DCAM classes

2.RELATIONS AND FUNCTIONS

Single Correct Answer Type

1. The equivalent definition of $f(x)=||x|-1|$, is
a) $f(x)=\left\{\begin{array}{c}-x-1, \quad x \leq-1 \\ x+1,-1<x \leq 0 \\ 1-x, 0 \leq x \leq 1 \\ x-1, x \geq 1\end{array}\right.$
b) $f(x)=\left\{\begin{array}{cl}x-1, & x \leq-1 \\ x+1, & -1<x \leq 0 \\ x-1, & 0 \leq x \leq 1 \\ x+1, & x \geq 1\end{array}\right.$
c) $f(x)= \begin{cases}x+1, & x \geq 0 \\ x+1, & x \leq 0\end{cases}$
d) None of these
2. The domain of definition of $f(x)=\log _{100 x}\left(\frac{2 \log _{10} x+1}{-x}\right)$, is
a) $\left(0,10^{-2}\right) \cup\left(10^{-2}, 10^{-1 / 2}\right)$
b) $\left(0,10^{-1 / 2}\right)$
c) $\left(0,10^{-1}\right)$
d) None of these
3. The domain of the function
$f(x)=\frac{\sin ^{1}(x-3)}{\sqrt{9-x^{2}}}$ is
a) $[2,3]$
b) $[2,3)$
c) $[1,2]$
d) $[1,2)$
4. If R denotes the set of all real numbers, then the function $f: R \rightarrow R$ defined by $f(x)=|x|$ is
a) One-one only
b) Onto only
c) Both one-one and onto
d) Neither one-one nor onto
5. If $f(x)=\frac{1}{\sqrt{-x}}$, then domain of $f o f$ is
a) $(0, \infty)$
b) $(-\infty, 0)$
c) $\{0\}$
d) $\}$
6. Let f be a real valued function with domain R such that
$f(x+1)+f(x-1)=\sqrt{2} f(x)$ for all $x \in R$, then,
a) $f(x)$ is a periodic function with period 8
b) $f(x)$ is a periodic function with period 12
c) $f(x)$ is a non-periodic function
d) $f(x)$ is a periodic function with indeterminate period
7. If D_{30} is the set of the divisors of $30, x, y \in D_{30}$, we define $x+y=\operatorname{LCM}(x, y), x . y=\operatorname{GCD}(x, y), x^{\prime}=\frac{30}{x}$ and $f(x, y, z)=(x+y) \cdot\left(y^{\prime}+z\right)$, then $f(2,5,15)$ is equal to
a) 2
b) 5
c) 10
d) 15
8. The domain of definition of the function
$f(x)=\sqrt{\log _{10}\left(\frac{5 x-x^{2}}{4}\right)}$ is
a) $[1,4]$
b) $[1,0]$
c) $[0,5]$
d) $[5,0]$
9. Let $A=\{1,2,3\}$ and $B=\{2,3,4\}$, then which of the following relations is a function from A to B ?
a) $\{(1,2),(2,3),(3,4),(2,2)\}$
b) $\{(1,2),(2,3),(1,3)\}$
c) $\{(1,3),(2,3),(3,3)\}$
d) $\{(1,1),(2,3),(3,4)\}$
10. Let $f: R \rightarrow R, g: R \rightarrow R$ be two functions given by $f(x)=2 x-3, g(x)=x^{3}+5$. Then, $(f o g)^{-1} x$ is equal to
a) $\left(\frac{x-7}{2}\right)^{1 / 3}$
b) $\left(\frac{x+7}{2}\right)^{1 / 3}$
c) $\left(x-\frac{7}{2}\right)^{1 / 3}$
d) $\left(\frac{x-2}{7}\right)^{1 / 3}$
11. Let $f:[\pi, 3 \pi / 2] \rightarrow R$ be a function given by
$f(x)=[\sin x]+[1+\sin x]+[2+\sin x]$

Then, the range of $f(x)$ is
a) $\{0,3\}$
b) $\{1\}$
c) $\{0,2\}$
d) $\{3\}$
12. If the functions $f(x)=\log (x-2)-\log (x-3)$ and $g(x)=\log \left(\frac{x-2}{x-3}\right)$ are identical, then
a) $x \in[2,3]$
b) $x \in[2, \infty)$
c) $x \in(3, \infty)$
d) $x \in R$
13. If D is the set of all real x such that $1-e^{\frac{1}{x}-1}$ is positive, then D is equal to
a) $(-\infty, 1]$
b) $(-\infty, 0)$
c) $(1, \infty)$
d) $(-\infty, 0) \cup(1, \infty)$
14. Let $f(x)=\frac{\alpha x^{2}}{x+1}, x \neq-1$. The value of \propto for which $f(a)=a,(a \neq 0)$ is
a) $1-\frac{1}{a}$
b) $\frac{1}{a}$
c) $1+\frac{1}{a}$
d) $\frac{1}{a}-1$
15. Let $f(x)$ be defined on $[-2,2]$ and is given by
$f(x)=\left\{\begin{array}{l}-1,-2 \leq x \leq 0 \\ x-1,0<x \leq 2\end{array}\right.$
and $g(x)=f(|x|)+|f(x)|$. Then, $g(x)$ is equal to
a) $\left\{\begin{array}{cc}-x, & -2 \leq x<0 \\ 0, & 0 \leq x<1 \\ x-1, & 1 \leq x \leq 2\end{array}\right.$
b) $\left\{\begin{array}{cc}-x, & -2 \leq x<0 \\ 0, & 0 \leq x<1 \\ 2(x-1), & 1 \leq x \leq 2\end{array}\right.$
c) $\left\{\begin{array}{cc}-x, & -2 \leq x<0 \\ x-1, & 0 \leq x \leq 2\end{array}\right.$
d) None of these
16. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=x-3$ and $g(x)=x^{2}+1$, then the values of x for which $g\{f(x)\}=10$ are
a) $0,-6$
b) $2,-2$
c) $1,-1$
d) 0,6
17. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=2 x+3$ and $g(x)=x^{2}+7$, then the values of x such that $g(f(x))=8$ are
a) 1,2
b) $-1,2$
c) $-1,-2$
d) $1,-2$
18. The domain of the real function $f(x)=\frac{1}{\sqrt{4-x^{2}}}$ is
a) The set of all real numbers
b) The set of all positive real numbers
c) $(-2,2)$
d) $[-2,2]$
19. If $f(0)=1, f(1)=5, f(2)=11$, then the equation of polynomial of degree two is
a) $x^{2}+1=0$
b) $x^{2}+3 x+1=0$
c) $x^{2}-2 x+1=0$
d) None of these
20. If $[x]$ and $\{x\}$ represent integral and fractional parts of x, then the expression $[x]+\sum_{r=1}^{2000} \frac{\{x+r\}}{2000}$ is equal to
a) $\frac{2001}{2} x$
b) $x+2001$
c) x
d) $[x]+\frac{2001}{2}$
21. Suppose $f:[-2,2] \rightarrow R$ is defined by $f(x)=\left\{\begin{array}{l}-1 \text { for }-2 \leq x \leq 0 \\ x-1 \text { for } 0 \leq x \leq 2\end{array}\right.$
then $\{x \in[-2,2]: x \leq 0$ and $f(|x|)=x\}=$
a) $\{-1\}$
b) $\{0\}$
c) $\{-1 / 2\}$
d) ϕ
22. The function $f(x)=\cos \left\{\log _{10}\left(x+\sqrt{x^{2}+1}\right)\right\}$, is
a) Even
b) Odd
c) Constant
d) None of these
23. The period of the function $f(\theta)=4+4 \sin ^{3} \theta-3 \sin \theta$ is
a) $\frac{2 \pi}{3}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{2}$
d) π
24. If $f(2 x+3)=\sin x+2^{x}$, then $f(4 m-2 n+3)$ is equal to
a) $\sin (m-2 m)+2^{2 m-n}$
b) $\sin (2 m-n)+2^{(m-n) 2}$
c) $\sin (m-2 n)+2^{(m+n) 2}$
d) $\sin (2 m-n)+2^{2 m-n}$
25. The range of the function $f(x)=\frac{x+2}{x^{2}-8 x-4}$, is
a) $\left(-\infty, \frac{-1}{4}\right] \cup\left[\frac{-1}{20}, \infty\right)$
b) $\left(-\infty,-\frac{1}{4}\right) \cup\left(-\frac{1}{20}, \infty\right)$
c) $\left(-\infty,-\frac{1}{4}\right] \cup\left(-\frac{1}{20}, \infty\right)$
d) None of these
26. Let $f: R \rightarrow R$ be a function defined by $f(x)=\cos (5 x+2)$. Then, f is
a) Injective
b) Surjective
c) Bijective
d) None of these
27. Which one is not periodic?
a) $|\sin 3 x|+\sin ^{2} x$
b) $\cos \sqrt{x}+\cos ^{2} x$
c) $\cos 4 x+\tan ^{2} x$
d) $\cos ^{2} x+\sin x$
28. If $f: R \rightarrow R$ is defined by $f(x)=[2 x]-2[x]$ for all $x \in R$, where $[x]$ is the greatest integer not exceeding x, then the range of f is
a) $\{x \in R: 0 \leq x \leq 1\}$
b) $\{0,1\}$
c) $\{x \in R: x>0\}$
d) $\{x \in R: x \leq 0\}$
29. If $f(x)=\sin ^{2} x$ and the composite function $g(f(x))=|\sin x|$, then the function $g(x)$ is equal to
a) $\sqrt{x-1}$
b) \sqrt{x}
c) $\sqrt{x+1}$
d) $-\sqrt{x}$
30. If a function $f:[2, \infty) \rightarrow B$ defined by $f(x)=x^{2}-4 x+5$ is a bijection, then $B=$
a) R
b) $[1, \infty)$
c) $[4, \infty)$
d) $[5, \infty)$
31. The domain of definition of the function
$f(x)=\log _{2}\left[-\left(\log _{2} x\right)^{2}+5 \log _{2} x-6\right]$, is
a) $(4,8)$
b) $[4,8]$
c) $(0,4) \cup(8, \infty)$
d) $R-[4,8]$
32. The period of the function $f(x)=\sin \left(\sin \frac{x}{5}\right)$ is
a) 2π
b) $2 \pi / 5$
c) 10π
d) 5π
33. The domain of definition of the function $f(x)=\sqrt{\log _{10}\left(\frac{5 x-x^{2}}{4}\right)}$, is
a) $[1,4]$
b) $(1,4)$
c) $(0,5)$
d) $[0,5]$
34. If $f: R \rightarrow R$ and is defined by $f(x)=\frac{1}{2-\cos 3 x}$ for each $x \in R$, then the range $\mathrm{f} f$ is
a) $(1 / 3,1)$
b) $[1 / 3,1]$
c) $(1,2)$
d) $[1,2]$
35. If $f(x)$ is defined on $[0,1]$ by the rule $f(x)=\left\{\begin{array}{c}x, \text { if } x \text { is rational } \\ 1-x, \text { if } x \text { is irrational }\end{array}\right.$ Then, for all $x \in[0,1], f(f(x))$ is
a) Constant
b) $1+x$
c) x
d) None of these
36. Range of the function $f(x)=\frac{x}{1+x^{2}}$ is
a) $(-\infty, \infty)$
b) $[-1,1]$
c) $\left[-\frac{1}{2}, \frac{1}{2}\right]$
d) $[-\sqrt{2}, \sqrt{2}]$
37. If the function $f: R \rightarrow A$ given by $f(x)=\frac{x^{2}}{x^{2}+1}$ is a surjection, then $A=$
a) R
b) $[0,1]$
c) $(0,1]$
d) $[0,1)$
38. If R is an equivalence relation on a set A, then R^{-1} is
a) Reflexive only
b) Symmetric but not transitive
c) Equivalence
d) None of the above
39. If the function $f: R \rightarrow A$ given by $f(x)=\frac{x^{2}}{x^{2}+1}$ is a surjection, then $A=$
a) R
b) $[0,1]$
c) $(0,1]$
d) $[0,1)$
40. The domain of the real valued function $f(x)=\sqrt{5-4 x-x^{2}}+x^{2} \log (x+4)$ is
a) $-5 \leq x \leq 1$
b) $-5 \leq x$ and $x \geq 1$
c) $-4<x \leq 1$
d) ϕ
41. The period of the function $f(x)=a^{\{\tan (\pi x)+x-[x]\}}$, where $a>0,|\cdot|$ denotes the greatest integer function and x is a real number, is
a) π
b) $\frac{\pi}{2}$
c) $\frac{\pi}{4}$
d) 1
42. The domain of the function $f(x)=\log _{2 x-1}(x-1)$ is
a) $(1, \infty)$
b) $\left(\frac{1}{2}, \infty\right)$
c) $(0, \infty)$
d) None of these
43. The composite mapping fog of the maps $f: R \rightarrow R, f(x)=\sin x$ and $g: R \rightarrow R, \mathrm{~g}(x)=x^{2}$, is
a) $x^{2} \sin x$
b) $(\sin x)^{2}$
c) $\sin x^{2}$
d) $\frac{\sin x}{x^{2}}$
44. If $f(x)=\cos (\log x)$, then
$f(x) f(y)-\frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x y)\right]$ has the value
a) -1
b) $1 / 2$
c) -2
d) 0
45. The domain of the function $f(x)$ given by $f(x)=\sqrt{\frac{-\log _{0.3}(x-1)}{-x^{2}+3 x+18}}$, is
a) $[2,6]$
b) $(2,6)$
c) $[2,6)$
d) None of these
46. If the function $f: R \rightarrow R$ defined by $f(x)=[x]$ where $[x]$ is the greatest integer not exceeding x, for $x \in R$, then f is
a) Even
b) Odd
c) Neither even nor odd
d) Strictly increasing
47. The domain of definition of the function
$f(x)=\log _{3}\left\{-\log _{4}\left(\frac{6 x-4}{6 x+5}\right)\right\}$, is
a) $(2 / 3, \infty)$
b) $(-\infty,-5 / 6) \cup(2 / 3, \infty)$
c) $[2 / 3, \infty)$
d) $(-5 / 6,2 / 3)$
48. Which of the following statements is not correct for the relation R defined by $a R b$, if and only, if b lives within on kilometre from a ?
a) R is reflexive
b) R is symmetric
c) R is anti-symmetric
d) None of these
49. Let $n(A)=4$ and $n(B)=6$. The number of one to one functions from A to B is
a) 24
b) 60
c) 120
d) 360
50. If $f(x)=x-\frac{1}{x}, x \neq 0$, then $f\left(x^{2}\right)$ equals
a) $f(x)+f(-x)$
b) $f(x) f(-x)$
c) $f(x)-f(-x)$
d) None of these
51. Let $f(x)=|x-1|$ Then,
a) $f\left(x^{2}\right)=[f(x)]^{2}$
b) $f(|x|)=|f(x)|$
c) $f(x+y)=f(x)+f(y)$
d) None of these
52. If f is a real valued function such that $f(x+y)=f(x)+f(y)$ and $f(1)=5$, then the value of $f(100)$ is
a) 200
b) 300
c) 350
d) 500
53. If R be a relation defined as $a R b$ iff $|a-b|>0$, then the relation is
a) Reflexive
b) Symmetric
c) Transitive
d) Symmetric and transitive
54. Which of the following functions is inverse of itself?
a) $f(x)=\frac{1-x}{1+x}$
b) $f(x)=3^{\log x}$
c) $f(x)=3^{x(x+1)}$
d) None of these
55. The function $f(x)=\log \left(x+\sqrt{x^{2}+1}\right)$ is
a) An even function
b) An odd function
c) A periodic function
d) Neither an even nor an odd function
56. If $b^{2}-4 a c=0$ and $a>0$, then domian of the function $f(x)=\log \left\{\left(a x^{2}+b x+c\right)(x+1)\right\}$ is
a) $R-\left(-\frac{b}{2 a}\right)$
b) $R-(-\infty,-1)$
c) $(-1, \infty)-\left\{-\frac{b}{2 a}\right\}$
d) $R-\left(\left\{-\frac{b}{2 a}\right\} \cap(-\infty,-1)\right)$
57. The function $f: R \rightarrow R$ given by $f(x)=x^{2}+x$, is
a) One-one and onto
b) One-one and into
c) Many-one and onto
d) Many one and into
58. If T_{1} is the period of the function $f(x)=e^{3(x-[x])}$ and T_{2} is the period of the function $g(x)=e^{3 x-[3 x]}$ ($[\cdot]$ denotes the greatest integer function), then
a) $T_{1}=T_{2}$
b) $T_{1}=\frac{T_{2}}{3}$
c) $T_{1}=3 T_{2}$
d) None of these
59. If $f(x+y, x-y)=x y$, then the arithemetic mean of $f(x, y)$ and $f(y, x)$ is
a) x
b) y
c) 0
d) None of these
60. If $f: R \rightarrow R$ is defined by $f(x)=x-[x]-\frac{1}{2}$ for $x \in R$, where $[x]$ is the greatest integer not exceeding x, then
$\left\{x \in R: f(x)=\frac{1}{2}\right\}$ is equal to
a) Z, the set of all integers
b) N, the set of all natural numbers
c) ϕ, the empty set
d) R
61. The period of the function $f(x)=|\sin 3 x|+|\cos 3 x|$, is
a) $\frac{\pi}{2}$
b) $\frac{\pi}{6}$
c) $\frac{3 \pi}{2}$
d) π
62. Let $f:(2,3) \rightarrow(0,1)$ be defined by $f(x)=x-[x]$, then $f^{-1}(x)$ equals
a) $x-2$
b) $x+1$
c) $x-1$
d) $x+2$
63. The function $f(x)=\left(\frac{1}{2}\right)^{\sin x}$, is
a) Periodic with period 2π
b) An odd function
c) Not expressible as the sum of an even function an odd function
d) None of these
64. If the function $f: N \rightarrow N$ is defined by $f(x)=\sqrt{x}$, then $\frac{f(25)}{f(16)+f(1)}$ is equal to
a) $\frac{5}{6}$
b) $\frac{5}{7}$
c) $\frac{5}{3}$
d) 1
65. Let $f: A \rightarrow B$ and $\mathrm{g}: B \rightarrow C$ be two functions such that gof: $A \rightarrow C$ is onto. Then,
a) f is onto
b) g is onto
c) f and g both are onto
d) None of these
66. Let the function $f(x)=3 x^{2}-4 x+5 \log (1+|x|)$ be defined on the interval $[0,1]$. The even extension of $f(x)$ to the interval $[-1,1]$ is
a) $3 x^{2}+4 x+8 \log (1+|x|)$
b) $3 x^{2}-4 x+8 \log (1+|x|)$
c) $3 x^{2}+4 x-8 \log (1+|x|)$
d) None of these
67. Range of the function $f(x)=\frac{x^{2}+x+2}{x^{2}+x+1} ; x \in R$ is
a) $(1, \infty)$
b) $(1,11 / 7)$
c) $[1,7 / 3]$
d) $(1,7 / 5)$
68. The period of the function $\sin \left(\frac{\pi x}{2}\right)+\cos \left(\frac{\pi x}{2}\right)$ is
a) 4
b) 6
c) 12
d) 24
69. The period of the function $f(x)=\sin ^{4} x+\cos ^{4} x$ is
a) π
b) $\pi / 2$
c) 2π
d) None of these
70. Let a relation R on the set N of natural numbers be defined as $(x, y) \Leftrightarrow x^{2}-4 x y+3 y^{2}=0 \forall x, y \in N$. The relation R is
a) Reflexive
b) Symmetric
c) Transitive
d) An equivalence relation
71. The function $f: R \rightarrow R$ defined by $f(x)=(x-1)(x-2)(x-3)$, is
a) One-one but not onto
b) Onto but not one-one
c) Both one and onto
d) Neither one-one nor onto
72. The function $f: X \rightarrow Y$ defined by $f(x)=\sin x$ is one-one but not onto, if X and Y are respectively equal to
a) R and R
b) $[0, \pi]$ and $[0,1]$
c) $\left[0, \frac{\pi}{2}\right]$ and $[-1,1]$
d) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ and $[-1,1]$
73. The function $f: R \rightarrow R$ is defined by $f(x)=3^{-x}$. Observe the following statements
I. f is one-one
II. f is onto
III. f is a decreasing function

Out of these, true statement are
a) Only I, II
b) Only II, III
c) Only I, III
d) I, II, III
74. The function $f(x)=x[x]$, is
a) Periodic with period 1
b) Periodic with period 2
c) Periodic with indeterminate period
d) Not-periodic
75. If $f(x)=\frac{3 x+2}{5 x-3}$, then
a) $f^{-1}(x)=f(x)$
b) $f^{-1}(x)=-f(x)$
c) $(f \circ f)(x)=-x$
d) $f^{-1}(x)=-\frac{1}{19} f(x)$
76. The domain of the function $f(x)=\frac{\sqrt{4-x^{2}}}{\sin ^{-1}(2-x)}$ is
a) $[0,2]$
b) $[0,2)$
c) $[1,2)$
d) $[1,2]$
77. The domain of definition of $f(x)=\sin ^{-1}(|x-1|-2)$ is
a) $[-2,0] \cup[2,4]$
b) $(-2,0) \cup(2,4)$
c) $[-2,0] \cup[1,3]$
d) $[-2,0] \cup[1,3]$
78. The domain of the function $f(x)=\cos ^{-1}[\sec x]$, where $[x]$ denotes the greatest integer less than or equal to x, is
a) $\{x: x=(2 n+1) \pi, n \in Z\} \cup\left\{x: 2 m \pi \leq x<2 m \pi+\frac{\pi}{3}, m \in Z\right\}$
b) $\{x: x=2 n \pi, n \in Z\} \cup\left\{x: 2 m \pi<x<2 m \pi+\frac{\pi}{3}, m \in Z\right\}$
c) $\{x:(2 n+1) \pi, n \in Z\} \cup\left\{x: 2 m \pi<x<2 m \pi+\frac{\pi}{3}, m \in Z\right\}$
d) None of these
79. The domain of $\sin ^{-1}\left(\log _{3} x\right)$ is
a) $[-1,1]$
b) $[0,1]$
c) $[0, \infty]$
d) $\left[\frac{1}{3}, 3\right]$
80. Let $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}},(x \neq 0)$ then $f(x)$ equals
a) $x^{2}-x$ for all x
b) $x^{2}-2$ for all $|x| \geq 2$
c) $x^{2}-2$ for all $|x|<2$
d) None of these
81. If $f(x)=\sin ^{2} x+\sin ^{2}\left(x+\frac{\pi}{3}\right)+\cos x \cos \left(x+\frac{\pi}{3}\right)$ and $g\left(\frac{5}{4}\right)=1$, then $g \circ f(x)$ is equal to
a) 1
b) -1
c) 2
d) -2
82. The range of $f(x)=\sec \left(\frac{\pi}{4} \cos ^{2} x\right),-\infty<x<\infty$, is
a) $[1, \sqrt{2}]$
b) $[1, \infty)$
c) $[-\sqrt{2},-1] \cup[1, \sqrt{2}]$
d) $(-\infty,-1] \cup[1, \infty)$
83. Let $f: R \rightarrow R$ be a function defined by $f(x)=\frac{e^{|x|}-e^{-x}}{e^{x}+e^{-x}}$. Then,
a) f is a bijection
b) f is an injection only
c) f is surjection on only
d) f is neither an injection nor a surjection
84. The function $f: R \rightarrow R$ defined by $f(x)=(x-1)(x-2)(x-3)$ is
a) One-one but not onto
b) Onto but not one-one
c) Both one-one and onto
d) Neither one-one nor onto
85. Q function f from the set of natural numbers to integers
defined by $f(n)=\left\{\begin{array}{l}\frac{n-1}{2}, \text { where } n \text { is odd } \\ -\frac{n}{2}, \text { when } n \text { is even }\end{array}\right.$
a) One-one but not onto
b) Onto but not one-one
c) One-one and onto both
d) Neither one-one nor onto
86. The function $f(x)=\sqrt{\cos (\sin x)}+\sin ^{-1}\left(\frac{1+x^{2}}{2 x}\right)$ is defined for
a) $x \in\{-1,1\}$
b) $x \in[-, 1,1]$
c) $x \in R$
d) $x \in(-1,1)$
87. If $e^{f(x)}=\frac{10+x}{10-x}, x \in(-10,10)$ and $f(x)=k f\left(\frac{200 x}{100+x^{2}}\right)$, then k is equal to
a) 0.5
b) 0.6
c) 0.7
d) 0.8
88. A mapping $f: N \rightarrow N$, where N is the set of natural numbers is defined as $f(n)=\left\{\begin{array}{c}n^{2}, \text { for } n \text { odd } \\ 2 n+1, \text { for } n \text { even }\end{array}\right.$
For $n \in N$. Then, f is
a) Surjective but not injective
b) Injective but not surjective
c) Bijective
d) Neither injective nor surjective
89. If $y=f(x)=\frac{x+2}{x-1}$, then
a) $x=f(y)$
b) $f(1)=3$
c) y increase with x for $x<1$
d) f is a rational function of x
90. Let f be a function with domain $[-3,5]$ and let $g(x)=|3 x+4|$. Then the domain of $(f o g)(x)$ is
a) $\left(-3, \frac{1}{3}\right)$
b) $\left[-3, \frac{1}{3}\right]$
c) $\left[-3, \frac{1}{3}\right]$
d) $\left[-3,-\frac{1}{3}\right]$
91. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions such that gof: $A \rightarrow C$ is one-one and $f: A \rightarrow B$ is onto. Then, $\mathrm{g}: B \rightarrow C$ is
a) One-one
b) Onto
c) One-one and onto
d) None of these
92. Let $g(x)=1+x-[x]$ and $f(x)=\left\{\begin{array}{cc}-1, & x<0 \\ 0, & x=0, \\ 1 & x>0\end{array}\right.$ then for for $x, f[g(x)]$ is equal to
a) x
b) 1
c) $f(x)$
d) $g(x)$
93. If the function $f: R \rightarrow R$ be such that $f(x)=x-[x]$, where $[x]$ denotes the greatest integer less than or equal to x, then $f^{-1}(x)$, is
a) $\frac{1}{x-[x]}$
b) $[x]-x$
c) Not defined
d) None of these
94. Let a and b be two integers such that $10 a+b=5$ and $P(x)=x+a x+b$. The integer n such that $P(10) \cdot P(11)=P(n)$ is
a) 15
b) 65
c) 115
d) 165
95. The unction $f:[-1 / 2,1 / 2] \rightarrow[-\pi / 2, \pi / 2]$ defined by $f(x)=\sin ^{-1}\left(3 x-4 x^{3}\right)$ is
a) Bijection
b) Injection but not a surjection
c) Surjection but not an injection
d) Neither an injection nor a surjection
96. Let $f:(-\infty, 2] \rightarrow(-\infty, 4]$ be a function defined by $f(x)=4 x-x^{2}$. Then, $f^{-1}(x)$ is
a) $2-\sqrt{4-x}$
b) $2+\sqrt{4-x}$
c) $2 \pm \sqrt{4-x}$
d) Not defined
97. If $f(x)=\left(a-x^{n}\right)^{1 / n}$, where $a>0$ and $n \in N$, then $f o f(x)$ is equal to
a) a
b) x
c) x^{n}
d) a^{n}
98. The domain of definition of $f(x)=\log _{3}\left|\log _{e} x\right|$, is
a) $(1, \infty)$
b) $(0, \infty)$
c) (e, ∞)
d) None of these
99. Let $f: R \rightarrow, g: R \rightarrow R$ be two functions given by $f(x)=2 x-3, g(x)=x^{3}+5$. Then, $(f o g)^{-1}(x)$ is equal to
a) $\left(\frac{x+7}{2}\right)^{1 / 3}$
b) $\left(x-\frac{7}{2}\right)^{1 / 3}$
c) $\left(\frac{x-2}{7}\right)^{1 / 3}$
d) $\left(\frac{x-7}{2}\right)^{1}$
100. If $f: R \rightarrow R$ is defined by $f(x)=|x|$, then
a) $f^{-1}(x)=-x$
b) $f^{-1}(x)=\frac{1}{|x|}$
c) The function $f^{-1}(x)$ does not exist
d) $f^{-1}(x)=\frac{1}{x}$
101. Which of the following functions from $A=\{x:-1 \leq x \leq 1\}$ to itself are bijections?
a) $f(x)=\frac{x}{2}$
b) $g(x)=\sin \left(\frac{\pi x}{2}\right)$
c) $h(x)=|x|$
d) $k(x)=x^{2}$
102. Domain of the function $f(x)=\sqrt{2-2 x-x^{2}}$ is
a) $-\sqrt{3} \leq x \leq+\sqrt{3}$
b) $-1-\sqrt{3} \leq x \leq-1+\sqrt{3}$
c) $-2 \leq x \leq 2$
d) $-2+\sqrt{3} \leq x \leq-2-\sqrt{3}$
103. Let $[x]$ denote the greatest integer less than or equal to x. If $f(x)=\sin ^{-1} x, \mathrm{~g}(x)=\left[x^{2}\right]$ and $h(x)=2 x, \frac{1}{2} \leq$ $x \leq \frac{1}{\sqrt{2}}$, then
a) $\operatorname{fogoh}(x)=\pi / 2$
b) $\operatorname{fogoh}(x)=\pi$
c) $h o f o g=h o g o f$
d) $h o f o g \neq h o g o f$
104. Let $f: N \rightarrow N$ be defined by $f(x)=x^{2}+x+1$, then f is
a) One-one onto
b) Many one onto
c) One-one but not onto
d) None of these
105.

Let $f(x)=\left\{\begin{array}{c}0, x=0 \\ x^{2} \sin \pi / 2 x, \quad|x|<1 \text {. Then, } f(x) \text { is } \\ x|x|, \quad|x| \geq 1\end{array}\right.$
a) An even function
b) An odd function
c) Neither an even function nor an odd function
d) $f^{\prime}(x)$ is an even function
106. The interval in which the function $y=\frac{x-1}{x^{2}-3 x+3}$ transforms the real line is
a) $(0, \infty)$
b) $(-\infty, \infty)$
c) $[0,1]$
d) $[-1 / 3,1]$
107. The equivalent definition of $f(x)=\max .\left\{x^{2},(1-x)^{2}, 2 x(1-x)\right\}$, where $0 \leq x \leq 1$,
a) $f(x)=\left\{\begin{array}{c}x^{2} ; 0 \leq x \leq 1 / 3 \\ 2 x(1-x) ; 1 / 3 \leq x \leq 2 / 3 \\ (1-x)^{2} ; 2 / 3 \leq x \leq 1\end{array}\right.$
b) $f(x)=\left\{\begin{array}{r}(1-x)^{2} ; 0 \leq x \leq 1 / 3 \\ 2 x(1-x) ; 1 / 3 \leq x \leq 2 / 3 \\ x^{2} ; 2 / 3 \leq x \leq 1\end{array}\right.$
c) $f(x)=\left\{\begin{array}{c}x^{2} ; 0 \leq x \leq 1 / 2 \\ (1-x)^{2} ; 1 / 2 \leq x \leq 1\end{array}\right.$
d) None of these
108. Which of the following functions from Z to itself are bijections?
a) $f(x)=x^{3}$
b) $f(x)=x+2$
c) $f(x)=2 x+1$
d) $f(x)=x^{2}+x$
109. The domain of definition of the function
$f(x)=\frac{1}{\sqrt{|\cos x|+\cos x}}$, is
a) $[-2 n \pi, 2 n \pi], n \in N$
b) $(2 n \pi,(2 n+1) \pi), n \in Z$
c) $\left((4 n+1) \frac{\pi}{2},(4 n+3) \frac{\pi}{2}\right), n \in Z$
d) $\left((4 n-1) \frac{\pi}{2},(4 n+1) \frac{\pi}{2}\right), n \in Z$
110. If $f(x)=\left(25-x^{4}\right)^{1 / 4}$ for $0<x<\sqrt{5}$, then $\left(f\left(\frac{1}{2}\right)\right)=$
a) 2^{-4}
b) 2^{-3}
c) 2^{-2}
d) 2^{-1}
111. The function $f(x)=\sec \left[\log \left(x+\sqrt{\left.1+x^{2}\right)}\right]\right.$ is
a) Odd
b) Even
c) Neither odd nor even
d) Constant
112. If $f(x)=\sin (\log x)$, then the value of $f(x y)+f(x / y)-2 f(x) \cos (\log y)$, is
a) -1
b) 0
c) 1
d) None of these
113. The equivalent definition of
$f(x)=$ max. $\left\{-\left|1-x^{2}\right|, 2|x|-2,1-\frac{7}{2}|x|\right\}$, is

b) $\left\{\begin{array}{c}-2 x-2, \quad x<-1 \\ -x^{2}-1, \quad-1 \leq x<\frac{1}{2} \\ 1+7 x / 2, \quad-1 / 2 \leq x<0 \\ 1-7 x / 2, \\ x^{2}-1, \\ 2 x-2 \leq 1 / 2 \leq x<1 \\ 2 x-2,\end{array}\right.$
c) $\left\{\begin{array}{c}-2 x+2, \quad x \leq-1 \\ x^{2}-1,-1 \leq x<0 \\ 1+7 x, \quad 0 \leq x<1 \\ 2 x-2, \quad x \geq 1\end{array}\right.$
d) None of these
114. The number of bijective functions from set A to itself when A contains 106 elements is
a) 106
b) $(106)^{2}$
c) 106 !
d) 2^{106}
115. The domain of definition of $f(x)=\log _{0.5}\left\{-\log _{2}\left(\frac{3 x-1}{3 x+2}\right)\right\}$, is
a) $(-\infty,-1 / 3)$
b) $(-1 / 3, \infty)$
c) $(1 / 3, \infty)$
d) $[1 / 3, \infty)$
116. If $f(x)=x^{3}-x$ and $\phi(x)=\sin 2 x$, then
a) $\phi(f(2))=\sin 2$
b) $\phi(f(1))=1$
c) $f(\phi(\pi / 12))=-\frac{3}{8}$
d) $f(f(1))=2$
117. $f(x)=|\sin x|$ has an inverse if its domain is
a) $[0, \pi]$
b) $[0, \pi / 2]$
c) $[-\pi / 4, \pi / 4]$
d) None of these
118. The function $f(x)=\log _{10}\left(x+\sqrt{x^{2}+1}\right)$ is
a) An even function
b) An odd function
c) Periodic function
d) None of these
119. Let R be a relation on the set of integers given by $a R b \Leftrightarrow a=2^{k} . b$ for some integer k. Then, R is
a) An equivalence relation
b) reflexive but not symmetric
c) Reflexive and transitive but not symmetric
d) Reflexive and symmetric but not transitive
120. A polynomial function $f(x)$ satisfies the condition
$f(x) f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$
If $f(10)=1001$, then $f(20)=$
a) 2002
b) 8008
c) 8001
d) None of these
121. The function $f(x)=\frac{\sin ^{4} x+\cos ^{4} x}{x^{3}+x^{4} \tan x}$ is
a) Even
b) Odd
c) Periodic with period π
d) Periodic with period 2π
122. The value of b and c for which the identify $f(x+1)-f(x)=8 x+3$ is satisfied, where $f(x)=b x^{2}+c x+$ d, are
a) $b=2, c=1$
b) $b=4, c=-1$
c) $b=-1, c=4$
d) $b=-1, c=1$
123. The second degree polynomial $f(x)$, satisfying $f(0)=0, f(1)=1, f^{\prime}(x)>0$ for all $x \in(0,1)$
a) $f(x)=\phi$
b) $f(x)=a x+(1-a) x^{2} ; \forall a \in(0, \infty)$
c) $f(x)=a x+(1-a) x^{2}, a \in(0,2)$
d) No such polynomial
124. If $2 f(x+1)+f\left(\frac{1}{x+1}\right)=2 x$ and $x \neq-1$, then $f(2)$ is equal to
a) -1
b) 2
c) $5 / 3$
d) $5 / 2$
125. $f(x)=\left\{\begin{array}{c}x, \text { if } x \text { is rational } \\ 0, \text { if } x \text { is irrational }\end{array}\right.$ and
$f(x)=\left\{\begin{array}{c}0, \text { if } x \text { is rational } \\ x, \text { if } x \text { is irrational }\end{array}\right.$. Then, $f-g$ is
a) One-one and into
b) Neither one-one nor onto
c) Many one and onto
d) One-one and onto
126. The value of x for which $y=\log _{2}\left\{-\log _{1 / 2}\left(1+\frac{1}{x^{1 / 4}}\right)-1\right\}$ is a real number are
a) $[0,1]$
b) $(0,1)$
c) $[1, \infty)$
d) None of these
127. If $f(x)=\cos ^{-1}\left(\frac{2-|x|}{4}\right)+\left[\log _{10}(3-x)\right]^{-1}$, then its domain is
a) $[-2,6]$
b) $[-6,2) \cup(2,3)$
c) $[-6,2]$
d) $[-2,2) \cup(2,3]$
128. The range of the function $f(x)=1+\sin x+\sin ^{3} x+\sin ^{5} x+\cdots$ when $x \in(-\pi / 2, \pi / 2)$, is
a) $(0,1)$
b) R
c) $(-2,2)$
d) None of these
129. The number of onto mappings from the set $A=\{1,2, \ldots, 100\}$ to set $B=\{1,2\}$ is
a) $2^{100}-2$
b) 2^{100}
c) $2^{99}-2$
d) 2^{99}
130. If a function f satisfies $f\{f(x)\}=x+1$ for all real values of x and if $f(0)=\frac{1}{2}$, then $f(1)$ is equal to
a) $\frac{1}{2}$
b) 1
c) $\frac{3}{2}$
d) 2
131. The function $f(x)$ given by $f(x)=\frac{\sin 8 x \cos x-\sin 6 x \cos 3 x}{\cos x \cos 2 x-\sin 3 x \sin 4 x}$, is
a) Periodic with period π
b) Periodic with period 2π
c) Periodic with period $\pi / 2$
d) Not periodic
132. If $x \in R$, then $f(x)=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ is equal to
a) $2 \tan ^{-1} x$
b) $\left\{\begin{array}{c}-\pi-2 \tan ^{-1} x,-\infty<x<-1 \\ 2 \tan ^{-1} x, \quad-1 \leq x \leq 1 \\ \pi-2 \tan ^{-1} x, 1<x<\infty\end{array}\right.$
c) $\left\{\begin{array}{c}-\pi-2 \tan ^{-1} x,-\infty<x<-1 \\ 2 \tan ^{-1} x,-1 \leq x \leq 1 \\ \pi-2 \tan ^{-1} x, 1<x<\infty\end{array}\right.$
d) $\left\{\begin{array}{c}-\pi+2 \tan ^{-1} x,-\infty<x \leq-1 \\ 2 \tan ^{-1} x,-1<x<1 \\ \pi-2 \tan ^{-1} x, \quad 1 \leq x<\infty\end{array}\right.$
133. If $f(x)=2 x^{6}+3 x^{4}+4 x^{2}$, then $f^{\prime}(x)$ is
a) An even function
b) An odd function
c) Neither even nor odd
d) None of the above
134. The mapping $f: N \rightarrow N$ given $f(n)=1+n^{2}, n \in N$ where N is the set of natural number, is
a) One-to-one and onto
b) Onto but not one-to-one
c) One-to-one but not onto
d) Neither one-to-one nor onto
135. Let $f: A \rightarrow B$ and g: $B \rightarrow A$ be two functions such that gof $=I_{A}$. Then,
a) f is an injection and g is a surection
b) f is a surjection and g is an injection
c) f and g both are injections
d) f and g both are surjections
136. If $f(x)=\left(a-x^{n}\right)^{1 / n}$, where $a>0$ and $n \in N$, then $f o f(x)$ is equal to
a) a
b) x
c) x^{n}
d) a^{n}
137. Let r be a relation from R (set of real numbers) to R defined by $r=\{(a, b) \mid a, b \in R$ and $a-b+\sqrt{3}$ is an irrational number\}. The relation r is
a) An equivalent relation
b) Reflexive only
c) Symmetric only
d) Transitive only
138. R is a relation from $\{11,12,13\}$ to $\{8,10,12\}$ defined by $y=x-3$. Then, R^{-1} is
a) $\{(8,11),(10,13)\}$
b) $\{(11,18),(13,10)\}$
c) $\{(10,13),(8,11)\}$
d) None of these
139. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-6 x-14$, then f^{-1} (2) equals to
a) $\{2,8\}$
b) $\{-2,8\}$
c) $\{-2,-8\}$
d) $\{\phi\}$
140. The domain of definition of the function $f(x)=\sqrt[3]{\frac{2 x+1}{x^{2}-10 x-11}}$, is
a) $(0, \infty)$
b) $(-\infty, 0)$
c) $R-\{-1,11\}$
d) R
141. The period of the function $\sin \left(\frac{2 x}{3}\right)+\sin \left(\frac{3 x}{2}\right)$ is
a) 2π
b) 10π
c) 6π
d) 12π
142. The function $f(x)$ which satisfies $f(x)=f(-x)=\frac{f^{\prime}(x)}{x}$, is given by
a) $f(x)=\frac{1}{2} e^{x^{2}}$
b) $f(x)=\frac{1}{2} e^{-x^{2}}$
c) $f(x)=x^{2} e^{x^{2} / 2}$
d) $f(x)=e^{x^{2} / 2}$
143. On the set of integers Z, define $f: Z \rightarrow Z$ as $f(n)=\left\{\begin{array}{l}\frac{n}{2}, n \text { is even } \\ 0, n \text { is odd }\end{array}\right\}$, then ' f^{\prime} is
a) Injective but not surjective
b) Neither injective nor surjective
c) Surjective but not injective
d) Bijective
144. The maximum possible domain D and the corresponding range E, for the real function $f(x)=(-1)^{x}$ to exist is
a) $D=R, E=[-1,1]$
b) $D=I$ (the set of integers), $E=[-1,1]$
c) $D=R, E=(-1,1)$
d) $D=I, E=\left\{\begin{array}{c}+1 \text { when } x=0 \text { or even } \\ -1, \text { when } x \text { is odd }\end{array}\right.$
145. If $f: R \rightarrow R$, defined by $f(x)=x^{2}+1$, then the values of $f^{-1}(17)$ and $f^{-1}(-3)$ respectively are
a) $\phi,\{4,-4\}$
b) $\{3,-3\}, \phi$
c) $\{4,-4\}, \phi$
d) $\{4,-4\},\{2,-2\}$
146. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions such that gof: $A \rightarrow C$ is one-one. Then,
a) f is one-one
b) f is one-one
c) f is both are one-one
d) None of these
147. Let $A=\{x \in R: x \neq 0,-4 \leq x \leq 4\}$ and $f: A \in R$ be defined by $f(x)=\frac{|x|}{x}$ for $x \in A$. Then, the range of f is
a) $\{1,-1\}$
b) $\{x: 0 \leq x \leq 4\}$
c) $\{1\}$
d) $\{x:-4 \leq x \leq 0\}$
148. If $f(x)=(9 x+0.5) \log _{(0.5+x)}\left(\frac{x^{2}+2 x-3}{4 x^{2}-4 x-3}\right)$ is a real number, then x belongs to
a) $(-1 / 2,1)$
b) $(-1 / 2,1 / 2) \cup(1 / 2,1) \cup(3 / 2, \infty)$
c) $(-1 / 2-1)$
d) None of these
149. Let the function f, g, h are defined from the set of real numbers R to R such that $f(x)=x^{2}-1, g(x)=$ $\sqrt{\left(x^{2}+1\right)}$ and $h(x)=\left\{\begin{array}{l}0, \text { if } x<0 \\ x, \text { if } x \geq 0\end{array}\right.$, then $h o(f o g)(x)$ is defined by
a) x
b) x^{2}
c) 0
d) None of these
150. The number of reflexive relations of a set with four elements is equal to
a) 2^{16}
b) 2^{12}
c) 2^{8}
d) 2^{4}
151. Let $f(x)=\left(a x^{2}+b\right)^{3}$, then the function g satisfying $f(g(x))=g(f(x))$ is given by
a) $g(x)=\left(\frac{b-x^{1 / 3}}{a}\right)^{1 / 2}$
b) $\mathrm{g}(x)=\frac{1}{\left(a x^{2}+b\right)^{3}}$
c) $g(x)=\left(a x^{2}+b\right)^{1 / 3}$
d) $g(x)=\left(\frac{x^{1 / 3}-b}{a}\right)^{1 / 2}$
152. If $f(x)=||x|-1|$, then $f o f(x)$ equals
a) $f(x)=\left\{\begin{array}{cc}|x|-2, & |x| \geq 2 \\ 2-|x|, & 1<|x|<2 \\ |x|, & |x| \leq 1\end{array}\right.$
b) $f(x)=\left\{\begin{array}{cc}|x|+2, & |x| \geq 2 \\ |x|-2, & 1 \leq|x| \leq 2 \\ |x|, & |x| \leq 2\end{array}\right.$
c) $f(x)=\left\{\begin{array}{cc}|x|-2, & |x| \geq 2 \\ 2+|x|, & 1 \leq|x| \leq 2 \\ |x|, & |x| \leq 1\end{array}\right.$
d) None of these
153. The domain of definition of the function $f(x)=\tan \left(\frac{\pi}{[x+2]}\right)$, is
a) $[-2,1]$
b) $(-2,-1)$
c) $R-[-2,-1)$
d) None of these
154. A function $f: A \rightarrow B$, where $A=\{x:-1 \leq x \leq 1\}$ and $B=\{y: 1 \leq y \leq 2\}$, is defined by the rule $y=f(x)=1+x^{2}$. Which of the following statement is true?
a) f is injective but not surjective
b) f is surjective but not injective
c) f is both injective and surjective
d) f is neither injective nor surjective
155. The function $f: R \rightarrow R$, defined by $f(x)=[x]$, where $[x]$ denotes the greatest integer less than or equal to x, is
a) One-one
b) Onto
c) One-one and onto
d) Neither one-one nor onto
156. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections, then $(f o g)^{-1}=$
a) $f^{-1} \mathrm{og}^{-1}$
b) fog
c) $g^{-1} o f^{-1}$
d) gof
157. Let $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}, x \neq 0$, then $f(x)$ is equal to
a) x^{2}
b) $x^{2}-1$
c) $x^{2}-2$
d) $x^{2}+1$
158. The relation $R=\{(1,1),(2,2),(3,3)\}$ on the set $\{1,2,3\}$ is
a) Symmetric only
b) Reflexive only
c) An equivalence relation
d) Transitive only
159. If $f(x)=a x+b$ and $g(x)=c x+d$, then $f(g(x))=g(f(x)) \Leftrightarrow$
a) $f(a)=g(c)$
b) $f(b)=g(b)$
c) $f(d)=g(b)$
d) $f(c)=g(a)$
160. If $f: R \rightarrow R$ is defined by $f(x)=2 x-2[x]$ for all $x \in R$, where $[x]$ denotes the greatest integer less than or equal to x, then range of f, is
a) $[0,1]$
b) $\{0,1\}$
c) $(0, \infty)$
d) $(-\infty, 0]$
161. The domain of definition of $f(x)=\log _{10}\left\{\log _{10}\left(1+x^{3}\right)\right\}$, is
a) $(-1, \infty)$
b) $(0, \infty)$
c) $[0, \infty)$
d) $(-1,0)$
162. Let $\quad R=\{(3,3),(6,6),(9,9),(12,12),(6,12),(3,9),(3,12),(3,6)\}$ be a relation on the set $A=$ $\{3,6,9,12\}$. The relation is
a) Reflexive and symmetric only
b) An equivalence relation
c) Reflexive only
d) Reflexive and transitive only
163. If $f(x)=a^{x}$, which of the following equalities hold?
a) $f(x+2)-2 f(x+1)+f(x)=(a-1)^{2} f(x)$
b) $f(-x) f(x)+1=0$
c) $f(x+y)=f(x)+f(y)$
d) $f(x+3)-2 f(x+2)+f(x+1)=(a-2)^{2} f(x+1)$
164. The inverse of the function $f(x)=\frac{10^{x}-10^{-x}}{10^{x}+10^{-x}}+1$ is given by
a) $\frac{1}{2} \log _{10}\left(\frac{x}{2-x}\right)$
b) $\log _{10}\left(\frac{x}{2-x}\right)$
c) $\frac{1}{2} \log _{10}\left(\frac{x}{1-x}\right)$
d) None of these
165. If $f(x)=\sqrt{\left|3^{x}-3^{1-x}\right|-2}$ and $g(x)=\tan \pi x$, then domain of $f o g(x)$ is
a) $\left[n+\frac{1}{3}, n+\frac{1}{2}\right] \cup\left[n+\frac{1}{2}, n+1\right], n \in Z$
b) $\left(n x+\frac{1}{4}, n+\frac{1}{2}\right) \cup\left(n+\frac{1}{2}, n+1\right), n \in Z$
c) $\left(n+\frac{1}{4}, n+\frac{1}{2}\right) \cup\left[n-\frac{1}{2}, n+1\right], n \in Z$
d) $\left[n+\frac{1}{4}, x+\frac{1}{2}\right) \cup\left(n+\frac{1}{2}, n+2\right), n \in Z$
166. If the functions f and g are defined by $f(x)=3 x-4, g(x)=3 x+2$ for $x \in R$, respectively then $g^{-1}\left(f^{-1}(5)\right)=$
a) 1
b) $1 / 2$
c) $1 / 3$
d) $1 / 4$
167. If $f(x)$ and $g(x)$ are two real functions such that $f(x)+g(x)=e^{x}$ and $f(x)-g(x)=e^{-x}$, then
a) $f(x)$ is an odd function
b) $g(x)$ is an even function
c) $f(x)$ and $g(x)$ are periodic functions
d) None of these
168. Let $f(x)=\frac{1}{2}-\tan \left(\frac{\pi x}{2}\right),-1<x<1$ and $g(x)=\sqrt{3+4 x-4 x^{2}}$, then dom $(f+g)$ is given by
a) $\left[\frac{1}{2}, 1\right]$
b) $\left[\frac{1}{2},-1\right)$
c) $\left[-\frac{1}{2}, 1\right)$
d) $\left[-\frac{1}{2},-1\right]$
169. If $f(x)=2 x^{6}+3 x^{4}+4 x^{2}$, then $f^{\prime}(x)$ is
a) Even function
b) An odd function
c) Neither even nor odd
d) None of these
170. The domain of the function $f(x)=\sqrt{\cos ^{-1}\left(\frac{1-|x|}{2}\right)}$ is
a) $(-3,3)$
b) $[-3,3]$
c) $(-\infty,-3) \cup(3, \infty)$
d) $(-\infty,-3] \cup[3, \infty)$
171. Which of the following functions is one-to -one?
a) $f(x)=\sin x, x \in[-\pi, \pi]$
b) $f(x)=\sin x, x \in\left[-\frac{3 \pi}{2},-\frac{\pi}{4}\right]$
c) $f(x)=\cos x, x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
d) $f(x)=\cos x, x \in\left[\pi, \frac{3 \pi}{2}\right]$
172. Given $f(x)=\log \left(\frac{1+x}{1-x}\right)$ and $g(x)=\frac{3 x+x^{3}}{1+3 x^{2}}$, then $f o g(x)$ equals
a) $-f(x)$
b) $3 f(x)$
c) $[f(x)]^{3}$
d) None of these
173. The largest possible set of real numbers which can be the domain of $f(x)=\sqrt{1-\frac{1}{x}}$ is
a) $(0,1) \cup(0, \infty)$
b) $(-1,0) \cup(1, \infty)$
c) $(-\infty,-1) \cup(0, \infty)$
d) $(-\infty, 0) \cup[1, \infty)$
174. The set of values of a for which the function $f(x)=\sin x+\left[\frac{x^{2}}{a}\right]$ defined on $[-2,2]$ is an odd function, is
a) $(4, \infty)$
b) $[-4,4]$
c) $(-\infty, 4)$
d) None of these
175. On the set N of all natural numbers define the relation R by $a R b$ if and only if the GCD of a and b is 2 , then R is
a) Reflexive, but not symmetric
b) Symmetric only
c) Reflexive, and transitive
d) Reflexive, symmetric and transitive
176. Let $f(x)$ be a real valued function defined by
$f(x+\lambda)=1+\left[2-5 f(x)+10\{f(x)\}^{2}-10\{f(x)\}^{3}+5\{f(x)\}^{4}-\{f(x)\}^{5}\right]^{1 / 5}$ for all real x and some positive constant λ, then $f(x)$ is
a) A periodic function with period λ
b) A periodic function with period 2λ
c) Not a periodic function
d) A periodic function with indeterminate period
177. The domain of the function $f(x)=\sqrt{\log _{10}\left(\frac{1}{|\sin x|}\right)}$, is
a) $R-\{-\pi, \pi\}$
b) $R-\{n \pi \mid n \in Z\}$
c) $R-\{2 n \pi \mid n \in z\}$
d) $(-\infty, \infty)$
178. The function $f(x)=\log \left(\frac{1+x}{1-x}\right)$ satisfies the equation
a) $f(x+2)-2 f(x+1)+f(x)=0$
b) $f(x)+f(x+1)=f\{x(x+1)\}$
c) $f(x)+f(y)=f\left(\frac{x+y}{1+x y}\right)$
d) $f(x+y)=f(x) f(y)$
179. If $f(x)$ is defined on $[0,1]$, then the domain of definition of $f(\tan x)$ is
a) $[n \pi, n \pi+\pi / 4], n \in Z$
b) $[2 n \pi, 2 n \pi+\pi / 4], n \in Z$
c) $[n \pi-\pi / 4, n \pi+\pi / 4], n \in Z]$
d) None of these
180. If a function F is such that $F(0)=2, F(1)=3, F(n+2)=2 F(n)-F(n+1)$ for $n \neq 0$, then $F(5)$ is equal to
a) -7
b) -3
c) 7
d) 13
181. $f(x)=\sqrt{\sin ^{-1}\left(\log _{2} x\right)}$ exists for
a) $x \in(1,2)$
b) $x \in[1,2]$
c) $x \in[2, \infty)$
d) $x \in(0, \infty)$
182. The function $f(x)=\left\{\begin{array}{ll}1, & x \in Q \\ 0, & x \notin Q\end{array}\right.$ is
a) Periodic with period 1
b) Periodic with period 2
c) Not periodic
d) Periodic with indeterminate period
183. The function $f(x)=\frac{\sec ^{4} x+\operatorname{cosec}^{4} x}{x^{3}+x^{4} \cot x}$ is
a) Even
b) Odd
c) Neither even nor odd
d) Periodic with period π
184. The function $f(x)=|\cos x|$ is periodic with period
a) 2π
b) π
c) $\frac{\pi}{2}$
d) $\frac{\pi}{4}$
185. If $f(x)=x^{n}, n \in N$ and $\operatorname{gof}(x)=n g(x)$, then $g(x)$ can be
a) $n|x|$
b) $3 x^{1 / 3}$
c) e^{x}
d) $\log |x|$
186. If $f(x)$ is an odd function, then the curve $y=f(x)$ is symmetric
a) About x-axis
b) About y-axis
c) About both the axes
d) In opposite quadrants
187. If the function $f:[1, \infty) \rightarrow[1, \infty)$ is defined by $f(x)=2^{x(x-1)}$, then $f^{-1}(x)$ is
a) $\left(\frac{1}{2}\right)^{x(x-1)}$
b) $\frac{1}{2}\left(1+\sqrt{1+4 \log _{2} y}\right)$
c) $\frac{1}{2}\left(1-\sqrt{1+4 \log _{2} y}\right)$
d) ∞
188. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=|x|$ and $g(x)=[x-3]$ for $x \in R$, then $\left\{g(f(x)):-\frac{8}{5}<x<\right.$ 85 is equal to
a) $\{0,1\}$
b) $\{1,2\}$
c) $\{-3,-2\}$
d) $\{2,3\}$
189. The domain of definition of $f(x)=\log _{10}\left\{1-\log _{10}\left(x^{5}-5 x+16\right)\right\}$, is
a) $(1,3)$
b) $(2,3)$
c) $[2,3]$
d) None of these
190. The period of the function $f(x)=\sin ^{2} x+\cos ^{4} x$ is
a) π
b) $\frac{\pi}{2}$
c) 2π
d) None of these
191. If $f(x)=\sin x+\cos x, g(x)=x^{2}-1$, then $g(f(x))$ is invertible in the domain
a) $\left[0, \frac{\pi}{2}\right]$
b) $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
d) $[0, \pi]$
192. Domain of definition of the function $f(x)=\sqrt{\sin ^{-}(2 x)+\frac{\pi}{6}}$ for real valued x, is
a) $\left[-\frac{1}{4}, \frac{1}{2}\right]$
b) $\left[-\frac{1}{2}, \frac{1}{2}\right]$
c) $\left(-\frac{1}{2}, \frac{1}{9}\right)$
d) $\left[-\frac{1}{4}, \frac{1}{4}\right]$
193. If $f(x)=\log \left(\frac{1+x}{1-x}\right)$, then $f\left(\frac{2 x}{1+x^{2}}\right)$ will be equal to
a) $2 f\left(x^{2}\right)$
b) $f\left(x^{2}\right)$
c) $2 f(2 x)$
d) $2 f(x)$
194. The domain of $f(x)=\log \left|\log _{e} x\right|$, is
a) $(0, \infty)$
b) $(1, \infty)$
c) $(0,1) \cup(1, \infty)$
d) $(-\infty, 1)$
195. If $f(x)$ is an even function, then the curve $y=f(x)$ is symmetric about
а) x-axis
b) y-axis
c) Both the axes
d) None of these
196. If $f(x)=\left(\frac{x}{1-|x|}\right)^{1 / 2002}$, then D_{f} is
a) $R-[-1,1]$
b) $(-\infty, 1)$
c) $(-\infty,-1) \cup(0,1)$
d) None of these
197.

If $f(x)=\left\{\begin{array}{l}{[x] \text {, if }-3<x \leq-1} \\ |x| \text {, if }-1<x<1 \\ |[x]| \text {, if } 1 \leq x<3\end{array}\right\}$, then the set $(x: f(x) \geq 0)$ to
a) $(-1,3)$
b) $[-1,3)$
c) $(-1,3]$
d) $[-1,3]$
198. If $f(x)=\frac{x}{x-1}, x \neq 1$ then $\underbrace{(f \circ f o \ldots o f)(x)}_{19 \text { times }}$ is equal to
a) $\frac{x}{x-1}$
b) $\left(\frac{x}{x-1}\right)^{19}$
c) $\frac{19 x}{x-1}$
d) x
199. The domain of the function $f(x)=\log _{10}(\sqrt{x-4}+\sqrt{6-x})$, is
a) $[4,6]$
b) $(-\infty, 6)$
c) $(2,3)$
d) None of these
200. If $f: N \rightarrow N$ is defined by $f(n)=$ the sum of positive divisors of n, then $f\left(2^{k} \times 3\right)$, where k is a positive integer, is
a) $2^{k+1}-1$
b) $2\left(2^{k+1}-1\right)$
c) $3\left(2^{k+1}-1\right)$
d) $4\left(2^{k+1}-1\right)$
201. Let $A=\{x:-1 \leq x \leq 1\}$ and $f: A \rightarrow A$ such that $f(x)=x|x|$, then f is
a) A bijection
b) Injective but not surjective
c) Surjective but not injective
d) Neither injective nor surjective
202. The domain of the function $\sin ^{-}\left(\log _{2} \frac{x^{2}}{2}\right)$ is
a) $[-1,2]-\{0\}$
b) $[-2,2]-(-1,1)$
c) $[-2,2]-\{0\}$
d) $[1,2]$
203. If $f(x)=a x+b$ and $g(x)=c x+d$, then $f\{g(x)\}=g\{f(x)\}$ is equivalent to
a) $f(a)=f(c)$
b) $f(b)=g(b)$
c) $f(d)=g(b)$
d) $f(c)=g(a)$
204. The period of the function $f(x)=\sin ^{4} 3 x+\cos ^{4} 3 x$ is
a) $\pi / 2$
b) $\pi / 3$
c) $\pi / 6$
d) None of these
205. Given $f(x)=\log _{10}\left(\frac{1+x}{1-x}\right)$ and $g(x)=\frac{3 x+x^{3}}{1+3 x^{2}}$, then $f o g(x)$ equals
a) $-f(x)$
b) $3 f(x)$
c) $[f(x)]^{3}$
d) None of these
206. Which of the following functions is not an are not an injective map(s)?
a) $f(x)=|x+1|, x \in[-1, \infty)$
b) $g(x)=x+\frac{1}{x}, x \in(0, \infty)$
c) $h(x)=x^{2}+4 x-5, x \in(0, \infty)$
d) $h(x)=e^{-x}, x \in[0, \infty)$
207. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=x-[x]$ and $g(x)=[x]$ for $x \in R$, where $[x]$ is the greatest integer not exceeding x, then for every $x \in R, f(g(x))$ is equal to
a) x
b) 0
c) $f(x)$
d) $g(x)$
208. The domain of definition of $f(x)=\sqrt{\frac{\log _{0.3}|x-2|}{|x|}}$, is
a) $[1,2) \cup(2,3]$
b) $[1,3]$
c) $R-(1,3]$
d) None of these
209. $f: R \rightarrow R$ given by $f(x)=5-3 \sin x$, is
a) One-one
b) Onto
c) One-one and onto
d) None of these
210. If $f(x+2 y, x-2 y)=x y$, then $f(x, y)$ equals
a) $\frac{x^{2}-y^{2}}{8}$
b) $\frac{x^{2}-y^{2}}{4}$
c) $\frac{x^{2}+y^{2}}{4}$
d) $\frac{x^{2}-y^{2}}{2}$
211. If $f: R \rightarrow R$ is defined as $f(x)=(1-x)^{1 / 3}$, then $f^{-1}(x)$ is
a) $(1-x)^{-1 / 3}$
b) $(1-x)^{3}$
c) $1-x^{3}$
d) $1-x^{1 / 3}$
212. If $f(x+2 y, x, x-2 y)=x y$, then $f(x, y)$ equals
a) $\frac{x^{2}-y^{2}}{8}$
b) $\frac{x^{2}-y^{2}}{4}$
c) $\frac{x^{2}+y^{2}}{4}$
d) $\frac{x^{2}-y^{2}}{2}$
213. Let $f:\left[4, \infty\left[\rightarrow\left[4, \infty\left[\right.\right.\right.\right.$ be defined by $f(x)=5^{x(x-4)}$ then $f^{-1}(x)$
a) $2-\sqrt{4+\log _{5} x}$
b) $2+\sqrt{4+\log _{5} x}$
c) $\left(\frac{1}{5}\right)^{x(x-4)}$
d) Not defined
214. If $f:[2,3] \rightarrow R$ is defined by $f(x)=x^{3}+3 x-2$, then the range $f(x)$ is contained in the interval
a) $[1,12]$
b) $[12,34]$
c) $[35,50]$
d) $[-12,12]$
215. The period of $\sin ^{2} \theta$, is
a) π^{2}
b) π
c) 2π
d) $\pi / 2$
216. If $n \in N$, and the period of $\frac{\cos n x}{\sin \left(\frac{x}{n}\right)}$ is 4π, then n is equal to
a) 4
b) 3
c) 2
d) 1
217. Foe real x, let $f(x)=x^{3}+5 x+1$, then
a) f is one-one but not onto R
b) f is onto R but not one-one
c) f is one-one and onto R
d) f is neither one-one nor onto R
218. The range of the function $f(x)=\frac{1}{2-\cos 3 x}$, is
a) $[-1 / 3,0]$
b) R
c) $[1 / 3,1]$
d) None of these
219. Let $A=\{2,3,4,5, \ldots, 16,17,18\}$. Let be the equivalence relation on $A \times A$, cartesian product of A and A, defined by $(a, b) \approx(c, d)$ if $a d=b c$, then the number of ordered pairs of the equivalence class of $(3,2)$ is
a) 4
b) 5
c) 6
d) 7
220. Let n be the natural number. Then, the range of the function $f(n)=8-n_{P_{n}-4}, 4 \leq n \leq 6$, is
a) $\{1,2,3,4\}$
b) $\{1,2,3,4,5,6\}$
c) $\{1,2,3\}$
d) $\{1,2,3,4,5\}$
221. Let X and Y be subsets of R, the set of all real numbers. The function $f: X \rightarrow Y$ defined by $f(x)=x^{2}$ for $x \in X$ is one-one but not onto, if (Here, R^{+}is the set of all positive real numbers)
a) $X=Y=R^{+}$
b) $X=R, Y=R^{+}$
c) $X=R^{+}, Y=R$
d) $X=Y=R$
222. If $f(x) . f(1 / x)=f(x)+f(1 / x)$ and $f(4)=65$, then $f(6)$ is
a) 65
b) 217
c) 215
d) 64
223. The graph of the function of $y=f(x)$ is symmetrical about the line $x=2$, then
a) $f(x+2)=f(x-2)$
b) $f(2+x)=f(2-x)$
c) $f(x)=f(-x)$
d) $f(x)=-f(-x)$
224.

If $f(x)=\left\{\begin{array}{c}-1 ; \quad x<0 \\ 0 ; \quad x=0 \\ 1 ; \quad x>0\end{array}\right.$ and $g(x)=x\left(1-x^{2}\right)$, then
a) $\operatorname{fog}(x)=\left\{\begin{array}{cc}-1 ; & -1<x<0 \text { or } x>1 \\ 0 ; & x=0,1,-1 \\ 1 ; & 0<x<1\end{array}\right.$
b) fog $(x)=\left\{\begin{array}{cc}-1 ; & -1<x<0 \\ 0 ; & x=0,1,-1 \\ 1 ; & 0<x<1\end{array}\right.$
c) fog $(x)=\left\{\begin{array}{cc}-1 ; & -1<x<0 \text { or } x>1 \\ 0 ; & x=0,1,-1 \\ 1 ; & 0<x<1 \text { or } x<-1\end{array}\right.$
d) $\operatorname{fog}(x)=\left\{\begin{array}{cc}1 ; & -1<x<0 \text { or } x>1 \\ 0 ; & x=0,1,-1 \\ 1 ; & 0<x<1 \text { or } x<-1\end{array}\right.$
225. $x_{2}=x y$ is a relation which is
a) Symmetric
b) Reflexive and transitive
c) Transitive
d) None of these
226. The period of
$f(x)=\sin \left(\frac{\pi x}{n-1}\right)+\cos \left(\frac{\pi x}{n}\right), n \in Z, n>2$, is
a) $2 n \pi(n-1)$
b) $4(n-1) \pi$
c) $2 n(n-1)$
d) None of these
227. $f:[-4,0] \rightarrow R$ is given by $f(x)=e^{x}+\sin x$, its even extension to $[-4,4]$, is
a) $-e^{\mid x}-\sin |x|$
b) $e^{-|x|}-\sin |x|$
c) $e^{-|x|}+\sin |x|$
d) $-e^{-|x|+\sin |x|}$
228. Let $f: R \rightarrow R$ be a function defined by $f(x)=-\frac{|x|^{3}+|x|}{1+x^{2}}$, then the graph of $f(x)$ lies in the
a) I and II quadrants
b) I and III quadrants
c) II and III quadrants
d) III and IV quadrants
229. The domain of the real valued function $f(x)=\sqrt{1-2 x}+2 \sin ^{-1}\left(\frac{3 x-1}{2}\right)$ is
a) $\left[-\frac{1}{3}, 1\right]$
b) $\left[\frac{1}{2}, 1\right]$
c) $\left[-\frac{1}{2}, \frac{1}{3}\right]$
d) $\left[-\frac{1}{3}, \frac{1}{2}\right]$
230. The domain of function $f(x)=\log _{(x+3)}\left(x^{2}-1\right)$ is
a) $(-3,-1) \cup(1, \infty)$
b) $[-3,-1) \cup[1, \infty)$
c) $(-3,-2) \cup(-2,-1) \cup(1, \infty)$
d) $[-3,-2) \cup(-2,-1) \cup[1, \infty)$
231. The range of the function $f(x)=x^{2}-6 x+7$ is
a) $(-\infty, 0)$
b) $[-2, \infty)$
c) $(-\infty, \infty)$
d) $(-\infty,-2)$
232. The inverse of the function $f: R \rightarrow(-1,3)$ is given by $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}+2$
a) $\log \left(\frac{x-1}{x+1}\right)^{-2}$
b) $\log \left(\frac{x-2}{x-1}\right)^{1 / 2}$
c) $\log \left(\frac{x}{2-x}\right)^{1 / 2}$
d) $\log \left(\frac{x-1}{3-x}\right)^{1 / 2}$
233. If $f(x)=\frac{4^{x}}{4^{x}+2^{2}}$, then $f\left(\frac{1}{97}\right)+f\left(\frac{2}{97}\right)+\ldots+f\left(\frac{96}{97}\right)$ is equal to
a) 1
b) 48
c) -48
d) -1
234. The period of the function $f(x)=\frac{\sin 8 x \cos x-\sin 6 x \cos 3 x}{\cos 2 x \cos x-\sin 3 x \sin 4 x}$ is
a) π
b) 2π
c) $\frac{\pi}{2}$
d) None of these
235. Let $f: R \rightarrow R: f(x)=x^{2}$ and $g: R \rightarrow R: g(x)=x+5$, then $g \circ f$ is
a) $(x+5)$
b) $\left(x+5^{2}\right)$
c) $\left(x^{2}+5^{2}\right)$
d) $\left(x^{2}+5\right)$
236. The function $f(x)=\log _{2 x-5}\left(x^{2}-3 x-10\right)$ is defined for all x belonging to
a) $[5, \infty)$
b) $(5, \infty)$
c) $(-\infty,+5)$
d) None of these
237. Range of the function $f(x)=\frac{x^{2}}{x^{2}+1}$ is
a) $(-1,0)$
b) $(-1,1)$
c) $[0,1)$
d) $(1,1)$
238. Let $f(x)=|x-1|$. Then,
a) $f\left(x^{2}\right)=[f(x)]^{2}$
b) $f(|x|)=|f(x)|$
c) $f(x+y)=f(x)+f(y)$
d) None of these
239. If $f(x)=a^{x}$, which of the following equalities do not hold?
a) $f(x+2)-2 f(x+1)+f(x)=(a-1)^{2} f(x)$
b) $f(-x) f(x)-1=0$
c) $f(x+y)=f(x) f(y)$
d) $f(x+3)-2 f(x+2)+f(x+1)=(a-2)^{2} f(x+1)$
240. Let $A=\{x \in R: x \leq 1\}$ and $f: A \rightarrow A$ be defined as $f(x)=x(2-x)$. Then, $f^{-1}(x)$ is
a) $1+\sqrt{1-x}$
b) $1-\sqrt{1-x}$
c) $\sqrt{1-x}$
d) $1 \pm \sqrt{1-x}$
241. The function $f(x)=\sin \frac{\pi x}{2}+2 \cos \frac{\pi x}{3}-\tan \frac{\pi x}{4}$ is periodic with period
a) 6
b) 3
c) 4
d) 12
242. The equivalent definition of the function
$f(x)=\lim _{n \rightarrow \infty} \frac{x^{n}-x^{-n}}{x^{n}+x^{-n}}, x>0$, is
a) $f(x)=\left\{\begin{array}{rc}-1, & 0<x \leq 1 \\ 1, & x>1\end{array}\right.$
b) $f(x)=\left\{\begin{array}{rc}-1, & 0<x<1 \\ 1, & x \geq 1\end{array}\right.$
c) $f(x)=\left\{\begin{array}{rc}-1, & 0<x<1 \\ 0, & x=1 \\ 1, & x>1\end{array}\right.$
d) None of these
243. Let $R=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation on the set $A=\{1,2,3,4\}$. The relation R is
a) A function
b) Transitive
c) Not symmetric
d) Reflexive
244. The domain of the function $f(x)={ }^{16-x} C_{2 x-1}+{ }^{20-3 x} P_{4 x-5}$, where the symbols have their usual meanings, is the set
a) $\{2,3\}$
b) $\{2,3,4\}$
c) $\{1,2,3,4\}$
d) $\{1,2,3,4,5\}$
245. If $f: R \rightarrow C$ is defined by $f(x)=e^{2 i x}$ for $x \in R$, then f is (where C denotes the set of all complex numbers)
a) One-one
b) Onto
c) One-one and onto
d) Neither one-one nor onto
246. The domain of the function
$f(x)=\log _{10}(\sqrt{x-4}+\sqrt{6-x})$ is
a) $[4,6]$
b) $(-\infty, 6)$
c) $[2,3)$
d) None of these
247. If $f(x)=\sin ^{2} x, g(x)=\sqrt{x}$ and $h(x)=\cos ^{-1} x, 0 \leq x \leq 1$, then
a) $h o g o f=f o g o h$
b) gofoh $=$ fohog
c) fohog $=$ hogof
d) None of these
248. If $f(x)=\frac{2^{x}+2^{-x}}{2}$, then $f(x+y) f(x-y)$ is equal to
a) $\frac{1}{2}\{f(2 x)+f(2 y)\}$
b) $\frac{1}{2}\{f(2 x)-f(2 y)\}$
c) $\frac{1}{4}\{f(2 x)+f(2 y)\}$
d) $\frac{1}{4}\{f(2 x)-f(2 y)\}$
249. The relation R defined on the set of natural numbers as $\{(a, b)$: a differs from b by 3$\}$ is given by
a) $\{(1,4),(2,5),(3,6), . .$.
b) $\{(4,1),(5,2),(6,3), . .$.
c) $\{(1,3),(2,6),(3,9)$, ...\}
d) None of the above
250. The domain of the function $f(x)=\sin ^{-1}\left(\log _{3}(x / 3)\right)$ is
a) $[1,9]$
b) $[-1,9]$
c) $[-9,1]$
d) $[-9,-1]$
251. The range of the function $f(x)=\sin \left\{\log _{10}\left(\frac{\sqrt{4-x^{2}}}{1-x}\right)\right\}$, is
a) $[0,1]$
b) $(-1,0)$
c) $[-1,1]$
d) $(-1,1)$
252. Let $f(x)=\frac{a x+b}{c x+d}$. Then, $f o f(x)=x$ provided that
a) $d=-a$
b) $d=a$
c) $a=b=c=d=1$
d) $a=b=1$
253. Let C denote the set of all complex numbers. The function $f: C \rightarrow C$ defined by $f(x)=\frac{a x+b}{c x+d}$ for $x \in C$, where $b d \neq 0$ reduces to a constant function if:
a) $a=c$
b) $b=d$
c) $a d=b c$
d) $a b=c d$
254. If $\sin \lambda x+\cos \lambda x$ and $|\sin x|+|\cos x|$ are periodic function with the same period, then $\lambda=$
a) 0
b) 1
c) 2
d) 4
255. The domain of definition of the real function $f(x)=\sqrt{\log _{12} x^{2}}$ of the real variable x, is
a) $x>0$
b) $|x| \geq 1$
c) $|x| \geq 4$
d) $x \geq 4$
256. If $f(x)$ is an even function and $f^{\prime}(x)$ exists, then $f^{\prime}(e)+f^{\prime}(-e)$ is
a) >0
b) $=0$
c) ≥ 0
d) <0
257. If $f(x)=\log \left(\frac{1+x}{1-x}\right)$, then $f\left(\frac{2 x}{1+x^{2}}\right)$ is equal to
a) $\{f(x)\}^{2}$
b) $\{f(x)\}^{3}$
c) $2 f(x)$
d) $3 f(x)$
258. If the function $f: R \rightarrow R$ is defined by $f(x)=\cos ^{2} x+\sin ^{4} x$ then $f(R)=$
a) $[3 / 4,1)$
b) $(3 / 4,1]$
c) $[3 / 4,1]$
d) $(3 / 4,1)$
259. The domain of $\sin ^{-1}\left[\log _{2}\left(\frac{x}{12}\right)\right]$ is
a) $[2,12]$
b) $[-1,1]$
c) $\left[\frac{1}{3}, 24\right]$
d) $[6,24]$
260. The largest interval lying in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which the function $f(x)=4^{-x^{2}}+\cos ^{-1}\left(\frac{x}{2}-1\right)+\log (\cos x)$ is defined, is
a) $[0, \pi]$
b) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
c) $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right)$
d) $\left[0, \frac{\pi}{2}\right]$
261. Let $f: R \rightarrow R$ be define by $f(x)=3 x-4$. Then, $f^{-1}(x)$ is
a) $\frac{x+4}{3}$
b) $\frac{x}{3}-4$
c) $3 x+4$
d) None of these
262. The interval in which the function $y=\frac{x-1}{x^{2}-3 x+3}$ transforms the real line is
a) $(0, \infty)$
b) $(-\infty, \infty)$
c) $[0,1]$
d) $[-1 / 3,1]-\{0\}$
263. The domain of definition of the function $f(x)=x^{\frac{1}{\log _{10} x}}$, is
a) $(0,1) \cup(1, \infty)$
b) $(0, \infty)$
c) $[0, \infty)$
d) $[0,1) \cup(1, \infty)$
264. Let W denotes the words in the English dictionary. Define the relation R by $R=\{(x, y) \in W \times W$: the world x and y have at least one letter in common $\}$. Then, R is
a) Reflexive, symmetric and not transitive
b) Reflexive, symmetric and transitive
c) Reflexive, not symmetric and transitive
d) Not reflexive, symmetric and transitive
265. The function $f: C \rightarrow C$ defined by $f(x)=\frac{a x+b}{c x+d}$ for $x \in C$ where $b d \neq 0$ reduces to a constant function, if
a) $a=c$
b) $b=d$
c) $a d=b c$
d) $a b=c d$
266. Let $A=\{x, y, z\}, B=\{u, v, \omega\}$ and $f: A \rightarrow B$ be defined by $f(x)=u, f(y)=v, f(z)=\omega$. Then, f is
a) Surjective but not injective
b) Injective but not surjective
c) Bijective
d) None of these
267. Consider the following relations $R=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}, \mathrm{y}$ are real numbers and $\mathrm{x}=\mathrm{wy}$ for some rational number $\mathrm{w}\} ; S=\left\{\left.\left(\frac{m}{n}, \frac{p}{q}\right) \right\rvert\, m, n, p\right.$ and q are integers such that $n, q \neq 0$ and $\left.q m=p n\right\}$. Then
a) R is an equivalence relation but S is not an
b) Neither R nor S is an equivalence relation
c) S is an equivalence relation but R is not an equivalence relation
d) R and S both are equivalence relations
268. Which of the following functions has period π ?
a) $|-\tan x|+\cos 2 x$
b) $2 \sin \frac{\pi x}{3}+3 \cos \frac{2 \pi x}{3}$
c) $6 \cos \left(2 \pi x+\frac{\pi}{4}\right)+5 \sin \left(\pi x+\frac{3 \pi}{4}\right)$
d) $|\tan 2 x|+|\sin 4 x|$
269. The range of the function $f(x)=\sqrt{(x-1)(3-x)}$ is
a) $[0,1]$
b) $(-1,1)$
c) $(-3,3)$
d) $(-3,1)$
270. Let $A=\{x, y, z\}$ and $B=\{a, b, c, d\}$. Which one of the following is not a relation from A to B ?
a) $\{(x, a),(x, c)\}$
b) $\{(y, c),(y, d)\}$
c) $\{(z, a),(z, d)\}$
d) $\{(z, b),(y, b),(a, d)\}$
271. If $f(x)$ defined on $[0,1]$ by the rule $f(x)=\left\{\begin{array}{c}x, \text { if } x \text { is rational } \\ 1-x, \text { if } x \text { is irrational }\end{array}\right.$
Then, for all $x \in[0,1], f(f(x))$ is
a) Constant
b) $1+x$
c) x
d) None of these
272. Let $f(x)=\min \left\{x, x^{2}\right\}$, for every $x \in R$. Then,
a) $f(x)=\left\{\begin{aligned} x, & x \geq 1 \\ x^{2}, & 0 \leq x<1 \\ x, & x<0\end{aligned}\right.$
b) $f(x)=\left\{\begin{array}{cc}x^{2}, & x \geq 1 \\ x, & x<1\end{array}\right.$
c) $f(x)= \begin{cases}x, & x \geq 1 \\ x^{2}, & x<1\end{cases}$
d) $f(x)=\left\{\begin{array}{c}x^{2}, \quad x \geq 1 \\ x, \quad 0 \leq x<1 \\ x^{2}, \quad x<0\end{array}\right.$
273. If $\mathrm{X}=\{1,2,3,4\}$, then one-one onto mappings $f: \mathrm{X} \rightarrow \mathrm{X}$ such that $f(1)=1, f(2) \neq 2, f(4) \neq 4$ are given by a) $f=\{(1,1),(2,3),(3,4),(4,2)\}$
b) $f=\{(1,2),(2,4),(3,3),(4,2)\}$
c) $f=\{(1,2),(2,4),(3,2),(4,3)\}$
d) None of these
274. The domain of the function $f(x)=\exp \left(\sqrt{5 x-3-2 x^{2}}\right)$ is
a) $[3 / 2, \infty)$
b) $[1,3 / 2]$
c) $(-\infty, 1)$
d) $(1,3 / 2)$
275. $f(x)=x+\sqrt{x^{2}}$ is a function from R to R, then $f(x)$ is
a) Injective
b) Surjective
c) Bijective
d) None of these
276. If $f(x)=\frac{\sin ^{4} x+\cos ^{2} x}{\sin ^{2} x+\cos ^{4} x}$ for $x \in R$, then $f(2010)=$
a) 1
b) 2
c) 3
d) 4
277. If $b^{2}-4 a c=0, a>0$, then the domain of the function $\left.f(x)=\log \left\{a x^{3}+(a+b) x^{2}+(b+c) x+c\right)\right\}$ is
a) $R-\left\{-\frac{b}{2 a}\right\}$
b) $R-\left\{\left\{-\frac{b}{2 a}\right\} \cup\{x \mid x \geq-1\}\right\}$
c) $R-\left\{\left\{-\frac{b}{2 a}\right\} \cap(-\infty,-1]\right\}$
d) None of these
278. The inverse of the function $y=\frac{10^{x}-10^{-x}}{10^{x}+10^{-x}}$ is
a) $\frac{1}{2} \log _{10}\left(\frac{1+x}{1-x}\right)$
b) $\frac{1}{2} \log _{10}\left(\frac{2+x}{2-x}\right)$
c) $\frac{1}{2} \log _{10}\left(\frac{1-x}{1+x}\right)$
d) None of these
279. If $f: R \rightarrow R$ is given by
$f(x)=\left\{\begin{array}{l}-1, \text { when } x \text { is rational } \\ 1, \text { when } x \text { is irrational }\end{array}\right.$,
Then $(f o f)(1-\sqrt{3})$ is equal to
a) 1
b) -1
c) $\sqrt{3}$
d) 0
280. The function $f: R \rightarrow R$ defined by $f(x)=6^{x}+6^{|x|}$, is
a) One-one and onto
b) Many one and onto
c) One-one and into
d) Many one and into
281. Let $f: N \rightarrow Y$ be a function defined as $f(x)=4 x+3$ where $Y=\{y \in N: y=4 x+3$ for some $x \in N\}$. Show that f is invertible and its inverse is
a) $g(y)=\frac{y-3}{4}$
b) $g(y)=\frac{3 y+4}{3}$
c) $g(y)=4+\frac{y+3}{4}$
d) $g(y)=\frac{y+3}{4}$
282. If $f(x)=\sqrt{\cos (\sin x)}+\sqrt{\sin (\cos x)}$, then range of $f(x)$ is
a) $[\sqrt{\cos 1}, \sqrt{\sin 1}]$
b) $[\sqrt{\cos 1}, 1+\sqrt{\sin 1}]$
c) $[1-\sqrt{\cos 1}, \sqrt{\sin 1}]$
d) None of these
283. Let $f: A \rightarrow B$ and $\mathrm{g}: B \rightarrow C$ be two functions such that gof: $A \rightarrow C$ is onto and g is one-one. Then,
a) f is one-one
b) f is onto
c) f is both one-one and onto
d) None of these
284. Let $f:(e, \infty) \rightarrow R$ be defined by $f(x)=\log [\log (\log x)]$, then
a) f is one-one but not onto
b) f is onto but not one-one
c) f is both one-one and onto
d) f is neither one-one nor onto
285. If $f:[-6,6] \rightarrow R$ is defined by $f(x)=x^{2}-3$ for $x \in R$, then $(f o f o f)(-1)+(f o f o f)(0)+(f o f o f)(1)$ is equal to
a) $f(4 \sqrt{2})$
b) $f(3 \sqrt{2})$
c) $f(2 \sqrt{2})$
d) $f(\sqrt{2})$
286. Let $f: R=\{n\} \rightarrow R$ be a function defined by $f(x)=\frac{x-m}{x-n}$, where $m \neq n$. Then,
a) f is one-one onto
b) f is one-one into
c) f is many one onto
d) f is may one into
287. Let $f(x)=x, g(x)=1 / x$ and $h(x)=f(x) g(x)$. Then, $h(x)=1$, if
a) x is any rational number
b) x is a non-zero real number
c) x is a real number
d) x is a rational number
288. Which of the following is not periodic?
a) $|\sin 3 x|+\sin ^{2} x$
b) $\cos \sqrt{x}+\cos ^{2} x$
c) $\cos 4 x+\tan ^{2} x$
d) $\cos 2 x+\sin x$
289. If $f(x)=2^{x}$, then $f(0), f(1), f(2), \ldots$ are in
a) AP
b) GP
c) HP
d) Arbitrary
290. If $f(\sin x)-f(-\sin x)=x^{2}-1$ is defined for all $x \in R$, then the value of $x^{2}-2$ can be
a) 0
b) 1
c) 2
d) -1
291. If $x \in R$, then $f(x)=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$ is equal to
a) $2 \tan ^{-1} x$
b) $\left\{\begin{array}{c}2 \tan ^{-1} x, x \geq 0 \\ -2 \tan ^{-1} x, \quad x \leq 0\end{array}\right.$
c) $\left\{\begin{array}{c}\pi+2 \tan ^{-1} x, \quad x \geq 0 \\ -\pi+2 \tan ^{-1} x, \quad x \leq 0\end{array}\right.$
d) None of these
292. Domain of the function $f(x)=\sin ^{-1}\left(\log _{2} x\right)$ in the set of real numbers is
a) $\{x: 1 \leq x \leq 2\}$
b) $\{x: 1 \leq x \leq 3\}$
c) $\{x:-1 \leq x \leq 2\}$
d) $\left\{x: \frac{1}{2} \leq x \leq 2\right\}$
293. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=|x|$ and $g(x)=[x]$ for each $x \in R$, then $\{x \in R: g(f(x)) \leq f(g(x))\}=$
a) $Z \cup(-\infty, 0)$
b) $(-\infty, 0)$
c) Z
d) R
294. If $f(x)=\log \left(\frac{1+x}{1-x}\right),-1<x<1$, then
$f\left(\frac{3 x+x^{3}}{1+3 x^{2}}\right)-f\left(\frac{2 x}{1+x^{2}}\right)$ is
a) $[f(x)]^{3}$
b) $[f(x)]^{2}$
c) $-f(x)$
d) $f(x)$
295. The domain of definition of $f(x)=\log _{10} \log _{\rightarrow \text { times }} \log _{\leftarrow} \ldots \log _{10} x$, is
a) $\left(10^{n}, \infty\right)$
b) $\left(10^{n-1}, \infty\right)$
c) $\left(10^{n-2}, \infty\right)$
d) None of these
296. The domain of $\sin ^{-1}\left[\log _{3}\left(\frac{x}{3}\right)\right]$ is
a) $[1,9]$
b) $[-1,9]$
c) $[-9,1]$
d) $[-9,-1]$
297. Domain of definition of the function $f(x)=\frac{3}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$, is
a) $(1,2)$
b) $(-1,0) \cup(1,2)$
c) $(1,2) \cup(2, \infty)$
d) $(-1,0) \cup(1,2) \cup(2, \infty)$
298. If X and Y are two non-empty sets where $f: X \rightarrow Y$ is function is defined such that $f(C)=\{f(x): x \in C\}$ for $C \subseteq X$
And $f^{-1}(D)=\{x: f(x) \in D\}$ for $D \subseteq Y$,
For any $A \subseteq X$ and $B \subseteq Y$, then
a) $f^{-1}(f(A))=A$
b) $f^{-1}(f(A))=A$ only if $f(X)=Y$
c) $f\left(f^{-1}(B)\right)=B$ only if $B \subseteq f(x)$
d) $f\left(f^{-1}(B)\right)=B$
299. If $f(-x)=-f(x)$, then $f(x)$ is
a) An even function
b) An odd function
c) Neither odd nor even
d) Periodic function
300. If $f:[-2,2] \rightarrow R$ is defined by
$f(x)=\left\{\begin{array}{l}-1, \text { for }-2 \leq x \leq 0 \\ x-1, \text { for } 0 \leq x \leq 2\end{array}\right.$
Then $\{x \in[-2,2]: x \leq 0$ and $f(|x|)=x\}=$
a) $\{-1\}$
b) $\{0\}$
c) $\{-1 / 2\}$
d) ϕ
301. If $2 f\left(x^{2}\right)+3 f\left(\frac{1}{x^{2}}\right)=x^{2}-1$ for all $x \in R-\{0\}$, then $f\left(x^{4}\right)$ is
a) $\frac{\left(1-x^{4}\right)\left(2 x^{4}+3\right)}{5 x^{4}}$
b) $\frac{\left(1+x^{4}\right)\left(2 x^{4}-3\right)}{5 x^{4}}$
c) $\frac{\left(1-x^{4}\right)\left(2 x^{4}-3\right)}{5 x^{4}}$
d) None of these
302. The domain of definition of the function $f(x)={ }^{7-x} P_{x-3}$, is
a) $[3,7]$
b) $\{3,4,5,6,7\}$
c) $\{3,4,5\}$
d) None of these
303. Let $f(x)=x$ and $\mathrm{g}(x)=|x|$ for all $x \in R$. Then, the function $\phi(x)$ satisfying $\{\phi(x)-f(x)\}^{2}+$ $\{\phi(x)-\mathrm{g}(x)\}^{2}=0$, is
a) $\phi(x)=x, x \in[0, \infty)$
b) $\phi(x)=x, x \in R$
c) $\phi(x)=-x, x \in(-\infty, 0]$
d) $\phi(x)=x+|x|, x \in R$
304. The value of the function $f(x)=3 \sin \left(\sqrt{\frac{\pi^{2}}{16}-x^{2}}\right)$ lies in the interval
a) $[-\pi / 4, \pi / 4]$
b) $[0,3 / \sqrt{2}]$
c) $(-3,3)$
d) None of these
305. The period of the function $f(x)=|\sin x|+|\cos x|$ is
a) π
b) $\pi / 2$
c) 2π
d) None of these
306. If $f(x)=\left(a x^{2}+b\right)^{3}$, then the function g such that $f(g(x))=g(f(x))$ is given by
a) $g(x)=\left(\frac{b-x^{1 / 3}}{a}\right)^{1 / 2}$
b) $g(x)=\frac{1}{\left(a x^{2}+b\right)^{3}}$
c) $g(x)=\left(a x^{2}+b\right)^{1 / 3}$
d) $g(x)=\left(\frac{x^{1 / 3}-b}{a}\right)^{1 / 2}$
307. Let R be the real line. Consider the following subsets of the plane $R \times R$
$S=\{(x, y): y=x+1$ and $o<x<2\}$
$T=\{(x, y): x-y$ is an integer $\}$
Which of the following is true?
a) T is an equivalent relation on R but S is not
b) Neither S nor T is an equivalence relation on R
c) Both S and T are equivalence relations on R
d) S is an equivalence relations on R and T is not
308. Let $A=[-1,1]$ and $f: A \rightarrow A$ be defined as $f(x)=x|x|$ for all $x \in A$, then $f(x)$ is
a) Many-one into function
b) One-one into function
c) Many-one onto function
d) One-one onto function
309. If $f(x)=\frac{1-x}{1+x}, x \neq 0,-1$ and $\alpha=f(f(x))+f\left(f\left(\frac{1}{x}\right)\right)$, then
a) $\alpha>2$
b) $\alpha<-2$
c) $|\alpha|>2$
d) $\alpha=2$
310. Let R and S be two non-void relations on a set A. Which of the following statements is false?
a) R and S are transitive implies $R \cap S$ is transitive.
b) R and S are transitive implies $R \cup S$ is transitive.
c) R and S are symmetric implies $R \cup S$ is symmetric.
d) R and S are reflexive implies $R \cap S$ is reflexive.
311. $A=\{1,2,3,4\}, B\{1,2,3,4,5,6\}$ are two sets, and function $f: A \rightarrow B$ is defined by $f(x)=x+2 \forall x \in A$, then the function f is
a) Bijective
b) Onto
c) One-one
d) Many-one
312. Let $f(x)=x+1$ and $\phi(x)=x-2$. Then the values of x satisfying $|f(x)+\phi(x)|=|f(x)|+|\phi(x)|$ are :
a) $(-\infty, 1]$
b) $[2, \infty)$
c) $(-\infty,-2]$
d) $[1, \infty)$
313. The domain of the function $f(x)=\frac{\sin ^{-1}(3-x)}{\log _{e}(|x|-2)}$, is
a) $[2,4]$
b) $(2,3) \cup(3,4]$
c) $[2,3)$
d) $(-\infty,-3) \cup[2, \infty)$
314. If $f(x)=\frac{1}{\sqrt{|x|-x}}$ then, domain of $f(x)$ is
a) $(-\infty, 0)$
b) $(-\infty, 2)$
c) $(-\infty, \infty)$
d) None of the above
315. The domain of definition of $f(x)=\log _{10}\left\{\left(\log _{10} x\right)^{2}-5 \log _{10} x+6\right\}$, is
a) $\left(0,10^{2}\right)$
b) $\left(10^{3}, \infty\right)$
c) $\left(10^{2}, 10^{3}\right)$
d) $\left(0,10^{2}\right) \cup\left(10^{3}, \infty\right)$
316. If a function $f(x)$ satisfies the condition
$f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}, x \neq 0$, then $f(x)$ equals
a) $x^{2}-2$ for all $x \neq 0$
b) $x^{2}-2$ for all x satisfying $|x| \geq 2$
c) $x^{2}-2$ for all x satisfying $|x|<2$
d) None of these
317. The period of the function $f(x)=\sin \left(\frac{2 x+3}{6 \pi}\right)$, is
a) 2π
b) 6π
c) $6 \pi^{2}$
d) None of these
318. $f: R \rightarrow R$ is a function defined by $f(x)=10 x-7$. If $g=f^{-1}$, then $g(x)=$
a) $\frac{1}{10 x-7}$
b) $\frac{1}{10 x+7}$
c) $\frac{x+7}{10}$
d) $\frac{x-7}{10}$
319. If $f(x)=[x-2]$, where $[x]$ denotes the greatest integer less than or equal to x, then $f(2,5)$ is equal to
a) $\frac{1}{2}$
b) 0
c) 1
d) Does not exist
320. The domain of definition of

$$
f(x)=\sqrt{\log _{10}\left(\log _{10} x\right)-\log _{10}\left(4-\log _{10} x\right)-\log _{10} 3} \text {, is }
$$

a) $\left(10^{3}, 10^{4}\right)$
b) $\left[10^{3}, 10^{4}\right]$
c) $\left[10^{3}, 10^{4}\right)$
d) $\left(10^{3}, 10^{4}\right]$
321. The value of $n \in Z$ (the set of integers) for which the function $f(x)=\sin \frac{\sin n x}{\sin \left(\frac{x}{n}\right)}$ has 4π as its period is
a) 2
b) 3
c) 5
d) 4
322. The inverse of the function $f: R \rightarrow R$ given by $f(x)=\log _{a}\left(x+\sqrt{x^{2}+1}\right)(a>0, a \neq 1)$, is
a) $\frac{1}{2}\left(a^{x}+a^{-x}\right)$
b) $\frac{1}{2}\left(a^{x}-a^{-x}\right)$
c) $\frac{1}{2}\left(\frac{a^{x}+a^{-x}}{a^{x}-a^{-x}}\right)$
d) Not defined
323. The domain of definition of the function $f(x)=x \cdot \frac{1+2(x+4)^{-0.5}}{2-(x+4)^{0.5}}+(x+4)^{0.5}+4(x+4)^{0.5}$ is
a) R
b) $(-4,4)$
c) R^{+}
d) $(-4,0) \cup(0, \infty)$
324. If $f(x)=\frac{\alpha x}{x+1}, x \neq-1$, for what value of α is $f[f(x)]=x$?
a) $\sqrt{2}$
b) $-\sqrt{2}$
c) 1
d) -1
325. The period of the function $f(x)=\operatorname{cosec}^{2} 3 x+\cot 4 x$ is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{6}$
d) π
326. The domain of the definition of the function $f(x)=\sqrt{1+\log _{e}(1-x)}$ is
a) $-\infty<x \leq 0$
b) $-\infty<x \leq \frac{e-1}{e}$
c) $-\infty<x \leq 1$
d) $x \geq 1-e$
327. The range of the function $\sin \left(\sin ^{-1} x+\cos ^{-1} x\right),|x| \leq 1$ is
a) $[-1,1]$
b) $[1,-1]$
c) $\{0\}$
d) $\{1\}$
328. The range of $f(x)=\cos x-\sin x$ is
a) $[-1,1]$
b) $(-1,2)$
c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
d) $[-\sqrt{2}, \sqrt{2}]$
329. The range of function $f(x)=x^{2}+\frac{1}{x^{2}+1}$
a) $[1, \infty)$
b) $[2, \infty)$
c) $\left[\frac{3}{2}, \infty\right)$
d) None of these
330. If n is an integer, the domain of the function $\sqrt{\sin 2 x}$ is
a) $\left[n \pi-\frac{\pi}{2}, n \pi\right]$
b) $\left[n \pi, n \pi+\frac{\pi}{4}\right]$
c) $[(2 n-1) \pi, 2 n \pi]$
d) $[2 n \pi,(2 n+1) \pi]$
331. If $f: R \rightarrow R$ is defined by $f(x)=x-[x]-\frac{1}{2}$ for all $x \in R$, where $[x]$ denotes the greatest integer function, then $\left\{x \in R: f(x)=\frac{1}{2}\right\}$ is equal to
a) Z
b) N
c) ϕ
d) R
332. Suppose $f:[-2,2] \rightarrow R$ is defined by $f(x)=\left\{\begin{array}{l}-1 \text {, for }-2 \leq x \leq 0 \\ x-1 \text { for } 0 \leq x \leq 2\end{array}\right.$, then $\{x \in[-2,2]: x \leq 0$ and $f(|x|)=x\}$ is equal to
a) $\{-1\}$
b) $\{0\}$
c) $\left\{-\frac{1}{2}\right\}$
d) ϕ
333. If $f: R \rightarrow R$ is defined by $f(x)=\sin x$ and $g:(1, \infty) \rightarrow R$ is defined by $g(x)=\sqrt{x^{2}-1}$, then $g \circ f(x)$ is
a) $\sqrt{\sin \left(x^{2}-1\right)}$
b) $\sin \sqrt{x^{2}-1}$
c) $\cos x$
d) Not defined
334. Let R and C denote the set of real numbers and complex numbers respectively. The function $f: C \rightarrow R$ defined by $f(z)=|z|$ is
a) One to one
b) Onto
c) Bijective
d) Neither one to one nor onto
335. If $f(x)=\frac{x-1}{x+1}$, then $f(2 x)$ is
a) $\frac{f(x)+1}{f(x)+3}$
b) $\frac{3 f(x)+1}{f(x)+3}$
c) $\frac{f(x)+3}{f(x)+1}$
d) $\frac{f(x)+3}{3 f(x)+1}$
336. The range of the function $f(x)=\tan \sqrt{\frac{\pi^{2}}{9}-x^{2}}$ is
a) $[0,3]$
b) $[0, \sqrt{3}]$
c) $(-\infty, \infty)$
d) None of these
337. The domain of the function $f(x)=\operatorname{cosec}^{-1}[\sin x]$ in $[0,2 \pi]$, where $[\cdot]$ denotes the greatest integer function, is
a) $[0, \pi / 2) \cup(\pi, 3 \pi / 2]$
b) $(\pi, 2 \pi) \cup\{\pi / 2\}$
c) $(0, \pi] \cup\{3 \pi / 2\}$
d) $(\pi / 2, \pi) \cup(3 \pi / 2,2 \pi)$
338. Let R be the relation on the set R of all real numbers defined by $a R b$ if $|a-b| \leq 1$, then R is
a) Reflexive and symmetric
b) Symmetric only
c) Transitive only
d) Anti-symmetric only
339. The domain of the function $f(x)=\log _{e}(x-[x])$ is
a) R
b) $R-Z$
c) $(0,+\infty)$
d) Z
340. If $f:[0, \infty] \rightarrow[0, \infty]$ and $f(x)=\frac{x}{1+x^{x}}$, then f is
a) One-one and onto
b) One-one but not onto
c) Onto but not one-one
d) Neither one-one nor onto
341. The function $f: R \rightarrow R$ given by $f(x)=x^{3}-1$ is
a) A one-one function
b) An onto function
c) A bijection
d) Neither one-one nor onto
342. Let $[x]$ denote the greatest integer $\leq x$. If $f(x)=[x]$ and $g(x)=|x|$, then the value of $f\left(g\left(\frac{8}{5}\right)\right)-$ $g\left(f\left(-\frac{8}{5}\right)\right)$ is
a) 2
b) -2
c) 1
d) -1
343. The domain of the function $f(x)=\frac{\cos ^{-1} x}{[x]}$ is
a) $[-1,0) \cup\{1\}$
b) $[-1,1]$
c) $[-1,1)$
d) None of these
344. The set of values of x for which of the function $f(x)=\frac{1}{x}+2^{\sin ^{-1} x}+\frac{1}{\sqrt{x-2}}$ exists is
a) R
b) $R-\{0\}$
c) ϕ
d) None of these
345. If $f(x)$ satisfies the relation $2 f(x)+f(1-x)=x^{2}$ for all real x, then $f(x)$ is
a) $\frac{x^{2}+2 x-1}{6}$
b) $\frac{x^{2}+2 x-1}{3}$
c) $\frac{x^{2}+4 x-1}{3}$
d) $\frac{x^{2}-3 x+1}{6}$
346. If the function $f(x)$ is defined by $f(x)=a+b x$ and $f^{r}=f f f \ldots$ (repeated r times), then $f^{r}(x)$ is equal to
a) $a+b^{r} x$
b) $a r+b^{r} x$
c) $a r+b x^{r}$
d) $a\left(\frac{b^{r}-1}{b-1}\right)+b^{r} x$
347. If $f(x)=\frac{x-1}{x+1}$, then $f(2 x)$ is
a) $\frac{f(x)+1}{f(x)+3}$
b) $\frac{3 f(x)+1}{f(x)+3}$
c) $\frac{f(x)+3}{f(x)+1}$
d) $\frac{f(x)+3}{3 f(x)+1}$
348. If $f(x)$ is an odd periodic function with period 2 , then $f(4)$ equals
a) 0
b) 2
c) 4
d) -4
349. The domain of definition of $f(x)=\sqrt{\log _{0.4}\left(\frac{x-1}{x+5}\right)} \times \frac{1}{x^{2}-36}$, is
a) $(-\infty, 0)-\{-6\}$
b) $(0, \infty)-\{1,6\}$
c) $(1, \infty)-\{6\}$
d) $[1, \infty)-\{6\}$
350. The domain of the function $f(x)=\log _{2}\left(\log _{3}\left(\log _{4} x\right)\right)$ is
a) $(-\infty, 4)$
b) $(4, \infty)$
c) $(0,4)$
d) $(1, \infty)$
351. Let $f(x)=|x-2|+|x-3|+|x-4|$ and $g(x)=x+1$. Then,
a) $g(x)$ is an even function
b) $g(x)$ is an odd function
c) $g(x)$ is neither even nor odd
d) $g(x)$ is periodic
352. If a function $f:[2, \infty) \rightarrow B$ defined by $f(x)=x^{2}-4 x+5$ is a bijection, then $B=$
a) R
b) $[1, \infty)$
c) $[4, \infty)$
d) $[5, \infty)$
353. R is relation on N given by $R=\{(x, y): 4 x+3 y=20\}$. Which of the following belongs to R ?
a) $(-4,12)$
b) $(5,0)$
c) $(3,4)$
d) $(2,4)$
354. If $f: R \rightarrow R$ be a mapping defined by $f(x)=x^{3}+5$, then $f^{-1}(x)$ is equal to
a) $(x+5)^{1 / 3}$
b) $(x-5)^{1 / 3}$
c) $(5-x)^{1 / 3}$
d) $5-x$
355. Let $f(x)=x$ and $g(x)=|x|$ for all $x \in R$. Then, the function $\phi(x)$ satisfying $[\phi(x)-f(x)]^{2}+$ $[\phi(x)-g(x)]^{2}=0$
a) $\phi(x)=x, x \in[0, \infty)$
b) $\phi(x)=x, x \in R$
c) $\phi(x)=-x, x \in(-\infty, 0]$
d) $\phi(x)=x+|x|, x \in R$
356. In a function $f(x)$ is defined for $x \in[0,1]$, then the function $f(2 x+3)$ is defined for
a) $x \in[0,1]$
b) $x \in[-3 / 2,-1]$
c) $x \in R$
d) $x \in[-3 / 2,1]$
357. If $f(x)=x^{2}-2|x|$ and $g(x)=\left\{\begin{array}{c}\operatorname{Min}\{f(t):-2 \leq t \leq x\},-2 \leq x<0 \\ \operatorname{Max}\{f(t): 0 \leq \leq x\}, \quad 0 \leq x \leq 3\end{array}\right.$, then $g(x)$ equlas
а) $\left\{\begin{array}{c}x^{2}-2 x, \quad-2 \leq x \leq-1 \\ -1, \quad-1 \leq x<0 \\ 0, \quad 0 \leq x<2 \\ x^{2}+2 x, \quad 2 \leq x \leq 3\end{array}\right.$
b) $\left\{\begin{array}{cl}x^{2}+2 x, & -2 \leq x \leq-1 \\ -1, & -1 \leq x<0 \\ 0, & 0 \leq x<1 \\ x^{2}-2 x & 1 \leq x \leq 3\end{array}\right.$
c) $\left\{\begin{array}{cl}x^{2}+2 x, & -2 \leq x \leq-0 \\ x^{2}-2 x, & 0 \leq x \leq 3\end{array}\right.$
d) $\left\{\begin{array}{c}x^{2}+2 x, \quad-2 \leq x \leq 0 \\ 0,0 \leq x<2 \\ x^{2}-2 x, 2 \leq x \leq 3\end{array}\right.$
358. Let R be the set of real numbers and the mapping $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined by $f(x)=5-x^{2}$ and $g(x)=3 x-4$, then the value of $(f \circ g)(-1)$ is
a) -44
b) -54
c) -32
d) -64
359. $f: R \rightarrow R$ is defined by $f(x)=\frac{e^{x^{2}}-e^{-x^{2}}}{e^{x^{2}}+e^{-x^{2}}}$, is
a) One-one but not onto
b) Many-one but onto
c) One-one and onto
d) Neither one-one nor onto
360. Let $f: N \rightarrow N$ defined by $f(x)=x^{2}+x+1, x \in N$, then f is
a) One-one onto
b) Many-one onto
c) One -one but not onto
d) None of these
361. Which of the following functions have period 2π ?
a) $y=\sin \left(2 \pi t+\frac{\pi}{3}\right)+2 \sin \left(3 \pi t+\frac{\pi}{4}\right)+3 \sin 5 \pi t$
b) $y=\sin \frac{\pi}{3} t+\sin \frac{\pi}{4} t$
c) $y=\sin t+\cos 2 t$
d) None of the above
362. Let $f: A \rightarrow B$ be a function defined by $f(x)=\sqrt{3} \sin x+\cos x+4$. If f is invertible, then
a) $A=[-2 \pi / 3, \pi / 3], B=[2,6]$
b) $A=[\pi / 6,5 \pi / 6], B=[-2,2]$
c) $A=[-\pi / 2, \pi / 2], B=[2,6]$
d) $A=[-\pi / 3, \pi / 3], B=[2,6]$
363. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=2 x+3$ and $g(x)=x^{2}+7$, then the values of x such that $g(f(x))=8$ are
a) 1,2
b) $-1,2$
c) $-1,-2$
d) $1,-2$
364. The domain of definition of the function $f(x)=\sin ^{-1}\left(\frac{x-3}{2}\right)-\log _{10}(4-x)$, is
a) $1 \leq x \leq 5$
b) $1<x<4$
c) $1 \leq x<4$
d) $1 \leq x \leq 4$
365. If $f(x)=\frac{1-x}{1+x}(x \neq-1)$, then $f^{-1}(x)$ equals to
a) $f(x)$
b) $\frac{1}{f(x)}$
c) $-f(x)$
d) $-\frac{1}{f(x)}$
366. The function f satisfies the functional equation $3 f(x)+2 f\left(\frac{x+59}{x-1}\right)=10 x+30$ for all real $x \neq 1$. The value of $f(7)$ is
a) 8
b) 4
c) -8
d) 11
367. If $[x]$ denotes the greatest integer $\leq x$, then
$\left[\frac{2}{3}\right]+\left[\frac{2}{3}+\frac{1}{99}\right]+\left[\frac{2}{3}+\frac{2}{99}\right]+\ldots+\left[\frac{2}{3}+\frac{98}{99}\right]$ is equal to
a) 99
b) 98
c) 66
d) 65
368. If $f(x)$ is defined on $[0,1]$, then the domain of $f\left(3 x^{2}\right)$, is
a) $[0,1 / \sqrt{3}]$
b) $[-1 / \sqrt{3}, 1 / \sqrt{3}]$
c) $[-\sqrt{3}, \sqrt{3}]$
d) None of these
369. If $f: R \rightarrow S$, defined by $f(x)=\sin x-\sqrt{3} \cos x-1$, is onto, then the intervel of s is
a) $[0,3]$
b) $[-1,1]$
c) $[0,1]$
d) $[-1,3]$
370. If $f(x)=e^{x}$ and $g(x)=\log _{e} x$, then which of the following is true?
a) $f\{g(x)\} \neq g\{f(x)\}$
b) $f\{g(x)\}=g\{f(x)\}$
c) $f\{g(x)\}+g\{f(x)\}=0$
d) $f\{g(x)\}-g\{f(x)\}=1$
371. The range of the function $f(x)={ }^{7-x} P_{x-3}$, is
a) $\{1,2,3\}$
b) $\{1,2,3,4,5,6\}$
c) $\{1,2,3,4\}$
d) $\{1,2,3,4,5\}$
372. The domain of definition of $f(x)=\log _{1.7}\left(\frac{2-\phi^{\prime}(x)}{x+1}\right)^{1 / 2}$, where $\phi(x)=\frac{x^{3}}{3}-\frac{3}{2} x^{2}-2 x+\frac{3}{2}$, is
a) $(-\infty,-4)$
b) $(-4, \infty)$
c) $(-\infty,-1) \cup(-1,4)$
d) $(-\infty,-1) \cup(-1,4]$
373. The domain of definition of the function
$f(x)=\sin ^{-1}\left(\frac{4}{3+2 \cos x}\right)$, is
a) $\left[2 n \pi-\frac{\pi}{6}, 2 n \pi+\frac{\pi}{6}\right], n \in Z$
b) $\left[0,2 n \pi+\frac{\pi}{6}\right], n \in Z$
c) $\left[2 n \pi-\frac{\pi}{6}, 0\right], n \in Z$
d) $\left(2 n \pi-\frac{\pi}{6}, 2 n \pi+\frac{\pi}{6}\right), n \in Z$
374. Which of the following functions has period 2π ?
a) $f(x)=\sin \left(2 \pi x+\frac{\pi}{3}\right)+2 \sin \left(3 \pi x+\frac{\pi}{4}\right)+3 \sin 5 \pi x$
b) $f(x)=\sin \frac{\pi x}{3}+\sin \frac{\pi x}{4}$
c) $f(x)=\sin x+\cos 2 x$
d) None of these
375. Let S be the set of all real numbers. Then, the relation $R=\{(a, b): 1+a b>0\}$ on S is
a) Reflexive and symmetric but not transitive
b) Reflexive and transitive but not symmetric
c) Symmetric and transitive but not reflexive
d) Reflexive, transitive and symmetric
376. Which of the following functions is periodic?
a) $f(x)=x+\sin x$
b) $f(x)=\cos \sqrt{x}$
c) $f(x)=\cos x^{2}$
d) $f(x)=\cos ^{2} x$
377. The function $f(x)=\max \{(1-x),(1+x), 2\}, x \in(-\infty, \infty)$ is equivalent to
a) $f(x)=\left\{\begin{array}{cc}1-x, & x \leq-1 \\ 2, & -1<x<1 \\ 1+x, & x \geq 1\end{array}\right.$
b) $f(x)=\left\{\begin{array}{cc}1+x, & x \leq-1 \\ 2,-1<x<1 \\ 1-x, & x \geq 1\end{array}\right.$
c) $f(x)=\left\{\begin{array}{c}1-x, \quad x \leq-1 \\ 1,-1<x<1 \\ 1+x, \quad x \geq 1\end{array}\right.$
d) None of these
378. The period of the function $f(\theta)=\sin \frac{\theta}{3}+\cos \frac{\theta}{2}$ is
a) 3π
b) 6π
c) 9π
d) 12π
379. Let the function $f(x)=x^{2}+x+\sin x-\cos x+\log (1+|x|)$ be defined on the interval $[0,1]$. The odd extension of $f(x)$ to the interval $[-1,1]$ is
a) $x^{2}+x+\sin x+\cos x-\log (1+|x|)$
b) $-x^{2}+x+\sin x+\cos x-\log (1+|x|)$
c) $-x^{2}+x+\sin x-\cos x+\log (1+|x|)$
d) None of these
380. If $g(x)=1+\sqrt{x}$ and $f(g(x))=3+2 \sqrt{x}+x$ then, $f(x)$ is equal to
a) $1+2 x^{2}$
b) $2+x^{2}$
c) $1+x$
d) $2+x$
381. Let $f:(-1,1) \rightarrow B$, be a function defined by $f(x)=\tan ^{-1} \frac{2 x}{1-x^{2}}$, then f is both one-one and onto when B is the interval
a) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
c) $\left[0, \frac{\pi}{2}\right)$
d) $\left(0, \frac{\pi}{2}\right)$
382. If $f: R \rightarrow R$ defined by $f(x)=x^{3}$, then $f^{-1}(8)$ is equal to
a) $\{2\}$
b) $\left\{2, \omega, 2 \omega^{2}\right\}$
c) $\{2,-2\}$
d) $\{2,2\}$
383. The set of all x for which there are no functions $f(x)=\log _{(x-2) /(x+3)} 2$ and $g(x)=\frac{1}{\sqrt{x^{2}-9}}$, is
a) $[-3,2]$
b) $[-3,2)$
c) $(-3,2]$
d) $(-3,-2)$
384. Which of the following functions is (are) not an injective map(s)?
a) $f(x)=|x+1|, x \in[-1, \infty)$
b) $\mathrm{g}(x)=x+\frac{1}{x}, x \in(0, \infty)$
c) $h(x)=x^{2}+4 x-5, x \in(0, \infty)$
d) $k(x)=e^{-x}, x \in[0, \infty)$
385. If $f: N \rightarrow Z$ is defined by
$f(n)=\left\{\begin{array}{c}2 \text { if } n=3 k, k \in Z \\ 10 \text { if } n=3 k+1, k \in Z, \\ 0 \text { if } n=3 k+2, k \in Z\end{array}\right.$
Then $\{n \in N: f(n)>2\}$ is equal to
a) $\{3,6,4\}$
b) $\{1,4,7\}$
c) $\{4,7\}$
d) $\{7\}$
386. If $f(x)=\frac{2 x-1}{x+5}(x \neq-5)$, then $f^{-1}(x)$ is equal to
a) $\frac{x+5}{2 x-1}, x \neq \frac{1}{2}$
b) $\frac{5 x+1}{2-x}, x \neq 2$
c) $\frac{x-5}{2 x+1}, x \neq \frac{1}{2}$
d) $\frac{5 x-1}{2-x}, x \neq 2$
387. If a, b are two fixed positive integers such that
$f(a+x)=b+\left[b^{3}+1-3 b^{2} f(x)+3 b\{f(x)\}^{2}-\{f(x)\}^{3}\right]^{1 / 3}$
For all $x \in R$, then $f(x)$ is a periodic function with period
a) a
b) $2 a$
c) b
d) $2 b$
388. Let A be a set containing 10 distinct elements, then the total number of distinct function from A to A is
a) 10^{10}
b) 101
c) 2^{10}
d) $2^{10}-1$
389. If \mathcal{Q} denotes the set of all rational numbers and $f\left(\frac{p}{q}\right)=\sqrt{p^{2}-q^{2}}$ for any $\frac{p}{q} \in \mathcal{Q}$, then observe the following statements.
I. $f\left(\frac{p}{q}\right)$ is real for each $\frac{p}{q} \in Q$.
II. $f\left(\frac{p}{q}\right)$ is a complex number for each $\frac{p}{q} \in \mathcal{Q}$.

Which of the following is correct?
a) Both I and II are true
b) I is true, II is false
c) I is false, II is true
d) Both I and II are false
390. The domain of the function $f(x)=\log _{3+x}\left(x^{2}-1\right)$ is
a) $(-3,-1) \cup(1, \infty)$
b) $[-3,-1] \cup[1, \infty]$
c) $(-3,-2) \cup(-2,-1) \cup(1, \infty)$
d) $[-3,-2) \cup(-2,-1) \cup(1, \infty)$
391. Let $A=R-\{3\}, B=R-\{1\}$. Let $f: A \rightarrow B$ be defined by $f(x)=\frac{x-2}{x-3}$.Then,
a) f is bijective
b) f is one-one but not onto
c) f is onto but not one-one
d) None of the above
392. Let $f(x)=\frac{\sqrt{\sin x}}{1+\sqrt[3]{\sin x}}$. If D is the domain of f, then D contains
a) $(0, \pi)$
b) $(-2 \pi,-\pi)$
c) $(3 \pi, 4 \pi)$
d) $(4 \pi, 6 \pi)$
393. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be given by $f(x)=3 x^{2}+2$ and $g(x)=3 x-1$ for all $x \in R$. Then,
a) $f \circ g(x)=27 x^{2}-18 x+5$
b) $\operatorname{fog}(x)=27 x^{2}+18 x-5$
c) $\operatorname{gof}(x)=9 x^{2}-5$
d) $\operatorname{gof}(x)=9 x^{2}+15$
394. The domain of definition of the function
$f(x)=\frac{1}{\sqrt{|x|-x}}$, is
a) R
b) $(0, \infty)$
c) $(-\infty, 0)$
d) None of these
395. Let $f: A \rightarrow B$ and $\mathrm{g}: B \rightarrow A$ be two functions such that $f o \mathrm{~g}=I_{B}$. Then,
a) f and g both are injections
b) f and g both are surjections
c) f is an injection and g is a surjection
d) f is a surjection and g is an injection
396. If $f(x)=x^{2}-1$ and $g(x)=(x+1)^{2}$, then $(g \circ f)(x)$ is
a) $(x+1)^{4}-1$
b) $x^{4}-1$
c) x^{4}
d) $(x+1)^{4}$
397. If $f: R \rightarrow R$ satisfies $f(x+y)=f(x)+f(y)$, for all $x, y \in R$ and $f(1)=7$, then $\sum_{r=1}^{n} f(r)$ is
a) $\frac{7 n}{2}$
b) $\frac{7(n+1)}{2}$
c) $7 n(n+1)$
d) $\frac{7 n(n+1)}{2}$
398. If $f(x)=2 x^{4}-13 x^{2}+a x+b$ is divisible by $x^{2}-3 x+2$, then (a, b) is equal to
a) $(-9,-2)$
b) $(6,4)$
c) $(9,2)$
d) $(2,9)$
399. Let $f: R \rightarrow R$ be a function defined by $f(x)=\frac{x^{2}-8}{x^{2}+2}$ Then, f is
a) One-one but not onto
b) One-one and onto
c) Onto but not one-one
d) Neither one-one nor onto
400. The domain of the function $f(x)=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^{2}}}$, is
a) $[1,2)$
b) $[2,3)$
c) $[1,2]$
d) $[2,3]$
: ANSWER KEY :

1)	a	2)	a	3)	b	4)	d	189)	b	190)	b	191)	b	192)
5)	d	6)	a	7)	c	8)	a	193)	d	194)	c	195)	b	196)
9)	c	10)	a	11)	a	12)	c	197)	a	198)	a	199)	a	200)
13)	d	14)	c	15)	b	16)	d	201)	a	202)	b	203)	c	204)
17)	c	18)	c	19)	b	20)	c	205)	b	206)	b	207)	b	208)
21)	c	22)	a	23)	a	24)	d	209)	d	210)	a	211)	c	212)
25)	b	26)	d	27)	b	28)	b	213)	d	214)	b	215)	b	216)
29)	b	30)	b	31)	a	32)	c	217)	c	218)	c	219)	c	220)
33)	a	34)	b	35)	c	36)	c	221)	c	222)	b	223)	b	224)
37)	d	38)	c	39)	d	40)	c	225)	b	226)	c	227)	b	228)
41)	d	42)	a	43)	c	44)	d	229)	d	230)	c	231)	b	232)
45)	b	46)	c	47)	a	48)	c	233)	b	234)	c	235)	d	236)
49)	d	50)	d	51)	d	52)	d	237)	c	238)	d	239)	d	240)
53)	d	54)	a	55)	b	56)	c	241)	d	242)	c	243)	c	244)
57)	d	58)	c	59)	c	60)	c	245)	d	246)	a	247)	d	248)
61)	b	62)	d	63)	a	64)	d	249)	b	250)	a	251)	c	252)
65)	b	66)	a	67)	c	68)	a	253)	c	254)	d	255)	b	256)
69)	b	70)	a	71)	b	72)	c	257)	c	258)	c	259)	d	260)
73)	c	74)	d	75)	a	76)	c	261)	a	262)	d	263)	a	264)
77)	a	78)	a	79)	d	80)	b	265)	c	266)	c	267)	c	268)
81)	a	82)	a	83)	d	84)	b	269)	a	270)	d	271)	c	272)
85)	c	86)	a	87)	a	88)	d	273)	a	274)	b	275)	d	276)
89)	a	90)	c	91)	a	92)	b	277)	c	278)	a	279)	b	280)
93)	c	94)	a	95)	a	96)	a	281)	a	282)	b	283)	b	284)
97)	b	98)	d	99)	d	100)	c	285)	a	286)	b	287)	b	288)
101)	b	102)	b	103)	c	104)	c	289)	b	290)	d	291)	b	292)
105)	b	106)	d	107)	b	108)	b	293)	a	294)	d	295)	d	296)
109)	d	110)	d	111)	b	112)	b	297)	d	298)	c	299)	b	300)
113)	a	114)	c	115)	c	116)	c	301)	a	302)	c	303)	a	304)
117)	b	118)	b	119)	a	120)	c	305)	b	306)	d	307)	a	308)
121)	b	122)	b	123)	c	124)	c	309)	c	310)	b	311)	c	312)
125)	d	126)	b	127)	b	128)	b	313)	b	314)	a	315)	d	316)
129)	a	130)	c	131)	c	132)	b	317)	c	318)	c	319)	b	320)
133)	b	134)	c	135)	a	136)	b	321)	a	322)	b	323)	d	324)
137)	b	138)	a	139)	d	140)	c	325)	d	326)	b	327)	d	328)
141)	d	142)	d	143)	c	144)	d	329)	a	330)	b	331)	c	332)
145)	c	146)	a	147)	a	148)	b	333)	d	334)	d	335)	b	336)
149)	b	150)	b	151)	d	152)	a	337)	b	338)	a	339)	b	340)
153)	d	154)	b	155)	d	156)	c	341)	c	342)	d	343)	a	344)
157)	c	158)	c	159)	c	160)	b	345)	b	346)	d	347)	b	348)
161)	b	162)	d	163)	a	164)	a	349)	c	350)	b	351)	c	352)
165)	b	166)	c	167)	d	168)	c	353)	d	354)	b	355)	a	356)
169)	b	170)	b	171)	d	172)	b	357)	b	358)	a	359)	a	360)
173)	d	174)	c	175)	b	176)	b	361)	c	362)	a	363)	c	364)
177)	b	178)	c	179)	a	180)	d	365)	a	366)	b	367)	c	368)
181)	b	182)	d	183)	b	184)	b	369)	d	370)	b	371)	a	372)
185)	d	186)	d	187)	b	188)	c	373)	a	374)	c	375)	a	376)

377)	a	378)	d	379)	b	380)	b	393)	a	394)	c	395)	d	396)
381)	a	382)	a	383)	d	384)	b	397)	d	398)	c	399)	d	400)
385)	b	386)	b	387)	b	388)	a							
389)	c	390)	c	391)	a	392)	a							

: HINTS AND SOLUTIONS :

1 (a)
We have,
$f(x)=||x|-1|$
$\Rightarrow f(x)=\left\{\begin{array}{l}1-|x|, \text { if }|x|<1 \\ |x|-1, \text { if }|x| \geq 1\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{c}1-|x|, \text { if }-1<x<1 \\ |x|-1, \text { if } x \leq-1 \text { or }, x \geq 1\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{c}1+x, \text { if }-1<x<0 \\ 1-x, \text { if } 0 \leq x \leq 1 \\ -x-1, \text { if } x \leq-1 \\ x-1, \text { if } x \geq 1\end{array}\right.$

2 (a)

We have,
$f(x)=\log _{100 x}\left(\frac{2 \log _{10} x+1}{-x}\right)$
$f(x)$ is defined if
$x>0,100 x \neq 1$ and $\frac{2 \log _{10} x+1}{-x}>0$
$\Rightarrow x>0, x \neq 10^{-2}$ and $2 \log _{10} x+1<0$
$\Rightarrow x<0, x \neq 10^{-2}$ and $\log _{10} x<-\frac{1}{2}$
$\Rightarrow x>0, x \neq 10^{-2}$ and $x<10^{-1 / 2}$
$\Rightarrow x \in\left(0,10^{-2}\right) \cup\left(10^{-2} \cup>10^{-1 / 2}\right)$
(b)

The function $f(x)$ will be defined, if

$$
-1 \leq(x-3) \leq 1 \Rightarrow 2 \leq x \leq 4
$$

And $9-x^{2}>0 \Rightarrow-3<x<3$
$\therefore 2 \leq x<3$
4 (d)
The given function is
$f(x)=|x|=\left\{\begin{array}{l}x, x \geq 0 \\ x, x<0\end{array}\right.$
And $f: R \rightarrow R$, then it is clear that function is neither one-one nor onto.

Given, $f(x)=\frac{1}{\sqrt{-x}}$
$\therefore \quad f o f(x)=f(f(x))=f\left(\frac{1}{\sqrt{-x}}\right)$
$\Rightarrow f o f(x)=\frac{1}{\sqrt{-\frac{1}{\sqrt{-x}}}}$
Since, $\sqrt{-\frac{1}{\sqrt{-x}}}$ is an imaginary.
Hence, no domain of $f o f(x)$ exist.
Thus, the domain of $f o f(x)$ is an empty set.
$6 \quad$ (a)
We have
$f(x+1)+f(x-1)=\sqrt{2} f(x)$ for all $x \in R$

Replacing x by $x+1$ and $x-1$ respectively, we get
$f(x+2)+f(x)=\sqrt{2} f(x+1) \ldots$ (ii)
And,
$f(x)+f(x-2)=\sqrt{2} f(x-1)$.
Adding (ii) and (iii) we get
$f(x+2)+f(x-2)+2 f(x)$

$$
=\sqrt{2}\{f(x+1)+f(x-1)\}
$$

$f(x+2)+f(x-2)+2 f(x)=\sqrt{2}\{\sqrt{2} f(x)\}$
[Using (i)]
$f(x+2)+f(x-2)+2 f(x)=2 f(x)$
$\Rightarrow f(x+2)+f(x-2)=0$ for all $x \in R$
Replacing x by $x+2$, we get
$f(x+4)+f(x)=0 \Rightarrow f(x+4)=-f(x)$
Replacing x by $x+4$, we get
$f(x+8)=-f(x+4)$
From (iv) and (v), we get
$f(x+8)=f(x)$ for all $x \in R$
Hence, $f(x)$ is periodic with period 8
7 (c)

$$
\begin{aligned}
& D_{30}=\{1,2,3,5,6,10,15,30\} \\
& f(2,5,15)=(2+5) \cdot\left(5^{\prime}+15\right) \\
& \quad=10 \cdot\left(\frac{30}{5}+15\right) \\
& \left(\because 2+5=\text { LCM of }(2,5)=10 \text { and } 5^{\prime}\right. \\
& \left.\quad=\frac{30}{5}\right) \\
& =10(6+15)=10 \cdot 30=10
\end{aligned}
$$

$8 \quad$ (a)
For $f(x)$ to be defined

$$
\begin{aligned}
& \frac{5 x-x^{2}}{4} \geq 1 \Rightarrow x^{2}-5 x+4 \leq 0 \\
& \Rightarrow(x-4)(x-1) \leq 0 \quad \therefore x \in[1,4]
\end{aligned}
$$

9 (c)
In the given options only option (c) satisfies the condition of a function.
Hence, option (c) is a function.
(a)

We have,
$f(x)=2 x-3$ and $g(x)=x^{3}+5$
Clearly, $f: R \rightarrow R$ and $g: R \rightarrow R$ are bijections.
Therefore, $f o g: R \rightarrow R$ is also a bijection and hence invertible
Now,

$$
\begin{gathered}
f \circ g(x)=f(g(x))=f\left(x^{3}+5\right)=2\left(x^{3}+5\right)-3 \\
=2 x^{3}+7
\end{gathered}
$$

Let $h(x)=f o g(x)$. Then, $h(x)=2 x^{3}+7$
Now,
$\operatorname{hoh}^{-1}(x)=x$
$\Rightarrow h\left(h^{-1}(x)\right)=x$
$\Rightarrow 2\left\{h^{-1}(x)\right\}^{3}+7=x \Rightarrow h^{-1}(x)=\left(\frac{x-7}{2}\right)^{1 / 3}$
11 (a)
For $x \in(\pi, 3 \pi / 2)$, we have
$-1<\sin x<0$
$\Rightarrow 0<1+\sin x<1$ and $1<(2+\sin x)<2$
$\therefore[\sin x]=-1,[1+\sin x]=0$ and $[2+\sin x]=1$
$\Rightarrow f(x)=[\sin x]+[1+\sin x]+[2+\sin x]$

$$
=-1+0+1=0
$$

For $x=\pi$, we have
$[\sin x]=0,[1+\sin x]=1$ and $[2+\sin x]=2$
$\therefore f(x)=0+1+2=3$
For $x=\frac{3 \pi}{2}$, we have
$[\sin x]=-1,[1+\sin x]=0$ and $[2+\sin x]=1$
$\therefore f(x)=-1+0+1=0$
Hence, range of $f(x)=\{0,3\}$
12 (c)
We know that two functions $f(x)$ and $g(x)$ are identical, if their domains are same and
$f(x)=g(x)$
Clearly, $f(x)=g(x)$
Now, $D_{1}=\operatorname{Domain}(f)=(3, \infty)$
And, $D_{2}=$ Domain $(g)=(-\infty, 2) \cup(3, \infty)$
$\therefore D_{1} \cap D_{2}=(3, \infty)$
Hence, $f(x)=g(x)$ for all $x \in(3, \infty)$
13 (d)
We have,
$1-e^{\frac{1}{x}-1}>0$
$\Rightarrow e^{\frac{1}{x}-1}<1 \Rightarrow \frac{1}{x}-1<0 \Rightarrow \frac{1}{x}<1 \Rightarrow x$

$$
\in(-\infty, 0) \cup(1, \infty)
$$

14 (c)

$$
\begin{aligned}
& f(a)=a \\
\Rightarrow & \frac{\alpha a^{2}}{\alpha+1}=a \\
\Rightarrow & \alpha a^{2}=a^{2}+a \\
\Rightarrow & \alpha=1+\frac{1}{a} \quad(\because a \neq 0)
\end{aligned}
$$

15 (b)
We have,
$f(x)=\left\{\begin{array}{l}-1,-2 \leq x \leq 0 \\ x-1,0<x \leq 2\end{array}\right.$
Since $x \in[-2,2]$, therefore $|x| \in[0,2]$.
Consequently
$f(|x|)=|x|-1$ for all $x \in[-2,2]$
$\Rightarrow f(|x|)=\left\{\begin{array}{c}-x-1 \text {, for all } x \in[-2,0] \\ x-1 \text {, for all } x \in[0,2]\end{array}\right.$
Now, $f(|x|)=\left\{\begin{array}{lr}-1, & -2 \leq x<0 \\ x-1, & 0 \leq x \leq 2\end{array}\right.$
$\Rightarrow|f(x)|=\left\{\begin{array}{lr}1, & -2 \leq x<0 \\ 1-x, & 0 \leq x<1 \\ x-1, & 1 \leq x \leq 2\end{array}\right.$
From (i) and (ii), we get
$g(x)=f(|x|)+|f(x)|$
$\Rightarrow g(x)=\left\{\begin{array}{lr}-x-1+1, & -2 \leq x<0 \\ x-1+1-x, & 0 \leq x<1 \\ x-1+x-1, & 1 \leq x \leq 2\end{array}\right.$
$\Rightarrow g(x)=\left\{\begin{array}{cl}-x, & -2 \leq x<0 \\ 0, & 0 \leq x<1 \\ 2(x-1), & 1 \leq x \leq 2\end{array}\right.$
16 (d)
Given, $f(x)=x-3, g(x)=x^{2}+1$
$\therefore \quad g\{f(x)\}=g(x-3)$
$\Rightarrow \quad 10=(x-3)^{2}+1$
$\Rightarrow \quad 10=x^{2}+10-6 x$
$\Rightarrow \quad x(x-6)=0 \Rightarrow x=0,6$
17
(c)

We have,
$g(f(x))=8$
$\Rightarrow g(2 x+3)=8$
$\Rightarrow(2 x+3)^{2}+7=8 \Rightarrow 2 x+3= \pm 1 \Rightarrow x$

$$
=-1,-2
$$

18 (c)
Given, $f(x)=\frac{1}{\sqrt{4-x^{2}}}$
For domain of $f(x)$,
$\Rightarrow \quad 4-x^{2}>0$
$\Rightarrow \quad x^{2}<4$
$\Rightarrow \quad-2<x<2$
\therefore Domain $=(-2,2)$
19 (b)
Given, $f(0)=1, f(1)=5, \quad f(2)=11$
Let the second degree equation be

$$
\begin{array}{ll}
& f(x)=a x^{2}+b x+c \\
\therefore \quad & f(0)=0+0+c \Rightarrow c=1 \\
& f(1)=a+b+c \Rightarrow 5=a+b+1 \\
\Rightarrow \quad a+b=4 \\
& f(2)=4 a+2 b+c \Rightarrow 4 a+2 b+1=1 \\
\Rightarrow \quad 2 a+b=5 \tag{iii}
\end{array}
$$

On solving Eqs. (ii) and (iii), we get

$$
a=1, \quad b=3
$$

\therefore The required equation is

$$
f(x)=x^{2}+3 x+1
$$

20 (c)
We have,

$$
[x]+\sum_{r=1}^{2000} \frac{\{x+r\}}{2000}
$$

$$
=[x]
$$

$$
+\frac{1}{2000} \sum_{r=1}^{2000}((x+r)-[x+r])
$$

$\Rightarrow[x]+\sum_{r=1}^{2000} \frac{[x+r]}{2000}=[x]+\frac{1}{2000} \sum_{r=1}^{2000}(x-[x])$
$[\because[x+r]=[x]+r]$
$\Rightarrow[x]+\sum_{r=1}^{2000} \frac{\{x+r\}}{2000}=[x]+\frac{2000[x]}{2000}=[x]+\{x\}$ $=x$
21 (c)
We have,
$x \in[-2,2] \Rightarrow|x| \in[0,2]$
$\therefore f(|x|)=|x|-1$
Now,
$f(|x|)=x$
$\Rightarrow|x|-1=x \Rightarrow-x-1=x$ for $x \leq 0 \Rightarrow x=-\frac{1}{2}$
Hence, $\{x \in[-2,2]: x \leq 0$ and $f(|x|)=x\}=\left\{-\frac{1}{2}\right\}$
22 (a)
Since the function $g(x)=\cos x$ is an even
function and $h(x)=\log \left(x+\sqrt{x^{2}+1}\right)$ is an odd function
Therefore, the function $\operatorname{goh}(x)=\cos (\log (x+$ $x 2+1$ is an even function
23 (a)
Given
$f(\theta)=4+4 \sin ^{3} \theta-3 \sin \theta$

$$
=4-\left(3 \sin \theta-4 \sin ^{3} \theta\right)=4-\sin 3 \theta
$$

\therefore Period of $f(\theta)=\frac{2 \pi}{3}$
24 (d)
Given, $f(2 x+3)=\sin x+2^{x}$
Put $\quad x=2 m-n$
$\therefore f[2(2 m-n)+3]=\sin (2 m-n)+2^{2 m-n}$
$\Rightarrow \quad f(4 m-2 n+3)=\sin (2 m-n)+2^{2 m-n}$
25
(b)

We have, $f(x)=\frac{x+2}{x^{2}-8 x-4}$
For $f(x)$ to be defined, we must have
$x^{2}-8 x-4 \neq 0$, i. e., $x \neq 4 \pm 2 \sqrt{5}$
\therefore Domain $(f)=R-\{4-2 \sqrt{5}, 4+2 \sqrt{5}\}$
Let $y=f(x)$. Then,
$y=\frac{x+2}{x^{2}-8 x-4}$
$\Rightarrow x^{2} y-(8 y+1) x-(4 y+2)=0$
$\Rightarrow x=\frac{(8 y+1) \pm \sqrt{(8 y+1)^{2}+4 y(4 y+2)}}{2 y}$
$\Rightarrow x=\frac{(8 y+1) \pm \sqrt{80 y^{2}+24 y+1}}{2 y}$
For x to be real, we must have
$80 y^{2}+24 y+1 \geq 0$ and $y \neq 0$
$\Rightarrow(20 y+1)(4 y+1) \geq 0$ and $y \neq 0$
$\Rightarrow y \leq-\frac{1}{4}$ or, $y \geq-\frac{1}{20}, y \neq 0$
$\Rightarrow y \in(-\infty,-1 / 4] \cup[-1 / 20, \infty)$ and $y \neq 0$
For $x=-2$, we have $y=0$ and $-2 \in \operatorname{Domain}(f)$
Hence, range $(f)=(-\infty,-1 / 4] \cup[-1 / 20, \infty)$
(d)

Since $f(x)$ is a periodic function with period $2 \pi / 5$. Therefore, f is not injective. The function f is not surjective also as its range $[-1,1]$ is a
proper subset of its co-domain R
(b)

It is clear from the given options that $\cos \sqrt{x}+\cos ^{2} x$ is not periodic.
(b)

Given, $f(x)=[2 x]-2[x], \forall x \in R$
If x is an integer, then
$f(x)=0$
And if x is an integer, then
$f(x)$ is either 1 or 0 .
\therefore Range of $f(x)=\{0,1\}$
29 (b)
Since, $g(f(x))=|\sin x|$
$\Rightarrow \quad g\left(\sin ^{2} x\right)=|\sin x|$
$\Rightarrow \quad g\left(\sin ^{2} x\right)=\sqrt{\sin ^{2} x} \quad \therefore \quad g(x)=\sqrt{x}$
30 (b)
We have,
$f:[2, \infty) \rightarrow B$ such that $f(x)=x^{2}-4 x+5$
Since f is a bijection. Therefore, $B=$ range of f.
Also, $f(x)=x^{2}-4 x+5=(x-2)^{2}+1$ for all $x \in[2, \infty)$
Therefore, $f(x) \geq 1$ for all $x \in[2, \infty)$. Hence,
$B=[1, \infty)$
31
(a)
$f(x)$ is defined, if
$-\left(\log _{2} x\right)^{2}+5\left(\log _{2} x\right)-6>0$ and $x>0$
$\Rightarrow\left(\log _{2} x\right)^{2}-5\left(\log _{2} x\right)+6<0$ and $x>0$
$\Rightarrow\left(\log _{2} x-2\right)\left(\log _{2} x-3\right)<0$ and $x>0$
$\Rightarrow 2<\log _{2} x<3$ and $x>0$
$\Rightarrow 2^{2}<x<2^{3}$ and $x>0 \Rightarrow x \in(4,8)$
(c)

$$
\begin{aligned}
f(x+10 \pi) & =\sin \left\{\sin \left(\frac{x+10 \pi}{5}\right)\right\} \\
\Rightarrow f(x+10 \pi) & =\sin \left\{\sin \left(\frac{x}{5}+2 \pi\right)\right\} \\
\Rightarrow f(x+10 \pi) & =\sin \left\{\sin \left(\frac{x}{5}\right)\right\}=f(x)
\end{aligned}
$$

Therefore, period of $f(x)$ is 10π.
33 (a)
The function $f(x)=\sqrt{\log _{10}\left(\frac{5 x-x^{2}}{4}\right)}$ is defined, if
$\frac{5 x-x^{2}}{4} \geq 1 \Rightarrow 5 x-x^{2}-4 \geq 0 \Rightarrow x \in[1,4]$
\therefore Domain (f) $=[1,4]$
34
(b)

Since, $-1 \leq \cos 3 x \leq 1$
$\Rightarrow 1 \leq-\cos 3 x \leq-1$
$\Rightarrow 3 \leq 2-\cos 3 x \leq 1$
$\Rightarrow \frac{1}{3} \leq \frac{1}{2-\cos 3 x} \leq 1$
\therefore Range of f is $\left[\frac{1}{3}, 1\right]$.
35 (c)
We have,
$f(x)=\left\{\begin{array}{c}x, \text { if } x \text { is rational } \\ 1-x, \text { if } x \text { is irrational }\end{array}\right.$
If x is rational, then $f(x)=x$
$\therefore f(f(x))=f(x)=x$
If x is irrational, then $f(x)=1-x$
$\therefore f(f(x))=f(1-x)=1-(1-x)=x$
Thus, $f(f(x))=x$ for all $x \in[0,1]$
36 (c)
Let $y=\frac{x}{1+x^{2}}$
$\Rightarrow x^{2} y-x+y=0$
For x to be real

$$
1-4 y^{2} \geq 0
$$

$\Rightarrow(1-2 y)(1+2 y) \geq 0$
$\Rightarrow\left(\frac{1}{2}-y\right)\left(\frac{1}{2}+y\right) \geq 0$
$\Rightarrow-\frac{1}{2} \leq y \leq \frac{1}{2}$
$\therefore \quad y=f(x) \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
37 (d)
The domain of $f(x)$ is the complete set of real numbers. Since $f: R \rightarrow A$ is a surjection.
Therefore, A is the range of $f(x)$
Let $f(x)=y$. Then, $y \geq 0$
Now,
$f(x)=y$
$\Rightarrow \frac{x^{2}}{x^{2}+1}=y$
$\Rightarrow \frac{x^{2}+1}{x^{2}}=\frac{1}{y}$ for $y>0$
$\Rightarrow \frac{1}{x^{2}}=\frac{1-y}{y} \Rightarrow x=\sqrt{\frac{y}{1-y}}$
Now,
$x \in R, \Rightarrow \sqrt{\frac{y}{1-y}}$ is real $\Rightarrow \frac{y}{1-y} \geq 0 \Rightarrow 0 \leq y<1$
Therefore, range of $f(x)$ is $[0,1)$. Hence, $A=[0,1)$

(c)

Since, inverse of an equivalent relation is also an equivalent relation.
$\therefore R^{-1}$ is an equivalent relation.
39 (d)
The domain of $f(x)$ is the complete set of real numbers. Since $f: R \rightarrow A$ is a surjection.
Therefore, A is the range of $f(x)$
Let $f(x)=y$. Then, $y \geq 0$ and, $f(x)=y$
$\therefore \frac{x^{2}}{x^{2}+1}=y$
$\Rightarrow \frac{x^{2}+1}{x^{2}}=\frac{1}{y}$ for $y>0$
$\Rightarrow \frac{1}{x^{2}}=\frac{1-y}{y} \Rightarrow x=\sqrt{\frac{y}{1-y}}$
Now,
$\sqrt{\frac{y}{1-y}}$ is real $\Rightarrow \frac{y}{1-y} \geq 0 \Rightarrow 0 \leq y<1$
So, Range of $f(x)$ is $[0,1)$. Hence, $A=[0,1)$
(c)

For $f(x)$ to be defined, $5-4 x-x^{2} \geq 0$ and
$x+4>0$
$\Rightarrow-5 \leq x \leq 1$
And $x>-4$
$\Rightarrow-4<x \leq 1$
41 (d)

$$
\begin{aligned}
\because f(x) & =a^{\{\tan (\pi x)+x-[x]\}} \\
& =a^{\{\tan (\pi x)+(x)\}} \\
& =a^{\tan \pi x} a^{\{x\}}
\end{aligned}
$$

Hence, period of $f(x)$ is 1 .
42 (a)
For $f(x)$ to be defined
$x-1>0$ and $2 x-1>0$ and $2 x-1 \neq 1$
$\Rightarrow x>1, x>\frac{1}{2}$ and $x \neq 1$
$\Rightarrow x>1$
Hence, domain is $(1, \infty)$.

43 (c)
We have,
$f(x)=\sin x$ and $g(x)=x^{2}$
$\therefore f o g(x)=f(\mathrm{~g}(x))=f\left(x^{2}\right)=\sin x^{2}$
44 (d)

$$
\begin{aligned}
f(x) & =f(y)-\frac{1}{2}\left[f\left(\frac{x}{y}\right)\right]+f(x y) \\
& =\cos (\log x) \cdot \cos (\log y)
\end{aligned}
$$

$$
-\frac{1}{2}\left[\cos \left(\log \left(\frac{x}{y}\right)\right)+\cos (\log x y)\right]
$$

$$
=\cos (\log x) \cos (\log y)-\frac{1}{2}
$$

$$
\times 2 \cos (\log x) \cos (\log y)
$$

$$
=\cos (\log x) \cos (\log y)
$$

$-\cos (\log x) \cos (\log y)$
$=0$
45 (b)
We have,
$f(x)=\sqrt{\frac{-\log _{0.3}(x-1)}{-x^{2}+3 x+18}}=\sqrt{\frac{\log _{0.3}(x-1)}{x^{2}-3 x-18}}$
$f(x)$ is defined, if
$\frac{\log _{0.3}(x-1)}{x^{2}-3 x-18} \geq 0$
$\Rightarrow\left\{\begin{array}{c}\log _{0.3}(x-1) \geq 0 \text { and } x^{2}-3 x \\ \text { OR } \\ \log _{0.3}(x-1)<0 \text { and } x^{2}-3 x-18<0\end{array}\right.$-18 >0
$\Rightarrow\left\{\begin{array}{c}1<x \leq 2 \text { and } x<-3 \text { or } x>6 \\ \text { OR } \\ x>2 \text { and }-3<x<\end{array}\right.$
$\Rightarrow 2<x<6 \Rightarrow x \in(2,6)$
Hence domain of $f(x)=(2,6)$
46 (c)
For even $f(-x)=f(x)$ and for odd, $f(-x)=$
$-f(x)$
And $f(x)$ is increasing, if $f^{\prime}(x)>0$.
Here, $f(x)$ is not differentiable at $x \in I$ and above two cases are also not satisfied by $f(x)$.
$\therefore f(x)=[x]$ is neither even nor odd.
47 (a)
For $f(x)$ to be real, we must have
$-\log _{4}\left(\frac{6 x-4}{6 x+5}\right)>0, \frac{6 x-4}{6 x+5}>0$ and $6 x+5 \neq 0$
$\Rightarrow \log _{4}\left(\frac{6 x-4}{6 x+5}\right)<0, \frac{6 x-4}{6 x+5}>0$ and $6 x+5 \neq 0$
$\Rightarrow \frac{6 x-4}{6 x+5}>4^{0}, \frac{6 x-4}{6 x+5}>0$ and $x \neq \frac{-5}{6}$
$\Rightarrow \frac{-9}{6 x+5}<0, \frac{6 x-4}{6 x+5}>0$ and $x \neq \frac{-5}{6}$
$\Rightarrow 6 x+5>0, \frac{6 x-4}{6 x+5}>0$ and $x \neq \frac{-5}{6}$
$\Rightarrow 6 x-4>0$ and $x \neq \frac{-5}{6}$
$\Rightarrow x>\frac{2}{3}$ and $x \neq \frac{-5}{6}$
$\Rightarrow x \in(2 / 3, \infty)$
48 (c)
R is not anti-symmetric.
49 (d)
Given, $n(A)=4$ and $n(B)=6$
Here, $n(B)>n(A)$
Since, the function f is one-one and onto.
\therefore Required number of ways
$={ }^{6} P_{4}=\frac{6!}{2!}=360$
50 (d)
We have,
$f\left(x^{2}\right)=x^{2}-\frac{1}{x^{2}}=\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)$

$$
=\left(x+\frac{1}{x}\right) f(x)
$$

51 (d)
We have,
$f\left(x^{2}\right)=\left|x^{2}-1\right| \neq|x-1|^{2}=[f(x)]^{2}$
$f(|x|)=||x|-1 \neq|x-1|=|f(x)|$
and,
$f(x+y)=|x+y-1| \neq|x-1|+|y-1|$

$$
\neq f(x)+f(y)
$$

Hence, none of the given option is true
52 (d)
Given,

$$
f(x+y)=f(x)+f(y)
$$

For $\quad x=1, y=1$ we get

$$
\begin{aligned}
f(2) & =f(1)+f(1) \\
& =2 \cdot f(1)=10
\end{aligned}
$$

Also

$$
f(3)=f(2)+f(1)=15
$$

$\Rightarrow \quad f(n)=5 n$
$\therefore \quad f(100)=500$
53 (d)
Since, R is defined as $a R b$ iff $|a-b|>0$.
Reflexive : $a R a$ iff $|a-a|>0$
Which is not true. So, R is not reflexive.
Symmetric : $a R b$ iff $|a-b|>0$
Now, $b R a$ iff $|b-a|>0$
\Rightarrow

$$
|a-b|>0 \Rightarrow a R b
$$

Thus, R is symmetric.
Transitive : $a R b$ iff $|a-b|>0$
$b R c$ iff $|b-c|>0$
$\Rightarrow \quad|a-b+b-c|>0$
$\Rightarrow \quad|a-c|>0$
$\Rightarrow \quad|c-a|>0 \Rightarrow a R c$

Thus, R is also transitive.
54 (a)

$$
\begin{array}{ll}
\text { fof }= & \frac{1-f(x)}{1+f(x)}=\frac{1-\frac{1-x}{1+x}}{1+\frac{1-x}{1+x}} \\
\Rightarrow & f[f(x)]=x \\
\Rightarrow & f(x)=f^{-1}(x)
\end{array}
$$

55 (b)
Given, $f(x)=\log \left(x+\sqrt{x^{2}+1}\right)$
$\therefore f(x)+f(-x)$

$$
\begin{aligned}
& =\log \left(x+\sqrt{x^{2}+1}\right. \\
& +\log \left(-x+\sqrt{x^{2}+1}\right) \\
& =\log (1)=0
\end{aligned}
$$

Hence, $f(x)$ is an odd function.
56 (c)
Given,

$$
\begin{aligned}
f(x) & =\log \left\{\left(a x^{2}+b x+c\right)(x+1)\right\} \\
& =\log \left(a x^{2}+b x+c\right)+\log (x+1)
\end{aligned}
$$

For $f(x)$ to be defined

$$
a x^{2}+b x+c>0 \text { and } x+1>0
$$

$\Rightarrow \quad x>-1$
Hence, option (c) is correct.
57 (d)
We have, $f(x)=x^{2}+x$
Clearly, $y=x^{2}+x$ is a parabola opening upward having its vertex at $\left(-\frac{1}{2},-\frac{1}{4}\right)$. So, f is a many-one into function
ALITER We have, $f(0)=f(-1)=0$
So, f is many-one
Also, $f(x)=x^{2}+x=\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4} \geq-\frac{1}{4}$ for all x
\therefore Range $(f)=[-1 / 4, \infty] \neq$ Co-domain (f)
So, f is into
58 (c)
We have,
$T_{1}=1$ and $T_{2}=\frac{1}{3}$
Clearly, $T_{1}=3 T_{2}$
59 (c)
Let $x+y=u$ and $x-y=v$
$\Rightarrow \quad x=\frac{u+v}{2}$ and $y=\frac{u-v}{2}$
$\therefore \quad f(u, v)=\left(\frac{u+v}{2}\right)\left(\frac{u-v}{2}\right)$
The arithmetic mean of $f(u, v)$ and $f(v, u)$

$$
\begin{aligned}
& =\frac{f(u, v)+f(v, u)}{2} \\
& =\frac{\frac{u+v}{2}\left(\frac{u-v}{2}\right)+\left(\frac{u+v}{2}\right)\left(\frac{v-u}{2}\right)}{2}=0
\end{aligned}
$$

60
(c)

Since, $f(x)=x-[x]-\frac{1}{2}$

Also, $f(x)=\frac{1}{2}$
$\therefore \quad \frac{1}{2}=x-[x]-\frac{1}{2}$
$\Rightarrow x-[x]=1$
$\Rightarrow\{x\}=1 \quad[\because x=[x]+\{x\}]$
Which is not possible.
$\therefore\left\{x \in R: f(x)=\frac{1}{2}\right\}$ is an empty set.
61 (b)
We know that $|\sin x|+|\cos x|$ is periodic with period $\frac{\pi}{2}$
$\therefore f(x)=|\sin 3 x|+|\cos 3 x|$ I periodic with period $\frac{\pi}{6}$
62
(d)

Given,

$$
f(x)=x-[x]
$$

For $2<x<3$, then value of $[x]$ is 2
Let $\quad y=f(x)=x-2,2<x<3$
$\Rightarrow \quad x=2+y$
$\therefore \quad f^{-1}(x)=2+x$
63 (a)
We have,
$f(x)=\left(\frac{1}{2}\right)^{\sin x}$
Since, $\sin x$ is a periodic function with period 2π. Therefore, $f(x)$ is periodic with period 2π. We also know that every function can be uniquely expressed as the sum of an even function and an odd function
Hence, option (a) is true.
(d)

Given, $f(x)=\sqrt{x}$

$$
\begin{aligned}
\therefore \frac{f(25)}{f(16)+f(1)} & =\frac{\sqrt{25}}{\sqrt{16}+\sqrt{1}} \\
& =\frac{5}{4+1}=1
\end{aligned}
$$

(a)

The even extension of $f(x)$ on the interval $[-1,1]$ is given by
$g(x)=\left\{\begin{array}{c}f(x) \text { for } 0 \leq x \leq 1 \\ f(-x) \text { for }-1 \leq x<0\end{array}\right.$
$\Rightarrow g(x)$
$=\left\{\begin{array}{c}3 x^{2}-4 x+8 \log (1+|x|) \text { for } 0 \leq x \leq 1 \\ 3 x^{2}+4 x+8+\log (1+|x|) \text { for }-1 \leq x<0\end{array}\right.$
(c)

Let $y=\frac{x^{2}+x+2}{x^{2}+x+1}$
$\Rightarrow x^{2}(y-1)+x(y-1)+(y-2)=0, \forall x \in R$
Now, $D \geq 0 \Rightarrow(y-1)^{2}-4(y-1)(y-2) \geq 0$
$\Rightarrow(y-1)\{(y-1)-4(y-2)\} \geq 0$
$\Rightarrow \quad(y-1)(-3 y+7) \geq 0$

$$
\Rightarrow \quad 1 \leq y \leq \frac{7}{3}
$$

68 (a)
We observe that
Period of $\sin \left(\frac{\pi x}{2}\right)$ is $\frac{2 \pi}{\pi / 2}=4$, Period of $\cos \frac{\pi x}{2}$ is
$\frac{2 \pi}{\pi / 2}=4$,
So, period of $\sin \frac{\pi x}{2}+\cos \frac{\pi x}{2}$ is LCM of $(4,4)=4$
69 (b)
We have,
$f(x)=\sin ^{4} x+\cos ^{4} x$
$\Rightarrow f(x)=\left(\sin ^{2} x+\cos ^{2} x\right)-2 \sin ^{2} x \cos ^{2} x$
$\Rightarrow f(x)=1-\frac{1}{2}(\sin 2 x)^{2}=1-\frac{1}{2}\left\{\frac{1-\cos 4 x}{2}\right\}$

$$
=\frac{3}{4}+\frac{1}{4} \cos 4 x
$$

Since $\cos x$ is periodic with period 2π. Therefore, $\cos 4 x$ is periodic with period $\pi / 2$ and hence $f(x)$ is periodic with period $\pi / 2$
70 (a)
Given, $(x, y) \Leftrightarrow x^{2}-4 x y+3 y^{2}=0$
Or $(x, y) \Leftrightarrow(x-y)(x-3 y)=0$
(i) Reflexive

$$
x R x \Rightarrow(x-x)(x-3 x)=0
$$

\therefore It is reflexive.
(ii) Symmetric

Now, $x R y \Leftrightarrow(x-y)(x-3 y)=0$
And, $y R x \Leftrightarrow(y-x)(y-3 x)=0 \Rightarrow x R y \neq y R x$
\therefore It is not symmetric.
Similarly, it is not transitive.
71 (b)
We have,
$f(x)=(x-1)(x-2)(x-3)$
$\Rightarrow f(1)=f(2)=f(3)=0$
$\Rightarrow f(x)$ is not one-one
For each $y \in R$, there exists $x \in R$ such that
$f(x)=y$. Therefore, f is onto
Hence, $f: R \rightarrow R$ is onto but not one-one
72 (c)
Since, $f: X \rightarrow Y$ and $f(x)=\sin x$
Now, take option (c).

$$
\text { Domain }=\left[0, \frac{\pi}{2}\right], \text { Range }=[-1,1]
$$

For every value of x, we get unique value of y. But the value of y in $[-1,0)$ does not have any preimage.
\therefore Function is one-one but not onto.
73 (c)

Since, $f: R \rightarrow R$ such that $f(x)=3^{-x}$
Let y_{1} and y_{2} be two elements of $f(x)$ such that
$y_{1}=y_{2}$
$\Rightarrow \quad 3^{-x_{1}}=3^{-x_{2}} \Rightarrow x_{1}=x_{2}$
Since, if two images are equal, then their elements are equal, therefore it is one-one function.
Since, $f(x)$ is positive for every value of x, therefore $f(x)$ in into.
On differentiating w.r.t. x, we get $\frac{d y}{d x}=$
$-3^{-x} \log 3<0$ for every value of x.
\therefore It is decreasing function.
\therefore Statement I and II are true.
74 (d)
We have,
$f(x)=x[x]=k x$, when $k \leq x<k+1$ and $k \in Z$ Clearly, it is not a periodic function
75 (a)
Let $f(x)=y$. Then,
$\frac{3 x+2}{5 x-3}=y \Rightarrow x=\frac{3 y+2}{5 y-3}$
$\therefore f^{-1}(y)=\frac{3 y+2}{5 y-3}$ or, $f^{-1}(x)=\frac{3 x+2}{5 x-3}$
$=f(x)$ for all x
$76 \quad$ (c)
Given, $f(x)=\frac{\sqrt{4-x^{2}}}{\sin ^{-1}(2-x)}$
For $f(x)$ to be defined $4-x^{2} \geq 0 ;-1 \leq 2-x \leq$ and $2-x \neq 0$
$\Rightarrow-2 \leq x \leq 2 ; 1 \leq x \leq 3$ and $x \neq 2$
\therefore Domian of $f(x)$ is $[1,2)$.
$77 \quad$ (a)
Clearly, $f(x)$ is defined for all x satisfying
$-1 \leq|x-1|-2 \leq 1$
$\Rightarrow 1 \leq|x-1| \leq 3$
$\Rightarrow 1 \leq(x-1) \leq 3$ or, $-3 \leq x-1 \leq-1$
$\Rightarrow 2 \leq x \leq 4$ or, $-2 \leq x \leq 0 \Rightarrow x$

$$
\in[2,4] \cup[-2,0]
$$

$78 \quad$ (a)
For $f(x)$ to be defined, we must have
$-1 \leq[\sec x] \leq 1$
$\Rightarrow-1 \leq \sec x<2$
$\Rightarrow 2 m \pi \leq x<2 m \pi+\frac{\pi}{3}, m \in Z$ or, x

$$
=(2 n+1) \pi, n \in Z
$$

$\Rightarrow x \in\{x: x=(2 n+1) \pi, n \in Z\}$
$\cup\{x: 2 m \pi \leq x<2 m \pi+\pi / 3, m \in Z\}$
(d)

For domain of $\sin ^{-1}\left(\log _{3} x\right)$

$$
-1 \leq \log _{3} x \leq 1
$$

$\Rightarrow \quad 3^{-1} \leq x \leq 3$
\therefore Domain of $\sin ^{-1}\left(\log _{3} x\right)$ is $\left[\frac{1}{3}, 3\right]$.
80 (b)
We have,
$f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}$
$\Rightarrow f\left(x+\frac{1}{x}\right)=\left(x+\frac{1}{x}\right)^{2}-2$
$\Rightarrow f(y)=y^{2}-2$, where $y=x+\frac{1}{x}$
Now,
$y=x+\frac{1}{x}, x \neq 0$
$\Rightarrow y \geq 2$ or, $y \leq-2 \Rightarrow|y| \geq 2$
Thus, $f(y)=y^{2}-2$ for all $|y| \geq 2$
81 (a)
Given, $f(x)=\sin ^{2} x+\sin ^{2}\left(x+\frac{\pi}{3}\right)+$ $\cos x \cos \left(x+\frac{\pi}{3}\right)$

$$
\begin{aligned}
& =\sin ^{2} x+\left[\sin x \cos \frac{\pi}{3}+\cos x \sin \frac{\pi}{3}\right]^{2} \\
& +\cos x\left[\cos x \cos \frac{\pi}{3}\right. \\
& \left.-\sin x \sin \frac{\pi}{3}\right] \\
& =\sin ^{2} x+\left[\frac{\sin x}{2}+\cos x \cdot \frac{\sqrt{3}}{2}\right] \\
& +\cos x\left[\frac{\cos x}{2}-\sin x \cdot \frac{\sqrt{3}}{2}\right] \\
& =\sin ^{2} x+\frac{\sin ^{2} x}{4}+\frac{3 \cos ^{2} x}{4} \\
& +\sin x \cos x \cdot \frac{\sqrt{3}}{2} \\
& +\frac{\cos ^{2} x}{2}-\sin x \cos \frac{\sqrt{3}}{2} \\
& =\frac{5 \sin ^{2} x}{4}+5 \frac{\cos ^{2} x}{4}=\frac{5}{4}
\end{aligned}
$$

$\therefore \quad g o f(x)=g[f(x)]=g\left(\frac{5}{4}\right)=1$
(given)
82 (a)
We have,
$f(x)=\sec \left(\frac{\pi}{4} \cos ^{2} x\right), x \in(-\infty, \infty)$
Clearly,
$0 \leq \frac{\pi}{4} \cos ^{2} x \leq \frac{\pi}{4}$ for all $x \in(-\infty, \infty) \Rightarrow f(x)$

$$
\in[1, \sqrt{2}]
$$

83 (d)
We have,
$f(x)=\frac{e^{|x|}-e^{-x}}{e^{x}+e^{-x}}=\left\{\begin{array}{c}\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}, \quad x \geq 0 \\ 0, \quad x<0\end{array}\right.$
$\Rightarrow f(x)$ is many-one into as range $(f)=[0, \infty)$
$84 \quad$ (b)
Given, $f(x)=(x-1)(x-2)(x-3)$
$\Rightarrow \quad f(1)=f(2)=f(3)=0$
$\Rightarrow f(x)$ is not one-one.
For each $y \in R$, there exists $x \in R$ such that $f(x)=y$.
Therefore, f is onto.
$85 \quad$ (c)
Given, $f(n)=\left\{\begin{array}{l}\frac{n-1}{2}, \text { when } n \text { is odd } \\ -\frac{n}{2}, \text { when } n \text { is even }\end{array}\right.$

And $f: N \rightarrow I$, where N is the set of natural numbers and I is the set of integers.
Let $x, y \in N$ and both are even.
Then, $f(x)=f(y)$
$\Rightarrow-\frac{x}{2}=-\frac{y}{2} \Rightarrow x=y$
Again, $x, y \in N$ and both are odd.
Then, $f(x)=f(y)$
$\Rightarrow \quad \frac{x-1}{2}=\frac{y-1}{2}$
$\Rightarrow \quad x=y$
So, mapping is one-one.
Since, each negative integer is an image of even natural number and positive integer is an image of odd natural number. So, mapping is onto.
(a)

Since $\sqrt{\cos (\sin x)}$ exists for all $x \in R$ and $\sin ^{-1}\left(\frac{1+x^{2}}{2 x}\right)$ exists for $x= \pm 1$. Therefore, $f(x)=\sqrt{\cos (\sin x)}+\sin ^{-1}\left(\frac{1+x^{2}}{2 x}\right)$ is defined for $x \in[-1,1]$
87 (a)
Here, $\quad f(x)=\log \frac{10+x}{10-x}$
Given that, $f(x)=k f\left(\frac{200 x}{100+x^{2}}\right)$

$$
\begin{aligned}
\Rightarrow \log \frac{10+\mathrm{x}}{10-\mathrm{x}} & =k \cdot \log \left\{\frac{10+\frac{200 x}{100+x^{2}}}{10-\frac{20 x}{100+x^{2}}}\right\} \\
& =k \log \left(\frac{10+x}{10-x}\right)^{2}
\end{aligned}
$$

$\Rightarrow \log \frac{10+x}{10-x}=2 k \log \frac{10+x}{10-x}$
$\Rightarrow \quad k=0.5$
88 (d)
Since, $f(n)=\left\{\begin{array}{cc}n^{2}, & \text { if } n \text { odd } \\ 2 n+1, & \text { if } n \text { is even }\end{array}\right.$
$f(1)=1^{2}=1 \quad f(2)=2(2)+1=5$
$f(3)=3^{2}=9 \quad f(4)=2(4)+1=9$
$\therefore \quad f(3)=f(4)$
$\therefore f$ is not injective.

Also, f is not surjective as every element of N is not the image of any element of N
89 (a)

$$
\because f(y)=f\left(\frac{x+2}{x-1}\right)=\frac{\frac{x+2}{x-1}+2}{\frac{x+2}{x-1}-1}
$$

$\therefore \quad f(y)=x$
90 (c)
$(f o g)(x)=f[g(x)]=f(|3 x+4|)$
Since, the domain of f is $[-3,5]$
$\therefore \quad-3 \leq|3 x+4| \leq 5$
$\Rightarrow \quad|3 x+4| \leq 5$
$\Rightarrow \quad-5 \leq 3 x+4 \leq 5$
$\Rightarrow \quad-9 \leq 3 x \leq 1$
$\Rightarrow \quad-3 \leq x \leq \frac{1}{3}$
\therefore Domian of fog is $\left[-3, \frac{1}{3}\right]$.
92 (b)
$g(x)=1+x-[x]$ is greater than 1 since
$x-[x]>0$,

$$
f\{g(x)\}=1
$$

93 (c)
We have,
$f(x)=x-[x]$
$\Rightarrow f(x)=\left\{\begin{array}{c}x-n, \text { if } n<x<n+1 \\ n-n=0, \text { if } x=n\end{array}\right.$, where $n \in Z$
Thus, $f(x)$ is a many-one function
Consequently, $f^{-1}(x)$ is not defined
94 (a)
Given, $P(x)=x+a x+b$
$\therefore \quad P(10)=10+10 a+b=10+5=15$
And $P(11)=11+11 a+b$

$$
=11+5+a=16+a
$$

$\because \quad P(10) P(11)=P(n)$
$\Rightarrow \quad 15(16+a)=n+n a+b$
$\Rightarrow \quad 240+15 a=n+n a+5-10 a$
$\Rightarrow \quad n+n a-25 a-235=0$
(a) When $n=15$
$15+15 a-25 a-235=0$
$\Rightarrow \quad a=-22$ and $b=225$
(b) When $n=64$
$65+65 a-25 a-235=0$
$\Rightarrow \quad a=-\frac{17}{4}$ which is not integer.
(c) When $n=115$

$$
115+115 a-25 a-235=0
$$

$\Rightarrow \quad a=\frac{4}{3}$ which is not integer.
(d) When $n=165$

$$
165+165 a-25 a-235=0
$$

$\Rightarrow \quad a=\frac{1}{2}$ which is not integer.
(a)

We have,
fof $f^{-1}(x)=x$ for all $x \in(-\infty, 2]$
$\Rightarrow f\left(f^{-1}(x)\right)=x$
$\Rightarrow 4 f^{-1}(x)-\left\{f^{-1}(x)\right\}^{2}=x$
$\Rightarrow\left\{f^{-1}(x)\right\}^{2}-4 f^{-1}(x)+x=0$
$\Rightarrow f^{-1}(x)=\frac{4 \pm \sqrt{16-4 x}}{2}=2 \pm \sqrt{4-x}$
$\Rightarrow f^{-1}(x)=2-\sqrt{4-x} \quad\left[\because-\infty<f^{-1}(x) \leq 2\right]$
(b)

We have,
$f(x)=\left(a-x^{n}\right)^{1 / n}, n \in N$
$\Rightarrow f o f(x)=f(f(x))$
$\Rightarrow f o f(x)=f\left(\left(a-x^{n}\right)^{1 / n}\right)$
$\Rightarrow f o f(c)=\left[a-\left\{\left(a-x^{n}\right)^{1 / n}\right\}^{n}\right]^{1 / n}$
$\Rightarrow f o f(x)=\left\{a-\left(a-x^{n}\right)\right\}^{1 / n}=\left(x^{n}\right)^{1 / n}=x$
98
We have, $f(x)=\log _{3}\left|\log _{e} x\right|$
Clearly, $f(x)$ is defined, if
$\log _{e} x \neq 0$ and $x>0 \Rightarrow x \neq 1$ and $x>0 \Rightarrow x \in$
$(0,1) \cup(1, \infty)$
(d)

Since $f: R \rightarrow R$ and $g: R \rightarrow R$, given by
$f(x)=2 x-3$ and $g(x)=x^{3}+5$ respectively,
are bijections. Therefore, f^{-1} and g^{-1} exist
We have,
$f(x)=2 x-3$
$\therefore f(x)=y$
$\Rightarrow 2 x-3=y \Rightarrow x=\frac{y+3}{2}$
$\Rightarrow f^{-1}(y)=\frac{y+3}{2}$
Thus, f^{-1} is given by $f^{-1}(x)=\frac{x+3}{3}$ for all $x \in R$
Similarly, $g^{-1}(x)=(x-5)^{1 / 3}$ for all $x \in R$
Now, $(f \circ g)^{-1}(x)=\left(g^{-1} \circ f^{-1}\right)(x)=g^{-1}\left(f^{-1}(x)\right)$

$$
\begin{aligned}
\Rightarrow(f o g)^{-1}(x) & =g^{-1}\left(\frac{x+3}{2}\right)=\left(\frac{x+3}{2}-5\right)^{1 / 3} \\
& =\left(\frac{x-7}{2}\right)^{1 / 3}
\end{aligned}
$$

100 (c)
Since, $f(x)$ is a many-one function. so its inverse does not exist.
101 (b)
Clearly, $f(x)=\frac{x}{2}$ is one-one but not onto as range of f is $[1 / 2,1 / 2] \neq A$
The graph of $g(x)=\sin \left(\frac{\pi x}{2}\right)$ is as shown in
Fig.S. 1
Evidently, it is a bijection
$h(x)=|x|$ is many one as $h(-1 / 2)=h(1 / 2)$
and $k(x)$ is also many-one as $k(-1 / 2)=k(1 / 2)$

102 (b)
For domain of $f(x), 2-2 x-x^{2} \geq 0$
$\Rightarrow \quad x^{2}+2 x-2 \leq 0$
$\Rightarrow \quad-1-\sqrt{3} \leq x<-1+\sqrt{3}$
103 (c)
$f \circ g \circ h(x)=(f \circ g)(h(x))=(f \circ g)(2 x)$

$$
=f(g(2 x))=f\left(\left[4 x^{2}\right]\right)
$$

$\Rightarrow \operatorname{fogoh}(x)=\left\{\begin{array}{c}f(1), \text { if } \frac{1}{2} \leq x<\frac{1}{\sqrt{2}} \\ f(2), \text { if } x=\frac{1}{\sqrt{2}}\end{array}\right.$
$\Rightarrow \operatorname{fogoh}(x)=\left\{\begin{array}{lr}\sin ^{-1}(1), & \text { if } \frac{1}{2} \leq x<\frac{1}{\sqrt{2}} \\ \sin ^{-1}(2), & \text { if } x=\frac{1}{\sqrt{2}}\end{array}\right.$
\Rightarrow fogoh $(x)=\left\{\begin{array}{c}\frac{\pi}{2}, \text { if } \frac{1}{2} \leq x<\frac{1}{\sqrt{2}} \\ \text { Does not exist, if } x=\frac{1}{\sqrt{2}}\end{array}\right.$
Thus, option (a) and (b) are not correct
Now,
hofog $(x)=2 \sin ^{-1}\left[x^{2}\right]$ and, hogof $(x)=$ $2\left[\left\{\sin ^{-1} x\right\}^{2}\right]$
$\Rightarrow \operatorname{hofog}(x)=2 \sin ^{-1} 0$
and
hogof (x)
$=2 \times 0$

$$
\left[\begin{array}{c}
\because \frac{1}{4} \leq x^{2} \leq 1 / 2 \Rightarrow\left[x^{2}\right]=0 \\
\text { and } \\
\frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}} \\
\Rightarrow \pi / 6 \leq \sin ^{-1} x \leq \pi / 4 \\
\Rightarrow\left[\left\{\sin ^{-1} x\right\}^{2}\right]=
\end{array}\right]
$$

$\Rightarrow \operatorname{hofog}(x)=\operatorname{hogof}(x)$ for all $x \in[1 / 2,1 / \sqrt{2}]$
104 (c)
Let $x, y \in N$ be such that
$f(x)=f(y)$
$\Rightarrow x^{2}+x+1=y^{2}+y+1$
$\Rightarrow(x-y)(x+y+1)=0$
$\Rightarrow x=y \quad[\because x+y+1 \neq 0]$
$\therefore f: N \rightarrow N$ is one-one
f is not onto, because $x^{2}+x+1 \geq 3$ for all $x \in N$ So, 1, 2 do not have their pre-image
105 (b)
We have,
$f(x)=\left\{\begin{array}{c}0, x=0 \\ x^{2} \sin \left(\frac{\pi}{2 x}\right),|x|<1 \\ x|x|,|x| \geq 1\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{cl}-x^{2}, & x \leq-1 \\ x^{2} \sin \left(\frac{\pi}{2 x}\right), & , 1<x<0 \\ 0, & x=0 \\ x^{2} \sin \left(\frac{\pi}{2 x}\right), & 0<x<1 \\ x^{2}, & x \leq 1\end{array}\right.$
$\Rightarrow f(-x)=\left\{\begin{array}{c}-(-x)^{2},-x \leq-1 \\ (-x)^{2} \sin \left(\frac{\pi}{-2 x}\right),-1<-x<0 \\ 0, x=0 \\ (-x)^{2} \sin \left(\frac{\pi}{-2 x}\right), \quad 0<-x<1 \\ (-x)^{2}, \quad-x \geq 1\end{array}\right.$
$\Rightarrow f(-x)=\left\{\begin{array}{cl}-x^{2}, & x \geq 1 \\ -x^{2} \sin \left(\frac{\pi}{2 x}\right), & 0<x<1 \\ 0, & x=0 \\ -x^{2} \sin \left(\frac{\pi}{2 x}\right), & -1<x<0 \\ x^{2}, & x \leq-1\end{array}\right.$
$\Rightarrow f(-x)=-f(x)$ for all x
Hence, $f(x)$ is an odd function
106
(d)

Here, we have to find the range of the function which $[-1 / 3,1]$
108 (b)
The function $f(x)=x^{3}$ is not a surjective map from Z to itself, because $2 \in Z$ does not have any pre-image in Z. The function $f(x)=x+2$ is a bijection from Z to itself. The function $f(x)=2 x+1$ is not a surjection from Z to itself and $f(x)=x^{2}+x$ is not an injection map from Z to self
109 (d)
For $f(x)$ to be real, we must have
$|\cos x|+\cos x>0$
$\Rightarrow 2 \cos x>0[\because \cos x<0 \Rightarrow|\cos x|+\cos x=0]$
$\Rightarrow \cos x>0$
$\Rightarrow 2 n \pi-\frac{\pi}{2}<x<2 n \pi+\frac{\pi}{2} \Rightarrow x$

$$
\in\left((4 n-1) \frac{\pi}{2},(4 n+1) \frac{\pi}{2}\right)
$$

Hence, domain $(f)=\left((4 n-1) \frac{\pi}{2},(4 n+1) \frac{\pi}{2}\right)$

We have,
$f(x)=\left(25-x^{4}\right)^{1 / 4}$
$\therefore f o f(x)=f(f(x))=f\left(\left(25-x^{4}\right)^{1 / 4}\right)$
$\Rightarrow f o f(x)=\left[25-\left\{\left(25-x^{4}\right)^{1 / 4}\right\}^{4}\right]^{1 / 4}$

$$
=\left\{25-\left(25-x^{4}\right)\right\}^{1 / 4}
$$

$\Rightarrow f o f(x)=x$ for all x
$\therefore f o f\left(\frac{1}{2}\right)=\frac{1}{2}$
ALITER We have,
$f\left(f\left(\frac{1}{2}\right)\right)=f\left(\left(25-\frac{1}{16}\right)^{\frac{1}{4}}\right)$
$\Rightarrow f\left(f\left(\frac{1}{2}\right)\right)=f\left(\left(\frac{399}{16}\right)^{\frac{1}{4}}\right)=\left(25-\frac{399}{16}\right)^{\frac{1}{4}}=\frac{1}{2}$
111 (b)
$f(x)=\sec \left(\operatorname{In}\left(x+\sqrt{1+x^{2}}\right)\right)=\sec ($ odd
function) $=$ even function
$\because \sec$ is an even function
112 (b)
We have, $f(x)=\sin (\log x)$
$\therefore f(x y)+f\left(\frac{x}{y}\right)-2 f(x) \cos (\log y)$
$=\sin \{\log (x y)\}+\sin \left\{\log \left(\frac{x}{y}\right)\right\}$
$-2 \sin (\log x) \cos (\log y)$
$=\sin (\log x+\log y)+\sin (\log x-\log y)$
$-2 \sin (\log x) \cos (\log y)$
$=2 \sin (\log x) \cos (\log y)-2 \sin (\log x) \cos (\log y)$

$$
=0
$$

114 (c)
The total number of bijections from a set containing n elements to itself is n !. Hence, required number $=(106)$!
115 (c)
We have,
$f(x)=\log _{0.5}\left\{-\log _{2}\left(\frac{3 x-1}{3 x+2}\right)\right\}$
Clearly, $f(x)$ id defined if
$-\log _{2}\left(\frac{3 x-1}{3 x+2}\right)>0$ and $\frac{3 x-1}{3 x+2}>0$
$\Rightarrow \log _{2}\left(\frac{3 x-1}{3 x+2}\right)<0$ and $x<-\frac{2}{3}$ or $x>\frac{1}{3}$
$\Rightarrow \frac{3 x-1}{3 x+2}<20$ and $x \in(-\infty,-2 / 3) \cup(1 / 3, \infty)$
$\Rightarrow \frac{-3}{3 x+2}>0$ and $x \in(-\infty,-2 / 3) \cup(1 / 3, \infty)$
$\Rightarrow x>-\frac{2}{3}$ and $x \in(-\infty,-2 / 3) \cup(1 / 3-\infty)$
$\Rightarrow x \in(1 / 3, \infty)$
117 (b)
$f(x)=|\sin x|$ has its inverse if it is a bijection.
Clearly $f(x)=|\sin x|$ is injective if its domain is $[0, \pi / 2]$. Also, $f(x)$ is surjective if its co-domain is $[0,1]$
Hence, $f(x)=|\sin x|$ is invertible if it is a
function from $[0, \pi / 2]$ to $[0,1]$
118 (b)
We have,
$f(x)=\log \left(x+\sqrt{x^{2}+1}\right)$
$\therefore f(-x)+f(x)$

$$
\begin{aligned}
& =\log \left(x+\sqrt{x^{2}+1}\right) \\
& +\lg \left(-x+\sqrt{x^{2}+1}\right)
\end{aligned}
$$

$\Rightarrow f(-x)+f(x)=\log \left(-x^{2}+x^{2}+1\right)=\log 1=0$ for all x
$\Rightarrow f(-x)=-f(x)$ for all x
$\Rightarrow f(x)$ is an odd function
119 (a)
$a R b \Leftrightarrow a=2^{k} . b$ for some integer.
Reflexive : $a R b$ for $k=0$
Symmetric $a R b \Leftrightarrow a=2^{k} b$
$\Rightarrow b=2^{-k} a \Leftrightarrow b R a$
Transitive $a R b \Leftrightarrow a=2^{k_{1}} b$

$$
\begin{array}{rlrl}
& & b R c \Leftrightarrow b & =2^{k_{2}} c \\
\Rightarrow & \quad a & =2^{k_{1}} \cdot 2^{k_{2}} c \\
\Rightarrow & a & =2^{k_{1}+k_{2}} c \Leftrightarrow a R c \\
\Rightarrow & a R b, b R c \Rightarrow a R c
\end{array}
$$

$\therefore R$ is an equivalent relation.
120 (c)
We have,
$f(x) f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right) \Rightarrow f(x)=x^{n}+1$
Now,
$f(10)=1001 \Rightarrow 10^{n}+1=1001 \Rightarrow n=3$
$\therefore f(x)=x^{3}+1 \Rightarrow f(20)=20^{3}+1=8001$
121 (b)
We have,
$f(x)=\frac{\sin ^{4} x+\cos ^{4} x}{x+x^{2} \tan x}$
$\Rightarrow f(-x)=\frac{\sin ^{4} x+\cos ^{4} x}{-x+x^{2} \tan (-x)}=-\frac{\sin ^{4} x+\cos ^{4} x}{x+x^{2} \tan x}$
$=-f(x)$
So, $f(x)$ is an odd function
Obviously, $f(x)$ is not a periodic function due to the presence of x in the denominator
122 (b)
Since, $\left[b(x+1)^{2}+c(x+1)+d\right]-\left[b x^{2}+c x+\right.$ $d-8 x+3$
$\Rightarrow \quad(2 b) x+(b+c)=8 x+3$
$\Rightarrow \quad 2 b=8, b+c=3 \Rightarrow b=4, c=-1$

123 (c)
Let $f(x)=b x^{2}+a x+c$
Since, $f(0)=0 \Rightarrow c=0$
And $f(1)=0 \Rightarrow a+b=1$
$\therefore f(x)=a x+(1-a) x^{2}$
Also, $f^{\prime}(x)>0$ for $x \in(0,1)$
$\Rightarrow a+2(1-a) x>0 \Rightarrow a(1-2 x)+2 x$ >0
$\Rightarrow \quad a>\frac{2 x}{2 x-1} \Rightarrow \quad 0<a<2$
Since, $x \in(0,1)$
$\therefore \quad f(x)=a x+(1-a) x^{2} ; 0<a<2$
124 (c)
Put, $x=1,-\frac{1}{2}$ in given function respectively, we get

$$
\begin{equation*}
2 f(2)+f\left(\frac{1}{2}\right)=2 \tag{i}
\end{equation*}
$$

And $\quad 2 f\left(\frac{1}{2}\right)+f(2)=-1$
On solving Eqs. (i) and (ii), we get $f(2)=\frac{5}{3}$
125 (d)
Let $\phi(x)=f(x)-g(x)$
$=\left\{\begin{array}{l}x, x \in \mathcal{Q} \\ -x, x \notin \mathcal{Q}\end{array}\right.$
For one-one
Take any straight line parallel to x -axis which will intersect $\phi(x)$ only at one point.
$\Rightarrow \phi(x)$ is one-one.
Foe onto
As, $\phi(x)=\left\{\begin{array}{c}x, x \in \mathcal{Q} \\ -x, x \notin Q\end{array}\right.$, which shows
$y=x$ and $y=-x$ for irrational values $\Rightarrow y \notin$ real numbers.
\therefore Range $=$ Codomain
$\Rightarrow \quad \phi(x)$ is onto.
Thus, $f-g$ is one-one and onto.
126 (b)
We have,
$y=\log _{2}\left\{-\log _{1 / 2}\left(1+\frac{1}{x^{1 / 4}}\right)-1\right\}$
Clearly, y will take real values, if
$-\log _{1 / 2}\left(1+\frac{1}{x^{1 / 4}}\right)-1>0$ and $x>0$
$\Rightarrow \log _{2}\left(1+\frac{1}{x^{\frac{1}{4}}}\right)-1>0$ and $x>0$
$\Rightarrow 1+\frac{1}{x^{1 / 4}}>2$ and $x>0$
$\Rightarrow \frac{1}{x^{1 / 4}}>1$ and $x>0 \Rightarrow x \in(0,1)$
127
(b)

We observe that $\cos ^{-1}\left(\frac{2-|x|}{4}\right)$ is defined, for
$-1 \leq \frac{2-|x|}{4} \leq 1$
$\Leftrightarrow-6 \leq-|x| \leq 2 \Leftrightarrow-2 \leq|x| \leq 6 \Leftrightarrow|x| \leq 6$
Thus, the domain o $\cos ^{-1}\left(\frac{2-|x|}{4}\right)$ is $D_{1}=[-6,6]$
The domain of $\frac{1}{\log _{10}(3-x)}$ is the set of all real
numbers for which $3-x>0$ and $3-x \neq 1$, i.e.,
$x>3$ and $x \neq 2$
Hence, the domain of the given function is
$\{x:-6 \leq x \leq 6\} \cap\{x: x \neq 2, x<3\}$

$$
=[-6,2) \cup(2,3)
$$

128 (b)

We have,
$f(x)=1+\frac{\sin x}{1-\sin ^{2} x}=1+\frac{\sin x}{\cos ^{2} x}$
$=1+\tan x \sec x$
$\therefore f^{\prime}(x)=\sec ^{3} x+\sec x \tan ^{2} x>0$ for all
$x \in(-\pi / 2, \pi / 2)$
$\Rightarrow f(x)$ is an increasing function on $(-\pi / 2, \pi / 2)$
Now,
$\lim _{x \rightarrow \pi / 2} f(x)=\lim _{x \rightarrow \pi / 2}\left(1+\frac{\sin x}{1-\sin ^{2} x}\right)=\infty$
and,
$\lim _{x \rightarrow-\pi / 2} f(x)=\lim _{x \rightarrow-\pi / 2}\left(1+\frac{\sin x}{1-\sin ^{2} x}\right)=-\infty$
Hence, range $(f)=(f(-\pi / 2), f(\pi / 2))=$ $(-\infty, \infty)=R$
129 (a)
If A and B are two sets having m and n elements respectively such that $1 \leq n \leq m$, then number of onto mapping from A to B

$$
=\sum_{r=1}^{n}(-1)^{n-1} n C_{r} r^{m}
$$

Here, $m=100, n=2$
\therefore The number of onto mappings from A to B

$$
\begin{aligned}
& =\sum_{r=1}^{2}(-1)^{2-r}{ }^{2} C_{r} r^{100} \\
& =(-1)^{2-1.2} C_{1} \times 1^{100}+(-1)^{2-2.2} C_{2} \cdot 2^{100} \\
& =2^{100}-2
\end{aligned}
$$

130 (c)
Given, $f\{f(x)\}=x+1$
$\therefore \quad f\{f(0)\}=x+1$
$\Rightarrow \quad f\left(\frac{1}{2}\right)=1 \quad\left[\because f(0)=\frac{1}{2}\right]$
Now, put $x=\frac{1}{2}$ in Eq. (i), we get

$$
\begin{aligned}
& f\left\{f\left(\frac{1}{2}\right)\right\} \\
\Rightarrow & =\frac{1}{2}+1 \\
\Rightarrow(1) & =\frac{3}{2}
\end{aligned}
$$

131 (c)

We have,
$f(x)=\frac{\sin 8 x \cos x-\sin 6 x \cos 3 x}{\cos x \cos 2 x-\sin 3 x \sin 4 x}$
$\Rightarrow f(x)=\frac{(\sin 9 x+\sin 7 x)-(\sin 9 x+\sin 3 x)}{(\cos 3 x+\cos x)-(\cos x-\cos 7 x)}$
$\Rightarrow f(x)=\frac{\sin 7 x-\sin 3 x}{\cos 3 x+\cos 7 x}$
$\Rightarrow f(x)=\frac{2 \sin 2 x \cos 5 x}{2 \cos 5 x \cos 2 x}$
$\Rightarrow f(x)=\tan 2 x$
Since $\tan x$ is period with period π. Therefore,
$f(x)=\tan 2 x$ is periodic with period $\frac{\pi}{2}$
133 (b)
Since $f(x)$ is an even function. So $f^{\prime}(x)$ is an odd function
134 (c)
Since, $f(n)=1+n^{2}$
For one-to-one, $1+n_{1}^{2}=1+n_{2}^{2}$
$\Rightarrow \quad n_{1}^{2}-n_{2}^{2}=0$
$\Rightarrow \quad n_{1}=n_{2} \quad\left(\because n_{1}+n_{2} \neq 0\right)$
$\therefore f(n)$ is one-to-one.
But $f(n)$ is not onto as every element of codomain is not the image of any element of domains.
Hence, $f(n)$ is one-to-one but not onto.
136 (b)
Given, $f(x)=\left(a-x^{n}\right)^{1 / n}=g(x)$

$$
\begin{aligned}
& \therefore \quad f o f(x)=f(f(x)) \\
&= {\left[a-\left\{\left(a-x^{n}\right)^{\frac{1}{n}}\right\}^{n}\right]^{1 / n}=\left[a-\left(a-x^{n}\right)\right]^{1 / n} } \\
&=x
\end{aligned}
$$

137 (b)
Given, $r=\{(a, b) \mid a, b \in R$ and $a-b+\sqrt{3}$ is an irrational number\}
(i) Reflexive
ara $=a-a+\sqrt{3}=\sqrt{3}$ which is irrational number.
(ii) Symmetric

Now, $2 r \sqrt{3}=2-\sqrt{3}+\sqrt{3}=2$
Which is not an irrational.
Also, $\sqrt{3} r 2=\sqrt{3}-2+\sqrt{3}=2 \sqrt{3}-2$ which is an irrational.
$2 r \sqrt{3} \neq \sqrt{3} r 2$
Which is not symmetric.

(iii) Transitive

Now, $\sqrt{3} r 2$ and $2 r 4 \sqrt{5}$, ie,
$\sqrt{3}-2+\sqrt{3}+2-4 \sqrt{5}+\sqrt{3}$

$$
=2 \sqrt{3}-4 \sqrt{5}+\sqrt{3} \neq \sqrt{3} r 4 \sqrt{5}
$$

\therefore It is not transitive.
138 (a)
Given, $y=x-3 \Rightarrow x-y=3$
$\therefore \quad R=\{(11,8),(13,10)\}$
$\Rightarrow \quad R^{-1}=\{(8,11),(10,13)\}$
139 (d)
Let $y=x^{2}-6 x-14 \Rightarrow y=(x-3)^{2}-23$
$\Rightarrow \quad x= \pm \sqrt{y+23}+3$
$\Rightarrow \quad f^{-1}(x)= \pm \sqrt{x+23}+3$
$\therefore \quad f^{-1}(2)= \pm \sqrt{25}+3=-2,8$
It means we do not define a inverse function
$\therefore \quad f^{-1}(2)=\phi$
140 (c)
Clearly, $f(x)=\sqrt[3]{\frac{2 x+1}{x^{2}-10 x-11}}$ is defined for all x except
$x^{2}-10 x-11=0$ i. e. $x=11,-1$
\therefore Domain $(f)=R-\{-1,11\}$
141 (d)
Period of $\sin \left(\frac{3 x}{2}\right)=\frac{2 \pi}{3 / 2}=\frac{4 \pi}{3}$
And period of $\sin \left(\frac{2 x}{3}\right)=\frac{2 \pi}{2 / 3}=3 \pi$
\therefore Period of $\sin \left(\frac{2 x}{3}\right)+\sin \left(\frac{3 x}{2}\right)=\frac{\operatorname{LCM}(3 \pi, 4 \pi)}{\operatorname{HCF}(1,3)}$

$$
=12 \pi
$$

142 (d)
Let $f(x)=e^{x^{2} / 2}$
$\therefore \quad f(-x)=e^{(-x)^{2}}=e^{x^{2 / 2}}$
And $\quad \frac{f^{\prime}(x)}{x}=\frac{1}{x}\left(e^{x^{2} / 2} \cdot \frac{2 x}{2}\right)=e^{x^{2} / 2}$

$$
\begin{aligned}
\Rightarrow \quad f(x) & =f(-x) \\
& =\frac{f^{\prime}(x)}{x}
\end{aligned}
$$

143 (c)

Given, $f(n)=\left\{\begin{array}{l}\frac{n}{2}, n \text { is even } \\ 0, n \text { is odd }\end{array}\right.$
Here, we see that for every odd values of z, it will give zero. It means that it is a many one function.
For every even values of z, we will get a set of integers $(-\infty, \infty)$. So, it is onto. Hence, it is surjective but not injective.
145 (c)
Let $f^{-1}(17)=x$. Then,
$f(x)=17 \Rightarrow x^{2}+1=17 \Rightarrow x \pm 4$
Let $f^{-1}(-3)=x$
Then, $f(x)=-3 \Rightarrow x^{2}+1=-3 \Rightarrow x^{2}=-4$
which is not possible for any real number x
147 (a)
We have,
$f(x)=\frac{|x|}{x}=\left\{\begin{array}{c}1,0<x \leq 4 \\ -1,-4 \leq x<0\end{array}\right.$
\therefore Range $(f)=\{-1,1\}$
148 (b)
We have,
$f(x)=(9 x+0.5) \log _{(0.5+x)}\left\{\frac{x^{2}+2 x-3}{4 x^{2}-4 x-3}\right\}$
Clearly, $f(x)$ will assume real values, if
$0.5+x>0,0.5+x \neq 1$ and $\frac{x^{2}+2 x-3}{4 x^{2}-4 x-3}>0$
Clearly, $f(x)$ will assume real values, if
$0.5+x>0,0.5+x \neq 1$ and $\frac{x^{2}+2 x-3}{4 x^{2}-4 x-3}>0$
$\Rightarrow x>-\frac{1}{2}, x \neq \frac{1}{2}$ and $\frac{(x+3)(x-1)}{(2 x-3)(2 x+1)}>0$
$\Rightarrow x>-\frac{1}{2}, x \neq \frac{1}{2}, x \neq \frac{1}{2}$
and, $x \in(-\infty,-3) \cup(-1 / 2,1) \cup(3 / 2, \infty)$
$\Rightarrow x \in(-1 / 2,1 / 2) \cup(1 / 2,1) \cup(3 / 2, \infty)$
149 (b)

$$
\begin{aligned}
\operatorname{ho}(f o g)(x) & =\operatorname{hof}\{g(x)\} \\
& \left.=\operatorname{hof}\left\{\sqrt{\left(x^{2}+1\right.}\right)\right\} \\
& =h\left\{\left(\sqrt{x^{2}+1}\right)^{2}-1\right\} \\
& =h\left\{x^{2}+1-1\right\} \\
& =h\left\{x^{2}\right\}=x^{2}
\end{aligned}
$$

150 (b)
Number of reflexive relations of a set of 4
elements $=2^{4^{2}-4}$
$=2^{12}$
151 (d)
Clearly, $\mathrm{g}(x)$ is the inverse of $f(x)$ and is given by $\mathrm{g}(x)=\left(\frac{x^{1 / 3}-b}{a}\right)^{1 / 2}$
153 (d)
We have, $f(x)=\tan \left(\frac{\pi}{[x+2]}\right)$
Clearly, $f(x)$ is defined, if
$[x+2] \neq 0$ and $[x+2] \neq 2$
$\Rightarrow x+2 \notin[0,1)$ and $x+2 \in[2,3)$
$\Rightarrow x \in(-2,-1)$ and $x \notin[0,1)$
$\Rightarrow x \in(-\infty,-2) \cup[-1,0) \cup[1, \infty)$
Hence, domain of $f=(-\infty,-2) \cup[-1,0) \cup[1, \infty)$
154 (b)
Since, $A=\{x:-1 \leq x \leq 1\}$
And $B=\{y: 1 \leq y \leq 2\}$
Also, $y=f(x)=1+x^{2}$
For $x=-1, y=1+(-1)^{2}=2$
And for $x=1, y=1+1^{2}=2$
$\therefore f$ is not injective. (one-one)
Here, $\forall B$ their is a preimage.
Hence, f is surjective.
155 (d)
We have,
$f(x)=[x]=k$ for $k \leq x<k+1$, where $k \in Z$

So, f is many-one into
157 (c)
$f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}=\left(x+\frac{1}{x}\right)^{2}-2$
$\therefore \quad f(x)=x^{2}-2$
158 (c)
The relation $R=\{(1,1),(2,2),(3,3)\}$ on the set $\{1,2,3\}$ is an equivalent relation.

159 (c)

We have,
$f(x)=a x+b, g(x)=c x+d$
$\therefore f(g(x))=g(f(x))$ for all x
$\Leftrightarrow f(c x+d)=g(a x+b)$ for all x
$\Leftrightarrow a(c x+d)+b=c(a x+b)+d$ for all x
$\Leftrightarrow a d+b=c b+d \quad$ [Putting $x=0$ on both sides]
$\Leftrightarrow f(d)=g(b)$
160 (b)
Let x be any real number. Then, there exists an integer k such that $k \leq x<k+1$
If $k \leq x<k+\frac{1}{2}$, then
$\Rightarrow 2 k \leq 2 x<2 k+1 \Rightarrow[2 x]=2 k$ and $[x]=k$
$\therefore f(x)=[2 x]-2[x]=2 k-2 k=0$
If $k+\frac{1}{2} \leq x<k+1$, then
$2 k+1 \leq 2 x<2 k+2$
$\Rightarrow[2 x]=2 k+1$ and $[x]=k$
$\therefore f(x)=[2 x]-2[x]=2 k+1-2 k=1$
Hence, Range $(f)=\{f(x): x \in R\}=\{0,1\}$
161 (b)
$f(x)$ is defined, if
$\log _{10}\left(1+x^{3}\right)>0 \Rightarrow 1+x^{3}>10^{0} \Rightarrow x^{3}>0 \Rightarrow x$

$$
>0 \Rightarrow x \in(0, \infty)
$$

Hence, domain of $f=(0, \infty)$
162 (d)
Since, $(3,3),(6,6),(9,9),(12,12) \in R \Rightarrow R$ is reflexive.
Now, $(6,12) \in R$ but $(12,6) \notin R \Rightarrow R$ is not symmetric.
Also, $(3,6),(6,12) \in R \Rightarrow(3,12) \in R$
$\Rightarrow R$ is transitive.
163 (a)
We have,
$f(x+2)-2 f(x+1)+f(x)$
$=a^{x+2}-2 a^{x+1}+a^{x}=a^{x}\left(a^{2}-2 a+1\right)$
$=a^{x}(a-1)^{2}=(a-1)^{2} f(x)$
So, option (a) holds
It can be easily checked that all other options are not true
164 (a)

We have,
$f(x)=\frac{10^{x}-10^{-x}}{10^{x}+10^{-x}}+1$
$\therefore \operatorname{fof}^{-1}(x)=x$
$\Rightarrow f\left(f^{-1}(x)\right)=x$
$\Rightarrow f(y)=x$, where $y=f^{-1}(x)$
$\Rightarrow \frac{10^{y}-10^{-y}}{10^{y}+10^{-y}}+1=x$
$\Rightarrow \frac{10^{2 y}-1}{10^{2 y}+1}+1=x$
$\Rightarrow \frac{10^{2 y}-1}{10^{2 y}+1}=x-1 \Rightarrow \frac{2 \times 10^{2 y}}{-2}=\frac{x}{x-2} \Rightarrow 10^{2 y}$

$$
=\frac{x}{2-x}
$$

$\Rightarrow 2 y=\log _{10}\left(\frac{x}{2-x}\right) \Rightarrow y=\frac{1}{2} \log _{10}\left(\frac{x}{2-x}\right)$
$\Rightarrow f^{-1}(x)=\frac{1}{2} \log _{10}\left(\frac{x}{2-x}\right)$
165 (b)
We have,
fog $(x)=\sqrt{\mid 3^{\tan \pi x}-3^{1-\tan \tan \pi \mid-2}}$
For $f o g(x)$ to be defined, we must have
$\left|3^{\tan \pi x}-3^{1-\tan \pi x}\right|-2 \geq 0$
$\Rightarrow\left|3^{\tan \pi x}-\frac{3}{3^{\tan \pi x}}\right| \geq 2$
$\Rightarrow\left|t-\frac{3}{t}\right| \geq 2$, where $t=3^{\tan \pi x}>0$
$\Rightarrow t-\frac{3}{t} \geq 2$ or $t-\frac{3}{t} \leq-2$
$\Rightarrow t^{2}-2 t-3 \geq 0$ or $t^{2}+2 t-3 \leq 0$
$\Rightarrow(t-3)(t+1) \geq 0$ or $(t+3)(t-1) \leq 0$
$\Rightarrow t \geq 3$ or $0<t \leq 1 \quad[\because t>0]$
$\Rightarrow 3^{\tan \pi x} \geq 3$ or, $3^{\tan \pi x} \leq 1$
$\Rightarrow \tan \pi x \geq 1$ or, $\tan \pi x \leq 0$
$\Rightarrow n \pi+\frac{\pi}{4} \leq \pi x<n \pi+\frac{\pi}{2}$ or $n \pi-\frac{\pi}{2}<\pi x$

$$
<\pi x<n \pi, n \in Z
$$

$\Rightarrow n \pi+\frac{\pi}{4} \leq \pi x<n \pi+\frac{\pi}{2}$ or, $n \pi+\frac{\pi}{2} \leq \pi x$

$$
<(n+1) \pi, n \in Z
$$

$\Rightarrow x \in\left(n+\frac{1}{4}, n+\frac{1}{2}\right) \cup\left(n+\frac{1}{2}, n+1\right)$
166 (c)
Let $f^{-1}(5)=x$. Then,
$f(x)=5 \Rightarrow 3 x-4=5 \Rightarrow x=3 \Rightarrow f^{-1}(5)=3$
$\therefore g^{-1}\left(f^{-1}(5)\right)=g^{-1}(3)$
Let $g^{-1}(3)=y$. Then, $g(y)=3 \Rightarrow 3 y+2=3 \Rightarrow$ $y=\frac{1}{3}$
$\therefore g^{-1}\left(f^{-1}(5)\right)=\frac{1}{3}$
167 (d)
We have,
$f(x)+g(x)=e^{x}$ and $f(x)-g(x)=e^{-x}$
$\Rightarrow f(x)=\frac{e^{x}+e^{-x}}{2}$ and $g(x)=\frac{e^{x}-e^{-x}}{2}$
Clearly, $f(-x)=f(x)$ and $g(-x)=-g(x)$ for all $x \in R$
Hence, $f(x)$ is an even function and $g(x)$ is an odd function
168 (c)
Given, $f(x)=\frac{1}{2}-\tan \left(\frac{\pi x}{2}\right),-1<x<1$
Given, domain of $f(x)$ is $d_{1}=(-1,1)$
For domain of $g(x), 3+4 x-4 x^{2} \geq 0$
$\Rightarrow \quad(2 x-3)(2 x+1) \leq 0$
\therefore Domain of $g(x)$ is $d_{2}=\left[-\frac{1}{2}, \frac{3}{2}\right]$
Hence, domain of $(f+g)=d_{1} \cap d_{2}=\left[-\frac{1}{2}, 1\right]$
169 (b)
Given, $f(x)=2 x^{6}+3 x^{4}+4 x^{2}$
Now, $f(-x)=2(-x)^{6}+3(-x)^{4}+4(-x)^{2}$

$$
\begin{aligned}
& =2 x^{6}+3 x^{4}+4 x^{2}=f(x) \therefore f(-x) \\
& \quad=f(x)
\end{aligned}
$$

$\Rightarrow f(x)$ is an even function.
$\Rightarrow f^{\prime}(x)$ is an odd function.
170 (b)

$$
\begin{aligned}
& f(x)=\sqrt{\cos ^{-1}\left(\frac{1-|x|}{2}\right)} \\
& \quad-1 \leq \frac{1-|x|}{2} \leq 1 \Rightarrow-2-1 \leq-|x| \leq 2-1 \\
& \Rightarrow-3 \leq-|x| \leq 1 \Rightarrow-1 \leq|x| \leq 3 \Rightarrow x \in[-3,3]
\end{aligned}
$$

(d)

Graph of $\sin x$

In the given options (a), (b), (c), (e) the curves are decreasing and increasing in the given intervals, so it is not one-to-one function. But in option (d), the curve is only increasing in the given intervals, so it is one-to-one function.

We have,
$f(x)=\log \left(\frac{1+x}{1-x}\right)$ and $g(x)=\frac{3 x+x^{3}}{1+3 x^{2}}$
$\therefore f o g(x)=f(g(x))=f\left(\frac{3 x+x^{3}}{1+3 x^{2}}\right)$
$\Rightarrow f o g(x)=\log \left(\frac{1+\frac{3 x+x^{3}}{1+3 x^{2}}}{1-\frac{3 x+x^{3}}{1+3 x^{2}}}\right)=\log \frac{(1+x)^{3}}{(1-x)^{3}}$
$\Rightarrow f o g(x)=\log \left(\frac{1+x}{1-x}\right)^{2}$

$$
=3 \log \left(\frac{1+x}{1-x}\right)=3 f(x)
$$

173 (d)
For $f(x)$ to be defined $\frac{x-1}{x} \geq 0$
$\Rightarrow x \geq 1$ and $x<0$
\therefore Required interval is $(-\infty, 0) \cup[1, \infty)$.
174 (c)
If $f(x)=\sin x+\left[\frac{x^{2}}{a}\right]$ is an odd function, then
$f(-x)=-f(x)$ for all $x \in[-2,2]$
$\Rightarrow-\sin x+\left[\frac{x^{2}}{a}\right]=-\sin x-\left[\frac{x^{2}}{a}\right]$ for all x
$\in[-2,2]$
$\Rightarrow\left[\frac{x^{2}}{a}\right]=0$ for all $x \in[-2,2]$
$\Rightarrow 0 \leq \frac{x^{2}}{a}<1$ for all $x \in[-2,2]$
$\Rightarrow a>0$ and $a>x^{2}$ for all $x \in[-2,2]$
$\Rightarrow a>0$ and $a>4 \Rightarrow a \in(4, \infty)$
175 (b)
(i) $a R a$, then GCD of a and a is a.
$\therefore R$ is not reflexive.
(ii) $a R b \Rightarrow b R a$

If GCD of a and b is 2 , then GCD of b and a is 2 .
$\therefore R$ is symmetric.
(iii) $a R a, b R c \nRightarrow c R a$

If GCD of a and b is 2 and GCD of b and c is 2 , then it is need not to be GCD of c and a is 2 .
$\therefore R$ is not transitive.
176 (b)
We have,
$f(x+\lambda)=1+\left[1+\{1-f(x)\}^{5}\right]^{1 / 5}$
$\Rightarrow f(x+\lambda)-1=\left[1+\{1-f(x)\}^{5}\right]^{1 / 5}$
$\Rightarrow g(x+\lambda)=\left[1-\{g(x)\}^{5}\right]^{1 / 5}$, where $g(x)$

$$
=f(x)-1
$$

$\Rightarrow g(x+2 \lambda)=\left[1-\{g(x+\lambda)\}^{5}\right]^{1 / 5}$
$\Rightarrow g(x+2 \lambda)=\left[1-\left[1-\{g(x)\}^{5}\right]^{1 / 5}\right.$
$\Rightarrow g(x+2 \lambda)=g(x)$
$\Rightarrow f(x+2 \lambda)-1=f(x)-1$ for all $x \in R$
$\Rightarrow f(x+2 \lambda)=f(x)$ for all $x \in R$

Hence, $f(x)$ is periodic with period 2λ
177 (b)
We observe that $f(x)$ is defined for
$\log \left(\frac{1}{|\sin x|}\right) \geq 0$
$\Rightarrow \frac{1}{|\sin x|} \geq 1$ and $|\sin x| \neq 0$
$\Rightarrow|\sin x| \neq 0 \quad\left[\because \frac{1}{|\sin x|} \geq 1\right.$ for all $\left.x\right]$
$\Rightarrow x \neq n \pi, n \in Z$
Hence, domain of $f(x)=R-\{n \pi: n \in Z\}$
178 (c)

$$
\begin{aligned}
f\left(\frac{x+y}{1+x y}\right) & =\log \left(\frac{1+\frac{x+y}{1+x y}}{1-\frac{x+y}{1+x y}}\right) \\
& =\log \left(\frac{1+x y+x+y}{1+x y-x-y}\right) \\
& =\log \left(\frac{(1+x)(1+y)}{(1-x)(1-y)}\right) \\
& =\log \left(\frac{1+x}{1-x}\right)+\log \left(\frac{1+y}{1-y}\right) \\
& =f(x)+f(y)
\end{aligned}
$$

179 (a)
It is given that $f(x)$ is defined on $[0,1]$. Therefore, $f(\tan x)$ exists, if
$0 \leq \tan x \leq 1$
$\Rightarrow n \pi \leq x \leq n \pi+\frac{\pi}{4}, n \in Z \Rightarrow x \in\left[n \pi, n \pi+\frac{\pi}{4}\right], n$ $\in Z$
180 (d)
Given, $\quad F(0)=2, \quad F(1)=3$,
Since, $F(n+2)=2 F(n)-F(n+1)$
At $n=0, \quad F(0+2)=2 F(0)-F(1)$
$\Rightarrow \quad F(2)=2(2)-3=1$
At $n=1, F(1+2)=2 F(1)-F(2)$
$\Rightarrow \quad F(3)=2(3)-1=5$
At $n=2, F(2+2)=2 F(2)-F(3) \Rightarrow F(4)=$ 2(1) $-5=-3$
At $n=3, \quad F(3+2)=2 F(3)-F(4)=2(5)-$ (-3)
$\Rightarrow \quad F(5)=13$
181 (b)
We observe that $\sqrt{\sin ^{-1}\left(\log _{2} x\right)}$ exists for $\sin ^{-1}\left(\log _{2} x\right) \geq 0$ i.e. for $0 \leq \log _{2} x \leq 1 \Rightarrow 2^{0} \leq$ $x \leq 2 \Rightarrow 1 \leq x \leq 2$
182
(d)

We have,
$f(x)=\left\{\begin{array}{l}1, x \in Q \\ 0, x \notin Q\end{array}\right.$
We observe that for every rational number T
$f(x+T)=\left\{\begin{array}{l}1, x \in Q \\ 0, x \notin Q\end{array}\right.$
But, there is no least position rational number
Hence, $f(x)$ is periodic with indeterminate period 184 (b)

We have,
$f(x)=|\cos x|=\sqrt{\frac{1+\cos 2 x}{2}}$
Since $\cos x$ is periodic with period 2π. Therefore, $f(x)$ is periodic with period $(2 \pi / 2)=\pi$
185 (d)
We have,
$\operatorname{gof}(x)=n \operatorname{g}(x)$
$\Rightarrow \mathrm{g}(f(x))=n \mathrm{~g}(x) \Rightarrow \mathrm{g}\left(x^{n}\right)=n \mathrm{~g}(x)$
Also, $\log x^{n}=n \log |x|$
From (i) and (ii), we get $g(x)=\log |x|$
187 (b)
Let $y=f(x)=2^{x(x-1)}$
$\Rightarrow \quad \log _{2} y=x^{2}-x \Rightarrow x^{2}-x-\log _{2} y=0$
$\Rightarrow \quad x=\frac{1 \pm \sqrt{1+4 \log _{2} y}}{2}=\frac{1+\sqrt{1+4 \log _{2} y}}{2}$

$$
\left[\because x=\frac{1-\sqrt{1+4\left(x^{2}-x\right)}}{2}=\frac{1-(2 x-1)}{2}\right]
$$

188 (c)
Given that, $f(x)=|x|$ and $g(x)=[x-3]$
For $-\frac{8}{3}<x<\frac{8}{5}, 0 \leq f(x)<\frac{8}{5}$
Now, for $0 \leq f(x)<1$,

$$
\begin{aligned}
g(f(x)) & =[f(x)-3]=-3 \\
& {[\because-3 \leq f(x)-3<-2] }
\end{aligned}
$$

Again, for $1 \leq f(x)<16$

$$
\begin{gathered}
g(f(x))=-2 \\
{[\because-2 \leq f(x)-3<-14]}
\end{gathered}
$$

Hence, required set is $\{-3,-2\}$.
189 (b)
We have,
$f(x)=\log _{10}\left\{1-\log _{10}\left(x^{2}-5 x+16\right)\right\}$
Clearly, $f(x)$ is defined if
$1-\log _{10}\left(x^{2}-5 x+16\right)>0$ and $x^{2}-5 x+16$
>0
$\Rightarrow \log _{10}\left(x^{2}-5 x+16\right)<1\left[\because x^{2}-5 x+16\right.$
>0 for all $x \in R]$
$\Rightarrow x^{2}-5 x+16<10$
$\Rightarrow x^{2}-5 x+6<0 \Rightarrow(x-2)(x-3)<0 \Rightarrow x$

$$
\in(2,3)
$$

190 (b)
$f(x)=\sin ^{4} x+\cos ^{4} x$

$$
=\left(\sin ^{2} x \cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x
$$

$$
\begin{aligned}
& =1-\frac{1}{2}(\sin 2 x)^{2} \\
& =\frac{3}{4}+\frac{1}{4} \cos 4 x
\end{aligned}
$$

\therefore The period of $f(x)=\frac{2 \pi}{4}=\frac{\pi}{2}$
191 (b)
$\because g(f(x))=(\sin x+\cos x)^{2}-1$, is invertible (ie, bijective)
$\Rightarrow g(f(x))=\sin 2 x$, is bijective
We know $\sin x$ is bijective only when $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Thus, $g(f(x))$ is bijective if, $-\frac{\pi}{2} \leq 2 x \leq \frac{\pi}{2}$
$\Rightarrow \quad-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$
192 (a)
Here, $f(x)=\sqrt{\sin ^{-1}(2 x)+\frac{\pi}{6}}$, to find domain we must have,

$$
\begin{aligned}
& \sin ^{-1}(2 x)+\frac{\pi}{6} \geq 0 \\
& \quad\left(\text { but }-\frac{\pi}{2} \leq \sin ^{-1} \theta \leq \frac{\pi}{2}\right) \\
& \therefore \quad \quad-\frac{\pi}{6} \leq \sin ^{-1}(2 x) \leq \frac{\pi}{2} \\
& \Rightarrow \sin \left(-\frac{\pi}{6}\right) \leq 2 x \leq \sin \left(\frac{\pi}{2}\right) \\
& \Rightarrow \quad-\frac{1}{2} \leq 2 x \leq 1 \Rightarrow x \in\left[-\frac{1}{4}, \frac{1}{2}\right]
\end{aligned}
$$

193 (d)

$$
\begin{aligned}
& f\left(\frac{2 x}{1+x^{2}}\right)=\log \left[\frac{1+\frac{2 x}{1+x^{2}}}{1-\frac{2 x}{1+x^{2}}}\right]=\log \left(\frac{1+x}{1-x}\right)^{2} \\
& \therefore \quad f\left(\frac{2 x}{1+x^{2}}\right)=2 f(x)
\end{aligned}
$$

194 (c)
We have, $f(x)=\log _{e}\left|\log _{e} x\right|$
Clearly, $f(x)$ is defined for all x satisfying $\left|\log _{e} x\right|>0 \Rightarrow x \in(0, \infty)$ and $x \neq 1 \Rightarrow x \in$ $(0,1) \cup(1, \infty)$
196 (c)
For $f(x)$ to be defined, $\frac{x}{1-|x|}>0$
ie, $\quad x>0,1-|x|>0$ or $x<0,1-|x|<0$
$\Rightarrow \quad x \in(0,1)$ or $x \in(-\infty,-1)$
$\therefore \quad x \in(-\infty,-1) \cup(0,1)$
197 (a)
Given,
$f(x)=\left\{\begin{array}{l}{[x] \text { if }-3<x \leq-1} \\ |x| \text { if }-1<x<1 \\ |[x]| \text { if } 1 \leq x<3\end{array}\right.$
When $-3<x \leq-1, f(x)=[x] \Rightarrow f(x)<0$ When $-1<x<1, \quad f(x)=|x| \Rightarrow f(x)>0$
When $1 \leq x<3, f(x)=|[x]| \Rightarrow f(x)>0$
\therefore The set $(x: f(x) \geq 0)=(-1,3)$.
198 (a)

$$
\begin{aligned}
(f o f) x & =f\left(\frac{x}{x-1}\right) \\
& =\frac{\frac{x}{x-1}}{\left(\frac{x}{x-1}\right)-1}=x
\end{aligned}
$$

$$
\Rightarrow \quad(f o f o f) x=f(f o f) x=f(x)=\frac{x}{x-1}
$$

$\therefore \quad($ fofof.. .19 times $)(x)=\frac{x}{x-1}$
199 (a)
For the given function to be defined, we must have
$x-4 \geq 0$ and $6-x \geq 0$
$\Rightarrow x \geq 4$ and $x \leq 6 \Rightarrow x \in[4,6]$
\therefore The domain of $f(x)$ is $[4,6]$
200 (c)
We have,
$f(n)=$ Sum of positive divisors of n
$\therefore f\left(2^{k} \times 3\right)=$ Sum of positive divisors of $2^{k} \times 3$
$\Rightarrow f\left(2^{k} \times 3\right)=\sum_{r=0}^{k}\left(2^{r} \times 3\right)$
$\Rightarrow f\left(2^{k} \times 3\right)=3+2 \times 3+2^{2} \times 3+\cdots+2^{k} \times 3$
$\Rightarrow f\left(2^{k} \times 3\right)=3\left(\frac{2^{k+1}-1}{2-1}\right)=3\left(2^{k+1}-1\right)$
201 (a)
We have,
$f(x)=x|x|=\left\{\begin{aligned} x^{2}, & 0 \leq x \leq 1 \\ -x^{2}, & -1 \leq x<0\end{aligned}\right.$
The graph of $f(x)$ is as shown below. Clearly, it is a bijection

202 (b)
Foe domain of given function

$$
\begin{array}{rlrl}
& & -1 \leq \log _{2} \frac{x^{2}}{2} \leq 1 \\
& & & 2^{-1} \\
& \leq \frac{x^{2}}{2} \leq 2 \Rightarrow 1 \leq x^{2} \leq 4 \\
\Rightarrow & & |x| & \leq 2 \text { and }|x| \geq 1 \\
\Rightarrow & & x \in[-2,2]-(-1,1)
\end{array}
$$

203 (c)
Given, $\quad f(x)=a x+b, \quad g(x)=c x+d$
$\because \quad f\{g(x)\}=g\{f(x)\}$

$$
\begin{aligned}
& \Rightarrow \quad f(c x+d)=g(a x+b) \\
& \Rightarrow \quad a(c x+d)+b=c(a x+b)+d \\
& \Rightarrow \quad a d+b=b c+d \\
& \Rightarrow \quad f(d)=g(b)
\end{aligned}
$$

204 (c)
Since $\phi(x)=\sin ^{4} x+\cos ^{4} x$ is periodic with period $\pi / 2$
$\therefore f(x)=\sin ^{4} 3 x+\cos ^{4} 3 x$ is periodic with period $\frac{1}{3}\left(\frac{\pi}{2}\right)=\frac{\pi}{6}$

(b)

We have,
$f(x)=\log \left(\frac{1+x}{1-x}\right)$ and $g(x)=\frac{3 x+x^{3}}{1+3 x^{2}}$

$$
\begin{aligned}
& \therefore f o g(x)=f(g(x)) \\
& \begin{array}{c}
\Rightarrow f \circ g(x)=f\left(\frac{3 x+x^{3}}{1+3 x^{2}}\right) \\
\quad=\log \left(\frac{1+\frac{3 x+x^{3}}{1+3 x^{2}}}{1-\frac{3 x+x^{3}}{1+3 x^{2}}}\right) \\
\quad=\log \left\{\frac{(1+x)^{3}}{(1-x)^{3}}\right\}
\end{array} \\
& \begin{array}{c}
\Rightarrow f o g(x)=\log \left(\frac{1+x}{1-x}\right)^{3}=3 \log \left(\frac{1+x}{1-x}\right) \\
\quad=3 f(x)
\end{array}
\end{aligned}
$$

(b)

For choice (a), we have
$f(x)=f(y) ; x, y \in[-1, \infty)$
$\Rightarrow|x+1|=|y+1| \Rightarrow x+1=y+1 \Rightarrow x=y$
So, f is an injection
For choice (b), we obtain
$g(2)=\frac{5}{2}$ and $g\left(\frac{1}{2}\right)=\frac{5}{2}$
So, $g(x)$ is not injective
It can be easily seen that the functions in choices in options (c) and (d) are injective maps
207 (b)
Given, $f(x)=x-[x], g(x)=[x]$ for $x \in R$.

$$
\begin{aligned}
\therefore \quad f(g(x)) & =f([x]) \\
& =[x]-[x] \\
& =0
\end{aligned}
$$

208 (a)
We have,
$f(x)=\sqrt{\frac{\log _{0.3}|x-2|}{|x|}}$
We observe that $f(x)$ assumes real values, if
$\frac{\log _{0.3}|x-2|}{|x|} \geq 0$ and $|x-2|>0$
$\Rightarrow \log _{0.3}|x-2| \geq 0$ and $x \neq 0,2$
$\Rightarrow|x-2| \leq 1$ and $x \neq 0,2$
$\Rightarrow x \in[1,3]$ and $x \neq 2 \Rightarrow x \in[1,2) \cup(2,3]$
209 (d)
Since $g(x)=3 \sin x$ is a many-one function.
Therefore, $f(x)-3 \sin x$ is many-one
Also, $-1 \leq \sin x \leq 1$
$\Rightarrow-3 \leq-3 \sin x+3$
$\Rightarrow 2 \leq 5-3 \sin x \leq 8$
$\Rightarrow 2 \leq f(x) \leq 8 \Rightarrow$ Range of $f(x)=[2,8] \neq R$
So, $f(x)$ is not onto
Hence, $f(x)$ is neither one-one nor onto
210 (a)
We have,
$f(x+2 y, x-2 y)=x y$
Let $x+2 y=u$ and $x-2 y=v$. Then,
$x=\frac{u+v}{2}$ and $y=\frac{u-v}{4}$
Substituting the values of x and y in (i), we obtain
$f(u, v)=\frac{u^{2}-v^{2}}{2}$ and $f(x, y)=\frac{x^{2}-y^{2}}{8}$
211 (c)
Given, $f(x)=y=(1-x)^{1 / 3}$
$\Rightarrow y^{3}=1-x$
$\Rightarrow \quad x=1-y^{3}$
$\therefore f^{-1}(x)=1-x^{3}$
212 (a)
We have, $f(x+2 y, x-2 y)=x y$
...(i)
Let $\quad x+2 y=u$ and $x-2 y=v$
Then, $\quad x=\frac{u+v}{2}$ and $y=\frac{u-v}{4}$
Subtracting the values of x and y in Eq. (i), we obtain
$f(u, v)=\frac{u^{2}-v^{2}}{8} \Rightarrow f(x, y)=\frac{x^{2}-y^{2}}{8}$
213 (d)
Given, $f(x)=5^{x(x-4)}$ for $f:[4, \infty[\rightarrow[4, \infty[$
At $x=4$

$$
f(x)=5^{4(4-4)}=1
$$

Which is not lie in the interval $[4, \infty$ [
\therefore Function is not bijective.
Hence, $f^{-1}(x)$ is not defined.
214 (b)
Given, $f(x)=x^{3}+3 x-2$
On differentiating w.r.t. x, we get

$$
f^{\prime}(x)=3 x^{2}+3
$$

Put $f^{\prime}(x)=0 \Rightarrow 3 x^{2}+3=0$
$\Rightarrow \quad x^{2}=-1$
$\therefore f(x)$ is either increasing or decreasing.
At $x=2, f(2)=2^{3}+3(2)-2=12$
At $x=3, f(3)=3^{3}+3(3)-2=34$
$\therefore f(x) \in[12,34]$

215 (b)
We have,
$f(\theta)=\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$
$\therefore f(\theta)$ is periodic with period $\frac{2 \pi}{2}=\pi$
216 (c)
Since, period of $\cos n x=\frac{2 \pi}{n}$
And period of $\sin \left(\frac{x}{n}\right)=2 n \pi$
\therefore Period of $\frac{\cos n x}{\sin \left(\frac{x}{n}\right)}$ is $2 n \pi$
$\Rightarrow 2 n \pi=4 \pi \Rightarrow n=2$
217 (c)
Given, $f(x)=x^{3}+5 x+1$
Now, $f^{\prime}(x)=3 x^{2}+5>0, \forall x \in R$
$\therefore f(x)$ is strictly increasing function.
$\therefore f(x)$ is one-one function.
Clearly, $f(x)$ is a continous function and also increasing on R,
$\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty}=\infty$
$\therefore f(x)$ takes every value between $-\infty$ and ∞ Thus, $f(x)$ is onto function.
218 (c)
The function $f(x)=\frac{1}{2-\cos 3 x}$ is defined for all $x \in R$. Therefore, domain of $f(x)$ is R
Let $f(x)=y$. Then,
$\frac{1}{2-\cos 3 x}=y$ and $y>0$
$\Rightarrow 2-\cos 3 x=\frac{1}{y}$
$\Rightarrow \cos 3 x=\frac{2 y-1}{y} \Rightarrow x=\frac{1}{3} \cos ^{-1}\left(\frac{2 y-1}{y}\right)$
Now,
$x \in R$, if
$-1 \leq \frac{2 y-1}{y} \leq 1$
$\Rightarrow-1 \leq 2-\frac{1}{y} \leq 1$
$\Rightarrow-3 \leq-\frac{1}{y} \leq-1$
$\Rightarrow 3 \geq \frac{1}{y} \geq 1 \Rightarrow \frac{1}{3} \leq y \leq 1 \Rightarrow y \in[1 / 3,1]$
219 (c)
Given, $A=\{2,3,4,5, \ldots ., 16,17,18\}$
And $(a, b)=(c, d)$
\therefore Equivalence class of $(3,2)$ is

$$
\begin{aligned}
& \{(a, b) \in A \times A:(a, b) R(3,2)\} \\
& =\{(a, b) \in A \times A: 2 a=3 b\} \\
& =\left\{(a, b) \in A \times A: b=\frac{2}{3} a\right\}
\end{aligned}
$$

$$
\left\{\left(a, \frac{2}{3} a\right): a \in A \times A\right\}
$$

$=\{(3,2),(6,4),(9,6),(12,8),(15,10),(18,12)\}$
\therefore Number of ordered pairs of the equivalence class $=6$.
220 (c)
Given function is $f(n)=8-{ }^{n} P_{n-4}, 4 \leq n \leq 6$. It is defined, if

1. $8-n>0 \Rightarrow n<8$
2. $n-4 \geq 0 \Rightarrow n \geq 4$
3. $n-4 \leq 8-n \Rightarrow n \leq 6$

From Eqs. (i), (ii) and (iii), we get $n=4,5,6$
Hence, range of $f(n)=\left\{{ }^{4} P_{0},{ }^{3} P_{1},{ }^{2} P_{2}\right\}=\{1,3,2\}$
221 (c)
Clearly, $X=R^{+}$and $Y=R$
222 (b)
Given, $f(x) . f\left(\frac{1}{2}\right)=f(x)+f\left(\frac{1}{x}\right)$
Let $f(x)=x^{n} \pm 1$, where $n \in I$.
Now, $\quad f(4)=65$
Case I
Let $f(x)=x^{n}+1$
$\Rightarrow \quad f(4)=4^{n}+1$
$\Rightarrow \quad 65=4^{n}+1$
$\Rightarrow \quad n=3$
Case II
Let $f(x)=x^{n}-1$
$\Rightarrow \quad f(4)=4^{n}-1 \Rightarrow 65=4^{n}-1$
$\Rightarrow \quad 4^{n}=66$
The quality does not hold true for $n \in Z$.
Therefore, $\quad f(x)=x^{3}+1$
Now, $\quad f(6)=6^{3}+1=216+1=217$
223 (b)
Since, the graph is symmetrical about the line $=$
$x=2$
$\Rightarrow \quad f(2+x)=f(2-x)$
224 (c)
We have,
$f(x)=\left\{\begin{array}{l}-1, \quad x<0 \\ 0, \\ 1, \quad x>0\end{array}\right.$ and $g(x)=x\left(1-x^{2}\right)$
$\therefore f o g(x)=f(g(x))$
$\Rightarrow f o g(x)=\left\{\begin{array}{c}-1, \text { if } g(x)<0 \\ 0, \\ \text { if } g(x)=0 \\ 1,\end{array}\right.$
\Rightarrow fog $(x)=\left\{\begin{array}{c}-1, \text { if } x \in(-1,0) \cup(1, \infty) \\ 0, \text { if } x=0, \pm 1 \\ 1, \text { if } x \in(-\infty,-1) \cup(0,1)\end{array}\right.$

225 (b)

Reflexive $x R x$

Since, $x^{2}=x . x$

$$
x^{2}=x y
$$

Transitive, $x R y \Rightarrow x^{2}=x y$
And $y R z \Rightarrow y^{2}=y z$
Now, $x^{2} y^{2}=x y^{2} z \Rightarrow x^{2}=x z$
$\Rightarrow x R z$
\therefore It is transitive.
226 (c)
We have,
$f(x)=\sin \left(\frac{\pi x}{n-1}\right)+\cos \left(\frac{\pi x}{n}\right), n \in Z, n>2$
Since $\sin \left(\frac{\pi x}{n-1}\right)$ and $\cos \left(\frac{\pi x}{n}\right)$ are periodic functions with period $2(n-1)$ and $2 n$ respectively.
Therefore, $f(x)$ is periodic with period equal to
LCM of $(2 n, 2(n-1))=2 n(n-1)$
227 (b)
Let $g(x)$ be the even extension of $f(x)$ on $[-4,4]$
Then,
$g(x)=\left\{\begin{array}{l}f(x) \text { for } x \in[-4,0] \\ f(-x) \text { for } x \in[0,4]\end{array}\right.$
$\Rightarrow g(x)=\left\{\begin{array}{c}e^{x}+\sin x \text { for } x \in[-4,0] \\ e^{-x}+\sin (-x) \text { for } x \in[0,4]\end{array}\right.$
$\Rightarrow g(x)=\left\{\begin{array}{l}e^{x}+\sin x \text { for } x \in[-4,0] \\ e^{-x}-\sin x \text { for } x \in[0,4]\end{array}\right.$
$\Rightarrow g(x)=e^{-|x|}-\sin |x|$ for $x \in[-4,4]$
(d)

Clearly, $f(x)$ is an even function and $f(x)<0$ for all $x>0$
Therefore, the graph of $f(x)$ lies in the third and fourth quadrants
229 (d)
The given function is

$$
f(x)=\sqrt{1-2 x}+2 \sin ^{-1}\left(\frac{3 x-1}{2}\right)
$$

For domain of $f(x), 1-2 x \geq 0$ and $-1 \leq \frac{3 x-1}{2} \leq$ 1
$\Rightarrow \quad x \leq \frac{1}{2}$ and $-2 \leq 3 x-1 \leq 2$
$\Rightarrow \quad x \leq \frac{1}{2}$ and $-\frac{1}{3} \leq x \leq 1$
\therefore Domain of $f(x)=\left[-\frac{1}{3}, \frac{1}{2}\right]$
230 (c)
We have,
$f(x)=\log _{(x+3)}\left(x^{2}-1\right)$
Clearly, $f(x)$ is defined for x satisfying the following conditions
(i) $x^{2}-1>0$ (ii) $x+3>0$ and $x+3 \neq 1$

Now, $x^{2}-1>0 \Rightarrow x \in(-\infty,-1) \cup(1, \infty)$
and,
$x+3>0$ and $x+3 \neq 1 \Rightarrow x>-3$ and $x=-2$
$\Rightarrow x \in(-3,-2) \cup(-2, \infty)$
Hence, the domain of $f(x)$ is $(-3,-2) \cup$
$(-2,-1) \cup(1, \infty)$

231 (b)
$x^{2}-6 x+7=(x-3)^{2}-2$
Obviously, minimum value is -2 and maximum is ∞.
232 (d)
We have,
fof $f^{-1}(x)=x$
$\Rightarrow f\left(f^{-1}(x)\right)=x$
$\Rightarrow f(y)=x$ where $y=f^{-1}(x)$
$\Rightarrow \frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}+2=x \Rightarrow \frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}=x-2$
$\Rightarrow \frac{2 e^{y}}{-2 e^{-y}}=\frac{x-1}{x-3}$
$\Rightarrow e^{2 y}=\frac{x-1}{3-x}$
$\Rightarrow y=\frac{1}{2} \log \left(\frac{x-1}{3-x}\right)$
$\Rightarrow f^{-1}(x)=\frac{1}{2} \log \left(\frac{x-1}{3-x}\right)$
233 (b)
$f(x)=\frac{4^{x}}{4^{x}+2}$
$\therefore \quad f(1-x)+f(x)=\frac{4^{1-x}}{4^{1-x}+2}+\frac{4^{x}}{4^{x}+2}$

$$
=\frac{4}{4+2.4^{x}}+\frac{4^{x}}{4^{x}+2}=\frac{2}{2+4^{x}}+\frac{4^{x}}{4^{x}+2}=1
$$

By putting $x=\frac{1}{97}, \frac{2}{97}, \frac{3}{97}, \ldots . \frac{48}{97}$
And adding, we get

$$
f\left(\frac{1}{97}\right)+f\left(\frac{2}{97}\right)+\cdots+f\left(\frac{96}{97}\right)=48
$$

234 (c)
Given, $f(x)=\frac{2 \sin 8 x \cos x-2 \sin 6 x \cos 3 x}{2 \cos 2 x \cos x-2 \sin 3 x \sin 4 x}$

$$
\begin{aligned}
& =\frac{(\sin 9 x+\sin 7 x)+(\sin 9 x+\sin 3 x)}{(\cos 3 x+\cos x)+(\cos 7 x-\cos x)} \\
& =\frac{\sin 7 x-\sin 3 x}{\cos 7 x+\cos 3 x} \\
& =\frac{2 \cos 5 x \sin 2 x}{2 \cos 2 x \cos 5 x}=\tan 2 x
\end{aligned}
$$

\therefore Period of $f(x)=\frac{\pi}{2}$
235 (d)
$g \circ f=g\{f(x)\}=g\left(x^{2}\right)=x^{2}+5$
236
(b)

We have,
$f(x)=\log _{2 x-5}\left(x^{2}-3 x-10\right)$
For $f(x)$ to be defined, we must have
$x^{2}-3 x-10>0,2 x-5>0$ and $2 x-5 \neq 1$
$\Rightarrow(x-5)(x+2)>0, x>\frac{5}{2}$ and $\frac{5}{2}$ and $x \neq 3$
$\Rightarrow x>5 \Rightarrow x \in(5, \infty)$
237 (c)
Since, $f(x)$ is an even function therefore its values
is always greater than equal to 0 and we know

$$
x^{2}<x^{2}+1 \text { or } \frac{x^{2}}{x^{2}+1}<1
$$

\therefore Required range is $[0,1)$.
238 (d)
We have,
$f\left(x^{2}\right)=\left|x^{2}-1\right| \neq|x-1|^{2}=[f(x)]^{2}$
$f(|x|)=||x|-1| \neq|x-1|=|f(x)|$
And,
$f(x+y)=|x+y-1| \neq|x-1|+|y-1|$

$$
=f(x)+f(y)
$$

Hence, none of the above given option is true
We have,
$f(x+2)-2 f(x+1)+f(x)$
$=a^{x+2}-2 a^{x+1}+a^{x}$
$=a^{x}\left(a^{2}-2 a+1\right)=a^{x}(a-1)^{2}=(a-1)^{2} f(x)$
So, option (a) holds
It can be easily checked that options (b) and (c)
are also true but option (d) is not true
240 (b)
It can be easily seen that $f: A \rightarrow A$ is a bijection.
Let $f(x)=y$. Then,
$f(x)=y$
$\Rightarrow x(2-x)=y$
$\Rightarrow x^{2}-2 x+y=0$
$\Rightarrow x^{2}-2 x+y=0$
$\Rightarrow x=\frac{2 \pm \sqrt{4-4 y}}{2}$
$\Rightarrow x=1 \pm \sqrt{1-y}$
$\Rightarrow x=1-\sqrt{1-y} \quad[\because x \leq 1]$
$\Rightarrow f^{-1}(y)=1-\sqrt{1-y}$
Hence, $f^{-1}: A \rightarrow A$ is defined as $f^{-1}(x)=1-$
$\sqrt{1-x}$
241 (d)
We observe that
Period of $\sin \frac{\pi x}{2}$ is $\frac{2 \pi}{\pi / 2}=4$, Period of $\cos \frac{\pi x}{3}$ is
$\frac{2 \pi}{\pi / 3}=6$,
and,
Period of $\tan \frac{\pi x}{4}$ is $\frac{\pi}{\pi / 4}=4$
\therefore Period of $f(x)=\operatorname{LCM}$ of $(4,6,4)=12$
242 (c)
We have,
$f(x)=\lim _{x \rightarrow \infty} \frac{x^{n}+x^{-n}}{x^{n}+x^{-n}}$
$\Rightarrow f(x)=\lim _{x \rightarrow \infty} \frac{x^{2 n}-1}{x^{2 n}+1}=\frac{0-1}{0+1}=-1$, if $-1<x$ <1

If $|x|>1$, then $x^{2 n} \rightarrow \infty$ as $n \rightarrow \infty$
$\therefore f(x)=\lim _{x \rightarrow \infty} \frac{1-\frac{1}{x^{2 n}}}{1+\frac{1}{x^{2 n}}}=\frac{1-0}{1+1},=1$, if $|x|>1$
If $|x|=1$, then $x^{2 n}=1$
$\therefore f(x)=\lim _{x \rightarrow \infty} \frac{x^{2 n}-1}{x^{2 n}+1}=\frac{1-1}{1+1}=0$
Thus, we have
$f(x)=\left\{\begin{array}{cc}-1, & \text { if }|x|<1 \\ 0, & \text { if }|x|=1 \\ 1, & \text { if }|x|>1\end{array}\right.$
243 (c)
$R=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ is a relation on
$A=\{1,2,3,4\}$, then
(a) since, $(2,4) \in R$ and $(2,3) \in R$, so R is not a function.
(b) since, $(1,3) \in R$ and $(3,1) \in R$ but $(1,1) \notin R$.

So, R is not transitive.
(c) since, $(2,3) \in R$ but $(3,2) \notin R$, so R is not symmetric.
(d) since, $(4,4) \notin R$, so R is not reflexive.

244 (a)
We have,
$f(x)={ }^{16-x} C_{2 x-1}+{ }^{20-3 x} P_{4 x-5}$
Clearly, $f(x)$ is defined, if
$16-x \geq 2 x-1>0,20-3 x \geq 4 x-5>0$ and $x \in Z$
$\Rightarrow x \in\{1,2,3,4,5\}, x \in\{2,3\}$ and $x \in Z$
$\Rightarrow x \in\{2,3\}$
\therefore Domain $(f)=\{2,3\}$
245 (d)
Given, $f(x)=e^{2 i x}$ and $f: R \rightarrow C$. Function $f(x)$ is not one-one, because after some values of $x(i e, \pi)$ it will give the same values.
Also, $f(x)$ is not onto, because it has minimum and maximum values $-1-i$ and $1+i$ respectively.
246 (a)
For $f(x)$ to be defined,
$x-4 \geq 0$ and $6-x \geq 0 \Rightarrow x \geq 4$ and $x \leq 6$ Therefore, the domain is $[4,6]$.
247 (d)
We have,
$\operatorname{hogof}(x)=\cos ^{-1}(|\sin x|)$
and, fogoh $(x)=\sin ^{2}\left(\sqrt{\cos ^{-1} x}\right)$
Clearly, hogof $(x) \neq$ fogoh (c)
Thus, option (a) is not correct
Now,
$\operatorname{gofoh}(x)=\left|\sin \left(\cos ^{-1} x\right)\right|$

$$
=\left|\sin \left(\sin ^{-1} \sqrt{1-x^{2}}\right)\right|=\sqrt{1-x^{2}}
$$

and, fohog $(x)=\sin ^{2}\left(\cos ^{-1} \sqrt{x}\right)$

$$
=1-\cos ^{2}\left(\cos ^{-1} \sqrt{x}\right)
$$

$\Rightarrow \operatorname{fohog}(x)=1-\left\{\cos \left(\cos ^{-1} \sqrt{x}\right)\right\}^{2}=1-x$
\therefore gofoh $(x) \neq f o h o g(x)$
Thus, option (b) is correct
Also,
$\operatorname{hogof}(x)=\cos ^{-1}(|\sin x|)$ and, fohog (x)

$$
=1-x
$$

$\therefore \operatorname{hogof}(x) \neq f o \operatorname{cog}(x)$
Thus, option (c) is not correct
Hence, option (d) is correct
248 (a)
We have,
$f(x)=\frac{2^{x}+2^{-x}}{2}$

$$
\begin{aligned}
& \therefore f(x+y) f(x-y) \\
& \quad=\frac{2^{x+y}+2^{-x-y}}{2} \times \frac{2^{x-y}+2^{-x+y}}{2} \\
& \begin{aligned}
& \Rightarrow f(x+y) f(x-y)=\frac{2^{2 x}+2^{-2 y}+2^{2 y}+2^{-2 x}}{4} \\
& \Rightarrow f(x+y) f(x-y) \\
&=\frac{1}{2}\left(\frac{2^{2 x}+2^{-2 x}}{2}+\frac{2^{2 y}+2^{-2 y}}{2}\right)
\end{aligned} \\
& \Rightarrow f(x+y) f(x-y)=\frac{1}{2}\{f(2 x)+f(2 y)\}
\end{aligned}
$$

249 (b)

$$
\begin{aligned}
R & =\{(a, b): a, b \in N, a-b=3\} \\
& =\{[(n+3), n]: n \in N\} \\
& =\{(4,1),(5,2),(6,3), \ldots .\}
\end{aligned}
$$

250 (a)
Clearly, $f(x)=\sin ^{-1}\left\{\log _{3}\left(\frac{x}{3}\right)\right\}$ exists if
$-1 \leq \log _{3}\left(\frac{x}{3}\right) \leq 1 \Leftrightarrow 3^{-1} \leq \frac{x}{3} \leq 3^{1} \Leftrightarrow 1 \leq x \leq 9$
Hence, domain of $f(x)$ is $[1,9]$
251 (c)
For $f(x)$ to be defined, we must have
$\frac{\sqrt{4-x^{2}}}{1-x}>0,4-x^{2}>0$ and $1-x \neq 0$
$\Rightarrow 1-x>0,4-x^{2}>0$ and $1-x \neq 0$
$\Rightarrow x<1, x \in(-2,2)$ and $x \neq 1 \Rightarrow x \in(-2,1)$
\therefore Domain $(f)=(-2,1)$
Now, for $x \in(-2,1)$, we have
$-\infty<\log \left(\frac{\sqrt{4-x^{2}}}{1-x}\right)<\infty$
$\Rightarrow-1 \leq \sin \left\{\log \left(\frac{\sqrt{4-x^{2}}}{1-x}\right)\right\} \leq 1 \Rightarrow-1 \leq f(x)$ ≤ 1

Hence, Range $(f)=[-1,1]$
252 (a)
Given, $f(x)=\frac{a x+b}{c x+d}$ and $f o f(x)=x$
$\Rightarrow \quad f\left(\frac{a x+b}{c x+d}\right)=x$
$\Rightarrow \frac{a\left(\frac{a x+b}{c x+d}\right)+b}{c\left(\frac{a x+b}{c x+d}\right)+d}=x$
$\Rightarrow \quad \frac{x\left(a^{2}+b c\right)+a b+b d}{x(a c+c d)+b c+d^{2}}=x$
$\Rightarrow \quad d=-a$
253 (c)
If $f: C \rightarrow C$ given by $f(x)=\frac{a x+b}{c x+d}$ is a constant function, then
$f(x)=$ Constant $(=\lambda$, say $)$ for all $x \in C$
$\Rightarrow \frac{a x+b}{c x+d}=\lambda$ for all $x \in C$
$\Rightarrow(a-\lambda c) x+(b-\lambda d)=0$ for all $x \in C$
$\Rightarrow a-\lambda c=0$ and $b-\lambda d=0 \Rightarrow \frac{a}{c}=\frac{b}{d} \Rightarrow a d=b c$
254 (d)
Periods of $\sin \lambda x+\cos \lambda x$ and $|\sin x|+|\cos x|$ are $\frac{2 \pi}{\lambda}$ and $\frac{\pi}{2}$ respectively
$\therefore \frac{\pi}{2}=\frac{2 \pi}{\lambda} \Rightarrow \lambda=4$
(b)

We have, $f(x)=\sqrt{\log _{16} x^{2}}$
Clearly, $f(x)$ exists, if
$\log _{16} x^{2} \geq 0 \Rightarrow x^{2} \geq 1 \Leftrightarrow|x| \geq 1$
256
(b)

Since, $f(x)$ is an even function, therefore $f^{\prime}(x)$ is an odd function
ie, $\quad f^{\prime}(-e)=-f^{\prime}(e)$
$\therefore f^{\prime}(e)+f^{\prime}(-e)=0$
257 (c)
We have,
$f(x)=\log \left(\frac{1+x}{1-x}\right)$
$\therefore f\left(\frac{2 x}{1+x^{2}}\right)=\log \left\{\frac{1+\frac{2 x}{1+x^{2}}}{1-\frac{2 x}{1+x^{2}}}\right\}=\log \left(\frac{x+1}{1-x}\right)^{2}$
$\Rightarrow f\left(\frac{2 x}{1+x^{2}}\right)=\log \left(\frac{1+x}{1-x}\right)=2 f(x)$
258 (c)
$f(x)=\cos ^{2} x+\sin ^{4} x=1-\cos ^{2} x+\cos ^{4} x$
$\Rightarrow f(x)=\left(\cos ^{2} x-\frac{1}{2}\right)^{2}+\frac{3}{4} \geq \frac{3}{4}$ for all x
Also, $f(x)=\cos ^{2} x+\sin ^{4} x \leq \cos ^{2} x+\sin ^{2} x=1$
\therefore Range $(f)=[3 / 4,1]$
Hence, $f(R)=[3 / 4,1]$
(d)

For domain of given function

$$
-1 \leq \log _{2}\left\{\frac{x}{12}\right\} \leq 1
$$

$\Rightarrow \quad 2^{-1} \leq \frac{x}{12} \leq 2$
$\Rightarrow 6 \leq x \leq 24$
$\Rightarrow \quad x \in[6,24]$
260
(d)

Given, $f(x)=4^{-x^{2}}+\cos ^{-1}\left(\frac{x}{2}-1\right)+\log (\cos x)$
Here, $4^{-x^{2}}$ is defined for $\left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\}, \cos ^{-1}\left(\frac{x}{2}-1\right)$ is defined,
If $-1 \leq \frac{x}{2}-1 \leq 1 \Rightarrow 0 \leq x \leq 4$
And $\log (\cos x)$ is defined, if $\cos x>0$
$\Rightarrow-\frac{\pi}{2}<x<\frac{\pi}{2}$
Hence, $f(x)$ is defined for $x \in\left[0, \frac{\pi}{2}\right]$
261 (a)
Let $f^{-1}(x)=y$. Then,
$x=f(y) \Rightarrow x=3 y-4 \Rightarrow y=\frac{x+4}{3}$
$\therefore f^{-1}(x)=y \Rightarrow f^{-1}(x)=\frac{x+4}{3}$
262 (d)
Here, we have to find the range of the function which is $[-1 / 3,1]$
263 (a)
For $f(x)$ to be real, we must have
$x>0$ and $\log _{10} x \neq 0$
$\Rightarrow x>0$ and $x \neq 1 \Rightarrow x>0$ and $x \neq 1 \Rightarrow x \in$
$(0,1) \cup(1, \infty)$
264 (a)
Let $W=\{$ cat, toy, you, ... $\}$
Clearly, R is reflexive and symmetric but not transitive.
[Since, cat $R_{\text {toy, }}$ toy $R_{\text {you }} \nRightarrow{ }_{\text {cat }} R_{\text {you }}$]
265 (c)
Given, $f(x)=\frac{a x+b}{c x+d}$
It reduces the constant function if

$$
\frac{a}{c}=\frac{b}{d} \Rightarrow a d=b c
$$

267 (c)
Since, the relation R is defined as
$R=\{(x, y) \mid x, y$ are real numbers and $x=w y$ for some rational number $w\}$
(i) Reflexive $x R x \Rightarrow x=w x$
$\therefore \quad w=1 \in$ Rational number
\Rightarrow The relation R is reflexive.
(ii) Symmetric $x R y \Rightarrow y R x$

As $0 R 1$
$\Rightarrow \quad 0=0$ (1) but $1 R 0 \Rightarrow 1=w .(0)$,

Which is not true for any rational number
\Rightarrow The relation R is not symmetric
Thus, R is not equivalent relation.
Now, for the relation S is defined as
$\mathrm{S}=\left\{\left.\left(\frac{m}{n}, \frac{m}{n}\right) \right\rvert\,\right.$
m, n, p and $q \in$ integers such that $n, q \neq 0$ and $q m=p n\}$
(i) Reflexive $\frac{m}{n} S \frac{m}{n} \Rightarrow m n=m n$ (True)
\Rightarrow The relation S is reflexive
(ii) Symmetric $\frac{m}{n} S \frac{p}{q} \Rightarrow m q=n p$
$\Rightarrow n p=m q \Rightarrow \frac{p}{q} S \frac{m}{n}$
\Rightarrow The relation S is symmetric.
(iii) Transitive $\frac{m}{n} S \frac{p}{q}$ and $\frac{p}{q} S \frac{r}{s}$
$\Rightarrow m q=n p$ and $p s=r q$
$\Rightarrow m q . p s=n p . r q$
$\Rightarrow m s=n r \quad \Rightarrow \frac{m}{n}=\frac{r}{s} \Rightarrow \frac{m}{n} S \frac{r}{s}$
\Rightarrow The relation S is transitive
\Rightarrow The relation S is equivalent relation.
268 (a)
We know that $\tan x$ has period π. Therefore,
$|\tan x|$ has period $\frac{\pi}{2}$. Also, $\cos 2 x$ has period π.
Therefore, period of $|\tan x|+\cos 2 x$ is π.
Clearly, $2 \sin \frac{\pi x}{3}+3 \cos \frac{2 \pi x}{3}$ has its period equal to the LCM of 6 and 3 i.e., 6
$6 \cos (2 \pi x+\pi / 4)+5 \sin (\pi x+3 \pi / 4)$ has period 2
The function $|\tan 4 x|+|\sin 4 x|$ has period $\frac{\pi}{2}$
269 (a)
Let $y=f(x)=\sqrt{(x-1)(3-x)}$
$\Rightarrow x^{2}-4 x+3+y^{2}=0$
This is a quadratic in x, we get
$x=\frac{+4 \pm \sqrt{16-4\left(3+y^{2}\right)}}{2(1)}=\frac{4 \pm 2 \sqrt{1-y^{2}}}{2(1)}$
Since, x is real, then $1-y^{2} \geq 0 \Rightarrow-1 \leq y \leq 1$
But $f(x)$ attains only non-negative values.
Hence, $y=f(x)=[0,1]$
270 (d)
$\{(z, b),(y, b),(a, d)\}$ is not a relation from A to B because $a \notin A$
272 (a)
For $x \geq 1$, we have
$x \leq x^{2} \Rightarrow \min \left\{x, x^{2}\right\}=x$
For $0 \leq x<1$, we have,
$x^{2}<x \Rightarrow \min \left\{x, x^{2}\right\}=x^{2}$
For $x<0$, we have
$x<x^{2} \Rightarrow \min \left\{x, x^{2}\right\}=x$
Hence, $f(x)=\min \left\{x, x^{2}\right\}=\left\{\begin{array}{c}x, \quad x>1 \\ x^{2}, \quad 0 \leq x<1 \\ x, \quad x<0\end{array}\right.$
ALITER Draw the graphs of $y=x$ and $y=x^{2}$ to obtain $f(x)$
273 (a)
Clearly, mapping f given in option (a) satisfies the given conditions
274 (b)
Given, $f(x)=e^{\sqrt{5 x-3-2 x^{2}}}$
For domain of $f(x)$

$$
\begin{array}{rlrl}
& & 2 x^{2}-5 x+3 & \leq 0 \\
& \Rightarrow & & (2 x-3)(x-1) \\
\Rightarrow & & \leq 0 \\
\Rightarrow & & 1 & \leq x \leq \frac{3}{2}
\end{array}
$$

\therefore Domain of $f(x)=\left[1, \frac{3}{2}\right]$.
Given, $f(x)=x+\sqrt{x^{2}}$
Since, this function is not defined
We have,
$f(x)=\frac{\sin ^{4} x+\cos ^{2} x}{\sin ^{2} x+\cos ^{4} x}$
$\Rightarrow f(x)=\frac{\left(1-\cos ^{2} x\right)^{2}+\cos ^{2} x}{1-\cos ^{2} x+\cos ^{4} x}=1 \quad$ for all x

$$
\in R
$$

$\therefore f(2010)=1$
277 (c)
We have,
$f(x)=\log \left\{a x^{3}+(a+b) x^{2}+(b+c) x+c\right\}$
$\Rightarrow f(x)=\log \left\{\left(a x^{2}+b x+c\right)(x+1)\right\}$
$\Rightarrow f(x)=\log \left\{a\left(x+\frac{b}{2 a}\right)^{2}(x+1)\right\}$
$\Rightarrow f(x)=\log a+\log \left(x+\frac{b}{2 a}\right)^{2}+\log (x+1)$
Since $a>0$, therefore $f(x)$ is defined for $x \neq-\frac{b}{2 a}$ and $x+1>0$
i. e., $x \in R-\left\{\left\{-\frac{b}{2 a}\right\} \cap(-\infty,-1)\right\}$

278 (a)

$$
\begin{aligned}
& \because \quad y=\frac{10^{x}-10^{-x}}{10^{x}+10^{-x}} \\
& \Rightarrow \quad \frac{y+1}{y-1}=\frac{10^{x}}{-10^{-x}}
\end{aligned}
$$

[using componendo and dividendo rule]
$\Rightarrow \quad 10^{2 x}=\frac{1+y}{1-y}$
$\Rightarrow \quad 2 x \log _{10} 10=\log _{10}\left(\frac{1+y}{1-y}\right)$
$\Rightarrow \quad x=\frac{1}{2} \log _{10}\left(\frac{1+y}{1-y}\right)$
$\therefore \quad f^{-1}(x)=\frac{1}{2} \log _{10}\left(\frac{1+x}{1-x}\right)$
279 (b)
Given, $\quad f(x)=\left\{\begin{array}{l}-1, \text { when } x \text { is rational } \\ 1, \text { when } x \text { is irrational }\end{array}\right.$
Now, $(f o f)(1-\sqrt{3})=f[f(1-\sqrt{3})]=f(1)=$ -1
280 (c)
We have,
$f(x)=6^{x}+6^{|x|}>0$ for all $x \in R$
\therefore Range $(f) \neq$ (Co - domain (f)
So, $f: R \rightarrow R$ is an into function
For any $x, y \in R$, we find that
$x \neq y \Rightarrow 2^{x} \neq 2^{y} \Rightarrow 2^{x+|x|} \neq 2^{y+|y|} \Rightarrow f(x)$

$$
\neq f(y)
$$

So, f is one-one
Hence, f is a one-one into function
281 (a)
Here, $Y=\{7,11, \ldots, \infty\}$
Let $y=4 x+3 \Rightarrow \frac{y-3}{4}$
Inverse of $f(x)$ is

$$
g(y)=\frac{y-3}{4}
$$

282 (b)
We have,
$f(x)=\sqrt{\cos (\sin x)}+\sqrt{\sin (\cos x)}$
We observe that $f(x)$ is not defined in
$(\pi / 2,3 \pi / 2)$ and it is aperiodic function with period 2π. So, let us consider the internal $[-\pi / 2, \pi / 2]$ as it domain. Further, since $f(x)$ is an even function. So, we will consider $f(x)$ defined on $[0, \pi / 2]$ only.
Clearly, $\sqrt{\cos (\sin x)}$ and $\sqrt{\sin (\cos x)}$ are decreasing functions on $[0, \pi / 2$]
Range $(f)=\left[f\left(\frac{\pi}{2}\right), f(0)\right]=[\sqrt{\cos 1}, 1+\sqrt{\sin 1}]$
284 (c)
We have,
$\log x>1$ for all $x \in(e, \infty)$
$\Rightarrow \log (\log x)>0$ for all $x \in(e, \infty)$
$\Rightarrow f(x)-\log [\log (\log x)] \in(-\infty, \infty)$ for all $x \in(e, \infty)$
Also, f is one-one. Hence, f is both one-one and onto
285 (a)
Given, $f(x)=x^{2}-3$
Now, $f(-1)=(-1)^{2}-3=-2$
$\Rightarrow f o f(-1)=f(-2)=(-2)^{2}-3=1$
$\Rightarrow \quad$ fofof $(-1)=f(1)=1^{2}-3=-2$
Now, $\quad f(0)=0^{2}-3=-3$
\Rightarrow fof $(0)=f(-3)=(-3)^{2}-3=6$
$\Rightarrow \quad f o f(0)=f(6)=6^{2}-3=33$
Again, $f(1)=1^{2}-3=-2$
$\Rightarrow \quad f o f(1)=f(-2)=(-2)^{2}-3=1$
\Rightarrow fofof $(-1)+\operatorname{fofof}(0)+f o f o f(1)$

$$
=-2+33-2=29
$$

Now, $f(4 \sqrt{2})=(4 \sqrt{2})^{2}-3=32-3=29$
286 (b)
For any $x, y \in R$, we observe that
$f(x)=f(y) \Rightarrow \frac{x-m}{x-n}=\frac{y-m}{y-n} \Rightarrow x=y$
So, f is one-one
Let $\alpha \in R$ such that $f(x)=\alpha$
$\Rightarrow \frac{x-m}{x-n}=\alpha \Rightarrow x=\frac{m-n \alpha}{1-\alpha}$
Clearly, $x \in R$ for $\alpha=1$. So, f is not onto
Hence, f is one-one into. This fact can also be observed from the graph of the function
287 (b)
We have,
$D(f)=R$ and $D(g)=R-\{0\}$
$\therefore D(h)=R-\{0\}$
Hence, $h(x)=f(x) g(x)=x \times \frac{1}{x}=1$ for all $x \in R-\{0\}$
288 (b)
Since $\cos \sqrt{x}$ is not a periodic function. Therefore, $f(x)=\cos \sqrt{x}+\cos ^{2} x$ is not a periodic function

We have, $f(x)=2^{x}$
$\therefore \frac{f(n+1)}{f(n)}=\frac{2^{n+1}}{2^{n}}=2$ for all $n \in N$
Hence, $f(0), f(1), f(2), \ldots$ are in G.P.
290 (d)
We have,
$f(\sin x)-f(-\sin x)=x^{2}-1$ for all $x \in R \ldots$ (i)
Replacing x by $-x$, we get
$f(-\sin x)-f(\sin x)=x^{2}-1$
Adding (i) and (ii), we get
$2\left(x^{2}-1\right)=0 \Rightarrow x= \pm 1$
$\therefore x^{2}-2=1-2=-1$
292 (d)
For $f(x)$ to be defined
$-1 \leq \log _{2} x \leq 1 \quad\left[\because-1 \leq \sin ^{-1} x \leq 1\right]$
$\Rightarrow \quad \frac{1}{2} \leq x \leq 2$
293 (a)
We have,
$f(x)=|x|$ and $g(x)=[x]$
$\therefore g(f(x)) \leq f(g(x))$
$\Rightarrow g(|x|) \leq f([x]) \Rightarrow[|x|] \leq|[x]|$
Clearly, $[|x|]=|[x]|$ for all $x \in Z$
Let $x \in(-\infty, 0)$ such that $x \notin Z$. Then, there exists positive integer k such that
$-k-1<x<-k$
$\Rightarrow[x]=-k-1$ and $k<|x|<k+1$
$\Rightarrow|[x]|=k+1$ and $[|x|]=k$
$\Rightarrow[|x|]<|[x]|$
Hence, $[|x|] \leq||x||$ for all $x \in Z \cup(-\infty, 0)$
i. e. $\{x \in R: g(f(x)) \leq f(g(x))\}=Z \cup(-\infty, 0)$

294 (d)

$$
\begin{aligned}
\therefore & f\left(\frac{3 x+x^{3}}{1+3 x^{2}}\right)-f\left(\frac{2 x}{1+x^{2}}\right) \\
& =\log \left(\frac{1+\left(\frac{3 x+x^{3}}{1+3 x^{2}}\right)}{1-\left(\frac{3 x+x^{3}}{1+3 x^{2}}\right)}\right)-\log \left(\frac{1+\frac{2 x}{1+x^{2}}}{1-\frac{2 x}{1+x^{2}}}\right) \\
& =\log \left(\frac{1+x}{1-x}\right)^{3}-\log \left(\frac{1+x}{1-x}\right)^{2} \\
& =\log \left(\frac{1+x}{1-x}\right)=f(x)
\end{aligned}
$$

295 (d)
Clearly, $f(x)$ is defined if
$=\log _{10} \log _{\rightarrow(n-1)} \ldots \log _{10} x>0$
$\Rightarrow \underset{(n-2) \text { times }}{\log _{10} \log _{10} \ldots \log _{10}} x>1$
$\Rightarrow \stackrel{\log _{10} \log _{10} \ldots \log _{10}}{\underset{(n-3) \text { times }}{\longleftrightarrow}} x>10$
$\Rightarrow x>10^{10^{10} \cdot(n-2) \text { times }}$
Thus, domain of $f=\left(10^{10^{10^{\cdot(n-2) t i m e s}}}, \infty\right)$
296 (a)
Let $y=\sin ^{-1}\left[\log _{3}\left(\frac{x}{3}\right)\right]$
$\Rightarrow-1 \leq \log _{3}\left(\frac{x}{3}\right) \leq 1$
$\Rightarrow \quad \frac{1}{3} \leq \frac{x}{3} \leq 3$
$\Rightarrow \quad 1 \leq x \leq 9$
(d)

Since, $\quad f(x)=\frac{3}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$
For domain of $f(x)$,

$$
\left.x^{3}-1>0,4-x^{2} \neq 0\right)
$$

$\Rightarrow x(x-1)(x+1)>0$ and $x \neq \pm 2$
$\Rightarrow \quad x \in(-1,0) \cup(1, \infty), \quad x \neq \pm 2$

$\Rightarrow \quad x \in(-1,0) \cup(1,2) \cup(2, \infty)$
298 (c)
The given data is shown in the figure below

Since, $\quad f^{-1}(D)=x$
$\Rightarrow \quad f(x)=D$
Now, if $B \subset X, f(B) \subset D$
$\Rightarrow \quad f^{-1}(f(B))=B$
299 (b)
Clearly, $f(x)$ is an odd function
300 (c)
We have,
$f(x)=\left\{\begin{array}{l}-1,-2 \leq x \leq 0 \\ x-1,0 \leq x \leq 2\end{array}\right.$
$\therefore f(|x|)=x$
$[\because x \leq 0]$
$\Rightarrow f(-x)=x$
$\Rightarrow-x-1=x \Rightarrow x=-\frac{1}{2}$
301 (a)
Given, $2 f\left(x^{2}\right)+3 f\left(\frac{1}{x^{2}}\right)=x^{2}-1$
Replacing x by $\frac{1}{x^{\prime}}$, we get
$2 f\left(\frac{1}{x^{2}}\right)+3 f\left(x^{2}\right)=\frac{1}{x^{2}}-1$
On multiplying Eq. (i) by 2, Eq. (ii) by 3 and subtracting Eq. (i) from Eq. (ii), we get

$$
\begin{array}{ll}
& 5 f\left(x^{2}\right)=\frac{3}{x^{2}}-1-2 x^{2} \\
\Rightarrow & f\left(x^{2}\right)=\frac{1}{5 x^{2}}\left(3-x^{2}-2 x^{4}\right) \\
\Rightarrow & f\left(x^{4}\right)=\frac{1}{5 x^{4}}\left(3-x^{4}-2 x^{8}\right)
\end{array}
$$

[Replacing x by x^{2}]

$$
=\frac{\left(1-x^{4}\right)\left(2 x^{4}+3\right)}{5 x^{4}}
$$

302 (c)
The function $f(x)={ }^{7-x} P_{x-3}$ is defined only if x is an integer satisfying the following inequalities: (i) $7-x \geq 0$ (ii) $x-3 \geq 0$ (iii) $7-x \geq x-3$

Now,
$\left.\begin{array}{c}7-x \geq 0 \Rightarrow x \leq 7 \\ x-3 \geq 0 \Rightarrow x \geq 3 \\ 7-x \geq x-3 \Rightarrow x \leq 5\end{array}\right\} \Rightarrow 3 \leq x \leq 5$
Hence, the required domain is $\{3,4,5\}$
303 (a)
We have,
$f(x)=x, \mathrm{~g}(x)=|x|$ for all $x \in R$ and $\phi(x)$
satisfies the relation
$[\phi(x)-f(x)]^{2}+[\phi(x)-\mathrm{g}(x)]^{2}=0$
$\Rightarrow \phi(x)-f(x)=0$ and $\phi(x)-\mathrm{g}(x)=0$
$\Rightarrow \phi(x)=f(x)$ and $\phi(x)=\mathrm{g}(x)$
$\Rightarrow f(x)=\mathrm{g}(x)=\phi(x)$
But, $f(x)=g(x)=x$, for all $x \geq 0[\because|x|=$ x for all $x \geq 0$]
$\therefore \phi(x)=x$ for all $x \in[0, \infty)$
304 (b)
We observe that $f(x)=3 \sin \left(\sqrt{\frac{\pi^{2}}{16}-x^{2}}\right)$ exists for
$\frac{\pi^{2}}{16}-x^{2} \geq 0 \Rightarrow-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$
The least value of $\frac{\pi^{2}}{16}-x^{2}$ is 0 for $x= \pm \frac{\pi}{4}$ and the greatest value is $\frac{\pi^{2}}{16}$ for $x=0$. Therefore, the greatest value of $f(x)$ occurs at $x=0$ and the least value occurs at $x= \pm \pi / 4$
Thus, greatest and least values of $f(x)$ are
$f(0)=3 \sin \left(\sqrt{\frac{\pi^{2}}{16}}\right)=3 \sin \frac{\pi}{4}=\frac{3}{\sqrt{2}}$ and, $f\left(\frac{\pi}{4}\right)$

$$
=3 \sin 0=0
$$

Hence, the value of $f(x)$ lie in the interval [$0,3 / \sqrt{2}$]
ALITER For $x \in[-\pi / 4, \pi / 4]=\operatorname{Dom}(f)$, we find that $\sqrt{\frac{\pi^{2}}{16}-x^{2}} \in[0, \pi / 4]$
Since $\sin x$ is an increasing function on $[0, \pi / 4]$
$\therefore \sin x \leq \sin \sqrt{\frac{\pi^{2}}{16}-x^{2}} \leq \sin \pi / 4$
$\Rightarrow 0 \leq 3 \sin \sqrt{\frac{\pi^{2}}{16}-x^{2}} \leq \frac{3}{\sqrt{2}} \Rightarrow 0 \leq f(x) \leq \frac{3}{\sqrt{2}}$
305 (b)
$f\left(\frac{\pi}{2}+x\right)=\left|\sin \left(\frac{\pi}{2}+x\right)\right|+\left|\cos \left(\frac{\pi}{2}+x\right)\right|$
$=|\cos x|+|\sin x|$ for all x.
Hence, $f(x)$ is periodic with period $\frac{\pi}{2}$.
306 (d)
It can be easily checked that $g(x)=\left(\frac{x^{1 / 3}-b}{a}\right)^{1 / 2}$ satisfies the relation $f \circ g(x)=\operatorname{gof}(x)$

Since, $(1,2) \in S$ but $(2,1) \notin S$
$\therefore S$ is not symmetric.
Hence, S is not an equivalent relation.
Given, $\quad T=\{(x, y):(x-y) \in I\}$
Now, $x T x \Rightarrow x-x=0 \in I$, it is reflexive relation
Again, $x T y \Rightarrow(x-y) \in I$
$\Rightarrow y-x \in I \Rightarrow y T x$ it is symmetric relation.
Let $x T y$ and $y T z$
$\therefore x-y=I_{1}$ and $y-z=I_{2}$
Now, $x-z=(x-y)+(y-z)=I_{1}+I_{2} \in I$
$\Rightarrow x-z \in I$
$\Rightarrow x T z$
$\therefore T$ is transitive.
Hence, T is an equivalent relation.
$f(x)=x|x|= \begin{cases}x^{2}, & x \geq 0 \\ -x^{2}, & x<0\end{cases}$

Since, $-1 \leq x \leq 1$, therefore $-1 \leq f(x) \leq 1$
\therefore Function is one-one onto.
309 (c)
We have,
$f(x)=\frac{1-x}{1+x}$
$\Rightarrow f(f(x))=f\left(\frac{1-x}{1+x}\right)=\frac{1-\frac{1-x}{1+x}}{1+\frac{1-x}{1+x}}=x$
Again,
$f(x)=\frac{1-x}{1+x}$
$\Rightarrow f\left(\frac{1}{x}\right)=\frac{1-\frac{1}{x}}{1+\frac{1}{x}}=\frac{x-1}{x+1}$
$\therefore f\left(f\left(\frac{1}{x}\right)\right)=f\left(\frac{x-1}{x+1}\right)=\frac{1-\frac{x-1}{x+1}}{1+\frac{x-1}{x+1}}=\frac{1}{x}$
$\therefore \alpha=f(f(x))+f\left(f\left(\frac{1}{x}\right)\right)=x+\frac{1}{x}$
$\Rightarrow|\alpha|=\left|x+\frac{1}{x}\right| \geq 2$
310 (b)
Let $A=\{1,2,3\}$
Let two transitive relations on the set A are

$$
\begin{aligned}
& R=\{(1,1),(1,2)\} \\
& S=\{(2,2),(2,3)\}
\end{aligned}
$$

And

Now, $R \cup S=\{(1,1),(1,2),(2,2),(2,3)\}$
Here, $(1,2),(2,3) \in R \cup S \Rightarrow(1,3) \notin R \cup S$
$\therefore R \cup S$ is not transitive.
311 (c)
$f(1)=3, f(2)=4, f(3)=5, f(4)=6$
$\Rightarrow 1 \in B, 2 \in B$ do not have any pre-image in A
$\Rightarrow f$ is one-one and into
312 (b)
We observe that
$|f(x)+\phi(x)|=|f(x)|+|\phi(x)|$ is true, if
$f(x) \geq 0$ and $\phi(x) \geq 0$
OR
$f(x)<0$ and $\phi(x)<0$
$\Rightarrow(x>-1$ and $x>2)$ or $(x<-1$ and $x<2)$
$\Rightarrow x \in(2, \infty) \cup(-\infty,-1)$
313 (b)
We have, $f(x)=\frac{\sin ^{-1}(3-x)}{\log _{e}(|x|-2)}$
$\sin ^{-1}(3-x)$ is defined for all x satisfying
$-1 \leq 3-x \leq 1 \Rightarrow-4 \leq-x \leq-2 \Rightarrow x \in[2,4]$
$\log _{e}(|x|-2)$ is defined for all x satisfying
$|x|-2>0 \Rightarrow x \in(-\infty,-2) \cup(2, \infty)$
Also, $\log _{e}(|x|-2)=0$ when $|x|-2=1$ i.e.,
$x= \pm 3$
Hence, domain of $f=(2,3) \cup(3,4]$
314 (a)
$f(x)$ is defined
When $|x|>x$
$\Rightarrow \quad x<-x, x>x$
$\Rightarrow 2 x<0,(x>x$ is not possible)
$\Rightarrow \quad x<0$
Hence domain of $f(x)$ is $(-\infty, 0)$.
315 (d)
We have,
$f(x)=\log _{10}\left\{\left(\log _{10} x\right)^{2}-5\left(\log _{10} x\right)+6\right\}$
Clearly, $f(x)$ assumes real values, if
$\left(\log _{10} x\right)^{2}-5 \log _{10} x+6>0$ and $x>0$
$\Rightarrow\left(\log _{10} x-2\right)\left(\log _{10}-3\right)>0$ and $x>0$
$\Rightarrow\left(\log _{10} x<2\right.$ or $\left.\log _{10} x>3\right)$ and $x>0$
$\Rightarrow\left(x<10^{2}\right.$ or, $\left.x>10^{3}\right)$ and $x>0 \Rightarrow x \in$
$\left(0,10^{2}\right) \cup\left(10^{3}, \infty\right)$
316 (b)
We have,
$f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}=\left(x+\frac{1}{x}\right)^{2}-2$
$\Rightarrow f(y)=y^{2}-2$, where $y=x+\frac{1}{x}$
Now,
$x>0 \Rightarrow y=x+\frac{1}{x} \geq 2$ and, $x<0 \Rightarrow y=x+\frac{1}{x} \leq$ -2
Thus, $f(y)=y^{2}-2$ for all y satisfying $|y| \geq 2$

317 (c)
Since $\sin x$ is a periodic function with period 2π and
$f(x)=\sin \left(\frac{2 x+3}{6 \pi}\right)=\sin \left(\frac{x}{3 \pi}+\frac{1}{2 \pi}\right)$
$\therefore f(x)$ is periodic with period $=\frac{2 \pi}{1 / 3 \pi}=6 \pi^{2}$
318 (c)
Let $f(x)=y$. Then,
$10 x-7=y \Rightarrow x=\frac{y+7}{10} \Rightarrow f^{-1}(y)=\frac{y+7}{10}$
Hence, $f^{-1}(x)=\frac{x+7}{10}$
319 (b)
$\therefore f(2.5)=[2.5-2]=[0.5]=0$
320 (c)
We have,
$f(x)$
$=\sqrt{\log _{10}\left(\log _{10} x\right)-\log _{10}\left(4-\log _{10} x\right)-\log _{10} 3}$
Clearly, $f(x)$ assumes real values, if
$\log _{10}\left(\log _{10} x\right)-\log _{10}\left(4-\log _{10} x\right)-\log _{10} 3 \geq 0$
$\Rightarrow \log _{10}\left\{\frac{\log _{10} x}{3\left(4-\log _{10} x\right)}\right\} \geq 0$
$\Rightarrow \frac{\log _{10} x}{3\left(4-\log _{10} x\right)} \geq 1$
$\Rightarrow \frac{4 \log _{10} x-12}{3\left(4-\log _{10} x\right)} \geq 0$
$\Rightarrow \frac{\log _{10} x-3}{\log _{10} x-4} \leq 0$
$\Rightarrow 3 \leq \log _{10} x<4 \Rightarrow 10^{3} \leq x<10^{4} \Rightarrow x$

$$
\in\left[10^{3}, 10^{4}\right)
$$

Hence, domain of $f=\left[10^{3}, 10^{4}\right)$
321 (a)
We observe that the periods of $\sin x$ and $\sin \frac{x}{n}$ are $\frac{2 \pi}{|n|}$ and $2|n| \pi$ respectively
Therefore, $f(x)$ is periodic with period $2|n| \pi$
But, $f(x)$ has period 4π
$\therefore 2|n| \pi=4 \pi \Rightarrow|n|=2 \Rightarrow n= \pm 2$
322 (b)
It can be easily checked that $f: R \rightarrow R$ given by
$f(x)=\log _{a}\left(x+\sqrt{x^{2}+1}\right)$ is a bijection
Now, $f\left(f^{-1}(x)\right)=x$
$\Rightarrow \log _{a}\left(f^{-1}(x)+\sqrt{\left\{f^{-1}(x)\right\}^{2}+1}\right)=x$
$\Rightarrow f^{-1}(x)+\sqrt{\left\{f^{-1}(x)\right\}^{2}+1}=a^{x}$
$\Rightarrow \frac{1}{f^{-1}(x)+\sqrt{\left\{f^{-1}(x)\right\}^{2}+1}}=a^{-x}$
$\Rightarrow-f^{-1}(x)+\sqrt{\left\{f^{-1}(x)\right\}^{2}+1}=a^{-x}$
Subtracting (ii) from (i), we get
$2 f^{-1}(x)=a^{x}-a^{-x}$
$\Rightarrow f^{-1}(x)=\frac{1}{2}\left(a^{x}-a^{-x}\right)$
323 (d)
We have,
$f(x)=x \frac{1+\frac{2}{\sqrt{x+4}}}{2-\sqrt{x+4}}+\sqrt{x+4}+4 \sqrt{x+4}$
Clearly, $f(x)$ is defined for $x+4>0$ and $x \neq 0$
So, Domain of $f(x)$ is $(-4,0) \cup(0, \infty)$
324 (d)
$\because \quad f(f(x))=f\left(\frac{\alpha x}{x+1}\right)$

$$
=\frac{\alpha\left(\frac{\alpha x}{x+1}\right)}{\left(\frac{\alpha x}{x+1}\right)+1}=\frac{\alpha^{2} x}{a x+x+1}
$$

$\Rightarrow \quad \frac{\alpha^{2} x}{a x+x+1}=x$
[given]
$\Rightarrow \quad \alpha^{2}=\alpha x+x+1$
$\Rightarrow \quad \alpha^{2}-1=(\alpha+1) x$
$\Rightarrow \quad(\alpha+1)(\alpha-1-x)=0$
$\Rightarrow \quad \alpha+1=0 \quad \Rightarrow \quad \alpha=-1 \quad[\therefore \alpha-1-x$ $\neq 0]$
325 (d)
$f(x)=\operatorname{cosec}^{2} 3 x+\cot 4 x$
Period of $\operatorname{cosec}^{2} 3 x$ is $\frac{\pi}{3}$ and $\cot 4 x$ is $\frac{\pi}{4}$.
\therefore Period of $f(x)=$ LCM of $\left\{\frac{\pi}{3}\right.$ and $\left.\frac{\pi}{4}\right\}$

$$
=\frac{\operatorname{LCM} \text { of }(\pi, \pi)}{\text { HCF of }(3,4)}=\frac{\pi}{1}=\pi
$$

326

(b)

Given, $f(x)=\sqrt{1+\log _{e}(1-x)}$
For domain, $(1-x)>0$ and $\log _{e}(1-x) \geq-1$
$\Rightarrow \quad x<1$ and $1-x \geq e^{-1}$
$\Rightarrow \quad x<1$ and $x \leq 1-\frac{1}{e}$
$\Rightarrow \quad-\infty<x \leq \frac{e-1}{e}$
327 (d)
$\sin \left(\sin ^{-1} x+\cos ^{-1} x\right)=\sin \left(\frac{\pi}{2}\right)=1$
\therefore Range of $\sin \left(\sin ^{-1} x+\cos ^{-1} x\right)$ is 1 .
328

(d)

Given, $f(x)=\cos x-\sin x$

$$
\begin{aligned}
& =\sqrt{2}\left(\frac{1}{\sqrt{2}} \cos x-\frac{1}{\sqrt{2}} \sin x\right) \\
& =\sqrt{2} \cos \left(\frac{\pi}{2}+x\right)
\end{aligned}
$$

Since, $-1 \leq \cos x \leq 1 \Rightarrow-1 \leq \cos \left(\frac{\pi}{4}+x\right) \leq 1$
$\Rightarrow \quad-\sqrt{2} \leq \sqrt{2} \cos \left(\frac{\pi}{4}+x\right) \leq \sqrt{2}$
\therefore Range is $[-\sqrt{2}, \sqrt{2}]$

Given, $f(x)=x^{2}+\frac{1}{x^{2}+1}$

$$
\begin{aligned}
& =\left(x^{2}+1\right)-\left(\frac{x^{2}}{x^{2}+1}\right) \\
& =1+x^{2}\left(1-\frac{1}{x^{2}+1}\right) \geq 1, \forall x \in R
\end{aligned}
$$

Hence, range of $f(x)$ is $[1, \infty)$.
330 (b)
Let $y=\sqrt{\sin 2 x} \Rightarrow 0 \leq \sin 2 x \leq 1$,
$\Rightarrow \quad 0 \leq 2 x \leq \frac{\pi}{2}$
$\Rightarrow \quad 0 \leq x \leq \frac{\pi}{4}$
$\Rightarrow \quad x \in\left[n \pi, n \pi+\frac{\pi}{4}\right]$
331 (c)
We have, $f(x)=x-[x]-\frac{1}{2}$
$\therefore f(x)=\frac{1}{2} \Rightarrow x-[x]=1$
But, for any $x \in R, 0 \leq x-[x]<1$
$\therefore x-[x] \neq 1$ for any $x \in R$
Hence, $\left\{x \in R: f(x)=\frac{1}{2}\right\}=\phi$
332 (c)
Since, $x \in[-2,2], \quad x \leq 0$ and $f(|x|)=x$
For $\quad-2 \leq x \leq 0$
$f(-x)=x \Rightarrow \leq(-x)-1=x \quad \Rightarrow \quad x=-\frac{1}{2}$
333 (d)
Given, $\quad f(x)=\sin x$
And $g(x)=\sqrt{x^{2}-1}$
\therefore Range of $f=[-1,1] \notin$ domain of $g=(1, \infty)$
$\therefore g o f$ is not defined.
334 (d)
Given, $f: C \rightarrow R$ such that $f(z)=|z|$
We know modulus of z and \bar{z} have same values, so $f(z)$ has many one.
Also, $|z|$ is always non-negative real numbers, so it is not onto function.
335 (b)
We have,
$f(x)=\frac{x-1}{x+1}$
$\Rightarrow \frac{f(x)+1}{f(x)-1}=\frac{2 x}{-2}$ [Applying componendo-dividendo]
$\Rightarrow x=\frac{f(x)+1}{1-f(x)}$
$\therefore f(2 x)=\frac{2 x-1}{2 x+1}=\frac{2\left\{\frac{f(x)+1}{1-f(x)}\right\}-1}{2\left\{\frac{f(x)+1}{1-f(x)}\right\}+1}=\frac{3 f(x)+1}{f(x)+3}$
336 (b)
Given, $f(x)=\tan \sqrt{\frac{\pi}{9}-x^{2}}$

For $f(x)$ to be defined $\frac{\pi^{2}}{9}-x^{2} \geq 0$
$\Rightarrow \quad x^{2} \leq \frac{\pi^{2}}{9} \Rightarrow-\frac{\pi}{3} \leq 3 \leq \frac{\pi}{3}$
\therefore Domain of $f=\left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$
The greatest value of $f(x)=\tan \sqrt{\frac{\pi^{2}}{9}}-0$, when $x=0$
And the least value of $f(x)=\tan \sqrt{\frac{\pi^{2}}{9}-\frac{\pi^{2}}{9}}$, when $x=\frac{\pi}{3}$
\therefore The greatest value of $f(x)=\sqrt{3}$ and the least value of $f(x)=0$
\therefore Range of $f=[0, \sqrt{3}]$.
337 (b)
We have,
$[\sin x]=\left\{\begin{array}{c}0,0 \leq x<\pi / 2 \\ 1, x=\pi / 2 \\ 0, \pi / 2<x \leq \pi \\ -1, \pi<x<2 \pi \\ 0, x=\pi, 2 \pi\end{array}\right.$
And, $\operatorname{cosec}^{-1} x$ is defined for $x \in(-\infty,-] \cup[1, \infty)$
$\therefore f(x)=\operatorname{cosec}^{-1}[\sin x]$ is defined for $x=\frac{\pi}{2}$ and $x \in(\pi, 2 \pi)$
Hence, domain of $\operatorname{cosec}^{-1}[\sin x]$ is $(\pi, 2 \pi) \cup\left\{\frac{\pi}{2}\right\}$
338 (a)
$a R a$ if $|a-a|=0<1$, which is true.
\therefore It is reflexive.
Now, $a R b$,
$|a-b| \leq 1 \Rightarrow|b-a| \leq 1$
$\Rightarrow \quad a R b \Rightarrow b R a$
\therefore It is symmetric.
339 (b)
Given
$f(x)=\log _{e}(x-[x])=\log _{e}\{x\}$
When x is an integer, then the function is not defined.
\therefore Domain of the function $R-Z$.
340 (b)
Here, $f:[0, \infty] \rightarrow[0, \infty)$ ie, domain is $[0, \infty)$ and codomain is $[0, \infty)$.
For one-one $f(x)=\frac{x}{1+x}$
$\Rightarrow \quad f^{\prime}(x)=\frac{1}{(1+x)^{2}}>0, \forall x \in[0, \infty)$
$\therefore f(x)$ is increasing in its domain. Thus, $f(x)$ is one-one in its domain.
For onto (we find range)
$f(x)=\frac{x}{1+x}$ ie, $y=\frac{x}{1+x} \Rightarrow y+y x=x$
$\Rightarrow x=\frac{y}{1-y} \Rightarrow \frac{y}{1-y} \geq 0$ as $x \geq 0 \therefore 0 \leq y \neq 1$
ie, Range \neq Codomain
$\therefore f(x)$ is one-one but not onto.
341 (c)
Given, $f(x)=x^{3}-1$
Let $x_{1}, x_{2} \in R$
Now, $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow x_{1}^{3}-1=x_{2}^{3}-1$
$\Rightarrow \quad x_{1}^{3}=x_{2}^{3}$
$\Rightarrow \quad x_{1}=x_{2}$
$\therefore f(x)$ is one-one. Also, it is onto as range of $f=R$
Hence, it is a bijection.
342 (d)
Given $f(x)=[x]$ and $g(x)=|x|$
Now, $f\left(g\left(\frac{8}{5}\right)\right)=f\left(\frac{8}{5}\right)=\left[\frac{8}{5}\right]=1$
And $\quad g\left(f\left(-\frac{8}{5}\right)\right)=g\left(\left[-\frac{8}{5}\right]\right)=g(-2)=2$
$\therefore f\left(g\left(\frac{8}{5}\right)\right)-g\left(f\left(-\frac{8}{5}\right)\right)=1-2=-1$
343 (a)
$\because f(x)=\frac{\cos ^{-1} x}{[x]}$
For $f(x)$ to be defined $-1 \leq x \leq 1$ and $[x] \neq 0 \Rightarrow x \notin[0,1)$
\therefore Domain of $f(x)$ is $[-1,0) \cup\{1\}$.
344 (c)
Let $f(x)=g(x)+h(x)+u(x)$, where
$g(x)=\frac{1}{x}, h(x)=2^{\sin ^{-1} x}$ and $u(x)=\frac{1}{\sqrt{x-2}}$
The domain of $g(x)$ is the set of all real numbers other than zero i.e. $R-\{0\}$
The domain of $h(x)$ is the set $[-1,1]$ and the domain of $u(x)$ is the set of all reals greater than 2, i.e., $(2, \infty)$
Therefore, domain of $f(x)=R-\{0\} \cap[-1,1] \cap$ $(2, \infty)=\phi$
345 (b)
Given, $2 f(x)+f(1-x)=x^{2}$
Replacing x by $(1-x)$, we get

$$
\begin{align*}
& 2 f(1-x)+f(x)=(1-x)^{2} \\
\Rightarrow & 2 f(1-x)+f(x)=1+x^{2}-2 x \tag{ii}
\end{align*}
$$

On multiplying Eq. (i) by 2 and subtracting from Eq. (ii), we get

$$
3 f(x)=x^{2}+2 x-1 \Rightarrow f(x)=\frac{x^{2}-2 x-1}{3}
$$

346 (d)

$$
\begin{aligned}
& f(x)=a+b x \\
& \therefore \quad f\{f(x)\}=a+b(a+b x)=a(1+b) b^{2} x \\
& \Rightarrow \quad f[f\{f(x)\}]=f\left\{a(1+b)+b^{2} x\right\} \\
& \quad=a\left(1+b+b^{2}\right)+b^{3} x
\end{aligned}
$$

$\therefore \quad f^{r}(x)$

$$
\begin{aligned}
& =a\left(1+b+b^{2}+\cdots+b^{r-1}\right)+b^{r} x \\
& =a\left(\frac{b^{r}-1}{b-1}\right)+b^{\prime} x
\end{aligned}
$$

347 (b)
We have,
$f(x)=\frac{x-1}{x+1}$
$\Rightarrow \frac{f(x)+1}{f(x)-1}=\frac{2 x}{-2}$
$\Rightarrow x=\frac{f(x)+1}{1-f(x)}$
$\therefore f(2 x)=\frac{2 x-1}{2 x+1}=\frac{2\left\{\frac{f(x)+1}{1-f(x)}\right\}-1}{2\left(\frac{f(x)+1}{1-f(x)}\right)+1}=\frac{3 f(x)+1}{f(x)+3}$
348 (a)
Since, $f(-x)=-f(x)$ and $f(x+2)=f(x)$
$\therefore \quad f(x)=f(0)$ and $f(-2)=f(-2+2)=f(0)$
Now, $f(0)=f(-2)=-f(2)=-f(0)$
$\Rightarrow 2 f(0)=0 \Rightarrow f(0)=0$
$\therefore \quad f(4)=f(2)=f(0)=0$
349 (c)
We observe that $\frac{1}{x^{2}-36}$ is not defined for $x= \pm 6$
Also, $\sqrt{\log _{0.4}\left(\frac{x-1}{x+5}\right)}$ is a real number, if
$0<\frac{x-1}{x++5} \leq 1$
$\Rightarrow 0<\frac{x-1}{x+5}$ and $\frac{x-1}{x+5} \leq 1$
$\Rightarrow(x-1)(x+5)>0$ and $1-\frac{6}{x+5} \leq 1$
$\Rightarrow(x<-5$ or $x>1)$ and $-\frac{6}{x+5} \leq 0$
$\Rightarrow(x<-5$ or $x>1)$ and $x+5>0$
$\Rightarrow(x<-5$ or $x>1)$ and $x>-5$
Hence, domain of $f(x)=(1, \infty)-\{6\}$
350 (b)
Given, $f(x)=\log _{2}\left(\log _{3}\left(\log _{4} x\right)\right)$
We know, $\log _{a} x$ is defined, if $x>0$
For $f(x)$ to be defined.
$\log _{3} \log _{4} x>0, \log _{4} x>0$ and $x>0$
$\Rightarrow \quad \log _{4} x>3^{0}=1, x>4^{0}=1$ and $x>0$
$\Rightarrow \quad x>4, x>1$ and $x>0$
$\Rightarrow \quad x>4$
351 (c)
We have,
$f(x)=\left\{\begin{array}{c}-3 x+9, \text { if } x<2 \\ x-3, \text { if } 2 \leq x<3 \\ x-1, \text { if } 3 \leq x<4 \\ 3 x-9, \text { if } x \geq 4\end{array}\right.$
$\therefore g(x)=f(x+1)=\left\{\begin{array}{c}-3 x+6, \text { if } x<1 \\ x-2, \text { if } 1 \leq x<2 \\ x, \text { if } 2 \leq x<3 \\ 3 x-6, \text { if } x \geq 3\end{array}\right.$
Clearly, $g(x)$ is neither even nor odd. Also, $g(x)$ is not a periodic function
352 (b)
We have,
$f:[2, \infty) \rightarrow B$ such that $f(x)=x^{2}-4 x+5$
Since f is a bijection. Therefore, $B=$ Range of f
Now,
$f(x)=x^{2}-4 x+5=5=(x-2)^{2}+1$ for all $x \in[2, \infty)$
$\Rightarrow f(x) \geq 1$ for all $x \in[2, \infty) \Rightarrow$ Range of
$f=[1, \infty)$
Hence, $B=[1, \infty)$
353 (d)
Given, $R=\{(x, y): 4 x+3 y=20\}$.
Since, R is a relation on N, therefore x, y are the elements of N. But in options (a) and (b) elements are not natural numbers and option (c) does not satisfy the given relation $4 x+3 y=20$.
354 (b)
Since the function $f: R \rightarrow R$ given by $f(x)=x^{3}+$ 5 is a bijection. Therefore, f^{-1} exists
Let $f(x)=y$. Then,
$x^{3}+5=y$
$\Rightarrow x=(y-5)^{1 / 3} \quad\left[\because f(x)=y \Leftrightarrow x=f^{-1}(y)\right]$
Hence, $f^{-1}(x)=(x-5)^{1 / 3}$
355 (a)
We have,
$f(x)=x, g(x)=|x|$ for all $x \in R$
Now,
$[\phi(x)-f(x)]^{2}+[\phi(x)-g(x)]^{2}=0$
$\Rightarrow \phi(x)-f(x)=0$ and $\phi(x)-g(x)=0$
$\Rightarrow \phi(x)=f(x)$ and $\phi(x)=g(x)$
$\Rightarrow f(x)=g(x)=\phi(x)$
But, $f(x)=g(x)=x$, for all $x \geq 0[\because|x|=$ x for all $x \geq 0$
$\therefore \phi(x)=x$ for all $x \in[0, \infty)$
356 (b)
Since $f(x)$ is defined for $x \in[0,1]$. Therefore,
$f(2 x+3)$ exists if
$0 \leq 2 x+3 \leq 1 \Rightarrow-\frac{3}{2} \leq x \leq-1 \Rightarrow x$

$$
\in[-3 / 2,-1]
$$

358 (a)

$$
\begin{aligned}
f o g(-1) & =f\{g(-1)\} \\
& =f(-7)=5-49=-44
\end{aligned}
$$

359 (a)
We have,
$f(x)=\frac{e^{x^{2}}-e^{-x^{2}}}{e^{x^{2}}+e^{-x^{2}}}$ for all $x \in R$
Clearly, $f(-x)=f(x)$ for all $x \in R$
So, f is a many-one function
Also, $e^{x^{2}}>e^{-x^{2}}>0$
So, $f(x)$ attains only positive values
Consequently, range of $\neq R$
Hence, f is many-one into function
360 (c)
Let $x, y \in N$ such that $f(x)=f(y)$
$\Rightarrow \quad x^{2}+x+1=y^{2}+y+1$
$\Rightarrow \quad(x-y)(x+y+1)=0$
$\Rightarrow \quad x=y$ or $x=(-y-1) \notin N$
$\therefore f$ one-one.
Also, f is not onto.
361 (c)
The period of the function in option (a) is 2 . The period of the function in option (b) is 24.
The period of the function in option (c) is 2π.
362 (a)
We have,
$f(x)=\sqrt{3} \sin x+\cos x+4$
$\Rightarrow f(x)=2(\sin x \cos \pi / 6+\cos x \sin \pi / 6)+4$
$\Rightarrow f(x)=2 \sin (x+\pi / 6)+4$
Clearly, $f(x)$ will be a bijection, if $\sin (x+\pi / 6)$ is a bijection
Now,
$\sin (x+\pi / 6)$ is a bijection
$\Rightarrow-\pi / 2 \leq x+\pi / 6 \leq \pi / 2$
$\Rightarrow-2 \pi / 3 \leq x \leq \pi / 3$
$\Rightarrow x \in[-2 \pi / 3, \pi / 3]$
For $x \in[-2 / 3 \pi, \pi / 3]$, we have
$-1 \leq \sin (x+\pi / 6) \leq 1$
$\Rightarrow-2 \leq 2 \sin (x+\pi / 6) \leq 2$
$\Rightarrow-2+4 \leq 2 \sin (x+\pi / 6)+4 \leq 2+4$
$\Rightarrow 2 \leq f(x) \leq 6$
\Rightarrow Range of $f(x)=[2,6]$
Hence, $A=[-2 \pi / 3, \pi / 3]$ and $B=[2,6]$
363 (c)
We have,
$f(x)=2 x+3$ and $g(x)=x^{2}+7$
$\therefore g(f(x))=g(2 x+3)=(2 x+3)^{2}+7$
Now,
$g(f(x))=8$
$\Rightarrow(2 x+3)^{2}+7=8$
$\Rightarrow(2 x+3)^{2}=1$
$\Rightarrow 2 x+3= \pm 1 \Rightarrow 2 x=-4,-2 \Rightarrow x=-1,-2$
364 (c)
We have,
$f(x)=\sin ^{-1}\left(\frac{x-3}{2}\right)-\log (4-x)=g(x)+h(x)$
where $g(x)=\sin ^{-1}\left(\frac{x-3}{2}\right)$ and $h(x)$

$$
=-\log (4-x)
$$

now, $g(x)$ is defined for
$-1 \leq \frac{x-3}{2} \leq 1 \Rightarrow-2 \leq x-3 \leq 2 \Rightarrow 1 \leq x \leq 5$
and, $h(x)$ is defined for $4-x>0 \Rightarrow x<4$
So, domain of $f(x)=[1,5] \cap[-\infty, 4)=[1,4)$
365 (a)
Let $y=f(x)=\frac{1-x}{1+x} \quad[\because x \neq-1]$
$\Rightarrow \quad x=\frac{1-y}{1+y}$
$\therefore \quad f^{-1}(x)=\frac{1-x}{1+x}=f(x)$
366 (b)
Since, $3 f(x)+2 f\left(\frac{x+59}{x-1}\right)=10 x+30$
Replacing x by $\frac{x+59}{x-1}$ in Eq. (i), we get
$\therefore \quad 3\left(\frac{x+59}{x-1}\right)+2 f(x)=\frac{40 x+560}{x-1}$
On solving Eqs. (i) and (ii), we get

$$
\begin{aligned}
& f(x)=\frac{6 x^{2}-4 x-242}{x-1} \\
\therefore & f(7)=\frac{6 \times 49-28-242}{6}=4
\end{aligned}
$$

367 (c)

$$
\begin{aligned}
& {\left[\frac{2}{3}+\frac{r}{99}\right]= \begin{cases}0, & r<33 \\
1, & r \geq 33\end{cases} } \\
& \therefore \quad \sum_{r=0}^{98}\left[\frac{2}{3}+\frac{r}{99}\right]=\sum_{r=0}^{32}\left[\frac{2}{3}+\frac{r}{99}\right]+\sum_{r=33}^{98}\left[\frac{2}{3}+\frac{r}{99}\right] \\
& =0+66=66
\end{aligned}
$$

368 (b)
We have, Domain $(f)=[0,1]$
$\therefore f\left(3 x^{2}\right)$ is defined, if
$0 \leq 3 x^{2} \leq 1$
$\Rightarrow 0 \leq x^{2} \leq \frac{1}{3} \Rightarrow|x| \leq \frac{1}{\sqrt{3}} \Rightarrow x \in[-1 / \sqrt{3}, 1 / \sqrt{3}]$
369 (d)
$\sin x-\sqrt{3} \cos x=2 \sin \left(x-\frac{\pi}{3}\right)$
Since, $-2 \leq 2 \sin \left(x-\frac{\pi}{3}\right) \leq 2$
$\Rightarrow \quad-1 \leq 1+2 \sin \left(x-\frac{\pi}{3}\right) \leq 3$
\therefore Range of $S=[-1,3]$
370
(b)

Given,

$$
f(x)=e^{x} \quad \text { and } \quad g(x)=\log _{e} x
$$

Now, $f\{g(x)\}=e^{\log _{e} x}=x$
And $\quad g\{f(x)\}=\log _{e} e^{x}=x$
$\therefore f\{g(x)\}=g\{f(x)\}$

371 (a)
The function $f(x)={ }^{7-x} P_{x-3}$ is defined only if x is an integer satisfying the following inequalities:
(i) $7-x \geq 0$ (ii) $x-3 \geq 0$ (iii) $7-x \geq x-3$

Now,

$$
\left.\begin{array}{c}
7-x \geq 0 \Rightarrow x \leq 7 \\
x-3 \geq 0 \Rightarrow x \geq 3 \\
7-x \geq x-3 \Rightarrow x \leq 5
\end{array}\right\} \Rightarrow 3 \leq x \leq 5
$$

Hence, the required domain is $\{3,4,5\}$
Now,
$f(3)={ }^{7-3} P_{0}, f(4)={ }^{3} P_{1}=3$ and $f(5)={ }^{2} P_{2}=$ 2
Hence, range of $f=\{1,2,3\}$
372 (c)
We have,
$f(x)=\log _{1.7}\left\{\frac{2-\varphi^{\prime}(x)}{x+1}\right\}$, where $\varphi(x)$

$$
=\frac{x^{3}}{3}-\frac{3}{2} x^{2}-2 x+\frac{3}{2}
$$

For $f(x)$ to be defined, we must have
$\frac{2-\varphi^{\prime}(x)}{x+1}>0, x \neq-1$
$\Rightarrow \frac{2-\left(x^{2}-3 x-2\right)}{3 x+1}>0, x \neq-1$
$\Rightarrow \frac{x^{2}-3 x-4}{x+1}<0, x \neq-1$
$\Rightarrow \frac{(x-4)(x+1)}{x+1}<0, x \neq-1$
$\Rightarrow x-4<0, x \neq-1$
$\Rightarrow x<4, x \neq-1$
$\Rightarrow x \in(-\infty, 4), x \neq-1 \Rightarrow x \in(-\infty,-1) \cup(-1,4)$
373 (a)
$f(x)$ is defined, if
$-1 \leq \frac{4}{3+2 \cos x} \leq 1$
$\Rightarrow \frac{4}{3+2 \cos x} \leq 1 \quad[\because 3+2 \cos x>0]$
$\Rightarrow 4 \leq 3+2 \cos x$
$\Rightarrow \cos x \geq \frac{1}{2} \Rightarrow 2 n \pi-\frac{\pi}{6} \leq x \leq \frac{\pi}{6}, n \in Z$
374 (c)
The period of the function in (a) is 2 . The period of the function in (b) is 24 . The period of the function in (c) is 2π
375 (a)
$R=\{(a, b): 1+a b>0\}$
It is clear that the given relation on S is reflexive, symmetric but not transitive.
377 (a)
We have,
$f(x)=\max \{(1-x), 2,(1+x)\}$
For $x \leq-1$, we find that
$1-x \geq 2$, and $1-x \geq 1+x$
$\therefore \operatorname{Max}\{(1-x), 2,(1+x)\}=1-x$
For $-1<x<1$, we find that
$0<1-x<2$, and $0<1+x<2$
$\therefore \operatorname{Max}\{(1-x),(1+x)\}=2$
For $x \geq 1$, we observe that
$1+x \geq 2,1+x>1-x$
$\therefore \operatorname{Max}\{(1-x), 2,(1+x)\}=1+x$
Hence, $f(x)=\left\{\begin{array}{c}1-x, \quad x \leq-1 \\ 2, \quad-1<x<1 \\ 1+x, \quad x \geq 1\end{array}\right.$

NOTE

Students are advised to solve this problem by d $y=1-x, y=2$ and $y=1+x$
378 (d)
Period of $\sin \frac{\theta}{3}=6 \pi$
And period of $\cos \frac{\theta}{2}=4 \pi$
\therefore Period of $f(x)=\operatorname{LCM}(6 \pi, 4 \pi)=12 \pi$
379 (b)
To make $f(x)$ an odd function in the interval [$-1,1$], we re-define $f(x)$ as follows:
$f(x)=\left\{\begin{aligned} f(x), & 0 \leq x \leq 1 \\ -f(-x), & -1 \leq x<0\end{aligned}\right.$
$\Rightarrow f(x)$
$=\left\{\begin{array}{cr}x^{2}+x+\sin x-\cos x+\log (1+|x|), & 0 \leq: \\ -\left(x^{2}-x-\sin x-\cos x+\log (1+|x|),\right. & -1\end{array}\right.$
$\Rightarrow f(x)$
$=\left\{\begin{array}{c}x^{2}+x+\sin x-\cos x+\log (1+|x|), 0 \leq x \leq \\ -x^{2}+x+\sin x+\cos x-\log (1+|x|),-1 \leq x\end{array}\right.$
Thus, the odd extension of $f(x)$ to the interval $[-1,1]$ is
$-x^{2}+x+\sin x+\cos x-\log (1+|x|)$
380 (b)
We have,
$g(x)=1+\sqrt{x}$ and $f(g(x))=3+2 \sqrt{x}+x$
Now,
$f(g(x))=3+2 \sqrt{x}+x$
$\Rightarrow f(g(x))=2+(1+\sqrt{x})^{2}$
$\Rightarrow f(g(x))=2+\{g(x)\}^{2}$
$\Rightarrow f(x)=2+x^{2}$
381 (a)
Given, $f(x)=\tan ^{-1} \frac{2 x}{1-x^{2}}=2 \tan ^{-1} x\left(x^{2}<1\right)$
Since, $\quad x \in(-1,1)$.
$\Rightarrow \tan ^{-1} x \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$
$\Rightarrow 2 \tan ^{-1} x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
So, $\quad f(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
382 (a)

Let $y=f(x)=x^{3}$
$\therefore \quad x=y^{1 / 3}$
$\Rightarrow \quad f^{-1}(x)=x^{1 / 3}$
$\therefore \quad f^{-1}(8)=(8)^{1 / 3}=2$
383 (d)
For $f(x)=\log _{\left(\frac{x-2}{x+3}\right)} 2$ to exist, we must have
$\frac{x-2}{x+3}>0$ and $\frac{x-2}{x+3} \neq 1 \Rightarrow x<-3$ or $x>2, x$

$$
\neq-3, x \neq 2
$$

For $g(x)=\frac{1}{\sqrt{x^{2}-9}}$ to exist, we must have
$x^{2}-9>0 \Rightarrow x<-3$ or $x>0$
Thus, $f(x)$ and $g(x)$ both do not exist for $-3<x<2$, i.e., for $x \in(-3,2)$
384 (b)
For choice (a), we have
$f(x)=f(y), x, y \in[-1, \infty)$
$\Rightarrow|x+1|=|y+1| \Rightarrow x+1=y+1 \Rightarrow x=y$
So, f is an injection
For choice (b), we have
$g(2)=\frac{5}{2}$ and $g(1 / 2)=\frac{5}{2}$
$\therefore 2 \neq \frac{1}{2}$ but $g(2)=g(1 / 2)$
Thus, $g(x)$ is not injective
It can be easily seen that choices $h(x)$ and $k(x)$ are injections
385 (b)
We have
$f(n)=\left\{\begin{array}{c}2 \text { if } n=3 k, \quad k \in Z \\ 10 \quad \text { if } \quad n=3 k+1, k \in Z \\ 0 \text { if } n=3 k+2, \quad k \in Z\end{array}\right.$
For $f(n)>2$, we take $n=3 k+1, k \in Z$
$\Rightarrow \quad n=1,4,7$
\therefore Required set $\{n \in Z ; f(n)>2\}=\{1,4,7\}$
386 (b)
Let $\quad y=\frac{2 x-1}{x+5}$
$\Rightarrow \quad x=\frac{5 y+1}{2-y}$
$\therefore f^{-1}(x)=\frac{5 x+1}{2-x}, x \neq 2$
387 (b)
We have,
$f(a+x)=b+\left[b^{3}+1-3 b^{2} f(x)+3 b\{f(x)\}^{2}-\right.$ $f x 31 / 3$ for all $x \in R$
$\Rightarrow f(a+x)=b+\left[1+\{b-f(x)\}^{3}\right]^{1 / 3}$ for all $x \in R$
$\Rightarrow f(a+x)-b=\left[1-\{f(x)-b\}^{3}\right]^{1 / 3}$ for all $x \in R$
$\Rightarrow g(a+x)=\left[1-\{g(x)\}^{3}\right]^{1 / 3}$ for all $x \in R$,
Where $g(x)=f(x)-1$
$\Rightarrow g(2 a+x)=\left[1-\{g(a+x)\}^{3}\right]^{1 / 3}$ for all $x \in R$
$\Rightarrow g(2 a+x)=\left[1-\left\{1-(g(x))^{3}\right\}\right]^{1 / 3}$ for all
$x \in R$
$\Rightarrow g(2 a+x)=g(x)$ for all $x \in R$
$\Rightarrow f(2 a+x)-1=f(x)-1$ for all $x \in R$
$\Rightarrow f(2 a+x)=f(x)$ for all $x \in R$
$\Rightarrow f(x)$ is periodic with period $2 a$
388 (a)
Given a set containing 10 distinct elements and $f: A \rightarrow A$ Now, every element of a set A can make image in 10 ways.
\therefore Total number of ways in which each element make images $=10^{10}$.
389 (c)
Given, $f\left(\frac{p}{q}\right)=\sqrt{p^{2}-q^{2}}$, for $\frac{p}{q}=\mathcal{Q}$
If $p<q$, then $f\left(\frac{p}{q}\right)$ is not real.
Hence, statement I is false while statement II is true.
390 (c)
The given function is defined when $x^{2}-1 ; 3+$
$x>0$ and $3+x \neq 1$
$\Rightarrow \quad x^{2}>1 ; 3+x>0$ and $x \neq-2$
$\Rightarrow \quad-1>x>1 ; x>-3, \quad x \neq-2$
\therefore Domain of the function is
$D_{f}=(-3,-2) \cup(-2,-1) \cup(1, \infty)$
391 (a)
Let x and y be two arbitary elements in A.
Then, $f(x)=f(y)$
$\Rightarrow \quad \frac{x-2}{x-3}=\frac{y-2}{y-3}$
$\Rightarrow x y-3 x-2 y+6=x y-3 y-2 x+6$
$\Rightarrow x=y, \forall x, y \in A$
So, f is an injective mapping.
Again, let y be an orbitary element in B, then

$$
\begin{array}{rlrl}
& & f(x) & =y \\
\Rightarrow & & \frac{x-2}{x-3} & =y \\
\Rightarrow & x & =\frac{3 y-2}{y-1}
\end{array}
$$

Clearly, $\forall y \in B, x=\frac{3 y-2}{y-1} \in A$, thus for all $y \in B$ there exists $x \in A$ such that

$$
f(x)=f\left(\frac{3 y-1}{y-1}\right)=\frac{\frac{3 y-2}{y-1}-2}{\frac{3 y-2}{y-1}-3}=y
$$

Thus, every element in the codomain B has its preimage in A, so f is a surjection. Hence, $f: A \rightarrow B$ is bijective.
$f(x)$ is defined for
$\sin x \geq 0$ and $1+\sqrt[3]{\sin x} \neq 0$
$\Rightarrow \sin x \geq 0$ and $\sin x \neq-1$
$\Rightarrow \sin x \geq 0$
$\Rightarrow x \in[2 n \pi,(2 n+1) \pi], n \in Z$
$\Rightarrow D=\underset{n \in Z}{\mathrm{U}}[2 n \pi,(2 n+1) \pi]$
Clearly, it contains the interval $(0, \pi)$
393 (a)
$f o g(x)=f(g(x))=f(3 x-1)=3(3 x-1)^{2}+2$

$$
=27 x^{2}-18 x+5
$$

394 (c)
We have,
$|x|=\left\{\begin{array}{ll}x, & x \geq 0 \\ x, & x<0\end{array} \Rightarrow|x|-x=\left\{\begin{array}{c}0, \quad x \geq 0 \\ -2 x, \quad x<0\end{array}\right.\right.$
Hence, domain of $f(x) \frac{1}{\sqrt{|x|-x}}$ is the set of all
negative real numbers, i.e., $(-\infty, 0)$
396 (c)
$g o f(x)=g\{f(x)\}$

$$
\begin{aligned}
& =g\left(x^{2}-1\right)=\left(x^{2}-1+1\right)^{2} \\
& =x^{4}
\end{aligned}
$$

397 (d)

$$
\begin{aligned}
\sum_{r=1}^{n} f(r) & =f(1)+f(2)+f(3)+\cdots+f(n) \\
& =f(1)+2 f(1)+3 f(1)+\ldots n f(n) \\
& \quad[\text { since, } f(x+y)=f(x)+f(y)] \\
& =(1+2+3+\ldots+n) f(1)=f(1) \sum n \\
& =\frac{7 n(n+1)}{2} \quad[\because f(1)=7 \text { (given) }]
\end{aligned}
$$

398 (c)
Given, $f(x)=2 x^{4}-13 x^{2}+a x+b$ is divisible by
$(x-2)(x-1)$
$\therefore \quad f(2)=2(2)^{4}-13(2)^{2}+a(2)+b=0$
$\Rightarrow \quad 2 a+b=20$

And $\quad f(1)=2(1)^{4}-13(1)^{2}+a+b=0$
$\Rightarrow \quad a+b=11$
On solving Eqs. (i) and (ii), we get $a=9, \quad b=2$
399 (d)
We have, $f(x)=\frac{x^{2}-8}{x^{2}+2}$
Clearly, $f(-x)=f(x)$. Therefore, f is not one-one Again,
$f(x)=\frac{x^{2}-8}{x^{2}+2}=1-\frac{10}{x^{2}+2}$
$\Rightarrow f(x)<1 \quad$ for all $x \in R$
\Rightarrow Range $f \neq$ Co-domain of f i.e. R.
So, f is not onto. Hence, f is neither one-one nor onto
400 (b)
$\sin ^{-1}(x-3)$ is defined for the values of x satisfying
$-1 \leq x-3 \leq 1 \Rightarrow 2 \leq x \leq 4 \Rightarrow x \in[2,4]$
$\sqrt{9-x^{2}}$ is defined for the values of x satisfying
$9-x^{2} \geq 0 \Rightarrow x^{2}-9 \leq 0 \Rightarrow x \in[-3,3]$
Also, $\sqrt{9-x^{2}}=0 \Rightarrow x= \pm 3$
Hence, the domain of $f(x)$ is $[2,4] \cap[-3,3]-$ $\{-3,3\}=[2,3)$

