

10.STRAIGHT LINES

Single Correct Answer Type

1. The area of the triangle bounded by the straight line ax + by + c = 0, $(a, b, c \neq 0)$ and the coordinate axes is

a)
$$\frac{1}{2} \frac{a^2}{|bc|}$$
 b) $\frac{1}{2} \frac{c^2}{|ab|}$ c) $\frac{1}{2} \frac{b^2}{|ac|}$ d) 0

- 2. The points (1, 1), (-5, 5) and $(13, \lambda)$ lie on the same straight line, if λ is equal to a) 7 b) -7 c) ± 7 d) 0
- 3. The equations to the straight lines passing through the origin and making an angle α with the straight line y + x = 0 are given by
 - a) $x^{2} + 2xy \sec 2 \alpha + y^{2} = 0$ b) $x^{2} - 2xy \sec 2 \alpha + y^{2} = 0$ c) $x^{2} + 2xy \cos 2 \alpha + y^{2} = 0$ d) None of these
- 4. Consider the points $A \equiv (3, 4), B \equiv (7, 13)$. If '*P*' be a point on the line y = x, such that PA + PB is minimum, then coordinates of *P* is

a)
$$\left(\frac{13}{7}, \frac{13}{7}\right)$$
 b) $\left(\frac{23}{7}, \frac{23}{7}\right)$ c) $\left(\frac{31}{7}, \frac{31}{7}\right)$ d) $\left(\frac{33}{7}, \frac{33}{7}\right)$

5. The length of the perpendicular from the origin of the line

$$\frac{x \sin \alpha}{b} - \frac{y \cos \alpha}{a} - 1 = 0 \text{ is}$$
a)
$$\frac{|ab|}{\sqrt{a^2 \cos^2 \alpha - b^2 \sin^2 \alpha}}$$
b)
$$\frac{|ab|}{\sqrt{a^2 \cos^2 \alpha + b^2 \sin^2 \alpha}}$$
c)
$$\frac{|ab|}{\sqrt{a^2 \sin^2 \alpha - b^2 \cos^2 \alpha}}$$
d)
$$\frac{|ab|}{\sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha}}$$

6. The angle between the straight line $x - y\sqrt{3} = 5$ and $\sqrt{3}x + y = 7$ is a) 90° b) 60° c) 75° d) 30°

- 7. Two consecutive sides of a parallelogram are 4x + 5y = 0 and 7x + 2y = 0. One diagonal of the parallelogram is 11x + 7y = 9. If the other diagonal is ax + by + c = 0, then a) a = -1, b = -1, c = 2b) a = 1, b = -1, c = 0
 - a) a = 1, b = -1, c = 2c) a = -1, b = -1, c = 0d) a = 1, b = 1, c = 1

8. The straight lines ax + by = c, bx + cy = a and cx + ay = b are concurrent, if a) a + b = c b) b + c = a c) c + a = b d) a + b + c = 09. If the angle between the pair of straight lines represented by the equation $x^2 - 3xy + \lambda y^2 + 3x - 5y +$

2 = 0, is $\tan^{-1}\left(\frac{1}{3}\right)$, where ' λ ' is a non-negative real number. Then, λ is

a) 2 b) 0 c) 3 d) 1
10. The centroid of the triangle formed by the pair of straight lines
$$12x^2 - 20xy + 7y^2 = 0$$
 and the line $2x - 3y + 4 = 0$ is

a)
$$\left(-\frac{7}{3},\frac{7}{3}\right)$$
 b) $\left(-\frac{8}{3},\frac{8}{3}\right)$ c) $\left(\frac{8}{3},\frac{8}{3}\right)$ d) $\left(\frac{4}{3},\frac{4}{3}\right)$

11. If the angle between the lines represented by $2x^2 + 5xy + 3y^2 + 6x + 7y + 4 = 0$ is $\tan^{-1}(m)$, then *m* is equal to

a) 1/5 b) -1 c) -2/3 d) None of these 12. The lines represents by $ax^2 + 2hxy + by^2 = 0$ are perpendicular to each other, if a) $h^2 = a + b$ b) a + b = 0 c) $h^2 = ab$ d) h = 013. If the lines 3x + 4y + 1 = 0, $5x + \lambda y + 3 = 0$ and 2x + y - 1 = 0 are concurrent, then λ is equal to a) -8 b) 8 c) 4 d) -4

14	The lines $p(p^2 + 1)x - y + $	$a = 0$ and $(n^2 + 1)^2 x + (n^2 + 1)^2 x + (n^2 + 1)^2 x$	$(n^2 + 1)v + 2a = 0$ are per	mendicular to a common
11.	line for		(p + 1)y + 2q = 0 are per	penaleului to u common
	a) Exactly one value of p		b) Exactly two values of p	
	c) More than two values of	² p	d) No value of <i>p</i>	
15.	If $P(\sin\theta, 1/\sqrt{2})$ and $Q(1/\sqrt{2})$	$\sqrt{2}$, $\cos \theta$), $-\pi \le \theta \le \pi$ are	e two points on the same si	de of the line $x - y = 0$,
	then θ belongs to the interv	val		
	, , ,		c) (π/4,3 π/4)	•
16.	The area of the triangle for	med by the axes and the li	ine $(\cos h \alpha - \sin h \alpha) + (\cos h \alpha)$	$\cos h \alpha + \sin h \alpha) y = 2 \text{ in}$
	square units, is			
1 7		b) 3	c) 2	d) 1
17.	If <i>a</i> , <i>c</i> , <i>b</i> are in G.P., then the	$b \sin ax + by + c = 0$		
	a) Has a fixed directionb) Always passes through a	fixed point		
	c) Forms a triangle with th	=	tant	
	d) Always cuts intercepts o			
18.	The equation of the image of			
		b) $ y = x + 4$		d) None of these
19.	The angle between the stra	hight lines $x^2 - y^2 - 2x - y^2 - 2x - $	-1 = 0, is	
	a) 90°	b) 60°	c) 75°	d) 36°
20.	The equation of the line part		ction of the lines $x - 3y + 1$	1 = 0 and 2x + 5y - 9 = 0
	and at distance $\sqrt{5}$ from the	-		
			c) $2x + y = 5$	
21.	The area of the parallelogra			
	$x\cos\beta + y\sin\beta = r \text{ and } x$ π	_	_	
	a) $\pm \frac{\pi}{2}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{6}$	d) $\frac{\pi}{3}$
22.	A rectangle has two opposi	ite vertices at the points (2	1,2) and (5,5). If the other v	vertices lie on the line
	x = 3, then their coordinat			
			c) (3,1), (3,4)	-
23.	A line is drawn from $P(x_1, y_1)$	y_1) in the direction α with	the x-axis, to meet $A x + B$	3y + C = 0 at Q . Then, the
	length PQ is equal to $A r_{1} + B v_{2} + C$	$A x_1 + B y_2 + C$	A x + B y + C	$A \mathbf{r}_{1} + B \mathbf{v}_{2} + C$
	a) $\left \frac{A x_1 + B y_1 + C}{\sqrt{A^2 + B^2}} \right $	b) $-\frac{Ax_1 + By_1 + C}{A\cos \alpha + B\sin \alpha}$	c) $\frac{A x_1 + b y_1 + c}{A \cos \alpha B \sin \alpha}$	d) $-\frac{A x_1 + B y_1 + C}{A \sin \alpha + B \cos \alpha}$
24.	The angle between the line			
		b) $\frac{\pi}{2}$	c) $\tan^{-1} \left \frac{12}{5} \right $	
	5		131	131
25.	A point moves in such a wa		- ,	
	its distance from the line 5 .			
	a) $x^2 + y^2 - 11x - 16y + 100$ c) $13(x^2 + y^2) - 83x + 64$		b) $x^2 + y^2 - 11x + 16y =$ d) $x^2 + y^2 - 83x + 64y +$	
26	C) $13(x^2 + y^2) - 83x + 64$ The line $x + y = 4$ divides	5	, , ,	
20.		b) $1/2$	c) 3	d) None of these
27.	If $ax^2 - y^2 + 4x - y = 0$ re			a) None of these
_/·		b) 16	c) 4	d) -4
28.	The locus of the point $P(x, y)$,	-	
	$\sqrt{(x-3)^2+(y-1)^2} + \sqrt{(x-3)^2}$			
	a) A straight line	· · · · · · · · · · · · · · · · · · ·	b) A pair of straight lines	
	c) A circle		d) An ellipse	
29.	The value of k for which the	e lines $2x - 3y + k = 0.3$	$x - 4y - 13 = 0$ and $8x - 10^{-1}$	11y - 33 = 0 are
	concurrent, is			
	a) 20	b) —7	c) 7	d) —20

- 30. Points on the line y = x whose perpendicular distance from the line 3x + 4y = 12 are 4 have the coordinates
- a) $\left(-\frac{8}{7}, -\frac{8}{7}\right), \left(-\frac{32}{7}, -\frac{32}{7}\right)$ b) $\left(\frac{8}{7}, \frac{8}{7}\right), \left(\frac{32}{7}, \frac{32}{7}\right)$ c) $\left(-\frac{8}{7}, -\frac{8}{7}\right), \left(\frac{32}{7}, \frac{32}{7}\right)$ d) None of these 31. The equation of the bisectors of the angles between the lines |x| = |y| are b) $x = \frac{1}{2}$ and $y = \frac{1}{2}$ c) y = 0 and x = 0d) None of these a) $y = \pm x$ and x = 032. Consider the family of lines $(x + y - 1) + \lambda(2x + 3y - 5) = 0$ and $(3x + 2y - 4) + \mu(x + 2y - 6) = 0$, equation of the straight line that belongs to both the families is a) x - 2y - 8 = 0b) x - 2y + 8 = 0c) 2x + y - 8 = 0d) 2x - y - 8 = 033. A straight line passing through *P* (3, 1) meet the coordinate axes at *A* and *B*. It is given that distance of this straight line from the origin 'O' is maximum. Area of $\triangle OAB$ is equal to b) $\frac{25}{3}$ sq unit c) $\frac{20}{3}$ sq unit d) $\frac{100}{6}$ sq unit a) $\frac{50}{3}$ sq unit 34. The lines represented by the equation $x^2 - y^2 - x + 3y - 2 = 0$ are b) x - y - 2 = 0, x + y + 1 = 0a) x + y - 1 = 0, x - y + 2 = 0d) x - y + 1 = 0, x + y - 2 = 0c) x + y + 2 = 0, x - y - 1 = 035. If the bisectors of angles represented by $ax^2 + 2hxy + by^2 = 0$ and $a'x^2 + 2h'xy + b'y^2 = 0$ are same, then a) (a - b)h' = (a' - b')hb) (a - b)h = (a' - b')h'c) (a + b)h' = (a' - b')hd) (a - b)h' = (a' + b')h36. If *P* is a point (x, y) on the line y = -3x such that *P* and the point (3, 4) are on the opposite sides of the line 3x - 4y - 8 = 0, then a) $x > \frac{8}{15}, y < -\frac{8}{5}$ b) $x > \frac{8}{5}, y < -\frac{8}{15}$ c) $x = \frac{8}{15}, y = -\frac{8}{5}$ d) None of these 37. A point equidistant from the lines 4x + 3y + 10 = 0, 5x - 12y + 26 = 0 and 7x + 24y - 50 = 0 is a) (1, -1)b) (1,1) c) (0,0) d) (0,1) 38. The straight line 4x + 3y = 12 intersects the *x*-axis and *y*-axis at *A* and *B* respectively. Then the distance BI where I is the centre of the in-circle of $\triangle OAB$, where B is the origin, is equal to a) $\sqrt{10}$ d) 2 b) 2√5 c) 3 39. Let *PQR* be a right angled isosceles triangle, right angled at P(2, 1). If the equation of the line *QR* is 2x + y = 3, then the equation representing the pair of lines PQ and PR is a) $3x^2 - 3y^2 + 8xy + 20x + 10y + 25 = 0$ b) $3x^2 - 3y^2 + 8xy - 20x - 10y + 25 = 0$ c) $3x^2 - 3y^2 + 8xy + 10x + 15y + 20 = 0$ d) $3x^2 - 3y^2 - 8xy - 10x - 15y - 20 = 0$ 40. A point moves in the *xy*-plane such that the sum of its distance from two mutually perpendicular lines is always equal to 3. The area of the locus of the point is a) 18 sq.units d) None of these b) 9/2 sq.units c) 9 sq.units 41. The equation of the lines through the point (3, 2) which makes an angle of 45° with the line x - 2y = 3, are a) 3x - y = 7 and x + 3y = 9b) x - 3y = 7 and 3x + y = 9c) x - y = 3 and x + y = 2d) 2x + y = 7 and x - 2y = 942. Equation of the straight line making equal intercepts on the axes and passing through the point (2, 4), is a) 4x - y - 4 = 0b) 2x + y - 8 = 0c) x + y - 6 = 0d) x + 2y - 10 = 0
- 43. The point on the axis of *x*, whose perpendicular distance from the straight line

	X Y		
	$\frac{a}{a} + \frac{b}{b} = 1$ is <i>a</i> , are		
	$\frac{x}{a} + \frac{y}{b} = 1 \text{ is } a, \text{ are}$ a) $\frac{b}{a} (a \pm \sqrt{a^2 + b^2}, 0)$ c) $\frac{b}{a} (a + b, 0)$	b) $\left(\frac{a}{b}\left(b\pm\sqrt{a^2+b^2}\right),0\right)$)
	c) $\frac{b}{a}(a+b,0)$	d) $\frac{a}{b}(a \pm \sqrt{a^2 + b^2}, 0)$	
44	<i>a</i> The difference of the tangents of the angles which th	D	$-2 xy \tan \theta +$
1 1.	$y2\sin 2\theta = 0$ make with the <i>x</i> -axis is		
	a) $2 \tan \theta$ b) 2	c) 2 cot <i>θ</i>	d) sin 2 <i>θ</i>
45.	The image of the origin with reference to the line $4x$	+3y - 25 = 0, is	2
	a) (-8, 6) b) (8, 6)	c) (-3, 4)	d) (8, -6)
46.	Consider the following statements:		
	I. If $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & 1 \\ a_2 & b_2 & 1 \\ a_3 & b_3 & 1 \end{vmatrix}$, then the two trian	Igles with vertices (x_1, y_1) ,	$(x_2, y_2), (x_3, y_3)$ and
	$(a_1, b_1), (a_2, b_2), (a_3, b_3)$ must be congruent		
	II. Only one straight line can be drown through the $P(1,0)$	origin at equal distance fro	om the points $A(2, 2)$ and
	B(4,0) Which of these is/are correct		
	a) Only 1 b) Only 2	c) Both of these	d) None of these
47.	All chords of the curve $3x^2 - y^2 - 2x + 4y = 0$ which	-	-
	fix point	en subteria a right angle at	ine origin, pubb through the
	a) (1, 2) b) (1, -2)	c) (-1,2)	d) (-1, -2)
48.	Lines $2x + y = 1$ and $2x + y = 7$ are		
	a) On the same side of a point $\left(0,\frac{1}{2}\right)$	b) On the opposite side o	f a point $\left(0, \frac{1}{2}\right)$
	c) Same lines	d) Perpendicular lines	1 (*2)
49.	The angle between the pair of lines	aj r orponatoular mico	
	$2x^{2} + 5xy + 2y^{2} + 3x + 3y + 1 = 0$, is		
	a) $\cos^{-1}(4/5)$ b) $\tan^{-1}(4/5)$	c) 0	d) π/2
50.	If the line $px^2 - qxy - y^2 = 0$ makes an angles α and	d β with x-axis, then the va	llue of tan $(\alpha + \beta)$ is
	a) $\frac{-q}{1+p}$ b) $\frac{q}{1+p}$	c) $\frac{p}{1+a}$	d) $\frac{-p}{1-p}$
F 1	- · p	1 Y Y	1 1 9
51.	If the distance of any point (x, y) from the origin is d constant, then the locus is	lefined as $a(x, y) = \max\{ x \}$	$\{1, y \}, a(x, y) = a, \text{ non-zero}$
	a) A circle b) A straight line	c) A square	d) A triangle
52.	The pair of lines joining origin to the points of inters	<i>,</i> .	u j n trangie
0 -	$ax^{2} + 2hxy + by^{2} + 2gx = 0$ and $a'x^{2} + 2h'xy + b'$		ght angles, if
	a) $(a' + b')g' = (a + b)g$	b) $(a + b)g' = (a' + b')g$	
	c) $h^2 - ab = {h'}^2 - a'b'$	d) $a + b + h^2 = a' + b' +$	$-h'^{2}$
53.	Two vertices of a triangle are $(5, -1)$ and $(-2,3)$. If t	he orthocentre of the trian	gle is the origin, then
	coordinates of the third vertex are		
	a) (4,7) b) (-4, -7)		d) None of these
54.	The distance between the parallel lines $y = x + a, y$	= x + b is	
	a) $\frac{ b-a }{\sqrt{2}}$ b) $ a-b $		d) $\frac{ b+a }{\sqrt{2}}$
55.	Consider the fourteen lines in the plane given by $y =$	_	$r \in \{0, 1, 2, 3, 4, 5, 6\}$. The
	number of squares formed by these lines, whose side		
	a) 9 b) 16	c) 25	d) 36
56.	The line $(p + 2q)x + (p - 3q)y = p - q$ for different a) $(2/2 5/2)$ b) $(2/5 2/5)$		
57	a) (3/2, 5/2) b) (2/5,2/5) A line passing through origin and is perpendicular to		
57.	A mic passing un ough origin and is perpendicular u	y = y + y + y + y	0 - 0 and $4x + 2y - 9 = 0$.

The ratio in which the origin divides this line, is

		gin uivides tins inie, is		
	a) 1:2	b) 2: 1	c) 4:2	d) 4:3
58.	A straight line through th	e point $(1, 1)$ meets the x-a	axis at 'A' and y-axis at 'B'."	The locus of the mid point
	of AB is		2	-
		b) $x + y - 2xy = 0$	c) $x + y + 2 = 0$	d) $x + y - 2 = 0$
50				d f x + y - 2 = 0
59.		e lines $3x + 4y = 9$ and $6x$	+8y = 15 is	
	a) $\frac{3}{2}$	b) $\frac{3}{10}$	c) 6	d) None of these
	$\frac{1}{2}$	$\frac{5}{10}$		
60.	The equation of the pair of	of straight lines parallel to a	x-axis and touching the circ	le
	$x^2 + y^2 - 6x - 4y - 12 =$			
			c) $y^2 - 4y + 21 = 0$	d) $y^2 + 4y + 21 = 0$
61				= 0 and the line $2x + 3y = a$
01.		formed by the pair of miles	$given by \delta x = \delta x y + y =$	-0 and the fine $2x + 3y = u$
	is 7, then $a =$			
	a) 14	b) 14√2	c) 28	d) None of these
62.	The equation of the line v	which is such that the portion	on of line segment intercep	ted between the coordinate
	axes is bisected at $(4, -3)$), is		
	a) $3x + 4y = 24$	b) $3x - 4y = 12$	c) $3x - 4y = 24$	d) $4x - 3v = 24$
63		· ·	$x - y = 2$ and β be the dist	
00.			x - y = 2 and p be the dist	ance between the mies
	4x - 3y = 5 and 6y - 8x			
	a) $20\sqrt{2\beta} = 11\alpha$	b) $20\sqrt{2}\alpha = 11\beta$	c) $11\sqrt{2\beta} = 20\alpha$	d) None of these
64.	If the lines $x^2 + 2xy - 35$	$5y^2 - 4x + 44y - 12 = 0$ a	nd $5x + \lambda y - 8 = 0$ are cor	current, then the value of λ
	is			
	a) 0	b) 1	c) -1	d) 2
65	,	,	intersect at the point <i>P</i> . Or	,
05.		-	lines <i>QR</i> passing through (
	a) -7, 1/7	b) 7,1/7	c) 7, -1/7	d) 3, -1/3
66.			,4). The equation of the bise	
	a) $y = x + 1$	b) $y = x - 1$	c) $y = 3x - 5$	d) $y = x$
67.	The position of reflection	of the point (4, 1) about the	he line $y = x - 1$ is	
	a) (1,2)	b) (3, 4)	c) (-1,0)	d) (2, 3)
68.	A straight line through th	e point $A(3,4)$ is such that	its intercept between the a	xes is bisected at A. Its
	equation is		1	
	•	b) $4x + 2y - 24$	c) $3x + 4y = 25$	d) $x + y = 7$
(0	•	•	•	
69.		1a / x - y + 8 = 0 is one dia	agonal of a square, then the	equation of second
	diagonal is			
	a) $x + 3y = 21$	b) $2x - 3y = 7$	c) $x + 7y = 31$	d) $2x + 3y = 21$
70.	The pair of lines joining o	rigin to the points of inters	section of the two curves	
	$ax^2 + 2hxy + by^2 + 2gx$	$= 0$ and $a'x^2 + 2h'xy + b'$	$y^2 + 2g'x = 0$ will be at right right $y^2 + 2g'x = 0$ will be at right $y^2 + 2g'x = 0$	ght angles, if
	a) $(a' + b')g' = (a + b)g$		b) $(a + b)g' = (a' + b')g$	
	c) $h^2 - ab = {h'}^2 - a'b'$		d) $a + b + h^2 = a' + b' + b'$	
			,	
/1.			ction of the lines $x + 2y - 2$	
			locus of the mid point of A	
	a) $x + 3y = 0$	b) $x + 3y = 10$	c) $x + 3y = 10xy$	d) None of these
72.	Distance between the two	b parallel lines $y = 2x + 7$	and $y = 2x + 5$ is	
	a) √5/2	b) 2/5	c) $2/\sqrt{5}$	d) $1/\sqrt{5}$
72	- 1	<i>,</i> ,	- 1	pts on the axes are <i>a</i> and <i>b</i> ,
73.		i penulcular ir oni ule of ign	in on the fine whose lifter te	p is on the axes are u and D ,
	then		1 1 1	1 1 1
	a) $p^2 = a^2 + b^2$	b) $p^2 = a^2 - b^2$	c) $\frac{1}{n^2} = \frac{1}{a^2} + \frac{1}{b^2}$	d) $\frac{1}{2} = \frac{1}{2} - \frac{1}{22}$
	- JE	-)	$p^{2} p^{2} a^{2} b^{2}$	$p^2 a^2 b^2$

74. If the diagonals of a parallelogram *ABCD* are along the lines x + 5y = 7 and 10x - 2y = 9, then *ABCD*

	must be a			
	a) Rectangle	b) Square	c) Cyclic quadrilateral	d) Rhombus
75.	The value of <i>k</i> such that	the lines $2x - 3y + k = 0$,	3x - 4y - 13 = 0 and $8x - 3x - 4y - 13 = 0$	-11y - 33 = 0 are
	concurrent, is			
	a) 20	b) -7	c) 7	d) -20
76.			ed by two pairs of lines l^2 :	$x^2 - m^2 y^2 - n(lx + my) =$
	0 and $l^2 x^2 - m^2 y^2 + n($			2
	a) $\frac{n^2}{n}$	b) $\frac{n^2}{ lm }$	$\frac{n}{2}$	d) $\frac{n^2}{4llml}$
				1 [[]]
77.		ove the <i>x</i> -axis and has one		
	makes an angle $\alpha (0 < \alpha)$	$<\frac{\pi}{4}$) with the positive dire	ection of <i>x</i> -axis. The equation	on of its diagonal not passing
	through the origin is			
	a) $y(\cos \alpha - \sin \alpha) - x(\sin \alpha)$	$in \alpha - \cos \alpha) = a$	b) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha)$	$in \alpha - \cos \alpha) = a$
	c) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha)$	$in \alpha + \cos \alpha = a$	d) $y(\cos \alpha + \sin \alpha) + x(\alpha)$	$\cos\alpha - \sin\alpha) = a$
78.	The equation of one of th	the lines parallel to $4x - 3y =$	= 5 and at a unit distance f	from the point $(-1, -4)$ is
	a) $3x + 4y - 3 = 0$	b) $3x + 4y + 3 = 0$	c) $4x - 3y + 3 = 0$	d) $4x - 3y - 3 = 0$
79.	The point $P(a, b)$ lies on	the straight line $3x + 2y =$	13 and the point $Q(b, a)$ li	es on the straight line
	4x - y = 5, then equation			
	a) $x - 5 = 5$		c) $x + y = -5$	
80.		$-y^2 - 5x - 7y + 6 = 0$ rep		nes, then k is
	a) 5/3	b) 10/3		d) 3/10
81.		the equation $t^2 + \lambda t + 1 = 0$		
		at_1) and $(at_2^2, 2at_2)$ always		
	a) (<i>a</i> , 0)		c) $(0, a)$	
82.				3x - y = 0 at the point <i>A</i> and
	•	the <i>AB</i> so that the $\triangle OAB$ is e	-	
00	a) $x - 2 = 0$,,,	c) $x + y - 4 = 0$,
83.		first degree terms from the	e equation $2x^2 + 4xy + 5y$	$x^2 - 4x - 22y + 7 = 0$, the
	point to which origin is t		-) ()))	
04	a) $(1, -3)$, , ,		d) $(1, 3)$
04.	$\lambda(x^2 + y^2) = 0$, then	$+ 2hxy + by^2 = 0$ are equal	any member to the lines giv	en by ax + 2hxy + by +
	a) λ is any real number	b) $\lambda = 2$	c) $\lambda = 1$	d) None of these
85		bisecting perpendicularly the	,	
05.		b) $y = 7$		
86.		the lines $3x + 4y = 5, 5x + 4y = 5$	· ·	-
00.	a) 2	b) 1	c) 4	d) 3
87.	,	,	,	e equation $ax + by + c = 0$
	=	esented parametrically by a		
	a) $\alpha \gamma + b\alpha = 0, \beta = \delta =$		b) $a\alpha - b\gamma = 0, \beta = \delta =$	
	c) $a\alpha + b\gamma = 0$		d) $a\gamma = b\alpha = 0$	
88.	Origin containing angle b	Disector of two lines $L_1 \equiv a_2$	$_{1}x + b_{1}y + c_{1} = 0$ and $L_{2} \equiv$	$\equiv a_2 x + b_2 y + c_2 = 0$
	(where $c_1 c_2 < 0$) is			
	a) $\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \frac{a_2x}{\sqrt{a_1^2 + b_1^2}}$	$+b_2y+c_2$	b) $\frac{a_1x + b_1y + c_1}{a_1x + b_1y + c_1} = -\frac{a_2}{a_1x + b_1y + c_1}$	$a_2x + b_2y + c_2$
	a) $\sqrt{a_1^2 + b_1^2}$ –	$\sqrt{a_2^2 + b_2^2}$	b) $\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = -\frac{a_2}{\sqrt{a_1^2 + b_1^2}}$	$\sqrt{a_2^2 + b_2^2}$
	c) $\frac{a_1x + b_1y + c_1}{a_1^2 + b_1^2} = \frac{a_2x}{a_1^2 + b_1^2}$	$+ b_2 y + c_2$	d) Depends on the value	of c and c
	$a_1^2 + b_1^2 = -$	$a_2^2 + b_2^2$	uj Depenus on the value	$o_1 c_1 and c_2$
89.		of the two lines given by 2		
	a) (1/2,1/3)	b) (-1/7,-1/7)	c) (-1/3,1/3)	d) None of these

90.	If the slope of one of the line a , $8, -27$	ines given by $ax^2 - 6xy + b$) -8,27	$y^2 = 0$ is square of the oth c) 1.8	er, then $a =$ d) -8, -27
91.	•	belonging to families of stra	y	uj 0, 27
		1) = 0 and $(x - 2y) + \mu(x)$	0	
	a) $6x + 5y = 2$	b) $5x - 6y + 4 = 0$	c) $5x + 6y = 4$	d) None of these
92.		(1, 2) is such that intercept		
	a) $x + y = -1$	•	c) $x + 2y = 5$	d) $2x + y = 4$
93.			= 0 represents a pair of line	es which are parallel to each
	other. The distance betwe			
0.4	a) 4 units	b) $2\sqrt{3}$ units		d) 2 units
	A straight rod of length 9 locus of the centroid of Δ	units slides with its ends A_{i}	, B always on the X and Y a	xis respectively. then, the
		b) $x^2 + y^2 = 9$	c) $x^2 + y^2 = 1$	d) $x^2 + y^2 = 81$
95.		remains in the interior of th		
	$x + y = 4$, then α lies in the			
	a) (0,1)	b) [0,1]	c) [0,4]	d) None of these
96.	The angle between the pa	ir of straight lines $y^2 \sin^2 \theta$	$-xy\sin^2\theta + x^2(\cos^2\theta - 1)$) = 0 is
	a) π/3	b) π/4	c) π/6	d) π/2
97.		hose vertices are (4,1), (3,6		
00	a) 30 sq. units	, ,	c) 9 sq. units $2 \rightarrow 0$ ((1) and $p(7 \rightarrow 2)$	-
	Let PS be the median of the passing through $(1, -1)$ a	he triangle with vertices $P($	Z, Z), Q(6, -1) and R(7, 3).	The equation of the line
	, ,	b) $2x - 9y - 11 = 0$	c) $2r + 9v - 11 = 0$	d) $2r + 9v + 7 = 0$
99.		the point $(2,2)$ and encloses		-
		made by the line on the coo		
	a) $x^2 \pm Ax \mp 2A = 0$	b) $x^2 \pm Ax \pm 2A = 0$	c) $x^2 \pm 2Ax \pm A = 0$	d) $x^2 \pm 2Ax \mp A = 0$
100.	Joint equation of the diage	onals of the square formed	the pairs of lines $xy + 4x$ –	-3y - 12 = 0 and $xy - 12 = 0$
	3x + 4y - 12 = 0, is			
	a) $x^2 - y^2 + x - y = 0$			
	b) $x^2 - y^2 + x + y = 0$	0		
	c) $x^{2} + 2xy + y^{2} + x + y$ d) $x^{2} - 2xy + y^{2} + x - y$			
			x + y = 2 and the vertex is	s(2,-1) , then the length of
	the side of the triangle is	or an equilateral triangle is	x + y = 2 and the vertex is	(2, 1), then the length of
	a) $\sqrt{3/2} / \sqrt{2/3}$	b) $\sqrt{2}$	c) $\sqrt{2/3}$	d) $\sqrt{3/2}$
	• •		•	endicular to the given line is
		b) $x + y = a + b$		d) $bx + ay = b^2$
103.	<i>y</i>	coordinates of the other tw	, ,	$a_j b_i + a_j = b$
2001	a) (2, 0), (4,4)	b) (2,4), (4,0)		d) (2,0), (-4,4)
104.		nslated parallel to itself by	3 units in the sense of incre	easing <i>x</i> and then rotated
	by 30° in the clockwise di	rection about the point wh	ere the shifted line cuts the	x-axis. The equation of the
	line in the new position is			
	a) $y = \tan(\theta - 30^\circ)(x - \theta)$	$4 - 3\sqrt{5}$)		
	b) $y = \tan(30^\circ - \theta)(x - \theta)$	$4 - 3\sqrt{5}$)		
	c) $y = \tan(\theta + 30^\circ)(x + \theta)$	$4 + 3\sqrt{5}$)		
	d) $y = \tan(\theta - 30^\circ)(x + \theta)$	· ·		
105.	If $\lambda x^2 - 10 xy + 12 y^2 +$	5 x - 16 y - 3 = 0, represe		then the value of λ is
	a) 4	b) 3	c) 2	d) 1
106.	The number of integral va	alues of <i>m</i> , for which the <i>x</i> -o	coordinate of the point of i	ntersection of the lines

Page | 7

3x + 4y = 9 and y = mx + 1 is also an integer, is

- a) 2 b) 0 c) 4 d) 1 107. The distance of the point (3, 5) from the line 2x + 3y - 14 = 0 measured parallel to line x - 2y = 1, is b) $\frac{7}{\sqrt{13}}$ c) √5 d) $\sqrt{13}$
- 108. The equation $8x^2 + 8xy + 2y^2 + 26x + 13y + 15 = 0$ represents a pair of straight lines. The distance between then is

a)
$$\frac{7}{\sqrt{5}}$$
 b) $\frac{7}{2\sqrt{5}}$ c) $\frac{\sqrt{7}}{5}$ d) None of these

109. A system of lines is given as $y = m_i x + c_i$ where m_i can take any value out of 0, 1, -1 and when m_i is positive, then c_i can be 1 or -1, when m_i equal 0, c_i can be 0 or 1 and when m_i equals to -1, c_i can take 0 or 2. Then, the area enclosed by all these straight line is

a)
$$\frac{3}{\sqrt{2}}(\sqrt{2}-1)$$
 sq unit b) $\frac{3}{\sqrt{2}}$ sq unit c) $\frac{3}{2}$ sq unit d) None of these 110. The angle between the lines represented by $x^2 - y^2 = 0$ is

a) 0° b) 45° c) 90° d) 180° 111. If the slope of one of the lines given by $36x^2 + 2hxy + 72y^2 = 0$ is four times the other, then $h^2 =$ b) 4050 c) 8100 d) None of these a) 5040

112. If non-zero numbers *a*, *b*, *c* are in HP, then the straight line

 $\frac{x}{a} + \frac{y}{b} + \frac{1}{c} = 0$ always passes through a fixed point. That point is a) (1,

b)
$$(1, -2)$$
 b) $(1, -2)$ c) $(-1, -2)$ d) $(-1, 2)$

113. The distance between the pair of lines given by $x^2 + y^2 + 2xy - 8ax - 8ay - 9a^2 = 0$ is b) $10\sqrt{a}$ d) $5\sqrt{2}a$ a) $2\sqrt{5}a$ c) 10a

114. The image of the origin with reference to the line 4x + 3y - 25 = 0 is c) (-3,4) a) (-8,6) b) (8, 6) d) (8, −6)

115. The equation of a straight line passing through the point of intersection of x - y + 1 = 0 and 3x + y - 5 =0 and perpendicular to one of them, is

b) x - y - 3 = 0 c) x - 3y - 5 = 0 d) x - 3y + 5 = 0a) x + y + 3 = 0116. If the lines kx - 2y - 1 = 0 and 6x - 4y - m = 2 are identical (coincident) lines, then the values of k and *m* are

a)
$$k = 3, m = 2$$
 b) $k = -3, m = 2$ c) $k = -3, m = -2$

a)

117. If (-2,6) is the image of the point (4,2) with respect to the line L = 0, then L =

a)
$$3x - 2y + 5$$
 b) $3x - 2y + 10$ c) $2x + 3y - 5$ d) $6x - 4y - 7$

118. $ax + by - a^2 = 0$, where a, b are non-zero, is the equation to the straight line perpendicular to a line l and passing through the point where *l* crosses the *x*-axis. Then, equation to the line *l* is a)

$$\frac{x}{b} - \frac{y}{a} = 1$$
 b) $\frac{x}{a} - \frac{y}{b} = 1$ c) $\frac{x}{b} + \frac{y}{a} = ab$ d) $\frac{x}{a} - \frac{y}{b} = ab$

119. L is variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line *L* will always pass through

- 120. If (-4, 5) is one vertex and 7x y + 8 = 0 is one diagonal of a square, then the equation of the second diagonal is
- a) x + 3y = 21b) 2x - 3y = 7 c) x + 7y = 31 d) 2x + 3y = 21121. If the equations, $12x^2 - 10xy + 2y^2 + 11x - 5y + k = 0$ represents two straight lines, then the value of k is

122. The locus of the mid-point of the portion intercepted between the axes by the line $x \cos \alpha + y \sin \alpha = p$, where *p* is a constant is

a)
$$x^2 + y^2 = 4 p^2$$
 b) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$ c) $x^2 + y^2 = \frac{4}{p^2}$ d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$

d) k = 3, m = -2

100 The south second of the t			
123. The orthocentre of the tr			d) (2 4)
a) (4, 8/3) ^{124.} The orthocentre of the t	b) (3, 4) (3, 4) (2, $\sqrt{3}$	c) $(4, 3)$ $\frac{1}{2}, (\frac{1}{2}, -\frac{1}{2})$ and $(2, -\frac{1}{2})$ is	d) (-3, 4)
	< 1		
a) $\left(\frac{3}{2}, \frac{\sqrt{3}-3}{6}\right)$	b) $\left(2,-\frac{1}{2}\right)$	c) $\left(\frac{5}{4}, \frac{(\sqrt{3}-2)}{4}\right)$	d) $\left(\frac{1}{2}, -\frac{1}{2}\right)$
125. The image of the point (3	3,8) in the line $x + 3y = 7$, i	is	
a) (1,4)	b) (4,1)	c) (-1,-4)	d) (-4, -1)
126. Family of lines $x \sec^2 \theta$ -	$y \tan^2 \theta - 2 = 0$ for differ	ent real θ , is	
a) Not concurrent	b) Concurrent at (1,1)	c) Concurrent at $(2, -2)$	d) Concurrent at $(-2,2)$
127. The number of the straig	ht lines which are equally	inclined to both the exes, is	
a) 4	b) 2	c) 3	d) 1
128. If one of the lines of my^2	$(1 - m^2)xy - mx^2 = 0$	is a bisector of the angle be	tween the lines $xy = 0$, then
<i>m</i> is/are	· · · -		-
1	L) 0	-) 1	d) 2
$aJ = \frac{1}{2}$	b) -2	c) ±1	,
129. An equilateral ΔABC in	first quadrant is such that A	l lies on <i>x</i> -axis, <i>B</i> lies on <i>y</i> -	axis and <i>BC</i> is parallel to <i>x</i> -
axis, then equation of str	aight line through C paralle	el to <i>AB</i> is ('a' is length of th	ne side)
$a = 3a\sqrt{3}$	b) $\sqrt{3}y + x = \frac{3a\sqrt{3}}{2}$	$a = 3a\sqrt{3}$	d) None of these
a) $y - \sqrt{3x} = \frac{1}{2}$	$y_{3y} + x = \frac{1}{2}$	$y + \sqrt{3}x = \frac{1}{2}$	
130. The value ' p ' for which t	the equation $x^2 + pxy + y^2$	-5x - 7y + 6 = 0 represe	nts a pair of straight lines, is
a) 5/2	b) 5		d) 2/5
131. The equation of the line	with gradient –3/2 which i	s concurrent with the lines	4x + 3y - 7 = 0 and
8x + 5y - 1 = 0 is			-
_	b) $3x + 2y - 63 = 0$	c) $2y - 3x - 2 = 0$	d) None of these
132. Let <i>ABC</i> be an isosceles			
	through the angular points	=	1 2
-	b) $m_1 + m_2 = 0$		d) $m_1 + 2m_2 = 0$
133. <i>y</i> -intercept of line passe			
a) $\frac{1}{3}$	b) $\frac{2}{3}$	-)	d) $\frac{4}{3}$
134. The equation of the bise	ctor of the obtuse angle bet	ween the lines $3x - 4y + 7$	= 0 and -12x - 5y + 2 =
0, is			
a) $21x + 77y - 101 = 0$		b) $99x - 27y + 81 = 0$	
c) $21x - 77y + 101 = 0$		d) None of these	
135. The equation of the line	equidistant from the lines 2	2x + 3y + 5 = 0 and $4x + 6$	y = 11 is
a) $2x + 3y - 1 = 0$		c) $8x + 12y - 1 = 0$	
136. The range of values of θ	in the interval (0, π) such the	hat the points (3,5) and (sin	$(\theta, \cos \theta)$ lie on the same
side of the line $x + y - 1$	= 0, is		
a) $(0, \pi/2)$	b) 0, π/4	c) $(\pi/4, \pi/2)$	d) None of these
137. Let θ_1 and θ_2 are the inc	linations of lines L_1 and L_2	with x-axis. If L_1 and L_2 pas	s through $P(x_1, y_1)$, then
	gle bisector of these lines is		
		x - x $y - y$	<i>y</i> ₁
a) $\frac{x - x_1}{\cos\left(\frac{\theta_1 - \theta_2}{2}\right)} = \frac{y - y}{\sin\left(\frac{\theta_1 - \theta_2}{2}\right)}$	$\left(\frac{\theta_2}{\theta_2}\right)$	b) $\frac{x - x_1}{-\sin\left(\frac{\theta_1 - \theta_2}{2}\right)} = \frac{y - y}{\cos\left(\frac{\theta_1}{2}\right)}$	$\left(-\theta_{2}\right)$
	/		2 /
c) $\frac{x - x_1}{\sin\left(\frac{\theta_1 + \theta_2}{2}\right)} = \frac{y - y}{\cos\left(\frac{\theta_1 + \theta_2}{2}\right)}$	$\left(\frac{\theta_2}{\theta_2}\right)$	$d) \frac{x - x_1}{-\sin\left(\frac{\theta_1 + \theta_2}{2}\right)} = \frac{y - 2}{\sin\left(\frac{\theta_1}{2}\right)}$	$\left(\frac{1}{1+\theta_2}\right)$
			2)
138. Two verities of a triangle		the orthocenter of the trian	ngle is the origin, then
coordinates of third vert	ex are		

a)
$$(4, 7)$$
 b) $(-4, -7)$ c) $(-4, 7)$ d) None of these 139. The product of the perpendicular distances from the origin on the pair of straight lines $12x^2 + 25xy + 25x$

$12y^2 + 10x + 11y + 2 = 0$ is	
a) $\frac{1}{25}$ b) $\frac{2}{25}$	c) $\frac{3}{25}$ d) $\frac{4}{25}$
25 25	25 25
	he ratio in which the foot of the perpendicular from $(4, 1)$ to
AB divided it, is	
a) 8: 15 b) 5: 8	- , , - ,
	s of a point which moves in such a way that the angle <i>APB</i> is a
right angle is	a) A narabala d) Nana af thasa
a) A circle b) An ellipse	c) A parabola d) None of these intersection of $x^2 + y^2 + 2gx + c = 0$ and $x^2 + y^2 + 2fy - 2gx + c = 0$
c = 0 are at right angles, then	x + y + 2yx + c = 0 and x + y + 2yy = 0
	c) $g^2 - f^2 = 2c$ d) $g^2 + f^2 = c^2$
143. If the lines $x + 3y - 9 = 0$, $4x + by - 2 = 0$ a	
a) -5 b) 5	
	1 = 0 and $2x - y + 3 = 0$ at the same point, then m is equal to
a) 1 b) -1	
145. If the equation $kx^2 - 2xy - y^2 - 2x + 2y =$	0 represents a pair of lines, then k is equal to
a) 2 b) -2	
146. The equation of a straight line passing throug	gh (1, 2) and having intercept of length 3 between the straight
lines $3x + 4y = 24$ and $3x 4y = 12$ is	
	= 0 c) $24x + 7y - 10 = 0$ d) None of these
147. The equation $x^2 + k_1y^2 + k_2xy = 0$ represent	
a) $k_1 = -1$ b) $k_1 = 2 k_2$	
_	nd <i>y</i> -axis and it is perpendicular to another line <i>CD</i> which is
3x + 4y + 6 = 0. The equation of line <i>AB</i> is	
	0 c) $4x - 3y = 0$ d) $4x - 3y + 6 = 0$
149. The distance between the lines given by $(x + 1)^{-1}$	
, , , , , , , , , , , , , , , , , , , ,	c) 2 d) $10\sqrt{2}$
	e point (1, 1) measured parallel to the line $x + y = 1$, is
a) $\sqrt{2}$ b) $5/\sqrt{2}$	•
151. Distance between the lines $5x + 3y - 7 = 0$	
a) $\frac{35}{\sqrt{34}}$ b) $\frac{1}{3\sqrt{34}}$	c) $\frac{35}{3\sqrt{34}}$ d) $\frac{35}{2\sqrt{34}}$
	$xy + by^2 = 0$, then angle between $x^2 + 2xy\sec\theta + y^2 = 0$ is
a) θ b) 2θ	c) $\frac{\theta}{2}$ d) 3θ
153. The ratio in which the line $3x + 4y + 2 = 0$	divides the distance between $3x + 4y + 5 = 0$, and
3x + 4y - 5 = 0, is	
a) 7 : 3 b) 3 : 7	c) 2 : 3 d) None of these
154. The determinant $\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$ represent	
The determinant $\begin{vmatrix} x_1 & y_1 \\ x & y_1 \end{vmatrix} = 0$ represent	S
a) A pair of straight lines	b) A straight line
c) A circle	d) None of these
	tercepts on the axes and passing through the point (2, 4), is
	c) $x + y - 6 = 0$ d) $x + 2y - 10 = 0$
156. The area enclosed within the curve $ x + y $	
a) 1 sq. units b) 2 sq. units	c) 3 sq. units d) 4 sq. units
157. If the line represented by $x^2 - 2pxy - y^2 =$	0 are rotated about the origin through an angle θ , one in
	ise direction, then the equation of the bisectors of the angle
between the lines in the new position is	

a) $px^2 + 2xy - py^2 = 0$ b) $px^2 + 2xy + py^2 = 0$ c) $x^2 - 2 pxy + y^2 = 0$ d) None of these 158. The equation of the line passing through the intersection of $x - \sqrt{3}y + \sqrt{3} - 1 = 0$ and x + y - 2 = 0 and making an angle of 15° with the first line is a) x - y = 0b) x - y + 1 = 0c) y = 1d) $\sqrt{3} x - y + 1 - \sqrt{3} = 0$ 159. The equation of straight line equally inclined to the axes and equidistance from the points (1, -2) and (3, 4) is ax + by + c = 0, where a) a = 1, b = -1, c = 3b) a = 1, b = -1, c = -3d) None of these c) a = 1, b = 1, c = -3160. Separate equations of lines for a pair of lines whose equation is $x^2 + xy - 12y^2 = 0$, are b) 2x - 3y = 0 and x - 4y = 0a) x + 4y = 0 and x + 3y = 0d) x + 4y = 0 and x - 3y = 0c) x - 6y = 0 and x - 3y = 0161. The nearest point on the line 3x - 4y = 25 from the origin is b) (3, -4)c) (3,4) d) (3, 5) a) (-4, 5)162. The equations of perpendicular bisectors of sides *AB* and *AC* of a \triangle *ABC* are x - y + 5 = 0 and x + 2y = 0 respectively. If the coordinates of vertex *A* are (1, -2), then equation of *BC* is a) 23x + 14y - 40 = 0b) 14x - 23y + 40 = 0c) 23x - 14y + 40 = 0d) 14x + 23y - 40 = 0163. The equation of the bisector of the acute angle between the lines 3x - 4y + 7 = 0 and 12x + 5y - 2 = 0 is a) 99x - 27y - 81 = 0b) 11x - 3y + 9 = 0c) 21x + 77y - 101 = 0d) 21x + 77y + 101 = 0164. The vertices of a triangle are (0,3), (-3,0) and (3,0). The coordinates of its orthocentre are a) (0,2) b) (0, -3)c) (0,3) d) (0, -2)165. The coordinates of the foot of the perpendicular from the point (2,4) on the line x + y = 1 are b) (-1/2, 3/2)a) (1/2, 3/2) c) (4/3,1/2) d) 3/4, -1/2166. If $(\sin \theta, \cos \theta \text{ and } (3,2))$ lies on the same side of the line x + y = 1 then θ lies between c) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ a) $\left(0, \frac{\pi}{2}\right)$ d) $\left(0, \frac{\pi}{4}\right)$ b) (0, π) 167. Equation of the straight line cutting off an intercept 2 from the negative direction of the axis of y and inclined at 30° to the positive direction of x-axis, is a) $y + x - \sqrt{3} = 0$ b) y - x + 2 = 0 c) $y - \sqrt{3}x - 2 = 0$ d) $\sqrt{3}y - x + 2\sqrt{3} = 0$ 168. If the lines represented by the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ are equidistant from the origin, then a) $f^4 - g^4 = c(bf^2 - ag^2)$ b) $f^4 - q^4 = c(af^2 - bq^2)$ c) $f^4 - g^4 = c(ag^2 - bf^2)$ d) None of these 169. Joint equation of pair of lines through (3, -2) and parallel to $x^2 - 4xy + 3y^2 = 0$ is a) $x^2 + 3y^2 - 4xy - 14x + 24y + 45 = 0$ b) $x^2 + 3y^2 + 4xy - 14x + 24y + 45 = 0$ c) $x^2 + 3y^2 + 4xy - 14x + 24y - 45 = 0$ d) $x^{2} + 3y^{2} + 4xy - 14x - 24y - 45 = 0$ 170. The equation of straight line through the intersection of the lines x - 2y = 1 and x + 3y = 2 and parallel to 3x + 4y = 0, is b) 3x + 4y - 10 = 0c) 3x + 4y - 5 = 0a) 3x + 4y + 5 = 0d) 3x + 4y + 6 = 0171. Two lines are drown through (3, 4) each of which makes angle 45° which line x - y = 2, then area of the triangle formed by these lines is a) 9 sq unit b) 9/2 sq unit c) 2 sq unit d) 2/9 sq unit

172. The area (in square unit $x^2 - 3xy + 2y^2 = 0$ is	t) of the triangle formed by	x + y + 1 = 0 and the pai	r of straight lines
	5	1	1
a) $\frac{7}{12}$	b) $\frac{5}{12}$	c) $\frac{1}{12}$	d) $\frac{1}{6}$
173. The length of perpendic	cular from the point (a cos o	$(a \sin \alpha)$ upon the straigh	t line $y = x \tan \alpha + c, c > 0$, is
a) <i>c</i>	b) $c \sin^2 \alpha$	c) $c \cos \alpha$	
174. The equation to a pair o	f opposite sides of a paralle		-
equation to its diagonal		5	
a) $x + 4y = 13$ and $y =$		b) $4x + y = 13$ and $4y$	= x - 7
c) $4x + y = 13$ and $y =$		d) $y - 4x = 13$ and $y + 4x = 13$	4x = 7
175. The line passing throug		of $x + y = 2, x - y = 0$ and	l is parallel to $x + 2y = 5$, is
	b) $x + 2y = 2$	c) $x + 2y = 4$	
176. The coordinates of the f	-		
a) $\left(\frac{9}{5}, \frac{17}{5}\right)$	b) (1, 5)		d) (1, -5)
	nit is formed by taking two	sides as $3x + 4y = k_1$ and	$1 3x + 4y = k_2$, then $ k_1 - k_2 $
is			
a) 5	b) 1	c) 25	d) None of these
178. The locus of the orthoce	,	,	
qy + q(1 + q) = 0 and $y = 0$			
a) A hyperbola		c) An ellipse	d) A straight line
179. The locus of a point <i>P</i> w			
for all θ , is a	, (, <u>,</u>
a) Straight line	b) Circle	c) Pair of straight lines	d) Parabola
180. A straight line through t			
	the line <i>AB</i> , so that the ΔOA		
_	b) $y - 2 = 0$	=	d) None of these
181. The equation of the stra			•
a) $x - y = 5$		c) $x + y = 1$	
182. If the angle between tw	· ·		
a) 1/5	b) 1	c) 7/5	d) 7
183. If the pair of straight lin	5	<i>,</i>	,
	en $(A + 3B)(3A + B)$ is equ		
a) H^2	b) $-H^2$	c) $2H^2$	d) 4 <i>H</i> ²
184. The equation of a straig	,	,	,
$x \sec \theta + y \csc \theta = a$			o) and porponational to
-			20
a) $\frac{x}{a} + \frac{y}{a} = a \cos \theta$		b) $x \cos \theta - y \sin \theta = -$	$-a\cos 2\theta$
c) $x \cos \theta + y \sin \theta = a$	cos 2θ	d) $x \cos \theta + y \sin \theta - a$	cos 2θ
185. The distance between t	he lines $5x - 12y + 65 = 0$	and $5x - 12y - 39 = 0$ is	
a) 4	b) 16	c) 2	d) 8
186. The perpendicular bised	ctor of the line segment join	ing $P(1,4)$ and $Q(k,3)$ has	;
y-intercept −4. Then, a	possible value of <i>k</i> is		
a) -4	b) 1	c) 2	d) -2
187. A line passes through (2	2,2) and is perpendicular to	the line $3x + y = 3$. Its y-	intercept is
a) 1/3	b) 2/3	c) 1	d) 4/3
188. Points $A(1,3)$ and $C(5,1)$ equation is) are opposite vertices of a	rectangle <i>ABCD</i> . If the slop	pe of <i>BD</i> is 2, then its
a) $2x - y = 4$	b) $2x + y = 4$	c) $2x + y - 7 = 0$	d) $2x + y + 7 = 0$
			el to the lines represented by
$2x^2 - xy - y^2 = 0$, is			· · · · · ·

Page | 12

a) $2x^2 - xy - 2y^2 + 4$		b) $2x^2 - xy - y^2 - 4$	x - y + 2 = 0
c) $2x^2 - xy - y^2 - 4x$	x + y + 2 = 0	d) None of the above	
190. The three straight line	es ax + by = c, bx + cy = c	a and $cx + ay = b$ are coll	inear, if
a) $b + c = a$	b) $c + a = b$	c) $a + b + c = 0$	d) $a + b = c$
191. $P(2,1), Q(4,-1), R(3,$	2) are the vertices of a tria	ngle and if through <i>P</i> and <i>F</i>	lines parallel to opposite sides
	t in <i>S</i> , then the area of <i>PQR</i> .		
a) 6	b) 4	c) 8	d) 12
-	,	,	int(3, -4). Then, the equation
of the line is	indicular from the origin to	a straight line is at the po	int(3, 1). Then, the equation
	b) $3x - 4y + 25 = 0$	-2 $4x + 2x - 2f - 0$	d) $4\pi - 2\pi + 2\Gamma = 0$
· ·	· ·	-	· ·
_		$xy^3 + cx^2y^2 + dx^3y + ex^3$	$a^4 = 0$ are at right angle, then
	$a^{2} + (b+d)(ad+be) = 0$		
	$a^2 - (b+d)(ad+be) = 0$		
c) $(c + a + e)(e + a)^{2}$	$^{2} + (b+d)(ad+be) = 0$		
d) None of these			
194. Two points A and B m	nove on the coordinate axes	s such that the distance bet	tween them remains same. The
locus of the mid-point	t of <i>AB</i> is		
a) A straight line			
b) A pair of straight li	nes		
c) A circle			
d) None of these			
-	of an isosceles triangle are a	at (2 <i>a</i> , 0) and (0, <i>a</i>). The eq	quation of one side is $x = 2a$.
The equation of the of	-		
-		c) $3x \pm 4y - 4a = 1$	0 d) $3x - 4y + 4a = 0$
			$xy + 2y^2 + 10x + 5y = 0$ and
		$\frac{11}{21} = \frac{11}{21} = 11$	xy + 2y + 10x + 5y = 0 and
passing through the o		$(1) (1)^2 (1) (1)^2$	0
a) $2x^2 + 5xy + 2y^2 =$		b) $2x^2 - 3xy + 2y^2 =$	
c) $2x^2 + 3xy + y^2 =$		d) $2x^2 - 5xy + 2y^2 =$	
	, ,	tices of a rectangle and the	e other two vertices lie on the
line $y = 2x + c$, then			
a) 4	b) -4	c) 2	d) None of these
198. The equation of line the			t (3, 1) has the greatest value, is
a) $y = 2x$	b) $y = x + 1$	c) $x + 2y = 5$	d) $y = 3x - 1$
199. The equation of the lin	nes parallel to the line com	mon to the pair of lines giv	ven by $6x^2 - xy - 12y^2 = 0$ and
$15x^2 + 14xy - 8y^2 =$	= 0 and the sum of whose in	tercepts on the axes is 7, i	S
a) $2x - 3y = 42$	b) $3x + 4y = 12$	c) $5x - 2y = 10$	d) None of these
200. Area of the parallelog	ram formed by the lines y =	= mx, y = mx + 1, y = nx	and $y = nx + 1$ equals
a) $\frac{1}{(m-n)^2}$	b) $\frac{2}{ m+n }$	c) $\frac{1}{ m+n }$	d) $\frac{1}{ m-n }$
201. The members of the fa	amily of lines $(\lambda + \mu)x + (2)$	$(2\lambda + -\mu)\nu = \lambda + 2\mu$, where	The $\lambda \neq 0, \mu \neq 0$, pass through the
point			
a) (3, -1)	b) -3,1	c) (1,1)	d) None of these
	, ,		kwise direction through an
	uation of the line in the new		
			d) None of these
-	b) $\sqrt{3} x + y = 2\sqrt{3}$	-	d) None of these $(2^3 + 5^2)^{-2}$
	angle whose three sides ar	e given by the combined e	quation $(x^2 + 7xy + 2y^2)(y - y^2)(y - y^2)(y$
<i>1=0</i> , is	F 0		
a) $\left(\frac{2}{3}, 0\right)$	b) $\left(\frac{7}{3}, \frac{2}{3}\right)$	c) $\left(-\frac{7}{2}\right)$	d) None of these
	(5.5)		
204. The distance of the po	(1, 2) from the line $x +$	y + 5 = 0 measured along	g the line parallel to $3x - y = 7$

is equal to	1.) 40		N
a) 4√10	b) 40	c) √40	d) 10√2
	by the straight lines $y = 1$ and	-	
a) 1/2 sq. unit	b) 1 sq. unit	c) $3/2$ sq. units	d) 2 sq. units
206. The distance betwe	en the pair of parallel lines x		-4 = 0 is
a) √5	b) $\frac{2}{\sqrt{5}}$	c) $\frac{1}{}$	d) $\frac{\sqrt{5}}{2}$
	٧D	VO	Z
207. If the pair of straigh	It lines $xy - x - y + 1 = 0$ ar	nd the line $ax + 2y - 3 = 0$	are concurrent, then <i>a</i> is equal
to			
a) —1	b) 0	c) 3	d) 1
208. Points on the line <i>x</i>	y + y = 4 that lie at a unit dist	cance from the line $4x + 3y$	-10 = 0, are
a) (3, 1) and (-7, 1	1) b) (-3,7) and (2,2)	c) (-3,7) and (-7,11)) d) None of these
209. The bisector of the	acute angle formed between	the lines $4x - 3y + 7 = 0$ a	nd $3x - 4y + 14 = 0$ has the
equation			
a) $x + y + 3 = 0$	b) $x - y - 3 = 0$	c) $x - y + 3 = 0$	d) $3x + y - 7 = 0$
210. If $a \neq b \neq c$, then the function of $a \neq b \neq c$, the function of $a \neq b \neq c$.	ne equations		
(b-c)x + (c-a)y			
and, $(b^3 - c^3)x + ($	$c^3 - a^3)y + (a^3 - b^3) = 0$		
will represent the s	ame line, if		
a) $a + b = -c$	b) $c + a = -b$	c) $b + c = -a$	d) $a + b + c = 0$
211. The number of poir	ts on the line $x + y = 4$ which	ch are unit distance apart fr	om the line $2x + 2y = 5$ is
a) 0	b) 1	c) 2	d) ∞
212. The ratio in which t	the line $3x - 2y + 5 = 0$ divide	des the join of $(6, -7)$ and $($	-2,3), is
a) 1 : 1	b) 7 : 37	c) 37:7	d) None of these
213. The lines 2 <i>x</i> + <i>y</i> −	1 = 0, ax + 3y - 3 = 0 and	3x + 2y - 2 = 0 are concu	rrent for
a) All <i>a</i>	b) $a = 4$ only	c) $-1 \le a \le 3$	d) $a > 0$ only
214. If $A(\cos \alpha, \sin \alpha), B(\alpha)$	$(\sin \alpha, -\cos \alpha), C(1,2)$ are the	e vertices of a ΔABC , then a	is α varies the locus of its
centroid is			
a) $x^2 + y^2 - 2x - $	4y + 1 = 0		
b) $3(x^2 + y^2) - 2x$	z - 4y + 1 = 0		
c) $x^2 + y^2 - 2x - $	4y + 3 = 0		
d) None of these			
215. If (a, a^2) falls inside	e the angle made by the lines	$y = \frac{x}{2}, x > 0$ and $y = 3x, x$	> 0, then <i>a</i> belongs to
a) (3,∞)	b) $(\frac{1}{2}, 3)$	c) $\left(-3, -\frac{1}{2}\right)$	d) $\left(0, \frac{1}{2}\right)$
216. The pairs of straigh	t lines $ax^2 + 2hxy - ay^2 = 0$	0 and $hx^2 - 2axy - hy^2 =$	0 are such that
	the angle between the other		
b) The lines of one	pair are equally inclined to th	e lines of the other pair	
c) The lines of each	pair are perpendicular to oth	her pair	
d) All of these		-	
217. If the straight line a	ax + by + c = 0 always passe	es through $(1, -2)$ then a, b ,	<i>c</i> are in
a) AP	b) HP	c) GP	d) None of these
218. If $A(1,1), B(\sqrt{3}+1)$	(2) and $C(\sqrt{3},\sqrt{3}+2)$ be three	ee vertices of a square, then	the diagonal through B is
a) $y = (\sqrt{3} - 2)x + $		1	5 5
b) $y = 0$			
c) $y = 0$			
d) None of these			
-	-1 = 0, x - y + 5 = 0 and k	xx + 5y - 3 - 0 are concurs	rent then k is equal to
a) 4	-1 = 0, x = y + 5 = 0 and x b) 5	c) 6	d) 7
-	these represented by $x^2 + 2hxy$,	
220. The slopes of the III	The set of	$y + \Delta y = 0$ are in the ratio	$1 \cdot 2$, then <i>n</i> equals

a) $\pm \frac{1}{2}$ b) $\pm \frac{3}{2}$ c)	d) ±1	<u>±</u> 3
--	-------	------------

221. If *PM* is the perpendicular from *P*(2, 3) onto the line x + y = 3, then the coordinates of *M* are a) (2,1) b) (-1,4) c) (1,2) d) (4,-1)

222. A line through the point A(2, 0) which makes an angle of 30° with the positive direction of *x*-axis is rotated about *A* in clockwise direction through an angle of 15°. Then, the equation of the straight line in the new position is

- a) $(2 \sqrt{3})x + y 4 + 2\sqrt{3} = 0$ c) $(2 - \sqrt{3})x - y + 4 + 2\sqrt{3} = 0$ 223. The distance between the pair of parallel lines $x^2 + 2xy + y^2 - 8ax - 8ay - 9a^2 = 0$ is a) $2\sqrt{5}a$ b) $\sqrt{10}a$ c) 10ad) $5\sqrt{2}a$ 224. One vertex of the equilateral triangle with centroid at the origin and one side as x + y - 2 = 0 is
- a) (-1, -1) b) (2, 2) c) (-2, -2) d) None of these
- 225. The equation of straight line through the intersection of the lines x 2y = 1 and x + 3y = 2 and parallel to 3x + 4y = 0, is
- a) 3x + 4y + 5 = 0b) 3x + 4y 10 = 0c) 3x + 4y 5 = 0d) 3x + 4y + 6 = 0226. The straight line 3x + y = 9 divided the line segment joining the points (1, 3) and (2,7) in the ratioa) 3:4 externallyb) 3:4 internallyc) 4:5 internallyd) 5:6 externally
- 227. Orthocentre of the triangle whose sides are given by 4x 7y + 10 = 0, x + y 5 = 0 and 7x + 4y 15 = 0 is

228. The diagonals of the parallelogram whose sides are lx + my + n = 0, lx + my + n' = 0, mx + ly + n = 0, mx + ly + n' = 0 include an angle

a)
$$\pi/3$$
 b) $\pi/2$ c) $\tan^{-1}\left(\frac{l^2 - m^2}{l^2 + m^2}\right)$ d) $\tan^{-1}\left(\frac{2 lm}{l^2 + m^2}\right)$

- 229. The centroid of an equilateral triangle is (0, 0). If two vertices of the triangle lie on $x + y = 2\sqrt{2}$, then one of them will have its coordinates
- a) $(\sqrt{2} + \sqrt{6}, \sqrt{2} \sqrt{6})$ b) $(\sqrt{2} + \sqrt{3}, \sqrt{2} \sqrt{3})$ c) $(\sqrt{2} + \sqrt{5}, \sqrt{2} \sqrt{5})$ d) None of theses 230. If the lines ax + 2y + 1 = 0, bx + 3y + 1 = 0, cx + 4y + 1 = 0 are concurrent, then a, b, c are in a) AP b) GP c) HP d) None of these
- 231. Locus of the centroid of triangle whose vertices are $(a \cos t, a \sin t)$, $(b \sin t, -b \cos t)$ and (1,0), where t is a parameter, is
 - a) $(3x 1)^2 + (3y)^2 = a^2 b^2$
 - b) $(3x 1)^2 + (3y)^2 = a^2 + b^2$
 - c) $(3x + 1)^2 + (3y)^2 = a^2 + b^2$
 - d) $(3x + 1)^2 + (3y)^2 = a^2 b^2$
- 232. If θ is the acute angle between the lines given by $6x^2 + 5xy 7x + 13y 3 = 0$, then the equation of the line passing through the point of intersection of these lines and making angle θ with the positive *x*-axis is a) 2x + 11y + 13 = 0 b) 11x 2y + 13 = 0 c) 2x 11y + 2 = 0 d) 11x + 2y 11 = 0
- ^{233.} If $\frac{x^2}{a} + \frac{y^2}{b} + \frac{2xy}{h} = 0$ represents a pair of straight lines such that slope of one line is twice the other, then $ab: h^2$ is

- 234. The lines bisecting the angle between the bisectors of the angles between the lines $ax^2 + 2hxy + by^2 = 0$ are given by
 - a) $(a-b)(x^2 y^2) 4hxy = 0$
 - b) $(a b)(x^2 + y^2) + 4hxy = 0$
 - c) $(a-b)(x^2-y^2) + 4hxy = 0$
 - d) None of these

^{235.} The line passing through $\left(-1, \frac{\pi}{2}\right)$ and perpendicular to $\sqrt{3}\sin\theta + 2\cos\theta = \frac{4}{r}$ is

a) $2 = \sqrt{3}r\cos\theta - 2r\sin\theta$	b) $5 = -2\sqrt{3}r\sin\theta + 4r\cos\theta$
c) $2 = \sqrt{3}r\cos\theta + 2r\sin\theta$	d) $5 = 2\sqrt{3}r\sin\theta + 4r\cos\theta$
-	(-2y - 3) = 0, the number of lines belonging to the family at a
distance $\sqrt{10}$ from $P(2, -3)$ is	
a) 0 b) 1	c) 2 d) 4
· · · ·	line $2x + 11y = 5$ upon the lines $24x + 7y - 20 = 0$ and
$4x - 3y - 2 = 0$ have the lengths p_1 and p_2 relationships the second se	
a) $2p_1 = p_2$ b) $p_1 = p_2$	
238. The equation of bisectors of the angles betwee	
a) $y = \pm x$ and $x = 0$ b) $x = \frac{1}{2}$ and $y = \frac{1}{2}$	c) $y = 0$ and $x = 0$ d) None of these
239. The pairs of straight lines $x^2 - 3xy + 2y^2 =$	
a) Square but not rhombus	b) Rhombus
c) Parallelogram	d) Rectangle but not a square
240. The straight line whose sum of the intercepts	on the axes is equal to half to the product of the intercepts,
passes through the point whose coordinates	are
a) (1, 1) b) (2, 2)	c) (3, 3) d) (4, 4)
241. A straight line through $P(1,2)$ is such that its	intercept between the axes is bisected at <i>P</i> . Its equation is
a) $x + 2y = 5$ b) $x - y + 1 = 0$	c) $x + y - 3 = 0$ d) $2x + y - 4 = 0$
242. The incentre of the triangle formed by the lin	
	c) (1, 1/2) d) (1/2,1)
	through the origin and also through the point of intersection
of the curve $x^2 + y^2 = 4$ with $x + y = a$. The	
	c) {-4, 4} d) {-5, 5}
	$dx^2 - 2qxy - y^2 = 0$ be such that each pair bisects the angle
between the other pair, then	
a) $pq = 1$ b) $pq = -1$	
	intersect at the point $(3,4)$. If the point A is $(1,2)$ the
diagonal BD has the equation	
a) $x - y - 1 = 0$ 246 The gradient of one of the lines of $ax^2 + 2bx$	c) $x - y + 1 = 0$ d) $x + y - 7 = 0$
246. The gradient of one of the lines of $ax^2 + 2hx$ a) $h^2 = ab$ b) $h = a + b$	c) $8h^2 = 9ab$ d) $9h^2 = 8ab$
247. The family of lines making an angle 30° with $\frac{1}{2}$	
a) $x = \lambda(\lambda \text{ is parameter })$	b) $y = -\sqrt{3}x + \lambda(\lambda \text{ is parameter })$
c) $y = \sqrt{3}x + \lambda$	d) None of the above
	$ax^{2} + 2hxy + by^{2} = 0$ be the square of the other, then
$\frac{a+h}{h} + \frac{8h^2}{ab}$ is	
a) 3 b) 4	c) 5 d) 6
249. The equation $y^2 - x^2 + 2x - 1 = 0$, represent	nts
a) A pair of st. lines b) A circle	c) A parabola d) An ellipse
250. The vertices of a $\triangle OBC$ are $(0, 0)$, $B(-3, -1)$	and $C(-1, -3)$. The equation of a line parallel to <i>BC</i> and
intersecting sides <i>OB</i> and <i>OC</i> whose distance	
a) $x + y + \frac{1}{2} = 0$ b) $x + y - \frac{1}{2} = 0$	c) $x + y - \frac{1}{\sqrt{2}} = 0$ d) $x + y + \frac{1}{\sqrt{2}} = 0$
251. The angle between the line joining the points	(1, -2), (3, 2) and the line $x + 2y - 7 = 0$ is
a) π b) π/2	c) π/3 d) π/6
252. The equation $y^2 - x^2 + 2x - 1 = 0$ represen	ts
a) A hyperbola	b) An ellipse
c) A pair of straight lines	d) A rectangular hyperbola
253. The equation to the bisecting the join of $(3, -$	4) and (5,2) and having its intercepts on the <i>x</i> -axis and the <i>y</i> -

axis in the ratio 2 : 1 is a) x + y - 3 = 0b) 2x - y = 9c) x + 2y = 2d) 2x + y = 7254. A(-5,0) and B(3,0) are two of the vertices of a triangle ABC. Its area is 20 square cms. The vertex C lies on the line x - y = 2. The coordinates of *C* are a) (-7, -5) or (3,5)b) (-3, -5) or (-5, 7)c) (7,5) or (3,5) d) (-3, -5) or (7,5)255. The point of concurrence of the lines ax + by + c = 0 and a, b, c satisfy the relation 3a + 2b + 4c = 0 is a) $\left(\frac{3}{2}, \frac{1}{4}\right)$ b) $\left(\frac{3}{4}, \frac{1}{4}\right)$ c) $\left(\frac{3}{4}, \frac{1}{2}\right)$ d) $\left(\frac{3}{2}, \frac{1}{2}\right)$ 256. The angle between the straight line $x - y\sqrt{3} = 5$ and $\sqrt{3}x + y = 7$ is a) 90° b) 60° c) 75° d) 30° 257. The equation $y = \pm \sqrt{3}x$, y = 1 are the sides of a) An equilateral triangle b) A right angled triangle c) An isosceles triangle d) An obtuse triangle 258. A line passes through the point of intersection of the lines 3x + y + 1 = 0 and 2x - y + 3 = 0 and makes equal intercepts with axes. Then, equation of the line is a) 5x + 5y - 3 = 0b) x + 5y - 3 = 0c) 5x - y - 3 = 0d) 5x + 5y + 3 = 0259. The equation of the straight line which passes through the point (1, -2) and cuts off equal intercepts from the axes will be a) x + y = 1b) x - y = 1c) x + y + 1 = 0d) x - y - 2 = 0260. The orthocenter of a triangle formed by the lines x + y = 1, 2x + 3y = 6 and 4x - y + 4 = 0 lies in the c) IIIrd quadrant b) IInd quadrant d) IVth quadrant a) Ist quadrant 261. Equation of straight line cutting off an intercept 2 from the negative direction of the axes of y and inclined at 30° to the positive direction of axis of x, is a) $y + x - \sqrt{3} = 0$ c) $y - \sqrt{3}x - 2 = 0$ b) y - x + 2 = 0d) $\sqrt{3}y - x + 2\sqrt{3} = 0$ 262. Distance between the pair of lines represented by the equation $x^2 - 6xy + 9y^2 + 3x - 9y - 4 = 0$, is c) $\sqrt{\frac{5}{2}}$ d) $\frac{1}{\sqrt{10}}$ b) $\frac{1}{2}$ a) $\frac{15}{\sqrt{10}}$ 263. The line 3x + 2y = 24 meets y-axis at A and x-axis at B. The perpendicular bisector of AB meets the line through (0, -1) parallel to x-axis at C. The area of the triangle ABC is a) 182 sq. units b) 91 sq. units c) 48 sq. units d) None of these 264. The coordinates of three vertices of a quadrilateral in order are (6,1), (7,2) and (-1,0). If the area of the quadrilateral is 4 square units, then the locus of the fourth vertex is a) x - 7y = 1b) x - 7y + 15 = 0c) $(x - 7y)^2 + 14(x - 7y) - 15 = 0$ d) None of these 265. Two points (a, 0) and (0, b) are joined by a straight line. Another point on this line, is a) (3a, -2b)b) (a^2, ab) c) (-3a, 2b)d) (*a*, *b*) 266. The lines $(lx + my)^2 - 3(mx - ly)^2 = 0$ and lx + my + n = 0 form b) A right angled triangle a) An isosceles triangle c) An equilateral triangle d) None of these 267. The distance between the pair of lines represented by the equation $x^{2} - 6xy + 9y^{2} + 3x - 9y - 4 = 0$ is c) $\frac{5}{2}$ a) $\frac{15}{\sqrt{10}}$ b) $\frac{1}{2}$ d) $\frac{1}{\sqrt{10}}$ 268. P(3, 1), Q(6,5) and R(x, y) are three points such that the angle PRQ is a right angle and the area of $\Delta RQP = 7$, then the number of such points *R* is a) 0 c) 2 d) 4 269. The equation $x^3 - 6x^2y + 11xy^2 - 6y^3 = 0$ represents three straight lines passing through the origin, the

slopes of which form an a) A.P. b) G.P. c) H.P. d) None of these 270. The equation of the line bisecting perpendicularly the segment joining the points (-4,6) and (8,8) is b) y = 7a) 6x + y - 19 = 0c) 6x + 2y - 19 = 0d) x + 2y - 7 = 0271. The equation of the sides of a triangle are x - 3y = 0, 4x + 3y = 5 and 3x + y = 0. The line 3x - 4y = 0passes through c) The orthocenter d) The circumcentre a) The incentre b) The centroid 272. If the slope of one of the lines given by $ax^2 - 6xy + y^2 = 0$ is twice the other, then a =b) 2 d) 8 c) 4 a) 1 273. The point (4, 1) undergoes the following three successive transformations III. Reflection about the line y = x - 1IV. Translation through a distance 1 unit along the positive direction of *x*-axis V. Rotation through an angle $\frac{\pi}{4}$ about the origin in the anti-clockwise direction Then, the coordinates of the final point are b) $\left(\frac{7}{2}, \frac{7}{2}\right)$ c) (0, 3√2) a) (4,3) d) (3, 4) 274. Which of the following pair of straight lines intersect at right angle? a) $2x^2 = y(x + 2y)$ b) $(x + y)^2 = x(y + 3x)$ c) 2y(x + y) = xyd) $y = \pm 2 x$ 275. Given four lines whose equations are x + 2y - 3 = 0, 2x + 3y - 4 = 0, 3x + 4y - 7 = 0 and 4x + 5y - 6 = 00, then the lines are b) Sides of a square c) Sides of a rhombus a) Concurrent d) None of these 276. The equation $2x^2 - 24xy + 11y^2 = 0$ represents a) Two parallel lines b) Two perpendicular lines c) Two lines passing through the origin d) A circle 277. A straight line through P(1,2) is such that its intercept between the axes is bisected at P. Its equation is a) x + y = -1b) x + y = 3c) x + 2y = 5d) 2x + y = 4278. The value of λ such that $\lambda x^2 - 10xy + 12y^2 + 5x - 16y - 3 = 0$ represent a pair of straight lines, is b) –1 c) 2 d) −2 a) 1 279. If a straight line *L* is perpendicular to the line 5x - y = 1 such that the area of the Δ formed by the line *L* and the coordinate axes is 5, then the equation of the line L is a) x + 5 y + 5 = 0b) $x + 5 y \pm \sqrt{2} = 0$ c) $x + 5y \pm \sqrt{5} = 0$ d) $x + 5y \pm 5\sqrt{2} = 0$ 280. The position of a moving point in the xy plane at time t is given by $\left(u \cos \alpha \cdot t, u \sin \alpha \cdot t - \frac{1}{2}g t^2\right)$, where u, α, g are constants. The locus of the moving point is d) None of these a) A circle b) A parabola c) An ellipse 281. The distance between the lines 4x + 3y = 11 and 8x + 6y = 15, is c) 7/10 a) 7/2 b) 4 d) None of these 282. Given the four lines with equations x + 2y = 3, 3x + 4y = 7, 2x + 3y = 4 and 4x + 5y = 6, then these lines are a) Concurrent b) Perpendicular c) The sides of a rectangle d) None of the above 283. The number of points on the line 3x + 4y = 5, which are at a distance of $\sec^2 \theta + 2\csc^2 \theta, \theta \in R$, from the point (1, 3) is b) 2 d) Infinite a) 1 c) 3 284. If a variable line drown through the point of intersection of straight lines $\frac{x}{\alpha} + \frac{y}{\beta} = 1$ and $\frac{x}{\beta} + \frac{y}{\alpha} = 1$ meets the coordinate axes in A and B, then the locus of the mid point of *AB* is

a) $\alpha\beta(x + y) = xy(\alpha + \beta)$ c) $(\alpha + \beta)(x + y) = 2\alpha\beta xy$		b) $\alpha\beta(x + y) = 2xy(\alpha + \beta)$ d) None of these	3)
285. The equation of the line passir 2x + 5y - 7 = 0 and perpendi		intersection of the lines x	-3y + 2 = 0 and
a) $2x - 3y + 1 = 0$ b) 6 286. The equation of line parallel to distance between L_1 and L_2 in	6x - 9y + 11 = 0 o lines $L_1 \equiv x + 2y - 5$	c) $2x - 3y + 5 = 0$ $5 = 0$ and $L_2 \equiv x + 2y + 9$	
a) $x + 2y - 3 = 0$ b) x	•		d) None of these
287. The equation of a line passing	2	, ,	,
a) $3y + x - 8 = 0$ b) 3			
288. If the equation $3x^2 + xy - y^2$	-		-
a) 9 b) 1		c) -9	d) 0
289. The equation of line through the	he point (1, 1) and mal	king angles of 45° with the	line $x + y = 0$ are
a) $x - 1 = 0, x - y = 0$		b) $x - 1 = 0, y - 1 = 0$	
c) $x - y = 0, y - 1 = 0$		d) $x + y - 2 = 0, y - 1 =$	0
290. The equation of line bisecting	perpendicularly the se	gment joining the points (-	-4, 6) and (8, 8), is
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		c) $x + 2y - 7 = 0$	d) $6x + 2y - 19 = 0$
291. The triangle formed by $x^2 - 3$	$y^2 = 0$ and $x = 4$ is		
	•	c) Right angled	
292. The equation of one side of a r		10 = 0 and the coordinates	s of two its vertices are
(-2,1) and $(2,4)$. Then, the are	-		
	•	c) 10 sq. units	-
293. The straight line whose sum of	f the intercepts on the	axes is equal to half of the _l	product of the intercepts,
passes through the points			
		c) (3,3)	d) (4, 4)
294. The equation of the sides of a t passes through			
		c) The orthocentre	
295. A triangle <i>ABC</i> , right angled at the point <i>C</i> , is			ctively. If $BC = 5$ units, then
	(4,2)	c) (3, -3)	d) (0, -4)
296. If the angle θ is acute, then the	e acute angle between x	$c^2(\cos\theta - \sin\theta) + 2xy\cos\theta$	$\theta + y^2(\cos\theta + \sin\theta) = 0$
is	N		0
a) 2 θ b) $\frac{\theta}{2}$		c) θ	d) $\frac{\theta}{2}$
297. The slopes of the lines which n)	the line $3x - y - 5$ are	Z
		1	1
a) 1, -1 b) $\frac{1}{2}$	$\frac{1}{2}, -1$	c) $1, \frac{1}{2}$	d) $-2, \frac{1}{2}$
298. Given four lines with equation $4x + 5y - 6 = 0$ These lines a		3y - 4 = 0, 3x + 4y - 5 =	= 0,
a) Concurrent		b) The sides of a quadrilat	teral
c) The sides of a parallelogram	n	d) The sides of a square	
299. The distance of the $x + y - 8 =$	= 0 from (4,1) measure	ed along the direction who	se slope is −2 is
a) 3 √5 b) €	$5\sqrt{5}$	c) 2√5	d) None of these
300. The image of the point $(4, -3)$) with respect to the lin	y = x is	
a) (-4, -3) b) ((3, 4)	c) (-4,3)	d) (-3, 4)
301. The range of values of α for where α	hich the points (α , 2 +	α)and $\left(\frac{3 \alpha}{2}, \alpha^2\right)$ lie on oppo	osite sides of the line
2c + 3y = 6, is	$(0, 0) \cup (0, 1)$	a) $(20) + (1)$	$d(10) + (2 \infty)$
a) $(-2,1)$ b) (302. If the pair of straight lines ax^2		c) $(-2,0) \cup (1,\infty)$ rotated about the origin th	

equations in the new position are given by

a) $ax^2 - 2 hxy + by^2 = 0$ b) $ax^2 - 2 hxy - by^2 = 0$ c) $bx^2 - 2 hxy + ay^2 = 0$ d) $bx^2 + 2 hxy + ay^2 = 0$

303. A ray of light passing through the point (1, 2) is reflected on the *x*-axis at a point *P* and passes through the point (5, 3), then the abscissa of a point *P* is

304. Two sides of an isosceles triangle are given by the equation 7x - y + 3 = 0 and x + y - 3 = 0. If its third side passes through the point (1, -10), then its equations are

a) x - 3y - 7 = 0 or, 3x + y - 31 = 0

- b) x 3y 31 = 0 or, 3x + y 7 = 0
- c) x 3y 31 = 0 or, 3x + y + 7 = 0

d) None of these

- 305. The area of the triangle formed by *y*-axis, the straight line *L* passing through (1,1) and (2,0) and the straight line perpendicular to the line *L* and passing through (1/2,0)
- a) $\frac{25}{8}$ sq. units b) $\frac{25}{4}$ sq. units c) $\frac{25}{16}$ sq. units d) $\frac{25}{2}$ sq. units 306. The equation $12x^2 + 7xy + ay^2 + 13x y + 3 = 0$ represents a pair of perpendicular lines. Then, the

value of 'a' is d) 12

a)
$$\frac{7}{2}$$
 b) -19 c) -12

- 307. A beam of light is sent along the line x y = 1. Which after refracting from the *x*-axis entres the opposite side by turning through 30° towards the normal at the point of incidence on the *x*-axis. Then, the equation of the refracted ray is
 - a) $(2 \sqrt{3})x y = 2 + \sqrt{3}$ b) $(2 + \sqrt{3})x - y = 2 + \sqrt{3}$ c) $(2 - \sqrt{3})x + y = 2 + \sqrt{3}$ d) None of these
- 308. If the equation $12x^2 + 7xy py^2 18x + qy + 6 = 0$ represents a pair of perpendicular straight lines, then

a)
$$p = 12, q = 1$$
 b) $p = 1, q = 12$ c) $p = -1, q = 12$ d) $p = 1, q = -12$
309. If the point (*a*, *a*) falls between the lines $|x + y| = 4$, then

a)
$$|a| = 2$$
 b) $|a| = 3$ c) $|a| < 2$ d) $|a| < 3$

310. Suppose A, B are two points on 2x - y + 3 = 0 and P(1, 2), is such that PA = PB Then, the mid point of AB is

a)
$$\left(-\frac{1}{5}, \frac{13}{5}\right)$$
 b) $\left(-\frac{7}{5}, \frac{9}{5}\right)$ c) $\left(\frac{7}{5}, \frac{-9}{5}\right)$ d) $\left(\frac{-7}{5}, \frac{-9}{5}\right)$

311. If non-zero numbers *a*, *b*, *c* are in HP, then the straight line

 $\frac{x}{a} + \frac{y}{b} + \frac{1}{c} = 0$ always passes throught a fixed point. That point is b) (1, -2) c) (-1, -2) a) $\left(1, -\frac{1}{2}\right)$ d) (-2, 2)

312. If the lines x = a + m, y = -2 and y = mx are concurrent, then least value of |a| is d) None of these a) 0 b) $\sqrt{2}$ c) $2\sqrt{2}$

313. The equations $a^2x^2 + 2h(a + b)xy + b^2y^2 = 0$ and $ax^2 + 2hxy + by^2 = 0$ represent

- a) Two pairs of perpendicular straight lines
- b) Two pairs of parallel straight lines
- c) Two pairs of straight lines which are equally inclined to each other

d) None of these

314. The value of k such that $3x^2 - 11xy + 10y^2 - 7x + 13y + k = 0$ may represent a pair of straight lines, is a) 3 b) 4 c) 6 d) 8

315. The equations of the lines which are parallel to the line common to the pair of the lines given by

 $6x^2 - xy - 12y^2 = 0$ and $15x^2 + 14xy - 8y^2 = 0$ and at a distance of 7 units from it are b) $5x - 2y = \pm 7$ c) $2x - 3y = \pm 7$ a) $3x + 4y = \pm 35$ d) None of these 316. The circumcentre of the triangle formed by the lines xy + 2x + 2y + 4 = 0 and x + y + 2 = 0, is c) (−1, −1) a) (0,0) b) (-2, -2) d) (-1, -2)317. If the sum of distances from a point *P* on two mutually perpendicular straight lines is 1 unit, then the locus of P is a) A parabola b) A circle c) An ellipse d) A straight line 318. A line has slope *m* and *y*-intercept 4. The distance between the origin and the line is equal to a) $\frac{4}{\sqrt{1-m^2}}$ b) $\frac{4}{\sqrt{m^2-1}}$ c) $\frac{4}{\sqrt{m^2+1}}$ d) $\frac{4m}{\sqrt{1+m^2}}$ 319. If the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of parallel lines, then a) $\frac{a}{h} = \frac{b}{h} = \frac{f}{g}$ b) $\frac{a}{h} = \frac{h}{b} = \frac{f}{g}$ c) $\frac{a}{h} = \frac{h}{b} = \frac{g}{f}$ d) None of these 320. If x_1, x_2, x_3 as well as y_1, y_2, y_3 are in GP with the same common ratio, then the points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) a) Lie on a parabola b) Lie on an ellipse c) Lie on a circle d) Lie on a straight line 321. The equation of perpendicular bisectors of sides AB and AC of a \triangle ABC are x - y + 5 = 0 and x + 2y = 0respectively. If the coordinates of vertex *A* are (1, -2), then equation of *BC* is d) 23x - 14y + 40 = 0a) 14x + 23y - 40 = 0b) 14x - 23y + 40 = 0 c) 23x + 14y - 40 = 0322. If the line px - qy = r intersects the coordinate axes at (a, 0) and (0, b), thyen the value of a + b is equal a) $r\left(\frac{q+p}{pq}\right)$ b) $r\left(\frac{q-p}{pq}\right)$ c) $r\left(\frac{p-q}{pq}\right)$ d) $r\left(\frac{p+q}{p-q}\right)$ 323. The distance between the parallel lines y = 2x + 4 and 6x = 3y + 5 is d) $17\sqrt{5}/15$ b) 1 c) $3/\sqrt{5}$ a) 17/√3 324. The value of 'a' for which the lines represented by $ax^2 + 5xy + 2y^2 = 0$ are mutually perpendicular is a) 2 b) -2 c) $\frac{25}{8}$ d) None of these 325. The vertices of $\triangle OBC$ are (0, 0), (-3, -1) and (-1, -3), then the equation of the line parallel to *BC* which is a distance $\frac{1}{2}$ from the origin and cut *OB* and *OC* intercept, is b) $2x + 2y + \sqrt{2} = 0$ c) $2x + 2y - \sqrt{2} = 0$ d) $x + y\sqrt{2} = 0$ a) $2x - 2y + \sqrt{2} = 0$ 326. Two consecutive sides of a parallelogram are 4x + 5y = 0 and 7x + 2y = 0. One diagonal of the parallelogram is 11x + 7y = 9. If the other diagonal is ax + by + c = 0, then a) a = -1, b = -1, c = 2b) a = 1, b = -1, c = 0c) a = -1, b = -1, c = 0d) a = 1, b = 1, c = 0327. The equations of the lines through (1, 1) and making angle of 45° with the line x + y = 0 are a) x - 1 = 0, x - y = 0b) x - y = 0, y - 1 = 0d) x - 1 = 0, y - 1 = 0c) x + y - 2 = 0, y - 1 = 0328. The equation of the straight line perpendicular to 5x - 2y = 7 and passing through the point of intersection of the lines 2x + 3y = 1 and 3x + 4y = 6, is b) 2x + 5y - 17 = 0 c) 2x - 5y + 17 = 0 d) 2x - 5y = 17a) 2x + 5y + 17 = 0329. The orthocentre of the triangle whose vertices are (5, -2), (-1, 2) and (1, 4), is b) (14/5,1/5) d) (14/5,14/5) a) (1/5,14/5) c) (1/5,1/5) 330. The equation(s) of the bisector(s) of that angle between the lines x + 2y - 1 = 0, 3x - 6y - 5 = 0 which contains the point (1, -3) is c) 3x = 19 and 3y = 7a) 3x = 19b) 3y = 7d) None of these 331. Three straight lines 2x + 11y - 5 = 0, 24x + 7y - 20 = 0 and 4x - 3y - 2 = 0b) Are only concurrent a) From a triangle c) Are concurrent with one line bisecting the angle d) None of the above

between the other two

- 332. Let *a* and *b* be non-zero and real numbers. Then, the equation $(ax^2 + by^2 + c)(x^2 5xy + 6y^2) = 0$ represents
 - a) Four straight lines, when c = 0 and a, b are of the same sign
 - b) Two straight lines and a circle, when a = b and c is of sign opposite to that of a
 - Two straight lines and hyperbola, when *a* and *b* c) are of the same sign and *c* is of sign opposite to that of *a*
- d) A circle and an ellipse , when a and b are of the same sign and c is of sign opposite to that of a
- 333. A line passes through the point of intersection of the lines 100x + 50y 1 = 0 and 75x + 25y + 3 = 0 and makes equal intercept on the axes. Its equation is

a) 25x + 25y - 1 = 0b) 5x - 5y + 3 = 0c) 25x + 25y - 4 = 0d) 25x - 25y + 6 = 0334. If the line segment joining (2,3) and (-1,2) is divided internally in the ratio 3 : 4 by the line $x + 2y = \lambda$, then $\lambda =$

a)
$$\frac{41}{7}$$
 b) $\frac{5}{7}$ c) $\frac{36}{7}$ d) $\frac{31}{7}$

335. The angle between the lines $\sqrt{3}x - y - 2 = 0$ and $x - \sqrt{3}y + 1 = 0$ is b) 60° c) 45° d) 30° a) 90°

336. A diagonal of the rectangle formed by the lines $x^2 - 7x + 6 = 0$ and $y^2 - 14y + 40 = 0$ is b) 5x - 6y = 0c) 6x - 5y + 14 = 0a) 5x + 6y = 0d) 6x - 5y - 14 = 0

337. If a line with *y*-intercept 2, is perpendicular to the line 3x - 2y = 6, then its *x*- intercept is a) 1 b) 2 c) −4 d) 3

- 338. The distance between the pair of parallel lines given by $x^2 1005x + 2006 = 0$ is b) 1000 a) 1001 c) 1005 d) 2006
- 339. The pair of lines $\sqrt{3} x^2 4xy + \sqrt{3} y^2 = 0$ are rotated about the origin by $\pi/6$ in anticlockwise sense. The equation of the pair in the new position is

a) $\sqrt{3} x^2 - xy = 0$ b) $x^2 - \sqrt{3} xy = 0$ c) $xy - \sqrt{3} y^2 = 0$ d) None of these 340. The area of the parallelogram formed by the lines 3x - 4y + 1 = 0, 3x - 4y + 3 = 0, 4x - 3y - 1 = 0and 4x - 3y - 2 = 0, is e

a)
$$\frac{1}{6}$$
 sq. units b) $\frac{2}{7}$ sq. units c) $\frac{3}{8}$ sq. units d) None of these

341. The point P(1,1) is translated parallel to 2x = y in the first quadrant through a unit distance. The coordinates of the new position of *P* are

a)
$$\left(1 \pm \frac{2}{\sqrt{5}}, 1 \pm \frac{1}{\sqrt{5}}\right)$$
 b) $\left(1 \pm \frac{1}{\sqrt{5}}, 1 \pm \frac{2}{\sqrt{5}}\right)$ c) $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$ d) $\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$

342. If, $\frac{x^2}{a} + \frac{y^2}{b} + \frac{2xy}{b} = 0$ represents pair of straight lines such that slope of one line is twice the other. Then, ab: h^2 is a) 9:8 b) 8:9 c) 1:2

d) 2:1 343. If the vertices of a diagonal of a square are (-2,4) and (-2,-2), then its other two vertices are at b) (1,1), (5,−1) c) (1,1), (−5,1) a) (1, -1), (5, 1)d) None of these

344. If one of the diagonals of a square is along the line x = 2y and one of its vertices is (3,0), then its sides through this vertex are given by the equations

a) y - 3x + 9 = 0, 3y + x - 3 = 0b) y + 3x + 9 = 0,3y + x - 3 = 0

- c) y 3x + 9 = 0, 3y x + 3 = 0
- d) y 3x + 3 = 0,3y + x + 9 = 0

345. The line passing through $\left(-1, \frac{\pi}{2}\right)$ and perpendicular to $\sqrt{3}\sin\theta + 2\cos\theta = \frac{4}{r}$, is

- a) $2 = \sqrt{3}r\cos\theta 2r\sin\theta$
- b) $5 = -2\sqrt{3}r\sin\theta + 4r\cos\theta$ d) $5 = 2\sqrt{3}r\sin\theta - 4r\cos\theta$ c) $2 = \sqrt{3}r\cos\theta + 2r\sin\theta$

346. In the adjacent figure, equation of refracted ray is

$\frac{45^{\circ}}{0} \xrightarrow{A(1,0)} x$			
			d) None of these
-	b) $y + \sqrt{3}x - 3 = 0$	-	,
	ve coordinates (1, 1) and (3,		ordinates of a point at a
	n the line through <i>B</i> perpend		
a) (4, 7)	b) (7, 4)		d) (-5, -3)
	hen the value of <i>t</i> for which t	the line $ax + by + c - 1 =$	0 always passes through a
fixed point is	h) 20	a) 20	d) None of these
a) 0	b) 20 b) the equation $u^2 = u^2 = u$	c) 30	d) None of these
	the equation $x^2 - y^2 - x - y^2 -$		
a) $-3, 1$	b) –1,1		d) 3,1
	lel to x -axis and crosses the		5°, 1S
a) $y = \frac{1}{4}$	b) $y = \frac{1}{2}$	c) <i>y</i> = 1	d) <i>y</i> = 4
⁴ 351. Consider the following	Z		
_	+ 19 = 0 and $9x + 6y - 17$	= 0 cut the coordinates axe	es in concyclic points
2	and $(-1, 4)$ are equidistant		• •
Which of these is/are of		$\frac{1}{y} = \frac{1}{y} = \frac{1}$	0
a) Only (1)		c) Both of these	d) None of these
352. The angle between the		ej both of these	a) none of these
a) 60°	b) 15°	c) 30°	d) 45°
-	line passing through (2,2) an	,	,
a) 1/3	b) 2/3	c) 1	d) $4/3$
	$a by 6x^2 - xy + 4cy^2 = 0 is 3$	-	, ,
a) 1	b) -1	c) 3	d) -3
	$4x^2 + 8xy + ky^2 = 9$ the eq	2	5
a) 0	b) 4	c) 9	d) –9
-	e bisecting perpendicularly t	,	·) ·
a) $y = 7$		c) $x + 2y - 7 = 0$	
,,,	of intersection of lines $x \cos a$, ,	, ,
variable)		$x + y \sin \alpha - \alpha \sin \alpha x \sin \alpha$	$- y \cos u - b \sin (u \sin a)$
2	b ² b) $x^2 - y^2 = a^2 - b^2$	c) $x^2 \pm y^2 = a^2 \pm b^2$	d) None of these
	$x^{2} - 2mxy - y^{2} = 0$ and x		-
-	for of the angles between the $\frac{1}{2}$		
represents the dissect			1 1
a) $mn + 1 = 0$	b) $mn - 1 = 0$	c) $\frac{1}{m} + \frac{1}{n} = 0$	d) $\frac{1}{m} - \frac{1}{n} = 0$
359. The equation of the lin	e passing through the origin	110 10	110 10
the lines $\frac{x}{a} + \frac{y}{b} = 1$ and		r r r	
			d) 0
a) $bx - ay = 0$, ,	c) $ax - by = 0$	d) $x - y = 0$
360. The equation $4x^2 - 24$	$xy + 11y^2 = 0$ represents		
a) Two parallel lines		b) Two perpendicular lin	ies
c) Two lines through the	0	d) A circle	
	he lines given by $ax^2 + 2hxy$		
a) $5h^2 = 9ab$,	c) $h^2 = ab$	d) $9h^2 = 5ab$
-	y = 4 which are equidistant	from the lines $ x = y $, are	<u>)</u>
a) $(4, 0), (0, 4)$			
b) (-4, 0), (0, -4)			

c) (4,0), (-4,0)

d) None of these

363. If 3, 4 are intercepts of a line $L \equiv 0$, then the distance of $L \equiv 0$ from the origin is a) 5 units b) 12 units c) $\frac{5}{12}$ unit d) $\frac{12}{5}$ unit

364. If the lines y = 3x + 1 and 2y = x + 3 are equally inclined to the line

$$y = mx + 4, \left(\frac{1}{2} <, m < 3\right)$$
, then the value of *m* are

a)
$$\frac{1}{2}(1 \pm 5\sqrt{3})$$
 b) $\frac{1}{7}(1 \pm 5\sqrt{5})$ c) $\frac{1}{7}(1 \pm 5\sqrt{2})$ d) $\frac{1}{7}(1 \pm 2\sqrt{5})$

365. The point of intersection of the lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{b} + \frac{y}{a} = 1$ lies on the line

- a) x y = 0
- b) (x + y)(a + b) = 2 ab
- c) (lx + my)(a + b) = (l + m)ab

d) All of these

366. The equation of the bisector of the acute angle between the line 3x - 4y + 7 = 0 and 12x + 5y - 2 = 0 is a) 99x - 27y - 81 = 0 b) 11x - 3y + 9 = 0 c) 21x + 77y - 101 = 0 d) 21x + 77y + 101 = 0367. The sum of slopes of lines $3x^2 + 5xy - 2y^2 = 0$ is

a)
$$-\frac{5}{3}$$
 b) $\frac{5}{2}$ c) $-\frac{5}{2}$ d) $-\frac{2}{3}$

368. The line 2x - y = 1 bisects angle between two lines. If equation of one line is y = x, then the equation of the other line is

a) 7x - y - 6 = 0369. The lines (a + 2b)x + (a - 3b)y = a - b for different values of *a* and *b* pass through the fixed point whose coordinates are

a) $\begin{pmatrix} 2 & 2 \\ 5 & 5 \end{pmatrix}$ b) $\begin{pmatrix} 3 & 3 \\ 5 & 5 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 1 \\ 5 & 5 \end{pmatrix}$ d) $\begin{pmatrix} 2 & 3 \\ 5 & 5 \end{pmatrix}$

370. If the straight line ax + by + c = 0 always passes through (1, -2), then a, b, c are a) in AP b) in HP c) in GP d) Not

a) in AP b) in HP c) in GP d) None of these 371. The point moves such that the area of the triangle formed by it with the points (1, 5) and (3, -7) is 21 sq unit. The locus of the point is

a)
$$6x + y - 32$$
 b) $6x - y + 32 = 0$ c) $x + 6y - 32 = 0$ d) $6x - y - 32 = 0$
372. Orthocentre of triangle with vertices (0, 0), (3, 4) and (4, 0) is

a) (3, 5/4) b) (3, 12) c) (3, 3/4) d) (3, 9)373. If one vertex of an equilateral triangle is at (2, -1) and the base is x + y - 2 = 0, then the length of each side is

a)
$$\sqrt{3/2}$$
 b) $\sqrt{2/3}$ c) $2/3$ d) $3/2$
Orthocentre of the triangle formed by the lines $x + y = 1$ and $xy = 0$ is

374. Orthocentre of the triangle formed by the lines x + y = 1 and xy = 0 is

a) (0,0) b) (0,1) c) (1,0) d) (-1,1)375. The angle between the line joining origin and intersection points of line 2x + y = 1 and curve $3x^2 + 4yx - 4x + 1 = 0$ is

a)
$$\pi/2$$
 b) $\pi/3$ c) $\pi/4$ d) $\pi/6$ 376. The coordinate of the foot of perpendicular from (*a*, 0) on the line

$$y = mx + \frac{a}{m}$$
 are

a)
$$\left(0, \frac{a}{m}\right)$$
 b) $\left(0, -\frac{a}{m}\right)$ c) $\left(\frac{a}{m}, 0\right)$ d) $\left(-\frac{a}{m}, 0\right)$

377. Coordinate of the foot of the perpendicular drawn from (0, 0) to the line joining ($a \cos \alpha, a \sin \alpha$) and ($a \cos \beta, a \sin \beta$) are

a)
$$\left(\frac{a}{2}, \frac{b}{2}\right)$$

b) $\left[\frac{a}{2}(\cos \alpha + \cos \beta), \frac{a}{2}(\sin \alpha + \sin \beta)\right]$
c) $\left[\cos \frac{\alpha + \beta}{2}, \sin \frac{\alpha + \beta}{2}\right]$
d) $\left(0, \frac{b}{2}\right)$

378. The inclination of the structure the points $(4, -5)$ and (-5)		the point $(-3, 6)$ and the n	nid point of the line joining
a) $\frac{\pi}{4}$	b) $\frac{\pi}{6}$	c) $\frac{\pi}{3}$	d) $\frac{3\pi}{4}$
379. The angle between the p	0	5	⁵ 4
a) θ	b) 2θ	c) α	d) 2α
380. The acute angle between	,	,	,
and the circle $x^2 + y^2 =$		Ĩ	
a) π/2	b) π/3	c) π/4	d) π/6
381. If the line $\frac{x}{a} + \frac{y}{b} = 1$ mov	ves such that $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{a^2}$ w	here <i>c</i> is a constant, then th	ne locus of the foot of the
perpendicular from the			
a) Straight line	b) Circle	c) Parabola	d) Ellipse
382. The base <i>BC</i> of \triangle <i>ABC</i> is	bisected at (p,q) and equa	tion of sides <i>AB</i> and <i>AC</i> ar	e px + qy = 1 and
	y. Then, the equation of the	e	
	$1) = (p^2 + q^2 - 1)(qx + p)$	(y - 1)	
b) $(qx + qy - 1)(qx + p)$			
c) $(px + qy - 1)(qx - p)$	(y-1) = 0		
d) None of the above 383. The straight lines $x + y$	-4 - 03 x + y - 4 - 0 x	$\pm 3 y = 4$ form a triangle x	which is
a) Isosceles	-4 = 0, 3x + y - 4 = 0, x b) Right angled	c) Equilateral	d) None of these
384. The image of the point (, , ,	, .	a) None of these
a) (3,5)	b) (5,3)		d) (-1,3)
385. The lines $x \cos \alpha + y \sin \alpha$	$\alpha = p_1$ and $x \cos \beta + y \sin \beta$	$\beta = p_2$ will be perpendicul	ar, if
	b) $\alpha = \frac{\pi}{2}$		d) $\alpha = \beta$
386. The limiting position of	the point of intersection of	the lines $3x + 4y = 1$ and	$(1+c)x + 3c^2y = 2 \operatorname{as} c$
tends to 1, is			
	b) (5, -4)		d) None of these
387. If the lines $ax + ky + 10$			
	b) <i>a</i> , <i>b</i> , <i>c</i> are in HP	c) <i>a, b, c</i> are in AP	d) $(a + b)^2 = c$
388. The distance between the $9x^2 - 6xy + y^2 + 18x - 6xy + 6xy$	•		
		4	
a) $\frac{1}{\sqrt{10}}$	b) $\frac{1}{\sqrt{10}}$	c) $\frac{4}{\sqrt{10}}$	d) √ <u>10</u>
389. If two of the lines given	by the equation $ax^3 + bx^2y$	$y + cxy^2 + dy^3 = (a \neq 0)$	make complementary angles
with <i>x</i> -axis in anticlocky			
	b) $d(a - c) = a(d - b)$,
390. The equation of the pair	of straight lines parallel to	<i>x</i> -axis and touching the cir	rcle $x^2 + y^2 - 6x - 4y - $
12 = 0 is			
	b) $y^2 + 4y - 21 = 0$		
391. Let $P = (-1, 0), Q = (0, $	0) and $R = (3, 3\sqrt{3})$ be three	e points. The equation of t	he bisector of the angle PQR
is	./2	./2	
a) $\sqrt{3}x + y = 0$	b) $x + \frac{\sqrt{3}}{2}y = 0$	L	d) $x + \sqrt{3}y = 0$
392. Two of the lines represe	ented by the equation ay^4 +	$-bxy^3 + cx^2y^2 + dx^3y + \epsilon$	$ex^4 = 0$ will be
perpendicular, then			
	$(e - a)^2(a + c + e) = 0$		
	$(e-a)^2(a+b+e) = 0$		
393. If $3x^2 + xy - y^2 - 3x + xy = 0$			
a) 0	b) 9	c) 1	d) -9

394. Let the base of a triang vertex lies on the lines	-	nd be of length 2 <i>a</i> . The area	a of this triangle is a^2 if the
a) $x = -a, x = 2a$ 395. The distance of the poi	b) $x = 0, x = a$ (int (-2, 3)) from the line $x = a$		d) None of these
a) $5\sqrt{2}$	b) $2\sqrt{5}$		d) 5√3
396. The angle between the a) 60°	e lines in $x^2 - xy - 6y^2 - 7$ b) 45°	x + 31y - 18 = 0 is c) 30°	d) 90°
397. The equation $12x^2 + 7$,	-)	,
value of 'a' is			
a) $\frac{7}{2}$	b) —19	c) -12	d) 12
398. If the equation of base the side of the triangle		2x - y = 1 and the vertex i	s $(-1, 2)$, then the length of
·			
a) $\sqrt{\frac{20}{3}}$	b) $\frac{2}{\sqrt{15}}$	c) $\sqrt{\frac{8}{15}}$	d) $\sqrt{\frac{15}{2}}$
N		N	N
coordinate axes, is	at are parallel to $2x + 6y$	+ 7 = 0 and have an interce	ept of length 10 between the
a) 1	b) 2	c) 4	d) Infinitely many $a^{2k-1}a^{-1}$
400. If $a \neq b \neq c$ and if $ax = 2^{b^2c^{-1}b^{-1}} \cdot 2^{c^2a^{-1}b^{-1}}$ is e		$= 0, \ cx + ay + b = 0 \ are \ co$	ncurrent, then $2^{a^{2}b^{-1}c^{-1}}$.
	1	a) 2	d) None of these
a) 8 401 The lines nevellel to th	b) 0	c) 2	d) None of these $a_{2}a_{3}a_{4}a_{5}a_{7}a_{7}a_{7}a_{7}a_{7}a_{7}a_{7}a_{7$
401. The lines parallel to th $bx - 2ay - 3a = 0$, wh		in the intersection of the inf	$es\ ax + 2by + 3b = 0$ and
a) Above the <i>x</i> -axis at	a distance of $(2/3)$ from it	b) Above the <i>x</i> -axis at a	distance of $(3/2)$ from it
c) Below the <i>x</i> -axis at	a distance of $(2/3)$ from it	d) Below the <i>x</i> -axis at a	a distance of $(3/2)$ from it
402. The equations of two s	ides of a square whose area	a is 25 square units are $3x$ –	-4y = 0 and $4x + 3y = 0$.
The equations of the o	ther two sides of the square	e are	
a) $3x - 4y \pm 25 = 0,4$	$4x + 3y \pm 25 = 0$		
b) $3x - 4y \pm 5 = 0, 4$			
c) $3x - 4y \pm 5 = 0, 4$	$x + 3 y \pm 25 = 0$		
d) None of these			
403. The polar equation cos	-		
a) Circle	b) Parabola	c) Straight line	d) Hyperbola
404. If $x^2 - k xy + y^2 + 2 y$ a) 2	7 + 2 = 0 denotes a pair of s b) $1/\sqrt{2}$	c) $2\sqrt{2}$	d) $\sqrt{2}$
405. The bisector of the acu	, , , , , , , , , , , , , , , , , , ,	<i>,</i> ,	<i>, , , , , , , , , ,</i>
equation			
		c) $x - y + 3 = 0$	
406. If the points $(1,2)$ and			
-	b) <i>a</i> = 7	c) <i>a</i> = 1	d) $a < 7$ or $a > 11$
407. The equation of pair of a) $x^2 + (3 - x)^2 = 9$			
408. The line <i>L</i> given by $\frac{x}{5}$ +	$\frac{y}{y} = 1$ passes through the	point (13, 32). The line K is	parallel to L and has the
	^b r s s s s s s s s s s s s s s s s s s		-
00			23
a) $\frac{23}{\sqrt{15}}$	b) √ <u>17</u>	c) $\frac{17}{\sqrt{15}}$	d) $\frac{23}{\sqrt{17}}$
409. The length of perpendi	icular from the point (a cos	α , $a \sin \alpha$) upon the straigh	t line $y = x \tan \alpha + c, c > 0$,

a) c b) $c \sin^2 \alpha$ c) $c \cos \alpha$ d) $c \sec^2 \alpha$ 410. The equations ax + by + c = 0 and dx + ey + f = 0 represent the same straight line if and only if c) $\frac{a}{d} = \frac{b}{a} = \frac{c}{f}$ a) $\frac{a}{d} = \frac{b}{c}$ d) a = d, b = e, c = fb) *c* = *f* 411. The coordinates of the image of the origin *O* with respect to the line x + y + 1 = 0 are a) -1/2, -1/2b) (-2, -2)c) (1,1) d) (-1, -1)412. The equation of the straight line joining the origin to the point of intersection of y - x + 7 = 0 and y + 2x - 2 = 0, is d) 4x + 3y = 0a) 3x + 4y = 0b) 3x - 4y = 0c) 4x - 3y = 0413. If one of the lines of $ax^2 + 2 hxy + by^2 = 0$ bisects the angle between the axes, in the first quadrant, then a) $h^2 - ab = 0$ b) $h^2 + ab = 0$ c) $(a+b)^2 = h^2$ d) $(a + b)^2 = 4 h^2$ 414. If the angle between the lines represented by equations $y^2 + kxy - x^2 \tan^2 A = 0$ is 2*A*, then *k* is equal to a) 0 b) 2 d) −2 c) 4 415. The image of the point (-1, 3) by the line x - y = 0 is b) (1, -3)d) (3, 3) a) (3, −1) c) (-1, -1)416. The joint equation of the straight lines x + y = 1 and x - y = 4, is a) $x^2 - y^2 = -4$ b) $x^2 - y^2 = 4$ c) (x + y - 1)(x - y - 4) = 0d) (x + y + 1)(x - y + 4) = 0417. The equation of the straight lines passing through the point (4, 3) and making intercepts on the coordinate axes whose sum is -1, is a) $\frac{x}{2} + \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$ b) $\frac{x}{2} - \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$ c) $\frac{x}{2} + \frac{y}{3} = 1$ and $\frac{x}{-2} + \frac{y}{1} = 1$ d) $\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{x}{-2} + \frac{y}{1} = 1$ 418. If the equation of the locus of a point equidistant from the points (a_1, b_1) and (a_2, b_2) is $(a_1 - a_2)x + a_2 + a_3 + a_3$ $(b_1 - b_2)y + c = 0$, then the value of *c*, is a) $a_1^2 - a_2^2 + b_1^2 - b_2^2$ b) $\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$ c) $\frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2)$ d) $\frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2)$ 419. If the equation $4x^2 + hxy + y^2 = 0$ represent coincident lines, then *h* is equal to a) 1 b) 3 c) 2 d) 4 420. The four sides of a quadrilateral are given by the equation xy(x - 2)(y - 3) = 0. The equation of the line parallel to x - 4y = 0 that divides the quadrilateral in two equal area is a) x - 4y + 5 = 0b) x - 4y - 5 = 0c) 4y = x + 1d) 4v + 1 = x421. The angle between the pair of straight lines formed by joining the points of intersection of $x^2 + y^2 = 4$ and y = 3x + c to the origin is a right angle. Then, c^2 is equal to a) 20 b) 30 d) 5 c) 1/5 422. *P* is a point on either of two lines $y - \sqrt{3}|x| = 2$ at a distance 5 unit from their point of intersection. The coordinates of the foot of the perpendicular from *P* on the bisector of the angle between them are a) $\left(0, \frac{4+5\sqrt{3}}{2}\right)$ or $\left(0, \frac{4-5\sqrt{3}}{2}\right)$ depending on which the point *P* is taken b) $\left(0, \frac{4+5\sqrt{3}}{2}\right)$

c) $\left(0, \frac{4-5\sqrt{3}}{2}\right)$

d)
$$\left(\frac{5}{2}, \frac{5\sqrt{3}}{2}\right)$$

423. The triangle formed by the lines x + y = 0, 3x + y = 4, x + 3y = 4 is a) Isosceles b) Equilateral c) Right angled d) None of these 424. Equation of a line passing through the line of interception of lines 2x - 3y + 4 = 0, 3x + 4y - 5 = 0 and perpendicular to 6x - 7y + 3 = 0, is a) 119x + 102y + 125 = 0b) 119x + 102y = 125c) 119x - 102y = 125d) None of these 425. The lines ax + by + c = 0, bx + cy + a = 0 and cx + ay + b = 0 ($a \neq b \neq c$) are concurrent, if a) $a^3 + b^3 + c^3 + 3abc = 0$ b) $a^2 + b^2 + c^2 - 3abc = 0$ c) a + b + c = 0d) None of the above

10.STRAIGHT LINES

: ANSWER KEY :															
1)	b	2)	b	3)	а	4)		189)	С	. 190)	С	191)	b	192)	ä
1) 5)	d	2) 6)	a	3) 7)	a b	4) 8)		193)	с а	190) 194)	с с	191)	d	192) 196)	، ا
5) 9)	a	10)	a C	7) 11)	a	12)		197)	a b	194)	c	199)	u b	200)	
5) 13)	a b	10) 14)	a	11)	a a	12) 16)		201)	a	202)	a	203)	c	200) 204)	
13) 17)	C	14) 18)	a	13) 19)	a a	10) 20)		201)		202)	a	203)	d	204) 208)	
21)	с b	10) 22)	a b	19) 23)	a b	20) 24)		203)	a c	200) 210)	a d	207) 211)		203)	
21) 25)		22) 26)	b	23) 27)	b	24) 28)		209) 213)	C 2	210) 214)	u b	211) 215)	a b	212) 216)	(
23) 29)	с b	20) 30)		31)		28) 32)		213)	a	214) 218)	d	213) 219)		210)	1
29) 33)		30) 34)	c d	31) 35)	C 2	32) 36)		221)	a c	210)	u b	219)	c d	220) 224)	
33) 37)	a	34) 38)		-	a b	30) 40)		225)	C C	222)		223) 227)	u d	224)	1
-	C	-	a	39) 42)		-		229)	C	220)	b	227)		-	ן ו
41) 45)	a h	42) 46)	C d	43) 47)	b h	44) 49)		-	a	-	a	-	b	232)	ן
45) 40)	b	46) 50)	d	47) 51)	b h	48) 52)		233)	a h	234) 229)	c	235) 220)	a	236) 240)	
49) 52)	a L	50) 54)	a	51) 55)	b	52) 5()		237)	b d	238) 242)	C h	239) 242)	C	240) 244)	
53) 57)	b	54) 50)	a L	55) 50)	C L	56) (1)		241)	d	242) 24()	b	243) 247)	a	244)	1
57)	d	58) (2)	b	59) (2)	b	60) (1)		245)	d	246) 250)	C J	247) 251)	C h	248) 252)	0
61)	С	62)	С	63)	a	64)		249)	а	250)	d	251)	b	252)	0
65)	а	66)	a	67) 54)	d	68)		253)	С	254)	d	255)	С	256)	
69) 72)	С	70) 74)	b	71)	C	72) 72)		257)	a	258)	а	259)	C	260) 264)	
73)	C	74) 70)	d	75)	b	76)		261)	d	262)	С	263)	b	264)	
77)	d	78)	d	79)	b	80)		265)	а	266)	С	267)	С	268)	
81)	b	82)	b	83)	С	84)		269)	С	270)	а	271)	C	272)	
85)	a	86)	b	87)	C	88)		273)	C	274)	а	275)	d	276)	
89)	d	90) 94)	a	91) 95)	b	92)		277)	d	278)	С	279)	d	280)	
93)	d	94)	b	95)	b	96)		281)	С	282)	d	283)	b	284)	
97)	а	98) 192)	d	99)	а	100)		285)	a	286)	a	287)	C	288)	
101)	С	102)	С	103)	а	104)		289)	b	290)	b	291)	b	292)	
105)	С	106)	а	107)	C	108)		293)	b	294)	С	295)	b	296)	
109)	С	110)	С	111)	b	112)		297)	d	298)	а	299)	а	300)	
113)	d	114)	b	115)	d	116)		301)	b	302)	С	303)	C	304)	
117)	a	118)	b	119)	а	120)		305)	С	306)	С	307)	d	308)	i
121)	b	122)	d	123)	а	124)		309)	а	310)	a	311)	b	312)	(
125)	С	126)	С	127)	a	128)		313)	С	314)	b	315)	а	316)	(
129)	С	130)	а	131)	а	132)		317)	d	318)	C	319)	C	320)	(
133)	d	134)	a	135)	C	136)		321)	a	322)	b	323)	d	324)	
137)	d	138)	b	139)	b	140)		325)	b	326)	b	327)	d	328)	į
141)	а	142)	С	143)	а	144)		329)	а	330)	а	331)	С	332)	
145)	d	146)	d	147)	а	148)		333)	С	334)	а	335)	d	336)	
149)	а	150)	а	151)	С	152)		337)	d	338)	а	339)	а	340)	
153)	b	154)	b	155)	С	156)		341)	b	342)	а	343)	С	344)	
157)	а	158)	а	159)	С	160)		345)	а	346)	С	347)	С	348)	1
161)	b	162)	d	163)	С	164)		349)	С	350)	b	351)	С	352)	
165)	b	166)	а	167)	d	168)		353)	d	354)	d	355)	b	356)	1
169)	а	170)	С	171)	b	172)	c 3	357)	С	358)	а	359)	d	360)	
173)	С	174)	С	175)	d	176)	a	361)	а	362)	а	363)	d	364)	
177)	С	178)	d	179)	b	180)	b	365)	d	366)	С	367)	b	368)	İ
181)	b	182)	а	183)	d	184)	b	369)	d	370)	а	371)	а	372)	(
185)	d	186)	а	187)	d	188)	a 3	373)	b	374)	а	375)	а	376)	i

377)	b	378)	d	379)	d	380) b	405)	с	406)	d	407)	b	408)	d
381)	b	382)	а	383)	а	384) a	409)	С	410)	С	411)	d	412)	d
385)	С	386)	а	387)	С	388) b	413)	d	414)	а	415)	а	416)	С
389)	С	390)	а	391)	а	392) a	417)	d	418)	d	419)	d	420)	а
393)	d	394)	b	395)	а	396) b	421)	а	422)	b	423)	а	424)	b
397)	С	398)	а	399)	b	400) a	425)	С						
401)	d	402)	а	403)	С	404) d								
							I							

: HINTS AND SOLUTIONS :

5

6

7

8

1 **(b)**

The vertices of the triangle are $A(0, 0), B\left(-\frac{c}{a}, 0\right)$

and
$$(C\left(0, -\frac{c}{b}\right)$$

 \therefore Area of $\Delta = \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ -\frac{c}{a} & 0 & 1 \\ 0 & -\frac{c}{b} & 1 \end{vmatrix}$
 $= \frac{1}{2} 1 \left| \left\{ \left(-\frac{c}{a} \right) \left(-\frac{c}{b} \right) - 0 \right\} \right|$
 $= \frac{c^2}{2|ab|}$

2 **(b)**

The equation of any line passing through (1, 1) and (-5, 5) is

 $y - 1 = \frac{5 - 1}{-5 - 1}(x - 1)$ $\Rightarrow -6(y - 1) = 4(x - 1)$ Since, the point (13, λ) lies on this line. $\therefore -6(\lambda - 1) = 4(13 - 1) \Rightarrow \lambda = -7$

3 **(a)**

The equations of the lines passing through the origin and making angle α with y + x = 0 are

$$y - 0 = \frac{-1 \pm \tan \alpha}{1 \pm \tan \alpha} (x - 0) \quad \left[\text{Using} : y - y_1 \\ = \frac{m \pm \tan \alpha}{1 \mp \tan \alpha} (x - x_1) \right]$$
$$\Rightarrow y + \frac{1 - \tan \alpha}{1 + \tan \alpha} x = 0 \text{ and } y + \frac{1 + \tan \alpha}{1 - \tan \alpha} x = 0$$
The combined equations of these two lines is
$$\left(y + \frac{1 - \tan \alpha}{1 + \tan \alpha} \right) \left(y + \frac{1 + \tan \alpha}{1 - \tan \alpha} \right) = 0$$

$$\Rightarrow y^{2} + x^{2} + 2xy\left(\frac{1 + \tan^{2}\alpha}{1 - \tan^{2}\alpha}\right) = 0$$
$$\Rightarrow x^{2} + 2xy \sec 2\alpha + y^{2} = 0$$

4 **(c)**

Points (3, 4) and (7, 13) are on the same side of straight line y = x. Take image of *A* about y = x *ie*, $A'' \equiv (4, 3)$

Now, *P* is a intersection point of line y = x and A''BEquation of line A''B is $y - 3 = \frac{10}{3}(x - 4)$ $\Rightarrow 3y - 9 = 10x - 40$ $\Rightarrow 10x - 3y = 31$ $\Rightarrow \left(\frac{31}{7}, \frac{31}{7}\right)$ satisfy the line *A*''*B* such that *PA* + PB is minimum $\therefore \text{ Coordinates of } P \text{ are } \left(\frac{31}{7}, \frac{31}{7}\right)$ (d) The length of perpendicular from the origin to the line $\frac{x\sin\alpha}{b} - \frac{y\cos\alpha}{a} - 1 = 0$ is $d = \frac{|0 - 0 - 1|}{\sqrt{\frac{\sin^2 \alpha}{h^2} + \frac{\cos^2 \alpha}{\alpha^2}}}$ $=\frac{|ab|}{\sqrt{a^2\sin^2\alpha+b^2\cos^2\alpha}}$ (a) Given equation is compared with $a_1x + b_1y = 0$ and $a_2x + b_2y = 0$ Now, $a_1a_2 + b_1b_2 = (1)(\sqrt{3}) + (-\sqrt{3})(1) = 0$ ∴ Lines are perpendicular Hence, $\theta = 90^{\circ}$ (b) Since, the coordinates of three verities A, B and C are $\left(\frac{5}{3}, -\frac{4}{3}\right)$, (0, 0) and $\left(-\frac{2}{3}, \frac{7}{3}\right)$ respectively. Also, the mid point of AC is $\left(\frac{1}{2}, \frac{1}{2}\right)$ Therefore, the equation of line passing through $\left(\frac{1}{2}, \frac{1}{2}\right)$ and (0, 0)is x - y = 0, which is the required equation of another diagonal : a = 1, b = -1 and c = 0(d) Given lines will be concurrent, if a b $\begin{vmatrix} a & b & -c \\ b & c & -a \\ c & a & -b \end{vmatrix} = 0$ $\Rightarrow \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0$ $\Rightarrow \begin{vmatrix} (a+b+c) & b & c \\ (a+b+c) & c & a \\ (a+b+c) & a & b \end{vmatrix} = 0$ Applying $\rightarrow C_1 + C_2 + C_2$

$$\Rightarrow (a+b+c) \begin{vmatrix} 1 & b & c \\ 1 & c & a \\ 1 & a & b \end{vmatrix} = 0$$

$$\Rightarrow (a+b+c) \begin{vmatrix} 1 & b & c \\ 0 & c-b & a-c \\ 0 & a-b & b-c \end{vmatrix} = 0$$

Applying $R_2 \rightarrow R_2 - R_1$
 $R_3 \rightarrow R_3 - R_1$

$$\Rightarrow -(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$

 $= 0$

$$\Rightarrow a+b+c = 0 \text{ or } a^2+b^2+c^2-ab-bc-ca$$

 $= 0$

9

(a)

Given equation is compared with the standard form, we get

$$a = 1, h = -\frac{3}{2}, b = \lambda, g = \frac{3}{2}, f = \frac{-5}{2}, c = 2$$

Given that, $\theta = \tan^{-1}\left(\frac{1}{3}\right) \Rightarrow \tan \theta = \frac{1}{3}$
Since, $\tan \theta = \frac{2\sqrt{h^2 - ab}}{a + b}$
 $\Rightarrow \frac{1}{3} = \frac{2\sqrt{\left(-\frac{3}{2}\right)^2 - \lambda}}{\lambda + 1} \Rightarrow (\lambda + 1)^2 = 9(9 - 4\lambda)$
 $\Rightarrow \lambda^2 + 1 + 2\lambda = 81 - 36\lambda$
 $\Rightarrow \lambda^2 + 38\lambda - 80 = 0$
 $\Rightarrow \lambda = \frac{-38 \pm \sqrt{(38)^2 + 320}}{2}$
 $\Rightarrow \lambda = \frac{-38 \pm 42}{2} \Rightarrow \lambda = 2$

10 **(c)**

The separate equation of pair of straight lines of $12x^2 - 20xy + 7y^2 = 0$ are 6x - 7y = 0 and 2x - y = 0Thus, equation of sides of triangle are 6x - 7y = 0 ...(i) 2x - y = 0 ...(ii) and 2x - 3y + 4 = 0 ...(iii) On solving these equations, we get the vertices of a triangle A(0, 0); B(1,2) and C(7,6) \therefore Centroid of triangle is $\left(\frac{0+1+7}{3}, \frac{0+2+6}{3}\right) = \left(\frac{8}{3}, \frac{8}{3}\right)$

11 (a)

The angle between the lines represented by $2x^2 + 5xy + 3y^2 + 6x + 7y + 4 = 0$ is given by

$$\tan \theta = \pm \frac{2\sqrt{\frac{25}{4}} - 6}{2+3} \Rightarrow \tan \theta = \pm \frac{1}{5}$$
$$\therefore m = \pm \frac{1}{5}$$

12 **(b)**

We know, if the line are perpendicular to each

other, then $\theta = 90^{\circ}$ $\Rightarrow \tan 90^\circ = \frac{2\sqrt{h^2 - ab}}{a + b}$ $\Rightarrow a + b = 0 \quad [\because \tan 90^\circ = \infty]$ 13 **(b)** Given equation of line are 3x + 4y + 1 = 0(i) $5x + \lambda y + 3 = 0$...(ii) and 2x + y - 1 = 0 ...(iii) The intersection point of lines (i) and (iii) is (1, -1).Since, the line are concurrent, therefore the intersection point (1, -1) lies on line (ii) $\therefore 5(1) + \lambda(-1) + 3 = 0 \implies \lambda = 8$ 14 (a) Line perpendicular to same line are parallel to each other. $\therefore -p(p^2+1) = p^2+1$ $\Rightarrow p = -1$ \therefore There is exactly one value of *p*. 15 (a) If $P(\sin \theta, 1/\sqrt{2})$ and $Q(1/\sqrt{2}, \cos \theta)$ are on the same side of the line x - y = 0. Then, $\Rightarrow \left(\sin\theta - \frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}} - \cos\theta\right) > 0$ $\Rightarrow \left(\sin\theta - \frac{1}{\sqrt{2}}\right) \left(\cos\theta - \frac{1}{\sqrt{2}}\right) < 0$ $\Rightarrow \sin \theta - \frac{1}{\sqrt{2}} > 0$ and $\cos \theta - \frac{1}{\sqrt{2}} < 0$ or, $\sin \theta - \frac{1}{\sqrt{2}} < 0$ and $\cos \theta - \frac{1}{\sqrt{2}} > 0$ $\Rightarrow \left(\sin\theta > \frac{1}{\sqrt{2}} \text{ and } \cos\theta < \frac{1}{\sqrt{2}}\right)$ or, $\left(\sin\theta < \frac{1}{\sqrt{2}} \text{ and } \cos\theta > \frac{1}{\sqrt{2}}\right)$ $\Rightarrow \theta \in (\pi/4, 3\pi/4) \text{ or, } \theta \in (-\pi/4, \pi/4)$ $\Rightarrow \theta \in (-\pi/4, \pi/4) \cup (\pi/4, 3\pi/4)$ 16 (c) Given line meets the coordinate axes at $A\left(\frac{2}{\cos h \alpha - \sin h \alpha}, 0\right)$ and $B\left(0, \frac{2}{\cos h \alpha + \sin h \alpha}\right)$ \therefore Area of $\triangle OA$ $=\frac{1}{2} \times OA \times OB$

$$= \frac{1}{2} \times \frac{2}{\cos h \, \alpha - \sin h \, \alpha} \times \frac{2}{\cos h \, \alpha + \sin h \, \alpha}$$
$$= \frac{2}{\cos h^2 \, \alpha - \sin h^2 \, \alpha} = 2 \text{ sq. units}$$

The line ax + by + c = 0 cuts the coordinate axes at A(-c/a, 0) and B(0, -c/b)

18 **(a)**

The required lines are obtaining by shifting the origin at (4,0). So, the required equation is y = |x - 4|

19 **(a)**

We have, Coefff. of x^2 + Coeff. of $y^2 = 0$ Therefore, the angle between the lines is $\pi/2$

20 **(c)**

The equation of a line passing through the intersection of x - 3 y + 1 = 0 and 2 x + 5 y - 9 = 0 is $(x - 3 y + 1) + \lambda(2 x + 5 y - 9) = 0$

 $\Rightarrow x(2 \lambda + 1) + y(5\lambda - 3) + 1 - 9\lambda = 0$

This is at a distance of $\sqrt{5}$ units from the origin

$$\therefore \left| \frac{1 - 9\lambda}{\sqrt{(2\lambda + 1)^2 + (5\lambda - 3)^2}} \right| = \sqrt{5} \Rightarrow \lambda = \frac{7}{8}$$

Hence, the required line is $2x + y = 5$

21 **(b)**

The equations of the sides of the parallelogram are:

 $x \cos \alpha + y \sin \alpha - p = 0$ $x \cos \alpha + y \sin \alpha - q = 0$ $x \cos \beta + y \sin \beta - r = 0$ $x \cos \beta + y \sin \beta - s = 0$ $\therefore \text{ Area of the parallelogram}$ $= \left| \frac{\{(-p) - (-q)\}\{(-r) - (-s)\}}{\left| \cos \alpha - \sin \alpha \right|} \right|$

$$\begin{vmatrix} \cos \alpha & \sin \alpha \\ \cos \beta & \sin \beta \end{vmatrix} = \begin{vmatrix} (p-q)(r-s) \\ \sin(\alpha - \beta) \end{vmatrix}$$

Clearly, it is maximum when $\alpha - \beta = \pm \frac{\pi}{2}$

22 **(b)**

Let the coordinates of the other two vertices be

 $B(3, y_1)$ and $D(3, y_2)$. Since the diagonals of a rectangle bisect each other

rectangle bisect each other

$$\begin{array}{c}
Y \\
0 \\
Y'
\end{array}$$

$$\begin{array}{c}
y \\
1 \\
x \\
x \\
y_{1} + y_{2} \\
y_{1} + y_{2} \\
y_{1} + y_{2} \\
y_{2} = \frac{2 + 5}{2} \\
y_{1} + y_{2} = 7 \\
y_{1} + y_{2} = 7 \\
y_{1} + y_{2} = 2 \\
y_{2} + 5 \\
y_{1} + y_{2} = 7 \\
y_{1} + y_{2} = 7 \\
y_{1} - y_{1} = 5 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{1} - y_{1} = 7 \\
y_{2} - y_{1} = 7 \\
y_{2} - y$$

Thus,
$$PQ = r = -\frac{A x_1 + B y_1 + B}{A \cos \alpha + B \sin \alpha}$$

23

Here,
$$a = 2$$
, $h = \frac{3}{2}$, $b = -5$
 $\therefore \tan \theta = \left| \frac{2\sqrt{\left(\frac{3}{2}\right)^2 + 10}}{2 - 5} \right| = \left| \frac{\sqrt{49}}{-3} \right|$
 $\Rightarrow \theta = \tan^{-1} \left| \frac{7}{3} \right|$

25 (c)

Let
$$(h, k)$$
 be the point such that
 $(h-3)^2 + (k+2)^2 = \frac{5h - 12k - 13}{\sqrt{25 + 144}}$
 $\Rightarrow 13(h^2 + 9 - 6h + k^2 + 4k + 4)$
 $= 5h - 12k - 13$
 $\Rightarrow 13(h^2 + k^2) - 83h + 64k + 182 = 0$
Thus, the locus of (h, k) is
 $13(x^2 + y^2) - 83x + 64y + 182 = 0$

26 (b) The coordinates of the point dividing the line joining (-1,1) and (5,7) in the λ : 1 are $\left(\frac{5\,\lambda-1}{\lambda+1},\frac{7\,\lambda+1}{\lambda+1}\right)$ This point lies on the line x + y = 4 $\therefore 5 \lambda - 1 + 7 \lambda + 1 = 4 \lambda + 4 \implies 8 \lambda = 4 \implies \lambda = \frac{1}{2}$ 27 (b) Here, $a = a, h = 0, b = -1, f = -\frac{1}{2}, g = 2, c = 0$ Given equation represent a pair of straight line. Then, $\begin{vmatrix} a & 0 & 2 \\ 0 & -1 & -1/2 \\ 2 & -1/2 & 0 \end{vmatrix} = 0$ $\Rightarrow a\left[0-\left(\frac{1}{4}\right)\right]-0+2[2]=0 \Rightarrow a=16$ 28 **(b)** We have, $\sqrt{(x-3)^2 + (y-1)^2} + \sqrt{(x+3)^2 + (y-1)^2} = 6$ $\Rightarrow \sqrt{(x-3)^2 + (y-1)^2}$ $= 6 - \sqrt{(x+3)^2 + (y-1)^2}$ On squaring both sides, we get $12x + 36 = 12\sqrt{(x+3)^2 + (y-1)^2}$ $\Rightarrow x + 3 = \sqrt{(x + 3)^2 + (y - 1)^2}$ Again on squaring, we get $x^{2} + 9 + 6x = x^{2} + 9 + 6x + y^{2} + 1 - 2y$ $\Rightarrow y^2 - 2y + 1 = 0$ Which represents a pair of straight lines 29 (b) If given lines are concurrent, then $\begin{vmatrix} 2 & -3 & k \\ 3 & -4 & -13 \\ 8 & -11 & -33 \end{vmatrix} = 0$ $\Rightarrow -22 + 15 - k = 0 \Rightarrow k = -7$ 30 (c) Let the required point be (t, t). Then, $\left|\frac{3t+4t-12}{5}\right| = 4$ $\Rightarrow |7t - 12| = 20 \Rightarrow 7t - 12 = \pm 20 \Rightarrow t$ $= \frac{32}{7}, -\frac{8}{7}$ Hence, the required points are (-8/7, -8/7) and (32/7, 32/7)31 (c) The equation of lines are x + y = 0 and x - y = 0 \therefore The equation of bisectors of the angles between these lines are $\frac{x+y}{\sqrt{1+1}} = \pm \frac{x-y}{\sqrt{1+1}} \Rightarrow x+y = \pm (x-y)$ Taking positive sign, x + y = (x - y) $\Rightarrow y = 0$

Taking positive sign, x + y = -(x - y) $\Rightarrow x = 0$ Hence, the equation of bisectors are x = 0 and y = 0 **(b)** The family of lines $(x + y - 1) + \lambda(2x + 3y - 5) = 0$ passes through a point such that x + y - 1 = 0

2x + 3y - 5 = 0*ie*, (-2, 3) and family of lines $(3x + 2y - 4) + \mu(x + 2y - 6) = 0$ Passes through a point such that 3x + 2y - 4 = 0and x + 2y - 6 = 0 *ie*, (-1, 7/2) \therefore Equation of the straight line that belongs to both

the families passes through (-2, 3) and (-1, 7/2) is

$$y - 3 = \frac{\frac{7}{2} - 3}{-1 + 2}(x + 2)$$

$$\Rightarrow y - 3 = \frac{x + 2}{2} \Rightarrow x - 2y + 8 = 0$$

33 **(a)**

34

35

36

(a)

32

Line passing through *P* farthest from *O* must be perpendicular to *OP*, so equation is

$$y = \frac{1}{10}$$

$$y = \frac{1}{10}$$

$$y = 1 = -3(x - 3)$$

$$y = 3x + y = 10$$
This line meet the coordinate axes at
$$A = \left(\frac{10}{3}, 0\right) \text{ and } B = (0, 10)$$
So, Area of $\Delta OAB = \frac{1}{2} \times \frac{10}{3} \times 10 = \frac{50}{3}$ sq unit
(d)
The given equation of pair of straight line can be
rewritten as
$$(x - y + 1)(x + y - 2) = 0$$

$$\therefore$$
 The equation of lines which are represented by
the given equation, are
$$x - y + 1 = 0 \text{ and } x + y - 2 = 0$$
(a)
Since, bisector are same, therefore
$$\frac{a - b}{h} = \frac{a' - b'}{h'}$$

$$\Rightarrow (a - b)b' = (a' - b')b$$

Let
$$L_1 \equiv 3x - 4y - 8 = 0$$

At point (3,0),
 $L_1 \equiv 9 - 16 - 8 = -15 < 0$
At point (x, y) and $(3, 4)$ opposite sides of L_1
 $\therefore 3x - 4y - 8 > 0$...(i)
 $\Rightarrow 3x - 4(-3x) - 8 > 0$ [$\because y = -3x$]
 $\Rightarrow 15x - 8 > 0$ $x > \frac{8}{15}$
Again from Eq. (i),
 $3\left(-\frac{y}{3}\right) - 4y - 8 > 0$
 $\Rightarrow -5y - 8 > 0 \Rightarrow y < -\frac{8}{5}$

37 **(c)**

Clearly, lengths of perpendiculars from (0,0) on the gives lines are each equal to 2. Hence, required point is (0,0)

38 (a)

The coordinates of *I* are

$$\left(\frac{3 \times 0 + 4 \times 3 + 5 \times 0}{3 + 4 + 5}, \frac{3 \times 4 + 4 \times 0 + 5 \times 0}{3 + 4 + 5}\right)$$

$$= (1,1)$$

$$V$$

$$W$$

$$BI = \sqrt{(0-1)^2 + (4-1)^2} = \sqrt{10}$$

39 **(b)**

Let *M* be mid point of *QR*. As *PQR* is an isosceles triangle, *PM* \perp *QR*. Slope of *QR* is -2

⇒ Slope of *PM* is 1/2. Since, $\triangle QPR$ is a right angled triangle, *Q*, *P*, *R* lie on a circle with centre at *M*.

 $\therefore MQ = MP = MR$ $\Rightarrow \angle QPM = 45^{\circ}$ Let *m* be slope of *PQ*. Thus, $\pm \tan 45^{\circ} = 1 = \frac{m - \frac{1}{2}}{1 + \frac{m}{2}}$ $\Rightarrow \pm 1 = \frac{2m - 1}{2 + m}$ $\Rightarrow \pm (2 + m) = 2m - 1 \Rightarrow m = 3, -\frac{1}{2}$

∴ Equation of *PQ* and *PR* are

y - 1 = 3(x - 2)and $y - 1 = -\frac{1}{3}(x - 2)$ $\Rightarrow 3(y - 1) + (x - 2) = 0$ Thus, joint equation of *PQ* and *PR* is [3(x - 2) - (y - 1)][(x - 2) + 3(y - 1)] = 0 $\Rightarrow 3(x - 2)^2 - 3(y - 1)^2 + 8(x - 2)(y - 1) = 0$ $\Rightarrow 3x^2 - 3y^2 + 8xy - 20x - 10y + 25 = 0$

40 **(a)**

Let P(h, k) be the variable point. Then, by hypothesis, we have |h| + |k| = 3 \therefore Locus of P is |x| + |y| = 3Clearly, it represents a square a shown in Fig. S.19 \therefore Required Area $= \frac{1}{2} \times AC \times BD = \frac{1}{2} \times 6 \times 6 =$ 18 sq. units

41 **(a)**

The slope of line x - 2y = 3 is $\frac{1}{2}$ Let the slope of required lines is *m*

$$\therefore \tan 45^\circ = \pm \left| \frac{\frac{1}{2} - m}{1 + \frac{m}{2}} \right|$$

$$\Rightarrow 1 + \frac{m}{2} = \pm \left(\frac{1}{2} - m \right) \Rightarrow m = -\frac{1}{3}, 3$$

$$\therefore \text{ Equation of line with slope } m = -\frac{1}{3} \text{ and}$$

∴ Equation of line with slope $m = -\frac{1}{3}$ and passing through (3, 2), is

$$(y-2) = -\frac{1}{3}(x-3) \Rightarrow x+3y = 9$$

and another equation of line with slope m = 3 and passing through (3, 2) is

$$(y-2) = 3(x-3) \Rightarrow 3x - y = 7$$

42 **(c)**

Line making equal intercepts therefore, its equation is $x \pm y = a$...(i) Since, it passes through (2, 4) $\therefore a = -2, 6$ Hence, equation of the required lines are $x \pm y = a$ $\Rightarrow x + y = -2$ or x + y = 6 $\Rightarrow x + y - 6 = 0$

43 **(b)**

Let the point on the *x*-axis be (*h*, 0).

The perpendicular distance from (h, 0) to the line

$$= \frac{\left|\frac{a}{a} - 1\right|}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} = a \text{ [given]}$$

$$\Rightarrow \frac{h}{a} - 1 = \pm a \frac{\sqrt{a^2 + b^2}}{ab}$$

$$\Rightarrow h - a = \pm \frac{a}{b} \sqrt{a^2 + b^2}$$

$$\Rightarrow h = a \pm \frac{a}{b} \sqrt{a^2 + b^2}$$

$$= \frac{a}{b} \left(b \pm \sqrt{a^2 + b^2}\right)$$

$$\therefore \text{ Required point is } \left(\frac{a}{b} \left(b \pm \sqrt{a^2 + b^2}\right), 0\right)$$

45 **(b)**

Let the image or (reflection) of the origin with reference to the line

$$4x + 3y - 25 = 0 \text{ is } (h, k)$$

$$\therefore \frac{h - 0}{4} = \frac{k - 0}{3} = \frac{-2(0 + 0 - 25)}{16 - 9} = \frac{50}{25} = 2$$

$$\therefore \frac{h}{4} = 2 \implies h = 8$$

and $\frac{k}{3} = 2 \implies k = 6$

$$\therefore \text{ The required point is } (8, 6)$$

46 **(d)**

(1) We have,
$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & 1 \\ a_2 & b_2 & 1 \\ a_3 & b_3 & 1 \end{vmatrix}$$

This shows that the area of both the triangles are same. But the equality of the areas of the triangles do not ensure the congruence of the triangle (2) The equation of a line passing through the origin is y = mx. If it is equidistant from the points A(2, 2) and B(4, 0), then

 $\left|\frac{2m-2}{\sqrt{m^2+1}}\right| = \left|\frac{4m-0}{\sqrt{m^2+1}}\right|$ $\Rightarrow (2m-2)^2 = (4m)^2$ $\Rightarrow (m-1)^2 = 4m^2$ $\Rightarrow 3m^2 + 2m - 1 = 0$ $\Rightarrow m = \frac{1}{3}, -1$ Hence, there are two lines

Hence, there are two lines $y = \frac{x}{3}$ and y = -xpassing through the origin and equidistance from A(2,2) and B(4,0)

Hence, both of these two statements are not correct

47 **(b)**

Given equation of the curve is $3x^2 - y^2 - 2x + 4y = 0$...(i)

Let the equation of one of the chord be $y = mx + c \Rightarrow \frac{y - mx}{c} = 1 \dots (ii)$ On making Eq. (i) homogeneous, we get $3x^{2} - y^{2} + (-2x + 4y)\left(\frac{y - mx}{c}\right) = 0$ $\Rightarrow x^{2}(3c + 2m) + y^{2}(-c + 4) - 2xy - 4mxy = 0$ Which represent a pair of straight lines passing through origin. Since, the angle subtended is a right angle. $\therefore 3c + 2m - c + 4 = 0$ $\Rightarrow c = -m - 2$ Substituting value of *c* in y = mx + c, we have $y = mx - m - 2 \Rightarrow y + 2 = m(x - 1)$ \Rightarrow All such chords pass through a fixed point (1, -2)48 (a) Since, 2x + y = 1 and 2x + y = 7 are parallel lines. (2x + y - 1)(2x + y - 7) is positive at point $\left(0,\frac{1}{2}\right)$. So, lines are in the same side of a point 49 (a) Here, a = 2, b = 2, h = 5/2, g = 3/2, f = 3/2, c =So, the angle θ between the lines is given by $\tan\theta = \frac{2\sqrt{25/4 - 4}}{2 + 2}$ $\Rightarrow \tan \theta = \frac{3}{4} \Rightarrow \cos \theta = \frac{4}{5} \Rightarrow \theta = \cos^{-1}\left(\frac{4}{5}\right)$ 50 (a) Let the lines represented by the equations $px^2 - qxy - y^2 = 0$ be $y = m_1 x$ and $y = m_2 x$ Then, $m_1 = \tan \alpha$ and $m_2 = \tan \beta$ Also, $m_1 + m_2 = -q$ and $m_1 m_2 = -p$ Now, $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{m_1 + m_2}{1 - m_1 m_2}$ $=\frac{-q}{1+p}$ 51 (b) $d(x, y) = \max\{|x|, |y|\} \dots (i)$ but d(x, y) = a ...(ii) From, Eqs. (i) and (ii), $a = \max\left\{|x|, |y|\right\}$ If |x| > |y|, then a = |x| $\therefore x = \pm a$ and if |y| > |x|, then a = |y| $\therefore y = \pm a$

Therefore, locus represents a straight line

52 **(b)**

The intersection of two curves

 $ax^{2} + 2hxy + by^{2} + 2gx + \lambda(a'x^{2} + 2h'xy + b'y^{2} + 2g'x) = 0$ $\Rightarrow x^{2}(a + a'\lambda) + 2xy(h + h'\lambda) + y^{2}(b + \lambda b') + 2x(g + \lambda g') = 0$ For making homogeneous equating, $g + \lambda g' = 0$

 $\Rightarrow \lambda = -\frac{g}{g'}$

Since, lines are perpendicular. $\therefore \text{ Coefficient of } x^2 + \text{ Coefficient of } y^2 = 0$ $\Rightarrow a + a'\lambda + b + b'\lambda = 0$ $\Rightarrow a + b = -(a' + b')\left(-\frac{g}{g'}\right)$ $\Rightarrow (a + b)g' = (a' + b')g$ (b)

53 **(b)**

Let the coordinates of the third vertex A be (h, k). Then,

 $AD \perp BC$

$$\Rightarrow OA \perp BC \Rightarrow \frac{k-0}{h-0} \times \frac{4}{-7} = -1 \Rightarrow 7h$$
$$= 4k \quad \dots \text{(i)}$$
and, $OB \perp AC \Rightarrow \frac{k-3}{h+2} \times \frac{-1}{-5} = -1$
$$\Rightarrow 5h-k+13 = 0 \quad \dots \text{(ii)}$$

Solving (i) and (ii), we get h = -4, k = -7Hence, the coordinates of the third vertex are (-4, -7)

54 (a)

Required distance = $\frac{|b-a|}{\sqrt{1^2+1^2}} = \frac{|b-a|}{\sqrt{2}}$

55 **(c)**

The given lines are perpendicular to each other.

$$\therefore \text{ Perpendicular distance} = \frac{|r_1 - r_2|}{\sqrt{2}} = \sqrt{2}$$

 \Rightarrow $r_1 - r_2 = 2$

The difference between the *y*-intercepts = 2 This can happen for five combinations {(0, 2), (1, 3), (2, 4), (3, 5), (4, 6)}. The difference between the *x*-intercepts = 2 This can happen for five combinations. Hence, total number of squares = $5 \times 5 = 25$ 56 **(d)** We have,

(p+2q)x + (p-3q)y - p + q = 0 $\Rightarrow p(x+y-1) + q(2x-3y+1) = 0,$ Clearly, it represents a family of lines passing through the intersection of the lines x + y - 1 = 0and 2x - 3y + 1 = 0.

The coordinates of the point of the intersection these two lines are (2/5, 3/5)

57 **(d)**

Equation of line perpendicular to 2x + y + 6 = 0 and passes through origin is x - 2y = 0Now, point of intersection of 2x + y + 6

$$x = 0$$
 and $x - 2y = 0$ is $\left(-\frac{12}{5}, -\frac{6}{5}\right)$

Similarly, point of intersection of x - 2y

$$= 0 \text{ and } 4x + 2y -$$
$$= 0 \text{ is } \left(\frac{9}{5}, \frac{9}{10}\right)$$

Let the origin divide the line x - 2y = 0 in the ratio λ : 1

$$\therefore x = \frac{\frac{9}{5}\lambda - \frac{12}{5}}{\lambda + 1} = 0 \Rightarrow \frac{9}{5}\lambda = \frac{12}{5}$$
$$\Rightarrow \lambda = \frac{12}{9} = \frac{4}{3}$$

58 **(b)**

59

60

Let the straight line meets the x-axis at A(a, 0)and the y-axis at B(0, b). The equation of this straight line will be $\frac{x}{a} + \frac{y}{b} = 1 \quad \dots(i)$ Since, it passes through P(1, 1) $\therefore \frac{1}{a} + \frac{1}{b} = 1 \implies a + b = ab \dots (ii)$ Let the coordinates of the mid point *M* of *AB* are (h,k) $\therefore h = \frac{a+0}{2} \Rightarrow a = 2h$ and $k = \frac{\overline{0}+b}{2} \Rightarrow b = 2k$ substitute the values of *a* and *b* in Eq. (ii), we get $2h + 2k = 2h \times 2k$ \Rightarrow h + k = 2hkHence, the equation of the locus of mid point M(h, k) will be x + y - 2xy = 0**(b)** Given lines are 3x + 4y = 9 ...(i) and 6x + 8y = 15 $\Rightarrow 3x + 4y = \frac{15}{2}$...(ii)

 \div Both lines are parallel, therefore the distance between two

lines
$$=\frac{\left|\frac{15}{2}-9\right|}{\sqrt{3^2+4^2}}=\frac{3}{2\cdot 5}=\frac{3}{10}$$

(a)

Let the lines are $y = m_1 x + c_1$ and $y = m_2 x + c_2$. 64 Since, pair of straight lines are parallel to *x*-axis

$$x = 0$$

$$y'$$

$$P \quad y - c_1 = 0$$

$$C(3,2)$$

$$x$$

$$P' \quad y - c_2 = 0$$

$$y'$$

 $\therefore m_1 = m_2 = 0$ Hence, the lines will be $y = c_1$ and $y = c_2$. Given circle is $x^2 + y^2 - 6x - 4y - 12 = 0$ $\therefore \text{ Centre (3, 2) and radius = 5}$ Here, the perpendicular drawn from centre to the lines are *CP* and *CP''* $\therefore CP = \frac{2 - c_1}{\sqrt{1}} = \pm 5$

∴ $CF = \frac{1}{\sqrt{1}} = \frac{1}{2}3$ ⇒ $c_1 = 7$ and $c_1 = -3$ Hence, the lines are y - 7 = 0, y + 3 = 0ie, (y - 7)(y + 3) = 0 or $y^2 - 4y - 21 = 0$

62 (c)

Let the coordinates of point *A* and *B* are (a, 0) and (0, -b)

$$\therefore \frac{a}{2} = 4 \implies a = 8$$

and $-\frac{b}{2} = -3 \implies b = 6$
$$\therefore \text{ Equation of line is } \frac{x}{8} + \frac{y}{-6} = 1$$

$$\implies 3x - 4y = 24$$

$$x' \leftarrow 0$$

$$(a,0) \land A \rightarrow x$$

$$M (4, -3)$$

$$B (0, -b)$$

$$y'$$

63 (a)

Given, α be the distance between lines x - y + 2 = 0 and x - y - 2 = 0 $\therefore \alpha = \frac{|2 + 2|}{\sqrt{1 + 1}} = \frac{|4|}{\sqrt{2}} = 2\sqrt{2}$ and β be the distance between the lines

$$4x - 3y - 5 = 0 \text{ and } 4x - 3y + \frac{1}{2} = 0$$

$$\therefore \ \beta = \frac{\left|5 + \frac{1}{2}\right|}{\sqrt{(4)^2 + (3)^2}} = \frac{|11|}{2\sqrt{25}} = \frac{11}{10}$$

$$\text{Now,} \frac{\alpha}{\beta} = \frac{2\sqrt{2}}{11/10} = \frac{20\sqrt{2}}{11}$$

$$\Rightarrow 20\sqrt{2}\beta = 11\alpha$$

(d)

Given line is $x^2 + 2xy - 35y^2 - 4x + 44y - 12 = 0$ Here, a = 1, b = -35, c = -12, h = 1, f = 22 \therefore Point of intersection $= \left(\frac{22 - 70}{-35 - 1}, \frac{-2 - 22}{-35 - 1}\right)$ $= \left(\frac{4}{3}, \frac{2}{3}\right)$ (4.2)

If the lines are concurrent. The point $\left(\frac{4}{3}, \frac{2}{3}\right)$ will be

on the line
$$5x + \lambda y - 8 = 0$$

 $\therefore 5\left(\frac{4}{3}\right) + \lambda\left(\frac{2}{3}\right) - 8 = 0$
 $\Rightarrow \frac{2}{3}\lambda = 8 - \frac{20}{3} = \frac{4}{3} \Rightarrow \lambda = 2$

65 **(a)**

The given equation are 3x + 4y - 5 = 0 ...(i) and 4x - 3y - 15 = 0 ...(ii) Since, these lines are perpendicular to each other so $\angle QPR$ is right angle and PQ = PR. Hence, $\triangle PQR$ is a right angle isosceles triangle. $\angle PQR = \angle PRQ = 45^{\circ}$ Slope of $PQ = -\frac{3}{4}$ and slope of $PR = \frac{4}{3}$ Let slope of QR = m $\therefore \tan 45^{\circ} = \pm \left| \frac{\frac{4}{3} - m}{1 + \frac{4}{3}m} \right|$ $\Rightarrow m = \frac{1}{7}, -7$

66 **(a)**

Required line is passing through (3, 4) and having slope 1.

 \therefore Equation of required line is

$$A^{(3,7)}$$

$$(3,4)B$$

$$A^{(3,7)}$$

$$(3,4)B$$

$$A^{(3,7)}$$

$$(3,4)B$$

$$($$

67 **(d)**

Let Q(x, y) be the image of the point P(4, 1) to the line y - x + 1 = 0Then, PQ is perpendicular to y - x + 1 = 0 $\therefore \frac{y+1}{x-4} \times 1 = -1$ $\Rightarrow y + x = 4 + 1 = 5 ...(i)$ Also, mid point of PQ, ie, $\left(\frac{4+x}{2}, \frac{y+1}{2}\right)$ lies on y-x + 1 = 0

$$\therefore \frac{y+1}{2} - \frac{(4+x)}{2} + 1 = 0$$

$$\Rightarrow y - x - 1 = 0 \dots (ii)$$

On solving Eqs. (i) and (ii), we get the required point (2, 3)

24

68 **(b)**

Since, *A* is mid point of line *PQ*

$$\therefore 3 = \frac{a+0}{2} = a = 6$$

and $4 = \frac{0+b}{2} \Rightarrow b = 8$
Thus, equation of line is
 $\frac{x}{6} + \frac{y}{8} = 1 \Rightarrow 4x + 3y =$

70 **(b)**

The intersection of two curves $ax^{2} + 2hxy + by^{2} + 2gx + \lambda(a'x^{2} + 2h'xy + b'y^{2} + 2g'x) = 0$ $\Rightarrow x^{2}(a + a'\lambda) + 2xy(h + h'\lambda) + y^{2}(b + \lambda b') + 2x(g + \lambda g') = 0$ For making homogeneous equating, $g + \lambda g' = 0$ $\Rightarrow \lambda = -\frac{g}{g'}$ Since, lines are perpendicular. $\therefore \text{ Coefficient of } x^{2} + \text{ Coefficient of } y^{2} = 0$ $\Rightarrow a + a'\lambda + b + b'\lambda = 0$ $\Rightarrow a + b = -(a' + b')\left(-\frac{g}{g'}\right)$ $\Rightarrow (a + b)g' = (a' + b')g$

71 (c)

The equation of line passing through the point of intersection of x + 2y - 1 = 0 and 2x - y - 1 = 0is $(x + 2y - 1) + \lambda(2x - y - 1) = 0$ $\Rightarrow x(1 + 2\lambda) + y(2 - \lambda) - 1 - \lambda = 0$ This meets the coordinate axes at $A\left(\frac{1+\lambda}{2\lambda+1}, 0\right)$ and $B\left(0, \frac{\lambda+1}{2-\lambda}\right)$ Let (h, k) be the mid point of *AB*, then $h = \frac{1}{2}\left(\frac{1+\lambda}{2\lambda+1}\right), k = \frac{1}{2}\left(\frac{\lambda+1}{2-\lambda}\right)$ On eliminating λ from the these equations, we get h + 3k = 10hkThus, the locus of (h, k) is x + 3y = 10xy

72 (c) On comparing the given lines with $y = m_1 x + c_1$ and $y = m_2 x + c_2$, we get $m_1 = 2$ and $c_1 = 7$ and $m_2 = 2$ and $c_2 = 5$ $\therefore \text{ Required distance} = \frac{|c_1 - c_2|}{\sqrt{(m)^2 + 1}}$ $=\frac{|7-5|}{\sqrt{(2)^2+1}}=\frac{2}{\sqrt{5}}$ 73 (c) Here the equation of *AB* is $\frac{x}{a} + \frac{y}{b} = 1$ From the figure, $OP \perp AB$, B(0,b) $\therefore OP = \left| \frac{0\left(\frac{1}{a}\right) + 0\left(\frac{1}{b}\right) - 1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} \right|$ $\Rightarrow p = \frac{1}{\sqrt{\frac{1}{2} + \frac{1}{2}}}$ $\Rightarrow p^2 = \frac{1}{\frac{1}{a^2} + \frac{1}{b^2}} \text{ [squaring both sides]}$ $\Rightarrow \frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$ 74 (d) Clearly, diagonals are perpendicular So, ABCD must be a rhombus 75 **(b)** Given lines are concurrent $\begin{array}{c|ccc} \vdots & 2 & -3 & k \\ 3 & -4 & -13 \\ 8 & -11 & -33 \end{array} = 0$ $\Rightarrow 2(132 - 143) + 3(-99 + 104) + k(-33 + 32)$ $\Rightarrow -22 + 15 - k = 0 \Rightarrow k = -7$ 76 (a)

The equations of the sides of the quadrilateral are given by

 $l^{2}x^{2} - m^{2}y^{2} - n(lx + my) = 0$ and, $l^{2}x^{2} = m^{2}y^{2} + n(lx + my) = 0$ $\Rightarrow (lx + my)(lx - my - n) = 0 \text{ and } (lx - my)(lx + my + n = 0)$ $\Rightarrow lx + my = 0, lx - my - n = 0, lx - my$ = 0, lx + my + n = 0

Clearly, the lines form a parallelogram whose are is

$$\frac{\left|\frac{\{0-(-n)\}\{0-n\}}{\binom{l}{l} - m}\right|}{\binom{l}{l} - m} = \frac{n^2}{2|lm|}$$
(d)

Since, line *OA* makes an angle α with *x*-axis and given OA = a, then coordinates of A are $(a \cos \alpha, a \sin \alpha)$. Also, $OB \perp OA$, then OB makes an angle $(90^\circ + \alpha)$ with *x*-axis, then coordinates of *B* are $[a \cos(90^\circ + \alpha), a \sin(90^\circ + \alpha)]$ *ie*, $(-a \sin \alpha, a \cos \alpha)$

Equation of the diagonal *AB* not passing through the origin is

$$(y - a \sin \alpha) = \frac{a \cos \alpha - a \sin \alpha}{-a \sin \alpha - a \cos \alpha} (x - a \cos \alpha)$$

$$\Rightarrow (\sin \alpha + \cos \alpha)(y - a \sin \alpha)$$

$$= (\sin \alpha - \cos \alpha)(x - a \cos \alpha)$$

$$\Rightarrow y(\sin \alpha + \cos \alpha) + x(\cos \alpha - \sin \alpha)$$

$$= a \sin \alpha (\sin \alpha + \cos \alpha) - a \cos \alpha (\sin \alpha - \cos \alpha)$$

$$= a (\sin^2 \alpha + \sin \alpha \cos \alpha - \cos \alpha \sin \alpha + \cos^2 \alpha)$$

$$\Rightarrow y(\sin \alpha + \cos \alpha) + x(\cos \alpha - \sin \alpha) = a$$

(d)
Required equation can be $4x - 3y - K = 0$

$$\therefore \left| \frac{4 \times -1 - 3 \times -4 - K}{\sqrt{4^2 + (-3)^2}} \right| = 1$$

$$\Rightarrow \frac{-4 + 12 - K}{5} = \pm 1$$

$$5 \Rightarrow 8 - K = +5$$

 $\Rightarrow K = 3 \text{ or } K = 13$: Equation of lines are 4x - 3y - 3 = 0 and 4x - 3y - 13 = 0

79 **(b)**

78

 \therefore Point P(a, b) lies on 3x + 2y = 13 $\therefore 3a + 2b = 13 \dots (i)$ and point Q(b, a) is lies on 4x - y = 5:: 4b - a = 5 ...(ii)On solving Eqs. (i) and (ii), we get a = 3, b = 2Therefore, the coordinates of *P* and *Q* are (3, 2)and (2, 3) respectively. Now, equation of *PQ* is $y-2 = \frac{3-2}{2-3}(x-3) \Rightarrow x+y = 5$

80 (b)

The given equation $x^{2} + kxy + y^{2} - 5x - 7y + 6 = 0$ is compared with

 $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$, we get $a = 1, b = 1, h = \frac{k}{2}, g = \frac{-5}{2}, f = \frac{-7}{2}, c = 6$ This equation represents a pair of straight lines,

$$\begin{split} & \text{if } \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0 \\ \Rightarrow \begin{vmatrix} 1 & k/2 & -5/2 \\ k/2 & 1 & -7/2 \\ -5/2 & -7/2 & 6 \end{vmatrix} = 0 \\ \Rightarrow 1 \left(6 - \frac{49}{4} \right) - \frac{k}{2} \left(\frac{6k}{2} - \frac{35}{4} \right) - \frac{5}{2} \left(-\frac{7k}{4} + \frac{5}{2} \right) = 0 \\ \Rightarrow \left(\frac{24 - 49}{4} \right) - \frac{k}{2} \left(\frac{12k - 35}{4} \right) - \frac{5}{2} \left(\frac{-7k + 10}{4} \right) = 0 \\ \Rightarrow -50 - 12k^2 + 35k + 35k - 50 = 0 \\ \Rightarrow -12k^2 + 70k - 100 = 0 \\ \Rightarrow 6k^2 - 35k + 50 = 0 \\ \Rightarrow k = \frac{10}{3} \end{split}$$

81 (b)

Since, t_1 , t_2 are the roots of the equation $t^2 + \lambda t + 1 = 0$ $\therefore t_1 + t_2 = -\lambda, \qquad t_1 t_2 = 1$ The equation of a line passing through $(at_1^2, 2at_1)$ and $(at_2^2, 2at_2)$ is $y - 2at_2 = \frac{2}{t_1 + t_2}(x - at_2^2)$ $\Rightarrow y - 2at_2 = -\frac{2}{\lambda}(x - at_2^2)$ $\Rightarrow \lambda y - 2a\lambda t_2 = -2x + 2at_2^2$ $\Rightarrow \lambda y + 2x = 2a(\lambda t_2 + t_2^2)$ $\Rightarrow \lambda y + 2x = 2a(-1)$ $\Rightarrow 2(x+a) + \lambda y = 0$ \therefore Fixed point is (-a, 0) $\sqrt{3}x + y = 0$ makes an angle of 120° with *OX* and

82 (b)

 $\sqrt{3}x - y = 0$ makes an angle 60° with *OX*. So, the required line is y - 2 = 0

83 (c)

Here, a = 2, b = 5, c = 7, h = 2, g = -2, f = -11To eliminate 1st degree terms origin is to be shifted to the point

$$\left(\frac{hf - bg}{ab - h^2}, \frac{gh - af}{ab - h^2}\right) = \left(\frac{-22 + 10}{10 - 4}, \frac{-4 + 22}{10 - 4}\right)$$
$$= (-2, 3)$$

84 (a)

If the lines given by $ax^2 + 2hxy + by^2 = 0$ are equally inclined to the lines given by ax^2 + $2hxy + by^2 + \lambda(x^2 + y^2) = 0$, then the two pairs have same bisectors. Therefore, equations $\frac{x^2-y^2}{a-b} = \frac{xy}{h}$ and $\frac{x^2-y^2}{(a+\lambda)-(b+\lambda)} = \frac{xy}{h}$

represent same pair of lines.

Clearly, these two equations are identical for all values of λ

85 (a)

Equation of the line passing through (-4, 6) and (8,8) is

$$y - 6 = \left(\frac{8 - 6}{8 + 4}\right)(x + 4)$$

$$\Rightarrow y - 6 = \frac{2}{12}(x + 4)$$

$$\Rightarrow 6y - 36 = x + 4 \Rightarrow 6y - x - 40 = 0 \dots (i)$$

Now, equation of any line perpendicular to the Eq.
(i), is

$$6x + y + \lambda = 0$$
 ...(ii)

This line passes through the mid point of (-4, 6)and (8,8) is $-4 \pm 8 6 \pm 8$

$$\left(\frac{-4+6}{2}, \frac{6+6}{2}\right), ie, (2,7)$$

$$\therefore 6 \times 2 + 7 + \lambda = 0$$

 $\Rightarrow 19 + \lambda = 0 \Rightarrow \lambda = -19$ On putting $\lambda = -19$ in Eq. (ii), we get the equation of required line which is 6x + y - 19 = 0

86 **(b)**

Given lines are 3x + 4y = 5, 5x + 4y = 4 and $\lambda x + 4y = 6$. These three lines meet at point, if the point of intersection of first two lines lies on the third line Now, point of intersection of line 3x + 4y = 5 and 5x + 4y = 4 is $\left(-\frac{1}{2}, \frac{13}{8}\right)$

The line $\lambda x + 4y = 6$ passes through the point $\left(-\frac{1}{2},\frac{13}{2}\right)$

$$(2^{\prime})^{8})^{\prime} \\ \therefore \lambda \left(-\frac{1}{2} \right) + 4 \left(\frac{13}{8} \right) = 6 \\ \Rightarrow -\lambda + 13 = 12 \\ \Rightarrow \lambda = 1$$

87 (c)

Give lines are ax + by + c = 0 ...(i) $x = \alpha t + \beta$...(ii) and $y = \gamma t + \delta$...(iii) On eliminating *t*, from Eqs. (ii) and (iii), we get $\gamma x - \alpha y + \alpha \delta - \beta \gamma = 0$...(iv) For parallelism condition in Eqs. (i) and (iv) $\frac{a}{\gamma} = \frac{b}{-\alpha}$ $\Rightarrow a\alpha + b\gamma = 0$

89 (d)

The point of intersection of the lines given by $ax^{2} + 2 hxy + by^{2} + 2 gx + 2 fy + c = 0$ is given bv

 $\left(\frac{hf-bg}{ab-h^2},\frac{gh-af}{ab-h^2}\right)$ Hence, the lines given by $2x^2 - 5xy + 2y^2 - 2y^2 - 5xy + 2y^2 - 2y^2$ 3x + 3y + 1 = 0 intersect at (1/3, -1/3)

91 (b)

Equation belonging to both families will pass through two fixed points. First intersection point of lies x + 2y = 0 and 3x + 2y + 1 = 0 is $\left(-\frac{1}{2}, \frac{1}{4}\right)$ and second interception point of lines x - 2y = 0 and x - y + 1 = 0, is (-2, -1)Line passing through $\left(-\frac{1}{2}, \frac{1}{4}\right)$ and (-2, -1) is

$$y - \frac{1}{4} = \frac{-1 - \frac{1}{4}}{-2 + \frac{1}{2}} \left(x + \frac{1}{2} \right)$$

$$\Rightarrow 5x - 6y + 4 = 0$$

92 (d)

Since, P(1, 2) is mid point of *AB*. Therefore, coordinate of A and B are (2, 0) and (0, 4) respectively

$$(0, 4)B$$

$$P(1, 2)$$

$$A(2, 0)$$

$$\therefore$$
 Equation of line *AB* is

$$y - 0 = \frac{4}{-2}(x - 2)$$

$$\Rightarrow 2x + y = 4$$

93 (d)

Here, $h = \sqrt{2}$, g = 2, a = 1, c = 1, b = 2, f = $2\sqrt{2}$

: Distance =
$$2\sqrt{\frac{g^2 - ac}{a(a+b)}} = 2\sqrt{\frac{4-1}{1(1+2)}} = 2$$
 units

94 (b)

Let P(h, k) be the centroid of ΔOAB . Let the coordinates of A and B be (a, 0) and (0, b)respectively. then,

$$h = \frac{a}{3}, k = \frac{b}{3}$$

in $\triangle OAB$, we have $OA^2 + OB^2 = AB^2$ $\Rightarrow a^2 + b^2 = 9^2 \Rightarrow 9h^2 + 9k^2 = 9^2 \Rightarrow h^2 + k^2 = 9$ Hence, the locus of (h, k) is $x^2 + y^2 = 9$

95 (b)

It is evident from the figure that *P* moves on the line x = 1. Clearly, *y*-coordinate of *P* varies between 0 and 1

99

96 (d)

The given equation is

 $x^{2}(\cos^{2}\theta - 1) - xy\sin^{2}\theta + y^{2}\sin^{2}\theta = 0$ Here, $a = \cos^2 \theta - 1$, $h = -\frac{1}{2}\sin^2 \theta$, $b = \sin^2 \theta$ $a + b = \cos^2 \theta + \sin^2 \theta - 1 = 1 - 1 = 0$ \therefore The angle between the pair of straight lines is $\frac{\pi}{2}$

97 (a)

We have, $\Delta_1 = \frac{1}{2} \begin{vmatrix} 4 & 3 \\ 1 & 6 \end{vmatrix} = \frac{21}{2}, \Delta_2 = \frac{1}{2} \begin{vmatrix} 3 & -5 \\ 6 & 1 \end{vmatrix} = \frac{33}{2}$ $\Delta_3 = \frac{1}{2} \begin{vmatrix} -5 & -3 \\ 1 & -3 \end{vmatrix} = 9, \\ \Delta_4 = \frac{1}{2} \begin{vmatrix} -3 & -3 \\ -3 & 0 \end{vmatrix} = -\frac{9}{2}$ and, $\Delta_5 = \frac{1}{2} \begin{vmatrix} -3 & 4 \\ 0 & 1 \end{vmatrix} = -\frac{3}{2}$ \therefore Area of the pentagon $= |\Delta_1 + \Delta_2 + \Delta_3 + \Delta_4 + \Delta_5|$ $= \left|\frac{21}{2} + \frac{33}{2} + 9 - \frac{9}{2} - \frac{3}{2}\right| = 30$ sq. units 98 (d) Since, *S* is mid point of *QR* ∴ Coordinate of *S* are $\left(\frac{6+7}{2}, \frac{-1+3}{2}\right) = \left(\frac{13}{2}, 1\right)$

:. Slope of $PS = \frac{2-1}{2-\frac{13}{2}} = -\frac{2}{9}$ $P_{\star}(2,2)$ (6, -1)(7, 3)The required equation which is passing through (1, -1) and slope $-\frac{2}{a}$, is $y+1 = -\frac{2}{9}(x-1)$ $\Rightarrow 9y + 9 = -2x + 2$ $\Rightarrow 2x + 9y + 7 = 0$ (a) Let the equation of the line be $\frac{x}{a} + \frac{y}{b} = 1$ It passes through (2,2) $\therefore \frac{2}{a} + \frac{2}{b} = 1 \Rightarrow 2(a+b) = ab$... (i) The line encloses a triangle of area A square units with the coordinate axes $\therefore \frac{1}{2}|a||b| = A \Rightarrow |ab| = 2A \Rightarrow ab = \pm 2A \quad \dots \text{(ii)}$ From (i) and (ii), we get $a + b = \pm A$ The quadratic equation having *a*, *b* as its roots is $x^{2} - x(a + b) + ab = 0$ or, $x^{2} \mp Ax + 2A = 0$ 101 (c) Let *p* be the length of the perpendicular from the vertex (2, -1) to the base x + y = 2, then $p = \left| \frac{2 - 1 - 2}{\sqrt{12 + 12}} \right|$ $=\frac{1}{\sqrt{2}}$ If *a* be the length of the side of triangle then, $p = a \sin 60^{\circ}$ $\Rightarrow \frac{1}{\sqrt{2}} = \frac{a\sqrt{3}}{2}$ $\Rightarrow a = \left| \frac{2}{3} \right|$ 102 (c) Line perpendicular to the given line $\frac{x}{a} - \frac{y}{b} = 1$ is $\frac{1}{h}x + \frac{1}{a}y + \lambda = 0 \dots (i)$ According to the question, line (i) is

Passing through the point P(a, 0)

$$\frac{y}{a} - \frac{y}{b} = 1$$

$$Q(0, -b) \qquad x$$

$$\frac{a}{b} + 0 + \lambda = 0$$

$$\Rightarrow \lambda = -\frac{a}{b}$$

On putting the value of λ in Eq. (i), we get $\frac{x}{b} + \frac{y}{a} - \frac{a}{b} = 0$ $\Rightarrow ax + by = a^2$

103 (a)

Let (x, y) be the coordinates of the vertex *B*. Then, $BE = \frac{1}{2}AC$

Solving (i) with y = 2x - 4, we get coordinates of *B* and *D* as (2, 0) and (4,4) respectively

104 (a)

The equation of a line parallel to x + 2y = 4 is x + 2 y = kThe distance between these two lines is 3 $\therefore \frac{k}{\sqrt{1+4}} - \frac{4}{\sqrt{1+4}} = 3 \Rightarrow k = 4 + 3\sqrt{5}$ This shifted line cuts x-axis at (k, 0). After rotation the slope of the line is $tan(\theta - 30^\circ)$, where $\tan \theta = (\text{slope of } x + 2 y = 4) = -1/2$ Thus, the equation of the line in the new position is $y - 0 = \tan(\theta - 30^{\circ})(x - k)$, where $k = 4 + 3\sqrt{5}$ 106 (a) On solving 3x + 4y = 9 and y = mx + 1, we get $x = \frac{5}{3+4m}$ $\therefore x$ is an integer $\therefore 3 + 4m = 1, -1, 5, -5$ $\Rightarrow m = \frac{-2}{4}, \frac{-4}{4}, \frac{2}{4}, \frac{-8}{4}$ So, *m* has two integral values 108 **(b)**

Now, $h^2 - ab = 4^2 - 8(2) = 16 - 16 = 0$ The required distance between the parallel straight lines

$$= 2\sqrt{\frac{169-120}{80}} = \frac{2 \times 7}{4\sqrt{5}} = \frac{7}{2\sqrt{5}}$$
109 (c)
Lines are $y = 1, y = 0$
 $y = -x, y = -x + 2$
 $y = x + 1, y = x - 1$
 $y = x + 1, y = x - 1$
 $y = x + 1, y = x - 1$
Area of *OABCDE* = area of *OBGF*
 $= \frac{3}{2} \times 1 = \frac{3}{2}$ sq unit
110 (c)
We have,
Coeff. Of x^2 + Coeff. Of $y^2 = 0$
So, lines represented by $x^2 - y^2 = 0$ are at right
angles
112 (b)
Since, a, b, c are in HP
 $\therefore \frac{2}{b} = \frac{1}{a} + \frac{1}{c} \Rightarrow \frac{1}{a} - \frac{2}{b} + \frac{1}{c} = 0$
So, straight line $\frac{x}{a} + \frac{y}{b} + \frac{1}{c} = 0$ always passes
through a fixed point (1, -2)
113 (d)
We have,
 $x^2 + y^2 + 2xy - 8ax - 8ay - 9a^2 = 0$
 $\Rightarrow (x + y)^2 - 8a(x + y) - 9a^2 = 0$
 $\Rightarrow (x + y)^2 - 8a(x + y) - 9a^2 = 0$
 $\Rightarrow (x + y - 9a)(x + y + a) = 0$
 $\Rightarrow x + y - 9a = 0, x + y + a = 0$
Clearly, these lines are parallel. The distance d
between these lines is
 $d = \frac{|a - (-9a)|}{\sqrt{1^2 + 1^2}} = 5\sqrt{2} a$
114 (b)
Let the image of reflection of the origin with
reference to the line $4x + 3y - 25 = 0$ is (h, k)
 $\therefore \frac{h - 0}{4} = \frac{k - 0}{3} = \frac{-2(0 + 0 - 25)}{16 + 9} = 2$
 $\Rightarrow \frac{h}{4} = 2 \Rightarrow h = 8$
and $\frac{k}{3} = 2 \Rightarrow k = 6$

 \therefore Required point is (8, 6)

115 **(d)**

The equation of a straight line passing through the point of intersection of x - y + 1 = 0 and 3x + y - 5 = 0 $(x - y + 1) + \lambda(3x + y - 5) = 0$ or $x(3\lambda + 1) + y(\lambda - 1) - (5\lambda - 1) = 0$...(i) It is perpendicular to 3x + y - 5 = 0 $\therefore -3 \times \frac{3\lambda + 1}{\lambda - 1} = -1 \Rightarrow -\frac{1}{5}$ Putting $\lambda = -\frac{1}{5}$ in (i), we get x - 3y + 5 = 0 as the equation of the required line

116 **(a)**

Given lines are kx - 2y - 1 = 0and 6x - 4y - m = 0Since, these lines are coincident. $\therefore \frac{k}{c} = \frac{-2}{4} = \frac{-1}{4}$

$$6 \quad -4 \quad -m$$

$$\Rightarrow \frac{k}{6} = \frac{1}{2} \text{ and } \frac{1}{m} = \frac{1}{2}$$

$$\Rightarrow k = 3 \text{ and } m = 2$$

117 **(a)**

Clearly, L = 0 is the perpendicular bisector of the segment joining (-2,6) and (4,2). The equation of which is

$$y - 4 = \frac{3}{2}(x - 1) \Rightarrow 3x - 2y + 5 = 0$$

∴ $L = 3x - 2y + 5$

118 **(b)**

Equation of line perpendicular to $ax + by - a^2 = 0$ is $bx - ay + \lambda = 0$ and line

 $ax + by - a^2 = 0$ is passes through $\left(-\frac{\lambda}{b}, 0\right)$, then $\lambda = -ab$ $\therefore bx - ay = ab$ $\Rightarrow \frac{x}{a} - \frac{y}{b} = 1$

119 **(a)**

Let the equation of line be

 $ax + by + c = 0 \dots (i)$

The perpendicular distance from (1, 1), (2, 0) and (0, 2) to the line ax + by + c = 0 are a + b + c 2a + c 2b + c

$$p_1 = \frac{1}{\sqrt{a^2 + b^2}}, p_2 = \frac{1}{\sqrt{a^2 + b^2}}, p_3 = \frac{1}{\sqrt{a^2 + b^2}}$$

Since, it is given that $p_1 + p_2 + p_3 = 0$
$$\Rightarrow \frac{a + b + c}{\sqrt{a^2 + b^2}} + \frac{2a + c}{\sqrt{a^2 + b^2}} + \frac{2b + c}{a^2 + b^2} = 0$$

$$\Rightarrow 3a + 3b + 3c = 0$$

$$\Rightarrow a + b + c \dots$$
(ii)
From Eq. (ii), it is clear that the line (i) passes through (1, 1)

120 **(c)**

Equation of perpendicular diagonal to

 $7x - y + 8 = 0 \text{ is } x + 7y = \lambda, \text{ which passes}$ through (-4, 5) ∴ λ = 31 So, equation of another diagonal is x + 7y = 31 121 **(b)** Here, a = 12, b = 2, h = -5, f = $-\frac{5}{2}$, g = $\frac{11}{2}$, c = k

The given equation represents a pair of straight line, if

$$abc + 2fgh - af^{2} - bg^{2} - ch^{2} = 0$$

$$\Rightarrow 12 \cdot 2 \cdot k + 2\left(-\frac{5}{2}\right)\left(\frac{11}{2}\right)(-5) - 12\left(-\frac{5}{2}\right)^{2}$$

$$-2\left(\frac{11}{2}\right)^{2} - k(-5)^{2} = 0$$

$$\Rightarrow 24k + \frac{275}{2} - \frac{150}{2} - \frac{121}{2} - 25k = 0$$

$$\Rightarrow -k + \frac{4}{2} = 0 \Rightarrow k = 2$$

122 (d)

The line $x \cos \alpha + y \sin \alpha = p$ meets the coordinate axes at $A\left(\frac{p}{\cos \alpha}, 0\right)$ and $B\left(0, \frac{p}{\sin \alpha}\right)$ Let (h, k) be the coordinates of the mid point of the portion *AB* intercepted between the axes by the line $x \cos \alpha + y \sin \alpha = p$. Then,

$$h. = \frac{\frac{p}{\cos \alpha} + 0}{2}, k = \frac{0 + \frac{p}{\sin \alpha}}{2}$$

$$\Rightarrow \cos \alpha = \frac{p}{2h}, \sin \alpha = \frac{p}{2k}$$

$$\Rightarrow \cos^2 \alpha + \sin^2 \alpha = \frac{p^2}{4h^2} + \frac{p^2}{4k^2}$$

$$\Rightarrow \frac{p^2}{4h^2} + \frac{p^2}{4k^2} = 1$$
Hence, the locus of (h, k) is
$$\frac{p^2}{4x^2} + \frac{p^2}{4y^2} = 1 \text{ or, } \frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$$

123 (a)

Let the vertices of the triangle be O(0,0), A(8,0)and B(4,6). The equation of an altitude through Oand perpendicular to AB is y = 2/3 x and the equation of an altitude through A(8,0) and perpendicular to OB is 3 y = -2 x + 16. These altitudes intersect at (4,8/3)

124 **(b)**

Here, the given triangle is a right angled triangle at the vertex (2, -1/2). Hence, the orthocentre is at (2, -1/2)

125 **(c)**

Let Q(x, y) be the image of the point P(3,8) in the line x + 3y = 7. Then, PQ is perpendicular to the

given line. So, $\frac{y_1 - 8}{x_1 - 3} \times -\frac{1}{3} = -1 \Rightarrow 3x_1 - y_1 = 1 \quad \dots (i)$ Also, the mid-point of PQ i.e. $\left(\frac{x_1+3}{2}, \frac{y_1+3}{2}\right)$ lies on x + 3y = 7 $\therefore x_1 + 3 + 3y_1 + 24 = 14 \Rightarrow x_1 + 3y_1 + 13 = 0$...(ii) Solving (i) and (ii), we get $x_1 = -1, y_1 = -4$ Hence required point is (-1, -4)<u>ALITER</u> The image (α, β) of a point (x_1, y_1) in the ax + by + x = 0 is given by $\frac{a - x_1}{a} = \frac{\beta - y_1}{b} = \frac{-2(ax_1 + by_1 + c)}{a^2 + b^2}$ So, the image of (3,8) in the line x + 3y - 7 = 0 is given by $\frac{x-3}{1} = \frac{y-8}{3} = \frac{-2(3+24-7)}{(1+9)}$ $\Rightarrow x - 3 = -4$ and $y - 8 = -12 \Rightarrow x = -1$, y = -1-4 126 (c) The given equation of the family of lines is $x \sec^2 \theta + y \tan^2 \theta - 2 = 0$ \Rightarrow (x + y) tan² θ + (x - 2) = 0

Clearly, it represents a family of lines passing through the intersection of the lines x - 2 = 0 and x + y = 0 i.e. (2, -2)

127 (a)

There are four possible straight lines which are equally inclined to both the axes *ie*, in Ist, IInd, IIIrd and IVth quadrant

128 (c)

Equation of bisectors of lines xy = 0 are $y = \pm x$. Put $y = \pm x$ in $my^2 + (1 - m^2)xy - mx^2 = 0$, we get

$$mx^2 \pm (1 - m^2)x^2 - mx^2 = 0$$

$$\Rightarrow (1 - m^2)x^2 = 0 \Rightarrow m = \pm 1$$

$$y - \frac{a\sqrt{3}}{2} = (-\sqrt{3})(x - a)$$

$$y = (-\sqrt{3})(x - a)$$

$$(-\sqrt{3})(x - a)$$

$$($$

130 **(a)**

Given equation

$$x^{2} + pxy + y^{2} - 5x - 7y + 6 = 0$$

Will represent a pair of straight lines, if
 $1 \cdot 1 \cdot 6 + 2\left(-\frac{7}{2}\right)\left(\frac{-5}{2}\right)\left(\frac{p}{2}\right) - 1\left(\frac{-7}{2}\right)^{2} - 1\left(\frac{-5}{2}\right)^{2}$
 $-6\left(\frac{p}{2}\right)^{2} = 0$
 $\Rightarrow 6 + \frac{35p}{4} - \frac{49}{4} - \frac{25}{4} - \frac{6p^{2}}{4} = 0$
 $\Rightarrow 35p - 50 - 6p^{2} = 0$
 $\Rightarrow (2p - 5)(3p - 10) = 0$
 $\Rightarrow p = \frac{5}{2}, \frac{10}{3}$

131 **(a)**

The equation of a line concurrent with the lines 4x + 3y - 7 = 0 and 8x + 5y - 1 = 0 $(4x + 3y - 7) + \lambda(8x + 5y - 1) = 0$ $\Rightarrow x(4 + 8\lambda) + y(3 + 5\lambda) - 7 - \lambda = 0$ The gradient of this line is $-\frac{3}{2}$. Therefore, $-\frac{8\lambda + 4}{5\lambda + 3} = -\frac{3}{2} \Rightarrow 16\lambda + 8 = 15\lambda + 9 \Rightarrow \lambda = 1$ So, the required line is 12x + 8y - 8 = 0 or, 3x + 2y - 2 = 0

132 **(b)**

Let $B(b, b_1)$, $C(3b, b_1)$ be coordinates of endpoints of base BC of $\triangle ABC$ and A(2b, a) be the coordinates of the vertex A. BE and CF are two medians

Now,

$$m_{1} = \text{Slope of } BE = \frac{\frac{a+b_{1}}{2} - b_{1}}{\frac{5b}{2} - b} = \frac{a-b_{1}}{3b}$$

and, $m_{2} = \text{Slope of } CF = \frac{\frac{a+b_{1}}{2} - b_{1}}{\frac{5b}{2} - b} = \frac{a-b_{1}}{3b}$
Clearly, $m_{1} + m_{2} = 0$

133 (d)

:: Line perpendicular to 3x + y = 3 is $x - 3y = \lambda$ Also, it passes through (2, 2) $\therefore 2 - 6 = \lambda \implies \lambda = -4$ \therefore Equation of line is x - 3y = -4 ...(i)

Hence, y-intercept = $\frac{-4}{-3} = \frac{4}{3}$ 134 (a) $\therefore a_1 a_2 + b_1 b_2 = 3 \times (-12) + (-4)(-5)$ = -36 + 20 = -16 < 0: Obtuse angle bisector is $\frac{3x - 4y + 7}{\sqrt{3^2 + (-4)^2}} = -\frac{-12x - 5y + 2}{\sqrt{(-12)^2 + (-5)^2}}$ $\Rightarrow 13(3x - 4y + 7) = -5(-12x - 5y + 2)$ $\Rightarrow 21x + 77y - 101 = 0$ 135 (c) Since, the lines 2x + 3y + 5 = 0 and 2x + 3y - 3y = 0 $\frac{11}{2} = 0$ are parallel Let required line is $2x + 3y + \lambda = 0$ $\therefore \lambda = \frac{5 - \frac{11}{2}}{2} = -\frac{1}{4}$ So, 8x + 12y - 1 = 0 is the required line 136 (a) Points (3,5) and $(\sin \theta, \cos \theta)$ will lie on the same side of x + y - 1 = 0, if $(\sin\theta + \cos\theta - 1)(3 + 5 - 1) > 0$ $\Rightarrow \sin \theta + \cos \theta > 1$ $\Rightarrow \sin(\frac{\pi}{4} + \theta) > \frac{1}{\sqrt{2}} \Rightarrow \frac{\pi}{4} < \frac{\pi}{4} + \theta < \frac{3\pi}{4} \Rightarrow 0 < \theta$ $<\frac{\pi}{2}$ 137 (d) $y - y_1 = \tan\left(\frac{\theta_1 + \theta_2}{2}\right)(x - x_1)$ and $y - y_1 = -\cot\left(\frac{\theta_1 + \theta_2}{2}\right)(x - x_1)$ $\theta_1 - \theta_2 \qquad L_2$ $\theta_2 \qquad P \qquad \theta_1 - \theta_2 \qquad \frac{\theta_1 + \theta_2}{2}$ 138 **(b)** Let the coordinates of the third vertex A be (h, k)A(h, k)O(0, 0)B(5, -1) = D $\vec{C}(-2, 3)$ Also, $AD \perp BC$ $\therefore \frac{k-0}{h-0} \times \left(\frac{4}{-7}\right) = -1$ \Rightarrow 7h = 4k ...(i) and $OB \perp AC$

 $\Rightarrow \frac{k-3}{h+2} \times \left(-\frac{1}{5}\right) = -1$ $\Rightarrow 5h - k + 13 = 0$...(ii) On solving Eqs. (i) and (ii), we get Hence, the coordinates of third vertex are (-4, -7)139 **(b)** Here, $a = 12, b = 12, c = 2, g = 5, f = \frac{11}{2}, h = \frac{25}{2}$ Now, product of perpendicular distance from the origin $=\frac{c}{\sqrt{(a+b)^2+4h^2}}=\frac{2}{\sqrt{0+4\left(\frac{25}{2}\right)^2}}=\frac{2}{25}$ 140 (b) Let P(4, 1) and $PD \perp AB$. Equation of *AB* is 3x - 2y - 8 = 0: Equation of *PD* is 2x + 3y - 11 = 0P(4, 1) $A \bullet B \\ (2, -1) \qquad A \qquad D \qquad 1 \qquad B \\ (6, 5) \qquad (6, 5)$ Let line *AB* is divided by *PD* in the ratio λ :1, then intersecting point $D\left(\frac{6\lambda+2}{\lambda+1},\frac{5\lambda-1}{\lambda+1}\right)$ lies on 2x + 3y - 11 = 0 $\Rightarrow 2\left(\frac{6\lambda+2}{\lambda+1}\right) + 3\left(\frac{5\lambda-1}{\lambda+1}\right) - 11 = 0$ $\Rightarrow 16\lambda - 10 = 0$ $\Rightarrow \lambda: 1 = 5:8$ 141 (a) Let $A(x_1, y_1)$, $B(x_2, y_2)$ be two fixed points and let P(h,k) be a variable point such that $\angle APB = \frac{\pi}{2}$. Then. Slope of AP × Slope of BP = -1 $\Rightarrow \frac{k - y_1}{h - x_1} \times \frac{k - y_2}{h - x_2} = -1$ $\Rightarrow (h - x_1)(h - x_2) + (k - y_1)(k - y_2) = 0$ Hence, the locus of (h, k) is $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$, which is circle having AB as diameter 143 (a) Given lines are concurrent, then $\begin{vmatrix} 1 & 3 & -9 \\ 4 & b & -2 \\ 2 & -1 & -4 \end{vmatrix} = 0$ $\Rightarrow 1(-4b-2) - 3(-16+4) - 9(-4-2b) = 0$ \Rightarrow 14b + 70 = 0 \Rightarrow b = -5 144 (b) Lines x + 2y - 1 = 0 and 2x - y + 3 = 0intersect at (-1,1). Since the given lines are concurrent. Therefore, (-1,1) lies on y = mx,

which implies that m = -1

145 **(d)**

Given equation of line is $kx^2 - 2xy - y^2 - 2x + 2y = 0$ On comparing with standard equation, we get a = k, b = -1, h = -1, g = -1, f = 1, c = 0It represent a pair of lines, if $k(-1)(0) + 2(1)(-1)(-1) - k(1)^2 - (-1)(-1)^2$ $-0(-1)^2 = 0$ $\Rightarrow 0 + 2 - k + 1 = 0 \Rightarrow k = 3$

146 **(d)**

Let the required line be

y - 2 = m(x - 1)This line meets the lines 3x + 4y - 12 = 0 and

 $3x + 4y - 24 = 0 \text{ at } A\left(\frac{4+4m}{3+4m}, \frac{6+9m}{3+4m}\right) \text{ and}$ $B\left(\frac{16+4m}{3+4m}, \frac{6+21m}{3+4m}\right) \text{ respectively.}$ It is given that AB = 3 $\therefore \left(\frac{12}{3+4m}\right)^2 + \left(\frac{12}{3+4m}\right)^2 m^2 = 9 \Rightarrow m = \frac{7}{24}$ So, the required line is

$$y-2 = \frac{7}{24}(x-1) \Rightarrow 7 \ x - 24 \ y + 41 = 0$$

148 **(c)**

Given line *AB* makes 0 intercepts on *x*-axis and *y*-aixs or $(x_1, y_1) \equiv (0, 0)$ and the line is perpendicular to line *CD*, 3x + 4y + 6 = 0 \therefore Slope of required line which is perpendicular 3x + 4y + 6 = 0 is 4/3

 \therefore Required line which is passing through origin and having slope 4/3, is

 $y - 0 = \frac{4}{3}(x - 0)$ $\Rightarrow 4x - 3y = 0$

150 **(a)**

∴ The slope of line x + y = 1 is -1∴ It makes an angle of 135° with *x*-axis The equation of line passing through (1, 1) and making an angle of 135° is

$$\frac{x-1}{\cos 135^{\circ}} = \frac{y-1}{\sin 135^{\circ}} = r$$

$$\Rightarrow \frac{x-1}{-\frac{1}{\sqrt{2}}} = \frac{y-1}{\frac{1}{\sqrt{2}}} = r$$

Coordinates of any point on this line are

$$\left(1 - \frac{r}{\sqrt{2}}, 1 + \frac{r}{\sqrt{2}}\right)$$

If this point lies on 2x - 3y = 4, then

$$2\left(1 - \frac{1}{\sqrt{2}}\right) - 3\left(1 + \frac{1}{\sqrt{2}}\right) = 4$$
$$\Rightarrow 2 - \frac{2r}{\sqrt{2}} - 3 - \frac{3r}{\sqrt{2}} = 4$$

$$\Rightarrow \frac{5r}{\sqrt{2}} = -5$$

$$\Rightarrow r = \sqrt{2} \text{ (neglect negative sign)}$$

151 **(c)**

Given equation of lines are 5x + 3y - 7 = 0 ...(i)

and
$$15x + 9y + 14 = 0$$
 or $5x + 3y + \frac{14}{3} = 0$
...(ii)

 \therefore Lines (i) and (ii) are parallel and c_1 and c_2 are of opposite signs, therefore these lines are on opposite sides of the origin

So, the distance between them is

$$\left| \frac{c_1}{\sqrt{a_1^2 + b_1^2}} \right| + \left| \frac{c_2}{\sqrt{a_2^2 + b_2^2}} \right|$$
$$= \left| -\frac{7}{\sqrt{5^2 + 3^2}} \right| + \left| \frac{14}{3\sqrt{5^2 + 3^2}} \right|$$
$$= \left| -\frac{7}{\sqrt{34}} \right| + \left| \frac{14}{3\sqrt{34}} \right| = \frac{35}{3\sqrt{34}}$$

152 **(a)**

Angle between the lines $ax^2 + 2hxy + by^2 = 0$ is

$$\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$

For $x^2 + 2xy \sec \theta + y^2 = 0$
 $h = \sec \theta$, $a = b = 1$
 $\therefore \tan \phi = \left| \frac{2\sqrt{\sec^2 \theta - 1}}{1 + 1} \right|$
 $= \frac{2 \tan \theta}{2} = \tan \theta$
 \therefore Angle between $x^2 + 2xy \sec \theta + y^2 = 0$ is θ

153 **(b)**

Lines 3x + 4y + 2 = 0 and 3x + 4y + 5 = 0 are on the same side of the origin. The distance d_1 between these lines is given by

$$d_1 = \left| \frac{2-5}{\sqrt{3^2+4^2}} \right| = \frac{3}{5}$$

Lines 3x + 4y + 2 = 0 and 3x + 4y - 5 = 0 are on the opposite sides of the origin. The distance d_2 between these lines is given by

$$d_2 = \left|\frac{2+5}{\sqrt{3^2+4^2}}\right| = \frac{7}{5}$$

Thus, 3x + 4y = 0 divides the distance between 3x + 4y + 5 = 0 and 3x + 4y - 5 = 0 in the ratio $d_1 : d_2$ i.e. 3:7

155 **(c)**

Equation of lines which make equal intercept on axes, is

 $x \pm y = a$...(i) Since, it passes through (2, 4). $\therefore 2 \pm 4 = a \Rightarrow a = -2, 6$

$$\therefore \text{ Equation of the required lines are}$$

$$x - y = -2 \text{ or } x + y = 6$$
156 **(b)**
The given curve is
$$|x| + |y| = 1$$

$$\Rightarrow x + y = 1 \text{ for } x \ge 0, y \ge 0$$

$$-x - y = 1 \text{ for } x < 0, y < 0$$

$$x - y = 1 \text{ for } x \le 0, y < 0$$
These lines represent a square as shown in Fig.S.5 such that the length of each side is $\sqrt{2}$ units
$$\therefore \text{ Area enclosed} = \sqrt{2} \times \sqrt{2} = 2 \text{ sq. units}$$

157 (a)

The bisectors of the angles between the lines in new position are same as the bisectors of the angles between their old positions. Therefore, the required equation is

 $\frac{x^2 - y^2}{1 - (-1)} = \frac{xy}{-p}$ $\Rightarrow px^2 - py^2 = -2xy$ $\Rightarrow px^2 + 2xy - py^2 = 0$

158 (a)

The equation of a line passing through the intersection of the lines $x - \sqrt{3} y + \sqrt{3} - 1 = 0$ and x + y - 2 = 0, is $(x - \sqrt{3} y + \sqrt{3} - 1) + \lambda(x + y - 2) = 0$ $\Rightarrow x(1 + \lambda + y(\lambda - \sqrt{3}) + \sqrt{3} - 1 - 2\lambda = 0$...(i) The line $x - \sqrt{3} y + \sqrt{3} - 1 = 0$ makes 30° angle with *x*-axis. Therefore, the line making an angle of 15° with this line will make 45° angle with x-axis. Therefore, Its slope is 1

$$\Rightarrow -\left(\frac{1+\lambda}{\lambda-\sqrt{3}}\right) = 1 \Rightarrow \lambda = \frac{\sqrt{3}-1}{2}$$

Putting the value of λ in (i), we get x - y = 0159 **(c)**

The equation of straight line equally inclined to the axes is $\frac{x}{a} + \frac{y}{a} = 1 \Rightarrow x + y = a$. Since, it is equidistant from the points (1, -2) and (3, 4), so perpendicular distances from these points on the line will be equal. $\Rightarrow \left|\frac{1-2-a}{\sqrt{1^2+1^2}}\right| = \left|\frac{3+4-a}{\sqrt{1^2+1^2}}\right|$ $\Rightarrow \frac{1+a}{\sqrt{2}} = \frac{7-a}{\sqrt{2}}$ $\Rightarrow 2a = 6 \Rightarrow a = 3$ $\therefore \text{ Equation is } x + y - 3 = 0$ But, given equation is ax + by + c = 0 $\therefore a = 1, b = 1, c = -3$ 160 (d) Given equation can be rewritten as $x^2 + 4xy - 3xy - 12y^2 = 0$ Factorising the above equation, we get

$$(x+4y)(x-3y) = 0$$

Therefore, separate equations for the lines are x + 4y = 0 and x - 3y = 0

161 **(b)**

The desired point is the foot of the perpendicular from the origin on the line 3x - 4y = 25. The equation of a line passing through the origin and perpendicular to 3x - 4y = 25 is 4x + 3y = 0. Solving these two equations we get x = 3, y = -4. Hence, the nearest point on the line from the origin is (3, -4).

<u>ALITER</u> The desired point is the foot of the perpendicular drawn from the origin (0, 0) on the line 3x - 4y = 25 and its coordinates are given by x - 0 y - 0 $(3 \times 0 - 4 \times 0 - 25)$

$$\frac{x-6}{3} = \frac{y-6}{-4} = -\frac{(6 \times 6^{-1} \times 6^{-1} \times 6^{-2} \times 6^{-1})}{3^2 + (-4)^2} \Rightarrow x$$
$$= 3, y = -4$$

Let $B(x_1, y_1)$ and $C(x_2, y_2)$ are the vertices of a triangle

$$P\left(\frac{x_{1}+1}{2}, \frac{y_{1}-2}{2}\right) \text{ lies on the line } x - y + 5 = 0$$

$$\therefore \frac{x_{1}+1}{2} - \frac{y_{1}-2}{2} = -5$$

$$\Rightarrow x_{1} - y_{1} = -13 \dots (i)$$

$$A(1, -2)$$

$$P$$

$$A(1, -2)$$

$$A($$

Similarly, the coordinates of *C* are $\left(\frac{11}{5}, \frac{2}{5}\right)$

∴ Equation of *BC* is

$$(y-6) = \frac{\frac{2}{5}-6}{\frac{11}{5}+7}(x+7)$$

$$\Rightarrow 14x + 23y - 40 = 0$$

163 (c)

 $: a_1a_2 + b_1b_2 = 3(12) + (-4)(5) = 16 > 0$ ∴ The equation of bisector of the acute angle between these lines are $\frac{3x - 4y + 7}{\sqrt{3^2 + 4^2}} = \frac{12x + 5y - 2}{\sqrt{12^2 + 5^2}}$ ⇒ 13(3x - 4y + 7) = 5(12x + 5y - 2) ⇒ 21x + 77y - 101 = 0

164 **(c)**

In $\triangle OAC$, we have

In $\triangle OAB$, we have $OA = OB \Rightarrow \angle OAB = \frac{\pi}{4}$ Thus, we have $\angle BAC = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$ Hence, $\triangle BAC$ is a right angled triangle. Consequently its orthocentre is at A(0,3)

165 **(b)**

We know that the coordinates of the foot of the perpendicular drawn from (x_1, y_1) on the line ax + by + c = 0 are given by $\frac{x - x_1}{a} = \frac{y - y_1}{b} = -\frac{ax_1 + by_1 + c}{a^2 + b^2}$ So, the required coordinates are given by

 $\frac{x-2}{1} = \frac{y-4}{1} = -\frac{2+4-1}{1+1} \Rightarrow x = -\frac{1}{2}, y = \frac{3}{2}$ 166 (a)

Given points $(\sin \theta, \cos \theta)$ and (3, 2) and a line x + y - 1 = 0..(i) Since, (3,2) lies on Eq. (i) 3 + 2 - 1 > 0And $(\sin \theta, \cos \theta)$ lies in Eq. (i) $\therefore \sin \theta + \cos \theta - 1 > 0$ $\Rightarrow \sin \theta + \cos \theta > 1$ $\Rightarrow \sqrt{2} \left[\sin \left(\theta + \frac{\pi}{4} \right) \right] > 1$

$$\Rightarrow \sin\left(\theta + \frac{\pi}{4}\right) > \frac{1}{\sqrt{2}} = \sin\left(\frac{\pi}{4}\right)$$
$$\Rightarrow 0 < \theta < \frac{\pi}{2}$$

167 (d)

Let the equation of line is

$$y = mx + c$$

 $\therefore m = \tan 30^\circ = \frac{1}{\sqrt{3}} \text{ and } c = -2$

(: It is intercepted in negative axis of y with an angle 30°)

 \therefore The equation of required line is

$$y = \frac{x}{\sqrt{3}} - 2$$

$$\Rightarrow \sqrt{3}y - x + 2\sqrt{3} = 0$$

168 (a)

It is given that the lines represented by the given equation are equidistant from the origin

$$\left| \frac{n_1}{\sqrt{l_1^2 + m_1^2}} \right| = \left| \frac{n_2}{\sqrt{l_2^2 + m_2^2}} \right| \quad [See Example 45]
\Rightarrow n_1^2(l_2^2 + m_2^2) = n_2^2(l_1^2 + m_1^2)
\Rightarrow (n_1l_2 + n_2l_1)(n_1l_2 - n_2l_1)
= (n_2m_1 + n_1m_2)(n_2m_1 - n_1 - m_2)^2
\Rightarrow 4g^2(n_1l_2 - n_2l_1) = 4f^2(n_2m_1 - n_1m_2)^2 [See Example 45]
\Rightarrow g^2[(n_1l_2 + n_2l_1)^2 - 4 l_1l_2n_1n_2]
= f^2[(n_1m_2 + n_2m_1)^2 - 4m_1m_2n_1n_2]
\Rightarrow g^2[4g^2 - 4ac] = f^2[4f^2 - 4bc]
\Rightarrow f^4 - g^4 = c(bf^2 - ag^2)
169 (a)
Given equation of the line is $x^2 - 4xy + 3y^2 = 0$
 $\therefore m_1 + m_2 = \frac{4}{3}$ and $m_1m_2 = \frac{1}{3}$
On solving these equations, we get
 $m_1 = 1, m_2 = \frac{1}{3}$
Let the lines parallel to given line are
 $y = m_1x + c_1$ and $y = m_2x + c_2$
 $\therefore y = \frac{1}{3}x + c_1$ and $y = x + c_2$
Also, these lines passes through the point (3, -2)
 $\therefore -2 = \frac{1}{3} \times 3 + c_1$
 $\Rightarrow c_1 = -3$
and $-2 = 1 \times 3 + c_2$
 $\Rightarrow c_2 = -5$
 \therefore Required equation of pair of lines is
 $(3y - x + 9)(y - x + 5) = 0$
 $\Rightarrow x^2 + 3y^2 - 4xy - 14x + 24y + 45 = 0$
170 (c)
The point of intersection of lines $x - 2y$ and$$

Page | 49

x + 3y = 2 is $\left(\frac{7}{5}, \frac{1}{5}\right)$ Since, required line is parallel to 3x + 4y = 0. Therefore, the slope of required line $= -\frac{3}{4}$: Equation of required line whose slope is $\frac{-3}{4}$ and passes through $\left(\frac{7}{5}, \frac{1}{5}\right)$ is $y - \frac{1}{5} = -\frac{3}{4}\left(x - \frac{7}{5}\right)$ $\Rightarrow 20y - 4 = -15x + 21 \Rightarrow 3x + 4y - 5 = 0$ 171 (b) The equation of lines are $y - y_1 = \frac{m_1 \pm m_2}{1 \mp m_1 m_2} (x - x_1)$ Since, $m_1 = 1$, $m_2 = 1$ $\therefore y - 4 = \frac{1 \pm 1}{1 \pm 1}(x - 3)$ $\Rightarrow v = 4 \text{ or } x = 3$ Hence, the lines which make the triangle are x - y = 2, x = 3 and y = 4The intersection points of these lines are (6, 4), (3, 1) and (3, 4) ∴ Area of triangle $=\frac{1}{2}|6(1-4)+3(4-4)+3(4-1)|$ $=\frac{1}{2}|6(-3) + 3(0) + 3(3)|$ $=\frac{1}{2}|-18+0+9|=\frac{9}{2}$ sq unit 172 (c) Given, $x^2 - 2xy - xy + 2y^2 = 0$ $\Rightarrow (x-2y)(x-y) = 0$ $\Rightarrow x = 2y \dots (i)$ x = y ...(ii)Also, x + y + 1 = 0 ...(iii) On solving Eq. (i) and (ii) and (iii), we get $A\left(-\frac{2}{3},-\frac{1}{3}\right), B\left(-\frac{1}{2},-\frac{1}{2}\right), C(0,0)$ $\therefore \text{ Area of } \Delta ABC = \frac{1}{2} \begin{vmatrix} -\frac{2}{3} & -\frac{1}{3} & 1 \\ -\frac{1}{2} & -\frac{1}{2} & 1 \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{vmatrix}$ $=\frac{1}{2}\left[\frac{1}{3}-\frac{1}{6}\right]$ $=\frac{1}{2}\left[\frac{1}{6}\right]=\frac{1}{12}$ 173 (c) The given line is $x \tan \alpha - y + c = 0$ or $x \sin \alpha - y \cos \alpha + c \cos \alpha = 0$: Length of perpendicular from $(a \cos \alpha, a \sin \alpha)$

 $= \frac{a \cos \alpha \sin \alpha - a \sin \alpha \cos \alpha + c \cos \alpha}{\sqrt{\sin^2 \alpha + \cos^2 \alpha}}$ $= \frac{c \cos \alpha}{1} = c \cos \alpha$ 174 (c) Equation of diagonal d_1 is $y - 1 = \frac{5 - 1}{3 - 2}(x - 2)$ $\Rightarrow y = 4x - 7$ (3, 1) x - 3 = 0 (3, 5) $d_1 = 0$ x - 2 = 0 (2, 5) Equation of diagonal d_2 is $y - 1 = \frac{5 - 2}{2 - 2}(x - 3)$ $\Rightarrow 4x + y = 13$ So, equations are, 4x + y = 13 and y = 4x - 7175 (d) Let the line passing through the intersection of two lines is $(x+y-2) + \lambda(x-y) = 0$ or $(1 + \lambda)x + (1 - \lambda)y - 2 = 0$...(i) Which is parallel to x + 2y = 5 $\therefore -\frac{(1+\lambda)}{(1-\lambda)} = -\frac{1}{2}$ $\Rightarrow 2 + 2\lambda = 1 - \lambda \Rightarrow \lambda = -\frac{1}{2}$ On putting $\lambda = -\frac{1}{3}$ in Eq. (i), we get $\frac{2}{3}x + \frac{4}{3}y - 2 = 0 \implies x + 2y = 3$ 176 (a) Here, $(x_1, y_1) = (3, 4)$ and ax + by + c = 2x + cy - 7 = 0 $\therefore a = 2, \qquad b = 1, \qquad c = -7$ Let, (h, k) be the coordinates of the foot. Then. $\frac{h-3}{2} = \frac{k-4}{1} = \frac{-(2\times3+1\times4-7)}{2^2+1^2} = \frac{-3}{5}$ $\Rightarrow \frac{h-3}{2} = \frac{-3}{5}$ and $\frac{k-4}{1} = \frac{-3}{5}$ $\Rightarrow h = \frac{-6}{5} + 3 \text{ and } k = \frac{-3}{5} + 4$ $\Rightarrow h = \frac{9}{5} \text{ and } k = \frac{17}{5}$ **q** (3, 4) $P \quad 2x + y - 7 = 0$ 177 (c)

Each side of square is 5 unit, distance between given lines is 5 unit,

$$|k_1 - k_2| = 5 \Rightarrow |k_1 - k_2| = 25$$

178 **(d)** Given, lines are (1 + p)x - py + p(1 + p) = 0...(i) and (1 + q)x - qy + q(1 + q) = 0....(ii) and y = 0on solving Eqs. (i) and (ii), we get $C\{pq, (1 + p)(1 + q)\}$ \therefore Equation of altitude *CM* passing through *C* and perpendicular to *AB* is x = pq ...(iii) \therefore Slope of line (ii) is $\left(\frac{1 + q}{q}\right)$ \therefore Slope of altitude *BN* (as shown in figure) is $\frac{-q}{1 + q}$

 $\therefore \text{ Equation of } BN \text{ is } y - 0 = \frac{-q}{1+q}(x+p)$ $\Rightarrow y = \frac{-q}{(1+q)}(x+p) \quad \dots \text{ (iv)}$

Let orthocentre of triangle be H(h, k), which is the point of intersection of Eqs. (iii) and (iv). \therefore On solving Eqs. (iii) and (iv), we get x = pq and y = -pq $\Rightarrow h = pq$ and k = -pq

$$\therefore h+k=0$$

$$\therefore \text{ Locus of } H(h,k) \text{ is } x + y = 0.$$

179 **(b)**

Let the coordinates of the point *P* which divides the line joining (1,0) and $(2 \cos \theta, 2 \sin \theta)$ in the ratio 2 : 3 be (h, k). Then,

$$h = \frac{4\cos\theta + 3}{5} \text{ and } k = \frac{4\sin\theta}{5}$$

$$\Rightarrow \cos\theta = \frac{5h-3}{4} \text{ and } \sin\theta = \frac{5k}{4}$$

$$\Rightarrow \left(\frac{5h-3}{4}\right)^2 + \left(\frac{5k}{4}\right)^2 = 1$$

$$\Rightarrow (5h-3)^2 + (5k)^2 = 16$$
Hence, the locus of (h, k) is
$$(5x-3)^2 + (5y)^2 = 16, \text{ which is a circle}$$
180 **(b)**

 $\sqrt{3}x + y = 0$ makes an angle of 120° with *OX* and $\sqrt{3}x - y = 0$ makes an angle 60° with *OX*. So, the required line is y - 2 = 0

181 **(b)**

 \therefore Slope of given line y = x is 1

 \therefore Slope of required line which is perpendicular to

given line is -1Thus, the equation of required line passing through (3, 2) and slope -1, is y - 2 = -1(x - 3) $\Rightarrow x + y = 5$ 182 (a) Here, a = 2, b = 3, h = 5/2, g = 0, f = 7/2, c = 4 $\therefore \tan(\tan^{-1} m) = \frac{2\sqrt{h^2 - ab}}{a + b} = \frac{2\sqrt{\sqrt{25/4}} - 6}{5}$ = 1/5 $\Rightarrow m = 1/5$ 183 (d) Given, $Ax^2 + 2Hxy + By^2 = 0$...(i) and ax + by + c = 0 ...(ii) Since, triangle is equilateral, then angle between the two lines is 60° Angle between pair of lines is given by $\cos 60^\circ = \frac{A+B}{\sqrt{(A-B)^2 + 4H^2}}$ $\Rightarrow \frac{A+B}{\sqrt{(A-B)^2 + 4H^2}} = \frac{1}{2}$ $\Rightarrow (A-B)^2 + 4H^2 = 4(A+B)^2$ $\Rightarrow 4(A^2 + B^2 + 2AB) - (A^2 + B^2 - 2AB) = 4H^2$ $\Rightarrow 3A^2 + 10AB + 3B^2 = 4H^2$ $\Rightarrow (3A+B)(A+3B) = 4H^2$ 184 **(b)** Required equation of line is $y - a\sin^3\theta = \frac{\csc\theta}{\sec\theta}(x - a\cos^3\theta)$ $\Rightarrow y - a\sin^3\theta = \frac{\cos\theta}{\sin\theta}(x - a\cos^3\theta)$ $\Rightarrow y \sin \theta - a \sin^4 \theta = x \cos \theta - a \cos^4 \theta$ $\Rightarrow x\cos\theta - y\sin\theta + a\sin^4\theta - a\cos^4\theta = 0$ $\Rightarrow x \cos \theta - y \sin \theta + a \cos 2\theta = 0$ 185 (d) **Required distance** $=\left|\frac{65+39}{\sqrt{25+144}}\right|$: d $=\frac{|c_1-c_2|}{\sqrt{a^2+b^2}}$ $=\left|\frac{104}{13}\right|=8$ unit 186 (a) Since, slope of $PQ = \frac{4-3}{1-k} = \frac{1}{1-k}$ \therefore Slope of AM = (k - 1)

Since *PQRS* is a parallelogram with an area which

is twice the area of ΔPQR

: Area $PQRS = 2 \times \frac{1}{2} \begin{vmatrix} 2 & 1 & 1 \\ 4 & -1 & 1 \\ 3 & 2 & 1 \end{vmatrix} = 4$

192 (a)

Let P(3, -4) be the foot of the perpendicular from the origin *O* on the required line. Then, the slope of $OP = \frac{-4-0}{3-0} = \frac{-4}{3}$ Therefore, the slope of the required line is $\frac{3}{4}$ Hence, its equation is $y + 4 = \frac{3}{4}(x - 3)$ $\Rightarrow 3x - 4y - 9 - 16 = 0$ $\Rightarrow 3x - 4y = 25$ 193 (a) Le the equation of the pair of perpendicular lines be $x^2 + \lambda xy - y^2 = 0$. Then, $ay^4 + bxy^3 + cx^2y^2 + dx^3y + ex^4$ $= (x^{2} + \lambda xy - y^{2})(ex^{2} + \mu xy - ay^{2})$ On equating the coefficients of like terms, we get $b = -\alpha \lambda - \mu$, $c = -\alpha - e + \lambda \mu$ and $d = \mu + e \lambda$ Now, $a \lambda + \mu + b = 0$ and, $e \lambda + \mu - d = 0$ $\Rightarrow \frac{\lambda}{-(b+d)} = \frac{\mu}{ad+be} = \frac{1}{a-e}$ $\Rightarrow \lambda = -\frac{b+d}{a-e}$ and $\mu = \frac{ad+be}{a-e}$ Substituting these values in $c = -a - e + \lambda \mu$, we get $c + a + e = -\frac{(b+d)(ad+be)}{(a-e)^2}$ $\Rightarrow (c+a+e)(a-e)^2 + (b+d)(ad+be) = 0$ 194 (c) Let A(a, 0) and B(0, b) be variable points on x and y-axes respectively such that $AB = \lambda \Rightarrow a^2 + b^2 = \lambda^2$ Let P(h, k) be the mid-point of *AB*. Then, $a = 2h, b = 2k \Rightarrow 4h^2 + 4k^2 = \lambda^2$ Hence, the locus of (h, k) is $4x^2 + 4y^2 = \lambda^2$, which represents a circle 195 (d) Let $C(2a, \lambda)$ be the third vertex, Clearly, $AC = \lambda$ $\therefore BC = AC \Rightarrow \sqrt{4a^2 + (\lambda - a)^2} = \lambda \Rightarrow \lambda = \frac{5a}{2}$ Thus, the coordinates of *C* are (2a, 5a/2)

Thus, the coordinates of *C* are (2*a*, 5*a* Hence, the equation of *BC* is

196 **(b)**

We know that equation of pair of straight line passing through the origin and perpendicular to $ax^2 + 2hxy + by^2 = 0$ is $bx^2 - 2hxy + ay^2 = 0$ \therefore Required equation of pair of straight line is

 $2x^2 - 3xy + 2y^2 = 0$

197 **(b)**

The mid point of (1,3) and (5,1) i.e. (3,2) lies on y = 2 x + c $\therefore 2 = 6 + c \Rightarrow c = 4$

198 (c)

For the greatest distance, both points lie on a straight line.

∴ Required equation of line is

$$y - 2 = \frac{1 - 2}{3 - 1}(x - 1)$$

$$\Rightarrow x + 2y = 5$$

|m-n|

200 **(d)**

If p_1 and p_2 be the distance between parallel sides and θ be the angle between adjacent sides, then Required area = $p_1 p_2 \csc \theta$

Where,
$$p_1 = \frac{1}{\sqrt{(1+m^2)}}$$
, $p_2 = \frac{1}{\sqrt{(1+n^2)}}$
(distance between parallel lines)
 $y = mx$
 p_1
 $p_2 = mx + 1$
 $p_2 = mx + 1$
 $p_2 = mx + 1$
 p_1
 $p_2 = mx + 1$
 $p_2 = mx +$

201 (a) The equation of the family of lines is $(\lambda + \mu)x + (2\lambda + \mu)y = \lambda + 2\mu$ $\Rightarrow \lambda(x+2y-1) + \mu(x+y-2) = 0$ Clearly, it represents a family of lines passing through the intersection of the lines x + 2y - 1 =0 and x + y - 2 = 0 i.e. (3, -1)202 (a) We have, Slope of $AB = \frac{1-0}{3-2} = 1 \Rightarrow \angle BAX = \frac{\pi}{4}$ But, $\angle BAC = 15^{\circ}$. Therefore, $\angle CAX = 60^{\circ}$ $\overline{X'}$ So, the equation of *AC* is $y - 0 = \tan 60^{\circ}(x - 2)$ $\Rightarrow y = \sqrt{3} x - 2\sqrt{3} \Rightarrow \sqrt{3} x - y = 2\sqrt{3}$ 203 (c) The sides of the triangle are y = 1 and the pair of lines $x^2 + 7 xy + 2y^2 = 0$ Clearly, one vertex is (0, 0) and the *y*-coordinates of each of the other two vertices is 1. On putting y = 1 in the second equation, we get $x^2 + 7x + 2 = 0$ If x_1 and x_2 are the roots of this equation, then $x_1 + x_2 = -7$: Centroid, $G = \left(\frac{0 + x_1 + x_2}{3}, \frac{0 + 1 + 1}{3}\right)$ $=\left(-\frac{7}{2},\frac{2}{2}\right)$ 204 (c) Let equation of line parallel to 3x - y = 7 be $3x - y = \lambda$. The passes through (1, 2) \therefore 3 – 2 = $\lambda \Rightarrow \lambda = 1$ \therefore Line is 3x - y = 1The point of intersection of x + y + 5 = 0 and

$$3x - y = 1$$
 is $(-1, -4)$

$$\therefore$$
 Distance between (1, 2) and (-1, -4)

$$=\sqrt{(2)^2 + (6)^2} = \sqrt{40}$$

206 (a)

Here,
$$a = 1, b = 4, g = \frac{3}{2}, f = 3, h = 2 \text{ and } c = -4$$

Then, required distance $= 2\sqrt{\frac{9}{4} + 4}{5}$

$$= \frac{2\sqrt{25}}{2\sqrt{5}} = \frac{5}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \sqrt{5}$$
207 (d)
Equation of pair straight lines is $xy - x - y + 1 = 0$
 $\Rightarrow (x - 1)(y - 1) = 0$
 $\Rightarrow x - 1 = 0$ or $y - 1 = 0$
The intersection points of $x - 1, y - 1 = 0$ is (1, 1)
 \therefore Lines $x - 1 = 0, y - 1 = 0$ and $ax + 2y - 3 = 0$
are concurrent
 \therefore The intersecting points of first two lines lies on
the third line $ax + 2y - 3 = 0$
 $\therefore a + 2 - 3 = 0 \Rightarrow a = 1$
208 (a)
Any point on $x + y = 4$ is $(t, 4 - t)$. It is at a unit
distance from the line $4x + 3y - 10 = 0$
 $\therefore \left|\frac{4t + 3(4 - t) - 10}{\sqrt{4^2 + 3^2}}\right| = 1 \Rightarrow t = 3, -7$
Hence, the required points are (3, 1) and (-7,11)
209 (c)
The equation of bisector of acute angle formed
between the lines $4x - 3y + 7 = 0$ at $3x - 4y + 14 = 0$, is
 $\frac{4x - 3y + 7}{\sqrt{16 + 9}}$
 $\Rightarrow 7x - 7y + 21 = 0$
 $\Rightarrow x - y + 3 = 0$
210 (d)
The equations will represent the same line if
 $\frac{b^3 - c^3}{b - c} = \frac{c^3 - a^3}{c - a} = \frac{a^3 - b^3}{a - b}$
 $\Rightarrow b^2 + bc + c^2 = c^2 + ca + a^2 = a^2 + ab + b^2$
 $\Rightarrow b^2 + bc + c^2 = c^2 + ca + a^2 = a^2 + ab + b^2$
 $\Rightarrow b^2 - a^2 + bc - ca = 0$ and $c^2 - a^2 + bc - ab = 0$
 $\Rightarrow (b - a)(b + a + c) = 0$ and $(c - a)(c + a + b) = 0$
 $\Rightarrow (b - a)(b + a + c) = 0$ and $(c - a)(c + a + b) = 0$
 $\Rightarrow a + b + c = 0$
211 (a)
Given lines are $x + y = 4$ and $2x + 2y = 5$ or
 $x + y = \frac{5}{2}$
The distance between two parallel lines,
 $d = \frac{4 - \frac{5}{2}}{\sqrt{1^2 + 1^2}} = \frac{3}{2\sqrt{2}} = \frac{3\sqrt{2}}{4} > 1$

Hence, no point lies in it.

213 (a) Given lines are concurrent, if 12 1 -1 -3 = 0a 3 3 2 This is true for all values of a, because C_2 and C_3 are identical 214 (b) Let (h, k) be the centroid of the triangle having vertices $A(\cos \alpha, -\cos \alpha)$ and C(1,2). Then, $h = \frac{\cos \alpha + \sin \alpha + 1}{3}$ and $k = \frac{\sin \alpha - \cos \alpha + 2}{3}$ \Rightarrow 3 $h - 1 = \cos \alpha + \sin \alpha$ and 3 k - 2 = $\sin \alpha - \cos \alpha$ $\Rightarrow (3h-1)^{2} + (3k-2)^{2} = 2$ [Squaring and adding] $\Rightarrow 9(h^2 + k^2) - 6h - 12k + 3 = 0$ $\Rightarrow 3(h^2 + k^2) - 2h - 4k + 1 = 0$ Hence, the locus of (h, k) is $3(x^2 + y^2) - 2x - 2x = 0$ 4y + 1 = 0215 (b) The graph of equations x - 2y = 0 and 3x - y = 00 is as shown in the figure. Since, given point (a, a^2) lies in the shaded region. Then, $a^2 - \frac{a}{2} > 0$ and $a^2 - 3a < 0$ $\Rightarrow a \in (-\infty, 0) \cup \left(\frac{1}{2}, \infty\right)$ and $a \in (0, 3)$ $\Rightarrow a \in \left(\frac{1}{2}, 3\right)$ 216 (d) The two pairs of lines are $ax^2 + 2hxy - ay^2 = 0$...(i) $hx^2 - 2axy - hy^2 = 0$...(ii) Clearly, these two equations represent two pairs of lines such that the lines in each pair are mutually perpendicular. The combined equation of the bisectors of the .1 1.

angles between the lines given in (i) is
$$x^2 - y^2 = xy$$

$$\frac{x^2 - y^2}{a + a} = \frac{xy}{h} \Rightarrow hx^2 - 2axy - hy^2 = 0$$

Clearly it is same as (ii).

Thus, each pair bisects the angle between the other pair.

Also, lines of one pair are equally inclined to the

lines of the other pair

217 (a)

$$:: Line ax + by + c = 0 passes through (1, -2)
:: a - 2b + c = 0
⇒ 2b = a + c
⇒ a, b, c are in AP.$$

218 (d)

The diagonal through *B* passes through the midpoint of AC. The coordinates of the mid point of AC are

 $\left(\frac{\sqrt{3}+1}{2}, \frac{\sqrt{3}+3}{2}\right)$

 \therefore equation of the diagonal through *B* is

$$y - 2 = \frac{\left(\frac{\sqrt{3}+3}{2}\right) - 2}{\left(\frac{\sqrt{3}+1}{2}\right) - \left(\sqrt{3}+1\right)} (x - \sqrt{3} - 1)$$

$$\Rightarrow y = x(\sqrt{3} - 2) + (1 + \sqrt{3})$$

219 (c)

Since, the given three lines are concurrent, then 3 -1 14

$$\begin{vmatrix} 1 & -1 & 5 \\ k & 5 & -3 \end{vmatrix} = 0$$

$$\Rightarrow 4(3 - 25) - 3(-3 - 5k) - 1(5 + k) = 0$$

$$\Rightarrow -88 + 9 + 15k - 5 - k = 0$$

$$\Rightarrow 14k = 84 \Rightarrow k = 6$$

220 **(b)**

On comparing the given equation with $ax^2 + 2hxy + by^2 = 0$, we get a = 1, 2h = 2h and b = 2Let the slope of the lines are m_1 and m_2 . $:: m_1: m_2 = 1:2$ Let $m_1 = m$ and $m_2 = 2m$ $\therefore m_1 + m_2 = -\frac{2h}{2} \Rightarrow m + 2m = -h \Rightarrow h = -3m$...(i) and $m_1 m_2 = \frac{a}{b} \Rightarrow m \cdot 2m = \frac{1}{2} \Rightarrow m = \pm \frac{1}{2}$...(ii) From Eqs. (i) and (ii), we get $h = \pm \frac{3}{2}$

221 (c)

Let the coordinate of *M* are (x_1, y_1) Since, the line *PM* is perpendicular to the given line x + y = 3

$$\therefore \frac{y_1 - 3}{x_1 - 2} \times (-1) = -1 \Rightarrow y_1 - 3 = x_1 - 2 \Rightarrow x_1 - y_1 + 1 = 0 ...(i) \frac{\int_{x+y}^{P(2,3)} x_{x+y} = 3}{M(x_1, y_1)}$$

and also the point lies on the given line. $\therefore x_1 + y_1 - 3 = 0$...(ii) On solving Eqs. (i) and (ii), we get $x_1 = 1$, $y_1 = 2$ \therefore The coordinates of *M* are (1, 2). 222 (b) The equation of line in new position is $y - 0 = \tan 15^{\circ} (x - 2)$ $\Rightarrow y = (2 - \sqrt{3})(x - 2)$ $\Rightarrow (2 - \sqrt{3})x - y - 4 + 2\sqrt{3} = 0$ 223 (d)

Here a = 1, h = 1, f = -4a, g = -4a, c = -9aNow, required distance

$$= \left| 2 \sqrt{\frac{f^2 - bc}{b(b+a)}} \right|$$
$$= \left| 2 \sqrt{\frac{16a^2 + 9a^2}{1(1+1)}} \right|$$
$$= \left| 2 \sqrt{\frac{25a^2}{2}} \right| = \frac{5a}{\sqrt{2}} \cdot 2$$
$$= 5\sqrt{2}a$$

224 (c)

Let ABC be the equilateral triangle with centroid O(0,0) and sides *BC* as x + y - 2 = 0.

$$\therefore OD = \left| \frac{0 + 0 - 2}{\sqrt{1^2 + 1^2}} \right| = \sqrt{2} \Rightarrow OA = 2\sqrt{2}$$

Since *AD* is perpendicular to *BC*. Therefore, Slope of AD = 1

 \Rightarrow AD makes 45° with X-axis

Clearly, A lies on OA at a distance of $2\sqrt{2}$ units from O. So, its coordinates are given by

 $\frac{x-0}{\cos \pi/4} = \frac{y-0}{\sin \pi/4} = \pm 2\sqrt{2} \implies x = \pm 2, y = \pm 2$ But, *O* and *A* lie on the same side of x + y - 2 = 0Hence, the coordinates of *A* are (-2, -2)

225 (c)

The intersection point of lines x - 2y = 1 and x + 3y = 2 is $\left(\frac{1}{5}, \frac{1}{5}\right)$ Since, required is parallel to 3x + 4y = 0

Page | 55

Therefore, the slope of required line $= -\frac{3}{4}$ ∴ Equation of required line which passes through $\left(\frac{7}{5},\frac{1}{5}\right)$ and having slope $-\frac{3}{4}$, is $y - \frac{1}{5} = \frac{-3}{4} \left(x - \frac{7}{5} \right)$ $\Rightarrow \frac{3x}{4} + y = \frac{21}{20} + \frac{1}{5}$ $\Rightarrow \frac{3x + 4y}{4} = \frac{21 + 4}{20}$ $\Rightarrow 3x + 4y = 5$ $\Rightarrow 3x + 4y - 5 = 0$ 226 **(b)** Required ratio is given by $-\frac{3 \times 1 + 3 - 9}{3 \times 2 + 7 - 9}$ $=\frac{3}{4}$ ie, 3: 4 internally 227 (d) The lines 4x - 7y + 10 = 0 and 7x + 4y - 15 = 00 are perpendicular and their point of intersection is (1,2). Hence, the orthocentre is at (1,2)228 **(b)** Since the distance between the parallel lines lx + my + n = 0 and lx + my + n' = 0 is same as the distance between parallel lines mx + ly + n =0 and mx + ly + n' = 0. Therefore, the parallelogram is a rhombus. Also, the diagonals of a rhombus are at right angles. Therefore, the required angle is a right angle. 229 (a) Vertices are interception points of line $x + y = 2\sqrt{2}$...(i) with $y = x \tan(105^{\circ})$ or $y = x \tan(165^{\circ})$ (lines through centroid) $y = -x \tan 75^{\circ}$...(ii) $y = -x \tan 15^{\circ} ...(iii)$ For the interception point of Eqs. (i) and (ii) $x - x(2 + \sqrt{3}) = 2\sqrt{2}$ $\Rightarrow -x(1+\sqrt{3}) = 2\sqrt{2}$ $\Rightarrow x = -\frac{2\sqrt{2}(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})}$ $\Rightarrow x = \sqrt{2} - \sqrt{6}$ $\therefore y = -(\sqrt{2} - \sqrt{6})(2 + \sqrt{3})$ $= -(2\sqrt{2} + \sqrt{6} - 2\sqrt{6} - 3\sqrt{2})$ $=\sqrt{2}+\sqrt{6}$ and its image about y = x is $(\sqrt{2} + \sqrt{6}, \sqrt{2} - \sqrt{6})$

230 **(a)**

It is given that the lines ax + 2y + 1 = 0, bx + 1, a 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent $\therefore \begin{vmatrix} a & 2 & 1 \\ b & 3 & 1 \end{vmatrix} = 0$ $\Rightarrow -a + 2b - c = 0 \Rightarrow 2b = a + c \Rightarrow a, b, c$ are in A.P. 231 (b) Let (h, k) be the centroid of the triangle whose vertices are $(a \cos t, a \sin t)$, $(b \sin t, -b \cos t)$ and (1,0). Then, $3h = a \cos t + b \sin t + 1$ and $3k = a \sin t - b \sin t + 1$ *b*cos*t* $\Rightarrow (3h-1)^2 + (3k)^2 = a^2 + b^2$ Hence, the locus of (h, k) is $(3x - 1)^2 + (3y)^2 =$ $a^2 + b^2$ 234 (c) The equation representing the bisectors of the angles between the lines given by $ax^2 + 2hxy + by ax^2 + by ax^$ $bv^{2} = 0$ is $\frac{x^2 - y^2}{a - b} = \frac{xy}{b}$ $\Rightarrow hx^2 - (a - b)xy - hy^2 = 0$...(i) The combined equation of the bisectors of the angles between these lines is $\frac{x^2 - y^2}{h+h} = \frac{xy}{-\frac{(a-b)}{2}} \Rightarrow (a-b)(x^2 - y^2) + 4hxy$ 235 (a) Given, $\sqrt{3}\sin\theta + 2\cos\theta = \frac{4}{r}$... (i) Any line perpendicular to Eq.(i) is $\Rightarrow \sqrt{3}\cos\theta - 2\sin\theta = \frac{k}{r}$ It passes through $\left(-1, \frac{\pi}{2}\right)$, then $\sqrt{3}\cos\frac{\pi}{2} - 2\sin\frac{\pi}{2} = \frac{k}{-1}$ $-2 = \frac{k}{1} \Rightarrow k = 2$ Thus, the equation is $\sqrt{3}\cos\theta - 2\sin\theta = \frac{2}{r}$ $\Rightarrow \sqrt{3}r\cos\theta - 2r\sin\theta = 2$ 236 **(b)** $P = \left| \frac{a(4-3+4) + b(2+6-3)}{\sqrt{(2a+b)^2 + (a-2b)^2}} \right| = \sqrt{10}$ $\Rightarrow 25(a+b)^2 = 10(5a^2+5b^2)$ $\Rightarrow 25(a-b)^2 = 0 \Rightarrow a = b$

Only one line which is 3x - y + 1 = 0

237 **(b)**

Let $\left(t, \frac{5-2t}{11}\right)$ be a point on the line 2x + 11y = 5Then,

$$p_1 = \left| \frac{24t + 7\left(\frac{5-2t}{11}\right) - 20}{\sqrt{24^2 + 7^2}} \right| = \frac{|50t - 37|}{55}$$

and,

$$p_2 = \left| \frac{4t - 3\left(\frac{5-2t}{11}\right) - 2}{\sqrt{4^2 + (-3)^2}} \right| = \frac{|50t - 37|}{55}$$

Clearly, we have $p_1 = p_2$ <u>ALITER</u> Clearly, 2x + 11y = 5 is the angle bisector of the two lines. Therefore, $p_1 = p_2$ 238 (c) The equation of lines are $\pm x \pm y = 0$. Now, we take the lines x + y = 0 and x - y = 0. : The equation of bisector of the angles between these lines are $\frac{x+y}{\sqrt{1+1}} = \pm \frac{x-y}{\sqrt{1+1}}$ $\Rightarrow x + y = \pm (x - y)$ Taking positive sign, $x + y = x - y \Rightarrow y = 0$ Taking negative sign, $x + y = -(x - y) \Rightarrow x = 0$ 239 (c) Given pair of lines are $x^2 - 3xy + 2y^2 = 0$ and $x^2 - 3xy + 2y^2 + x - 2 = 0$ $\therefore (x-2y)(x-y) = 0$ and (x - 2y + 2)(x - y - 1) = 0 $\Rightarrow x - 2y = 0, x - y = 0 \text{ and } x - 2y + 2 = 0, x - 2y + 2 = 0$ y - 1 = 0Since, the lines x - 2y = 0, x - 2y + 2 = 00 and x - y = 0, x - y - 1 = 0 are parallel. Also, angle between x - 2y = 0 and x - y = 0 is not 90° \therefore It is a parallelogram. 240 (b) Let *a* and *b* the intercepts made by the straight line on the axes

Given that, $a + b = \frac{ab}{2}$ $\Rightarrow \frac{2a + 2b}{ab} = 1 \Rightarrow \frac{2}{a} + \frac{2}{b} = 1$ On comparing with $\frac{x}{a} + \frac{y}{b} = 1$, we get x = 2, y = 2 \therefore Required point is (2, 2) So, the straight line passes through the point (2, 2) 241 (d)

Let the equation of the line be $\frac{x}{a} + \frac{y}{b} = 1$. This cuts

the coordinates axes at A(a, 0) and B(0, b)The coordinates of the mid-point of the intercept AB between the axes are (a/2, b/2)

$$\therefore \frac{a}{2} = 1, \frac{b}{2} = 2 \implies a = 2, b = 4$$

Hence, the equation of the line is $\frac{x}{2} + \frac{y}{4} = 1$ or, 2 x + y = 4

242 **(b)**

We know that the coordinates of the incentre of triangle formed by the points *O*(0,0) *A*(*a*, 0) and *B*(0, *b*) are $\left(\frac{ab}{a+b+\sqrt{a^2+b^2}},\frac{ab}{a+b+\sqrt{a^2+b^2}}\right)$ Here, a = 4 and b = 3So, the Coordinates are (12/12, 12/12) = (1,1)243 (a) To make the given curves $x^2 + y^2 = 4$ and $x + y^2 = 4$ y = a homogeneous. $x^{2} + y^{2} - 4\left(\frac{x+y}{a}\right)^{2} = 0$ $\Rightarrow a^2(x^2 + y^2) - 4(x^2 + y^2 + 2xy) = 0$ $\Rightarrow x^2(a^2-4) + y^2(a^2-4) - 8xy = 0$ Since, this is a perpendicular pair of straight lines. $\therefore a^2 - 4 + a^2 - 4 = 0$ $\Rightarrow a^2 = 4 \Rightarrow a = +2$ Hence, required set of *a* is $\{-2, 2\}$. 244 (b) Equation of bisector between the lines $x^2 - 2pxy - y^2 = 0$ is $\frac{x^2 - y^2}{1 - (-1)} = \frac{xy}{-n}$ $\Rightarrow x^2 + \frac{2xy}{n} - y^2 = 0$ Above lines will be same as the $x^2 - 2qxy - y^2 =$ 0. $\therefore \frac{1}{p} = -q$ $\Rightarrow pq = -1$ 245 (d) Since the diagonals of a rhombus bisect each other at right angle. Therefore, BD passes through (3,4) and is perpendicular to AC. So, its equation is $y - 4 = -1(x - 3) \Rightarrow x + y - 7 = 0$ 247 (c) Slope of given line is $\frac{1}{\sqrt{2}}$, it's angle from positive xaxis is 30°. Now, lines making an angle 30° from it are either x-axis (*ie*, y = 0) or makes and angle 60° with positive *x*-axis (*ie*, $y = \sqrt{3}x + \lambda$)

248 **(d)**

Let the slopes be
$$m, m^2$$

 $\therefore m + m^2 = \frac{-2h}{b}$ and $mm^2 = \frac{a}{b}$
 $\Rightarrow m^3 = \left(\frac{a}{b}\right)$
Now, $m(1+m) = \frac{-2h}{b}$
On cubing both sides, we get
 $m^3[1+m^3+3m(1+m)] = -\frac{8h^3}{b^3}$
 $\Rightarrow \frac{a}{b}\left[1+\frac{a}{b}+3\left(\frac{-2h}{b}\right)\right] = \frac{-8h^3}{b^3}$
 $\Rightarrow \frac{b+a}{b}-\frac{6h}{b}=\frac{-8h^3}{ab^2}$
 $\Rightarrow b+a+\frac{8h^3}{ab}=6h$
 $\Rightarrow \frac{b+a}{h}+\frac{8h^2}{ab}=6$

250 (d)

The equation of line *BC* is x + y + 4 = 0. Therefore, equation of a line parallel to BC is x + y + k = 0. This is at a distance 1/2 from the origin

$$\therefore \left| \frac{k}{\sqrt{2}} \right| = \frac{1}{2} \Rightarrow k = \pm \frac{1}{\sqrt{2}}$$

Since *BC* and the required line are on the same side of the origin. Therefore, $k = \pm \frac{1}{\sqrt{2}}$ Hence, the equation of the required lines is $x + y + \frac{1}{\sqrt{2}} = 0$

251 **(b)**

Slope of the given lines are

$$m_1 = \frac{2+2}{3-1} = 2 \text{ and } m_2 = -\frac{1}{2}$$

Now, $m_1 \times m_2 = 2 \times \frac{-1}{2} = -1$
 \therefore Lines are perpendicular, so angle is $\frac{\pi}{2}$

252 (c)

Given equation of curve is $y^2 - x^2 + 2x - 1 = 0$ Here, a = -1, b = 1, c = -1, h = 0, g = 1, f = 0 $\therefore \Delta = abc + 2fgh - af^2 - bg^2 - ch^2$ = (-1)(1)(-1) + 2(0)1(0) - 0 - 1 - 0= 1 - 1 = 0: Given equation is equation of pair of straight lines.

253 (c)

Let the points be A(3, -4) and B(5, 2) and mid point of AB = (4, -1)It is given that the bisecting line intersect the coordinate axes in the ratio 2:1

 \therefore Point of coordinate axes are (2k, 0) and (0, k). The equation of line passing through the above noint is

point is

$$y - 0 = \frac{k - 0}{0 - 2k} (x - 2k)$$

$$\Rightarrow y = -\frac{1}{2} (x - 2k) ...(i)$$
Since, it passing through the mid point of
AB ie, (4, -1)

$$\therefore -1 = -\frac{1}{2} (4 - 2k) \Rightarrow k = 1$$
On putting the value of k in Eq. (i), we get

$$y = -\frac{1}{2} (x - 2) \Rightarrow x + 2y = 2$$
254 (d)
Let the coordinates of the third vertex C be (h, k).
Then, Area of *ABC* = 20 sq. units

$$\Rightarrow \frac{1}{2} \begin{vmatrix} -5 & 0 & 1 \\ -5 & 0 & 1 \\ 3 & 0 & 1 \end{vmatrix} = \pm 20 \Rightarrow k = \pm 5 ...(i)$$
Since, (h, k) lies on $x - y = 2$ Therefore,
 $h - k = 2$...(ii)
Solving (i) and (ii), we find that the coordinates of
the third vertex are $(-3, -5)$ or, (7,5)
255 (c)
Given lines are $ax + by + c = 0$...(i)
and a, b, c satisfy the relation
 $3a + 2b + 4c = 0$...(ii)
Only option (c) satisfy both condition.
 $\therefore a \cdot \frac{3}{4} + b \cdot \frac{1}{2} + c = 0$
 $\Rightarrow 3a + 2b + 4c = 0$
256 (a)
Here, $a_1 = 1, b_1 = -\sqrt{3}, a_2 = \sqrt{3}, b_2 = 1$
Now, $a_1a_2 + b_1b_2 = 1 \cdot \sqrt{3} + (-\sqrt{3}) \cdot 1 = 0$
 \therefore Lines are perpendicular, $ie, \theta = 90^{\circ}$
257 (a)
Equation of *OA* is $y = \sqrt{3}x$. Equation of *OB* is
 $y = -\sqrt{3}x$ and equation of *AB* is $y = 1$
 $\overrightarrow{a + 0} + 0 = \sqrt{3}a + 0 = 0$

258 (a)

The point of intersection of the lines 3x + y + 1 =0 and $2x - y + 3 = 0\left(-\frac{4}{5}, \frac{7}{5}\right)$. The equation of line which makes equal intercepts with axes is

$$x + y = a$$

$$\therefore -\frac{4}{5} + \frac{7}{5} = a \implies a = \frac{3}{5}$$

$$\therefore \text{ Equation of line is } x + y - \frac{3}{5} = 0$$

or $5x + 5y - 3 = 0$

259 (c)

Let the line be x/a + y/a = 1. It passes through (1, -2) $\therefore 1/a - 2/a = 1 \Rightarrow a = -1$

Hence, the equation of the line is x + y = -1

260 (a)

On solving line Ist and IInd, and Ist and IIIrd, we get A(-3,4) and $B\left(-\frac{3}{5},\frac{8}{5}\right)$.

The equation of perpendicular line to the line 4x - y + 4 = 0 and passes through the point A(-3, 4) is x + 4y - 13 = 0 ...(i) Also, the equation of perpendicular line to the line 2x + 3y = 6 and passes through a point $B\left(-\frac{3}{5}, \frac{8}{5}\right)$ is 3x - 2y + 5 = 0 ...(ii) On solving Eq. (i) and (ii), we get the orthocentre $\left(\frac{3}{7}, \frac{22}{7}\right)$

Which is lies in Ist quadrant.

261 **(d)**

Let the equation of line is y = mx + cGiven, $m = \tan 30^\circ = \frac{1}{\sqrt{3}}$ and c = -2 $\therefore y = \frac{x}{\sqrt{3}} - 2 \Rightarrow \sqrt{3}y - x + 2\sqrt{3} = 0$

262 (c)

Here,
$$a = 1, b = 9, c = -4, h = -3, g = \frac{3}{2}$$
 and $f = -\frac{9}{2}$

$$\therefore \text{ Required distance} = 2\sqrt{\frac{g^2 - ac}{a(a+b)}} = 2\sqrt{\frac{9/4 + 4}{10}}$$
$$= \sqrt{\frac{5}{2}}$$

263 **(b)**

The coordinates of *A* and *B* are (0,12) and (8,0) respectively. The equation of the perpendicular bisectors of *AB* is

 $y-6 = \frac{2}{3}(x-4) \Rightarrow 2x-3y+10 = 0$ (i) Equation of a line passing through (0, -1) and parallel to *x*-axis is y = -1. This line meets line (i) at *C*. Therefore, the coordinates of *C* are (-13/2, -1). Hence, the area *A* of the triangle *ABC* is given by

$$\Delta = \frac{1}{2} \begin{vmatrix} 0 & 12 & 1 \\ 8 & 0 & 1 \\ -13/2 & -1 & 1 \end{vmatrix} = 91 \text{ sq. units}$$

264 **(c)**

Let (*h*, *k*) be the coordinates of the fourth vertex. Then,

$$\Delta_{1} = \frac{1}{2} \begin{vmatrix} 6 & 7 \\ 1 & 2 \end{vmatrix} = \frac{5}{2}, \Delta_{2} = \frac{1}{2} \begin{vmatrix} 7 & -1 \\ 2 & 0 \end{vmatrix} = 1,$$

$$\Delta_{3} = \frac{1}{2} \begin{vmatrix} -1 & h \\ 0 & k \end{vmatrix} = -\frac{k}{2} \text{ and } \Delta_{4} = \frac{1}{2} \begin{vmatrix} h & 6 \\ k & 1 \end{vmatrix}$$

$$= \frac{1}{2} (h - 6k)$$

We have,

$$\begin{aligned} |\Delta_1 + \Delta_2 + \Delta_3 + \Delta_4| &= 4 \\ \Rightarrow \left|\frac{5}{2} + 1 - \frac{k}{2} + \frac{h - 6k}{2}\right| &= 4 \\ \Rightarrow |7 + h - 7k| &= 8 \\ \Rightarrow 7 + h - 7k &= \pm 8 \\ \Rightarrow h - 7k - 1 &= 0, h - 7k + 15 &= 0 \\ \Rightarrow (h - 7k - 1)(h - 7k + 15) &= 0 \\ \Rightarrow (h - 7k)^2 + 14(h - 7k) - 15 &= 0 \\ \text{Hence, the locus of } (h, k) \text{ is } (x - 7y)^2 + 14(x - 7y) - 15 &= 0 \end{aligned}$$

265 **(a)**

The equation of the line joining A(a, 0) and B(0, b) is $\frac{x}{a} + \frac{y}{b} = 1$. Clearly, point (3a, -2b) lies on this line

266 (c)

Lines are
$$[(l + \sqrt{3}m)x + (m - \sqrt{3}l)y][(l - 3mx + m + 3ly = 0)]$$

and $lx + my + n = 0$
 $\therefore m_1 = -\frac{(l + \sqrt{3}m)}{(m - \sqrt{3}l)}, m_2 = -\frac{(l - \sqrt{3}m)}{(m + \sqrt{3}l)}$
and $m_3 = -\frac{l}{m}$
 $\therefore \theta_1 = \tan^{-1}\left[\frac{-(\frac{l + \sqrt{3}m}{m - \sqrt{3}l}) + \frac{l}{m}}{1 + (\frac{l + \sqrt{3}m}{m - \sqrt{3}l}) \cdot \frac{l}{m}}\right] = 60^\circ$
and $\theta_2 = \tan^{-1}\left[\frac{-(\frac{l - \sqrt{3}m}{m + \sqrt{3}l}) + \frac{l}{m}}{1 + (\frac{l - \sqrt{3}m}{m + \sqrt{3}l}) + \frac{l}{m}}\right] = 60^\circ$
Hence, triangle is equilateral.

267 **(c)**

Here,
$$a = 1$$
, $h = -3$, $b = 9$, $g = \frac{3}{2}$,
 $f = -\frac{9}{2}$ and $c = -4$
 \therefore Required distance $= \left| 2 \sqrt{\frac{f^2 - bc}{b(a + b)}} \right|$
 $= \left| 2 \sqrt{\frac{(-\frac{9}{2})^2 + (9)(4)}{9(9 + 1)}} \right|$
 $= \left| 2 \sqrt{\frac{225}{4 \times 90}} \right| = \left| \frac{2\sqrt{5}}{2\sqrt{2}} \right| = \sqrt{\frac{5}{2}}$
268 (c)
We have,
 $\angle PRQ = \pi/2$
 \therefore Slope of $RP \times$ Slope of $RQ = -1$
 $\Rightarrow \frac{y - 1}{x - 3} \times \frac{5 - 1}{6 - 3} = -1 \Rightarrow 3x + 4y = 13$...(i)
Now, Area of $\Delta RPQ = 7$
 $\Rightarrow \frac{1}{2} \begin{vmatrix} x & y & 1 \\ 3 & 1 & 1 \\ 6 & 5 & 1 \end{vmatrix} = \pm 7 \Rightarrow 3y - 4x = 5 \Rightarrow 3y - 4x$
 $= -23$...(ii)
Solving, (i) and (ii), we get two points
269 (c)
We have,
 $x^3 - 6x^2y + 11xy^2 - 6y^3 = 0$
 $\Rightarrow (x - y)(x - 2y)(x - 3y) = 0$
 $\Rightarrow x - y = 0, x - 2y = 0, x - 3y = 0$
Thus, the slopes of the lines represented by the
given equation are $1, \frac{1}{2}, \frac{1}{3}$ which are in H.P.
270 (a)
Equation of the line passing through (-4, 6) and
(8, 8) is
 $(y - 6) = (\frac{8 - 6}{8 + 4})(x + 4)$
 $\Rightarrow 6y - x - 40 = 0$...(i)
Now, equation of any line perpendicular to Eq. (i), is
 $6x + y + \lambda = 0$...(ii)
This line passes through the mid point of (-4, 6)
and (8, 8), which is
 $(\frac{-4 + 8}{2}, \frac{6 + 8}{2})ie, (2, 7)$
 $\therefore 6 \times 2 + 7 + \lambda = 0 \Rightarrow \lambda = -19$
On putting $\lambda = -19$ in Eq. (ii), we get the required
line which is $6x + y - 19 = 0$.
271 (c)
Given sides of a triangle are $x - 3y = 0, 4x + 4$

2

3y = 5 and 3x + y = 0

Since, the lines x - 3y = 0 and 3x + y = 0 are perpendicular to each other, therefore it is right angled triangle and the point of intersection (0, 0)is the orthocentre of a triangle.

: The line 3x - 4y = 0 is passes through origin (0, 0) *ie*, it is passes through orthocentre.

If (α, β) be the image of (4, 1) w.r.t.y = x - 1, then $(\alpha, \beta) = (2, 3)$ say point *Q*

After translation through a distance 1 unit along the positive direction of *x*-axis at the point whose coordinate are $R \equiv (3, 3)$. After rotation through are angle $\pi/4$ about the origin in the anticlockwise direction, then R goes to R'' such that $OR = OR'' = 3\sqrt{2}$ \therefore The coordinates of the final point are $(0, 3\sqrt{2})$ 275 (d) The point of intersection of x + 2y - 3 = 0 and 2x + 3y - 4 = 0 is (-1,2) which satisfies 4x + 5y - 6 = 0. But, it does not satisfy 3x + 4y - 7 = 0Hence, only three lines are concurrent 277 (d) \therefore P(1, 2) is mid point of AB, therefore coordinate of A and B respectively (2, 0) and (0, 4). ∴ Equation of line *AB* is $y - 0 = \frac{4}{-2}(x - 2) \Rightarrow 2x + y = 4$ 278 (c) On comparing the given line with $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ we get, h = -5, $a = \lambda$. $b = 12, g = \frac{5}{2}, f = -8, c = -3$ It represents a pair of line, if $\lambda \times 12 \times (-3) + 2(-8)\left(\frac{5}{2}\right)(-5) - \lambda(-8)^2$ $-12\left(\frac{5}{2}\right)^2 + 3(-5)^2 = 0$ $\Rightarrow -36\lambda + 200 - 64\lambda - 75 + 75 = 0$ $\Rightarrow 100\lambda = 200 \Rightarrow \lambda = 2$ 279 (d) Equation of a line perpendicular to 5x - y + 1 =

0 is x + 5y + c = 0. This meets the axes at A(-c, 0) and B(0, -c/5). Now, Area of $\triangle OAB = 5 \Rightarrow \frac{1}{2}(-c)\left(-\frac{c}{5}\right) = 5 \Rightarrow c$

 $= \pm 5\sqrt{2}$ Hence, the required line is $x + 5 y \pm 5\sqrt{2} = 0$ 280 **(b)** Let $h = u \cos \alpha \cdot t$, $k = u \sin \alpha \cdot t - \frac{1}{2} gt^2$

On eliminating *t*, we get

 $k = h \tan \alpha - \frac{1}{2}g \frac{h^2}{u^2 \cos^2 \alpha}$ Hence, locus of (h, k) is $y = x \tan \alpha - \frac{1}{2}g \frac{x^2}{u^2 \cos^2 \alpha}$, which is a parabola 281 (c)

The given lines are

$$4x + 3y - 11 = 0 \text{ and } 4x + 3y - \frac{15}{2} = 0$$

$$\therefore \text{ Required distance} = \frac{\left|-11 + \frac{15}{2}\right|}{\sqrt{4^2 + 3^2}} = \frac{7}{10}$$

282 (d)

These lines cannot be the sides of a rectangle as none of these are parallel nor they are perpendicular.

Now, for concurrent
$$\begin{vmatrix} 1 & 2 & -3 \\ 3 & 4 & -7 \\ 2 & 3 & -4 \end{vmatrix}$$

= 1(-16 + 21) - 2(2) - 3(1)
 $\neq 0$

Hence, these are not concurrent. Opposite side of the parallelogram are $x^2 - 5x + 6 = 0$ and $y^2 - 6y + 5 = 0$ $\Rightarrow (x - 2)(x - 3) = 0$ and (y - 1)(y - 5) = 0 $\Rightarrow x - 2 = 0, x - 3 = 0$ and y - 1 = 0, y - 5 = 0 \therefore Vertices are (3, 5), (2,5), (2,1) and (3,1) 283 **(b)**

The perpendicular distance of (1, 3) from the line 3x + 4y = 5 is 2 units while, $\sec^2 \theta + 2 \csc^2 \theta \ge 3$ [as $\sec^2 \theta$, $\csc^2 \theta \ge 1$] So, there will be two such points on the line

284 **(b)**

The equation of line passing through the point of intersection of

$$\frac{x}{\alpha} + \frac{y}{\beta} = 1 \text{ and } \frac{x}{\beta} + \frac{y}{\alpha} = 1 \text{ is}$$
$$\left(\frac{x}{\alpha} + \frac{\lambda}{\beta} - 1\right) + \lambda \left(\frac{x}{\beta} + \frac{\lambda}{\alpha} - 1\right) = 0$$
$$\Rightarrow x \left(\frac{1}{\alpha} + \frac{\lambda}{\beta}\right) + \lambda \left(\frac{1}{\beta} + \frac{\lambda}{\alpha}\right) - \lambda - 1 = 0$$

This meets the coordinate axes at

 $A\left(\frac{\lambda+1}{\frac{1}{\alpha}+\frac{\lambda}{2}},0\right)$ and $B\left(0,\frac{\lambda+1}{\frac{1}{\alpha}+\frac{\lambda}{2}}\right)$ Let (h, k) be the mid point of *AB*. Then, $h = \frac{1}{2} \left(\frac{\lambda + 1}{\frac{1}{2} + \lambda} \right)$ and $k = \frac{1}{2} \left(\frac{\lambda + 1}{\frac{1}{2} + \lambda} \right)$ On eliminating λ from these two equations, we get $2hk(\alpha + \beta) = \alpha\beta(h + k)$ Hence, the locus of (h, k) is $2xy(\alpha + \beta) = \alpha\beta(x + \beta)$ *y*) 285 (a) The coordinates of a point of intersection of given lines are (1, 1) The equation of the perpendicular to the line 3x + 2y + 5 = 0 is $2x - 3y + \lambda = 0$. It is also passes through (1, 1). $\therefore 2 - 3 + \lambda = 0 \implies \lambda = 1$: Required equation of line is 2x - 3y + 1 = 0286 (a) Let line be $x + 2y + \lambda = 0$ $\therefore \ \lambda = \frac{-5 \times 6 + 1 \times 9}{7} = -3 \quad \left(\lambda = \frac{mc_2 + nc_1}{m+n}\right)$ So, required line is x + 2y - 3 = 0287 (c) The equation of line perpendicular to line 3x - y + 5 = 0 is $x + 3y + \lambda = 0$...(i) Also it passes through (-2, -4). $\therefore -2 - 12 + \lambda = 0$ $\Rightarrow \lambda = 14$: Required equation of line is x + 3y + 14 = 0[from Eq. (i)] 288 (c) We have. $3x^{2} + xy - y^{2} - 3x + 6y + k = 0$...(i) Comparing this equation with $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$, we have a = 3, b = -1, h = 1/2, c = k, f = 3 and g = -3/2Equation (i) will represent a pair of straight lines if $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$ $\Rightarrow -3k - \frac{9}{2} - 27 + \frac{9}{4} - \frac{k}{2} = 0$ $\Rightarrow -\frac{13k}{3} - \frac{117}{4} = 0 \Rightarrow k = -9$

289 **(b)**

Since, the required lines make an angle 45° either above the line or below the line

$$\therefore \text{ Required slopes are} m = 90^\circ, 180^\circ \therefore y - 1 = \tan 90^\circ (x - 1) \Rightarrow x = 1 and y - 1 = \tan 180^\circ (x - 1) \Rightarrow y = 1 y = 1 135^\circ$$

290 **(b)**

Slope of the line segment joining (-4,6) and (8,8)is given by $=\frac{8-6}{8+4}=\frac{1}{6}$: Slope of line perpendicular to it is $m = -\frac{1}{1/6} = -6$ As the line bisecting it. : Mid point of this line is $\left(\frac{8-4}{2}, \frac{8+6}{2}\right) = (2,7)$ ∴ Required equation is y - 7 = -6(x - 2) \Rightarrow y + 6x - 19 = 0 291 (b) We have, $x^2 - 3y^2 = 0...(i)$ and x = 4 ...(ii) $\begin{array}{c}
P\left(4,\frac{4}{\sqrt{3}}\right) \\
4/\sqrt{3} \\
4/\sqrt{3} \\
4/\sqrt{3} \\
\end{array} x$ 0 $Q\left(4, \frac{4}{\sqrt{3}}\right)$ From Eqs. (i) and (ii), we get $y^2 = \frac{16}{3}$ $\Rightarrow y = \pm \frac{4}{\sqrt{3}}$ \therefore Three sides of triangle are $x - \sqrt{3}y = 0, x + 0$ $\sqrt{3}y = 0$ and $x - 4 = 0ie, OP = OQ = PQ = \frac{8}{\sqrt{3}}$ ∴ Triangle is an equilateral triangle 292 (a)

We observe that none of the vertices A(-2,1) and B(2, 4) lie on the side 3x - 4y - 10 = 0. Therefore, Length of one side of the rectangle is $AB = \sqrt{(-2-2)^2 + (1-4)^2} = 5$ Also, Length of the other side = Length of the perpendicular drawn from A(-2,1) on 3x - 4y - 10 = 0 $=\left|\frac{-6-4-10}{\sqrt{9+16}}\right|=4$: Area of the rectangle = $5 \times 4 = 20$ sq. units 293 (b) Let *a* and *b* be the intercepts made by the straight line on the axes. Then, according to questions $a+b=\frac{ab}{2}$ $\Rightarrow \frac{2}{a} + \frac{2}{h} = 1$ On comparing with $\frac{x}{a} + \frac{y}{b} = 1$, we get $\Rightarrow x = 2, y = 2$ Hence, straight line passes through the point (2, 2)294 (c) Two sides x - 3y = 0 and 3x + y = 0 are perpendicular to each other. Therefore, its orthocentre is the point of intersection of x - 3y = 0 and 3x + y = 0 ie, (0,0). So, the line 3x - 4y = 0 passes through the orthocentre of triangle 295 (b) Let the coordinates of *C* be (x, y). Then, $BC = 5 \Rightarrow x^2 + (y+1)^2 = 5^2$...(i) Now, $AB \perp AC$ $\Rightarrow \frac{y-3}{x-2} \times \frac{4}{2} = -1$ $\Rightarrow 2y - 6 = -x + 2 \Rightarrow x = -2y + 8$...(ii) From (i) and (ii), we have, $(-2y+8)^2 + (y+1)^2 = 5^2$ $\Rightarrow 5 y^2 - 30 y + 40 = 0$ $\Rightarrow y^2 - 6y + 8 = 0 \Rightarrow y = 2.4$ Putting y = 2 and y = 4 in (ii), we get x = 4, x = 0 respectively. Hence, the coordinates of *C* are (4,2) or (0,4)

296 (c)

On comparing the given equation with standard equation, we get $a=\cos heta-\sin heta$, $b=\cos heta+\sin heta$, $h=\cos heta$ $\tan \phi = \frac{2\sqrt{\cos^2\theta - (\cos^2\theta - \sin^2\theta)}}{\cos \theta - \sin \theta + \cos \theta + \sin \theta} = \frac{2\sin \theta}{2\cos \theta}$ $\Rightarrow \tan \phi = \tan \theta \Rightarrow \phi =$ 297 (d) Let *m* be the required slope $\therefore \left| \frac{m-3}{1+3m} \right| = 1$ $\Rightarrow \frac{m-3}{1+3m} = \pm 1$ $\Rightarrow m - 3 = 1 + 3 m$ and m - 3 = -1 - 3m $\Rightarrow m = -2, m = \frac{1}{2}$ 298 (a) Given equation of line are x + 2y - 3 = 0 ...(i) 2x + 3y - 4 = 0 ...(ii) 3x + 4y - 5 = 0 ...(iii) and 4x + 5y - 6 = 0 ...(iv) On solving Eqs. (i) and (ii), we get x = -1, y = 2From, Eq. (iii), $3(-1) + 4(2) - 5 = 0 \implies 0 = 0$ From Eq. (iv), $4(-1) + 5(2) - 6 = 0 \implies 0 = 0$ Hence, given lines are concurrent. 299 (a) The equation of a line passing through P(4,1) and slope -2 is $\frac{x-4}{-\frac{1}{2}} = \frac{y-1}{\frac{2}{2}} \left[\because \tan \theta = -2 \right]$

$$\frac{2}{\sqrt{5}} \quad I$$

$$\Rightarrow \cos \theta = -\frac{1}{\sqrt{5}}, \sin \theta = \frac{2}{\sqrt{5}}$$

Suppose it cuts x + y - 8 = 0 at Q such that PQ = r. Then, the coordinates of Q are given by $\frac{x-4}{-\frac{1}{2}} = \frac{y-1}{\frac{2}{2}} = r \Rightarrow x = 4 - \frac{r}{\sqrt{5}}, y = 1 + \frac{2r}{\sqrt{5}}$

Since *Q* lies on the line x + y - 8 = 0

$$\therefore 4 - \frac{r}{\sqrt{5}} + 1 + \frac{2r}{\sqrt{5}} - 8 = 0 \Rightarrow r = 3\sqrt{5}$$

Hence, required distance = $3\sqrt{5}$ units 300 (d)

> Let $P(x_1, y_1)$ be the image of point Q(4, -3)Mid point of PQ is $\left(\frac{x_1+4}{2}, \frac{y_1-3}{2}\right)$. This point lies = x

 $\therefore \frac{x_1 + 4}{2} = \frac{y_1 - 3}{2} \Rightarrow x_1 - y_1 = -7 \dots (i)$ Slope of $PQ = \frac{-3 - y_1}{4 - x_1}$ and slope of y = x is 1 \therefore *PQ* is perpendicular to y = x $\therefore \left(\frac{-3-y_1}{4-x_1}\right)(1) = -1$ \Rightarrow y₁ + x₁ = 1 ...(ii) On solving Eqs. (i) and (ii), we get $x_1 = -3$, $y_1 = 4$ 301 (b) If the points $(\alpha, 2 + \alpha)$ and $\left(\frac{3 \alpha}{2}, \alpha^2\right)$ are on the opposite sides of 2x + 3y - 6 = 0, then $(2\alpha + 6 + 3\alpha - 6)(3\alpha + 3\alpha^2 - 6) < 0$ $\Rightarrow 15 \alpha(\alpha^2 + \alpha - 2) < 0$ $\Rightarrow \alpha(\alpha+2)(\alpha-1) < 0 \Rightarrow \alpha \in (-\infty, -2) \cup (0, 1)$ $\begin{array}{c} - & + & - & + \\ \hline 2 & 0 & 1 \end{array}$

302 (c)

Let $y = m_1 x$, $y = m_2 x$ be the lines represented by $ax^{2} + 2 hxy + by^{2} = 0$. Then, $m_1 + m_2 = \frac{-2h}{h}$ and $m_1 m_2 = \frac{a}{h}$ Let $y = m_1' x$ and $y = m_2' x$ be new positions of $y = m_1 x$ and $y = m_2 x$ respectively. Then, $y = m_1 x$ is perpendicular to $y = m_1' x$ $\therefore m_1 m_1' = -1 \Rightarrow m_1' = -\frac{1}{m_1}$ Similarly, we have $m'_2 = -\frac{1}{m_2}$ So, the new lines are $y = -\frac{1}{m_1}x$ and $y = -\frac{1}{m_2}x$ and their combined equation is $(m_1y + x)(m_2y + x) = 0$ $\Rightarrow m_1 m_2 y^2 + x^2 + x y (m_1 + m_2) = 0$ $\Rightarrow \frac{a}{b}y^2 + x^2 + xy\left(\frac{-2h}{b}\right) = 0$ $\Rightarrow bx^2 - 2 hxy + ay^2 = 0$

303 (c)

Here, in the figure it is shown that a ray of light passing through the point Q(1, 2) and reflected from a point $P(\alpha, 0)$ on x-axis towards point R(5,3).

$$(1,2)_{Q} \xrightarrow{\boldsymbol{\theta}}_{\boldsymbol{\theta}} (5,3)$$

: slope of incident ray (ie, before reflection) is given by

$$\tan(\pi - \theta) = \frac{0 - 2}{\alpha - 1}$$
$$\Rightarrow \tan \theta = \frac{2}{\alpha - 1} \dots (i)$$

Similarly, slope of reflected ray (ie, after reflection) is given by

$$\Rightarrow \tan \theta = \frac{3}{5-\alpha} \dots \text{(ii)}$$

From Eq. (i) and (ii),
$$\frac{2}{\alpha-1} = \frac{3}{5-\alpha}$$
$$\Rightarrow 10 - 2\alpha = 3\alpha - 3 \Rightarrow \alpha = \frac{13}{5}$$

304 (c)

The equation of any line passing through (1, -10)is y + 10 = m(x - 1). Since makes equal angles, say θ , with the given lines. Therefore, m = 7m - (-1)1

$$\tan \theta = \frac{m}{1+7m} = -\frac{m}{1+m(-1)} \Rightarrow m = \frac{1}{3} \text{ or, } -3$$

Hence, the equations of third side are

$$y + 10 = \frac{1}{3}(x - 1) \text{ and } y + 10 = -3(x - 1)$$

i.e. $x - 3y - 31 = 0$ and $3x + y + 7 = 0$
ALITER Required lines are parallel to the angle

bisectors

305 (c)

The line *L* is x + y = 2. The line perpendicular to *L* and passing through (1/2, 0) is x - y = 1 and the equation of *y*-axis is x = 0. Solving these three equations in pairs we get the points as (0,2), (0,-1/2) and (5/4,3/4). Therefore, the area Δ of the given triangle is given by 10 2 1.

$$\Delta = \frac{1}{2} \begin{vmatrix} 0 & 2 & 1 \\ 0 & -\frac{1}{2} & 1 \\ \frac{5}{4} & \frac{3}{4} & 1 \end{vmatrix} = \frac{25}{16} \text{ sq. units}$$

306 (c)

On comparing the given equation with standard equation, we get a = 12 and b = a, for perpendicular lines coefficient of x^2 + coefficient of $y^2 = 0$

 \therefore 12 + a = 0 \Rightarrow a = -12

307 (d)

From figure refracted ray makes an angle of 75° with positive direction of *x*-axis and passes through the point (1, 0)

 \therefore Its equation is $(y-0) = \tan(45^\circ - 30^\circ)(x-1)$ or $y = (2 - \sqrt{3})(x - 1)$

308 (a)

3

3

3

The equation
$$12 x^2 + 7 xy - py^2 - 18x + qy + 6 = 0$$
 will represent a pair of perpendicular lines
 $-72 p - \frac{63}{2} q - 3 q^2 + 81 p - \frac{147}{2} = 0$ and $12 - p$
 $= 0$
 $\Rightarrow 2 q^2 + 21 q - 23 = 0$ and $p = 12$
 $\Rightarrow q = 1 and p = 12$
309 (a)
Given, $|x + y| = 4$
If point (a, a) lies between the lines, then
 $|a + a| = 4 \Rightarrow |a| = 2$
310 (a)
Since, $AP = BP$ and PM is perpendicular to the
line
 $2x - y + 3 = 0$...(i)
Where, M is the mid point AB
 $p(1,2)$
 \therefore Equation of line PM is $y - 2 = -\frac{1}{2}(x - 1)$
 $\Rightarrow 2y + x - 5 = 0$...(ii)
Solving Eqs. (i) and (ii), we get the mid point of
 AB is
 $M\left(-\frac{1}{5}, \frac{13}{5}\right)$
311 (b)
Since, a, b, c are in HP
 $\therefore \frac{2}{b} = \frac{1}{a} + \frac{1}{c} = 0$
So, straight line $\frac{x}{a} + \frac{y}{b} + \frac{1}{c}$
 $= 0$ always passes throught a fixed point $(1, -2)$
312 (c)
From the given equations, we get
 $m^2 + am + 2 = 0$
Since, m is real, $a^2 \ge 8 \Rightarrow |a| \ge 2\sqrt{2}$
So, least value of $|a|$ is $2\sqrt{2}$
313 (c)
We have,
 $a^2x^2 + 2h(a + b)xy + b^2y^2 = 0$...(ii)
 $ax^2 + 2hxy + by^2 = 0$...(ii)
The equation of the bisectors of the angles

between the pair of lines given in (i) is

Page | 64

$$\frac{x^2 - y^2}{a^2 - b^2} = \frac{xy}{h(a + b)} \Rightarrow \frac{x^2 - y^2}{a - b} = \frac{xy}{h}$$
This is same as the equation of the bisectors of the angles between the lines given in (ii). Thus, two pairs of straight lines are equally inclined to each other
316 (c)
We have,
 $xy + 2x + 2y + 4 = 0$
 $\Rightarrow (x + 2)(y + 2) = 0 \Rightarrow x + 2 = 0, y + 2 = 0$
Solving the equations of the sides of the triangle we obtain the coordinates of the vertices as $A(-2,0), B(0, -2)C(-2, -2)$. Clearly, $\triangle ABC$ is a right angled triangle with right angle at *C*.
Therefore, the centre of the circumcircle is the mid-point of *AB* whose coordinates are $(-1, -1)$
317 (d)
Focus is $|x| + |y| = 1$ which separately represents equation of straight lines.
318 (c)
Equation of line is $y = mx + 4$
 \therefore Required distance $= \frac{4}{\sqrt{1 + m^2}}$
320 (d)
Let $x_1 = x, x_2 = xr, x_3 = xr^2$
and $y_1 = y, y_2 = yr, y_3 = yr^2$
 $\therefore x_1, x_2, x_3$ and y_1, y_2, y_3 are in GP.
 $\because \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_3 - y_2}{x_3 - x_2} = \frac{y_1 - y_3}{x_1 - x_3}$
 \therefore The points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) lies on a straight line.
321 (a)
Let $B(x_1, x_1)$ and $C(x_2, y_2)$ be two vertices and $P\left(\frac{x_1 + 1}{y}, \frac{y_1 - 2}{z}\right)$ lies on perpendicular bisector

$$x - y + 5 = 0$$

$$\therefore \frac{x_1 + 1}{2} - \frac{y_1 - 2}{2} = -5$$

$$\Rightarrow x_1 - y_1 = -13 \dots (i)$$

$$A (1, -2)$$

$$(x_1, y_1) B$$

$$M$$
 is perpendicular to AB

Also, PN is perpendicular to AB.

$$\therefore \frac{y_1 + 2}{x_1 - 1} \times 1 = -1$$

$$\Rightarrow x_1 + y_1 = -1 \dots (ii)$$

On solving Eqs. (i) and (ii), we get

 $x_1 = -7$, $y_1 = 6$ \therefore The coordinates of *B* are (-7,6) Similarly, the coordinates of *C* are $\left(\frac{11}{5}, \frac{2}{5}\right)$ Hence, the equation of *BC* is

$$y - 6 = \frac{\frac{2}{5} - 6}{\frac{11}{5} + 7} (x + 7)$$

$$\Rightarrow y - 6 = \frac{-14}{23} (x + 7)$$

$$\Rightarrow 14x + 23y - 40 = 0$$

322 (b)

Points (a, 0) and (0, b) will satisfy the equation of line px - qy = r $\Rightarrow ap = r, -bq = r$ $\therefore a + b = \frac{r}{p} - \frac{r}{q} = r\left(\frac{q - p}{pq}\right)$

323 (d)

We have,

2x - y + 4 = 0 and 6x - 3y - 5 = 0 $\Rightarrow 2x - y + 4 = 0$ and 2x - y - 5/3 = 0This distance between these two parallel lines is given by

$$d = \left|\frac{4+5/3}{\sqrt{2^2 + (-1)^2}}\right| = \frac{17\sqrt{5}}{15}$$

324 (b)

If the lines given by $ax^2 + 5xy + 2y^2 = 0$ arte mutually perpendicular, then +2 - 0a = -2

$$a + 2 = 0 \Rightarrow$$

326 (b)

Since, the coordinates of three vertices A, B and C are $\left(\frac{5}{3}, -\frac{4}{3}\right)$, (0, 0) and $\left(-\frac{2}{3}, \frac{7}{3}\right)$ respectively, also the mid point of AC is $\left(\frac{1}{2}, \frac{1}{2}\right)$, therefore the equation of line passing through $\left(\frac{1}{2}, \frac{1}{2}\right)$ and (0, 0)is given by x - y = 0, which is the required equation of another diagonal, so a = 1, b = -1, and c = 0

Let *m* be the slope of required line

$$\therefore \left| \frac{m - (-1)}{1 + m(-1)} \right| = 1$$

$$\Rightarrow \frac{m + 1}{1 - m} = \pm 1$$

$$\Rightarrow m + 1 = 1 - m, m + 1 = -1 + m$$

$$\Rightarrow m = 0, m = \infty$$

$$\therefore \text{ Equation of the line through (1, 1) is}$$

$$y - 1 = 0, x - 1 = 0$$
328 (a)

Let the equation of line which is perpendicular to 5x - 2y = 7, is

 $2x + 5y = \lambda \dots (i)$ The point of intersection of given lines is (14, -9)Since, the Eq. (i) is passing through the point (14, -9) $\therefore 2(14) + 5(-9) = \lambda \Rightarrow \lambda = -17$ \therefore Eq. (i) becomes 2x + 5y + 17 = 0

329 **(a)**

Let the vertices of the triangle be A(5, -2), B(-1,2) and C(1,4)The equation of the altitude through B(-1,2) is $y + 2 = -(x - 5) \Rightarrow x + y - 3 = 0$...(i) The equation of the altitude through B(-1,2) $y - 2 = \frac{2}{3}(x + 1) \Rightarrow 2x - 3y + 8 = 0$...(ii) Solving (i) and (ii), we obtain that the coordinates

of the orthocentre are (1/5, 14/15)

330 (a)

Since the origin and the point (1, -3) lie on the same side of x + 2y - 11 = 0 and on the opposite side of 3x - 6y - 5 = 0. Therefore, the bisector of the angle containing (1, -3) is the bisector of that angle which does not contain the origin and is given by

$$\frac{-x - 2y + 11}{\sqrt{5}} = -\left(\frac{-3x + 6y + 5}{\sqrt{45}}\right) \Rightarrow 3x = 19$$

<u>ALITER</u> Re-write the two equations in such a way that the values of the expressions on the left hand side of the equality for x = 1, y = -3 become positive. Now, find the bisector corresponding to positive sign

331 (c)

For the two lines 24x + 7y - 20 = 0 and 4x - 3y - 2 = 0, the angle bisectors are given by $\frac{24x + 7y - 20}{25} = \pm \frac{4x - 3y - 2}{5}$ Talking positive sign, we get 2x + 11y - 5 = 0 \therefore The given three lines are concurrent with

 \therefore The given three lines are concurrent with one line bisecting the angle between the other two.

332 **(b)**

Let *a* and *b* be non-zero real numbers. Therefore, the given equation $(ax^2 + by^2 + c)(x^2 - 5xy + 6y^2) = 0$ implies either $x^2 - 5xy + 6y^2 = 0$ $\Rightarrow (x - 2y)(x - 3y) = 0$ $\Rightarrow x = 2y$ and x = 3yRepresent two straight lines passing through origin. or $ax^2 + by^2 + c = 0$

When c = 0 and *a* and *b* are of same signs, then $ax^2 + by^2 + c = 0$ $\Rightarrow x = 0$ and y = 0Which is a point specified as the origin. When a = b and *c* is of sign opposite to that of *a*, then $ax^2 + by^2 + c = 0$ represents a circle. Hence, the given equation, $(ax^{2} + by^{2} + c)(x^{2} - 5xy + 6y^{2}) = 0$ may represents two straight lines and a circle. 333 (c) Equation of intersection of line is $(100x + 50y - 1) + \lambda(75x + 25y + 3) = 0$ $\Rightarrow (100 + 75\lambda)x + (50 + 25\lambda)y = -3\lambda \dots (i)$ $\Rightarrow \frac{x}{\frac{1-3\lambda}{100+75\lambda}} + \frac{y}{\frac{1-3\lambda}{50+25\lambda}} = 1$ According to the given condition $1-3\lambda$ $1-3\lambda$ $\frac{1}{100+75\lambda} = \frac{1}{50+25\lambda}$ \Rightarrow 50 = -50 λ \Rightarrow λ = -1 ∴ From Eq. (i), we get 25x + 25y - 4 = 0

334 **(a)**

The coordinates of the point dividing the line segment joining (2,3) and (-1,2) internally in the ratio 3:4 are

$$\left(\frac{3 \times -1 + 4 \times 2}{3 + 4}, \frac{3 \times 2 + 4 \times 3}{3 + 4}\right) = \left(\frac{5}{7}, \frac{18}{7}\right)$$

This point lies on the line $x + 2y = \lambda$
$$\therefore \frac{5}{7} + \frac{36}{7} = \lambda \Rightarrow \lambda = \frac{41}{7}$$

335 **(d)**

Slopes of given lines are $m_1 = \sqrt{3}$ and $m_2 = \frac{1}{\sqrt{3}}$

$$\therefore \tan \theta = \left| \frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{1+1} \right| = \left| \frac{3-1}{2\sqrt{3}} \right| = \frac{1}{\sqrt{3}}$$
$$\Rightarrow \theta = 30^{\circ}$$

336 **(c)**

The coordinates of the vertices of the rectangle are A(1,4), B(6,4), C(6,10), D(1,10). The equation of diagonal AC is

$$y - 4 = \frac{10 - 4}{6 - 1}(x - 1) \Rightarrow 6x - 5y + 14 = 0$$

337 **(d)**

3y + 2x = 6

Let the equation of perpendicular line to the line 3x - 2y = 6 is 3y + 2x = c ...(i) Since, it passes through (0, 2) $\therefore c = 6$ On putting the value of *c* in Eq. (i) we get

$$\Rightarrow \frac{x}{3} + \frac{y}{2} = 1$$

Hence, *x*-intercept is 3.

338 **(a)**

Given equation is $x^2 - 1005x + 2006 = 0$ $\Rightarrow (x - 2)(x - 1003) = 0$ $\Rightarrow x = 2, \quad x = 1003$ \therefore Required distance between the lines = 1003 - 2 = 1001

339 (a)

We have,

$$\sqrt{3} x^2 - 4xy + \sqrt{3} y^2 = 0$$

 $\Rightarrow (\sqrt{3} x - y)(x - \sqrt{3} y) = 0$
 $\Rightarrow \sqrt{3} x - y = 0, x - \sqrt{3} y = 0$
 $\Rightarrow y = \sqrt{3} x, y = \frac{1}{\sqrt{3}} x$

These lines make 60° and 30° angles respectively with *x*-axis. If they are rotated about the origin by $\pi/6$ i.e. 30° in anticlockwise direction, then they make 90° and 60° angles respectively with *x*-axis. So, their equations in new position are x = 0 and $y = \sqrt{3} x$. The combined equation of these two lines is

$$x(\sqrt{3}x - y) = 0$$
 or, $\sqrt{3}x^2 - xy = 0$
(b)

340 **(b)**

Le the equations of the sides *AB*, *BC*, *CD* and *DA* of the parallelogram *ABCD* be respectively

 $3x - 4y + 1 = 0 \dots$ (i) $4x - 3y - 2 = 0 \dots$ (ii) $3x - 4y + 3 = 0 \dots$ (iii) $4x - 3y - 1 = 0 \dots$ (iv) We know that the area of the parallelogram formed by the lines

 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$, $a_1x + b_1y + d_1 = 0$ and $a_2x + b_2y + d_2 = 0$ is given by

$$\frac{(c_1d_1)(c_2 - d_2)}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}$$

Hence, are Δ of the given parallelogram is given by

$$\Delta = \left| \frac{(3-1) \times (-1+2)}{\begin{vmatrix} 3 & -4 \\ 4 & -3 \end{vmatrix}} \right| = \frac{2}{7} \text{ sq. units}$$

341 **(b)**

The equation of a line passing through P(1,1) and parallel to 2x - y = 0 is

$$\frac{x-1}{\cos\theta} = \frac{y-1}{\sin\theta}, \text{ where } \tan\theta = 2$$

i. e. $\frac{x-1}{1/\sqrt{5}} = \frac{y-1}{2/\sqrt{5}}$

Since *P* is translated in the first quadrant through a unit distance, therefore the coordinates of *P* are given by

$$\frac{x-1}{1/\sqrt{5}} = \frac{y-1}{2\sqrt{2}} = \pm 1$$

$$\Rightarrow x = 1 \pm \frac{1}{\sqrt{5}}, y = 1 \pm \frac{2}{\sqrt{5}}$$

Hence, the coordinates of *P* are $\left(1 \pm \frac{1}{\sqrt{5}}, 1 \pm \frac{2}{\sqrt{5}}\right)$

342 **(a)**

Given,
$$\frac{1}{a}x^2 + \frac{1}{b}y^2 + 2\frac{1}{h}xy = 0$$

 $\therefore m_1 + m_2 = -\frac{\frac{2}{h}}{\frac{1}{b}} = \frac{-2b}{h} \dots (i)$
and $m_1m_2 = \frac{\frac{1}{a}}{\frac{1}{b}} = \frac{b}{a} \dots (ii)$
Also given $m_2 = 2m_1$
 $\Rightarrow 3m_1 = \frac{-2b}{h}$ [from Eq. (i)] (iii)
and $2m_1^2 = \frac{b}{a}$ [from Eq. (ii)] (iv)
From Eqs. (iii) and (iv),
 $\frac{9m_1^2}{2m_1^2} = \frac{4b^2}{h^2} \times \frac{a}{b}$
 $\Rightarrow \frac{9}{8} = \frac{ba}{h^2}$ or $ab: h^2 = 9:8$

344 (a)

Clearly the point (3,0) does not lie on the diagonal x = 2y. Let m be the slope of a side passing through (3,0). Then, its equation is y - 0 = m(x - 3) ...(i) Since the angle between a diagonal and a side of a square is $\pi/4$. Therefore, angle between x = 2y and y - 0 = m(x - 3) is also $\pi/4$. Consequently, we have

$$\tan\frac{\pi}{4} = \pm\frac{m-1/2}{1+m/2} \Rightarrow m = 3, -\frac{1}{3}$$

Substituting the values of m in (i), we obtain y - 3x + 9 = 0 and 3y + x - 3 = 0 as the required sides

345 (a)

Any line which is perpendicular to $\sqrt{3} \sin \theta + 2 \cos \theta = \frac{4}{r} is$ $\sqrt{3} \sin \left(\frac{\pi}{2} + \theta\right) + 2 \cos \left(\frac{\pi}{2} + \theta\right) = \frac{k}{r}$...(i) Since, it is passing through $\left(-1, \frac{\pi}{2}\right)$ $\therefore \sqrt{3} \sin \pi + 2 \cos \pi = \frac{k}{-1} \Rightarrow k = 2$ On putting k = 2 n Eq. (i), we get $\sqrt{3} \cos \theta - 2 \sin \theta = \frac{2}{r}$ $\Rightarrow 2 = \sqrt{3}r \cos \theta - 2r \sin \theta$ 346 (c)

Slope of refracted ray is

$$-\tan 60^\circ = -\sqrt{3}$$

It passes through (1, 0)
 $\therefore y = -\sqrt{3}(x - 1)$
 $\Rightarrow \sqrt{3}x + y - \sqrt{3} = 0$

347 (c)

It is simple way to take a point from the option and finding the distance, which is equal to $\sqrt{85}$ Taking point *P*(5,7)

$$BP = \sqrt{(5-3)^2 + (7+2)^2} = \sqrt{4+81} = \sqrt{85}$$

Hence, option (c) is correct
 $P(x, y)$

348 **(b)**

Equation of the line $\frac{ax}{c-1} + \frac{by}{c-1} + 1 = 0$ has two independent parameters. It can pass through a fixed point if it contains only one independent parameter. Now , there must be one relation between $\frac{a}{c-1}$ and $\frac{b}{c-1}$ independent of a, band c so that $\frac{a}{c-1}$ can be expressed in terms of $\frac{b}{c-1}$ and straight line contains only one independent parameter. Now, that given relation can be expressed as $\frac{5a}{c-1} + \frac{4b}{c-1} = \frac{t-20c}{c-1}$ RHS in independent of c if t = 20

349 (c)

On comparing given equation with standard equation, we get

 $a = 1, b = -1, c = -2, h = 0, g = -1/2, f = \lambda/2$ Given equation represent a pair of straight line, $\therefore abc + 2 fgh - af^2 - bg^2 - ch^2 = 0$ $\Rightarrow 2 + 0 - \frac{\lambda^2}{4} + \frac{1}{4} = 0$ $\Rightarrow \frac{\lambda^2}{4} = \frac{9}{4} \Rightarrow \lambda = \pm 3$ (b)

350 **(b)**

The equation of given curve is

$$y = \sqrt{x} \quad \dots(i)$$
$$\Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}$$

Slope of line at (x_1, y_1) , $m_1 = \frac{1}{2\sqrt{x_1}}$ and let line parallel to *x*-axis is y = k ...(ii) Whose slope, $m_2 = 0$ Since, 45° is the angle between the line and the curve.

$$\therefore \tan 45^\circ = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| \Rightarrow 1 = \left| \frac{\frac{1}{2\sqrt{x_1}} - 0}{1} \right| \Rightarrow x_1$$
$$= \frac{1}{4}$$
$$\therefore y_1 = \frac{1}{2} \quad \text{[from Eq.(i)]}$$
$$\therefore \text{ Required line is } y = \frac{1}{2} \quad \text{[from Eq.(ii)]}$$

351 **(c)**

(1)Let *A* and *B* be the points where the lines 2x + 3y + 19 = 0 meets the coordinates axes and let *C* and *O* be the points where the line 9x + 6y - 17 = 0 meet the coordinate axes

Then,
$$OA = \frac{19}{2}$$
, $OB = \frac{19}{2}$,
 $OC = \frac{17}{9}$ and $OD = \frac{17}{6}$

Thus, the segments *AOC* and *BOD* intersect at such that $OA \cdot OC = OB \cdot OD$. Hence, *A*, *B*, *C*, *D* are concyclic

(2) Distance of (2, -5) from the line 3x + y + 5 - 0 is

$$\frac{2 \times 3 - 5 + 5}{\sqrt{3^2 + 1^2}} = \frac{6}{\sqrt{10}}$$

and distance of (-1, 4) from the line 3x + y + 5 = 0 is

$$\frac{3(-1)+4+5}{\sqrt{10}} = \frac{6}{\sqrt{10}}$$

Thus, the points are equidistant from the given line

Hence, both of these statements are correct

352 (a)

On comparing the given equation with the standard form of equation, we get a = 1, h = 2 and b = 1

Let $\boldsymbol{\theta}$ is the angle between them, then

$$\tan \theta = \frac{2\sqrt{h^2 - ab}}{a + b}$$

$$\therefore \tan \theta = \frac{2\sqrt{2^2 - 1}}{1 + 1} = \frac{2\sqrt{4 - 1}}{2} = \sqrt{3}$$

$$\Rightarrow \theta = \tan^{-1}(\sqrt{3}) = 60^{\circ}$$

354 **(d)**

Here,
$$a = 6, 2h = -1, b = 4c$$

 $\therefore m_1 + m_2 = \frac{1}{4c}, m_1 m_2 = \frac{6}{4c}$ One line of given pair of line is 3x + 4y = 0Slope of line $= -\frac{3}{4} = m_1(\text{say})$ $\therefore -\frac{3}{4} + m_2 = \frac{1}{4c}$ $\Rightarrow m_2 = \frac{1}{4c} + \frac{3}{4}$ $\therefore \left(-\frac{3}{4}\right)\left(\frac{1}{4c}+\frac{3}{4}\right)=\frac{6}{4c}$ $\Rightarrow 1 + 3c = \frac{-6 \times 4}{2}$ $\Rightarrow 3c = -9 \Rightarrow c = -3$ 355 (b) The equation $4x^{2} + 8xy + ky^{2} - 9 = 0$ represents a pair of straight lines, if $(4)(k)(-9) - (-9)(4)^2 = 0 \Rightarrow k = 4$ 356 (b) Slope of the line segment joining (-4, 6) and (8, -4, 6)8) is $\frac{8-6}{8+4} = \frac{2}{12} = \frac{1}{6}$ ∴ Slope of line perpendicular to it. $m = -\frac{1}{1/6} = -6$ As the line bisecting it. \therefore Mid point of this line is $\left(\frac{8-4}{2}, \frac{8+6}{2}\right) = (2,7)$ ∴ Required equation is y - 7 = -6(x - 2) \Rightarrow y + 6x - 19 = 0 357 (c) Let (h, k) be the point of intersection of the line $x \cos \alpha + y \sin \alpha = a$ and $x \sin \alpha - y \cos \alpha = b$. Then, $h\cos\alpha + k\sin\alpha = a$...(i) $h \sin \alpha - k \cos \alpha = b$...(ii) Squaring and adding (i) and (ii), we get $(h\cos\alpha + k\sin\alpha)^2 + (h\sin\alpha - k\cos\alpha)^2$ $= a^2 + b^2$ $\Rightarrow h^2 + k^2 = a^2 + b^2$ Hence, locus of (h, k) is $x^2 + y^2 = a^2 + b^2$ 358 (a) Equations of the bisectors of the angles between the lines $x^2 - 2mxy - y^2 = 0$ are given by $\frac{x^2 - y^2}{1 - (-1)} = \frac{xy}{-m} \Rightarrow x^2 + \frac{2}{m}xy - y^2 = 0$...(i) Since (i) and $x^2 - 2nxy - y^2 = 0$ represent the same pair of lines. $\therefore \frac{1}{1} = \frac{2/m}{2m} = \frac{-1}{1} \Rightarrow mn = -1 \Rightarrow mn + 1 = 0$

359 (d) Point of intersection of $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{b} + \frac{y}{a} = 1$ is $\left(\frac{ab}{a+b}, \frac{ab}{a+b}\right)$ • Equation of line joining (0, 0) and $\left(\frac{ab}{a+b}, \frac{ab}{a+b}\right)$ is x = y ie, x - y = 0360 **(c** Here, a = 4, b = 11 and h = -12 $\therefore h^2 - ab = (-12)^2 - 4 \times 11 = 100$: The two lines represented by given equation will be real and distinct which represent a pair of straight lines passing through the origin. 361 (a) Let the slope of first line be *m*, then slope of second line is 5*m*. Then, $m + 5m = -\frac{2h}{h}$ and $m \cdot 5m = \frac{a}{h}$ $\Rightarrow m = -\frac{2h}{6h} = \frac{-h}{3h}$ $\therefore 5m^2 = \frac{a}{h} \Rightarrow 5\left(-\frac{h}{2h}\right)^2 = \frac{a}{h}$ $\Rightarrow \frac{5h^2}{9h^2} = \frac{a}{h} \Rightarrow 5h^2 = 9ab$ 362 (a) We have, $|x| = |y|x = \pm y \Rightarrow x + y = 0, x - y = 0$ Let (t, 4 - t) be the required point. It is equidistant from the lines |x| = |y| $\therefore \left| \frac{t+4-t}{\sqrt{2}} \right| = \left| \frac{t-(4-t)}{\sqrt{2}} \right|$ $\Rightarrow 4 = |2t - 4| \Rightarrow t - 2 = \pm 2 \Rightarrow t = 0.4$ Hence, required points are (0,4) and (4,0)363 (d) Equation of line is $\frac{x}{3} + \frac{y}{4} = 1$ $\Rightarrow 4x + 3y - 12 = 0$ Now, distance from origin = $\left|\frac{4 \times 0 + 3 \times 0 - 12}{\sqrt{2^2 + 4^2}}\right|$ $=\frac{12}{5}$ units 364 (c) As $m \in \left(\frac{1}{2}, 3\right)$: Line y = mx + 4 lies between y = 3x + 1 and 2y = x + 3Slope of given lines are $m_2 = 3$, m = m and m_1 $\therefore \tan \theta = \frac{3-m}{1+3m}$

and
$$\tan \theta = \frac{m - \frac{1}{2}}{1 + \frac{m}{2}}$$

 $\Rightarrow \frac{3 - m}{1 + 3m} = \frac{2m - 1}{2 + m}$
 $\Rightarrow 7m^2 - 2m - 7 = 0$
 $\therefore m = \frac{2 \pm \sqrt{4 + 196}}{2 \times 7} = \frac{1}{7}(1 \pm 5\sqrt{2})$

365 (d)

The point of intersection of the given lines is $\left(\frac{ab}{a+b}, \frac{ab}{a+b}\right)$ Clearly, it satisfies equation of options (a),(b) and (c)

366 (c)

Equation of the straight lines are 3x - 4y + 7 = 0 ...(i) and 12x + 5y - 2 = 0 ...(ii) The equation of bisectors of the angles between these lines are $\frac{3x - 4y + 7}{\sqrt{3^2 + 4^2}} = \frac{12x + 5y - 2}{\sqrt{12^2 + 5^2}}$ $\Rightarrow \frac{3x - 4y + 7}{5} = \frac{12x + 5y - 2}{13}$ $\Rightarrow 39x - 52y + 91 = 60x + 25y - 10$ $\Rightarrow 21x + 77y - 101 = 0$

367 (b)

Given equation of pair of lines can be written as (3x - y)(x + 2y) = 0Slope of separate equations of line 3x - y = 0 is 3 and x + 2y = 0 is $-\frac{1}{2}$

Thus, required sum = $3 - \frac{1}{2} = \frac{5}{2}$

Alternate

Sum of slope of the lines $3x^2 + 5xy - 2y^2 = 0$ is $m_1 + m_2 = -\frac{h}{h} = \frac{5}{2}$

368 **(b)**

Let the another equation of line is

x - 2y + 1 = 0

: Equation of bisector of angle between two lines is $\frac{2x - y - 1}{\sqrt{4 + 1}} = \pm \frac{x - 2y + 1}{\sqrt{4 + 4}}$

$$\Rightarrow x + y - 2 = 0 \text{ and } x = y$$

369 **(d)**

Given equation can be rewritten as a(x + y - 1) + b(2x - 3y + 1) = 0This is the form of intersection of two lines. $\therefore x + y - 1 = 0$...(i) and 2x - 3y + 1 = 0 ...(ii)

On solving Eqs. (i) and (ii), we get $x = \frac{2}{5}$ and $y = \frac{3}{5}$ Hence, coordinates of required point are $\left(\frac{2}{5}, \frac{3}{5}\right)$ 370 (a) Since, ax + by + c = 0 is always passes through (1, -2) $\therefore a - 2b + c = 0$ $\Rightarrow 2b = a + c$ Therefore, *a*, *b* and *c* are in AP 371 (a) Let the locus of point be (x, y)Area of triangle with points (x, y), (1, 5) and (3, -7) is 21 sq unit $\therefore \frac{1}{2} \begin{vmatrix} x & y & 1 \\ 1 & 5 & 1 \\ 3 & -7 & 1 \end{vmatrix} = 21$ $\Rightarrow \frac{1}{2}[x(5+7) - y(1-3) + 1(-7-15] = 21$ $\Rightarrow \frac{1}{2}[12x + 2y - 22] = 21$ $\Rightarrow 6x + y - 32 = 0$ 372 (c) Now, we take $BD \perp AC$ and $AE \perp BC$ A(0, 0) $B(\overline{4,0}) = E$ C(3, 4)Slope of $BD = -\frac{3}{4}$ Equation of *BD*, $y - 0 = \frac{-3}{4}(x - 4)$ $\Rightarrow 4y = -3x + 12$ $\Rightarrow 3x + 4y - 12 = 0$...(i) and slope of $AE = \frac{1}{4}$ \therefore Equation of AE, $y - 0 = \frac{1}{4}(x - 0)$ $\Rightarrow x - 4y = 0$...(ii) On solving Eqs. (i) and (ii), we get $x = 3, \qquad y = \frac{3}{4}$ \therefore Orthocentre of the traingle is $\left(3, \frac{3}{4}\right)$ 373 (b) Let A(2, -1) be one vertex of an equilateral triangle *ABC*. Then, its altitude is the length of the perpendicular from A(2, -1) on c + y - 2 = 0 i.e.

$$AD = \left|\frac{2 - 1 - 2}{\sqrt{1 + 1}}\right| = \frac{1}{\sqrt{2}}$$

On putting x = 1 - y from Eq. (i) into Eq. (ii), we get (1 - y)y = 0 $\Rightarrow y = 0, 1$

 $\frac{2}{3}$

At y = 0, 1 At $y = 0 \Rightarrow x = 1$ and at $y = 1 \Rightarrow x = 0$ \therefore Coordinates of the vertices of a triangle are (0, 0), (1, 0) and (0, 1) \therefore Point (0, 0) is its orthocentre

375 (a)

37

The equation of required line is $3x^2 + 4xy - 4x(2x + y) + (2x + y)^2 = 0$ $\Rightarrow 3x^2 + 4xy - 8x^2 - 4xy + 4x^2 + y^2 + 4xy = 0$ $\Rightarrow -x^2 + y^2 + 4xy = 0$ (Coefficient of x^2) +(Coefficient of y^2) = -1 + 1 = 0 \therefore Lines are mutually perpendicular. *ie*, Angle between lines is $\frac{\pi}{2}$.

376 (a)

The equation of given line is

$$y = mx + \frac{a}{m} \dots (i)$$

The equation of line perpendicular to Eq. (i) is $my + x + \lambda = 0$... (ii)

This line passing through (a, 0).

 $0 + a + \lambda = 0 \implies \lambda = -a$

On putting this value on λ in Eq. (ii) and solving with Eq. (i), we get

$$x = 0$$
 and $y = \frac{a}{m}$

Coordinates of the foot of perpendicular are $\left(0, \frac{a}{m}\right)$.

377 **(b)**

 $\therefore \text{ Slope of perpendicular} = -\left[\frac{\cos \alpha - \cos \beta}{\sin \alpha - \sin \beta}\right]$ $= \tan \frac{\alpha + \beta}{2}$ $\therefore \text{ Equation of perpendicular is}$

 $y = \tan\left(\frac{\alpha + \beta}{2}\right)x$... (i) On solving the Eq. (i) with the line, we get $\left[\frac{a}{2}(\cos\alpha + \cos\beta), \frac{a}{2}(\sin\alpha + \sin\beta)\right]$ 378 (d) Mid point of the line joining the points (4, -5) and (-2, 9) is $\left(\frac{4-2}{2}, \frac{-5+9}{2}\right)$ ie, (1,2) : Inclination of straight line passing through point (-3, 6) and mid point (1, 2) is $m = \frac{2-6}{1+3} = \frac{-4}{4} = -1$ $\therefore \tan \theta = -1 \Rightarrow \theta = \frac{3\pi}{4}$ 379 (d) Given pair of line is $x^2 \sin^2 \alpha + y^2 \sin^2 \alpha$ $= x^2 \cos^2 \theta + y^2 \sin^2 \theta$ $-2xy\sin\theta\cos\theta$ $\Rightarrow x^2(\sin^2\alpha - \cos^2\theta) + y^2(\sin^2\alpha - \sin^2\theta)$ $+ 2(\sin\theta\cos\theta)xy = 0$ On comparing with $ax^2 + by^2 + 2hxy = 0$ We get, $a = \sin^2 \alpha - \cos^2 \theta$, $b = \sin^2 \alpha - \sin^2 \theta$ and $h = \sin \theta \cos \theta$ Let θ be the angle between the pair of lines. $\therefore \tan \theta$ $\frac{2\sqrt{\sin^2\theta\cos^2\theta} - (\sin^2\alpha - \cos^2\theta) \times (\sin^2\alpha - \sin^2\theta)}{\sin^2\alpha - \cos^2\theta + \sin^2\alpha - \sin^2\theta}$ $\frac{2\sqrt{\sin^2\theta\cos^2\theta} - (\sin^2\alpha)^2 + \sin^2\alpha\sin^2\theta + \sin^2\theta}{-(1 - 2\sin^2\alpha)}$ $\frac{2\sqrt{\sin^2\alpha(\sin^2\theta + \cos^2\theta) - (\sin^2\alpha)^2}}{-\cos 2\alpha}$ $= \left| \frac{2\sqrt{\sin^2 \alpha (1 - \sin^2 \alpha)}}{-\cos 2\alpha} \right|$ $\Rightarrow \tan \theta = \left| \frac{\sin 2\alpha}{\cos 2\alpha} \right| = \tan 2\alpha$ $\Rightarrow \theta = 2\alpha$

380 **(b)**

Given equations of line and circle are respectively $\sqrt{3}x + y = 2$...(i) and $x^2 + y^2 = 4$...(ii) From Eqs. (i) and (ii), we get $x^2 + (2 - \sqrt{3}x)^2 = 4$ $\Rightarrow 4x^2 - 4\sqrt{3}x = 0$ $\Rightarrow x(x - \sqrt{3}) = 0 \Rightarrow x = 0, \sqrt{3}$ \therefore Points of intersection of line and circle are (0, 2)

and
$$(\sqrt{3}, -1)$$
.
Slope, of line joining $(0, 0)$ and $(0, 2)$
 $= \frac{2-0}{0-0} = \infty \Rightarrow \theta_1 = \frac{\pi}{2}$
Also, slope of line joining $(0, 0)$ and $(\sqrt{3}, -1)$
 $= \frac{-1}{\sqrt{3}} \Rightarrow \theta_2 = \frac{\pi}{6}$
 \therefore Required angle $= \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3}$

381 (b)

Equation of line is $\frac{x}{a} + \frac{y}{b} = 1$... (i)

Let *P* be the foot of perpendicular from the origin to the whose coordinate is (x_1, y_1) .

$$\begin{array}{c|c} & B(0,b) \\ & & P(x_1,y_1) \\ \hline & & P \\ \hline & & A(a,0) \\ \hline & & & \\ \hline \end{array}$$

Since, $OP \perp AB$ \therefore Slope of $OP \times$ Slope of AB = -1 $\Rightarrow \left(\frac{y_1}{r_1}\right) \left(\frac{b}{-a}\right) = -1,$ $by_1 = ax_1 \dots (ii)$ Since, *P* lies on the line *AB*, then $\frac{x_1}{a} + \frac{y_1}{b} = 1 \implies bx_1 + ay_1 = ab \dots$ (iii) From Eqs. (ii) and (iii), we get $x_1 = \frac{ab^2}{a^2 + b^2}$ and $y_1 = \frac{a^2b}{a^2 + b^2}$ Now, $x_1^2 + y_1^2 = \left(\frac{ab^2}{a^2 + b^2}\right)^2 + \left(\frac{a^2b}{a^2 + b^2}\right)^2$ $\Rightarrow x_1^2 + y_1^2 = \frac{a^2 b^2 (a^2 + b^2)}{(a^2 + b^2)^2}$ $\Rightarrow x_1^2 + y_1^2 = \frac{a^2b^2}{(a^2 + b^2)}$ $=\frac{1}{\frac{1}{a^2}+\frac{1}{a^2}}$ But $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$ $\therefore x_1^2 + y_1^2 = c^2$ Thus, the locus of $P(x_1, y_1)$ is $x^2 + y^2 = c^2$ Which is the equation of circle. 382 (a) Any line through *A* is given by $(px + qy - 1) + \lambda(qx + py - 1) = 0$ Which is passing through (p, q)Hence, $\lambda = -\frac{(p^2 + q^y - 1)}{2na - 1}$

Thus, the required line is

$$(px + qy - 1) - \frac{(p^2 + q^2 - 1)}{(2pq - 1)} \cdot (qx + py - 1)$$

= 0
$$\Rightarrow (2pq - 1)(px + qy - 1) - (p^2 + q^2 - 1)(qx + py - 1) = 0$$

383 (a)

Solving the given equations, we obtain that the vertices of the triangle formed by them are A(0,4), B(1,1) and C(4,0)

Now, $AB = \sqrt{10} = BC$, $CA = 4\sqrt{2}$

Hence, triangle is isosceles

384 (a)

Image of (1,3) in the line x + y - 6 = 0 is given by $\frac{x-1}{1} = \frac{y-3}{1} = -2\left(\frac{1+3-6}{1^2+1^2}\right) \Rightarrow x = 3, y = 5$

Hence, the image of the given point has coordinates (3,5)

385 **(c)**

Given lines

 $x \cos \alpha + \gamma \sin \alpha = p_1$ and, $x \cos \beta + \gamma \sin \beta = p_2$ Will be perpendicular, if the lines perpendicular to them are also perpendicular.

Clearly, perpendiculars drawn from the origin to the given lines make angles α and β respectively with *x*-axis. Therefore, angle between them is $|\alpha - \beta|$

Thus, the given lines will be perpendicular, if $|\alpha - \beta| = \frac{\pi}{2}$

387 **(c)**

Since, the given lines are concurrent.

$$\begin{array}{c} \therefore \begin{vmatrix} a & k & 10 \\ b & k+1 & 10 \\ c & k+2 & 10 \end{vmatrix} = 0 \Rightarrow 10 \begin{vmatrix} a & k & 1 \\ b & k+1 & 1 \\ c & k+2 & 1 \end{vmatrix} = 0 \\ \\ \text{Applying } R_2 \to R_2 - R_1 \text{ and } R_3 \to R_3 - R_1 \\ \Rightarrow 10 \begin{vmatrix} a & k & 1 \\ b-a & 1 & 0 \\ c-a & 2 & 0 \end{vmatrix} = 0 \\ \Rightarrow 10[1(2b-2a-c+a)] = 0 \\ \Rightarrow 2b = a + c \\ \text{Hence, } a, b \text{ and } c \text{ are in AP} \\ 388 \ \textbf{(b)} \end{array}$$

We have,

Required distance =
$$2\sqrt{\frac{g^2 - ac}{a(a+b)}} = \frac{2}{\sqrt{10}}$$

389 **(c)**

Let y = mx be a line represented by $ax^3 + bx^2y + cxy^2 + dy^3 = 0$. Then,

 $dm^{3} + cm^{2} + bm + a$ $= 0 \quad \begin{bmatrix} \text{Putting } y = mx \text{ in } ax^3 + bx^2y \\ + cxy^2 + dy^3 = 0 \end{bmatrix}$ Let m_1, m_2, m_3 be the roots of this equation. Then, $m_1 + m_2 + m_3 = -\frac{c}{d}$ $m_1 m_2 + m_2 m_3 + m_3 m_1 = \frac{b}{d}$ $m_1 m_2 m_3 = -\frac{a}{d}$ Thus, there are three lines viz. $y = m_1 x$, y = $m_2 x$, $y = m_3 x$ represented by the given equation. Suppose $y = m_1 x$ and $y = m_2 x$ make complementary angles with *x*-axis. Then, $m_1 m_2 = 1$ Putting $m_1m_2 = 1$ in $m_1m_2m_3 = -\frac{a}{d}$, we get $m_3 = -\frac{a}{r}$ Since m_3 is a root of the equation $dm^3 + cm^2 + cm^2$ bm + a = 0 $\therefore d\left(-\frac{a}{d}\right)^3 + c\left(-\frac{a}{d}\right)^2 + b\left(-\frac{a}{d}\right) + a = 0$ $\Rightarrow -a^3d + a^2cd - abd^2 + ad^3 = 0$ $\Rightarrow -a^2 + ac - bd + d^2 = 0$ $\Rightarrow a(c-a) = d(b-d) \Rightarrow a(a-c) = d(d-b)$ 390 (a) Let the lines are $y = m_1 x + c_1$ and $y = m_2 x + c_2$ Since, pair of straight lines are parallel to *x*-axis $\therefore m_1 = m_2 = 0$ and the lines will be $y = c_1$ and $y = c_2$ Given circle is $x^2 + y^2 - 6x - 4y - 12 = 0$ Centre (3, 2) and radius = 5 $P \quad y - c_1 = 0$ $P' \quad v - c_2 = 0$ Here, the perpendicular drown from centre to the lines are *CP* and *CP*" $\therefore CP = \frac{2-c_1}{\sqrt{1}} = \pm 5$ $\Rightarrow 2 - c_1 = \pm 5$ \Rightarrow $c_1 = 7$ and $c_1 = -3$ Hence, the lines are

y - 7 = 0, y + 3 = 0, ie, (y - 7)(y + 3) = 0∴ Pair of straight lines is $y^2 - 4y - 21 = 0$

391 **(a)**

Now, slope of
$$QR = \frac{3\sqrt{3} - 0}{3 - 0} = \sqrt{3} = \tan \theta$$

 $\Rightarrow \theta = \frac{\pi}{3}$

 $\begin{array}{ccc} P & Q \\ (-1, 0) & (0, 0) \end{array}$ \therefore The angle between PQR is $\frac{2\pi}{3}$, so the line QM m direction of x-axis. Slope of the line $QM = \tan \frac{2\pi}{2} = -\sqrt{3}$ Hence, equation of line *QM* is $y = -\sqrt{3}x$ or $\sqrt{3}x + y = 0$ 392 (a) Let $ay^4 + bxy^3 + cx^2y^2 + dx^3y + ex^4 =$ $(ax^{2} + pxy - ay^{2})(x^{2} + qxy + y^{2})$ On comparing the coefficient of similar terms, we get b = aq - p, c = -pq, d = aq + p, e = -aNow, b + d = 2aq, e - a = -2aad + be = 2ap, a + c + e = -pq: $(b+d)(ad+be) = -(e-a)^2(a+c+e)$ $\Rightarrow (b+d)(ad+eb) + (e-a)^2(a+c+e) = 0$ 393 (d) Given equation is $3x^2 + xy - y^2 - 3x + 6y + k = 0$ Here, $a = 3, b = -1, h = \frac{1}{2}, g = -\frac{3}{2}f = 3, c = k$, Given equation represents a pair of straight line, if $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$ $\therefore 3(-1)(k) + 2 \times 3 \times \left(-\frac{3}{2}\right) \times \frac{1}{2} - 3(3)^2$ $+1\left(\frac{-3}{2}\right)^2 - k\left(\frac{1}{2}\right)^2 = 0$ $\Rightarrow -3k - \frac{9}{2} - 27 + \frac{9}{4} - \frac{k}{4} = 0 \Rightarrow k = -9$ 394 (b) Let (h, k) be the coordinates of the vertex. Then, the height of the triangle is the length of the perpendicular from (h, k) on x = a i.e. |h - a|Since the area of the triangle is a^2 $\therefore \frac{1}{2}(2 a)|h-a| = a^2$ $\Rightarrow |h - a| = a$ \Rightarrow $h - a = \pm a \Rightarrow h = 0, h = 2 a$ Hence, the vertex lies on x = 0 or, x = 2a395 (a) The distance of the point (-2, 3) from the line x - y = 5 is $p = \left| \frac{-2 - 3 - 5}{\sqrt{(1)^2} + (-1)^2} \right|$

$$= \left| \frac{-10}{\sqrt{2}} \right| = \frac{10}{\sqrt{2}} = 5\sqrt{2}$$
396 **(b)**
Here, $h = -\frac{1}{2}, a = 1, b = -6$
 $\therefore \tan = \left| 2\frac{\sqrt{\frac{1}{4}+6}}{1-6} \right| = \frac{2\sqrt{\frac{25}{4}}}{-5} = |-1|$
 $\therefore \theta = \tan^{-1}(1) = 45^{\circ}$
397 **(c)**

On comparing the given equation with standard equation, we get a = 12 and b = a. We also know, if pair of straight lines is perpendicular, then coefficient of x^2 + coefficient of $y^2 = 0$ or a + b = 0

 $\therefore 12 + a = 0 \Rightarrow a = -12$

A (-1, 2)

398 (a)

:
$$AD = \left| \frac{-2 - 2 - 1}{\sqrt{(2)^2 + (-1)^2}} \right| = \left| \frac{-5}{\sqrt{5}} \right| = \sqrt{5}$$

and in $\triangle ABD$ tan $60^\circ = \frac{AD}{BD}$

$$\Rightarrow \sqrt{3} = \frac{\sqrt{5}}{BD} \Rightarrow BD = \sqrt{\frac{5}{3}}$$
$$\Rightarrow BC = 2BD = 2\sqrt{\frac{5}{3}} = \sqrt{\frac{20}{3}}$$

399 **(b)**

The equation of any line parallel to 2x + 6y + 7 = 0 is 2x + 6y + k = 0. This meets the axes at A(-k/2, 0) and B(0, -k/6)Now, AB = 10

$$AB = 10$$

$$\Rightarrow \sqrt{\frac{k^2}{4} + \frac{k^2}{36}} = 10$$

$$\Rightarrow \sqrt{\frac{10 k^2}{36}} = 10$$

$$\Rightarrow 10 k^2 = 3600 \Rightarrow k = \pm 6\sqrt{10}$$

Hence, there are two lines given by $2x + 6y \pm 6\sqrt{10} = 0s$

401 (d)

Equation of a line passing through the intersection of lines ax + 2by + 3b = 0 and bx - 2ay - 3a = 0 is

 $(ax + 2by + 3b) + \lambda(bx - 2ay - 3a) = 0 \dots (i)$ Now, this line is parallel to *x*-axis, so coefficient of *x* should be zero. *ie*, $a + \lambda b = 0$ $\Rightarrow \lambda = -\frac{a}{b}$ On putting this value in Eq. (i), we get b(ax + 2by + 3b) - a(bx - 2ay - 3a) = 0 $\Rightarrow 2(b^2 + a^2)y + 3(b^2 + a^2) = 0$ $\Rightarrow y = -\frac{3}{2}$

The negative sign shows that the line is below *x*-axis, at a distance $\frac{3}{2}$ from it.

402 **(a)**

Since the area of the square is 25 sq. units \therefore Length of each side = 5 units Let the equations of the other sides be $3x - 4y + k_1 = 0$ and $4x + 3y + k_2 = 0$ The distance between 3x - 4y = 0 and $3x - 4y + k_1 = 0$ is $\frac{k_1}{\sqrt{3^2 + (-4)^2}} = \frac{k_1}{5}$ \therefore Area of the square $=\frac{k_1^2}{25}$ $\Rightarrow \frac{k_1^2}{25} = 25 \Rightarrow k_1 = \pm 25$ Similarly, we have $k_2 = \pm 25$ Hence, the equations of the other two sides of the square are $3x - 4y \pm 25 = 0$ and $4x + 3y \pm 25 = 0$ 25 = 0403 (c) Given polar equation is $r\cos\theta + 7r\sin\theta + 1$ Put $x = r \cos \theta$, $y = r \sin \theta$, we get $\Rightarrow x + 7y = 1$ This is the equation of straight line. 405 (c) Here, $a_1a_2 + b_1b_2 = (4 \times 3 + 3 \times 4) = 24 > 0$: The equation of the bisector is $\frac{4x - 3y + 7}{5} = \pm \frac{3x - 4y + 14}{5}$ Talking negative sign. x - y + 3 = 0406 (d) If the points (1,2) and (3,4) are on the same side of 3x - 5y + a = 0, then (3 - 10 + a) and 9 - 20 + a are of the same sign $\therefore (3-10+a)(9-20+a) > 0$ $\Rightarrow (a-7)(a-11) > 0 \Rightarrow a < 7 \text{ or } a > 11$ 407 (b) Given, $x^2 + y^2 = 9$...(i)

and x + y = 3 ...(ii) From Eqs. (i) and (ii), we make a homogeneous equation. $\Rightarrow x^2 + y^2 = (x + y)^2$ $\Rightarrow x^2 + y^2 = x^2 + y^2 + 2xy$ $\Rightarrow xy = 0$ 408 (d) Since, line *L* passes through (13, 32) $\therefore \frac{13}{5} + \frac{32}{h} = 1$ $\Rightarrow \frac{32}{h} = 1 - \frac{13}{5} = -\frac{8}{5}$ $\Rightarrow b = -\frac{32 \times 5}{8} = -20$ $\Rightarrow L: \frac{x}{5} - \frac{y}{20} = 1$ Given, $K: \frac{x}{c} + \frac{y}{3} = 1$ is parallel to L = 0 \therefore The line *K* must have equation $\frac{x}{5} - \frac{y}{20} = a$ or $\frac{x}{5a} - \frac{y}{20a} = 1$ Comparing with $\frac{x}{c} + \frac{y}{3} = 1$ $\Rightarrow -20a = 3, c = 5a$ $\Rightarrow a = -\frac{3}{20}, c = -\frac{15}{20}$: Distance between line is $\left|\frac{a-1}{\sqrt{\frac{1}{25} + \frac{1}{400}}}\right| = \left|\frac{-\frac{3}{20} - 1}{\sqrt{\frac{17}{100}}}\right| = \frac{23}{\sqrt{17}}$ 409 (c) The length of perpendicular from point $(a \cos \alpha, a \sin \alpha)$ to the line $x \tan \alpha - y + c = 0$ or $x \sin \alpha - y \cos \alpha + c \cos \alpha$ $=\frac{a\cos\alpha\sin\alpha-a\sin\alpha\cos\alpha+c\cos\alpha=0}{\sqrt{\sin^2\alpha+\cos^2\alpha}}$ $= c \cos \alpha$ 410 (c) The equations ax + by + c = 0 and dx + ey + c = 0f = 0 will represent the same straight line if their slopes and y-intercepts are equal $\therefore -\frac{a}{b} = -\frac{d}{a}$ and $-\frac{c}{b} = -\frac{f}{a}$ $\Rightarrow \frac{a}{d} = \frac{b}{e} \text{ and } \frac{b}{e} = \frac{c}{f} \Rightarrow \frac{a}{d} = \frac{b}{e} = \frac{c}{f}$ 411 (d) We know that the coordinates of the image of (x_1, y_1) with respect to the line ax + by + c = 0

are given by

Thus, the coordinates of the required point are given by $\frac{x-0}{1} = \frac{y-0}{1} = -2\left(\frac{0+0+1}{1^2+1^2}\right)$ $\Rightarrow \frac{x}{1} = \frac{y}{1} = -1 \Rightarrow x = -1, y = -1$ 412 (d) The intersection point of y - x + 7 = 0 and y + 2x - 2 = 0 is (3, -4): Equation of dtrianght line joining from origin t60 the point (3, -4) is $y-0 = \frac{-4}{2}(x-0)$ $\Rightarrow 3y = -4x \Rightarrow 4x + 3y = 0$ 413 (d) Since one of the lines represented by ax^2 + $2 hxy + by^2 = 0$ bisects the angle between the axes in the first quadrant. Therefore, its equation is y = xClearly, y = x must satisfy $ax^2 + 2 hxy + by^2 = 0$ $\therefore ax^2 + 2 hx^2 + bx^2 = 0$ $\Rightarrow a + b = -2 h \Rightarrow (a + b)^2 = 4 h^2$ 415 (a) Let the image of the point (-1,3) in the line y = xis (3, -1)416 (c) The joint equation of the given lines is (x + y - 1)(x - y - 4) = 0417 (d) Let *a* and *b* intercepts on the coordinate axes. $\therefore a + b = -1 \implies b = -(a + 1)$ Equation of line is $\frac{x}{a} + \frac{y}{b} = 1$ $\Rightarrow \frac{x}{a} - \frac{y}{a+1} = 1 \quad \dots(i)$ Since, this line passes through (4, 3) $\therefore \frac{4}{a} - \frac{3}{a+1} = 1$ $\Rightarrow a + 4 = a^2 + a$ $\Rightarrow a^2 = 4 \Rightarrow a = \pm 2$ \therefore Equation of line is $\frac{x}{2} - \frac{y}{3} = 1$ or $\frac{x}{-2} + \frac{y}{1} = 1$ [from Eq.(i)] 419 (d) The given equation represent coincident lines, if $h^2 - ab = 0$ $\Rightarrow \left(\frac{h}{2}\right)^2 - 4 \cdot 1 = 0 \Rightarrow h = \pm 4$ 420 (a) Equation of sides are x = 0, x = 2, y = 0, y = 3Page | 75

 $\frac{x-x_1}{a} = \frac{y-y_1}{b} = -\frac{2(ax_1+by_1+c)}{a^2+b^2}$

$$y = 3$$

$$x = 0$$

$$x =$$

$$AC = \sqrt{(2+2)^2 + (-2-2)^2}$$

$$= \sqrt{16+16} = 4\sqrt{2}$$

$$\therefore AB = BC$$

$$\therefore Triangle is isosceles$$
424 (b)
The point of intersection of lines $2x - 3y + 4 = 0$
and $3x + 4y - 5 = 0$ is
 $\left(-\frac{2}{34}, \frac{22}{17}\right)$
The slope of required line which is perpendicular
to
 $6x - 7y + 3 = 0$ is $-\frac{7}{6}$
 \therefore Equation of required line
 $y - \frac{22}{17} = -\frac{7}{6}\left(x + \frac{2}{34}\right)$
 $\Rightarrow \frac{6(17y - 22)}{17} = -\frac{7(34x + 2)}{34}$
 $\Rightarrow 119x + 102y = 125$
425 (c)
Since, the given lines are concurrent
 $\therefore \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0 \Rightarrow a^3 + b^3 + c^3 - 3abc = 0$
 $\Rightarrow (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) = 0$
 $\Rightarrow \frac{(a + b + c)}{2}\{(a - b)^2 + (b - c)^2 + (c - a)^2\}$
 $= 0$
 $\Rightarrow a + b + c = 0$ (as $a \neq b \neq c$)

and