
\begin{gathered}
I=\left[\frac{2}{5} \times 1 \times(0.1)^{2}+1 \times(1)^{2}\right]+\left[\frac{2}{5} \times 2 \times(0.1)^{2}+2 \times(1)^{2}\right. \\
+\left[\frac{2}{5} \times 3 \times(0.1)^{2}+3 \times(1)^{2}\right]+\left[\frac{2}{5} \times 4 \times(0.1)^{2}+4 \times(1)^{2}\right] \\
\dot{1} .004+2.008+3.012+4.016 \\
\dot{1} 10.04 \mathrm{~kg}-\mathrm{m}^{2}
\end{gathered}
$$

214 (d)
$\omega=\omega_{0}+\alpha t \Rightarrow \omega=0+\left(\frac{\tau}{I}\right) t \quad[$ As $\tau=I \alpha]$
$\omega=0+\frac{1000}{200} \times 3=15 \mathrm{rad} / \mathrm{s}$

In this question distance of centre of mass of new disc from the centre of mass of remaining disc is αR.
Mass of remaining disc

¿ $M-\frac{M}{4}=\frac{3 M}{4}$
$\therefore \frac{-3 M}{4} \alpha R+\frac{M}{4} R=0$
$\therefore \alpha=\frac{1}{3}$
216 (a)
$\frac{I_{\text {Sphere }}}{I_{\text {Cylinder }}}=\frac{\frac{2}{5} M_{1} R^{2}}{\frac{1}{2} M_{2} R^{2}}=\frac{\frac{2}{5}\left(\frac{4}{3} \pi R^{3} \rho\right) R^{2}}{\frac{1}{2}\left(\pi R^{2} L \rho\right) R^{2}}=\frac{16}{15}$
$\therefore I_{\text {Sphere }}>I_{\text {Cylinder }}$
217 (d)
$I_{C D}=I_{C M}+M\left(\frac{L}{4}\right)^{2}$

$i \frac{M L^{2}}{12}+\frac{M L^{2}}{16}=\frac{7 M L^{2}}{48}$
218 (c)
Kinetic energy $E=\frac{L^{2}}{2 I}$
If angular momenta are equal then $E \propto \frac{1}{I}$
Kinetic energy $E=K$ [Given in the problem] If $I_{A}>I_{B}$ then $K_{A}<K_{B}$

220
(d)
$L=r \times P=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 3 & 4 & -2\end{array}\right|$
$L=\hat{i}(-4+4)-\hat{j}(-2+3)+\hat{k}(4-6)=-\hat{j}-2 \hat{k}$
L has components along $-y$ axis and $-z$ axis.

The angular momentum is in $y-z$ plane ie., perpendicular to X-axis.

221 (c)

Moment of inertia of uniform circular disc about diameter $i I$
According to theorem of perpendicular axes,
Moment of inertia of disc about its axis
$i 2 I\left(i \frac{1}{2} m r^{2}\right)$
Applying theorem of parallel axes
Moment of inertia of disc about the given axis
$i 2 I+m r^{2}=2 I+4 I=6 I$
222 (d)
Angular displacement during time

$$
\begin{aligned}
\theta= & \left(\omega_{2}-\omega_{1}\right) t \\
& \quad \dot{i}\left(2 \pi n_{2}-2 \pi n_{1}\right) t \\
& i(600 \pi-200 \pi) \times 10 \\
& i 4000 \pi \mathrm{rad}
\end{aligned}
$$

Therefore, number of revolutions made during this time

$$
i \frac{4000 \pi}{2 \pi}=2000
$$

223 (b)
Let rod is placed along x-axis. Mass of element $P Q$ of length $d x$ situated at $x=x$ is

$d m=\lambda d x=(2+x) d x$
The CM of the element has coordinates $(x, 0,0)$.
Therefore, x-coordinates of CM of the rod will be

$$
\begin{aligned}
& x_{C M}= \frac{\int_{0}^{3} x d m}{\int_{0}^{3} d m} \\
& \int_{0}^{\int_{0}^{3} x(2+x) d x} \\
& \int_{0}^{3}(2+x) d x \\
& \int_{0}^{3}\left(2 x+x^{2}\right) d x \\
& \int_{0}^{3}(2+x) d x
\end{aligned}
$$

$$
\begin{aligned}
& i \frac{\left[\frac{2 x^{2}}{2}+\frac{x^{3}}{3}\right]_{0}^{3}}{\left[2 x+\frac{x^{2}}{2}\right]_{0}^{3}} \\
& i \frac{\left[(3)^{2}+\frac{(3)^{3}}{3}\right]^{3}}{\left[2 \times 3+\frac{(3)^{2}}{2}\right]}=\frac{9+9}{6+9 / 2} \\
& i \frac{18 \times 2}{21}=\frac{12}{7} \mathrm{~m}
\end{aligned}
$$

224 (d)
$I=M K^{2}=160 \Rightarrow K^{2}=\frac{160}{M}=\frac{160}{10}=16 \Rightarrow K=4 \mathrm{mel}$
225 (b)
As the mass of disc is negligible therefore only moment of inertia of five particles will be considered $I=\sum m r^{2}=5 m r^{2}=5 \times 2 \times(0.1)^{2}=0.1 \mathrm{~kg}-\mathrm{m}^{2}$

226 (b)

$\tau=I \alpha$, if $\tau=0$ then $\alpha=0$ because moment of inertia of any body cannot be zero

227 (a)
Since, no external torque is acting the angular (J) is conserved.
$J=I \omega=$ iconstant
Where $I\left(i m r^{2}\right)$ is moment of inertia and ω the angular velocity.
Given, $I_{1}=I, I_{2}=\frac{I}{n}, \omega_{1}=\omega$
$\therefore \quad J=I_{1} \omega_{1}=I_{2} \omega_{2}$

$$
I \omega=\frac{I}{n} \omega_{2}
$$

$\Rightarrow \quad \omega_{2}=n \omega$
Hence, angular velocity increases by a factor of n.
228 (c)
Loss of kinetic energy $i \frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(v_{1}-v_{2}\right)^{2}$
$i \frac{1}{2} \frac{M \times M}{(M+M)}\left(v_{1}-v_{2}\right)^{2}$
$i \frac{M \cdot M}{2(2 M)}\left(v_{1}-v_{2}\right)^{2}$
$i \frac{M}{4}\left(v_{1}-v_{2}\right)^{2}$

Angular moment of particle w.r.t., origin $=$ linear momentum \times perpendicular distance of line of action of linear momentum from origin

230 (a)

He decreases his Moment of inertia by this act and therefore increases his angular velocity

231 (c)

Let T be the tension in the string carrying
The masses $m \wedge 3 m$
Let a be the acceleration, then

$$
\begin{align*}
& T-m g=m a \tag{i}\\
& 3 m g-T=3 m a \tag{ii}
\end{align*}
$$

Adding Eqs. (i) and (ii), we het

$$
2 m g+4 m a
$$

$$
\Longrightarrow \quad a=\frac{g}{2}
$$

232 (c)

Let same mass and same outer radii of solid sphere and hollow sphere are M and R respectively. The moment of inertia of solid sphere A about its diameter

$$
\begin{equation*}
I_{A}=\frac{2}{5} M R^{2} \tag{i}
\end{equation*}
$$

Similarly, the moment of inertia of hollow sphere (spherical shell) B about its diameter

$$
I_{B}=\frac{2}{3} M R^{2}
$$

...(ii)
It is clear from Eqs. (i) and (ii), we get

$$
I_{A}<I_{B}
$$

233 (a)
By the conservation of energy
$P . E$. of rod = Rotational $K . E$.

$m g \frac{l}{2} \sin \alpha=\frac{1}{2} I \omega^{2} \Rightarrow m g \frac{l}{2} \sin \alpha=\frac{1}{2} \frac{m l^{2}}{3} \omega^{2}$
$\Rightarrow \omega=\sqrt{\frac{3 g \sin \alpha}{l}}$
But in the problem length of the rod $2 L$ is given
$\Rightarrow \omega=\sqrt{\frac{3 g \sin \alpha}{2 L}}$
234 (c)
Time taken in reaching bottom of incline is
$t=\sqrt{\frac{2 l\left(1+K^{2} / R^{2}\right)}{g \sin \theta}}$
For solid cylinder (SC), $K^{2}=R^{2} / 2$
For hollow cylinder (HC), $K^{2}=R^{2}$
For solid sphere (S), $K^{2}=\frac{2}{5} R^{2}$
235

(b)

According to figure let A is the origin and coordinates of centre of mass be (x, y) then,
$x=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}$
$i \frac{0+2 \times \frac{80}{\sqrt{2}}+4 \times \frac{80}{\sqrt{2}}+0}{16}=\frac{30}{\sqrt{2}}$
Similarly $y=\frac{30}{\sqrt{2}}$ so, $r=\sqrt{x^{2}+y^{2}}=30 \mathrm{~cm}$

236 (b)
$I=M K^{2}=\sum m R^{2}$
where M is the total mass of the body.
This means that

$$
K=\sqrt{\left(\frac{I}{M}\right)}
$$

According to thermo of parallel axis

where, $I_{C G}$ is moment of inertia about an axis through centre of gravity.
$\therefore \quad I=\frac{2}{5} M R^{2}+4 M R^{2}=\frac{22}{5} M R^{2}$
or $\quad M K^{2}=\frac{22}{5} M K^{2}$
$\therefore \quad K=\sqrt{\frac{22}{5}} R$

237 (a)
The situation can be shown as: Let radius of complete disc is a and that of small disc is b, also let centre of mass now shifts to O_{2} at a distance X_{2} from original centre

The position of new centre of mass is given by
$X_{C M}=\frac{-\sigma \pi b^{2} \cdot x_{1}}{\sigma \pi a^{2}-\sigma \cdot \pi b^{2}}$
Here, $a=6 \mathrm{~cm}, b=2 \mathrm{~cm} x_{1}=3.2 \mathrm{~cm}$
Hence, $X_{C M}=\frac{-\sigma \times \pi(2)^{2} \times 3.2}{\sigma \times \pi \times(6)^{2}-\sigma \times \pi \times(2)^{2}}$
$i \frac{12.8 \pi}{32 \pi}=-0.4 \mathrm{~cm}$
238 (b)
$v=\sqrt{\frac{2 g h}{1+\frac{K^{2}}{R^{2}}}}=\sqrt{\frac{2 g h}{1+\frac{1}{2}}}=\sqrt{\frac{4}{3} g h}$

240 (c)
$I=\frac{2}{5} M R^{2}=\frac{2}{5}\left(\frac{4}{3} \pi R^{3} \rho\right) R^{2}=\frac{8}{15} \times \frac{22}{7} R^{5} \rho$
$I=\frac{176}{105} R^{5} \rho$
241 (b)
Here, Moment of inertia, $I=3 \times 10^{2} \mathrm{~kg} \mathrm{~m}^{2}$

Torque, $\tau=6.9 \times 10^{2} \mathrm{Nm}$
Initial angular speed, $\omega_{0}=4.6 \mathrm{rad} \mathrm{s}^{-1}$
Final angular speed, $\omega=0 \mathrm{rad} \mathrm{s}^{-1}$
As $\omega=\omega_{0}+\alpha t$
$\alpha=\frac{\omega-\omega_{0}}{t}=\frac{0-4.6}{t}=\frac{-4.6}{t} \mathrm{rad} \mathrm{s}^{-2}$
Negative sign is for deceleration Torque, $\tau=I \alpha$
$6.9 \times 10^{2}=3 \times 10^{2} \times \frac{4.6}{t}$
$t=\frac{3 \times 10^{2} \times 4.6}{6.9 \times 10^{2}}=2 \mathrm{~s}$
242 (d)
Here, mass of the disc, $M=1 \mathrm{~kg}$
Radius of the disc, $R=2 m$
Moment of inertia of the circular disc about $X Y$ is

$I_{X Y}=\frac{M R^{2}}{2}=2 \mathrm{~kg} \mathrm{~m}^{2} \quad$ [Given]
According to theorem of parallel axes the moment of inertia of the circular disc about $X_{1} Y_{1}$ is
$I_{X_{1} Y_{1}}=I_{X Y}+M R^{2}=\frac{M R^{2}}{2}+M R^{2}$
$i \frac{3}{2} M R^{2}=\frac{3}{2} \times(1 \mathrm{~kg}) \times(2 \mathrm{~m})^{2}=6 \mathrm{kgm}^{2}$
243 (b)
According to the theorem of II axes, Moment of inertia of disc about an axis passing through K and \perp to plane of disc,

$i \frac{1}{2} M R^{2}+M R^{2}=\frac{3}{2} M R^{2}$
Total moment of inertia of the system
$i \frac{3}{2} M R^{2}+m(2 R)^{2}+m(\sqrt{2} R)^{2}+m(\sqrt{2} R)^{2}$
$i 3(M+16 m) \frac{R^{2}}{12}$
244 (a)
$\frac{1}{2} m v^{2}\left(1+\frac{K^{2}}{R^{2}}\right)=\frac{1}{2}(0.5)(0.2)^{2}\left(1+\frac{2}{5}\right)=0.014 J$

245 (b)
$\frac{m a^{2}}{12}+m\left(4 a^{2}\right)=\frac{m a^{2}}{6}+m d^{2}$
or $\quad d^{2}=\frac{47 a^{2}}{12}$
$\therefore \quad d=\sqrt{\frac{47}{12}} a$
246 (a)
The resultant force on the system is zero. So, the centre of mass of system has no acceleration

247 (b)
According to law of conservation of momentum $I \omega=i$ constant
When viscous fluid of mass m is dropped and start spreading out then its moment of inertia increases and angular velocity decreases. But when it falls from the platform moment of inertia decreases so angular velocity increases again

248 (d)

For disc, $I=\frac{1}{2} m a^{2}$
For ring, $I=m a^{2}$
For square of side $2 a=\frac{M}{12}\left[(2 a)^{2}+(2 a)^{2}\right]=\frac{2}{3} M a^{2}$
For square of rod of length $2 a$
$I=4\left[M \frac{(2 a)^{2}}{12}+M a^{2}\right]=\frac{16}{3} M a^{2}$
Hence, moment of inertia is maximum for square of four rods

249 (b)

M.I. of block about x axis, $I_{x}=\frac{m}{12}\left(b^{2}+t^{2}\right)$
M.I. of block about y axis, $I_{y}=\frac{m}{12}\left(l^{2}+t^{2}\right)$
M.I. of block about z axis, $I_{z}=\frac{m}{12}\left(l^{2}+b^{2}\right)$

As $I>b>t \therefore I_{z}>I_{y}>I_{x}$

Mass of a rod, $m=1.8 \mathrm{~kg}$
\therefore Weight of a rod,
$W=m g=1.8 \mathrm{~kg} \times 10 \mathrm{~ms}^{-2}=18 \mathrm{~N}$

As the rod is uniform, therefore weight of the rod is acting at its midpoint
Taking moments about A,
$27 \times \frac{L}{4}+18 \times \frac{L}{2}=F \times L$
$\Rightarrow F L=\frac{L}{4}[27+36]=\frac{63 L}{4} \Rightarrow F=\frac{63}{4}=16 \mathrm{~N}$
251 (b)
Given : kinetic energy $K=360 \mathrm{~J}$
Angular speed $\omega=20 \mathrm{rad} / \mathrm{s}$
$\therefore K=\frac{1}{2} I \omega^{2}$
Where $I=i$ moment of inertia
$\Rightarrow I=\frac{2 K}{\omega^{2}}=\frac{2 \times 360}{20 \times 20}=1.8 \mathrm{Akgm}^{-2}$
252 (a)
$\tau=\frac{d L}{d t}=\frac{L_{2}-L_{1}}{\Delta t}=\frac{5 L-2 L}{3}=\frac{3 L}{3}=L$
254 (a)
By the theorem of perpendicular axes, the moment of inertia about the central axis I_{C}, will be equal to the sum of its moments of inertia about two mutually perpendicular diameters lying in its plane.
Thus, $\quad I_{d}=I=\frac{1}{2} M R^{2}$

$$
\therefore \quad I_{C}=I+I
$$

$$
\begin{aligned}
& i \frac{1}{2} M R^{2}+\frac{1}{2} M R^{2} \\
& i I+I=2 I
\end{aligned}
$$

256 (d)
$L=\sqrt{2 I E}$. If E are equal then
$\frac{L_{1}}{L_{2}}=\sqrt{\frac{I_{1}}{I_{2}}}=\sqrt{\frac{I}{2 I}}=\frac{1}{\sqrt{2}}$
(c)

Frequency of wheel, $v=\frac{300}{60}=5 r p s$. Angle
described by wheel in one rotation $=2 \pi \mathrm{rad}$ Therefore, angle described by wheel in 1 s
$i 2 \pi \times 5 \mathrm{rad}$
$i 10 \pi \mathrm{rad}$.
258 (a)
(1)Angular velocity of earth

$$
\omega_{1}=\frac{2 \pi}{T}=\frac{2 \pi}{24 \times 60 \times 60}
$$

$i \frac{2 \pi}{86400} \mathrm{rad} \mathrm{s}^{-1}$
(2)Angular velocity of hour's hand of a clock

$$
\omega_{2}=\frac{2 \pi}{T}
$$

$i \frac{2 \pi}{12 \times 60 \times 60}$
$i \frac{2 \pi}{43200} \mathrm{rad} \mathrm{s}^{-1}$
(3)Angular velocity of seconds hand of a clock

$$
\begin{gathered}
\omega_{3}=\frac{2 \pi}{T} \\
i \frac{2 \pi}{1 \times 60}=\frac{2 \pi}{60} \mathrm{rads}^{-1}
\end{gathered}
$$

(4)Angular velocity of flywheel

$$
\omega_{4}=2 \pi n
$$

$i 2 \pi \times \frac{300}{60}$
$i 2 \pi \times 5 \mathrm{rad} \mathrm{s}^{-1}$
259 (b)
Let ball strikes at a speed u the $K_{1}=\frac{1}{2} m u^{2}$
Due to collision tangential component of velocity remains unchanged at $u \sin 45^{\circ}$, but the normal component of velocity change to $u \sin 45$
${ }^{\circ}=\frac{1}{2} u \cos 45^{\circ}$
\therefore Final velocity of ball after collision
$v=\sqrt{\left(u \sin 45^{\circ}\right)^{2}+\left(\frac{1}{2} u \cos 45^{\circ}\right)^{2}}$
$i \sqrt{\left(\frac{u}{\sqrt{2}}\right)^{2}+\left(\frac{u}{2 \sqrt{2}}\right)^{2}}=\sqrt{\frac{5}{3}} u$.
Hence final kinetic energy $K_{2}=\frac{1}{2} m v^{2}=\frac{5}{16} m u^{2}$.
\therefore Fractional loss in KE
$i \frac{K_{1}-K_{2}}{K_{1}}=\frac{\frac{1}{2} m u^{2}-\frac{5}{16} m u^{2}}{\frac{1}{2} m u^{2}}=\frac{3}{8}$
260 (a)
Clearly, the question refers to the torque about an axis
through the centre of wheel. Then, since the radius to the point application of the force is the lever or momentum
arm.
we have

$$
\tau=0.25 \times 200=50 \mathrm{Nm}
$$

261 (d)
$I=\frac{2}{5} M R^{2} \therefore I \propto R^{2}$
This relation shows that graph between I and R will be parabola symmetric to I-axis

263 (a)
$\frac{2}{5} M R^{2}=\frac{1}{2} M r^{2}+M r^{2}$
or $\frac{2}{5} M R^{2}=\frac{3}{2} M r^{2}$
$\therefore \quad r=\frac{2}{\sqrt{15}} R$
264
(b)
$\frac{I_{\text {Ring }}}{I_{\text {Disc }}}=\frac{M R^{2}}{1 / 2 M R^{2}}=2: 1$
265 (b)
According to the theorem of perpendicular axes.

$$
\begin{gathered}
I_{A B}+I_{C D}=M R^{2} \\
I_{d}+I_{d}=I \\
\left(\because I_{A B}=I_{C D}=I_{d}\right) \\
2 I_{d}=I \\
I_{d}=\frac{I}{2}
\end{gathered}
$$

where, $I_{d}=i_{\text {moment of inertia about diameter of the }}$ ring, $I=i$ moment of inertia about axes passing through to the ring.

266 (b)
(I) Moment of inertia of a cylinder about its centre and parallel to its length $¿ \frac{M R^{2}}{2}$

(I)

(II)
(II) Moment of inertia about its centre and
 $\frac{M L^{2}}{12}+\frac{M R^{2}}{4}=\frac{M R^{2}}{2}$
Or $L=\sqrt{3} R$
267 (b)
Let at the time explosion velocity of one piece of mass $m / 2$ is $(10 \hat{i})$. If velocity of other be \vec{v}_{2}, then from conservation law of momentum (since there is no force in horizontal direction), horizontal component of \vec{v}_{2}, must be $-10 \hat{i}$.
\therefore Relative velocity of two parts in horizontal direction $\dot{4} 20 \mathrm{~m} \mathrm{~s}^{-1}$
Time taken by ball to fall through 45 m ,
$i 20=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2 \times 45}{10}}=3 s$ and time taken by ball to
fall through first $20 \mathrm{~m}, t^{\prime}=\sqrt{\frac{2 h^{\prime}}{g}}=\sqrt{\frac{2 \times 20}{10}}=2 \mathrm{~s}$.
Hence time taken by ball pieces to fall from 25 m height to ground $i t-t^{\prime}=3-2=1 \mathrm{~s}$.
\therefore Horizontal distance between the two pieces at the time of striking on ground
¿ $20 \times 1=20 \mathrm{~m}$
269 (c)
Graph should be parabola symmetric to I-axis, but it
should not pass from origin because there is a constant value $I_{c m}$ is present for $x=0$

270 (d)
Weight of the rod will produce the torque
$\tau=I \alpha \Rightarrow m g \times \frac{l}{2}=\frac{m l^{2}}{3} \times \alpha$

Angular acceleration
$\alpha=\frac{3 g}{2 l}$
271 (a)
The situation can be shown as

Let radius of complete disc is a and that of small disc is b. Also let centre of mass now shifts to O_{2} at a distance X_{2} from original centre.
The position of new centre of mass is given by

$$
X_{C M}=\frac{-\sigma \pi b^{2} x_{1}}{\sigma \pi a^{2}-\sigma \pi b^{2}}
$$

Here, $a=6 \mathrm{~cm}, b=2 \mathrm{~cm}, x_{1}=3.2 \mathrm{~cm}$
Hence, $\quad X_{C M}=\frac{-\sigma \times \pi(2)^{2} \times 3.2}{\sigma \times \pi \times(6)^{2}-\sigma \times \pi \times(2)^{2}}$
$i-\frac{12.8 \pi}{32 \pi}=-0.4 \mathrm{~cm}$
272 (a)
Initial acceleration of the system is zero. So it will always remain zero because there is no external force on the system

273 (d)
Rotational kinetic energy $i \frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{1}{2} M R^{2}\right) \times \omega^{2}$
$i \frac{1}{2}\left(\frac{1}{2} \times 10 \times(0.5)^{2}\right) \times(20)^{2}=250 J$
$\frac{1}{2} I \omega^{2}=\frac{1}{2} m v^{2} \Rightarrow \frac{1}{2} \times 3 \times(2)^{2}=\frac{1}{2} \times 12 \times v^{2}$
$\Rightarrow v=1 \mathrm{~m} / \mathrm{s}$
275 (b)
In doing so moment of inertia is decreased and hence angular velocity is increased

276 (b)

In the absence external force, position of centre of mass remain same therefore they will meet at their centre of mass

277 (a)
Moment of inertia of $\operatorname{rod} A B$ about point P and perpendicular to the plane $i \frac{M l^{2}}{12}$

M.I. of $\operatorname{rod} A B$ about point
${ }^{\prime} O^{\prime}=\frac{M l^{2}}{12}+M\left(\frac{l}{2}\right)^{2}=\frac{M l^{2}}{3}$
(By using parallel axis theorem)
But the system consists of four rods of similar type so by but the symmetry $I_{\text {System }}=4\left(\frac{M l^{2}}{3}\right)$

278 (c)
$x_{C M}=\frac{\sum m_{i} x_{i}}{\sum m_{i}}$, Refer to figure
$i \frac{M \times 0+M \times 1+M \times 2}{M+M+M}=1$

$y_{C M}=\frac{\sum m_{i} y_{i}}{\sum m_{i}}$
$i \frac{M \times 0+M\left(2 \sin 60^{\circ}\right)+M \times 0}{M+M+M}$
$i \frac{\sqrt{3} M}{3 M}=\frac{1}{\sqrt{3}}$
\therefore Position vector of centre of mass is $\left(\hat{i}+\frac{1}{\sqrt{3}} \hat{j}\right)$

279 (a)
Angular velocity $i \omega$
Centripetal force $F=m r \omega^{2}$
or $\quad r \propto \frac{1}{\omega^{2}}$
$\therefore \quad \frac{r_{1}}{r_{2}}=\frac{\omega_{2}^{2}}{\omega_{1}^{2}}$
or $\quad \frac{4}{r_{2}}=\frac{4 \omega^{2}}{\omega^{2}}$
or $\quad r_{2}=1 \mathrm{~cm}$
280 (b)
Time of descent will be less for solid sphere i.e. solid sphere will reach first at the bottom of inclined plane

281 (d)
Let a be acceleration of fall of the thread, then net force acting downwards, balances the force due to tension (T) in the thread.

$$
\begin{gather*}
\\
\Rightarrow \quad m g-T=m a \tag{i}\\
\Rightarrow \quad m g-m a=T
\end{gather*}
$$

Also torque (also known as moment or couple acts on the system).
$\tau=$ force \times perpendicular distance axis of rotation
$\quad \tau=T \times R$

From Eq. (i),

$$
\begin{equation*}
\tau=m(g-a) \times R \tag{ii}
\end{equation*}
$$

Let I is moment of inertia of reel and α the angular acceleration, then torque is

$$
\begin{equation*}
\tau=I \alpha \tag{iii}
\end{equation*}
$$

where, $I=\frac{1}{2} M R^{2}, \alpha=\frac{a}{R}$

$$
\therefore \quad \tau=\frac{1}{2} M R^{2} \times \frac{a}{R}=\frac{M R a}{2}
$$

(iv)

Equating Eqs. (ii) and (iv), we get

$$
\begin{array}{rlrl}
& & \tau=m(g-a) R=\frac{m R a}{2} \\
\Rightarrow & g-a=\frac{a}{2} \\
\Rightarrow & \quad a=\frac{2}{3} g
\end{array}
$$

282 (c)
Force of attraction between two stars
$F=\frac{G m_{1} m_{2}}{\left(r_{1}+r_{2}\right)^{2}}$
Acceleration $i \frac{F}{m_{1}}=\frac{G m_{2}}{\left(r_{1}+r_{2}\right)^{2}}$

283 (c)

Here, $m_{1}=m_{2}=0.1 \mathrm{~kg}$
$r_{1}=r_{2}=10 \mathrm{~cm}=0.1 \mathrm{~m}$
$I=I_{1}+I_{2}=m_{1} r_{1}^{2}+\frac{1}{2} m_{2} r_{2}^{2}=\frac{3}{2} m_{1} r_{1}^{2}$
$i \frac{3}{2} \times 0.1(0.1)^{2}=1.5 \times 10^{-3} \mathrm{kgm}^{2}$
284 (a)
For solid sphere, $\frac{K^{2}}{R^{2}}=\frac{2}{5}$
For disc and solid cylinder, $\frac{K^{2}}{R^{2}}=\frac{1}{2}$
As $\frac{K^{2}}{R^{2}}$ for solid sphere is smallest, it takes minimum time to reach the bottom of the incline

285 (a)
$I=\frac{1}{2} M R^{2}=\frac{1}{2} \times\left(\pi R^{2} t \times \rho\right) \times R^{2}$
$\Rightarrow I \propto R^{4} \quad$ (As t and ρ are same)
$\therefore \frac{I_{1}}{I_{2}}=\left(\frac{R_{1}}{R_{2}}\right)^{4}=\left(\frac{0.2}{0.6}\right)^{4}=\frac{1}{81}$
286 (c)
$m_{1} r_{1}=m_{2} r_{2}$
$\frac{r_{1}}{r_{2}}=\frac{m_{2}}{m_{1}} \therefore r \propto \frac{1}{m}$
287 (d)
According to law of conservation of angular momentum, if there is no torque on the system, then the angular momentum remains constant.

288 (b)
Let the mass of an element of length $d x$ of rod located at a distance x away from left end is $\frac{M}{L} d x$. The x-coordinate of the centre of mass is given by

$$
X_{C M}=\frac{1}{M} \int x d m
$$

$$
\begin{aligned}
& i \frac{1}{M} \int_{0}^{L} x\left(\frac{M}{L} d x\right) \\
& =\frac{1}{L}\left[\frac{x^{2}}{2}\right]_{0}^{L}=\frac{L}{2}
\end{aligned}
$$

289 (c)
As $\vec{F}_{\text {ext }}=0$, hence momentum remains conserved and final momentum $=$ initial momentum $=m v$

290 (a)
The moment of inertia of this annular disc about the axis perpendicular to its plane will be $\frac{1}{2} M\left(R^{2}+r^{2}\right)$.

291 (b)
Since, rod is bent at the middle, so each part of it will have same length $\left(\frac{L}{2}\right) \wedge \operatorname{mass}\left(\frac{M}{2}\right)$ as shown.

Moment of inertia of each part through its one end

$$
i \frac{1}{3}\left(\frac{M}{2}\right)\left(\frac{L}{2}\right)^{2}
$$

Hence, net moment of inertia through its middle point O is

$$
\begin{aligned}
I & =\frac{1}{3}\left(\frac{M}{2}\right)\left(\frac{L}{2}\right)^{2}+\frac{1}{3}\left(\frac{M}{2}\right)\left(\frac{L}{2}\right)^{2} \\
& i \frac{1}{3}\left[\frac{M L^{2}}{8}+\frac{M L^{2}}{8}\right]=\frac{M L^{2}}{12}
\end{aligned}
$$

292 (c)
$K=\frac{L^{2}}{2 I}=\frac{K_{1}}{K_{2}}=\frac{L_{1}^{2}}{L_{2}^{2}} \Rightarrow \frac{K_{1}}{K_{2}}=\left(\frac{100}{110}\right)^{2}=\frac{100}{121}$
$\Rightarrow \frac{100}{K^{2}}=\frac{100}{121} \Rightarrow K_{2}=121=100+21$
Increase in kinetic energy $=21 \%$
293 (c)
$I_{\text {Sphere }}<I_{\text {Disc }}<I_{\text {Shell }}<I_{\text {Ring }}$
We know that body possessing minimum moment of
inertia will reach the bottom first and the body possessing maximum moment of inertia will reach the bottom at last

294 (a)

Let a plane be inclined at an angle θ and a cylinder rolls down then the acceleration of the cylinder of mass m, radius R, and I
I as moment of inertia is given by

$$
a=\frac{g \sin \theta}{\left(1+\frac{I}{m R^{2}}\right)}
$$

Moment of inertia (I) of a cylinder $=\frac{m R^{2}}{2}$

$$
\begin{array}{ll}
\therefore & a=\frac{g \sin \theta}{\left(\frac{m R^{2}}{1+\frac{2}{m R^{2}}}\right)}=\frac{2}{3} g \sin 30^{\circ} \\
\Rightarrow & a=\frac{g}{3}
\end{array}
$$

295 (a)
The rotational kinetic energy of the disc is
$K_{\text {rot }}=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{1}{2} M R^{2}\right) \omega^{2}=\frac{1}{4} M R^{2} \omega^{2}$
The translational kinetic energy is

$$
K_{\text {trans }}=\frac{1}{2} M v_{C M}^{2}
$$

where $V_{C M}$ is the linear velocity of its centre of mass.
Now, $v_{C M}=R \omega$
Therefore, $\quad K_{\text {trans }}=\frac{1}{2} M R^{2} \omega^{2}$
Thus, $\quad K_{\text {total }}=\frac{1}{4} M R^{2} \omega^{2}+\frac{1}{2} M R^{2} \omega^{2}=\frac{3}{4} M R^{2} \omega^{2}$
$\therefore \quad \frac{K_{\text {rot }}}{K_{\text {total }}}=\frac{\frac{1}{4} M R^{2} \omega^{2}}{\frac{3}{4} M R^{2} \omega^{2}}=\frac{1}{3}$

296 (c)

$L=I \omega$
297 (c)
Since force is not acting on centre of mass, it will produced torque hence linear and angular acceleration both will change
$m g h=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2}$
$¿ \frac{1}{2}\left(\frac{2}{5} m r^{2}\right) \omega^{2}+\frac{1}{2} m v^{2}=\frac{7}{10} m v^{2}$
$\therefore v=\sqrt{\frac{10}{7} g h}$
299 (c)
For the rolling a solid cylinder acceleration
$a=\frac{g}{3} \sin \theta$

\therefore The condition for the cylinder to remain in equilibrium

$$
M a \leq \mu s R
$$

$\Rightarrow \quad \frac{1}{2} M g \sin \theta \leq M g \cos \theta \cdot \mu_{s}$
or $\quad \mu_{s} \geq \frac{1}{3} \tan \theta$
or $\quad \tan \theta \leq 3 \mu_{\text {s }}$
300 (d)
Since, no external force is present on the system so, conservation principle of momentum is applicable
$\therefore \vec{p}_{i}=\vec{p}_{f}=\vec{p}_{1}+\vec{p}_{2}$
$\therefore \vec{p}_{1}=-\vec{p}_{2}\left(\because \vec{p}_{i}=0\right)$
$\therefore\left|\vec{p}_{1}\right|=\left|-\vec{p}_{2}\right|$
$\therefore \vec{p}_{1}=\vec{p}_{2}$
From this point of view, it is clear that momenta of both particles are equal in magnitude but opposite in direction
Also, friction is absent. So total mechanical energy of system remains conserved

301 (d)
The angular momentum is measure for the amount of torque that has been applied over time the object. For a particle with a fixed mass that is rotating about a fixed symmetry axis, the angular momentum is expressed as

$$
\begin{equation*}
L=I \omega \tag{i}
\end{equation*}
$$

Where I is moment of inertia of particle and ω the
angular velocity.
Also, $\quad K=\frac{1}{2} I \omega^{2}$
...(ii)
Where K is kinetic energy of rotation.
From Eqs. (i) and (ii), we get

$$
\begin{aligned}
& L=\frac{2 K}{\omega^{2}} \omega=\frac{2 K}{\omega} \\
& L^{\prime}=\frac{2(K / 2)}{2 \omega}=\frac{1}{4}\left(\frac{2 K}{\omega}\right)=\frac{L}{4}
\end{aligned}
$$

Note In a closed system angular momentum is constant.

302 (c)

As there is no external torque, angular momentum will remain constant. When the tortoise moves from A to C, figure, moment of inertia of the platform and tortoise decreases. Therefore, angular velocity of the system increases. When the tortoise moves from C to B, moment of inertia increases. Therefore, angular velocity decreases

If, $M=$ mass of platform
$R=$ iradius of platform
$m=i$ mass of tortoise moving along the chord $A B$
$a=$ iperpendicular distance of O from $A B$
Initial angular momentum, $I_{1}=m R^{2}+\frac{M R^{2}}{2}$
At any time t, let the tortoise reach D moving with velocity v
$\therefore A D=v t$
$A C=\sqrt{R^{2}-a^{2}}$
As $D C=A C-A D=\left(\sqrt{R^{2}-a^{2}}-v t\right)$
$\therefore O D=r=a^{2}+\left[\sqrt{R^{2}-a^{2}}-v t\right]^{2}$
Angular momentum at time t
$I_{2}=m r^{2}+\frac{M R^{2}}{2}$
As angular momentum is conserved
$\therefore I_{1} \omega_{0}=I_{2} \omega(t)$
This shows that variation of $\omega(t)$ with time is nonlinear. Choice (c) is correct

$$
\begin{aligned}
& x_{C M}=\frac{m_{1} x_{1}+m_{2}+x_{2}+\ldots}{m_{1}+m_{2}+\ldots} \\
& i \frac{m l+2 m .2 l+3 m .3 l+\ldots}{m+2 m+3 m+\ldots} \\
& i \frac{m l(1+4+9+\ldots)}{m(1+2+3+\ldots)}=\frac{\frac{\ln (n+1)(2 n+1)}{6}}{\frac{n(n+1)}{2}}=\frac{l(2 n+1)}{3}
\end{aligned}
$$

304 (a)
In the absence of external torque angular momentum remains constant

305 (b)
When l is length of rod and its mass, then the moment of inertia of its axis passing through its centre of gravity and perpendicular to its length is given by

$$
I=\frac{m l^{2}}{12}
$$

For two rods as shown,

$$
I=\frac{m l^{2}}{12}+\frac{m l^{2}}{12}=\frac{m l^{2}}{6}
$$

306 (d)
Torque is a measure of how much a force acting on an object causes that object to rotate. The object rotates about an axis (O). The distance from O is r, where forces acts, hence torque $\tau=F \times r$. It is a vector quantity and points from axis of rotation to the point where the force acts.

307 (a)
As the mass is concentrated at the centre of the rod, therefore,
$m g \times \frac{l}{2}=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{m l^{2}}{3}\right) \omega^{2}$
or $l^{2} \omega^{2}=3 \mathrm{gl}$

Velocity of other end of the rod $\nu=l \omega=\sqrt{3 g l}$

308 (d)

$$
\begin{aligned}
& v=\sqrt{\frac{2 g h}{1+\frac{I}{m r^{2}}}}=\sqrt{\frac{2 \times 10 \times 3}{1+\frac{m r^{2}}{2 \times m r^{2}}}}=\sqrt{\frac{2 \times 10 \times 3}{\frac{3}{2}}}=\sqrt{40} \\
& \Rightarrow v=r \omega \\
& \Rightarrow r=\frac{v}{\omega}=\frac{\sqrt{40}}{2 \sqrt{2}}=\sqrt{\frac{40}{8}}=\sqrt{5} \mathrm{~m}
\end{aligned}
$$

309 (a)

When non-conservative force acts on a body, then mechanical energy is converted into non-mechanical energy and vice-versa.

310 (a)

Work done $=$ Change in rotational kinetic energy
$i \frac{1}{2} I \times\left(\omega_{1}^{2}-\omega_{2}^{2}\right)=\frac{1}{2} I \times 4 \pi^{2}\left(n_{1}^{2}-n_{2}^{2}\right)$
$i \frac{1}{2} \times \frac{9.8}{\pi^{2}} \times 4 \pi^{2}\left(10^{2}-5^{2}\right)=9.8 \times 2 \times 75=1470 \mathrm{~J}$

311 (b)

Co-ordinate of CM is given by

$$
X_{C M}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

Taking parts A and B as two bodies of same system

$$
\begin{aligned}
& m_{1}=l \times b \times \sigma=8 \times 2 \times \sigma=16 \sigma \\
& m_{2}=l \times b \times \sigma=6 \times 2 \times \sigma=12 \sigma
\end{aligned}
$$

Choosing O as origin,

$$
\begin{aligned}
& x_{1}=1 m, x_{2}=2+3=5 \mathrm{~m} \\
& \therefore \quad X_{C M}= \frac{16 \sigma \times 1+12 \sigma \times 5}{16 \sigma+12 \sigma}=\frac{19}{7} \\
& \dot{2} .7 \mathrm{mi} O
\end{aligned}
$$

312 (b)
Moment of inertia of a circular ring about a diameter

$$
I=\frac{1}{2} M r^{2}
$$

313 (b)
The kinetic energy of a rolling body is
$\frac{1}{2} m v^{2}\left(1+\frac{k^{2}}{R^{2}}\right)$
According to law of conservation of energy, we get
$\frac{1}{2} m v^{2}\left(1+\frac{k^{2}}{R^{2}}\right)=m g h$
Where h is the height of the inclined plane
$\therefore v=\sqrt{\frac{2 g h}{1+\frac{k^{2}}{R^{2}}}}$
For a solid sphere $\frac{k^{2}}{R^{2}}=\frac{2}{5}$
Substituting the given values, we get
$v=\sqrt{\frac{2 \times 10 \times 7}{\left(1+\frac{2}{5}\right)}}=\sqrt{\frac{2 \times 10 \times 7 \times 5}{7}}=10 \mathrm{~ms}^{-1}$
314 (d)
M.I. of disc $I=\frac{1}{2} M R^{2}=\frac{1}{2} M\left(\frac{M}{\pi \rho t}\right)=\frac{1}{2} \frac{M^{2}}{\pi \rho t}$
$\left(\right.$ As $\rho=\frac{\text { Mass }}{\text { Volume }}=\frac{M}{\pi R^{2} t}$ therefore $\left.R^{2}=\frac{M}{\pi \rho t}\right)$
$\therefore I \propto \frac{1}{\rho}[$ If M and t are constant $) \Rightarrow \frac{I_{1}}{I_{2}}=\frac{\rho_{2}}{\rho_{1}}$
315 (c)
$\frac{1}{2} I \omega^{2}=360 \Rightarrow I=\frac{2 \times 360}{(30)^{2}}=\frac{2 \times 360}{30 \times 30}=0.8 \mathrm{~kg} \times \mathrm{m}^{2}$
316 (d)
(a) Impulsive received by m
$\vec{J}=m\left(\vec{v}_{f}-\vec{v}_{i}\right)$
$i m(-2 \hat{i}+\hat{j}-3 \hat{i}-2 \hat{j})$
i $m(-5 \hat{i}-\hat{j})$
And impulse received by M
$i-\vec{J}=m(5 \hat{i}+\hat{j})$
(b) $m v=m(5 \hat{i}+\hat{j})$

Or $v=\frac{m}{M}(5 \hat{i}+\hat{j})=\frac{1}{13}(5 \hat{i}+\hat{j})$
(c) $e=i$ (relative velocity of separation/relative velocity of approach) in the direction of $-\vec{J}=11 / 17$

317 (d)
Remains conserved until the torque acting on it remain zero

318 (c)

$I_{1}=i$ M.I. of ring about its diameter $i \frac{1}{2} m r^{2}$
$I_{2}=\dot{i}$ M.I. of ring about the axis normal to plane and passing through centre $i m r^{2}$
Two rings are placed according to figure. Then
$I_{x x^{\prime}}=I_{1}+I_{2}=\frac{1}{2} m r^{2}+m R^{2}=\frac{3}{2} m r^{2}$
319 (c)
$\tau=\frac{d L}{d t}$, if $\tau=0$ then $L=i$ constant
320 (b)
If rod is rotated about end A, then vertical component of velocity ν_{\perp} of end A will be zero.

$$
\begin{aligned}
\therefore \quad \omega= & \frac{v \cos 60^{\circ}}{l}=\frac{\sqrt{3} v}{2 l} \\
& i \frac{\sqrt{3} \times 3}{2 \times 0.5}=5.2 \mathrm{rad} \mathrm{~s}^{-1}
\end{aligned}
$$

321 (b)

In pure rolling, mechanical energy remains conserved. Therefore, when heights of inclines are equal, speed of sphere will be same in both the cases. But as acceleration down the incline, $a \propto \sin \theta$ therefore, acceleration and time of descent will be different

322 (d)
The compression of spring is maximum when velocities of both blocks A and B is same. Let it be v_{0}, then from conservation law of momentum
$m v=m v_{0}+m v_{0}=2 m v_{0} \Rightarrow v_{0}=\frac{v}{2}$
\therefore kinetic energy of $A-B$ system at that stage
$i \frac{1}{2}(m+m) \times\left(\frac{v}{2}\right)^{2}=\frac{m v^{2}}{4}$
Further loss in KE> = gain in elastic potential energy
ie, $\frac{1}{2} m v^{2}-\frac{1}{4} m v^{2}=\frac{1}{4} m v^{2}=\frac{1}{2} k x^{2}$
$\Rightarrow x=v \sqrt{\frac{m}{2 k}}$
323 (c)

$a=\frac{g}{1+\frac{K^{2}}{R^{2}}}$ [For solid cylinder $\frac{K^{2}}{R^{2}}=\frac{1}{2}$]
$\therefore a=\frac{g}{1+\frac{1}{2}}=\frac{2}{3} g$

324 (a)

For translatory motion the force should be applied on the centre of the mass of the body. So we have to calculate the location of centre of mass of ' T ' shaped object.
Let mass of $\operatorname{rod} A B$ is m so the mass of the $\operatorname{rod} C D$ will be $2 m$

Let y_{1} is the centre of mass of $\operatorname{rod} A B$ and y_{2} is the centre of mass of rod $C D$. We can consider that whole mass of the rod is placed at their respective centre of mass i.e., mass m is placed at y_{1} and mass $2 m$ is placed at y_{2}

Taking point ' C ' at the origin position vector of point y_{1} and y_{2} can be written as $\vec{r}_{1}=2 l \hat{j}, \vec{r}_{2}=l \hat{j}$ and $m_{1}=m$ and $m_{2}=2 m$
Position vector of centre of mass of the system
$\vec{r}_{c m}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}}=\frac{m 2 l \hat{j}+2 m l \hat{j}}{m+2 m}=\frac{4 m l \hat{j}}{3 m}=\frac{4}{3} l \hat{j}$

Hence the distance of centre of mass from $C=\frac{4}{3} l$
325 (a)
According to the equation of motion of the centre of mass
$M a_{C M}=F_{e x t}$
If $F_{\text {ext }}=0, a_{C M}=0$
$\therefore v_{C M}=$ constant
ie, if no external force acts on a system the velocity of its centre of mass remains constant. Thus, the centre of mass may move but not accelerate.

327 (d)

When a body rolls down an inclined plane, it is accompanied by rotational and translational kinetic energies.
Rotational kinetic energy $i \frac{1}{2} I \omega^{2}=K_{R}$
Where I is moment of inertia and ω the angular velocity.
Translational kinetic energy

$$
i \frac{1}{2} m v^{2}=K_{r}=\frac{1}{2} m(r \omega)^{2}
$$

where m is mass, v the velocity and ω the angular velocity.
Given,
Translational KE=rotational KE

$$
\frac{1}{2} m v^{2}=\frac{1}{2} I \omega^{2}
$$

Since, $\quad v=r \omega$

$$
\therefore \quad \frac{1}{2} m\left(r^{2} \omega^{2}\right)=\frac{1}{2} I \omega^{2}
$$

$$
\Longrightarrow \quad I=m r^{2}
$$

We know that $m r^{2}$ is the moment of inertia of hollow cylinder about its axis is where m is mass of hollow cylinderical body and r the radius of cylinder.

328 (a)

When a body rolls down without slipping along an inclined plane of inclination θ, it rotates about a horizontal axis through its centre of mass and also its centre of mass moves. Therefore, rolling motion may be regarded as a rotational motion about an axis through its centre of mass plus a translational motion of the centre of mass. As it rolls down, it suffers loss in gravitational potential energy provided translational energy due to frictional force is converted into rotational energy.

Given that,
Mass of solid sphere, $m=2 \mathrm{~kg}$

$$
\text { Velocity, } v=10 \mathrm{~ms}^{-1}
$$

Let the sphere attained a height h.
When the sphere is at point A, it possesses kinetic energy and rotational kinetic energy, and when it is at point B it possesses only potential energy.
So, from law of conservation of energy

$$
\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}=m g h
$$

or $\frac{1}{2} m v^{2}+\frac{1}{2} m K^{2} \times \frac{v^{2}}{R^{2}}=m g h$
or $\quad \frac{1}{2} m v^{2}\left[1+\frac{K^{2}}{R^{2}}\right]=m g h$
or $\quad \frac{1}{2} \times(10)^{2}\left[1+\frac{2}{5}\right]=9.8 \times h$
(for solid sphere,
$\frac{K^{2}}{R^{2}}=\frac{2}{5} i$
or $\quad \frac{1}{2} \times 100 \times \frac{7}{5}=9.8 \times h$
or $\quad h=7.1 \mathrm{~m}$
330 (d)
In the case of projectile motion, if bodies are projected with same speed, they reached at ground with same speeds. So, if bodies have same mass, then momentum of bodies or magnitude of momenta must be same

331 (a)
$a=\frac{g \sin \theta}{1+\frac{K^{2}}{R^{2}}}=\frac{g \sin 30^{\circ}}{1+\frac{1}{2}}=\frac{g / 2}{3 / 2}=\frac{g}{3}$

332 (c)

This is an example of elastic oblique collision. When a moving body collides obliquely with another identical body in rest, then during elastic collision, the angle of divergence will be 90°

333 (c)

Angular retardation, $a=\frac{\tau}{I}=\frac{\mu m g R}{m R^{2}}=\frac{\mu g}{R}$
As, $\omega=\omega_{0}-\alpha t$
$\therefore t=\frac{\omega_{0}-\omega}{\alpha}=\frac{\omega_{0}-\omega_{0} / 2}{\mu g / R}=\frac{\omega_{0} R}{2 \mu g}$
334 (d)
$\frac{1}{2} m v^{2}=\frac{1}{2} I\left(\frac{v}{R}\right)^{2}=m g\left(\frac{3 v^{2}}{4 g}\right)$
$\therefore \quad I=\frac{1}{2} m R^{2}$
\therefore Body is disc.
335 (a)
$I=\frac{1}{2} M R^{2}=\frac{1}{2} \times 0.5 \times(0.1)^{2}=2.5 \times 10^{-3} \mathrm{~kg}-\mathrm{m}^{2}$

336 (c)
$\vec{v}_{c m}=\frac{m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}}{m_{1}+m_{2}}=\frac{200 \times 10 \hat{i}+500 \times(3 \hat{i}+5 \hat{j})}{200+500}$
$\vec{v}_{c m}=5 \hat{i}+\frac{25}{7} \hat{j}$
337 (c)
Given, $I=\frac{2}{5} M R^{2}$
Using the theorem of parallel axes, moment of inertia of the sphere about a parallel axis tangential to the sphere is

$$
\begin{aligned}
& I^{\prime}=I+M R^{2}=\frac{2}{5} M R^{2}+M R^{2}=\frac{7}{5} M R^{2} \\
& \therefore I^{\prime}=M K^{2}=\frac{7}{5} M R^{2}, K=\left(\sqrt{\frac{7}{5}}\right) R
\end{aligned}
$$

338 (d)

$$
\begin{aligned}
& T E_{i}=T E_{r} \\
& \frac{1}{2} I \omega^{2}=m g h \\
& \frac{1}{2} \times \frac{1}{3} m l^{2} \omega^{2}=m g h \\
& \Rightarrow \quad h=\frac{1}{6} \frac{l^{2} \omega^{2}}{g}
\end{aligned}
$$

339 (b)
The ratio of rotational kinetic energy to total kinetic energy is

$$
\frac{K E_{R}}{K E_{T}}=\frac{\frac{1}{2} I \omega^{2}}{\frac{1}{2} I \omega^{2}+\frac{1}{2} M v^{2}}
$$

The moment of inertia of a ring

$$
=\frac{1}{2} M R^{2}
$$

$\therefore \frac{K E_{R}}{K E_{T}}=\frac{\frac{1}{2}\left(\frac{1}{2} M R^{2}\right)\left[\frac{v}{R}\right]^{2}}{\frac{1}{2} \times \frac{1}{2} M R^{2}\left[\frac{v}{R}\right]^{2}+\frac{1}{2} M v^{2}}$

$$
i \frac{\frac{1}{2}\left(\frac{1}{2} M v^{2}\right)}{\frac{1}{2}\left(\frac{1}{2} M v^{2}\right)+\frac{1}{2} M v^{2}}
$$

$\frac{K E_{R}}{K E_{T}}=\frac{1}{3}$
340 (c)
From $t_{1}=0$ to $t_{2}=2 t_{0}$ the external force acting on the combined system is $m_{1} g+m_{2} g$
\therefore Total change in momentum of system
$\therefore F t=\left(m_{1}+m_{2}\right) g 2 t_{0}$

341 (a)

In explosion of a bomb, only kinetic energy, changes as initial kinetic energy is zero

342 (d)
Solid and hollow balls can be distinguished by any of the three methods. $I_{h}>I_{s}$. When torques are equal, angular acceleration α of hollow must be smaller than α of solid. Similarly, on rolling, solid ball will reach the bottom before the hollow ball

343 (b)
The acceleration of centre of mass is
$a_{C M}=\frac{F}{m_{A}+m_{B}}$
$i \frac{30}{10+20}=1 \mathrm{~m} \mathrm{~s}^{-2}$
$\therefore s=\frac{1}{2} a_{C M} t^{2}=\frac{1}{2} \times 1 \times 2^{2}=2 \mathrm{~m}$
344 (a)
$L=\sqrt{2 E I}=\sqrt{2 \times 10 \times 8 \times 10^{-7}}=4 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$
345 (b)
The acceleration of the body which is rolling down an inclined plane of angle α is

$$
a=\frac{g \sin \alpha}{1+\frac{K_{2}}{R^{2}}}
$$

where $K=$ iradius of gyration,

$$
R=\text { iradius of body. }
$$

Now, here the body is a uniform solid disc.
So, $\quad \frac{K^{2}}{R^{2}}=\frac{1}{2}$
$\therefore \quad a=\frac{g \sin \alpha}{1+\frac{1}{2}}$
or $\quad a=\frac{g \sin \alpha}{3 / 2}$
or $\quad a=\frac{2 g \sin \alpha}{3}$
347 (d)
Radius of gyration of circular disc $k_{\text {disc }}=\frac{R}{\sqrt{2}}$
Radius of gyration of circular ring $k_{\text {ring }}=R$
Ratio $i \frac{k_{\text {disc }}}{k_{\text {ring }}}=\frac{1}{\sqrt{2}}$

348 (c)

There is a point in the system, where if whole mass of the system is supposed to be concentrated, the nature of the motion executed by the system remains unaltered when the force acting on the system are applied directly at this point.
The position of centre of mass of system for n
particles is expressed as

$$
R_{C M}=\frac{\sum m_{i} r_{i}}{\sum m_{i}}
$$

or $\quad \sum m_{i} r_{i}=$ constant
Hence, for a system having particles, we have

$$
\begin{aligned}
& m_{1} r_{1}=m_{2} r_{2} \\
\Rightarrow \quad & \frac{r_{1}}{r_{2}}=\frac{m_{2}}{m_{1}}
\end{aligned}
$$

$i e$, the centre of mass of a system of two particle divides the distance between them in inverse ratio of masses of particles.

349 (d)
Angular momentum, $L=m v r=m \omega r^{2}=m \times \frac{2 \pi}{T} \times r^{2}$ $i \frac{2 \times 3.14 \times 6 \times 10^{24} \times\left(1.5 \times 10^{11}\right)^{2}}{3.14 \times 10^{7}}=2.7 \times 10^{40} \mathrm{~kg}-$

350 (d)
Change in momentum $\dot{i} \vec{F} t$ and does not depend on mass of the bodies.

351 (c)
From the triangle $B C D$
$C D^{2}=B C^{2}-B D^{2}=a^{2}-\left(\frac{a}{2}\right)^{2}$
$x^{2}=\frac{3 a^{2}}{4} \Rightarrow x=\frac{\sqrt{3} a}{2}$

Moment of inertia of system along the side $A B$
$I_{\text {system }}=I_{1}+I_{2}+I_{3}=m \times(0)^{2}+m \times(x)^{2}+m \times(0)^{2}$
$i m x^{2}=m\left(\frac{\sqrt{3} a}{2}\right)^{2}=\frac{3 m a^{2}}{4}$
352 (a)
The moment of inertia of ring $\dot{i} M R^{2}$
The moment of inertia of removed sector $i \frac{1}{4} M R^{2}$
The moment of inertia of remaining part
¿ $M R^{2}-\frac{1}{4} M R^{2}$

$$
i \frac{3}{4} M R^{2}
$$

According to question, the moment of inertia of the remaining part $<k M R^{2}$
then, $\quad k=\frac{3}{4}$

353 (a)
$\frac{M L^{2}}{12}=M K^{2} \Rightarrow K=\frac{L}{\sqrt{12}}$
354 (c)
$I=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}=2(0.3)^{2}+1(0.3)^{2}=0.27 \mathrm{~kg} \mathrm{~m}^{2}$
355 (a)
As two solid spheres are equal in masses, so

$$
\begin{aligned}
& m_{A}=m_{B} \\
\Rightarrow \quad & \frac{4}{3} \pi R_{A}^{3} \rho_{A}=\frac{4}{3} \pi R_{B}^{3} \rho_{B} \\
\Rightarrow \quad & \frac{R_{A}}{R_{B}}=\left(\frac{\rho_{B}}{\rho_{A}}\right)^{1 / 3}
\end{aligned}
$$

The moment of inertia of sphere about diameter

$$
\begin{aligned}
& I=\frac{2}{5} m R^{2} \\
\Rightarrow \quad & \frac{I_{A}}{I_{B}}=\left(\frac{R_{A}}{R_{B}}\right)^{2} \quad\left(\text { as } m_{A}=m_{B}\right) \\
\Rightarrow \quad & \frac{I_{A}}{I_{B}}=\left(\frac{\rho_{B}}{\rho_{A}}\right)^{2 / 3}
\end{aligned}
$$

356 (d)
Linear kinetic energy $i \frac{1}{2} m v^{2}$
Rotational kinetic energy $i \frac{1}{2} I \omega^{2}$

$$
\begin{aligned}
& i \frac{1}{2}\left(\frac{2}{5} m r^{2}\right) \frac{v^{2}}{r^{2}} \\
& i \frac{1}{5} m v^{2}
\end{aligned}
$$

Total KE $i \frac{1}{2} m v^{2}+\frac{1}{5} m v^{2}$
$i \frac{7}{10} m v^{2}$
Required fraction $i \frac{\frac{1}{5} m v^{2}}{\frac{7}{10} m v^{2}}$
$i \frac{1}{5} \times \frac{10}{7}=\frac{2}{7}$

Moment of inertia of big drop is $I=\frac{2}{5} M R^{2}$. When small droplets are formed from big drop volume of liquid remain same

$$
\begin{array}{lc}
& n \frac{4}{3} \pi r^{3}=\frac{4}{3} \pi R^{3} \\
\Rightarrow & n^{1 / 3} r=R \\
\text { as } & n=8 \\
\Rightarrow & r=\frac{R}{2}
\end{array}
$$

Mass of each small droplet $i \frac{M}{8}$
\therefore Moment of inertia of each small droplet

$$
\begin{aligned}
& i \frac{2}{5}\left[\frac{M}{8}\right]\left[\frac{R}{2}\right]^{2} \\
& i \frac{1}{32}\left[\frac{2}{5} M R^{2}\right]=\frac{I}{32}
\end{aligned}
$$

359 (b)
$\frac{L_{\text {Total }}}{L_{B}}=\frac{\left(I_{A}+I_{B}\right) \omega}{I_{B} \cdot \omega} \quad$ (as ω will be same in both cases)

$$
i \frac{I_{A}}{I_{B}}+1=\frac{m_{A} r_{A}^{2}}{m_{B} r_{B}^{2}}+1
$$

$$
i \frac{r_{A}}{r_{B}}+1
$$

(as
$m_{A} r_{A}=m_{B} r_{B} \dot{i}$

$$
i \frac{11}{2.2}+1
$$

$\left(\operatorname{as} r \propto \frac{1}{m}\right)$
¿ 6
\therefore The correct answer is 6 .
360 (b)
Moment of inertia of a rod about one end $i \frac{M L^{2}}{3}$
As, $\quad I=I_{1}+I_{2}+I_{3}$
$\therefore I=0+\frac{M L^{2}}{3}+\frac{M L^{2}}{3}=\frac{2 M L^{2}}{3}$
361 (d)
Total kinetic energy $i \frac{1}{2} m v^{2}\left(1+\frac{K^{2}}{R^{2}}\right)=32.8 \mathrm{~J}$
$\Rightarrow \frac{1}{2} \times 10 \times(2)^{2}\left(1+\frac{K^{2}}{(0.5)^{2}}\right)=32.8 \Rightarrow K=0.4 m$
362
(a)

Kinetic energy of rotating body $i \frac{1}{2} I \omega^{2}$
$i \frac{1}{2} \times 3 \times(3)^{2}=13.5 \mathrm{~J}$
Kinetic energy of translating body $i \frac{1}{2} m v^{2}$
As both are equal according to problem i.e.
$\frac{1}{2} m v^{2}=13.5 \Rightarrow \frac{1}{2} \times 27 \times v^{2}=13.5 \Rightarrow \therefore v=1 \mathrm{~m} / \mathrm{s}$
363 (d)
According to conservation of momentum
$5 \times 10=(955+5) v$
$v=\frac{50}{100}=\frac{1}{20} \therefore \%$ KE lost $=$
$\frac{K_{1}-K_{2}}{K_{1}} \times 100=95.5 \%$
364 (d)
Total moment of inertia will be equal to the sum of moment of inertia due to individual masses.

where, $I_{1}=m_{1} r_{1}^{2}, I_{2}=m_{2} r_{2}^{2}$.
Given, $r=r_{1}+r_{2}$

$$
\begin{array}{cc}
& m_{1} r_{1}=m_{2} r_{2} \\
\therefore & m_{1} r_{1}=m_{2}\left(r-r_{1}\right) \\
\Rightarrow & m_{1} r_{1}+m_{2} r_{1}=m_{2} r \\
\Rightarrow & r_{1}\left(m_{1}+m_{2}\right)=m_{2} r \\
\Rightarrow & \quad r_{1}=\frac{m_{2} r}{\left(m i \dot{<} 1+m_{2}\right) \dot{i}}
\end{array}
$$

Also, $\quad r_{2}=r-r_{1}$

$$
r_{2}=r-\frac{m_{2} r}{\left(m_{1}+m_{2}\right)^{2}}=\frac{m_{2} r}{m_{1}+m_{2}}
$$

$$
\therefore \quad I=I_{1}+I_{2}=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}
$$

$$
I=m_{1} \frac{m_{2}^{2} r^{2}}{\left(m_{1}+m_{2}\right)^{2}}+m_{2} \frac{m_{1}^{2} r^{2}}{\left(m_{1}+m_{2}\right)^{2}}
$$

$$
I=\frac{m_{1} m_{2} r^{2}}{\left(m_{1}+m_{2}\right)}=\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)} \cdot r^{2}
$$

365 (b)
$\alpha=\frac{\omega_{2}-\omega_{1}}{t}=\frac{2 \pi\left(n_{2}-n_{1}\right)}{t}=\frac{2 \pi \times\left[\frac{240}{60}-0\right]}{10}$
$\therefore \alpha=2.51 \mathrm{rad} / \mathrm{s}$
366 (a)
$\alpha=\frac{\omega}{t}=\frac{2 \pi n}{t}=\frac{2 \pi\left(\frac{540}{60}\right)}{6}=3 \pi \mathrm{rad} / \mathrm{s}^{2}$
367 (a)

Moment of inertia of the system about $y y$
$I_{y y}=$ iMoment of inertia of sphere P about
$y y^{\prime}+i$ Moment of inertia of sphere Q about $y y^{\prime}$
Moment of inertia of sphere P about $y y^{\prime \prime}$
$i \frac{2}{5} M\left(\frac{R}{2}\right)^{2}+M(x)^{2}$
$i \frac{2}{5} M\left(\frac{R}{2}\right)^{2}+M(2 R)^{2}$
$i \frac{M R^{2}}{10}+4 M R^{2}$
Moment of inertia of sphere Q about $y y^{\prime \prime}$ is
$\frac{2}{5} M\left(\frac{R}{2}\right)^{2}$
Now, $I_{y y}=\frac{M R^{2}}{10}+4 M R^{2}+\frac{2}{5} M\left(\frac{R}{2}\right)^{2}=\frac{21}{5} M R^{2}$
368 (b)
$I=m R^{2}=m\left(\frac{D^{2}}{4}\right) \Rightarrow I \propto m D^{2}$ or $m \propto \frac{I}{D^{2}}$
$\therefore \frac{m_{1}}{m_{2}}=\frac{I_{1}}{I_{2}} \times\left(\frac{D_{2}}{D_{1}}\right)^{2}=\frac{2}{1}\left(\frac{1}{2}\right)^{2}=\frac{2}{4}=\frac{1}{2}$
370 (a)
$\vec{L}=\vec{r} \times \vec{p}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 3 & 4 & -2\end{array}\right|=-\hat{j}-2 \hat{k}$
and the $X-i$ axis is given by $\hat{i}+0 \hat{j}+0 \hat{k}$
Dot product of these two vectors is zero i.e. angular momentum is perpendicular to $X-i$ axis

371 (c)
The rolling sphere has rotational as well as translational kinetic energy
\therefore Kinetic energy $i \frac{1}{2} m u^{2}+\frac{1}{2} I \omega^{2}$
$i \frac{1}{2} m u^{2}+\frac{1}{2}\left(\frac{2}{5} m r^{2}\right) \omega^{2}=\frac{1}{2} m u^{2}+\frac{m u^{2}}{5}=\frac{7}{10} m u^{2}$
Potential energy $=$ kinetic energy
$\therefore m g h=\frac{7}{10} m u^{2} \Rightarrow h=\frac{7 u^{2}}{10 g}$
372 (d)
$\tau=r \times F$
i $r \times T$
$i r \times m \times g$
i $0.1 \times 10 \times 9.8$
¿ $9.8 \mathrm{~N}-\mathrm{m}$

373 (d)
The moment of inertia of a circular disc
$I=\frac{1}{2} M R^{2}$
According to theorem of parallel axes
$I^{\prime}=\frac{1}{2} M R^{2}+M R^{2}=\frac{3}{2} M R^{2}=3 I$
374 (b)
Rotational kinetic energy $i \frac{1}{2} I \omega^{2}$
$\therefore \quad$ Rotational KE $i \frac{1}{2}\left[\frac{1}{2} m r^{2}\right] \frac{v^{2}}{r^{2}}$
(where $I=\frac{1}{2} m r^{2}$)

$$
\Longrightarrow \quad 4=\frac{1}{2}\left[\frac{1}{2}(2) r^{2}\right] \frac{v^{2}}{r^{2}}
$$

As shown in figure normal reaction $R=m g$.
Frictional force $F=\mu R=\mu m g$. To topple, clockwise moment must be more than the anticlockwise moment
ie , $\mu m g \times \frac{h}{2}>m g \times \frac{a}{2} m g \times \frac{a}{2} \vee \mu>a / h$

378 (c)
Angle turned in three second,
$\theta_{3 \mathrm{~s}}=2 \pi \times 10=20 \pi \mathrm{rad}$
From $\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2} \Rightarrow 20 \pi=0+\frac{1}{2} \alpha \times(3)^{2}$
$\Rightarrow \alpha=\frac{40 \pi}{9} \mathrm{rad} / \mathrm{s}^{2}$
Now angle turned in 6 sec from the starting
$\theta_{6 s}=\omega_{0} t+\frac{1}{2} \alpha t^{2}=0+\frac{1}{2} \times\left(\frac{40 \pi}{9}\right) \times(6)^{2}=80 \pi \mathrm{rad}$
\therefore angle turned between $t=3 \mathrm{~s}$ to $t=6 \mathrm{~s}$
$\theta_{\text {last } 3 \mathrm{~s}}=\theta_{6 \mathrm{~s}}-\theta_{3 \mathrm{~s}}=80 \pi-20 \pi=60 \pi$
Number of revolution $i \frac{60 \pi}{2 \pi}=30 \mathrm{rev}$
379 (a)
$x_{C M}=\frac{\int x d m}{\int d m}$

If $n=0$
Then $\quad x_{C M}=\frac{L}{2}$
As n increases, the centre of mass shift away from $x=\frac{L}{2}$ which only option (a) is satisfying.

Alternately, you can use basic concept.

$$
\begin{aligned}
x_{C M}= & \frac{\int_{0}^{L} k\left(\frac{x}{L}\right)^{n} \times x d x}{\int_{0}^{L} k\left(\frac{x}{L}\right)^{n} d x} \\
& i L\left[\frac{n+1}{n+2}\right]
\end{aligned}
$$

380 (d)
$\vec{v}_{c m}=\frac{m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}}{m_{1}+m_{2}}=\frac{2 \times 3+3 \times 2}{2+3}=\frac{12}{5}=2.4 \mathrm{~m} / \mathrm{s}$

381 (c)
M.I. of the plate about an axis perpendicular to its plane and passing through its centre

$I_{0}=\frac{m a^{2}}{6}$
By parallel axes theorem
$I_{A}=I_{0}+m\left(\frac{a}{\sqrt{2}}\right)^{2}=\frac{2}{3} m a^{2}$
382 (c)
Moment of inertia of a disc

$$
I=\frac{1}{2} M R^{2}
$$

Disc is melted and recasted into a solid sphere.
\therefore Volume of sphere $=$ Volume of disc

$$
\begin{aligned}
& \frac{4}{3} \pi R_{1}^{3}=\pi R^{2} \times \frac{R}{6} \\
& \frac{4}{3} R_{1}^{3}=\frac{R^{3}}{6} \\
& R_{1}^{3}=\frac{R^{3}}{8} \quad \Longrightarrow R_{1}=\frac{R}{2}
\end{aligned}
$$

\therefore Moment of inertia of sphere

$$
I^{\prime}=\frac{2}{5} M R_{1}^{2}=\frac{2}{5} M\left(\frac{R}{2}\right)^{2}=\frac{2}{5} \frac{M R^{2}}{4}=\frac{1}{5}\left(\frac{1}{2} M R^{2}\right)=\frac{I}{5}
$$

383 (c)
For solid cylinder, $\theta=30^{\circ}, K^{2}=\frac{1}{2} R^{2}$
For hollow cylinder, $\theta=?, K^{2}=R^{2}$
Using we find,
$\frac{\left(1+\frac{1}{2}\right)}{\sin 30^{\circ}}=\frac{1+1}{\sin \theta}$
$\therefore \sin \theta=\frac{2}{3}=0.6667$
$\theta=42^{\circ}$

384 (c)

We can assume that three particles of equal mass m are placed at the corners of triangle
$\vec{r}_{1}=0 \hat{i}+0 \hat{j}, \vec{r}_{2}=b \hat{i}+0 \hat{j}$
and $\vec{r}_{3}=0 \hat{i}+h \hat{j}$
$\therefore \overrightarrow{r_{c m}}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+m_{3} \vec{r}_{3}}{m_{1}+m_{2}+m_{3}}$

$i \frac{b}{3} \hat{i}+\frac{h}{3} \hat{j}$
i.e coordinates of centre of mass is $\left(\frac{b}{3}, \frac{h}{3}\right)$

385 (d)
When a heavy body with velocity u collides with a lighter body at rest, then the heavier body remains moving in the same direction with almost same velocity. The lighter body moves in the same direction with a nearly velocity of $2 u$

386 (b)
Since, no force is present along the surface of plane so, momentum conservation principle for ball is applicable along the surface of plate.

$m v \sin \theta_{1}=m v_{1} \sin \theta_{2}$
$m v \sin \theta_{1}=m v_{1} \sin \theta_{2}$
Or $v \sin \theta_{1}=v_{1} \sin \theta_{2}$
$e=\frac{v_{1} \cos \theta_{2}}{v \cos \theta_{1}}=\frac{v_{1} \cos \theta_{2}}{v \cos \theta}$
$\therefore v_{1} \cos \theta_{2}=e v \cos \theta$
$\therefore \frac{v_{1} \sin \theta_{2}}{v_{1} \cos \theta_{2}}=\frac{v \sin \theta}{e v \cos \theta}=\frac{\tan \theta}{e}$
$\therefore \tan \theta=\frac{\tan \theta}{e}$
$\therefore \theta_{2}=\tan ^{-1}\left(\frac{\tan \theta}{e}\right)$
387 (d)
We know that angular momentum of spin $\dot{\delta} I \omega$ By the conservation of angular momentum

$$
\begin{gathered}
\frac{2}{5} M R^{2} \cdot \frac{2 \pi}{T}=\frac{2}{5} M\left(\frac{R}{4}\right)^{2} \cdot \frac{2 \pi}{T^{\prime}} \\
T^{\prime}=\frac{T}{16}=\frac{24}{16}=1.5 \mathrm{~h}
\end{gathered}
$$

388 (d)
Melting of ice produces water which will spread over larger distance away from the axis of rotation. This increases the moment of inertia so angular velocity decreases

389 (c)
Hence, $m_{1}=10 \mathrm{~kg}, m_{2}=4 \mathrm{~kg}$
$v_{1}=14 \mathrm{~m} \mathrm{~s}^{-1}, v_{2}=0$
$v_{C M}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}$
$v_{C M}=\frac{10 \times 14+4 \times 0}{10+4}=10 \mathrm{~m} \mathrm{~s}^{-1}$

390 (b)

Let centre of mass of lead sphere after hollowing be at point O_{2}, where $\mathrm{OO}_{2}=x$
Mass of spherical hollow $m=\frac{\frac{4}{3} \pi\left(\frac{R}{2}\right)^{2} M}{\left(\frac{4}{2} \pi R^{3}\right)}=\frac{M}{8}$ and
$x=O O_{1}=\frac{R}{2}$

$\therefore x=\frac{M \times 0-\left(\frac{M}{8}\right) \times \frac{R}{2}}{M-\frac{M}{8}}=\frac{\frac{M R}{16}}{\frac{7 M}{8}}=\frac{-R}{14}$
\therefore shift $\& \frac{R}{14}$
391 (d)
Angular momentum is given by

$$
\begin{aligned}
J= & I \omega=\left(\frac{2 M R^{2}}{5}\right) \omega \\
& i \frac{2 M R^{2}}{5} \times \frac{2 \pi}{T}=\frac{4 \pi M R^{2}}{5 T}
\end{aligned}
$$

Acceleration of each mass $\dot{i} a=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) g$
Now acceleration of centre of mass of the system $A_{c m}=\frac{m_{1} \overrightarrow{a_{1}}+m_{1} \vec{a}_{2}}{m_{1}+m_{2}}$

As both masses move with same acceleration but in opposite direction so $\vec{a}_{1}=-\vec{a}_{2}=a$ (let)

$\therefore A_{c m}=\frac{m_{1} a-m_{2} a}{m_{1}+m_{2}}$
$i\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) \times\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) \times g=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)^{2} \times g$
393 (c)
If speed of man relative to plank be v, then it can be shown easily that speed of man relative to ground
$v_{m g}=v \frac{M}{\left(M+\frac{M}{3}\right)}=\frac{3}{4} v$
\therefore Distance covered by man relative to ground
$i L \frac{v_{m g}}{v}=\frac{L}{v} \frac{3}{4} v=\frac{3 L}{4}$
394 (b)
M.I. of $\operatorname{disc} i \frac{1}{2} M R^{2}=\frac{1}{2} M\left(\frac{M}{\pi t \rho}\right)=\frac{1}{2} \frac{M^{2}}{\pi t \rho}$
$\left(\right.$ As $\rho=\frac{M}{\pi R^{2} t}$ There fore $\left.R^{2}=\frac{M}{\pi t \rho}\right)$
If mass and thickness are same then, $I \propto \frac{1}{\rho}$
$\therefore \frac{I_{1}}{I_{2}}=\frac{\rho_{2}}{\rho_{1}}=\frac{3}{1}$

395 (a)
If $M=M$ ' then bullet will transfer whole of its velocity (and consequently 100% of its KE) to block and will itself come to rest as per theory of collision.

397 (c)
Acceleration $a=\frac{v-u}{t}$

Or $a=\frac{v-v_{0}}{t}$
Or $g=\frac{v-v_{0}}{t}$
$\therefore v=0$
Speed before first bounce
$v_{0}=-5 \mathrm{~m} \mathrm{~s}^{-1}$
$\therefore t=\frac{v_{B}-v_{A}}{g}=\frac{0(-5)}{10}=\frac{5}{10}=0.5 \mathrm{~s}$
399 (a)
$m=0.6 \mathrm{~kg}$

Mass per unit length $i \frac{0.6}{100} \mathrm{kgc} \mathrm{m}^{-1}$
Mass of part $A B, m_{1}=\frac{0.6}{100} \times 20=\frac{0.6}{5} \mathrm{~kg}$
Mass of part $B C, m_{2}=\frac{0.6}{100} \times 80$
Moment of inertia $i \frac{0.6 \times 4}{5}=\frac{2.4}{5} \mathrm{~kg}$

$$
\begin{aligned}
I= & m_{1}\left(\frac{A B}{2}\right)^{2}+m_{2}\left(\frac{B C}{2}\right)^{2} \\
& i \frac{0.6}{5} \times\left(\frac{20}{2} \times 10^{-2}\right)^{2}+\frac{24}{5} \times\left(\frac{80}{2} \times 10^{-2}\right)^{2} \\
& i \frac{0.6}{5} \times 10^{-2}+\frac{2.4}{5} \times\left(4 \times 10^{-1}\right)^{2} \\
& i \frac{0.6}{5} \times 10^{-2}+\frac{2.4}{5} \times 16 \times 10^{-2} \\
& i\left(\frac{0.6+38.4}{5}\right) \times 10^{-2} \\
& i 7.8 \times 10^{-2} \mathrm{~kg}-\mathrm{m}^{2}=0.078 \mathrm{~kg}-\mathrm{m}^{2}
\end{aligned}
$$

400 (a)
$P=\sqrt{p_{x}^{2}+p_{y}^{2}}$
$i \sqrt{(2 \cos t)^{2}+(2 \sin t)^{2}}=2$
If m be the mass of the body, then kinetic energy
$i \frac{p^{2}}{2 m}=\frac{(2)^{2}}{2 m}=\frac{2}{m}$
Since kinetic energy does not change with time, both work done and power are zero
Now Power $=F v \cos \theta=0$

As $F \neq 0, v \neq 0$
$\therefore \cos \theta=0$
Or $\theta=90^{\circ}$
As direction of \vec{p} is same that $\vec{v}(\because \vec{p}=m \vec{v})$ hence angle between \vec{F} and \vec{p} is equal to 90°

401 (b)
Moment of inertia of a ring about an axis passing through the centre $i M R^{2}=1 \times R^{2}=4$, as $M=1 \mathrm{~kg}$
$\therefore R=2 \mathrm{~m}$, Diameter $D=2 R=4 \mathrm{~m}$
402 (b)
$\tau=\frac{d L}{d t}=m \dot{\mathrm{Nm}}$

403 (b)
We calculate moment of inertia of the system about $A D$

Moment of inertia of each of the sphere A and D about
$A D=\frac{2}{5} M a^{2}$
Moment of inertia of each of the sphere B and C about $A D$
$i\left(\frac{2}{5} M a^{2}+M b^{2}\right)$
Using theorem of parallel axes
\therefore Total moment of inertia
$I=\left(\frac{2}{5} M a^{2}\right) \times 2+\left(\frac{2}{5} M a^{2}+M b^{2}\right) \times 2$
$i \frac{8}{5} M a^{2}+2 M b^{2}$
404 (b)
$\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}=2 \times 2+\frac{1}{2} \times 3 \times(2)^{2}=10 \mathrm{rad}$
405 (d)
Sphere possesses both translational and rotational kinetic energy

406 (c)
$a=\frac{g \sin \theta}{1+\frac{K^{2}}{R^{2}}}=\frac{g \sin 30^{\circ}}{1+1}=\frac{g}{4}$

The circular disc of radius R rolls without slipping. Its centre of mass is $C \wedge P$ is point where body is in contact with the surface at any instant. At this instant, each particle of the body moving at right angles to the line which joins the particle with point P with velocity proportional to distance. In other words, the combined translational and rotational motion is equal to

pure rotation and body moves constant in magnitude as well as direction.

408 (c)
$\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2} \Rightarrow 200=\frac{1}{2} \alpha(5)^{2} \Rightarrow \alpha=16 \mathrm{rad} / \mathrm{s}^{2}$

409 (a)
$M g \sin \theta-f=M a$
$f R=I \frac{a}{R} \Rightarrow a=\frac{g \sin \theta}{\left(1+\frac{I}{M R^{2}}\right)}$

411 (b)
Since net external torque is equal to the rate of change of angular momentum

412 (c)

Conservation of angular momentum
$I_{1} \omega_{1}+I_{2} \omega_{2}=\left(I_{1}+I_{2}\right) \omega$
Angular velocity of system $\omega=\frac{I_{1} \omega_{1}+I_{2} \omega_{2}}{I_{1}+I_{2}}$
\therefore Rotational kinetic energy $i \frac{1}{2}\left(I_{1}+I_{2}\right) \omega^{2}$
$i \frac{1}{2}\left(I_{1}+I_{2}\right)\left(\frac{I_{1} \omega_{1}+I_{2} \omega_{2}}{I_{1}+I_{2}}\right)=\frac{\left(I_{1} \omega_{1}+I_{2} \omega_{2}\right)^{2}}{2\left(I_{1}+I_{2}\right)}$
413 (c)
$I=\frac{M L^{2}}{12}=\frac{(m \times 2 L) \times(2 L)^{2}}{12}=\frac{m \times 2 L \times 4 L^{2}}{12}=\frac{2 m}{3}$
414 (a)

Given, $r=0.4 m, \alpha=8 \mathrm{rad} \mathrm{s}^{-2}$
$m=4 \mathrm{~kg}, I=$?
Torque, $\tau=I \alpha=m g r=4 \times 10 \times 0.4=I \times 8$
$\Rightarrow I=\frac{16}{8}=2 \mathrm{~kg}-\mathrm{m}^{2}$

415 (c)

Moment of inertia of the system about axis $A X$,
$i I_{A}+I_{B}+I_{C}$
$i m_{A}\left(r_{A}\right)^{2}+m g\left(r_{B}\right)^{2}+m c\left(r_{C}\right)^{2}$
$i m(0)^{2}+m(l)^{2}+m(l \cos 60)^{2}$
$i m l^{2}+\frac{m l^{2}}{4}=\frac{5 m l^{2}}{4}$

416 (a)
Moment of inertia of system about point P
$i 4 m\left(\frac{l}{\sqrt{2}}\right)^{2}=2 m l^{2}$
and $4 m K^{2}=2 m l^{2}$
$\therefore K=\frac{l}{\sqrt{2}}$

417 (a)

Due to net force in downward direction and towards left centre of mass will follow the path as shown in figure

418 (b)

$$
\frac{\text { Rotational } K E}{\text { Total } K E}=\frac{\frac{1}{2} m v^{2}\left(\frac{K^{2}}{R^{2}}\right)}{\frac{1}{2} m v^{2}\left(1+\frac{K^{2}}{R^{2}}\right)}=\frac{K^{2}}{K^{2}+R^{2}}
$$

(b)

When the cylinder rolls up the incline, its angular velocity ω is clockwise and decreasing

This require an anticlockwise angular acceleration α, which is provided by the force of friction (F) acting up the incline
When the cylinder rolls down the incline, its angular velocity ω is anticlockwise and increasing. This requires an anticlockwise angular acceleration α, which is provided by the force of friction (F) acting up the incline

420 (b)
$E=\frac{L^{2}}{2 I} \therefore E \propto L^{2} \Rightarrow \frac{E_{2}}{E_{1}}=\left(\frac{L_{2}}{L_{1}}\right)^{2}$
$\frac{E_{2}}{E_{1}}=\left[\frac{L_{1}+200 \% \text { of } L_{1}}{L_{1}}\right]=\left[\frac{L_{1}+2 L_{1}}{L_{1}}\right]^{2}=(3)^{2} \Rightarrow E_{2}=9$
Increment in kinetic energy
$\Delta E=E_{2}-E_{1}=9 E_{1}-E_{1}$
$\Delta E=8 E_{1} \therefore \frac{\Delta E}{E_{1}}=8$ or percentage increase $=800 \%$
421 (a)
M.I. of system about the axis which passing through m_{1}

$I_{\text {system }}=m_{1}(0)^{2}+m_{2}\left(\frac{a}{2}\right)^{2}+m_{3}\left(\frac{a}{2}\right)^{2}$
$I_{\text {system }}=\left(m_{2}+m_{3}\right) \frac{a^{2}}{4}$
422 (a)

Taking the moment of forces about centre of gravity G is

$$
\begin{gathered}
(1.5) g x=2.5 g(16-x) \\
3 x=80-5 x
\end{gathered}
$$

or

$$
8 x=80 \vee x=10 \mathrm{~cm}
$$

Initially rod stand vertically its potential energy
i $m g \frac{l}{2}$

When it strikes the floor, its potential energy will convert into rotational kinetic energy
$m g\left(\frac{l}{2}\right)=\frac{1}{2} I \omega^{2}$
[Where, $I=\frac{m l^{2}}{3}=i$ M.I. of rod about point A]
$\therefore m g\left(\frac{l}{2}\right)=\frac{1}{2}\left(\frac{m l^{2}}{3}\right)\left(\frac{v_{B}}{l}\right)^{2} \Rightarrow v_{B}=\sqrt{3 g l}$

424 (b)

In free space neither acceleration due to gravity nor external torque act on the rotating solid space.
Therefore, taking the same mass of sphere if radius is increased then moment of inertia, rotational kinetic energy and angular velocity will change but according to law of conservation of momentum, angular momentum will not change.

425 (b)
Rotational kinetic energy $K_{R}=\frac{1}{2} I \omega^{2}$
$K_{R}=\frac{1}{2} \times \frac{M R^{2}}{2} \times \omega^{2}=\frac{1}{4} M v^{2}[\because v=R \omega]$
Translational kinetic energy $K_{T}=\frac{1}{2} M v^{2}$
Total kinetic energy $i K_{T}+K_{R}$
$i \frac{1}{2} M v^{2}+\frac{1}{4} M v^{2}=\frac{3}{4} M v^{2}$
$\frac{\text { Rotational kinetic energy }}{\text { Total kinetic energy }}=\frac{\frac{1}{4} M v^{2}}{\frac{3}{4} M v^{2}}=\frac{1}{3}$
426 (a)
$\omega_{0}=\frac{v}{r}=\frac{72 \times 5 / 18}{0.25}=80 \mathrm{rad} / \mathrm{s}$
$\omega=0, \theta=2 \pi n=2 \pi \times 20=40 \pi \mathrm{rad}$
Substituting these value in equation
$\omega^{2}=\omega_{0}^{2}+2 \alpha \theta$
$\Rightarrow \alpha=\frac{-\omega_{0}^{2}}{2 \times \theta}=\frac{-80 \times 80}{2 \times 40 \pi}=-25.5 \mathrm{rad} / \mathrm{s}^{2}$
428 (a)
In case of pure rolling bottommost point is the instantaneous centre of zero velocity.

Velocity of any point on the disc, $v=r \omega$, where r is distance of point from O.

$$
\begin{array}{ll}
& r_{Q}>r_{C}>r_{P} \\
\therefore \quad & v_{Q}>v_{C}>v_{P}
\end{array}
$$

429 (c)

The centre of mass is given by

$\dot{x}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}$
$\dot{x}=\frac{m \times 0+m \times 1+2 m \times\left(\frac{1}{2}\right)}{m+m+2 m}$
$\dot{x}=\frac{2 m}{4 m}=\frac{1}{2} m$
$\dot{y}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}}$
$\dot{y}=\frac{m \times 0+m \times 0+2 m \times \sqrt{3} / 2}{m+m+2 m}$
$i \frac{\sqrt{3}}{4} m$
\therefore Centre of mass is $\left(\frac{1}{2} m, \frac{\sqrt{3}}{4} m\right)$.

430 (c)
Angular momentum $L=I \omega$ constant
$\therefore I$ increases and ω decreases
$K=\frac{1}{2} m v^{2}=\frac{1}{2} \times \frac{m\left(m v^{2}\right)}{2}=\frac{(m v)^{2}}{m}=\frac{(m v)^{2}}{2 m}$ or
$K=\frac{p^{2}}{2 m}$
$\therefore \frac{K_{1}}{K_{2}}=\frac{p_{1}^{2}}{2 m_{1}} \times \frac{2 m_{2}}{p_{2}^{2}}$ or $\frac{3}{1}=\frac{p_{1}}{p_{2}} \times \frac{6}{2}$
$\therefore p_{1}: p_{2}=1: 1$
435 (a)
As torque $\tau=\frac{d L}{d t}$
If $\tau=0$, then $L=i$ constant.
436 (d)
Here, torque $\tau=1.6 \times 1=1.6 \mathrm{Nm}$
So, when $d=0.4 \mathrm{~m}$,

$$
F=\frac{\tau}{d}=\frac{1.6}{0.4}=4 \mathrm{~N}
$$

437 (d)
As is clear from figure,

On reaching the bottom of the bowl, loss in $\mathrm{PE}=$ $m g R$, and
Gain in $\operatorname{KE} \dot{\mathcal{L}} \frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}$
$i \frac{1}{2} m v^{2}+\frac{1}{2} \times\left(\frac{2}{5} m r^{2}\right) \omega^{2}$
$i \frac{1}{2} m v^{2}+\frac{1}{5} m v^{2}=\frac{7}{10} m v^{2}$
As again in $\mathrm{KE}=$ loss in PE
$\therefore \frac{7}{10} m v^{2}=m g R$
$v=\sqrt{\frac{10 g R}{7}}$
438 (c)
The angular momentum of a moving particle
$J=4 \sqrt{t} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
Torque acting on a moving particle

$$
\begin{aligned}
& \tau=\frac{d J}{d t}=\frac{d}{d t}(4 \sqrt{t})=4 \frac{d \sqrt{t}}{d t}=4\left(\frac{1}{2} t^{1 / 2-1}\right) \\
& \tau=\frac{4}{2} t^{-1 / 2} N m=\frac{2}{\sqrt{t}} N m
\end{aligned}
$$

439 (b)
Here initial momentum $\vec{p}=0$. Since no external force exists, hence momentum must remain conserved ie,

As two fragments of mass mass m each are moving with speed v each at right angles,
$\left|\vec{p}_{1}+\vec{p}_{2}\right|=m \sqrt{v^{2}+v^{2}}=\sqrt{2} m v$
$\therefore\left|\vec{p}_{3}\right|=\left|\vec{p}_{1}+\vec{p}_{2}\right|=2 m v$.
The mass of third fragment is 2 m .
\therefore Kinetic energies of three fragments are
$K_{1}=\frac{p_{1}^{2}}{2 m}=\frac{1}{2} m v^{2}, K_{2}=\frac{p_{2}^{2}}{2 m}=\frac{1}{2} m v^{2}$
And $K_{3}=\frac{p_{3}^{2}}{2(2 m)}=\frac{1}{2} m v^{2}$
Total kinetic energy released during explosion
$\dot{i} K_{1}+K_{2}+K_{3}=\frac{3}{2} m v^{2}$

440 (a)
$\omega=\frac{v}{r} \Rightarrow \omega \propto \frac{1}{r}$
441 (d)
As shown in figure,
$x_{C M}=\frac{M \times 0+M \times 20+M \times 20+M \times 0}{4 M}=10 \mathrm{~cm}$
Similarly $y_{C M}=10 \mathrm{~cm}$
Hence, distance of centre of mass from centre of any one sphere,
Say $r=\sqrt{(10-0)^{2}+(10-0)^{2}}=10 \sqrt{2} \mathrm{~cm}$
442 (c)
$I=I_{C M}+M h^{2}$ (Parallel axis theorem)
444 (b)
If radius of earth decreases then its M.I. decreases
As $L=I \omega \therefore \omega \propto \frac{1}{I} \quad[L=i$ constant $]$
i.e. angular velocity of the earth will increase

445 (c)
Kinetic energy $E=\frac{L^{2}}{2 I}$
If angular momenta are equal, then $E \propto \frac{1}{I}$
Kinetic energy $E=K$ (given in problem)
If $I_{A}>I_{B}$ then $K_{A}<K_{B}$.

446 (c)

When a body is in equilibrium, net force is zero.
Hence, acceleration is zero
$K_{N}=\frac{1}{2} m v^{2}\left(\frac{K^{2}}{R^{2}}+1\right)=\frac{1}{2} \times 2 \times(0.5)^{2} \times\left(\frac{2}{3}+1\right)=0.42$
448 (d)
$\theta=\omega t=\frac{500 \times 2 \pi}{60}=\frac{50 \pi}{3} \mathrm{rad}$
449 (a)
$F=20 t-5 t^{2}$

$$
\begin{aligned}
& \alpha=\frac{F R}{I}=4 t-t^{2} \\
\Rightarrow \quad & \frac{d \omega}{d t}=4 t-t^{2} \\
\Rightarrow \quad & \int_{0}^{\omega} d \omega=\int_{0}^{t}\left(4 t-t^{2}\right) d t \\
\Rightarrow \quad & \omega=2 t^{2}-\frac{t^{3}}{3}
\end{aligned}
$$

When direction is reversed,

$$
\omega=0, i e, t=0,6 \mathrm{~s}
$$

Now, $\quad d \theta=\omega d t$

$$
\begin{aligned}
& \int_{0}^{\theta} d \theta=\int_{0}^{6}\left(2 t^{2}-\frac{t^{3}}{3}\right) d t \\
\Rightarrow \quad & \theta=\left[\frac{2 t^{3}}{3}-\frac{t^{4}}{12}\right]_{0}^{6} \\
\Rightarrow \quad & \theta=144-108=36 \mathrm{rad}
\end{aligned}
$$

\therefore Number of rotations,

$$
n=\frac{\theta}{2 \pi}=\frac{36}{2 \pi}<6
$$

450 (d)
Rotational kinetic energy,

$$
K E=\frac{1}{2} I \omega^{2}
$$

Here, $\omega=1 \mathrm{rad} \mathrm{s}^{-1}$
$\therefore \quad K E=\frac{1}{2} I \times I$
or $\quad I=2 K E$
$i e$, moment of inertia about an axis of a body is twice the rotational kinetic energy.

451 (c)
Here, $\theta=60^{\circ}, l=10 m, a=$?
$a=\frac{g \sin \theta}{1+K^{2} / R^{2}}$
For solid sphere, $K^{2}=\frac{2}{5} R^{2}$
$a=\frac{9.8 \sin 60^{\circ}}{1+\frac{2}{5}}=\frac{5}{7} \times 9.8 \times \frac{\sqrt{3}}{2}=6.06 \mathrm{~m} \mathrm{~s}^{-2}$

453 (d)
Perpendicular to the orbital plane and along the axis of rotation

454 (b)
$I=m r^{2}=10 \times(0.2)^{2}=0.4 \mathrm{~kg}-\mathrm{m}^{2}$
$\omega=2 \pi n=2 \pi \times \frac{2100}{60} \mathrm{rad} / \mathrm{s}$
$\therefore L=I \omega=\frac{0.4 \times 2 \pi \times 210}{6}=88 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
455 (b)
If h is height of the ramp, then in rolling of marble, speed
$v=\sqrt{\frac{2 g h}{1+K^{2} / R^{2}}}$
The speed of the cube to the centre of mass
$v^{\prime}=\sqrt{2 g h}$
$\therefore \frac{v}{v}=\sqrt{1+K^{2} / R^{2}}$
For marble sphere, $K^{2}=\frac{2}{5} R^{2}$
$\therefore \frac{v^{\prime}}{v}=\sqrt{1+\frac{2}{5}}=\sqrt{\frac{7}{5}}=\sqrt{7}: \sqrt{5}$

457 (c)

Moment of inertia $i \frac{1}{2} M R^{2}+m x^{2}$
Where $m=i$ mass of insect,
and $\quad x=i$ distance of insect from centre.
Clearly, as the insect moves along the diameter of the disc, MI first decreases, then increases.
By conservation of angular momentum, angular speed first increases, then decreases.

458 (b)
We know that rate of change of angular momentum
(J) of a body is equal to the external torque (τ) acting upon the body.
ie. $\quad \frac{d J}{d t}=\tau$
Given, $\quad J_{1}=J, J_{2}=5 \mathrm{~J}$
$\therefore \quad \Delta J=J_{2}-J_{1}=5 J-J=4 J$
Hence, $\quad \tau=\frac{4}{5} J$
459 (b)
Since, m_{2} moves with constant velocity

$\therefore f_{2}=m_{2} g$
$f_{2}=8 \times 10=80 \mathrm{~N}$
Since, boy of mass m_{1} moves with acceleration
$a=2 \mathrm{~m} \mathrm{~s}^{-2}$ in upward direction

$\therefore f_{1}=m_{1} g=m_{1} a$
$\therefore f_{1}=m_{1} g=m_{1} a$
¿ $10 \times 10+10 \times=120 \mathrm{~N}$
460 (c)
According to the principle of conservation of angular momentum, in the absence of external torque, the total angular momentum of the system is constant.

461 (a)

As angular momentum is conserved in the absence of a torque, therefore
$I_{0} \omega_{0}=I \omega$
$\left(\frac{2}{3} M R^{2}\right)\left(\frac{2 \pi}{T_{0}}\right)=\left[\frac{2}{5} M R^{2}+\frac{2}{5} \frac{M R^{2}}{5 \times 10^{19}}\right] \frac{2 \pi}{T}$
$\frac{T}{T_{0}}=1+\frac{1}{5 \times 10^{19}}$
$\frac{T}{T_{0}}-1=\frac{1}{5 \times 10^{19}}=2 \times 10^{-20}$
$\frac{T-T_{0}}{T_{0}}=2 \times 10^{-20} \vee \frac{\Delta T}{T_{0}}=2 \times 10^{-20}$
462 (a)
Let p_{1} and p_{2} be the momenta of A and B after collision.

Then applying impulse $=$ change in linear momentum for the two particles

For $B: J=p_{1} \ldots(i)$
For $A: J=p-p_{2}$
Or $p_{2}=p-J \ldots$ (ii)
Coefficient of restitution $e=\frac{P_{1}-P_{2}}{P}$
i $\frac{p_{1}-p+J}{p}$
$i \frac{J-p+J}{p}=\frac{2 J}{p}=-1$
463 (d)
Since ω is constant, v would also be constant. So, no net force or torque is acting on ring. The force experienced by any particle is only along radical direction, or we can say the centripetal force.

The force experienced by inner part, $F_{1}=m \omega^{2} R_{1}$ and the force experienced by outer part, $F_{2}=m \omega^{2} R_{2}$

$$
\frac{F_{1}}{F_{2}}=\frac{R_{1}}{R_{2}}
$$

464 (a)
Initial angular momentum of ring, $L=I \omega=M r^{2} \omega$ Final angular momentum of ring and four particles system
$L=\left(M r^{2}+4 m r^{2}\right) \omega^{\prime}$
As there is no torque on the system therefore angular momentum remains constant
$M r^{2} \omega=\left(M r^{2}+4 m r^{2}\right) \omega^{\prime} \Rightarrow \omega^{\prime}=\frac{M \omega}{M+4 m}$

Moment of inertia of square plate about $X Y$ is $\frac{m a^{2}}{6}$
Moment of inertia about $Z Z$ ' can be computed using parallel axis theorem

466 (a)
$L=\frac{1}{2} M R^{2} \omega=i$ constant $\therefore \omega \propto \frac{1}{R^{2}}[$ If $m=i$
constant]
If radius is reduced to half then angular velocity will be four times

467 (a)

$$
\begin{aligned}
y_{C M}= & \frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}+m_{4} y_{4}+m_{5} y_{5}}{m_{1}+m_{2}+m_{3}+m_{4}+m_{5}} \\
& \quad \frac{(6 m)(0)+m(a)+m(a)+m(0)+m(-a)}{6 m+m+m+m+m}=\frac{a}{10}
\end{aligned}
$$

468 (a)
$F_{1} x+F_{2} x=F_{3} x$
$F_{3}=F_{1}+F_{2}$

470 (a)

Torque is defined as rate of change of angular momentum
$\therefore \quad \tau=\frac{d J}{d t}=\frac{d(I \omega)}{d t}$
Given, $\tau=40 \mathrm{Nm}, I=5 \mathrm{kgm}^{2}, \omega=24 \mathrm{rad} \mathrm{s}^{-1}$

$$
d t=\frac{d(I \omega)}{\tau}=\frac{5 \times 24}{40}=3 \mathrm{~s}
$$

471 (b)
$K_{N}=\frac{1}{2} m v^{2}\left(1+\frac{K^{2}}{R^{2}}\right)=\frac{1}{2} \times 0.41 \times(2)^{2} \times\left(\frac{3}{2}\right)=1.23 \mathrm{~J}$
472 (b)
$K_{R}=50 \%, K_{T}$
$\frac{1}{2} m v^{2}\left(\frac{K^{2}}{R^{2}}\right)=\frac{50}{100} \times \frac{1}{2} m v^{2} \Rightarrow \therefore \frac{K^{2}}{R^{2}}=\frac{1}{2}$
i.e. body will be solid cylinder

473 (d)
From third equation of angular motion,
$\omega^{2}=\omega_{0}^{2}=2 \alpha\left(\right.$ Here $\left., \omega=\frac{\omega_{0}}{2}, \theta=36 \times 2 \pi\right)$
$\therefore\left(\frac{\omega_{0}}{2}\right)^{2}=\omega_{0}^{2}-2 \alpha \times 36 \times 2 \pi$
or $4 \times 36 \pi \alpha=\omega_{0}^{2}-\frac{\omega_{0}^{2}}{4}$
or $\quad 4 \times 36 \pi \alpha=\frac{3 \omega_{0}^{2}}{4}$
or $\quad \alpha=\frac{\omega_{0}^{2}}{16 \times 12 \pi}$
...(i)
According to question again applying the third equation of angular motion

$$
\begin{array}{ll}
& \omega^{2}=\omega_{0}^{2}-2 \alpha \theta(\text { Here }, \omega=0) \\
\therefore & 0=\left(\frac{\omega_{0}}{2}\right)^{2}-2 \times \frac{\omega_{0}^{2} \cdot \theta}{16 \times 12 \pi} \\
\text { or } & \theta=24 \pi \vee \theta=12 \times 2 \pi \\
\text { But } & 2 \pi=1 \text { cycle } \\
\text { So, } & \theta=12 \text { cycle }
\end{array}
$$

$I_{P}>I_{Q}$
$a_{P}=\frac{g \sin \theta}{I_{P}+m R^{2}}$
$a_{Q}=\frac{g \sin \theta}{I_{Q}+m R^{2}}$
$a_{P}>a_{Q} \Rightarrow V=u+a t \Rightarrow t \alpha \frac{1}{a}$
$t_{P}>t_{Q}$
$V^{2}=u^{2}+2 a s \Rightarrow v \propto a \Rightarrow V_{P}<V_{Q}$
Translational K.E. $=\frac{1}{2} m V^{2} \Rightarrow T R K E_{P}<T R K E_{Q}$
$V=\omega R \Rightarrow \omega \propto V \Rightarrow \omega_{P}<\omega_{Q}$
475 (c)
Consider the two cart system as a single system. Due to explosion of power charge total momentum of system remains unchanged ie, $\vec{p}_{1}+\vec{p}_{2}=i$ or
$m_{1} v_{1}=m_{2} v_{2}$,
Hence
$\frac{v_{1}}{v_{2}}=\frac{m_{2}}{m_{1}}$
As coefficient of friction between carts and rails are identical, hence $a_{1}=a_{2}$ and at the time of stopping final velocity of cart is zero. Using equation $v^{2}-u^{2}=2 a s$,

We have
$\frac{s_{1}}{s_{2}}=\frac{v_{1}^{2}}{v_{2}^{2}}=\frac{m_{2}^{2}}{m_{1}^{2}} \Rightarrow s_{2}=\frac{s_{1} m_{1}^{2}}{m_{2}^{2}}=\frac{36 \times(200)^{2}}{(300)^{2}}=16 \mathrm{~m}$
476 (d)
Moment of inertia of a circular disc about an axis passing through centre of gravity and perpendicular to its plane

$$
I=\frac{1}{2} M R^{2}
$$

...(i)
From Eq.(i)

$$
M R^{2}=2 I
$$

Then, moment of inertia of disc about tangent in a plane

$$
i \frac{5}{4} M R^{2}=\frac{5}{4}(2 I)=\frac{5}{2} I
$$

477 (c)
$K_{N}=\frac{1}{2} m v^{2}\left(1+\frac{K^{2}}{R^{2}}\right)=\frac{1}{2} \times 50 \times(5)^{2} \times\left(1+\frac{2}{5}\right)$ i875erg

479 (a)
$x_{1}+x_{2}=r \quad \ldots$ (i)
$m_{1} x_{1}=m_{2} x_{2}$
From Eqs. (i) and (ii)
$x_{1}=\frac{m_{2} r}{m_{1}+m_{2}}$
and $\quad x_{2}=\frac{m_{1} r}{m_{1}+m_{2}}$
$\therefore I_{A B}=m_{1} x_{1}^{2}+m_{2} x_{2}^{2}$
$i \frac{m_{1} m_{2} r^{2}}{m_{1}+m_{2}}$
480 (d)
Moment of inertia of the system about rod x, figure

$I=I_{x}+I_{y}+I_{z}=0+\left(\frac{M l^{2}}{12}+\frac{M l^{2}}{4}\right)+M l^{2}$
$i \frac{4}{3} M l^{2}$
481 (b)
$\frac{3}{2} M R^{2}=\frac{3}{2} \times 2 \times(0.1)^{2}=0.03 \mathrm{~kg}-\mathrm{m}^{2}$
482 (b)
$\vec{r}_{c m}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}}=\frac{1(\hat{i}+2 \hat{j}+\hat{k})+3(-3 \hat{i}-2 \hat{j}+\hat{k})}{1+3}$
$\Rightarrow \vec{r}_{c m}=-2 \hat{i}-\hat{j}+\hat{k}$
483 (b)
$K=\frac{1}{2} m v^{2}\left(1+\frac{k^{2}}{R^{2}}\right)$
$i \frac{1}{2} \times 0.41 \times(2)^{2} \times\left(\frac{3}{2}\right)$
i 1.23 J
484 (b)
As net external force on the system is zero therefore position of their centre of mass remains unaffected i. e. they will hit each other at the point of centre of mass.
The centre of mass of the system lies nearer to A because $m_{A}>m_{B}$

486 (c)
$L_{1}=L_{2}$
$I \omega-m v R=\left(I+m R^{2}\right) \omega^{\prime} \Rightarrow \omega^{\prime}=\frac{I \omega-m v R}{\left(I+m R^{2}\right)}$
487 (b)
Moment of inertia of a ring of mass M and radius R about an axis passing through the centre and perpendicular to the plane
$I=M R^{2}$
Moment of inertia of a ring about its diameter
$I_{\text {diameter }}=\frac{M R^{2}}{2}=\frac{I}{2} \quad[\operatorname{Using}(\mathrm{i})]$
488 (b)
Here, $r=0.5 \mathrm{~m}, m=2 \mathrm{~kg}$
Rotational $K E \subset \frac{1}{2} I \omega^{2}=\frac{1}{2} \times\left(\frac{1}{2} m r^{2}\right) \omega^{2}$
$4=\frac{1}{4} m v^{2}=\frac{1}{4} \times 2 v^{2}$
$v=\sqrt{8}=2 \sqrt{2} m^{-1}$
489 (a)
A hoop is a circular ring. Applying theorem of
parallel axes,
$I=I_{0}+M R^{2}=M R^{2}+M R^{2}=2 M R^{2}$
490 (c)
$m_{1}=1, m_{2}=35.5, \vec{r}_{1}=0, \vec{r}_{2}=1.27 \hat{i}$
$\vec{r}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}}$
$\vec{r}=\frac{35.5 \times 1.27}{1+35.5} \hat{i}$
$\vec{r}=\frac{35.5}{36.5} \times 1.27 \hat{i}=1.24 \hat{i}$

491 (c)
The rolling sphere has rotational as well as translational kinetic energy.
$\therefore \quad$ Kinetic energy $i \frac{1}{2} m u^{2}+\frac{1}{2} I \omega^{2}$

$$
i \frac{1}{2} m u^{2}+\frac{1}{2}\left(\frac{2}{5} m r^{2}\right) \omega^{2}
$$

$i \frac{1}{2} m u^{2}+\frac{1}{5} m u^{2}=\frac{7}{10} m u^{2}(\because u=r \omega)$
From conservation of energy
ie,

$$
\begin{aligned}
m g h & =\frac{7}{10} m u^{2} \\
h & =\frac{7 u^{2}}{10 g}
\end{aligned}
$$

492 (a)
Hollow cylinder will take more time to reach the bottom because it possess larger moment of inertia

494 (c)
Moment of inertia $I=M R^{2}$
$M=i$ mass of object,
$R=i$ distance of centre of mass from axis of rotation.
Hence, moment of inertia does not depend upon angular velocity.

495 (d)
Since, in the given cause $V_{C M}$ is zero, so its linear momentum will also be zero.
(b)

Angular momentum $=$ linear momentum \times Perpendicular distance of line of action of linear momentum from the axis of rotation $i m v \times l$

497 (c)
$I=\frac{7}{5} M R^{2}=\frac{7}{5} \times 10 \times(0.5)^{2}=3.5 \mathrm{~kg}-\mathrm{m}^{2}$

498 (b)
We know

$$
L=I \omega
$$

$$
\begin{equation*}
L^{2}=2 K I \tag{i}
\end{equation*}
$$

From Eq. (i)

$$
\begin{aligned}
L^{2} & =2 K \frac{L}{\omega} \\
L & =\frac{2 K}{\omega} \\
L^{\prime} & =\frac{2\left(\frac{K}{2}\right)}{2 \omega}=\frac{L}{4}
\end{aligned}
$$

499 (a)
For collision between blocks A and B,
$e=\frac{v_{B}-v_{A}}{u_{A}-u_{B}}=\frac{v_{B}-v_{A}}{10-0}=\frac{v_{B}-v_{A}}{10}$
$\therefore v_{B}-v_{A}=10 e=10 \times 0.5=5$
from principle of momentum conservation,
$m_{A} u_{A}+m_{B} u_{B}=m_{A} v_{A}+m_{B} v_{B}$
Or $m \times 10+0=m v_{A}+m v_{B}$
$\therefore v_{A}+v_{B}=10$ \qquad
Adding Eqs. (i) and (ii), we get
$v_{B}=7.5 \mathrm{~m} \mathrm{~s}^{-1} \ldots$ (iii)
Similarly for collision between B and C
$v_{C}-v_{B}=7.5 e=7.5 \times 0.5=3.75$
$\therefore v_{C}-v_{B}=3.75 \mathrm{~m} \mathrm{~s}^{-1}$
Adding Eqs. (iii) and (iv) we get
$2 v_{C}=11.25$
$\therefore v_{C}=\frac{11.25}{2}=5.6 \mathrm{~m} \mathrm{~s}^{-1}$
500 (c)
Momentum of 6 kg piece $p_{2}=\dot{i}$ momentum of 3 kg piece
$p_{1}=m_{1} v_{1}=3 \times 16=48 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Kinetic energy of 6 kg piece
$K_{2}=\frac{p_{2}^{2}}{2 m_{2}}=\frac{4 \times 48}{2 \times 8}=192 \mathrm{~J}$.

Time of descent $\propto \frac{K^{2}}{R^{2}}$
Order of value of $\frac{K^{2}}{R^{2}}$, sphere $<$ Disc $<$ Ring
(0.4)

It means sphere will reach the ground first and at last ring will reach the bottom

502 (b)
Here, $m=0.08 \mathrm{~kg}$
$m_{0}=0.16 \mathrm{~kg}$
According to conservation principle of momentum $m v_{1}+m v_{2}=\left(2 m+m_{0}\right) v_{C M}$

$\therefore v_{C M}=\frac{m v_{1}+m v_{2}}{2 m+m_{0}}$
i $\frac{0.08 \times 16}{0.16+0.16}=\frac{1.28}{1.32}$
i $\frac{128}{32}=4 \mathrm{~ms}^{-1}$

503 (c)

From law of conservation of angular momentum,

$$
\begin{array}{rlrl}
J & =I \omega=\text { iconstant } \\
\therefore & I_{1} \omega_{1} & =I_{2} \omega_{2}
\end{array}
$$

where I is moment of inertia and ω the angular velocity.
Moment of inertia of earth assuming it be a sphere of radius

$$
\begin{aligned}
& \quad R=\frac{2}{5} M R^{2} \\
& \text { Also } \quad \omega=\frac{2 \pi}{T} \\
& \therefore \quad\left(\frac{2}{5} M R_{1}^{2}\right)\left(\frac{2 \pi}{T_{1}}\right)=\left(\frac{2}{5} M R_{2}^{2}\right)\left(\frac{2 \pi}{T_{2}}\right) \\
& \Rightarrow \quad \\
& \Rightarrow \quad \frac{R_{1}^{2}}{T_{1}}=\frac{R_{2}^{2}}{T_{2}} \\
& \Rightarrow \quad \frac{R_{1}^{2}}{24}=\left(\frac{R_{1}}{2}\right)^{2} \times \frac{1}{T_{2}} \\
& \Rightarrow \quad T_{2}=6 \mathrm{~h}
\end{aligned}
$$

$M v=\frac{M}{4} v_{1}+\frac{3}{4} M v_{2}$
$M v=\frac{3}{4} M v_{2}\left(\therefore v_{1}=0\right)$
$v_{2}=\frac{4 v}{3}$
505 (b)
If external force is non-zero then acceleration of centre of mass must be non-zero $\left(a_{0}=\frac{F_{e x t}}{M} \neq 0\right)$.
However, at a particular instant of time velocity of centre of mass may be zero or non-zero. Hence option (b) is correct.

506 (a)
M.I. of ring about diameter $I=\frac{M R^{2}}{2}$
$\because L=\pi R \therefore R=L / \pi$
From equation (i), $I=\frac{M L^{2}}{2 \pi^{2}}$
507 (c)
The velocity of the top point of the wheel is twice that of centre of mass and the speed of centre of mass is same for both the wheels (Angular speeds are different)

508 (a)
Let ω be the angular velocity of the rod. Applying, Angular impulse $=$ change in angular momentum about centre of mass of the system

$$
\begin{aligned}
& J \cdot \frac{L}{2}=I_{c} \omega \\
\therefore & (M v)\left(\frac{L}{2}\right)=(2)\left(\frac{M L^{2}}{4}\right) \cdot \omega \\
\therefore \quad & \omega=\frac{v}{L}
\end{aligned}
$$

509 (a)

When a body rolls down without slipping along an inclined plane of inclination θ, it rotates about a horizontal axis through its centre of mass and also its centre of mass moves. Therefore, rolling motion may be regarded as a rotational motion about an axis through its centre of mass plus a translational motion of the centre of mass. As it rolls down, it suffers loss
in gravitational potential energy provided translational energy due to frictional force is converted into rotational energy.

510 (a)

If no external torque acts on a system of particle then angular momentum of the system remains constant, that is,

$$
\begin{array}{cc}
& \tau=0 \\
\Rightarrow & \frac{d L}{d t}=0 \\
\Rightarrow & L=I \omega=\dot{\text { c constant }} \\
\Rightarrow & I_{1} \omega_{1}=I_{2} \omega_{2} \\
\therefore & \frac{1}{2} M r^{2} \omega_{1}=\frac{1}{2}(M+2 m) r^{2} \omega_{2}
\end{array}
$$

...(i)
Here, $M=2 \mathrm{~kg}, m=i 0.25 \mathrm{~kg}, r=i 0.2 \mathrm{~m}$.

$$
\omega_{1}=30 \mathrm{rad} \mathrm{~s}^{-1}
$$

Hence, we get after putting the given values in Eq. (i)

$$
\begin{array}{ll}
\frac{1}{2} \times 2 \times(0.2)^{2} \times 30=\frac{1}{2} \times(2+2 \times 0.25)(0.2)^{2} \times \omega_{2} \\
\Rightarrow & 60=2.5 \omega_{2} \\
\therefore & \omega_{2}=24 \mathrm{rads}^{-1}
\end{array}
$$

511 (d)
Applying conservation of angular momentum about point O,

$m(a)(2 v)+2 m(2 a)(v)=I \omega$
or $\omega=\frac{6 m a v}{I}$
Now,

$$
\begin{aligned}
I= & \frac{6 m(8 a)^{2}}{12}+m(a)^{2}+2 m(2 a)^{2} \\
& i 32 m a^{2}+m a^{2}+8 m a^{2}=41 m a^{2}
\end{aligned}
$$

Hence, from Eq.(i)

$$
\omega=\frac{6 m a v}{41 m a^{2}}=\frac{6 v}{41 a}
$$

512 (d)

Angle turned by the body

$$
\theta=\theta_{0}+\theta_{1} t+\theta_{2} t^{2}
$$

Angular velocity $\omega=\frac{d \theta}{d t}$

$$
\begin{aligned}
& i \frac{d}{d t}\left(\theta_{0}+\theta_{1} t+\theta_{2} t\right) \\
& i \theta_{1}+2 \theta_{2} t
\end{aligned}
$$

Angular acceleration $\alpha=\frac{d \omega}{d t}$

$$
i \frac{d}{d t}\left(\theta_{1}+2 \theta_{2} t\right)
$$

¿ $2 \theta_{2}$
513 (b)
Initial position of centre of mass $r_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}$

If the particles of mass m_{1} is pushed towards the centre of mass of the system through distance d and to keep the centre of mass at the original position let second particle be displaced through distance d^{\prime} away from the centre of mass
Now $r_{c m}=\frac{m_{1}\left(x_{1}+d\right)+m_{2}\left(x_{2}+d^{\prime}\right)}{m_{1}+m_{2}}$
Equating (i) and (ii)
$\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}=\frac{m_{1}\left(x_{1}+d\right)+m_{2}\left(x_{2}+d^{\prime}\right)}{m_{1}+m_{2}}$
By solving $d^{\prime}=\frac{-m_{1}}{m_{2}} d$
Negative sign shows that particle m_{2} should be displaced towards the centre of mass of the system

514 (c)

Here $\theta=60^{\circ}, l=10 m, a=$?

$$
a=\frac{g \sin \theta}{1+K^{2} / R^{2}}
$$

For solid sphere $K^{2}=\frac{2}{5} R^{2}$

$$
a=\frac{9.8 \sin 60^{\circ}}{1+\frac{2}{5}}=\frac{5}{7} \times 9.8 \times \frac{\sqrt{3}}{2}=6.00 \mathrm{~m} \mathrm{~s}^{-2}
$$

The (x, y, z) coordinates of masses $1 g, 2 g, 3 g$ and $4 g$ are
$\left(x_{1}=0, y_{1}=0, z_{1}=0\right),\left(x_{2}=0, y_{2}=0, z_{2}=0\right)$, $\left(x_{3}=0, y_{3}=0, z_{3}=0\right)$, $\left(x_{4}=\alpha, y_{4}=2 \alpha, z_{4}=3 \alpha\right)$
$\therefore X_{C M}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}$
$X_{C M}=\frac{1 \times 0+2 \times 0+3 \times 0+4 \times \alpha}{1+2+3+4}$
$1=\frac{4 \alpha}{10}$ or $\alpha=\frac{5}{2}$
The value of α can also be calculated by $Y_{C M}$ and $Z_{C M}$ as shown below
$Y_{C M}=\frac{1 \times 0+2 \times 0+3 \times 0+4 \times 2 \alpha}{1+2+3+4}$
$2=\frac{8 \alpha}{10}$ or $\alpha=\frac{20}{8}=\frac{5}{2}$
$Z_{C M}=\frac{1 \times 0+2 \times 0+3 \times 0+4 \times 3 \alpha}{1+2+3+4}$
$3=\frac{12 \alpha}{10}$ or $\alpha=\frac{30}{12}=\frac{5}{2}$
516 (a)
For the calculation of the position of centre of mass, cut off mass is taken as negative. The mass of disc is $m_{1}=\pi r_{1}^{2} \sigma$

i $\pi(6)^{2} \sigma=36 \pi \sigma$
Where σ is surface mass density
The mass of cutting portion is
$m_{2}=\pi(1)^{2} \sigma=\pi \sigma$
$x_{C M}=\frac{m_{1} x_{1}-m_{2} x_{2}}{m_{1}-m_{2}}$
Taking origin at the centre of disc,
$x_{1}=0, x_{2}=3 \mathrm{~cm}$
$x_{C M}=\frac{36 \pi \sigma \times 0-\pi \sigma \times 3}{36 \pi \sigma-\pi \sigma}=\frac{-3 \pi \sigma}{35 \pi \sigma}=\frac{-3}{35} \mathrm{~cm}$
517 (b)
$m_{1} v=\left(m_{1}+m_{2}\right) v / 3$
$3 m_{1} v=m_{1} v+m_{2} v$
$3 m_{1} v-m_{1} v=m_{2} v$
$2 m_{1} v=m_{2} v$
$\therefore \frac{m_{2}}{m_{1}}=2$

518 (b)
Since there is no external torque, angular momentum will remain conserved. The moment of inertia will first decrease till the tortoise moves from A to C and then increase as it moves from C to D. Therefore ω will initially increase and then decrease

Let R be the radius of platform m the mass of tortoise and M is the mass of platform
Moment of inertia when the tortoise is at A
$I_{1}=m R^{2}+\frac{M R^{2}}{2}$
and moment of inertia when the tortoise is at B
$I_{2}=m r^{2}+\frac{M R^{2}}{2}$
Here $r^{2}=a^{2}+\left[\sqrt{R^{2}-a^{2}}-v t\right]^{2}$
From conservation of angular momentum $\omega_{0} I_{1}=\omega_{(t)} I_{2}$
Substituting the values we can found that the variation of $\omega_{(t)}$ is non linear

519 (c)

$$
E=\frac{L^{2}}{2 I} \Rightarrow L=\sqrt{2 E I}
$$

520 (c)
Distance between the centre of spheres $=12 R$
\therefore Distance between their surfaces $=12$
$R-(2 R+R)=9 R$
Since there is no external force, hence centre of mass must remain unchanged and hence
$\Rightarrow m_{1} r_{1}=m_{2} r_{2} \Rightarrow M x=5 M(9 R-x) \Rightarrow x=7.5 R$
521 (d)
Work done by retarding force $=$ change in kinetic energy
$-f s=0-\frac{1}{2} m v^{2}$
$\therefore f s=\frac{1}{2} m v^{2}$
Since, retarding force f and kinetic energy of both bodies are same so, stopping distance will be same.

Hence, (a) is correct.
$a=\frac{f}{m}$
$\therefore v^{2}=u^{2}-2$ as
Or $0=u^{2}-2 a s$
$\therefore u^{2}=2 a s=\frac{2 s f}{m}$
$\therefore u \propto \frac{1}{\sqrt{3}}$
It means more is the mass, less is the initial speed
$\therefore v=u-a t$
Or $0=u-a t$
$\therefore t=\frac{u}{a}=\frac{u}{\frac{f}{m}}=\frac{u m}{f}$
$\therefore t \propto m$
Hence, more is the mass, less is the time of stopping.
Hence, (b) is correct
$\because K E=K=\frac{p^{2}}{2 m}$
$\therefore p^{2} \propto m$
It means more is the mass, more is the momentum
Hence, (c) is correct.
523 (d)
Let the mass of loop P (radius $\dot{i} r) \dot{i} m$
So the mass of loop Q (radius $\dot{i} n r i=n m$

Moment of inertia of loop $P, I_{P}=m r^{2}$
Moment of inertia of loop $Q, I_{Q}=n m(n r)^{2}=n^{3} m r^{2}$
$\therefore \frac{I_{Q}}{I_{P}}=n^{3}=8 \Rightarrow n=2$

524 (a)

$15 m+10 m=m v_{1}+m v_{2}$
$25=v_{1}+v_{2}$
And $\frac{v_{2}-v_{1}}{u_{1}-u_{2}}=1$
$\Rightarrow \frac{v_{2}-v_{1}}{15-10}=1$
$\Rightarrow v_{2}-v_{1}=5$
Solving Eqs. (i) and (ii), we have
$v_{2}=15 \mathrm{~m} \mathrm{~s}^{-1}, v_{1}=10 \mathrm{~m} \mathrm{~s}^{-1}$

(c)

$\omega^{2}=\omega_{0}^{2}-2 \alpha \theta \Rightarrow 0=4 \pi^{2} n^{2}-2 \alpha \theta$
$\theta=\frac{4 \pi^{2}\left(\frac{1200}{60}\right)^{2}}{2 \times 4}=200 \pi^{2} \mathrm{rad}$
$\therefore 2 \pi n=200 \pi^{2} \Rightarrow n=100 \pi=314$ revolution
526 (a)
M.I. of rod (1) about $Z-i$ axis, $I_{1}=\frac{M l^{2}}{3}$
M.I. of $\operatorname{rod}(2)$ about $Z-i$ axis, $I_{2}=\frac{M l^{2}}{3}$
M.I. of $\operatorname{rod}(3)$ about $Z-i$ axis, $I_{3}=0$

Because this rod lies on Z-axis
$\therefore I_{\text {system }}=I_{1}+I_{2}+I_{3}=\frac{2 M l^{2}}{3}$

527 (c)
$I=M R^{2} \therefore \log I=\log M+2 \log R$
Differentiating, we get $\frac{d I}{I}=0+2 \frac{d R}{R}$
$\therefore \frac{d I}{I} \times 100=2\left(\frac{d R}{R}\right) \times 100$
$i 2 \times \frac{1}{100} \times 100=2 \%$
528 (a)
Linear momentum p and kinetic energy K are interrelated as
$K=\frac{p^{2}}{2 m}$ or $p=\sqrt{2 m K}$, hence zero momentum implies zero kinetic energy and vice versa.

529 (b)

Angular momentum about rotational axis
$L_{t}=\left[I+m(v t)^{2}\right] \omega$
$\frac{d L_{t}}{d t}=2 m v^{2} t \omega$;
Torque $\tau=\left(2 m v^{2} \omega\right) t$

530 (d)
Moment of inertia of the cylinder about an axis perpendicular to the axis of the cylinder and passing through the centre is
$I=M\left(\frac{R^{2}}{4}+\frac{L^{2}}{12}\right)$
If ρ is volume density of the cylinder, then
$M=\left(\pi R^{2} L\right) \rho=i$ constant
$\therefore L=\frac{M}{\pi R^{2} \rho}$
Put in Eq. (i),
$I=M\left(\frac{R^{2}}{4}+\frac{M^{2}}{12 \pi^{2} R^{4} \rho^{4}}\right)$
For I to be minimum, $\frac{\partial I}{\partial R}=0$
$\frac{\partial I}{\partial R}=M\left(\frac{R}{2}-\frac{M^{2}}{3 \pi^{2} R^{5}}\right)=0$
$\frac{R}{2}=\frac{M^{2}}{3 \pi^{2} \rho^{2} R^{5}} \vee R^{6}=\frac{2 M^{2}}{3 \pi^{2} \rho^{2}}$
Using Eq. (ii), $R^{6}=\frac{2 \pi^{2} R^{4} L^{2} \rho^{2}}{3 \pi^{2} \rho^{2}}$
or $R^{2}=\frac{2}{3} L^{2} \vee \frac{L^{2}}{R^{2}}=\frac{3}{2}$
or $\frac{L}{R}=\sqrt{3 / 2}$
531 (b)
Angular of the body is given by

$$
L=I \omega
$$

or $\quad L=I \times \frac{2 \pi}{T} \vee L \propto \frac{1}{T}$
$\Rightarrow \quad \frac{L_{1}}{L_{2}}=\frac{T_{2}}{T_{1}}$

$$
\frac{L}{L_{2}}=\frac{2 T}{T}
$$

$\left(A s, T_{2}=2 T\right)$
So, $\quad L_{2}=\frac{L}{2}$
Thus, on doubling the time period, angular momentum of body becomes half.

532 (a)
$\omega_{1}=\frac{900}{60} \times 2 \pi=30 \pi \mathrm{rad} / \mathrm{s}, \omega_{f}=0, t=60 \mathrm{~s}$
$\omega_{f}=\omega_{t}+\alpha t \therefore \alpha=\frac{\omega_{f}-\omega_{t}}{t}=\frac{0-30 \pi}{60}=\frac{-\pi}{2} \mathrm{rad} / \mathrm{s}^{2}$

A solid sphere is rotating in free space, so there is no external torque.
$i e, \quad \tau=0$
But the rate of change of angular momentum is equal to the torque.
then $\quad \frac{d J}{d t}=0$
or $\quad d J=0$
or $\quad J=$ iconstant
But $J=J \omega$, if we increase the radius of the sphere then its moment of inertia $\left(I=\frac{2}{5} M R^{2}\right)$ increases.
From $J=I \omega$, its angular velocity decreases.
Also we know that the rotational energy

$$
K_{r}=\frac{J^{2}}{2 I}
$$

Hence, K_{r} decreases as I is increases.

534 (b)

The motion of the centre of mass is the result of external forces.

536 (d)

Torque acting on a body in circular motion is zero.
537 (b)
From conservation of angular momentum ($I \omega=$ constant), angular velocity will remain half. As,

$$
K=\frac{1}{2} I \omega^{2}
$$

The rotational kinetic energy will become half.
538 (a)
$K_{N}=\frac{1}{2} m v^{2}\left(1+\frac{K^{2}}{R^{2}}\right)=\frac{1}{2} m v^{2}\left(1+\frac{2}{5}\right)=\frac{7}{10} m v^{2}$
539 (d)
If n masses are equal

$$
m_{1}=m_{2}=m_{3}=\ldots=m_{n}
$$

Then position vector of centre of mass.
The coordinate of the centre of mass

$$
\begin{aligned}
(x, y)= & \left(\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}, \frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}}\right) \\
& i\left(\frac{m+2 m+3 m}{3 m}, \frac{m+2 m+3 m}{3 m}\right) \\
& i\left(\frac{6 m}{3 m}, \frac{6 m}{3 m}\right) \\
& i(2,2)
\end{aligned}
$$

540 (a)

Here, $m_{1}=1 \mathrm{~kg}, \vec{v}_{1}=2 \hat{i}$
$m_{2}=2 \mathrm{~kg}, \vec{v}_{2}=2 \cos 30 \hat{i}-2 \sin 30 \hat{j}$
$\vec{v}_{C M}=\frac{m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}}{m_{1}+m_{2}}$
$i \frac{1 \times 2 \hat{i}+2\left(2 \cos 30^{\circ} \hat{i}-2 \sin 30^{\circ} \hat{j}\right)}{1+2}$
$i \frac{2 \hat{i}+2 \sqrt{3} \hat{i}-2 \hat{j}}{3}=\left(\frac{2+2 \sqrt{3}}{3}\right) \hat{i}-\frac{2}{3} \hat{j}$
541 (b)
$E=\frac{L^{2}}{2 I}$. If boy stretches his arm then moment of inertia increases and accordingly kinetic energy of the system decreases because $L=i$ constant and $E \propto \frac{1}{I}$

542 (b)

$I=I_{c m}+m x^{2}=\frac{m l^{2}}{12}+m x^{2}=m\left(\frac{(1)^{2}}{12}+(0.3)^{2}\right)$
$i 0.6\left(\frac{1}{12}+0.09\right)=0.104 \mathrm{~kg}-\mathrm{m}^{2}$
543 (b)
$n_{1}=20 \mathrm{rev} / \mathrm{s}, n_{2}=0, t=20 \mathrm{~s}$
$\alpha=\frac{2 \pi\left(n_{2}-n_{1}\right)}{t}=\frac{-2 \pi \times 20}{20}=-2 \pi \mathrm{rad} / \mathrm{s}^{2}$

544 (b)

According to theorem of parallel axes, moment of inertia of a rod about one if its ends
$i \frac{M l^{2}}{12}+\frac{M l^{2}}{4}=\frac{M l^{2}}{3}$
\therefore Moment of inertia of two rods about Z-
axis=Moment of inertia of 2 rods placed along X and Y-axis $i \frac{2 M l^{2}}{3}$

546 (d)

We know that velocity of 2nd ball after collision is given by
$v_{2}=\frac{u_{1}(1+e) m_{1}}{\left(m_{1}+m_{2}\right)}+u_{2} \frac{\left(m_{2}-m_{1} e\right)}{\left(m_{1}+m_{2}\right)}$
In present problem $u_{2}=0, m_{2}=2 m_{1}$ and $e=2 / 3$, hence
$v_{2}=\frac{u\left(1+\frac{2}{3}\right) m_{1}}{\left(m_{1}+2 m_{1}\right)}=\frac{5}{9} u$
As four exactly similar type of collisions are taking place successively, hence velocity communicated to fifth ball
$v_{5}=\left(\frac{5}{9}\right)^{4} u$

548 (c)

As per conservation law of momentum
$0=4 v+(A-4) v_{r}$
\therefore Recoil speed $v_{r}=\frac{4 v}{(A-4)}$
549 (d)
When C collides with B then due to impulsive force, combined mass $(B+C)$ starts to move upward.
Consequently the string becomes slack
550 (d)
As there is no net external force, hence motion of centre of mass of fragments should have been as before.

551 (b)
$r_{1}=0, r_{2}=P Q, r_{3}=P R$
Distance of centre of mass from P is

$$
r=\frac{r_{1}+r_{2}+r_{3}}{3}=\frac{0+P Q+P R}{3}=\frac{P Q+P R}{3}
$$

553 (c)
$F=\frac{\Delta p}{\Delta t}=v \frac{\Delta m}{\Delta t}=v \frac{n m}{t}$
$F=v m \frac{n}{60}=\frac{m v n}{60}$
554 (a)
Since ω is constant, v would also be constant, so, no net force or torque is acting on ring. The force experienced by any particle is only along radial direction, or we can say the centripetal force
Dd
The force experienced by inner part $F_{1}=m \omega^{2} R_{1}$ and the force experienced by outer part, $F_{2}=m \omega^{2} R_{1}$
$\therefore \frac{F_{1}}{F_{2}}=\frac{m R_{1} \omega^{2}}{m R_{2} \omega^{2}}=\frac{R_{1}}{R_{2}}$

555 (d)
Moment of inertia of system about $Y Y^{\prime}$
$I=I_{1}+I_{2}+I_{3}$
$i \frac{1}{2} M R^{2}+\frac{3}{2} M R^{2}+\frac{3}{2} M R^{2}$
$i \frac{7}{2} M R^{2}$

556 (a)
As we know that at the highest point, the shell has only the horizontal component of velocity which is $v \cos \theta$. If u be he velocity of second exploded piece, then applying conservation of linear momentum along x-axis
$\therefore 2 m v \cos \theta=-m v \cos \theta+m u$
Or $u=3 v \cos \theta$
557 (b)
We assume that origin is situated at the O_{1}
$\therefore x_{1}=0, m_{1}-m$,
$x_{2}=3 a, m_{2}=2 m$
$\therefore x_{C M}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}$
$i \frac{m \times 0+2 m \times 3 a}{m+2 m}$
$i \frac{6 m a}{3 m}=2 a$

558 (b)

Kinetic energy will not be conserved because friction force is acting at the point of contact with the plane.
But torque of this force about point of contact will be zero. So angular momentum of the sphere about point of contact will be conserved
$\vec{\tau}=\frac{d \vec{L}}{d t}$, if $\vec{\tau}=0$ then $\vec{L}=i$ constant

559 (c)

According to problem disc is melted and recasted into a solid sphere so their volume will be same
$V_{\text {Disc }}=V_{\text {Sphere }} \Rightarrow \pi R_{\text {Disc }}^{2} t=\frac{4}{3} \pi R_{\text {Sphere }}^{3}$
$\Rightarrow \pi R_{\text {Disc }}^{2}\left(\frac{R_{\text {Disc }}}{6}\right)=\frac{4}{3} \pi R_{\text {Sphere }}^{3}\left[t=\frac{R_{\text {Disc }}}{6}\right.$, given $]$
$\Rightarrow R_{\text {Disc }}^{3}=8 R_{\text {Sphere }}^{3} \Rightarrow R_{\text {Sphere }}=\frac{R_{\text {Disc }}}{2}$
Moment of inertia of disc $I_{\text {Disc }}=\frac{1}{2} M R_{\text {Disc }}^{2}=I$
[Given]
$\therefore M\left(R_{\text {Disc }}\right)^{2}=2 I$
Moment of inertia of sphere $I_{\text {Sphere }}=\frac{2}{5} M R_{\text {Sphere }}^{2}$
$i \frac{2}{5} M\left(\frac{R_{\text {Disc }}}{2}\right)^{2}=\frac{M}{10}\left(R_{\text {Disc }}\right)^{2}=\frac{2 I}{10}=\frac{I}{5}$
560 (d)
M.I. of $\operatorname{disc} i \frac{1}{2} m R^{2}=\frac{1}{2}\left(\pi R^{2} t\right) \rho R^{2}=\frac{1}{2} \pi R^{4} t \rho \quad[$ $\rho=i$ density, $t=i$ thickness]
If discs are made of same material and same
thickness then $I \propto R^{4} \propto(\text { Diameter })^{4}$
$\therefore \frac{I_{A}}{I_{B}}=\left(\frac{D_{A}}{D_{B}}\right)^{4}=\left(\frac{2}{1}\right)^{4}=\frac{16}{1}$
561 (b)
Let the each side of square lamina is d.
So, $I_{E F}=I_{G H}$
(due to symmetry)
And $\quad I_{A C}=I_{B D}$
(due to symmetry)
Now, according to theorem of perpendicular axis,

$I_{A C}+I_{B D}=I_{0}$
$\Rightarrow 2 I_{A C}=I_{0}$
...(i)
and $I_{E F}+I_{G H}=I_{0}$
$\Rightarrow 2 I_{E F}=I_{0}$
...(ii)
From Eqs. (i) and (ii), we get

$$
\begin{array}{cc}
& I_{A C}=I_{E F} \\
\therefore \quad & I_{A D}=I_{E F}+\frac{m d^{2}}{4}
\end{array}
$$

$$
i \frac{m d^{2}}{12}+\frac{m d^{2}}{4}\left(\text { as } I_{E F}=\frac{m d^{2}}{12}\right)
$$

So, $\quad I_{A D}=\frac{m d^{2}}{3}=4 I_{E F}$
563 (d)
As shown in figure, centre of mass of respective rods are at their respective mid points. Hence centre of mass of the system has coordinates ($X_{C M}, Y_{C M}$). then $\left(0, \frac{\mathrm{a}}{2}\right) \underbrace{(a, 0)}_{\left(\frac{\mathrm{a}}{2}, 0\right)}$
$X_{C M}=\frac{m \times \frac{a}{2}+m \times \frac{a}{2}+m \times 0}{3 m}=\frac{a}{3}$
$Y_{C M}=\frac{m \times 0+m \times \frac{a}{2}+m \times 0}{3 m}=\frac{a}{3}$
564 (c)
The kinetic energy of the solid sphere,

$$
\begin{equation*}
K=\frac{1}{2} M v^{2} \tag{i}
\end{equation*}
$$

The rotational kinetic energy,

$$
K_{r}=\frac{1}{2} I \omega^{2}
$$

But $I=\frac{2}{5} M R^{2}$ for solid sphere and $\omega=\frac{v}{R}$
then,

$$
\begin{gather*}
K_{r}=\frac{1}{2} \times \frac{2}{5} M R^{2} \times \frac{v^{2}}{R^{2}} \\
K_{r}=\frac{1}{5} M v^{2} \tag{ii}
\end{gather*}
$$

On dividing Eq. (ii) by Eq. (i), we have

$$
\begin{array}{ll}
\frac{K_{r}}{K}=\frac{1 / 5 M v^{2}}{1 / 2 M v^{2}} \\
\text { or } \quad \frac{K_{r}}{K}=\frac{2}{5}
\end{array}
$$

565 (b)
$\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2} \Rightarrow \theta=100 \mathrm{rad}$
\therefore Number of revolution $i \frac{100}{2 \pi}=16$ (approx.)
566 (b)
From conservation law of momentum
$\frac{v_{1}}{v_{2}}=\frac{2}{1}=\frac{m_{2}}{m_{1}}=\frac{\frac{4}{3} \pi r_{2}^{3} \rho}{\frac{4}{3} \pi r_{1}^{3} \rho}=\left(\frac{r_{2}}{r_{1}}\right)^{3}$
$\Rightarrow \frac{r_{2}}{r_{1}}=(2)^{1 / 3}: 1$
Or $r_{1}: r_{2}=1:(2)^{1 / 3}$
567 (b)
Given, $I=1 \mathrm{~kg}-\mathrm{m}^{2}, n=2 \mathrm{rps}$

$$
\begin{aligned}
& \omega=2 \pi n=2 \pi \times 2=4 \pi \mathrm{rad} \mathrm{~s}{ }^{-1} \\
& L=I \omega=1(4 \pi)=12.57 \mathrm{~kg}-\mathrm{m}^{2} \mathrm{~s}^{-1}
\end{aligned}
$$

568 (c)
In rotational motion of a rigid body, the centre of mass of the body moves uniformly in a circular path.

569 (b)
A raw egg behaves like a spherical shell and a half boiled egg behaves like a solid sphere
$\therefore \frac{I_{r}}{I_{s}}=\frac{2 / 3 m r^{2}}{2 / 5 m r^{2}}=\frac{5}{3}>1$
570 (a)
Velocity of bullet at highest point of its trajectory $=$ $50 \cos \theta$ in horizontal direction.
As bullet of mass m collides with pendulum bob of mass 3 m and two stick together, their common velocity
$v^{\prime}=\frac{m_{1} 50 \cos \theta}{m+3 n}=\frac{25}{2} \cos \theta \mathrm{~m} \mathrm{~s}^{-1}$
As now under this velocity v^{\prime} pendulum bob goes up to an angel 120°, hence
$\frac{v^{\prime 2}}{2 g}=h=l\left(1-\cos 120^{\circ}\right)=\frac{10}{3}\left[1-\left(f-\frac{1}{2}\right)\right]=5$
$\Rightarrow v^{\prime 2}=2 \times 10 \times 5=100$ or $v^{\prime}=10$
Comparing two answer of v^{\prime}, we get
$\frac{25}{2} \cos \theta=10 \Rightarrow \cos \theta=\frac{4}{5}$ or $\theta=\cos ^{-1}\left(\frac{4}{5}\right)$

571 (c)

From law of conservation of angular momentum we have, if no external torque is acting on a body ($\tau=0$), then the angula momentum $(J=I \omega)$ or in other words the moment of momentum of a body remains constant.

572 (d)
No of revolution $=$ Area of trapezium
$i \frac{1}{2} \times(2.5+5) \times 3000=11250 \mathrm{rev}$
573 (d)
External force acting on the system is given as

$$
F_{e x t}=M a_{C M}
$$

ie, $a_{C M}$ lies in the direction of $F_{\text {ext }}$.
Here, $F_{\text {ext }}=5(2 \hat{i}+3 \hat{j}-5 \hat{k})$

$$
a_{C M}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-5 \hat{k}
$$

Since, $F_{\text {ext }} \wedge a_{C M}$ are not lying in the same direction, given data is incorrect.

574 (d)
Total moment of inertia of the system
$i \frac{1}{2} M R^{2}+4 m R^{2}$
575
(d)

Displacement of point P after half revolution $P P^{\prime}=\sqrt{(\pi R)^{2}+(2 R)^{2}}=R \sqrt{\pi^{2}+4}=5 \sqrt{\pi^{2}+4}$

577 (c)

Moment of inertia of whole disc about an axis through centre of disc and perpendicular to its plane is $I=\frac{1}{2} m r^{2}$
As one quarter of disc is removed, new mass,
$m^{\prime}=\frac{3}{4} m$
$\therefore I^{\prime}=\frac{1}{2}\left(\frac{3}{4} m\right) r^{2}=\frac{3}{8} m r^{2}$
578 (b)
When pulley has a finite mass M and radius R, then tension in two segments of string are different.

Here, $m a=m g-T$

$$
a=\frac{m}{m+\frac{M}{2}} g=\frac{2 m}{2 m+M} g
$$

581 (a)
$I_{\text {remaining }}=I_{\text {whole }}-I_{\text {removed }}$
or $\quad I=\frac{1}{2}(9 M)\left(R^{2}\right)-\left[\frac{1}{2} m\left(\frac{R}{3}\right)^{2}+\frac{1}{2} m\left(\frac{2 R}{3}\right)^{2}\right]$

Here, $\quad m=\frac{9 M}{\pi R^{2}} \times \pi\left(\frac{R}{3}\right)^{2}=M$
Substituting in Eq. (i), we have

$$
I=4 M R^{2}
$$

582 (c)
$I=I_{x}+I_{y}=\frac{m L^{2}}{12}+\frac{m L^{2}}{12}=\frac{m L^{2}}{6}$

583 (b)

Centre of mass always lies towards heavier mass

585 (c)

At the time of applying the impulsive force block of 10 kg pushes the spring forward but 4 kg mass is at rest.
Hence,
$v_{C M}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}=\frac{10 \times 14+4 \times 0}{10+4}=\frac{140}{14}=10 \mathrm{~m} \mathrm{~s}$
586 (b)
The object will have translation motion without rotation, when force F is applied at the centre of mass of system. If m is mass per unit length, the mass of $A B, m_{1}=m l$ at O and mass of $O C, m_{2}=m(2 l)$ at D, where $C D=l$
Dd
Let $D P=x$
As P is the centre of mass, therefore
$m l(l-x)=2 m l x$
$3 x=l: x=l / 3$
$\therefore C P=C D+D P=l+\frac{l}{3}=\frac{4 l}{3}$
587 (b)
From law of conservation of energy, we have the potential energy of rod when it is vertical is converted to kinetic energy of rotation.

$\therefore \quad \frac{M}{2} g l=\frac{1}{2} I \omega^{2}$
Moment of inertia of a thin rod is

$$
\begin{aligned}
& \\
& \\
& \\
& \\
& \\
& \frac{M}{2} g l=\frac{1}{3} M l^{2} \\
& \Rightarrow \quad \\
& \quad \omega=\sqrt{\frac{3 g}{l}}
\end{aligned}
$$

Given, $l=1 m, \omega=\sqrt{3 g}$
Also,

$$
v=r \omega
$$

$\Rightarrow \quad v=1 \times \sqrt{3 \times 9.8}=5.4 \mathrm{~m} \mathrm{~s}^{-1}$

588 (a)

From conservation of momentum
$M v=m \times 0+(M-m) v^{\prime} \Rightarrow v^{\prime}=\frac{M v}{(M-m)}$
589 (d)
$\omega=\frac{v}{r}=\frac{80}{20 / \pi}=4 \pi, \omega_{0}=0, \theta=2 \pi(n)=4 \pi($ As $n=$ $\omega^{2}=\omega_{0}^{2}+2 \alpha \theta \Rightarrow \alpha=\frac{\omega^{2}-\omega_{0}^{2}}{2 \theta}=\frac{16 \pi^{2}}{2 \times 4 \pi}=2 \pi$
Tangential acceleration $a_{t}=r \alpha=\frac{20}{\pi} \times 2 \pi=40 \mathrm{~m} / \mathrm{s}^{2}$
590 (b)
Moment of inertia of a uniform rod about one end
$i \frac{m l^{2}}{3}$
\therefore Moment of inertia of the system
$i 2 \times\left(\frac{M}{2}\right) \frac{(L / 2)^{2}}{3}=\frac{M L^{2}}{12}$
591 (b)
$r_{2}=r_{4}=O A=\frac{l}{\sqrt{2}}$ and $r_{3}=l \sqrt{2}$
Moment of inertia of the system about given axis
$I i I_{1}+I_{2}+I_{3}+I_{4}$

$\Rightarrow I=0+m\left(r_{2}\right)^{2}+m\left(r_{3}\right)^{2}+m\left(r_{4}\right)^{4}$
$\Rightarrow I=m\left(\frac{l}{\sqrt{2}}\right)^{2}+m(l \sqrt{2})^{2}+m\left(\frac{l}{\sqrt{2}}\right)^{2} \therefore I=3 m l^{2}$

592 (c)

There is no shift in position of centre of mass, as clear from the figure

593 (b)
From the definition of angular momentum,

$$
L=r \times p=r m v \sin \varnothing(-\hat{k})
$$

Therefore, the magnitude of L is

$$
L=m v r \sin \varnothing=m v d
$$

where $d=r \sin \varnothing$ is the distance of closest approach of the particle to the origin. As d is same for both the particles, hence $L_{A}=L_{B}$.

594 (b)

Form the triangle $O A C$
$d=O C \sin 45^{\circ}=4 \times \frac{1}{\sqrt{2}}=2 \sqrt{2}$
Angular momentum $=$ Linear momentum x Perpendicular distance of line of action of linear momentum from the point of rotation
$L=p \times d=m v d=5 \times 3 \sqrt{2} \times 2 \sqrt{2}=60$ units
595 (b)
As no torque is being applied, angular momentum $L=l \omega=\dot{\text { c constant }}$
$\left(\frac{2}{5} M r^{2}\right) \frac{2 \pi}{T}=i$ constant
or $\frac{r^{2}}{T}=i$ constant
Differentiating w.r.t time (t), we get
$\frac{T .2 r \frac{d r}{d t}-r^{2} \frac{d T}{d t}}{T^{2}}=0$
or $2 \operatorname{Tr} \frac{d r}{d t}=r^{2} \frac{d T}{d t}$
or $\frac{d T}{d t}=\frac{2 T}{r} \frac{d r}{d t}$
596 (c)
$x_{C M}=\frac{m_{A} x_{A}+m_{B} x_{B}+m_{C} x_{C}+m_{D} x_{D}}{m_{A}+m_{B}+m_{C}+m_{D}}$

$i \frac{1 \times 0+2 \times 1+3 \times 1+4 \times 0}{1+2+3+4}$
$i \frac{2+3}{10}=\frac{1}{2}=0.5 \mathrm{~m}$
Similarly, $\quad y_{C M}=\frac{m_{A} y_{A}+m_{B} y_{B}+m_{C} y_{C}+m_{D} y_{D}}{m_{A}+m_{B}+m_{C}+m_{D}}$
$i \frac{1 \times 0+2 \times 0+3 \times 1+4 \times 1}{1+2+3+4}$
$i \frac{7}{10}=0.7 \mathrm{~m}$
597 (a)
Moment of inertia about the given axis ie, about $Y Y^{\prime \prime}$,

$$
I_{Y Y}=I_{X X}+M R^{2}
$$

$$
i 2+2 \times(2)^{2}
$$

$$
i 2+8
$$

$$
i 10 \mathrm{~kg}-\mathrm{m}^{2}
$$

598 (a)
$I=\frac{\tau}{\alpha}=\frac{31.4}{4 \pi}=2.5 \mathrm{~kg} \mathrm{~m}^{2}$
599 (d)
The moment of inertia of the disc about an axis parallel to its plane is

$$
\begin{array}{cc}
& I_{t}=I_{d}+M R^{2} \\
\Rightarrow & I=\frac{1}{4} M R^{2}+M R^{2} \\
& i \frac{5}{4} M R^{2} \\
\text { or } & M R^{2}=\frac{4 I}{5}
\end{array}
$$

Now, moment of inertia about a tangent perpendicular to its plane is

$$
I^{\prime}=\frac{3}{2} M R^{2}=\frac{3}{2} \times \frac{4}{5} I=\frac{6}{5} I
$$

600 (d)

M.I. of plane about O and parallel to length $i \frac{M b^{2}}{12}$

601 (a)
For elastic collision $e=1$ and velocity of separation is equal to velocity of approach. The velocity of the target may be more, equal or less than that of projectile depending on their masses.

The maximum velocity of target is double to that of projectile, when projectile is extremely massive as compared to the target.
Maximum kinetic energy is transferred from projectile to target when their masses are exactly equal.

602 (a)
Here $m_{1}=u, m_{2}=A u, u_{1}=u$ and $u_{2}=0$
$\therefore v_{1}=\frac{\left(m_{1}-m_{2}\right) u_{1}}{\left(m_{1}+m_{2}\right)}+\frac{2 m_{2} u_{2}}{\left(m_{1}+m_{2}\right)}=\left(\frac{1-A}{1+A}\right) u$
$\Rightarrow \frac{v_{1}}{u}=\left(\frac{1-A}{1+A}\right)$
$\therefore \frac{K_{\text {final }}}{K_{\text {initial }}}=\left(\frac{v_{1}}{u}\right)^{2}=\left(\frac{1-A}{1+A}\right)^{2}$
603 (c)
$\omega_{\min }=\frac{2 \pi}{60} \frac{\mathrm{rad}}{\mathrm{min}}$
and $\omega_{h r}=\frac{2 \pi}{12 \times 60} \frac{\mathrm{rad}}{\mathrm{min}}$
$\therefore \quad \frac{\omega_{\text {min }}}{\omega_{h r}}=\frac{2 \pi / 60}{2 \pi / 12 \times 60}$
i $\frac{12}{1}$

604 (c)
The impact force $F=\frac{\Delta p}{\Delta t}=v \frac{\Delta m}{\Delta t}$ where $\frac{\Delta m}{\Delta t}=i$ rate of flow of water in the nozzle and v the velocity of water jet.
Since the ball is in equilibrium $F=m g$ where $m=i$ mass of ping pong ball.
$\Rightarrow v \frac{\Delta m}{\Delta t}=m g$ or rate of flow of water $\frac{\Delta m}{\Delta t}=\frac{m g}{v}$

605 (d)

Let M be the mass and L be the length of given uniform rod
Moment of inertia of the rod about one end is
$I_{1}=\frac{1}{3} M L^{2}$
When it is bent into a ring
$\therefore L=2 \pi R$
Or $R=\frac{L}{2 \pi}$
Moment of inertia of a ring about its diameter is
$I_{2}=\frac{M R^{2}}{2}=\frac{M L^{2}}{8 \pi^{2}} \quad[\operatorname{Using}(\mathrm{ii})]$
$\therefore \frac{I_{1}}{I_{2}}=\frac{M L^{2}}{3} \times \frac{8 \pi^{2}}{M L^{2}}=\frac{8 \pi^{2}}{3}$

606 (d)
$a=\frac{g \sin \theta}{1+\frac{K^{2}}{R^{2}}}=\frac{g \sin \theta}{1+\frac{2}{5}}=\frac{g / 2}{7 / 5}=\frac{5 g}{14}$
As $\theta=30^{\circ}$ and $\frac{K^{2}}{R^{2}}=\frac{2}{5}$
607 (c)
Con
$\tau=r \times F$
$\tau=(\hat{i}-\hat{j}) \times(-F \hat{k})$
$i F[(-\hat{i} \times \hat{k})+(\hat{j} \times \hat{k})]$
$\dot{i} F[\hat{i}+\hat{j}]$

608 (d)
$L=I \omega$
609 (a)
Since disc is rolling (without slipping) about point O Hence
$O Q>O C>O P$
$\therefore v=r \omega$
$\therefore v_{Q}>v_{C}>v_{P}$

610 (d)
Angular momentum L is given as
$L=\vec{r} \times \vec{p}=r p \sin \theta$
$\vec{r}=\dot{i}$ position vector of the particle w.r.t. origin,
$\vec{p}=i$ its linear momentum
$\vec{r} \times \vec{p}$ is maximum when p is perpendicular to r
i.e. $\theta=90^{\circ}$

611 (d)
Angular velocity is a axial vector

As the inclined plane is frictionless therefore all the bodies will side down along the inclined plane with same acceleration $g \sin \theta$

613 (b)
In pure rolling, mechanical energy remains conserved. Therefore, when heights of inclines are equal, speed of sphere will be same in both the cases. But as acceleration down the plane, $a \propto \sin \theta$ therefore, acceleration and time of descent will be different

614 (d)

For a disc moment of inertia about a tangential axis in its own plane $\dot{\delta} \frac{5}{4} M R^{2}$
$\therefore \quad M_{1} K_{1}^{2}=\frac{5}{4} M_{1} R^{2}$
$\Rightarrow \quad K_{1}=\frac{\sqrt{5}}{2} R$
Now, for a ring moment of inertia about a tangential axis in its own plane $i \frac{3}{2} M_{2} R^{2}$

$$
\begin{array}{ll}
\therefore & M_{2} K_{2}^{2}=\frac{3}{2} M_{2} R^{2} \\
\Rightarrow & K_{2}=\sqrt{\frac{3}{2}} R \\
\therefore & \frac{K_{1}}{K_{2}}=\frac{\sqrt{5}}{\sqrt{6}}
\end{array}
$$

615 (d)
If M mass of the square plate before cutting the holes, then mass of portion of each hole,
$m=\frac{M}{16 R^{2}} \times \pi R^{2}=\frac{\pi}{16} M$
\therefore Moment of inertia of remaining portion
$I=I_{\text {square }}-4 I_{\text {hole }}$
$i \frac{M}{12}\left(16 R^{2}+16 R^{2}\right)-4\left[\frac{m R^{2}}{2}+m(\sqrt{2} R)^{2}\right]$
$i \frac{M}{12} \times 32 R^{2}-10 m R^{2}$
$i \frac{8}{3} M R^{2}-\frac{10 \pi}{16} M R^{2} I=\left(\frac{8}{3}-\frac{10 \pi}{16}\right) M R^{2}$
616 (c)
$F=v \frac{\Delta m}{\Delta t}$
Here, $\frac{\Delta m}{\Delta t}=\frac{n m}{t}=\frac{120 \times 10 \times 10^{-3}}{60}=20 \times 10^{-3} \mathrm{~kg}$
$\therefore F=800 \times 20 \times 10^{-3} \mathrm{~N}=16 \mathrm{~N}$

617 (c)

Let distance of man from the floor be $(10+x) m$. As centre of mass of system remains at 10 m above the floor
So $50(x)=0.5(10) \Rightarrow x=0.1 \mathrm{~m}$
\Rightarrow distance of the man above the floor $\dot{i} 10+0.1$
i 10.1 m

618 (d)
Centripetal force $F=\frac{m v^{2}}{r}=\frac{m}{r} \frac{L^{2}}{m^{2} r^{2}}=\frac{L^{2}}{m r^{3}}$ $\left[\right.$ As $\left.L=m v r \therefore v=\frac{L}{m r}\right]$

619 (d)
$\alpha=\frac{2 \pi\left(n_{2}-n_{1}\right)}{t}=\frac{2 \pi\left(\frac{4500-1200}{60}\right)}{10} \mathrm{rad} / \mathrm{s}^{2}$ $i \frac{2 \pi \frac{3300}{60}}{10} \times \frac{360}{2 \pi} \frac{\text { degree }}{s^{2}} \alpha=1980$ degree $/ s^{2}$

620 (c)

Moment of inertia of a hollow sphere of radius R about the diameter passing through D is

$$
I_{A}=\frac{2}{5} M R^{2}
$$

...(i)
Moment of inertia of solid sphere about diameter

$$
\begin{equation*}
I_{B}=\frac{2}{5} M R^{2} \tag{ii}
\end{equation*}
$$

\therefore Moment of inertia of whole system about side $A D=I_{A}+I_{D}+I_{B}+I_{C}$
$i \frac{2}{3} M R^{2}+\frac{2}{5} M R^{2}+\left(M b^{2}+\frac{2}{3} M R^{2}\right)+\left(M b^{2}+\frac{2}{5} M R^{2}\right)$

$$
i \frac{32}{15} M R^{2}+2 M b^{2}
$$

621 (c)
$P=m v$
$\therefore m=\frac{p}{v}$
Hence, $\quad m-v$ graph will be rectangular hyperbola
622 (b)
$\frac{I_{1}}{I_{2}}=\left(\frac{M_{1}}{M_{2}}\right)\left(\frac{R_{1}}{R_{2}}\right)^{2}=\frac{1}{2} \times\left(\frac{2}{1}\right)^{2}=2$
623 (d)
When a particle is projected with a speed v at 45° with the horizontal then velocity of the projectile at maximum height.

$$
v^{\prime}=v \cos 45^{\circ}=\frac{v}{\sqrt{2}}
$$

Angular momentum of the projectile about the point of projection

$$
\begin{aligned}
& i m v^{\prime} h \\
& i m \frac{v}{\sqrt{2}} h=\frac{m v h}{\sqrt{2}}
\end{aligned}
$$

624 (d)
$\tau=r \times F$
τ is perpendicular to both $r \wedge F$, so
$r . \tau$ as well as $F . \tau$ has to be zero.
625 (c)
$K=\frac{p^{2}}{2 m}$
$p^{2}=2 \mathrm{Km}$
This is an equation of parabola. Hence, (c) is correct.
626

(a)

Moment of inertia of a disc about a diameter is

$$
\begin{array}{ll}
& \frac{1}{4} M R^{2}=I \\
\therefore & M R^{2}=4 I
\end{array}
$$

(given)

Now, required moment of inertia $i \frac{3}{2} M R^{2}$

$$
i \frac{3}{2}(4 I)=6 I
$$

627 (b)
As $E=\frac{1}{2} I \omega^{2}$
$\omega=\sqrt{\frac{2 E}{I}}=\sqrt{\frac{2 \times 600}{3.0}}=20$
$\omega=\frac{2 \pi}{T}=20, T=\frac{2 \pi}{20}=\frac{\pi}{10}=0.314 \mathrm{~s}$
628 (c)
As shown in adjoining figure ball is falling from height $2 h$ and rebounding to a height h only. It means that velocity of ball jus before collision
$u=\sqrt{\frac{2(2 h)}{g}}=\sqrt{\frac{4 h}{g}}$ and velocity just after collision

$v=-\sqrt{\frac{2 h}{g}}$
$\therefore e=\frac{-v \sqrt{\frac{2 h}{g}}}{u \sqrt{\frac{4 h}{g}}}=\frac{1}{\sqrt{2}}$
629 (d)
$K_{R}=K_{T} \Rightarrow \frac{1}{2} m v^{2}\left(\frac{K^{2}}{R^{2}}\right)=\frac{1}{2} m v^{2} \Rightarrow \therefore \frac{K^{2}}{R^{2}}=1$
i.e . the body is ring

630 (a)

Ratio of moment of inertia of the rings

$$
\begin{aligned}
& \frac{I_{1}}{I_{2}}=\left(\frac{M_{1}}{M_{2}}\right)\left(\frac{R_{1}}{R_{2}}\right)^{2} \\
& \quad \dot{\quad}\left(\frac{\lambda L_{1}}{\lambda L_{2}}\right)\left(\frac{R_{1}}{R_{2}}\right)^{2}=\left(\frac{2 \pi R}{2 \pi n R}\right)\left(\frac{R}{n R}\right)^{2}
\end{aligned}
$$

$(\lambda)=$ ¿linear density of wire $=$ constant (given)

$$
\begin{aligned}
& \Rightarrow \quad \frac{L_{1}}{L_{2}}=\frac{1}{n^{3}}=\frac{1}{8} \\
& \therefore \quad n^{3}=8 \Rightarrow n=2
\end{aligned}
$$

631 (d)
Since $v_{C . M .}=0$ so it's linear momentum $=0$
632 (b)
Centre of Mass of a solid body is given by

$$
\begin{aligned}
& x_{C M}=\frac{\sum_{i=1}^{n} \Delta m \square_{i} x_{i}}{\sum_{j=1}^{n} \Delta M j} \\
& y_{C M}=\frac{\sum_{i=1}^{n} \Delta m_{i} y_{i}}{\sum_{j=1}^{n} \Delta M j} \\
& z_{C M}=\frac{\sum_{i=1}^{n} \Delta m_{i} z_{i}}{\sum_{j=1}^{n} \Delta M j} \\
& 1 \times x_{1}+2 \times x_{2}+3 \times x_{3}=(1+2+3) 3
\end{aligned}
$$

...(i)
and

$$
\begin{gathered}
x_{1}=x_{2}=x_{3}=3 \\
x_{C M}=y_{C M}=z_{C M}=1 \\
1(1+2+3+4)=1 x_{1}+2 x_{2}+3 x_{3}+4 x_{4}
\end{gathered}
$$

...(ii)
Solving Eqs. (i) and (ii), we get

$$
\begin{aligned}
4 x_{4} & =10-18 \\
x_{4} & =-2
\end{aligned}
$$

Similarly, $\quad y_{4}=-2, z_{4}=-2$
The fourth particle must be placed at the point $(-2,-2$, -2).

634 (a)
$\omega_{1}=2 \pi \mathrm{rad} / \mathrm{day}, \omega_{2}=0$ and $t=1$ day
$\therefore \alpha=\frac{\omega_{2}-\omega_{1}}{t}=\frac{0-2 \pi}{1}=2 \pi \frac{\mathrm{rad}}{d a y^{2}}=\frac{2 \pi}{(86400)^{2}} \frac{\mathrm{rad}}{\mathrm{s}^{2}}$
Torque required to stop the earth $\tau=I \alpha=F R$
$\Rightarrow F=\frac{I \alpha}{R}=\frac{\frac{2}{5} M R^{2} \times \alpha}{R}=\frac{2}{5} M R \times \alpha$
$i \frac{2}{5} \times 6 \times 10^{24} \times 6400 \times 10^{3} \times \frac{2 \pi}{(86400)^{2}}=1.3 \times 10^{22} I$

(b)

Let R_{1} be the present distance between earth and sun and T_{1} is duration of year. Let R_{1} and T_{2} be new values of distance and duration of year. By conservation of angular momentum we have

$$
I_{1} \omega_{1}=I_{2} \omega_{2}
$$

or $\quad\left(\frac{2}{5} M R_{1}^{2}\right) \frac{2 \pi}{T_{1}}=\left(\frac{2}{5} m R_{2}^{2}\right) \frac{2 \pi}{T_{2}}$
or $\quad T_{2}=T_{1} \frac{R_{2}^{2}}{R_{1}^{2}}$

$$
\begin{aligned}
& i(365) \times i i \\
& i \frac{365}{4}=91.25 \text { days }
\end{aligned}
$$

Hence, duration of year will become less.
636 (d)
As no external torque is acting about the axis, angular momentum of system remains conserved.

$\therefore \quad I_{1} \omega=I_{2} \omega^{\prime}$
$\Rightarrow \quad m R^{2} \omega=\left(m R^{2}+2 M R^{2}\right) \omega^{\prime}$
$\Rightarrow \quad \omega^{\prime}=\left(\frac{m}{m+2 M \dot{i}} \dot{)}\right) \omega$
637 (d)
Distance of corner mass from opposite side
$r=\sqrt{l^{2}-(l / 2)^{2}}=\frac{\sqrt{3}}{2} l$
$I=m r^{2}=\frac{3}{4} m l^{2}$
638 (a)
In the pulley arrangement
$\left|\vec{a}_{1}\right|=\left|\vec{a}_{2}\right|=a=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) g$
But \vec{a}_{1} is in downward direction and in the upward direction ie, $\vec{a}_{2}=-\vec{a}_{1}$
\therefore Acceleration of centre of mass
$\vec{a}_{C M}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}=\frac{m_{1}\left[\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right] g-m_{2}\left[\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right]}{\left(m_{1}+m_{2}\right)}$
$i\left[\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right]^{2} g$
639 (a)
Due to application of centripetal force its linear momentum changes continuously but torque on the particle is zero so its angular momentum will be conserved

640 (b)

For the motion of the block

$$
m g-T=m a
$$

...(i)
For the rotation of the pulley

$$
\begin{gathered}
\tau=T R=I \alpha \\
\Longrightarrow \quad T=\frac{1}{2} m R \alpha
\end{gathered}
$$

...(ii)
As string does not slip on the pulley

$$
a=R \alpha
$$

...(iii)
On solving Eqs. (i), (ii) and (iii)

$$
a=\frac{2 g}{3}
$$

641 (d)

> Total kinetic energy

Rotational kinetic energy

$i \frac{\frac{1}{2} m v^{2}\left(1+\frac{K^{2}}{R^{2}}\right)}{\frac{1}{2} m v^{2} \frac{K^{2}}{R^{2}}}=\frac{1+\frac{K^{2}}{R^{2}}}{\frac{K^{2}}{R^{2}}}=\frac{1+\frac{1}{2}}{\frac{1}{2}}=\frac{3 / 2}{1 / 2}=3$
643
(b)
$x=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}=\frac{m(1+2+3)}{3 m}=2$
Similarly, $y=\frac{m(1+2+3)}{3 m}=2$
644 (b)
We know $m_{1} r_{1}=m_{2} r_{2} \Rightarrow m \times r=i$ constant $\therefore r \propto \frac{1}{m}$

645 (a)
$a=\frac{g \sin \theta}{1+I / m r^{2}}=\frac{g \sin 30^{\circ}}{1+\frac{2}{5}}=\frac{5}{7} g \times \frac{1}{2}=\frac{5 g}{14}$
646 (d)
The moment of inertia of the uniform rod about an axis through one end and perpendicular to its length is

$$
I=\frac{m l^{2}}{3}
$$

Where m is mass of rod and l is length.
Torque ($\tau=I \alpha$) acting on centre of gravity of rod is given by
or
or
or

$$
\tau=m g \frac{1}{2}
$$

$$
I \alpha=m g \frac{1}{2}
$$

$$
\begin{gathered}
\frac{m l^{2}}{3} \alpha=m g \frac{1}{2} \\
\alpha=\frac{3 g}{2 l}
\end{gathered}
$$

