Single Correct Answer Type

1. Let R_{1} be a relation defined by
$R_{1}=\{(a, b) \mid a \geq b, a, b \in R\}$. Then, R_{1} is
a) An equivalence relation on R
b) Reflexive, transitive but not symmetric
c) Symmetric, transitive but not reflexive
d) Neither transitive not reflexive but symmetric
2. On the set of human beings a relation R is defined as follows:
" $a R b$ iff a and b have the same brother". Then R is
a) Only reflexive
b) Only symmetric
c) Only transitive
d) Equivalence
3. In a class of 35 students, 17 have taken Mathematics, 10 have taken Mathematics but not Economics. If each student has taken either Mathematics or Economics or both, then the number of students who have taken Economics but not Mathematics is
a) 7
b) 25
c) 18
d) 32
4. $\{n(n+1)(2 n+1): n \in Z\} \subset$
a) $\{6 k: k \in Z\}$
b) $\{12 k: k \in Z\}$
c) $\{18 k: k \in Z\}$
d) $\{24 k: k \in Z\}$
5. If $A=\{1,2,3,4,5\}, B=\{2,4,6\}, C=\{3,4,6\}$, then $(A \cup B) \cap C$ is
a) $\{3,4,6\}$
b) $\{1,2,3\}$
c) $\{1,4,3\}$
d) None of these
6. Let A be the set of all students in a school. A relation R is defined on A as follows:
" $a R b$ iff a and b have the same teacher"
a) Reflexive
b) Symmetric
c) Transitive
d) Equivalence
7. If P is the set of all parallelograms, and T is the set of all trapeziums, then $P \cap T$ is
a) P
b) T
c) ϕ
d) None of these
8. $\quad A$ and B are any two non-empty sets and A is proper subset of B. If $n(A)=5$, then find the minimum possible value of $n(A \Delta B)$
a) Is 1
b) Is 5
c) Cannot be determined
d) None of these
9. If $n(A)=4, n(B)=3, n(A \times B \times C)=240$, then $n(C)$ is equal to
a) 288
b) 1
c) 12
d) 2
10. In a class, 70 students wrote two tests viz; test-I and test-II. 50% of the students failed in test-I and 40% of the students in test-II. How many students passed in both tests?
a) 21
b) 7
c) 28
d) 14
11. Let Z denote the set of all integers and $A=\left\{(a, b): a^{2}+3 b^{2}=28, \quad a, b \in Z\right\}$ and $B=\{(a, b): a>$ $b, a, b \in Z\}$. Then, the number of elements in $A \cap B$ is
a) 2
b) 3
c) 4
d) 6
12. Let L be the set of all straight lines in the Euclidean plane. Two lines l_{1} and l_{2} are said to be related by the relation R iff l_{1} is parallel to l_{2}. Then, the relation R is not
a) Reflexive
b) Symmetric
c) Transitive
d) None of these
13. Let R be a relation on the set N be defined by $\{(x, y) \mid x, y \in N, 2 x+y=41\}$. Then, R is
a) Reflexive
b) Symmetric
c) Transitive
d) None of these
14. In an office, every employee likes at least one of tea, coffee and milk. The number of employees who like only tea, only coffee, only milk and all the three are all equal. The number of employees who like only tea and coffee, only coffee and milk and only tea and milk are equal and each is equal to the number of employees who like all the three. Then a possible value of the number of employees in the office is
a) 65
b) 90
c) 77
d) 85
15. Which of the following cannot be the number of elements in the power set of any finite set?
a) 26
b) 32
c) 8
d) 16
16. The relation 'is subset of' on the power set $P(A)$ of a set A is
a) Symmetric
b) Anti-symmetric
c) Equivalence relation
d) None of these
17. Let A and B be two non-empty subsets of a set X such that A is not a subset of B. Then,
a) A is a subset of complement of B
b) B is a subset of A
c) A and B are disjoint
d) A and the complement of B are non-disjoint
18. If A, B and C are three sets such that $A \supset B \supset C$, then $(A \cup B \cup C)-(A \cap B \cap C)=$
a) $A-B$
b) $B-C$
c) $A-C$
d) None of these
19. A survey shows that 63% of the Americans like cheese whereas 76% like apples. If $x \%$ of the Americans like both cheese and apples, then
a) $x=39$
b) $x=63$
c) $39 \leq x \leq 63$
d) None of these
20. If $X=\left\{4^{n}-3 n-1: n \in N\right\}$ and $Y=\{9(n-1): n \in N\}$, then $X \cup Y$ is equal to
a) X
b) Y
c) N
d) None of these
21. Let $A=\{x: x$ is a multiple of 3$\}$ and $B=\{x: x$ is a multiple of 5$\}$. Then, $A \cap B$ is given by
a) $\{3,6,9, \ldots \ldots\}$
b) $\{5,10,15,20, \ldots . . .$.
c) $\{15,30,45, \ldots . .$.
d) None of these
22. If $n(A \times B)=45$, then $n(A)$ cannot be
a) 15
b) 17
c) 5
d) 9
23. In order that a relation R defined on a non-empty set A is an equivalence relation, it is sufficient, if R
a) Is reflective
b) Is symmetric
c) Is transitive
d) Possesses all the above three properties
24. For real numbers x and y, we write $x R y \Leftrightarrow x-y+\sqrt{2}$ is an irrational number. Then, the relation R is
a) Reflexive
b) Symmetric
c) Transitive
d) None of these
25. In a class of 45 students, 22 can speak Hindi and 12 can speak English only. The number of students, who can speak both Hindi and English, is
a) 9
b) 11
c) 23
d) 17
26. A, B and C are three non-empty sets. If $A \subset B$ and $B \subset C$, then which of the following is true?
a) $B-A=C-B$
b) $A \cap B \cap C=B$
c) $A \cup B=B \cap C$
d) $A \cup B \cup C=A$
27. $\left\{x \in R: \frac{2 x-1}{x^{3}+4 x^{2}+3 x} \in R\right\}$ equals
a) $R-\{0\}$
b) $R-\{0,1,3\}$
c) $R-\{0,-1,-3\}$
d) $R-\left\{0,-1,-3,+\frac{1}{2}\right\}$
28. If R is a relation from a finite set A having m elements to a finite set B having n elements, then the number of relations from A to B is
a) $2^{m n}$
b) $2^{m n}-1$
c) $2 m n$
d) m^{n}
29. If $A=\left\{(x, y): y^{2}=x ; x, y \in R\right\}$ and
$B=\{(x, y): y=|x| ; x, y \in R\}$, then
a) $A \cap B=\phi$
b) $A \cap B$ is a singleton set
c) $A \cap B$ contains two elements only
d) $A \cap B$ contains three elements only
30. Which of the following is an equivalence relation?
a) Is father of
b) Is less than
c) Is congruent to
d) Is an uncle of
31. From 50 students taking examinations in Mathematics, Physics and Chemistry, 37 passed Mathematics, 24 Physics and 43 Chemistry. At most 19 passed Mathematics and Physics, at most 29 passed Mathematics and Chemistry and at most 20 passed Physics and Chemistry. The largest possible number that could have passed all three examinations is
a) 11
b) 12
c) 13
d) 14
32. Let A be the non-void set of the children in a family. The relation ' x is a brother of y^{\prime} on A is
a) Reflexive
b) Symmetric
c) Transitive
d) None of these
33. In a class of 30 pupils 12 take needls work, 16 take physics and 18 take history. If all the 30 students take at least one subject and no one takes all three, then the number of pupils taking 2 subjects is
a) 16
b) 6
c) 8
d) 20
34. If R is a relation on a finite set having n elements, then the number of relations on A is
a) 2^{n}
b) $2^{n^{2}}$
c) n^{2}
d) n^{n}
35. The void relation on a set A is
a) Reflexive
b) Symmetric and transitive
c) Reflexive and symmetric
d) Reflexive and transitive
36. Suppose $A_{1}, A_{2}, \ldots, A_{30}$ are thirty sets, each having 5 elements and $B_{1}, B_{2}, \ldots, B_{n}$ are n sets each with 3 elements, let
$\bigcup_{i=1}^{30} A_{i}=\bigcup_{j=1}^{n} B_{j}=S$ and each element of S belongs to exactly 10 of the A_{i} 's and exactly 9 of the B_{j} 's.
Then, n is equal to
a) 115
b) 83
c) 45
d) None of these
37. If A is a finite set having n elements, then $P(A)$ has
a) $2 n$ elements
b) 2^{n} elements
c) n elements
d) None of these
38. Let A and B have 3 and 6 elements respectively. What can be the minimum number of elements in $A \cup B$?
a) 3
b) 6
c) 9
d) 18
39. Let R be a reflexive relation on a set A and I be the identity relation on A. Then,
a) $R \subset I$
b) $I \subset R$
c) $R=I$
d) None of these
40. If $A_{1}, A_{2}, \ldots, A_{100}$ are sets such that $n\left(A_{i}\right)=i+2, A_{1} \subset A_{2} \subset A_{3} \ldots \subset A_{100}$ and $\bigcap_{i=3}^{100} A_{i}=A$, then $n(A)=$
a) 3
b) 4
c) 5
d) 6
41. If A and B are two given sets, then $A \cap(A \cap B)^{c}$ is equal to
a) A
b) B
c) Φ
d) $A \cap B^{c}$
42. If a set has 13 elements and R is a reflexive relation on A with n elements, then
a) $13 \leq n \leq 26$
b) $0 \leq n \leq 26$
c) $13 \leq n \leq 169$
d) $0 \leq n \leq 169$
43. Let X be the set of all engineering colleges in a state of Indian Republic and R be a relation on X defined as two colleges are related iff they are affiliated to the same university, then R is
a) Only reflexive
b) Only symmetric
c) Only transitive
d) Equivalence
44. In the above question, the number of families which buy none of A, B and C is
a) 4000
b) 3300
c) 4200
d) 5000
45. If A and B are two sets, then $A \cap(A \cup B)$ equals
a) A
b) B
c) ϕ
d) None of these
46. If $A=\{1,3,5,7,9,11,13,15,17\}, B=\{2,4 \ldots, 18\}$ and N is the universal set, then $A^{\prime} \cup\left((A \cup B) \cap B^{\prime}\right)$ is
a) A
b) N
c) B
d) none of these
47. If $A=\{\phi,\{\phi\}\}$, then the power set of A is
a) A
b) $\{\phi,\{\phi\}, A\}$
c) $\{\phi,\{\phi\},\{\{\phi\}\}, A\}$
d) None of these
48. Let $A=\left\{(x, y): y=e^{x}, x \in R\right\}$,
$B=\left\{(x, y): y=e^{-x}, x \in R\right\}$. Then,
a) $A \cap B=\phi$
b) $A \cap B \neq \phi$
c) $A \cup B=R^{2}$
d) None of these
49. Let L denote the set of all straight lines in a plane. Let a relation R be defined by $\alpha R \beta \Leftrightarrow \alpha \perp \beta, \alpha, \beta \in L$. Then R is
a) Reflexive
b) Symmetric
c) Transitive
d) None of these
50. If A, B and C are three sets such that $A \cap B=A \cap C$ and $A \cup B=A \cup C$, then
a) $A=C$
b) $B=C$
c) $A \cap B=\phi$
d) $A=B$
51. Let $S=\{1,2,3,4\}$. The total number of unordered pairs of disjoint subsets of S is equal to
a) 25
b) 34
c) 42
d) 41
52. If $A=\left\{(x, y): x^{2}+y^{2}=4 ; x, y \in R\right\}$ and
$B=\left\{(x, y): x^{2}+y^{2}=9 ; x, y \in R\right\}$, then
a) $A-B=\phi$
b) $B-A=B$
c) $A \cap B \neq \phi$
d) $A \cap B=A$
53. Let $n(\mathcal{U})=700, n(A)=200, n(B)=300$ and $n(A \cap B)=100$. Then, $n\left(A^{c} \cap B^{c}\right)=$
a) 400
b) 600
c) 300
d) 200
54. If $A=\left\{\theta: \cos \theta>-\frac{1}{2}, 0 \leq \theta \leq \pi\right\}$ and $B=\left\{\theta: \sin \theta>\frac{1}{2}, \frac{\pi}{3} \leq \theta \leq \pi\right\}$, then
a) $A \cap B=\{\theta: \pi / 3 \leq \theta \leq 2 \pi / 3\}$
b) $A \cap B=\{\theta:-\pi / 3 \leq \theta \leq 2 \pi / 3\}$
c) $A \cup B=\{\theta:-5 \pi / 6 \leq \theta \leq 5 \pi / 6\}$
d) $A \cup B=\{\theta: 0 \leq \theta \leq \pi / 6\}$
55. In a set of ants in a locality, two ants are said to be related iff they walk on a same straight line, then the relation is
a) Reflexive and symmetric
b) Symmetric and transitive
c) Reflexive and transitive
d) Equivalence
56. If $A=\{1,2,3\}, B=\{a, b\}$, then $A \times B$ mapped A to B is
a) $\{(1, a),(2, b),(3, b)\}$
b) $\{(1, b),(2, a)\}$
c) $\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$
d) $\{(1, a),(2, a),(2, b),(3, b)\}$
57. If A_{n} is the set of first n prime numbers, then $\bigcup_{n=2}^{10} A_{n}=$
a) $\{2,3,5,7,11,13,17,19\}$
b) $\{2,3,5,7,11,13,17,19,23, c c)\{3,5\}$
d) $\{2,3\}$
58. If $A=\{4,6,10,12\}$ and R is a relation defined on A as "two elements are related iff they have exactly one common factor other than 1 ". Then the relation R is
a) Antisymmetric
b) Only transitive
c) Only symmetric
d) Equivalence
59. If R is a relation from a set A to a set B and S is a relation from B to a set C, then the relation SoR
a) Is from A to C
b) Is from C to A
c) Does not exist
d) None of these
60. Let n be a fixed positive integer. Define a relation R on the set Z of integers by, $a R b \Leftrightarrow n \mid a-b$. Then, R is not
a) Reflexive
b) Symmetric
c) Transitive
d) None of these
61. If $n\left(A_{i}\right)=i+1$ and $A_{1} \subset A_{2} \subset A_{3} \subset \cdots \subset A_{99}$, then $n\left(\cup_{i=1}^{99} A_{i}\right)=$
a) 99
b) 98
c) 100
d) 101
62. Two finite sets have m and n elements. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. The values of m and n are
a) $m=7, n=6$
b) $m=6, n=3$
c) $m=5, n=1$
d) $m=8, n=7$
63. Let A be the set of all animals. A relation R is defined as " $a R b$ iff a and b are in different zoological parks". Then R is
a) Only reflexive
b) Only symmetric
c) Only transitive
d) Equivalence
64. Let X and Y be the sets of all positive divisors of 400 and 1000 respectively (including 1 and the number). Then, $n(X \cap Y)$ is equal to
a) 4
b) 6
c) 8
d) 12
65. Let R be a relation from a set A to a set B, then
a) $R=A \cup B$
b) $R=A \cap B$
c) $R \subseteq A \times B$
d) $R \subseteq B \times A$
66. If X and Y are two sets, then $X \cap(Y \cup X)^{\prime}$ equals
a) X
b) Y
c) ϕ
d) None of these
67. If $A=\{1,2,3,4,5,6\}$, then how many subsets of A contain the elements 2,3 and 5 ?
a) 4
b) 8
c) 16
d) 32
68. For any three sets A_{1}, A_{2}, A_{3}, let $B_{1}=A_{1}, B_{2}=A_{2}-A_{1}$ and $B_{3}=A_{3}-\left(A_{1} \cup A_{2}\right)$, then which one of the
following statement is always true
a) $A_{1} \cup A_{2} \cup A_{3} \supset B_{1} \cup B_{2} \cup B_{3}$
b) $A_{1} \cup A_{2} \cup A_{3}=B_{1} \cup B_{2} \cup B_{3}$
c) $A_{1} \cup A_{2} \cup A_{3} \subset B_{1} \cup B_{2} \cup B_{3}$
d) None of these
69. If A is a non-empty set, then which of the following is false?
$p:$ There is at least one reflexive relation on A
q : There is at least one symmetric relation on A
a) p alone
b) q alone
c) Both p and q
d) Neither p nor q
70. In an election, two contestants A and B contested $x \%$ of the total voters voted for A and $(x+20) \%$ for B. If 20% of the voters did not vote, then $x=$
a) 30
b) 25
c) 40
d) 35
71. Let $A=\{1,2,3,4\}$, and let $R=\{(2,2),(3,3),(4,4),(1,2)\}$ be a relation on A. Then, R is
a) Reflexive
b) Symmetric
c) Transitive
d) None of these
72. In a rehabilitation programme, a group of 50 families were assured new houses and compensation by the government. Number of families who got both is equal to the number of families who got neither of the two. The number of families who got new houses is 6 greater than the number of families who got compensation. How many families got houses?
a) 22
b) 28
c) 23
d) 25
73. Let \mathcal{U} be the universal set for sets A and B such that $n(A)=200, n(B)=300$ and $n(A \cap B)=100$. Then, $n\left(A^{\prime} \cap B^{\prime}\right)$ is equal to 300 , provided that $n(\mathcal{U})$ is equal to
a) 600
b) 700
c) 800
d) 900
74. An integer m is said to be related to another integer n if m is a multiple of n. Then, the relation is
a) Reflexive and symmetric
b) Reflexive and transitive
c) Symmetric and transitive
d) Equivalence relation
75. Three sets A, B, C are such that $A=B \cap C$ and $B=C \cap A$, then
a) $A \subset B$
b) $A \supset B$
c) $A \equiv B$
d) $A \subset B^{\prime}$
76. Let R be a relation on the set N of natural numbers defined by $n R m \Leftrightarrow n$ is a factor of m (i. e. $n \mid m$). Then, R is
a) Reflexive and symmetric
b) Transitive and symmetric
c) Equivalence
d) Reflexive, transitive but not symmetric
77. If $a N=\{a x: x \in N\}$ and $b N \cap c N=d N$, where $b, c \in N$ are relatively prime, then
a) $d=b c$
b) $c=b d$
c) $b=c d$
d) None of these
78. In rule method the null set is represented by
a) $\}$
b) Φ
c) $\{x: x \neq x\}$
d) $\{x: x=x\}$
79. Let A be a set represented by the squares of natural number and x, y are any two elements of A. Then,
a) $x-y \in A$
b) $x y \in A$
c) $x+y \in A$
d) $\frac{x}{y} \in A$
80. Let $A_{1}, A_{2}, A_{3} \ldots, A_{100}$ be 100 sets such that $n\left(A_{i}\right)=i+1$ and $A_{1} \subset A_{2} \subset A_{3} \subset \cdots \subset A_{100}$, then $\cup_{i=1}^{100} A_{i}$ contains... elements
a) 99
b) 100
c) 101
d) 102
81. In a certain town 25% families own a cell phone, 15% families own a scooter and 65% families own neither a cell phone nor a scooter. If 1500 families own both a cell phone and a scooter, then the total number of families in the town is
a) 10000
b) 20000
c) 30000
d) 40000
82. If A, B and C are three non-empty sets such that any two of them are disjoint, then $(A \cup B \cup C) \cap$ $(A \cap B \cap C)=$
a) A
b) B
c) C
d) ϕ
83. If $R=\{(a, b): a+b=4\}$ is a relation on N, then R is
a) Reflexive
b) Symmetric
c) Antisymmetric
d) Transitive
84. The shaded region in the figure represents

a) $A \cap B$
b) $A \cup B$
c) $B-A$
d) $(A-B) \cup(B-A)$
85. Let $X=\{1,2,3,4,5\}$ and $Y=\{1,3,5,7,9\}$. Which of the following is/are not relations from X to Y ?
a) $R_{1}=\{(x, y) \mid y=2+x, x \in X, y \in Y\}$
b) $R_{2}=\{(1,1),(2,1),(3,3),(4,3),(5,5)\}$
c) $R_{3}=\{(1,1),(1,3),(3,5),(3,7),(5,7)\}$
d) $R_{4}=\{(1,3),(2,5),(2,4),(7,9)\}$
86. Given the relation $R=\{(1,2),(2,3)\}$ on the set $A=\{1,2,3\}$, the minimum number of ordered pairs which when added to R make it an equivalence relation is
a) 5
b) 6
c) 7
d) 8
87. If sets A and B are defined as
$A=\left\{(x, y): y=\frac{1}{x}, 0 \neq x \in R\right\}$,
$B=\{(x, y): y=-x, x \in R\}$, then
a) $A \cap B=A$
b) $A \cap B=B$
c) $A \cap B=\phi$
d) None of these
88. Let R be an equivalence relation on a finite set A having n elements. Then, the number of ordered pairs in R is
a) Less than n
b) Greater than or equal to n
c) Less than or equal to n
d) None of these
89. If $A_{1} \subset A_{2} \subset A_{3} \subset \cdots \subset A_{50}$ and $n\left(A_{i}\right)=i-1$, then $n\left(\cap_{i=11}^{50} A_{i}\right)=$
a) 49
b) 50
c) 11
d) 10
90. If $a N=\{a x: x \in N\}$ and $b N \cap c N=d N$, where $b, c \in N$ then
a) $d=b c$
b) $c=b d$
c) $b=c d$
d) None of these
91. X is the set of all residents in a colony and R is a relation defined on X as follows:
"Two persons are related iff they speak the same language"
The relation R is
a) Only symmetric
b) Only reflexive
c) Both symmetric and reflexive but not transitive
d) Equivalence
92. If S is a set with 10 elements and $A=\{(x, y): x, y \in S, x \neq y\}$, then the number of elements in A is
a) 100
b) 90
c) 50
d) 45
93. Let $A=\{$ ONGC, BHEL, SAIL, GAIL, IOCL $\}$ and R be a relation defined as "two elements of A are related if they share exactly one letter". The relation R is
a) Anti-symmetric
b) Only transitive
c) Only symmetric
d) Equivalence
94. The finite sets A and B have m and n elements respectively. if the total number of subsets of A is 112 more than the total number of subsets of B, then the volume of m is
a) 7
b) 9
c) 10
d) 12
95. Let $R=\{(a, a)\}$ be a relation on a set A. Then, R is
a) Symmetric
b) Antisymmetric
c) Symmetric and antisymmetric
d) Neither symmetric nor antisymmetric
96. If $A=\left\{p: p=\frac{(n+2)\left(2 n^{5}+3 n^{4}+4 n^{3}+5 n^{2}+6\right)}{n^{2}+2 n}, n, p \in \mathrm{Z}^{+}\right\}$then the number of elements in the set A, is
a) 2
b) 3
c) 4
d) 6
97. If $A=\{x: x$ is a multiple of 3$\}$ and, $B=\{x: x$ is a multiple of 5$\}$, then $A-B$ is
a) $\bar{A} \cap B$
b) $A \cap \bar{B}$
c) $\bar{A} \cap \bar{B}$
d) $\overline{A \cap B}$
98. An investigator interviewed 100 students to determine the performance of three drinks milk, coffee and tea. The investigator reported that 10 students take all three drinks milk, coffee and tea; 20 students take milk and coffee, 30 students take coffee and tea, 25 students take mile and tea, 12 students take milk only, 5 students take coffee only and 8 students take tea only. Then, the number of students who did not take any of the three drinks, is
a) 10
b) 20
c) 25
d) 30
99. Consider the following statements:
(i) Every reflexive relation is antisymmetric
(ii) Every symmetric relation is antisymmetric

Which one among (i) and (ii) is true?
a) (i) alone is true
b) (ii) alone is true
c) Both (i) and (ii) true
d) Neither (i) and (ii) is true
100. Given $n(U)=20, n(A)=12, n(B)=9, n(A \cap B)=4$, where U is the universal set, A and B are subsets of U, then $n\left[(A \cup B)^{c}\right]$ equals to
a) 10
b) 9
c) 11
d) 3
101. Let Z denote the set of integers, then $\{x \in Z:|x-3|<4\} n\{x \in Z:|x-4|<5\}=$
a) $\{-1,0,1,2,3,4\}$
b) $\{-1,0,1,2,3,4,5\}$
c) $\{0,1,2,3,4,5,6\}$
d) $\{-1,0,1,2,3,5,6,7,8,9\}$
102. Let R be a reflexive relation on a finite set A having n elements, and let there be m ordered pairs in R. Then,
a) $m \geq n$
b) $m \leq n$
c) $m=n$
d) None of these
103. Let $A=\{1,2,3\}, B=\{3,4\}, C=\{4,5,6\}$. Then, $A \cup(B \cap C)$ is
a) $\{3\}$
b) $\{1,2,3,4\}$
c) $\{1,2,5,6\}$
d) $\{1,2,3,4,5,6\}$
104. If $A=\left\{(x, y): y=\frac{4}{x}, x \neq 0\right\}$ and
$B=\left\{(x, y): x^{2}+y^{2}=8, x, y \in R\right\}$, then
a) $A \cap B=\phi$
b) $A \cap B$ contains one point only
c) $A \cap B$ contains two points only
d) $A \cap B$ contains 4 points only
105. If $R=\{(a, b):|a+b|=a+b\}$ is a relation defined on a set $\{-1,0,1\}$, then R is
a) Reflexive
b) Symmetric
c) Anti symmetric
d) Transitive
106. If $n(A \cap B)=5, n(A \cap C)=7$ and $n(A \cap B \cap C)=3$, then the minimum possible value of $n(B \cap C)$ is
a) 0
b) 1
c) 3
d) 2
107. The relation $R=\{(1,3),(3,5)\}$ is defined on the set with minimum number of elements of natural numbers. The minimum number of elements to be included in R so that R is an equivalence relation, is
a) 5
b) 6
c) 7
d) 8
108. If $A=\{1,2,3\}$, then the relation $R=\{(1,1),(2,2),(3,1),(1,3)\}$ is
a) Reflexive
b) Symmetric
c) Transitive
d) Equivalence
109. Let R be a relation on a set A such that $R=R^{-1}$, then R is
a) Reflexive
b) Symmetric
c) Transitive
d) None of these
110. In Q.No. 6, $\bigcap_{n=3}^{10} A_{n}=$
a) $\{3,5,7,11,13,17,19\}$
b) $\{2,3,5\}$
c) $\{2,3,5,7,11,13,17\}$
d) $\{3,5,7\}$
111. The number of elements in the set $\left\{(a, b): 2 a^{2}+3 b^{2}=35, a, b \in Z\right\}$, where Z is the set of all integers, is
a) 2
b) 4
c) 8
d) 12
112. If $A=\{a, b, c\}, B=\{b, c, d\}$ and $C=\{a, d, c\}$, then $(A-B) \times(B \cap C)$ is equal to
a) $\{(a, c),(a, d)\}$
b) $\{(a, b),(c, d)\}$
c) $\{(c, a),(d, a)\}$
d) $\{(a, c),(a, d),(b, d)\}$
113. A class has 175 students. The following data shows the number of students opting one or more subjects. Mathematics 100; Physics 70; Chemistry 40; Mathematics and Physics 30; Mathematics and Chemistry 28; Physics and Chemistry 23; Mathematics, Physics and Chemistry 18. Hoe many students have offered Mathematics alone?
a) 35
b) 48
c) 60
d) 22
114. If $A=\{1,2,3\}, B\{3,4\}, C\{4,5,6\}$. Then, $A \cup(B \cap C)$ is
a) $\{1,2\}$
b) $\{\phi\}$
c) $\{4,5\}$
d) $\{1,2,3,4\}$
115. If $A \subseteq B$, then $B \cup A$ is equal to
a) $B \cap A$
b) A
c) B
d) None of these
116. If $n(u)=100, n(A)=50, n(B)=20$ and $n(A \cap B)=10$, then $n\left\{(A \cup B)^{c}\right\}$
a) 60
b) 30
c) 40
d) 20
117. If A is a non-empty set, then which of the following is false?
p : Every reflexive relation is a symmetric relation
q : Every antisymmetric relation is reflexive
Which of the following is/are true?
a) p alone
b) q alone
c) Both p and q
d) Neither p nor q
118. Two points P and Q in a plane are related if $O P=O Q$, where O is a fixed point. This relation is
a) Partial order relation
b) Equivalence relation
c) Reflexive but not symmetric
d) Reflexive but not transitive
119. In a city 20% of the population travels by car, 50% travels by bus and 10% travels by both car and bus. Then, persons travelling by car or bus is
a) 80%
b) 40%
c) 60%
d) 70%
120. If $n(A \cap B=10, n(B \cap C)=20)$ and $n(A \cap C)=30$, then the greatest possible value of $n(A \cap B \cap C)$ is
a) 15
b) 20
c) 10
d) 4
121. If S is the set of squares and R is the set of rectangles, then $(S \cup R)-(S \cap S)$ is
a) S
b) R
c) Set of squares but not rectangles
d) Set of rectangles but not squares
122. Let X be a family of sets and R be a relation on X defined by ${ }^{\prime} A$ is disjoint from B^{\prime}. Then, R is
a) Reflexive
b) Symmetric
c) Antisymmetric
d) Transitive
123. If $A=\{x, y\}$, then the power set of A is
a) $\left\{\mathrm{x}^{\mathrm{y}}, \mathrm{y}^{\mathrm{x}}\right\}$
b) $\{\phi, x, y\}$
c) $\{\phi,\{x\},\{2 y\}\}$
d) $\{\phi,\{x\},\{y\},\{x, y\}\}$
124. In a town of 10,000 families it was found that 40% families buy newspaper $A, 20 \%$ families buy newspaper B and 10% families buy newspaper $C, 5 \%$ families buy A and $B, 3 \%$ buy B and C and 4% buy A and C. If 2% families buy all the three newspapers, then the number of families which buy A only is
a) 3100
b) 3300
c) 2900
d) 1400
125. Let R and S be two equivalence relations on a set A. Then,
a) $R \cup S$ is an equivalence relation on A
b) $R \cap S$ is an equivalence relation on A
c) $R-S$ is an equivalence relation on A
d) None of these
126. Which of the following is true?
a) $A \cap \phi=A$
b) $A \cap \phi=\phi$
c) $A \cap \phi=U$
d) $A \cap \phi=A^{\prime}$
127. Let $A=\{p, q, r\}$. Which of the following is not an equivalence relation on A ?
a) $R_{1}=\{(p, q),(q, r),(p, r),(p, p)\}$
b) $R_{2}=\{(r, q),(r, p),(r, r),(q, q)\}$
c) $R_{3}=\{(p, p),(q, q),(r, r) .(p, q)\}$
d) None of these
128. Let $A=\{1,2,3,4\}, B=\{2,4,6\}$. Then, the number of sets C such that $A \cap B \subseteq C \subseteq A \cup B$ is
a) 6
b) 9
c) 8
d) 10
129. If $A=\left\{p \in N: p\right.$ is a prime and $p=\frac{7 n^{2}+3 n+3}{n}$ for some $\left.n \in N\right\}$, then the number of elements in the set A, is
a) 1
b) 2
c) 3
d) 4
130. Let $Y=\{1,2,3,4,5\}, A\{1,2\}, B=\{3,4,5\}$ and ϕ denotes null set. If $(A \times B)$ denotes cartesian product of the sets A and B; then $(Y \times A) \cap(Y \times B)$ is
a) Y
b) A
c) B
d) ϕ
131. If $n(A)$ denotes the number of elements in the set A and if $n(A)=4, n(B)=5$ and $n(A \cap B)=3$, then $n[(A \times B) \cap(B \times A)]$ is equal to
a) 8
b) 9
c) 10
d) 11
132. Universal set, $U=\left\{x: x^{5}-6 x^{4}+11 x^{3}-6 x^{2}=0\right\}$

$$
\text { And } \quad \begin{aligned}
A & =\left\{x: x^{2}-5 x+6=0\right\} \\
B & =\left\{x: x^{2}-3 x+2=0\right\}
\end{aligned}
$$

Then, $(A \cap B)^{\prime}$ is equal to
a) $\{1,3\}$
b) $\{1,2,3\}$
c) $\{0,1,3\}$
d) $\{0,1,2,3\}$
133. If R be a relation $<$ from $A=\{1,2,3,4\}$ to $B=\{1,3,5\}$ i.e. $(a, b) \in R \Leftrightarrow a<b$, then $R o R^{-1}$ is
a) $\{(1,3),(1,5),(2,3),(2,5),(3,5),(4,5)\}$
b) $\{(3,1),(5,1),(3,2),(5,2),(5,3),(5,4)\}$
c) $\{(3,3),(3,5),(5,3),(5,5)\}$
d) $\{(3,3),(3,4),(4,5)\}$
134. A relation between two persons is defined as follows: $a R b \Leftrightarrow a$ and b born in different months. Then, R is
a) Reflexive
b) Symmetric
c) Transitive
d) Equivalence
135. If A and B are two sets such that $n(A \cap \bar{B})=9, n(\bar{A} \cap B)=10$ and $n(A \cup B)=24$, then $n(A \times B)=$
a) 105
b) 210
c) 70
d) None of these
136. If A and B are two sets, then $A-(A-B)$ is equal to
a) B
b) $A \cup B$
c) $A \cap B$
d) $B-A$
137. If $A=\{1,2,3,4\}$, then the number of subsets of A that contain the element 2 but not 3 , is
a) 16
b) 4
c) 8
d) 24
138. Let A be a set of compartments in a train. Then the relation R defined on A as $a R b$ iff " a and b have the link between them", then which of the following is true for R ?
a) Reflexive
b) Symmetric
c) Transitive
d) Equivalence
139. Let R and S be two relations on a set A. Then, which one of the following is not true?
a) R and S are transitive, then $R \cup S$ is also transitive
b) R and S are transitive, then $R \cap S$ is also transitive
c) R and S are reflexive, then $R \cap S$ is also reflexive
d) R and S are symmetric, then $R \cup S$ is also symmetric
140. The relation "is a factor of" on the set N of all natural numbers is not
a) Reflexive
b) Symmetric
c) Antisymetric
d) Transitive
141. If $R \subset A \times B$ and $S \subset B \times C$ be relations, then $(S o R)^{-1}=$
a) $S^{-1} o R^{-1}$
b) R^{-1} o S^{-1}
c) $S o R$
d) RoS
142. If relation R is defined as:
$a R b$ if " a is the father of b ". Then, R is
a) Reflexive
b) Symmetric
c) Transitive
d) None of these
143. In a set of teachers of a school, two teachers are said to be related if they "teach the same subject", then the relation is
a) Reflexive and symmetric
b) Symmetric and transitive
c) Reflexive and transitive
d) Equivalence
144. In a battle 70% of the combatants lost one eye, 80% an ear, 75% an arm, 85% a leg, $x \%$ lost all the four limbs. The minimum value of x is
a) 10
b) 12
c) 15
d) None of these
145. If $A=\{1,2,3,4\}$, then the number of subsets of set A containing element 3 , is
a) 24
b) 28
c) 8
d) 16
146. The relation $R=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$ on set $A=\{1,2,3\}$ is
a) Reflexive but not symmetric
b) Reflexive but not transitive
c) Symmetric and transitive
d) Neither symmetric nor transitive
147. The value of $(A \cup B \cup C) \cap\left(A \cap B^{C} \cap C^{C}\right)^{C} \cap C^{C}$ is
a) $B \cap C^{C}$
b) $B^{C} \cap C^{C}$
c) $B \cap C$
d) $A \cap B \cap C$
148. If a set A contains n elements, then which of the following cannot be the number of reflexive relations on the set A ?
a) 2^{n}
b) 2^{n-1}
c) $2^{n^{2}-1}$
d) 2^{n+1}
149. If A and B are two sets such that $n(A)=7, n(B)=6$ and $(A \cap B) \neq \phi$. The least possible value of $n(A \Delta B)$, is
a) 1
b) 7
c) 6
d) 13
150. Set builder form of the relation
$R=\{(-2,-7),(-1,-4),(0,-1),(1,2),(2,5)\}$ is
a) $\{(a, b): b=2 a-3 ; a, b, \in Z\}$
b) $((x, y): y=3 x-1 ; x, y \in Z\}$
c) $\{(a, b): b=3 a-1 ; a, b \in N\}$
d) $\{(u, v): v=3 u-1 ;-2 \leq u<3$ and $u \in Z\}$
151. Out of 800 boys in a school 224 played cricket, 240 played hockey and 336 played basketball. Of the total, 64 played both basketball and hockey; 80 played cricket and basketball and 40 played cricket and hockey; 24 played all the three games. The number of boys who did not play any game is
a) 160
b) 240
c) 216
d) 128
152. Two finite sets have m and n elements. The number of elements in the power set of first set is 48 more than the total number of elements in the power set of the second set. Then, the value of M and N are
a) 7,6
b) 6,3
c) 6,4
d) 7,4
153. Let A and B be two sets, then $(A \cup B)^{\prime} \cup\left(A^{\prime} \cap B\right)$ is equal to
a) A^{\prime}
b) A
c) B^{\prime}
d) None of these
154. The relation 'is not equal to' is defined on R, is
a) Reflexive only
b) Symmetric only
c) Transitive only
d) Equivalence
155. If A and B are two sets such that $n(A)=7, n(B)=6$ and $(A \cap B) \neq \phi$. Then the greatest possible value of $n(A \Delta B)$, is
a) 11
b) 12
c) 13
d) 10
156. In the set $A=\{1,2,3,4,5\}$, a relation R is defined by $R=\{(x, y): x, y \in A$ and $x<y\}$. Then, R is
a) Reflexive
b) Symmetric
c) Transitive
d) None of these
157. If two sets A and B are having 99 elements in common, then the number of elements common to each of the sets $A \times B$ and $B \times A$ are
a) 2^{99}
b) 99^{2}
c) 100
d) 18
158. For any two sets A and B, if $A \cap X=B \cap X=\phi$ and $A \cup X=B \cup X$ for some set X, then
a) $A-B=A \cap B$
b) $A=B$
c) $B-A=A \cap B$
d) None of these
159. Which one of the following relations on R is an equivalence relation?
a) $a R_{1} b \Leftrightarrow|a|=|b|$
b) $a R_{2} b \Leftrightarrow a \geq b$
c) $a R_{3} b \Leftrightarrow a$ divides b
d) $a R_{4} b \Leftrightarrow a<b$
160. Let R be a relation defined on S, the set of squares on a chess board such that $x R y$ iff x and y share a common side. Then, which of the following is false for R ?
a) Reflexive
b) Symmetric
c) Transitive
d) All the above
161. If $A=\{x, y, z\}$, then the relation
$R=\{(x, x),(y, y),(z, z),(z, x),(z, y)\}$ is
a) Symmetric
b) Antisymmetric
c) Transitive
d) Both (a) and (b)
162. If $A=\{x: x$ is a multiple of 4$\}$ and, $B=\{x: x$ is a multiple of 6$\}$, then $A \cap B$ consists of multiples of
a) 16
b) 12
c) 8
d) 4
163. If $A=\{a, b, c, l, m, n\}$, then the maximum number of elements in any relation on A is
a) 12
b) 16
c) 32
d) 36
164. Consider the following statements:
p : Every reflexive relation is symmetric relation
q : Every anti-symmetric relation is reflexive
Which of the following is/are true?
a) p alone
b) q alone
c) Both p and q
d) Neither p nor q
165. For any two sets A and $B, A-(A-B)$ equals
a) A
b) $A-B$
c) $A \cap B$
d) $A^{C} \cap B^{C}$
166. If A, B and C are three non-empty sets such that A and B are disjoint and the number of elements contained in A is equal to those contained in the set of elements common to the sets A and C, then $n(A \cup B \cup C)$ is necessarily equal to
a) $n(B \cup C)$
b) $n(A \cup C)$
c) Both (a) and (b)
d) None of these
167. The relation R defined in N as $a b \Leftrightarrow b$ is divisible by a is
a) Reflexive but not symmetric
b) Symmetric but not transitive
c) Symmetric and transitive
d) None of these
168. If $A=\left\{n: \frac{n^{3}+5 n^{2}+2}{n}\right.$ is an integer and itself is an integer $\}$, then the number of elements in the set A, is
a) 1
b) 2
c) 3
d) 4
169. In a class of 175 students the following data shows the number of students opting one or more subjects. Mathematics 100; Physics 70; Chemistry 40; Mathematics and Physics 30; Mathematics and Chemistry 28; Physics and Chemistry 23; Mathematics, Physics and Chemistry 18. How many students have offered Mathematics alone?
a) 35
b) 48
c) 60
d) 22
170. Consider the set A of all determinants of order 3 with entries 0 or 1 only. Let B be the subset of A consisting of all determinants with value 1 . Let C be the subset of the set of all determinants with value -1 . Then
a) C is empty
b) B has as many elements as C
c) $A=B \cup C$
d) B has twice as many elements as C
171. Let $P=\left\{(x, y) \mid x^{2}+y^{2}=1, x, y \in R\right\}$. Then, P is
a) Reflexive
b) Symmetric
c) Transitive
d) Antisymmetric

: ANSWER KEY :														
1)	b	2)	d	3)	c	4)	a	89)	d	90)	d	91)	d	92)
5)	a	6)	d	7)	a	8)	a	93)	c	94)	a	95)	c	96)
9)	d	10)	b	11)	d	12)	d	97)	b	98)	b	99)	d	100)
13)	d	14)	c	15)	a	16)	b	101)	c	102)	a	103)	b	104)
17)	d	18)	c	19)	c	20)	b	105)	b	106)	c	107)	a	108)
21)	c	22)	b	23)	d	24)	a	109)	b	110)	b	111)	c	112)
25)	b	26)	c	27)	c	28)	a	113)	c	114)	d	115)	c	116)
29)	d	30)	c	31)	d	32)	c	117)	d	118)	b	119)	c	120)
33)	a	34)	b	35)	b	36)	c	121)	d	122)	b	123)	d	124)
37)	b	38)	b	39)	b	40)	c	125)	b	126)	b	127)	d	128)
41)	d	42)	c	43)	d	44)	a	129)	a	130)	d	131)	b	132)
45)	a	46)	b	47)	c	48)	b	133)	c	134)	b	135)	b	136)
49)	b	50)	b	51)	d	52)	b	137)	b	138)	b	139)	a	140)
53)	c	54)	a	55)	d	56)	c	141)	b	142)	d	143)	d	144)
57)	b	58)	c	59)	a	60)	d	145)	c	146)	a	147)	b	148)
61)	c	62)	b	63)	b	64)	d	149)	a	150)	d	151)	a	152)
65)	c	66)	c	67)	b	68)	a	153)	a	154)	b	155)	a	156)
69)	d	70)	a	71)	c	72)	b	157)	b	158)	b	159)	a	160)
73)	b	74)	b	75)	c	76)	d	161)	d	162)	b	163)	d	164)
77)	a	78)	c	79)	b	80)	c	165)	c	166)	a	167)	a	168)
81)	c	82)	d	83)	b	84)	d	169)	c	170)	b	171)	b	
85)	d	86)	c	87)	c	88)	b							

: HINTS AND SOLUTIONS :

1 (b)
For any $a \in R$, we have $a \geq a$
Therefore, the relation R is reflexive.
R is not symmetric as $(2,1) \in R$ but $(1,2) \notin R$. The relation R is transitive also, because $(a, b) \in$ $R,(b, c) \in R$ imply that $a \geq b$ and $b \geq c$ which in turn imply that $a \geq c$
2 (d)
Clearly, R is an equivalence relation
3 (c)
Let M and E denote the sets of students who have taken Mathematics and Economics respectively. Then, we have
$n(M \cup E)=35, n(M)=17$ and $n\left(M \cap E^{\prime}\right)=10$
Now,
$n\left(M \cap E^{\prime}\right)=n(M)-n(M \cap E)$
$\Rightarrow 10=17-n(M \cap E) \Rightarrow n(M \cap E)=7$
Now,
$n(M \cup E)=n(M)+n(E)-n(M \cap E)$
$\Rightarrow 35=17+n(E)-7 \Rightarrow n(E)=25$
$\therefore n\left(E \cap M^{\prime}\right)=n(E)-n(E \cap M)=25-7=18$
4 (a)
Let $A=\{n(n+1)(2 n+1): n \in Z\}$
Putting $n= \pm 1, \pm 2, \ldots$, we get $A=\{\ldots-$
$30,-6,0,6,30, \ldots\}$
$\Rightarrow \quad\{n(n+1)(2 n+1): n \in Z\} \subset\{6 k: k \in Z\}$
5 (a)
$\because A \cup B=\{1,2,3,4,5,6\}$
$\therefore \quad(A \cup B) \cap C=\{1,2,3,4,5,6\} \cap\{3,4,6\}$
$=\{3,4,6\}$
6 (d)
We have,
$n(A \cap \bar{B})=9, n(\bar{A} \cap B)=10$ and $n(A \cup B)=24$
$\Rightarrow n(A)-n(A \cap B)=9, n(B)-n(A \cap B)=10$
and, $n(A)+n(B)-n(A \cap B)=24$
$\Rightarrow n(A)+n(B)-2 n(A \cap B)=19$ and
$n(A)+n(B)-n(A \cap B)=24$
$\Rightarrow n(A \cap B)=5$
$\therefore n(A)=14$ and $n(B)=15$
Hence, $n(A \times B)=14 \times 15=210$
7 (a)
Clearly, $P \subset T$
$\therefore P \cap T=P$
8 (a)
It is given that A is a proper subset of B
$\therefore A-B=\phi \Rightarrow n(A-B)=0$
We have, $n(A)=5$. So, minimum number of
elements in B is 6
Hence, the minimum possible value of $n(A \Delta B)$ is $n(B)-n(A)=6-5=1$
(d)
$\because \quad n(A \times B \times C)=n(A) \times n(B) \times n(C)$
$\therefore \quad n(C)=\frac{24}{4 \times 3}=2$
(b)

Use $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
11 (d)
$\because A=\left\{(a, b): a^{2}+3 b^{2}=28, a, b \in Z\right\}$
$=\{(5,1),(-5,-1),(5,-1),(-5,1),(1,3),(-1,-3),(-1$, 3),
$(1,-3),(4,2),(-4,-2),(4,-2),(-4,2)\}$
And $B=\{(a, b): a>b, a, b \in Z\}$
$\therefore \quad A \cap B$
$=\{(-1,-5),(1,-5),(-1,-3),(1,-3),(4,2),(4,-$
\therefore Number of elements in $A \cap B$ is 6 .
13 (d)
We have
$R=\{(1,39),(2,37),(3,35),(4,33),(5,31),(6,29)$, $(7,27),(8,25),(9,23),(10,21),(11,19),(12,17)$, $(13,15),(14,13),(15,11),(16,9),(17,7),(18,5)$, (19,3), (20,1)\}
Since $(1,39) \in R$, but $(39,1) \notin R$
Therefore, R is not symmetric
Clearly, R is not reflexive. Now, $(15,11) \in R$ and $(11,19) \in R$ but $(15,19) \notin R$
So, R is not transitive
14 (c)
Total number of employees $=7 x$ i.e. a multiple of
7. Hence, option (c) is correct

15 (a)
The power set of a set containing n elements has 2^{n} elements.
Clearly, 2^{n} cannot be equal to 26
(b)

The relation is not symmetric, because $A \subset B$
does not imply that $B \subset A$. But, it is anti-
symmetric because
$A \subset B$ and $B \subset A \Rightarrow A=B$
18 (c)
We have, $A \supset B \supset C$
$\therefore A \cup B \cup C=A$ and $A \cap B \cap C=C$
$\Rightarrow(A \cup B \cup C)-(A \cap B \cap C)=A-C$
19 (c)
Given, $n(C)=63, n(A)=76$ and $n(C \cap A)=x$
We know that,
$n(C \cup A)=n(C)+n(A)-n(C \cap A)$
$\Rightarrow \quad 100=63+76-x \Rightarrow x=139-100=39$
And $n(C \cap A) \leq n(C)$
$\Rightarrow \quad x \leq 63$
$\therefore 39 \leq x \leq 63$
20 (b)
We have,
$X=$ Set of some multiple of 9
and, $Y=$ Set of all multiple of 9
$\therefore X \subset Y \Rightarrow X \cup Y=Y$
21 (c)
$A \cap B$
$=\{x: x$ a multiple of 3$\}$ and $\{x: x$ is a multiple of 5$\}$

$$
\begin{aligned}
& =\{x: x \text { is a multiple of } 15\} \\
& =\{15,30,45, \ldots \ldots \ldots .\}
\end{aligned}
$$

22 (b)
We have,
$n(A \times B)=45$
$\Rightarrow n(A) \times n(B)=45$
$\Rightarrow n(A)$ and $n(B)$ are factors of 45 such that their product is 45
Hence, $n(A)$ cannot be 17
24 (a)
For any $x \in R$, we have
$x-x+\sqrt{2}=\sqrt{2}$ an irrational number
$\Rightarrow x R x$ for all x
So, R is reflexive
R is not symmetric, because $\sqrt{2} R 1$ but $1 \not R \sqrt{2}$
R is not transitive also because $\sqrt{2} R 1$ and
$1 R 2 \sqrt{2}$ but $\sqrt{2} \not R_{2} \sqrt{2}$
25 (b)
We have,
$n(H)-n(H \cap E)=22, n(E)-n(H \cap E)$

$$
=12, n(H \cup E)=45
$$

$\therefore n(H \cup E)=n(H)+n(E)-n(H \cap E)$
$\Rightarrow 45=22+12+n(H \cup E)$
$\Rightarrow n(H \cap E)=11$
26 (c)
We have, $A \subset B$ and $B \subset C$
$\therefore A \cup B=B$ and $B \cap C=B$
$\Rightarrow A \cup B=B \cap C$
27
(c)

Let $A=\left\{x \in R: \frac{2 x-1}{x^{3}+4 x^{2}+3 x}\right\}$
Now, $x^{3}+4 x^{2}+3 x=x\left(x^{2}+4 x+3\right)$

$$
=x(x+3)(x+1)
$$

$\therefore \quad A=R-\{0,-1,-3\}$
29
(d)

Clearly, $y^{2}=x$ and $y=|x|$ intersect at $(0,0),(1,1)$
and $(-1,-1)$. Hence, option (d) is correct
31 (d)
Let M, P and C be the sets of students taking examinations in Mathematics, Physics and Chemistry respectively.
We have,
$n(M \cup P \cup C)=50, n(M)=37, n(P)=24, n(C)$

$$
=43
$$

$n(M \cap P)<19, n(M \cap C) \leq 29, n(P \cap C) \leq 20$
Now,
$n(M \cup P \cup C)=n(M)+n(P)+n(C)-n(M \cap P)$
$-n(M \cap C)-n(P \cap C)+n(M \cap P \cap C)$
$\Rightarrow 50=37+24+43-\{n(M \cap P)+n(M \cap C)$
$+n(P \cap C)\}$
$+n(M \cap P \cap C)$
$\Rightarrow n(M \cap P \cap C)$

$$
=n(M \cap P)+n(M \cap C)
$$

$$
+n(P \cap C)-54
$$

$\Rightarrow n(M \cap P)+n(M \cap C)+n(P \cap C)$
$=n(M \cap P \cap C)+54$
Now,
$n(M \cap P) \leq 19, n(M \cap C) \leq 29, n(P \cap C) \leq 20$
$\Rightarrow n(M \cap P)+n(M \cap C)+n(P \cap C) \leq 19+29+$ 20 [Using (i)]
$\Rightarrow n(M \cap P \cap C)+54 \leq 68$
$\Rightarrow n(M \cap P \cap C) \leq 14$
33 (a)
Given, $n(N)=12, n(P)=16, n(H)=18$,

$$
n(N \cup P \cup H)=30
$$

And $\quad n(N \cap P \cap H)=0$
Now, $n(N \cup P \cup H)=n(N)+n(P)+n(H)$
$-n(N \cap P)-n(P \cap H)-n(H \cap N)$
$+n(N \cap P \cap H)$
$\Rightarrow n(N \cap P)+n(P \cap H)+n(H \cap N)$ $=(12+16+18)-30$

$$
=46-30=
$$

16
(b)

The void relation R on A is not reflexive as $(a, a) \notin R$ for any $a \in A$. The void relation is symmetric and transitive
(c)

Given, A 's are 30 sets with five elements each, so

$$
\sum_{i=1}^{30} n\left(A_{i}\right)=5 \times 30=150
$$

...(i)
If the m distinct elements in S and each elements of S belongs to exactly 10 of the A_{i} 's, then

$$
\begin{equation*}
\sum_{i=1}^{30} n\left(A_{i}\right)=10 m \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii), $m=15$
Similarly, $\sum_{j=1}^{n} n\left(B_{j}\right)=3 n$ and $\sum_{j=1}^{n} n\left(B_{j}\right)=9 m$
$\therefore \quad 3 n=9 m$
$\Rightarrow n=\frac{9 m}{3}=3 \times 15=45$
38 (b)
$A \cup B$ will contain minimum number of elements if $A \subset B$ and in that case, we have
$n(A \cup B)=n(B)=6$
40 (c)
It is given that $A_{1} \subset A_{2} \subset A_{3} \subset \cdots \subset A_{100}$
$\therefore \bigcup_{i=3}^{100} A_{i}=A \Rightarrow A_{3}=A \Rightarrow n(A)=n\left(A_{3}\right)=3+2$

$$
=5
$$

41 (d)
We have,
$A \cap(A \cap B)^{c}=A \cap\left(A^{c} \cup B^{c}\right)$
$\Rightarrow A \cap(A \cap B)^{c}=\left(A \cap A^{c}\right) \cup\left(A \cap B^{c}\right)$
$\Rightarrow A \cap(A \cap B)^{c}=\phi \cup\left(A \cap B^{c}\right)=A \cap B^{c}$
42 (c)
Since R is a reflexive relation on A.
$\therefore(a, a) \in R$ for all $a \in A$
$\Rightarrow n(A) \leq n(R) \leq n(A \times A) \Rightarrow 13 \leq n(R) \leq 169$
43 (d)
Clearly, R is reflexive symmetric and transitive.
So, it is an equivalence relation
44 (a)
We have,
Required number of families
$=n\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right)$
$=n(A \cup B \cup C)^{\prime}$
$=N-n(A \cup B \cup C)$
$=10000-\{n(A)+n(B)+n(C)-n(A \cap B)\}$
$-n(B \cap C)-n(A \cap C)+n(A \cap B \cap C)\}$
$=10000-4000-2000-1000+500+300$

$$
+400-200
$$

$=4000$
45 (a)
We have,
$A \subset A \cup B$
$\Rightarrow A \cap(A \cup B)=A$
46
(b)

We have,
$(A \cup B) \cap B^{\prime}=A$
$\therefore\left((A \cup B) \cap B^{\prime}\right) \cup A^{\prime}=A \cup A^{\prime}=N$

48 (b)
The set A consists of all points on $y=e^{x}$ and the set B consists of points on $y=e^{-x}$, these two curves intersect at (0,1). Hence, $A \cap B$ consists of a single point
50 (b)
Given, $A \cap B=A \cap C$ and $A \cup B=A \cup C$
$\Rightarrow \quad B=C$
51 (d)
Required number

$$
=\frac{3^{4}+1}{2}=41
$$

52 (b)
Clearly, A is the set of all points on a circle with centre at the origin and radius 2 and B is the set of all points on a circle with centre at the origin and radius 3 . The two circles do not intersect.
Therefore,
$A \cap B=\phi \Rightarrow B-A=B$
53 (c)
We have,
$n\left(A^{c} \cap B^{c}\right)$
$=n\left\{(A \cup B)^{c}\right\}$
$=n(\mathcal{U})-n(A \cup B)$
$=n(\mathcal{U})-\{n(A)+n(B)-n(A \cap B)\}$
$=700-(200+300-100)=300$
54 (a)
We have,
$\cos \theta>-\frac{1}{2}$ and $0 \leq \theta \leq \pi$
$\Rightarrow 0 \leq \theta \leq 2 \pi / 3$ and $0 \leq \theta \leq \pi$
$\Rightarrow 0 \leq \theta \leq \frac{2 \pi}{3} \Rightarrow A=\{\theta: 0 \leq \theta \leq 2 \pi / 3\}$
Also,
$\sin \theta>\frac{1}{2}$ and $\pi / 3 \leq \theta \leq \pi$
$\Rightarrow \frac{\pi}{3} \leq \theta \leq \frac{5 \pi}{6} \Rightarrow B=\left\{\theta: \frac{\pi}{3} \leq \theta \leq \frac{5 \pi}{6}\right\}$
$\therefore A \cap B=\left\{\theta: \frac{\pi}{3} \leq \theta \leq \frac{2 \pi}{3}\right\}$ and $A \cup B$

$$
=\left\{\theta: 0 \leq \theta \leq \frac{5 \pi}{6}\right\}
$$

55 (d)
Clearly, R is an equivalence relation
56 (c)
Given, $A=\{1,2,3\}, B=\{a, b\}$
$\therefore \quad A \times B$
$=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$
57 (b)
Clearly,
$A_{2} \subset A_{3} \subset A_{4} \subset \cdots \subset A_{10}$
$\therefore \bigcup_{n=2}^{10} A_{n}=A_{10}=\{2,3,5,7,11,13,17,19,23,29\}$
58 (c)
Clearly,
R
$=\{(4,6),(4,10),(6,4),(10,4)(6,10),(10,6),(10,12)$
Clearly, R is symmetric
$(6,10) \in R$ and $(10,12) \in R$ but $(6,12) \notin R$
So, R is not transitive
Also, R is not reflexive
61 (c)
It is given that
$A_{1} \subset A_{2} \subset A_{3} \ldots \subset A_{99}$
$\bigcup_{i=1}^{999} A_{i}=A_{99}$
$\Rightarrow n\left(\bigcup_{i=1}^{99} A_{i}\right)=n\left(A_{99}\right)=99+1=100$
62 (b)
It is given that $2^{m}-2^{n}=56$
Obviously, $m=6, n=3$ satisfy the equation
63 (b)
Clearly, $(a, a) \in R$ for any $a \in A$
Also,
$(a, b) \in R$
$\Rightarrow a$ and b are in different zoological parks
$\Rightarrow b$ and a are in different zoological parks
$\Rightarrow(b, a) \in R$
Now, $(a, b) \in R$ and $(b, a) \in R$ but $(a, a) \notin R$
So, R is not transitive
64 (d)
$X \cap Y=\{1,2,4,5,8,10,20,25,40,50,100,200\}$
$\therefore \quad n(X \cap Y)=12$
66 (c)
We have,
$X \cap(Y \cup X)^{\prime}=X \cap\left(Y^{\prime} \cap X^{\prime}\right)=\left(X \cap X^{\prime}\right) \cap Y^{\prime}$

$$
=\phi \cap Y^{\prime}=\phi
$$

67 (b)
The number of subsets of A containing 2,3 and 5 is same as the number of subsets of set $\{1,4,6\}$ which is equal to $2^{3}=8$
68 (a)
We have,
$B_{1}=A_{1} \Rightarrow B_{1} \subset A_{1}$
$B_{2}=A_{2}-A_{1} \Rightarrow B_{2} \subset A_{2}$
$B_{3}=A_{3}-\left(A_{1} \cup A_{2}\right) \Rightarrow B_{3} \subset A_{3}$
$\therefore B_{1} \cup B_{2} \cup B_{3} \subset A_{1} \cup A_{2} \cup A_{3}$
69 (d)
The identity relation on a set A is reflexive and symmetric both. So, there is always a reflexive
and symmetric relation on a set
70 (a)
Let the total number of voters be n. Then,
Number of voters voted for $A=\frac{n x}{100}$
Number of voters voted for $B=\frac{n(x+20)}{100}$
\therefore Number of voters who voted for both
$=\frac{n x}{100}+\frac{n(x+20)}{100}$
$=\frac{n(2 x+20)}{100}$
Hence, $n-\frac{n(2 x+20)}{100}=\frac{20 n}{100} \Rightarrow x=30$
71 (c)
Since $(1,1) \notin R$. So, R is not reflexive
Now, $(1,2) \in R$ but, $(2,1) \notin R$. Therefore, R is not symmetric.
Clearly, R is transitive
72 (b)
Let A and B denote respectively the sets of
families who got new houses and compensation
It is given that
$n(A \cap B)=n(\overline{A \cup B})$
$\Rightarrow n(A \cap B)=50-n(A \cup B)$
$\Rightarrow n(A)+n(B)=50$
$\Rightarrow n(B)+6+n(B)=50 \quad[\because n(A)$ $=n(B)+6$ (given) $]$
$\Rightarrow n(B)=22 \Rightarrow n(A)=28$
73 (b)
We have,
$n\left(A^{\prime} \cap B^{\prime}\right)=n\left((A \cup B)^{\prime}\right)$
$\Rightarrow n\left(A^{\prime} \cap B^{\prime}\right)=n(\mathcal{U})-n(A \cup B)$
$\Rightarrow n\left(A^{\prime} \cap B^{\prime}\right)=n(U)$

$$
-\{n(A)+n(B)-n(A \cap B)\}
$$

$\Rightarrow 300=n(U)-\{200+300-100\}$
$\Rightarrow n(U)=700$
74 (b)
For any integer n, we have
$n \mid n \Rightarrow n R n$
So, $n R n$ for all $n \in Z$
$\Rightarrow R$ is reflexive
Now, $2 \mid 6$ but 6 does not divide 2
$\Rightarrow(2,6) \in R$ but $(6,2) \notin R$
So, R is not symmetric
Let $(m, n) \in R$ and $(n, p) \in R$. Then,
$\left.\begin{array}{c}(m, n) \in R \Rightarrow m \mid n \\ (n, p) \in R \Rightarrow n \mid p\end{array}\right\} \Rightarrow m \mid p \Rightarrow(m, p) \in R$
So, R is transitive
Hence, R is reflexive and transitive but it is not symmetric
(c)

Since, $A=B \cap C$ and $B=C \cap A$,
Then $\quad A \equiv B$
76 (d)
Since $n \mid n$ for all $n \in N$. Therefore, R is reflexive. Since $2 \mid 6$ but $6 \nmid 2$, therefore R is not symmetric
Let $n R m$ and $m R p$
$\Rightarrow n R m$ and $m R p$
$\Rightarrow n \mid m$ and $m|p \Rightarrow n| p \Rightarrow n R p$
So, R is transitive
77 (a)
We have,
$b N=\{b x \mid x \in \mathrm{~N}\}=$ Set of positive integral
multiples of b
$c N=\{c x \mid x \in N\}=$ Set positive integral
multiples of c
$\therefore b N \cap c N=$ Set of positive integral multiples of bc
$\Rightarrow b N \cap c N=b c N \quad[\because b$ and c are prime $]$ Hence, $d=b c$
79 (b)
Let $x, y \in A$. Then,
$x=m^{2}, y=n^{2}$ for some $m, n \in N$
$\Rightarrow x y=(m n)^{2} \in A$
80 (c)
We have,
$A_{1} \subset A_{2} \subset A_{3} \subset \cdots \subset A_{100}$
$\therefore \bigcup_{i=1}^{100} A_{i}=A_{100} \Rightarrow n\left(\bigcup_{i=1}^{100} A_{i}\right)=n\left(A_{100}\right)=101$
81 (c)
Let the total population of town be x.

$\therefore \quad \frac{25 x}{100}+\frac{15 x}{100}-1500+\frac{65 x}{100}=x$
$\Rightarrow \quad \frac{105 x}{100}-x=1500$
$\Rightarrow \quad \frac{5 x}{100}=1500$
$\Rightarrow \quad x=30000$
82 (d)
As A, B, C are pair wise disjoints. Therefore,
$A \cap B=\phi, B \cap C=\phi$ and $A \cap C=\phi$
$\Rightarrow A \cap B \cap C=\phi \Rightarrow(A \cup B \cup C) \cap(A \cap B \cap C)$

$$
=\phi
$$

83
(b)

Clearly, $R=\{(1,3),(3,1),(2,2)\}$
We observe that R is symmetric only

84 (d)
Given figure clearly represents

$$
(A-B) \cup(B-A)
$$

85 (d)
R_{4} is not a relation from A to B, because
$(7,9) \in R_{4}$ but $(7,9) \notin A \times B$
86 (c)
R is reflexive if it contains $(1,1),(2,2),(3,3)$
$\because(1,2) \in R,(2,3) \in R$
$\because R$ is symmetric, if $(2,1),(3,2) \in R$
Now,
$R=\{(1,1),(2,2),(3,3),(2,1),(3,2),(2,3),(1,2)\}$
R will be transitive, if $(3,1),(1,3) \in R$
Thus, R becomes an equivalence relation by
adding $(1,1)(2,2)(3,3),(2,1)(3,2),(1,3),(3,1)$.
Hence, the total number of ordered pairs is 7
(c)

The set A is the set of all points on the hyperbola $x y=1$ having its two branches in the first and third quadrants, while the set B is the set of all points on $y=-x$ which lies in second and four quadrants. These two curves do not intersect.
Hence, $A \cap B=\phi$.
88 (b)
Since R is an equivalence relation on set A.
Therefore $(a, a) \in R$ for all $a \in A$.
Hence, R has at least n ordered pairs
89 (d)
It is given $A_{1} \subset A_{2} \subset A_{3} \subset A_{4} \ldots \subset A_{50}$
$\therefore \bigcup_{i=11}^{50} A_{i}=A_{11}$
$\Rightarrow n\left(\bigcup_{i=11}^{50} A_{i}\right)=n\left(A_{11}\right)=11-1=10$
90 (d)
We have,
$b N=\{b x \mid x \in \mathrm{~N}\}=$ Set of positive integral multiples of b
c $N=\{c x \mid x \in N\}=$ Set of positive integral multiples of c
$\therefore c N=\{c x \mid x \in N\}=$ Set of positive integral multiples of b and c both
$\Rightarrow d=1$.c. m. of b and c
91 (d)
Clearly, R is an equivalence relation
(b)

Number of element is $S=10$
And $\quad A=\{(x, y) ; x, y \in S, x \neq y\}$
\therefore Number of element in $A=10 \times 9=90$
93
(c)

Clearly,
$R=\{(\mathrm{BHEL}, \mathrm{SAIL}),(\mathrm{SAIL}, \mathrm{BHEL}),(\mathrm{BHEL}, \mathrm{GAIL})$, (GAIL, BHEL), (BHEL, IOCL), (IOCL, BHEL) $\}$
We observe that R is symmetric only
94 (a)
According to the given condition,

$$
\begin{aligned}
& 2^{m}=112+2^{n} \\
\Rightarrow & 2^{m}-2^{n}=112 \\
\Rightarrow & m=7, n=4
\end{aligned}
$$

96 (c)
We have,
$p=\frac{(n+2)\left(2 n^{5}+3 n^{4}+4 n^{3}+5 n^{2}+6\right)}{n^{2}+2 n}$
$\Rightarrow p=2 n^{4}+3 n^{3}+4 n^{2}+5 n+\frac{6}{n}$
Clearly, $p \in Z^{+}$iff $\mathrm{n}=1,2,3,6$. So, A has 4 elements
97 (b)
Clearly,
$x \in A-B \Rightarrow x \in A$ but $x \notin B$
$\Rightarrow x$ is a multiple of 3 but it is not a multiple of 5
$\Rightarrow x \in A \cap \bar{B}$
98
(b)

Total drinks $=3$ (ie, milk, coffee, tea).

Total number of students who take any of the drink is 80 .
\therefore The number of students who did not take any of three drinks $=100-80=20$
100 (d)
$n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$=12+9-4=17$
Hence, $n\left[(A U B)^{c}\right]=n(U)-n(A \cup B)$

$$
=20-17=3
$$

101 (c)
We have,
$\{x \in Z:|x-3|<4\}=\{x \in Z:-1<x<7\}$

$$
=\{0,1,2,3,4,5,6\}
$$

and,
$\{x \in Z:|x-4|<5\}=\{x \in Z:-1<x<9\}$
$=\{0,1,2,3,4,5,6,7,8\}$
$\therefore\{x \in Z:|x-3|<4\} \cap\{x \in Z:|x-4|<5\}$
$=\{0,1,2,3,4,5,6\}$
102 (a)
Since R is reflexive relation on A
$\therefore(a, a) \in R$ for all $a \in A$
\Rightarrow The minimum number of ordered pairs in R is
n
Hence, $m \geq n$
104 (c)
We have, $y=\frac{4}{x}$ and $x^{2}+y^{2}=8$
Solving these two equations, we have
$x^{2}+\frac{16}{x^{2}}=8 \Rightarrow\left(x^{2}-4\right)=0 \Rightarrow x= \pm 2$
Substituting $x= \pm 2$ in $y=\frac{4}{x}$, we get $y= \pm 2$
Thus, the two curves intersect at two points only $(2,2)$ and ($-2,2$). Hence, $A \cap B$ contains just two points
105 (b)
Let $(a, b) \in R$. Then,
$|a+b|=a+b \Rightarrow|b+a|=b+a \Rightarrow(b, a) \in R$
$\Rightarrow R$ is symmetric
106 (c)
Minimum possible value of $n(B \cap C)$ is
$n(A \cap B \cap C)=3$
107 (a)
To make R a reflexive relation, we must have $(1,1),(3,3)$ and $(5,5)$ in it. In order to make R a symmetric relation, we must inside $(3,1)$ and $(5,3)$ in it.
Now, $(1,3) \in R$ and $(3,5) \in R$. So, to make R a transitive relation, we must have, $(1,5) \in R$. But, R must be symmetric also. So, it should also contain $(5,1)$. Thus, we have
R
$=\{(1,1),(3,3),(5,5),(1,3),(3,5),(3,1),(5,3),(1,5)$,
Clearly, it is an equivalence relation on $A\{1,3,5\}$
108 (b)
Clearly, $(3,3) \notin R$. So, R is not reflexive. Also, $(3,1)$ and $(1,3)$ are in R but $(3,3) \notin R$. So, R is not transitive
But, R is symmetric as $R=R^{-1}$
109 (b)
Let $(a, b) \in R$. Then,
$(a, b) \in R \Rightarrow(b, a) \in R^{-1} \quad\left[B y\right.$ def. of $\left.R^{-1}\right]$
$\Rightarrow(b, a) \in R \quad\left[\because R=R^{-1}\right]$
So, R is symmetric
110 (b)
We have,
$A_{2} \subset A_{3} \subset A_{4} \subset \cdots \subset A_{10}$
$\therefore \bigcap_{n=3}^{10} A_{n}=A_{3}=\{2,3,5\}$
111 (c)
The possible sets are $\{ \pm 2, \pm 3\}$ and $\{ \pm 4, \pm 1\}$;
therefore, number of elements in required set is 8 .
112 (a)

Given, $A=\{a, b, c\}, \quad B=\{b, c, d\} \quad$ and $C=\{a, d, c\}$
Now, $A-B=\{a, b, c\}-\{b, c, d\}=\{a\}$
And $B \cap C=\{b, c, d\} \cap\{a, d, c\}=\{c, d\}$
$\therefore(A-B) \times(B \cap C)=\{a\} \times\{c, d\}$

$$
=\{(a, c),(a, d)\}
$$

113 (c)
Given, $n(M)=100, n(P)=70, \quad n(C)=40$

$$
n(M \cap P)=30, \quad n(M \cap C)=28
$$

$$
n(P \cap C)=23 \text { and } n(M \cap P \cap C)=18
$$

$\therefore n\left(M \cap P^{\prime} \cap C^{\prime}\right)=n\left[M \cap\left(P \cap C^{\prime}\right)\right]$
$=n(M)-n[M \cap(P \cap C)]$
$=n(M)-[n(M \cap P)+n(M \cap C)-n(M \cap P$ $\cap C)]$
$=100-[30+28-18=60]$
114 (d)
$B \cap C=\{4\}$.
$\therefore A \cup(B \cap C)=\{1,2,3,4\}$
115 (c)
$\because \quad A \subseteq B$
$\therefore \quad B \cup A=B$
116 (c)
$n\left((A \cup B)^{c}\right\}=n(\mathcal{U})-n(A \cup B)$
$=n(\mathcal{U})-\{n(A)+n(B)-n(A \cap B)\}$
$=100-(50+20-10)=40$
117 (d)
If $A=\{1,2,3\}$, then $R=\{(1,1),(2,2),(3,3),(1,2)\}$
is reflexive on A but it is not symmetric
So, a reflexive relation need not be symmetric
The relation 'is less than' on the set Z of integers is antisymmetric but it is not reflexive
119 (c)
Clearly,
Required percent $=20+50-10=60 \%$
$[\because n(A \cup B)=n(A)+n(B)-n(A \cap B)]$
120 (c)
The greatest possible value of $n(A \cap B \cap C)$ is the least amongst the values $n(A \cap B), n(B \cap C)$ and $n(A \cap C)$ i.e. 10
121 (d)
Clearly, $S \subset R$
$\therefore S \cup R=R$ and $S \cap R=S$
$\Rightarrow(S \cap R)-(S \cap R)=$ Set of rectangles which are not squares
122 (b)
Clearly, the relation is symmetric but it is neither reflexive nor transitive

123 (d)
Since, power set is a set of all possible subsets of a set.
$\therefore \quad P(A)=\{\phi,\{x\},\{y\},\{x, y\}\}$
124 (b)
We have,
$N=10,000, n(A)=40 \%$ of $10,000=4000$,
$n(B)=2000, n(C)=1000, n(A \cap B)=500$,
$n(B \cap C)=300, n(C \cap A)=400, n(A \cap B \cap C)$ $=200$
Now,
Required number of families $=$
$n(A \cap \bar{B} \cap \bar{C})=n\left(A \cap(B \cup C)^{\prime}\right)$
$=n(A)-n(A \cap(B \cup C))$
$=n(A)-n((A \cap B) \cup(A \cap C))$
$=n(A)-\{n(A \cap B)+n(A \cap C)-n(A \cap B \cap C)\}$
$=4000-(500+400-200)=3300$
126 (b)
$A \cap \phi=\phi$ is true.
128 (c)
$A \cap B=\{2,4\}$
$\{A \cap B\} \subseteq\{1,2,4\},\{3,2,4\},\{6,2,4\},\{1,3,2,4\}$,
$\{1,6,2,4\},\{6,3,2,4\},\{2,4\},\{1,3,6,2,4\} \subseteq A \cup B$
$\Rightarrow \quad n(C)=8$
129 (a)
We have,
$p=\frac{7 n^{2}+3 n+3}{n} \Rightarrow p=7 n+3+\frac{3}{n}$
It is given that $n \in N$ and p is prime. Therefore,
$n=1$
$\therefore n(A)=1$
130 (d)
$(Y \times A)=\{(1,1),(1,2),(2,1),(2,2)$,
$(3,1),(3,2),(4,1),(4,2),(5,1),(5,2)\}$
$\operatorname{And}(Y \times B)=\{(1,3),(1,4),(1,5),(2,3)$,
$(2,4),(2,5),(3,3),(3,4),(3,5),(4$
$(4,4),(4,5),(5,3),(5,4),(5,5)\}$
$\therefore(Y \times A) \cap(Y \times B)=\phi$
131 (b)
Given, $n(A)=4, \quad n(B)=5$ and $n(A \cap B)=3$
$\therefore n[(A \times B) \cap(B \times A)]=3^{2}=9$
132 (c)
$U=\left\{x: x^{5}+6 x^{4}+11 x^{3}-6 x^{2}=0\right\}=\{0,1,2,3\}$
$A=\left\{x: x^{2}-5 x+6=0\right\}=\{2,3\}$
And $B=\left\{x: x^{2}-3 x+2=0\right\}=\{2,1\}$
$\therefore \quad(A \cap B)^{\prime}=U-(A \cap B)$
$=\{0,1,2,3\}-\{2\}=\{0,1,3\}$
133 (c)
We have,
$R=\{(1,3),(1,5),(2,3),(2,5),(3,5),(4,5)\}$
$\Rightarrow R^{-1}=\{(3,1),(5,1),(3,2),(5,2),(5,3),(5,4)\}$
Hence, R o $R^{-1}=\{(3,3),(3,5),(5,3),(5,5)\}$
134 (b)
Let $(a, b) \in R$. Then,
a and b are born in different months $\Rightarrow(b, a) \in R$ So, R is symmetric
Clearly, R is neither reflexive nor transitive
136 (c)

From the venn diagram
$A-(A-B)=A \cap B$
137 (b)
Required number of subsets is equal to the number of subsets containing 2 and any number of elements from the remaining elements 1 and 4 So, required number of elements $=2^{2}=4$
140 (b)
Clearly, 2 is a factor of 6 but 6 is not a factor of 2 . So, the relation 'is factor of is not symmetric.
However, it is reflexive and transitive
142
(d)

Clearly, R is neither reflexive, nor symmetric and not transitive
143 (d)
Clearly, given relation is an equivalence relation
145 (c)
Each subset will contain 3 and any number of elements from the remaining 3 elements 1,2 and 4

So, required number of elements $=2^{2}=8$
146 (a)
Since $(1,1),(2,2),(3,3) \in R$. Therefore, R is reflexive. We observe that $(1,2) \in R$ but $(2,1) \notin R$, therefore R is not symmetric.
It can be easily seen that R is transitive
147 (b)

From figures (i), (ii) and (iii), we get $(A \cup B \cup C) \cap\left(A \cap B^{C} \cap C^{C}\right) \cap C^{C}=\left(B^{C} \cap C^{C}\right)$

A relation on set A is a subset of $A \times A$
Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Then, a reflexive relation on A must contain at least n elements
$\left(a_{1}, a_{1}\right),\left(a_{2}, a_{2}\right), \ldots,\left(a_{n}, a_{n}\right)$
\therefore Number of reflexive relations on A is $2^{n^{2}-n}$ Clearly, $n^{2}-n=n, n^{2}-n=n-1, n^{2}-n=$ $n^{2}-1$ have solutions in N but $n^{2}-n=n+1$ is not solvable in N.
So, 2^{n+1} cannot be the number of reflexive relations on A
149 (a)
We have,
$A \Delta B=(A \cup B)-(A \cup B)$
$\Rightarrow n(A \Delta B)=n(A)+n(B)-2 n(A \cap B)$
So, $n(A \Delta B)$ is greatest when $n(A \cap B)$ is least
It is given that $A \cap B \neq \phi$. So, least number of elements in $A \cap B$ can be one
\therefore Greatest possible value of $n(A \Delta B)$ is
$7+6-2 \times 1=11$
150 (d)
Let $R=\{(x, y): y=a x+b\}$. Then,
$(-2,-7),(-1,-4) \in R$
$\Rightarrow-7=-2 a+b$ and $-4=-a+b$
$\Rightarrow a=3, b=-1$
$\therefore y=3 x-1$
Hence, $R=\{(x, y): y=3 x-1,-2 \leq x<3, x \in$ Z\}
151 (a)
Let \mathcal{U} be the set of all students in the school. Let
C, H and B denote the sets of students who played
cricket, hockey and basketball respectively. Then,
$n(\mathcal{U})=800, n(C)=224, n(H)=240, n(B)$

$$
=336
$$

$n(H \cap B)=64, n(B \cap C)=80, n(H \cap C)=40$
and, $n(H \cap B \cap C)=24$
\therefore Required number
$=n\left(C^{\prime} \cap H^{\prime} \cap B^{\prime}\right)$
$=n(C \cup H \cup B)^{\prime}$
$=n(\mathcal{U})-n(C \cup H \cup B)$
$=n(\mathcal{U})-\{n(C)+n(H)+n(B)-n(C \cap H)$
$-n(H \cap B)-n(B \cap C)$
$+n(C \cap H \cap B)\}$
$=800-\{224+240+336+336-64-80-40$
$+24\}$
$=800-640=160$
152 (c)
According to question,

$$
2^{m}-2^{n}=48
$$

This is possible only if $m=6$ and $n=4$.

153 (a)
From Venn-Euler's Diagram it is clear that

$(A \cup B)^{\prime} \cup\left(A^{\prime} \cap B\right)=A^{\prime}$
154 (b)
For any $a, b \in R$
$a \neq b \Rightarrow b \neq a \Rightarrow R$ is symmetric
Clearly, $2 \neq-3$ and $-3 \neq 2$, but $2=2$. So, R is not transitive.
Clearly, R is not reflexive
155 (a)
We have,
$A \Delta B=(A \cup B)-(A \cup B)$
$\Rightarrow n(A \Delta B)=n(A)+n(B)-2 n(A \cap B)$
So, $n(A \Delta B)$ is greatest when $n(A \cap B)$ is least It is given that $A \cap B \neq \phi$. So, least number of elements in $A \cap B$ can be one
\therefore Greatest possible value of $n(A \Delta B)$ is
$7+6-2 \times 1=11$
156 (c)
Since $x \nless x$, therefore R is not reflexive
Also, $x<y$ does not imply that $y<x$
So R is not symmetric
Let $x R y$ and $y R z$. Then, $x<y$ and $y<z . \Rightarrow x<$ z i. e. $x R z$
Hence, R is transitive
157 (b)
Number of elements common to each set is
$99 \times 99=99^{2}$.
158 (b)
Given, $A \cap X=B \cap X=\phi$
$\Rightarrow A$ and X, B and X are disjoint sets.
Also, $\quad A \cup X=B \cup X \Rightarrow A=B$
160 (c)
Clearly, R is reflexive and symmetric but it is not transitive
161 (d)
Clearly, R is an equivalence relation on A
162 (b)
Let $x \in A \cap B$. Then,
$x \in A$ and $x \in B$
$\Rightarrow x$ is a multiple of 4 and x is a multiple of 6
$\Rightarrow x$ is a multiple of 4 and 6 both
$\Rightarrow x$ is a multiple of 12
163 (d)
Any relation on A is a subset of $A \times A$ which
contains 36 elements. Hence, maximum number of elements in a relation on A can be 36
164 (d)
Clearly, none of the statements is true
165 (c

$$
\text { Now, } \begin{aligned}
A-(A-B) & =A-\left(A-B^{C}\right) \\
& =A \cap\left(A \cap B^{C}\right)^{C} \\
& =A \cap\left(A^{C} \cup B\right) \\
& =\left(A \cap A^{C}\right) \cup(A \cap B) \\
& =A \cap B
\end{aligned}
$$

166 (a)
We have,
$A \cap B=\phi$ and $A \subset C$
$\Rightarrow A \cap B=\phi$ and $A \cup C=C$

$$
\begin{aligned}
\therefore n(A \cup B \cup C) & =n(A \cup C \cup B)=n(C \cup B) \\
& =n(B \cup C)
\end{aligned}
$$

167 (a)
For any $a \in N$, we have $a \mid a$
Therefore R is reflexive
R is not symmetric, because $a R b$ does not imply that $b R a$
168 (d)
We have,
$\frac{n^{3}+5 n^{2}+2}{n}=n^{2}+5 n+\frac{2}{n}$
$\therefore \frac{n^{3}+5 n^{2}+2}{n}$ is an integer, if $\frac{2}{n}$ is an integer
$\Rightarrow n= \pm 1, \pm 2$
\Rightarrow A consists of four elements viz. $-1,1,-2,2$
(c)

We have,
$c+e+f+g=100$
$a+d+e+g=70$
$b+d+f+g=40$
$e+g=30$
$g+f=28$
$d+g=23$

$g=18$
$\therefore g=18, f=10, e=12, d=15, a=35, b=7, c$

$$
=60
$$

170 (b)
Since the value of a determinant charges by minus sign by interchanging any two rows or columns. Therefore, corresponding to every element Δ of B there is an element Δ^{\prime} in C obtained by interchanging two adjacent rows (or columns) in
Δ. It follows from this that $n(B) \leq n(C)$
Similarly, we have $n(C) \leq n(B)$
Hence, $n(B)=n(C)$
171 (b)
Obviously the relation is not reflexive and transitive but it is symmetric, because

$$
x^{2}+y^{2}=1 \Rightarrow y^{2}+x^{2}=1
$$

