

1.SOME BASIC CONCEPTS OF CHEMISTRY

Single Correct Answer Type

1.	Weight of oxygen in one mole each	n of Fe ₂ O ₃ and FeO	is in the simple ratio of:	
	a) 3 : 2 b) 1 : 2		c) 2:1	d) 3 : 1
2.	Equivalent weight of a bivalent me	etal is 37.2. The mo	lecular weight of its chlori	de is
	a) 412.2 b) 216		c) 145.4	d) 108.2
3.	0.0833 mole of carbohydrate of en	npirical formula Cl	H ₂ O contain 1 g of hydroge	n. The molecular formula of
	the carbohydrate is			
	a) $C_5H_{10}O_5$ b) C_3H_4	40 ₃	c) C ₁₂ H ₂₂ O ₁₁	d) C ₆ H ₁₂ O ₆
4.	The equivalent weight of Zn(OH) ₂	in the following re	eaction is equal to its,	
	$Zn(OH)_2 + HNO_3 \rightarrow Zn(OH)(NO_3)$	$) + H_20:$		
	a) Formula wt.	nula wt.	c) 2 x formula wt	d) 3 x formula wt
	1	2		aj 5 × lormana we.
5.	5.85 g of NaCl are dissolved in 90 g	g of water. The mo	le fraction of NaCl is:	
-	a) 0.1 b) 0.01		c) 0.2	d) 0.0196
6.	2.76 g of silver carbonate on being	strongly heated y	ield a residue weighing	N 0 00
_	a) 2.16 g b) 2.48	g	c) 2.64 g	d) 2.32 g
7.	A solution contains Na_2CO_3 and N	$aHCO_3.10 mL of th$	e solution required 2.5 mL	of 0.1 M H ₂ SO ₄
	for neutralization using phenolphi	thalein as indicator	r. Methyl orange is then add	ded when a further 2.5 mL
	of $0.2 M H_2 SO_4$ was required. The	amount of Na_2CO_3	$_3$ in 1 litre of the solution is	
0	a) 5.3 g and 4.2 g b) 3.3 g	and 6.2 g	c) 4.2 g and 5.3 g	a) 6.2 g and 3.3 g
8.	1 ne volume occupied by one mole	cule of water (den	sity 1 g cm $^{\circ}$) is:	$1) 2 0 \dots 10^{-23} \dots 3$
0	a) 18 cm ² b) 2240	JU cm ³	c) $6.023 \times 10^{-25} \text{ cm}^3$	a) $3.0 \times 10^{-25} \text{ cm}^3$
9.	510 mg of a liquid on vaporization	in victor meyer s	apparatus displaces 67.2 c	m ^s of air at (STP). The
	molecular weight of the liquid is:		-) 170	J) 1700
10	a) 130 D) 17		CJ 1/U	a) 1700
10.	what volume of 6 M HCL should b			4) 2 E 0 I
11	a) 0.25 L D) 1.00	L n carbonato coluti	C = 0.75 L	uj 2.30 L
11.	2 2 12 12 12 12 12 12 1	li cai bonate soluti	c) 0 5	d) 1 5
12	If H SO, ionises as H SO, $\pm 2H$.	$\rightarrow 2H_{\odot}O^{+} \pm SO^{2}$ t	ben total number of ions n	uj 1.5 produced by 0.1 M H. SO.
12.	will be	× 21130 + 504, t	inen total number of lons p	1000000 by 0.1 M 112504
	a) 9.03×10^{21} b) 3.01	× 10 ²²	c) 6.02×10^{22}	d) 1.8×10^{23}
13	$W_{\rm c}$ of an element combines with o	xvgen forming Wa	σ of its oxide The equivale	ent weight of the element is
15.	Γ Ι	V_1]	$[W_2 - W_1]$	ΓW_1]
	a) $[W_1 / W_2] \times 8$ b) $\left[\frac{W_2}{W_2}\right]$	$\left[\frac{1}{-W_1}\right] \times 8$	c) $\left[\frac{2}{W_1}\right] \times 8$	d) $\left[\frac{1}{W_1 - W_2}\right] \times 8$
14.	A sample of ammonium phosphate	$(NH_4)_3PO_4$ conta	nins 6.36 moles of hydrogen	n atoms. The number of
	moles of oxygen atom in the samp	le is		
	(atomic mass of $N = 14.04$, $H = 1$,	P = 31, 0 = 16)		
	a) 0.265 b) 0.79	5	c) 2.12	d) 4.14
15.	To neutralise 20 mL of <i>M</i> /10 NaO	H, the volume of M	1/20 HCl needed is:	
	a) 10 mL b) 30 m	ıL	c) 40 mL	d) 20 mL
16.	A, E, M and n are the atomic weigh	nt, equivalent weig	ht, molecular weight and v	alence of an element. The
	correct relation is:			
	a) $A = E \times n$ b) $A =$	M/E	c) $A = M/n$	d) $M = A \times n$
17.	Which one of the following set of u	inits represents th	e smallest and largest amo	unt of energy respectively?
	a) J and erg b) erg a	ind cal	c) Cal and eV	d) eV and L-atm
18.	The number of atoms present in a	0.635 g of Cu piece	e will be	
	a) 6.023×10^{-23} b) 6.02	3×10^{23}	c) 6.023×10^{22}	d) 6.023×10^{21}

19.	What volume of hydrogen gas, at 273 K and 1 atm pressure will be consumed in obtaining 21.6 g of elemental boron (atomic mass $= 10.8$) from the reduction of boron trichloride by hydrogen?			
	2) 20.6 L b) 67.2 L			
20	a) 09.0 L D) 07.2 L The numerical value of N/n (where N is number of r	CJ 44.0 L	uj 22.4 L	
20.	The numerical value of N/R (where N is number of 1	101ecules is <i>n</i> moles of gas	(15)	
21	a) 0.514 b) 0.02×10^{-5}	$C_{J} = 1.002 \times 10$	u) 1.00 × 10	
21.	a) Any value	$1 \text{ Intuition } \mathbf{x} \in \mathbf{n}$. The \mathbf{n} into \mathbf{n} and \mathbf{n}	e:	
	a) Any value			
	a) Only positive integer value			
	d) None of the above			
22	10 g $(200, 0)$ heating gives 5.6 g $(20, 2)$ and $(20, 2)$			
<i>LL</i> .	$\begin{array}{c} 10 \text{ g} \text{ caces} \text{ on nearing gives 5.6 g cae and g cos2} \\ a) 44 \\ b) 56 \end{array}$	c) 65	d) 4 2	
23	Which of the following changes with increase in term	nerature?	u) 1.2	
20.	a) Molality	perature		
	b) Weight fraction of solute			
	c) Fraction of solute present in water			
	d) Mole fraction			
24.	On combustion of 4 g of the methane, 10.46 kJ of hea	t is liberated. Heat of comb	ustion of methane is	
	a) 83.68 kJ b) 10.46 kJ	c) 41.84 kJ	d) 20.93 kJ	
25.	A gas is found to have the formula $(CO)_x$. Its VD is 70	The value of <i>x</i> must be:	· ·	
	a) 7 b) 4	c) 5	d) 6	
26.	Choose the wrong statement.			
	a) 1 mole means 6.023×10^{23} particles			
	b) Molar mass is mass of one molecule			
	c) Molar mass is mass of one mole of a substance			
	d) Molar mass is molecular mass expressed in grams	;		
27.	The term standard solution is used for the solutions	whose:		
	a) Normality is known b) Molarity is known	c) Strength is known	d) All of these	
28.	The ratio of mole fraction of a solute and a solvent in	a binary solution is:		
	a) Ratio of their wt. b) One	c) Ratio of their mole	d) Zero	
29.	If in a reaction HNO_3 is reduced to NO, the mass of H	NO_3 absorbing one mole of	f electrons would be	
•	a) 21.0 g b) 36.5 g	c) 18.0 g	d) 31.5 g	
30.	At STP 5.6 litre of a gas weighs 60 g. The vapour den	sity of gas is:	N 0 40	
01	a) 60 b) 120	c) 30	d) 240	
31.	The number of atoms present in 16 g of oxygen gas is $-2 < 0.2 \times 10^{11}$ b 2.01×10^{23}	S:	$1) < 0.0 > 10^{23}$	
22	a) $6.02 \times 10^{11.0}$ b) 3.01×10^{25}	C) 3.01×10^{110}	(1) 6.02×10^{23}	
32.	Un analysis a certain compound was found to contain mass 127) and 80 g average (at mass 16). What is th	n loaine and oxygen in the	ratio of 254 g of loaine (at.	
	mass 127) and 80 g oxygen (at. mass 16). What is the		4) I O (
22	a) IO D) I_2O The vancuum density of a velotile chloride of a motal <i>ic</i>	$CJ_{12}U_3$	$U_1 I_2 U_5$	
55.	The equivalent weight of the metal will be:	s 55 and the specific field of	the metal is 0.15 tal/g.	
	a) 60 b) 12.3	c) 18.6	d) 24 5	
34	The equivalent weight of a certain trivalent element	is 20 Molecular weight of i	ts oxide is	
01.	a) 152 b) 56	c) 168	d) 68	
35.	Gram molecular volume of oxygen at STP is	0) 200		
	a) 3200 cm ³ b) 5600 cm ³	c) 22400 cm ³	d) 11200 cm ³	
36.	Two elements <i>X</i> (at. Wt. 75) and <i>Y</i> (at. wt. 16) combi	ine to give a compound hav	ring 75.8% of <i>X</i> . The	
	formula of compound will be		-	
	a) <i>XY</i> b) <i>X</i> ₂ <i>Y</i>	c) <i>XY</i> ₃	d) $X_2 Y_3$	
37.	The amount of oxalic acid (hydrated) required to pre-	epare 500 mL of its 0.1 <i>N</i> so	olution is:	

	a) 0.315 g b) 6.3 g	c) 3.15 g	d) 63.0 g
38.	The equivalent weight of KMnO ₄ for acid solution is		
	a) 79 b) 52.16	c) 158	d) 31.6
39.	Consider a titration of potassium dichromate solution	n with acidified Mohr's salt	solution using
	diphenylamine as indicator. The number of moles of	Mohr's salt required per m	ole of dichromate is
	a) 3 b) 4	c) 5	d) 6
40.	A mixture of CH_4 , N_2 and O_2 is enclosed in a vessel of	one litre capacity at 0°C. T	he ratio of particle
	pressures of gases is 1 : 4 : 2. Total pressure of the ga	seous mixture is 2660 mm.	. the number of molecules
	of oxygen present in the vessel is		
	6.02×10^{23} b) (0.02×10^{23})	$-) 22 4 \times 10^{22}$	d) 1000
	a) 22.4 b) 6.02×10^{-3}	c) 22.4×10^{-2}	
41.	x g of Ag was dissolved in HNO ₃ and the solution was	s treated with excess of Na	Cl when 2.87 g of <i>AgCl</i> was
	precipitated. The value of <i>x</i> is		
	a) 1.08 g b) 2.16 g	c) 2.70 g	d) 1.62 g
42.	One mole electron means:		
	a) N electrons		
	b) 6.023×10^{23} electrons		
	c) 0.55 mg electrons		
	d) All of these		
43.	A signature, written in carbon pencil weights 1 mg. W	/hat is the number of carbo	on atoms present in the
	signature?		
	a) 5.02×10^{23} b) 5.02×10^{20}	c) 6.02×10^{20}	d) 0.502×10^{20}
44.	The minimum quantity of H_2S needed to precipitate	63.5 g of Cu ²⁺ will be nearly	y:
	a) 63.5 g b) 31.75 g	c) 34 g	d) 20 g
45.	An unknown element forms an oxide. What will be th	e equivalent weight of the	element if the oxygen
	content is 20% by weight?		
	a) 16 b) 32	c) 8	d) 64
46.	Cortisone is a molecular substance containing 21 ato	ms of carbon per molecule.	The molecular weight of
	cortisone is 360.4. what is the percentage of carbon i	n cortisone?	
	a) 59.9% b) 75%	c) 69.98%	d) None of these
47.	Which mode of expressing concentration is independ	lent of temperature?	
	a) Molality b) Per cent by weight	c) Mole fraction	d) All of these
48.	An ion is reduced to the element when it absorbs 6 \times	10 ²⁰ electrons. The number	er of equivalent of ion is:
	a) 0.1 b) 0.01	c) 0.001	d) 0.0001
49.	The volume of $0.1 M H_2 SO_4$ required to neutralise 30	0 mL of 2.0 <i>M</i> NaOH is:	
	a) 100 mL b) 300 mL	c) 400 mL	d) 200 mL
50.	The law of definite proportions is not applicable to n	itrogen oxide because	
	a) Nitrogen atomic weight is not constant	b) Nitrogen molecular wei	ight is variable
	c) Nitrogen equivalent weight is variable	d) Oxygen atomic weight i	s variable
51.	1.520 g of hydroxide of a metal on ignition gave 0.99	5 g of oxide. The equivalent	weight of metal is
	a) 1.52 b) 0.995	c) 190	d) 9
52.	A hydrocarbon contains 10.5 g carbon and 1 g hydrog	gen. Its 2.81 g has 1L volum	te at 1 atm and 127° C,
	hydrocarbon is		
	a) C_6H_7 b) C_7H_8	c) C ₅ H ₆	d) None of the above
53.	1 mole of methyl amine on reaction with nitrous acid	gives at NTP	
	a) 1.0 L of nitrogen b) 22.4 L of nitrogen	c) 11.2 L of nitrogen	d) 5.6 L of nitrogen
54.	The weight of sulphuric acid needed for dissolving 3	g magnesium carbonate is:	
	a) 3.5 g b) 7.0 g	c) 1.7 g	d) 17.0 g
55.	When a metal is burnt, its weight is increased by 24 p	per cent. The equivalent we	ight of the metal will be:
	a) 25 b) 24	c) 33.3	d) 76
56.	A metal oxide is reduced by heating it in a stream of l	nydrogen. It is found that af	fter complete reduction,

	3.15 g of oxide yielded 1.0	05 g of metal. From the abo	ove data we can say that	
	a) The atomic weight of n	netal is 8	b) The atomic weight of n	netal is 4
	c) The equivalent weight	of metal is 4	d) The equivalent weight	of metal is 8
57.	The ratio of amounts of H	S needed to precipitate a	ll the metal ions from 100 r	nL of 1 M AgNO₃ and
-	100mL of CuSO ₄ , will be	2 1 1		0 5
	a) 1 : 1	b) 1 : 2	c) 2 : 1	d) None of these
58.	The mole fraction of NaCl	in a solution containing 1	mole of NaCl in 1000 g of w	ater is :
00.	a) 0.0177	b) 0.001	c) 0.5	d) 0.244
59	Which is correct for Na ₂ F	IPO_?		
07.	a) It is not an acid salt	b) Eq. wt. = $\frac{M}{2}$	c) Ox. no. of P is + 3	d) All of these
60.	How many g of NaOH will	l be needed to prepare 250	mL of 0.1 <i>M</i> solution?	
	a) 1 g	b) 10 g	c) 4 g	d) 6 g
61.	If the specific heat of a me	etallic element is 0.214 cal	/g, the atomic weight will b	e closest to:
	a) 66	b) 12	c) 30	d) 65
62.	An ore contains 1.34% of	the mineral argentite, Aq_2	S, by mass. How many gran	n of this ore would have to
	be processed in order to	obtain 1.00 g of pure solid	silver, Ag?	
	a) 74.6 g	b) 85.7 g	c) 107.9 g	d) 134.0 g
63.	In which of the following	numbers all zeros are sign	ificant?	, 0
	a) 0.500	b) 30.000	c) 0.00030	d) 0.0050
64.	Weight of an atom of an e	element is 6.644 $\times 10^{-23}$ g.	What will be the number o	f g atom of that element in
	40 kg?			- <u>0</u>
	a) 10^3	b) 10 ⁶	c) 1.5×10^3	d) None of these
65.	In a compound $A_{x}B_{y}$:	~)	-)	·) · · · · · · · · · · · · · · · · · ·
001	a) Mole of $A = mole of B$	- mole of A B		
	a) Mole of $A = \text{Ea of } B = \text{E}$	$= \text{ more of } A_x B_y$		
	D = E = E = E = E = E = E	$\mathbf{q}.0\mathbf{I}\mathbf{A}_{\mathbf{x}}\mathbf{D}_{\mathbf{y}}$		
	c) $Y \times X$ mole of $A = Y \times$	X mole of B = (X + Y) X	mole of $A_x B_y$	
	d) $Y \times X$ mole of $A = Y \times$	X mole of B		
66.	One gram of hydrogen is	found to combine with 80 g	g of bromine. One gram of c	alcium (Valency =2)
	combines with 4 g of bron	nine. The equivalent weigh	it of calcium is	
	a) 10	b) 20	c) 40	d) 80
67.	A bivalent metal has an e	quivalent mass of 32. The r	nolecular mass of the metal	nitrate is
	a) 182	b) 168	c) 192	d) 188
68.	12 g of Mg(at. wt. = 24)	will react completely with	an acid to give:	
	a) One mole of H ₂	b) Half mole of H ₂	c) One mole of O ₂	d) None of these
69.	The atomic weight of a m	etal (<i>M</i>) is 27 and its equiv	valent weight is 9, the formu	ıla of its chloride will be:
	a) MCl	b) MCl ₉	c) M_3 Cl ₄	d) MCl ₃
70.	1.60 g of a metal were dis	solved in HNO_3 to prepare	e its nitrate. The nitrate on s	trong heating gives 2 g
	oxide. The equivalent we	ight of metal is:		
	a) 16	b) 32	c) 48	d) 12
71.	5.85 g of NaCl dissolved in	n H ₂ O and solution is made	e upto 500 mL. The molarity	/ is:
	a) 0.1	b) 0.2	c) 1.0	d) 0.117
72.	Which property of an element	ment is not variable?		
	a) Valence	b) At. wt.	c) Eq. wt.	d) None of these
73.	The oxide of an element p	cossesses the formula M_2 O	$_3$. If the equivalent weight of	of the metal is 9, then the
	atomic weight of the meta	al will be:		
	a) 9	b) 18	c) 27	d) 54
74.	$0.7 \text{ g of } \text{Na}_2\text{CO}_3 \cdot x\text{H}_2\text{O} \text{ w}$	ere dissolved in water and	the volume was made to 10	0 mL, 20 mL of this
	solution required 19.8 m	L of $N/10$ HCl for complete	e neutralisation. The value	of x is:
	a) 7	b) 3	c) 2	d) 5
75.	The specific heat of an ele	ement of atomic weight 32	is likely to be:	

	a) 0.25 cal/g	b) 0.24 cal/g	c) 0.20 cal/g	d) 0.15 cal/g
76.	Number of atoms in 560 g	of Fe (atomic mass 56 g m	(10^{-1}) is	
	a) Twice that of 70 g N	b) Half that of 20 g H	c) Both are correct	d) None of these
77.	A 400 mg iron capsule con	ntains 100 mg of ferrous fu	marate, $(CHCOO)_2$ Fe. the p	ercentage of iron present
	in it is approximately	-		
	a) 33%	b) 25%	c) 14%	d) 8%
78.	Equal weights of Zn metal	and iodine are mixed toge	ther and l_2 is completely c	onverted toZnl ₂ . What
	fraction by weight of original	nal Zn remains unreacted?	2(Zn = 65, I = 127)	2
	a) 0.34	b) 0.74	c) 0.84	d) Unable to predict
79.	An aqueous solution conta	aining 6.5 g of NaCl of 90%	purity was subjected to ele	ectrolysis. After the
	complete electrolysis, the	solution was evaporated t	o get solid NaOH. The volur	me of 1 M acetic acid
	required to neutralise Nat	OH obtained above is		
	a) 1000 cm^3	b) 2000 cm ³	c) 100 cm ³	d) 200 cm ³
80	Which of the following is a	correct?		u) 200 cm
00.	a) Mole fraction of $I + mole$	le fraction of $II = 1$		
	(if only two component	ts are present)		
	Mole fraction of I	nole of I		
	b) Mole fraction of II $=$	nole of II		
	(if only two component	ts are present)		
	Mole fraction of solute	=		
	c) mole of so	lute		
	mole of solute+mo	le of solvent		
01	a) All of the above	с	1 .	
81.	The number of significant	figures in Avogadro's num	iber is	
00	a) Four	b) Two	c) Three	d) Can be any of these
82.	A gas has a vapour densit	y 11.2. The volume occupie	ed by 1g of the gas at NTP is	
~ ~	a) 1 L	b) 11.2 L	c) 22.4 L	d) 4 L
83.	A metal nitride, M_3N_2 con	tains 28% of nitrogen. The	atomic mass of metal, M is	
~ .	a) 24	b) 54	c) 9	d) 87.62
84.	An oxide of iodine $(I = 12)$	7) contains 25.4 g of iodin	e for 8 g of oxygen. Its form	ula could be:
05	a) $I_2 O_3$	b) $I_2 O$	c) $I_2 O_5$	d) $I_2 O_7$
85.	20 g of an acid furnishes ($1.5 \text{ moles of } H_3 \text{O}^+ \text{ lons in it}$	s aqueous solution. The val	lue of 1 g eq. of the acid will
	be:		2.40	1) 100
07	a) 40 g	b) 20 g	c) 10 g	
86.	10 mL of gaseous hydroca	irbon on combustion gives	40 mL of $CO_2(g)$ and 50 m	L of H ₂ O (vap). The
	hydrocarbon is:			
07	a) L_4H_5	b) L_8H_{10}	$CJ C_4 H_8$	$d J C_4 H_{10}$
87.	10 mL of concentrated H ₂	SO_4 (18 <i>M</i>) is alluted to on	e litre. The approximate m	olecular of the allute acid
	IS:	1. 100 14		D 1 0 W
00	a) 18 M	b) 180 M	c) 0.18 <i>M</i>	d) 1.8 <i>M</i>
88.	Which represents per cen	t by strength?		
	a) $\frac{\text{wt. of solute}}{\text{wt. of solute}} \times 10^{-1}$	00		
	volume of solution			
	b) $\frac{we of solution}{volume of solution} \times 1$	00		
	volume of solute			
	c) $\frac{1}{\text{volume of solution}} \times 1$	00		
	d) All of the above			
89.	An alkaloid contains 17.28	3% of nitrogen and it's mol	ecular mass is 162. The nu	mber of nitrogen atoms
	present in one molecule o	f alkaloid is		-
	a) 5	b) 4	c) 3	d) 2
90.	6.02×10^{20} molecules of	urea are present in 100 mI	of its solution. The molari	ty of urea solution is:

	a) 0.1	b) 0.01	c) 0.02	d) 0.001	
91.	What volume of H_2 at 273	3 K and 1 atm will be consu	umed in obtaining 21.6 g o	f elemental boron (at. mass	
	10.8) from the reduction	of boron trichloride with H	₂ ?		
	a) 44.8 L	b) 22.4 L	c) 89.6 L	d) 67.2 L	
92.	In a metal chloride, the w	eight of metal and chlorine	are in the ratio of 1:2. The	equivalent weight of the	
	metal will he				
	a) 71	h) 35 5	c) 106 5	d) 17 75	
93	$KMnO_{4}$ (mol wt = 158) ox	vidizes oxalic acid in acid m	edium to CO_{2} and water as	s follows	
<i>y</i> 0.	$5C_{n}\Omega_{4}^{2-} + 2Mn\Omega_{7}^{-} + 16H^{+}$	$r \rightarrow 1000_{\circ} + 2Mn^{2+} + 8H_{\circ}$	0	10110 103	
	What is the equivalent we	$\frac{10002}{2}$ $\frac{10002}{2}$	0		
	a) 159	b) 21 6	c) 20 5	d) 70	
04	dj 150 How many H atoms are n	UJ 31.0 recent in 0.046 g of otherol	() 39.3 12	u) / 9	
94.	10^{10} many matching are p	h 1 2 \times 10 ²¹	(1) (2) (10) (21)	$d) 2 \in \times 10^{21}$	
05	a) 0×10^{-5}	UJ 1.2 × 10		u) 5.0 × 10	
95.	The pair of species having	same percentage of carbon	11 IS:		
	a) CH_3COOH and $C_6H_{12}O_6$				
	b) CH_3COOH and C_2H_5OH				
	c) HCOOCH ₃ and $C_{12}H_{22}C_{12}$	0 ₁₁			
	d) $C_6 H_{12} O_6$ and $C_{12} H_{22} O_1$	1			
96.	The maximum number of	molecules is present in:			
~-	a) 15 L of H_2 gas at STP	b) 5 L of N_2 gas at STP	c) 0.5 g of H_2 gas	d) 10 g of O_2 gas	
97.	If one mole of ethanol (C_2	H_5OH) completely burns to	o carbon dioxide and water	, the weight of carbon	
	dioxide formed is about:				
	a) 22 g	b) 45 g	c) 66 g	d) 88 g	
98.	How many moles of MgIn	$_2S_4$ can be made from 1 g e	each of <i>Mg</i> , in and S? (Atom	nic mass : Mg = 24, , In =	
	114.8, S = 32)			-	
	a) 6.47×10^{-4}	b) 3.0×10^{-1}	c) 9.17× 10 ⁻²	d) 8.7×10^{-3}	
99.	One g of a mixture of Na ₂	CO ₃ and NaHCO ₃ consumes	y equivalent of HCl for con	nplete neutralisation. One g	
	of the mixture is strongly	heated, then cooled and the	e residue treated with HCl	How many equivalent of	
	HCl would be required for	complete neutralization?			
	a) 2 <i>y</i> equivalent	b) y equivaletnt	c) 3 <i>y</i> /4 equivalent	d) 3 <i>y</i> /2 equivalent	
100.	An organic compound cor	taining C and H has 92.3%	of carbon, its empirical for	mula is	
	a) CH	b) CH ₃	c) CH ₂	d) CH ₄	
101.	1.5 g of a divalent metal d	isplaced 4 g of copper (at. v	wt. $= 63.8$) from a solution	of copper sulphate. The	
	atomic weight of the meta	ıl is:			
	a) 12	b) 24	c) 48	d) 6	
102.	4 g of copper was dissolve	ed in concentrated nitric act	id. The copper nitrate solut	tion on strong heating gave	
	5 g of its oxide. The equiva	alent weight of copper is			
	a) 23	b) 32	c) 12	d) 20	
103.	If w_1 g of a metal X displa	$\cos w_2$ g of another metal Y	from its salt solution and i	f the equivalent weights	
	are E_1 and E_2 respectively	r, the correct expression for	r the equivalent weight of X	<i>K</i> is	
	_ <i>W</i> ₁ _	$w_2 \times E_2$	$- w_1 \times w_2$	$\overline{W_1}$	
	a) $E_1 = \frac{1}{W_2} \times E_2$	b) $E_1 = \frac{2}{W_1}$	c) $E_1 = \frac{1}{E_2}$	d) $E_1 = \left \frac{1}{w_2} \times E_2 \right $	
101	- 	1	-	$\sqrt{2}$	
104.	The weight of an atom of a	atomic mass 260 amu is:	24		
	a) 4.32×10^{-22} g	b) 4.32×10^{-23} g	c) 4.32×10^{-24} g	d) 4.32×10^{-21} g	
105.	An organic compound has	s an empirical formula (CH ₂	$_{2}$ 0) its vapour density is 45	. The molecular formula of	
	the compound is				
	a) CH ₂ O	b) C_2H_5O	c) C_2H_2O	d) $C_3 H_6 O_3$	
106.	10 g of hydrogen and 64 c	of oxygen were filled in a ste	eel vessel and exploded. Ar	nount of water produced in	
	this reaction will be:				
	a) 1 mole	b) 2moles	c) 3 moles	d) 4 moles	

107.	If one mole of H ₂ SO ₄ react	ts with an excess of NaOH,	how many moles of water a	are formed?
	a) 2	b) 1	c) 3	d) 4
108.	The mass of 112cm ³ of CH	I_4 gas at STP is		
	a) 0.16 g	b) 0.8 g	c) 0.08 g	d) 1.6 g
109.	Which term is to be correct	ctly used for expressing co	ncentration of electrolytes	in solution?
	a) Molarity	b) Normality	c) Formality	d) None of these
110.	The haemoglobin from the	e red blood corpuscles of n	nost mammals contains app	proximately 0.33% of iron
	by weight. The molecular	weight of haemoglobin as	67,200. The number of iron	atoms in each molecule of
	haemoglobin is (atomic w	eight of iron = 56):		
	a) 2	b) 3	c) 4	d) 5
111.	If two compounds have the	ne same empirical formula	but different molecular for	mulae, they must have
	a) Different percentage co	mposition	b) Different molecular we	ights
	c) Same viscosity		d) Same vapour density	
112.	0.1 mole of a carbohydrate	e with empirical formula C	H_2O contains 1 g of hydrog	en. What is its molecular
	formula?			
	a) $C_5 H_{10} O_5$	b) C ₆ H ₁₂ O ₆	c) $C_4 H_8 O_4$	d) $C_{3}H_{6}O_{3}$
113.	Mole fraction of the solute	e in a 1.00 molal aqueous so	olution is:	
	a) 1.7700	b) 0.1770	c) 0.0177	d) 0.0344
114.	How many moles of magn	esium phosphate, Mg ₃ (PO	$_{4})_{2}$ will contain 0.25 mole of	of oxygen atoms?
	a) 0.02	b) 3.125×10^{-2}	c) 1.25×10^{-2}	d) 2.5×10^{-2}
115.	2 g of mixture of CO and C	0_2 on reaction with excess	I_2O_5 produced 2.54 g of I_2	. What would be the mass
	% of CO_2 in the original m	ixture?		
	a) 60	b) 30	c) 70	d) 35
116.	On analysis a certain com	pound was found to contai	n iodine and oxygen in the	ration 254 g of iodine and
	80 g of oxygen. The atomic	c mass of iodine is 127 and	that of oxygen is 16. Whicl	h is the formula of the
	compound?			
	a) IO	b) I ₂ 0	c) $I_5 O_2$	d) $I_2 O_5$
117.	The vapour density of gas	<i>A</i> is three times that of gas	<i>B</i> . If the molecular weight	of A is M, the molecular
	weight of <i>B</i> is:	0	0	,
	a) 3 <i>M</i>	b) $\sqrt{3} M$	c) <i>M</i> /3	d) $M/\sqrt{3}$
118	A sample of pure Cu (3.18	σ) heated in a stream of σ	xygen for some time gains i	n weight with the
110.	formation of black oxide o	of conner (CuO). The final v	veight is 3.92 g What ner o	ent of conner remains
	unoxidised?	i copper (cuo). The initi v	vergine is 5.52 g. what per e	ent of copper remains
	a) ≈ 65	h) ≈ 6.9	c) ≈ 7.6	d) ≈ 7 9
119	In the following reaction y	which choice has value twi	ce that of the equivalent m	ass of the oxidizing agent?
117.	$SO_{0} + H_{0}O \rightarrow 3S + 2H_{0}O$		ee that of the equivalent in	ass of the omaizing agent.
	a) 64	h) 32	c) 16	d) 48
120	The chloride of metal cont	ains 71 % chlorine by wei	oht and the vanour density	of it is 50. The atomic
120.	weight of the metal will be		gine and the vapour density	of it is 50. The atomic
	a) 29	 h) 58	c) 35 5	d) 71
121	If 0.5 mole of BaCl, is mixed	ed with 0.2 mole of Na. PO	the maximum number of	(PO_{1}) , that can
141.	he formed is		4, the maximum number of	$110103 T Da_3(1 O_4)_2$ that can
	2 0.7	b) 0 5	c) 0.03	d) 0 10
172	How many significant figu	res are there in (respectiv	olv)	u) 0.10
122.	$(1)73000\mathrm{g}(2)00503\mathrm{g}(2)$	and (3) 2 001 s?	ciy)	
	$(1)^{7} 3.000 g(2) 0.0303 g^{2}$	b) $3.4.5$	a) 254	d) 5 3 4
172	The formula weight of Al	$(SO_{1})_{2}$ is 342^{-1} solution of	رى 2,3,7 مntaining 342 g of Al (50)	$a_j = 0, 0, \tau$
123.	a) One litre of solution is α	$(30_{4})_3$ is $3+2$. A solution of the molar	$372 g 01 A1_2(30_4)$	/3 111 .
	h) One litre of solution is 2	2 molar		
	c) $1000 \text{ g of water is } 2 per$	rmal		
	cj 1000 g 01 water is 5 lion	IIIdl		

d) 2 litre of solution is	s 3 molar		
124. For the reaction, Na_2	$CO_3 + 2HCI \rightarrow NaCI + H_2C$) + CO ₂ Equivalent weigh	t of Na ₂ CO ₃ is
a) $\frac{M}{2}$	b) <i>M</i>	c) <i>2M</i>	d) $\frac{M}{4}$
125. Two oxides of a meta	l contain 50% and 40% m	etal (<i>M</i>) respectively. If t	he formula of fist oxide is MO_2 , the
formula of second oxi	ide will be		<u>_</u> ,
a) MO_{2}	b) MO_2	c) $M_{2}O$	d) $M_2 O_2$
126 An organic compound	t on analysis was found to	10.06% carbon	0.84% hydrogen and 89.10%
chloring What will be	the empirical formula of	the substance?	
			d) CH_Cl
$a_j C C C C C C C C C C C C C C C C C C C$	DJ UIUI3	$C_{\rm J}$ $C_{\rm I4}$	
127. 22.4 little of water vaj	b) 1 litera	ised to water, occupies a	approximate volume of:
a) 18 litre	b) I litre	CJ I ML	d) 18 mL
128. Which statement is co	prrect?		
a) Atomic weight of a	n element varies with vale	ence	
b) Molecular weight o	hanges with valence		
c) Equivalent weight	changes with valence		
d) None of the above			
129. Excess of carbon diox	ide is passed through 50 r	mL of 0.5 M calcium hydr	oxide solution. After the
completion of the rea	ction, the solution was eva	aporate was evaporated t	o dryness. The solid calcium
carbonate was compl	etely neutralised with 0.1	N hydrochloric acid. The	volume of hydrochloric acid
required is (Atomic n	nass of calcium=40)		
a) 300 cm ³	b) 200 cm ³	c) 500 cm ³	d) 400 cm ³
130. 9.8 g of H_2SO_4 is pres	ent in 2 litre of a solution.	The molarity of the solut	ion is:
a) 0.1 <i>M</i>	b) 0.05 <i>M</i>	c) 0.01 <i>M</i>	d) 0.2 <i>M</i>
131. The number of mole	present in 2 litre of 0.5 M	NaOH is:	
a) 2	b) 1	c) 0.1	d) 0.5
132. The solution A and B	are 0.1 and 0.2 molar in a	substance. If 100 mL of A	are mixed with 25 mL of <i>B</i> and
there is no change in	volume on mixing then th	e final molarity of the sol	ution is:
a) $0.15 M$	b) $0.18 M$	c) $0.12 M$	d) 0.30 M
133 The gravimetric com	0, 0.10 m	ic.	uj 0.50 M
133. The gravinietite composition	b) $1 \cdot 2$	ان. م) 1 ، 9	d) 1 · 16
a_{j} 1.1	d NaCl waighing 4.44 g ic.	UIIO traatad with cadium carb	uj 1.10
154. A mixture of $CaCl_2$ and	u Naci weigining 4.44 g is		
the Ca ² ions as calci	um carbonate. The calcium	n carbonate so obtained i	s heated strongly to get 0.56 g of
CaO. The percentage	of NaCl in the mixture (ato	omic mass of $Ca = 40$) is	
a) 75	b) 30.6	c) 25	d) 69.4
135. In the reaction,			
$2Al(s) + 6HCl(aq) \rightarrow$	$2Al^{3+}(aq) + 6Cl^{-}(aq) +$	3H ₂ (g)	
a) 6 L HCl (aq) is con	sumed for every $3 L H_2(g)$) produced	
b) 33.6 L H ₂ (g) is pro	duced regardless of temp	erature and pressure for	every mole Al that reacts
c) 67.2 L H ₂ (g) at STI	P is produced for every mo	ole Al that reacts	
d) 11.2 L H ₂ (g) at STI	P is produced for every mo	ole HCl(<i>aq</i>) consumed	
136. Number of atoms of c	oxygen present in 10.6 g of	$f Na_2 CO_3$ will be	
a) 6.02×10^{23}	b) 12.04 × 10 ²²	c) 1.806×10^{23}	d) 31.80×10^{28}
137. If 0.22 of a substance	when vaporized displaced	d 45 cm ³ of air measured	over water at 293 K and 755 mm
pressure and if vapou	IT pressure of $H_2O = 17.4$	mm then the molecular v	veight of substance will be:
a) 222.2	b) 332.3	c) 121.1	d) 127.5
138 The number of water	molecules present in a dr	on of water (volume 0.00	18 mL) at room temperature is
a) $6 0.02 \times 10^{19}$	h) $1 \ \Omega R \Lambda \sqrt{10^{18}}$	c) $\Lambda R \Lambda \times 10^{17}$	d) 6.023×10^{23}
$130 \Delta cortain amount of a$	metal whose equivalent r	0, 7.07^ 10 nase is 28 dienlages 0.7 I	of H. at STD from an acid Honco
mass of the element i	S	11033 13 20 UISPIALES 0.7 L	or m ₂ at 511 from an actu. frence,

	a) 1.75 g	b) 0.875 g	c) 3.50 g	d) 7.00 g
140.	Law of multiple proportio	ns is illustrated by one of t	he following pairs	
	a) H_2S and SO_2	b) NH_3 and NO_2	c) Na_2S and Na_2O	d) N_2O and NO
141.	Amount of oxygen require	d for combustion of 1 kg of	f a mixture of butane and is	obutane is:
	a) 1.8 kg	b) 2.7 kg	c) 4.5 kg	d) 3.58 kg
142.	About a gaseous reaction,	, .	, 0	, .
	$xX + yY \rightarrow lL + mM$			
	Which statement is wrong	?		
	a) $\frac{x}{M}$ letre of X combines w	rith y litre of Y to give L and		with y moles of Y to give L
	x number of molecules	of X combine with y	d) u a of V combined with	washV to give Mand I
	number of molecules of	f Y to form L and M	u) x g of x combines with	y g of F to give M and L
143.	The simplest formula of a	compound containing 50%	o of element X (at. wt. 10) a	nd 50% of element Y (at.
	wt. 20) is:			
	a) <i>XY</i>	b) <i>X</i> ₂ <i>Y</i>	c) <i>XY</i> ₂	d) $X_2 Y_3$
144.	The number of mole of KC	l in 1000 mL of 3 molar sol	lution is:	
	a) 1.5	b) 3.0	c) 1.0	d) 4.0
145.	A person has as many as n	otes as number of oxygen a	atoms in 24.8 g $Na_2S_2O_3 \cdot 5$	H_20 (mol. wt. = 248.0). A
	note counting machine connotes?	unts 60 million notes per d	ay. How much day would b	e taken to count these
	a) 10 ¹⁷	b) 10 ¹⁰	c) 10 ¹⁵	d) 10 ¹²
146.	An oxide of sulphur contai	ins 50 % S. what will be its	empirical formula?	
	a) SO	b) SO ₂	c) SO ₃	d) S ₂ O ₃
147.	$8 \text{ g of } 0_2$ has the same nur	nber of molecules as:		
	a) 7 g of CO	b) 11 g of CO ₂	c) 7 g of N ₂	d) All of these
148.	When 10 g of 90% pure lin	ne stone is heated complet	ely, the volume (in litres) o	of CO_2 is liberated at STP is
	a) 22.4	b) 2.24	c) 20.16	d) 2.016
149.	Mass of 0.1 mole of metha	ane is		
	a) 1 g	b) 16 g	c) 1.6 g	d) 0.1 g
150.	The per cent of N in 66%	pure $(NH_4)_2SO_4$ sample is:		
	a) 32	b) 28	c) 14	d) None of the above
151.	Equal weight of Fe_2O_3 and	d FeO has weight of oxygen	in the ratio:	
	a) 1.35	b) 0.74	c) 0.37	d) 2.7
152.	The number of mole of sol	ute per kg of solvent is call	ed:	
	a) Mole fraction of solute			
	b) Normality			
	c) Molarity			
4 5 0	d) Molality			
153.	The empirical formula of a	a compound is CH_2O . If its v	D is 30, its molecular form	ula is:
1 - 4	a) CH_2O	b) $C_2H_4O_2$	C) $U_3H_6U_3$	d) CH ₃ UH
154.	The decomposition of a ce	rtain mass of CaCO ₃ gave 1	$1.2 \text{ dm}^3 \text{ of } \text{CO}_2 \text{ gas at STP.}$	The mass of KOH required
	to completely neutralise th	he gas is	2.42	1) 20
4	a) 56 g	b) 28 g	c) 42 g	d) 20 g
155.	19.7 kg of gold was recove	ered from a smuggler. How	many atoms of gold were r	ecovered (Au = 197)?
	a) 100	b) 6.02×10^{23}	c) 6.02×10^{24}	d) 6.02×10^{23}
156.	2.79 g of silver carbonate	on being strongly heated y	ields a residue weighing:	
4	a) 2.16 g	b) 2.48 g	c) 2.32 g	d) 2.64 g
157.	In acidic medium, the equi	ivalent weight of $K_2Cr_2O_7$ ((Mol. wt. = M) is	М
	-) M	M	$\frac{M}{M}$	
	ај М	2 נמ	cJ 3	ajb

158. Which has the highest m	ass?		
a) 1 g-atom of C			
b) $1/2$ mole of CH_4			
c) 10 mL of water			
d) 3.011×10^{23} atoms of	f oxygen		
159. How many atoms are pr	esent in a mole of CH ₃ COO	C ₂ H ₅ ?	
a) $14 \times 6.02 \times 10^{23}$ atom	n/mol		
b) $10 \times 6.02 \times 10^{23}$ atom	n/mol		
c) $7 \times 6.02 \times 10^{23}$ atom	/mol		
d) None of the above			
160. Volume of 2 <i>M</i> HCl need	ed to neutralize the solutio	n containing one litre of 1 M	<i>I</i> solution of NaOH is :
a) 1 litre	b) 2 litre	c) 3 litre	$d) \frac{1}{-}$ litre
	_		2
161. 80 g of oxygen contains	as many atoms as in		
a) 80 g of hydrogen	b) 1 g of hydrogen	c) 10 g of hydrogen	d) 5 g of hydrogen
162. An element A (at. wt. =	75) and <i>B</i> (at. wt. = 25) cor	mbine to form a compound.	The compound contains
75% A by weight. The fo	ormula of the compound wi	ll be:	
a) A_2B	b) <i>A</i> ₃ <i>B</i>	c) AB_3	d) <i>AB</i>
163. If molecular weight of K	MnO_4 is <i>M</i> , then its equival	ent weight in acidic mediun	n would be
a) M	h) $\frac{M}{2}$		$\frac{M}{N}$
	6) <u>Z</u>	0,2	u) 3
164. Molecular weight of trib	asic acid is W. Its equivaler	nt weight will be:	
a) <i>W</i> /2	b) <i>W</i> /3	c) <i>W</i>	d) 3 <i>W</i>
165. 5 mL of <i>N</i> HCl, 20 mL of	N/2 H ₂ SO ₄ and 30 mL of N	V/3 HNO ₃ are mixed togeth	er and volume made one
litre. The normality of th	e resulting solution is:		
a) <i>N</i> /5	b) <i>N</i> /10	c) <i>N</i> /20	d) <i>N</i> /40
166. If 20 g of $CaCO_3$ is treated	ed with 100 mL of 20% HC	l solution, the amount of CC	P ₂ produced is
a) 22.4 L	b) 8.80 g	c) 4.40 g	d) 2.24 L
167. The empirical formula o	f a compound is CH ₂ . One n	nole of this compound has a	n mass of 42 g. Its molecular
formula is			
a) C ₃ H ₆	b) C ₃ H ₈	c) CH ₂	d) C ₂ H ₂
168. The volume of air neede	d for complete combustion	of 1 kg carbon at STP is:	
a) 9333.33 litre	b) 933.33 litre	c) 93.33 litre	d) 1866.67 litre
169. Mixture $X = 0.02$ mole of	of [Co(NH ₃) ₅ SO ₄]Br and 0.0	2 mole of [Co(NH ₃) ₅ Br]SO ₂	$_4$ was prepared in 2 L of
solution.			
1 L of mixture X + exces	s AgNO ₃ \rightarrow Y		
1 L of mixture X + exces	s $\operatorname{BaCl}_2 \to Z$		
Number of moles of <i>Y</i> ar	nd Z are		
a) 0.01, 0.01	b) 0.02, 0.01	c) 0.01, 0.02	d) 0.02, 0.02
170. 100 mL each of 0.5 <i>N</i> Na	MOH, $N/5$ HCl and $N/10$ H ₂ S	50_4 are mixed together. The	e resulting solution will be:
a) Acidic	b) Neutral	c) Alkaline	d) None of these
171. 1.5 litre of a solution of a	normality <i>N</i> and 2.5 litres o	of 2 <i>M</i> HCl are mixed togethe	er. The resultant solution
had a normality 5. The v	alue of N is:		
a) 6	b) 10	c) 8	d) 4
172. The number of water me	olecules in 1 L of water is		
a) 18	b) 18 × 1000	c) <i>N</i> _A	d) 55.55 <i>N_A</i>
173. The maximum number of	of molecules are present in		
a) 15 L of H_2 gas at STP		b) 5 L of N_2 gas at STP	
c) U.5 g of H_2 gas	decard Grand and the second	a) 10 g of U_2 gas	
1/4. Polyethylene can be pro	duced from calcium carbid	e according to the following	g sequence of reactions;

$CaC_2 + H_2O \rightarrow CaO + HO$	$C \equiv CH$				
$n \text{HC} \equiv \text{CH} + n \text{H}_2 \longrightarrow (\text{CH}_2 - \text{CH}_2)_n$					
The mass of polyethylene	which can be produced fr	om 20.0 kg of CaCa is			
a) 6.75 kg	h) 7.75 kg	c) 8.75 kg	d) 9.75 kg		
175. Calculate g-atom of eleme	ent in 40 kg if weight of on	e atom of an element is 6.6	$44 \times 10^{-23} \text{ s}^{-23}$		
a) 10^2 g-atom	h) 10 σ-atom	c) 10^3g-atom	d) None of these		
176 The molality of 15% (wt	(vol) solution of H ₂ SO, of	density 1.1 g/cm^3 is annro	vimately.		
a) 1 2	h) 1 A	c) 1.8	d) 1.6		
177 The density of NH.OH so	b) 1.7	ains 34% by weight of NH	.OH Calculate the normality		
of the solution:			4011. Calculate the hormanty		
a) 4.8 <i>N</i>	b) 10 <i>N</i>	c) 0.5 <i>N</i>	d) 5.8 <i>N</i>		
178. 171 g of cane sugar (mol.	wt. $= 342$) are dissolved in	n 1000 g of water at 30°C. I	f the density of solution is		
1.1 g/mL, then:					
a) Molarity < molality	b) Molarity = molality	c) Molality < molarity	d) None of these		
179. Amount of oxygen requir	ed for complete combustio	n of 27 g Al is:			
a) 24 g	b) 12 g	c) 20 g	d) 6 g		
180. The least number of mole	ecules are contained in:				
a) 2 g hydrogen	b) 8 g oxygen	c) 4 g nitrogen	d) 16 g CO ₂		
181. Which of the following is	correct for				
C(graphite) + 0_2 (gas) →	\rightarrow CO ₂ , heat = -348 kJ?				
a) Heat absorbed		b) Mass of product >Mas	ss of reactant		
c) Mass of product < Mas	ss of reactant	d) Mass of product = Ma	ss of reactant		
182. The molarity of 2 N H ₂ SO	0 ₄ is:				
a) 1 <i>M</i>	b) 2 <i>M</i>	c) 3 <i>M</i>	d) 4 <i>M</i>		
183. Amount of oxalic acid present in a solution can be determined by its titration with KMnO ₄ solution in the					
F	soone in a sonation can be a	eter minea by its titration v	the monog boracion in the		
presence of H_2SO_4 . The ti	itration given unsatisfactor	y result when carried out i	n the presence of HCl		
presence of H_2SO_4 . The tibecause HCl	itration given unsatisfactor	y result when carried out i	n the presence of HCl		
presence of H ₂ SO ₄ . The ti because HCl a) Gets oxidised by oxalic	itration given unsatisfactor	y result when carried out i	n the presence of HCl		
presence of H ₂ SO ₄ . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a	itration given unsatisfactor c acid to chlorine ddition to those from oxali	y result when carried out i	n the presence of HCl		
presence of H ₂ SO ₄ . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn ²⁺	ry result when carried out i	n the presence of HCl		
presence of H ₂ SO ₄ . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn ²⁺ carbon dioxide and water	y result when carried out i	n the presence of HCl		
presence of H ₂ SO ₄ . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to 184. The mass of 112 cm ³ of C	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is	ry result when carried out i	n the presence of HCl		
presence of H_2SO_4 . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to 184. The mass of 112 cm^3 of C a) 0.16 g	itration given unsatisfactor c acid to chlorine ddition to those from oxali c to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g	c) 0.08 g	n the presence of HCl		
presence of H ₂ SO ₄ . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to 184. The mass of 112 <i>cm</i> ³ of <i>C</i> a) 0.16 g 185. The volume of oxygen ne	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g cessary for the complete co	c) 0.08 g c) 0.08 g	d) 1.6 g ne is		
presence of H ₂ SO ₄ . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to 184. The mass of 112 cm ³ of C a) 0.16 g 185. The volume of oxygen ne a) 40 L	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g cessary for the complete co b) 60 L	c) 0.08 g ombustion of 20 L of propa c) 80 L	d) 1.6 g ne is d) 100 L		
presence of H ₂ SO ₄ . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to 184. The mass of 112 <i>cm</i> ³ of <i>C</i> a) 0.16 g 185. The volume of oxygen ne a) 40 L 186. The value of gram molar	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g cessary for the complete co b) 60 L volume of gas is:	c) 0.08 g ombustion of 20 L of propa c) 80 L	d) 1.6 g n the June 4 social of HCl		
presence of H ₂ SO ₄ . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to 184. The mass of 112 <i>cm</i> ³ of <i>C</i> a) 0.16 g 185. The volume of oxygen ne a) 40 L 186. The value of gram molar a) 1 litre	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g cessary for the complete co b) 60 L volume of gas is: b) 22.4 litre	c) 0.08 g ombustion of 20 L of propa c) 80 L c) 11.2 litre	 d) 1.6 g n the presence of HCl d) 1.0 L d) 22.4 litre at STP 		
presence of H ₂ SO ₄ . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to 184. The mass of 112 cm ³ of C a) 0.16 g 185. The volume of oxygen ne a) 40 L 186. The value of gram molar a) 1 litre 187. Carbon dioxide contains 2	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g cessary for the complete co b) 60 L volume of gas is: b) 22.4 litre 27.27% of carbon, carbon of	c) 0.08 g ombustion of 20 L of propa c) 80 L c) 11.2 litre disulphide contains 15.79%	 d) 1.6 g n the presence of HCl d) 1.6 g d) 100 L d) 22.4 litre at STP 6 of carbon and sulphur 		
presence of H ₂ SO ₄ . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to 184. The mass of 112 cm ³ of C a) 0.16 g 185. The volume of oxygen ne a) 40 L 186. The value of gram molar a) 1 litre 187. Carbon dioxide contains 2	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g cessary for the complete co b) 60 L volume of gas is: b) 22.4 litre 27.27% of carbon, carbon of sulphur. This data is an agr	c) 0.08 g ombustion of 20 L of propa c) 80 L c) 11.2 litre disulphide contains 15.79%	 d) 1.6 g n the presence of HCl d) 1.6 g d) 100 L d) 22.4 litre at STP 6 of carbon and sulphur 		
presence of H ₂ SO ₄ . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to 184. The mass of 112 cm ³ of C a) 0.16 g 185. The volume of oxygen ne a) 40 L 186. The value of gram molar a) 1 litre 187. Carbon dioxide contains 5 dioxide contains 50% of s a) Law of conservation of	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g cessary for the complete co b) 60 L volume of gas is: b) 22.4 litre 27.27% of carbon, carbon of sulphur. This data is an age	c) 0.08 g ombustion of 20 L of propa c) 11.2 litre disulphide contains 15.79% reement with b) Law of definite propo	 d) 1.6 g n the presence of HCl d) 1.6 g d) 100 L d) 22.4 litre at STP of carbon and sulphur 		
 presence of H₂SO₄. The till because HCl a) Gets oxidised by oxalice b) Furnishes H⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to 184. The mass of 112 cm³ of C a) 0.16 g 185. The volume of oxygen ne a) 40 L 186. The value of gram molar a) 1 litre 187. Carbon dioxide contains 50% of s a) Law of conservation of c c) Law of multiple propo 	 acid to chlorine ddition to those from oxali e to Mn²⁺ carbon dioxide and water <i>CH</i>₄ gas a STP is b) 0.8 g cessary for the complete co b) 60 L volume of gas is: b) 22.4 litre 27.27% of carbon, carbon of sulphur. This data is an age f mass rtions 	 c) 0.08 g c) 0.08 g ombustion of 20 L of propa c) 80 L c) 11.2 litre disulphide contains 15.79% reement with b) Law of definite propord) Law of reciprocal prop 	 d) 1.6 g n the presence of HCl d) 1.6 g d) 100 L d) 22.4 litre at STP o of carbon and sulphur 		
 presence of H₂SO₄. The till because HCl a) Gets oxidised by oxalice b) Furnishes H⁺ ions in a c) reduces permanganated d) Oxidises oxalic acid to 184. The mass of 112 cm³ of C a) 0.16 g 185. The volume of oxygen ne a) 40 L 186. The value of gram molar a) 1 litre 187. Carbon dioxide contains 50% of s a) Law of conservation of c c) Law of multiple propo 188. In a compound C, H, N at 	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g cessary for the complete co b) 60 L volume of gas is: b) 22.4 litre 27.27% of carbon, carbon of sulphur. This data is an agi f mass rtions oms are present in 9 :1 : 3	 c) 0.08 g ombustion of 20 L of propa c) 11.2 litre disulphide contains 15.79% reement with b) Law of definite propord) Law of reciprocal prop .5 by weight. Molecular weight. 	 d) 1.6 g d) 1.6 g ne is d) 100 L d) 22.4 litre at STP o of carbon and sulphur ctions portions eight of compound is 108, its 		
 presence of H₂SO₄. The till because HCl a) Gets oxidised by oxalice b) Furnishes H⁺ ions in a c) reduces permanganated d) Oxidises oxalic acid to 184. The mass of 112 cm³ of C a) 0.16 g 185. The volume of oxygen ne a) 40 L 186. The value of gram molar a) 1 litre 187. Carbon dioxide contains 50% of s a) Law of conservation of c) Law of multiple propo 188. In a compound C, H, N at molecular formula is: 	itration given unsatisfactor cacid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g cessary for the complete co b) 60 L volume of gas is: b) 22.4 litre 27.27% of carbon, carbon of sulphur. This data is an age f mass rtions oms are present in 9 :1 : 3	 c) 0.08 g c) 0.08 g ombustion of 20 L of propa c) 80 L c) 11.2 litre disulphide contains 15.79% reement with b) Law of definite propord d) Law of reciprocal prop .5 by weight. Molecular weight 	 d) 1.6 g n the presence of HCl d) 1.6 g ne is d) 100 L d) 22.4 litre at STP 6 of carbon and sulphur ctions portions eight of compound is 108, its 		
 presence of H₂SO₄. The till because HCl a) Gets oxidised by oxalice b) Furnishes H⁺ ions in a c) reduces permanganated d) Oxidises oxalic acid to 184. The mass of 112 cm³ of C a) 0.16 g 185. The volume of oxygen ne a) 40 L 186. The value of gram molar a) 1 litre 187. Carbon dioxide contains 50% of s a) Law of conservation of c c) Law of multiple propo 188. In a compound C, H, N at molecular formula is: a) C₂H₆N₂ 	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g cessary for the complete co b) 60 L volume of gas is: b) 22.4 litre 27.27% of carbon, carbon of sulphur. This data is an age f mass rtions oms are present in 9 :1 : 3 b) C ₃ H ₄ N	 c) 0.08 g ombustion of 20 L of propa c) 11.2 litre disulphide contains 15.79% reement with b) Law of definite propoid) Law of reciprocal prop .5 by weight. Molecular weight. 	 d) 1.6 g n the presence of HCl d) 1.6 g ne is d) 100 L d) 22.4 litre at STP 6 of carbon and sulphur ctions portions eight of compound is 108, its d) C₉H₁₂N₃ 		
presence of H_2SO_4 . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to 184. The mass of 112 cm ³ of C a) 0.16 g 185. The volume of oxygen ne a) 40 L 186. The value of gram molar a) 1 litre 187. Carbon dioxide contains 5 dioxide contains 50% of s a) Law of conservation of c) Law of multiple propo 188. In a compound C, H, N at molecular formula is: a) C ₂ H ₆ N ₂ 189. The total molarity of all t	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g cessary for the complete co b) 60 L volume of gas is: b) 22.4 litre 27.27% of carbon, carbon of sulphur. This data is an age f mass rtions oms are present in 9 :1 : 3 b) C ₃ H ₄ N he ions containing 0.1 <i>M</i> of	c) 0.08 g ombustion of 20 L of propa c) 80 L c) 11.2 litre disulphide contains 15.79% reement with b) Law of definite propoid) Law of reciprocal prop d) Law of reciprocal prop c) C ₆ H ₈ N ₂ f CuSO ₄ and 0.1 <i>M</i> of Al ₂ (S	 d) 1.6 g n the presence of HCl d) 1.6 g ne is d) 100 L d) 22.4 litre at STP 6 of carbon and sulphur ctions portions eight of compound is 108, its d) C₉H₁₂N₃ O₄)₃ is: 		
presence of H_2SO_4 . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to 184. The mass of 112 cm^3 of C a) 0.16 g 185. The volume of oxygen ne a) 40 L 186. The value of gram molar a) 1 litre 187. Carbon dioxide contains 2 dioxide contains 50% of s a) Law of conservation of c) Law of multiple propo 188. In a compound C, H, N at molecular formula is: a) $C_2H_6N_2$ 189. The total molarity of all th a) 0.2 <i>M</i>	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g cessary for the complete co b) 60 L volume of gas is: b) 22.4 litre 27.27% of carbon, carbon of sulphur. This data is an age f mass rtions oms are present in 9 :1 : 3 b) C ₃ H ₄ N he ions containing 0.1 <i>M</i> of b) 0.7 <i>M</i>	c) 0.08 g ombustion of 20 L of propa c) 11.2 litre disulphide contains 15.79% reement with b) Law of definite propoid) Law of reciprocal prop c) 5 by weight. Molecular we c) $C_6H_8N_2$ f CuSO ₄ and 0.1 <i>M</i> of Al ₂ (S c) 0.8 <i>M</i>	 d) 1.6 g n the presence of HCl d) 1.6 g ne is d) 100 L d) 22.4 litre at STP 6 of carbon and sulphur ctions portions eight of compound is 108, its d) C₉H₁₂N₃ O₄)₃ is: d) 1.2 M 		
presence of H_2SO_4 . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to 184. The mass of 112 cm^3 of C a) 0.16 g 185. The volume of oxygen ne a) 40 L 186. The value of gram molar a) 1 litre 187. Carbon dioxide contains 3 dioxide contains 50% of s a) Law of conservation of c) Law of multiple propo 188. In a compound C, H, N at molecular formula is: a) $C_2H_6N_2$ 189. The total molarity of all th a) 0.2 <i>M</i> 190. How much water is to be	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g cessary for the complete co b) 60 L volume of gas is: b) 22.4 litre 27.27% of carbon, carbon of sulphur. This data is an age f mass rtions oms are present in 9 :1 : 3 b) C ₃ H ₄ N he ions containing 0.1 <i>M</i> of b) 0.7 <i>M</i> added to dilute 10 mL of 1	c) 0.08 g ombustion of 20 L of propa c) 80 L c) 11.2 litre disulphide contains 15.79% reement with b) Law of definite propord) Law of reciprocal prop d) Law of reciprocal prop .5 by weight. Molecular we c) $C_6H_8N_2$ fCuSO ₄ and 0.1 <i>M</i> of Al ₂ (S c) 0.8 <i>M</i> 0 <i>N</i> HCl to make it decinor	 d) 1.6 g n the presence of HCl d) 1.6 g ne is d) 100 L d) 22.4 litre at STP 6 of carbon and sulphur ctions cortions eight of compound is 108, its d) C₉H₁₂N₃ O₄)₃ is: d) 1.2 <i>M</i> mal? 		
presence of H_2SO_4 . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to 184. The mass of 112 cm^3 of C a) 0.16 g 185. The volume of oxygen ne a) 40 L 186. The value of gram molar a) 1 litre 187. Carbon dioxide contains 2 dioxide contains 50% of s a) Law of conservation of c) Law of multiple propo 188. In a compound C, H, N at molecular formula is: a) $C_2H_6N_2$ 189. The total molarity of all th a) 0.2 <i>M</i> 190. How much water is to be a) 990 mL	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g cessary for the complete co b) 60 L volume of gas is: b) 22.4 litre 27.27% of carbon, carbon of sulphur. This data is an age f mass rtions oms are present in 9 :1 : 3 b) C ₃ H ₄ N he ions containing 0.1 <i>M</i> of b) 0.7 <i>M</i> added to dilute 10 mL of 1 b) 1010 mL	c) 0.08 g ombustion of 20 L of propa c) 80 L c) 11.2 litre disulphide contains 15.79% reement with b) Law of definite propor d) Law of reciprocal prop .5 by weight. Molecular we c) $C_6H_8N_2$ fCuSO ₄ and 0.1 <i>M</i> of Al ₂ (S c) 0.8 <i>M</i> 0 <i>N</i> HCl to make it decinor c) 100 mL	 d) 1.6 g n the presence of HCl d) 100 L d) 22.4 litre at STP 6 of carbon and sulphur ctions portions eight of compound is 108, its d) C₉H₁₂N₃ O₄)₃ is: d) 1.2 <i>M</i> mal? d) 1000 mL 		
presence of H_2SO_4 . The ti because HCl a) Gets oxidised by oxalic b) Furnishes H ⁺ ions in a c) reduces permanganate d) Oxidises oxalic acid to 184. The mass of 112 cm ³ of C a) 0.16 g 185. The volume of oxygen ne a) 40 L 186. The value of gram molar a) 1 litre 187. Carbon dioxide contains 3 dioxide contains 50% of s a) Law of conservation of c) Law of multiple propo 188. In a compound C, H, N at molecular formula is: a) C ₂ H ₆ N ₂ 189. The total molarity of all th a) 0.2 <i>M</i> 190. How much water is to be a) 990 mL 191. Density of air at NTP is 0.	itration given unsatisfactor c acid to chlorine ddition to those from oxali e to Mn^{2^+} carbon dioxide and water CH_4 gas a STP is b) 0.8 g cessary for the complete co b) 60 L volume of gas is: b) 22.4 litre 27.27% of carbon, carbon of sulphur. This data is an age f mass rtions oms are present in 9 :1 : 3 b) C ₃ H ₄ N he ions containing 0.1 <i>M</i> of b) 0.7 <i>M</i> added to dilute 10 mL of 1 b) 1010 mL 001293 g/mL. Its vapour of	c) 0.08 g ombustion of 20 L of propa c) 80 L c) 11.2 litre disulphide contains 15.79% reement with b) Law of definite propor d) Law of reciprocal prop .5 by weight. Molecular we c) $C_6H_8N_2$ fCuSO ₄ and 0.1 <i>M</i> of Al ₂ (S c) 0.8 <i>M</i> 0 <i>N</i> HCl to make it decinor c) 100 mL lensity is:	 d) 1.6 g n the presence of HCl d) 100 L d) 22.4 litre at STP 6 of carbon and sulphur ctions cortions eight of compound is 108, its d) C₉H₁₂N₃ O₄)₃ is: d) 1.2 <i>M</i> mal? d) 1000 mL 		

192.	The number of moles of	water present in 90 g of a w	vater is:	
	a) 2	b) 3	c) 4	d) 5
193.	If 30 mL of H ₂ and 20 ml	L of O ₂ reacts to form water,	what is left at the end of re	eaction:
	a) 10 mL H ₂	b) 5 mL H ₂	c) 10 mL 0 ₂	d) 5 mL 0 ₂
194.	The term atom molecule	were introduced by:		
	a) Ostwald, Avogadro re	spectively		
	b) Dalton, Avogadro resp	pectively		
	c) Avogadro, Dalton resp	pectively		
	d) None of the above			
195.	Arrange the following in	the order of increasing mas	ss (atomic mass; 0 = 16, Cu	i = 63, N = 14)
	I. One atom of oxygen			
	II. One atom of nitrogen	ı		
	III. 1×10^{-10} mole of ox	xygen		
	IV. 1×10^{-10} mole of co	pper		
	a) II < <i>I < III < IV</i>	b) I < <i>II</i> < <i>III</i> < <i>IV</i>	c) III < <i>II</i> < <i>IV</i> < <i>I</i>	d) IV < <i>II</i> < <i>III</i> < <i>I</i>
196.	One part of an element A	l combines with two parts o	f another element <i>B</i> . 6 part	ts of element C combines
	with 4 parts of <i>B</i> . If <i>A</i> and	d C combine together, the ra	tio of their weights, will be	governed by
	a) Law of definite propo	rtions	b) Law of multiple propo	rtions
	c) Law of reciprocal pro	portions	d) Law of conservation of	f mass
197.	A metal oxide has the for	rmula Z_2O_3 . It can be reduce	ed by hydrogen to give free	metal and water. 0.1596 g
	of the metal oxide requir	red 6 mg of hydrogen for co	mplete reduction. The aton	nic weight of the metal is:
	a) 27.90	b) 159.60	c) 79.80	d) 55.80
198.	x grams of calcium carbo	onate was completely burnt	in air. The weight of the so	lid residue formed is 28 g.
	What is the value of x (in	n grams)?		
	a) 44	b) 200	c) 150	d) 50
199.	In a gaseous reaction of	the type $aA + bB \rightarrow cC + a$	lD, which is wrong?	
	a) a litre of A combines	with <i>b</i> litre of <i>B</i> to give <i>C</i> an	d D	
	b) a mole of A combines	with <i>b</i> mole of <i>B</i> to give <i>C</i> a	and D	
	c) a g of A combines wit	h b g of B to give C and D		
	d) a molecules of A com	bines with <i>b</i> molecules of <i>B</i>	to give C and D	
200.	Which of the following a	re correct?		
	a) G molecular wt. = mo	l. wt. in $g = wt. of N$ molecu	les	
	b) 1 mole = N molecules	$s = 6.023 \times 10^{23}$ molecule		
	c) Mole = g molecules			
0.04	d) All of the above			
201.	Cyclohexanol is dehydra	ted to cyclohexene on heati	ng with conc H_2SO_4 . The cy	clohexene obtained from
	100 g cyclohexanol will l	be		
	(If yield of reaction is 75	%)	.) 20.0	1) 41 0
202	a) 61.5 g	b) /5.0 g	c) 20.0 g	d) 41.0 g
202.	A compound was found	to contain nitrogen and oxy	gen in the ratio, nitrogen 2	8 g and 80 g of oxygen. The
	-> NO			л v o
202	dj NU Vorgono, o cholating ago	DJ $N_2 U_3$	$C_{\rm II} N_2 U_5$	$U_1 N_2 U_4$
203.	versene, a cherating age	$\frac{1}{2}$ then the noting of number	$C_2H_4N_2(C_2H_2O_2N_a)_4$. If each $C_2H_4N_2(C_2H_2O_2N_a)_4$.	Control of this compound
	could blind 1 mole of Ca	+, then the rating of pure v	ersene expressed as mg of	caco ₃ bound per g of
	a) 100 mg	b) $1(2)$ mg	a) 200 mg	d) 262 mg
204	d) 100 mg Which of the following is	DJ 105 IIIg	c) 200 mg	u) 203 mg
204.		wt. v 1000		
	a) Meq. = $N \times V_{\text{in mL}} = -$	$\underline{\text{Eq.wt.}} \times 1000$		
	b) Eq. = $N \times V_{\text{in mL}} = \frac{N}{Eq}$	<u>vt.</u> Į.wt.		

c) Equal equivalent or milli equivalent of reactants react to give same eq. or Meq. of products d) All of the above

205	5. 1.0 g of pure calcium ca	rbonate was found to requ	ire 50 mL of dilute HCl for	complete reactions. The
	strength of the HCl solu	tion is given by:		
	a) 4 <i>N</i>	b) 2 <i>N</i>	c) 0.4 <i>N</i>	d) 0.2 <i>N</i>
200	6. The number of atoms ir	14.25 g of NH ₃ is approxim	nately	
	a) 6×10^{23}	b) 2×10^{23}	c) 1.5 × 10 ²³	d) 1×10^{23}
202	7. MnO_4^- ions are reduced	l in acidic condition to Mn ²	²⁺ ions whereas they are re	educed in neutral condition to
	MnO ₂ . The oxidation of	25 mL of a solution X cont	aining Fe ²⁺ ions required	in acidic condition 20 mL of a
	solution Y containing M	$1nO_4^-$ ions. What volume of	solution Y would be requi	red to oxidise 25 mL of a
	solution X containing F	e ²⁺ ions in neutral condition	on?	
	a) 11.4 mL	b) 12.0mL	c) 33.3 mL	d) 35.0 mL
208	8. Number of atoms of He	in 100 u of He (atomic wei	ight of He is 4) are	, ,
	a) 25	b) 100	c) 50	d) $100 \times 6 \times 10^{-23}$
209	9. Total number of atoms	present in 1.0 cm ³ of solid	glucose (density 0.8 g/ cm	1^3) at 25°C are:
	a) 2.68×10^{21}	b) 6.42×10^{22}	c) 2.68×10^{22}	d) 2.68 $\times 10^{23}$
21	0. For preparing $M / 10$ so	lution of H ₂ SO ₄ in one litre	e we need H_2SO_4 :	,
	a) 9.8 g	b) 49.0 g	c) 4.8 g	d) 0.09 g
21	1. Given, that the abundar	ices of isotopes 54Fe, 56Fe a	nd ₅₇ Fe are 5%, 90% and 5	%, respectively, the atomic
	mass of Fe is	1 01 700	<i>o, 12, 12</i>	
	a) 55.85	b) 55.95	c) 55.75	d) 56.05
212	2. The concentration of so	lution containing 0.5 mole	H_3PO_4 dissolved in 500 g	water:
	a) 1 <i>m</i>	b) 1 <i>M</i>	c) 1 <i>N</i>	d) 0.5 <i>M</i>
213	3. Which of the following i	is correct?	,	2
	a) Mole = molarity $\times V_{i}$	$m_{\rm L} = \frac{\rm wt.}{\rm wt.}$		
		mol. wt.		
	b) Milli mole = molarity	$V \times V_{\text{in mL}} = \frac{1}{\text{mol. wt.}} \times 1000$)	
	c) Mole and milli mole	of reactants react accordin	g to stoichiometric ratio of	balanced chemical equation
	d) All of the above			
214	4. 100 g of $CaCO_3$ is treated	ed with 1 L of 1 N HCI. Wha	t would be the weight of C	O_2 liberated after the
	completion of the react	ion?		
	a) 55 g	b) 11 g	c) 22 g	d) 33 g
21	5. If an iodized salt contai	ns 1% KI and a person take	es 2 g of the salt every day,	the iodide ions going into his
	body every day would b	be approximately		
	a) 7.2× 10 ²¹	b) 7.2× 10 ¹⁹	c) 3.6× 10 ²¹	d) 9.5× 10 ¹⁹
210	6. The mass of 11.2 L of ar	nmonia gas at STP is		
	a) 8.5 g	b) 85 g	c) 17 g	d) 1.7 g
21	7. 0.52 g of dibasic acid re	quired 100 mL of 0.1 N Na	OH for complete neutraliz	ation. The equivalent weight of
	acid is:			
	a) 26	b) 52	c) 104	d) 156
218	8. 100 tons of Fe_2O_3 contained	aining 20% impurities will	give iron by reduction wit	h H_2 equal to
	a) 112 tons	b) 80 tons	c) 160 tons	d) 56 tons
219	9. 25 mL of a solution of b	arium hydroxide on titrati	on with 0.1 <i>M</i> solution of	HCl gave a titre value of 35 mL.
	The molarity of Ba(OH)	₂ is:		
	a) 0.28	b) 0.35	c) 0.07	d) 0.14
220	0. Volume occupied by on	e molecule of water (densi	$ty = 1 g cm^{-3}$) is:	
	a) 6.023 $\times 10^{-23}$ cm ³	b) $3.0 \times 10^{-23} \text{ cm}^3$	c) $5.5 \times 10^{-23} \text{cm}^3$	d) $9.0 \times 10^{-23} \text{ cm}^3$
222	1. The mass of nitrogen pe	er gram hydrogen in the co	mpound hydrazine is exac	tly one and half times the
	mass of nitrogen in the	compound ammonia. The	fact illustrates the	
	a) Law of conservation	of mass	b) Multiple valency of	nitrogen

c) Law of multiple propo	rtions	d) Law of definite propor	tions
222. Strength of the solution i	s given by:		
a) $S = N \times E$			
b) $S =wt$. of solut	e		
volume of solution	n in litre		
c) $S = M \times \text{mol. wt.}$			
d) All of the above		ml	
a) 0.2 a) 0.2	b) 0.5	c) 0.4	d) 1.5
224. On dissolving 1 mole eac <i>N</i> strength is:	h of the following acids in 1	litre water, the acid which	do not give a solution of 1
a) HCl	b) HClO ₄	c) HNO ₃	d) H ₃ PO ₄
225. The empirical formula of	a compound is CH. Its mole	ecular weight is 78. The mo	lecular formula of the
compound will be:			
a) C_2H_2	b) C ₃ H ₃	c) C ₂ H ₄	d) C ₂ H ₆
226. Of two oxides of iron, the	first contained 22% and th	ie second contained 30% of	f oxygen by weight. The
ratio of weights of iron ir	the two oxides that combi	ne with the same weight of	oxygen, is
a) 3 : 2	b) 2 : 1	c) 1:2	d) 1 : 1
227. The total number of prot	ons in 10 g of calcium carbo	onate is $(N_0 = 6.023 \times 10^{23})$	3)
a) 3.01 × 10 ²⁴	b) 4.06 × 10 ²⁴	c) 2.01 × 10 ²⁴	d) 3.02×10^{24}
228. In the following reaction,			
$MnO_2 + 4HCL \rightarrow MnCl_2$	$+ 2H_2O + Cl_2$		
2 mol MnO ₂ reacts with ²	4 mol of HCl to form 11.2 L	Cl ₂ at STP. Thus, per cent yi	eld of Cl ₂ is
a) 25%	b) 50%	c) 100%	d) 75%
229. The normality of 1% (wt	./vol.)H ₂ SO ₄ is nearly:		
a) 0.02	b) 0.2	c) 0.1	d) 1
230. The mass of 1 mole of ele	ectrons is		
a) 9.1 × 10 ⁻²⁸ g	b) 1.008 mg	c) 0.55 mg	d) 9.1×10^{-27} g
231. 74.4 g of a metallic chlori	de contains 35.5 g of chlori	ne. The equivalent weight o	of the metal is:
a) 19.5	b) 35.5	c) 39.0	d) 78.0
232. Equivalent weight of an a	acid		
a) Depends on the reaction	on involved		
b) Depends upon the nur	nber of oxygen atoms prese	ent	
c) Is always constant			
d) None of the above			
233. Which of the following is	not a mixture?		
a) Gasoline	b) Distilled alcohol	c) LPG	d) lodized table salt
234. The equivalent weight of	a divalent metal is 31.82. T	'he weight of single atom is	:
a) $32.77 \times 6.02 \times 10^{23}$	b) $63.64 \times 6.02 \times 10^{23}$	c) 63.64	d) $63.64/6.02 \times 10^{23}$
235. Number of mole of 1 m ³ g	as at NTP are:		
a) 44.6	b) 40.6	c) 42.6	d) 48.6
236. The per cent loss in weig	ht after heating a pure sam	ple of potassium chlorate (mol. wt. = 122.5) will be:
a) 12.25	b) 24.50	c) 39.18	d) 49.0
237. The number of milli equi	valent contained in 0.5 litre	e of 0.2 <i>N</i> solution is:	
a) 0.1	b) 100	c) 0.01	d) 1.0
238. Out of 1.0 g dioxygen, 1.0	g (atomic) oxygen and 1.0	g ozone, the maximum nur	nber of molecules are
contained in			
a) 1.0 g of atomic oxygen		b) 1.0 g of ozone	C
c) 1.0 g of oxygen gas		d) All contain same numb	ber of atoms
239. A sample of AIF_3 contain	s 3.0 \times 10 ²⁴ F ions. The number of 2^{24}	mber of formula units of the	is sample are
a) 9.0 × 10²⁴	b) 3.0× 10 ²⁴	cJ 0.75×104ª	d) 1.0× 10 ²⁴

240. One mole of CO_2 contains			
a) 3 g atoms of CO_2		b) 18.1×10^{23} molecules	of CO ₂
c) 6.02×10^{23} atoms of C		d) 6.02×10^{23} atoms of C	
241. For the reaction, $A + 2B$	\rightarrow <i>C</i> , 5 moles of <i>A</i> and 8 mo	oles of <i>B</i> will produce:	
a) 5 moles of C	b) 4 moles of C	c) 8 moles of C	d) 13 moles of C
242. Which sample contains th	e largest number of atoms	?	
a) 1 mg of C_4H_{10}	b) 1 mg of N ₂	c) 1 mg of Na	d) 1 mL of water
243. An aromatic hydrocarbor	with empirical formula C ₅	H_4 on treatment with conc	entrated H_2SO_4 gave a
monosulphonic acid. 0.10	4 g of the acid required 10	mL of $\frac{N}{N}$ NaOH for complet	e neutralisation. The
	ng on the tert required to	20 rue inter complete	
molecular formula of hyd	rocarbon is		
a) C₅H₄	b) $C_{10}H_{8}$	c) C ₁₅ H ₁₂	d) $C_{20}H_{16}$
244. If isotopic distribution of	C-12 and C-14 is 98% and 2	2% respectively then the nu	imber of C-14 atoms in 12
g of carbon is		1 9	
a) 1.032×10^{22}	b) 3.01×10^{22}	c) 5.88× 10 ²³	d) 6.023× 10 ²³
245. Zinc sulphate contains 22	.65% of zinc and 43.9% of	water of crystallization. If t	he law of constant
proportions is true then t	he weight of zinc required	to produce 20 g of the cryst	als will be
a) 45.3 g	b) 4.53 g	c) 0.453 g	d) 453 g
246. The number of gram mole	ecules of chlorine in 6.02 \times	10 ²⁵ hydrogen chloride me	plecules is
a) 10	b) 100	c) 50	d) 5
247. The net charge on ferrous	sion is:	0,00	uj o
a) + 2	h) + 3	c) +4	d) +5
$248 H_2 \Omega_2$ solution used for ha	ir bleaching is sold as a sol	ution of approximately 5.0	g H ₂ O ₂ Per 100 mL of the
solution The molecular w	reight of H_2O_2 is 34. The mo	plarity of this solution is an	proximately.
	h) 1 5	c) 0.15	d) 4 0
$249 46 \times 10^{22}$ atoms of an ele	op 1.5 ement weigh 13.8 g. The ato	mic weight of element is	uj 1.0
a) 290	b) 180	c) 34.4	d) 10.4
250 The weight of 50% (wit /	vt) solution of HCl required	d to react with 100 g of Cal	0, would be
230.111e weight of $30%$ (with 7	b) 100 g	a to react with 100 g of Cau	d) 200 σ
aj 75 g 251 An element V has the foll	owing isotopic composition	c) 140 g	u) 200 g
200 y. Q006	owing isotopic composition	1	
A = 50.70			
A: 0.0%			
The weighted average at	mic mass of the naturally o	courring alamant V is class	d to
a) 200 m	h) 210 y	a) 202 y	
a) 200 u	UJ 210 U	c) 202 u	uj 199 u
252. Law of constant composition	tion is same as the law of	h) Conconnection of an anon	
a) Conservation of mass		d) Definite men ention	
c) Multiple proportion	x	a) Definite proportion	01
253. Une atom of an element X	weight 6.643×10^{-23} g. nu	mber of moles of atom in 2	U Kg IS
a) 140	DJ 150	CJ 250	
254. The reaction, $2C + 2O_2 - C_2$	\rightarrow 2CO ₂ is carried out by tak	1 1 1 1 1 1 1 1 1 1	2. Which one is limiting
reagent?			
	b) O_2	c) CO_2	d) None of these
255. 1000 g aqueous solution	of $CaCO_3$ contains 10 g of ca	alcium carbonate. Concentr	ation of solution is:
a) 10 ppm	b) 100 ppm	c) 1000 ppm	d) 10000 ppm
256. The maximum amount of	$BaSO_4$ precipitated on mix	$mg 20 \text{ mL of } 0.5 M \text{ BaCl}_2 \text{ w}$	ith 20 mL of 1 M H ₂ SO ₄ is:
a) 0.25 mole	b) 0.5 mole	c) 1 mole	d) 0.01 mole
257. The percentage of an eler	nent M is 53 in its oxide of 1	molecular formula M_2O_3 . It	s atomic mass is about
aJ 45	bJ 9	cJ 18	d) 27
258. H_3BO_3 is:			

|--|

b) Monobasic and weak Bronsted acid

- c) Monobasic and strong Lewis acid
- d) Tribasic and weak Bronsted acid

259. A sample of peanut oil weighing 1.5763 g is added to 25 mL of 0.4210 *M* KOH after saponification is complete 8.46 mL of 0.2732 *M* H₂SO₄ is needed to neutralise excess KOH. The saponification number of peanut oil is:

a) 209.6 b) 108.9 c) 98.9 d) 218.9 260. What quantity of ammonium sulphate is necessary for the production of NH_3 gas sufficient to neutralize a solution containing 292 g of *HCl*? [*HCl* = 36.5, (NH_4)₂ SO_4 = 132, NH_3 = 17] a) 272 g b) 403 g c) 528 g d) 1056 g

261. A partially dried clay mineral contains 8% water. The original sample contained 12% water and 45% silica. The % of silica in the partially dried sample is nearly:

a) 50%
b) 49%
c) 55%
d) 47%

262. Number of g-atoms of an element in one atom are:

a) 6.023 × 10²³
b) 1.66 × 10⁻²⁴
c) 2 × 10²³
d) None of these

263. Concentration of HCl is 10 *N*. 100 mL of 1 *N* HCl can be obtained by diluting:

- a) 10 mL of conc. HCl to 100 mL
- b) 20 mL of conc. HCl to 100 mL
- c) 100 mL of conc. HCl to 200 mL
- d) 100 mL of conc. HCl to 100 mL
- 264. The number of formula units of calcium fluoride, CaF_2 present in 146.4 g of CaF_2 (the molar mass of CaF_2 is 78.08 g/mol) is
- a) $1.129 \times 10^{24} \text{ CaF}_2$ b) $1.146 \times 10^{24} \text{ CaF}_2$ c) $7.808 \times 10^{24} \text{ CaF}_2$ d) $1.877 \times 10^{24} \text{ CaF}_2$ 265. What is the weight of oxygen that is required for the complete combustion of 2.8 kg of ethylene? a) 9.6 kg b) 96.0 kg c) 6.4 kg d) 2.8 kg
- 266. The number of sodium atoms in 2 moles of sodium ferrocyanide is a) 12×10^{23} b) 26×10^{23} c) 34×10^{23}
- a) 12×10^{23} b) 26×10^{23} c) 34×10^{23} d) 48×10^{23} 267. Stoichiometric ratio of sodium dihydrogen orthophosphate and sodium hydrogen orthophosphate required for synthesis of Na₅P₃O₁₁ is
- a) 1.5:3
 b) 3:1.5
 c) 1:1
 d) 2:3
 268. 4.4 g of CO₂ and 2.24 litre of H₂ at STP are mixed in a container. The total number of molecules present in the container will be:

a) 6.022 × 10 ²³	b) 1.2044 × 10 ²³	c) 2 mole	d) 6.023×10^{24}

269. Calculate the number of moles left after removing 10^{21} molecules from 200 mg of CO2.a) 0.00454b) 0.00166c) 2.88×10^{-3} d) None of these

270. Which has maximum number of atoms? a) 24 g of C (12) b) 56 g of Fe (56) c

a) 24 g of C (12)
b) 56 g of Fe (56)
c) 27 g of Al (27)
d) 108 g of Ag (108)
271. A sample of copper sulphate pentahydrate contains 8.64 g of oxygen. How many gram of Cu is present in this sample?
(Atomic mass of Cu = 63.6, S = 32.06, 0 = 16)

- a) 0.952 g
 b) 3.816 g
 c) 3.782 g
 d) 8.64 g
 272. To neutralise completely 20 ML of 0.1 *M* aqueous solution of phosphorous acid (H₃PO₃), the volume of 0.1 *M* aqueous KOH solution required is :
- a) 60 mL b) 20 mL c) 40 mL d) 10 mL 273. 2 g of O_2 at O^0 C and 760 mm of Hg pressure has volume
- a) 1.4 L b) 2.8 L c) 11.2 L d) 22.4 L 274. An organic compound contains 20.0% C, 6.66% H, 47.33% N and the rest was oxygen. Its molar mass is 60 g mol⁻¹ the molecular formula of the compound is a) CH_4N_2O b) $C_2H_4NO_2$ c) CH_3N_2O d) $CH_4N_2O_2$

a) > 1 <i>M</i> b) < 1 <i>M</i> c) = 1 <i>M</i> d) = 2 <i>M</i> 276. 100 mL of 0.1 N hypo decolourised iodine by the addition of <i>x</i> gram of crystalline copper sulphate to excess of KI. The value of ' <i>x</i> ' is (molecular wt. of CuS0 ₄ , 5H ₂ O is 25O) a) 5.0 g b) 1.25 g c) 2.5 g d) 4 g 277. Which of the following contains greatest number of oxygen atoms? a) 1 g of 0 b) 1 g of 0 ₂ c) 1 g of 0 ₃ d) All have the same number of atoms 278. The normality of 4% (wt./vol.) NaOH is: a) 0.1 b) 1.0 c) 0.05 d) 0.01 279. The mass of potassium dichromate crystals required to oxidise 750 cm ³ of 0.6 M Mohr's salt solution is (Given, molar mass : Potassium dichromate = 294, Mohr's salt = 392) a) 0.49 g b) 0.45 g c) 22.05 g d) 2.2 g 280. If 0.5 mole of BaCl ₂ is mixed with 0.2 mole of Na ₃ PO ₄ the maximum number of mole of Ba ₃ (PO ₄) ₂ that can be formed is: a) 0.7 b) 0.5 c) 0.30 d) 0.1 281. Which has the maximum number of atoms? a) 6 g C b) 1 g H ₂ c) 1 2 g Mg d) 30 g Ca 282. Mixing up of equal volumes of 0.1 <i>M</i> NAOH and 0.1 <i>M</i> CH ₃ COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NAHCO ₃ are added to 15.0 g CH ₃ COOH solution, the residue is found to weight 18.0 g, what is the mass of CO ₂ released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02 × 10 ²² molecules. The concentration of solution is: a) 0.1 b) 1.0 <i>M</i> c) 0.2 <i>M</i> d) 2.0 <i>M</i> 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
276. 100 mL of 0.1 N hypo decolourised iodine by the addition of x gram of crystalline copper sulphate to excess of KI. The value of 'x' is (molecular wt. of CuSO ₄ , 5H ₂ O is 250) a) 5.0 g b) 1.25 g c) 2.5 g d) 4 g 277. Which of the following contains greatest number of oxygen atoms? a) 1 g of 0 b) 1 g of O ₂ c) 1 g of O ₃ d) All have the same number of atoms 278. The normality of 4% (wt./vol.) NaOH is: a) 0.1 b) 1.0 c) 0.05 d) 0.01 279. The mass of potassium dichromate crystals required to oxidise 750 cm ³ of 0.6 M Mohr's salt solution is (Given, molar mass : Potassium dichromate = 294, Mohr's salt = 392) a) 0.49 g b) 0.45 g c) 22.05 g d) 2.2 g 280. If 0.5 mole of BaCl ₂ is mixed with 0.2 mole of Na ₃ PO ₄ the maximum number of mole of Ba ₃ (PO ₄) ₂ that can be formed is: a) 0.7 b) 0.5 c) 0.30 d) 0.1 281. Which has the maximum number of atoms? a) 6 g C b) 1 g H ₂ c) 12 g Mg d) 30 g Ca 282. Mixing up of equal volumes of 0.1 <i>M</i> NaOH and 0.1 <i>M</i> CH ₃ COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO ₃ are added to 15.0 g CH ₃ COOH solution, the residue is found to weight 18.0 g. what is the mass of CO ₂ released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02 × 10 ²² molecules. The concentration of solution is: a) 0.1 b) 1.0 <i>M</i> c) 0.2 <i>M</i> d) 2.0 <i>M</i> 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
excess of KI. The value of 'x' is (molecular wt. of CuSO ₄ , 5H ₂ O is 250) a) 5.0 g b) 1.25 g c) 2.5 g d) 4 g 277. Which of the following contains greatest number of oxygen atoms? a) 1 g of O c) 1 g of O ₃ b) 1.25 g c) 2.5 g d) 4 g 277. Which of the following contains greatest number of oxygen atoms? a) 1 g of O ₃ b) 1 g of O ₂ c) 1 g of O ₃ d) 4 ll have the same number of atoms 278. The normality of 4% (wt./vol.) NaOH is: a) 0.1 b) 1.0 c) 0.05 d) 0.01 279. The mass of potassium dichromate crystals required to oxidise 750 cm ³ of 0.6 M Mohr's salt solution is (Given, molar mass : Potassium dichromate = 294, Mohr's salt = 392) a) 0.49 g b) 0.45 g c) 22.05 g d) 2.2 g 280. If 0.5 mole of BaCl ₂ is mixed with 0.2 mole of Na ₃ PO ₄ the maximum number of mole of Ba ₃ (PO ₄) ₂ that can be formed is: a) 0.7 b) 0.5 c) 0.30 d) 0.1 281. Which has the maximum number of atoms? a) 6 g C b) 1 g H ₂ c) 12 g Mg d) 30 g Ca 282. Mixing up of equal volumes of 0.1 <i>M</i> NaOH and 0.1 <i>M</i> CH ₃ COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO ₃ are added to 15.0 g CH ₃ COOH solution, the residue is found to weight 18.0 g, what is the mass of <i>CO</i> ₂ released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02×10^{22} molecules. The concentration of solution is: a) 0.1 b) 1.0 c) 0.2 M d) 2.0 M 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
a) 5.0 g b) 1.25 g c) 2.5 g d) 4 g 277. Which of the following contains greatest number of oxygen atoms? a) 1 g of 0 b) 1 g of 0_2 c) 1 g of 0_3 d) All have the same number of atoms 278. The normality of 4% (wt./vol.) NaOH is: a) 0.1 b) 1.0 c) 0.05 d) 0.01 279. The mass of potassium dichromate crystals required to oxidise 750 cm ³ of 0.6 M Mohr's salt solution is (Given, molar mass : Potassium dichromate = 294, Mohr's salt = 392) a) 0.49 g b) 0.45 g c) 22.05 g d) 2.2 g 280. If 0.5 mole of BaCl ₂ is mixed with 0.2 mole of Na ₃ PO ₄ the maximum number of mole of Ba ₃ (PO ₄) ₂ that can be formed is: a) 0.7 b) 0.5 c) 0.30 d) 0.1 281. Which has the maximum number of atoms? a) 6 g C b) 1 g H ₂ c) 12 g Mg d) 30 g Ca 282. Mixing up of equal volumes of 0.1 M NaOH and 0.1 M CH ₃ COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO ₃ are added to 15.0 g CH ₃ COOH solution, the residue is found to weight 18.0 g, what is the mass of CO_2 released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02×10^{22} molecules. The concentration of solution is: a) 0.1 M b) 1.0 M c) 0.2 M d) 2.0 M 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
277. Which of the following contains greatest number of oxygen atoms?a) 1 g of 0b) 1 g of 02c) 1 g of 03d) All have the same number of atoms278. The normality of 4% (wt./vol.) NaOH is:a) 0.1b) 1.0c) 0.05d) 0.01279. The mass of potassium dichromate crystals required to oxidise 750 cm ³ of 0.6 M Mohr's salt solution is(Given, molar mass : Potassium dichromate = 294, Mohr's salt = 392)a) 0.49 gb) 0.45 gc) 22.05 gd) 2.2 g280. If 0.5 mole of BaCl2 is mixed with 0.2 mole of Na3PO4 the maximum number of mole of Ba3(PO4)2 that can be formed is:a) 0.7b) 0.5c) 0.30a) 0.7b) 0.5c) 0.30d) 0.1281. Which has the maximum number of atoms?a) 6 g Cb) 1 g H2c) 12 g Mga) 6 g Cb) 1.0 M AnaOH and 0.1 M CH3COOH yields a solution which is:a) Basicb) Acidicc) Neutrald) None of these283. If 6.3 g of NaHCO3 are added to 15.0 g CH3COOH solution, the residue is found to weight 18.0 g, what is the mass of CO_2 released in the reaction?a) 4.5 gb) 3.3 gc) 2.6 ga) 4.5 gb) 3.3 gc) 2.6 gd) 2.0 M2.0 M285. Molar concentration of a solution in water is:a) Always equal to normality of solution
a) 1 g of 0 b) 1 g of 0_2 c) 1 g of 0_3 d) All have the same number of atoms 278. The normality of 4% (wt./vol.) NaOH is: a) 0.1 b) 1.0 c) 0.05 d) 0.01 279. The mass of potassium dichromate crystals required to oxidise 750 cm ³ of 0.6 M Mohr's salt solution is (Given, molar mass : Potassium dichromate = 294, Mohr's salt = 392) a) 0.49 g b) 0.45 g c) 22.05 g d) 2.2 g 280. If 0.5 mole of BaCl ₂ is mixed with 0.2 mole of Na ₃ PO ₄ the maximum number of mole of Ba ₃ (PO ₄) ₂ that can be formed is: a) 0.7 b) 0.5 c) 0.30 d) 0.1 281. Which has the maximum number of atoms? a) 6 g C b) 1 g H ₂ c) 12 g Mg d) 30 g Ca 282. Mixing up of equal volumes of 0.1 M NaOH and 0.1 M CH ₃ COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO ₃ are added to 15.0 g CH ₃ COOH solution, the residue is found to weight 18.0 g. what is the mass of CO_2 released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02×10^{22} molecules. The concentration of solution is: a) 0.1 M b) 1.0 M c) 0.2 M d) 2.0 M 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
c) 1 g of O_3 d) All have the same number of atoms 278. The normality of 4% (wt./vol.) NaOH is: a) 0.1 b) 1.0 c) 0.05 d) 0.01 279. The mass of potassium dichromate crystals required to oxidise 750 cm ³ of 0.6 M Mohr's salt solution is (Given, molar mass : Potassium dichromate = 294, Mohr's salt = 392) a) 0.49 g b) 0.45 g c) 22.05 g d) 2.2 g 280. If 0.5 mole of BaCl ₂ is mixed with 0.2 mole of Na ₃ PO ₄ the maximum number of mole of Ba ₃ (PO ₄) ₂ that can be formed is: a) 0.7 b) 0.5 c) 0.30 d) 0.1 281. Which has the maximum number of atoms? a) 6 g C b) 1 g H ₂ c) 12 g Mg d) 30 g Ca 282. Mixing up of equal volumes of 0.1 <i>M</i> NaOH and 0.1 <i>M</i> CH ₃ COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO ₃ are added to 15.0 g CH ₃ COOH solution, the residue is found to weight 18.0 g, what is the mass of CO_2 released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02×10^{22} molecules. The concentration of solution is: a) 0.1 <i>M</i> b) 1.0 <i>M</i> c) 0.2 <i>M</i> d) 2.0 <i>M</i> 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
278. The normality of 4% (wt./vol.) NaOH is: a) 0.1 b) 1.0 c) 0.05 d) 0.01 279. The mass of potassium dichromate crystals required to oxidise 750 cm ³ of 0.6 M Mohr's salt solution is (Given, molar mass : Potassium dichromate = 294, Mohr's salt = 392) a) 0.49 g b) 0.45 g c) 22.05 g d) 2.2 g 280. If 0.5 mole of BaCl ₂ is mixed with 0.2 mole of Na ₃ PO ₄ the maximum number of mole of Ba ₃ (PO ₄) ₂ that can be formed is: a) 0.7 b) 0.5 c) 0.30 d) 0.1 281. Which has the maximum number of atoms? a) 6 g C b) 1 g H ₂ c) 12 g Mg d) 30 g Ca 282. Mixing up of equal volumes of 0.1 <i>M</i> NaOH and 0.1 <i>M</i> CH ₃ COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO ₃ are added to 15.0 g CH ₃ COOH solution, the residue is found to weight 18.0 g. what is the mass of CO ₂ released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02 × 10 ²² molecules. The concentration of solution is: a) 0.1 <i>M</i> b) 1.0 <i>M</i> c) 0.2 <i>M</i> d) 2.0 <i>M</i> 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
a) 0.1 b) 1.0 c) 0.05 d) 0.01 279. The mass of potassium dichromate crystals required to oxidise 750 cm ³ of 0.6 M Mohr's salt solution is (Given, molar mass : Potassium dichromate = 294, Mohr's salt = 392) a) 0.49 g b) 0.45 g c) 22.05 g d) 2.2 g 280. If 0.5 mole of BaCl ₂ is mixed with 0.2 mole of Na ₃ PO ₄ the maximum number of mole of Ba ₃ (PO ₄) ₂ that can be formed is: a) 0.7 b) 0.5 c) 0.30 d) 0.1 281. Which has the maximum number of atoms? a) 6 g C b) 1 g H ₂ c) 12 g Mg d) 30 g Ca 282. Mixing up of equal volumes of 0.1 <i>M</i> NaOH and 0.1 <i>M</i> CH ₃ COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO ₃ are added to 15.0 g CH ₃ COOH solution, the residue is found to weight 18.0 g. what is the mass of CO ₂ released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02 × 10 ²² molecules. The concentration of solution is: a) 0.1 <i>M</i> b) 1.0 <i>M</i> c) 0.2 <i>M</i> d) 2.0 <i>M</i> 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
279. The mass of potassium dichromate crystals required to oxidise 750 cm ³ of 0.6 M Mohr's salt solution is (Given, molar mass : Potassium dichromate = 294, Mohr's salt = 392) a) 0.49 g b) 0.45 g c) 22.05 g d) 2.2 g 280. If 0.5 mole of BaCl ₂ is mixed with 0.2 mole of Na ₃ PO ₄ the maximum number of mole of Ba ₃ (PO ₄) ₂ that can be formed is: a) 0.7 b) 0.5 c) 0.30 d) 0.1 281. Which has the maximum number of atoms? a) 6 g C b) 1 g H ₂ c) 12 g Mg d) 30 g Ca 282. Mixing up of equal volumes of 0.1 <i>M</i> NaOH and 0.1 <i>M</i> CH ₃ COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO ₃ are added to 15.0 g CH ₃ COOH solution, the residue is found to weight 18.0 g, what is the mass of CO_2 released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02 × 10 ²² molecules. The concentration of solution is: a) 0.1 <i>M</i> b) 1.0 <i>M</i> c) 0.2 <i>M</i> d) 2.0 <i>M</i> 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
(Given, molar mass : Potassium dichromate = 294, Mohr's salt = 392) a) 0.49 g b) 0.45 g c) 22.05 g d) 2.2 g 280. If 0.5 mole of BaCl ₂ is mixed with 0.2 mole of Na ₃ PO ₄ the maximum number of mole of Ba ₃ (PO ₄) ₂ that can be formed is: a) 0.7 b) 0.5 c) 0.30 d) 0.1 281. Which has the maximum number of atoms? a) 6 g C b) 1 g H ₂ c) 12 g Mg d) 30 g Ca 282. Mixing up of equal volumes of 0.1 <i>M</i> NaOH and 0.1 <i>M</i> CH ₃ COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO ₃ are added to 15.0 g CH ₃ COOH solution, the residue is found to weight 18.0 g. what is the mass of CO_2 released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02×10^{22} molecules. The concentration of solution is: a) 0.1 <i>M</i> b) 1.0 <i>M</i> c) 0.2 <i>M</i> d) 2.0 <i>M</i> 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
a) 0.49 g b) 0.45 g c) 22.05 g d) 2.2 g 280. If 0.5 mole of BaCl ₂ is mixed with 0.2 mole of Na ₃ PO ₄ the maximum number of mole of Ba ₃ (PO ₄) ₂ that can be formed is: a) 0.7 b) 0.5 c) 0.30 d) 0.1 281. Which has the maximum number of atoms? a) 6 g C b) 1 g H_2 c) 12 g Mg d) 30 g Ca 282. Mixing up of equal volumes of $0.1 M$ NaOH and $0.1 M$ CH ₃ COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO_3 are added to 15.0 g CH_3 COOH solution, the residue is found to weight 18.0 g, what is the mass of CO_2 released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02×10^{22} molecules. The concentration of solution is: a) $0.1 M$ b) $1.0 M$ c) $0.2 M$ d) $2.0 M$ 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
 280. If 0.5 mole of BaCl₂ is mixed with 0.2 mole of Na₃PO₄ the maximum number of mole of Ba₃(PO₄)₂ that can be formed is: a) 0.7 b) 0.5 c) 0.30 d) 0.1 281. Which has the maximum number of atoms? a) 6 g C b) 1 g H₂ c) 12 g Mg d) 30 g Ca 282. Mixing up of equal volumes of 0.1 <i>M</i> NaOH and 0.1 <i>M</i> CH₃COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO₃ are added to 15.0 g CH₃COOH solution, the residue is found to weight 18.0 g. what is the mass of CO₂ released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02 × 10²² molecules. The concentration of solution is: a) 0.1 M b) 1.0 M c) 0.2 M d) 2.0 M
be formed is: a) 0.7 b) 0.5 c) 0.30 d) 0.1 281. Which has the maximum number of atoms? a) 6 g C b) 1 g H_2 c) 12 g Mg d) 30 g Ca 282. Mixing up of equal volumes of 0.1 M NaOH and 0.1 M CH ₃ COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO ₃ are added to 15.0 g CH_3 COOH solution, the residue is found to weight 18.0 g . what is the mass of CO_2 released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02×10^{22} molecules. The concentration of solution is: a) $0.1 M$ b) $1.0 M$ c) $0.2 M$ d) $2.0 M$ 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
a) 0.7 b) 0.5 c) 0.30 d) 0.1 281. Which has the maximum number of atoms? a) 6 g C b) 1 g H_2 c) 12 g Mg d) 30 g Ca 282. Mixing up of equal volumes of $0.1 M$ NaOH and $0.1 M$ CH ₃ COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO_3 are added to 15.0 g CH_3 COOH solution, the residue is found to weight 18.0 g . what is the mass of CO_2 released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02×10^{22} molecules. The concentration of solution is: a) $0.1 M$ b) $1.0 M$ c) $0.2 M$ d) $2.0 M$ 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
281. Which has the maximum number of atoms?a) 6 g C b) 1 g H_2 c) 12 g Mg d) 30 g Ca 282. Mixing up of equal volumes of $0.1 M$ NaOH and $0.1 M$ CH ₃ COOH yields a solution which is:a) Basicb) Acidicc) Neutrald) None of these283. If 6.3 g of NaHCO_3 are added to 15.0 g CH_3 COOH solution, the residue is found to weight $18.0 \text{ g. what is the mass of CO_2 released in the reaction?a) 4.5 \text{ g}b) 3.3 \text{ g}c) 2.6 \text{ g}d) 2.8 \text{ g}284. 50 mL of an aqueous solution of glucose contains 6.02 \times 10^{22} molecules. The concentration of solution is:a) 0.1 Mb) 1.0 Mc) 0.2 Md) 2.0 M285. Molar concentration of a solution in water is:a) Always equal to normality of solution$
a) 6 g C b) 1 g H_2 c) 12 g Mg d) 30 g Ca 282. Mixing up of equal volumes of 0.1 <i>M</i> NaOH and 0.1 <i>M</i> CH ₃ COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO_3 are added to 15.0 g CH_3 COOH solution, the residue is found to weight 18.0 g. what is the mass of CO_2 released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02×10^{22} molecules. The concentration of solution is: a) $0.1 M$ b) $1.0 M$ c) $0.2 M$ d) $2.0 M$ 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
 282. Mixing up of equal volumes of 0.1 <i>M</i> NaOH and 0.1 <i>M</i> CH₃COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO₃ are added to 15.0 g CH₃COOH solution, the residue is found to weight 18.0 g. what is the mass of <i>CO</i>₂ released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02 × 10²² molecules. The concentration of solution is: a) 0.1 <i>M</i> b) 1.0 <i>M</i> c) 0.2 <i>M</i> d) 2.0 <i>M</i>
 a) Basic b) Acidic c) Neutral d) None of these 283. If 6.3 g of NaHCO₃ are added to 15.0 g CH₃COOH solution, the residue is found to weight 18.0 g. what is the mass of CO₂ released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02 × 10²² molecules. The concentration of solution is: a) 0.1 M b) 1.0 M c) 0.2 M d) 2.0 M
 283. If 6.3 g of NaHCO₃ are added to 15.0 g CH₃COOH solution, the residue is found to weight 18.0 g. what is the mass of CO₂ released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02 × 10²² molecules. The concentration of solution is: a) 0.1 M b) 1.0 M c) 0.2 M d) 2.0 M
 a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02 × 10²² molecules. The concentration of solution is: a) 0.1 M b) 1.0 M c) 0.2 M d) 2.0 M 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 284. 50 mL of an aqueous solution of glucose contains 6.02×10^{22} molecules. The concentration of solution is: a) $0.1 M$ b) $1.0 M$ c) $0.2 M$ d) $2.0 M$ 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
284. 50 mL of an aqueous solution of glucose contains 6.02×10^{22} molecules. The concentration of solution is: a) $0.1 M$ b) $1.0 M$ c) $0.2 M$ d) $2.0 M$ 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
 a) 0.1 <i>M</i> b) 1.0 <i>M</i> c) 0.2 <i>M</i> d) 2.0 <i>M</i> 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
a) 0.1 <i>M</i> b) 1.0 <i>M</i> c) 0.2 <i>M</i> d) 2.0 <i>M</i> 285. Molar concentration of a solution in water is: a) Always equal to normality of solution
a) Always equal to normality of solution
a) Always equal to normality of solution
b) More than molality of the solution
c) Equal to molality of the solution
d) Less than the molality of the solution
286. 1 kg of NaOH solution contains 4 g of NaOH. The approximate concentration of the solution is:
a) 1 molar b) 0.1 molar c) Decinormal d) About 0.1 <i>N</i>
287. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of
HCl?
a) 0.333 b) 0.011 c) 0.029 d) 0.044
288. The nature of mixture obtained mixing 50 mL of 0.1 M H ₂ SO ₄ and 50 mL of 0.1 M NaOH is:
a) Acidic b) Basic c) Neutral d) amphoteric
289. Number of electrons in 1.8 mL of H ₂ O is :
a) 6.02×10^{23} b) 3.011×10^{23} c) 0.6022×10^{23} d) 60.22×10^{23}
290. If a compound contains two oxygen atoms, four carbon atoms and number of hydrogen atom is double of
carbon atoms, the vapour density of it is:
a) 88 b) 44 c) 132 d) 72
291. Molecular weight of oxalic acid is 126. The weight of oxalic acid required to neutralise 1000 mL of normal
solution of NaOH is:
a) 126 g b) 63 g c) 6.3 g d) 12.6 g
292. The number of hydrogen atoms present in 25.6 g of sucrose($C_{12}H_{22}O_{11}$) which has a molar mass of 342.3
g is
a) 22×10^{23} b) 9.91×10^{23} c) 11×10^{23} d) 44×10^{23} H atoms
293. Molarity of liquid HCl with density equal to 1.17 g/mL is:

	a) 36.5	b) 18.25	c) 32.05	d) 4.65
294.	If 20 mL of 0.4 N NaOH s	solution completely neutra	lizes 40 mL of a dibasic ac	id, the molarity of the acid
	solution is:			
	2) 0.1 M	b) $0.2 M$	c) $0.3 M$	d) 0.4 M
205	Discolving 120 g of uros ($m_{0} = 1000 \text{ g of } w_{0}$	tor gave a solution of dons	110.4 m 115 g/m The molarity
293.	of the colution is	1101.wt.00) 111 1000 g 01 wa	ter gave a solution of densi	ity 1.15 g/mL. The molarity
	of the solution is:	b) 2 00 M		N 2 2 2 M
001	a) 1.78 M	b) 2.00 M	c) 2.05 M	a) 2.22 M
296.	Equivalent weight of NH_3	as a base is:		
	a) 17	b) 17/3	c) 1.7	d) 17/2
297.	KMnO ₄ reacts with oxalic	acid according to the equat	tion	
	$2MnO_4^- + 5C_2O_4^{2-} + 16H^+$	$T \rightarrow 2Mn^{2^+} + 10CO_2 + 8H_2$	O Here, 20 mL of 0.1 M KM	nO_4 is equivalent to
	a) 20 mL of 0.5 M $H_2C_2O_4$		b) 50 mL of 0.1 M H ₂ C ₂ O ₄	
	c) 50 mL of 0.1 M H ₂ C ₂ O ₄		d) 20 mL of 0.1 M H ₂ C ₂ O ₄	
298.	To prepare a standard sol	ution of a substance, we us	e:	
	a) A pipette	b) A burette	c) Measuring flask	d) Measuring cylinder
299.	There are two isotopes of	an element with atomic ma	assz. Heavier one has atom	ic mass $z + 2$ and lighter
	one has $z-1$, the abundan	ce of lighter one is		_
	a) 66.6%	b) 69.7%	c) 6.67%	d) 33.3%
300.	3 g of an oxide of a metal is	s converted to chloride comp	pletely and it vielded 5 g of c	hloride. The equivalent
	weight of the metal is		,	
	a) 33 25	h) 3 325	c) 12	d) 20
201	The molarity of 20.0 mass	06 H SO colution of donsi	t_{11} 11 14 g cm ⁻³ is	4) 20
301.	a) 2 E 6 mal dm^{-3}	b) 1 E6 mol dm^{-3}	dy = 1.14 g cm = 13	d) 2.22 mol dm^{-3}
202	a) 2.50 mol um	b) 1.50 mor <i>um</i>	cj 1.20 moi <i>um</i>	$a_{1} = 2.52 \text{ mor } a_{1} = 4.0 \text{ M MC}$
302.	How many moles of Fe ⁻¹	ions are formed, when exe	cess of from is treated with	50 mL of 4.0 M HCI under
	inert atmosphere? Assum	e no change in volume:)	
	a) 0.4	b) 0.1	c) 0.2	d) 0.8
303.	100 mL of 0.3 N HCl solut	tion were mixed with 200 i	mL of 0.6 <i>N</i> H ₂ SO ₄ solutior	n. The final acidic normality
	is:			
	a) 0.9 <i>N</i>	b) 0.6 <i>N</i>	c) 0.5 <i>N</i>	d) 0.4 <i>N</i>
304.	45 g of acid of mol. wt. 90	neutralized by 200 mL of 5	N caustic potash. The basi	city of the acid is:
	a) 1	b) 2	c) 3	d) 4
305.	The equivalent weight of I	KIO_3 in the reaction,		
	$2Cr(OH)_3 + OH^- + KIO_3$	$\rightarrow 2CrO_4^{2-} + 5H_2O + KI \text{ is}$		
	a) Mol. wt.	b) Mol. wt./3	c) Mol. wt./6	d) Mol. wt./2
200	TTL			
306.	I ne sample with largest n	umber of atoms is		
~~~	a) I g of $O_2(g)$	b) I g of $Ni(s)$	c) I g of $B(s)$	d) I g of $N_2(g)$
307.	The equation,			
	$2AI(s)(3/2)O_2(g) \rightarrow AI_2(g)$	$J_3(s)$ shows that:		
	a) 2 mole of Al reacts with	$(3/2)$ mole of $O_2$ to produ	ce $(7/2)$ mole of Al ₂ O ₃	
	b) 2 g of Al reacts with (3)	/2) g of O ₂ to produce one n	nole of $Al_2O_3$	
	c) 2 g of Al reacts with (3)	/2)litre of O ₂ to produce 1 m	nole of $Al_2O_3$	
	d) 2 mole of Al reacts with	$(3/2)$ mole of $O_2$ to produ	ce 1 mole of Al ₂ O ₃	
308.	The number of atoms in 3	.2 g of oxygen gas are:		
	a) 6.02 $\times 10^{22}$	b) 6.02 $\times 10^{23}$	c) $12.04 \times 10^{22}$	d) 12.04 $\times 10^{23}$
309.	The number of atoms in <i>n</i>	moles of gas can be given l	ру:	
	a) n x Au na x atomiaite	$n \times Av.$ no.	Av. no. $\times$ atomicity	d) None of these
	as $n \times Av$ . 110. × atomicity	atomicity	n	
310.	How many moles of Al ₂ (S	$(0_4)_3$ would be in 50 g of the	e substance?	
	a) 0.083 mol	b) 0.952 mol	c) 0.481 mol	d) 0.140 mol
311.	The molecular weight of a	ir will be		

	(the components of air give	ven as $N_2 - 78\%$ , $O_2 - 21\%$	$Ar - 09\%$ and $CO_2 - 0.1\%$	%)
	a) 18.64	b) 24.968	c) 28.964	d) 29.864
312.	1.520 g of the hydroxide of	of a metal on ignition gave (	.995 g of oxide. The equiva	alent weight of metal is:
	a) 1.520	b) 0.995	c) 19.00	d) 9.00
313.	The hydrated salt Na ₂ SO ₄	$\cdot nH_2O$ , undergoes 55% los	ss in weight on heating and	l becomes anhydrous. The
	value of <i>n</i> will be:			
	a) 5	b) 3	c) 7	d) 10
314.	When 100 g of ethylene p	olymerizes to polyethylene	e according to the equation	,
	$nCH_2 = CH_2 \longrightarrow -(CH_3 - CH_3)$	$H_2 \rightarrow n$ .		
	The weight of polyethylor	- n		
	<i>n</i> .	b) 100 g	100	
	a) $\frac{\pi}{2}$ g	b) 100 g	c) $\frac{100}{n}$ g	d) 100 <i>n</i> g
315.	Vapour density of a volati	le substance is 4 ( $CH_4 = 1$ )	. Its molecular weight wou	ld be:
	a) 8	b) 2	c) 64	d) 128
316.	Dulong and Petit's law is v	valid only for	,	,
	a) Metals	b) Non-metals	c) Gaseous elements	d) Solid elements
317.	The molarity of pure wate	er is:	,	,
	a) 55.6	b) 50	c) 100	d) 18
318.	A molal solution is one that	at contains one mole of a so	lute in:	,
	a) 1000 g of the solvent			
	b) 1000 mL of the solution	n		
	c) One litre of the solvent			
	d) 22.4 litre of the solution	n		
319.	The weight of a substance	that displaces 22.4 litre air	at NTP is:	
	a) Mol. wt.	b) At. wt.	c) Eq. wt.	d) All of these
		•	· ·	•
320.	The density (in $g m L^{-1}$ ) o	f a 3.60 <i>M</i> H ₂ SO ₄ solution h	aving 29% by mass of H ₂ S	$O_4$ (molar mass 98) will be:
320.	The density (in $g m L^{-1}$ ) o a) 1.45	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64	aving 29% by mass of H ₂ S c) 1.88	$O_4$ (molar mass 98)will be: d) 1.22
320. 321.	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w	f a 3.60 $M$ H ₂ SO ₄ solution h b) 1.64 veights 1.8× 10 ⁻²² g. its atom	aving 29% by mass of H ₂ S c) 1.88 nic mass is	O ₄ (molar mass 98)will be: d) 1.22
320. 321.	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9	f a 3.60 <i>M</i> $H_2SO_4$ solution h b) 1.64 veights 1.8× 10 ⁻²² g. its ator b) 18	aving 29% by mass of H ₂ S c) 1.88 nic mass is c) 108.36	O ₄ (molar mass 98)will be: d) 1.22 d) 154
<ul><li>320.</li><li>321.</li><li>322.</li></ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr	f a 3.60 $M$ H ₂ SO ₄ solution h b) 1.64 veights $1.8 \times 10^{-22}$ g. its ator b) 18 rons weigh one kilogram?	aving 29% by mass of H ₂ S c) 1.88 nic mass is c) 108.36	O ₄ (molar mass 98)will be: d) 1.22 d) 154
320. 321. 322.	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 veights $1.8 \times 10^{-22}$ g. its atom b) 18 rons weigh one kilogram?	aving 29% by mass of $H_2S$ c) 1.88 mic mass is c) 108.36	$O_4$ (molar mass 98)will be: d) 1.22 d) 154
320. 321. 322.	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 veights $1.8 \times 10^{-22}$ g. its atom b) 18 cons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$	aving 29% by mass of $H_2S$ c) 1.88 nic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$	O ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$
<ul><li>320.</li><li>321.</li><li>322.</li><li>323.</li></ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 veights $1.8 \times 10^{-22}$ g. its ator b) 18 rons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ vater in 488 g BaCl ₂ · 2H ₂ O	aving 29% by mass of $H_2S$ c) 1.88 mic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are:	0 ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$
<ul><li>320.</li><li>321.</li><li>322.</li><li>323.</li></ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w a) 2	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 veights $1.8 \times 10^{-22}$ g. its atom b) 18 cons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ vater in 488 g BaCl ₂ · 2H ₂ O b) 3	aving 29% by mass of $H_2S$ c) 1.88 nic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are: c) 4	O ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ d) 5
<ul> <li>320.</li> <li>321.</li> <li>322.</li> <li>323.</li> <li>324.</li> </ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w a) 2 The number of molecules	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 veights $1.8 \times 10^{-22}$ g. its atom b) 18 cons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ vater in 488 g BaCl ₂ · 2H ₂ O b) 3 in 16 g of methane is:	aving 29% by mass of $H_2S$ c) 1.88 mic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are: c) 4	O ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ d) 5
<ul> <li>320.</li> <li>321.</li> <li>322.</li> <li>323.</li> <li>324.</li> </ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w a) 2 The number of molecules a) $3.0 \times 10^{23}$	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 veights $1.8 \times 10^{-22}$ g. its atom b) 18 rons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ vater in 488 g BaCl ₂ · 2H ₂ O b) 3 in 16 g of methane is: b) 6.02 × 10 ²³	aving 29% by mass of H ₂ S c) 1.88 mic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are: c) 4 c) $\frac{16}{6.02} \times 10^{23}$	O ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ d) 5 d) $\frac{16}{3.0} \times 10^{23}$
<ul> <li>320.</li> <li>321.</li> <li>322.</li> <li>323.</li> <li>324.</li> <li>325.</li> </ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w a) 2 The number of molecules a) $3.0 \times 10^{23}$ The percentage of $P_2O_5$ in	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 reights $1.8 \times 10^{-22}$ g. its atom b) 18 rons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ rater in 488 g BaCl ₂ · 2H ₂ O b) 3 in 16 g of methane is: b) 6.02 × 10 ²³	aving 29% by mass of H ₂ S c) 1.88 nic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are: c) 4 c) $\frac{16}{6.02} \times 10^{23}$ nosphate, (NH ₄ ) ₂ HPO ₄ is	O ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ d) 5 d) $\frac{16}{3.0} \times 10^{23}$
<ul> <li>320.</li> <li>321.</li> <li>322.</li> <li>323.</li> <li>324.</li> <li>325.</li> </ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w a) 2 The number of molecules a) $3.0 \times 10^{23}$ The percentage of $P_2O_5$ in a) 23.48	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 reights $1.8 \times 10^{-22}$ g. its atom b) 18 rons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ rater in 488 g BaCl ₂ · 2H ₂ O b) 3 in 16 g of methane is: b) 6.02 × 10 ²³ diammonium hydrogen ph b) 46.96	aving 29% by mass of H ₂ S c) 1.88 mic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are: c) 4 c) $\frac{16}{6.02} \times 10^{23}$ nosphate, (NH ₄ ) ₂ HPO ₄ is c) 53.78	O ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ d) 5 d) $\frac{16}{3.0} \times 10^{23}$ d) 71.00
<ul> <li>320.</li> <li>321.</li> <li>322.</li> <li>323.</li> <li>324.</li> <li>325.</li> <li>326.</li> </ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w a) 2 The number of molecules a) $3.0 \times 10^{23}$ The percentage of $P_2O_5$ in a) 23.48 Acidified KMnO ₄ oxidises	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 reights $1.8 \times 10^{-22}$ g. its atom b) 18 rons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ rater in 488 g BaCl ₂ · 2H ₂ O b) 3 in 16 g of methane is: b) $6.02 \times 10^{23}$ diammonium hydrogen ph b) 46.96 oxalic acid to CO ₂ . What is	aving 29% by mass of $H_2S$ c) 1.88 nic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are: c) 4 c) $\frac{16}{6.02} \times 10^{23}$ nosphate, (NH ₄ ) ₂ HPO ₄ is c) 53.78 the volume (in litres) of 10	O ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ d) 5 d) $\frac{16}{3.0} \times 10^{23}$ d) 71.00 0 ⁻⁴ M KMnO ₄ required to
<ul> <li>320.</li> <li>321.</li> <li>322.</li> <li>323.</li> <li>324.</li> <li>325.</li> <li>326.</li> </ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w a) 2 The number of molecules a) $3.0 \times 10^{23}$ The percentage of $P_2O_5$ in a) 23.48 Acidified KMnO ₄ oxidises completely oxidise 0.5 L o	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 veights $1.8 \times 10^{-22}$ g. its atom b) 18 rons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ vater in 488 g BaCl ₂ · 2H ₂ O b) 3 in 16 g of methane is: b) 6.02 × 10 ²³ diammonium hydrogen ph b) 46.96 oxalic acid to CO ₂ . What is if $10^{-2}$ M oxalic acid in acid	aving 29% by mass of $H_2S$ c) 1.88 mic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are: c) 4 c) $\frac{16}{6.02} \times 10^{23}$ nosphate, $(NH_4)_2HPO_4$ is c) 53.78 the volume (in litres) of 10 medium?	O ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ d) 5 d) $\frac{16}{3.0} \times 10^{23}$ d) 71.00 0 ⁻⁴ M KMnO ₄ required to
<ul> <li>320.</li> <li>321.</li> <li>322.</li> <li>323.</li> <li>324.</li> <li>325.</li> <li>326.</li> </ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w a) 2 The number of molecules a) $3.0 \times 10^{23}$ The percentage of $P_2O_5$ in a) 23.48 Acidified KMnO ₄ oxidises completely oxidise 0.5 L o a) 125	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 reights $1.8 \times 10^{-22}$ g. its atom b) 18 rons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ rater in 488 g BaCl ₂ · 2H ₂ O b) 3 in 16 g of methane is: b) 6.02 × $10^{23}$ diammonium hydrogen ph b) 46.96 oxalic acid to CO ₂ . What is f $10^{-2}$ M oxalic acid in acid b) 1250	aving 29% by mass of $H_2S$ c) 1.88 nic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are: c) $4$ c) $\frac{16}{6.02} \times 10^{23}$ nosphate, $(NH_4)_2HPO_4$ is c) 53.78 the volume (in litres) of 10 medium? c) 200	O ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ d) 5 d) $\frac{16}{3.0} \times 10^{23}$ d) 71.00 0 ⁻⁴ M KMnO ₄ required to d) 20
<ul> <li>320.</li> <li>321.</li> <li>322.</li> <li>323.</li> <li>324.</li> <li>325.</li> <li>326.</li> <li>327.</li> </ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w a) 2 The number of molecules a) $3.0 \times 10^{23}$ The percentage of $P_2O_5$ in a) $23.48$ Acidified KMnO ₄ oxidises completely oxidise 0.5 L o a) 125 0.003924 have sign	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 reights $1.8 \times 10^{-22}$ g. its atom b) 18 rons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ rater in 488 g BaCl ₂ · 2H ₂ O b) 3 in 16 g of methane is: b) 6.02 × 10 ²³ diammonium hydrogen ph b) 46.96 oxalic acid to CO ₂ . What is if $10^{-2}$ M oxalic acid in acid b) 1250 mificant figures.	aving 29% by mass of $H_2S$ c) 1.88 nic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are: c) 4 c) $\frac{16}{6.02} \times 10^{23}$ nosphate, $(NH_4)_2HPO_4$ is c) 53.78 the volume (in litres) of 10 medium? c) 200	O ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ d) 5 d) $\frac{16}{3.0} \times 10^{23}$ d) 71.00 0 ⁻⁴ M KMnO ₄ required to d) 20
<ul> <li>320.</li> <li>321.</li> <li>322.</li> <li>323.</li> <li>324.</li> <li>325.</li> <li>326.</li> <li>327.</li> </ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w a) 2 The number of molecules a) $3.0 \times 10^{23}$ The percentage of $P_2O_5$ in a) 23.48 Acidified KMnO ₄ oxidises completely oxidise 0.5 L o a) 125 0.003924 have sign a) 6	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 reights $1.8 \times 10^{-22}$ g. its atom b) 18 rons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ rater in 488 g BaCl ₂ · 2H ₂ O b) 3 in 16 g of methane is: b) 6.02 × $10^{23}$ diammonium hydrogen ph b) 46.96 oxalic acid to CO ₂ . What is f $10^{-2}$ M oxalic acid in acid b) 1250 nificant figures. b) 4	aving 29% by mass of $H_2S$ c) 1.88 mic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are: c) 4 c) $\frac{16}{6.02} \times 10^{23}$ mosphate, $(NH_4)_2HPO_4$ is c) 53.78 the volume (in litres) of 10 medium? c) 200 c) 3	O ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ d) 5 d) $\frac{16}{3.0} \times 10^{23}$ d) 71.00 0 ⁻⁴ M KMnO ₄ required to d) 20 d) 7
<ul> <li>320.</li> <li>321.</li> <li>322.</li> <li>323.</li> <li>324.</li> <li>325.</li> <li>326.</li> <li>327.</li> <li>328.</li> </ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w a) 2 The number of molecules a) $3.0 \times 10^{23}$ The percentage of $P_2O_5$ in a) $23.48$ Acidified KMnO ₄ oxidises completely oxidise 0.5 L o a) 125 0.003924 have sign a) 6 The formula mass of Moh	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 reights $1.8 \times 10^{-22}$ g. its atom b) 18 rons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ rater in 488 g BaCl ₂ · 2H ₂ O b) 3 in 16 g of methane is: b) 6.02 × $10^{23}$ diammonium hydrogen ph b) 46.96 oxalic acid to CO ₂ . What is if $10^{-2}$ M oxalic acid in acid b) 1250 nificant figures. b) 4 r's salt is 392. The iron press	aving 29% by mass of $H_2S$ c) 1.88 mic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are: c) 4 c) $\frac{16}{6.02} \times 10^{23}$ mosphate, $(NH_4)_2HPO_4$ is c) 53.78 the volume (in litres) of 10 medium? c) 200 c) 3 sent in it is oxidised by KM	O ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ d) 5 d) $\frac{16}{3.0} \times 10^{23}$ d) 71.00 0 ⁻⁴ M KMnO ₄ required to d) 20 d) 7 nO ₄ in acid medium. The
<ul> <li>320.</li> <li>321.</li> <li>322.</li> <li>323.</li> <li>324.</li> <li>325.</li> <li>326.</li> <li>327.</li> <li>328.</li> </ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w a) 2 The number of molecules a) $3.0 \times 10^{23}$ The percentage of $P_2O_5$ in a) $23.48$ Acidified KMnO ₄ oxidises completely oxidise 0.5 L o a) 125 0.003924 have sign a) 6 The formula mass of Mohrie	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 reights $1.8 \times 10^{-22}$ g. its atom b) 18 rons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ rater in 488 g BaCl ₂ · 2H ₂ O b) 3 in 16 g of methane is: b) 6.02 × $10^{23}$ diammonium hydrogen ph b) 46.96 oxalic acid to CO ₂ . What is if $10^{-2}$ M oxalic acid in acid b) 1250 nificant figures. b) 4 r's salt is 392. The iron press	aving 29% by mass of $H_2S$ c) 1.88 mic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are: c) 4 c) $\frac{16}{6.02} \times 10^{23}$ mosphate, $(NH_4)_2HPO_4$ is c) 53.78 the volume (in litres) of 10 medium? c) 200 c) 3 sent in it is oxidised by KM	O ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ d) 5 d) $\frac{16}{3.0} \times 10^{23}$ d) 71.00 o ⁻⁴ M KMnO ₄ required to d) 20 d) 7 nO ₄ in acid medium. The
<ul> <li>320.</li> <li>321.</li> <li>322.</li> <li>323.</li> <li>324.</li> <li>325.</li> <li>326.</li> <li>327.</li> <li>328.</li> </ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w a) 2 The number of molecules a) $3.0 \times 10^{23}$ The percentage of $P_2O_5$ in a) $23.48$ Acidified KMnO ₄ oxidises completely oxidise 0.5 L o a) 125 0.003924 have sign a) 6 The formula mass of Mohris a) 392	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 reights $1.8 \times 10^{-22}$ g. its atom b) 18 rons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ rater in 488 g BaCl ₂ · 2H ₂ O b) 3 in 16 g of methane is: b) 6.02 × 10 ²³ diammonium hydrogen ph b) 46.96 oxalic acid to CO ₂ . What is of $10^{-2}$ M oxalic acid in acid b) 1250 nificant figures. b) 4 r's salt is 392. The iron press s salt is b) 31.6	aving 29% by mass of $H_2S$ c) 1.88 mic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are: c) 4 c) $\frac{16}{6.02} \times 10^{23}$ mosphate, $(NH_4)_2HPO_4$ is c) 53.78 the volume (in litres) of 10 medium? c) 200 c) 3 sent in it is oxidised by KM c) 278	O ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ d) 5 d) $\frac{16}{3.0} \times 10^{23}$ d) 71.00 0 ⁻⁴ M KMnO ₄ required to d) 20 d) 7 nO ₄ in acid medium. The d) 156
<ul> <li>320.</li> <li>321.</li> <li>322.</li> <li>323.</li> <li>324.</li> <li>325.</li> <li>326.</li> <li>327.</li> <li>328.</li> <li>329.</li> </ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w a) 2 The number of molecules a) $3.0 \times 10^{23}$ The percentage of $P_2O_5$ in a) $23.48$ Acidified KMnO ₄ oxidises completely oxidise 0.5 L o a) 125 0.003924 have sign a) 6 The formula mass of Mohr equivalent mass of Mohr's a) 392 Matter is anything which	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 veights $1.8 \times 10^{-22}$ g. its atom b) 18 rons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ vater in 488 g BaCl ₂ · 2H ₂ O b) 3 in 16 g of methane is: b) 6.02 × $10^{23}$ diammonium hydrogen ph b) 46.96 oxalic acid to CO ₂ . What is of $10^{-2}$ M oxalic acid in acid b) 1250 nificant figures. b) 4 r's salt is 392. The iron press s salt is b) 31.6 occupies <i>A</i> and has	aving 29% by mass of $H_2S$ c) 1.88 mic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are: c) 4 c) $\frac{16}{6.02} \times 10^{23}$ mosphate, $(NH_4)_2HPO_4$ is c) 53.78 the volume (in litres) of 10 medium? c) 200 c) 3 sent in it is oxidised by KM c) 278 . B	O ₄ (molar mass 98) will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ d) 5 d) $\frac{16}{3.0} \times 10^{23}$ d) 71.00 0 ⁻⁴ M KMnO ₄ required to d) 20 d) 7 nO ₄ in acid medium. The d) 156
<ul> <li>320.</li> <li>321.</li> <li>322.</li> <li>323.</li> <li>324.</li> <li>325.</li> <li>326.</li> <li>327.</li> <li>328.</li> <li>329.</li> </ul>	The density (in g mL ⁻¹ ) o a) 1.45 One atom of an element w a) 29.9 How many moles of electr a) $6.023 \times 10^{23}$ The number of moles of w a) 2 The number of molecules a) $3.0 \times 10^{23}$ The percentage of $P_2O_5$ in a) $23.48$ Acidified KMnO ₄ oxidises completely oxidise 0.5 L o a) 125 0.003924 have sign a) 6 The formula mass of Mohris a) 392 Matter is anything which there <i>A</i> and <i>B</i> are	f a 3.60 <i>M</i> H ₂ SO ₄ solution h b) 1.64 reights $1.8 \times 10^{-22}$ g. its atom b) 18 rons weigh one kilogram? b) $\frac{1}{9.108} \times 10^{31}$ rater in 488 g BaCl ₂ · 2H ₂ O b) 3 in 16 g of methane is: b) 6.02 × $10^{23}$ diammonium hydrogen ph b) 46.96 oxalic acid to CO ₂ . What is of $10^{-2}$ M oxalic acid in acid b) 1250 nificant figures. b) 4 r's salt is 392. The iron press s salt is b) 31.6 occupies A and has	aving 29% by mass of $H_2S$ c) 1.88 nic mass is c) 108.36 c) $\frac{6.023}{9.108} \times 10^{54}$ are: c) 4 c) $\frac{16}{6.02} \times 10^{23}$ nosphate, $(NH_4)_2HPO_4$ is c) 53.78 the volume (in litres) of 10 medium? c) 200 c) 3 sent in it is oxidised by KM c) 278 . B	O ₄ (molar mass 98)will be: d) 1.22 d) 154 d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ d) 5 d) $\frac{16}{3.0} \times 10^{23}$ d) 71.00 0) ⁻⁴ M KMnO ₄ required to d) 20 d) 7 nO ₄ in acid medium. The d) 156

330	. Which is not a molecular f	formula?		
	a) C ₆ H ₁₂ O ₆	b) $Ca(NO_3)_2$	c) $C_2H_4O_2$	d) N ₂ O
331	. Insulin contains 3.4% sulp	ohur. What will be the mini	mum molecular weight of i	nsulin?
	a) 94.117	b) 1884	c) 941.176	d) 976
332	. Which of the following co	ntains maximum number o	f molecules?	,
	a) 100 cc of $CO_2$ at STP	b) 150 cc of N2at STP	c) 50 cc of SO ₂ at STP	d) 200 cc of NH₃at STP
333	. Weight of a single molecu	le of water is:	.) <u>2</u> <u>2</u>	, , , , , , , , , , , , , , , , , , ,
	a) 3.0 $\times 10^{-23}$ g	b) $6.02 \times 10^{23}$ g	c) $6.02 \times 10^{-23}$ g	d) None of these
334	Air contains $20\%0_{\circ}$ by yo	lume How much volume o	f air will be required for 10	0 cc of acetylene?
001	a) 500 cc	h) 1064 cc	c) 212.8 cc	d) 1250 cc
335	$1.35 \sigma$ of nure Ca metal w	s quantitatively converted	into $1.88  \text{g of nure CaO}$ wh	a) 1250 ee hat is atomic weight of Ca?
555	a) 40.75	b) $50$		d) 70
336	If 250 mL of a solution cou	bj50 htning 27 g of H DO the n	ormality of the solution is:	u) / 0
330	230 IIIL OF a SOLUTION COL	$h_{111111111111111111111111111111111111$	c) 0.4	d) 0 1
227	a) 4.0 The weights of two eleme	UJ U.SS	CJ 0.4	af thain
337	. The weights of two eleme	h) Mal aut	a) En sust	
220	a) At. wt.	DJ MOI. WE	C) Eq. wt.	a) None of these
338	$\cdot$ One litre N ₂ , $\frac{7}{8}$ litre O ₂ and	l 1 litre CO are taken in a m	ixture under indentical cor	nditions of $P$ and $T$ . The
	amount of gases present i	n mixture is given by:		
	a) $w_{N_2} = w_{O_2} > w_{CO}$	b) $w_{N_2} = w_{CO} > w_{O_2}$	c) $w_{N_2} = w_{O_2} = w_{CO}$	d) $w_{\rm CO} > w_{\rm N_2} > w_{\rm O_2}$
339	. Volume of 0.1 <i>M</i> NaOH ne	eded for the neutralisation	of 20 mL of 0.05 <i>M</i> oxalic a	acid is:
	a) 10 mL	b) 15mL	c) 20 mL	d) 30 mL
340	. The mole fraction of solut	e in one molal aqueous solu	ition is:	
010	a) 0.009	b) 0.018	c) 0.027	d) 0.036
341	If we consider that $\frac{1}{1}$ in n	$\log_2 of \frac{1}{2}$ mass of carbon	atom is taken to be the rela	tivo atomic mace unit the
011		$\frac{1}{12}$ , $\frac{1}{12}$ , $\frac{1}{12}$	atom is taken to be the rela	itive atomic mass unit, the
	mass of one mole of a sub	stance will		
	a) Be a function of the mo	locular mass or the substar	100	
	a) De a function of the mo	ieculai illass of the substal		
	a) Ingraage two fold			
	d) Degraage twige			
212	A compound contains E41	$E^{0}$ combon 0.00 0/ budnes	ron 26.260/ ourgon The or	nninical formula of this
342	A compound is	55% carbon, 9.09 % nyuro	gen, 50.50% oxygen. The er	iipii icai ioi iiiuia oi uiis
0.40	a) $C_3H_5O$	$DJ C_4 H_8 O_2$	C) $U_2H_4U_2$	$0 C_2 H_4 O$
343	. The total number of proto	ns, electrons and neutrons	$\ln 12 \text{ g of } \frac{16}{6} \text{ L IS:}$	N 40
~	a) $1.084 \times 10^{23}$	b) $6.022 \times 10^{23}$	c) $6.022 \times 10^{22}$	d) 18
344	The volume of 0.25 $M$ H ₃ F	² O ₄ required to neutralise	$25 \text{ mL of } 0.03 \text{ M Ca}(\text{OH})_2$ is	
	a) 1.32 mL	b) 13.2 mL	c) 26.4 mL	d) 2.0 mL
345	. 100 mL of PH ₃ when deco	mposed produces phospho	orus and hydrogen. The cha	nge in volume is:
	a) 50 mL increase	b) 500 mL decrease	c) 900 mL decrease	d) None of these
346	Density of a 2.05 <i>M</i> solution	on of acetic acid in water is	1.02g/mL. The molality of	the solution is:
	a) 1.14 mol kg ⁻¹	b) 3.28 mol kg ⁻¹	c) 2.28 mol kg ⁻¹	d) 0.44 mol kg ⁻¹
347	. What weight of sodium hy	droxide is required to neu	tralize 100 mL of 0.1 <i>N</i> HCl	?
	a) 4.0 g	b) 0.04 g	c) 0.4 g	d) 2.0 g
348	. The amount of anhydrous	Na ₂ CO ₃ present in 250 mI	of 0.25 <i>M</i> solution is :	
	a) 6.625 g	b) 6.0 g	c) 66.25 g	d) 6.225 g
		$r i \in 0.2$ The molality of $A$ ir	n water is:	
349	. Mole fraction of A in wate	I IS 0.2. The molanty of A h	i water is:	
349	a) 13.8	b) 13.6	c) 14.0	d) 16.0
349 350	a) 13.8 . How many g of KCl would	b) 13.6 have to be dissolved in 60	c) 14.0 g H ₂ O to give 20% by weig	d) 16.0 ht of solution?
349 350	. Mole fraction of A in wate a) 13.8 . How many g of KCl would a) 15 g	b) 13.6 have to be dissolved in 60 b) 1.5 g	<ul> <li>c) 14.0</li> <li>g H₂O to give 20% by weig</li> <li>c) 11.5 g</li> </ul>	d) 16.0 ht of solution? d) 31.5 g

	gas (C ₃ H ₈ ) measured und	ler the same conditions?		
	a) 6 L	b) 5 L	c) 10 L	d) 7 L
352	The weight of 11.2 litre of	f any gas at STP represents	its:	
	a) Gram molecular weigh	t		
	b) Gram equivalent weigh	nt		
	c) Gram atomic weight			
	d) Vapour density			
353	The normality of 10% (w	eight/volume) acetic acid i	S:	
	a) 1 <i>N</i>	b) 10 <i>N</i>	c) 1.7 <i>N</i>	d) 0.83 <i>N</i>
354	The stoichiometry of the	following reaction is		
	$K_2S_2O_8(aq) + 2KI(aq) \rightarrow$	$\sim 2K_2SO_4(aq) + I_2(aq)$		
	a) 2 : 2	b) 1 : 1	c) 1:2	d) 2 : 1
355	2 mole of ethyl alcohol ar	e present with 6 mole of wa	ater. The mole fraction of al	lcohol is:
	a) 0.5	b) 0.75	c) 0.15	d) 0.25
356	What is the $[OH^-]$ in the f	final solution prepared by n	nixing 20.0 mL of 0.050 <i>M</i> 1	HCl with 30.0 mL of 0.10 <i>M</i>
	$Ba(OH)_2?$			
	a) 0.12 <i>M</i>	b) 0.10 <i>M</i>	c) 0.40 <i>M</i>	d) 0.0050 <i>M</i>
357	The pair of compounds w	hich cannot exist in solutio	n is:	
	a) NaHCO ₃ and NaOH	b) Na ₂ CO ₃ and NaHCO ₃	c) $Na_2CO_3$ and $NaOH$	d) NaHCO ₃ and NaCl
358	An oxide of metal has 20%	% oxygen, the eq. wt. of oxid	de is:	
	a) 32	b) 40	c) 48	d) 52
359.	What weight of silver chlo	oride will be precipitated w	hen a solution containing 4	4.77 g of <i>NaCl</i> is added to a
	solution of 5.77 g of AgNO	$D_3$ ? (Na = 23, Cl = 35.5, Ag	= 108, N = 14  and  0 = 16	)
	a) 4.37 g	b) 4.87 g	c) 5.97 g	d) 3.87 g
360.	Number of m	olecules in 100 mL of each	of $O_2$ , $NH_3$ and $CO_2$ at STP	are in the order
	a) $CO_2 < O_2 < NH_3$		b) $NH_3 < O_2 < CO_2$	
0.64	c) $NH_3 = CO_2 < O_2$	1	d) All have same number	of molecules
361	The equivalent weight of	a substances is the weight	which either combines of d	isplaces:
262	a) 8 part oxygen	b) 1 part nydrogen	c) 35.5 part chlorine	a) All of these
362.	which of the following is	correct?		
	a) Eq. wt. of element = $\frac{1}{2}$	alonco		
	Ea. wt. of compound =	arctice		
	b) mol	.wt.		
	total charge on	cation or anion		
	c) Eq. wt. of acid = $\frac{\text{mol. w}}{1}$	vt.		
	basici	ty		
	d) Eq. wt. of base = $\frac{\text{mol. v}}{\text{mol. v}}$	<u>vt.</u>		
202	aciai	ty		
303.	which represents per cen	it by volume:		
	a) $\frac{\text{wt.of solution}}{\text{wt.of solution}} \times 100$			
	wt. of solute			
	b) $\frac{1}{\text{volume of solution}} \times$	100		
	volume of solute	100		
	volume of solution	100		
	d) All of the above			
364	In the aqueous solution o	f sulphuric acid the mole fr	action of water is 0.85. the	molality of the solution is :
a -	a) 8.9 m	b) 0.19 m	c) 9.8 m	d) 15 m
365.	The number of atoms in (	).1 mol of a triatomic gas is:		
	$(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$			
	aj 6.026 × 10 ²³	bj 1.806 × 10 ²³	c) $3.600 \times 10^{23}$	d) 1.80 × 10²³

366. Which contains greatest number of oxygen atoms?

a) 1 g of 0			
b) 1 g of 0 ₂			
c) 1 g of 0 ₃			
d) All have the sa	me number of atoms		
367. The electrochemi	cal equivalent of a metal is ' $x$ ' g	g coulomb ⁻¹ . The equivaler	nt weight of metal is
a) <i>x</i>	b) <i>x</i> × 96500	c) $\frac{x}{96500}$	d) $1.6 \times 10^{-19} \times x$
368. By Victor meyer's	s method, one determine the va	pour density if:	
a) Non-volatile so	blid b) All substances	c) Volatile liquid	d) Electrolyte
369. The percentage o	f oxygen in NaOH is:		
a) 40	b) 16	c) 8	d) 1
370. Sulphur forms the	e chlorides $S_2Cl_2$ and $SCl_2$ . The	equivalent mass of sulphu	r in SCl ₂ is 16. The equivalent
mass of sulphur S	$S_2Cl_2$ is:		
a) 8	b) 16	c) 64	d) 32
371. 1.520 g of the hyd	lroxide of a metal on ignition g	ave 0.995 g of oxide. The ec	quivalent weight of metal is
a) 1.520	b) 0.995	c) 19.00	d) 9.00
372. The product of at	omic weight and specific heat o	of a metal is approximately	6.4. This was given by:
a) Dalton's law	b) Avogadro's law	c) Newton's law	d) Dulong Petit's law
373. If a mixture conta	iining 3 moles of hydrogen and	1 mole of nitrogen is conv	erted completely into ammonia,
the ratio of initial	and final volumes under the sa	ame temperature and press	sure would be:
a) 3 : 1	b) 1:3	c) 2:1	d) 1 : 2
374. The least count of	f an instrument is 0.01 cm. Tak	ing all precautions, the mos	st possible error in the
measurement car	ı be		
a) 0.005 cm	b) 0.01 cm	c) 0.0001 cm	d) 0.1 cm
375. A metal <i>M</i> forms	a compound $M_2$ HPO ₄ . The form	ula of the metal sulphate i	S:
a) $M_2$ SO ₄	b) <i>M</i> SO₄	c) $M(SO_4)_2$	d) $M_2(SO_4)_3$
376. If the molecular v	veight of Na ₂ S ₂ O ₃ and I ₂ are $M_1$	and $M_2$ respectively, then	what will be the equivalent
weight of Na ₂ S ₂ O	$_{2}$ and $I_{2}$ in the following reaction	on?	Ĩ
$2S_2O_2^{2-} + I_2 \rightarrow S_2O_2^{2-}$	$a_{1}O_{2}^{2-} + 2I^{-}$		
a) $M_1, M_2$	b) $M_1, M_2/2$	c) $2M_1, M_2$	d) $M_{1}, 2M_{2}$
377. L. the Carl and	(29.2-20.2)(1)	79×10 ⁵ ) the second second	
in the final answe	er of the expression	, the number of sign	lincant figures is
a) 1	b) 2	c) 3	d) 4
378. Haemoglobin con	tains 0.33% of iron by weight.	The molecular weight of ha	emoglobin is approximately
67200. The numb	per of iron atoms (at. Wt. of <i>Fe</i>	= 56) present in one mole	cule of haemoglobin is
a) 6	b) 1	c) 4	d) 2
379. In the equation,			
$H_2S + 2HNO_3 \rightarrow 1$	$2H_2O + 2NO_2 + S$		
The equivalent w	eight of hydrogen sulphide is		
a) 18	b) 68	c) 34	d) 17
380. In a compound C,	H and N are present is 9:1:3	.5 by weight. If molecular w	weight of the compound is 108,
then the molecula	ar formula of the compound is		
a) $C_2H_6N_2$	b) $C_3H_4N$	c) $C_6H_8N_2$	d) C ₉ H ₁₂ N ₃
381. When 10 g of met	hane is completely burnt in ox	ygen, the heat evolved is 50	60 kJ. What is the heat of
combustion (in k	mol ⁻¹ ) of methane?		
a) —1120	b) -968	c) -896	d) —560
382. How much of 0.1	M H ₂ SO ₄ solution is required t	o neutralize 50 mL of 0.2 M	NaOH solution?
a) 0.50 mL	b) 50 mL	c) 100 mL	d) 5.0 mL
383. One litre of $CO_2$ is	s passed over hot coke. The vol	ume becomes 1.4 litre. The	per cent composition of
products is:			-

a) 0.6 litre CO		
b) 0.8 litre CO ₂		
c) 0.6 litre $CO_2$ and 0.8 litre CO		
d) None of the above		
384. Equivalent weight of oxygen is:		
a) 32 b) 8	c) 16	d) 24
385. Arsenic forms two oxides, one of which o	contains 65.2% and the other 75.	5% of the element. Hence,
equivalent masses of arsenic are in the r	atio	
a) 1 : 2 b) 3 : 5	c) 13:15	d) 2 : 1
386. The oxide of a metal contains 60 % of the	e metal. What will be the percent	age of bromine in the bromide of
the metal, if the valency of the metal is th	ne same in both the oxide and the	e bromide?
a) $\approx 87$ b) $\approx 70$	c) ≈ 77	d) ≈ 93
387. An aqueous solution of 6.3 g oxalic act	d dihydrate is made up to 250	mL. The volume of 0.1 N NaOH
required to completely neutralised 10 m	L of this solution is:	
a) 40 mL b) 20 mL	c) 10 mL	d) 4 mL
388. The enthalpy of combustion of methane	at 25 [°] C is 890kJ. The heat libera	ted when 3.2 g of methane is
burnt in air is	,	5
a) 445 kl b) 278 kl	c) -890 kl	d) 178 kI
389. A signature written with carbon pencil v	veighs 1 mg. what is the number	of carbon atoms present in the
signature?		r
a) $6.02 \times 10^{20}$ b) $0.502 \times 10^{20}$	²⁰ c) $5.02 \times 10^{23}$	d) 5.02× 10 ²⁰
390. If 1.2 g of a metal displace 1.12 litre hydr	rogen at normal temperature and	pressure, equivalent weight of
metal would be:	ogen av norma temperature and	
a) 12 b) 24	c) 12 × 11 2	d) $12 \div 112$
391 34 g of hydrogen peroxide is present in 2	1120 mL of solution This solution	n is called:
a) 10 vol solution b) 20 vol solu	tion $c$ 30 vol solution	d) 32 vol solution
$392$ A sample of a mixture of $CaCl_{a}$ and $NaC$	l weighing 4 22 g was treated to	precipitate all the $Ca$ as $CaCO_2$
This $CaCO_{2}$ is then heated and quantitat	ively converted into $0.959 \text{ g of } C$	aO Calculate the percentage of
$CaCl_{a}$ in the mixture		ab. Galealate the percentage of
(Atomic mass of $Ca = 40$ , $O = 16$ , $C = 1$	2  and  (l = 35.5)	
a) 31 5% b) 21 5%	c) $45.04\%$	d) 68 48%
393 112 litre of NH ₂ at STP has electrons:	cj 13.0170	aj 66.1070
a) $3.01 \times 10^{21}$ b) $3.01 \times 10^{2}$	² c) $3.01 \times 10^{25}$	d) 3.01 x $10^{24}$
$393.01 \times 10$ $393.01 \times 10$	$c_{j} = 5.01 \times 10^{-3}$	uj 5.01 × 10
3 ) 11 2 cc (STP) of nitrogen and 0.015 g	of nitric oxide	
b) 22 4 L (STP) of nitrous oxide and 22 4	L of nitric oxide	
c) 1 millimole of HCL and $0.5$ millimole of	of H. S	
d) 1 mole of H, $\Omega_{1}$ and 1 mole of N, $\Omega_{2}$	, n ₂ 5	
305 The number of stoms present in a molec	alle is called.	
a) Atomicity b) Moleculari	ty c) Poison's ratio	d) None of these
206 Which has the highest weight?		d) None of these
330. Which has the highest weight:	dult man a) 10 L of Hg	d) All have came weight
a) I III ^o OI watel b) A Horman a	$\Gamma$ a of chloring the equivalent $\mu$	u) All llave same weight
syr. 74.5 g of a filetanic chiof file contains 55.	s g of chiof life, the equivalent we	
a) 19.5 $D$ 55.5	$C_{\rm J}$ 59	$u_{\rm J}$ / 0.0
the compound ic	1 50.5% Introgen and its molecul	ai weight is 92. The formula of
a) $N_2 U$ D) $NU_2$	$CJ N_2 U_4$	$u_J n_2 U_5$
a) Solution interconducting state of gases V		d) All of these
a) Sui state DJ Gel state	CJ Plasma state	uj All of these
400. A g of a metal displaces $V$ mL of H ₂ at NI	r. Equivalent weight E, of metal	15:

	a) $E = \frac{A}{\text{wt.of H}_2 \text{ displaced}} \times$	E _H		
	$A \times 1.008 \times 2$	2400		
	b) $E = \frac{1}{\text{volume of H}_2 \text{ disp}}$	laced $\times$ 2		
	c) $E = \frac{A \times A}{A \times A}$	1.008		
	volume of $H_2$ disp	1110000000000000000000000000000000000		
401	d) All of the above			د
401	a ne formula which repres	sents the simple ratio of at	oms in a compound is calle	d) Detional formula
402	a) Molecular formula	b) Structure formula	cj Empirical formula	d) Rational formula
402.	How many mole of atoms	are in a mole of $CH_3COOH$	molecule?	
	a) 2 moles of C atoms, 4 m $(2 - 1)^{-1}$	ioles of H atoms, 2 moles o	of O atoms	
	b) 1 mole of C atom, 2 mol	les of H atoms, 1 mole of U	atom	
	c) 2 moles of C atom, 3 mo	Dies of H atoms, 2 moles of	U atoms	
102	u) None of the above	$a = am^{-3}$ then the velues of	anniad by an a malagula at	function in companying stales
405	If the density of water is $1$	$g  \text{cm}^2$ then the volume o	$(0.2) \times (10^{-23} \text{ cm}^3)$	d 2.0 × 10 ⁻²³ ···· ³
404	a) 10 cm ²	DJ 22400 CIII ²	$C = 0.02 \times 10^{-5} \text{ cm}^{-5}$	$u_{j} 3.0 \times 10^{-5} \text{ cm}^{-5}$
404.	what will be the normalit	y of a solution obtained by	mixing 0.45 N and 0.60 N	NaOH in the ratio 2:1 by
	volume: a) 0.4 N		a) $10E M$	d) 0.1 E N
405	a) 0.4 N	DJ 0.5 N	CJ 1.05 N	u) 0.15 N
405	$\frac{V}{V} = \frac{2V}{V} = \frac{7}{V}$			
	$A + 2I \rightarrow Z$ E Moles of V and 0 moles.	of V will produce		
	$3$ Moles of $\lambda$ and $3$ moles of $7$	b) 8 moles of 7	c) 11 malos of 7	d) 1 moles of 7
4.06	A student performs a titra	b) o moles of z	cj 14 moles of 2	$10^{4}$ moles of $2$
400	25 Oml The number of si	gnificant figures in the ave	rage titre value is	.3.2 IIIL, 23.23 IIIL, allu
	23.011L. The number of Si	b) 2	c) 3	d) 4
407	100  mL of  20.8%  BaCL si	0.52	UJ 3 H. SO.	u) 4
407	Solution will form $Baso$	5101011 and 50 mL 01 9.070	112504	
	$(B_2 - 137 \ C) - 355 \ S -$	32 H – 10 – 16)		
	$(Ba = 137, Cl = 33.3, 3 = BaCl_{a} + H_{a}SO_{b} \rightarrow Ba_{a}SO$	(52, 11 - 1, 0 - 10)		
	a) 23 3 $\sigma$	h) 11 65 $\sigma$	c) 30.6 g	d) None of these
408	n gram of a substance X r	eacts with <i>m</i> gram of subst	tance V to form n gram of si	ubstance $R$ and $a$ gram of
100	substances This reaction	can be represented as follo	ows	abstance it and q grain of
	X + Y = R + S	cui be representeu us ion	0113	
	The relation which can be	established in the amount	ts of the reactants and the r	products will be
	a) $n - m = n - a$	b) $n + m = n + a$	c) $n = m$	d) $p = q$
409	On adding 20 mL of 0.1 $N$	NaOH solution to 10 mL o	f 0.1 <i>N</i> HCl. the resulting so	lution will:
	a) Turn blue litmus red			
	b) Turn phenolphthalein s	solution pink		
	c) Turn methyl orange red	d		
	d) Will have no effect on r	ed or blue litmus paper		
410	The number of atoms in 5	58.5 g of Fe (at.wt. 55.85)	is:	
	a) Twice that in 60 g carb	on		
	b) $6.022 \times 10^{22}$			
	c) Half in 8 g He			
	d) $558.5 \times 6.023 \times 10^{23}$			
411	If 20% nitrogen is present	t in a compound, it's minim	num molecular weight will	be:
	a) 144	b) 28	c) 100	d) 70
412	The dehydration yield of o	cyclohexanol to cyclohexer	ne is 75%. What would be t	he yield, if 100 g of
	cyclohexanol is dehydrate	ed?		-
	a) 61.7 g	b) 16.5 g	c) 6.15 g	d) 615 g

Page | 24

413. A mixture containing	100 g H ₂ and 100 g O ₂ is ig	gnited so that water is fo	ormed according to the reaction,
$2H_2 + U_2 \rightarrow 2H_2U; H_2$	h) 50 ~	mea?	d) 200 a
a) 113 g	DJ 50 g	c) 25 g	u) 200 g
414. The numerical value	$of_n^-$ (where, N is the numbe	r of molecules in a giver	i sample of gas and <i>n</i> is the number
of moles of the gas) is	5		
a) 8.314	b) $6.02 \times 10^{23}$	c) 0.0821	d) $1.66 \times 10^{-19}$
415. The ionic strength of	Na ⁺ on mixing 100 mL 0.1	M NaCl and 100mL 0.1	M Na ₂ SO ₄ is:
a) 0.2	b) 0.1	c) 0.3	d) 0.075
416. Number of g-atom of	S present in 49 g H ₂ SO ₄ ar	e:	
a) 0.5	b) 1	c) 0.2	d) 0.3
417. 276 g of silver carbon	nate on being strongly heat	ed yields a residue weig	hing
a) 3.54 g	b) 3.0 g	c) 1.36 g	d) 2.16 g
418. The mole fraction of o	oxygen in a mixture of 7 g o	of nitrogen and 8 g of ox	ygen is:
a) 8/5	b) 0.5	c) 0.25	d) 1.0
419. 0.5 g of fuming $H_2SO_2$	4 (oleum) is diluted with w	ater. This solution is co	mpletely neutralized by 26.7 mL of
0.4 N NaOH. The perc	centage of free $SO_3$ in the sa	ample is:	
a) 30.6%	b) 40.6%	c) 20.6%	d) 50%
420. The mass of $BaCO_3$ pr	roduced when excess CO ₂ i	s bubbled through a sol	ution of 0.205 mole $Ba(OH)_2$ is,
a) 81 g	b) 40.5 g	c) 20.25 g	d) 162 g
421. An example of homog	geneous mixture is	, ,	
a) Mixture of soil and	water	b) Mixture of salt	and sand grains
c) Sugar solution		d) None of the abo	ove
422. The molarity of a solu	ition containing 5.3 g of an	hydrous Na ₂ CO ₂ per lit	re is :
a) 0.01 <i>M</i>	b) 0.05 <i>M</i>	c) 0.02 M	d) 1 <i>M</i>
423. To what extent must	a given solution containing	40 mg AgNO ₃ per mL b	be diluted to vield a solution
containing 16 mg Ag	$10_{2}$ per mL?	0 0 51	5
a) Each mL must be d	liluted to 2.5 mL		
h) To each mL of solu	tion 2.5 mL of water should	d be added	
c) To 1.5 mL of soluti	on 2.5 mL of water should	he added	
d) To 1.5 mL of soluti	on 1.5 mL of water should	be added	
474 In the reaction	on 1.5 mil or water should	be duded	
$L \pm 2S_1 \cap_{i=1}^{2^-} \longrightarrow 2I^- \downarrow$	$-5.0^{2-}$		
Faujvalent weight of	inding will be equal to		
a) Molecular weight	iounie win be equal to	b) $1/2$ of molecule	ar weight
c) $1/4$ of molecular weight	voight	d) Twice of molec	ular weight
425 Mol wt - vanour do	ncity × 2 is valid for	uj i wice of molec	ulai weight
a) motals	h) non motals	c) Solida	d) Cases
a) metals	b) non-metals	dation of 2.0 litro moth	u) dases
a) 12 25 litro	h) 4 litro	a) 1 litro	d) 2 litro
a) 12.25 little	DJ 4 IIU e	cj I liute	u) 5 little
427. One mole of a mixture	e of CO and $CO_2$ requires ex	actly 20 g of NaOH in so	Sitution for complete conversion of
all the $CO_2$ into $Na_2CO_2$	$U_3$ . How much NaOH would	i it require for conversion	on into $Na_2CO_3$ , if the mixture (one
mole) is completely o	exidised to $U_2$ ?	2.40	1) 20
a) 60 g	b) 80 g	c) 40 g	d) 20 g
428. The equivalent weigh	it of $H_3PO_4$ in the following	g reaction is,	
$H_3PO_4 + Ca(OH)_2 \rightarrow$	$CaHPO_4 + 2H_2O$ :		
a) 98	b) 49	c) 32.66	d) 40
429. 1.0 g of hydrogen con	tains 6 $\times$ 10 ²³ atoms. The	atomic weight of helium	i is 4. If follows that the number of
atoms in 1 g of He is:			
a) $1/4 \times 6 \times 10^{23}$	b) 4 × 6 × $10^{23}$	c) $6 \times 10^{23}$	d) $12 \times 10^{23}$
430. The hardness of wate	er is usually expressed in:		

	a) ppm	b) g/litre	c) Mol/litre	d) None of these
431	. An element forms an oxid	le, in which the oxygen is 2	0% of the oxide by weight ,	the equivalent weight of
	the given element will be	:		
	a) 32	b) 40	c) 60	d) 128
432	. The ratio of amounts of H	S needed to precipitate al	l the metals ions from 100	mL of 1 $M$ AgNO ₃ and 100
	mL of 1 <i>M</i> CuSO₄ is:			0
	a) 1:2	b) 2 : 1	c) Zero	d) Infinite
433	. 5.6 litre of oxygen at NTP	is equivalent to:	,	2
	a) 1 mole	b) $1/2$ mole	c) 1/4 mole	d) 1/8 mole
434	. A solution of HCl contain	ing 0.03659  g/mL and and	other solution of acetic acid	d containing 0.04509 g/mL.
	then:	8		, , , , , , , , , , , , , , , , , , ,
	a) $N_{\rm HCl}$ is more	b) N _{CH, COOH} is more	c) Both have same $N$	d) None of these
435	The equivalent weight of	an acid is obtained by divid	ling its mol wt hy its	
100	a) Acidity	h) Basicity	c) nH	d) None of these
436	For the reaction $Fe_{0}O_{0} +$	$300 \rightarrow 2 \text{ Fe} + 300 \text{ the volume}$	lume of carbon monoxide i	required to reduce one mole
150	of ferric oxide is	500 × 210 + 500 ₂ the vo		required to reduce one more
	a) 22.4 $dm^3$	b) $44.8  dm^3$	c) $67.2  dm^3$	d) 11.2 dm ³
137	22.4 mL of a triatomic gas	woights 1 g at 273 K and 1	the mass of one atom	of this gas is:
437	224 IIIL of a triatorific gas	b) 2.08 $\times 10^{-23}$ g	c) $552 \times 10^{-23} \text{ g}$	d) 6.24 $\times$ 10 ⁻²³ g
120	The empirical formula of	0 J 2.00 × 10 g	$c_{j} 5.55 \times 10$ g	$u_{J} 0.24 \times 10$ g
450	formula is	a compound iscn ₂ . One mo	She of this compound has a	mass of 50 g. its molecular
		b) C II	a) (11	d) C II
120	a) $C_3 \Pi_6$ Which has maximum num	$U_{4}\Pi_{8}$	c) cπ ₂	$U_1 C_2 H_2$
439	a) 2.0 mal of S	b) ( 0 mol of S	$a) \in E$ mol of $SO$	d) 4 49 L of CO at ETD
110	a) 2.0 III0I 0I $S_8$	D = 0.0     0  0  3	$C_{\rm J}$ 5.5 mol of $SO_2$	$U_{1}$ 4.40 L 01 $CO_{2}$ at 51 P
440	wt of solute	it by weight?		
	a) $\frac{\text{wt.of solution}}{\text{wt.of solution}} \times 100$			
	wt. of solute			
	b) $\frac{1}{\text{volume of solution}} \times$	100		
	volume of solute	100		
	c) $\frac{1}{\text{volume of solution}} \times$	100		
	d) None of the above			
441	. How many g are present	in one mole of MgSO ₄ ?		
	a) 120.4	b) 130.2	c) 12.04	d) 360
442	. A solution contains one m	nole of alcohol and four mo	les of water. What are the r	nole fractions of water and
	alcohol?			
	a) 1/4, 4/1	b) 4/1, 1/4	c) 4/5, 1/5	d) 1/5, 4/5
443	. Approximate atomic weig	ght of an element is 26.89.	If its equivalent weight is 8	.9 the exact atomic weight
	of element would be:			
	a) 26.89	b) 8.9	c) 17.8	d) 26.7
444	. 0.75 moles of a solid $A_4$ a	nd 2 moles of $O_2(g)$ are he	ated in a sealed vessel, com	pletely using up the
	reactants and produces o	nly one compound. It is fou	and that when the temperat	ture is used to initial
	temperature the content	s of the vessel exhibit a pre	ssure equal to $\frac{1}{2}$ of the original	inal pressure. The formula
			$\frac{1}{2}$	
	of the product will be			
445	a) $A_2 U_3$	D) $A_3 U_8$	$CJ A_3 U_4$	$d \int AO_2$
445	. 25.3 g solution carbonate	, $Na_2CO_3$ was dissolved in (	enough water to make 250	mL of solution. If sodium
	carbonate dissociates con	ipietely, molar concentrati	on of Na ⁺ and carbonate io	ons are respectively.
	(moi. mass of $Na_2CU_3 =$	106 g moi *)		
	aj 0.9555 <i>M</i> and 1.910 <i>M</i>			
	DI 1.910 M and 0.955 M			

	d) 0.477 <i>M</i> and 0.477 <i>M</i>			
446	. NO reacts with $O_2$ to form	$No_2$ . When 10 g of $NO_2$ is f	ormed during the reaction	, the mass of $O_2$ consumed
	is			
	a) 1.90 g	b) 5.0 g	c) 3.48 g	d) 13.9 g
447	. Two solutions of a substa	ance (non-electrolyte) are	mixed in the following ma	anner. 480 mL of 1.5 <i>M</i> of I
	solution with 520 mL of 1	.2 <i>M</i> of II solution. The mol	arity of final solution is:	
	a) 1.20 <i>M</i>	b) 1.50 <i>M</i>	c) 1.344 <i>M</i>	d) 2.70 <i>M</i>
448	. A vogadro's number is the	e number of molecules pres	sent in:	
	a) 22.4 litre of a gas of NT	'P		
	b) 1 mole of a substance			
	c) G mol. wt. of a substant	ce		
	d) All of the above			
449	. Camphor is often used in	molecular mass determinat	tion because	
	a) It is readily available		b) It has a very high cryos	scopic constant
	c) It is volatile		d) It is solvent for organic	c substances
450	. The molality of 1 <i>M</i> soluti	on of NaCl (specific gravity	1.0585) g/mL) is:	
	a) 1.0585	b) 1.0	c) 0.10	d) 0.0585
451	. An organic compound cor	ntains 49.3% carbon, 6.84%	hydrogen and its vapour	density is 73. Molecular
	formula of the compound	is		
	a) C ₃ H ₅ O ₂	b) $C_4H_{10}O_2$	c) $C_6H_{10}O_4$	d) $C_3 H_{10} O_2$
452	. How many g of glucose be	e dissolved to make one litr	e solution of 10% (wt./vol.	.) glucose?
	a) 10 g	b) 180 g	c) 100 g	d) 1.8 g
453	. How many atoms are con	tained in a mole of Ca(OH);	2?	
	a) $30 \times 6.02 \times 10^{23}$ atom	/mol		
	b) $5 \times 6.02 \times 10^{23}$ atom/	mol		
	c) $3 \times 6.02 \times 10^{23}$ atom/	mol		
	d) None of the above			
454	. The normality of 0.3 <i>M</i> pł	hosphorous acid $(H_3PO_3)$ is	:	
	a) 0.1	b) 0.9	c) 0.3	d) 0.6
455	. 0.84 g of a metal carbonat	te reacts with 40 mL of $/2$	$H_2SO_4$ . The equivalent weight	ght of metal carbonate is:
	a) 84 g	b) 64 g	c) 42 g	d) 38 g
456	If $1/6$ in place of $1/12$ m	ass of carbon atom is take	n to be the relative atomic	mass unit, the mass of one
	mole of a substance will:			
	a) Decrease twice			
	b) Increases two folds			
	c) Remains unchanged			
457	d) Be a function of the mo	olecular mass of element	ita ia 70 tha wia	
457	A gas is found to have for	mula[CO] _x . Its vapour dens	$x = \frac{1}{2}$ is $y = \frac{1}{2}$ , the x is	4) ( <b>Г</b>
450	a) $3.0$	DJ 3.5	$C_{\rm J}$ 5.0	(I) 0.5
458	. 2 g of metal carbonate is i	neutralised completely by 1	UUML OF 0.1 (N) HCL. The e	equivalent weight of metal
	cal Dollate IS	h) 100	a) 1E0	4) 200
450	a) 50 The smallest matter parti	UJ 100 ale that can take part in cho	CJ 150	u) 200
439	a) Atom	b) Moloculo	a) Poth (a) and (b)	d) None of these
160	The equivalent weight of	a solid element is found to l	ba Q. If the specific heat of t	this element is
400	1.05 $Ig^{-1}K^{-1}$ then its ato	a solid element is found to	be 9. If the specific field of t	this element is
	1.05  Jg K, uten its alo	h) 21	c) 25	d) 27
461	The largest number of me	olecules are in	Cj 25	uj 27
101	a) $36 \sigma H_2 \Omega$	h) 28 $\sigma$ CO	c) 46 g (_H_OH	d) 54 g N ₂ O-
467	Vanour density of a metal	chloride is 66. Its ovide co	ntains 53% metal The ato	mic weight of the metal is:
102	· · apour activity of a filetal		inclusion of the line all	me weight of the metal is.

a) 21 b) 54	c) 27.06	d) 2.706
463. The number of Cl ⁻ and Ca ²⁺ ions in 222 g CaCl ₂ are	:	
a) 4 N, 2 N b) 2 N, 4 N	c) 1 <i>N</i> , 2 <i>N</i>	d) 2 <i>N</i> , 1 <i>N</i>
464. How many gram of KCL would have to be dissolved	in 60 g $H_2$ O to give 40% by	weight of solution?
a) 40 g b) 20 g	c) 15 g	d) 10 g
465. The units I $Pa^{-1}$ is equivalent to	, ,	5 0
a) $m^3$ b) $cm^3$	c) $dm^3$	d) None of these
466. If 250 mL of a solution contains 24.5 g $H_2SO_4$ the m	olarity and normality resp	ectively are:
a) $1 M 2 N$ b) $1 M 0 5 N$	c) $0.5 M 1N$	d) 2 $M$ 1 $N$
467 Equivalent weight of hivalent metal is 32.7 Molecul	ar weight of its chloride is	
a) 68 2 b) 103 7	c) 136.4	d) 166 3
468 Insulin contains 3.4% Sulphur The minimum mol	weight of insulin is:	4) 100.5
2) 941 176 b) $944$	c) 0.45 27	d) None of these
469 How many moles of magnesium phosphate Mg. (Pl	$(1)^{+3.27}$	of ovvgen atoms?
$(10^{-2})$ $(10^{-2})$	c) 1.25 $\times 10^{-2}$	d) $2.5 \times 10^{-2}$
470 The gram molecular weight of hydrogen perovide is	$c_{J} 1.23 \times 10$	$u_{j} z_{j} z_{j} x_{10}$
a) a b) male	s 54. What is the unit of gra	d) mal g
a) g D) III0le	cj g IIIOI	uj mor g
4/1. Which one of the following has maximum number (	h) 2 g of carbon diouido	
a) 2 g of carbon monoxide $2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 $	b) 2 g of carbon dioxide	
c) $2 \text{ g of suppur dioxide}$	d) 2 g of water	
4/2. Equal volumes of 0.1 $M$ AgNO ₃ and 0.2 $M$ NaCl are 1	nixed. The concentration o	$f NO_3$ lons in the mixture
will be:		
a) 0.1 M b) 0.05 M	c) 0.2 M	d) 0,15 <i>M</i>
4/3. The equivalent mass of chlorine is 35.5 and the ator	nic mass of copper is 63.5.	the equivalent mass of
copper chloride is 99.0. hence, formula of copper ch	lloride is	
a) CuCl b) $Cu_2Cl$	c) CuCl ₂	d) None of these
474. The reaction between yttrium metal, Y and dilute h	ydrochloric acid produces	$H_2(g)$ and $Y^{3+}$ icons. The
molar ratio of yttrium used to hydrogen produces is	S	
a) 1 : 2 b) 1 : 3	c) 2:1	d) 2 : 3
475. Two elements <i>X</i> (atomic weight = 75) and <i>Y</i> (atomic weight = $75$ ) and <i>Y</i> (atomic we	omic weight =16) combine	to give a compound having
75.8% of <i>X</i> . The formula of the compound is:		
a) $XY$ b) $X_2Y$	c) $X_2 Y_2$	d) $X_2 Y_3$
476. Which of the following has the smallest number of n	nolecules?	
a) 0.1 mole of CO ₂ gas	b) 11.2 L of $CO_2$ gas at ST	TP
c) 22 g of CO ₂ gas	d) 22.4 $\times$ 10 ³ mL of CO ₂	gas at STP
477. Sodium nitrate on reduction with Zn in presence of	NaOH solution produces N	$H_3$ . Mass of sodium nitrate
absorbing 1 mole of electron will be		
a) 7.750 b) 10.625	c) 8.000	d) 9.875
478. The percentage of nitrogen in urea is about:		
a) 38.4 b) 46.6	c) 59.1	d) 61.3
479. What volume of 0.8 <i>M</i> solution contains 0.1 milli me	ole of solute?	
a) 100 mL b) 125 mL	c) 500 mL	d) 0.125 mL
480. The equivalent weight of an element can be calculated	ted from:	
a) 6.4 divided by specific heat and valence		
b) Atomic weight divided by atomicity		
c) Molecular weight divided by atomicity, all divide	11 .1 1	
	d by the valence	
d) None of the above	d by the valence	
d) None of the above 481. 4 g-atom of Ag contains:	d by the valence	
d) None of the above 481. 4 g-atom of Ag contains: a) 108 g b) 4 g	d by the valence c) 432 g	d) None of these

a) Tw	0	b) Three	c) Four	d) Five
483. Weigh	t of H ₂ O in 1000 k	g CuSO ₄ · 5H ₂ O is:		
a) 360	.5 kg	b) 36.05 kg	c) 3605 kg	d) 3.605 g
484. 3.0 m	olal NaOH solution	has a density of 1.11	0 g/mL. The molarity of th	e solution is:
a) 2.9	732	b) 3.05	c) 3.64	d) 3.0504
485. An oxi	de of a metal ( <i>M</i> )	contains 40% by mas	ss of oxygen. Metal ( <i>M</i> ) has	s atomic mass of 24. The empirical
formu	la of the oxide is:		<i>y</i> 0 ( <i>y</i> )	1
a) $M_{2}$	)	b) <i>M</i> O	c) $M_2O_2$	d) $M_2O_4$
486. The v	nour density of a	gas is given by:	-)2 - 3	
a) VD	= mol wt /2			
	wt. of <i>N</i> molecules	of gas		
DJVD	wt. of N molecules	of H ₂		
c) VD	$=\frac{\text{wt. of 1 mole of gas}}{\sqrt{1+1}}$	-		
	wt. of 1 mole of $H_2$			
407 In the	disproportionatio	n reaction 2UCIO		the aquivalant mass of the
407. III the	ing agont is (malay	$\frac{111110}{11110} = 0.4$	$\Pi \Box O_4 + \Box_2 + 2O_2 + \Pi_2 O_4$	, the equivalent mass of the
a $16$	ing agent is (inoial	$1 111035 01 \Pi C10_3 = 04$	a) 94 45	d) 20 1 E
aj 10.	) 7	UJ 52.22 ntainad in a mala of a	CJ 04.45	u) 28.15
400. NUW I	$6.02 \times 10^{23}$ atom			
ajox b)4 v	$6.02 \times 10^{-3}$ atom	/11101		
0)4 X	$6.02 \times 10^{-3}$ atom	/11101		
C) 6 X	$6.02 \times 10^{25}$ atom	/mol		
	ie of the above			
489. Specif	ic gravity of solution	on is given by:		
a) we	ight of 1 mL solution	on		
b) Mo	e present in 1 mL	solution		
c) Vol	ume of 1 g solution	1		
d) Noi	ie of the above			
490. Which	property of an ele	ement is always a wh	ole number?	
a) Ato	mic volume	b) Atomic weight	c) Atomic number	d) Equivalent weight
491. An aq	ieous solution of u	ırea containing 18 g ι	rea in 1500 cm ³ of solutio	on has a density of 1.052 g/cm ³ . If
the m	olecular weight of	urea is 60, then the n	nolality of solution is:	
a) 0.2		b) 0.192	c) 0.064	d) 1.2
492. The re	lative abundance	of two isotopes of ato	omic weight 85 and 87 is 7	5% and 25% respectively. The
avera	ge atomic weight o	f element is		
a) 75.	5	b) 85.5	c) 40.0	d) 86.0
493. A mol	ar solution represe	ents a solution of mol	arity equal to:	
a) 1		b) 2	c) 3	d) None of these
494. The ar	swer of the calcul	ation $\frac{2.568 \times 5.8}{4.162}$ in sign	ificant figures will be	
a) 3.5	79	b) 3.570	c) 3.57	d) 3.6
495.14 g o	f element X combi	ne with 16 g of oxyge	en. On the basis of this info	rmation, which of the followings is
a corr	ect statement?			
a) The	element X could l	have an atomic weigh	at of 7 and its oxide is $XO$	
h) The	element X could l	have an atomic weigh	nt of 14 and its oxide form	la is X_O
c) The	element X could l	have an atomic weigh	11  of  14  and  13  oxide for and	
	element Y could l	have an atomic weigh	t of 14 and its oxide is $N_2$	
496 Consid	ler the following d	lave an atomic weigh		2
FJO. CONSIG	ant Atomic	iaia.		
Eleff	woight			
	I WUIGIIL I			

A

В

12

35.5

	<i>A</i> and <i>B</i> combine to form	a new substance <i>X</i> . If four	moles of <i>B</i> combine with or	ne mole of A to give one
	a) $47.5 \mathrm{g}$	b) 83 g	c) 154 g	d) 166 a
107	$a_{\rm P}$ + 7.5 g	b) 05 g	cj 154 g	u) 100 g
497.	$r_4$ molecule	contain.		
	b) 4 molecules			
	c) $\frac{-1}{4} \times 6.022 \times 10^{23}$ atom	IS		
	d) 24.088 $\times$ 10 ²³ atoms			
498.	Molecular weight of NaCl	is 58.5. A solution of NaCl	containing 5.85 g NaCl per l	itre is :
	a) 1 molar	b) 0.1 molar	c) 2 molar	d) 0.585 molar
499.	The solution having lowe	st molar concentration is:		
	a) 1.0 <i>N</i> HCl	b) $0.4 N H_2 SO_4$	c) $0.1 N \text{ Na}_2 \text{CO}_3$	d) None of these
500.	The value of amu is which	n of the following?	N	27.
	a) $1.57 \times 10^{-24}$ kg	b) $1.66 \times 10^{-24}$ kg	c) $1.99 \times 10^{-23}$ kg	d) $1.66 \times 10^{-27}$ kg
501.	How many g are present	in one mole of Ag?		
	a) 107.9	b) 108.6	c) 10.29	d) None of these
502.	One mole of chlorine com	bines with certain weight o	of metal giving 111 g of its o	chloride. The same amount
	of metal can displace 2 g	of hydrogen from an acid. T	The atomic weight of the me	etal is:
	a) 40	b) 20	c) 80	d) None of these
503.	Equivalent weight of anh	ydrous oxalic acid is:		
	a) 45	b) 63	c) 126	d) 90
504.	Molarity is expressed as:			
	a) Litre mol ⁻¹	b) Mol litre ⁻¹	c) Mol kg ⁻¹	d) G litre ⁻¹
505.	H ₃ PO ₄ is a tribasic acid a	nd one of its salts is NaH ₂ P	O ₄ . What volume of 1 <i>M</i> Na	OH should be added to 12 g
	NaH ₂ PO ₄ (mol. wt. 120) t	to exactly convert it into Na	a ₃ PO ₄ ?	
	a) 100 mL	b) 300 mL	c) 200 mL	d) 80 mL
506.	How many atoms are con	tained in one mole of sucro	ose $(C_{12}H_{22}O_{11})?$	
	a) 45 $\times$ 6.02 $\times$ 10 ²³ atom	n/mol		
	b) $20 \times 6.02 \times 10^{23}$ atom	n/mol		
	c) $5 \times 6.02 \times 10^{23}$ atom/	mol		
	d) None of the above			
507.	What is the volume (in lit	rres) of oxygen required at	STP to completely convert	1.5 moles of sulphur into
	sulphur dioxide?			
	a) 11.2	b) 22.4	c) 33.6	d) 44.8
508.	What is the number of mo	oles of $Fe(OH)_3(s)$ that can	be produced by allowing 1	mole of $Fe_2S_3$ , 2 moles of
	$H_2O$ and 3 moles of $O_2$ to	react as		
	$2Fe_2S_3 + 6H_2O + 3O_2 \rightarrow$	$+4Fe(OH)_3 + 6S?$		
	a) 1 mol	b) 1.84 mol	c) 1.34 mol	d) 1.29 mol
509.	The number of molecules	c of CO ₂ present in 44 g of C	$CO_2$ is	
	a) $6.0 \times 10^{23}$	b) $3 \times 10^{23}$	c) $12 \times 10^{23}$	d) $3 \times 10^{10}$
510.	1 L oxygen gas at STP wil	l weigh	,	,
	a) 1.43 g	b) 2.24 "	c) 11.2 _g	d) 22.4 _a
511	Which has maximum nun	ober of atoms?	•) 5	~) <u>6</u>
511.	a) $24 \sigma$ of C	h) 56 g of Fe	c) 26 g of Al	d) 108 g of Ag
512	In multiplication and divi	sion the significant figures	of answer must be same as	that in the quantity with
J14.	Number of si	onificant figures	o or answer must be same as	, mai in the quantity with .
	a) Maximum	h) ?	c) 2	d) Minimum
512	A solution of known norm	oj J nality is diluted to two time	vj 4 which of the following of	a minimum
513.	a) Equivalent of solute			

	b) Moles of solute			
	c) Volume of 1 g solution			
	d) None of the above			
514	. The number of moles of o	oxygen in one litre of air co	ntaining 21% oxygen by vol	lume, in standard
	conditions, is			
<b>F</b> 1 <b>F</b>	a) $0.186 \text{ mol}$	b) 0.21 mol	c) 2.10 mol	d) 0.0093 mol
515	a) Law of gasoous volume	t NTP occupies 22.4 L. This	h) Avogadro's hypothesis	
	a) Law of gaseous volume	5	d) Dalton's atomic theory	
516	What is the equivalent we	aight of SnCl, in the followi	ng reaction	
510	$\operatorname{SnCl}_{2} + \operatorname{Cl}_{2} \rightarrow \operatorname{SnCl}_{2}$	eight of Shel ₂ in the followi	ing reaction,	
	a) 95	b) 45	c) 60	d) 30
517	. The standard adopted for	the determination of atom	ic weight of elements is bas	sed on
	a) H ¹	b) C ¹²	c) $0^{16}$	d) S ³²
518	. What amount of bromine	will be required to conver	t 2 g of phenol into 2, 4, 6-ti	ribromo phenol?
	a) 20.44 g	b) 6.00 g	c) 4.00 g	d) 10.22 g
519	. Equivalent weight of an a	cid:		
	a) Depends on the reaction	on involved with a base		
	b) Depends on the number	er of oxygen atoms present		
	c) Is always constant			
	d) None of the above			
520	. The highest mass corresp	oonds to which of the follow	ving?	
	a) 1 molecule of $O_2$			
	b) $1 \times 10^{-23}$ g mole of $0_2$	2		
	c) An $0^2$ ion			
E 2 1	a) 1 mole of $O_2$	in 4.25 g of ammonia is an	nrovimatoly	
521	a) $3.5 \times 10^{23}$	b) $1.5 \times 10^{23}$	c) $0.5 \times 10^{23}$	d) $25 \times 10^{23}$
522	If V mL of the vancurs of $V$	substance at NTP weight N	$V_{\sigma}$ Mol wt of substance is:	uj 2.5 × 10
522				$W \times 1$
	a) $(W/V) \times 22400$	b) $V/W = 22400$	c) $(W - V) \times 22400$	d) $\frac{1}{V \times 22400}$
523	. Sodium bicarbonate on h	eating decomposes to form	sodium carbonate, CO ₂ and	d water. If 0.2 moles of
	sodium bicarbonate is con	mpletely decomposed, how	many moles of sodium car	bonate is formed?
	a) 0.1	b) 0.2	c) 0.05	d) 0.025
524	. The reaction of calcium w	vith water is represented by	y the equation,	
	$Ca + 2H_2O \rightarrow Ca(OH)_2 +$	- H ₂		
	What volume of $H_2$ , at ST	P would be liberated when	8 g of calcium completely r	reacts with water?
FOF	a) $4480 \ cm^3$	b) $2240 \ cm^3$	c) 1120 cm ³	d) $0.4 \ cm^3$
525	. The isotopic abundance o	or C-12 and C-14 is 98% and	a 2% respectively. What we	build be the number of C-14
	isotope in 12 g carbon sai	mple? $(1.5)^{20} \times 10^{23}$	a) $\Gamma = 0.0 \times 10^{23}$	$d = (0.2 \times 10^{23})$
	aj $1.032 \times 10^{-2}$	UJ 3.01 X 10 ²⁰	CJ 5.88 X 10 ²⁸	ujo.02 × 10 ²⁰

## 1.SOME BASIC CONCEPTS OF CHEMISTRY

						: ANS	W	ER K	EY						
1)	d	2)	С	3)	d	4)	а	189)	b	190)	а	191)	С	192)	d
5)	d	6)	а	7)	а	8)	d	193)	d	194)	b	195)	а	196)	С
9)	С	10)	а	11)	а	12)	d	197)	d	198)	d	199)	С	200)	d
13)	b	14)	С	15)	С	16)	a	201)	а	202)	С	203)	d	204)	d
17)	d	18)	d	19)	b	20)	b	205)	С	206)	а	207)	С	208)	а
21)	С	22)	а	23)	С	24)	С	209)	b	210)	а	211)	b	212)	а
25)	С	26)	b	27)	d	28)	С	213)	d	214)	С	215)	b	216)	а
29)	а	30)	b	31)	d	32)	d	217)	b	218)	d	219)	С	220)	b
33)	b	34)	С	35)	b	36)	d	221)	С	222)	d	223)	а	224)	d
37)	С	38)	d	39)	d	40)	a	225)	d	226)	а	227)	а	228)	b
41)	b	42)	d	43)	d	44)	С	229)	b	230)	С	231)	С	232)	а
45)	b	46)	С	47)	d	48)	С	233)	b	234)	d	235)	а	236)	С
49)	b	50)	С	51)	d	52)	b	237)	b	238)	а	239)	d	240)	d
53)	b	54)	а	55)	С	56)	С	241)	b	242)	d	243)	С	244)	а
57)	b	58)	а	59)	d	60)	а	245)	b	246)	b	247)	а	248)	b
61)	С	62)	b	63)	b	64)	a	249)	b	250)	С	251)	а	252)	d
65)	b	66)	b	67)	d	68)	b	253)	d	254)	а	255)	d	256)	d
69)	d	70)	b	71)	b	72)	b	257)	d	258)	а	259)	а	260)	С
73)	С	74)	С	75)	С	76)	С	261)	d	262)	b	263)	а	264)	а
77)	d	78)	b	79)	С	80)	d	265)	а	266)	d	267)	b	268)	b
81)	а	82)	а	83)	а	84)	С	269)	С	270)	а	271)	b	272)	С
85)	а	86)	d	87)	С	88)	С	273)	а	274)	а	275)	b	276)	С
89)	d	90)	b	91)	d	92)	d	277)	d	278)	b	279)	С	280)	d
93)	b	94)	d	95)	а	96)	a	281)	d	282)	а	283)	b	284)	d
97)	d	98)	С	99)	b	100)	a	285)	b	286)	b	287)	С	288)	а
101)	b	102)	b	103)	а	104)	a	289)	а	290)	b	291)	b	292)	b
105)	d	106)	d	107)	а	108)	С	293)	С	294)	а	295)	С	296)	а
109)	С	110)	С	111)	b	112)	a	297)	b	298)	С	299)	а	300)	а
113)	С	114)	b	115)	b	116)	d	301)	d	302)	b	303)	С	304)	b
117)	С	118)	С	119)	b	120)	a	305)	С	306)	С	307)	d	308)	С
121)	d	122)	d	123)	а	124)	a	309)	а	310)	d	311)	С	312)	d
125)	b	126)	b	127)	d	128)	С	313)	d	314)	b	315)	С	316)	d
129)	С	130)	b	131)	b	132)	С	317)	а	318)	а	319)	а	320)	d
133)	С	134)	а	135)	d	136)	С	321)	С	322)	d	323)	С	324)	b
137)	С	138)	а	139)	а	140)	d	325)	С	326)	d	327)	b	328)	а
141)	d	142)	d	143)	b	144)	b	329)	С	330)	b	331)	С	332)	d
145)	С	146)	b	147)	d	148)	d	333)	а	334)	d	335)	а	336)	b
149)	С	150)	С	151)	a	152)	d	337)	С	338)	С	339)	С	340)	b
153)	b	154)	b	155)	d	156)	a	341)	b	342)	d	343)	а	344)	d
157)	d	158)	a	159)	а	160)	d	345)	а	346)	С	347)	c	348)	a
161)	d	162)	d	163)	С	164)	b	349)	а	350)	а	351)	b	352)	d
165)	d	166)	b	167)	a	168)	a	353)	С	354)	C ,	355)	d	356)	b
169)	а	170)	С	171)	b	172)	d	357)	a	358)	b	359)	b	360)	d
173)	a	174)	С	175)	С	176)	d	361)	d	362)	ť	363)	b	364)	С
177)	d	178)	а	179)	а	180)	С	365)	b	366)	d	367)	b	368)	C
181)	d	182)	a	183)	C ,	184)	С	369)	а	370)	d	371)	d	372)	d
185)	d	186)	d	187)	d	188)	С	373)	С	374)	b	375)	а	376)	b

377)	b	378)	С	379)	d	380)	С	
381)	С	382)	b	383)	С	384)	b	
385)	b	386)	а	387)	а	388)	d	
389)	b	390)	а	391)	а	392)	С	
393)	d	394)	а	395)	а	396)	а	
397)	С	398)	С	399)	С	400)	d	
401)	С	402)	а	403)	d	404)	b	
405)	d	406)	С	407)	b	408)	b	
409)	b	410)	а	411)	d	412)	а	
413)	а	414)	b	415)	d	416)	а	
417)	d	418)	b	419)	С	420)	b	
421)	С	422)	b	423)	а	424)	b	
425)	d	426)	b	427)	b	428)	b	
429)	а	430)	а	431)	а	432)	а	
433)	С	434)	а	435)	b	436)	С	
437)	С	438)	b	439)	С	440)	a	
441)	а	442)	С	443)	d	444)	С	
445)	b	446)	С	447)	С	448)	d	
449)	С	450)	b	451)	С	452)	С	
453)	b	454)	d	455)	С	456)	С	
457)	С	458)	d	459)	а	460)	d	
461)	а	462)	С	463)	а	464)	а	
465)	а	466)	а	467)	С	468)	а	
469)	b	470)	С	471)	d	472)	b	
473)	а	474)	d	475)	d	476)	а	
477)	b	478)	b	479)	d	480)	а	
481)	С	482)	b	483)	а	484)	а	
485)	b	486)	d	487)	а	488)	а	
489)	а	490)	С	491)	b	492)	b	
493)	а	494)	d	495)	С	496)	С	
497)	d	498)	b	499)	С	500)	d	
501)	а	502)	а	503)	а	504)	b	
505)	С	506)	а	507)	С	508)	С	
509)	а	510)	а	511)	а	512)	d	
513)	d	514)	d	515)	b	516)	а	
517)	b	518)	d	519)	а	520)	d	
521)	b	522)	а	523)	а	524)	a	
525)	а							

# : HINTS AND SOLUTIONS :

1	(d)		mL	
	Wt. of 0 in $Fe_2O_3$ and FeO is 48 : 16		$\therefore w = 4.2 \text{ g in 1 litre} = 5.3 \text{ g in 1}$	
2	(c)		litre	
	Equivalent weight of bivalent metal=37.2	8	(d)	
	$\therefore$ Atomic weight of metal=37.2 $\times$ 2 = 74.4		: 18 g water has N molecules	
	$\therefore$ Formula of chloride= $MCl_2$		$\therefore 1$ g water has $\frac{N}{2}$ molecules	
	Hence, molecular weight of chloride		N $N$ $N$ $N$ $N$ $N$ $N$ $N$ $N$ $N$	
	$MCl_2 = 74.4 + 2 \times 35.5$		or $\frac{1}{18}$ molecules occupy volume = 1 cm ³ $\left( a = \frac{1}{v} \right)$	)
	= 145.4		∴ 1molecule occupies volume	
3	(d)		$=\frac{18}{N}=\frac{18}{6.022\times10^{23}}\approx 3\times10^{-23} \text{ cm}^3$	
	: 0.0833 mole of carbohydrate has hydrogen=1 g	9	(c)	
	m  m  m  m  m  m  m  m  m  m  m  m  m		wRT $510 \times 10^{-3} \times 0.0821 \times 273$	
	$=\frac{1}{2}$ = 12 g		$m = \frac{1}{PV} = \frac{1 \times 67.2/1000}{1 \times 67.2/1000} = 170$	
	Given empirical formula of carbohydrate $(CH_2O)$	10	(a)	
	has 2 g of hydrogen.		Suppose the volume of 6 M HCL required to	
	12		obtain 1 L of 3 M	
	$\therefore$ $n = \frac{1}{2} = 6$		HCl = x L	
	∴ Molecular formula of carbohydrate is		$\therefore$ volume of 2 N HCl required = $(1 - x)$ L	
	$(CH_2O)_n = (CH_2O)_6 = C_6H_{12}O_6$		Applying the molarity equation	
4	(a)		$M_1V_1 + M_2V_2 = M_3V_3$	
	Eq. wt. $Zn(OH)_2 = \frac{mol.wt.}{radium} = \frac{M}{4};$		6M HCl + 2 MHCl 3M HCl	
	Acidity of $7n(\Omega H)_{2} - 1$ ; only one $\Omega H$ is replaced		$6x + 2(1-x) = 3 \times 1$	
5	(d) $(611)_2 = 1, 611, 611, 611, 611, 611, 611, 611,$		4x = 1	
U	5.85/58.5		x = 0.25 L	
	M. f. = $\frac{1}{5.85 + 90} = 0.0196$		Hence, volume of 6M HCl required $= 0.25$ L	
6	58.5 18		and volume of 2M HCl required $= 0.75$ L	
6	(a)	11	(a)	
	$2Ag_2CO_3 \longrightarrow 4Ag + 2CO_2 + O_2$		$N = M \times \text{acidity} = 1 \times 2 = 2 \text{ (Na}_2\text{CO}_3 \text{ is diacid})$	ic
	$2 \times 276 \mathrm{g}$ $4 \times 108 \mathrm{g}$ (S)	10	base)	
	$\therefore 2 \times 276 \text{ g of } \text{Ag}_2\text{CO}_3 \text{ gives} = 4 \times 108 \text{ g Ag}$	12	(a)	
	$\therefore 1 \text{ g of } \text{Ag}_2\text{CO}_3 \text{ gives} = \frac{4 \times 108}{2 \times 276}$		1 mole of $H_2SO_4$ gives = 3 moles of ions of 2 x 6.022 x $10^{23}$ ions	
	$\therefore$ 276 g of Ag ₂ CO ₃ gives = $\frac{4 \times 108 \times 2.76}{100}$		$5 \times 0.025 \times 10^{-5}$ IOIIS	~
	$=216 \mathrm{g}$		$10^{23}$ ions	^
7	(a)		$-1.8 \times 10^{23}$ ions	
	For phenolphthalein:	13	(h)	
	$\frac{1}{2}$ Meq. of Na ₂ CO ₂ = 25 × 0.1 × 2 = 0.5	10	Eq. of element $-$ Eq. of every on or $\frac{W_1}{W_1} - \frac{W_2 - W_1}{W_1}$	
	2 roquering conget		Eq. of element $=$ Eq. of oxygen of $E_1 = 8$	
	$\frac{1}{1}$ Mag. of Na. (C) $\perp$ Mag. of NaUCO	14		
	$\frac{1}{2}$ Meq. of Na ₂ CO ₃ + Meq. of NaHCO ₃		1 mole of $(NH_4)_3PO_4$ contains 12 moles of	
	$= 2.5 \times 0.2 \times 2 = 1.0$		nydrogen atoms.	
	$\therefore$ Meq. of NaHCO ₃ = 0.5 and Meq. of Na ₂ CO ₃		$\therefore$ 12 moles of hydrogen atoms = 1 mole of (NH ) po	
	= 1.0		$(1114)_3 \Gamma U_4$	
	$\therefore \qquad \frac{n}{84} \times 1000 = 0.5 \qquad \frac{n}{106/2} \times 1000 =$		$\therefore$ 1 moles of hydrogen atom = $\frac{1}{12}$ mole of	
	1		$(NH_4)_3PO_4$	
	$\therefore w = 0.042 \text{ g in } 10 \text{ mL} \qquad \qquad \therefore w = 0.053 \text{ g in } 10$		$\therefore$ 6.36 moles of hydrogen atom = $\frac{1}{12} \times 6.36$	
		•		

 $=\frac{6.36}{12}$  mole of (NH₄)₃PO₄ 1 mole of  $(NH_4)_3PO_4 = 4$  moles of oxygen So,  $\frac{6.36}{12}$  mole of  $(NH_4)_3 PO_4 = \frac{4 \times 6.36}{12} = 2.12$  mol 15 (c) Meq. of HCl = Meq. of NaOH; Thus,  $\frac{1}{20} \times V = 20 \times \frac{1}{10}$  $V = 40 \, {\rm mL}$ 16 **(a)** Molecular weight = Eq. wt.  $\times$  valence factor 17 (d) Smallest and largest amount of energy respectively eV and L-atm.  $1 \text{ eV} = 1.6 \times 10^{-19} \text{J}$ 1 L - atm = 101.325 J18 (d)  $\therefore$  63.8 g of Cu has atoms = 6.023  $\times$  10²³ :  $1g \text{ of } Cu has = \frac{6.023 \times 10^{23}}{63.5g}$  $\therefore 0.635 \ g \text{ of Cu has} = \frac{6.023 \times 10^{23}}{63.5} \times 0.635$  $= 6.023 \times 10^{21}$  atoms 19 **(b)**  $2BCl_3 + 3H_2 \rightarrow 2B + 6HCl$ 2 mol 3 mol 2 mol 21.6 g=2 mol  $21.6 \text{ g B} = 2 \text{ mol B} \equiv 3 \text{ mol H}_2$ pV = nRT $\therefore V = \frac{nRT}{P} = \frac{3 \times 0.0821 \times 273}{1} = 67.2 \text{ L}$ 20 **(b**  $\frac{N}{n} = \frac{N_{AV} \times n}{n} = N_{AV}.$ 21 (c) n is an integer. 22 (a) Conservation of mass should be noticed. 23 (c) The volume of water changes with temperature. 24 (c) : Amount of heat evolved on combustion of 4 g of methane=10.46 kJ : The amount of heat evolved on combustion of one mole of methane (ie,  $16 \text{ g of CH}_4$ )  $=\frac{10.46}{4} \times 16 = 41.84$ kJ 25 (c) Mol. wt. =  $70 \times 2 = 140$ ; (CO)x,  $\therefore (12 + 16)$ . x = 140 $\therefore x = 5$ 28 (c) Mole fraction of solute  $=\frac{n}{n+N}$ ; Mole fraction of solvent  $=\frac{N}{n+N}$ ;

29 (a) We have HNO₃⁺⁵  $\rightarrow \frac{+2}{NO}$ Change in oxidation number = 3Equivalent mass of HNO₃ =  $\frac{63g \ mol^{-1}}{3 \ ea \ mol^{-1}}$  = 21 g eq⁻¹ 30 **(b)**  $5.6 \, \text{litre} = 60 \, \text{g}$ 22.4 litre = 240 g = mol. wt.:. *:*.. Vapour density = M/2 = 12031 (d)  $32 \text{ g } 0_2 \text{ contains } 2N \text{ atoms.}$ 33 **(b)** Mol. wt. of metal chloride =  $95 \times 2 = 190$ At. wt. of metal  $=\frac{6.4}{0.13} = 49.23$ Let the metal chloride be  $MCl_n$ Then  $49.23 + n \times 35.5 = 190$ ...  $n = 3.9 \approx 4;$ : Eq. wt. of metal =  $\frac{49.23}{4} = 12.3$ 34 (c) Atomic weight of element, M =equivalent weight × valency  $= 20 \times 3$ = 60Molecular formula of its oxide= $M_2O_3$ Hence, molecular weight of oxide  $= 2 \times 60 + 3 \times 16$ = 120 + 48 = 16835 **(b)** Gram molecular volume of oxygen at STP is 5.6L or 5600 cm³. 36 (d) Element Percentage At. Moles Simple Wt. st Ratio Χ 75.8 75.8 75 2 15 Y 24.2 16 = 1 3 24.2 16 = 1.5 $\therefore$  The formula of the compound is $X_2Y_3$ .

37 (c)

Meq. of oxalic acid =  $500 \times 0.1 = 50$ 

$$\therefore \qquad \frac{w}{E} \times 1000 = 50$$
  
$$\because \qquad w = \frac{126}{2} \times \frac{50}{1000} \qquad (\because E = \frac{126}{2})$$
  
$$= 3.15 \text{ g}$$

38 (d)

÷

In acidic medium following reaction takes place.  $8H^+ + 5e^- + MnO_4^- \rightarrow Mn^{2+} + 4H_2O_4^-$ 

: Equivalent weight of KMnO₄ in acidic medium molecular weight of KMnO₄  $=\frac{158}{5}=31.6$ 39  $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+$  $\rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$  $^{+6}_{\text{Cr}_20_7^{2-}} \rightarrow \text{Cr}^{3+}$ *x*-factor=6 Mohr's salt, FeSO₄. (NH₄)₂SO₄. 6H₂O oxidation;  $Fe^{2+} \rightarrow Fe^{3+}$ x-factor=1 Mole ratio is reverse of *x*-factor ratio. Therefore, one mole of dichromate required=6 moles of Mohr's salt. 40 (a) Particle pressure of oxygen =  $\frac{2}{1+4+2} \times 2660$ = 760 mmThus, 1 L oxygen gas is present at 0°C and 760 mm pressure.  $\therefore$  Number of oxygen molecules =  $\frac{6.023 \times 10^{23}}{22.4}$ 41 **(b)**  $2Ag + 2HNO_3 \rightarrow 2AgNO_3 + H_2$  $2AgNO_3 + 2NaCl \rightarrow 2AgCl + NaNO_3$  $AgCl \equiv AgNO_3 \equiv Ag$ 143.5g 170 g 108g :: 143.5 g AgCl is obtained from Ag = 108g  $\therefore$  2.87 g AgCl is obtained from Ag =  $\frac{108 \times 2.87}{143.5}$ = 2.16g42 (d) 1 mole is defined as the amount of matter that contains as many as objects (atoms, molecule, electron, proton or whatever, objects we are considering) as the number of atoms in exactly 12g of C¹², *i.e.*, Avogadro's number. 43 (d) : Number of atoms present in 12 g carbon  $= 6.023 \times 10^{23}$ : No. of atoms present in 1 mg carbon  $=\frac{6.023 \times 10^{23} \times 1}{12 \times 1000}$  $= 0.502 \times 10^{20}$ 44 (c) Meq. of  $H_2S = Meq.$  of  $Cu^{2+}$  $\frac{w}{34/2} \times 1000 = \frac{63.5}{63.5/2} \times 1000$ 45 **(b)** Given that, oxygen contents in element oxide is

20% by weight. Hence, element contents in element oxide is 80% by weight. Then, equivalent weight of unknown element=  $\frac{80}{20} \times 8$ ∴ Equivalent weight of unknown element=32 46 (c) Molecular weight of cortisone = 360.4Molecular weight of 21 carbon atom =  $21 \times 12 =$ 252 % of carbon in cortisone =  $\frac{252 \times 100}{360.4}$ = 69.9% 47 (d) The terms which involves only weights in their formula  $\left[e. \text{ g. molality} = \frac{\text{wt. of solute} \times 1000}{\text{mol. wt. of solute} \times \text{wt. of solvent}}\right]$ are independent of temperature. On the other hand, since, volume change with temperature, the terms having volume in their formula e.g.molality  $\frac{\text{wt. of solute} \times 1000}{\text{mol. wt. of solute} \times \text{volume of solvent}} \end{bmatrix}$ are dependent on temperature. 48 (c)  $6 \times 10^{23}$  electron  $\equiv 1$  equivalent. 49 **(b)** Meq. of  $H_2SO_4 = Meq.$  of NaOH  $V \times 0.1 \times 2 = 30 \times 2.0 \times 1$  $V = 300 \, \text{mL}$ :. 50 (c) Nitrogen shows variable valency and thus, have variable equivalent weight. 51 (d)  $\frac{E_{\rm hydroxide}}{E_{\rm metal} + E_{\rm OH^-}} > \frac{E_{\rm oxide}}{E_{\rm metal} + E_{\rm O}}$ 1.520 0.995  $\frac{1.520}{E+17} = \frac{0.773}{E+8}$ or E = 952 (b) Given, mass of C=10.5 g H = 1.0 gp=1atm V = 1 L $T = 127^{\circ}C = 127 + 273 = 400 \text{ K}$ 

Mass of gas = 2.81 g

Weight of C + weight of

hydrogen=10.5+1.0=11.5 g

∴ % of carbon= $\frac{10.5}{11.5} \times 100 = 91.3\%$ ∴ % of hydrogen= $\frac{1.0}{11.5} \times 100 = 8.7\%$ 

11.3									
Ele	%	At.	Ratio of	Simplest					
men		weigh	atoms	ratio					
t		t							
С	91.	12	91.3/12=	7.61/7.61=					
	3		7.61	1					
Н		1		8.7/7.61					
	8.7		8.7/1=8.	=1.14×7=					
			7	8					

From gas equation, pV = nRTor  $n = \frac{pV}{pT}$  $\frac{\text{mass}}{\text{mole mass}} = \frac{pV}{RT}$ or 2.81/mole mass= $\frac{1 \times 1}{0.082 \times 400}$ =92Empirical formula wt.=C₇H₈  $\therefore$  Empirical formula=7 × 12 + 8 × 1 = 92 $n = \frac{\text{molecular wt.}}{\text{empirical formula wt.}} = \frac{92}{92} = 1$ Molecular formula=*n* (empirical formula)  $= 1 (C_7 H_8)$  $= C_7 H_8$ 53 **(b)**  $CH_3 - NH_2 + HNO_2 \rightarrow CH_3OH + N_2 + H_2O$ 1 mole of methyl amine gives 1 mole  $N_2$ i.e., 22.4 L of nitrogen at NTP. 54 (a) Meq. of  $MgCO_3 = Meq. of H_2SO_4$  $\therefore \frac{3}{84/2} \times 1000 = \frac{w}{49} \times 1000$ ;  $w = 3.5 \, g$ *.*.. 55 (c) Eq. of metal = Eq. of oxide  $\frac{100}{E} = \frac{24}{8}$ ... 57 (b) 100 mL of 1 M AgNO₃  $\equiv$  0.1 mol AgNO₃  $100 \text{ mL of } 1 \text{ M CuSO}_4 = 0.1 \text{ mol CuSO}_4$  $2AgNO_3 + H_2S \rightarrow Ag_2S + 2HNO_3$ 2 mol 1 mol 0.1 mol 0.05 mol  $CuSO_4 + H_2S \rightarrow CuS + H_2SO_4$ 1 mol 1 mol

CuSO₄ + H₂S → CuS + H₂SO₄ 1 mol 1 mol 0.1 mol 0.1 mol  $\therefore$  Ratio of the amounts of H₂S needed=0.05:0.1=1:2

58 **(a)** 

Mole fraction  $=\frac{1}{1+\frac{1000}{1+1000}} = 0.0177$ 59 (d) H₃PO₃ is dibasic acid; thus, Na₂HPO₃ is normal salt = M/260 (a) Meq. of NaOH =  $250 \times 0.1 = 25$  $\frac{w}{40} \times 1000 = 25$ :. w = 1 g61 (c) At. wt.  $\times$  specific heat  $\approx 6.4$ 62 **(b)**  $Ag_2S \equiv 2Ag$ 248g  $2 \times 108g$  $2 \times 108$  g Ag is obtained from Ag₂S = 248 g 1 g Ag will be obtained from  $Ag_2S = \frac{248 \times 1}{2 \times 108}$  $=\frac{248}{216}g$ But, the ore contains only 1.34% Ag₂S. Thus, 1 g Ag is obtained from ore  $=\frac{248}{216} \times \frac{100}{124}$  g = 85.68 g 64 (a) Number of atoms in 40 kg =  $\frac{40 \times 10^3 \text{g}}{6.644 \times 10^{-23} \text{ g}}$ (: Weight of an atom= $6.644 \times 10^{-23}$ g)  $= 6.02 \times 10^{26}$ : Number of gram atoms of element in 40 kg  $=\frac{6.02\times10^{26}}{6.02\times10^{23}}=10^3$ 66 (b) Since, 1 g hydrogen combines with 80 g bromine, the eq. wt. of bromine = 80:: 4 g bromine combines with Ca = 1g  $\therefore$  80 g bromine will combine with Ca =  $\frac{1 \times 80}{4}$  = 20g  $\therefore$  Eq. wt. of Ca is 20 g. 67 (d) Atomic mass of the metal= $32 \times 2 = 64$ Formula of metal nitrate= $M(NO_3)_2$ ∴ Molecular mass=64+28+96=188 68 **(b)**  $Mg + 2HCl \rightarrow MgCl_2 + H_2$ 24 g Mg gives one mole H₂ 69 (d) Valence of  $M = \frac{27}{9} = 3$ , Thus, formula of chloride is *MCl*₃. 70 **(b)** Eq. of metal = Eq. of oxide  $\frac{1.6}{E} = \frac{2}{E+8}$ ; E = 32

71 **(b)** 

	$M = \frac{5.85 \times 1000}{585 \times 500} = 0.2$	
72	(b)	
	Valence of an element is variable say it is 2 and 3	
	in $FeCl_2$ and $FeCl_3$ respectively. Also equivalent	
	weight $=$ $\frac{\text{at. weight}}{\text{valence}}$ and thus, it is also variable.	
73	(c)	
	At. wt. = Eq. wt. $\times$ 3 (valence = 3)	1
74	(c)	
	Meq. of Na ₂ CO ₃ · $x$ H ₂ O in 20 mL = 19.8 × $\frac{-1}{10}$	
	: Meq. of Na ₂ CO ₃ · $x$ H ₂ O in 100 mL = 19.8 × $\frac{1}{10}$ ×	
	$\therefore \qquad \frac{w}{r} \times 1000 = 19.8 \times \frac{1}{r} \times 5$	
	or $\frac{0.7}{10} \times 1000 = \frac{19.8}{2}$	
	$\therefore \qquad \qquad M = 141.41$	
	$\therefore 23 \times 2 + 12 + 3 \times 16 + 18x = 141.41$	
	$\therefore$ $x = 2$	
75	(c)	
76	At. wt. $\times$ specific heat = 6.4	
70	(c) Moles of $E_{2} = \frac{560}{10} = 10$	
	$\frac{70}{56} = 10$	
	Moles of N= $\frac{14}{14}$ = 5	
	Moles of $H = \frac{20}{1} = 20$	
	Equal number of moles have equal number of	
	atoms. Hence number of atoms in 560 g of Fe is twice	
	that of 70 g N and is half that of 20 g of H.	
77	(d)	
	Molecular mass of $(CHCOO)_2Fe=170$	
	$\therefore \text{ In } 100 \text{ g } (CHCOO)_2 Fe, \text{ iron present} = \frac{56}{170} \times 100$	
	mg	
	= 52.9 mg Since this quantity of Fe is present in 400 mg of	
	capsule,	
	: % of Fe in capsule = $\frac{32.9}{400} \times 100 = 8.2\%$	
78	(b)	
	By the equation	
	$2n + l_2 \rightarrow 2nl_2$ Initial moles (if x be the wt $\frac{x}{2} - \frac{x}{2} = 0$	
	Of $7n$ and $L_{e}$ each initially)	
	No of moles at the and $\left(\frac{x}{x} - \frac{x}{x}\right) = 0$	
	Of reaction $\left(\frac{1}{65} - \frac{1}{254}\right) = 0$	1
	So, fraction of Zn unreacted = $\frac{\frac{x}{65} - \frac{x}{254}}{\frac{x}{254}} = 0.74$	
70	$\frac{x}{65}$	
79	(c) Weight of nure NaCl= $6.5 \times 0.9 = 5.85 \sigma$	
		I

No. of equivalent of NaCl=  $\frac{5.85}{58.5} = 0.1$ No. of equivalent of NaOH obtained=0.1 Volume of 1 M acetic acid required for the neutralisation of  $NaOH = \frac{0.1 \times 1000}{1}$  $= 100 \text{ cm}^{3}$ 82 (a) Given vapour density=11.2 Molecular weight= $2 \times 11.2 = 22.4$ ∴22.4 g of gas occupies=22.4 L at STP  $\therefore$  1 g of gas occupies= $\frac{22.4}{22.4}$  × 1 = 1 L at STP 83 (a) In the given metal nitride, nitrogen present is 28% that means, the nitride contains 28 g nitrogen and 72 g metal. Moles of metal  $=\frac{72}{x}$ Moles of nitrogen =  $\frac{28}{14} = 2$  $\Rightarrow$  Molar ratio,  $M: N = \frac{72}{x}: 2 = 3: 2$  $\frac{72}{x} = 3$  $\therefore x = 24$ 84 (c) g atom of I =  $\frac{25.4}{127} = 0.2$ g atom of oxygen =  $\frac{8}{16}$  = 0.5  $\therefore$ Ratio of g atoms I : 0 : : 2 : 5 85 (a) 0.5 mole of  $H_3O^+ = 20$  g; Also  $H_3O^+$  is monovalent, thus Mol. wt. = Eq. wt.  $\therefore$ 1 mole of H₃O⁺ = 40 g 86 **(d)**  $C_aH_b + \left(a + \frac{b}{4}\right)O_2 \longrightarrow aCO_2 + (b/2)H_2O$ 10 Excess 0 10a 5b $10a = 40 \qquad \therefore a = 4$  $5b = 50 \qquad \therefore b = 10$ *.*.. 87 (c)  $\begin{array}{c} \text{Milli mole of } \text{H}_2\text{SO}_4 = \text{Milli mole of } \text{H}_2\text{SO}_4 \\ \text{(Conc.)} \end{array}$  $10 \times 18 = M \times 1000$ M = 0.18... 89 (d) 100 g alkaloid contains nitrogen=17.28 g : 162 g alkaloid will contain nitrogen  $=\frac{17.28 \times 162}{100}$ g  $= 27.9 \text{ g} \approx 28 \text{ g}$ 

Atomic weight of nitrogen=14 So, number of atoms of nitrogen present in one molecular of alkaloid =  $\frac{28}{14}$  = 2 90 (b)  $M = \frac{\text{moles of urea}}{\text{volume in litre}} = \frac{6.02 \times 10^{20}}{6.02 \times 10^{23} \times \frac{100}{1000}}$ = 0.01 M91 (d)  $2BCl_3 + 3H_2 \rightarrow 2B + 3HCl$  $2 \times 10.8 \text{g } B \equiv 3 \times 22.4 \text{ L H}_2$  $\therefore \quad 21.6 \text{g B} \equiv \frac{3 \times 22.4 \times 21.6}{2 \times 10.8}$ = 67.2L H92 (d) Eq. of metal = Eq. of chlorine  $\frac{w}{E} = \frac{2w}{35.5}$  $\therefore E = \frac{35.5}{2} =$ 17.75 93 **(b)**  $5C_2O_4^{2-} + \frac{+7}{2MnO_4^-} + 16H^+$  $\rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$ Equivalent weight= molecular weight change in oxidation number  $=\frac{158}{5}=31.6$ 94 (d) Mol. wt. of C₂H₅OH  $= 12 \times 2 + 1 \times 5 + 16 + 1 = 46 \text{ g}$ :: 46 g of C₂H₅OH has hydrogen atoms  $= 6 \times Avogadro number$  $\stackrel{:}{\sim} 0.046 \text{ g of } C_2H_5OH \text{ has hydrogen atoms}$  $= \frac{6 \times 6.023 \times 10^{23} \times 0.046}{46}$  $= 3.6 \times 10^{21}$  atoms of hydrogen. 95 (a) Both have same empirical formula  $CH_2O$ . 96 (a) Moles of H₂ =  $\frac{15}{22.4}$  = 0.67 Moles of N₂ =  $\frac{5}{22.4}$  = 0.22 Moles of  $H_2 = \frac{0.5}{2} = 0.25$ Moles of  $O_2 = \frac{10}{32} = 0.31$ Larger is number of mole, more is number of molecule. 97 (d)  $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$ 2 mole  $CO_2$  is formed. 99 (b)  $2NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + H_2O + CO_2$ 

 $Na_2CO_3 \xrightarrow{\Delta} Na_2CO_3$ 

The no. of equivalent of  $NaHCO_3 = No.$  of equivalent of  $Na_2CO_3$  formed. Thus, same equivalent of HCl will be used.

#### 100 **(a)**

Element	%ntage atomic wt.	Simplest ratio
C	$\frac{92.3}{12} = 7.69$	$\frac{7.69}{7.69} = 1$
Н	$\frac{7.7}{1} = 7.70$	$\frac{7.70}{7.69} = 1$

∴ Empirical formula=CH 101 **(b)** Eq. of metal = Eq. of Cu  $\frac{1.5}{E} = \frac{4}{64/2}$ E = 12:. At. wt. = 24:. 102 **(b)** Weight of copper oxide=5 g Weight of copper taken=4 g ∴ Weight of oxygen in copper oxide=5-4=1 g : Weight of copper, reacted with 1 g  $0_2 = 4 g$ : Weight of copper, which would react with 8 g  $0_2 = \frac{4 \times 8}{1} = 32 \text{ g}$ Hence, equivalent weight of copper=32 103 (a)  $\frac{\text{wt. of metal X}}{\text{wt. of metal Y}} = \frac{\text{Eq. wt. of metal X}}{\text{Eq. wt. of metal Y}}$ 104 (a)  $1 \text{ atom} = 260 \text{ amu} = 260 \times 1.66 \times 10^{-24} \text{g}$ 105 (d) Mol. wt.= $2 \times$  vapour density  $= 2 \times 45 = 90$ Empirical formula weight=12+2+16=30 mol. wt  $\therefore n = \frac{1}{\text{empirical formula wt.}}$  $=\frac{90}{30}=3$ : Molecular formula of the compound  $= (CH_2O)_3$  $= C_3 H_6 O_3$ 106 (d) Mole ratio of  $H_2 : O_2 : H_2 O :: 2: 1: 2$ 107 (a)  $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O_4$ 

#### 108 (c)

 $\therefore \text{ Mass of } 22400 \text{ cm}^3 \text{ of } \text{CH}_4 \text{ at } \text{STP} = 16 \text{ g}$   $\therefore \text{ Mass of } 1 \text{ cm}^3 \text{ of } \text{CH}_4 \text{ at } \text{STP} = \frac{16}{22400} \text{ g}$  $\therefore \text{ Mass of } 112 \text{ cm}^3 \text{ of } \text{CH}_4 \text{ at } \text{STP} = \frac{16}{22400} \times 112$ 

= 0.08 g

## 109 **(c)**

For electrolytic concentration term formality is used in place of molarity. Formality is g formula weight of electrolyte in one litre solution. Remember it is not possible to determine exact mol. weight of electrolytes. We simply assume the formula say for sodium chloride it is NaCl and formula weight is 58.5. This value can never be obtained experimentally.

#### 110 **(c)**

100 g sample  $\equiv 0.33$  g iron

 $\therefore$  67200 g  $\equiv$  221.8 g iron

 $\therefore$  Number of iron atoms per molecule of haemoglobin

 $=\frac{221.8}{56}\approx 4.$ 

## 111 **(b)**

Since, the molecular formula is *n* times the empirical formula, therefore, different compounds having the same empirical formula must have different molecular weights.

## 112 **(a)**

 $\therefore$  0.1mole of carbohydrate contains = 1 g of hydrogen.

 $\therefore$  1 mole of carbohydrate contains  $=\frac{1}{0.1}$ 

= 10 g

hydrogen

Hence, its molecular formula =  $C_5 H_{10} O_5$ .

## 113 (c)

Mole fraction of solute  $= \frac{n}{n+\lambda}$  $= \frac{1}{1+\frac{1000}{18}} = 0.0177$ 

## 114 **(b)**

8 mole 0 ≡ 1 mole Mg₃(PO₄)₂ ∴ 0.25 mole 0 =  $\frac{1 \times 0.25}{8}$ = 3.125 × 10² mole Mg₃(PO₄)₂ (b)

## 115 **(b)**

 $5CO + I_2O_5 \rightarrow 5CO_2 + I_2$ 1 mole of  $I_2 \equiv 1$  moles of  $I_2O_5 \equiv 5$  moles of CO Hence, mole of  $CO=5 \times \frac{2.54}{254} = 0.05$ Mass of  $CO=0.05 \times 28 = 1.4g$ Mass of  $CO_2 = 2 - 1.4 = 0.6$  g

Mass % of  $CO_2 = \frac{0.6 \times 100}{2} = 30$ 116 (d) g-atom of  $I_2 = \frac{254}{127} = 2;$ g-atom of oxygen  $=\frac{80}{16}=5$  $\therefore$  compound is I₂O₅. 117 (c) Vapour density of  $A = 3 \times$  Vapour density of B  $\therefore$  mol. wt. of  $A = 3 \times$  mol. wt. of B 118 (c) Let *a* g of Cu be oxidised to give CuO, *i.e.*,  $\frac{(63.6+16)a}{63.6}$  g Thus, final weight  $= (3.18 - a) + \frac{(63.6 + 16)a}{63.6} = 3.92$ a = 2.94 g*.*.. Thus, % of Cu left unoxidised  $\frac{(3.18 - 2.94)}{2.18} \times 100 = 7.55\%$ 119 (b) Eq. wt. of  $SO_2 = \frac{\text{molar mass}}{0.\text{N.of S}} = \frac{64}{4} = 16$  $\therefore$  Twice of this value = 32 120 (a) Mol. wt. of metal chloride =  $50 \times 2 = 100$ ; Let metal chloride be  $MCl_n$  then Eq. of metal = Eq. of chloride, or  $\frac{29}{E} = \frac{71}{35.5}$  $E = \frac{29}{2};$ :. a + 35.5n = 100Now n.E + 35.5n = 100;or :. n = 2 $a = 2 \times E = 2 \times (29/2) = 29.$ Therefor, 121 (d)  $\frac{3\text{BaCl}_2}{3\text{ mol}} + \frac{2\text{Na}_3\text{PO}_4}{2\text{ mol}} \rightarrow \frac{\text{Ba}_3(\text{PO}_4)_2}{1\text{ mol}} + 6\text{NaCl}$ Here,  $Na_3PO_4$  is the limiting reactant. 2 moles of  $Na_3PO_4$  gives 1 mole of  $Ba_3(PO_4)_2$ So, 0.2 mole of  $Na_3PO_4$  will give 0.1 mole of  $Ba_3(PO_4)_2$ . 123 (a)  $M_{\rm Al_2(SO_4)_3} = \frac{342}{342 \times 1} = 1$ 124 (a)  $Na_2CO_3 + 2HCl \rightarrow NaCl + H_2O + CO_2$ In the above reaction equivalent weight of  $Na_2CO_3$  is  $\frac{M}{2}$  because 2 moles of Na⁺ being transferred per mole of Na₂CO₃. 125 (b) Oxide I Oxide II Metal, M 50% 40%

50%

Oxygen, O

60%

As first oxide is 
$$MO_2$$
  
Let atomic mass of  $M = x$   
 $\therefore \ \%O = \frac{32}{x+32} \times 100$   
Or  $\frac{50}{100} = \frac{32}{x+32}$   
Or  $0.5 = \frac{32}{x+32}$   
Or  $0.5 \times x + 16 = 32$   
Or  $0.5x = 16$   
 $x = 32$   
 $\therefore$  At. Mass of metal  $M = 32$   
Let formula of second oxide is  $M_2O_n$   
 $\%M = \frac{2x}{2x+16n} \times 100 = \frac{64}{64+16n} \times 100$   
 $\frac{40}{100} = \frac{64}{64+16n}$   
Or  $\frac{100}{40} = \frac{64+16n}{64}$   
 $2.5 = 1 + 0.25 n$   
 $n = \frac{1.5}{0.25} = 6$   
Therefore, formula of second oxide  $= M_2O_6$ 

 $= MO_3$ 



0r

Elemen	% age	Atomic	Molar	Simple
t		mass	ratio	r
				molar
				ratio
С	10.06	12	10.06	0.84
	%		12	0.84
			= 0.84	= 1
Н		1		
	0.84		0.84	0.84
	%		1	0.84
Cl		35.5	= 0.84	= 1
	89 10		89.10	2.5
	%		35.5	0.84
	70		= 2.5	= 3

Thus, the empirical formula of the substance of CHCl₃.

#### 127 (d)

22.4 litre water vapour = 1 mole  $H_2O = 18 \text{ g} H_2O$  liquid =18 mL  $H_2O$  .

128 **(c)** 

Eq. wt. of FeCl₂ = Mol. wt. 2/; Eq. wt. of FeCl₃ = mol. wt./3

#### 129 (c)

No. of Millimoles of Ca(OH)₂ =  $50 \times 0.5 = 25$ No. of Millimoles of CaCO₃ = 25 No. of milliequivalents of CaCO₃ = 50  $\therefore$  Volume of 0.1 N HCl= $\frac{50}{0.1} = 500$  cm³

130 **(b)** 

 $M = \frac{9.8}{98 \times 2} = \frac{1}{20} = 0.05$ 131 **(b)** 1 mole =  $M \times V_{in l}$ 132 (c) mM of  $A = 100 \times 0.1 = 10$ mM of  $B = 25 \times 0.2 = 5$ ; : Total mM = 10 + 5 = 15 $M = \frac{15}{100 + 25} = \frac{15}{125}$ *:*. 133 (c) Wt. of H : 0 in  $H_2$ 0 is 2 : 16 134 **(a)**  $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$ 1 mol 1 mol  $CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 + 2Na_2$ 1 mol  $1 \mod CaO \cong 1 \mod CaCl_2$  $\frac{0.56}{56}$  mol CaO $\cong$ 0.01 mol CaCl₂  $= 0.01 \times 111 \text{ gCaCl}_2$  $= 1.11 \text{ g CaCl}_2$ Thus, in the mixture, weight of NaCl=4.44-1.11=3.33 g  $\therefore \text{ Percentage of NaCl} = \frac{3.33}{4.44} \times 100 = 75\%$ 135 (d) 2Al(s) + 6HCl(aq) $\rightarrow$  2Al³⁺(aq) + 6Cl⁻(aq)  $+ 3H_2(q)$  $3 \times 22.4 \text{ LH}_2(g)$  at STP is produced by 6 moles of HCl(aq)Hence, 11.2 L  $H_2$  (g) at STP is produced by 1 mole HCl(aq).136 (c) Molecular mass of Na₂CO₃  $= 2 \times 23 + 12 + 3 \times 16 = 106$  $\therefore$  106 g Na₂CO₃ contains  $= 3 \times 6.023 \times 10^{23}$  oxygen atoms  $\therefore$  10.6 g of Na₂CO₃ will contain  $\frac{3 \times 6.023 \times 10^{23}}{100} \times 10.6$ 106  $= 18.069 \times 10^{22}$  $= 1.806 \times 10^{23}$  oxygen atoms 137 (c)  $m = \frac{wRT}{PV} = \frac{0.22 \times 0.0821 \times 293}{[(755 - 17.7)/760] \times [45/1000]}$ = 121.1

138 **(a)** 

Number of moles  $= \frac{weight}{olecular wt.} = \frac{0.0018}{18} \times 1 \times 10^{-4}$ [:: 0.0018 mL = 0.0018 g] :: Number of water molecules =  $1 \times 10^{-4} \times$ 

	$6.02 \times 10^{23}$
	$= 6.023 \times 10^{19}$
139	(a)
	Mass of hydrogen = $\frac{0.7}{22.4} \times 2 = \frac{14}{224}g = 0.0625g$
	$\div$ 0.0625 g of hydrogen is displaced by x g metal.
	$\therefore$ 1g of hydrogen is displaced by $=\frac{x}{0.0625}$ g of
	metal
	$\Rightarrow \frac{x}{0.0625} = 28$
	Eq. mass of metal, $x = 28 \times 0.0625 = 1.75g$
140	(d)
	N ₂ O and NO verify the law of multiple
	proportions.
141	(d)
	Butane and isobutance have same molecular
	10fmula.
	Thus, $C_4H_{10} + \left(\frac{29}{2}\right)O_2 \rightarrow 4CO_2 + 5H_2O$
	$\therefore$ 58 g C ₄ H ₁₀ requires O ₂ = $\frac{12}{2}$ × 32 g
	$\therefore$ 1000 g C ₄ H ₁₀ requires O ₂
	$=\frac{13}{2} \times \frac{32 \times 1000}{58} = 3586.2 \text{ g} = 3.586 \text{ kg}$
143	(b)
	g atom of $X = \frac{50}{10} = 5;$
	g atom of $Y = \frac{50}{20} = 2.5;$
1 1 1	Ration of g atom of X and $Y = 2 : 1$ .
144	Molarity means mole of solute in one litre
	solution.
145	(c)
	Number of notes = $\frac{6.023. \times 10^{23} \times 24.8}{248}$
	$= 6.023 \times 10^{22}$
	Days for counting = $\frac{6.023 \times 10^{22}}{10^{15}} = 10^{15}$
146	(b) $60 \times 10^{6}$
	$\therefore$ g atom of S = $\frac{50}{32}$ ;
	g atom of oxygen $=\frac{50}{16}$ ;
	$\therefore$ Ratio of g atoms of S and $0 = 1 : 2$ .
148	(d)
	Amount of pure lime stone
	$(CaCO_3)$ is 10 g of 90% sample
	$=\frac{90}{100} \times 10 = 9 \text{ g}$
	$\int \frac{1}{2} \int $
	$100 \text{ g} \qquad 22.4 \text{ L}$
	100 g of lime stone gives 22.4 L of $CO_2$ at STP
	$ m \div$ 9 g of lime stone will give
	$=\frac{22.4}{1.22} \times 9 = 2.016 \text{ L CO}_2$
	100

149 (c) Mass of 1 mole of methane  $(CH_4) = 16 \text{ g}$ Mass of 0.1 mole of methane =  $16 \times 0.1$  g = 1.6 g 150 (c)  $\therefore 132 \text{ g} (\text{NH}_4)_2 \text{SO}_4 \text{ has } N = 28 \text{ g}$ :  $66 \text{ g} (\text{NH}_4)_2 \text{SO}_4 \text{ has } N = \frac{28 \times 66}{132} = 14 \text{ g}$ 151 (a)  $wg Fe_2O_3 = \frac{w}{160}$  mole  $Fe_2O_3 = \frac{w}{160} \times 3$  mole O wg FeO =  $\frac{w}{72}$  mole FeO =  $\frac{w}{72} \times 1$  mole O  $\therefore$  mole ration 0 in Fe₂O₃ and FeO =  $\frac{3}{160} \times \frac{72}{1}$  =  $\frac{216}{160} = 1.35$ 153 (b) Mol. wt. of  $(CH_2O)_n = 30 \times 2 = 60$   $\therefore \qquad n = \frac{60}{30} = 2$ Empirical formula wt.  $(CH_2O) = 30$ 154 (b) Weight of 11.2 dm³ of CO₂ gas at STP=44/2  $= 22 \, g$  $\mathrm{KOH} + \mathrm{CO}_2 \rightarrow \mathrm{KHCO}_3$ 56g 44g Mass of KOH required for complete neutralisation of 22 g  $CO_2$  is  $=\frac{56}{44} \times 22 = 28g$ 156 (a)  $Ag_2CO_3 \rightarrow 2Ag + CO_2 + (1/2)O_2$ 157 (d) Equivalent weight Molecular mass = Change in oxidation number per atom or  $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ Equivalent weight of  $K_2Cr_2O_7$ =  $\frac{\text{molecular weight of } K_2Cr_2O_7}{2 \times \text{change in oxidation number}}$  $=\frac{M}{2\times 3}$ [: Two Cr atoms are involved.]  $\therefore$  Equivalent weight of K₂Cr₂O =  $\frac{M}{6}$ 158 (a) Calculate weight of each. 159 (a) One molecule of CH₃COOC₂H₅ contains 14 atoms. 160 (d) Meq. of HCl = Meq. of NaOH  $2 \times V = 1000$  $\therefore V = 500 \text{ mL} = \frac{1}{2} \text{ litre}$ 161 (d) Number of moles of oxygen  $=\frac{80}{16}$ 

 $= 5 \times N_0 \times 2$ Number of moles in 5 g of hydrogen =  $\frac{5}{1}$ Number of atoms in 5 g of hydrogen  $= 5 \times N_0 \times 2$ Hence, the number of atoms in 80 g of oxygen is equal to the number of atoms in 5 g of hydrogen. 162 (d) g atom of  $A = \frac{75}{75} = 1$ ; g atom of  $B = \frac{25}{25} = 1$ ; : Ratio of g atom of A and B = 1:1163 (c)  $MnO_{4}^{-} + 8H^{+} + 5e^{-} \rightarrow Mn^{2+} + 4H_{2}O$ Gain electrons=5 Molecular weight=MEquivalent weight =  $\frac{\text{molecular weight}}{\text{gain electron}} = \frac{M}{5}$ 164 **(b)**  $Eq. wt. = \frac{mol. wt.}{basicitv}$ 165 (d) Meq. of HCl =  $5 \times 1 = 5$ ; Meq. of  $H_2SO_4 = 20 \times (1/2) = 10$ ; Meq. of  $HNO_3 = 30 \times (1/3) 10$ ; Thus, total Meq. of acid = 5 + 10 + 10 = 25Total volume = 1000 mL. Also Meq. =  $N \times V$ .  $N = \frac{25}{1000} = \frac{1}{40}$ ÷ 166 **(b)**  $CaCO_3 + 2HCI \rightarrow CaCl_2 + CO_2 + H_2O$ 73 g 100 g 44g 100 mL of 20% HCl = 20 g = HClIn this case,  $CaCO_3$  is the limiting reactant.  $:: 100 \text{ g of CaCO}_3 \text{ gives CO}_2 = 44 \text{ g}$ : 20 g CaSO₃ will give CO₂ =  $\frac{44 \times 20}{100}$  = 8.80 g 167 (a) Weight of empirical formula  $CH_2 = 12 + (1 \times 2)$ = 12 + 2= 14Mass of one mole of the compound=its molecular weight =42 $=\frac{\text{mol. wt.}}{\text{empirical formula wt.}}=\frac{42}{14}=3$  $\therefore$  Mol. formula=(Empirical formula  $\times n$ )

Number of atoms of oxygen =  $\frac{80}{16} \times N_0 \times 2$ 

#### $= (CH_2) \times 3 = C_3H_6$

168 (a)  $C + O_2 \rightarrow CO_2;$ 12 g C needs 22.4 litre  $O_2$  or 5 × 22.4 litre air. 169 (a) Mixture X contains 0.02 moles of  $[Co(NH_3)_5SO_4]Br$  and 0.02 moles of [Co(NH₃)₅Br]SO₄ was prepared in 2L of solution. So, the concentration of  $[Co(NH_3)_5SO_4]Br$  and  $[Co(NH_3)_5Br]SO_4$  in solution are 0.01 mol/L and 0.01 mol/L respectively. During the reaction with AgNO₃(excess), AgBr is precipitated as follows  $[Co(NH_3)_5 SO_4]Br + AgNO_3$  $\rightarrow$  [Co(NH₃)₅SO₄]NO₃ + AgBr  $\downarrow$ 0.01 mol/L (excess) soluble (Y) 0.01 mol/L Hence, number of moles of y=0.01On addition of excess BaCl₂, BaSO₄ is precipitated as follows  $[Co(NH_3)_5Br]SO_4 + BaCl_2 \rightarrow BaSO_4$  $\downarrow + [Co(NH_3)_5Br]Cl_2$ (excess) 0.01 mol/L 0.01 mol/L soluble 'Z' Hence, number of moles of Z = 0.01Thus, the number of moles of *Y* and *Z* are 0.01 and 0.01 respectively. 170 (c) Meq. of NaOH =  $100 \times 0.5 = 50$ Meq. of  $HCl = (1/5) \times 100 = 20;$ Meq. of  $H_2SO_4 = (1/10) \times 100 = 10$ ; Total Meq. of acid = 20 + 10 = 30Total Meq. of NaOH = 50; $\therefore$  Meq. of NaOH left = 50 - 30 = 20 Thus, resulting solution will be alkaline. 171 (b) Eq. of  $X = 1.5 \times a$ Eq. of HCl =  $2.5 \times 2 = 5.0$ ;  $\therefore N_{\text{resultant}} = \frac{\text{total eq.}}{\text{total volume}}$ or  $N = \frac{1.5 \times a + 5.0}{4}$ ::N = 5 $\therefore$  a = 10172 (d) For water, 1 g = 1 mL (:: *d* for water = 1) : 18 g = 18 mL18 mL water =  $6.02 \times 10^{23}$  molecules =  $N_A$ molecules : in 100 mL number of water molecules  $=\frac{N_A \times 1000}{18}$  $= 55.55 N_A$ 

173	(a)	181	(d)
	In 15 L of $H_2$ gas at STP, the number of molecules		Cgraphite+ $O_2(g) \rightarrow CO_2; \Delta H = -348 \text{ kJ}$
	$=\frac{6.023\times10^{23}}{1000}\times15$		12 g 32 g 44 g
	22.4		In the above reaction, heat is evolved and mass of
	$= 4.033 \times 10^{23}$	100	product is equal to mass of reactant.
		182	(a)
	In 5 L of $N_2$ gas at STP, the number of molecules		Molarity $\times$ valence = normality
	6.023×10 ²³ ×5	100	Valence or basicity of $H_2SO_4 = 2$
	$=\frac{1.344 \times 10^{23}}{22.4}$	183	
	In $0.5 \propto of H$ , gas the number of molecules		Titration of oxalic acid by $KMnO_4$ in the presence
	In 0.5 g of 11 ₂ gas, the number of molecules		of HCI gives unsatisfactory result because HCI is a
	$=\frac{6.023\times10^{23}\times0.5}{10^{23}\times0.5}$		better reducing agent than oxalic actuation for $m_{\rm eff}$
	2	10/	(c)
	$= 1.505 \times 10^{23}$	104	(c)
			• Mass of 22400 cm $CH_4 = 10g$
	In 10 g of $O_2$ gas, the number of molecules		: Mass of 112 cm ³ CH ₄ = $\frac{1}{22400}$ = 0.08g
	6072×10 ²³ ×10	185	(d)
	$=\frac{0.023\times10^{-1.00}}{32}$		Combustion of propane takes place as follows
			$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$
	$= 1.882 \times 10^{23}$		propane oxygen
	Hence maximum molecules are present in 15L of F		* 1 L of propane required 5 L oxygen for
			combustion.
			$\therefore 20$ L propane required oxygen = $5 \times 20 = 100$
174	(c)	186	
	ightarrow 64 $n$ kg CaC ₂ will give 28 $n$ kg polyethylene	100	1 mole – 1 g molar volume – 22 4 litre at STP
	$\therefore 20 \text{ kg CaC}_2 \text{ will give } \frac{28n \times 20}{64n} = 8.75 \text{ kg}$	187	(d) $(1 + 1) = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 $
175	(c)	107	In CS ₂
	Wt. of N atom = $6.644 \times 10^{-23} \times 6.023 \times 10^{23} =$		C : S mass ratio is 15.79 : 84.21
	40 g		15.79 parts of carbon combine with sulphur =
	or $40 \text{ g} = 1 \text{ g-atom};$		84.21
	$\therefore \qquad 40 \times 10^3 \text{ g} = 10^3 \text{ g-atom}$		$ m \div$ 27.27 parts of carbon will combine with
176	(d)		S = ^{84.21} × 27.27 = 145.424
	$m = \frac{15}{$		$3 - \frac{15.79}{15.79} \times 27.27 - 143.434$
	$m = \frac{98 \times \frac{(100 \times 1.1 - 15)}{1000}}{1000} = 1.0$		C 27.27
177	(d)		
	34 5.02		$CO_2$
	$N = \frac{100}{35 \times 100} = 5.82$		84.21 72.72
170	0.6×1000		$S \longrightarrow O$ 50 $CS_2$ 50
170	(a) 171		Hence ratio of S: $0$ is 145 434.72 73 is 2 · 1
	$M = \frac{171}{242 \times 1^{(1000+171)}} = 0.429 \times 1.1 = 0.47$		In $SO_2$ the ratio of $S \cdot O$ is $1 \cdot 1$
	$342 \times 1000 \times d$		Since the ratio of $S: O$ is a simple whole number
	$m = \frac{171}{242} = 0.5$		ratio.
170	$342 \times 1$		Therefore law of reciprocal proportions is proved.
1/9	(a) 3	188	(C)
	$2\text{Al} + \frac{1}{2}\text{O}_2 \longrightarrow \text{Al}_2\text{O}_3$		9 + 1 + 3.5 = 13.5
	54 g Al requires $\frac{3}{2} \times 32$ g $\Omega_{2}$		$: 13.5$ g contains $\frac{9}{}$ mole carbon
100	(a)		· Formula is C H N
190	$\begin{array}{c} \mathbf{U} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{U} \\ $	190	(h) $C_6 \Pi_8 \mathbb{N}_2$
	Mole of N ₂ is $=\frac{1}{28}=\frac{1}{7}$ (the lowest value)	109	(b)

Mole of  $Cu^{2+} = 0.1 \times 1 = 0.1$ Mole of  $SO_4^{2-} = 0.1 \times 1 = 0.1$ Mole of  $Al^{3+} = 0.1 \times 2 = 0.2$ Mole of  $SO_4^{2-} = 0.1 \times 3 = 0.3$  $\therefore$ Total moles of ions present in 1 litre = 0.7 Molarity of all ions = 0.7 M :. 190 (a) Meq. of conc. HCl = Meq. of dil. HCl;  $10 \times 10 = V \times \frac{1}{10}$  $V = 1000 \, \text{mL}$ :. Thus, 990 mL of water should be added to 10 mL of conc. HCl to get decinormal solution. 191 (c) Calculate  $m = \frac{dRT}{p}$  and then Vapour density = M/2 192 (d) 1 mole of water=18 g 193 (d)  $\mathrm{H}_2 + \frac{1}{2}\mathrm{O}_2 \longrightarrow \mathrm{H}_2\mathrm{O}$ 20 30 0 5 0 15 194 **(b)** Dalton, Avogadro coined the term atom and molecule respectively. 195 (a) 1. Mass of one atom of oxygen =  $\frac{16}{6.022 \times 10^{23}} = 2.66 \times 10^{-23} \text{ g}$ 2. Mass of one atom of nitrogen  $=\frac{14}{6.022\times10^{23}}=2.32\times10^{-23}$ g Mass of  $1 \times 10^{-10}$  mole of oxygen 3.  $= 16 \times 10^{-10} \text{ g}$ Mass of  $1\times 10^{-10}$  mole of copper 4.  $= 63 \times 10^{-10}$ Hence, masses of atoms in increasing order II < I < III < IV197 (d) Meq. of oxide = Meq. of H;  $\frac{0.1596}{E+8} = \frac{6 \times 10^{-3}}{1}$  $\therefore E = 18.6$  $\therefore$  atomic wt. = 18.6  $\times$  3 = 55.8 ( $\because$  valence = 3) 198 (d)

 $CaCO_3(s) \xrightarrow{\Delta} CaO(s) + CO_2(g)$ 100 g  $\therefore$  56 g CaO is obtained from=100g CaCO₃  $\therefore$  28 g CaO is obtained from= $\frac{100 \times 28}{56}$  $=50 \text{ g CaCO}_3$ 199 (c) Stoichiometry represents mole ratio or volume ratio of reactants and products. 202 (c) g atom of  $N = \frac{28}{14} = 2$ g atom of oxygen  $=\frac{80}{16}=5$ 203 (d) 1 mole  $Ca^{2+} = 1$  mole  $CaCO_3 = 100$  g Rating = mg of  $CaCO_3$  needed per g chelating agent (mol. wt. = 380)  $=\frac{100\times10^3}{380}=263$  mg 205 (c) Meq. of HCl = Meq. of  $CaCO_3$ ;  $N \times 50 = \frac{1}{50} \times 1000 \text{ or } N = 0.4$ *.*:. 206 (a) Weight of  $NH_3 = 4.25g$ We know that number of atoms in 1 mole or 17 g of  $NH_3 = 4 \times 6.023 \times 10^{23}$ ∴ Number of atom in 4.25 g of  $\mathrm{NH}_3 = \frac{4 \times 6.023 \times 10^{23}}{17} \times 4.25$  $= 6.023 \times 10^{23}$ 207 (c) In acidic medium,  $MnO_4^-$  is reduced to  $Mn^{2+}$ +7 $Mn 0_4^- \rightarrow Mn^{2+}$ Change in oxidation number=7-2=5Solution *X* Solution Y  $N_1V_1 = N_2V_2$ For  $Fe^{2+}$  For  $MnO_4^ N \times 25 = 5M \times V$  [: For MnO₄, N = 5M in acidic medium]  $25N = 5M \times 20$ 25N=100M ...(i) In neutral medium,  $MnO_4^-$  is reduced to  $MnO_2$ +4 $Mn O_4^- \rightarrow MnO_4^-$ Change in oxidation number=7-4=3Solution Y Solution *X*  $N_1V_1 = N_2V_2$ For Fe²⁺ For MnO₄⁻  $25 \times N = 3M \times V$ 

[: For  $MnO_4^-$ , N = 3M in neutral medium]  $25N = 3M \times V$ ...(ii) From Eqs (i) and (ii)  $100M=3M \times V$  $V = \frac{100}{3} = 33.3 \text{ mL}$ 208 (a) :: 4 u = 1 He atom  $\therefore 1 \text{ u} = \frac{1}{4} \text{He atom}$ Hence, 100 u =  $\frac{1 \times 100}{4}$  = 25 atoms 209 (b)  $Mass = 0.8 \times 1 = 0.8 g$  $180 \text{ g } \text{C}_6 \text{H}_{12} \text{O}_6 \text{ has } 24 \text{ atom}$ ...  $0.8 \text{ g } \text{C}_6 \text{H}_{12} \text{O}_6 \text{ has } \frac{24 \times 0.8 \times N}{180} = 6.42 \times 10^{22}$ ÷ 210 (a) Mill mole of  $H_2SO_4 = \frac{1}{10} \times 1000 = 100$  $\frac{w}{98} \times 1000 = 100$ :. :. w = 9.8 g211 **(b)** Average atomic weight  $=\frac{54\times5+56\times90+57\times5}{100}=55.95$ 212 (a)  $m = \frac{0.5 \times 1000}{500} = 1$ 214 (c)  $CaCO_3 + 2HCl \xrightarrow{\Delta} CaCl_2 + H_2O + CO_2$ 100 g  $2 \times 36.5 g$ 1 L of 1 N HCl means=36.5 g HCl Here, HCl is limiting reagent. Therefore, it reacts with 50 g  $CaCO_3$  and produces 22 g  $CO_2$ . 215 **(b)** The mass of KI in 2g salt =  $\frac{2 \times 1}{100} = 0.02g$  $=\frac{0.02}{39+127}$  mol  $=\frac{0.02}{166}\times 6.02\times 10^{23}$  ions  $= 7.2 \times 19^{19}$  ions 216 (a) 22.4 L= 17 g  $11.2 \text{ L} = \frac{17}{22.4} \times 11.2 = 8.5 \text{g}$ 217 (b) Meq. of acid. Meq. of NaOH  $\frac{0.52}{E} \times 1000 = 100 \times 0.1$ E = 52218 (d)

In 100 tons of  $Fe_2O_3$ , pure  $Fe_2O_3$  $= 100 - \frac{100 \times 20}{100}$ = 80 tons $Fe_2O_3 + 3H_2 \rightarrow 2Fe_2 + 3H_2O_3$  $2 \times 56 + 48$  $2 \times 56$  $2 \times 56$ 160  $:: 160 \text{ g Fe}_2 \text{O}_3 \text{ gives Fe} = 2 \times 56 \text{ g}$  $\therefore$  80 tons Fe₂O₃ will give Fe =  $\frac{2 \times 56 \times 80}{160}$ = 56 tons219 (c) Meq. Of  $Ba(OH)_2 = Meq.$  of HCl  $N \times 25 = 0.1 \times 35$  $N_{\rm Ba(OH)_2} = \frac{3.5}{25}$  $M_{\rm Ba(OH)_2} = \frac{3.5}{25 \times 2} = 0.07$ 220 (b)  $1000 \text{ g H}_2\text{O} = 1000 \text{ cm}^3 \text{ H}_2\text{O}$  $\frac{1000}{18}$  mole H₂0 = 1000 cm³ H₂0  $\frac{1000}{18} \times 6.023 \times 10^{23}$  molecule of H₂O =  $1000 \text{ cm}^3 \text{ H}_2\text{O}$  $\therefore$  1 molecule of H₂O = 3 × 10⁻²³ cm³ 221 (c) As ratio of masses of nitrogen per gram of hydrogen in hydrazine and NH₃  $=1\frac{1}{2}:1$  $=\frac{3}{2}:1 \text{ or } 3:2$ ie, the law of multiple proportions. 223 (a) Eq. of  $H_2SO_4 = 0.5 \times 2 = 1.0$ ; Eq. of  $Ca(OH)_2 = 0.2 \times 2 = 0.4;$ Equal Eq. reacts and thus, Eq. of  $CaSO_4$  formed = 0.4  $\therefore$  Mole of CaSO₄ formed  $\frac{0.4}{2} = 0.2$ 224 (d) H₃PO₄ is tribasic acid and thus,  $N = M \times \text{basicity}$ 225 (d) Empirical formula wt. =13  $n = \frac{\text{mol.wt.}}{\text{empirical formula wt.}} = \frac{78}{13} = 6$  $\therefore$  Formula is (CH)₆, *i.e.*, C₆H₆ 226 (a) For first oxide, Moles of oxygen  $=\frac{22}{16} = 1.375$ , Moles of Fe= $\frac{78}{56}$  = 1.392 Simpler molar ratio,  $\frac{1.375}{1.375} = 1, \frac{1.392}{1.375} = 1$ 

∴ The formula of first oxide is FeO. Similarly for second oxide, Moles of oxygen  $=\frac{30}{16} = 1.875$ , Moles of Fe= $\frac{70}{56}$  = 1.25 Simple molar ratio  $=\frac{1.875}{1.25} = 1.5, \frac{1.25}{1.25} = 1$  $\therefore$  The formula of second oxide is Fe₂O₃. Suppose in both the oxides, iron reacts with *x*g of oxygen. : Equivalent weight of Fe in FeO  $\frac{\text{weight of Fe}_{II}}{\text{weight of oxygen}} \times 8$  $\frac{56}{2} = \frac{\text{weight of Fe}_{\text{II}}}{r} \times 8$ ... (i)  $\therefore$  Equivalent weight of Fe in Fe₂O₃  $= \frac{\text{weight of Fe}_{III}}{\text{weight of oxygen}} \times 8$  $\frac{56}{3} = \frac{\text{weight of Fe}_{\text{III}}}{x} \times 8$ ... (ii) From Eq. (i) and (ii),  $\frac{\text{weight of Fe}_{\text{II}}}{\text{weight of Fe}_{\text{III}}} = \frac{3}{2}$ 227 (a) We know that protons in 1 mole  $CaCO_3$ =atomic number of calcium + atomic number of carbon + 3 (atomic number of oxygen) = 20 + 6 + 3(8) = 50 mol:. Proton in 10 g CaCO₃ =  $\frac{10 \times 50}{100} \times 6.02 \times 10^{23}$  $= 3.01 \times 10^{24}$ 228 (b)  $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + cl_2$ 2 mol 4 mol 1 mol 4 mol 22.4 L But the yield is 11.2. :. % yield =  $\frac{11.2}{22.4} \times 100 = 50\%$ 229 (b)  $N = \frac{1}{49 \times (100/1000)} = 0.2$ 230 (c) One mole of electrons=  $6.023 \times 10^{23}$  electrons Mass of one electron= $9.1 \times 10^{-28}$ g Mass of one mole of electrons  $= 6.023 \times 10^{23} \times 9.1 \times 10^{-28} g$  $= 5.48 \times 10^{-4}$ g= 0.548 mg  $\approx 0.55 \text{ mg}$ 231 (c) Eq. of metal = Eq. of Cl $\frac{74.4 - 35.5}{E} = \frac{35.5}{35.5}$ :. :. E = 38.9

232 (a) Equivalent wt of acid molecular weight of acid no. of H atoms replaced during reaction : Equivalent weight of acid depends on the reaction involved because different number of acids are replaced during different reactions. 234 (d) At. wt. =  $2 \times 31.82$  $\therefore \text{Wt. of one atom} = \frac{2 \times 31.82}{N} = \frac{63.64}{N}$ 235 (a) 22.4 litre = 1 mole;  $\therefore 1m^3 = 10^3$  litre  $= \frac{10^3}{22.4} = 44.6$ 236 (c)  $2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2 \uparrow;$ 245 g KClO₃ on heating shows a wt. loss = 96 g (of  $0_{2})$  $\therefore$ 100 g KClO₃ on heating shows a wt. loss  $=\frac{96\times100}{245}$ g = 39.18% 237 (b) Meq. = Normality  $\times$  *V* in mL  $= 500 \times 0.2 = 100$ 238 (a) Number of molecules =  $\frac{mass \times N_A}{molar mass}$ 239 (d)  $3F^- \equiv 1$  Formula unit (AlF₃)  $3.0 \times 10^{24} F^- = 1 \times 10^{24}$  Formula units (AlF₃) 240 (d) One mole of  $CO_2$  contains  $6.02 \times 10^{23}$  atoms of carbon and  $6.023 \times 10^{23}$  molecules of oxygen. 241 **(b)** See mole ratio *A* : *B* : *C* : : 1 : 2 : 1 242 (d)  $1 \text{ mg } C_4 \text{H}_{10} = \frac{14N}{58} \times 10^{-3} \text{ atoms,}$  $1 \text{ mg } N_2 = \frac{2N \times 10^{-3}}{28} \text{ atoms,}$  $1 \text{ mg Na} = \frac{N \times 10^{-3}}{23} \text{ atoms,}$  $1 \text{ mL} = 1 \text{ g H}_2 0 = \frac{3N}{18} \text{ atoms},$ (: M g of a substance = N molecules =  $a \times a$ N atoms; where a is number of atoms in one molecule). 243 (c) An aromatic hydrocarbon (empirical formula  $C_5H_4$ )  $+H_2SO_4 \rightarrow$  monosulphonic acid : 0.104 g of monosulphonic acid required 10 mL

of  $\frac{N}{20}$  NaOH for complete neutralisation  $\therefore \quad \frac{0.104}{n(5 \times 12 + 4 \times 1)} = \frac{1}{20} \times 10 \times 10^{-3}$  $n = \frac{104}{32} = 3.25 \approx 3$ The molecular formula of hydrocarbon will be  $C_{15}H_{12}$ . 244 (a) In 12 g carbon, mass of C-14 isotope =  $12 \times \frac{2}{100}$  = 0.24*g*  $\therefore$  Number of C-14 atoms in 12 g of  $C = \frac{0.24}{14} \times$  $6.02 \times 10^{23}$  $= 1.032 \times 10^{22}$ 245 **(b)** To prepare 20 g zinc sulphate crystals, zinc required  $=\frac{22.65}{100} \times 20$ = 4.53 g246 **(b)** Number of gram molecules  $=\frac{6.02 \times 10^{25}}{6.02 \times 10^{23}} = 100$ 247 (a) Ferrous is Fe²⁺ 248 (b)  $M = \frac{5}{34 \times 100/1000} = 1.47$ 249 (b)  $4.6 \times 10^{22}$  atoms weight =13.8 g Hence,  $6.02 \times 10^{23}$  atoms will weigh  $= \frac{13.8 \times 6.02 \times 10^{23}}{4.6 \times 10^{22}} = 108.6 \text{ g (molar mass)}$ 250 (c) Eq. of HCl = Eq. of  $CaCO_3$ Thus,  $\frac{w}{36.5} = \frac{100}{50};$ :. w = 73 g HCl; 50 g HCl is present in 100 g HCl solution and thus, volume of solution required for, 73 g HCl =  $\frac{73 \times 100}{50}$  = 146g. 252 (d) The law of constant composition-According to this law, "A chemical compound is always found to be made up of the same elements combined together in the same proportions by weights". This law is same as law of definite proportions. 253 (d) Atomic weight of the element

 $X = 6.643 \times 10^{-23} \times N_A = 40$ 

No. of moles of  $X = \frac{20 \times 1000}{40} = 500$ 254 (a) Limiting reagent is one which is completely consumed in reaction. 255 (d) ppm = wt. of solute in  $10^6$  g H₂O  $10^3$  g H₂O contains 10 g CaCO₃ :  $10^6 \text{ g H}_20 \text{ contains} = \frac{10 \times 10^6}{10^3} = 10,000 \text{ ppm}$ CaCO₃ 256 (d)  $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$  $20 \times 0.5$   $20 \times 1$ mm = 1020 0 0 taken 0 10 10 20 mm formed Milli mole of  $BaSO_4 = 10$ Mole of  $BaSO_4 = 10^{-2}$ or 257 (d) Percentage of element *M* in  $M_2O_3 = 53$ Let the atomic mass of M = xMass of Min  $M_2O_3 = 2x$ Total atomic mass of  $M_2O_3 = 2x + 16 \times 3$ = 2x + 48Percentage of an element  $= \frac{\text{Mass of an element in a compound}}{\text{Total mass of compound}} \times 100$  $53 = \frac{2x}{2x + 48} \times 100$ 53(2x + 48) = 200xx = 27258 (a)  $H_3BO_3$  accepts  $OH^-$  ions to act as weak monobasic Lewis acid.  $H_3BO_3 + H_2O \rightarrow B(OH)_4^- + H^+$ ;  $K_a = 10^{-9}$ 259 (a) Meq. of KOH added =  $25 \times 0.4210 = 10.525$ Meq. of KOH left =  $8.46 \times 0.2732 \times 2 = 4.623$  $\therefore$  Meq. of KOH used by oil = 10.525 - 4.623 =5.902 $\frac{w}{56} \times 1000 = 5.902$ ^wKOH = 0.3305 g or or :Saponification no. = wt. of KOH used in mg per g of oil  $=\frac{0.3305}{1.5763}\times 1000$ = 209.6260 (c)  $(NH_4)_2SO_4 \rightarrow 2NH_3 + H_2O + SO_3$ 

 $3NH_3 + 2HCl \rightarrow 2NH_4Cl$ 

 $(NH_4)_2SO_4 \equiv 2NH_3 \equiv 2HCl$ 132 g 73g 73gHCl  $\equiv 132$ g(NH₄)₂SO₄ 292 g HCl  $\equiv \frac{132 \times 292}{73}$  g(NH₄)₂SO₄  $= 528 \text{ g}(\text{NH}_4)_2 \text{SO}_4$ 261 (d) Silica Water Clay Initial % 45 12 43 (92 - a) % after heating 8 The % ratio of silica and clay remains constant on heating  $\frac{45}{43} = \frac{a}{92 - a}$ i.e., *.*.. 7 = 47%262 **(b)** N atom = 1 g atom 263 (a) Meq. of conc. HCl = Meq. of dil. HCl $10 \times V_1 = 100 \times 1$  $V_1 = 10 \,{\rm mL}$ :. Thus, 10 mL of conc. HCl should be added 90 mL to make at 100 mL of desired normality. 264 (a)  $CaF_2 = 146.4 g$ Molecular weight of  $CaF_2 = 78.08g/mol$ Moles of  $CaF_2 = \frac{weight}{molecular weight}$  $=\frac{146.4}{78.08}=1.875$  mol Number of formula units of  $CaF_2$  in 146.4 g of  $CaF_2$ = No. of moles  $\times 6.022 \times 10^{23}$  $= 1.875 \times 6.022 \times 10^{23}$  $= 11.29 \times 10^{23}$  $= 1.129 \times 10^{24} \text{ CaF}_2$ 265 (a)  $\mathrm{C_2H_4} + \mathrm{3O_2} \rightarrow \mathrm{2CO_2} + \mathrm{2H_2O}$ 28 g : The weight of oxygen required for complete combustion of 28 g ethylene=96 g. : Weight of oxygen required for combustion of 2.8 kg ethylene  $=\frac{96\times2.8\times1000}{28\times1000}$  kg=9.6 kg 267 (b)  $2Na_2HPO_4 + NaH_2PO_4 + 2(NH_2)_2CO$  $\rightarrow$  Na₅P₃O₁₀ + 4NH₃ + 2CO₂ Hence, the stoichoimetric ratio of sodium

dihydrogen orthophosphate and sodium hydrogen orthophosphate is 2:1 or 3:1.5 268 (b) 44 g  $CO_2 = N$  molecules,  $\therefore 4.4 \text{ g CO}_2 = N/10 \text{ molecules},$ 22.4 litre  $H_2$  at STP = *N* molecules,  $\therefore$  2.24 litre H₂at STP = *N*/10 molecules, Thus, total molecules  $= \frac{N}{10} + \frac{N}{10} = \frac{N}{5}$ . 269 (c) Molecular mass of  $CO_2 = 12 + 32 = 44$ 44*g* of  $CO_2$  has = 6.023× 10²³ molecule  $0.2g \text{ of } CO_2 \text{ has} = \frac{6.023 \times 10^{23}}{44} \times 0.2$  $= 0.0273 \times 10^{23}$ If 10²¹ molecules are removed then number of molecules  $= 1.73 \times 10^{21}$  $: 6.023 \times 10^{23}$  molecules = 1 mol  $\therefore 1.73 \times 10^{21} \text{ molecules} = \frac{1}{6.023 \times 10^{23}} \times 1.73 \times 10^{21} \times$  $10^{21}$ = 0.0028 mol270 (a) 24 g carbon has 2N atoms. Rest all have I mole atoms. 271 **(b)** CuSO₄ 5H₂O has 1 mole of copper and 9 moles of oxygen atoms, 63.5 g Cu = 9 × 16 g of oxygen 8.64 g of oxygen =  $\frac{63.5 \times 8.64}{9 \times 16}$ = 3.81g272 (c) Meq. of  $H_3PO_3 = Meq.$  of KOH  $20 \times 0.1 \times 2 = 0.1 \times 1 \times V$  $(H_3PO_3 \text{ is dibasic, KOH is monobasic})$ V = 40 mL*.*•. 273 (a) Given mass of  $O_2 = 2$  g at O°C and 760 mm Hg  $32 \text{ g of } O_2 = 22.4 \text{ L at STP}$ 2 g of  $0_2 = \frac{22.4}{32} \times 2 = 1.4$  L :. 274 (a) Ratio of atoms  $C: H: N: O ::: \frac{20.0}{12}: \frac{6.66}{1}: \frac{47.33}{14}: \frac{26.01}{16}$ = 1.67: 6.66: 3.38: 1.63= 1:4:2:1Empirical formula =  $CH_4N_2O$ Molar empirical formula mass = 60gMolecular formula  $= CH_4N_2O$ 

275 **(b)**  
Molarity = 
$$\frac{\text{moles of solute}}{\text{volume of solution}}$$
;  $V_{\text{solution}} > 1$  litre water.

277 (d)

Number of atoms = moles  $\times N_A \times$  atomicity Here,  $N_A$  = Avogadro's number (a) Number of oxygen atoms in 1 g of 0

$$= \frac{1}{16} \times N_A$$
$$= \frac{N_A}{16}$$

× 1

(b)Number of oxygen atoms in  $1 \text{ g of } 0_2$ 

$$= \frac{1}{32} \times N_A \times 2$$
$$= \frac{N_A}{16}$$

(c) Number of oxygen atoms in  $1 \text{ g of } 0_3$ 

$$=\frac{1}{48}N_A \times 3 = \frac{N_A}{16}$$

Hence, all have the same number of oxygen atoms.

278 **(b)** 

 $N = \frac{4 \times 1000}{40 \times 100} = 1.0$ 

279 (c) Mohr's salt is FeSO₄. (NH₄)₂SO₄. 6H₂O Only oxidizable part is Fe²⁺.  $[Fe^{2+} \rightarrow Fe^{3+} + e^{-}] \times 6$  $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$  $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+$  $\rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$ Millimoles of  $Fe^{2+} = 750 \times 0.6 = 450$ Moles of  $Fe^{2+} = \frac{450}{1000} = 0.450$  mol 6 mol Fe²⁺=1 mol Cr₂O₇²⁻  $\therefore 0.450 \text{ mol Fe}^{2+} = \frac{0.450}{6}$  $= 0.075 \text{ mol } \text{Cr}_2 \text{O}_7^{2-}$  $= 0.075 \times 294 \text{ g}$ = 22.05 g280 (d)  $3BaCl_2 + 2Na_3PO_4 \rightarrow Ba_3(PO_4)_2 + 6NaCl$ See mole ratio from stoichiometry. BaCl₂ : Na₃PO₄: Ba₃(PO₃)₂ : NaCl ::3 :2 :1: 6 281 (d) Mole of Ca =  $\frac{30}{40}$ (the largest value) 282 (a)

Meq. of NaOH = 0.1 V

Meq. of  $CH_3COOH = 0.1 V$ : Meq. of  $CH_3COONa$  formed = 0.1 V The solution will be alkaline due to hydrolysis of CH₃COONa. 283 (b) According to law of conservation of mass, Mass of reactants = mass of products  $\therefore 6.3 + 15.0 = 18.0 + x$ Or x = 21.3 - 18.0 = 3.3 g284 (d) Mole of glucose =  $\frac{6.02 \times 10^{22}}{6.02 \times 10^{23}} = 0.1$ ∴  $M_{\text{glucose}} = \frac{0.1 \times 1000}{50} = 2$ 285 (b) M > m provided *d* solvent  $\leq 1$ 286 **(b)**  $m = \frac{4}{40 \times 0.996} = 0.1$ 287 (c) Pb0 + 2HCl  $\rightarrow$  PbCl₂ + H₂O Eq. at  $t = 0 \quad \frac{6.5 \times 2}{224} \qquad \frac{3.2}{36.2}$ 0 0 =0.058 0.088 0 0 Eq. after 0.030 0.058 0.058 0 reaction  $\therefore$  Mole of PbCl₂ formed =  $\frac{0.058}{2}$  = 0.029 288 (a) Meq. of  $H_2SO_4 = 50 \times 0.1 \times 2 = 10$ ; Meq. of NaOH =  $50 \times 0.1 = 5$  $\therefore$  Meq. of H₂SO₄ left = 10-5; Solution is acidic. 289 (a)  $18 \text{ mL H}_20 \text{ or } 18 \text{ g H}_20 \text{ has } 10N \text{ electrons.}$ 290 (b) The compound is  $C_4H_8O_2$ ; Mol. wt. = 88  $\therefore$  Vapour density = 44 291 **(b)** Meq. of oxalic acid = Meq. of NaOH:  $\therefore \frac{w}{126/2} \times 1000 = 1000 \times 1;$  $\therefore w = 63 \text{ g}$ 292 (b) Mole of sucrose  $=\frac{\text{mass of sucrose (in gram)}}{\text{molecular weight of sucrose}}$  $=\frac{25.6}{342.3}=0.0747882$ Formula of sucrose  $=C_{12}H_{22}O_{11}$ 

Number of H atoms in 1 mole of sucrose

 $= 22 \times 6.023 \times 10^{23}$ Number of H atoms in 0.0747882 mole of sucrose  $= 22 \times 6.023 \times 10^{23} \times 0.074788$  $= 9.9 \times 10^{23}$ 293 (c) Liquid HCl is 100% pure  $\therefore M = \frac{100 \times 1.17 \times 1000}{36.5 \times 100} = 32.05$ 294 (a) Meq. of NaOH=Meq. of acid;  $20 \times 0.4 = 40 \times N;$ N = 0.2 or M = 0.1*.*.. 295 (c) Mass of solute = 120 g Mass of water = 1000 g Mass of solution = 1120 g  $\therefore$  Volume of solution  $\left(\frac{m}{d}\right) = \frac{1120}{1.15}$  mL  $\begin{array}{l} \text{Milli mole} = M \times \text{V}_{\text{in mL}} \\ \frac{120}{60} \times 1000 = M \times \frac{1120}{1.15} \end{array}$ M = 2.05*.*.. 296 (a) Eq. wt. =  $\frac{\text{mol. wt.}}{\text{acidity}}$ NH₃ is monoacidic base. 297 (b)  $2MnO_4^- + 5C_2O_4^{2-} + 16H^+$  $\rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_2$  $20 \text{ mL of } 0.1 \text{ M KMnO}_4 = 20 \times 0.1 = 2 \text{ m mol}$  $\therefore$  2 mmol of KMnO₄  $\equiv$  5 mmol of C₂O₄²⁻ 50 mL of 0.1 M  $H_2C_2O_4 = 50 \times 0.1 = 5$ mmol Hence, 20 mL of 0.1 M KMnO₄  $\equiv 50 \text{ mL of } 0.1 \text{ M H}_2\text{C}_2\text{O}_4$ 298 (c) Solutions of known strength are prepared by dissolving solute in solvent in a measuring flask. 299 (a) Let the percent abundance of lighter isotope is *x*. : Atomic mass,  $z = \frac{x(z-1) + (100-x)(z+2)}{z+100-x}$ 3x = 200 or x = 66.6%300 (a) Wt. of metal oxide Wt. of metal chloride Eq. wt. of metal + Eq. wt. of oxide =  $\frac{1}{Eq. wt. of metal + Eq. wt. of chloride}$ 3 E + 8 $\overline{5} = \overline{E + 35.5}$ E = 33.25301 (d)

Volume of 100 g solution,  $V = \frac{m}{a}$  $=\frac{100g}{1.14g\,\mathrm{cm}^{-3}}=87.72\mathrm{cm}^{3}$ Amount of sulphuric acid in 100 g solution,  $n = \frac{m}{M} = \frac{20.0g}{98 \ g \ mol^{-1}} = 0.207 \ mol$ Molarity of sulphuric acid,  $M = \frac{n}{V} = \frac{0.207 \text{ mol}}{87.72 \times 10^{-3} \text{ dm}^3} = 2.32 \text{ mol } \text{dm}^{-3}$ 302 (b) Meq. of  $Fe^{2+} = Meq. of FeCl_2$ = Meq. of HCl = 50  $\times$  4 = 200 ; :. Mole of Fe²⁺ =  $\frac{200}{2} \times 10^{-3} = 0.1$ 303 (c) Meq. of  $HCl = 100 \times 0.3 = 30$ Meq. of  $H_2SO_4 = 200 \times 0.6 = 120$ :.  $N_{\text{mixture}} = \frac{30+120}{300} = \frac{1}{2}$ 304 **(b)** Meq. of acid = Meq. of caustic potash  $\therefore \quad \frac{45}{90/n} \times 1000 = 200 \times 5,$ ... n = 2305 (c)  $2Cr(OH)_3 + 4OH^- + KIO_3 \rightarrow 2CrO_4^{2-} + 5H_2O + KI$ Change in oxidation number of effective element (I) in  $KIO_3 = (+5) - (-1) = 6$ Equivalent weight of oxidation =  $\frac{\text{mol. wt.}}{6}$ 306 (c) No. of atoms in 1g of  $O_2(g) = 2 \times \frac{1}{32} \times 6.023 \times 6.023$ 1023  $= 0.38 \times 10^{23}$ No. of atoms in 1g of  $Ni(s) = \frac{1}{58.2} \times 6.023 \times 10^{23}$  $= 0.10 \times 10^{23}$ No. of atoms in 1g of  $B(s) = \frac{1}{10.8} \times 6.023 \times 10^{23}$  $= 0.58 \times 10^{23}$ No. of atoms in 1g of  $N_2(g) = 2 \times \frac{1}{28} \times 6.023 \times 6.023$  $10^{23}$  $= 0.43 \times 10^{23}$ Alternative: Smaller the atomic mass, larger will be the no. of atoms in sample. 307 (d) Follow stoichiometry of reaction. 308 (c) Mole of  $O_2 = \frac{3.2}{32} = \frac{1}{10}$ ∴atoms of  $0 = 2N \times \frac{1}{10} = 12.04 \times 10^{22}$ 309 (a)

No. of molecules in n mole =  $n \times Av.$  no; Also no. of atom in 1 molecule = atomicity. 310 (d) Moles =molecular mass mass of  $Al_2(SO_4)_3 = 50g$ Given, Molecular mass of  $Al_2(SO_4)_3 = 342 \text{ g}$ Moles of Al₂(SO₄)₃ =  $\frac{50}{342}$  = 0.14 mol :. 311 (c) In air Molecular weight of  $N_2 = \frac{28 \times 78}{100} = 21.84$ Molecular weight of  $O_2 = \frac{32 \times 21}{100} = 6.72$ Molecular weight of  $Ar = \frac{18 \times 0.9}{100} = 0.162$ Molecular weight of  $CO_2 = \frac{44 \times 0.1}{100} = 0.044$ So, molecular weight of air = 21.84 + 6.72 + 6.720.162 + 0.044= 28.766312 (d) Meq. of oxide = Meq. of hydroxide;  $\frac{0.995}{E+8} = \frac{1.520}{E+17}$  $\therefore E = 9$ Thus. 313 (d) Per cent loss of H₂O in one mole of  $Na_2SO_4 \cdot nH_2O = \frac{18n \times 100}{(142+18n)} = 55$ n = 10... 315 (c) VD of substance = 4 (when VD of  $CH_4 = 1$ ) : VD of substance =  $8 \times 4$  (when VD of CH₄ = 8)  $\therefore$  mol. wt. of substance =  $32 \times 2 = 64$ 316 (d) According to Dulong and Petit's law At. mass of element× specific heat (in cal/g)=6.4(app.) This law is applicable only to solid elements excepts Be, B, C and Si. 317 (a)  $M_{\rm H_2O} = \frac{\frac{1000 \times d}{18}}{1} = 55.6 \times d$ d = 1 : M = 55.6:. 318 (a) Follow definition of molality. 319 (a) 1 mole (g mol. wt.) of a substance displaces 22.4 litre air at NTP. 320 (d)

 $M = \frac{\text{wt.} \times \text{density} \times 1000}{\text{m. wt.} \times \text{wt. of solution}}$ 

 $3.6 = \frac{29 \times d \times 1000}{98 \times 100}$  $d = 1.22 \, \text{g/mL}$ 321 (c) Mass of 1 atom =  $1.8 \times 10^{-22}$  g Mass of  $6.02 \times 10^{23}$  atoms  $= 6.02 \times 10^{23} \times 1.8 \times 10^{-22}$ g  $= 6.02 \times 1.8 \times 10g$ = 108.36g $\therefore$  Atomic mass of element = 108.36 322 (d)  $9.108 \times 10^{-31}$ kg = 1electron  $1 \text{kg} = \frac{1}{9.108 \times 10^{-31}} \text{ electron}$  $= \frac{1}{9.108 \times 10^{-31}} \times \frac{1}{6.023 \times 10^{23}} \text{ mole electron}$ *.*.. 323 (c) 244 g BaCl₂  $\cdot$  2H₂O contains 2 moles of water. 324 (b)  $16 \text{ g CH}_4 = 1 \text{ mole CH}_4 = N \text{ molecules of CH}_4$ 325 (c)  $2(NH_4)_2HPO_4 \equiv P_2O_5$ 264g % of  $P_2O_2 = \frac{\text{wt.of } P_2O_5}{\text{wt.of salt}} \times 100$  $=\frac{142}{264} \times 100$ = 53.78%326 (d) KMnO₄ reacts with oxalic acid according to the following equation.  $2MnO_4^- + 5C_2O_4^{2-} + 16H^+$  $\rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_2$ Eq. mass of  $KMnO_4 = \frac{mol.mass}{7-2}$  $N_{\rm KMnO_4} = 5 \times {\rm molarity} = 5 \times 10^{-4}$ Eq. mass of  $C_2 O_4^{2-} = \frac{\text{mol. mass}}{2(4-3)} = \frac{\text{mol. mass}}{2}$  $N_{C_2 O_4^{2^-}} = 2 \times \text{molarity} = 2 \times 10^{-2}$  $N_1V_1 = N_2V_2$  $5 \times 10^{-4} \times V_1 = 2 \times 10^{-2} \times 0.5$  $V_1 = \frac{2 \times 10^{-2} \times 0.5}{5 \times 10^{-4}} = 20 \text{ L}$ 328 (a) Mohr's salt is (NH₄)₂SO₄. FeSO₄. 6H₂O The equation is  $5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O_4^-$ Total change in oxidation number of iron = (+3) - (+2)= +1So, equivalent wt. of Mohr's salt Mol. wt. of Mohr's salt

$$=\frac{392}{1}$$

For minimum molecular mass, there must be one S atom per insulin molecule.

If 3.4 g S is present, the molecular mass = 100

: If 32 g S is present, the molecular mass =  $\frac{100 \times 32}{3.4}$ = 941.176

#### 332 (d)

 $200 \text{ cc of } \text{NH}_3$  at STP contains maximum number of molecules because  $\text{NH}_3$  compound has lowest molecular weight and highest volume than other compounds.

#### 333 (a)

*N* molecule of  $H_2O = 18$  g

 $2C_{2}H_{2} + 5O_{2} \rightarrow 4CO_{2} + 2H_{2}O$   $2 \text{ cc} \qquad 5 \text{ cc}$   $100 \text{ cc} \qquad 250 \text{ cc}$ Hence, air will be needed =  $\frac{100}{20} \times 250$ 

Eq. of ca = Eq. of 0;  

$$\frac{1.35}{E} = \frac{0.53}{8}$$
  
:  $E = 20.37$ 

336 **(b)** 

$$N = \frac{2.7 \times 1000}{(98/3) \times 250} = 0.33$$

337 **(c)** 

Elements react in same number of equivalent and give same number of equivalents of products.

Also equivalent = 
$$\frac{\text{weight}}{\text{equivalent weight}}$$
  
338 (c)

$$W_{N_2} = \frac{1 \times P \times 28}{RT}; W_{CO} = \frac{1 \times P \times 28}{RT}; W_{O_2}$$
$$= \frac{7}{8} \times \frac{P \times 32}{RT}$$

339 (c)

342 (d)

Meq. of NaOH = Meq. oxalic acid;  $0.1 \times 1 \times V = 20 \times 0.05 \times 2;$   $\therefore \qquad V = 20 \text{ mL}$ 340 **(b)** 

M. f. = 
$$\frac{\text{moles of solute}}{\text{moles of solute} + \text{moles of water}}$$
  
=  $\frac{1}{1 + \frac{1000}{18}} = 0.018$   
341 **(b)**  
It remains unchanged.

Given, % of C=54.55% % of H=9.09% % of O=36.36%

Elem	%	At.	Ratio of	Simplest
ent		no.	atoms	ration
С	54.5	12	54.55/12=	4.54/2.2
	5		4.54	7=2
Н		1		
	9.09		9.09/1=9.0	9.09/2.2
0		16	9	7=4
	36.0			
	6		36.16/16=	2.27/2.2
			2.27	7=1

 $\therefore$  Empirical formula is C₂H₄O. 343 (a)  ${}_{6}C^{12}$  contains 6 N protons, 6 N electrons and 6 N neutrons. 344 (d) Meq. of  $H_3PO_4 = Meq. of Ca(OH)_2$ ;  $0.25 \times 3 \times V = 25 \times 0.03 \times 2$ V = 2 mL... 345 (a)  $2PH_3(g) \rightarrow 2P(s) + 3H_2(g)$ 100 0 0 Before dissociation 0 - 150 After dissociation 346 (c)  $m = \frac{\text{moles of CH}_3\text{COOH}}{\text{wt. of solvent in kg}} = \frac{2.05 \times 1000}{897} = 2.285$ wt. of solvent = wt. of solution-wt. of solute  $= [1000 \times 1.02 - 2.05 \times 60] =$ 897 g 347 (c) Meq. of NaOH = Meq. of HCl  $100 \times 0.1 = 10$  $\therefore \frac{wt}{40} \times 1000 = 10$ ;  $\therefore w_{\text{NaOH}} = 0.4$ g 348 (a) Meq. of  $Na_2CO_3 = 250 \times 0.25 \times 2 = 125$  $\therefore \qquad \frac{w}{53} \times 1000 = 125$ w = 6.625... 349 (a)  $\frac{n}{n+N} = 0.2;$  $\frac{N}{n+N} = 0.8$ :.  $\frac{n}{N} = \frac{1}{4}$ Thus,  $n \times 18 \times 1000$  = or W ×1000  $\frac{\text{molality} \times 18}{1000} = \frac{1}{4}$ or 350 (a)

%by weight = 
$$\frac{\text{weight of solution}}{\text{weight of solution}} \times 100$$
  
or  $20 = \frac{w}{(w+60)} \times 100$   
or  $w = 15g$   
351 **(b)**  
 $C_3H_8 + 5 O_2 \rightarrow 3CO_2 + 4H_2O$   
1 mol or 22.4 L  $C_3H_8$  at STP requires 5 mole or  $5 \times 22.4 O_2$  at STP.  
352 **(d)**  
22.4 litre refers for mol.wt.  
 $\therefore$  11.2 litre refers for  $\frac{\text{mol.wt}}{2}$  = vapour density.  
353 **(c)**  
 $N = \frac{10 \times 1000}{60 \times 100} = 1.66$   
354 **(c)**  
 $K_2S_2O_8(aq) + 2KI(aq) \rightarrow 2K_2SO_4(aq) + I_2(aq)$   
In this reaction one mole of  $K_2S_2O_8$  reacts with 2  
moles of KI,  
Hence the stoichiometry of this reaction is 1:2.  
355 **(d)**  
Mole fraction =  $\frac{\text{moles of alcohol}}{\text{total moles}} = \frac{2}{2+6} = \frac{2}{8}$   
 $= 0.25$   
356 **(b)**  
Ba(HO)₂ + 2HCI  $\rightarrow$  BaCl₂ + 2H₂O  
meq.  $30 \times 0.1 \times 2 20 \times 0.05 = 0$   
 $= 6 = 1$   
 $5 = 0 = 1$   
 $1 \therefore [OH^-] = \frac{5}{50} = 0.1 \text{ M}$   
357 **(a)**  
NaHCO₃ being an acid salt will react with NaOH  
as,  
NaOH + NaHCO₃  $\rightarrow$  Na₂CO₃ + H₂O  
358 **(b)**  
Eq. of metal oxide = Eq. of oxygen  
 $\frac{100}{E} = \frac{20}{8} \therefore E = 40$   
359 **(b)**  
According to the equation,  
NaCl + AgNO₃  $\rightarrow$  NaNO₃ + AgCl  
No. of moles of AgNO₃ =  $\frac{577}{170} = 0.03394$   
Thus, AgNO₃ is the limiting reagent in the  
reaction.  
Now, applying POAC for Ag (as Ag atoms are  
conserved in the reaction)  
Moles of Ag in AgNO₃ = 1  $\times$  moles of AgCl  
Or  $1 \times$  moles of AgNO₃ = 1  $\times$  moles of AgCl  
Or  $1 \times$  moles of AgNO₃ = 1  $\times$  moles of AgCl  
Or  $1 \times$  moles of AgNO₃ = 1  $\times$  moles of AgCl  
Or  $0.03394 \times 143.4(\text{for AgCl}) = 4.87g$ 

100 ML  $O_2$ ,  $NH_3$  and  $CO_2 = \frac{0.1}{22.4} = \frac{1}{224}$  mol For  $O_2$  no. of molecules  $=\frac{1}{224} \times 6.023 \times 10^{23}$ For  $NH_3$  no. of molecules  $=\frac{1}{224} \times 6.023 \times 10^{23}$ For  $CO_2$  no. of molecules =  $\frac{1}{224} \times 6.023 \times 10^{23}$ 361 (d) It is the basic definition of equivalent weight. 364 (c) Mole fraction of  $H_2O = 0.85$ ; Mole fraction of  $H_2SO_4 = 0.15$ ;  $\therefore \frac{\text{M. f. of } H_2\text{SO}_4}{\text{M. f. of } H_2\text{O}} = \frac{\text{mole of } H_2\text{SO}_4}{\text{mole of } H_2\text{O}}$  $m = \frac{\text{mole of H}_2\text{SO}_4}{\text{wt. of H}_2\text{O in kg}} = \frac{\text{mole of H}_2\text{SO}_4 \times 1000}{18 \times (\text{wt. of H}_2\text{O}/18)}$  $m = \frac{\text{mole of } H_2 \text{SO}_4}{\text{mole of } H_2 \text{O}} \times \frac{1000}{18}$  $= \frac{0.15 \times 1000}{0.85 \times 18} = 9.8$ or 365 **(b)** 0.1 mole has atoms =  $0.1 \times 6.02 \times 10^{23} \times 3$  $= 1.806 \times 10^{23}$ 366 (d) 16 g 0 contains N atoms of 0  $32 \text{ g } 0_2$  contains 2N atoms of 0  $48 \text{ g } 0_3$  contains 3N atoms of 0 367 (b) We know that,  $E = F \cdot z$ ÷  $E = 96500 \times x$ 368 (c) Victor meyer's method is used for volatile substances. 369 (a) Per cent of oxygen in NaOH  $=\frac{16 \times 100}{40} = 40$ . 370 (d) 71 g Cl₂ reacts with 64 g S,  $\therefore$  35.5 g Cl₂ reacts with 32 g S. 371 (d) Wt. of metal hydroxide Wt. of metal oxide  $= \frac{\text{Eq. wt. of metal + Eq. wt. of OH}^{-}}{\text{Eq. wt. of metal + Eq. wt. of O}_{2}^{2-}}$  $\Longrightarrow \frac{1.520}{0.995} = \frac{E+17}{E+8}$ On solving, E = 9.0372 (d) Dulong Petit's law: at. wt.  $\times$  sp. heat  $\approx 6.4$ 373 (c)  $3H_2 + N_2 \rightarrow 2NH_3$ ; Initial volume or mole = 4

Final volume or mole = 2

374 (b)

As, we know that least count of the instrument is equal to the most possible error of the instrument hence, least count of the instrument will be 0.01 cm.

375 (a)

 $M_2$ HPO₄ means valence of metal is one and thus, sulphate of metal is  $M_2$ SO₄.

376 **(b)** 

Change in oxidation number  $0.5 \times 2 = 1$ +2 0 +2.5

$$2S_2O_3^{2-}$$
 +  $I_2$   $S_4O_6^{2-}$  +  $2I^{-}$ 

Change in oxidation number =  $1 \times 2 = 2$ 

Equivalent mass of Na₂S₂O₃ =  $\frac{M_1}{1} = M_1$ Equivalent mass of I₂ =  $\frac{M_2}{2}$ 

377 **(b)** 

 $\frac{(29.2 - 20.2)(1.79 \times 10^5)}{1.37} = \frac{9.0 \times 1.79 \times 10^5}{1.37}$ 

Since, there are two SF in 9. 0, the answer must also have two significant figures.

## 378 **(c)**

In 100 g haemoglobin, mass of iron = 0.33 g  $\therefore$  in 67200 g haemoglobin, mass of iron  $=\frac{67200 \times 0.33}{100}$   $\therefore$  the number of Fe atoms in one Hb molecule  $=\frac{672 \times 0.33}{56}$ = 4

379 (d)

Increases in oxidation state = 2 -2  $H_2S + 2HNO_3 \longrightarrow 2H_2O + 2NO_2 + S$ Hence, the equivalent weight of  $H_2S = \frac{\text{molecular weight}}{\text{change in oxidation number}} = \frac{34}{2} = 17.$ 

380 **(c)** 

С	Н	Ν					
9	1	3.5					
9/12=0.75	1/1=1	3.5/14=0.25					
$\frac{0.75}{0.25} = 3$	$\frac{1}{0.25} = 4$	$\frac{0.25}{0.25} = 1$					
So, empirical formula= $C_3H_4N$							
$n = \frac{108}{54} = 2$							

Molecular formula= $(C_3H_4N)_2 = C_6H_8N_2$ 381 (c)  $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ The heat of combustion of 10 g CH₄  $= -560 \, \text{kJ}$ So, the heat of combustion of 16 g CH₄  $=\frac{-560}{10} \times 16$ = -896 kJ/mol382 (b) Meq. of  $H_2SO_4 = Meq.$  of NaOH  $0.1 \times 2 \times V = 50 \times 0.2 \times 1$  $V = 50 \, {\rm mL}$ :. 383 (c)  $\begin{array}{c} \operatorname{CO}_2 \\ 1 \\ (1-x) \end{array} + \begin{array}{c} C \\ 0 \end{array} \longrightarrow \begin{array}{c} 2 \operatorname{CO} \\ 2x \end{array}$  $\therefore 1 - x + 2x = 1.4$  find x. 384 **(b)** Follow definition of equivalent weight. 385 (b) In first oxide, Mass of arsenic = 65.2Mass f oxygen = 34.8 $\therefore$  Eq. mass of arsenic  $=\frac{65.2}{34.8} \times 8 = 14.99$ In second oxide, Mass of arsenic = 75.7 g Mass of oxygen = 24.3 g : Eq. mass of arsenic =  $\frac{75.7}{24.3} \times 8 = 24.92$ Eq. mass of arsenic : Eq. mass of arsenic (oxide I) (oxide II) 14.99:24.92 3:5 0r 386 (a) Meq. of metal = Meq. of oxygen  $\frac{60}{E} = \frac{40}{8}$ E = 12*.*.. Now, Meq. of metal = Meq. of bromide  $\frac{100 - a}{12} = \frac{a}{80}$  $a \approx 87\%$ :. 387 (a) Meq. of oxalic acid = Meq. of NaOH  $\frac{6.3}{63} \times \frac{1000}{250} \times 10 = 0.1 \times V$  $V = 40 \, {\rm mL}$ .... 388 (d) The combustion of methane can be represented by the following equation  $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + 890 \text{ kJ}$ 16 g ∴ 16 g CH₄ burns in air to liberate=890 kJ of heat

 $\therefore$  3.2 g CH₄ will liberate= $\frac{890 \times 3.2}{16}$ =178 kJ of heat 390 (a) 1.12 litre  $H_2 \equiv 1.2$  g  $\therefore$  11.2 litre H₂ = 12 g 391 (a) Amount of  $H_2O_2$  in 1 mL. =  $\frac{34}{1120}$  g Also, 34 g  $H_2O_2$  gives 16 g  $O_2$  of 11.2 litre  $O_2$  at STP  $\frac{34}{1120}$ g H₂O₂ =  $\frac{11.2 \times 34}{1120 \times 34}$  litre O₂ :.  $=\frac{1}{100}$  litre₀₂ = 10 mL 0₂ 392 (c)  $CaCl_2 + CO_3^{2-} \rightarrow CaCO_3 + 2Cl^{-}$ 100g 111 g  $CaCO_3 \rightarrow CaO + CO_2$ 100 g 56g : 56 g CaO is obtained by decomposition of  $CaCO_{3} = 100g$  $\therefore$  0.959 g CaO will be obtained by the decomposition of  $CaCO_3 = \frac{100 \times 0.959}{56}$ = 1.71gFurther,  $100 \text{ g CaCO}_3 \equiv 111 \text{ gCaCl}_2$  $1.71 \text{g CaCO}_3 = \frac{111 \times 1.71}{100}$  $=1.89 \text{ g CaCl}_{2}$ % of CaCl₂ in the mixture =  $\frac{1.89}{4.22} \times 100$ = 44.78= 45%393 (d) 1 mole  $NH_3 \equiv 10 N$  electron  $\frac{11.2}{22.4}$  mole NH₃  $\equiv 10 \times N \times \frac{1}{2} = 3.01 \times$ 10²⁴ electron 394 (a) Number of atoms in  $N_2 = \frac{11.2 \times 10^{-3} \times 6.023 \times 10^{23} \times 2}{22.4}$  $= 6.023 \times 10^{20}$ Number of atoms in NO =  $\frac{0.015 \times 2 \times 6.023 \times 10^{23}}{30}$  $= 6.023 \times 10^{20}$ 395 (a) For poly atomic molecules, mol. wt. = at. wt.  $\times$ atomicity. 396 (a) (a) Density of water =  $1 \text{g cm}^{-3}$ Mass of water= $1 \text{ m}^3 = 10^6 \text{ cm}^{-3}$ 

 $Mass = volume \times density$  $= 10^{6} \text{ cm}^{-3} \times 1 \text{ g cm}^{-3}$  $=10^{6}$  $=\frac{10^6}{10^3}$ kg = 1000 kg(b) Mass of normal adult man = 65 kg(c) Density of Hg =  $13.6 \text{ g cm}^{-3}$ Volume of Hg =  $10L = 10 \times 1000 \text{ cm}^{-3}$  $\therefore$  Mass of Hg = 13.6  $\times$  10  $\times$  1000 = 136000 g= 13.6 kg∴ Mass of 1m³ water is highest. 397 (c) Equivalent weight of metal  $\frac{\text{wt. of metal}}{\text{wt. of chlorine}} \times 35.5$  $=\frac{(74.5-35.5)\times 35.5}{35.5}=39$ 398 (c) Element % % At. wt. Ratio 30.5 30.5/14=2.18 Ν 1 69.5 69.5/16=4.34 2 Empirical formula=NO₂ Empirical formula weight=46  $n = \frac{92}{46} = 2$ Molecular formula= $(NO_2)_2 = N_2O_4$ *.*. 401 (c) Empirical formula of glucose =  $CH_2O$ ; Molecular formula of glucose =  $(CH_2O)_6$ . 402 (a) 1 mole of  $CH_3COOH$  has 24 carbon = 2 g atom of carbon or 2 mole of carbon atoms, 4 mole of H atom and two mole of oxygen atoms. 403 (d) Mass of one molecule of water  $=\frac{\text{mol. mass}}{N_0}=\frac{18}{6.02 \times 10^{23}}\text{g}$ : Volume of 1 molecule of water =  $\frac{mass}{density}$  $\frac{18 \times 10^{-23}}{6.02 \times 1}$ 

	$= 3 \times 10^{-23} \text{ mL}$		∵ 102 g cyclohexanol gives 84 g C ₆ H ₁₂
404	(b)		$\therefore$ 102 g cyclohexanol will give = $\frac{84 \times 100}{102}$ g C ₆ H ₁₂
	Meq. of NaOH = $0.45 \times 2V + 0.6 \times V$		Also % vield is $75\%$
	Total volums = $3V$		$\therefore 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100 \text{ g cyclohexanol will give } = \frac{84 \times 100}{3} \times 100  g cyclohexanol will g$
	$\therefore \qquad N \times 3V = 0.45 \times 2V + 0.6V;$		$\frac{100}{102}$
	$\therefore$ $N = 0.5$		$\frac{1}{100}$ g C ₆ H ₁₂
405	(d)		$= 61.769 \text{ g } \text{C}_6 \text{H}_{12}$
	In a chemical reaction, coefficient represents mole	413	(a)
	of that substance.		$H_2 + \frac{1}{2} 0_2 \rightarrow H_2 0$
	$X + 2Y \longrightarrow Z$		100 100 0 Mala hafara maatian
	This indicates 1 mole of <i>X</i> reacts with 2 moles of <i>Y</i>		$\frac{1}{2}$ $\frac{32}{32}$ 0 Mole before reaction,
	to form 1 mole of <i>Z</i> .		$\left[\frac{100}{2} - \frac{100 \times 2}{32}\right]$ : 0 : $\frac{100 \times 2}{32}$ Mole ratio aftre
	So, 5 moles of <i>X</i> will require 10 moles of <i>Y</i> . But we		ENter such as the forest to the one that the the the
	have taken only 9 moles of Y.		[Now mole ratio for $H_2$ : $U_2$ : $H_2U$ : 1: 1/2 : 1;
	Hence, Y is in limiting quantity. Hence, we		Also, $O_2$ is limiting reagent thus $100 \times 2$
	determine product from <i>Y</i> .		: wt. of H ₂ O formed = $\frac{100 \times 2}{32} \times 18 = 112.5 \text{ g}$
	Thus, 5 moles of <i>X</i> react with 9 moles of <i>Y</i> to form	414	(b)
	4 moles of Z.		Number of molecules in $n$ moles of substance=
406	(C)		$n \times N_0$
	Average value = $\frac{25.2+25.25+25.0}{1} = \frac{75.45}{3}$		$= n \times 6.023 \times 10^{23}$
			$\frac{N \text{ (no. of molecules)}}{2}$ -2
	= 25.15 = 25.2  mL		n (no. of moles)
	Number of significant figure is 3		$-\frac{n \times 6.023 \times 10^{23}}{-6.023 \times 10^{23}}$
	Number of Significant figure is 5.		$\frac{1}{n} = 0.023 \times 10^{-10}$
407	(b)	415	(d)
	$BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 + H_2O$		Conc. Of Na ⁺ = $\frac{100 \times 0.1}{200} + \frac{100 \times 0.1 \times 2}{200} = 0.15M$
	208 g 98g 233 g		: Jonic strength of Na ⁺ = $\frac{1}{2}\Sigma C Z^2 = \frac{1}{2} \times$
	100 mL of 20.8% BaCl ₂ solution contains		$\begin{bmatrix} 0.15 \times 1^2 \end{bmatrix} = 0.075$
	$= 20.8 \text{ g BaCl}_2$	116	$[0.13 \times 1] = 0.075$
	50 mL of 9.8% $H_2SO_4$ solution contains	410	(a) 98 g H SQ contains 32 g S or 1 mole of S
	$= 4.9 \text{ g H}_2 \text{SO}_4$	417	(d)
	Here, $H_2SO_4$ is the limiting reactant.	417	$Ag_{a}CO_{a} = 2Ag_{a} = 1$
	$: 98 \text{g H}_2 \text{SO}_4 \text{ gives BaSO}_4 = 233 \text{ g}$		$276g \rightarrow 216g + CO_2 + \frac{1}{2}O_2$
	$\therefore 4.9 \text{ g H}_2\text{SO}_4$ will give $\text{BaSO}_4 = \frac{233 \times 4.9}{98}$		As 276 g of Ag ₂ CO ₂ will give = 216g of Ag
409	<b>(b)</b>		So 2.76 g of Ag ₂ ( $\Omega_2$ will give $-\frac{2.76 \times 216}{2} - 2.16g$
	Meg. of NaOH left	410	276
	$= 20 \times 0.1 - 10 \times 0.1 = 1;$	418	(D) 8/32
	Thus, solution is alkaline and phenolphthalein		Mole fraction of $O_2 = \frac{0.02}{7/28 + 8/32} = 0.5$
	gives pink colour in alkaline medium.	419	(c)
410	(a)		Meq. of $H_2SO_4 + Meq. of SO_3 = Meq. of NaOH$
	558.5 550 5 - Fa 558.5		(0.5-a) × 1000 + $a$ × 1000 - 26.7 × 0.4
	558.5  g Fe 1000000000000000000000000000000000000		$\frac{1}{49} \times 1000 + \frac{1}{80/2} \times 1000 = 26.7 \times 0.4$
	$= 2 \times 5$ mole C $= 2 \times 60$ g C		$\therefore$ $a = 0.103$
411	(d)		:. % of SO ₃ = $\frac{0.103}{100} \times 100 = 20.6\%$
	20  g  N, then mol. wt. = 100	420	- 0.5
	14 g <i>N</i> , then mol. wt. $=\frac{100 \times 14}{20} = 70;$	120	Given moles of $Ba(OH)_{a}=0.205$
	At least one <i>N</i> atom must present in one molecule.		$Ba(0H)_{2} + CO_{2} \rightarrow BaCO_{2} + H_{2}O$
412	(a)		$\therefore 0.205 \text{ moles of Ba(OH)}_2 \equiv 0.205 \text{ moles of Ba(Oa)}_2$
	$C H OH \xrightarrow{-H_2O} C H$		$\therefore$ Mass of BaCO ₂ =moles of BaCO ₂ × molecules
I	$\begin{array}{cccc} c_6 & \pi_{13} & \text{OII} & \longrightarrow & c_6 \pi_{12} \\ \text{mol. wt.} & ^{102} & & \text{mol. wt. 84} \end{array}$		more of Dates in Dates of Dates A more ales
			P a g e <b>  57</b>

mass of BaCO₃  $= 0.205 \times 197.3$ = 40.5 g422 **(b)**  $M = \frac{5.3}{106 \times 1} = \frac{1}{20}$ 423 (a) Meq. of conc.  $AgNO_3 = Meq. of dil. AgNO_3$  $\frac{40 \times 10^{-3}}{170} \times 1 = \frac{16 \times 10^{-3}}{170} \times V,$ i.e.,  $V = 2.5 \, {\rm m}$ 426 (b)  $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$ Mole ratio of  $CH_4: O_2:: 1: 2$ 427 (b) Meq. of CO₂ in mixture  $=\frac{20}{40} \times 1000 = 500$  $\therefore$  Mole of CO₂ in mixture  $=\frac{500}{2\times 1000}=\frac{1}{4}$  (Eq. wt. of CO₂ = M/2) : Mole of CO in mixture =  $\frac{3}{4}$ If this CO is completely oxidised to  $\mathrm{CO}_2$  then mole of CO₂ formed =  $\frac{3}{4}$  $\therefore$  Total mole of  $CO_2 = \frac{1}{4} + \frac{3}{4} = 1$ : Mole of NaOH required  $= 2 \times \text{mole of } \text{CO}_2 = 2 \times 1 = 2$ :.Wt. of NaOH required =  $2 \times 40 = 80$  g 428 (b) Eq. wt.  $=\frac{\text{mol. wt.}}{\text{basicity}} = \frac{M}{2} = \frac{98}{2} = 49;$ Basicity = 2; Only two H are replaced. 429 (a) 4 g He = N atoms. 430 (a) ppm a unit to express hardness is amount of CaCO₅ present in  $10^6$  g H₂O of a given sample. 431 (a) Eq. of metal = Eq. of oxygen  $\frac{\frac{80}{E}}{E} = \frac{\frac{20}{8}}{8}$ E = 32... 432 (a) Meq. of  $AgNO_3 = 100 \times 1 = 100$ ; Meq. of  $CuSO_4 = 100 \times 1 \times 2 = 200$ ; Thus, H₂S is also needed in the same ratio. 433 (c) 22.4 litre  $O_2$  at STP = 1 mole. 434 (a)  $N_{\rm HCl} = \frac{0.03659 \times 1000}{36.5} = 1.002 N$  $N_{\rm CH_3COOOH} = \frac{0.04509 \times 1000}{60} = 0.7515 N$ 435 (b)

Eq. wt. =  $\frac{\text{mol.wt.}}{\text{basicity}}$ 436 (c)  $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ 1 mol 3 mol Volume of 1 mole carbon monoxide =22.4 L (at STP) 1 mole of ferric oxide is reduced by=3 moles of CO  $= 3 \times 22.4 \text{ L of CO}$  $= 67.2 \text{ dm}^3 \text{ of CO}$ 437 (c)  $PV = \frac{W}{m}RT$  $1 \times \frac{224}{1000} = \frac{1}{m} \times 0.0821 \times 273$  $\therefore$  Mol. wt. of gas =100 Now 3 N atoms (triatomic gas) weighs 100 g  $\therefore$  1 atom of gas weights  $= \frac{100}{3N} = \frac{100}{3 \times 6.023 \times 10^{23}} g$ = 5.53 × 10⁻²³ g 438 (b) Weight of empirical formula CH₂=14 Mass of 1 mole=molecular weight=56  $n = \frac{\text{molecular weight}}{\text{empirical formula weight}} = \frac{56}{14} = 4$ Molecular formula= $(CH_2)_4$  $= C_4 H_8$ 439 (c) 5. Atoms in 2.0 mol of  $S_8 = 2 \times 8 \times 6.02 \times 10^{23}$  $= 9.632 \times 10^{24}$ 2. Atoms in 6.0 mol of  $S=6 \times 6.02 \times 10^{23}$  $= 3.612 \times 10^{24}$ 6. Atoms in 5.5 mol of  $SO_2 = 3 \times 5.5 \times 6.02 \times 10^{23} = 9.93 \times 10^{24}$ Atoms in 4.48 L of CO₂ at STP= $\frac{3 \times 4.48 \times 6.02 \times 10^{23}}{22.4}$ 7.  $= 3.612 \times 10^{23}$ 440 (a) The definition of % by weight. 441 (a) 1 mole of MgSO₄ = M g  $\approx$  120 g 442 (c) Mole fraction of alcohol =  $\frac{1}{1+4} = \frac{1}{5}$ ;

	<b>.</b> .	M. f. of w	vater = $4/5$		
443	(d)				
	Valence =	$\frac{26.89}{8.9} \approx 3$	}		
	∴ Exact at	wt. = 8.9	$9 \times 3 = 26.7$		
444	(c)				
	As both th	e reactar	nts are consur	ned completely,	
	thus the ra	atio of sto	oichiometric c	coefficients would	
	be 0.75 : 2	or 3:8			
	So,	_			
	$3A_4 + 80_2$	$2 \rightarrow Proc$	luct		
	Now as fir	ial pressi	are is half of o	xygen initially,	
	halance th		Iorinula Will	$A_3 O_4 lo$	
	$34. \pm 80.$	$\rightarrow 44_{-1}$	$\Omega_{i}$	е,	
445	(h)	/ 1113	04		
110	$M_{N_{2},CO_{2}} =$	$= M_{Na^+} \times$	$2 = M_{CO^{2-}}$		
	and $M$	2	$5.3 \times 1000 - 0.0$	<b>FF</b>	
		$a_2 CO_3 - \frac{1}{10}$	$106 \times 250$ – 0.9	55	
110	Thus (b) 1	s correct			
440	(c) 2NO $\pm$ O.	$\rightarrow 2NO$			
	2110 1 02	/ 21102	2		
	32g	$3 \times 4$	l6g		
	: 92 g NO	a uses Oa	= 32g		
		2 4365 02	528		
	∴ 10 g NO	₂ uses O ₂	$r = \frac{32}{92} \times 10 =$	3.48g	452
4 4 7	(-)				
447	(C) Milli mole	in of I -	- 490 v 15 -	720	
	Milli mole	- in of II	- 400 × 1.3 – = 520 × 1.2 =	= 624	453
		otal mm :	$= 720 \times 1.2 =$	= 1344	
		Total V =	= 480 + 520		151
		=	= 1000 ML		434
	∴ <i>M</i>	× 1000 =	= 1344		
	or	<i>M</i> =	= 1.344		455
449	(c)				
	Camphor	is used in	molecular m	ass determination	
	due to vol	atile natu	ire. The meth	od is called Rast's	
	camphor 1	nethod. (	Camphor acts	as a solid solvent	456
450	which is v	olatile, h	ence can be re	emoved easily.	100
450	(b) Weight of	a almont -	- unsight of co	lution maight of	
	NaCl	solvent =	= weight of so	iution – weight of	
	11401	:	$= 1.0585 \times 10^{-10}$	000 - 58.5	
		:	= 1058.5 - 58	3.5 = 1000  g = 1	
	kg			C C	
	m — –	mole of I	NaCl1	— 1	
	m = weight	ht of solv	ent in kg = $\frac{1}{1}$	- 1	
451	(c)	l			
	Elemen	%	Relative	Simplest ratio	
	t		no. of atom		

	С	49.3	$\frac{49.3}{$	4.1		
	TT	6.04	12 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 -	2.74		
	H	6.84	<u>0.04</u> 1	$= 1.5 \times 2 = 3$ 6.84		
			= 6.84	2.74		
	0	43.86		$= 2.5 \times 2 = 5$		
			43.86	2.74		
			16	$\frac{2.74}{2.74} = 1 \times 2$		
			= 2.74	2.74		
	The empir	ical form	ula is C ₂ H ₅ O ₂			
	Empirical	formula	weight			
	$=(3 \times 12)$	) + (5 ×	$(1) + (2 \times 16)$			
	= 36 + 5 -	+ 32	, , ,			
	= 73					
	Molecular	wt. of th	e compound			
	$= 2 \times VD$		•			
	$= 2 \times 73$					
	=146					
		mol. wt	-			
	$n = \frac{1}{\text{empir}}$	rical form	nula wt.			
	_ 146					
	73					
	= 2					
	Molecular	formula	empirical fo	rmula× 2		
	$= (C_3H_5O_3)$	₂ ) × 2				
	$= C_6 H_{10} O_2$	4				
52	(c)					
	10 % gluce	ose mear	is 10 g glucos	e is present in		
	100 mL solution.					
53	(b)			-		
	1 molecule	es of Ca(	$OH)_2$ contains	s 5 atoms;		
- ,	$\therefore$ 1 mole co	ontains 5	N atoms			
94						
	$H_3PU_3$ is C	liabasic a	icia, thus.			
	$N = Z \times M$	$I = 2 \times 0$	0.3 = 0.6			
55	(C) Mag. of co	rhanata	- Mag of agid	I.		
	0.84		= Meq. of actu	l;		
	$\therefore$ E	-×1000	$=40 \times \frac{1}{2}$			
	:	Ε	= 42			
56	(c)					
	Avogadro'	s numbe	er depends u	pon the basis of		
	atomic we	ight scal	e			
	12g C =	≡ 6.023	$\times 10^{23}$ atoms			
	6g C	$\equiv \frac{6.023 \times 1}{13}$	$\frac{10^{23} \times 6}{2} = \frac{1}{2} \times 6$	$.023 \times 10^{23}$ atoms		
	or 1 amu	$=\frac{1}{-}=-$	$\frac{2}{2} = 3.3$	$\times 10^{-24}$ g		
	Lot mol m	N 6.0	$23 \times 10^{23}$	1 amu		
	Let more mass of all element be <i>M</i> affilit Then $M$ amough $M \propto 2.2 \times 10^{-24}$					
	$M_{\text{eq}} = f_1 \text{ male} = M_{\text{eq}} + 2.3 \times 10^{-24} \text{ m}$					
	Mass 01 1	more = 1	M + 2 2 4 10	$-24 \dots 1 \dots 6 000$		
		=	$M \times 3.3 \times 10$	$x = \frac{1}{2} \times 6.023 \times 6.023 \times 10^{-1}$		

10²³g

= M g

## 457 **(c)**

Given, vapour density=70  $\therefore$  Molecular weight=2 × vapour density  $= 2 \times 70 = 140$   $[CO]_x = (12 + 16)_x = (28)_x$   $\therefore (28)_x = 140$   $x = \frac{140}{28} = 5$  $\therefore$  Formula is (CO)₅.

#### 458 (d)

Number of gram equivalents of HCl =  $\frac{100 \times 0.1}{1000} = 0.01$ 

Number of gram equivalents of HCl=Number of gram equivalents of metal carbonate

$$0.01 = 0.01$$

Therefore, mass of 1 g equivalents of carbonate salt

$$=\frac{2}{0.01}=200g$$

Equivalent mass of metal carbonate=200 460 (d)

By using

Valency of an element =  $\frac{approximate weight}{equivalent weight}$ 

 $= \frac{26.8/\text{specific heat}}{\text{equivalent weight}}$  $= \frac{26.8/1.05}{9} = 2.835 \cong 3$ 

Now, by using Atomic weight=equivalent weight× valency  $9 \times 3 = 27$ 

## 461 **(a)**

2 mole of  $H_2O = 36 \text{ g } H_2O = 2N$  molecules . 462 (c) Mol. wt. of chloride =  $66 \times 2 = 132$ 

Let metal chloride be  $MCl_n$ 

Eq. of metal = Eq. of 0  $\therefore \qquad \frac{53}{E} = \frac{47}{8}$   $\therefore \qquad E = 9$   $\therefore \qquad 9 \times n + 35.5n = 132$   $\therefore \qquad n \approx 3$   $\therefore \qquad At. wt. of metal = 27$ 

## 463 **(a)**

111 g CaCl₂ contains Nions of Ca²⁺ and 2N ions of Cl⁻.

464 (a)

% by weight =  $\frac{\text{weight of solute}}{\text{weight of solution}} \times 100$ Or  $40 = \frac{w}{(w+60)} \times 100$ 

w = 40 g  
465 (a)  

$$JPa^{-1} = \frac{J}{Pa}$$

$$= \frac{\text{work}}{\text{pressure}} = \frac{N-m}{N/m^{2}}$$

$$= m^{3}$$
466 (a)  

$$N = \frac{(24.5 \times 1000)}{(98/2) \times 250} = 2;$$

$$M = \frac{(24.5 \times 1000)}{98 \times 250} = 1$$
467 (c)  
mol. wt. of  $MCl_{2} = 2 \times 32.7 + 71 = 136.4$ 
468 (a)  
 $3.4 \text{ g S} = 100 \text{ g insulin}$   
 $\therefore 32 \text{ g S} = \frac{100 \times 32}{3.4} = 941.176$   
Insulin must contain at least one atom of S in its one molecule.  
469 (b)

Mg₃(PO₄)₂; mole 8 mole of O-atom are contained by 1 mole Mg₃(PO₄)₂. Hence, 0.25 moles of O-atom  $=\frac{1}{8} \times 0.25$  mole Mg₃(PO₄)₂

$$= 3.125 \times 10^{-2}$$

## 470 **(c)**

Gram molecular weight is expressed in g  $mol^{-1}$ , *i. e.*, weight of one mole of substance.

#### 471 (d)

Number of oxygen atom in 2 g of CO =  $\frac{2}{28} \times 6.022 \times 10^{23} \times 1$ 

Number of oxygen atom in 2 g of CO₂

$$=\frac{2}{44} \times 6.022 \times 10^{23} \times 2$$

Number of oxygen atom in 2 g of  $SO_2$ 

$$=\frac{2}{64} \times 6.022 \times 10^{23} \times 2$$

Number of oxygen atom in 2 g of H₂O =  $\frac{2}{18} \times 6.022 \times 10^{23} \times 1$ 

Hence, 2 g of  $\rm H_2O$  has maximum number of atoms of oxygen.

Z

*mM* of AgNO₃ = 0.1 × *V*  
*mM* of NaCl = 0.2 × *V*  
∴ *mM* of NO₃⁻ = 0.1 × *V* and total *V* = 2*V*  
∴ [NO₃⁻] = 
$$\frac{0.1 \times V}{2V}$$
 = 0.05  
473 (a)  
Eq. mass of copper chloride = 99  
Eq. mass of copper = 99 -35.5 = 63.5  
∴ Valency of copper =  $\frac{at \max so f copper}{eq.mass of copper}$  = 1  
∴ Formula of copper chloride is CuCl.  
475 (d)  
g-atom of  $X = \frac{75.8}{75}$   
g-atom of  $Y = \frac{24.2}{16}$ , find simple ratio.  
476 (a)  
(a) 0.1 mole of CO₂  
(b)  $\frac{11.2}{22.4}$  = 0.5 mole of CO₂  
(c)  $\frac{22}{44}$  = 0.5 mole of CO₂  
Equal numbers of moles have equal number of molecules.  
Hence, the smallest number of molecules of CO₂ is in 0.1 mole of CO₂.  
477 (b)  
Required equation is given below,  
Zn + 20H⁻ → ZnO₂²⁻ + 2H⁺ + 2e⁻  
NO₃ + 8H⁺ + 8e⁻ → 0H⁻ + 2H₂O + NH₃  
From the above equation  
 $\therefore$  8 moles of electron absorbed by 85 g of NaNO₃  
 $\therefore$  1 mole of electron absorbed by 85 g of NaNO₃  
 $\therefore$  1 mole of electron absorbed by  $\frac{85}{8}$  g of  
NaNO₃ = 10.625 g  
478 (b)  
60 g NH₂CONH₂ has 28 g N  
 $\therefore$  100 g urea has  $N = \frac{28 \times 100}{60}$   
479 (d)  
*m* mole = *M* × *V*  
 $\therefore$   $V = \frac{0.1}{0.8} = 0.125$  mL  
480 (a)  
At wt × specific heat (in cal/g)  $\approx$  6.4 and  $E = \frac{mol. wt}{100}$ 

valency

1 g-atom Ag = 108 g

481 (c)

482 **(b)** 

three significant figures. 483 (a) 249.6 g CuSO₄  $\cdot$  5H₂O contains 90 g H₂O. 484 (a) Mole = 3;Wt. of solvent = 1000 g; Wt. of solution =  $1000 + 3 \times 40 = 1120$ ... g: Volume of solution =  $\frac{1120}{1.10}$  mL  $M = \frac{3}{\frac{1120}{1.110 \times 1000}} = 2.9732$ :. :. 485 (b) g-atom of metal  $=\frac{60}{24}$ ; g-atom of oxygen  $=\frac{40}{16}$ ; find simple ratio. 487 (a)  $\overset{+5}{3\text{HClO}_3} \xrightarrow{\phantom{aaaa}} \overset{+7}{\text{HClO}_4} + \overset{0}{\text{Cl}_2} + 2\text{O}_2 + \text{H}_2\text{O}$ Equivalent mass of  $HClO_3 = \frac{molar mass}{change in oxidation no.}$  $=\frac{84.45}{5}=16.89$ (When it acts as an oxidising agent) 488 (a) 1 molecule of CH₃COOH contains 8 atoms;  $\therefore$  1 mole contains 8 N atoms 489 (a) specific gravity =  $\frac{\text{wt. of solution}}{\text{volume of solution}}$ 491 (b)  $m = \frac{18 \times 1000}{60 \times (1500 \times 1.052 - 18)} = 0.19$ 492 (b) Average atomic weight at. wt.× relative abundance + at. wt.× relative ał 100  $=\frac{85\times75+87\times25}{100}$ = 85.5493 (a) A molar solution has molarity =1; A centimolar solution has molarity = M/100. A decimolar solution has molarity M/10; A decamolar solution has molarity = 10M. 494 (d)  $\frac{2.568 \times 5.8}{4.168} = \frac{15}{4.168} = 3.6057$ Answer in significant figures = 3.6495 (c)

4.523 + 2.3 + 6.24 = 13.063. As 2.3 has least number of decimal places *i. e.*, one, therefore sum should be reported to one decimal place only. After rounding off, reported sum=13.1 which has

 $X_2$ 0 has X : 0 :: 14 : 16 $\therefore$  At. wt. of X = 7496 (c) X is  $AB_4$ . 497 (d) 1 mole  $P_4 = N$  molecules of  $P_4 = 4 N$  atoms of  $P_4$ . 498 **(b)**  $M_{\rm NaCl} = \frac{5.85}{58.5 \times 1} = 0.1$ 499 (c)  $M_{\rm HCl} = 1;$  $M_{\rm H_2SO_4} = \frac{0.4}{2} = 0.2$  $M_{\rm Na_2CO_3} = \frac{0.1}{2} = 0.05$ 500 (d) The amu represents atomic mass unit. It is used in place of unified mass unit. 1 u = 1 Avogram = 1 Aston = 1 Dalton  $1 \text{ u} = \frac{1}{12} \times \text{mass of C} - 12 \text{ atom}$  $=\frac{1}{12} \times 1.9924 \times 10^{-23} \text{ g}$  $= 1.66 \times 10^{-24} \text{ g} = 1.66 \times 10^{-27} \text{ kg}$ 501 (a) 1 mole of Ag  $\approx$  108 g = M g 502 (a) wt. of  $Cl_2 = 1$  mole = 71 g wt. of chloride = 111 g $\therefore$  wt. of metal = 111 - 71 = 40 g Now Eq. of Cl = Eq. of metal  $\therefore \frac{71}{35.5} = \frac{40}{E}$  or  $E_{\text{metal}} = 20$ ; Now *E* g metal will displace  $1 \text{ g H}_2$  and since 2 g $H_2$  is displaced by same amount, Thus 2 *E* g of metal are used. Therefore, 2E is at. wt. of metal. 503 (a) Oxalic acid is  $H_2C_2O_4$  and it is dibasic and thus, E = M/2504 (b) Molarity is mole of solute present in one litre solution. 505 (c) Meq. of  $NaH_2PO_4 = Meq.$  of NaOH; Thus,  $\frac{12}{120/2} \times 1000 = 1 \times V$  $V = 200 \, \text{mL}$ 506 (a) Atoms in 1 molecule of  $C_{12}H_{22}O_{11} = 45$ ; :. atom in N molecule = 45 N507 (c)

 $S + O_2 \rightarrow SO_2$ 32 g 32 g 1 mole 22.4 L 1 mole of S required volume of  $O_2 = 22.4 L$ So, 1.5 mole of S required volume of  $O_2 = 22.4 \times 1.5 = 33.60 \text{ L}$ 508 (c)  $H_2O$  is the limiting reagent for the above equation. 509 (a) 1 mole=molecular mass in gram= $6.02 \times 10^{23}$ molecules Given mass of  $CO_2 = 44$  g Molecular mass of  $CO_2 = 12 + 16 \times 2 = 44$ No. of molecules in 44 g of CO₂  $= 6.02 \times 10^{23}$ 510 (a) Given, volume of  $O_2 = 1L$  $\therefore$  22.4 L of O₂ at STP = 32 g 1 L of  $O_2$  at STP =  $\frac{32}{22.4}$  g :. = 1.43 g511 (a) Number of atoms in 24 g of C =  $\frac{24}{12} \times 6.02 \times 10^{23}$  $=2 \times 6.02 \times 10^{23}$ Number of atoms in 56 g of Fe =  $\frac{56}{56} \times 6.02 \times 10^{23}$ Number of atoms in  $26 \text{ g of Al} = \frac{26}{27} \times 6.02 \times 10^{23}$  $\approx 6.02 \times 10^{23}$ Number of atoms in 108 g of Ag =  $\frac{108}{108} \times 6.02 \times$  $10^{23}$  $= 6.02 \times 10^{23}$ 513 (d) On dilution since volume of solution changes and this normality, molarity molality changes. The equivalent  $\left(\frac{\text{wt.}}{\text{eq.wt.}}\right)$ , mole  $\left(\frac{\text{wt.}}{\text{mol.wt}}\right)$  do not change. 514 (d) In 1 L air, volume of  $O_2 = 210 cc$  $\therefore$  22400 cm³ = 1 mol

$$\therefore 210 \text{ cm}^3 = \frac{210}{22400} = 0.0093 \text{ mol}$$

515 **(b)** 

According to Avogadro's hypothesis one gram mole of a gas at NTP occupies 22.4 L.

516 **(a)** 

 $SnCl_{2} + Cl_{2} \rightarrow SnCl_{4}$   $\frac{190}{E_{1}} = \frac{71}{35.5}$   $E_{1} = 95$ 

517 **(b)** 

The standard adopted for the determination of atomic weight of elements is based on  $C^{12}$ .

518 (d)



Molecular weight of  $C_6H_5OH = 94$ Atomic weight of Br=80 Amount of Br utilized=480 g  $\therefore 94$  g of  $C_6H_5OH$  reacts with 480 g of bromine.  $\therefore 2g$  of  $C_6H_5OH$  will react with= $\frac{480\times 2}{94}$ =10.2 g 519 (a) NaOH + H₂SO₄  $\rightarrow$  NaHSO₄ + H₂O; Eq. wt. of H₂SO₄ = Mol. wt./1

520 (d)

1 mole of  $O_2$  has 32 g; the highest value in all the given data.

 $2NaOH + H_2SO_4 \rightarrow NaHSO_4 + H_2O;$ 

Eq. wt. of  $H_2SO_4 = Mol. wt./2$ 

521 (b)  $17 \text{ g NH}_3 = N \text{ molecules.}$ 522 (a) wt. of V mL = wg. : wt. of 22400 mL =  $\frac{W \times 22400}{V}$  = Mol. wt. (since I mole occupies 22400 mL at STP) 523 (a)  $2NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + H_2O + CO_2$ 2 mol 1 mol : 2 mole NaHCO₃ on decomposition gives = 1 moles Na₂CO₃  $\div$  0.2 mole NaHCO_3 on decomposition will give  $=\frac{1}{2} \times 0.2$  $=0.1 \text{ mol } \text{Na}_2\text{CO}_3$ 524 (a)  $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$ 22400*c*m³ 8 g of calcium will produce =  $\frac{22400 \times 8}{40}$  $= 4480 \text{ cm}^3$ 525 (a) Weight of C-14 isotope in 12 g sample  $=\frac{2 \times 12}{100}$ No. of C-14 isotopes =  $\frac{2 \times 12 \times N}{100 \times 4}$  = 1.032 :.  $\times 10^{22}$  atoms