

15.STATISTIES

Single Correct Answer Type

1	Currence a nonulation	1 has 100 abaamaticas 1	01102 200 and anoth	or nonviotion Phas 100
1.	observations 151,152,.		01,102,,200 and anoth sent the variances of the	
	respectively, then $\frac{V_A}{V_B}$ is			
	a) $\frac{9}{4}$	b) $\frac{4}{9}$	c) $\frac{2}{3}$	d) 1
2.	The SD of 15 items is 6 ar	nd if each item is decreases	by 1, then standard deriva	tion will be
	a) 5	b) 7	c) $\frac{91}{15}$	d) 6
3.	If the S.D. of a variate X is	s σ , then the S.D. of $a X + b$	is	
	a) <i>a</i> σ	b) σ	c) <i>a</i> σ	d) $a \sigma + b$
4.	The mean weight of 9 iter of 10th item is	ms is 15. If one more item i	s added to the series, the m	ean becomes 16. The value
	a) 35	b) 30	c) 25	d) 20
5.	The mean deviation fro	om the mean of the set of	observations, -1, 0, 4 is	
	a) 3	b) 1	c) -2	d) 2
6.	The regression coefficient	ent of y on <i>x</i> is 2/3 and tl	hat of x on y is $4/3$.The a	cute angle between the
	_	$\tan^{-1} k$, where k is equal		-
	a) 1/9	b) 2/9	c) 1/18	d) 1/3
7.	The mean of the number	ers <i>a</i> . <i>b</i> . 8.5.10 is 6 and th	e variance is 6.80. Then,	which one of the
	following gives possible		,	
			c) $a = 5, b = 2$	d) $a = 1, b = 6$
8.				eight (in kg) 54, 50, 40, 42,
0.	51, 45, 47, 55, 57 is			ingine (in ing) o 1, 00, 10, 12,
	a) 0.0900	b) 0.0956	c) 0.0056	d) 0.0946
9.	-	-	weights are equal to the co	
	equal to			
	-	b) $\frac{1}{2}(2n+1)$	c) $\frac{1}{3}(2n+1)$	d) $\frac{2n+1}{\epsilon}$
	a) 2 <i>n</i> + 1	$\frac{10}{2}(2n+1)$	$\frac{c}{3}(2n+1)$	u) <u> </u>
10.	The median of 10,14,11,9	,8,12,6 is		
	a) 14	b) 11	c) 10	d) 12
11.		n of <i>n</i> independent variates	s $x_1, x_2, x_3,, x_n$ each of the	e standard derivation σ ,
	then variance (\bar{x}) is σ^2	$n\sigma^2$	$(n+1)\sigma^2$	d) None of those
	a) $\frac{\sigma^2}{n}$	b) $\frac{n\sigma^2}{2}$	c) $\frac{(n+1)\sigma^2}{3}$	d) None of these
12.			5	are more than 40, then the
	quartile deviation is			
	a) 20	b) 30	c) 40	d) 10
13.	Standard deviation for fir	st 10 even natural number	's is	
	a) 11	b) 7.74	c) 5.74	d) 11.48
14.	The AM of the series 1, 2,	4, 8, 16,, 2^n is		
	a) $\frac{2^n - 1}{n}$	b) $\frac{2^{n+1}-1}{n+1}$	c) $\frac{2^n + 1}{n}$	d) $\frac{2^n - 1}{n+1}$
	11	n + 1	11	<i>n</i> 1
15.			d y is 0.8. The regression	coefficient of y on x is
	-	coefficient of x on y is		
	a) 3.2	b) -3.2	c) 4	d) 0.16

16.	The values of mean, median and mode coinci	ide, then the distribution i	S
	a) Positive skewness	b) Symmetric distribution	
	c) Negative skewness	d) All of the above	
17.	If $\bar{x} = \bar{y} = 0$, $\sum x_i y_i = 12$, $\sigma_X = 2$, $\sigma_Y = 3$ and	n = 10, then the coefficie	ent of correlation is
	a) 0.1 b) 0.3	c) 0.2	d) 01
18.	The mode of the series 3,4,2,6,1,7,6,7,6,8,9,5	is	-
	a) 5 b) 6	c) 7	d) 8
19.	A data has highest value 120 and lowest value 71		
	classes is to be constructed. The limits of the seco		_
	a) 71 and 78 b) 78 and 85	c) 113 and 120	d) 106 and 113
20.	A group of 10 items has arithmetic mean 6. If the	e arithmetic mean of 4 of the	se items is 7.5, then the mean
	of the remaining items is		
	a) 6.5 b) 5.5	c) 4.5	d) 5.0
21.	The weighted mean of first <i>n</i> natural numbers w		
	a) $\frac{n+1}{2}$ b) $\frac{2n+1}{2}$	c) $\frac{2n+1}{3}$	d) $\frac{(2n+1)(n+1)}{6}$
22	2 2 The variance of the first <i>n</i> natural numbers is	3	6
22.		$(n^2 + 1)$	$n(n^2 + 1)$
	a) $\left(\frac{n^2 - 1}{12}\right)$ b) $\frac{n(n^2 - 1)}{12}$	c) $\left(\frac{\pi + 1}{12}\right)$	d) $\frac{n(n^2+1)}{12}$
23.	Following are the marks obtained by 9 students	()	0.33.53.39.40.65.59
_0.	The mean deviation from the median is		
	a) 9 b) 10.5	c) 12.67	d) 14.76
24.	If the median of $\frac{x}{2}$, $\frac{x}{3}$, $\frac{x}{4}$, $\frac{x}{5}$, $\frac{x}{6}$ (where $x > 0$) is 6, th	en x =	
	a) 6 b) 18	c) 12	d) 24
25.	Coefficient of skewness for the values	-)	
	Median = $18.8, Q_1 = 14.6, Q_3 = 25.2$ is		
	a) 0.2 b) 0.5	c) 0.7	d) None of these
26.	The arithmetic mean of the squares of first <i>n</i> nat	ural numbers is	
	a) $\frac{n+1}{6}$ b) $\frac{(n+1)(2n+1)}{6}$	c) $\frac{n^2 - 1}{n^2 - 1}$	d) None of these
07	с С	0	
27.	If G_1, G_2 are the geometric means of two series of	f observations and G is the G	M of the ratios of the
	corresponding observations then G is equal to G_{c}	log G.	
	a) $\frac{G_1}{G_2}$ b) $\log G_1 - \log G_2$	c) $\frac{\log G_1}{\log G_2}$	d) $\log(G_1 \cdot G_2)$
28.	The coefficient of correlation (r) and the two		b_{rr} , b_{rr} are related as
			yx, xy
	a) $r = \frac{b_{xy}}{b_{yx}}$	b) $r = b_{xy} \times b_{yx}$	
	<i>y</i>		
	c) $r = b_{xy} + b_{yx}$	d) $r = (\text{sign } b_{yx}) \sqrt{b_x}$	$_{y} b_{yx}$
29.	Let <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> be the observations with mean <i>m</i> a	v	
	observations $a + k, b + k, c + k, d + k, e + k$, is		
	a) σ b) $k \sigma$	c) $k + \sigma$	d) σ/k
30.	If the S.D. of a variable <i>X</i> is σ , then the S.D. of $\frac{aX}{c}$	$\frac{b}{a}(a, b, c \text{ are constant}), \text{ is}$	
	a) $\frac{a}{c}\sigma$ b) $\frac{a}{c}\sigma$		d) $\frac{c}{\sigma}\sigma$
		'u'	u
31.	The mean of the series $x_1, x_2,, x_n$ is \overline{X} . If x_2 is real of the series $x_1, x_2,, x_n$ is \overline{X} .	eplaced by λ , then the new n	nean is
	a) $\overline{X} - x_2 + \lambda$ b) $\overline{\overline{X} - x_2 - \lambda}$	c) $\frac{(n-1)\overline{X} + \lambda}{n}$	d) $\frac{n \overline{X} - x_2 + \lambda}{\lambda}$
22	n	n	n
32.	If σ is the standard deviation of a random variable σ	riable <i>x</i> , then the standard	a deviation of the random

	variable $ax + b$, where			_
	a) $a\sigma + b$	b) <i>a</i> σ	c) $ a \sigma + b$	d) $a^2\sigma$
33.		servations $x_1, x_2, \dots x_{10}$ is 20		
34	a) 34 Which one of the followin	b) 38	c) 40	d) 42
54.		one half of the sum of the u	nner and lower quartiles	
				cending order of magnitude
	c) Mean, mode, median h		5 5	
	d) SD can be computed fi			
35.		mean of the observation a		
	a) $\frac{n(n+1)a^2}{3}$	b) $\frac{n(n+1)}{2}d^2$	c) $a + \frac{n(n+1)a^2}{2}$	d) None of these
36.	0	4, 5,, 10 is $\frac{99}{12}$, then the star	-	
	297	$1 > 3 \sqrt{2}$	c) $\frac{3}{2}\sqrt{99}$	d) $\frac{99}{12}$
	a) $\frac{297}{4}$	b) $\frac{3}{2}\sqrt{33}$	$\frac{c}{2}\sqrt{99}$	$d \int \sqrt{12}$
37.	Consider first 10 positive	e integers having standard o	deviation 2.87. If we multip	bly each number by -1 and
		er, the standard deviation o		
	a) 8.25	b) 2.87	c) -2.87	d) -8.25
38.	If SD of X is s, then SD of	the variable $\mu = \frac{aX+b}{c}$, when	re <i>a</i> , <i>b</i> , <i>c</i> are constants, is	
	a) $\left \frac{c}{\sigma}\right \sigma$	b) $\left \frac{a}{c}\right \sigma$	c) $\left \frac{b}{c}\right \sigma$	d) $\left \frac{c^2}{a^2}\right \sigma$
20	'u'		101	$ a^{2} $
39.		+ d, a + 2 d,, a + 2nd, is		
	a) $\frac{n(n+1)}{3}d^2$	b) $\sqrt{\frac{n(n+1)}{3}}d$	c) $\frac{n(n-1)}{3}d^2$	d) $\sqrt{\frac{n(n-1)}{3}d}$
40.			ean and median are 5 and	6 respectively. The value of
		is approximately equal to	\rightarrow 10	
41	,	b) 11 for the following data is	c) 16	d) None of these
11.	x 2 3 4 5	6		
	f 3 4 8 4	1		
	a) ()	b) $\frac{1}{4}$	c) $\frac{1}{2}$	d) 1
42.	The median of the items	1	2	
	a) 9	b) 10	c) 9.5	d) 11
43.		ed distribution, mode $= 60$		
4.4	a) 60	b) 64	c) 68	d) None of these $n \in \mathbb{R}^n$ have
44.	p + q = 1, then the mean	$0, 1, 2, \dots, n$ with frequencies	$s q^{n}, {}^{n}C_{1}q^{n-1}p, {}^{n}C_{2}q^{n-2}p^{n}$	$C_1, \dots, C_n p^n$, where
	a) np	b) nq	c) $n(p+q)$	d) None of these
45.	Consider the following st			,
	1. The AM of first <i>n</i> natur	ral number is $\frac{1}{6}n(2n+1)$		
	2. In a moderately symm	6		
	$QD \le MD \le SD$			
	Which of these is/are no			
46.	a) Only (1) The AM of <i>n</i> observation	b) Only (2) s is <i>M</i> . If the sum of <i>n</i> − 4 o	c) Both (1) and (2) bservations is a then the n	d) None of these
1 0.	observations is	$3 \times 13 m$. If the sum of $n = 40$	טורו אמנטווס וס מ, נווכוו נווכ וו	ican of remaining 4

	M		M	
	a) $\frac{n M - a}{4}$	b) $\frac{n M + a}{2}$	c) $\frac{n M - a}{2}$	d) <i>n M</i> + <i>a</i>
17	4	2	<u>L</u>	
47.		erivation of the observations		4) 2 4 2
10	a) 2 The age distribut	b) 2.4	c) 3	d) 3.42
48.	_	ution of workers in a factory	is as fallows :	
	Age in Years 20-28	No. of Workers		
	36-44	100		
	44-52	42		
	52-60	18		
	If 15% of the to	tal strength starting from lov	west age group is retrenched	and 20% of the total strength
	from the highes	st age groups is given premat	cure retirement, then the age	limit of workers retained in the
	factory is			
	a) 20-36	b) 28-44	c) 28-52	d) 36-52
49.	In a class of 10	00 students there are 70 b	oys whose average marks	in a subject are 75. If the
	average marks	s of the complete class is 7	2, then what is the average	e of the girls?
	a) 73	b) 65	c) 68	d) 74
50.	In a college of 3	00 students every student re	eads 5 newspapers and every	v newspaper is read by 60
	-	umber of newspapers are		
	a) At least 30	b) At most 20	c) Exactly 25	d) None of these
51.	If the sum of the	e mode and men of a certain	frequency distribution is 129	-
	observations is	63, mode and median are re	spectively	
	a) 69 and 60	b) 65 and 64	c) 68 and 61	d) None of these
52.	For a series the	value of mean deviation is 1	5, the most likely value of its	s quartile derivation is
	a) 12.5	b) 11.6	c) 13	d) 9.7
53.	If the mean of <i>n</i>	a items is \bar{x} and the sum of an	by $(n-1)$ number is R , then	the value of left item is
	a) $n + \bar{x}$	b) $n\bar{x} - R$	c) $\bar{x} + Rn$	d) $n\bar{x} - nR$
54.	If the mean de	viation of number $1,1 + d$	$1 + 2d, \dots, 1 + 100d$ from	m their mean is 255, then the d
	is equal to			
	a) 10.0	b) 20.0	c) 10.1	d) 20.2
55.			-	29, 32, 43, 37, 41, 34, 28, 36, 44,
		ne weight 44 kg is replaced		
	a) 32	b) 33	c) 34	d) 35
56.	-	equency distribution given b		4) 55
50.	Class-Interval	Frequency		
	0-10	4		
	10-20	6		
	20-30	10		
	30-40	16		
	40-50	14		
		e above distribution is		
	a) 25	b) 35	c) 30	d) 31
57.	If the variance	e of 1,2,3,4,5,,10 is $\frac{99}{12}$, the	n the standard derivation	of 3,6,9,12,, 30 is
	a) $\frac{297}{4}$	b) $\frac{3}{2}\sqrt{33}$	c) $\frac{3}{2}\sqrt{99}$	JD 99
	$a)$ $\frac{4}{4}$	$0) = \sqrt{35}$	$C_{1} = \sqrt{99}$	d) $\sqrt{\frac{99}{12}}$
58.	If each observat	tion of a raw data whose vari	iance is σ^2 is multiplied by h	, then the variance of the new set
	is			
	a) σ^2	b) $h^2 \sigma^2$	c) $h \sigma^2$	d) $h + \sigma^2$
59.	The mean incom	ne of a group of workers is \overline{X}	and that of another group is	\overline{Y} . If the number of workers in the

59. The mean income of a group of workers is \overline{X} and that of another group is \overline{Y} . If the number of workers in the second group is 10 times the number of workers in the first group, then the mean income of the combined

	group is			
	group is $\overline{Y} + 10 \overline{Y}$	\overline{V} + 10 \overline{V}	$10\overline{V} \pm \overline{V}$	$Y \pm 10 \overline{V}$
	a) $\frac{x + 10T}{3}$	b) $\frac{x+10T}{11}$	c) $\frac{10\overline{X} + \overline{Y}}{Y}$	d) $\frac{\pi + 10T}{9}$
60.	6	11	c sum of the deviations abo	,
	a) 0	b) <u>X</u>	c) $n \overline{X}$	d) None of these
61.	The median of a set of 9	,	20.5. if each of the larges	st 4 observations of the
		en the median of the nev	-	
	a) Is increased by 2		b) Is decreased by 2	
	- 0	inal median	•	that of the original set
62.	-			of 5 students of a tutorial
)8, 12, 13, 15, 22 are res		
	a) 14, 4.604	b) 15, 4.604		d) None of these
63.	•	ned group of men and wom	ien is 25 yr. If the mean age	
	_		percentage of men and wo	
	respectively			
	a) 60, 40	b) 80, 20	c) 20, 80	d) 40, 60
64.		uct of <i>r</i> sets of observation	s with geometric means G_{1}	G_2, \ldots, G_r respectively, then
	<i>G</i> is equal to			
	a) $\log G_1 + \log G_2 + \cdots$	b) $G_1 \cdot G_2 \cdot \ldots \cdot G_r$	c) $\log G_1 \cdot \log G_2 \dots \log G_r$	d) None of these
65.			students in a test carrying	
001	= =	10 10-20 20-30 30-40		
	Number of students :			
	If the mean of the above of	lata is 20, then the differen	ce between x and y is	
	a) 3	b) 2	c) 1	d) 0
66.		calculated by the formula	-	
	a) $\frac{\overline{X}}{\sigma} \times 100$	b) <u>X</u>	c) $\frac{\sigma}{\overline{Y}} \times 100$	d) $\frac{\sigma}{\overline{X}}$
67	•	σ f the data 6, 5, 9, 13, 12, 8, 1	Λ	Χ
07.			0 15	d) 6
	a) $\frac{52}{7}$	b) $\frac{52}{7}$	c) √6	a) o
	$\sqrt{7}$			
68.	=		ean and median are 5 and	6 respectively. The value of
	mode in such a situation i	•••••••	a) 1(d) None of these
60	a) 8 If \overline{X} and \overline{X} are the mean	b) 11	c) 16 In that $\bar{X}_1 < \bar{X}_2$ and \bar{X} is the I	d) None of these
09.	distribution, then	s of two distributions, such	$1 \tan x_1 < x_2 \tan x$ is the l	
			$\bar{X}_{1} + \bar{X}_{2}$	N. A A A.
	a) $\bar{X} < \bar{X}_1$	b) $\bar{X} > \bar{X}_2$	c) $\bar{X} = \frac{\bar{X}_1 + \bar{X}_2}{2}$	d) $X_1 < X < X_2$
70.			25 and sum of deviations o	f the same <i>n</i> observations
	about 35 is -25 . The mea			
- 4	a) 25	b) 30	c) 35	d) 40
/1.			nd $2\bar{x} - \bar{y} - 2 = 0$, then (
70	a) (8,5)	b) (5,8)	c) (5,5)	d) (8,8)
12.	Consider the following			
	(1) Mode can be compu	e	0	
	• •	endent of change of scale		
	•	ident of change of origin	and scale	
	Which of these is/are c	ULIEULI		

Which of these is/are correct?

	a) Only (1)		b) Only (2)	
	c) Only (1) and (2)		d) Only (1), (2) and (3)	
73.		etric means of two serie	s $x_1, x_2, \dots, x_n; y_1, y_2, \dots, y_n$	If <i>G</i> is the geometic mean
7.01	of $\frac{x_i}{y_i}$, $i = 1, 2,, n$. Then d		5 ×1, ×2,, ×n, , 1, , 2,, yn	
	a) $G_1 - G_2$	b) $\frac{\log G_1}{\log G_2}$	c) $\frac{G_1}{G_2}$	d) $\log\left(\frac{G_1}{G_2}\right)$
74.	The mean deviation of the	e data 3,10,10,4,7,10,5 fron	n the mean is	
	a) 2	b) 2.57	c) 3	d) 3.75
75.	Sum of absolute deviation	,	-) -	-)
	a) Least	b) Greatest	c) Zero	d) None of these
76.	Mean deviation for <i>n</i> observed	ervations x_1, x_2, \dots, x_n from	their mean \overline{X} is given by	-
	a) $\sum_{i=1}^{n} (x_i - \overline{X})$	b) $\frac{1}{n} \sum_{i=1}^{n} x_i - \overline{X} $	c) $\sum_{i=1}^{n} (x_i - \overline{X})^2$	d) $\frac{1}{2}\sum_{i=1}^{n} (x_i - \overline{X})^2$
77.	For the given data, the	calculation correspondin	g to all values of variates	(x, y) is following $\sum (x - x)^{-1}$
	<i>x2=36, y-y2=25, x-x</i>	<i>(y−y)=20</i> . The Karl Pea	rson's correlation coeffic	ient is
	a) 0.2	b) 0.5	c) 0.66	d) 0.33
78.	The correlation coeffici	ent between x and y from	m the following data $\sum x$	= 40,
		$\sum x^2 = 200, \sum y^2 = 262, \pi$		
	a) 0.89	b) 0.76	c) 0.91	d) 0.98
79.	If the two lines of regre	ssion are $x + 4y = 3$ and	1 3x + y = 15, then value	of x for $y = 3$ is
	a) 4	b) -9	c) -4	d) None of these
80.	The mean of discrete obs	ervations y_1, y_2, \dots, y_n is given	ven by	
		b) $\frac{\sum_{i=1}^{n} y_i f_i}{n}$		d) $\frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} i}$
81.	The following information	n relates to a sample of size	$x_{i}^{2} = 60: \sum x_{i}^{2} = 18000, \sum x_{i} = 0$	960. The variance is
	a) 6.63	b) 16	c) 22	d) 44
82.	If in a moderately skewed	l distribution the values of	mode and mean are 6 λ and	19λ respectively, then the
	value of the median is			
	a) 8 λ	b) 7 λ	c) 6 λ	d) 5 λ
83.		bers 148, 146, 144, 142, i	n AP, be 125, then the total	numbers in the series will
	be			1) (0)
04	a) 18 The two received line	b) 24	c) 30 -17 -2 -1 -0 The	d) 48
84.		2x - 7y + 6 = 0 at	nd $7x - 2y + 1 = 0$. The	correlation coefficient
	between <i>x</i> and y is	2	Λ	
	a) $-\frac{2}{3}$	b) $\frac{2}{7}$	c) $\frac{4}{9}$	d) None of these
85	An ogive is used to deterr	1	9	
05.	a) Mean	b) Median	c) Mode	d) HM
86.			the mean of 10 of them is 1	,
	remaining 20 is 9, is equa	-		
	a) 11	b) 10	c) 9	d) 5
87.	-	,25,34, <i>x</i> is 29, then the max	ximum possible value of x i	,
	a) 30	b) 31	c) 29	d) 32
88.	Let $x_1, x_2, x_3,, x_n$ be <i>n</i> o	bservations and \overline{X} be their	arithmetic mean. The form	ula for the standard
	deviation is given by			

	$\sum_{n=1}^{n} (n - 2)^2$	$1\sum_{n=1}^{n}$	-2 $1\sum_{n=2}^{n}$	$1 \sum_{n=2}^{n}$
	a) $\sum (x_i - X)^-$	b) $\frac{-}{n} \sum (x_i - x_i)$	$\left(\frac{1}{X}\right)^2$ c) $\sqrt{\frac{1}{n}\sum_{i=1}^n (x_i - \overline{X})^2}$	d) $\left \frac{1}{n}\sum x_i^2 + \overline{X}\right ^2$
	<i>i</i> =1	<i>i</i> =1	$\sqrt{\frac{i}{i=1}}$	$\sqrt{\frac{1}{i=1}}$
89.	If in a frequency distr	ibution, the me	ean and median are 21 and 22	respectively, then its mod
	approximately			
	a) 24.0	b) 25.5	c) 20.5	d) 22.0
90.	The arithmetic mean of	f a set of observa	tions is \overline{X} . If each observation is d	ivided by α and then is incl
	by 10, then the mean of	f the new series	is	
	a) $\frac{\overline{X}}{\underline{X}}$	b) $\frac{\overline{X}+10}{\overline{X}+10}$	c) $\frac{\overline{X} + 10 \alpha}{\alpha}$	d) $\alpha \overline{X} + 10$
	α	u	u	
91.			nen and women is 25 yrs. If the me	
		b) 80, 20	the percentage of men and wo	
92	a) 60, 40 If the standard deviation	, ,	c) 20, 80 is 3.5, then the standard deviatior	d) 40, 60
12.	3,, $-2x_n - 3$ is	$\prod_{n \in \mathbb{N}} \prod_{n \in \mathbb{N}} \sum_{n \in \mathbb{N}} \prod_{n \in \mathbb{N}} \sum_{n \in \mathbb{N}} \sum_{n \in \mathbb{N}} \prod_{n \in \mathbb{N}} \sum_{n \in \mathbb{N}} \sum_{$		L_{λ_1} J, L_{λ_2}
		b) —4	c) 7	d) 1.75
93.	If $\sum_{i=1}^{18} (x_i - 8) = 9$ and	$l \sum_{i=1}^{18} (x_i - 8)^2 =$		n of $x_1, x_2,, x_{18}$ is
	a) $\frac{4}{\alpha}$	9 b)	= 45, then the standard derivation c) $\frac{3}{2}$	d) None of these
	9	4	Z	
94.			l out of 75. The SD of marks was f	
			0 and variance of new marks was	
05	a) 81 If a variable <i>X</i> takes val	b) 122	c) 144 vith frequencies proportional to th	d) None of these
<i>y</i> 5.	${}^{n}C_{0}, {}^{n}C_{1}, {}^{n}C_{2}, \dots, {}^{n}C_{n},$			le billoilliai coefficients
	0			d) None of these
	a) $\frac{n^2 - 1}{12}$	b) $\frac{n}{2}$	c) $\frac{n}{4}$,
96.	If the standard deviat	tion of the obse	rvation -5, -4, -3 - 2, -1,0,1	,2,3,4,5 is $\sqrt{10}$. The standa
	deviation of observat	ions 15, 16, 17	, 18, 19, 20, 21, 22, 23, 24, 25 w	rill be
	a) $\sqrt{10} + 20$	b) $\sqrt{10} + 10$) c) $\sqrt{10}$	d)
97.	The, coefficient of SD	and coefficient	of variance from the given dat	a is
	Class 0- 10-	20- 30- 40-		
	interval1020Frequency210	30 40 50 8 4 6	_	
	a) 50, 48.1	0 1 0	b) 51.9, 48.1	
	c) 0.481, 48.1		d) 0.481, 51.8	
98.		oution, in which t	the values of <i>X</i> are 1,2, , <i>n</i> , the fr	equency of each being unity
	a) $\frac{n(n+1)}{2}$	b) $\frac{n}{2}$	c) $\frac{n+1}{2}$	d) None of these
	2	2		
99.	The mean deviation fro			
	a) Equal to that measure			
	b) Maximum if all obsetc) Greater than that me	_		
	d) Less than that measure	-		
100	-	-	orrelation between two sets of	variates, then
	a) $r < 1$	b) $r > 1$	c) $r < -1$	d) $ r \leq 1$
101	,	,	s and 5 is the mean of a set of 3 ob	
_	combined set is given b			
	a) 15	b) 10	c) 8.5	d) 7.5

102. The AM. of a set of 50 numbers is 38. If two numbers of the set, namely 55 and 45 are discarded, the AM of the remaining set of numbers is

a) 36 b) 36.5 c) 37.5 d) 38.5 103. The mode of the distribution is Marks Marks Students St	the remaining se	et of numbers is					
MarksNumber of Students465761078a) 5b) 6c) 8a) 10104. The AM of n observations is M. If the sum of $(n - 4)$ observations is a, then the mean of remains four observations isa) $\frac{nM-a}{4}$ b) $\frac{nM+a}{2}$ c) $\frac{nM-a}{2}$ 105. The mean deviation from the mean of the series $a, a + d, a + 2 d,, a + 2nd$, is a) $n(n + 1)d$ b) $\frac{n(n + 1)d}{2n + 1}$ 106. If the first item is increased by 1, second by 2 and so on, then the new mean is a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + \frac{n+1}{2}$ 106. If the mean of the set of numbers $x_1, x_2,, x_n$ is \overline{x} , then the mean of the numbers $x_1 + 2i, 1 \le i \le n$ is a) $\overline{x} + 2n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + n + 1$ 107. If the mean of the set of numbers $x_1, x_2,, x_n$ is \overline{x} , then the mean of the numbers $x_1 + 2i, 1 \le i \le n$ is a) 5.5 b) 3.87 c) 2.97 108. Standard deviation for first 10 natural number is 	a) 36	b) 36.5	c) 37.5	d) 38.5			
$\begin{array}{ c c c c } \hline Students \\ \hline 4 & 6 \\ \hline 7 & 6 \\ \hline 10 \\ \hline 7 & 8 \\ \hline 8 & 3 \\ \hline 9 & 5 & 0 \end{pmatrix} 6 & c) 8 & d) 10 \\ \hline 104. The AM of n observations is M. If the sum of (n-4) observations is a, then the mean of remains four observations is a, b = 0, c = 0,$	103. The mode of the	distribution is					
$\begin{array}{ c c c c c }\hline \hline 1 & $	Marks	Number of					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Students					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	6					
78a) 5b) 6c) 8d) 10104. The AM of n observations is M. If the sum of $(n-4)$ observations is a, then the mean of remains four observations isa) $\frac{nM-a}{4}$ b) $\frac{nM+a}{2}$ c) $\frac{nM-a}{2}$ d) $nM + a$ 105. The mean deviation from the mean of the series $a, a + d, a + 2d,, a + 2nd,$ isa) $n(n+1)d$ b) $\frac{n(n+1)d}{2n+1}$ c) $\frac{n(n+1)d}{2n}d$ d) $\frac{n(n-1)d}{2n+1}$ 106. If the first item is increased by 1, second by 2 and so on, then the new mean isa) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + \frac{n+1}{2}$ d) None of these107. If the mean of the set of numbers x_1, x_2, x_n is \overline{x} , then the mean of the numbers $x_i + 2i, 1 \le i \le n$ isa) $\overline{x} + 2n$ b) $\overline{x} + 2$ 108. Standard deviation for first 10 natural number isa) 5.5 b) 3.87 c) 2.97 d) 2.87 109. The value of mean, median and mode coincides, then the distribution isa) $77/4$ b) $74/7$ c) $7\frac{n-1}{2}$ d) $7\frac{n+1}{2}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. isa) $N.D = 5.D$ b) $N.D \geq S.D$ c) $N.D < S.D$ 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 isa) 14.5 b) $7\sqrt{\frac{5^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 113. When the origin is changed, then the coefficient of correlationa) Becomes zerob) Variesc) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency isa) $\frac{\sqrt{12}}{12}$ b) $\sqrt{\frac{5^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one							
830c)8d)10104. The AM of n observations is <i>M</i> . If the sum of $(n - 4)$ observations is <i>a</i> , then the mean of remains four observations isa) $\frac{nM-a}{4}$ b) $\frac{nM+a}{2}$ c) $\frac{nM-a}{2}$ d) $nM + a$ 105. The mean deviation from the mean of the series $a, a + d, a + 2 d,, a + 2nd$, isa) $n(n + 1)d$ b) $\frac{n(n + 1)d}{2n + 1}$ c) $\frac{n(n + 1)d}{2n}$ d) $\frac{n(n - 1)d}{2n + 1}$ 106. If the first item is increased by 1, second by 2 and so on, then the new mean isa) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + \frac{n + 1}{2}$ d)None of these107. If the mean of the set of numbers $x_1, x_2,, x_n$ is \vec{x} , then the mean of the numbers $x_1 + 2i, 1 \le i \le n$ isa) $\overline{x} + n$ b) $\overline{x} + 2n$ c) $\overline{x} + n + 1$ d) $\overline{x} + n$ 108. Standard deviation for first 10 natural number isa)5.5b)3.87c)2.97d)2.87109. The value of mean, median and mode coincides, then the distribution isa)Positive skewnessb)Symmetrical distributionc)Negative skewnessb)3.74''''b) $7^{4/7}$ c) $7^{\frac{n-1}{2}}$ d) $n^{\frac{n+1}{2}}$ 110. The geometric mean of numbers $7, 7^2, 7^3,, 7^n$, isa) 3.5 10M.D. \leq S.D.d)M.D. \leq S.D.d)M.D. \leq S.D.111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. isa)M.D. \leq S.D.d)M.D. \leq S.D.d) </td <td></td> <td></td> <td></td> <td></td>							
104. The AM of <i>n</i> observations is <i>M</i> . If the sum of $(n - 4)$ observations is <i>a</i> , then the mean of remains four observations is a) $\frac{nM-a}{4}$ b) $\frac{nM+a}{2}$ c) $\frac{nM-a}{2}$ d) $nM + a$ 105. The mean deviation from the mean of the series $a, a + d, a + 2 d,, a + 2nd$, is a) $n(n + 1)d$ b) $\frac{n(n + 1)d}{2n + 1}$ c) $\frac{n(n + 1)d}{2n}$ d) $\frac{n(n - 1)d}{2n + 1}$ 106. If the first item is increased by 1, second by 2 and so on, then the new mean is a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + \frac{n + 1}{2}$ d) None of these 107. If the mean of the set of numbers $x_1, x_2,, x_n$ is \overline{x} , then the mean of the numbers $x_i + 2i, 1 \le i \le n$ is a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + n + 1$ d) $\overline{x} + n$ 108. Standard deviation for first 10 natural number is a) 5.5 b) 3.87 c) 2.97 d) 2.87 109. The value of mean, median and mode coincides, then the distribution is a) Positive skewness b) Symmetrical distribution c) Negative skewness b) Symmetrical distribution c) Negative skewness b) Symmetrical distribution c) Negative skewness b) $7^{4/7}$ c) $7^{\frac{n-1}{2}}$ d) $7^{\frac{n+1}{2}}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) $N.D = S.D$ b) $M.D \ge S.D$ c) $M.D < S.D$ d) $M.D \le S.D$. 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers $31, 32, 33,, 46, 47$ is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation c) Coefficient of correlation							
104. The AM of <i>n</i> observations is <i>M</i> . If the sum of $(n - 4)$ observations is <i>a</i> , then the mean of remains four observations is a) $\frac{nM-a}{4}$ b) $\frac{nM+a}{2}$ c) $\frac{nM-a}{2}$ d) $nM + a$ 105. The mean deviation from the mean of the series $a, a + d, a + 2 d,, a + 2nd$, is a) $n(n + 1)d$ b) $\frac{n(n + 1)d}{2n + 1}$ c) $\frac{n(n + 1)d}{2n}$ d) $\frac{n(n - 1)d}{2n + 1}$ 106. If the first item is increased by 1, second by 2 and so on, then the new mean is a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + \frac{n + 1}{2}$ d) None of these 107. If the mean of the set of numbers $x_1, x_2,, x_n$ is \overline{x} , then the mean of the numbers $x_i + 2i, 1 \le i \le n$ is a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + n + 1$ d) $\overline{x} + n$ 108. Standard deviation for first 10 natural number is a) 5.5 b) 3.87 c) 2.97 d) 2.87 109. The value of mean, median and mode coincides, then the distribution is a) Positive skewness b) Symmetrical distribution c) Negative skewness b) Symmetrical distribution c) Negative skewness b) Symmetrical distribution c) Negative skewness b) $7^{4/7}$ c) $7^{\frac{n-1}{2}}$ d) $7^{\frac{n+1}{2}}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) $N.D = S.D$ b) $M.D \ge S.D$ c) $M.D < S.D$ d) $M.D \le S.D$. 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers $31, 32, 33,, 46, 47$ is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation c) Coefficient of correlation	8			1) 10			
observations is a) $\frac{nM-a}{4}$ b) $\frac{nM+a}{2}$ c) $\frac{nM-a}{2}$ d) $nM + a$ 105. The mean deviation from the mean of the series a, $a + d$, $a + 2d$,, $a + 2nd$, is a) $n(n + 1)d$ b) $\frac{n(n + 1)d}{2n + 1}$ c) $\frac{n(n + 1)d}{2n}$ d) $\frac{n(n - 1)d}{2n + 1}$ 106. If the first item is increased by 1, second by 2 and so on, then the new mean is a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + \frac{n + 1}{2}$ d) None of these 107. If the mean of the set of numbers x_1, x_2, x_n is \overline{x} , then the mean of the numbers $x_i + 2i$, $1 \le i \le n$ is a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + n + 1$ d) $\overline{x} + n$ 108. Standard deviation for first 10 natural number is a) 5.5 b) 3.87 c) 2.97 d) 2.87 109. The value of mean, median and mode coincides, then the distribution is a) Positive skewness b) Symmetrical distribution c) Negative skewness b) Symmetrical distribution c) Negative skewness b) Symmetrical distribution c) Negative skewness b) 7^{47} , 7^{3} ,, 7^{n} , is a) $7^{7/4}$ b) $7^{47/7}$ c) $\frac{n^{n+1}}{2}$ d) $\frac{n^{n+1}}{2}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) M.D. = S.D. b) M.D. \ge S.D. c) M.D $<$ S.D. d) M.D. \le S.D. 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^{2}-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation c) Standard deviation d) Coefficient of correlation	2)	,				
a) $\frac{nM-a}{4}$ b) $\frac{nM+a}{2}$ c) $\frac{nM-a}{2}$ d) $nM + a$ 105. The mean deviation from the mean of the series $a, a + d, a + 2d,, a + 2nd, is$ a) $n(n + 1)d$ b) $\frac{n(n + 1)d}{2n + 1}$ c) $\frac{n(n + 1)d}{2n}$ d) $\frac{n(n - 1)d}{2n + 1}$ 106. If the first item is increased by 1, second by 2 and so on, then the new mean is a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + \frac{n + 1}{2}$ d) None of these 107. If the mean of the set of numbers x_1, x_2, x_n is \overline{x} , then the mean of the numbers $x_i + 2i, 1 \le i \le n$ is a) $\overline{x} + n$ b) $\overline{x} + 2$ c) $\overline{x} + n + 1$ d) $\overline{x} + n$ 108. Standard deviation for first 10 natural number is a) 5.5 b) 3.87 c) 2.97 d) 2.87 109. The value of mean, median and mode coincides, then the distribution is a) Positive skewness b) Symmetrical distribution c) Negative skewness b) Symmetrical distribution c) Negative skewness b) Symmetrical distribution c) Negative skewness c) d) All of the above 110. The geometric mean of numbers $7,7^2,7^3, 7^n$, is a) $7^{7/4}$ b) $7^{4/7}$ c) $7\frac{n-1}{7}$ d) $7\frac{n+1}{2}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) M.D. = S.D. b) M.D. \ge S.D. c) M.D $<$ S.D. d) M.D. \le S.D. 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^{2-1}{12}}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation		ervations is <i>M</i> . If the sum of (<i>i</i>	n - 4) observations is a , then the	ne mean of remains four			
105. The near deviation from the mean of the series $a, a + d, a + 2d,, a + 2nd$, is a) $n(n + 1)d$ b) $\frac{n(n + 1)d}{2n + 1}$ c) $\frac{n(n + 1)d}{2n}$ d) $\frac{n(n - 1)d}{2n + 1}$ 106. If the first item is increased by 1, second by 2 and so on, then the new mean is a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + \frac{n + 1}{2}$ d) None of these 107. If the mean of the set of numbers x_1, x_2, x_n is \overline{x} , then the mean of the numbers $x_i + 2i, 1 \le i \le n$ is a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + \frac{n + 1}{2}$ d) None of these 107. If the mean of the set of numbers x_1, x_2, x_n is \overline{x} , then the mean of the numbers $x_i + 2i, 1 \le i \le n$ is a) $\overline{x} + 2n$ b) $\overline{x} + 2$ c) $\overline{x} + n + 1$ d) $\overline{x} + n$ 108. Standard deviation for first 10 natural number is a) 5.5 b) 3.87 c) 2.97 d) 2.87 109. The value of mean, median and mode coincides, then the distribution is a) Positive skewness b) Symmetrical distribution c) Negative skewness d) All of the above 110. The geometric mean of numbers $7,7^2,7^3, 7^n$, is a) $7^{7/4}$ b) $7^{4/7}$ c) $\frac{n^{n+1}}{2}$ d) $\frac{n^{n+1}}{2}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) M.D. = S.D. b) M.D. \ge S.D. c) M.D < S.D. d) M.D. \le S.D. 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation c) Standard deviation d) Coefficient of correlation							
105. The near deviation from the mean of the series $a, a + d, a + 2d,, a + 2nd$, is a) $n(n + 1)d$ b) $\frac{n(n + 1)d}{2n + 1}$ c) $\frac{n(n + 1)d}{2n}$ d) $\frac{n(n - 1)d}{2n + 1}$ 106. If the first item is increased by 1, second by 2 and so on, then the new mean is a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + \frac{n + 1}{2}$ d) None of these 107. If the mean of the set of numbers x_1, x_2, x_n is \overline{x} , then the mean of the numbers $x_i + 2i, 1 \le i \le n$ is a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + \frac{n + 1}{2}$ d) None of these 107. If the mean of the set of numbers x_1, x_2, x_n is \overline{x} , then the mean of the numbers $x_i + 2i, 1 \le i \le n$ is a) $\overline{x} + 2n$ b) $\overline{x} + 2$ c) $\overline{x} + n + 1$ d) $\overline{x} + n$ 108. Standard deviation for first 10 natural number is a) 5.5 b) 3.87 c) 2.97 d) 2.87 109. The value of mean, median and mode coincides, then the distribution is a) Positive skewness b) Symmetrical distribution c) Negative skewness d) All of the above 110. The geometric mean of numbers $7,7^2,7^3, 7^n$, is a) $7^{7/4}$ b) $7^{4/7}$ c) $\frac{n^{n+1}}{2}$ d) $\frac{n^{n+1}}{2}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) M.D. = S.D. b) M.D. \ge S.D. c) M.D < S.D. d) M.D. \le S.D. 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation c) Standard deviation d) Coefficient of correlation	a) $\frac{nM-a}{m}$	b) $\frac{nM+a}{m}$	c) $\frac{nM-a}{m}$	d) $nM + a$			
a) $n(n + 1)d$ b) $\frac{n(n + 1)d}{2n + 1}$ c) $\frac{n(n + 1)d}{2n}$ d) $\frac{n(n - 1)d}{2n + 1}$ 106. If the first item is increased by 1, second by 2 and so on, then the new mean is a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + \frac{n + 1}{2}$ d) None of these 107. If the mean of the set of numbers $x_1, x_2, \dots x_n$ is \overline{x} , then the mean of the numbers $x_i + 2i$, $1 \le i \le n$ is a) $\overline{x} + 2n$ b) $\overline{x} + 2$ c) $\overline{x} + n + 1$ d) $\overline{x} + n$ 108. Standard deviation for first 10 natural number is a) 5.5 b) 3.87 c) 2.97 d) 2.87 109. The value of mean, median and mode coincides, then the distribution is a) Positive skewness b) Symmetrical distribution c) Negative skewness d) All of the above 110. The geometric mean of numbers $7,7^2,7^3, \dots 7^n$, is a) $7^{7/4}$ b) $7^{4/7}$ c) $7^{\frac{n-1}{2}}$ d) $7^{\frac{n+1}{2}}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) M.D. = S.D. b) M.D. \ge S.D. c) M. $0 < S.D$. d) M.D. \le S.D. 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers $31, 32, 33, \dots, 46, 47$ is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation c) Standard deviation c) Standard deviation c) Standard deviation	Ŧ			-			
106. If the first item is increased by 1, second by 2 and so on, then the new mean is a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + \frac{n+1}{2}$ d) None of these 107. If the mean of the set of numbers $x_1, x_2,, x_n$ is \overline{x} , then the mean of the numbers $x_i + 2i, 1 \le i \le n$ is a) $\overline{x} + 2n$ b) $\overline{x} + 2$ c) $\overline{x} + n + 1$ d) $\overline{x} + n$ 108. Standard deviation for first 10 natural number is a) 5.5 b) 3.87 c) 2.97 d) 2.87 109. The value of mean, median and mode coincides, then the distribution is a) Positive skewness b) Symmetrical distribution c) Negative skewness d) All of the above 110. The geometric mean of numbers $7,7^2,7^3,7^n$, is a) $7^{7/4}$ b) $7^{4/7}$ c) $7^{\frac{n-1}{2}}$ d) $7^{\frac{n+1}{2}}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) M.D. = S.D. b) M.D. \ge S.D. c) M.D $<$ S.D. d) M.D. \le S.D. 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation	105. The mean devia						
106. If the first item is increased by 1, second by 2 and so on, then the new mean is a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + \frac{n+1}{2}$ d) None of these 107. If the mean of the set of numbers $x_1, x_2,, x_n$ is \overline{x} , then the mean of the numbers $x_i + 2i, 1 \le i \le n$ is a) $\overline{x} + 2n$ b) $\overline{x} + 2$ c) $\overline{x} + n + 1$ d) $\overline{x} + n$ 108. Standard deviation for first 10 natural number is a) 5.5 b) 3.87 c) 2.97 d) 2.87 109. The value of mean, median and mode coincides, then the distribution is a) Positive skewness b) Symmetrical distribution c) Negative skewness d) All of the above 110. The geometric mean of numbers $7,7^2,7^3,7^n$, is a) $7^{7/4}$ b) $7^{4/7}$ c) $7^{\frac{n-1}{2}}$ d) $7^{\frac{n+1}{2}}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) M.D. = S.D. b) M.D. \ge S.D. c) M.D $<$ S.D. d) M.D. \le S.D. 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation	a) $n(n+1)d$	b) $\frac{n(n+1)a}{n(n+1)a}$	c) $\frac{n(n+1)a}{n(n+1)a}$	d) $\frac{n(n-1)a}{n}$			
a) $\overline{x} + n$ b) $\overline{x} + \frac{n}{2}$ c) $\overline{x} + \frac{n+1}{2}$ d) None of these 107. If the mean of the set of numbers x_1, x_2, x_n is \overline{x} , then the mean of the numbers $x_i + 2i$, $1 \le i \le n$ is a) $\overline{x} + 2n$ b) $\overline{x} + 2$ c) $\overline{x} + n + 1$ d) $\overline{x} + n$ 108. Standard deviation for first 10 natural number is a) 5.5 b) 3.87 c) 2.97 d) 2.87 109. The value of mean, median and mode coincides, then the distribution is a) Positive skewness b) Symmetrical distribution c) Negative skewness d) All of the above 110. The geometric mean of numbers $7, 7^2, 7^3, 7^n$, is a) $7^{7/4}$ b) $7^{4/7}$ c) $7^{\frac{n-1}{2}}$ d) $7^{\frac{n+1}{2}}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) M. D. = S. D. b) M. D. \ge S. D. c) M. D \le S. D. d) M. D. \le S. D. 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers $31, 32, 33,, 46, 47$ is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation c) Standard deviation d) Coefficient of correlation			211				
107. If the mean of the set of numbers $x_1, x_2,, x_n$ is \bar{x} , then the mean of the numbers $x_i + 2i$, $1 \le i \le n$ is a) $\bar{x} + 2n$ b) $\bar{x} + 2$ c) $\bar{x} + n + 1$ d) $\bar{x} + n$ 108. Standard deviation for first 10 natural number is a) 5.5 b) 3.87 c) 2.97 d) 2.87 109. The value of mean, median and mode coincides, then the distribution is a) Positive skewness b) Symmetrical distribution c) Negative skewness d) All of the above 110. The geometric mean of numbers $7,7^2,7^3,7^n$, is a) $7^{7/4}$ b) $7^{4/7}$ c) $7^{\frac{n-1}{2}}$ d) $7^{\frac{n+1}{2}}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) M.D. = S.D. b) M.D. \ge S.D. c) M.D $<$ S.D. d) M.D. \le S.D. 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation d) Coefficient of correlation	106. If the first item i						
107. If the mean of the set of numbers $x_1, x_2,, x_n$ is \bar{x} , then the mean of the numbers $x_i + 2i$, $1 \le i \le n$ is a) $\bar{x} + 2n$ b) $\bar{x} + 2$ c) $\bar{x} + n + 1$ d) $\bar{x} + n$ 108. Standard deviation for first 10 natural number is a) 5.5 b) 3.87 c) 2.97 d) 2.87 109. The value of mean, median and mode coincides, then the distribution is a) Positive skewness b) Symmetrical distribution c) Negative skewness d) All of the above 110. The geometric mean of numbers $7,7^2,7^3,7^n$, is a) $7^{7/4}$ b) $7^{4/7}$ c) $7^{\frac{n-1}{2}}$ d) $7^{\frac{n+1}{2}}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) M.D. = S.D. b) M.D. \ge S.D. c) M.D $<$ S.D. d) M.D. \le S.D. 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation d) Coefficient of correlation	a) $\overline{X} + n$	b) $\overline{X} + \frac{n}{2}$	c) $\overline{X} + \frac{n+1}{2}$	d) None of these			
a) $\bar{x} + 2n$ b) $\bar{x} + 2$ c) $\bar{x} + n + 1$ d) $\bar{x} + n$ 108. Standard deviation for first 10 natural number is a) 5.5 b) 3.87 c) 2.97 d) 2.87 109. The value of mean, median and mode coincides, then the distribution is a) Positive skewness b) Symmetrical distribution c) Negative skewness d) All of the above 110. The geometric mean of numbers $7,7^2, 7^3, 7^n$, is a) $7^{7/4}$ b) $7^{4/7}$ c) $7^{\frac{n-1}{2}}$ d) $7^{\frac{n+1}{2}}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) M. D. = S. D. b) M. D. \geq S. D. c) M. D $<$ S. D. d) M. D. \leq S. D. 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation c) Standard deviation d) Coefficient of correlation	107 If the mean of th	<u>L</u>	<u>L</u>				
108. Standard deviation for first 10 natural number is a) 5.5 b) 3.87 c) 2.97 d) 2.87109. The value of mean, median and mode coincides, then the distribution is a) Positive skewness b) Symmetrical distribution c) Negative skewness d) All of the above110. The geometric mean of numbers $7,7^2, 7^3,, 7^n$, is a) $7^{7/4}$ b) $7^{4/7}$ c) $7^{\frac{n-1}{2}}$ d) $7^{\frac{n+1}{2}}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) M.D. = S.D. b) M.D. \geq S.D. c) M.D $<$ S.D. d) M.D. \leq S.D.112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation d) Coefficient of correlation d) Coefficient of correlation							
a) 5.5 b) 3.87 c) 2.97 d) 2.87 109. The value of mean, median and mode coincides, then the distribution is a) Positive skewness b) Symmetrical distribution c) Negative skewness d) All of the above 110. The geometric mean of numbers 7,7 ² ,7 ³ , 7 ⁿ , is a) 7 ^{7/4} b) 7 ^{4/7} c) $7^{\frac{n-1}{2}}$ d) $7^{\frac{n+1}{2}}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) M. D. = S. D. b) M. D. \geq S. D. c) M. D < S. D. d) M. D. \leq S. D. 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is charged, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation d) Coefficient of correlation	-	-	-	d) $x + n$			
109. The value of mean, median and mode coincides, then the distribution isa) Positive skewnessb) Symmetrical distributionc) Negative skewnessd) All of the above110. The geometric mean of numbers $7,7^2, 7^3, 7^n$, isa) $7^{7/4}$ a) $7^{7/4}$ b) $7^{4/7}$ c) $7^{\frac{n-1}{2}}$ d) $7^{\frac{n+1}{2}}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. isa) M.D. = S.D.b) M.D. \geq S.D.c) M.D < S.D.							
a) Positive skewnessb) Symmetrical distributionc) Negative skewnessd) All of the above110. The geometric mean of numbers 7,7 ² ,7 ³ ,7 ⁿ , isa) 7 ^{7/4} b) 7 ^{4/7} c) $\frac{n^{-1}}{2}$ d) $\frac{n^{+1}}{2}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. isa) M.D.= S.D.b) M.D. \geq S.D.c) M.D < S.D.	2		,	d) 2.87			
c) Negative skewness d) All of the above 110. The geometric mean of numbers 7,7 ² , 7 ³ , 7 ⁿ , is a) 7 ^{7/4} b) 7 ^{4/7} c) $\frac{n^{-1}}{7^{2}}$ d) $\frac{n^{+1}}{7^{2}}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) M.D. = S.D. b) M.D. \geq S.D. c) M.D $<$ S.D. d) M.D. \leq S.D. 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is charged, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation	109. The value of me	an, median and mode coincide					
110. The geometric mean of numbers 7,7², 7³, 7 ⁿ , isa) $7^{7/4}$ b) $7^{4/7}$ c) $7^{\frac{n-1}{2}}$ d) $7^{\frac{n+1}{2}}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. isa) M.D. = S.D.b) M.D. \geq S.D.c) M.D $<$ S.D.d) M.D. \leq S.D.112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 isa) 14.5b) 7c) 9d) 3.5113. When the origin is changed, then the coefficient of correlationa) Becomes zerob) Variesc) Remains fixedd) None of these114. The standard deviation of the numbers 31, 32, 33,, 46, 47 isa) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency isa) Modeb) Mean deviationc) Standard deviationc) Standard deviationc) Coefficient of correlationc) 2x6d) 4x3	a) Positive skew	ness	b) Symmetrical distrib	ution			
a) $7^{7/4}$ b) $7^{4/7}$ c) $7^{\frac{n-1}{2}}$ d) $7^{\frac{n+1}{2}}$ 111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is a) M.D. = S.D. b) M.D. \geq S.D. c) M.D $<$ S.D. d) M.D. \leq S.D. 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation	c) Negative skev	wness	d) All of the above				
111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. isa) M. D. = S. D.b) M. D. \geq S. D.c) M. D < S. D.	110. The geometric n	nean of numbers $7,7^2,7^3,7^n$	¹ , is				
111. In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. isa) M. D. = S. D.b) M. D. \geq S. D.c) M. D < S. D.	a) 7 ^{7/4}	b) 7 ^{4/7}	c) $7^{\frac{n-1}{2}}$	d) $7^{\frac{n+1}{2}}$			
a) M. D. = S. D. b) M. D. \geq S. D. c) M. D $<$ S. D. d) M. D. \leq S. D. 112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 is a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation	2	veries (when all values are not	<i>, , , ,</i>	- 1			
112. The quartile deviation of daily wages of 7 persons which are Rs. 12, 7, 15, 10, 17, 17, 25 isa) 14.5b) 7c) 9d) 3.5113. When the origin is changed, then the coefficient of correlationa) Becomes zerob) Variesc) Remains fixedd) None of these114. The standard deviation of the numbers 31, 32, 33,, 46, 47 isa) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency isa) Modeb) Mean deviationc) Standard deviationd) Coefficient of correlation		-					
a) 14.5 b) 7 c) 9 d) 3.5 113. When the origin is changed, then the coefficient of correlation a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation	-	-	-	-			
113. When the origin is changed, then the coefficient of correlationa) Becomes zerob) Variesc) Remains fixedd) None of these114. The standard deviation of the numbers 31, 32, 33,, 46, 47 isa) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency isa) Modeb) Mean deviationc) Standard deviationd) Coefficient of correlation	=						
a) Becomes zero b) Varies c) Remains fixed d) None of these 114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation		,	,	u) 3.5			
114. The standard deviation of the numbers 31, 32, 33,, 46, 47 is a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation	-	-					
a) $\sqrt{\frac{17}{12}}$ b) $\sqrt{\frac{47^2-1}{12}}$ c) $2\sqrt{6}$ d) $4\sqrt{3}$ 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation	a) Becomes zer	o b) Varies	c) Remains fixed	d) None of these			
 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation 	114. The standard d	leviation of the numbers 31	l, 32, 33,, 46, 47 is				
 115. The one which is the measure of the central tendency is a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation 	17	$47^2 - 1$	$\sim 2\sqrt{c}$				
a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation	$\sqrt{\frac{12}{12}}$	$\int \sqrt{\frac{12}{12}}$	$c_{J} 2\sqrt{6}$	u) 4 _V 3			
a) Mode b) Mean deviation c) Standard deviation d) Coefficient of correlation	•	s the measure of the central te	endency is				
 b) Mean deviation c) Standard deviation d) Coefficient of correlation 			2				
c) Standard deviation d) Coefficient of correlation							
d) Coefficient of correlation	-						
	-						
116. The mean weight of 9 items is 15. If one more item is added to the series the mean becomes 16. The value	,		item is added to the series the	maan hacomas 16 Tha valua			
of 10th items is				mean becomes to. The value			

of 10th items is 125

01 20011 1001110 10			
a) 35	b) 30	c) 25	d) 20
	.1 . 1.1 .		

117. The median from the table is

Value	7	8	10	9	11	12	13
Frequency	2	1	4	5	6	1	3

a) 100	b) 10	c) 110	d) 1110
118. The AM of ${}^{2n+1}C_0$, 2	$C^{n+1}C_1$, $C^{2n+1}C_2$,, $C^{2n+1}C_n$ is		
a) $\frac{2^n}{n}$	b) $\frac{2^n}{n+1}$	c) $\frac{2^{2n}}{2}$	d) $\frac{2^{2n}}{(n+1)}$
$\frac{n}{n}$	$\frac{n}{n+1}$	$\frac{c}{n}$	(n+1)
119. If both the regress	ion lines intersect perpend	licularly, then	
a) <i>r</i> < −1	b) $r = -1$	c) $r = 0$	d) $r = \frac{1}{2}$
120. For the arithmetic	progression $a, (a + d), (a + d)$	$(a + 2d), (a + 3d), \dots, (a + 3d)$	+ 2nd), the mean deviation
from mean is			
a) $\frac{n(n+1)d}{2n-1}$	b) $\frac{n(n+1)d}{2n+1}$	c) $\frac{n(n-1)d}{2n+1}$	d) $\frac{(n+1)d}{2}$
		2n+1	u) ₂
121. The standard deviat			
$x: 1 a a^2$			
$f: \ ^{n}C_{0} \ \ ^{n}C_{1} \ \ ^{n}C_{2}$	\cdots " C_n		
is $(1 \cdot 2)^n$	n		
a) $\left(\frac{1+a^2}{2}\right)^n - \left(\frac{1+a^2}{2}\right)^n$	$\left(\frac{-a}{2}\right)^{n}$		
b) $\left(\frac{1+a^2}{2}\right)^{2n} - \left(\frac{1}{a^2}\right)^{2n} - \left(\frac{1}{a^2}\right)^{2n} - \left(\frac{1}{a^2}\right)^{2n} + \left($	$\left(\frac{a}{2}\right)^n$		
c) $\left(\frac{1+a}{2}\right)^{2n} - \left(\frac{1+a}{2}\right)^{2n}$	$\left(\frac{\omega}{2}\right)$		
d) None of these			
122. If $var(x) = 8.25$, va	r(y) = 33.96 and cov(x, y)	= 10.2 then the correlat	ion coefficient is
a) 0.89	b) -0.98	c) 0.61	d) -0.16
123. If the difference betw	ween the mode and median i	c 2 than the difference betw	ween the median and mean is
	ween the mode and methan i	s 2, then the unference betw	ween the methan and mean is
(in the given order)		s z, then the unterence betw	
(in the given order) a) 2	b) 4	c) 1	d) 0
(in the given order) a) 2	b) 4 ession are $3x + 12y = 19$ a	c) 1	d) 0
(in the given order) a) 2	b) 4	c) 1	d) 0
(in the given order) a) 2 124. If the lines of regre a) 0.289	b) 4 ession are $3x + 12y = 19$ a	c) 1 and $3y + 9x = 46$, then r_x c) 0.209	d) 0 _{cy} will be
(in the given order) a) 2 124. If the lines of regre a) 0.289	b) 4 ession are $3x + 12y = 19$ a b) -0.289	c) 1 and $3y + 9x = 46$, then r_x c) 0.209	d) 0 _{cy} will be
(in the given order) a) 2 124. If the lines of regree a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en cov(<i>x</i> , <i>y</i>) equals c) 2/5	d) 0 _{zy} will be d) None of these
(in the given order) a) 2 124. If the lines of regree a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en cov(<i>x</i> , <i>y</i>) equals c) 2/5	d) 0 _{zy} will be d) None of these
(in the given order) a) 2 124. If the lines of regree a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5 126. A statistical measure a) Median	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5 e which cannot be determine b) Mode	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en $cov(x, y)$ equals c) 2/5 ed graphically is c) Harmonic mean	d) 0 _{xy} will be d) None of these d) -2/5
(in the given order) a) 2 124. If the lines of regree a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5 126. A statistical measure a) Median	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5 e which cannot be determine b) Mode	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en $cov(x, y)$ equals c) 2/5 ed graphically is c) Harmonic mean	d) 0 _{xy} will be d) None of these d) -2/5 d) Mean
(in the given order) a) 2 124. If the lines of regree a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5 126. A statistical measure a) Median 127. The mean of <i>n</i> obser of x_{n+1} is a) 0	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5 e which cannot be determine b) Mode evations is \bar{x} . If one observations b) 1	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en $cov(x, y)$ equals c) 2/5 ed graphically is c) Harmonic mean on x_{n+1} is added, then the r	d) 0 x_y will be d) None of these d) -2/5 d) Mean nean remains same. The value d) \bar{x}
(in the given order) a) 2 124. If the lines of regree a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5 126. A statistical measure a) Median 127. The mean of <i>n</i> observed of x_{n+1} is a) 0 128. Let $x_1, x_2, x_3,, x_n$ by	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5 e which cannot be determine b) Mode evations is \bar{x} . If one observations b) 1 be n observations with mean	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en $cov(x, y)$ equals c) 2/5 ed graphically is c) Harmonic mean on x_{n+1} is added, then the r	d) 0 _{xy} will be d) None of these d) -2/5 d) Mean nean remains same. The value
(in the given order) a) 2 124. If the lines of regree a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5 126. A statistical measure a) Median 127. The mean of <i>n</i> observed of x_{n+1} is a) 0 128. Let $x_1, x_2, x_3,, x_n$ by of the observations of	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5 e which cannot be determine b) Mode evations is \bar{x} . If one observation b) 1 be n observations with mean $ax_1, ax_2, ax_3,, ax_n$, is	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en $cov(x, y)$ equals c) 2/5 ed graphically is c) Harmonic mean on x_{n+1} is added, then the r c) n m and standard deviation s	d) 0 x_y will be d) None of these d) -2/5 d) Mean nean remains same. The value d) \bar{x} s. Then the standard deviation
(in the given order) a) 2 124. If the lines of regree a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5 126. A statistical measure a) Median 127. The mean of <i>n</i> observed of x_{n+1} is a) 0 128. Let $x_1, x_2, x_3, \dots, x_n$ by of the observations of a) $a + x$	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5 e which cannot be determine b) Mode evations is \bar{x} . If one observations b) 1 be n observations with mean $ax_1, ax_2, ax_3,, ax_n$, is b) s/a	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en $cov(x, y)$ equals c) 2/5 ed graphically is c) Harmonic mean on x_{n+1} is added, then the r	d) 0 x_y will be d) None of these d) -2/5 d) Mean nean remains same. The value d) \bar{x}
(in the given order) a) 2 124. If the lines of regree a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5 126. A statistical measure a) Median 127. The mean of <i>n</i> observed of x_{n+1} is a) 0 128. Let $x_1, x_2, x_3, \dots, x_n$ by of the observations of a) $a + x$ 129. The positional averaged	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5 e which cannot be determine b) Mode evations is \bar{x} . If one observation b) 1 be n observations with mean $ax_1, ax_2, ax_3,, ax_n$, is b) s/a age of central tendency is	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en $cov(x, y)$ equals c) 2/5 ed graphically is c) Harmonic mean on x_{n+1} is added, then the r c) n m and standard deviation s c) $ a s$	d) 0 f_{y} will be d) None of these d) -2/5 d) Mean nean remains same. The value d) \bar{x} s. Then the standard deviation d) as
(in the given order) a) 2 124. If the lines of regree a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5 126. A statistical measure a) Median 127. The mean of <i>n</i> observed of x_{n+1} is a) 0 128. Let $x_1, x_2, x_3, \dots, x_n$ by of the observations of a) $a + x$ 129. The positional averaged	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5 e which cannot be determine b) Mode vations is \bar{x} . If one observation b) 1 be n observations with mean $ax_1, ax_2, ax_3,, ax_n$, is b) s/a age of central tendency is b) HM	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en cov(x, y) equals c) 2/5 ed graphically is c) Harmonic mean on x_{n+1} is added, then the r c) n m and standard deviation s c) $ a s$ c) AM	d) 0 f_{y} will be d) None of these d) -2/5 d) Mean mean remains same. The value d) \bar{x} s. Then the standard deviation d) as d) Median
(in the given order) a) 2 124. If the lines of regret a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5 126. A statistical measure a) Median 127. The mean of <i>n</i> observed of x_{n+1} is a) 0 128. Let $x_1, x_2, x_3, \dots, x_n$ by of the observations of a) $a + x$ 129. The positional averation a) GM 130. The mean of a set of	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5 e which cannot be determine b) Mode evations is \bar{x} . If one observations b) 1 be <i>n</i> observations with mean $ax_1, ax_2, ax_3,, ax_n$, is b) s/a age of central tendency is b) HM observations is \bar{x} . If each ob	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en cov(x, y) equals c) 2/5 ed graphically is c) Harmonic mean on x_{n+1} is added, then the r c) n m and standard deviation s c) $ a s$ c) AM	d) 0 f_{y} will be d) None of these d) -2/5 d) Mean nean remains same. The value d) \bar{x} s. Then the standard deviation d) <i>as</i>
(in the given order) a) 2 124. If the lines of regret a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5 126. A statistical measure a) Median 127. The mean of <i>n</i> observed of x_{n+1} is a) 0 128. Let $x_1, x_2, x_3, \dots, x_n$ by of the observations of a) $a + x$ 129. The positional averation a) GM 130. The mean of a set of then the mean of the	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5 e which cannot be determine b) Mode evations is \bar{x} . If one observation b) 1 be n observations with mean $ax_1, ax_2, ax_3,, ax_n$, is b) s/a age of central tendency is b) HM cobservations is \bar{x} . If each observation	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en $cov(x, y)$ equals c) 2/5 ed graphically is c) Harmonic mean on x_{n+1} is added, then the r c) n m and standard deviation s c) $ a s$ c) AM servation is divided by, $\alpha \neq \infty$	d) 0 f_{y} will be d) None of these d) -2/5 d) Mean mean remains same. The value d) \bar{x} s. Then the standard deviation d) as d) Median
(in the given order) a) 2 124. If the lines of regret a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5 126. A statistical measure a) Median 127. The mean of <i>n</i> observed of x_{n+1} is a) 0 128. Let $x_1, x_2, x_3, \dots, x_n$ by of the observations of a) $a + x$ 129. The positional averation a) GM 130. The mean of a set of	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5 e which cannot be determine b) Mode evations is \bar{x} . If one observations b) 1 be <i>n</i> observations with mean $ax_1, ax_2, ax_3,, ax_n$, is b) s/a age of central tendency is b) HM observations is \bar{x} . If each ob	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en $cov(x, y)$ equals c) 2/5 ed graphically is c) Harmonic mean on x_{n+1} is added, then the r c) n m and standard deviation s c) $ a s$ c) AM servation is divided by, $\alpha \neq \infty$	d) 0 f_{y} will be d) None of these d) -2/5 d) Mean mean remains same. The value d) \bar{x} s. Then the standard deviation d) as d) Median
(in the given order) a) 2 124. If the lines of regret a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5 126. A statistical measure a) Median 127. The mean of <i>n</i> observed of x_{n+1} is a) 0 128. Let $x_1, x_2, x_3, \dots, x_n$ by of the observations of a) $a + x$ 129. The positional averation a) GM 130. The mean of a set of then the mean of the a) $\frac{\bar{x}}{\alpha}$	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5 e which cannot be determine b) Mode evations is \bar{x} . If one observation b) 1 be <i>n</i> observations with mean $ax_1, ax_2, ax_3,, ax_n$, is b) s/a age of central tendency is b) HM observations is \bar{x} . If each ob e new set is b) $\frac{\bar{x} + 10}{\alpha}$	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en cov (x, y) equals c) 2/5 ed graphically is c) Harmonic mean on x_{n+1} is added, then the r c) n m and standard deviation s c) $ \alpha s$ c) $ \alpha s$ c) AM servation is divided by, $\alpha \neq$ c) $\frac{\bar{x} + 10\alpha}{\alpha}$	d) 0 z_y will be d) None of these d) -2/5 d) Mean nean remains same. The value d) \bar{x} s. Then the standard deviation d) as d) Median 0 and then is increased by 10, d) $a\bar{x} + 10$
(in the given order) a) 2 124. If the lines of regres a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5 126. A statistical measure a) Median 127. The mean of <i>n</i> observed of x_{n+1} is a) 0 128. Let $x_1, x_2, x_3, \dots, x_n$ by of the observations of a) $a + x$ 129. The positional averation a) GM 130. The mean of a set of then the mean of the a) $\frac{\bar{x}}{\alpha}$ 131. The median of 19 ob	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5 e which cannot be determine b) Mode vations is \bar{x} . If one observation b) 1 be n observations with mean $ax_1, ax_2, ax_3,, ax_n$, is b) s/a ege of central tendency is b) HM observations is \bar{x} . If each ob e new set is b) $\frac{\bar{x} + 10}{\alpha}$ oservations of a group is 30. I	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en cov (x, y) equals c) 2/5 ed graphically is c) Harmonic mean on x_{n+1} is added, then the r c) n m and standard deviation s c) $ a s$ c) AM servation is divided by, $\alpha \neq$ c) $\frac{\bar{x} + 10\alpha}{\alpha}$ f two observations with val	d) 0 z_y will be d) None of these d) -2/5 d) Mean nean remains same. The value d) \bar{x} s. Then the standard deviation d) as d) Median 0 and then is increased by 10, d) $a\bar{x} + 10$
(in the given order) a) 2 124. If the lines of regres a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5 126. A statistical measure a) Median 127. The mean of <i>n</i> observed of x_{n+1} is a) 0 128. Let $x_1, x_2, x_3, \dots, x_n$ by of the observations of a) $a + x$ 129. The positional averation a) GM 130. The mean of a set of then the mean of the a) $\frac{\bar{x}}{\alpha}$ 131. The median of 19 ob	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5 e which cannot be determine b) Mode evations is \bar{x} . If one observation b) 1 be <i>n</i> observations with mean $ax_1, ax_2, ax_3,, ax_n$, is b) s/a age of central tendency is b) HM observations is \bar{x} . If each ob e new set is b) $\frac{\bar{x} + 10}{\alpha}$	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en cov (x, y) equals c) 2/5 ed graphically is c) Harmonic mean on x_{n+1} is added, then the r c) n m and standard deviation s c) $ a s$ c) AM servation is divided by, $\alpha \neq$ c) $\frac{\bar{x} + 10\alpha}{\alpha}$ f two observations with val	d) 0 z_y will be d) None of these d) -2/5 d) Mean nean remains same. The value d) \bar{x} s. Then the standard deviation d) as d) Median 0 and then is increased by 10, d) $a\bar{x} + 10$
(in the given order) a) 2 124. If the lines of regree a) 0.289 125. If $\sum x = 15$, $\sum y =$ a) 1/5 126. A statistical measure a) Median 127. The mean of <i>n</i> observed of x_{n+1} is a) 0 128. Let $x_1, x_2, x_3, \dots, x_n$ by of the observations of a) $a + x$ 129. The positional averation a) GM 130. The mean of a set of then the mean of the a) $\frac{\bar{x}}{\alpha}$ 131. The median of 19 obtinicluded, then the mean	b) 4 ession are $3x + 12y = 19$ a b) -0.289 $36, \sum xy = 110, n = 5$, the b) -1/5 e which cannot be determine b) Mode evations is \bar{x} . If one observation b) 1 be <i>n</i> observations with mean $ax_1, ax_2, ax_3,, ax_n$, is b) s/a age of central tendency is b) HM cobservations is \bar{x} . If each ob e new set is b) $\frac{\bar{x} + 10}{\alpha}$ pservations of a group is 30. If edian of the new group of 22 b) 30	c) 1 and $3y + 9x = 46$, then r_x c) 0.209 en cov(x, y) equals c) 2/5 ed graphically is c) Harmonic mean on x_{n+1} is added, then the r c) n m and standard deviation $sc) a sc) AMservation is divided by, \alpha \neqc) \frac{\bar{x} + 10\alpha}{\alpha}f two observations with values$	d) 0 by will be d) None of these d) -2/5 d) Mean nean remains same. The value d) \bar{x} s. Then the standard deviation d) as d) Median 0 and then is increased by 10, d) $a\bar{x} + 10$ ues 8 and 32 are further

a) $\frac{n^2 + 1}{12}$	b) $\frac{n^2 - 1}{12}$	c) $\frac{(n+1)(2n+1)}{6}$	d) None of these
133. What is the standard d	12	0	
Measurements 0-	10- 20- 30-	501105.	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Frequency 1	$\frac{20}{3}$ $\frac{30}{4}$ $\frac{10}{2}$		
a) 81		b) 7.6	
c) 9		d) 2.26	
134. If a variable takes discret	te values $r + 4$ $r - \frac{7}{2}$ $r - \frac{5}{2}$		x + 5 ($x > 0$) then the
	2 2	, x 0, x 2, x 2, x 2, x 2, x	$x + 0$, $(x \neq 0)$, then the
median is 5	1		5
a) $x - \frac{5}{4}$	b) $x - \frac{1}{2}$	c) <i>x</i> − 2	d) $x + \frac{5}{4}$
135. The weighted AM of first	<i>n</i> natural numbers whose	weights are equal to the co	rresponding numbers is
equal to		0 1	1 0
a) $2n + 1$	b) $\frac{1}{2}(2n+1)$	$\frac{1}{(2n+1)}$	d) $\frac{2n+1}{6}$
-	L	3	u) <u> </u>
136. If each of <i>n</i> numbers $x_i =$	i is replaced by $(i + 1)x_i$,	then the new mean is	
a) $\frac{(n+1)(n+2)}{n}$	b) $n + 1$	c) $\frac{(n+1)(n+2)}{2}$	d) None of these
п		3	
137. The most stable measure	-		
a) The mean	b) The median	,	d) None of these
138. If the median of the score			
a) 2	b) 3	c) 4	d) 5
139. Mode of a certain series i			
a) x 140 The coefficient of coefficient	b) $x - 3$	c) $x + 3$	d) 3 <i>x</i>
140. The coefficient of quartile	-		0 + 0
a) $\frac{Q_1 + Q_2}{4}$	b) $\frac{Q_3 + Q_1}{4}$	c) $\frac{Q_3 - Q_1}{Q_2 + Q_1}$	d) $\frac{Q_2 + Q_1}{Q_2 - Q_1}$
4	4	$Q_3 + Q_1$	$Q_2 = Q_1$
141. The means of a set of nur	nders is X. If each number	is divided by 3, then the ne	w mean is \overline{w}
a) <u>X</u>	b) $\overline{X} + 3$	c) 3 X	d) $\frac{\overline{X}}{3}$
142. The variance of the data	2 4 6 8 10 js		3
a) 6	b) 7	c) 8	d) None of these
143. If the sum of 11 consecut	,	-	-
a) 249	b) 250	c) 251	d) 252
144. If the two lines of regre	,	,	,
are		0 and 5x + 1y + 0 = 0, c	include incluis of x and .
	-4 11	4 _11	d) 4,7
a) $\frac{1}{7}$, $\frac{11}{7}$	b) $\frac{-4}{7}$, $\frac{11}{7}$	c) $\frac{1}{7}, \frac{11}{7}$	uj 4,7
145. The AM of <i>n</i> numbers of	/ /	/ /	the <i>nth</i> number is
	b) $n \overline{X} - k$	c) $\overline{X} - n k$	d) $n \overline{X} - n k$
•		$C J X - n \kappa$	$u j n x - n \kappa$
146. The 7th percentile is equ a) 7th decile		a) 6th daoila	d) None of these
147. Which of the following is	b) Q_3	c) 6th decile	d) None of these
		-	d) Pango
a) Mean 148. The median can graphica	b) Median	c) Mode	d) Range
a) Ogive	b) Histogram	c) Frequency curve	d) None of these
149. Mean of 100 observation			
	is ion in to was fatter toullu	······································	

149. Mean of 100 observation is 45. If it was later found that two observations 19 and 31 were incorrectly recorded as 91 and 13. The correct mean is a) 44

y

150. If the regression coef	ficients are 0.8 and 0.2, th	nen the value of coefficien	nt of correlation is
a) 0.16	b) 0.4	c) 0.04	d) 0.164
151. The arithmetic mean of	${}^{n}C_{0}, {}^{n}C_{1}, {}^{n}C_{2}, \dots, {}^{n}C_{n}$, is		
a) $\frac{2^n}{}$	b) $\frac{2^n-1}{n}$	c) $\frac{2^n}{2}$	d) $\frac{2^{n-1}}{2}$
152. If there exists a linear	statistical relationship b	etween two variable x an	nu y, then the regression
coefficient of yon x is $con(x, y)$	con(x, y)	con(x, y)	d) Nono of those
a) $\frac{cov(x,y)}{\sigma \sigma}$	b) $\frac{cov(x,y)}{\sigma_{y}^{2}}$	c) $\frac{cov(x,y)}{\tau^2}$	d) None of these
153. Mean marks scored b			
a) 60%	bys is 50. What is the perc b) 40%	c) 50%	d) 45%
154. The mean age of a co			,
	the group of women is 22		
group is	the group of women is 2.	r, men me percentage or	men and women in the
a) 46, 60	b) 80, 20	c) 20,80	d) 60, 40
155. The best statistical mea		, ,	
a) Mean derivation		b) Range	
c) Coefficient of variati	on	d) None of these	
156. If the mean of <i>n</i> observ	ations 1^2 , 2^2 , 3^2 ,, n^2 is $\frac{46n}{11}$	$\frac{n}{2}$, then <i>n</i> is equal to	
a) 11	b) 12		d) 22
157. A batsman scores runs	in 10 innings as 38, 70, 48, 3	34, 42, 55, 63, 46, 54 and 44	. The mean deviation about
mean is			
a) 8.6	b) 6.4	c) 10.6	d) 7.6
158. The intersecting poin	-		
a) $(\bar{x}, 0)$		c) (b_{xy}, b_{yx})	
159. If the values of regres		3 and -1.33, then the valu	ie of coefficients of
correlation between t			
a) 0.2	b) -0.66	c) 0.4	d) -0.4
160. In a bivariate data Σx		$.96, \Sigma xy = 850 \text{ and } n = 1$	10. the regression
coefficient of y on x is			
a) -3.1	b) -3.2	c) -3.3	d) -3.4
161. The mode of the data 6, a) Only 5	4,3,6,4,3,4,6,3, <i>x</i> can be b) Both 4 and 6	c) Both 3 and 6	d) 3, 4 or 6
162. The arithmetic mean of	•		uj 5,4010
	m 1		d) None of these
a) <i>n</i>	2	c) <i>n</i> – 1	-
163. If a variable takes discr	ete values $x + 4, x - \frac{7}{2}, x - \frac{7}{2}$	$\frac{5}{2}$, $x - 3$, $x - 2$, $x + \frac{1}{2}$, $x - \frac{1}{2}$	x + 5, ($x > 0$) then the
median is			
a) $x - \frac{5}{4}$	b) $x - \frac{1}{2}$	c) <i>x</i> – 2	d) $x + \frac{5}{4}$
4			4
164. If $x_1, x_2, x_3,, x_n$ are n $y_i = \frac{x_i - a}{h}; i = 1, 2,, n,$		$y_1, y_2,, y_n$ are <i>n</i> values of a	a vai iaule 1 Sucii ciide
п			
a) Var $(Y) = $ Var (X) b) Var $(X) = h^2$ Var (Y)			
c) $Var(X) = h^2 Var(X)$			
d) Var $(X) = h^2$ Var (X)	+a		
, , , , , , , , , , , , , , , , , , , ,		vo variates 11 and V the for	m X - a I + h V then mean

165. If a variate *X* is expressed as a linear function of two variates \mathcal{U} and *V* the form $X = a \mathcal{U} + b V$, then mean

\overline{X} of X is			
a) $a\overline{U} + b\overline{V}$	b) $\overline{\mathcal{U}} + \overline{V}$	c) $b \overline{U} + a \overline{U}$	d) None of these
	variance of <i>n</i> observations x_1 ,	,	-
		$\lambda_2, \lambda_3, \dots, \lambda_n$ are 5 and 0	respectively. If
	then the value of n is equal to	.) 20	
a) 80	b) 25	c) 20	d) 16
	ng frequency distribution with so	ome missing frequencies	
<u>Class</u> 10-20	Frequency		
20-30	180		
30-40	34		
40-50	180		
50-60	136		
60-70	- 50		
70-80	ency is 685 and median is 42.6, th	en missing frequencies are	respectively
a) 81, 24	b) 80, 25	c) 82, 23	d) 83, 22
		•	
	e and $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$ be t		
a) $S \leq r \left \frac{n}{1} \right $	b) $S = r \sqrt{\frac{n}{n-1}}$	c) $S \ge r \left \frac{n}{n} \right $	d) None of these
		$\sqrt{n-1}$	
169. The variance of			5 ()] ²
a) $\frac{n^2+1}{12}$	b) $\frac{n^2 - 1}{12}$	c) $\frac{(n+1)(2n+1)}{6}$	d) $\left[\frac{n(n+1)}{2}\right]^2$
170. Quartile deviatio	n is	0	
-		2	<u>,</u> 5
a) $\frac{4}{5}\sigma$	b) $\frac{3}{2}\sigma$	c) $\frac{2}{3}\sigma$	d) $\frac{5}{4}\sigma$
171. If the mean of the	e following distribution is 13, the	n $p =$	
$x_i: 5 10 12$			
$f_i: 9 3 p$	8 7 5		
a) 6	b) 7	c) 10	d) 4
172. If a variable x takes	$xes values x_i such that a \le x_i \le b$		
a) $a^2 \leq \operatorname{var}(x) \leq$	b) $a \le \operatorname{var}(x) \le b$	c) $\frac{a^2}{4} \leq \operatorname{var}(x)$	d) $(b-a)^2 \ge \operatorname{var}(x)$
	nonotonically increasing or decre	easing function of x and M	is the median of variable <i>x</i> ,
then the median	,		
a) <i>f</i> (<i>M</i>)	b) <i>M</i> /2	c) $f^{-1}(M)$	d) None of these
	quency table which has been part	tly reproduced here, the Ar	ithmetric mean was found to
be Rs 28.07			
Income (in Rs)	No. of workers		
15 20	8 12		
25	?		
30	16		
35	?		
40		c · · · · · ·	
	er of workers is 75, then missing		
a) 14, 15	b) 15, 14	c) 13, 16	d) 12, 17
	nt with 15 observations on x , the observation of x and x observation that was 20		
	0. One observation that was 20		and was replaced by the
). Then, the corrected variance		N 0 00
a) 78.0	b) 188.66	c) 177.33	d) 8.33
176. The following ag	e group are included in the propo	ortion indicated	

Age Group	Relative Proportion in Population
12-17	0.17
18-23	0.31
24-29	0.27
30-35	0.21
36+	0.04

How many of each age group should be included in a sample of 3000 people to make the sample representative?

the sample rep			
a) 850, 155, 13	5, 905, 955	b) 510, 930, 810, 63	30, 120
c) 600, 600, 60	0, 600, 600	d) 510, 630, 950, 10	00, 810
177. The mean of th	e value of 1, 2, 3, <i>n</i> with resp	ectively frequencies <i>x</i> , 2 <i>x</i> , 3	<i>x</i> , <i>nx</i> is
a) $\frac{n}{2}$	b) $\frac{1}{3}(2n+1)$	c) $\frac{1}{6}(2n+1)$	d) $\frac{n}{2}$
178. If $Z = aX + b$	Y and r be the correlation co	efficient between X and Y	Y, then σ_Z^2 is equal to
a) $a^2 \sigma_X^2 + b^2 \sigma$	$\sigma_Y^2 + 2abr\sigma_X\sigma_Y$	b) $a^2 \sigma_X^2 + b^2 \sigma_Y^2 - b$	$2abr\sigma_X\sigma_Y$
c) $2abr\sigma_X\sigma_Y$		d) None of the abo	ove
179. The mean devia	ation of the series $a, a + d, a + d$	$2d, \ldots, a + 2nd$ from its mea	an, is
a) $\frac{(n+1)d}{2n+1}$	b) $\frac{nd}{2n+1}$	c) $\frac{n(n+1)d}{2n+1}$	d) $\frac{(2n+1)d}{n(n+1)}$
180. The AM of the s	series 1,2,4,8,16,, 2^n , is		
	b) $\frac{2^{n+1}-1}{n+1}$	$2^{n} + 1$	d) $\frac{2^n - 1}{n + 1}$
$n = \frac{n}{n}$	$b j \frac{1}{n+1}$	$\frac{c}{n}$	$dJ \overline{\frac{n+1}{n+1}}$
181. A group of 10 it	tems has arithmetic mean 6. If	the arithmetic mean of 4 of	these items is 7.5, then the mean
of the remainin	ig items is		
a) 6.5	b) 5.5	c) 4.5	d) 5.0
182. If the coefficie	ent of variation is 45% and th	ie mean is 12 then its stai	ndard derivation is
a) 5.2	b) 5.3	c) 5.4	d) None of these
183. Consider any se	et of 201 observations x_1, x_2, \dots	x_{200}, x_{201} . It is given that x_1	$< x_2 < \dots < x_{200} < x_{201}$. Then,
the mean devia	tion of this set of observations	about a point <i>k</i> is minimum	n when <i>k</i> equals
$(x_1 + x_2 + \dots$	$+x_{200}$		
a)	$+ r_{roa}$) b) r_{a}	$() x_{101}$	d) r_{aad}

a) $+ x_{201}$) b) x_1 c) x_{101} d) x_{201} /201

184. Consider the following statements :

1. The values of median and mode can be determined graphically

2. Mean, Median and Mode have the same unit

3. Range is the best measure of dispersion.

Which of these is/are correct?

c) Both (2) and (3) a) (1) alone b) (2) alone d) None of these 185. Variance is independent of change of

a) Origin only b) Scale only c) Origin and scale both d) None of these

186. The algebraic sum of the deviation of 20 observations measured from 30 is 2. Then, mean of observations is

a) 28.5 b) 30.1 c) 30.5 d) 29.6 187. The average marks of boys in a class is 52 and that of girls is 42. The average marks of boys and

girls combined is 50. The percentage of boys in the class is

a) 40% b) 20% c) 80% d) 60% 188. If the mean of five observations x, x + 2, x + 4, x + 6 and x + 8 is 11, then the mean of last three observations is

a) 13 b) 15

d) None of these c) 17 189. In a series of 2n observations, half of them equal a and remaining half equal – a. If the standard deviation of the observations is 2, then |a| equals

a)
$$\frac{1}{n}$$
 b) $\sqrt{2}$ c) 2 d) $\frac{\sqrt{2}}{n}$

190. The weighted means of first *n* natural numbers whose weights are equal to the squares of corresponding numbers is

a)
$$\frac{n+1}{2}$$
 b) $\frac{3 n(n+1)}{2(2 n+1)}$ c) $\frac{(n+1)(2 n+1)}{6}$ d) $\frac{n(n+1)}{2}$

191. Which one of the following statements is incorrect?

a) If \overline{X} is the mean of *n* values of a variable *X*, then $\sum_{i=1}^{n} (x_i - \overline{X})$ is equal to 0

- b) If \overline{X} is the mean of *n* values of a variable *X* and *a* has any value other than \overline{X} , then $\sum_{i=1}^{n} (x_1 \overline{X})^2$ is the least value of $\sum_{i=1}^{n} (x_i a)^2$
- c) The mean deviation of the data is least when deviations are taken about mean
- d) The mean deviation of the data is least when deviations are taken about median
- 192. The mean of *n* items is \overline{X} . If the first term is increased by 1, second by 2 and so on, then the new mean is

a)
$$\overline{X} + n$$
 b) $\overline{X} + \frac{n}{2}$ c) $\overline{X} + \frac{n+1}{2}$ d) None of these
193. The standard deviation for the scores 1, 2, 3, 4, 5, 6 and 7 is 2. Then, the standard deviation of 12,
23, 34, 45, 56, 67 and 78 is
a) 2 b) 4 c) 22 d) 11

- 194. The first of two samples has 100 items with mean 15 and SD=3. If the whole group has 250 items with mean 15.6 and $SD = \sqrt{13.44}$, the SD of the second group is
- a) 4 b) 5 c) 6 d) 3.52 195. The GM of the series 1,2,4,8,16, ..., 2ⁿ is
- a) $2^{n+1/2}$ b) 2^{n+1} c) $2^{n/2}$ d) 2^n 196. The standard deviation of a variable *x* is 10. Then, the standard deviation of 50 + 5x is
- a) 50 b) 550 c) 10 d) 500

197. The two lines of regression are given by 3x + 2y = 26 and 6x + y = 31. The coefficient of correlation between *x* and *y* is

a) -1/3 b) 1/3 c) -1/2 d) 1/2

198. If θ is the angle between two regression lines with correlation coefficient *y*, then a) $sinθ ≥ 1 - γ^2$ b) $sinθ ≤ 1 - γ^2$ c) $sinθ ≤ γ^2 + 1$ d) $sinθ ≤ γ^2 - 1$

199. The standard deviation of *n* observations x_1, x_2, \dots, x_n is 2. If $\sum_{i=1}^n x_i = 20$ and $\sum_{i=1}^n x_i^2 = 100$, then *n* is

a) 10 or 20 b) 5 or 10 c) 5 or 20 d) 5 or 15 200. Median of ${}^{2n}C_0$, ${}^{2n}C_1$, ${}^{2n}C_2$, ${}^{2n}C_3$,...., ${}^{2n}C_n$ (where *n* is even) is a) ${}^{2n}C_n \over 2$ b) ${}^{2n}C_{n+1} \over 2$ c) ${}^{2n}C_{n-1} \over 2$ d) None of these

201. If a variable *X* takes values 0,1,2, ..., *n* with frequencies proportional to the binomial coefficients ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$, ..., ${}^{n}C_{n}$, the mean square deviation about x = 0, is

a)
$$\frac{n(n-1)}{4}$$
 b) $\frac{n(n+1)}{4}$ c) $\frac{n(n-1)}{2}$ d) $\frac{n(n+1)}{2}$

202. If the mean of a set of observations $x_1, x_2, ..., x_n$ is \overline{X} , then the mean of the observations $x_i + 2i$; i = 1, 2, ..., n is

a) $\overline{X} + 2$ b) $\overline{X} + 2n$ c) $\overline{X} + (n+1)$ d) $\overline{X} + n$

203. Consider the following statements :

- 1. In a bar graph not only height but also width of each rectangle matters
- 2. In a bar graph height of each rectangle matters and not its width
- 3. In a histogram the height as well as the width of each rectangle matters
- 4. A bar graph is two-dimensional of these statements

Which of these is/are correct?

- a) (1) alone is correct b) (3) alone is correct
- c) (2) and (3) are correct d) (1) and (4) are correct
- 204. A batsman scores sums in 10 innings 38, 70, 48, 34, 42, 55, 46, 63, 54 and 44, then the deviation from median is

a) 8.6 b) 6.4 c) 9.6 d) 10.6 205. If a variable takes values 0, 1, 2, ..., *n* with frequencies 1, ${}^{n}C_{1}$, ${}^{n}C_{2}$, ..., ${}^{n}C_{n}$, then the AM is a) *n* b) $\frac{2^{n}}{n}$ c) n + 1 d) $\frac{n}{2}$

206. The mean deviation of the data 2,9,9,3,6,9,4 from the mean is a) 2.23 b) 2.57 c) 3.23

207. If the variable takes the values 0, 1, 2,, *n* with frequencies proportional to the binomial coefficients $C(n, 0), C(n, 1), C(n, 2), \dots, C(n, n)$ respectively, then the variance of the distribution is

d) 3.57

d) $\frac{3}{2}$

a)
$$n$$
 b) $\frac{\sqrt{n}}{2}$ c) $\frac{n}{2}$ d) $\frac{n}{4}$

208. Angle between two lines of regression is given by

a)
$$\tan^{-1}\left(\frac{b_{xy} - \frac{1}{b_{yx}}}{1 - \frac{b_{xy}}{b_{yx}}}\right)$$
 b) $\tan^{-1}\left(\frac{b_{yx} \cdot b_{xy} - 1}{b_{yx} + b_{xy}}\right)$ c) $\tan^{-1}\left(\frac{b_{xy} - \frac{1}{b_{yx}}}{1 + \frac{b_{xy}}{b_{yx}}}\right)$ d) $\tan^{-1}\left(\frac{b_{yx} - b_{xy}}{1 + b_{yx} \cdot b_{xy}}\right)$

- 209. The mean of the *n* observations $x_1, x_2, x_3, \dots, x_n$ be \bar{x} . Then , the mean of *n* observations $2x_1 + 3, 2x_2 + 3, 2x_3 + 3, \dots, 2x_n + 3$ is
- a) $3\bar{x} + 2$ b) $2\bar{x} + 3$ c) $\bar{x} + 3$ d) $2\bar{x}$ 210. The mean of the values 0, 1, 2, 3, ... n with the corresponding weights ${}^{n}C_{0}, {}^{n}C_{1}, ..., {}^{n}C_{n}$ respectively is 2^{n} 2^{n+1} n+1 n

a)
$$\frac{2^{n}}{(n+1)}$$
 b) $\frac{2^{n+1}}{n(n+1)}$ c) $\frac{n+1}{2}$ d) $\frac{n}{2}$

211. One of the methods of determining mode is

a) Mode = 2 median -3 mean

- b) Mode = $2 \mod +3 \mod +3$
- c) Mode = 3 median 2 mean
- d) Mode = 3 median + 2 mean

^{212.} If $x_1, x_2, ..., x_{18}$ are observation such that $\sum_{j=1}^{18} (x_j - 8) = 9$ and $\sum_{j=1}^{18} (x_j - 8)^2 = 45$, then these standard derivation of these observations is

a)
$$\sqrt{\frac{81}{34}}$$
 b) 5 c) $\sqrt{5}$

213. For dealing with qualitative data the best average is

a) AM b) GM c) Mode d) Median 214. The average of the squares of the numbers 0, 1, 2, 3,4, ..., *n* is

a)
$$\frac{1}{2}n(n+1)$$
 b) $\frac{1}{6}n(2n+1)$ c) $\frac{1}{6}(n+1)(2n+1)$ d) $\frac{1}{6}n(n+1)$

^{215.} If the standard deviation of a variable *x* is σ , then the standard deviation of another variable $\frac{ax+b}{c}$ is

a)
$$\frac{\sigma a+b}{c}$$
 b) $\frac{\sigma a}{c}$ c) σ d) None of these 216. In a class of 100 students, the average amount of pocket money is Rs 35 per student. If the average is Rs 25

entire class are 280	dents, 10 have failed and their 00. The average marks of thos		e total marks obtained by the
a) 43	b) 53	c) 63	d) 70
,	tion of a distribution is least v	vhen deviations are taken a	,
a) Mean	b) Median	c) Mode	d) None of these
220. Standard deviation	on of the first $2n + 1$ natura	l numbers is equal to	
n(n+1)	n(n+1)(2n+1)	n(n+1)	$\frac{1}{n(n-1)}$
a) $\sqrt{\frac{n(n+1)}{2}}$	b) $\sqrt{\frac{n(n+1)(2n+1)}{3}}$	$C \int \sqrt{\frac{3}{3}}$	d) $\sqrt{\frac{n(n-1)}{2}}$
221. For two data sets	, each of size 5, the variance	e are given to be 4 and 5	and the corresponding
means are given t	to be 2 and 4, respectively.	The variance of the comb	oined data set is
a) $\frac{5}{2}$	b) $\frac{11}{2}$	c) 6	d) $\frac{13}{2}$
Z	ares of derivations of a set of	values is minimum when ta	2
a) AM	b) GM	c) HM	d) Median
	x = 9 and regression equat	tions are $4x - 5y + 33 =$,
	ient of correlation between		
a) 0.6;16	b) 0.16;16	c) 0.3;4	d) 0.6;4
224. The mean of the v	values 0,1,2,3,, <i>n</i> with the	corresponding weights	${}^{n}C_{0}, {}^{n}C_{1}, \dots, {}^{n}C_{n}$
respectively, is			
a) $\frac{n+1}{2}$	b) $\frac{n-1}{2}$	c) $\frac{2^{n}-1}{2}$	d) $\frac{n}{2}$
225. The measure whicl	h takes into account all the da	ta items is	
a) Mean	b) Median	c) Mode	d) None of these
226. The average of th	e four-digit numbers that c	an be formed using each	of the digits 3, 5, 7 and 9
exactly once in ea	ich number, is		
exactly once in ea a) 4444	hch number, is b) 5555	c) 6666	d) 7777
a) 4444		uch that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is t	the mean of the combined
a) 4444 227. If \overline{X}_1 and \overline{X}_2 are the	b) 5555	uch that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is t	the mean of the combined
a) 4444 227. If \overline{X}_1 and \overline{X}_2 are the distribution, then	b) 5555 e means of two distributions s b) $\overline{X} > \overline{X}_2$	-	the mean of the combined
a) 4444 227. If \overline{X}_1 and \overline{X}_2 are the distribution, then a) $\overline{X} < \overline{X}_1$	b) 5555 e means of two distributions s b) $\overline{X} > \overline{X}_2$	uch that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is t	the mean of the combined
a) 4444 227. If \overline{X}_1 and \overline{X}_2 are the distribution, then a) $\overline{X} < \overline{X}_1$ 228. Geometric mean of a) 18	b) 5555 e means of two distributions s b) $\overline{X} > \overline{X}_2$ 5 3, 9, and 27, is	uch that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is to c) $\overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ c) 9	the mean of the combined d) $\overline{X}_1 < \overline{X} < \overline{X}_2$ d) None of these
a) 4444 227. If \overline{X}_1 and \overline{X}_2 are the distribution, then a) $\overline{X} < \overline{X}_1$ 228. Geometric mean of a) 18 229. Two numbers with	b) 5555 e means of two distributions s b) $\overline{X} > \overline{X}_2$ f 3, 9, and 27, is b) 6	uch that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is the condition of $\overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ c) 9 e ranks of 10 students of	the mean of the combined d) $\overline{X}_1 < \overline{X} < \overline{X}_2$ d) None of these a class in two subjects (1,
a) 4444 227. If \overline{X}_1 and \overline{X}_2 are the distribution, then a) $\overline{X} < \overline{X}_1$ 228. Geometric mean of a) 18 229. Two numbers with	b) 5555 e means of two distributions s b) $\overline{X} > \overline{X}_2$ 53, 9, and 27, is b) 6 thin the brackets denote the	uch that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is the c) $\overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ c) 9 e ranks of 10 students of 3), (9,2), (10,1), then ran	the mean of the combined d) $\overline{X}_1 < \overline{X} < \overline{X}_2$ d) None of these a class in two subjects (1,
a) 4444 227. If \overline{X}_1 and \overline{X}_2 are the distribution, then a) $\overline{X} < \overline{X}_1$ 228. Geometric mean of a) 18 229. Two numbers wit 10), (2,9), (3,8), (a) 0	b) 5555 e means of two distributions s b) $\overline{X} > \overline{X}_2$ 53, 9, and 27, is b) 6 thin the brackets denote the (4,7), (5,6), (6,5), (7,4), (8,3 b) -1	uch that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is the c) $\overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ c) 9 e ranks of 10 students of 3), (9,2), (10,1), then random c) 1	the mean of the combined d) $\overline{X}_1 < \overline{X} < \overline{X}_2$ d) None of these a class in two subjects (1, k correlation coefficient is d) 0.5
a) 4444 227. If \overline{X}_1 and \overline{X}_2 are the distribution, then a) $\overline{X} < \overline{X}_1$ 228. Geometric mean of a) 18 229. Two numbers with 10), (2,9), (3,8), (a) 0 230. If the mean of <i>n</i> of	b) 5555 e means of two distributions s b) $\overline{X} > \overline{X}_2$ f 3, 9, and 27, is b) 6 thin the brackets denote the (4,7), (5,6), (6,5), (7,4), (8,3) b) -1 observation 1 ² , 2 ² , 3 ² ,, n ²	uch that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is the c) $\overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ c) 9 e ranks of 10 students of 3), (9,2), (10,1), then rance c) 1 c) 1 c) 1 c) 1 c) 1 c) 1 c) 1 c) 1	the mean of the combined d) $\overline{X}_1 < \overline{X} < \overline{X}_2$ d) None of these a class in two subjects (1, k correlation coefficient is d) 0.5
a) 4444 227. If \overline{X}_1 and \overline{X}_2 are the distribution, then a) $\overline{X} < \overline{X}_1$ 228. Geometric mean of a) 18 229. Two numbers with 10), (2,9), (3,8), (a) 0 230. If the mean of <i>n</i> of a) 11	b) 5555 e means of two distributions s b) $\overline{X} > \overline{X}_2$ 53,9, and 27, is b) 6 thin the brackets denote the (4,7), (5,6), (6,5), (7,4), (8,3 b) -1 observation 1 ² , 2 ² , 3 ² ,, n ² b) 12	uch that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is the c) $\overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ c) 9 e ranks of 10 students of 3), (9,2), (10,1), then rance c) 1 e is $\frac{46n}{11}$, then <i>n</i> is equal to c) 23	the mean of the combined d) $\overline{X}_1 < \overline{X} < \overline{X}_2$ d) None of these a class in two subjects (1, k correlation coefficient is d) 0.5 d) 22
a) 4444 227. If \overline{X}_1 and \overline{X}_2 are the distribution, then a) $\overline{X} < \overline{X}_1$ 228. Geometric mean of a) 18 229. Two numbers with 10), (2,9), (3,8), (a) 0 230. If the mean of <i>n</i> of a) 11 231. The mean of a certa	b) 5555 e means of two distributions s b) $\overline{X} > \overline{X}_2$ 53,9, and 27, is b) 6 thin the brackets denote the (4,7), (5,6), (6,5), (7,4), (8,3 b) -1 observation 1 ² , 2 ² , 3 ² ,, n ² b) 12	uch that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is the c) $\overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ c) 9 e ranks of 10 students of 3), (9,2), (10,1), then rance c) 1 e is $\frac{46n}{11}$, then <i>n</i> is equal to c) 23	the mean of the combined d) $\overline{X}_1 < \overline{X} < \overline{X}_2$ d) None of these a class in two subjects (1, k correlation coefficient is d) 0.5
a) 4444 227. If \overline{X}_1 and \overline{X}_2 are the distribution, then a) $\overline{X} < \overline{X}_1$ 228. Geometric mean of a) 18 229. Two numbers with 10), (2,9), (3,8), (a) 0 230. If the mean of <i>n</i> of a) 11 231. The mean of a certa	b) 5555 e means of two distributions s b) $\overline{X} > \overline{X}_2$ f 3, 9, and 27, is b) 6 thin the brackets denote the (4,7), (5,6), (6,5), (7,4), (8,3) b) -1 observation 1 ² , 2 ² , 3 ² ,, n ² b) 12 ain number of observations is the new observations is	uch that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is the c) $\overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ c) $\overline{Y} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ c) 9 e ranks of 10 students of 8), (9,2), (10,1), then rand c) 1 e is $\frac{46n}{11}$, then <i>n</i> is equal to c) 23 <i>m</i> . If each observation is d	the mean of the combined d) $\overline{X}_1 < \overline{X} < \overline{X}_2$ d) None of these a class in two subjects (1, k correlation coefficient is d) 0.5 d) 22
a) 4444 227. If \overline{X}_1 and \overline{X}_2 are the distribution, then a) $\overline{X} < \overline{X}_1$ 228. Geometric mean of a) 18 229. Two numbers with 10), (2,9), (3,8), (a) 0 230. If the mean of <i>n</i> of a) 11 231. The mean of a certa by <i>y</i> , then mean of a) <i>mx</i> + <i>y</i>	b) 5555 e means of two distributions s b) $\overline{X} > \overline{X}_2$ f 3, 9, and 27, is b) 6 thin the brackets denote the (4,7), (5,6), (6,5), (7,4), (8,3) b) -1 observation 1 ² , 2 ² , 3 ² ,, n ² b) 12 ain number of observations is the new observations is b) $\frac{mx + y}{x}$	uch that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is the c) $\overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ c) 9 e ranks of 10 students of 3), (9,2), (10,1), then rand c) 1 f is $\frac{46n}{11}$, then <i>n</i> is equal to c) 23 <i>m</i> . If each observation is derived by $\frac{m + xy}{x}$	the mean of the combined d) $\overline{X}_1 < \overline{X} < \overline{X}_2$ d) None of these a class in two subjects (1, k correlation coefficient is d) 0.5 d) 22 ivided by $x (\neq 0)$ and increased d) $m + xy$
a) 4444 227. If \overline{X}_1 and \overline{X}_2 are the distribution, then a) $\overline{X} < \overline{X}_1$ 228. Geometric mean of a) 18 229. Two numbers with 10), (2,9), (3,8), (a) 0 230. If the mean of <i>n</i> of a) 11 231. The mean of a certary by <i>y</i> , then mean of a) $mx + y$ 232. Let x_1, x_2, \dots, x_n	b) 5555 e means of two distributions s b) $\overline{X} > \overline{X}_2$ f 3, 9, and 27, is b) 6 thin the brackets denote the (4,7), (5,6), (6,5), (7,4), (8,3) b) -1 observation 1 ² , 2 ² , 3 ² ,, n ² b) 12 ain number of observations is the new observations is b) $\frac{mx + y}{x}$ the not servation such the servation of the s	uch that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is the c) $\overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ c) 9 e ranks of 10 students of 3), (9,2), (10,1), then rand c) 1 f is $\frac{46n}{11}$, then <i>n</i> is equal to c) 23 <i>m</i> . If each observation is derived by $\frac{m + xy}{x}$	the mean of the combined d) $\overline{X}_1 < \overline{X} < \overline{X}_2$ d) None of these a class in two subjects (1, k correlation coefficient is d) 0.5 d) 22 ivided by $x(\neq 0)$ and increased
a) 4444 227. If \overline{X}_1 and \overline{X}_2 are the distribution, then a) $\overline{X} < \overline{X}_1$ 228. Geometric mean of a) 18 229. Two numbers with 10), (2,9), (3,8), (a) 0 230. If the mean of <i>n</i> of a) 11 231. The mean of a certa by <i>y</i> , then mean of a) <i>mx</i> + <i>y</i>	b) 5555 e means of two distributions s b) $\overline{X} > \overline{X}_2$ f 3, 9, and 27, is b) 6 thin the brackets denote the (4,7), (5,6), (6,5), (7,4), (8,3) b) -1 observation 1 ² , 2 ² , 3 ² ,, n ² b) 12 ain number of observations is the new observations is b) $\frac{mx + y}{x}$ the not servation such the servation of the s	uch that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is the c) $\overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ c) 9 e ranks of 10 students of 3), (9,2), (10,1), then rand c) 1 f is $\frac{46n}{11}$, then <i>n</i> is equal to c) 23 <i>m</i> . If each observation is derived by $\frac{m + xy}{x}$	the mean of the combined d) $\overline{X}_1 < \overline{X} < \overline{X}_2$ d) None of these a class in two subjects (1, k correlation coefficient is d) 0.5 d) 22 ivided by $x (\neq 0)$ and increased d) $m + xy$

						: ANS	WER	KEY	· -					
1)	d	2)	d	3)	а	4)	c 12		122)	С	123)	С	124)]
5)	d	6)	С	7)	а	8)	b 12		126)	С	127)	d	128)	
9)	С	10)	С	11)	а	12)	d 12) d	130)	С	131)	b	132)	1
13)	С	14)	b	15)	а	16)	b 13	s) c	134)	а	135)	С	136)	
17)	С	18)	b	19)	b	20)	d 13'	7) a	138)	b	139)	b	140)	
21)	а	22)	а	23)	С	24)	d 14	L) d	142)	С	143)	С	144)	i
25)	а	26)	b	27)	а	28)	d 14	5) b	146)	d	147)	d	148)	i
29)	а	30)	b	31)	d	32)	b 14	Э) с	150)	b	151)	С	152)	
33)	d	34)	b	35)	d	36)	b 15	3) a	154)	b	155)	С	156)	i
37)	b	38)	b	39)	b	40)	a 15'	7) a	158)	d	159)	b	160)	(
41)	d	42)	с	43)	b	44)	a 16	l) d	162)	а	163)	а	164)	(
45)	а	46)	а	47)	d	48)	b 16	5) a	166)	d	167)	С	168)	i
49)	b	50)	с	51)	а	52)	a 16)) b	170)	С	171)	b	172)	
53)	b	54)	С	55)	d	56)	d 17	3) a	174)	b	175)	а	176)	1
57)	b	58)	b	59)	b	60)	a 17'	7) b	178)	а	179)	С	180)	1
61)	d	62)	а	63)	b	64)	b 18	l) d	182)	С	183)	С	184)	i
65)	d	66)	С	67)	а	68)	a 18	5) a	186)	b	187)	С	188)	i
69)	d	70)	b	71)	b	72)	c 18	Э) с	190)	b	191)	d	192)	
73)	С	74)	b	75)	а	76)	b 193	3) c	194)	а	195)	а	196)	i
77)	С	78)	С	79)	а	80)	c 19'	7) c	198)	b	199)	С	200)	i
81)	d	82)	а	83)	b	84)	b 20	l) b	202)	С	203)	С	204)	i
85)	b	86)	b	87)	а	88)	c 20	5) d	206)	b	207)	d	208)	1
89)	а	90)	С	91)	b	92)	c 20)) b	210)	d	211)	С	212)	(
93)	С	94)	С	95)	С	96)	d 21	3) d	214)	b	215)	b	216)	(
97)	С	98)	С	99)	d	100)	d 21'	7) d	218)	С	219)	а	220)	
101)	С	102)	С	103)	b	104)	a 22	l) b	222)	а	223)	а	224)	(
105)	b	106)	С	107)	С	108)	d 22	5) a	226)	С	227)	d	228)	
109)	b	110)	d	111)	d	112)	d 22)) b	230)	а	231)	С	232)	(
113)	с	114)	С	115)	а	116)	с							
117)	b	118)	d	119)	С	120)	b							

15.STATISTIES

: HINTS AND SOLUTIONS :

1 (d)

Since variance is independent of change of origin. Hence, variance of observations 101, 102,, 200 is same as variance of observations 151, 152, ...,250.

$$\therefore V_A = V_B$$
$$\Rightarrow \frac{V_A}{V_B} = 1$$

3 **(a)**

Let $x_1, x_2, ..., x_n$ be *n* values of *X*. Then,

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{X})^{2}$$
 ... (i)

The variable a X + b takes values $a x_1 + b$, $a x_2 + b$, ..., $a x_n + b$ with mean $a \overline{X} + b$

$$\therefore \operatorname{Var}(aX+b) = \frac{1}{n} \sum_{i=1}^{n} \{ (ax_i+b) - (a\overline{X}+b) \}^2$$
$$= a^2 \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X})^2$$
$$\Rightarrow (S. D. \text{ of } aX+b) = \sqrt{a^2 \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X})^2} = |a|\sigma$$

4 **(c)**

Total weight of 9 items = $15 \times 9 = 135$ And total weight of 10 items = $16 \times 10 = 160$ \therefore weight of 10th item = 160 - 135 = 25

5 **(d)**

$$\bar{x} = \frac{-1+0+4}{3} = 1$$

$$\therefore MD = \frac{\Sigma |x_i - \bar{x}|}{n}$$

$$= \frac{|-1-1|+|0-1|+|4-1|}{3}$$

$$= 2$$

6

7

(a)

(c)

$$\theta = \tan^{-1} \left\{ \frac{\frac{2}{3} \times \frac{4}{3} - 1}{\frac{2}{3} + \frac{4}{3}} \right\}$$
$$\Rightarrow \theta = \tan^{-1} \left\{ -\frac{\frac{1}{9}}{2} \right\} = \tan^{-1} \left\{ -\frac{1}{18} \right\}$$
$$\therefore \text{ Angle is acute angle.}$$
$$\therefore k = \frac{1}{18}$$

According to the given condition

$$6.80 = \frac{\begin{bmatrix} (6-a)^2 + (6-b)^2 + (6-8)^2 \\ + (6-5)^2 + (6-10)^2 \end{bmatrix}}{5}$$

$$\Rightarrow 34 = (6-a)^2 + (6-b)^2 + 4 + 1 + 16$$

$$\Rightarrow (6-a)^2 + (6-b)^2 = 13 = 9 + 4$$

$$= 3^2 + 2^2$$

$$\Rightarrow a = 3, b = 4$$

8 **(b)**

On arranging the terms in increasing order of magnitude

40,42,45,47,50,51,54,55,57

Number of terms ,N=9

: Median
$$= \left(\frac{9+1}{2}\right)$$
 th term $= 50$ kg

Weight	Deviation	[d]
(kg)	from	
	median (d)	
40	-10	10
42	-8	8
45	-5	5
47	-3	3
50	0	0
51	1	1
54	4	4
55	5	5
57	7	7
		d =43

MD from median= $\frac{43}{9}$ = 4.78kg

∴Coefficient of MD from median MD

$$= \frac{1}{\frac{\text{median}}{1}}$$
$$= \frac{4.78}{50} = 0.0956$$

9 **(c)**

The required weighted mean is given by $\frac{1}{1}$ $1 \cdot 1 + 2 \cdot 2 + 3 \cdot 3 + \dots + n \cdot n$

$$X = \frac{1+2+3+\dots+n}{1+2+3+\dots+n}$$

$$\Rightarrow \overline{X} = \frac{\frac{n(n+1)(2n+1)}{6}}{\frac{n(n+1)}{2}} = \frac{2n+1}{3}$$

11 **(a)** We have, $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

$$\therefore \quad \operatorname{var}(\bar{x}) = \frac{1}{n^2} \left[\sum_{i=1}^n \operatorname{var}(x_i) + 2 \sum_{i \neq j}^n \operatorname{cov}(x_i, x_j) \right]$$
$$= \frac{1}{n^2} [n\sigma^2] = \frac{\sigma^2}{n}$$
$$[\because x_i \text{ and } x_j \text{ are independent variable, therefore}]$$

 $\operatorname{cov}(x_i, x_j) = 0]$

14 **(b)**

The required AM is

$$\bar{X} = \frac{1+2+2^2+2^3+\ldots+2^n}{n+1}$$

$$= \frac{1(2^{n+1}-1)}{(2-1)} \cdot \frac{1}{(n+1)} = \frac{2^{n+1}-1}{n+1}$$

15 **(a)**

Given,
$$r = 0.8$$
 and $b_{yx} = 0.2$
 $\therefore r^2 = b_{xy}b_{yx}$
 $\Rightarrow (0.8)^2 = b_{xy}. (0.2)$
 $\Rightarrow b_{xy} = \frac{0.64}{0.2} = 3.2$

16 **(b)**

If the values of mean, median and mode coincide, then the distribution is symmetric distribution.

17 **(c)**

$$r = \frac{\frac{1}{n}\Sigma xy - \bar{x}\bar{y}}{\sigma_x \times \sigma_y} = \frac{\frac{1}{10} \times 12 - 0}{2 \times 3} = 0.2$$

18 **(b)**

In the given distribution 6 occurs most of the times hence mode of the series=6.

22 (a)

$$\bar{x} = \frac{1+2+3+\ldots+n}{n} = \frac{(n+1)}{2}$$

Variance, $\sigma^2 = \frac{\sum (x_i)^2}{n} - (\bar{x})^2$
 $= \frac{\sum n^2}{n} - \left(\frac{n+1}{2}\right)^2$
 $= \frac{n(n+1)(2n+1)}{6n} - \left(\frac{n+1}{2}\right)^2$
 $= \frac{n^2 - 1}{12}$

Coefficient of skewness =
$$\frac{Q_3 - Q_1 - 2(median)}{Q_3 - Q_1}$$

= $\frac{25.2 + 14.6 - 2(18.8)}{25.2 - 14.6}$
= $\frac{2.2}{10.6} = 0.20$

Let $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_n$ be two series of observations with geometric means G_1 and G_2

respectively Then,

$$G_1 = (x_1 \cdot x_2 \cdot ... \cdot x_n)^{1/n}$$
 and $G_2 = (y_1 \cdot y_2 \cdot ... yn1/n)^{1/n}$

Since *G* is the geometric mean of the ratios of the corresponding observations

$$\therefore G = \left(\frac{x_1}{y_1} \cdot \frac{x_2}{y_2} \cdot \dots \cdot \frac{x_n}{y_n}\right)^{1/n} = \frac{(x_1 x_2 \dots x_n)^{1/n}}{(y_1 \cdot y_2 \dots y_n)^{1/n}} = \frac{G_1}{G_2}$$

28 **(d)**

We know that,

$$r = \pm \sqrt{b_{yx} \cdot b_{xy}}$$

Also we know that sign of r, b_{xy}, b_{yx} are all same.

$$\therefore r = (\text{sign of } b_{yx}) \sqrt{b_{yx} \cdot b_{xy}}$$

30 **(b)**

Let
$$Y = \frac{a X + b}{c}$$
. Then, $\overline{Y} = \frac{1}{c} (a \overline{X} + b)$
 $\therefore Y - \overline{Y} = \frac{a}{c} (X - \overline{X})$
 $\Rightarrow \frac{1}{N} \sum (Y - \overline{Y})^2 = \frac{a^2}{c^2} \frac{1}{N} \sum (X - \overline{X})^2$
 $\therefore \sigma_Y = \sqrt{\frac{a^2}{c^2} \times \frac{1}{N} \sum (X - \overline{X})^2} = \sqrt{\frac{a^2}{c^2} \sigma^2} = \left|\frac{a}{c}\right| \sigma$

31 **(d)** We have

$$\overline{X} = \frac{x_1 + x_2 + \dots + x_{n-1} + x_n}{n}$$

$$\Rightarrow n \,\overline{X} = x_1 + x_2 + \dots + x_{n-1} + x_n$$
Let \overline{Y} be the new mean when x_2 is replaced by λ .
Then,

$$\overline{Y} = \frac{x_1 + \lambda + x_3 + \dots + x_{n-1} + x_n}{n}$$

$$\Rightarrow \overline{Y} = \frac{(x_1 + x_2 + \dots + x_n) - x_2 + \lambda}{n}$$

$$\Rightarrow \overline{Y} = \frac{n \,\overline{X} - x_2 + \lambda}{n}$$

32 **(b)**

Let
$$x_1, x_2, \dots x_n$$
 be n values of x.
Then, $\sigma = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \dots$ (i)
The variable $ax + b$ takes values $ax_1 + b$, $ax_2 + b$, ..., $ax_n + b$ with mean $\overline{x} + b$.
 \therefore SD of $(ax + b)$

$$= \sqrt{\frac{1}{n} \sum_{i=1}^{n} \{(ax_i - b) - (a\overline{x} + b)\}^2}$$

$$= \sqrt{a^{2} \cdot \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$= |a|\sigma$$
Alternate SD($ax + b$) = SD(ax) + SD(b)

$$= |a|SD(x) + 0$$

$$= |a|\sigma$$
33 (d)
Mean = $\frac{1}{10} [(x_{1} + x_{2} + ... + x_{10}) + (4 + 8 + ... + 40)]$

$$= \frac{1}{10} (x_{1} + x_{2} + ... + x_{10}) + \frac{4}{10} (1 + 2 + ... + 10)$$

$$= 20 + \frac{4 \times 10 \times 11}{10 \times 2} = 42$$
35 (d)
 $\bar{x} = \frac{1}{2n+1} [a + (a + d) + ... + (a + 2nd)]$

$$= \frac{1}{2n+1} [(2n + 1)a + d(1 + 2 + ... + 2n)]$$

$$= a + d \frac{2n}{2} \cdot \frac{(2n + 1)}{2n + 1} = a + nd$$

$$\therefore MD \text{ from mean} = \frac{1}{2n + 1} \sum |x_{1} - \bar{x}|$$

$$= \frac{1}{2n + 1} 2|d|(1 + 2 + ... + n)$$

$$= \frac{n(n + 1)|d|}{(2n + 1)}$$
36 (b)
Given, $\sigma_{10}^{2} = \frac{99}{12} = \frac{33}{4}$

$$\Rightarrow \sigma_{10} = \frac{\sqrt{33}}{2}$$
SD of required series = $3\sigma_{10} = \frac{3\sqrt{33}}{2}$
SD of required series = $3\sigma_{10} = \frac{3\sqrt{33}}{2}$
38 (b)
We know that,
 $var(aX + b) = a^{2}var(X)$

$$\therefore var(\frac{aX + b}{c}) = (\frac{a}{c})^{2} var(X) = \frac{a^{2}}{c^{2}}\sigma^{2}$$

$$\therefore \text{ SD} = \sqrt{\operatorname{var}\left(\frac{aX+b}{c}\right)} = \left|\frac{a}{c}\right| d$$

39 **(b)**

We have,

$$\sigma^{2} = \frac{1}{2n+1} \sum_{r=0}^{2n} \{(a+rd) - (a+nd)\}^{2}$$

$$\Rightarrow \sigma^{2} = \frac{2d^{2}}{2n+1} \{1^{2} + 2^{2} + \dots + n^{2}\}$$

$$\Rightarrow \sigma^{2} = \frac{n(n+1)}{3}d^{2} \Rightarrow \sigma = \sqrt{\frac{n(n+1)}{3}}d^{2}$$

40 **(a)**

Given that, mean=5, median=6 For a moderately skewed distribution, we have Mode =3 median -2 mean \Rightarrow Mode = 3(6) -2(5) = 8

41 (d)

Here, $N = \Sigma f = 20$ $Q_1 = \frac{N+1}{4}th = \left(\frac{21}{4}\right)th = 3rd$ observation Similarly, $Q_3 = 3\left(\frac{N+1}{4}\right)th$ $= \left(\frac{63}{4}\right)th = 5 th$ observation $\therefore QD = \frac{1}{2}(Q_3 - Q_1) = \frac{1}{2}(5 - 3) = 1$

44 **(a)**

The required mean *X* is given by

$$\overline{X} = \frac{0 \times {}^{n}C_{0}q^{n}p^{0} + 1 \times {}^{n}C_{1}q^{n-1}p + \dots + n \times {}^{n}C_{n}q^{0}p^{n}}{{}^{n}C_{0}q^{n}p^{0} + {}^{n}C_{1}q^{n-1}p^{1} + \dots + {}^{n}C_{n}q^{n-n}p^{n}}$$

$$\Rightarrow \overline{X} = \frac{\sum_{r=0}^{n}r \times {}^{n}C_{r}q^{n-r}p^{r}}{\sum_{r=0}^{n}{}^{n}C_{r}q^{n-r}p^{r}}$$

$$\Rightarrow \overline{X} = \frac{\sum_{r=1}^{n}r \times \frac{n}{r} {}^{n-1}C_{r-1}q^{n-r} \times p \times p^{r-1}}{\sum_{r=0}^{n}{}^{n}C_{r}q^{n-r}p^{r}}$$

$$\Rightarrow \overline{X} = \frac{np\{\sum_{r=1}^{n}{}^{n-1}C_{r-1}p^{r-1}q^{(n-1)-(r-1)}\}}{\sum_{r=0}^{n}{}^{n}C_{r}q^{n-r}p^{r}}$$

$$\Rightarrow \overline{X} = \frac{np(q+p)^{n-1}}{(q+p)^{n}}$$

$$\Rightarrow \overline{X} = np \quad [\because q+p=1]$$
(a)

46 **(a)**

Let the mean of the remaining 4 observations be \overline{X}_1 . Then,

$$M = \frac{a+4\,\overline{X}_1}{(n-4)+4} \Rightarrow \overline{X}_1 = \frac{n\,M-a}{4}$$

48 **(b)**

Total number of workers =300Retrenched =15% of 300=45 These are all from age group (20 - 28)Prematured retried =20% of 300=60 =18 from age group 52 - 60And 42 from age group (44 - 52) \therefore Age limit of workers retained is 28 – 44 49 **(b)** Total number of students=100 Average marks of the class=72 Total marks of the class = $72 \times 100 = 7200$ And total marks of the boys = $70 \times 75 =$ 5250 So, total marks of the girls = 7200 - 5250 =1950 Hence, average of girls $=\frac{1950}{30}=65$ 50 (c) Let *n* be the number of newspapers which are read Then, $60n = (300) \times 5$ $\Rightarrow n = 25$ 52 (a) Since, $MD = \frac{4}{5}\sigma$, $QD = \frac{2}{3}\sigma$ $\therefore \frac{\text{MD}}{\text{QD}} = \frac{6}{5}$ $\Rightarrow QD = \frac{5}{6} (MD) = \frac{5}{6} (15) = 12.5$ 54 (c)

$$\bar{x} = \frac{\text{Sum of quantities}}{n} = \frac{\frac{n}{2}(a+1)}{n}$$

$$= \frac{1}{2}[1+1+100d] = 1+50d$$

$$\therefore MD = \frac{1}{n}\Sigma|'x_i - \bar{x}|$$

$$\Rightarrow 255 = \frac{1}{101}[50d+49d+\dots+d+0+d]$$

$$+\dots+50d]$$

$$= \frac{2d}{101}\left[\frac{50\times51}{2}\right]$$

$$\Rightarrow d = \frac{255\times101}{50\times51} = 10.1$$

55 **(d)**

Since, 44 kg is replaced by 46 kg and 27 kg is replaced by 25 kg, then the given series becomes 31, 35, 25, 29, 32, 43, 37, 41, 34, 28, 36, 46, 45, 42, and 30.

On arranging this series in ascending order, we get

25, 28, 29, 30, 31, 32, 34, 35, 36, 37, 41, 42, 43, 45, 46.

Total numbers of students are 15, therefore middle term is 8th whose corresponding value is 35.

CI	x	f	xf
0-10	5	4	20
10-20	15	6	90
20-30	25	10	250
30-40	35	16	560
40-50	45	14	630
		$\sum f = 50$	$\sum fx = 1550$

$$\therefore \text{ Mean } \frac{\sum fx}{\sum f} = \frac{1550}{50} = 31$$

Given, $\sigma_{10}^2 = \frac{99}{12} = \frac{33}{4}$ $\Rightarrow \sigma_{10} = \frac{\sqrt{33}}{2}$

SD of required series=
$$3\sigma_{10} = \frac{3\sqrt{33}}{2}$$

58 **(b)**

Let x_1, x_2, \dots, x_n be a raw data. Then,

 $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{X})^2$

If each value is multiplied by *h*, then the values are $h x_1, h x_2, ..., h x_n$. The AM of the new values is $\frac{h x_1 + h x_2 + \dots + h x_n}{n} = h \overline{X}$

The variance σ_1^2 of the new set of values is given by

$$\sigma_1^2 = \frac{1}{n} \sum_{i=1}^n \left(h \, x_i - h \, \overline{X} \right)^2 = h^2 \left\{ \frac{1}{n} \sum_{i=1}^n \left(x_i - \overline{X} \right)^2 \right\}$$
$$= h^2 \sigma^2$$

61 **(d)**

Median of new set remains the same as that of the original set.

62 (a)

$$\bar{x} = \frac{8+12+13+15+22}{5} = \frac{70}{5} = 14$$

$$\sigma = \sqrt{\frac{(8-14)^2 + (12-14)^2 + (13-14)^2}{+(15-14)^2 + (22-14)^2}}{5}$$

$$= \sqrt{\frac{36+4+1+1+64}{5}}{5}$$

$$= \sqrt{212} = 4.604$$

63 **(b)**

The formula for combined mean is

$$\bar{X} = \frac{n_1 X_1 + n_2 X_2}{1 + n_2 X_2}$$

= $n_1 + n_2$

We are given $\overline{X} = 25$, $\overline{X}_1 = 26$, $\overline{X}_2 = 21$. Let $n_1 + n_2 = 100$ and n_1 denotes men and n_2 denotes women $n_2 = 100 - n_1$ $\therefore 25 = \frac{26n_1 + 21(100 - n_1)}{100} \Rightarrow n_1 = 80$ So, $n_2 = 20$ Hence the percentage of men and women is 8

Hence, the percentage of men and women is 80 and 20 respectively

64 **(b)**

Taking *X* as the product of variates $X_1, X_2, ..., X_r$ corresponding to *r* sets of observations i.e.

$$X = X_1 X_2 \dots X_r, \text{ we have}$$

$$\log X = \log X_1 + \log X_2 + \dots \log X_r$$

$$\Rightarrow \sum \log X = \sum \log X_1 + \sum \log X_2 + \dots$$

$$+ \sum \log X_r$$

$$\Rightarrow \frac{1}{n} \sum \log X = \frac{1}{n} \sum \log X_1 + \frac{1}{n} \sum \log X_2 + \dots$$

$$+ \frac{1}{n} \sum \log X_r$$

$$\Rightarrow \log G = \log G_1 + \log G_2 + \dots + \log G_r$$

$$\Rightarrow G = G_1 G_2 \dots G_r$$

For a moderately skewed distribution, we have Mode = 3 Median - 2 Mean $\Rightarrow \text{ Mode} = 3(6) - 2(5) = 8$

69 **(d)**

Let n_1 and n_2 be the number of observations in two groups having means \bar{X}_1 and \bar{X}_2 respectively

Then,
$$\bar{X} = \frac{n_1 X_1 + n_2 X_2}{n_1 + n_2}$$

Now, $\bar{X} - \bar{X}_1 = \frac{n_1 \bar{X}_1 + n_2 \bar{X}_2}{n_1 + n_2} - \bar{X}_1$
 $= n_2 \frac{(\bar{X}_2 - \bar{X}_1)}{n_1 + n_2} > 0$ ($\because \bar{X}_2 > \bar{X}_1$)
 $\Rightarrow \bar{X} > \bar{X}_1$...(i)
And $\bar{X} - \bar{X}_2 = \frac{n_1 (\bar{X}_1 - \bar{X}_2)}{n_1 + n_2} < 0$ $\because \bar{X}_2 > \bar{X}_2$
 $\Rightarrow \bar{X} < \bar{X}_2$...(ii)

From relations (i) and (ii), we get $\bar{X}_1 < \bar{X} < \bar{X}_2$

71 **(b)**

Given lines are $3\bar{x} - 2\bar{y} + 1 = 0$... (*i*) And $2\bar{x} - \bar{y} - 2 = 0$... (*ii*) On solving Eqs. (i)and (ii), we get $\bar{x} = 5, \bar{y} = 8$

72 **(c)**

It is true that mode can be computed from histogram and median is not independent of change of scale. But variance is independent of change of

But variance is independent of change of origin and not of scale.

77 **(c)**

$$r_{xy} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}} = \frac{20}{\sqrt{36 \times 25}} = \frac{2}{3} = 0.66$$

78 **(c)**

Correlation coefficient,

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{\{n\sum x^2 - (\sum x)^2\}}\sqrt{\{n\sum y^2 - (\sum y)^2\}}}$$

=
$$\frac{10(220) - 40 \times 50}{\sqrt{10(200) - (40)^2}\sqrt{10(262) - (50)^2}}$$

=
$$\frac{200}{20 \times 10.954} = \frac{200}{219.08} = 0.91$$

79 **(a)**

Let us assume that line of regression y on x +4y =3 and x on y is 3x + y = 15. \therefore put y = 3 in 3x + y = 15 $\Rightarrow 3x = 15 - 3$ x = 4

82 **(a)**

For a moderately skewed distribution Mode = 3 Median -2 Mean $\Rightarrow 6 \lambda = 3$ Median -18 λ \Rightarrow Median = 8 λ

83 **(b)**

Given series is 148, 146, 144, 142,... whose first term and common difference is $a = 148 \ d = (146 - 148) = -2$

$$a = 146, a = (140 - 146) = -2$$

$$S_n = \frac{n}{2} [2a + (n+1)d] = 125 \text{ (given)}$$

$$\Rightarrow 125n = \frac{n}{2} [2 \times 148 + (n-1) \times (-2)]$$

$$\Rightarrow n^2 - 24n = 0 \Rightarrow n(n-24) = 0$$

$$\Rightarrow n = 24 \quad (n \neq 0)$$

84 **(b)**

Let us assume that line of regression y on x is 2x - 7y + 6 = 0 and x on y is 7x - 2y + 1 = 0

$$\therefore b_{yx} = \frac{2}{7} \text{ and } b_{xy} = \frac{2}{7}$$
$$\therefore r = \sqrt{\left(\frac{2}{7}\right)\left(\frac{2}{7}\right)} = \frac{2}{7}$$

86 **(b)**

89

Given that,
$$n_1 = 10$$
, $\bar{x}_1 = 12$, $n_2 = 20$, $\bar{x}_2 = 9$
 $\therefore \quad \bar{x} = \frac{n_1 \bar{x}_1 + n_2 \bar{x}_2}{n_1 + n_2} = \frac{10 \times 12 + 20 \times 9}{10 + 20}$
 $= \frac{120 + 180}{30} = \frac{300}{30} = 10$
(a)
 $\therefore \quad Mode=3 \text{ Median-2 Mean}$

$$\Rightarrow$$
 Mode=66-42=24

90 **(c)**

Let $x_1, x_2, ..., x_n$ be *n* observations. Then, $\overline{X} = \frac{1}{n} \sum x_i$ Let $y_i = \frac{x_i}{\alpha} + 10$. Then, $\frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{\alpha} \left(\frac{1}{n} \sum x_i \right) + \frac{1}{n} (10 n)$ $\Rightarrow \overline{Y} = \frac{1}{\alpha} \overline{X} + 10 = \frac{\overline{X} + 10 \alpha}{\alpha}$ 91 **(b)**

The formula for combined mean is $\overline{\mathbf{x}}$

$$\overline{X} = \frac{n_1 X_1 + n_2 X_2}{n_1 + n_2} \quad \dots (i)$$

We are given $\overline{X} = 25$, $\overline{X}_1 = 26$, $\overline{X}_2 = 21$ Let $n_1 + n_2 = 100$, where n_1 denotes the number of men and n_2 the number of women $\therefore n_2 = 100 - n_1$ Substituting those values in (i), we have $25 = \frac{26 n_1 + 21(100 - n_1)}{100} \Rightarrow n_1 = 80$ $\therefore n_1 + n_2 = 100 \Rightarrow n_2 = 20$ Hence, the percentages of men and women are 80 and 20 respectively 92 (c) If $d_i = \frac{x_i - A}{h}$, then $\sigma_x = |h| \sigma_d$

If
$$d_i = \frac{x_i - A}{h}$$
, then $\sigma_x =$
Now, $-2x_i - 3 = \frac{x_i + \frac{3}{2}}{-\frac{1}{2}}$
Here, $h = -\frac{1}{2}$
 $\therefore \sigma_d = \frac{1}{|h|}\sigma_x$

$$= 2 \times 3.5 = 7$$

Hence, variance is $\sigma^2 = 144$

$$\begin{aligned} & \text{Intervaluate by } = 111 \\ & \text{Let } d_i = x_i - 8 \\ & \text{where } a_i^2 = a_i^2 = \frac{1}{18} \sum d_i^2 - \left(\frac{1}{8} \sum d_i\right)^2 \\ & = \frac{1}{18} \times 45 - \left(\frac{9}{18}\right)^2 = \frac{5}{2} - \frac{1}{4} = \frac{9}{4} \\ & \text{where } a_i^2 = \frac{3}{2} \end{aligned}$$

$$\begin{aligned} & \text{Here is under obtains x marks out of 75. Then, his marks out of 100 are $\frac{x_i}{3}$. Each observation is multiply by $\frac{4}{3}$. New SD, $\sigma = \frac{4}{3} \times 9 = 12 \end{aligned}$

$$\begin{aligned} & \text{So } (\mathbf{c}) \\ & \text{We have,} \\ & \overline{x} = \frac{0 \times nC_0 \times 1 \times 1 \times nC_1 + 2 \times nC_2 + \dots + n \times nC_n}{nC_0 + nC_1 + nC_1 + nC_2 + \dots + nC_n} \\ & = \overline{x} = \frac{12\pi}{2} \sum_{i=1}^{n} x \times \frac{n}{i} - 1C_{i-1} \left[\because \sum_{r=0}^{n} nC_r = 2^n; nC_r = \frac{n}{r} - 1C_{r-1} \right] \\ & = \overline{x} = \frac{1}{2n} \sum_{r=1}^{n-1} r \times \frac{n}{r} - 1C_{r-1} \left[\because \sum_{r=0}^{n} nC_r = 2^n; nC_r = \frac{n}{r} - 1C_{r-1} \right] \\ & = \overline{x} = \frac{1}{2n} \sum_{r=1}^{n-1} r \times \frac{n}{r} - 1C_{r-1} \left[\because \sum_{r=0}^{n} nC_r = 2^{n-1} \right] \\ & = \overline{x} = \frac{1}{2n} \sum_{r=1}^{n-1} r \times \frac{n}{r} - 1C_{r-1} \left[\because \sum_{r=0}^{n} nC_r = 2^{n-1} \right] \\ & = \overline{x} = \frac{1}{2n} \sum_{r=1}^{n-1} r \times \frac{n}{r} - 1C_{r-1} \left[\because \sum_{r=0}^{n} nC_r = \frac{1}{r} - 1C_{r-1} \right] \\ & = \overline{x} = \frac{1}{n} \sum_{r=1}^{n} (r(r-1) + r) nC_r \\ & = \frac{1}{N} \sum_{r=1}^{n} f_r^2 = \frac{1}{2n} \sum_{r=1}^{n} (r(r-1)) + r \cdot \frac{n}{r} - 1 - n^{-2}C_{r-2} \\ & + \sum_{r=1}^{n} r - \frac{1}{r} - 1C_{r-1} \right] \\ & = \frac{1}{N} \sum_{r=1}^{n} f_r^2 = \frac{1}{2n} \left\{ \sum_{r=1}^{n} (n(r-1)) \sum_{r=2}^{n-2} C_{r-2} + n \sum_{r=1}^{n-1} n^{-1}C_{r-1} \right\} \\ & = \frac{1}{N} \sum_{r=1}^{n} f_r^2 = \frac{1}{2n} \left\{ n(n-1) \sum_{r=2}^{n-2} C_{r-2} + n \sum_{r=1}^{n-1} n^{-1}C_{r-1} \right\} \\ & = \frac{1}{N} \sum_{r=1}^{n} f_r^2 = \frac{1}{2n} \left[n(n-1) \sum_{r=2}^{n-2} C_{r-2} + n \sum_{r=1}^{n-1} n^{-1}C_{r-1} \right] \\ & = \frac{1}{N} \sum_{r=1}^{n} f_r^2 = \frac{1}{2n} \left[n(n-1) \sum_{r=2}^{n-2} C_{r-2} + n \sum_{r=1}^{n-1} n^{-1}C_{r-1} \right] \\ & = \frac{1}{N} \sum_{r=1}^{n} f_r^2 = \frac{1}{2n} \left[n(n-1) \sum_{r=2}^{n-2} \frac{1}{n} + \frac{1}{2} \sum_{r=1}^{n-1} \frac{1}{n} + \frac{n}{2} \\ & \text{Aur}(x) = \frac{1}{N} \sum_{r=1}^{n} f_r^2 = \frac{n(n-1)}{4} + \frac{n}{2} - \frac{n^2}{4} = \frac{n}{4} \end{aligned}$$
The new observations are obtained by adding the term observations are obtained by adding term observations are obtained by adding te$$

93 **(c)**

Page | 24

20 to each. Hence, σ does not change.

97 **(c)**

	Class	Mid	f	fx	d	fd	fd ²
		valu	-		= x	-	-
		e x			<i>– m</i>		
	0-10	5	2	10	-	-	856.
					20.7	41.	98
	10	1 -	10	150		4	111
	10- 20	15	10	150	- 10.7	- 107	114 8.9
	20-	25	8	200	-0.7	-5.6	3.92
	30	25	0	200	0.7	5.0	5.72
	30-	35	4	140	9.3	37.	345.
	40					2	96
	40-	45	6	270	19.3	115	223
	50						4.94
			Σf	$\Sigma f x$ = 77			$\Sigma f d^2$
	770		= 3	= 77		= -1	= 458
	$M = \frac{770}{30}$						
	SD (σ)=	$\Sigma f d^2$	(Σ	$(fd)^2$			
	$SD(\sigma)=$	$=\sqrt{\frac{\gamma}{\Sigma f}}$	· - (-	$\left(\frac{1}{\Sigma f}\right)$			
	450		. 1.	2			
	$= \frac{458}{3}$	<u>36./</u>	$\left(\frac{-1}{2}\right)$				
	$\sqrt{3}$	0	(30)				
	$\sqrt{15289}$	0 - 0.0	05 =	1236	5		
	∴Coeffic	cient o	f SD=	$\frac{\sigma}{\sigma} = \frac{12}{\sigma}$	$\frac{2.365}{2.365} =$	0.481	
	and Coe			л 1	-0.7		
		,IIICICII			$SD \times 10$	0	
	= 0.481	v 100				0	
00		. × 100) – 4	0.1			
98	(c) We have						
			+ +	n n	(n + 1)	n +	1
	$\overline{X} = \frac{1+1}{2}$	<u> </u>	· ·		$\frac{(n+1)}{2n}$	$=\frac{1}{2}$	_
100							
	Karl pea	arson's	s coef	ficient	of cori	elatio	n r lies
	in the ir	nterval	[-1, 1	1].			
101	(c)						
	We have) ,					
	$n_1 = 7, \overline{2}$	$\bar{K}_1 = 10$), n ₂ =	$= 3, \overline{X}_2$	= 5		
	a 1.	,		$n_1 \overline{X}_1$ -	$+ n_2 \overline{X}_2$	85	0 5
	∴ Combi	ned me	ean =	n_1 -	$+ n_2$	$=\frac{10}{10}$	8.5
103							
	From th	e given	table	, it is cl	ear that	requir	ed
	mode=6)					
104	(a)						
	-		-				

Let
$$x_1, x_2, \dots, x_n$$
 be *n* observations

$$\therefore M = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{x_1 + x_2 + \dots + x_{n-4} + x_{n-3} + x_{n-2} + x_{n-1} + x_n}{n}$$

$$\Rightarrow nM = a + x_{n-3} + x_{n-2} + x_{n-1} + x_n$$

$$\Rightarrow \frac{nM - a}{4} = \frac{x_{n-3} + x_{n-2} + x_{n-1} + x_n}{4}$$

105 (b)
The mean of the series $a, a + d, a + 2 d, \dots, a + 2 n d$ is
 $\overline{X} = \frac{1}{2n+1} [a + a + d + a + 2 d + \dots + a + 2 n d]$

$$\Rightarrow \overline{X} = \frac{1}{2n+1} \left\{ \frac{2n+1}{2} (a + a + 2 n d) \right\} = a + n d$$

 \therefore Mean deviation from mean
M. D. $= \frac{1}{2n+1} \sum_{r=0}^{2n} |(a + rd) - (a + nd)|$
 \Rightarrow M. D. $= \frac{1}{2n+1} \sum_{r=0}^{2n} |r - n| d$
 \Rightarrow M. D. $= \frac{1}{2n+1} \{ 2 d(1 + 2 + \dots + n) \}$
 $= \frac{n(n+1)}{2n+1} d$

106 **(c)**

Let $x_1, x_2, ..., x_n$ be *n* values of variable *X*. Then, $\overline{X} = \frac{1}{n} \sum x_i$ Let $y_1 = x_1 + 1, y_2 = x_2 + 2, y_3 = x_3 + 3, ..., y_n = x_n + n$. Then, the mean of the new series is given by $\overline{y_1} = \frac{1}{n} \sum x_1$

$$\overline{X'} = \frac{1}{n} \sum_{i} y_i$$

$$\Rightarrow \overline{X'} = \frac{1}{n} \sum_{i} (x_i + i)$$

$$\Rightarrow \overline{X'} = \frac{1}{n} \sum_{i} x_i + \frac{1}{n} (1 + 2 + 3 + \dots + n)$$

$$\Rightarrow \overline{X'} = \overline{X} + \frac{1}{n} \cdot \frac{n(n+1)}{2} = \overline{X} + \frac{n+1}{2}$$

107 (c)

Mean =
$$\frac{\sum_{i=1}^{n} (x_i + 2i)}{n} = \frac{\sum_{i=1}^{n} x_i + 2(1 + 2 + \dots + n)}{n}$$

 $\bar{x} + \frac{2n(n+1)}{2n} = \bar{x} + (n+1)$

109 **(b)**

If mean, median and mode coincides, then their is a symmetrical distribution

111 (d)

Let x_i/f_i ; i = 1, 2, ..., n be a frequency distribution. Then,

S. D. =
$$\sqrt{\frac{1}{N}\sum_{i=1}^{n} f_i (x_i - \overline{X})^2}$$
 and M. D.

$$= \frac{1}{N}\sum_{i=1}^{n} f_i |x_i - \overline{X}|$$
Let $|x_i - \overline{X}| = z_i; i = 1, 2, ..., n$. Then,
(S. D.)² - (M. D.)² = $\frac{1}{N}\sum_{i=1}^{n} f_i z_i^2 - \left(\frac{1}{N}\sum_{i=1}^{n} f_i z_i\right)^2$
 $= \sigma_z^2 \ge 0$
 \Rightarrow S. D. \ge M. D.

112 (d)

We have,

 $Q_3 = 17 \text{ and } Q_1 = 10 \Rightarrow Q. D. = \frac{1}{2}(Q_3 - Q_1) = 3.5$

113 (c)

When the origin is changed, then the coefficient of correlation is unsalted.

114 (c)

$$\bar{x} = \frac{31+32+33+\dots+47}{47} = \frac{663}{17} = 39$$

$$\therefore \sum_{i=1}^{17} (x_i - \bar{x})^2 = (31 - 39)^2 + (32 - 39)^2$$

$$+ (33 - 39)^2 + (34 - 39)^2 + (35 - 39)^2$$

$$+ (36 - 39)^2 + (37 - 39)^2 + (38 - 39)^2$$

$$+ (39 - 39)^2 + (40 - 39)^2 + (41 - 39)^2$$

$$+ (42 - 39)^2 + (43 - 39)^2 + (44 - 39)^2$$

$$+ (45 - 39)^2 + (46 - 39)^2 + (47 - 39)^2$$

$$= 64 + 49 + 36 + 25 + 16 + 9 + 4 + 1 + 0$$

$$+ 1$$

$$+ 4 + 9 + 16 + 25 + 36 + 49 + 64$$

$$= 408$$

Hence, standard deviation $=\sqrt{\frac{408}{17}} = \sqrt{24} =$

$2\sqrt{6}$

117 **(b)**

Arranging the terms in increasing order

Value <i>x</i>	Frequency f	Commulative frequency
7	2	2
8	1	3
9	5	8
10	4	12
11	6	18
12	1	19
13	3	22
•• N	= 22	

: Median number $=\frac{N+1}{2}=11.5$ Which comes under the cumulative frequency the corresponding value of x will be the median ie, Median=10 118 (d) ${}^{2n+1}C_0 + {}^{2n+1}C_1 + {}^{2n+1}C_2 + \dots + {}^{2n+1}C_{2n} + {}^{2n+1}C_{2n+1} = 2^{2n+1}$ Now, ${}^{2n+1}C_0 = {}^{2n+1}C_{2n+1}$, ${}^{2n+1}C_1 = {}^{2n+1}C_{2n} \dots {}^{2n+1}C_r = {}^{2n+1}C_{2n-r+1}$ So, sum of first (n + 1) terms = sum of last (n+1) terms $\Rightarrow {}^{2n+1}C_0 + {}^{2n+1}C_1 + {}^{2n+1}C_2 + \ldots + {}^{2n+1}C_n$ $\Rightarrow \frac{2^{n+1}C_0 + 2^{n+1}C_1 + 2^{n+1}C_2 + \ldots + 2^{n+1}C_n}{n+1} = \frac{2^{2^n}}{(n+1)}$ 119 (c) If both two regression lines are perpendicular, then correlation coefficient will be zero. 120 **(b)** The mean of the series $a, a + d, \dots, a + d$

2nd is

$$\bar{x} = \frac{1}{2n+1} [a + a + d + a + 2d + \dots + a + 2nd]$$
$$= \frac{1}{2n+1} \left[\frac{2n+1}{2} (a + a + 2nd) \right] = a + nd$$

: Mean deviation from mean

$$= \frac{1}{2n+1} \sum_{r=0}^{2n} |(a+rd) - (a+nd)|$$

$$= \frac{1}{2n+1} \sum_{r=0}^{2n} (r-n)d$$

$$= \frac{1}{2n+1} 2d(1+2+\dots+n)$$

$$= \frac{n(n+1)}{2n+1} d$$

122 (c)
$$r_{xy} = \frac{\text{cov}(x,y)}{\sqrt{\text{var}(x)\text{var}(y)}}$$

$$= \frac{10.2}{\sqrt{(8.25)(33.96)}} = 0.61$$

124 **(b)**

Let us assume that line of regression y on x is

$$3x + 12y = 19 \text{ and } x \text{ on } y \text{ is } 3y + 9x = 46.$$

$$\therefore b_{yx} = -\frac{3}{12} \text{ and } b_{xy} = -\frac{3}{9} = -\frac{1}{3}$$

$$\therefore r_{xy} = -\sqrt{b_{yx} \times b_{xy}} = -\sqrt{\left(\frac{3}{12}\right) \times \left(\frac{1}{3}\right)}$$

$$= -\sqrt{\frac{1}{12}} = -\sqrt{0.083}$$

$$= -0.289$$

125 (c)

$$\text{Cov}(x, y) = \frac{1}{n} \Sigma xy - \bar{x}\bar{y}$$

$$= \frac{1}{2}(110) - \left(\frac{15}{5}\right) \left(\frac{36}{5}\right) = \frac{2}{5}$$

127 (d)

$$\text{Let } x_1, x_2, x_3, \dots, x_n \text{ be } n \text{ observation}$$

$$\therefore \ \bar{x} = \frac{\Sigma x_i + x_{n+1}}{n+1}$$

According to the question $\bar{x} = \frac{\Sigma x_i + x_{n+1}}{n+1}$

$$\Rightarrow (n+1)\bar{x} = n\bar{x} + x_{n+1}$$

$$\Rightarrow x_{n+1} = \bar{x}$$

130 (c)

$$\text{Let } x_1, x_2, x_3, \dots, x_n \text{ be } n \text{ observations. Then,}$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\therefore \text{ New mean, } \bar{x} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i}{\alpha} + 10\right)$$

$$= \frac{1}{\alpha} \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right) + \frac{1}{n} \cdot (10n)$$

$$= \frac{1}{\alpha} \bar{x} + 10 = \frac{\bar{x} + 10\alpha}{\alpha}$$

131 (b)
Since, there are 19 observations. So, the middle
term is 10th
After including 8 and 32, *ie*, 8 will come before 30
and 32 will come after 30
Here, new median will remain 30

132 (b)
We have,

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)^2$$

$$\Rightarrow \sigma^2 = \frac{1}{n} (1^2 + 2^2 + \dots + n^2)$$

$$- \left(\frac{1}{n} (1 + 2 + \dots + n)\right)^2$$

$$\Rightarrow \sigma^{2} = \frac{1}{n} \times \frac{n(n+1)(2n+1)}{6} - \left(\frac{n+1}{2}\right)^{2}$$

$$= \frac{n^{2}-1}{12}$$
133 (c)
$$\boxed{\text{Class} \quad f_{i} \quad y_{i} \quad D_{i} \quad f_{i}d_{i} \quad f_{i}d_{i}^{2}}{A = 25}$$

$$\boxed{0.10 \quad 1 \quad 5 \quad -20 \quad -20 \quad 400}$$

$$10-20 \quad 3 \quad 15 \quad -10 \quad -30 \quad 300$$

$$20-30 \quad 4 \quad 25 \quad 0 \quad 0 \quad 0$$

$$30-40 \quad 2 \quad 35 \quad 10 \quad 20 \quad 200$$

$$\boxed{\text{Total} \quad 1} \quad 0 \quad -30 \quad 900$$

$$\therefore \quad \sigma^{2} = \frac{\sum f_{i}d_{i}^{2}}{\sum f_{i}} - \left(\frac{\sum f_{i}d_{i}}{\sum f_{i}}\right)^{2}$$

$$= \frac{900}{10} - \left(\frac{-30}{10}\right)^{2} = 90 - 9$$

$$\Rightarrow \sigma^{2} = 81$$

$$\Rightarrow \sigma = 9$$
134 (a)
Arranging the given values in ascending order of magnitude
$$x - \frac{7}{2}, x - 3, x - \frac{5}{2}, x - 2, x + \frac{1}{2}, x + 4, x + 5$$
There are 8 observations in the series, therefore median = $\frac{\text{Value of 4th term + Value of 5th term}}{2}$

$$= \frac{x - 2 + x - \frac{1}{2}}{2} = x - \frac{5}{4}$$
136 (d)
The required AM is given by
$$AM = \frac{1}{n} \sum_{i=1}^{n} (i + 1)x_{i}$$

$$\Rightarrow AM = \frac{1}{n} \left\{\sum_{i=1}^{n} i^{2} + \sum_{i=1}^{n} i\right\}$$

$$\Rightarrow AM = \frac{1}{n} \left\{\sum_{i=1}^{n} i^{2} + \sum_{i=1}^{n} i\right\}$$

$$\Rightarrow AM = \frac{1}{n} \left\{\sum_{i=1}^{n} i^{2} + \sum_{i=1}^{n} i\right\}$$

$$\Rightarrow AM = \frac{1}{n} \left\{ \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right\}$$

$$\Rightarrow AM = \frac{(n+1)(2n+1)}{6} + \frac{n+1}{2}$$

$$\Rightarrow AM = \frac{(n+1)(5n+4)}{6}$$

141 (d)

Let x_1, x_2, \dots, x_n be *n* numbers. Then,

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

If each number is divided by 3, then the new mean $\frac{150}{\overline{Y}}$ is given by

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i}{3}\right) = \frac{1}{3} \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right) = \frac{\overline{X}}{3}$$

142 (c)

Let $x_1, x_2, x_3, ..., x_n$ be the variates corresponding to *n* sets of data, each having the same number of observations say *k* and *x* be their product. Then,

$$x = x_1, x_2, \dots, x_n$$

$$\log x = \log x_1 + \log x_2 + \dots + \log x_n$$

$$\Rightarrow \frac{\sum \log x}{k} = \frac{\sum \log x_1}{k} + \frac{\sum \log x_2}{k} + \dots + \frac{\sum \log x_n}{k}$$

$$\Rightarrow \log G = \log G_1 + \log G_2 + \dots + \log G_n$$

$$\Rightarrow G = G_1 G_2, \dots, G_n$$

143 **(c)**

Let the first natural number be *x*

According to the question, x + x + 1 + x + 2 + x + 3 + x + 4 + x + 5 + x +6 + x + 7 + x + 8 + x + 9 + x + 10 = 2761 $\Rightarrow 11x + 55 = 2761$ $\Rightarrow x = \frac{2761 - 55}{11} = 246$ \therefore Middle number = x + 5 = 246 + 5 = 251

144 **(a)**

We have, $4\bar{x} + 3\bar{y} + 7 = 0$... (*i*) And $3\bar{x} + 4\bar{y} + 8=0$ (*ii*) On solving Eqs.(*i*) and (*ii*), we get $\bar{x} = -\frac{4}{7}$ and $\bar{y} = -\frac{11}{7}$

145 **(b)**

Let the *n*-numbers be $x_1, x_2, ..., x_n$. Then,

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\Rightarrow \overline{X} = \frac{x_1 + x_2 + \dots + x_{n-1} + x_n}{n}$$

$$\Rightarrow \overline{X} = \frac{k + x_n}{n} \quad [\because x_1 + x_2 + \dots + x_{n-1} = k]$$

$$\Rightarrow x_n = n \, \overline{X} - k$$
(d)

146 **(d)**

7th decile $D_7 = \frac{7n}{10}$...(i) And 7th percentile, $P_{70} = \frac{7n}{100}$...(ii) From Eqs. (i) and (ii), we get $D_7 \neq P_{70}$ 149 (c)

Total of corrected observations

= 4500 - (91 + 13) + (19 + 31) = 4446 ∴ Mean = $\frac{4446}{100}$ = 44.46

Given
$$b_{yx} = 0.8, b_{xy} = 0.2$$

Then, $r = \sqrt{b_{xy}b_{yx}} = \sqrt{(0.8)(0.2)} = \sqrt{0.16}$
 $\Rightarrow r = 0.4$

152 (c)

Regression coefficient of y on x is given by $\frac{cov(x,y)}{\sigma_x^2}$

153 **(a)**

Let numbers of boys are *x* and numbers of girls are *y*.

$$\therefore 53(x + y) = 55y + 50x$$

$$\Rightarrow 3x = 2y$$

$$\Rightarrow x = \frac{2y}{3}$$

$$\therefore \text{ total number of students} = x + y = \frac{2y}{3} + \frac{2y}{3}$$

 $y = \frac{5}{3} y$ Hence, required percentage

$$= \frac{y}{5y/3} \times 100\% = \frac{3}{5} \times 100\% = 60\%$$

154 **(b)**

Let n_1 and n_2 be the number of men and women in a group. According to the given condition, $\frac{n_1 \times 26 + n_2 \times 21}{n_1 + n_2} = 25$

$$\Rightarrow 26n_1 + 21n_2 = 25n_1 + 25n_2$$
$$\Rightarrow n_1 = 4n_2 \Rightarrow \frac{n_1}{n_2} = \frac{4}{1}$$
$$\Rightarrow \frac{n_1}{n_2} = \frac{80}{20}$$

158 **(d)**

The intersecting point of two regression lines is on mean ie, $(\overline{x}, \overline{y})$.

159 **(b)**

Let the regression coefficients be b_{yx} =-0.33 And h_{yx} =-1.33

And
$$b_{xy} = -1.33$$

 $\therefore r = -\sqrt{b_{yx} \times b_{xy}}$
 $= -\sqrt{0.33 \times 1.33}$
 $= -\sqrt{0.4389}$
 $= -0.66$
160 (c)

$$Cov (x, y) = \frac{\sum_{xy}}{n} - \frac{\sum_{x}}{n} \cdot \frac{\sum_{y}}{n} = \frac{1}{10} (850) - \frac{30}{10} \left(\frac{400}{10}\right)$$

= 85 - 120 = -35
And var (x) = $\sigma_x^2 = \frac{1}{n} \sum x^2 - \left(\frac{\sum_{x}}{n}\right)^2$
= $\frac{196}{10} - \left(\frac{30}{10}\right)^2 = 10.6$
 $\therefore \ b_{yx} = \frac{cov(x, y)}{var(x)} = \frac{-35}{10.6} = -3.3$

163 **(a)**

Arranging the given values in ascending order of magnitude, we get

$$x - \frac{7}{2}, x - 3, x - \frac{5}{2}, x - 2, x - \frac{1}{2}, x + \frac{1}{2}, x + 4, x$$

+ 5

There are 8 observations in this series \therefore Median = AM of 4th and 5th observation \Rightarrow Median = AM of (x - 2) and (x - 1/2) \Rightarrow Median = $\frac{x-2+x-\frac{1}{2}}{2} = x - \frac{5}{4}$

165 **(a)** We h

We have,

$$\sum X = a \sum U + b \sum V$$

$$\overline{X} = \frac{1}{n} \sum X = a \cdot \left\{ \frac{1}{n} \sum U \right\} + b \left\{ \frac{1}{n} \sum V \right\}$$

$$= a \overline{U} + b \overline{V}$$

166 **(d)**

$$\bar{x} = 5$$
Variance $=\frac{1}{n} \Sigma x_i^2 - (\bar{x}^2)$

$$0 = \frac{1}{n} \cdot 400 - 25$$

$$\Rightarrow n = \frac{400}{25}$$

$$= 16$$

168 **(a)**

We have,

$$r = \max_{i \neq j} |x_i - x_j| \text{ and, } S^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{X})^2$$

Now,

$$(x_i - \overline{X})^2 = \left\{ x_i - \frac{x_1 + x_2 + \dots + x_n}{n} \right\}^2$$

$$\Rightarrow (x_i - \overline{X})^2 = \frac{1}{n^2} [(x_i - x_1) + (x_i - x_2) + \dots + (x_i - x_{i-1}) + (x_i - x_{i+1}) + \dots + (x_i - x_n)]^2$$

$$\Rightarrow (x_i - \overline{X})^2 \le \frac{1}{n^2} [(n-1)r]^2 \quad [\because |x_i - x_j| \le r]$$

$$\Rightarrow (x_i - \overline{X})^2 \le r^2$$

$$\Rightarrow \sum_{i=1}^{n} (x_i - \overline{x})^2 \leq \frac{n r^2}{(n-1)}
\Rightarrow \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 \leq \frac{n r^2}{(n-1)}
\Rightarrow S^2 \leq \frac{n r^2}{(n-1)} \Rightarrow S \leq r \sqrt{\frac{n}{n-1}}
169 (b)
\overline{x} = \frac{1+2+3+\dots+n}{n} = \frac{(n+1)}{2}
\Rightarrow \sigma^2 = \frac{\Sigma(x_i)^2}{n} - (\overline{x})^2
= \frac{\Sigma n^2}{n} - \left(\frac{n+1}{2}\right)^2
= \frac{n(n+1)(2n+1)}{6n} - \left(\frac{n+1}{2}\right)^2 = \frac{n^2-1}{12}
172 (d)
Since, SD < Range
\Rightarrow \sigma^2 \leq (b-a)
\Rightarrow \sigma^2 \leq (b-a)^2
174 (b)
 $\therefore 8 + 12 + f_1 + 16 + f_2 + 10 = 75
\Rightarrow f_1 + f_2 = 29 ...(i)
And 120 + 240 + 25f_1 + 480 + 35f_2 + 400 =
28.07 \times 75
\Rightarrow 1240 + 25f_1 + 35f_2 = 2105.25
\Rightarrow 5f_1 + 7f_2 = 173.25 ...(ii)
On solving eqs. (i) and (ii), we get
f_1 = 15 and f_2 = 14
175 (a)
Given, n=15, $\Sigma x^2 = 2830, \Sigma x = 170$
Since, one observation 20 was replaced by 30, then
 $\Sigma x^2 = 2830 - 400 + 900 = 3330$
And $\Sigma x = 170 - 20 + 30 = 180$
Variance, $\sigma^2 = \frac{\Sigma x^2}{n} - \left(\frac{\Sigma x}{n}\right)^2 = \frac{3330}{15} - \left(\frac{180}{15}\right)^2$
 $= \frac{3330 - 12 \times 180}{15} = \frac{1170}{15} = 78.0$
178 (a)
We have, $Z = a\overline{X} + b\overline{Y}$
...(i)
 $Z - \overline{Z} = a(\overline{X} - \overline{X}) + b(Y - \overline{Y})$
 $\Rightarrow (Z - \overline{Z})^2 = a^2(\overline{X} - \overline{X})^2 + b^2(\overline{Y} - \overline{Y})^2 + 2ab(\overline{X} - \overline{X})(\overline{Y} - \overline{Y})$$$$

$$b^{2} \frac{1}{n} \sum (Y - \bar{Y})^{2} + 2ab \frac{1}{n} \sum (X - \bar{X})(Y - \bar{Y})$$

$$\Rightarrow \quad \sigma_{Z}^{2} = a^{2} \sigma_{X}^{2} + b^{2} \sigma_{Y}^{2} + 2ab \operatorname{cov} (X, Y)$$

$$\Rightarrow \quad \sigma_{Z}^{2} = a^{2} \sigma_{X}^{2} + b^{2} \sigma_{Y}^{2} + 2ab r \sigma_{X} \sigma_{Y}$$

$$\left[\therefore \frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}} = r \right]$$

180 **(b)**

The required AM is given by $\overline{X} = \frac{1+2+2^2+2^3+\dots+2^n}{n+1} = \frac{(2^{n+1}-1)}{(n+1)(2-1)}$ $= \frac{2^{n+1}-1}{n+1}$

181 (d)

Given that, $n_1 = 4$, $\bar{x} = 7.5$, $n_1 + n_2 = 10$, $\bar{x} = 6$ $\therefore \quad 6 = \frac{4 \times 7.5 + 6 \times \bar{x}_2}{10}$ $\Rightarrow \quad 60 = 30 + 6\bar{x}_2$ $\Rightarrow \quad \bar{x}_2 = \frac{30}{6} = 5$

182 (c)

Since, percentage of coefficient of variation = $\frac{\text{Standerd deviation}}{100} \times 100$

$$= \frac{\text{Mean}}{\text{Mean}} \times 1$$

$$\therefore 45 = \frac{\sigma}{12} \times 100$$

$$\Rightarrow \sigma = \frac{45 \times 12}{100} = 5.4$$

183 **(c)**

Given that, $x_1 < x_2 < x_3 < \cdots < x_{201}$ \therefore Median of the given observation $= \left(\frac{201+1}{2}\right)$ th item Now, deviation will be minimum of taken from the median. \therefore Mean deviation will be minimum, if $k = x_{101}$

184 (a)

It is true that median and mode can be determined graphically

186 **(b)**

Given that,
$$\sum_{i=1}^{20} (x_i - 30) = 2$$

$$\Rightarrow \sum_{i=1}^{20} x_i - \sum_{i=1}^{20} (30) = 2$$

$$\Rightarrow \bar{x} = \frac{20.30}{20} + \frac{2}{20}$$

$$= 30 + 0.1 = 30.1$$
(c)

187 (c)

Let the number of boys and girls be x and y $\therefore 52x + 42y = 50(x + y)$ $\Rightarrow 2x = 8y$ $\Rightarrow x = 4y$

: Total number of students in the class = x + y = 5y∴ Required percentage of boys $=\frac{4y}{5v} \times 100\% = 80\%$ 188 (a) Since, $\frac{x + (x+2) + (x+4) + (x+6) + (x+8)}{5} = 11$ $\Rightarrow \frac{5x + 20}{5} = 11 \Rightarrow x = 7$ \therefore Mean of the last three values $=\frac{11+13+15}{3}=15$ 189 (c) Let $a, a, \dots n$ times and $-a, -a, \dots, n$ times, ie, mean=0 And SD= $\sqrt{\frac{n(a-0)^2+n(-a-0)^2}{2n}} = 2$ (given) $\Rightarrow 4 = \frac{2na^2}{2n}$ $\Rightarrow a^2 = 4$ $\Rightarrow |a| = 2$ 190 (b) The required mean is given by $\overline{X} = \frac{1 \cdot 1^2 + 2 \cdot 2^2 + 3 \cdot 3^2 + \dots + n \cdot n^2}{1^2 + 2^2 + \dots + n^2} = \frac{\sum n^3}{\sum n^2}$ $\Rightarrow \overline{X} = \frac{\left\{\frac{n(n+1)^2}{2}\right\}^2}{\frac{n(n+1)(2n+1)}{2}} = \frac{3n(n+1)}{2(2n+1)}$ 193 (c) Here, n = 7, sum=315 $\therefore \quad Mean = \frac{315}{7} = 45$ Now, standard deviation $(12 - 45)^2 + (23 - 45)^2 +$ $(34 - 45)^2 + (45 - 45)^2$ $=\sqrt{\frac{+(56-45)^2+(67-45)^2}{+(78-45)^2}}{7}$ $\frac{2(1089 + 484 + 121)}{7} = \sqrt{\frac{3388}{7}}$ $\sqrt{484} = 22$ 194 (a) We know, $\sigma^2 = \frac{n_1(\sigma_1^2 + d_1^2) + n_2(\sigma_2^2 + d_2^2)}{n_1 + n_2}$ Where $d_1 = m_1 - a$, $d_2 = m_2 - a$, a being the mean of the whole group $\therefore \ 15.6 = \frac{100 \times 15 + 150 \times m_2}{250}$ $\Rightarrow m_2 = 16$

Thus, $13.44 = \frac{\left[(100 \times 9 + 150 \times \sigma^2) + 100 \times (0.6)^2 + 150 \times (0.4)^2 \right]}{250}$ $\Rightarrow \sigma = 4$ 195 (a) We have, $GM = (1 \times 2 \times 4 \times 8 \times \dots \times 2^n)^{1/n}$ $= (1 \times 2^1 \times 2^2 \times 2^3 \times \dots \times 2^n)^{1/n}$ \Rightarrow GM = $\left\{2^{\frac{n(n+1)}{2}}\right\}^{1/n} = 2^{\frac{n+1}{2}}$ 196 (a) Given the standard deviation (SD) of the variable x is 10. : Standard deviation of 50+5x = 5x = 50 [:: x = 10197 (c) Given, 3x + 2y = 26 $\Rightarrow y = -\frac{3}{2}x + 13$ And 6x + v = 31 $\Rightarrow x = -\frac{1}{6}y + \frac{31}{6}$ $\therefore r = -\sqrt{\left(\frac{-3}{2}\right)\left(\frac{-1}{6}\right)}$ $\Rightarrow r = -\frac{1}{2}$ 198 (b) We Know, $(\sigma_x - \sigma_v)^2 \ge 0$ $\Rightarrow \sigma_x^2 + \sigma_x^2 \ge 2\sigma_x\sigma_y$ $\Rightarrow \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} \le \frac{1}{2}$ If θ is angle between two regression lines with c $\tan \theta = \left(\frac{1-y^2}{y}\right) \left(\frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}\right)$ 202 (c) We have $\overline{X} = \frac{x_1 + x_2 + \dots + x_n}{n} \Rightarrow n \,\overline{X} = x_1 + x_2 + \dots + x_n$ Let \overline{Y} be the mean of observations $x_i + 2 i$; i = 1, 2, ..., n. Then, $\overline{Y} = \frac{(x_1 + 2 \cdot 1) + (x_2 + 2 \cdot 2) + (x_3 + 2 \cdot 3) + \dots + (x_n + 2 \cdot n)}{n}$ $\Rightarrow \overline{Y} = \frac{\sum_{i=1}^{n} x_i + 2(1+2+3+\dots+n)}{n}$ $\Rightarrow \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} x_i + \frac{2n(n+1)}{2n} = \overline{X} + (n+1)$ 203 (c) 204 (a) Statement (2) and (3) are correct

 $\Rightarrow tan\theta \leq \frac{1-y^2}{2y}$ $\Rightarrow \tan^2 \theta \le \left(\frac{1-y^2}{2y}\right)^2$ Since, $\sin^2 \theta \le 1$ and $1 - y^2 < 1 + y^2$ $\therefore sin\theta \leq 1 - y^2$ 199 (c) Given, SD= 2 = $\sqrt{\frac{100}{n} - (\frac{20}{n})^2}$ $\Rightarrow 4 = \frac{100}{n} - \frac{400}{n^2}$ \Rightarrow $n^2 - 25n + 100 = 0$ \Rightarrow n = 20.5200 (a) ${}^{2n}C_0$, ${}^{2n}C_1$, ${}^{2n}C_{2,...,}{}^{2n}C_n$ are binomial coefficients which are in odd numbers (because n is even) and middle binomial coefficient is ${}^{2n}C_{n/2}$ which is required median. 201 (b) We have, $S^{2} = \frac{1}{N} \sum f_{i} x_{i}^{2} = \frac{n(n-1)}{4} + \frac{n}{2}$ $\Rightarrow S^2 = \frac{n(n+1)}{4}$

4 (a) The ascending order of the given data are 34, 38,

$$\begin{aligned} 42.44.46.48, 54.55(3.70) \\ \text{Hence, Median $dwixtion \\ &= \frac{\sum |x_i - M|}{n} = \frac{\sum |x_i - 47|}{n} \\ &= \frac{13 + 9 + 5 + 3 + 1 + 1 + 7 + 8 + 16 + 23}{10} \\ &= 18.6 \\ \hline \\ 205 \ \textbf{(d)} \\ \text{The required mean is given by} \\ &\overline{X} = \frac{0 \cdot 1 + 1 \cdot ^n C_1 + 2 \cdot ^n C_2 + 3 \cdot ^n C_3 + \dots + n \cdot ^n C_n}{1 + ^n C_1 + ^n C_1 + ^n C_1 + \dots + ^n C_n} \\ &= \overline{X} = \frac{2\sum n e^{-n} C_1}{\sum n} = \frac{2 \sum n e^{-n} C_1}{n} = \frac{2 \sum n e^{-n} C_1 + \frac{1}{n} - \frac{n}{n} C_{r-1}}{2} \\ &= \frac{n X}{\sum n} = \frac{n X 2^{n-1}}{2} = \frac{n}{2} \\ \hline \\ 207 \ \textbf{(d)} \\ \text{Now} \mu_1^{\ell} = \frac{\sum n e^{2n} C_1 + \frac{1}{n} - \frac{n^{2n-1}}{2^2} - \frac{2n}{n} C_r}{2} = \frac{n \sum n - 1}{2} \\ &= \frac{n X 2^{n-1}}{2} = \frac{n}{2} \\ \hline \\ 207 \ \textbf{(d)} \\ \text{Now} \mu_1^{\ell} = \frac{\sum 2n e^{n} C_1}{2 \sum n^n C_r} = \frac{n 2^{n-1} C_{r-1}}{n} = \frac{n \sum n^{2n-1} C_{r-1}}{2} \\ &= \frac{n X 2^{n-1}}{2} = \frac{n}{2} \\ \hline \\ 207 \ \textbf{(d)} \\ \text{Now} \mu_1^{\ell} = \frac{\sum 2n e^{n} C_1}{2 \sum n^{n-1} C_r} = \frac{n 2^{n-1} C_{r-1}}{2} \\ &= \frac{n \sum 2n e^{n} C_r}{2} = \frac{n^{2n-1}}{2} \\ \hline \\ \frac{n}{n^{\ell}} = \frac{2 \sum n e^{-n} C_r}{2} = \frac{n^{2n-1} C_1}{2^2} \\ &= \frac{n}{2} \\ \frac{n}{2} = \frac{(n-1)}{2} \\ &= \frac{n (n-1)}{2} \\ &= \frac{n}{2} \\ \frac{1}{18} \\ \frac{n}{16} \\ = \frac{1}{2} \\ \frac{1}{18} \\ \frac{1}{16} \\$$$

 $= 50, n_2 = 100 - y$

 $\Rightarrow 3500 = 25y + 5000 - 50y$

2

 $\Rightarrow 25y = 1500 \Rightarrow y = 60$ \therefore Number of girls in the class = 60 218 (c) \therefore Total marks of 10 failed students = $28 \times 10 =$ 280 and Total marks of 50 students = 2800 \therefore Total marks of 40 passed students = 2800 -280 = 2520: Average marks of 40 passed students $=\frac{2520}{40}=63$ 220 (c) The given series is $1, 2, 3, \dots (2n+1)$ $\bar{x} = \frac{1+2+3+\dots+(2n+1)}{2n+1}$ $=\frac{(2n+1)(2n+2)}{2(2n+1)}$ = (n + 1) $\therefore \sigma^2 = \frac{1}{2n+1} \sum_{n=2}^{2n} \{(1+r) - (1+n)\}^2$ $=\frac{2}{2n+1}(1^2+2^2+\dots+n^2)$ $\Rightarrow \sigma^2 = \frac{n(n+1)}{3}$ $\Rightarrow \sigma = \sqrt{\frac{n(n+1)}{3}}$ 221 (b) $\therefore \sigma_x^2 = 4and\sigma_y^2 = 5$ Also $\bar{x} = 2$ and $\bar{y} = 4$ Now, $\frac{\Sigma x_i}{5} = 2 \Rightarrow \Sigma x_i = 10$ $\frac{\Sigma y_i}{5} = 4 \Rightarrow \Sigma y_i = 20$ Since $\sigma_x^2 = \frac{1}{5} (\Sigma x_i^2) - (\bar{x})^2$ $\Rightarrow \Sigma x_i^2 = 40$ Similarly $\Sigma x_i^2 = 105$ $\therefore \sigma_x^2 = \frac{1}{10} (\Sigma x_i^2 + \Sigma y_i^2) - \left(\frac{\overline{x} + \overline{y}}{2}\right)^2$ $=\frac{1}{10}(40+105)-9$ $=\frac{55}{10}=\frac{11}{2}$ 223 (a) Given, $\sigma_x^2 = 9$ And lines of regression are 4x - 5y + 33 = 0,20x - 9y - 10 = 0Ie, $y = \frac{4}{5}x + \frac{33}{5}and x = \frac{9}{20}y + \frac{10}{20}y$ ∴Regression coefficient are

$$b_{yx} = \frac{4}{5} and \ b_{xy} = \frac{9}{20}$$
Now, $b_{yx} = \frac{cov(x,y)}{\sigma_x^2}$

$$\Rightarrow cov(x, y) = \frac{4}{5} \times 9 = \frac{36}{5}$$
And $b_{xy} = \frac{cov(x,y)}{\sigma_y^2}$

$$\Rightarrow \sigma_y^2 = \frac{36}{5} \times \frac{20}{9} = 16$$
Now, $p(x, y) = \frac{cov(x,y)}{\sigma_x \sigma_y} = \frac{36}{5 \times 3 \times 4} = 0.6$
224 (d)
$$Mean = \frac{0 \times {}^n C_0 + 1 \times {}^n C_1 + 2 \times {}^n C_2 + ... + n \times {}^n C_n}{n_{c_0} + n_{c_1} + n_{c_2} + ... + n \times {}^n C_n}$$

$$= \frac{0 + 1 \times {}^n C_1 + 2 \times {}^n C_2 + ... + n \times {}^n C_n}{2^n}$$

$$= \frac{n \cdot 2^{n-1}}{2^n} = \frac{n}{2}$$
226 (c)
The sum of all the four digit numbers using the set of th

The sum of all the four digit numbers using the digits 3, 5, 7 and 9

$$= (3 + 5 + 7 + 9) \times (4 - 1)! \left(\frac{10^4 - 1}{10 - 1}\right)$$

= 24 × 6 × $\left(\frac{10^4 - 1}{10 - 1}\right)$
= $\frac{24 \times 6 \times 9999}{9}$
∴ Required average = $\frac{24 \times 6 \times 9999}{9}$ = 6666

227 (d)

Let n_1 and n_2 be the number of observations in two groups having means \overline{X}_1 and \overline{X}_2 respectively. Then

9×24

$$\overline{X} = \frac{n_1 \overline{X}_1 + n_2 \overline{X}_2}{n_1 + n_2}$$
Now,

$$\overline{X} - \overline{X}_1 = \frac{n_1 \overline{X}_1 + n_2 \overline{X}_2}{n_1 + n_2} - \overline{X}_1$$

$$\Rightarrow \overline{X} - \overline{X}_1 = \frac{n_2 (\overline{X}_2 - \overline{X}_1)}{n_1 + n_2} > 0 \quad [\because \overline{X}_2 > \overline{X}_1]$$

$$\Rightarrow \overline{X} > \overline{X}_1 \qquad \dots (i)$$
And, $\overline{X} - \overline{X}_2 = \frac{n (\overline{X}_1 - \overline{X}_2)}{n_1 + n_2} < 0 \quad [\because \overline{X}_2 > \overline{X}_1]$

$$\Rightarrow \overline{X} < \overline{X}_2 \qquad \dots (ii)$$
From (i) and (ii), we have $\overline{X}_1 < \overline{X} < \overline{X}_2$

229 **(b)**

229	(D)							
	x	y	d	d^2				
			= x					
			- y					
	1	10	-9	81				
	2	9	-7	49				
	3	8	-7 -5 -3 -1	25				
	4	7	-3	9				
	2 3 4 5 6	8 7 6 5 4 3 2	-1	1				
	6	5	1	1				
	7	4	1 3 5 7	9				
	8	3	5	25				
	9	2	7	49				
	10	1	9	81				
				$\sum d^2 =$				
				330				
	: Ranl	z corre	elation <i>F</i>	$R = 1 - \frac{6d}{6}$	2			
	Ruin			$x = 1 - \frac{1}{n(n^2)}$	-1)			
	= 1	$-\frac{6\times}{10(1)}$	$\frac{330}{0^2-1}$					
	=1	$-\frac{198}{99}=$	= -1					
230	(a)							
	Mean	of 1 ² , 2	2 ² , 3 ² ,	$\dots n^2$ is				
	$1^2 + 2^2 + 3^3 + \cdots n^2 \Sigma n^2$							
		n		$\overline{n} = \overline{n}$				
	46n	-	⊦ 1)(2n					
	$\frac{11}{11} =$:	6n					
	<u> </u>	2 0	0.11	.				

 $\Rightarrow 22n^2 + 33n + 11 - 276n = 0$ $\Rightarrow (n - 11)(22n - 1) = 0$

$$\Rightarrow n = 11 \text{ and } n \neq \frac{1}{22}$$
232 (c)
Given, $\sum x_i^2 = 400 \text{ and } \sum x_i = 80, \text{ since } \sigma^2 \ge 0$

$$\Rightarrow \frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2 \ge 0$$

$$\Rightarrow \frac{400}{n} - \frac{6400}{n^2} \ge 0$$

$$\Rightarrow n \ge 16$$

$$\therefore n = 18$$

DCAM classes Dynamic Classes for Academic Mastery