

9.SEQUENCES AND SERIES

Single Correct Answer Type

1.	The value of $7 \log \frac{16}{15} + 5 \log \frac{16}{15}$	$\log \frac{25}{24} + 3 \log \frac{81}{80}$, is		
	a) log 2	b) log 3	c) log 5	d) None of these
2.	The sum of first two terms	s of an infinite G.P. is 1 and	every term is twice the sur	n of the successive terms.
	Its first term is			
	a) 1/3	b) 2/3	c) 3/4	d) 1/4
3.	If $\log_8 \{\log_2(\log_3(x^2 - 4x))\}$	$(+ 85)) = \frac{1}{3}$, then <i>x</i> equals	to	
	a) 5	b) 4	c) 3	d) 2
4.	If the sum of first <i>n</i> natu	ral numbers is $rac{1}{78}$ times t	the sum of their cubes, th	en the value of <i>n</i> is
	a) 11	b) 12	c) 13	d) 14
5.	If <i>n</i> geometric means betw	veen a and b be $G_1, G_2, \dots G_n$	_n and a geometric mean be	<i>G</i> , then the true relation is
	a) $G_1 G_2 \dots G_n = G$	b) $G_1 G_2 \dots G_n = G^{1/n}$	c) $G_1 G_2 \dots G_n = G^n$	d) $G_1 G_2 \dots G_n = G^{2/n}$
6.	Consider an infinite geom	etric series with first term	a and common ratio r. If it	s sum is 4 and the second
	term is $\frac{3}{4}$, then			
	a) $a = \frac{4}{r} = \frac{3}{r}$	b) $a = 2, r = \frac{3}{2}$	c) $a = \frac{3}{r} = \frac{1}{r}$	d) $a = 3 r = \frac{1}{2}$
7	7,7 7 The sum of a terms of the	8	$2^{7} 2$	4
7.	1 me sum of <i>n</i> terms of u	the series $1 + (1 + x) + (1 + x)$	$(1 + x + x^{-}) + \dots$ will be $x(1 - x^{n})$	
	a) $\frac{1-x}{1-x}$		b) $\frac{x(1-x)}{1-x}$	
	$n(1-x) - x(1-x^n)$		d) None of these	
	c) $\frac{1}{(1-x)^2}$	-		
8.	If the <i>m</i> th term of HP be <i>n</i>	and <i>n</i> th term be <i>m</i> , then t	he <i>r</i> th term will be	
	a) $\frac{r}{r}$	b) $\frac{mn}{m}$	c) $\frac{mn}{m}$	d) $\frac{mn}{m}$
q	r^{7x}	r + 1	r	r - 1
).	In the expansion of $\frac{e^{5}}{e^{5}}$	$\frac{1}{x}$, the constant term is		
	a) 0	b) 1	c) 2	d) None of these
10.	The value of $2^{\log_3 7} - 7^{\log_3 7}$	$^{3^2}$ is		
11	a) log 2	b) 1	c) 0	d) None of these
11.	If x, y, z are in AP, then $\frac{1}{2}$	$\frac{1}{\sqrt{x}+\sqrt{y}}$, $\frac{1}{\sqrt{z}+\sqrt{x}}$, $\frac{1}{\sqrt{y}+\sqrt{z}}$ are in	1	
	a) AP	b) GP	c) HP	d) AP and HP
12.	If x , $2x + 2$, $3x + 3$, are	e in GP, then the fourth t	erm is	
	a) 27.5	b) 4 <i>x</i> + 5	c) -13.5	d) 4 <i>x</i> + 4
13.	The sum of the infinite s	series		
	$\frac{1}{2}\left(\frac{1}{3} + \frac{1}{4}\right) - \frac{1}{4}\left(\frac{1}{3^2} + \frac{1}{4^2}\right) +$	$\frac{1}{6}\left(\frac{1}{3^3} + \frac{1}{4^3}\right) - \dots$ is equal	to	
	a) $\frac{1}{2}\log 2$	b) $\log \frac{3}{5}$	c) $\log \frac{5}{3}$	d) $\frac{1}{2}\log\frac{5}{3}$
14.	If <i>a</i> , <i>b</i> , <i>c</i> be in A.P., <i>b</i> , <i>c</i> , <i>d</i> a	re in G.P., and <i>c, d, e</i> are in	H.P., then <i>a, c, e</i> will be in	
	a) A.P.	b) G.P.	c) H.P.	d) None of these
15.	$\operatorname{If} \log_y x = \log_z y = \log_x z$	r, then		
	a) $x < y < z$	b) $x > y \ge z$	c) $x < y \le z$	d) $x = y = z$
16.	It three numbers are in H.	P., then the numbers obtain	ned by subtracting half of t	he middle number from
	each of them are in	h) C D		d) None of these
	aj n.r.	טן ע.ר.	сј II.F.	uj none or these

17.	7. The sum of the series $5.05 + 1.212 + 0.29088 + \infty$ is				
	a) 6.93378	b) 6.87342	c) 6.74384	d) 6.64474	
18.	α,β are the roots of the equilation	quation $x^2 - 3x + a = 0$ ar	$d\gamma, \delta$ are the roots of the δ	equation $x^2 - 12x + b =$	
0. If α , β , γ , δ form an increasing GP, then (a, b) is equal to					
	a) (3.12)	b) (12. 3)	c) (2.32)	d) (4, 16)	
19	$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(-1)^{n}}$		-) (-))		
171	$\sum_{r=0}^{n} \frac{1}{n_{C_r}}$ equals				
	a) $\frac{(n+1)}{(n+2)} [1 + (-1)^n]$	b) 0	c) $\frac{2(n+1)}{(n+2)}$	d) $\frac{n}{n+1}[1+(-1)^n]$	
20.	If $\log_{10} 2 = 0.3010$, then l	$og_5 64 =$			
	a) 602	b) 233	202	d) 633	
	233	602	633	$\frac{1}{202}$	
21.	Suppose <i>a</i> , <i>b</i> , <i>c</i> are in AP a	and a^2 , b^2 , c^2 are in GP. If a	$< b < c$ and $a + b + c = \frac{3}{2}$	then the value of <i>a</i> is	
	1	1	1 1	1 1	
	a) $\frac{-}{2\sqrt{2}}$	b) $\frac{1}{2\sqrt{2}}$	c) $\frac{1}{2} - \frac{1}{\sqrt{2}}$	d) $\frac{1}{2} - \frac{1}{\sqrt{2}}$	
22	$2\sqrt{2}$ The sum unto $(2n \pm 1)$ to	$2\sqrt{3}$ rms of the series $a^2 - (a \perp$	$(a \pm 2d)^2 = (a \pm 2d)^2$	$d^{2} \pm w$ is	
22.	a) $a^2 + 3nd^2$	-2	u) = (u = 2u) - (u = 3t	<i>x</i>) ¹ , 13	
	b) $a^2 + 2nad + n(n-1)d$	12			
	c) $a^2 + 3nad + n(n-1)a^2$	l^2			
	d) $a^2 + 2nad + n(2n + 1)$	$)d^{2}$			
23.	Let the sequence, a_1, a_2, a_3	a_3, \ldots, a_{2n} , form an AP, then	$a_1^2 - a_2^2 + a_3^2 - \ldots + a_{2n-1}^2 -$	a_{2n}^2 is equal to	
	a) $\frac{n}{2n-1}(a_1^2-a_{2n}^2)$	b) $\frac{2n}{n-1}(a_{2n}^2 - a_1^2)$	c) $\frac{n}{n+1}(a_1^2 + a_{2n}^2)$	d) None of these	
24.	Let the positive numbers	a, b, c, d be in AP, then abc	abd, acd, bcd are		
	a) Not in AP/GP/HP	b) In AP	c) In GP	d) In HP	
25	Which are of the followin	- is source that the set	han	-	
L J.	which one of the followin	g is correct? If $a = b = c$, t	nen		
23.	a) <i>a</i> , <i>b</i> , <i>c</i> are in HP	g is correct? If $a = b = c$, t	b) <i>a.b.c</i> are in AP but not	in GP	
23.	a) a, b, c are in HP c) a, b, c are in AP as well	g is correct? If $a = b = c$, t as in GP	b) <i>a, b, c</i> are in AP but not d) None of the above	in GP	
26.	a) a, b, c are in HP c) a, b, c are in AP as well If a, b, c be in G.P. and $a + b$	g is correct? If $a = b = c$, t as in GP $x \cdot b + x \cdot c + x$ in H.P., then	b) a, b, c are in AP but not d) None of the above the value of x is (a, b, c) are	in GP e distinct numbers)	
25.	a) a, b, c are in HP c) a, b, c are in AP as well If a, b, c be in G.P. and $a + a$	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b	b) a, b, c are in AP but not d) None of the above the value of x is $(a, b, c$ are c) a	in GP e distinct numbers) d) None of these	
23. 26. 27	a) a, b, c are in HP c) a, b, c are in AP as well If a, b, c be in G.P. and $a +$ a) c Let a be a positive num	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b her such that the arithm	b) a, b, c are in AP but not d) None of the above the value of x is $(a, b, c$ are c) a	in GP e distinct numbers) d) None of these reds their geometric	
23. 26. 27.	which one of the following a) a, b, c are in HP c) a, b, c are in AP as well If a, b, c be in G.P. and $a +$ a) c Let a be a positive num mean by 1. Then, the year	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithme	b) a, b, c are in AP but not d) None of the above the value of x is $(a, b, c$ are c) a etic mean of a and 2 exce	in GP e distinct numbers) d) None of these eeds their geometric	
23. 26. 27.	which one of the following a) a, b, c are in HP c) a, b, c are in AP as well If a, b, c be in G.P. and $a +$ a) c Let a be a positive num mean by 1. Then, the value	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithme lue of a is	b) a, b, c are in AP but not d) None of the above the value of x is $(a, b, c$ are c) a etic mean of a and 2 exce	in GP e distinct numbers) d) None of these eeds their geometric	
23. 26. 27.	a) a, b, c are in HP c) a, b, c are in AP as well If a, b, c be in G.P. and $a + a$ a) c Let a be a positive num mean by 1. Then, the val	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithmolue of a is b) 5	 b) a, b, c are in AP but not d) None of the above the value of x is (a, b, c are c) a etic mean of a and 2 exce c) 9 	in GP e distinct numbers) d) None of these reds their geometric d) 8	
 26. 27. 28. 	which one of the following a) a, b, c are in HP c) a, b, c are in AP as well If a, b, c be in G.P. and $a + a$ a) c Let a be a positive num mean by 1. Then, the val a) 3 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} \dots \infty$ is equ	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithmo- lue of a is b) 5 aal to	 b) a, b, c are in AP but not d) None of the above a the value of x is (a, b, c are c) a etic mean of a and 2 exce c) 9 	in GP e distinct numbers) d) None of these eeds their geometric d) 8	
 26. 27. 28. 	which one of the following a) a, b, c are in HP c) a, b, c are in AP as well If a, b, c be in G.P. and $a + a$ a) c Let a be a positive number mean by 1. Then, the value a) 3 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} \dots \infty$ is equal a) 3	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithmol lue of a is b) 5 ial to b) 6	 b) a, b, c are in AP but not d) None of the above a the value of x is (a, b, c are c) a c) 9 c) 9 	in GP e distinct numbers) d) None of these reds their geometric d) 8 d) 12	
 26. 27. 28. 29. 	which one of the following a) <i>a</i> , <i>b</i> , <i>c</i> are in HP c) <i>a</i> , <i>b</i> , <i>c</i> are in AP as well If <i>a</i> , <i>b</i> , <i>c</i> be in G.P. and <i>a</i> + a) <i>c</i> Let <i>a</i> be a positive num mean by 1. Then, the val a) 3 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} \dots \infty$ is equal a) 3 Let $S = \frac{8}{2} + \frac{16}{2} + \frac{128}{2}$	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithme lue of a is b) 5 ual to b) 6 then	 b) <i>a</i>, <i>b</i>, <i>c</i> are in AP but not d) None of the above a the value of <i>x</i> is (<i>a</i>, <i>b</i>, <i>c</i> are c) <i>a</i> c) 9 c) 9 	in GP distinct numbers) d) None of these eds their geometric d) 8 d) 12	
 26. 27. 28. 29. 	which one of the following a) a, b, c are in HP c) a, b, c are in AP as well If a, b, c be in G.P. and $a + a$ a) c Let a be a positive number mean by 1. Then, the value a) 3 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} \dots \infty$ is eque a) 3 Let $S = \frac{8}{5} + \frac{16}{15} + \dots + \frac{128}{2^{18}+1}$	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithme lue of a is b) 5 ial to b) 6 , then	 b) <i>a</i>, <i>b</i>, <i>c</i> are in AP but not d) None of the above a the value of <i>x</i> is (<i>a</i>, <i>b</i>, <i>c</i> are c) <i>a</i> c) 9 c) 9 1056 	in GP distinct numbers) d) None of these eeds their geometric d) 8 d) 12	
 26. 27. 28. 29. 	which one of the following a) a, b, c are in HP c) a, b, c are in AP as well If a, b, c be in G.P. and $a + a$ a) c Let a be a positive numbre mean by 1. Then, the value a) 3 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} \dots \infty$ is equal a) 3 Let $S = \frac{8}{5} + \frac{16}{15} + \dots + \frac{128}{2^{18}+1}$ a) $S = \frac{1088}{545}$	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithme lue of a is b) 5 tal to b) 6 then b) $S = \frac{545}{4000}$	b) <i>a</i> , <i>b</i> , <i>c</i> are in AP but not d) None of the above the value of <i>x</i> is (<i>a</i> , <i>b</i> , <i>c</i> are c) <i>a</i> etic mean of <i>a</i> and 2 exce c) 9 c) 9 c) $S = \frac{1056}{545}$	tin GP e distinct numbers) d) None of these their geometric d) 8 d) 12 d) $S = \frac{545}{1055}$	
 26. 27. 28. 29. 30. 	which one of the following a) a, b, c are in HP c) a, b, c are in AP as well If a, b, c be in G.P. and $a + a$ a) c Let a be a positive number mean by 1. Then, the value a) 3 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} \dots \infty$ is equal a) 3 Let $S = \frac{8}{5} + \frac{16}{15} + \dots + \frac{128}{2^{18} + 1}$ a) $S = \frac{1088}{545}$	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithme lue of a is b) 5 tal to b) 6 t, then b) $S = \frac{545}{1088}$	b) <i>a</i> , <i>b</i> , <i>c</i> are in AP but not d) None of the above the value of <i>x</i> is (<i>a</i> , <i>b</i> , <i>c</i> are c) <i>a</i> etic mean of <i>a</i> and 2 exce c) 9 c) 9 c) $S = \frac{1056}{545}$	the distinct numbers) d) None of these the distinct geometric d) 8 d) 12 d) $S = \frac{545}{1056}$	
 26. 27. 28. 29. 30. 	which one of the following a) <i>a</i> , <i>b</i> , <i>c</i> are in HP c) <i>a</i> , <i>b</i> , <i>c</i> are in AP as well If <i>a</i> , <i>b</i> , <i>c</i> be in G.P. and <i>a</i> + a) <i>c</i> Let <i>a</i> be a positive numbre mean by 1. Then, the value a) 3 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} \dots \infty$ is eque a) 3 Let $S = \frac{8}{5} + \frac{16}{15} + \dots + \frac{128}{2^{18}+1}$ a) $S = \frac{1088}{545}$ Three non-zero real numbre	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithme lue of a is b) 5 tal to b) 6 t, then b) $S = \frac{545}{1088}$ pers form an A.P. and the se	b) <i>a</i> , <i>b</i> , <i>c</i> are in AP but not d) None of the above the value of <i>x</i> is (<i>a</i> , <i>b</i> , <i>c</i> are c) <i>a</i> etic mean of <i>a</i> and 2 exce c) 9 c) 9 c) $S = \frac{1056}{545}$ quares of these numbers tak	in GP e distinct numbers) d) None of these reds their geometric d) 8 d) 12 d) $S = \frac{545}{1056}$ ken in the same order form	
 26. 27. 28. 29. 30. 	which one of the following a) <i>a</i> , <i>b</i> , <i>c</i> are in HP c) <i>a</i> , <i>b</i> , <i>c</i> are in AP as well If <i>a</i> , <i>b</i> , <i>c</i> be in G.P. and <i>a</i> + a) <i>c</i> Let <i>a</i> be a positive num mean by 1. Then, the value a) 3 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} \dots \infty$ is eque a) 3 Let $S = \frac{8}{5} + \frac{16}{15} + \dots + \frac{128}{2^{18}+1}$ a) $S = \frac{1088}{545}$ Three non-zero real number a G.P. Then, then number	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithme lue of a is b) 5 tal to b) 6 then b) $S = \frac{545}{1088}$ bers form an A.P. and the se of all possible values of cor	b) <i>a</i> , <i>b</i> , <i>c</i> are in AP but not d) None of the above the value of <i>x</i> is (<i>a</i> , <i>b</i> , <i>c</i> are c) <i>a</i> etic mean of <i>a</i> and 2 exce c) 9 c) 9 c) $S = \frac{1056}{545}$ quares of these numbers taken nmon ratios of the G.P. is	in GP e distinct numbers) d) None of these eeds their geometric d) 8 d) 12 d) $S = \frac{545}{1056}$ ken in the same order form	
 26. 27. 28. 29. 30. 	which one of the following a) <i>a</i> , <i>b</i> , <i>c</i> are in HP c) <i>a</i> , <i>b</i> , <i>c</i> are in AP as well If <i>a</i> , <i>b</i> , <i>c</i> be in G.P. and <i>a</i> + a) <i>c</i> Let <i>a</i> be a positive number mean by 1. Then, the value a) 3 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} \dots \infty$ is eque a) 3 Let $S = \frac{8}{5} + \frac{16}{15} + \dots + \frac{128}{2^{18}+1}$ a) $S = \frac{1088}{545}$ Three non-zero real number a G.P. Then, then number a) 1	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithme lue of a is b) 5 ual to b) 6 , then b) $S = \frac{545}{1088}$ pers form an A.P. and the se of all possible values of cor b) 2	b) <i>a</i> , <i>b</i> , <i>c</i> are in AP but not d) None of the above the value of <i>x</i> is (<i>a</i> , <i>b</i> , <i>c</i> are c) <i>a</i> etic mean of <i>a</i> and 2 exce c) 9 c) 9 c) $S = \frac{1056}{545}$ quares of these numbers taken nmon ratios of the G.P. is c) 3	in GP e distinct numbers) d) None of these eeds their geometric d) 8 d) 12 d) $S = \frac{545}{1056}$ ken in the same order form d) None of these	
 26. 27. 28. 29. 30. 31. 	which one of the following a) <i>a</i> , <i>b</i> , <i>c</i> are in HP c) <i>a</i> , <i>b</i> , <i>c</i> are in AP as well If <i>a</i> , <i>b</i> , <i>c</i> be in G.P. and <i>a</i> + a) <i>c</i> Let <i>a</i> be a positive number mean by 1. Then, the value a) 3 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} \dots \infty$ is equal a) 3 Let $S = \frac{8}{5} + \frac{16}{15} + \dots + \frac{128}{2^{18}+1}$ a) $S = \frac{1088}{545}$ Three non-zero real number a) 1 The value of $\frac{\sqrt{2}-1}{\sqrt{2}} + \frac{3-2\sqrt{2}}{4}$	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithme lue of a is b) 5 ial to b) 6 c, then b) $S = \frac{545}{1088}$ bers form an A.P. and the se of all possible values of cor b) 2 $+ \frac{5\sqrt{2}-7}{6\sqrt{2}} + \frac{17-12\sqrt{2}}{16} + \dots + \dots$	b) <i>a</i> , <i>b</i> , <i>c</i> are in AP but not d) None of the above the value of <i>x</i> is (<i>a</i> , <i>b</i> , <i>c</i> are c) <i>a</i> etic mean of <i>a</i> and 2 exce c) 9 c) 9 c) $S = \frac{1056}{545}$ quares of these numbers take nmon ratios of the G.P. is c) 3 · + ad. inf., is	in GP e distinct numbers) d) None of these eeds their geometric d) 8 d) 12 d) $S = \frac{545}{1056}$ ken in the same order form d) None of these	
 26. 27. 28. 29. 30. 31. 	which one of the following a) <i>a</i> , <i>b</i> , <i>c</i> are in HP c) <i>a</i> , <i>b</i> , <i>c</i> are in AP as well If <i>a</i> , <i>b</i> , <i>c</i> be in G.P. and <i>a</i> + a) <i>c</i> Let <i>a</i> be a positive num mean by 1. Then, the val a) 3 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} \dots \infty$ is equal a) 3 Let $S = \frac{8}{5} + \frac{16}{15} + \dots + \frac{128}{2^{18}+1}$ a) $S = \frac{1088}{545}$ Three non-zero real number a G.P. Then, then number a) 1 The value of $\frac{\sqrt{2}-1}{\sqrt{2}} + \frac{3-2\sqrt{2}}{4}$ a) $\log_e 2$	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithme lue of a is b) 5 tal to b) 6 then b) $S = \frac{545}{1088}$ bers form an A.P. and the set of all possible values of cor b) 2 $+ \frac{5\sqrt{2}-7}{6\sqrt{2}} + \frac{17-12\sqrt{2}}{16} + \dots + \cdots$ b) $\log_e \sqrt{2}$	b) <i>a</i> , <i>b</i> , <i>c</i> are in AP but not d) None of the above a the value of <i>x</i> is (<i>a</i> , <i>b</i> , <i>c</i> are c) <i>a</i> etic mean of <i>a</i> and 2 exce c) 9 c) 9 c) $S = \frac{1056}{545}$ quares of these numbers taken nmon ratios of the G.P. is c) 3 · + ad. inf., is c) $\log_e 3$	in GP e distinct numbers) d) None of these eeds their geometric d) 8 d) 12 d) $S = \frac{545}{1056}$ ken in the same order form d) None of these d) $\log_e \sqrt{3}$	
 26. 27. 28. 29. 30. 31. 32. 	which one of the following a) <i>a</i> , <i>b</i> , <i>c</i> are in HP c) <i>a</i> , <i>b</i> , <i>c</i> are in AP as well If <i>a</i> , <i>b</i> , <i>c</i> be in G.P. and <i>a</i> + a) <i>c</i> Let <i>a</i> be a positive number mean by 1. Then, the value a) 3 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} \dots \infty$ is equal a) 3 Let $S = \frac{8}{5} + \frac{16}{15} + \dots + \frac{128}{2^{18} + 1}$ a) $S = \frac{1088}{545}$ Three non-zero real number a) 1 The value of $\frac{\sqrt{2}-1}{\sqrt{2}} + \frac{3-2\sqrt{2}}{4}$ a) $\log_e 2$ If $\frac{\log x}{2} = \frac{\log y}{12 + \log x} = -\frac{10}{2}$	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithmediue of a is b) 5 ual to b) 6 c, then b) $S = \frac{545}{1088}$ pers form an A.P. and the set of all possible values of corr b) 2 $+ \frac{5\sqrt{2}-7}{6\sqrt{2}} + \frac{17-12\sqrt{2}}{16} + \dots + \cdots$ b) $\log_e \sqrt{2}$ $\log_e \sqrt{2}$	b) <i>a</i> , <i>b</i> , <i>c</i> are in AP but not d) None of the above a the value of <i>x</i> is (<i>a</i> , <i>b</i> , <i>c</i> are c) <i>a</i> etic mean of <i>a</i> and 2 exce c) 9 c) 9 c) $S = \frac{1056}{545}$ quares of these numbers taken nmon ratios of the G.P. is c) 3 · + ad. inf., is c) $\log_e 3$ $c^{-a} =$	in GP e distinct numbers) d) None of these eeds their geometric d) 8 d) 12 d) $S = \frac{545}{1056}$ ken in the same order form d) None of these d) $\log_e \sqrt{3}$	
 26. 27. 28. 29. 30. 31. 32. 	which one of the following a) a, b, c are in HP c) a, b, c are in AP as well If a, b, c be in G.P. and $a + a$ a) c Let a be a positive number mean by 1. Then, the value a) 3 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} \dots \infty$ is equal a) 3 Let $S = \frac{8}{5} + \frac{16}{15} + \dots + \frac{128}{2^{18}+1}$ a) $S = \frac{1088}{545}$ Three non-zero real number a) 1 The value of $\frac{\sqrt{2}-1}{\sqrt{2}} + \frac{3-2\sqrt{2}}{4}$ a) $\log_e 2$ If $\frac{\log x}{a^2 + ab + b^2} = \frac{\log y}{b^2 + bc + c^2} = \frac{1}{a}$	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithmediue of a is b) 5 ial to b) 6 c, then b) $S = \frac{545}{1088}$ bers form an A.P. and the set of all possible values of corr b) 2 $+ \frac{5\sqrt{2}-7}{6\sqrt{2}} + \frac{17-12\sqrt{2}}{16} + \dots + \dots$ b) $\log_e \sqrt{2}$ $\frac{\log z}{r^2 + ca + a^2}$, then $x^{a-b} \cdot y^{b-c} \cdot z$ b) -1	b) <i>a</i> , <i>b</i> , <i>c</i> are in AP but not d) None of the above a the value of <i>x</i> is (<i>a</i> , <i>b</i> , <i>c</i> are c) <i>a</i> etic mean of <i>a</i> and 2 exce c) 9 c) 9 c) 9 c) $S = \frac{1056}{545}$ quares of these numbers tak nmon ratios of the G.P. is c) 3 · + ad. inf., is c) $\log_e 3$ <i>c</i> - <i>a</i> = c) 1	in GP e distinct numbers) d) None of these seds their geometric d) 8 d) 12 d) $S = \frac{545}{1056}$ ken in the same order form d) None of these d) $\log_e \sqrt{3}$	
 26. 27. 28. 29. 30. 31. 32. 32. 	which one of the following a) <i>a</i> , <i>b</i> , <i>c</i> are in HP c) <i>a</i> , <i>b</i> , <i>c</i> are in AP as well If <i>a</i> , <i>b</i> , <i>c</i> be in G.P. and <i>a</i> + a) <i>c</i> Let <i>a</i> be a positive number mean by 1. Then, the value a) 3 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} \dots \infty$ is equal a) 3 Let $S = \frac{8}{5} + \frac{16}{15} + \dots + \frac{128}{2^{18}+1}$ a) $S = \frac{1088}{545}$ Three non-zero real number a G.P. Then, then number a) 1 The value of $\frac{\sqrt{2}-1}{\sqrt{2}} + \frac{3-2\sqrt{2}}{4}$ a) $\log_e 2$ If $\frac{\log x}{a^2+ab+b^2} = \frac{\log y}{b^2+bc+c^2} = \frac{1}{c}$ a) 0	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithmediue of a is b) 5 ual to b) 6 , then b) $S = \frac{545}{1088}$ pers form an A.P. and the set of all possible values of corr b) 2 $+ \frac{5\sqrt{2}-7}{6\sqrt{2}} + \frac{17-12\sqrt{2}}{16} + \dots + \dots$ b) $\log_e \sqrt{2}$ $\frac{\log z}{r^2 + ca + a^2}$, then $x^{a-b} \cdot y^{b-c} \cdot z$ b) -1	b) <i>a</i> , <i>b</i> , <i>c</i> are in AP but not d) None of the above a the value of <i>x</i> is (<i>a</i> , <i>b</i> , <i>c</i> are c) <i>a</i> etic mean of <i>a</i> and 2 exce c) 9 c) 9 c) $S = \frac{1056}{545}$ quares of these numbers taken nmon ratios of the G.P. is c) 3 · + ad. inf., is c) $\log_e 3$ <i>c</i> - <i>a</i> = c) 1	in GP e distinct numbers) d) None of these eeds their geometric d) 8 d) 12 d) $S = \frac{545}{1056}$ ken in the same order form d) None of these d) $\log_e \sqrt{3}$ d) 2	
 26. 27. 28. 29. 30. 31. 32. 33. 	which one of the following a) <i>a</i> , <i>b</i> , <i>c</i> are in HP c) <i>a</i> , <i>b</i> , <i>c</i> are in AP as well If <i>a</i> , <i>b</i> , <i>c</i> be in G.P. and <i>a</i> + a) <i>c</i> Let <i>a</i> be a positive number mean by 1. Then, the value a) 3 $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} \dots \infty$ is equal a) 3 Let $S = \frac{8}{5} + \frac{16}{15} + \dots + \frac{128}{2^{18} + 1}$ a) $S = \frac{1088}{545}$ Three non-zero real number a) 1 The value of $\frac{\sqrt{2}-1}{\sqrt{2}} + \frac{3-2\sqrt{2}}{4}$ a) $\log_e 2$ If $\frac{\log x}{a^2 + ab + b^2} = \frac{\log y}{b^2 + bc + c^2} = \frac{1}{c}$ a) 0 If $S = \frac{1}{1\cdot 2} - \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} - \frac{1}{4\cdot 5} - \frac{1}{2}$	g is correct? If $a = b = c$, t as in GP x, b + x, c + x in H.P., then b) b ber such that the arithmed lue of a is b) 5 hal to b) 6 c, then b) $S = \frac{545}{1088}$ bers form an A.P. and the second formula of a line of a li	b) <i>a</i> , <i>b</i> , <i>c</i> are in AP but not d) None of the above a the value of <i>x</i> is (<i>a</i> , <i>b</i> , <i>c</i> are c) <i>a</i> etic mean of <i>a</i> and 2 exce c) 9 c) 9 c) 9 c) $S = \frac{1056}{545}$ quares of these numbers taken nmon ratios of the G.P. is c) 3 · + ad. inf., is c) $\log_e 3$ $c^{-a} =$ c) 1	in GP e distinct numbers) d) None of these eeds their geometric d) 8 d) 12 d) $S = \frac{545}{1056}$ ken in the same order form d) None of these d) $\log_e \sqrt{3}$ d) 2	

34.	Sum of <i>n</i> terms of the fo	ollowing series $1^3 + 3^3 +$	$-5^3 + 7^3 + \dots$ is	
	a) $n^2(2n^2-1)$	b) $n^3(n-1)$	c) $n^3 + 8n + 4$	d) $2n^4 + 3n^2$
35.	If the sum of an infinitely	decreasing G.P. is 3, and th	e sum of the squares of its t	terms is 9/2, the sum of the
	cubes of the terms is			
	a) $\frac{105}{13}$	b) $\frac{108}{13}$	c) $\frac{729}{8}$	d) None of these
36.	If $x = 1 + a + a^2 + \dots \infty$	and $y = 1 + b + b^2 + \dots$	∞ where <i>a</i> and <i>b</i> are pro	per fractions, then
	$1 + ab + a^2b^2 + \dots \infty$ eq	juals		
	xy	x + y	$x^{2} + y^{2}$	d) None of these
	a) $\overline{y+x-1}$	b) $\frac{1}{x-y}$	c) $\frac{y}{x-y}$	
37.	Let the harmonic mean an	nd the geometric mean of t	wo numbers be in the ratio	n 4:5. The two numbers
	are in the ratio	h) 2 . 1	a) 2 . 1	d) 4 . 1
20	a) 1 : 1 If $\log (u^3 - 2u^2 - (u - 1))$	$D \mid Z : 1$	cj 3 : 1	a) 4 : 1
38.	$\lim_{x \to 2} \log_{x+2}(x^2 - 3x^2 - 6x + 6x)$	$F(\delta) = 3$ then x equals to	a) 2	d) Nora of these
20	a) 1 The number of colutions	UJZ	CJ 3	a) None of these
39.		$\frac{1000}{1000} = \frac{10000}{1000} = \frac{10000}{10000} = \frac{100000}{10000} = \frac{10000}{10000} = \frac{10000}{1000} = \frac{10000}{1000} = \frac{10000}{1000} = \frac{1000}{1000} =$	- 5) IS	d) 7
40	If the interior angles of a	nolygon are in A P with cou	mmon difference 5° and sm	allest angle is 120° then
10.	the number of sides of the	o nolvgon is	and shi	anest angle is 120, then
	a) 9 or 16	b) 9	c) 16	d) 13
41.	If the AM of two numbe	ers be A and GM be G, the	en the numbers will be	
	a) $A \pm (A^2 - G^2)$		b) $\sqrt{A} \pm \sqrt{A^2 - G^2}$	
	c) $A \pm \sqrt{(A+G)(A-G)}$)	d) $\frac{A \pm \sqrt{(A+G)(A-G)}}{2}$	<u>)</u>
42		$a = b = a\alpha + b$	Z	
72.	The determinant $\Delta = \begin{bmatrix} a \\ a \\ a \end{bmatrix}$	$b = c = b\alpha + c$ is even the back the	qual to zero, if	
	a) <i>a</i> , <i>b</i> , <i>c</i> are in A.P.			
	b) <i>a, b, c</i> are in G.P.			
	c) <i>a, b, c</i> are in H.P.			
	d) α is a root of $ax^2 + bx$	+c=0		
43.	The value of $0.0\overline{37}$, whe	ere $0.0\overline{37}$ stands for the r	number 0.0373737	, is
	a) 37/1000	b) 37/990	c) 1/37	d) 1/27
44.	If roots of the equation x^3	$x^3 - 12 x^2 + 39 x - 28 = 0$	are in A.P., then their comm	on difference will be
	a) ±1	b) ±2	c) ±3	d) ±4
45.	The sum of <i>n</i> terms of thr	ee AP's whose first term is	1 and common differences	are 1, 2, 3 respectively are
	S_1, S_2, S_3 respectively. The	e true relation is		
	a) $S_1 + S_3 = S_2$	b) $S_1 + S_3 = 2 S_2$	c) $S_1 + S_2 = 2 S_3$	d) $S_1 + S_2 = S_3$
46.	If $\log_x \{\log_4(\log_x(5x^2 + 4))\}$	$\{x^{3}\} = 0$, then		
47	a) Z	D J	CJ 4	a) 5 Of the terms is a small to
47.	If twice the 11th term o	of an AP is equal to / time	es its 21st term, then its 2	25th term is equal to
40	a) 24	b) 120	c) ()	d) None of these
48.	If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are any four co	nsecutive coefficients of an	iy expanded binomial, then	$\frac{a+b}{a}, \frac{b+c}{b}, \frac{c+a}{c}$ are in
	a) AP	b) GP	c) HP	d) None of these
49.				
	The coefficient of x^{n-2} in	the polynomial $(x - 1)(x - 1)$	$(x-2) \dots (x-n)$ is	
	The coefficient of x^{n-2} in a) $\frac{1}{24}n(n+1)(n-1)(3n)$	the polynomial $(x - 1)(x - i + 2)$	$(x-2) \dots (x-n)$ is	

c) $\frac{n(n+1)(2n+1)}{6}$ d) None of these 50. If *x*, *y*, *z* be three positive prime numbers. The progression in which \sqrt{x} , \sqrt{y} , \sqrt{z} can be three terms (not necessarily consecutive) is a) A.P. b) G.P. c) H.P. d) None of these 51. If x_1, x_2, x_3 as well as y_1, y_2, y_3 are in GP with the same common ratio, then the points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) b) Lie on an ellipse a) Lie on a straight line c) Lie on a circle d) Are vertices of a triangle 52. If α , β are the roots of the equation $ax^2 + bx + c = 0$, then $\log(a - bx + cx^2)$ is equal to a) $\log a + (\alpha + \beta)x + \frac{\alpha^2 + \beta^2}{2}x^2 + \frac{\alpha^3 + \beta^3}{3}x^3 + \cdots$ b) $\log a + (\alpha + \beta)x - \left(\frac{\alpha^2 + \beta^2}{2}\right)x^2 + \frac{\alpha^3 + \beta^3}{3}x^3 - \cdots$ c) $\log a - (\alpha + \beta) x - \frac{\alpha^2 + \beta^2}{2} x^2 - \frac{\alpha^3 + \beta^3}{2} x^3 - \cdots$ d) None of these 53. The sum of *n* terms of an A.P. is $3n^2 + 5$. The number of term which equals 159 is c) 27 d) None of these a) 13 b) 21 54. If the sum of the first n terms of a series be $5n^2 + 2n$, then its second term is c) 17 a) $\frac{56}{15}$ b) $\frac{27}{14}$ d) 16 55. If the AM and GM between two numbers are in the ratio *m*: *n*, then the numbers are in the ratio a) $m + \sqrt{m^2 + n^2}$: $m - \sqrt{m^2 + n^2}$ b) $m + \sqrt{n^2 - m^2}$: $m - \sqrt{n^2 - m^2}$ c) $m + \sqrt{m^2 - n^2}$: $m - \sqrt{m^2 - n^2}$ d) None of the above 56. If a, b, c are in G.P. and $\log_c a, \log_b c, \log_a b$ are in A.P., then the common difference of the A.P. is The value of $\frac{\log 49\sqrt{7} + \log 25\sqrt{5} - \log 4\sqrt{2}}{\log 17.5}$ is c) 1/2 d) 2/3 57. a) 5 c) $\frac{5}{2}$ d) $\frac{3}{2}$ 58. If x, y, z are in G.P. and x + 3, y + 3, z + 3 are in H.P., then a) v = 2b) y = 3d) y = 0c) y = 159. If a, b, c, d are in HP, then ab + bc + cd is equal to b) (a + b)(c + d)a) 3 ad c) 3 ac d) None of these 60. The sum of *n* terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \cdots$, is c) $n + 2^{-n} - 1$ a) $2^n - n - 1$ d) $2^n - 1$ 61. If $a^2 + 4b^2 = 12ab$, then $\log(a + 2b) =$ a) $\frac{1}{2}(\log a + \log b - 2)$ b) $\log \frac{a}{2} + \log \frac{b}{2} + \log 2$ c) $\frac{1}{2}(\log a + \log b + 4\log 2)$ d) $\frac{1}{2}(\log a - \log b + 4\log 2)$ 62. If $1^2 + 2^2 + 3^2 + \dots + 2003^2 = (2003)(4007)(334)$ and $1 \times 2003 + 2 \times 2002 + 3 \times 2001 + \dots + 2003 \times 10^{-1}$ 1 = (2003)(334)x, then x =a) 2005 c) 2003 d) 2001 b) 2004 63. The sum of $15^2 + 16^2 + 17^2 + ... + 30^2$ is equal to

	a) 8840	b) 8440	c) 8540	d) 8450
64.	The sum of the product	s of the numbers ± 1 , ± 2	, <u>+</u> n, taken two at a tin	ne is
	a) $\frac{-n(n+1)}{2}$	b) $\frac{n(n+1)(2n+1)}{6}$	c) $\frac{-n(n+1)(2n+1)}{6}$	d) 0
65.	If $(4.2)^x = (0.42)^y = 100$, then $\frac{1}{x} - \frac{1}{y} =$	-	
	a) 1	b) 2	c) $\frac{1}{2}$	d) —1
66.	The sum of the series 2{7	$^{-1} + 3^{-1} \cdot 7^{-3} + 5^{-1} \cdot 7^{-5} \cdot 7^{-5}$	+ … } is	
	a) $\log_e\left(\frac{4}{3}\right)$	b) $\log_e\left(\frac{3}{4}\right)$	c) $2\log_e\left(\frac{3}{4}\right)$	d) $2 \log_e \left(\frac{4}{3}\right)$
67.	Which term of the sequen	ice		
	(-8+18i), (-6+15i), (-6+	-4 + 12i), is purely ima	ginary?	
	a) 5th	b) 7th	c) 8th	d) 6th
68.	If $a^2 + 4b^2 = 12ab$, then	$\log(a+2b) =$		
	a) $\frac{1}{2}(\log a + \log b - \log 2)$)		
	b) $\log \frac{a}{2} + \log \frac{b}{2} + \log 2$			
	c) $\frac{1}{2}(\log a + \log b + 4\log b)$	2)		
	d) $\frac{1}{2}(\log a - \log b + 4\log a)$	2)		
69.	If $\frac{1}{\log_x 10} = \frac{2}{\log_a 10} - 2$, then	n x =		
	a) $\frac{a}{2}$	b) $\frac{a}{100}$	c) $\frac{a^2}{10}$	d) $\frac{a^2}{100}$
70.	If x, y, z are in H.P., then le	$\log(x+z) + \log(x-2y+z)$;) is equal to	
	a) $\log(x-z)$	b) $2\log(x - z)$	c) $3\log(x - z)$	d) $4 \log(x - z)$
71.	$If \log_e 2 \cdot \log_x 27 = \log_{10} 8$	$3.\log_e 10$, then $x =$		
	a) 1	b) 3	c) 2	d) 4
72.	If $\log_8 x = 2.5$ and $\log_2 y$	= 5, then $x =$		17
	a) $y^{3/2}$	b) 2 <i>y</i>	c) <i>y</i>	d) $\frac{y}{2}$
73.	The sum of the series 1^2 -	$+1+2^2+2+3^2+3+\cdots$	$+ n^2 + n$ is	2
	a) $\frac{n(n+1)}{2}$			
	b) $\left\{\frac{n(n+1)}{2}\right\}^2$			
	c) $\frac{n(n+1)(n+2)}{3}$			
	d) $\frac{n(n+1)(n+2)(n+3)}{4}$	<u>)</u>		
74.	For what value of <i>b</i> , will t	he roots of the equation co	$s x = b, -1 \le b \le 1$ when a	arranged in ascending order

a) -1 b) $\frac{\sqrt{3}}{2}$ c) $\frac{1}{\sqrt{2}}$ d) 1/275. Let *a* and *b* be roots of $x^2 - 3x + p = 0$ and let *c* and *d* be the roots of $x^2 - 12x + q = 0$, where *a*, *b*, *c*, *d* form an increasing GP Then the ratio of q + p: q - p is equal to a) 8:7 b) 11:10 c) 17:15 d) None of these

76. The coefficient of x^n in the expansion of $\frac{(a-bx)}{e^x}$ is

a)
$$\frac{(-1)^n}{n!}(a+bn)$$
 b) $\frac{(-1)^n}{n!}(b+an)$ c) $\frac{(-1)^{n+1}}{n!}(a+bn)$ d) None of the above
77. If pth term of an arithmetic progression is q and the q th term is p , then 10th term is
 $a) p - q + 10$ b) $p + q + 11$ c) $p + q - 9$ d) $p + q - 10$
78. If a, b, c are digits, then the rational number represented by 0. cababab... is
 $a) \frac{cab}{900}$ b) $\frac{99c + 10a + b}{99c + ba}$ c) $\frac{99c + ba}{990}$ d) $\frac{99c + 10a + b}{990}$
79. The sum of 24 terms of the following series $\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{324...15}$
 $a) 300$ b) $300\sqrt{2}$ c) $200\sqrt{2}$ d) None of these
80. If $\log(2a - 3b) = \log a - \log b$, then $a =$
 $a) \frac{3b^2}{2b-1}$ b) $\frac{3b}{2b-1}$ c) $\frac{b^2}{2b+1}$ d) $\frac{3b^2}{2b+1}$
71. If $(2^n, 3^{n_2} = 100)$, then x belongs to
 $a) (0, 3)$ b) $(1, 3)$ c) $(1, 2)$ d) $(0, 2)$
82. The value of $1 - \log_2 2 + \frac{(\log_2 x)^2}{x!} + \cdots$, is
 $a) 2$ b) $\frac{1}{2}$ c) $\log_2 3$ d) None of these
83. $\frac{1}{2} - \frac{1}{22^2} + \frac{1}{32^2} - \frac{1}{42^2} + \cdots$ is equal to
 $a) \frac{1}{4}$ b) $\log_3 (\frac{3}{4})$ c) $\log_e (\frac{3}{2})$ d) $\log_e (\frac{2}{3})$
84. If $\frac{1}{a} + \frac{1}{a} + \frac{1}{a} - \frac{1}{a} + \frac{1}{c-b}} = 0$ and $b \neq a + c$, are in
 $a) G.P.$ b) B.P. c) A.P. d) None of these
85. If $4a^2 + 9b^2 + 16c^2 = 2(3ab + 6bc + 4ca)$, where a, b, c are non-zero numbers, then a, b, c are in
 $a) AP$ b) GP c) HP d) None of these
86. If the sum of the first n natural numbers is $1/5$ times the sum of their squares, then the value of n is
 $a) 5$ b) 6 C? 7 d) 8
87. Let a_1, a_2, a_3, \dots be terms of an AP. If $\frac{a_1^{n_1}a_2^{n_2 + \dots + a_0}{a_1^{n_1}a_2^{n_2 + \dots + a_0}} = \frac{2}{a^2}, p \neq q$, then $\frac{a_a}{a_{21}}$ equals
 $a) \frac{7}{2}$ b) $\frac{2}{7}$ c) $\frac{1}{21}$ d) $\frac{411}{11}$ d) $\frac{411}{11}$
88. Which of the following statement is correct?
a) If each earn of an AP a number is added or subtracted, then the series so obtained is also an AP.
b) The ruth term of geometric series $\sqrt{2} + \sqrt{6} + \sqrt{18} + \dots$ is
 $a) 121(\sqrt{6} + \sqrt{2})$ b) 243($\sqrt{3} + 1$ c) $\frac{127}{\sqrt{3} - 1}$ d) 242($\sqrt{3} - 1$)
90. If 4a^2 + 9b^2 + 16c^2 = 2(

94.	The sum of the series $1 \cdot 3$	$3 \cdot 5 + 2 \cdot 5 \cdot 8 + 3 \cdot 7 \cdot 11 + 3 \cdot 7 \cdot 1$	upto <i>n</i> term is	
	$n(n+1)(9n^2+23n+1)$	13)	h) $n(n-1)(9n^2+23n+1)$	12)
	6		6	
	c) $\frac{(n+1)(9n^2+23n+1)}{(n+1)(9n^2+23n+1)}$	3)	d) $\frac{n(9n^2 + 23n + 13)}{n(9n^2 + 23n + 13)}$	
	6	. 2	6	
95.	$1^3 - 2^3 + 3^3 - 4^3 + \dots + 1^3$	$9^3 =$		
	a) 425	b) -425	c) 475	d) -475
96.	The value of $\log_2 \log_2 \log_2$	$_{1}256 + 2 \log_{\sqrt{2}} 2$, is		
	a) 2	b) 3	c) 5	d) 7
97.	If $1 + \sin x + \sin^2 x + \dots$	upto $\infty = 4 + 2\sqrt{3}, 0 < 0$	$x < \pi$ and $x \neq \frac{\pi}{2}$, then x i	s equal to
	$\pi 5\pi$	$2\pi \pi$	<u></u> π 2π	$\pi \pi$
	a) $\frac{1}{3}, \frac{1}{6}$	$\frac{5}{3}, \frac{-}{6}$	$c_{j} = \frac{1}{3}, \frac{1}{3}$	a) <u>6</u> , <u>3</u>
98.	If the sides of sides of a rig	ght angled triangle are in A	P, then the sides are propo	rtional to
	a) 1 : 2 : 3	b) 2 : 3 : 4	c) 3:4:5	d) 4 : 5 : 6
99.	The values of $3\log\frac{81}{31} + 51$	$\log \frac{25}{24} + 7 \log \frac{16}{15}$ is		
	a) log 2	$^{\circ}_{24}$ $^{\circ}_{15}$	c) 1	d) ()
100	Consider the following sta	otement :		u) u
100	1 If a denotes the <i>n</i> th te	rm of an AP then		
	$a_{n+k} + a_{n-k}$	ini or un m , chen		
	$a_n = \frac{n + k - n - k}{2}$			
	2. In an AP, if the sum of <i>n</i>	\imath term is equal to the sum ϕ	of <i>n</i> terms, then the sum of	(m+n) term is always
	zero.			
	3. The sum to infinity of the	the series $\frac{1}{2} + \frac{1}{12} + \frac{1}{12} + \dots$ is	<u>1</u>	
	Which of the statement is	given above is/are correct	2 -7	
	a) (1)and (2)	b) (2)and (3)	 c) (3)and (1)	d) All (1) (2) and (3)
101	If $\frac{1}{(a^{x} + a^{5x})} = a^{-1}$	$a x \perp a x^2 \perp \pm thon 2$	$a + 2^3 a + 2^5 a + ia$	agual to
101	$\prod_{e^{3x}} (e^{x} + e^{x}) = u_0 + u_0$	$u_1 x + u_2 x + \cdots$, then 20	$u_1 + 2^* u_3 + 2^* u_5 + \cdots$ is	equal to
	a) e	b) <i>e</i> ⁻¹	c) 1	d) 0
102	The value of $a^{\frac{\log_b(\log_b x)}{\log_b a}}$, is			
	a) $\log_a x$	b) $\log_{h} x$	c) $\log_{x} a$	d) $\log_{x} b$
103	If a, a, a, a, a, are to	erms of an AP such that $\frac{1}{2}$	$-+\frac{1}{1}++\frac{1}{1}-$	10 and $a_2 + a_{100} = 50$
	11 u ₁ , u ₂ , u ₃ ,, u ₄₀₀₁ are t		$a_2 a_2 a_3 a_{4000} a_{4001}$	$10 \ \text{and} \ u_2 + u_{4000} = 50$,
	then $ a_1 - a_{4001} $ is equal	to	2.40	
4.0.4	a) 20	b) 30	c) 40	d) None of these
104.	If p, q, r are in A.P., then p	th, qth and rth terms of any	y G.P. are in	
	aj A.P.			
	D) U.P.	ema ava in A D		
	d) None of these	rins are in A.P.		
105	The sum $1(11) \pm 2(21) \pm 1$	2(21) + + n(n1) ago to		
105	111e sull $1(1:) + 2(2:) + 2(2:) + 2(2:) + 3($	5(5:)++n(n:) equal to b) $(n \pm 1)! = (n = 1)!$	c) $(n \pm 1)! = 1!$	d) $2(nl) - 2n - 1$
106	a) $S(n;) + n - S$ The sixth term of an A P is	b) $(n + 1)$: $-(n - 1)$:	(n + 1) = 1	$\frac{1}{2(n!)} = 2n = 1$
100	nroduct a a a least is gi	s equal to 2 the value of the	e common unierence of the	A.I. WINCH MAKES the
	product $u_1u_4u_5$ least is gr	b) $r = 5/4$	c) $r = 2/3$	d) None of these
107	If the sum to first <i>n</i> torn	$J_{A} = J_{A}$ ns of the AD 7 A A is 7	40 then the value of <i>n</i> is	a none of these
107	a) 1Λ	h) 15		d) 17
100	uj 14 m) h h			uj 17
1110	Throo numbers the sec	num in 1E and in AD If the		
100	Three numbers whose s	sum is 15 are in AP. If the	ey are added by 1, 4 and 1	19 respectively they are
100	in GP. The numbers are	sum is 15 are in AP. If the	ey are added by 1, 4 and 1	b N and the section of the section o

109	If $1 + \cos \alpha + \cos^2 \alpha + \dots \circ$	$\infty = 2 - \sqrt{2}$, then α , ($0 < \alpha$	$<\pi$) is	
	a) $\frac{\pi}{8}$	b) $\frac{\pi}{6}$	c) $\frac{\pi}{4}$	d) $\frac{3\pi}{4}$
110	Let α , β are the roots of f	$f(x) = ax^2 + bx + c, a \neq 0$	and $\Delta = b^2 - 4ac$. If $\alpha + \beta$, $\alpha^2 + \beta^2$ and $\alpha^3 + \beta^3$ are in
	a) $\Delta \neq 0$	b) $b\Delta = 0$	c) $c\Delta = 0$	d) $bc \neq 0$
111	. If <i>n</i> geometric means be in	nserted between <i>a</i> and <i>b</i> , th	hen the <i>n</i> th geometric mea	n will be
	a) $a\left(\frac{b}{a}\right)^{\frac{n}{n-1}}$	b) $a\left(\frac{b}{a}\right)^{\frac{n-1}{n}}$	c) $a\left(\frac{b}{a}\right)^{\frac{n}{n+1}}$	d) $a\left(\frac{b}{a}\right)^{\frac{1}{n}}$
112	The value of a/a	(a)	(a)	" (a)
	$(x+y)(x-y) + \frac{1}{2!}(x+y)(x-y) + \frac{1}{2!}(x+y)(x-y)(x-y) + \frac{1}{2!}(x+y)(x-y)(x-y)(x-y) + \frac{1}{2!}(x+y)(x-y)(x-y)(x-y)(x-y)(x-y)(x-y)(x-y)(x-$	$y)(x-y)(x^2+y^2)$		
	$+\frac{1}{2}(x+y)(x-y)(x^4+y)(x^$	$y^4 + x^2 y^2) + \cdots$, is		
	a) $e^{x^2} + e^{y^2}$	b) $e^{x^2} + e^{y^2}$	c) $e^{x^2 - y^2}$	d) $e^{x^2 + y^2}$
113	The value of 2. $\overline{357}$ is			
	a) $\frac{2355}{2}$	b) $\frac{2355}{2}$	c) $\frac{2355}{2}$	d) None of these
111	1001	⁵ , 999	^o 1111	
114	. If x , 1, z are in A.P. and x , z	2, <i>z</i> are in G.P., then <i>x</i> , 4, <i>z</i> a	re in	d) Norro of these
115	a) AP The sum of the series	DJ G.P.	CJ H.P.	a) None of these
115	$1^{2} \cdot 2^{2} \cdot 3^{2} \cdot 4^{2} \cdot 5^{2}$			
	$\frac{1}{1!} + \frac{2}{2!} + \frac{3}{3!} + \frac{1}{4!} + \cdots$	·, is		
	a) 5 <i>e</i>	b) 3 <i>e</i>	c) 7 <i>e</i>	d) 2 <i>e</i>
116	. If $\log_{10} 343 = 2.5353$, the	n the least positive integer	<i>n</i> such that $7^n > 10^5$, is	
	a) 1	b) 6	c) 5	d) 4
117	If <i>a</i> , <i>b</i> , <i>c</i> are three distinct	positive real numbers whi	ch are in HP, then $\frac{3a+2b}{2a-b} + \frac{3a+2b}{2a-b}$	$\frac{3c+2b}{2c-b}$ is
	a) Greater than or equal to	o 10	b) Less than or equal to 1	0
	c) Only equal to 10		d) None of the above	-
118	$\int \frac{\log x}{\log x} = \frac{\log y}{\log x} = \frac{\log z}{\log x}$, then	xyz is equal to	,	
	a-b $b-c$ $c-a$, even		-) 1	د ر ا
110	x^{3n}	$\begin{array}{c} \text{D} \int 1 \\ r^{3n-2} \\ r^{3$	c_{j-1}	u) 2
117	: If $a = \sum_{n=0}^{\infty} \frac{x}{(3n)!}$, $b = \sum_{n=0}^{\infty} \frac{x}{(3n)!}$	$\sum_{n=1}^{\infty} \frac{x}{(3n-2)!}$ and $c = \sum_{n=1}^{\infty} \frac{x}{(3n-2)!}$	$\frac{1}{(1-1)!}$, then the value of a^3 +	$b^{3} + c^{3} - 3 abc$ is
120	a) I	b) 0	C) - I	d -2
120	Two sequences $< a_n > a_n$	$d < b_n > are defined by a_n$	$a_n = \log\left(\frac{5^{n+1}}{3^{n-1}}\right)$, $b_n = \left\{\log\left(\frac{5^{n+1}}{3^{n-1}}\right)\right\}$	$\left\{\frac{2}{3}\right\}$, then
	a) < a_n > is an A.P. and <	$b_n > $ is a G.P.		
	b) $< a_n >$ and $< b_n >$ bot	th are G.P.		
	c) $< a_n >$ and $< b_n >$ bot	th are A.P.		
	d) $< b_n >$ is a G.P. and $< b_n < b_n <$	$b_n >$ is neither an A.P nor a	ı G.P.	
121	Sum to n terms of the seri	$es \frac{1}{1, 2, 3, 4} + \frac{1}{2, 3, 4, 5} + \frac{1}{3}$	$\frac{1}{4.5.6}$ +, is	
	a) $\frac{n^3}{2}$	-		
	3(n+1)(n+2)(n+3))		
	b) $\frac{n+6n-3n}{6(n+2)(n+3)(n+4)}$	<u>)</u>		
	$15n^2 + 7n$			
	$\frac{1}{4n(n+1)(n+5)}$			
	d) $\frac{n^3 + 6n^2 + 11n}{n^3 + 6n^2 + 11n}$	_		
4.0-	18(n+1)(n+2)(n+3)	3)		
- 1 - 1 - 1	It the sum of an infinite CI	Land the sum of aquare of	ita tarm ia 7 than the come	non ratio of the first sories

122. If the sum of an infinite GP and the sum of square of its term is 3, then the common ratio of the first series is

a) 1 b)
$$\frac{1}{2}$$
 c) $\frac{2}{3}$ d) $\frac{3}{2}$
123. The nth term of the series $\frac{2}{1+} + \frac{1^{n}+2^{2}}{1+2^{n}+4} + \frac{1^{n}+2^{n}+3^{n}}{1+2^{n}+4} + \dots$ will be
a) $n^{2} + 2n + 1$ b) $\frac{n^{2} + 2n + 1}{4}$ c) $\frac{n^{2} + 2n + 1}{4}$ d) $\frac{n^{2} - 2n + 1}{4}$
124. If log 2, log (2x - 1) and log (2t + 3) are in A.P., then 2, $2^{x} - 1$, $2^{x} + 3$ are in
a) A.P. b) B.P. c) G.P. d) None of these
125. If log, $a + \log_{4} b + \log_{4} c = 2$
 $\log_{6} a + \log_{5} b + \log_{7} c = 2$
 $\log_{6} a + \log_{6} b + \log_{6} c = 2$, then
a) $a = \frac{2}{3}, b = \frac{2}{3}, c = \frac{3}{3}$
c) $a = \frac{2}{3}, b = \frac{2}{3}, c = \frac{2}{3}$
() $a = \frac{2}{3}, b = \frac{3}{3}, c = \frac{2}{3}$
() $a = \frac{2}{3}, b = \frac{3}{3}, c = \frac{2}{3}$
126. If the pth term of an AP be q and qth term be p, then its rth term will be
a) $p + q + r$ b) $p + q - r$ c) $p + r - q$ d) $p - q - r$
127. The sum of the series $\frac{1}{2} + \frac{1}{q} + \frac{1}{a} + \frac{1}{a} + \cdots$ is equal to
a) $(\frac{e^{2} - 1}{2}$ b) $(\frac{e^{2} - 1)^{2}}{2e}$ c) $(\frac{e^{2} - 1}{2e})$ d) $(\frac{e^{2} - 2}{e})$
128. If lal < 1 and lbl < 1, then the sum of the series $a(a + b) + a^{2}(a^{2} + b^{2}) + a^{2}(a^{2} + b^{3}) + \cdots$ up to σ , is
a) $\frac{n}{a} - \frac{a}{a} + \frac{ab}{1-ab}$ b) $\frac{a^{2}}{1-a^{2}} + \frac{ab}{1-ab}$ c) $\frac{b}{1-b} + \frac{4}{1-a}$ d) $\frac{b^{2} - 2}{1-b^{2}} + \frac{ab}{1-ab}$
129. If $0 < y > 2^{1/3}$ and $x(y^{2} - 1) = 1$, then $\frac{1}{x} + \frac{2}{3x^{2}} + \frac{2}{3x^{2}} + \frac{2}{3x^{2}} + \frac{2}{3x^{2}} + \frac{1}{3x^{2}} + \frac{1}{a}$
a) $\log\left(\frac{y^{3}}{1-y^{3}}\right)$ b) $\log\left(\frac{y^{3}}{1-y^{3}}\right)$ c) $\log\left(\frac{1}{2y^{3}} - (y)^{\frac{3}{2}}$ for all $n \in N$, then
 $a_{1}a_{n}a_{n}(a_{0}b_{1})$ be two sequences given by $a_{n}(x)^{\frac{1}{2}} + (y)^{\frac{1}{2}}$ and $b_{n}=(x)^{\frac{2}{2}} - (y)^{\frac{3}{2}}$ for all $n \in N$, then
 $a_{1}a_{n}a_{n}(a_{0}b_{1})$ be two sequences given by $a_{n}(x)^{\frac{1}{2}} + (y)^{\frac{1}{2}}$ and $b_{n}=(x)^{\frac{2}{2}} - (y)^{\frac{3}{2}}$ for all $n \in N$, then
 $a_{1}a_{n}a_{n}(a_{0}b_{n})$ be two sequences given by $a_{n}(x)^{\frac{1}{2}} + (y)^{\frac{1}{2}}$ and $b_{n}=(x)^{\frac{2}{2}} - (y)^{\frac{3}{2}}$ for all $n \in N$, then
 $a_{1}a_$

	a) 0	b) 1	c) 2	d) 3
137.	If $a_1, a_2, \dots a_n$ are in arit	hmetic progression, whe	re $a_1 > 0$ for all <i>i</i> .	
	Then, $\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}}$	$+\dots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}$ is equal	l to	
	a) $\frac{n^2(n+1)}{2}$	b) $\frac{n-1}{\sqrt{a_1} + \sqrt{a_n}}$	c) $\frac{n(n-1)}{2}$	d) None of these
138.	Let $n(> 1)$ be a positive in $n^2 + \ldots + n^{127}$), is	nteger then the largest inte	ger m such that $(n^m + 1)$ d	ivides $(1 + n +$
	a) 32	b) 63	c) 64	d) 127
139.	If 1, $\log_3 \sqrt{(3^{1-x}+2)}$, le	$\log_3(4.3^x - 1)$ are in AP, t	then <i>x</i> equals	
	a) log ₃ 4	b) 1 – log ₃ 4	c) 1 − log ₄ 3	d) log ₄ 3
140.	The value of $\log_5\left(1+\frac{1}{5}\right)$	$+\log_5\left(1+\frac{1}{6}\right)+\log_5\left(1+\frac{1}{6}\right)$	$\left(\frac{1}{7}\right) + \cdots$	
	$+\log_5\left(1+\frac{1}{624}\right)$ is			
	a) 5	b) 4	c) 3	d) 2
141.	In the expansion of 2 log	$g_e x - \log_e(x+1) - \log$	$x_{e}(x-1)$ the coefficient of	f x^{-4} is
	a) $\frac{1}{2}$	b) —1	c) 1	d) None of these
142.	If <i>a</i> , <i>b</i> , <i>c</i> are three unequal	l positive quantities in H.P.,	then	
	a) $a^{3/2} + c^{3/2} > 2b^{1/2}$	b) $a^5 + c^5 > 2b^5$	c) $a^2 + c^2 > 2b^3$	d) None of these
143.	If the arithmetic mean of	of a and b is $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$, the	en the value of <i>n</i> is	
	a) —1	b) ()	c) 1	d) None of these
144.	If <i>G</i> is the GM of the prorespectively, then <i>G</i> is e	duct of <i>r</i> set of observati equal to	on with geometric mean	s <i>G</i> ₁ , <i>G</i> ₂ , <i>G</i> _r
	a) $\log G_1 + \log G_2 + \ldots +$	$\log G_n$	b) <i>G</i> ₁ , <i>G</i> ₂ ,, <i>G</i> _r	
	c) $\log G_1$, $\log G_2$,, \log	G_n	d) None of the above	
145.	The sum of all 2 digit odd	numbers is		
	a) 2475	b) 2530	c) 4905	d) 5049
146.	The sum of series $\frac{1}{1.2.3}$ +	$-\frac{1}{3.4.5} + \frac{1}{5.6.7} + \dots \infty$ is equ	al to	
	a) $\log_e 2 - \frac{1}{2}$	b) log _e 2	c) $\log_e 2 + \frac{1}{2}$	d) $\log_{e} 2 + 1$
147.	If $\log_a ab = x$, then the value 1	lue of $\log_b ab$ is	<i>at</i>	
	a) $\frac{x-1}{x}$	b) $\frac{x}{x-1}$	c) $\frac{x}{x+1}$	d) $\frac{x+1}{x}$
148.	The value of $1.1! + 2.2!$	+ 3.3! + + n. n! is		
	a) (<i>n</i> + 1)!	b) $(n + 1)! + 1$	c) $(n + 1)! - 1$	d) None of these
149.	The value of $\log_2[\log_2\{\log_2]$	$g_3(\log_3 27^3)$] is		
150	a) 1 The sum to <i>n</i> terms of the	b) 0	c) 3	d) 2
150.	n(n+1)(2n+1)	Series $2^{-} + 4^{-} + 6^{-} + \dots$ is 2n(n+1)(2n+1)	n(n+1)(2n+1)	n(n+1)(2n+1)
	a) $\frac{1}{3}$	b) $\frac{1}{3}$	c) $\frac{1}{6}$	d) <u>- 9</u>
151.	If arithmetic mean of tw	vo positive numbers is A,	their geometric mean is	G and harmonic mean is
	H, then H is equal to			
	a) G^2/A	b) A^2/G^2	c) A/G^{2}	d) G/A^2
152.	The sum of the infinite s	series $1 + \frac{1}{2!} + \frac{1.3}{4!} + \frac{1.3.5}{6!} + \frac{1}{6!}$	is	
	a) <i>e</i>	b) e^2	c) \sqrt{e}	d) $\frac{1}{2}$
				e

153.	If a_1, a_2, \dots, a_n are in AP w	vith common difference d, t	hen the sum of the series	
	$\sin d$ (cosec a_1 cosec a_2 +	$-\cos e c a_2 \csc a_3 + \dots + \cos a_3 + \dots + \infty$	sec a_{n-1} cosec a_n) is	
	a) $\sec a_1 - \sec a_n$	b) $\cot a_1 - \cot a_n$	c) $\tan a_1 - \tan a_n$	d) cosec $a_1 = \operatorname{cosec} a_n$
154.	The sum of a GP with co	ommon ratio 3 is 364 and	l last term is 243, then th	e number of terms is
	a) 6	b) 5	c) 4	d) 10
155.	If <i>a</i> , <i>b</i> , <i>c</i> be respectively the	he <i>p</i> th, <i>q</i> th and <i>r</i> th terms of	a HP., then	
	$\Lambda = \begin{bmatrix} bc & ca & ab \\ n & a & r \end{bmatrix}$ equals			
	$\begin{bmatrix} p & q & r \\ 1 & 1 & 1 \end{bmatrix}$ equals			
	a) 1	b) 0	c) -1	d) None of these
156.	If $a\left(\frac{1}{b}+\frac{1}{c}\right)$, $b\left(\frac{1}{c}+\frac{1}{a}\right)$, $c\left(\frac{1}{c}+\frac{1}{a}\right)$	$\left(\frac{1}{a} + \frac{1}{b}\right)$ are in A.P., then		
	a) <i>a, b, c</i> are in A.P.	b) $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.	c) <i>a</i> , <i>b</i> , <i>c</i> are in H.P.	d) $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in G.P
157.	If $\log(x+z) + \log(x-2y)$	$(y + z) = 2\log(x - z)$, then $z = 2\log(x - z)$	<i>x, y, z</i> are in	
	a) H.P.	b) G.P.	c) A.P.	d) None of these
158.	If <i>x</i> , <i>y</i> , <i>z</i> are three consecu	itive positive integers, then		
	$\frac{1}{2}\log_e x + \frac{1}{2}\log_e z + \frac{1}{2xz+2}$	$\frac{1}{1} + \frac{1}{3} \left(\frac{1}{2 x z + 1} \right)^3 + \cdots$ is equal	l to	
	a) $\log_e x$	b) $\log_e y$	c) $\log_e z$	d) None of these
159.	The value of $9^{1/3} \times 9^{1/9} \times$	$(9^{1/27} \times) \infty$, is		
1.0	a) 9	b) 1	c) 3	d) None of these
160.	The coefficient of x^n in	the series $1 + \frac{a+bx}{1!} + \frac{(a+bx)}{1!}$	$\frac{(a+bx)^2}{2!} + \frac{(a+bx)^3}{3!} = \dots \infty$ is	(1) "
	a) $\frac{(ab)^n}{a}$	b) $e^{b} \cdot \frac{a^{n}}{d}$	c) $e^a \cdot \frac{b^n}{a}$	d) e^{a+b} . $\frac{(ab)^n}{a+b}$
1(1	n!	n!	n!	n!
101.	If the 7 ^{cm} term of an H.P.1	s 1/10 and 12 th term is 1/2	5, then 20 th term is	1
	a) $\frac{1}{37}$	b) $\frac{1}{41}$	c) $\frac{1}{45}$	d) $\frac{1}{49}$
162.	If $2/3$, k, $5/8$ are in AP.	then value of k is	75	1)
	a) 15	b) 21	c) 12	d) 31/48
163.	The sum of the series 1	$+\frac{1}{3}.\frac{1}{4}+\frac{1}{5}.\frac{1}{4^2}+\frac{1}{7}.\frac{1}{4^3}+\cdots$	∞ is	- /
	a) log _e 1	b) log _e 2	c) log _e 3	d) log _e 4
164.	Let $f(x)$ be a polynomial	al function of second deg	ree. If $f(1) = f(-1)$ and	<i>a</i> , <i>b</i> , <i>c</i> are in AP, then
	f'(a), f'(b) and $f'(c)$ a	re in		
	a) AP		b) GP	
	c) HP		d) Arithmetico-Geometr	ric Progression
165.	The sum of the series $1 \cdot 2$	$2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 +$	to <i>n</i> terms is	
	a) $n(n+1)(n+2)$		b) $(n + 1)(n + 2)(n + 3)$	
	c) $\frac{1}{4}n(n+1)(n+2)(n+1)(n+2)(n+1)(n+2)(n+1)(n+1)(n+2)(n+1)(n+1)(n+2)(n+1)(n+1)(n+2)(n+1)(n+1)(n+2)(n+1)(n+1)(n+2)(n+1)(n+1)(n+2)(n+1)(n+1)(n+2)(n+1)(n+1)(n+2)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1$	3)	d) $\frac{1}{4}(n+1)(n+2)(n+3)$	
166.	If AM and GM of x and y	v are in the ratio <i>p</i> : <i>q</i> , the	n <i>x</i> : <i>y</i> is	
	a) $p - \sqrt{p^2 + q^2} : p + \sqrt{p}$	$p^2 + q^2$	b) $p + \sqrt{p^2 - q^2} : p - \sqrt{p}$	$p^2 - q^2$
	c) <i>p</i> : <i>q</i>		d) $p + \sqrt{p^2 + q^2} : p - \sqrt{p}$	$p^2 + q^2$
167.	If <i>a</i> and <i>b</i> are two different	nt positive real numbers, th	en which of the following s	statements is true?
	a) $2\sqrt{ab} > a + b$	b) $2\sqrt{ab} < a + b$	c) $2\sqrt{ab} = a + b$	d) None of these
168.	The sum of			
	$\frac{\frac{1}{2} \frac{2}{2}}{1^3} + \frac{\frac{2}{2} \frac{3}{2}}{1^3 + 2^3} + \frac{\frac{3}{2} \frac{4}{2}}{1^3 + 2^3 + 3^3} + \dots$	upto <i>n</i> terms is equal to		
	a) $\frac{n-1}{2}$	b) $\frac{n}{m+1}$	c) $\frac{n+1}{n+2}$	d) $\frac{n+1}{2}$
	п	$n \perp 1$	n + 2	п

169. $(666 \dots .6)^2 + (888 \dots .8)$ n - digits n - digits	s equal to		
a) $\frac{4}{9}(10^n - 1)$	b) $\frac{4}{9}(10^{2n}-1)$	c) $\frac{4}{9}(10^n - 1)^2$	d) None of these
170. If $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, then the value of $S_n = 1 + 1$	$+\frac{3}{2}+\frac{5}{3}+\dots+\frac{2n-1}{n}$ is	
a) $H_n + n$	b) 2 <i>n</i> – <i>H_n</i>	c) $(n-1) + H_n$	d) $H_n + 2n$
171. The length of a side of a s	quare is " <i>a</i> " metre. A secon	d square is formed by joining	ng the middle points of this
square. Then a third squa	re is formed by joining the	middle points of the sides of	of the second square and so
on. Then, the sum of the a	reas of squares which carri	ied upto infinity is	
a) a^2	b) $2a^2$	c) 3a ²	d) 4 <i>a</i> ²
1/2. If the sum of n terms of	the series		
$1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$ is l	$+\frac{15}{16}\left(1-\frac{1}{5^{n-1}}\right)-\frac{(3n-2)}{4(5^{n-1})},$	then <i>l</i> is	_
a) <u>4</u>	b) -	c) $\frac{6}{-}$	$\frac{5}{-}$
5	4	5	6
1/3. 0.5/3/3/3 is equal to)	F(0)	F (7
a) $\frac{284}{407}$	b) $\frac{284}{405}$	c) $\frac{568}{200}$	d) $\frac{567}{2000}$
497	$495 x = h^{y} = a^{z} \text{ then}$	999	990
1/4. If x, y, z are in GP and u	$-D^{\nu} - c$, then b) $\log a - \log b$	a) $\log h = \log c$	d) None of these
a) $\log_a c = \log_b a$	$b_{b} \log_{b} u = \log_{c} b$	$c_{J} \log_{c} D = \log_{a} c$	the sum of the next two
175. In a geometric progress	on ratio of this program	e terms, each term equals	s the sum of the next two
	1	on equais	1
a) $\frac{1}{2}(1-\sqrt{5})$	b) $\frac{1}{2}\sqrt{5}$	c) √5	d) $\frac{1}{2}(\sqrt{5}-1)$
$176, \log_3 2, \log_6 2 \log_{12} 2$ are in	n		L
a) A.P.	b) G.P.	c) H.P.	d) None of these
177. If <i>p</i> , <i>q</i> , <i>r</i> are in AP and are	positive, the roots of the qu	hadratic equation $px^2 + qx$	r + r = 0 are all real for
a) $\left \frac{r}{p} - 7\right \ge 4\sqrt{3}$	b) $\left \frac{p}{r} - 7\right < 4\sqrt{3}$	c) All p and r	d) No p and r
178. The value of $(0.16)^{\log_{2.5}(\frac{1}{3})}$	$(\frac{1}{3^2} + \frac{1}{3^3} + \cdots \infty)$, is		
a) 2	b) 3	c) 4	d) None of these
179. The value of $\frac{\log_a(\log_b x)}{\log_b(\log_a b)}$ is	-	-	-
a) $\log_b a$	b) log _a b	c) $-\log_a b$	d) $-\log_b a$
$180.\frac{1}{10} + \frac{1}{25} + \frac{1}{25} + \frac{1}{10} + \dots$ is	s equal to		
a) $2\log_{2} 2 - 2$	b) $2 - \log_{2} 2$	c) $2\log_2 4$	d) $\log_{2} 4$
181. If S. S. and S. denote the	sum of first n , n_2 and n_3 t	erms respectively of an A P	then $\frac{S_1}{2}(n_2 - n_2) + \frac{S_2}{2}$
$\frac{S_2}{N}(n_2 - n_1) + \frac{S_3}{N}(n_1 - n_2)$	$(x_1, x_2, x_3, x_2, x_3, x_3, x_3, x_3, x_3, x_3, x_3, x_3$		n_1 n_2 n_3 n_3
n_2 n_3 n_1 n_3 n_1 n_2			D.
a) U 192 The sum of 100 terms of t	DJI	$c_{J} \delta_{1} \delta_{2} \delta_{3}$	a) $n_1 n_2 n_3$
102. The sum of 100 terms of $(1)^{100}$	$(1 \times 100^{-1})^{100}$	$(1)^{106}$	(1) ¹⁰
a) $1 - \left(\frac{1}{10}\right)$	b) $1 + \left(\frac{1}{10}\right)$	c) $1 - \left(\frac{1}{10}\right)$	d) $1 + \left(\frac{1}{10}\right)$
^{183.} Let $S_n = \frac{1}{1^3} + \frac{1+2}{1^3+2^3} + \dots$	$+\frac{1+2+\ldots+n}{1^3+2^3+\ldots+n^3}$, $n = 1,2,3,\ldots$	Then S_n is not greater t	than
a) $\frac{1}{2}$	b) 1	c) 2	d) 4
184. If $\log_4(3x^2 + 11x) > 1$. the second s	hen x lies in the interval		
a) (-4, 1/3)	b) (-4, 2)	c) [-4, 1/3]	d) (−∞, −4) ∪ (1/3 ∞)
185. If <i>p</i> th, <i>q</i> th and <i>r</i> th terms of	of a G.P. are <i>x</i> , <i>y</i> , <i>z</i> respectiv	ely, then $x^{q-r}y^{r-p}z^{p-q}$ is e	equal to

Page | 12

a) 0 b) 1 c) -1 d) None of these
186. If
$$5^{3x^2 \log_{10} x} = 2^{[(x+\frac{1}{2})\log_{10} x^3]}$$
, then x equals to
a) 1, $-\frac{1}{3}$ b) 1 c) 1, $-\frac{1}{2}$ d) $-\frac{1}{3}$, 1
187. $e^{x-1-\frac{1}{3}(x-1)^{x+\frac{1}{3}(x-1)^{x+1}-1}}$ is equal to
a) log (x - 1) b) log x c) x d) None of these
188. If $e^{x^x} = a_0 + a_1 x + a_2 x^2 + \cdots$, then
a) $a_0 = 1$ b) $a_0 = e$ c) $a_0 = e^e$ d) $a_0 = e^2$
189. The coefficient of x^n in the expansion of $\log_e(\frac{1}{1+x+x^{3}+x^{3}})$, when n is odd, is
a) $-\frac{2}{n}$ b) $-\frac{1}{n}$ c) $\frac{1}{n}$ d) $\frac{2}{n}$
190. The harmonic mean between two numbers is $14\frac{2}{5}$ and the geometric mean is 24. The greater
number between them is
a) 72 b) 54 c) 36 d) None of these
191. If the sum of the series 2.5.8.11, ... is 60100, then n, the number of terms, is
a) 100 b) 200 c) 150 d) 250
192. nth term of the series 2.5.8.11, ... is 60100, then n, the number of terms, is
a) 100 b) $\frac{3n-1}{5n}$ c) $\frac{3n-2}{5n-1}$ d) $\frac{3n+2}{5n-1}$
193. If $|x| < 1$ and $y = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + ...$, then x is equal to
a) $y + \frac{y^2}{2} + \frac{y^3}{3} + ...$ b) $y - \frac{y^2}{2!} + \frac{y^3}{3} - \frac{y^4}{4} + ...$
194. The arithmetic mean of 7 consecutive integers starting with a is m. Then, the arithmetic mean of
11 consecutive integers starting with $a + 2$ is
a) log 2 + log 3 b) log 2 + 2 c) $\frac{1}{2} \log 2$ d) log 3
196. If $a_1, a_2, a_3, ..., a_{44}$ are in arithmetic progression and $a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$, then
 $a_1 + a_2 + a_3 + ... + a_{25} + a_{25} + \frac{1}{5} +$

	a) 9	b) 18	c) 27	d) 81	
201.	If a, b, c are in H.P., then $\frac{a}{b}$	$\frac{b}{c}, \frac{b}{c+a}, \frac{c}{a+b}$ will be in			
	a) A.P.	b) G.P.	c) H.P.	d) None of these	
202.	Given that <i>n</i> AM's are inse	rted between two sets of n	umbers <i>a</i> , 2 <i>b</i> and 2 <i>a</i> , <i>b</i> wh	ere $a, b \in R$. Suppose	
further that m th mean between these sets of numbers is same, then the ratio $a : b$ equals					
	a) $(n - m + 1): m$	b) $(n - m + 1): n$	c) $n:(n-m+1)$	d) $m : (n - m + 1)$	
203.	If $S_n = \frac{1^2 \cdot 2}{1!} + \frac{2^2 \cdot 3}{2!} + \frac{3^2 \cdot 4}{3!} + \frac{3^2 \cdot 4}{3!}$	$\cdots + \frac{n^2 \cdot (n+1)}{n!}$, then $\lim_{n \to \infty} x$	S_n is equal to		
	a) 3 e	b) 5 <i>e</i>	c) 7 e	d) 9 e	
204.	GM and HM of two num	pers are 10 and 8 respect	tively. The numbers are		
	a) 5,20	b) 4,25	c) 2,50	d) 1,100	
205.	Which term of the GP 3,	3√3, 9 is 2187?			
	a) 15	b) 14	c) 13	d) 19	
206.	The sum of all two digit	natural numbers which l	eave a remainder 5 whe	n they are divided by 7 is	
	equal to				
	a) 715	b) 702	c) 615	d) 602	
207.	The sum of the series $\frac{1^2 \cdot 2^2}{1!}$	$+\frac{2^2\cdot 3^2}{2!}+\frac{3^2\cdot 4^2}{3!}+\cdots$, is			
	a) 27 <i>e</i>	b) 24 <i>e</i>	c) 28 <i>e</i>	d) 25 <i>e</i>	
208.	The sum of the integers	from 1 to 100 which are	divisible by 3 and 5, is		
	a) 2317	b) 2632	c) 315	d) 2489	
209.	If <i>H</i> be the H.M. between a	and b, then the value of $\frac{H}{d}$	$+\frac{H}{J}$, is		
	a) 2	a ab	a + b	d) None of these	
	~) _	b) $\frac{1}{a+b}$	c) $-ab$		
210.	If $a_1 = a^2 = 2$, $a_n = a_{n-1}$	$-1(n > 2)$, then a_5 is			
	a) 1	b) -1	c) 0	d) -2	
211.	The value of 0.234 is				
	a) $\frac{232}{2}$	b) <u>232</u>	c) $\frac{232}{2}$	d) <u>232</u>	
212	990	9990	900	9909	
212.	The value of $\sqrt{\log_{0.5}^2 4}$, is				
	a) -2	b) $\sqrt{-4}$	c) 2	d) None of these	
213.	In a H.P. p^{th} term is q and	q^{th} term is p. Then, $(pq)^{th}$	term is		
	a) $\frac{p+q}{d}$	b) 0	pq	d) 1	
	^a) pq		p + q	~) _	
214.	The <i>n</i> th term of the sequence 2^{2}	nce $4,14,30,52,80,114, \dots$, is		1)(
215	a) $n^2 + n + 2$	$D \int 3n^2 + n$	c) $3n^2 - 5n + 2$	a) $(n+1)^2$	
215.	$If y = 3x + 6x^{-} + 10x^{-}$	+, then the value of x if	1 terms of y is $(1 + x)^{-1/3}$	1) 4 (4 +) - 1/3	
210	a) $1 - (1 - y)^{-1/3}$	$D = (1 + y)^{1/3}$	$(1 + (1 + y)^{-1/3})$	a) $1 - (1 + y)^{-1/3}$	
216.	The coefficient of x^n in the	e expansion of $\log_a(1+x)$	(1)n-1	$(1)^{n}$	
	a) $\frac{(-1)}{n}$	b) $\frac{(-1)}{m} \log_a e$	c) $\frac{(-1)}{m} \log_e a$	d) $\frac{(-1)}{n} \log_a e$	
217.	If $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{5}$	$\cdots + \frac{1}{2^n - 1}$, then	п	π	
	a) $a_{100} < 100$	b) $a_{100} > 100$	c) <i>a</i> ₂₀₀ < 100	d) None of these	
218.	The sum of the infinite s	eries $\frac{2^2}{2!} + \frac{2^4}{4!} + \frac{2^6}{6!} + \cdots$ is	equal to		
	$e^{2} + 1$	$1, e^4 + 1$	$(e^2-1)^2$	$(e^2 + 1)^2$	
	a) <u>2e</u>	$2e^2$	c) $\frac{1}{2e^2}$	a) $\frac{1}{2e^2}$	
219.	Three numbers are in G	P such that their sum is 3	88 and their product is 17	728. The greatest	

number among them is

	a) 18	b) 16	c) 14	d) None of these
220	$\frac{\log_2 a}{\log_2 a} = \frac{\log_2 b}{\log_2 a} = \frac{\log_2 c}{\log_2 a}$	$a^{-3}h^{-4}c = 1$ then $\lambda =$		
	$3 4 5\lambda$	h A	c) 5	d) _5
221	a) J The cubes of the natural n	UJ^4	$(2^3 \ 2^3) \ (4^3 \ 5^3 \ 6^3)$ the	$u_{J} = 3$
221	in the nth groun is	iumbers are grouped as 1,	$(2, 3), (4, 3, 0), \dots, $	en the sum of the numbers
	a) $\frac{1}{8}n^3(n^2+1)(n^2+3)$			
	b) $\frac{1}{16}n^3(n^2+16)(n^2+1$	2)		
	c) $\frac{n^3}{12}(n^2+2)(n^2+4)$			
	d) None of these			
222	• The sum of the series 1 +	$\frac{1^2+2^2}{2}+\frac{1^2+2^2+3^2}{2}+\frac{1^2+2^2+3^2}{2}$	$\frac{+4^2}{4} + \cdots$, is	
		2! 3! 4! 17	13	19
	a) 3 <i>e</i>	b) $\frac{1}{6}e$	c) $\frac{1}{6}e$	d) $\frac{1}{6}e$
223	$\sum_{k=1}^{\infty} \frac{1}{k!} (\sum_{n=1}^{\infty} 2^{n-1})$ is equivalent.	qual to		
	a) e	b) $e^2 + e$	c) <i>e</i> ²	d) $e^2 - e$
224	If $S_n = \sum_{r=1}^n a_r = \frac{1}{r} n(2n^2)$	+ 9 <i>n</i> + 13), then $\sum_{r=1}^{n} \sqrt{a_r}$	equals	
	n(n+1)	n(n+2)	n(n+3)	n(n+5)
	a) $\frac{n(n+1)}{2}$	b) $\frac{n(1-2)}{2}$	c) $\frac{n(n+2)}{2}$	d) $\frac{n(n+1)}{2}$
225	Let <i>a</i> , <i>b</i> , <i>c</i> be in AP and	a < 1, b < 1, c < 1. If	$f x = 1 + a + a^2 + \dots \text{ to } \infty$	$y = 1 + b + b^2 + \dots \text{ to } \infty$
	and $z = 1 + c + c^2 + \dots$	∞, then <i>x</i> , <i>y</i> , <i>z</i> are in		
	a) AP	b) GP	c) HP	d) None of these
226	The 5th term of the seque	nce $\frac{10}{2}, \frac{1}{2}, \frac{\sqrt{20}}{2}, \frac{2}{2}, \dots$ is		
	1	9'3 3'3' h) 1	2	$\sqrt{2}$
	a) $\frac{1}{3}$	<i>c)</i> <u>-</u>	c) $\frac{-}{5}$	d) $\frac{\sqrt{2}}{3}$
227	If $x, x + 1 , x - 1 $ are firm	st three terms of an A.P., th	en the sum of its first 20 te	rms is
	a) 360,180	b) 350,180	c) 150,100	d) None of these
228	If three numbers are in G.	P., then the numbers obtair	ned by adding the middle n	umber to each of these
	numbers are in			
	a) A.P.	b) G.P.	c) H.P.	d) None of these
229	The fourth, seventh and te	enth terms of a G.P. are p, q	and r respectively, then	
	a) $p^2 = q^2 + r^2$	b) $p^2 = qr$	c) $q^2 = pr$	d) $r^2 = p^2 + q^2$
230	If three real numbers a, b ,	c are in H.P., then which or	ne of the following is true?	a h a
	a) $\frac{1}{a}$, b, $\frac{1}{c}$ are in A.P.	b) $\frac{1}{bc}$, $\frac{1}{ca}$, $\frac{1}{ab}$ are in H.P.	c) <i>ab, bc, ca</i> are in H.P.	d) $\frac{a}{b}$, $\frac{b}{c}$, $\frac{c}{a}$ are in H.P.
231	$\int \text{If } \log(x+y) = \log 2 + \frac{1}{2}\log 2$	$\log x + \frac{1}{2}\log y$, then		
	a) $x + y = 0$	b) $x - y = 0$	c) $xy = 1$	d) $x^2 + xy + y^2 = 0$
232	If $x^{2\log_{10} x} = 1000x$, then	x equals to		
	a) 10,√ <u>10</u>	b) 10 ^{−1} , 10√10	c) 10√ <u>10</u>	d) √ <u>10</u>
233	The value of $\log_b a \times \log_c$	$b \times \log_a c$, is		
	a) 0	b) 1	c) log <i>abc</i>	d) 10
234	. The number which should	l be added to the numbers	2, 14, 62, so that the resulti	ng numbers may be in GP,
	is			
າວ⊏	aj 1 If sum of the first 2: to see	DJZ	CJ 3	$a_{j}4$
235	In Sum of the first $2n$ term	s of all AP series 2, 5, 8, is	s equal to the sum of the firs	st <i>n</i> terms of the AP series
	a) 10	ა _	c) 11	d) 13
	aj 10	14	CJ 11	uj 15

236.	236. The sum of the series $\frac{1}{2\times7} + \frac{1}{7\times11} + \frac{1}{11\times15} + \dots$ is					
	a) $\frac{1}{2}$	b) $\frac{1}{4}$	c) $\frac{1}{2}$	d) $\frac{1}{1}$		
227	3 In a C D with alternatively	6 n positive and possitive torm	9 na any tarm is the AM of t	12		
237.	the common ratio of the G.P. is					
	a) —1	b) -3	c) -2	d) $-\frac{1}{2}$		
238.	If the set of natural numb	ers is partitioned into subse	ets $S_1 = \{1\}, S_2 = \{2, 3\}, S_2$	$_{3} = \{4, 5, 6\}$ and so on.		
	Then, the sum of the term	s in S ₅₀ is				
	a) 62525	b) 25625	c) 62500	d) None of these		
239.	If <i>a</i> , <i>b</i> , <i>c</i> are in H.P., then					
	a) $\frac{a-b}{b-c} = \frac{a}{c}$	b) $\frac{b-c}{c-a} = \frac{b}{a}$	c) $\frac{c-a}{a-b} = \frac{c}{b}$	d) None of these		
240.	If three positive real nu	mbers <i>a</i> , <i>b</i> , <i>c</i> are in AP an	d $abc = 4$, then the mini	mum possible value of b		
	is					
	a) $2^{3/2}$	h) $2^{2/3}$	c) $2^{1/3}$	d) $2^{5/2}$		
2/1	The CM of roots of the equ	1072		u) 2		
241.		$\frac{1}{100} = 10x + 9 = 015$	c) 2	d) 1		
212	a) S The sum of the corrige 1 \pm	$0)^{4}$ 22 + 22 + 12 ³ + 52 ⁴ +	1002^{99} is	u) I		
242.	a) 00×2^{100}	$2.2 \pm 3.2 \pm 4.2 \pm 3.2 \pm 1$	(100.2), 15	d) None of these		
212	a) 99×2^{-1}	$U_{1} = 0$	100×2^{-10}	uj none or these		
243.	The value of $0.2^{\log_{\sqrt{5}}(\frac{1}{4}+\frac{1}{8}+\frac{1}{3})}$	$\frac{16}{16}$, is				
	a) 4	b) log 4	c) log 2	d) None of these		
244.	The product $(32)(32)^{1/2}$	$^{\prime 6}(32)^{1/36}$ to ∞ is				
	a) 16	b) 32	c) 64	d) 0		
245.	If $\log_4 2 + \log_4 4 + \log_4 1$	$6 + \log_4 x = 6$, then $x =$				
	a) 4	b) 64	c) 32	d) 8		
246.	If <i>x</i> , 1, <i>z</i> are in AP and <i>x</i> , 2	, z are in GP, then x , 4, z wi	ll be in			
	a) AP	b) GP	c) HP	d) None of these		
247.	If in an A.P. $a_1 = \log_{10} a$,	$a_{n+1} = \log_{10} b$ and $a_{2n+1} =$	$\log_{10} c$, then <i>a</i> , <i>b</i> , <i>c</i> are in			
	a) A.P.	b) G.P.	c) H.P.	d) None of these		
248.	$\sum_{n=1}^{10} \sum_{i=1}^{n-1} 1$ is equal to					
	a) $n + 10$	b) 10 <i>n</i>	c) 55	d) 45		
249.	If <i>a</i> , <i>b</i> , <i>c</i> are in A.P.; <i>a</i> , <i>x</i> , <i>b</i>	are in G.P. and <i>b</i> , <i>y</i> , <i>c</i> are in	G.P., then x^2 , b^2 , y^2 are in	,		
	a) H.P.	b) G.P.	c) A.P.	d) None of these		
250.	If $S = \nabla^{\infty} \frac{(\log x)^{2n}}{2n}$ then S	Soquale	,	,		
	$II S - \Delta n = 0$ (2 n)!, then S	equals				
	a) $x + x^{-1}$	b) $x - x^{-1}$	c) $\frac{1}{x}(x+x^{-1})$	d) None of these		
251.	The value of $\sum_{r=1}^{n} \log \left(\frac{a^r}{r} \right)$	$\frac{1}{1}$ is	2			
	n (a^n)	$n (a^{n+1})$	$n = a^{n+1}$	$n \left(a^{n+1} \right)$		
	a) $\frac{1}{2} \log\left(\frac{a}{b^n}\right)$	b) $\frac{\pi}{2} \log\left(\frac{\alpha}{b^n}\right)$	c) $\frac{n}{2}\log(\frac{a}{b^{n-1}})$	d) $\frac{\pi}{2} \log \left(\frac{\alpha}{b^{n+1}} \right)$		
252.	The sum of the series $1 \cdot 3$	$3^2 + 2 \cdot 5^2 + 3 \cdot 7^2 + \dots$ upto	20 terms is			
	a) 188090	b) 189080	c) 199080	d) None of these		
253.	$\log_e \frac{1+3x}{1-3x}$ is equal to					
	$5x^2 35x^3$		$5r^2 35r^3$			
	a) $-5x - \frac{3x}{2} - \frac{33x}{2} - \frac{33x}{2$		b) $-5x + \frac{3x}{2} - \frac{33x}{2} + \frac{33x}{2}$			
	د ک ۲ ₂ کر ۲		د خ تر بر ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک			
	c) $5x - \frac{3x}{2} + \frac{33x}{2}$		d) $5x + \frac{3x}{2} + \frac{33x}{2} + \dots$			
251	$\frac{2}{16 \log \left(\sqrt{n+4} + \sqrt{n}\right)}$	$\left \right = 0$ then $x =$	Z 3			
204.	$\lim_{x \to 0} \log_{4}(\sqrt{x} + 4 + \sqrt{x})$	$f_{j} = 0$, then $x =$				

a) 1	b) $\frac{5}{4}$	c) $\frac{7}{4}$	d) $\frac{9}{4}$
255. If $2^{x} \cdot 9^{2x+3} = 7^{x+5}$, then a) $\frac{5 \log 7 + 6 \log 3}{1 + 160}$	h $x =$ b) $\frac{5 \log 7 - 6 \log 3}{1 + 162 + 1 + 157}$	c) $\frac{5\log 7 - 6\log 3}{1 + 162 + 167}$	d) None of these
256. Fifth term of an GP is $256.$	2, then the product of its 9	$\log 162 - \log 7$ term is	d) Norro of these
^{a) 250} $257.$ If $ a < 1, b = \sum_{k=1}^{\infty} \frac{a^k}{k}$, then a is equal to	CJ 1024	d) None of these
a) $\sum_{k=1}^{\infty} \frac{(-1)^k b^k}{k}$	b) $\sum_{k=1}^{\infty} \frac{(-1)^{k-1} b^k}{k!}$	c) $\sum_{k=1}^{\infty} \frac{(-1)^k b^k}{(k-1)!}$	d) $\sum_{k=1}^{\infty} \frac{(-1)^{k-1} b^k}{(k+1)!}$
258. The sum of the series $\frac{4}{1!}$ a) 6 <i>e</i>	$+\frac{11}{2!} + \frac{22}{3!} + \frac{37}{4!} + \frac{56}{5!} + \dots, \text{ is}$ b) 6 <i>e</i> - 1	c) 5 e	d) 5 <i>e</i> + 1
259. If $\frac{a+b}{1-ab}$, b , $\frac{b+c}{1-bc}$ are in A.P. a) A.P.	e, then <i>a, ¹/_b, c</i> are in b) G.P.	c) H.P.	d) None of these
260. If $\log 2$, $\log(2^n - 1)$ and	$log(2^n + 3)$ are in AP, then a	n is equal to	2
a) $\frac{3}{2}$	b) log ₂ 5	c) log ₃ 5	d) $\frac{3}{2}$
^{261.} The sum of the series 1	$+\frac{1+a}{21}+\frac{1+a+a^2}{21}+\frac{1+a+a^2+a^3}{41}$	+ …, is	
a) $\frac{e^a - e}{a - 1}$	b) $\frac{e^a - e}{a+1}$	c) $\frac{e^{2a} + 1}{a - 1}$	d) $\frac{e^a + e}{a - 1}$
^{262.} If $\frac{5+9+13++n \text{ terms}}{7+9+11++12 \text{ terms}} =$	$\frac{5}{12}$, then <i>n</i> is equal to		
a) 5	b) 6	c) 9	d) 12
^{263.} The sum to the infinity	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{1}{3^2}$	$\frac{10}{3^3} + \frac{14}{3^4} + \dots$ is	
263. The sum to the infinita) 3	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{6}{3^2}$ + b) 4	$\frac{10}{3^3} + \frac{14}{3^4} + \dots$ is c) 6	d) 2
 263. The sum to the infinity a) 3 264. Consider the sequence of a) A prime number c) Divisible by 11 	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{1}{3^2}$ b) 4 of numbers 121, 12321, 1234	$\frac{10}{3^3} + \frac{14}{3^4} + \dots$ is c) 6 4321, Each term in the se b) Square of an odd numb d) Form a GP	d) 2 quence is per
 263. The sum to the infinity a) 3 264. Consider the sequence of a) A prime number c) Divisible by 11 265. If A₁, A₂ are two A.M's, C 	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2}$ b) 4 of numbers 121, 12321, 1234 G_1, G_2 are two G.M's and H_1, H_2	$\frac{10}{3^3} + \frac{14}{3^4} + \dots$ is c) 6 4321, Each term in the se b) Square of an odd numb d) Form a GP H ₂ are two H.M's between t	d) 2 quence is per wo numbers, then $\frac{A_1 + A_2}{H_1 + H_2}$ is
^{263.} The sum to the infinite a) 3 264. Consider the sequence of a) A prime number c) Divisible by 11 265. If A_1, A_2 are two A.M's, of equal a) $\frac{H_1H_2}{H_1H_2}$	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2}$ b) 4 of numbers 121, 12321, 123 G_1, G_2 are two G.M's and H_1, H_2 b) $\frac{G_1G_2}{2}$	$-\frac{10}{3^3} + \frac{14}{3^4} + \dots \text{ is}$ c) 6 4321, Each term in the se b) Square of an odd numb d) Form a GP H ₂ are two H.M's between to	d) 2 quence is per wo numbers, then $\frac{A_1+A_2}{H_1+H_2}$ is d) $\frac{G_1G_2}{G_2}$
263. The sum to the infinity a) 3 264. Consider the sequence of a) A prime number c) Divisible by 11 265. If A_1, A_2 are two A.M's, of equal a) $\frac{H_1H_2}{G_1G_2}$	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2}$ b) 4 of numbers 121, 12321, 1234 G_1, G_2 are two G.M's and H_1, H_2 b) $\frac{G_1G_2}{H_1H_2}$	$\frac{10}{3^3} + \frac{14}{3^4} + \dots \text{ is}$ c) 6 4321, Each term in the se b) Square of an odd numb d) Form a GP H ₂ are two H.M's between the c) $\frac{H_1H_2}{A_1A_2}$	d) 2 quence is per wo numbers, then $\frac{A_1+A_2}{H_1+H_2}$ is d) $\frac{G_1G_2}{A_1A_2}$
263. The sum to the infinity a) 3 264. Consider the sequence of a) A prime number c) Divisible by 11 265. If A_1, A_2 are two A.M's, of equal a) $\frac{H_1H_2}{G_1G_2}$ 266. A student read comment torms as -30. Then the	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2}$ b) 4 of numbers 121, 12321, 1234 G_1, G_2 are two G.M's and H_1, H_2 b) $\frac{G_1G_2}{H_1H_2}$ on difference of an AP as -	$\frac{10}{3^3} + \frac{14}{3^4} + \dots \text{ is}$ c) 6 4321, Each term in the se b) Square of an odd numb d) Form a GP H ₂ are two H.M's between tw c) $\frac{H_1H_2}{A_1A_2}$ 3 instead of 3 and obtained	d) 2 quence is per wo numbers, then $\frac{A_1+A_2}{H_1+H_2}$ is d) $\frac{G_1G_2}{A_1A_2}$ ed the sum of first 10
263. The sum to the infinity a) 3 264. Consider the sequence of a) A prime number c) Divisible by 11 265. If A_1, A_2 are two A.M's, of equal a) $\frac{H_1H_2}{G_1G_2}$ 266. A student read common terms as -30. Then, th a) 240	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2}$ b) 4 of numbers 121, 12321, 1234 G_1, G_2 are two G.M's and H_1, H_2 b) $\frac{G_1G_2}{H_1H_2}$ on difference of an AP as - e actual sum of first 10 tents b) 120	$\frac{10}{3^3} + \frac{14}{3^4} + \dots \text{ is}$ c) 6 4321, Each term in the se b) Square of an odd numb d) Form a GP H ₂ are two H.M's between th c) $\frac{H_1H_2}{A_1A_2}$ 3 instead of 3 and obtained rms is equal to c) 300	d) 2 quence is per wo numbers, then $\frac{A_1+A_2}{H_1+H_2}$ is d) $\frac{G_1G_2}{A_1A_2}$ ed the sum of first 10 d) 180
263. The sum to the infinity a) 3 264. Consider the sequence of a) A prime number c) Divisible by 11 265. If A_1, A_2 are two A.M's, of equal a) $\frac{H_1H_2}{G_1G_2}$ 266. A student read common terms as -30. Then, th a) 240 267. If the sum to $2n$ terms	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2}$ b) 4 of numbers 121, 12321, 123 G_1, G_2 are two G.M's and H_1, H_2 b) $\frac{G_1G_2}{H_1H_2}$ on difference of an AP as - e actual sum of first 10 ten b) 120 s of the AP 2, 5, 8, 11, is e	$\frac{10}{3^3} + \frac{14}{3^4} + \dots \text{ is}$ c) 6 4321, Each term in the se b) Square of an odd numb d) Form a GP H ₂ are two H.M's between tw c) $\frac{H_1H_2}{A_1A_2}$ 3 instead of 3 and obtainers is equal to c) 300 equal to the sum to <i>n</i> term	d) 2 quence is ber wo numbers, then $\frac{A_1+A_2}{H_1+H_2}$ is d) $\frac{G_1G_2}{A_1A_2}$ ed the sum of first 10 d) 180 ns of the AP 57, 59, 61,
263. The sum to the infinity a) 3 264. Consider the sequence of a) A prime number c) Divisible by 11 265. If A_1, A_2 are two A.M's, of equal a) $\frac{H_1H_2}{G_1G_2}$ 266. A student read common terms as -30. Then, th a) 240 267. If the sum to $2n$ terms 63,, then <i>n</i> is equal to	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2}$ b) 4 of numbers 121, 12321, 1234 G_1, G_2 are two G.M's and H_1, H_2 b) $\frac{G_1G_2}{H_1H_2}$ on difference of an AP as - e actual sum of first 10 ten b) 120 s of the AP 2, 5, 8, 11, is e	$\frac{10}{3^3} + \frac{14}{3^4} + \dots \text{ is}$ c) 6 4321, Each term in the se b) Square of an odd numb d) Form a GP H ₂ are two H.M's between tw c) $\frac{H_1H_2}{A_1A_2}$ 3 instead of 3 and obtained rms is equal to c) 300 equal to the sum to <i>n</i> term	d) 2 quence is ber wo numbers, then $\frac{A_1+A_2}{H_1+H_2}$ is d) $\frac{G_1G_2}{A_1A_2}$ ed the sum of first 10 d) 180 ns of the AP 57, 59, 61,
263. The sum to the infinity a) 3 264. Consider the sequence of a) A prime number c) Divisible by 11 265. If A_1, A_2 are two A.M's, of equal a) $\frac{H_1H_2}{G_1G_2}$ 266. A student read common terms as -30. Then, th a) 240 267. If the sum to $2n$ terms 63,, then n is equal to a) 10	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2}$ b) 4 of numbers 121, 12321, 1234 G_1, G_2 are two G.M's and H_1, H_2 b) $\frac{G_1G_2}{H_1H_2}$ on difference of an AP as - e actual sum of first 10 ten b) 120 s of the AP 2, 5, 8, 11, is e o b) 11	$\frac{10}{3^3} + \frac{14}{3^4} + \dots \text{ is}$ c) 6 4321, Each term in the se b) Square of an odd numb d) Form a GP H ₂ are two H.M's between tw c) $\frac{H_1H_2}{A_1A_2}$ 3 instead of 3 and obtained rms is equal to c) 300 equal to the sum to <i>n</i> term c) 12	d) 2 quence is per wo numbers, then $\frac{A_1+A_2}{H_1+H_2}$ is d) $\frac{G_1G_2}{A_1A_2}$ ed the sum of first 10 d) 180 ns of the AP 57, 59, 61, d) 13
263. The sum to the infinity a) 3 264. Consider the sequence of a) A prime number c) Divisible by 11 265. If A_1, A_2 are two A.M's, of equal a) $\frac{H_1H_2}{G_1G_2}$ 266. A student read common terms as -30. Then, the a) 240 267. If the sum to $2n$ terms 63,, then n is equal to a) 10 268. The value of n for whith	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2}$ b) 4 of numbers 121, 12321, 1234 G_1, G_2 are two G.M's and H_1, H_2 b) $\frac{G_1G_2}{H_1H_2}$ on difference of an AP as - e actual sum of first 10 ten b) 120 s of the AP 2, 5, 8, 11, is e o b) 11 ch $\frac{x^{n+1}+y^{n+1}}{x^n+y^n}$ is the geomet	$\frac{10}{3^3} + \frac{14}{3^4} + \dots \text{ is}$ c) 6 4321, Each term in the se b) Square of an odd numb d) Form a GP H_2 are two H.M's between two c) $\frac{H_1H_2}{A_1A_2}$ 3 instead of 3 and obtained rms is equal to c) 300 equal to the sum to <i>n</i> term c) 12 rric mean of <i>x</i> and <i>y</i> is	d) 2 quence is per wo numbers, then $\frac{A_1+A_2}{H_1+H_2}$ is d) $\frac{G_1G_2}{A_1A_2}$ ed the sum of first 10 d) 180 hs of the AP 57, 59, 61, d) 13
263. The sum to the infinity a) 3 264. Consider the sequence of a) A prime number c) Divisible by 11 265. If A_1, A_2 are two A.M's, of equal a) $\frac{H_1H_2}{G_1G_2}$ 266. A student read common terms as -30. Then, th a) 240 267. If the sum to $2n$ terms 63,, then n is equal to a) 10 268. The value of n for whith a) $n = -\frac{1}{2}$	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2}$ b) 4 of numbers 121, 12321, 1234 G_1, G_2 are two G.M's and H_1, H_2 b) $\frac{G_1G_2}{H_1H_2}$ on difference of an AP as - e actual sum of first 10 ten b) 120 s of the AP 2, 5, 8, 11, is e o b) 11 ch $\frac{x^{n+1}+y^{n+1}}{x^n+y^n}$ is the geomet b) $n = \frac{1}{2}$	$\frac{10}{3^3} + \frac{14}{3^4} + \dots \text{ is}$ c) 6 4321, Each term in the se b) Square of an odd numb d) Form a GP H ₂ are two H.M's between tw c) $\frac{H_1H_2}{A_1A_2}$ 3 instead of 3 and obtainer ms is equal to c) 300 equal to the sum to <i>n</i> term c) 12 tric mean of <i>x</i> and <i>y</i> is c) $n = 1$	d) 2 quence is ber wo numbers, then $\frac{A_1+A_2}{H_1+H_2}$ is d) $\frac{G_1G_2}{A_1A_2}$ ed the sum of first 10 d) 180 hs of the AP 57, 59, 61, d) 13 d) $n = -1$
263. The sum to the infinity a) 3 264. Consider the sequence of a) A prime number c) Divisible by 11 265. If A_1, A_2 are two A.M's, of equal a) $\frac{H_1H_2}{G_1G_2}$ 266. A student read common terms as -30. Then, th a) 240 267. If the sum to 2 <i>n</i> terms 63,, then <i>n</i> is equal th a) 10 268. The value of <i>n</i> for whith a) $n = -\frac{1}{2}$ 269. In the sequence {1}, {2,3}	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2}$ b) 4 of numbers 121, 12321, 1234 G ₁ , G ₂ are two G.M's and H ₁ , H ₂ b) $\frac{G_1G_2}{H_1H_2}$ on difference of an AP as - e actual sum of first 10 ten b) 120 s of the AP 2, 5, 8, 11, is e o b) 11 ch $\frac{x^{n+1}+y^{n+1}}{x^n+y^n}$ is the geometric b) $n = \frac{1}{2}$ B}, {4,5,6}, {7,8,9,10}, of set	$\frac{10}{3^3} + \frac{14}{3^4} + \dots \text{ is}$ c) 6 4321, Each term in the se b) Square of an odd numb d) Form a GP H_2 are two H.M's between two c) $\frac{H_1H_2}{A_1A_2}$ 3 instead of 3 and obtained rms is equal to c) 300 equal to the sum to <i>n</i> term c) 12 rric mean of <i>x</i> and <i>y</i> is c) $n = 1$ s, the sum of the elements is	d) 2 quence is per wo numbers, then $\frac{A_1+A_2}{H_1+H_2}$ is d) $\frac{G_1G_2}{A_1A_2}$ ed the sum of first 10 d) 180 ns of the AP 57, 59, 61, d) 13 d) $n = -1$ in 50th set is b) 55 6 25
263. The sum to the infinity a) 3 264. Consider the sequence of a) A prime number c) Divisible by 11 265. If A_1, A_2 are two A.M's, of equal a) $\frac{H_1H_2}{G_1G_2}$ 266. A student read common terms as -30. Then, th a) 240 267. If the sum to $2n$ terms 63,, then n is equal th a) 10 268. The value of n for which a) $n = -\frac{1}{2}$ 269. In the sequence {1}, {2,3 a) 62525 270. If 2 log, $n = r \log 2n$	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} $	$\frac{10}{3^3} + \frac{14}{3^4} + \dots \text{ is}$ c) 6 4321, Each term in the se b) Square of an odd numb d) Form a GP H_2 are two H.M's between the c) $\frac{H_1H_2}{A_1A_2}$ 3 instead of 3 and obtained rms is equal to c) 300 equal to the sum to <i>n</i> term c) 12 cric mean of <i>x</i> and <i>y</i> is c) $n = 1$ s, the sum of the elements in c) 56255	d) 2 quence is per wo numbers, then $\frac{A_1+A_2}{H_1+H_2}$ is d) $\frac{G_1G_2}{A_1A_2}$ ed the sum of first 10 d) 180 ns of the AP 57, 59, 61, d) 13 d) $n = -1$ in 50th set is d) 55625
263. The sum to the infinity a) 3 264. Consider the sequence of a) A prime number c) Divisible by 11 265. If A_1, A_2 are two A.M's, of equal a) $\frac{H_1H_2}{G_1G_2}$ 266. A student read common terms as -30. Then, th a) 240 267. If the sum to $2n$ terms 63,, then n is equal th a) 10 268. The value of n for whith a) $n = -\frac{1}{2}$ 269. In the sequence {1}, {2,3 a) 62525 270. If $2 \log_8 a = x, \log_2 2a = a$ a) 10	y of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2} + \frac{6}{3^2}$ of numbers 121, 12321, 1234 G_1, G_2 are two G.M's and H_1, H_2 b) $\frac{G_1G_2}{H_1H_2}$ on difference of an AP as - e actual sum of first 10 ten b) 120 s of the AP 2, 5, 8, 11, is e o b) 11 ch $\frac{x^{n+1}+y^{n+1}}{x^n+y^n}$ is the geomet b) $n = \frac{1}{2}$ B}, {4,5,6}, {7,8,9,10}, of set b) 65255 = y and $y - x = 4$, then $x = \frac{1}{2}$	$\frac{10}{3^3} + \frac{14}{3^4} + \dots \text{ is}$ c) 6 4321, Each term in the se b) Square of an odd numb d) Form a GP H ₂ are two H.M's between tw c) $\frac{H_1H_2}{A_1A_2}$ 3 instead of 3 and obtainer ms is equal to c) 300 equal to the sum to <i>n</i> term c) 12 cric mean of <i>x</i> and <i>y</i> is c) $n = 1$ s, the sum of the elements is c) 56255 c) 4	d) 2 quence is per wo numbers, then $\frac{A_1+A_2}{H_1+H_2}$ is d) $\frac{G_1G_2}{A_1A_2}$ ed the sum of first 10 d) 180 ns of the AP 57, 59, 61, d) 13 d) $n = -1$ in 50th set is d) 55625 d) 6

a) A positive integer b) Equal to $n + \frac{1}{n}$ c) Divisible by *n* d) Never less than *n* 272. The value of $9^{1/3} \times 9^{1/9} \times 9^{1/27} \times ... \infty$ is a) 9 d) None of these b) 1 c) 3 273. The sum to *n* terms of the infinite series $1.3^2 + 2.5^2 + 3.7^2 + ... \infty$ a) $\frac{n}{6}(n+1)(6n^2+14n+7)$ b) $\frac{n}{c}(n+1)(2n+1)(3n+1)$ c) $4n^3 + 4n^2 + n$ d) None of the above 274. If $f(x) = \cos^2 x + \sec^2 x$, then c) 1 < f(x) < 2 d) $f(x) \ge 2$ a) f(x) < 1b) f(x) = 1275. If $\log_5(\sqrt{x+5} + \sqrt{x}) = 0$ then x =a) 3 c) 2 b) 4 d) None of these 276. If *a*, *b*, *c*, are in A.P.; *b*, *c*, *d* are in G.P. *c*, *d*, *e*, are in H.P., then *a*, *c*, *e*, are in d) None of these a) A.P. b) G.P. c) H.P. 277. The sum of the series $\log_4 2 - \log_8 2 + \log_{16} 2 - \log_{32} 2 + \dots$ is a) e^2 b) $\log_e 2 + 1$ c) $\log_e 3 - 2$ 278. If $y = 1 + x + x^2 + x^3 + ...$, then x is equal to d) $1 - \log_e 2$ a) $\frac{y-1}{y}$ b) $\frac{1-y}{y}$ c) $\frac{y}{a-y}$ d) None of these 279. The coefficient of x^{15} in the product $(1 - x)(1 - 2x)(1 - 2^2x)(1 - 2^3x) \dots (1 - 2^{15}x)$ is equal to a) $2^{105} - 2^{121}$ b) $2^{121} - 2^{105}$ c) $2^{120} - 2^{104}$ d) None of these 280. If $\log_{10} 5 = x$, then $\log_5 1250$ equals to a) $3 - \frac{1}{2}$ b) $2 + \frac{1}{x}$ c) $3 + \frac{1}{2}$ d) 2 – $\frac{1}{...}$ 281. If $a^{1/x} = b^{1/y} = c^{1/z}$ and *a*, *b*, *c* are in GP, then *x*, *y*, *z* will be in c) HP d) None of these 282. The sum of series $\sum_{n=1}^{\infty} \frac{2n}{(2n+1)!}$ is c) 2e d) None of these 283. If $e^x = y + \sqrt{1 + y^2}$, then the value of *y* is b) $\frac{1}{2}(e^{x} - e^{-x})$ c) $e^{x} + e^{-x}$ a) $e^{x} - e^{-x}$ d) $\frac{1}{2}(e^{x} + e^{-x})$ 284. The AM, HM and GM between two numbers are $\frac{144}{15}$, 15 and 12, but not necessarily in this order. Then, HM, GM and AM respectively are a) $15, 12, \frac{144}{15}$ b) $\frac{144}{15}, 12, 15$ c) $12, 15, \frac{144}{15}$ d) $\frac{144}{15}, 15, 12$ 285. If |x| < 1, then the coefficient of x^3 in the expansion of $\log(1 + x + x^2)$ is ascending powers of x, is c) $-\frac{2}{3}$ a) $\frac{2}{2}$ b) $\frac{4}{3}$ d) $-\frac{4}{2}$ 286. The value of $\frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \cdots$ is a) $\rho_{2}^{\frac{1}{2}}$ d) $\rho^{-\frac{1}{3}}$ c) e ^{287.} If $y + \frac{y^3}{3} + \frac{y^5}{5} + \dots \infty = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots \infty\right)$, then b) $\log y = 2 \log x$ c) $x^2 y = 2 x - y$ a) y = 2xd) None of these 288. The sum of the first and third term of an arithmetic series is 12 and the product of first and second term is 24, then first term is b) 8 a) 1 c) 4 d) 6 289. If the sum of the roots of the equation $ax^2 + bx + c = 0$ be equal to the sum of the reciprocals of their squares, then bc^2 , ca^2 , ab^2 will be in

a) AP	b) GP	c) HP	d) None of these
290. If $1 + \frac{1+2}{2} + \frac{1+2+3}{3} + \cdots$	\cdots to n terms is S , then S is eq	ual to	
a) $\frac{n(n+3)}{4}$	b) $\frac{n(n+2)}{4}$	c) $\frac{n(n+1)(n+2)}{6}$	d) <i>n</i> ²
291. Three numbers form	a GP. If the 3rd term is decre	eased by 64, then the three r	numbers thus obtained will
constitute an AP. If th	e second term of this AP is d	lecreased by 8, a GP will be f	formed again, then the
numbers will be $214.20.26$	h) 1 12 26	a) 4 20 100	d) None of these
a_{J} 4, 20, 50 292 Number of values of a_{J}	UJ 4, 12, 30 r for which [r] san r {r}r	CJ 4, 20, 100	u) None of these
a) 0	h) 2		d) < 5
293. If $v = 2^{1/\log_x 8}$, then x	r equal to	c) 5	uj v o
a) v	b) v^2	c) v ³	d) None of these
294. If <i>a</i> , <i>b</i> , <i>c</i> are in A.P., <i>b</i>	-a, c - b and a are in G.P., t	hen <i>a</i> : <i>b</i> : <i>c</i> is	
a) 1 : 2 : 3	b) 1 : 3 : 5	c) 2 : 3 : 4	d) 1 : 2 : 4
295. The HM of two num	bers is 4. Their AM is A ar	nd GM is G. If $2A + G^2 = 2$	27, then A is equal to
a) 9	. 9	c) 18	d) 27
	$\frac{b}{2}$		-
296. If $S_n = 1^3 + 2^3 + \dots$	$+n^3$ and $T_n = 1 + 2 + +$	n, then	
a) $S_n = T_n$	b) $S_n = T_n^4$	c) $S_n = T_n^2$	d) $S_n = T_n^3$
297. If a_1, a_2, \dots, a_{n+1} are i	n AP, then $\frac{1}{1} + \frac{1}{1} + \dots +$	$\frac{1}{1}$ is	
n-1	$a_1a_2 a_2a_3$	$a_n a_{n+1}$ n+1	n
a) $\frac{n}{a_1 a_{n+1}}$	b) $\frac{1}{a_1 a_{m+1}}$	c) $\frac{n+1}{a_1 a_{m+1}}$	d) $\frac{1}{a_1 a_{n+1}}$
298. If <i>d</i> . <i>e</i> . <i>f</i> are in G.P. an	d the two quadratic equation	$a_1a_{n+1}^{n+1}$ ns $ax^2 + 2bx + c = 0$ and a_1^{n+1}	$lx^2 + 2 ex + f = 0$ have a
common root, then	1		,, ,
a) $\frac{d}{d}$, $\frac{e}{d}$, $\frac{f}{d}$ are in H.P.	b) $\frac{d}{d}$, $\frac{e}{d}$, $\frac{f}{d}$ are in G.P.	c) $abf = aef + cde$	d) $b^2 df = ace^2$
a'b'c 299 If $a h c d he in HP th$	a'b'c	•) •••) ••••)	
a) $a^2 + c^2 > h^2 + d^2$	b) $a^2 + d^2 > h^2 + c^2$	c) $ac + hd > h^2 + c^2$	d) $ac + hd > h^2 + d^2$
300. In an AP the sum of	any two terms such that	the distance of one of the	n from the beginning is
same as that of the	other from the end is		in nom the beginning is
a) First term	other from the end, is	h) Sum of first and las	t terms
c) Last terms		d) Half of the sum of t	ha sarias
301 An infinite CD bas fi	ret torm x and sum 5 that		
$_{2}$ \times 10	$\begin{array}{c} 1 \text{ Set term } x \text{ and sum } 5, \text{ then} \\ \text{ b) } 10 \neq x \neq 0 \end{array}$	a) 0 - x - 10	d $x > 10$
$302 \text{ If } \Sigma^n = \frac{1}{2} \text{ If } (n+1)$	$U_{j} = 10 < x < 0$	$\sum_{n=1}^{n} \sum_{i=1}^{n} \sum_{i$	$u_{j}x > 10$
$\int \frac{d^2}{dr} = \frac{1}{6}n(n+1)$	$(n + 2)$ for all $n \ge 1$, then 1	$\lim_{n \to \infty} \sum_{r=1}^{n} \overline{a^r}$ is	
a) 2	b) 3	c) 3/2	d) 6
303. Let $S_n = \frac{1}{1^3} + \frac{1+2}{1^3+2^3} + \frac{1}{1^3+2^3}$	$\cdots + \frac{1}{1^3 + 2^3 + \dots + n^3}$; $n = 1, 2, 3, .$		
Then, S_n is not greate	er than		
a) $\frac{1}{2}$	b) 1	c) 2	d) 4
2 204 The sum of the corrige	log 2 log 2 log 2	ic	
$2) a^2$	$\log_4 2 = \log_8 2 + \log_{16} 2 = 0$	c) $\log 3 - 2$	d) 1 - log 2
305 In a sequence of 21	torms the first 11 torms r	$C_{J} \log_{e} 3 - 2$	$u_{J} = \log_{e} 2$
torms are in CP wit	h common ratio 2 If the m	aiddle term of AP be equal	to the middle term of the
CP then the middle	term of the optice sequen	induie term of Ar De equal	
	10	32	31
a) $-\frac{10}{21}$	b) $\frac{10}{21}$	c) $\frac{32}{31}$	d) $-\frac{31}{32}$
306. If $\log_{12} 27 = a$. then l	$og_{6} 16 =$	JI	34
014,			

a) $\frac{3-a}{3+a}$	b) $4\left(\frac{3-a}{3+a}\right)$	c) $3\left(\frac{4-a}{4+a}\right)$	d) $3\left(\frac{4+a}{4-a}\right)$
307. If $x = \log_3 5$, $y = \log_{17} 2$	25 which one of the followin	ig is correct?	
a) <i>x</i> < <i>y</i>	b) $x = y$	c) $x > y$	d) None of these
308. If there be <i>n</i> quantities in the sum of their product	n G.P., whose common ratio s, taken two by two is	is r and S_m denotes the sum	n of the first <i>m</i> terms, then
a) $S_m S_{m-1}$	b) $\frac{r}{r+1} S_m S_{m-1}$	c) $\frac{r}{r-1}S_m S_{m-1}$	d) $\frac{r+1}{r}S_m S_{m-1}$
309. If the altitudes of a triang	gle are in AP, then the sides	of the triangle are in	
a) AP		b) HP	
c) GP		d) Arithmetic- geometric	progression
310. If <i>H</i> is the harmonic m	ean between P and Q , the	en the value of $\frac{\pi}{p} + \frac{\pi}{q}$ is	
a) 2	b) $\frac{PQ}{P+Q}$	c) $\frac{1}{2}$	d) $\frac{P+Q}{PQ}$
311. If $x = \log_a(bc)$, $y = \log_b b^2$	(ca) and $z = \log_c(ab)$, then	n which of the following is c	orrect?
a) $x + y + z = 1$ b) $\frac{1}{1 + x} + \frac{1}{1 + x} + \frac{1}{1 + z}$	= 1		
c) $xyz = 1$			
d) None of these			
312. If <i>a</i> , <i>b</i> , <i>c</i> be in GP, then log	g a^n , log b^n , log c^n will be		
a) AP	b) GP	c) HP	d) None of these
313. If the lengths of sides of a	a right angled triangle are ir	n A.P., then their ratio is	
a) 2 : 3 : 4	b) $3:4:5$	c) $4:5:6$	d) None of these
314. If a, b, c are in AP then 10	$\int dx + 10^{2}, 10^{2}x + 10^{2}, 10^{2}x + 10^{2}(x + 10) = 0$	\neq 0) are in	
aJ AP 315 The set of all possible va	DJ GP Only when $x > 0$ lues of x for which 13 is the	C) GP IOI all x A M of 5^{1+x} and 5^{1-x} is	u) GP only when $x < 0$
			d) None of these
a) 5, _ 5	b) {-1,1}	c) {0,1}	
316. The sum of the series 1^2	$-2^3 + 3^2 - 4^2 + 5^2 - 6^2 +$	$- \cdots - 2008^2 + 2009^2$ is	
a) 2019045	b) 1005004	c) 2000506	d) None of these
317. If the sum of <i>n</i> terms o	f the series $2^3 + 4^3 + 6^3 + 6^3$	F is 3528, then n equals	sto
a) 10	b) 7	c) 8	d) 6
^{318.} If $\frac{a+b}{2}$, b , $\frac{b+c}{2}$ are in HP,	then <i>a, b, c</i> are in		
a) HP	b) AP	c) GP	d) None of these
319. If AM of two numbers is	is twice of their GM, then	the ratio of greatest num	ber to smallest number
a) 7 – $4\sqrt{3}$	b) 7 + $4\sqrt{3}$	c) 21	d) 5
320. The difference betwee	n two numbers is 48 and	the difference between t	heir arithmetic mean and
their geometric mean i	s 18. Then, the greater of	two numbers is	
a) 96	b) 60	c) 54	d) 49
321. If $\log(1 - x + x^2) = a_1 x$	$a^{2} + a_{3}x^{3} + \cdots$, then $a_{3} + a_{6}$	$+ a_{0} + \cdots$ is equal to	,
a) log 2	b) $\frac{2}{2}\log 2$	c) $\frac{1}{2}\log 2$	d) 2 log 2
322. If $a^{n+1}+b^{n+1}$ be the basis	J	\mathbf{J}	
$a^{n}+b^{n}$ be the harmo	blue mean between a and b ,	then the value of n is	
a) 1	b) -1	c) U	d) 2
$1 \cdot 3^2 + 2 \cdot 5^2 + 3 \cdot 7^2 +$. ∞ is		

a) $\frac{n}{6}(n+1)(6n^2+14n+7)$ b) $\frac{n}{6}(n+1)(2n+1)(3n+1)$ c) $4n^2 + 4n^2 + n$ d) None of the above a) 6.93378 b) 6.87342 c) 6.74384 d) 6.64474 325. The value of $2^{1/4}$. $4^{1/8}$. $8^{1/16}$... ∞ is a) 1 c) 3/2 d) 4 326. The value of $\left(1+\frac{a^2x^2}{2!}+\frac{a^4x^4}{4!}+\cdots\right)^2-\left(ax+\frac{a^3x^3}{3!}+\frac{a^5x^5}{5!}+\cdots\right)^2$, is b) e^{-ax} c) 0 d) 1 327. $1 + \frac{2^3}{2!} + \frac{3^3}{3!} + \frac{4^3}{4!} + \cdots \infty$ equals c) 3e d) 2e 328. $1 + \frac{(\log_e n)^2}{2!} + \frac{(\log_e n)^4}{4!} + \dots$ is equal to c) $\frac{1}{2}(n+n^{-1})$ d) $\frac{1}{2}(e^n+e^{-n})$ b) $\frac{1}{n}$ a) n 329. The sum of first 10 terms of the series $\left(x+\frac{1}{x}\right)^{2}+\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+\left(x^{3}+\frac{1}{x^{3}}\right)^{2}+\cdots$ is a) $\left(\frac{x^{20}-1}{x^2-1}\right) \left(\frac{x^{22}+1}{x^{20}}\right) + 20$ b) $\left(\frac{x^{18}-1}{x^2-1}\right) \left(\frac{x^{11}+1}{x^9}\right) + 20$ c) $\left(\frac{x^{18}-1}{x^2-1}\right)\left(\frac{x^{11}-1}{x^9}\right)+20$ d) None of these 330. If $x = \sum_{n=0}^{\infty} a^n$, $y = \sum_{n=0}^{\infty} b^n$, $z = \sum_{n=0}^{\infty} c^n$, where *a*, *b*, *c* are in A.P. such that |a| < 1, |b| < 1, and |c| < 1, then x, y, z are in a) A.P. b) G.P. c) H.P. d) None of these 331. 150 workers were engaged to finish a piece of work in a certain number of days. 4 workers dropped the second day, 4 more workers dropped the third day and so on. It takes eight more days to finish the work now. The number of days in which the work was completed is c) 25 a) 15 b) 20 d) 30 ^{332.} If *a*, *b*, *c* are distinct positive real number and $a^2 + b^2 + c^2 = 1$, then $3(a^2b^2c^2)^{1/3}$ is c) Greater than 1 a) Less than 1 b) Equal to 1 d) Any real number 333. If positive numbers a^{-1} , b^{-1} , c^{-1} are in AP, then the product of roots of the equation $x^2 - kx + 2b^{101} - b^{101}$ $a^{101} - c^{101} = 0$, $(k \in R)$ is b) <0 c) = 0d) None of these 334. If $\frac{\log a}{b-c} = \frac{\log b}{c-a} = \frac{\log c}{a-b}$, then $a^a b^b c^c =$ c) abc d) None of these ^{335.} If $S_n = nP + \frac{1}{2}n(n-1)Q$, where S_n denotes the sum of the first *n* terms of an AP, then the common difference is b) 2*P* + 3*Q* a) P + Q c) 20 d) Q 336. If $\{a_n\}$ is a sequence with $a_0 = p$ and $a_n - a_{n-1} = ra_{n-1}$ for $n \ge 1$, then the terms of the sequence are in a) An arithmetic progression b) A geometric progression d) An arithmetic-geometric progression c) A harmonic progression

337.	. If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are in H.P., then	ab + bc + cd =		
	a) ad	b) 2 <i>ad</i>	c) 3ad	d) None of these
338.	If $(1-p)(1+2x+4x^2+$	$8x^3 + 16x^4 + 32x^5) = 1 - 1$	$-p^6$, $p \neq 1$ then a value of p^6	p/x is
	a) 1/2	b) 2	c) 1/4	d) 4
339.	If <i>a</i> , <i>b</i> and <i>c</i> are in AP, th	ten 2^{ax+1} , 2^{bx+1} , 2^{cx+1} , x	\neq 0 are in	
	a) AP		b) GP only when $x > 0$	
	c) GP if $x < 0$		d) GP	
340.	The coefficients of x^n in	the expansion of $\log_{2}(1)$	(+x) is	
	$(-1)^{n-1}$	$(-1)^{n-1}$	$(-1)^{n-1}$	$(-1)^{n}$
	a) $\frac{(1)}{2}$	b) $\frac{(1)}{m} \log_a e$	c) $\frac{(1)}{m} \log_e a$	d) $\frac{(1)}{n} \log_a e$
341			n	$+2^2+3^2$.
541.	Let $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots +$	$\frac{1}{n}$, then the sum to <i>n</i> terms	of the series $\frac{1}{1^3} + \frac{1}{1^3 + 2^3} + \frac{1}{1^3}$	$\frac{1}{+2^3+3^3} + \cdots$, is
	a) $\frac{4}{-H} = 1$	h) $\frac{4}{-H_{1}} + \frac{1}{-}$	$\frac{4}{-H}$	d) $\frac{4}{H_{u}} - \frac{2}{2} \frac{n}{m}$
	$3^{11}n^{11}$	3^{n} n	3^{n}	3^{n} 3^{n} 3^{n} + 1
342.	If $a_1, a_2, a_3, \dots, a_n$ are the	e <i>n</i> arithmetic means bet	tween <i>a</i> and <i>b</i> , then $2\sum_{i=1}^{n}$	a_i equals
	a) ah	b) $n(a + b)$	c) nah	d) $\frac{(a+b)}{(a+b)}$
	uj ub	b		n n
343.	. If m is a root of the given e	equation $(1 - ab)x^2 - (a^2)$	$(+b^2)x - (1+ab) = 0$ and	d m harmonic means are
	inserted between <i>a</i> and <i>b</i> ,	then the difference betwee	en the last and the first of t	he means equals
	a) <i>b</i> – <i>a</i>	b) <i>ab</i> (<i>b</i> − <i>a</i>)	c) $a(b - a)$	d) $ab(a-b)$
344.	If a, b, c are in AP, then 3^a	, 3 ^b , 3 ^c shall be in		
	a) AP	b) GP	c) HP	d) None of these
345.	If $\frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1}$ and	$b \neq a + c$, then a, b, c ar	e in	
	b-a $b-c$ a c	, , , እ) ር D		d) Nama af thaca
246	a) AP	DJ GP	C) HP	u) None of these
346.	• If <i>S</i> denotes the sum to inf	Finity and S_n the sum of n to	erms of the series $1 + \frac{1}{2} + \frac{1}{4}$	$+\frac{1}{8}+\cdots$, such that
	$S - S_n < \frac{1}{1000}$, then the lea	ast value of <i>n</i> is		
	a) 8	b) 9	c) 10	d) 11
347.	Three numbers are in A	P such that their sum is 2	18 and sum of their squa	res is 158. The greatest
	number among them is		1	0
	a) 10	b) 11	c) 12	d) None of these
348		16 to the second terms	0) 12	a) None of these
540.	$\frac{1}{1\cdot 2\cdot 3\cdot 4} + \frac{1}{3\cdot 4\cdot 5\cdot 6} + \frac{1}{5\cdot 6\cdot 7\cdot 8} + \frac{1}{7\cdot 8}$	$\frac{1}{3\cdot9\cdot10}$ + to ∞ is equal to	_	
	a) $\frac{1}{-\log_{2} 2} - \frac{1}{-1}$	b) $\frac{5}{-100}$ - 100 2	c) $\frac{3}{-} - \log_{2} 2$	d) None of these
0.40	6 ¹⁰ 8 <i>e</i> ² 24	2	2	
349.	If $a = 1 + \log_x y z$, $b = 1$	$+\log_y zx, c = 1 + \log_z xy,$	then $ab + bc + ca =$	
	a) 0	b) 2abc	c) abc	d) $a^2 + b^2 + c^2$
350.	Geometric mean of 7,7 ²	$,7^{3},7^{n}$ is		
	a) $7^{\frac{n+1}{2}}$	b) 7	c) 7 ^{n/2}	d) 7 ⁿ
351	The sum of series $1 - 3 +$	$5 - 7 + 9 - 11 + \cdots$ to <i>n</i> te	erms is	-
001	a) $-n$ when <i>n</i> is even	b) $2n$ when n is even	c) $-n$ when n is odd	d) $2n$ when n is odd
352	The sum of integers from	1 to 100 that are divisible b	r^{2} r^{2	a <i>j 211,</i> when <i>t</i> is oud
002.	a) 3000	h) 3050	(-) 4050	d) None of these
353	If $y = 3^{x-1} \pm 3^{-x-1}(x r)$	o) then the least value	of v is	a) None of these
555.	(x) = 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3	b) c	a) 2/2	d) None of these
254				u) None of these
354.	i ne aritnmetic mean of	nrst <i>n</i> odd natural numb	per IS	
	a) <i>n</i> ²	b) 2 <i>n</i>	c) <i>n</i>	d) 3n
355.	A GP consists an even nun	nber of terms. If the sum of	all the terms is 5 times the	sum of the terms
	occupying odd places, the	n the common ratio will be	equal to	
	a) 2	b) 3	c) 4	d) 5

356.	If sum of the series $\sum_{n=1}^{\infty}$	$_0 r^n = S$ for $ r < 1$, then	sum of the series $\sum_{n=0}^{\infty} r$	²ⁿ , is
	a) <i>S</i> ²	b) $\frac{S^2}{2S+1}$	c) $\frac{2S}{S^2 - 1}$	d) $\frac{S^2}{2S-1}$
357.	If $T_n = \frac{1}{4}(n+2)(n+3)$	for $n = 1, 2, 3,, then \frac{1}{T_1}$	$+\frac{1}{T_2}+\cdots+\frac{1}{T_{2002}}$ is equal t	20 1
	a) $\frac{4006}{2006}$	b) $\frac{4003}{2007}$	c) $\frac{4006}{2008}$	d) $\frac{4006}{2000}$
358.	The sum to <i>n</i> terms of the	he series $\frac{1}{\sqrt{1+\sqrt{3}}} + \frac{1}{\sqrt{3}+\sqrt{5}} + \frac{1}{\sqrt{3}+\sqrt{5}}$	5000	3009
	a) $\sqrt{2n+1}$	b) $\sqrt{2n+1} - 1$	c) $\frac{1}{2}\sqrt{2n+1}$	d) $\frac{1}{2}(\sqrt{2n+1}-1)$
359.	The sum of all the produ	ucts of the first <i>n</i> natural	numbers taken two at a	time is
	a) $\frac{1}{24}n(n-1)(n+1)(3)$	3n + 2)	b) $\frac{n^2}{48}(n-1)(n-2)$	
	c) $\frac{1}{6}n(n+1)(n+2)(n+1)(n+2)(n+1)(n+2)(n+1)(n+1)(n+2)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1$	+ 5)	d) None of the above	
360.	o If $x \neq 0$. then the sum of s	eries $1 + \frac{x}{x} + \frac{2x^2}{x^2} + \frac{3x^3}{x^3} +$	…to∞.is	
	a) $\frac{e^x + 1}{r}$	b) $\frac{e^{x}(x-1)}{x}$	c) $\frac{e^{x}(x-1)+1}{x}$	d) None of these
361.	If the sum of first <i>n</i> tern	ns of an AP is cn^2 , then the	ne sum of squares of thes	e n terms is
	a) $\frac{n(4n^2-1)c^2}{6}$	b) $\frac{n(4n^2+1)c^2}{3}$	c) $\frac{n(4n^2-1)c^2}{3}$	d) $\frac{n(4n^2+1)c^2}{6}$
362.	If the roots of equation x^3	$-12x^2 + 39x - 28 = 0$ as	re in AP, then their common	n difference will be
	a) ± 1	b) ± 2	c) ± 3	d) ± 4
363.	If a, b, c, d are in G.P. and a	$a^x = b^y = c^z = d^u$, then x,	y, z, u are in	d) None of these
364	a) A.P. The value of \sqrt{a} rounded a	DJ G.P.	сј п.Р.	a) None of these
501.	a) 1.648	h) 1.650	c) 1.652	d) None of these
365.	The 4th term of a HP is	3/5 and 8th term is $1/3$.	then its 6th term is	
	a) 1/6	b) 3/7	c) 1/7	d) 3/5
366.	If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> and <i>p</i> are differ	ent real numbers such that	$t(a^2 + b^2 + c^2) p^2 - 2(ab)$	+ bc + cd) p +
	$(b^2 + c^2 + d^2) \le 0$, then d	a, b, c, d are in		
	a) AP	b) GP	c) HP	d) $ab = cd$
367.	If the 7th term of HP is	$\frac{1}{10}$ and the 12th term is $\frac{1}{25}$, then the 20th term is	
	<u>1</u>	1 1	, 1	., 1
	a) $\frac{1}{41}$	$\frac{100}{45}$	c) $\frac{1}{49}$	$\frac{d}{37}$
368.	The expansion of log(1	$+3x + 2x^2$) is		
	a) $3x - \frac{5}{4}x^2 + \frac{9}{3}x^3 - \frac{1}{4}x^4$	$\frac{7}{4}x^4+\ldots\infty$	b) $4x - \frac{5}{4}x^2 + \frac{9}{3}x^3 - \frac{17}{4}$	$\frac{7}{-x^4+\ldots\infty}$
	c) $3x - \frac{5}{2}x^2 + \frac{9}{3}x^3 - \frac{17}{4}$	$\frac{7}{2}x^4+\ldots\infty$	d) $-3x - \frac{5}{4}x^2 - \frac{9}{3}x^3 - \frac{1}{3}x^3 - \frac{1}{3}$	$\frac{17}{4}x^4-\ldots\infty$
369.	The 5th term of the seri	$es\frac{10}{9}, \frac{1}{3}\sqrt{\frac{20}{3}}, \frac{2}{3}, \dots is$		
	a) $\frac{1}{2}$	b) 1	c) $\frac{2}{r}$	d) $\left[\frac{2}{2}\right]$
270	\mathbf{J}			$\sqrt{3}$
3/0.	. IT a and b are two differen	it positive real numbers, th	en which of the following r	eiations is true

a) $2\sqrt{ab} > (a + b)$ b) $2\sqrt{ab} < (a + b)$ c) $2\sqrt{ab} = (a + b)$ d) None of these 371. If $\log_2 \sin x - \log_2 \cos x - \log_2(1 - \tan^2 x) = -1$, then x =

	a) $\frac{n\pi}{2} + \frac{\pi}{8}, n \in \mathbb{Z}$	b) $n\pi - \frac{\pi}{8}$, $n \in \mathbb{Z}$	c) $\frac{n\pi}{4} + \frac{\pi}{2}, n \in \mathbb{Z}$	d) None of these
372.	The sum of the series	0	1 4	
	$\frac{x-1}{x+1} + \frac{1}{2} \frac{x^2-1}{(x+1)^2} + \frac{1}{3} \frac{x^3-1}{(x+1)^3} +$	···, is equal to		
	a) log _e x	b) 2 log _e x	c) $-\log_e(x+1)$	d) None of these
373.	$\sum_{n=1}^{\infty} \frac{2n^2 + n + 1}{n!}$ is equal to			
	a) 2 <i>e</i> — 1	b) 2 <i>e</i> + 1	c) 6 <i>e</i> — 1	d) 6 <i>e</i> + 1
374.	In the four numbers first t	three are in GP and last thre	ee are in AP whose commor	n difference is 6. If the first
	and last numbers are sam	e, then first number will be	<u>,</u>	
	a) 2	b) 4	c) 6	d) 8
375.	If $(m + 1)^{\text{th}}$, $(n + 1)^{\text{th}}$ and	$(r+1)^{th}$ terms of an AP a	re in G.P; and <i>m</i> , <i>n</i> , <i>r</i> are in	HP, then the ratio of the
	first term and common di	fference of this AP is		
	a) <i>n</i> /2	b) <i>-n</i> /2	c) n/3	d) – <i>n</i> /3
376.	$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \cdots$			
	$\frac{1}{1+\frac{1}{2}+\frac{1}{5}+\cdots}$ equals			
	3: 5:	<i>e</i> – 1		d) None of these
	a) <i>e</i> + 1	b) $\frac{e}{\rho + 1}$	c) <i>e</i> – 1	
377.	If an infinite geometric	series the first term is a	and common ratio is <i>r</i> . If	the sum of the series is 4
	and the second term is a	3/4, then (a, r) is		
	a) (4/7,3/7)	b) (2, 3/8)	c) (3/2,1/2)	d) (3, 1/4)
378.	$\sum_{k=1}^{5} \frac{1^{3}+2^{3}+\ldots+k^{3}}{1+3+5+\ldots+(2k-1)}$ is e	qual to		
	a) 22.5	b) 24.5	c) 28.5	d) 32.5
373.	The expansion of $\left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots\right)$ a) $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots$ b) $1 + \frac{2^2x^2}{2!} + \frac{2^4x^4}{4!} + \cdots$ c) $1 + \frac{2x^2}{2!} + \frac{2^3x^4}{4!} + \frac{2^5}{6!} + \frac{2^5}{6!}$ d) None of these	$\left(+\frac{x^{5}}{4!}+\cdots\right)$ is ascending point of $\left(-\frac{x^{5}}{2!}+\cdots\right)$	owers of <i>x</i> , is	
380.	If $\tan n\theta = \tan m\theta$, then the	the different values of θ will	he	
	a) AP	b) GP	c) HP	d) None of these
381.	If $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots $ to $\infty =$	$\frac{\pi^2}{6}$, then $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$ eq	juals	- ,
	a) π ² /8	b) π ² /12	c) π ² /3	d) $\pi^2/2$
382.	If <i>a</i> , <i>b</i> , <i>c</i> are in G.P., then lo	$\log_a \lambda$, $\log_b \lambda$, $\log_c \lambda$ are in		
	a) A.P.	b) G.P.	c) H.P.	d) None of these
383.	$2^{\sin\theta} + 2^{\cos\theta}$ is greater the	han		
	a) 1/2	b) <u>√2</u>	c) $2^{\frac{1}{\sqrt{2}}}$	d) $2^{\left(1-\frac{1}{\sqrt{2}}\right)}$
384.	After inserting <i>n</i> A.Ms bet	ween 2 and 38, the sum of t	the resulting progression is	200. The value of <i>n</i> is
	a) 10	b) 8	c) 9	d) None of these
385.	Let $x \in (1, \infty)$ and n be a p	positive integer greater tha	n 1. lf	
	$f_n(x) = \frac{n}{\frac{1}{\log_2 x} + \frac{1}{\log_3 x} + \dots + \frac{1}{\log_n x}}$	$\frac{1}{x}$, then $(n!)^{f_n(x)}$ equals to		
	a) n^x	b) <i>x</i> ^{<i>n</i>}	c) <i>nⁿ</i>	d) <i>n^{nx}</i>
386.	The sixth term of an AP is	equal to 2. The value of the	e common difference of the	AP which makes the
	product $T_1T_4T_5$ least, is gi	ven by		
	a) 8/5	b) 5/4	c) 2/3	d) None of these

387. Sum of <i>n</i> terms of series	$12 + 16 + 24 + 40 + \dots$ will	be	
a) $2(2^n - 1) + 8n$	b) $2(2^n - 1) + 6n$	c) $3(2^n - 1) + 8n$	d) $4(2^n - 1) + 8n$
388. For a sequence $< a_n >, c$	$a_1 = 2$ and $\frac{a_{n+1}}{a_n} = \frac{1}{3}$. Then, $\sum_{n=1}^{\infty}$	$a_{r=1}^{20} a_r$ is	
a) $\frac{20}{2}[4 + 19 \times 3]$	b) $3\left(1-\frac{1}{3^{20}}\right)$	c) $2(1-3^{20})$	d) None of these
^{389.} If $< a_n >$ and $< b_n >$ be Then $a_n a_n a_n$ is equi	two sequences given by a_n	$= (x)^{\frac{1}{2^n}} + (y)^{\frac{1}{2^n}}$ and $b_n = 0$	$(x)^{\frac{1}{2^n}} - (y)^{\frac{1}{2^n}}$ for all $n \in N$.
$11011, u_1u_2u_3 \dots u_n 15 equ$	x + y	x - y	xy
a) $x - y$	b) $\overline{b_n}$	c) $\overline{b_n}$	d) $\overline{b_n}$
^{390.} The coefficient of x^n in the second seco	the expansion of $\frac{e^{7x}+e^{x}}{e^{3x}}$, is		
a) $\frac{4^{n-1} + (1-2)^n}{n!}$	b) $\frac{4^{n-1}+2^n}{n!}$	c) $\frac{4^{n-1} + (-2)^{n-1}}{n!}$	d) None of these
391. If $ a < 1$, then $1 + 2a$	$+ 3a^2 + 4a^3 +$ is equal	to	
a) $\frac{1}{1-a}$	b) $\frac{1}{1+a}$	c) $\frac{1}{1+a^2}$	d) $\frac{1}{(1-a)^2}$
392. If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are in G.P., the	n $(a^3 + b^3)^{-1}$, $(b^3 + c^3)^{-1}$,	$(c^3 + d^3)^{-1}$ are in	
a) A.P.	b) G.P.	c) H.P.	d) None of these
393. If the sum of 12th and	22nd terms of an AP is 10)0, then the sum of the fir	st 33 terms of the AP is
a) 1700	b) 1650	c) 3300	d) 3400
394. If arithmetic mean of two is equal to	positive numbers is <i>A</i> , the	ir geometric mean is G and	harmonic mean <i>H</i> , then <i>H</i>
G^2	A^2	A A	d) G
$a_{J} - A$	G^2	$G \overline{G^2}$	$d \int \frac{d}{A^2}$
395. If $10^{x-1} + 10^{-x-1} = \frac{1}{3}$, the	then x equals to		
a) $\pm \log_{10} 3$	b) 2 log ₃ 10	c) log ₃ 3	d) log ₂ 10
396. If $x^a = x^{b/2} z^{b/2} = z^c$, th	en <i>a, b, c</i> are in		
a) A.P.	b) G.P.	c) H.P.	d) None of these
397. The sum of the series $\frac{1}{1\cdot 2}$	$+\frac{1\cdot 3}{1\cdot 2\cdot 3\cdot 4}+\frac{1\cdot 3\cdot 5}{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6}+\cdots$ to \circ	o, is	
a) <i>e</i> – 1	b) $e^{1/2} - 1$	c) $e^{1/2} + e$	d) None of these
398. If $a_1, a_2, a_3, \dots, a_n$ are in A_n	A.P. and $a_i > 0$ for each $i =$	1,2,3,, <i>n</i> , then $\sum_{r=1}^{n-1} \frac{1}{a_{r+1}^{2/3}}$	$\frac{1}{a_{r+1}^{1/3}a_r^{1/3}+a_r^{2/3}}$ is equal to
a) $\frac{n+1}{a^{2/3} + a^{1/3} a^{1/3} + a^{2/3}}$	/3		
$\begin{array}{c} u_{n-1} + u_{n-1}u_1 \\ n-1 \end{array}$			
b) $\overline{a_n^{2/3} + a_n^{1/3} + a_1^{2/3}}$			
c) $\frac{n-1}{a_n^{2/3} + a_n^{1/3} a_1^{1/3} + a_1^{2/3}}$	3		
d) $\frac{n+1}{a_{n+1}^{2/3} + a_{n+1}^{1/3}a_1^{1/3} + a_1^2}$	/3		
399. The harmonic mean of tw	vo numbers is 4 and the ari	thmetic and geometric mea	ns satisfy the relation
$2A + G^2 = 27$, the numb	oers are		
a) 6, 3	b) 5, 4	c) 5, −2.5	d) -3, 1
400. If 3^{2x+1} . $4^{x-1} = 36$, then	x =		
a) log ₃₆ 48	b) log ₄₈ 36	c) log ₂₄ 12	d) log ₁₂ 24
401. If $p, q, r, s \in N$ and they a	re tour consecutive terms o	ot an A.P., then <i>p</i> th, <i>q</i> th, <i>r</i> th	and sth terms of a G.P. are
In	b) C D		d) Nono of these
aj A.P.	DJ G.P.	сј н.р.	uj none of these

402. $\frac{1}{2} \frac{2}{2} \frac{2}{1^3}$	$\frac{\frac{2}{2}\cdot\frac{3}{2}}{1^{3}+2^{3}}+\frac{\frac{3}{2}\cdot\frac{4}{2}}{1^{3}+2^{3}+3^{3}}+\dots$. +n terms equals		
a)	$\left(\frac{n}{n+1}\right)^2$	b) $\left(\frac{n}{n+1}\right)^3$	c) $\left(\frac{n}{n+1}\right)$	d) $\left(\frac{1}{n+1}\right)$
403. If a	$a_1, a_2, a_3, \dots, a_n$ are in A	P, where $a_i > 0$ for all i , th	en value of $\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_2}}$	$\frac{1}{\sqrt{a_3}} + \ldots + \frac{1}{a_{n-1} + \sqrt{a_n}}$ is equal
a)	$\frac{n-1}{\sqrt{a_1} + \sqrt{a_n}}$	b) $\frac{n+1}{\sqrt{a_1} + \sqrt{a_n}}$	c) $\frac{n-1}{\sqrt{a_1}-\sqrt{a_n}}$	d) $\frac{n+1}{\sqrt{a_1} - \sqrt{a_n}}$
404. If	$y = 2x^2 - 1$, then $\frac{1}{x^2} + \frac{1}{2}$	$\frac{1}{x^4} + \frac{1}{3x^6} + \cdots \infty$ equals to	,	· - • •
a)	$\log_e\left(\frac{y+1}{y-1}\right)$	b) $\log_e\left(\frac{1+y}{1-y}\right)$	c) $\log_e\left(\frac{1-y}{1+y}\right)$	d) $\log\left(\frac{1+2y}{1-2y}\right)$
405. Th th	ne interior angles of a po en the number of side is	lygon are in AP. If the small	llest angle be 120° and the	common difference be 5,
a) 406 Ifi	8 $\log (4r^{\log_5 x} + 5) - 2\log_5 x$	b) 10 $a_{-}x$ then x equals to	c) 9	d) 6
100.11	$\log_{\mathcal{X}}(4\lambda + 1) = 210$	$x_5 x_7$ then x equals to		n = ¹
aj	4, 5	b) -1,5	c) 4, -1	a) 5, $\frac{-}{5}$
407. Le	et a, b, c be in AP. If 0 <	$< a, b, c < 1, x = \sum_{n=0}^{\infty} a^n$, $y = \sum_{n=0}^{\infty} b^n$ and $z = \sum_{n=0}^{\infty} b^n$	$\sum_{n=0}^{\infty} c^n$, then
a)	2y = x + z	b) $2x = y + z$	c) $2z = x + y$	d) $2xz = xy + yz$
408. If :	$x^{\frac{1}{2}(\log_2 x - 3)} = \frac{1}{8}$, then x e	quals to		
a)	2	b) 3	c) 5	d) 6
409. If o th	every terms of a GP with e series is	n positive terms is the sum	of its two previous terms, t	then the common ratio of
a)	1	b) $\frac{2}{\sqrt{5}}$	c) $\frac{\sqrt{5}-1}{2}$	d) $\frac{\sqrt{5}+1}{2}$
410. If a	$n_1, n_2, n_3, \dots, n_{100}$ are po	sitive real numbers such th	hat $n_1 + n_2 + n_3 + \ldots + n_{100}$	= 20
An a)	nd $k = n_1(n_2 + n_3 + n_4)$ (0, 100]	$(n_5 + n_6 + + n_9)(n_{10} +$ b) (0, 128]	$(n+n_{16}) \dots (n+n_{100})$, then <i>l</i> c) [0, 144]	k belongs to d) None of these
411. If (a, b, c are in AP, then the	e straight line $ax + by + c$	= 0 will always pass throug	gh the point
a)	(-1, -2)	b) (1, -2)	c) (-1,2)	d) (1, 2)
412. If	$\frac{e^x}{1-x} = B_0 + B_1 x + B_2 x^2 + B_1 x + B_2 x^2 $	$+\cdots+B_nx^n+\cdots$, then B_n -	$-B_{n-1}$ equals	
a)	$\frac{1}{n!}$	b) $\frac{1}{(n-1)!}$	c) $\frac{1}{n!} - \frac{1}{(n-1)!}$	d) 1
413. If	$\frac{a+bx}{a-bx} = \frac{b+cx}{b-cx} = \frac{c+dx}{c-dx} (x \neq$	= 0), then <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are in		
a)	AP	b) GP	c) HP	d) None of these
414. If 2	$\sum_{r=1}^{\infty} \frac{1}{(2r-1)^2} = \frac{\pi^2}{8}, \text{ then } \Sigma$	$\sum_{r=1}^{\infty} \frac{1}{r^2}$ is equal to	2	
a)	$\frac{\pi^2}{24}$	b) $\frac{\pi^2}{3}$	c) $\frac{\pi^2}{6}$	d) None of these
415. Jai	iram purchased a house	in Rs 15000 and paid Rs 5	000 at once. Rest money he	e promised to pay in annual
ins	stallment of Rs 1000 wit	h 10% per annum interest	. How much money is to be	e paid by Jairam?
a)	Rs 21555	b) Rs 20475	c) Rs 20500	d) Rs 20700
416. If (<i>a</i> , <i>b</i> , <i>c</i> are in A.P., then <i>a</i>	$+\frac{1}{bc}$, $b + \frac{1}{ca}$, $c + \frac{1}{ab}$ are in		
a)	A.P.	b) G.P.	c) H.P.	d) None of these
417. Th 12	he sum of the series			
-	$\frac{2}{1} + \frac{28}{21} + \frac{50}{41} + \frac{78}{51} + \cdots$, is	5		

418.	The sum of the series $\frac{1}{2}x^2$	$+\frac{2}{3}x^3 + \frac{3}{4}x^4 + \frac{4}{5}x^5 + \cdots$ is	3	
	a) $\frac{x}{1+x} + \log(1+x)$	b) $\frac{x}{1-x} + \log((1-x))$	c) $-\frac{x}{1+x} + \log(1+x)$	d) None of these
419.	The sum of the infinite s	series $\left(\frac{1}{3}\right)^2 + \frac{1}{3}\left(\frac{1}{3}\right)^4 + \frac{1}{5}\left(\frac{1}{3}\right)^4$	$\left(\frac{1}{3}\right)^6 + \cdots$ is	
	a) $\frac{1}{4}\log_e 2$	b) $\frac{1}{2}\log_e 2$	c) $\frac{1}{6}\log_e 2$	d) $\frac{1}{4}\log_e \frac{3}{2}$
420.	Let T_r , be <i>r</i> th term of an	AP whose first term is a	and common difference	is <i>d</i> . If for some positive
	integers $m, n, m \neq n, T_m$	$T_n = \frac{1}{n}$ and $T_n = \frac{1}{m}$, then a	-d equals	
	a) ()	b) 1	c) $\frac{1}{mn}$	d) $\frac{1}{m} + \frac{1}{n}$
421.	The sum of			
	$(x+2)^{n-1} + (x+2)^{n-2}(x+2)^$	$(x + 1) + (x + 2)^{n-3}(x + 1)$	$)^{2}++(x+1)^{n-1}$ is equal	to
	a) $(x+2)^{n-2} - (x+1)^n$		b) $(x+2)^{n-1} - (x+1)^{n-1}$	-1
122	c) $(x + 2)^n - (x + 1)^n$		d) None of these	. 1 1
422.	If a, b, c are in GP and x ,	y are arithmetic mean o	f a, b and b, c respectivel	y, then $\frac{1}{x} + \frac{1}{y}$ is equal to
	a) $\frac{2}{b}$	b) $\frac{3}{h}$	c) $\frac{b}{3}$	d) $\frac{b}{2}$
423.	The sum of 24 terms of	the following series $\sqrt{2}$ -	$+\sqrt{8} + \sqrt{18} + \sqrt{32} + \dots$ is	
	a) 300	b) $200\sqrt{2}$	c) 300√2	d) 250√2
424.	The sum of the series 1^3	$3^{3} + 2^{3} + 3^{3} + \ldots + 15^{3}$ is		
	a) 22000	b) 10000	c) 14400	d) 15000
425.	The value of $a^{\log_b x}$, where	$a = 0.2, b = \sqrt{5},$		
	$x = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots \infty$, is			
	a) 1	b) 2	c) 1/2	d) 4
426.	If the sum of first <i>n</i> natu	ral numbers is 1/5 time	s the sum of their square	s, then the value of <i>n</i> is
	a) 5	b) 6	c) 7	d) 8
427.	The sum of series $1 + \frac{1}{4}$.	$\frac{1}{2!} + \frac{1}{16.4!} + \frac{1}{64.6!} + \dots \infty$ is	a + 1	. 1
	a) $\frac{e+1}{2\sqrt{2}}$	b) $\frac{e-1}{2\sqrt{2}}$	c) $\frac{e+1}{\sqrt{2}}$	d) $\frac{e-1}{\sqrt{2}}$
428	$2\sqrt{e}$ The sum of the squares of	$Z \sqrt{e}$	\sqrt{e} is which are in C.P. is S ² . If t	\sqrt{e}
720.	The sum of the squares of			1
	a) $1 < \alpha^2 < 3$	b) $\frac{1}{3} < \alpha^2 < 3$	c) $1 < \alpha < 3$	d) $\frac{1}{3} < \alpha < 1$
429.	$1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots $ to \propto	p is		
	a) $\frac{16}{35}$	b) $\frac{11}{8}$	c) $\frac{35}{16}$	d) $\frac{7}{16}$
430.	If <i>a</i> , <i>b</i> , <i>c</i> are in H. P., then t	he value of $\frac{b+a}{b-a} + \frac{b+c}{b-c}$ is	10	10
	a) 1	b) 2	c) 3	d) None of these
431.	The sum of the series (1	$(1+2) + (1+2+2^2) + (1+2)$	$(1+2+2^2+2^3)+\dots$ upt	o <i>n</i> terms is
	a) $2^{n+2} - n - 4$	b) $2(2^n - 1) - n$	c) $2^{n+1} - n$	d) $2^{n+1} - 1$
432.	The sum of the series $\frac{3}{4.8}$	$\frac{3}{3} - \frac{3.5}{4.8.12} + \frac{3.5.7}{4.8.12.16} - \dots$		
	$\sqrt{3}$ 3	12 3	$\overline{3}$ 1	
	a) $\sqrt{\frac{2}{2} - \frac{4}{4}}$	b) $\sqrt{\frac{3}{3} - \frac{1}{4}}$	c) $\sqrt{\frac{1}{2} - \frac{1}{4}}$	d) $\sqrt{\frac{3}{3} - \frac{1}{4}}$
433.	The value of $1 - \log 2 +$	$-\frac{(\log 2)^2}{2!} - \frac{(\log 2)^3}{2!} + \cdots$ is	Y	v
		2: 3:		

	a) log 3	b) log 2	c) $\frac{1}{2}$	d) None of these
434.	. If the ratio of the sum of <i>n</i>	term of two AP's be $(7n +$	1): $(4n + 27)$, then the rat	io of their 11th term will be
	a) 2 : 3	b) 3 : 4	c) 4:3	d) 5 : 6
435.	The value of 2. $\overline{357}$ is			
	2355	ы <u>2355</u>	$\frac{2355}{2}$	d) None of these
	^a) <u>999</u>	1000	$() \frac{1111}{1111}$	
436.	The value of $1 + \frac{1+2}{2!} + \frac{1}{2!}$	$\frac{1+2+3}{3!} + \frac{1+2+3+4}{4!} + \cdots$ is		
		b) 2 a) Зе	4e
	aje	0) 20	$\frac{c}{2}$	<u>a)</u>
437.	Sum of first <i>n</i> terms in the	$e \text{series } \cot^{-1} 3 + \cot^{-1} 7 + $	$\cot^{-1} 13 + \cot^{-1} 21 + \dots$ is	s given by
	a) $\tan^{-1}\left(\frac{n}{n+2}\right)$		b) $\cot^{-1}(\frac{n+2}{2})$	
	(n + 2) c) $\tan^{-1}(n + 1) - \tan^{-1} 1$		(n)	
438.	Maximum value of n for u	which $\sum_{n=1}^{n} \sum_{n=1}^{n} \sum_{n=1}^{n$		
		$\lim_{n \to \infty} \sum_{n=14}^{\infty} 1 \ge \sum_{n=14}^{\infty} \left(n + \frac{1}{2} \right) $	3	1) 7
120	a) 4 If $w^{18} = w^{21} = z^{28}$ then 2	$\begin{array}{c} \text{D} \\ $	C) 6	a) /
439.	-11x - y - z, uten s	y_{x} , y_{y} , y_{y} , y_{y} , y_{z} , y		d) None of these
440	If for $0 < x < \pi/2$ $v = ext{ansatz}$	$\sin^2 x + \sin^4 x + \sin^6 x$	$+ \cdots \infty$ log 2 lis a zero of	the quadratic equation
110.	$r^{2} - 9r + 8 = 0$ then the	value of $\frac{\sin x + \cos x}{\cos x}$ is		the qualitatic equation
	$x^2 = y_x + 0 = 0$, then the	value of $\frac{1}{\sin x - \cos x}$, is		J) Nama af thana
4 4 1	aj U	b) $2 + \sqrt{3}$	c) $2 - \sqrt{3}$	a) None of these
441.	Let $a, p, q, r, s \in R \sim \{0\}$.	$1 \ 1 \ 2 \ (1 \ 1 \ 1)$		
	If $3a^2 + 2\left(\frac{1}{p} - \frac{1}{s}\right)a + \frac{1}{p^2} + \frac{1}{p^2}a$	$-\frac{1}{q^2} + \frac{1}{r^2} - 2\left(\frac{1}{pq} + \frac{1}{qr} + \frac{1}{rs}\right)$	≤ 0 for some real a , then p	, <i>q</i> , <i>r</i> , <i>s</i> are in
	a) AP	b) GP	c) HP	d) AGP
442.	The sum of series $\frac{1}{1.2}$ –	$\frac{1}{2.3} + \frac{1}{3.4} - \cdots \infty$ is equal to)	
	a) 2 log 2	$h \log 2$ 1	a) log 2	$d \log \left(\frac{4}{4} \right)$
	$a_j \perp \log_e \perp$	$\log_e 2 = 1$	$c_{j} \log_{e} 2$	$\log_e(\frac{-}{e})$
443.	If $x^{\log_x(x^2-4x+5)} = (x-1)^{2}$), then $x =$		
	a) 1	b) 2	c) 4	d) 5
444.	If $2(y - a)$ is the H.M. bet	ween $y - x$ and $y - z$, then	x - a, y - a, z - a are in	
445	a) A.P.	b) G.P.	c) H.P.	d) none of these $m(n+1)^2$
445.	The sum of the first <i>n</i> te	erms of the series $1^2 + 2$.	$2^2 + 3^2 + 2.4^2 + 5^2 + 2.$	$6^2 + is \frac{n(n+1)^2}{2}$ where n
	is even. When <i>n</i> is odd t	he sum is		
	3n(n+1)	$n^{2}(n+1)$	$n(n+1)^2$	n(n+1)
	2	2	4	⁽¹⁾ [2]
446.	If $1 + \lambda + \lambda^2 + \ldots + \lambda^n = (2)$	$(1 + \lambda)(1 + \lambda^2)(1 + \lambda^4)(1 + \lambda^4)$	$\lambda^8)(1+\lambda^{16})$, then the value	ue of n is (where $n \in N$)
	a) 32	b) 16	c) 31	d) 15
447.	The solution of the equati	on		
	(x + 1) + (x + 4) + (x + 4)	(x + 28) = 155 is	-) 2	۷ (۲
118	d J I	DJ Z	CJ 3 Let $\Sigma^{100} a = \alpha$ and Σ^{10}	a) 4 $a = \beta$ such that $\alpha \neq \beta$
440.	then the common ratio is	e di oi posicive numbers.	Let $\sum_{n=1}^{n} u_{2n} - u$ and $\sum_{n=1}^{n} u_{2n} - u$	$a_{2n} = \rho$, such that $a \neq \rho$,
		0		
	a) $\frac{\alpha}{\beta}$	b) $\frac{\mu}{r}$	c) $\left \frac{\alpha}{\beta}\right $	d) $\left \frac{\beta}{2}\right $
	٣	α	\sqrt{P}	$\sqrt{\alpha}$
449.	99th term of the series	2 + 7 + 14 + 23 + 34 j	İS	
	a) 9998	b) 9999	c) 10000	d) 100000

450. If a, b, c, d and p are distinct real number such that $(a^2 + b^2 + c^2)p^2 - 2(ab + bc + cd)p + (b^2 + cd)p^2$ $(c^2 + d^2) \leq 0$, then a, b, c, da) are in AP b) are in GP c) are in HP d) satisfy ab = cd451. If 2p + 3q + 4r = 15, then the maximum value of $p^3q^5r^7$ is c) $\frac{5^5 \cdot 7^7}{2^{17} \cdot 9}$ a) 2180 b) $\frac{5^4 \cdot 3^5}{2^{15}}$ d) 2285 452. The number 111...1 (91 times) is a/an b) Prime number c) Not prime d) None of these a) Even number 453. If |x| < 1, then the sum of the series $1 + 2x + 3x^2 + 4x^3 + \dots \infty$ will be c) $\frac{1}{(1+x^2)}$ a) $\frac{1}{1-r}$ d) $\frac{1}{(1-r)^2}$ b) $\frac{1}{1+r}$ 454. The value of $5^{\sqrt{\log_5 7}} 7^{\sqrt{\log_7 5}}$ is a) log 2 b) 1 c) 0 d) None of these 455. If $x_1, x_2, x_3, ..., x_n$ are in HP Then, $x_1x_2 + x_2x_3 + ... + x_{n-1}x_n$ is equal to a) $(n+1)x_1x_n$ b) $(n-1)x_1x_n$ c) $n x_1 x_n$ d) $(n^2 - 1)x_1x_n$ 456. Let *a*, *b*, *c* are in GP and 4*a*, 5*b*, 4*c* are in AP such that a + b + c = 70, then value of *b* is a) 5 b) 10 c) 15 d) 20 457. If three unequal numbers p, q, r are in HP and their squares are in AP, then the ratio p : q : r is a) $1 - \sqrt{3} : 2 : 1 + \sqrt{3}$ b) $1:\sqrt{2}:-\sqrt{3}$ c) $1 : -\sqrt{2} : \sqrt{3}$ d) $1 \mp \sqrt{3} : -2 : 1 + \sqrt{3}$ 458. If $x = 1 + 2 + \frac{4}{2!} + \frac{8}{3!} + \frac{16}{4!} + \cdots$, then x^{-1} is equal to b) e² c) $e^{1/2}$ d) None of these 459. It is given that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots + \text{to } \infty = \frac{\pi^4}{90}$. Then, $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots \infty$ is equal to a) $\frac{\pi^4}{\Omega c}$ b) $\frac{\pi^4}{45}$ c) $\frac{89}{90}\pi$ d) None of these 460. If |x| < 1 and |y| < 1, the sum to infinity of the sequence x + y, $(x^2 + xy + y^2)$, $(x^3 + x^2y + y^3)$, ..., is a) $\frac{x+y-xy}{1-x-y+xy}$ b) $\frac{x+y+xy}{1-x-y+xy}$ c) $\frac{x}{1-x} + \frac{y}{1-y}$ d) $\frac{(x-y)(x+y-xy)}{1-x-y+xy}$ 461. If H_1 , H_2 are two harmonic means between two positive numbers a and b ($a \neq b$), A and G are the arithmetic and geometric means between *a* and *b*, then $\frac{H_2+H_1}{H_2H_1}$ is b) $\frac{2A}{C}$ d) $\frac{2A}{C^2}$ a) $\frac{A}{C}$ c) $\frac{A}{2G^2}$ 462. If the sum of *n* terms of the series $704 + \frac{1}{2}(704) + \frac{1}{4}(704) + \cdots$ and $1984 - \frac{1}{2}(1984) + \frac{1}{4}(1984) \dots$ are equal, then n =a) 5 c) 4 d) 10 463. The sum of series $1 + \frac{3}{2} + \frac{7}{4} + \frac{15}{8} + \frac{31}{16} + \dots$ is equal to a) $2(n-1) + \frac{1}{2n-1}$ b) $2n - \frac{1}{2n}$ c) $2 + \frac{1}{2^n}$ d) $2n - 1 + \frac{1}{2n}$ 464. If x, y, z are in HP, then log(x + z) + log(x - 2y + z) is equal to b) $2\log(x-z)$ c) $3 \log(x - z)$ a) $\log(x - z)$ d) $4\log(x-z)$ 465. In a geometric progression (GP) the ratio of the sum of the first three terms and first six terms is 125:152 the common ratio is d) $\frac{3}{5}$ b) $\frac{2}{r}$ c) $\frac{4}{r}$ a) $\frac{1}{5}$ 466. The sum of *n* terms of the following series $1 + (1 + x) + (1 + x + x^2) + \cdots$ is

a) $\frac{1-x^n}{1-x^n}$ b) $\frac{x(1-x^n)}{1-x}$ c) $\frac{n(1-x)-x(1-x^n)}{(1-x)^2}$ d) None of these 467. If a, b, c are in GP and $\log a - \log 2b$, $\log 2b$, $\log 2b - \log 3c$ and $\log 3c - \log a$ are in AP, then a, b, c are the length of the sides of a triangle which is a) Acute angled b) Obtuse angled c) Right angled d) Equilateral 468. The sum of the series $\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} + \cdots$ to *n* terms is a) $n - \frac{1}{2}(3^{-n} - 1)$ b) $n - \frac{1}{2}(1 - 3^{-n})$ c) $n + \frac{1}{2}(3^n - 1)$ d) $n - \frac{1}{2}(3^n - 1)$ 469. $\sum_{n=1}^{\infty} \frac{(\log_e x)^n}{n!}$ is equal to d) None of these c) $\log_x e$ b) x a) $\log_e x$ 470. If *S* is the sum of an infinite GP, the first term *a*, then the common ratio *r* is given by b) $\frac{S-a}{c}$ d) $\frac{S-a}{r}$ a) $\frac{a-S}{c}$ c) $\frac{a}{1-s}$ 471. The sum of the series $\sum_{n=1}^{\infty} \frac{2n}{(2n+1)!}$ is d) $2e^{-1}$ a) e c) 2 e 472. The sum of the series $1 + 3x + 6x^2 + 10x^3 + \dots \infty$ will be b) $\frac{1}{1-r}$ c) $\frac{1}{(1+r)^2}$ a) $\frac{1}{(1-x)^2}$ d) $\frac{1}{(1-x)^3}$ 473. $\frac{1}{n!} + \frac{1}{2!(n-2)!} + \frac{1}{4!(n-4)!} + \dots \infty$ is a) $\frac{2^{n-1}}{n!}$ b) $\frac{2^n}{(n+1)!}$ c) $\frac{2^n}{n!}$ d) $\frac{2^{n-2}}{(n-1)!}$ 474. The sum of 11 terms of an A.P. whose middle term is 30, is a) 320 b) 330 c) 340 d) 350 475. If $(2.3)^x = (0.23)^y = 1000$, then $\frac{1}{x} - \frac{1}{y}$ equals to d) $\frac{1}{2}$ b) $\frac{1}{4}$ c) $\frac{1}{2}$ a) $\frac{1}{r}$ 476. In a G.P. if the (m + n)th term is p and (m - n)th term is q, then its mth term is a) 0 d) $\frac{1}{2}(p+q)$ c) \sqrt{pq} b) *pq* 477. If $\log_6(x + 3) - \log_6 x = 2$, then x =b) 3/25 d) $-\frac{3}{25}$ a) $\frac{1}{2r}$ c) $\frac{2}{25}$ 478. Sum of *n* terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ is c) $2^n(n-1) + 1$ d) $2^{-n} + n - 1$ a) 2⁻ⁿ b) $2^{-n}(n-1)$ 479. 7th term of an AP is 40. Then, the sum of first 13 terms is a) 520 b) 53 c) 2080 d) 1040 480. The sum of *n* terms of two arithmetic progressions are in the ratio 2n + 3:6n + 5, then the ratio of their 13th terms is c) 29 : 83 a) 53 : 155 b) 27 : 87 d) 31 : 89 481. If $\log_x a$, $a^{x/2}$ and $\log_b x$ are in G.P., then x is equal to a) $\log_a(\log_b a)$ b) $\log_a(\log_e a) + \log_a(\log_e b)$ c) $-\log_a(\log_a b)$ d) $\log_a(\log_e b) - \log_a(\log_e a)$ 482. The sum of i - 2 - 3i + 4 upto 100 terms, where $i = \sqrt{-1}$ is a) 50(1-i)b) 25 i c) 25(1+i)d) 100 (1 - i)

483.	$If \log_2 x + \log_4 x + \log_{16} x$	$x = \frac{21}{4}$, then x equals to		
	a) 8	b) 4	c) 2	d) 16
484.	The sum of all two digit no	umbers which, when divide	ed by 4, yield unity as a rem	ainder is
	a) 1190	b) 1197	c) 1210	d) None of these
485.	$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots$ upto a	n terms is equal to		
	a) $\frac{n}{1-1}$	b) $\frac{1}{1}$	c) $\frac{n}{c}$	d) $\frac{n}{2}$
486	4n + 6 Let a h c > 0 and $4a^2 + 6$	6n + 4 $b^2 + 16c^2 - 6ab - 12bc -$	-6n + 4	3n + 7
400.	a) $< \sqrt{ac}$	$b) > \sqrt{ah}$	$c_{1} > \frac{a+c}{c_{1}}$	d) > \sqrt{ac}
407	$H_{0} \wedge M_{0}^{\prime} \text{ and } HM_{0}^{\prime} \text{ are ind}$	$s) \ge v u s$	2	u) <u>-</u> vuc
407.	arithmetia mean 4 then 4	$\frac{6}{10}$ is equal to	and if the narmonic mean i	a is corresponding to
	arithmetic mean A, then A	$+\frac{1}{H}$ is equal to) -	
100	a) 1 If a h a are in C. D. then be	b) 3	c) 5	d) 6
400.	a) $A P$	$bg_a x$, $bg_b x$, $bg_c x$ are in b) C P	с) Н Р	d) None of these
489.	If $a_1, a_2, a_3, \dots, a_{20}$ are AM ⁴	's between 13 and 67, then	the maximum value of $a_{1,0}$	a_2, a_3, \dots, a_{20} is equal to
	a) $(20)^{20}$	b) (40) ²⁰	c) (60) ²⁰	d) (80) ²⁰
490.	The coefficient of n^{-r} in the	ne expansion of $\log_{10}\left(\frac{n}{1}\right)$), is	
	1	1	1	$\log\left(1-\frac{1}{2}\right)$
	a) $\frac{1}{r \log 10}$	b) $-\frac{1}{r \log 10}$	c) $-\frac{1}{r \log 10}$	d) $\frac{\log_e(1-\frac{1}{n})}{1-\frac{1}{n}}$
401	$7 \log_e 10$	1 1 1 1 c	,	\log_e^0
491.	The following consecutive	e terms $\frac{1}{1+\sqrt{x}}, \frac{1}{1-x}, \frac{1}{1-\sqrt{x}}$ of a	series are in	
400	a) H.P.	b) G.P.	c) A.P.	d) A.P., G.P.
492.	The value of $\left[(0.16)^{\log_0} \right]$	$\left[\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\infty\right]^{1/2}$ is		
	a) 1	b) -1	c) 0	d) None of these
493.	A person is to count 450)00 currency notes. Let a	\mathfrak{a}_n denotes the number of	notes he counts in the <i>n</i>
	th minute. If $a_1 = a_2 =$.	$ = 10_{10} = 150$ and a_{10} ,	a_{11} , are in AP with cor	nmon difference -2, then
	the time taken by him to	o count all notes, is		
	a) 24 min	b) 34 min	c) 125 min	d) 135 min
494.	The minimum number of	terms from the beginning o	of the series $20 + 22\frac{2}{3} + 25$	$\frac{1}{3}$ + so that the sum may
	exceed 1568, is		5	5
	a) 25	b) 27	c) 28	d) 29
495.	If <i>p</i> th, <i>q</i> th, <i>r</i> th and sth terr	ns of an A.P. are in G.P., the	p = q, q = r, r = s are in	
100	a) A.P.	b) G.P.	c) H.P.	d) None of these
496.	If p, q, r are in GP and ta	$n^{-1}p$, $tan^{-1}q$, $tan^{-1}r$ a	re in AP, then p, q, r satis	ties the relation
407	a) $p = q = r$	b) $p \neq q \neq r$	c) $p + q = r$	d) None of these
497.	If S_n denotes the sum of n	terms of an A.P. with com	non allference a, then	
	a) $d = S_n - 2S_{n-1} + S_{n-2}$ b) $d = S_n - 2S_{n-1} - S_{n-2}$			
	c) $d = S_n - 2S_{n-1} + S_{n-2}$			
	d) None of these			
498.	If H_1, H_2, \dots, H_n be n harm	onic means between <i>a</i> and	b, then $\frac{H_1+a}{H_1-a} + \frac{H_n+b}{H_n-n}$ is equa	ll to
	a) 0	b) <i>n</i>	c) 2n	d) 1
499.	If S_n denotes the sum of the	ne products of the first <i>n</i> nu	umbers taken two at a time	, then $\sum_{n=0}^{\infty} \frac{S_n}{(n+1)!}$ equals
	a) $\frac{11 e}{24}$	b) $\frac{11 e}{12}$	c) $\frac{13 e}{24}$	d) None of these
	24	12	24	

500. Let $\sum_{r=1}^{n} r^4 = f(n)$, then $\sum_{r=1}^{n} (2r-1)^4$ is equal to a) f(2n) - 16 f(n)b) f(2n) - 7f(n)c) f(2n-1) - 8f(n)d) None of these 501. If x, y, z are in HP, then the value of expression $\log(x + z) + \log(x - 2y + z)$ will be a) $\log(x - z)$ b) $2 \log(x - z)$ c) $3 \log(x - z)$ d) $4\log(x-z)$ If $< a_n >$ is an arithmetic sequence, then $\Delta = \begin{vmatrix} a_m & a_n & a_p \\ m & n & p \\ 1 & 1 & 1 \end{vmatrix}$ equals 502. a) 1 $503 \cdot \frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots$ is equal to d) None of these b) $\frac{2^{n-4}+1}{n!} - 1$ for odd values of *n* only a) $\frac{2^{n-4}}{n!}$ for even values of *n* only c) $\frac{2^{n-1}}{n!}$ for all values of n d) None of the above 504. The number of solutions of the equation $\log_4(x-1) = \log_2(x-3)$, is b) 1 a) 3 d) 0 505. The sum of the series $(1 + 2)(1 + 2 + 2^2) + (1 + 2 + 2^2 + 2^3) + \cdots$ up to *n* terms is d) $2^{n+1} - 1$ a) $2^{n+2} - n - 4$ b) $2(2^n - 1) - n$ c) $2^{n+1} - n$ 506. The value of $1 + \frac{(\log_e n)^2}{2!} + \frac{(\log_e n)^4}{4!} + \cdots$ is c) $\frac{n+n^{-1}}{2}$ d) $\frac{e^n + e^{-n}}{2}$ b) 1 a) n $507 \cdot \log_e 3 - \frac{\log_e 9}{2^2} + \frac{\log_e 27}{2^2} - \frac{\log_e 81}{4^2} + \dots$ is d) $\frac{\log_e 5}{\log_e 3}$ c) $\log_{e} 2$ a) $(\log_{e} 3)(\log_{e} 2)$ b) $\log_{a} 3$ 508. If three positive real numbers *a*, *b*, *c* (c > a) are in H.P., then $\log(a + c) + \log(a - 2b + c)$ is equal to d) $\log a + \log b + \log c$ a) $2\log(c-b)$ b) $2 \log(a + c)$ c) $2 \log(c - a)$ 509. Let T_r be the *r*th term of an AP for r = 1, 2, 3, ... If for some positive integers *m*, *n*, we have $T_m = \frac{1}{n}$ and $T_n = \frac{1}{n}$ $\frac{1}{m}$, then T_{mn} equals a) 1/mn b) 1/m + 1/nd) 0 c) 1 510. If the first, second and last terms of an arithmetic series are *a*, *b* and *c* respectively, then the number of terms is a) $\frac{b+c-2a}{b-a}$ b) $\frac{b+c+2a}{b-a}$ c) $\frac{b+c-2a}{b+a}$ d) $\frac{b+c+2a}{b+a}$ 511. Let S_1, S_2, \dots be squares such that for each $n \ge 1$, the length of a side of S_n equals the length of a diagonal of S_{n+1} . If the length of a side of S_1 is 10cm, then for which of the following values of n is the area of S_n less than 1 sq cm? a) 7 b) 6 c) 9 d) None of the above 512. If $x = 1 + a + a^2 + \cdots \infty$ and $y = 1 + b + b^2 + \cdots \infty$ where *a* and *b* are proper fractions, then $1 + ab + b^2 + \cdots \infty$ $a^2b^2 + \cdots \infty$ equals d) None of these a) $\frac{xy}{y+x-1}$ b) $\frac{x+y}{x-y}$ c) $\frac{x^2 + y^2}{x - y}$ 513. If $a_1, a_2, \dots a_n$ are in AP with common difference $d \neq 0$, then $(\sin d)[\sec a_1 \sec a_2 + \sec a_2 \sec a_3 + \dots + \sec a_{n-1} \sec a_n]$ is equal to b) $\cot a_1 - \cot a_n$ a) $\cot a_n - \cot a_1$ c) $\tan a_n - \tan a_1$ d) $\tan a_n - \tan a_{n-1}$ 514. The H.M. of two numbers is 4 and the arithmetic mean A and geometric mean G satisfy the relation $2A + G^2 = 27$, the numbers are a) 6, 3 b) 5, 4 c) 5, −2.5 d) -3, 1515. If a_1, a_2, \dots, a_n are in HP, then the expression $a_1a_2 + a_2a_3 + \dots + a_{n-1}a_n$ is equal to

	a) $(n-1)(a_1 - a_n)$	b) <i>na</i> ₁ <i>a</i> _{<i>n</i>}	c) $(n-1)a_1a_n$	d) $n(a_1 - a_n)$
516.	If the first term of an A.P.	is 2 and common difference	e is 4, then the sum of its 40) terms is
	a) 3200	b) 1600	c) 200	d) 2800
517.	If $2^{\log_{10} 3\sqrt{3}} = 3^{k \log_{10}^{2}}$, the	n k =		
	<u>1</u>	, 3		
	$a) \frac{1}{2}$	b) $\frac{1}{2}$	c) 3	d) 2
518.	Let α , β , γ and δ are four	r positive real numbers s	uch that their product is	unity, then the least
	value of $(1 + \alpha)(1 + \beta)(1 + \beta)$	$(1 + \gamma)(1 + \delta)$ is	-	
	a) 6	b) 16	c) ()	d) 32
519.	The sum of the series $6 +$	66 + 666 + unto n term i	s s	
0171	$10^{n-1} - 9n + 10$	$2(10^{n+1} - 9n - 10)$	$2(10^n - 9n - 10)$	d) None of these
	a) $\frac{10}{81}$	b) $\frac{2(10)}{27}$	c) $\frac{-(10^{\circ} - 10^{\circ})}{27}$	
520.	The sum to <i>n</i> terms of the	ne series $\frac{4}{3} + \frac{10}{9} + \frac{28}{27} + \dots$ i	S 27	
	$3^{n}(2n+1)+1$	$3^n(2n+1) - 1$	$3^n n - 1$	$3^{n} - 1$
	a) $\frac{1}{2(3^n)}$	b) $\frac{2(2n+2)}{2(2n)}$	c) $\frac{1}{2(3^n)}$	d) $\frac{3}{2}$
521	2(3) If a h c d a f proin AP t	2(5)	2(3)	2
521.	(1, 0, 0, 0, u, e, f) are in AF, (b) $2(f - d)$	(d - c)	d) $d - c$
E 22	a) $2(c - u)$ If the <i>n</i> th <i>a</i> the and <i>r</i> th to	$D_{j} Z(j - u)$	(j 2(u - l))	$a_{\mu} = c$
522.	in the pth, quie and r th te	III OI a GF allu HF alle u, D,	c , then $u(v - c) \log u + b(v)$	$c = a \log b + c (a - b) \log c$
		b) ()	a) 1	d) Deag not aviat
F 2 2				u) Does not exist
523.	The sum of infinite term	is of the series $\frac{1}{(1+a)(2+a)}$	$+\frac{1}{(2+a)(3+a)}+\frac{1}{(3+a)(4+a)}$	+ +to ∞, where a is a
	constant, is			
	a) <u>1</u>	h) $\frac{2}{2}$	റിന	d) None of these
	$\frac{a_j}{1+a}$	$\frac{1}{1 \perp a}$		
	$1 \pm u$	I⊤u		
524.	The number of real solution $f(x) = \frac{1}{2} \frac$	ons of the equation $\log(-x)$	$1 = 2 \log(x + 1)$, is	
524.	The number of real solution a 0	b) 1 $+ a$	$x = 2 \log(x + 1)$, is c) 2	d) 4
524. 525.	The number of real solution a) 0 The value of 0.423, is	b) 1 $f = a$	$x = 2 \log(x + 1)$, is c) 2	d) 4
524. 525.	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{2}$	b) $\frac{419}{2}$	$y = 2 \log(x + 1)$, is c) 2	d) 4 d) None of these
524. 525.	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$	b) $\frac{419}{990}$		d) 4 d) None of these
524. 525. 526.	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} = 1$	$c) = 2 \log(x + 1), is$ c) 2 c) $\frac{423}{1000}$ 0, if $r \neq s$ and $S_{rs} = 1$, if r	d) 4 d) None of these = s , is
524. 525. 526.	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^n - 1)}{2}$	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} = b$	$c) = 2 \log(x + 1), is$ c) 2 c) $\frac{423}{1000}$ 0, if $r \neq s$ and $S_{rs} = 1$, if r c) $\frac{5^{n}6^{n}}{1000}$	d) 4 d) None of these = s, is d) $\frac{5}{4}(5^n - 1)$
524. 525. 526.	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^n - 1)}{4}$	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} = b$) $\frac{6}{5}(6^n - 1)$	$p = 2 \log(x + 1), \text{ is}$ c) 2 c) $\frac{423}{1000}$ 0, if $r \neq s$ and $S_{rs} = 1$, if r c) $\frac{5^n 6^n}{n+1}$	d) 4 d) None of these = s, is d) $\frac{5}{4}(5^n - 1)$
524. 525. 526. 527.	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^n - 1)}{4}$ <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> are five number	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} = b$) $\frac{6}{5}(6^n - 1)$ rs in which the first three a	$c) = 2 \log(x + 1), is$ c) 2 $c) \frac{423}{1000}$ $0, if r \neq s \text{ and } S_{rs} = 1, if r$ $c) \frac{5^{n}6^{n}}{n+1}$ re in A.P. and the last three in the odd places are in	d) 4 d) None of these = <i>s</i> , is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three
524. 525. 526. 527.	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^n - 1)}{4}$ <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> are five numbers numbers in the middle are	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} = b$) $\frac{6}{5}(6^n - 1)$ rs in which the first three a b) C P	$p = 2 \log(x + 1), \text{ is}$ c) 2 c) $\frac{423}{1000}$ 0, if $r \neq s$ and $S_{rs} = 1$, if r c) $\frac{5^n 6^n}{n+1}$ re in A.P. and the last three in the odd places are in	d) 4 d) None of these = <i>s</i> , is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three
524.525.526.527.528.	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^n - 1)}{4}$ <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> are five number numbers in the middle are a) A.P.	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} =$ b) $\frac{6}{5}(6^n - 1)$ rs in which the first three a e in G.P., then the numbers b) G.P.	$c) = 2 \log(x + 1), is$ c) 2 $c) \frac{423}{1000}$ $0, if r \neq s \text{ and } S_{rs} = 1, if r$ $c) \frac{5^{n}6^{n}}{n+1}$ re in A.P. and the last three in the odd places are in c) H.P.	d) 4 d) None of these = <i>s</i> , is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three d) None of these
 524. 525. 526. 527. 528. 	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^{n} - 1)}{4}$ <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> are five numbers numbers in the middle are a) A.P. The sum of the series 2[b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} =$ b) $\frac{6}{5}(6^n - 1)$ rs in which the first three a e in G.P., then the numbers b) G.P. $(7^{-1} + 3^{-1}, 7^{-3} + 5^{-1}, 7^{-1})$	$c) = 2 \log(x + 1), is$ c) 2 $c) \frac{423}{1000}$ $0, if r \neq s \text{ and } S_{rs} = 1, if r$ $c) \frac{5^{n}6^{n}}{n+1}$ re in A.P. and the last three in the odd places are in c) H.P. $5^{+}+\dots] is$	d) 4 d) None of these = s, is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three d) None of these
 524. 525. 526. 527. 528. 	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^n - 1)}{4}$ <i>a, b, c, d, e</i> are five number numbers in the middle are a) A.P. The sum of the series 2[a) $\log_e(\frac{4}{2})$	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} =$ b) $\frac{6}{5}(6^n - 1)$ rs in which the first three a e in G.P., then the numbers b) G.P. $7^{-1} + 3^{-1} \cdot 7^{-3} + 5^{-1} \cdot 7^{-1}$ b) $\log_e\left(\frac{3}{2}\right)$	$c) = 2 \log(x + 1), is$ c) 2 $c) \frac{423}{1000}$ $0, if r \neq s \text{ and } S_{rs} = 1, if r$ $c) \frac{5^{n}6^{n}}{n+1}$ re in A.P. and the last three in the odd places are in c) H.P. $5^{+}] is$ $c) 2 \log_{e} \left(\frac{3}{r}\right)$	d) 4 d) None of these = <i>s</i> , is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three d) None of these d) $2 \log_e \left(\frac{4}{2}\right)$
 524. 525. 526. 527. 528. 	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^{n} - 1)}{4}$ <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> are five number numbers in the middle are a) A.P. The sum of the series 2[a) $\log_{e}\left(\frac{4}{3}\right)$	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} =$ b) $\frac{6}{5}(6^n - 1)$ rs in which the first three a e in G.P., then the numbers b) G.P. $7^{-1} + 3^{-1} \cdot 7^{-3} + 5^{-1} \cdot 7^{-1}$ b) $\log_e\left(\frac{3}{4}\right)$	$c) = 2 \log(x + 1), is$ c) 2 $c) \frac{423}{1000}$ $0, if r \neq s \text{ and } S_{rs} = 1, if r$ $c) \frac{5^{n}6^{n}}{n+1}$ re in A.P. and the last three in the odd places are in c) H.P. $5^{+}] is$ $c) 2 \log_{e} \left(\frac{3}{4}\right)$	d) 4 d) None of these = <i>s</i> , is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three d) None of these d) $2 \log_e \left(\frac{4}{3}\right)$
 524. 525. 526. 527. 528. 529. 	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^n - 1)}{4}$ a, b, c, d, e are five numbers numbers in the middle are a) A.P. The sum of the series 2[a) $\log_e\left(\frac{4}{3}\right)$ An AP consists of 23 ter	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} =$ b) $\frac{6}{5}(6^n - 1)$ rs in which the first three a e in G.P., then the numbers b) G.P. $(7^{-1} + 3^{-1}, 7^{-3} + 5^{-1}, 7^{-1})$ b) $\log_e\left(\frac{3}{4}\right)$ ms. If the sum of the three	$c) = 2 \log(x + 1), is$ c) 2 c) $\frac{423}{1000}$ 0, if $r \neq s$ and $S_{rs} = 1$, if r c) $\frac{5^{n}6^{n}}{n+1}$ re in A.P. and the last three in the odd places are in c) H.P. $5^{5}+$] is c) $2 \log_{e} \left(\frac{3}{4}\right)$ we terms in the middle is	d) 4 d) None of these = <i>s</i> , is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three d) None of these d) $2 \log_e \left(\frac{4}{3}\right)$ 141 and the sum of the
 524. 525. 526. 527. 528. 529. 	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^n - 1)}{4}$ <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> are five number numbers in the middle are a) A.P. The sum of the series 2[a) $\log_e\left(\frac{4}{3}\right)$ An AP consists of 23 ter last three terms is 261, f	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} =$ b) $\frac{6}{5}(6^n - 1)$ rs in which the first three a e in G.P., then the numbers b) G.P. $(7^{-1} + 3^{-1}, 7^{-3} + 5^{-1}, 7^{-1})$ b) $\log_e\left(\frac{3}{4}\right)$ ms. If the sum of the three then the first term is	$p = 2 \log(x + 1), \text{ is}$ c) 2 c) $\frac{423}{1000}$ 0, if $r \neq s$ and $S_{rs} = 1$, if r c) $\frac{5^n 6^n}{n+1}$ re in A.P. and the last three in the odd places are in c) H.P. $5^{+}+$] is c) $2 \log_e \left(\frac{3}{4}\right)$ re terms in the middle is	d) 4 d) None of these = <i>s</i> , is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three d) None of these d) $2 \log_e \left(\frac{4}{3}\right)$ 141 and the sum of the
 524. 525. 526. 527. 528. 529. 	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^n - 1)}{4}$ <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> are five numbers numbers in the middle are a) A.P. The sum of the series 2[a) $\log_e\left(\frac{4}{3}\right)$ An AP consists of 23 ter last three terms is 261, for a) 6	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} =$ b) $\frac{6}{5}(6^n - 1)$ rs in which the first three a e in G.P., then the numbers b) G.P. $(7^{-1} + 3^{-1}, 7^{-3} + 5^{-1}, 7^{-1})$ b) $\log_e\left(\frac{3}{4}\right)$ ms. If the sum of the three then the first term is b) 5	$c) = 2 \log(x + 1), is$ c) 2 c) $\frac{423}{1000}$ 0, if $r \neq s$ and $S_{rs} = 1$, if r c) $\frac{5^{n}6^{n}}{n+1}$ re in A.P. and the last three in the odd places are in c) H.P. $5^{5}+$] is c) $2 \log_{e} \left(\frac{3}{4}\right)$ re terms in the middle is c) 4	d) 4 d) None of these = <i>s</i> , is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three d) None of these d) $2 \log_e \left(\frac{4}{3}\right)$ 141 and the sum of the d) 3
 524. 525. 526. 527. 528. 529. 530. 	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^n - 1)}{4}$ <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> are five number numbers in the middle are a) A.P. The sum of the series 2[a) $\log_e\left(\frac{4}{3}\right)$ An AP consists of 23 ter last three terms is 261, for a) 6 If $2 \times 2^2 + 3 \times 2^3 + 4 \times 2$	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} =$ b) $\frac{6}{5}(6^n - 1)$ rs in which the first three a e in G.P., then the numbers b) G.P. $(7^{-1} + 3^{-1}, 7^{-3} + 5^{-1}, 7^{-1})$ b) $\log_e\left(\frac{3}{4}\right)$ ms. If the sum of the three then the first term is b) 5 $4 + \dots + n \times 2^n = 2^{n+10}$, the	$c) = 2 \log(x + 1), is$ c) 2 c) $\frac{423}{1000}$ 0, if $r \neq s$ and $S_{rs} = 1$, if r c) $\frac{5^{n}6^{n}}{n+1}$ re in A.P. and the last three in the odd places are in c) H.P. 5^{+}] is c) $2 \log_{e} \left(\frac{3}{4}\right)$ re terms in the middle is c) 4 en $n =$	d) 4 d) None of these = <i>s</i> , is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three d) None of these d) $2 \log_e \left(\frac{4}{3}\right)$ 141 and the sum of the d) 3
 524. 525. 526. 527. 528. 529. 530. 	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^n - 1)}{4}$ a, b, c, d, e are five numbers numbers in the middle are a) A.P. The sum of the series 2[a) $\log_e\left(\frac{4}{3}\right)$ An AP consists of 23 ter last three terms is 261, f a) 6 If 2 × 2 ² + 3 × 2 ³ + 4 × 2 a) 510	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} =$ b) $\frac{6}{5}(6^n - 1)$ rs in which the first three a e in G.P., then the numbers b) G.P. $(7^{-1} + 3^{-1}, 7^{-3} + 5^{-1}, 7^{-1})$ b) $\log_e\left(\frac{3}{4}\right)$ ms. If the sum of the three then the first term is b) 5 $4 + \dots + n \times 2^n = 2^{n+10}$, the b) 512	$p = 2 \log(x + 1), \text{ is}$ c) 2 c) $\frac{423}{1000}$ 0, if $r \neq s$ and $S_{rs} = 1$, if r c) $\frac{5^n 6^n}{n+1}$ re in A.P. and the last three in the odd places are in c) H.P. 5^+] is c) $2 \log_e \left(\frac{3}{4}\right)$ re terms in the middle is c) 4 en $n =$ c) 513	d) 4 d) None of these = s, is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three d) None of these d) $2 \log_e \left(\frac{4}{3}\right)$ 141 and the sum of the d) 3 d) 508
 524. 525. 526. 527. 528. 529. 530. 531. 	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^n - 1)}{4}$ <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> are five number numbers in the middle are a) A.P. The sum of the series 2[a) $\log_e\left(\frac{4}{3}\right)$ An AP consists of 23 ter last three terms is 261, for a) 6 If 2 × 2 ² + 3 × 2 ³ + 4 × 2 a) 510 An infinite GP has the first	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} =$ b) $\frac{6}{5}(6^n - 1)$ rs in which the first three a e in G.P., then the numbers b) G.P. $(7^{-1} + 3^{-1}, 7^{-3} + 5^{-1}, 7^{-1})$ b) $\log_e\left(\frac{3}{4}\right)$ ms. If the sum of the three then the first term is b) 5 $(4^4 + \dots + n \times 2^n = 2^{n+10})$, the b) 512 t term 'x' and sum 5, then x	$p = 2 \log(x + 1), \text{ is}$ c) 2 c) $\frac{423}{1000}$ 0, if $r \neq s$ and $S_{rs} = 1$, if r c) $\frac{5^{n}6^{n}}{n+1}$ re in A.P. and the last three in the odd places are in c) H.P. 5^{+}] is c) $2 \log_{e} \left(\frac{3}{4}\right)$ re terms in the middle is c) 4 en $n =$ c) 513 belongs to	d) 4 d) None of these = <i>s</i> , is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three d) None of these d) $2 \log_e \left(\frac{4}{3}\right)$ 141 and the sum of the d) 3 d) 508
 524. 525. 526. 527. 528. 529. 530. 531. 	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^n - 1)}{4}$ a, b, c, d, e are five numbers numbers in the middle are a) A.P. The sum of the series 2[a) $\log_e\left(\frac{4}{3}\right)$ An AP consists of 23 ter last three terms is 261, to a) 6 If 2 × 2 ² + 3 × 2 ³ + 4 × 2 a) 510 An infinite GP has the first a) $x < -10$	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} =$ b) $\frac{6}{5}(6^n - 1)$ rs in which the first three a e in G.P., then the numbers b) G.P. $(7^{-1} + 3^{-1}, 7^{-3} + 5^{-1}, 7^{-1})$ b) $\log_e \left(\frac{3}{4}\right)$ ms. If the sum of the three then the first term is b) 5 $(4^4 + \dots + n \times 2^n = 2^{n+10})$, the b) 512 t term 'x' and sum 5, then x b) $-10 < x < 0$	$p = 2 \log(x + 1), \text{ is}$ c) 2 c) $\frac{423}{1000}$ 0, if $r \neq s$ and $S_{rs} = 1$, if r c) $\frac{5^n 6^n}{n+1}$ re in A.P. and the last three in the odd places are in c) H.P. 5^+] is c) $2 \log_e \left(\frac{3}{4}\right)$ re terms in the middle is c) 4 en $n =$ c) 513 belongs to c) $0 < x < 10$	d) 4 d) None of these = s , is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three d) None of these d) $2 \log_e \left(\frac{4}{3}\right)$ 141 and the sum of the d) 3 d) 508 d) $x < 10$
 524. 525. 526. 527. 528. 529. 530. 531. 532. 	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^{n} - 1)}{4}$ <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> are five number numbers in the middle are a) A.P. The sum of the series 2[a) $\log_{e}\left(\frac{4}{3}\right)$ An AP consists of 23 ter last three terms is 261, for a) 6 If 2 × 2 ² + 3 × 2 ³ + 4 × 2 a) 510 An infinite GP has the first a) <i>x</i> < -10 If <i>x</i> = -2, then the value of the series of the serie	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} =$ b) $\frac{6}{5}(6^n - 1)$ rs in which the first three a in G.P., then the numbers b) G.P. $7^{-1} + 3^{-1} \cdot 7^{-3} + 5^{-1} \cdot 7^{-1}$ b) $\log_e \left(\frac{3}{4}\right)$ ms. If the sum of the three then the first term is b) 5 $4^4 + \dots + n \times 2^n = 2^{n+10}$, the b) 512 term 'x' and sum 5, then x b) $-10 < x < 0$ of $\log_4 \left(\frac{x^2}{4}\right) - 2\log_4 4(x^4)$, is	$p = 2 \log(x + 1), \text{ is}$ c) 2 c) $\frac{423}{1000}$ 0, if $r \neq s$ and $S_{rs} = 1$, if r c) $\frac{5^n 6^n}{n+1}$ re in A.P. and the last three in the odd places are in c) H.P. 5^+] is c) $2 \log_e \left(\frac{3}{4}\right)$ re terms in the middle is c) 4 en $n =$ c) 513 belongs to c) $0 < x < 10$ is	d) 4 d) None of these = s , is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three d) None of these d) $2 \log_e \left(\frac{4}{3}\right)$ 141 and the sum of the d) 3 d) 508 d) $x < 10$
 524. 525. 526. 527. 528. 529. 530. 531. 532. 	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^n - 1)}{4}$ a, b, c, d, e are five numbers numbers in the middle are a) A.P. The sum of the series 2[a) $\log_e\left(\frac{4}{3}\right)$ An AP consists of 23 ter last three terms is 261, f a) 6 If 2 × 2 ² + 3 × 2 ³ + 4 × 2 a) 510 An infinite GP has the first a) $x < -10$ If $x = -2$, then the value of a) 2	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} =$ b) $\frac{6}{5}(6^n - 1)$ rs in which the first three a is in G.P., then the numbers b) G.P. $(7^{-1} + 3^{-1}, 7^{-3} + 5^{-1}, 7^{-1})$ b) $\log_e \left(\frac{3}{4}\right)$ ms. If the sum of the three then the first term is b) 5 $(4^4 + \dots + n \times 2^n = 2^{n+10})$, the b) 512 is term 'x' and sum 5, then x b) $-10 < x < 0$ of $\log_4 \left(\frac{x^2}{4}\right) - 2\log_4 4(x^4)$, is b) -4	$p = 2 \log(x + 1), \text{ is}$ c) 2 c) $\frac{423}{1000}$ 0, if $r \neq s$ and $S_{rs} = 1$, if r c) $\frac{5^n 6^n}{n+1}$ re in A.P. and the last three in the odd places are in c) H.P. 5^+] is c) $2 \log_e \left(\frac{3}{4}\right)$ re terms in the middle is c) 4 en $n =$ c) 513 belongs to c) $0 < x < 10$ is c) -6	d) 4 d) None of these = s , is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three d) None of these d) $2 \log_e \left(\frac{4}{3}\right)$ 141 and the sum of the d) 3 d) 508 d) $x < 10$
 524. 525. 526. 527. 528. 529. 530. 531. 532. 533. 	The number of real solution a) 0 The value of 0.423, is a) $\frac{419}{999}$ The value of the sum $\sum_{r=1}^{n}$ a) $\frac{(5^n - 1)}{4}$ a, b, c, d, e are five numbers numbers in the middle are a) A.P. The sum of the series 2[a) $\log_e \left(\frac{4}{3}\right)$ An AP consists of 23 ter last three terms is 261, for a) 6 If $2 \times 2^2 + 3 \times 2^3 + 4 \times 2^2$ a) 510 An infinite GP has the first a) $x < -10$ If $x = -2$, then the value of a) 2 If $\frac{\log_3}{2} = \frac{\log_5}{2} = \frac{\log_7}{2}$ then $\frac{1}{2}$	b) $\frac{419}{990}$ $\sum_{s=1}^{n} S_{rs} 2^r 3^s$, where $S_{rs} =$ b) $\frac{6}{5}(6^n - 1)$ rs in which the first three a in G.P., then the numbers b) G.P. $7^{-1} + 3^{-1} \cdot 7^{-3} + 5^{-1} \cdot 7^{-1}$ b) $\log_e \left(\frac{3}{4}\right)$ ms. If the sum of the three then the first term is b) 5 $4^4 + \dots + n \times 2^n = 2^{n+10}$, the b) 512 t term 'x' and sum 5, then x b) $-10 < x < 0$ of $\log_4 \left(\frac{x^2}{4}\right) - 2\log_4 4(x^4)$, the b) -4 $3^{x+y} 5^{y+z} 7^{z+x} =$	$p = 2 \log(x + 1), \text{ is}$ c) $\frac{423}{1000}$ 0, if $r \neq s$ and $S_{rs} = 1$, if r c) $\frac{5^n 6^n}{n+1}$ re in A.P. and the last three in the odd places are in c) H.P. $5^+ \dots$] is c) $2 \log_e \left(\frac{3}{4}\right)$ re terms in the middle is c) 4 en $n =$ c) 513 belongs to c) $0 < x < 10$ is c) -6	d) 4 d) None of these = s , is d) $\frac{5}{4}(5^n - 1)$ are in H.P. If the three d) None of these d) $2 \log_e \left(\frac{4}{3}\right)$ 141 and the sum of the d) 3 d) 508 d) $x < 10$ d) 0

	a) 0	b) 2	c) 1	d) None of these			
534	4. $\sum_{n=1}^{n} \sum_{i=1}^{i} \sum_{j=1}^{j}$ is equal to						
	a) $4\frac{n(n+1)(2n+1)}{6}$	b) $\left[\frac{n(n+1)}{2}\right]^2$	c) $\frac{n(n+1)}{2}$	$d)\frac{n(n+1)(n+2)}{6}$			
535	535. $\frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \cdots$ is equal to						
	a) $e^{1/2}$	b) <i>e</i> ⁻¹	c) <i>e</i>	d) $e^{-1/3}$			
536	If $S_n = \frac{1}{6.11} + \frac{1}{11.16} + \frac{1}{16.2}$	$\frac{1}{21}$ + to <i>n</i> terms, then 6S	S_n equals				
	a) $\frac{5n-4}{5n+6}$	b) $\frac{n}{(5n+6)}$	c) $\frac{2n-1}{5n+6}$	d) $\frac{1}{(5n+6)}$			
537	537. If $\log(x - y) - \log 5 - \frac{1}{2}\log x - \frac{1}{2}\log y = 0$, then $\frac{x}{y} + \frac{y}{x} =$						
	a) 25	b) 26	c) 27	d) 28			
538	If $\log_a x$, $\log_b x$, $\log_c x$ are	in A.P., where $x \neq 1$, then a	$c^{2} =$	_			
	a) $(ab)^{\log_a b}$	b) $(ac)^{\log_a b}$	c) $(ab)^{\log_b a}$	d) $(ac)^{\log_b a}$			
539	If $a^{1/x} = b^{1/y} = c^{1/z}$ ar	nd a, b, c are in geometric	cal progression, then <i>x</i> , <i>y</i> ,	z are in			
= 40	a) AP	b) GP	c) HP	d) None of these			
540	The coefficient of x^4 in	the expansion of $\frac{1-2x-x^2}{e^{-x}}$	is				
	a) $\frac{1-k-k^2}{k^2}$	b) $\frac{k^2 + 1}{2}$	c) $\frac{1-k}{k}$	d) $\frac{1}{1}$			
F 1 1	k!	k!	k!	⁵ k!			
541	1 ne sum of the series 1	.3" + 2.5" + 3.7" + upt	0 20 terms is	d) 100000			
542	a) 100090	0) 109000	CJ 199000	u) 199009			
J72	$\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in AF	, then					
	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP	c) a^2, b^2, c^2 are in AP	d) <i>a</i> , <i>b</i> , <i>c</i> are in GP			
543	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of t	b) <i>c, a, b</i> are in AP wo arithmetic series are	c) a^2 , b^2 , c^2 are in AP in the ratio $2n + 3:6n +$	d) <i>a, b, c</i> are in GP 5, then the ratio of their			
543	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of t 13th terms is	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are	c) a^2 , b^2 , c^2 are in AP in the ratio $2n + 3$: $6n +$	d) <i>a</i> , <i>b</i> , <i>c</i> are in GP 5, then the ratio of their			
543	 a) <i>a</i>, <i>b</i>, <i>c</i> are in AP The sum of <i>n</i> terms of t 13th terms is a) 53: 155 ax + y + z + z + z = 100 	 b) <i>c</i>, <i>a</i>, <i>b</i> are in AP wo arithmetic series are b) 27:87 	c) a^2, b^2, c^2 are in AP in the ratio $2n + 3:6n +$ c) 29:83	 d) <i>a</i>, <i>b</i>, <i>c</i> are in GP 5, then the ratio of their d) 31: 89 			
543 544	a) a, b, c are in AP The sum of n terms of to 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, $y, \frac{y+z}{1-yz}$ be in A.P., to	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then $x, \frac{1}{y}, z$ will be in	 c) a², b², c² are in AP in the ratio 2n + 3: 6n + c) 29: 83 	 d) <i>a</i>, <i>b</i>, <i>c</i> are in GP 5, then the ratio of their d) 31:89 			
543 544	a) a, b, c are in AP The sum of n terms of to 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, $y, \frac{y+z}{1-yz}$ be in A.P., to a) A.P.	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then $x, \frac{1}{y}, z$ will be in b) G.P.	 c) a², b², c² are in AP in the ratio 2n + 3: 6n + c) 29: 83 c) H.P. 	 d) <i>a</i>, <i>b</i>, <i>c</i> are in GP 5, then the ratio of their d) 31: 89 d) None of these 			
543 544 545	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of to 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, y , $\frac{y+z}{1-yz}$ be in A.P., to a) A.P. x + y + z = 15, if 9, <i>x</i> , <i>y</i> , <i>z</i>	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then $x, \frac{1}{y}, z$ will be in b) G.P. <i>z</i> , <i>a</i> are in AP, while $\frac{1}{x} + \frac{1}{y} + \frac{1}{y}$	c) a^{2} , b^{2} , c^{2} are in AP in the ratio $2n + 3$: $6n +$ c) 29: 83 c) H.P. $\frac{1}{z} = \frac{5}{3}$, if 9, <i>x</i> , <i>y</i> , <i>z</i> , <i>a</i> are in H	 d) a, b, c are in GP 5, then the ratio of their d) 31: 89 d) None of these IP, then value of a will be 			
543 544 545	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of t 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, y , $\frac{y+z}{1-yz}$ be in A.P., t a) A.P. x + y + z = 15, if 9, <i>x</i> , <i>y</i> , <i>z</i> a) 1	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then $x, \frac{1}{y}, z$ will be in b) G.P. <i>z</i> , <i>a</i> are in AP, while $\frac{1}{x} + \frac{1}{y} +$ b) 2	c) a^2 , b^2 , c^2 are in AP in the ratio $2n + 3$: $6n +$ c) 29: 83 c) H.P. $\frac{1}{z} = \frac{5}{3}$, if 9, <i>x</i> , <i>y</i> , <i>z</i> , <i>a</i> are in H c) 3	 d) <i>a</i>, <i>b</i>, <i>c</i> are in GP 5, then the ratio of their d) 31: 89 d) None of these IP, then value of <i>a</i> will be d) 9 			
543 544 545 546	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of t 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, <i>y</i> , $\frac{y+z}{1-yz}$ be in A.P., t a) A.P. x + y + z = 15, if 9, <i>x</i> , <i>y</i> , <i>z</i> a) 1 If <i>a</i> , <i>b</i> and <i>c</i> are in AP, th	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then $x, \frac{1}{y}, z$ will be in b) G.P. <i>z</i> , <i>a</i> are in AP, while $\frac{1}{x} + \frac{1}{y} +$ b) 2 then which one of the follow	c) a^{2} , b^{2} , c^{2} are in AP in the ratio $2n + 3$: $6n +$ c) 29: 83 c) H.P. $\frac{1}{z} = \frac{5}{3}$, if 9, <i>x</i> , <i>y</i> , <i>z</i> , <i>a</i> are in H c) 3 pwing is not true?	 d) <i>a</i>, <i>b</i>, <i>c</i> are in GP 5, then the ratio of their d) 31: 89 d) None of these IP, then value of <i>a</i> will be d) 9 			
543 544 545 546	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of to 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, y , $\frac{y+z}{1-yz}$ be in A.P., to a) A.P. x + y + z = 15, if 9, <i>x</i> , <i>y</i> , <i>z</i> a) 1 If <i>a</i> , <i>b</i> and <i>c</i> are in AP, the a) $\frac{k}{a}$, $\frac{k}{b}$ and $\frac{k}{c}$ are in HP	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then $x, \frac{1}{y}, z$ will be in b) G.P. <i>z</i> , <i>a</i> are in AP, while $\frac{1}{x} + \frac{1}{y} + \frac{1}{y} + \frac{1}{y}$ b) 2 then which one of the follow	c) a^2 , b^2 , c^2 are in AP in the ratio $2n + 3$: $6n +$ c) 29: 83 c) H.P. $\frac{1}{z} = \frac{5}{3}$, if 9, <i>x</i> , <i>y</i> , <i>z</i> , <i>a</i> are in H c) 3 owing is not true? b) $a + k$, $b + k$ and $c + k$	 d) a, b, c are in GP 5, then the ratio of their d) 31: 89 d) None of these IP, then value of a will be d) 9 k are in AP 			
543 544 545 546	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of to 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, y , $\frac{y+z}{1-yz}$ be in A.P., to a) A.P. x + y + z = 15, if 9, <i>x</i> , <i>y</i> , <i>z</i> a) 1 If <i>a</i> , <i>b</i> and <i>c</i> are in AP, th a) $\frac{k}{a}$, $\frac{k}{b}$ and $\frac{k}{c}$ are in HP c) <i>ka</i> , <i>kb</i> and <i>kc</i> are in <i>A</i>	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then $x, \frac{1}{y}, z$ will be in b) G.P. <i>z</i> , <i>a</i> are in AP, while $\frac{1}{x} + \frac{1}{y} +$ b) 2 hen which one of the follow	c) a^{2} , b^{2} , c^{2} are in AP in the ratio $2n + 3$: $6n +$ c) 29: 83 c) H.P. $\frac{1}{z} = \frac{5}{3}$, if 9, <i>x</i> , <i>y</i> , <i>z</i> , <i>a</i> are in H c) 3 owing is not true? b) $a + k$, $b + k$ and $c + k$ d) a^{2} , b^{2} and c^{2} are in A	 d) a, b, c are in GP 5, then the ratio of their d) 31: 89 d) None of these (P, then value of a will be d) 9 k are in AP P 			
543 544 545 546	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of to 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, y , $\frac{y+z}{1-yz}$ be in A.P., to a) A.P. x + y + z = 15, if 9, <i>x</i> , <i>y</i> , <i>z</i> a) 1 If <i>a</i> , <i>b</i> and <i>c</i> are in AP, th a) $\frac{k}{a}$, $\frac{k}{b}$ and $\frac{k}{c}$ are in HP c) <i>ka</i> , <i>kb</i> and <i>kc</i> are in AP The value of $(0.16)^{\log_2.5(\frac{1}{3})}$	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then $x, \frac{1}{y}, z$ will be in b) G.P. <i>z</i> , <i>a</i> are in AP, while $\frac{1}{x} + \frac{1}{y} + \frac{1}{y$	c) a^{2} , b^{2} , c^{2} are in AP in the ratio $2n + 3$: $6n +$ c) 29: 83 c) H.P. $\frac{1}{z} = \frac{5}{3}$, if 9, <i>x</i> , <i>y</i> , <i>z</i> , <i>a</i> are in H c) 3 owing is not true? b) $a + k$, $b + k$ and $c + k$ d) a^{2} , b^{2} and c^{2} are in A	 d) <i>a</i>, <i>b</i>, <i>c</i> are in GP 5, then the ratio of their d) 31: 89 d) None of these IP, then value of <i>a</i> will be d) 9 <i>k</i> are in AP P 			
543 544 545 546 547	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of t 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, y , $\frac{y+z}{1-yz}$ be in A.P., t a) A.P. x + y + z = 15, if 9, <i>x</i> , <i>y</i> , <i>z</i> a) 1 If <i>a</i> , <i>b</i> and <i>c</i> are in AP, th a) $\frac{k}{a}$, $\frac{k}{b}$ and $\frac{k}{c}$ are in HP c) <i>ka</i> , <i>kb</i> and <i>kc</i> are in <i>A</i> The value of $(0.16)^{\log_2 .5(\frac{1}{3})}$ a) 0.16	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then $x, \frac{1}{y}, z$ will be in b) G.P. <i>z</i> , <i>a</i> are in AP, while $\frac{1}{x} + \frac{1}{y} + \frac{1}{y} + \frac{1}{y} + \frac{1}{y} + \frac{1}{y}$ b) 2 then which one of the follow AP $+\frac{1}{3^2} + \frac{1}{3^3} + + to \infty)$ is b) 1	c) a^2 , b^2 , c^2 are in AP in the ratio $2n + 3$: $6n +$ c) 29: 83 c) H.P. $\frac{1}{z} = \frac{5}{3}$, if 9, <i>x</i> , <i>y</i> , <i>z</i> , <i>a</i> are in H c) 3 owing is not true? b) $a + k$, $b + k$ and $c + k$ d) a^2 , b^2 and c^2 are in A	 d) <i>a, b, c</i> are in GP 5, then the ratio of their d) 31: 89 d) None of these iP, then value of <i>a</i> will be d) 9 <i>k</i> are in AP <i>k</i> <i>k</i> are in AP 			
543 544 545 546 547 547	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of to 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, y , $\frac{y+z}{1-yz}$ be in A.P., to a) A.P. x + y + z = 15, if 9, <i>x</i> , <i>y</i> , <i>z</i> a) 1 If <i>a</i> , <i>b</i> and <i>c</i> are in AP, th a) $\frac{k}{a}$, $\frac{k}{b}$ and $\frac{k}{c}$ are in HP c) <i>ka</i> , <i>kb</i> and <i>kc</i> are in <i>A</i> The value of $(0.16)^{\log_2.5(\frac{1}{3})}$ a) 0.16 If $\frac{3+5+7+\dots+n \text{ terms}}{5+8+11+\dots+10 \text{ terms}} = 7$, to	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then $x, \frac{1}{y}, z$ will be in b) G.P. <i>z</i> , <i>a</i> are in AP, while $\frac{1}{x} + \frac{1}{y} + \frac{1}{y$	c) a^2 , b^2 , c^2 are in AP in the ratio $2n + 3$: $6n +$ c) 29: 83 c) H.P. $\frac{1}{z} = \frac{5}{3}$, if 9, <i>x</i> , <i>y</i> , <i>z</i> , <i>a</i> are in H c) 3 owing is not true? b) $a + k$, $b + k$ and $c + k$ d) a^2 , b^2 and c^2 are in A c) 0.4	 d) <i>a</i>, <i>b</i>, <i>c</i> are in GP 5, then the ratio of their d) 31: 89 d) None of these (P, then value of <i>a</i> will be d) 9 <i>k</i> are in AP P d) 4 			
543 544 545 546 547 548	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of to 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, y , $\frac{y+z}{1-yz}$ be in A.P., to a) A.P. x + y + z = 15, if 9, <i>x</i> , <i>y</i> , <i>z</i> a) 1 If <i>a</i> , <i>b</i> and <i>c</i> are in AP, th a) $\frac{k}{a}$, $\frac{k}{b}$ and $\frac{k}{c}$ are in HP c) <i>ka</i> , <i>kb</i> and <i>kc</i> are in <i>A</i> The value of $(0.16)^{\log_{2.5}(\frac{1}{3})}$ a) 0.16 If $\frac{3+5+7+\dots+n \text{ terms}}{5+8+11+\dots+10 \text{ terms}} = 7$, to a) 35	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then $x, \frac{1}{y}, z$ will be in b) G.P. <i>z</i> , <i>a</i> are in AP, while $\frac{1}{x} + \frac{1}{y} + \frac{1}{y$	c) a^2 , b^2 , c^2 are in AP in the ratio $2n + 3$: $6n +$ c) 29: 83 c) H.P. $\frac{1}{z} = \frac{5}{3}$, if 9, <i>x</i> , <i>y</i> , <i>z</i> , <i>a</i> are in H c) 3 owing is not true? b) $a + k$, $b + k$ and $c + k$ d) a^2 , b^2 and c^2 are in A c) 0.4 c) 37	 d) <i>a</i>, <i>b</i>, <i>c</i> are in GP 5, then the ratio of their d) 31: 89 d) None of these d) None of these d) 9 <i>k</i> are in AP d) 4 d) 4 			
 543 544 545 546 547 548 549 	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of to 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, y , $\frac{y+z}{1-yz}$ be in A.P., to a) A.P. x + y + z = 15, if 9, <i>x</i> , <i>y</i> , <i>z</i> a) 1 If <i>a</i> , <i>b</i> and <i>c</i> are in AP, th a) $\frac{k}{a}$, $\frac{k}{b}$ and $\frac{k}{c}$ are in HP c) <i>ka</i> , <i>kb</i> and <i>kc</i> are in <i>A</i> The value of $(0.16)^{\log_2 5(\frac{1}{3})}$ a) 0.16 If $\frac{3+5+7+\dots+n \text{ terms}}{5+8+11+\dots+10 \text{ terms}} = 7$, to a) 35 The sum of the series 1 +	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then <i>x</i> , $\frac{1}{y}$, <i>z</i> will be in b) G.P. <i>z</i> , <i>a</i> are in AP, while $\frac{1}{x} + \frac{1}{y} + $	c) a^2 , b^2 , c^2 are in AP in the ratio $2n + 3$: $6n +$ c) 29: 83 c) H.P. $\frac{1}{z} = \frac{5}{3}$, if 9, <i>x</i> , <i>y</i> , <i>z</i> , <i>a</i> are in H c) 3 owing is not true? b) $a + k$, $b + k$ and $c + k$ d) a^2 , b^2 and c^2 are in A c) 0.4 c) 37	 d) <i>a</i>, <i>b</i>, <i>c</i> are in GP 5, then the ratio of their d) 31: 89 d) None of these iP, then value of <i>a</i> will be d) 9 <i>k</i> are in AP d) 4 d) 4 			
 543 544 545 546 547 548 549 	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of to 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, y , $\frac{y+z}{1-yz}$ be in A.P., to a) A.P. x + y + z = 15, if 9, <i>x</i> , <i>y</i> , <i>z</i> a) 1 If <i>a</i> , <i>b</i> and <i>c</i> are in AP, th a) $\frac{k}{a}$, $\frac{k}{b}$ and $\frac{k}{c}$ are in HP c) <i>ka</i> , <i>kb</i> and <i>kc</i> are in <i>A</i> The value of $(0.16)^{\log_2.5(\frac{1}{3})}$ a) 0.16 If $\frac{3+5+7+\dots+n \text{ terms}}{5+8+11+\dots+10 \text{ terms}} = 7$, to a) 35 The sum of the series 1 + a) e^2	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then <i>x</i> , $\frac{1}{y}$, <i>z</i> will be in b) G.P. <i>z</i> , <i>a</i> are in AP, while $\frac{1}{x} + \frac{1}{y} + $	c) a^2, b^2, c^2 are in AP in the ratio $2n + 3: 6n +$ c) 29: 83 c) H.P. $\frac{1}{z} = \frac{5}{3}$, if 9, <i>x</i> , <i>y</i> , <i>z</i> , <i>a</i> are in H c) 3 owing is not true? b) $a + k, b + k$ and $c + k$ d) a^2, b^2 and c^2 are in A c) 0.4 c) 37 , is c) $e^2 - e$	d) a, b, c are in GP 5, then the ratio of their d) 31: 89 d) None of these (P, then value of a will be d) 9 k are in AP P d) 4 d) 40 d) $e^2 - e - 1$			
 543 544 545 546 547 548 549 550 	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of to 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, y , $\frac{y+z}{1-yz}$ be in A.P., to a) A.P. x + y + z = 15, if 9, <i>x</i> , <i>y</i> , <i>z</i> a) 1 If <i>a</i> , <i>b</i> and <i>c</i> are in AP, th a) $\frac{k}{a}$, $\frac{k}{b}$ and $\frac{k}{c}$ are in HP c) <i>ka</i> , <i>kb</i> and <i>kc</i> are in <i>A</i> The value of $(0.16)^{\log_2.5(\frac{1}{3})}$ a) 0.16 If $\frac{3+5+7+\dots+n \text{ terms}}{5+8+11+\dots+10 \text{ terms}} = 7$, to a) 35 The sum of the series 1 + a) <i>e</i> ² If <i>a</i> ₁ , <i>a</i> ₂ ,, <i>a</i> ₅₀ are in Given	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then $x, \frac{1}{y}, z$ will be in b) G.P. <i>z</i> , <i>a</i> are in AP, while $\frac{1}{x} + \frac{1}{y} + \frac{1}{y$	c) a^2, b^2, c^2 are in AP in the ratio $2n + 3: 6n +$ c) 29: 83 c) H.P. $\frac{1}{z} = \frac{5}{3}$, if 9, <i>x</i> , <i>y</i> , <i>z</i> , <i>a</i> are in H c) 3 owing is not true? b) $a + k, b + k$ and $c + k$ d) a^2, b^2 and c^2 are in A c) 0.4 c) 0.4 c) 37 , is c) $e^2 - e$ equal to	d) a, b, c are in GP 5, then the ratio of their d) 31: 89 d) None of these P, then value of a will be d) 9 k are in AP P d) 4 d) 40 d) $e^2 - e - 1$			
 543 544 545 546 547 548 549 550 	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of to 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, y , $\frac{y+z}{1-yz}$ be in A.P., to a) A.P. x + y + z = 15, if 9, <i>x</i> , <i>y</i> , <i>z</i> a) 1 If <i>a</i> , <i>b</i> and <i>c</i> are in AP, th a) $\frac{k}{a}$, $\frac{k}{b}$ and $\frac{k}{c}$ are in HP c) <i>ka</i> , <i>kb</i> and <i>kc</i> are in <i>A</i> The value of $(0.16)^{\log_2.5(\frac{1}{3})}$ a) 0.16 If $\frac{3+5+7+\dots+n \text{ terms}}{5+8+11+\dots+10 \text{ terms}} = 7$, to a) 35 The sum of the series 1 + a) <i>e</i> ² If <i>a</i> ₁ , <i>a</i> ₂ ,, <i>a</i> ₅₀ are in Gilla a) 0	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then <i>x</i> , $\frac{1}{y}$, <i>z</i> will be in b) G.P. <i>z</i> , <i>a</i> are in AP, while $\frac{1}{x} + \frac{1}{y} + $	c) a^2, b^2, c^2 are in AP in the ratio $2n + 3:6n +$ c) 29:83 c) H.P. $\frac{1}{z} = \frac{5}{3}$, if 9, <i>x</i> , <i>y</i> , <i>z</i> , <i>a</i> are in H c) 3 owing is not true? b) $a + k, b + k$ and $c + k$ d) a^2, b^2 and c^2 are in A c) 0.4 c) 0.4 c) 37 , is c) $e^2 - e$ equal to	d) a, b, c are in GP 5, then the ratio of their d) 31: 89 d) None of these lP, then value of a will be d) 9 k are in AP P d) 4 d) 40 d) $e^2 - e - 1$			
 543 544 545 546 547 548 549 550 	a) <i>a</i> , <i>b</i> , <i>c</i> are in AP The sum of <i>n</i> terms of tr 13th terms is a) 53: 155 If $\frac{x+y}{1-xy}$, y , $\frac{y+z}{1-yz}$ be in A.P., tr a) A.P. x + y + z = 15, if 9, <i>x</i> , <i>y</i> , <i>z</i> a) 1 If <i>a</i> , <i>b</i> and <i>c</i> are in AP, th a) $\frac{k}{a}$, $\frac{k}{b}$ and $\frac{k}{c}$ are in HP c) <i>ka</i> , <i>kb</i> and <i>kc</i> are in <i>A</i> The value of $(0.16)^{\log_2.5(\frac{1}{3})}$ a) 0.16 If $\frac{3+5+7+\dots+n \text{ terms}}{5+8+11+\dots+10 \text{ terms}} = 7$, tr a) 35 The sum of the series 1 + a) <i>e</i> ² If <i>a</i> ₁ , <i>a</i> ₂ ,, <i>a</i> ₅₀ are in GP a) 0	b) <i>c</i> , <i>a</i> , <i>b</i> are in AP wo arithmetic series are b) 27: 87 then <i>x</i> , $\frac{1}{y}$, <i>z</i> will be in b) G.P. <i>z</i> , <i>a</i> are in AP, while $\frac{1}{x} + \frac{1}{y} + $	c) a^2, b^2, c^2 are in AP in the ratio $2n + 3$: $6n +$ c) 29: 83 c) H.P. $\frac{1}{z} = \frac{5}{3}$, if 9, x, y, z, a are in H c) 3 owing is not true? b) $a + k, b + k$ and $c + k$ d) a^2, b^2 and c^2 are in A c) 0.4 c) 0.4 c) 37 , is c) $e^2 - e$ equal to c) $\frac{a_1}{a_2}$	d) <i>a</i> , <i>b</i> , <i>c</i> are in GP 5, then the ratio of their d) 31: 89 d) None of these P, then value of <i>a</i> will be d) 9 k are in AP P d) 4 d) 40 d) $e^2 - e - 1$ d) $\frac{a_{25}}{a_{24}}$			

	a) $a + b > b + c$	b) <i>ad</i> > <i>bc</i>	c) Both (a) and (b)	d) None of these			
552	552. If the sum of the series $1 + \frac{3}{x} + \frac{9}{x^2} + \frac{27}{x^3} + \cdots$ to ∞ is a finite number, then						
	a) <i>x</i> < 3	b) $x > \frac{1}{3}$	c) $x < \frac{1}{3}$	d) <i>x</i> > 3			
553	Consider the following sta	atements :					
	1.1+3+5+ upto <i>n</i> terms	$s = n^2$					
	2.2+4+6+ upto <i>n</i> terms	$s = n^2 + 1$					
	Which of the statement gi	ven above is/are correct?					
	a) Only (1)	b) Only (2)	c) Both (1) and (2)	d) Neither (1) nor (2)			
554	If $9a^2 + 4b^2 = 18ab$, then	$\log(3a+2b) =$					
	a) $\log 5 + \log 3 + \log a + 1$	log5 <i>b</i>					
	b) $\log 5 + \log 3 + \log 3a + \log 3a$	- log <i>b</i>					
	c) $\log 5 + \log a + \log b$						
	d) None of these $\binom{n}{c} + \binom{n}{c} + \binom{n}{c}$	$+\dots+n_{C}$					
555	$If S = \sum_{n=1}^{\infty} \left(\frac{c_0 + c_1 + c_2}{n_{P_n}} \right)$	$\frac{1}{1}$, then S equals					
	a) 2 <i>e</i>	b) 2 <i>e</i> – 1	c) 2 <i>e</i> + 1	d) None of these			
556	The number of divisors	of $3\times7^3, 7\times11^2$ and 2	× 61 are in				
	a) AP	b) GP	c) HP	d) None of these			
557	If $\frac{1}{a} + \frac{1}{c} + \frac{1}{a-b} + \frac{1}{c-b} = 0$ and	nd $b \neq a + c$, then a, b, c ar	e in				
	a) G.P.	b) H.P.	c) A.P.	d) None of these			
558	. If the sum of two extreme	numbers of an AP with fou	ir terms is 8 and product of	remaining two middle			
	terms is 15, then greatest	number of the series will b	0e				
	a) 5	b) 7	c) 9	d) 11			
559	The sum of the series $\frac{1}{\sqrt{1+y}}$	$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots + \frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{n^2-1}+\sqrt{n^2}}$ equals				
	2n+1	$\sqrt{n}+1$	$n + \sqrt{n^2 - 1}$	J) 1			
	a) \sqrt{n}	b) $\frac{1}{\sqrt{n} + \sqrt{n-1}}$	$\frac{2\sqrt{n}}{2\sqrt{n}}$	a) $n - 1$			
560	. If <i>x</i> , <i>y</i> , <i>z</i> are positive integ	ers, then $(x + y)(y + z)(z)$	(+x) is				
	a) = 8 xyz	b) > 8 <i>xyz</i>	c) < 8 <i>xyz</i>	d) None of these			
561	$\frac{x-y}{x} + \frac{1}{2}\left(\frac{x-y}{x}\right)^2 + \frac{1}{3}\left(\frac{x-y}{x}\right)$	3 + is equal to					
	a) $\log_e(x - y)$	b) $\log_e(x+y)$	c) $\log_e\left(\frac{x}{y}\right)$	d) log _e xy			
562	If <i>x</i> , <i>y</i> , <i>z</i> are three conse	cutive positive integers,	then				
$\log_e \sqrt{x} + \log_e \sqrt{z} + \left(\frac{1}{2xz+1}\right) + \frac{1}{3} \left(\frac{1}{2xz+1}\right)^3 + \frac{1}{5} \left(\frac{1}{2xz+1}\right)^5 + \dots$ is							
	a) $\log_e \sqrt{y}$	b) log _e y	c) $\log_e y^2$	d) None of these			
563	Given that <i>n</i> arithmetic m	eans are inserted between	two sets of numbers <i>a</i> , 2 <i>b</i> a	and $2a, b$, where $a, b \in R$.			
	Suppose further that <i>m</i> th	mean between these two s	ets of numbers is same, the	n the ratio <i>a</i> : <i>b</i> equals			
	a) $n - m + 1 : m$	b) $n - m + 1 : n$	c) $m : n - m + 1$	d) $n : n - m + 1$			
564	. An A.P., a G.P. and a H.P. h	ave the same first and last	terms and the same odd nu	mber of terms. The middle			
	terms of the three series a	ire in					
	a) A.P.	b) G.P.	c) H.P.	d) None of these			
565. The sum to the series $\frac{1}{12} + \frac{1.3}{1234} + \frac{1.3.5}{123456} + \dots$ is							
	a) <i>e</i> – 1	b) $\sqrt{e} - 1$	c) √ <i>e</i> − 2	d) $\sqrt{e} + e$			
566. If the arithmetic mean of a and b is $\frac{a^n+b^n}{a^{n-1}+b^{n-1}}$, then the value of n is							
	a) —1	b) 0	c) 1	d) None of these			
567	. 0.14189189189 can be	expressed as a rational nur	nber				
	-						

	a) <u>7</u>	$h) \frac{7}{2}$	c) $\frac{525}{2}$	d) $\frac{21}{21}$							
	3700	5,50	⁵ , 111	148							
568. The sum of the series $\log_9 3 + \log_{27} 3 - \log_{81} 3 + \log_{243} 3 - \dots$ is											
	a) $1 - \log_e 2$	b) $1 + \log_e 2$	c) $\log_e 3$	d) $1 + \log_e 3$							
569.	If <i>a</i> , <i>b</i> , <i>c</i> be in arithmetic	c progression, then the va	alue of $(a + 2b - c)(2b + b)$	(-c - a)(a + 2b + c) is							
	a) 16 <i>abc</i>	b) 4 <i>abc</i>	c) 8 <i>abc</i>	d) 3 <i>abc</i>							
570.	The sum of the series										
	$1 \cdot n + 1 + 2 \cdot (n - 1) + 3$	$(n-2) + n \cdot 1$ is									
	a) $\frac{n(n+1)(n+2)}{2}$	b) $\frac{n(n+1)(n+2)}{2}$	c) $\frac{n(n+1)(3n+2)}{2}$	d) $\frac{n(n+1)(2n+2)}{2n+2}$							
F 71	$\frac{6}{16 a^{\chi} - b^{\chi} - a^{\chi} - d^{W} that$	3	6	3							
5/1.	$a^{n} = b^{n} = c^{-} = a^{n}$, the	(bca) equals to $(1 1 1)$	$u \pm z \pm w$	d) None of these							
	a) $\frac{1}{x}\left(\frac{1}{y} + \frac{1}{z} + \frac{1}{w}\right)$	b) $x\left(\frac{1}{y} + \frac{1}{z} + \frac{1}{w}\right)$	c) $\frac{y+2+w}{x}$	uj None of these							
572.	If $2^{\frac{3}{\log_3 x}} = \frac{1}{64}$, then $x =$										
	a) 3	. 1	<u>1</u>	. 1							
		b) $\frac{1}{3}$	c) $\frac{1}{\sqrt{3}}$	d) $-\frac{1}{\sqrt{3}}$							
573. The sum of the integers from 1 to 100 which are not divisible by 3 or 5 is											
	a) 2489	b) 4735	c) 2317	d) 2632							
574.	If the third term of a GP	is <i>P</i> . Then, the product of	of the first 5 terms of the	GP is							
	a) <i>P</i> ³	b) <i>P</i> ²	c) <i>P</i> ¹⁰	d) <i>P</i> ⁵							
575.	The sum of <i>n</i> terms of an <i>h</i>	A.P. is $a n(n-1)$. The sum	of the squares of these terr	ns is							
	a) $a^2 n^2 (n-1)^2$	b) a^2 a	$2a^2$	d) $2a^2$							
		$\frac{1}{6}n(n-1)(2n-1)$	n(n-1)(2n-1)	n(n+1)(2n+1)							
576.	If $\log_{30} 3 = x$, $\log_{30} 5 = y$,	, then $\log_{30} 8 =$									
	a) $3(1 - x - y)$	b) $x - y + 1$	c) $1 - x - y$	d) $2(x - y + 1)$							
577.	The value of $3^{\frac{4}{\log_4 9}} + 27^{\frac{1}{\log_4 9}}$	$\frac{1}{\sqrt{369}} + 81^{\frac{1}{\log_5 3}}$, is									
	a) 890	b) 860	c) 857	d) None of these							
578.	If $a_1, a_2, a_3, \dots, a_n$ be an	AP of non-zero terms. th	$en \frac{1}{1} + \frac{1}{1} + \dots + \frac{1}{1}$	— is equal to							
	n 1	n	a_1a_2 a_2a_3 $a_{n-1}a_{n-1}$	a_n							
	a) $\frac{n-1}{2}$	b) $\frac{\pi}{\pi}$	c) $\frac{n+1}{2}$	a) None of these							
FFO	$a_1 a_n$	$a_1 a_n$	$a_1 a_n$								
579.	If $S = \sum_{n=2}^{\infty} \frac{c_2}{(n+1)!}$, then S	equals									
	a) <i>e</i> – 2	b) <i>e</i> + 2	c) 2 <i>e</i>	d) None of these							
580. If a, b, c are in H.P., then $\frac{1}{1} + \frac{1}{1} =$											
	1 1	$-a b-c \\ 1 1$, 1 1	d) None of these							
	a) $\frac{a}{a} + \frac{b}{b}$	b) $\frac{-}{a} + \frac{-}{c}$	c) $\frac{1}{b} + \frac{1}{c}$	a) None of these							
^{581.} If sum of an infinite geometric series is $\frac{4}{3}$ and its 1st term is $\frac{3}{4}$, then its common ration is											
	a) 	b) $\frac{9}{}$	c) $\frac{1}{-}$	d) $\frac{7}{-}$							
	16	16	9	9							
582.	If $\log_{10} \{98 + \sqrt{x^2 - 12x} + \sqrt{x^2 - 12x} \}$	-36 = 2, then $x =$									
	a) 4	b) 8	c) 12	d) 4, 8							
583. If $a = \sum_{n=1}^{\infty} \frac{2n}{(2n-1)!}$, $b = \sum_{n=1}^{\infty} \frac{2n}{(2n+1)!}$, then <i>ab</i> equals											
	a) 1	1.2.2	e-1	e + 1							
		b) e-	c) $\frac{1}{e+1}$	$a) \frac{1}{e-1}$							
584. The sum to <i>n</i> terms of the series $1 + \frac{3}{2} + \frac{7}{4} + \frac{15}{8} + \frac{31}{16} + \cdots$, is											
	1	1	1	. 1							
	a) $2(n-1) + \frac{1}{2n-1}$	DJ $2n - \frac{1}{2^n}$	c) $2 + \frac{1}{2^n}$	a) $2n - 1 + \frac{1}{2^n}$							
585. If $0 < \phi < \frac{\pi}{2}$, $x =$	= $\sum_{n=0}^{\infty} \cos^{2n} \phi$, $y = \sum_{n=0}^{\infty} \sin^{2n} \phi$	$^{2n} \phi$ and $z = \sum_{n=0}^{\infty} \cos^{2n} \phi$ s	$\sin^{2n} \phi$, then								
---	--	--	----------------------------------	--	--	--	--	--	--	--	--
a) $xyz = xz + y$	b) $xyz = xy + z$	c) $xyz = x + y + z$	d) $xyz = yz + x$								
586. In an arithmetic	progression, the 24th term is	s 100. Then, the sum of the f	first 47 terms of the								
arithmetic prog	ression is										
a) 2300	b) 2350	c) 2400	d) 4700								
587. If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> , <i>f</i> are	A.M.'s between 2 and 12, then	a + b + c + d + e + f is equal	to								
a) 14	b) 42	c) 84	d) None of these								
588. If $x = \log_2 3$ and $\frac{1}{2}$	$y = \log_{1/2} 5$, then	-	-								
a) $x > y$	b) $x < y$	c) $x = y$	d) None of these								
589. The sum of <i>n</i> term	ns of the series $1 + (1 + x) + 1($	$1 + x + x^2$)+ will be									
$(1-x^n)$	$x(1-x^{n})$	$n(1-x) - x(1-x^n)$	d) None of these								
$\frac{1-x}{1-x}$	$bJ - \frac{1-x}{1-x}$	$(1-x)^2$									
590. If $\log_2 7 = x$, then	<i>x</i> is:										
a) A rational num	ber such that $0 < x < 2$										
b) An irrational number such that $2 < x < 3$											
c) A rational num	ber such that $2 < x < 3$										
d) A prime numbe	er of the form $7x + 2$										
591. If $4^{10g_9 3} + 9^{10g_2 4}$	$= 10^{10} g_x 8^3$, then $x =$										
a) 4	b) 9	c) 83	d) 10								
592. If $\log_a x$, $\log_b x$, lo	$g_c x$ be in HP, then a, b, c are in										
a) AP	b) HP	C) GP	d) None of these								
593. Consider the follo	Wing statement :	han the (mm)th term is 1									
1. If m th term of r	$\frac{1}{2}$ $\frac{1}$	Ab a sus in UD									
2. If a, b, c are in A	AP and $a, 2b, c$ are in GP, then a ,	40, C are In HP.)								
Which of the state	ament give above is /are correct	ni st iniuule anu iast al e ili Ar 2									
a) Only (1)	$\frac{1}{2}$	c) Only (3)	d) All of these								
594 The first two ter	ms of a geometric progression	$r_{\rm c}$ add unto 12 The sum of t	the third and the fourth								
terms is 48 If te	rms of the geometric progressio	sion are alternately positiv	e and negative then the								
first torm is	This of the geometric progres	sion are alternately positive	e and negative, then the								
$\frac{113}{2} \frac{1}{4}$	b) 4	c) 12	d) 12								
$a_{j} + 505 (m n - 1 (m n))^{2}$	5 - 4	() -12	u) 12								
$2 \left\{ \frac{m-n}{m+n} + \frac{1}{3} \left(\frac{m-n}{m+n} \right) \right\}$	$+\frac{1}{5}\left(\frac{m-n}{m+n}\right) + \cdots$ is equal to										
$\sum_{n=1}^{\infty} \log\left(\frac{m}{m}\right)$	$h\log\left(\frac{n}{n}\right)$	c) $\log mn$	d) None of these								
$a_{j} \log(n)$			-								
596. For any integer	$n \ge 1$, the sum $\sum_{k=1}^{n} k (k+2)$) is equal to									
a) $\frac{n(n+1)(n+1)}{n+1}$	2) b) $\frac{n(n+1)(2n+1)}{2n+1}$	c) $\frac{n(n+1)(2n+7)}{2n+7}$	d) $\frac{n(n+1)(2n+9)}{(2n+9)}$								
6	6	6	6								
597. If the sum of first	p terms, first q terms and first r	terms of an A.P. be x, y and z	respectively. Then,								
$\frac{n}{p}(q-r) + \frac{q}{q}(r-r)$	$p) + \frac{1}{r}(p-q)$ is										
a) 0	b) 2	c) nar	$d) \frac{8 xyz}{2}$								
			u) pqr								
598. If 1, $\log_9(3^{1-x} + 2)$	2), $\log_3(4.3^x - 1)$ are in A.P., the	n x equals									
a) log ₃ 4	b) 1 – log ₃ 4	c) $1 - \log_4 3$	d) log ₄ 3								
599. If the AM and GM	of roots of a quadratic equation	s are 8 and 5 respectively, the	n the quadratic equation								
will be											
a) $x^2 - 16x - 25$	$= 0 b) x^2 - 8x + 5 = 0$	c) $x^2 - 16x + 25 = 0$	d) $x^2 + 16x - 25 = 0$								
^{600.} The sum of the f	irst <i>n</i> terms of the series $\frac{1}{\sqrt{2}+\sqrt{2}}$	$\frac{1}{\sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{8}} + \frac{1}{\sqrt{8} + \sqrt{11}} + \dots$ is									
	, <u> </u>	· · · ·									

a)
$$\frac{1}{3}(\sqrt{3n+2} - \sqrt{2})$$
 b) $\sqrt{3n+2} - \sqrt{2}$
c) $\sqrt{3n+2} + \sqrt{2}$ d) $\frac{1}{3}(\sqrt{2} - \sqrt{3n+2})$
601. $1 + \log_2 2 + \frac{(\log_2 2)^2}{21} + \frac{(\log_2 2)^2}{31} + \cdots$ is equal to
a) 2 b) $\frac{1}{2}$ c) $\log_e 3$ d) None of these
602. $x^{1/2}, x^{1/4}, x^{1/8}, x^{1/4}$ cut is equal to
a) 0 b) 1 c) x d) ∞
603. If $\frac{1}{2n}, \frac{1}{n+4}, \frac{1}{n+4}$ are in AP, then
a) a, b, c are in AP. b) a^2, b^2, c^2 are in A.P. c) $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P. d) None of these
604. If a, b, c are in A.P. b) a^2, b^2, c^2 are in A.P. c) $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P. d) None of these
605. The coefficient of x^n in the expansion of $(1 + \frac{x^2}{21} + \frac{x^4}{1} + \cdots)^2$, when n is odd, is
a) $\frac{2n}{n!}$ b) $\frac{22n}{(2n)!}$ c) 0 d) $\frac{2^{2n}}{n!}$
606. If $A_1, A_2; G_1, G_2$ and H_1, H_2 be two AM's, GM's and HM's between two quantities, then the value of
 $\frac{G_1G_2}{H_2}, \frac{1}{h+4}, \frac{1}{2}$ b) $\frac{A_1 - A_2}{H_1 + H_2}$ c) $\frac{A_1 + A_2}{H_1 - H_2}$ d) $\frac{A_1 - A_2}{H_1 - H_2}$
607. $\frac{1}{3!} + \frac{2}{s!} + \frac{2}{s!} + \cdots$ is equal to
a) $\frac{e^{-1}}{2}$ b) e c) $\frac{e}{4}$ d) $\frac{e}{6}$
608. The sum of all odd numbers between 1 and 1000 which are divisible by 3, is
a) 83660 d) None of the above
609. The sum of the series
 $\frac{1}{1+(x+2)^4} + \frac{1}{1+(x^2+2)^4} + \frac{1}{(x^2+4)^4} + \cdots$ to n terms is
 $\frac{1}{n}, \frac{n(n^2+1)}{n^2+n+1}$ b) $\frac{n(n+1)}{2(n^2+n+1)}$ c) $\frac{n(n^2-1)}{2(n^2+n+1)}$ d) None of these
a) 17 b) 33 c) 50 d) 147
611. The sum of the series
 $\frac{3}{17} + \frac{2}{10} + \frac{2}{18} + \frac{2}{18} + \frac{2}{18} + \cdots$ to ∞ equals
a) e b) $2e$ c) $2e - 5$ d) None of these
613. (666...6)² + (888...8) is equal to
a) $\frac{4}{9}(10^n - 1)$ b) $\frac{4}{9}(10^{2n} - 1)$ c) $\frac{4}{9}(10^n - 1)^2$ d) None of these
614. The sum to n terms of the infinite series $1.3^2 + 2.5^2 + 3.7^2 + \dots \infty$ is
a) $\frac{n}{n} (n + 1)(6n^2 + 14n + 7)$ b) $\frac{n}{0} (n + 1)(2n + 1)(3n + 1)$
c) $4n^3 + 4n^2 + n$ d) None of the above

615. If $S = \sum_{n=2}^{\infty} {}^{n}C_{2} \frac{3^{n-2}}{n!}$, then S equals b) $\frac{1}{2}e^{3}$ c) $e^{-3/2}$ a) $e^{3/2}$ d) e^{-3} 616. A G.P. consists of an even number of terms. If terms sum of all the terms is 5 times the sum of the terms occupying odd places, the common ration will be equal to d) 5 a) 2 b) 3 c) 4 617. If S be the sum, P be the product and R be the sum of the reciprocals of n terms of a GP, then P^2 is equal to a) $\left(\frac{S}{D}\right)^n$ c) $\left(\frac{R}{S}\right)^n$ b) $\frac{S}{R}$ d) $\frac{R}{c}$ 618. If the ratio of AM between two positive real numbers *a* and *b* to their HM is *m* : *n*, then *a*: *b* is equal to a) $\frac{\sqrt{(m-n)} + \sqrt{n}}{\sqrt{m-n} - \sqrt{n}}$ b) $\frac{\sqrt{n} + \sqrt{m-n}}{\sqrt{n} - \sqrt{m-n}}$ c) $\frac{\sqrt{m} + \sqrt{m-n}}{\sqrt{m} - \sqrt{m-n}}$ d) $\frac{\sqrt{(m-n)} + \sqrt{m}}{\sqrt{m-n} - \sqrt{m}}$ 619. If |x| < 1, then the sum of the series $1 + 2x + 3x^2 + 4x^3 + ... \infty$ will be d) $\frac{1}{(1-r)^2}$ c) $\frac{1}{1+r^2}$ a) $\frac{1}{1-r}$ b) $\frac{1}{1+r}$ 620. The product of three geometric means between 4 and $\frac{1}{4}$ will be b) 2 d) 1 621. If A_1, A_2 ; G_1, G_2 and H_1, H_2 be two AM's, GM's and HM's is between two quantities, then the value of $\frac{G_1G_2}{H_1H_2}$ is b) $\frac{A_1 - A_2}{H_1 + H_2}$ c) $\frac{A_1 + A_2}{H_1 - H_2}$ d) $\frac{A_1 - A_2}{H_1 - H_2}$ a) $\frac{A_1 + A_2}{H_1 + H_2}$ 622. The value of $\frac{1}{2!} + \frac{2}{3!} + \ldots + \frac{999}{1000!}$ is equal to c) <u>999! – 1</u> a) $\frac{1000! - 1}{1000!}$ b) $\frac{1000! + 1}{1000!}$ d) $\frac{999! + 1}{000!}$ 623. If it is given that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots$ to $\infty = \frac{\pi^4}{90}$, then the value of $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$ to ∞ is equal to d) None of these a) $\frac{\pi^4}{96}$ b) $\frac{\pi^4}{4\Gamma}$ c) $\frac{89\pi^4}{00}$ 624. If $\frac{\log a}{3} = \frac{\log b}{4} = \frac{\log c}{5}$, then *ca* equals b) *b*² c) 8b d) 4b 625. If a, b, c are in AP, b - a, c - b and a are in GP, then a: b: c is b) 1: 3: 5 a) 1:2:3 c) 2:3:4 d) 1:2:4 626. If the (p + q)th term of a geometric series is *m* and the (p - q)th term is *n*, then the *p*th term is a) $(mn)^{1/2}$ b) *mn* c) m + nd) *m* − *n* 627. If $\frac{1}{b-c}$, $\frac{1}{c-a}$, $\frac{1}{a-b}$ be consecutive terms of an AP, then $(b-c)^2$, $(c-a)^2$, $(a-b)^2$ will be in b) AP c) HP d) None of these 628. $2 \log x - \log(x + 1) - \log(x - 1)$ is equal to a) $x^2 + \frac{1}{2}x^4 + \frac{1}{2}x^6 + \cdots$ b) $\frac{1}{x^2} + \frac{1}{2x^4} + \frac{1}{2x^6} + \cdots$ c) $-\left\{\frac{1}{x^2} + \frac{1}{2x^4} + \frac{1}{3x^6} \dots\right\}$ d) $-\frac{1}{n}(\omega^n + \omega^{2n})$ 629. If $\log_3 \left\{ \log_6 \left(\frac{x^2 + x}{x - 1} \right) \right\} = 0$ then x =a) -1 b) 1 c) 3 d) 4

630	The sum to infinity of the	series $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \cdots$,	is									
	$\frac{16}{10}$	$h)\frac{11}{2}$	$(1)\frac{35}{35}$	$d) = \frac{8}{3}$								
	^a) <u>35</u>	<u>8</u>	$\frac{16}{16}$	<u><u> 6</u></u>								
631	Let $a_1, a_2,, a_{10}$ be in AP	and $h_1, h_2,, h_{10}$ be in HP.	If $a_1 = h_1 = 2$ and $a_{10} = h_1$	$a_{10} = 3$ then $a_4 h_7$ is								
(22	a) 2 $a^{5x} + a^{x}$	b) 3	c) 5	d) 6								
032	" If $\frac{e^{3x}}{e^{3x}}$ is expand in a series of ascending powers of x and n is an odd natural number, then the coefficient of x^n , is											
	2^n	2 ^{<i>n</i>+1}	2^{2n}	d) None of these								
	a) $\frac{2}{n!}$	b) $\frac{2}{(2n)!}$	c) $\frac{2}{(2n)!}$	a) None of these								
633	If $\log_{10} x = y$, then \log_{10^3}	x^2 equals	2									
	a) $\frac{1}{3}y$	b) $\frac{2}{3}y$	c) $\frac{3}{2}y$	d) 3 y								
634	If $a, a_1, a_2, \dots, a_{2n}, b$ are	in arithmetic progression	n and $a, g_1, g_2, \dots, g_{2n}, b$ a	are in geometric								
	progression and h is the harmonic mean of a and b , then											
	$\frac{a_1 + a_{2n}}{g_1 g_{2n}} + \frac{a_2 + a_{2n-1}}{g_2 g_{2n-1}} + \ldots + \frac{a_n + a_{n+1}}{g_n g_{n+1}}$ is equal to											
	a) 2 <i>nh</i>	b) $\frac{n}{h}$	c) nh	d) $\frac{2n}{h}$								
635	The sets S_1, S_2, S_3 are	given by $S_1 = \left\{\frac{2}{1}\right\}$, $S_2 = \left\{\frac{2}{1}\right\}$	$\left[\frac{3}{2}, \frac{5}{2}\right], S_3 = \left\{\frac{4}{3}, \frac{7}{3}, \frac{10}{3}\right\}, S_4 =$	$=\left\{\frac{5}{4},\frac{9}{4},\frac{13}{4},\frac{17}{4}\right\},$ Then,								
	the sum of the numbers	in the set S_{25} is										
	a) 320	b) 322	c) 324	d) 326								
636	If S_1, S_2, S_3 be the sum of n	n, 2 n, 3 n terms respectivel	y of an A.P., then									
	a) $S_3 = S_1 + S_2$	b) $S_3 = 2(S_1 + S_2)$	c) $S_3 = 3(S_2 - S_1)$	d) None of these								
637	$^{537.}$ If $\alpha \epsilon \left(0, \frac{\pi}{2}\right)$, then $\sqrt{x^2 + x} + \frac{\tan^2 \alpha}{\sqrt{x^2 + x}}$ is always greater than or equal to											
	a) 2 tan α	b) 1	c) 2	d) $\sec^2 \alpha$								
638	638. The value of $\log_3 e - \log_9 e + \log_{27} e - \log_{81} e +$ ad. inf., is											
	a) log ₂ 3	b) log ₃ 2	c) log ₁₀ <i>e</i>	d) log _e 2								
639	39. If <i>a</i> , <i>b</i> , <i>c</i> be in arithmetic progression, then the value of $(a + 2b - c)(2b + c - a)(a + 2b + c)$ is											
(10	a) 16 <i>abc</i>	b) 4 abc $(1)^{3}$	c) 8 abc $1-113$ (1) (1)	d) 3 <i>abc</i>								
640	. For any odd integer <i>n</i> ≥ 1	$(n^{3} - (n - 1)^{3} + + (-1)^{n})^{n}$	¹	1								
	a) $\frac{1}{2}(n-1)^2(2n-1)$	b) $\frac{1}{4}(n-1)^2(2n-1)$	c) $\frac{1}{2}(n+1)^2(2n-1)$	d) $\frac{1}{4}(n+1)^2(2n-1)$								
641	The coefficients of x^6 in the	ne expansion of										
	$\log\{(1+x)^{1+x}(1-x)^{1-x}\}$	}, is	1	1								
	a) $\frac{1}{15}$	b) $\frac{1}{20}$	c) $\frac{1}{10}$	d) $\frac{1}{4\Sigma}$								
642	An infinite GP has first ter	x and sum 5, then x belo	10 ongs to	45								
012	a) $x < -10$	b) $-10 < x < 0$	c) $0 < x < 10$	d) <i>x</i> > 10								
643	. In a GP the sum of three n	umbers is 14, if 1 is added	to first two numbers and su	ubtracted from third								
	number the series become	es AP, then the greatest nur	mber is									
	a) 8	b) 4	c) 24	d) 16								
644	If a, b, c are in A.P. and a^2 ,	, b^2 , c^2 are in H.P., then										
	a) $a = b = c$	b) $2 b = 3 a + c$	c) $b^2 = \sqrt{(ac/8)}$	d) None of these								
645	. If the sum of <i>n</i> terms of a .	AP is $nA + n^2B$, where A ar	nd <i>B</i> are constants, then its	common difference will be								
	a) <i>A</i> – <i>B</i>	b) <i>A</i> + <i>B</i>	c) 2 <i>A</i>	d) 2 <i>B</i>								
646	The coefficient of x^3 in t	the expansion of 3^x is										
	a) $\frac{3^3}{-}$	b) $\frac{(\log 3)^3}{(\log 3)^3}$	c) $\frac{\log(3)^3}{\log(3)^3}$	d) $\frac{(\log 3)^3}{(\log 3)^3}$								
	[^] 6	3	6	<i>6</i>								

647. If
$$a^2, b^2, c^2$$
 are in AP, then which of the following is also an AP?
a) $\sin A$, $\sin B$, $\sin C$ b) $\tan A$, $\tan B$, $\tan C$ c) $\cot A$, $\cot B$, $\cot C$ d) None of these
648. If $\frac{1}{\log_R +} + \frac{1}{\log_R + 2} \times n$, then the greatest integral value of x is
a) 2 b) 3 c) π d) None of these
649. $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)\dots(n+k)}$ is equal to
a) $\frac{1}{(k-1)(k-1)!}$ b) $\frac{1}{kk!}$ c) $\frac{1}{(k-1)k!}$ d) $\frac{1}{k!}$
650. The coefficient of xⁿ in the series
 $1 + \frac{e+x}{2!} + \frac{(e+k)^2}{3!} + \cdots$, is
a) $\frac{n}{n!}$ b) $e^k \frac{n}{n!}$ c) $e^k \frac{n}{n!}$ d) $\frac{e^k a^n}{n!}$
651. If the angles of a quadrilateral are in AP, whose common difference is 10°, then the angles of the
quadrilateral are
a) 65° , 85° , 95° , 105° b) 75° , 85° , 95° , 105° c) 65° , 75° , 85° , 95° d) 65° , 95° , 105° , 115°
652. The sum to a terms of the series $(n^2 - 1^2) + 2(n^2 - 2^2) + 3(n^2 - 3^2) + \cdots$, is
a) $\frac{n^2}{4}(n^2 - 1)$ b) $\frac{n}{4}(n + 1)^2$ c) 0 d) $2n(n^2 - 1)$
653. The value of $\frac{3+4e_143}{2+\frac{1}{2!}\log(\frac{n}{4!})+\frac{1}{2!}\log(\frac{1}{4!})+\frac{1}{2!}(\frac{1}{4!})+\frac{1}{2!}\log(\frac{1}{4!})+\frac{1}{2!}(\frac{1}{4!})+\frac{1}{4!}($

c) $1 + \frac{(2x)^2}{221} + \frac{2x^4}{41} + \dots \infty$ d) $1 + \frac{(2x)^2}{221} + \frac{(2x)^4}{241} + \dots \infty$ 662. If x, y, z are pth, qth and rth terms respectively, of and A.P. and also of G.P., then $x^{y-z}y^{z-x}z^{x-y}$, is equal to c) 1 a) xyz d) None of these b) 0 663. If $3 + \log_5 x = 2 \log_{25} y$, then *x* equals to d) $3 - \frac{y^2}{2r}$ c) $\frac{y^2}{625}$ a) $\frac{y}{125}$ b) $\frac{y}{25}$ 664. If a_1 , a_2 , a_3 , a_4 , a_5 and a_6 are six arithmetic means between 3 and 31, then $a_6 - a_5$ and $a_1 + a_6$ are respectively equals to a) 5 and 34 b) 4 and 35 c) 4 and 34 d) 4 and 36 665. If A_1, A_2 are two A · M's between a and b and G_1, G_2 are two GM's between a and b then $\frac{A_1 + A_2}{G_1 + G_2}$ is a) $\frac{a+b}{ab}$ d) None of these c) $\frac{a+b}{a-b}$ b) $\frac{a+b}{2}$ 666. If $\log_5(\log_2 x) = 0$, then the values of x is a) 32 c) 625 d) 125 b) 125 667. The correct statement is a) $\frac{0.5 + 0.55 + 0.555 + ... \text{ to } n \text{ terms} = \frac{5n}{9} - \frac{5}{81}(1 - b) 8 + 88 + 888 + ... + \text{ to } n \text{ terms} = \frac{80}{81}(10^n - 1) - \frac{8n}{9}$ $1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + \dots$ to *n* terms d) All are correct $\binom{c}{n} = \frac{n(n+1)^2(n+2)}{12}$ 668. If $\log(1 - x + x^2) = a_1x + a_2x^2 + a_3x^3 + \cdots$, and *n* is not a multiple of 3 then a_n is equal to b) $\frac{(-1)^n}{n}$ c) $\frac{(-1)^{n-1}}{n}$ d) $\frac{(-1)^{n-1}}{n} (\omega^n + \omega^{2n})$ a) $\frac{1}{n}$

9.SEQUENCES AND SERIES

						: ANS	W	ER K	EY						
1)	а	2)	С	3)	d	4)	b	189)	b	190)	а	191)	b	192)	С
5)	С	6)	d	7)	С	8)	С	193)	С	194)	d	195)	d	196)	d
9)	С	10)	С	11)	а	12)	С	197)	b	198)	а	199)	b	200)	а
13)	d	14)	b	15)	d	16)	b	201)	С	202)	d	203)	С	204)	а
17)	d	18)	С	19)	а	20)	а	205)	С	206)	b	207)	а	208)	С
21)	d	22)	d	23)	а	24)	d	209)	а	210)	b	211)	а	212)	а
25)	С	26)	b	27)	d	28)	d	213)	а	214)	b	215)	d	216)	b
29)	а	30)	С	31)	b	32)	С	217)	а	218)	С	219)	а	220)	С
33)	b	34)	а	35)	b	36)	а	221)	С	222)	b	223)	d	224)	С
37)	а	38)	d	39)	b	40)	b	225)	С	226)	С	227)	b	228)	С
41)	С	42)	b	43)	b	44)	С	229)	b	230)	b	231)	b	232)	b
45)	b	46)	d	47)	С	48)	С	233)	b	234)	b	235)	С	236)	d
49)	b	50)	d	51)	а	52)	b	237)	С	238)	а	239)	а	240)	b
53)	С	54)	С	55)	С	56)	b	241)	а	242)	С	243)	а	244)	С
57)	С	58)	b	59)	а	60)	С	245)	С	246)	С	247)	b	248)	d
61)	С	62)	а	63)	b	64)	С	249)	С	250)	С	251)	С	252)	а
65)	С	66)	а	67)	а	68)	С	253)	С	254)	d	255)	С	256)	b
69)	d	70)	b	71)	b	72)	а	257)	b	258)	b	259)	С	260)	b
73)	С	74)	а	75)	С	76)	а	261)	а	262)	b	263)	а	264)	b
77)	d	78)	d	79)	b	80)	а	265)	b	266)	а	267)	b	268)	а
81)	С	82)	b	83)	С	84)	b	269)	а	270)	d	271)	d	272)	С
85)	С	86)	С	87)	С	88)	d	273)	а	274)	d	275)	b	276)	b
89)	а	90)	С	91)	b	92)	а	277)	d	278)	а	279)	а	280)	С
93)	а	94)	а	95)	а	96)	С	281)	а	282)	b	283)	b	284)	b
97)	С	98)	С	99)	а	100)	d	285)	С	286)	b	287)	С	288)	С
101)	d	102)	b	103)	b	104)	b	289)	а	290)	d	291)	С	292)	b
105)	С	106)	С	107)	b	108)	С	293)	С	294)	а	295)	b	296)	С
109)	d	110)	С	111)	С	112)	а	297)	d	298)	а	299)	С	300)	b
113)	b	114)	С	115)	С	116)	b	301)	С	302)	а	303)	С	304)	d
117)	а	118)	b	119)	а	120)	а	305)	а	306)	b	307)	С	308)	b
121)	d	122)	d	123)	С	124)	С	309)	b	310)	а	311)	b	312)	а
125)	а	126)	b	127)	b	128)	b	313)	b	314)	С	315)	b	316)	а
129)	а	130)	С	131)	d	132)	d	317)	d	318)	С	319)	b	320)	d
133)	b	134)	b	135)	С	136)	b	321)	b	322)	b	323)	а	324)	d
137)	b	138)	С	139)	b	140)	С	325)	b	326)	d	327)	а	328)	С
141)	а	142)	b	143)	С	144)	b	329)	a	330)	С	331)	С	332)	a
145)	a	146)	a	147)	b	148)	С	333)	b	334)	b	335)	d	336)	b
149)	b	150)	b	151)	a	152)	С	337)	С	338)	b	339)	d	340)	b
153)	b	154)	a	155)	b	156)	b	341)	d	342)	b	343)	b	344)	b
157)	а	158)	b	159)	С	160)	С	345)	С	346)	d	347)	b	348)	a
161)	С	162)	d	163)	C	164)	a	349)	С	350)	а	351)	а	352)	b
165)	C	166)	b	167)	b	168)	b	353)	c	354)	c	355)	С	356)	d
169)	b	170)	b	171)	C ,	172)	b	357)	d	358)	d	359)	а	360)	d
173)	b	174)	b	175)	d	176)	C ,	361)	C ,	362)	C ,	363)	С	364)	а
177)	а	178)	С	179)	С	180)	b	365)	b	366)	b	367)	С	368)	С
181)	a	182)	а	183)	С	184)	d	369)	С	370)	b	371)	a	372)	a
185)	b	186)	а	187)	С	188)	b	373)	С	374)	d	375)	b	376)	b

377)	d	378)	а	379)	С	380) a	581)	а	582)	d	583)	а	584)	а
381)	а	382)	С	383)	d	384) b	585)	b	586)	d	587)	b	588)	а
385)	b	386)	С	387)	d	388) b	589)	с	590)	b	591)	d	592)	С
389)	С	390)	d	391)	d	392) b	593)	d	594)	С	595)	а	596)	С
393)	b	394)	а	395)	а	396) c	597)	а	598)	b	599)	С	600)	а
397)	b	398)	С	399)	a	400) a	601)	а	602)	c	603)	h	604)	d
401)	b	402)	c	403)	a	404) a	605)	c C	606)	a	607)	a	608)	a
405)	c	406)	d	407)	d	408) a	609)	h	610)	h	611)	c	612)	a
409)	d	410)	d	411)	h	412) a	613)	h	614)	2	615)	h	616)	c
413)	h	414)	c	415)	c	416) a	617)	2	618)	c	619)	d	620)	d
417)	d	419)	L h	413) 410)	c	$\frac{410}{420}$ a	621)	а 2	622)	נ ה	622)	u n	624)	h
421)	u	422)	0	422)	c	$\frac{420}{424}$ c	625)	a 2	626)	a	627)	a h	629)	b b
421)	L d	422)	a	423)	L n	424) t	620)	a	620)	a	621)	d d	622)	d
423)	u	420)	L h	427)	a	420J D	622)	L h	624)	L d	(25) (25)	u d	(32)	u
429J	C	430J 424)	D	431J 425)	a	432) U	033J	D	034J 620)	u h	(20)	u	030J 640)	C d
4335	C L	434J 420)	C L	435)	a	430J C	037	a	030J	D	(42)	a	040J	u
437	D	438)	D	439)	a L	440) D	641)	a	642)	C	643J	а	644J	а
441)	C	44Z)	a	443J	D	444) D	645)	a	646J	a	647)	C	648J	а
445)	b	446)	C	447)	а	448) a	649)	С	650)	С	651)	b	652)	а
449)	a	450)	b	451)	C	452) c	653)	a	654)	C	655)	а	656)	С
453)	d	454)	С	455)	b	456) d	657)	d	658)	b	659)	а	660)	С
457)	d	458)	а	459)	а	460) a	661)	d	662)	С	663)	a	664)	С
461)	d	462)	а	463)	а	464) b	665)	а	666)	а	667)	d	668)	b
465)	d	466)	С	467)	b	468) a								
469)	b	470)	b	471)	b	472) d								
473)	а	474)	b	475)	С	476) a								
477)	b	478)	d	479)	а	480) a								
481)	а	482)	а	483)	а	484) c								
485)	С	486)	а	487)	С	488) c								
489)	b	490)	а	491)	С	492) d								
493)	b	494)	d	495)	b	496) a								
497)	С	498)	С	499)	а	500) a								
501)	b	502)	С	503)	С	504) b								
505)	а	506)	С	507)	а	508) b								
509)	С	510)	а	511)	С	512) a								
513)	С	514)	а	515)	С	516) a								
517)	b	518)	b	519)	b	520) b								
521)	С	522)	b	523)	а	524) b								
525)	b	526)	b	527)	b	528) a								
529)	d	530)	С	531)	С	532) c								
533)	с	534)	d	535)	b	536) b								
537)	с	538)	b	539)	а	540) a								
541)	а	542)	С	543)	а	544) c								
545)	а	546)	d	547)	d	548) a								
549)	C	550)	С	551)	С	552) d								
553)	a	554)	d	555)	d	556) a								
557)	ĥ	558)	h	559)	d	560) h								
561)	c	562)	ĥ	563)	c	564) h								
565)	b	566)	c	567)	d	568) c								
569)	2	570)	a	571)	h	572) c								
572)	d	574)	d	575)	C C	576) a								
575J 577)	u C	579)	u 2	575) 570)	с Л	5705 a 5801 h								
5775	L	5705	a	5775	u	300J D								

: HINTS AND SOLUTIONS :

6

7

8

9

1 (a) We have, $7\log\left(\frac{16}{15}\right) + 5\log\left(\frac{25}{24}\right) + 3\log\frac{81}{80}$ $= \log\left\{ \left(\frac{16}{15}\right)^7 \times \left(\frac{25}{24}\right)^5 \times \left(\frac{81}{80}\right)^3 \right\}$ $= \log \left\{ \frac{2^{28}}{3^7 \times 5^7} \times \frac{5^{10}}{2^{15} \times 3^5} \times \frac{3^{12}}{2^{12} \times 5^3} \right\} = \log 2$ 2 (c) Let *a* be the first term and *r* be the common ration. We have, a + ar = 1(i) and, $ar^{n-1} = 2(ar^n + ar^{n+1} + \cdots)$ $\Rightarrow ar^{n-1} = 2\frac{ar^n}{1-r}$ $\Rightarrow r^{n-1} - r^n = 2r^n$ $\Rightarrow r^{n-1} = 3r^n$ $\Rightarrow 3r = 1 \Rightarrow r = 1/3$ Putting r = 1/3 in (i), we get a = 3/43 (d) We have, $\log_{8}[\log_{2}\{\log_{3}(x^{2} - 4x + 85)\}] = \frac{1}{3}$ $\Rightarrow \log_2 \{ \log_3(x^2 - 4x + 85) \} = 8^{1/3} = 2$ $\Rightarrow \log_3(x^2 - 4x + 85) = 2^2$ $\Rightarrow x^2 - 4x + 85 = 3^4$ $\Rightarrow x^2 - 4x + 4 = 0 \Rightarrow (x - 2)^2 = 0 \Rightarrow x = 2$ 4 (b) Since, $\Sigma n = \frac{1}{78}\Sigma n^3$ $\Rightarrow \frac{n(n+1)}{2} = \frac{1}{78} \times \frac{n^2(n+1)^2}{4}$ $\Rightarrow n^2 + n - 156 = 0$ $\Rightarrow (n+13)(n-12) = 0$ $\Rightarrow n = 12$ $[: n \neq -13]$ 5 (c) Since, *G* is the geometric mean between *a* and *b*. \therefore $G = (ab)^{1/2}$ and *n* geometric means G_1, G_2, \dots, G_n be inserted between *a* and *b*. \therefore $G_1 = ar^1, G_2 = ar^2, \dots, G_n = ar^n$ Now, $G_1 \cdot G_2 \cdot G_3 \dots G_n = a^n r^{1+2+\dots+n}$ $= a^n r^{n(n+1)/2}$ But $b = ar^{n+1} \Rightarrow r = \left(\frac{b}{r}\right)^{\frac{1}{n+1}}$ Therefore, the required product is

$$a^{n} \left(\frac{b}{a}\right)^{\left[\frac{1}{n+1}\right]^{\frac{n(1+1)}{2}}} = (ab)^{\frac{n}{2}}$$

$$= \left\{(ab)^{\frac{1}{2}}\right\}^{n} = G^{n}$$
(d)
Given that, sum of geometric series = 4 second
term = $\frac{3}{4}$
 $\Rightarrow \frac{a}{1-r} = 4, ar = \frac{3}{4} \Rightarrow r = \frac{3}{4a}$
 $\therefore \frac{a}{1-\frac{3}{4a}} = 4 \Rightarrow \frac{4a^{2}}{4a-3} = 4$
 $\Rightarrow (a-1)(a-3) = 0 \Rightarrow a = 1 \text{ or } 3$
When $a = 1, r = \frac{3}{4}$
When $a = 3, r = \frac{1}{4}$
(c)
Required sum
 $= \frac{1}{1-x} [(1-x) + (1-x^{2}) + (1-x^{3}) + ... \text{ up to } n$
therms]
 $= \frac{1}{1-x} [n - (x + x^{2} + x^{3} + ... \text{ upto } n \text{ terms})]$
 $= \frac{1}{1-x} \left[n - x \frac{(1-x^{n})}{1-x}\right]$
 $= \frac{n(1-x) - x(1-x^{n})}{(1-x)^{2}}$
(c)
Given, $T_{m} = n, T_{n} = m$ in HP, therefore the
corresponding AP of *m*th term and *n*th term is of
AP are $\frac{1}{n}$ and $\frac{1}{m}$ respectively.
Let *a* and *d* be the first and common difference of
an AP, then
 $a + (m-1)d = \frac{1}{n} \dots(i)$
 $a + (n-1)d = \frac{1}{m} \dots(i)$
On solving Eqs. (i) and (ii), we get
 $a = \frac{1}{mn}, d = \frac{1}{mn}$
Now, rth term of AP = $a + (r-1)d$
 $= \frac{1+r-1}{mn} = \frac{r}{mn}$
 \therefore rth term of HP is $\frac{mn}{r}$.
(c)

$$\frac{e^{7x} + e^{3x}}{e^{5x}} = e^{2x} + e^{-2x}$$

$$= \left[1 + \frac{2x}{1!} + \frac{(2x)^2}{2!} + \frac{(2x)^3}{3!} + \dots \infty\right]$$

$$+ \left[1 - \frac{2x}{1!} + \frac{(2x)^2}{2!} - \frac{(2x)^3}{3!} + \dots \infty\right]$$

$$\Rightarrow e^{2x} + e^{-2x} = 2 \left[1 + \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} + \dots \infty\right]$$
Hence, the constant term is 2.
10 (c)
We have,
 $2^{\log_3 7} - 7^{\log_3 2} = 7^{\log_3 2} - 7^{\log_3 2}$
 $= 0 \left[\because x^{\log_a y} = y^{\log_a x}\right]$
11 (a)
Let $\frac{1}{\sqrt{x} + \sqrt{y}}, \frac{1}{\sqrt{x} + \sqrt{x}}, \frac{1}{\sqrt{y} + \sqrt{x}}$ are in AP.
Then, $\frac{1}{\sqrt{x} + \sqrt{y}}, \frac{1}{\sqrt{x} + \sqrt{y}} = \frac{1}{\sqrt{y} + \sqrt{x}}, -\frac{1}{\sqrt{x} + \sqrt{x}}$
 $\Rightarrow y - z = x - y \Rightarrow y = \frac{z + x}{2}$
 $\Rightarrow x, y, z$ are in AP.
Hence, $\frac{1}{\sqrt{x} + \sqrt{y}}, \frac{1}{\sqrt{x} + \sqrt{x}}, \frac{1}{\sqrt{y} + \sqrt{z}}$ are in AP.
12 (c)
Since, $(2x + 2)^2 = x \times (3x + 3) [\because b^2 = ac]$
 $\Rightarrow x^2 + 5x + 4 = 0 \Rightarrow x = \frac{-5 \pm \sqrt{25 - 16}}{2}$
 $\Rightarrow x = -\frac{6}{2} = -4$ and $x = -\frac{2}{2} = -1$
At $x = -1$, second terms become zero, so we
neglect that.
At $x = -4, a = -4, r = \frac{3}{2}$
 $\therefore T_4 = -4 \times (\frac{3}{2})^3 = -\frac{27}{2} = -13.5$
13 (d)
 $\frac{1}{2}(\frac{1}{3} + \frac{1}{4}) - \frac{1}{4}(\frac{1}{32} + \frac{1}{4^2}) + \frac{1}{6}(\frac{1}{3^3} + \frac{1}{4^3}) - \cdots$
 $= \frac{1}{2}[\frac{1}{3} - \frac{1}{2}(\frac{1}{3^2}) + \frac{1}{3}(\frac{1}{3^3}) - \cdots]$
 $+ \frac{1}{2}[\frac{1}{4} - \frac{1}{2}(\frac{1}{4^2}) + \frac{1}{3}(\frac{1}{4^3}) - \cdots]$
 $= \frac{1}{2}[\log(1 + \frac{1}{3})] + \frac{1}{2}[\log(1 + \frac{1}{4})]$
 $= \frac{1}{2}[\log(\frac{4}{3}) \times (\frac{5}{4})]$
 $= \frac{1}{2}\log(\frac{5}{3})$
14 (b)

We have,

$$2 b = a + c, c^{2} = bd \text{ and } d = \frac{2 ce}{c + e}$$

$$\therefore c^{2} = \left(\frac{a + c}{2}\right)d \text{ and } d = \frac{2 ce}{c + e}$$

$$\Rightarrow c^{2} = \left(\frac{a + c}{2}\right)\left(\frac{2 ce}{c + e}\right)$$

$$\Rightarrow c^{2} = ae \Rightarrow a, c, e \text{ are in G.P.}$$

We have, $\log_{y} x = \log_{z} y = \log_{x} z = \lambda \text{ (Say)}$ $\Rightarrow x = y^{\lambda}, y = z^{\lambda}, z = x^{\lambda}$ $\Rightarrow xyz = (xyz)^{\lambda} \Rightarrow (xyz)^{\lambda-1} = 1 = (xyz)^{0} \Rightarrow \lambda$ = 1 $\therefore x = y = z$

16 **(b)**

Let the three numbers in H.P. be *a*, *b*, *c*. Then, $b = \frac{2ac}{a+c}$ Numbers obtained by subtracting $\frac{b}{2}$ (half of the middle number) are

$$a - \frac{b}{2}, b - \frac{b}{2}, c - \frac{b}{2}$$

or,
$$a - \frac{ac}{a+c} \frac{ac}{a+c}, c - \frac{ac}{a+c}$$

or,
$$\frac{a^2}{a+c}, \frac{ac}{a+c}, \frac{c^2}{a+c}$$

clearly, these numbers are in G.P.

19 (a)

$$\therefore \frac{(-1)^{r}}{{}^{n}C_{r}} = \frac{n+1}{n+2} \left(\frac{(-1)^{r}}{{}^{n+1}C_{r+1}} - \frac{(-1)^{r-1}}{{}^{n+1}C_{r}} \right)$$

$$\Rightarrow \sum_{r=0}^{n} a_{r} = \frac{n+1}{n+2} (1+(-1)^{n})$$

21

We have, $\log_5 64 = \log_5 2^6 = 6 \log_5 2 = \frac{6}{\log_2 5} = \frac{6}{\log_2 (\frac{10}{2})}$ $= \frac{6}{\log_2 10 - \log_2 2} = \frac{6}{\frac{1}{1} - 1} = \frac{6}{\frac{1}{1} - 1}$

$$= \frac{6 \times 0.3010}{1 - 0.3010}$$

$$= \frac{1.8060}{0.699} = \frac{1806}{699} = \frac{602}{233}$$
(d)
Since, *a*, *b*, *c* are in AP.
 \therefore *b* = *a* + *d*, *c* = *a* + 2*d*,
Where *d* is a common difference, *d* > 0

Again, since a^2 , b^2 , c^2 are in GP. $\therefore a^2$, $(a + d)^2$, $(a + 2d)^2$ are in GP $\Rightarrow (a + d)^4 = a^2(a + 2d)^2$

or $(a + d)^2 = \pm a(a + 2d)$ $\Rightarrow a^2 + d^2 + 2ad = \pm (a^2 + 2ad)$ Taking (+) sign, d = 0 (not possible as a < b < c) Taking (–)sign $2a^2 + 4ad + d^2 = 0$ $\Rightarrow 2a^2 + 4a\left(\frac{1}{2} - a\right) + \left(\frac{1}{2} - a\right)^2 = 0$ (∴ a + $b+c=32 \Rightarrow a+d=12$ $\Rightarrow 4a^2 - 4a - 1 = 0$ $\therefore a = \frac{1}{2} \pm \frac{1}{\sqrt{2}}$ Here, $d = \frac{1}{2} - a > 0$ So, $a < \frac{1}{2}$ Hence, $a = \frac{1}{2} - \frac{1}{\sqrt{2}}$ 22 (d) Required sum is $\{a + (a + d)\}(-d) + \{(a + 2d) + (a + 3d)(-d)\}\$ + … $+ \{a + (2n - 2)d + a\}$ $+(2n-1)d(-d)+(a+2nd)^{2}$ $= -d[a + (a + d) + (a + 2) + \cdots$ $+ \{a + (2n - 1) d\} + (a + 2nd)^2$ $= -d \times \frac{2n}{2} \{a + a + (2n - 1) d\} + (a + 2nd)^2$ $= a^{2} + 2nad + n(2n + 1) d^{2}$ 23 (a) Since, $a_1, a_2, a_3, \dots, a_n$ form an AP. $\therefore a_2 - a_1 = a_4 - a_3 = \ldots = a_{2n} - a_{2n-1} = d$ Let $S = a_1^2 - a_2^2 + a_3^2 - a_4^2 + \ldots + a_{2n-1}^2 - a_{2n}^2$ $= (a_1 - a_2)(a_1 + a_2)$ $+(a_3-a_4)(a_3+a_4)+\ldots+(a_{2n-1})$ $(a_{2n-1} + a_{2n})(a_{2n-1} + a_{2n})$ $= -d(a_1 + a_2 + \dots + a_{2n}) = -d\left(\frac{2n}{2}(a_1 + a_{2n})\right)$...(i) Also, we know $a_{2n} = a_1 + (2n-1)d$ $\Rightarrow d = \frac{a_{2n} - a}{2n - 1} \Rightarrow -d = \frac{a_1 - a_{2n}}{2n - 1}$ On putting the value of d in Eq, (i), we get $S = \frac{n(a_1 - a_{2n})(a_1 + a_{2n})}{2n - 1} = \frac{n}{2n - 1}(a_1^2 - a_{2n}^2)$ 24 (d) a, b, c, d are in AP. $\Rightarrow \frac{a}{abcd}, \frac{b}{abcd}, \frac{c}{abcd}, \frac{d}{abcd} \text{ are in AP.}$ $\Rightarrow \frac{1}{bcd}, \frac{1}{acd}, \frac{1}{abd}, \frac{1}{abc} \text{ are in AP.}$ \Rightarrow bcd, acd, abd, abc are in HP. : In reverse order *abc*, *abd*, *acd*, *bcd* are in HP. 26 **(b)** It is given that

a + x, b + x, c + x are in HP $\Rightarrow b + x = \frac{2(a+x)(c+x)}{(a+x) + (c+x)}$ $\Rightarrow (b+x)(a+c+2x) = 2(a+x)(c+x)$ $\Rightarrow (a + c + 2b)x + 2x^2 + ab + bc$ $= 2 ac + 2 x(a + c) + 2 x^{2}$ $\Rightarrow x(c + a - 2b) = bc + ab - 2ac$ $\Rightarrow x(c + a - 2b) = bc + ab - 2b^2$ Γ :: a, b, c are in GP $\Rightarrow x(c + a - 2b) = b(c + a - 2b)$ $\Rightarrow x = b$, if $c + a - 2b \neq 0$ If c + a - 2b = 0, then a, b, c are in A.P. as well as in G.P. Therefore, a = b = cBut, we have assumed that *a*, *b*, *c* are distinct 27 (d) $\frac{a+2}{2} = \sqrt{2a} + 1$ $\Rightarrow \frac{a}{2} = \sqrt{2a}$ $\Rightarrow \frac{a^2}{A} = 2a$ $\Rightarrow a = 8$ 28 (d) This progression is an arithmetico-geometric series. $\therefore S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$ $=\frac{1}{1-1/2}+\frac{2}{(1-1/2)^2}$ $=\frac{2}{1/2}+\frac{2}{1/4}$ = 4 + 8 = 1229 (a) $S = \sum_{r=1}^{10n} \left(\frac{8r}{4r^4 + 1} \right)$ $= 2 \sum_{r=1}^{1} \left(\frac{1}{2r^2 - 2r + 1} - \frac{1}{2r^2 + 2r + 1} \right)$ $=2\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{13}+\frac{1}{13}+\ldots+\frac{1}{481}-\frac{1}{545}\right)$ $= 2\left(1 - \frac{1}{545}\right) = \frac{1088}{545}$ 30 (c) Let the numbers be a - d, a, a + d. Then, it is given that $(a - s)^2$, a^2 , $(a + d)^2$ are in GP. $\Rightarrow a^4 = (a-d)^2(a+d)^2$ $\Rightarrow a^4 - 2 a^2 d^2 = 0 \Rightarrow d = 0, \pm \sqrt{2} a$

Hence, *d* has three values

1 **(b)**
Let
$$\frac{\sqrt{2}-1}{\sqrt{2}} = x$$
. Then,
 $\frac{\sqrt{2}-1}{\sqrt{2}} + \frac{3-2\sqrt{2}}{4} + \frac{5\sqrt{2}-7}{6\sqrt{2}} + \frac{17-12\sqrt{2}}{16}$
 $+ \cdots$ ad. inf.
 $= x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$
 $= -\log_e(1-x) = -\log_e\left(\frac{1}{\sqrt{2}}\right) = \log_e\sqrt{2}$

32 **(c)**

3

We have,

$$\frac{\log x}{a^{2} + ab + b^{2}} = \frac{\log y}{b^{2} + bc + c^{2}} = \frac{\log z}{c^{2} + ca + a^{2}}$$

= $\lambda(say)$
$$\Rightarrow \frac{(a - b) \log x}{a^{3} - b^{3}} = \frac{(b - c) \log y}{b^{3} - c^{3}} = \frac{(c - a) \log z}{c^{3} - a^{3}} = \lambda$$

$$\Rightarrow \frac{\log x^{a - b}}{a^{3} - b^{3}} = \frac{\log y^{b - c}}{b^{3} - c^{3}} = \frac{\log z^{c - a}}{c^{3} - a^{3}} = \lambda$$

$$\Rightarrow \log x^{a - b} = \lambda(a^{3} - b^{3}), \log y^{b - c}$$

$$= \lambda(b^{3} - c^{3}), \log z^{c - a}$$

$$= \lambda(c^{3} - a^{3})$$

$$\Rightarrow \log x^{a - b} + \log y^{b - c} + \log z^{c - a} = 0$$

$$\Rightarrow \log(x^{a - b} y^{b - c} z^{c - a}) = 0$$

$$\Rightarrow x^{a - b} y^{b - c} z^{c - a} = 1$$

33 **(b)**

We have,

$$S = \frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} - \frac{1}{4 \cdot 5} + \dots \infty$$

$$\Rightarrow S = \left(\frac{1}{1} - \frac{1}{2}\right) - \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) - \left(\frac{1}{4} - \frac{1}{5}\right) + \dots \infty$$

$$\Rightarrow S = 2\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots\right) - 1$$

$$\Rightarrow S = 2\log(1 + 1) - \log_e e = \log_e\left(\frac{4}{e}\right)$$

$$\therefore e^S = 4/e$$

34 (a)

$$T_{n} = (2n - 1)^{3}$$

$$= 8n^{3} - 1^{3} - 3.2n \cdot 1(2n - 1)$$

$$= 8n^{3} - 1 - 12n^{2} + 6n$$

$$= 8n^{3} - 12n^{2} + 6n - 1$$

$$\therefore S_{n} = \Sigma T_{n}$$

$$= 8\Sigma n^{3} - 12\Sigma n^{2} + 6\Sigma n - \Sigma 1$$

$$= 8 \cdot \left[\frac{n(n+1)}{2}\right]^{2} - 12 \cdot \frac{n(n+1)(2n+1)}{6} + 6 \frac{n(n+1)}{2} - n$$

$$= 2n^{2}(n+1)^{2} - 2n(n+1)(2n+1) + 3n(n+1) - n$$

$$= n(n+1)[2n(n+1) - 2(2n+1) + 3] - n$$

$$= n(n+1)[2n^{2} + 2n - 4n - 2 + 3] - n$$

$$= n(n+1)[2n^{2} - 2n + 1] - n$$

 $= n(n + 1) \cdot 2n(n - 1) + n(n + 1) - n$ $= 2n^2(n^2 - 1) + n^2$ $= n^2 (2n^2 - 1)$ 35 **(b)** Let the G.P. be *a*, ar, ar^2 , ..., where 0 < r < 1It is given that $a + ar + ar^2 + \dots = 3$ and $a^2 + a^2 r^2 + a^2 r^4 + a^2 r^4$... = 9/2 $\Rightarrow \frac{a}{1-r} = 3 \text{ and } \frac{a^2}{1-r^2} = \frac{9}{2}$ $\Rightarrow \frac{9(1-r)^2}{1-r^2} = \frac{9}{2} \Rightarrow \frac{1-r}{1+r} = \frac{1}{2} \Rightarrow r = \frac{1}{3}$ Putting $r = \frac{1}{3}$ in $\frac{a}{1-r} = 3$, we get a = 2Now, Sum of the cubes of the term of the G.P. $= a^3 + a^3 r^3 + a^3 r^6 + \cdots$ $=\frac{a^3}{1-r^3}=\frac{8}{1-(1/27)}=\frac{108}{13}$ 36 (a) Here, $x = \frac{1}{1-a}, y = \frac{1}{1-b}$ $\Rightarrow a = \frac{x-1}{x}, b = \frac{y-1}{y}$ $\therefore 1 + ab + a^2b^2 + \ldots = \frac{1}{1 - ab} = \frac{xy}{x + y - 1}$ 38 (d) We have, $\log_{x+2}(x^3 - 3x^2 - 6x + 8) = 3$ $\Rightarrow x^3 - 3x^2 - 6x + 8 = (x + 2)^3$ $\Rightarrow x^3 - 3x^2 - 6x + 8 = x^3 + 6x^2 + 12x + 8$ $\Rightarrow 9x^2 + 18x = 0 \Rightarrow x = 0, -2$ $\log_{x+2}(x^3 - 3x^2 - 6x + 8)$ is defined for $x^3 - 3x^2 - 6x + 8 > 0$ and x + 2 > 0 $\therefore x = 0$ 39 **(b)** We have, $\log_2(x - 1) = 2\log_2(x - 3)$ $\Rightarrow x - 1 = (x - 3)^2 \Rightarrow x^2 - 7x + 10 = 0 \Rightarrow x$ = 2.5But, $\log_2(x - 1)$ and $\log_2(x - 3)$ are defined for x > 3Hence, x = 5 is the only solution 40 **(b)** Let there be *n* sides of the polygon. Then, the sum of all interior angles is (2n - 4) right angles $\therefore \frac{n}{2} \{ 240 + (n-1)5 \} = (2n - 4 \times 90)$ $\Rightarrow n^2 - 25 n + 144 = 0 \Rightarrow n - 9,16$ But, for n = 16, the largest angle = 120 + 120 $(16 - 1)5 = 195^\circ$; which is impossible

Hence, n = 941 (c) Let the two numbers be *a* and *b* $\therefore AM = \frac{a+b}{2} = A \qquad \dots(i)$ and $GM = \sqrt{ab} \Rightarrow G^2 = ab$...(ii) Now, $(a-b)^2 = (a+b)^2 - 4ab = (2A)^2 - 4ab^2 = (2A)^2 - (2A)$ $4G^{2}$ $= 4(A^2 - G^2)$ $\Rightarrow a - b = \pm 2\sqrt{(A+G)(A-G)}$...(iii) On solving Eqs. (i) and (iii), we get $a = A \pm \sqrt{(A+G)}(A-G)$ and $b = A + \sqrt{(A+G)(A-G)}$ 42 **(b)** We have, $\Rightarrow (b^2 - ac)(a \alpha^2 + 2 b \alpha + c) = 0$ \Rightarrow either *a*, *b*, *c* are in G.P. or, α is a root of the equation $a^2 + 2bx + c = 0$ 43 **(b)** $0.0373737 \dots = 0.037 + 0.00037 +$ 0.0000037+... $=\frac{37}{10^3}+\frac{37}{10^5}+\frac{37}{10^7}+\dots$ $=\frac{37}{10^3}\left[1+\frac{1}{100}+\frac{1}{10000}+\dots\right]$ $=\frac{37}{10^3}\left(\frac{1}{1-\frac{1}{1-\frac{1}{1-1}}}\right)=\frac{37}{990}$ **Alternate** Given value is of the form 0. X X1 term 2 term $\therefore \qquad S = \frac{XY - X}{\underbrace{9}_{1 \text{ digits } 2 \text{ digits}}}$ $=\frac{037-0}{990}=\frac{37}{990}$ 44 (c) Let a - d, a, a + d be the roots of the equation $x^3 - 12 x^2 + 39 x - 28 = 0$. Then, (a - d) + a + (a + d) = 12 and (a - d)a(a + d)a(ad = 28 \Rightarrow 3 a = 12 and $a(a^2 - d^2) = 28$ $\Rightarrow a = 4$ and $a(a^2 - d^2) = 28$ $\Rightarrow 16 - d^2 = 7 \Rightarrow d = +3$ 45 **(b)** Let a_1, a_2, a_3 and d_1, d_2, d_3 are the first term and common difference of the three AP's respectively. We have, $a_1 = a_2 = a_3 = 1$ and $d_1 = 1, d_2 =$ $2, d_3 = 3$

Therefore, $S_1 = \frac{n}{2}(n+1)$...(i) $S_2 = \frac{n}{2}(2n)$...(ii) $S_3 = \frac{n}{2}(3n-1)$...(iii) On adding Eqs. (i) and (iii), we get $S_1 + S_3 = \frac{n}{2}[(n+1) + (3n-1)]$ $= 2\left[\frac{n}{2}(2n)\right] = 2S_2$ Hence, correct relation is $S_1 + S_3 = 2 S_2$ 46 **(d)** We have, $\log_{x}\{\log_{4}(\log_{x}(5x^{2}+4x^{3}))\}=0$ $\Rightarrow \log_4(\log_x(5x^2 + 4x^3)) = x^0$ $\Rightarrow \log_x(5x^2 + 4x^3) = 4^1$ $\Rightarrow 5x^2 + 4x^3 = 4^4$ $\Rightarrow x^2(x^2 - 4x - 5) = 0$ $\Rightarrow x^2(x-5)(x+1) = 0 \Rightarrow x = 5 \quad [\because x \neq$ 0 and x > 0] 47 (c) Since, $2T_{11} = 7T_{21}$ $\Rightarrow 2(a+10d) = 7(a+20d)$ \Rightarrow 2*a* + 20*d* = 7*a* + 140*d* $\Rightarrow a = -24d$ $\therefore T_{25} = -24d + 24d = 0$ 48 **(c)** Let $a = {}^n C_{r-1}$, $b = {}^n C_r$, and $d = {}^n C_{r+2}$ Substituting these values in given expression $\frac{a+b}{a}, \frac{b+c}{b}, \frac{c+d}{c}$ $\Rightarrow \frac{{}^{n}C_{r-1} + {}^{n}C_{r}}{{}^{n}C_{r-1}}, \frac{{}^{n}C_{r} + {}^{n}C_{r+1}}{{}^{n}C_{r}}, \frac{{}^{n}C_{r+1} + {}^{n}C_{r+2}}{{}^{n}C_{r+1}}$ $\Rightarrow \frac{n+1}{n} C_{r-1}, \frac{n+1}{n} C_{r+1}, \frac{n+1}{n} C_{r+2}, \frac{n+1}{n} C_{r+2}, \frac{n+1}{n} C_{r+1}, \frac{n+1}{n}$ \Rightarrow It is in HP 49 **(b)** We have, (x-1)(x-2)(x-3)...(x-n) $= x^n - S_1 x^{n-1} + S_2 x^{n-2} - S_3 x^{n-3} + \cdots$ $+(-1)^{n-1}S_{n-1}x+S_n$ Where S_k = Sum of the products of *n* natural number taken k at a time : Coefficient of x^{n-2} $=S_2 = \frac{1}{2} \left\{ \left(\sum n \right)^2 - \left(\sum n^2 \right) \right\}$ $=\frac{1}{2}\left[\left\{\frac{n(n+1)}{2}\right\}^2 - \frac{n(n+1)(2n+1)}{6}\right]$ $-\frac{n(n+1)(n-1)(3n+2)}{2}$ 50 (d)

Let the progression be an A.P. with common difference *d*, and let \sqrt{x} , \sqrt{y} , \sqrt{z} be *mth*, (m + n)thand (m + n + p)th terms respectively. Then, $\sqrt{y} = \sqrt{x} + (n-1) d$ and $\sqrt{z} = \sqrt{x} + \sqrt{x}$ (n + p - 1) d $\Rightarrow \sqrt{y} - \sqrt{x} = (n-1) d \text{ and } \sqrt{z} - \sqrt{x} =$ (n + p - 1) d $\Rightarrow \frac{\sqrt{y} - \sqrt{x}}{\sqrt{z} - \sqrt{x}} = \frac{n-1}{n+p-1}, \text{ a rational number}$ But, *x*, *y*, *z* are prime integers. Therefore, $\frac{\sqrt{y} - \sqrt{x}}{\sqrt{z} - \sqrt{x}}$ is an irrational number So, the progression cannot be an A.P. Similarly, they are not in G.P. or H.P. 51 (a) Since, x_1 , x_2 , x_3 and y_1 , y_2 , y_3 are in GP with the same common ratio. $\therefore x_2 = rx_1, x_3 = r^2 x_1, y_2 = ry_1, y_3 = r^2 y_1$ Area of triangle $=\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_2 & y_3 & 1 \end{vmatrix} = \frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ rx_1 & ry_1 & 1 \\ r^2x_1 & r^2y_1 & 1 \end{vmatrix}$ $= \frac{1}{2} x_1 y_1 \begin{vmatrix} 1 & 1 & 1 \\ r & r & 1 \\ r^2 & r^2 & 1 \end{vmatrix} = 0 \quad (\because \text{ two columns are}$ identical) Hence, three points are in a straight line. 53 (C) Let S_n denote the sum of n terms. Then, $S_n = 3n^2 + 5$ Now, $a_n = S_n - S_{n-1}$ $\Rightarrow a_n = (3 n^2 + 5) - (3(n-1)^2 + 5) = 6n - 3$ $\therefore a_n = 159 \Rightarrow 6n - 3 = 159 \Rightarrow 6n = 162 \Rightarrow n$ = 2754 (c) Let S_n denote the sum of *n* terms of the given series. Then, $S_n = 5n^2 + 2n$ Clearly, Second term = $S_2 - S_1$ \Rightarrow Second term = $(5 \times 2^2 + 2 \times 2)$ $-(5 \times 1^2 + 2 \times 1) = 24 - 7 = 17$ (c)

55

Let the two numbers be *a* and *b*. Then,

$$\frac{AM}{GM} = \frac{\frac{a+b}{2}}{\sqrt{ab}} = \frac{m}{n} \quad \text{[given]}$$

 $\Rightarrow \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} = \frac{2m}{n}$ $\Rightarrow \frac{a}{b} - 2\sqrt{\frac{a}{b}}\frac{m}{m} + 1 = 0$ $\Rightarrow x^2 - \frac{2m}{n}x + 1 = 0$, where $x = \sqrt{\frac{a}{b}}$ $\Rightarrow x = \frac{m \pm \sqrt{m^2 - n^2}}{n}$: $a: b = m + \sqrt{m^2 - n^2}: m - \sqrt{m^2 - n^2}$ 56 **(b)** Let $\log_c a = x$, $\log_b c = y$, $\log_a b = z$. Then, xyz = 1...(i) Now, x, y, z are in AP $\Rightarrow 2y = x + z$...(ii) :: a, b, c are in GP $\therefore b^2 = ac$ $\Rightarrow \log_{h} b^{2} = \log_{h} a + \log_{h} c$ $\Rightarrow 2 \log_b b = \log_b a + \log_b c$...(iii) $\Rightarrow 2 = \frac{1}{z} + y$ From (ii) and (iii), we have $2\left(2-\frac{1}{z}\right) = x + z \Rightarrow x = 4 - \frac{2}{z} - z$ Putting the value of x in (i), we get $\left(4 - \frac{2}{z} - z\right)\left(2 - \frac{1}{z}\right)z = 1 \Rightarrow 2z^2 - 7z - 2 = 0$...(iv) Now, Common difference = $z - y = z - \left(2 - \frac{1}{z}\right)$ $\Rightarrow \text{Common difference} = z - y = \frac{z^2 - 2z + 1}{z}$ $\Rightarrow \text{ Common difference} = z - y = \frac{2 z^2 - 4 z + 2}{2 z}$ $=\frac{3z}{2z}=\frac{3}{2}$ [Using (iv)] 57 (c) We have, $\frac{\log 49\sqrt{7} + \log 25\sqrt{5} - \log 4\sqrt{2}}{\log 17.5}$ $=\frac{\log\left(\frac{7^{5/2}\times 5^{5/2}}{2^{5/2}}\right)}{\log 17.5}=\frac{5}{2}\frac{\log 17.5}{\log 17.5}=\frac{5}{2}$

58 **(b)** It is given that *x*, *y*, *z* are in G.P. $\therefore y^2 = xz$ Also, x + 3, y + 3, z + 3 are in H.P. $\therefore y + 3 = \frac{2(x+3)(z+3)}{(x+3) + (z+3)}$ $\Rightarrow y + 3 = \frac{2\{xz + 3(x + 2) + 9\}}{[(x + z) + 6]}$ $\Rightarrow y + 3 = \frac{2\{y^2 + 3(x+z) + 9\}}{(x+z+6)}$ Obviously, y = 3 satisfies this question 59 (a) Since, *a*, *b*, *c*, *d* are in H.P. \therefore *a*, *b*, *c* are in H.P. \Rightarrow *b* is the H.M. of *a* and *c* $\Rightarrow b = \frac{2 ac}{a+c}$...(i) Again, *a*, *b*, *c*, *d* are in H.P. \Rightarrow b, c, d are in H.P. \Rightarrow *c* is the H.M. of *b* and *d* $\Rightarrow c = \frac{2 b d}{b + d}$...(ii) From (i) and (ii), we have $(a+c)(b+d) = \frac{2ac}{b} \cdot \frac{2bd}{c}$ $\Rightarrow ab + ad + bc + cd = 4 ad$ $\Rightarrow ab + bc + cd = 3 ad$ 61 (c) We have, $a^2 + 4b^2 = 12ab$ $\Rightarrow (a+2b)^2 = 16ab$ $\Rightarrow 2 \log(a + 2b) = \log 16ab$ $\Rightarrow 2\log(a+2b) = \log a + \log b + 4\log 2$ $\Rightarrow \log(a+2b) = \frac{1}{2}(\log a + \log b + 4\log 2)$ 62 (a) Let $S = 1 \times 2003 + 2 \times 2002 + 3 \times 2001 + \dots + 2003$ x 1 and, $T = 1^2 + 2^2 + 3^2 + \dots + 2003^2$ $\therefore S + T = 2004(1 + 2 + 3 + \dots + 2003)$ $\Rightarrow 2003 \times 4007 \times 334 + 2003 \times 334 \times x$ $= 2004 \times \frac{2003 \times (2004)}{2}$ $\Rightarrow 2003 \times 334(4007 + x) = 2004 \times 2003 \times 1002$ $\Rightarrow 4007 + x = 2004 \times 3 \Rightarrow x = 2005$ 63 **(b)** $15^2 + 16^2 + 17^2 + \ldots + 30^2$ $= 1^{2} + 2^{2} + \ldots + 30^{2} - (1^{2} + 2^{2} + \ldots + 14^{2})$ $=\frac{30(31)(61)}{6}-\frac{14(15)(29)}{6}$

 $=\frac{56730-6090}{6}=8440$ 64 (c) Since $(\pm 1 \pm 2 \pm \dots \pm n)^2$ $= 2[1^2 + 2^2 + \ldots + n^2]$ +2[sum of product of two terms] \Rightarrow 2[sum of product of two terms] $= 0 - 2 \left| \frac{n(n+1)(2n+1)}{6} \right|$ \Rightarrow Sum of product of two terms $=\frac{-n(n+1)(2n+1)}{6}$ 65 (c) We have, $(4.2)^x = (0.42)^y = 100$ $\Rightarrow x = \log_{4,2} 100 \text{ and } y = \log_{0.42} 100$ $\Rightarrow \frac{1}{x} = \log_{100} 4.2 \text{ and } \frac{1}{y} = \log_{100} 0.42$ $\Rightarrow \frac{1}{r} - \frac{1}{v} = \log_{100} 4.2 - \log_{100} 0.42$ $\Rightarrow \frac{1}{x} - \frac{1}{y} = \log_{100} \left(\frac{4.2}{0.42} \right) = \log_{100} 10 = \frac{1}{2}$ 66 (a) We have, $2\{7^{-1} + 3^{-1}7^{-3} + 5^{-1}7^{-5} + \cdots\}$ $= 2\left\{\frac{1}{7} + \frac{1}{3} \cdot \frac{1}{7^3} + \frac{1}{5}\frac{1}{7^5} + \cdots\right\} = \log_e\left(\frac{1 + \frac{1}{7}}{1 - \frac{1}{7}}\right)$ $=\log_e\left(\frac{8}{6}\right) = \log_e\left(\frac{4}{3}\right)$ 67 (a) Given sequence is (-8 + 18i), (-6 + 15i), (-4 + 15i)*12i, -2+9i, 0+6i,...* Hence, 5th term is purely imaginary. 68 (c) We have, $a^2 + 4b^2 = 12ab$ $\Rightarrow a^2 + 4b^2 + 4ab = 16ab$ $\Rightarrow (a+2b)^2 = 16ab$ $\Rightarrow 2 \log(a + 2b) = \log 16 + \log a + \log b$ $\Rightarrow 2\log(a+2b) = 4\log 2 + \log a + \log b$ $\Rightarrow \log(a+2b) = \frac{1}{2}(4\log 2 + \log a + \log b)$ 69 (d) We have, $\frac{1}{\log_x 10} = \frac{2}{\log_a 10} - 2$ $\Rightarrow \log_{10} x = 2 \log_{10} a - 2$ $\Rightarrow \log_{10} x = \log_{10} a^2 - \log_{10} 100$

 $\Rightarrow \log_{10} x = \log_{10} \left(\frac{a^2}{100} \right) \Rightarrow x = \frac{a^2}{100}$ 70 **(b)** Since *x*, *y*, *z* are in H.P. $\therefore y = \frac{2 x z}{x + z}$ $\Rightarrow x - 2y + z = x + z - \frac{4xz}{x+z} = \frac{(x-z)^2}{x+z}$ $\Rightarrow \log(x - 2y + z) = 2\log(x - z) - \log(x + z)$ $\Rightarrow \log(x - 2y + z) + \log(x + z) = 2\log(x - z)$ 71 **(b)** We have, $\log_e 2 \times \log_x 27 = \log_{10} 8 \times \log_e 10$ $\Rightarrow \log_e 2 \times 3 \log_x 3$ $= 3 \log_e 2 \Rightarrow \log_x 3 = 1 \Rightarrow x = 3$ 72 (a) We have, $\log_8 x = 2.5$ and $\log_2 y = 5$ $\Rightarrow x = (8)^{5/2}$ and $y = 2^5$ $\Rightarrow x = 2^{15/2}$ and $y = 2^5 \Rightarrow x = y^{3/2}$ 73 (c) We have. $1^{2} + 1 + 2^{2} + 2 + 3^{3} + 3 + \dots + n^{2} + n$ $= (1 + 2 + \dots + n)(1^2 + 2^2 + \dots + n^2)$ $=\frac{n(n+1)}{2} + \frac{n(n+1)(2n+1)}{6}$ $=\frac{n(n+1)(n+2)}{2}$ 74 (a) When $\cos x = -1$, we have $x = (2 n + 1)\pi, n \in Z$ \Rightarrow Different values of x form an A.P. 75 (c) Since, *a* and *b* are roots of $x^2 - 3x + p = 0$ $\therefore a + b = 3, ab = p$ Also, *c* and *d* are roots of $x^2 - 12x + q = 0$ $\therefore c + d = 12, cd = q$ Now, *a*, *b*, *c*, *d* are in G.P. $\Rightarrow \frac{b}{a} = \frac{d}{a}$ $\Rightarrow \frac{a+b}{a-b} = \frac{c+d}{c-d}$ $\Rightarrow \frac{(a-b)^2}{(a+b)^2} = \frac{(c-d)^2}{(c+d)^2}$ $\Rightarrow 1 - \frac{4 ab}{(a+b)^2} = 1 - \frac{4 cd}{(c+d)^2}$ $\Rightarrow \frac{ab}{(a+b)^2} = \frac{cd}{(c+d)^2}$ $\Rightarrow \frac{p}{q} = \frac{q}{144}$

 $\Rightarrow \frac{p}{1} = \frac{q}{16}$ $\Rightarrow \frac{p}{a} = \frac{1}{16} \Rightarrow \frac{p+q}{a-p} = \frac{17}{15} \Rightarrow \frac{q+p}{a-p} = \frac{17}{15}$ 76 (a) $(a - bx)e^{-x} = (a - bx)\left[1 - x + \frac{x^2}{2!} - \dots\right]$ $\therefore \text{ Coefficient of } x^n \text{ is } (-1)^n \frac{a}{n!} + \frac{(-b)(-1)^{n-1}}{(n-1)!}$ $=\frac{(-1)^{n}}{(n-1)!}\frac{(a+bn)}{n}=\frac{(-1)^{n}}{n!}(a+bn)$ 77 (d) Since, $T_p = q = a + (p - 1)d$...(i) and $T_q = p = a + (q - 1)d$...(ii) On solving Eqs. (i) and (ii), we get d = -1 and a = p + q - 1 $\therefore T_{10} = a + (10 - 1)d = p + q - 10$ 78 (d) Let x = 0. *cababab* ... 10x = c.ababab......(i) And $100 \times 10x = cab.abab...$...(ii) On subtracting Eq. (i) from Eq.(ii), we get 990x = cab - c $\Rightarrow x = \frac{100c + 10a + b - c}{990}$ $=\frac{99c+10a+b}{990}$ 79 **(b)** We have, $\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + \dots$ $= 1\sqrt{2} + 2\sqrt{2} + 3\sqrt{2} + 4\sqrt{2} + ...$ $=\sqrt{2}(1+2+3+4+...$ upto 24 terms) $=\sqrt{2} \times \frac{24 \times 25}{2}$ $= 300\sqrt{2} \qquad \left[\because \sum n = \frac{n(n+1)}{2}\right]$ 80 (a) We have, $\log(2a - 3b) = \log a - \log b$ $\Rightarrow \log(2a - 3b) = \log\left(\frac{a}{b}\right)$ $\Rightarrow 2a - 3b = \frac{a}{b} \Rightarrow 2ab - 3b^2 = a \Rightarrow a = \frac{3b^2}{2b - 1}$ 81 (c) We have, $2^x \times 3^{2x} = 100$ $\Rightarrow (2 \times 9)^x = 100$ $\Rightarrow x = \log_{18} 100 \Rightarrow x \in (1,2) \quad [\because 18^1 =$ $18 \text{ and } 18^2 = 324$] 82 **(b)** We have, $1 - \log_e 2 + \frac{(\log_e 2)^2}{2!} - \frac{(\log_e 2)^3}{2!} + \cdots$

$$= e^{-\log_{e} 2} = 2^{-1} = \frac{1}{2}$$
83 (c)
On putting $x = \frac{1}{2}$ in $\log_{e}(1 + x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + ... \infty$
We get, $\frac{1}{2} - \frac{1}{2.2^{2}} + \frac{1}{3.2^{3}} - \frac{1}{4.2^{4}} + ... = \log_{e}\left(1 + \frac{1}{2}\right) = \log_{e}\left(\frac{3}{2}\right)$
84 (b)
We have,
 $\frac{1}{a} + \frac{1}{c} + \frac{1}{a - b} + \frac{1}{c - b} = 0$
 $\Rightarrow \frac{1}{a} + \frac{1}{c} + \frac{1}{a - b} + \frac{1}{c - b} = 0$
 $\Rightarrow (a + c)(ac + b^{2} - b(a + c)) + ac(a + c)$
 $-2 abc = 0$
 $= 2 ac(a + c) + b^{2}(a + c) - b(a + c)^{2} - 2 abc$
 $= 0$
 $\Rightarrow 2 ac [a + c - b] - b(a + c)\{a + c - b\} = 0$
 $\Rightarrow (a + c - b)(2 ac - ab - ac) = 0$
 $\Rightarrow 2 ac = ab + ac$ [: $a + c - b \neq 0$ given]
 $\Rightarrow a, b, c$ are in H.P.
85 (c)
Since, $4a^{2} + 9b^{2} + 16c^{2} = 2(3ab + 6bc + 4ca)$
 $= 0$
 $\Rightarrow (4a^{2} - 12ab + 9b^{2}) + (9b^{2} - 24bc - 16ca + a^{2}) = 0$
 $\Rightarrow (2a - 3b)^{2} + (3b - 4c)^{2} + (4c - 2a)^{2} = 0$
 $\Rightarrow 2a = 3b, 3b = 4c, 4c = 2a$
 $\Rightarrow 2a = 3b = 4c = k$ [say]
 $\Rightarrow a = \frac{k}{2}, b = \frac{k}{3}, c = \frac{k}{4}$
 $\Rightarrow a, b, c$ are in HP.
86 (c)
We have,
 $\sum n = (\frac{1}{5}) \sum n^{2}$
 $\Rightarrow n \frac{(n + 1)}{2} = \frac{1}{5} \{\frac{n(n + 1)(2n + 1)}{6}\}$
 $\Rightarrow 2n + 1 = 15 \Rightarrow n = 7$
87 (c)
Given, $\frac{\frac{p}{2}[2a_{1}+(q - 1)d]}{\frac{1}{2}[2a_{1}+(q - 1)d]} = \frac{p^{2}}{q^{2}}$
 $\Rightarrow \frac{(2a_{1} - d) + pd}{(2a_{1} - d) + qd} = \frac{p}{q}$

$$\Rightarrow (2a_1 - d)(p - q) = 0$$

$$\Rightarrow a_1 = \frac{d}{2}$$

Now, $\frac{a_6}{a_{21}} = \frac{a_1 + 5d}{a_2 + 20d}$
$$= \frac{\frac{d}{2} + 5d}{\frac{d}{2} + 20d} = \frac{11}{41}$$

91 (b)

Let *r* be the common ration of the G.P. Then, $b = ar, c = ar^2$ Since a - b, c - a and b - c are in H.P. Since a - b, c - a and b - c are in H.P. $\therefore \frac{2}{c-a} = \frac{1}{a-b} + \frac{1}{b-c}$ $\Rightarrow \frac{2}{ar^2 - a} = \frac{1}{a-ar} + \frac{1}{ar - ar^2}$ $\Rightarrow \frac{2}{r^2 - 1} = \frac{1}{1 - r} + \frac{1}{r - r^2}$ $\Rightarrow \frac{2}{r^2 - 1} = \frac{r+1}{r(1 - r)}$ $\Rightarrow 2r(1 - r) = (r^2 - 1)(r + 1)$ $\Rightarrow 2r = -(r + 1)^2 \qquad [\because r \neq 1]$ $\Rightarrow r^2 + 4r + 1 = 0 \Rightarrow ar^2 + 4ar + a = 0$ $\Rightarrow r^2 + 4r + 1 = 0 \Rightarrow ar^2 + 4ar + a = 0$ $\Rightarrow c + 4b + a = 0$

92 **(a)**

0

93

Let t_n denotes *n*th term of an AP whose first term and common difference are *a* and *d* respectively.

$$\therefore t_n = a + (n - 1)d$$
Now, $\frac{t_1 + t_3 + t_5 + \dots + t_{2n+1}}{t_2 + t_4 + t_6 + \dots + t_{2n}}$

$$a + (a + 2d) + (a + 4d)$$

$$= \frac{+\dots + (a + 2nd)}{(a + d) + (a + 3d) + (a + 5d)}$$

$$+\dots + a + (2n - 1)d$$

$$= \frac{\frac{n+1}{n}[a + (a + 2nd)]}{\frac{n}{2}[(a + d) + \{a + (2n - 1)d\}]}$$

$$= \frac{n+1}{n}$$
(a)
Let α and β are the roots of the equation
 $x^2 - 2ax + a^2 = 0$
 $\therefore \alpha + \beta = 2a$ and $\alpha\beta = a^2$...(i)
Since, $A = \frac{\alpha + \beta}{2}$ and $G = \sqrt{\alpha\beta}$
 $\Rightarrow A = a$ and $G^2 = a^2$ [from Eq. (i)]

95 **(a)** We have,

 $\Rightarrow G^2 = A^2 \Rightarrow G = A$

$$= \left\{\frac{9(9+1)}{2}\right\}^{2} - 2 \times 2^{3}(1^{3} + 2^{3} + 3^{3} + 4^{3})$$

$$= (9 \times 5)^{2} - 16 \left\{\frac{4(4+1)}{2}\right\}^{2}$$

$$= (9 \times 5)^{2} - 16 \times (10)^{2} = 425$$
96 (c)
We have,
 $\log_{2} \log_{2} \log_{4} 256 + 2 \log_{\sqrt{2}} 2$

$$= \log_{2} (\log_{2} (\log_{4} 4^{4}) + 2 \log_{2^{1/2}} 2$$

$$= \log_{2} (\log_{2} 4) + 4 \log_{2} 2$$

$$= \log_{2} (2 + 4 \log_{2} 2) = 1 + 4 = 5$$
97 (c)
Given, $1 + \sin x + \sin^{2} x + \dots \infty = 4 + 2\sqrt{3}$

$$\Rightarrow \frac{1}{1 - \sin x} = 4 + 2\sqrt{3}$$

$$\Rightarrow 1 - \sin x = \frac{1}{4 + 2\sqrt{3}} \times \frac{4 - 2\sqrt{3}}{4 - 2\sqrt{3}}$$

$$\Rightarrow 1 - \sin x = \frac{4 - 2\sqrt{3}}{4}$$

$$\Rightarrow \sin x = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$$

$$\Rightarrow x = \frac{\pi}{3}, \frac{2\pi}{3}$$
98 (c)
Let the sides of the right triangle be $a - d, a, a + d$
 d , then hypotenuse being the greatest side
 $ie, a + d$.
So, $(a + d)^{2} = a^{2} + (a - d)^{2}$
 $\Rightarrow a^{2} + d^{2} + 2ad = a^{2} - 2ad + d^{2}$
 $\Rightarrow a = 4d$
Therefore, ratio in the sides $= a - d : a : a + d = (4d - d): 4d: (4d + d) = 3: 4: 5$
99 (a)
We have,
 $3 \log \frac{81}{80} + 5 \log \frac{25}{24} + 7 \log \frac{16}{15}$
 $= 3 \log \left(\frac{3^{4}}{2^{4} \times 5}\right) + 5 \log \left(\frac{5^{2}}{2^{3} \times 3}\right) + 7 \log \left(\frac{2^{4}}{3 \times 5}\right)^{7}$
 $= \log \left\{ \left(\frac{3^{4}}{2^{4} \times 5}\right)^{3} \times \left(\frac{5^{2}}{2^{3} \times 3}\right)^{5} \times \left(\frac{2^{4}}{3 \times 5}\right)^{7} \right\}$
 $= \log \left\{ \frac{3^{12}}{2^{12} \times 5^{3}} \times \frac{5^{10}}{2^{15} \times 3^{5}} \times \frac{28}{3^{7} \times 5^{7}} \right\} = \log 2$
101 (d)
Given, $\frac{1}{e^{3x}} (e^{x} + e^{5x}) = a_{0} + a_{1}x + a_{2}x^{2} + ...$

106 **(c)**

Let *a* be the first term and *x* be the common ratio of the A.P. Then,

 $a + 5 x = 2 \Rightarrow a = 2 - 5 x$

Let $P = a_1 a_4 a_5 = a(a + 3x)(a + 4x) = (2 - a_1)(a + 4x) = (2 - a_2)(a + 4x) = (2$ 5x(2-2x)(2-x) $\Rightarrow P = 2(-5x^3 + 17x^2 - 16x + 4)$ $\Rightarrow \frac{dP}{dx} = 0 \Rightarrow x = 8/5, 2/3$ Clearly, $\frac{d^2 P}{dx^2} > 0$ for $x = \frac{2}{3}$ Hence, *P* is least for x = 2/3107 **(b)** $\frac{n}{2}[2 \times 2 + (n-1) \times 2] = 240$ \Rightarrow n(2+n-1) = 240 \Rightarrow $n(n+1) = 15 \times 16$ $\Rightarrow n = 15$ 108 (c) Let the three numbers in AP are a - d, a, a + dd Since, $a - d + a + a + d = 15 \Rightarrow a = 5$ Since, (a - d + 1), (a + 4), (a + d + 19) are in GP. $(a+4)^2 = (a-d+1)(a+d+19)$ $\Rightarrow 9^2 = (6-d)(24+d)$ [:: a = 5] $\Rightarrow d^2 + 18d - 63 = 0$ $\Rightarrow d = 3, -21$ \therefore Required series are 2, 5, 8 and 26, 5, -16 109 (d) We have, $1 + \cos \alpha + \cos^2 \alpha + \dots$ to $\infty = 2 - \sqrt{2}$ $\Rightarrow \frac{1}{1 - \cos \alpha} = 2 - \sqrt{2}$ $\Rightarrow 1 - \cos \alpha = \frac{1}{2 - \sqrt{2}} = 1 + \frac{1}{\sqrt{2}}$ $\Rightarrow \cos \alpha = -\frac{1}{\sqrt{2}} \Rightarrow \alpha = \frac{3\pi}{4}$ 110 (c) $\therefore (\alpha + \beta), (\alpha^2 + \beta^2), (\alpha^3 + \beta^3)$ are in GP. $\Rightarrow (\alpha^2 + \beta^2)^2 = (\alpha + \beta)(\alpha^3 + \beta^3)$ $\Rightarrow \alpha^4 + \beta^4 + 2\alpha^2\beta^2 = \alpha^4 + \beta^4 + \alpha\beta^3 + \beta\alpha^3$ $\Rightarrow \alpha\beta(\alpha^2 + \beta^2 - 2\alpha\beta) = 0$ $\Rightarrow \alpha\beta(\alpha-\beta)^2 = 0$ $\Rightarrow \alpha\beta = 0 \text{ or } \alpha = \beta$ $\Rightarrow \frac{c}{a} = 0 \text{ or } \Delta = 0$ $\Rightarrow c\Delta = 0$ 111 (c) In *n* geometric means $G_1, G_2, ..., G_n$ are to be inserted between two positive real numbers a and b, then $a, G_1, G_2, \dots, G_n, b$ are in GP, then $G_1 = ar, G_2 = ar^2, \dots, G_n = ar^n$ So, $b = ar^{n+1} \Rightarrow r = \left(\frac{b}{a}\right)^{\frac{1}{(n+1)}}$

Now, *n*th geometric mean $(G_n) = ar^n = a\left(\frac{a}{L}\right)^{\frac{n}{n+1}}$ 112 (a) We have, $(x+y)(x-y) + \frac{1}{2!}(x+y)(x-y)(x^2+y^2)$ $+\frac{1}{3!}(x+y)(x-y)(x^4+y^4+x^2y^2)+\cdots\infty$ $= (x^2 - y^2) + \frac{1}{2!}(x^4 - y^4) + \frac{1}{2!}(x^6 - y^6) + \dots \infty$ $= \left\{ x^{2} + \frac{(x^{2})^{2}}{2!} + \frac{(x^{2})^{3}}{3!} + \cdots \right\}$ $-\left\{y^{2} + \frac{(y^{2})^{2}}{2!} + \frac{(y^{2})^{3}}{3!} + \cdots\right\}$ $= (e^{x^2} - 1) - (e^{y^2} - 1) = e^{x^2} - e^{y^2}$ 113 (b) We have, $2.\overline{357} = 2 + 0.357357357357 \dots$ $\Rightarrow 2.\overline{357} = 2 + 0.357 + 0.000357 + 0.00000357$ $\Rightarrow 2.\overline{357} = 2 + \frac{357}{10^3} + \frac{357}{10^6} + \frac{357}{10^9} + \cdots$ $\Rightarrow 2.\overline{357} = 2 + \frac{\frac{357}{10^3}}{1 - \frac{1}{12^2}} = 2 + \frac{357}{999} = \frac{2355}{999}$ 114 (c) We have, $x, 1, z \text{ are in AP} \Rightarrow 2 = x + z$ $x, 2, z \text{ are in GP} \Rightarrow 4 = xz$...(i) Since (i) does not satisfy 8 = x + z and 16 = xz. But, it satisfies the relation $4 = \frac{2 xz}{x+2}$. Hence, *x*, 4, *z* are in HP 115 (c) We have. $\frac{1^2 \cdot 2}{1!} + \frac{2^2 \cdot 3}{2!} + \frac{3^2 \cdot 4}{3!} + \frac{4^2 \cdot 5}{4!} + \dots \text{ to } \infty$ $= \sum_{n=1}^{\infty} \frac{n^2(n+1)}{n!} = \sum_{n=1}^{\infty} \frac{n^3}{n!} + \frac{n^2}{n!}$ $= \sum_{n=1}^{\infty} \frac{n^3}{n!} + \sum_{n=1}^{\infty} \frac{n^2}{n!} = 5e + 2e = 7e$ 116 **(b)** We have, $\log_{10} 343 = 2.5353$ $\Rightarrow \log_{10} 7^3 = 2.5353$ $\Rightarrow 3\log_{10} 7 = 2.5353 \Rightarrow \log_{10} 7 = \frac{2.5353}{2}$ Now. $7^n > 10^5$ $\Rightarrow \log_{10} 7^n > \log_{10} 10^5$

$$\Rightarrow n \log_{10} 7 > 5 \Rightarrow n \frac{(2.5353)}{3} > 5 \Rightarrow n > \frac{15}{2.5353}$$

$$\Rightarrow n > 5.916$$
Hence, the least value of n is 6
117 (a)
Since, a, b, c are in HP, then $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in AP, let
 $\frac{1}{a} = p - q, \frac{1}{b} = p$ and $\frac{1}{c} = p + q$,
Where $p, q > 0$ and $p > q$
Now, $\frac{3a+2b}{2a-b} + \frac{3c+2b}{2c-b} = \frac{\frac{3}{p-q} + \frac{2}{p}}{\frac{p}{p-q} - \frac{1}{p}} \frac{\frac{2}{p+q} - \frac{1}{p}}{\frac{p}{p+q}}$

$$= \frac{\frac{5p-2q}{p+q} + \frac{\frac{5p+2q}{p-q}}{\frac{p}{p(p+q)}}{\frac{p-q}{p(p+q)}}$$

$$= \frac{(5p-2q)(p-q) + (5p+2q)(p+q)}{(p^2+q^2)}$$

$$= 10 + \frac{14q^2}{p^2 - q^2}$$
Which is obviously greater than 10 (as $p > q > 0$).
118 (b)

We have, $\frac{\log x}{a-b} = \frac{\log y}{b-c} = \frac{\log z}{c-a} = \lambda(\text{say})$ $\Rightarrow \log x = \lambda(a-b), \log y = \lambda(b-c), \log z = \lambda (c - a)$ $\Rightarrow \log x + \log y + \log z = 0$ $\Rightarrow \log xyz = 0 \Rightarrow xyz = 1$

119 **(a)**

We have,

$$a = \sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}, b = \sum_{n=1}^{\infty} \frac{x^{3n-2}}{(3n-2)!} \text{ and } c$$
$$= \sum_{n=1}^{\infty} \frac{x^{3n-1}}{(3n-1)!}$$
$$\Rightarrow a + b + c = \sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!} + \sum_{n=1}^{\infty} \frac{x^{3n-2}}{(3n-2)}$$
$$+ \sum_{n=1}^{\infty} \frac{x^{3n-1}}{(2n-1)!}$$
$$\Rightarrow a + b + c = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = e^x$$
Also,

$$a + b \omega + c \omega^{2} = 1 + \omega x + \frac{\omega^{2} x^{2}}{2!} + \frac{\omega^{3} x^{3}}{3!} + \cdots$$
$$= e^{\omega x}$$

and,

 $a + b \omega^2 + c\omega = e^{\omega^2 x}$, where ω is an imaginary cube root of unity Now,

 $a^{3} + b^{3} + c^{3} - 3 abc$ = $(a + b + c)(a + b\omega + c\omega^{2})(a + b\omega^{2} + c\omega)$ = $e^{x} e^{\omega x} e^{\omega^{2} x} = e^{x(1+\omega+\omega^{2})} = e^{x.0} = e^{0} = 1$

120 **(a)**

we have,

$$a_n = \log\left(\frac{5^{n+1}}{3^{n-1}}\right)$$

$$\Rightarrow a_n = \log\left\{\left(\frac{5}{3}\right)^{n+1} \times 9\right\}$$

$$\Rightarrow a_n = \log 9 + (n+1)\log\frac{5}{3}$$

$$\Rightarrow a_n = 2\log 3 + (n+1)\log\left(\frac{5}{3}\right)$$

$$= n\log\left(\frac{5}{3}\right) + \log 15$$

Clearly, it is a linear expression in *n*. So, the sequence $< a_n >$ is an A.P. with common difference $\log\left(\frac{5}{3}\right)$

Clearly, the sequence $< b_n >$ forms a G.P. with common ratio equal to $\log\left(\frac{5}{3}\right)$

121 **(d)**

Let a_r be the $r^{
m th}$ term of the given series. Then,

$$a_{r} = \frac{1}{r(r+1)(r+2)(r+3)}$$

$$\Rightarrow a_{r}$$

$$= \frac{1}{6r} - \frac{1}{2(r+1)} + \frac{1}{2(r+2)}$$

$$- \frac{1}{6(r+3)} \quad [\text{Using partial fractions}]$$

$$\Rightarrow a_{r} = \frac{1}{6} \left(\frac{1}{r} - \frac{1}{r+1}\right) - \frac{1}{3} \left(\frac{1}{r+1} - \frac{1}{r+2}\right)$$

$$+ \frac{1}{6} \left(\frac{1}{r+2} - \frac{1}{r+3}\right)$$

$$\Rightarrow \sum_{r=1}^{n} a_{r} = \frac{1}{6} \left(1 - \frac{1}{n+1}\right) - \frac{1}{3} \left(\frac{1}{2} - \frac{1}{n+2}\right)$$

$$+ \frac{1}{6} \left(\frac{1}{3} - \frac{1}{n+3}\right)$$

$$\Rightarrow \sum_{r=1}^{n} a_{r} = \frac{n^{3} + 6n^{2} + 11n}{18(n+1)(n+2)(n+3)}$$
122 (d)

Let the GP series be $a, ar, ar^2, ...$ According to the given condition $a + ar + ar^2 + ... = a^2 + a^2r^2 + a^2r^4 + ... = 3$ $\Rightarrow \frac{a}{1-r} = \frac{a^2}{1-r^2} = 3$ $\Rightarrow a = 3(1-r) ...(i)$ and $a^2 = 3(1-r^2) ...(ii)$ Eliminating *a* from Eqs. (i) and (ii), we get $[3(1-r)]^2 = 3(1-r^2)$

$$\Rightarrow 3(1-r) = (1+r) \quad (\because r \neq 1)$$
$$\Rightarrow 4r = 2 \Rightarrow r = \frac{1}{2}$$
$$\therefore a = 3(1-r) = 3\left(1 - \frac{1}{2}\right) = \frac{3}{2}$$

124 **(c)**

We have, log 2, log($2^{x} - 1$), log($2^{x} + 3$) are in A.P. $\Rightarrow 2, 2^{x} - 1, 2^{x} + 3$ are in G.P.

125 (a)

We have, $\log_2 a + \log_4 b + \log_4 c = 2$ $\log_9 a + \log_3 b + \log_9 c = 2$ $\log_{16} a + \log_{16} b + \log_4 c = 2$ $\Rightarrow \log_2 a + \frac{1}{2}\log_2 b + \frac{1}{2}\log_2 x = 2$ $\Rightarrow \frac{1}{2}\log_3 a + \log_3 b + \frac{1}{2}\log_3 c = 2$ $\Rightarrow \frac{1}{2}\log_4 a + \frac{1}{2}\log_4 b + \log_4 c = 2$ $\Rightarrow \log_2(a^2bc) = 4, \log_3(ab^2c) = 4, \log_4(abc^2)$ $\Rightarrow a^2bc = 2^4 \cdot ab^2c = 3^4$ and $abc^2 = 4^4$ $\Rightarrow (a^2bc)(ab^2c)(abc^2) = 2^4 \times 3^4 \times 4^4$ $\Rightarrow (abc)^4 = (2 \times 3 \times 4)^4 \Rightarrow abc = 24$ Now, $a^2bc = 2^4$ and $abc = 24 \Rightarrow a = \frac{16}{24} = \frac{2}{3}$ $ab^{2}c = 3^{4}$ and $abc = 24 \Rightarrow b = \frac{81}{21} = \frac{2^{2}}{8}$ $abc^{2} = 4^{4}$ and $abc = 24 \Rightarrow c = \frac{256}{24} = \frac{32}{2}$ 126 (b) Given that $T_p = a + (p - 1)d = q$...(i) And $T_q = a + (q-1)d = p$...(ii) From Eqs. (i) and (ii), we get $d = -\frac{(p-q)}{p-q} = -1$...(iii) On putting the value of *d* in Eq.(i), we get a + (p - 1)(-1) = q $\Rightarrow a = p + q - 1$...(iv) Now, *r*th term is given by AP $T_r = a + (r-1)d = (p+q-1) + (r-1)(-1)$ [from Eqs. (iii) and (iv)] = p + q - r127 **(b)** We know that, $e + e^{-1} = 2 + \frac{2}{2!} + \frac{2}{4!} + \dots \infty$ $\Rightarrow \frac{e^2 + 1 - 2e}{2} = 2\left(\frac{1}{2!} + \frac{1}{4!} + \dots \infty\right)$ $\Rightarrow \frac{(e-1)^2}{2e} = \frac{1}{2!} + \frac{1}{4!} + \dots \infty$ 128 (b)

We have, |a| < 1, |b| < 1 $\therefore |ab| = |a| |b| < 1$ Now, $a(a + b) + a^{2}(a^{2} + b^{2}) + a^{3}(a^{3} + b^{3})$ + … upto ∞ $= [(a^{2} + a^{4} + a^{6} + \dots \text{ to } \infty)] + [(ab + (ab)^{2}]$ $+ (ab)^3 + \cdots \text{to } \infty$ $=\frac{a^2}{1-a^2}+\frac{ab}{1-ab}$ 129 (a) $x(y^3 - 1) = 1 \Rightarrow x = \frac{1}{v^3 - 1} = \frac{1}{k}$ [say] $\Rightarrow k = \frac{1}{r}$ Then, $\frac{2}{x} + \frac{2}{3x^3} + \frac{2}{5x^5} + \ldots = 2k + \frac{2}{3}k^3 + \frac{2}{5x^5}k^3 + \ldots = 2k + \frac{2}{3}k^3 + \frac{2}{$ $\frac{2}{2}k^{5}+..$ $= \log \frac{1+k}{1-k} = \log \left\{ \frac{1+y^3-1}{1-y^3+1} \right\}$ $=\log \frac{y^3}{2-y^3}$ 130 (c) $a_1 a_2 \dots a_n = b_n \left(\frac{a_1 a_2 \dots a_n}{b} \right)$ $=a_nb_n\left(\frac{a_1a_2\dots a_{n-1}}{b_n}\right)$ $= \left[(x)^{\frac{1}{2^{n-1}}} - (y)^{\frac{1}{2^{n-1}}} \right] \left(\frac{a_1 a_2 \dots a_{n-1}}{b} \right)$ $= b_{n-1} \cdot a_{n-1} \left(\frac{a_1 a_2 \dots a_{n-2}}{b_n} \right) = \dots = \frac{x-y}{b_n}$ 131 (d) $: T_n = \frac{5 + (n-1)4}{[3 + (n-1)4]^2 [7 + (n-1)4]^2}$ $=\frac{1}{8}\left\{\frac{1}{(4n-1)^2}-\frac{1}{(4n+3)^2}\right\}$ $\therefore S_n = T_1 + T_2 + \ldots + T_n$ $=\frac{1}{8}\left\{\frac{1}{3^2}-\frac{1}{7^2}+\frac{1}{7^2}\right\}$ $=\frac{1}{11^2}+\frac{1}{11^2}-\ldots+\frac{1}{(4n-1)^2}$ $-\frac{1}{(4n+3)^2}$ $=\frac{1}{8}\left\{\frac{1}{3^2}-\frac{1}{(4n+3)^2}\right\}$ $\Rightarrow S_{\infty} = \frac{1}{8} \left\{ \frac{1}{9} - 0 \right\} = \frac{1}{72}$ 132 (d) Given, a = 7, $ar^{n-1} = 448$ and $S_n =$ $\frac{a(r^{n}-1)}{r-1} = 889$ $\Rightarrow \frac{ar^{n-1}r - a}{r-1} = 889 \Rightarrow \frac{448r - 7}{r-1} = 889$

$$\Rightarrow 448r - 7 = 889(r - 1)$$

⇒ r = 2
133 (b)
Let a the first term and r be the common ratio.
Then,

$$\frac{a}{1-r} = 20 \text{ and } \frac{a^2}{1-r^2} = 100 \qquad \text{[Given]}$$

$$\Rightarrow \frac{(20(1-r))^2}{1-r^2} = 100 \Rightarrow 4 - 4r = 1 + r \Rightarrow r$$

$$= 3/5$$
134 (b)
Since, a, b, c are in HP.

$$\therefore \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \text{ are in AP}$$

$$\Rightarrow \frac{abc}{a}, \frac{abc}{c}, \frac{abc}{c} \text{ are in AP}$$

$$\Rightarrow \frac{b}{bc}, ca, ab \text{ are in AP}$$

$$\Rightarrow \frac{1}{bc}, \frac{1}{ca}, \frac{1}{a} \text{ are in AP}$$

$$\Rightarrow \frac{1}{bc}, \frac{1}{ca}, \frac{1}{a} \text{ are in AP}$$

$$= \frac{12[1 - (i^2)^{2k+1}]}{1 - i^2} = \frac{-1[1 - (-1)^{2k+1}]}{1 + 1}$$

$$= \frac{-[1 - (-1)]}{2} = -1$$
136 (b)
We have,

$$a^x = b, b^y = c \text{ and } c^z = a$$

$$\Rightarrow b = (c^z)^x \qquad [\because b = a^x \text{ and } a = c^z]$$

$$\Rightarrow b = (c^y)^x \qquad [\because c = b^y]$$

$$\Rightarrow b = b^{xyz} \Rightarrow xyz = 1$$
137 (b)
Since, a_1, a_2, ..., a_n are in AP.
Then, a_2 - a_1 = a_3 - a_2 = ... = a_n - a_{n-1} = a_n
Where d is common difference
Now, $\frac{1}{\sqrt{a_2} + \sqrt{a_1}} + \frac{1}{\sqrt{a_3} + \sqrt{a_2}} + \dots + \frac{\sqrt{a_n} - \sqrt{a_{n-1}}}{d}$

$$= \frac{\sqrt{a_2} - \sqrt{a_1}}{d} + \frac{\sqrt{a_3} - \sqrt{a_2}}{\sqrt{a_n} + \sqrt{a_1}}$$

$$= \frac{1}{d} (\sqrt{a_n} - \sqrt{a_1}) \times \frac{\sqrt{a_n} + \sqrt{a_1}}{\sqrt{a_n} + \sqrt{a_1}}$$
138 (c)
Since, n^m + 1 divides 1 + n + n^2 + ... + n^{127}

Therefore, $\frac{1+n+n^2+...+n^{127}}{n^{m}+1}$ is an integer. $\Rightarrow \frac{1-n^{128}}{1-n} \times \frac{1}{n^{m}+1}$ is an integer. $\Rightarrow \frac{(1-n^{64})(1+n^{64})}{(1-n)(n^m+1)}$ is an integer when largest m = 64139 (b) Since, $2 \log_3 (3^{1-x} + 2)^{1/2} = 1 + \log_3 (4 \cdot 3^x - 3^x)^{1/2} = 1 + \log_3 (4 \cdot 3^x)^{1/2} = 1$ 1) $\Rightarrow \log_3(3^{1-x} + 2) = \log_3 3 + \log_3(4.3^x - 1)$ $\Rightarrow 3^{1-x} + 2 = 3(4.3^x - 1)$ $\Rightarrow 3.3^{-x} + 2 = 12.3^{x} - 3$ Let $3^x = t$ $\therefore \frac{3}{t} + 2 = 12t - 3$ $\Rightarrow 12t^2 - 5t - 3 = 0$ $\Rightarrow t = -\frac{1}{3}, \frac{3}{4}$ $\therefore 3^x = \frac{3}{4}$ [: 3^x cannot be negative] $\Rightarrow x = \log_3\left(\frac{3}{4}\right) \Rightarrow x = 1 - \log_3 4$ 140 (c) We have, $\log_5\left(1+\frac{1}{5}\right) + \log_5\left(1+\frac{1}{6}\right)$ $+\log_5\left(1+\frac{1}{7}\right)+\cdots$ $+\log_5\left(1+\frac{1}{624}\right)$ $= \log_5\left(\frac{6}{5} \times \frac{7}{6} \times \frac{8}{7} \times ... \times \frac{625}{624}\right)$ $= \log_5\left(\frac{625}{5}\right) = \log_5 5^3 = 3$ 141 (a) $2\log_e x - \log_e\left\{\left(1 + \frac{1}{x}\right)x\right\} - \log_e\left\{\left(1 - \frac{1}{x}\right)x\right\}$ $= 2\log_e x - \left\{\log_e \left(1 + \frac{1}{x}\right) + \log_e x\right\} \left\{\log_e\left(1-\frac{1}{x}\right)+\log_e x\right\}$ $= -\left\{\log_e\left(1+\frac{1}{x}\right) + \log_e\left(1-\frac{1}{x}\right)\right\} =$ $2\left[\frac{1}{2x^2} + \frac{1}{4x^4} + \dots\right]$ \therefore The coefficients of $x^{-4} = 2 \times \frac{1}{4} = \frac{1}{2}$ 142 (b) If *a*, *b*, *c* are in H.P., then $a^n + c^n > 2b^n \Rightarrow a^5 + c^5 > 2b^5$ 143 (c) Since, $\frac{a+b}{2} = \frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ $\Rightarrow (a+b)(a^{n-1}+b^{n-1}) = 2(a^n+b^n)$

$$\Rightarrow \frac{ab^{n}}{b} + \frac{ba^{n}}{a} = a^{n} + b^{n}$$
$$\Rightarrow a^{n} \left(\frac{a-b}{a}\right) = -b^{n} \left(\frac{b-a}{b}\right)$$
$$\Rightarrow \frac{a^{n}}{b^{n}} = \frac{a}{b} \Rightarrow n = 1$$

144 **(b)**

Taking x as the product of variates x_1, x_2, \dots, x_r corresponding to r set of observations $ie, x = x_1 x_2 \dots x_r$, we have $\log x = \log x_1 + \log x_2 + \dots + \log x_r$ $\Rightarrow \sum \log x = \sum \log x_1 + \sum \log x_2 + \dots$ $+ \sum \log x_r$ $\Rightarrow \frac{1}{n} \sum \log x = \frac{1}{n} \sum \log x_1 + \frac{1}{n} \sum \log x_2 + \dots$ $+ \frac{1}{n} \sum \log x_r$ $\Rightarrow \log G = \log G_1 + \log G_2 + \dots + \log G_r$ $\Rightarrow G = G_1 G_2 \dots G_r$

145 **(a)**

Two digit odd numbers are 11,13,15, ...,99. Clearly, these numbers form an A.P. consisting of 45 terms.

: Required sum
$$=\frac{45}{2}(11+99)=2475$$

146 (a)

$$= \frac{1}{2} \left[1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \dots \right] \\ - \frac{1}{2} \left[\frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} - \frac{1}{7} + \dots \right] \\ = \frac{1}{2} \log_{e} (1 + 1) \\ + \frac{1}{2} \left[-1 \\ + \left\{ 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \right\} \right] \\ = \frac{1}{2} \log_{e} 2 - \frac{1}{2} + \frac{1}{2} \log_{e} (1 + 1) \\ = \log_{e} 2 - \frac{1}{2} \\ \frac{147}{4} (b) \\ \text{We have,} \\ \log_{a} ab = x \\ \Rightarrow \log_{a} a + \log_{a} b = x \\ \Rightarrow \log_{a} a + \log_{a} b = x \\ \Rightarrow \log_{b} a = \frac{1}{x - 1} \\ \text{Now,} \\ \log_{b} ab = \log_{b} a + \log_{b} b = \frac{1}{x - 1} + 1 = \frac{x}{x - 1} \\ \frac{148}{4} (c) \\ \text{We have 1.1! + 2.2! + 3.3! + \dots + n.n! \\ = \sum_{r=1}^{n} r. (r!) = \sum_{r=1}^{n} [(r + 1)r! - r!] \\ = \frac{n}{r} [(r + 1)! - r!] \\ = (2! - 1!) + (3! - 2!) + \dots + [(n + 1)! - n!] \\ = (n + 1)! - 1! = (n + 1)! - 1 \\ \frac{149}{49} (b) \\ \text{We have,} \\ \log_{2}[\log_{2}[\log_{2}[\log_{3}(\log_{3} 3^{2})]] \\ = \log_{2}[\log_{2}[\log_{2}[\log_{3}(\log_{3} 3^{2})]] \\ = \log_{2}[\log_{2}[\log_{2}[\log_{2}(\log_{3} 1 + 1)] \\ = \frac{4n(n + 1)(2n + 1)}{3} \\ \frac{2n(n + 1)(2n + 1)}{3} \\ \frac{151}{4}$$

0

Let the two numbers be a and b, then

$$A = \frac{a+b}{2}, G = \sqrt{ab}, H = \frac{2ab}{a+b}$$

$$\Rightarrow H = \frac{ab}{A} \Rightarrow H = \frac{G^2}{A}$$
152 (c)
Let $S = 1 + \frac{1}{2!} + \frac{1.3}{4!} + \frac{1.3.5}{6!} + \dots \infty$
 $\therefore T_n = \frac{1.3.5....(2n-1)}{(2n)!} \times \frac{2.4....2n}{2.4....2n}$
 $= \frac{(2n)!}{(2n)! 2^n(n)!} = \frac{1}{2^n(n)!}$
 $\therefore S = 1 + \sum T_n = 1 + \frac{1}{2(1)!} + \frac{1}{2^2(2)!} + \dots \infty$
 $= e^{1/2} = \sqrt{e}$
153 (b)
Since, $a_1, a_2, a_3, \dots, a_n$ are in AP.
 $\Rightarrow d = a_2 - a_1 = a_3 - a_2 = \dots = a_n - a_{n-1}$
 $\therefore \sin d (\operatorname{cosec} a_1 \operatorname{cosec} a_2 + \dots + \operatorname{cosec} a_{n-1} \operatorname{cosec} a_n$
 $= \frac{\sin(a_2 - a_1)}{\sin a_1 \sin a_2} + \dots + \frac{\sin(a_n - a_{n-1})}{\sin a_{n-1} \sin a_n}$
 $= \frac{(\sin a_2 \cos a_1 - \cos a_2 \sin a_1)}{\sin a_1 \sin a_2} + \dots + \frac{(\sin a_n \cos a_1)}{\sin a_1 \sin a_2} + \dots + \frac{(\sin a_n \cos a_1)}{\sin a_1 \sin a_2} + \dots + (\cot a_{n-1} - \cot a_n)$
 $= \cot a_1 - \cot a_2$
 $+ (\cot a_2 - \cot a_3) + \dots + (\cot a_{n-1}) - \cot a_n)$
 $= \cot a_1 - \cot a_n$
154 (a)
Given, $S_n = \frac{lr-a}{r-1} = 364$
 $\Rightarrow \frac{3 \times 243 - a}{2} = 364 \Rightarrow a = 1$
Since, $l = ar^{n-1} \Rightarrow 243 = 1(3)^{n-1}$
 $\Rightarrow 3^5 = 3^{n-1} \Rightarrow n = 6$
155 (b)
It is given that
 $a, b, c \text{ are pth, qth, rth terms of a H.P.}$
 $\Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are pth, qth, rth terms of the corresponding A.P.
Let A be its first term and D be the common difference. Then,
 $\frac{1}{a} = A + (p - 1)D$... (ii)
 $\frac{1}{b} = A + (q - 1)D$... (iii)
Subtracting (iii) from (ii), we get
 $\frac{1}{b} - \frac{1}{c} = (q - r)D \Rightarrow bc(q - r) = \frac{c - b}{D}$

Similarly, we have

$$ca(r-p) = \frac{(a-c)}{b} \text{ and } ab(p-q) = \frac{(b-a)}{b}$$

$$\therefore bc(q-r) + ca(r-p) + ab(p-q)$$

$$= \frac{1}{b}(c-b+a-c+b-a) = 0$$

$$\Rightarrow \begin{vmatrix} bc & ca & ab \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix} = 0$$
157 (a)
We have,

$$log(x+z) + log(x-2y+z) = 2 log(x-z)$$

$$\Rightarrow (x+z)(x-2y+z) = (x-z)^{2}$$

$$\Rightarrow (x+z)^{2} - 2 xy - 2 yz = (x-z)^{2}$$

$$\Rightarrow xy + yz = 2 xz$$

$$\Rightarrow \frac{1}{x} + \frac{1}{x} = \frac{2}{y} \Rightarrow x, y, z \text{ are in H.P.}$$
158 (b)
Since x, y, z are three consecutive positive
integers

$$\therefore 2y = x + z$$

$$\Rightarrow 4y^{2} = (x+z)^{2}$$

$$\Rightarrow 4y^{2} = (x-z)^{2} + 4xz$$

$$\Rightarrow 4y^{2} = (-2)^{2} + 4xz$$

$$\Rightarrow 4y^{2} = (1-2)^{2} + 4xz$$

$$\Rightarrow 1 + \frac{1}{2} \log_{e} x + \frac{1}{2} \log_{e} z + \frac{1}{1+2xz} + \frac{1}{3} \left(\frac{1}{1+2xz}\right)^{3}$$

$$+ \cdots$$

$$= \frac{1}{2} \left[\log_{e} x + \log_{e} z + 2 \left\{ \left(\frac{1}{1+2xz}\right)^{3} + \cdots \right\} \right]$$

$$= \frac{1}{2} \left\{ \log_{e} xz + \log_{e} \left(\frac{1+\frac{1}{1+2xz}}{1-\frac{1}{1+2xz}}\right) \right\}$$

$$= \frac{1}{2} \left\{ \log_{e} xz + \log_{e} \left(\frac{1+\frac{1}{1+2xz}}{1-\frac{1}{1+2xz}}\right) \right\}$$

$$= \frac{1}{2} \left\{ \log_{e} xz + \log_{e} \left(\frac{1+\frac{1}{1+2xz}}{1-\frac{1}{1+2xz}}\right) \right\}$$

$$= \frac{1}{2} \log_{e} (1+xz) = \frac{1}{2} \log_{e} y^{2} \quad [From (i)]$$

$$= \log_{e} y$$
160 (c)

$$1 + \frac{(a+bx)}{1!} + \frac{(a+bx)^{2}}{2!} + \frac{(a+bx)^{3}}{3!}$$

$$= \cdots \infty = e^{a+bx}$$

$$\therefore \text{ Coefficient of } x^{n} \text{ in } e^{a}e^{bx} = e^{a} \cdot \frac{(b)^{n}}{n!}$$

si

Since,
$$\frac{2}{3}$$
, k and $\frac{5}{8}$ are in AP.
 $\therefore 2k = \frac{2}{3} + \frac{5}{8} \Rightarrow k = \frac{31}{48}$
163 (c)

Since, $\log(1+x) - \log(1-x)$ $= 2 \left[x + \frac{x^3}{3} + \frac{x^5}{5} + \dots \infty \right]$ Put $x = \frac{1}{2}$ on both sides, we get $\log\left(\frac{3}{2}\right) - \log\left(\frac{1}{2}\right)$ $=2\left(\frac{1}{2}+\frac{1}{3}\cdot\frac{1}{2^{3}}+\frac{1}{5}\cdot\frac{1}{2^{5}}+\ldots\infty\right)$ $\Rightarrow \log 3 = 1 + \frac{1}{3} \cdot \frac{1}{4} + \frac{1}{5} \cdot \frac{1}{4^2} + \dots$ 164 (a) Let $f(x) = Ax^2 + Bx + C$ $\therefore f(1) = A + B + C$ and f(-1) = A - B + C:: f(1) = f(-1) $\Rightarrow A + B + C = A - B + C$ $\Rightarrow B = 0$ $\therefore f(x) = Ax^2 + C$ $\Rightarrow f'(x) = 2Ax$ \Rightarrow f'(a) = 2Aa, f'(b) = 2Ab and f'(c) = 2AcAlso, *a*, *b*, *c* are in AP \therefore 2Aa, 2Ab, 2Ac are in AP \Rightarrow f'(a), f'(b), f'(c) are in AP 165 (c) Here, $T_n = n(n+1)(n+2)$ $= n^3 + 3n^2 + 2n$ $\therefore S_n = \sum T_n$ $= \left[\frac{n(n+1)}{2}\right]^3 + \frac{3n(n+1)(2n+1)}{6} + \frac{2n(n+1)}{2}$ $=\frac{1}{4}n(n+1)(n+2)(n+3)$ 166 (b) Since, $\frac{x+y}{2\sqrt{xy}} = \frac{p}{a} \Rightarrow \frac{(x+y)^2}{4xy} = \frac{p^2}{q^2}$...(i) On subtracting both sides by1, we get $\frac{(x-y)^2}{4xy} = \frac{p^2 - q^2}{q^2} \dots (ii)$ From Eqs. (i) and (ii), we get $\left(\frac{x+y}{x-v}\right)^2 = \frac{p^2}{p^2 - q^2} \Longrightarrow \frac{x+y}{x-y} = \frac{p}{\sqrt{p^2 - q^2}}$ $\Rightarrow \frac{2x}{2y} = \frac{p + \sqrt{p^2 - q^2}}{n - \sqrt{n^2 - q^2}}$

[by componendo-dividendo rule] $\therefore x; y = (p + \sqrt{p^2 - q^2}); (p - \sqrt{p^2 - q^2})$ 167 (b) We know that $AM > GM \Rightarrow \frac{a+b}{2} > \sqrt{ab} \Rightarrow a+b > 2\sqrt{ab}$ 168 (b) The general term is $T_n = \frac{\frac{n}{2} \cdot \frac{n+1}{2}}{1^3 + 2^3 + 3^3 + \dots + n^3}$ $=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$ $\therefore S_n = 1 - \frac{1}{n+1} = \frac{n}{n+1}$ 169 (b) We have, $(666 \dots 6) = 6 + 6.10 + 6.10^2 + \dots + 6.10^{n-1}$ $=\frac{2}{2}(10^n-1)$ n - digits $\therefore (666 \dots 6)^2 = \frac{4}{9} (10^n - 1)^2$ Similarly, we have $(888 \dots 8) = \frac{8}{9}(10^n - 1)$ $\therefore (66 \dots 6)^2 + (888 \dots 8)$ $=\frac{4}{9}(10^n-1)^2+\frac{8}{9}(10^n-1)$ n - digits n - digits $\Rightarrow (66 \dots 6)^2 + (888 \dots 8) = \frac{4}{9}(10^{2n} - 1)$ n - digits n - digits170 (b) We have. $S_n = (2-1) + (2-\frac{1}{2}) + (2-\frac{1}{2}) + \dots + (2-\frac{1}{n})$ $\Rightarrow S_n = 2n - H_n$ 172 (b) Here, a = 1, $r = \frac{1}{5}$, d = 3 $\therefore S_n = \frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2}$ $-\frac{\{a+(n-1)d\}r^n}{1-r}$ $\therefore S_n = \frac{1}{1 - \frac{1}{5}} + \frac{3 \cdot \frac{1}{5} \left[1 - \left(\frac{1}{5}\right)^{n-1} \right]}{\left(1 - \frac{1}{5}\right)^2}$ $-\frac{\{1+(n-1)3\}}{1-\frac{1}{2}}\left(\frac{1}{5}\right)^n$

$$= \frac{5}{4} + \frac{15}{16} \left(1 - \frac{1}{5^{n-1}}\right) - \frac{1}{4} \cdot \frac{(3n-2)}{5^{n-1}}$$
But, $S_n = l + \frac{15}{16} \left(1 - \frac{1}{5^{n-1}}\right) - \frac{(3n-2)}{4.5^{n-1}}$
 $\therefore l = \frac{5}{4}$
173 (b)
 $0.5737373 = 0.\overline{573}$
 $0.\underline{x} + \underline{y}$
 1 term 2 term
 $\therefore s = \frac{XY \cdot X}{2} - \frac{9}{2 \cdot 0} = \frac{573 - 5}{990} = \frac{568}{990} = \frac{284}{495}$
174 (b)
Since, $y^2 = xz$...(i)
Now, $a^x = b^y = c^z = m$ [say]
 $\Rightarrow x \log_e a = y \log_e b = z \log_e c = \log_e m$
 $\Rightarrow x \log_e a = \log_e m, y \log_e b$
 $= \log_e m, z \log_e c = \log_e m$
 $\Rightarrow x \log_e a = \log_e m, y \log_e b$
 $= \log_e m, z \log_e c = \log_e m$
From Eq. (i),
 $(\log_b m)^2 = \log_a m \log_c m$
 $\Rightarrow \log_b a = \log_c b$
175 (d)
Since, $ar^{n-1} = ar^n + ar^{n+1}$
 $\Rightarrow \frac{1}{r} = 1 + r \Rightarrow r^2 + r - 1 = 0$
 $\Rightarrow r = \frac{\sqrt{5} - 1}{2} \qquad [\because r \neq \frac{-\sqrt{5} - 1}{2}]$
176 (c)
Consider three numbers $\log_2 3, \log_2 6$ and $\log_2 12$.
We have,
 $\log_2 6 = \log_2(3 \times 2)$
 $= \log_2 3 + \log_2 2 = 1 + \log_2 3$
And, $\log_2 12 = \log_2(2^2 \times 3) = \log_2 3 + 2\log_2 3 + 2\log_2 2 + 2\log_2 3$
 $\therefore \log_2 3, 1 + \log_2 3 and 2 + \log_2 3 are in A.P.$
 $\Rightarrow \log_3 2, \log_6 2, \log_{12} 2 are in M.P.$
 $\Rightarrow \log_3 2, \log_6 2, \log_{12} 2 are in M.P.$
 $\Rightarrow \log_3 2, \log_6 2, \log_{12} 2 are in M.P.$

 $\therefore q = \frac{p+r}{2} \quad \dots \dots (i)$ $\therefore \text{ The roots of the equation } px^2 + qx + r = 0 \text{ are real.}$

$$\therefore \frac{2 S_1}{n_1} (n_2 - n_3) + \frac{2 S_2}{n_2} (n_3 - n_1) + \frac{2 S_3}{n_3} (n_1 - n_2)$$

$$= \{2 a + (n - 1) d\} (n_2 - n_3)$$

$$+ \{2 a + (n_2 - 1) d\} (n_3 - n_1)$$

$$+ \{2 a + (n_3 - 1) d\} (n_1 - n_2)$$

$$= 0$$

182 **(a)**

Here,
$$a = 0.9 = \frac{9}{10}$$
 and $r = \frac{1}{10} = 0.1$
 $\therefore S_{100} = a \left(\frac{1 - r^{100}}{1 - r} \right)$
 $= \frac{9}{10} \left(\frac{1 - \frac{1}{10^{100}}}{1 - \frac{1}{10}} \right) = 1 - \left(\frac{1}{10^{100}} \right)$

183 (c)

Here,
$$T_n = \frac{1+2+3+...+n}{1^3+2^3+3^3+...+n^3} = \frac{\Sigma n}{\Sigma n^3}$$

$$= \frac{n(n+1)/2}{\{n(n+1)/2\}^2} = \frac{2}{n(n+1)}$$

$$= 2\left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$\therefore S_n = \Sigma T_n$$

$$= 2\left(\frac{1}{1} - \frac{1}{2}\right) + 2\left(\frac{1}{2} - \frac{1}{3}\right) + ... + 2\left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 2\left(1 - \frac{1}{n+1}\right) = 2 - \frac{2}{n+1}$$

$$\leq 2 \quad \left[\because \frac{2}{n+1} \le 1\right]$$
(d)

184 **(d)**

We have, $\log_4(3x^2 + 11x) > 1$ $\Rightarrow 3x^2 + 11x > 4$ $\Rightarrow 3x^2 + 11x - 4 > 0 \Rightarrow (x + 4)(3x - 1) > 0 \Rightarrow$ $x < -4 \text{ or } x > \frac{1}{3}$ But, $\log_4(3x^2 + 11x)$ is defined for $3x^2 + 11x > 0$ i. e. for x > 0 or $x < -\frac{11}{3}$ Hence, $x \in (-\infty, -4) \cup (1/3, \infty)$ 185 **(b)**

Let *a* be the first term and *R* be the common ratio of the given G.P. Then, $x = a R^{p-1}$, $y = a R^{q-1}$, $z = a R^{r-1}$

$$x^{q-r}y^{r-p}z^{p-q} = a^{q-r+r-p+p-q}R^{(p-1)(q-r)+(q-1)(r-p)+(r-1)(p-q)} = a^{0}R^{0} = 1$$

186 **(a)**

We have, $5^{3x^{2} \log_{10} 2} = 2^{\left(x + \frac{1}{2}\right) \log_{10} 25}$ $\Rightarrow 5^{3x^{2} \log_{10} 2} = 2^{2\left(x + \frac{1}{2}\right) \log_{10} 5}$ $\Rightarrow 5^{\log_{10} 2^{3x^{2}}} = 2^{\log_{10} 5^{2x+1}}$

$$\Rightarrow (2^{3x^2})^{\log_{10} 5} = 2^{\log_{10} 5^{2x+1}} [\because x^{\log_a y}]$$

= $y^{\log_a x}$]
$$\Rightarrow 3x^2 \cdot \log_{10} 5 = \log_{10} 5^{2x+1}$$

$$\Rightarrow 5^{3x^2} = 5^{2x+1}$$

$$\Rightarrow 3x^2 = 2x + 1 \Rightarrow 3x^2 - 2x - 1 = 0 \Rightarrow x$$

= $1, -\frac{1}{3}$
187 (c)
We have,
 $(x + 1)^{-1}(x + 1)^{2} + \frac{1}{2}(x + 1)^{3} + \frac{1}{2}(x + 1)^{4}$

$$e^{(x-1)-\frac{1}{2}(x-1)^2+\frac{1}{3}(x-1)^3-\frac{1}{4}(x-1)^4+\cdots}$$

= $e^{\log\{1+(x-1)\}} = e^{\log x} = x$

188 **(b)**

$$e^{e^{x}} = 1 + \frac{e^{x}}{1!} + \frac{e^{2^{x}}}{2!} + \dots$$

$$= 1 + \frac{1}{1!} \left(1 + x + \frac{x^{2}}{2!} + \dots \right)$$

$$+ \frac{1}{2!} \left(1 + \frac{2x}{1!} + \frac{(2x)^{2}}{2!} + \dots \right) + \dots$$

$$\therefore e^{e^{x}} = \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots \right)$$

$$+ x \left(\frac{1}{1!} + \frac{2}{2! \cdot 1!} + \dots \right) + \dots$$

∴ *a*₀ = *e* 189 **(b)**

We have,

1

$$\log\left(\frac{1+x+x^{2}+x^{3}}{1-x^{4}}\right) = \log(1-x) - \log(1-x^{4})$$
$$= -\sum_{r=1}^{\infty} \frac{x^{r}}{r} + \sum_{r=1}^{\infty} \frac{x^{4r}}{r}$$

١

When *n* is odd, there is no term in the second series containing x^n . Therefore, the coefficient of x^n is zero in the second series, and in the first series the coefficient of x^n is -1/nHence, when *n* is odd, we have

Coefficient of $x^n = -\frac{1}{n} + 0 = -\frac{1}{n}$

190 **(a)**

Let two numbers be p and Q.

$$\therefore \text{Given}, \frac{2PQ}{P+Q} = 14\frac{2}{5} = \frac{72}{5} \dots \text{(i)}$$
And $\sqrt{PQ} = 24 \Rightarrow PQ = 576 \dots \text{(ii)}$
From Eq.(i),
 $P + Q = \frac{10PQ}{72}$
 $\Rightarrow P + Q = \frac{10 \times 576}{72}$
 $= 80 [from Eq.(ii)] \dots \text{(iii)}$

Now, $(P - Q)^2 = (P = Q)^2 - 4PQ$ $= 80^{2} - 4 \times 576 = 4096$ [From Eqs. (ii) and (iii)] $\Rightarrow P - Q = 64$ (iv) On solving Eqs. (iii) and (iv), we get P = 72, Q = 8Hence, greater number is 72. We have,

 $\frac{n}{2}[2 \times 2 + (n-1)3] = 60100$ $\Rightarrow n(3 n + 1) = 120200$ $\Rightarrow 3 n^2 + n - 120200 = 0$ $\Rightarrow 3 n^2 - 600 n + 601 n - 120200 = 0$ $\Rightarrow (n - 200)(3 n + 601) = 0 \Rightarrow n = 200$

192 (c)

The given series is clearly an AG, the corresponding AP is 1 + 4 + 7 + 10 + ... having *n*th term = 3n - 2. and corresponding GP is $1 + \frac{1}{5} + \frac{1}{5^2} + ...$ having *n*th term = $\frac{1}{5^{n-1}}$

Hence, required *n*th term of the series is $\frac{3n-2}{5^{n-1}}$.

193 (c)

$$y = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \log(1+x)$$

$$\Rightarrow 1 + x = e^y = 1 + y + \frac{y^2}{2!} + \dots$$

$$\Rightarrow x = y + \frac{y^2}{2!} + \frac{y^3}{3!} + \dots$$

194 (d)

$$\frac{a + (a + 1) + (a + 2) + \dots + (a + 6)}{7} = m$$

$$\Rightarrow 7a + 21 = 7m$$

$$\Rightarrow a + 3 = m$$

$$\therefore \frac{(a + 2) + (a + 3) + (a + 4) + \dots + (a + 1)}{11}$$

$$= \frac{11a + 77}{11}$$

$$= a + 7$$

$$= m - 3 + 7$$

$$= m + 4$$

P5 (d)
We have,

$$= \log 2 + \log\left(\frac{1+\frac{1}{5}}{1-\frac{1}{5}}\right) \left[\because \log\left(\frac{1+x}{1-x}\right)\right]$$
$$= 2\left(x+\frac{x^3}{3}+\frac{x^5}{5}-\cdots\right)$$
$$= \log 2 + \log\left(\frac{3}{2}\right) = \log 3$$

196 (d)

197

Given that, $a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$ $\Rightarrow (a_1 + a_{24} + (a_5 + a_{20}) + (a_{10} + a_{15}) = 225$ $\Rightarrow 3(a_1 + a_{24}) = 225$ $\Rightarrow a_1 + a_{24} = 75$...(i)

(:: In an AP the sum of the terms equidistant from the beginning and the end is same and is equal to the sum of the first and last term)

$$\therefore a_1 + a_2 + \dots + a_{24} = \frac{n}{2}[a+l]$$

= $\frac{24}{2}(a_1 + a_{24})$
= $12 \times 75 = 900$ [from Eq. (i)]
(b)

Since, x, y, z are in GP.

$$\therefore y^{2} = xz$$

$$\Rightarrow 2 \log y = \log x + \log z$$

$$\Rightarrow 2(\log y + 1) = (1 + \log x) + (1 + \log z)$$

$$\Rightarrow 1 + \log x, 1 + \log y, 1 + \log z \text{ are in AP}$$

$$\Rightarrow \frac{1}{1 + \log x}, \frac{1}{1 + \log y}, \frac{1}{1 + \log z} \text{ are in HP.}$$
198 (a)
We have,

$$\log\{(1 + x)^{1 + x} \cdot (1 - x)^{1 - x}\}$$

$$= (1 + x) \log(1 + x) + (1 - x) \log(1 - x)$$

$$= \log(1 + x) + \log(1 - x)$$

$$+ x\{\log(1 + x) - \log(1 - x)\}$$

$$= \log(1 - x^{2}) + x \log\left(\frac{1 + x}{1 - x}\right)$$

$$= -\left(x^{2} + \frac{x^{4}}{2} + \frac{x^{6}}{3} + \cdots\right)$$

$$+ 2x\left(x + \frac{x^{3}}{3} + \frac{x^{5}}{5} + \cdots\right)$$

$$= 2\left\{\left(x^{2} - \frac{x^{2}}{2}\right) + \left(\frac{x^{4}}{3} - \frac{x^{4}}{4}\right) + \left(\frac{x^{6}}{5} - \frac{x^{6}}{6}\right) + \cdots\right\}$$

$$= 2\left\{\frac{x^{2}}{1.2} + \frac{x^{4}}{3.4} + \frac{x^{6}}{5.6} + \cdots\right\}$$

199 **(b)**

Let *a* be the first term and *r* be the common ratio of the G.P. *a*₁, *a*₂, *a*₃, ... We have, $a_5 = 5 \Rightarrow ar^4 = 2$ Now. $a_1 a_2 a_3 \dots a_9 = a \ ar \ ar^2 \dots ar^8$

 $\Rightarrow a_1 a_2 a_3 \dots a_9 = a^9 r^{1+2+\dots+8}$ $\Rightarrow a_1 a_2 a_3 \dots a_9 = a^9 r^{36} = (ar^4)^9 = 2^9 = 512$ 200 (a) We have, $\log_3 x \times \log_x 2x \times \log_{2x} y = \log_x x^2$ $\Rightarrow \log_3 y = 2 \log_x x \Rightarrow y = 3^2 = 9$ 201 (c) It is given that *a*, *b*, *c* are in H.P. $\therefore \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \text{ are in A.P.}$ $\Rightarrow \frac{a+b+c}{a}, \frac{a+b+c}{b}, \frac{a+b+c}{c} \text{ are in A.P.}$ $\Rightarrow 1 + \frac{b+c}{c}, 1 + \frac{a+c}{b}, 1 + \frac{a+b}{c}$ are in A.P. $\Rightarrow \frac{b+c}{a}, \frac{a+c}{b}, \frac{a+b}{c}$ are in A.P. $\Rightarrow \frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in H.P. 202 (d *m*th mean between *a*, 2*b* is $a + \frac{m(2b-a)}{n+1}$ and *m*th mean between 2*a*, *b* is $2a + \frac{m(b-2a)}{n+1}$ According to given condition $a + \frac{m(2b-a)}{n+1} = 2a + \frac{m(b-2a)}{n+1}$ $\Rightarrow m(2b-a) = a(n+1) + m(b-2a)$ \Rightarrow a(n-m+1) = bm $\Rightarrow \frac{a}{b} = \frac{m}{n - m + 1}$ 203 (c) We have, $\lim_{n\to\infty}S_n=\sum^{\infty}\frac{n^2(n+1)}{n!}$ $\Rightarrow \lim_{n \to \infty} S_n = \sum_{n=1}^{\infty} \frac{n^3}{n!} + \sum_{n=1}^{\infty} \frac{n^2}{n!} = 5e + 2e = 7e$ 204 (a) Let the numbers are *a* and *b* $\therefore \sqrt{ab} = 10$ $\Rightarrow ab = 100$...(i) and $\frac{2ab}{a+b} = 8$ $\Rightarrow \frac{200}{a+b} = 8$ $\Rightarrow a + b = 25$...(ii) On solving Eqs. (i) and (ii), we get a = 5, b = 20205 (c) Let *n*th term of GP is 2187. : $3(\sqrt{3})^{n-1} = 2187 \Rightarrow 3^{(n/2-1/2+1)} = 3^7$ $\Rightarrow \frac{n}{2} + \frac{1}{2} = 7 \Rightarrow n = 13$ 206 (b)

Required two digit numbers are 12, 19, ...,96 which leave a remainder 5 when they are divided by 7. Here, a = 12, d = 7, l = 96 $\therefore \quad l = a + (n - 1)d$ $\Rightarrow \quad 96 = 12 + 7(n - 1)$ $\Rightarrow \quad n = 13$ $\therefore \quad S_{13} = \frac{13}{2}(12 + 96) = \frac{13 \times 108}{2} = 702$ 207 (a) Let T_n denote the n^{th} term of the given series. We have, $T_n = \frac{n^2(n+1)^2}{n!} = \frac{n^4}{n!} + 2 \cdot \frac{n^3}{n!} + \frac{n^2}{n!}$ \therefore Sum of the series $= \sum_{n=1}^{\infty} \frac{n^4}{n!} + 2 \sum_{n=1}^{\infty} \frac{n^3}{n!} + \sum_{n=1}^{\infty} \frac{n^2}{n!} = 15e + 2(5e) + 2e$

 $= \sum_{n=1}^{\infty} \frac{n^4}{n!} + 2\sum_{n=1}^{\infty} \frac{n^3}{n!} + \sum_{n=1}^{\infty} \frac{n^2}{n!} = 15e + 2(5e) + 2e$ $= 27 \ e$

208 (c)

Sum of the integers which are divided by both 3 and 5

$$= 15 + 30 + 45 + \dots + 90$$
$$= \frac{6}{2}(15 + 90) = 315$$

209 (a)

Since *H* is the harmonic mean between *a* and *b* $\therefore H = \frac{2 ab}{a+b}$ $\Rightarrow \frac{H}{a} = \frac{2 b}{a+b} \text{ and } \frac{H}{b} = \frac{2 a}{a+b}$ $\Rightarrow \frac{H}{a} + \frac{H}{b} = \frac{2 b}{a+b} + \frac{2 a}{a+b} = \frac{2(a+b)}{a+b} = 2$ 210 **(b)** Given that, $a_1 = a_2 = 2$ and $a_n = a_{n-1} - 1$

$$\therefore a_{3} = a_{2} - 1 = 2 - 1 = 1$$

$$a_{4} = a_{3} - 1 = 1 - 1 = 0$$

$$a_{5} = a_{4} - 1 = 0 - 1 = -1$$
211 (a)
$$0.234 = 0.2343434 \dots$$

$$= 0.2 + 0.034 + 0.00034 + \dots$$

$$= \frac{2}{10} + 34 \left[\frac{1}{10^{3}} + \frac{1}{10^{5}} + \dots\right]$$

$$= \frac{2}{10} + 34 \times \frac{1}{1000} \times \frac{100}{99}$$

$$= \frac{2}{10} + \frac{34}{990} = \frac{232}{990}$$
212 (a)
We have,
$$\sqrt{\log_{0.5}^{2} 4} = \sqrt{(\log_{0.5} 4)^{2}}$$

$$= \log_{2^{-1}} 4 = \log_{2^{-1}} 2^2 = \frac{2}{-1} \log_2 2 = -2$$

214 (b)

We have, 4, 14, 30, 52, 80, 114, ... as the given sequence. The differences of the successive terms form an A.P. So, let its n^{th} term be $a_n = an^2 + bn + c$ Putting n = 1, 2, 3, we get a + b + c = 4, 4a + 2b + c = 14 and, 9a + 3b + c = 30Solving these equation, we get a = 3, b = 1 and c = 0 $\therefore a_n = 3n^2 + n$ 215 (d) Given, $v = 3x + 6x^2 + 10x^3 + ...$ $\therefore 1 + y = 1 + 3x + 6x^2 + 10x^3 + \dots$ $\Rightarrow 1 + \gamma = (1 - x)^{-3}$ $\Rightarrow 1 - x = (1 + y)^{-1/3}$ $\Rightarrow x = 1 - (1 + y)^{-1/3}$ 216 **(b)** We have, $\log_a(1+x) = \log_e(1+x) \cdot \log_a e$ $\log_a(1+x) = \log_a e \left\{ \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n!} \right\}$ $\therefore \text{ Coefficient of } x^n \text{ in } \log_a(1+x) = \frac{(-1)^{n-1}}{n!} \log_a e^{-1}$ 217 (a) We have,

$$a_n = 1 + \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4} + \dots + \frac{1}{7}\right) + \left(\frac{1}{8} + \dots + \frac{1}{15} + \dots + \left(\frac{1}{2^{n-1}} + \dots + \frac{1}{2^n - 1}\right)\right)$$

$$\Rightarrow a_n < 1 + \frac{2}{2} + \frac{4}{4} + \frac{8}{8} + \dots + \frac{2^{n-1}}{2^{n-1}}$$

$$\Rightarrow a_n < n$$

$$a_{100} < 100$$

218 (c)

Now,
$$e^2 = 1 + \frac{2}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots$$

and $e^{-2} = 1 - \frac{2}{1!} + \frac{2^2}{2!} - \frac{2^3}{3!} + \dots$
 $\Rightarrow e^2 + e^{-2} = 2\left[1 + \frac{2^2}{2!} + \frac{2^4}{4!} + \dots\right]$
 $\Rightarrow \frac{e^2 + e^{-2}}{2} - 1 = \left[\frac{2^2}{2!} + \frac{2^4}{4!} + \dots\right]$
 $\Rightarrow \frac{e^4 + 1 - 2e^2}{2e^2} = \left[\frac{2^2}{2!} + \frac{2^4}{4!} + \dots\right]$
 $\Rightarrow \frac{(e^2 - 1)^2}{2e^2} = \frac{2^2}{2!} + \frac{2^4}{4!} + \dots$

219 (a) Let the numbers in GP be $\frac{a}{r}$, *a*, *ar* Given, $\frac{a}{r} + a + ar = 38$...(i) and $\frac{a}{r} . a . ar = 1728$ $\Rightarrow a^3 = 1728 \Rightarrow a = 12$...(ii) \therefore From Eq. (i) $a\left(\frac{1}{r}+1+r\right) = 38$ $\Rightarrow \frac{1}{r} + 1 + r = \frac{38}{12}$ [from Eq. (ii)] $\Rightarrow 6r^2 - 13r + 6 = 0$ \Rightarrow $(3r-2)(2r-3) = 0 \Rightarrow r = \frac{2}{3} \text{ or } \frac{3}{2}$ Hence, required GP is 18, 12, 8 or 8, 12, 18 \therefore Greatest number is 18. 220 (c) We have, $\frac{\log_2 a}{3} = \frac{\log_2 b}{4} = \frac{\log_2 c}{5\lambda} = k(\operatorname{say})$ $\Rightarrow a = 2^{3k}, b = 2^{4k}$ and $c = 2^{5\lambda k}$ $\therefore a^{-3}b^{-4}c = 1$ $\Rightarrow 2^{-9k} \times 2^{-16k} \times 2^{5\lambda k} = 1$ $\Rightarrow 2^{5\lambda k - 25k} = 2^0 \Rightarrow 5\lambda k - 25k = 0 \Rightarrow \lambda = 5$ 221 (c) The *n*th term of 1,3,6,10, ... is $\frac{n(n+1)}{2}$ and so $(n-1)^{\text{th}}$ term of 1,3,6,10, ... is $\frac{n(n-1)}{n}$ Since terms in the *n*th group are $\left\{\frac{n(n-1)}{2}+1\right\}^{3}$, $\left\{\frac{n(n-1)}{2}\right\}$ $+2\Big\}^3, \dots, \Big\{\frac{n(n+1)}{2}\Big\}^3$ **Required** sum = Sum of the cubes of first $\frac{n(n+1)}{2}$ natural numbers - Sum of the cube of first $\frac{n(n-1)}{2}$ natural numbers $=\frac{\left\{\frac{n(n+1)}{2}\right\}^{2}\left\{\frac{n(n+1)}{2}+1\right\}^{2}}{4}-\frac{\left\{\frac{n(n-1)}{2}\right\}^{2}\left\{\frac{n(n-1)}{2}+1\right\}^{2}}{4}$ $=\frac{n^3}{9}(n^2+1)(n^2+3)$ 222 (b) Let T_n be the n^{th} term of the given series We have, $T_n = \frac{1^2 + 2^2 + \dots + n^2}{n!}$ $\Rightarrow T_n = \frac{n(n+1)(2n+1)}{6.n!}$

 $\Rightarrow T_n = \frac{1}{6} \left\{ \frac{2n^3 + 3n^2 + n}{n!} \right\}$

$$\Rightarrow T_n = \frac{1}{6} \left\{ 2 \cdot \frac{n^2}{n!} + 3 \cdot \frac{n^2}{n!} + \frac{n}{n!} \right\}$$

$$\therefore \text{ Sum of the series} = \frac{1}{6} \left\{ 2 \sum_{n=1}^{\infty} \frac{n^3}{n!} + 3 \sum_{n=1}^{\infty} \frac{n^2}{n!} + \sum_{n=1}^{\infty} \frac{n}{n!} \right\}$$

Sum of the series $= \frac{1}{6} \left\{ 2 \times 5e + 3 \times 2e + e \right\}$
 $= \frac{17e}{6}$
223 (d)

$$\sum_{k=1}^{\infty} \frac{1}{k!} \left(\sum_{n=1}^{k} 2^{n-1} \right) = \sum_{k=1}^{\infty} \frac{2^k - 1}{k!}$$

$$\sum_{k=1}^{\infty} \frac{2^k}{k!} - \sum_{n=1}^{\infty} \frac{1}{k!}$$

 $= e^2 - 1 - (e - 1) = e^2 - e$
224 (c)
We have,
 $a_n = S_n - S_{n-1}$ for all $n \ge 2$
 $\Rightarrow a_n = \frac{1}{6} [2\{n^3 - (n-1)^3\} + 9\{n^2 - (n-1)^2\} + 13\{n - (n-1)\}]$
 $\Rightarrow a_n = (n+1)^2$
Also, $a_1 = S_1 = 4 = (1+1)^2$
 $\therefore a_r = (r+1)^2$ for $r = 1, 2, ...$
 $\Rightarrow \sum_{r=1}^n \sqrt{a_r} = \sum_{r=1}^n (r+1) = \frac{n}{2}(n+3)$
225 (c)
Given $x = 1 + a + a^2 + ... \infty = \frac{1}{1-a}$
 $y = 1 + b + b^2 + ... \infty = \frac{1}{1-b}$
and $z = 1 + c + c^2 + ... \infty = \frac{1}{1-c}$
Now, a, b, c are in AP.
 $\Rightarrow 1 - a, 1 - b, 1 - c$ are in AP.
 $\Rightarrow \frac{1}{1-a} \cdot \frac{1}{1-b} \cdot \frac{1}{1-c}$ are in HP.
 $\Rightarrow x, y, z$ are in HP
226 (c)
Clearly, it is a G.P. with first term $a = \frac{10}{9}$ and
common ration $r = \sqrt{\frac{3}{5}}$
 $\therefore T_5 = ar^4 = \frac{10}{9} \times \left(\sqrt{\frac{3}{5}} \right)^4 = \frac{10}{9} \times \frac{9}{25} = \frac{2}{5}$
227 (b)
Since $x, |x + 1|$ and $|x - 1|$ are in A.P. Therefore

Since x, |x + 1| and |x - 1| are in A.P. Therefore 2|x + 1| = x + |x - 1|Now, three cases arise

<u>CASE I</u> When $x \ge 1$ In this case, we have |x + 1| = x + 1 and |x - 1| = x - 1 $\therefore 2|x+1| = x + |x-1|$ $\Rightarrow 2(x+1) = x + (x-1) \Rightarrow 2 = -1$, which is absurd <u>CASE II</u> *When* x < -1In this case, we have |x + 1| = -(x + 1) and |x - 1| = -(x - 1) $\therefore 2|x+1| = x + |x-1|$ $\Rightarrow -2(x+1) = x - (x-1) \Rightarrow -2x - 2 = 1 \Rightarrow x$ $=-\frac{3}{2}$ Thus, the three terms of the A.P. are $-\frac{3}{2}, \frac{1}{2}, \frac{5}{2}$ Clearly, common difference of the A.P. is 2 and first term is -3/2: Sum of 20 terms = $\frac{20}{2} \left\{ 2 \times -\frac{3}{2} + (20 - 1) + 2 \right\}$ = 10[-3 + 38] = 350CASE III *When* $-1 \le x < 1$ In this case, we have |x + 1| = x + 1 and |x - 1| = -(x - 1) $\therefore 2|x+1| = x + |x-1|$ $\Rightarrow 2(x+1) = x - (x-1) \Rightarrow 2x + 2 = 1 \Rightarrow x$ $=-\frac{1}{2}$ So, first three terms of the A.P. are $-\frac{1}{2}$, $\frac{1}{2}$ and $\frac{3}{2}$ In this case, we have First term = $-\frac{1}{2}$ and, Common difference = 1 : Sum of 20 terms = $10\left\{2 \times -\frac{1}{2} + (20 - 1) \times 1\right\}$ = 180228 (c) Let the numbers be *a*, *ar* the ar^2 . Then the number obtained by adding the middle number are a + ar, 2ar, $ar + ar^2$ Clearly, these numbers are neither in A.P. nor in G.P. Now, $\frac{1}{2ar} - \frac{1}{a+ar} = \frac{a-ar}{2ar(a+ar)} = \frac{1-r}{2ar(1+r)}$

and,
$$\frac{1}{ar+ar^2} - \frac{1}{2ar} = \frac{ar-ar^2}{2ar(ar+ar^2)}$$
$$= \frac{1-r}{2ar(1+r)}$$

We have,

 $\frac{1}{2ar} - \frac{1}{a + ar} = \frac{1}{ar + ar^2} - \frac{1}{2ar}$ So, a + ar, 2ar, $ar + ar^2$ are in H.P. 231 (b) We have, $\log(x + y) = \log 2 + \frac{1}{2}\log x + \frac{1}{2}\log y$ $\Rightarrow \log(x + y)^2 = \log(4xy)$ $\Rightarrow (x + y)^2 = 4xy \Rightarrow (x - y)^2 = 0 \Rightarrow x = y$ 232 (b) We have, $x^{2\log_{10} x} = 1000 \ x$ $\Rightarrow 2 \log_{10} x = \log_x 1000 x$ $\Rightarrow 2\log_{10} x = \log_x 10^3 + \log_x x$ $\Rightarrow 2 \log_{10} x = 3 \log_x 10 + 1$ $\Rightarrow 2y^2 - y - 3 = 0$ where $y = \log_{10} x$ $\Rightarrow (2y-3)(y+1) = 0$ $\Rightarrow y = \frac{3}{2}, -1$ $\Rightarrow \log_{10} x = \frac{3}{2}, -1 \Rightarrow x = 10^{3/2}, 10^{-1} \Rightarrow x$ $= 10\sqrt{10}, 10^{-1}$ 233 **(b)** We have, $\log_b a \times \log_c b \times \log_a c$ $= (\log_b a \times \log_c b) \log_a c$ $= \log_{c} a \times \log_{a} c = \log_{a} a = 1$ 234 **(b)** Suppose that the added number be x, then x + x2, x + 14, x + 62 are in GP. $\therefore (x + 14)^2 = (x + 2)(x + 62)$ $\Rightarrow x^{2} + 196 + 28x = x^{2} + 64x + 124$ \Rightarrow 36 $x = 72 \Rightarrow x = 2$ 235 (c) According to the given condition, $S_{2n} = S_n$ $\Rightarrow \frac{2n}{2} [2 \times 2 + (2n - 1) \times 3]$ $=\frac{n}{2}[2 \times 57 + (n-1) \times 2]$ $\Rightarrow (4 + 6n - 3) = \frac{1}{2}(114 + 2n - 2)$ $\Rightarrow 6n + 1 = 57 + n - 1$ $\Rightarrow 5n = 55$ $\Rightarrow n = 11$ 236 (d) Let $S = \frac{1}{3\times7} + \frac{1}{7\times11} + \frac{1}{11\times15} + \dots \infty$ $=\frac{1}{4}\left[\left\{\frac{1}{3}-\frac{1}{7}\right\}+\left\{\frac{1}{7}-\frac{1}{11}\right\}+\dots\right]$ $=\frac{1}{4}\left[\frac{1}{3}+0\right]=\frac{1}{12}$ 237 (c) Let the first term and the common ratio be *a* and r respectively. Then,

 $a_n = \frac{a_{n+1} + a_{n+2}}{2}$ $\Rightarrow ar^{n-1} = \frac{ar^n + ar^{n+1}}{2}$ $\Rightarrow 2 = r + r^2 \Rightarrow r^2 + r - 2 = 0$ $\Rightarrow (r+2)(r-1) = 0 \Rightarrow r = -2 \quad [\because r \neq 1]$ 238 (a) From symmetry, we observe that S_{50} has 50 terms. First term of *S*₁, *S*₂, *S*₃, *S*₄, ..., *S*₅₀ are 1, 2, 4, 7, ..., 50. Let T_n be the first term of *n*th set. Then $S = T_1 + T_2 + T_3 + \ldots + T_n$ $\Rightarrow S = 1 + 2 + 4 + 7 + 11 + \dots + T_{n-1} + T_n$ or $S = 1 + 2 + 4 + 7 + \dots + T_{n-1} + T_n$ therefore, on subtracting $0 = 1 + [1 + 2 + 3 + 4 + \dots + (T_n - T_{n-1})] - T_n$ or $0 = 1 + \frac{n(n-1)}{2} - T_n$ $\Rightarrow T_n = 1 + \frac{n(n-1)}{2}$ \Rightarrow $T_{50} =$ First term in $S_{50} = 1226$ Therefore, sum of the terms in S_{50} $=\frac{50}{2}[2 \times 1226 + (50 - 1) \times 1]$ = 25(2452 + 49) = 25(2501) = 62525239 (a) Since, *a*, *b*, *c* are in H.P. $\therefore b = \frac{2 ac}{a+c}$ $\Rightarrow \frac{a-b}{b-c} = \frac{a - \frac{2ac}{a+c}}{\frac{2ac}{a-c}} = \frac{a^2 - ac}{ac - c^2} = \frac{a}{c}$ 240 (b) Since, *a*, *b* and *c* are in AP. Let *d* be the common difference. $\therefore a = b - d, b = d, c = b + d$ Also, abc = 4 $\Rightarrow (b-d)d(b+d) = 4$ $\Rightarrow (b^2 - d^2)b = 4$ $\Rightarrow b^3 = 4 + d^2b$ $\Rightarrow b^3 > 4$ $\Rightarrow b \geq (2)^{2/3}$ 241 (a) Let α and β be the roots of equation $x^2 - 18x +$ 9 = 0. \therefore GM of α and $\beta = \sqrt{\alpha\beta} = \sqrt{9} = 3$ 243 (a) We have. $\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = \frac{1/4}{1 - 1/2} = \frac{1}{2}$

let
$$y = 0.2^{\log_{\sqrt{5}}(\frac{1}{2} + \frac{1}{8} + \frac{1}{16} + \dots)}$$
. Then,
 $y = 0.2^{\log_{\sqrt{5}}(\frac{1}{2})} = (\frac{1}{5})^{\log_{\sqrt{5}} 2^{-1}} = 5^{-1x-2\log_{5} 2}$
 $= 5^{\log_{5} 4} = 4$
244 (c)
(32)(32)^{1/6}(32)^{1/36} ... = $32^{1+\frac{1}{8}+\frac{1}{36}+\dots} = \frac{32^{\frac{1}{1-1/6}}}{32^{\frac{1}{21-1/6}}}$
 $= (2^{5})^{6/5} = 64$
245 (c)
We have,
 $\log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $\Rightarrow \log_{4}(2 \times 4 \times 16 \times x) = 6$
 $= (1)$
 $g = (2b - a)b$
 $\Rightarrow y^{2} = (2b^{2} - a^{2}$ [Using (ii)]
 $\Rightarrow x^{2} + y^{2} = 2b^{2} - x^{2}$ [Using (ii)]
 $\Rightarrow x^{2} + y^{2} = 2b^{2} - x^{2}$ [Using (ii)]
 $\Rightarrow x^{2} + y^{2} = 2b^{2} - x^{2}$ [Using (ii)]
 $\Rightarrow x^{2} + y^{2} = 2b^{2} - x^{2}$ [Using (ii)]
 $\Rightarrow x^{2} + y^{2} = 2b^{2} - x^{2}$ [Using (ii)]
 $\Rightarrow x^{2} + y^{2} = 2b^{2} - x^{2}$ [Using (ii)]
 $\Rightarrow x^{2} + y^{2} = 2b^{2} - x^{2}$ [Using (ii)]
 $\Rightarrow x^{2} + y^{2} = 2b^{2} - x^{2}$ [Using (ii)]
 $\Rightarrow x^{2} + y^{2} = 2b^{2} + \frac{1}{2} + \frac{1}{2} \log \left(\frac{a^{n+1}}{b^{n-1}}\right)$
 $= \frac{1}{2} \left[\log a + \log \left(\frac{a^{n}}{b^{n-1}} \right] = \frac{1}{2} \log \left(\frac{a^{n+1}}{b^{n-1}}\right) = \frac{1}{2} \left[\log a + \log \left(\frac{a^{n}}{b^{n-1}} \right] = \frac{1}{2} \log \left(1 - 2x\right) = \frac{1}{2} \left[\frac{3x^{2}}{2} + \frac{(2x)^{3}}{3} + \dots \right]$
 $+ \left[2x + \frac{(2x)^{2}}{2} + \frac{(2x)^{3}}{3} + \dots \right]$

$$= 5x - \frac{5x^{2}}{2} + \frac{35x^{3}}{3} - \dots$$
254 (d)
We have,
 $\log_{7} \{\log_{4}(\sqrt{x+5} + \sqrt{x})\} = 0$
 $\Rightarrow \log_{4}(\sqrt{x+4} + \sqrt{x}) = 1$
 $\Rightarrow \sqrt{x+4} + \sqrt{x} = 4^{1}$
 $\Rightarrow \sqrt{x+4} = 4 - \sqrt{x}$
 $\Rightarrow x + 4 = 16 - 8\sqrt{x} + x \Rightarrow 2\sqrt{x} = 3 \Rightarrow x = \frac{9}{4}$
255 (c)
We have,
 $2^{x} \times 9^{2x+3} = 7^{x+5}$
 $\Rightarrow 2^{x} \times 9^{2x} \times 9^{3} = 7^{x} \times 7^{5}$
 $\Rightarrow \log(2^{x} \times 3^{4x} \times 3^{6}) = \log(7^{x} \times 7^{5})$
 $\Rightarrow x \log 2 + 4 \log 3 - \log 7) = 5 \log 7 - 6 \log 3$
 $\Rightarrow x = \frac{5 \log 7 - 6 \log 3}{\log 2 + 4 \log 3 - \log 7} = \frac{5 \log 7 - 6 \log 3}{\log 162 - \log 7}$
256 (b)
Since, $ar^{4} = 2$
 $\therefore a \times ar \times ar^{2} \times ar^{3} \times ar^{4} \times ar^{5} \times ar^{6}$
 $\times ar^{7} \times ar^{8}$
 $= a^{9}r^{36} = (ar^{4})^{9} = 2^{9} = 512$
257 (b)
Given, $b = \frac{a^{1}}{1!} + \frac{a^{2}}{2!} + \frac{a^{3}}{3} + \dots \infty$
 $\Rightarrow b = -\log(1 - a) \quad [\because |a| < 1]$
 $\Rightarrow e^{-b} = (1 - a)$
 $\Rightarrow a = \frac{b}{1!} - \frac{b^{2}}{2!} + \frac{b^{3}}{3!} - \dots \infty$
 $= \sum_{k=1}^{\infty} \frac{(-1)^{k-1}b^{k}}{k!}$
258 (b)
Let t_{n} be the n^{th} term of the series
 $4 + 11 + 22 + 37 + 56 + \dots$
Since the differences of the successive terms in this series are in A.P. So, let
 $t_{n} = an^{2} + bn + c$
Putting $n = 1,2,3$, we get
 $a + b + c = 4,4a + 2b + c = 11$ and $9a + 3b + c$
 $= 22$
Solving these equations, we obtain
 $a = 2, b = 1$ and $c = 1$
 $\therefore t_{n} = 2n^{2} + n + 1, n = 1,2, \dots$
 \therefore Sum of the series
 $= \sum_{n=1}^{\infty} \frac{2n^{2} + n + 1}{n!}$

$$= 2\sum_{n=1}^{\infty} \frac{n^2}{n!} + \sum_{n=1}^{\infty} \frac{n}{n!} + \sum_{n=1}^{\infty} \frac{1}{n!}$$
$$= 2(2e) + e + (e-1) = 6e - 1$$

259 **(c)**

We have,

$$\frac{a+b}{1-ab}, b, \frac{b+c}{1-bc} \text{ are in A. P.}$$

$$\Rightarrow b - \frac{a+b}{1-ab} = \frac{b+c}{1-bc} - b$$

$$\Rightarrow -\frac{a(b^2+1)}{1-ab} = \frac{c(b^2+1)}{1-bc}$$

$$\Rightarrow -\left(\frac{1-ab}{a}\right) = \frac{1-bc}{c}$$

$$\Rightarrow -\frac{1}{a} + b = \frac{1}{c} - b$$

$$\Rightarrow 2 b = \frac{1}{a} + \frac{1}{c} \Rightarrow a, \frac{1}{b}, c \text{ are in HP.}$$

260 **(b)**

Since, $\log 2$, $\log(2^{n} - 1)$ and $\log(2^{n} + 3)$ are in AP. $\therefore 2 \log(2^{n} - 1) = \log 2 + \log(2^{n} + 3)$ $\Rightarrow (2^{n} - 1)^{2} = 2(2^{n} + 3)$ $\Rightarrow (2^{n} - 5)(2^{n} + 1) = 0$ As 2^{n} cannot be negative hence, $2^{n} - 5 = 0$ $\Rightarrow 2^{n} = 5 \Rightarrow n = \log_{2} 5$

261 **(a)**

We have,

$$1 + \frac{1+a}{2!} + \frac{1+a+a^2}{3!} + \frac{1+a+a^2+a^3}{4!} + \dots \infty$$

$$= \sum_{n=1}^{\infty} \frac{1+a+a^2+\dots+a^{n-1}}{n!}$$

$$= \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{1-a^n}{1-a}\right)$$

$$= \frac{1}{(1-a)} \left\{ \sum_{n=1}^{\infty} \frac{1}{n!} - \sum_{n=1}^{\infty} \frac{a^n}{n!} \right\}$$

$$= \frac{1}{1-a} \{(e-1) - (e^a - 1)\} = \frac{e-e^a}{1-a} = \frac{e^a - e}{a-1}$$

262 **(b)**

Let
$$S_1 = 5 + 9 + 13 + ... + n$$
 terms

$$\Rightarrow S_1 = \frac{n}{2} [2 \times 5 + (n - 1)4] = n(3 + 2n)$$
and $S_2 = 7 + 9 + 11 + ... + 12$ terms

$$= \frac{12}{1} [2 \times 7 + (12 - 1)2] = 6(36)$$

$$= 216$$
Since, $\frac{S_1}{S_2} = \frac{5}{12}$ (given)

$$\Rightarrow \frac{n(3 + 2n)}{216} = \frac{5}{12}$$

$$\Rightarrow 2n^2 + 3n - 90 = 0$$

$$\Rightarrow (2n + 15)(n - 6) = 0$$

 \Rightarrow *n* = 6 (:: *n* cannot be negative) 263 (a) Let $S = 1 + \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^3} + \frac{14}{3^4} + \dots$ $\Rightarrow S - 1 = \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^3} + \frac{14}{3^4} = \dots$...(i) $\Rightarrow \frac{S-1}{3} = \frac{2}{3^2} + \frac{6}{3^3} + \frac{10}{3^4} + \frac{14}{3^5} + \cdots \qquad \dots (ii)$ On subtracting Eq.(ii) from Eq. (i), we get $\frac{2}{3}(S-1) = \frac{2}{3} + \frac{4}{3^2} + \frac{4}{3^3} + \frac{4}{3^4} + \dots$ $\Rightarrow S - 1 = 1 + \frac{2}{3} + \frac{2}{3^2} + \frac{2}{3^3} + \dots$ $\Rightarrow S = 2 + \frac{3}{1 - \frac{1}{2}}$ = 2 + 1 = 3264 **(b)** The *n*th term of the sequence is ...n(n+1)n...321 $= 1 \times 10^{2n} + 2 \times 10^{2n-1} + 3 \times 10^{2n-2} + \dots + n$ $\times 10^{n+1} + (n+1) \times 10^n$ $\times 10^{n-1} + \ldots + 3 \times 10^2 + 2 \times 10^{10}$ +1Let $S = 1 \times 10^{2n} + 2 \times 10^{2n-1} + ... + n \times 10^{n} + 1$ (AG series) $\frac{1}{10} S_1 = 1 \times 10^{2n-1} + \ldots + (n-1) \times 10^{n-1} + n$ $\times 10^n$ On solving, we get $\frac{9}{10}S_1 = 1 \times 10^{2n} + \ldots + 1 \times 10^{n+1} - n \times 10^n$ $S_1 = \frac{10}{9} \left[10^{2n} + 10^{2n-1} + \dots + 10^{n+1} - n \times 10^n \right]$ $S_{1} = \frac{10}{9} \left| \frac{10^{2n} \left(1 - \frac{1}{10^{n}} \right)}{1 - \frac{1}{10^{n}}} - n \times 10^{n} \right|$ $= \left(\frac{10}{9}\right)^{2} \left[10^{2n} \left(1 - \frac{1}{10^{n}}\right) \right] - \left[\left(\frac{10}{9}\right) n \times 10^{n} \right]$ Again, let $S_2 = (n+1) \times 10^n + n \times 10^{n-1} + \ldots + 2 \times 10 + 1$ $\frac{\frac{1}{10}S_2 = (n+1) \times 10^{n-1} + \ldots + 3 \times 10 + 2 + \frac{1}{10}}{\frac{9}{10}S_2 = (n+1) \times 10^n - \left[10^{n-1} + 10^{n-2} + \ldots + 1 + 10^{n-1}\right]}$ $= (n+1) \times 10^{n} - \frac{10^{n-1} \left(1 - \frac{1}{10^{n-1}}\right)}{1 - \frac{1}{2}}$ $\Rightarrow S_2 = \frac{10}{9}(n+1) \times 10^n$ $-\left(\frac{10}{9}\right)^2 10^{n-1} \left(1 - \frac{1}{10^{n-1}}\right)$ \therefore The *n*th term = $S_1 + S_2$

$$= \left(\frac{10}{9}\right)^{2} \left[10^{2n} \left(1 - \frac{1}{10^{n-1}}\right) - 10^{n-1} \left(1 - \frac{1}{10^{n-1}}\right)\right] + \frac{10}{9} \left[-n \times 10^{n} + (n+1) \times 10^{n}\right] = \left(\frac{10}{9}\right)^{2} \left[10^{2n} - 2.10^{n-1} + \frac{1}{10^{2}}\right] = \frac{10}{9} \left[10^{n} - \frac{1}{10}\right]^{2} = \left[\frac{10^{n-1} - 1}{9}\right]^{2} = \left[\frac{999 \dots (n+1) \text{times}}{9}\right]^{2} = [111 \dots (n+1) \text{times}]^{2} = (\text{odd number})^{2}$$

266 (a) Let common difference $d_1 = -3$ and first term be *a*.

∴ Series become

$$a, a - 3, a - 6, ..., a - 27$$

$$\therefore S = 10a + (-3 - 6 - ... - 27)$$

$$\Rightarrow -30 = 10a - 3(1 + 2 + ... + 9)$$

$$\Rightarrow -30 = 10a - 3\left[\frac{9(9 + 1)}{2}\right]$$

$$\Rightarrow -30 = 10a - 135$$

$$\Rightarrow 10a = 105 \Rightarrow a = \frac{105}{10}$$

Now, correct common difference $d_2 = 3$

$$\therefore \text{ Required sum} = \frac{10}{2}\left[2 \times \frac{105}{10} + (10 - 1)3\right]$$

$$= 5\left(\frac{105}{5} + 27\right) = 5 \times 48 = 240$$

1)3]

267 (b)
Let sum of 2n terms of the AP 2, 5, 8, 11, ... is

$$S_{2n}$$

 $\therefore S_{2n} = \frac{2n}{2} [2 \times 2 + (2n - 1)3]$
 $= n(4 + 6n - 3)$
 $= n(6n + 1)$
And sum of n terms of the AP 57, 59, 61, 63,...
is S_n
 $\therefore S_n = \frac{n}{2} [2 \times 57 + (n - 1)2]$
 $= \frac{n}{2} (2n + 112)$
According to question, $S_{2n} = S_n$
 $\Rightarrow n(6n + 1) = \frac{n}{2} (2n + 112)$
 $\Rightarrow 12n + 2 = 2n + 112$
 $\Rightarrow 10n = 110$
 $\Rightarrow n = 11$
268 (a)
 $\frac{x^{n+1} + y^{n+1}}{x^n + y^n} = \sqrt{xy}$
 $\Rightarrow x^{n.x} + y^n. y = x^n. x^{\frac{1}{2}y^{\frac{1}{2}}} + y^n. x^{\frac{1}{2}y^{\frac{1}{2}}}$
 $\Rightarrow x^n (x - \sqrt{xy}) + y^n (y - \sqrt{xy}) = 0$
 $\Rightarrow x^n. \sqrt{x} (\sqrt{x} - \sqrt{y}) + \sqrt{y}. y^n (\sqrt{y} - \sqrt{x}) = 0$
 $\Rightarrow (\sqrt{x} - \sqrt{y})(x^n. \sqrt{x} - y^n. \sqrt{y}) = 0$
For $x \neq y$
 $x^n \sqrt{x} = y^n \sqrt{y}$
 $\Rightarrow (\frac{x}{y})^{n+\frac{1}{2}} = 1$
 $\Rightarrow n + \frac{1}{2} = 0$
 $\Rightarrow n = -\frac{1}{2}$
270 (d)
We have,
 $2\log_8 a = x, \log_2 2a = y \text{ and } y - x = 4$
 $\Rightarrow \frac{2}{3}\log_2 a = x \text{ and }\log_2 2 + \log_2 a = y \text{ and}$
 $y - x = 4$
 $\Rightarrow 1 + \frac{3}{2}x = y \text{ and } y - x = 4 \Rightarrow x = 6$
271 (d)
Given that, $x_1x_2x_3...x_n = 1$...(i)
We know that, AM \ge GM
 $\therefore (\frac{x_1 + x_2 + x_3 + ... + x_n}{n}) \ge (x_1x_2x_3...x_n)^{1/n}$
 $= (1)^{1/n} = 1$ [from Eq.(i)]

$$\Rightarrow x_1 + x_2 + x_3 + ... + x_n \ge n$$

∴ $x_1 + x_2 + x_3 + ... + x_n$
Can never be less than n
272 (c)
 $9^{1/3} \times 9^{1/9} \times 9^{1/27} \times ... \infty = (9)^{\left[\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + ...\infty\right]}$
 $= (9)^{\frac{1}{3}\left(\frac{1}{1-1/3}\right)} = 9^{1/2}$
 $= 3$
273 (a)
Here, $T_n = n(2n+1)^2 = 4n^3 + 4n^2 + n$
 $\therefore S_n = \Sigma T_n = \Sigma(4n^3 + 4n^2 + n)$
 $= 4\Sigma n^3 + 4\Sigma n^2 + \Sigma n$
 $= 4\left\{\frac{n}{2}(n+1)\right\}^2 + \frac{4}{6}n(n+1)(2n+1) + \frac{n}{2}(n+1)$
 $= n(n+1)\left[n^2 + n + \frac{4}{6}(2n+1) + \frac{1}{2}\right]$
 $= \frac{n}{6}(n+1)(6n^2 + 14n + 7)$
274 (d)
 $\therefore AM = \frac{\cos^2 x + \sec^2 x}{2}$
and $GM = \sqrt{\cos^2 x \cdot \sec^2 x} \ge 1$
 $\Rightarrow \cos^2 x + \sec^2 x \ge 2 \Rightarrow f(x) \ge 2$
275 (b)
We have,
 $\log_5(\sqrt{x+5} + \sqrt{x}) = 0$
 $\Rightarrow \log_5(\sqrt{x+5} + \sqrt{x}) = 0$
 $\Rightarrow \log_5(\sqrt{x+5} + \sqrt{x}) = 0$
 $\Rightarrow \sqrt{x+5} + \sqrt{x} = 5$
 $\Rightarrow \sqrt{x+5} = 5 - \sqrt{x}$
 $\Rightarrow x + 5 = 25 + x - 2 \times 5 \times \sqrt{x}$
 $\Rightarrow 0 = 20 - 10\sqrt{x} \Rightarrow x = 4$
276 (b)
We have,
 $a, b, c \text{ are in A.P. $\Rightarrow 2b = a + c$...(i)
 $b, c, d \text{ are in A.P. $\Rightarrow 2b = a + c$...(ii)
 $c, d, e \text{ are in A.P. $\Rightarrow 2b = a + c$...(ii)
 $c, d, e \text{ are in A.P. $\Rightarrow 2b = a + c$...(ii)
From (i), (ii) and (iii), we have
 $c^2 = \frac{a + c}{2} \times \frac{2ce}{c + e}$
 $\Rightarrow c(c + e) = (a + c)e$
 $\Rightarrow c^2 + ce = ae + ce \Rightarrow c^2 = ae \Rightarrow a, c, e \text{ are in } c.P.$$$$$

 $= \log_{2^2} 2 - \log_{2^3} 2 + \log_{2^4} 2 - \log_{2^5} 2 + \dots$ $=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\ldots+1-1$ $= 1 - \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots\right) = 1 - \log_e 2$ 278 (a) Since, $y = 1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}$ $\therefore y - yx = 1 \Rightarrow x = \frac{y - 1}{y}$ 279 (a) We have, $(1-x)(1-2x)(1-2^2 x)(1-2^3 x) \dots (1-2^{15} x)$ $= 2 \cdot 2^{2} \cdot 2^{3} \dots 2^{15} (x-1) \left(x - \frac{1}{2}\right) \left(x - \frac{1}{2^{2}}\right) \dots \left(x - \frac{1}{2^$ $-\frac{1}{2^{15}}$ $=2^{120}\left\{x^{16}-x^{15}\left(1+\frac{1}{2}+\cdots+\frac{1}{2^{15}}\right)+\cdots\right\}$: Coefficient of x^{15} = $-2^{120}(1 + 2^{-1} + 2^{-2} + \dots + 2^{-15})$ $= -2^{120} \left\{ \frac{1 - \left(\frac{1}{2}\right)^{16}}{1 - \frac{1}{2}} \right\} = -2^{121} \left(1 - \frac{1}{2^{16}}\right)$ $= -2^{121} + 2^{105}$ 280 (c) We have, $\log_{10} 5 = x$ $\Rightarrow \log_{10}\left(\frac{10}{2}\right) = x$ $\Rightarrow \log_{10} 10 - \log_{10} 2 = x$ $-\log_{10} 2 = x \Rightarrow \log_{10} 2 = 1 - x$ Now, $\log_5 1250 = \log_5 5^4 \times 2$ $= 4 \log_5 5 + \log_5 2 = 4 + \log_5 2$ $= 4 + \frac{1}{\log_2 5} = 4 + \frac{1}{\log_2 \frac{10}{2}} = 4 + \frac{1}{\log_2 10 - \log_2 2}$ $= 4 + \frac{1}{\frac{1}{x} - 1} = 4 + \frac{1 - x}{x} = \frac{1 + 3x}{x} = 3 + \frac{1}{x}$ 281 (a) Let $a^{1/x} = b^{1/y} = c^{1/z} = k$ $\Rightarrow a = k^{x}, b = k^{y}, c = k^{z}$ Now, *a*, *b*, *c* are in GP. $\Rightarrow b^2 = ac \Rightarrow k^{2y} = k^x \cdot k^z = k^{x+z}$ $\Rightarrow 2y = x + z$ $\therefore x, y, z$ are in AP. 282 (b) We have, $\sum_{n=1}^{\infty} \frac{2n}{(2n+1)!} = \sum_{n=1}^{\infty} \frac{2n+1-1}{(2n+1)!}$
$$= \sum_{n=1}^{\infty} \left(\frac{1}{(2n)!} - \frac{1}{(2n+1)!} \right)$$
$$\sum_{n=1}^{\infty} \frac{1}{(2n)!} - \sum_{n=1}^{\infty} \frac{1}{(2n+1)!}$$
$$= \left[\frac{e+e^{-1}}{2} - 1 \right] - \left[\frac{e-e^{-1}}{2} - 1 \right] = e^{-1}$$
(b)

283 **(b)**

we have,

$$e^{x} = y + \sqrt{1 + y^{2}}$$

$$\Rightarrow (e^{x} - y)^{2} = y^{2} + 1$$

$$\Rightarrow e^{2x} - 2y e^{x} = 1 \Rightarrow y = \frac{e^{2x} - 1}{2 e^{x}}$$

$$= \frac{1}{2}(e^{x} - e^{-x})$$

284 (b)

Let AM = 15, GM=12 We know, (GM)² = AM × HM \Rightarrow HM = $\frac{144}{15}$

286 **(b)**

Here,
$$T_n = \frac{2n}{(2n+1)!} = \frac{1}{2n!} - \frac{1}{(2n+1)!}$$

$$\sum T_n = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \dots$$

$$= 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \dots$$

$$= e^{-1}$$

287 **(c)**

288

We have,

$$y + \frac{y^3}{3} + \frac{y^5}{5} + \dots = \infty 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots \infty\right)$$

$$\Rightarrow \frac{1}{2}\log\left(\frac{1+y}{1-y}\right) = \log\left(\frac{1+x}{1-x}\right)$$

$$\Rightarrow \log\left(\frac{1+y}{1-y}\right) = \log\left(\frac{1+x}{1-x}\right)^2$$

$$\Rightarrow \frac{1+y}{1-y} = \frac{(1+x)^2}{(1-x)^2}$$

$$\Rightarrow \frac{2}{2y} = \frac{(1+x)^2 + (1-x)^2}{(1+x)^2 - (1-x)^2}$$

$$\Rightarrow \frac{1}{y} = \frac{2(1+x^2)}{4x}$$

$$\Rightarrow y = \frac{2x}{1+x^2} \Rightarrow x^2y = 2x - y$$
(c)

Let the first three terms of an AP are a - d, aand a + dSince, (a - d) + (a + d) = 12 $\Rightarrow a = 6$ and a(a - d) = 24

 $\Rightarrow 6 - d = 4$ $\Rightarrow d = 2$ \therefore First term is a - d = 4289 (a) Given equation is $ax^2 + bx + c = 0$ and let the roots are α , β . So $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$. Now, $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta$ $=\frac{b^2}{a^2}-\frac{2c}{a}$ Now, $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{\frac{b^2}{a^2} - \frac{2c}{a}}{\frac{c^2}{2}} = \frac{b^2 - 2ac}{c^2}$ According to given condition, $\alpha + \beta = \frac{1}{\alpha^2} + \frac{1}{\beta^2}$ $\Rightarrow -\frac{b}{a} = \frac{b^2 - 2ac}{c^2}$ $\Rightarrow -bc^2 = ab^2 - 2a^2c$ Hence. $2a^2c = ab^2 + bc^2$ $\Rightarrow ab^2, ca^2, bc^2$ or bc^2, ca^2 be in AP. 291 (c) Let a, ar, ar^2 are in GP a, ar, $ar^2 - 64$ are in AP, we get $a(r^2 - 2r + 1) = 64$...(i) Again, $a, ar - 8, ar^2 - 64$ are in GP. $(ar - 8)^2 = a(ar^2 - 64)$ $\Rightarrow a(16r - 64) = 64$...(ii) On solving Eqs. (i) and (ii), we get r = 5, a = 4Thus, required numbers are 4, 20, 100 293 (c) We have, $y = 2^{\frac{1}{\log_{x} 8}} \Rightarrow y = 2^{\log_{8} x}$ $\Rightarrow y = 2^{\log_2 3 x} = 2^{(1/3)\log_2 x} = 2^{\log_2 x^{1/3}} = x^{1/3}$ $\Rightarrow v^3 = x$ 294 (a) It is given that a, b, c are in A.P. and (b - a), (c - a)*b,a* are in G.P. $\therefore 2b = a + c$ And, $(c-b)^2 = (b-a)a$ $\Rightarrow (b-a)^2 = (b-a)a$ [2b = a + c \Rightarrow b - a = c - b] $\Rightarrow b = 2a$ $\Rightarrow c = 3 a$ [Using : 2b = a + c] \Rightarrow *a* : *b* : *c* = 1 : 2 : 3 295 (b) Let the two numbers be *a* and *b*

Since,
$$\frac{2ab}{a+b} = 4$$
, $A = \frac{a+b}{2}$
and $G = \sqrt{ab}$
 $\therefore \frac{2ab}{2A} = 4 \Rightarrow A = \frac{ab}{4}$
and $G^2 = 4A$
Given, $2A + G^2 = 27$
 $\therefore 2A + 4A = 27$
 $\Rightarrow A = \frac{9}{2}$
296 (c)
Given, $S_n = 1^3 + 2^3 + ... + n^3 = \Sigma n^3$
and $T_n = 1 + 2 + ... + n = \Sigma n$
 $\therefore S_n = \Sigma n^3 = \left[\frac{n(n+1)}{2}\right] \Rightarrow S_n = \{\Sigma n\}^2 = T_n^2$
297 (d)
 $\therefore a_1, a_2, ..., a_{n+1}$ are in AP and common difference
 $-d$

 $=\Sigma n^3$

Let
$$S = \frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \dots + \frac{1}{a_n a_{n+1}}$$

$$= \frac{1}{d} \left\{ \frac{a_2 - a_1}{a_1 a_2} + \frac{a_3 - a_2}{a_2 a_3} + \dots + \frac{a_{n+1} - a_n}{a_n a_{n+1}} \right\}$$

$$= \frac{1}{d} \left\{ \frac{1}{a_1} - \frac{1}{a_2} + \frac{1}{a_2} - \frac{1}{a_3} + \dots + \frac{1}{a_n} - \frac{1}{a_{n+1}} \right\}$$

$$= \frac{1}{d} \left\{ \frac{a_{n+1} - a_1}{a_1 a_{n+1}} \right\}$$

$$= \frac{nd}{d(a_1 a_{n+1})} = \frac{n}{a_1 a_{n+1}}$$
298 (a)
We have,
 d, e, f are in G.P. $\Rightarrow e^2 = df$... (i)
Now,
 $dx^2 + 2ex + f = 0$
 $\Rightarrow dx^2 + 2\sqrt{df}x + f = 0$ [Using (i)]
 $\Rightarrow (\sqrt{d} x + \sqrt{f})^2 = 0 \Rightarrow x = -\frac{\sqrt{f}}{\sqrt{d}}$
Putting $x = -\frac{\sqrt{f}}{\sqrt{d}}$ in $ax^2 + 2bx + c = 0$, we get
 $a\frac{f}{d} + c = 2b\sqrt{\frac{f}{d}}$... (ii)
 $\Rightarrow \frac{a}{b} + \frac{c}{f} = \frac{2b}{\sqrt{fd}}$ [Using (i)]

 $\Rightarrow \frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in H.P.

Again from (ii), we have $af + cd = 2 b\sqrt{fd}$ $\Rightarrow aef + ced = 2 be \sqrt{fd} \Rightarrow aef + cde$ = 2 b df [Using (i)] 299 (c) Since, *a*, *b*, *c* be in HP. Then, $b = \frac{2ac}{a+c}$ GM between *a* and $c = \sqrt{ac}$ We know, GM > HM $\Rightarrow \sqrt{ac} > b$ or $ac > b^2$...(i) Similarly, $\sqrt{bd} > c$ or $bd > c^2$...(ii) On adding relations (i) and (ii), we get $ac + bd > b^2 + c^2$ 300 **(b)** In an AP, the distance of one of them from the beginning is same as that of the other from the end is equal to the sum of first and last terms. 301 (c) Since, $S_{\infty} = \frac{x}{1-r} = 5 \implies r = \frac{5-x}{r}$ [thus |r| < 1 $\Rightarrow -1 < \frac{5-x}{5} < 1 \quad \Rightarrow \quad 0 < x < 10$ 302 (a) For $n \ge 1$, we have $a_n = \sum_{r=1}^{n} a_r - \sum_{r=1}^{n-1} a_r$ $=\frac{1}{6}n(n+1)(n+2)$ $-\frac{1}{6}(n-1)(n)(n+1)$ $\Rightarrow a_n = \frac{n(n+1)}{2}$ $\therefore \sum_{n=1}^{n} \frac{1}{a_r} = 2 \sum_{n=1}^{n} \frac{1}{r(r+1)} = 2 \sum_{n=1}^{n} \left(\frac{1}{r} - \frac{1}{r+1}\right)$ $\Rightarrow \sum_{r=1}^{n} \frac{1}{a_r} = 2\left(1 - \frac{1}{n+1}\right)$ $\Rightarrow \lim_{n \to \infty} \sum_{r=1}^{\infty} \frac{1}{a_r} = \lim_{n \to \infty} 2\left(1 + \frac{1}{n+1}\right) = 2$ 303 (c) We have, $S_n = \frac{1}{1^3} + \frac{1+2}{1^3+2^3} + \frac{1+2+3}{1^3+2^3+3^3} + \cdots$ $+\frac{1+2+3+\dots+n}{1^3+2^3+3^3+\dots+n^3}$ or, $S_n = a_1 + a_2 + a_3 + \dots + a_n$, where

$$a_{n} = \frac{1+2+\dots+n}{1^{3}+2^{3}+\dots+n^{3}} = \frac{\frac{n(n+1)}{2}}{\left\{\frac{n(n+1)}{2}\right\}^{2}}$$

$$\Rightarrow a_{n} = \frac{2}{n(n+1)} = \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$\therefore S_{n} = 2\left(\frac{1}{1} - \frac{1}{2}\right) + 2\left(\frac{1}{2} - \frac{1}{3}\right) + 2\left(\frac{1}{3} - \frac{1}{4}\right) + \dots + 2\left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 2\left(1 - \frac{1}{n+1}\right) = 2 - \frac{2}{n+1} < 2$$
304 (d)
We have,
$$\log_{4} 2 - \log_{8} 2 + \log_{16} 2 - \log_{32} 2 + \dots = \frac{1}{\log_{2} 4} - \frac{1}{\log_{2} 8} + \frac{1}{\log_{2} 16} - \frac{1}{\log_{2} 32} + \dots = \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \dots = 1 - \left(\frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots\right) = 1 - \log_{e} 2$$
305 (a)
Since, the first 11 terms are in AP, $d = 2$

$$\therefore a_{11} = a + 10d = a + 20$$
The middle term of AP is
 $T_{6} = a + 5d = a + 10$
For the next 11 terms in GP,
 $r = 2$

$$\therefore$$
 The middle term of GP is $b(2)^{5}$ where b is
the first term of a GP which is the last term of
AP.
$$\therefore b(2)^{5} = (a + 20)32$$
According to the given condition,
 $a + 10 = (a + 20)32$

$$\Rightarrow 31a = 10 - 640$$

$$\Rightarrow a = -\frac{630}{31}$$

$$\therefore$$
 Middle term of entire sequence is 11th
term.
$$\therefore T_{11} = -\frac{630}{31} + 10 \times 2 = -\frac{10}{31}$$
306 (b)
We have,
$$\log_{12} 27 = a$$

$$\Rightarrow \log_{12} 3^{3} = a$$

$$\Rightarrow 3 \log_{12} 3 = a$$

$$\Rightarrow \frac{3}{a} = \log_{3} 12$$

$$\Rightarrow \frac{3}{a} = \log_{3} (2^{2} \times 3) = 2\log_{3} 2 + \log_{3} 3$$

$$\Rightarrow \frac{3}{a} = 2 \log_3 2 + 1$$

$$\Rightarrow \frac{3 - a}{a} = 2 \log_3 2 \Rightarrow \log_2 3 = \frac{2a}{3 - a} \qquad \dots (i)$$
Now,
$$\log_6 16 = \log_6 2^4 = 4 \log_6 2 = \frac{4}{\log_2 6}$$

$$\Rightarrow \log_6 16 = \frac{4}{\log_2 3 + \log_2 2}$$

$$= \frac{4}{\frac{2a}{3 - a} + 1} \quad [\text{Using (i)}]$$

$$\Rightarrow \log_6 16 = 4\left(\frac{3 - a}{3 + a}\right)$$
307 (c)
We have,
$$x = \log_3 5 \text{ and } y = \log_{17} 25$$

$$\Rightarrow x = \log_3 5 \text{ and } y = 2 \log_{17} 5$$

$$\Rightarrow \frac{1}{x} = \log_5 3 \text{ and } \frac{1}{y} = \frac{1}{2} \log_5 17$$

$$\Rightarrow \frac{1}{x} = \frac{1}{2} \log_5 9 \text{ and } \frac{1}{2} y = \frac{1}{2} \log_5 17$$

$$\Rightarrow \frac{1}{y} > \frac{1}{x} \Rightarrow x > y$$
308 (b)
Let $a, ar, ar^2, \dots, ar^{m-1}$ be the given G.P. Then, the required sum S is given by
$$S = \frac{1}{2} [(a + ar^2 + \dots + ar^{m-1})^2 - (a^2 + a^2r^2 + a^2r^4 + \dots + a^2r^{2m-2})]$$

$$\Rightarrow S = \frac{1}{2} \left\{ a^2 \left(\frac{1 - r^m}{1 - r}\right)^2 - a^2 \left(\frac{1 - r^{2m}}{1 - r^2}\right) \right\}$$

$$\Rightarrow S = \frac{1}{2} a^2 \left(\frac{1 - r^m}{1 - r}\right) cr \left(\frac{1 - r^{m-1}}{1 - r}\right) \left(\frac{1}{1 + r}\right)$$

$$\Rightarrow S = a \left(\frac{1 - r^m}{1 - r}\right) \cdot a \left(\frac{1 - r^{m-1}}{1 - r}\right) \cdot \frac{r}{1 + r}$$

$$= \frac{r}{r + 1} S_m S_{m-1}$$
309 (b)
Let P_1, P_2, P_3 be altitudes from P, Q and R

$$\overbrace{P_1 = c \sin Q = \lambda bc, P_2 = a \sin R = \lambda ca, P_3 = \lambda ca, P_3 = \lambda ca, P_3 = \lambda ca}{1 + 2 + \lambda c + a + c^2 + c^2 + a^2}$$

Since, P_1 , P_2 , P_3 are in AP. $\Rightarrow \lambda bc, \lambda ca, \lambda ab$ are in AP. \Rightarrow bc, ca ab are in AP. $\Rightarrow \frac{abc}{a}, \frac{abc}{b}, \frac{abc}{c}$ are in AP. \therefore a, b, c are in HP. ie, sides of the triangle are in HP. 310 (a) Since, $H = \frac{2PQ}{P+Q}$ $\Rightarrow \frac{H}{P} = \frac{2Q}{P+Q}$ and $\frac{H}{O} = \frac{2P}{P+Q}$ $\therefore \frac{H}{P} + \frac{H}{Q} = \frac{2Q}{P+Q} + \frac{2P}{P+Q} = 2$ 311 (b) We have, $x = \log_a bc, y = \log_b ca, z = \log_c ab$ $\Rightarrow 1 + x = \log_a a + \log_a bc, 1 + y$ $= \log_b b + \log_b ca, 1 + z$ $= \log_c c + \log_c ab$ $\Rightarrow 1 + x = \log_a abc, 1 + y = \log_b abc, 1 + z$ $= \log_c abc$ $\Rightarrow \frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z}$ $= \log_{abc} a + \log_{abc} b + \log_{abc} c$ $\Rightarrow = \log_{abc} abc = 1$ 312 (a) If a, b, c are in GP, then $b^2 = ac$ Taking log on both sides, we get $2\log_e b = \log_e a + \log_e c$ $\Rightarrow 2n \log_e b = n \log_e a + n \log_e c$ $\Rightarrow 2 \log_e b^n = \log_e a^n + \log_e c^n$ $\Rightarrow \log_e a^n, \log_e b^n, \log_e c^n$ be in AP. 314 (c) Since, *a*, *b*, *c* are in AP. $\therefore 2b = a + c$ $\Rightarrow 2bx = (a + c)x$ for all x $\Rightarrow 2bx = (a + c)x + 20$ for all x $\Rightarrow 2(bx + 10) = (ax + 10) + (cx + 10)$ $\therefore \ 10^{2(bx+10)} = 10^{(ax+10)+(cx+10)}$ $\Rightarrow (10^{bx+10})^2 = 10^{ax+10} \cdot 10^{cx+10}$ $\Rightarrow 10^{ax+10}, 10^{bx+10}, 10^{cx+10}$ Are in GP for all *x* 315 **(b)** We have, $\frac{5^{1+x} + 5^{1-x}}{2} = 13$ $\Rightarrow 5\left(5^x + \frac{1}{5^x}\right) = 26$ $\Rightarrow 5y^2 - 26y + 5 = 0$

 $\Rightarrow (5y-1)(y-5) = ($ $\Rightarrow y = 5, \frac{1}{5} \Rightarrow 5^x = 5, 5^{-1} \Rightarrow x = 1, -1$ 317 (d) Given series is $2^3 + 4^3 + 6^3 + ...$ $\therefore T_n = (2n)^3 = 8n^3$ $\therefore \Sigma T_n = 8\Sigma n^3 = \frac{8n^2(n+1)^2}{4}$ $\Rightarrow 3528 = 2n^2(n+1)^2 \Rightarrow n = 6$ 318 (c) Since, $\frac{2}{a+b}$, $\frac{1}{b}$, $\frac{2}{b+c}$ are in AP. $\Rightarrow \frac{2}{b} = 2\left(\frac{1}{a+b} + \frac{1}{b+c}\right)$ $\Rightarrow \frac{1}{b} = \left(\frac{2b+a+c}{ab+ac+b^2+bc}\right)$ $\Rightarrow ab + ac + b^2 + bc = 2b^2 + ab + bc$ $\Rightarrow b^2 = ac$ \Rightarrow a, b, c are in GP. 319 (b) Let the numbers be *x* and *y* Since, $\frac{x+y}{2} = 2\sqrt{xy}$ $\Rightarrow x + y = 4\sqrt{xy}$ $\Rightarrow (x + y)^2 = 16xy$...(i) Also $(x - y)^2 = (x + y)^2 - 4xy$ $\therefore (x-y)^2 = 16xy - 4xy = 12xy$ $\Rightarrow x - y = 2\sqrt{3xy}$...(ii) On solving Eqs. (i) and (ii), we get $x = (2 + \sqrt{3})\sqrt{xy}$ and $y = (2 - \sqrt{3})\sqrt{xy}$ $\therefore \text{ Required ratio} = \frac{x}{y} = \frac{(2+\sqrt{3})\sqrt{xy}}{(2-\sqrt{3})\sqrt{xy}}$ $= (2 + \sqrt{3})^2 = 7 + 4\sqrt{3}$ 320 (d) Let the two numbers be *a* and *b* $\therefore a - b = 48$ and $\frac{a+b}{2} - \sqrt{ab} = 18$ $\Rightarrow (\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) = 48$ and $(\sqrt{a} - \sqrt{b}) = 6$ $\Rightarrow \sqrt{a} + \sqrt{b} = 8$ and $(\sqrt{a} - \sqrt{b}) = 6$ $\Rightarrow \sqrt{a} = 7$ and $\sqrt{b} = 1$ $\Rightarrow a = 49$ and b = 1Hence, the greater number is 49. 321 (b) We have $a_n = \frac{2(-1)^{n-1}}{n}$, if *n* is a multiple of 3 $\therefore a_3 + a_6 + a_9 + \cdots$

$$= 2\left(\frac{1}{3} - \frac{1}{6} + \frac{1}{9} - \frac{1}{12} + \cdots\right)$$

$$= \frac{2}{3}\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots\right) = \frac{2}{3}\log 2$$

ALITER We have

$$\log(1 - x + x^{2})$$

$$= x(a_{1} + a_{4}x^{3} + a_{7}x^{6} + \cdots)$$

$$+ x^{2}(a_{2} + a_{5}x^{3} + \cdots)$$

$$+ (a_{3}x^{3} + a_{6}x^{6} + \cdots)$$

Put $x = 1, \omega, \omega^{2}$ respectively and add to get the
value of
 $a_{3} + a_{6} + a_{9} + \cdots$
323 (a)
Given series is $1 \cdot 3^{2} + 2 \cdot 5^{2} + 3 \cdot 7^{2} + \ldots \infty$
This is an arithmetico-geometric series whose *n*th
term is equal to
 $T_{n} = n(2n + 1)^{2} = 4n^{3} + 4n^{2} + n$

$$\approx S_{n} = \sum_{1}^{n} T_{n} = \sum_{1}^{n} (4n^{3} + 4n^{2} + n)$$

$$= 4\sum_{1}^{n} n^{3} + 4\sum_{1}^{n} n^{2} + \sum_{1}^{n} n$$

$$= 4\left(\frac{n}{2}(n + 1)\right)^{2} + \frac{4}{6}n(n + 1)(2n + 1) + \frac{n}{2}(n + 1)$$

$$= n(n + 1)\left[n^{2} + n + \frac{4}{6}(2n + 1) + \frac{1}{2}\right]$$

$$= \frac{n}{6}(n + 1)(6n^{2} + 14n + 7)$$

324 (d)
Since, it is an infinite GP whose common ratio is
0.24.

$$\therefore S_{\infty} = \frac{a}{1 - r} = \frac{5.05}{1 - 0.24}$$

$$= 6.64474$$

325 (b)

$$2^{1/4} \cdot 4^{1/8} \cdot 8^{1/16} \dots \infty = 2^{\frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \dots \infty}$$

$$= (2)^{\frac{1}{4}\left[1 + \frac{2}{2} + \frac{3}{2^{2}} + \frac{1}{2^{4}} + \cdots}\right]^{2}$$

$$= 2^{\frac{1}{4}(2+2)} = 2$$

326 (d)
We have,

$$\left(1 + \frac{a^{2}x^{2}}{2!} + \frac{a^{4}x^{4}}{4!} + \cdots\right)^{2}$$

$$- \left(ax + \frac{a^{3}x^{3}}{3!} + \frac{a^{5}x^{5}}{5!} + \cdots\right)^{2}$$

$$= \left(\frac{e^{ax} + e^{-ax}}{2}\right)^2 - \left(\frac{e^{ax} - e^{-ax}}{2}\right)^2$$
$$= \frac{1}{4}(4 e^{ax} \cdot e^{-ax}) = 1$$

(a)

Here,
$$T_n = \frac{n^3}{n!} = \frac{n^2 - 1}{(n-1)!} + \frac{1}{(n-1)!}$$

$$= \frac{n+1}{(n-2)!} + \frac{1}{(n-1)!}$$

$$= \frac{1}{(n-3)!} + \frac{3}{(n-2)!} + \frac{1}{(n-1)!}$$

$$\Rightarrow \sum T_n = \sum \left(\frac{1}{(n-3)!} + \frac{3}{(n-2)!} + \frac{1}{(n-2)!} + \frac{1}{(n-1)!}\right)$$

$$= e + 3e + e = 5e$$

$$= e + 3e + e =$$

328 (c)

$$1 + \frac{(\log_{e} n)^{2}}{2!} + \frac{(\log_{e} n)^{4}}{4!} + \dots$$

$$= \frac{e^{\log n} + e^{-\log n}}{2}$$

$$= \frac{e^{\log n} + e^{\log n^{-1}}}{2} = \frac{n + n^{-1}}{2}$$
329 (a)
We have,

$$\left(x + \frac{1}{x}\right)^{2} + \left(x^{2} + \frac{1}{x^{2}}\right)^{2} + \left(x^{3} + \frac{1}{x^{3}}\right)^{3} + \dots$$

$$+ \left(x^{10} + \frac{1}{x^{10}}\right)^{2}$$

$$= (x^{2} + x^{4} + x^{6} + \dots + x^{20})$$

$$+ \left(\frac{1}{x^{2}} + \frac{1}{x^{4}} + \frac{1}{x^{6}} + \dots + \frac{1}{x^{20}}\right) + 20$$

$$x^{2} \frac{(x^{20} - 1)}{(x^{2} - 1)} + \frac{1}{x^{2}} \frac{(1 - \frac{1}{x^{20}})}{(1 - \frac{1}{x^{2}})} + 20$$

$$= \left(\frac{x^{20} - 1}{x^{2} - 1}\right) \left(\frac{x^{22} + 1}{x^{20}}\right) + 20$$
330 (c)
We have,

$$x = \sum_{n=0}^{\infty} a^{n}, y = \sum_{n=0}^{\infty} b^{n}, z = \sum_{n=0}^{\infty} c^{n}$$

$$\Rightarrow x = \frac{1}{1-a}, y = \frac{1}{1-b}, z = \frac{1}{1-c}$$

$$\Rightarrow a = 1 - \frac{1}{x}, b = 1 - \frac{1}{y}, c = 1 - \frac{1}{z}$$

Now,

a, *b*, *c* are in A.P. $\Rightarrow a - 1, b - 1 - 1$ are in A.P. $\Rightarrow \frac{1}{r}, \frac{1}{y}, \frac{1}{z}$ are in A.P. $\Rightarrow x, y, z$ are in H.P. 331 (c) Let the number of days be *n*. Hence, a worker can do $\left(\frac{1}{150n}\right)$ th part of the work in day. According to given condition $(150 + 146 + 142 + ... + upto \frac{(n+8)}{terms} \times \frac{1}{150n} = 1$ $\Rightarrow \frac{n+8}{2}[300 + (n+8-1)(-4)] = 1$ \Rightarrow (n+8)(272-4n) = 300n $\Rightarrow 4n^2 + 60n - 2176 = 0$ \Rightarrow $n^2 + 15n - 544 = 0$ \Rightarrow n = 17, -32We do not take negative value $\therefore n = 17$ Therefore, number of total days = 17 + 8 = 25332 (a) Using AM>GM [\therefore *a*, *b* and *c* are distinct] $\therefore \frac{a^2 + b^2 + c^2}{3} > (a^2 b^2 c^2)^{1/3}$ $\Rightarrow 3(a^2b^2c^2)^{\frac{1}{3}} \quad [:: a^2 + b^2 + c^2 = 1 \text{ given}]$ 333 (b) a^{-1}, b^{-1}, c^{-1} are in AP \therefore *a*, *b*, *c* are in HP. Now, for numbers a^{101} , b^{101} , c^{101} AM > GM $\Rightarrow \frac{a^{101} + c^{101}}{2} > \left(\sqrt{ac}\right)^{101} > b^{101} \quad (\because \sqrt{ac} > b)$ $\Rightarrow 2b^{101} - a^{101} - c^{101} < 0$...(i) Now, product of roots of given equation $=\frac{2b^{101}-a^{101}-c^{101}}{1}<0$ [from relation (i)] 334 **(b)** We have. $\frac{\log a}{b-c} = \frac{\log b}{c-a} = \frac{\log c}{a-b} = \lambda(\text{say})$ $\Rightarrow a = 10^{\lambda(b-c)}, b = 10^{\lambda(c-a)}, c = 10^{\lambda(a-b)}$ $\therefore a^{a}b^{b}c^{c} = 10^{\lambda a(b-c)} \cdot 10^{\lambda b(c-a)} \cdot 10^{\lambda c(a-b)}$ $\Rightarrow a^a b^b c^c = 10^{\lambda \{a(b-c)+b(c-a)+c(a-b)\}} = 10^{\lambda \times 0}$ $= 10^0 = 1$ 335 (d) $d = T_2 - T_1 = (S_2 - S_1) - S_1$ $= S_2 - 2S_1$

= 2P + Q - 2P $= Q \left[\because S_n \right]$ $=\frac{n}{2}\{2P+(n-1)Q\}$ 336 **(b)** Given, $a_0 = p$ and $a_n - a_{n-1} = ra_{n-1}$ $a_n = a_{n-1}(r+1)$ For n = 1, $a_1 = a_0(r+1) = p(r+1)$ n = 2, $a_2 = a_1(r+1) = p(r+1)^2$ n = 3, $a_3 = a_2(r + 1) = p(r + 1)^3$ This shows that the sequence is a geometric progression. 337 (c) Since *a*, *b*, *c*, *d* are in H.P. Therefore, $\frac{1}{b} - \frac{1}{a} = \frac{1}{c} - \frac{1}{b} = \frac{1}{d} - \frac{1}{c} = \lambda \text{(say)and} \frac{1}{d} - \frac{1}{a} = 3 \lambda$ $\Rightarrow a - b = \lambda(ab), b - c = \lambda(bc)$ and c - d = $\lambda(cd)$ $\Rightarrow a - b + b - c + c - d = \lambda(ab + bc + cd)$ $\Rightarrow a - d = \lambda(ab + bc + cd)$ $\Rightarrow 3 \lambda ad = \lambda (ab + bc + cd)$ $\Rightarrow ab + bc + cd = 3ad$ 338 (b) We have, $1 + 2x + 4x^{2} + 8x^{3} + 16x^{4} + 32x^{5} = \frac{1 - p^{6}}{1 - n}$ $\Rightarrow \frac{1 - (2x)^6}{1 - 2x} = \frac{1 - p^6}{1 - p} \Rightarrow p = 2x \Rightarrow \frac{p}{x} = 2$ 339 (d) Let b = a + d and c = a + 2d, where d is common ratio. Now. $2^{bx+1} = 2^{(a+d)x+1} = 2^{ax+1} \cdot 2^{dx}$ and $2^{cx+1} = 2^{(a+2d)x+1} = 2^{ax+1} \cdot (2^{dx})^2$ \therefore These numbers are in GP, for all values of x 340 (b) $\log_a(1+x) = \log_e(1+x)\log_a e =$ $(\log_a e) \left[\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} \right]$ So, the coefficient of x^n in $\log_a(1 + x)$ is $\frac{(-1)^{n-1}}{n}\log_a e$ 342 (b) Since, a_1, a_2, \dots, a_n are *n* AM's between *a* and b, then $a_i = a + i \frac{(b-a)}{n+1}$ $\therefore 2\sum_{i=1}^{n} a_i = 2\left[\sum_{i=1}^{n} a + \frac{(b-a)}{n+1}\sum_{i=1}^{n} i\right]$

$$= 2 \left[na + \frac{(b-a)}{n+1} \cdot n \frac{(n+1)}{2} \right]$$

$$= n(a+b)$$
343 (b)
Since, *m* is a root of the given equation

$$\therefore (1-ab)m^{2} - (a^{2}+b^{2})m - (1+ab) = 0$$

$$\Rightarrow m(a^{2}+b^{2}) + (m^{2}+1)ab = m^{2} - 1 \dots(i)$$
Now, H_{1} = first HM between *a* and *b*

$$= \frac{(m+1)ab}{a+mb}$$
And $H_{m} = \frac{(m+1)ab}{b+ma}$

$$\therefore H_{m} - H_{1} = (m+1)ab \left[\frac{1}{b+ma} - \frac{1}{a+mb}\right]$$

$$= (m+1)ab \frac{[(m-1)(b-a)]}{(b+ma)(a+mb)}$$

$$= \frac{(m^{2}-1)ab((b-a)}{m(a^{2}+b^{2}) + (m^{2}+1)ab}$$

$$= \frac{(m^{2}-1)ab((b-a)}{m^{2}-1} \quad \text{[from Eq.(i)]}$$

$$= ab(b-a)$$
344 (b)
Since, *a*, *b*, *c* are in AP.

$$\Rightarrow 2b + a + c$$

$$\therefore 3^{2b} = 3^{a+c} \Rightarrow (3^{b})^{2} = 3^{a} \cdot 3^{c}$$

$$ie, 3^{a}, 3^{b}, 3^{c} \text{ are in GP.}$$
345 (c)
Since, $\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} + \frac{1}{c}$

$$\Rightarrow \frac{b-a+b-c}{b^{2}-(a+c)b+ac} = \frac{a+c}{ac}$$

$$\Rightarrow 2abc - (a+c)ac$$

$$= b^{2}(a+c) - b(a+c)^{2} + ac(a+c)$$

$$\Rightarrow 2ac(b-a-c) = b(a+c)(b-a-c)$$

$$\Rightarrow 2ac(b-a-c) = b(a+c)(b-a-c)$$

$$\Rightarrow \frac{2ac}{a+c} = b$$

$$\Rightarrow a, b, c \text{ are in HP.}$$
346 (d)
We have,

$$S = \frac{1}{1-\frac{1}{2}} = 2$$
And,

$$S_{n} = \frac{1-1/2^{n}}{1-1/2} = 2\left(1-\frac{1}{2^{n}}\right) = 2-\frac{1}{2^{n-1}}$$

$$\therefore S - S_{n} < \frac{1}{1000}$$

$$\Rightarrow 2^{n-1} > 1000$$

 $\Rightarrow \frac{1}{2^{n-1}} < \frac{1}{1000} \Rightarrow n-1 \ge 10 \Rightarrow n \ge 11$ Hence, the least value of *n* is 11 347 (b) Let the three numbers (a - d), a and (a + d)are in AP. Then, $(a-d) + a + (a+d) = 18 \Rightarrow a = 6$...(i) and $(a-d)^2 + a^2 + (a+d)^2 = 158$ $\Rightarrow 3a^2 + 2d^2 = 158$ $\Rightarrow 2d^2 = 158 - 3 \times 36$ [from Eq. (i)] $\Rightarrow d = \pm 5$ Hence, the required numbers are 1, 6, 11 or 11, 6, 1 Thus, greatest number is 11. 348 (a) We have, $\frac{1}{1.2.3.4} + \frac{4}{3.4.5.6} + \frac{9}{4.6.7.8} + \frac{16}{7.8.9.10} + \dots \text{ to } \infty$ $=\sum_{n=1}^{\infty} \frac{n^2}{(2n-1)(2n)(2n+1)(2n+2)}$ $=\frac{1}{2}\sum_{n=1}^{\infty}\frac{n}{(2n-1)(2n+1)(2n+2)}$ $=\frac{1}{2}\sum_{n=1}^{\infty}\left\{\frac{1}{12(2n-1)}+\frac{1}{4(2n+1)}-\frac{1}{3(2n+2)}\right\}$ $=\frac{1}{2}\sum_{n=1}^{\infty}\left\{\frac{1}{12}\left(\frac{1}{2n-1}-\frac{1}{2n}\right)+\frac{1}{12}\left(\frac{1}{2n}-\frac{1}{2n+1}\right)\right\}$ $+\frac{1}{3}\left(\frac{1}{2n+1}-\frac{1}{2n+2}\right)$ $=\frac{1}{2}\left\{\frac{1}{12}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}...\right)\right\}$ $+\frac{1}{12}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}\dots\right)$ $+\frac{1}{3}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}...\right)$ $= \frac{1}{2} \left\{ \frac{1}{12} \log_e 2 - \frac{1}{12} (\log_e 2 - 1) + \frac{1}{3} \left(\log_e 2 - \frac{1}{2} \right) \right\}$ $=\frac{1}{6}\log_e 2 - \frac{1}{24}$ 349 (c) We have, $a = 1 + \log_x yz = \log_x x + \log_x yz = \log_x xyz$ $b = 1 + \log_y zx = \log_y y + \log_y zx = \log_y xyz$ and, $c = 1 + \log_z xy = \log_z z + \log_z xy = \log_z xyz$ $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \log_{xyz} x + \log_{xyz} y + \log_{xyz} z$ $= \log_{xyz} xyz = 1$ $\Rightarrow ab + bc + ca = abc$ 350 (a) $GM = (7.7^2.7^3 \dots 7^n)^{1/n}$

$$= (7^{1+2+3+\dots+n})^{1/n}$$

$$= \left(7^{\frac{n(n+1)}{2}}\right)^{1/n} = 7^{\left(\frac{n+1}{2}\right)}$$
351 (a)
We have the following cases :
CASE I When n is even
Let $n = 2m$. Then,
 $1 - 3 + 5 - 7 + 9 - 11 \dots$ to $2m$ terms

$$= [1 + 5 + 9 + \dots \text{ to } m \text{ terms}] - [3 + 7 + 11 + \dots \text{ to } m \text{ terms}]$$

$$= \frac{m}{2} \{2 \times 1 + (m - 1) \times 4\} - \frac{m}{2} \{2 \times 3 + (m - 1) \times 4\}$$

$$-2m = -n$$
CASE II When n is odd
Let $n = 2m + 1$. Then,
 $1 - 3 + 5 - 7 + 9 - 11 + \dots \text{ to } n \text{ terms}$

$$= \{1 + 5 + 9 + \dots \text{ to } (m + 1) \text{ terms}\}$$

$$= \{1 + 5 + 9 + \dots \text{ to } (m + 1) \text{ terms}\}$$

$$= \frac{m + 1}{2} \{2 \times 1 + (m + 1 - 1) \times 4\} - \frac{m}{2} \{2 \times 3\}$$

The sum of integers from 1 to 100 that are divisible by 2 or 5 = sum of series divisible by 2+ sum of series divisible by 5- sum of series divisible by 2 ad 5. = (2 + 4 + 6 + ... + 100)+ (5 + 10 + 15 + ... + 100) - (10)

 $+ (m-1) \times 4\}$

$$= \frac{50}{2} \{2 \times 2 + (50 - 1)2\} + \frac{20}{2} \{2 \times 5 + (20 - 1)5\} - \frac{10}{2} \{10 \times 2 + (10 - 1)10\} + \frac{25(102)}{3} + \frac{10}{2} \{2 \times 5 + (20 - 1)5\} - \frac{10}{2} \{10 \times 2 + (10 - 1)10\} + 25(102) + 10(105) - 5(110) + 2550 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 1050 - 550 + 3050 + 353 + \frac{3^{x} + 3^{-x}}{2} \ge \sqrt{3^{x} \cdot 3^{-x}} \quad [\therefore AM \ge GM] \Rightarrow 3^{x} + 3^{-x} \ge 2 \Rightarrow y \ge \frac{2}{3}$$

Therefore, least value of y is $\frac{2}{3}$

354 **(c)**

Let
$$S_n = 1 + 3 + 5 + \dots + (2n - 1)$$

= $\frac{n}{2} [1 + (2n - 1)] = n^2$

: Arithmetic mean = $\frac{n^2}{n} = n$

Let there be 2n terms in the given GP with first term a and the common ratio rAccording to the given condition $(r^{2n} - 1)$ $(r^{2n} - 1)$

$$a\frac{c}{(r-1)} = 5a\frac{c}{(r^2-1)}$$
$$\Rightarrow r+1 = 5 \Rightarrow r = 4$$

Since,
$$1 + r + r^2 + \dots \infty = S$$

$$\therefore \frac{1}{1-r} = S \implies r = \frac{S-1}{S} \qquad \dots(i)$$

Now,
$$1 + r^2 + r^4 + \dots \infty = \frac{1}{1 - r^2} = \frac{1}{1 - \left(\frac{S-1}{S}\right)^2}$$

[from Eq. (i)]

$$=\frac{S^2}{S^2 - (S-1)^2} = \frac{S^2}{(2S-1)}$$

357 (d)
Since,
$$T_n = \frac{1}{4}(n+2)(n+3)$$

 $\frac{1}{T_n} = \frac{4}{(n+2)(n+3)} = 4\left[\frac{1}{n+2} - \frac{1}{n+3}\right]$
 $\therefore \frac{1}{T_1} + \frac{1}{T_2} + \dots + \frac{1}{T_{2003}} = 4\left(\frac{1}{3} - \frac{1}{4}\right) + 4\left(\frac{1}{4} - \frac{1}{5}\right)$
 $+\dots + 4\left(\frac{1}{2005} - \frac{1}{2006}\right)$
 $= 4\left(\frac{1}{3} - \frac{1}{2006}\right) = \frac{4 \times 2003}{3 \times 2006} = \frac{4006}{3009}$
358 (d)
Let $S_n = \frac{1}{\sqrt{1+\sqrt{3}}} + \frac{1}{\sqrt{3+\sqrt{5}}} + \dots$
 $= \frac{1}{2}\left[(\sqrt{3} - 1) + (\sqrt{5} - \sqrt{3}) + (\sqrt{7} - \sqrt{5}) + \dots + (\sqrt{2n+1} - \sqrt{2n-1})\right]$
 $= \frac{1}{2}(\sqrt{2n+1} - 1)$
359 (a)
We know that,
 $\left\{\frac{n}{2}(n+1)^2\right\} = (1 + 2 + \dots + n)^2$
 $= \sum_{i=1}^n x_i^2 + 2\sum_{i < j} x_1 x_j$

$$\Rightarrow \sum_{i < j} x_i x_j = \frac{1}{2} \left\{ \frac{n^2 (n+1)^2}{4} - \frac{n(n+1)(2n+1)}{6} \right\}$$
$$= \frac{n}{6} (n-1)(n+1)(3n+2)$$

 $= \frac{1}{24}(n-1)(n+1)(3n+2)$ 360 (d)

We have.

$$1 + \frac{x}{2!} + \frac{2x^2}{3!} + \frac{3x^3}{4!} + \dots \infty$$

= $1 + \sum_{n=1}^{\infty} \frac{(n-1)x^{n-1}}{n!}$
= $1 + \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} - \sum_{n=1}^{\infty} \frac{x^{n-1}}{n!}$
= $1 + \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} - \frac{1}{x} \sum_{n=1}^{\infty} \frac{x^n}{n!}$
= $1 + e^x - \frac{1}{x}(e^x - 1) = \frac{e^x(x-1) + x + 1}{x}$

361 (c)

Let
$$S_n = cn^2$$
, then
 $S_{n-1} = c(n-1)^2 = cn^2 + c - 2cn$
 $\therefore T_n = 2 cn - c \quad (\because T_n = S_n - S_{n-1})$
 $T_n^2 = (2cn - c)^2 = 4c^2n^2 + c^2 - 4c^2n$
 $\therefore \text{ Sum } = \sum T_n^2$
 $= \frac{4c^2 \cdot n(n+1)(2n+1)}{6} + nc^2$
 $- 2c^2n(n+1)$
 $= \frac{2c^2n(n+1)(2n+1) + 3nc^2 - 6c^2n(n+1))}{3}$
 $= \frac{nc^2(4n^2 + 6n + 2 + 3 - 6n - 6)}{3}$
 $= \frac{nc^2(4n^2 - 1)}{3}$

362 **(c)**

Since, the given equation is cubic, therefore we take three roots. Let the roots be a - b, a, a + d. Sum of three numbers in AP = 3a = 12 $\Rightarrow a = 4$ is a root. \therefore The given equation $x^3 - 12x^2 + 39x - 28 = 0$ can be rewritten as $(x - 4)(x^2 - 8x + 7) = 0$ $\therefore x = 1, 4, 7 \text{ or } 7, 4, 1$ $\therefore d = \pm 3$ 363 (c) Let $a^x = b^y = c^z = d^u = \lambda$. Then, $a = \lambda^{\frac{1}{x}}, b = \lambda^{\frac{1}{y}}, c = \lambda^{\frac{1}{z}}, d = \lambda^{\frac{1}{u}}$

Now, *a*, *b*, *c*, *d* are in G.P. $\Rightarrow \frac{b}{a} = \frac{c}{d} = \frac{d}{c}$ $\Rightarrow \lambda^{\frac{1}{y} - \frac{1}{x}} = \lambda^{\frac{1}{z} - \frac{1}{y}} = \lambda^{\frac{1}{u} - \frac{1}{z}}$ $\Rightarrow \frac{1}{v} - \frac{1}{x} = \frac{1}{z} - \frac{1}{v} = \frac{1}{u} - \frac{1}{z}$ $\Rightarrow \frac{1}{r}, \frac{1}{v}, \frac{1}{z}, \frac{1}{v}$ are in A.P. \Rightarrow x, y, z, u are in H.P. 364 (a) We have, $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$ Putting $x = \frac{1}{2}$, we get $\sqrt{e} = 1 + \frac{1}{2} + \frac{1}{2!} \left(\frac{1}{2}\right)^2 + \frac{1}{3!} \left(\frac{1}{2}\right)^3 + \frac{1}{4!} \left(\frac{1}{2}\right)^4$ $+\frac{1}{5!}\left(\frac{1}{2}\right)^{5}+\cdots$ $\Rightarrow \sqrt{e} = 1 + 0.5 + 0.12500 + 0.02083 + 0.00260$ +0.00026 $\Rightarrow \sqrt{e} = 1.64869$ $\Rightarrow \sqrt{e} = 1.648$ (Rounded off to three places of decimals) 365 (b) Let the first term of an AP be *a* and common difference be *d*. Since, $a + 3d = \frac{5}{3}$...(i) and a + 7d = 3 ...(ii) On solving Eqs.(i) and (ii), we get $a = \frac{2}{3}, d = \frac{1}{3}$ $\therefore T_6 = a + 5d = \frac{2}{3} + \frac{5}{3} = \frac{7}{3}$ \Rightarrow 6th term of HP is $\frac{3}{7}$. 366 (b) We have, $(a^{2} + b^{2} + c^{2})p^{2} - 2(ab + bc + cd)p + (b^{2} + bc)$ $c^2 + d^2 \le 0$...(i) LHS = $(a^2p^2 - 2abp + b^2) + (b^2p^2 - 2bcp + b^2)$ *c2+(c2p2-2cdp+d2)*...(ii) $= (ap - b^2) + (bp - c^2) + (cp - d^2) \ge 0$ Since, the sum of square of real number is nonnegative From Eqs.(i) and (ii), we get $(ap-b)^{2} + (bp-c)^{2} + (cp-d)^{2} = 0$ $\Rightarrow ap - b = 0 = bp - c = cp - d$ $\Rightarrow \frac{b}{a} = \frac{c}{d} = \frac{d}{c} = p$

 \therefore a, b, c, d are in GP. $= -\log_e\left(\frac{1}{r+1}\right) + \log_e\left(\frac{x}{r+1}\right) = \log_e x$ 367 (c) 373 (c) The corresponding terms of HP in terms of AP Let $S = \sum_{n=1}^{\infty} \frac{2n^2 + n + 1}{n!}$ is 10 and 25 ... (i) $\therefore T_7 = a + 6d = 10$ $=\sum_{n=1}^{\infty} \left(\frac{2n}{(n-1)!} + \frac{1}{(n-1)!} + \frac{1}{n!} \right)$ and $T_{12} = a + 11d = 25$...(ii) On solving Eqs. (i) and (ii), we get a = -8, d = 3 $= \sum \left(\frac{2}{(n-2)!} + \frac{3}{(n-1)!} + \frac{1}{n!} \right)$ $\therefore T_{20} = -8 + (20 - 1)3 = 49$ Then, 20th term of HP is $\frac{1}{49}$ $= 2\left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots \infty\right) + 3\left(1 + \frac{1}{1!} + \dots \infty\right)$ 368 (c) Given, $\log(1 + 3x + 2x^2)$ $+\left(\frac{1}{11}+\frac{1}{21}+...\right)$ $= \log(1 + x) - \log(1 + 2x)$ = 2e + 3e + e - 1 $=\left(x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...\right)$ = 6e - 1374 (d) $+\left(2x-\frac{(2x)^2}{2}+\frac{(2x)^3}{3}-...\right)$ Let the four numbers be $\frac{a}{r}$, a, ar, 2ar - aWhere first three numbers are in GP and last $=3x-\frac{5}{2}x^2+\frac{9}{2}x^3-\frac{17}{4}x^4+...$ three in AP. Given that the common difference of AP is 6, so 369 (c) ...(ii) Here, $r = \frac{1}{3}\sqrt{\frac{20}{3}} \times \frac{9}{10} = \sqrt{\frac{3}{5}}$ ar - a = 6And also given $\frac{a}{r} = 2ar - a$ $\therefore T_5 = ar^4 = \frac{10}{2} \left(\frac{3}{5}\right)^2 = \frac{2}{5}$ $\Rightarrow \frac{a}{r} = 2(ar - a) + a$ 371 (a) $\Rightarrow \frac{a}{a} = 2(6) + a$ [from Eq.(ii)] We have, $\Rightarrow \left(\frac{a}{r}\right) - a = 12$ $\log_2 \sin x - \log_2 \cos x - \log_2 (1 - \tan^2 x) = -1$ $\Rightarrow \log_2\left\{\frac{\sin x}{\cos x(1-\tan^2 x)}\right\} = -1$ $\Rightarrow a(1-r) = 12r$ $\Rightarrow -6 = 12r$ [from Eq.(ii)] $\Rightarrow \frac{\tan x}{1 - \tan^2 x} = 2^{-1}$ $\Rightarrow r = -\frac{1}{2}$ $\Rightarrow \frac{2 \tan x}{1 - \tan^2 x} = 1$ From Eq. (ii), we get $a\left[\left(-\frac{1}{2}\right)-1\right]=6$ $\Rightarrow \tan 2x = \tan \frac{\pi}{4} \Rightarrow 2x$ $\Rightarrow a = -4$ $= n\pi + \frac{\pi}{\Lambda}, n \in \mathbb{Z}$ On putting the value of a and r in Eq. (i), the $\Rightarrow x = \frac{n\pi}{2} + \frac{\pi}{8}, n \in \mathbb{Z}$ required numbers are 8, -4, 2, 8. 376 (b) 372 (a) Given, $\frac{\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots}{1 + \frac{1}{2!} + \frac{1}{2!} + \dots} = \frac{\frac{e+e^{-1}}{2} - 1}{\frac{e-e^{-1}}{2!}}$ We have $\frac{x-1}{x+1} + \frac{1}{2}\frac{x^2-1}{(x+1)^2} + \frac{1}{3}\frac{x^3-1}{(x+1)^3} + \cdots$ $=\frac{e^2+1-2e}{e^2-1}=\frac{e-1}{e+1}$ $= \left\{ \frac{x}{x+1} + \frac{1}{2} \left(\frac{x}{x+1} \right)^2 + \frac{1}{3} \left(\frac{x}{x+1} \right)^3 + \cdots \right\}$ 377 (d) Since, $\frac{a}{1-r} = 4 \Rightarrow a = 4(1-r)$ $-\left\{\frac{1}{x+1}+\frac{1}{2}\cdot\frac{1}{(x+1)^2}+\frac{1}{3}\cdot\frac{1}{(x+1)^3}+\cdots\right\}$ and $ar = \frac{3}{4}$ $= -\log_e \left(1 - \frac{x}{x+1}\right) + \log_e \left(1 - \frac{1}{x+1}\right)$ $\Rightarrow 4(1-r)r = \frac{3}{4}$ [from Eq. (i)]

...(i)

...(i)

$$\Rightarrow 16r^{2} - 16r + 3 = 0 \Rightarrow (4r - 1)(4r - 3) = 0$$

$$\Rightarrow r = \frac{1}{4}, \frac{3}{4}$$
If $r = \frac{1}{4}$, then $a = 3$
378 (a)
$$\sum_{k=1}^{5} \frac{1^{3} + 2^{3} + \ldots + k^{3}}{1 + 3 + 5 + \ldots + (2k - 1)} = \sum_{k=1}^{5} \frac{\left(\frac{k(k+1)}{2}\right)^{2}}{k^{2}}$$

$$= \frac{2^{2} + 3^{2} + 4^{2} + 5^{2} + 6^{2}}{4}$$

$$= \frac{4 + 9 + 16 + 25 + 36}{4}$$

$$= \frac{90}{4} = 22.5$$
379 (c)
We have,
$$\left(1 + x + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \cdots\right)$$

$$= \left(\frac{e^{x} + e^{-x}}{2}\right)^{2}$$

$$= \frac{1}{4} \{e^{2x} + e^{-2x} + 2\}$$

$$= \frac{1}{4} \left[\left(1 + 2x + \frac{2^{2}x^{2}}{2!} + \frac{2^{3}x^{3}}{3!} + \cdots\right) + \left(1 - 2x + \frac{2^{2}x^{2}}{2!} - \frac{2^{3}x^{3}}{3!} + \cdots\right) \right]$$

$$+ 2$$

$$= \frac{1}{2} \left\{1 + \frac{2^{2}x^{2}}{2!} + \frac{2^{4}x^{4}}{4!} + \cdots + 1\right\}$$

$$= 1 + \frac{2x^{2}}{2!} + \frac{2^{3}x^{4}}{4!} + \cdots$$
380 (a)
We have, $\tan n\theta = \tan m\theta$

$$\Rightarrow n\theta = N\pi + (m\theta)$$

$$\Rightarrow \theta = \frac{N\pi}{n-m}, \text{ putting } N = 1, 2, 3, \dots \text{ we get}$$

$$= \frac{\pi}{n-m}, \frac{2\pi}{n-m}, \frac{3\pi}{n-m} \dots \text{ which are obviously in AP.$$
381 (a)
We have,
$$\frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{7^{2}} + \cdots$$

$$= \left(\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \frac{1}{5^{2}} + \frac{1}{6^{2}} + \cdots\right)$$

$$- \left(\frac{1}{2^{2}} + \frac{1}{4^{2}} + \frac{1}{6^{2}} + \cdots\right)$$

 $\frac{\pi^2}{6} - \frac{1}{4} \left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots \right) = \frac{\pi^2}{6} - \frac{1}{4} \left(\frac{\pi^2}{6} \right) = \frac{\pi^2}{8}$ 382 (c) It is given that *a*, *b*, *c* are in G.P. $\therefore b^2 = ac$ $\Rightarrow 2 \, \log_{\lambda} b = \log_{\lambda} a + \log_{\lambda} c$ $\Rightarrow \frac{2}{\log_{h} \lambda} = \frac{1}{\log_{a} \lambda} + \frac{1}{\log_{c} \lambda}$ $\Rightarrow \log_a \lambda, \log_b \lambda, \log_c \lambda$ are in H.P. 384 **(b)** The resulting progression will have n + 2 terms with 2 as the first term and 38 as the last term. So, The sum of the progression $=\frac{n+2}{2}(2+38)=$ 20(n+2)Also, Sum = 200 $\Rightarrow 20(n+2) = 200 \Rightarrow n = 8$ 385 (b) We have, $fn(x) = n \log_{n!} x = \log_{n!} x^n$ $\Rightarrow (n!)^{fn(x)} = x^n$ 386 (c) $:: T_6 = 2 \Rightarrow a + 5d = 2$ Now, let $P = T_1 T_4 T_5$ = a(a+3d)(a+4d)= (2-5d)(2-2d)(2-d) $= 2\{4 - 16d + 17d^2 - 5d^3\}$ Now, $\frac{dp}{dd} = 2\{-16 + 34d - 15d^2\}$ Put $\frac{dp}{dd} = 0$ for maximum or minimum $-16 + 34d - 15d^2 = 0$ $\Rightarrow d = \frac{2}{3} \text{ and } \frac{8}{5}$ Also, $\frac{d^2 P}{dd^2} = 2\{34 - 30d\}$ $\left(\frac{d^2P}{dd^2}\right)_{d=2/3} > 0$ Thus, P is least. Thus, the value of d = 2/3. 387 (d) Let $S_n = 12 + 16 + 24 + \ldots + T_n$ $S_n = 12 + 16 + \ldots + T_n$ On subtraction $0 = 12 + 4 + 8 + 16 + \dots - T_n$ $\Rightarrow T_n = 12 + \frac{4(2^{n-1} - 1)}{2 - 1}$ $= 2^{n+1} + 8$ $S_n = \sum_{n=1}^{\infty} T_n = 2^2 + 2^4 + \dots + 8n$ $=\frac{2^2(2^n-1)}{2}+8n$

$$= 4(2^{n} - 1) + 8n$$
388 **(b)**
The sequence is a G.P. with common ratio 1/3

$$\therefore \sum_{r=1}^{20} a_{r} = 2 \left\{ \frac{1 - \left(\frac{1}{3}\right)^{20}}{1 - \frac{1}{3}} \right\} = 3 \left(1 - \frac{1}{3^{20}}\right)$$
389 **(c)**
We have,

$$a_{1} a_{2} a_{3} \dots a_{n}$$

$$= \frac{b_{n} a_{1} a_{2} a_{3} \dots a_{n}}{b_{n}} = \frac{(a_{1} a_{2} \dots a_{n-1})(a_{n} b_{n})}{b_{n}}$$

$$= \frac{(a_{1} a_{2} \dots a_{n-1}) b_{n-1}}{b_{n}} \qquad \text{[Using def. of } b_{n}\text{]}$$

$$= \frac{(a_{1} a_{2} \dots a_{n-2})(a_{n-1} b_{n-1})}{b_{n}}$$

$$= \frac{(a_{1} b_{1}}{b_{n}} = \frac{(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})}{b_{n}} = \frac{x - y}{b_{n}}$$
390 **(d)**
We have,

$$\frac{e^{7x} + e^{x}}{e^{3x}} = e^{4x} + e^{-2x}$$

$$= \sum_{n=0}^{\infty} \frac{(4 x)^{n}}{n!} + \sum_{n=0}^{\infty} \frac{(-2 x)^{n}}{n!}$$
∴ Coefficient of x^{n} in $\left(\frac{e^{7x} + e^{x}}{e^{3x}}\right) = \frac{4^{n}}{2} + \frac{(-1)^{n} 2^{n}}{2} = \frac{4^{n}}{2}$

We have,

$$\frac{e^{7x} + e^{x}}{e^{3x}} = e^{4x} + e^{-2x}$$

$$= \sum_{n=0}^{\infty} \frac{(4x)^{n}}{n!} + \sum_{n=0}^{\infty} \frac{(-2x)^{n}}{n!}$$

$$\therefore \text{ Coefficient of } x^{n} \text{ in } \left(\frac{e^{7x} + e^{x}}{e^{3x}}\right) = \frac{4^{n}}{n!} + \frac{(-1)^{n}2^{n}}{n!} = \frac{4^{n} + (-2)^{n}}{n!}$$

391 **(d)**

Given series, is a arithmetic geometric series.

Here,
$$a_1 = 1$$
, $d = 1$, $r = a$

$$\therefore S_{\infty} = \frac{a_1}{1-r} + \frac{d.r}{(1-r)^2}$$
$$= \frac{1}{1-a} + \frac{1.a}{(1-a)^2} = \frac{1}{(1-a)^2}$$

392 **(b)**

Let
$$b = ar, c = ar^2$$
 and $d = ar^3$. Then,

$$\frac{1}{a^3 + b^3} = \frac{1}{a^3(1 + r^3)}, \frac{1}{b^3 + c^3} = \frac{1}{a^3 r^3(1 + r^3)}$$
and, $\frac{1}{c^3 + d^3} = \frac{1}{a^3 r^3(1 + r^3)}$
Clearly, $(a^3 + b^3)^{-1}, (b^3 + c^3)^{-1}$ and $(c^3 + d^3)^{-1}$
are in G.P. with common ratio $1/r^3$
393 **(b)**
Here, $T_{12} = a + 11d$
and $T_{22} = a + 21d$

Since,
$$100 = T_{12} + T_{22}$$

 $\therefore 100 = a + 11d + a + 21d$
 $\Rightarrow a + 16d = 50$...(i)
Now, $S_{33} = \frac{33}{2} [2a + (33 - 1)d]$
 $= 33(a + 16d)$
 $= 33 \times 50 = 1650$ [from Eq. (i)]
395 (a)
We have,
 $10^{x-14} + 10^{-x-1} = \frac{1}{3}$
 $\Rightarrow 10^{x} + 10^{-x} = \frac{10}{3}$
 $\Rightarrow 3 \times (10^{x})^{2} - 10(10^{x}) + 3 = 0$
 $\Rightarrow (10^{x} - 3)(310^{x} - 1) = 0$
 $\Rightarrow 10^{x} = 3 \text{ or } 10^{x} = \frac{1}{3} \Rightarrow x = \log_{10} 3 \text{ or } x = -\log_{10} 3$
396 (c)
Let
 $x^{a} = x^{b/2} z^{b/2} = z^{c} = \lambda$
 $\Rightarrow x = \lambda^{\frac{1}{a}}, z = \lambda^{\frac{1}{c}}, xz = \lambda^{\frac{2}{b}}$
 $\Rightarrow \lambda^{\frac{1}{a} + \frac{1}{c}} = \frac{2}{b} \Rightarrow a, b, c \text{ are in HP}$
397 (b)

The *n*th term
$$T_n$$
 of the given series is given by

$$T_n = \frac{1 \cdot 3 \cdot 5 \cdot 7 \dots (2n-1)}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \dots (2n)}$$

$$\Rightarrow T_n$$

$$= \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \dots (2n-2)(2n-1)(2n)}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \dots (2n-1)(2n)}$$

$$\times \frac{1}{2 \cdot 4 \cdot 6 \dots (2n-2)(2n)}$$

$$\Rightarrow T_n = \frac{1}{2^n n!}$$

$$\therefore \sum_{n=1}^{\infty} T_n = \sum_{n=1}^{\infty} \frac{\left(\frac{1}{2}\right)^n}{n!} = \left(\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)^n}{n!}\right) - 1 = e^{1/2} - 1$$

398 **(c)**

Let *d* be the common difference of the A.P. Now, n-14

$$\sum_{r=1}^{n} \frac{1}{(a_{r+1})^{2/3} + (a_{r+1})^{1/3}(a_r)^{1/3} + (a_r)^{2/3}}$$

= $\sum_{r=1}^{n-1} \frac{(a_{r+1})^{1/3} - (a_r)^{1/3}}{a_{r+1} - a_r}$
= $\frac{1}{d} \sum_{r=1}^{n-1} \{(a_{r+1})^{1/3} - (a_r)^{1/3}\} \quad [\because a_{r+1} - a_r = d]$
= $\frac{1}{d} [(a_{n+1})^{1/3} - (a_1)^{1/3}]$

$$= \frac{1}{d} \times \frac{a_n - a_1}{(a_n)^{2/3} + (a_n a_1)^{1/3} + (a_1)^{2/3}}$$

= $\frac{n - 1}{a_n^{2/3} + a_n^{1/3} a_1^{1/3} + a_1^{2/3}} [\because a_n - a_1]$
= $(n - 1) d$]

399 (a)

Let the two numbers be *x* and *y*, then $A = \frac{1}{2}(x + y), \sqrt{xy} = G \text{ or } G^2 = xy$ And $\frac{2xy}{(x+y)} = 4 \implies G^2 = 4A$ We have, $2A + G^2 = 27 \implies 2A + 4A = 27$ $\implies A = \frac{9}{2}$ $\implies x + y = 9$...(i) So, xy = 18 ...(ii) Solving Eqs.(i) and (ii), we get x = 6, y = 3

400 (a)

We have, $3^{2x+1} \cdot 4^{x-1} = 36$ $\Rightarrow 3^{2x+1} \times 2^{2x-2} = 36$ $\Rightarrow 3 \times 3^{2x} \times \frac{2^{2x}}{4} = 36$ $\Rightarrow (3 \times 2)^{2x} = 48 \Rightarrow 6^{2x} = 48 \Rightarrow 36^{x} = 48 \Rightarrow x$ $= \log_{36} 48$

401 **(b)**

If p, q, r, s are in A.P., then in an A.P. or a G.P. or an H.P. a_1 , a_2 , a_3 , ..., the terms a_p , a_q , a_r are in A.P., G.P. or H.P. respectively

402 **(c)**

$$T_{n} = \frac{\frac{n(n+1)}{2.2}}{1^{3} + 2^{3} + 3^{3} + \ldots + n^{3}}$$

$$= \frac{\frac{n(n+1)}{4}}{\left(\frac{n(n+1)}{2}\right)^{2}} = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$\therefore T_{n} = \Sigma \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right)$$

$$+ \left(\frac{1}{3} - \frac{1}{4}\right) + \ldots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1} = \frac{n}{n+1}$$
403 (a)

Since, $a_1, a_2, a_3, ..., a_n$ are in AP. Then, $a_2 - a_1 = a_3 - a_2 = ... = a_n - a_{n-1} = d$ Where *d* is the common difference of the give AP Also, $a_n = a_1 + (n-1)d$ Then, by rationalizing each term

$$\frac{1}{\sqrt{a_2} + \sqrt{a_1}} + \frac{1}{\sqrt{a_3} + \sqrt{a_2}} + \dots + \frac{1}{\sqrt{a_n} + \sqrt{a_{n-1}}}$$

$$= \frac{\sqrt{a_2} - \sqrt{a_1}}{a_2 - a_1} + \frac{\sqrt{a_3} - \sqrt{a_2}}{a_3 - a_2} + \dots + \frac{\sqrt{a_n} - \sqrt{a_{n-1}}}{a_n - a_{n-1}}$$

$$= \frac{1}{d} (\sqrt{a_2} - \sqrt{a_1} + \sqrt{a_3} - \sqrt{a_2} + \dots + \sqrt{a_n} - \sqrt{a_{n-1}})$$

$$= \frac{1}{d} (\sqrt{a_n} - \sqrt{a_1}) \times \frac{\sqrt{a_n} + \sqrt{a_1}}{\sqrt{a_n} + \sqrt{a_1}}$$

$$= \frac{1}{d} \left(\frac{a_n - a_1}{\sqrt{a_n} + \sqrt{a_1}}\right) = \frac{1}{d} \left(\frac{(n-1)d}{\sqrt{a_n} + \sqrt{a_1}}\right)$$

$$= \frac{n-1}{\sqrt{a_n} + \sqrt{a_1}}$$

404 **(a)**

We have,

$$\frac{1}{x^2} + \frac{1}{2x^4} + \frac{1}{3x^6} + \dots \text{ ad. inf.}$$

$$= -\log_e \left(1 - \frac{1}{x^2}\right)$$

$$= -\log_e \left(1 - \frac{2}{y+1}\right) \quad \left[\because y = 2x^2 - 1 \quad \therefore \ x^2\right]$$

$$= \frac{y+1}{2}$$

$$= -\log_e \left(\frac{y-1}{y+1}\right) = \log_e \left(\frac{y+1}{y-1}\right)$$

405 **(c)**

Let the number of sides of the polygon be *n*. Then, the sum of interior angles of the polygon

$$= (2n-4)\frac{\pi}{4} = (n-2)\pi$$

Since, the angles are in AP and $a = 120^{\circ}, d = 5$
Therefore, $S_n = \frac{n}{2}[2a + (n-1)d]$
 $\Rightarrow \frac{n}{2}[2 \times 120 + (n-1)5] = (n-2)180$
 $\Rightarrow n^2 - 25n + 144 = 0$
 $\Rightarrow (n-9)(n-16) = 0$
 $\Rightarrow n = 9, 16$
Take $n = 16$
 $T_{16} = a + 15d = 120^{\circ} + 15(5^{\circ}) = 195^{\circ}$, which is
impossible, an interior angle cannot be greater
than 180°.
Hence, $n = 9$
406 (d)
We have,
 $\log_x(4.x^{\log_5 x} + 5) = 2\log_5 x$
 $\Rightarrow \log_x(4.x^{\log_5 x} + 5) = \log_5 x^2$
 $\Rightarrow 4.x^{\log_5 x} + 5 = x^{\log_5 x^2}$
 $\Rightarrow 4.x^{\log_5 x} + 5 = x^{2\log_5 x}$
 $\Rightarrow 4y + 5 = y^2$, where $y = x^{\log_5 x}$
 $\Rightarrow y^2 - 4y - 5 = 0$
 $\Rightarrow y = 5, -1$

$$\Rightarrow x^{\log_5 x} = 5 \qquad [\because y \neq -1]$$

$$\Rightarrow \log_5 x = \log_x 5$$

$$\Rightarrow (\log_5 x)^2 = 1 \Rightarrow \log_5 x = \pm 1 \Rightarrow x = 5, 5^{-1}$$
407 (d)
Since, $x = 1 + a + a^2 + \dots \infty$

$$\Rightarrow x = \frac{1}{1-a} \Rightarrow a = \frac{x-1}{x}$$
Similarly, $b = \frac{y-1}{y}$ and $c = \frac{z-1}{z}$
Since, a, b, c are in AP.

$$\therefore b = \frac{a+c}{2}$$

$$\Rightarrow \frac{y-1}{y} = \frac{x-1}{x} + \frac{z-1}{z}$$

$$\Rightarrow 2xz(y-1) = y[z(x-1) + x(z-1)]$$

$$\Rightarrow 2xz = xy + yz$$
408 (a)
We have,
 $x^{(3/2)(\log_2 x-3)} = 2^{-3}$

$$\Rightarrow \frac{3}{2}(\log_2 x - 3) = \log_x 2^{-3}$$

$$\Rightarrow \frac{3}{2}(\log_2 x - 3) = -3\log_x 2$$

$$\Rightarrow \frac{1}{2}(\log_2 x - 3) = -\frac{1}{\log_2 x}$$

$$\Rightarrow (\log_2 x)^2 - 3(\log_2 x) + 2 = 0$$

$$\Rightarrow (\log_2 x - 1)(\log_2 x - 2) = 0$$

$$\Rightarrow \log_2 x = 1, 2 \Rightarrow x = 2, 2^2$$
411 (b)
Since, a, b, c are in AP.

$$\Rightarrow 2b = a + c$$
, then straight line $ax + by + c = 0$
will pass through $(1, -2)$ because it satisfies
condition $a - 2b + c = 0$ or $2b = a + c$.
412 (a)
We have,

$$\frac{e^x}{1-x} = B_0 + B_1x + B_2x^2 + \dots + B_nx^n + \dots$$

$$\Rightarrow \sum_x \frac{x^r}{r!} = (B_0 + B_1x + B_2x^2 + \dots + B_nx^n + \dots)$$

$$\Rightarrow \sum_x \frac{x^r}{r!} = (B_0 + B_1x + B_2x^2 + \dots + B_nx^n + \dots)(1-x)$$
On equating the coefficients of x^n on both sides, we get

$$\frac{1}{n_1!} = B_n - B_{n-1}$$
413 (b)
We have,

$$\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}$$
Applying componendo and dividendo rule, we get

$$\frac{2a}{2bx} = \frac{2c}{2cx} = \frac{2c}{2dx}$$
417

$$\Rightarrow \frac{a}{b} = \frac{b}{c} = \frac{c}{d}$$

$$\Rightarrow b^{2} = ac \text{ and } c^{2} = bd$$

$$\Rightarrow a, b, c \text{ and } b, c, d \text{ are in GP, therefore } a, b, c, d$$
are in GP.
414 (C)
We have,
$$\sum_{r=1}^{n} \frac{1}{(2r-1)^{2}} = \frac{\pi^{2}}{8}$$

$$\Rightarrow \frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \cdots = \frac{\pi^{2}}{8}$$
Let $\frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \cdots = \frac{\pi^{2}}{8}$
Let $\frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \cdots = \frac{\pi^{2}}{6}$
415 (C)
It will take 10yr for Jairam to pay off Rs 10000 in 10 yearly installments.
$$\therefore \text{ He pays 10\% annual interest on remaining amount.}$$

$$\therefore \text{ Money given in the first year}$$

$$= 1000 + \frac{10000 \times 10}{100} = 1000 + 1000$$

$$= \text{Rs 2000}$$
Money given in second year
$$= 1000 + \frac{10000 \times 10}{100} = 100 + 900 = \text{Rs 1900}$$
Similarly, money paid in third year = Rs 1800 etc. So, money given by Jairam in 0 yr will be Rs 2000, Rs 1900, Rs 1700 ...
Which is in arithmetic progression, whose first term
$$a = 2000 \text{ and } d = -100$$
Total money given in 10 yr
$$= \frac{10}{2} [2(2000) + (10 - 1)(-100)] = \text{Rs 15500}$$
Therefore, total money given by Jairam
$$= 5000 + 15500 = \text{Rs 20500}$$
416 (a)
We have,
$$a, b, c \text{ are in A.P. ...(i)$$

$$\Rightarrow \frac{a}{abc}, \frac{b}{abc}, \frac{c}{abc}} \text{ are in A.P. } \Rightarrow \frac{b}{bc}, \frac{1}{ca}, \frac{1}{ab} \text{ are in A.P.}$$
...(ii)
From (i) and (ii), we obtain
$$a + \frac{1}{bc}, b + \frac{1}{ca}, c + \frac{1}{ab} \text{ are in A.P.}$$
417 (d)

We observe that the successive differences of the

terms of the sequence 12,28,50,78, ... are in A.P. So, let its n^{th} term be $t_n = an^2 + bn + c,$ Putting n = 1,2,3, we get $t_1 = a + b + c \Rightarrow a + b + c = 12$ $t_2 = 4a + 2b + c \Rightarrow 4a + 2b + c = 28$ $t_3 = 9a + 3b + c \Rightarrow 9a + 3b + c = 50$ Solving these equations, we get a = 3, b = 7, c = 2 $\therefore t_n = 3n^2 + 7n + 2$ Hence, $\frac{12}{21} + \frac{28}{31} + \frac{50}{41} + \frac{78}{51} + \cdots$ $= \sum_{n=1}^{\infty} \frac{3n^2 + 7n + 2}{(n+1)!}$ $=\sum_{n=1}^{\infty}\frac{3(n-1)^2+7(n-1)+2}{n!}$ $=\sum_{n=1}^{\infty}\frac{3n^2+n-2}{n!}$ $= 3\sum_{n=1}^{\infty} \frac{n^2}{n!} + \sum_{n=1}^{\infty} \frac{n}{n!} - 2\sum_{n=1}^{\infty} \frac{1}{n!}$ = 2(2e - 1) + (e - 1) - 2(e - 2) = 5e418 **(b)** We have, $\frac{x^2}{2} + \frac{2}{3}x^3 + \frac{3}{4}x^4 + \frac{4}{5}x^5 + \cdots$ $=\sum_{n=1}^{\infty}\frac{n}{n+1}x^{n+1}$ $=\sum_{i=1}^{\infty} \frac{n+1-1}{n+1} x^{n+1}$ $=\sum_{n=1}^{\infty} \left(1 - \frac{1}{n+1}\right) x^{n+1}$ $= \sum_{n=1}^{\infty} x^{n+1} - \frac{1}{(n-1)^n} \frac{x^{n+1}}{n+1}$ $=\frac{x^2}{1-x} + x - \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$ $=\frac{x^2}{1-x} + x + \log(1-x) = \frac{x}{1-x} + \log(1-x)$ 419 (c) $\left(\frac{1}{3}\right)^2 + \frac{1}{3}\left(\frac{1}{3}\right)^4 + \frac{1}{5}\left(\frac{1}{3}\right)^6 + \dots$ $=\frac{1}{3}\left[\left(\frac{1}{3}\right)+\frac{1}{3}\left(\frac{1}{3}\right)^{3}+\frac{1}{5}\left(\frac{1}{3}\right)^{5}+\dots\right]$

$$= \frac{1}{3} \cdot \frac{1}{2} \log \left(\frac{1 + \frac{1}{3}}{1 - \frac{1}{3}} \right) \left[\because \frac{1}{2} \log \left(\frac{1 + x}{1 - x} \right) \right]$$

$$= x + \frac{x^3}{3} + \frac{x^5}{5} + \dots \right]$$

$$= \frac{1}{6} \log_e 2$$
420 (a)
Since, $T_m = \frac{1}{n} \Rightarrow a + (m - 1)d \dots(1)$
and $T_n = \frac{1}{m} = a + (n - 1)d \dots(1)$
On solving Eqs. (i) and (ii), we get
 $a = \frac{1}{mn}$ and $d = \frac{1}{mn}$
 $\therefore a - d = \frac{1}{mn} - \frac{1}{mn} = 0$
421 (c)
Given, sum
 $= (x + 2)^{n-1} \left\{ 1 + \left(\frac{x + 1}{x + 2} \right) + \left(\frac{x + 1}{x + 2} \right)^n + \left(\frac{x + 1}{x + 2} \right)^n + \left(\frac{x + 1}{x + 2} \right)^n + \left(\frac{x + 2}{x + 2} \right)^n + \left(\frac{x +$

 $=\sqrt{2}(1+2+3+4+...$ upto 24 terms)

$$\begin{aligned} &= \sqrt{2} \times \frac{24 \times 25}{2} \\ &= 300\sqrt{2} \quad \left[\because \Sigma n = \frac{n(n-1)}{2} \right] \\ &424 \text{ (c)} \\ &\text{Let } S = 1^3 + 2^3 + 3^3 + \dots + 15^3 \\ &= \int_{n=1}^{35} n^3 = \left(\frac{15(15+1)}{2} \right)^2 \\ &= 14400 \\ &426 \text{ (c)} \\ &\text{Since, } \Sigma n = \left(\frac{1}{5} \right) \Sigma n^2 \\ &\Rightarrow \frac{n(n+1)}{2} = \frac{1}{5} \frac{n(n+1)(2n+1)}{6} \\ &\Rightarrow 2n+1 = 15 \Rightarrow n = 7 \\ &427 \text{ (a)} \\ &\text{We know that, } \frac{e^x + e^{-3}}{2} = 1 + \frac{x^2}{2} + \frac{x^4}{4} + \frac{x^6}{6} + \dots \\ &p \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \dots \\ &\Rightarrow \frac{e^{1/2}}{2} - \frac{1}{2} = 1 + \frac{1}{4.2!} + \frac{1}{16.4!} + \dots \\ &\Rightarrow \frac{e^{1/2}}{2} \frac{e^{-1/2}}{2} = 1 + \frac{1}{4.2!} + \frac{1}{16.4!} + \dots \\ &\Rightarrow \frac{e^{1/2}}{2} \frac{e^{-1/2}}{2} = 1 + \frac{1}{4.2!} + \frac{1}{16.4!} + \dots \\ &\Rightarrow \frac{e^{1/2}}{2} \frac{e^{-2/2}}{2} = 1 + \frac{1}{4.2!} + \frac{1}{16.4!} + \dots \\ &\Rightarrow \frac{e^{1/2}}{2} \frac{e^{-2/2}}{2} = \frac{1}{2} + \frac{1}{2} \frac{e^{-2}}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{4} + \frac{1}{2} \frac{1}{2} \frac{1}{4} + \frac{1}{4} \frac{1}{2} \frac{1}{4} + \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \dots \\ &\Rightarrow \frac{e^{1/2}}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \dots \\ &\Rightarrow \frac{e^{1/2}}{2} \frac{e^{-1/2}}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{16} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \dots \\ &\Rightarrow \frac{e^{1/2}}{2} \frac{1}{4} \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{2} \frac{1}{4} $

$$\therefore 1 - \log 2 + \frac{(\log 2)^2}{2!} - \frac{(\log 2)^3}{3!} + \cdots$$
$$= e^{-\log 2}$$
$$= e^{\log 2^{-1}} = \frac{1}{2}$$

434 **(c)**

Let S_n and S' be the sums of n terms of two AP's and T_{11} and T_{11} be the respective 11th term, then $\frac{S_n}{S'_n} = \frac{\frac{n}{2}[2a+(n-1)d]}{\frac{n}{2}(2a'+(n-1)d]} = \frac{7n+1}{4n+27}$ (given) $\Rightarrow \frac{a + \frac{(n-1)}{2}d}{a' + \frac{(n-1)}{2}d'} = \frac{7n+1}{4n+27}$ Now put, n = 21, we get $\frac{a+10d}{a'+10d'} = \frac{T_{11}}{T_{11}'} = \frac{148}{111}$ $=\frac{4}{3}$ 435 (a) $2.\overline{357} = 2 + 0.357 + 0.000357 + ...$ $\Rightarrow 2.\overline{357} = 2 + \frac{357}{10^3} + \frac{357}{10^6} + ...$ $\Rightarrow 2.\overline{357} = 2 + \frac{\frac{357}{10^3}}{1 - \frac{1}{12^3}} = 2 + \frac{357}{999} = \frac{2355}{999}$ 436 (c) Here, $T_n = \frac{1+2+3+...+n}{n!} = \frac{n(n+1)}{2(n)!} \left[\because \sum n = \frac{n(n+1)}{2(n)!} \right]$ n(n+1)2 $=\frac{(n+1)}{2(n-1)!}=\frac{1}{2(n-2)!}+\frac{1}{(n-1)!}$ $T_1 = 0 + \frac{1}{1}$ $T_2 = \frac{1}{2} \cdot \frac{1}{1} + \frac{1}{11}$ $T_3 = \frac{1}{2} \cdot \frac{1}{1} + \frac{1}{21}$ $T_4 = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{3!}$ $\therefore S = \Sigma T_n$ $=\frac{1}{2}\left(1+\frac{1}{1!}+\frac{1}{2!}+...\right)+\left(1+\frac{1}{1!}+\frac{1}{2!}+...\right)$ $=\frac{1}{2}e + e = \frac{3}{2}e$ 437 (b) Let $S = 3 + 7 + 13 + 21 + \ldots + T_n$ $\Rightarrow T_n = n^2 + n + 1$ Let $T_r = \cot^{-1}(r^2 + r + 1)$

 $= \tan^{-1}(r+1) - \tan^{-1}r$ Put r = 1, 2, ..., n $T_1 = \tan^{-1} 2 - \tan^{-1} 1$ $T_2 = \tan^{-1} 3 - \tan^{-1} 2$ $T_n = \tan^{-1}(n+1) - \tan^{-1}n$ On adding all these, we get $T_1 + T_2 + \ldots + T_n$ $= \tan^{-1}(n+1)$ $- \tan^{-1} 1$ $= \tan^{-1}\left(\frac{n}{n+2}\right) = \cot^{-1}\left(\frac{n+2}{n}\right)$ 439 (a) Let $x^{18} = y^{21} = z^{28} = k$ Then, $18 \log x = 21 \log y = 28 \log z = \log k$ $\Rightarrow \log_y x = \frac{21}{18}, \log_z y = \frac{28}{21}, \log_x z = \frac{18}{28}$ $\Rightarrow 3 \log_y x = \frac{7}{2}, 3 \log_z y = 4, 7 \log_x z = \frac{9}{2}$ \Rightarrow 3, 3 log_y z, 3 log_z y, 7 log_x z are in A.P. 440 **(b)** For $0 < x < \pi/2$, we have $0 < \sin^2 x < 1$ $\therefore y = \exp[(\sin^2 x + \sin^4 x + \sin^6 x + \dots \infty) \log_e 2]$ $\Rightarrow y = \exp\left[\left(\frac{\sin^2 x}{1 - \sin^2 x}\right)\log_e 2\right]$ $= \exp[\tan^2 x \log_2 2]$ $\Rightarrow y = e^{\log_e^{2^{\tan^2 x}}} = 2^{\tan^2 x}$ Since *y* satisfies the equation $x^2 - 9x + 8 = 0$. Therefore, $y^{2} - 9y + 8 = 0 \Rightarrow (y - 1)(y - 8) = 0 \Rightarrow y = 1$ or, y = 8Now, $v = 1 \Rightarrow 2^{\tan^2 x} = 1 \Rightarrow 2^{\tan^2 x} = 2^0 \Rightarrow \tan x = 0$ $\Rightarrow x = 0$ But, $0 < x < \pi/2$. Therefore, $y \neq 1$. Consequently, we have $y = 8 \Rightarrow 2^{\tan^2 x} = 2^3 \Rightarrow \tan^2 x = 3 \Rightarrow \tan x = \sqrt{3}$ $\Rightarrow x = \pi/3$ $\therefore \frac{\sin x + \cos x}{\sin x - \cos x} = \frac{\tan x + 1}{\tan x - 1} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} = 2 + \sqrt{3}$ 441 (c) $\left(a + \frac{1}{p} - \frac{1}{a}\right)^{2} + \left(a + \frac{1}{a} - \frac{1}{r}\right)^{2} + \left(a + \frac{1}{r} - \frac{1}{s}\right)^{2} \le 0$ $\Rightarrow \frac{1}{n} - \frac{1}{a} = \frac{1}{a} - \frac{1}{r} = \frac{1}{r} - \frac{1}{s}$ $\Rightarrow p,q,r,s$ are in HP. 442 (d)

$$\frac{1}{1.2} - \frac{1}{2.3} + \frac{1}{3.4} - \dots$$

$$= \left(1 - \frac{1}{2}\right) - \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right)$$

$$- \dots$$

$$= 2\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots\right) - 1 = \log_{e} \frac{4}{e}$$
443 (b)
We have,
 $x^{\log_{x}(x^{2} - 4x + 5)} = x - 1$
 $\Rightarrow x^{2} - 4x + 5 = x - 1 \Rightarrow x^{2} - 5x + 6 = 0 \Rightarrow x$
 $= 2,3$
444 (b)
It is given that
 $y - x, 2(y - a), (y - z)$ are in H.P.
 $\Rightarrow \frac{1}{y - x}, \frac{1}{2(y - a)}, \frac{1}{y - z}$ are in A.P.
 $\Rightarrow \frac{1}{2(y - a)} - \frac{1}{y - x} = \frac{1}{y - z} - \frac{1}{2(y - a)}$
 $\Rightarrow \frac{2a - y - x}{y - x} = \frac{y + z - 2a}{y - z}$
 $\Rightarrow \frac{(x - a) + (y - a)}{(x - a) - (y - a)} = \frac{(y - a) + (z - a)}{(y - a) - (z - a)}$
 $\Rightarrow \frac{x - a}{y - a} = \frac{y - a}{z - a}$
 $x - a, y - a, z - a$ are in G.P.
445 (b)
The some of n terms of given series $= \frac{n(n+1)^{2}}{2}$ if
 n is even. Let n is odd $ie, n = 2m + 1$
Then, $S_{2m+1} = S_{2m} + (2m + 1)$ th term
 $= \frac{(n - 1)n^{2}}{2} + n^{2}$ [$\because n$ is odd $= 2m + 1$]
 $= n^{2} \left[\frac{n - 1 + 2}{2}\right] = \frac{(n + 1)n^{2}}{2}$
446 (c)
LHS $= \frac{1(1 - \lambda^{n+1})}{1 - \lambda} = \frac{1 - \lambda^{n+1}}{1 - \lambda}$
And RHS $= (1 + \lambda)(1 + \lambda^{2})(1 + \lambda^{4})$
 $(1 - \lambda^{2})(1 + \lambda^{2})(1 + \lambda^{4})$
 $= \frac{(1 + \lambda^{4})(1 + \lambda^{16})}{(1 - \lambda)}$
 $(1 - \lambda^{2})(1 + \lambda^{2})(1 + \lambda^{4})$
 $= \frac{(1 - \lambda^{32})}{1 - \lambda}$
 $\therefore \frac{1 - \lambda^{n+1}}{1 - \lambda} = \frac{1 - \lambda^{32}}{1 - \lambda}$

 $\Rightarrow 1 - \lambda^{n+1} = 1 - \lambda^{32}$ $\therefore n+1=32 \Rightarrow n=31$ 447 **(a)** $: (x + 1) + (x + 4) + (x + 7) + \ldots + (x + 28)$ = 155Let *n* be the number of terms in the AP on LHS. $\therefore x + 28 = (x + 1) + (n - 1)3$ $\Rightarrow n = 10$ $\therefore \frac{10}{2}[(x+1) + (x+28)] = 155$ $\Rightarrow x = 1$ 448 (a) Let r' be the common ratio, $\therefore \frac{\sum_{n=1}^{100} a_{2n}}{\sum_{n=1}^{100} a_{2n-1}} = \frac{a_2 + a_4 + a_6 + \dots + a_{200}}{a_1 + a_3 + a_5 + \dots + a_{199}}$ $= \frac{a_1(r + r^3 + r^5 + \dots + r^{199})}{a_1(1 + r^2 + r^4 + \dots + r^{198})} = r$ $\Rightarrow \frac{\alpha}{\beta} = r$ 449 (a) Let $S = 2 + 7 + 14 + 23 + 34 + \dots + T_n$...(i) and $S = 2 + 7 + 14 + 23 + 34 + \dots T_{n-1} +$ T_n ...(ii) On subtracting Eqs. (i) from (ii), we get $\therefore S - S = 2 + [5 + 7 + 9 + 11 + ... + T_n]$ $-T_{n-1}] - T_n$ $\Rightarrow T_n = 2 + \left[\frac{n-1}{2} \{2 \times 5 + (n-2)2\}\right]$ $\Rightarrow T_n = 2 + (n-1)(n+3)$ $\therefore T_{99} = 2 + 98 \times 102 = 9998$ 450 (b) Here, $(a^2 + b^2 + c^2)p^2 - 2(ab + bc + cd)p + bc + cd)p + bc + cd + bc + cd)p + bc + cd + bc + cd + bc + cd + bc + cd)p + bc + cd + bc + cd + bc + cd + bc + cd)p + bc + cd + bc + cd + bc + cd + bc + cd)p + bc + cd + bc + cd + bc + cd)p + bc + cd + bc + cd + bc + cd)p + bc + cd + bc + cd + bc + cd)p + cd)p + bc + cd)p $(b^2 + c^2 + d^2) < 0$ $\Rightarrow (a^2p^2 - 2abp + b^2) + (b^2p^2 - 2bcp + c^2)$ $+(c^2p^2-2cdp+d^2) \le 0$ $\Rightarrow (ap - b)^{2} + (bp - c)^{2} + (cp - d)^{2} \le 0$ (Since sum of squares is never less than zero). \Rightarrow Each of the square is zero. $\therefore (ap - b)^2 = (bp - c)^2 = (cp - d)^2 = 0$ $\Rightarrow p = \frac{b}{a} = \frac{c}{b} = \frac{d}{c}$ \therefore a, b, c, d are in GP. 451 (c) $\underbrace{\frac{2p}{3} + \frac{2p}{3} + \frac{2p}{3} + \frac{3q}{5} + \dots + \frac{3q}{5} + \frac{4r}{7} + \dots + \frac{4r}{7}}_{5 \text{ times}}$ Since, $\underbrace{\frac{2p}{3} + \frac{2p}{3} + \frac{2p}{3} + \frac{3q}{5} + \dots + \frac{3q}{5} + \frac{4r}{7} + \dots + \frac{4r}{7}}_{15 \text{ times}}$ $\geq 15 \sqrt{\left(\frac{2p}{3}\right)^3 \left(\frac{3q}{5}\right)^5 \left(\frac{4r}{7}\right)^7} \quad (\because AM \geq GM)$

$$\Rightarrow p^{3}q^{5}r^{7} \frac{2^{3}3^{5}4^{7}}{3^{3}5^{5}7^{7}} \le 1$$

$$\Rightarrow p^{3}q^{5}r^{7} \le \frac{5^{5}7^{7}}{2^{3}3^{2}4^{7}}$$

Let
$$S = 1 + 10 + 10^{2} + \dots + 10^{90}$$

= $\frac{1 \cdot (10^{91} - 1)}{10 - 1} = \frac{(10^{13})^{7} - 1}{10^{13} - 1} \times \frac{10^{13} - 1}{10 - 1}$
= $[(10^{13})^{6} + (10^{13})^{5} + (10^{13})^{4} + \dots + 1] \times (10^{12} + 10^{11} + \dots + 1)$

 \therefore It is the product of two integers and hence not prime.

453 **(d)**

Let
$$S = 1 + 2x + 3x^2 + 4x^3 + ... \infty$$
 ...(i)
 $xS = x + 2x^2 + 3x^3 + ... \infty$...(ii)
Subtracting Eq. (ii) from Eq. (i), we get
 $(1 - x)S = 1 + x + x^2 + x^3 + ... \infty$
 $\Rightarrow S = \frac{1}{(1 - x)} \left(\frac{1}{1 - x}\right) = \frac{1}{(1 - x)^2}$

454 (c)

We have,

$$5\sqrt{\log_5 7} - 7\sqrt{\log_7 5}$$

 $= 5^x - 7^{\frac{1}{x}}$, where $x = \sqrt{\log_5 7}$
 $= 5^x - (5^{x^2})^{\frac{1}{x}} [\because x = \sqrt{\log_5 7} \Rightarrow x^2]$
 $= \log_5 7 \Rightarrow 7 = 5^{x^2}]$
 $= 5^x - 5^x = 0$

455 **(b)**

We have,
$$\frac{1}{x_1}, \frac{1}{x_2}, \frac{1}{x_3}, \dots, \frac{1}{x_n}$$
 are in AP.

$$\therefore \frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{x_3} - \frac{1}{x_2} = \dots = \frac{1}{x_n} - \frac{1}{x_{n-1}} = d \quad (say)$$

$$\therefore \frac{x_1 - x_2}{x_1 x_2} = \frac{x_2 - x_3}{x_2 x_3} = \dots = \frac{x_{m-1} - x_n}{x_{n-1} x_n} = d$$
Now, $x_1 x_2 + x_2 x_3 + \dots + x_{n+1} x_n$

$$= \frac{1}{d} [x_1 - x_2 + x_2 - x_3 + \dots + x_{n-1} - x_n]$$

$$= \frac{x_1 - x_n}{d}$$
But $\frac{1}{x_n} = \frac{1}{x_1} + (n - 1)d$

$$\therefore \frac{x_1 - x_n}{x_1 x_n} = (n - 1)d$$
or $\frac{x_1 - x_n}{d} = (n - 1)x_1 x_n$

$$\therefore x_1 x_2 + x_2 x_3 + \dots + x_{n-1} x_n = (n - 1)x_1 x_n$$
456 (d)
Given a, b, c are in GP and $4a, 5b, 4c$ are in AP.

$$\therefore b^2 = ac$$
 and $5b = \frac{4a + 4c}{2}$

$$\Rightarrow b^2 = ac$$
 and $5b = 2a + 2c$
Now, $a + b + c = 70$ (given)

$$\Rightarrow 2a + 2c + 2b = 140$$

 $\Rightarrow 5b + 2b = 140$

 $\Rightarrow b = 20$ 457 (d) Since, p, q and r in HP. $\Rightarrow q = \frac{2pr}{p+r} \Rightarrow \frac{q}{2} = \frac{pr}{p+r} = K$ (say) $\Rightarrow q = 2K, pr = (p + r)K$ Also, p^2 , q^2 , r^2 are in AP. $\therefore 2q^2 = p^2 + r^2 = (p+r)^2 - 2pr$ $\Rightarrow 8K^2 = (p+r)^2 - 2(p+r)K$ $\Rightarrow (p+r)^2 - 2(p+r)K - 8K^2 = 0$ $\Rightarrow p + r = 4K, -2K$ When p + r = 4K, then $pr = 4K^2$ $\therefore (p-r)^2 = (p+r)^2 - 4pr = 16K^2 - 16K^2 = 0$ $\Rightarrow p = r$ But this is not possible (:: $p \neq r$) $\therefore p += -2K \Rightarrow pr = -2K \cdot K = -2K^2$ Now, $(p - r)^2 = (p + r)^2 - 4pr$ $= 4K^2 - 4(-2K^2) = 12 K^2$ $\Rightarrow p - r = \pm 2\sqrt{3}K$ $\Rightarrow p = (-1 \pm \sqrt{3})K$ And $2r = -2K \mp \sqrt{3}K$ $\Rightarrow r = (-1 \mp \sqrt{3})K$ $\therefore p:q:r = (-1 \mp \sqrt{3})K: 2K: (-1 \mp \sqrt{3})K$ $= -1 \mp \sqrt{3} : 2 : -1 \mp \sqrt{3}$ $=(-1 \pm \sqrt{3}:(-2):(-1 \pm \sqrt{3}))$ 458 (a) Given, $x = 1 + \frac{2}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots$ $\Rightarrow x = e^2$ $\Rightarrow x^{-1} = e^{-2}$ 459 (a) Since, $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots \infty = \frac{\pi^4}{90}$ $\Rightarrow \frac{\pi}{90} = \left(\frac{1}{1^4} + \frac{1}{3^4} + \dots \infty\right)$ $+\left(\frac{1}{2^4}+\frac{1}{4^4}+\frac{1}{6^4}+\ldots\infty\right)$ $\Rightarrow \frac{\pi^4}{90} = \left(\frac{1}{1^4} + \frac{1}{3^4} + \dots \infty\right)$ $+\frac{1}{2^4}\left(\frac{1}{1^4}+\frac{1}{2^4}+\frac{1}{3^4}+\dots\infty\right)$ $\Rightarrow \frac{\pi^4}{90} = \left(\frac{1}{1^4} + \frac{1}{3^4} + \dots \infty\right) + \frac{1}{16} \left(\frac{\pi^4}{90}\right)$ $\Rightarrow \frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \dots \infty$ 460 **(a)** We have, $(x + y) + (x^2 + xy + y^2)$ $+(x^{3} + x^{2}y + xy^{2} + y^{3}) + \cdots \infty$

$$\begin{aligned} &= \frac{x^2 - y^2}{x - y} + \frac{x^3 - y^3}{x - y} + \frac{x^4 - y^4}{x - y} + \dots \text{ to } \infty \\ &= \frac{1}{x - y} \{ (x^2 + x^3 + x^4 + \dots) \\ &\quad - (y^2 + y^3 + y^4 + \dots) \} \\ &= \frac{1}{x - y} \{ \frac{x^2}{1 - x} - \frac{y^2}{1 - y} \} = \frac{x + y - xy}{1 - x - y + xy} \\ 461 \text{ (d)} \\ &\text{Let } a, H_1, H_2, b \text{ are in HP.} \\ &\therefore H_1 = \frac{3ab}{a + 2b}, H_2 = \frac{3ab}{2a + b} \\ &\text{Now, } \frac{H_1 + H_2}{a + H_2} = \frac{1}{H_1} + \frac{1}{H_2} \\ &= \frac{2a + b}{3ab} + \frac{a + 2b}{3ab} = \frac{a + b}{ab} \dots (i) \\ &\text{Also, } 2A = a + b \dots (ii) \\ &\text{and } ab = G^2 \dots (iii) \\ &\text{From Eqs. (i), (ii) and (iii), we get} \\ &\frac{H_1 + H_2}{H_1 H_2} = \frac{2A}{G^2} \\ &462 \text{ (a)} \\ &\text{We have,} \\ &704 \left\{ 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} \right\} \\ &= 1984 \left\{ 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \left(-\frac{1}{2} \right)^{n-1} \right\} \\ &\Rightarrow 704 \left\{ \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} \right\} = 1984 \left\{ \frac{1 - \left(-\frac{1}{2} \right)^n}{1 + \frac{1}{2}} \right\} \\ &\Rightarrow 128 = \frac{2112}{2^n} - \frac{1984(-1)^n}{2^n} \\ &\text{If } n \text{ is odd, we get } 2^n = 32 \Rightarrow n = 5 \\ &\text{If } n \text{ is even, we get } 128 = \frac{128}{2^n} \Rightarrow n = 0 \\ 463 \text{ (a)} \\ &\text{Let } S = 1 + \frac{3}{2} + \frac{7}{4} + \frac{15}{8} + \frac{31}{16 + \dots} \\ &= 1 + 2(n - 1) - \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + (n - 1) \right] \\ &1 + 2(n - 1) - \left[\frac{\frac{1}{2} \left(1 - \frac{1}{2^{n-1}} \right) \right] \end{aligned}$$

$$= 1 + 2(n-1) - 1 + \frac{1}{2^{n-1}} = 2(n-1) + \frac{1}{2^{n-1}}$$

Since,
$$y = \frac{2xz}{x+z}$$

Now, $x - 2y + z = x + z - 2\left(\frac{2xz}{x+z}\right)$
 $= x + z - \frac{4xz}{x+z} = \frac{(x-z)^2}{x+z}$
 $\Rightarrow \log(x - 2y + z) = \log(x - z)^2 - \log(x + z)$
 $\Rightarrow \log(x - 2y + z) + \log(x + z)$
 $= 2\log(x - z)$
465 (d)
Since, $\frac{a + ar + ar^2}{a + ar + ar^2 + ar^3 + ar^4 + ar^5} = \frac{125}{162}$
 $\Rightarrow \frac{1 + r + r^2}{(1 + r + r^2)(1 + r^3)} = \frac{125}{162}$

$$(1+r+r^2)(1+r^3) = 16$$

$$\Rightarrow 1+r^3 = \frac{152}{125}$$

$$\Rightarrow r^3 = \frac{27}{125} = \left(\frac{3}{5}\right)^3$$

$$\Rightarrow r = \frac{3}{5}$$

466 **(c)**

Let T_r be the *r*th term of the given series. Then,

$$T_r = 1 + x + x^2 + \dots + x^{r-1} = \frac{1 - x^r}{1 - x}$$

$$\therefore \text{ Required sum}$$

$$= \sum_{r=1}^n T_r$$

$$= \sum_{r=1}^n \frac{1 - x^r}{1 - x} = \frac{1}{1 - x} \sum_{r=1}^n (1 - x^r)$$

$$\Rightarrow \text{ Required sum} = \frac{1}{1 - x} \left\{ \sum_{r=1}^n 1 - \sum_{r=1}^n x^r \right\}$$

$$\Rightarrow \text{ Required sum} = \frac{1}{1 - x} \left\{ n - x \left(\frac{1 - x^n}{1 - x} \right) \right\}$$

$$\Rightarrow \text{ Required sum} = \frac{n(1 - x) - x(1 - x)^n}{(1 - x)^2}$$
467 (b)
Since, *a*, *b*, *c* are in GP.

$$\Rightarrow b^2 = ac$$
And log *a* - log 2*b*, log 2*b* - log 3*c* and log 3*c* - log *a* are in AP.

$$\Rightarrow 2(\log 2b - \log 3c)$$

$$= \log a - \log 2b + \log 3c - \log a$$

$$\therefore b^2 = ac \text{ and } 2b = 3c$$

$$\Rightarrow b = \frac{2a}{3} \text{ and } c = \frac{4a}{9}$$
Since, *a* + *b* = $\frac{5a}{3} > c$, *b* + *c* = $\frac{10a}{9} > a$,

$$c + a = \frac{13a}{9} > b$$

It implies that *a*, *b*, *c* form a triangle with *a* as the greatest side.

Now, let us find the greatest angle *A* of \triangle *ABC* by using the cosine formula.

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{\frac{4a^2}{9} + \frac{16a^2}{81} - a^2}{\frac{4a}{3} \cdot \frac{4a}{9}}$$
$$= -\frac{29}{48} < 0$$

 \therefore The angle *A* is obtuse.

469 **(b)**

Required sum = $\sum_{n=0}^{\infty} \frac{(\log_e x)^n}{n!} = e^{\log_e x} = x$

470 **(b)**

Sum of an infinite $GP = \frac{a}{1-r} = S$ $\Rightarrow a = S(1-r) \Rightarrow r = \frac{S-a}{S}$

471 **(b)**

We have,

$$\sum_{n=1}^{\infty} \frac{2n}{(2n+1)!} = \sum_{n=1}^{\infty} \frac{2n+1-1}{(2n+1)!}$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{2n}{(2n+1)!} = \sum_{n=1}^{\infty} \left\{ \frac{1}{(2n)!} - \frac{1}{(2n+1)!} \right\}$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{2n}{(2n+1)} = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!}$$

$$+ \dots = e^{-1}$$

472 (d)

47

Let
$$S = 1 + 3x + 6x^2 + 10x^3 + ... \infty$$
 ...(i)
 $xS = x + 3x^2 + 6x^3 + ... \infty$...(ii)
On subtracting Eq. (ii) from Eq. (i), we get
 $S(1 - x) = 1 + 2x + 3x^2 + 4x^3 + ... \infty$...(iii)
 $\Rightarrow x(1 - x)S = x + 2x^2 + 3x^3 + ... \infty$...(iv)
Again, subtracting Eq. (iv) from Eq. (iii), we
get
 $S[(1 - x) - x(1 - x)]$
 $= (1 + x + x^2 + x^3 + ... \infty)$
 $\Rightarrow S[(1 - x)(1 - x)] = \frac{1}{1 - x}$
 $\Rightarrow S = \frac{1}{(1 - x)^3}$
3 (a)
We have, $\frac{1}{n!} + \frac{1}{2!(n-2)!} + \frac{1}{4!(n-4)!} + ... \infty$
 $\frac{1}{n!} ({}^{n}C_{o} + {}^{n}C_{2} + {}^{n}C_{4} + ... \infty) = \frac{2^{n-1}}{n!}$

474 **(b)**

Let the first term and common difference of the A.P. be *a* and *d* respectively. Then, Middle term = $30 \Rightarrow 6th$ term = $30 \Rightarrow a + 5d = 30$ Now, $S_{11} = \frac{11}{2} \{2a + 10d\} = 11 \times (a + 5d) = 11 \times 30$ = 330

475 (c)

We have,

$$(2.3)^x = (0.23)^y = 1000$$

 $\Rightarrow 2.3 = 10^{3/x} \text{ and } 0.23 = 10^{3/y}$
 $\Rightarrow 2.3 = 10^{3/x} \text{ and } 2.3 = 10^{3/y+1}$
 $\Rightarrow \log_{10} 2.3 = \frac{3}{x} \text{ and } \log_{10} 2.3 = \frac{3}{y} + 10^{3/y}$
 $\Rightarrow \frac{3}{x} - \frac{3}{y} = 1 \Rightarrow \frac{1}{x} - \frac{1}{y} = \frac{1}{3}$

477 **(b)**

We have,

$$\log_{6}(x+3) - \log_{6} x = 2$$

$$\Rightarrow \log_{6}\left(\frac{x+3}{x}\right) = 2 \Rightarrow \frac{x+3}{x} = 6^{2} \Rightarrow x+3 = 36x$$

$$\Rightarrow x = \frac{3}{35}$$

Let
$$S = 1 + 3 + 7 + 15 + \dots + T_n$$

$$\Rightarrow \frac{S = 1 + 3 + 7 + \dots + T_{n-1} + T_n}{0 = 1 + 2 + 4 + 8 + \dots - T_n}$$

$$\Rightarrow T_n = 1 + 2 + 4 + \dots n \text{ terms}$$

$$= \frac{(2^n - 1)}{2 - 1} = 2^n - 1$$

$$\therefore \frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \dots = \sum \frac{T_n}{2^n} = \sum \frac{2^n - 1}{2^n}$$

$$= \sum (1 - 2^{-n})$$

$$= n - \frac{\frac{1}{2} \left(1 - \frac{1}{2^n}\right)}{1/2} = 2^{-n} + n - 1$$
79 (a)

479 **(a)** Sind

Since,
$$T_7 = a + 6d = 40$$
 ...(i)
and $S_{13} = \frac{13}{2}[2a + 12d]$
= 13[a + 6d]
= 13 × 40 = 520 [from Eq. (i)]

481 (a) Since $\log_x a, a^{x/2}$ and $\log_b x$ are in G.P. Therefore, $(a^{x/2})^2 = \log_x a$ $\cdot \log_b x \Rightarrow a^x$ $= \log_b a \Rightarrow x = \log_a(\log_b a)$

482 **(a)**

Let

$$S = i - 2 - 3i + 4 + 5i \dots + 100i^{100}$$

$$\Rightarrow S = i + 2i^{2} + 3i^{3} + 4i^{4} + 5i^{5} \dots + 100i^{100}$$

$$\Rightarrow i S = i^{2} + 2i^{3} + 3i^{4} \dots + 99i^{100} + 100i^{101}$$

$$\therefore S - i S = i + \{i^{2} + i^{3} + i^{4} + \dots + i^{100}\}$$

$$- 100i^{101}$$

$$S(1 - i) = i + i^{2} \left\{ \frac{(1 - i^{99})}{(1 - i)} \right\} - 100i^{101}$$

$$\Rightarrow S(1 - i) = i - \frac{(1 + i)}{(1 - i)} - 100i$$

$$= i + 1 - 1 - i - 100i = -100i$$

$$\Rightarrow S = \frac{-100i}{1 - i} = -50i(1 + i) = -50(i - 1)$$

$$= 50(1 - i)$$

483 (a)

We have,

$$\log_2 x + \log_4 x + \log_{16} x = \frac{21}{4}$$

$$\Rightarrow \log_2 x + \frac{1}{2} \log_2 x + \frac{1}{4} \log_2 x = \frac{21}{4}$$

$$\Rightarrow \frac{7}{4} \log_2 x = \frac{21}{4} \Rightarrow \log_2 x = 3 \Rightarrow x = 2^3 = 8$$

484 (c)

The given numbers are 13, 17, ..., 97. This is an AP with the first term 13 and common difference 4. Let the number of term be *n*. Then $97 = 13 + (n - 1)4 \Rightarrow 4n = 88 \Rightarrow n = 22$ Therefore, the sum of the numbers $S = \frac{n}{2}(a+l)$ $=\frac{22}{2}[13+97]=11(110)=1210$ 485 (c Let $S_n = \frac{1}{25} + \frac{1}{58} + \frac{1}{811} + \dots + \frac{1}{(3n-1)(3n+2)}$ $=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\ldots+\frac{1}{3n-1}-\frac{1}{3n+2}\right]$ $=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{n}{6n+4}$ 486 (a) We have, $4a^2 + 9b^2 + 16c^2 - 6ab - 12bc -$ 8ac = 0 $\Rightarrow 8a^{2} + 18b^{2} + 32c^{2} - 12ab - 24bc - 16ac = 0$ $\Rightarrow 4a^{2} + 9b^{2} - 12ab + 9b^{2} + 16c^{2} - 24bc$ $+16c^{2} + 4a^{2} - 16ac = 0$ $\Rightarrow (2a - 3b)^{2} + (3b - 4c)^{2} + (4c - 2a)^{2} = 0$ $\Rightarrow 2a = 3b = 4c = k$ $\Rightarrow a = \frac{k}{2}, b = \frac{k}{2}, c = \frac{k}{4}$ \Rightarrow *a*, *b*, *c* are in HP $GM \ge HM$ $\therefore \sqrt{ac} \geq b$

487 (c) Let A_i , H_i where j = 1, 2, 3, ..., 9 denote the 9 AM's and HM's between 2 and 3. Then 2, A_1 , A_2 , A_3 , ..., A_9 , 3 are in AP, let d be the common difference of this AP, then $3 = 2 + 10d \Rightarrow d = \frac{1}{10}$ If A denotes the *j*th arithmetic mean, then $A = 2 + jd = 2 + \left(\frac{j}{10}\right) \quad \left(\because d = \frac{1}{10}\right) \dots (i)$ Again, 2, H_1, H_2, \dots, H_9 , 3 will be in HP. $\Rightarrow \frac{1}{2}, \frac{1}{H_1}, \frac{1}{H_2}, \dots, \frac{1}{H_9}, \frac{1}{3}$ will be in AP Let d be the common difference of this AP, then $\frac{1}{3} = \frac{1}{2} + 10d \Rightarrow d = \frac{-1}{60}$ If *H* be the *j*th harmonic mean, then $\frac{1}{H} = \frac{1}{2} + jd = \frac{1}{2} - \frac{j}{60}$ $\therefore A + \frac{6}{H} = 2 + \frac{j}{10} + 6\left(\frac{1}{2} - \frac{j}{60}\right)$ [from Eqs.(i) and (ii)] $=5+\frac{j}{10}-\frac{j}{10}=5$ 488 (c) Since *a*, *b*, *c* are in G.P. $\therefore b^2 = ac$ $\Rightarrow 2 \log_x b = \log_x a + \log_x c$ $\Rightarrow \frac{2}{\log_{h} x} = \frac{1}{\log_{a} x} + \frac{1}{\log_{a} x}$ $\Rightarrow \log_a x, \log_b x, \log_c x$ are in H.P. 489 (b) $: 13, a_1, a_2, \dots, a_{20}, 67$ are in AP $\therefore a_1 + a_2 + a_3 + \ldots + a_{20} = 20\left(\frac{13+67}{2}\right) = 800$ Also, AM > GM $\Rightarrow \frac{a_1 + a_2 + a_3 + \ldots + a_{20}}{20}$ $\geq (a_1 \, a_2 \, a_3 \dots a_{20})^{1/20}$ $\Rightarrow 40 \ge (a_1 \cdot a_2 \cdot a_3 \dots a_{20})^{1/20}$ Hence, maximum value of $a_1 \cdot a_2 \cdot a_3 \dots a_{20}$ is $(40)^{20}$ 490 (a) We have. $\log_{10}\left(\frac{n}{n-1}\right) = \log_e\left(\frac{n}{n-1}\right) \cdot \log_{10}e$ $\Rightarrow \log_{10}\left(\frac{n}{n-1}\right) = -\log_e\left(\frac{n-1}{n}\right) \cdot \log_{10}e$ $\Rightarrow \log_{10}\left(\frac{n}{n-1}\right) = -\log_{10}e \cdot \log_e\left(1-\frac{1}{n}\right)$

$$\Rightarrow \log_{10}\left(\frac{n}{n-1}\right)$$
$$= \log_{10} e \left\{\sum_{r=1}^{\infty} \frac{1}{r} \left(\frac{1}{n}\right)^{r}\right\}$$
$$= \sum_{r=1}^{\infty} \left\{\frac{1}{r} \log_{10} e\right\} n^{-r}$$
$$\therefore \text{ Coefficient of } n^{-r} = \frac{1}{r} \log_{10} e = \frac{1}{r \log_{e} 10}$$

491 **(c)**

We have,

$$\frac{1}{1-x} - \frac{1}{1+\sqrt{x}} = \frac{\sqrt{x}}{1-x}$$
and,
$$\frac{1}{1-\sqrt{x}} - \frac{1}{1-x} = \frac{\sqrt{x}}{1-x}$$
hence, the terms are in A.P.

492 (d)

$$\left[(0.16)^{\log_{0.25} \left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots \right)} \right]^{1/2}$$
$$= \left[(0.16)^{\log_{0.25} \left(\frac{1}{3} - \frac{1}{3} \right)} \right]^{1/2}$$
$$= \left[(0.16)^{\log_{(0.5)^2} 0.5} \right]^{1/2}$$
$$= \left[(0.16)^{1/2} \right]^{1/2} = (0.4)^{1/2}$$
$$= \frac{2}{\sqrt{10}}$$

493 **(b)**

Number of notes that the person counts in 10 min

1/2

 $= 10 \times 150 = 1500$

Since a_{10} , a_{11} , a_{12} , ... are in AP with common difference -2

Let *n* be the time taken to count remaining 3000 notes, then

$$\frac{n}{2}[2 \times 148 + (n-1) \times -2] = 3000$$

 $\Rightarrow n^2 - 149n + 3000 = 0$

 $\Rightarrow (n-24)(n-125) = 0$ $\Rightarrow n = 24, 125$

Then, the total time taken by the person to count all notes.

$$= 10 + 24 = 34 \min$$

494 **(d)**

The given series is an A.P. with first term a = 20

and common diference $d = 2\frac{2}{3} = 8/3$ Let S_n denote the sum of n terms. Then, $S_n > 1568$ $\Rightarrow \frac{n}{2} \left[40 + (n-1)\frac{8}{3} \right] > 1568$ $\Rightarrow n^2 + 14n - 1176 > 0$ $\Rightarrow (n+42)(n-28) > 0$ $\Rightarrow n > 28$ \Rightarrow The least value of *n* is 29 495 (b) Let a_p , a_q , a_r , a_s be p^{th} , q^{th} , r^{th} and s^{th} terms of the A.P. such that they are in G.P. with common ratio R. $\therefore a_a = a_p R$, $a_r = a_p R^2$ and $a_s = a_p R^3$ $\Rightarrow a_q - a_p = a_p(R-1), a_r - a_q$ $= a_p R(R-1), a_s - a_r$ $= a_n R^2 (R - 1)$ $\Rightarrow a_q - a_p, a_r - a_q, a_s - a_r$ are in G.P. $\Rightarrow a_p - a_q, a_q - a_r, a_r - a_s$ are in G.P. \Rightarrow (p-q)d, (q-r)d, (r-s)d are in G.P., where d is the common difference of the A.P. $\Rightarrow p - q, q - r, r - s$ are in G.P. 496 (a) Since, $2\tan^{-1} q = \tan^{-1} p + \tan^{-1} r$ $\Rightarrow \tan^{-1}\frac{2q}{1-q^2} = \tan^{-1}\frac{p+r}{1-p^r}$ $\Rightarrow 2q = p + r$ [: $q^2 = pr$] \Rightarrow p,q,r are in AP. But p, q, r are in GP. $\Rightarrow p = q = r$ 498 (c) It is given that $H_1, H_2, H_3, \dots, H_n$ are *n* harmonic means between *a* and *b*. So, $a, H_1, H_2, H_3, \dots, H_n, b$ are in HP $\Rightarrow \frac{1}{a}, \frac{1}{H_1}, \frac{1}{H_2}, \frac{1}{H_3}, \dots, \frac{1}{H_n}, \frac{1}{b}$ are in A.P. with common difference $D = \frac{a-b}{(n+1)ab}$ $\therefore \frac{1}{H_1} = \frac{1}{a} + D \text{ and } \frac{1}{H_n} = \frac{1}{a} + n D$ $\Rightarrow \frac{1}{H_1} = \frac{1}{a} + \frac{a-b}{(n+1)ab} \text{ and } \frac{1}{H_n} = \frac{1}{a} + \frac{n(a-b)}{(n+1)ab}$ $\Rightarrow \frac{1}{H_1} = \frac{nb+a}{(n+1)ab}$ and $\frac{1}{H_n} = \frac{na+b}{(n+1)ab}$ $\Rightarrow \frac{H_1}{a} = \frac{nb+b}{nb+a}$ and $\frac{H_n}{b} = \frac{na+a}{na+b}$ $\Rightarrow \frac{H_1 + a}{H_1 - a} = \frac{2nb + (a + b)}{b - a} \text{ and } \frac{H_n + b}{H_n - b}$ $=\frac{2na+a+b}{a-b}$

$$\Rightarrow \frac{H_1 + a}{H_1 - a} + \frac{H_n + b}{H_n - b} = 2n$$

499 **(a)**

We have,

$$S_{n} = \frac{1}{2} \left\{ \left(\sum_{r=1}^{n} r \right)^{2} - \sum_{r=1}^{n} r^{2} \right\}$$

$$\Rightarrow S_{n} = \frac{1}{2} \left[\left\{ \frac{n(n+1)}{2} \right\}^{2} - \frac{n(n+1)(2n+1)}{6} \right]$$

$$\Rightarrow S_{n} = \frac{n(n^{2}-1)(3n+2)}{24}$$

$$\Rightarrow \frac{S_{n}}{(n+1)!} = \frac{1}{24} \left\{ \frac{n(n^{2}-1)(3n+2)}{(n+1)!} \right\}$$

$$= \frac{1}{24} \left\{ \frac{3n+2}{(n-2)!} \right\}$$

$$\Rightarrow \frac{S_{n}}{(n+1)!} = \frac{1}{24} \left\{ \frac{3(n-2)+8}{(n-2)!} \right\}$$

$$= \frac{1}{8} \frac{1}{(n-3)!} + \frac{1}{3} \cdot \frac{1}{(n-2)!}$$

$$\Rightarrow \sum_{n=0}^{\infty} \frac{S_{n}}{(n+1)!} = \frac{1}{8} \sum_{n=0}^{\infty} \frac{1}{(n-3)!} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(n-2)!}$$

501 **(b)**

If x, y, z are in HP, then $y = \frac{2xz}{x+z} \qquad ...(i)$ Now, log(x + z) + log(x - 2y + z) = log[(x + z)(x - 2y + z)] = log [(x + z)(x + z - \frac{4xz}{x+z})] [from Eq.(i)] = log[(x + z)^2 - 4xz] = log(x - z)^2 = 2 log(x - z)

502 (c)

Let *a* be the first term and *d* be the common difference of the A.P. Then,

 $a_{m} = a + (m - 1)d \qquad \dots (i)$ $a_{n} = a + (n - 1)d \qquad \dots (ii)$ $a_{p} = a + (p - 1)d \qquad \dots (iii)$ Multiplying (i), (ii) and (iii) respectively by (n - p), (p - m) and (m - n) and adding, we get $a_{m}(n - p) + a_{n}(p - m) + a_{p}(m - n) = 0 \qquad \dots (iv)$ Expanding along first row, we have $\Delta = a_{m}(n - p) + a_{n}(p - m) + a_{p}(m - n)$ $\Rightarrow \Delta = 0 \qquad [Using (iv)]$ 503 (c) $Let S = \frac{1}{n!} \left[\frac{n!}{1!(n - 1)!} + \frac{n!}{3!(n - 3)!} + \frac{n!}{5!(n - 5)!} + \dots \right]$

$$= \frac{1}{n!} [{}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \dots]$$

$$= \frac{1}{n!} 2^{n-1} \text{ for all value of } n \text{ only}$$
504 (b)
The given equation is meaningful if $x - 1 > 0$ and $x - 3 > 0$ i.e. $x > 3$
Now,
 $\log_{4}(x - 1) = \log_{2}(x - 3)$
 $\Rightarrow \frac{1}{2}\log_{2}(x - 1) = \log_{2}(x - 3)$
 $\Rightarrow \log_{2}(x - 1) = 2\log_{2}(x - 3)$
 $\Rightarrow \log_{2}(x - 1) = \log_{2}(x - 3)^{2}$
 $\Rightarrow x - 1 = (x - 3)^{2}$
 $\Rightarrow x^{2} - 7x + 10 = 0 \Rightarrow x = 5, 2 \Rightarrow x = 5 \quad [\because x > 3]$
Hence, the given equation has just one solution
505 (a)
Let T_{r} be the r th term of the given series. Then,
 $T_{r} = 1 + 2 + 2^{2} + \dots + 2^{r} = 2^{r+1} - 1$
 \therefore Required sum $= \sum_{r=1}^{n} T_{r} = \sum_{r=1}^{n} (2^{r+1} - 1)$
 \Rightarrow Required sum $= 2^{2} \left(\frac{2^{n}-1}{2-1}\right) - n = 2^{n+2} - n - 4$

506 (c)
We have,
$$1 + \frac{(\log_e n)^2}{2!} + \frac{(\log_e n)^4}{4!} + \dots \text{ to } \infty$$
$$= \frac{e^{\log_e n} + e^{-\log_e n}}{2} = \frac{1}{2}(n + n^{-1})$$
507 (a)

507 (a)

$$\log_{e} 3 - \frac{\log_{e} 9}{2^{2}} + \frac{\log_{e} 27}{3^{2}} - \frac{\log_{e} 81}{4^{2}} + \dots$$

$$= (\log_{e} 3) \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \dots\right)$$

$$= (\log_{e} 3) \log_{e} 2$$

509 (c)

510

Given that, $T_m = a + (m - 1)d = \frac{1}{n}$...(i) And $T_n = a + (n - 1)d = \frac{1}{m}$...(ii)

Where *a* and *b* are the first term and common difference respectively.

On solving Eqs. (i) and (ii), we get

$$a = \frac{1}{mn} \text{ and } d = \frac{1}{mn}$$

$$\therefore T_{mn} = a + (mn - 1)d$$

$$= \frac{1}{m} + (mn - 1)\frac{1}{mn} = 1$$

(a)
Since, $l = A + (n - 1)d$

Since, l = A + (n - 1)d $\therefore c = a + (n - 1)(b - a)$

$$\Rightarrow (n-1) = \frac{c-a}{b-a}$$

$$\Rightarrow n = \frac{b+c-2a}{b-a}$$
511 (c)
Given, $x_n = x_{n+1}\sqrt{2}$
 $\therefore x_1 = x_2\sqrt{2}, x_2 = x_3\sqrt{2}, ..., x_n = x_{n+1}\sqrt{2}$
On multiplying $x_1 = x_{n+1}(\sqrt{2})^n$
 $\Rightarrow x_{n+1} = x/(\sqrt{2})^n$
Hence, $x_n = \frac{x_1}{(\sqrt{2})^{n-1}}$
Area of $S_n = x_n^2 = \frac{x_1^2}{2^{n-1}} < 1 \Rightarrow 2^{n-1} > x_1^2$ ($\because x_1 = 100$
 $\therefore 2^{n-1} > 100$
But $2^7 > 100, 2^8 > 100$ etc.
 $\therefore n-1 = 7, 8, 9, ... \Rightarrow n = 8, 9, 10, ...$
512 (a)
We have,
 $x = \frac{1}{1-a}, y = \frac{1}{1-b}$
 $\Rightarrow a = 1 - \frac{1}{x}, b = 1 - \frac{1}{y}$
 $\Rightarrow a = \frac{x-1}{x}, b = \frac{y-1}{y}$
 $\therefore 1 + ab + a^2b^2 + ... = \frac{1}{1-ab} = \frac{xy}{x+y-1}$
513 (c)
Given, $d = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_n - a_{n-1}$
 \therefore (sin d)[sec $a_1 \sec a_2$
 $+ \sec a_2 \sec a_3 + ... + \sec a_{n-1} \sec a_n]$
 $= \frac{\sin d}{\cos a_1 \cos a_2}$
 $+ \frac{\sin (a_2-a_1)}{\cos a_1 \cos a_2} + \frac{\sin (a_3-a_2)}{\cos a_2 \cos a_3} + ... + \frac{\sin (a_n-a_{n-1})}{\cos a_{n-1} \cos a_n}$
 $= \tan a_2 - \tan a_1 + \tan a_3 - \tan a_{n-1}$
 $= \tan a_n - \tan a_1$
515 (c)
Since, $a_1, a_2, a_3, ..., a_n$ are in HP.
 $\therefore \frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, ..., \frac{1}{a_n}$ are in AP.
Let d be common difference of AP, then
 $\frac{1}{a_2} - \frac{1}{a_1} = d$
 $\Rightarrow a_1 - a_2 = a_1a_2d$
Similarly, $a_2 - a_3 = a_2a_3d$

... $a_{n-1} - a_n = a_{n-1}a_n d$ On adding all of these, we get $a_1 - a_n = d(a_1a_2 + a_2a_3 + \dots + a_{n-1}a_n) \dots (i)$ Also, $\frac{1}{a_n} = \frac{1}{a_1} + (n-1)d$ $\Rightarrow d = \frac{a_1 - a_2}{a_1 a_n (n-1)}$ On putting the value of d in Eq. (i), we get $a_1 - a_n = \frac{a_1 - a_n}{a_1 a_n (n - 1)} (a_1 a_2)$ $+ a_2 a_3 + \ldots + a_{n-1} a_n)$ $\Rightarrow a_1 a_2 + a_2 a_3 + \ldots + a_{n-1} a_n = a_1 a_n (n-1)$ 517 (b) We have, $2^{\log_{10} 3\sqrt{3}} = 3^{k \log_{10} 2}$ $\Rightarrow \left(3\sqrt{3}\right)^{\log_{10} 2} = 3^{k \log_{10} 2} \qquad \left[\because x^{\log_a y} = y^{\log_a x}\right]$ $\Rightarrow 3^{\frac{3}{2}\log_{10}2} = 3^{k\log_{10}2} \Rightarrow k = \frac{3}{2}$ 518 (b) Since, $\beta\beta\gamma\delta = 1$...(i) As we know, $AM \ge GM$ $\Rightarrow \frac{1+\alpha}{2} \ge \sqrt{\alpha} \Rightarrow 1 + \alpha \ge 2\sqrt{\alpha}$ (ii) Similarly, $1 + \beta \ge 2\sqrt{\beta}$... (*iii*) $1 + \gamma \ge 2\sqrt{\gamma}$...(iv) And $1 + \delta \ge 2\sqrt{\delta}$... (v)On multiplying Eqs. (ii), (iii), (iv) and (v), we get $(1+\alpha)(1+\beta)(1+\gamma)(1+\delta) \ge 16\sqrt{\alpha\beta\gamma\delta}$ Least value of $(1 + \alpha)(1 + \beta)(1 + \gamma)(1 + \gamma)(1 + \beta)(1 + \gamma)(1 + \gamma$ $\delta \geq 16$ 519 (b) Let S = 6 + 66 + 666 + ... n terms $=\frac{6}{9}(9+99+999+...n \text{ terms})$ $=\frac{2}{3}[(10-1) + (100-1) + (1000-1) + \dots n]$ terms] $=\frac{2}{3}\left[10\cdot\frac{(10^n-1)}{9}-n\right]=\frac{2}{27}\left[10^{n+1}-10-9n\right]$ 520 **(b** $\frac{4}{3} + \frac{10}{9} + \frac{28}{27} + \dots$ upto *n* terms $=\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{9}\right)+\left(1+\frac{1}{27}\right)+\dots$ upto n terms $= (1 + 1 + 1 + \dots n \text{ terms})$ $+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\dots n \text{ terms}\right)$

$$= n + \frac{1}{3} \left(\frac{1 - \frac{1}{3^n}}{1 - \frac{1}{3}} \right) = \frac{3^n (2n+1) - 1}{2(3^n)}$$

521 **(c)**

Since, *a*, *b*, *c*, *d*, *e*, *f* are in AP. So, b - a = c - b = d - c = e - d = f - e = kWhere *k* is the common difference Now, $d - c = e - d \Rightarrow e + c = 2d$ $\Rightarrow e - c + 2c = 2d \Rightarrow e - c = 2(d - c)$ 522 **(b)**

Let *A* and *R* be the first term and common ratio of the GP, then

 $a = AR^{p-1}$, $b = AR^{q-1}$ and $= AR^{r-1}$...(i) Again, if x and d be the first term and common difference of an AP corresponding to the given HP, then

$$\begin{aligned} \frac{1}{a} &= x + (p-1)d, \ \frac{1}{b} = x + (q-1)d, \ \frac{1}{c} = x + (r-1)d \quad ...(ii) \\ \text{From Eq.(i)}, \ \frac{a}{b} = R^{p-q} \\ \Rightarrow \left(\frac{a}{b}\right)^{1/c} &= (R^{p-q})^{1/c} = R^k, \\ \text{Where } k &= \frac{p-q}{c} = (p-q)\{x + (r-1)d\} \quad [\text{from Eq.(ii)}] \\ &= (p-q)x + (p-q)(r-1)d \\ &= (p-q)x - (p-q)d + (rp-rq)d \quad ...(iii) \\ \text{Similarly, } \left(\frac{b}{c}\right)^{1/a} &= (R^{q-r})^{1/a} = R^n, \\ \text{Where } n &= \frac{(q-r)}{a} = (q-r) \times \{x + (p-1)d\} \\ [\text{from Eq.(ii)}] \\ \Rightarrow n &= (q-r)x - (q-r)d + (pq-pr)d \quad ...(iv) \\ \text{And } \left(\frac{c}{a}\right)^{1/b} &= (R^{r-p})^{1/b} = R^m \\ \text{Where } m &= \frac{r-p}{b} = (r-p)\{x + (q-1)d\} \text{ [from Eq.(ii)]} \\ &= (r-p)x(r-p)d + (rq-qp)d \quad ...(v) \\ \therefore \left(\frac{a}{b}\right)^{1/c} \left(\frac{b}{c}\right)^{1/a} \left(\frac{c}{a}\right)^{1/b} = R^k R^m R^n = R^{m+n+k} = R^0 = 1 \\ [\text{Since, } k + m + n = 0, \text{ adding Eqs. (iii), (iv) and } (v)] \\ \text{Taking log on both sides, we get } \\ \frac{1}{c}(\log a - \log b) + \frac{1}{a}(\log b - \log c) \\ &+ \frac{1}{b}(\log c - \log a) = 1\log(1) \\ \Rightarrow \left(\frac{1}{c} - \frac{1}{b}\right)\log a \\ &+ \left(\frac{1}{a} - \frac{1}{c}\right)\log b \\ &+ \left(\frac{1}{b} - \frac{1}{a}\right)\log c = 0 \\ \Rightarrow a(b-c)\log a \\ &+ b(c-a)\log b \\ &+ c(a-b)\log c = 0 \end{aligned}$$

Here,
$$T_n = \sum_{n=1}^{\infty} \frac{1}{(n+a)(n+1+a)}$$

$$= \sum_{n=1}^{\infty} \left(\frac{1}{n+a} - \frac{1}{n+1+a}\right)$$

$$\therefore S_n = \Sigma T_n = \left(\frac{1}{1+a} - \frac{1}{2+a}\right)$$

$$+ \left(\frac{1}{2+a} - \frac{1}{3+a}\right)$$

$$+ \dots + \left(\frac{1}{n+a} - \frac{1}{n+1+a}\right)$$

$$\Rightarrow S_n = \frac{1}{1+a} - \frac{1}{n+1+a}$$

$$\Rightarrow \lim_{n \to \infty} S_n = \frac{1}{1+a}$$
524 (b)
The two sides of the equation are meaningful, if
 $-x > 0$ and $x + 1 > 0$ i.e. if $x \in (-1,0)$
Now,
 $\log(-x) = 2\log(x+1)$
 $\Rightarrow -x = (x+1)^2$
 $\Rightarrow x^2 + 3x + 1 = 0 \Rightarrow x = \frac{-3 + \sqrt{5}}{2}$ [: $x = (-1,0)$]
525 (b)
Let $S = 0.123$. Then,
 $S = 0.4 + 0.023 + 0.00023 + \cdots$
 $\Rightarrow S = 0.4 + 0.023 + 0.00023 + \cdots$
 $\Rightarrow S = 0.4 + 23 \times 10^{-3} + 23 \times 10^{-5} + \cdots$
 $\Rightarrow S = 0.4 + \frac{23 \times 10^{-3}}{1-10^{-2}} = 0.4 + \frac{23}{990} = \frac{419}{990}$
526 (b)
 $\sum_{n=1}^{n} \sum_{s=1}^{n} S_{rs} 2^r 3^s = 2 \cdot 3 + 2^2 \cdot 3^2 + 2^3 \cdot 3^3 + \dots + 2^n$
 $\cdot 3^n$
(as $S_{rs} = 0$, if $r \neq s$ and $S_{rs} = 1$, if $r = s$)
 $= \frac{6(6^n - 1)}{6-1} = \frac{6}{5}(6^n - 1)$
527 (b)
We have,
 $2b = a + c, d = \frac{2ce}{c+e}$ and $c^2 = bd$
On eliminating b and d, we obtain
 $c^2 = ae \Rightarrow a, c, e$ are in G.P.
528 (a)
 $2 \left[\frac{1}{7} + \frac{1}{3} \cdot \frac{1}{7^3} + \frac{1}{5} \cdot \frac{1}{7^5} + \dots\right] = \log_e \left[\frac{1 + 1/7}{1 - 1/7}\right]$
 $= \log_e \frac{4}{3}$

 $t_{11} + t_{12} + t_{13} = 141$ And $t_{21} + t_{22} + t_{23} = 261$ $\therefore 3a + 33d = 141$ $\Rightarrow a + 11d = 47$...(i) And 3a + 63d = 261 $\Rightarrow a + 21d = 87$...(ii) On solving Eqs. (i) and (ii), we get a = 3, d = 4530 (c) We have, 2^{n+10} $= 2 \times 2^{2} + 3 \times 2^{3} + 4 \times 2^{4} + \dots + (n-1) \times 2^{n-1}$ $2^{n-1} + n \times 2^n$...(i) $\Rightarrow 2 \times 2^{n+10}$ $= 2 \times 2^{3} + 3 \times 2^{4} + \dots + (n-1)2^{n} + n \times 2^{n+1}$...(ii) Subtracting (ii) from (i), we get $-2^{n+10} = 2 \times 2^2 + (2^3 + 2^4 + \dots + 2^n) - n$ $\times 2^{n+1}$ $\Rightarrow -2^{n+10} = 8 + 8(2^{n-2} - 1) - n \times 2^{n+1}$ $-2^{n+10} = 2^{n+1} - n \times 2^{n+1}$ $\Rightarrow -2^{10} = 2 - 2n \Rightarrow n = 513$ 531 (c) As we know, sum infinite terms of GP, As we know, sum infinite terms of G $S_{\infty} = \begin{cases} \frac{a}{1-r}, & |r| < 1\\ \frac{1}{\infty}, & |r| \ge 1 \end{cases}$ $\therefore S_{\infty} = \frac{x}{1-r} = 5 \qquad \text{{thus } } |r| < 1\text{{}}$ $\Rightarrow 1 - r = \frac{x}{5}$ $\Rightarrow r = \frac{5-x}{5} \text{ exists only when } |r| < 1$ $\Rightarrow -1 < \frac{5-x}{5} < 1$ $\therefore -10 < -x < 0 \Rightarrow 0 < x < 10$ 532 (c) For x = -2, we have $\log_4\left(\frac{x^2}{4}\right) - 2\log_4(4x^4)$ $= \log_4 1 - 2\log_{2^2}(2^6) = 0 - 2 \times \frac{6}{2}\log_2 2 = -6$ 533 **(c)** We have, $\frac{\log 3}{x-y} = \frac{\log 5}{y-z} = \frac{\log 7}{z-x} = \lambda(\text{say})$

$$\Rightarrow \log 3 = \lambda(x - y), \log 5 = \lambda(y - z), \log 7 = \lambda(z - x) \Rightarrow 3 = 10^{\lambda(x-y)}, 5 = 10^{\lambda(y-z)}, 7 = 10^{\lambda(z-x)} \Rightarrow 3^{x+y}.5^{z+x}.7^{z+x} = 10^{\lambda(x^2-y^2)}.10^{\lambda(y^2-z^2)}.10^{\lambda(z^2-x^2)} \Rightarrow 3^{x+y}.5^{y+z}.7^{z+x} = 10^{\lambda(x^2-y^2+y^2-z^2+z^2-x^2)} = 10^0 = 1$$

(d)

$$\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1 = \sum_{i=1}^{n} \sum_{j=1}^{i} j$$
$$= \sum_{i=1}^{n} \frac{i(i+1)}{2} = \frac{1}{2} \sum_{i=1}^{n} (i^{2}+i)$$
$$= \frac{1}{2} \left[\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right]$$
$$= \frac{n(n+1)}{12} (2n+4)$$
$$= \frac{n(n+1)(n+2)}{6}$$

(b)

We have,

$$\frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \dots + to \infty$$

$$= \sum_{n=1}^{\infty} \frac{2n}{(2n+1)} = \sum_{n=1}^{\infty} \frac{(2n+1)}{(2n+1)!}$$

$$= \sum_{n=1}^{\infty} \left\{ \frac{1}{2n!} - \frac{1}{(2n+1)!} \right\}$$

$$= \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} + \dots + to \infty$$

$$= e^{-1}$$
536 **(b)**
Let $S_n = \frac{1}{5} \left(\frac{1}{6} - \frac{1}{11} + \frac{1}{11} - \frac{1}{16} + \dots + \frac{1}{5n+1} - \frac{1}{5n+6} \right)$

$$1 (1 - 1) = 1$$

$$= \frac{1}{5} \left(\frac{1}{6} - \frac{1}{11} + \frac{1}{11} - \frac{1}{16} + \dots + \frac{1}{5n+1} - \frac{1}{5n+6} \right)$$
$$= \frac{1}{5} \left(\frac{1}{6} - \frac{1}{5n+6} \right) = \frac{n}{6(5n+6)}$$
$$\Rightarrow 6S_n = \frac{n}{5n+6}$$

537 (c)
We have,

$$\log(x - y) - \log 5 - \frac{1}{2}\log x - \frac{1}{2}\log y = 0$$

$$\Rightarrow 2\log(x - y) - 2\log 5 - \log x - \log y = 0$$

$$\Rightarrow \frac{(x - y)^2}{25xy} = 1 \Rightarrow \left(\frac{x - y}{\sqrt{xy}}\right)^2 = 25$$

$$\Rightarrow \left(\sqrt{\frac{x}{y}} - \sqrt{\frac{y}{x}}\right)^2 = 25 \Rightarrow \frac{x}{y} + \frac{y}{x} - 2 = 25 \Rightarrow \frac{x}{y} + \frac{y}{x}$$

$$= 27$$

(b)

It is given that

$$\log_{a} x, \log_{b} x, \log_{c} x \text{ are in A.P.}$$

$$\Rightarrow 2 \log_{b} x = \log_{a} x + \log_{c} x$$

$$\Rightarrow \frac{2 \log x}{\log b} = \frac{\log x}{\log a} + \frac{\log x}{\log c}$$

$$\Rightarrow \frac{2 \log a \log c}{\log b} = \log a + \log c$$

$$\Rightarrow \frac{2 \log a \log c}{\log b} = \log ac$$

$$\Rightarrow 2 \log c \log_{b} a = \log ac$$

$$\Rightarrow \log c^{2 \log_{b} a} = \log ac$$

$$\Rightarrow c^{2 \log_{b} a} = ac \Rightarrow (c^{2}) = (ac)^{\log_{a} b}$$
539 (a)
Let $a^{1/x} = b^{1/y} = c^{1/z} = k$ [say]

$$\Rightarrow \log a = x \log k, \log b = y \log k$$
and $\log c = z \log k$
Since, $b^{2} = ac$

$$\Rightarrow 2 (y \log k) = x \log k + z \log k$$

$$\Rightarrow 2y = x + z$$

$$\Rightarrow x, y, z \text{ are in AP.}$$
540 (a)
 $(1 - 2x - x^{2})(e^{x})$

$$= (1 - 2x - x^{2})\left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{k}}{k!} + \dots \infty\right)$$

$$= \left(1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{k}}{k!} + \dots \infty\right)$$

$$-2\left(x + x^{2} + \frac{x^{3}}{2!} + \dots + \frac{x^{k}}{(k - 1)!} + \frac{x^{k+1}}{k!} + \dots \infty\right)$$

$$-\left(x^{2} + x^{3} + \frac{x^{4}}{2!} + \dots \frac{x^{k}}{(k-2)!} + \frac{x^{k+1}}{(k-1)!} + \frac{x^{k+2}}{(k-2)!} + \dots \infty\right)$$

:Cofficient of x^{k} in $\left(\frac{1-2x-x^{2}}{e^{-x}}\right) = \frac{1}{k!} - \frac{2}{(k-1)!} - \frac{1}{(k-2)!}$
$$= \frac{1}{k!} - \frac{2k}{k!} - \frac{k(k-1)}{k!}$$

$$= \frac{1-k-k^{2}}{k!}$$

541 (a)
Here, T_{n} of the AP 1,2,3 ... = n
and T_{n} of the AP 3,5,7 ... = $2n + 1$
 $\therefore T_{n}$ of given series = $n(2n+1)^{2} = 4n^{3} + 4n^{2} + n$
Hence, $S = \sum_{n=1}^{20} T_{n} = 4\sum_{n=1}^{20} n^{3} + 4n - 120n2 + n = 120n$
 $= 4\frac{1}{4}20^{2} \cdot 21^{2} + 4\frac{1}{6}20 \cdot 21 \cdot 41 + \frac{1}{2}20 \cdot 21$
 $= 188090$
542 (c)
 $\frac{b}{c+a} - \frac{a}{b+c} = \frac{c}{a+b} - \frac{b}{c+a} [T_{2} - T_{1}]$
 $= \frac{b^{2} + bc - ac - a^{2}}{(c+a)(b+c)} = \frac{c^{2} + ac - ab - b^{2}}{(a+b)(c+a)}$
 $\Rightarrow \{b^{2} - a^{2} - c(a-b)\}(a+b)$
 $= \{c^{2} - b^{2} - a(b-c)\}(b+c)$
 $\Rightarrow (b^{2} - a^{2})(b+a+c)$
 $= (c^{2} - b^{2})(a+b+c)$
 $\Rightarrow 2b^{2} = a^{2} + c^{2}$
 $\Rightarrow a^{2}, b^{2}, c^{2}$ are in AP
543 (a)
Since, $\frac{(S_{n})_{1}}{n} = \frac{2n+3}{6n+5} \dots$ (i)
 $\Rightarrow \frac{a_{1} + \frac{(n-1)}{2}d_{1}}{a_{2} + \frac{(n-1)}{2}d_{2}} = \frac{2n+3}{6n+5}$
Put $\frac{n-1}{2} = 12 \Rightarrow n = 25$
 $\therefore \frac{a_{1} + 12d_{1}}{a_{2} + 12d_{2}} = \frac{53}{155}$
 $\Rightarrow \frac{(T_{13})_{1}}{(T_{13})_{2}} = \frac{53}{155}$

It is given that $\frac{x+y}{1-xy}$, y, $\frac{y+z}{1-yz}$ are in A. P. $\Rightarrow y - \frac{x+y}{1-xy} = \frac{y+z}{1-yz} - y$ $\Rightarrow \frac{y-xy^2 - x - y}{1-xy} = \frac{y+z-y+y^2z}{1-yz}$ $\Rightarrow -\frac{x}{1-xy} = \frac{z}{1-yz}$ $\Rightarrow -x + xyz = z - xyz$ $\Rightarrow 2 xyz = x + z$ $\Rightarrow y = \frac{x + z}{2 xz} \Rightarrow \frac{1}{v} = \frac{2 xz}{x + z} \Rightarrow x, \frac{1}{v}, z \text{ are in H. P.}$ 545 (a) We have, x + y + z = 15, if 9, x, y, z, a are in AP. : Sum = 9 + 15 + $a = \frac{5}{2}(9 + a)$ $\Rightarrow 24 + a = \frac{5}{2}(9 + a)$ $\Rightarrow 48 + 2a = 45 + 5a$ $\Rightarrow 3a = 3 \Rightarrow a = 1$...(i) And $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{5}{3}$, if 9, x, y, z, a are in HP. Sum $= \frac{1}{9} + \frac{5}{3} + \frac{1}{a} = \frac{5}{2} \left[\frac{1}{9} + \frac{1}{a} \right] \Rightarrow a = 1$ 546 (d) Since, *a*, *b*, *c* are in AP. $(A)\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in HP $\Rightarrow \frac{k}{a}, \frac{k}{b}, \frac{k}{c}$ are in HP. (B)a + k, b + k, c + k are in AP. (C)ka, kb, kc are in AP. (D) a^2 , b^2 , c^2 are in AP. Then, $b^2 - a^2 = c^2 - b^2$ $\therefore (b-a)(b+a) = (c-b)(c+b)$ = (b-a)(c+b) $\begin{bmatrix} \because a, b, c \text{ are in AP} \\ \therefore b - a = c - b \end{bmatrix}$ \Rightarrow b + a = c + b \Rightarrow *a* = *c*, which is not true 547 (d) We have. $\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots = \frac{\frac{1}{3}}{1 - \frac{1}{2}} = \frac{1}{2}$ $\therefore \log_{2.5} \left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots \infty \right)$ $= \log_{2.5}^{\left(\frac{1}{2}\right)} = \log_{\left(\frac{2}{5}\right)} - 1 (2)^{-1}$ $= \log_{(2/5)} 2 = \log_{0.4} 2$ $: (0.16)^{\log_{2.5}\left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots \infty\right)}$ $= (0.16)^{\log_{0.4} 2}$

$$= \{(0.4)^2\}^{\log_{0.4} 2} = (0.4)^{2\log_{0.4} 2} = (0.4)^{\log_{0.4} 2^2}$$
$$= 2^2 = 4$$

548 **(a)**

We have,

$$\frac{3+5+7+\dots+n \text{ (terms)}}{5+8+11+\dots+10 \text{ terms}} = 7$$

$$\Rightarrow \frac{\frac{n}{2}\{6+(n-1)2\}}{\frac{10}{2}\{10+(10-1)3\}} = 7$$

$$\Rightarrow \frac{n(n+2)}{5\times37} = 7$$

$$\Rightarrow n^{2}+2n = 35\times37 \Rightarrow (n+37)(n-35) = 0$$

$$\Rightarrow n = 35$$

550 (c)

Let
$$a_2 = ra_1, a_3 = r^2a_1, ..., so on$$

$$\therefore \frac{a_1 - a_3 + a_5 - ... + a_{49}}{a_2 - a_4 + a_6 - ... + a_{50}}$$

$$= \frac{a_1 - r^2a_1 + r^4a_1 - ... + r^{48}a_1}{a_1r - r^3a_1 + r^5a_1 - ... + r^{49}a_1}$$

$$= \frac{a_1(1 - r^2 + r^4 - ... + r^{48})}{a_1r(1 - r^2 + r^4 - ... + r^{48})}$$

$$= \frac{1}{r} = \frac{a_1}{a_2}$$

551 **(c)**

As *a*, *b*, *c*, *d* are in HP. So, *b* is HM between *a* and *c*. Also, GM between *a* and $c = \sqrt{ac}$. Now, GM > HM $\Rightarrow \sqrt{ac} > b$ $\Rightarrow ac > b^2$...(i) Again, *a*, *b*, *c*, *d* are in HP. So *c* is HM between *b* and *d*. Therefore, $bd > c^2$...(ii) On multiplying relations (i) and (ii), we get $abcd > b^2c^2 \Rightarrow ad > bc$ Hence, option (b) is true. Now, AM between *a* and $c = \frac{1}{2}(a + c)$ Now, as AM > HMSo, here a + c > 2b...(iii) And *c* is HM between *b* and *d* $\Rightarrow b + d > 2c$...(iv) On adding relations (iii) and (iv), we get (a + c) + (b + d) > 2(b + c) $\Rightarrow a + d > b + c$ So, both (a) and (b) are correct. 552 (d) The sum to infinity of the given G.P. exists, iff. $<1 \Leftrightarrow |x| > 3$ 554 (d)

We have,

 $9a^2 + 4b^2 = 18ab$ $\Rightarrow 9a^2 + 12ab + 4b^2 = 30ab$ $\Rightarrow (3a+2b)^2 = 30ab$ $\Rightarrow 2\log(3a + 2b) = \log(5a \times 3b \times 2)$ $\Rightarrow \log(3a+2b) = \frac{1}{2} \{\log 5a + \log 3b + \log 2\}$ 555 (d) We have, $S = \sum_{n=1}^{\infty} \left\{ \frac{{}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}}{{}^{n}P_{n}} \right\} = \sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ 556 (a) The number of divisors of $3 \times$ $7^3 = (1+1)(3+1) = 8$ The number of divisors of $7 \times 11^2 =$ (1+1)(2+1) = 6And the number of divisors of $2 \times 61 =$ (1+1)(1+1) = 4 \Rightarrow 8, 6, 4 are in AP with common difference-2 557 **(b)** We have, $\frac{1}{a} + \frac{1}{c} + \frac{1}{a-b} + \frac{1}{c-b} = 0$ $\Rightarrow \frac{1}{a} + \frac{1}{c-b} = \frac{1}{b-a} - \frac{1}{c}$ $\Rightarrow \frac{a+c-b}{a(c-b)} = \frac{c-b+a}{c(b-a)}$ $\Rightarrow a(c-b) = c(b-a)$ $\Rightarrow ac - ab = bc - ac$ $\Rightarrow 2ac = ab + bc \Rightarrow \frac{2ac}{a+c} = b \Rightarrow a, b, c \text{ are in H.P.}$ 558 (b) Let four numbers are a - 3d, a - d, a + d, a + 3d. $\therefore (a-3d) + (a+3d) = 8$ $\Rightarrow (a-d)(a+d) = 15$ and (a - d)(a + d) = 15 $\Rightarrow a^2 - d^2 = 15$ $\Rightarrow d = 1$ Thus, required numbers are 1, 3, 5, 7. Hence, greatest number is 7. 559 (d) We have. $\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\cdots$ $+\frac{1}{\sqrt{n^2-1}+\sqrt{n^2}} = (\sqrt{2}-\sqrt{1}) + (\sqrt{3}-\sqrt{2}) + (\sqrt{4}-\sqrt{3}) + \cdots$ $+ (\sqrt{n^2} - \sqrt{n^2 - 1}) = \sqrt{n^2} - 1 = n - 1$ 560 (b)

Using A. M. > G. M., we have

$$x + y > 2\sqrt{xy}$$

 $y + z > 2\sqrt{yz}$
 $y + x > 2\sqrt{xz}$
 $\Rightarrow (x + y)(y + z)(z + x) > 8 xyz$
 $y + x > 2\sqrt{xz}$
561 (c)
Put $X = \frac{x - y}{x}$ in $\log_e(1 - X) = -\left[\frac{x}{1} + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^3}{x}\right]$
We get
 $\log_e\left(1 - \frac{x - y}{x}\right) = -\left[\frac{x - y}{x} + \frac{1}{2}\left(\frac{x - y}{x}\right)^2 + \frac{1}{3}x - \frac{yx^3}{x}\right]$
 $\Rightarrow \frac{x - y}{x} + \frac{1}{2}\left(\frac{x - y}{x}\right)^2 + \frac{1}{3}\left(\frac{x - y}{x}\right)^3 + \dots$
 $= -\log_e\left(\frac{y}{x}\right) = \log_e\frac{x}{y}$
562 (b)
Let $x = n, y = n + 1$ and $z = n + 2$, where n
is a positive integer.
 $\therefore \log_e \sqrt{x} + \log_e \sqrt{z} + \left(\frac{1}{2xz + 1}\right) + \frac{1}{3}\left(\frac{1}{2xz + 1}\right)^3 + \frac{1}{5}\left(\frac{1}{2xz + 1}\right)^5 + \dots$
 $= \log_e \sqrt{xz} + \frac{1}{2}\log_e\left[\frac{1 + \frac{1}{2xz + 1}}{1 - \frac{1}{2xz + 1}}\right]$
 $= \log_e \sqrt{xz} + \frac{1}{2}\log_e\left(\frac{2xz + 2}{2xz}\right)$
 $= \log_e \sqrt{n(n + 2)} + \log_e\left[\frac{n(n + 2) + 1}{n(n + 2) + 1}\right]$

$$= \log_e \sqrt{n(n+2)} + \log_e \sqrt{n(n+2)}$$
$$= \log_e \sqrt{(n+1)^2} = \log_e (n+1)$$
$$= \log_e y$$

564 **(b)**

Let a and b be the same first and last terms of the three progressions, each having (2n + 1) terms. Then,

The middle term of the A.P. = $\frac{a+b}{2}$ The middle term of the G.P. = \sqrt{ab} The middle term of the H.P. = $\frac{2 ab}{a+b}$ Obviously, these terms are in G.P.

565 **(b)**

Let
$$S = \frac{1}{1.2} + \frac{1.3}{1.2.3.4} + \frac{1.3.5}{1.2.3.4.5.6} + \dots$$

 $\therefore T_n = \frac{1.3.5.\dots(2n-1)}{1.2.3\dots(2n-1)2n} \times \frac{(2.4.8\dots,2n)}{(2.4.8\dots,2n)}$
 $= \frac{(2n)!}{(2n)!.2^n(n!)} = \frac{1}{2^n(n!)}$

$$\therefore S = \sum_{n=1}^{\infty} T_n = \frac{1}{2.1!} + \frac{1}{2^2 \cdot 2!} + \frac{1}{2^3 \cdot 3!} + \dots$$
$$= e^{1/2} - 1$$

566 **(c)**

We know that, arithmetic mean of *a* and $b = \frac{a+b}{2}$. But given that $\frac{a+b}{2} = \frac{a^n+b^n}{2}$.

$$\Rightarrow a^{n} + b^{n} + \frac{ab^{n}}{b} + \frac{ba^{n}}{a} = 2(a^{n} + b^{n})$$
$$\Rightarrow \frac{a}{b}b^{n} + \frac{b}{a}a^{n} = a^{n} + b^{n}$$
$$\Rightarrow a^{n}\left(\frac{a-b}{a}\right) = -b^{n}\left(\frac{b-a}{b}\right)$$
$$\Rightarrow \left(\frac{a}{b}\right)^{n} = \left(\frac{a}{b}\right)$$
$$\therefore n = 1$$

567 (d)

$$0.14189189189 \dots$$

$$= 0.14 + 0.00189 + 0.00000189 + \dots$$

$$= \frac{14}{100} + 189 \left[\frac{1}{10^5} + \frac{1}{10^8} + \dots \infty \right]$$

$$= \frac{7}{50} + \frac{189}{999 \times 100}$$

$$= \frac{7}{50} + \frac{7}{3700} = \frac{21}{148}$$

568 (c) The series is $\log_{3^2} 3 + \log_{3^3} 3 - \log_{3^4} 3 + \log_{3^5} 3 - \dots$ $= \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots + 1 - 1$ $= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$ $= \log_e (1 + 1) = \log_e 2$ 569 (a) Since, 2b = a + cNow, (a + 2b - c)(2b + c - a)(a + 2b + c) = (a + a + c - c)(a + c + c - a)(2b + 2b) = 2a. 2c. 4b = 16abc570 (a)

570 (a)

$$1 \cdot n + 2(n-1) + 3(n-2) + \dots + n \cdot 1$$

$$= \sum_{r=1}^{n} (n+1)r - \sum_{r=1}^{n} r^{2}$$

$$= (n+1)\sum_{r=1}^{n} n - \sum_{r=1}^{n} n^{2}$$

$$= \frac{(n+1)n(n+1)}{2} - \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{n(n+1)}{6} \{3n+3-2n-1\}$$

$$= \frac{n(n+1)(n+2)}{6}$$
571 (b)

We have,

$$a^{x} = b^{y} = c^{z} = d^{\omega}$$

 $\Rightarrow a^{x} = b^{y}, a^{x} = c^{z}$ and $a^{x} = d^{\omega}$
 $\Rightarrow x \log a = y \log b, x \log a = z \log c$ and $x \log a$
 $= \omega \log d$
 $\Rightarrow \frac{x}{y} = \log_{a} b, \frac{x}{z} = \log_{a} c$ and $\frac{x}{\omega} = \log_{a} d$
 $\Rightarrow \frac{x}{y} + \frac{x}{z} + \frac{x}{\omega} = \log_{a} b + \log_{a} c + \log_{a} d$
 $\Rightarrow x \left(\frac{1}{y} + \frac{1}{z} + \frac{1}{\omega}\right) = \log_{a} bcd$
572 (c)
We have,
 $2^{\frac{3}{\log_{3}x}} = \frac{1}{64} \Rightarrow 2^{\frac{3}{\log_{3}x}} = 2^{-6} \Rightarrow \frac{3}{\log_{3}x} = -6$
 $\Rightarrow \log_{3} x = -\frac{1}{2} \Rightarrow x = 3^{-1/2} = \frac{1}{\sqrt{3}}$
573 (d)
Let $S = 1 + 2 + 3 + ... + 100$
 $= \frac{100}{2}(1 + 100) = 50(101) = 5050$
Let $S_{1} = 3 + 6 + 9 + 12 + ... + 99$
 $= 3(1 + 2 + 3 + 4 + ... + 33)$
 $= 3.\frac{33}{-2}(1 + 33) = 99 \times 17 = 1683$
Let $S_{2} = 5 + 10 + 15 + ... + 100$
 $= 5(1 + 2 + 3 + ... + 20)$
 $= 5.\frac{20}{2}(1 + 20) = 50 \times 21 = 1050$
Let $S_{3} = 15 + 30 + 45 + ... + 90$
 $= 15(1 + 2 + 3 + ... + 6)$
 $= 15.\frac{6}{2}(1 + 6) = 45 \times 7 = 315$
 \therefore Required sum $= S - S_{1} - S_{2} + S_{3}$
 $= 5050 - 1683 - 1050 + 315 = 2632$
574 (d)
Given that, $T_{3} = ar^{2} = P$
Let first five terms of GP series be
 $a, ar, ar^{2}, ar^{3}, ar^{4}$
Now, $a. ar. ar^{2}. ar^{3}. ar^{4} = a^{5}r^{10} = (ar^{2})^{5} = p^{5}$
575 (c)
Let A be the first term and D be the common
difference of the AP. Then,
 $S_{n} = an(n - 1)$
 $\Rightarrow \frac{n}{2}\{2A + (n - 1)D\} = an(n - 1)$
 $\Rightarrow 2A + 0 - 2a$ and $D = 2a$
 $\Rightarrow A = 0, D = 2a$
The sum of the squares of the n terms of the sequence is

$$S = A^{2} + (A + D)^{2} + (A + 2D)^{2} + \dots + \{A + (n - 1)D\}^{2}$$

$$\Rightarrow S = D^{2}\{1^{2} + 2^{2} + 3^{2} + \dots + (n - 1)^{2}\}$$

$$\Rightarrow S = 4 a^{2} \frac{n(n - 1)(2n - 1)}{6}$$

$$= \frac{2 a^{2}}{3} n(n - 1)(2n - 1)$$
576 (a)
We have,

$$\log_{30} 8 = \log_{30} 2^{3} = 3 \log_{30} 2 = 3 \log_{30} \left(\frac{30}{15}\right)$$

$$= 3(\log_{30} 30 - \log_{30} 15)$$

$$= 3(1 - \log_{10} 3 - \log_{30} 5) = 3(1 - x - y)$$
577 (c)
We have,

$$3^{\frac{4}{1084^{9}}} + 27^{\frac{1}{10836^{9}}} + 81^{\frac{1}{1085^{3}}}$$

$$= 3^{\log_{3}2^{4}} + 27^{\log_{6}3} + 81^{\log_{5}3}$$

$$= 3^{\log_{3}2^{4}} + (3^{3})\log_{3}6 + (3^{4})\log_{3}5$$

$$= 3^{\log_{3}16} + (3^{3})\log_{3}6 + (3^{4})\log_{3}5$$

$$= 3^{\log_{3}16} + 3^{\log_{3}6^{3}} + 3^{\log_{3}5^{4}}$$

$$= 16 + 6^{3} + 5^{4} = 16 + 216 + 625 = 857$$
578 (a)
Let $a_{2} - a_{1} = a_{3} - a_{2} = \dots = a_{n} - a_{n-1} = d$

$$\therefore \frac{1}{a} \left(\frac{d}{a_{1}a_{2}} + \frac{a_{3} - a_{2}}{a_{2}a_{3}} + \dots + \frac{a_{n-1}a_{n}}{a_{n-1}a_{n}}\right)$$

$$= \frac{1}{a} \left[\frac{1}{a_{1}} - \frac{1}{a_{2}} + \frac{1}{a_{2}} - \frac{1}{a_{3}} + \dots + \frac{1}{a_{n-1}} - \frac{1}{a_{n}}\right]$$

$$= \frac{n - 1}{a_{1}a_{n}}$$
579 (d)
We have,

$$S = \sum_{n=2}^{\infty} \frac{n(n - 1)}{(n + 1)!}$$

$$\Rightarrow S = \frac{1}{2} \sum_{n=2}^{\infty} \frac{(n^{2} - 1 - n - 1 + 2)}{(n + 1)!2!}$$

$$\Rightarrow S = \frac{1}{2} \sum_{n=2}^{\infty} \frac{(n^{2} - 1 - n - 1 + 2)}{(n + 1)!}$$

$$\Rightarrow S = \frac{1}{2} \sum_{n=2}^{\infty} \left(\frac{1}{(n-1)!} - \frac{2}{n!} + \frac{2}{(n+1)!} \right)$$

$$\Rightarrow S = \frac{1}{2} \left\{ (e-1) - 2(e-2) + 2 \left(e - \frac{5}{2} \right) \right\} = \frac{e}{2} - 1$$

580 **(b)**
Since *a*, *b*, *c* are in H.P. Therefore,

$$b = \frac{2ac}{a+c}$$

$$\Rightarrow \frac{1}{2ac} - a + \frac{2ac}{a+c} - c$$

$$= \frac{a+c}{a(c-a)} + \frac{a+c}{a(c-c)^{2}} = \frac{(a+c)(c-a)}{ac(c-a)} = \frac{1}{a} + \frac{1}{c}$$

581 **(a)**
Given, $S_{\infty} = \frac{4}{3}$ and $a = \frac{3}{4}$
Let *r* be the common ratio.

$$\therefore \frac{a}{1-r} = \frac{4}{3}$$

$$\Rightarrow \frac{4}{3} - \frac{4}{3} r = \frac{3}{4}$$

$$\Rightarrow \frac{16-9}{12} = \frac{4}{3}r$$

$$\Rightarrow \frac{7}{12} = \frac{4}{3}r$$

$$\Rightarrow r = \frac{7}{16}$$

582 **(d)**
We have,

$$\log_{10} \left\{ 98 + \sqrt{(x-6)^{2}} \right\} = 2$$

$$\Rightarrow 98 + |x-6| = 10^{2}$$

$$\Rightarrow |x-6| = 2 \Rightarrow x - 6 = \pm 2 \Rightarrow x = 8,4$$

583 **(a)**
We have,

$$a = \sum_{n=1}^{\infty} \frac{2n}{(2n-1)!}$$

$$\Rightarrow a = \sum_{n=1}^{\infty} \left\{ \frac{1}{(2n-2)!} + \frac{1}{(2n-1)!} \right\}$$

$$\Rightarrow a = \left(1 + \frac{1}{1!}\right) + \left(\frac{1}{3!} + \frac{1}{2!}\right) + \left(\frac{1}{5!} + \frac{1}{4!} + \cdots\right)$$

$$= e$$

and,

$$b = \sum_{n=1}^{\infty} \frac{2n}{(2n+1)!}$$

$$\Rightarrow b = \sum_{n=1}^{\infty} \frac{2n+1-1}{(2n+1)!}$$

$$\Rightarrow b = \sum_{n=1}^{\infty} \left\{ \frac{1}{(2n)!} - \frac{1}{(2n+1)!} \right\}$$

$$\Rightarrow b = \left(\frac{1}{2!} - \frac{1}{3!}\right) + \left(\frac{1}{4!} - \frac{1}{5!}\right) + \left(\frac{1}{6!} - \frac{1}{7!}\right) + \cdots$$

$$= e^{-1}$$

$$\therefore ab = e \cdot e^{-1} = 1$$

584 (a)
Let

$$S_n = 1 + \frac{3}{2} + \frac{7}{4} + \frac{15}{8} + \frac{31}{16} + \cdots \text{ to } n \text{ terms}$$

$$\Rightarrow S_n = 1 + \frac{2^2 - 1}{2} + \frac{2^3 - 1}{2^2} + \frac{2^4 - 1}{2^3} + \frac{2^5 - 1}{2^4} + \frac{2^n - 1}{2^{n-1}}$$

$$\Rightarrow S_n = (2 - 1) + \left(2 - \frac{1}{2}\right) + \left(2 - \frac{1}{2^2}\right) + \left(2 - \frac{1}{2^3}\right) + \left(2 - \frac{1}{2^4}\right) + \cdots + \left(2 - \frac{1}{2^{n-1}}\right)$$

$$\Rightarrow S_n = 2n - \left(1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^{n-1}}\right)$$

$$\Rightarrow S_n = 2n - \left(1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^{n-1}}\right)$$

$$\Rightarrow S_n = 2n - \left(\frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2^n}}\right) = 2(n - 1) + \frac{1}{2^{n-1}}$$

585 (b)
Since, $x = \sum_{n=0}^{\infty} \cos^{2n} \phi$

$$= 1 + \cos^2 \phi + \cos^4 \phi + \dots$$

$$= \frac{1}{1 - \cos^2 \phi} = \frac{1}{\sin^2 \phi} [\because |\cos x| < 1]$$

Similarly, $y = \frac{1}{1 - \sin^2 \phi \cos^2 \phi}$

$$= \frac{1}{1 - \frac{1}{x} \cdot \frac{1}{y}} = \frac{xy}{xy - 1}$$

$$\Rightarrow xyz = xy + z$$

586 (d)
Since, $a + 23d = 100 \dots(i)$

$$\therefore S_{47} = \frac{47}{2} [2a + 46d] = 47[a + 23d]$$

$$= 47 \times 100 = 4700 \quad [\text{from Eq. (i)]}$$

587 (b)
Since, a, b, c, d, e, f are six A.M.'s. between 2 and 12

$$\therefore a + b + c + d + e + f = \frac{6}{2}(a + f) = \frac{6}{2}(2 + 12)$$

$$= 42$$

588 (a)
We have,
 $x = \log_2 3 \text{ and } y = \log_{1/2} 5$

	$\Rightarrow x = \log_2 3 \text{ and } y = \log_2^{-1} 5$
	$\Rightarrow x = \log_2 3$ and $y = -\log_2 5$
	$\Rightarrow x > 0 \text{ and } y < 0 \Rightarrow x > y$
590	(h)
0,00	If $2^2 < r < 2^3$ then $2 < \log_2 r < 3$
	$12 < x < 2$, then $2 < \log_2 x < 3$
	$\cdots 2 < \log_2 7 < 5 [\cdot 2 < 7 < 2]$
	Let $\log_2 7$ be a rational number equal to $\frac{1}{n}$, where
	$m, n \in \mathbb{Z}, n \neq 0$. Then,
	$7 = 2^{m/n} \Rightarrow 7^n = 2^m$
	This is not possible as LHS is an odd natural
	number and RHS is an even natural number
591	(d)
071	We have
	$1\log_2 3 + \log_2 4 = 10\log_2 83$
	$\frac{1}{4} \frac{1}{6} \frac{1}{7} \frac{1}{7} \frac{1}{2} \frac{1}{7} \frac{1}{6} \frac{1}{6} \frac{1}{7} \frac{1}$
	$\Rightarrow 4^{10}g_{3}^{22} + 9^{10}g_{2}^{22} = 10^{10}g_{x}^{20}$
	$\Rightarrow 4^{1/2} + 9^2 = 10^{\log_x 83}$
	$\Rightarrow 83 = 10^{\log_{\chi} 83} \Rightarrow \log_{10} 83 = \log_{\chi} 83 \Rightarrow \chi = 10$
592	(c)
	Since, the given series $\log_a x$, $\log_b x$, $\log_c x$ be in
	HP.
	$\Rightarrow \frac{\log x}{\log x}, \frac{\log x}{\log x}$ are in HP.
	$\log a \cdot \log b \cdot \log c$
	$\Rightarrow \frac{\log u}{\log x}, \frac{\log v}{\log x}, \frac{\log c}{\log x}$ are in AP.
	$\Rightarrow \log_{x} a, \log_{x} b, \log_{x} c$ are in AP.
	$\therefore a, b, c$ are in GP.
594	(c)
0,1	Since $a + ar = a(1 + r) = 12$ (i)
	and $ar^2 + ar^3 - ar^2(1 + r) - 49$ (ii)
	and $u_1 + u_1^2 - u_1(1+1) = 40 \dots (1)$
	From Eqs. (1) and (11),
	$r^2 = 4$
	$\Rightarrow r = -2$
	(Since, the series is alternately sign, so we
	take negative values).
	On putting the value of r in Eq. (i), we get
	a = -12
FOF	u = 12
393	(a) We have
	(m - n - 1 - m - n - 3 - 1 - m - n - 5)
	$2\left\{\frac{m-n}{m+n}+\frac{1}{2}\left(\frac{m-n}{m+n}\right)^{2}+\frac{1}{5}\left(\frac{m-n}{m+n}\right)^{2}+\cdots\right\}$
	$(m+n \ 5 \ m+n) \ 5 \ m+n)$
	$= \log\left(\frac{1+\frac{m+n}{m+n}}{1+\frac{m+n}{m}}\right) = \log\left(\frac{m}{m}\right)$
	$\left(1-\frac{m-n}{m+n}\right)$

596 (c)

$$\sum_{k=1}^{n} (k^2 + 2k) = \sum_{k=1}^{n} k^2 + 2\sum_{k=1}^{n} k$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{2n(n+1)}{2}$$

$$= \frac{n(n+1)(2n+7)}{6}$$

597 (a)

Let *a* be the first term and *d* be the common difference of the A.P. Then, it is given that

$$x = \frac{p}{2} [2 a + (p - 1) d],$$

$$y = \frac{q}{2} [2 a + (q - 1) d],$$

$$z = \frac{r}{2} [2 a + (r - 1) d]$$

$$\therefore \frac{2x}{p} = 2 a + (p - 1) d \qquad \dots (i)$$

$$\frac{2y}{q} = 2 a + (q - 1) d \qquad \dots (ii)$$

$$\frac{2z}{r} = 2 a + (r - 1) d \qquad \dots (iii)$$

Multiplying (i), (ii), and (iii) by $(q - r), (r - p)$
and $(p - q)$ respectively and adding, we get

$$\frac{2x}{p} (q - r) + \frac{2y}{q} (r - p) + \frac{2z}{r} (p - q) = 0$$

$$\Rightarrow \frac{x}{p} (q - r) + \frac{y}{q} (r - p) + \frac{z}{r} (p - q) = 0$$

598 **(b)**
It is given that
1, log₉(3^{1-x} + 2), log₃(4.3^x - 1) are in A.P.

$$\Rightarrow (3^{1-x} + 2)^{1/2}, 3, (4 \times 3^{x} - 1) are in G.P$$

$$\Rightarrow 3^{1-x} + 2 = 3(4.3^{x} - 1)$$

$$\Rightarrow 3 + 2.3^{x} = 12(3x)^{2} - 3(3^{x})$$

$$\Rightarrow 12(3^{x})^{2} - 5(3^{x}) - 3 = 0$$

$$\Rightarrow (4.3^{x} - 3)(3.3^{x} + 1) = 0$$

$$\Rightarrow 3^{x} = \frac{3}{4} \qquad [\because 3.3^{x} + 1 \neq 0]$$

$$\Rightarrow x = \log_{3}(\frac{3}{4}) \Rightarrow x$$

$$= \log_{3} 3 - \log_{3} 4 = 1 - \log_{3} 4$$

599 **(c)**

599

Given that, AM =8, GM =5, if α , β are the roots of quadratic equation, then the required quadratic equation is

 $x^{2} - x(\alpha + \beta) + \alpha\beta = 0 \quad ...(i)$ Here, AM $= \frac{\alpha + \beta}{2} = 8 \Rightarrow \alpha + \beta = 16$ And $GM = \sqrt{\alpha\beta} = 5 \Rightarrow \alpha\beta = 25$ From Eq. (I) $x^2 - 16x + 25 = 0$ 600 (a)

Let $S_n = \frac{1}{\sqrt{2} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{8}} + \dots + \frac{1}{\sqrt{3n-1} + \sqrt{3n+2}}$ $\frac{\sqrt{2} - \sqrt{5}}{2} + \frac{\sqrt{5} - \sqrt{8}}{2} + \ldots + \frac{\sqrt{3n - 1} - \sqrt{3n + 2}}{2}$ $= -\frac{1}{3}(\sqrt{2} - \sqrt{3n+2}) = \frac{1}{3}(\sqrt{3n+2} - \sqrt{2})$ 601 (a) We have, $1 + \log_e 2 + \frac{(\log_e 2)^2}{2!} + \frac{(\log_e 2)^3}{2!} + \cdots$ $= e^{\log_e 2} = 2$ 602 (c) We have, $x^{\frac{1}{2}}x^{\frac{1}{4}}x^{\frac{1}{8}}x^{\frac{1}{16}}\dots$ to ∞ $= r^{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots + t_{0} \infty} = r^{\frac{1/2}{1 - 1/2}} = r^{\frac{1}{2}}$ 603 (b) 607 (a) It is given that $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P. $\Rightarrow \frac{2}{c+a} = \frac{1}{b+c} + \frac{1}{a+b}$ $\Rightarrow 2 h^2 = a^2 + c^2 \Rightarrow a^2, b^2, c^2$ are in A.P. 604 (d) It is given that a, b, c are in G.P. $\Rightarrow b^2 = ac$ Also, *a*, *b*, *c* are in A.P. $\Rightarrow 2b = a + c$ Now, $b^2 = ac$ and 2b = a + c $\Rightarrow \left(\frac{a+c}{2}\right)^2 = ac$ [Eliminating *b*] $\Rightarrow (a+c)^2 - 4ac = 0 \Rightarrow (a-c)^2 = 0 \Rightarrow a = c$ Putting a = c in 2b = a + c, we get $2b = 2a \Rightarrow b = a$ Hence, a = b = c605 (c) We have, $\left(1+\frac{x^2}{2!}+\frac{x^4}{4!}+\cdots\right)^2$ $=\left(\frac{e^x+e^{-x}}{2}\right)^2$ $=\frac{1}{4}(e^{2x}+e^{-2x}+2)$ $=\frac{1}{2}\left(\frac{e^{2x}+e^{-2x}}{2}\right)+\frac{1}{2}$ $= \frac{1}{2} \left\{ 1 + \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} + \cdots \right\} + \frac{1}{2}$: Coefficient of x^n (when *n* is odd) = 0 606 (a) Let the two quantities be *a* and *b*. Then, a, A_1, A_2, b are in AP.

 $\therefore A_1 - a = b - A_2 \Rightarrow A_1 + A_2 = a + b$... (i)

Here, $T_n = \frac{n}{(2n+1)!} = \frac{1}{2} \left[\frac{2n+1-1}{(2n+1)!} \right]$ $=\frac{1}{2}\left[\frac{1}{(2n)!}-\frac{1}{(2n+1)!}\right]$ $\therefore T_1 = \frac{1}{2} \left(\frac{1}{2!} - \frac{1}{2!} \right)$ $T_2 = \frac{1}{2} \left(\frac{1}{4!} - \frac{1}{5!} \right)$ $\therefore S = \sum_{i=1}^{n} T_n = \frac{1}{2} \left[\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \dots \infty + 1 \right]$ $-1 = \frac{e^{-1}}{2}$ 608 (a) The required numbers are 3,9,15,...,999 Here, l = a + (n - 1)d $\therefore 999 = 3 + (n - 1)6$ $\Rightarrow 6n = 1002 \Rightarrow n = 167$ $\therefore S = \frac{n}{2} [2a + (n-1)d]$ $=\frac{167}{2}(6+166\times 6)$ $=\frac{167}{2}(1002)$ = 83667609 (b) Given series is $\frac{1}{1+1^2+1^4} + \frac{2}{1+2^2+2^4} + \frac{3}{1+3^2+3^4} + \dots + n \text{ terms}$ Let T_n be the *n*th term of the series Page | 107

Again a, G_1, G_2, b are in GP.

Also, a, H_1 , H_2 , b are in HP.

 $\Rightarrow G_1G_2 = ab$...(ii)

 $\therefore \frac{1}{H_1} - \frac{1}{a} = \frac{1}{b} - \frac{1}{H_2}$

 $\Rightarrow \frac{1}{H_1} + \frac{1}{H_2} = \frac{1}{h} + \frac{1}{a}$

 $\Rightarrow \frac{H_1 + H_2}{H_1 H_2} = \frac{a + b}{ab}$

 $\Rightarrow \frac{G_1 G_2}{H_1 H_2} = \frac{A_1 + A_2}{H_1 + H_2}$

 $\Rightarrow \frac{H_1 + H_2}{H_1 + H_2} = \frac{A_1 + A_2}{G_1 G_2} [\text{using Eqs, (i) and (ii)}]$

 $\therefore \frac{G_1}{a} = \frac{b}{G_2}$

$$\frac{1}{1+1^2+1^4} + \frac{2}{1+2^2+2^4} + \frac{3}{1+3^2+3^4} + \dots$$

Then, $T_n = \frac{n}{1+n^2+n^4} = \frac{n}{(1+n^2)^2-n^2}$

$$= \frac{n}{(n^2+n+1)(n^2-n+1)}$$

$$= \frac{1}{2} \left[\frac{1}{1-(n-1)n} - \frac{1}{1-(n+1)} \right]$$

$$= \frac{1}{2} \left[\frac{1}{1-(n-1)n} - \frac{1}{1+(n+1)} \right]$$

$$\therefore T_1 = \frac{1}{2} \left[\frac{1}{1+1\cdot2} - \frac{1}{1+2\cdot3} \right]$$

$$T_2 = \frac{1}{2} \left[\frac{1}{1+2\cdot3} - \frac{1}{1+3\cdot4} \right]$$

$$\dots \dots \dots$$

$$T_n = \frac{1}{2} \left[\frac{1}{1-(n-1)n} - \frac{1}{1+(n+1)} \right] = \frac{n(n+1)}{2(n^2+n+1)}$$

Adding all these equations, we get

$$\sum_{r=1}^{n} T_r = \frac{1}{2} \left[1 - \frac{1}{1+(n+1)} \right] = \frac{n(n+1)}{2(n^2+n+1)}$$

610 **(b)**

$$\therefore$$
 Common terms are 5, 11, 17, ...

$$T_n = 5 + (n-1)6$$

$$= 6n - 1$$

100th term of the first sequence

$$= 2 + (100 - 1)3 = 299$$

and 100th term of the second sequence

$$= 3 + (100 - 1)2 = 201$$

Now, 201 > 6 - 1

$$\Rightarrow n \le 33\frac{2}{3}$$

$$\Rightarrow n = 33 \quad (\because n \in N)$$

611 **(c)**
Here, $T_n = \frac{n^2}{(n+2)!} = \frac{n^2 - 4 + 4}{(n+2)!}$

$$= \frac{(n-2)}{(n+1)!} + \frac{4}{(n+2)!}$$

$$\Rightarrow T_n = \frac{1}{n!} - \frac{3}{(n+1)!} + \frac{4}{(n+2)!}$$

$$\Rightarrow S = \Sigma T_n = \sum_{n=1}^{\infty} \frac{1}{n!}$$

$$-3 \sum_{n=1}^{\infty} \frac{1}{(n+1)!}$$

$$+ 4 \sum_{n=1}^{\infty} \frac{1}{(n+2)!}$$

$$= (e-1) - 3(e-2) + 4 \left(e-2 - \frac{1}{2}\right)$$

= 2e - 5612 (a) We have, $\log_{\pi}(\log_2(\log_7 x)) = 0$ $\Rightarrow \log_2(\log_7 x) = \pi^0 \Rightarrow \log_7 x = 2^1 \Rightarrow x = 7^2$ 613 (b) $\frac{(666\dots 6)}{n \text{ digits}} = 6 + 6 \times 10 + 6 \times 10^2 + \dots + 6 \times 10^{n-1}$ $= 6(1 + 10 + 10^2 + \ldots + 10^{n-1})$ $=\frac{6}{9}(10^n-1)=\frac{2}{3}(10^n-1)$ Similarly, $\frac{(888 \dots 8)}{n \text{ digits}} = \frac{8}{9}(10^n - 1)$ Hence, required sum $=\frac{4}{9}(10^n-1)^2+\frac{8}{9}(10^n-1)$ $=\frac{4}{9}(10^{2n}-2.10^n+1+2.10^n-2)$ $=\frac{4}{9}(10^{2n}-1)$ 614 (a) Given series is $1.3^2 + 2.5^2 + 3.7^2 + ... \infty$ This is an arithmetic-geometric series whose *n*th term is equal to $T_n = n(2n+1)^2 = 4n^3 + 4n^2 + n$ $\therefore S_n = \sum_{n=1}^{n} T_n = \sum_{n=1}^{n} (4n^3 + 4n^2 + n)$ $=4\sum_{n=1}^{n}n^{3}+4\sum_{n=1}^{n}n^{2}+\sum_{n=1}^{n}n^{2}$ $=4\left(\frac{n}{2}(n+1)\right)^{2} + \frac{4}{6}n(n+1)(2n+1) + \frac{n}{2}(n+1)(2n+1) 2n+1) + \frac{n}{2}(n+1)(2n+1)(2n+1) + \frac{n}{2}(n+1)(2$ $= n(n+1)\left[n^2 + n + \frac{4}{6}(2n+1) + \frac{1}{2}\right]$ $=\frac{n}{6}(n+1)(6n^2+14n+7)$ 615 (b) We have, $S = \sum_{n=1}^{\infty} {}^{n}C_2 \frac{3^{n-2}}{n!}$ $\Rightarrow S = \sum_{n=2}^{\infty} \frac{n!}{(n-2)!2!} \cdot \frac{3^{n-2}}{n!} = \frac{1}{2} \sum_{n=2}^{\infty} \frac{3^{n-2}}{(n-2)!}$ $=\frac{1}{2}e^{3}$

616 (c)

Let there be 2n terms in the given G.P. with first term a and the common ratio r. Then, Sum of all terms = 5 (Sum of odd terms)
$\Rightarrow a_1 + a_2 + \dots + a_{2n} = 5(a_1 + a_3 + \dots + a_{2n-1})$ $\Rightarrow a + ar + ar^2 + \dots + ar^{2n-1}$ $= 5(a + ar^{2} + \dots + ar^{2n-2})$ $\Rightarrow a \frac{(r^{2n} - 1)}{(r - 1)} = 5a \frac{(r^{2n} - 1)}{(r^2 - 1)}$ $\Rightarrow r + 1 = 5 \Rightarrow r = 4$ 617 (a) Let $S = a + ar + ar^2 + ... + ar^{n-1}$ $=\frac{a(1-r^n)}{1-r} \quad [\because r < 1]$ $P = a. ar. ar^2 \dots ar^{n-1} = a^n r^{1+2+\dots+(n-1)}$ $=a^n r^{\frac{n(n-1)}{2}}$ and $R = \frac{1}{a} + \frac{1}{ar} + \frac{1}{ar^2} + \dots + \frac{1}{ar^{n-1}}$ $=\frac{\frac{1}{a}\left(\frac{1}{r^{n}}-1\right)}{\frac{1}{2}-1}=\frac{\frac{1}{a}(1-r^{n})}{r^{n-1}(1-r)} \quad \left[::\frac{1}{r}>1\right]$ Now, $\left(\frac{S}{R}\right)^n = \left\{\frac{\frac{a(1-r^n)}{(1-r)}}{\frac{\frac{1}{a}(1-r^n)}{m-1(r-r)}}\right\}^n = a^{2n}r^{n(n-1)}$ $= \left\{ a^n r^{\frac{n(n-1)}{2}} \right\}^2 = P^2$ 618 (c) Let $A = m\lambda$, $H = n\lambda$ $\therefore G^2 = AH = mn\lambda^2$ Also, *a* and *b* be the roots of $x^2 - (a+b)x + ab = 0$ $\Rightarrow x^2 - 2m\lambda x + mn\lambda^2 = 0$ $\Rightarrow x = \lambda \sqrt{m} \{\sqrt{m} \pm \sqrt{m-n}\}$ $\therefore a: b = (\sqrt{m} + \sqrt{m-n}): (\sqrt{m} - \sqrt{m-n})$ or $(\sqrt{m} - \sqrt{m-n})$: $(\sqrt{m} + \sqrt{m-n})$ 619 (d) Let $S = 1 + 2x + 3x^2 + 4x^3 + \dots \infty$...(i) $S = x + 2x^2 + 3x^3 + \dots \infty$...(ii) On subtracting Eq. (ii) from Eq. (i), we get $(1-x)S = (1+x+x^2+...\infty)$ $\Rightarrow S = \frac{1}{(1-r)} \left(\frac{1}{1-r} \right) = \frac{1}{(1-r)^2}$ Alternate Here, a = 1, d = 1, r = x $\therefore S_{\infty} = \frac{a}{1-r} + \frac{d.r}{(1-r)^2}$ $=\frac{1}{1-x}+\frac{1}{(1-x)^2}=\frac{1}{(1-x)^2}$ 620 (d) Let 4, G_1 , G_2 , G_3 , $\frac{1}{4}$ are in GP. \therefore $G_1 = ar = 4r$ $G_2 = 4r^2, G_3 = 4r^3$

 $G_4 = 4 \times r^4 = \frac{1}{4}$ $\Rightarrow r = \frac{1}{2}$ \therefore Product of GM = $G_1 \cdot G_2 \cdot G_3$ $= ar \cdot ar^2 \cdot ar^3$ $= a^3 r^6$ $=4^3 \times \left(\frac{1}{2}\right)^6 = \frac{4^3}{4^3} = 1$ 621 (a) Let the two quantities be *a* and *b*. Then *a*, A_1 , A_2 , *b* are in AP. $\therefore A_1 - a = b - A_2 \implies A_1 + A_2 = a + b \dots (i)$ Again, a, G_1, G_2, b are in GP. $\therefore \ \frac{G_1}{a} = \frac{b}{G_2} \ \Rightarrow G_1 G_2 = ab$...(ii) Also, a, H_1, H_2, b are in HP. $\therefore \frac{1}{H_1} - \frac{1}{a} = \frac{1}{b} - \frac{1}{H_2}$ $\Rightarrow \frac{1}{H_1} + \frac{1}{H_2} = \frac{1}{a} + \frac{1}{h_2}$ $\Rightarrow \frac{H_1 + H_2}{H_1 H_2} = \frac{a + b}{ab} = \frac{A_1 + A_2}{G_1 G_2}$ [from Eqs.(i) and (ii)] $\Rightarrow \frac{G_1 G_2}{H_1 H_2} = \frac{A_1 + A_2}{H_1 + H_2}$ 622 (a) $\frac{1}{2!} + \frac{2}{3!} + \ldots + \frac{999}{1000!}$ $=\frac{2-1}{2!}+\frac{3-1}{3!}+\ldots+\frac{1000-1}{1000!}$ $=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\ldots+\frac{1}{999!}-\frac{1}{1000!}$ $1 - \frac{1}{1000!} = \frac{1000! - 1}{1000!}$ 623 (a) Let the sum of the series $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots$ to ∞ be x $\frac{1}{14} + \frac{1}{24} + \frac{1}{34} + \frac{1}{44} + \frac{1}{54} + \dots = \frac{\pi^4}{90}$ $\Rightarrow \left(\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots\right) + \frac{1}{2^4} \left(\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots\right)$ $\Rightarrow x + \frac{1}{2^4} \times \frac{\pi^4}{90} = \frac{\pi^4}{90} \Rightarrow x = \frac{\pi^4}{96}$ 624 (b) We have $\frac{\log a}{3} = \frac{\log b}{4} = \frac{\log c}{5} = \lambda(\text{say})$ $\Rightarrow a = 10^{3 \lambda}, b = 10^{4 \lambda} \text{ and } c = 10^{5 \lambda} \Rightarrow b^2 = ac$ 625 (a)

Given
$$2b = a + c$$

and $(c - b)^2 = (b - a)a$
 $\therefore (b - a)^2 = (b - a)a$
 $\Rightarrow b = 2a$
 $\Rightarrow c = 3a$
 $\Rightarrow a: b: c = 1: 2: 3$
626 (a)
Since, $T_{p+q} = m = a(r)^{p+q-1}$...(i)
And $T_{p-q} = n = a(r)^{p-q-1}$...(ii)
On multiplying Eqs. (i) and (ii), we get
 $mn = a^2(r)^{2p-2}$
 $\Rightarrow a(r)^{p-1} = (mn)^{1/2}$
 $\therefore T_p = (mn)^{1/2}$
627 (b)
Now, we assume $(b - c)^2$, $(c - a)^2$, $(a - b)^2$ are
in AP, then we have
 $(c - a)^2 - (b - c)^2 = (a - b)^2 - (c - a)^2$
 $\Rightarrow (b - a)(2c - a - b) = (c - b)(2a - b - c)$
...(i)
Also, if $\frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b}$ are in AP, then
 $\frac{1}{c-a} - \frac{1}{b-c} = \frac{1}{a-b} - \frac{1}{c-a}$
 $\Rightarrow \frac{b + a - 2c}{(c - a)(b - c)} = \frac{c + b - 2a}{(a - b)(c - a)}$
 $\Rightarrow (b - a)(2c - a - b) = (c - b)(2a - b - c)$
Which is equal to Eq. (i), so, our hypothesis is
true.
628 (b)
We have,
 $2 \log x - \log(x + 1) - \log(x - 1)$
 $= \log\left(\frac{x^2}{x^2 - 1}\right)$
 $= -\log\left(\frac{x^2}{x^2 - 1}\right)$
 $= -\log\left(\frac{x^2}{x^2 - 1}\right) = 1$
 $= -\log\left(\frac{x^2}{x^2 - 1}\right) = 0$
 $\Rightarrow \log_6\left(\frac{x^2 + x}{x - 1}\right) = 3^0$
 $\Rightarrow \frac{x^2 + x}{x - 1} = 6 \Rightarrow x^2 - 5x + 6 = 0 \Rightarrow x = 2,3$
630 (c)
Clearly, it is an AGP with $a = 1, d = 3$ and $r = 1/5$
 $\therefore 1 + \frac{4}{5} + \frac{7}{52} + \frac{10}{53} + \dots$

 $= \frac{1}{1 - \frac{1}{5}} + \frac{3/5}{\left(1 - \frac{1}{5}\right)^5} \qquad \left[\text{Using} : S_{\infty} \right]$ $= \frac{a}{1 - r} + \frac{dr}{(1 - r)^2}$ $= \frac{5}{4} + \frac{15}{16} = \frac{35}{16}$ 631 (d) Since, $a_1, a_2, a_3, ..., a_{10}$ be in AP. $\therefore a_{10} = a_1 + 9d$ $\Rightarrow 3 = a_1 + 9d$ $\Rightarrow 3 = 2 + 9d$ $\Rightarrow d = \frac{1}{9}$ Now, $a_4 = a_1 + 3d$ $\Rightarrow a_4 = 2 + 3\left(\frac{1}{9}\right) = 2 + \frac{1}{3} = \frac{7}{3}$ Again, $h_1, h_1, h_3, ..., h_{10}$ be in HP. $\Rightarrow \frac{1}{h_1}, \frac{1}{h_2}, \frac{1}{h_3}, ..., \frac{1}{h_{10}}$ be in AP Since, $h_1 = 2, h_{10} = 3$ (given) $\therefore \frac{1}{h_{10}} = \frac{1}{h_1} + 9d_1$ $\Rightarrow \frac{1}{3} = \frac{1}{2} + 9d_1$ $\Rightarrow \frac{1}{3} - \frac{1}{2} = 9d_1$ $\Rightarrow -\frac{1}{6} = 9d_1$ $\Rightarrow d_{1} = -\frac{1}{54}$ Now, $\frac{1}{h_{7}} = \frac{1}{2} + \frac{6 \times 1}{-54} \Rightarrow \frac{1}{h_{7}} = \frac{1}{2} - \frac{1}{9}$ $\Rightarrow \frac{1}{h_{7}} = \frac{9 - 2}{18} \Rightarrow h_{7} = \frac{18}{7}$ $\therefore a_4 h_7 = \frac{7}{3} \times \frac{18}{7} = 6$ 632 (d) We have, $\frac{e^{5x} + e^x}{e^{3x}} = e^{2x} + e^{-2x} = 2\left\{1 + \frac{2^2x^2}{2!} + \frac{2^4x^4}{4!}\right\}$ This expansion does not contain any odd power of х : Coefficient of $x^n = 0$ 633 (b) We have, $\log_{10} x = y$ $\therefore \log_{10^3} x^2 = \frac{2}{3} \log_{10} x = \frac{2}{3} y$ 634 (d) By the properties of AP and GP $a_1 + a_{2n} = a_2 + a_{2n-1} = \ldots = a_n + a_{n+1} =$ a + b

and
$$g_1g_{2n} = g_2g_{2n-1} = \dots = g_ng_{n+1} = ab$$

$$\therefore \frac{a_1 + a_{2n}}{g_1g_{2n}} + \frac{a_2 + a_{2n-1}}{g_2g_{2n-1}} + \dots + \frac{a_n + a_{n+1}}{g_ng_{n+1}}$$

$$= \frac{a + b}{ab} + \frac{a + b}{ab} + \dots + \frac{a + b}{ab}$$

$$= \frac{n(a + b)}{(ab)} = \frac{2n}{h}$$
635 (d)
As, $S_{25} = \left\{\frac{26}{25}, \frac{51}{25}, \frac{76}{25}, \dots$ upto 25 terms $\right\}$
Here, $a = \frac{26}{25}, n = 25, d = 1$
 $\therefore S_{25} = \frac{25}{2} \left(\frac{52}{25} + 24\right) = 326$
636 (c)
Let *a* be the first term and *d* be the common
difference. Then,
 $S_1 = \frac{n}{2} \{2a + (n - 1) d\},$
 $S_2 = \frac{2n}{2} \{2a + (2n - 1) d\},$
 $S_3 = \frac{3n}{2} \{2a + (3n - 1) d\}$
 $\Rightarrow S_2 - S_1 = \frac{1}{3} \left\{\frac{3n}{2} \{2a + (n - 1) d\}\right\} = \frac{1}{3}S_3$
 $\Rightarrow S_3 = 3(S_2 - S_1)$
637 (a)
Here, $a \in \left(0, \frac{\pi}{2}\right) \Rightarrow \tan a \text{ is } (+ve)$
[as, we know if
 $a, b > 0 \Rightarrow \frac{a+b}{2} \ge \sqrt{ab} \text{ ie}, AM \ge GM$]
 $\frac{\sqrt{x^2 + x} + \frac{\tan^2 a}{\sqrt{x^2 + x}}}{2}$
 $\ge \sqrt{\sqrt{x^2 + x}}, \frac{\tan^2 a}{\sqrt{x^2 + x}} [using AM \ge GM]$
 $\Rightarrow \sqrt{x^2 + x} + \frac{\tan^2 a}{\sqrt{x^2 + x}} \ge 2 \tan a$
638 (b)
We have,
 $\log_3 e - \log_9 e + \log_{27} e - \log_{81} e + \cdots \infty$
 $= \log_3 e (\log_2 e) + \log_{27} e - \log_{81} e + \cdots \infty$
 $= (\log_3 e) (1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots)$
 $= (\log_3 e) (\log_e 2) = \log_3 2$
641 (a)
We have,
Coefficient of $x^6 = 2\left(\frac{1}{5,6}\right) = \frac{1}{15}$

642 (c) Let *r* be the common ratio of give GP. $\therefore \frac{x}{1-r} = 5$ $\Rightarrow r = \left(1 - \frac{x}{5}\right)$ ∵ For infinite GP, |r| < 1 $\Rightarrow -1 < 1 - \frac{x}{5} < 1$ $\Rightarrow 10 > x > 0$ $\Rightarrow 0 < x < 10$ 643 (a) Let three numbers in GP are $\frac{a}{r}$, *a*, *ar*. From the given condition $\frac{a}{r} + a + ar = 14 \implies a(\frac{1}{r} + 1 + r) = 14$...(i) and $\frac{a}{r}$ + 1, a + 1 and $ar - 1 = \frac{a}{r}(1 + r^2)$...(ii) From Eqs. (i) and (ii), we get a = 4 and r = 2So, required numbers are 2, 4, 8 Hence, greatest number is 8 644 (a) We have, 2 b = a + c and $b^2 = \frac{2 a^2 c^2}{a^2 + c^2}$ $\therefore \left(\frac{a+c}{2}\right)^2 = \frac{2 a^2 c^2}{a^2 + c^2}$ $\Rightarrow (a+c)^2(a^2+c^2) = 8 a^2 c^2$ $\Rightarrow (a^{2} + c^{2})^{2} + 2 ac(a^{2} + c^{2}) - 8a^{2}c^{2} = 0$ $\Rightarrow (a^2 - c^2)^2 + 2 ac(a - c)^2 = 0$ $\Rightarrow (a-c)^2[(a+c)^2 + 2ac] = 0$ $\Rightarrow a = c$ Hence, a = b = c645 (d) Given that, $S_n = nA + n^2B$ Putting n = 1, 2, 3, ..., we get $S_1 = A + B, S_2 = 2A + 4B, S_3 = 3A + 9B$, Therefore, $T_1 = S_1 = A + B, T_2 = S_2 - S_1 = A + 3B,$ $T_3 = S_3 - S_2 = A + 5B$ Hence, the sequence is (A + B), (A + 3B), (A +5B,... : Common difference, d = A + 3B - (A + B) =2B646 (d) The Coefficient of x^3 in the expansion of 3^x $=\frac{(\log 3)^3}{3!}=\frac{(\log 3)^3}{6}$ 647 (c)

 $\sin^2 B - \sin^2 A = \sin^2 C - \sin^2 B \quad [::]$ a^2, b^2, c^2 are in AP] $\Rightarrow \sin(B + A) \sin(B - A)$ $= \sin(C + B) \sin(C - B)$ $\Rightarrow \sin C (\sin B \cos A - \cos B \sin A)$ $= \sin A (\sin C \cos B)$ $-\cos C \sin B$ $\Rightarrow 2 \cot B = \cot A + \cot C$ [divide bv sin A sin B sin C] $\Rightarrow \cot A, \cot B, \cot C$ are in AP. 648 (a) We have, $\frac{1}{\log_2 \pi} + \frac{1}{\log_4 \pi} > x$ $\Rightarrow \log_{\pi} 3 + \log_{\pi} 4 > x$ $\Rightarrow \log_{\pi} 12 > x$ $\Rightarrow \pi^x < 12$ Hence, the greatest integral value of *x* is 2 649 (c) Let $a_n = \frac{1}{(n+1)(n+2)...(n+k)}$ $\Rightarrow a_n = \frac{1}{(k-1)} \left(\frac{(n+k) - (n+1)}{(n+1)(n+2) \dots (n+k)} \right)$ $\Rightarrow \frac{1}{(k-1)} \left(\frac{1}{(n+1)(n+2)\dots(n+k-1)} \right)$ $-\left(\frac{1}{(n+2)(n+3)-(n+k)}\right)$ \therefore $S_n = a_1 + a_2 + \ldots + a_n$ $=\frac{1}{(k-1)}\left(\frac{1}{2\cdot 3\cdot 4-k}\right)$ $-\frac{1}{(n+2)(n+3)\dots(n+k)}\Big)$ $\Rightarrow \lim_{n \to \infty} S_n = \frac{1}{(k-1)^{k}}$ 650 (c) We have $1 + \frac{a+bx}{1+} + \frac{(a+bx)}{2+} + \frac{(a+bx)^3}{2+} + \cdots$ $= e^{a+bx} = e^{a} e^{bx} = e^{a} \sum_{n=1}^{\infty} \frac{(bx)^{n}}{n!} = e^{a} \sum_{n=1}^{\infty} \frac{b^{n}x^{n}}{n!}$ So, Coefficient of $x^n = \frac{e^a b^n}{n!}$ 651 (b) Suppose that $\angle A = x$, then $\angle B = x + 10^{\circ}$, $\angle C = x + 20^{\circ} \text{ and } \angle D = x + 30^{\circ}$ So, we know that $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ On putting these values, we get $(x) + (x + 10^{\circ}) + (x + 20^{\circ}) + (x + 30^{\circ}) = 360^{\circ}$ $\Rightarrow x = 75^{\circ}$ Hence, the angles of the quadrilateral are

75°, 85°, 95°, 105°. 652 (a) We have, $(n^2 - 1^2) + 2(n^2 - 2^2) + 3(n^2 - 3^2) + \cdots$ $+(n-1)\{n^2-(n-1)^2\}+n(n^2)$ $(-n^2)$ $= \sum_{n=1}^{n} r(n^2 - r^2) = n^2 \sum_{n=1}^{n} r - \sum_{n=1}^{n} r^3$ $= n^2 \frac{n(n+1)}{2} - \left\{\frac{n(n+1)}{2}\right\}^2 = \frac{n^2}{4}(n^2 - 1)$ 653 (a) We have, $\frac{3 + \log 343}{2 + \frac{1}{2}\log\frac{49}{4} + \frac{1}{3}\log\left(\frac{1}{125}\right)}$ $=\frac{3+\log 7^3}{2+\frac{1}{2}(\log 7^2-\log 2^2)+\frac{1}{3}\log 5^{-3}}$ $=\frac{3+3\log 7}{2+(\log 7-\log 2)-\log 5}$ $=\frac{3(1+\log 7)}{2+\log 7-(\log 2+\log 5)}$ $=\frac{3(1+\log 7)}{2+\log 7-\log 10}=\frac{3(1+\log 7)}{1+\log 7}=3$ 654 (c) Given series is $9-3+1-\frac{1}{2}+\ldots \infty$ This is an infinite GP series. $\therefore S_{\infty} = \frac{a}{1-r} = \frac{9}{1-(-\frac{1}{2})} = \frac{27}{4}$ 655 (a) We have, $\log_e x + \log_e (1+x) = 0$ $\Rightarrow \log_e x(1+x) = 0 \Rightarrow x(1+x) = e^0$ $\Rightarrow x^2 + x - 1 = 0$ 656 (c) We have, $\log_{\sqrt{2}}$ $\left| 2 \right\rangle 2 \sqrt{2\sqrt{2}}$ $= \log_{\sqrt{2}} \left(2^{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}} \right) = \log_{\sqrt{2}} 2^{\frac{15}{16}} = \frac{\frac{15}{16}}{\frac{1}{2}} \log_2 2 = \frac{15}{8}$ 657 (d) We have, $A = \frac{a+b}{2}$ and, $S = \frac{n}{2}(a+b)$ $\Rightarrow S = nA \Rightarrow \frac{S}{A} = n$ 658 (b)

When *n* is odd, the last term will be n^2 . Therefore, the required sum is given by $1^{2} + 2.2^{2} + 3^{2} + 2.4^{2} + \dots + 2 \cdot (n-1)^{2} + n^{2}$ $= \{1^2 + 2 \cdot 2^2 + 3^2 + 2 \cdot 4^2 + \dots + 2 \cdot (n-1)^2\} + n^2$ $=\frac{(n-1)n^2}{2} + n^2 \left[\text{Replacing } n \text{ by } (n + n^2) \right]$ (-1) in $\frac{n(n+1)^2}{2}$ $=\frac{n^2(n+1)}{2}$ 660 (c) Let $S_n = 2n + 3n^2$ $\therefore S_{n-1} = 2(n-1) + 3(n-1)^2$ $= 2n - 2 + 3n^2 + 3 - 6n$ $=3n^2-4n+1$ \therefore $T_n = S_n - S_{n-1}$ $= 2n + 3n^2 - (3n^2 - 4n + 1)$ = 6n - 1 $\therefore T_n = 6r - 1$ 661 (d) Given, $\left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots\right)^2 = \left(\frac{e^x + e^{-x}}{2!}\right)^2$ $=\frac{1}{4}(e^{2x}+e^{-2x}+2)$ $= \frac{1}{4} \left[4 + 2 \left\{ \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} + \dots \right\} \right]$ $= 1 + \frac{(2x)^2}{221} + \frac{(2x)^4}{241} + \dots$ 662 (c) Let *a* be the first term and *d* be the common difference of the A.P. Then, x = a + (p - 1)d, y = a + (q - 1)d, z= a + (r - 1)dLet *A* be the first term and *R* be the common ratio of the GP Then. $x = AR^{p-1}, y = AR^{q-1}, z = AR^{r-1}$ $\therefore x^{y-z} y^{z-x} z^{x-y}$ $= (AR^{p-1})^{(q-r)d} (AR^{q-1})^{(r-p)d} (AR^{r-1})^{(p-q)d}$ $= A^0 R^0 = 1$ 663 (a) We have, $3 + \log_5 x = 2 \log_{25} y$ $\Rightarrow 3\log_5 5 + \log_5 x = \frac{2}{2}\log_5 y$ $\Rightarrow \log_5(x \times 5^3) = \log_5 y \Rightarrow 125 \ x = y \Rightarrow x = \frac{y}{125}$ 664 (c) Given, AP is 3, a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , 31 $\therefore 31 = 3 + 7d$

 $\Rightarrow d = 4$ $\therefore a_1 = 3 + 4 = 7$ $a_5 = a + 5d = 3 + 20 = 23$ and $a_6 = a + 6d = 3 + 24 = 27$ $\therefore a_6 - a_5 = 27 - 23 = 4$ and $a_1 + a_6 = 7 + 27 = 34$ 665 (a) a, A_1, A_2, b are in AP $\therefore A_1 - a = b - A_2$ \Rightarrow $A_1 + A_2 = a + b$ And a, G_1, G_2, b are in GP. $\therefore \frac{G_1}{a} = \frac{b}{G_2}$ $\Rightarrow G_1G_2 = ab$ $\therefore \quad \frac{A_1 + A_2}{G_1 G_2} = \frac{a + b}{ab}$ 666 (a) We have, $\log_5(\log_5(\log_2 x)) = 0$

 $\Rightarrow \log_5(\log_2 x) = 5^0 \Rightarrow \log_2 x = 5 \Rightarrow x = 2^5$

Page | 113

667 (d)
We have,
(a) 0.5 + 0.55 + 0.555 + ... =
$$\frac{5}{9}[0.9 + 0.99 + 0.999 + 0.999 + ...$$

= $\frac{5}{9}[(1 - 0.1) + (1 - 0.01) + (1 - 0.001) + ... to n terms]$
= $\frac{5}{9}[(1 + 1 + ... to n terms) - (\frac{1}{10} + \frac{1}{10^2} + 1103 + ... + to n terms) - (\frac{1}{10} + \frac{1}{10^2} + 1103 + ... + to n terms]$
= $\frac{5}{9}[n - \frac{\frac{1}{10}\left\{1 - \frac{1}{10^n}\right\}}{1 - \frac{1}{10}}]$
= $\frac{5n}{9} - \frac{5}{81}(1 - 10^{-n})$
(b) 8 + 88 + 888 + ... to n terms
= $\frac{8}{9}[9 + 99 + 999 + ... to n terms]$
= $\frac{8}{9}[(10 - 1) + (10^2 - 1) + (10^3 - 1) + ... to n terms]$
= $\frac{8}{9}[(10 + 10^2 + 10^3 + ... + to n terms) - (1 + 1 - 1 + ... + to n terms)]$
= $\frac{8}{9}[(10 - 1) - (10^2 - 1) + (10^3 - 1) + ... to n terms)]$
= $\frac{8}{9}[\frac{10(10^n - 1)}{10 - 1} - n]$
= $\frac{80}{81}(10^n - 1) - \frac{8n}{9}$
(c) the nth terms in the sequence is $x_n = 1^2 + 2^2 + 3^2 + ... + n^2$
= $\frac{n(n + 1)(2n + 1)}{6}$
= $\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$
 \therefore The required sum = $\sum x_n$
= $\frac{1}{3}\sum n^3 + \frac{1}{2}\sum n^2 + \frac{1}{6}\sum n$
= $\frac{1}{3}\left[\frac{n(n + 1)}{2}\right]^2 + \frac{1}{2}\frac{n(n + 1)(2n + 1)}{6}$
+ $\frac{1}{6} \cdot \frac{n(n + 1)}{2}$

+

$$= \frac{n(n+1)}{12} [(n+1) + (2n+1) + 1]$$
$$= \frac{n(n+1)}{2} [n^2 + 3n + 2]$$
$$= \frac{n(n+1)}{2} (n+1)(n+2)$$
$$= \frac{n(n+1)^2(n+2)}{12}$$

668 **(b)** We have, $log(1 - x + x^2)$ $= log\{(1 + \omega x)(1 + \omega^2 x)\}$ $= log(1 + \omega x) + log(1 + \omega^2 x)$ $= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(\omega x)^n}{n} + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(\omega^2 x)^n}{n}$ $= \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (\omega^n + \omega^{2n}) x^n$ \therefore Coeff. of x^n in $log(1 - x + x^2)$ $= \frac{(-1)^{n-1}}{n} (\omega^n + \omega^{2n})$ $= \begin{cases} \frac{(-1)^n}{n}, & \text{if } n \text{ is not a multiple of 3} \\ \frac{2(-1)^{n-1}}{n}, & \text{if } n \text{ multiple of 3} \end{cases}$

