

Single Correct Answer Type

1.	A super saturated solution is a metastable state of so a) Is equal to the solubility of that substance in water b) Exceeds than its solubility c) Less than its solubility d) Continuously change	lution in which solute conc	entration.
2	Colligative properties of a solution depends upon		
2.	a) Nature of both solvent and solute	h) Natura of colute only	
	a) Number of solvent particles	d) The number of colute on	articles
2	c) Number of solvent particles	a) The number of solute p	
3.	The partition coefficient of solute X in between in	imisciple liquids A and B	is 10 in favour of A. The
	partition coefficient of X in favour of B is :		N 400
	a) 0.1 b) 10	c) 0.01	d) 100
4.	Which one is a colligative property?	_	
	a) Raoult's law states that the vapour pressure of a confraction	omponent over a solution i	s proportional to its mole
	b) The osmotic pressure (π) of a solution is given by the solution	the equation $\pi = MRT$, wh	ere , <i>M</i> is the molarity of
	The correct order of osmotic pressure for 0.01 M a c) $KCl > CH_2COOH >$ sucrose	aqueous solution of each co	ompound is BaCl ₂ >
	d) Two sucrose solutions of same molality prepared depression	in different solvents will h	ave the same freezing point
5	$At25^{\circ}C$ the highest osmotic pressure is exhibited by	0.1 M solution of	
5.	a) Urea b) Glucose	c) KC	d) $CaCl_{a}$
6	The vaneur prossure of two liquids Kand Vare 80 and	d 60 Torr rosportivoly. Th	d total vanour prossure of
0.	the ideal colution obtained by miving 2 males of Van	d 2 malas of Vursuld ha	e total vapour pressure of
	a) 69 Torr b) 140 Torr	a) 19 Torr	d) 72 Torr
7	a) 00 1011 D) 140 1011 Dilute 1 L and maler II CO, solution by 5 L water the	CJ 40 1011 normality of that colution	
7.	Diffute 1 L one motor H_2SO_4 solution by 5 L water, the		
0	a) 0.33 N D) 33.0 N	$C_{\rm J}$ U.11 N	
8.	Solution A contains 7 g/L of $Mgc t_2$ and solution B co	ntains / g/L of Naci. At re	bom temperature, the
	osmotic pressure of		
	a) Solution A is greater than B		
	b) Both have same osmotic pressure		
	c) Solution <i>B</i> is greater than <i>A</i>		
	d) Cannot be determine		
9.	Which one of the following aqueous solutions will ex	hibit highest boiling point?	
	a) $0.01 \text{ M} \text{ Na}_2 \text{SO}_4$ b) $0.01 \text{ M} \text{ KNO}_3$	c) 0.015 M urea	d) 0.015 M glucose
10.	The modal elevation constant of water is 0.52°C. The (assuming complete dissociation of KCl), therefore, s	boiling point of 1.0 modal hould be	aqueous KCl solution
	a) 98.96°C b) 100.52°C	c) 101.04°C	d) 107.01°C
11.	The increase in boiling point of a solution containing	0.6 g urea in 200 g water i	s 0.50° <i>C</i> .Find the molal
	elevation constant.		
	a) 10 K kg mol ⁻¹ b) 10 K g mol ⁻¹	c) 10 K kg mol	d) 1.0 K kg mol ^{–1}
12.	Which is correct representation of phase rule?		
	a) $F = P + C + 2$		
	b) $F + P = C + 2$		
	c) $F + C = P + 2$		
	d) None of these		

13.	40% by weight solution wi	ll contain how much mass	of the solute in 1L solution	n, density of the solution is		
	1.2 g/mL?					
	a) 480 g	b) 48 g	c) 38 g	d) 380 g		
14.	20 g of binary electrolyte (mol. wt. =100) are dissolv	ved in 500 g of water. The c	lepression in freezing point		
	of the solution is $0.74^{\circ}C$ (<i>l</i>	$k_f = 1.86 \ Km^{-1}$) the degr	ee of ionisation of the elec	trolyte is		
	a) 0%	b) 100%	c) 75%	d) 50%		
15.	What is the molality of pur	e water?				
	a) 1	b) 18	c) 55.5	d) None of these		
16.	Iodine was added to a syst	tem of water and CS_2 . The	concentrations of iodine in	n water and CS ₂ were found		
	to be c_1 and c_2 respectively	7. The ratio c_1/c_2 will not c	change only if :			
	a) More iodine is added					
	b) More water is added					
	c) More CS ₂ is added					
	d) The temperature is char	nged				
17.	Which of the following asso	ociated with isotonic solut	ions is not correct?			
	a) They will have the same	osmotic pressure				
	b) They will have the same	vapour pressure				
	c) They have same weight	concentrations				
	d) Osmosis does not take p	lace when the two solutio	ns are separated by a semi	permeable membrane		
18.	The freezing point (in °C)	of a solution containing 0.	1 g of K ₃ [Fe(CN) ₆] (mol.w	t.329) in 100 g of water is :		
	$(K_f = 1.86 \ K \ \text{kg} \ \text{mol}^{-1})$					
	a) -2.3×10^{-2}	b) -5.7×10^{-2}	c) -5.7×10^{-3}	d) -1.2×10^{-2}		
19.	The Henry's law constant f	for the solubility of N_2 gas	in water at 298 K is 1.0 $ imes$	105 <i>atm</i> . The mole fraction		
	of N_2 In air is 0.8 The num	nber of moles of N_2 from a	air dissolved in 10 moles	of water of 298 K and 5 atm		
	pressure is					
	a) 4 \times 10 ⁻⁴	b) 4.0 $\times 10^{-5}$	c) 5.0 $\times 10^{-4}$	d) 4.0 $\times 10^{-6}$		
20.	Van't Hoff factor more than	n unity indicates that the s	olute in solution has			
	a) Dissociated	b) Associated	c) Both (a) and (b)	d) Cannot say anything		
21.	The condition for the valid	ity of Henry's law are :				
	a) The pressure should not	t be too high				
	b) The temperature should	l not be too low				
	c) The gas should neither o	lissociate not enter into cl	nemical combination with s	solvent		
	d) All of the above					
22.	In an osmotic pressure me	asurement experiment, a S	5% solution of compound '	X'is found to be isotonic		
	with a 2 % acetic acid solut	tion . The gram molecular	mass of 'X' is			
	a) 24	b) 60	c) 150	d) 300		
23.	Which is a colligative prop	erty?				
	a) Osmotic pressure	b) Free energy	c) Heat of vaporisation	d) Change in pressure		
24.	K_f for water is 1.86 K-kg-mol ⁻¹ . If your automobile radiator holds 1.0 kg of water, how many grams of					
	ethylene glycol ($C_2H_6O_2$) must you add to get the freezing point of the solution lowered to $-2.8^{\circ}C$?					
	a) 93 g	b) 39 g	c) 27 g	d) 72 g		
25.	Vapour pressure of a solve	nt containing non-volatile	solute is :			
	a) More than the vapour p	ressure of a solvent				
	b) Less than the vapour pr	essure of solvent				
	c) Equal to the vapour pres	ssure of solvent				
	d) None of the above					
26.	Among the following mixtu	ires, dipole-dipole as the n	najor interaction is presen	t in :		
	a) Benzene and ethanol					
	b) KCl and water					

c) Acetonitrile and acetone

	d) Benzene and CCl ₄		
27.	The vapour pressure of water depends upon :		
	a) Surface area of container		
	b) Volume of container		
	c) Temperature		
	d) All of these		
28	Which of the following solution highest boiling point	7	
20.	a = 0.1 M uros b) 0.1 M sucross	c = 0.1 M NaNO	d) 0.1 M $Al(NO)$)
20	a) 0.1 M utea D 0.1 M success	C_{j} 0.1 M NuNO ₃	$U_{J} 0.1 \text{ M } At(N U_3)_3$
29.	At certain temperature a 5.12% solution of care suga	ar is isotonic with a 0.9% so	Siution of an unknown
	solute. The molar mass of solute is		
	a) 60 b) 46.17	c) 120	d) 90
30.	A mixture of ethane and ethene occupies 41 L at 1 at	m and 500 K. the mixture r	eacts completely with $\frac{10}{3}$
	mole of O_2 to produce CO_2 and H_2O . The mole fraction	on of ethane and ethene in	the mixture are
	$(R = 0.082L \text{ atm } \text{K}^{-1} \text{ mol}^{-1})$ respectively		
	a) 0.50, 0.50 b) 0.75, 0.25	c) 0.67. 0.33	d) 0.25. 0.75
31	If sodium sulphate is considered to be completely dis	sociated into cations and a	mions in aqueous solution
01.	the change in freezing point of water (ΛT_c) when 0.0	1 mole of sodium sulphate	is dissolved in 1 kg of
	writer is $(h_{f} = 1.0)$ (k/s mol ⁻¹)	i more of sourcin surplice	
	water, is $(\kappa_f = 1.00 \text{ Kg mion})$		
~~	a) 0.0372 K b) 0.0558 K	c) 0.0744 L	d) 0.0186 K
32.	2.5 L of NaCl solution contain 5 moles of the solute.W	/hat is the molarity ?	
	a) 5M b) 2M	c) 2.5M	d) 12.5M
33.	If for a sucrose solution elevation in boiling point is 0).1°C then what will be boil	ing point of NaCl solution
	for the same molal concentration?		
	a) 0.1 b) 0.2	c) 0.16	d) 0.26
34.	In two solutions having different osmotic pressure, t	he solution of higher osmo	tic pressure is called :
	a) Isotonic solution		
	b) Hypertonic solution		
	c) Hypotonic solution		
	d) None of these		
35.	Isotonic solution have the same		
	a) Normality b) Density	c) Molar concentration	d) None of these
36.	Vapour pressure of pure $A = 100$ torr. moles = 2: val	pour pressure of pure <i>B</i> =8	0 torr. moles = 3. Total
	vapour pressure of the mixture is	r · · · · · · · ·	,
	a) 440 torr b) 460 torr	c) 180 torr	d) 88 torr
37	Which of the following is incorrect?	0) 100 0011	
57.	a) Relative lowering of vanour pressure is independent	ant of the solute and the so	lvont
	b) The relative lowering of vapour pressure is independent	ativo proporty	
	b) The relative lowering of a solution is lower than the way	gative property.	at
	d) The relative lowering of venous programs is directly	pour pressure of the solver	
20	d) The relative lowering of vapour pressure is direct	iy proportional to the origi	nai pressure.
38.	Density of a 2.05 M solution of acetic acid in water is	1.02 g/mL. The molality of	the solution is
•	a) 23.0//% b) 230.//%	c) 2.3077%	d) 0.23077%
39.	The atmospheric pressure is sum of the		
	a) Pressure of the biomolecules		
	b) Vapour pressure of atmospheric constituents		
	c) Vapour pressure of chemicals and vapour pressur	e of volatiles	
	d) Pressure created on to atmospheric molecules		
40.	Lowering in vapour pressure is the highest for:		
	a) 0.2 <i>m</i> urea		
	b) 0.1 <i>m</i> glucose		
	c) $0.1 m \text{ MgSO}_{A}$		

d) 0.1 *m* BaCl₂ 41. 6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of urea solution is a) 0.1 M b) 0.01 M c) 0.001 M d) 0.02 M 42. The osmotic pressure (At27°C) of an aqueous solution (200 mL) containing 6 g of a protein is 2×10^{-3} atm . If R=0.080 L atm mol⁻¹ K⁻¹, the molecular weight of protein is b) 3.6×10^5 a) 7.2×10^5 c) 1.8×10^5 d) 1.0×10^5 43. 100 cc of 0.6 N H_2SO_4 and 200 cc of 0.3 N HCl were mixed together. The normality of the solution will be a) 0.2 N b) 0.4 N c) 0.8 N d) 0.6 N 44. Mole fraction (\mathcal{X}) of any solution is equal to b) $\frac{\text{no. of gram} - \text{equivalent of solute}}{\text{volume of solution in litre}}$ d) $\frac{\text{no. of moles of any constituent}}{\text{total number of moles of all constituents}}$ no. of moles of solute a) volume of solution in litre
c) no. of moles of solute
mass of solvent in kg a) 45. Which is not a colligative property in the following? b) Boiling point elevation a) pH of a buffer solution c) Freezing point depression d) Vapour pressure lowering 46. The normality of 10% (weight/volume) acetic acid is c) 1.7 N b) 1.3 N d) 1.9 N a) 1 N 47. Two solutions have different osmotic pressure. The solution of lower osmotic pressure is called : a) Isotonic solution b) Hypertonic solution c) Hypotonic solution d) None of these 48. Osmatic pressure is 0.0821 atm at temperature of 300 K. Find concentration in mole per litre b) 0.22×10^{-2} c) 0.33×10^{-2} a) 0.33 d) 0.44×10^{-2} 49. A 5% solution of cane sugar (molar mass 342) is isotonic with 1% of a solution of an unknown solute. The molar mass of unknown solute in g/mol is a) 136.2 b) 171.2 c) 68.4 d) 34.2 50. The distribution law holds good for : a) Heterogeneous systemsb) Homogeneous systems c) Both (a) and (b) d) None of these 51. Two solutions of KNO₃ and CH₃COOH are prepared separately. Molarity of both is 0.1 M and osmatic pressures are p_1 and p_2 respectively. The correct relationship between the osmatic pressures is d) $\frac{p_1}{p_1 + p_2} + \frac{p_2}{p_1 + p_2}$ c) $p_2 > p_1$ a) $p_1 = p_2$ b) $p_1 > p_2$ 52. The freezing point of aqueous solution that contains 5% by mass urea, 1.0% by mass KCl and 10% by mass of glucose is : $(K_f H_2 0 = 1.86 \text{ K molality}^{-1})$ a) 290.2 K b) 285.5 K c) 269.93 K d) 250 K 53. Which of the following solutions has the highest normality? a) 6 g of NaOH/100 mL b) $0.5 \text{ M H}_2\text{SO}_4$ c) N phosphoric acid d) 8 g of KOH/L 54. 100 mL of 0.3 HCl is mixed with 200 mL of 0.6 N H₂SO₄. The final normality of the resulting solution will be a) 0.3 N b) 0.2 N d) 0.1 N c) 0.5 N 55. A solute when distributed between two immiscible phases remains associated in phase II and dissociated in phase I. If α is the degree of dissociation and *n* is the number of molecules associated then : b) $K = \frac{c_{\rm I}}{\sqrt[n]{c_{\rm II}(1-\alpha)}}$ c) $K = \frac{c_{\rm I}}{c_{\rm II}(1-\alpha)}$ d) $K = \frac{c_{\rm I}(1-\alpha)}{\sqrt[n]{c_{\rm II}}}$ a) $K = \frac{c_{\rm I}}{c_{\rm II}}$ 56. Which solution would exhibit abnormal osmotic pressure? a) Aqueous solution of urea b) Aqueous solution of common salt c) Aqueous solution of glucose

d) Aqueous solution of sucrose

57.	If α is the degree of disso mass is	ociation of Na_2SO_4 the van't	t Hoff factor (<i>i</i>) used for cal	culating the molecular		
	a) 1 – 2 α	b) 1 + 2 α	c) 1 – α	d) 1 + α		
58.	The temperature at whic	ch vapour pressure of a solv	vent in its liquid and solid p	hase becomes same is called		
	:					
	a) b. p.	b) f. p.	c) Krafft point	d) None of these		
59.	The vapour pressure of a	a pure liquid <i>A</i> is 40 mm Hg	at 310 K. The vapour press	sure of this liquid in a		
	solution with liquid <i>B</i> is	32 mm Hg. What is the mol	e fraction of <i>A</i> in the solution	on if it obeys the Raoult's		
	law?					
	a) 0.5	b) 0.6	c) 0.7	d) 0.8		
60.	Which of the following sl	hows maximum depression	in freezing point?			
	a) $K_2 SO_4$	b) NaCl	c) Urea	d) glucose		
61.	The substances whose so	olubility decreases with inc	rease in temperature :			
	a) Ca(OH) ₂	b) Na ₂ CO ₃	c) Na ₂ SO ₄	d) All of these		
62.	3.65 g of HCl is dissolved	l in 16.2 g of water. The mo	le fraction of HCl in the rest	ulting solution is		
	a) 0.1	b) 0.2	c) 0.3	d) 0.4		
63.	How many moles of Al_2	$(SO_4)_3$ would be in 50 g of	the substance?			
	a) 0.083 mol	b) 0.952 mol	c) 0.481 mol	d) 0.140 mol		
64.	Phenol dimerises in benz	zene having van't Hoff facto	or 0.54. What is the degree of	of association?		
	a) 1.92	b) 0.98	c) 1.08	d) 0.92		
65.	$0.004 \text{ M} \text{ Na}_2 \text{SO}_4$ is isoto	nic with 0.01 M glucose.De	gree of dissociation of Na ₂ S	50 ₄ is		
	a) 61	b) 244	c) 366	d) 122		
66.	What is the freezing poir	nt of a solution containing 8	.1 g HBr in 100 g water ass	uming the acid to be 90%		
	ionised (k_f for water = 2	1.86 kg mol ⁻¹)?				
	a) –0.35°C	b) –1.35°C	c) −2.35°C	d) –3.53°C		
67.	Choose the correct state	ment.				
	When concentration of a	salt solution is increased				
	a) Boiling point increase	s while vapour pressure de	creases.			
	b) Boiling point decrease	es while vapour pressure in	creases.			
	c) Freezing point decrea	c) Freezing point decreases while vapour pressure increases.				
) Freezing point increases while vapour pressure decreases.					
68.	Which of the following a	queous solutions produce t	he same osmotic pressure?			
	(i)0.1 M NaCl solution					
	(ii) 0.1 M glucose solution					
	(iii)0.6 g urea in 100 mL solution					
	(iv)1.0 g of a non-electro	Solute (X) in 50 mL so	lution (molar mass of $X = X$			
(0)	a) (1), (11), (111)	b) (11), (111), (1V)	C) (1), (11), (1V)	d) (1), (111), (1V)		
69.	In the case of osmosis, solvent molecules move from :					
	a) Higher vapour pressure to lower vapour pressure					
	a) Lower vanour process	to lower concentration	10			
	d) Higher espectic pressu	re to higher vapour pressur	e			
70	If the temperature incre	are to lower osmotic pressu	ne hosphoric prossure, which	of the following processes is		
70.	avported to take place m	ore in case of liquids?	iospheric pressure, which o	of the following processes is		
	a) Freezing	h) Vanorization	c) Sublimation	d) None of these		
71	The freezing point of wa	ter is depressed by 0.37°C i	n = 0.01 mol NaCl solution	The freezing point of 0.02		
, 1.	molal solution of urea is	denressed hv		The meezing point of 0.02		
	a) Hypotonic	b) Isotonic	c) Equimolar	d) Hypertonic		
72.	Camphor is used as sol	vent to determine mol. w	t. of non-volatile solute h	v Rast method because for		
	camphor :			,		

a)	It is	readilv	avai	labl	e
uj	1015	reading	uvun	lubi	c

- b) It is volatile
- c) Molal depression constant is high
- d) It is solvent for organic substances
- 73. The van't Hoff factor *i* for a compound which undergoes dissociation in one solvent and association in other solvent is respectively :
 - a) Greater than one and greater than one
 - b) Less than one and greater than one
 - c) Less than one and less than one
 - d) Greater than one and less than one
- 74. The melting point of most of the solid substances increase with an increase of pressure acting on them. However, ice melts at a temperature lower than its usual melting point, when the pressure increase. This is because :

a) Ice is less denser than water

b) Pressure generates heat

- c) The bonds break under pressure
- d) Ice is not a true solid
- 75. Partition coefficient of benzoic acid-ether-water in favour of ether is 2. A solution containing 8 g/litre benzoic acid in ether layer is shaken with 2 litre water. The concentration of acid in water layer is :
 a) 1
 b) 2
 c) 3
 d) 4
- 76. A solution is prepared by dissolving 24.5 g of sodium hydroxide in distilled water to give 1L solution. The molarity of NaOH in the solution is
 - (Given, that molar mass of NaOH = $40.0 \ g \ mol^{-1}$)
- a) 1000 g of solvent b) 1 L of solvent c) 1 L of solution d) 1000 g of solution 77. Molecular weight of glucose is 180. A solution of glucose which contains 18 g/L, is
 - a) 0.1 molal b) 0.2 molal c) 0.3 molal d) 0.4 molal

78. The elevation in boiling point for one molal solution of a solute in a solvent is called :

- a) Cryoscopic constant
- b) Boiling point constant
- c) Molal ebullioscopic constant
- d) None of the above
- 79. 50 cm³ of 0.2 N HCl is titrated against 0.1 N NaOH solution. The titration is discontinued after adding 50 cm³ of NaOH. The remaining titration is completed by adding 0.5 NKOH. The volume of KOH required for completing the titration is
- a) 12 cm³
 b) 10 cm³
 c) 25 cm³
 d) 10.5 cm³
 80. The depression in f. p. of 0.01 *m* aqueous solution of urea, sodium chloride and sodium sulphate is in the
 - ratio : a) 1 : 1 : 1 b) 1 : 2 : 3 c) 1 : 2 : 4 d) 2 : 2 : 3

81. Colligative properties are used for the determination of a) Molar mass b) Equivalent weigh d) Melting and boiling points c) Arrangement of molecules 82. In a solution of 7.8 g benzene (C_6H_6) and 46.0 g toluene ($C_6H_5CH_3$), the mole-fraction of benzene is a) $\frac{1}{2}$ c) $\frac{1}{5}$ b) $\frac{1}{2}$ d) $\frac{1}{6}$ 83. Mole fraction of solute in an aqueous solution which boils at 100.104. K_b for H₂O = 0.52 K molality⁻¹: b) 0.004 c) 5.6 $\times 10^{-3}$ a) 3.6 $\times 10^{-3}$ d) 0.996 84. On a humid day in summer, the mole fraction of gaseous a H_2O (water vapour) in the air at 25°C can be as high as 0.0287. Assuming a total pressure of 0.977 atm. What is the partial pressure of dry air?

b) Gelatinous $Ca_3[(PO_4)_2]$ c) Plant cell d) Phenol layer 86. Which of the following is true when components forming an ideal solution are mixed? d) $\Delta H_m > \Delta V_m$ a) $\Delta H_m = \Delta V_m = 0$ b) $\Delta H_m < \Delta V_m$ c) $\Delta H_m = \Delta V_m = 1$ 87. The energy that opposes the dissolution of a solute in a solvent is called : a) Solvent energy b) Hydration energy c) Lattice energy d) Ionization energy 88. If molecular interaction of two different liquid molecules are stronger than the molecular interactions of the same liquid molecules the mixture is expected to show : a) Positive deviations b) Negative deviations c) No deviations d) Positive as well as negative deviations 89. Which of the following is not correct for ideal solution? d) Obeys Raoult's law a) $\Delta V_{\rm mix} = 0$ b) $\Delta H_{\rm mix} = 0$ c) $\Delta S_{\text{mix}} = 0$ 90. When mercuric iodide is added to the aqueous solution of potassium iodide, the a) Freezing point is raised b) Freezing point is lowered c) Freezing point does not change d) Boiling point does not change 91. Which statement is wrong for distribution law? a) The two solvents should be mutually immiscible b) The substance should not chemically react with any of the two solvents c) The temperature should not change during experiment d) The concentration of the solute in both the solvents must be kept high 92. How much of 0.1 M H_2 SO₄ solution is required to neutralise 50 mL of 0.2 M NaOH solution? a) 50 mL b) 5.0 mL c) 0.50 mL d) 100 mL 93. A 0.5 molal aqueous solution of a weak acid (HX) is 20 per cent ionized. The lowering in freezing point of this solution is : $(K_f = 1.86 \text{ K/m for water})$ a) 0.56 K b) -0.56 K c) 1.12 K d) -1.12 K 94. A solution of 4.5 g of a pure non-electrolyte in 100 g of water was found to freeze at 0.465°C. The molecular weight of the solute closest to $(k_f = 1.86)$ b) 172.0 c) 90.0 a) 135.0 d) 180.0 95. If P_0 and P_s are the vapour pressure of solvent and solution respectively and N_1 and N_2 are the mole of solute and solvent then : a) $(P_0 - P_s)/P_0 = N_1/(N_1 + N_2)$ b) $(P_0 - P_s)/P_s = N_1/N_2$ c) $P_s = P_0 \cdot N_2 / (N_1 + N_2)$ d) All of the above 96. A solution is prepared by dissolving 24.5 g of sodium hydroxide in distilled water to give 1L solution. The molarity of NaOH in the solution is (Given, that molar mass of NaOH = 40.0 g mol^{-1}) a) 0.2450 M b) 0.6125 M c) 0.9800 M d) 1.6326 M 97. The relative lowering of vapour pressure of a dilute aqueous solution containing non-volatile solute is 0.0125. The molality of the solution is about c) 0.90 a) 0.70 b) 0.50 d) 0.80 98. The freezing point (in°C) of solution containing 0.1 g of $K_3[Fe(CN)_6]$ (mol. wt 329) in 100 g of water $(K_f = 1.86 \text{ K kg mol}^{-1})$ is

	a) -2.3×10^{-2}	b) -5.7×10^{-2}	c) -5.7×10^{-3}	d) -1.2×10^{-2}
99.	If 0.15 g of a solute, disso	lved in 15 g of solvent, is bo	oiled at a temperature high	er by 0.216°C than that of
	the pure solvent. The mol	lecular weight of the substa	ance (molal elevation cons	tant for the solvent is
	2.16°C) is			
	a) 100	b) 10.1	c) 10	d) 1.001
100	Molarity of 0.2 N H ₂ SO ₄ i	S		
	a) 0.2	b) 0.4	c) 0.6	d) 0.1
101	When an ideal binary sol	ution is in equilibrium witl	h its vapour, molar ratio of	f the two components in the
	solution and in the vapou	r phase is :		
	a) Same			
	b) Different			
	c) May or may not be san	ne depending upon volatile	nature of the two compone	ents
	d) None of the above	1 0 1	Ĩ	
102	. In a 0.2 molal aqueous so	lution of a weak acid HX, th	ne degree of ionization is 0.	3. Taking K_f for water as
	1.85, the freezing point of	f the solution will be neares	st to	5)
	a) -360° C	b) 0.260°C	$c) + 0.480^{\circ}C$	d) –0.480°C
103	The distribution law was	given hv		
100	a) Henry	h) Nernst	c) van't Hoff	d) Ostwald
104	Which of the following is	incorrect?		aj ostivala
101	a) 0.1 m sucrose	h) 0.1 m urea	c) 0.1 m ethanol	d) 0.1 m glucose
105	When 20 g of nanhthoic a	C_{1} (C_{1}, H, O_{2}) is dissolved	in 50 g of henzene $(k_z - 1)$	$72 K \text{ kg mol}^{-1}$ a freezing
105	noint dopposion of 2 K is	$(c_{11}n_8\sigma_2)$ is dissolved	$\lim 50 \text{ g of Defizence} (n_f - 1)$.72 K Kg mor j, a neezing
	a) 0 E	b) 1		4) 2
100	a) U.S	UJ I 20% is 17 F4 mm V	UJZ Mhan 20 a af a nan-iania a	uj 5
106	. The vapour pressure of w	/ater at 20°C is 17.54 mm. v	when 20 g of a non-tonic, s	ubstance is dissolved in 100
	g of water, the vapour pro	essure is lowered by 0.30 m	im. what is the molecular i	hass of the substance?
107	a) 200.8	DJ 206.88	c) 210.5	d) 215.2
107.	The highest temperature	at which vapour pressure of	of a liquid can be measured	l 1S :
	a) b.p. of liquid	T)		
	b) Critical temperature (A	(C)		
	c) Critical solution tempe	erature		
100	d) Inversion temperature			
108	Solution A contains 7 g/L	of $MgCl_2$ and solution Bcc	ontains 7 g/L of NaCl. At r	coom temperature, the
	osmotic pressure of			
	a) 50	b) 180	c) 102	d) 25
109.	When W_B g solute (molec	cular mass M_B) dissolves in	W_A g solvent, the molality	<i>M</i> of the solution is
	a) $\frac{W_B}{W_B} \times \frac{1000}{W_B}$	b) $\frac{W_A}{W_A} \times \frac{1000}{W_A}$	c) $\frac{W_B}{W_B} \times \frac{M_A}{10000}$	d) $\frac{W_A}{W_B} \times \frac{M_B}{10000}$
	$M_B W_A$	^S M _B W _B	⁵ W _A 1000	⁹ W _B 1000
110	The statement "the relati	ve lowering of the vapour p	pressure is equal to th ratio	ot moles of the solute to
	the total number of the m	oles in the solution" refers	to	
	a) Hess's law	b) Dalton's law	c) Raoult's law	d) Charles'law
111.	. Elevation in boiling point	was 0.52°C when 6 g of a c	ompound was dissolved in	100 g of water. Molecular
	weight of X is $(k_b \ of \ wate)$	er is 5.2°C per 100 g water)	
	a) 120	b) 60	c) 600	d) 180
112	. The amount of anhydrous	s Na ₂ CO ₃ present in 250 ml	L of 0.25 M solution is	
	a) 6.625 g	b) 66.25 g	c) 662.5 g	d) 6625 g
113	. The azeotropic mixture o	f water (b. pt.100°C) and H	Cl (b.pt. 85°C) boils at 108	.5°C.When this mixture is
	distilled it is possible to o	btain		
	a) Pure HCl		b) Pure water	
	c) Pure water as well as H	HCl	d) Neither HCl nor H ₂ O ir	n their pure states
114	A 5% solution of sugarca	ne (mol. wt. $= 342$) is isoto	nic with 1% solution of Xu	nder similar conditions.

The molecular we	ight of X is		
a) 136.2	b) 689.4	c) 34.2	d) 171.2
115. Van't hoff factor o	$fCa(NO_3)_2$ is	-	-
a) One	b) Two	c) Three	d) four
116. Which of the follo	wing is incorrect?		
a) Relative loweri	ng of vapour pressure is inde	ependent	
b) Vapour pressu	re of a solution is lower than	the vapour pressure of th	e solvent
c) The vapour pre	essure is a colligative propert	ty	
d) The relative lov	wering of vapour pressure is	directly proportional to the	ne mole fraction solute
117. One gram of silver	gets distributed between 10	0 cm ³ of molten zinc and 1	100cm ³ of molten lead at 8000°C.
The percentage of	silver still left in the lead lay	ver in approximately	
a) Henry	b) Van't Hoff	c) Nernst's	d) Ostwald
118. Two solutions of g	glucose have osmotic pressur	re 1.0 and 3.5 atm. If 1 L of	f first solution is mixed with V L of
second solution, t	he osmotic pressure of the re	esultant solution becomes	2.5 atm. Volume of second
solution is			
a) 1.0 L	b) 1.5 L	c) 2.5 L	d) 3.5 L
119. 5% (wt./vol.) aqu	eous NaCl solution and 5% (wt./vol.) aqueous KCl sol	ation are :
a) Isotonic	b) Isomolar	c) Equinormal	d) None of these
120. Azeotropic mixtu	re are		
a) Constant tempe	erature boiling mixture	b) Those which bo	ils at different temperatures
c) Mixture of two	solids	d) None of the abo	ve
121. Boiling point of w	ater is defined as the temper	rature at which :	
a) Vapour pressu	re of water is equal to one at	mospheric pressure	
b) Bubbles are for	med		
c) Steam comes of	ut		
a) None of the abo)Ve tuiltuttee iteelf hetereen terre i		
122. When a solute dis	tributes itself between two i	mmisciple liquids in conta	act with each other, a mathematical
constant ratio exis	he colute in the two liquide		
a) The weight of t	ine solute in the two liquids	de	
c) The number of	mole of the solute in the two	us Mauide	
d) The number of	atoms of the solute in the two	zo liquids	
123 The molal elevation	n constant for water is 0.52	What will be the boiling i	point of 2 molar sucrose solution at
1 atm pressure? (Assume h.p. of pure water is	100°C)	Some of 2 motal success solution at
a) 101.04°C	b) 100.26°C	c) 100.52°C	d) 99.74°C
124. The molal elevation	on/depression constant depe	ends upon :	
a) Nature of solve	nt	· · · · · ·	
b) Nature of solut	e		
c) Temperature			
d) ΔH solution			
125. When 10 g of a no	n-volatile solute is dissolved	l in 100 g of benzene, it rai	ses boiling point by 1°C then
molecular mass of	f the solute is $(k_b \text{ for } C_6 H_6 =$	2.53 kg – mol ⁻¹)	
a) 223 g	b) 233 g	c) 243 g	d) 253 g
126. According to phas	se rule, if $P = 3, C = 1$, then H	⁷ must be equal to :	
a) 2	b) 1	c) Zero	d) 4
127. A thermometer w	hich can be used only for a	ccurate measurement of s	small differences in temperature is
known as a:			
a) Beckmann ther	mometer		
b) Contact thermo	ometer		
c) Clinical thermo	meter		

d) Platinum resistance thermometer

128. When two liquids *A* and *B* are mixed then their boiling points becomes greater than both of them. What is the nature of this solution?a) Ideal solutionb) Normal solution

	c) Negative deviation w	rith non-ideal solutio	on d) F	ositive deviation	n wit	h non-id	eal solı	ution	
129.	The plots	of	$\frac{1}{v}$	S. $\frac{1}{1}$	(v	vhere		X₄ a	nd Y₄
	are the mole fraction of	liquid 4 in liquid and	X _A d vanour nhae	Y_A	is	linear	with	slone	and
	intercepts respectively:	nquiù 71 in nquiù un	a vapour pria.	se respectively j	15	mear	vv i ci i	slope	unu
	a) P_A^0/P_B^0 and $\frac{(P_A^0 - P_B^0)}{P_B^0}$								
	b) P_A^0/P_B^0 and $\frac{(P_B^0 - P_A^0)}{P_B^0}$								
	c) P_B^0/P_A^0 and $\frac{(P_A^0 - P_B^0)}{P_B^0}$								
	d) P_B^0/P_A^0 and $\frac{(P_B^0 - P_A^0)}{P_B^0}$								
130.	Which of the following l	iquid pair shows a p	ositive deviat	ion from Raoult	's lav	v?			
	a) Water-nitric acid		b) A	cetone-chlorofo	rm				
	c) Water-hydrochloric a	acid	d) E	Benzene-methan	ol				
131.	What is the total number	er of moles of H_2SO_4	needed to pre	epare 5.0 L of a 2	2.0 M	solution	of H_2 S	$50_4?$	
	a) 2.5	b) 5.0	c) 1	0		d) 20			
132.	The van't hoff factor for	$0.1 \text{ m Ba}(\text{NO}_3)_2 \text{ solution}$	ution is 2.74.'	The degree of di	issoc	iation is			
	a) 91.3%	b) 87%	c) 1	.00%		d) 74%	6		
133.	The solubility of iodine	in water is 0.8 g/L. I	If the partition	n coefficient of io	odine	e betwee	n CCl ₄ a	and wat	er (in
	favour of CCl_4) is 82, the	e solubility of iodine	in CCl ₄ is :						
	a) 102.5 g/L	b) 65.6 g/L	c) (.009 g/L		d) 81.	2 g/L		
134.	An aqueous solution of	6.3 g oxalic acid dihy	vdrate is made	e up to 250 mL. 1	Гhe v	olume o	f 0.1 N s	sodium	
	hydroxide required to c	ompletely neutralise	e 10 mL of thi	s solution is					
	a) 40 mL	b) 20 mL	c) 1	0 mL		d) 4 m	ıL		
135.	One gram of silver gets	distributed between	$10 \text{ cm}^3 \text{ of m}^3$	olten zinc and 10)0cm	³ of molt	en lead	at 8000	°C.
	The percentage of silver	still left in the lead	layer in appro	oximately					
	a) 2	b) 5	c) 3	_		d) 1			
136.	Water will boil at 101.5	C at which of the fol	lowing pressu	ire?					
	a) 76 cm of Hg	b) 76 mm of Hg	c) >	> 76 cm of Hg		d) < 7	6 cm of	fHg	
137.	Depression in freezing p	point is 6 K for NaCl	solution if k	$_{f}$ for water is 1.8	86 K,	/kg mol,	amoun	t of NaC	l
	dissolved in 1 kg water	is							
	a) 3.42	b) 1.62	c) 3	.24		d) 1.7	1		
138.	The density (<i>i</i> n g mL ^{-1})	of a 3.60 M sulphur	ic acid solutio	n that is $29\% H_2$	$_{2}SO_{4}$	(molar r	nass =	98 g mo	(l^{-1})
	by mass will be								
	a) 1.64	b) 1.88	c) 1	.22		d) 1.4	5		
139.	The vapour pressure (V the lowering of the VP is	/P) of a dilute soluti s :	on of non-vo	atile solute is <i>P</i>	and	the VP o	of pure	solvent	is P ₀ ,
	a) +ve	b) –ve	c) <i>F</i>	P/P_0		d) <i>P</i> ₀ /	Ρ		
140.	Vapour pressure of CCl ₄	₄ at 25°C is 143 mm o	of Hg and 0.5	g of a non-volati	le so	lute (mo	l. wt=6	5) is	
	dissolved in100 mL CCl	4. Find the vapour pr	ressure of the	solution. (Densi	ty of	$CCl_4 = 2$	1.58 g/o	cm ²)	
	a) 94.39 mm	b) 141.93 mm	c) 1	34.44 mm		d) 199	9.34 mn	n	
141.	How many gram of NaO	H will be required to	o prepare 500	g solution conta	ainin	g 10% $\frac{w}{w}$	NaOH s	olution	?
	a) 100 g	b) 50 g	c) (.5 g		d) 5.0	g		
142.	Conc H_2SO_4 has a densi	ty of 1.98 g/mL and	is 98% H₂SO₄	by weight. Its n	orm	ality is	~		
	a) 19.6 N	b) 29.6 N	c) 3	9.6 N		d) 49.	6 N		
143.	The phenomenon in wh	ich cells are shrinke	d down if plac	ed in hypertoni	c solı	ution is c	alled :		

14	a) Plasmolysis	b) Haemolysis	c) Endosmosis	d) None of these
14	a) Boiling point of the sol	lution		
	h) Freezing point of the s	olution		
	c) Any temperature			
	d) Elevation in boiling po	oint or depression in freezi	ng point	
14	5. 6.02 \times 10 ²⁰ molecules of	of urea are present in 100 n	1L of its solution. The conce	entration of urea solution is
	(Avogadro constant, N_4	$= 6.02 \times 10^{23} mol^{-1}$		
	a) 0.001 M	b) 0.01 M	c) 0.02 M	d) 0.1 M
140	6. When a crystal of the solu	ute is introduced into a sup	per saturated solution of the	e solute :
	a) The solute dissolves	•		
	b) The excess solute crys	tallizes out		
	c) The solution becomes	unsaturated		
	d) The solution remains s	super saturated		
147	7. The mole fraction of the s	solute in one modal aqueou	is solution is	
	a) 0.018	b) 0.027	c) 0.036	d) 0.048
148	B. Which of the following so	olutions will have the highe	est boiling point ?	
	a) Camphor	b) Naphthalene	c) Benzene	d) Water
149	9. The normality of mixture	e obtained by mixing 100 m	L of 0.2 M H_2SO_4 +	
	100 mL of 0.2 M NaOH is			
	a) The nature of gas		b) The temperature	
	c) The nature of the solve	ent	d) All of the above	
150	When attraction betweer	A - B is more than that of	f A - A and $B - B$, the solution	tion will showdeviation
	from Raoult's law			
	a) Positive	b) Negative	c) No	d) Cannot predicted
15	1. A solution containing 4 g	of polyvinyl chloride poly	ner in one litre of dioxane v	was found to have an
	osmotic pressure of 4.1 >	$< 10^{-4}$ atm at 27°C. The ap	proximate molecular weigh	nt of the polymer is
	a) 1.5×10^3	b) 2.4×10^{3}	c) 1.0×10^4	d) 2×10^{12}
152	2. The solubility of a gas in	water depends on :		
1 -	a) Nature of the gas	b) Temperature	c) Pressure of the gas	d) All of these
15.	3. Which of the following is	not a colligative property?	h) Ogmatia programa	
	a) Optical activity	noint	d) Elevation of bailing no	sint.
15	C) Depression of freezing	spoint	U) lie 7.10 \times 10 ⁻³ K If for w	$\frac{1}{100}$
154	+. The neezing point depre	SSION OF 0.001 III, K_{χ} [Fe(CN	J_{6} [IS 7.10 × 10 ° K. II 101 W	$ater, \kappa_f$ is 1.00 K Kg iii0i ,
	value of x will be	h) 2	a))	J) 1
151	a) 4 The veneur pressure of h	DJ 3	CJ Z	a) 1
15:	oloctrolyto colid weighin	a 2 175 g is added to 20 08	a of honzono. If the vanour	on-volatile and non-
	600 mm of Hg what is th	e molecular weight of solid	g of Delizene. If the vapour	pressure of the solution is
	a) 49 50	h) 59 60		d) 79 82
15/	6 For an aqueous solution	freezing point is -0.186°	Flevation of the boiling n	oint of the same solution is
150	$(k_c - 1.86^{\circ} mol^{-1} kgan)$	d_k , $-0.512^{\circ} mol^{-1} ka$. Lievation of the boining p	onit of the same solution is
	$(k_f = 1.00 \text{ mot} \text{ kg and}$	$h_b = 0.312 \ mot \ kg$	a) 1.86°	d) 5 12º
15'	aj 0.100 7 The partial proceure of e	UJ 0.0512	$C_{\rm J}$ 1.00	-2 g of other o is 1 her. If the
15	r solution contains 5.0 \times 1	10^{-2} g of other a saturated solution	1000000000000000000000000000000000000	g of ethane is 1 bal. If the
	2 0.762 har	b) 1.762 har	c) 0.1 bar	d) 0.2 har
159	$\frac{1}{2}$ The vancur pressure of	bonzono at 90°C is 1020 ti	$c_{\rm J}$ 0.1 bar	colute in 585 g henzene has
100	vanour pressure 00	r. The molecular weight of	the solute is ·	Solute III 50.5 g Delizelle llas
	a) 78.2	b) 178.2	c) 206.2	d) 220
159	9. The osmatic pressure of	0.4% urea solution is 1.66 :	atm. and that of a solutions	of sugar of 3.42% is 2.46
	· · · · · · · · · · · · · · · · · · ·			0

	atm. When both the solut	ions are mixed then the osi	matic pressure of the resul	tant solution will be
	a) 1.02 atm	b) 2.06 atm	c) 3.04 atm	d) 0.02 atm
160.	Vapour pressure of dilut	e aqueous solution of gluce	ose is 750 mm of mercury a	at 373 K. The mole fraction
	of solute is			
	a) $\frac{1}{76}$	b) $\frac{1}{7.6}$	c) $\frac{1}{38}$	d) $\frac{1}{10}$
161.	The relative lowering of	vapour pressure produced	by dissolving 71.5 g of a s	ubstance in 1000 g of water
	is 0.00713. The molecular	weight of the substance w	rill be :	0
	a) 180	b) 18.0	c) 342	d) 60
162.	5 L of a solution contains	$25 \text{ mg of } CaCO_3$. What is it	s concentration in ppm? (n	nol. wt. of $CaCO_3$ is 100)
	a) 25	b) 1	c) 5	d) 2500
163.	Binary liquid solutions w	hich exhibit negative devia	tions from Raoult's law bo	il at temperaturethan the
	expected value :	U		
	a) Lower	b) Higher	c) Same	d) Cannot be said
164.	A substance will be deliqu	lescent it its vapour pressu	ire is :	
	a) Equal to the atmosphe	ric pressure		
	b) Equal to that of water	vapour in the air		
	c) Greater than that of wa	ater vapour in the air		
	d) Lesser than that of wat	er vapour in the air		
165.	The distribution coefficie	nt of I ₂ in between CCl ₄ ar	nd H_2O is 85 in favour of C	Cl_4 at 25°C. If solubility of I_2
	in H_2O at 25°C is 0.33 g lit	rre ⁻¹ , the solubility of I ₂ in (CCl_4 isg litre ⁻¹ .	
	a) 28.05	b) 30.05	c) 40.05	d) 26.05
166.	1.0 g of a non-electrolyt	e solute (molar mass 250	g mol ⁻¹) was dissolved	in 51.2 g of benzene. If the
	freezing point depression	constant of benzene is 5.1	2 K kg mol ⁻¹ , the lowering	in freezing point will be :
	a) 0.5 K	b) 0.2 K	c) 0.4 K	d) 0.3 K
167.	Which of the following co	ncentration term is/are in	dependent of temperature	?
	a) Molarity		b) Molarity and mole frac	ction
	c) Mole fraction and mola	ality	d) Molality and normality	7
168.	An azeotropic mixture of	two liquids has boiling poi	nt lower than either of thei	m, when it
	a) Shows a negative devia	ation from Raoult's law	b) Shows no deviation fro	om Raoult's law
	c) Shows positive deviati	on from Raoult's law	d) Is saturated	
169.	The molal elevation cons	tant for water is 0.52 K m	iolality ^{-1} . The elevation ca	aused in the boiling point of
	water by dissolving 0.25	mole of a non-volatile solut	te in 250 g of water will be	:
	a) 52°C	b) 5.2°C	c) 0.52°C	d) 0.052°C
170.	At 88°C benzene has a va	pour pressure of 900 torr a	and toluene has a vapour p	pressure of 360 torr. What is
	the mole fraction of benz	ene in the mixture with to	luene that will boil at 88°C	at 1 atm pressure, benzene-
	toluene form an ideal solu	ution?		
	a) 0.416	b) 0.588	c) 0.688	d) 0.740
171.	Which one of the stateme	nts given below concerning	g properties of solutions, d	escribes a colligative effect?
	a) Vapour pressure of put	re water decreases by the a	addition of nitric acid	
	b) Boiling point of pure w	ater decreases by the addi	tion of ethanol	
	c) Boiling point of pure b	enzene increases by the ad	dition of toluene	
	d) Vapour pressure of put	re benzene decreases by th	e addition of naphthalene	
172.	An example of a solution	having liquid in gas is:		
	a) Moist air			
	b) Dry air			
	c) Au-Hg			
	d) $C_2H_5OH + H_2O$			
173.	Which of the given solution	ons has highest osmotic pre	essure?	
	a) 1 <i>N</i> NaNO ₃	b) $1N \text{ Ba}(\text{NO}_3)_2$	c) $1N \text{ Al}(\text{NO}_3)_3$	d) 1 <i>N</i> Th(NO ₃) ₄
174.	At high altitude the boilin	g of water occurs at low te	mp. because :	

a) Atmospheric pressu	ure is low				
b) Temperature is low	b) Temperature is low				
c) Atmospheric press	ire is high				
d) None of the above					
175. If a 5.25% (wt./vol.) s	olution of a non-electro	blyte is isotonic with 1.50%	(wt./vol.) solution of urea, (mol-		
wt = 60) is the same s	olvent then the molecul	ar weight of non-electrolyte	is :		
a) 210.0 g mol ⁻¹	b) 90.0 g mol ⁻¹	c) 115.0 g mol ^{-1}	d) 105 g mol ^{-1}		
176. Which solution will ha	ve least vapour pressur	e?			
a) 0.1 <i>M</i> BaCl ₂	b) 0.1 <i>M</i> urea	c) $0.1 M \text{ Na}_2 \text{SO}_4$	d) 0.1 <i>M</i> Na ₃ PO ₄		
177. The phenomenon in w	which cells are swelled up	p and then burst if placed in	hypotonic solution is called :		
a) Plasmolysis	b) Haemolysis	c) Exosmosis	d) None of these		
178. If 117 g NaCl is dissolv	ved in 1000 g of water th	e concentration of the solution	on is said to be		
a) 2 molar	b) 2 molal	c) 1 normal	d) 1 molal		
179. 0.1 molal aqueous solu	ution of NaBr freezes at	–0.335°C at atmospheric pro	essure k_f for water is 1.86°C.		
The percentage of diss	sociation of the salt in so	olution is			
a) 90	b) 80	c) 58	d) 98		
180. Increasing the temper	ature of an aqueous solu	ition will cause			
a) Decrease in molarit	.y	b) Decrease in molar	ity		
c) Decrease in mole fr	action	d) Decrease in $\% w/$	W		
181. The vapour pressure of	of two liquids <i>P</i> and <i>Q</i> ar	re 80 torr and 60 torr respec	tively. The total vapour pressure		
obtained by mixing 3 i	mole of P and 2 mole of	<i>Q</i> would be :			
a) 68 torr	b) 20 torr	c) 140 torr	d) 72 torr		
182. The molal boiling poi	nt constant of water is	0.53°C. When 2 mole of glu	cose are dissolved in 4000 g of		
water, the solution wi	ll boil at :	0	5		
a) 100.53°C	b) 101.06°C	c) 100.265°C	d) 99.47°C		
183. One mole of non-vola	tile solute is dissolved	in two mole of water. The	vapour pressure of the solution		
relative to that of wate	er is :		r r		
a) 2/3	b) 1/3	c) 1/2	d) 3/2		
184. The K for I_2 between (CS_2 and H_2O is 588 in fa	your of CS_2 . One litre of aque	eous solution containing 1 g of I_2		
is shaken with 50 mL	of CS_2 . What will be the	amount of I_2 in aqueous laye	r?		
a) 0.035 g	h) 0.010 σ	c) 0.05 g	d) 0.04 g		
185 How many grams of d	ihasic acid (mol. wt. 200) should be present in 100 n	L of the aqueous solution to		
give 0.1 N?	15031e dela (11101. We. 200	j should be present in 100 in	in of the aqueous solution to		
a) 10σ	h) 20 σ	c) 2 g	d) 1 g		
186 The vanour pressure of	of a dilute solution is not	influenced by	ujig		
a) Temperature of solu	ution	innucliced by .			
b) Molting point of sol					
c) Mole fraction of sol	ute				
d) Degree of diagonisti	ule				
197 25 4 mL of UCl is room	ined for the neutralization	on of a colution containing 0	275 g of godium budrowido. The		
107. 55.4 IIIL OI HUI IS IEqu	aria agid is	on of a solution containing 0.	275 g of souluin hydroxide. The		
-) 0.07 N		-) 0 104 N			
a) 0.97 N	DJ 0.142 N	CJ 0.194 N	a) 0.244 N		
188. Molal elevation consta	int of a liquid is :				
a) The elevent in b.p. which would be produced by dissolving one mole of solute in 100 g of solvent					
b) The elevation of b.p	. which would be produ	ced by dissolving 1 mole sol	ite in 10 g of solvent.		
c) Elevation in b.p. wh	ich would be produced	by dissolving 1 mole of solut	e in 1000 g of solvent		
d) None of the above					
189. The solubility of gas in	l liquid depends upon :				
a) Nature of gas					
b) Nature of solvent					

c) Temperature and pressure d) All of the above 190. Relative lowering of vapour pressure of a dilute solution is 0.2. What is the mole fraction of the nonvolatile solute? b) 0.5 c) 0.3 d) 0.2 a) 0.8 191. If 0.1 M solutions of each electrolyte are taken and if all electrolytes are completely dissociated, then whose boiling point will be highest? b) KCl c) $BaCl_2$ d) $K_2[Fe(CN)_6]$ a) Glucose 192. A and B ideal gases. The molecular weights of A and B are in the ratio of 1:4. The pressure of a gas mixture containing equal weight of *A* and *B* is *p* atm. What is the partial pressure (in atm) of *B* in the mixture? b) $\frac{P}{2}$ c) $\frac{P}{2.5}$ d) $\frac{3P}{4}$ a) $\frac{P}{5}$ 193. What amount of water is added in 40 mL of NaOH (0.1 N) which is neutralised by 50 mL of HCl (0.2 N)? a) 80 mL b) 60 mL c) 40 mL d) 90 mL 194. The amount of ice that will separate out on cooling a solute containing 50 g of ethylene glycol in 200 g water to -9.3° C will be a) 8.37 g b) 161.3 g c) 3.87 g d) 38.7 g 195. The freezing point depression constant for water is -1.86° Cm⁻¹. If 5.00 g Na₂SO₄ is dissolved in 45.0 g H_2O , the freezing point is change by $- 3.82^{\circ}C$, Calculate the van't Hoff factor for Na_2SO_4 . b) 2.05 a) 0.381 c) 2.63 d) 3.11 196. At80°C, the vapour pressure of pure liquid 'A' is 520 mm Hg and that of pure liquid 'B is 1000 mm Hg. If a mixture solution of 'A' and 'B' boils at 80°C and 1 atm pressure, the amount of 'A' in the mixture is (1 atm = 760 mm Hg)a) 52 mole per cent b) 34 mole per cent c) 48 mole per cent d) 50 mole per cent 197. The elevation of boiling point method is used for the determination of molecular weight of: a) Non-volatile and soluble solute b) Non-volatile and insoluble solute c) Volatile and soluble solute d) Volatile and insoluble solute 198. What is the freezing point of a solution containing 8.1 g HBr in 100 g water assuming the acid to be 90% ionised? (k_f for water = 1.86 K mol⁻¹) a) 0.85°C b) -3.53°C c) 0°C d) -0.35°C 199. Equimolal solutions will have the same boiling point, provided they do not show : a) Electrolysis b) Association c) Dissociation d) Association or dissociation 200. Volume of 0.1 M $K_2Cr_2O_7$ required to oxidise 35 mL of 0.5 M $FeSO_4$ solution is b) 17.5 mL a) 29.2 mL c) 175 mL d) 145 mL 201. A solution of two liquids boils at a temperature more than the boiling point of either them. Hence, the binary solution shows a) Negative deviation from Raoult's law b) Positive deviation from Raoult's law c) No deviation from Raoult's law d) Positive or negative deviation from Raoult's law depending upon the composition 202. Vapour pressure of pure '*A*' is 70 mm of Hg at 25°C. It from an ideal solution with '*B*' in which mole fraction of *A* is 0.8. If the vapour pressure of the solution is 84 mm of Hg at 25°C, the vapour pressure of pure 'B' at 25°C is a) 28 mm b) 56 mm c) 70 mm d) 140 mm 203. Abnormal colligative properties are observed only when the dissolved non-volatile solute in a given dilute

solution

	a) Is a non-electrolyte		b) Offers an intense colo	our	
	c) Associates of dissocia	tes	d) Offers no colour		
204	. As a result of osmosis, th	e volume of the concentrat	ed solution :		
	a) Gradually decreases				
	b) Gradually increases				
	c) Suddenly increases				
	d) None of these				
205	. At a suitable pressure ne	ear the freezing point of ice,	there exists :		
	a) Only ice				
	b) Ice and water				
	c) Ice and vapour				
	d) Ice, water and vapour	s, all existing side by side			
206	. Which of the following	concentration units is indep	pendent of temperature?		
	a) Normality	b) Molarity	c) Molality	d) ppm	
207	. In cold countries, ethyle	ne glycol is added to water	in the radiators of cars du	ring winters. It results in :	
	a) Lowering in boiling p	oint			
	b) Reducing viscosity				
	c) Reducing specific heat	t			
	d) Lowering in freezing	point			
208	. Calculate the molal depr	ession constant of a solvent	t which has freezing point	16.6°C and latent heat of	
	fusion 180.75 Jg^{-1} .				
	a) 2.68	b) 3.86	c) 4.68	d) 2.86	
209	. The freezing point depre	ession constant for water is	1.86 K kgmol ⁻¹ . If 45 g of	ethylene glycol is mixed with	
	600 g of water , the freez	ing point of the solution is			
	a) 2.2 K	b) 270.95 K	c) 273 K	d) 275.35 K	
210	. The movement of solven	t molecules through a semi	permeable membrane is o	called	
	a) Electrolysis	b) Electrophoresis	c) Osmosis	d) Cataphoresis	
211	. An aqueous solution of n	nethanol in water has vapo	ur pressure		
	a) Less than that of wate	er	b) More than that of wa	ter	
	c) Equal to that of water		d) Equal to that of meth	anol	
212	. Which pair shows a cont	raction in volume on mixin	g along with evolution of	heat?	
	a) $CHCl_3 + C_6H_6$	b) $H_2O + HCl$	c) $H_20 + HNO_3$	d) All of these	
213	. The vapour pressure of v	water at 20°C is 17.5 mmHg	5.		
	If 18 g of glucose (C_6H_{12}	O_6) is added to 178.2 g of w	vater at 20° <i>C</i> , the vapour	pressure of the resulting	
	solution will be				
	a) 17.675 mmHg	b) 15.750 mmHg	c) 16.500 mmHg	d) 17.325 mmHg	
214	. At 80°C, the vapour pres	sure of pure liquid 'A'is 520	0 mm Hg and that of pure	liquid 'B' is 1000 mm Hg. If a	
	mixture of solution 'A' ar	nd 'B' boils at 80°C and 1 at	m pressure, the amount o	of 'A' in the mixture is : (1 atm	
	= 760 mm Hg				
045	a) 50 mol per cent	b) 52 mol per cent	c) 34 mol per cent	d) 48 mol per cent	
215	. Van't Hoff factor(ι):				
	a) Is less than one in cas	e of dissociation			
	b) Is more than one in ca	ise of association			
	c) $i = \frac{\text{normal molecula}}{1}$	rmass			
	observed molecul	ar mass ar mass			
	d) $i = \frac{\text{observed molecula}}{\text{normal molecula}}$	r mass			
216	. Following solutions at th	ie same temperature will be	e isotonic :		
-	a) 3.42 g of cane sugar ir	n one litre water and 0.18 g	of glucose in one litre wat	ter	
	b) 3.42 g of cane sugar ir	one litre water and 0.18 g	of glucose in 0.1 litre wat	er	
	c) 3.42 g of cane sugar ir	one litre water and 0.585	g of NaCl in one litre wate	r	
	-				

- d) 3.42 g of cane sugar in one litre water and 1.17 g of NaCl in one litre water 217. The osmatic pressure of a 5% (wt./vol) solution of cane sugar at 150°C is a) 3.078 atm b) 4.078 atm c) 5.078 atm d) 2.45 atm 218. Ethylene glycol is used as an antifreeze in a cold climate. Mass of ethylene glycol which should be added to 4 kg of water to prevent it from freezing at -6° C will be (K_f for water = 1.86 K kg mol⁻¹. and molar mass of ethylene glycol = $62 g mol^{-1}$) a) 804.32 g b) 204.30 g c) 400.00 g d) 304.60 g 219. Mole fraction of solute in benzene is 0.2 then find molality of solute a) 3.2 b) 2 c) 4 d) 3.6 220. When a solute is added in two immiscible solvents, it distributes itself between two liquids so that its concentration in first liquid is c_1 and that in the second liquid is c_2 . If the solute forms a stable trimer in the first liquid, the distribution law suggests that : a) $3c_1 = c_2$ b) $c_1/\sqrt[3]{c_2} = \text{constant}$ c) $c_1/3 = c_2$ d) $c_2/\sqrt[3]{c_1} = \text{constant}$ 221. Which is not applicable to distribution law? a) Parke's process b) Solvent extraction c) Pattinson's process d) Partition chromatography 222. Which of the following is the expression of Raoult's law? (p =vapour pressure of pure solvent, p_s =vapour pressure of the solution) a) $\frac{p - p_s}{p} = \frac{n}{n + N}$ b) $\frac{p_s - p}{p} = \frac{N}{N + n}$ c) $\frac{p - p_s}{p_s} = \frac{N}{N - n}$ d) $\frac{p_s - p}{p_s} = \frac{N - n}{N}$ 223. For determination of molar mass of colloids, polymers and protein, which property is used ? a) Diffusion pressure b) Atmospheric pressure c) Osmotic pressure d) Turgor pressure 224. 3.0 molal NaOH solution has a density of 1.110 g/mL. The molarity of the solution is a) 3.9732 b) 2.9732 c) 1.9732 d) 0.9732 225. Sodium sulphate is soluble in water, while barium sulphate is sparingly soluble because : a) The hydration energy of sodium sulphate is more than its lattice energy b) The lattice energy of barium sulphate is less than the hydration energy c) The lattice energy has no role to play in solubility d) The hydration energy of sodium sulphate is less than its lattice energy 226. Distribution law is applicable when : a) Temperature remains constant b) Dilute solutions are employed c) The two solvents are mutually insoluble d) All are correct 227. 10 cm^3 of 0.1 N monobasic acid requires 15 cm^3 of sodium hydroxide solution whose normality is b) 0.15 N a) 1.5 N c) 0.066 N d) 0.66 N 228. Density of a 2.05 M solution of acetic acid in water is 1.02 g/mL. The molality of the solution is c) 2.28 mol kg^{-1} a) 1.14 mol kg^{-1} b) 3.28 mol kg^{-1} d) 0.44 mol kg^{-1} 229. x gram of water is mixed in 69 g of ethanol. Mole fraction of ethanol in the resultant solution is 0.6. What is the value of x in grams? a) 54 c) 180 d) 18 b) 36 230. Dissolution of a solute is an exothermic process if : a) Hydration energy > lattice energy
 - b) Hydration energy < lattice energy

c) Hydration energy	v = lattice energy		
d) None of the above	е		
231. Molarity is expresse	ed as		
a) L/mol	b) Mol/L	c) Mol/1000 g	d) g/L
232. The amount of anhy	drous Na ₂ CO ₃ present in	250 mL of 0.25 M solution is	
a) 6.0 g	b) 6.625 g	c) 66.25 g	d) 6.225 g
233. Which of the followi	ing compounds correspon	d to maximum van'thoff facto	or for dilute solution?
a) HCl	b) MgSO ₄	c) K ₂ SO ₄	d) K_4 Fe(CN) ₆
234. Solute <i>A</i> is a ternary	y electrolyte and solute B	is non-electrolyte. If 0.1 M s	solution of solute <i>B</i> produces an
osmotic pressure o	f 2P, then $0.05 M$ soluti	on of A at the same temper	rature will produce an osmotic
a) P	b) 1.5 <i>P</i>	c) 2 P	d) 3 <i>P</i>
235. A solution of sucros	e (molar mass 342 g mol ⁻	$^{-1}$) has been produced by dis	solving 68.5 g sucrose in 1000 g
water. The freezing	point of the solution obtai	ined will be : (K _e for H ₂ O = 1)	$.86 \text{ Kkg mol}^{-1}$
a) -0.372°	b) -0.520° C	$(1) + 0.372^{\circ}C$	d) -0.570° C
236 A mixture of ethyl a	lcohol and propyl alcohol	has a vanour pressure of 290	mm at 300 K the vanour
nressure of propyla	lcohol is 200 mm. If the m	nas a vapour pressure of 250	s 0.6 its vanour pressure (in
mm) at the same ter	nnerature will he		s o.o, its vapour pressure (in
a) 350	h) 300	c) 700	d) 360
237 How many grams of	Sulphuric acid is to be dis	solved to prepare 200 mL ag	up 500
concentration of [H.	Ω^+ jons 1 M at 25°C tem	nerature	ucous solution naving
[H - 1, 0 - 16, 5 - 16]	$(30^{\circ})^{-1}$	perature.	
[11 - 1, 0 - 10, 5 - 2]	b) 10 6g	c) 9.8g	d) 0.98g
238 What is the molarity	$U_{J} = 7.0g$	nL is exactly neutralised with	$32.63 \text{ mL of } 0.164 \text{ M N}_{2}\text{OH}^{2}$
230. What is the molarity	b) 0.126 M	c) 0.214 M	$d_{1}=0.428 \text{ M}$
239 What is the mola	lity of ethyl alcohol (r	$c_{1} = 0.214 \text{ M}$	uj-0.420 M
		mn , we $- \pi mn$ m nn nn	us solution which hecdes at
$-10^{\circ}C^{\circ}(K_{c} \text{ for wate})$	$r = 1.86 \text{ K} \text{ molality}^{-1}$		
$-10^{\circ}C?.(K_f \text{ for water } 2) 3.540$	$er = 1.86 \text{ K molality}^{-1}$	c) 5 276	d) 6 215
-10° C?.(K_f for wate a) 3.540	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is	c) 5.376	d) 6.315
$-10^{\circ}C?.(K_{f} \text{ for water a) } 3.540$ 240. The solubility order	er = 1.86 K molality ⁻¹) b) 4.567 for the following gases is	c) 5.376	d) 6.315
$-10^{\circ}C?.(K_{f} \text{ for water a) } 3.540$ 240. The solubility order a) NH ₃ > CO ₂ > O ₂ b) H > O > NH	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $> H_2$	c) 5.376	d) 6.315
$-10^{\circ}C?.(K_{f} \text{ for watera})$ a) 3.540 240. The solubility order a) NH ₃ > CO ₂ > O ₂ b) H ₂ > O ₂ > NH ₃ > CO ₂ > 0.	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $> H_2$ $> CO_2$ $> N$	c) 5.376	d) 6.315
$-10^{\circ}C?.(K_{f} \text{ for watera) 3.540}$ 240. The solubility order a) NH ₃ > CO ₂ > O ₂ b) H ₂ > O ₂ > NH ₃ > CO ₂ > 0.2 c) CO ₂ > NH ₃ > O.2 d) O. > H. > NH ₃ > 0.2	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $ H_2$ $ > CO_2$ $ > N_2$ $ > CO$	c) 5.376	d) 6.315
$-10^{\circ}C?.(K_{f} \text{ for watera}) 3.540$ 240. The solubility order a) NH ₃ > CO ₂ > O ₂ b) H ₂ > O ₂ > NH ₃ > C c) CO ₂ > NH ₃ > O ₂ d) O ₂ > H ₂ > NH ₃ > 2 241. A 5.2 model access	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $ > H_2$ $ > CO_2$ $ > N_2$ $ > CO_2$ $ > cO_2$	c) 5.376	d) 6.315
$-10^{\circ}C?.(K_{f} \text{ for watera})$ $(K_{f} $	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $ H_2$ $ CO_2$ $ N_2$ $ CO_2$ $ solution of methyl alcohomological experiments of the second s$	c) 5.376 : : ol, <i>CH</i> ₃ <i>OH</i> , is supplied. What i	d) 6.315 s the mole fraction of methyl
- 10° C?.(K_f for water a) 3.540 240. The solubility order a) NH ₃ > CO_2 > O_2 b) H ₂ > O_2 > NH_3 > O_2 c) CO_2 > NH_3 > O_2 d) O_2 > H ₂ > NH_3 > O_2 d) O_2 > H_2 > NH_3 > O_2 > NH_3 > NH_3 > O_2 > NH_3 >	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $> H_2$ $> CO_2$ $> N_2$ $> CO_2$ is solution of methyl alcoho on? b) 0.190	c) 5.376	d) 6.315 s the mole fraction of methyl
$-10^{\circ}C?.(K_{f} \text{ for watera})$ $(K_{f} $	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $> H_2$ $> CO_2$ $> N_2$ $> CO_2$ is solution of methyl alcoho on? b) 0.190 thang and ovygen are mix	c) 5.376 c) 5.376 c) <i>c</i>) 0.086 c) 0.086	d) 6.315 s the mole fraction of methyl d) 0.050 5°C. The fraction of the total
$-10^{\circ}C?.(K_{f} \text{ for watera})$ $(K_{f} $	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $> H_2$ $> CO_2$ $> N_2$ $> CO_2$ is solution of methyl alcoho on? b) 0.190 thane and oxygen are mixed oxygen is	c) 5.376 c) 5.376 c) <i>CH₃OH</i> , is supplied. What i c) 0.086 ed in an empty container at 2	d) 6.315 s the mole fraction of methyl d) 0.050 5°C. The fraction of the total
$-10^{\circ}C?.(K_{f} \text{ for watera})$ $(K_{f} $	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $> H_2$ $> CO_2$ $> N_2$ $> CO_2$ is solution of methyl alcoho on? b) 0.190 thane and oxygen are mixed oxygen is $= 12^{-1} e^{273}$	c) 5.376 c) 5.376 c) <i>5.376</i> c) <i>0.086</i> ed in an empty container at 2	d) 6.315 s the mole fraction of methyl d) 0.050 5°C. The fraction of the total
$-10^{\circ}C?.(K_{f} \text{ for watera})$ $(K_{f} $	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $> H_2$ $> CO_2$ $> N_2$ $> CO_2$ is solution of methyl alcoho on? b) 0.190 thane and oxygen are mixed y oxygen is b) $\frac{1}{3} \times \frac{273}{298}$	c) 5.376 c) 5.376 c) 0.086 c) 0.086 ed in an empty container at 2 c) $\frac{1}{3}$	d) 6.315 s the mole fraction of methyl d) 0.050 5°C. The fraction of the total d) $\frac{1}{2}$
$-10^{\circ}C?.(K_{f} \text{ for watera})$ $(K_{f} $	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $> H_2$ $> CO_2$ $> N_2$ $> CO_2$ is solution of methyl alcoho on? b) 0.190 thane and oxygen are mixed oxygen is b) $\frac{1}{3} \times \frac{273}{298}$ form an ideal solution. The	c) 5.376 c) 5.376 c) 0.086 c) 0.086 c) 0.086 c) 1 c) $\frac{1}{3}$ ne mixture has a vapour press	d) 6.315 s the mole fraction of methyl d) 0.050 5°C. The fraction of the total d) $\frac{1}{2}$ sure of 400 mm at 300 K when
$-10^{\circ}C?.(K_{f} \text{ for watera})$ $(K_{f} $	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $ H_2$ $ CO_2$ $ N_2$ $ CO_2$ $ solution of methyl alcoho on? b) 0.190 thane and oxygen are mixed oxygen is b) \frac{1}{3} \times \frac{273}{298} form an ideal solution. The ratio of 1:1 and a vapour pro-$	c) 5.376 c) 5.376 c) 0.086 ed in an empty container at 2 c) $\frac{1}{3}$ ne mixture has a vapour press pressure of 350 mm when mix	d) 6.315 s the mole fraction of methyl d) 0.050 5°C. The fraction of the total d) $\frac{1}{2}$ sure of 400 mm at 300 K when ked in the molar ratio of 1:2 at
$-10^{\circ}C?.(K_{f} \text{ for wateral})$ $(K_{f} \text{ for wateral})$ $(K_{f}$	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $> H_2$ $> CO_2$ $> N_2$ $> CO_2$ is solution of methyl alcoho on? b) 0.190 thane and oxygen are mixed y oxygen is b) $\frac{1}{3} \times \frac{273}{298}$ if orm an ideal solution. The ratio of 1:1 and a vapour pure. The vapour pressures	c) 5.376 c) 5.376 c) 0.086 ed in an empty container at 2 c) $\frac{1}{3}$ ne mixture has a vapour press pressure of 350 mm when mix of the two pure liquids <i>X</i> and	d) 6.315 s the mole fraction of methyl d) 0.050 5°C. The fraction of the total d) $\frac{1}{2}$ sure of 400 mm at 300 K when ked in the molar ratio of 1:2 at <i>Y</i> respectively are
$-10^{\circ}C?.(K_{f} \text{ for watera})$ $(K_{f} $	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $ H_2$ $ CO_2$ $ N_2$ $ CO_2$ $ solution of methyl alcoho on? b) 0.190 thane and oxygen are mixed oxygen is b) \frac{1}{3} \times \frac{273}{298} form an ideal solution. The ratio of 1:1 and a vapour pare. The vapour pressures b) 350 mm, 450 mm$	c) 5.376 c) 5.376 c) 0.086 ed in an empty container at 2 c) $\frac{1}{3}$ ne mixture has a vapour press pressure of 350 mm when mix of the two pure liquids <i>X</i> and m c) 350 mm, 700 mm	d) 6.315 s the mole fraction of methyl d) 0.050 5°C. The fraction of the total d) $\frac{1}{2}$ sure of 400 mm at 300 K when ked in the molar ratio of 1:2 at <i>Y</i> respectively are d) 550 mm, 250 mm
- 10° C?.(K_f for water a) 3.540 240. The solubility order a) NH ₃ > $CO_2 > O_2$ b) H ₂ > $O_2 > NH_3 > CO_2 > 0_2$ c) CO ₂ > $NH_3 > O_2$ d) O ₂ > H ₂ > $NH_3 > O_2$ d) O ₂ > H ₂ > $NH_3 > 2$ 241. A 5.2 molal aqueous alcohol in the solution a) 1.100 242. Equal masses of metric pressure exerted by a) $\frac{2}{3}$ 243. Two liquids <i>X</i> and <i>Y</i> mixed in the molar in the same temperatur a) 250 mm, 550 mm 244. The van't Hoff factor	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $> H_2$ $> CO_2$ $> N_2$ $> CO_2$ is solution of methyl alcoho on? b) 0.190 thane and oxygen are mixed y oxygen is b) $\frac{1}{3} \times \frac{273}{298}$ form an ideal solution. The ratio of 1:1 and a vapour period of the results of t	c) 5.376 c) 5.376 c) 0.086 c) 0.086 ed in an empty container at 2 c) $\frac{1}{3}$ ne mixture has a vapour press pressure of 350 mm when mix of the two pure liquids <i>X</i> and m c) 350 mm, 700 mm olution of Na ₂ SO ₄ is :	d) 6.315 s the mole fraction of methyl d) 0.050 5°C. The fraction of the total d) $\frac{1}{2}$ sure of 400 mm at 300 K when ked in the molar ratio of 1:2 at <i>Y</i> respectively are d) 550 mm, 250 mm
$-10^{\circ}C?.(K_{f} \text{ for wateral})$ $-10^{\circ}C?.(K_{f} \text{ for wateral})$ $240. The solubility orderal a) NH_{3} > CO_{2} > O_{2}$ $b) H_{2} > O_{2} > NH_{3} > C_{2}$ $c) CO_{2} > NH_{3} > O_{2}$ $d) O_{2} > H_{2} > NH_{3} > 2$ $241. A 5.2 \text{ molal aqueous}$ $alcohol in the solutional a) 1.100$ $242. Equal masses of metry pressure exerted by a) \frac{2}{3}$ $243. Two liquids X and Y mixed in the molar mixed mixed in the molar mixed m$	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $> H_2$ $> CO_2$ $> N_2$ $> CO_2$ is solution of methyl alcohologon? b) 0.190 thane and oxygen are mixed oxygen is b) $\frac{1}{3} \times \frac{273}{298}$ form an ideal solution. The ratio of 1:1 and a vapour pressures b) 350 mm, 450 mm r(i) for a dilute aqueous so b) $1 - \alpha$	c) 5.376 c) 5.376 c) 0.086 ed in an empty container at 2 c) $\frac{1}{3}$ the mixture has a vapour press pressure of 350 mm when mix of the two pure liquids <i>X</i> and m c) 350 mm, 700 mm olution of Na ₂ SO ₄ is : c) $1 + 2\alpha$	d) 6.315 s the mole fraction of methyl d) 0.050 5°C. The fraction of the total d) $\frac{1}{2}$ sure of 400 mm at 300 K when ked in the molar ratio of 1:2 at <i>Y</i> respectively are d) 550 mm, 250 mm d) $1 - 2\alpha$
- 10° C?.(K_f for water a) 3.540 240. The solubility order a) NH ₃ > CO_2 > O_2 b) H ₂ > O_2 > NH_3 > O_2 c) CO_2 > NH_3 > O_2 d) O_2 > H ₂ > NH_3 > O_2 d) O_2 > H ₂ > NH_3 > 2241. A 5.2 molal aqueous alcohol in the solution a) 1.100 242. Equal masses of metric pressure exerted by a) $\frac{2}{3}$ 243. Two liquids <i>X</i> and <i>Y</i> mixed in the molar in the same temperatur a) 250 mm, 550 mm 244. The van't Hoff factor a) 1 + α 245. p_A and p_B are the factor	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is > H ₂ > CO ₂ > N ₂ > CO ₂ solution of methyl alcoho on? b) 0.190 thane and oxygen are mixed y oxygen is b) $\frac{1}{3} \times \frac{273}{298}$ form an ideal solution. The ratio of 1:1 and a vapour person of the following pressures b) 350 mm, 450 mm r(<i>i</i>) for a dilute aqueous so b) 1 - α vapour pressure of pure	c) 5.376 c) 5.376 c) 0.086 c) 0.086 ed in an empty container at 2 c) $\frac{1}{3}$ ne mixture has a vapour press pressure of 350 mm when mix of the two pure liquids <i>X</i> and m c) 350 mm, 700 mm olution of Na ₂ SO ₄ is : c) 1 + 2 α liquid components <i>A</i> and <i>B</i>	d) 6.315 s the mole fraction of methyl d) 0.050 5°C. The fraction of the total d) $\frac{1}{2}$ sure of 400 mm at 300 K when ked in the molar ratio of 1:2 at Yrespectively are d) 550 mm, 250 mm d) $1 - 2\alpha$ respectively of an ideal binary
$-10^{\circ}C?.(K_{f} \text{ for wateral})$ $-10^{\circ}C?.(K_{f} \text{ for wateral})$ $240. The solubility orderal a) NH_{3} > CO_{2} > O_{2}$ $b) H_{2} > O_{2} > NH_{3} > C_{2}$ $c) CO_{2} > NH_{3} > O_{2}$ $d) O_{2} > H_{2} > NH_{3} > C_{2}$	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $> H_2$ $> CO_2$ $> N_2$ $> CO_2$ is solution of methyl alcoholor on? b) 0.190 thane and oxygen are mixed oxygen is b) $\frac{1}{3} \times \frac{273}{298}$ form an ideal solution. The ratio of 1:1 and a vapour pressures b) 350 mm, 450 mm r(i) for a dilute aqueous so b) 1 - α vapour pressure of pure esents the mole fraction of	c) 5.376 c) 5.376 c) 0.086 ed in an empty container at 2 c) $\frac{1}{3}$ the mixture has a vapour press pressure of 350 mm when mix of the two pure liquids <i>X</i> and m c) 350 mm, 700 mm olution of Na ₂ SO ₄ is : c) 1 + 2 α liquid components <i>A</i> and <i>B</i> component <i>A</i> , the total press	d) 6.315 s the mole fraction of methyl d) 0.050 5°C. The fraction of the total d) $\frac{1}{2}$ sure of 400 mm at 300 K when ked in the molar ratio of 1:2 at <i>Y</i> respectively are d) 550 mm, 250 mm d) $1 - 2\alpha$ respectively of an ideal binary sure of the solution will be :
- 10° C?.(K_f for water a) 3.540 240. The solubility order a) NH ₃ > CO_2 > O_2 b) H ₂ > O_2 > NH_3 > O_2 d) O_2 > H_2 > NH_3 > O_2 d) O_2 > NH_3 > O_2 d) O_2 > NH_3 > O_2 d) O_2 > NH_3 > O_2 e) NH_3 > O_2 > NH_3 > O_2 d) O_2 > NH_3 > O_2 e) NH_3 > O_2 > NH_3 > O_2 d) O_2 > NH_3 > O_2 e) NH_3 > O_2 > NH_3 > O_2 d) O_2 > NH_3 > O_2 e) NH_3 > O_2 > NH_3 > O_2 d) O_2 > NH_3 > O_2 e) NH_3 > O_2 > NH_3 > O_2 d) O_2 > NH_3 > O_2 e) NH_3 > O_2 d) O_2 > NH_3 > O_2 e) NH_3 > O_2 > NH_3 > O_2 e) NH_3 > O_2 > NH_3 > O_2 e) NH_3 > O_2 > NH_3 > O_2 > NH_3 > O_2 e) NH_3 > O_2 > NH_3 > O_2 > NH_3 > O_2 > NH_3 > O_2 e) NH_3 > O_2 > NH_3 > NH_3 > O_2 > NH_3 > NH_3 > O_2 > NH_3 > O_2 > NH_3 > NH_3 > NH_3 > O_2 > NH_3 > NH_3 > NH_3 > O_2 > NH_3	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $> H_2$ $> CO_2$ $> N_2$ $> CO_2$ is solution of methyl alcoho on? b) 0.190 thane and oxygen are mixed y oxygen is b) $\frac{1}{3} \times \frac{273}{298}$ form an ideal solution. The ratio of 1:1 and a vapour pressures b) 350 mm, 450 mm r(i) for a dilute aqueous so b) 1 - α vapour pressure of pure esents the mole fraction of b) $p_B + x_A(p_A - p_B)$	c) 5.376 c) 5.376 c) 0.086 ed in an empty container at 2 c) $\frac{1}{3}$ ne mixture has a vapour press pressure of 350 mm when mix of the two pure liquids <i>X</i> and m c) 350 mm, 700 mm olution of Na ₂ SO ₄ is : c) 1 + 2 α liquid components <i>A</i> and <i>B</i> component <i>A</i> , the total press c) $p_A + x_A(p_B - p_A)$	d) 6.315 s the mole fraction of methyl d) 0.050 5°C. The fraction of the total d) $\frac{1}{2}$ sure of 400 mm at 300 K when ked in the molar ratio of 1:2 at Yrespectively are d) 550 mm, 250 mm d) $1 - 2\alpha$ respectively of an ideal binary sure of the solution will be : d) $p_A + x_A(p_A - p_B)$
- 10°C?.(K_f for water a) 3.540 240. The solubility order a) NH ₃ > CO ₂ > O ₂ b) H ₂ > O ₂ > NH ₃ > O ₂ c) CO ₂ > NH ₃ > O ₂ d) O ₂ > H ₂ > NH ₃ > 2 241. A 5.2 molal aqueous alcohol in the solution a) 1.100 242. Equal masses of metric pressure exerted by a) $\frac{2}{3}$ 243. Two liquids <i>X</i> and <i>Y</i> mixed in the molar in the same temperatur a) 250 mm, 550 mm 244. The van't Hoff factor a) 1 + α 245. p_A and p_B are the solution. If <i>xA</i> represion a) $p_B + x_A(p_B - p_A)$ 246. Formation of a solution	$er = 1.86 \text{ K molality}^{-1}$ b) 4.567 for the following gases is $> H_2$ $> CO_2$ $> N_2$ $> CO_2$ is solution of methyl alcoho on? b) 0.190 thane and oxygen are mixed oxygen is b) $\frac{1}{3} \times \frac{273}{298}$ form an ideal solution. The ratio of 1:1 and a vapour pressures b) 350 mm, 450 mm r(i) for a dilute aqueous so b) 1 - α vapour pressure of pure esents the mole fraction of b) $p_B + x_A(p_A - p_B)$ tion from two components	c) 5.376 c) 5.376 c) 0.086 ed in an empty container at 2 c) $\frac{1}{3}$ ne mixture has a vapour press pressure of 350 mm when mix of the two pure liquids <i>X</i> and m c) 350 mm, 700 mm olution of Na ₂ SO ₄ is : c) 1 + 2 α liquid components <i>A</i> and <i>B</i> component <i>A</i> , the total press b) c) $p_A + x_A(p_B - p_A)$ s can be considered as	d) 6.315 s the mole fraction of methyl d) 0.050 5°C. The fraction of the total d) $\frac{1}{2}$ sure of 400 mm at 300 K when ked in the molar ratio of 1:2 at <i>Y</i> respectively are d) 550 mm, 250 mm d) 1 – 2 α respectively of an ideal binary sure of the solution will be : d) $p_A + x_A(p_A - p_B)$

(2) pure solute \rightarrow separated s	solvent molecules, ΔH_2		
(3) separated solvent and sol	ute molecules \rightarrow solution	on, ΔH_3	
Solution so formed will be ide	al if		
a) $\Delta H_{soln} = \Delta H_1 - \Delta H_2 - \Delta H_3$	1	b) $\Delta H_{soln} = \Delta H_3 - \Delta H_1 - \Delta H_1$	$-\Delta H_2$
c) $\Delta H_{soln} = \Delta H_1 + \Delta H_2 + \Delta H_3$	1	d) $\Delta H_{soln} = \Delta H_1 + \Delta H_2 -$	$-\Delta H_3$
247. Azeotropic mixture of HCl and	l water has		
a) 48% HCl b) 2	22.2% HCl	c) 36% HCl	d) 20.2% HCl
248. What is the molarity of H_2SO_4	solution that has a der	nsity 1.84 g/cc at 35°C and	contains 98% solute by
weight?			
a) 4.18 M b) 1	1.84 M	c) 8.41 M	d) 18.4 M
249. The osmotic pressure of 0.2 m	olar solution of urea at	t 27°C (R=0.082 L atm mo	$d^{-1}K^{-1}$)is
a) 4.92 atm b) 1	1 atm	c) 0.2 atm	d) 27 atm
250. In which ratio of volume 0.4 M	1 HCl and 0.9 M HCl are	to be mixed such that the	concentration of the
resultant solution becomes 0.7	7 M ?		
a) 4 : 9 b) 2	2:3	c) 3:2	d) 1 : 1
251. The empirical formula of a nor	nelectrolyte is CH_2O . A	solution containing 3 g of	the compound exerts the
same osmotic pressure as that	t of 0.05 M glucose solu	ition. The molecular formu	lla of the compound is
a) CH_2O b) ($C_2H_4O_2$	c) $C_4 H_8 O_4$	d) $C_3 H_6 O_3$
252. Which of the following can be	measured by the Ostw	ald-Walker dynamic meth	od?
a) Relative lowering of vapour	r pressure	b) Lowering of vapour pr	essure
c) Vapour pressure of the solv	vent	d) All of the above	
253. On shaking 10 mL of 0.1 m	olar solution of an o	organic compound in wat	ter with 10 mL of CCl₄ til
equilibrium is attained, conce	ntration of the organic	compound in water would	l be $(K = 9)$ in molar units :
a) 0.01 b) (0.09	c) 0.001	d) 0.009
254. A solution containing 1.8 g of a	a compound (empirical	formula CH_2O in 40 g of	water is observed to freeze
at $-0.465^{\circ}C$. The molecular fo	ormula of the compoun	d is	
$(K_f of water = 1.86 kg K mo$	(l^{-1})		
a) $C_2 H_4 O_2$ b)	$C_2H_2O_2$	c) $C_A H_0 O_A$	d) $C_{4}H_{12}O_{4}$
255. For dilute solution Raoult's la	w states that	0) 04-1804	() 08-1208
a) The relative lowering of var	pour pressure is equal	to mole fraction of solute	
b) The lowering of vapour pre	essure is equal to the m	ole fraction of solute	
c) The vapour pressure of the	solution is equal to me	ble fraction of the solvent	
d) The relative lowering of var	pour pressure is propo	rtional to amount of solute	in solution
256. For an ideal binary liquid sol	ution with $P_1^0 > P_2^0$ wh	nich relation between X_{A} ((mole fraction of A in liquid
$r_{\rm max}$ nhase) and $Y_{\rm A}$ (mole fraction	of A in variour phase)	is correct. $X_{\rm P}$ and $Y_{\rm P}$ are	mole fraction of B in liquid
and vapour phase respectively	v:		more maction of 5 m nquita
a) $X_{4} = Y_{4}$, .		
$\begin{array}{l} \text{(b)} X_A > Y_A \\ \text{(b)} X_A > Y_A \end{array}$			
$X_A Y_A$			
c) $\frac{\pi}{X_P} < \frac{\pi}{Y_P}$			
d) X_A , Y_A , X_B and Y_B cannot be	corelated		
257. The normality of 2.3 M H_2SO_4	solution is		
a) 4.6 N b) 5	5.6 N	c) 6.6 N	d) 7.6 N
258. The molecular weight of NaCl	determined by studyin	g freezing point depressio	on of its 0.5% aqueous
solution is 30. The apparent d	egree of dissociation of	f NaCl is	
a) 0.60 b) (0.50	c) 0.30	d) 0.95
259. A 5 molar solution of H_2 SO.	s diluted from 1 L to 10) L. What is the normality (of the solution?
a) 0.25 N h)	1 N	c) 2 N	d) 7 N
260. 100 mL of water and 50 mL et	ther mixture is shaken	with succinic acid. At equi	librium ether laver contains
0.127 g and water layer conta	ins 1.843 g of succinic a	acid. The partition coefficie	ent of succinic acid in favour

	of water is :			
	a) 7.26	b) 10	c) 2	d) 4.5
261	The lubricating action of a	an oil is more if it possess :		
	a) High vapour pressure			
	b) Low vapour pressure			
	c) High surface tension			
	d) High density			
262	Maximum lowering of vap	oour pressure is observed in	n the case of	
	a) 0.1 M glucose	b) 0.1 M Bacl ₂	c) 0.1 M MgSO ₄	d) 0.1 NaCl
263	The solubility of a gas in li	iquid at a temperature is di	rectly proportional to its :	
	a) Density	b) Melting point	c) Boiling point	d) Pressure
264	A solution of sucrose (Mo	lar mass = 342 g/mol) is p	repared by dissolving 68.4	g of it per litre of solution,
	what is its osmotic pressu	re (R=0.082 L atmK ^{-1} mol	l^{-1}) at 273 K?	
	a) 3.92 atm	b) 4.48 atm	c) 5.92 atm	d) 29.4 atm
265	Which of the following co	ncentration factors is affect	ed by change in temperatu	ire?
	a) Molarity	b) Molality	c) Mole fraction	d) Weight fraction
266	Which of the following mi	xture does not show positiv	ve deviation from the Raou	lt's law?
	a) Benzene + acetone		b) Acetone + ethanol	
	c) Acetone + chloroform		d) Water + ethanol	
267	The ratio of vapour press	ure over solution phase on	mixing two immiscible liqu	ids is equal to :
	a) Ratio of their weights in	n mixture		
	b) Ratio of their mol. weig	shts		
	c) Ratio of their moles in	liquid phase		
	d) Ration of their moles in	i vapour phase		
268	The vapour pressure of b	enzene at 80°C is lowered l	by 10 mm by dissolving 2g	of a non-volatile substance
	in 78 g of benzene. The v	apour pressure of pure bei	nzene at 80°C is 750 mm. T	'he molecular weight of the
	substance will be :		2 1500	N 140
260	a) 15	b) 150	c) 1500	a) 148
269	I_2 is added to a system of	H_2U and US_2 . The concen	tration of I ₂ in water and i	LS_2 is found to be c_1 and c_2
	respectively. The ratio of	c_1/c_2 will be constant only	1f :	
	a) The solutions are dilute			
	b) The temperature rema	ins constant	luonta non itaalf ahanging	in molecular state
	d) All of the above	igning the miniscidinity of so	Sivents nor itsen changing	in molecular state
270	The heiling point of an ac	waawa colution of a non w	latila coluta ic 100 15°C M	What is the freezing point of
270	an aquaous solution obtai	jueous solution of a non-ve	solution with an equal volu	ma of water? The values of
	K and K for water are 0	E12°C and 1.96°C K molality	solution with an equal volt	line of water? The values of
	Λ_b and Λ_f for water are 0.		y = 0.072 °C	b 0106%
071	a) -0.544 C	b) -0.512 C	C = -0.272 C	a) –0.1.86 L
2/1	A solution has an osmotic	pressure of 0.821 atom at	300 K. Its concentration we	buid be :
272	a) $0.066 M$	DJ U.66 M	C) $0.033 M$	a) 0.33 M
212	Defisity of a 2.05 M solution	bit of acetic actu in water is	1.02 g/mL. The molality of	d) 0.0 I
272	d J 9 L On adding 1 g arconic to 9	UJ 1.0 L Og hangang tha fragging n	CJOL aint of honzona is lowered	$U_{\rm J} U_{\rm J} U_{\rm J} U_{\rm J}$
2/3	on adding 1 g al senic to o	o g benzene, the neezing p	offit of belizene is lowered	by 0.19 C. The formula of
		b) Ac	c) Ac	d) 4c
274	aj no The process of gotting from	uj risz sh water from son water in	UJ AS3	uj As ₄
2/4	a) Osmosis	sii watei ii uiii sed Watei IS	NIIUWII as .	
	a) Filtration			
	c) Diffusion			
	d) Reverse osmosis			
	a, neverse osmosis			

275. The statement "the relative lowering of the vapour p	pressure is equal to th ratio	ot moles of the solute to
the total number of the moles in the solution" refers	s to	
a) Decrease the freezing point of water in the winte	r and increase the boiling	point of water in the
summer		
b) Only decrease the freezing point of water		
c) Only increase the boiling point of water		
d) Be used for cleaning the radiator in a car		
276. X is dissolved in water. Maximum boiling point is ob	bserved when X is(0.1 M	each)
a) $CaSO_4$ b) $BaCl_2$	c) NaCl	d) Urea
277. What is molarity of K^+ in aqueous solution that con	tains 17.4 ppm of K_2SO_4 (1	$74 g mol^{-1})?$
a) $2 \times 10^{-2} M$ b) $2 \times 10^{-3} M$	c) $4 \times 10^{-4} M$	d) $2 \times 10^{-4} M$
278. Which of the following statement is true?		
a) The relative lowering of vapour pressure of a solution	ution is equal to the mole fi	raction of the solute present
in the solution.		
b) Passage of solute molecules towards solution sid	e through semipermeable r	nembrane is osmosis.
c) The boiling point of solution is always lower than	the solvent.	
d) The boiling point of a liquid is the temperature a	t which its vapour pressur	e becomes equal to 260 mm.
279. Calculate the molarity of 1 L solution of 93% H_2SO_4	(weight/volume). The den	sity of the solution is 1.84
g/mL		
a) 11.05 b) 12.05	c) 13.05	d) 14.05
280. If 0.15 g of a solute dissolved in 15 g of solvent is bo	iled at a temperature highe	er by 0.216°C than that of
the pure solvent, the molecular weight of the substa	ance is (molal elevation cor	nstant for the solvent is
2.16°C)		
a) 100 b) 102	c) 104	d) 1.02
281. The vapour pressure of a liquid in a closed containe	r depends upon	
a) Amount of liquid	b) Surface area of the cor	ntainer
c) Temperature	d) None of the above	
282. The vapour pressure of a solution is proportional to	:	
a) Mole fraction of solute		
b) 1/(mole fraction of solute)		
c) Mole fraction of solvent		
d) None of the above		
283. At 25°C a 5% aqueous solution of glucose (molecula	ar weight = $180 \text{ g } mol^{-1}$) is	s isotonic with 2% aqueous
solution containing an unknown solute. What is the	molecular weight of the un	known solute.
a) 60 b) 80	c) 72	d) 63
284. The spontaneous movement of solute particles fro	om a more concentrated s	olution to less concentrated
solution is called :		
a) Osmosis b) Diffusion	c) Plasmolysis	d) Fusion
285. How many grams of a sucrose (mol wt. $=$ 342) show	ld be dissolved in 100 g wa	ater in order to produce a
solution with a 105.0°C difference between the free	zing point and boiling temp	perature? ($k_f =$
$1.86 \text{ C/m} k_{\rm b} = 0.151^{\circ} \text{C}$		
a) 34.2σ b) 72σ	c) 342 σ	d) 460 g
286 A solution of urea (mol mass 56) holls at 100.18	°C at atmospheric pressure	If K_{ϵ} and K_{k} for water are
1.86 and 0.512 K molality ⁻¹ respectively, the above	colution will from a t	e. If Ky and Kp for water are
1.00 and 0.512 K instanty respectively, the above	solution will neeze at: $a) = 0.654^{\circ}C$	d) 0 654°C
$a_{\rm J} = 0.34$ C DJ 0.34 C	$C_{j} = 0.034 C_{j}$	u) 0.054 C
207. 17.05 IIL OF U.1 IN NAUTI FEACUS WITH 20 IIL OF HULSO	nation for complete neutra	nzation. The molarity of HU
	a) 0.000	4) 0 0000
a) 7.7 UJ U.77 200 The venerit processing will be lowest of	CJ 0.099	uj 0.0099
200. The vapour pressure will be lowest of	b) 0.1 M VCl colution	
aj ult misugai sulululi	D J D.I M INCI SUIULIOII	

c) 0.1 M Cu(NO ₃) ₂ solution	d) 0.1 M AgNO ₃ soution	
289. Which one is correct?		
a) Molality changes with temperature.	b) Molality does not char	nge with temperature.
c) Molarity does not change with temperature.	d) Normality does not ch	ange with temperature.
290. What is molality of a solution in which		
(18 g glucose mol. wt. $=$ 180) is dissolved in 500 g c	of water?	
a) 1 m b) 0.5 m	c) 0.2 m	d) 2 m
291. Which of the following solution in water possesses t	the lowest vapour pressure	?
a) 0.1 (N) BaCl ₂ b) 0.1 (M)NaCl	c) 0.1 (M) KCl	d) None of these
292. A 5.25% solution of a substance is isotonic with a 1.	5% solution of urea (mola	$mass = 60 \text{ gmol}^{-1}$ in the
same solvent. If the densities of both the solutions a	re assumed to be equal to '	1.0 g cm^{-3} molar mass of
the substance will be		
a) 90.0 g mol ⁻¹ b) 115.0 g mol ⁻¹	c) 105.0 g mol^{-1}	d) 210.0 g mol ^{-1}
293. Which of the following solutions will have highest h	oiling point	
a) 0.1 M FeCl ₂	b) 0.1 M BaCl_2	
c) 0.1 M NaCl	d) 0.1 M urea (NH ₂ CON	Hal
$294 \text{ At}25^\circ\text{C}$ the highest osmotic pressure is exhibited h	v 0.1 M solution of	-2)
a) Decinormal aluminium sulphate	y our of solution of	
h) Decinormal barium chloride		
c) Decinormal sodium chloride		
d) A solution obtained by mixing equal volumes of (b) and (c) and filtering	
295 Molarity of 0.2 N H ₂ SO, is	b) and (c) and intering	
2 > 3. Molarity of 0.2 is $(12504 is)$	c) 0 3	d) 0.4
296 The jonic strength of solution containing $0.1 \text{ mol}/kc$	of KCl and 0.2 mol/kg of ($T_{11} SO_{1}$ is
$2 > 0.1 \text{ more strength of solution containing 0.1 more key as 0.3 \text{ b) } 0.6$		d) 0 2
297 25 mL of a solution of harium hydroxide on titration	with 0.1 molar solution of	f hydrochloric acid gave a
titre value of 35 mL. The molarity of harium hydrox	ide solution was	nyuroemorie aciu gave a
a) 0.07 b) 0.14		d) 0 35
208 The freezing point of equimolal aqueous solution w	ill be highest for	uj 0.55
2.50. The freezing point of equinoial aqueous solution w.		$d(x_{2})$
299 The normality of a 100 mL solution of sodium hydro	$0.0611_{12}0_{6}$	$^{\circ}$ NaOH is
2)05 b) 10		d) 2 0
200 For determination of molecular weights Rapult's la	u is applicable only to	u) 2.0
a) Dilute solutions of electrolytes	b) Concentration solution	n of alactrolytas
a) Dilute solutions of non-alactralytes	d) Concentration solution	n of non electrolytes
201 Osmotic prossure of a colution at a given temperatu	ro	ii oi non electiolytes
a) Increases with concentration	b) Docroscoc with conco	ntration
a) Domains same	d) Initially increases and	then decreases
202 A solution has a 1 · 4 mole ratio of pontane to have	uj initialiy increases anu	then decreases
are 440 mm Hg for pentane and 120 mm Hg for h	ne. The vapour pressures of nevane. The mole fraction	of pentane in vanour phase
would be		of pentane in vapour phase
would be: a > 0.796 b) 0.540	a) 0.479	4) 0 200
a) 0.700 DJ 0.349	CJ U.470	uj 0.200
a) U. Q and CS	i willen 1 ₂ is distributed be	tween:
a) H_2O and CO_2		
b) H_2O and COI_4		
c) H_2O and ether		
$a_J H_2 U$ and ethanol 204 The transmission of the basis of the transmission of transmission of the transmission of transmission	hon a non 1-41. D'. 11	ad to dita
304. The vapour pressure of pure liquid A is 0.80 atm. W	nen a non-volatile <i>B</i> is add	eu to Aits vapour pressure
arops to 0.60 atm. The mole fraction of <i>B</i> in the solution of 1.0125		4) 0 7F
aj 0.125 b) 0.25	CJ U.5	aj 0.75

305. When a non-volatile solute is dissolved in a solvent, the relative lowering of vapour pressure is equal to			
a) Mole fraction of solute			
b) Mole fraction of solvent			
c) Concentration of the solute ir	n gram per litre		
d) Concentration of the solute ir	n gram per 100 mL		
306. The freezing point of one modal	NaCl solution assuming N	laCl to be 100 % dissoc	tiated in water is (modal
depression constant=1.86)			
a) -2.72°C b) -3	3.72°C c) 2	.72°C	d) 3.72°C
307. On mixing, heptane and octane	form an ideal solution. At 3	373 K, the vapour pres	sures of the two liquid
components (heptanes and octa	ne) are 105 kPa and 45kF	a respectively. Vapour	pressure of the solution
obtained by mixing 25 g of hept	anes and 35 g of octane w	ill be (molar mass of he	eptanes = $100 \text{ g} mol^{-1}$
and of octane = 114 gmol^{-1}).			
a) 72.0 kPa b) 36	.1 kPa c) 9	6.2 kPa	d) 144.5 kPa
308. The van't Hoff factor of $BaCl_2$ at	0.01 M concentration is 1	.98. The percentage of	dissociation of BaCl ₂ at
this concentration is			-
a) 49 b) 69	c) 8	9	d) 98
309. The relative lowering of vapour	pressure of an aqueous so	olution containing non-	volatile solute is 0.0125.
The molality of the solution is	1 1	5	
a) 0.70 b) 0.5	50 c) 0	.60	d) 0.80
310. An aqueous solution of glucose	was prepared by dissolvin	ng 18 g of glucose in 90	g of water. The relative
lowering in vapour pressure is			8 •• •• •• •• •• •• •• ••
a) 0.01 b) 0.0)2 c) 1		d) 20
311. In a 0.2 molal aqueous solution	of a weak acid H X the deg	ree of ionisation is 0.3	Taking k_{ϵ} for water as
1.85 the freezing point of the sc	Jution will be nearest to		runnig toj for trator us
a) MoV		m /s	d) Atm
$a_j = 0$ $b_j = 0$		111/ S	u) Athi
s_1 = s_1 = s_2 = s_2 = s_2 = s_1 = s_2	$al ka^{-1}$ a) m	nol-1 I-1	d) mol I
$\frac{1}{212} \text{ An anostropic solution of two bills}$	01 KY CJ N	101 ⁻ L ⁻	u) moi L
a) Change a partice designing f	quius has boiling point lov	ver than either when it	Les Green De sull'e less
a) Shows a negative deviation in	Com Raoult's law DJ S	nows a positive deviati	Ion from Raoult's law
c) Shows no deviation from Rad	ouit s law a) is	s saturated	
314. The statement, The mass of a g	as dissolved in a given ma	iss of a solvent at any te	emperature is
proportional to the pressure of	the gas above the solvent		
a) Henry's law b) La	w of mass action cj D	Valton's law	a) None of these
315. The freezing point of water is de	epressed by 0.37°C in a 0.0)1 mol NaCl solution. T	he freezing point of 0.02
molal solution of urea is depres	sed by	40502	N 002
a) 0.37°C b) 0.3	/4°C c) 0	.185°C	d) 0°C
316. A solution of protein (extracted	I from crabs) was prepare	ed by dissolving 0.75 g	in 125 cm ³ of an aqueous
solution. At 4°C an osmotic pres	sure rise of 2.6 mm of the	solution was observed	. Then molecular weight of
protein is : (Assume density of s	solution is 1.00 g/cm^3)		
a) 9.4×10^5 b) 5.4	4×10^5 c) 5	$.4 \times 10^{10}$	d) 9.4 $\times 10^{10}$
317. 2 N HCl solution will have same	molar concentration as a		
a) 4.0 N H_2SO_4 b) 0.5	$5 N H_2 SO_4$ c) 1	$N H_2 SO_4$	d) 2 N <i>H</i> ₂ <i>SO</i> ₄
318. Molarity of a given orthophosph	oric acid solution is 3 M. I	t's normality is	
a) 9N b) 0.3	3 N c) 3	Ν	d) 1 N
319. Which of the following is a collig	gative property?		
a) Boiling point b) Fr	eezing point c) 0	smotic pressure	d) Vapour pressure
320. A liquid is in equilibrium with	its vapours at its boiling	point. On the average	the molecules in the two
phases have equal :			
a) Potential energy			
b) Total energy			

c) Kinetic energy

a) 2N

d) Intermolecular forces

- 321. You are given 100 mL of CCl₄ to extract iodine from 200 mL of its aqueous solution. For extracting maximum amount of iodine, which one of the following processes would you use?
 - a) Use all 100 mL of CCl₄ at one time
 - b) Use 50 mL of CCl₄ twice
 - c) Use 10 mL of CCl₄ 10 times
 - d) Use 25 mL of CCl₄ 4 times
- 322. Normality of 2 M sulphuric acid is
- c) $\frac{N}{2}$ d) $\frac{N}{4}$ 323. The elevation in boiling point of a solution of 13.44 g of $CuCl_2$ in 1 kg of water using the following information will be (molecular weight of $CuCl_2 = 134.4$ and $k_b = 0.52 Km^{-1}$) a) 0.16 b) 0.05 c) 0.1 d) 0.2
- 324. The degree of dissociation (α) of a weak electrolyte, $A_x B_y$ is related to van't Hoff factor (i) by the expression

a)
$$\alpha = \frac{i-1}{(x+y-1)}$$
 b) $\alpha = \frac{i-1}{x+y+1}$ c) $\alpha = \frac{x+y-1}{i-1}$ d) $\alpha = \frac{x+y+1}{i-1}$

- 325. On adding a solute to a solvent having vapour pressure 0.80 atm vapour pressure reduces to 0.60 atm. Mole fraction of solute is
 - d) 0.33 a) 0.25 b) 0.75 c) 0.50
- 326. Generally those gases are soluble in water to a greater extent which :

b) 4N

- a) Are easily liquefied
- b) Are ionized in water
- c) React with water
- d) All are correct
- 327. Two solutions (A) containing $FeCl_3(aq)$ and (B) containing $K_4[Fe(CN)_6]$ are separated by semipermeable membrane as shown below. If FeCl₃ on reaction with $K_4[Fe(CN)_6]$, produces blue colour of $Fe_4[Fe(CN)_6]$, the blue colour will be noticed in :

a) (A)

b) (*B*)

c) In both (*A*) and (*B*)

d) Neither in (*A*) nor in (*B*)

328. The difference between the boiling point and freezing point of an aqueous solution containing sucrose (mol wt. = 342 gmol⁻¹) in 100 g of water is 105.0°C. If K_f and K_b of water are 1.86 and 0.51 K kg mol⁻¹ respectively, the weight of sucrose in the solution is about

a) 34.2 g	b) 342 g	c) 7.2 g	d) 72 g

- 329. Pressure cooker reduces cooking time for food because
 - a) Boiling point of water involved in cooking is increased
 - b) Heat is more evenly distributed in the cooking space
 - c) The higher pressure inside the cooker crushes the food material
 - d) Cooking involves chemical changes helped by a rise in temperature
- 330. 9.8 g of H₂SO₄ is present in 2 L of a solution. The molarity of the solution is
 - c) 0.03 M a) 0.05 M b) 0.01 M d) 0.02 M
- 331. At 95°C, an aqueous solution of iodine containing 0.0156 g/litre is in equilibrium with a CCl₄ solution containing 4.412 g/litre. If the solubility of I_2 in water at 95°C is 0.34 g/litre, then its solubility in CCl_4 is :

	a) $\frac{4.412 \times 0.0156}{1000}$			
	b) $\frac{0.34}{0.0156 \times 0.34}$			
	4.412 4.412 × 0.34			
	c) $\frac{4.412 \times 0.54}{0.0156}$			
	0.0156			
	d) $\frac{1}{4.412 \times 0.34}$			
332.	Calculate the normality o	f 250 mL aqueous solution of	of H_2SO_4 having pH = 0.00	
	a) 0.25 N	b) 0.50 N	c) 1 N	d) 2 N
333.	Van't hoff factor of <i>Ca</i> (<i>N</i>)	$(0_3)_2$ is	,	5
	a) Benzoic acid is an orga	anic solute		
	b) Benzoic acid has highe	er molar mass than benzene		
	c) Benzoic acid gets asso	ciated in benzene		
	d) Benzoic acid gets disso	ociated in benzene		
334.	A solution of 5 g of iodi	ine in CS ₂ was shaken with	the same volume of wate	er. The amount of iodine in
	water is : (Given <i>K</i> in favo	our of $CS_2 = 420$		
	a) 0.119 g	b) 0.0119 g	c) 0.00119 g	d) 1.19 g
335.	From the colligative pro	operties of solution which	one is the best method	for the determination of
	molecular weight of prote	eins and polymers :		
	a) Osmotic pressure			
	b) Lowering in vapour pr	essure		
	c) Lower in freezing poin	t		
	d) Elevation in boiling po	int		
336.	Observe the following ab	brevations		
000	$\pi_{obs} = observed colligat$	ive property		
	π_{aal} = theoretical colliga	itive property assuming noi	rmal behaviour of	
	solute.			
	Van't Hoff factors (<i>i</i>) is gi	ven by		
	a) $i = \pi$, $\times \pi$.	b) $i = \pi + \pi$	c) $i = \pi + -\pi$	d) $i = \frac{\pi_{obs}}{1}$
	a) $t = n_{obs} \times n_{cal}$	$b j t = n_{obs} + n_{cal}$	c) $t = n_{obs} - n_{cal}$	π_{cal}
337.	The vapour pressure of	two pure liquid (A) and ((B) are 100 torr and 80	torr respectively. The total
	pressure of solution obta	ined by mixing 2 mole of (A) and 3 mole of (<i>B</i>) would	be :
	a) 120 torr	b) 36 torr	c) 88 torr	d) 180 torr
338.	On the basis of intermo	olecular forces predict the	e correct order of decrea	asing boiling points of the
	compounds:			
	a) $CH_3OH > H_2 > CH_4$	b) $CH_3OH > CH_4 > H_2$	c) $CH_4 > CH_3OH > H_2$	d) $H_2 > CH_4 > CH_3OH$
339.	Which has the highest fre	ezing point at one atmosph	ere?	
	a) 0.1 <i>M</i> NaCl solution	b) 0.1 <i>M</i> sugar solution	c) 0.1 <i>M</i> BaCl ₂ solution	d) 0.1 <i>M</i> FeCl ₃ solution
340.	Binary liquid mixtures w	hich exhibit positive deviati	ons from Raoult's law boi	il at temperature than the
	expected b. p.:			
	a) lower	b) Higher	c) Same	d) Cannot be said
341.	Which has minimum osm	otic pressure?		
	a) 200 mL of 2 M NaCl so	lution	b) 200 mL of 2 M glucose	solution
	c) 200 mL of 2 M urea sol	lution	d) All have same osmotic	pressure
342.	Which of the following so	lutions will have the highes	t boiling point?	
	a) 0.1 M BaCl ₂	b) 0.1 M FeCl ₃	c) 0.1 M NaCl	d) 0.1 M urea
343.	Solubility of solutes whic	h dissolve with the liberatio	n of heat decreases with :	
	a) Decrease in temperatu	ire		
	b) Increase in temperatur	re		
	c) No change in temperat	ture		
211.	a) 200 mL of 2 M NaCl so c) 200 mL of 2 M urea so	lution lution	b) 200 mL of 2 M glucose d) All have same osmotic	solution pressure
341.	Which has minimum osm	of Higher	cj same	uj Cannot de Sald
341.	which has minimum osm	iouc pressure?		1
	aj 200 mL of 2 M Naul so	iuuon	DJ 200 mL OF 2 M glucose	solution
_	c) 200 mL of 2 M urea so	lution	d) All have same osmotic	pressure
542.	a) 0.1 M Pacl	b) 0.1 M Eacl	a) 0.1 M NaCl	d) 0.1 M unce
343	Solubility of solutos which	h dissolve with the liberatio	n of heat decreases with	.,
	a) Decrease in temperatu	ire		
	b) Increase in temperature	re		
	c) No change in temperat	ture		

	d) None of the above				
344	44. A binary liquid solution ois prepared by mixing <i>n</i> -heptane and ethanol. Which one of the following				
	statements is correct regarding the behaviour of the solution?				
	a) The solution formed is an ideal solution				
	b) The solution is non-ideal, showing positive deviation from Raoult's law				
	c) The solution is non-ideal, showing negative deviation from Raoult's law				
	d) <i>n</i> -heptane shows posit	ive deviation while ethanol	show negative deviation fr	rom Raoult's law	
345	A 0.0020 m aqueous solu	ition of an ionic compound	l Co(NH ₃) ₅ (NO ₂)Cl freezes	s at -0.00732 °C. Number of	
	moles of ions which 1 r	nol of ionic compound pr	oduces on being dissolve	d in water will be : $(K_f =$	
	+1.86°C/m)				
	a) 1	b) 2	c) 3	d) 4	
346	Solutions A, B, C and D are	e respectively 0.1 M glucose	e, 0.05 M NaCl, 0.05 M BaCl	$_2$ and 0.1 M AlCl ₃ . Which	
	one of the following pairs	is isotonic?			
	a) A and B	b) <i>B</i> and <i>C</i>	c) A and D	d) A and C	
347	Colligative properties of a	solution depends upon			
	a) Nature of both solvent	and solute			
	b) Nature of solute only				
	c) Nature of solvent only				
	d) The relative number of	solute and solvent particle	es		
348	A solution of sucrose (mo	lar mass=342 g/mol) is pr	epared by dissolving 68.4 g	g of it per litre of the	
	solution, what is its osmo	tic pressure ($R = 0.082$ L a	tm K^{-1} mol ⁻¹) at 273 K?		
	a) 3.92 atm	b) 4.48 atm	c) 5.92 atm	d) 29.4 atm	
349	The values of observed a	nd calculated molecular we	eights of silver nitrate are o	92.64 and 170 respectively.	
	The degree of dissociation	n of silver nitrate is :			
	a) 60%	b) 83.5%	c) 46.7%	d) 60.23%	
350	Saturated solution of NaC	l on heating becomes :			
	a) Super saturated	b) Unsaturated	c) Remains saturated	d) None of these	
351	20 g of hydrogen is prese	nt in a 5 L vessel. The mola	r concentration of hydroge	n is	
	a) 1	b) 2	c) 3	d) 4	
352	The molarity of pure wate	er is			
	a) 55.6	b) 5.56	c) 6.55	d) 65.5	
353	Assuming that sea water	is a 3.50 weight per cent aq	ueous solution of NaCl. Wh	at is the molality of sea	
	water?				
	a) 0.062 m	b) 0.0062 m	c) 0.62 m	d) 6.2 m	
354	The condition under which	ch Nernst distribution law w	vill not hold true is :		
	a) Temperature is constant	nt			
	b) The molecular state of	the solute is the same in bo	th solvents		
	c) The solute does not cau	use any change in the mutu	al solubility of the two solv	rents	
	d) None of the above				
355	An ideal solution is that w	vhich			
	a) Obey Raoult's law		b) Shows positive deviation	on from Raoult's law	
	c) Shows negaitive deviat	ion from Raoult's law	d) Has no connection with	n Raoult's law	
356	The relative lowering of v	apour pressure of an aqueo	ous solution containing nor	-volatile solute is 0.0125.	
	The molality of the solution	on is			
	a) 0.1 M NaCl	b) 0.1 M BaCl ₂	c) 0.1 M sucrose	d) 0.1 M KCl	
357	Among the following subs	stances, the lowest vapour	pressure is exerted by :		
	a) Water	b) Mercury	c) Kerosene	d) Rectified spirit	
358	If 5.85 g NaCl (molecular	weight 58.5) is dissolved in	water and the solution is a	made up to 0.5 L, the	
	molarity of the solution w	rill be			
	a) 0.1	b) 0.2	c) 0.3	d) 0.4	

359. The sum of mole fraction	s of <i>A, B</i> and <i>C</i> in an aqueou	is solution containing 0.2 n	noles of each <i>A, B</i> and <i>C</i> is	
a) 0.6	b) 0.2	c) 1.0	d) 1.2	
360. To neutralise completely	20 mL of 0.1 M aqueous so	lution of phosphorous acid	(H_3PO_3) , the volume of 0.1	
M aqueous KOH solution	required is			
a) 10 mL	b) 20 mL	c) 40 mL	d) 60 mL	
361. At temperature 327°C an	d concentration <i>C</i> osmotic	pressure of a solution is <i>p</i> ,	the same solutions at	
concentration $C/2$ and a	temperature 427°C shows	osmotic pressure 2 atm, va	lue of <i>p</i> will be	
12	²⁴	a) 6	J 5	
a) <u>-</u>	<u> 7</u>	$\frac{c}{5}$	$\frac{1}{6}$	
362. Molarity of a solution pre	pared by dissolving 75.5 g	of pure KOH in 540 mL sol	ution is	
a) 1.50 M	b) 2.50 M	c) 3.50 M	d) 5.01 M	
363. The relationship between	n the values of osmotic pres	sure of 0.1 M solution of K	$NO_3(p_1)$ and $CH_3COOH(p_2)$	
is				
a) $\frac{p_1}{n_1+n_2} = \frac{p_2}{n_1+n_2}$	b) $p_1 > p_2$	c) $p_2 > p_1$	d) $p_1 = p_2$	
p_1+p_2 p_1+p_2 364 At 40°C the vanour press	ures of nure liquids benzei	ne and toluene are 75 torr	and 22 torr respectively. At	
the same temperature t	he nartial vanour pressure	e of henzene in a mixture	of 78 g benzene and 46 g	
toluene in torr assuming	the ideal solution should be	· ·	of to g benzene and to g	
a) 50	h) 25	c) 375	d) 53 5	
365 The reverse of fusion is fu	reezing and it is .		a) 55.5	
a) Endothermic				
b) Exothermic				
c) Neither exothermic no	r endothermic			
d) May be exothermic or	endothermic			
36650 g of an acid is dissolv	ved in one litre aqueous so	Jution Distribution coeffic	cient in favour of ether is 3	
Acid left in aqueous laver	when solution is shaken w	with one litre ether ·		
a) 25 g	h) 12.5 g	c) $6.25 g$	d) None of these	
367 When the vanour pressu	re of solutions of two liqu	ids are less than those ex	nected from ideal solutions	
they are said to show :	ite of solutions of two liqu			
a) Positive deviations fro	m ideal behaviour			
b) Negative deviations fro	om ideal behaviour			
c) Positive deviations for	lower concentrations and	negative deviations for hig	her concentration	
d) None of the above	lower concentrations and	negative acviations for mg		
368 Which method cannot be	used to find out the molecu	lar weight of non-volatile	solute?	
a) Victor Meyer's method		and weight of non volathe	solute.	
b) Osmotic pressure met	hod			
c) Cryoscopic method	liou			
d) Fhullioscopic method				
369 The equilibrium in a hete	rogeneous system can be s	tudied by ·		
a) Distribution law	h) Phase rule	c) Both (a) and (b)	d) None of these	
370 At Abu mountains water	boils at 96°C. What amount	of NaCl be added in 1 kg w	vater so that it boils at 100° C	
$K_{\rm r}$ for H ₂ O = 0.52 K mole	lity ⁻¹	of Nucli be duded in 1 kg w		
a) 225 σ	b) 450σ	c) 200 g	d) 125 σ	
371 The normality of 0.3 M nl	osphorous acid (H_PO_) is	cj 200 g	u) 125 g	
371. The normality of 0.5 M pl	h) 0 4	, c) 0.6	d) 0.8	
a) 0.2 272 If the various terms in the	b) 0.4 a below given expressions b	cj 0.0	a) 0.0	
calculated by which one of	of the expressions?	lave usual meanings, me v		
a) $\pi V = \sqrt{im PT}$	of the expressions:	b) $\Lambda T_{-} = ik_{-}m_{-}$		
$a_J n v = \sqrt{n K I}$		$n^{\circ} colvent - n colvetion $	$n \rightarrow$	
c) $\Delta T_b = ik_b \cdot m$				
c) $\Delta T_b = ik_b \cdot m$ d) $\frac{p^{\circ} \text{solvent}}{p^{\circ} \text{solvent}} = i\left(\frac{m}{N+n}\right)$				
373. Which of the following lic	quid pairs shows a positive	d) $\frac{p^{\circ} \text{ solvent } p \text{ solvent}}{p^{\circ} \text{ solvent}} = i \left(\frac{1}{N}\right)$ deviation from Raoult's law	+n) N?	

c) Water-nitric acid	d) Acetone-chloroform	
374. How much $K_2 C r_2 O_7$ (Mol. wt. = 294.19) is required to	to prepare one litre of 0.1 N	I solution?
a) 9.8063 g b) 7.3548 g	c) 3.6774 g	d) 4.903 g
375. The boiling point of C_6H_6 , CH_3OH , $C_6H_5NH_2$ and C_6	$_{5}H_{5}NO_{2}$ are 80 °C, 65°C, 18	4°C and 212 °C respectively.
Which will show highest vapour pressure at room te	mperature?	
a) C_6H_6 b) CH_3OH	c) $C_6H_5NH_2$	d) $C_6H_5NO_2$
376. In a pair of immiscible liquids, a common solute d	lissolves in both and the e	equilibrium is reached. The
concentration of solute in upper layer is :		
a) Same as in lower layer		
b) Lower than the lower layer		
c) Higher than the lower layer		
d) In fixed ratio with that in the lower layer		
377. Insulin $(C_2H_{10}O_5)_n$ is dissolved in a suitable solven	t and the osmotic pressure	$e(\pi)$ of solutions of various
concentrations C (g/cm ³) is measured at 20°C. the concentrations C (g/cm ³) is measured at 20°C.	he slope of a plot of π a	against C is formed to be
4.65 $\times 10^{-3}$. The molecular weight of the insulin is :		
a) 4.8×10^5 b) 9×10^5	c) 3 $\times 10^5$	d) 5.17 $\times 10^{6}$
378. Volume of 0.6 M NaOH required to neutralise 30 cm ³	³ of 0.4 M HCl is	
a) 20 cm ³ b) 40 cm ³	c) 45 <i>cm</i> ³	d) 30 <i>cm</i> ³
379. The freezing point of the 0.05 molal solution of non-	electrolyte in water is	
a) -0.093°C b) 1.86°C	c) 0.93°C	d) 0.093°C
380. A molar solution of NaCl has a density of 1.21 g mL ^{-1}	¹ . The molarity of this solut	ion is
a) 2.35 b) 1.143	c) 2.95	d) 1.356
381. Osmotic pressure of blood is 7.65 atm at 310 K. An	aqueous solution of glucos	se that will be isotonic with
blood iswt./vol.		
a) 5.41% b) 3.54%	c) 4.53%	d) 53.4%
382. A substance is completely trimerised on dissolution	in a solvent. The van't Ho	ff factor (i) for such change
is :		
a) 1 b) 2	c) 3	d) 1/3
383. A liquid is kept in a closed vessel. If a glass plate (n	egligible mass) with a sma	Ill hole is kept on top of the
liquid surface, then the vapour pressure of the liquid	l in the vessel is :	
a) More than what would be if the glass plate were r	emoved	
b) Same as what would be if the glass plate were rem	noved	
c) Less than what would be if the glass plate were re	emoved	
d) Cannot be predicted		
384. The amount of ice that will separate out on cooling $(W_{1}, A_{2}) = (W_{1}, A_{2})$	a solution containing 50 g	of ethylene glycol in 200 g
water to -9.3 C is : ($K_f = 1.86$ K molality ⁻¹)		
a) 38.71 g b) 38.71 mg	c) 42 g	d) 42 mg
385. The number of moles of a solute in its solution is 20 a	and total number of moles	are 80. The mole fraction of
solute is	1.00	N 4 0F
a) 0.25 b) 0.50	c) 1.00	a) 1.25
386. The order of osmotic pressure of isomolar solution of R_{2}	of $Bacl_2$, Nacl and sucrose :	IS
a) $Bucl_2 > Nacl> sucrose$	b) Nacl > $Bucl_2$ > sucrose	
c) Sucrose-Nau $Bucl_2$	a) $Bac_{l_2} > sucrose > Naci$	of N Without changing
387. At STP, a container has 1 mole of Ar, 2 moles of CO_2 ,	3 moles of O_2 and 4 moles	of N_2 . without changing
the total pressure in one more of O_2 is removed, the j	partial pressure of O_2 is	
a) Changed by 26%	d) Unchanged	
288 A solute is soluble in two immissible liquids which	h are present in a mivture	The concentration of the
solute in the upper layer will be	n are present in a mixture	
a) Same as in the lower layer		
aj bunne ab ni the lower layer		

 b) Less than in the lower layer c) More than in the lower layer d) In fixed ratio with that in the lower layer 389. During osmosis, flow of water through a semipermeable membrane is : a) From both sides of semipermeable membrane with unequal flow rates b) From solution having lower concentration only c) From solution having higher concentration only d) From both sides of semipermeable membrane with equal flow rates 390. According to distribution law, the distribution of solute in two phases is given by the expression, <i>K</i> = concentration of solute in phase I 			
the numerical Value of constant <i>K</i> depends upon :			
a) The temperature of the system			
b) The nature of solute distributed			
c) The nature of two immiscible solvents used			
d) All of the above		9	
the value of van't Hoff factor, ' <i>i</i> ' is :	te will always be less than	its calculated value because	
a) Less than one b) Greater than one	c) One	d) Zero	
392. The freezing point of 1% solution of lead nitrate in	water will be		
a) 2° b) 1°	c) U°C	d) Below 0°C	
similar conditions?	m. what will be its osmo	tic pressure at 273°C under	
a) 0.5 atm b) 2×273 atm	c) 4 atm	d) 273/2 atm	
394. Which of the following statements is false?	c) 4 deni	u) 27572 atm	
a) Two sucrose solution of same molality prepared	in different solvent will ha	ve the same freezing point	
depression		01	
b) Osmotic pressure (π) of a solution is given by π	= <i>MRT</i> where <i>M</i> is molarity	y of the solution	
^{c)} The correct order of osmotic pressure for 0.01 <i>M</i> CH ₃ COOH > <i>Sucrose</i>	aqueous solution of each o	compound is $BaCl_2 > KCl >$	
d) Raoult's law states that the vapour pressure of a fraction	component over a solution	is proportional to its mole	
395. When 25 g of a non-volatile solute is dissolved in 10	00 g of water, the vapour pi	essure is lowered by	
2.25×10^{-1} mm. If the vapour pressure of water at solute?	20°C is 17.5 mm, what is th	e molecular weight of the	
a) 206 b) 302	c) 350	d) 276	
396. The volume of water to be added to $\frac{N}{2}$ HCl to prepar	e 500 cm ³ of $\frac{N}{10}$ solution is	3	
a) $450 \ cm^3$ b) $100 \ cm^3$	c) $45 \ cm^3$	d) 400 <i>cm</i> ³	
397. Lowering of vapour pressure is highest for			
a) 0.1 M BaCl ₂ b) 0.1 M glucose	c) 0.1 M MgSO ₄	d) Urea	
398. One component of a solution follows Raoult's law o	ver the entire range $0 \le x_1$	\leq 1 . The second component	
must follow Raoult's law in the range when x_2 is			
a) Close to zero b) Close to 1	c) $0 \le x_2 \le 05$	d) $0 \le x_2 \le 1$	
399. The mole fraction of water in 20% aqueous solution	n of H_2O_2 is	77	
a) $\frac{20}{20}$ b) $\frac{80}{20}$	c) $\frac{68}{77}$	d) $\frac{77}{69}$	
400. What will be the molality of a solution having 18 g	77	dissolved in 500 g of water?	
a) $1 m$ b) $0.5 m$	c) 0.2 m	d) 2 <i>m</i>	
401. The empirical formula of a non-electrolyte is CH_2O	. A solution containing 6g c	of the compound exerts the	
same osmotic pressure as that of 0.05 M glucose so	lution at the same tempera	ture. The molecular formula	
of the compound is	-		

	a) $C_2 H_4 O_2$	b) $C_3 H_6 O_3$	c) $C_5 H_{10} O_5$	d) $C_4H_5O_4$		
402.	At 40°C, the vapour press	sure (in torr) of methyl alc	ohol (A) and ethyl alcohol	(<i>B</i>) solution is represented		
	by:					
	$P = 120 X_A + 138$; where	$e X_A$ is mole fraction of met	hyl alcohol. The value of lir	ne		
	$X_A \rightarrow 0, \frac{r_B}{X_B}$ and lime X_B -	$\rightarrow 0, \frac{r_A}{X_A}$ are :				
	a) 138, 258	b) 258, 138	c) 120, 138	d) 138, 125		
403.	Freezing point of an aque	ous solution is -0.186 °C. E	Elevation of boiling point of	f same solution would be:		
	$(K_b = 0.512 \text{ and } K_f = 1.8)$	36 K molality ⁻¹)				
	a) 0.186 °C	b) 0.0512 °C	c) 0.092 °C	d) 0.237 °C		
404.	What is the amount of ure	ea dissolved per litre if its a	queous solution is isotonic	c with 10% cane sugar		
	solution: (mol.wt.of urea 2) 200 g/I	= 00) b) 19.2 g/l	c) 17 54 g/I	d) 16.7 g/I		
405	Distribution law holds go	od for the distribution of a	dissolved substance betwe	u) 10.7 g/L		
105.	a) Liquid-liquid phases		alissolved substance betwe			
	b) Liquid-liquid and liquid	d-gas phases				
	c) Liquid-liquid and liquid	d-solid phases				
	d) Liquid-gas, liquid-liqui	d and liquid-solid phases				
406.	$0.004 \text{ M} \text{ Na}_2 \text{SO}_4$ is isotor	nic with 0.01 M glucose.Deg	ree of dissociation of Na ₂ S	0 ₄ is		
	a) 75%	b) 50%	c) 25%	d) 85%		
407.	10 g of iodine is allowed	to distribute between H ₂ 0	and CCl ₄ . If the partition	coefficient is 85 in favour of		
	CCl ₄ , the ratio between vo	olumes of H ₂ O and CCl ₄ suc	ch that 5 g of iodine will be	e present in aqueous layer is		
	:		170 1	1) 4 450		
400	a) 1:85 What have one when an a	DJ 85 : 1	C) 1/U: 1	(0) 1: 1/0		
408.	a) Equiville swell	gg is kept in saturated solu	b) Egg will shrink	g its hard shell in diffici?		
	c) Fog will remain same		d) Fog will first shrink an	d then swell		
409.	Vapour pressure of chlor	oform (CHCl ₂) and dichlor	comethane (CH_2Cl_2) at 25	$^{\circ}C$ are 200 mm Hg and 41.5		
1071	mm Hg respectively. Vapour pressure of the solution obtained by mixing 25.5 g of CHCl ₂ and 40 g of					
	CH_2Cl_2 at the same temperature will be :					
	(Molecular mass of CHCl ₃ = 119.5 u and molecular mass of CH ₂ Cl ₂ = 85 u)					
	a) 173.9 mm Hg					
	b) 615.0 mm Hg					
	c) 347.9 mm Hg					
	d) 90.952 mm Hg					
410.	410. If the elevation in boiling point of a solution of 10 g of solute (mol. wt. = 100 g of water is ΔT_b , the					
	a) 10			ΔT_b		
		$D J 100 \Delta I_b$	c) ΔI_b	$d) \frac{10}{10}$		
411.	411. A 0.001 molal solution of $[Pt(NH_3)_4Cl_4]$ in water has a freezing point depression of 0.0054°C. If K_f for					
	water is 1.80 , the correct	formulation of the above m	10lecule IS :			
112	a) $[Pl(NH_3)_4 U_3]U$ The weight of $H = 0 + 2i$	D_{1} [Pt(NH ₃) ₄ Cl ₂]Cl ₂	C) $[Pl(NH_3)_4 Cl]Cl_3$	$(1) [Pl(NH_3)_4 Cl_4]$		
712.	a) 63 σ	h) 6.3 σ	c) 0.63 σ	d) 126 σ		
413	Equimolar solutions of tw	vo non-electrolytes in the s	ame solvent should have :	«, 100 B		
_01	a) Same b. p but different f. p					
	b) Same f. p. but different	b. p.				
	c) Same b. p. and same f. p.					
	d) Different b. p. and diffe	erent f. p.				
414	The second secon	adution of a second second second	alastralizta (A) to a - 1	(D) is $O \Box 0 / - f + b$		

414. The vapour pressure of a solution of a non-volatile electrolyte (*A*) in a solvent (*B*) is 95% of the vapour pressure of the solvent at the same temperature. If $M_B = 0.3 M_A$, where M_B and M_A are molecular weights

	of <i>B</i> and <i>A</i> respectively, the weight ratio of the solvent and solute are :				
	a) 0.15	b) 5.7	c) 0.2	d) 4.0	
415	. Y g of non-volatile organ	ic substance of molecular r	nass <i>M</i> is dissolved in 250	g benzene. Molal elevation	
	constant of benzene of K_b . Elevation in its boiling point is given by :				
) M	$4K_bY$	$K_b Y$	$K_b Y$	
	a) $\frac{1}{K_b Y}$	M	$\frac{1}{4M}$	dJ - M	
416	If 10^{-4} dm ³ of water is i	introduced into a 1.0 dm^3	flask at 300 K, how many	y moles of water are in the	
	vapour phase when equil	ibrium is established?			
	(Given : Vapour pressure	of H_2O at 300 K is 3170 Pa	; $R = 8.314 \text{ J K}^{-1} \text{ mole}^{-1}$)	
	a) 1.27 $\times 10^{-3}$ mol	b) 5.56 $\times 10^{-3}$ mol	c) $1.53 \times 10^{-2} \text{ mol}$	d) 4.46 $\times 10^{-2}$ mol	
417	Two liquids X and Y form	an ideal solution at 300K, v	apour pressure of the solu	tion containing 1 mol of X	
	and 3, mol of Y is 550 mm	Hg. At the same temperatu	re, if 1 mol of <i>Y</i> is further a	dded to this solution,	
	vapour pressure of the so	lution increases by 10 mml	Hg. Vapour pressure (in mi	mHg)of Xand Yin their pure	
	states will be, respectively	У			
	a) 200 and 300	b) 300 and 400	c) 400 and 600	d) 500 and 600	
418	. By dissolving 5g substand	ce in 50 g of water, the decr	ease in freezing point is 1.2	2°C. The gram molal	
	depression is1.85°C. The	molecular weight of substa	nce is		
	a) 105.4	b) 118.2	c) 137.2	d) 154.2	
419	. Which characterises the v	weak intermolecular forces	of attraction in a liquid?		
	a) High boiling point				
	b) High vapour pressure				
	c) High critical temperatu	ire			
	d) High heat of vaporizati	on			
420	. What is the freezing point	t of a solution containing 8.	1 g HBr in 100 g water assu	uming the acid to be 90%	
	ionised?				
	$(k_f \text{ for wt.} = 1.86 \text{ K mol}^{-1})$	·)			
	a) 0.85° <i>C</i>	b) –3.53° <i>C</i>	c) 0° <i>C</i>	d) −0.35° <i>C</i>	
421	Consider the following aq	ueous solutions and assum	e 100% ionisation in electr	rolytes	
	I. 0.1 m urea				
	II. $0.04 \text{ m Al}_2(SO_4)_3$				
	III. 0.05 m CaCl_2				
	IV. 0.005 m NaCl				
	The correct statement reg	garding the above solution i	IS		
	a) Freezing point will be	lowest for solution I	b) Freezing point will be	highest for solution IV	
	c) Boiling point will be hi	ghest for solution IV	d) Vapour pressure will b	e highest for solution II	
422.	A certain substance 'A' te	tramerises in water to the e	extent of 80%. A solution of	2.5 g of A in 100 g of water	
	lowers the freezing point	by 0.3°C. The molar mass o	of A 1S	12.244	
400	a) 31	b) 62	CJ 122	d) 244	
423.	The average osmotic pres	sure of human blood is 7.8	bar at 37°C. What is the co	ncentration of an aqueous	
	Nacl solution that could b	be used in the blood steam?			
404	a) 0.16 mol/L	b) 0.31 mol/L	c) 0.60 mol/L	d) 0.45 mol/L	
424.	Which is correct represer	itation for $K = \frac{1}{c_2}$ relation?			
	a) The distribution coefficient	cient <i>K</i> is in favour of phase	e I		
	b) The distribution coefficient	cient <i>K</i> is in favour of phase	e II		
	c) The distribution coefficient	cient is <i>K</i>			
	d) None of the above				
425	. The relationship between	osmotic pressure at 273 K	when 10 g glucose (p_1) , 10	0 g urea (p_2) and 10 g	
	sucrose (p_3) are dissolved	d in 250 mL of water is			
	a) $p_1 > p_2 > p_3$	b) $p_3 > p_2 > p_1$	c) $p_2 > p_1 > p_3$	d) $p_2 > p_3 > p_1$	
426	. The molarity of a solution	n made by mixing 50 mL of	conc H ₂ SO ₄ (36 N) with 50	mL of water is	

	a) 9 m	b) 10 m	c) 11 m	d) 12 m	
427	. Equimolar solution in the	same solvent have			
	a) Different boiling and d	ifferent freezing points	b) Same boiling and same	e freezing points	
	c) Same freezing point but different boiling point d) Same boiling point but different freezing point				
428	. Blood cells retain their no	ormal shapes in solutions w	vhich are :		
	a) Isotonic to blood				
	b) Hypotonic to blood				
	c) Hypertonic to blood				
400	d) Equinormal to blood				
429	. Volume of water needed f	to mix with 10 mL N HCl to	get 0.1 N HCl is		
420	a) 900 mL	DJ 9 mL	CJ 90 mL	a) 100 mL	
430	A 0.025 M solution of mol	nobasic acid had a freezing	point of -0.060 °C. The pK	a for the acid is	
101	a) 1.2 The colubility of a colid in	DJ Z	CJ 2.5	u) 5.7	
431	a) Natura of coluto	h) Natura of column	a) Tomporatura	d) All of those	
122	a) Nature of solute	of the variation in the s	cj remperature	uj Ali ol tilese	
432	Distribution coofficient	t Concentration of	Concontration of	Distribution coofficient	
	a) for 1° rise in the	b) solution for 10° rise in	c) solution for 1° rise in	d) for 10° rise in the	
	tomporaturo	the temperature	the temperature	temperature	
433	At low concentrations the	e statements that equimola	l solutions under a given se	et of experimental	
155	conditions have equal osr	notic pressure is true for	i solutions under a given so	et of experimental	
	a) Solutions of non-electr	olytes only	b) Solutions of electrolyte	es only	
	c) All solutions	ory too oring	d) None of the above	, o only	
434	. The van't Hoff factor(<i>i</i>) fo	or a dilute solution of K ₂ [Fe	$(CN)_{c}$ is :		
101	a) 10	b) 4	c) 5	d) 0.25	
435	. Van't Hoff factor of an K_2	SO_4 at infinite dillution has	value equal to	.,	
	a) 1	b) 2	c) 3	d) Between 2 and 3	
436	. A solution containing 500	g of a protein per litre is is	sotonic with a solution cont	taining 3.42 g of sucrose per	
	litre. The molecular mass	of protein is :			
	a) 5	b) 146	c) 34200	d) 50000	
437	. Two solutions of substan	ce (non-electrolyte) are mi	xed in the following manne	er.	
	480 mL of 1.5 M first solu	ution +520 mL of 1.2 M sec	ond solution.		
	What is the molarity of th	e final mixture ?			
	a) 2.70M	b) 1.344 M	c) 1.50 M	d) 1.20M	
438	. Osmotic pressure of 0.4%	o urea solution is 1.60 atm a	and that of 3.42% cane suga	ar is 2.46 atm. When the	
	above two solutions are n	nixed, the osmotic pressure	e of the resulting solution is	5	
	a) 0.82 atm	b) 2.46 atm	c) 1.64 atm	d) 4.10 atm	
439	439. Dissolving 120 g of urea (mol. Wt. 60) in1000 g of water gave a solution of density 1.15 g/mL. The				
	molarity of the solution is	5			
	a) 1.78M	b) 2.00M	c) 2.05M	d) 2.22M	
440. The relative lowering of vapour pressure of an aqueous solution containing non-volatile solute is 0.0125.					
	The molality of the solution	on is		N	
	a) Vapour pressure	b) Osmotic pressure	c) Boiling point	d) Freezing point	
441	. Volume of water needed 1	to mix with 10 mL 10 N HN	O_3 to get 0.1 N HNO ₃ is		
	a) 1000 mL	b) 990 mL	c) 1010 mL	d) 10 mL	
442	. Volume of 0.6 M NaOH re	quired to neutralise 30 cm ⁻	of 0.4 M HCl is		
4.40	a) $3:4$	DJ 1 : Z	CJ 1:4	aj 1 : 1	
445. At 40 C the vapour pressure in torr, or methyl alconol-ethyl alconol solutions is represented by the					
	equation. $P = 119 X_A + 135$; where X_A is mole-fraction of methyl alcohol, then the value of $\lim_{X_A \to 1} \frac{Y_A}{X_A}$ is :				
	a) 254 torr	b) 135 torr	c) 119 torr	d) 140 torr	

444. An 1% solution of KCl (I), NaCl (II), BaCl ₂ (III) and urea (IV) have their osmotic pressure at the same				
temperature in the ascending order (molar masses of NaCl, KCl, BaCl ₂ and urea are respectively 58.5, 74.5,				
208.4 and 60 g mol ^{-1}). Assume 100% ionisation of the electrolytes at this temperature				
a) $I < III < II < IV$ b) $III < I < II < IV$	c) I <ii <iii="" <iv<="" td=""><td>d) III< IV< I <ii< td=""></ii<></td></ii>	d) III< IV< I <ii< td=""></ii<>		
445. The vant's Hoff factor for $0.1 \text{ M Ba}(\text{NO}_3)_2$ solution is	s 2.74. The degree of dissoc	iation is		
a) 91.3% b) 87%	c) 100%	d) 74%		
446. The vapour pressure of water at 23°C is 19.8 mm. 0.	.1 mole of glucose is dissolv	ved in 178.2 g of water.		
What is the vapour pressure (in mm) of the resultan	it solution?			
a) 19.0 b) 19.602	c) 19.402	d) 19.202		
447. To form a super saturated solution of salt one must				
a) Cool slowly b) Cool rapidly	c) Add some salt to cold	d) Use a clear vessel		
	solution	,		
448. An aqueous solution of glucose is 10% in strength. T	'he volume in which 1 g-mo	ole of it is dissolved will be		
a) 0.18 L b) 1.8 L	c) 0.9 L	d) 9.0 L		
449. Molal depression of freezing point of water is 1.86°	°C per 1000 g of water, 0.0	2 mole of urea dissolved in		
100 g of water will produce a lowering of temperatu	re of ·			
a) 0.186° b) 0.372°	c) 186°C	d) 3 72 °C		
450 The process of extracting a solute from its solution k	v an immiscible solvent ca	n he more fruitful only if		
a) A large quantity of the solvent is used at once	Jy an minisciple solvent ca			
b) The number of extractions is increased using sm	all quantities of the column			
b) The number of extractions is increased, using sind	an quantities of the solvent			
c) The process is carried out at a high temperature				
a) Small quantities of the solution are added to the e	extracting solvent in severa	l'instalments		
451. If a solution containing 0.072 g atm of support in 100	$0 \text{ g of a solvent } (k_f = 7.0)$	gave a freezing point		
depression of 0.84°C, the molecular formula of sulph	ur in the solution is			
a) S_6 b) S_7	c) <i>S</i> ₈	d) <i>S</i> ₉		
452. The osmotic pressure of a solution can be accurately	measured in the shortest	possible time by :		
a) Berkeley and Hartley method				
b) Morse and Frazer method				
c) Pfeffer method				
d) None of the above				
453. A solution contains 1.2046 \times 10 ²⁴ hydrochloric aci	d molecules in 1 dm^3 of the	e solution. The strength of		
the solution is				
a) 6 N b) 2 N	c) 4 N	d) 8 N		
454. Acetic acid on dissolution in benzene will show :				
a) Two times of its normal molecular weight				
b) Its normal molecular weight				
c) Half of its normal molecular weight				
d) None of the above				
455. Who gave the phase rule?				
a) Nernst				
b) Willard Gibbs				
c) Ostwald				
d) Baoult				
456 The volume of water to added to 100 cm^3 of 0.5 N H	SO to get decinormal co	acontration is		
+30. The volume of water to added to 100 cm^{-3} b) 450 cm^{-3}	$_{2}504$ to get decinormation	d) 100 cm^3		
a) 400 cm D) 450 cm	cj 500 cm	a) 100 cm		
resultant solution becomes 0.7 M ?	e to be mixed such that the	concentration of the		
a) Air b) Brass	c) Amalgam	d) Benzene in water		
458. In a mixture of <i>A</i> and <i>B</i> , components show negative	deviation when	-		
a) $A - B$ interaction is stronger than $A - A$ and $B - B$ interaction				

- b) *A*—*B* interaction is weaker than *A*—*A* and *B*—*B* interaction
- c) $\triangle V_{mix} > 0, \Delta S_{mix} > 0$
- d) $\triangle V_{mix} = 0, \triangle S_{mix} > 0$
- 459. When a substance is distributed between two immiscible solvents and remains in the same state in the solvent I, while, dissociates in the solvent II. If the concentration of solute are c_{I} and c_{II} in phase I and II respectively then :

a)
$$\frac{c_{\rm I}}{c_{\rm II}(1-\alpha)} = K$$

b)
$$\frac{c_{\rm I}(1-\alpha)}{c_{\rm II}} = K$$

c)
$$\frac{c_{\rm I}(1-\beta)}{c_{\rm II}} = K$$

d)
$$\frac{c_{\rm I}}{\sqrt{c_{\rm II}(1-\alpha)}} = K$$

0.512

460. A non-ideal solution was prepared by mixing 30 mL chloroform and 50 mL acetone. The volume of mixture will be

a) >80 mL b) <80 mL c) =80 mL d) ≥80 mL 461. The values of observed and calculated molecular weights of calcium nitrate are respectively 65.6 and 164. The degree of dissociation of calcium nitrate will be : a) 25% b) 50% c) 75% d) 60% 462. After adding a solute freezing point of solution decreases to -0.186. Calculate ΔT_b if $k_f = 1.86$ and $k_b =$

a) 0.512 b) 0.0512 c) 1.86 d) 0.0186463. At 27 °C, the osmotic pressure of a solution containing 4.0 g solute (molar mass = 246) per litre at 27°C is : $(R = 0.0821 \text{ atms. mol}^{-1} K)$

a) 0.1 atm
b) 0.4 atm
c) 0.2 atm
d) 0.8 atm
464. When 50 g of lactic acid was mixed with a mixture of equal volume of water and chloroform, the concentration of lactic acid in water was found to be 49.03 g litre⁻¹ and in chloroform 0.97 g litre⁻¹. The distribution coefficient of lactic acid in favour of water is:
a) 50.55
b) 55.55
c) 60.55
d) 45.55

465. At a constant temperature, which of the following aqueous solutions will have the maximum vapour pressure?

(Mol. wt NaCl = 58.5, $H_2SO_4 = 98.0 \text{ g. mol}^{-1}$)

a) 1 molal NaCl (aq)b) 1 molar NaCl (aq)c) 1 molal H2SO4 (aq)d) 1 molar H2SO4 (aq)

466. A solution containing 10 g per dm³ of urea (mol. mass = 60) is isotonic with a 5% (wt. by vol.) solution of a non-volatile solute. The molecular mass (in g mol⁻¹) of non-volatile solute is : a) 350 b) 200 c) 250 d) 300

467. Non- volatile solute when dissolved in water :

a) Decreases the vapour pressure of water

b) Increases the boiling point of water

c) Decreases the freezing point of water

d) All of the above

468. The solubility of I_2 in water increases in the presence of :

a) Alcohol	b) KI	c) CCl ₃	d) NaOH
469. Normality of 2 M	$H_2 SO_4$ is		
a) 2 N	b) 4 N	$() \frac{N}{m}$	d) <u>N</u>
		2	⁴ 4

- 470. The solubility of a gas increases in a liquid with
 - a) Decrease in temperature
 - c) Reduction of gas pressure
- b) Increases in temperature
- d) Amount of liquid taken

471. The energy that favours dissolution of a solute in water is known as :

- a) Hydration energy
- b) Lattice energy
- c) Ionization energy
- d) Exothermic energy

472. Aqueous solution of 0.004 *M* Na₂SO₄ and 0.01 *M* glucose are isotonic. The degree of dissociation of Na_2SO_4 is :

a) 25% d) 85% b) 60% c) 75%

473. The most suitable method for the determination of molecular weight of oxyhaemoglobin, a compound of high molecular weight is :

a) Osmotic pressure method

b) Vapour pressure lowering method

- c) Elevation of boiling point method
- d) None of the above
- 474. The difference between the boiling point and freezing point of an aqueous solution containing sucrose (mol wt. = 342 gmol⁻¹) in 100 g of water is 105.0°C. If K_f and K_b of water are 1.86 and 0.51 K kg mol⁻¹ respectively, the weight of sucrose in the solution is about
 - a) 1 M solution of glucose
 - b) 0.05 M solution of glucose d) 25% solution of glucose c) 6% solution of glucose
- 475. In a mixture A and B components show negative deviation as :

a) $\Delta V_{\text{mix}} = +ve$

b)
$$\Delta H_{\text{mix}} = -\mathbf{v} \mathbf{e}$$

c) A - B interaction is weaker than A - A and B - B interaction

d) None of the above reason in correct

476. Which statement is not correct if two immiscible liquids of mol. wt. A and B respectively are mixed in equal amount to have a mixture?

a)
$$\frac{P'_A}{P'_B} = \frac{m_B}{m_A}$$

b) The liquid having high mol. wt. will show lower values of P'

c) $P_M = P_A^0(X_A)_l + P_B^0(X_B)_l$

d)
$$P_M = P'_A + P'_B$$

477. During depression of freezing point in a solution the following are in equilibrium :

a) Liquid solvent, solid solvent

- b) Liquid solvent, solid solute
- c) Liquid solute, solid solute
- d) Liquid solute, solid solvent

478. The molar freezing point constant for water is 1.86°C mol⁻¹. If 342 g of cane sugar ($C_{12}H_{22}O_{11}$) is dissolved in 1000 g of water, the solution will freeze at

a) –1.86°C	b) –2.86°C	c) +1.86°C	d) +2.86°C
------------	------------	------------	------------

479. Two bottles A and B contains 1M and 1 m aqueous solution of sulphuric acid respectively

- a) *A* is more concentrated than *B*
- b) B is more concentrated than A
- c) Concentration of A is equal to concentration of B
- d) It is not possible to compare the concentrations

480. 18 g of glucose ($C_6H_{12}O_6$) is added to 178.2g of water. the vapour pressure of water for this aqueous solution at 100°C is

- a) 759.00 torr b) 7.60 torr c) 76.00 torr d) 752.40 torr
- 481. Benzene and toluene form nearly ideal solutions. At 25°C, the vapour pressure of benzene is 75 torr and that of toluene is 22 torr. The partial vapour pressure of benzene at 20°C for a solution containing 78 g of benzene and 46 g of toluene in torr is

a) 53.5 482. The amount of urea	b) 37.5 dissolved in 500 cc of wa	c) 25 ter ($K_f = 1.86^{\circ}$ C) to produ	d) 50 ce a depression of 0.186°C in the		
freezing noint is	fragzing point is				
a) 9 a	b) 6 σ	c) 3 a	d) 0.3 g		
483 Distribution law is a	special application of	and $uice - uersa$	u) 0.5 g		
a) Paoult's law	special application of				
b) Honry's law					
c) Dalton's law					
d) None of these					
494 In a 0.2 molal aqueo	us solution of a weak asis	UV the degree of ionicati	on is 0.2 Taking k for water as		
		I HA, the degree of follisation	on is 0.5 Taking k_f for water as		
1.85, the freezing po	int of the solution will be	nearest to			
a) -0.480°C	b) -0.360°C	c) -0.260°C	d) +0.480°C		
485. The molality of a un	rea solution in which 0.01	$100 \text{ g of urea, } [(NH_20_2CO]]$	s added to 0.3000 <i>dm</i> ³ of water at		
STP is			-		
a) 0.555m	b) 5.55 × 10 ⁻⁴ m	c) 33.3m	d) 3.33×10^{-2} m		
486. Iodine was added to	a system of water and C	S_2 . The concentration of I_2	in water and CS_2 were found to be		
C_1/C_2 respectively.	The ratio of C_1/C_2 will cha	ange if :			
a) More I ₂ is added					
b) More CS ₂ is addee	b				
c) More water is add	led				
d) Temperature is cl	nanged				
487. A solution of sucrose	e (Molar mass = 342 g/m	ol) is prepared by dissolvi	ng 68.4 g of it per litre of solution,		
what is its osmotic p	oressure (R=0.082 L atml	K ⁻¹ mol ⁻¹) at 273 K?			
a) 0.01 M Na ₂ SO ₄	b) 0.01 M KNO ₃	c) 0.015 M urea	d) 0.015 M glucose		
488. At 25°C, the total pro	essure of an ideal solution	n obtained by mixing 3 mol	es of 'A' and 2 moles of 'B', is 184		
torr. What is the vap	our pressure (in torr) of	pure ' <i>B</i> ' at the same tempe	erature? (Vapour pressure of pure		
<i>'A'</i> at 25°C is 200 tor	rr)				
a) 180	b) 160	c) 16	d) 100		
489. If 20 mL of 0.4 N Na	OH solution completely n	eutralizes 40 mL of a dibas	sic acid, the molarity of the acid		
solution is	1 5		, ,		
a) 0.1 M	b) 0.3 M	c) 0.5 M	d) 0.7 M		
490. 25 mL of a solution of	of barium hydroxide on ti	tration with 0.1 molar solu	ition of hydrochloric acid gave a		
titre value of 35 mL.	The molarity of barium h	vdroxide solution was	y i i i i i i i i i i i i i i i i i i i		
a) ppm	b) Mg/100 cc		d) g/100 cc		
491. Which of the followi	ng solutions will have the	highest hoiling point?			
a) 0.1 M FeCla	h) 0.1 M BaCla	c) 0.1 M NaVl	d) 0.1 Murea		
492 The relative lowerin	g of vanour pressure of a	dilute aqueous solution co	ontaining non-volatile solute is		
0.0125 The molality	of the solution is about	unate aqueous solution co	intaining non voluene solute is		
(0.0120.1110)	b) 0.50	c) 0.90	d) 0.80		
A03 The vancur pressure	of nure liquid is 1.2 atm	When a non-volatile subs	t_{1} then its		
vanour prossure bo	compare liquid is 1.2 atili	fraction of Rin the solution			
			d) 0.75		
dj U.I.J	UJ 0.25	CJ 0.30	u) 0.73		
494. II IIquius A allu D loi					
a) Enthalpy of mixin					
b) Entropy of mixing	b) Entropy of mixing is zero				
cj Free energy of mi	c) Free energy of mixing is zero				
a) Free energy as we	a) Free energy as well as the entropy of mixing are each zero				
495. Which has the minin	num freezing point?		1		
a) Une molal NaCl a	queous solution	b) One molal CaCl	2 aqueous solution		
c) One molal KCl aqu	ueous solution	d) One molal urea	aqueous solution		

496.	The depression in f.p. is directly proportional to :				
	a) Normality b) Molality	c) Molarity	d) None of these		
497.	. The vapour pressure will be lowest of				
	a) Hypertonic solution	b) Hypotonic solution			
	c) Isotonic solution	d) None of the above			
498.	In countries nearer to polar region, the roads are spr	inkled with CaCl ₂ . This is			
	a) To minimise the wear and tear of the roads				
	b) To minimise the snow fall				
	c) To minimise pollution				
	d) To minimise the accumulation of dust on the road				
499	What is the molarity of $0.2 \text{ N} Na_2 CO_2$ solution?				
177.	a) $0.1 M$ b) $0 M$	c) 0.4 M	d) 0.2 M		
500	Solubility of deliguescent substances in water is gene	arally :	u) 0.2 M		
500.	a) High b) Low	c) Moderate	d) Cannot be said		
501	An aqueous solution is 1.0 molal in KL Which change	will cause the vanour pres	uj calliot be salu		
501.		will cause the vapour pres	sure of solution to increase		
	a) Addition of NaCl				
	b) Addition of Na_2SO_4				
	c) Addition of 1.0 molal KI				
	d) Addition of water				
502.	Which one of the following is not correct for an ideal	solution?			
	a) It must obey Raoult's law	b) $\Delta H = 0$			
	c) $\Delta V = 0$	d) \triangle H = V \neq 0			
503.	A solution containing 4 g of polyvinyl chloride in 1 li	tre of dioxane was found t	o have an osmotic pressure		
	of 6 \times 10 ⁻⁴ atm at 300 K. The molecular mass of the	polymer is :	_		
	a) 3×10^3 b) 1.6×10^5	c) 5×10^4	d) 6.4×10^2		
504.	. The normality of mixture obtained by mixing 100 mL	of 0.2 M H_2SO_4 +			
	100 mL of 0.2 M NaOH is				
	a) 0.2 b) 0.01	c) 0.1	d) 0.3		
505.	For a dilute solution, Raoult's law states that				
	a) The lowering of vapour pressure is equal to mole f	fraction of solute			
	b) The relative lowering of vapour pressure is equal to mole fraction of solute				
	c) The relative lowering of vapour pressure is proport	rtional to the amount of so	lute in solution		
	d) The vapour pressure of the solution is equal to the	e mole fraction of solvent			
506.	. 1 kg of NaOH solution contains 4 g of NaOH. The appr	roximate concentration of	the solution is		
	a) About 0.1 N b) Decinormal	c) 0.1 molal	d) 0.1 molar		
507.	. 6 g urea is dissolved in 90 g water. The relative lower	ring of vapour pressure is e	equal to :		
	a) 0.0196 b) 0.06	c) 1.10	d) 0.0202		
508.	. The molar freezing point constant for water is 1.86°C	C/mol. If 342 g of cane sug	gar $(C_{12}H_{22}O_{11})$ is		
	dissolved in 1000 g of water, the solution will freeze	at			
	a) -1.86°C b) 1.86°C	c) -3.92°C	d) 2.42°C		
509.	Which is correct about Henry's law?				
	a) There should not be any chemical interaction betw	veen the gas and liquid			
	b) The gas in contact with the liquid should behave a	s an ideal gas			
	c) The pressure applied should be high	0			
	d) All of the above				
510.	The mass of glucose that should be dissolved in 50 g	of water in order to produc	ce the same lowering of		
	vapour pressure as is produced by dissolving 1 g of u	rea in the same quantity of	f water is		
	a) 1 g b) 3 g	c) 6 g	d) 18 g		
511.	The volume of 10 N and 4 N HCl required to make 1	of 7 N HCl are	, - U		
	1				
- a) 0.50 L of 10 N HCl and 0.05 L of 4 N HClb) 0.60 L of 10 N HCl and 0.40 L of 4 N HClc) 0.80 L of 10 N HCl and 0.20 L of 4 N HCld) 0.75 L of 10 N HCl and 0.25 L of 4 N HCl
- 512. A solution of sulphuric acid in water exhibits :
 - a) Negative deviations from Raoult's law
 - b) Positive deviations from Raoult's law
 - c) Ideal properties
 - d) The applicability of Henry's law
- 513. The molarity of the solution obtained by dissolving 2.5g of NaCl in 100 mL of water is
 - a) 0.00428 moles b) 428 moles
- c) 0.428 moles d) 0.0428
 - d) 0.0428 moles
- 514. Which one is a colligative property?
 a) Boiling point
 b) Vapour pressure
 c) Osmotic pressure
 d) Freezing point
- 515. A solution contains non-volatile solute of molecular mass M_2 . Which of the following can be used to calculate the molecular mass of solute in terms of osmotic pressure?

a)
$$M_2 = \left(\frac{m_2}{\pi}\right) VRT$$

b) $M_2 = \left(\frac{m_2}{V}\right) \frac{RT}{\pi}$
c) $M_2 = \left(\frac{m_2}{V}\right) \pi RT$

$$M_2 = \left(\frac{m_2}{V}\right) \frac{\pi}{RT}$$

(m_2 = mass of solute V = volume of solution, π = osmotic pressure)

2.SOLUTIONS

: ANSWER KEY :															
1)	b	2)	d	3)	а	4)	d	189)	d	190)	d	191)	d	192)	а
5)	d	6)	d	7)	а	8)	С	193)	b	194)	d	195)	С	196)	d
9)	а	10)	С	11)	а	12)	b	197)	а	198)	b	199)	d	200)	а
13)	а	14)	а	15)	С	16)	а	201)	а	202)	d	203)	С	204)	b
17)	С	18)	а	19)	а	20)	а	205)	d	206)	С	207)	d	208)	b
21)	d	22)	С	23)	а	24)	а	209)	b	210)	С	211)	b	212)	d
25)	b	26)	С	27)	С	28)	d	213)	d	214)	а	215)	С	216)	b
29)	а	30)	С	31)	b	32)	b	217)	С	218)	а	219)	а	220)	d
33)	b	34)	b	35)	С	36)	d	221)	С	222)	а	223)	С	224)	b
37)	d	38)	а	39)	b	40)	d	225)	а	226)	d	227)	С	228)	С
41)	b	42)	b	43)	b	44)	d	229)	d	230)	а	231)	b	232)	b
45)	а	46)	С	47)	С	48)	С	233)	d	234)	d	235)	а	236)	а
49)	С	50)	а	51)	b	52)	С	237)	С	238)	а	239)	С	240)	а
53)	а	54)	С	55)	d	56)	b	241)	С	242)	С	243)	d	244)	С
57)	b	58)	b	59)	d	60)	а	245)	b	246)	С	247)	d	248)	d
61)	d	62)	а	63)	d	64)	d	249)	а	250)	b	251)	b	252)	d
65)	b	66)	d	67)	а	68)	b	253)	а	254)	d	255)	а	256)	С
69)	а	70)	b	71)	b	72)	С	257)	а	258)	d	259)	b	260)	а
73)	d	74)	а	75)	b	76)	С	261)	b	262)	b	263)	d	264)	b
77)	а	78)	С	79)	b	80)	b	265)	а	266)	С	267)	d	268)	d
81)	а	82)	d	83)	b	84)	b	269)	d	270)	С	271)	С	272)	d
85)	С	86)	а	87)	С	88)	b	273)	d	274)	d	275)	а	276)	b
89)	С	90)	b	91)	d	92)	а	277)	d	278)	а	279)	d	280)	а
93)	С	94)	d	95)	d	96)	b	281)	С	282)	С	283)	С	284)	b
97)	а	98)	а	99)	а	100)	d	285)	b	286)	С	287)	С	288)	С
101)	С	102)	d	103)	b	104)	С	289)	b	290)	С	291)	а	292)	d
105)	а	106)	С	107)	b	108)	С	293)	а	294)	а	295)	а	296)	а
109)	а	110)	С	111)	b	112)	а	297)	а	298)	С	299)	b	300)	С
113)	d	114)	b	115)	С	116)	d	301)	а	302)	С	303)	d	304)	b
117)	С	118)	b	119)	d	120)	а	305)	а	306)	b	307)	а	308)	а
121)	а	122)	b	123)	а	124)	а	309)	а	310)	b	311)	d	312)	b
125)	d	126)	С	127)	а	128)	С	313)	b	314)	а	315)	а	316)	b
129)	b	130)	d	131)	С	132)	b	317)	а	318)	а	319)	С	320)	С
133)	b	134)	а	135)	С	136)	С	321)	С	322)	b	323)	а	324)	а
137)	b	138)	С	139)	а	140)	b	325)	а	326)	d	327)	d	328)	d
141)	b	142)	С	143)	а	144)	d	329)	а	330)	а	331)	С	332)	b
145)	b	146)	b	147)	а	148)	а	333)	С	334)	b	335)	а	336)	d
149)	d	150)	b	151)	b	152)	d	337)	С	338)	b	339)	b	340)	а
153)	а	154)	b	155)	С	156)	b	341)	b	342)	b	343)	b	344)	b
157)	а	158)	d	159)	b	160)	а	345)	b	346)	а	347)	d	348)	b
161)	а	162)	С	163)	b	164)	d	349)	b	350)	b	351)	b	352)	а
165)	а	166)	С	167)	С	168)	С	353)	С	354)	d	355)	а	356)	b
169)	С	170)	d	171)	a	172)	а	357)	b	358)	b	359)	С	360)	С
173)	а	174)	а	175)	а	176)	d	361)	b	362)	b	363)	b	364)	а
177)	b	178)	b	179)	b	180)	а	365)	b	366)	b	367)	b	368)	а
181)	d	182)	С	183)	a	184)	а	369)	С	370)	а	371)	С	372)	а
185)	d	186)	b	187)	С	188)	С	373)	b	374)	d	375)	b	376)	d

377)	d	378)	а	379)	а	380) b	44	49)	b	450)	b	451)	а	452)	а
381)	а	382)	d	383)	b	384) a	4	53)	b	454)	а	455)	b	456)	a
385)	а	386)	а	387)	С	388) d	4	57)	d	458)	а	459)	а	460)	b
389)	а	390)	d	391)	b	392) d	4	61)	С	462)	b	463)	b	464)	а
393)	С	394)	а	395)	С	396) d	4	65)	а	466)	d	467)	d	468)	b
397)	а	398)	d	399)	С	400) c	4	69)	b	470)	а	471)	а	472)	С
401)	d	402)	а	403)	b	404) c	4'	73)	а	474)	а	475)	b	476)	С
405)	d	406)	а	407)	b	408) b	4'	77)	а	478)	а	479)	а	480)	d
409)	d	410)	С	411)	b	412) b	4	81)	d	482)	С	483)	b	484)	a
413)	С	414)	b	415)	b	416) a	4	85)	b	486)	b	487)	а	488)	b
417)	С	418)	d	419)	b	420) b	48	89)	а	490)	а	491)	а	492)	a
421)	b	422)	b	423)	b	424) a	49	93)	С	494)	а	495)	b	496)	b
425)	С	426)	а	427)	b	428) a	4	97)	С	498)	а	499)	а	500)	a
429)	С	430)	С	431)	d	432) d	5	01)	d	502)	d	503)	b	504)	С
433)	а	434)	b	435)	С	436) d	5	05)	b	506)	С	507)	а	508)	a
437)	b	438)	d	439)	С	440) b	5	09)	b	510)	b	511)	а	512)	a
441)	b	442)	а	443)	а	444) d	5	13)	С	514)	С	515)	b		
445)	b	446)	b	447)	b	448) b									
							I								

2.SOLUTIONS

: HINTS AND SOLUTIONS :

It is the characteristic of super saturated solution, the meta stable state leading to saturated solution after few time.

2 **(d)**

The properties of solution which depend only on the number of solute particles but not on the nature of the solute taken are called colligative properties.

3 **(a)**

 $K = \frac{c_A}{c_B} = 10$ $\therefore K' = \frac{c_B}{c_A} = \frac{1}{10} = 0.1$

4 **(d)**

1. $P_A = X_A p_A^\circ$ true

2.

 $\pi = iMRT =$ *MRT* true (if van't Hoff factor *i* = 1)

3.
$$i=[1+(y-1)x]$$

y= number of ions,

x = degree of ionization,

i=3 for $BaCl_2x=1$ (strong electrolyte)

i=(1+x) for $CH_3COOH x \ll 1(weak)$

i=1for sucrose (non-electrolyte)

 $i(for BaCl_2) > KCl > CH_3COOH > sucrose$

Thus ,(c) is also true.

4. $\Delta T_f = k_f m$

 k_f is dependent on solvent

Thus, freezing points $[=T(solution)-\Delta T_f)$ are different.

Thus, (d) is false.

5 **(d)**

Osmotic pressure is a colligative property *i.e.*, depends only upon the number of particles or ions in solution. More the number of ions in solution, more will be the osmotic pressure of solution

(i) 0.1 M urea and 0.1 M glucose will have same number of molecules in solution as they do not ionise.

(ii) KCl \rightarrow K⁺ + Cl⁻(2 ions) 5. CaCl₂ \rightarrow Ca²⁺ + 2Cl⁻ (3 ions)

 \div CaCl_2 produces maximum number of ions.

 \therefore It will have highest osmotic pressure.

6 **(d)**

Mole of X, $n_x = \frac{3}{3+2} = \frac{3}{5}$ Moles of Y, $n_y = \frac{2}{3+2} = \frac{2}{5}$ $P_T = P_x n_x + P_y n_y$ $= 80 \times \frac{3}{5} + 60 \times \frac{2}{5}$ = 48 + 24 = 72 Torr

(c)

8

Osmotic pressure is a colligative property . More the number of particles (or ions) in solution, more will be osmotic pressure.

Nacl solution

Given, mass of NaCl =7 g V=1L \therefore Concentration $=\frac{\text{mass}}{\text{mol.mass}} = \frac{7}{58.5} = 0.119 M$ NaCl dissociates as follows NaCl $\rightarrow Na^+Cl^-(2 \text{ ions})$ \therefore Concentration of ions in solution $=2 \times 0.119 M$ =0.0238 MMgCl solution Given, mass of MgCl₂=7g, V=1L

 $\therefore \text{ Concentration} = = \frac{mass}{mol.mass} = \frac{7}{95} = 0.0747$ $MgCl_2 \text{ dissociates as follows}$ $MgCl_2 \rightarrow Mg^2 + 2Cl^- (3 \text{ ions})$

 $\therefore \text{ Concentration of ions in solution} = 3 \times 0.074 \text{ M}$ = 0.222 M

 \therefore Number of particles in solution *B*(NaCl)are more than in solution *A*. ∴ Osmotic pressure of solution *B*(NaCl) will be more than solution *A*.

(a)

9

Elevation in boiling point is a colligative property which depends upon the number of solute particles. Greater the number of solute particle in a solution higher the extent of elevation in boiling point. Na₂SO₄, gives maximum ions hence, it exhibits highest boiling point

10 (c)

$$\Delta T_b = im k_b = 0.52 \times 1 \times 2 = 1.04$$

$$\therefore T_b = T + \Delta T_b = 100 + 1.04 = 101.04^{\circ}\text{C}$$
11 (a)
Molality, $m = \frac{\text{no.of moles of solute}}{\text{weight of solution in kg}}$

$$= \frac{1000 \times w_1}{m_1 W_1}$$

$$= \frac{1000 \times 0.6}{60 \times 200}$$

$$= 0.05$$
[\therefore Molecular weight of $NH_2CONH_2 = 60$]
Given, $\Delta T_b = 0.05$
 $\Delta T_b = K_b \times m$
or $0.05 = K_b \times 0.05$
 $\therefore K_b = 10 K mol^{-1}$
12 (b)
This relation is equation for Gibbs phase rule for
heterogeneous systems.
13 (a)

 $Molarity = \frac{\text{of solution} \times 10(\text{in litre})}{M}$ where, M = molecular weight of the solute $Molarity = \frac{40 \times 1.2 \times 10}{M \times 1000} \qquad \dots(i)$ $Molarity = \frac{\text{weight of the solute /M}}{\text{volume of solution (in litre)}} \dots(ii)$ From Eqs. (i) and (ii) $\frac{\text{weight of solute}}{M \times 1000} = \frac{40 \times 1.2 \times 10}{M \times 1000}$

Weight of solute = 480 g

14 (a)

$$\Delta T = \frac{1000 \times k_f \times w}{m \times 500}$$
$$0.74 = \frac{1000 \times 1.86 \times 20}{m \times 500}$$

Actual molecular mass =100 \therefore The degree of ionisation of the electrolyte is 0%.

15 (c)

Molality is defined as the number of moles per 1000 g of solvent. Molality of water $=\frac{1000}{18}=55.5$ m

16 **(a)**

For a given amount of solute in two solvents, $K = \frac{\text{concentration of solute I}}{\text{Concentration of solute I}}$

17 **(c)**

The solutions having the same osmatic pressure are called isotonic solution. They have same weight concentrations

18 **(a)**

 $K_3[Fe(CN)_6]$ $\rightarrow 3K^+ + Fe(CN)_6^{3-}$ 0 Before dissociation 1 After dissociation 0 3 Total no. of particles furnished by $K_3[Fe(CN)_6] = n = 4$: van't Hoff's fator, i = 4 $\Delta T_f = \frac{1000 \times K_f \times w}{m \times W} \times i$ $= \frac{1000 \times 1.86 \times 0.1 \times 4}{1000 \times 1.86 \times 0.1 \times 4}$ Now 329×100 $= 2.3 \times 10^{-2} \,^{\circ}\text{C}$ $T'_f = 0 - 2.3 \times 10^{-2}$:. $= -2.3 \times 10^{-2}$ °C

(

19 **(a)**

 $P_{N_2} = K_H \times \text{mole} - \text{fraction} (N_2)$ mole-fraction $(N_2) \frac{1}{10^5} \times 0.8 \times 5 = 4 \times 10^{-5} \text{mol}^{-1}$ In 10 mole solubility is 4×10^{-4} .

20 (a)

van't Hoff factor greater than 1 means observed value is greater than calculated value which is so when the solute dissociates .

21 **(d)**

All are conditions for Henry's law.

22 **(c)**

2 % acetic acid solution

$$=\frac{2\times1000}{60\times100}$$
M acetic acid
=0.33 M acetic acid

As the solution of compound "X" is isotonic to acetic acid solution, the molarity of solution of "X" will also be equal to 0.33 M. This is 5% solution. Hence

Mol.wt. of "X" =
$$\frac{5 \times 1000}{0.33 \times 100} = 150$$

23 **(a)**

Osmotic pressure is a colligative property.

$$\Delta T = \frac{1000 \times K_f \times w}{m \times W}$$

$$\therefore \quad W = \frac{\Delta T \times m \times W}{1000 \times K_f}$$

$$= \frac{2.8 \times 62 \times 1000}{1000 \times 1.86} = 93.33 \text{ g}$$

25 **(b)**

Addition of non-volatile solute always lowers the vapour pressure.

26 **(c)**

Both the molecules are polar and possess dipole. 27 **(c)**

Vapour pressure is independent of surface area

and volume of container.

28 **(d)**

Elevation in boiling point is a colligative property, which depends upon the nmber of particles in solution. $Al(NO_3)_3$ give maximum ions (4 ions) in solution, hence, its elevation in boiling point will be the highest. Hence, boiling point of 0.1 M $Al(NO_3)_3$ solution will be the highest.

29 **(a)**

"Solutions having same osmotic pressure are called isotonic solutions." The osmotic pressure is given as

 $\therefore \qquad \pi = \frac{w_b RT}{V M_B}$ $\pi \text{ (cane sugar)} = \pi \text{ (unknown solute)}$ $\frac{5.12}{342} = \frac{0.9}{M}$ $M = \frac{342 \times 0.9}{5.12}$ = 60

30 **(c)**

pV = nRT $1 \times 41 = n \times 0.0821 \times 500$ n = 0.998 molThe no. of moles of ethane = xso no. of moles of ethane = (0.998 - x)Reaction of ethane and ethene with O_2 : (i) $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O_2$ (ii) $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O_2$ According to (i) reactions 2 mole ethane reacts with =7 mole O_2 x mole ethane react with $=\frac{7x}{2}$ mole O_2 According to (ii) reactions 1 mole ethene reacts with = 3 mole O_2 (0.998 - x) mole ethene reacts = 3 (0.998 - x) mole of 0_{2} $\frac{7_x}{2}$ +[3 (0.998-x)]= $\frac{10}{3}$ mole of O_2 $3.5x + 2.994 - 3x = \frac{10}{3}$ mole of O_2 0.5x = 3.333 - 2.994 = 0.3393 $x = \frac{0.3393}{0.5} = 0.678$ mole of ethane moles of ethene = 0.998 - 0.678 = 0.3231 (b) $Na_2SO_4 \rightarrow 2Na^+ + SO_4^{2-}$ van't Hoff factor for $Na_2SO_4 = 3$ $\Delta T_f = i \times k_f \times m$ $=3 \times 1.86 \times 0.01$ $\begin{bmatrix} \because & m = \frac{0.01}{1} = 0.01 \end{bmatrix}$ =0.0558 K32 (b) $Molarity = \frac{\text{Number of moles of solute}}{\text{Volume of solution (in L)}}$

$$\Rightarrow$$
 molarity $=\frac{5}{205}=2M$

33 **(b)**

Elevation in boiling point is a colligative property as it depends upon the number of particles $\Delta T_b \propto n$

For sucrose $n = 1 \Delta T_b = 0.1^{\circ}$ C For NaCl, $n = 2, \Delta T_b = 0.2^{\circ}$ C

34 **(b)**

In a pair of two solution, the one having higher osmotic pressure is called hypertonic and the other having lower osmotic pressure is called hypotonic.

36 **(d)**

 $P_{total} = P_A^{\circ} X_A + P_B^{\circ} X_B$ where, P = vapour pressure X = mole fraction Total moles of A and B = 5Mole fraction of compound $A = \frac{2}{5}$ Mole fraction of compound $B = \frac{3}{5}$ then, $P_{total} = 100 \times \frac{2}{5} + 80 \times \frac{3}{5}$ = 88 torr

37 **(d)**

38

40

According to Raoult's law the relative lowering of vapour pressure of a dilute solution is equal to the mole fraction of the solute present in the solution, *i.e.*,

$$\frac{p - p_s}{p} = \frac{n}{n + N}$$
(a)
If $H_2O = x \mod = 18x \text{ g}$
Then urea = $x \mod = 60x \text{ g}$
Total mass of the solution
= $18x + 60x = 78x\text{g}$
Mass % of urea = $\frac{18x}{78x} \times 100$
= 23.077%
(d)
 $P_0 - P_s = \mod 100 \text{ g} + \infty$

 $\frac{P_0 - Y_s}{P_0} = \text{molality} \times (1 - \alpha + x\alpha + y\alpha)$ The value of $P_0 - P_s$ is maximum for BaCl₂.

41 **(b)** Mole of urea $=\frac{6.02 \times 10^{20}}{6.02 \times 10^{23}} = 10^{-3}$ mol Conc. of solution (in molarity) $=\frac{10^{-3}}{100} \times 1000 =$ 0.01 M

42 **(b)**

$$\pi V = \frac{w}{m} RT$$

$$M = \frac{wRT}{\pi V}$$

Here, w=6 g,
$$\pi = 2 \times 10^{-3} atm$$
, T=300 K,
R=0.080 L-atm mo $l^{-1} K^{-1}$, V =200 mL =0.2 L
$$M = \frac{6 \times 0.080 \times 300}{2 \times 10^{-3} \times 0.2} = 3.6 \times 10^{5}$$

43 **(b)**

Normality of the mixed solution

$$= \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$$

= $\frac{0.6 \times \frac{100}{1000} + 0.3 \times \frac{200}{1000}}{\frac{100 + 200}{1000}}$
= $\frac{0.6 \times 0.1 + 0.3 \times 0.2}{0.3}$
= $\frac{0.06 + 0.06}{0.3}$
= $\frac{0.12}{0.3} = 0.4$ N

45 **(a)**

Colligative properties certain properties of dilute solution containing non-volatile solute do not depend upon the nature of the solute dissolved but depend only upon the number of particles of the solute present, are called colligative properties. Some colligative properties are boiling point elevation, freezing point depression, lowering of vapour pressure,

46 **(c)**

$$N = \frac{w \times 1000}{\text{eq. wt.} \times V(\text{mL})}$$
$$= \frac{10 \times 1000}{60 \times 100} = 1.66 \text{ N}$$

In a pair of two solution, the one having higher osmotic pressure is called hypertonic and the other having lower osmotic pressure is called hypotonic.

49 **(c)**

Two solutions are isotonic if their osmotic pressure are equal.

$$\pi_1 = \pi_2$$
$$M_1 S T_1 = M_2 S T_2$$

$$(M_1$$
 and M_2 are molarities)

At a given temperature,

$$M_1 = M_2$$

$$\frac{1000w_1}{m_1V_1} = \frac{1000w_2}{m_2V_2} \quad (V_1 = V_2 = 100mL)$$
no sugar unknown

Cane sugar unkown

 $\frac{w_1}{m_1} = \frac{w_2}{m_2}$ $\frac{5}{329} = \frac{1}{m_2}$ $m_2 = \frac{342}{5} = 68.4 \text{ g mol}^{-1}$

50 **(a)**

The two solvents in which a solute is to be distributed shows $K = c_1/c_2$ only when two liquids are immiscible, *i. e.*, No. of phase ≥ 2 or

heterogeneous systems.

 $\rm KNO_3$ dissociates completely while $\rm CH_3COOH$ dissociates to a small extent hence, $p_1 > p_2$

52 (c)

$$\Delta T = \Delta T \text{ for glucose} = \Delta T \text{ for KCl} + \Delta T \text{ for urea}$$

$$= \frac{1000 \times 1.86 \times 10}{100 \times 1.86 \times 1 \times 2} + \frac{1000 \times 1.86 \times 1 \times 2}{74.5 \times 100} + \frac{1000 \times 1.86 \times 5}{100 \times 60}$$

$$= 3.069$$

$$\therefore \text{ f. p. = 273 - 3.069 = 269.93 \text{ K}}$$
53 (a)

$$N = \frac{6 \times 1000}{40 \times 100} = 1.5 \text{ N}$$
54 (c)

$$N_1V_1 + N_2V_2 = N_3V_3$$

$$0.3 \times 100 + 0.6 \times 200 = N_3 \times 300$$

$$0.3 + 1.2 = 3N_3$$

*N*₃ = 0.5 55 **(d)**

This is the mathematically modified form of distribution law when solute undergoes association in either of the solvent.

56 **(b)**

Common salt dissociates to furnish ions.

57 **(b)**

 $Na_2SO_4 \rightleftharpoons 2Na^+ + SO_4^{2-}$ van't Hoff factor $i=[1+(y-1)\alpha]$ where *y* is the number of ions from one mole solute, (in this case =3), α the degree of dissociation.

58 **(b)**

It is definition of freezing point.

 $i = (1 + 2 \alpha)$

59 **(d)**

According to Raoult's law,

or

$$P_A = P_A^{\circ} \varkappa_A$$

$$\varkappa_A = \frac{P_A}{P_A^{\circ}}$$

$$= \frac{32 \text{mm Hg}}{40 \text{ mm Hg}} = 0.8$$

60 **(a)**

Depression in freezing point is a colligative property. It depends on number of particles. More the number of particles, more will be depression in freezing point.

6. $K_2 SO_4 \to 2K^+ + SO_4^{2-}$

It gives 3 particles.

7.
$$NaCl \rightarrow Na^+ + Cl^-$$

It gives 2 particles.

8. Urea \rightarrow No dissociation

9. Glucose \rightarrow No dissociation.

 \therefore K_2SO_4 produces maximum number of particles

 \therefore K_2SO_4 has maximum depression in freezing point.

61 **(d)**

All get dissolved with evolution of heat.

62 **(a)**

$$\begin{aligned} \mathcal{X} &= \frac{n}{n+N} \\ n &= \frac{W}{m} = \frac{3.65}{36.5} = 0.1 \\ N &= \frac{W}{M} = \frac{16.2}{18} = 0.9 \\ \mathcal{X} &= \frac{0.1}{0.1+0.9} = 0.1 \end{aligned}$$

63 **(d)**

Moles = $\frac{\text{mass}}{\text{molecular weight}}$ Given, mass of Al_2 (SO_4)₃ = 50 g molecular mass of Al_2 (SO_4)₃ = 342 \therefore Moles of Al_2 (SO_4)₃ = $\frac{50}{342}$ = 0.14 mol

64 **(d)**

We have, $i=1-\frac{x}{2}$ where, x = degree of associationHere, i=0.54 $0.54=1-\frac{x}{2}$ or $0.54-1=-\frac{x}{2}$ or $-0.46=-\frac{x}{2}$ x=0.92

65 **(b)**

Benzoic acid dimerises in beneze. Mol. wt. of benzoic acid =78+12+32=122Hence , moleculer weight of benzoic acid in benzene is =122+122=244

66 **(d)**

HBr $\underset{\alpha}{\longleftrightarrow}$ H⁺ + Br⁻ (1 - α) $\overset{\alpha}{\alpha}$ $\overset{\alpha}{\alpha}$ *i* Total = (1 - α) + α + α = (1 + α)

i = 1 + 0.9 = 1.9 $\Delta T_f = ik_f m = 1.9 \times 1.86 \times \frac{8.1}{81} \times \frac{1000}{100} = 3.53^{\circ}\text{C}$ $T_f = T - \Delta T_f = 0 - 3.53^{\circ}\text{C} = -3.53^{\circ}\text{C}$

67 **(a)**

On increasing the concentration of a salt solution, the boiling point of salt solution increases while vapour pressure of the solution decreases.

68 **(b)**

π

(ii) 0.1 M glucose, $\pi = CRT = 0.1RT$ (iii) 0.6 g urea in 100 mL solution

$$= \frac{n}{V}RT = \frac{w/m}{V}RT = \frac{0.6/60 \times 1000}{100} \times RT$$

= 0.1RT

(iv) 1.0 g of non electrolyte solute (x) is 50 mL solution

$$\pi = \frac{1.0/200}{50} \times 1000RT = 0.1RT$$

Hence, option (ii), (iii), (iv) have some osmotic pressure, osmotic pressure of 0.1 M NaCl is higher than (ii), (iii), (iv) because it dissociates to give maximum number

69 **(a)**

Osmosis is explained in terms of vapour pressure theory, *i. e.*, movement of solvent particles from higher vapour pressure to lower vapour pressure. Note that a solution of high osmotic pressure is concentrated in comparison to other having low osmotic pressure.

70 **(b)**

An increase in temperature favours evaporation due to increase in average kinetic energy of molecules.

72 **(c)**

Due to higher K_f of camphor (40 K molality⁻¹) about 20 times more than K_f (1.86) of water, the depression is 20 times more in case of camphor used as solvent than water.

73 **(d)**

On dissociation, number of particles increases, thus i > 1 On association, number of particles decreases thus i < 1.

74 **(a)**

 $V_{\rm ice} \rightarrow V_{\rm water}$ and thus, increase in pressure favours forward reaction.

75 **(b)**

 $K = 2 = \frac{\frac{8-a}{1}}{\frac{a}{2}}$ $\therefore a = 4g$: Concentration of acid $=\frac{4}{2}=2$ g litre⁻¹. 76 (c) Molarity = $\frac{\text{moles of solute}}{V \text{ of soution in litre}}$: Molar solution means 1 mole of solute is present in 1 L of solution. 77 (a) Molality = $\frac{18}{180} = 0.1$ molal 78 (c) $\Delta T = K_b \times \text{molality};$ Molality = 1, $\therefore \Delta T = K_h$ 79 **(b)** When 0.1 n NaOH is used, $N_1V_1 = N_2V_2$ (For HCl) (For KOH) $0.2N \times V_1 = 50 \times 0.1N$ $V_1 = \frac{50 \times 0.1}{0.2} = 25 cm^3$ When 0.5 N KOH is used, $N_1V_1 = N_3V_3$ (For remaining HCl) (for KOH) $0.2N \times 25 = 0.5 N \times V_3$ $V_3 = \frac{0.2 \times 25}{0.5}$ $= 10 cm^{3}$ 80 **(b)** 1 mole urea gives 1 mole 1 mole NaCl gives 2 mole 1 mole Na₂SO₄ gives 3 mole $\therefore \Delta T$ ratio 1 : 2 : 3 81 (a) Colligative properties are used for the determination of molar mass 82 (d) Mole fraction of $C_6 H_6 = \frac{\frac{7.8}{78}}{\frac{7.8}{78} + \frac{46}{92}} = \frac{1}{6}$ 83 **(b)** $\Delta T = \frac{K_b \times 1000 \times w \times 18}{m \times W \times 18}$ $0.104 = \frac{0.52 \times 1000 \times n}{N \times 18}$ $\frac{n}{N} = 3.6 \times 10^{-3}$:. :. $1 + \frac{n}{N} = 1.0036$ $\frac{N}{n+N} = 0.996$ $\frac{n}{n+N} = 0.004$ or or ... 95 (d)

84 **(b)** $P_{H_2O} = X_{H_2O} p_{total}$ $= 0.0287 \times 0.977$ = 0.028 atm $p_{total} = p_{dry air} + p_{H_2O}$ $p_{dry air} = p_{total} + p_{H_2O}$ = 0.977 - 0.028 = 0.949 atm

85 **(c)**

A natural semipermeable membrane is one which exist in nature.

87 **(c)**

More is the lattice energy of an ionic solute, lesser is its solubility.

88 **(b)**

The tendency to evaporation will decrease and this will lead to lower value of experimental vapour pressure than those calculated from Raoult's law.

90 **(b)**

HgI₂ although insoluble in water but shows complex formation with KI and therefore, freezing point decreases

91 **(d)**

Solutions should be dilute to hold distribution law correct.

92 **(a)**

For complete neutralisation, m. wq of $H_2SO_4 = m.$ eq. of NaOH $0.1 \times 2 \times V = 50 \times 0.2 \times 1$ (:: $0.1M H_2SO_4 = 0.2N H_2SO_4$) V = 50mL

93 (c)

$$\Delta T = \text{molality} \times K'_f \times (1 + \alpha)$$

Given $\alpha = 0.2$, Molality = 0.5, $K'_f = 1.86$
 $\therefore \quad \Delta T = 0.5 \times 1.2 \times 1.86 = 1.116 K$

94 **(d)**

$$M = \frac{1000 \times k_f \times w}{\Delta T_f \times W}$$
$$= \frac{1000 \times 1.86 \times 4.5}{0.465 \times 100}$$
$$= 180 g$$

According to Raoult's law $\frac{P^0 - P_s}{P_0} = \frac{N_1}{N_1 + N_2}$ $\therefore \quad 1 - \frac{P_s}{P_0} = \frac{N_0}{N_1 + N_2}$ or $\frac{P_s}{P_0} = 1 - \frac{N_1}{N_1 + N_2} = \frac{N_2}{N_1 + N_2}$ or $P_s = P_0 \times \frac{N_2}{N_1 + N_2}$ Also, we can derive from $\frac{P_0 - P_s}{P_0} = \frac{N_1}{N_1 + N_2}$ $\therefore \ \frac{P_0}{P_0 - P_c} = \frac{N_1 + N_2}{N_1} = 1 + \frac{N_2}{N_1}$ or $\frac{P_s}{P_0 - P_s} = \frac{N_2}{N_1}$ or $\frac{P_0 - P_s}{P_s} = \frac{N_1}{N_2}$ 96 **(b)** Given, w = 24.5 g100 (d) V = 1L = 100 mLM = ?Mol. wt. of NaOH = 23+16+1=40We know that, $M = \frac{w \times 1000}{m \times V} = \frac{24.5 \times 1000}{40 \times 1000}$ 101 (c) \therefore Molarity of solution = 0.6125 M 97 (a) Relative lowering of vapour pressure = mole fraction of solute (Raoult,s law) 102 (d) $\frac{\frac{P-P_s}{P}}{\frac{P-P_s}{P}} = \frac{WM}{mW}$ where, w=wt. of solute *M*=mol. wt. of solvent *m*= mol. wt. of solute W = wt. of solvent $0.0125 = \frac{wM}{mW}$ $\frac{M}{mW} = \frac{0.0125}{18} = 0.00070$ 103 **(b)** or Hence, molalit law. $=\frac{w}{mW} \times 1000 = 0.0007 \times 1000 = 0.70$ 104 (c) 98 (a) Van't Hoff's factor (i)=4 $\{3K^+[Fe(CN)_6]^{3-}\}$ Molality $=\frac{0.1}{329} \times \frac{1000}{100} = \frac{1}{329}$ $-\Delta T_f = iK_f.m$ $= 4 \times 1.86 \times \frac{1}{329} = 2.3 \times 10^{-2}$ 105 (a) $T_f = -2.3 \times 10^{-2} \, \text{°C}$ \Rightarrow (As freezing point of water is $0^{\circ}C$) 99 (a) w = 0.15 g, W = 15 g, $\Delta T_b = 0.216$ °C $k_b = 2.16^{\circ}\text{C}$ $\therefore M = \frac{k_b \times w \times 100}{\Delta T_b \times W}$

 $=\frac{\frac{2.16\times0.15\times1000}{0.216\times15}}=100$

Normality of acid = molarity × basicity Molarity = $\frac{N}{\text{basicity}}$ = $\frac{0.2}{2}$ =0.1M

Vapour phase composition over liquid phases of mixture may have any value. Recall that $P'_A = P_M \times X_{A(\text{in vapour phase})} = P^0 \times X_{A(\text{in liquid phase})}$ 2 (d) $HX \rightleftharpoons H^+ + X^-$ 1 mole 0 0 initial $1 - 0.3 \ 0.3 \ 0.3$ after dissociation Total moles = 0.7 + 0.3 + 0.3 = 1.3 $\therefore i = \frac{1.3}{1} = 1.3$ $\Delta T_f = i \times k_f \times m = 1.3 \times 1.85 \times 0.2 = 0.481^{\circ}\text{C}$

$$T_f = T - \Delta T_f = 0 - 0.481^{\circ}\text{C} = -0.481^{\circ}\text{C}$$

It is therefore also known as Nernst distribution law.

Sucrose, urea and glucose are non-electrolytes. They do not dissociate but ethanol dissociates into $C_2H_5O^-$ and H^+ ions, so, it has highest number of ions among given choices. (Colligative property \propto number of ions of solute.)

Actual molecular weight of naphthoic acid $(C_{11}H_8O_2)=172$ Molecular mass (calculated) $=\frac{1000 \times k_f \times w}{W \times \Delta T_f}$ $=\frac{1000 \times 1.72 \times 20}{50 \times 2}=344$

van't Hoff factor (*i*) = $\frac{\text{actual mol.wt.}}{\text{calculated mo.wt.}} = \frac{172}{344}$ = 0.5106 (c) $\frac{p^0 - p_s}{n^0} = \frac{w}{m} \times \frac{M}{w}$ $\frac{0.30 \text{ mm}}{17.54 \text{ mm}} = \frac{20}{m} \times \frac{18}{100} \Rightarrow m = \frac{20 \times 18 \times 17.54}{0.30 \times 100}$ 107 **(b)** Liquid phase does not exist above T_c . 108 (c) According to Raoult's law $\frac{p - p_s}{p} = \frac{n}{n + N} = \frac{0.05}{2.5 + 0.05}$ $=\frac{0.05}{2.55}=\frac{1}{51}$ weight of solute $= \frac{w}{W} \times M \times \frac{p}{p-p_s}$ $=\frac{10\times18}{90}\times51$ $=102 \, g$ 110 (c) According to Raoult' law, $\frac{p - p_s}{p} = \frac{n}{n + N}$ 111 (b) $M = \frac{100 \times k_b \times w}{\Delta T_b \times W}$ $k_{h} = 5.2$ Given, w= mass of solute = 6 g W=mass of solvent =100 g ΔT_b = elevation in boiling point = 0.52°C M = molecular weight = ? $M = \frac{100 \times 5.2 \times 6}{0.52 \times 100} = 60$:. 113 (d) Azerotropic mixture has constant boiling mixture, it is not possible to separate the components of azeotropic mixture by boiling 114 **(b)** For isotonic solutions, $\frac{w_1}{m_1} = \frac{w_2}{m_2} \Rightarrow \frac{5}{342} = \frac{1}{m_2} \Rightarrow m_2 = \frac{342}{5} = 68.4$ 115 (c) $Ca(NO_3)_2 \rightleftharpoons Ca^{2+} + 2NO_3^-$ It furnishes 3 ions per formula unit. So, its van't Hoff factor is 3. 116 (d) According to Raoult's law, the relative lowering in vapour pressure of a dilute solution is equal to mole fraction of the solute present in the solution 117 (c) Nernst's distribution law at constant temperature, when different quantities of a solute are allowed to distribute between two immiscible

solvents in contact with each other then at equilibrium the ratio of the concentration of the solute in two layers is constant for similar species which may be present. **Distribution coefficient** $K_D = \frac{\text{concentration of X in solvent } A(C_1)}{\text{concentration of X in solvent } B(C_2)}$ 118 (b) $\pi_1 V_1 + \pi_2 V_2 = \pi_R (V_1 + V_2)$ $1 \times 1 + 3.5V = 2.5(1 + V)$ 1 + 3.5V = 2.5 + 2.5Vor V = 1.5 L119 (d) Each has different molarity. 121 (a) It is the definition of boiling point. 122 **(b)** $K = \frac{c_1}{c_2}$ 123 (a) $\Delta T_b = k_b \times molality$ for dilute solution molarity=molality=2(given) and $k_b = 0.52$ (given) $\Delta T_b = 0.52 \times 2 = 1.04$ °C ... Now. ΔT_b = boiling point of solution – boiling point of solvent $(i.e., H_20)$ \therefore boiling point of solution = $\Delta T_b + b. pt of H_2 O$ =1.04+100=101.04°C 124 (a) It is a characteristic of given solvent. 125 (d) $\Delta T_b = \frac{k_b \times w \times 1000}{m \times W}$ $\therefore m = \frac{k_b \times w \times 1000}{\Delta T_b \times W} = \frac{2.53 \times 10 \times 1000}{1 \times 100}$ = 253 g 126 (c) F + P = C + 2127 (a) Beckmann thermometers do not read actual b. p. or f. p., but they give b. p., f. p. values on their scale. 128 (c) The one whose boiling point is more than that of either of the two pure components is known as azeotropic mixture with maximum boiling point. This is formed by non-ideal solutions showing

negative derivation

129 (b)

$$P'_{A} = P_{A}^{0}X_{A} \text{ and } P_{B}^{0}X_{B}$$

$$P'_{A} = P_{M}Y_{A} \text{ and } P'_{B} = P_{M}Y_{B}$$

$$\therefore \frac{P'_{A}}{Y_{A}} = \frac{P_{B}^{0}x_{B}}{Y_{B}} = \frac{P_{B}^{0}(1-X_{A})}{(1-Y_{B})}$$
or
$$\frac{P_{B}^{0}}{X_{A}} = \frac{P_{A}^{0}}{Y_{B}} + (P_{B}^{0} - P_{A}^{0})$$
or
$$\frac{1}{X_{A}} = \frac{1}{Y_{A}} \cdot \frac{P_{A}^{0}}{P_{B}^{0}} + \frac{(P_{B}^{0} - P_{A}^{0})}{P_{B}^{0}}$$
or
$$y = mx + C$$

$$\therefore \text{ slope } = m = \frac{P_{B}^{0}}{P_{B}^{0}} \text{ and intercept } C = \frac{(P_{B}^{0} - P_{A}^{0})}{P_{B}^{0}}$$
131 (c)
Number of moles = Molarity × Volume (in L)

$$\Rightarrow \text{ Number of moles = Molarity × Volume (in L)}$$

$$\Rightarrow \text{ Number of moles of } H_{2} SO_{4} = 2.0 M \times 5.0 L$$

$$= 10 \text{ moles}$$
132 (b)

$$Ba(NO_{3})_{2} \Rightarrow Ba^{2+} + 2NO_{3}^{-}$$
At t=0 0.1 M 0 0 0
At equilibrium (0.1-x)M xM 2xM

$$i = \frac{(0.1 - x) + x + 2x}{0.1}$$

$$2.74 = \frac{0.1 + 2x}{0.1}$$

$$3.10 \text{ M}$$

$$K = 82 = \frac{(\text{conc. of } I_{2} \text{ lin } CCI_{4}}{(\text{conc. of } I_{2} \text{ lin } CCI_{4}} - \frac{1}{0.3} \times 100 = 87\%$$
133 (b)

$$K = 82 = \frac{(\text{conc. of } I_{2} \text{ lin } CCI_{4}}{(\text{conc. of } I_{2} \text{ lin } CCI_{4}} - \frac{6.5.6 \text{ g/L}}{0.3}$$

$$\therefore \text{ [conc. of } I_{2} \text{ lin } CI_{4} = 65.6 \text{ g/L}$$
134 (a)

$$W = \frac{NEV}{1000}$$

$$N = \frac{W \times 1000}{E_{XV}}$$

$$= \frac{6.3 \times 100}{63 \times 250} = 0.4 \text{N}$$

$$N_{1}V_{1} = N_{2}V_{2}$$

$$0.1 \times V_{1} = 0.4 \times 10$$

$$V_{1} = \frac{0.4 \times 10}{0.1}$$

$$V_{1} = 40 \text{ mL}$$
135 (c)

$$K_{D} = \frac{\text{concentration of } X \text{ in solvent } A}{\text{concentration of } Ag \text{ in } 10 \text{ cm}^{3} \text{ Pb} = \frac{1-x}{10}}$$

$$Concentration of Ag \text{ in } 10 \text{ cm}^{3} \text{ Pb} = \frac{1-x}{10}$$

 $300 = \frac{x \times 10}{(1-x)} \quad or \ x = \frac{300}{100} = 0.967 = 97\%$ Concentration of Ag in zinc =1 -0.967=0.033 =3.3% 136 **(c)** Water boils at higher temperature than its b. p. if atmosphere pressure is more than 1 atm.

137 (b)

$$\Delta T_f = i \times k_f \times \frac{n}{W} \times 1000$$

$$6=2 \times 1.86 \times \frac{n}{1} \times 1$$

$$n = \frac{6}{2 \times 1.86} = 1.62$$
138 (c)
Molarity = $\frac{10 \times \text{density} \times \text{wtof solute}}{\text{mol.wtof the solute}}$
density = $\frac{3.60 \times 98}{10 \times 29} = 1.21$
% by weight of solute × density
139 (a)
Lowering is always positive.
140 (b)
 $\frac{p^0 - p_s}{p^0} = \frac{w \times M}{m \times W}$
 $\frac{143 - p_s}{143} = \frac{0.5}{65} \times \frac{154}{1.58 \times 100}$
[:* molecular weight of CCl₄ = 154 and
weight=density×volume]
 $143 - p_s = 1.07 \Rightarrow p_s = 141.93 \text{ mm}$
141 (b)
Given, in 100 g of solution NaOH present
 $= 10 \text{ g}$
 \therefore In 500 g of solution NaOH present
 $= \frac{10 \times 500}{100} = 50 \text{ g}$
So, 50 go NaOH will be required to prepare 500 g
 $10\% \frac{w}{w}$ NaOH solution.
142 (c)

Strength of H₂SO₄ = 98 × 19.8 g/L $S = \text{eq. wt.} \times N$ $N = \frac{S}{\text{eq. wt.}} = \frac{98 \times 19.8}{49} = 39.6$

The exosmosis occurs from cell to solution (hypertonic or high osmotic pressure or high concentration).

144 **(d)**

Beckmann thermometer does not read actual b.p. or f.p. of solution but gives their value on its scale. This leads to evaluation of ΔT_f or ΔT_b upto a least count of 0.01°C.

145 **(b)**

Avogadro's number

 $N_A = 6.02 \times 10^{23} = 1 \text{ mol}$ $\therefore 6.02 \times 10^{20} \text{ molecules} = 0.001 \text{ Mol in } 100 \text{ mL } (0.1 \text{ L}) \text{ solution}$ $\therefore \text{ Molar concentration} = \frac{\text{mol}}{1000}$

$$= \frac{0.001}{0.1} = 0.01 \text{ M}$$

146 **(b)**

Super saturated state is a meta stable state.

$$w = 1000 \text{ g(H}_2\text{O}); n = 1 \text{ mol}$$
$$N = \frac{W}{M} = \frac{1000}{18} = 55.55$$
$$\mathcal{X}_{\text{solute}} = \frac{n}{n+N} + \frac{1}{1+55.55}$$
$$= 0.018$$

148 **(a)**

The molal depression constant (k_f) for camphor is maximum. Hence depression of freezing point (ΔT_f) will be maximum for camphor.

150 **(b)**

When A - B interactions are greater less vapour are formed *ie*, solution shows negative deviation

151 **(b)**

Given, weight of PVC, w= 4gVolume of solution, V= 1 L Osmotic pressure, $\pi = 4.1 \times 10^{-4}$ Temperature, T=27°C =27+273=300K $\Rightarrow \pi V=nRT$ Or $\pi V=\frac{w}{M}RT$ (M=moleclular weight)

$$4.1 \times 10^{-4} \times 1 = \frac{4}{M} \times 0.0821 \times 300$$
$$M = \frac{4 \times 0.0821 \times 300}{4 \times 10^{-4} \times 1}$$
$$M = 2.4 \times 10^{5}$$

152 (d)

These are facts.

153 **(a)**

Colligative properties depends only upon the number of solute particles. Since, optical activity depends upon the nature of substance (through which plane polarised light is passed), it is not a colligative property.

154 **(b)**

 $\Delta x = i \times k_f \times m$ $7.10 \times 10^{-3} = i \times 1.86 \times 0.001$ i = 3.817 $\therefore \alpha = \frac{i-1}{n-1}$ $\therefore 1 = \frac{3.817 - 1}{(x+1) - 1}$ $x = 2.817 \approx 3$ $\therefore \text{ molecular formula of the compound is}$

 $K_3[Fe(CN)_6]$ 155 (c) Given, vapour pressure of benzene, $p^{\circ}=640 \text{ mm Hg}$ Vapour pressure of solution, *p*=600 mm Hg Weight of solute, w= 2.175 g Weight of benzene, W=39.08 g Molecular weight of benzene, M = 78 gMolecular weight of solute, *m*=? According to Raoult's law, $\frac{P^{\circ}-P}{P^{\circ}} = \frac{W \times M}{2}$ $m \times W$ $\frac{640-600}{2.175\times78} = \frac{2.175\times78}{2.175\times78}$ *m*×39.08 40 m×39.08 16×2.175×78 39.08 m = 69.60156 (b) $\Delta T_b = mk_b$ $\Delta T_f = mk_f$ $\frac{\Delta T_b}{\Delta T_f} = \frac{k_b}{k_f} = \frac{0.512}{1.86}$ $\Delta T_b = \frac{0.512}{1.86} \times 0.186$ $=0.0512^{\circ}$ 157 (a) $a \propto P$ $6.56 \times 10^{-2} \propto 1$ *:*.. $5.0 \times 10^{-2} \propto P$ P = 0.762 bar *.*.. 158 (d) $\frac{P_0 - P_s}{P_c} = \frac{w \times M}{m \times W};$ $\frac{1020 - 990}{990} = \frac{5 \times 78}{m \times 58.5}; m = 220$ 159 (b) $\pi = \frac{1.66 + 2.46}{2} = 2.06 \text{ atm}$ 160 (a) According to Raoult's law Mole fraction of solute $=\frac{p-p_s}{p}$ $=\frac{760-750}{760}=\frac{10}{760}=\frac{1}{760}$ 161 (a)

$$\frac{P_0 - P_s}{P_0} = \frac{w/m}{\frac{w}{m} + \frac{1000}{18}};$$

$$\therefore \ 0.00713 = \frac{71.5/m}{\frac{71.5}{m} + \frac{1000}{18}};$$

$$\therefore \ m = 180$$

162 (c)

$$ppm = \frac{weight of solute \times 10^{6}}{weight of solution} = \frac{25 \times 10^{-3} \times 10^{6}}{5000} = 5$$
163 (b)
Liquid mixtures showing negative deviations from Raoult's law possess higher b. p.
164 (d)
Higher vapour pressure of H₂O in atmosphere will derive H₂O vapours to solute particles.
165 (a)

$$K = 85 = \frac{a}{0.33}; \quad \therefore a = 28.05 \text{ g litre}^{-1}$$
166 (c)

$$\Delta T = \frac{1000 \times K_f \times w}{m \times W} = \frac{1000 \times 5.12 \times 1}{250 \times 51.2} = 0.4 \text{ K}$$
167 (c)
Mole fraction and molality does not involve volume therefore they are independent of temperature.
168 (c)
(i)Azeotropic mixtures having boiling point less than either of the two pure components show positive deviation from Raoult's law.
(ii) Azeotropic mixtures having boiling point more than either of two pure components show negative deviation from Raoult's law.
169 (c)

$$\Delta T_f = \frac{1000 \times 0.52 \times 0.25}{250} = 0.52^{\circ}C$$
170 (d)

$$P_m = 760 \text{ torr, because solution boils at 88^{\circ}C.$$
Now, 760 = 900 × m. f. of C₆H₆ + 360 × (1 - m. f. of C₆H₆)
 $\therefore 760 = 900a + 360 - 360a;$
 $\therefore a = 0.74$
Where a is mole fraction of C₆H₆.
171 (a)
Due to addition of nitric acid in water, the vapour pressure of pure water decreases
172 (a)
Moist air contains H₂O vapours in air.
173 (a)
 $M_{\text{NaNO}_3} = 1 \times 1 \quad \therefore \text{ No. of particles} = 1 \times 2 = 2$
 $M_{\text{Ba}(NO_3)_2} = 1 \times \frac{1}{2} \quad \therefore \text{ No. of particles} = \frac{1}{2} \times 3 = 1$

1.5

 $M_{\text{Al}(\text{NO}_3)_3} = 1 \times \frac{1}{3}$ \therefore No. of particles $= \frac{1}{3} \times 4 =$

1.33 $M_{\text{Th}(\text{NO}_3)_4} = 1 \times \frac{1}{4}$ \therefore No. of particles $= \frac{1}{4} \times 5 =$ 1.25

174 (a)

The boiling occurs at lower temperature if atmospheric pressure is lower than 76 cm Hg.

175 (a)

For two non-electrolytic solution if isotonic $c_1 = c_2$,

$$\therefore \frac{5.25 \times 1000}{m \times 100} = \frac{1.50 \times 1000}{60 \times 100}$$

$$\therefore m = 210 \text{ g mol}^{-1}$$

176 (d)

Na₃PO₄ will furnish more ions. More is vapour pressure lowering, lesser is vapour pressure.

177 (b)

The endosmosis occurs from solution (hypotonic or low osmotic pressure or low concentration) to cells.

178 (b)

The number of moles or gram molecules of solute dissolved in 1000 g of solvent = molality 117 g NaCl = 2 mol

Hence, concentration of solution = 2 molal

179 (b)

$$\Delta T_f = ik_f m$$

$$0.335 = i \times 1.86 \times 0.1$$

$$i = 1.80$$

For NaBr, $i = 1 + \alpha$

$$\alpha = 0.80 = 80\%$$

180 (a)

at 88°C.

the vapour

An increases in temperature increase the volume of the solution and thus, decreases its molarity

181 (d)
$$P_{M} = 80 \times \frac{3}{2} +$$

$$P_M = 80 \times \frac{3}{5} + 60 \times \frac{2}{5}$$

= 48 + 24 = 72 torr

184 (a)

$$\Delta T = \frac{1000 \times K \times w}{m.W};$$

$$\therefore \Delta T = \frac{1000 \times 0.53 \times 2}{4000} = 0.265,$$

$$\therefore T_b = 100 + 0.265 = 100.265^{\circ}C$$

183 (a)

$$\frac{P_0 - P_s}{P_0} = \frac{1}{1+2} = \frac{1}{3};$$

$$\therefore 1 - \frac{P_s}{P_0} = \frac{1}{3}$$

Thus, $\frac{P_s}{P_0} = 1 - \frac{1}{3} = \frac{2}{3}$

Page 50

 $K = 588 = \frac{x/50}{\frac{(1-x)}{1000}}$ $\therefore x = 0.965 \text{ g}$ Where, x is amount of I₂ in CS₂. Thus, it aqueous layer I₂ = 1 - 0.965 = 0.035 g 185 (d) Normality = $\frac{\text{no.of g-equivalents of solute}}{\text{volume of solution in litre}}$ Given, basicity = 2, mol. wt. = 200, V = 100 mL = 100/1000 LNormality = 0.1 Eq. wt. = $\frac{\text{mole.wt.}}{\text{basicity}} = \frac{200}{2} = 100$ $N = \frac{\text{mass /eq. wt.}}{\text{mass /eq. wt.}}$

or
$$0.1 = \frac{\frac{\max 100}{100/1000}}{100/1000}$$

$$\frac{1}{100/1000} = 0.1 = \frac{100/1000}{100/1000}$$

or
$$0.1 = \frac{\text{mass}/}{0.1}$$

or $mass = 0.1 \times 0.1 \times 100 = 1.0 \text{ g}$

186 **(b)**

Vapour pressure of a solution increases with temperature, decreases with increase in mole fraction of solute and decreases with degree of dissociation of solute.

187 **(c)**

We know that 1 g equivalent weight of NaOH = 40 g

$$\therefore \quad 40 \text{ g of NaOH} = 1 \text{ g eq. Of NaOH}$$
$$\therefore \quad 0.275 \text{ g of NaOH} = \frac{1}{40} \times 0.275 \text{ eq.}$$
$$= \frac{1}{40} \times 0.275 \times 1000$$
$$= 6.88 \text{ meq}$$
$$\therefore \qquad N_1 V_1 = N_2 V_2$$

(HCl) (NAOH)
$$N_1 \times 35.4 = 6.88$$
 (: meq = NV)
 $N_1 = 0.194$

188 (c)

$$\Delta T_b = \frac{1000K'b \times w}{m.W}; \text{ if } w/m = 1, W = 1000 \text{ g.}$$
$$\Delta T_b = K'_b$$

189 **(d)**

All are desired condition for Henry's law.

190 **(d)**

According to Raoult's law the relative lowering in vapour pressure of an ideal solution containing the non-volatile solute is equal to the mole fraction of the solute.

 \therefore Relative lowering of vapour pressure =0.2

 \therefore Mole fraction of the solute =0.2

191 **(d)**

Elevation in boiling point is a colligative property, 1 i.e., depends upon the number of particles. Hence, the electrolyte which give largest number of particles in the solution, has the highest boiling point.

Since $K_2[Fe(CN)_6]$ gives largest number of particles, *i.e.*, 5, hence it has the highest boiling point.

192 **(a)**

Mol wt. ratio of *A* and *B*=1:4 \therefore Mole ratio of *A* and *B*, if equal weight of *A* and *B* are taken = 4:1

∴ Partial pressure of $B = \frac{1}{(1+4)} \times p$ = $\frac{p}{5}$

193 **(b)**

10. $N_1V_1 = N_2V_2$

11. Amount of water to be added

= total volume – volume of NaOH

Given, normality of NaOH = N_1 = 0.1 N

Volume of NaOH = V_1 =?

Normality of $HCl(N_2) = 0.2$ N

Volume Of HCl = $V_2 = 50$ mL

$$N_1V_1 = N_2V_2$$

 $0.1 \times V_1 = 0.2 \times 50$

$$V_1 = \frac{0.2 \times 50}{0.1} = 100$$
mL

V of NaOH = 40 mL

Amount of water to be added =100 - 40=60 mL

194 (d)

$$M = \frac{1000 \times k_f \times w}{\Delta T \times W}$$

$$62 = \frac{1000 \times 1.86 \times 50}{9.3 \times W}$$

$$W = 161.3 \text{ g}$$
Total water =200 g
Hence, ice separated= (200 - 161.3)g = 38.7 g
195 (c)

$$\Delta T = \frac{100 \times K_f \times w}{m.W} \times i$$

$$\Delta T = 0 - (-3.82) = 3.82^{\circ}\text{C}$$

$$3.82 = \frac{1000 \times 1.86 \times 5 \times i}{142 \times 45}$$

$$i = 2.63$$
196 (d)

$$P_T = P_A^{\circ} X_A + P_B^{\circ} x_B$$

Mixture solution boil at 1 atm = 760 mm = total

pressure.

 $760 = 520 X_A + 100(1 - X_A)$ $X_A = 0.5$, mol% of A = 50%

197 **(a)**

To show colligative properties solute should be non-volatile and soluble in given solvent.

198 **(b)**

 $\Delta T_f = i \times k_f \times m$ *i* for HBr=1 + α where, α =degree of dissociation *i*=1+0.9=1.9

:.
$$\Delta T_f = 1.9 \times 1.86 \times \frac{8.1 \times 1000}{100 \times 81}$$

= 3.534°C

Freezing point =-3.534°C

199 **(d)**

The formula

 $\Delta T = K_b \times \text{molality}$ is valid when solute neither dissociates nor associate. In case of dissociation : $\Delta T = K_b \times \text{molality} (1 - \alpha + x\alpha + y\alpha)$. In case of association $\Delta T = K_b \times \text{molality} (1 - \alpha + \alpha / n)$. In case of

association

200 **(a)**

 $Cr_{2}O_{7}^{2-} + 6Fe^{2+} + 14H^{+}$ $\rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_{2}O$ Hence, 1 mol of $Cr_{2}O_{7}^{2-} = 6$ moles of Fe^{2+} $\frac{M_{1}V_{1}}{1} = \frac{M_{2}V_{2}}{6}$ $\frac{0.1 \times V_{1}}{1} = \frac{0.5 \times 35}{6}$ $V_{1} = \frac{0.5 \times 35}{6 \times 0.1}$ $V_{1} = 29.2 \text{ mL}$

202 (d)

$$p = P_A^{\circ} X_A + P_B^{\circ} x_B$$

$$\Rightarrow 84 = 70 \times 0.8 + P_B^{\circ} \times 0.8$$

$$84 = 56 + P_B^{\circ} \times 0.2$$

$$P_B^{\circ} = \frac{28}{0.2} = 140 \text{ mm}$$

203 **(c)**

As the colligative properties depend only upon the number of particles of solute, so if the nonvolatile solute dissociate or associates in the solution, the value of colligative properties deviates, *i.e.*, abnormal colligative properties are obtained.

2

204 **(b)**

Osmosis a slow process occurs from dilute to concentrated solution.

205 **(d)**

At triple point, all the three phase exist together. ($P = 2.56 \text{ mm}, T = 0.0098^{\circ}\text{C}$)

206 **(c)**

Molality depends only upon weights, not on volumes whereas other given concentration terms depend upon the volume of solution. Volume of solution increases with rise in temperature but temperature does not affect the weights, therefore molality is independent of temperature .

207 **(d)**

Addition of glycol lowers the freezing point of water and thus, glycol water mixture is used as antifreeze in radiators of cars.

208 **(b)**

Given,
R=8.314 JK⁻¹ mol⁻¹

$$T_f = 273 + 16.6 = 289.6 K$$

 $L_f = 180.75 Jg^{-1}$
 $k_f =?$
 $k_f = \frac{R.T_f^2}{1000 \times L_f}$
 $= \frac{8.314 \times (289.6)^2}{1000 \times 180.75}$
 $k_f = 3.86$
209 **(b)**

$$\Delta T_f = K_f m$$

$$= \frac{1.86 \times 45 \times 1000}{62 \times 600}$$

$$= 2.2$$

Freezing point of solution =273.15K-2.2 K =270.95 K

210 **(c)**

The phenomenon in which, when two solutions of different concentration (one may be solvent) are kept separated by semipermeable membrane, the solvent molecules start flowing from dilute solution to concentrate solution. This is called osmosis. Osmosis is a slow process and keeps on happening until the concentration of both solutions become equal.

211 **(b)**

Methanol has low boiling point than H_2O , lower is boiling point of solvent more is vapour pressure

212 **(d)**

Each system is non-ideal and shows $\Delta H_{\text{mix}} < 0$.

213 **(d)**

Moles of glucose $=\frac{18}{180} = 0.1$ Moles of $H_2O = \frac{178.2}{18}$ 9.9 According to Raoult's law

$$\frac{\frac{P^{\circ} - P_{S}}{P^{\circ}} = X_{\text{solute}}}{\frac{17.5 - P_{S}}{17.5} = \frac{0.1}{10}}$$

so, $P_{S} = 17.325$ mm Hg

214 (a)

$$P_{M} = P_{A}^{0} \cdot X_{A} + P_{B}^{0} \cdot X_{B}$$

$$P_{M} = P_{A}^{0} \cdot X_{A} + P_{B}^{0} (1 - X_{A})$$
760 = 520. X_{A} + 1000 - 1000 X_{A}
 $\therefore \quad X_{A} = \frac{240}{480} = 0.5$
 $\therefore \quad \text{mole \%} = 50$
215 (c)
 $i = \frac{\text{Exp. colligative properties}}{\text{Normal colligative properties}}$
Put colligative properties $\propto \frac{1}{\text{mol.wt.}}$
216 (b)
For isotonic solutions, $\pi_{1} = \pi_{2}$ (and for non-
electrolytes also $c_{1} = c_{2}$).
217 (c)
 $C = \frac{5}{342} \times \frac{1}{100} \times 1000 = \frac{50}{342} \text{ mol/L}$
 $\pi = \frac{50}{342} \times 0.082 \times 423 = 5.07 \text{ atm}$
218 (a)
 $\Delta T_{f} = \frac{1000 K_{f} w_{1}(i)}{m_{1} w_{2}}$
 $\therefore \quad 6 = \frac{1000 K_{f} w_{1}(i)}{62 \times 4000}$
 $w_{1} = 800 g$
219 (a)
Let molality of solution = x
Moles of solute in 1000 g benzene
 $= \frac{1000}{78} = 12.82$
Mole fraction of solute $= \frac{x}{x+12.82}$
 $0.2 = \frac{x}{x+12.82}$
or $0.2(x+12.82) = x$
or $0.2(x+2.564 = x)$
 $2.564 = x \cdot 0.2x$
 $x = \frac{2.564}{0.8} = 3.2$
220 (d)
This is the mathematically modified form of
distribution law when solute undergoes
association in either of the solvent.
221 (c)
Rest all are applications of distribution law.
222 (a)
According to Raoult's law, for non volatile solute,
the relative lowering of vapour pressure of a
solution is equal to the mole fraction of the solute,
the relative lowering of vapour pressure of a
solution is equal to the mole fraction of the solute

 $\frac{1}{p} = \frac{1}{n+N}$

Molarity(m) = $\frac{M}{1000d - MM'} \times 1000$ Where M' = molar mass of solute

 $3 = \frac{M \times 1000}{1000 \times 1.11 - M \times 40}$ 1000M = 3330 - 120 M 1120 M = 3330 $M = \frac{3330}{1120} = 2.9732$ 225 (a) An ionic compound having $\Delta H_{l} > \Delta H_{h}$ is insoluble in water. 226 (d) These are conditions for the validity of distribution law. 227 (c) Volume of monobasic acid = $10cm^3$ Normality of monobasic acid = 0.1 N Volume of NaOH solution = $15cm^3$ Normality of NaOH solution =? $N_1 V_1 = N_2 V_2$ (for monobasic acid) (for NaOH) $10 \times 0.1 N = 15 \times N_2$ $N_2 = \frac{1N}{15} = 0.066 N$ 228 (c) Molality (*m*) = $\frac{M}{1000d - MM_1} \times 100$ M = Molarity M_1 = Molecular mass d = density $=\frac{2.05}{(1000 \times 1.02) - (2.05 \times 60)} \times 100$ $=2.28 \text{ mol kg}^{-1}$ 229 (d) According to question, $w_A = xg$, $m_A = 18$, $x_A = 1 - 0.6 = 0.4$ $w_B = 69$ g, $m_B = 46$, $X_B = 0.4$ We know that, $X_A = \frac{n_A}{n_A + n_B}$ $0.4 = \frac{\frac{w_A/m_A}{w_A + \frac{6}{46}}}{\frac{w_A}{m_A} + \frac{6}{46}}$ $0.4 = \frac{x/18}{\frac{x}{18} + \frac{3}{2}}$ or $0.4 \times \left(\frac{2x+54}{36}\right) = \frac{x}{18}$ 2x + 54 = 5xor or 3x=54,x=18 g 230 (a) $\Delta H_{\text{solution}} = \Delta H_{\text{hydration}} + \Delta H_{\text{lattice energy}}$ $\Delta H_{\rm h} = -{\rm ve}$ $\Delta H_1 = + \mathrm{ve}$ 231 (b) Molarity Molarity of a solution is the number of

moles of the solute per litre of solution. Unit of

molarity is mol/L.

232 **(b)**

$$M = \frac{w}{m \times V(L)}$$

$$0.25 = \frac{w}{106 \times 0.25}$$

$$\therefore w = 6.625 \text{ g}$$

233 (d)
K₄[Fe(CN)₆] furnishes maximum ions (*ie*, 5) thus, it has maximum value of van't Hoff factor

234 (d)

For ternary electrolyte; $P_1 = CST = 0.05 \times 3 \times S \times T$; For *B*; $2P = 0.1 \times S \times T$; $\therefore P_1 = 3P$ 235 (a) $\Delta T_f = \text{molality} \times K_f$ (0.5×1000)

$$= \frac{68.5 \times 1000}{342 \times 1000} \times 1.86$$

$$= 0.372$$

$$\therefore T_f = 0 - 0.372 = -0.372^{\circ}C$$

236 **(a)**

According to Raoult's law $p = p_A^* X_A + p_B^* X_B$ $= 290 = 200 \times 0.4 + p_B^* \times 0.6$ $p_B^* = 350$ 237 (c) Molarity, $M = \frac{W_2 \times 1000}{M_2 \times Vol.(mL)}$; where w_2 mass of H_2SO_4 in g, M_2 is the molar mass of H_2SO_4 $w_2 = \frac{1 \times 98 \times 200}{1000} = 19.6 g$ $H_2SO_4 + 2H_2O \rightleftharpoons 2H_3O^+ + SO_4^{2-}$ But according to equation 1 mole of H_2SO_4 gives 2 mole of $[H_2O^+]$ ions. So, the amount of H_2SO_4 to prepare 200 mL solution having the 1 M concentration oH_3O^+ ions is 19.6/2 = 9.8 g.

238 **(a)**

 $N_{1}V_{1} = N_{2}V_{2}$ 0.164 M NaOH \cong 0.164 N NOH $N_{1} = ?, V_{1} = 25 \text{ mL}, N_{2} = 0.164, V_{2} = 32.63 \text{ mL}$ $N_{1}V_{1} = N_{2}V_{2}$ or $N_{1} = \frac{N_{2}V_{2}}{V_{1}}$ $= \frac{0.164 \times 32.63}{25}$ $= 0.214 \text{ N } H_{2}SO_{4}$ 0.214 N $H_{2}SO_{4} \cong \frac{0.214}{2} \text{ M } H_{2}SO_{4}$ (\because Basicity of $H_{2}SO_{4} = 2$) $\cong 0.107 \text{ M } H_{2}SO_{4}$ 239 (c) $\Delta T = K_{f} \times m,$ $\therefore 10 = 1.86 \times m;$ 240 (a) A gas is more soluble if (i) More are forces of attractions among molecules of gases, ii) More being the tendency of ionization in a solvent and iii) More is H-bonding. 241 (c) Molality $\frac{Moles \ of \ solute}{kg \ of \ solvent} = \frac{5.2 \ mol \ CH_3 OH}{kg \ (=100g)H_2 O}$ $n_1(CH_3OH) = 5.2$ $n_2(H_20) = \frac{1000}{18} = 55.56$ $\therefore n_1 + n_2 = 5.20 + 55.56 = 60.76 \text{ mol}$ $\therefore X_{CH_3OH} = \frac{n_1}{n_1 + n_2} = \frac{5.2}{60.76} = 0.086$ 242 (c) Suppose the equal mass of methane and oxygen =w = 1gMole fraction of oxygen = $\frac{w/32}{\frac{w}{23}+w/16}$ $=\frac{\frac{1}{32}}{\frac{3}{32}}=\frac{1}{3}$ Let the total pressure = pPressure exerted by oxygen (partial pressure) $= X_{o_2} \times p_{total} = p \times \frac{1}{3}$ 243 (d) In Ist case, When two liquids *X* and *Y* are mixed in the molar ratio 1:1. Moles of X = 1Moles of Y=1Mole fraction of $X(\varkappa_x) = \frac{1}{2}$ Mole fraction of $Y(\varkappa_Y) = \frac{1}{2}$ We know that $p = p_X^{\circ} \varkappa_x + p_Y^{\circ} \varkappa_y$ (*p*=total pressure of mixture) $400 = \frac{1}{2}p_X^\circ + \frac{1}{2}p_Y^\circ$ $400 \times 2 = p_X^{\circ} + p_Y^{\circ}$...(i) For case IInd, When liquids are mixed in the molar ratio of 1:2, Mole fraction of X=1Mole fraction of Y = 2Mole fraction of $X(\varkappa_x) = \frac{1}{2}$ Mole fraction of $Y(\varkappa_y) = \frac{2}{3}$ $P = p_X^{\circ} \varkappa_X + p_Y^{\circ} \varkappa_Y$ $350 = \frac{1}{3} p_X^{\circ} \frac{2}{3} p_Y^{\circ}$

or m = 5.376

 $350 \times 3 = p_X^\circ + 2p_Y^\circ$...(ii) From Eqs (i) and (ii) , we get $p_X^\circ = 550mm$

 $p_{V}^{\circ} = 250 \ mm$ $n = \frac{60}{30} = 2$ (e.f.m. for $CH_2O = 30$) 244 (c) so, molecular formula= $C_2H_4O_2$ $Na_2SO_4 = 2Na^+ + SO_4^{2-}$ 252 (d) $\begin{array}{cc} 0 & 0\\ 2\alpha & \alpha \end{array}$ $1_{1-\alpha}$ By Ostwald-walker dynamic method, the relative Where α is degree of dissociation lowering of vapour pressure, lowering of vapour \therefore $i = 1 - \alpha + 2\alpha + \alpha = 1 + 2\alpha$ pressure and vapour pressure of the solvent, all 245 **(b)** can be measured. $p_M = p'_A + p'_B$ In this method, the apparatus used, contains two $= p_A \cdot x_A + p_B \cdot x_B \qquad (\because p'_A = p_A \cdot x_A)$ bulbs: bulb A contains solution and bulb B $= p_A \cdot x_A + p_B(1 - x_A)$ (: $x_A + x_B = 1$) contains solvent. The loss of weight in bulb B $= p_B + x_A(p_A - p_B)$ gives the lowering vapour pressure and total loss 246 (c) of weight in both the tubes gives the vapour For ideal solution. pressure of the solvent and $\Delta H_{\text{solution}} = \Delta H_1 + \Delta H_2 + \Delta H_3$ Relative lowering of vapour pressure 247 (d) $=\frac{\text{lowering of vapour pressure}}{\text{vapour pressure of solvent}}$ Azeotropic mixture of HCl and water has 20.24% of HCl. It boils at 108.5°C under a pressure of one atmosphere. 253 (a) $K = 9 = \frac{a \times 10}{(0.1 - a) \times 10}$ 248 (d) Molarity weight % of solute \times density of the solution Where *a* is the molarity of organic compound in $\times 10$ CCl₄ at equilibrium molecular weight of the solution \therefore a = 0.09 M $98 \times 1.84 \times 10$ Thus, molarity of organic compound left in water = -----98 = 0.1 - 0.09= 18.4= 0.01 M249 (a) 254 (d) $\pi = CRT$ $M_{2} = \frac{K_{f} \times w_{2} \times 1000}{\Delta T_{f} \times w_{1}}$ or $M_{2} = \frac{1.86 \times 1.8 \times 1000}{0.465 \times 40} = 180$ $n = \frac{180}{\text{emp.formula mass}} = \frac{180}{30} = 6$ Hence, C = 0.2 M $R = 0.082 L atm mol^{-1}K^{-1}$ T = 27 + 273 = 300 K $\pi = 0.2 \times 0.082 \times 300 K$ =4.92 atm. Molecular formula of the compound is $C_6 H_{12} O_6$. 250 (b) 255 (a) Let the volume of 0.4 M HCl is V_1 and that of 0.9 M According to Raoult's law in a solution of a non-HCl is V_{2} . volatile solute, the the relative lowering in vapour We know that, pressure is always equal to the mole fraction of N_1V_1 + N_2V_2 NV =the solute. (Mixture) (for 0.4 M HCl) (for 0.9 M HCl) $\frac{p - p_S}{p} = X_A = \frac{N_A}{N_A + N_B}$ $0.7(V_1 + V_2) = 0.4 \times V_1 + 0.9 \times V_2$ 256 (c) [::1m HCl = 1N HCl] $P'_A = P_A^0 \cdot X_A + P_M \cdot Y_A$ $0.7V_1 + 0.7V_2 = 0.4 V_1 + 0.9 V_2$ $P'_A = P^0_B \cdot X_B = P_M \cdot Y_B$ $0.7V_1 + 0.4V_1 = 0.9V_2 + 0.7V_2$ $0.3V_1 = 0.2V_2$ $\frac{V_1}{V_2} = \frac{0.2}{0.3} = \frac{2}{3}$ $\therefore \frac{P_A^0}{P_B^0} \cdot \frac{X_A}{X_B} = \frac{Y_A}{Y_B}$ $:: \frac{P_A^0}{P_2^0} > 1$ $\therefore \frac{X_A}{X_B} < \frac{Y_A}{Y_B}$ 251 **(b)** 257 (a) (π) glucose =(π) unknown compound Normality of 2.3 M $H_2SO_4 = M \times basicity$ $0.05 = \frac{3}{M}$ $= 2.3 \times 2 = 4.6$ N $M = \frac{3}{0.05} = 60$ 258 (d)

$$i = 1 + \alpha$$

= $\frac{\text{cal. mol. weight}}{\text{exp. mol. wt}} = \frac{58.5}{30} = 1.95$
 $\therefore 1 + \alpha = 1.95$
 $\alpha = 0.95$

259 **(b)**

Molarity of $H_2SO_4 = 5 \text{ M}$ Normality of $H_2SO_4 = 2 \times 5 = 10 \text{ N}$ $N_1V_1 = N_2V_2$ $10 \times 1 = N_2 \times 10 \text{ or } N_2 = 1 \text{ N}$

260 (a)

$$K = \frac{[\text{Succinic acid}] \text{ in water}}{[\text{Succinic acid}] \text{ in ether}} = \frac{\frac{1.843}{M \times 100}}{\frac{0.127}{M \times 50}} = 7.26$$

261 **(b)**

Substances of high vapour pressure (*e*.g., gasoline) evaporates more quickly than substances of low vapour pressure (*e*.g., motor oil).

262 **(b)**

Lowering of vapour pressure is a colligative property, *i.e.*, depends only upon the number of particles of solute and not on the nature of solute.

 $\therefore 0.1 \text{ M Glucose} \rightarrow \text{remains undissociated} \\ 0.1 \text{ m } BaCl_4 \rightarrow Ba^{2+} + Cl^- \Rightarrow 3 \text{ ions} \\ 0.1 \text{ m } MgSO_4 \rightarrow Mg^{2+} + SO_4^{2-} \Rightarrow 2 \text{ ions} \\ 0.1 \text{ M NaCl} \rightarrow Na^+ + Cl^- \Rightarrow 2 \text{ ions} \end{cases}$

 \therefore 0.1 m *BaCl*₂ gives maximum number of particles, hence it exhibits maximum lowering of vapour pressure.

263 (d)

Amount of gas dissolved per unit volume ∝ pressure of gas; this is Henry's law.

264 **(b)**

Osmotic pressure (π) =CRT Here, C = concentration of solution $C = \frac{n}{v}$ $n = \frac{w}{m} = \frac{\text{weight in gram of substance}}{\text{mol.weight of substance}}$ V=1L $C = \frac{68.4}{342}$ $\pi = \frac{68.4}{342} \times 0.082 \times 273$ =4.48 atm

265 **(a)**

Molarity gets affected as it is the number of moles per unit volume (volume increases with increase of temperature).

266 **(c)**

The solution of acetone and chloroform shows

negative deviation from Raoult's law because acetone and chloroform make the hydrogen bond.

 $\triangle H_{mix}$ and $\triangle V_{mix}$ both are negative. 267 (d)

$$P'_A = P_A^0 \cdot X_A$$
 and
 $P'_A = P_M \cdot X'_A$
 $P'_B = P_M \cdot X'_B$
 $\therefore \frac{P'_A}{P'_B} = \frac{X'_A}{X'_B} = \frac{(n_A)_V}{(n_B)_V}$

268 **(d)**

$$\frac{P_0 - P_s}{P_s} = \frac{w \times M}{m \times W}$$
$$\frac{10}{(750 - 10)} = \frac{2 \times 78}{m \times 78}$$
$$\therefore \qquad m = 148;$$
$$m \text{ comes } 150 \text{ if formul}$$

m comes 150 if formula $\frac{P_0 - P_s}{P_0}$; $\frac{w \times M}{m \times W}$ is used. But this is only for dilute solutions.

269 **(d)**

--do---270 (c) For same solution $\frac{\Delta T_f}{\Delta T_b} = \frac{K'_f}{K'_b}$ or $\Delta T_f = \Delta T_b \times \frac{K'_f}{K'_b}$ or $\Delta T_f = \frac{0.15 \times 1.86}{0.512} = 0.545$ Now on diluting the solution to double

$$\Delta T_f \propto \frac{1}{\text{wt. of solvent}}$$

$$\therefore \quad \Delta T_f = \frac{0.545}{2} = 0.272$$

$$\therefore \quad \text{f. p.} = -0.272^{\circ}\text{C}$$
271 (c)
$$\pi V = nST$$
or $\pi = cST$

$$\therefore c = \frac{0.821}{0.0821 \times 300} = 0.033 M$$
272 (d)
$$\therefore 20 \text{ g glucose is dissolved in 100 mL solution}$$

$$\therefore 1 \text{ g glucose is dissolved in } = \frac{100}{20}$$
180 g (g-mole) glucose is dissolved in
$$= \frac{100 \times 180}{20} = 900 \text{ mL}$$

$$= 0.9\text{L}$$
273 (d)
$$\Delta T_f = \frac{1000 k_f w}{mW}$$

$$\Delta T_f = 0.19^{\circ}\text{C}; k_f = 5.08 \text{ kg } mol^{-1}, w=1\text{g},$$
W=80g

 $=\frac{1000\times5.08\times1}{0.19\times80}=334.21$ Atomic weight of As = 74.92 Hence, number of atoms $=\frac{334.21}{74.92} \approx 4$ Hence, the formula of arsenic is As_4 . 274 (d) Reverse osmosis involves movement of solvent particles through semipermeable membrane from concentrated solution to dilute solution under pressure. 275 (a) When ethylene glycol is added to H_2O as antifreeze, it decreases the freezing point of H_2O in winter and increase the boiling point of water in the summer.

276 (b)

Elevation in boiling point is colligative property and depends upon number of ions of molecules or particles.

 $CaSO_A \rightarrow Ca^{2+} + SO_A^{2-}$ \therefore 2 ions $BaCl_2 \rightarrow Ba^{2+} + 2Cl^{-}$ \therefore 3 ions $NaCl \rightarrow Na^+ + Cl^ \therefore$ 2 ions urea \rightarrow no dissociation \therefore 1 molecule : *BaCl*₂furnishes maximum ions. \therefore *BaCl*₂ will have maximum boiling point.

277 (d)

K₂SO₄ is 17.4 ppm *i.e.*
10⁶ g (
$$\cong$$
mL)has K₂SO₄ = 17.4 g K₂SO₄
10³ mL has K₂SO₄ = $\frac{17.4 \times 10^3}{10^6}$ = 0.0174 g / L
 $= \frac{0.0174}{174}$ mol/L
 $\therefore [K_2 SO_4] = 1 \times 10^{-4} M$
K₂SO₄ $\rightleftharpoons 2K^+ + SO_4^{2-}$
 $\therefore [K^+] = 2 \times 10^{-4} M$
78 (a)
 $\frac{p^\circ - p_s}{p^\circ} = X_1$ (mole fraction of solute)
80 (a)

2

2

$$m = \frac{k_b \times w \times 1000}{\Delta T_b \times W} = \frac{2.16 \times 0.15 \times 1000}{0.216 \times 15} = 100$$

281 (c)

Vapour pressure of a liquid in a closed container increases with increase in temperature

282 (c)

From Raoult's law :
$$\frac{P_0 - P_s}{P_0} = \frac{N_1}{N_1 + N_2}$$
$$1 - \frac{P_s}{P_0} = \frac{N_1}{N_1 + N_2}$$
or
$$\frac{P_s}{P_0} = \frac{N_2}{N_1 + N_2}$$
i.e.,
$$P_s = P_0 = \frac{N_2}{(N_1 + N_2)}$$

 P_s $= P_0 \times$ mole fraction of solvent.

283 (c)

Solutions having same osmotic pressure are called isotonic solutions. π gloucose = π unknown solute

$$\frac{5}{180} = \frac{2}{M}$$
 or $M = \frac{180 \times 2}{5} = 72$

284 **(b)**

Follow definition of diffusion.

285 (b)

Boiling point $(T_b) = 100 + \Delta T_b = 100 + k_b m$ Freezing point $(T_f) = 0 - \Delta T_f = -k_f m$ $T_b - T_f = (100 + k_b m) - (-k_f m)$ 105 = 100 + 0.51m + 1.86m2.37 m = 5 or $m = \frac{5}{2.37} = 2.11$: Weight of sucrose to be dissolved in 100 g water $=\frac{2.11\times342}{1000}\times100=72g$ 286 (c) $\frac{\Delta T_b}{\Delta T_f} = \frac{K_b}{K_f}$ $\therefore \quad \Delta T_f = \frac{K_f}{K_b} \times \Delta T_b = \frac{1.86}{0.512} \times 0.18$ \therefore f. pt. = 0 - 0.654 = -0.654°C 287 (c) Molarity of base = $\frac{\text{Normality}}{\text{Acidity}} = \frac{0.1}{1} = 0.1$ $M_1V_1 = M_2V_2$ $0.1 \times 19.85 = M_2 \times 20$ $M_2 = 0.09925 \approx 0.099$

288 (c)

Vapour pressure of a solvent is lowered by the presence of solute in it. Lowering in vapour pressure is a Colligative property. *i.e.*, it depends on the number of particles present in the solution. $Cu(NO_3)_2$ give the maximum number of ions (*i.e.*, 3)so, it causes the greatest lowering in vapour pressure of water.

289 (b)

In the molarity and normality the volume of the solution is considered while in molality the mass of the solvent is considered. Molarity and normality change with temperature because of expansion of contraction of the liquid with temperature. However, molality does not change with temperature because mass of the solvent does not change with temperature.

290 (c)

Molality = $\frac{n \times 1000}{\text{mass of solvent (g)}}$ $=\frac{18\times1000}{180\times500}=0.2$ m

291 (a)

BaCl₂gives maximum ion hence, it shows lowest vapour pressure

292 (d)

Solution is isotonic.

 $C_1 RT = C_2 RT$

$$C_1 = C$$

Density of both the solutions are assumed to be equal to

 $1.0 \text{ g } cm^{-3}$.

5.25% solution of a substance means 100g solution contains

5.25 g solute and 1000g solution contain 52.5g solute.

Hence, $\frac{52.5}{M} = \frac{15}{60}$, M= molecular mass of the substance $M = \frac{52.5 \times 60}{15} = 210$

293 (a)

Elevation in boiling point is a colligative property, *i.e.*, depends only on number of particles of ions. 0.1 M FeCl₃ gives maximum number of ions, thus has highest boiling point.

294 (a)

 $Al_2(SO_4)_3$ produces maximum number of ions so, it will have highest osmotic pressure.

295 (a)

Normality of acid=molarity ×basicity $0.2 = M \times 2$ $\therefore M = \frac{0.2}{2} = 0.1$

296 (a)

In solution the KCl and CuSO₄ produces same number of ions in solution.

$$KCl \rightleftharpoons K^{+} + Cl^{-}$$

$$CuSO_{4} \rightleftharpoons Cu^{2+} + SO_{4}^{2-}$$
Both produced two ions in solution.
So, ionic strength of a solution is combined ionic
strength of both of the salt.

297 (a)

Let molarity o Ba(OH)₂ = M_1 Normality = $2M_1$:. Molarity of HCl = 0.1 M = 0.1 N $N_1V_1 = N_2V_2$ $2 M_1 \times 25 = 0.1 \times 35$ $M_1 = 0.07 \text{ M}$

298 (c)

Glucose $(C_6H_{12}O_6)$ is a non-electrolyte, hence i=1, while others are electrolyte, hence i > 1. $\therefore \Delta T_f = i \times k_f \times molality$

The value of ΔT_f is lowest for glucose, hence its freezing point is maximum.

299 (b)

$$N = \frac{w \times 1000}{\text{eq. wt.} \times V(\text{mL})} = \frac{4 \times 1000}{40 \times 100} = 1.0 \text{ N}$$

301 (a)

According to the Boyle-van't Hoff law, at constant temperature the osmotic pressure of a solution is directly proportional to its concentration and inversely proportional to its dilution. $\pi \propto C$ (where, C = concentration).

Hence, the osmotic pressure of a solution at a given temperature increases with concentration.

302 (c)

$$P_{M} = P_{C_{5}H_{12}}^{0} \cdot X_{C_{5}H_{12}}^{0} + P_{C_{6}H_{14}}^{0} \cdot X_{C_{6}H_{14}};$$

Thus, $P_{M} = 440 \times \frac{1}{5} + 120 \times \frac{4}{5} = 184$
Now, $P_{C_{5}H_{12}} = P_{C_{5}H_{12}}^{0} \cdot X_{C_{5}H_{12}(l)} = PM \cdot X_{C_{5}H_{12}(g)}$
 $\therefore 440 \times \frac{1}{5} = 184 \times X_{C_{5}H_{12}(g)}$
 $\therefore X_{C_{5}H_{12}(g)} = 0.478$
303 (d)

H₂O and ethanol are miscible.

304 (b)

According to the Raoult's law the relative lowering vapour pressure which is produced by dissolving a non-volatile solute in a solvent is equal to mole fraction of the solute.

$$\frac{P-P_S}{P} = X_E$$

where, p= vapour pressure of solvent P_s = vapour pressure of solution X_B = mole fraction of B Given, P=0.80 atm $P_{\rm s} = 0.60 \, {\rm atm}$ $X_B = \frac{0.80 - 0.60}{0.80} = \frac{0.20}{0.80} = 0.25$:. 306 **(b)** For NaCl, i = 2 $\Delta T_f = 2k_f \times m = 2 \times 1.86 \times 1 = 3.72$ $T_s = T - \Delta T_f = 0 - 3.72 = -3.72$ °C 307 (a) $P_T = X_H P_H^\circ + P_O^\circ$ $X_H = \frac{\frac{25}{100}}{\frac{25}{100} + \frac{35}{114}} = 0.45 \text{ and } \therefore \quad X_o = 0.55$ $P_T = 0.45 \times 105 + 0.55 \times 45 = 72kPa$ 308 (a)

 $BaCl_2 \rightleftharpoons Ba^{2+} + 2Cl^{-}$

Initial 0.01 M
At equilibrium (0.01-x) M xM 2xM
$$i = \frac{(0.01-x)+x+2x}{0.01}$$
$$= \frac{0.01+2x}{0.01} = 1.98$$
$$x = 0.0049$$
$$\% \ \alpha = \frac{x}{0.01} \times 100 = \frac{0.0049 \times 100}{0.01} = 49\%$$

309 (a)

According to Raoult's law relative lowering of vapour pressure \propto mole fraction of solute Thus, mole fraction of solute = 0.0125 Mole fraction of a solute is related to the molality by the following expression.

$$\left(\frac{1}{X}-1\right) = \frac{1000}{m_B \times m}$$

where, X = mole fraction of solute

 m_B = moleular weight of solvent

m = molality

$$\left(\frac{1}{0.0125} - 1\right) = \frac{1000}{18 \times m}$$
$$m = \frac{12.5}{(1 - 0.0125) \times 18}$$
$$= \frac{12.5}{17.775}$$
$$= 0.70$$

310 **(b)**

$$\frac{p^0 - p_s}{p^0} = \frac{w}{m} \times \frac{M}{W} = \frac{18}{180} \times \frac{18}{90} = 0.02$$

311 (d)

Osmotic pressure (π) =CRT Unit of osmotic pressure is atm.

312 **(b)**

Unit of molality mole per kilogram (mol kg⁻¹). 313 **(b)**

Azeotropic mixture which boils at a lower temperature than either of two components is formed by non-ideal solution showing positive deviation

315 **(a)**

$$\Delta T_f = ik_f m$$
where ΔT_f = depression in freezing point
i=van,t Hoff factor
m= molality and
and k_f = freezing point depression constant
For 0.01 molal NaCl solution
 $0.37 = 2 \times k_f \times 0.01$
 $\therefore \qquad k_f = \frac{0.37}{2 \times 0.01} \qquad -----(i)$
For 0.02 molal urea solution
 $\Delta T_f = 1 \times k_f \times 0.02$
 $\therefore \qquad k_f = \frac{\Delta T_f}{0.02} \qquad -----(ii)$
From Eqs (i) and (ii)

 $\frac{\frac{0.37}{2 \times 0.01}}{\Delta T_f} = \frac{\Delta T_f}{0.02}$ $\Delta T_f = \frac{0.37 \times 0.02}{2 \times 0.01}$ $\Delta T_f = 0.37^{\circ}C$ 316 **(b)** Given, $h = 2.6 \, mm$ $\pi = hdg = \frac{2.6}{10} \times 1 \times 980$ dyne cm⁻² .. $\pi = \frac{w}{V.m}ST$ Also $\frac{26 \times 1 \times 980}{10} = \frac{0.75 \times 8.314 \times 10^7 \times 277}{125 \times m}$ $m = 5.4 \times 10^{5}$ 317 (a) Relationship between normality and molar concentration is Normality = $n \times$ molarity (*M*) Where, n = the number of moles of H^+ per mole of the compound that solute is capable of releasing [acid] on reacting with base. In case of HCl, n = 1Hence, 2 N HCl solution \approx 2 M H_2SO_4 solution. In case of H_2SO_4 n=2Hence, 4.0 NH₂SO₄ solution $\approx 2 \text{ MH}_2$ SO₄ solution. 318 (a) Orthophosphoric acid (H_3PO_4) is a tribasic acid. \therefore Normality = molarity \times basicity \therefore Normality = 3 M \times 3 = 9 N 320 (c) Kinetic energy in liquid and vapour phase $=\frac{3}{2}RT$. 321 (c) The extraction is more efficient when little volume of extracting liquid is used for large number of operations. 322 (b) Normality of acid= Molarity × basicity $= 2 \times 2 = 4 \text{ N}$ 323 (a) CuCl₂ is an electrolyte which ionise in solution as follows. $CuCl_2 \rightleftharpoons Cu^{2+} +$ $2Cl^{-}$ 1 mole 0 At t=00 After ionisation $(1 - \alpha)$ mole α mole $2\alpha mole$ Thus, number of particles after ionisation $=1-\alpha + \alpha + 2\alpha = 1 + 2\alpha$ \therefore van,t Hoff factor (*i*) $= \frac{\text{number of particloes after ionisation}}{\text{number of particles before ionisation}}$

 $(i) = \frac{1+2\alpha}{1} (\text{On 100 \% ionisation } \alpha = 1)$

or

Page | 59

$$= \frac{1+2 \times 1}{1} = 3$$
The elevation in boiling point (when colligative property is abnormal)

$$\Delta T^{b} = i \times k_{b} \times m$$
 $m \rightarrow$ molality of solution
Molality of $CuCl_{2}$ solution

$$\frac{\text{weight of } CuCl_{2} \text{ solution}}{\text{mol.weight of } CuCl_{2}} = \frac{13.44}{1} = 0.1 \text{ m}$$
Thus, $\Delta T_{b} = 3 \times 0.52 \times 0.1 = 0.156 \approx 0.16^{\circ}\text{C}$
(a)
 $A_{x}B_{y} \Rightarrow xA^{y+} + yB^{x-}$
After dissociation $(1-\alpha) \qquad x\alpha \qquad y\alpha$
 $i=n(A_{x}B_{y})+n(A^{y+})+n(B^{x-})$
 $=2-\alpha+x\alpha+y\alpha=1+\alpha(x+y-1)$
 $\therefore \alpha = \frac{i-1}{(x+y-1)}$
(a)
According to Raoult's law
 $\frac{p-p_{S}}{p} = x_{\text{solute}}$
Where, p = vapour pressure of pure solvent =0.80 atm
 $x_{\text{solute}} = \text{mole fraction of solute}$
 $\frac{0.80-0.60}{0.80} = X_{\text{solute}}$
or $\frac{0.220}{0.80} = X_{\text{solute}}$
or $\frac{0.220}{0.80} = X_{\text{solute}}$
 $x_{solute} = 0.25$
(d)
These are characteristics which reflect for high
solubility of gases in water. It is therefore SO₂ and
NH₃ having lower critical temperature or easily
liquefied, HCl which ionises in water and CO₂
which reacts with water are more soluble.
(d)
In osmosis only solvent particles move.
(d)
Given, $T_{b} - T_{f} = 105.0^{\circ}C$
 $\Rightarrow (100 = \Delta T_{b}) - (0 - \Delta T_{f}) = 105.0^{\circ}C$
 $\Delta T_{b} + \Delta T_{f}(K_{b} + k_{f}) \times m$ (m =molality)
 $\Rightarrow 5 = (1.86 \times 0.51) \times \frac{w \times 1000}{342 \times 100}$

329 (a)

324

325

326

327

328

Due to higher pressure inside the boiling point elevated

330 (a)

$$M = \frac{w \times 1000}{\text{mol. mass} \times \text{volume in mL}}$$

$$= \frac{9.8 \times 1000}{98 \times 2000} = 0.05 \text{ M}$$
331 (c)

$$K = \frac{4.412}{0.0156} = \frac{s}{0.34}$$

$$\therefore S = \frac{4.412 \times 0.34}{0.0156}$$
332 (b)

$$pH = -\log[H^+]$$

$$\log[H^+] = -pH = 0.00$$

$$[H^+] = antilog(0.00)$$

$$[H^+] = 1.0 \text{ M}$$

$$M \text{ H}_2\text{SO}_4 = 2\text{NH}_2\text{SO}_4$$

$$\therefore \text{ Normality of 250mL solution } = \frac{2 \times 250}{1000}$$

$$= 0.50 \text{ N}$$
333 (c)

Benzoic acid in benzene exists as a dimer. So, number of molecules decreases and hence, osmotic pressure decreases.

334 **(b)**

$$K = 420 = \frac{5-x}{x}$$
$$\therefore x = 0.0119 \text{ g}$$

335 **(a)**

If mol. wt. is high, ΔT_f , ΔT_b and ΔP will be too small to read out accurately.

336 **(d)**

Van't Hoff factor (*i*) is given by

$$i = \frac{\text{observed value of colligative property}}{\text{normal value of colligative property}}$$

The normal value of colligative property is the theoretically calculated value assuming no association or dissociation.

$$\therefore \qquad i = \frac{\pi_{obs}}{\pi_{cal}}$$
337 (c)

$$P_m = P_A^0 X_A + P_B^0$$

$$P_m = P_A^0 X_A + P_B^0 X_B$$

$$P_m = 1000 \times \frac{2}{5} + 80 \times \frac{3}{5}$$

$$= 40 + 48 = 88 \text{ torr}$$

338 **(b)**

Alcohol involves H-bonding; also mol. wt. of $CH_4 > mol.$ wt. of H_2 . Greater is molecular weight of covalent compound, higher is its b.p.

339 **(b)**

Lesser is ΔT_f , more is freezing point.

340 **(a)**

Liquid mixtures showing positive deviations from Raoult's law posses lower b. p.

341 **(b)**

Osmotic pressure \propto number of particles.

 $\div~$ Solution with least number of particles will

have minimum osmotic pressure.

- (i) NaCl $\rightarrow Na^+ + Cl^-$ (2 ions) \therefore Concentration of particles in NaCl=2×2M =4M
- (ii) Glucose does not dissociate
- ∴ Concentration of particles
 - $= 1 \times 1 M = 1 M$
- 12. Urea does not dissociate
- \div Concentration of particles 1×2M=2M

∴ Glucose solution will have minimum osmotic pressure.

342 **(b)**

```
As concentration of particles is maximum in FeCl<sub>3</sub> solution so deviation in boiling point will be maximum. Hence, actual boiling point will be highest
```

343 **(b)**

An increase in temperature favours backward reaction if,

Solute + Solvent \rightarrow Solution; $\Delta H = -ve$.

344 **(b)**

n-heptane and ethanol forms non-ideal solution. In pure ethanol, Molecules are hydrogen bonded. On adding *n*-heptane, its molecules get in between the host molecules and break sme of the hydrogen bonds between them. Due to weaking of interactions, the solution shows positive deviation from Raoult's law.

345 **(b)**

 $\Delta T_f = i \times K_f \times \text{molality}$ $0.00732 = i \times 1.86 \times 0.002$ $\therefore \quad i = 1.96 = 2$ $\therefore \quad [\text{Co(NH}_3)_5 \cdot (\text{NO}_2)]\text{Cl}$ $\longrightarrow [\text{Co(NH}_3)_5 \text{NO}_2]^+ + \text{Cl}^-$

346 **(a)**

Isotonic solutions have same molar concentration of solute particles in solution. Molar concentration of particles in solution are 0.1 M in glucose, 2×0.05 M in NaCl, 3×0.05 in BasCl₂ and

 4×0.1 in AlCl₃. Therefore, 0.1 M glucose and 0.05 in M NaCl solutions are isotonic.

348 **(b)**

$$\pi = CRT$$

$$\pi = \frac{68.4}{342} \times 0.082 \times 273 = 4.48 \text{ atm}$$

i for AgNO₃ = $\frac{\text{normal mol. wt.}}{\text{observed mol. wt.}} = 1 + \alpha$,

 $\therefore \alpha = \frac{170}{92.64} - 1 = 0.835 = 83.5\%$

350 **(b)**

On heating solubility of NaCl increases.

- 351 **(b)** Molar concentration $[H_2] = \frac{\text{moles}}{V(L)} = \frac{20/2}{5} = 2$
- 352 **(a)**

Molarity of pure water = $\frac{100}{18} = 55.6$

353 **(c)**

3.50 wt% of aqueous solution of NaCl means 100 g of sea water contains 3.50 g NaCl. Water in sea water = 100-3.5 = 96.5 g

$$=0.0965 \text{ kg}$$

Molality
$$= \frac{3.5}{58.5 \times 0.0965}$$
$$= 0.62 \text{ m}$$

354 (d)

In *a*, *b*, *c* the choices reflect for the validity of law. 356 **(b)**

Colligative properties depend upon number of particles in solution and concentration of solution. Larger the number of particles in solution, higher is the colligative properties.

Hence, highest boiling point is found in 0.1 M $BaCl_2$.

 $BaCl_2(aq) \rightarrow B^{2+} + 2Cl^-$

357 **(b)**

Hg has higher attractive forces among molecules. 358 **(b)**

$$M = \frac{W}{\text{mol. wt.} \times V(L)} = \frac{5.85}{58.5 \times 0.5} = 0.2 \text{ M}$$

(a)6g of NaOH/100 mL

(b)0.5 M H₂SO₄

 $N = M \times \text{basicity} = 0.5 \times 2 = 1.0$

(c)*N* phosphoric acid Normality=1

(d)8 g of KOH/L

Normality =
$$\frac{\text{strength in g/L}}{\text{equivalent weight}} = \frac{8}{56} = 0.14 \text{ N}$$

360 **(c)**

 H_3PO_3 is a dibasic acid (containing two ionisable protons attached to 0 directly).

 $H_{3}PO_{3} \rightleftharpoons 2H^{+} + HPO_{3}^{2-}$ $\therefore 0.1 M H_{3}PO_{3} = 0.2 NH_{3} PO_{3}$ and 0.1 M KOH = 0.1N KOH $N_{1}V_{1} = N_{2}V_{2}$ (KOH) (H_{3}PO_{3}) 0.1V_{1} = 0.2 \times 20 $V_{1} = 40 \text{mL}$ 361 (b) $\pi V = nRT$ $\pi = \frac{n}{V}RT$ $\pi = CRT$ $\frac{\pi_{1}}{\pi_{2}} = \frac{C_{1}RT_{1}}{C_{2}RT_{2}}$ $\pi_{1} = p, \pi_{2} = 2atm C_{1} = C, C_{2} = \frac{C}{2}$ $T_{1} = 600 \text{ K}, T_{2} = 700 \text{ K}$ $\frac{P}{2} = \frac{2 \times C \times R \times 600}{C \times R \times 700}$ $p = \frac{24}{7}$ 362 (b) $M = \frac{W \times 1000}{m \times V(\text{mL})} = \frac{75.5 \times 1000}{56 \times 540} = 2.50 \text{ M}$

 KNO_3 is a strong binary electrolyte. Its van't Hoff factor is 2. CH_3COOH is a very eak electrolyte . Its van't Hoff factor is less than that for KNO_3 . Hence osmotic pressure of 0.1 M KNO_3 (Colligative molarity =0.1 M × 2)

$$>0.P.$$
 of 0.1 M CH₃COOH

(Colligative molarity is 0.1 M)

364 **(a)**

$$P_{M} = P'_{\text{Benzene}} + P'_{\text{Toluene}}$$

$$P_{M} = 75 \times \frac{\frac{78}{78}}{\frac{78}{78} + \frac{46}{92}} + 22 \times \frac{\frac{46}{82}}{\frac{78}{78} + \frac{46}{92}}$$

$$P_{M} = 75 \times \frac{2}{3} + 22 \times \frac{1}{2} \times \frac{2}{3}$$

$$= 50 + 7.3 = 57.3$$
Also $P'_{A} = 50$

365 **(b)**

Fusion requires heat (*i. e*, endothermic), thus freezing is exothermic.

366 **(b)**

$$K = \frac{a/1}{\frac{50-a}{1}} = 3;$$

 \therefore *a* (or acid in ether) = 37.5 ; acid in water = 12.5 g

367 **(b)**

Liquid mixtures showing positive deviations possess higher value of experimental vapour pressure than those obtained from Raoult's law.

368 **(a)**

Victor Meyer's method is used for volatile solutes. Rest all are used for non-volatile solute.

369 (c)

370 (a)

Both phase rule and distribution law are applied to heterogeneous systems.

$$\Delta T_b = \frac{1000 \times K_b \times w}{m \times W} (1 + \alpha)$$

$$\therefore \qquad w = \frac{\Delta T_b \times m \times W}{1000 \times K_b (1 + \alpha)} = \frac{4 \times 58.5 \times 1000}{1000 \times 0.52 \times 2}$$

$$= 225 \text{ g}$$

372 (a)

13. Van't Hoff equation is

 $\pi V = inRT$

14. For depression in freezing point,

$$\Delta T_f = i \times k_f \times m$$

15. For elevation in boiling point,

 $\Delta T_b = i \times k_b \times m$

16. For lowering of vapour pressure,

$$\frac{p^{\circ}_{\text{solvent}} - p_{\text{solution}}}{p^{\circ}_{\text{solvent}}} = i\left(\frac{n}{N+n}\right)$$

373 **(b)**

Water and hydrochloric acid; and water and nitric acid form miscible solutions. They show negative deviation.

In case of CH_3 CO CH_3 and CH Cl_3 , there is interaction between them, thus force of attraction between CH_3 CO CH_3 ... $CHCl_3$ is larger than between $CHCl_3$ $CHCl_3$ or CH_3 CO Cl_3 ... CH_3 CO CH_3 and thus vapour pressure is less than expected. – a negative deviation. In case of CH_3 OH there is association by intermolecular h-bonding. When benzene is added to CH_3 OH, H-bonding breaks and thus force of attraction between CH_3 OH and benzene molecules is smaller than between CH_3 OH or

benzene molecules (in pure state). Vapour pressure of mixture is greater than expected—a positive deviation.

374 (d)

Equivalent weight of $K_{2}Cr_{2}O_{7} = \frac{\text{molecular weighty of } K_{2}Cr_{2}O_{7}}{\text{oxidation number of } Cr}$ Oxidation number of Cr in $K_{2}Cr_{2}O_{7}$ 2[+1]+2(x)+7(-2)=0 2+2x-14=0 2x=12 x=6 Equivalent weight $=\frac{294.19}{6} = 49.08$ $\frac{\text{weight of } K_2 Cr_2 O_7}{\text{equivalent } wt.(E)} = N \times V(L)$ $w = 0.1 \times 1 \times 49.03 = 4.903 \text{ g}$

375 **(b)**

Lower is the b. p. of solvent more is its vapour pressure.

376 **(d)**

 $K = c_1/c_2$

377 (d)

$$\pi V = \frac{w}{m} ST$$

$$\therefore \pi = \frac{w}{V} \cdot \frac{ST}{m}$$

$$\pi = c' \cdot \frac{ST}{m} (c' \text{ is in g/litre.})$$
The plots of $\pi vs. c \text{ (g/cm^3) have slope} = \frac{ST \times 1000}{m}$

$$\therefore \frac{ST \times 1000}{m} = 4.65 \times 10^{-3}$$

$$m = \frac{\frac{m}{0.0821 \times 293 \times 1000}}{4.65 \times 10^{-3}} = 5.17 \times 10^{6}$$

378 (a)

According to molarity equation NaOH = HCl $M_1V_1 = M_2V_2$ $0.6 \times V_1 = 0.4 \times 30$ $V_1 = \frac{0.4 \times 30}{0.6} = 20cm^3$

379 **(a)**

For non-electrolyte $\Delta T_f = k_f \times m$ Given, m =0.05, $\therefore \quad \Delta T_f = 1.86 \times 0.05 = 0.093^{\circ}$ C Freezing point of solution $k_f = 1.86 = 0 - \Delta T_f$

=0-0.093=-0.093°C

380 **(b)**

$$M = \frac{m \times d}{1 + \frac{mM_2}{1000}} = \frac{1 \times 1.21}{1 + \frac{1 \times 58.5}{1000}}$$
$$= \frac{1.21 \times 1000}{1000 + 58.5}$$
$$= 1.143 \text{ M}$$

381 (a)

 $\pi V = nST \text{ for glucose and blood; If isotonic}$ $\pi_{glucose} = \pi_{blood};$ Thus, 7.65 × V = $\frac{w}{180}$ × 0.0821 × 310 $\therefore \frac{w}{V} = 54.1 \text{ g/litre or } 5.41\%$ 382 (d)

Van't Hoff factor for association(*i*) = $1 - \alpha + \frac{\alpha}{n}$

Given $\alpha = 1$ and n = 3. 383 (b) Vapour pressure is characteristic property of a solvent at a temperature. 384 (a) $\therefore \quad \Delta T = \frac{1000 \times K'_f \times w}{W.m}$ $9.3 = \frac{1000 \times 1.86 \times 50}{62 \times W}$ $\therefore W = 161.29$ \therefore Ice separated = 200 - 161.29 = 38.71 g. 386 (a) The order of osmotic pressure of $BaCl_2$, NaCl and sucrose is *BaCl*₂ >NaCl>sucrose Since, $BaCl_2$ gives maximum ion (3 ions) in the solution. 387 (c) Mole fraction of $A = \frac{\text{moles of } A}{\text{total moles}}$ Given, moles of Ar = 1, moles of $CO_2 = 2$, moles of $O_2 = 3$, moles of $N_2 = 4$, moles of O_2 removed = 1 Mole fraction of O_2 at initial stage $=\frac{3}{1+2+3+4} \times 100 = \frac{3}{10} \times 100 = 30$ Mole fraction of O_2 at final stage $=\left(\frac{3}{10}-\frac{2}{1+2+2+4}\right)\times 100$ $=\left(\frac{3}{10}-\frac{2}{9}\right) \times 100 = \frac{70}{9} \cong 8$:. % change = $\frac{8}{30} \times 100 = 26\%$ 388 (d) $K = \frac{c_1}{c_2}$ 389 (a) Osmosis is a bilateral movement of solvent particles through semipermeable membrane and only net flow (more from dilute solution to concentrate solution) is noticed. 390 (d) These are conditions for the validity of distribution law. 391 (b) $i = \frac{\text{Normal mol. wt.}}{\text{Exp. mol. wt.}}$ 392 (d) Aqueous solution of any substance (non-volatile) freezes below 0°C because the vapour pressure of the solution becomes lower than that of pure solvent.

 $\frac{\pi_1}{\pi_2} = \frac{T_1}{T_2};$ $\therefore \frac{\pi_1}{2} = \frac{546}{273}; \quad \therefore \ \pi_1 = 4 \text{ atm.}$ 394 (a) ΔT_f depends upon K_f of solvent. 395 (c) Given, Weight of non-volatile solute, w = 25 gWeight of solvent, W=100 g Lowering of vapour pressure, $p^{\circ} - p_{s} = 0.225 \text{ mm}$ Vapour pressure of pure solvent, $p^{\circ} = 17.5 \text{ mm}$ Molecular weight of solvent $(H_2 O)$, M = 18 g Molecular weight of solute, *m*=? According to Raoult's law $\frac{p^{\circ} - p_s}{p^{\circ}} = \frac{w \times M}{m \times W}$ $\frac{0.225}{17.5} = \frac{25 \times 18}{m \times 100}$ $m = \frac{25 \times 18 \times 17.5}{22.5}$ = 350396 (d) Let x mL of HCl are taken, then $N_1V_1 = N_2V_2$ $\frac{1}{2} \times x = \frac{1}{10} \times 500$ x = 100 mLHence, water needed to add = 500-100 = 400 mL 397 (a) $\frac{p^0 - p_s}{n^0} = \text{molality} \times (1 - \alpha + x\alpha + y\alpha)$ The value of $p^0 - p_s$ is maximum for BaCl₂ 398 (d) Ideal solution obeys Raoult's law at every range of concentration. So, the second component must follow. Raoult's law in the range. When x_2 is $0 \le x_2 \le 1$. 399 (c) Mole fraction of H₂O = $\frac{\frac{80}{18}}{\frac{80}{10} + \frac{20}{21}} = \frac{68}{77}$ 400 (c) Molality = $\frac{\text{mole of solute}}{\text{wt.of water in kg}} = \frac{18 \times 1000}{180 \times 500} = 0.2 \text{ m}$ 401 (d) Solutions having same osmotic pressure, at a given temperature, have same concentration. Concentration of compound = concentration of

glucose $\frac{6}{M \times 1} = 0.05$ $M = \frac{6}{0.05} = 120$ Empirical formula mass $(CH_2O) = 12+2+16$ =30 $n = \frac{\text{molecular mass}}{\text{empirical formula mass}}$ $=\frac{120}{30}=4$ Hence, molecular formula = $(CH_2O)_4 = C_4H_8O_4$ 402 (a) If $X_A = 0$, then pure $B \therefore P_B^0 = 138$ If $X_A = 1$, then pure $A :: P_A^0 = 120 + 138 = 258$ 403 (b) $\Delta T_f = K_f \times \text{molality}$ $\Delta T_h = K_h \times \text{molality}$:. $\Delta T_b = \frac{K_b}{K_f} \times \Delta T_f = \frac{0.512}{1.86} \times 0.186 = 0.0512^{\circ} \text{C}$ 404 (c) $\pi V = \frac{W}{m} RT$ for isotonic solutions, osmotic pressure (π) is same $\frac{W_1}{m_1 V_1} = \frac{W_2}{m_2 V_2}$ $V_1 = 1L, V_2 = 100 \ mL = 0.1L$ $\frac{W_1}{60 \times 1} = \frac{10}{342 \times 0.1}$ $W_1 = 17.54 \frac{g}{L}$ 405 (d) Distribution law can be used for any heterogeneous system. 406 (a) When 0.004 M Na₂SO₄ solution is isotonic with 0.01 M solution of glucose, so their osmotic pressures are equal to each other. Osmotic pressure of 0.01 M glucose $(\pi)_{glucose}$ =CSTC = concentration of solution = 0.01 M*.*... S= solution constant =0.0821 L atm/K/mol T= absolute temperature $\pi_{\rm glucose} = 0.01 \times 0.0821 T$ ----(i) :. $\pi_{\text{glucose}} = \pi_{Na_2SO_4}$

 Na_2SO_4 is present in ionic state in solution So, $Na_2SO_4 \rightleftharpoons 2Na^+ + SO_4^{2-}$ At t=0 1 0 0 At equilibrium $1 - \alpha \quad 2\alpha \quad \alpha$ (where, α is the degree of dissociation of Na_2SO_4) $(\pi_{cal})_{Na_2SO_4} = C \times S \times T = 0.004 \times 0.0821 \times T$ ----(ii) By van't Hoff facter $\frac{(\pi_{obs})_{Na_2SO_4}}{(\pi_{cal})_{Na_2SO_4}} = \frac{\text{number of particles after dissociation}}{\text{number of particles before dissociation}}$ $= \frac{1 - \alpha + 2\alpha + \alpha}{1}$ $\therefore \quad (\pi_{obs})_{Na_2SO_4} = \pi_{glucose}$ $\therefore \quad \frac{0.01 \times 0.0821T}{0.004 \times 0.0821 \times T} = \frac{1 + 2\alpha}{1}$ Or $\frac{10}{4} = \frac{1 + 2\alpha}{1} \text{ or } 10 = 4 + 8\alpha$ $\alpha = \frac{10 - 4}{8} = 0.75$ $\% \text{ of } \alpha = 75\%$ (b)

407 **(b)**

 $K = \frac{\frac{10-5}{X}}{\frac{5}{Y}} = 85$

Where *X* is volume of I₂ and *Y* is volume of water, Thus, $\frac{Y}{Y} = 85$.

408 (b)

When an egg is kept in saturated solution of NaCl after removing its hard shell in dilHCl, its shrinks. This is due to the fact that water comes out of the egg as salt solution is more concentrated than the egg fluid

409 (d)

$$n_{\text{CHCl}_3} = \frac{25.5}{119.5} = 0.213$$

$$n_{\text{CH}_2\text{Cl}_2} = \frac{40}{85} = 0.47$$

$$\therefore n_{\text{Total}} = 0.683$$

$$x_{\text{CHCl}_3} = \frac{0.213}{0.683} = 0.312;$$

$$^{x}\text{CH}_2\text{Cl}_2 = 1 - 0.312 = 0.688$$

$$P^{\circ}_{\text{CHCl}_3} = 200 \text{ mm Hg and } P^{\circ}_{\text{CH}_2\text{Cl}_2} =$$

$$41.5 \text{ mm Hg}$$

$$P_T = (200 \times 0.312) + (41.5 \times 0.688)$$

$$= 62.4 + 28.52 = 90.952 \text{ mm H}$$

$$0 \text{ (c)}$$

$$m = \frac{1000 \times k_b \times w}{1000 \times k_b \times w}$$

$$\Delta T_{b} = \frac{1000 \times k_{b} \times w}{W \times m}$$
$$\Delta T_{b} = \frac{1000 \times k_{b} \times 10}{100 \times 100}$$
$$\Delta T_{b} = k_{b}$$

411 **(b)**

41

 $[Pt(NH_3)_4Cl_4] = Gives n moles of ions on$ complete ionization,*i.e.* $, <math>\alpha = 1$ $\Delta T = Kf \times molality \times (1 - \alpha + n\alpha)$ $0.0054 = 1.80 \times 0.001 \times (n)$ $\therefore \qquad n = 3$ Thus, $[Pt(NH_3)_4 Cl_2]Cl_2 \rightarrow [Pt(NH_3)_4Cl_2]^{2+} + 2Cl^{-1}$ $\frac{1}{0}$ 0

0 2

... n=3412 (b) Eq. wt. of $H_2C_2O_4 \cdot 2H_2O_4$ $=\frac{2+24+64+2(2+16)}{2}$ = 63 $w = \frac{NEV}{1000} = \frac{0.2 \times 63 \times 500}{1000} = 6.3 \text{ g}$ 413 (c) $\Delta T_b = K_b \times \text{molality}$ $\Delta T_f = K_f \times \text{molality}$ $\Delta T_{b_1} = \Delta T_{b_2}$ as m = 1 and K_b constant $\Delta T_{f_1} = \Delta T_{f_2}$ as m = 1 and K_f constant 414 (b) $\frac{P_0 - P_s}{P_c} = \frac{n}{N} = \frac{w \times M}{m \times W}$ or $\frac{P_0 - \frac{95}{100} P_0}{\frac{95}{100} P_0} = \frac{w \times 0.3 m}{W \times m} (M = 0.3 m)$ or $\frac{W}{m} = 5.7$ 415 (b) $\Delta T = \frac{1000 \times K_b \times Y}{250 \times M} = \frac{4K_b Y}{M}$ 416 (a) $P' \times V = nRT$ $3170 \times 1 \times 10^{-3} = n \times 8.314 \times 300$ $: n = 1.27 \times 10^{-3}$ 417 (c) $P_T = P_A^{\circ} X_A + p_B^{\circ} X_B$ $550 = P_A^{\circ} \times \frac{1}{4} + p_B^{\circ} \times \frac{3}{4}$ $P_A^{\circ} + 3p_B^{\circ} = 2200$...(i) Thus, When, 1 mol of *Y* is further added to the solution $560 = P_A^{\circ} \times \frac{1}{5} + p_B^{\circ} \times \frac{4}{5}$ Thus, $P_A^{\circ} + 4p_B^{\circ} = 2800$...(ii) On subtraction II-I $p_B^{\circ} = 2800 - 2200$ $p_{B}^{\circ} = 600$ Putting the value of p_B° in Eq. (i) $P_A^{\circ} + 3 \times 600 = 2200$ $P_A^\circ = 2200 - 1800 = 400.$ 418 (d) We know that $m = \frac{1000 k_f \times w}{\Delta T W}$ Hence, $\Delta T = 1.2^{\circ}$ C, $k_f = 1.85^{\circ}$ w=5 g, W=50 g $m=\frac{1000 \times 1.85 \times 5}{1.2 \times 50} = 154.2$:. 419 (b)

Weaker are the intermolecular forces of attractions, more is the tendency for evaporation, more is vapour pressure, lower is b.p. 420 (b) $\Delta T_f = i \times k_f \times m$ $HBr \rightarrow H^+ + Br^-$ Ions at equilibrium $1-\alpha$ α α ÷ Total ions = $1 - \alpha + \alpha + \alpha$ $= 1 + \alpha$:. $i = 1 + \alpha$ $k_f = 1.86 \text{ K mol}^{-1}$ Given, Mass of HBr = 8.1 g Mass of $H_2 O = 100$ g $(\alpha) = \text{degree of ionization} = 90\%$ $m(\text{molality}) = \frac{\text{mass of solute mol.wt.of solute}}{\text{mass of solute}}$ $=\frac{8.1/81}{100/1000}$ $i = 1 + \alpha$ =1+90/100=1.9 $\Delta T_f = i \times k_f \times m$ $= 1.9 \times 1.86 \times \frac{8.1/81}{100/1000}$ = 3.534°*C* $\Delta T_f = (depression in freezing point) = freezing$ point of water - freezing point of solution 3.534 =0 – freezing point of solution. : Freezing point of solution = $-3.534^{\circ}C$ 421 (b) According to colligative property, freezing point will be highest for IV solution due to lower concentration of NaCl. 422 (b) $\alpha = \frac{1-i}{1-\frac{1}{2}}$ $0.8 = \frac{1-i}{1-\frac{1}{i}}$ i = 0.4 $:: \Delta T = i \times k_f \times m$ $0.3 = 0.4 \times 1.86 \times \frac{w_B \times 1000}{m_B \times w_A}$ $0.3 = 0.4 \times 1.86 \times \frac{2.5 \times 1000}{m_B \times 100}$ $m_B = \frac{0.4 \times 1.86 \times 2.5 \times 1000}{0.3 \times 100} = 62$ 423 (b) $\pi = CRT : C = \frac{\pi}{RT} = \frac{7.8}{0.0821 \times 310} = 0.31 \text{ mol/L}$ 424 (a) If $K = \frac{c_1}{c_2}$; K is in favour of phase I; If $K = \frac{c_2}{c_1}$; *K* is in favour of phase II; 425 (c)

 $p = \frac{w}{mV} RT$, Since, wRT/V are constant thus, $p \propto \frac{1}{m}$ $\therefore p_2 > p_1 > p_3$ 426 (a) $N_1V_1 = N_2V_2$ $36 \times 50 = N_2 \times 100$ $\therefore N_2 = \frac{36 \times 50}{100} = 18$: Molarity of acid = $\frac{\text{Normality}}{\text{Basicity}} = \frac{18}{2} = 9 \text{ M}$ 427 (b) Boiling point and freezing point depend on k_b (molal elevation constant) and k_f (molal depression constant) of the solvent. Thus, equimolar solution (of the non-electrolyte) will have same boiling point and also same freezing point. $\Delta T_f = k_f \times molality$ $\Delta T_b = k_b \times molality$ Note In this question nature of salute has not been mentioned. Hence, we have assumed that solute is non-electrolyte. 428 (a) Osmosis does not take place if two solutions are isotonic. 429 (c) $N_1V_1 = N_2V_2$ $10 \times 1 = 0.1 \times V_2$ $V_2 = \frac{10}{0.1}$ $V_2 = 100 mL$ Hence, water needed to mix = 100-10=90 mL430 (c) $m = \frac{\Delta T}{k_{\rm h}} = \frac{-0.060}{-1.86} = 3.2 \times 10^{-2} = 0.032$ *ie*, 0.032 =total particle : The number of $H^+ = (0.032 - 0.025)m =$ 0.007 MH⁺ $HA \rightleftharpoons H^+ + A^ [H^+] = [A^-] = 0.007 \text{ M}$ HA = 0.018 $\therefore K_a = \frac{(0.007)^2}{0.018} = 3 \times 10^{-3}$ $pK_a = 2.5$ 431 (d) These are factors on which solubility depends. 432 (d) Temperature coefficient = Distribution coefficient at (t+10)°C Distribution coefficient at t°C

433 (a)

Equal osmatic pressure only applicable to nonelectrolytes solution at low concentration

434 (b)

 $K_3Fe(CN)_6 \rightleftharpoons 3K^+ + Fe(CN)_6^{3-}$ 1 0 0 (Before dissociation) 1 **- α** $3\alpha \alpha$ (After dissociation) van't Hoff factor(*i*) = $1 - \alpha + 3\alpha + \alpha = 1 + 3\alpha$ In very dilute state $\alpha = 1$; Thus, i = 4

435 (c)

 $K_2SO_4 \rightarrow 2K^+ + SO_4^{2-}$

It given 3 ions, hence , the van't Hoff factor = 3. 436 (d)

For two non-electrolyte solutions to be isotonic;

$$c_1 = c_2,$$

$$\therefore \quad \frac{500}{m \times 1} = \frac{3.42}{342 \times 1}$$

$$\therefore m = 50,000$$

437 (b)

Total molarity
$$= \frac{M_1 V_1 + M_2 V_2}{V_1 + V_2}$$
$$= \frac{1.5 \times 480 + 1.2 \times 520}{480 + 520}$$
$$= 1.344 \text{ m}$$

438 (d)

Osmotic pressure of two solutions will be added. Hence, osmotic pressure of resulting solution $=1.64 \pm 2.46$

$$=1.64+2.46$$

=4.10 atm.

439 (c)

Moles of solute Molarity = $\frac{\text{Notes of control}}{\text{Volume of solution(L)}}$ moles of urea $=\frac{120}{60} = 2$ weight of solution =weight of solution + weight of solute 1000 1 100 1100

$$=1000 + 120 = 1120 \text{ g}$$

$$\Rightarrow Volume = \frac{1120g}{\frac{1.15g}{mL}} \times \frac{1}{1000mL/L}$$

$$= 0.974 \text{ K}$$

$$\Rightarrow \text{Molarity} = \frac{2.000}{0.974} = 2.05 \text{ M}$$

441 **(b)**

 $N_1V_1 = N_2V_2$ Given, $N_1 = 10$ N HNO₃, $N_2 = 0.1$ N HNO₃ $V_1 = 10 \text{ mL}, V_2 = ?$ $\therefore 10 \times 10 = 0.1 \times V_2$ $\therefore V_2 = \frac{10 \times 10}{0.1}$ = 1000 mL: 10 mL water is already there in solution. \therefore Water to be added =1000-10 =990mL 442 (a)

Number of moles of ethyl alcohol = $\frac{138}{46}$ = 3 Number of moles of water $=\frac{72}{18}=4$

$$X_{C_2H_5OH} = \frac{3}{3+4} = \frac{3}{7}$$
$$X_{H_2O} = \frac{4}{3+4} = \frac{4}{7}$$
$$\frac{X_{C_2H_5OH}}{X_{H_2O}} = \frac{\frac{3}{7}}{\frac{4}{7}} = \frac{3}{4}$$

443 (a)

$$P = 119 X_A + 135; \lim_{X_A \to 1} \frac{P_A}{X_A} = 119 + 135 =$$

254 torr.

444 (d)

1% solution means 1 g solute is present in 100 mL of water.

Osmotic pressure,
$$\pi = \frac{iw \times RT}{M \times V}$$

 $\pi_{KCl} = \frac{2 \times 1 \times 1000 \times RT}{74.5 \times 100}$
 $= 2 \times 0.134 \text{ RT}$
 $\pi_{NaCl} = \frac{2 \times 1 \times 1000 \times RT}{58.5 \times 100}$
 $= 2 \times 0.171 RT$
 $\pi_{BaCl} = \frac{3 \times 1 \times 1000 \times RT}{208.4 \times 100}$
 $= 3 \times 0.048 RT$
 $\pi_{urea} = \frac{1 \times 1 \times 1000 \times RT}{60 \times 100}$
 $= 1 \times 0.167 RT$

Since, temperature is same in all cases, the ascending order of osmotic pressure is III < IV < I < II

445 (b)

 $Ba(NO_3)_2 \rightleftharpoons Ba^{2+} + 2NO_3^-$ 1 mole 0 initial 0 2α after dissociation $1 - \alpha$ α Total moles = $1 + 2\alpha$ $i = 1 + 2\alpha$ $\alpha = \frac{i-1}{2} = \frac{2.74 - 1}{2} = 0.87 = 87\%$ 446 **(b)** Given $p_s = 19.8 \text{ mm}$ $n_{A} = 0.1$ $n_B = \frac{178.2}{18} = 9.9$ According to Raoult's law $\frac{p_s - p}{p_s} = \frac{n_A}{n_A + n_B}$ $\frac{19.8 - p}{19.8} = \frac{0.1}{9.9 + 0.1}$ or 198-10 $p = 19.8 \times 0.1$ 10 p = 198 - 1.9810 p = 196.02p = 19.602 mm447 (b)

On rapid cooling, temperature falls rapidly,

crystallization occurs but slowly. Thus, meta stable state or super saturated solution state exist for a short while.

448 **(b)**

10% glucose solution means 10 g = $\frac{10}{180}$ mol glucose is present in 100 cc. *ie*, 0.1 L Hence, 1 mol will be present in = $\frac{0.1 \times 180}{10}$ = 1.8 L

449 **(b)**

$$\Delta T_f = \frac{1000 \times 1.86 \times 0.02}{100} = 0.372^{\circ} \text{C}$$

451 **(a)**

Given, mass of solvent (w) =100 g Depression in freezing point (ΔT_f) = 0.84°C k_f = 7.0

$$\frac{\text{mass of solute(w)}}{\text{molecular mass of solue (M)}} = 0.072$$
$$\Delta T_f = \frac{1000 \times k_f}{n \times w} \left(\frac{w}{M}\right)$$
$$0.84 = \frac{1000 \times 7.0 \times 0.072}{n \times 100}$$
$$n = 6$$

 \therefore S is in S_6 form in solution.

452 **(a)**

It is more precise and takes minimum time.

453 **(b)**

 6.023×10^{23} molecules of HCl \cong 1mole HCl Hence, 1.2046 $\times 10^{24}$ molecules of HCl $\cong \frac{1.2046 \times 10^{24} \times 1}{6.023 \times 10^{23}} \cong$ 2 moles HCl Thus, two moles (= two gram-equivalents) of HCl are dissolved in one dm³ (one litre) solution. Therefore the solution will be 2N.

454 **(a)**

Acetic acid dimerises in benzene.

455 **(b)**

Gibbs gave phase rule for heterogeneous systems. 456 **(a)**

$$N_1V_1 = N_2V_2$$

 $0.5 \times 100 = 0.1 \times V_2$
 $V_2 = 500 \ cm^3$
 \therefore Water to be added to 100 $\ cm^3$ solution
 $=500-100=400 \ cm^3$

458 **(a)**

In a mixture A and B components show negative deviation when A—B interaction is stronger than A—A and B—B interaction.

459 **(a)**

This is the mathematically modified form of distribution law when solute undergoes association in either of solvent.

460 **(b)**

Chloroform and acetone form a non-ideal

solution, in which A...B type interaction are more than A...A and B...B type interactions due to Hbonding. Hence, the solution shows negative deviation form Raoult's law. i.e., ΔV_{mix} =-ve, $\triangle H_{mix}$ =-ve, \therefore Total volume of solution = less than (30+50)mL<80mL or 461 (c) For Ca(NO₃)₂ : $i = \frac{\text{normal mol.wt.}}{\text{exp.mol.wt.}}$ $= 1 + 2\alpha$: $\frac{164}{65.6} = 1 + 2\alpha$:. $\alpha = 0.75 \text{ or } 75\%$:. 462 (b) Given , $T_f = -0.186$, $\Delta Tb = ?$ $k_f = 1.86$ $k_b = 0.512$ We know, $\Delta T_f = k_f \times m$ $0.186 = 1.86 \times m$ $m = \frac{0.186}{1.86} = 0.1$ $\Delta T_b = k_b \times m$ S0, $\Delta T_b = 0.521 \times 0.1$ $=0.0521^{\circ}$ 463 (b) $\pi \times \frac{1000}{1000} = \frac{4}{246} \times 0.0821$ × 300, . π = 0.4 atm464 (a) $K = \frac{49.03}{0.97} = 50.55$ 465 (a) One molar (1 M) aqueous solution is more concentrated than one molal aqueous solution of the same solute. In solution, H₂SO₄ provides three ions. While NaCl provides two ions. Hence, vapour pressure of solution of NaCl is higher (as it gives less ions). Therefore, 1 molal NaCl will have the maximum vapour pressure. 466 (d)

For isotonic solutions of two non-electrolytes $C_1 = C_2$

$$\therefore \quad \frac{10^{2}}{60 \times 1000} = \frac{5}{m \times 100} \qquad (1 \text{ dm}^{3} = 10^{3} \text{ cm}^{3})$$

$$\therefore \quad m = 300 \text{ g mol}^{-1}$$

467 (d)

Addition of solute to a solvent lowers the vapour pressure and freezing point but increase the

boiling point of solution.

468 (b)

Due to complex formation $2Kl + I_2 \rightarrow 2KI_3$ 469 (b) : Basicity of $H_2 SO_4 = 2$

Normality = molarity × basicity of acid $=2 \times 2 = 4$

$$\therefore \quad 2 M H_2 SO_4 = 4 N H_2$$

471 (a)

More is the hydration energy of an ionic solute, more is its solubility.

 SO_4

472 (c)

For two solutions to be isotonic

 $\pi_{Na_2SO_4} = \pi_{glucose}$ $C_1 RT (1 + 2\alpha) = C_2 RT$ $0.004 \times (1 + 2\alpha) = 0.01$ $\alpha = 0.75 \text{ or } 75\%$

473 (a)

...

All are methods to determine mol. wt. of nonvolatile solute but elevation and depression methods may bring in changes in haemoglobin molecule. Also a little error in measurement may show higher abnormality in mol. mass.

474 (a)

Molarity of urea $=\frac{\frac{b}{60}}{\frac{100}{1000}} = 1M$

Hence, 1 M solution of glucose is isotonic with 6% urea solution.

475 **(b)**

For negative deviation $\Delta V_{\text{mixing}} = -\text{ve}, \Delta H_{\text{mixing}} =$ -ve

476 (c)

Raoult's law is not valid for immiscible liquid mixtures.

477 (a)

During freezing of a solution only solvent freezes out and the equilibrium exists between solid and liquid forms of solvent.

478 (a)

$$\Delta T_f = 1.86 \times \frac{342}{342} = 1.86^{\circ}\text{C}$$

$$\therefore T_f = T - \Delta T_f = 0 - 1.86 = -1.86^{\circ}\text{C}$$

479 (a)

1MH₂SO₄ means 1 moleH₂SO₄ in 1000 cc of solution whereas $1m \text{ means } 1 \text{ moleH}_2SO_4$ in 1000 g of water (=1000 cc of water). Total volume of 1 m solution will be > 1000cc due to extra 1 mol H₂SO₄. Hence, number of moles per 1000 cc will be less. Thus 1 m is less concentrated

480 (d)

$$\frac{p^{\circ} - P_{s}}{P_{s}} = \frac{n}{N}$$

$$\frac{760 - P_{s}}{P_{s}} = \frac{18/180}{178.2/18}$$

$$= \frac{0.1}{9.9}$$
760 - $P_{s} = \frac{1}{99} P_{s}$
 $P_{s} = 752.4$
481 (d)
Mixture contains 78 g benzene = 1 mole benzene
and 46 g toluene = 0.5 mole toluene
Total mole of benzene and toluene=1.5 mol
Mole fraction of benzene in mixture

$$= \frac{1}{1.5} = \frac{2}{3}$$
VP of benzene $p_{b}^{\circ} = 75$ torr
 \therefore Partial vapour pressure of benzene = $p_{b}^{\circ} X_{b}$
 $= 75 \times \frac{2}{3} = 50 \ torr$
482 (c)
We know that,
 $w(\text{mass of solute}) = \frac{m \times \Delta T_{f} \times W}{1000 \times k_{f}}$
m= mol. wt. of urea (60)
 $\Delta T_{f} = 0.186^{\circ}C$
 $k_{f} = 1.86^{\circ}, W = 500 \text{ g}$
 $= \frac{60 \times 0.186 \times 500}{1000 \times 1.86}$
 $= 3g$

than 1 M.

4

483 (b)

Henry's law involves two immiscible phases as gas-liquid; Distribution law involves two immiscible phases as liquid-liquid.

484 (a)

Given, m=0.2 $k_f = 1.85$ $\alpha = 0.3$ \therefore i=1+ α =1.3 $\Delta T_f = molality \times k_f \times i$ $=0.2 \times 1.85 \times 1.3$ $=0.481^{\circ}$ \therefore freezing point =-0.481°C 485 (b) Molality = $\frac{\text{mole of solute}}{\text{kg of water}}$ Moles of urea = $\frac{0.010}{60}$ mol Water at STP ($d \ 1g/cm^3 = 1kg/dcm^3$) = $0.3 dcm^3 = 0.3 kg$: Molality $= \frac{0.010}{60 \times 0.3} = 5.55 \times 10^{-4}$ molal 486 (b)

 $K = c_1/c_2$ is constant for a particular solute in a

given solvent-solvent system at constant temperature.

487 (a)

Boiling point $=T_0(solvent) + \Delta T_b$ (Elevation in b.p.) $\Delta T_b = mik_b$ where, *m* is the molality *i.e.*, the van't Hoff factor (*i*) =[1+(y-1)x] $k_b = molal$ elevation constant. Thus, $\Delta T_b \propto im$ Assume 100% ionisation (a) $mi(Na_2SO_4) = 0.01 \times 3 = 0.03$ (b) $mi(KNO_3) = 0.01 \times 2 = 0.02$ (c) *mi*(urea)=0.015 (d) *mi*(glucose)=0.015 488 **(b)** $\mathbf{P} = p_A^{\circ} \left(\frac{n_A}{n_A + n_B} \right) + p_B^{\circ} \left(\frac{n_B}{n_A + n_B} \right)$ $184 = 200 \left(\frac{3}{3+2}\right) p_B^{\circ} \left(\frac{2}{3+2}\right)$ $184 = 200 \times \frac{3}{5} + p_B^{\circ} \times \frac{2}{5}$ $184=200+p_B^{\circ}\frac{2}{5}$ $64 = p_B^{\circ} \frac{2}{5}$ $p_B^{\circ} = \frac{64 \times 5}{2} = 160$ torr

489 (a)

$$20 \times 0.4 = 40 \times N \quad (\because N_1 V_1 = N_2 V_2)$$

or $N = 0.2$
 $\therefore M = \frac{0.2}{2} = 0.1 \text{ M}$

490 (a)

The concentration is expressed in parts per million (ppm) when one part of solute is dissolved in one million parts of solvent.

491 (a)

0.1 M $FeCl_3$ will give the maximum number of particles (*i.e.*, ions) in the solution. Hence, its elevation in boiling point is maximum and therefore, it has highest boiling point.

 $FeCl_3 \rightleftharpoons Fe^{3+} + 3Cl^{-}$

492 (a)

0r

Relative lowering of vapour pressure = mole fraction of solute (Raoult's law)

$$\frac{p-p_s}{p} = x_2$$

$$\frac{p-p_s}{p} = \frac{wM}{mW}$$

$$0.0125 = \frac{wM}{mW}$$

$$\frac{w}{mW} = \frac{0.0125}{18} = 0.00070$$

Hence, molality $=\frac{w}{mW} \times 1000$ $= 0.0007 \times 1000 = 0.70$ 493 (c) According to Raoult's law $\frac{p-p_s}{n} = X_B \quad (\text{mole fraction of solute})$ $X_B = \frac{1.2 - 0.6}{1.2} = \frac{0.6}{1.2}$ =0.5494 (a) Ideal solution $\Delta H = 0$ $\wedge V = 0$ $F_{A-A} = F_{B-B} = F_{A-B}$ 495 (b)

> Depression in freezing point is colligative property. The solute which produces highest number of ions will have minimum freezing point

17. One molal NaCl aqueous solution

 $NaCl \rightarrow Na^+ + Cl^-$

 \therefore 2 ions/molecule

18. One molal $CaCl_2$ solution

 $CaCl_2 \rightarrow Ca^{2+} + 2Cl^{-}$

- \therefore 3 ions/molecule
- 19. One molal KCl aqueous solution

KCl $\rightarrow K^+ + Cl^-$

- \therefore 2 ions/molecule
- 20. One molal urea aqueous solution \rightarrow no dissociation
 - \therefore CaCl₂ solution has highest number of ions
 - ∴ It has lowest freezing point.

496 (b)

 $\Delta T_b \propto \text{molality.}$

497 (c)

Living cells shrinks in hypertonic solution (plasmolysis) while bursts in hypotonic solutions (endosmosis). There is no effect when living cells are kept in isotonic solution.

498 (a)

In countries nearer to polar region, the roads are sprinkled with CaCl₂ because CaCl₂ decreases the freezing point of ice and therefore, minimise the wear and tear of the roads.

499 (a) Molarity = normality $\times \frac{\text{equivalent weight}}{\text{molecular weight}}$ Given, normality of Na_2CO_2 solution =0.2 N Equivalent weight = MMolecular weight 2 M (:: Na₂CO₃ is dipositive.) \therefore Molarity = 0.2 $\times \frac{M}{2M}$ = 0.1 M500 (a) A deliquescent solid is one which absorbs so much amount of water that it forms a saturated solution of it. 501 (d) $P_s \propto$ mole fraction of solvent. 502 (d) The ideal solution must (i) Obey Raoult's law at all temperatures and pressures (ii) $\Delta H=0$ (iii) $\Delta V=0$ \therefore (d) statement $\Delta H = \Delta V \neq 0$ is wrong. 503 (b) $\pi V = \frac{W}{m}ST;$ $\therefore 6 \times 10^{-4} \times 1 = \frac{4}{m} \times 0.0821 \times 300;$ $m = 1.64 \times 10^5$ 504 (c) Given H₂SO₄ - V=100mL, N=0.2 M NaOH - V=100mL, N=0.2 M Milliequivalent of $H_2SO_4 = 100 \times 0.2 \times 2 = 40$ (\therefore It is dibasic acid) Milliequivalent of NaOH = $100 \times 0.1 \times 2 = 20$ \therefore Moilliequivalent Of H_2SO_4 left = 40-20 = 20 Total volume = 100mL+100mL=200mL Normality of H_2SO_4 (left0) = $\frac{20}{200}$ = 0.1 N 506 (c) Molecular mass of NaOH = 23+17=40molality (*m*) = $\frac{4}{40 \times 0.996}$ = 0.1 Hence, 507 (a) $\frac{P_0 - P_s}{P_0} = \frac{6/60}{6/60 + 90/18} = \frac{1}{51} = 0.0196$ 508 (a) Molality of cane sugar solution $=\frac{342}{342\times 1}=1m$ We know that $\Delta T_f = k_f \cdot m$ $=1.86 \times 1$ $=1.86^{\circ}$

Hence, freezing point of solution =0.00-(1.86)=-1.86°C 509 (b) According to Henry's law, the gas in contact with the liquid should behave as an ideal gas 510 (b) $p-p_s w_1 M_2$ $w_2 M_1$ To produce same lowering of vapour pressure, $\frac{p-p_s}{r}$ will be same for both cases. $\frac{W_{(\text{Glucose})} \times 18}{50 \times 180} = \frac{W_{(\text{urea})} \times 18}{50 \times 60}$ So, $W_{(Glucose)}$ =weight of glucose $W_{(urea)}$ =weight of urea $\frac{W_{(\text{Glucose})} \times 18}{50 \times 180} = \frac{1 \times 18}{50 \times 60}$ or $W_{(urea)}=3$ 511 (a) Let *V* litre of 10 N HCl be mixed with (1 - *V*) litre of 4 N HCl to give (V+1-V) = 1L of 7 N HCl. $N_1V_{1+} N_2V_2 = N V$ $10V + 4(1 - V) = 7 \times 1$ 10V + 4 - 4V = 76V = 7-4 $V = \frac{3}{6} = 0.50L$ Volume of 10 N HCl = 0.50LVolume of 4N HCl = 1 - 0.50 = 0.50 L512 (a) The interaction between H₂SO₄ and H₂O is more than $H_2SO_4 - H_2SO_4$ or $H_2O - H_2O$ interaction. 513 (c) Molarity (M) $\frac{\text{weight of solute}}{\text{mol.wt.of solute} \times \text{volume of the solution}} \times 1000$ $=\frac{2.5\times1000}{58.5\times100}=0.428$ mol 514 (c)

Osmotic pressure is a colligative property because it depends upon the number of solute particles but not on the nature of the solute.

515 **(b)**
$$\pi V = \frac{m_2}{M_2} RT$$

DCAM classes Dynamic Classes for Academic Mastery