Single Correct Answer Type

1. The area of the triangle bounded by the straight line $a x+b y+c=0,(a, b, c \neq 0)$ and the coordinate axes is
a) $\frac{1}{2} \frac{a^{2}}{|b c|}$
b) $\frac{1}{2} \frac{c^{2}}{|a b|}$
c) $\frac{1}{2} \frac{b^{2}}{|a c|}$
d) 0
2. The points $(1,1),(-5,5)$ and $(13, \lambda)$ lie on the same straight line, if λ is equal to
a) 7
b) -7
c) ± 7
d) 0
3. The equations to the straight lines passing through the origin and making an angle α with the straight line $y+x=0$ are given by
a) $x^{2}+2 x y \sec 2 \alpha+y^{2}=0$
b) $x^{2}-2 x y \sec 2 \alpha+y^{2}=0$
c) $x^{2}+2 x y \cos 2 \alpha+y^{2}=0$
d) None of these
4. Consider the points $A \equiv(3,4), B \equiv(7,13)$. If ' P ' be a point on the line $y=x$, such that $P A+P B$ is minimum, then coordinates of P is
a) $\left(\frac{13}{7}, \frac{13}{7}\right)$
b) $\left(\frac{23}{7}, \frac{23}{7}\right)$
c) $\left(\frac{31}{7}, \frac{31}{7}\right)$
d) $\left(\frac{33}{7}, \frac{33}{7}\right)$
5. The length of the perpendicular from the origin of the line
$\frac{x \sin \alpha}{b}-\frac{y \cos \alpha}{a}-1=0$ is
a) $\frac{|a b|}{\sqrt{a^{2} \cos ^{2} \alpha-b^{2} \sin ^{2} \alpha}}$
b) $\frac{|a b|}{\sqrt{a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha}}$
c) $\frac{|a b|}{\sqrt{a^{2} \sin ^{2} \alpha-b^{2} \cos ^{2} \alpha}}$
d) $\frac{|a b|}{\sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha}}$
6. The angle between the straight line $x-y \sqrt{3}=5$ and $\sqrt{3} x+y=7$ is
a) 90°
b) 60°
c) 75°
d) 30°
7. Two consecutive sides of a parallelogram are $4 x+5 y=0$ and $7 x+2 y=0$. One diagonal of the parallelogram is $11 x+7 y=9$. If the other diagonal is
$a x+b y+c=0$, then
a) $a=-1, b=-1, c=2$
b) $a=1, b=-1, c=0$
c) $a=-1, b=-1, c=0$
d) $a=1, b=1, c=1$
8. The straight lines $a x+b y=c, b x+c y=a$ and $c x+a y=b$ are concurrent, if
a) $a+b=c$
b) $b+c=a$
c) $c+a=b$
d) $a+b+c=0$
9. If the angle between the pair of straight lines represented by the equation $x^{2}-3 x y+\lambda y^{2}+3 x-5 y+$ $2=0$, is $\tan ^{-1}\left(\frac{1}{3}\right)$, where ' λ ' is a non-negative real number. Then, λ is
a) 2
b) 0
c) 3
d) 1
10. The centroid of the triangle formed by the pair of straight lines $12 x^{2}-20 x y+7 y^{2}=0$ and the line $2 x-3 y+4=0$ is
a) $\left(-\frac{7}{3}, \frac{7}{3}\right)$
b) $\left(-\frac{8}{3}, \frac{8}{3}\right)$
c) $\left(\frac{8}{3}, \frac{8}{3}\right)$
d) $\left(\frac{4}{3}, \frac{4}{3}\right)$
11. If the angle between the lines represented by $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$ is $\tan ^{-1}(m)$, then m is equal to
a) $1 / 5$
b) -1
c) $-2 / 3$
d) None of these
12. The lines represents by $a x^{2}+2 h x y+b y^{2}=0$ are perpendicular to each other, if
a) $h^{2}=a+b$
b) $a+b=0$
c) $h^{2}=a b$
d) $h=0$
13. If the lines $3 x+4 y+1=0,5 x+\lambda y+3=0$ and $2 x+y-1=0$ are concurrent, then λ is equal to
a) -8
b) 8
c) 4
d) -4
14. The lines $p\left(p^{2}+1\right) x-y+q=0$ and $\left(p^{2}+1\right)^{2} x+\left(p^{2}+1\right) y+2 q=0$ are perpendicular to a common line for
a) Exactly one value of p
b) Exactly two values of p
c) More than two values of p
d) No value of p
15. If $P(\sin \theta, 1 / \sqrt{2})$ and $Q(1 / \sqrt{2}, \cos \theta),-\pi \leq \theta \leq \pi$ are two points on the same side of the line $x-y=0$, then θ belongs to the interval
a) $-\pi / 4, \pi / 4$
b) $(-\pi / 4, \pi / 4)$
c) $(\pi / 4,3 \pi / 4)$
d) None of these
16. The area of the triangle formed by the axes and the line $(\cos h \alpha-\sin h \alpha)+(\cos h \alpha+\sin h \alpha) y=2$ in square units, is
a) 4
b) 3
c) 2
d) 1
17. If a, c, b are in G.P., then the line $a x+b y+c=0$
a) Has a fixed direction
b) Always passes through a fixed point
c) Forms a triangle with the axes whose area is constant
d) Always cuts intercepts on the axes such that their sum is zero
18. The equation of the image of the lines $y=|x|$ in the line mirror $x=2$ is
a) $y=|x-4|$
b) $|y|=x+4$
c) $|y|+4=x$
d) None of these
19. The angle between the straight lines $x^{2}-y^{2}-2 x-1=0$, is
a) 90°
b) 60°
c) 75°
d) 36°
20. The equation of the line passing through the intersection of the lines $x-3 y+1=0$ and $2 x+5 y-9=0$ and at distance $\sqrt{5}$ from the origin, is
a) $2 x-y=5$
b) $x+2 y=5$
c) $2 x+y=5$
d) $x+2 y=1$
21. The area of the parallelogram formed by the lines $x \cos \alpha+y \sin \alpha=p, x \cos \alpha+y \sin \alpha=q$, $x \cos \beta+y \sin \beta=r$ and $x \cos \beta+y \sin \beta=s$ for given values of p, q, r and s is least, if $(\alpha-\beta)=$
a) $\pm \frac{\pi}{2}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{6}$
d) $\frac{\pi}{3}$
22. A rectangle has two opposite vertices at the points $(1,2)$ and $(5,5)$. If the other vertices lie on the line $x=3$, then their coordinates are
a) $(3,1),(3,3)$
b) $(3,1),(3,6)$
c) $(3,1),(3,4)$
d) None of these
23. A line is drawn from $P\left(x_{1}, y_{1}\right)$ in the direction α with the x-axis, to meet $A x+B y+C=0$ at Q. Then, the length $P Q$ is equal to
a) $\left|\frac{A x_{1}+B y_{1}+C}{\sqrt{A^{2}+B^{2}}}\right|$
b) $-\frac{A x_{1}+B y_{1}+C}{A \cos \alpha+B \sin \alpha}$
c) $\frac{A x_{1}+B y_{1}+C}{A \cos \alpha B \sin \alpha}$
d) $-\frac{A x_{1}+B y_{1}+C}{A \sin \alpha+B \cos \alpha}$
24. The angle between the lines represented by the equation $2 x^{2}+3 x y-5 y^{2}=0$, is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{2}$
c) $\tan ^{-1}\left|\frac{12}{5}\right|$
d) $\tan ^{-1}\left|\frac{7}{3}\right|$
25. A point moves in such a way that the square of its distance from the point $(3,-2)$ is equal to numerically its distance from the line $5 x-12 y=13$. The equation of the locus of the point is
a) $x^{2}+y^{2}-11 x-16 y+26=0$
b) $x^{2}+y^{2}-11 x+16 y=0$
c) $13\left(x^{2}+y^{2}\right)-83 x+64 y+182=0$
d) $x^{2}+y^{2}-83 x+64 y+182=0$
26. The line $x+y=4$ divides the line joining $(-1,1)$ and $(5,7)$ in the ratio $\lambda: 1$, then the value of λ is
a) 2
b) $1 / 2$
c) 3
d) None of these
27. If $a x^{2}-y^{2}+4 x-y=0$ represents a pair of lines, then a is equal to
a) -16
b) 16
c) 4
d) -4
28. The locus of the point $P(x, y)$ satisfying the relation $\sqrt{(x-3)^{2}+(y-1)^{2}}+\sqrt{(x+3)^{2}+(y-1)^{2}}=6$ is
a) A straight line
b) A pair of straight lines
c) A circle
d) An ellipse
29. The value of k for which the lines $2 x-3 y+k=0,3 x-4 y-13=0$ and $8 x-11 y-33=0$ are concurrent, is
a) 20
b) -7
c) 7
d) -20
30. Points on the line $y=x$ whose perpendicular distance from the line $3 x+4 y=12$ are 4 have the coordinates
a) $\left(-\frac{8}{7},-\frac{8}{7}\right),\left(-\frac{32}{7},-\frac{32}{7}\right)$
b) $\left(\frac{8}{7}, \frac{8}{7}\right),\left(\frac{32}{7}, \frac{32}{7}\right)$
c) $\left(-\frac{8}{7},-\frac{8}{7}\right),\left(\frac{32}{7}, \frac{32}{7}\right)$
d) None of these
31. The equation of the bisectors of the angles between the lines $|x|=|y|$ are
a) $y= \pm x$ and $x=0$
b) $x=\frac{1}{2}$ and $y=\frac{1}{2}$
c) $y=0$ and $x=0$
d) None of these
32. Consider the family of lines $(x+y-1)+\lambda(2 x+3 y-5)=0$ and $(3 x+2 y-4)+\mu(x+2 y-6)=0$, equation of the straight line that belongs to both the families is
a) $x-2 y-8=0$
b) $x-2 y+8=0$
c) $2 x+y-8=0$
d) $2 x-y-8=0$
33. A straight line passing through $P(3,1)$ meet the coordinate axes at A and B. It is given that distance of this straight line from the origin ' O ' is maximum. Area of $\triangle O A B$ is equal to
a) $\frac{50}{3}$ sq unit
b) $\frac{25}{3}$ sq unit
c) $\frac{20}{3}$ sq unit
d) $\frac{100}{6}$ sq unit
34. The lines represented by the equation $x^{2}-y^{2}-x+3 y-2=0$ are
a) $x+y-1=0, x-y+2=0$
b) $x-y-2=0, x+y+1=0$
c) $x+y+2=0, x-y-1=0$
d) $x-y+1=0, x+y-2=0$
35. If the bisectors of angles represented by $a x^{2}+2 h x y+b y^{2}=0$ and $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}=0$ are same, then
a) $(a-b) h^{\prime}=\left(a^{\prime}-b^{\prime}\right) h$
b) $(a-b) h=\left(a^{\prime}-b^{\prime}\right) h^{\prime}$
c) $(a+b) h^{\prime}=\left(a^{\prime}-b^{\prime}\right) h$
d) $(a-b) h^{\prime}=\left(a^{\prime}+b^{\prime}\right) h$
36. If P is a point (x, y) on the line $y=-3 x$ such that P and the point $(3,4)$ are on the opposite sides of the line $3 x-4 y-8=0$, then
a) $x>\frac{8}{15}, y<-\frac{8}{5}$
b) $x>\frac{8}{5}, y<-\frac{8}{15}$
c) $x=\frac{8}{15}, y=-\frac{8}{5}$
d) None of these
37. A point equidistant from the lines $4 x+3 y+10=0,5 x-12 y+26=0$ and $7 x+24 y-50=0$ is
a) $(1,-1)$
b) $(1,1)$
c) $(0,0)$
d) $(0,1)$
38. The straight line $4 x+3 y=12$ intersects the x-axis and y-axis at A and B respectively. Then the distance $B I$ where I is the centre of the in-circle of $\triangle O A B$, where B is the origin, is equal to
a) $\sqrt{10}$
b) $2 \sqrt{5}$
c) 3
d) 2
39. Let $P Q R$ be a right angled isosceles triangle, right angled at $P(2,1)$. If the equation of the line $Q R$ is $2 x+y=3$, then the equation representing the pair of lines $P Q$ and $P R$ is
a) $3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0$
b) $3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0$
c) $3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0$
d) $3 x^{2}-3 y^{2}-8 x y-10 x-15 y-20=0$
40. A point moves in the $x y$-plane such that the sum of its distance from two mutually perpendicular lines is always equal to 3 . The area of the locus of the point is
a) 18 sq.units
b) $9 / 2$ sq.units
c) 9 sq.units
d) None of these
41. The equation of the lines through the point $(3,2)$ which makes an angle of 45° with the line $x-2 y=3$, are
a) $3 x-y=7$ and $x+3 y=9$
b) $x-3 y=7$ and $3 x+y=9$
c) $x-y=3$ and $x+y=2$
d) $2 x+y=7$ and $x-2 y=9$
42. Equation of the straight line making equal intercepts on the axes and passing through the point $(2,4)$, is
a) $4 x-y-4=0$
b) $2 x+y-8=0$
c) $x+y-6=0$
d) $x+2 y-10=0$
43. The point on the axis of x, whose perpendicular distance from the straight line
$\frac{x}{a}+\frac{y}{b}=1$ is a, are
a) $\frac{b}{a}\left(a \pm \sqrt{a^{2}+b^{2}}, 0\right.$
b) $\left(\frac{a}{b}\left(b \pm \sqrt{a^{2}+b^{2}}\right), 0\right)$
c) $\frac{b}{a}(a+b, 0)$
d) $\frac{a}{b}\left(a \pm \sqrt{a^{2}+b^{2}}, 0\right)$
44. The difference of the tangents of the angles which the lines $x^{2}\left(\sec ^{2} \theta-\sin ^{2} \theta\right)-2 x y \tan \theta+$ $y 2 \sin 2 \theta=0$ make with the x-axis is
a) $2 \tan \theta$
b) 2
c) $2 \cot \theta$
d) $\sin 2 \theta$
45. The image of the origin with reference to the line $4 x+3 y-25=0$, is
a) $(-8,6)$
b) $(8,6)$
c) $(-3,4)$
d) $(8,-6)$
46. Consider the following statements:
I. If $\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=\left|\begin{array}{lll}a_{1} & b_{1} & 1 \\ a_{2} & b_{2} & 1 \\ a_{3} & b_{3} & 1\end{array}\right|$, then the two triangles with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)$ must be congruent
II. Only one straight line can be drown through the origin at equal distance from the points $A(2,2)$ and $B(4,0)$
Which of these is/are correct
a) Only 1
b) Only 2
c) Both of these
d) None of these
47. All chords of the curve $3 x^{2}-y^{2}-2 x+4 y=0$ which subtend a right angle at the origin, pass through the fix point
a) $(1,2)$
b) $(1,-2)$
c) $(-1,2)$
d) $(-1,-2)$
48. Lines $2 x+y=1$ and $2 x+y=7$ are
a) On the same side of a point $\left(0, \frac{1}{2}\right)$
b) On the opposite side of a point $\left(0, \frac{1}{2}\right)$
c) Same lines
d) Perpendicular lines
49. The angle between the pair of lines
$2 x^{2}+5 x y+2 y^{2}+3 x+3 y+1=0$, is
a) $\cos ^{-1}(4 / 5)$
b) $\tan ^{-1}(4 / 5)$
c) 0
d) $\pi / 2$
50. If the line $p x^{2}-q x y-y^{2}=0$ makes an angles α and β with x-axis, then the value of $\tan (\alpha+\beta)$ is
a) $\frac{-q}{1+p}$
b) $\frac{q}{1+p}$
c) $\frac{p}{1+q}$
d) $\frac{-p}{1+q}$
51. If the distance of any point (x, y) from the origin is defined as $d(x, y)=\max \{|x|,|y|\}, d(x, y)=a$, non-zero constant, then the locus is
a) A circle
b) A straight line
c) A square
d) A triangle
52. The pair of lines joining origin to the points of intersection of the two curves $a x^{2}+2 h x y+b y^{2}+2 g x=0$ and $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}+2 g^{\prime} x=0$ will be at right angles, if
a) $\left(a^{\prime}+b^{\prime}\right) \mathrm{g}^{\prime}=(a+b) \mathrm{g}$
b) $(a+b) \mathrm{g}^{\prime}=\left(a^{\prime}+b^{\prime}\right) \mathrm{g}$
c) $h^{2}-a b={h^{\prime}}^{2}-a^{\prime} b^{\prime}$
d) $a+b+h^{2}=a^{\prime}+b^{\prime}+{h^{\prime}}^{2}$
53. Two vertices of a triangle are $(5,-1)$ and $(-2,3)$. If the orthocentre of the triangle is the origin, then coordinates of the third vertex are
a) $(4,7)$
b) $(-4,-7)$
c) $(-4,7)$
d) None of these
54. The distance between the parallel lines $y=x+a, y=x+b$ is
a) $\frac{|b-a|}{\sqrt{2}}$
b) $|a-b|$
c) $|a+b|$
d) $\frac{|b+a|}{\sqrt{2}}$
55. Consider the fourteen lines in the plane given by $y=x+r, y=-x+r$, where $r \in\{0,1,2,3,4,5,6\}$. The number of squares formed by these lines, whose sides are of length $\sqrt{2}$, is
a) 9
b) 16
c) 25
d) 36
56. The line $(p+2 q) x+(p-3 q) y=p-q$ for different values of p and q passes through the fixed point
a) $(3 / 2,5 / 2)$
b) $(2 / 5,2 / 5)$
c) $(3 / 5,3 / 5)$
d) $(2 / 5,3 / 5)$
57. A line passing through origin and is perpendicular to two given lines $2 x+y+6=0$ and $4 x+2 y-9=0$.

The ratio in which the origin divides this line, is
a) $1: 2$
b) $2: 1$
c) $4: 2$
d) $4: 3$
58. A straight line through the point $(1,1)$ meets the x-axis at ' A ' and y-axis at ' B '. The locus of the mid point of $A B$ is
a) $2 x y+x+y=0$
b) $x+y-2 x y=0$
c) $x+y+2=0$
d) $x+y-2=0$
59. The distance between the lines $3 x+4 y=9$ and $6 x+8 y=15$ is
a) $\frac{3}{2}$
b) $\frac{3}{10}$
c) 6
d) None of these
60. The equation of the pair of straight lines parallel to x-axis and touching the circle $x^{2}+y^{2}-6 x-4 y-12=0$ is
a) $y^{2}-4 y-21=0$
b) $y^{2}+4 y-21=0$
c) $y^{2}-4 y+21=0$
d) $y^{2}+4 y+21=0$
61. If the area of the triangle formed by the pair of lines given by $8 x^{2}-6 x y+y^{2}=0$ and the line $2 x+3 y=a$ is 7 , then $a=$
a) 14
b) $14 \sqrt{2}$
c) 28
d) None of these
62. The equation of the line which is such that the portion of line segment intercepted between the coordinate axes is bisected at $(4,-3)$, is
a) $3 x+4 y=24$
b) $3 x-4 y=12$
c) $3 x-4 y=24$
d) $4 x-3 y=24$
63. Let α be the distance between lines $-x+y=2$ and $x-y=2$ and β be the distance between the lines $4 x-3 y=5$ and $6 y-8 x=1$, then
a) $20 \sqrt{2} \beta=11 \alpha$
b) $20 \sqrt{2} \alpha=11 \beta$
c) $11 \sqrt{2} \beta=20 \alpha$
d) None of these
64. If the lines $x^{2}+2 x y-35 y^{2}-4 x+44 y-12=0$ and $5 x+\lambda y-8=0$ are concurrent, then the value of λ is
a) 0
b) 1
c) -1
d) 2
65. The straight line $3 x+4 y-5=0$ and $4 x=3 y+15$ intersect at the point P. On these lines the points \mathcal{Q} and R are chosen so that $P Q=P R$. The slopes of the lines $Q R$ passing through $(1,2)$ are
a) $-7,1 / 7$
b) $7,1 / 7$
c) $7,-1 / 7$
d) $3,-1 / 3$
66. The vertices of a triangle are $A(3,7), B(3,4)$ and $C(5,4)$. The equation of the bisector of the angle $A B C$ is
a) $y=x+1$
b) $y=x-1$
c) $y=3 x-5$
d) $y=x$
67. The position of reflection of the point $(4,1)$ about the line $y=x-1$ is
a) $(1,2)$
b) $(3,4)$
c) $(-1,0)$
d) $(2,3)$
68. A straight line through the point $A(3,4)$ is such that its intercept between the axes is bisected at A. Its equation is
a) $3 x-4 y+7=0$
b) $4 x+3 y=24$
c) $3 x+4 y=25$
d) $x+y=7$
69. If $(-4,5)$ is one vertex and $7 x-y+8=0$ is one diagonal of a square, then the equation of second diagonal is
a) $x+3 y=21$
b) $2 x-3 y=7$
c) $x+7 y=31$
d) $2 x+3 y=21$
70. The pair of lines joining origin to the points of intersection of the two curves $a x^{2}+2 h x y+b y^{2}+2 g x=0$ and $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}+2 g^{\prime} x=0$ will be at right angles, if
a) $\left(a^{\prime}+b^{\prime}\right) \mathrm{g}^{\prime}=(a+b) \mathrm{g}$
b) $(a+b) \mathrm{g}^{\prime}=\left(a^{\prime}+b^{\prime}\right) \mathrm{g}$
c) $h^{2}-a b=h^{\prime 2}-a^{\prime} b^{\prime}$
d) $a+b+h^{2}=a^{\prime}+b^{\prime}+{h^{\prime}}^{2}$
71. If a variable line passes through the point of intersection of the lines $x+2 y-1=0$ and $2 x-y-1=0$ and meets the coordinates axes in A and B, then the locus of the mid point of $A B$ is
a) $x+3 y=0$
b) $x+3 y=10$
c) $x+3 y=10 x y$
d) None of these
72. Distance between the two parallel lines $y=2 x+7$ and $y=2 x+5$ is
a) $\sqrt{5} / 2$
b) $2 / 5$
c) $2 / \sqrt{5}$
d) $1 / \sqrt{5}$
73. If P is the length of the perpendicular from the origin on the line whose intercepts on the axes are a and b, then
a) $p^{2}=a^{2}+b^{2}$
b) $p^{2}=a^{2}-b^{2}$
c) $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
d) $\frac{1}{p^{2}}=\frac{1}{a^{2}}-\frac{1}{b^{2}}$
74. If the diagonals of a parallelogram $A B C D$ are along the lines $x+5 y=7$ and $10 x-2 y=9$, then $A B C D$
must be a
a) Rectangle
b) Square
c) Cyclic quadrilateral
d) Rhombus
75. The value of k such that the lines $2 x-3 y+k=0,3 x-4 y-13=0$ and $8 x-11 y-33=0$ are concurrent, is
a) 20
b) -7
c) 7
d) -20
76. The area (in square units) of the quadrilateral formed by two pairs of lines $l^{2} x^{2}-m^{2} y^{2}-n(l x+m y)=$ 0 and $l^{2} x^{2}-m^{2} y^{2}+n(l x-m y)=0$, is
a) $\frac{n^{2}}{2|l m|}$
b) $\frac{n^{2}}{|l m|}$
c) $\frac{n}{2|l m|}$
d) $\frac{n^{2}}{4|l m|}$
77. A square of side a lies above the x-axis and has one vertex at origin. The side passing through the origin makes an angle $\alpha\left(0<\alpha<\frac{\pi}{4}\right)$ with the positive direction of x-axis. The equation of its diagonal not passing through the origin is
a) $y(\cos \alpha-\sin \alpha)-x(\sin \alpha-\cos \alpha)=a$
b) $y(\cos \alpha+\sin \alpha)+x(\sin \alpha-\cos \alpha)=a$
c) $y(\cos \alpha+\sin \alpha)+x(\sin \alpha+\cos \alpha)=a$
d) $y(\cos \alpha+\sin \alpha)+x(\cos \alpha-\sin \alpha)=a$
78. The equation of one of the lines parallel to $4 x-3 y=5$ and at a unit distance from the point $(-1,-4)$ is
a) $3 x+4 y-3=0$
b) $3 x+4 y+3=0$
c) $4 x-3 y+3=0$
d) $4 x-3 y-3=0$
79. The point $P(a, b)$ lies on the straight line $3 x+2 y=13$ and the point $Q(b, a)$ lies on the straight line $4 x-y=5$, then equation of the line $P Q$ is
a) $x-5=5$
b) $x+y=5$
c) $x+y=-5$
d) $x-y=-5$
80. The equation $x^{2}+k x y+y^{2}-5 x-7 y+6=0$ represents a pair of straight lines, then k is
a) $5 / 3$
b) $10 / 3$
c) $3 / 2$
d) $3 / 10$
81. If t_{1} and t_{2} are roots of the equation $t^{2}+\lambda t+1=0$, where λ is an arbitrary constant. Then, the line joining the points $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$ always passes through a fixed point whose coordinates are
a) $(a, 0)$
b) $(-a, 0)$
c) $(0, a)$
d) $(0,-a)$
82. A straight line through the point $(2,2)$ intersects the lines $\sqrt{3} x+y=0$ and $\sqrt{3} x-y=0$ at the point A and B. The equation to the line $A B$ so that the $\triangle O A B$ is equilateral is
a) $x-2=0$
b) $y-2=0$
c) $x+y-4=0$
d) None of these
83. In order to eliminate the first degree terms from the equation $2 x^{2}+4 x y+5 y^{2}-4 x-22 y+7=0$, the point to which origin is to be shifted, is
a) $(1,-3)$
b) $(2,3)$
c) $(-2,3)$
d) $(1,3)$
84. If the lines given by $a x^{2}+2 h x y+b y^{2}=0$ are equally inclined to the lines given by $a x^{2}+2 h x y+b y^{2}+$ $\lambda\left(x^{2}+y^{2}\right)=0$, then
a) λ is any real number
b) $\lambda=2$
c) $\lambda=1$
d) None of these
85. The equation of the line bisecting perpendicularly the segment joining the points $(-4,6)$ and $(8,8)$, is
a) $6 x+y-19=0$
b) $y=7$
c) $6 x+2 y-19=0$
d) $x+2 y-7=0$
86. The value of λ for which the lines $3 x+4 y=5,5 x+4=4$ and $\lambda x+4 y=6$ meet at a point is
a) 2
b) 1
c) 4
d) 3
87. The parallelism condition for two straight lines one of which is specified by the equation $a x+b y+c=0$ and the other being represented parametrically by $x=\alpha t+\beta, y=\gamma t+\delta$, is given by
a) $a \gamma+b \alpha=0, \beta=\delta=c=0$
b) $a \alpha-b \gamma=0, \beta=\delta=0$
c) $a \alpha+b \gamma=0$
d) $a \gamma=b \alpha=0$
88. Origin containing angle bisector of two lines $L_{1} \equiv a_{1} x+b_{1} y+c_{1}=0$ and $L_{2} \equiv a_{2} x+b_{2} y+c_{2}=0$ (where $c_{1} c_{2}<0$) is
a) $\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}=\frac{a_{2} x+b_{2} y+c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}}}$
b) $\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}=-\frac{a_{2} x+b_{2} y+c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}}}$
c) $\frac{a_{1} x+b_{1} y+c_{1}}{a_{1}^{2}+b_{1}^{2}}=\frac{a_{2} x+b_{2} y+c_{2}}{a_{2}^{2}+b_{2}^{2}}$
d) Depends on the value of c_{1} and c_{2}
89. The point of intersection of the two lines given by $2 x^{2}-5 x y+2 y^{2}-3 x+3 y+1=0$ is
a) $(1 / 2,1 / 3)$
b) $(-1 / 7,-1 / 7)$
c) $(-1 / 3,1 / 3)$
d) None of these
90. If the slope of one of the lines given by $a x^{2}-6 x y+y^{2}=0$ is square of the other, then $a=$
a) $8,-27$
b) $-8,27$
c) 1,8
d) $-8,-27$
91. Equation of straight line belonging to families of straight lines
$(x+2 y)+\lambda(3 x+2 y+1)=0$ and $(x-2 y)+\mu(x-y+1)=0$ is
a) $6 x+5 y=2$
b) $5 x-6 y+4=0$
c) $5 x+6 y=4$
d) None of these
92. A straight line through $P(1,2)$ is such that intercept between the axes is bisected at P. Its equation is
a) $x+y=-1$
b) $x+y=3$
c) $x+2 y=5$
d) $2 x+y=4$
93. The equation $x^{2}+2 \sqrt{2} x y+2 y^{2}+4 x+4 \sqrt{2} y+1=0$ represents a pair of lines which are parallel to each other. The distance between them is
a) 4 units
b) $2 \sqrt{3}$ units
c) $4 \sqrt{3}$ units
d) 2 units
94. A straight rod of length 9 units slides with its ends A, B always on the X and Y axis respectively. then, the locus of the centroid of $\triangle O A B$ is
a) $x^{2}+y^{2}=3$
b) $x^{2}+y^{2}=9$
c) $x^{2}+y^{2}=1$
d) $x^{2}+y^{2}=81$
95. If the point $(1, \alpha)$ always remains in the interior of the triangle formed by the lines $y=x, y=0$ and $x+y=4$, then α lies in the interval
a) $(0,1)$
b) $[0,1]$
c) $[0,4]$
d) None of these
96. The angle between the pair of straight lines $y^{2} \sin ^{2} \theta-x y \sin ^{2} \theta+x^{2}\left(\cos ^{2} \theta-1\right)=0$ is
a) $\pi / 3$
b) $\pi / 4$
c) $\pi / 6$
d) $\pi / 2$
97. The area of a pentagon whose vertices are $(4,1),(3,6),(-5,1),(-3,-3)$ and $(-3,0)$ is
a) 30 sq. units
b) 60 sq. units
c) 9 sq. units
d) None of these
98. Let $P S$ be the median of the triangle with vertices $P(2,2), Q(6,-1)$ and $R(7,3)$. The equation of the line passing through $(1,-1)$ and parallel to $P S$ is
a) $2 x-9 y-7=0$
b) $2 x-9 y-11=0$
c) $2 x+9 y-11=0$
d) $2 x+9 y+7=0$
99. If a line passes through the point $(2,2)$ and encloses a triangle of area A square units with the coordinate axes, then the intercepts made by the line on the coordinate axes are the roots of the equations
a) $x^{2} \pm A x \mp 2 A=0$
b) $x^{2} \pm A x \pm 2 A=0$
c) $x^{2} \pm 2 A x \pm A=0$
d) $x^{2} \pm 2 A x \mp A=0$
100. Joint equation of the diagonals of the square formed the pairs of lines $x y+4 x-3 y-12=0$ and $x y-$ $3 x+4 y-12=0$, is
a) $x^{2}-y^{2}+x-y=0$
b) $x^{2}-y^{2}+x+y=0$
c) $x^{2}+2 x y+y^{2}+x+y=0$
d) $x^{2}-2 x y+y^{2}+x-y=0$
101. The equation of the base of an equilateral triangle is $x+y=2$ and the vertex is $(2,-1)$, then the length of the side of the triangle is
a) $\sqrt{3 / 2} / \sqrt{2 / 3}$
b) $\sqrt{2}$
c) $\sqrt{2 / 3}$
d) $\sqrt{3 / 2}$
102. The line $\frac{x}{a}-\frac{y}{b}=1$ cuts the x-axis at P. The equation of the line through P perpendicular to the given line is
a) $x+y=a b$
b) $x+y=a+b$
c) $a x+b y=a^{2}$
d) $b x+a y=b^{2}$
103. In the above question the coordinates of the other two vertices are
a) $(2,0),(4,4)$
b) $(2,4),(4,0)$
c) $(-2,0),(4,-4)$
d) $(2,0),(-4,4)$
104. The line $x+2 y=4$ is translated parallel to itself by 3 units in the sense of increasing x and then rotated by 30° in the clockwise direction about the point where the shifted line cuts the x-axis. The equation of the line in the new position is
a) $y=\tan \left(\theta-30^{\circ}\right)(x-4-3 \sqrt{5})$
b) $y=\tan \left(30^{\circ}-\theta\right)(x-4-3 \sqrt{5})$
c) $y=\tan \left(\theta+30^{\circ}\right)(x+4+3 \sqrt{5})$
d) $y=\tan \left(\theta-30^{\circ}\right)(x+4+3 \sqrt{5})$
105. If $\lambda x^{2}-10 x y+12 y^{2}+5 x-16 y-3=0$, represents a pair of straight lines, then the value of λ is
a) 4
b) 3
c) 2
d) 1
106. The number of integral values of m, for which the x-coordinate of the point of intersection of the lines
$3 x+4 y=9$ and $y=m x+1$ is also an integer, is
a) 2
b) 0
c) 4
d) 1
107. The distance of the point $(3,5)$ from the line $2 x+3 y-14=0$ measured parallel to line $x-2 y=1$, is
a) $\frac{7}{\sqrt{5}}$
b) $\frac{7}{\sqrt{13}}$
c) $\sqrt{5}$
d) $\sqrt{13}$
108. The equation $8 x^{2}+8 x y+2 y^{2}+26 x+13 y+15=0$ represents a pair of straight lines. The distance between then is
a) $\frac{7}{\sqrt{5}}$
b) $\frac{7}{2 \sqrt{5}}$
c) $\frac{\sqrt{7}}{5}$
d) None of these
109. A system of lines is given as $y=m_{i} x+c_{i}$ where m_{i} can take any value out of $0,1,-1$ and when m_{i} is positive, then c_{i} can be 1 or -1 , when m_{i} equal $0, c_{i}$ can be 0 or 1 and when m_{i} equals to $-1, c_{i}$ can take 0 or 2 . Then, the area enclosed by all these straight line is
a) $\frac{3}{\sqrt{2}}(\sqrt{2}-1)$ sq unit
b) $\frac{3}{\sqrt{2}}$ sq unit
c) $\frac{3}{2}$ sq unit
d) None of these
110. The angle between the lines represented by $x^{2}-y^{2}=0$ is
a) 0°
b) 45°
c) 90°
d) 180°
111. If the slope of one of the lines given by $36 x^{2}+2 h x y+72 y^{2}=0$ is four times the other, then $h^{2}=$
a) 5040
b) 4050
c) 8100
d) None of these
112. If non-zero numbers a, b, c are in HP, then the straight line $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$ always passes through a fixed point. That point is
a) $\left(1,-\frac{1}{2}\right)$
b) $(1,-2)$
c) $(-1,-2)$
d) $(-1,2)$
113. The distance between the pair of lines given by $x^{2}+y^{2}+2 x y-8 a x-8 a y-9 a^{2}=0$ is
a) $2 \sqrt{5} a$
b) $10 \sqrt{a}$
c) 10 a
d) $5 \sqrt{2} a$
114. The image of the origin with reference to the line $4 x+3 y-25=0$ is
a) $(-8,6)$
b) $(8,6)$
c) $(-3,4)$
d) $(8,-6)$
115. The equation of a straight line passing through the point of intersection of $x-y+1=0$ and $3 x+y-5=$ 0 and perpendicular to one of them, is
a) $x+y+3=0$
b) $x-y-3=0$
c) $x-3 y-5=0$
d) $x-3 y+5=0$
116. If the lines $k x-2 y-1=0$ and $6 x-4 y-m=2$ are identical (coincident) lines, then the values of k and m are
a) $k=3, m=2$
b) $k=-3, m=2$
c) $k=-3, m=-2$
d) $k=3, m=-2$
117. If $(-2,6)$ is the image of the point $(4,2)$ with respect to the line $L=0$, then $L=$
a) $3 x-2 y+5$
b) $3 x-2 y+10$
c) $2 x+3 y-5$
d) $6 x-4 y-7$
118. $a x+b y-a^{2}=0$, where a, b are non-zero, is the equation to the straight line perpendicular to a line l and passing through the point where l crosses the x-axis. Then, equation to the line l is
a) $\frac{x}{b}-\frac{y}{a}=1$
b) $\frac{x}{a}-\frac{y}{b}=1$
c) $\frac{x}{b}+\frac{y}{a}=a b$
d) $\frac{x}{a}-\frac{y}{b}=a b$
119. L is variable line such that the algebraic sum of the distances of the points $(1,1),(2,0)$ and $(0,2)$ from the line is equal to zero. The line L will always pass through
a) $(1,1)$
b) $(2,1)$
c) $(1,2)$
d) $(2,2)$
120. If $(-4,5)$ is one vertex and $7 x-y+8=0$ is one diagonal of a square, then the equation of the second diagonal is
a) $x+3 y=21$
b) $2 x-3 y=7$
c) $x+7 y=31$
d) $2 x+3 y=21$
121. If the equations, $12 x^{2}-10 x y+2 y^{2}+11 x-5 y+k=0$ represents two straight lines, then the value of k is
a) 1
b) 2
c) 0
d) 3
122. The locus of the mid-point of the portion intercepted between the axes by the line $x \cos \alpha+y \sin \alpha=p$, where p is a constant is
a) $x^{2}+y^{2}=4 p^{2}$
b) $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{4}{p^{2}}$
c) $x^{2}+y^{2}=\frac{4}{p^{2}}$
d) $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{2}{p^{2}}$
123. The orthocentre of the triangle formed by $(0,0),(8,0),(4,6)$ is
a) $(4,8 / 3)$
b) $(3,4)$
c) $(4,3)$
d) $(-3,4)$
124. The orthocentre of the triangle with vertices $\left(2, \frac{\sqrt{3}-1}{2}\right),\left(\frac{1}{2},-\frac{1}{2}\right)$ and $\left(2,-\frac{1}{2}\right)$ is
а) $\left(\frac{3}{2}, \frac{\sqrt{3}-3}{6}\right)$
b) $\left(2,-\frac{1}{2}\right)$
c) $\left(\frac{5}{4}, \frac{(\sqrt{3}-2)}{4}\right)$
d) $\left(\frac{1}{2},-\frac{1}{2}\right)$
125. The image of the point $(3,8)$ in the line $x+3 y=7$, is
a) $(1,4)$
b) $(4,1)$
c) $(-1,-4)$
d) $(-4,-1)$
126. Family of lines $x \sec ^{2} \theta+y \tan ^{2} \theta-2=0$ for different real θ, is
a) Not concurrent
b) Concurrent at $(1,1)$
c) Concurrent at $(2,-2)$
d) Concurrent at $(-2,2)$
127. The number of the straight lines which are equally inclined to both the exes, is
a) 4
b) 2
c) 3
d) 1
128. If one of the lines of $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is/are
a) $-\frac{1}{2}$
b) -2
c) ± 1
d) 2
129. An equilateral $\triangle A B C$ in first quadrant is such that A lies on x-axis, B lies on y-axis and $B C$ is parallel to x axis, then equation of straight line through C parallel to $A B$ is (' a ' is length of the side)
a) $y-\sqrt{3} x=\frac{3 a \sqrt{3}}{2}$
b) $\sqrt{3} y+x=\frac{3 a \sqrt{3}}{2}$
c) $y+\sqrt{3} x=\frac{3 a \sqrt{3}}{2}$
d) None of these
130. The value ' p ' for which the equation $x^{2}+p x y+y^{2}-5 x-7 y+6=0$ represents a pair of straight lines, is
a) $5 / 2$
b) 5
c) 2
d) $2 / 5$
131. The equation of the line with gradient $-3 / 2$ which is concurrent with the lines $4 x+3 y-7=0$ and $8 x+5 y-1=0$ is
a) $3 x+2 y-2=0$
b) $3 x+2 y-63=0$
c) $2 y-3 x-2=0$
d) None of these
132. Let $A B C$ be an isosceles triangle with $A B=B C$. If base $B C$ is parallel to x-axis and m_{1} and m_{2} are the slopes of medians drawn through the angular points B and C, then
a) $m_{1} m_{2}=-1$
b) $m_{1}+m_{2}=0$
c) $m_{1} m_{2}=2$
d) $m_{1}+2 m_{2}=0$
133. y-intercept of line passes through $(2,2)$ and is perpendicular to the line $3 x+y=3$, is
a) $\frac{1}{3}$
b) $\frac{2}{3}$
c) 1
d) $\frac{4}{3}$
134. The equation of the bisector of the obtuse angle between the lines $3 x-4 y+7=0$ and $-12 x-5 y+2=$ 0 , is
a) $21 x+77 y-101=0$
b) $99 x-27 y+81=0$
c) $21 x-77 y+101=0$
d) None of these
135. The equation of the line equidistant from the lines $2 x+3 y+5=0$ and $4 x+6 y=11$ is
a) $2 x+3 y-1=0$
b) $4 x+6 y-1=0$
c) $8 x+12 y-1=0$
d) None of these
136. The range of values of θ in the interval $(0, \pi)$ such that the points $(3,5)$ and $(\sin \theta, \cos \theta)$ lie on the same side of the line $x+y-1=0$, is
a) $(0, \pi / 2)$
b) $0, \pi / 4$
c) $(\pi / 4, \pi / 2)$
d) None of these
137. Let θ_{1} and θ_{2} are the inclinations of lines L_{1} and L_{2} with x-axis. If L_{1} and L_{2} pass through $P\left(x_{1}, y_{1}\right)$, then equation of one of the angle bisector of these lines is
a) $\frac{x-x_{1}}{\cos \left(\frac{\theta_{1}-\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\sin \left(\frac{\theta_{1}-\theta_{2}}{2}\right)}$
b) $\frac{x-x_{1}}{-\sin \left(\frac{\theta_{1}-\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\cos \left(\frac{\theta_{1}-\theta_{2}}{2}\right)}$
c) $\frac{x-x_{1}}{\sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}$
d) $\frac{x-x_{1}}{-\sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}=\frac{y-y_{1}}{\sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)}$
138. Two verities of a triangle are $(5,-1)$ and $(-2,3)$. If the orthocenter of the triangle is the origin, then coordinates of third vertex are
a) $(4,7)$
b) $(-4,-7)$
c) $(-4,7)$
d) None of these
139. The product of the perpendicular distances from the origin on the pair of straight lines $12 x^{2}+25 x y+$
$12 y^{2}+10 x+11 y+2=0$ is
a) $\frac{1}{25}$
b) $\frac{2}{25}$
c) $\frac{3}{25}$
d) $\frac{4}{25}$
140. If $A(2,-1)$ and $B(6,5)$ are two points, then the ratio in which the foot of the perpendicular from $(4,1)$ to $A B$ divided it, is
a) $8: 15$
b) $5: 8$
c) $-5: 8$
d) $-8: 5$
141. If A and B are two fixed points, then the locus of a point which moves in such a way that the angle $A P B$ is a right angle is
a) A circle
b) An ellipse
c) A parabola
d) None of these
142. If the lines joining the origin to the points of intersection of $x^{2}+y^{2}+2 g x+c=0$ and $x^{2}+y^{2}+2 f y-$ $c=0$ are at right angles, then
a) $g^{2}+f^{2}=c$
b) $g^{2}-f^{2}=c$
c) $g^{2}-f^{2}=2 c$
d) $g^{2}+f^{2}=c^{2}$
143. If the lines $x+3 y-9=0,4 x+b y-2=0$ and $2 x-y-4=0$ are concurrent, then b equals
a) -5
b) 5
c) 1
d) 0
144. If the line $y=m x$ meets the lines $x+2 y-1=0$ and $2 x-y+3=0$ at the same point, then m is equal to
a) 1
b) -1
c) 2
d) -2
145. If the equation $k x^{2}-2 x y-y^{2}-2 x+2 y=0$ represents a pair of lines, then k is equal to
a) 2
b) -2
c) -5
d) 3
146. The equation of a straight line passing through $(1,2)$ and having intercept of length 3 between the straight lines $3 x+4 y=24$ and $3 x 4 y=12$ is
a) $7 x+24 y-55=0$
b) $24 x+7 y-38=0$
c) $24 x+7 y-10=0$
d) None of these
147. The equation $x^{2}+k_{1} y^{2}+k_{2} x y=0$ represents a pair of perpendicular lines if
a) $k_{1}=-1$
b) $k_{1}=2 k_{2}$
c) $2 k_{1}=k_{2}$
d) None of these
148. A line $A B$ makes zero intercepts on x-axis and y-axis and it is perpendicular to another line $C D$ which is $3 x+4 y+6=0$. The equation of line $A B$ is
a) $y=4$
b) $4 x-3 y+8=0$
c) $4 x-3 y=0$
d) $4 x-3 y+6=0$
149. The distance between the lines given by $(x+7 y)^{2}+4 \sqrt{2}(x+7 y)-42=0$, is
a) $4 / 5$
b) $4 \sqrt{2}$
c) 2
d) $10 \sqrt{2}$
150. The distance of the line $2 x-3 y=4$ from the point $(1,1)$ measured parallel to the line $x+y=1$, is
a) $\sqrt{2}$
b) $5 / \sqrt{2}$
c) $1 / \sqrt{2}$
d) 6
151. Distance between the lines $5 x+3 y-7=0$ and $15 x+9 y+14=0$ is
a) $\frac{35}{\sqrt{34}}$
b) $\frac{1}{3 \sqrt{34}}$
c) $\frac{35}{3 \sqrt{34}}$
d) $\frac{35}{2 \sqrt{34}}$
152. If ' θ ' is the angle between the lines $a x^{2}+2 h x y+b y^{2}=0$, then angle between $x^{2}+2 x y \sec \theta+y^{2}=0$ is
a) θ
b) 2θ
c) $\frac{\theta}{2}$
d) 3θ
153. The ratio in which the line $3 x+4 y+2=0$ divides the distance between $3 x+4 y+5=0$, and $3 x+4 y-5=0$, is
a) $7: 3$
b) $3: 7$
c) $2: 3$
d) None of these
154. The determinant $\left|\begin{array}{ccc}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right|=0$ represents
a) A pair of straight lines
b) A straight line
c) A circle
d) None of these
155. Equation of the straight line making equal intercepts on the axes and passing through the point $(2,4)$, is
a) $4 x-y-4=0$
b) $2 x+y-8=0$
c) $x+y-6=0$
d) $x+2 y-10=0$
156. The area enclosed within the curve $|x|+|y|=1$, is
a) 1 sq. units
b) 2 sq. units
c) 3 sq. units
d) 4 sq. units
157. If the line represented by $x^{2}-2 p x y-y^{2}=0$ are rotated about the origin through an angle θ, one in clockwise direction and other in anti-clockwise direction, then the equation of the bisectors of the angle between the lines in the new position is
a) $p x^{2}+2 x y-p y^{2}=0$
b) $p x^{2}+2 x y+p y^{2}=0$
c) $x^{2}-2 p x y+y^{2}=0$
d) None of these
158. The equation of the line passing through the intersection of $x-\sqrt{3} y+\sqrt{3}-1=0$ and $x+y-2=0$ and making an angle of 15° with the first line is
a) $x-y=0$
b) $x-y+1=0$
c) $y=1$
d) $\sqrt{3} x-y+1-\sqrt{3}=0$
159. The equation of straight line equally inclined to the axes and equidistance from the points $(1,-2)$ and $(3,4)$ is $a x+b y+c=0$, where
a) $a=1, b=-1, c=3$
b) $a=1, b=-1, c=-3$
c) $a=1, b=1, c=-3$
d) None of these
160. Separate equations of lines for a pair of lines whose equation is $x^{2}+x y-12 y^{2}=0$, are
a) $x+4 y=0$ and $x+3 y=0$
b) $2 x-3 y=0$ and $x-4 y=0$
c) $x-6 y=0$ and $x-3 y=0$
d) $x+4 y=0$ and $x-3 y=0$
161. The nearest point on the line $3 x-4 y=25$ from the origin is
a) $(-4,5)$
b) $(3,-4)$
c) $(3,4)$
d) $(3,5)$
162. The equations of perpendicular bisectors of sides $A B$ and $A C$ of a $\triangle A B C$ are $x-y+5=0$ and $x+2 y=0$ respectively. If the coordinates of vertex A are $(1,-2)$, then equation of $B C$ is
a) $23 x+14 y-40=0$
b) $14 x-23 y+40=0$
c) $23 x-14 y+40=0$
d) $14 x+23 y-40=0$
163. The equation of the bisector of the acute angle between the lines $3 x-4 y+7=0$ and $12 x+5 y-2=0$ is
a) $99 x-27 y-81=0$
b) $11 x-3 y+9=0$
c) $21 x+77 y-101=0$
d) $21 x+77 y+101=0$
164. The vertices of a triangle are $(0,3),(-3,0)$ and $(3,0)$. The coordinates of its orthocentre are
a) $(0,2)$
b) $(0,-3)$
c) $(0,3)$
d) $(0,-2)$
165. The coordinates of the foot of the perpendicular from the point $(2,4)$ on the line $x+y=1$ are
a) $(1 / 2,3 / 2)$
b) $(-1 / 2,3 / 2)$
c) $(4 / 3,1 / 2)$
d) $3 / 4,-1 / 2$
166. If $(\sin \theta, \cos \theta$ and $(3,2)$ lies on the same side of the line $x+y=1$ then θ lies between
a) $\left(0, \frac{\pi}{2}\right)$
b) $(0, \pi)$
c) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
d) $\left(0, \frac{\pi}{4}\right)$
167. Equation of the straight line cutting off an intercept 2 from the negative direction of the axis of y and inclined at 30° to the positive direction of x-axis, is
a) $y+x-\sqrt{3}=0$
b) $y-x+2=0$
c) $y-\sqrt{3} x-2=0$
d) $\sqrt{3} y-x+2 \sqrt{3}=0$
168. If the lines represented by the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ are equidistant from the origin, then
a) $f^{4}-g^{4}=c\left(b f^{2}-a g^{2}\right)$
b) $f^{4}-g^{4}=c\left(a f^{2}-b g^{2}\right)$
c) $f^{4}-g^{4}=c\left(a g^{2}-b f^{2}\right)$
d) None of these
169. Joint equation of pair of lines through $(3,-2)$ and parallel to $x^{2}-4 x y+3 y^{2}=0$ is
a) $x^{2}+3 y^{2}-4 x y-14 x+24 y+45=0$
b) $x^{2}+3 y^{2}+4 x y-14 x+24 y+45=0$
c) $x^{2}+3 y^{2}+4 x y-14 x+24 y-45=0$
d) $x^{2}+3 y^{2}+4 x y-14 x-24 y-45=0$
170. The equation of straight line through the intersection of the lines $x-2 y=1$ and $x+3 y=2$ and parallel to $3 x+4 y=0$, is
a) $3 x+4 y+5=0$
b) $3 x+4 y-10=0$
c) $3 x+4 y-5=0$
d) $3 x+4 y+6=0$
171. Two lines are drown through $(3,4)$ each of which makes angle 45° which line $x-y=2$, then area of the triangle formed by these lines is
a) 9 sq unit
b) $9 / 2$ sq unit
c) 2 sq unit
d) $2 / 9$ sq unit
172. The area (in square unit) of the triangle formed by $x+y+1=0$ and the pair of straight lines $x^{2}-3 x y+2 y^{2}=0$ is
a) $\frac{7}{12}$
b) $\frac{5}{12}$
c) $\frac{1}{12}$
d) $\frac{1}{6}$
173. The length of perpendicular from the point $(a \cos \alpha, a \sin \alpha)$ upon the straight line $y=x \tan \alpha+c, c>0$, is
a) c
b) $c \sin ^{2} \alpha$
c) $c \cos \alpha$
d) $c \sec ^{2} \alpha$
174. The equation to a pair of opposite sides of a parallelogram are $x^{2}-5 x+6=0$ and $y^{2}-6 y+5=0$, the equation to its diagonals are
a) $x+4 y=13$ and $y=4 x-7$
b) $4 x+y=13$ and $4 y=x-7$
c) $4 x+y=13$ and $y=4 x-7$
d) $y-4 x=13$ and $y+4 x=7$
175. The line passing through the point of intersection of $x+y=2, x-y=0$ and is parallel to $x+2 y=5$, is
a) $x+2 y=1$
b) $x+2 y=2$
c) $x+2 y=4$
d) $x+2 y=3$
176. The coordinates of the foot of the perpendicular drawn from the point $(3,4)$ on the line $2 x+y-7=0$ is
a) $\left(\frac{9}{5}, \frac{17}{5}\right)$
b) $(1,5)$
c) $(-5,1)$
d) $(1,-5)$
177. A square of area 25 sq unit is formed by taking two sides as $3 x+4 y=k_{1}$ and $3 x+4 y=k_{2}$, then $\left|k_{1}-k_{2}\right|$ is
a) 5
b) 1
c) 25
d) None of these
178. The locus of the orthocentre of the triangle formed by the lines $(1+p) x-p y+p(1+p)=0,(1+q) x-$ $q y+q(1+q)=0$ and $y=0$, where $p \neq q$ is
a) A hyperbola
b) A parabola
c) An ellipse
d) A straight line
179. The locus of a point P which divides the line joining (1,0) and $(2 \cos \theta, 2 \sin \theta)$ internally in the ratio $2: 3$ for all θ, is a
a) Straight line
b) Circle
c) Pair of straight lines
d) Parabola
180. A straight line through the point $(2,2)$ intersects the lines $\sqrt{3} x+y=0$ and $\sqrt{3} x-y=0$ at the points A and B. The equation of the line $A B$, so that the $\triangle O A B$ is equilateral, is
a) $x-2=0$
b) $y-2=0$
c) $x+y-4=0$
d) None of these
181. The equation of the straight line which is perpendicular to $y=x$ and passes through $(3,2)$ is
a) $x-y=5$
b) $x+y=5$
c) $x+y=1$
d) $x-y=1$
182. If the angle between two lines represented by $2 x^{2}+5 x y+3 y^{2}+7 y+4=0$ is $\tan ^{-1} m$, then $m=$
a) $1 / 5$
b) 1
c) $7 / 5$
d) 7
183. If the pair of straight lines given by $A x^{2}+2 H x y+B y^{2}=0\left(H^{2}>A B\right)$ forms an equilateral triangle with line $a x+b y+c=0$, then $(A+3 B)(3 A+B)$ is equal to
a) H^{2}
b) $-H^{2}$
c) $2 H^{2}$
d) $4 H^{2}$
184. The equation of a straight line which passes through the point $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ and perpendicular to $x \sec \theta+y \operatorname{cosec} \theta=a$ is
a) $\frac{x}{a}+\frac{y}{a}=a \cos \theta$
b) $x \cos \theta-y \sin \theta=-a \cos 2 \theta$
c) $x \cos \theta+y \sin \theta=a \cos 2 \theta$
d) $x \cos \theta+y \sin \theta-a \cos 2 \theta$
185. The distance between the lines $5 x-12 y+65=0$ and $5 x-12 y-39=0$ is
a) 4
b) 16
c) 2
d) 8
186. The perpendicular bisector of the line segment joining $P(1,4)$ and $Q(k, 3)$ has y-intercept -4 . Then, a possible value of k is
a) -4
b) 1
c) 2
d) -2
187. A line passes through $(2,2)$ and is perpendicular to the line $3 x+y=3$. Its y-intercept is
a) $1 / 3$
b) $2 / 3$
c) 1
d) $4 / 3$
188. Points $A(1,3)$ and $C(5,1)$ are opposite vertices of a rectangle $A B C D$. If the slope of $B D$ is 2 , then its equation is
a) $2 x-y=4$
b) $2 x+y=4$
c) $2 x+y-7=0$
d) $2 x+y+7=0$
189. The combined equation of the pair of lines through the point $(1,0)$ and parallel to the lines represented by $2 x^{2}-x y-y^{2}=0$, is
a) $2 x^{2}-x y-2 y^{2}+4 x-y=6$
b) $2 x^{2}-x y-y^{2}-4 x-y+2=0$
c) $2 x^{2}-x y-y^{2}-4 x+y+2=0$
d) None of the above
190. The three straight lines $a x+b y=c, b x+c y=a$ and $c x+a y=b$ are collinear, if
a) $b+c=a$
b) $c+a=b$
c) $a+b+c=0$
d) $a+b=c$
191. $P(2,1), Q(4,-1), R(3,2)$ are the vertices of a triangle and if through P and R lines parallel to opposite sides are drawn to intersect in S, then the area of $P Q R S$ is
a) 6
b) 4
c) 8
d) 12
192. If the foot of the perpendicular from the origin to a straight line is at the point $(3,-4)$. Then, the equation of the line is
a) $3 x-4 y=25$
b) $3 x-4 y+25=0$
c) $4 x+3 y-25=0$
d) $4 x-3 y+25=0$
193. If two of the lines given by the equation $a y^{4}+b x y^{3}+c x^{2} y^{2}+d x^{3} y+e x^{4}=0$ are at right angle, then
a) $(c+a+e)(e-a)^{2}+(b+d)(a d+b e)=0$
b) $(c+a+e)(e-a)^{2}-(b+d)(a d+b e)=0$
c) $(c+a+e)(e+a)^{2}+(b+d)(a d+b e)=0$
d) None of these
194. Two points A and B move on the coordinate axes such that the distance between them remains same. The locus of the mid-point of $A B$ is
a) A straight line
b) A pair of straight lines
c) A circle
d) None of these
195. The ends of the base of an isosceles triangle are at $(2 a, 0)$ and $(0, a)$. The equation of one side is $x=2 a$. The equation of the other side is
a) $x+2 y-a=0$
b) $x+2 y=2 a$
c) $3 x+4 y-4 a=0$
d) $3 x-4 y+4 a=0$
196. The equation of the pair of straight lines perpendicular of the pair $2 x^{2}+3 x y+2 y^{2}+10 x+5 y=0$ and passing through the origin, is
a) $2 x^{2}+5 x y+2 y^{2}=0$
b) $2 x^{2}-3 x y+2 y^{2}=0$
c) $2 x^{2}+3 x y+y^{2}=0$
d) $2 x^{2}-5 x y+2 y^{2}=0$
197. If the points $(1,3)$ and $(5,1)$ are two opposite vertices of a rectangle and the other two vertices lie on the line $y=2 x+c$, then the value of c is
a) 4
b) -4
c) 2
d) None of these
198. The equation of line through the point $(1,2)$ whose distance from the point $(3,1)$ has the greatest value, is
a) $y=2 x$
b) $y=x+1$
c) $x+2 y=5$
d) $y=3 x-1$
199. The equation of the lines parallel to the line common to the pair of lines given by $6 x^{2}-x y-12 y^{2}=0$ and $15 x^{2}+14 x y-8 y^{2}=0$ and the sum of whose intercepts on the axes is 7, is
a) $2 x-3 y=42$
b) $3 x+4 y=12$
c) $5 x-2 y=10$
d) None of these
200. Area of the parallelogram formed by the lines $y=m x, y=m x+1, y=n x$ and $y=n x+1$ equals
a) $\frac{|m+n|}{(m-n)^{2}}$
b) $\frac{2}{|m+n|}$
c) $\frac{1}{|m+n|}$
d) $\frac{1}{|m-n|}$
201. The members of the family of lines $(\lambda+\mu) x+(2 \lambda+-\mu) y=\lambda+2 \mu$, where $\lambda \neq 0, \mu \neq 0$, pass through the point
a) $(3,-1)$
b) $-3,1$
c) $(1,1)$
d) None of these
202. If a line joining two points $A(2,0)$ and $B(3,1)$ is rotated about A in anti-clockwise direction through an angle 15°, then the equation of the line in the new position is
a) $\sqrt{3} x-y=2 \sqrt{3}$
b) $\sqrt{3} x+y=2 \sqrt{3}$
c) $x+\sqrt{3} y=2 \sqrt{3}$
d) None of these
203. The centroid of the triangle whose three sides are given by the combined equation $\left(x^{2}+7 x y+2 y^{2}\right)(y-$ $1=0$, is
а) $\left(\frac{2}{3}, 0\right)$
b) $\left(\frac{7}{3}, \frac{2}{3}\right)$
c) $\left(-\frac{7}{3}, \frac{2}{3}\right)$
d) None of these
204. The distance of the point $(1,2)$ from the line $x+y+5=0$ measured along the line parallel to $3 x-y=7$
is equal to
a) $4 \sqrt{10}$
b) 40
c) $\sqrt{40}$
d) $10 \sqrt{2}$
205. The area bounded by the straight lines $y=1$ and $\pm 2 x+y=2$ is
a) $1 / 2$ sq. unit
b) 1 sq. unit
c) $3 / 2$ sq. units
d) 2 sq. units
206. The distance between the pair of parallel lines $x^{2}+4 x y+4 y^{2}+3 x+6 y-4=0$ is
a) $\sqrt{5}$
b) $\frac{2}{\sqrt{5}}$
c) $\frac{1}{\sqrt{5}}$
d) $\frac{\sqrt{5}}{2}$
207. If the pair of straight lines $x y-x-y+1=0$ and the line $a x+2 y-3=0$ are concurrent, then a is equal to
a) -1
b) 0
c) 3
d) 1
208. Points on the line $x+y=4$ that lie at a unit distance from the line $4 x+3 y-10=0$, are
a) $(3,1)$ and $(-7,11)$
b) $(-3,7)$ and $(2,2)$
c) $(-3,7)$ and $(-7,11)$
d) None of these
209. The bisector of the acute angle formed between the lines $4 x-3 y+7=0$ and $3 x-4 y+14=0$ has the equation
a) $x+y+3=0$
b) $x-y-3=0$
c) $x-y+3=0$
d) $3 x+y-7=0$
210. If $a \neq b \neq c$, then the equations
$(b-c) x+(c-a) y+(a-b)=0$
and, $\left(b^{3}-c^{3}\right) x+\left(c^{3}-a^{3}\right) y+\left(a^{3}-b^{3}\right)=0$
will represent the same line, if
a) $a+b=-c$
b) $c+a=-b$
c) $b+c=-a$
d) $a+b+c=0$
211. The number of points on the line $x+y=4$ which are unit distance apart from the line $2 x+2 y=5$ is
a) 0
b) 1
c) 2
d) ∞
212. The ratio in which the line $3 x-2 y+5=0$ divides the join of $(6,-7)$ and $(-2,3)$, is
a) $1: 1$
b) $7: 37$
c) $37: 7$
d) None of these
213. The lines $2 x+y-1=0, a x+3 y-3=0$ and $3 x+2 y-2=0$ are concurrent for
a) All a
b) $a=4$ only
c) $-1 \leq a \leq 3$
d) $a>0$ only
214. If $A(\cos \alpha, \sin \alpha), B(\sin \alpha,-\cos \alpha), C(1,2)$ are the vertices of a $\Delta A B C$, then as α varies the locus of its centroid is
a) $x^{2}+y^{2}-2 x-4 y+1=0$
b) $3\left(x^{2}+y^{2}\right)-2 x-4 y+1=0$
c) $x^{2}+y^{2}-2 x-4 y+3=0$
d) None of these
215. If (a, a^{2}) falls inside the angle made by the lines $y=\frac{x}{2}, x>0$ and $y=3 x, x>0$, then a belongs to
a) $(3, \infty)$
b) $\left(\frac{1}{2}, 3\right)$
c) $\left(-3,-\frac{1}{2}\right)$
d) $\left(0, \frac{1}{2}\right)$
216. The pairs of straight lines $a x^{2}+2 h x y-a y^{2}=0$ and $h x^{2}-2 a x y-h y^{2}=0$ are such that
a) One pair bisects the angle between the other pair
b) The lines of one pair are equally inclined to the lines of the other pair
c) The lines of each pair are perpendicular to other pair
d) All of these
217. If the straight line $a x+b y+c=0$ always passes through $(1,-2)$ then a, b, c are in
a) AP
b) HP
c) GP
d) None of these
218. If $A(1,1), B(\sqrt{3}+1,2)$ and $C(\sqrt{3}, \sqrt{3}+2)$ be three vertices of a square, then the diagonal through B is
a) $y=(\sqrt{3}-2) x+(3-\sqrt{3})$
b) $y=0$
c) $y=x$
d) None of these
219. If the lines $4 x+3 y-1=0, x-y+5=0$ and $k x+5 y-3=0$ are concurrent, then k is equal to
a) 4
b) 5
c) 6
d) 7
220. The slopes of the lines represented by $x^{2}+2 h x y+2 y^{2}=0$ are in the ratio $1: 2$, then h equals
a) $\pm \frac{1}{2}$
b) $\pm \frac{3}{2}$
c) ± 1
d) ± 3
221. If $P M$ is the perpendicular from $P(2,3)$ onto the line $x+y=3$, then the coordinates of M are
a) $(2,1)$
b) $(-1,4)$
c) $(1,2)$
d) $(4,-1)$
222. A line through the point $A(2,0)$ which makes an angle of 30° with the positive direction of x-axis is rotated about A in clockwise direction through an angle of 15°. Then, the equation of the straight line in the new position is
a) $(2-\sqrt{3}) x+y-4+2 \sqrt{3}=0$
b) $(2-\sqrt{3}) x-y-4+2 \sqrt{3}=0$
c) $(2-\sqrt{3}) x-y+4+2 \sqrt{3}=0$
d) $(2-\sqrt{3}) x+y+4+2 \sqrt{3}=0$
223. The distance between the pair of parallel lines $x^{2}+2 x y+y^{2}-8 a x-8 a y-9 a^{2}=0$ is
a) $2 \sqrt{5} a$
b) $\sqrt{10} a$
c) $10 a$
d) $5 \sqrt{2} a$
224. One vertex of the equilateral triangle with centroid at the origin and one side as $x+y-2=0$ is
a) $(-1,-1)$
b) $(2,2)$
c) $(-2,-2)$
d) None of these
225. The equation of straight line through the intersection of the lines $x-2 y=1$ and $x+3 y=2$ and parallel to $3 x+4 y=0$, is
a) $3 x+4 y+5=0$
b) $3 x+4 y-10=0$
c) $3 x+4 y-5=0$
d) $3 x+4 y+6=0$
226. The straight line $3 x+y=9$ divided the line segment joining the points $(1,3)$ and $(2,7)$ in the ratio
a) $3: 4$ externally
b) $3: 4$ internally
c) $4: 5$ internally
d) 5:6 externally
227. Orthocentre of the triangle whose sides are given by $4 x-7 y+10=0, x+y-5=0$ and $7 x+4 y-$ $15=0$ is
a) $(-1,-2)$
b) $(1,-2)$
c) $(-1,2)$
d) $(1,2)$
228. The diagonals of the parallelogram whose sides are $l x+m y+n=0, l x+m y+n^{\prime}=0, m x+l y+n=$ $0, m x+l y+n^{\prime}=0$ include an angle
a) $\pi / 3$
b) $\pi / 2$
c) $\tan ^{-1}\left(\frac{l^{2}-m^{2}}{l^{2}+m^{2}}\right)$
d) $\tan ^{-1}\left(\frac{2 l m}{l^{2}+m^{2}}\right)$
229. The centroid of an equilateral triangle is $(0,0)$. If two vertices of the triangle lie on $x+y=2 \sqrt{2}$, then one of them will have its coordinates
a) $(\sqrt{2}+\sqrt{6}, \sqrt{2}-\sqrt{6})$
b) $(\sqrt{2}+\sqrt{3}, \sqrt{2}-\sqrt{3})$
c) $(\sqrt{2}+\sqrt{5}, \sqrt{2}-\sqrt{5})$
d) None of theses
230. If the lines $a x+2 y+1=0, b x+3 y+1=0, c x+4 y+1=0$ are concurrent, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
a) AP
b) GP
c) HP
d) None of these
231. Locus of the centroid of triangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t)$ and $(1,0)$, where t is a parameter, is
a) $(3 x-1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
b) $(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
c) $(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
d) $(3 x+1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
232. If θ is the acute angle between the lines given by $6 x^{2}+5 x y-7 x+13 y-3=0$, then the equation of the line passing through the point of intersection of these lines and making angle θ with the positive x-axis is
a) $2 x+11 y+13=0$
b) $11 x-2 y+13=0$
c) $2 x-11 y+2=0$
d) $11 x+2 y-11=0$
233. If $\frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{2 x y}{h}=0$ represents a pair of straight lines such that slope of one line is twice the other, then $a b: h^{2}$ is
a) $9: 8$
b) $8: 9$
c) $1: 2$
d) $2: 1$
234. The lines bisecting the angle between the bisectors of the angles between the lines $a x^{2}+2 h x y+b y^{2}=0$ are given by
a) $(a-b)\left(x^{2}-y^{2}\right)-4 h x y=0$
b) $(a-b)\left(x^{2}+y^{2}\right)+4 h x y=0$
c) $(a-b)\left(x^{2}-y^{2}\right)+4 h x y=0$
d) None of these
235. The line passing through $\left(-1, \frac{\pi}{2}\right)$ and perpendicular to $\sqrt{3} \sin \theta+2 \cos \theta=\frac{4}{r}$ is
a) $2=\sqrt{3} r \cos \theta-2 r \sin \theta$
b) $5=-2 \sqrt{3} r \sin \theta+4 r \cos \theta$
c) $2=\sqrt{3} r \cos \theta+2 r \sin \theta$
d) $5=2 \sqrt{3} r \sin \theta+4 r \cos \theta$
236. Given a family of lines $a(2 x+y+4)+b(x-2 y-3)=0$, the number of lines belonging to the family at a distance $\sqrt{10}$ from $P(2,-3)$ is
a) 0
b) 1
c) 2
d) 4
237. Let the perpendiculars from any point on the line $2 x+11 y=5$ upon the lines $24 x+7 y-20=0$ and $4 x-3 y-2=0$ have the lengths p_{1} and p_{2} respectively. Then,
a) $2 p_{1}=p_{2}$
b) $p_{1}=p_{2}$
c) $p_{1}=2 p_{2}$
d) None of these
238. The equation of bisectors of the angles between the lines $|x|=|y|$ are
a) $y= \pm x$ and $x=0$
b) $x=\frac{1}{2}$ and $y=\frac{1}{2}$
c) $y=0$ and $x=0$
d) None of these
239. The pairs of straight lines $x^{2}-3 x y+2 y^{2}=0$ and $x^{2}-3 x y+2 y^{2}+x-2=0$ form a
a) Square but not rhombus
b) Rhombus
c) Parallelogram
d) Rectangle but not a square
240. The straight line whose sum of the intercepts on the axes is equal to half to the product of the intercepts, passes through the point whose coordinates are
a) $(1,1)$
b) $(2,2)$
c) $(3,3)$
d) $(4,4)$
241. A straight line through $P(1,2)$ is such that its intercept between the axes is bisected at P. Its equation is
a) $x+2 y=5$
b) $x-y+1=0$
c) $x+y-3=0$
d) $2 x+y-4=0$
242. The incentre of the triangle formed by the lines $x=0, y=0$ and $3 x 4 y=12$ is at
a) $(1 / 2,1 / 2)$
b) $(1,1)$
c) $(1,1 / 2)$
d) $(1 / 2,1)$
243. A pair of perpendicular straight lines passes through the origin and also through the point of intersection of the curve $x^{2}+y^{2}=4$ with $x+y=a$. The set containing the value of ' a ' is
a) $\{-2,2\}$
b) $\{-3,3\}$
c) $\{-4,4\}$
d) $\{-5,5\}$
244. If pairs straight lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ be such that each pair bisects the angle between the other pair, then
a) $p q=1$
b) $p q=-1$
c) $p q=2$
d) $p q=-2$
245. In a rhombus $A B C D$ the diagonals $A C$ and $B D$ intersect at the point $(3,4)$. If the point A is $(1,2)$ the diagonal $B D$ has the equation
a) $x-y-1=0$
b) $x+y-1=0$
c) $x-y+1=0$
d) $x+y-7=0$
246. The gradient of one of the lines of $a x^{2}+2 h x y+b y^{2}=0$ is twice that of the other, then
a) $h^{2}=a b$
b) $h=a+b$
c) $8 h^{2}=9 a b$
d) $9 h^{2}=8 a b$
247. The family of lines making an angle 30° with the line $\sqrt{3} y=x+1$ is
a) $x=\lambda$ (λ is parameter)
b) $y=-\sqrt{3} x+\lambda(\lambda$ is parameter $)$
c) $y=\sqrt{3} x+\lambda$
d) None of the above
248. If the slope of one of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ be the square of the other, then $\frac{a+h}{h}+\frac{8 h^{2}}{a b}$ is
a) 3
b) 4
c) 5
d) 6
249. The equation $y^{2}-x^{2}+2 x-1=0$, represents
a) A pair of st. lines
b) A circle
c) A parabola
d) An ellipse
250. The vertices of a $\triangle O B C$ are $(0,0), B(-3,-1)$ and $C(-1,-3)$. The equation of a line parallel to $B C$ and intersecting sides $O B$ and $O C$ whose distance from the origin is $1 / 2$, is
a) $x+y+\frac{1}{2}=0$
b) $x+y-\frac{1}{2}=0$
c) $x+y-\frac{1}{\sqrt{2}}=0$
d) $x+y+\frac{1}{\sqrt{2}}=0$
251. The angle between the line joining the points $(1,-2),(3,2)$ and the line $x+2 y-7=0$ is
a) π
b) $\pi / 2$
c) $\pi / 3$
d) $\pi / 6$
252. The equation $y^{2}-x^{2}+2 x-1=0$ represents
a) A hyperbola
b) An ellipse
c) A pair of straight lines
d) A rectangular hyperbola
253. The equation to the bisecting the join of $(3,-4)$ and $(5,2)$ and having its intercepts on the x-axis and the y -
axis in the ratio $2: 1$ is
a) $x+y-3=0$
b) $2 x-y=9$
c) $x+2 y=2$
d) $2 x+y=7$
254. $A(-5,0)$ and $B(3,0)$ are two of the vertices of a triangle $A B C$. Its area is 20 square cms. The vertex C lies on the line $x-y=2$. The coordinates of C are
a) $(-7,-5)$ or $(3,5)$
b) $(-3,-5)$ or $(-5,7)$
c) $(7,5)$ or $(3,5)$
d) $(-3,-5)$ or $(7,5)$
255. The point of concurrence of the lines $a x+b y+c=0$ and a, b, c satisfy the relation $3 a+2 b+4 c=0$ is
a) $\left(\frac{3}{2}, \frac{1}{4}\right)$
b) $\left(\frac{3}{4}, \frac{1}{4}\right)$
c) $\left(\frac{3}{4}, \frac{1}{2}\right)$
d) $\left(\frac{3}{2}, \frac{1}{2}\right)$
256. The angle between the straight line $x-y \sqrt{3}=5$ and $\sqrt{3} x+y=7$ is
a) 90°
b) 60°
c) 75°
d) 30°
257. The equation $y= \pm \sqrt{3} x, y=1$ are the sides of
a) An equilateral triangle
b) A right angled triangle
c) An isosceles triangle
d) An obtuse triangle
258. A line passes through the point of intersection of the lines $3 x+y+1=0$ and $2 x-y+3=0$ and makes equal intercepts with axes. Then, equation of the line is
a) $5 x+5 y-3=0$
b) $x+5 y-3=0$
c) $5 x-y-3=0$
d) $5 x+5 y+3=0$
259. The equation of the straight line which passes through the point $(1,-2)$ and cuts off equal intercepts from the axes will be
a) $x+y=1$
b) $x-y=1$
c) $x+y+1=0$
d) $x-y-2=0$
260. The orthocenter of a triangle formed by the lines $x+y=1,2 x+3 y=6$ and $4 x-y+4=0$ lies in the
a) Ist quadrant
b) IInd quadrant
c) IIIrd quadrant
d) IVth quadrant
261. Equation of straight line cutting off an intercept 2 from the negative direction of the axes of y and inclined at 30° to the positive direction of axis of x, is
a) $y+x-\sqrt{3}=0$
b) $y-x+2=0$
c) $y-\sqrt{3} x-2=0$
d) $\sqrt{3} y-x+2 \sqrt{3}=0$
262. Distance between the pair of lines represented by the equation $x^{2}-6 x y+9 y^{2}+3 x-9 y-4=0$, is
а) $\frac{15}{\sqrt{10}}$
b) $\frac{1}{2}$
c) $\sqrt{\frac{5}{2}}$
d) $\frac{1}{\sqrt{10}}$
263. The line $3 x+2 y=24$ meets y-axis at A and x-axis at B. The perpendicular bisector of $A B$ meets the line through $(0,-1)$ parallel to x-axis at C. The area of the triangle $A B C$ is
a) 182 sq. units
b) 91 sq. units
c) 48 sq. units
d) None of these
264. The coordinates of three vertices of a quadrilateral in order are $(6,1),(7,2)$ and $(-1,0)$. If the area of the quadrilateral is 4 square units, then the locus of the fourth vertex is
a) $x-7 y=1$
b) $x-7 y+15=0$
c) $(x-7 y)^{2}+14(x-7 y)-15=0$
d) None of these
265. Two points $(a, 0)$ and $(0, b)$ are joined by a straight line. Another point on this line, is
a) $(3 a,-2 b)$
b) $\left(a^{2}, a b\right)$
c) $(-3 a, 2 b)$
d) (a, b)
266. The lines $(l x+m y)^{2}-3(m x-l y)^{2}=0$ and $l x+m y+n=0$ form
a) An isosceles triangle
b) A right angled triangle
c) An equilateral triangle
d) None of these
267. The distance between the pair of lines represented by the equation $x^{2}-6 x y+9 y^{2}+3 x-9 y-4=0$ is
a) $\frac{15}{\sqrt{10}}$
b) $\frac{1}{2}$
c) $\sqrt{\frac{5}{2}}$
d) $\frac{1}{\sqrt{10}}$
268. $P(3,1), Q(6,5)$ and $R(x, y)$ are three points such that the angle $P R Q$ is a right angle and the area of $\triangle R Q P=7$, then the number of such points R is
a) 0
b) 1
c) 2
d) 4
269. The equation $x^{3}-6 x^{2} y+11 x y^{2}-6 y^{3}=0$ represents three straight lines passing through the origin, the
slopes of which form an
a) A.P.
b) G.P.
c) H.P.
d) None of these
270. The equation of the line bisecting perpendicularly the segment joining the points $(-4,6)$ and $(8,8)$ is
a) $6 x+y-19=0$
b) $y=7$
c) $6 x+2 y-19=0$
d) $x+2 y-7=0$
271. The equation of the sides of a triangle are $x-3 y=0,4 x+3 y=5$ and $3 x+y=0$. The line $3 x-4 y=0$ passes through
a) The incentre
b) The centroid
c) The orthocenter
d) The circumcentre
272. If the slope of one of the lines given by $a x^{2}-6 x y+y^{2}=0$ is twice the other, then $a=$
a) 1
b) 2
c) 4
d) 8
273. The point $(4,1)$ undergoes the following three successive transformations
III. Reflection about the line $y=x-1$
IV. Translation through a distance 1 unit along the positive direction of x-axis
V. Rotation through an angle $\frac{\pi}{4}$ about the origin in the anti-clockwise direction Then, the coordinates of the final point are
a) $(4,3)$
b) $\left(\frac{7}{2}, \frac{7}{2}\right)$
c) $(0,3 \sqrt{2})$
d) $(3,4)$
274. Which of the following pair of straight lines intersect at right angle?
a) $2 x^{2}=y(x+2 y)$
b) $(x+y)^{2}=x(y+3 x)$
c) $2 y(x+y)=x y$
d) $y= \pm 2 x$
275. Given four lines whose equations are $x+2 y-3=0,2 x+3 y-4=0,3 x+4 y-7=0$ and $4 x+5 y-6=$ 0 , then the lines are
a) Concurrent
b) Sides of a square
c) Sides of a rhombus
d) None of these
276. The equation $2 x^{2}-24 x y+11 y^{2}=0$ represents
a) Two parallel lines
b) Two perpendicular lines
c) Two lines passing through the origin
d) A circle
277. A straight line through $P(1,2)$ is such that its intercept between the axes is bisected at P. Its equation is
a) $x+y=-1$
b) $x+y=3$
c) $x+2 y=5$
d) $2 x+y=4$
278. The value of λ such that $\lambda x^{2}-10 x y+12 y^{2}+5 x-16 y-3=0$ represent a pair of straight lines, is
a) 1
b) -1
c) 2
d) -2
279. If a straight line L is perpendicular to the line $5 x-y=1$ such that the area of the Δ formed by the line L and the coordinate axes is 5 , then the equation of the line L is
a) $x+5 y+5=0$
b) $x+5 y \pm \sqrt{2}=0$
c) $x+5 y \pm \sqrt{5}=0$
d) $x+5 y \pm 5 \sqrt{2}=0$
280. The position of a moving point in the $x y$ plane at time t is given by $\left(u \cos \alpha \cdot t, u \sin \alpha \cdot t-\frac{1}{2} g t^{2}\right)$, where u, α, g are constants. The locus of the moving point is
a) A circle
b) A parabola
c) An ellipse
d) None of these
281. The distance between the lines $4 x+3 y=11$ and $8 x+6 y=15$, is
a) $7 / 2$
b) 4
c) $7 / 10$
d) None of these
282. Given the four lines with equations $x+2 y=3,3 x+4 y=7,2 x+3 y=4$ and $4 x+5 y=6$, then these lines are
a) Concurrent
b) Perpendicular
c) The sides of a rectangle
d) None of the above
283. The number of points on the line $3 x+4 y=5$, which are at a distance of $\sec ^{2} \theta+2 \operatorname{cossec}^{2} \theta, \theta \in R$, from the point $(1,3)$ is
a) 1
b) 2
c) 3
d) Infinite
284. If a variable line drown through the point of intersection of straight lines $\frac{x}{\alpha}+\frac{y}{\beta}=1$ and $\frac{x}{\beta}+\frac{y}{\alpha}=1$ meets the coordinate axes in A and B, then the locus of the mid point of $A B$ is
a) $\alpha \beta(x+y)=x y(\alpha+\beta)$
b) $\alpha \beta(x+y)=2 x y(\alpha+\beta)$
c) $(\alpha+\beta)(x+y)=2 \alpha \beta x y$
d) None of these
285. The equation of the line passing through the point of intersection of the lines $x-3 y+2=0$ and $2 x+5 y-7=0$ and perpendicular to the line $3 x+2 y+5=0$, is
a) $2 x-3 y+1=0$
b) $6 x-9 y+11=0$
c) $2 x-3 y+5=0$
d) $3 x-2 y+1=0$
286. The equation of line parallel to lines $L_{1} \equiv x+2 y-5=0$ and $L_{2} \equiv x+2 y+9=0$ and dividing the distance between L_{1} and L_{2} in the ratio 1:6 (internally), is
a) $x+2 y-3=0$
b) $x+2 y+2=0$
c) $x+2 y+7=0$
d) None of these
287. The equation of a line passing through $(-2,-4)$ and perpendicular to the line $3 x-y+5=0$ is
a) $3 y+x-8=0$
b) $3 x+y+6=0$
c) $x+3 y+14=0$
d) None of these
288. If the equation $3 x^{2}+x y-y^{2}-3 x+6 y+k=0$ represents a pair of straight lines, then the values of k is
a) 9
b) 1
c) -9
d) 0
289. The equation of line through the point $(1,1)$ and making angles of 45° with the line $x+y=0$ are
a) $x-1=0, x-y=0$
b) $x-1=0, y-1=0$
c) $x-y=0, y-1=0$
d) $x+y-2=0, y-1=0$
290. The equation of line bisecting perpendicularly the segment joining the points $(-4,6)$ and $(8,8)$, is
a) $y=7$
b) $6 x+y-19=0$
c) $x+2 y-7=0$
d) $6 x+2 y-19=0$
291. The triangle formed by $x^{2}-3 y^{2}=0$ and $x=4$ is
a) Isosceles
b) Equilateral
c) Right angled
d) None of these
292. The equation of one side of a rectangle is $3 x-4 y-10=0$ and the coordinates of two its vertices are $(-2,1)$ and $(2,4)$. Then, the area of the rectangle is
a) 20 sq. units
b) 40 sq. units
c) 10 sq. units
d) 30 sq. units
293. The straight line whose sum of the intercepts on the axes is equal to half of the product of the intercepts, passes through the points
a) $(1,1)$
b) $(2,2)$
c) $(3,3)$
d) $(4,4)$
294. The equation of the sides of a triangle are $x-3 y=0,4 x+3 y=5$ and $3 x+y=0$. The line $3 x-4 y=0$ passes through
a) The incentre
b) The centroid
c) The orthocentre
d) The circumcentre
295. A triangle $A B C$, right angled at A, has points A and B as $(2,3)$ and $(0,-1)$ respectively. If $B C=5$ units, then the point C, is
a) $(-4,2)$
b) $(4,2)$
c) $(3,-3)$
d) $(0,-4)$
296. If the angle θ is acute, then the acute angle between $x^{2}(\cos \theta-\sin \theta)+2 x y \cos \theta+y^{2}(\cos \theta+\sin \theta)=0$ is
a) 2θ
b) $\frac{\theta}{3}$
c) θ
d) $\frac{\theta}{2}$
297. The slopes of the lines which make an angle 45° with the line $3 x-y=-5$ are
a) $1,-1$
b) $\frac{1}{2},-1$
c) $1, \frac{1}{2}$
d) $-2, \frac{1}{2}$
298. Given four lines with equations $x+2 y-3=0,2 x+3 y-4=0,3 x+4 y-5=0$, $4 x+5 y-6=0$ These lines are
a) Concurrent
b) The sides of a quadrilateral
c) The sides of a parallelogram
d) The sides of a square
299. The distance of the $x+y-8=0$ from $(4,1)$ measured along the direction whose slope is -2 is
a) $3 \sqrt{5}$
b) $6 \sqrt{5}$
c) $2 \sqrt{5}$
d) None of these
300. The image of the point $(4,-3)$ with respect to the line $y=x$ is
a) $(-4,-3)$
b) $(3,4)$
c) $(-4,3)$
d) $(-3,4)$
301. The range of values of α for which the points $(\alpha, 2+\alpha)$ and $\left(\frac{3 \alpha}{2}, \alpha^{2}\right)$ lie on opposite sides of the line $2 c+3 y=6$, is
a) $(-2,1)$
b) $(-\infty,-2) \cup(0,1)$
c) $(-2,0) \cup(1, \infty)$
d) $(-1,0) \cup(2, \infty)$
302. If the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ is rotated about the origin through 90°, then their
equations in the new position are given by
a) $a x^{2}-2 h x y+b y^{2}=0$
b) $a x^{2}-2 h x y-b y^{2}=0$
c) $b x^{2}-2 h x y+a y^{2}=0$
d) $b x^{2}+2 h x y+a y^{2}=0$
303. A ray of light passing through the point $(1,2)$ is reflected on the x-axis at a point P and passes through the point $(5,3)$, then the abscissa of a point P is
a) 3
b) $13 / 3$
c) $13 / 5$
d) $13 / 4$
304. Two sides of an isosceles triangle are given by the equation $7 x-y+3=0$ and $x+y-3=0$. If its third side passes through the point $(1,-10)$, then its equations are
a) $x-3 y-7=0$ or, $3 x+y-31=0$
b) $x-3 y-31=0$ or, $3 x+y-7=0$
c) $x-3 y-31=0$ or, $3 x+y+7=0$
d) None of these
305. The area of the triangle formed by y-axis, the straight line L passing through $(1,1)$ and $(2,0)$ and the straight line perpendicular to the line L and passing through $(1 / 2,0)$
a) $\frac{25}{8}$ sq. units
b) $\frac{25}{4}$ sq. units
c) $\frac{25}{16}$ sq. units
d) $\frac{25}{2}$ sq. units
306. The equation $12 x^{2}+7 x y+a y^{2}+13 x-y+3=0$ represents a pair of perpendicular lines. Then, the value of ' a ' is
a) $\frac{7}{2}$
b) -19
c) -12
d) 12
307. A beam of light is sent along the line $x-y=1$. Which after refracting from the x-axis entres the opposite side by turning through 30° towards the normal at the point of incidence on the x-axis. Then, the equation of the refracted ray is
a) $(2-\sqrt{3}) x-y=2+\sqrt{3}$
b) $(2+\sqrt{3}) x-y=2+\sqrt{3}$
c) $(2-\sqrt{3}) x+y=2+\sqrt{3}$
d) None of these
308. If the equation $12 x^{2}+7 x y-p y^{2}-18 x+q y+6=0$ represents a pair of perpendicular straight lines, then
a) $p=12, q=1$
b) $p=1, q=12$
c) $p=-1, q=12$
d) $p=1, q=-12$
309. If the point (a, a) falls between the lines $|x+y|=4$, then
a) $|a|=2$
b) $|a|=3$
c) $|a|<2$
d) $|a|<3$
310. Suppose A, B are two points on $2 x-y+3=0$ and $P(1,2)$, is such that $P A=P B$ Then, the mid point of $A B$ is
a) $\left(-\frac{1}{5}, \frac{13}{5}\right)$
b) $\left(-\frac{7}{5}, \frac{9}{5}\right)$
c) $\left(\frac{7}{5}, \frac{-9}{5}\right)$
d) $\left(\frac{-7}{5}, \frac{-9}{5}\right)$
311. If non-zero numbers a, b, c are in HP, then the straight line $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$ always passes throught a fixed point. That point is
a) $\left(1,-\frac{1}{2}\right)$
b) $(1,-2)$
c) $(-1,-2)$
d) $(-2,2)$
312. If the lines $x=a+m, y=-2$ and $y=m x$ are concurrent, then least value of $|a|$ is
a) 0
b) $\sqrt{2}$
c) $2 \sqrt{2}$
d) None of these
313. The equations $a^{2} x^{2}+2 h(a+b) x y+b^{2} y^{2}=0$ and $a x^{2}+2 h x y+b y^{2}=0$ represent
a) Two pairs of perpendicular straight lines
b) Two pairs of parallel straight lines
c) Two pairs of straight lines which are equally inclined to each other
d) None of these
314. The value of k such that $3 x^{2}-11 x y+10 y^{2}-7 x+13 y+k=0$ may represent a pair of straight lines, is
a) 3
b) 4
c) 6
d) 8
315. The equations of the lines which are parallel to the line common to the pair of the lines given by
$6 x^{2}-x y-12 y^{2}=0$ and $15 x^{2}+14 x y-8 y^{2}=0$ and at a distance of 7 units from it are
a) $3 x+4 y= \pm 35$
b) $5 x-2 y= \pm 7$
c) $2 x-3 y= \pm 7$
d) None of these
316. The circumcentre of the triangle formed by the lines $x y+2 x+2 y+4=0$ and $x+y+2=0$, is
a) $(0,0)$
b) $(-2,-2)$
c) $(-1,-1)$
d) $(-1,-2)$
317. If the sum of distances from a point P on two mutually perpendicular straight lines is 1 unit, then the locus of P is
a) A parabola
b) A circle
c) An ellipse
d) A straight line
318. A line has slope m and y-intercept 4 . The distance between the origin and the line is equal to
a) $\frac{4}{\sqrt{1-m^{2}}}$
b) $\frac{4}{\sqrt{m^{2}-1}}$
c) $\frac{4}{\sqrt{m^{2}+1}}$
d) $\frac{4 m}{\sqrt{1+m^{2}}}$
319. If the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of parallel lines, then
a) $\frac{a}{h}=\frac{b}{h}=\frac{f}{g}$
b) $\frac{a}{h}=\frac{h}{b}=\frac{f}{g}$
c) $\frac{a}{h}=\frac{h}{b}=\frac{g}{f}$
d) None of these
320. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in GP with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$
a) Lie on a parabola
b) Lie on an ellipse
c) Lie on a circle
d) Lie on a straight line
321. The equation of perpendicular bisectors of sides $A B$ and $A C$ of a $\triangle A B C$ are $x-y+5=0$ and $x+2 y=0$ respectively. If the coordinates of vertex A are $(1,-2)$, then equation of $B C$ is
a) $14 x+23 y-40=0$
b) $14 x-23 y+40=0$
c) $23 x+14 y-40=0$
d) $23 x-14 y+40=0$
322. If the line $p x-q y=r$ intersects the coordinate axes at $(a, 0)$ and $(0, b)$, thyen the value of $a+b$ is equal to
a) $r\left(\frac{q+p}{p q}\right)$
b) $r\left(\frac{q-p}{p q}\right)$
c) $r\left(\frac{p-q}{p q}\right)$
d) $r\left(\frac{p+q}{p-q}\right)$
323. The distance between the parallel lines $y=2 x+4$ and $6 x=3 y+5$ is
a) $17 / \sqrt{3}$
b) 1
c) $3 / \sqrt{5}$
d) $17 \sqrt{5} / 15$
324. The value of ' a ' for which the lines represented by $a x^{2}+5 x y+2 y^{2}=0$ are mutually perpendicular is
a) 2
b) -2
c) $\frac{25}{8}$
d) None of these
325. The vertices of $\triangle O B C$ are $(0,0),(-3,-1)$ and $(-1,-3)$, then the equation of the line parallel to $B C$ which is a distance $\frac{1}{2}$ from the origin and cut $O B$ and $O C$ intercept, is
a) $2 x-2 y+\sqrt{2}=0$
b) $2 x+2 y+\sqrt{2}=0$
c) $2 x+2 y-\sqrt{2}=0$
d) $x+y \sqrt{2}=0$
326. Two consecutive sides of a parallelogram are $4 x+5 y=0$ and $7 x+2 y=0$. One diagonal of the parallelogram is $11 x+7 y=9$. If the other diagonal is $a x+b y+c=0$, then
a) $a=-1, b=-1, c=2$
b) $a=1, b=-1, c=0$
c) $a=-1, b=-1, c=0$
d) $a=1, b=1, c=0$
327. The equations of the lines through $(1,1)$ and making angle of 45° with the line $x+y=0$ are
a) $x-1=0, x-y=0$
b) $x-y=0, y-1=0$
c) $x+y-2=0, y-1=0$
d) $x-1=0, y-1=0$
328. The equation of the straight line perpendicular to $5 x-2 y=7$ and passing through the point of intersection of the lines $2 x+3 y=1$ and $3 x+4 y=6$, is
a) $2 x+5 y+17=0$
b) $2 x+5 y-17=0$
c) $2 x-5 y+17=0$
d) $2 x-5 y=17$
329. The orthocentre of the triangle whose vertices are $(5,-2),(-1,2)$ and $(1,4)$, is
a) $(1 / 5,14 / 5)$
b) $(14 / 5,1 / 5)$
c) $(1 / 5,1 / 5)$
d) $(14 / 5,14 / 5)$
330. The equation(s) of the bisector(s) of that angle between the lines $x+2 y-1=0,3 x-6 y-5=0$ which contains the point $(1,-3)$ is
a) $3 x=19$
b) $3 y=7$
c) $3 x=19$ and $3 y=7$
d) None of these
331. Three straight lines $2 x+11 y-5=0,24 x+7 y-20=0$ and $4 x-3 y-2=0$
a) From a triangle
b) Are only concurrent
c) Are concurrent with one line bisecting the angle
d) None of the above
between the other two
332. Let a and b be non-zero and real numbers. Then, the equation $\left(a x^{2}+b y^{2}+c\right)\left(x^{2}-5 x y+6 y^{2}\right)=0$ represents
a)
Four straight lines, when $c=0$ and a, b are of the same sign

Two straight lines and hyperbola, when a and b
c) are of the same sign and c is of sign opposite to that of a
b)
Two straight lines and a circle, when $a=b$ and c is of sign opposite to that of a
d) A circle and an ellipse, when a and b are of the
333. A line passes through the point of intersection of the lines $100 x+50 y-1=0$ and $75 x+25 y+3=0$ and makes equal intercept on the axes. Its equation is
a) $25 x+25 y-1=0$
b) $5 x-5 y+3=0$
c) $25 x+25 y-4=0$
d) $25 x-25 y+6=0$
334. If the line segment joining $(2,3)$ and $(-1,2)$ is divided internally in the ratio $3: 4$ by the line $x+2 y=\lambda$, then $\lambda=$
a) $\frac{41}{7}$
b) $\frac{5}{7}$
c) $\frac{36}{7}$
d) $\frac{31}{7}$
335. The angle between the lines $\sqrt{3} x-y-2=0$ and $x-\sqrt{3} y+1=0$ is
a) 90°
b) 60°
c) 45°
d) 30°
336. A diagonal of the rectangle formed by the lines $x^{2}-7 x+6=0$ and $y^{2}-14 y+40=0$ is
a) $5 x+6 y=0$
b) $5 x-6 y=0$
c) $6 x-5 y+14=0$
d) $6 x-5 y-14=0$
337. If a line with y-intercept 2 , is perpendicular to the line $3 x-2 y=6$, then its x-intercept is
a) 1
b) 2
c) -4
d) 3
338. The distance between the pair of parallel lines given by $x^{2}-1005 x+2006=0$ is
a) 1001
b) 1000
c) 1005
d) 2006
339. The pair of lines $\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0$ are rotated about the origin by $\pi / 6$ in anticlockwise sense. The equation of the pair in the new position is
a) $\sqrt{3} x^{2}-x y=0$
b) $x^{2}-\sqrt{3} x y=0$
c) $x y-\sqrt{3} y^{2}=0$
d) None of these
340. The area of the parallelogram formed by the lines $3 x-4 y+1=0,3 x-4 y+3=0,4 x-3 y-1=0$ and $4 x-3 y-2=0$, is
a) $\frac{1}{6}$ sq. units
b) $\frac{2}{7}$ sq. units
c) $\frac{3}{8}$ sq. units
d) None of these
341. The point $P(1,1)$ is translated parallel to $2 x=y$ in the first quadrant through a unit distance. The coordinates of the new position of P are
a) $\left(1 \pm \frac{2}{\sqrt{5}}, 1 \pm \frac{1}{\sqrt{5}}\right)$
b) $\left(1 \pm \frac{1}{\sqrt{5}}, 1 \pm \frac{2}{\sqrt{5}}\right)$
c) $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$
d) $\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$
342. If, $\frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{2 x y}{h}=0$ represents pair of straight lines such that slope of one line is twice the other. Then, $a b: h^{2}$ is
a) 9:8
b) $8: 9$
c) $1: 2$
d) $2: 1$
343. If the vertices of a diagonal of a square are $(-2,4)$ and $(-2,-2)$, then its other two vertices are at
a) $(1,-1),(5,1)$
b) $(1,1),(5,-1)$
c) $(1,1),(-5,1)$
d) None of these
344. If one of the diagonals of a square is along the line $x=2 y$ and one of its vertices is $(3,0)$, then its sides through this vertex are given by the equations
a) $y-3 x+9=0,3 y+x-3=0$
b) $y+3 x+9=0,3 y+x-3=0$
c) $y-3 x+9=0,3 y-x+3=0$
d) $y-3 x+3=0,3 y+x+9=0$
345. The line passing through $\left(-1, \frac{\pi}{2}\right)$ and perpendicular to $\sqrt{3} \sin \theta+2 \cos \theta=\frac{4}{r}$, is
a) $2=\sqrt{3} r \cos \theta-2 r \sin \theta$
b) $5=-2 \sqrt{3} r \sin \theta+4 r \cos \theta$
c) $2=\sqrt{3} r \cos \theta+2 r \sin \theta$
d) $5=2 \sqrt{3} r \sin \theta-4 r \cos \theta$
346. In the adjacent figure, equation of refracted ray is

a) $y=\sqrt{3} x+1$
b) $y+\sqrt{3} x-3=0$
c) $\sqrt{3} x+y-\sqrt{3}=0$
d) None of these
347. Two points A and B have coordinates $(1,1)$ and $(3,-2)$ rrespectively. The coordinates of a point at a distance $\sqrt{85}$ from B on the line through B perpendicular to $A B$, are
a) $(4,7)$
b) $(7,4)$
c) $(5,7)$
d) $(-5,-3)$
348. If $5 a+4 b+20 c=t$, then the value of t for which the line $a x+b y+c-1=0$ always passes through a fixed point is
a) 0
b) 20
c) 30
d) None of these
349. The value of λ, for which the equation $x^{2}-y^{2}-x+\lambda y-2=0$ represents a pair of straight lines, are
a) $-3,1$
b) $-1,1$
c) $3,-3$
d) 3,1
350. The line which is parallel to x-axis and crosses the curve $y=\sqrt{x}$ at an angle 45°, is
a) $y=\frac{1}{4}$
b) $y=\frac{1}{2}$
c) $y=1$
d) $y=4$
351. Consider the following statements:
VI. The lines $2 x+3 y+19=0$ and $9 x+6 y-17=0$ cut the coordinates axes in concyclic points
VII. The points $(2,-5)$ and $(-1,4)$ are equidistant from the line $3 x+y+5=0$

Which of these is/are correct?
a) Only (1)
b) Only (2)
c) Both of these
d) None of these
352. The angle between the lines $x^{2}+4 x y+y^{2}=0$ is
a) 60°
b) 15°
c) 30°
d) 45°
353. The y-intercept of the line passing through $(2,2)$ and perpendicular to the line $3 x+y=3$ is
a) $1 / 3$
b) $2 / 3$
c) 1
d) $4 / 3$
354. If one of the lines given by $6 x^{2}-x y+4 c y^{2}=0$ is $3 x+4 y=0$, then c equals
a) 1
b) -1
c) 3
d) -3
355. For what value of k is $4 x^{2}+8 x y+k y^{2}=9$ the equation of a pair of straight lines?
a) 0
b) 4
c) 9
d) -9
356. The equation of the line bisecting perpendicularly the segment joining the points $(-4,6)$ and $(8,8)$ is
a) $y=7$
b) $6 x+y-19=0$
c) $x+2 y-7=0$
d) $6 x+2 y-19=0$
357. The locus of the point of intersection of lines $x \cos \alpha+y \sin \alpha=a$ and $x \sin \alpha-y \cos \alpha=b$ is (α is a variable)
a) $2\left(x^{2}+y^{2}\right)=a^{2}+b^{2}$
b) $x^{2}-y^{2}=a^{2}-b^{2}$
c) $x^{2}+y^{2}=a^{2}+b^{2}$
d) None of these
358. If the two pairs of lines $x^{2}-2 m x y-y^{2}=0$ and $x^{2}-2 n x y-y^{2}=0$ are such that one of them represents the dissector of the angles between the other, then
a) $m n+1=0$
b) $m n-1=0$
c) $\frac{1}{m}+\frac{1}{n}=0$
d) $\frac{1}{m}-\frac{1}{n}=0$
359. The equation of the line passing through the origin and the point of intersection of the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ is
a) $b x-a y=0$
b) $x+y=0$
c) $a x-b y=0$
d) $x-y=0$
360. The equation $4 x^{2}-24 x y+11 y^{2}=0$ represents
a) Two parallel lines
b) Two perpendicular lines
c) Two lines through the origin
d) A circle
361. If the slopes of one of the lines given by $a x^{2}+2 h x y+b y^{2}=0$ is 5 times the other, then
a) $5 h^{2}=9 a b$
b) $5 h^{2}=a b$
c) $h^{2}=a b$
d) $9 h^{2}=5 a b$
362. Points on the line $x+y=4$ which are equidistant from the lines $|x|=|y|$, are
a) $(4,0),(0,4)$
b) $(-4,0),(0,-4)$
c) $(4,0),(-4,0)$
d) None of these
363. If 3,4 are intercepts of a line $L \equiv 0$, then the distance of $L \equiv 0$ from the origin is
a) 5 units
b) 12 units
c) $\frac{5}{12}$ unit
d) $\frac{12}{5}$ unit
364. If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=m x+4,\left(\frac{1}{2}<, m<3\right)$, then the value of m are
a) $\frac{1}{2}(1 \pm 5 \sqrt{3})$
b) $\frac{1}{7}(1 \pm 5 \sqrt{5})$
c) $\frac{1}{7}(1 \pm 5 \sqrt{2})$
d) $\frac{1}{7}(1 \pm 2 \sqrt{5})$
365. The point of intersection of the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ lies on the line
a) $x-y=0$
b) $(x+y)(a+b)=2 a b$
c) $(l x+m y)(a+b)=(l+m) a b$
d) All of these
366. The equation of the bisector of the acute angle between the line $3 x-4 y+7=0$ and $12 x+5 y-2=0$ is
a) $99 x-27 y-81=0$
b) $11 x-3 y+9=0$
c) $21 x+77 y-101=0$
d) $21 x+77 y+101=0$
367. The sum of slopes of lines $3 x^{2}+5 x y-2 y^{2}=0$ is
a) $-\frac{5}{3}$
b) $\frac{5}{2}$
c) $-\frac{5}{2}$
d) $-\frac{2}{3}$
368. The line $2 x-y=1$ bisects angle between two lines. If equation of one line is $y=x$, then the equation of the other line is
a) $7 x-y-6=0$
b) $x-2 y+1=0$
c) $3 x-2 y-1=0$
d) $x-7 y+6=0$
369. The lines $(a+2 b) x+(a-3 b) y=a-b$ for different values of a and b pass through the fixed point whose coordinates are
a) $\left(\frac{2}{5}, \frac{2}{5}\right)$
b) $\left(\frac{3}{5}, \frac{3}{5}\right)$
c) $\left(\frac{1}{5}, \frac{1}{5}\right)$
d) $\left(\frac{2}{5}, \frac{3}{5}\right)$
370. If the straight line $a x+b y+c=0$ always passes through $(1,-2)$, then a, b, c are
a) in AP
b) in HP
c) in GP
d) None of these
371. The point moves such that the area of the triangle formed by it with the points $(1,5)$ and $(3,-7)$ is 21 sq unit. The locus of the point is
a) $6 x+y-32$
b) $6 x-y+32=0$
c) $x+6 y-32=0$
d) $6 x-y-32=0$
372. Orthocentre of triangle with vertices $(0,0),(3,4)$ and $(4,0)$ is
a) $(3,5 / 4)$
b) $(3,12)$
c) $(3,3 / 4)$
d) $(3,9)$
373. If one vertex of an equilateral triangle is at $(2,-1)$ and the base is $x+y-2=0$, then the length of each side is
a) $\sqrt{3 / 2}$
b) $\sqrt{2 / 3}$
c) $2 / 3$
d) $3 / 2$
374. Orthocentre of the triangle formed by the lines $x+y=1$ and $x y=0$ is
a) $(0,0)$
b) $(0,1)$
c) $(1,0)$
d) $(-1,1)$
375. The angle between the line joining origin and intersection points of line $2 x+y=1$ and curve $3 x^{2}+4 y x-4 x+1=0$ is
a) $\pi / 2$
b) $\pi / 3$
c) $\pi / 4$
d) $\pi / 6$
376. The coordinate of the foot of perpendicular from $(a, 0)$ on the line $y=m x+\frac{a}{m}$ are
a) $\left(0, \frac{a}{m}\right)$
b) $\left(0,-\frac{a}{m}\right)$
c) $\left(\frac{a}{m}, 0\right)$
d) $\left(-\frac{a}{m}, 0\right)$
377. Coordinate of the foot of the perpendicular drawn from $(0,0)$ to the line joining $(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)$ are
a) $\left(\frac{a}{2}, \frac{b}{2}\right)$
b) $\left[\frac{a}{2}(\cos \alpha+\cos \beta), \frac{a}{2}(\sin \alpha+\sin \beta)\right]$
c) $\left[\cos \frac{\alpha+\beta}{2}, \sin \frac{\alpha+\beta}{2}\right]$
d) $\left(0, \frac{b}{2}\right)$
378. The inclination of the straight line passing through the point $(-3,6)$ and the mid point of the line joining the points $(4,-5)$ and $(-2,9)$ is
a) $\frac{\pi}{4}$
b) $\frac{\pi}{6}$
c) $\frac{\pi}{3}$
d) $\frac{3 \pi}{4}$
379. The angle between the pair of lines $\left(x^{2}+y^{2}\right) \sin ^{2} \alpha=(x \cos \theta-y \sin \theta)^{2}$ is
a) θ
b) 2θ
c) α
d) 2α
380. The acute angle between the lines joining the origin to the points of intersection of the line $\sqrt{3} x+y=2$ and the circle $x^{2}+y^{2}=4$, is
a) $\pi / 2$
b) $\pi / 3$
c) $\pi / 4$
d) $\pi / 6$
381. If the line $\frac{x}{a}+\frac{y}{b}=1$ moves such that $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$ where c is a constant, then the locus of the foot of the perpendicular from the origin to the line is
a) Straight line
b) Circle
c) Parabola
d) Ellipse
382. The base $B C$ of $\triangle A B C$ is bisected at (p, q) and equation of sides $A B$ and $A C$ are $p x+q y=1$ and $q x+p y=1$ respectively. Then, the equation of the median through A is
a) $(2 p q-1)(p x+q y-1)=\left(p^{2}+q^{2}-1\right)(q x+p y-1)$
b) $(q x+q y-1)(q x+p y-1)=0$
c) $(p x+q y-1)(q x-p y-1)=0$
d) None of the above
383. The straight lines $x+y-4=0,3 x+y-4=0, x+3 y-4$ form a triangle which is
a) Isosceles
b) Right angled
c) Equilateral
d) None of these
384. The image of the point $(1,3)$ in the line $x+y-6=0$, is
a) $(3,5)$
b) $(5,3)$
c) $(1,-3)$
d) $(-1,3)$
385. The lines $x \cos \alpha+y \sin \alpha=p_{1}$ and $x \cos \beta+y \sin \beta=p_{2}$ will be perpendicular, if
a) $\alpha \pm \beta=\frac{\pi}{2}$
b) $\alpha=\frac{\pi}{2}$
c) $|\alpha-\beta|=\frac{\pi}{2}$
d) $\alpha=\beta$
386. The limiting position of the point of intersection of the lines $3 x+4 y=1$ and $(1+c) x+3 c^{2} y=2$ as c tends to 1 , is
a) $(-5,4)$
b) $(5,-4)$
c) $(4,-5)$
d) None of these
387. If the lines $a x+k y+10=0, b x+(k+1) y+10=0$ and $c x+(k+2) y+10=0$ are concurrent, then
a) a, b, c are in GP
b) a, b, c are in HP
c) a, b, c are in AP
d) $(a+b)^{2}=c$
388. The distance between the parallel lines $9 x^{2}-6 x y+y^{2}+18 x-6 y+8=0$, is
a) $\frac{1}{\sqrt{10}}$
b) $\frac{2}{\sqrt{10}}$
c) $\frac{4}{\sqrt{10}}$
d) $\sqrt{10}$
389. If two of the lines given by the equation $a x^{3}+b x^{2} y+c x y^{2}+d y^{3}=(a \neq 0)$ make complementary angles with x-axis in anticlockwise sense, then
a) $a(a-c)=d(b-d)$
b) $d(a-c)=a(d-b)$
c) $a(a-c)=d(d-b)$
d) None of these
390. The equation of the pair of straight lines parallel to x-axis and touching the circle $x^{2}+y^{2}-6 x-4 y-$ $12=0$ is
a) $y^{2}-4 y-21=0$
b) $y^{2}+4 y-21=0$
c) $y^{2}-4 y+21=0$
d) $y^{2}+4 y+21=0$
391. Let $P=(-1,0), Q=(0,0)$ and $R=(3,3 \sqrt{3})$ be three points. The equation of the bisector of the angle $P Q R$ is
a) $\sqrt{3} x+y=0$
b) $x+\frac{\sqrt{3}}{2} y=0$
c) $\frac{\sqrt{3}}{2} x+y=0$
d) $x+\sqrt{3} y=0$
392. Two of the lines represented by the equation $a y^{4}+b x y^{3}+c x^{2} y^{2}+d x^{3} y+e x^{4}=0$ will be perpendicular, then
a) $(b+d)(a d+b e)+(e-a)^{2}(a+c+e)=0$
b) $(b+d)(a d+b e)+(e+a)^{2}(a+c+e)=0$
c) $(b-d)(a d-b e)+(e-a)^{2}(a+b+e)=0$
d) $(b-d)(a d-b e)+(e+a)^{2}(a+b+c)=0$
393. If $3 x^{2}+x y-y^{2}-3 x+6 y+k=0$ represents a pair of lines, then k is equal to
a) 0
b) 9
c) 1
d) -9
394. Let the base of a triangle lie along the line $x=a$ and be of length $2 a$. The area of this triangle is a^{2} if the vertex lies on the lines
a) $x=-a, x=2 a$
b) $x=0, x=a$
c) $x=a / 2, x=-a$
d) None of these
395. The distance of the point $(-2,3)$ from the line $x-y=5$ is
a) $5 \sqrt{2}$
b) $2 \sqrt{5}$
c) $3 \sqrt{5}$
d) $5 \sqrt{3}$
396. The angle between the lines in $x^{2}-x y-6 y^{2}-7 x+31 y-18=0$ is
a) 60°
b) 45°
c) 30°
d) 90°
397. The equation $12 x^{2}+7 x y+a y^{2}+13 x-y+3=0$, represents a pair of perpendicular lines. Then, the value of ' a ' is
a) $\frac{7}{2}$
b) -19
c) -12
d) 12
398. If the equation of base of an equilateral triangle is $2 x-y=1$ and the vertex is $(-1,2)$, then the length of the side of the triangle is
a) $\sqrt{\frac{20}{3}}$
b) $\frac{2}{\sqrt{15}}$
c) $\sqrt{\frac{8}{15}}$
d) $\sqrt{\frac{15}{2}}$
399. The number of lines that are parallel to $2 x+6 y+7=0$ and have an intercept of length 10 between the coordinate axes, is
a) 1
b) 2
c) 4
d) Infinitely many
400. If $a \neq b \neq c$ and if $a x+b y+c=0, b x+c y+a=0, c x+a y+b=0$ are concurrent, then $2^{a^{2} b^{-1} c^{-1}}$. $2^{b^{2} c^{-1} b^{-1}} \cdot 2^{c^{2 a^{-1}} b^{-1}}$ is equal to
a) 8
b) 0
c) 2
d) None of these
401. The lines parallel to the x-axis and passing through the intersection of the lines $a x+2 b y+3 b=0$ and $b x-2 a y-3 a=0$, where $(a, b) \neq(0,0)$ is
a) Above the x-axis at a distance of $(2 / 3)$ from it
b) Above the x-axis at a distance of (3/2) from it
c) Below the x-axis at a distance of $(2 / 3)$ from it
d) Below the x-axis at a distance of $(3 / 2)$ from it
402. The equations of two sides of a square whose area is 25 square units are $3 x-4 y=0$ and $4 x+3 y=0$. The equations of the other two sides of the square are
a) $3 x-4 y \pm 25=0,4 x+3 y \pm 25=0$
b) $3 x-4 y \pm 5=0,4 x+3 y \pm 5=0$
c) $3 x-4 y \pm 5=0,4 x+3 y \pm 25=0$
d) None of these
403. The polar equation $\cos \theta+7 \sin \theta=\frac{1}{r}$ represents a
a) Circle
b) Parabola
c) Straight line
d) Hyperbola
404. If $x^{2}-k x y+y^{2}+2 y+2=0$ denotes a pair of straight lines then $k=$
a) 2
b) $1 / \sqrt{2}$
c) $2 \sqrt{2}$
d) $\sqrt{2}$
405. The bisector of the acute angle formed between the lines $4 x-3 y+7=0$ and $3 x-4 y+14=0$ has the equation
a) $x+y+3=0$
b) $x-y-3=0$
c) $x-y+3=0$
d) $3 x+y-7=0$
406. If the points $(1,2)$ and $(3,4)$ were to be on the same side of the line $3 x-5 y+a=0$, then
a) $7<a<11$
b) $a=7$
c) $a=1$
d) $a<7$ or $a>11$
407. The equation of pair of lines joining origin to the points of intersection of $x^{2}+y^{2}=9$ and $x+y=3$ is
a) $x^{2}+(3-x)^{2}=9$
b) $x y=0$
c) $(3+y)^{2}+y^{2}=9$
d) $(x-y)^{2}=9$
408. The line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes through the point $(13,32)$. The line K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}-1$. Then, the distance between L and K is
a) $\frac{23}{\sqrt{15}}$
b) $\sqrt{17}$
c) $\frac{17}{\sqrt{15}}$
d) $\frac{23}{\sqrt{17}}$
409. The length of perpendicular from the point ($a \cos \alpha, a \sin \alpha$) upon the straight line $y=x \tan \alpha+c, c>0$, is
a) c
b) $c \sin ^{2} \alpha$
c) $c \cos \alpha$
d) $c \sec ^{2} \alpha$
410. The equations $a x+b y+c=0$ and $d x+e y+f=0$ represent the same straight line if and only if
a) $\frac{a}{d}=\frac{b}{c}$
b) $c=f$
c) $\frac{a}{d}=\frac{b}{e}=\frac{c}{f}$
d) $a=d, b=e, c=f$
411. The coordinates of the image of the origin O with respect to the line $x+y+1=0$ are
a) $-1 / 2,-1 / 2$
b) $(-2,-2)$
c) $(1,1)$
d) $(-1,-1)$
412. The equation of the straight line joining the origin to the point of intersection of $y-x+7=0$ and $y+2 x-2=0$, is
a) $3 x+4 y=0$
b) $3 x-4 y=0$
c) $4 x-3 y=0$
d) $4 x+3 y=0$
413. If one of the lines of $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the axes, in the first quadrant, then
a) $h^{2}-a b=0$
b) $h^{2}+a b=0$
c) $(a+b)^{2}=h^{2}$
d) $(a+b)^{2}=4 h^{2}$
414. If the angle between the lines represented by equations $y^{2}+k x y-x^{2} \tan ^{2} A=0$ is $2 A$, then k is equal to
a) 0
b) 2
c) 4
d) -2
415. The image of the point $(-1,3)$ by the line $x-y=0$ is
a) $(3,-1)$
b) $(1,-3)$
c) $(-1,-1)$
d) $(3,3)$
416. The joint equation of the straight lines $x+y=1$ and $x-y=4$, is
a) $x^{2}-y^{2}=-4$
b) $x^{2}-y^{2}=4$
c) $(x+y-1)(x-y-4)=0$
d) $(x+y+1)(x-y+4)=0$
417. The equation of the straight lines passing through the point $(4,3)$ and making intercepts on the coordinate axes whose sum is -1 , is
a) $\frac{x}{2}+\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
b) $\frac{x}{2}-\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
c) $\frac{x}{2}+\frac{y}{3}=1$ and $\frac{x}{-2}+\frac{y}{1}=1$
d) $\frac{x}{2}-\frac{y}{3}=1$ and $\frac{x}{-2}+\frac{y}{1}=1$
418. If the equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is $\left(a_{1}-a_{2}\right) x+$ $\left(b_{1}-b_{2}\right) y+c=0$, then the value of c, is
a) $a_{1}^{2}-a_{2}^{2}+b_{1}^{2}-b_{2}^{2}$
b) $\sqrt{a_{1}^{2}+b_{1}^{2}-a_{2}^{2}-b_{2}^{2}}$
c) $\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}\right)$
d) $\frac{1}{2}\left(a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}\right)$
419. If the equation $4 x^{2}+h x y+y^{2}=0$ represent coincident lines, then h is equal to
a) 1
b) 3
c) 2
d) 4
420. The four sides of a quadrilateral are given by the equation $x y(x-2)(y-3)=0$. The equation of the line parallel to $x-4 y=0$ that divides the quadrilateral in two equal area is
a) $x-4 y+5=0$
b) $x-4 y-5=0$
c) $4 y=x+1$
d) $4 y+1=x$
421. The angle between the pair of straight lines formed by joining the points of intersection of $x^{2}+y^{2}=4$ and $y=3 x+c$ to the origin is a right angle. Then, c^{2} is equal to
a) 20
b) 30
c) $1 / 5$
d) 5
422. P is a point on either of two lines $y-\sqrt{3}|x|=2$ at a distance 5 unit from their point of intersection. The coordinates of the foot of the perpendicular from P on the bisector of the angle between them are
a) $\left(0, \frac{4+5 \sqrt{3}}{2}\right)$ or $\left(0, \frac{4-5 \sqrt{3}}{2}\right)$ depending on which the point P is taken
b) $\left(0, \frac{4+5 \sqrt{3}}{2}\right)$
c) $\left(0, \frac{4-5 \sqrt{3}}{2}\right)$
d) $\left(\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right)$
423. The triangle formed by the lines $x+y=0,3 x+y=4, x+3 y=4$ is
a) Isosceles
b) Equilateral
c) Right angled
d) None of these
424. Equation of a line passing through the line of interception of lines $2 x-3 y+4=0$,
$3 x+4 y-5=0$ and perpendicular to $6 x-7 y+3=0$, is
a) $119 x+102 y+125=0$
b) $119 x+102 y=125$
c) $119 x-102 y=125$
d) None of these
425. The lines $a x+b y+c=0, b x+c y+a=0$ and $c x+a y+b=0(a \neq b \neq c)$ are concurrent, if
a) $a^{3}+b^{3}+c^{3}+3 a b c=0$
b) $a^{2}+b^{2}+c^{2}-3 a b c=0$
c) $a+b+c=0$
d) None of the above

: ANSWER KEY:

1)	b	2)	b	3)	a	4)	c	189)	c	190)	c	191)	b	192)
5)	d	6)	a	7)	b	8)	d	193)	a	194)	c	195)	d	196)
9)	a	10)	c	11)	a	12)	b	197)	b	198)	c	199)	b	200)
13)	b	14)	a	15)	a	16)	c	201)	a	202)	a	203)	c	204)
17)	c	18)	a	19)	a	20)	c	205)	a	206)	a	207)	d	208)
21)	b	22)	b	23)	b	24)	d	209)	c	210)	d	211)	a	212)
25)	c	26)	b	27)	b	28)	b	213)	a	214)	b	215)	b	216)
29)	b	30)	c	31)	c	32)	b	217)	a	218)	d	219)	c	220)
33)	a	34)	d	35)	a	36)	a	221)	c	222)	b	223)	d	224)
37)	c	38)	a	39)	b	40)	a	225)	c	226)	b	227)	d	228)
41)	a	42)	c	43)	b	44)	b	229)	a	230)	a	231)	b	232)
45)	b	46)	d	47)	b	48)	a	233)	a	234)	c	235)	a	236)
49)	a	50)	a	51)	b	52)	b	237)	b	238)	c	239)	c	240)
53)	b	54)	a	55)	c	56)	d	241)	d	242)	b	243)	a	244)
57)	d	58)	b	59)	b	60)	a	245)	d	246)	c	247)	c	248)
61)	c	62)	c	63)	a	64)	d	249)	a	250)	d	251)	b	252)
65)	a	66)	a	67)	d	68)	b	253)	c	254)	d	255)	c	256)
69)	c	70)	b	71)	c	72)	c	257)	a	258)	a	259)	c	260)
73)	c	74)	d	75)	b	76)	a	261)	d	262)	c	263)	b	264)
77)	d	78)	d	79)	b	80)	b	265)	a	266)	c	267)	c	268)
81)	b	82)	b	83)	c	84)	a	269)	c	270)	a	271)	c	272)
85)	a	86)	b	87)	c	88)	b	273)	c	274)	a	275)	d	276)
89)	d	90)	a	91)	b	92)	d	277)	d	278)	c	279)	d	280)
93)	d	94)	b	95)	b	96)	d	281)	c	282)	d	283)	b	284)
97)	a	98)	d	99)	a	100)	a	285)	a	286)	a	287)	c	288)
101)	c	102)	c	103)	a	104)	a	289)	b	290)	b	291)	b	292)
105)	c	106)	a	107)	c	108)	b	293)	b	294)	c	295)	b	296)
109)	c	110)	c	111)	b	112)	b	297)	d	298)	a	299)	a	300)
113)	d	114)	b	115)	d	116)	a	301)	b	302)	c	303)	c	304)
117)	a	118)	b	119)	a	120)	c	305)	c	306)	c	307)	d	308)
121)	b	122)	d	123)	a	124)	b	309)	a	310)	a	311)	b	312)
125)	c	126)	c	127)	a	128)	c	313)	c	314)	b	315)	a	316)
129)	c	130)	a	131)	a	132)	b	317)	d	318)	c	319)	c	320)
133)	d	134)	a	135)	c	136)	a	321)	a	322)	b	323)	d	324)
137)	d	138)	b	139)	b	140)	b	325)	b	326)	b	327)	d	328)
141)	a	142)	c	143)	a	144)	b	329)	a	330)	a	331)	c	332)
145)	d	146)	d	147)	a	148)	c	333)	c	334)	a	335)	d	336)
149)	a	150)	a	151)	c	152)	a	337)	d	338)	a	339)	a	340)
153)	b	154)	b	155)	c	156)	b	341)	b	342)	a	343)	c	344)
157)	a	158)	a	159)	c	160)	d	345)	a	346)	c	347)	c	348)
161)	b	162)	d	163)	c	164)	c	349)	c	350)	b	351)	c	352)
165)	b	166)	a	167)	d	168)	a	353)	d	354)	d	355)	b	356)
169)	a	170)	c	171)	b	172)	c	357)	c	358)	a	359)	d	360)
173)	c	174)	c	175)	d	176)	a	361)	a	362)	a	363)	d	364)
177)	c	178)	d	179)	b	180)	b	365)	d	366)	c	367)	b	368)
181)	b	182)	a	183)	d	184)	b	369)	d	370)	a	371)	a	372)
185)	d	186)	a	187)	d	188)	a	373)	b	374)	a	375)	a	376)

377)	b	378)	d	379)	d	380)	b	405)	c	406)	d	407)	b	408)
381)	b	382)	a	383)	a	384)	a	409)	c	410)	c	411)	d	412)
385)	c	386)	a	387)	c	388)	b	413)	d	414)	a	415)	a	416)
389)	c	390)	a	391)	a	392)	a	417)	d	418)	d	419)	d	420)
393)	d	394)	b	395)	a	396)	b	421)	a	422)	b	423)	a	424)
397)	c	398)	a	399)	b	400)	a	425)	c					
401)	d	402)	a	403)	c	404)	d							

: HINTS AND SOLUTIONS :

1 (b)
The vertices of the triangle are $A(0,0), B\left(-\frac{c}{a}, 0\right)$ and $\left(C\left(0,-\frac{c}{b}\right)\right.$
\therefore Area of $\Delta=\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ -\frac{c}{a} & 0 & 1 \\ 0 & -\frac{c}{b} & 1\end{array}\right|$
$=\frac{1}{2} 1\left|\left\{\left(-\frac{c}{a}\right)\left(-\frac{c}{b}\right)-0\right\}\right|$
$=\frac{c^{2}}{2|a b|}$
2 (b)
The equation of any line passing through $(1,1)$ and $(-5,5)$ is
$y-1=\frac{5-1}{-5-1}(x-1)$
$\Rightarrow-6(y-1)=4(x-1)$
Since, the point $(13, \lambda)$ lies on this line.
$\therefore-6(\lambda-1)=4(13-1) \Rightarrow \lambda=-7$
3 (a)
The equations of the lines passing through the origin and making angle α with $y+x=0$ are
$y-0=\frac{-1 \pm \tan \alpha}{1 \pm \tan \alpha}(x-0) \quad\left[\right.$ Using : $y-y_{1}$

$$
\left.=\frac{m \pm \tan \alpha}{1 \bar{\mp} \tan \alpha}\left(x-x_{1}\right)\right]
$$

$\Rightarrow y+\frac{1-\tan \alpha}{1+\tan \alpha} x=0$ and $y+\frac{1+\tan \alpha}{1-\tan \alpha} x=0$
The combined equations of these two lines is
$\left(y+\frac{1-\tan \alpha}{1+\tan \alpha}\right)\left(y+\frac{1+\tan \alpha}{1-\tan \alpha}\right)=0$
$\Rightarrow y^{2}+x^{2}+2 x y\left(\frac{1+\tan ^{2} \alpha}{1-\tan ^{2} \alpha}\right)=0$
$\Rightarrow x^{2}+2 x y \sec 2 \alpha+y^{2}=0$
4 (c)
Points $(3,4)$ and $(7,13)$ are on the same side of straight line $y=x$. Take image of A about $y=x i e, A^{\prime \prime} \equiv(4,3)$

Now, P is a intersection point of line $y=x$ and $A^{\prime \prime} B$
Equation of line $A^{\prime \prime} B$ is $y-3=\frac{10}{3}(x-4)$
$\Rightarrow 3 y-9=10 x-40$
$\Rightarrow 10 x-3 y=31$
$\Rightarrow\left(\frac{31}{7}, \frac{31}{7}\right)$ satisfy the line $A^{\prime \prime} B$ such that $P A$
$+P B$ is minimum
\therefore Coordinates of P are $\left(\frac{31}{7}, \frac{31}{7}\right)$
(d)

The length of perpendicular from the origin to the line
$\frac{x \sin \alpha}{b}-\frac{y \cos \alpha}{a}-1=0$ is
$d=\frac{|0-0-1|}{\sqrt{\frac{\sin ^{2} \alpha}{b^{2}}+\frac{\cos ^{2} \alpha}{a^{2}}}}$
$=\frac{|a b|}{\sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha}}$
6 (a)
Given equation is compared with $a_{1} x+b_{1} y=0$
and $a_{2} x+b_{2} y=0$
Now, $a_{1} a_{2}+b_{1} b_{2}=(1)(\sqrt{3})+(-\sqrt{3})(1)=0$
\therefore Lines are perpendicular
Hence, $\theta=90^{\circ}$
(b)

Since, the coordinates of three verities A, B and C are $\left(\frac{5}{3},-\frac{4}{3}\right),(0,0)$ and $\left(-\frac{2}{3}, \frac{7}{3}\right)$ respectively. Also, the mid point of $A C$ is $\left(\frac{1}{2}, \frac{1}{2}\right)$ Therefore, the equation of line passing through $\left(\frac{1}{2}, \frac{1}{2}\right)$ and $(0,0)$ is $x-y=0$, which is the required equation of another diagonal
$\therefore a=1, b=-1$ and $c=0$
8 (d)
Given lines will be concurrent, if
$\left|\begin{array}{lll}a & b & -c \\ b & c & -a \\ c & a & -b\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{lll}(a+b+c) & b & c \\ (a+b+c) & c & a \\ (a+b+c) & a & b\end{array}\right|=0$ Applying
$C_{1} \rightarrow C_{1}+C_{2}+C_{3}$
$\Rightarrow(a+b+c)\left|\begin{array}{lll}1 & b & c \\ 1 & c & a \\ 1 & a & b\end{array}\right|=0$
$\Rightarrow(a+b+c)\left|\begin{array}{ccc}1 & b & c \\ 0 & c-b & a-c \\ 0 & a-b & b-c\end{array}\right|=0$
Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$
$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$
$\Rightarrow-(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$ $=0$
$\Rightarrow a+b+c=0$ or $a^{2}+b^{2}+c^{2}-a b-b c-$ $c a=0$
9 (a)
Given equation is compared with the standard form, we get
$a=1, h=-\frac{3}{2}, b=\lambda, g=\frac{3}{2}, f=\frac{-5}{2}, c=2$
Given that, $\theta=\tan ^{-1}\left(\frac{1}{3}\right) \Rightarrow \tan \theta=\frac{1}{3}$
Since, $\tan \theta=\frac{2 \sqrt{h^{2}-a b}}{a+b}$
$\Rightarrow \frac{1}{3}=\frac{2 \sqrt{\left(-\frac{3}{2}\right)^{2}-\lambda}}{\lambda+1} \Rightarrow(\lambda+1)^{2}=9(9-4 \lambda)$
$\Rightarrow \lambda^{2}+1+2 \lambda=81-36 \lambda$
$\Rightarrow \lambda^{2}+38 \lambda-80=0$
$\Rightarrow \lambda=\frac{-38 \pm \sqrt{(38)^{2}+320}}{2}$
$\Rightarrow \lambda=\frac{-38 \pm 42}{2} \Rightarrow \lambda=2$
10 (c)
The separate equation of pair of straight lines of $12 x^{2}-20 x y+7 y^{2}=0$ are $6 x-7 y=0$ and
$2 x-y=0$
Thus, equation of sides of triangle are
$6 x-7 y=0$
$2 x-y=0$
and $2 x-3 y+4=0 \ldots$ (iii)
On solving these equations, we get the vertices of a triangle $A(0,0) ; B(1,2)$ and $C(7,6)$
\therefore Centroid of triangle is
$\left(\frac{0+1+7}{3}, \frac{0+2+6}{3}\right)=\left(\frac{8}{3}, \frac{8}{3}\right)$
11 (a)
The angle between the lines represented by
$2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$ is given by
$\tan \theta= \pm \frac{2 \sqrt{\frac{25}{4}-6}}{2+3} \Rightarrow \tan \theta= \pm \frac{1}{5}$
$\therefore m= \pm \frac{1}{5}$

12 (b)

We know, if the line are perpendicular to each
other, then $\theta=90^{\circ}$
$\Rightarrow \tan 90^{\circ}=\frac{2 \sqrt{h^{2}-a b}}{a+b}$
$\Rightarrow a+b=0\left[\because \tan 90^{\circ}=\infty\right]$
13 (b)
Given equation of line are
$3 x+4 y+1=0$
$5 x+\lambda y+3=0$
and $2 x+y-1=0 \ldots$ (iii)
The intersection point of lines (i) and (iii) is $(1,-1)$.
Since, the line are concurrent, therefore the intersection point $(1,-1)$ lies on line (ii)
$\therefore 5(1)+\lambda(-1)+3=0 \Rightarrow \lambda=8$
14 (a)
Line perpendicular to same line are parallel to each other.
$\therefore-p\left(p^{2}+1\right)=p^{2}+1$
$\Rightarrow p=-1$
\therefore There is exactly one value of p.
15 (a)
If $P(\sin \theta, 1 / \sqrt{2})$ and $Q(1 / \sqrt{2}, \cos \theta)$ are on the same side of the line $x-y=0$. Then,
$\Rightarrow\left(\sin \theta-\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}-\cos \theta\right)>0$
$\Rightarrow\left(\sin \theta-\frac{1}{\sqrt{2}}\right)\left(\cos \theta-\frac{1}{\sqrt{2}}\right)<0$
$\Rightarrow \sin \theta-\frac{1}{\sqrt{2}}>0$ and $\cos \theta-\frac{1}{\sqrt{2}}<0$
or, $\sin \theta-\frac{1}{\sqrt{2}}<0$ and $\cos \theta-\frac{1}{\sqrt{2}}>0$
$\Rightarrow\left(\sin \theta>\frac{1}{\sqrt{2}}\right.$ and $\left.\cos \theta<\frac{1}{\sqrt{2}}\right)$
or, $\left(\sin \theta<\frac{1}{\sqrt{2}}\right.$ and $\left.\cos \theta>\frac{1}{\sqrt{2}}\right)$
$\Rightarrow \theta \in(\pi / 4,3 \pi / 4)$ or, $\theta \in(-\pi / 4, \pi / 4)$
$\Rightarrow \theta \in(-\pi / 4, \pi / 4) \cup(\pi / 4,3 \pi / 4)$
16 (c)
Given line meets the coordinate axes at
$A\left(\frac{2}{\cosh \alpha-\sin h \alpha}, 0\right)$ and $B\left(0, \frac{2}{\cosh \alpha+\sin h \alpha}\right.$,
\therefore Area of $\triangle O A B$
$=\frac{1}{2} \times O A \times O B$
$=\frac{1}{2} \times \frac{2}{\cosh \alpha-\sin h \alpha} \times \frac{2}{\cosh \alpha+\sinh \alpha}$
$=\frac{2}{\cos h^{2} \alpha-\sin h^{2} \alpha}=2$ sq. units
(c)

The line $a x+b y+c=0$ cuts the coordinate axes at $A(-c / a, 0)$ and $B(0,-c / b)$
\therefore Area of $\triangle O A B=\frac{1}{2} \times O A \times O B$
\Rightarrow Area of $\triangle O A B=\frac{1}{2} \times \frac{-c}{a} \times \frac{-c}{b}=\frac{c^{2}}{2 a b}$
\Rightarrow Area of $\triangle O A B=\frac{a b}{2 a b} \quad\left[\because a, c, b\right.$ are in G.P. c^{2}

$$
=a b]
$$

\Rightarrow Area of $\triangle O A B=\frac{1}{2}=$ Constant

18 (a)
The required lines are obtaining by shifting the origin at $(4,0)$. So, the required equation is $y=|x-4|$
19 (a)
We have, Coefff. of $x^{2}+$ Coeff. of $y^{2}=0$
Therefore, the angle between the lines is $\pi / 2$
20 (c)
The equation of a line passing through the
intersection of $x-3 y+1=0$ and $2 x+5 y-$ $9=0$ is
$(x-3 y+1)+\lambda(2 x+5 y-9)=0$
$\Rightarrow x(2 \lambda+1)+y(5 \lambda-3)+1-9 \lambda=0$
This is at a distance of $\sqrt{5}$ units from the origin
$\therefore\left|\frac{1-9 \lambda}{\sqrt{(2 \lambda+1)^{2}+(5 \lambda-3)^{2}}}\right|=\sqrt{5} \Rightarrow \lambda=\frac{7}{8}$
Hence, the required line is $2 x+y=5$
21 (b)
The equations of the sides of the parallelogram are:
$x \cos \alpha+y \sin \alpha-p=0$
$x \cos \alpha+y \sin \alpha-q=0$
$x \cos \beta+y \sin \beta-r=0$
$x \cos \beta+y \sin \beta-s=0$
\therefore Area of the parallelogram

$$
\begin{array}{r}
=\left|\frac{\{(-p)-(-q)\}\{(-r)-(-s)\}}{\left|\begin{array}{cc}
\cos \alpha & \sin \alpha \\
\cos \beta & \sin \beta
\end{array}\right|}\right| \\
=\left|\frac{(p-q)(r-s)}{\sin (\alpha-\beta)}\right|
\end{array}
$$

Clearly, it is maximum when $\alpha-\beta= \pm \frac{\pi}{2}$
(b)

Let the coordinates of the other two vertices be
$B\left(3, y_{1}\right)$ and $D\left(3, y_{2}\right)$. Since the diagonals of a rectangle bisect each other

$\therefore \frac{y_{1}+y_{2}}{2}=\frac{2+5}{2} \Rightarrow y_{1}+y_{2}=7$
Also, $A C=B D$
$\Rightarrow \sqrt{(5-1)^{2}+(5-2)^{2}}=y_{2}-y_{1}$
$\Rightarrow y_{1}-y_{1}=5$
From (i) and (ii), we get $y_{1}=1, y_{2}=6$
Hence, the coordinates of the other two vertices are $(3,1)$ and $(3,6)$
23 (b)
Equation of a line passing through $\left(x_{1}, y_{1}\right)$ and making angle α with x-axis is
$\frac{x-x_{1}}{\cos \alpha}=\frac{y-y_{1}}{\sin \alpha}=r$
Any point on this line is $\left(x_{1}+r \cos \alpha, y_{1}+\right.$ $r \sin \alpha$. It lies on the line $A x+B y+C=0$
$\therefore A\left(x_{1}+r \cos \alpha\right)+B\left(y_{1}+r \sin \alpha\right)+C=0$
$\Rightarrow r=-\frac{A x_{1}+B y_{1}+C}{A \cos \alpha+B \sin \alpha}$
Thus, $P Q=r=-\frac{A x_{1}+B y_{1}+C}{A \cos \alpha+B \sin \alpha}$
(d)

Here, $a=2, \quad h=\frac{3}{2}, \quad b=-5$
$\therefore \tan \theta=\left|\frac{2 \sqrt{\left(\frac{3}{2}\right)^{2}+10}}{2-5}\right|=\left|\frac{\sqrt{49}}{-3}\right|$
$\Rightarrow \theta=\tan ^{-1}\left|\frac{7}{3}\right|$

(c)

Let (h, k) be the point such that
$(h-3)^{2}+(k+2)^{2}=\frac{5 h-12 k-13}{\sqrt{25+144}}$
$\Rightarrow 13\left(h^{2}+9-6 h+k^{2}+4 k+4\right)$
$=5 h-12 k-13$
$\Rightarrow 13\left(h^{2}+k^{2}\right)-83 h+64 k+182=0$
Thus, the locus of (h, k) is
$13\left(x^{2}+y^{2}\right)-83 x+64 y+182=0$

26 (b)
The coordinates of the point dividing the line joining $(-1,1)$ and $(5,7)$ in the $\lambda: 1$ are $\left(\frac{5 \lambda-1}{\lambda+1}, \frac{7 \lambda+1}{\lambda+1}\right)$
This point lies on the line $x+y=4$
$\therefore 5 \lambda-1+7 \lambda+1=4 \lambda+4 \Rightarrow 8 \lambda=4 \Rightarrow \lambda=\frac{1}{2}$
27 (b)
Here, $a=a, h=0, b=-1, f=-\frac{1}{2}, \mathrm{~g}=2, c=0$
Given equation represent a pair of straight line.
Then, $\left|\begin{array}{ccc}a & 0 & 2 \\ 0 & -1 & -1 / 2 \\ 2 & -1 / 2 & 0\end{array}\right|=0$
$\Rightarrow a\left[0-\left(\frac{1}{4}\right)\right]-0+2[2]=0 \Rightarrow a=16$
28 (b)
We have,
$\sqrt{(x-3)^{2}+(y-1)^{2}}+\sqrt{(x+3)^{2}+(y-1)^{2}}=6$
$\Rightarrow \sqrt{(x-3)^{2}+(y-1)^{2}}$

$$
=6-\sqrt{(x+3)^{2}+(y-1)^{2}}
$$

On squaring both sides, we get
$12 x+36=12 \sqrt{(x+3)^{2}+(y-1)^{2}}$
$\Rightarrow x+3=\sqrt{(x+3)^{2}+(y-1)^{2}}$
Again on squaring, we get
$x^{2}+9+6 x=x^{2}+9+6 x+y^{2}+1-2 y$
$\Rightarrow y^{2}-2 y+1=0$
Which represents a pair of straight lines
29 (b)
If given lines are concurrent, then
$\left|\begin{array}{ccc}2 & -3 & k \\ 3 & -4 & -13 \\ 8 & -11 & -33\end{array}\right|=0$
$\Rightarrow-22+15-k=0 \Rightarrow k=-7$
30 (c)
Let the required point be (t, t). Then,
$\left|\frac{3 t+4 t-12}{5}\right|=4$
$\Rightarrow|7 t-12|=20 \Rightarrow 7 t-12= \pm 20 \Rightarrow t$

$$
=\frac{32}{7},-\frac{8}{7}
$$

Hence, the required points are $(-8 / 7,-8 / 7)$ and (32/7, 32/7)
31 (c)
The equation of lines are $x+y=0$ and $x-y=0$
\therefore The equation of bisectors of the angles between these lines are
$\frac{x+y}{\sqrt{1+1}}= \pm \frac{x-y}{\sqrt{1+1}} \Rightarrow x+y= \pm(x-y)$
Taking positive sign, $x+y=(x-y)$
$\Rightarrow y=0$

Taking positive sign, $x+y=-(x-y)$
$\Rightarrow x=0$
Hence, the equation of bisectors are $x=0$ and $y=0$
(b)

The family of lines
$(x+y-1)+\lambda(2 x+3 y-5)=0$
passes through a point such that
$x+y-1=0$
$2 x+3 y-5=0$
ie, $(-2,3)$ and family of lines
$(3 x+2 y-4)+\mu(x+2 y-6)=0$
Passes through a point such that
$3 x+2 y-4=0$
and $x+2 y-6=0$ ie, $(-1,7 / 2)$
\therefore Equation of the straight line that belongs to both the families passes through $(-2,3)$ and $(-1,7 / 2)$ is
$y-3=\frac{\frac{7}{2}-3}{-1+2}(x+2)$
$\Rightarrow y-3=\frac{x+2}{2} \Rightarrow x-2 y+8=0$
33 (a)
Line passing through P farthest from O must be perpendicular to $O P$, so equation is

$y-1=-3(x-3)$
$\Rightarrow 3 x+y=10$
This line meet the coordinate axes at
$A \equiv\left(\frac{10}{3}, 0\right)$ and $B \equiv(0,10)$
So, Area of $\triangle O A B=\frac{1}{2} \times \frac{10}{3} \times 10=\frac{50}{3}$ sq unit
(d)

The given equation of pair of straight line can be rewritten as
$(x-y+1)(x+y-2)=0$
\therefore The equation of lines which are represented by the given equation, are
$x-y+1=0$ and $x+y-2=0$
(a)

Since, bisector are same, therefore
$\frac{a-b}{h}=\frac{a^{\prime}-b^{\prime}}{h^{\prime}}$
$\Rightarrow(a-b) h^{\prime}=\left(a^{\prime}-b^{\prime}\right) h$
(a)

Let $L_{1} \equiv 3 x-4 y-8=0$
At point $(3,0)$,
$L_{1} \equiv 9-16-8=-15<0$
At point (x, y) and $(3,4)$ opposite sides of L_{1}
$\therefore 3 x-4 y-8>0$
$\Rightarrow 3 x-4(-3 x)-8>0[\because y=-3 x]$
$\Rightarrow 15 x-8>0 \quad x>\frac{8}{15}$
Again from Eq. (i),
$3\left(-\frac{y}{3}\right)-4 y-8>0$
$\Rightarrow-5 y-8>0 \Rightarrow y<-\frac{8}{5}$
37 (c)
Clearly, lengths of perpendiculars from $(0,0)$ on the gives lines are each equal to 2 .
Hence, required point is $(0,0)$
38 (a)
The coordinates of I are
$\left(\frac{3 \times 0+4 \times 3+5 \times 0}{3+4+5}, \frac{3 \times 4+4 \times 0+5 \times 0}{3+4+5}\right)$

$$
=(1,1)
$$

$\therefore B I=\sqrt{(0-1)^{2}+(4-1)^{2}}=\sqrt{10}$
39
(b)

Let M be mid point of $Q R$. As $P Q R$ is an isosceles triangle, $P M \perp Q R$. Slope of $Q R$ is -2

\Rightarrow Slope of $P M$ is $1 / 2$. Since, $\triangle Q P R$ is a right angled triangle, Q, P, R lie on a circle with centre at M.
$\therefore M Q=M P=M R$
$\Rightarrow \angle Q P M=45^{\circ}$
Let m be slope of $P Q$. Thus,
$\pm \tan 45^{\circ}=1=\frac{m-\frac{1}{2}}{1+\frac{m}{2}}$
$\Rightarrow \pm 1=\frac{2 m-1}{2+m}$
$\Rightarrow \pm(2+m)=2 m-1 \Rightarrow m=3,-\frac{1}{3}$
\therefore Equation of $P Q$ and $P R$ are
$y-1=3(x-2)$
and $y-1=-\frac{1}{3}(x-2)$
$\Rightarrow 3(y-1)+(x-2)=0$
Thus, joint equation of $P Q$ and $P R$ is
$[3(x-2)-(y-1)][(x-2)+3(y-1)]=0$
$\Rightarrow 3(x-2)^{2}-3(y-1)^{2}+8(x-2)(y-1)=0$
$\Rightarrow 3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0$
40 (a)
Let $P(h, k)$ be the variable point. Then, by
hypothesis, we have
$|h|+|k|=3$
\therefore Locus of P is $|x|+|y|=3$
Clearly, it represents a square a shown in Fig. S. 19
\therefore Required Area $=\frac{1}{2} \times A C \times B D=\frac{1}{2} \times 6 \times 6=$ 18 sq. units

41 (a)
The slope of line $x-2 y=3$ is $\frac{1}{2}$
Let the slope of required lines is m
$\therefore \tan 45^{\circ}= \pm\left|\frac{\frac{1}{2}-m}{1+\frac{m}{2}}\right|$
$\Rightarrow 1+\frac{m}{2}= \pm\left(\frac{1}{2}-m\right) \Rightarrow m=-\frac{1}{3}, 3$
\therefore Equation of line with slope $m=-\frac{1}{3}$ and passing through $(3,2)$, is
$(y-2)=-\frac{1}{3}(x-3) \Rightarrow x+3 y=9$
and another equation of line with slope $m=3$ and passing through $(3,2)$ is
$(y-2)=3(x-3) \Rightarrow 3 x-y=7$
42 (c)
Line making equal intercepts therefore, its
equation is
$x \pm y=a \ldots$ (i)
Since, it passes through $(2,4)$
$\therefore \quad a=-2,6$
Hence, equation of the required lines are
$x \pm y=a$
$\Rightarrow x+y=-2$
or $x+y=6$
$\Rightarrow x+y-6=0$

43 (b)
Let the point on the x-axis be $(h, 0)$.
The perpendicular distance from $(h, 0)$ to the line
$=\frac{\left|\frac{h}{a}-1\right|}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}=a$ [given]
$\Rightarrow \frac{h}{a}-1= \pm a \frac{\sqrt{a^{2}+b^{2}}}{a b}$
$\Rightarrow h-a= \pm \frac{a}{b} \sqrt{a^{2}+b^{2}}$
$\Rightarrow h=a \pm \frac{a}{b} \sqrt{a^{2}+b^{2}}$
$=\frac{a}{b}\left(b \pm \sqrt{a^{2}+b^{2}}\right)$
\therefore Required point is $\left(\frac{a}{b}\left(b \pm \sqrt{a^{2}+b^{2}}\right), 0\right)$
45 (b)
Let the image or (reflection) of the origin with reference to the line
$4 x+3 y-25=0$ is (h, k)
$\therefore \frac{h-0}{4}=\frac{k-0}{3}=\frac{-2(0+0-25)}{16-9}=\frac{50}{25}=2$
$\therefore \frac{h}{4}=2 \Rightarrow h=8$
and $\frac{k}{3}=2 \Rightarrow k=6$
\therefore The required point is $(8,6)$
46 (d)
(1) We have, $\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=\left|\begin{array}{lll}a_{1} & b_{1} & 1 \\ a_{2} & b_{2} & 1 \\ a_{3} & b_{3} & 1\end{array}\right|$

This shows that the area of both the triangles are same. But the equality of the areas of the triangles do not ensure the congruence of the triangle
(2) The equation of a line passing through the origin is $y=m x$. If it is equidistant from the points $A(2,2)$ and $B(4,0)$, then
$\left|\frac{2 m-2}{\sqrt{m^{2}+1}}\right|=\left|\frac{4 m-0}{\sqrt{m^{2}+1}}\right|$
$\Rightarrow(2 m-2)^{2}=(4 m)^{2}$
$\Rightarrow(m-1)^{2}=4 m^{2}$
$\Rightarrow 3 m^{2}+2 m-1=0$
$\Rightarrow m=\frac{1}{3},-1$
Hence, there are two lines $y=\frac{x}{3}$ and $y=-x$
passing through the origin and equidistance from
$A(2,2)$ and $B(4,0)$
Hence, both of these two statements are not correct
47 (b)
Given equation of the curve is
$3 x^{2}-y^{2}-2 x+4 y=0 \ldots$ (i)

Let the equation of one of the chord be
$y=m x+c \Rightarrow \frac{y-m x}{c}=1 \ldots$ (ii)
On making Eq. (i) homogeneous, we get
$3 x^{2}-y^{2}+(-2 x+4 y)\left(\frac{y-m x}{c}\right)=0$
$\Rightarrow x^{2}(3 c+2 m)+y^{2}(-c+4)-2 x y-4 m x y=0$
Which represent a pair of straight lines passing through origin. Since, the angle subtended is a right angle.
$\therefore 3 c+2 m-c+4=0$
$\Rightarrow c=-m-2$
Substituting value of c in $y=m x+c$, we have
$y=m x-m-2 \Rightarrow y+2=m(x-1)$
\Rightarrow All such chords pass through a fixed point $(1,-2)$
48 (a)
Since, $2 x+y=1$ and $2 x+y=7$ are parallel
lines. $(2 x+y-1)(2 x+y-7)$ is positive at point $\left(0, \frac{1}{2}\right)$. So, lines are in the same side of a point
49 (a)
Here, $a=2, b=2, h=5 / 2, g=3 / 2, f=3 / 2, c=$ 1
So, the angle θ between the lines is given by
$\tan \theta=\frac{2 \sqrt{25 / 4-4}}{2+2}$
$\Rightarrow \tan \theta=\frac{3}{4} \Rightarrow \cos \theta=\frac{4}{5} \Rightarrow \theta=\cos ^{-1}\left(\frac{4}{5}\right)$
50 (a)
Let the lines represented by the equations
$p x^{2}-q x y-y^{2}=0$
be $y=m_{1} x$ and $y=m_{2} x$
Then, $m_{1}=\tan \alpha$ and $m_{2}=\tan \beta$
Also, $m_{1}+m_{2}=-q$ and $m_{1} m_{2}=-p$
Now, $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=\frac{m_{1}+m_{2}}{1-m_{1} m_{2}}$ $=\frac{-q}{1+p}$
51 (b)
$d(x, y)=\max \{|x|,|y|\} \ldots$ (i)
but $d(x, y)=a \ldots$ (ii)
From, Eqs. (i) and (ii),
$a=\max \{|x|,|y|\}$
If $|x|>|y|$, then $a=|x|$
$\therefore x= \pm a$
and if $|y|>|x|$, then $a=|y|$
$\therefore y= \pm a$
Therefore, locus represents a straight line
52
(b)

The intersection of two curves

$$
\begin{aligned}
& a x^{2}+2 h x y+b y^{2}+2 g x+\lambda\left(a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}\right. \\
&\left.+2 g^{\prime} x\right)=0 \\
& \Rightarrow x^{2}\left(a+a^{\prime} \lambda\right)+2 x y\left(h+h^{\prime} \lambda\right)+y^{2}\left(b+\lambda b^{\prime}\right) \\
&+2 x\left(g+\lambda g^{\prime}\right)=0
\end{aligned}
$$

For making homogeneous equating, $g+\lambda g^{\prime}=0$
$\Rightarrow \lambda=-\frac{\mathrm{g}}{\mathrm{g}^{\prime}}$
Since, lines are perpendicular.
\therefore Coefficient of $x^{2}+$ Coefficient of $y^{2}=0$
$\Rightarrow a+a^{\prime} \lambda+b+b^{\prime} \lambda=0$
$\Rightarrow a+b=-\left(a^{\prime}+b^{\prime}\right)\left(-\frac{\mathrm{g}}{\mathrm{g}^{\prime}}\right)$
$\Rightarrow(a+b) \mathrm{g}^{\prime}=\left(a^{\prime}+b^{\prime}\right) \mathrm{g}$
53 (b)
Let the coordinates of the third vertex A be (h, k).
Then,
$A D \perp B C$
$\Rightarrow O A \perp B C \Rightarrow \frac{k-0}{h-0} \times \frac{4}{-7}=-1 \Rightarrow 7 h$

$$
=4 k \quad \ldots \text { (i) }
$$

and, $O B \perp A C \Rightarrow \frac{k-3}{h+2} \times \frac{-1}{-5}=-1$

$$
\begin{equation*}
\Rightarrow 5 h-k+13=0 \tag{ii}
\end{equation*}
$$

Solving (i) and (ii), we get $h=-4, k=-7$
Hence, the coordinates of the third vertex are $(-4,-7)$

54 (a)
Required distance $=\frac{|b-a|}{\sqrt{1^{2}+1^{2}}}=\frac{|b-a|}{\sqrt{2}}$
55 (c)
The given lines are perpendicular to each other.
\therefore Perpendicular distance $=\frac{\left|r_{1}-r_{2}\right|}{\sqrt{2}}=\sqrt{2}$
$\Rightarrow r_{1}-r_{2}=2$
The difference between the y-intercepts $=2$
This can happen for five combinations $\{(0,2)$, (1,
$3),(2,4),(3,5),(4,6)\}$.
The difference between the x-intercepts $=2$
This can happen for five combinations.
Hence, total number of squares $=5 \times 5=25$
56 (d)
We have,
$(p+2 q) x+(p-3 q) y-p+q=0$
$\Rightarrow p(x+y-1)+q(2 x-3 y+1)=0$,

Clearly, it represents a family of lines passing through the intersection of the lines $x+y-1=0$ and $2 x-3 y+1=0$.
The coordinates of the point of the intersection these two lines are $(2 / 5,3 / 5)$
57 (d)
Equation of line perpendicular to $2 x+y+6=$ 0 and passes through origin is $x-2 y=0$
Now, point of intersection of $2 x+y+6$

$$
=0 \text { and } x-2 y=0 \text { is }\left(-\frac{12}{5},-\frac{6}{5}\right)
$$

Similarly, point of intersection of $x-2 y$

$$
\begin{aligned}
& =0 \text { and } 4 x+2 y-9 \\
& =0 \text { is }\left(\frac{9}{5}, \frac{9}{10}\right)
\end{aligned}
$$

Let the origin divide the line $x-2 y=0$ in the ratio λ : 1
$\therefore x=\frac{\frac{9}{5} \lambda-\frac{12}{5}}{\lambda+1}=0 \Rightarrow \frac{9}{5} \lambda=\frac{12}{5}$
$\Rightarrow \lambda=\frac{12}{9}=\frac{4}{3}$
58 (b)
Let the straight line meets the x-axis at $A(a, 0)$ and the y-axis at $B(0, b)$. The equation of this straight line will be
$\frac{x}{a}+\frac{y}{b}=1$
Since, it passes through $P(1,1)$
$\therefore \frac{1}{a}+\frac{1}{b}=1 \Rightarrow a+b=a b$
Let the coordinates of the mid point M of $A B$ are (h, k)
$\therefore h=\frac{a+0}{2} \Rightarrow a=2 h$
and $k=\frac{0+b}{2} \Rightarrow b=2 k$
substitute the values of a and b in Eq. (ii), we get
$2 h+2 k=2 h \times 2 k$
$\Rightarrow h+k=2 h k$
Hence, the equation of the locus of mid point
$M(h, k)$ will be
$x+y-2 x y=0$
59 (b)
Given lines are
$3 x+4 y=9$
and $6 x+8 y=15$
$\Rightarrow 3 x+4 y=\frac{15}{2}$.
\because Both lines are parallel, therefore the distance between two
lines $=\frac{\left|\frac{15}{2}-9\right|}{\sqrt{3^{2}+4^{2}}}=\frac{3}{2 \cdot 5}=\frac{3}{10}$
60 (a)

Let the lines are $y=m_{1} x+c_{1}$ and $y=m_{2} x+c_{2}$. Since, pair of straight lines are parallel to x-axis

$\therefore m_{1}=m_{2}=0$
Hence, the lines will be $y=c_{1}$ and $y=c_{2}$. Given circle is $x^{2}+y^{2}-6 x-4 y-12=0$
\therefore Centre $(3,2)$ and radius $=5$
Here, the perpendicular drawn from centre to the lines are $C P$ and $C P^{\prime \prime}$
$\therefore C P=\frac{2-c_{1}}{\sqrt{1}}= \pm 5$
$\Rightarrow c_{1}=7$ and $c_{1}=-3$
Hence, the lines are
$y-7=0, \quad y+3=0$
ie, $(y-7)(y+3)=0$ or $y^{2}-4 y-21=0$
62 (c)
Let the coordinates of point A and B are $(a, 0)$ and ($0,-b$)
$\therefore \frac{a}{2}=4 \Rightarrow a=8$
and $-\frac{b}{2}=-3 \Rightarrow b=6$
\therefore Equation of line is $\frac{x}{8}+\frac{y}{-6}=1$
$\Rightarrow 3 x-4 y=24$

63 (a)
Given, α be the distance between lines
$x-y+2=0$ and $x-y-2=0$
$\therefore \alpha=\frac{|2+2|}{\sqrt{1+1}}=\frac{|4|}{\sqrt{2}}=2 \sqrt{2}$
and β be the distance between the lines
$4 x-3 y-5=0$ and $4 x-3 y+\frac{1}{2}=0$
$\therefore \beta=\frac{\left|5+\frac{1}{2}\right|}{\sqrt{(4)^{2}+(3)^{2}}}=\frac{|11|}{2 \sqrt{25}}=\frac{11}{10}$
Now, $\frac{\alpha}{\beta}=\frac{2 \sqrt{2}}{11 / 10}=\frac{20 \sqrt{2}}{11}$
$\Rightarrow 20 \sqrt{2} \beta=11 \alpha$

64 (d)
Given line is
$x^{2}+2 x y-35 y^{2}-4 x+44 y-12=0$
Here, $a=1, b=-35, c=-12, h=1, f=22$
\therefore Point of intersection $=\left(\frac{22-70}{-35-1}, \frac{-2-22}{-35-1}\right)$

$$
=\left(\frac{4}{3}, \frac{2}{3}\right)
$$

If the lines are concurrent. The point $\left(\frac{4}{3}, \frac{2}{3}\right)$ will be on the line $5 x+\lambda y-8=0$
$\therefore 5\left(\frac{4}{3}\right)+\lambda\left(\frac{2}{3}\right)-8=0$
$\Rightarrow \frac{2}{3} \lambda=8-\frac{20}{3}=\frac{4}{3} \Rightarrow \lambda=2$
(a)

The given equation are
$3 x+4 y-5=0 \ldots$ (i)
and $4 x-3 y-15=0 \ldots$ (ii)
Since, these lines are perpendicular to each other so $\angle Q P R$ is right angle and $P Q=P R$. Hence,
$\triangle P Q R$ is a right angle isosceles triangle.
$\angle P Q R=\angle P R Q=45^{\circ}$
Slope of $P Q=-\frac{3}{4}$ and slope of $P R=\frac{4}{3}$
Let slope of $Q R=m$
$\therefore \tan 45^{\circ}= \pm\left|\frac{\frac{4}{3}-m}{1+\frac{4}{3} m}\right|$
$\Rightarrow m=\frac{1}{7},-7$
66 (a)
Required line is passing through $(3,4)$ and having slope 1.
\therefore Equation of required line is

$y-4=1(x-3)$
$\Rightarrow x-y+1=0$
$\Rightarrow y=x+1$
(d)

Let $\mathcal{Q}(x, y)$ be the image of the point $P(4,1)$ to the line $y-x+1=0$
Then, $P Q$ is perpendicular to $y-x+1=0$
$\therefore \frac{y+1}{x-4} \times 1=-1$
$\Rightarrow y+x=4+1=5 \ldots$ (i)
Also, mid point of $P Q$, ie, $\left(\frac{4+x}{2}, \frac{y+1}{2}\right)$ lies on y

$$
-x+1=0
$$

$\therefore \frac{y+1}{2}-\frac{(4+x)}{2}+1=0$
$\Rightarrow y-x-1=0$
On solving Eqs. (i) and (ii), we get the required point $(2,3)$
68 (b)
Since, A is mid point of line $P Q$
$\therefore 3=\frac{a+0}{2}=a=6$
and $4=\frac{0+b}{2} \Rightarrow b=8$
Thus, equation of line is
$\frac{x}{6}+\frac{y}{8}=1 \Rightarrow 4 x+3 y=24$

$70 \quad$ (b)
The intersection of two curves
$a x^{2}+2 h x y+b y^{2}+2 g x+\lambda\left(a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}\right.$

$$
\left.+2 g^{\prime} x\right)=0
$$

$\Rightarrow x^{2}\left(a+a^{\prime} \lambda\right)+2 x y\left(h+h^{\prime} \lambda\right)+y^{2}\left(b+\lambda b^{\prime}\right)$

$$
+2 x\left(g+\lambda g^{\prime}\right)=0
$$

For making homogeneous equating, $g+\lambda g^{\prime}=0$
$\Rightarrow \lambda=-\frac{\mathrm{g}}{\mathrm{g}^{\prime}}$
Since, lines are perpendicular.
\therefore Coefficient of $x^{2}+$ Coefficient of $y^{2}=0$
$\Rightarrow a+a^{\prime} \lambda+b+b^{\prime} \lambda=0$
$\Rightarrow a+b=-\left(a^{\prime}+b^{\prime}\right)\left(-\frac{\mathrm{g}}{\mathrm{g}^{\prime}}\right)$
$\Rightarrow(a+b) \mathrm{g}^{\prime}=\left(a^{\prime}+b^{\prime}\right) \mathrm{g}$
71 (c)
The equation of line passing through the point of intersection of $x+2 y-1=0$ and $2 x-y-1=0$ is
$(x+2 y-1)+\lambda(2 x-y-1)=0$
$\Rightarrow x(1+2 \lambda)+y(2-\lambda)-1-\lambda=0$
This meets the coordinate axes at $A\left(\frac{1+\lambda)}{2 \lambda+1}, 0\right)$ and $B\left(0, \frac{\lambda+1}{2-\lambda}\right)$
Let (h, k) be the mid point of $A B$, then
$h=\frac{1}{2}\left(\frac{1+\lambda}{2 \lambda+1}\right), k=\frac{1}{2}\left(\frac{\lambda+1}{2-\lambda}\right)$
On eliminating λ from the these equations, we get $h+3 k=10 h k$
Thus, the locus of (h, k) is $x+3 y=10 x y$

72 (c)
On comparing the given lines with
$y=m_{1} x+c_{1}$ and $y=m_{2} x+c_{2}$, we get
$m_{1}=2$ and $c_{1}=7$
and $m_{2}=2$ and $c_{2}=5$
\therefore Required distance $=\frac{\left|c_{1}-c_{2}\right|}{\sqrt{(m)^{2}+1}}$
$=\frac{|7-5|}{\sqrt{(2)^{2}+1}}=\frac{2}{\sqrt{5}}$
73 (c)
Here the equation of $A B$ is $\frac{x}{a}+\frac{y}{b}=1$
From the figure, $O P \perp A B$,

$\therefore O P=\left|\frac{0\left(\frac{1}{a}\right)+0\left(\frac{1}{b}\right)-1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}\right|$
$\Rightarrow p=\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}$
$\Rightarrow p^{2}=\frac{1}{\frac{1}{a^{2}}+\frac{1}{b^{2}}}$ [squaring both sides]
$\Rightarrow \frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
74 (d)
Clearly, diagonals are perpendicular
So, $A B C D$ must be a rhombus
75 (b)
Given lines are concurrent
$\therefore\left|\begin{array}{ccc}2 & -3 & k \\ 3 & -4 & -13 \\ 8 & -11 & -33\end{array}\right|=0$
$\Rightarrow 2(132-143)+3(-99+104)+k(-33+32)$

$$
=0
$$

$\Rightarrow-22+15-k=0 \Rightarrow k=-7$
(a)

The equations of the sides of the quadrilateral are given by
$l^{2} x^{2}-m^{2} y^{2}-n(l x+m y)=0$
and, $l^{2} x^{2}=m^{2} y^{2}+n(l x+m y)=0$
$\Rightarrow(l x+m y)(l x-m y-n)=0$ and $(l x-$
$m y l x+m y+n=0$
$\Rightarrow l x+m y=0, l x-m y-n=0, l x-m y$

$$
=0, l x+m y+n=0
$$

Clearly, the lines form a parallelogram whose are is

$$
\left|\frac{\{0-(-n)\}\{0-n\}}{\left|\begin{array}{cc}
l & m \\
l & -m
\end{array}\right|}\right|=\frac{n^{2}}{2|l m|}
$$

77 (d)
Since, line $O A$ makes an angle α with x-axis and given $O A=a$, then coordinates of A are $(a \cos \alpha, a \sin \alpha)$. Also, $O B \perp O A$, then $O B$ makes an angle $\left(90^{\circ}+\alpha\right)$ with x-axis, then coordinates of B are $\left[a \cos \left(90^{\circ}+\alpha\right), a \sin \left(90^{\circ}+\alpha\right)\right]$ ie, $(-a \sin \alpha, a \cos \alpha)$

Equation of the diagonal $A B$ not passing through the origin is
$(y-a \sin \alpha)=\frac{a \cos \alpha-a \sin \alpha}{-a \sin \alpha-a \cos \alpha}(x-a \cos \alpha)$
$\Rightarrow(\sin \alpha+\cos \alpha)(y$

$$
\begin{aligned}
& -a \sin \alpha) \\
& =(\sin \alpha-\cos \alpha)(x-a \cos \alpha)
\end{aligned}
$$

$\Rightarrow y(\sin \alpha+\cos \alpha)+x(\cos \alpha-\sin \alpha)$
$=a \sin \alpha(\sin \alpha+\cos \alpha)-a \cos \alpha(\sin \alpha-\cos \alpha)$
$=a\left(\sin ^{2} \alpha+\sin \alpha \cos \alpha-\cos \alpha \sin \alpha+\cos ^{2} \alpha\right)$
$\Rightarrow y(\sin \alpha+\cos \alpha)+x(\cos \alpha-\sin \alpha)=a$
78 (d)
Required equation can be $4 x-3 y-K=0$
$\therefore\left|\frac{4 \times-1-3 \times-4-K}{\sqrt{4^{2}+(-3)^{2}}}\right|=1$
$\Rightarrow \frac{-4+12-K}{5}= \pm 1$
$\Rightarrow 8-K= \pm 5$
$\Rightarrow K=3$ or $K=13$
\therefore Equation of lines are $4 x-3 y-3=0$ and
$4 x-3 y-13=0$
(b)
\because Point $P(a, b)$ lies on $3 x+2 y=13$
$\therefore 3 a+2 b=13 \ldots$ (i)
and point $\mathcal{Q}(b, a)$ is lies on $4 x-y=5$
$\therefore 4 b-a=5$...(ii)
On solving Eqs. (i) and (ii), we get $a=3, b=2$
Therefore, the coordinates of P and Q are $(3,2)$
and $(2,3)$
respectively.
Now, equation of $P Q$ is
$y-2=\frac{3-2}{2-3}(x-3) \Rightarrow x+y=5$
$80 \quad$ (b)
The given equation
$x^{2}+k x y+y^{2}-5 x-7 y+6=0$ is compared with
$a x^{2}+2 h x y+b y^{2}+2 \mathrm{~g} x+2 f y+c=0$, we get
$a=1, b=1, h=\frac{k}{2}, g=\frac{-5}{2}, f=\frac{-7}{2}, c=6$
This equation represents a pair of straight lines,
if $\left|\begin{array}{lll}\text { a } & h & \mathrm{~g} \\ h & b & f \\ \mathrm{~g} & f & c\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}1 & k / 2 & -5 / 2 \\ k / 2 & 1 & -7 / 2 \\ -5 / 2 & -7 / 2 & 6\end{array}\right|=0$
$\Rightarrow 1\left(6-\frac{49}{4}\right)-\frac{k}{2}\left(\frac{6 k}{2}-\frac{35}{4}\right)-\frac{5}{2}\left(-\frac{7 k}{4}+\frac{5}{2}\right)=0$
$\Rightarrow\left(\frac{24-49}{4}\right)-\frac{k}{2}\left(\frac{12 k-35}{4}\right)-\frac{5}{2}\left(\frac{-7 k+10}{4}\right)=0$
$\Rightarrow-50-12 k^{2}+35 k+35 k-50=0$
$\Rightarrow-12 k^{2}+70 k-100=0$
$\Rightarrow 6 k^{2}-35 k+50=0$
$\Rightarrow k=\frac{10}{3}$
81 (b)
Since, t_{1}, t_{2} are the roots of the equation
$t^{2}+\lambda t+1=0$
$\therefore t_{1}+t_{2}=-\lambda, \quad t_{1} t_{2}=1$
The equation of a line passing through $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$ is
$y-2 a t_{2}=\frac{2}{t_{1}+t_{2}}\left(x-a t_{2}^{2}\right)$
$\Rightarrow y-2 a t_{2}=-\frac{2}{\lambda}\left(x-a t_{2}^{2}\right)$
$\Rightarrow \lambda y-2 a \lambda t_{2}=-2 x+2 a t_{2}^{2}$
$\Rightarrow \lambda y+2 x=2 a\left(\lambda t_{2}+t_{2}^{2}\right)$
$\Rightarrow \lambda y+2 x=2 a(-1)$
$\Rightarrow 2(x+a)+\lambda y=0$
\therefore Fixed point is $(-a, 0)$
82 (b)
$\sqrt{3} x+y=0$ makes an angle of 120° with $O X$ and $\sqrt{3} x-y=0$ makes an angle 60° with $O X$. So, the required line is $y-2=0$
83 (c)
Here, $a=2, b=5, c=7, h=2, \mathrm{~g}=-2, f=-11$
To eliminate 1st degree terms origin is to be shifted to the point
$\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right)=\left(\frac{-22+10}{10-4}, \frac{-4+22}{10-4}\right)$

$$
=(-2,3)
$$

84 (a)
If the lines given by $a x^{2}+2 h x y+b y^{2}=0$ are equally inclined to the lines given by $a x^{2}+$ $2 h x y+b y^{2}+\lambda\left(x^{2}+y^{2}\right)=0$, then the two pairs have same bisectors. Therefore, equations
$\frac{x^{2}-y^{2}}{a-b}=\frac{x y}{h}$ and $\frac{x^{2}-y^{2}}{(a+\lambda)-(b+\lambda)}=\frac{x y}{h}$
represent same pair of lines.
Clearly, these two equations are identical for all values of λ
85 (a)
Equation of the line passing through $(-4,6)$ and $(8,8)$ is
$y-6=\left(\frac{8-6}{8+4}\right)(x+4)$
$\Rightarrow y-6=\frac{2}{12}(x+4)$
$\Rightarrow 6 y-36=x+4 \Rightarrow 6 y-x-40=0$
Now, equation of any line perpendicular to the Eq.
(i), is
$6 x+y+\lambda=0$
This line passes through the mid point of $(-4,6)$
and $(8,8)$ is
$\left(\frac{-4+8}{2}, \frac{6+8}{2}\right), i e,(2,7)$
$\therefore 6 \times 2+7+\lambda=0$
$\Rightarrow 19+\lambda=0 \Rightarrow \lambda=-19$
On putting $\lambda=-19$ in Eq. (ii), we get the equation of required line which is
$6 x+y-19=0$
86 (b)
Given lines are $3 x+4 y=5,5 x+4 y=4$ and $\lambda x+4 y=6$. These three lines meet at point, if the point of intersection of first two lines lies on the third line
Now, point of intersection of line $3 x+4 y=5$ and
$5 x+4 y=4$ is $\left(-\frac{1}{2}, \frac{13}{8}\right)$
The line $\lambda x+4 y=6$ passes through the point $\left(-\frac{1}{2}, \frac{13}{8}\right)$
$\therefore \lambda\left(-\frac{1}{2}\right)+4\left(\frac{13}{8}\right)=6$
$\Rightarrow-\lambda+13=12$
$\Rightarrow \lambda=1$
87 (c)
Give lines are $a x+b y+c=0$
$x=\alpha t+\beta$...(ii)
and $y=\gamma t+\delta \ldots($ iii $)$
On eliminating t, from Eqs. (ii) and (iii), we get
$\gamma x-\alpha y+\alpha \delta-\beta \gamma=0 \ldots$ (iv)
For parallelism condition in Eqs. (i) and (iv)
$\frac{a}{\gamma}=\frac{b}{-\alpha}$
$\Rightarrow a \alpha+b \gamma=0$
89 (d)
The point of intersection of the lines given by
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ is given by
$\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right)$
Hence, the lines given by $2 x^{2}-5 x y+2 y^{2}-$ $3 x+3 y+1=0$ intersect at $(1 / 3,-1 / 3)$
91 (b)
Equation belonging to both families will pass through two fixed points. First intersection point of lies $x+2 y=0$ and
$3 x+2 y+1=0$ is $\left(-\frac{1}{2}, \frac{1}{4}\right)$ and second interception point of lines $x-2 y=0$ and
$x-y+1=0$, is $(-2,-1)$
Line passing through $\left(-\frac{1}{2}, \frac{1}{4}\right)$ and $(-2,-1)$ is
$y-\frac{1}{4}=\frac{-1-\frac{1}{4}}{-2+\frac{1}{2}}\left(x+\frac{1}{2}\right)$
$\Rightarrow 5 x-6 y+4=0$
92 (d)
Since, $P(1,2)$ is mid point of $A B$. Therefore, coordinate of A and B are $(2,0)$ and $(0,4)$ respectively

\therefore Equation of line $A B$ is
$y-0=\frac{4}{-2}(x-2)$
$\Rightarrow 2 x+y=4$
93 (d)
Here, $h=\sqrt{2}, \mathrm{~g}=2, a=1, c=1, b=2, f=$ $2 \sqrt{2}$
\therefore Distance $=2 \sqrt{\frac{\mathrm{~g}^{2}-a c}{a(a+b)}}=2 \sqrt{\frac{4-1}{1(1+2)}}=2$ units
94 (b)
Let $P(h, k)$ be the centroid of $\triangle O A B$. Let the coordinates of A and B be $(a, 0)$ and $(0, b)$ respectively. then,
$h=\frac{a}{3}, k=\frac{b}{3}$

in $\triangle O A B$, we have
$O A^{2}+O B^{2}=A B^{2}$
$\Rightarrow a^{2}+b^{2}=9^{2} \Rightarrow 9 h^{2}+9 k^{2}=9^{2} \Rightarrow h^{2}+k^{2}=9$
Hence, the locus of (h, k) is $x^{2}+y^{2}=9$
95 (b)
It is evident from the figure that P moves on the line $x=1$. Clearly, y-coordinate of P varies between 0 and 1
$\therefore 0 \leq \alpha \leq \Rightarrow \alpha \in[0,1]$

96 (d)
The given equation is
$x^{2}\left(\cos ^{2} \theta-1\right)-x y \sin ^{2} \theta+y^{2} \sin ^{2} \theta=0$
Here, $a=\cos ^{2} \theta-1, h=-\frac{1}{2} \sin ^{2} \theta, b=\sin ^{2} \theta$
$a+b=\cos ^{2} \theta+\sin ^{2} \theta-1=1-1=0$
\therefore The angle between the pair of straight lines is $\frac{\pi}{2}$.
97 (a)
We have,
$\Delta_{1}=\frac{1}{2}\left|\begin{array}{ll}4 & 3 \\ 1 & 6\end{array}\right|=\frac{21}{2}, \Delta_{2}=\frac{1}{2}\left|\begin{array}{cc}3 & -5 \\ 6 & 1\end{array}\right|=\frac{33}{2}$
$\Delta_{3}=\frac{1}{2}\left|\begin{array}{cc}-5 & -3 \\ 1 & -3\end{array}\right|=9, \Delta_{4}=\frac{1}{2}\left|\begin{array}{cc}-3 & -3 \\ -3 & 0\end{array}\right|=-\frac{9}{2}$
and, $\Delta_{5}=\frac{1}{2}\left|\begin{array}{cc}-3 & 4 \\ 0 & 1\end{array}\right|=-\frac{3}{2}$
\therefore Area of the pentagon

$$
=\left|\Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{4}+\Delta_{5}\right|
$$

$=\left|\frac{21}{2}+\frac{33}{2}+9-\frac{9}{2}-\frac{3}{2}\right|=30$ sq. units
(d)

Since, S is mid point of $Q R$
\therefore Coordinate of S are
$\left(\frac{6+7}{2}, \frac{-1+3}{2}\right)=\left(\frac{13}{2}, 1\right)$
\therefore Slope of $P S=\frac{2-1}{2-\frac{13}{2}}=-\frac{2}{9}$

The required equation which is passing throught $(1,-1)$ andslope $-\frac{2}{9}$, is
$y+1=-\frac{2}{9}(x-1)$
$\Rightarrow 9 y+9=-2 x+2$
$\Rightarrow 2 x+9 y+7=0$
99 (a)
Let the equation of the line be $\frac{x}{a}+\frac{y}{b}=1$
It passes through $(2,2)$
$\therefore \frac{2}{a}+\frac{2}{b}=1 \Rightarrow 2(a+b)=a b$
The line encloses a triangle of area A square units with the coordinate axes
$\therefore \frac{1}{2}|a||b|=A \Rightarrow|a b|=2 A \Rightarrow a b= \pm 2 A$
From (i) and (ii), we get $a+b= \pm A$
The quadratic equation having a, b as its roots is $x^{2}-x(a+b)+a b=0$ or, $x^{2} \mp A x \pm 2 A=0$
101 (c)
Let p be the length of the perpendicular from the vertex $(2,-1)$ to the base
$x+y=2$, then
$p=\left|\frac{2-1-2}{\sqrt{1^{2}+1^{2}}}\right|$
$=\frac{1}{\sqrt{2}}$
If a be the length of the side of triangle then,
$p=a \sin 60^{\circ}$
$\Rightarrow \frac{1}{\sqrt{2}}=\frac{a \sqrt{3}}{2}$
$\Rightarrow a=\sqrt{\frac{2}{3}}$
102 (c)
Line perpendicular to the given line $\frac{x}{a}-\frac{y}{b}=1$ is
$\frac{1}{b} x+\frac{1}{a} y+\lambda=0$
According to the question, line (i) is
Passing through the point $P(a, 0)$

$\therefore \frac{a}{b}+0+\lambda=0$
$\Rightarrow \lambda=-\frac{\mathrm{a}}{b}$
On putting the value of λ in Eq. (i), we get
$\frac{x}{b}+\frac{y}{a}-\frac{a}{b}=0$
$\Rightarrow a x+b y=a^{2}$
103 (a)
Let (x, y) be the coordinates of the vertex B. Then, $B E=\frac{1}{2} A C$
$\Rightarrow(x-3)^{2}+(y-2)^{2}=\frac{(1-5)^{2}+(3-1)^{2}}{4}$
$\Rightarrow(x-3)^{2}+(y-2)^{2}=5$

Solving (i) with $y=2 x-4$, we get coordinates of B and D as $(2,0)$ and $(4,4)$ respectively
104 (a)
The equation of a line parallel to $x+2 y=4$ is $x+2 y=k$
The distance between these two lines is 3
$\therefore \frac{k}{\sqrt{1+4}}-\frac{4}{\sqrt{1+4}}=3 \Rightarrow k=4+3 \sqrt{5}$
This shifted line cuts x-axis at $(k, 0)$. After rotation the slope of the line is $\tan \left(\theta-30^{\circ}\right)$, where
$\tan \theta=($ slope of $x+2 y=4)=-1 / 2$
Thus, the equation of the line in the new position is
$y-0=\tan \left(\theta-30^{\circ}\right)(x-k)$, where $k=4+3 \sqrt{5}$
106 (a)
On solving $3 x+4 y=9$ and $y=m x+1$, we get $x=\frac{5}{3+4 m}$
$\because x$ is an integer
$\therefore 3+4 m=1,-1,5,-5$
$\Rightarrow m=\frac{-2}{4}, \frac{-4}{4}, \frac{2}{4}, \frac{-8}{4}$
So, m has two integral values

Now, $h^{2}-a b=4^{2}-8(2)=16-16=0$
The required distance between the parallel straight lines
$=2 \sqrt{\frac{169-120}{80}}=\frac{2 \times 7}{4 \sqrt{5}}=\frac{7}{2 \sqrt{5}}$
109 (c)
Lines are $y=1, y=0$
$y=-x, y=-x+2$
$y=x+1, y=x-1$

Area of $O A B C D E=$ area of $O B G F$
$=\frac{3}{2} \times 1=\frac{3}{2}$ squnit
110
(c)

We have,
Coeff. Of $x^{2}+$ Coeff. Of $y^{2}=0$
So, lines represented by $x^{2}-y^{2}=0$ are at right angles
112 (b)
Since, a, b, c are in HP
$\therefore \frac{2}{b}=\frac{1}{a}+\frac{1}{c} \Rightarrow \frac{1}{a}-\frac{2}{b}+\frac{1}{c}=0$
So, straight line $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$ always passes
through a fixed point $(1,-2)$
113 (d)
We have,
$x^{2}+y^{2}+2 x y-8 a x-8 a y-9 a^{2}=0$
$\Rightarrow(x+y)^{2}-8 a(x+y)-9 a^{2}=0$
$\Rightarrow(x+y-9 a)(x+y+a)=0$
$\Rightarrow x+y-9 a=0, x+y+a=0$
Clearly, these lines are parallel. The distance d between these lines is
$d=\frac{|a-(-9 a)|}{\sqrt{1^{2}+1^{2}}}=5 \sqrt{2} a$
114 (b)
Let the image of reflection of the origin with
reference to the line $4 x+3 y-25=0$ is (h, k)
$\therefore \frac{h-0}{4}=\frac{k-0}{3}=\frac{-2(0+0-25)}{16+9}=2$
$\Rightarrow \frac{h}{4}=2 \Rightarrow h=8$
and $\frac{k}{3}=2 \Rightarrow k=6$
\therefore Required point is $(8,6)$

115 (d)
The equation of a straight line passing through the point of intersection of $x-y+1=0$ and $3 x+y-5=0$
$(x-y+1)+\lambda(3 x+y-5)=0$
or $x(3 \lambda+1)+y(\lambda-1)-(5 \lambda-1)=0$
It is perpendicular to $3 x+y-5=0$
$\therefore-3 \times \frac{3 \lambda+1}{\lambda-1}=-1 \Rightarrow-\frac{1}{5}$
Putting $\lambda=-\frac{1}{5}$ in (i), we get $x-3 y+5=0$ as the equation of the required line
116 (a)
Given lines are $k x-2 y-1=0$
and $6 x-4 y-m=0$
Since, these lines are coincident.
$\therefore \frac{k}{6}=\frac{-2}{-4}=\frac{-1}{-m}$
$\Rightarrow \frac{k}{6}=\frac{1}{2}$ and $\frac{1}{m}=\frac{1}{2}$
$\Rightarrow k=3$ and $m=2$
117 (a)
Clearly, $L=0$ is the perpendicular bisector of the segment joining $(-2,6)$ and $(4,2)$. The equation of which is
$y-4=\frac{3}{2}(x-1) \Rightarrow 3 x-2 y+5=0$
$\therefore L=3 x-2 y+5$
118 (b)
Equation of line perpendicular to $a x+b y-a^{2}=$ 0 is $b x-a y+\lambda=0$ and line
$a x+b y-a^{2}=0$ is passes through $\left(-\frac{\lambda}{b}, 0\right)$, then $\lambda=-a b$
$\therefore b x-a y=a b$
$\Rightarrow \frac{x}{a}-\frac{y}{b}=1$
119 (a)
Let the equation of line be
$a x+b y+c=0 \ldots$ (i)
The perpendicular distance from $(1,1),(2,0)$ and
$(0,2)$ to the line $a x+b y+c=0$ are
$p_{1}=\frac{a+b+c}{\sqrt{a^{2}+b^{2}}}, p_{2}=\frac{2 a+c}{\sqrt{a^{2}+b^{2}}}, p_{3}=\frac{2 b+c}{\sqrt{a^{2}+b^{2}}}$
Since, it is given that $p_{1}+p_{2}+p_{3}=0$
$\Rightarrow \frac{a+b+c}{\sqrt{a^{2}+b^{2}}}+\frac{2 a+c}{\sqrt{a^{2}+b^{2}}}+\frac{2 b+c}{a^{2}+b^{2}}=0$
$\Rightarrow 3 a+3 b+3 c=0$
$\Rightarrow a+b+c \ldots$ (ii)
From Eq. (ii), it is clear that the line (i) passes through (1, 1)
120 (c)
Equation of perpendicular diagonal to
$7 x-y+8=0$ is $x+7 y=\lambda$, which passes through $(-4,5)$
$\therefore \lambda=31$
So, equation of another diagonal is
$x+7 y=31$
121 (b)
Here, $a=12, b=2, h=-5, f=-\frac{5}{2}, g=\frac{11}{2}, c=$ k

The given equation represents a pair of straight line, if
$a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$
$\Rightarrow 12 \cdot 2 \cdot k+2\left(-\frac{5}{2}\right)\left(\frac{11}{2}\right)(-5)-12\left(-\frac{5}{2}\right)^{2}$
$-2\left(\frac{11}{2}\right)^{2}-k(-5)^{2}=0$
$\Rightarrow 24 k+\frac{275}{2}-\frac{150}{2}-\frac{121}{2}-25 k=0$
$\Rightarrow-k+\frac{4}{2}=0 \Rightarrow k=2$
122 (d)
The line $x \cos \alpha+y \sin \alpha=p$ meets the coordinate axes at $A\left(\frac{p}{\cos \alpha}, 0\right)$ and $B\left(0, \frac{p}{\sin \alpha}\right)$ Let (h, k) be the coordinates of the mid point of the portion $A B$ intercepted between the axes by the line $x \cos \alpha+y \sin \alpha=p$. Then,
h. $=\frac{\frac{p}{\cos \alpha}+0}{2}, k=\frac{0+\frac{p}{\sin \alpha}}{2}$
$\Rightarrow \cos \alpha=\frac{p}{2 h}, \sin \alpha=\frac{p}{2 k}$
$\Rightarrow \cos ^{2} \alpha+\sin ^{2} \alpha=\frac{p^{2}}{4 h^{2}}+\frac{p^{2}}{4 k^{2}}$
$\Rightarrow \frac{p^{2}}{4 h^{2}}+\frac{p^{2}}{4 k^{2}}=1$
Hence, the locus of (h, k) is
$\frac{p^{2}}{4 x^{2}}+\frac{p^{2}}{4 y^{2}}=1$ or, $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{4}{p^{2}}$
123 (a)
Let the vertices of the triangle be $O(0,0), A(8,0)$ and $B(4,6)$. The equation of an altitude through O and perpendicular to $A B$ is $y=2 / 3 x$ and the equation of an altitude through $A(8,0)$ and perpendicular to $O B$ is $3 y=-2 x+16$. These altitudes intersect at $(4,8 / 3)$
124 (b)
Here, the given triangle is a right angled triangle at the vertex $(2,-1 / 2)$. Hence, the orthocentre is at $(2,-1 / 2)$
125 (c)
Let $Q(x, y)$ be the image of the point $P(3,8)$ in the line $x+3 y=7$. Then, $P Q$ is perpendicular to the
given line. So,
$\frac{y_{1}-8}{x_{1}-3} \times-\frac{1}{3}=-1 \Rightarrow 3 x_{1}-y_{1}=1$
Also, the mid-point of $P Q$ i.e. $\left(\frac{x_{1}+3}{2}, \frac{y_{1}+8}{2}\right)$ lies on $x+3 y=7$
$\therefore x_{1}+3+3 y_{1}+24=14 \Rightarrow x_{1}+3 y_{1}+13=0$
...(ii)
Solving (i) and (ii), we get $x_{1}=-1, y_{1}=-4$
Hence required point is $(-1,-4)$
ALITER The image (α, β) of a point $\left(x_{1}, y_{1}\right)$ in the $a x+b y+x=0$ is given by
$\frac{\alpha-x_{1}}{a}=\frac{\beta-y_{1}}{b}=\frac{-2\left(a x_{1}+b y_{1}+c\right)}{a^{2}+b^{2}}$
So, the image of $(3,8)$ in the line $x+3 y-7=0$ is given by
$\frac{x-3}{1}=\frac{y-8}{3}=\frac{-2(3+24-7)}{(1+9)}$
$\Rightarrow x-3=-4$ and $y-8=-12 \Rightarrow x=-1, y=$ -4
126 (c)
The given equation of the family of lines is
$x \sec ^{2} \theta+y \tan ^{2} \theta-2=0$

$$
\Rightarrow(x+y) \tan ^{2} \theta+(x-2)=0
$$

Clearly, it represents a family of lines passing through the intersection of the lines $x-2=0$ and $x+y=0$ i.e. $(2,-2)$
127 (a)
There are four possible straight lines which are equally inclined to both the axes ie, in Ist, IInd, IIIrd and IVth quadrant
128 (c)
Equation of bisectors of lines $x y=0$ are $y= \pm x$. Put $y= \pm x$ in $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$, we get
$m x^{2} \pm\left(1-m^{2}\right) x^{2}-m x^{2}=0$
$\Rightarrow\left(1-m^{2}\right) x^{2}=0 \Rightarrow m= \pm 1$
129 (c)
$y-\frac{a \sqrt{3}}{2}=(-\sqrt{3})(x-a)$

$\Rightarrow y-\frac{a \sqrt{3}}{2}=-\sqrt{3} x+a \sqrt{3}$
$\Rightarrow y+\sqrt{3} x=\frac{3 a \sqrt{3}}{2}$

130 (a)
Given equation
$x^{2}+p x y+y^{2}-5 x-7 y+6=0$
Will represent a pair of straight lines, if
$1 \cdot 1 \cdot 6+2\left(-\frac{7}{2}\right)\left(\frac{-5}{2}\right)\left(\frac{p}{2}\right)-1\left(\frac{-7}{2}\right)^{2}-1\left(\frac{-5}{2}\right)^{2}$

$$
-6\left(\frac{p}{2}\right)^{2}=0
$$

$\Rightarrow 6+\frac{35 p}{4}-\frac{49}{4}-\frac{25}{4}-\frac{6 p^{2}}{4}=0$
$\Rightarrow 35 p-50-6 p^{2}=0$
$\Rightarrow(2 p-5)(3 p-10)=0$
$\Rightarrow p=\frac{5}{2}, \frac{10}{3}$
131 (a)
The equation of a line concurrent with the lines
$4 x+3 y-7=0$ and $8 x+5 y-1=0$
$(4 x+3 y-7)+\lambda(8 x+5 y-1)=0$
$\Rightarrow x(4+8 \lambda)+y(3+5 \lambda)-7-\lambda=0$
The gradient of this line is $-\frac{3}{2}$. Therefore,
$-\frac{8 \lambda+4}{5 \lambda+3}=-\frac{3}{2} \Rightarrow 16 \lambda+8=15 \lambda+9 \Rightarrow \lambda=1$
So, the required line is $12 x+8 y-8=0$ or,
$3 x+2 y-2=0$
132 (b)
Let $B\left(b, b_{1}\right), C\left(3 b, b_{1}\right)$ be coordinates of endpoints of base $B C$ of $\triangle A B C$ and $A(2 b, a)$ be the coordinates of the vertex A. $B E$ and $C F$ are two medians
Now,
$m_{1}=$ Slope of $B E=\frac{\frac{a+b_{1}}{2}-b_{1}}{\frac{5 b}{2}-b}=\frac{a-b_{1}}{3 b}$
and, $m_{2}=$ Slope of $C F=\frac{\frac{a+b_{1}}{2}-b_{1}}{\frac{5 b}{2}-b}=\frac{a-b_{1}}{3 b}$
Clearly, $m_{1}+m_{2}=0$

133 (d)
\because Line perpendicular to $3 x+y=3$ is $x-3 y=\lambda$
Also, it passes through (2, 2)
$\therefore 2-6=\lambda \Rightarrow \lambda=-4$
\therefore Equation of line is
$x-3 y=-4 \ldots$ (i)

Hence, y-intercept $=\frac{-4}{-3}=\frac{4}{3}$
134 (a)
$\because a_{1} a_{2}+b_{1} b_{2}=3 \times(-12)+(-4)(-5)$

$$
=-36+20=-16 \leq 0
$$

\therefore Obtuse angle bisector is
$\frac{3 x-4 y+7}{\sqrt{3^{2}+(-4)^{2}}}=-\frac{-12 x-5 y+2}{\sqrt{(-12)^{2}+(-5)^{2}}}$
$\Rightarrow 13(3 x-4 y+7)=-5(-12 x-5 y+2)$
$\Rightarrow 21 x+77 y-101=0$
135 (c)
Since, the lines $2 x+3 y+5=0$ and $2 x+3 y-$ $\frac{11}{2}=0$ are parallel
Let required line is $2 x+3 y+\lambda=0$
$\therefore \lambda=\frac{5-\frac{11}{2}}{2}=-\frac{1}{4}$
So, $8 x+12 y-1=0$ is the required line
136 (a)
Points $(3,5)$ and $(\sin \theta, \cos \theta)$ will lie on the same side of $x+y-1=0$, if
$(\sin \theta+\cos \theta-1)(3+5-1)>0$
$\Rightarrow \sin \theta+\cos \theta>1$
$\Rightarrow \sin \left(\frac{\pi}{4}+\theta\right)>\frac{1}{\sqrt{2}} \Rightarrow \frac{\pi}{4}<\frac{\pi}{4}+\theta<\frac{3 \pi}{4} \Rightarrow 0<\theta$ $<\frac{\pi}{2}$
137 (d)
$y-y_{1}=\tan \left(\frac{\theta_{1}+\theta_{2}}{2}\right)\left(x-x_{1}\right)$
and $y-y_{1}=-\cot \left(\frac{\theta_{1}+\theta_{2}}{2}\right)\left(x-x_{1}\right)$

138 (b)
Let the coordinates of the third vertex A be (h, k)

Also, $A D \perp B C$
$\therefore \frac{k-0}{h-0} \times\left(\frac{4}{-7}\right)=-1$
$\Rightarrow 7 h=4 k$
and $O B \perp A C$
$\Rightarrow \frac{k-3}{h+2} \times\left(-\frac{1}{5}\right)=-1$
$\Rightarrow 5 h-k+13=0$
On solving Eqs. (i) and (ii), we get
Hence, the coordinates of third vertex are
$(-4,-7)$
139 (b)
Here, $a=12, b=12, c=2, \mathrm{~g}=5, f=\frac{11}{2}, h=\frac{25}{2}$
Now, product of perpendicular distance from the origin

$$
=\frac{c}{\sqrt{(a+b)^{2}+4 h^{2}}}=\frac{2}{\sqrt{0+4\left(\frac{25}{2}\right)^{2}}}=\frac{2}{25}
$$

140 (b)
Let $P(4,1)$ and $P D \perp A B$.
Equation of $A B$ is $3 x-2 y-8=0$
\therefore Equation of $P D$ is $2 x+3 y-11=0$

Let line $A B$ is divided by $P D$ in the ratio $\lambda: 1$, then intersecting point
$D\left(\frac{6 \lambda+2}{\lambda+1}, \frac{5 \lambda-1}{\lambda+1}\right)$ lies on $2 x+3 y-11=0$
$\Rightarrow 2\left(\frac{6 \lambda+2}{\lambda+1}\right)+3\left(\frac{5 \lambda-1}{\lambda+1}\right)-11=0$
$\Rightarrow 16 \lambda-10=0$
$\Rightarrow \lambda: 1=5: 8$
141 (a)
Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ be two fixed points and let $P(h, k)$ be a variable point such that $\angle A P B=\frac{\pi}{2}$.
Then,
Slope of AP \times Slope of $B P=-1$
$\Rightarrow \frac{k-y_{1}}{h-x_{1}} \times \frac{k-y_{2}}{h-x_{2}}=-1$
$\Rightarrow\left(h-x_{1}\right)\left(h-x_{2}\right)+\left(k-y_{1}\right)\left(k-y_{2}\right)=0$
Hence, the locus of (h, k) is
$\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$, which is circle having $A B$ as diameter
143 (a)
Given lines are concurrent, then
$\left|\begin{array}{ccc}1 & 3 & -9 \\ 4 & b & -2 \\ 2 & -1 & -4\end{array}\right|=0$
$\Rightarrow 1(-4 b-2)-3(-16+4)-9(-4-2 b)=0$
$\Rightarrow 14 b+70=0 \Rightarrow b=-5$
144 (b)
Lines $x+2 y-1=0$ and $2 x-y+3=0$
intersect at $(-1,1)$. Since the given lines are
concurrent. Therefore, $(-1,1)$ lies on $y=m x$,
which implies that $m=-1$
145 (d)
Given equation of line is
$k x^{2}-2 x y-y^{2}-2 x+2 y=0$
On comparing with standard equation, we get
$a=k, b=-1, h=-1, \mathrm{~g}=-1, f=1, c=0$
It represent a pair of lines, if
$k(-1)(0)+2(1)(-1)(-1)-k(1)^{2}-(-1)(-1)^{2}$

$$
-0(-1)^{2}=0
$$

$\Rightarrow 0+2-k+1=0 \Rightarrow k=3$
146 (d)
Let the required line be
$y-2=m(x-1)$
This line meets the lines $3 x+4 y-12=0$ and
$3 x+4 y-24=0$ at $A\left(\frac{4+4 m}{3+4 m}, \frac{6+9 m}{3+4 m}\right)$ and
$B\left(\frac{16+4 m}{3+4 m}, \frac{6+21 m}{3+4 m}\right)$ respectively.
It is given that $A B=3$
$\therefore\left(\frac{12}{3+4 m}\right)^{2}+\left(\frac{12}{3+4 m}\right)^{2} m^{2}=9 \Rightarrow m=\frac{7}{24}$
So, the required line is
$y-2=\frac{7}{24}(x-1) \Rightarrow 7 x-24 y+41=0$
148 (c)
Given line $A B$ makes 0 intercepts on x-axis and y aixs or $\left(x_{1}, y_{1}\right) \equiv(0,0)$ and the line is
perpendicular to line $C D, 3 x+4 y+6=0$
\therefore Slope of required line which is perpendicular
$3 x+4 y+6=0$ is $4 / 3$
\therefore Required line which is passing through origin and having slope $4 / 3$, is
$y-0=\frac{4}{3}(x-0)$
$\Rightarrow 4 x-3 y=0$
150 (a)
\because The slope of line $x+y=1$ is -1
\therefore It makes an angle of 135° with x-axis
The equation of line passing through $(1,1)$ and making an angle of 135° is
$\frac{x-1}{\cos 135^{\circ}}=\frac{y-1}{\sin 135^{\circ}}=r$
$\Rightarrow \frac{x-1}{-\frac{1}{\sqrt{2}}}=\frac{y-1}{\frac{1}{\sqrt{2}}}=r$
Coordinates of any point on this line are
$\left(1-\frac{r}{\sqrt{2}}, 1+\frac{r}{\sqrt{2}}\right)$
If this point lies on $2 x-3 y=4$, then
$2\left(1-\frac{r}{\sqrt{2}}\right)-3\left(1+\frac{r}{\sqrt{2}}\right)=4$
$\Rightarrow 2-\frac{2 r}{\sqrt{2}}-3-\frac{3 r}{\sqrt{2}}=4$
$\Rightarrow \frac{5 r}{\sqrt{2}}=-5$
$\Rightarrow r=\sqrt{2}$ (neglect negative sign)
151 (c)
Given equation of lines are
$5 x+3 y-7=0 \ldots$ (i)
and $15 x+9 y+14=0$ or $5 x+3 y+\frac{14}{3}=0$
...(ii)
\because Lines (i) and (ii) are parallel and c_{1} and c_{2} are of opposite signs, therefore these lines are on opposite sides of the origin
So, the distance between them is

$$
\begin{aligned}
&\left|\frac{c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}\right|+\left|\frac{c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}}}\right| \\
&=\left|-\frac{7}{\sqrt{5^{2}+3^{2}}}\right|+\left|\frac{14}{3 \sqrt{5^{2}+3^{2}}}\right| \\
&=\left|-\frac{7}{\sqrt{34}}\right|+\left|\frac{14}{3 \sqrt{34}}\right|=\frac{35}{3 \sqrt{34}}
\end{aligned}
$$

152 (a)
Angle between the lines $a x^{2}+2 h x y+b y^{2}=0$ is
$\tan \theta=\left|\frac{2 \sqrt{h^{2}-a b}}{a+b}\right|$
For $x^{2}+2 x y \sec \theta+y^{2}=0$
$h=\sec \theta, a=b=1$
$\therefore \tan \phi=\left|\frac{2 \sqrt{\sec ^{2} \theta-1}}{1+1}\right|$
$=\frac{2 \tan \theta}{2}=\tan \theta$
\therefore Angle between $x^{2}+2 x y \sec \theta+y^{2}=0$ is θ
153 (b)
Lines $3 x+4 y+2=0$ and $3 x+4 y+5=0$ are on the same side of the origin. The distance d_{1} between these lines is given by
$d_{1}=\left|\frac{2-5}{\sqrt{3^{2}+4^{2}}}\right|=\frac{3}{5}$
Lines $3 x+4 y+2=0$ and $3 x+4 y-5=0$ are on the opposite sides of the origin. The distance d_{2} between these lines is given by
$d_{2}=\left|\frac{2+5}{\sqrt{3^{2}+4^{2}}}\right|=\frac{7}{5}$
Thus, $3 x+4 y=0$ divides the distance between $3 x+4 y+5=0$ and $3 x+4 y-5=0$ in the ratio $d_{1}: d_{2}$ i.e. $3: 7$
155 (c)
Equation of lines which make equal intercept on axes, is
$x \pm y=a \ldots$ (i)
Since, it passes through (2, 4).
$\therefore 2 \pm 4=a \Rightarrow a=-2,6$
\therefore Equation of the required lines are
$x-y=-2$ or $x+y=6$
156 (b)
The given curve is
$|x|+|y|=1$
$\Rightarrow x+y=1$ for $x \geq 0, y \geq 0$
$-x-y=1$ for $x<0, y<0$
$x-y=1$ for $x \geq 0, y<0$
$-x+y=1$ for $x \leq 0, y \geq 0$
These lines represent a square as shown in Fig.S. 5 such that the length of each side is $\sqrt{2}$ units
\therefore Area enclosed $=\sqrt{2} \times \sqrt{2}=2$ sq. units

157 (a)
The bisectors of the angles between the lines in new position are same as the bisectors of the angles between their old positions. Therefore, the required equation is
$\frac{x^{2}-y^{2}}{1-(-1)}=\frac{x y}{-p}$
$\Rightarrow p x^{2}-p y^{2}=-2 x y$
$\Rightarrow p x^{2}+2 x y-p y^{2}=0$
158 (a)
The equation of a line passing through the intersection of the lines $x-\sqrt{3} y+\sqrt{3}-1=0$ and $x+y-2=0$, is
$(x-\sqrt{3} y+\sqrt{3}-1)+\lambda(x+y-2)=0$
$\Rightarrow x(1+\lambda+y(\lambda-\sqrt{3})+\sqrt{3}-1-2 \lambda=0$
The line $x-\sqrt{3} y+\sqrt{3}-1=0$ makes 30° angle with x-axis. Therefore, the line making an angle of 15° with this line will make 45° angle with x -axis. Therefore, Its slope is 1
$\Rightarrow-\left(\frac{1+\lambda}{\lambda-\sqrt{3}}\right)=1 \Rightarrow \lambda=\frac{\sqrt{3}-1}{2}$
Putting the value of λ in (i), we get $x-y=0$
159 (c)
The equation of straight line equally inclined to the axes is $\frac{x}{a}+\frac{y}{a}=1 \Rightarrow x+y=a$. Since, it is equidistant from the points $(1,-2)$ and $(3,4)$, so perpendicular distances from these points on the line will be equal.
$\Rightarrow\left|\frac{1-2-a}{\sqrt{1^{2}+1^{2}}}\right|=\left|\frac{3+4-a}{\sqrt{1^{2}+1^{2}}}\right|$
$\Rightarrow \frac{1+a}{\sqrt{2}}=\frac{7-a}{\sqrt{2}}$
$\Rightarrow 2 a=6 \Rightarrow a=3$
\therefore Equation is $x+y-3=0$
But, given equation is $a x+b y+c=0$
$\therefore a=1, b=1, c=-3$
160 (d)
Given equation can be rewritten as
$x^{2}+4 x y-3 x y-12 y^{2}=0$
Factorising the above equation, we get
$(x+4 y)(x-3 y)=0$
Therefore, separate equations for the lines are
$x+4 y=0$ and $x-3 y=0$
161 (b)
The desired point is the foot of the perpendicular from the origin on the line $3 x-4 y=25$. The equation of a line passing through the origin and perpendicular to $3 x-4 y=25$ is $4 x+3 y=0$.
Solving these two equations we get $x=3, y=-4$.
Hence, the nearest point on the line from the origin is $(3,-4)$.
ALITER The desired point is the foot of the perpendicular drawn from the origin $(0,0)$ on the line $3 x-4 y=25$ and its coordinates are given by

$$
\begin{aligned}
\frac{x-0}{3}=\frac{y-0}{-4} & =-\frac{(3 \times 0-4 \times 0-25)}{3^{2}+(-4)^{2}} \Rightarrow x \\
& =3, y=-4
\end{aligned}
$$

162 (d)
Let $B\left(x_{1}, y_{1}\right)$ and $C\left(x_{2}, y_{2}\right)$ are the vertices of a triangle
$P\left(\frac{x_{1}+1}{2}, \frac{y_{1}-2}{2}\right)$ lies on the line $x-y+5=0$
$\therefore \frac{x_{1}+1}{2}-\frac{y_{1}-2}{2}=-5$
$\Rightarrow x_{1}-y_{1}=-13 \ldots(\mathrm{i})$

Also, $P N \perp A B$
$\therefore \frac{y_{1}+2}{x_{1}-1}=-1$
$\Rightarrow y_{1}+2=-x_{1}+1$
$\Rightarrow x_{1}+y_{1}=-1 \ldots$ (ii)
On solving Eqs. (i) and (ii), we get
$x_{1}=-7$ and $y_{1}=6$
\therefore Coordinates of B are $(-7,6)$

Similarly, the coordinates of C are $\left(\frac{11}{5}, \frac{2}{5}\right)$
\therefore Equation of $B C$ is
$(y-6)=\frac{\frac{2}{5}-6}{\frac{11}{5}+7}(x+7)$
$\Rightarrow 14 x+23 y-40=0$
163 (c)
$\because a_{1} a_{2}+b_{1} b_{2}=3(12)+(-4)(5)=16>0$
\therefore The equation of bisector of the acute angle
between these lines are
$\frac{3 x-4 y+7}{\sqrt{3^{2}+4^{2}}}=\frac{12 x+5 y-2}{\sqrt{12^{2}+5^{2}}}$
$\Rightarrow 13(3 x-4 y+7)=5(12 x+5 y-2)$
$\Rightarrow 21 x+77 y-101=0$
164 (c)
In $\triangle O A C$, we have
$O A=O C \Rightarrow \angle O A C=\frac{\pi}{4}$

In $\triangle O A B$, we have
$O A=O B \Rightarrow \angle O A B=\frac{\pi}{4}$
Thus, we have $\angle B A C=\frac{\pi}{4}+\frac{\pi}{4}=\frac{\pi}{2}$
Hence, $\triangle B A C$ is a right angled triangle.
Consequently its orthocentre is at $A(0,3)$
165 (b)
We know that the coordinates of the foot of the perpendicular drawn from $\left(x_{1}, y_{1}\right)$ on the line $a x+b y+c=0$ are given by
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=-\frac{a x_{1}+b y_{1}+c}{a^{2}+b^{2}}$
So, the required coordinates are given by
$\frac{x-2}{1}=\frac{y-4}{1}=-\frac{2+4-1}{1+1} \Rightarrow x=-\frac{1}{2}, y=\frac{3}{2}$
166 (a)
Given points $(\sin \theta, \cos \theta)$ and $(3,2)$ and a line $x+y-1=0$..(i)
Since, $(3,2)$ lies on Eq. (i)
$3+2-1>0$
And $(\sin \theta, \cos \theta)$ lies in Eq. (i)
$\therefore \sin \theta+\cos \theta-1>0$
$\Rightarrow \sin \theta+\cos \theta>1$
$\Rightarrow \sqrt{2}\left[\sin \left(\theta+\frac{\pi}{4}\right)\right]>1$
$\Rightarrow \sin \left(\theta+\frac{\pi}{4}\right)>\frac{1}{\sqrt{2}}=\sin \left(\frac{\pi}{4}\right)$
$\Rightarrow 0<\theta<\frac{\pi}{2}$
167 (d)
Let the equation of line is
$y=m x+c$
$\because m=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$ and $c=-2$
(\because It is intercepted in negative axis of y with an angle 30°)
\therefore The equation of required line is
$y=\frac{x}{\sqrt{3}}-2$
$\Rightarrow \sqrt{3} y-x+2 \sqrt{3}=0$
168 (a)
It is given that the lines represented by the given equation are equidistant from the origin
$\therefore\left|\frac{n_{1}}{\sqrt{l_{1}^{2}+m_{1}^{2}}}\right|=\left|\frac{n_{2}}{\sqrt{l_{2}^{2}+m_{2}^{2}}}\right| \quad$ [See Example 45]
$\begin{aligned} \Rightarrow n_{1}^{2}\left(l_{2}^{2}+m_{2}^{2}\right) & =n_{2}^{2}\left(l_{1}^{2}+m_{1}^{2}\right)\end{aligned}$
$\Rightarrow\left(n_{1} l_{2}+n_{2} l_{1}\right)\left(n_{1} l_{2}-n_{2} l_{1}\right)$

$\quad=\left(n_{2} m_{1}+n_{1} m_{2}\right)\left(n_{2} m_{1}-n_{1}\right.$

$\left.\quad-m_{2}\right)$
Example 45]
$\Rightarrow g^{2}\left[\left(n_{1} l_{2}+n_{2} l_{1}\right)^{2}-4 l_{1} l_{2} n_{1} n_{2}\right]$
$=f^{2}\left[\left(n_{1} m_{2}+n_{2} m_{1}\right)^{2}-4 m_{1} m_{2} n_{1} n_{2}\right]$
$\Rightarrow g^{2}\left[4 g^{2}-4 a c\right]=f^{2}\left[4 f^{2}-4 b c\right]$
$\Rightarrow f^{4}-g^{4}=c\left(b f^{2}-a g^{2}\right)$
169 (a)
Given equation of the line is $x^{2}-4 x y+3 y^{2}=0$
$\therefore \quad m_{1}+m_{2}=\frac{4}{3}$ and $m_{1} m_{2}=\frac{1}{3}$
On solving these equations, we get
$m_{1}=1, m_{2}=\frac{1}{3}$
Let the lines parallel to given line are
$y=m_{1} x+c_{1}$ and $y=m_{2} x+c_{2}$
$\therefore y=\frac{1}{3} x+c_{1}$ and $y=x+c_{2}$
Also, these lines passes through the point $(3,-2)$
$\therefore-2=\frac{1}{3} \times 3+c_{1}$
$\Rightarrow c_{1}=-3$
and $-2=1 \times 3+c_{2}$
$\Rightarrow c_{2}=-5$
\therefore Required equation of pair of lines is
$(3 y-x+9)(y-x+5)=0$
$\Rightarrow x^{2}+3 y^{2}-4 x y-14 x+24 y+45=0$
170 (c)
The point of intersection of lines $x-2 y$ and
$x+3 y=2$ is
$\left(\frac{7}{5}, \frac{1}{5}\right)$
Since, required line is parallel to $3 x+4 y=0$.
Therefore, the slope of required line $=-\frac{3}{4}$
\therefore Equation of required line whose slope is $\frac{-3}{4}$ and passes through $\left(\frac{7}{5}, \frac{1}{5}\right)$ is
$y-\frac{1}{5}=-\frac{3}{4}\left(x-\frac{7}{5}\right)$
$\Rightarrow 20 y-4=-15 x+21 \Rightarrow 3 x+4 y-5=0$
171 (b)
The equation of lines are
$y-y_{1}=\frac{m_{1} \pm m_{2}}{1 \mp m_{1} m_{2}}\left(x-x_{1}\right)$
Since, $m_{1}=1, m_{2}=1$
$\therefore y-4=\frac{1 \pm 1}{1 \mp 1}(x-3)$
$\Rightarrow y=4$ or $x=3$
Hence, the lines which make the triangle are
$x-y=2, x=3$ and $y=4$
The intersection points of these lines are $(6,4)$,
$(3,1)$ and $(3,4)$
\therefore Area of triangle
$=\frac{1}{2}|6(1-4)+3(4-4)+3(4-1)|$
$=\frac{1}{2}|6(-3)+3(0)+3(3)|$
$=\frac{1}{2}|-18+0+9|=\frac{9}{2}$ sq unit
172 (c)
Given, $x^{2}-2 x y-x y+2 y^{2}=0$
$\Rightarrow(x-2 y)(x-y)=0$
$\Rightarrow x=2 y \ldots$ (i)
$x=y \ldots$ (ii)
Also, $x+y+1=0 \ldots$ (iii)
On solving Eq. (i) and (ii) and (iii), we get
$A\left(-\frac{2}{3},-\frac{1}{3}\right), B\left(-\frac{1}{2},-\frac{1}{2}\right), C(0,0)$
\therefore Area of $\triangle A B C=\frac{1}{2}\left|\begin{array}{ccc}-\frac{2}{3} & -\frac{1}{3} & 1 \\ -\frac{1}{2} & -\frac{1}{2} & 1 \\ 0 & 0 & 1\end{array}\right|$
$=\frac{1}{2}\left[\frac{1}{3}-\frac{1}{6}\right]$
$=\frac{1}{2}\left[\frac{1}{6}\right]=\frac{1}{12}$
173 (c)
The given line is $x \tan \alpha-y+c=0$
or $x \sin \alpha-y \cos \alpha+c \cos \alpha=0$
\therefore Length of perpendicular from $(a \cos \alpha, a \sin \alpha)$
$=\frac{a \cos \alpha \sin \alpha-a \sin \alpha \cos \alpha+c \cos \alpha}{\sqrt{\sin ^{2} \alpha+\cos ^{2} \alpha}}$
$=\frac{c \cos \alpha}{1}=c \cos \alpha$
174 (c)
Equation of diagonal d_{1} is $y-1=\frac{5-1}{3-2}(x-2)$
$\Rightarrow y=4 x-7$

Equation of diagonal d_{2} is $y-1=\frac{5-2}{2-3}(x-3)$
$\Rightarrow 4 x+y=13$
So, equations are, $4 x+y=13$ and $y=4 x-7$
175 (d)
Let the line passing through the intersection of two lines is
$(x+y-2)+\lambda(x-y)=0$
or $(1+\lambda) x+(1-\lambda) y-2=0 \ldots$ (i)
Which is parallel to $x+2 y=5$
$\therefore-\frac{(1+\lambda)}{(1-\lambda)}=-\frac{1}{2}$
$\Rightarrow 2+2 \lambda=1-\lambda \Rightarrow \lambda=-\frac{1}{3}$
On putting $\lambda=-\frac{1}{3}$ in Eq. (i), we get
$\frac{2}{3} x+\frac{4}{3} y-2=0 \Rightarrow x+2 y=3$
176 (a)
Here, $\left(x_{1}, y_{1}\right)=(3,4)$ and $a x+b y+c=2 x+$ $y-7=0$
$\therefore a=2, \quad b=1, \quad c=-7$
Let, (h, k) be the coordinates of the foot.
Then,
$\frac{h-3}{2}=\frac{k-4}{1}=\frac{-(2 \times 3+1 \times 4-7)}{2^{2}+1^{2}}=\frac{-3}{5}$
$\Rightarrow \frac{h-3}{2}=\frac{-3}{5}$ and $\frac{k-4}{1}=\frac{-3}{5}$
$\Rightarrow h=\frac{-6}{5}+3$ and $k=\frac{-3}{5}+4$
$\Rightarrow h=\frac{9}{5}$ and $k=\frac{17}{5}$

(h, k)
177 (c)
Each side of square is 5 unit, distance between given lines is 5 unit,
ie, $\left|\frac{k_{1}-k_{2}}{5}\right|=5 \Rightarrow\left|k_{1}-k_{2}\right|=25$

178 (d)
Given, lines are $(1+p) x-p y+p(1+p)=0$
...(i)
and $(1+q) x-q y+q(1+q)=0$
and $y=0$
on solving Eqs. (i) and (ii), we get
$C\{p q,(1+p)(1+q)\}$
\therefore Equation of altitude $C M$ passing through C and perpendicular to $A B$ is
$x=p q$
\because Slope of line (ii) is $\left(\frac{1+q}{q}\right)$
\because Slope of altitude $B N$ (as shown in figure) is $\frac{-q}{1+q}$

\therefore Equation of $B N$ is $y-0=\frac{-q}{1+q}(x+p)$
$\Rightarrow y=\frac{-q}{(1+q)}(x+p)$
Let orthocentre of triangle be $H(h, k)$, which is the point of intersection of Eqs. (iii) and (iv).
\therefore On solving Eqs. (iii) and (iv), we get
$x=p q$ and $y=-p q$
$\Rightarrow h=p q$ and $k=-p q$
$\therefore h+k=0$
\therefore Locus of $H(h, k)$ is $x+y=0$.
179 (b)
Let the coordinates of the point P which divides the line joining $(1,0)$ and $(2 \cos \theta, 2 \sin \theta)$ in the ratio $2: 3$ be (h, k). Then,
$h=\frac{4 \cos \theta+3}{5}$ and $k=\frac{4 \sin \theta}{5}$
$\Rightarrow \cos \theta=\frac{5 h-3}{4}$ and $\sin \theta=\frac{5 k}{4}$
$\Rightarrow\left(\frac{5 h-3}{4}\right)^{2}+\left(\frac{5 k}{4}\right)^{2}=1$
$\Rightarrow(5 h-3)^{2}+(5 k)^{2}=16$
Hence, the locus of (h, k) is
$(5 x-3)^{2}+(5 y)^{2}=16$, which is a circle
180 (b)
$\sqrt{3} x+y=0$ makes an angle of 120° with $O X$ and
$\sqrt{3} x-y=0$ makes an angle 60° with $O X$. So, the required line is $y-2=0$
181 (b)
\because Slope of given line $y=x$ is 1
\therefore Slope of required line which is perpendicular to
given line is -1
Thus, the equation of required line passing through $(3,2)$ and slope -1 , is
$y-2=-1(x-3)$
$\Rightarrow x+y=5$
182 (a)
Here, $a=2, b=3, h=5 / 2, g=0, f=7 / 2, c=4$
$\therefore \tan \left(\tan ^{-1} m\right)=\frac{2 \sqrt{h^{2}-a b}}{a+b}=\frac{2 \sqrt{\sqrt{25 / 4}}-6}{5}$

$$
=1 / 5
$$

$\Rightarrow m=1 / 5$
183 (d)
Given, $A x^{2}+2 H x y+B y^{2}=0$
and $a x+b y+c=0$
Since, triangle is equilateral, then angle between the two lines is 60°
Angle between pair of lines is given by
$\cos 60^{\circ}=\frac{A+B}{\sqrt{(A-B)^{2}+4 H^{2}}}$
$\Rightarrow \frac{A+B}{\sqrt{(A-B)^{2}+4 H^{2}}}=\frac{1}{2}$
$\Rightarrow(A-B)^{2}+4 H^{2}=4(A+B)^{2}$
$\Rightarrow 4\left(A^{2}+B^{2}+2 A B\right)-\left(A^{2}+B^{2}-2 A B\right)=4 H^{2}$
$\Rightarrow 3 A^{2}+10 A B+3 B^{2}=4 H^{2}$
$\Rightarrow(3 A+B)(A+3 B)=4 H^{2}$
184
(b)

Required equation of line is
$y-a \sin ^{3} \theta=\frac{\operatorname{cosec} \theta}{\sec \theta}\left(x-a \cos ^{3} \theta\right)$
$\Rightarrow y-a \sin ^{3} \theta=\frac{\cos \theta}{\sin \theta}\left(x-a \cos ^{3} \theta\right)$
$\Rightarrow y \sin \theta-a \sin ^{4} \theta=x \cos \theta-a \cos ^{4} \theta$
$\Rightarrow x \cos \theta-y \sin \theta+a \sin ^{4} \theta-a \cos ^{4} \theta=0$
$\Rightarrow x \cos \theta-y \sin \theta+a \cos 2 \theta=0$
185 (d)
Required distance

$$
\begin{aligned}
& =\left|\frac{65+39}{\sqrt{25+144}}\right| \quad[\because d \\
& \left.=\frac{\left|c_{1}-c_{2}\right|}{\sqrt{a^{2}+b^{2}}}\right]
\end{aligned}
$$

$=\left|\frac{104}{13}\right|=8$ unit
186 (a)
Since, slope of $P Q=\frac{4-3}{1-k}=\frac{1}{1-k}$
\therefore Slope of $A M=(k-1)$

\therefore Equation of $A M$ is
$y-\frac{7}{2}=(k-1)\left[x-\left(\frac{k+1}{2}\right)\right]$
For y-intercept, $x=0, y=-4$
$-4-\frac{7}{2}=-(k-1)\left(\frac{k+1}{2}\right)$
$\Rightarrow \frac{15}{2}=\frac{k^{2}-1}{2} \Rightarrow k^{2}-1=15 \Rightarrow k= \pm 4$
187 (d)
The equation of a line passing though $(2,2)$ and perpendicular to $3 x+y=3$ is
$y-2=1 / 3(x-2) \Rightarrow x-3 y+4=0$
Putting $x=0$ in this equation, we obtain $y=4 / 3$
Hence, y-intercet $=4 / 3$
188 (a)
Since the diagonals of a rectangle bisect each other.
Therefore, $B D$ passes through $\left(\frac{1+5}{2}, \frac{3+1}{2}\right)$ i.e. $(3,2)$
The slope of $B D$ is 2 . So, its equation is
$y-2=2(x-3) \Rightarrow 2 x-y-4=0$
189 (c)
The given equation of pair of lines is $2 x^{2}-x y-$ $y^{2}=0$
This can be rewritten as $(2 x+y)(x-y)=0$
So, the equation of required pair is
$\left(2 x+y+\lambda_{1}\right)\left(x-y+\lambda_{2}\right)=0$
Where, $2 x+y+\lambda_{1}=0$ and $x-y+\lambda_{2}=0$
These passes through $(1,0)$
$\therefore \lambda_{1}=-2, \lambda_{2}=-1$
Thus, the required equation of pair of line is
$(2 x+y-2)(x-y-1)=0$
$\Rightarrow 2 x^{2}-x y-y^{2}-4 x+y+2=0$
190 (c)
On adding the given three equations, we get
$a x+b y+b x+c y+c x+a y=a+b+c$
$\Rightarrow(a+b+c) x+(a+b+c) y=(a+b+c)$
On comparing with $0 x+0 y=0$ for collinearity, we get
$a+b+c=0$
191
(b)

Since $P Q R S$ is a parallelogram with an area which is twice the area of $\triangle P Q R$
\therefore Area $P Q R S=2 \times \frac{1}{2}\left|\begin{array}{ccc}2 & 1 & 1 \\ 4 & -1 & 1 \\ 3 & 2 & 1\end{array}\right|=4$

192 (a)
Let $P(3,-4)$ be the foot of the perpendicular from the origin O on the required line.
Then, the slope of $O P=\frac{-4-0}{3-0}=\frac{-4}{3}$
Therefore, the slope of the required line is $\frac{3}{4}$
Hence, its equation is $y+4=\frac{3}{4}(x-3)$
$\Rightarrow 3 x-4 y-9-16=0$
$\Rightarrow 3 x-4 y=25$
193 (a)
Le the equation of the pair of perpendicular lines
be $x^{2}+\lambda x y-y^{2}=0$. Then,
$a y^{4}+b x y^{3}+c x^{2} y^{2}+d x^{3} y+e x^{4}$
$=\left(x^{2}+\lambda x y-y^{2}\right)\left(e x^{2}+\mu x y-a y^{2}\right)$
On equating the coefficients of like terms, we get
$b=-a \lambda-\mu, c=-\alpha-e+\lambda \mu$ and $d=\mu+e \lambda$
Now, $a \lambda+\mu+b=0$
and, $e \lambda+\mu-d=0$
$\Rightarrow \frac{\lambda}{-(b+d)}=\frac{\mu}{a d+b e}=\frac{1}{a-e}$
$\Rightarrow \lambda=-\frac{b+d}{a-e}$ and $\mu=\frac{a d+b e}{a-e}$
Substituting these values in $c=-a-e+\lambda \mu$, we get
$c+a+e=-\frac{(b+d)(a d+b e)}{(a-e)^{2}}$
$\Rightarrow(c+a+e)(a-e)^{2}+(b+d)(a d+b e)=0$
194 (c)
Let $A(a, 0)$ and $B(0, b)$ be variable points on x and y-axes respectively such that
$A B=\lambda \Rightarrow a^{2}+b^{2}=\lambda^{2}$
Let $P(h, k)$ be the mid-point of $A B$. Then,
$a=2 h, b=2 k \Rightarrow 4 h^{2}+4 k^{2}=\lambda^{2}$
Hence, the locus of (h, k) is $4 x^{2}+4 y^{2}=\lambda^{2}$, which represents a circle
195 (d)
Let $C(2 a, \lambda)$ be the third vertex,
Clearly, $A C=\lambda$
$\therefore B C=A C \Rightarrow \sqrt{4 a^{2}+(\lambda-a)^{2}}=\lambda \Rightarrow \lambda=\frac{5 a}{2}$
Thus, the coordinates of C are $(2 a, 5 a / 2)$
Hence, the equation of $B C$ is
$y-a=\frac{5 a / 2-a}{2 a-0}(x-0)$
$\Rightarrow y-a=\frac{3}{4} x \Rightarrow 3 x-4 y+4 a=0$

196 (b)
We know that equation of pair of straight line passing through the origin and perpendicular to
$a x^{2}+2 h x y+b y^{2}=0$ is
$b x^{2}-2 h x y+a y^{2}=0$
\therefore Required equation of pair of straight line is
$2 x^{2}-3 x y+2 y^{2}=0$
197 (b)
The mid point of $(1,3)$ and $(5,1)$ i.e. $(3,2)$ lies on $y=2 x+c$
$\therefore 2=6+c \Rightarrow c=4$
198 (c)
For the greatest distance, both points lie on a straight line.
\therefore Required equation of line is
$y-2=\frac{1-2}{3-1}(x-1)$
$\Rightarrow x+2 y=5$
200 (d)
If p_{1} and p_{2} be the distance between parallel sides and θ be the angle between adjacent sides, then
Required area $=p_{1} p_{2} \operatorname{cosec} \theta$
Where, $p_{1}=\frac{1}{\sqrt{\left(1+m^{2}\right)}}, p_{2}=\frac{1}{\sqrt{\left(1+n^{2}\right)}}$
(distance between parallel lines)

and $\tan \theta=\frac{|m-n|}{|1+m n|}$
\therefore Required area
$=\frac{1}{\sqrt{\left(1+m^{2}\right) \sqrt{\left(1+n^{2}\right)}}} \cdot \frac{\sqrt{\left(1+m^{2}\right)} \sqrt{\left(1+n^{2}\right)}}{|m-n|}$
$=\frac{1}{|m-n|}$

201 (a)
The equation of the family of lines is
$(\lambda+\mu) x+(2 \lambda+\mu) y=\lambda+2 \mu$
$\Rightarrow \lambda(x+2 y-1)+\mu(x+y-2)=0$
Clearly, it represents a family of lines passing through the intersection of the lines $x+2 y-1=$ 0 and $x+y-2=0$ i.e. $(3,-1)$

We have,
Slope of $A B=\frac{1-0}{3-2}=1 \Rightarrow \angle B A X=\frac{\pi}{4}$
But, $\angle B A C=15^{\circ}$. Therefore, $\angle C A X=60^{\circ}$

So, the equation of $A C$ is
$y-0=\tan 60^{\circ}(x-2)$
$\Rightarrow y=\sqrt{3} x-2 \sqrt{3} \Rightarrow \sqrt{3} x-y=2 \sqrt{3}$
203 (c)
The sides of the triangle are $y=1$ and the pair of lines $x^{2}+7 x y+2 y^{2}=0$
Clearly, one vertex is $(0,0)$ and the y-coordinates of each of the other two vertices is 1 .
On putting $y=1$ in the second equation, we get $x^{2}+7 x+2=0$
If x_{1} and x_{2} are the roots of this equation, then $x_{1}+x_{2}=-7$
\therefore Centroid, $G=\left(\frac{0+x_{1}+x_{2}}{3}, \frac{0+1+1}{3}\right)$
$=\left(-\frac{7}{3}, \frac{2}{3}\right)$
204 (c)
Let equation of line parallel to $3 x-y=7$ be $3 x-y=\lambda$.
The passes through $(1,2)$
$\therefore 3-2=\lambda \Rightarrow \lambda=1$
\therefore Line is $3 x-y=1$
The point of intersection of $x+y+5=0$ and $3 x-y=1$ is $(-1,-4)$
\therefore Distance between $(1,2)$ and $(-1,-4)$
$=\sqrt{(2)^{2}+(6)^{2}}=\sqrt{40}$
206 (a)
Here, $a=1, b=4, \mathrm{~g}=\frac{3}{2}, f=3, h=2$ and $c=-4$
Then, required distance $=2 \sqrt{\frac{\frac{9}{4}+4}{5}}$
$=\frac{2 \sqrt{25}}{2 \sqrt{5}}=\frac{5}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}=\sqrt{5}$
207 (d)
Equation of pair straight lines is $x y-x-y+1=$ 0
$\Rightarrow(x-1)(y-1)=0$
$\Rightarrow x-1=0$ or $y-1=0$
The intersection points of $x-1, y-1=0$ is (1, 1)
\because Lines $x-1=0, y-1=0$ and $a x+2 y-3=0$ are concurrent
\therefore The intersecting points of first two lines lies on the third line $a x+2 y-3=0$
$\therefore a+2-3=0 \Rightarrow a=1$
208 (a)
Any point on $x+y=4$ is $(t, 4-t)$. It is at a unit distance from the line $4 x+3 y-10=0$
$\therefore\left|\frac{4 t+3(4-t)-10}{\sqrt{4^{2}+3^{2}}}\right|=1 \Rightarrow t=3,-7$
Hence, the required points are $(3,1)$ and $(-7,11)$
209 (c)
The equation of bisector of acute angle formed between the lines $4 x-3 y+7=0$ at $3 x-4 y+$ $14=0$, is
$\frac{4 x-3 y+7}{\sqrt{16+9}}$
$=-\frac{3 x-4 y+14}{\sqrt{16+9}}$
$\Rightarrow 7 x-7 y+21=0$
$\Rightarrow x-y+3=0$
210 (d)
The equations will represent the same line if
$\frac{b^{3}-c^{3}}{b-c}=\frac{c^{3}-a^{3}}{c-a}=\frac{a^{3}-b^{3}}{a-b}$
$\Rightarrow b^{2}+b c+c^{2}=c^{2}+c a+a^{2}=a^{2}+a b+b^{2}$
$\Rightarrow b^{2}+b c+c^{2}=c^{2}+c a+a^{2}$ and $b^{2}+b c+$
$c^{2}=a^{2}+a b+b^{2}$
$\Rightarrow b^{2}-a^{2}+b c-c a=0$ and $c^{2}-a^{2}+b c-$
$a b=0$
$\Rightarrow(b-a)(b+a+c)=0$ and $(c-a)(c+a+$ $b=0$
$\Rightarrow a+b+c=0$
211 (a)
Given lines are $x+y=4$ and $2 x+2 y=5$ or $x+y=\frac{5}{2}$
The distance between two parallel lines,
$d=\frac{4-\frac{5}{2}}{\sqrt{1^{2}+1^{2}}}=\frac{3}{2 \sqrt{2}}=\frac{3 \sqrt{2}}{4}>1$
Hence, no point lies in it.

213 (a)
Given lines are concurrent, if
$\left|\begin{array}{lll}2 & 1 & -1 \\ a & 3 & -3 \\ 3 & 2 & -2\end{array}\right|=0$
This is true for all values of a, because C_{2} and C_{3} are identical
214 (b)
Let (h, k) be the centroid of the triangle having vertices $A(\cos \alpha,-\cos \alpha)$ and $C(1,2)$. Then,
$h=\frac{\cos \alpha+\sin \alpha+1}{3}$ and $k=\frac{\sin \alpha-\cos \alpha+2}{3}$ $\Rightarrow 3 h-1=\cos \alpha+\sin \alpha$ and $3 k-2=$
$\sin \alpha-\cos \alpha$
$\Rightarrow(3 h-1)^{2}+(3 k-2)^{2}=2 \quad$ [Squaring and adding]
$\Rightarrow 9\left(h^{2}+k^{2}\right)-6 h-12 k+3=0$
$\Rightarrow 3\left(h^{2}+k^{2}\right)-2 h-4 k+1=0$
Hence, the locus of (h, k) is $3\left(x^{2}+y^{2}\right)-2 x-$ $4 y+1=0$
215 (b)
The graph of equations $x-2 y=0$ and $3 x-y=$ 0 is as shown in the figure. Since, given point (a, a^{2}) lies in the shaded region.

Then, $a^{2}-\frac{a}{2}>0$
and $a^{2}-3 a<0$
$\Rightarrow a \in(-\infty, 0) \cup\left(\frac{1}{2}, \infty\right)$
and $a \in(0,3)$
$\Rightarrow a \in\left(\frac{1}{2}, 3\right)$
216 (d)
The two pairs of lines are
$a x^{2}+2 h x y-a y^{2}=0 \ldots$ (i)
$h x^{2}-2 a x y-h y^{2}=0$
Clearly, these two equations represent two pairs of lines such that the lines in each pair are mutually perpendicular.
The combined equation of the bisectors of the angles between the lines given in (i) is
$\frac{x^{2}-y^{2}}{a+a}=\frac{x y}{h} \Rightarrow h x^{2}-2 a x y-h y^{2}=0$
Clearly it is same as (ii).
Thus, each pair bisects the angle between the other pair.
Also, lines of one pair are equally inclined to the
lines of the other pair
217 (a)
\because Line $a x+b y+c=0$ passes through $(1,-2)$
$\therefore a-2 b+c=0$
$\Rightarrow 2 b=a+c$
$\Rightarrow a, b, c$ are in AP.
218 (d)
The diagonal through B passes through the midpoint of $A C$. The coordinates of the mid point of $A C$ are
$\left(\frac{\sqrt{3}+1}{2}, \frac{\sqrt{3}+3}{2}\right)$
\therefore equation of the diagonal through B is
$y-2=\frac{\left(\frac{\sqrt{3}+3}{2}\right)-2}{\left(\frac{\sqrt{3}+1}{2}\right)-(\sqrt{3}+1)}(x-\sqrt{3}-1)$
$\Rightarrow y=x(\sqrt{3}-2)+(1+\sqrt{3})$
219 (c)
Since, the given three lines are concurrent, then
$\left|\begin{array}{ccc}4 & 3 & -1 \\ 1 & -1 & 5 \\ k & 5 & -3\end{array}\right|=0$
$\Rightarrow 4(3-25)-3(-3-5 k)-1(5+k)=0$
$\Rightarrow-88+9+15 k-5-k=0$
$\Rightarrow 14 k=84 \Rightarrow k=6$
220 (b)
On comparing the given equation with
$a x^{2}+2 h x y+b y^{2}=0$, we get
$a=1,2 h=2 h$ and $b=2$
Let the slope of the lines are m_{1} and m_{2}.
$\therefore m_{1}: m_{2}=1: 2$
Let $m_{1}=m$ and $m_{2}=2 m$
$\therefore m_{1}+m_{2}=-\frac{2 h}{2} \Rightarrow m+2 m=-h \Rightarrow h=-3 m$
and $m_{1} m_{2}=\frac{a}{b} \Rightarrow m \cdot 2 m=\frac{1}{2} \Rightarrow m= \pm \frac{1}{2}$
From Eqs. (i) and (ii), we get
$h= \pm \frac{3}{2}$
221 (c)
Let the coordinate of M are (x_{1}, y_{1})
Since, the line $P M$ is perpendicular to the given line $x+y=3$
$\therefore \frac{y_{1}-3}{x_{1}-2} \times(-1)=-1$
$\Rightarrow y_{1}-3=x_{1}-2$
$\Rightarrow x_{1}-y_{1}+1=0 \ldots$..(i)

and also the point lies on the given line.
$\therefore x_{1}+y_{1}-3=0$
On solving Eqs. (i) and (ii), we get
$x_{1}=1, \quad y_{1}=2$
\therefore The coordinates of M are (1,2).
222 (b)
The equation of line in new position is
$y-0=\tan 15^{\circ}(x-2)$
$\Rightarrow y=(2-\sqrt{3})(x-2)$
$\Rightarrow(2-\sqrt{3}) x-y-4+2 \sqrt{3}=0$
(d)

Here $a=1, h=1, f=-4 a, \mathrm{~g}=-4 a, c=-9 a$
Now, required distance
$=\left|2 \sqrt{\frac{f^{2}-b c}{b(b+a)}}\right|$
$\left.=|2| \sqrt{\frac{16 a^{2}+9 a^{2}}{1(1+1)}} \right\rvert\,$
$\left.=|2| \sqrt{\frac{25 a^{2}}{2}} \right\rvert\,=\frac{5 a}{\sqrt{2}} \cdot 2$
$=5 \sqrt{2} a$
224 (c)
Let $A B C$ be the equilateral triangle with centroid $O(0,0)$ and sides $B C$ as $x+y-2=0$.
$\therefore O D=\left|\frac{0+0-2}{\sqrt{1^{2}+1^{2}}}\right|=\sqrt{2} \Rightarrow O A=2 \sqrt{2}$
Since $A D$ is perpendicular to $B C$. Therefore,
Slope of $A D=1$
$\Rightarrow A D$ makes 45° with X-axis

Clearly, A lies on $O A$ at a distance of $2 \sqrt{2}$ units from O. So, its coordinates are given by
$\frac{x-0}{\cos \pi / 4}=\frac{y-0}{\sin \pi / 4}= \pm 2 \sqrt{2} \Rightarrow x= \pm 2, y= \pm 2$
But, O and A lie on the same side of $x+y-2=0$
Hence, the coordinates of A are $(-2,-2)$
(c)

The intersection point of lines $x-2 y=1$ and $x+3 y=2$ is
$\left(\frac{7}{5}, \frac{1}{5}\right)$
Since, required is parallel to $3 x+4 y=0$

Therefore, the slope of required line $=-\frac{3}{4}$
\therefore Equation of required line which passes through $\left(\frac{7}{5}, \frac{1}{5}\right)$
and having slope $-\frac{3}{4}$, is
$y-\frac{1}{5}=\frac{-3}{4}\left(x-\frac{7}{5}\right)$
$\Rightarrow \frac{3 x}{4}+y=\frac{21}{20}+\frac{1}{5}$
$\Rightarrow \frac{3 x+4 y}{4}=\frac{21+4}{20}$
$\Rightarrow 3 x+4 y=5$
$\Rightarrow 3 x+4 y-5=0$
226 (b)
Required ratio is given by
$-\frac{3 \times 1+3-9}{3 \times 2+7-9}$
$=\frac{3}{4} i e, 3: 4$ internally
227 (d)
The lines $4 x-7 y+10=0$ and $7 x+4 y-15=$ 0 are perpendicular and their point of intersection is $(1,2)$.
Hence, the orthocentre is at $(1,2)$
228
(b)

Since the distance between the parallel lines
$l x+m y+\mathrm{n}=0$ and $l x+m y+n^{\prime}=0$ is same as
the distance between parallel lines $m x+l y+n=$
0 and $m x+l y+n^{\prime}=0$.
Therefore, the parallelogram is a rhombus.
Also, the diagonals of a rhombus are at right angles. Therefore, the required angle is a right angle.
229 (a)
Vertices are interception points of line
$x+y=2 \sqrt{2} \ldots$ (i)
with $y=x \tan \left(105^{\circ}\right)$ or $y=x \tan \left(165^{\circ}\right)$
(lines through centroid)
$y=-x \tan 75^{\circ} \ldots$ (ii)
$y=-x \tan 15^{\circ}$...(iii)
For the interception point of Eqs. (i) and (ii)
$x-x(2+\sqrt{3})=2 \sqrt{2}$
$\Rightarrow-x(1+\sqrt{3})=2 \sqrt{2}$
$\Rightarrow x=-\frac{2 \sqrt{2}(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})}$
$\Rightarrow x=\sqrt{2}-\sqrt{6}$
$\therefore y=-(\sqrt{2}-\sqrt{6})(2+\sqrt{3})$
$=-(2 \sqrt{2}+\sqrt{6}-2 \sqrt{6}-3 \sqrt{2}$
$=\sqrt{2}+\sqrt{6}$
and its image about $y=x$ is $(\sqrt{2}+\sqrt{6}, \sqrt{2}-\sqrt{6})$

230 (a)
It is given that the lines $a x+2 y+1=0, b x+$ $3 y+1=0$ and $c x+4 y+1=0$ are concurrent $\therefore\left|\begin{array}{lll}a & 2 & 1 \\ b & 3 & 1 \\ c & 4 & 1\end{array}\right|=0$ $\Rightarrow-a+2 b-c=0 \Rightarrow 2 b=a+c \Rightarrow a, b, c$ are in A.P.

231 (b)

Let (h, k) be the centroid of the triangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t)$ and (1,0). Then,
$3 h=a \cos t+b \sin t+1$ and $3 k=a \sin t-$
$b \cos t$
$\Rightarrow(3 h-1)^{2}+(3 k)^{2}=a^{2}+b^{2}$
Hence, the locus of (h, k) is $(3 x-1)^{2}+(3 y)^{2}=$ $a^{2}+b^{2}$

The equation representing the bisectors of the angles between the lines given by $a x^{2}+2 h x y+$ $b y^{2}=0$ is
$\frac{x^{2}-y^{2}}{a-b}=\frac{x y}{h}$
$\Rightarrow h x^{2}-(a-b) x y-h y^{2}=0$
The combined equation of the bisectors of the angles between these lines is
$\frac{x^{2}-y^{2}}{h+h}=\frac{x y}{-\frac{(a-b)}{2}} \Rightarrow(a-b)\left(x^{2}-y^{2}\right)+4 h x y$
$=0$
235 (a)
Given, $\sqrt{3} \sin \theta+2 \cos \theta=\frac{4}{r}$
Any line perpendicular to Eq.(i) is
$\Rightarrow \sqrt{3} \cos \theta-2 \sin \theta=\frac{k}{r}$
It passes through $\left(-1, \frac{\pi}{2}\right)$, then
$\sqrt{3} \cos \frac{\pi}{2}-2 \sin \frac{\pi}{2}=\frac{k}{-1}$
$-2=\frac{k}{-1} \Rightarrow k=2$
Thus, the equation is
$\sqrt{3} \cos \theta-2 \sin \theta=\frac{2}{r}$
$\Rightarrow \sqrt{3} r \cos \theta-2 r \sin \theta=2$
236 (b)
$P=\left|\frac{a(4-3+4)+b(2+6-3)}{\sqrt{(2 a+b)^{2}+(a-2 b)^{2}}}\right|=\sqrt{10}$
$\Rightarrow 25(a+b)^{2}=10\left(5 a^{2}+5 b^{2}\right)$
$\Rightarrow 25(a-b)^{2}=0 \Rightarrow a=b$
Only one line which is $3 x-y+1=0$

237 (b)
Let $\left(t, \frac{5-2 t}{11}\right)$ be a point on the line $2 x+11 y=5$ Then,
$p_{1}=\left|\frac{24 t+7\left(\frac{5-2 t}{11}\right)-20}{\sqrt{24^{2}+7^{2}}}\right|=\frac{|50 t-37|}{55}$
and,
$p_{2}=\left|\frac{4 t-3\left(\frac{5-2 t}{11}\right)-2}{\sqrt{4^{2}+(-3)^{2}}}\right|=\frac{|50 t-37|}{55}$
Clearly, we have $p_{1}=p_{2}$
ALITER Clearly, $2 x+11 y=5$ is the angle bisector of the two lines. Therefore, $p_{1}=p_{2}$
238 (c)
The equation of lines are $\pm x \pm y=0$. Now, we take the lines $x+y=0$ and $x-y=0$.
\therefore The equation of bisector of the angles between these lines are
$\frac{x+y}{\sqrt{1+1}}= \pm \frac{x-y}{\sqrt{1+1}}$
$\Rightarrow x+y= \pm(x-y)$
Taking positive sign, $x+y=x-y \Rightarrow y=0$
Taking negative sign, $x+y=-(x-y) \Rightarrow x=0$
239 (c)
Given pair of lines are
$x^{2}-3 x y+2 y^{2}=0$
and $x^{2}-3 x y+2 y^{2}+x-2=0$
$\therefore \quad(x-2 y)(x-y)=0$
and $(x-2 y+2)(x-y-1)=0$
$\Rightarrow x-2 y=0, x-y=0$ and $x-2 y+2=0, x-$ $y-1=0$
Since, the lines $x-2 y=0, x-2 y+2=$
0 and $x-y=0, x-y-1=0$ are parallel.
Also, angle between $x-2 y=0$ and $x-y=0$ is not 90°
\therefore It is a parallelogram.
240 (b)
Let a and b the intercepts made by the straight line on the axes
Given that, $a+b=\frac{a b}{2}$
$\Rightarrow \frac{2 a+2 b}{a b}=1 \Rightarrow \frac{2}{a}+\frac{2}{b}=1$
On comparing with $\frac{x}{a}+\frac{y}{b}=1$, we get
$x=2, y=2$
\therefore Required point is $(2,2)$
So, the straight line passes through the point (2, 2)

241 (d)
Let the equation of the line be $\frac{x}{a}+\frac{y}{b}=1$. This cuts
the coordinates axes at $A(a, 0)$ and $B(0, b)$
The coordinates of the mid-point of the intercept AB between the axes are $(a / 2, b / 2)$
$\therefore \frac{a}{2}=1, \frac{b}{2}=2 \Rightarrow a=2, b=4$
Hence, the equation of the line is $\frac{x}{2}+\frac{y}{4}=1$ or,
$2 x+y=4$
(b)

We know that the coordinates of the incentre of triangle formed by the points
$O(0,0) A(a, 0)$ and $B(0, b)$ are
$\left(\frac{a b}{a+b+\sqrt{a^{2}+b^{2}}}, \frac{a b}{a+b+\sqrt{a^{2}+b^{2}}}\right)$
Here, $a=4$ and $b=3$
So, the Coordinates are $(12 / 12,12 / 12)=(1,1)$
243 (a)
To make the given curves $x^{2}+y^{2}=4$ and $x+$ $y=a$ homogeneous.
$x^{2}+y^{2}-4\left(\frac{x+y}{a}\right)^{2}=0$
$\Rightarrow a^{2}\left(x^{2}+y^{2}\right)-4\left(x^{2}+y^{2}+2 x y\right)=0$
$\Rightarrow x^{2}\left(a^{2}-4\right)+y^{2}\left(a^{2}-4\right)-8 x y=0$
Since, this is a perpendicular pair of straight lines.
$\therefore a^{2}-4+a^{2}-4=0$
$\Rightarrow a^{2}=4 \Rightarrow a= \pm 2$
Hence, required set of a is $\{-2,2\}$.
244 (b)
Equation of bisector between the lines
$x^{2}-2 p x y-y^{2}=0$ is
$\frac{x^{2}-y^{2}}{1-(-1)}=\frac{x y}{-p}$
$\Rightarrow x^{2}+\frac{2 x y}{p}-y^{2}=0$
Above lines will be same as the $x^{2}-2 q x y-y^{2}=$ 0 .
$\therefore \frac{1}{p}=-q$
$\Rightarrow p q=-1$
245
(d)

Since the diagonals of a rhombus bisect each other at right angle. Therefore, $B D$ passes through $(3,4)$ and is perpendicular to $A C$. So, its equation is
$y-4=-1(x-3) \Rightarrow x+y-7=0$

Slope of given line is $\frac{1}{\sqrt{3}}$, it's angle from positive x axis is 30°. Now, lines making an angle 30° from it are either x-axis (ie, $y=0$) or makes and angle 60° with positive x-axis $(i e, y=\sqrt{3} x+\lambda)$
248 (d)

Let the slopes be m, m^{2}
$\therefore m+m^{2}=\frac{-2 h}{b}$ and $m m^{2}=\frac{a}{b}$
$\Rightarrow m^{3}=\left(\frac{a}{b}\right)$
Now, $\quad m(1+m)=\frac{-2 h}{b}$
On cubing both sides, we get
$m^{3}\left[1+m^{3}+3 m(1+m)\right]=-\frac{8 h^{3}}{b^{3}}$
$\Rightarrow \frac{a}{b}\left[1+\frac{a}{b}+3\left(\frac{-2 h}{b}\right)\right]=\frac{-8 h^{3}}{b^{3}}$
$\Rightarrow \frac{b+a}{b}-\frac{6 h}{b}=\frac{-8 h^{3}}{a b^{2}}$
$\Rightarrow b+a+\frac{8 h^{3}}{a b}=6 h$
$\Rightarrow \frac{b+a}{h}+\frac{8 h^{2}}{a b}=6$
250 (d)
The equation of line $B C$ is $x+y+4=0$.
Therefore, equation of a line parallel to $B C$ is $x+y+k=0$. This is at a distance $1 / 2$ from the origin
$\therefore\left|\frac{k}{\sqrt{2}}\right|=\frac{1}{2} \Rightarrow k= \pm \frac{1}{\sqrt{2}}$
Since $B C$ and the required line are on the same side of the origin. Therefore, $k= \pm \frac{1}{\sqrt{2}}$
Hence, the equation of the required lines is $x+y+\frac{1}{\sqrt{2}}=0$
251 (b)
Slope of the given lines are
$m_{1}=\frac{2+2}{3-1}=2$ and $m_{2}=-\frac{1}{2}$
Now, $m_{1} \times m_{2}=2 \times \frac{-1}{2}=-1$
\therefore Lines are perpendicular, so angle is $\frac{\pi}{2}$
252 (c)
Given equation of curve is
$y^{2}-x^{2}+2 x-1=0$
Here, $a=-1, b=1, c=-1, h=0, g=1, f=0$
$\therefore \Delta=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}$
$=(-1)(1)(-1)+2(0) 1(0)-0-1-0$
$=1-1=0$
\therefore Given equation is equation of pair of straight lines.
253 (c)
Let the points be $A(3,-4)$ and $B(5,2)$ and mid point of $A B=(4,-1)$
It is given that the bisecting line intersect the coordinate axes in the ratio $2: 1$
\therefore Point of coordinate axes are $(2 k, 0)$ and $(0, k)$.
The equation of line passing through the above point is
$y-0=\frac{k-0}{0-2 k}(x-2 k)$
$\Rightarrow y=-\frac{1}{2}(x-2 k)$
Since, it passing through the mid point of
$A B$ ie, $(4,-1)$
$\therefore-1=-\frac{1}{2}(4-2 k) \Rightarrow k=1$
On putting the value of k in Eq. (i), we get
$y=-\frac{1}{2}(x-2) \Rightarrow x+2 y=2$
254 (d)
Let the coordinates of the third vertex C be (h, k).
Then, Area of $A B C=20$ sq. units
$\Rightarrow \frac{1}{2}\left|\begin{array}{ccc}h & k & 1 \\ -5 & 0 & 1 \\ 3 & 0 & 1\end{array}\right|= \pm 20 \Rightarrow k= \pm 5$
Since, (h, k) lies on $x-y=2$ Therefore,
$h-k=2$
Solving (i) and (ii), we find that the coordinates of the third vertex are $(-3,-5)$ or, $(7,5)$
255 (c)
Given lines are $a x+b y+c=0 \ldots$ (i)
and a, b, c satisfy the relation
$3 a+2 b+4 c=0$
Only option (c) satisfy both condition.
$\because a \cdot \frac{3}{4}+b \cdot \frac{1}{2}+c=0$
$\Rightarrow 3 a+2 b+4 c=0$
256 (a)
Here, $a_{1}=1, b_{1}=-\sqrt{3}, a_{2}=\sqrt{3}, b_{2}=1$
Now, $a_{1} a_{2}+b_{1} b_{2}=1 \cdot \sqrt{3}+(-\sqrt{3}) \cdot 1=0$
\therefore Lines are perpendicular, ie, $\theta=90^{\circ}$
257 (a)
Equation of $O A$ is $y=\sqrt{3} x$. Equation of $O B$ is $y=-\sqrt{3} x$ and equation of $A B$ is $y=1$

Clearly, from figure $\triangle O A B$ is an equilateral triangle.
258 (a)
The point of intersection of the lines $3 x+y+1=$ 0 and $2 x-y+3=0\left(-\frac{4}{5}, \frac{7}{5}\right)$. The equation of line which makes equal intercepts with axes is
$x+y=a$
$\therefore-\frac{4}{5}+\frac{7}{5}=a \Rightarrow a=\frac{3}{5}$
\therefore Equation of line is $x+y-\frac{3}{5}=0$
or $5 x+5 y-3=0$
259 (c)
Let the line be $x / a+y / a=1$. It passes through $(1,-2)$
$\therefore 1 / a-2 / a=1 \Rightarrow a=-1$
Hence, the equation of the line is $x+y=-1$
260 (a)
On solving line Ist and IInd, and Ist and IIIrd, we get $A(-3,4)$ and $B\left(-\frac{3}{5}, \frac{8}{5}\right)$.

The equation of perpendicular line to the line $4 x-y+4=0$ and passes through the point $A(-3,4)$ is
$x+4 y-13=0$
Also, the equation of perpendicular line to the line $2 x+3 y=6$ and passes through
a point $B\left(-\frac{3}{5}, \frac{8}{5}\right)$ is
$3 x-2 y+5=0 \ldots$ (ii)
On solving Eq. (i) and (ii), we get the orthocentre $\left(\frac{3}{7}, \frac{22}{7}\right)$
Which is lies in Ist quadrant.
261 (d)
Let the equation of line is $y=m x+c$
Given, $m=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$ and $c=-2$
$\therefore y=\frac{x}{\sqrt{3}}-2 \Rightarrow \sqrt{3} y-x+2 \sqrt{3}=0$
262 (c)
Here, $a=1, b=9, c=-4, h=-3, g=\frac{3}{2}$ and $f=-\frac{9}{2}$
\therefore Required distance $=2 \sqrt{\frac{g^{2}-a c}{a(a+b)}}=2 \sqrt{\frac{9 / 4+4}{10}}$

$$
=\sqrt{\frac{5}{2}}
$$

263 (b)
The coordinates of A and B are $(0,12)$ and $(8,0)$ respectively. The equation of the perpendicular bisectors of $A B$ is
$y-6=\frac{2}{3}(x-4) \Rightarrow 2 x-3 y+10=0$
Equation of a line passing through $(0,-1)$ and parallel to x-axis is $y=-1$. This line meets line
(i) at C. Therefore, the coordinates of C are $(-13 / 2,-1)$. Hence, the area A of the triangle $A B C$ is given by
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}0 & 12 & 1 \\ 8 & 0 & 1 \\ -13 / 2 & -1 & 1\end{array}\right|=91$ sq. units
264 (c)
Let (h, k) be the coordinates of the fourth vertex.
Then,
$\Delta_{1}=\frac{1}{2}\left|\begin{array}{ll}6 & 7 \\ 1 & 2\end{array}\right|=\frac{5}{2}, \Delta_{2}=\frac{1}{2}\left|\begin{array}{cc}7 & -1 \\ 2 & 0\end{array}\right|=1$,

$$
\begin{aligned}
\Delta_{3}=\frac{1}{2}\left|\begin{array}{cc}
-1 & h \\
0 & k
\end{array}\right| & =-\frac{k}{2} \text { and } \Delta_{4}=\frac{1}{2}\left|\begin{array}{ll}
h & 6 \\
k & 1
\end{array}\right| \\
& =\frac{1}{2}(h-6 k)
\end{aligned}
$$

We have,
$\left|\Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{4}\right|=4$
$\Rightarrow\left|\frac{5}{2}+1-\frac{k}{2}+\frac{h-6 k}{2}\right|=4$
$\Rightarrow|7+h-7 k|=8$
$\Rightarrow 7+h-7 k= \pm 8$
$\Rightarrow h-7 k-1=0, h-7 k+15=0$
$\Rightarrow(h-7 k-1)(h-7 k+15)=0$
$\Rightarrow(h-7 k)^{2}+14(h-7 k)-15=0$
Hence, the locus of (h, k) is $(x-7 y)^{2}+$
$14(x-7 y)-15=0$
265 (a)
The equation of the line joining $A(a, 0)$ and $B(0, b)$ is $\frac{x}{a}+\frac{y}{b}=1$. Clearly, point $(3 a,-2 b)$ lies on this line
266 (c)
Lines are $[(l+\sqrt{3} m) x+(m-\sqrt{3} l) y][(l-$
$3 m x+m+3 l y=0$
and $l x+m y+n=0$
$\therefore m_{1}=-\frac{(l+\sqrt{3} m)}{(m-\sqrt{3} l)}, m_{2}=-\frac{(l-\sqrt{3} m)}{(m+\sqrt{3} l)}$
and $m_{3}=-\frac{l}{m}$
$\therefore \theta_{1}=\tan ^{-1}\left[\frac{-\left(\frac{l+\sqrt{3} m}{m-\sqrt{3} l}\right)+\frac{l}{m}}{1+\left(\frac{l+\sqrt{3} m}{m-\sqrt{3} l}\right) \cdot \frac{l}{m}}\right]=60^{\circ}$
and $\theta_{2}=\tan ^{-1}\left[\frac{-\left(\frac{l-\sqrt{3} m}{m+\sqrt{3} l}\right)+\frac{l}{m}}{1+\left(\frac{l-\sqrt{3} m}{m+\sqrt{3} l}\right)\left(\frac{l}{m}\right)}\right]=60^{\circ}$
Hence, triangle is equilateral.

Here, $a=1, \quad h=-3, \quad b=9, \quad g=\frac{3}{2}$,

$$
f=-\frac{9}{2} \text { and } c=-4
$$

\therefore Required distance $=\left|2 \sqrt{\frac{f^{2}-b c}{b(a+b)}}\right|$
$=\left|2 \sqrt{\frac{\left(-\frac{9}{2}\right)^{2}+(9)(4)}{9(9+1)}}\right|$
$=\left|2 \sqrt{\frac{225}{4 \times 90}}\right|=\left|\frac{2 \sqrt{5}}{2 \sqrt{2}}\right|=\sqrt{\frac{5}{2}}$
268 (c)
We have,
$\angle P R Q=\pi / 2$
\therefore Slope of $R P \times$ Slope of $R Q=-1$
$\Rightarrow \frac{y-1}{x-3} \times \frac{5-1}{6-3}=-1 \Rightarrow 3 x+4 y=13$
Now, Area of $\triangle R P Q=7$

$$
\begin{align*}
\Rightarrow \frac{1}{2}\left|\begin{array}{lll}
x & y & 1 \\
3 & 1 & 1 \\
6 & 5 & 1
\end{array}\right| & = \pm 7 \Rightarrow 3 y-4 x=5 \Rightarrow 3 y-4 x \\
& =-23 \ldots \text { (ii) } \tag{ii}
\end{align*}
$$

Solving, (i) and (ii), we get two points
269 (c)
We have,
$x^{3}-6 x^{2} y+11 x y^{2}-6 y^{3}=0$
$\Rightarrow(x-y)(x-2 y)(x-3 y)=0$
$\Rightarrow x-y=0, x-2 y=0, x-3 y=0$
Thus, the slopes of the lines represented by the given equation are $1, \frac{1}{2}, \frac{1}{3}$ which are in H.P.
270 (a)
Equation of the line passing through $(-4,6)$ and $(8,8)$ is
$(y-6)=\left(\frac{8-6}{8+4}\right)(x+4)$
$\Rightarrow 6 y-x-40=0$...(i)
Now, equation of any line perpendicular to Eq. (i), is
$6 x+y+\lambda=0$
This line passes through the mid point of $(-4,6)$ and $(8,8)$, which is
$\left(\frac{-4+8}{2}, \frac{6+8}{2}\right) i e,(2,7)$
$\therefore 6 \times 2+7+\lambda=0 \Rightarrow \lambda=-19$
On putting $\lambda=-19$ in Eq. (ii), we get the required line which is $6 x+y-19=0$.

Given sides of a triangle are $x-3 y=0,4 x+$
$3 y=5$ and $3 x+y=0$
Since, the lines $x-3 y=0$ and $3 x+y=0$ are perpendicular to each other, therefore it is right angled triangle and the point of intersection $(0,0)$ is the orthocentre of a triangle.
\therefore The line $3 x-4 y=0$ is passes through origin $(0,0)$ ie, it is passes through orthocentre.

If (α, β) be the image of $(4,1)$ w.r.t. $y=x-1$, then $(\alpha, \beta)=(2,3)$ say point Q

After translation through a distance 1 unit along the positive direction of x-axis at the point whose coordinate are $R \equiv(3,3)$. After rotation through are angle $\pi / 4$ about the origin in the anti-
clockwise direction, then R goes to $R^{\prime \prime}$ such that
$O R=O R^{\prime \prime}=3 \sqrt{2}$
\therefore The coordinates of the final point are $(0,3 \sqrt{2})$

The point of intersection of $x+2 y-3=0$ and $2 x+3 y-4=0$ is $(-1,2)$ which satisfies
$4 x+5 y-6=0$. But, it does not satisfy
$3 x+4 y-7=0$
Hence, only three lines are concurrent
$\because P(1,2)$ is mid point of $A B$, therefore coordinate of A and B respectively $(2,0)$ and $(0,4)$.
\therefore Equation of line $A B$ is
$y-0=\frac{4}{-2}(x-2) \Rightarrow 2 x+y=4$

On comparing the given line with
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
we get,
$a=\lambda, \quad h=-5$,

$$
b=12, \mathrm{~g}=\frac{5}{2}, f=-8, c=-3
$$

It represents a pair of line, if

$$
\begin{aligned}
& \lambda \times 12 \times(-3)+2(-8)\left(\frac{5}{2}\right)(-5)-\lambda(-8)^{2} \\
& -12\left(\frac{5}{2}\right)^{2}+3(-5)^{2}=0 \\
& \Rightarrow-36 \lambda+200-64 \lambda-75+75=0 \\
& \Rightarrow 100 \lambda=200 \Rightarrow \lambda=2
\end{aligned}
$$

(d)

Equation of a line perpendicular to $5 x-y+1=$

0 is $x+5 y+c=0$. This meets the axes at $A(-c, 0)$ and $B(0,-c / 5)$.
Now,
Area of $\triangle O A B=5 \Rightarrow \frac{1}{2}(-c)\left(-\frac{c}{5}\right)=5 \Rightarrow c$

$$
= \pm 5 \sqrt{2}
$$

Hence, the required line is $x+5 y \pm 5 \sqrt{2}=0$
280 (b)
Let $h=u \cos \alpha \cdot t, k=u \sin \alpha \cdot t-\frac{1}{2} g t^{2}$
On eliminating t, we get
$k=h \tan \alpha-\frac{1}{2} g \frac{h^{2}}{u^{2} \cos ^{2} \alpha}$
Hence, locus of (h, k) is
$y=x \tan \alpha-\frac{1}{2} g \frac{x^{2}}{u^{2} \cos ^{2} \alpha}$, which is a parabola
281 (c)
The given lines are
$4 x+3 y-11=0$ and $4 x+3 y-\frac{15}{2}=0$
\therefore Required distance $=\frac{\left|-11+\frac{15}{2}\right|}{\sqrt{4^{2}+3^{2}}}=\frac{7}{10}$

(d)

These lines cannot be the sides of a rectangle as none of these are parallel nor they are
perpendicular.
Now, for concurrent $\left|\begin{array}{lll}1 & 2 & -3 \\ 3 & 4 & -7 \\ 2 & 3 & -4\end{array}\right|$
$=1(-16+21)-2(2)-3(1)$
$\neq 0$
Hence, these are not concurrent.
Opposite side of the parallelogram are
$x^{2}-5 x+6=0$ and $y^{2}-6 y+5=0$
$\Rightarrow(x-2)(x-3)=0$ and $(y-1)(y-5)=0$
$\Rightarrow x-2=0, x-3=0$ and $y-1=0, y-5=0$
\therefore Vertices are $(3,5),(2,5),(2,1)$ and $(3,1)$
283
(b)

The perpendicular distance of $(1,3)$ from the line $3 x+4 y=5$ is 2 units while,
$\sec ^{2} \theta+2 \operatorname{cosec}^{2} \theta \geq 3\left[\right.$ as $\left.\sec ^{2} \theta, \operatorname{cosec}^{2} \theta \geq 1\right]$
So, there will be two such points on the line

(b)

The equation of line passing through the point of intersection of
$\frac{x}{\alpha}+\frac{y}{\beta}=1$ and $\frac{x}{\beta}+\frac{y}{\alpha}=1$ is
$\left(\frac{x}{\alpha}+\frac{\lambda}{\beta}-1\right)+\lambda\left(\frac{x}{\beta}+\frac{\lambda}{\alpha}-1\right)=0$
$\Rightarrow x\left(\frac{1}{\alpha}+\frac{\lambda}{\beta}\right)+\lambda\left(\frac{1}{\beta}+\frac{\lambda}{\alpha}\right)-\lambda-1=0$
This meets the coordinate axes at
$A\left(\frac{\lambda+1}{\frac{1}{\alpha}+\frac{\lambda}{\beta}}, 0\right)$ and $B\left(0, \frac{\lambda+1}{\frac{1}{\beta}+\frac{\lambda}{\alpha}}\right)$
Let (h, k) be the mid point of $A B$. Then,
$h=\frac{1}{2}\left(\frac{\lambda+1}{\frac{1}{\beta}+\frac{\lambda}{\alpha}}\right)$ and $k=\frac{1}{2}\left(\frac{\lambda+1}{\frac{1}{\beta}+\frac{\lambda}{\alpha}}\right)$
On eliminating λ from these two equations, we get
$2 h k(\alpha+\beta)=\alpha \beta(h+k)$
Hence, the locus of (h, k) is $2 x y(\alpha+\beta)=\alpha \beta(x+$ y)

285 (a)
The coordinates of a point of intersection of given lines are $(1,1)$
The equation of the perpendicular to the line
$3 x+2 y+5=0$ is $2 x-3 y+\lambda=0$. It is also
passes through $(1,1)$.
$\therefore 2-3+\lambda=0 \Rightarrow \lambda=1$
\therefore Required equation of line is $2 x-3 y+1=0$
286 (a)
Let line be $x+2 y+\lambda=0$
$\therefore \lambda=\frac{-5 \times 6+1 \times 9}{7}=-3 \quad\left(\lambda=\frac{m c_{2}+n c_{1}}{m+n}\right)$
So, required line is $x+2 y-3=0$
287 (c)
The equation of line perpendicular to line
$3 x-y+5=0$ is $x+3 y+\lambda=0 \ldots$ (i)
Also it passes through $(-2,-4)$.
$\therefore-2-12+\lambda=0$
$\Rightarrow \lambda=14$
\therefore Required equation of line is
$x+3 y+14=0[$ from Eq. (i)]
288 (c)
We have,
$3 x^{2}+x y-y^{2}-3 x+6 y+k=0$
Comparing this equation with
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$, we have
$a=3, b=-1, h=1 / 2, c=k, f=3$ and
$g=-3 / 2$
Equation (i) will represent a pair of straight lines if
$a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$
$\Rightarrow-3 k-\frac{9}{2}-27+\frac{9}{4}-\frac{k}{2}=0$
$\Rightarrow-\frac{13 k}{3}-\frac{117}{4}=0 \Rightarrow k=-9$

289 (b)
Since, the required lines make an angle 45° either above the line or below the line
\therefore Required slopes are
$m=90^{\circ}, 180^{\circ}$
$\therefore y-1=\tan 90^{\circ}(x-1)$
$\Rightarrow x=1$
and $y-1=\tan 180^{\circ}(x-1)$
$\Rightarrow y=1$

290 (b)
Slope of the line segment joining ($-4,6$) and $(8,8)$ is given by
$=\frac{8-6}{8+4}=\frac{1}{6}$
\therefore Slope of line perpendicular to it is
$m=-\frac{1}{1 / 6}=-6$
As the line bisecting it.
\therefore Mid point of this line is $\left(\frac{8-4}{2}, \frac{8+6}{2}\right)=(2,7)$
\therefore Required equation is
$y-7=-6(x-2)$
$\Rightarrow y+6 x-19=0$
291
(b)

We have, $x^{2}-3 y^{2}=0 \ldots$ (i)
and $x=4 \ldots$ (ii)

From Eqs. (i) and (ii), we get
$y^{2}=\frac{16}{3}$
$\Rightarrow y= \pm \frac{4}{\sqrt{3}}$
\therefore Three sides of triangle are $x-\sqrt{3} y=0, x+$
$\sqrt{3} y=0$ and
$x-4=0 i e, O P=O Q=P Q=\frac{8}{\sqrt{3}}$
\therefore Triangle is an equilateral triangle
292 (a)

We observe that none of the vertices $A(-2,1)$ and $B(2,4)$ lie on the side $3 x-4 y-10=0$.
Therefore,
Length of one side of the rectangle is
$A B=\sqrt{(-2-2)^{2}+(1-4)^{2}}=5$
Also,
Length of the other side
$=$ Length of the perpendicular drawn from
$A(-2,1)$ on $3 x-4 y-10=0$
$=\left|\frac{-6-4-10}{\sqrt{9+16}}\right|=4$
\therefore Area of the rectangle $=5 \times 4=20$ sq. units
Let a and b be the intercepts made by the straight line on the axes. Then, according to questions
$a+b=\frac{a b}{2}$
$\Rightarrow \frac{2}{a}+\frac{2}{b}=1$
On comparing with $\frac{x}{a}+\frac{y}{b}=1$, we get
$\Rightarrow x=2, y=2$
Hence, straight line passes through the point $(2,2)$
294 (c)
Two sides $x-3 y=0$ and $3 x+y=0$ are perpendicular to each other. Therefore, its orthocentre is the point of intersection of $x-3 y=0$ and $3 x+y=0$ ie, $(0,0)$.
So, the line $3 x-4 y=0$ passes through the orthocentre of triangle

Let the coordinates of C be (x, y). Then,
$B C=5 \Rightarrow x^{2}+(y+1)^{2}=5^{2}$
Now, $A B \perp A C$
$\Rightarrow \frac{y-3}{x-2} \times \frac{4}{2}=-1$
$\Rightarrow 2 y-6=-x+2 \Rightarrow x=-2 y+8$
From (i) and (ii), we have,
$(-2 y+8)^{2}+(y+1)^{2}=5^{2}$
$\Rightarrow 5 y^{2}-30 y+40=0$
$\Rightarrow y^{2}-6 y+8=0 \Rightarrow y=2,4$
Putting $y=2$ and $y=4$ in (ii), we get
$x=4, x=0$ respectively. Hence, the coordinates
of C are $(4,2)$ or $(0,4)$

296 (c)
On comparing the given equation with standard equation, we get
$a=\cos \theta-\sin \theta, b=\cos \theta+\sin \theta, h=\cos \theta$
$\tan \phi=\frac{2 \sqrt{\cos ^{2} \theta-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}}{\cos \theta-\sin \theta+\cos \theta+\sin \theta}=\frac{2 \sin \theta}{2 \cos \theta}$ $\Rightarrow \tan \phi=\tan \theta \Rightarrow \phi=\theta$
297 (d)
Let m be the required slope
$\therefore\left|\frac{m-3}{1+3 m}\right|=1$
$\Rightarrow \frac{m-3}{1+3 m}= \pm 1$
$\Rightarrow m-3=1+3 m$
and $m-3=-1-3 m$
$\Rightarrow m=-2, m=\frac{1}{2}$
298 (a)
Given equation of line are
$x+2 y-3=0$
$2 x+3 y-4=0$
$3 x+4 y-5=0$
and $4 x+5 y-6=0 \quad$...(iv)
On solving Eqs. (i) and (ii), we get
$x=-1, y=2$
From, Eq. (iii),
$3(-1)+4(2)-5=0 \Rightarrow 0=0$
From Eq. (iv),
$4(-1)+5(2)-6=0 \Rightarrow 0=0$
Hence, given lines are concurrent.
299 (a)
The equation of a line passing through $P(4,1)$ and slope -2 is
$\frac{x-4}{-\frac{1}{\sqrt{5}}}=\frac{y-1}{\frac{2}{\sqrt{5}}}[\because \tan \theta=-2$

$$
\left.\Rightarrow \cos \theta=-\frac{1}{\sqrt{5}}, \sin \theta=\frac{2}{\sqrt{5}}\right]
$$

Suppose it cuts $x+y-8=0$ at Q such that $P Q=r$. Then, the coordinates of Q are given by $\frac{x-4}{-\frac{1}{\sqrt{5}}}=\frac{y-1}{\frac{2}{\sqrt{5}}}=r \Rightarrow x=4-\frac{r}{\sqrt{5}}, y=1+\frac{2 r}{\sqrt{5}}$
Since Q lies on the line $x+y-8=0$
$\therefore 4-\frac{r}{\sqrt{5}}+1+\frac{2 r}{\sqrt{5}}-8=0 \Rightarrow r=3 \sqrt{5}$
Hence, required distance $=3 \sqrt{5}$ units
300 (d)
Let $P\left(x_{1}, y_{1}\right)$ be the image of point $Q(4,-3)$
Mid point of $P Q$ is $\left(\frac{x_{1}+4}{2}, \frac{y_{1}-3}{2}\right)$.This point lies $=x$
$\therefore \frac{x_{1}+4}{2}=\frac{y_{1}-3}{2} \Rightarrow x_{1}-y_{1}=-7$
Slope of $P Q=\frac{-3-y_{1}}{4-x_{1}}$ and slope of $y=x$ is 1
$\because P Q$ is perpendicular to $y=x$
$\therefore\left(\frac{-3-y_{1}}{4-x_{1}}\right)(1)=-1$
$\Rightarrow y_{1}+x_{1}=1$...(ii)
On solving Eqs. (i) and (ii), we get $x_{1}=-3, y_{1}=4$
301 (b)
If the points $(\alpha, 2+\alpha)$ and $\left(\frac{3 \alpha}{2}, \alpha^{2}\right)$ are on the opposite sides of $2 x+3 y-6=0$, then
$(2 \alpha+6+3 \alpha-6)\left(3 a+3 \alpha^{2}-6\right)<0$
$\Rightarrow 15 \alpha\left(\alpha^{2}+\alpha-2\right)<0$
$\Rightarrow \alpha(\alpha+2)(\alpha-1)<0 \Rightarrow \alpha \in(-\infty,-2) \cup(0,1)$

302 (c)
Let $y=m_{1} x, y=m_{2} x$ be the lines represented by $a x^{2}+2 h x y+b y^{2}=0$. Then,
$m_{1}+m_{2}=\frac{-2 h}{b}$ and $m_{1} m_{2}=\frac{a}{b}$
Let $y=m_{1}{ }^{\prime} x$ and $y=m_{2}{ }^{\prime} x$ be new positions of $y=m_{1} x$ and $y=m_{2} x$ respectively. Then,
$y=m_{1} x$ is perpendicular to $y=m_{1}{ }^{\prime} x$
$\therefore m_{1} m_{1}^{\prime}=-1 \Rightarrow m_{1}^{\prime}=-\frac{1}{m_{1}}$
Similarly, we have $m_{2}^{\prime}=-\frac{1}{m_{2}}$
So, the new lines are $y=-\frac{1}{m_{1}} x$ and $y=-\frac{1}{m_{2}} x$ and their combined equation is
$\left(m_{1} y+x\right)\left(m_{2} y+x\right)=0$
$\Rightarrow m_{1} m_{2} y^{2}+x^{2}+x y\left(m_{1}+m_{2}\right)=0$
$\Rightarrow \frac{a}{b} y^{2}+x^{2}+x y\left(\frac{-2 h}{b}\right)=0$
$\Rightarrow b x^{2}-2 h x y+a y^{2}=0$
303 (c)
Here, in the figure it is shown that a ray of light passing through the point $Q(1,2)$ and reflected from a point $P(\alpha, 0)$ on x-axis towards point $R(5,3)$.

\therefore slope of incident ray (ie, before reflection) is given by
$\tan (\pi-\theta)=\frac{0-2}{\alpha-1}$
$\Rightarrow \tan \theta=\frac{2}{\alpha-1}$.

Similarly, slope of reflected ray (ie, after reflection) is given by
$\Rightarrow \tan \theta=\frac{3}{5-\alpha} \ldots$ (ii)
From Eq. (i) and (ii),
$\frac{2}{\alpha-1}=\frac{3}{5-\alpha}$
$\Rightarrow 10-2 \alpha=3 \alpha-3 \Rightarrow \alpha=\frac{13}{5}$
304 (c)
The equation of any line passing through $(1,-10)$ is $y+10=m(x-1)$. Since makes equal angles, say θ, with the given lines. Therefore, $\tan \theta=\frac{m-7}{1+7 m}=-\frac{m-(-1)}{1+m(-1)} \Rightarrow m=\frac{1}{3}$ or, -3
Hence, the equations of third side are
$y+10=\frac{1}{3}(x-1)$ and $y+10=-3(x-1)$
i.e. $x-3 y-31=0$ and $3 x+y+7=0$

ALITER Required lines are parallel to the angle bisectors
305 (c)
The line L is $x+y=2$. The line perpendicular to L and passing through $(1 / 2,0)$ is $x-y=1$ and the equation of y-axis is $x=0$. Solving these three equations in pairs we get the points as $(0,2),(0,-1 / 2)$ and $(5 / 4,3 / 4)$. Therefore, the area Δ of the given triangle is given by
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}0 & 2 & 1 \\ 0 & -\frac{1}{2} & 1 \\ \frac{5}{4} & \frac{3}{4} & 1\end{array}\right|=\frac{25}{16}$ sq. units
306 (c)
On comparing the given equation with standard equation, we get $a=12$ and $b=a$, for
perpendicular lines coefficient of $x^{2}+$ coefficient of $y^{2}=0$
$\therefore 12+a=0 \Rightarrow a=-12$
307 (d)
From figure refracted ray makes an angle of 75° with positive direction of x-axis and passes through the point $(1,0)$

\therefore Its equation is
$(y-0)=\tan \left(45^{\circ}-30^{\circ}\right)(x-1)$
or $y=(2-\sqrt{3})(x-1)$

308 (a)
The equation $12 x^{2}+7 x y-p y^{2}-18 x+q y+$ $6=0$ will represent a pair of perpendicular lines
$-72 p-\frac{63}{2} q-3 q^{2}+81 p-\frac{147}{2}=0$ and $12-p$

$$
=0
$$

$\Rightarrow 2 q^{2}+21 q-23=0$ and $p=12$
$\Rightarrow q=1$ and $p=12$
309 (a)
Given, $|x+y|=4$
If point (a, a) lies between the lines, then
$|a+a|=4 \Rightarrow|a|=2$
310 (a)
Since, $A P=B P$ and $P M$ is perpendicular to the line
$2 x-y+3=0 \ldots$ (i)
Where, M is the mid point $A B$

Therefore, its slope is $\left(-\frac{1}{2}\right)$
\therefore Equation of line $P M$ is $y-2=-\frac{1}{2}(x-1)$
$\Rightarrow 2 y+x-5=0$
Solving Eqs. (i) and (ii), we get the mid point of $A B$ is
$M\left(-\frac{1}{5}, \frac{13}{5}\right)$
311 (b)
Since, a, b, c are in HP
$\therefore \frac{2}{b}=\frac{1}{a}+\frac{1}{c}$
$\Rightarrow \frac{1}{a}-\frac{2}{b}+\frac{1}{c}=0$
So, straight line $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}$
$=0$ always passes throught a fixed point $(1,-2)$
312 (c)
From the given equations, we get
$m^{2}+a m+2=0$
Since, m is real, $a^{2} \geq 8 \Rightarrow|a| \geq 2 \sqrt{2}$
So, least value of $|a|$ is $2 \sqrt{2}$
313 (c)
We have,
$a^{2} x^{2}+2 h(a+b) x y+b^{2} y^{2}=0$
$a x^{2}+2 h x y+b y^{2}=0$
The equation of the bisectors of the angles between the pair of lines given in (i) is
$\frac{x^{2}-y^{2}}{a^{2}-b^{2}}=\frac{x y}{h(a+b)} \Rightarrow \frac{x^{2}-y^{2}}{a-b}=\frac{x y}{h}$
This is same as the equation of the bisectors of the angles between the lines given in (ii). Thus, two pairs of straight lines are equally inclined to each other
316 (c)
We have,
$x y+2 x+2 y+4=0$
$\Rightarrow(x+2)(y+2)=0 \Rightarrow x+2=0, y+2=0$
Solving the equations of the sides of the triangle we obtain the coordinates of the vertices as $A(-2,0), B(0,-2) C(-2,-2)$. Clearly, $\triangle A B C$ is a right angled triangle with right angle at C.
Therefore, the centre of the circumcircle is the mid-point of $A B$ whose coordinates are $(-1,-1)$
317 (d)
Focus is $|x|+|y|=1$ which separately represents equation of straight lines.
318 (c)
Equation of line is
$y=m x+4$
\therefore Required distance $=\frac{4}{\sqrt{1+m^{2}}}$
320 (d)
Let $x_{1}=x, x_{2}=x r, x_{3}=x r^{2}$
and $y_{1}=y, y_{2}=y r, y_{3}=y r^{2}$
$\because x_{1}, x_{2}, x_{3}$ and y_{1}, y_{2}, y_{3} are in GP.
$\because \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{3}-y_{2}}{x_{3}-x_{2}}=\frac{y_{1}-y_{3}}{x_{1}-x_{3}}$
\therefore The points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ lies on a straight line.
321 (a)
Let $B\left(x_{1}, x_{1}\right)$ and $C\left(x_{2}, y_{2}\right)$ be two vertices and $P\left(\frac{x_{1}+1}{2}, \frac{y_{1}-2}{2}\right)$ lies on perpendicular bisector $x-y+5=0$
$\therefore \frac{x_{1}+1}{2}-\frac{y_{1}-2}{2}=-5$
$\Rightarrow x_{1}-y_{1}=-13 \ldots(\mathrm{i})$

Also, $P N$ is perpendicular to $A B$.
$\therefore \frac{y_{1}+2}{x_{1}-1} \times 1=-1$
$\Rightarrow x_{1}+y_{1}=-1$
On solving Eqs. (i) and (ii), we get
$x_{1}=-7, \quad y_{1}=6$
\therefore The coordinates of B are $(-7,6)$ Similarly, the coordinates of C are $\left(\frac{11}{5}, \frac{2}{5}\right)$
Hence, the equation of $B C$ is
$y-6=\frac{\frac{2}{5}-6}{\frac{11}{5}+7}(x+7)$
$\Rightarrow y-6=\frac{-14}{23}(x+7)$
$\Rightarrow 14 x+23 y-40=0$
322 (b)
Points $(a, 0)$ and $(0, b)$ will satisfy the equation of line $p x-q y=r$
$\Rightarrow a p=r,-b q=r$
$\therefore a+b=\frac{r}{p}-\frac{r}{q}=r\left(\frac{q-p}{p q}\right)$
323 (d)
We have,
$2 x-y+4=0$ and $6 x-3 y-5=0$
$\Rightarrow 2 x-y+4=0$ and $2 x-y-5 / 3=0$
This distance between these two parallel lines is given by
$d=\left|\frac{4+5 / 3}{\sqrt{2^{2}+(-1)^{2}}}\right|=\frac{17 \sqrt{5}}{15}$
324 (b)
If the lines given by $a x^{2}+5 x y+2 y^{2}=0$ arte mutually perpendicular, then
$a+2=0 \Rightarrow a=-2$

(b)

Since, the coordinates of three vertices A, B and C are $\left(\frac{5}{3},-\frac{4}{3}\right),(0,0)$ and $\left(-\frac{2}{3}, \frac{7}{3}\right)$ respectively, also the mid point of $A C$ is $\left(\frac{1}{2}, \frac{1}{2}\right)$, therefore the equation of line passing through $\left(\frac{1}{2}, \frac{1}{2}\right)$ and $(0,0)$ is given by $x-y=0$, which is the required equation of another diagonal, so
$a=1, b=-1$, and $c=0$
327
(d)

Let m be the slope of required line
$\therefore\left|\frac{m-(-1)}{1+m(-1)}\right|=1$
$\Rightarrow \frac{m+1}{1-m}= \pm 1$
$\Rightarrow m+1=1-m, m+1=-1+m$
$\Rightarrow m=0, m=\infty$
\therefore Equation of the line through $(1,1)$ is
$y-1=0, x-1=0$
328 (a)
Let the equation of line which is perpendicular to
$5 x-2 y=7$, is
$2 x+5 y=\lambda \ldots$ (i)
The point of intersection of given lines is $(14,-9)$ Since, the Eq. (i) is passing through the point $(14,-9)$
$\therefore 2(14)+5(-9)=\lambda \Rightarrow \lambda=-17$
\therefore Eq. (i) becomes
$2 x+5 y+17=0$
329 (a)
Let the vertices of the triangle be
$A(5,-2), B(-1,2)$ and $C(1,4)$
The equation of the altitude through $B(-1,2)$ is
$y+2=-(x-5) \Rightarrow x+y-3=0$
The equation of the altitude through $B(-1,2)$
$y-2=\frac{2}{3}(x+1) \Rightarrow 2 x-3 y+8=0$
Solving (i) and (ii), we obtain that the coordinates of the orthocentre are $(1 / 5,14 / 15)$
330 (a)
Since the origin and the point $(1,-3)$ lie on the same side of $x+2 y-11=0$ and on the opposite side of $3 x-6 y-5=0$. Therefore, the bisector of the angle containing $(1,-3)$ is the bisector of that angle which does not contain the origin and is given by
$\frac{-x-2 y+11}{\sqrt{5}}=-\left(\frac{-3 x+6 y+5}{\sqrt{45}}\right) \Rightarrow 3 x=19$
ALITER Re-write the two equations in such a way that the values of the expressions on the left hand side of the equality for $x=1, y=-3$ become positive. Now, find the bisector corresponding to positive sign
331 (c)
For the two lines $24 x+7 y-20=0$ and
$4 x-3 y-2=0$, the angle bisectors are
given by $\frac{24 x+7 y-20}{25}= \pm \frac{4 x-3 y-2}{5}$
Talking positive sign, we get
$2 x+11 y-5=0$
\therefore The given three lines are concurrent with one
line bisecting the angle between the other two.
332 (b)
Let a and b be non-zero real numbers.
Therefore, the given equation
$\left(a x^{2}+b y^{2}+c\right)\left(x^{2}-5 x y+6 y^{2}\right)=0$ implies either
$x^{2}-5 x y+6 y^{2}=0$
$\Rightarrow(x-2 y)(x-3 y)=0$
$\Rightarrow x=2 y$ and $x=3 y$
Represent two straight lines passing through origin.
or $a x^{2}+b y^{2}+c=0$

When $c=0$ and a and b are of same signs, then
$a x^{2}+b y^{2}+c=0$
$\Rightarrow x=0$ and $y=0$
Which is a point specified as the origin.
When $a=b$ and c is of sign opposite to that of a, then
$a x^{2}+b y^{2}+c=0$ represents a circle.
Hence, the given equation,
$\left(a x^{2}+b y^{2}+c\right)\left(x^{2}-5 x y+6 y^{2}\right)=0$
may represents two straight lines and a circle.
333 (c)
Equation of intersection of line is
$(100 x+50 y-1)+\lambda(75 x+25 y+3)=0$
$\Rightarrow(100+75 \lambda) x+(50+25 \lambda) y=-3 \lambda \ldots$ (i)
$\Rightarrow \frac{x}{\frac{1-3 \lambda}{100+75 \lambda}}+\frac{y}{\frac{1-3 \lambda}{50+25 \lambda}}=1$
According to the given condition
$\frac{1-3 \lambda}{100+75 \lambda}=\frac{1-3 \lambda}{50+25 \lambda}$
$\Rightarrow 50=-50 \lambda \Rightarrow \lambda=-1$
\therefore From Eq. (i), we get
$25 x+25 y-4=0$
334 (a)
The coordinates of the point dividing the line segment joining $(2,3)$ and $(-1,2)$ internally in the ratio 3:4 are
$\left(\frac{3 \times-1+4 \times 2}{3+4}, \frac{3 \times 2+4 \times 3}{3+4}\right)=\left(\frac{5}{7}, \frac{18}{7}\right)$
This point lies on the line $x+2 y=\lambda$
$\therefore \frac{5}{7}+\frac{36}{7}=\lambda \Rightarrow \lambda=\frac{41}{7}$
335 (d)
Slopes of given lines are $m_{1}=\sqrt{3}$ and $m_{2}=\frac{1}{\sqrt{3}}$
$\therefore \tan \theta=\left|\frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{1+1}\right|=\left|\frac{3-1}{2 \sqrt{3}}\right|=\frac{1}{\sqrt{3}}$
$\Rightarrow \theta=30^{\circ}$
336 (c)
The coordinates of the vertices of the rectangle are $A(1,4), B(6,4), C(6,10), D(1,10)$. The equation of diagonal $A C$ is
$y-4=\frac{10-4}{6-1}(x-1) \Rightarrow 6 x-5 y+14=0$
337 (d)
Let the equation of perpendicular line to the line
$3 x-2 y=6$ is $3 y+2 x=c \ldots$ (i)
Since, it passes through $(0,2)$
$\therefore c=6$
On putting the value of c in Eq. (i) we get
$3 y+2 x=6$
$\Rightarrow \frac{x}{3}+\frac{y}{2}=1$
Hence, x-intercept is 3 .
338 (a)
Given equation is $x^{2}-1005 x+2006=0$
$\Rightarrow(x-2)(x-1003)=0$
$\Rightarrow x=2, \quad x=1003$
\therefore Required distance between the lines
$=1003-2=1001$
339 (a)
We have,
$\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0$
$\Rightarrow(\sqrt{3} x-y)(x-\sqrt{3} y)=0$
$\Rightarrow \sqrt{3} x-y=0, x-\sqrt{3} y=0$
$\Rightarrow y=\sqrt{3} x, y=\frac{1}{\sqrt{3}} x$
These lines make 60° and 30° angles respectively with x-axis. If they are rotated about the origin by $\pi / 6$ i.e. 30° in anticlockwise direction, then they make 90° and 60° angles respectively with x-axis. So, their equations in new position are $x=0$ and $y=\sqrt{3} x$. The combined equation of these two lines is
$x(\sqrt{3} x-y)=0$ or, $\sqrt{3} x^{2}-x y=0$
340 (b)
Le the equations of the sides $A B, B C, C D$ and $D A$ of the parallelogram $A B C D$ be respectively
$3 x-4 y+1=0 \ldots$ (i) $4 x-3 y-2=0 \ldots$ (ii)
$3 x-4 y+3=0 \ldots$ (iii) $4 x-3 y-1=0$.
We know that the area of the parallelogram formed by the lines
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0, a_{1} x+$ $b_{1} y+d_{1}=0$ and $a_{2} x+b_{2} y+d_{2}=0$ is given by $\left|\frac{\left(c_{1} d_{1}\right)\left(c_{2}-d_{2}\right)}{\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|}\right|$
Hence, are Δ of the given parallelogram is given by
$\Delta=\left|\frac{(3-1) \times(-1+2)}{\left|\begin{array}{ll}3 & -4 \\ 4 & -3\end{array}\right|}\right|=\frac{2}{7}$ sq. units
341 (b)
The equation of a line passing through $P(1,1)$ and parallel to $2 x-y=0$ is
$\frac{x-1}{\cos \theta}=\frac{y-1}{\sin \theta}$, where $\tan \theta=2$
i. e. $\frac{x-1}{1 / \sqrt{5}}=\frac{y-1}{2 / \sqrt{5}}$

Since P is translated in the first quadrant through a unit distance, therefore the coordinates of P are given by
$\frac{x-1}{1 / \sqrt{5}}=\frac{y-1}{2 \sqrt{2}}= \pm 1$
$\Rightarrow x=1 \pm \frac{1}{\sqrt{5}}, y=1 \pm \frac{2}{\sqrt{5}}$
Hence, the coordinates of P are $\left(1 \pm \frac{1}{\sqrt{5}}, 1 \pm \frac{2}{\sqrt{5}}\right)$
Given, $\frac{1}{a} x^{2}+\frac{1}{b} y^{2}+2 \frac{1}{h} x y=0$
$\therefore m_{1}+m_{2}=-\frac{\frac{2}{h}}{\frac{1}{b}}=\frac{-2 b}{h} \ldots$ (i)
and $m_{1} m_{2}=\frac{\frac{1}{a}}{\frac{1}{b}}=\frac{b}{a} \ldots$ (ii)
Also given $m_{2}=2 m_{1}$
$\Rightarrow 3 m_{1}=\frac{-2 b}{h}$ [from Eq. (i)] (iii)
and $2 m_{1}^{2}=\frac{b}{a}$ [from Eq. (ii)] (iv)
From Eqs. (iii) and (iv),
$\frac{9 m_{1}^{2}}{2 m_{1}^{2}}=\frac{4 b^{2}}{h^{2}} \times \frac{a}{b}$
$\Rightarrow \frac{9}{8}=\frac{b a}{h^{2}}$ or $a b: h^{2}=9: 8$
344 (a)
Clearly the point $(3,0)$ does not lie on the diagonal $x=2 y$. Let m be the slope of a side passing through $(3,0)$. Then, its equation is
$y-0=m(x-3) \quad \ldots$ (i)
Since the angle between a diagonal and a side of a square is $\pi / 4$. Therefore, angle between $x=2 y$ and $y-0=m(x-3)$ is also $\pi / 4$. Consequently, we have
$\tan \frac{\pi}{4}= \pm \frac{m-1 / 2}{1+m / 2} \Rightarrow m=3,-\frac{1}{3}$
Substituting the values of m in (i), we obtain $y-3 x+9=0$ and $3 y+x-3=0$ as the required sides
345 (a)
Any line which is perpendicular to $\sqrt{3} \sin \theta+$ $2 \cos \theta=\frac{4}{r}$ is
$\sqrt{3} \sin \left(\frac{\pi}{2}+\theta\right)+2 \cos \left(\frac{\pi}{2}+\theta\right)=\frac{k}{r}$
Since, it is passing through $\left(-1, \frac{\pi}{2}\right)$
$\therefore \sqrt{3} \sin \pi+2 \cos \pi=\frac{k}{-1} \Rightarrow k=2$
On putting $k=2 \mathrm{n}$ Eq. (i), we get
$\sqrt{3} \cos \theta-2 \sin \theta=\frac{2}{r}$
$\Rightarrow 2=\sqrt{3} r \cos \theta-2 r \sin \theta$
346 (c)

Slope of refracted ray is
$-\tan 60^{\circ}=-\sqrt{3}$
It passes through $(1,0)$
$\therefore y=-\sqrt{3}(x-1)$
$\Rightarrow \sqrt{3} x+y-\sqrt{3}=0$
347 (c)
It is simple way to take a point from the option and finding the distance, which is equal to $\sqrt{85}$
Taking point $P(5,7)$
$B P=\sqrt{(5-3)^{2}+(7+2)^{2}}$
$=\sqrt{4+81}=\sqrt{85}$
Hence, option (c) is correct

348 (b)
Equation of the line $\frac{a x}{c-1}+\frac{b y}{c-1}+1=0$ has two independent parameters. It can
pass through a fixed point if it contains only one independent parameter. Now , there must be one relation between $\frac{a}{c-1}$ and $\frac{b}{c-1}$ independent of a, b and c so that $\frac{a}{c-1}$ can be expressed in terms of $\frac{b}{c-1}$ and straight line contains only one independent parameter. Now, that given relation can be expressed as $\frac{5 a}{c-1}+\frac{4 b}{c-1}=\frac{t-20 c}{c-1}$ RHS in independent of c if $t=20$
349 (c)
On comparing given equation with standard equation, we get
$a=1, b=-1, c=-2, h=0, g=-1 / 2, f=\lambda / 2$
Given equation represent a pair of straight line,
$\therefore a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$
$\Rightarrow 2+0-\frac{\lambda^{2}}{4}+\frac{1}{4}=0$
$\Rightarrow \frac{\lambda^{2}}{4}=\frac{9}{4} \Rightarrow \lambda= \pm 3$
350 (b)
The equation of given curve is
$y=\sqrt{x} \quad \ldots$ (i)
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 \sqrt{x}}$
Slope of line at $\left(x_{1}, y_{1}\right), m_{1}=\frac{1}{2 \sqrt{x}_{1}}$
and let line parallel to x-axis is $y=k \ldots$ (ii)
Whose slope, $m_{2}=0$
Since, 45° is the angle between the line and the
curve.
$\therefore \tan 45^{\circ}=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \Rightarrow 1=\left|\frac{\frac{1}{2 \sqrt{x_{1}}}-0}{1}\right| \Rightarrow x_{1}$

$$
=\frac{1}{4}
$$

$\therefore y_{1}=\frac{1}{2} \quad$ [from Eq.(i)]
\therefore Required line is $y=\frac{1}{2}$ [from Eq.(ii)]
351 (c)
(1)Let A and B be the points where the lines
$2 x+3 y+19=0$ meets the coordinates axes and let C and O be the points where the line
$9 x+6 y-17=0$ meet the coordinate axes
Then, $O A=\frac{19}{2}, O B=\frac{19}{2}$,
$O C=\frac{17}{9}$ and $O D=\frac{17}{6}$
Thus, the segments $A O C$ and $B O D$ intersect at such that $O A \cdot O C=O B \cdot O D$. Hence, A, B, C, D are concyclic
(2) Distance of $(2,-5)$ from the line $3 x+y+5-$ 0 is
$\frac{2 \times 3-5+5}{\sqrt{3^{2}+1^{2}}}=\frac{6}{\sqrt{10}}$
and distance of $(-1,4)$ from the line $3 x+y+5=$ 0 is
$\frac{3(-1)+4+5}{\sqrt{10}}=\frac{6}{\sqrt{10}}$
Thus, the points are equidistant from the given line

Hence, both of these statements are correct

352 (a)

On comparing the given equation with the
standard form of equation, we get $a=1, h=2$
and $b=1$
Let θ is the angle between them, then
$\tan \theta=\frac{2 \sqrt{h^{2}-a b}}{a+b}$
$\therefore \tan \theta=\frac{2 \sqrt{2^{2}-1}}{1+1}=\frac{2 \sqrt{4-1}}{2}=\sqrt{3}$
$\Rightarrow \theta=\tan ^{-1}(\sqrt{3})=60^{\circ}$
354 (d)
Here, $a=6,2 h=-1, b=4 c$
$\therefore m_{1}+m_{2}=\frac{1}{4 c}, m_{1} m_{2}=\frac{6}{4 c}$
One line of given pair of line is $3 x+4 y=0$
Slope of line $=-\frac{3}{4}=m_{1}$ (say)
$\therefore-\frac{3}{4}+m_{2}=\frac{1}{4 c}$
$\Rightarrow m_{2}=\frac{1}{4 c}+\frac{3}{4}$
$\therefore\left(-\frac{3}{4}\right)\left(\frac{1}{4 c}+\frac{3}{4}\right)=\frac{6}{4 c}$
$\Rightarrow 1+3 c=\frac{-6 \times 4}{3}$
$\Rightarrow 3 c=-9 \Rightarrow c=-3$
355
(b)

The equation $4 x^{2}+8 x y+k y^{2}-9=0$ represents a pair of straight lines, if
$(4)(k)(-9)-(-9)(4)^{2}=0 \Rightarrow k=4$
(b)

Slope of the line segment joining $(-4,6)$ and $(8$,
8) is
$\frac{8-6}{8+4}=\frac{2}{12}=\frac{1}{6}$
\therefore Slope of line perpendicular to it.
$m=-\frac{1}{1 / 6}=-6$
As the line bisecting it.
\therefore Mid point of this line is $\left(\frac{8-4}{2}, \frac{8+6}{2}\right)=(2,7)$
\therefore Required equation is
$y-7=-6(x-2)$
$\Rightarrow y+6 x-19=0$
357 (c)
Let (h, k) be the point of intersection of the line $x \cos \alpha+y \sin \alpha=a$ and $x \sin \alpha-y \cos \alpha=b$.
Then,
$h \cos \alpha+k \sin \alpha=a$
$h \sin \alpha-k \cos \alpha=b$
Squaring and adding (i) and (ii), we get
$(h \cos \alpha+k \sin \alpha)^{2}+(h \sin \alpha-k \cos \alpha)^{2}$

$$
=a^{2}+b^{2}
$$

$\Rightarrow h^{2}+k^{2}=a^{2}+b^{2}$
Hence, locus of (h, k) is $x^{2}+y^{2}=a^{2}+b^{2}$
358 (a)
Equations of the bisectors of the angles between the lines $x^{2}-2 m x y-y^{2}=0$ are given by
$\frac{x^{2}-y^{2}}{1-(-1)}=\frac{x y}{-m} \Rightarrow x^{2}+\frac{2}{m} x y-y^{2}=0$
Since (i) and $x^{2}-2 n x y-y^{2}=0$ represent the same pair of lines.
$\therefore \frac{1}{1}=\frac{2 / m}{-2 n}=\frac{-1}{-1} \Rightarrow m n=-1 \Rightarrow m n+1=0$

359 (d)
Point of intersection of $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ is $\left(\frac{a b}{a+b}, \frac{a b}{a+b}\right)$
\therefore Equation of line joining $(0,0)$ and $\left(\frac{a b}{a+b}, \frac{a b}{a+b}\right)$ is $x=y$ ie, $x-y=0$
360 (c)
Here, $a=4, b=11$ and $h=-12$
$\therefore h^{2}-a b=(-12)^{2}-4 \times 11=100$
\therefore The two lines represented by given equation will be real and distinct which represent a pair of straight lines passing through the origin.
361 (a)
Let the slope of first line be m, then slope of second line is 5 m .
Then, $m+5 m=-\frac{2 h}{b}$ and $m \cdot 5 m=\frac{a}{b}$
$\Rightarrow m=-\frac{2 h}{6 b}=\frac{-h}{3 b}$
$\therefore 5 m^{2}=\frac{a}{b} \Rightarrow 5\left(-\frac{h}{3 b}\right)^{2}=\frac{a}{b}$
$\Rightarrow \frac{5 h^{2}}{9 b^{2}}=\frac{a}{b} \Rightarrow 5 h^{2}=9 a b$
362 (a)
We have,
$|x|=|y| x= \pm y \Rightarrow x+y=0, x-y=0$
Let $(t, 4-t)$ be the required point. It is
equidistant from the lines $|x|=|y|$
$\therefore\left|\frac{t+4-t}{\sqrt{2}}\right|=\left|\frac{t-(4-t)}{\sqrt{2}}\right|$
$\Rightarrow 4=|2 t-4| \Rightarrow t-2= \pm 2 \Rightarrow t=0,4$
Hence, required points are $(0,4)$ and $(4,0)$
363 (d)
Equation of line is $\frac{x}{3}+\frac{y}{4}=1$
$\Rightarrow 4 x+3 y-12=0$
Now, distance from origin $=\left|\frac{4 \times 0+3 \times 0-12}{\sqrt{3^{2}+4^{2}}}\right|$

$$
=\frac{12}{5} \text { units }
$$

364 (c)
As $m \in\left(\frac{1}{2}, 3\right)$
\therefore Line $y=m x+4$ lies between
$y=3 x+1$ and $2 y=x+3$
Slope of given lines are $m_{2}=3, m=m$ and m_{1}

$$
=\frac{1}{2}
$$

$\therefore \tan \theta=\frac{3-m}{1+3 m}$
and $\tan \theta=\frac{m-\frac{1}{2}}{1+\frac{m}{2}}$
$\Rightarrow \frac{3-m}{1+3 m}=\frac{2 m-1}{2+m}$
$\Rightarrow 7 m^{2}-2 m-7=0$
$\therefore m=\frac{2 \pm \sqrt{4+196}}{2 \times 7}=\frac{1}{7}(1 \pm 5 \sqrt{2})$
365 (d)
The point of intersection of the given lines is
$\left(\frac{a b}{a+b}, \frac{a b}{a+b}\right)$
Clearly, it satisfies equation of options (a),(b) and (c)

366 (c)
Equation of the straight lines are
$3 x-4 y+7=0 \ldots$ (i)
and $12 x+5 y-2=0$
The equation of bisectors of the angles between these lines are
$\frac{3 x-4 y+7}{\sqrt{3^{2}+4^{2}}}=\frac{12 x+5 y-2}{\sqrt{12^{2}+5^{2}}}$
$\Rightarrow \frac{3 x-4 y+7}{5}=\frac{12 x+5 y-2}{13}$
$\Rightarrow 39 x-52 y+91=60 x+25 y-10$
$\Rightarrow 21 x+77 y-101=0$
367 (b)
Given equation of pair of lines can be written as
$(3 x-y)(x+2 y)=0$
Slope of separate equations of line $3 x-y=0$ is 3 and $x+2 y=0$ is $-\frac{1}{2}$
Thus, required sum $=3-\frac{1}{2}=\frac{5}{2}$

Alternate

Sum of slope of the lines $3 x^{2}+5 x y-2 y^{2}=0$ is $m_{1}+m_{2}=-\frac{h}{b}=\frac{5}{2}$
368 (b)
Let the another equation of line is
$x-2 y+1=0$
\therefore Equation of bisector of angle between two lines is
$\frac{2 x-y-1}{\sqrt{4+1}}= \pm \frac{x-2 y+1}{\sqrt{1+4}}$
$\Rightarrow x+y-2=0$ and $x=y$
369 (d)
Given equation can be rewritten as
$a(x+y-1)+b(2 x-3 y+1)=0$
This is the form of intersection of two lines.
$\therefore x+y-1=0 \ldots$ (i)
and $2 x-3 y+1=0$

On solving Eqs. (i) and (ii), we get
$x=\frac{2}{5}$ and $y=\frac{3}{5}$
Hence, coordinates of required point are $\left(\frac{2}{5}, \frac{3}{5}\right)$

Since, $a x+b y+c=0$ is always passes through
$(1,-2)$
$\therefore a-2 b+c=0$
$\Rightarrow 2 b=a+c$
Therefore, a, b and c are in AP
371 (a)
Let the locus of point be (x, y)
Area of triangle with points $(x, y),(1,5)$ and
$(3,-7)$ is 21 sq unit
$\therefore \frac{1}{2}\left|\begin{array}{ccc}x & y & 1 \\ 1 & 5 & 1 \\ 3 & -7 & 1\end{array}\right|=21$
$\Rightarrow \frac{1}{2}[x(5+7)-y(1-3)+1(-7-15]=21$
$\Rightarrow \frac{1}{2}[12 x+2 y-22]=21$
$\Rightarrow 6 x+y-32=0$

Now, we take $B D \perp A C$ and $A E \perp B C$

Slope of $B D=-\frac{3}{4}$
Equation of $B D, y-0=\frac{-3}{4}(x-4)$
$\Rightarrow 4 y=-3 x+12$
$\Rightarrow 3 x+4 y-12=0$
and slope of $A E=\frac{1}{4}$
\therefore Equation of $A E, y-0=\frac{1}{4}(x-0)$
$\Rightarrow x-4 y=0$
On solving Eqs. (i) and (ii), we get
$x=3, \quad y=\frac{3}{4}$
\therefore Orthocentre of the traingle is $\left(3, \frac{3}{4}\right)$
373 (b)
Let $A(2,-1)$ be one vertex of an equilateral
triangle $A B C$. Then, its altitude is the length of the perpendicular from $A(2,-1)$ on $c+y-2=0$ i.e.
$A D=\left|\frac{2-1-2}{\sqrt{1+1}}\right|=\frac{1}{\sqrt{2}}$
$\Rightarrow \frac{\sqrt{3}}{2}($ Side $)=\frac{1}{\sqrt{2}} \Rightarrow$ side $=\sqrt{\frac{2}{3}}$
374 (a)
We have, $x+y=1 \quad$...(i)
and $x y=0$

On putting $x=1-y$ from Eq. (i) into Eq. (ii), we get
$(1-y) y=0$
$\Rightarrow y=0,1$
At $y=0 \Rightarrow x=1$
and at $y=1 \Rightarrow x=0$
\therefore Coordinates of the vertices of a triangle are (0 ,
$0),(1,0)$ and $(0,1)$
\therefore Point $(0,0)$ is its orthocentre
375 (a)
The equation of required line is
$3 x^{2}+4 x y-4 x(2 x+y)+(2 x+y)^{2}=0$
$\Rightarrow 3 x^{2}+4 x y-8 x^{2}-4 x y+4 x^{2}+y^{2}+4 x y=0$
$\Rightarrow-x^{2}+y^{2}+4 x y=0$
(Coefficient of $\left.x^{2}\right)+\left(\right.$ Coefficient of $\left.y^{2}\right)=-1+$ $1=0$
\therefore Lines are mutually perpendicular.
$i e$, Angle between lines is $\frac{\pi}{2}$.
376 (a)
The equation of given line is
$y=m x+\frac{a}{m}$
The equation of line perpendicular to Eq. (i) is $m y+x+\lambda=0$
This line passing through ($a, 0$).
$0+a+\lambda=0 \Rightarrow \lambda=-a$
On putting this value on λ in Eq. (ii) and solving with Eq. (i), we get
$x=0$ and $y=\frac{a}{m}$
Coordinates of the foot of perpendicular are ($0, \frac{a}{m}$).
377

(b)

\because Slope of perpendicular $=-\left[\frac{\cos \alpha-\cos \beta}{\sin \alpha-\sin \beta}\right]$

$$
=\tan \frac{\alpha+\beta}{2}
$$

\therefore Equation of perpendicular is
$y=\tan \left(\frac{\alpha+\beta}{2}\right) x$
On solving the Eq. (i) with the line, we get
$\left[\frac{a}{2}(\cos \alpha+\cos \beta), \frac{a}{2}(\sin \alpha+\sin \beta)\right]$
(d)

Mid point of the line joining the points $(4,-5)$ and $(-2,9)$ is
$\left(\frac{4-2}{2}, \frac{-5+9}{2}\right) i e,(1,2)$
\therefore Inclination of straight line passing through point $(-3,6)$ and mid point $(1,2)$ is
$m=\frac{2-6}{1+3}=\frac{-4}{4}=-1$
$\therefore \tan \theta=-1 \Rightarrow \theta=\frac{3 \pi}{4}$
379 (d)
Given pair of line is
$x^{2} \sin ^{2} \alpha+y^{2} \sin ^{2} \alpha$

$$
\begin{gathered}
=x^{2} \cos ^{2} \theta+y^{2} \sin ^{2} \theta \\
-2 x y \sin \theta \cos \theta \\
\Rightarrow x^{2}\left(\sin ^{2} \alpha-\cos ^{2} \theta\right)+y^{2}\left(\sin ^{2} \alpha-\sin ^{2} \theta\right) \\
+2(\sin \theta \cos \theta) x y=0
\end{gathered}
$$

On comparing with $a x^{2}+b y^{2}+2 h x y=0$
We get, $a=\sin ^{2} \alpha-\cos ^{2} \theta$,
$b=\sin ^{2} \alpha-\sin ^{2} \theta$ and $h=\sin \theta \cos \theta$
Let θ be the angle between the pair of lines.
$\therefore \tan \theta$
$=\left\lvert\, \frac{2 \sqrt{\sin ^{2} \theta \cos ^{2} \theta-\left(\sin ^{2} \alpha-\cos ^{2} \theta\right) \times\left(\sin ^{2} \alpha-\sin \right.}}{\sin ^{2} \alpha-\cos ^{2} \theta+\sin ^{2} \alpha-\sin ^{2} \theta}\right.$
$=\left\lvert\, \frac{2 \sqrt{\sin ^{2} \theta \cos ^{2} \theta-\left(\sin ^{2} \alpha\right)^{2}+\sin ^{2} \alpha \sin ^{2} \theta+\sin ^{2} 0}}{-\left(1-2 \sin ^{2} \alpha\right)}\right.$
$=\left|\frac{2 \sqrt{\sin ^{2} \alpha\left(\sin ^{2} \theta+\cos ^{2} \theta\right)-\left(\sin ^{2} \alpha\right)^{2}}}{-\cos 2 \alpha}\right|$
$=\left|\frac{2 \sqrt{\sin ^{2} \alpha\left(1-\sin ^{2} \alpha\right)}}{-\cos 2 \alpha}\right|$
$\Rightarrow \tan \theta=\left|\frac{\sin 2 \alpha}{\cos 2 \alpha}\right|=\tan 2 \alpha$
$\Rightarrow \theta=2 \alpha$

380 (b)
Given equations of line and circle are respectively
$\sqrt{3} x+y=2 \ldots$ (i)
and $x^{2}+y^{2}=4$
From Eqs. (i) and (ii), we get
$x^{2}+(2-\sqrt{3} x)^{2}=4$
$\Rightarrow 4 x^{2}-4 \sqrt{3} x=0$
$\Rightarrow x(x-\sqrt{3})=0 \Rightarrow x=0, \sqrt{3}$
\therefore Points of intersection of line and circle are $(0,2)$
and $(\sqrt{3},-1)$.
Slope, of line joining $(0,0)$ and $(0,2)$
$=\frac{2-0}{0-0}=\infty \Rightarrow \theta_{1}=\frac{\pi}{2}$
Also, slope of line joining $(0,0)$ and $(\sqrt{3},-1)$
$=\frac{-1}{\sqrt{3}} \Rightarrow \theta_{2}=\frac{\pi}{6}$
\therefore Required angle $=\frac{\pi}{2}-\frac{\pi}{6}=\frac{\pi}{3}$

(b)

Equation of line is $\frac{x}{a}+\frac{y}{b}=1$
Let P be the foot of perpendicular from the origin to the whose coordinate is $\left(x_{1}, y_{1}\right)$.

Since, $O P \perp A B$
\therefore Slope of $O P \times$ Slope of $A B=-1$
$\Rightarrow\left(\frac{y_{1}}{x_{1}}\right)\left(\frac{b}{-a}\right)=-1$,
$b y_{1}=a x_{1}$
Since, P lies on the line $A B$, then
$\frac{x_{1}}{a}+\frac{y_{1}}{b}=1 \Rightarrow b x_{1}+a y_{1}=a b$
From Eqs. (ii) and (iii), we get
$x_{1}=\frac{a b^{2}}{a^{2}+b^{2}}$ and $y_{1}=\frac{a^{2} b}{a^{2}+b^{2}}$
Now, $\quad x_{1}^{2}+y_{1}^{2}=\left(\frac{a b^{2}}{a^{2}+b^{2}}\right)^{2}+\left(\frac{a^{2} b}{a^{2}+b^{2}}\right)^{2}$
$\Rightarrow x_{1}^{2}+y_{1}^{2}=\frac{a^{2} b^{2}\left(a^{2}+b^{2}\right)}{\left(a^{2}+b^{2}\right)^{2}}$
$\Rightarrow x_{1}^{2}+y_{1}^{2}=\frac{a^{2} b^{2}}{\left(a^{2}+b^{2}\right)}$
$=\frac{1}{\frac{1}{a^{2}}+\frac{1}{b^{2}}}$
But $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$
$\therefore x_{1}^{2}+y_{1}^{2}=c^{2}$
Thus, the locus of $P\left(x_{1}, y_{1}\right)$ is
$x^{2}+y^{2}=c^{2}$
Which is the equation of circle.
382 (a)
Any line through A is given by
$(p x+q y-1)+\lambda(q x+p y-1)=0$
Which is passing through (p, q)
Hence, $\lambda=-\frac{\left(p^{2}+q^{y}-1\right)}{2 p q-1}$

Thus, the required line is

$$
\begin{gathered}
(p x+q y-1)-\frac{\left(p^{2}+q^{2}-1\right)}{(2 p q-1)} \cdot(q x+p y-1) \\
=0 \\
\Rightarrow(2 p q-1)(p x+q y-1)-\left(p^{2}+q^{2}-1\right)(q x \\
+p y-1)=0
\end{gathered}
$$

383 (a)
Solving the given equations, we obtain that the vertices of the triangle formed by them are
$A(0,4), B(1,1)$ and $C(4,0)$
Now, $A B=\sqrt{10}=B C, C A=4 \sqrt{2}$
Hence, triangle is isosceles
384 (a)
Image of $(1,3)$ in the line $x+y-6=0$ is given by
$\frac{x-1}{1}=\frac{y-3}{1}=-2\left(\frac{1+3-6}{1^{2}+1^{2}}\right) \Rightarrow x=3, y=5$
Hence, the image of the given point has coordinates $(3,5)$
385 (c)
Given lines
$x \cos \alpha+\gamma \sin \alpha=p_{1}$ and, $x \cos \beta+\gamma \sin \beta=p_{2}$ Will be perpendicular, if the lines perpendicular to them are also perpendicular.
Clearly, perpendiculars drawn from the origin to the given lines make angles α and β respectively with x-axis. Therefore, angle between them is $|\alpha-\beta|$
Thus, the given lines will be perpendicular, if
$|\alpha-\beta|=\frac{\pi}{2}$
(c)

Since, the given lines are concurrent.
$\therefore\left|\begin{array}{ccc}a & k & 10 \\ b & k+1 & 10 \\ c & k+2 & 10\end{array}\right|=0 \Rightarrow 10\left|\begin{array}{ccc}a & k & 1 \\ b & k+1 & 1 \\ c & k+2 & 1\end{array}\right|=0$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$
$\Rightarrow 10\left|\begin{array}{ccc}a & k & 1 \\ b-a & 1 & 0 \\ c-a & 2 & 0\end{array}\right|=0$
$\Rightarrow 10[1(2 b-2 a-c+a)]=0$
$\Rightarrow 2 b=a+c$
Hence, a, b and c are in AP
388 (b)
We have,
Required distance $=2 \sqrt{\frac{g^{2}-a c}{a(a+b)}}=\frac{2}{\sqrt{10}}$
389 (c)
Let $y=m x$ be a line represented by $a x^{3}+$
$b x^{2} y+c x y^{2}+d y^{3}=0$. Then,
$d m^{3}+c m^{2}+b m+a$
$=0 \quad\left[\begin{array}{c}\text { Putting } y=m x \text { in } a x^{3}+b x^{2} y \\ +c x y^{2}+d y^{3}=0\end{array}\right]$
Let m_{1}, m_{2}, m_{3} be the roots of this equation. Then,
$m_{1}+m_{2}+m_{3}=-\frac{c}{d}$
$m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}=\frac{b}{d}$
$m_{1} m_{2} m_{3}=-\frac{a}{d}$
Thus, there are three lines viz. $y=m_{1} x, y=$ $m_{2} x, y=m_{3} x$ represented by the given equation.
Suppose $y=m_{1} x$ and $y=m_{2} x$ make
complementary angles with x-axis. Then,
$m_{1} m_{2}=1$
Putting $m_{1} m_{2}=1$ in $m_{1} m_{2} m_{3}=-\frac{a}{d^{d}}$, we get
$m_{3}=-\frac{a}{d}$
Since m_{3} is a root of the equation $d m^{3}+c m^{2}+$ $b m+a=0$
$\therefore d\left(-\frac{a}{d}\right)^{3}+c\left(-\frac{a}{d}\right)^{2}+b\left(-\frac{a}{d}\right)+a=0$
$\Rightarrow-a^{3} d+a^{2} c d-a b d^{2}+a d^{3}=0$
$\Rightarrow-a^{2}+a c-b d+d^{2}=0$
$\Rightarrow a(c-a)=d(b-d) \Rightarrow a(a-c)=d(d-b)$
390 (a)
Let the lines are $y=m_{1} x+c_{1}$ and $y=m_{2} x+c_{2}$
Since, pair of straight lines are parallel to x-axis
$\therefore m_{1}=m_{2}=0$
and the lines will be $y=c_{1}$ and $y=c_{2}$
Given circle is $x^{2}+y^{2}-6 x-4 y-12=0$
Centre $(3,2)$ and radius $=5$

Here, the perpendicular drown from centre to the lines are $C P$ and $C P^{\prime \prime}$
$\therefore C P=\frac{2-c_{1}}{\sqrt{1}}= \pm 5$
$\Rightarrow 2-c_{1}= \pm 5$
$\Rightarrow \quad c_{1}=7$ and $c_{1}=-3$
Hence, the lines are
$y-7=0, y+3=0, i e,(y-7)(y+3)=0$
\therefore Pair of straight lines is $y^{2}-4 y-21=0$
391 (a)
Now, slope of $Q R=\frac{3 \sqrt{3}-0}{3-0}=\sqrt{3}=\tan \theta$
$\Rightarrow \theta=\frac{\pi}{3}$

\therefore The angle between $P Q R$ is $\frac{2 \pi}{3}$, so the line $Q M \mathrm{~m}$ direction of x-axis.
Slope of the line $Q M=\tan \frac{2 \pi}{3}=-\sqrt{3}$
Hence, equation of line $Q M$ is $y=-\sqrt{3} x$
or $\sqrt{3} x+y=0$
(a)

Let $a y^{4}+b x y^{3}+c x^{2} y^{2}+d x^{3} y+e x^{4}=$
$\left(a x^{2}+p x y-a y^{2}\right)\left(x^{2}+q x y+y^{2}\right)$
On comparing the coefficient of similar terms, we get
$b=a q-p, c=-p q, d=a q+p, e=-a$
Now, $b+d=2 a q, e-a=-2 a$
$a d+b e=2 a p, a+c+e=-p q$
$\therefore(b+d)(a d+b e)=-(e-a)^{2}(a+c+e)$
$\Rightarrow(b+d)(a d+e b)+(e-a)^{2}(a+c+e)=0$
(d)

Given equation is
$3 x^{2}+x y-y^{2}-3 x+6 y+k=0$
Here, $a=3, b=-1, h=\frac{1}{2}, g=-\frac{3}{2} f=3, c=k$,
Given equation represents a pair of straight line, if $a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$

$$
\begin{array}{r}
\therefore 3(-1)(k)+2 \times 3 \times\left(-\frac{3}{2}\right) \times \frac{1}{2}-3(3)^{2} \\
+1\left(\frac{-3}{2}\right)^{2}-k\left(\frac{1}{2}\right)^{2}=0 \\
\Rightarrow-3 k-\frac{9}{2}-27+\frac{9}{4}-\frac{k}{4}=0 \Rightarrow k=-9
\end{array}
$$

394 (b)

Let (h, k) be the coordinates of the vertex. Then, the height of the triangle is the length of the perpendicular from (h, k) on $x=a$ i.e. $|h-a|$ Since the area of the triangle is a^{2}
$\therefore \frac{1}{2}(2 a)|h-a|=a^{2}$
$\Rightarrow|h-a|=a$
$\Rightarrow h-a= \pm a \Rightarrow h=0, h=2 a$
Hence, the vertex lies on $x=0$ or, $x=2 a$
395 (a)
The distance of the point $(-2,3)$ from the line $x-y=5$ is
$p=\left|\frac{-2-3-5}{\sqrt{(1)^{2}}+(-1)^{2}}\right|$
$=\left|\frac{-10}{\sqrt{2}}\right|=\frac{10}{\sqrt{2}}=5 \sqrt{2}$
396 (b)
Here, $h=-\frac{1}{2}, a=1, b=-6$
$\therefore \tan =\left|2 \frac{\sqrt{\frac{1}{4}+6}}{1-6}\right|=\frac{2 \sqrt{\frac{25}{4}}}{-5}=|-1|$
$\therefore \theta=\tan ^{-1}(1)=45^{\circ}$
397 (c)
On comparing the given equation with standard equation, we get $a=12$ and $b=a$. We also know, if pair of straight lines is perpendicular, then coefficient of $x^{2}+$ coefficient of $y^{2}=0$ or $a+b=$ 0
$\therefore 12+a=0 \Rightarrow a=-12$
398 (a)
$\because A D=\left|\frac{-2-2-1}{\sqrt{(2)^{2}+(-1)^{2}}}\right|=\left|\frac{-5}{\sqrt{5}}\right|=\sqrt{5}$
and in $\triangle A B D \tan 60^{\circ}=\frac{A D}{B D}$

$\Rightarrow \sqrt{3}=\frac{\sqrt{5}}{B D} \Rightarrow B D=\sqrt{\frac{5}{3}}$
$\therefore B C=2 B D=2 \sqrt{\frac{5}{3}}=\sqrt{\frac{20}{3}}$
399 (b)
The equation of any line parallel to $2 x+6 y+7=$ 0 is $2 x+6 y+k=0$. This meets the axes at
$A(-k / 2,0)$ and $B(0,-k / 6)$
Now,
$A B=10$
$\Rightarrow \sqrt{\frac{k^{2}}{4}+\frac{k^{2}}{36}}=10$
$\Rightarrow \sqrt{\frac{10 k^{2}}{36}}=10$
$\Rightarrow 10 k^{2}=3600 \Rightarrow k= \pm 6 \sqrt{10}$
Hence, there are two lines given by $2 x+6 y \pm$ $6 \sqrt{10}=0 \mathrm{~s}$
401 (d)
Equation of a line passing through the intersection of lines $a x+2 b y+3 b=0$ and $b x-2 a y-3 a=0$ is
$(a x+2 b y+3 b)+\lambda(b x-2 a y-3 a)=0$.
Now, this line is parallel to x-axis, so coefficient of x should be zero.
$i e, a+\lambda b=0$
$\Rightarrow \lambda=-\frac{a}{b}$
On putting this value in Eq. (i), we get
$b(a x+2 b y+3 b)-a(b x-2 a y-3 a)=0$
$\Rightarrow 2\left(b^{2}+a^{2}\right) y+3\left(b^{2}+a^{2}\right)=0$
$\Rightarrow y=-\frac{3}{2}$
The negative sign shows that the line is below x axis, at a distance $\frac{3}{2}$ from it.
402 (a)
Since the area of the square is 25 sq. units
\therefore Length of each side $=5$ units
Let the equations of the other sides be
$3 x-4 y+k_{1}=0$ and $4 x+3 y+k_{2}=0$
The distance between $3 x-4 y=0$ and
$3 x-4 y+k_{1}=0$ is
$\frac{k_{1}}{\sqrt{3^{2}+(-4)^{2}}}=\frac{k_{1}}{5}$
\therefore Area of the square $=\frac{k_{1}^{2}}{25}$
$\Rightarrow \frac{k_{1}^{2}}{25}=25 \Rightarrow k_{1}= \pm 25$
Similarly, we have $k_{2}= \pm 25$
Hence, the equations of the other two sides of the square are $3 x-4 y \pm 25=0$ and $4 x+3 y \pm$ $25=0$
403 (c)
Given polar equation is
$r \cos \theta+7 r \sin \theta+1$
Put $x=r \cos \theta, y=r \sin \theta$, we get
$\Rightarrow x+7 y=1$
This is the equation of straight line.
405 (c)
Here, $a_{1} a_{2}+b_{1} b_{2}=(4 \times 3+3 \times 4)=24>0$
\therefore The equation of the bisector is
$\frac{4 x-3 y+7}{5}= \pm \frac{3 x-4 y+14}{5}$
Talking negative sign.
$x-y+3=0$
406 (d)
If the points $(1,2)$ and $(3,4)$ are on the same side of $3 x-5 y+a=0$, then $(3-10+a)$ and
$9-20+a$ are of the same sign
$\therefore(3-10+a)(9-20+a)>0$
$\Rightarrow(a-7)(a-11)>0 \Rightarrow a<7$ or $a>11$
407 (b)
Given, $x^{2}+y^{2}=9$
and $x+y=3 \ldots$ (ii)
From Eqs. (i) and (ii), we make a homogeneous equation.
$\Rightarrow x^{2}+y^{2}=(x+y)^{2}$
$\Rightarrow x^{2}+y^{2}=x^{2}+y^{2}+2 x y$
$\Rightarrow x y=0$
408 (d)
Since, line L passes through $(13,32)$
$\therefore \frac{13}{5}+\frac{32}{b}=1$
$\Rightarrow \frac{32}{b}=1-\frac{13}{5}=-\frac{8}{5}$
$\Rightarrow b=-\frac{32 \times 5}{8}=-20$
$\Rightarrow L: \frac{x}{5}-\frac{y}{20}=1$
Given, $K: \frac{x}{c}+\frac{y}{3}=1$ is parallel to $L=0$
\therefore The line K must have equation
$\frac{x}{5}-\frac{y}{20}=a$
or $\frac{x}{5 a}-\frac{y}{20 a}=1$
Comparing with $\frac{x}{c}+\frac{y}{3}=1$
$\Rightarrow-20 a=3, c=5 a$
$\Rightarrow a=-\frac{3}{20}, c=-\frac{15}{20}$
\therefore Distance between line is
$\left|\frac{a-1}{\sqrt{\frac{1}{25}+\frac{1}{400}}}\right|=\left|\frac{-\frac{3}{20}-1}{\sqrt{\frac{17}{400}}}\right|=\frac{23}{\sqrt{17}}$
409 (c)
The length of perpendicular from point
$(a \cos \alpha, a \sin \alpha)$ to the line
$x \tan \alpha-y+c=0$ or $x \sin \alpha-y \cos \alpha+c \cos \alpha$ $=0$
$=\frac{a \cos \alpha \sin \alpha-a \sin \alpha \cos \alpha+c \cos \alpha=0}{\sqrt{\sin ^{2} \alpha+\cos ^{2} \alpha}}$
$=c \cos \alpha$
410 (c)
The equations $a x+b y+c=0$ and $d x+e y+$ $f=0$ will represent the same straight line if their slopes and y-intercepts are equal
$\therefore-\frac{a}{b}=-\frac{d}{e}$ and $-\frac{c}{b}=-\frac{f}{e}$
$\Rightarrow \frac{a}{d}=\frac{b}{e}$ and $\frac{b}{e}=\frac{c}{f} \Rightarrow \frac{a}{d}=\frac{b}{e}=\frac{c}{f}$
411 (d)
We know that the coordinates of the image of $\left(x_{1}, y_{1}\right)$ with respect to the line $a x+b y+c=0$ are given by
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=-\frac{2\left(a x_{1}+b y_{1}+c\right)}{a^{2}+b^{2}}$
Thus, the coordinates of the required point are given by
$\frac{x-0}{1}=\frac{y-0}{1}=-2\left(\frac{0+0+1}{1^{2}+1^{2}}\right)$
$\Rightarrow \frac{x}{1}=\frac{y}{1}=-1 \Rightarrow x=-1, y=-1$
412 (d)
The intersection point of $y-x+7=0$ and $y+2 x-2=0$ is $(3,-4)$
\therefore Equation of dtrianght line joining from origin t6o the point $(3,-4)$ is
$y-0=\frac{-4}{3}(x-0)$
$\Rightarrow 3 y=-4 x \Rightarrow 4 x+3 y=0$

413 (d)

Since one of the lines represented by $a x^{2}+$
$2 h x y+b y^{2}=0$ bisects the angle between the axes in the first quadrant. Therefore, its equation is $y=x$
Clearly, $y=x$ must satisfy $a x^{2}+2 h x y+b y^{2}=0$
$\therefore a x^{2}+2 h x^{2}+b x^{2}=0$
$\Rightarrow a+b=-2 h \Rightarrow(a+b)^{2}=4 h^{2}$
415 (a)
Let the image of the point $(-1,3)$ in the line $y=x$
is $(3,-1)$
416 (c)
The joint equation of the given lines is
$(x+y-1)(x-y-4)=0$
417 (d)
Let a and b intercepts on the coordinate axes.
$\therefore a+b=-1 \Rightarrow b=-(a+1)$
Equation of line is $\frac{x}{a}+\frac{y}{b}=1$
$\Rightarrow \frac{x}{a}-\frac{y}{a+1}=1$
Since, this line passes through $(4,3)$
$\therefore \frac{4}{a}-\frac{3}{a+1}=1$
$\Rightarrow a+4=a^{2}+a$
$\Rightarrow a^{2}=4 \Rightarrow a= \pm 2$
\therefore Equation of line is
$\frac{x}{2}-\frac{y}{3}=1$ or $\frac{x}{-2}+\frac{y}{1}=1$ [from Eq.(i)]
419 (d)
The given equation represent coincident lines, if
$h^{2}-a b=0$
$\Rightarrow\left(\frac{h}{2}\right)^{2}-4 \cdot 1=0 \Rightarrow h= \pm 4$
420 (a)
Equation of sides are $x=0, x=2, y=0, y=3$

Line parallel to $y=\frac{1}{4} x$ is $y=\frac{1}{4} x+\lambda$
Clearly, $A C=B F$
$\Rightarrow \lambda=3-\lambda-\frac{1}{2} \Rightarrow \lambda=\frac{5}{4}$
\therefore Equation of required line is $x-4 y+5=0$
421 (a)
Since, the angle is right angle.
\therefore Homogenising, $x^{2}+y^{2}=4\left(\frac{y-3 x}{c}\right)^{2}$
$\Rightarrow c^{2}\left(x^{2}+y^{2}\right)=4\left(y^{2}+9 x^{2}-6 x y\right)$
Since, lines are at right angle.
\therefore Coefficient of $x^{2}+$ coefficient of $y^{2}=0$
$\Rightarrow c^{2}-36+c^{2}-4=0$
$\Rightarrow c^{2}=20$

(b)

Given that, $y=\sqrt{3}|x|+2$
and $P Q=5$, so, $Q R=\frac{5 \sqrt{3}}{2}$

\therefore Coordinates of R are $(0,2$

$$
\left.+\frac{5 \sqrt{3}}{2}\right) \text { or }\left(0, \frac{4+5 \sqrt{3}}{2}\right)
$$

423 (a)
The vertices of triangle are the intersection points of the lines
$x+y=0$...(i)
$3 x+y=4 \ldots$ (ii)
and $x+3 y=4 \ldots$ (iii)
On solving Eqs. (i) and (ii), (ii) and (iii), (iii) and
(i), we get, the vertices of triangle are
$A(-2,2), B(1,1)$ and $C(2,-2)$
Now, $A B=\sqrt{(1+2)^{2}+(1-2)^{2}}$
$=\sqrt{9+1}=\sqrt{10}$
$B C=\sqrt{(2-1)^{2}+(-2-1)^{2}}$
$=\sqrt{1^{2}+(-3)^{2}}=\sqrt{10}$
$A C=\sqrt{(2+2)^{2}+(-2-2)^{2}}$
$=\sqrt{16+16}=4 \sqrt{2}$
$\because A B=B C$
\therefore Triangle is isosceles

424 (b)

The point of intersection of lines $2 x-3 y+4=0$ and $3 x+4 y-5=0$ is
$\left(-\frac{2}{34}, \frac{22}{17}\right)$
The slope of required line which is perpendicular to
$6 x-7 y+3=0$ is $-\frac{7}{6}$
\therefore Equation of required line
$y-\frac{22}{17}=-\frac{7}{6}\left(x+\frac{2}{34}\right)$
$\Rightarrow \frac{6(17 y-22)}{17}=-\frac{7(34 x+2)}{34}$
$\Rightarrow 119 x+102 y=125$
425 (c)
Since, the given lines are concurrent
$\therefore\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=0 \Rightarrow a^{3}+b^{3}+c^{3}-3 a b c=0$
$\Rightarrow(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=0$
$\Rightarrow \frac{(a+b+c}{2}\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\}$
$=0$
$\Rightarrow a+b+c=0 \quad($ as $a \neq b \neq c)$

