

2.RELATIONS AND FUNCTIONS

Single Correct Answer Type

1. The equivalent definition of
$$f(x) = ||x| - 1|$$
, is
a) $f(x) = \begin{cases} x - 1, x \le -1 \\ 1 - x, 0 \le x \le 1 \\ x - 1, x \ge 1 \end{cases}$
b) $f(x) = \begin{cases} x + 1, x \le -1 \\ x - 1, 0 \le x \le 1 \\ x + 1, x \ge 0 \end{cases}$
c) $f(x) = \begin{cases} x + 1, x \ge 0 \\ x + 1, x \ge 0 \end{cases}$
d) None of these
2. The domain of definition of $f(x) = \log_{100 x} \left(\frac{2\log_{10} x + 1}{-x}\right)$, is
a) $(0, 10^{-2}) \cup (10^{-2}, 10^{-1/2})$
b) $(0, 10^{-1/2})$
c) $(0, 10^{-1})$
d) None of these
3. The domain of the function
 $f(x) = \frac{\sin^2(x-3)}{\sqrt{9-x^2}}$ is
a) $[2, 3]$
b) $[2, 3]$
c) $[1, 2]$
d) $[1, 2)$
4. If *R* denotes the set of all real numbers, then the function $f_{.R} \to R$ defined by $f(x) = |x|$ is
a) 0 monor ontageneous one only b) 0 not only
c) Both one-one and onto d) Netther one-one nor onto
5. If $f(x) = \frac{1}{\sqrt{-x}}$ then domain of f_0 is
a) $(0, \infty)$
b) $(-\infty, 0)$
c) (0) d) $\{\}$
6. Let f be a real valued function with period 32
c) $f(x)$ is a periodic function with netword 8
b) $f(x)$ is a periodic function with netword 12
c) $f(x)$ is a periodic function with netword 12
c) $f(x)$ is a periodic function with netword 12
c) $f(x)$ is a periodic function with netword 12
c) $f(x)$ is a periodic function with netword 12
c) $f(x)$ is a periodic function with netword 12
c) $f(x)$ is a periodic function with netword 12
c) $f(x)$ is a periodic function with netword 12
c) $f(x)$ is a periodic function with netword 13
d) $(1, 2), (x, 3), (3, 3), (x, 2)$ b) $(1, 2), (2, 3), (1, 3)), (x, y) = GD(x, y), x' = \frac{30}{x}$ and $f(x, y, z) = (x + y), (y' + z), then $f(2, 5, 15)$ is equal to
a) 2 b) 5 c) 10 d) 15
8. The domain of definition of the function
 $f(x) = \sqrt{\log_{10}(\frac{5x - x^2}{x})}$ is
a) $(1, 4)$ b) $[1, 0]$ c) $(0, 5)$ d) $[5, 0]$
9. Let $A = (1, 2, 3)$ and $B = (2, 3, 4)$, then which of the following relations is a function from A to B?
a) $(1, 2), (2, 3), (3, 3)$ d) $(1, 1), (2, 3), (3, 4)$]
10. Let $f: R \to R, g: R \to R$ be two functions given by $f(x) = 2x - 3, g(x) = x^3 + 5$. Then, $(fog)^{-1}x$ is equal to
a) $\left(\frac{x - 2}{2}$$

	Then, the range of $f(x)$ is					
	a) {0,3}	b) {1}	c) {0,2}	d) {3}		
12.	If the functions $f(x) = \log (x)$	$g(x-2) - \log(x-3)$ and g	$g(x) = \log\left(\frac{x-2}{x-3}\right)$ are identic	cal, then		
	a) $x \in [2, 3]$	b) $x \in [2, \infty)$	c) $x \in (3, \infty)$	d) $x \in R$		
13.	If <i>D</i> is the set of all real <i>x</i> s	such that $1 - e^{\frac{1}{x}-1}$ is positiv	ve, then <i>D</i> is equal to			
	a) (−∞,1]	b) (−∞, 0)	c) (1,∞)	d) $(-\infty, 0) \cup (1, \infty)$		
14.	Let $f(x) = \frac{\alpha x^2}{x+1}, x \neq -1.$ T	the value of \propto for which $f(a)$	$a) = a, (a \neq 0)$ is	1		
	a) $1 - \frac{1}{a}$	b) $\frac{1}{a}$	c) $1 + \frac{1}{a}$	d) $\frac{1}{a} - 1$		
15.	Let $f(x)$ be defined on [–	2,2] and is given by	u	u		
	$f(x) = \{-1, -2 \le x \le 0\}$					
	$(x - 1, 0 < x \le 2)$) Then $q(x)$ is equal to				
	and $g(x) = f(x) + f(x) $ (-x, -2 < x < 0). Then, $g(x)$ is equal to				
	a) $\begin{cases} 0, & 0 \le x < 1 \end{cases}$					
	$ (x - 1, 1 \le x \le 2 $	0				
	b) $\begin{cases} -x, & -2 \le x < 0, \\ 0, & 0 \le x < 1 \end{cases}$					
	$\int_{2(x-1)}^{\infty} (2(x-1), 1 \le x \le 2)$	2				
	c) $\begin{cases} -x, & -2 \le x < 0 \\ x & 1 & 0 \le x \le 2 \end{cases}$					
	d) None of these					
16.	If $f: R \to R$ and $g: R \to R$ a	are defined by $f(x) = x - 3$	B and $g(x) = x^2 + 1$, then t	he values of x for which		
	$g{f(x)} = 10$ are					
	a) 0, -6	b) 2, –2	c) 1, -1	d) 0, 6		
17.	If $f: R \to R$ and $g: R \to R$	are defined by $f(x) = 2x$	+ 3 and $g(x) = x^2 + 7$, the	en the values of x such that		
	g(f(x)) = 8 are			N 1 2		
18	a) 1, 2 The demostry of the weat for	0 - 1, 2	CJ −1, −2	a) 1, -2		
10.	The domain of the real ful	fiction $f(x) = \frac{1}{\sqrt{4-x^2}}$ is				
	a) The set of all real numbers $(2, 2)$	Ders	b) The set of all positive r	eal numbers		
19.	f(0) = 1, f(1) = 5, f(2)) = 11, then the equation of	f polynomial of degree two	is		
	a) $x^2 + 1 = 0$	b) $x^2 + 3x + 1 = 0$	c) $x^2 - 2x + 1 = 0$	d) None of these		
20.	If $[x]$ and $\{x\}$ represent in	tegral and fractional parts	of x, then the expression $[x]$	$(1 + \sum_{r=1}^{2000} \frac{\{x+r\}}{r})$ is equal to		
	, 2001			2001		
	a) $\frac{1}{2}x$	b) $x + 2001$	c) x	a) $[x] + \frac{1}{2}$		
21.	Suppose $f : [-2, 2] \rightarrow R$ is	s defined by				
	$f(x) = \begin{cases} -1 \text{ for } -2 \le x \le $	<u>↓</u> 0 : 2				
	then { $x \in [-2, 2] : x \le 0$ a	and $f(x) = x$ =				
	a) {-1}	b) {0}	c) {-1/2}	d)		
22.	The function $f(x) = \cos\{1, 1\}$	$og_{10}(x + \sqrt{x^2 + 1})$ }, is				
	a) Even	b) Odd	c) Constant	d) None of these		
23.	The period of the function 2π	$f(\theta) = 4 + 4 \sin^3 \theta - 3 \sin^3 \theta$	$\pi \theta$ is π			
	a) $\frac{2\pi}{3}$	b) $\frac{\pi}{3}$	c) $\frac{\pi}{2}$	d) π		
24.	$If f(2x+3) = \sin x + 2^x,$	then $f(4m - 2n + 3)$ is equivalent to the formula of the formula	qual to			
	a) $\sin(m - 2m) + 2^{2m-n}$		b) $\sin(2m - n) + 2^{(m-n)2}$			
	c) $\sin(m-2n) + 2^{(m+n)2}$		d) $\sin(2m - n) + 2^{2m - n}$			
25.	The range of the function	$f(x) = \frac{x+2}{x^2 - 8x - 4}$, is				

	a) $\left(-\infty, \frac{-1}{4}\right] \cup \left[\frac{-1}{20}, \infty\right)$			
	b) $\left(-\infty, -\frac{1}{4}\right) \cup \left(-\frac{1}{20}, \infty\right)$)		
	c) $\left(-\infty, -\frac{1}{4}\right] \cup \left(-\frac{1}{20}, \infty\right)$)		
	d) None of these			
26.	Let $f : R \to R$ be a function	on defined by $f(x) = \cos(5)$	x + 2). Then, f is	
	a) Injective	b) Surjective	c) Bijective	d) None of these
27.	Which one is not periodic	??		
	a) $ \sin 3x + \sin^2 x$	b) $\cos \sqrt{x} + \cos^2 x$	c) $\cos 4x + \tan^2 x$	d) $\cos^2 x + \sin x$
28.	If $f: R \to R$ is defined by f	f(x) = [2x] - 2[x] for all x	$\in R$, where $[x]$ is the great	est integer not exceeding <i>x</i> ,
	then the range of f is			
	a) { $x \in R: 0 \le x \le 1$ }	b) {0, 1}	c) $\{x \in R : x > 0\}$	d) { $x \in R: x \le 0$ }
29.	If $f(x) = \sin^2 x$ and the contrast of the function of the fun	omposite function $g(f(x))$	$= \sin x $, then the functio	n $g(x)$ is equal to
	a) $\sqrt{x-1}$	b) \sqrt{x}	c) $\sqrt{x+1}$	d) $-\sqrt{x}$
30.	If a function $f: [2, \infty) \rightarrow B$	B defined by $f(x) = x^2 - 4$	x + 5 is a bijection, then B	=
	a) <i>R</i>	b) [1,∞)	c) [4,∞)	d) [5,∞)
31.	The domain of definition	of the function		
	$f(x) = \log_2[-(\log_2 x)^2 +$	$-5 \log_2 x - 6$], is		
	a) (4,8)	b) [4,8]	c) (0, 4) ∪ (8, ∞)	d) <i>R</i> – [4,8]
32.	The period of the function	$f(x) = \sin\left(\sin\frac{x}{5}\right)$ is		
	a) 2π	b) $2\pi/5$	c) 10 <i>π</i>	d) 5π
33.	The domain of definition	of the function	,	
	$f(x) = \sqrt{\log_{10}\left(\frac{5x - x^2}{4}\right)}$, is		
	a) [1, 4]	b) (1, 4)	c) (0,5)	d) [0,5]
34.	If $f: R \rightarrow R$ and is defined	by $f(x) = \frac{1}{1}$ for each	$x \in R$, then the range f f is	5
	a) (1/3 1)	b) $\begin{bmatrix} 1/3 & 1 \end{bmatrix}$	c) (1 2)	d) [1 2]
25	If $f(r)$ is defined on [0, 1]	by the rule	(1, 2)	u) [1, 2]
55.	(x, if x is ratio	mal		
	$f(x) = \begin{cases} x, & \text{if } x \text{ is irration} \\ 1 - x, & \text{if } x \text{ is irration} \end{cases}$	ational		
	Then, for all $x \in [0, 1]$, $f(x)$	f(x) is		
	a) Constant	b) $1 + x$	c) <i>x</i>	d) None of these
36.	Range of the function $f(x)$	$x = \frac{x}{1 + x^2}$ is		
		h) [-1 1]	. r 1 11	
	a) (−∞,∞)	5)[1,1]	c) $\left -\frac{1}{2},\frac{1}{2}\right $	d) [−√2, √2]
37.	If the function $f: R \to A$ gives	iven by $f(x) = \frac{x^2}{x^2+1}$ is a sur	jection, then $A =$	
	a) <i>R</i>	b) [0, 1]	c) (0,1]	d) [0, 1)
38.	If <i>R</i> is an equivalence rela	ation on a set A, then R^{-1} is		
	a) Reflexive only		b) Symmetric but not trar	nsitive
	c) Equivalence		d) None of the above	
39.	If the function $f : R \to A$	given by $f(x) = \frac{x^2}{x^2+1}$ is a su	rjection, then $A =$	
	a) <i>R</i>	b) [0, 1]	c) (0,1]	d) [0, 1)
40.	The domain of the real va	lued function	· –	
	$f(x) = \sqrt{5 - 4x - x^2} + x$	$^{2}\log(x+4)$ is		
	a) $-5 \le x \le 1$	b) $-5 \le x$ and $x \ge 1$	c) $-4 < x \le 1$	d)

41.	The period of the function $f(x) = a^{\{\tan(\pi x) + x - [x]\}}$, where $a > 0$, $[\cdot]$ denotes the greatest integer function and x is a real number, is								
	a) <i>π</i>	b) $\frac{\pi}{2}$	c) $\frac{\pi}{4}$	d) 1					
42.	The domain of the functio	on $f(x) = \log_{2x-1}(x-1)$ is	T						
	a) (1,∞)	b) $\left(\frac{1}{2},\infty\right)$	c) (0,∞)	d) None of these					
43.	The composite mapping f	og of the maps $f: R \to R, f($	$f(x) = \sin x$ and g: $R \to R$, g($(x) = x^2$, is					
	a) $x^2 \sin x$	b) $(\sin x)^2$	c) $\sin x^2$	d) $\frac{\sin x}{r^2}$					
44.	If $f(x) = \cos(\log x)$, then			X					
	$f(x)f(y) - \frac{1}{2}\left[f\left(\frac{x}{y}\right) + f(x)\right]$	(xy) has the value							
	a) -1	b) 1/2	c) -2	d) 0					
45.	The domain of the function	on $f(x)$ given by		-					
	$f(x) = \sqrt{\frac{-\log_{0.3}(x-1)}{-x^2 + 3x + 18}},$	is							
	a) [2,6]	b) (2, 6)	c) [2,6)	d) None of these					
46.	If the function $f: R \to R$ de	efined by $f(x) = [x]$ where	[x] is the greatest integer	not exceeding x , for $x \in R$,					
	then f is	b) Odd	c) Neither even nor odd	d) Strictly increasing					
47.	The domain of definition	of the function	c) Neither even nor oud	u) Strictly increasing					
	$f(x) = \log_3 \left\{ -\log_4 \left(\frac{6x - 1}{6x + 1} \right) \right\}$	$\left(\frac{-4}{-5}\right)$, is							
	a) (2/3,∞)								
	b) $(-\infty, -5/6) \cup (2/3, \infty)$)							
	c) $[2/3, \infty)$								
48.	Which of the following sta	atements is not correct for t	the relation R defined by a	<i>Rb</i> , if and only, if <i>b</i> lives					
10.	within on kilometre from	a?		,					
	a) <i>R</i> is reflexive	b) <i>R</i> is symmetric	c) R is anti-symmetric	d) None of these					
49.	Let $n(A) = 4$ and $n(B) =$	6. The number of one to or	ne functions from <i>A</i> to <i>B</i> is	N 9 4 9					
FO	a) 24	b) 60	c) 120	d) 360					
50.	If $f(x) = x - \frac{1}{x}$, $x \neq 0$, the	en $f(x^2)$ equals							
۲1	a) $f(x) + f(-x)$ Let $f(x) = x = 1$ Then	b) $f(x)f(-x)$	c) $f(x) - f(-x)$	d) None of these					
51.	a) $f(x^2) = [f(x)]^2$								
	b) $f(x) = f(x) $								
	c) $f(x + y) = f(x) + f(y)$	')							
	d) None of these								
52.	If <i>f</i> is a real valued functional 200	on such that $f(x + y) = f($ b) 300	x) + $f(y)$ and $f(1) = 5$, th c) 350	en the value of <i>f</i> (100) is d) 500					
53.	If <i>R</i> be a relation defined a	as aRb iff $ a - b > 0$, then	the relation is						
	a) Keflexive		b) Symmetric d) Symmetric and transiti	ivo					
54.	Which of the following fu	nctions is inverse of itself?	u) Symmetric and transiti	ive					
2.11	a) $f(x) = \frac{1-x}{1+x}$	b) $f(x) = 3^{\log x}$	c) $f(x) = 3^{x(x+1)}$	d) None of these					
55.	The function $f(x) = \log(x)$	$(x + \sqrt{x^2 + 1})$ is							
	a) An even function		b) An odd function						

c) A periodic function d) Neither an even nor an odd function 56. If $b^2 - 4ac = 0$ and a > 0, then domian of the function $f(x) = \log\{(ax^2 + bx + c)(x + 1)\}$ is a) $R - \left(-\frac{b}{2a}\right)$ b) $R - (-\infty, -1)$ c) $(-1, \infty) - \left\{-\frac{b}{2a}\right\}$ d) $R - \left(\left\{-\frac{b}{2a}\right\} \cap (-\infty, -1)\right)$ 57. The function $f: R \to R$ given by $f(x) = x^2 + x$, is b) One-one and into c) Many-one and onto a) One-one and onto d) Many one and into 58. If T_1 is the period of the function $f(x) = e^{3(x-[x])}$ and T_2 is the period of the function $g(x) = e^{3x-[3x]}$ ([·] denotes the greatest integer function), then a) $T_1 = T_2$ 59. If f(x + y, x - y) = xy, then the arithemetic mean of f(x, y) and f(y, x) is d) None of these b) y d) None of these 60. If $f: R \to R$ is defined by $f(x) = x - [x] - \frac{1}{2}$ for $x \in R$, where [x] is the greatest integer not exceeding x, then $\left\{x \in R: f(x) = \frac{1}{2}\right\}$ is equal to a) Z, the set of all integers b) *N*, the set of all natural numbers c) ϕ , the empty set d) *R* 61. The period of the function $f(x) = |\sin 3x| + |\cos 3x|$, is b) $\frac{\pi}{6}$ a) $\frac{\pi}{2}$ c) $\frac{3\pi}{2}$ d) π 62. Let $f: (2,3) \to (0,1)$ be defined by f(x) = x - [x], then $f^{-1}(x)$ equals b) *x* + 1 a) *x* – 2 c) *x* − 1 d) x + 263. The function $f(x) = \left(\frac{1}{2}\right)^{\sin x}$, is a) Periodic with period 2π b) An odd function c) Not expressible as the sum of an even function an odd function d) None of these 64. If the function $f: N \to N$ is defined by $f(x) = \sqrt{x}$, then $\frac{f(25)}{f(16) + f(1)}$ is equal to c) $\frac{5}{2}$ d) 1 a) $\frac{5}{6}$ b) $\frac{5}{7}$ 65. Let $f: A \to B$ and $g: B \to C$ be two functions such that $gof: A \to C$ is onto. Then, b) g is onto c) *f* and g both are onto a) *f* is onto d) None of these 66. Let the function $f(x) = 3x^2 - 4x + 5\log(1 + |x|)$ be defined on the interval [0,1]. The even extension of f(x) to the interval [-1,1] is a) $3x^2 + 4x + 8\log(1 + |x|)$ b) $3x^2 - 4x + 8\log(1 + |x|)$ c) $3x^2 + 4x - 8\log(1 + |x|)$ d) None of these 67. Range of the function $f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$; $x \in R$ is a) (1,∞) c) [1, 7/3] b) (1, 11/7) d) (1,7/5) 68. The period of the function $\sin\left(\frac{\pi x}{2}\right) + \cos\left(\frac{\pi x}{2}\right)$ is c) 12 d) 24 a) 4 b) 6 69. The period of the function $f(x) = \sin^4 x + \cos^4 x$ is b) $\pi/2$ c) 2 π d) None of these a) π 70. Let a relation *R* on the set *N* of natural numbers be defined as $(x, y) \Leftrightarrow x^2 - 4xy + 3y^2 = 0 \forall x, y \in N$. The relation R is

a) Reflexive b) Symmetric d) An equivalence relation c) Transitive 71. The function $f: R \to R$ defined by f(x) = (x-1)(x-2)(x-3), is a) One-one but not onto b) Onto but not one-one c) Both one and onto d) Neither one-one nor onto 72. The function $f: X \to Y$ defined by $f(x) = \sin x$ is one-one but not onto, if X and Y are respectively equal to b) $[0, \pi]$ and [0, 1] c) $\left[0, \frac{\pi}{2}\right]$ and [-1, 1] d) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ and [-1, 1]a) R and R 73. The function $f: R \to R$ is defined by $f(x) = 3^{-x}$. Observe the following statements I. *f* is one-one II. f is onto III. *f* is a decreasing function Out of these, true statement are a) Only I, II b) Only II, III c) Only I, III d) I, II, III 74. The function f(x) = x[x], is a) Periodic with period 1 b) Periodic with period 2 c) Periodic with indeterminate period d) Not-periodic 75. If $f(x) = \frac{3x+2}{5x-3}$, then a) $f^{-1}(x) = f(x)$ b) $f^{-1}(x) = -f(x)$ c) (fof)(x) = -x d) $f^{-1}(x) = -\frac{1}{10}f(x)$ 76. The domain of the function $f(x) = \frac{\sqrt{4-x^2}}{\sin^{-1}(2-x)}$ is c) [1, 2) a) [0, 2] d) [1, 2] b) [0, 2) 77. The domain of definition of $f(x) = \sin^{-1}(|x-1|-2)$ is b) $(-2,0) \cup (2,4)$ c) $[-2,0] \cup [1,3]$ d) $[-2,0] \cup [1,3]$ a) $[-2,0] \cup [2,4]$ 78. The domain of the function $f(x) = \cos^{-1}[\sec x]$, where [x] denotes the greatest integer less than or equal to x, is a) { $x : x = (2n + 1) \pi, n \in Z$ } \cup { $x : 2m \pi \le x < 2m \pi + \frac{\pi}{3}, m \in Z$ } b) { $x : x = 2n \pi, n \in Z$ } \cup { $x : 2m \pi < x < 2m \pi + \frac{\pi}{3}, m \in Z$ } c) { $x : (2n + 1) \pi, n \in Z$ } \cup { $x : 2m \pi < x < 2m \pi + \frac{\pi}{2}, m \in Z$ } d) None of these 79. The domain of $\sin^{-1}(\log_3 x)$ is a) [-1, 1] b) [0, 1] d) $\left[\frac{1}{3}, 3\right]$ c) [0,∞] 80. Let $f(x + \frac{1}{x}) = x^2 + \frac{1}{x^2}$, $(x \neq 0)$ then f(x) equals Let $f(x + \frac{1}{x}) = x^{-} + \frac{1}{x^{2}}$, $(x \neq 0)$ then f(x) equals a) $x^{2} - x$ for all x b) $x^{2} - 2$ for all $|x| \ge 2$ c) $x^{2} - 2$ for all |x| < 2 d) None of these 81. If $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos \left(x + \frac{\pi}{3}\right)$ and $g\left(\frac{5}{4}\right) = 1$, then gof(x) is equal to a) 1 d) -2 c) 2 82. The range of $f(x) = \sec\left(\frac{\pi}{4}\cos^2 x\right), -\infty < x < \infty$, is c) $\left[-\sqrt{2}, -1\right] \cup \left[1, \sqrt{2}\right]$ d) $\left(-\infty, -1\right] \cup \left[1, \infty\right)$ b) [1,∞) a) $[1, \sqrt{2}]$ 83. Let $f: R \to R$ be a function defined by $f(x) = \frac{e^{|x|} - e^{-x}}{e^x + e^{-x}}$. Then, a) *f* is a bijection b) *f* is an injection only c) *f* is surjection on only

d) *f* is neither an injection nor a surjection 84. The function $f: R \to R$ defined by f(x) = (x-1)(x-2)(x-3) is a) One-one but not onto b) Onto but not one-one c) Both one-one and onto d) Neither one-one nor onto 85. Q function *f* from the set of natural numbers to integers defined by $f(n) = \begin{cases} \frac{n-1}{2}, \text{ where } n \text{ is odd} \\ -\frac{n}{2}, \text{ when } n \text{ is even} \end{cases}$ a) One-one but not onto b) Onto but not one-one c) One-one and onto both d) Neither one-one nor onto 86. The function $f(x) = \sqrt{\cos(\sin x)} + \sin^{-1}\left(\frac{1+x^2}{2x}\right)$ is defined for a) $x \in \{-1, 1\}$ b) $x \in [-, 1, 1]$ c) $x \in R$ 87. If $e^{f(x)} = \frac{10+x}{10-x}$, $x \in (-10, 10)$ and $f(x) = kf\left(\frac{200x}{100+x^2}\right)$, then k is equal to d) $x \in (-1, 1)$ c) 0.7 d) 0.8 a) 0.5 88. A mapping $f: N \to N$, where N is the set of natural numbers is defined as $f(n) = \begin{cases} n^2, \text{ for } n \text{ odd} \\ 2n+1, \text{ for } n \text{ even} \end{cases}$ For $n \in N$. Then, f is a) Surjective but not injective b) Injective but not surjective c) Bijective d) Neither injective nor surjective 89. If $y = f(x) = \frac{x+2}{x-1}$, then a) x = f(y)b) f(1) = 3d) *f* is a rational function of *x* c) *y* increase with *x* for x < 190. Let *f* be a function with domain [-3, 5] and let g(x) = |3x + 4|. Then the domain of (fog)(x) is a) $\left(-3,\frac{1}{3}\right)$ b) $\left[-3,\frac{1}{3}\right]$ c) $\left[-3,\frac{1}{3}\right]$ d) $\left[-3,-\frac{1}{3}\right]$ 91. Let $f: A \to B$ and $g: B \to C$ be two functions such that $gof: A \to C$ is one-one and $f: A \to B$ is onto. Then, g: $B \rightarrow C$ is a) One-one c) One-one and onto d) None of these b) Onto Let g(x) = 1 + x - [x] and $f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0, \\ 1 & x > 0 \end{cases}$ then for for x, f[g(x)] is equal to 92. d) g(x)a) x c) f(x)93. If the function $f: R \to R$ be such that f(x) = x - [x], where [x] denotes the greatest integer less than or equal to x, then $f^{-1}(x)$, is a) $\frac{1}{x - [x]}$ c) Not defined d) None of these b) [*x*] − *x* 94. Let *a* and *b* be two integers such that 10a + b = 5 and P(x) = x + ax + b. The integer *n* such that P(10).P(11) = P(n) is a) 15 b) 65 c) 115 95. The unction $f: [-1/2, 1/2] \rightarrow [-\pi/2, \pi/2]$ defined by $f(x) = \sin^{-1}(3x - 4x^3)$ is d) 165 a) Bijection b) Injection but not a surjection c) Surjection but not an injection d) Neither an injection nor a surjection 96. Let $f: (-\infty, 2] \to (-\infty, 4]$ be a function defined by $f(x) = 4x - x^2$. Then, $f^{-1}(x)$ is c) $2 \pm \sqrt{4-x}$ b) $2 + \sqrt{4 - x}$ a) $2 - \sqrt{4 - x}$ d) Not defined 97. If $f(x) = (a - x^n)^{1/n}$, where a > 0 and $n \in N$, then fof(x) is equal to c) x^n a) a b) xd) *aⁿ*

98. The domain of definition of
$$f(x) = \log_2 \log_e x_1$$
, is
a) $(1, \infty)$ b) $(0, \infty)$ c) (e, ∞) d) None of these
99. Let $f: R \rightarrow g: R \rightarrow R$ be two functions given by $f(x) = 2x - 3$, $g(x) = x^3 + 5$. Then, $(fag)^{-1}(x)$ is equal to
a) $\left(\frac{x + 7}{2}\right)^{1/3}$ b) $\left(x - \frac{2}{2}\right)^{1/3}$ c) $\left(\frac{x - 7}{7}\right)^{1/3}$ d) $\left(\frac{x - 7}{2}\right)^{1}$
100. If $f: R \rightarrow R$ is defined by $f(x) = |x|$, then
a) $f^{-1}(x) = -x$ b) $f^{-1}(x) = \frac{1}{x}$
111. Which of the following functions from $A = \{x : -1 \le x \le 1\}$ to itself are bijections?
a) $f(x) = \frac{x}{2}$ b) $g(x) = \sin\left(\frac{\pi}{2}\right)$ c) $h(x) = |x|$ d) $k(x) = x^2$
102. Domain of the function $f(x) = \sqrt{2 - 2x - x^2}$ is
a) $-\sqrt{3} \le x \le \sqrt{3}$ b) $-1 - \sqrt{3} \le x \le -1 + \sqrt{3}$
c) $-2 \le x \le 2$ d) $-2 + \sqrt{3} \le x \le -2 - \sqrt{3}$
103. Let $[x]$ denote the greatest integer less than or equal to x . If $f(x) = \sin^{-1} x$, $g(x) = [x^2]$ and $h(x) = 2x, \frac{1}{2} \le x \le \frac{1}{\sqrt{2}}$ then
a) fogoh $(x) = \pi/2$ b) $fogoh(x) = \pi$ c) $hofog = hogof$ d) $hofog \neq hogof$
104. Let $f(x) \rightarrow N = b$ defined by $f(x) = x^2 + x + 1$, then f is
a) One-one onto b) Many one onto c) One-one but not onto d) None of these
105. Let $f(x) = \begin{cases} 0, x = 0 \\ x = 0 \\ x = 0 \end{cases}$ (b) $f(x) = x^2 + x + 1$, then f is
a) One-one function
b) An odd function
c) Neither an even function nor an odd function
d) $f'(x)$ is an even function
106. The interval in which the function $y = \frac{x^{-1}}{x^{2} - 3x^{-3}}$ transforms the real line is
a) $(0, \infty)$ b) $(-\infty, \infty)$ c) $[0, 1]$ d) $[-1/3, 1]$
107. The equivalent definition of
 $f(x) = \max\{x^2, (1 - x)^2, 1/3 \le x \le 2/3 \\ (1 - x)^2, 1/3 \le x \le 1/3 \\ (1 - x)^2, 1/3 \le x \le 1/3 \\ (1 - x)^2, 1/3 \le x \le 2/3 \\ (x^2, 1 - x)^2, 1/3 \le x \le 2/3 \\ (x^2, 1 - x)^2, 1/3 \le x \le 2/3 \\ (x^2, 1 - x)^2, 1/3 \le x \le 2/3 \\ (x^2, 1 - x)^2, 1/3 \le x \le 2/3 \\ (x^2, 1 - x)^2, 1/3 \le x \le 2/3 \\ (x^2, 1 - x)^2, 1/3 \le x \le 2/3 \\ (x^2, 1 - x)^2, 1/3 \le x \le 2/3 \\ (x^2, 1 - x)^2, 1/3 \le x \le 1/3 \\ 0$ b) $f(x) = x^3$ b) $f(x) = x + 2$ c) $f(x) = 2x + 1$ d) $f(x) = x^2 + x$
19. The domain of definition of the functio

	c) $\left((4n+1)\frac{\pi}{2}, (4n+3)\frac{\pi}{2}\right)$	$\left(\frac{1}{2}\right), n \in \mathbb{Z}$		
	d) $\left((4n-1)\frac{\pi}{2}, (4n+1)\frac{\pi}{2} \right)$	$\left(\frac{1}{2}\right), n \in \mathbb{Z}$		
110.	If $f(x) = (25 - x^4)^{1/4}$ for	$0 < x < \sqrt{5}$, then $\left(f\left(\frac{1}{2}\right)\right) =$	=	
	a) 2 ⁻⁴	b) 2 ⁻³	c) 2 ⁻²	d) 2 ⁻¹
111.	The function $f(x) = \sec [l]$	$\log(x + \sqrt{1 + x^2})$] is	,	,
	a) Odd	b) Even	c) Neither odd nor even	d) Constant
112.	If $f(x) = \sin(\log x)$, then t	the value of $f(xy) + f(x/y)$	$(1) - 2f(x) \cos(\log y)$, is	,
	a) -1	b) 0	c) 1	d) None of these
113.	The equivalent definition	of		
	$f(x) = \max\left\{- 1-x^2 , 2 \right\}$	$ x - 2, 1 - \frac{7}{2} x $, is		
	a) $\begin{cases} -2x+2, x-1\\ x^2-1, -1 \le x \le 1\\ 1+7x/2, -1/2 \le x\\ 1-7x/2, 0 \le x \end{cases}$	1 < 1/2 : < 0 < 1/2		
	$ \begin{pmatrix} x^2 - 1, & 1/2 \le x \\ 2x - 2, & x \ge \\ -2x - 2, & x < - \\ -x^2 - 1, & -1 \le . \end{cases} $	$x < \frac{1}{2}$		
	b) $\begin{cases} 1 + 7x/2, & -1/2 \le \\ 1 - 7x/2, & 0 \le x \le \\ x^2 - 1, & 1/2 \le x \\ 2x - 2, & x \ge 1 \end{cases}$	$\leq x < 0$ $1/2$ < 1		
	c) $\begin{cases} -2x + 2, & x \le -1 \\ x^2 - 1, -1 \le x < 0 \\ 1 + 7x, & 0 \le x < 1 \\ 2x - 2, & x \ge 1 \end{cases}$ d) None of these			
114.	The number of bijective fu	Inctions from set A to itself	when A contains 106 elem	ents is
	a) 106	b) (106) ²	c) 106 !	d) 2 ¹⁰⁶
115.	The domain of definition of	of		
	$f(x) = \log_{0} \int_{0}^{1} \frac{3x}{x}$	$\left(\frac{-1}{1}\right)$		
	(3x - 1/2)	$+2/)^{-2}$	(1/2)	$d \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$
116	a) $(-\infty, -1/3)$ If $f(x) = x^3 = x$ and $\phi(x)$	$DJ(-1/3,\infty) = \sin 2r \ \text{then}$	$(1/3, \infty)$	a)[1/3,∞)
110.	$\prod_{x} f(x) = x - x \text{ and } \psi(x)$. 3	
	a) $\phi(f(2)) = \sin 2$	b) $\phi(f(1)) = 1$	c) $f(\phi(\pi/12)) = -\frac{3}{8}$	d) $f(f(1)) = 2$
117.	$f(x) = \sin x $ has an inve	erse if its domain is	-	
	a) [0, π]	b) [0, π/2]	c) $[-\pi/4, \pi/4]$	d) None of these
118.	The function $f(x) = \log_{10}$	$\left(x + \sqrt{x^2 + 1}\right)$ is		
	a) An even function	b) An odd function	c) Periodic function	d) None of these
119.	Let <i>R</i> be a relation on the s	set of integers given by aRi	$b \Leftrightarrow a = 2^k . b$ for some intervals to be a set of the set of the best of th	eger k. Then, R is
	a) An equivalence relation	1	b) reflexive but not symm	etric
	c) Reflexive and transitive	e but not symmetric	d) Reflexive and symmetry	ic but not transitive
120.	A polynomial function $f(x)$;) satisfies the condition		
	$f(x)f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right)$			
	If $f(10) = 1001$, then $f(2)$	0) =		
	a) 2002	b) 8008	c) 8001	d) None of these

^{121.} The function $f(x) = \frac{\sin^4 x + \cos^4 x}{x^3 + x^4 \tan x}$ is a) Even b) Odd c) Periodic with period π d) Periodic with period 2 π 122. The value of *b* and *c* for which the identify f(x + 1) - f(x) = 8x + 3 is satisfied, where $f(x) = bx^2 + cx + 3$ d, are b) b = 4, c = -1 c) b = -1, c = 4a) b = 2, c = 1d) b = -1, c = 1123. The second degree polynomial f(x), satisfying f(0) = 0, f(1) = 1, f'(x) > 0 for all $x \in (0, 1)$ b) $f(x) = ax + (1 - a)x^2$; $\forall a \in (0, \infty)$ a) $f(x) = \phi$ c) $f(x) = ax + (1 - a)x^2, a \in (0, 2)$ d) No such polynomial 124. If $2f(x + 1) + f\left(\frac{1}{x+1}\right) = 2x$ and $x \neq -1$, then f(2) is equal to a) -1 c) 5/3 b) 2 d) 5/2125. $f(x) = \begin{cases} x, \text{ if } x \text{ is rational} \\ 0, \text{ if } x \text{ is irrational} \\ f(x) = \begin{cases} 0, \text{ if } x \text{ is rational} \\ x, \text{ if } x \text{ is irrational} \end{cases}$. Then, f - g is a) One-one and into b) Neither one-one nor onto c) Many one and onto d) One-one and onto 126. The value of x for which $y = \log_2 \left\{ -\log_{1/2} \left(1 + \frac{1}{x^{1/4}} \right) - 1 \right\}$ is a real number are a) [0,1] b) (0,1) c) $[1,\infty)$ 127. If $f(x) = \cos^{-1}\left(\frac{2-|x|}{4}\right) + [\log_{10}(3-x)]^{-1}$, then its domain is c) [1,∞) d) None of these b) $[-6, 2) \cup (2, 3)$ c) [-6.2] a) [-2,6] d) $[-2, 2) \cup (2, 3]$ 128. The range of the function $f(x) = 1 + \sin x + \sin^3 x + \sin^5 x + \cdots$ when $x \in (-\pi/2, \pi/2)$, is c) (-2, 2)a) (0, 1) b) *R* d) None of these 129. The number of onto mappings from the set $A = \{1, 2, \dots, 100\}$ to set $B = \{1, 2\}$ is a) $2^{100} - 2$ b) 2¹⁰⁰ c) $2^{99} - 2$ d) 2⁹⁹ 130. If a function f satisfies $f{f(x)} = x + 1$ for all real values of x and if $f(0) = \frac{1}{2}$, then f(1) is equal to b) 1 c) $\frac{3}{2}$ d) 2 a) $\frac{1}{2}$ 131. The function f(x) given by $f(x) = \frac{\sin 8x \cos x - \sin 6x \cos 3x}{\cos x \cos 2x - \sin 3x \sin 4x},$ is a) Periodic with period π b) Periodic with period 2π c) Periodic with period $\pi/2$ d) Not periodic 132. If $x \in R$, then $f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$ is equal to a) $2 \tan^{-1} x$ b) $\begin{cases} -\pi - 2\tan^{-1}x, -\infty < x < -1\\ 2\tan^{-1}x, & -1 \le x \le 1\\ \pi - 2\tan^{-1}x, & 1 < x < \infty \end{cases}$ c) $\begin{cases} -\pi - 2\tan^{-1}x, -\infty < x < -1\\ 2\tan^{-1}x, -1 \le x \le 1\\ \pi - 2\tan^{-1}x, & 1 < x < \infty \end{cases}$ d) $\begin{cases} -\pi + 2\tan^{-1}x, -\infty < x \le -1\\ 2\tan^{-1}x, -1 < x < 1\\ \pi - 2\tan^{-1}x, & 1 \le x < \infty \end{cases}$

133. If $f(x) = 2x^6 + 3x^4 + 4x^2$, then f'(x) is a) An even function b) An odd function c) Neither even nor odd d) None of the above 134. The mapping $f: N \to N$ given $f(n) = 1 + n^2$, $n \in N$ where N is the set of natural number, is a) One-to-one and onto b) Onto but not one-to-one c) One-to-one but not onto d) Neither one-to-one nor onto 135. Let $f: A \to B$ and $g: B \to A$ be two functions such that $gof = I_A$. Then, a) *f* is an injection and g is a surection b) *f* is a surjection and g is an injection c) *f* and g both are injections d) f and g both are surjections 136. If $f(x) = (a - x^n)^{1/n}$, where a > 0 and $n \in N$, then fof(x) is equal to a) a b) *x* c) *x*^{*n*} d) *a*^{*n*} 137. Let *r* be a relation from *R* (set of real numbers) to *R* defined by $r = \{(a, b) | a, b \in R \text{ and } a - b + \sqrt{3} \text{ is an } a - b + \sqrt{3} \}$ irrational number}. The relation r is a) An equivalent relation b) Reflexive only c) Symmetric only d) Transitive only 138. *R* is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x - 3. Then, R^{-1} is a) {(8, 11), (10, 13)} b) {(11, 18), (13, 10)} c) {(10, 13), (8, 11)} d) None of these 139. If $f: R \rightarrow R$ is defined by $f(x) = x^2 - 6x - 14$, then $f^{-1}(2)$ equals to a) {2, 8} b) {-2, 8} c) {-2, -8} d) {φ} 140. The domain of definition of the function $f(x) = \sqrt[3]{\frac{2x+1}{x^2-10x-11}}$, is b) (−∞, 0) c) $R - \{-1, 11\}$ a) (0,∞) d) *R* 141. The period of the function $\sin\left(\frac{2x}{3}\right) + \sin\left(\frac{3x}{2}\right)$ is b) 10π c) 6π a) 2π d) 12π 142. The function f(x) which satisfies $f(x) = f(-x) = \frac{f'(x)}{x}$, is given by a) $f(x) = \frac{1}{2}e^{x^2}$ b) $f(x) = \frac{1}{2}e^{-x^2}$ c) $f(x) = x^2e^{x^2/2}$ d) $f(x) = e^{x^2/2}$ 143. On the set of integers Z, define $f: Z \to Z$ as $f(n) = \begin{cases} \frac{n}{2}, n \text{ is even} \\ 0, n \text{ is odd} \end{cases}$, then 'f' is a) Injective but not surjective b) Neither injective nor surjective c) Surjective but not injective d) Bijective 144. The maximum possible domain D and the corresponding range E, for the real function $f(x) = (-1)^x$ to exist is a) D = R, E = [-1, 1]b) D = I (the set of integers), E = [-1,1]c) D = R, E = (-1, 1)d) $D = I, E = \begin{cases} +1 \text{ when } x = 0 \text{ or even} \\ -1, \text{ when } x \text{ is odd} \end{cases}$ 145. If $f: R \to R$, defined by $f(x) = x^2 + 1$, then the values of $f^{-1}(17)$ and $f^{-1}(-3)$ respectively are a) ϕ , {4, -4} b) $\{3, -3\}, \phi$ c) $\{4, -4\}, \phi$ d) $\{4, -4\}, \{2, -2\}$ 146. Let $f: A \to B$ and $g: B \to C$ be two functions such that $gof: A \to C$ is one-one. Then, c) *f* is both are one-one d) None of these b) *f* is one-one a) *f* is one-one 147. Let $A = \{x \in R : x \neq 0, -4 \le x \le 4\}$ and $f : A \in R$ be defined by $f(x) = \frac{|x|}{x}$ for $x \in A$. Then, the range of f is b) $\{x: 0 \le x \le 4\}$ c) $\{1\}$ d) { $x: -4 \le x \le 0$ } a) {1, −1} 148. If $f(x) = (9x + 0.5) \log_{(0.5+x)} \left(\frac{x^2 + 2x - 3}{4x^2 - 4x - 3} \right)$ is a real number, then x belongs to a) (-1/2, 1)

b) $(-1/2, 1/2) \cup (1/2, 1) \cup (3/2, \infty)$

c) (-1/2 - 1)

a) x

d) None of these 149. Let the function f, g, h are defined from the set of real numbers R to R such that $f(x) = x^2 - 1, g(x) = \sqrt{(x^2 + 1)}$ and $h(x) = \begin{cases} 0, \text{ if } x < 0 \\ x, \text{ if } x \ge 0 \end{cases}$ then ho(fog)(x) is defined by

(x, if
$$x \ge 0$$

b) x^2 c) 0 d) None of these

150. The number of reflexive relations of a set with four elements is equal to a) 2^{16} b) 2^{12} c) 2^{8}

d) 2⁴

151. Let $f(x) = (ax^2 + b)^3$, then the function g satisfying f(g(x)) = g(f(x)) is given by

a)
$$g(x) = \left(\frac{b - x^{1/3}}{a}\right)^{1/2}$$
 b) $g(x) = \frac{1}{(a x^2 + b)^3}$ c) $g(x) = (a x^2 + b)^{1/3}$ d) $g(x) = \left(\frac{x^{1/3} - b}{a}\right)^{1/2}$

152. If f(x) = ||x| - 1|, then *f* of (*x*) equals

a)
$$f(x) = \begin{cases} |x| - 2, |x| \ge 2\\ 2 - |x|, 1 < |x| < 2\\ |x|, |x| \le 1 \end{cases}$$

b)
$$f(x) = \begin{cases} |x| + 2, |x| \ge 2\\ |x| - 2, 1 \le |x| \le 2\\ |x|, |x| \le 2 \end{cases}$$

c)
$$f(x) = \begin{cases} |x| - 2, |x| \ge 2\\ 2 + |x|, 1 \le |x| \le 2\\ |x|, |x| \le 1 \end{cases}$$

d) None of these

153. The domain of definition of the function $f(x) = \tan\left(\frac{\pi}{[x+2]}\right)$, is

b) (-2, -1) c) R - [-2, -1)a) [-2,1] d) None of these 154. A function $f: A \rightarrow B$, where $A = \{x: -1 \le x \le 1\}$ and $B = \{y: 1 \le y \le 2\}$, is defined by the rule $y = f(x) = 1 + x^2$. Which of the following statement is true? a) *f* is injective but not surjective b) *f* is surjective but not injective c) *f* is both injective and surjective d) *f* is neither injective nor surjective 155. The function $f: R \to R$, defined by f(x) = [x], where [x] denotes the greatest integer less than or equal to x, is a) One-one b) Onto c) One-one and onto d) Neither one-one nor onto 156. Let $f: A \to B$ and $g: B \to C$ be bijections, then $(f \circ g)^{-1} =$ c) $g^{-1} o f^{-1}$ a) $f^{-1}o a^{-1}$ b) fog d) gof 157. Let $f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2}, x \neq 0$, then f(x) is equal to $x^2 = x^2 + \frac{1}{x^2}, x \neq 0$, then f(x) is equal to $x^2 = x^2 + \frac{1}{x^2}, x \neq 0$, then f(x) is equal to d) $x^2 + 1$ 158. The relation $R = \{(1, 1), (2, 2), (3, 3)\}$ on the set $\{1, 2, 3\}$ is a) Symmetric only b) Reflexive only c) An equivalence relation d) Transitive only 159. If f(x) = a x + b and g(x) = c x + d, then $f(g(x)) = g(f(x)) \Leftrightarrow$ a) f(a) = g(c)b) f(b) = g(b)c) f(d) = g(b)d) f(c) = g(a)160. If $f : R \to R$ is defined by f(x) = 2x - 2[x] for all $x \in R$, where [x] denotes the greatest integer less than or equal to *x*, then range of *f*, is a) [0, 1] b) {0, 1} c) (0,∞) d) (−∞, 0] 161. The domain of definition of $f(x) = \log_{10} \{ \log_{10}(1 + x^3) \}$, is

a) (−1,∞) b) (0,∞) c) [0,∞) d) (-1,0) $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9), (3, 12), (3, 6)\}$ be a relation on the set $A = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9), (3, 12), (3, 6)\}$ 162. Let {3, 6, 9, 12}. The relation is a) Reflexive and symmetric only b) An equivalence relation c) Reflexive only d) Reflexive and transitive only 163. If $f(x) = a^x$, which of the following equalities hold? a) $f(x+2) - 2f(x+1) + f(x) = (a-1)^2 f(x)$ b) f(-x)f(x) + 1 = 0c) f(x + y) = f(x) + f(y)d) $f(x+3) - 2f(x+2) + f(x+1) = (a-2)^2 f(x+1)$ 164. The inverse of the function $f(x) = \frac{10^x - 10^{-x}}{10^x + 10^{-x}} + 1$ is given by a) $\frac{1}{2}\log_{10}\left(\frac{x}{2-x}\right)$ b) $\log_{10}\left(\frac{x}{2-x}\right)$ c) $\frac{1}{2}\log_{10}\left(\frac{x}{1-x}\right)$ 165. If $f(x) = \sqrt{|3^x - 3^{1-x}| - 2}$ and $g(x) = \tan \pi x$, then domain of fog(x) is d) None of these a) $\left[n + \frac{1}{2}, n + \frac{1}{2}\right] \cup \left[n + \frac{1}{2}, n + 1\right], n \in \mathbb{Z}$ b) $\left(nx + \frac{1}{4}, n + \frac{1}{2}\right) \cup \left(n + \frac{1}{2}, n + 1\right), n \in \mathbb{Z}$ c) $\left(n + \frac{1}{4}, n + \frac{1}{2}\right) \cup \left[n - \frac{1}{2}, n + 1\right], n \in \mathbb{Z}$ d) $\left[n + \frac{1}{4}, x + \frac{1}{2}\right] \cup \left(n + \frac{1}{2}, n + 2\right), n \in \mathbb{Z}$ 166. If the functions f and g are defined by f(x) = 3x - 4, g(x) = 3x + 2 for $x \in R$, respectively then $g^{-1}(f^{-1}(5)) =$ a) 1 b) 1/2 c) 1/3 167. If f(x) and g(x) are two real functions such that $f(x) + g(x) = e^x$ and $f(x) - g(x) = e^{-x}$, then a) f(x) is an odd function b) g(x) is an even function c) f(x) and g(x) are periodic functions d) None of these 168. Let $f(x) = \frac{1}{2} - \tan\left(\frac{\pi x}{2}\right), -1 < x < 1$ and $g(x) = \sqrt{3 + 4x - 4x^2}$, then dom (f + g) is given by b) $\left|\frac{1}{2}, -1\right|$ c) $\left|-\frac{1}{2}, 1\right|$ d) $\left[-\frac{1}{2}, -1\right]$ a) $\left[\frac{1}{2}, 1\right]$ 169. If $f(x) = 2x^6 + 3x^4 + 4x^2$, then f'(x) is c) Neither even nor odd d) None of these a) Even function b) An odd function 170. The domain of the function $f(x) = \sqrt{\cos^{-1}\left(\frac{1-|x|}{2}\right)}$ is c) $(-\infty, -3) \cup (3, \infty)$ d) $(-\infty, -3] \cup [3, \infty)$ a) (-3, 3) b) [-3, 3] 171. Which of the following functions is one-to -one? b) $f(x) = \sin x, x \in \left[-\frac{3\pi}{2}, -\frac{\pi}{4}\right]$ a) $f(x) = \sin x, x \in [-\pi, \pi]$ d) $f(x) = \cos x, x \in \left[\pi, \frac{3\pi}{2}\right]$ c) $f(x) = \cos x, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ ^{172.} Given $f(x) = \log\left(\frac{1+x}{1-x}\right)$ and $g(x) = \frac{3x+x^3}{1+3x^2}$, then fog(x) equals b) 3 *f*(*x*) c) $[f(x)]^3$ a) -f(x)d) None of these ^{173.} The largest possible set of real numbers which can be the domain of $f(x) = \sqrt{1 - \frac{1}{x}}$ is c) $(-\infty, -1) \cup (0, \infty)$ d) $(-\infty, 0) \cup [1, \infty)$ a) $(0, 1) \cup (0, \infty)$ b) $(-1, 0) \cup (1, \infty)$ ^{174.} The set of values of *a* for which the function $f(x) = \sin x + \left[\frac{x^2}{a}\right]$ defined on [-2,2] is an odd function, is

a) (4,∞) b) [-4, 4] c) (−∞,4) d) None of these 175. On the set *N* of all natural numbers define the relation *R* by *aRb* if and only if the GCD of *a* and *b* is 2, then R is a) Reflexive, but not symmetric b) Symmetric only c) Reflexive, and transitive d) Reflexive, symmetric and transitive 176. Let f(x) be a real valued function defined by $f(x + \lambda) = 1 + [2 - 5f(x) + 10\{f(x)\}^2 - 10\{f(x)\}^3 + 5\{f(x)\}^4 - \{f(x)\}^5]^{1/5}$ for all real x and some positive constant λ , then f(x) is a) A periodic function with period λ b) A periodic function with period 2 λ c) Not a periodic function d) A periodic function with indeterminate period 177. The domain of the function $f(x) = \sqrt{\log_{10}\left(\frac{1}{|\sin x|}\right)}$, is a) $R - \{-\pi, \pi\}$ b) $R - \{n \pi | n \in Z\}$ c) $R - \{2n \pi | n \in z\}$ d) $(-\infty, \infty)$ 178. The function $f(x) = \log\left(\frac{1+x}{1-x}\right)$ satisfies the equation a) f(x+2) - 2f(x+1) + f(x) = 0b) $f(x) + f(x+1) = f\{x(x+1)\}$ c) $f(x) + f(y) = f\left(\frac{x+y}{1+xy}\right)$ d) f(x + y) = f(x)f(y)179. If f(x) is defined on [0, 1], then the domain of definition of $f(\tan x)$ is a) $[n \pi, n \pi + \pi/4], n \in \mathbb{Z}$ b) $[2 n \pi, 2n\pi + \pi/4], n \in \mathbb{Z}$ c) $[n\pi - \pi/4, n\pi + \pi/4], n \in Z$ d) None of these 180. If a function *F* is such that F(0) = 2, F(1) = 3, F(n + 2) = 2F(n) - F(n + 1) for $n \neq 0$, then F(5) is equal to c) 7 a) -7 b) -3 181. $f(x) = \sqrt{\sin^{-1}(\log_2 x)}$ exists for a) -7 b) -3 d) 13 a) $x \in (1,2)$ b) $x \in 182$. The function $f(x) = \begin{cases} 1, & x \in Q \\ 0, & x \notin Q \end{cases}$ is c) *x* ∈ [2,∞) b) $x \in [1, 2]$ d) $x \in (0, \infty)$ a) Periodic with period 1 b) Periodic with period 2 c) Not periodic d) Periodic with indeterminate period 183. The function $f(x) = \frac{\sec^4 x + \csc^4 x}{x^3 + x^4 \cot x}$ is a) Even b) Odd c) Neither even nor odd d) Periodic with period π 184. The function $f(x) = |\cos x|$ is periodic with period d) $\frac{\pi}{4}$ a) 2 π b) π c) $\frac{1}{2}$ 185. If $f(x) = x^n$, $n \in N$ and gof(x) = n g(x), then g(x) can be b) $3x^{1/3}$ a) n|x|c) *e*^{*x*} d) $\log |x|$ 186. If f(x) is an odd function, then the curve y = f(x) is symmetric a) About *x*-axis b) About y-axis c) About both the axes d) In opposite quadrants

187.	If the function $f: [1, \infty) \rightarrow$	$[1,\infty)$ is defined by $f(x) =$	$= 2^{x(x-1)}$, then $f^{-1}(x)$ is	
	a) $\left(\frac{1}{2}\right)^{x(x-1)}$		b) $\frac{1}{2}(1 + \sqrt{1 + 4\log_2 y})$	
	c) $\frac{1}{2}(1 - \sqrt{1 + 4\log_2 y})$		d) ∞	
188.	If $f: R \to R$ and $g: R \to R$ a	re defined by $f(x) = x $ and	nd $g(x) = [x - 3]$ for $x \in R$	$g(f(x)): -\frac{8}{5} < x < 5$
	<i>85</i> is equal to			(0,0,1,7,5)
	a) {0, 1}	b) {1, 2}	c) {-3, -2}	d) {2, 3}
189.	The domain of definition of	of		
	$f(x) = \log_{10}\{1 - \log_{10}(x^3)\}$	y = 5x + 16, is	a) [2 2]	d) None of these
190.	The period of the function	$f(x) = \sin^2 x + \cos^4 x$ is	CJ [2, 5]	u) None of these
1701	π	π h) $-$	с) <i>2π</i>	d) None of these
101	$d = \int dt $	$\frac{0}{2}$	cj Zn	-
191.	If $f(x) = \sin x + \cos x$, $g($	$f(x) = x^2 - 1$, then $g(f(x))$	is invertible in the domain $\pi \pi_1$	
	a) $\left[0, \frac{1}{2}\right]$	b) $\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$	c) $\left[-\frac{1}{2}, \frac{1}{2}\right]$	d) [0, π]
192.	Domain of definition of th	e function $f(x) = \sqrt{\sin^{-}(2)}$	$x) + \frac{\pi}{6}$ for real valued x, is	
	a) $\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$	$h\left[-\frac{1}{2},\frac{1}{2}\right]$	c) $\left(-\frac{1}{2},\frac{1}{2}\right)$	$d \left[-\frac{1}{2} \frac{1}{2} \right]$
102	[4'2]	$\begin{bmatrix} 2'2 \end{bmatrix}$	2'9/	u) [4'4]
193.	If $f(x) = \log\left(\frac{1+x}{1-x}\right)$, then f	$\left(\frac{2x}{1+x^2}\right)$ will be equal to		
	a) $2f(x^2)$	b) $f(x^2)$	c) $2f(2x)$	d) $2f(x)$
194.	The domain of $f(x) = \log x$	$ \log_e x $, is		
105	a) $(0, \infty)$	b) $(1, \infty)$	c) $(0,1) \cup (1,\infty)$	d) (−∞,1)
195.	(x) is an even function	, then the curve $y = f(x)$ is	c) Both the avec	d) None of these
196	a) x -axis	$D \int y^{-} dX IS$	cj boui tile axes	u) None of these
170.	If $f(x) = \left(\frac{x}{1- x }\right)$, the	$\operatorname{en} D_f$ is		
	a) <i>R</i> – [–1, 1]	b) (−∞, 1)	c) (−∞,−1) ∪ (0,1)	d) None of these
197.	If $f(x) = \begin{cases} [x], & \text{if } -3 < x \\ x , & \text{if } -1 < x \\ [x] , & \text{if } 1 \le x \end{cases}$	$\begin{pmatrix} \leq -1 \\ < 1 \\ x < 3 \end{pmatrix}$, then the set $(x: f(x))$	$(x) \ge 0$)to	
	a) (-1, 3)	b) [-1, 3)	c) (-1, 3]	d) [-1, 3]
198.	If $f(x) = \frac{x}{x-1}$, $x \neq 1$ then			
	$(f of o \dots of)(x)$			
	^{19 times} is equal to			
	a) $\frac{x}{1}$	b) $\left(\frac{x}{1}\right)^{19}$	c) $\frac{19x}{1}$	d) <i>x</i>
100	x - 1 The domain of the function	$f(x) = \log \left(\sqrt{x - 4}\right)$	$\frac{1}{\sqrt{x-1}}$ is	,
177.	a) [4, 6]	$\ln f(x) = \log_{10}(\sqrt{x} - 4 + \sqrt{x})$	(0 - x), is	d) None of these
200	a) [4, 0] If $f: N \rightarrow N$ is defined by	f(n) = the sum of positive	(2, 3)	2) where k is a positive
200.	integer is	f(n) = me sum of positive		J_{j} , where κ is a positive
	a) $2^{k+1} - 1$	h) $2(2^{k+1} - 1)$	c) $3(2^{k+1} - 1)$	d) $4(2^{k+1} - 1)$
201	Let $A = \{r : -1 < r < 1\}$	and $f: A \to A$ such that $f($	r(x) = r r then f is	uj r(2 1)
201.	a) A hijection	$ana j \cdot A \rightarrow A \text{ such that } f($	$\lambda_j = \lambda_1 \lambda_1$, then j is	
	b) Injective but not suried	tive		
	c) Surjective but not injec	tive		

202. The domain of the function $\sin^{-}\left(\log_{2}\frac{x^{2}}{2}\right)$ is		
a) [-1, 2]-{0} b) [-2, 2]-(-1, 1)	c) [-2, 2]-{0}	d) [1, 2]
203. If $f(x) = ax + b$ and $g(x) = cx + d$, then $f\{g(x)\} =$	$g\{f(x)\}$ is equivalent to	
a) $f(a) = f(c)$ b) $f(b) = g(b)$	c) $f(d) = g(b)$	d) $f(c) = g(a)$
204. The period of the function $f(x) = \sin^4 3x + \cos^4 3x$	is	
a) $\pi/2$ b) $\pi/3$	c) π/6	d) None of these
205. Given $f(x) = \log_{10}\left(\frac{1+x}{1-x}\right)$ and $g(x) = \frac{3x+x^3}{1+2x^2}$, then for	g(x) equals	
a) $-f(x)$ b) $3 f(x)$	c) $[f(x)]^3$	d) None of these
206. Which of the following functions is not an are not an	injective map(s)?	
a) $f(x) = x + 1 , x \in [-1, \infty)$, 10,	
b) $q(r) = r + \frac{1}{r} r \in (0, \infty)$		
$y(x) = x + \frac{1}{x}, x \in (0, \infty)$		
c) $h(x) = x^2 + 4x - 5, x \in (0, \infty)$		
d) $h(x) = e^{-x}, x \in [0, \infty)$ 207. If f: $P_{x} \to P_{x}$ and $g: P_{x} \to P_{x}$ are defined by $f(x) = x = 1$	$[u]$ and $a(u) = [u]$ for $u \in \Gamma$) where [u] is the greatest
207. If $f: R \to R$ and $g: R \to R$ are defined by $f(x) = x - 1$ integer not exceeding x then for every $x \in P$ if $(a(x))$	x and $g(x) = [x]$ for $x \in R$, where [x] is the greatest
a) r h) 0	f(r) is equal to	d) $q(\mathbf{x})$
$\frac{1}{208}$		u) y(x)
The domain of definition of $f(x) = \sqrt{\frac{\log_{0.3} x-2 }{ x }}$, is		
a) [1,2) ∪ (2,3] b) [1,3]	c) <i>R</i> – (1, 3]	d) None of these
209. $f: R \rightarrow R$ given by $f(x) = 5 - 3 \sin x$, is		
a) One-one b) Onto	c) One-one and onto	d) None of these
210. If $f(x + 2y, x - 2y) = xy$, then $f(x, y)$ equals		
a) $\frac{x^2 - y^2}{2}$ b) $\frac{x^2 - y^2}{2}$	c) $\frac{x^2 + y^2}{x^2 + y^2}$	d) $\frac{x^2 - y^2}{y^2}$
8 4	4	2
211. If $f: R \to R$ is defined as $f(x) = (1 - x)^{1/3}$, then f^{-1}	(x) is	1) 4 1/2
a) $(1 - x)^{-1/3}$ b) $(1 - x)^{-3}$	c) $1 - x^3$	a) $1 - x^{1/3}$
212. If $f(x + 2y, x, x - 2y) = xy$, then $f(x, y)$ equals $x^2 - y^2$	$x^2 + y^2$	$x^2 - x^2$
a) $\frac{x - y}{q}$ b) $\frac{x - y}{q}$	c) $\frac{x + y}{4}$	d) $\frac{x - y}{2}$
213. Let $f: [4, \infty] \rightarrow [4, \infty]$ be defined by $f(x) = 5^{x(x-4)}$ th	$en f^{-1}(x)$	2
	$(1)^{x(x-4)}$	d) Not defined
a) $2 - \sqrt{4} + \log_5 x$ b) $2 + \sqrt{4} + \log_5 x$	c) $\left(\frac{1}{5}\right)$	-
214. If $f: [2,3] \rightarrow R$ is defined by $f(x) = x^3 + 3x - 2$, the	n the range $f(x)$ is contained	ed in the interval
a) [1, 12] b) [12, 34]	c) [35, 50]	d) [-12, 12]
215. The period of $\sin^2 \theta$, is		
a) π^2 b) π	c) 2 π	d) π/2
216. If $n \in N$, and the period of $\frac{\cos nx}{\sin(\frac{x}{2})}$ is 4π , then <i>n</i> is equa	l to	
a) 4 b) 3	c) 2	d) 1
217. Foe real <i>x</i> , let $f(x) = x^3 + 5x + 1$, then	-)	
a) f is one-one but not onto R	b) <i>f</i> is onto <i>R</i> but not one-	-one
c) f is one-one and onto R	d) <i>f</i> is neither one-one no	r onto R
218. The range of the function $f(x) = \frac{1}{2 \cos 2x'}$ is		
a) $[-1/3, 0]$ b) R	c) [1/3,1]	d) None of these
219. Let $A = \{2, 3, 4, 5,, 16, 17, 18\}$. Let be the equivaler	ice relation on $A \times A$, cartes	sian product of A and A,
defined by $(a, b) \approx (c, d)$ if $ad = bc$, then the number	er of ordered pairs of the eq	uivalence class of (3, 2) is
a) 4 b) 5	c) 6	d) 7
220. Let n be the natural number. Then, the range of the f	function $f(n) = 8 - n_{P_n - 4}$,	$4 \le n \le 6$, is

a) {1, 2, 3, 4} b) {1, 2, 3, 4, 5, 6} c) {1, 2, 3} d) $\{1, 2, 3, 4, 5\}$ 221. Let *X* and *Y* be subsets of *R*, the set of all real numbers. The function $f: X \to Y$ defined by $f(x) = x^2$ for $x \in X$ is one-one but not onto, if (Here, R^+ is the set of all positive real numbers) b) $X = R, Y = R^+$ a) $X = Y = R^+$ c) $X = R^+, Y = R$ d) X = Y = R222. If f(x). f(1/x) = f(x) + f(1/x) and f(4) = 65, then f(6) is a) 65 b) 217 c) 215 d) 64 223. The graph of the function of y = f(x) is symmetrical about the line x = 2, then a) f(x+2) = f(x-2) b) f(2+x) = f(2-x) c) f(x) = f(-x)d) f(x) = -f(-x)If $f(x) = \begin{cases} -1; \ x < 0 \\ 0; \ x = 0 \\ 1; \ x > 0 \end{cases}$ and $g(x) = x(1 - x^2)$, then 224. (1; x > 0a) $fog(x) = \begin{cases} -1; -1 < x < 0 \text{ or } x > 1 \\ 0; & x = 0, 1, -1 \\ 1; & 0 < x < 1 \end{cases}$ b) $fog(x) = \begin{cases} -1; -1 < x < 0 \\ 0; & x = 0, 1, -1 \\ 1; & 0 < x < 1 \end{cases}$ c) $fog(x) = \begin{cases} -1; -1 < x < 0 \text{ or } x > 1 \\ 0; & x = 0, 1, -1 \\ 1; & 0 < x < 1 \text{ or } x < -1 \end{cases}$ d) $fog(x) = \begin{cases} 1; -1 < x < 0 \text{ or } x > 1 \\ 0; & x = 0, 1, -1 \\ 1; & 0 < x < 1 \text{ or } x < -1 \end{cases}$ d) $fog(x) = \begin{cases} 1; -1 < x < 0 \text{ or } x > 1 \\ 0; & x = 0, 1, -1 \\ 1; & 0 < x < 1 \text{ or } x < -1 \end{cases}$. $x_2 = xy$ is a relation which is 225. $x_2 = xy$ is a relation which a) Symmetric b) Reflexive and transitive c) Transitive d) None of these 226. The period of $f(x) = \sin\left(\frac{\pi x}{n-1}\right) + \cos\left(\frac{\pi x}{n}\right), n \in \mathbb{Z}, n > 2$, is c) 2*n* (*n* − 1) a) $2n \pi (n-1)$ b) $4(n-1)\pi$ d) None of these 227. $f: [-4,0] \rightarrow R$ is given by $f(x) = e^x + \sin x$, its even extension to [-4,4], is a) $-e^{|x|} - \sin |x|$ b) $e^{-|x|} - \sin |x|$ c) $e^{-|x|} + \sin |x|$ d) $-e^{-|x| + \sin |x|}$ 228. Let $f: R \to R$ be a function defined by $f(x) = -\frac{|x|^3 + |x|}{1 + x^2}$, then the graph of f(x) lies in the c) II and III quadrants a) I and II quadrants b) I and III quadrants d) III and IV quadrants 229. The domain of the real valued function $f(x) = \sqrt{1 - 2x} + 2 \sin^{-1}\left(\frac{3x-1}{2}\right)$ is a) $\left[-\frac{1}{2}, 1\right]$ b) $\left[\frac{1}{2}, 1\right]$ c) $\left[-\frac{1}{2}, \frac{1}{3}\right]$ d) $\left[-\frac{1}{3}, \frac{1}{2}\right]$ 230. The domain of function $f(x) = \log_{(x+3)}(x^2 - 1)$ is a) (−3, −1) ∪ (1, ∞) b) $[-3, -1) \cup [1, \infty)$ c) $(-3, -2) \cup (-2, -1) \cup (1, \infty)$ d) $[-3, -2) \cup (-2, -1) \cup [1, \infty)$ 231. The range of the function $f(x) = x^2 - 6x + 7$ is c) (−∞,∞) a) (−∞,0) b) [−2,∞) 232. The inverse of the function $f: R \to (-1,3)$ is given by $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} + 2$ a) $\log\left(\frac{x-1}{x+1}\right)^{-2}$ b) $\log\left(\frac{x-2}{x-1}\right)^{1/2}$ c) $\log\left(\frac{x}{2-x}\right)^{1/2}$ d) $\log\left(\frac{x-1}{3-x}\right)^{1/2}$ 233. If $f(x) = \frac{4^x}{4^x+2^2}$, then $f\left(\frac{1}{97}\right) + f\left(\frac{2}{97}\right) + \dots + f\left(\frac{96}{97}\right)$ is equal to b) 48 c) -48 d) -1 a) 1 234. The period of the function $f(x) = \frac{\sin 8x \cos x - \sin 6x \cos 3x}{\cos 2x \cos x - \sin 3x \sin 4x}$ is

b) 2π c) $\frac{\pi}{2}$ d) None of these a) π 235. Let $f: R \to R$: $f(x) = x^2$ and $g: R \to R$: g(x) = x + 5, then *gof* is a) (x + 5) b) $(x + 5^2)$ c) $(x^2 + 5^2)$ 236. The function $f(x) = \log_{2x-5}(x^2 - 3x - 10)$ is defined for all x belonging to d) $(x^2 + 5)$ a) [5,∞) b) (5,∞) d) None of these c) $(-\infty, +5)$ 237. Range of the function $f(x) = \frac{x^2}{x^2+1}$ is b) (-1, 1) a) (-1, 0) c) [0, 1) d) (1, 1) 238. Let f(x) = |x - 1|. Then, a) $f(x^2) = [f(x)]^2$ b) f(|x|) = |f(x)|c) f(x + y) = f(x) + f(y)d) None of these 239. If $f(x) = a^x$, which of the following equalities do not hold? a) $f(x+2) - 2f(x+1) + f(x) = (a-1)^2 f(x)$ b) f(-x)f(x) - 1 = 0c) f(x + y) = f(x)f(y)d) $f(x+3) - 2 f(x+2) + f(x+1) = (a-2)^2 f(x+1)$ 240. Let $A = \{x \in R : x \le 1\}$ and $f: A \to A$ be defined as f(x) = x(2 - x). Then, $f^{-1}(x)$ is a) $1 + \sqrt{1-x}$ b) $1 - \sqrt{1-x}$ c) $\sqrt{1-x}$ 241. The function $f(x) = \sin\frac{\pi x}{2} + 2\cos\frac{\pi x}{3} - \tan\frac{\pi x}{4}$ is periodic with period d) $1 \pm \sqrt{1 - x}$ c) 4 a) 6 d) 12 242. The equivalent definition of the function $f(x) = \lim_{n \to \infty} \frac{x^n - x^{-n}}{x^n + x^{-n}}, x > 0$, is $a) f(x) = \begin{cases} -1, & 0 < x \le 1 \\ 1, & x > 1 \end{cases}$ $b) f(x) = \begin{cases} -1, & 0 < x \le 1 \\ 1, & x > 1 \end{cases}$ $c) f(x) = \begin{cases} -1, & 0 < x < 1 \\ 1, & x \ge 1 \end{cases}$ $c) x = \begin{cases} -1, & 0 < x < 1 \\ 0, & x = 1 \\ 1, & x > 1 \end{cases}$ d) None of these 243. Let $R = \{(1,3), (4,2), (2,4), (2,3), (3,1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$. The relation R is b) Transitive c) Not symmetric d) Reflexive a) A function 244. The domain of the function $f(x) = {}^{16-x}C_{2x-1} + {}^{20-3x}P_{4x-5}$, where the symbols have their usual meanings, is the set b) $\{2, 3, 4\}$ a) {2, 3} c) {1, 2, 3, 4} d) $\{1, 2, 3, 4, 5\}$ 245. If $f: R \to C$ is defined by $f(x) = e^{2ix}$ for $x \in R$, then f is (where C denotes the set of all complex numbers) a) One-one b) Onto c) One-one and onto d) Neither one-one nor onto 246. The domain of the function $f(x) = \log_{10}(\sqrt{x-4} + \sqrt{6-x})$ is a) [4, 6] b) (−∞, 6) c) [2, 3) d) None of these 247. If $f(x) = \sin^2 x$, $g(x) = \sqrt{x}$ and $h(x) = \cos^{-1} x$, $0 \le x \le 1$, then a) hogof = fogoh b) gof oh = fohog c) fohog = hogof d) None of these 248. If $f(x) = \frac{2^{x}+2^{-x}}{2}$, then f(x+y)f(x-y) is equal to a) $\frac{1}{2}\{f(2x) + f(2y)\}$ b) $\frac{1}{2}\{f(2x) - f(2y)\}$ c) $\frac{1}{4}\{f(2x) + f(2y)\}$ d) $\frac{1}{4}\{f(2x) - f(2y)\}$ 249. The relation R defined on the set of natural numbers as $\{(a, b): a \text{ differs from } b \text{ by } 3\}$ is given by

	a) {(1, 4), (2, 5), (3, 6),}		b) {(4, 1), (5, 2), (6, 3),}	
250	c) {(1, 3), (2, 6), (3, 9),}	((1)) = (1) = 1	d) None of the above	
250.	a) [1,9]	n $f(x) = \sin^{-1}(\log_3(x/3))$ b) $[-1, 9]$	ls c) [-9, 1]	d) [-9, -1]
251.	The range of the function	$f(x) = \sin\left\{\log_{10}\left(\frac{\sqrt{4-x^2}}{1-x}\right)\right\}$, is	
	a) [0, 1]	b) (-1,0)	c) [-1,1]	d) (-1,1)
252.	Let $f(x) = \frac{ax+b}{cx+d}$. Then, fo	f(x) = x provided that		
	a) $d = -a$	b) $d = a$	c) $a = b = c = d = 1$	d) $a = b = 1$
253.	Let <i>C</i> denote the set of all	complex numbers. The fun	ction $f : C \to C$ defined by	$f(x) = \frac{ax+b}{cx+d}$ for $x \in C$,
	where $bd \neq 0$ reduces to	a constant function if:		
	a) $a = c$	b) $b = d$	c) $ad = bc$	d) $ab = cd$
254.	If $\sin \lambda x + \cos \lambda x$ and $ \sin \lambda x $	$ x + \cos x $ are periodic f	unction with the same peri	od, then $\lambda =$
255	a) 0	b) 1	c) 2	d) 4
255.	The domain of definition of	of the real function $f(x) =$	$\sqrt{\log_{12} x^2}$ of the real varial	ole <i>x</i> , is
050	a) $x > 0$	b) $ x \ge 1$	c) $ x \ge 4$	d) $x \ge 4$
256.	If $f(x)$ is an even function	and $f'(x)$ exists, then $f'(e)$	(e) + f'(-e) is	4) <0
257	a) >0	D = 0	$c_{j} \geq 0$	a) <0
237.	If $f(x) = \log\left(\frac{1}{1-x}\right)$, then $f(x) = \log\left(\frac{1}{1-x}\right)$	$f\left(\frac{1}{1+x^2}\right)$ is equal to		
250	a) $\{f(x)\}^2$	b) $\{f(x)\}^{3}$	c) $2f(x)$	d) $3f(x)$
258.	If the function $f: R \to R$ is	defined by $f(x) = \cos^2 x + \frac{1}{2}$	F sin ⁺ x then $f(R) =$	J) (2 / 4 1)
250	a) $[3/4,1)$	(x)	CJ [3/4,1]	a) (3/4,1)
239.	The domain of $\sin^{-1} \lfloor \log_2 $	$\left(\frac{1}{12}\right)$ is		
	a) [2, 12]	b) [-1, 1]	c) $\left[\frac{1}{3}, 24\right]$	d) [6, 24]
260.	The largest interval lying	in $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ for which the fu	nction $f(x) = 4^{-x^2} + \cos^{-x^2}$	$\left(\frac{x}{x}-1\right) + \log(\cos x)$ is
	defined, is			(2) 3()
		$(\pi \pi)$	$\left(\frac{\pi}{2}, \frac{\pi}{2} \right)$	$n \left[\alpha \right]^{\pi}$
	a) $[0, \pi]$	b) $(-\frac{1}{2}, \frac{1}{2})$	c) [4 ' 2)	a) $[0, \frac{1}{2}]$
261.	Let $f: R \to R$ be define by	$f(x) = 3x - 4$. Then, $f^{-1}(x) = 1$	(x) is	
	a) $\frac{x+4}{3}$	b) $\frac{x}{3} - 4$	c) 3 <i>x</i> + 4	d) None of these
262.	The interval in which the	function $y = \frac{x-1}{x^2 - 3x+2}$ trans	forms the real line is	
	a) (0,∞)	b) $(-\infty,\infty)$	c) [0,1]	d) [-1/3, 1] - {0}
263.	The domain of definition of	of the function $f(x) = x^{\frac{1}{\log_1}}$	$\overline{o^x}$, is	
	a) $(0, 1) \cup (1, \infty)$	b) $(0,\infty)$	c) [0,∞)	d) [0, 1) ∪ (1,∞)
264.	Let <i>W</i> denotes the words i	n the English dictionary. De	efine the relation <i>R</i> by	
	$R = \{(x, y) \in W \times W : \text{the}$	world <i>x</i> and <i>y</i> have at least	t one letter in common}. Th	ien, R is
	a) Reflexive, symmetric an	nd not transitive	b) Reflexive, symmetric a	nd transitive
	c) Reflexive, not symmetr	ic and transitive	d) Not reflexive, symmetr	ic and transitive
265.	The function $f: C \to C$ def	ined by $f(x) = \frac{ax+b}{cx+d}$ for $x \in$	$E C$ where $bd \neq 0$ reduces t	to a constant function, if
	a) $a = c$	b) $b = d$	c) $ad = bc$	d) $ab = cd$
266.	Let $A = \{x, y, z\}, B = \{u, v\}$	$\{\omega, \omega\}$ and $f: A \to B$ be define	d by $f(x) = u, f(y) = v, f(y)$	$(z) = \omega$. Then, f is
	a) Surjective but not injec	tive		
	b) Injective but not surject	tive		
	c) Bijective			
	d) None of these			

267. Consider the following relations $R = \{(x,y) \mid x, y \text{ are real numbers and } x = wy \text{ for some rational number}\}$ w}; $S = \left\{ \left(\frac{m}{n}, \frac{p}{q}\right) | m, n, p \text{ and } q \text{ are integers such that } n, q \neq 0 \text{ and } qm = pn \right\}$. Then *R* is an equivalence relation but *S* is not an a) a_{A} b) Neither *R* nor *S* is an equivalence relation equivalence relation S is an equivalence relation but R is not an
equivalence relation d) *R* and *S* both are equivalence relations 268. Which of the following functions has period π ? a) $|-\tan x| + \cos 2x$ b) $2\sin\frac{\pi x}{3} + 3\cos\frac{2\pi x}{3}$ c) $6\cos\left(2\pi x + \frac{\pi}{4}\right) + 5\sin\left(\pi x + \frac{3\pi}{4}\right)$ d) $|\tan 2x| + |\sin 4x|$ 269. The range of the function $f(x) = \sqrt{(x-1)(3-x)}$ is b) (-1, 1) a) [0, 1] c) (-3, 3) d) (-3, 1) 270. Let $A = \{x, y, z\}$ and $B = \{a, b, c, d\}$. Which one of the following is not a relation from A to B? b) $\{(y, c), (y, d)\}$ d) $\{(z, b), (y, b), (a, d)\}$ a) $\{(x, a), (x, c)\}$ c) {(z, a), (z, d)} 271. If f(x) defined on [0, 1] by the rule $f(x) = \begin{cases} x, \text{ if } x \text{ is rational} \\ 1 - x, \text{ if } x \text{ is irrational} \end{cases}$ Then, for all $x \in [0, 1]$, f(f(x)) is a) Constant b) 1 + xd) None of these c) *x* 272. Let $f(x) = \min\{x, x^2\}$, for every $x \in R$. Then, a) $f(x) = \begin{cases} x, x \ge 1 \\ x^2, 0 \le x < 1 \\ x, x < 0 \end{cases}$ b) $f(x) = \begin{cases} x^2, & x \ge 1 \\ x, & x < 1 \end{cases}$ c) $f(x) = \begin{cases} x, & x < 1 \\ x, & x \ge 1 \\ x^2, & x < 1 \end{cases}$ d) $f(x) = \begin{cases} x^2, & x \ge 1 \\ x, & 0 \le x < 1 \\ x^2, & x < 0 \end{cases}$ 273. If X = {1,2,3,4}, then one-one onto mappings $f: X \rightarrow X$ such that $f(1) = 1, f(2) \neq 2, f(4) \neq 4$ are given by a) $f = \{(1,1), (2,3), (3,4), (4,2)\}$ b) $f = \{(1, 2), (2, 4), (3, 3), (4, 2)\}$ c) $f = \{(1, 2), (2, 4), (3, 2), (4, 3)\}$ d) None of these 274. The domain of the function $f(x) = \exp(\sqrt{5x - 3 - 2x^2})$ is a) [3/2,∞) b) [1, 3/2] c) (−∞, 1) d) (1, 3/2) 275. $f(x) = x + \sqrt{x^2}$ is a function from *R* to *R*, then f(x) is b) Surjective c) Bijective d) None of these a) Injective 276. If $f(x) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}$ for $x \in R$, then f(2010) =a) 1 b) 2 c) 3 d) 4 277. If $b^2 - 4 ac = 0, a > 0$, then the domain of the function $f(x) = \log\{ax^3 + (a + b)x^2 + (b + c)x + c)\}$ is a) $R = \left\{-\frac{b}{2a}\right\}$ b) $R - \left\{ \left\{ -\frac{b}{2a} \right\} \cup \left\{ x \mid x \ge -1 \right\} \right\}$

c)
$$R - \left\{ \left\{ -\frac{b}{2a} \right\} \cap (-\infty, -1] \right\}$$

d) None of these

b) $\begin{cases} 2 \tan^{-1} x, x \ge 0\\ -2 \tan^{-1} x, x \le 0 \end{cases}$

278. The inverse of the function $y = \frac{10^x - 10^{-x}}{10^x + 10^{-x}}$ is a) $\frac{1}{2}\log_{10}\left(\frac{1+x}{1-x}\right)$ b) $\frac{1}{2}\log_{10}\left(\frac{2+x}{2-x}\right)$ c) $\frac{1}{2}\log_{10}\left(\frac{1-x}{1+x}\right)$ d) None of these 279. If $f: R \to R$ is given by $f(x) = \begin{cases} -1, \text{ when } x \text{ is rational} \\ 1, \text{ when } x \text{ is irrational} \end{cases}$ Then $(fof)(1-\sqrt{3})$ is equal to a) 1 b) -1 c) $\sqrt{3}$ d) 0 280. The function $f: R \to R$ defined by $f(x) = 6^x + 6^{|x|}$, is a) One-one and onto b) Many one and onto c) One-one and into d) Many one and into 281. Let $f: N \to Y$ be a function defined as f(x) = 4x + 3 where $Y = \{y \in N: y = 4x + 3 \text{ for some } x \in N\}$. Show that *f* is invertible and its inverse is a) $g(y) = \frac{y-3}{4}$ b) $g(y) = \frac{3y+4}{3}$ c) $g(y) = 4 + \frac{y+3}{4}$ d) $g(y) = \frac{y+3}{4}$ 282. If $f(x) = \sqrt{\cos(\sin x)} + \sqrt{\sin(\cos x)}$, then range of f(x) is b) $[\sqrt{\cos 1}, 1 + \sqrt{\sin 1}]$ c) $[1 - \sqrt{\cos 1}, \sqrt{\sin 1}]$ d) None of these a) $\left[\sqrt{\cos 1}, \sqrt{\sin 1}\right]$ 283. Let $f: A \to B$ and $g: B \to C$ be two functions such that $gof: A \to C$ is onto and g is one-one. Then, a) f is one-one b) *f* is onto c) *f* is both one-one and onto d) None of these 284. Let $f: (e, \infty) \to R$ be defined by $f(x) = \log[\log(\log x)]$, then a) f is one-one but not onto b) *f* is onto but not one-one c) *f* is both one-one and onto d) f is neither one-one nor onto 285. If $f: [-6, 6] \to R$ is defined by $f(x) = x^2 - 3$ for $x \in R$, then (fof of)(-1) + (fof of)(0) + (fof of)(1) is equal to a) $f(4\sqrt{2})$ b) $f(3\sqrt{2})$ c) $f(2\sqrt{2})$ 286. Let $f : R = \{n\} \rightarrow R$ be a function defined by $f(x) = \frac{x-m}{x-n}$, where $m \neq n$. Then, b) $f(3\sqrt{2})$ d) $f(\sqrt{2})$ a) *f* is one-one onto b) *f* is one-one into c) *f* is many one onto d) *f* is may one into 287. Let f(x) = x, g(x) = 1/x and h(x) = f(x)g(x). Then, h(x) = 1, if a) x is any rational number b) x is a non-zero real number c) x is a real number d) *x* is a rational number 288. Which of the following is not periodic? a) $|\sin 3x| + \sin^2 x$ b) $\cos \sqrt{x} + \cos^2 x$ c) $\cos 4x + \tan^2 x$ d) $\cos 2x + \sin x$ 289. If $f(x) = 2^x$, then f(0), f(1), f(2), ... are in a) AP b) GP c) HP d) Arbitrary 290. If $f(\sin x) - f(-\sin x) = x^2 - 1$ is defined for all $x \in R$, then the value of $x^2 - 2$ can be a) 0 a) 0 b) 1 291. If $x \in R$, then $f(x) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ is equal to c) 2 d) −1 a) $2 \tan^{-1} x$

c) $\begin{cases} \pi + 2 \tan^{-1} x, \ x \ge 0\\ -\pi + 2 \tan^{-1} x, \ x \le 0 \end{cases}$ d) None of these 292. Domain of the function $f(x) = \sin^{-1}(\log_2 x)$ in the set of real numbers is d) $\left\{ x: \frac{1}{2} \le x \le 2 \right\}$ b) { $x: 1 \le x \le 3$ } c) { $x: -1 \le x \le 2$ } a) { $x: 1 \le x \le 2$ } 293. If $f : R \to R$ and $g : R \to R$ are given by f(x) = |x| and g(x) = [x] for each $x \in R$, then $\{x \in R : g(f(x)) \le f(g(x))\} =$ a) $Z \cup (-\infty, 0)$ b) (−∞, 0) c) Z d) *R* ^{294.} If $f(x) = \log\left(\frac{1+x}{1-x}\right), -1 < x < 1$, then $f\left(\frac{3x+x^3}{1+3x^2}\right) - f\left(\frac{2x}{1+x^2}\right)$ is b) $[f(x)]^2$ a) $[f(x)]^3$ c) -f(x)d) f(x)295. The domain of definition of $f(x) = \log_{10} \log_{10} \log_{10} \dots \log_{10} x, \text{ is}$ $\xrightarrow{\rightarrow n \text{ times}} \leftarrow 1$ b) $(10^{n-1}, \infty)$ a) (10ⁿ,∞) c) $(10^{n-2}, \infty)$ d) None of these 296. The domain of $\sin^{-1} \left[\log_3 \left(\frac{x}{3} \right) \right]$ is a) [1, 9] b) [-1, 9] d) [-9, -1] c) [-9, 1] 297. Domain of definition of the function $f(x) = \frac{3}{4-x^2} + \log_{10}(x^3 - x)$, is a) (1, 2) b) $(-1, 0) \cup (1, 2)$ c) (1, 2) ∪ (2, ∞) d) $(-1, 0) \cup (1, 2) \cup (2, \infty)$ 298. If *X* and *Y* are two non-empty sets where $f: X \to Y$ is function is defined such that $f(C) = \{f(x) : x \in C\}$ for $C \subseteq X$ And $f^{-1}(D) = \{x: f(x) \in D\}$ for $D \subseteq Y$, For any $A \subseteq X$ and $B \subseteq Y$, then a) $f^{-1}(f(A)) = A$ b) $f^{-1}(f(A)) = A$ only if f(X) = Yc) $f(f^{-1}(B)) = B$ only if $B \subseteq f(x)$ d) $f(f^{-1}(B)) = B$ 299. If f(-x) = -f(x), then f(x) is a) An even function b) An odd function c) Neither odd nor even d) Periodic function 300. If $f: [-2, 2] \rightarrow R$ is defined by $f(x) = \begin{cases} -1, \text{ for } -2 \le x \le 0\\ x - 1, \text{ for } 0 \le x \le 2 \end{cases}$ Then $\{x \in [-2,2]: x \le 0 \text{ and } f(|x|) = x\} =$ a) $\{-1\}$ b) {0} c) $\{-1/2\}$ d) φ 301. If $2f(x^2) + 3f\left(\frac{1}{x^2}\right) = x^2 - 1$ for all $x \in R - \{0\}$, then $f(x^4)$ is a) $\frac{(1 - x^4)(2x^4 + 3)}{5x^4}$ b) $\frac{(1 + x^4)(2x^4 - 3)}{5x^4}$ c) $\frac{(1 - x^4)(2x^4 - 3)}{5x^4}$ d) None of these 302. The domain of definition of the function $f(x) = {}^{7-x}P_{x-3}$ is b) {3, 4, 5, 6, 7} c) $\{3, 4, 5\}$ d) None of these a) [3,7] 303. Let f(x) = x and g(x) = |x| for all $x \in R$. Then, the function $\phi(x)$ satisfying $\{\phi(x) - f(x)\}^2 +$ $\{\phi(x) - g(x)\}^2 = 0$, is a) $\phi(x) = x, x \in [0, \infty)$ b) $\phi(x) = x, x \in R$ c) $\phi(x) = -x, x \in (-\infty, 0]$ d) $\phi(x) = x + |x|, x \in \mathbb{R}$ 304. The value of the function $f(x) = 3\sin\left(\sqrt{\frac{\pi^2}{16} - x^2}\right)$ lies in the interval b) $[0, 3/\sqrt{2}]$ c) (-3,3) d) None of these a) $[-\pi/4, \pi/4]$ 305. The period of the function $f(x) = |\sin x| + |\cos x|$ is

306	a) π If $f(x) = (ax^2 + b)^3$, then	b) $\pi/2$ the function <i>a</i> such that <i>f</i>	c) 2π (q(x)) = q(f(x)) is given	d) None of these by
	a) $g(x) = \left(\frac{b - x^{1/3}}{a}\right)^{1/2}$	b) $g(x) = \frac{1}{(a x^2 + b)^3}$	c) $g(x) = (a x^2 + b)^{1/3}$	d) $g(x) = \left(\frac{x^{1/3} - b}{a}\right)^{1/2}$
307	Let <i>R</i> be the real line. Con $S = \{(x, y): y = x + 1 \text{ and} $ $T = \{(x, y): x - y \text{ is an int} $ Which of the following is t	sider the following subsets $o < x < 2$ } eger} crue?	of the plane $R \times R$	(-)
308	a) <i>T</i> is an equivalent relat c) Both <i>S</i> and <i>T</i> are equiva . Let $A = [-1, 1]$ and $f: A - $ a) Many-one into function	ion on R but S is not alence relations on R $\rightarrow A$ be defined as $f(x) = x$	b) Neither <i>S</i> nor <i>T</i> is an equivalence rela $x $ for all $x \in A$, then $f(x)$ is b) One-one into function	juivalence relation on <i>R</i> itions on <i>R</i> and <i>T</i> is not s
	c) Many-one onto function	n	d) One-one onto function	
309	If $f(x) = \frac{1-x}{1+x}, x \neq 0, -1$ as	nd $\alpha = f(f(x)) + f\left(f\left(\frac{1}{x}\right)\right)$), then	
310	a) $\alpha > 2$ Let <i>R</i> and <i>S</i> be two non-vo a) <i>R</i> and <i>S</i> are transitive in b) <i>R</i> and <i>S</i> are transitive in	b) $\alpha < -2$ bid relations on a set <i>A</i> . Whi mplies $R \cap S$ is transitive. mplies $R \cup S$ is transitive.	c) $ \alpha > 2$ ch of the following stateme	d) $\alpha = 2$ ents is false?
	c) <i>R</i> and <i>S</i> are symmetric	implies $R \cup S$ is symmetric	• •	
311	$A = \{1, 2, 3, 4\}, B\{1, 2, 3, 4\}$ the function f is	5, 6}are two sets, and func	tion $f: A \to B$ is defined by	$f(x) = x + 2 \ \forall x \in A$, then
	a) Bijective	b) Onto	c) One-one	d) Many-one
312	Let $f(x) = x + 1$ and $\phi(x)$) = x - 2. Then the values	of x satisfying $ f(x) + \phi(x) $	$ = f(x) + \phi(x) $ are :
	a) (−∞,1]	b) [2,∞)	c) (−∞,−2]	d) [1,∞)
313	The domain of the functio	$n f(x) = \frac{\sin^{-1}(3-x)}{\log_e(x -2)}$, is		
	a) [2, 4]	b) (2, 3) ∪ (3, 4]	c) [2,3)	d) (−∞, −3) ∪ [2, ∞)
314	If $f(x) = \frac{1}{\sqrt{ x -x }}$ then, dom	ain of $f(x)$ is		
	a) (−∞, 0)	b) (−∞, 2)	c) (−∞,∞)	d) None of the above
315	. The domain of definition of	of		
	$f(x) = \log_{10} \{ (\log_{10} x)^2 - $	$5\log_{10} x + 6$ }, is		
216	a) $(0, 10^2)$	b) $(10^3, \infty)$	c) $(10^2, 10^3)$	d) $(0, 10^2) \cup (10^3, \infty)$
316	$f\left(x+\frac{1}{2}\right) = x^2 + \frac{1}{2}, x \neq 1$	0, then $f(x)$ equals		
	a) $r^2 - 2$ for all $r \neq 0$			
	b) $x^2 - 2$ for all $x \neq 0$	x > 2		
	c) $x^2 - 2$ for all x satisfying	x = 1 x < 2		
	d) None of these			
317	The period of the function	$f(x) = \sin\left(\frac{2x+3}{6\pi}\right)$, is		
	a) 2 π	b) 6 π	c) 6 π ²	d) None of these
318	$f: R \to R$ is a function defi	ned by $f(x) = 10 x - 7$. If	$g = f^{-1}$, then $g(x) =$	
	a) $\frac{1}{1}$	b) $\frac{1}{10}$	c) $\frac{x+7}{10}$	d) $\frac{x-7}{12}$
319	10 x - 7 If $f(x) = [x - 2]$ where [10 x + 7 x] denotes the greatest interview.	10 eger less than or equal to r	10 then $f(2,5)$ is equal to
517	a) $\frac{1}{2}$	b) 0	c) 1	d) Does not exist
320	. The domain of definition of	of		

	$f(x) = \sqrt{\log_{10}(\log_{10} x) - 1}$	$\log_{10}(4 - \log_{10} x) - \log_{10} x$	3, is	
	a) $(10^3, 10^4)$	b) [10 ³ , 10 ⁴]	c) [10 ³ , 10 ⁴)	d) (10 ³ , 10 ⁴]
321.	The value of $n \in Z$ (the se	t of integers) for which the	function $f(x) = \sin \frac{\sin n x}{\sin(\frac{x}{n})}$	has 4 π as its period is
	a) 2	b) 3	c) 5	d) 4
322.	The inverse of the function	$n f: R \to R \text{ given by } f(x) =$	$\log_a \left(x + \sqrt{x^2 + 1} \right) (a > 0,$	$a \neq 1$), is
	a) $\frac{1}{2}(a^x + a^{-x})$	b) $\frac{1}{2}(a^x - a^{-x})$	c) $\frac{1}{2} \left(\frac{a^x + a^{-x}}{a^x - a^{-x}} \right)$	d) Not defined
323.	The domain of definition of	of the function		
	$f(x) = x \cdot \frac{1 + 2(x+4)^{-0.5}}{2 - (x+4)^{0.5}}$	$\frac{5}{-}$ + (x + 4) ^{0.5} + 4(x + 4) ^{0.5}	⁵ is	
	a) <i>R</i>	b) (-4, 4)	c) <i>R</i> ⁺	d) $(-4, 0) \cup (0, \infty)$
324.	If $f(x) = \frac{\alpha x}{x+1}$, $x \neq -1$, for	what value of α is $f[f(x)]$	= x?	
	a) √2	b) −√2	c) 1	d) -1
325.	The period of the function	$f(x) = \csc^2 3x + \cot 4x$	is	
	a) $\frac{\pi}{2}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{6}$	d) π
326.	The domain of the definiti	on of the function $f(x) = $.	$\sqrt{1 + \log_2(1 - x)}$ is	
	a) $-\infty < x \le 0$	b) $-\infty < x \le \frac{e-1}{a}$	c) $-\infty < x \le 1$	d) $x \ge 1 - e$
327.	The range of the function	$\sin(\sin^{-1}x + \cos^{-1}x), x \le \frac{1}{2}$	≤ 1 is	
	a) [-1, 1]	b) [1, -1]	c) {0}	d) {1}
328.	The range of $f(x) = \cos x$	$-\sin x$ is		
	a) [-1, 1]	b) (-1, 2)	c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	d) $[-\sqrt{2}, \sqrt{2}]$
329.	The range of function $f(x)$	$) = x^2 + \frac{1}{x^2 + 1}$	- 2 23	
	a) [1,∞)	b) [2,∞)	c) $\left(\frac{3}{2},\infty\right)$	d) None of these
330.	If <i>n</i> is an integer, the doma	ain of the function $\sqrt{\sin 2x}$ i	S	
	a) $\left[n\pi - \frac{\pi}{2}, n\pi\right]$	b) $\left[n\pi, n\pi + \frac{\pi}{4}\right]$	c) $[(2n-1)\pi, 2n\pi]$	d) $[2n\pi, (2n+1)\pi]$
331.	If $f : R \to R$ is defined by	$f(x) = x - [x] - \frac{1}{2}$ for all x	$\in R$, where $[x]$ denotes the	greatest integer function,
	then $\left\{x \in R : f(x) = \frac{1}{2}\right\}$ is	equal to		
	a) Z	b) <i>N</i>	с) ф	d) <i>R</i>
332.	Suppose $f: [-2, 2] \rightarrow R$ is	defined by		
	$f(x) = \begin{cases} -1, \text{ for } -2 \le x \le $	$x \in [-2, 2]: x \le 0$	and $f(x) = x$ is equal to)
	a) {-1}	0) {0}	c) $\left\{-\frac{1}{2}\right\}$	d) φ
333.	If $f: R \to R$ is defined by f	$(x) = \sin x \text{ and } g: (1, \infty) \rightarrow$	R is defined by $g(x) = \sqrt{x}$	$\frac{1}{2} - 1$, then $gof(x)$ is
	a) $\sqrt{\sin(x^2 - 1)}$	b) $\sin \sqrt{x^2 - 1}$	c) $\cos x$	d) Not defined
334.	Let <i>R</i> and <i>C</i> denote the set defined by $f(z) = z $ is	t of real numbers and comp	lex numbers respectively.	The function $f: C \to R$
	a) One to one		b) Onto	
225	c) Bijective $r-1$		d) Neither one to one nor	onto
335.	If $f(x) = \frac{x-1}{x+1}$, then $f(2x)$	is		
	a) $\frac{f(x)+1}{f(x)+3}$	b) $\frac{3f(x) + 1}{f(x) + 3}$	c) $\frac{f(x) + 3}{f(x) + 1}$	$d)\frac{f(x)+3}{3f(x)+1}$

336. The range of the function	$f(x) = \tan \sqrt{\frac{\pi^2}{9} - x^2}$ is		
a) [0, 3]	b) $[0, \sqrt{3}]$	c) $(-\infty,\infty)$	d) None of these
337. The domain of the functi	on $f(x) = \operatorname{cosec}^{-1}[\sin x]$ in	$[0, 2\pi]$, where $[\cdot]$ denotes	the greatest integer
function, is		., ,, .,	0 0
a) $[0, \pi/2) \cup (\pi, 3\pi/2]$	b) $(\pi, 2\pi) \cup \{\pi/2\}$	c) $(0, \pi] \cup \{3 \pi/2\}$	d) $(\pi/2,\pi) \cup (3\pi/2,2\pi)$
338. Let <i>R</i> be the relation on t	the set <i>R</i> of all real numbers	s defined by aRb if $ a - b \leq \frac{1}{2}$	\leq 1, then <i>R</i> is
a) Reflexive and symmet	ric	b) Symmetric only	
c) Transitive only		d) Anti-symmetric only	
339. The domain of the functi	on $f(x) = \log_e(x - [x])$ is		
a) <i>R</i>	b) <i>R</i> – <i>Z</i>	c) (0, +∞)	d) <i>Z</i>
340. If $f: [0, \infty] \rightarrow [0, \infty]$ and f	$f(x) = \frac{x}{1+x}$, then f is		
a) One-one and onto	112	b) One-one but not onto	
c) Onto but not one-one		d) Neither one-one nor of	nto
341. The function $f: R \to R$ gives	ven by $f(x) = x^3 - 1$ is		
a) A one-one function		b) An onto function	
c) A bijection		d) Neither one-one nor or	nto
342. Let $[x]$ denote the greate	est integer $\leq x$. If $f(x) = [x]$	and $g(x) = x $, then the v	alue of $f\left(g\left(\frac{8}{5}\right)\right)$ –
$g\left(f\left(-\frac{8}{5}\right)\right)$ is			
a) 2	b) -2	c) 1	d) -1
343. The domain of the functi	on $f(x) = \frac{\cos^{-1}x}{\sin^{-1}x}$ is		
	$\begin{bmatrix} x \end{bmatrix}$		
a) [-1,0) U {1}	b) [-1, 1]	C) $[-1, 1)$	d) None of these
344 . The set of values of x for	which of the function $f(x)$	$=\frac{1}{x}+2^{\sin x}+\frac{1}{\sqrt{x-2}}$ exists	is
a) <i>R</i>	b) $R - \{0\}$	c) φ	d) None of these
345. If $f(x)$ satisfies the relation	ion $2f(x) + f(1 - x) = x^2 f(x)$	for all real x , then $f(x)$ is	
a) $\frac{x^2 + 2x - 1}{2}$	b) $\frac{x^2 + 2x - 1}{2}$	c) $\frac{x^2 + 4x - 1}{2}$	d) $\frac{x^2 - 3x + 1}{2}$
6			6
346. If the function $f(x)$ is de	fined by $f(x) = a + bx$ and	$f' = fff \dots$ (repeated r tin	nes), then $f'(x)$ is equal to
a) $a + b^r x$	b) $ar + b^r x$	c) $ar + bx^r$	d) $a\left(\frac{b^r-1}{b-1}\right)+b^rx$
347. If $f(x) = \frac{x-1}{x+1}$, then $f(2x)$) is		
f(x) + 1	3f(x) + 1	f(x) + 3	f(x) + 3
a) $\frac{1}{f(x)+3}$	f(x) + 3	c) $\frac{f(x)+1}{f(x)+1}$	a) $\frac{1}{3f(x)+1}$
348. If $f(x)$ is an odd periodic	c function with period 2, the	en $f(4)$ equals	
a) 0	b) 2	c) 4	d) -4
349. The domain of definition	of		
$f(x) = \sqrt{\log_{0.4}\left(\frac{x-1}{x+5}\right)} >$	$<\frac{1}{x^2-36}$, is		
a) (−∞, 0) − {−6}	b) (0,∞) – {1,6}	c) (1,∞) – {6}	d) [1,∞) – {6}
350. The domain of the functi	$\operatorname{on} f(x) = \log_2(\log_3(\log_4 x))$:))is	
a) (−∞, 4)	b) (4,∞)	c) (0,4)	d) (1,∞)
351. Let $f(x) = x - 2 + x - 2 $	-3 + x - 4 and $g(x) = x$	+ 1. Then,	
a) $g(x)$ is an even function	on		
b) $g(x)$ is an odd functio	n		
c) $g(x)$ is neither even n	or odd		
d) $g(x)$ is periodic			

352. If a function $f: [2, \infty) \rightarrow B$ defined by $f(x) = x^2 - 4x + 5$ is a bijection, then B =a) R b) [1,∞) c) [4,∞) d) [5,∞) 353. *R* is relation on *N* given by $R = \{(x, y): 4x + 3y = 20\}$. Which of the following belongs to *R*? a) (-4, 12) b) (5, 0) c) (3, 4) d) (2, 4) 354. If $f: R \to R$ be a mapping defined by $f(x) = x^3 + 5$, then $f^{-1}(x)$ is equal to b) $(x-5)^{1/3}$ a) $(x + 5)^{1/3}$ c) $(5-x)^{1/3}$ d) 5 - x355. Let f(x) = x and g(x) = |x| for all $x \in R$. Then, the function $\phi(x)$ satisfying $[\phi(x) - f(x)]^2 + (\phi(x) - f(x))^2$ $[\phi(x) - g(x)]^2 = 0$ a) $\phi(x) = x, x \in [0, \infty)$ b) $\phi(x) = x, x \in R$ c) $\phi(x) = -x, x \in (-\infty, 0]$ d) $\phi(x) = x + |x|, x \in \mathbb{R}$ 356. In a function f(x) is defined for $x \in [0, 1]$, then the function f(2x + 3) is defined for b) $x \in [-3/2, -1]$ d) $x \in [-3/2, 1]$ a) $x \in [0, 1]$ c) $x \in R$ 357. If $f(x) = x^2 - 2|x|$ and $g(x) = \begin{cases} \min\{f(t) : -2 \le t \le x\}, -2 \le x < 0\\ \max\{f(t) : 0 \le x\}, & 0 \le x \le 3 \end{cases}, \text{ then } g(x) \text{ equals} \end{cases}$ a) $\begin{cases} x^{2} - 2x, & -2 \le x \le -1 \\ -1, & -1 \le x < 0 \\ 0, & 0 \le x < 2 \\ x^{2} + 2x, & 2 \le x \le 3 \end{cases}$ b) $\begin{cases} x^{2} + 2x, -2 \le x \le -1 \\ -1, & -1 \le x < 0 \\ 0, & 0 \le x < 1 \\ x^{2} - 2x, & 1 \le x \le 3 \end{cases}$ c) $\begin{cases} x^2 + 2x, & -2 \le x \le -0 \\ x^2 - 2x, & 0 \le x \le 3 \end{cases}$ d) $\begin{cases} x^{2} + 2x, & -2 \le x \le 0\\ 0, & 0 \le x < 2\\ x^{2} - 2x, & 2 \le x \le 3 \end{cases}$ 358. Let *R* be the set of real numbers and the mapping $f: R \to R$ and $g: R \to R$ be defined by $f(x) = 5 - x^2$ and g(x) = 3x - 4, then the value of (fog)(-1) is a) -44 b) -54 c) -32 d) -64 359. $f: R \to R$ is defined by $f(x) = \frac{e^{x^2} - e^{-x^2}}{e^{x^2} + e^{-x^2}}$, is a) One-one but not onto b) Many-one but onto c) One-one and onto d) Neither one-one nor onto 360. Let $f: N \to N$ defined by $f(x) = x^2 + x + 1, x \in N$, then f is c) One -one but not onto d) None of these a) One-one onto b) Many-one onto 361. Which of the following functions have period 2π ? a) $y = \sin\left(2\pi t + \frac{\pi}{3}\right) + 2\sin\left(3\pi t + \frac{\pi}{4}\right) + 3\sin 5\pi t$ b) $y = \sin\frac{\pi}{3}t + \sin\frac{\pi}{4}t$ c) $v = \sin t + \cos 2t$ d) None of the above 362. Let $f: A \to B$ be a function defined by $f(x) = \sqrt{3} \sin x + \cos x + 4$. If f is invertible, then a) $A = [-2\pi/3, \pi/3], B = [2, 6]$ b) $A = [\pi/6, 5\pi/6], B = [-2, 2]$ c) $A = [-\pi/2, \pi/2], B = [2, 6]$ d) $A = [-\pi/3, \pi/3], B = [2, 6]$ 363. If $f: R \to R$ and $g: R \to R$ are defined by f(x) = 2x + 3 and $g(x) = x^2 + 7$, then the values of x such that g(f(x)) = 8 are

364	a) 1, 2 . The domain of definition (b) –1,2 of the function	c) -1,-2	d) 1, -2
	$f(x) = \sin^{-1}\left(\frac{x-3}{2}\right) - \log^{-1}\left(\frac{x-3}{2}\right)$	$g_{10}(4-x)$, is		
365	a) $1 \le x \le 5$ If $f(x) = \frac{1-x}{2}(x \ne -1)$ th	b) $1 < x < 4$	c) $1 \le x < 4$	d) $1 \le x \le 4$
000	a) $f(x) = \frac{1}{1+x}(x \neq -1)$, the	b) $\frac{1}{f(r)}$	c) $-f(x)$	d) $-\frac{1}{f(r)}$
366	· The function f satisfies th	the functional equation $3f(x)$	$f(x) + 2f\left(\frac{x+59}{x+1}\right) = 10x + 30x$	for all real $x \neq 1$. The value
	of <i>f</i> (7) is			
267	a) 8	b) 4	c) -8	d) 11
367	$\begin{bmatrix} 2\\3\\\end{bmatrix} + \begin{bmatrix} 2\\3\\\end{bmatrix} + \begin{bmatrix} 2\\3\\\end{bmatrix} + \begin{bmatrix} 2\\3\\+\frac{1}{99}\end{bmatrix} + \begin{bmatrix} 2\\3\\+\frac{2}{99}\end{bmatrix} + .$	$\dots + \left[\frac{2}{3} + \frac{98}{99}\right]$ is equal to		
	a) 99	b) 98	c) 66	d) 65
368	If $f(x)$ is defined on $[0, 1]$, then the domain of $f(3x^2)$), is	d) Nama af thana
200	a) $[0, 1/\sqrt{3}]$	b) $[-1/\sqrt{3}, 1/\sqrt{3}]$	c) $[-\sqrt{3}, \sqrt{3}]$	a) None of these
309	If $f: R \to S$, defined by $f(x \to S)$	$x = \sin x - \sqrt{3} \cos x - 1$, is b) [-1, 1]	s onto, then the intervel of s	5 IS d) [_1 2]
370	. If $f(x) = e^x$ and $q(x) = 1$	$og_{\mu} x$, then which of the fol	lowing is true?	u) [-1, 5]
	a) $f\{g(x)\} \neq g\{f(x)\}$		b) $f{g(x)} = g{f(x)}$	
	c) $f{g(x)} + g{f(x)} = 0$	_	d) $f{g(x)} - g{f(x)} = 1$	
371	The range of the function	$f(x) = {}^{7-x}P_{x-3}$, is		
372	aj {1, 2, 3}	$DJ\{1, 2, 3, 4, 5, 6\}$	C) $\{1, 2, 3, 4\}$	a) {1, 2, 3, 4, 5}
572	The domain of definition	of $f(x) = \log_{1.7} \left(\frac{2 - \varphi(x)}{x + 1} \right)$, where $\phi(x) = \frac{x^{2}}{3} - \frac{3}{2}x^{2}$	$-2x+\frac{3}{2}$, is
	a) $(-\infty, -4)$	b) (−4, ∞)	c) (−∞,−1) ∪ (−1,4)	d) (−∞, −1) ∪ (−1, 4]
373	The domain of definition $\frac{1}{4}$	of the function		
	$f(x) = \sin^{-1}\left(\frac{1}{3 + 2\cos x}\right)$), is		
	a) $\left[2n\pi - \frac{\pi}{6}, 2n\pi + \frac{\pi}{6}\right], n$	$\in Z$		
	b) $\left[0,2n\pi + \frac{\pi}{6}\right], n \in \mathbb{Z}$			
	c) $\left[2n\pi - \frac{\pi}{6}, 0\right], n \in \mathbb{Z}$			
	d) $\left(2n\pi - \frac{\pi}{6}, 2n\pi + \frac{\pi}{6}\right), \pi$	$n \in Z$		
374	. Which of the following fur	nctions has period 2 π ?		
	a) $f(x) = \sin\left(2\pi x + \frac{\pi}{3}\right)$	$+2\sin\left(3\pi x+\frac{\pi}{4}\right)+3\sin\left(3\pi x+\frac{\pi}{4}\right)$	5 <i>π x</i>	
	b) $f(x) = \sin \frac{\pi x}{3} + \sin \frac{\pi x}{4}$	<u>×</u>		
	c) $f(x) = \sin x + \cos 2x$			
375	d) None of these	numbers. Then the relation	$P = \{(a, b): 1 + ab > 0\}$	nn Sis
575	a) Reflexive and symmetr	ic but not transitive	b) Reflexive and transitive	e but not symmetric
	c) Symmetric and transiti	ve but not reflexive	d) Reflexive, transitive an	d symmetric
376	. Which of the following fu	nctions is periodic?		
	a) $f(x) = x + \sin x$	b) $f(x) = \cos \sqrt{x}$	c) $f(x) = \cos x^2$	d) $f(x) = \cos^2 x$

a)
$$f(x) = \begin{cases} 2, -1, x \le -1 \\ 1+x, x \ge 1 \\ 1-x, x \ge 1 \end{cases}$$
b)
$$f(x) = \begin{cases} 1-x, x \le -1 \\ 1-x, x \le -1 \\ 1-x, x \ge 1 \end{cases}$$
c)
$$f(x) = \begin{cases} 1-x, x \le -1 \\ 1-x, x \ge 1 \\ 1-x, x \ge 1 \end{cases}$$
d) None of these
378. The period of the function $f(0) = \sin \frac{1}{3} + \cos \frac{1}{2}$ is
a) 3π
b) 6π
c) 9π
c) 9π
d) 12π
379. Let the function $f(x) = x^2 + x + \sin x - \cos x + \log(1 + |x|)$ be defined on the interval $[0, 1]$. The odd extension of $f(x)$ to the interval $[1, 1]$ is
a) $x^2 + x + \sin x + \cos x - \log(1 + |x|)$
b) $-x^2 + x + \sin x + \cos x - \log(1 + |x|)$
c) $-x^2 + x + \sin x + \cos x - \log(1 + |x|)$
d) None of these
380. If $g(x) = 1 + \sqrt{x}$ and $f(g(x)) = 3 + 2\sqrt{x} + x then, f(x)$ is equal to
a) $1 + 2x^2$
b) $2 + x^2$
c) $1 + x$
d) $2 + x$
381. Let $f: (-1, 1) \rightarrow B$, be a function defined by $f(x) = \tan^{-1} \frac{2x}{1-2x}$ then f is both one-one and onto when B is
the interval
a) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
c) $\left[0, \frac{\pi}{2}\right]$
d) $\left(0, \frac{\pi}{2}\right)$
382. If $f: R \rightarrow R$ defined by $f(x) = x^3$, then $f^{-1}(R)$ is equal to
a) $(2, 2x^{3/2})$
is b) $(2, \omega, 2\omega^2)$
c) $(2, -2)$
d) $(2, 2)$
383. The set of all x for which there are no functions
 $f(x) = \log_{(x-2)/(x+3)} 2 \tan g(x) = \frac{1}{\sqrt{x^2 - q^2}}$
is
a) $\left[-3, 2\right]$
b) $\left[-3, 2\right]$
c) $\left(-3, -2\right]$
d) $\left(-3, -2\right)$
384. Which of the following functions is (are) not an injective map(s)?
a) $f(x) = |x + 1|, x \in (1 - \omega)$
b) $g(x) = x + \frac{1}{x}, x \in (0, \infty)$
c) $h(x) = e^{-x}, x \in (0, \infty)$
c) $\left(1, x + 2, k \in Z$
Then $(\pi \in N; f(n) > 2)$ is equal to
a) $\frac{3x + 5}{2x + 1}, x \neq \frac{1}{2}$
b) $\left[\frac{3x + 1}{2x - x}, x \neq 2$
c) $\left[\frac{x - 5}{2x + 1}, x \neq \frac{1}{2}$
c) $\left[\frac{5x - 1}{2 - x}, x \neq 2$
377. If a, b are two fixed positive integers such that
 $f(a + x) = h(b^2 + 1 - 3b^2/(x) + 3b f(x)^2/2 - f(x)^2/1^{1/3}$
For all $x \in x$ continged obtive integers such that
 $f(a + x) = h(b^2 + 1 - 3b^2/(x) + 3b f(x)^2/2 - f(x)^2/1^{1/3}$
For all $x \in x$ continged positive integers such that
 $f(a + x) = h(b^2 + 1 - 3b^2/(x) + 3$

389. If Q denotes the set of all rational numbers and $f\left(\frac{p}{q}\right) = \sqrt{p^2 - q^2}$ for any $\frac{p}{q} \in Q$, then observe the following statements. I. $f\left(\frac{p}{a}\right)$ is real for each $\frac{p}{a} \in Q$. II. $f\left(\frac{p}{a}\right)$ is a complex number for each $\frac{p}{a} \in Q$. Which of the following is correct? a) Both I and II are true b) I is true, II is false c) I is false, II is true d) Both I and II are false 390. The domain of the function $f(x) = \log_{3+x}(x^2 - 1)$ is a) $(-3, -1) \cup (1, \infty)$ b) $[-3, -1] \cup [1, \infty]$ d) $[-3, -2) \cup (-2, -1) \cup (1, \infty)$ c) $(-3, -2) \cup (-2, -1) \cup (1, \infty)$ 391. Let $A = R - \{3\}, B = R - \{1\}$. Let $f: A \to B$ be defined by $f(x) = \frac{x-2}{x-3}$. Then, b) *f* is one-one but not onto a) *f* is bijective d) None of the above c) *f* is onto but not one-one ^{392.} Let $f(x) = \frac{\sqrt{\sin x}}{1 + \sqrt[3]{\sin x}}$. If *D* is the domain of *f*, then *D* contains c) (3 π, 4 π) d) $(4\pi, 6\pi)$ a) $(0, \pi)$ b) $(-2\pi, -\pi)$ 393. Let $f: R \to R$ and $g: R \to R$ be given by $f(x) = 3x^2 + 2$ and g(x) = 3x - 1 for all $x \in R$. Then, a) $fog(x) = 27x^2 - 18x + 5$ b) $fog(x) = 27x^2 + 18x - 5$ c) $gof(x) = 9x^2 - 5$ d) $gof(x) = 9x^2 + 15$ 394. The domain of definition of the function $f(x) = \frac{1}{\sqrt{|x| - x}}$, is b) (0,∞) c) $(-\infty, 0)$ d) None of these 395. Let $f: A \to B$ and $g: B \to A$ be two functions such that $f \circ g = I_B$. Then, a) f and g both are injections b) f and g both are surjections c) *f* is an injection and g is a surjection d) *f* is a surjection and g is an injection 396. If $f(x) = x^2 - 1$ and $g(x) = (x + 1)^2$, then (gof)(x) is a) $(x+1)^4 - 1$ b) $x^4 - 1$ c) x⁴ d) $(x + 1)^4$ 397. If $f: R \to R$ satisfies f(x + y) = f(x) + f(y), for all $x, y \in R$ and f(1) = 7, then $\sum_{r=1}^{n} f(r)$ is b) $\frac{7(n+1)}{2}$ a) $\frac{7n}{2}$ d) $\frac{7n(n+1)}{2}$ c) 7*n*(*n* + 1) 398. If $f(x) = 2x^4 - 13x^2 + ax + b$ is divisible by $x^2 - 3x + 2$, then (a, b) is equal to b) (6, 4) c) (9, 2) a) (-9, -2) d) (2,9) 399. Let $f: R \to R$ be a function defined by $f(x) = \frac{x^2 - 8}{x^2 + 2}$ Then, *f* is a) One-one but not onto b) One-one and onto c) Onto but not one-one d) Neither one-one nor onto 400. The domain of the function $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$, is b) [2,3) a) [1, 2) d) [2,3] c) [1,2]

2.RELATIONS AND FUNCTIONS

						: ANS	W	ER K	EY						
1)	а	2)	а	3)	b	4)	d	189)	b	190)	b	191)	b	192)	а
5)	d	6)	а	7)	С	8)	а	193)	d	194)	С	195)	b	196)	С
9)	с	10)	а	11)	а	12)	С	197)	а	198)	а	199)	а	200)	С
13)	d	14)	С	15)	b	16)	d	201)	а	202)	b	203)	С	204)	С
17)	С	18)	С	19)	b	20)	С	205)	b	206)	b	207)	b	208)	а
21)	С	22)	а	23)	а	24)	d	209)	d	210)	а	211)	С	212)	а
25)	b	26)	d	27)	b	28)	b	213)	d	214)	b	215)	b	216)	С
29)	b	30)	b	31)	а	32)	С	217)	С	218)	С	219)	С	220)	С
33)	а	34)	b	35)	С	36)	С	221)	С	222)	b	223)	b	224)	С
37)	d	38)	С	39)	d	40)	С	225)	b	226)	С	227)	b	228)	d
41)	d	42)	а	43)	С	44)	d	229)	d	230)	С	231)	b	232)	d
45)	b	46)	С	47)	а	48)	С	233)	b	234)	С	235)	d	236)	b
49)	d	50)	d	51)	d	52)	d	237)	С	238)	d	239)	d	240)	b
53)	d	54)	а	55)	b	56)	С	241)	d	242)	С	243)	С	244)	а
57)	d	58)	С	59)	С	60)	С	245)	d	246)	а	247)	d	248)	а
61)	b	62)	d	63)	а	64)	d	249)	b	250)	а	251)	С	252)	а
65)	b	66)	а	67)	С	68)	а	253)	С	254)	d	255)	b	256)	b
69)	b	70)	а	71)	b	72)	С	257)	С	258)	С	259)	d	260)	d
73)	С	74)	d	75)	а	76)	С	261)	а	262)	d	263)	а	264)	а
77)	а	78)	а	79)	d	80)	b	265)	С	266)	С	267)	С	268)	а
81)	а	82)	а	83)	d	84)	b	269)	а	270)	d	271)	С	272)	а
85)	С	86)	а	87)	а	88)	d	273)	а	274)	b	275)	d	276)	а
89)	а	90)	С	91)	а	92)	b	277)	С	278)	а	279)	b	280)	С
93)	С	94)	а	95)	а	96)	а	281)	а	282)	b	283)	b	284)	С
97)	b	98)	d	99)	d	100)	С	285)	а	286)	b	287)	b	288)	b
101)	b	102)	b	103)	С	104)	С	289)	b	290)	d	291)	b	292)	d
105)	b	106)	d	107)	b	108)	b	293)	а	294)	d	295)	d	296)	а
109)	d	110)	d	111)	b	112)	b	297)	d	298)	С	299)	b	300)	С
113)	а	114)	С	115)	С	116)	С	301)	а	302)	С	303)	а	304)	b
117)	b	118)	b	119)	а	120)	С	305)	b	306)	d	307)	а	308)	d
121)	b	122)	b	123)	С	124)	С	309)	С	310)	b	311)	С	312)	b
125)	d	126)	b	127)	b	128)	b	313)	b	314)	а	315)	d	316)	b
129)	а	130)	С	131)	С	132)	b	317)	С	318)	С	319)	b	320)	С
133)	b	134)	С	135)	а	136)	b	321)	а	322)	b	323)	d	324)	d
137)	b	138)	a	139)	d	140)	С	325)	d	326)	b	327)	d	328)	d
141)	d	142)	d	143)	С	144)	d	329)	a	330)	b	331)	C	332)	C
145)	C	146)	a	147)	a	148)	b	333)	d	334)	d	335)	b	336)	b
149)	b	150)	b	151)	d	152)	а	337)	b	338)	a	339)	b	340)	b
153)	d	154)	b	155)	d	156)	C	341)	C	342)	d	343)	a	344)	С
157)	C	158)	C	159)	С	160)	b	345)	b	346)	d	347)	b	348)	a
161)	b	162)	d	163)	a	164)	а	349)	c	350)	b	351)	С	352)	b
165)	b	166)	C	167)	d	168)	C	353)	d	354)	b	355)	а	356)	b
169)	b	170)	b	171)	d	172)	b	357)	b	358)	а	359)	а	360)	С
173)	d ,	174)	С	175)	b	176)	b	361)	С	362)	a	363)	С	364)	C
177)	b	178)	c	179)	a	180)	d	365)	a	366)	b	367)	С	368)	b
181)	b	182)	d	183)	b	184)	b	369)	d	370)	b	371)	а	372)	C ,
185)	d	186)	d	187)	b	188)	С	373)	а	374)	С	375)	а	376)	d

377) 201)	a	378) 292)	d	379) 282)	b d	380) b	393) 207)	a d	394) 209)	c	395) 200)	d d	396) 400)	C h
381) 385)	a b	382) 386)	a b	383) 387)	u b	384) D 388) a	3975	a	398)	С	399]	a	400)	D
389)	С	390)	С	391)	а	392) a								

: HINTS AND SOLUTIONS :

get

1 (a)

We have,

$$f(x) = ||x| - 1|$$

$$\Rightarrow f(x) = \begin{cases} 1 - |x|, \text{ if } |x| < 1 \\ |x| - 1, \text{ if } |x| \ge 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 1 - |x|, \text{ if } - 1 < x < 1 \\ |x| - 1, \text{ if } x \le -1 \text{ or }, x \ge 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 1 + x, \text{ if } -1 < x < 0 \\ 1 - x, \text{ if } 0 \le x \le 1 \\ -x - 1, \text{ if } x \le -1 \\ x - 1, \text{ if } x \ge 1 \end{cases}$$

(a) We have.

2

$$f(x) = \log_{100 x} \left(\frac{2 \log_{10} x + 1}{-x} \right)$$

$$f(x) \text{ is defined if}$$

$$x > 0, 100x \neq 1 \text{ and } \frac{2 \log_{10} x + 1}{-x} > 0$$

$$\Rightarrow x > 0, x \neq 10^{-2} \text{ and } 2 \log_{10} x + 1 < 0$$

$$\Rightarrow x < 0, x \neq 10^{-2} \text{ and } \log_{10} x < -\frac{1}{2}$$

$$\Rightarrow x > 0, x \neq 10^{-2} \text{ and } x < 10^{-1/2}$$

$$\Rightarrow x \in (0, 10^{-2}) \cup (10^{-2} \cup > 10^{-1/2})$$

3 **(b)**

The function f(x) will be defined, if $-1 \le (x-3) \le 1 \Rightarrow 2 \le x \le 4$ And $9 - x^2 > 0 \Rightarrow -3 < x < 3$ $\therefore 2 \le x < 3$

4 **(d)**

The given function is

 $f(x) = |x| = \begin{cases} x, x \ge 0 \\ x, x < 0 \end{cases}$ And $f: R \to R$, then it is clear that function is neither one-one nor onto.

5 **(d)**

6

Given,
$$f(x) = \frac{1}{\sqrt{-x}}$$

 $\therefore fof(x) = f(f(x)) = f(\frac{1}{\sqrt{-x}})$
 $\Rightarrow fof(x) = \frac{1}{\sqrt{-\frac{1}{\sqrt{-x}}}}$
Since, $\sqrt{-\frac{1}{\sqrt{-x}}}$ is an imaginary.
Hence, no domain of $fof(x)$ exist.
Thus, the domain of $fof(x)$ is an empty set.
(a)
We have

 $f(x + 1) + f(x - 1) = \sqrt{2} f(x)$ for all $x \in R$...(i)

 $f(x+2) + f(x) = \sqrt{2} f(x+1) \dots$ (ii) And, $f(x) + f(x-2) = \sqrt{2} f(x-1)$...(iii) Adding (ii) and (iii) we get f(x+2) + f(x-2) + 2f(x) $= \sqrt{2} \{ f(x+1) + f(x-1) \}$ $f(x+2) + f(x-2) + 2f(x) = \sqrt{2} \{\sqrt{2}f(x)\}$ [Using (i)] f(x+2) + f(x-2) + 2f(x) = 2f(x) $\Rightarrow f(x+2) + f(x-2) = 0$ for all $x \in R$ Replacing *x* by x + 2, we get $f(x + 4) + f(x) = 0 \Rightarrow f(x + 4) = -f(x)$...(iv) Replacing *x* by x + 4, we get f(x+8) = -f(x+4)...(v) From (iv) and (v), we get f(x+8) = f(x) for all $x \in R$ Hence, f(x) is periodic with period 8 7 (c) $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$ f(2,5,15) = (2+5).(5'+15) $= 10.\left(\frac{30}{5} + 15\right)$ (: 2 + 5 = LCM of (2, 5) = 10 and 5' $=\frac{30}{5}$ = 10(6 + 15) = 10.30 = 108 (a) For f(x) to be defined $\frac{5x - x^2}{4} \ge 1 \Rightarrow x^2 - 5x + 4 \le 0$ $\Rightarrow (x-4)(x-1) \le 0 \quad \therefore x \in [1,4]$ 9 (c) In the given options only option (c) satisfies the condition of a function. Hence, option (c) is a function. 10 (a) We have, f(x) = 2x - 3 and $g(x) = x^3 + 5$ Clearly, $f: R \rightarrow R$ and $g: R \rightarrow R$ are bijections. Therefore, $fog : R \rightarrow R$ is also a bijection and hence invertible

Replacing *x* by x + 1 and x - 1 respectively, we

Now,

 $fog(x) = f(g(x)) = f(x^3 + 5) = 2(x^3 + 5) - 3$ $= 2x^3 + 7$

Let $h(x) = f \circ g(x)$. Then, $h(x) = 2x^3 + 7$ Now, $hoh^{-1}(x) = x$ $\Rightarrow h(h^{-1}(x)) = x$ $\Rightarrow 2\{h^{-1}(x)\}^3 + 7 = x \Rightarrow h^{-1}(x) = \left(\frac{x-7}{2}\right)^{1/3}$ 11 (a) For $x \in (\pi, 3 \pi/2)$, we have $-1 < \sin x < 0$ $\Rightarrow 0 < 1 + \sin x < 1$ and $1 < (2 + \sin x) < 2$ $\therefore [\sin x] = -1, [1 + \sin x] = 0 \text{ and } [2 + \sin x] = 1$ $\Rightarrow f(x) = [\sin x] + [1 + \sin x] + [2 + \sin x]$ = -1 + 0 + 1 = 0For $x = \pi$, we have $[\sin x] = 0, [1 + \sin x] = 1 \text{ and } [2 + \sin x] = 2$ f(x) = 0 + 1 + 2 = 3For $x = \frac{3\pi}{2}$, we have $[\sin x] = -1, [1 + \sin x] = 0 \text{ and } [2 + \sin x] = 1$ $\therefore f(x) = -1 + 0 + 1 = 0$ Hence, range of $f(x) = \{0, 3\}$ 12 (c) We know that two functions f(x) and g(x) are identical, if their domains are same and f(x) = g(x)Clearly, f(x) = g(x)Now, D_1 = Domain (f) = (3, ∞) And, D_2 = Domain $(g) = (-\infty, 2) \cup (3, \infty)$ $\therefore D_1 \cap D_2 = (3, \infty)$ Hence, f(x) = g(x) for all $x \in (3, \infty)$ 13 (d) We have. $1 - e^{\frac{1}{x}-1} > 0$ $\Rightarrow e^{\frac{1}{x}-1} < 1 \Rightarrow \frac{1}{x} - 1 < 0 \Rightarrow \frac{1}{x} < 1 \Rightarrow x$ $\in (-\infty, 0) \cup (1, \infty)$ 14 (c) f(a) = a $\Rightarrow \frac{\alpha a^2}{\alpha + 1} = a$ $\Rightarrow \alpha a^2 = a^2 + a$ $\Rightarrow \quad \alpha = 1 + \frac{1}{a} \qquad (\because a \neq 0)$

Since $x \in [-2, 2]$, therefore $|x| \in [0, 2]$. Consequently f(|x|) = |x| - 1 for all $x \in [-2, 2]$ $\Rightarrow f(|x|) = \begin{cases} -x - 1, \text{ for all } x \in [-2, 0] \\ x - 1, \text{ for all } x \in [0, 2] \end{cases}$... (i) Now, $f(|x|) = \begin{cases} -1, & -2 \le x < 0\\ x - 1, & 0 \le x \le 2 \end{cases}$ $\Rightarrow |f(x)| = \begin{cases} 1, & -2 \le x < 0\\ 1 - x, & 0 \le x < 1\\ x - 1, & 1 \le x \le 2 \end{cases}$... (ii) From (i) and (ii), we get g(x) = f(|x|) + |f(x)| $g(x) = f(x) + f(x) + \frac{1}{2} + \frac{$ 16 **(d)** Given, f(x) = x - 3, $g(x) = x^2 + 1$ $g\{f(x)\} = g(x-3)$:. $10 = (x - 3)^2 + 1$ ⇒ $10 = x^2 + 10 - 6x$ ⇒ $x(x-6) = 0 \Rightarrow x = 0, 6$ \Rightarrow 17 (c) We have, g(f(x)) = 8 $\Rightarrow g(2x+3) = 8$ $\Rightarrow (2x+3)^2 + 7 = 8 \Rightarrow 2x+3 = \pm 1 \Rightarrow x$ = -1, -2(c) Given, $f(x) = \frac{1}{\sqrt{4-x^2}}$ For domain of f(x), $4 - x^2 > 0$ ⇒ $x^2 < 4$ ⇒ -2 < x < 2⇒ \therefore Domain= (-2, 2) **(b)** Given, f(0) = 1, f(1) = 5, f(2) = 11Let the second degree equation be $f(x) = ax^2 + bx + c$ $\therefore \quad f(0) = 0 + 0 + c \implies c = 1$... (i) $f(1) = a + b + c \implies 5 = a + b + 1$ $\Rightarrow a + b = 4$... (ii) $f(2) = 4a + 2b + c \Rightarrow 4a + 2b + 1 = 11$ $\Rightarrow 2a + b = 5$... (iii) On solving Eqs. (ii) and (iii), we get a = 1, b = 3Page | 33

15 **(b)**

18

19

We have,

 $f(x) = \begin{cases} -1, -2 \le x \le 0\\ x - 1, 0 < x \le 2 \end{cases}$

$$\therefore \text{ The required equation is} f(x) = x^2 + 3x + 1$$
20 (c)
We have,

$$[x] + \sum_{r=1}^{2000} \frac{\{x + r\}}{2000}$$

$$= [x]$$

$$+ \frac{1}{2000} \sum_{r=1}^{2000} ((x + r) - r)$$

$$\Rightarrow [x] + \sum_{r=1}^{2000} \frac{[x+r]}{2000} = [x] + \frac{1}{2000} \sum_{r=1}^{2000} (x - [x])$$

$$[\because [x+r] = [x] + r]$$

$$\Rightarrow [x] + \sum_{r=1}^{2000} \frac{\{x+r\}}{2000} = [x] + \frac{2000[x]}{2000} = [x] + \{x\}$$

$$= x$$

[x+r]

21 (c)

We have,

$$x \in [-2, 2] \Rightarrow |x| \in [0, 2]$$

 $\therefore f(|x|) = |x| - 1$
Now,
 $f(|x|) = x$
 $\Rightarrow |x| - 1 = x \Rightarrow -x - 1 = x \text{ for } x \le 0 \Rightarrow x = -\frac{1}{2}$
Hence, $\{x \in [-2, 2] : x \le 0 \text{ and } f(|x|) = x\} = \{-\frac{1}{2}\}$
28

22 (a)

Since the function $g(x) = \cos x$ is an even function and $h(x) = \log(x + \sqrt{x^2 + 1})$ is an odd function Therefore, the function goh(x) = cos(log(x +

 x^{2+1} is an even function

23 (a)

Given $f(\theta) = 4 + 4\sin^3\theta - 3\sin\theta$ $= 4 - (3\sin\theta - 4\sin^3\theta) = 4 - \sin 3\theta$ \therefore Period of $f(\theta) = \frac{2\pi}{3}$

24 (d)

Given, $f(2x + 3) = \sin x + 2^x$ Put x = 2m - n $\therefore f[2(2m-n)+3] = \sin(2m-n) + 2^{2m-n}$ $f(4m - 2n + 3) = \sin(2m - n) + 2^{2m - n}$ ⇒

25 (b)

> We have, $f(x) = \frac{x+2}{x^2 - 8x - 4}$ For f(x) to be defined, we must have $x^2 - 8x - 4 \neq 0$, i. e., $x \neq 4 + 2\sqrt{5}$: Domain $(f) = R - \{4 - 2\sqrt{5}, 4 + 2\sqrt{5}\}$ Let y = f(x). Then,

32

 $y = \frac{x+2}{x^2 - 8x - 4}$ $\Rightarrow x^{2}y - (8y + 1)x - (4y + 2) = 0$ $\Rightarrow x = \frac{(8y + 1) \pm \sqrt{(8y + 1)^{2} + 4y(4y + 2)}}{2y}$ $\Rightarrow x = \frac{(8y+1) \pm \sqrt{80y^2 + 24y + 1}}{2y}$ For *x* to be real, we must have $80y^2 + 24y + 1 \ge 0$ and $y \ne 0$ $\Rightarrow (20y+1)(4y+1) \ge 0 \text{ and } y \ne 0$ $\Rightarrow y \leq -\frac{1}{4} \text{ or, } y \geq -\frac{1}{20}, y \neq 0$ \Rightarrow $y \in (-\infty, -1/4] \cup [-1/20, \infty)$ and $y \neq 0$ For x = -2, we have y = 0 and $-2 \in \text{Domain}(f)$ Hence, range $(f) = (-\infty, -1/4] \cup [-1/20, \infty)$ 26 (d) Since f(x) is a periodic function with period 2 π /5. Therefore, *f* is not injective. The function *f* is not surjective also as its range [-1,1] is a proper subset of its co-domain R (b) It is clear from the given options that $\cos \sqrt{x} + \cos^2 x$ is not periodic. 28 **(b)** Given, $f(x) = [2x] - 2[x], \forall x \in R$ If *x* is an integer, then f(x) = 0And if *x* is an integer, then f(x) is either 1 or 0. \therefore Range of $f(x) = \{0, 1\}$ 29 **(b)** Since, $g(f(x)) = |\sin x|$ $g(\sin^2 x) = |\sin x|$ ⇒ $q(\sin^2 x) = \sqrt{\sin^2 x}$ \therefore $q(x) = \sqrt{x}$ ⇒ 30 **(b)** We have, $f: [2, \infty) \rightarrow B$ such that $f(x) = x^2 - 4x + 5$ Since f is a bijection. Therefore, B = range of f. Also, $f(x) = x^2 - 4x + 5 = (x - 2)^2 + 1$ for all $x \in [2, \infty)$ Therefore, $f(x) \ge 1$ for all $x \in [2, \infty)$. Hence, $B = [1, \infty)$ 31 (a) f(x) is defined, if $-(\log_2 x)^2 + 5(\log_2 x) - 6 > 0$ and x > 0 $\Rightarrow (\log_2 x)^2 - 5(\log_2 x) + 6 < 0 \text{ and } x > 0$ $\Rightarrow (\log_2 x - 2)(\log_2 x - 3) < 0 \text{ and } x > 0$ $\Rightarrow 2 < \log_2 x < 3 \text{ and } x > 0$ $\Rightarrow 2^2 < x < 2^3$ and $x > 0 \Rightarrow x \in (4, 8)$ (c)

 $f(x+10\pi) = \sin\left\{\sin\left(\frac{x+10\pi}{5}\right)\right\}$ $\Rightarrow f(x+10\pi) = \sin\left\{\sin\left(\frac{x}{5}+2\pi\right)\right\}$ $\Rightarrow f(x+10\pi) = \sin\left\{\sin\left(\frac{x}{5}\right)\right\} = f(x)$ Therefore, period of f(x) is 10π . 33 (a) The function $f(x) = \sqrt{\log_{10}\left(\frac{5x-x^2}{4}\right)}$ is defined, if $\frac{5 x - x^2}{4} \ge 1 \Rightarrow 5 x - x^2 - 4 \ge 0 \Rightarrow x \in [1, 4]$ \therefore Domain (f) = [1, 4] 34 **(b)** Since, $-1 \le \cos 3x \le 1$ $\Rightarrow 1 \leq -\cos 3x \leq -1$ $\Rightarrow 3 \le 2 - \cos 3x \le 1$ $\Rightarrow \frac{1}{3} \le \frac{1}{2 - \cos 3x} \le 1$ \therefore Range of f is $\left|\frac{1}{2}, 1\right|$. 35 (c) We have, $f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ 1 - x, & \text{if } x \text{ is irrational} \end{cases}$ If *x* is rational, then f(x) = x $\therefore f(f(x)) = f(x) = x$ If *x* is irrational, then f(x) = 1 - x $\therefore f(f(x)) = f(1-x) = 1 - (1-x) = x$ Thus, f(f(x)) = x for all $x \in [0, 1]$ 36 (c) Let $y = \frac{x}{1+x^2}$ $\Rightarrow x^2y - x + y = 0$ For *x* to be real $1 - 4y^2 \ge 0$ $\Rightarrow (1-2y)(1+2y) \ge 0$ $\Rightarrow \left(\frac{1}{2} - y\right) \left(\frac{1}{2} + y\right) \ge 0$ $\Rightarrow -\frac{1}{2} \le y \le \frac{1}{2}$ $\therefore \quad y = f(x) \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ 37 (d) The domain of f(x) is the complete set of real numbers. Since $f: R \rightarrow A$ is a surjection. Therefore, A is the range of f(x)Let f(x) = y. Then, $y \ge 0$ Now, f(x) = y $\Rightarrow \frac{x^2}{x^2 + 1} = y$

$$\Rightarrow \frac{x^2 + 1}{x^2} = \frac{1}{y} \text{ for } y > 0$$
$$\Rightarrow \frac{1}{x^2} = \frac{1 - y}{y} \Rightarrow x = \sqrt{\frac{y}{1 - y}}$$

Now,

$$x \in R$$
, $\Rightarrow \sqrt{\frac{y}{1-y}}$ is real $\Rightarrow \frac{y}{1-y} \ge 0 \Rightarrow 0 \le y < 1$

Therefore, range of f(x) is [0,1). Hence, A = [0, 1)(c)

Since, inverse of an equivalent relation is also an equivalent relation.

 $\therefore R^{-1}$ is an equivalent relation.

39 **(d)**

38

The domain of f(x) is the complete set of real numbers. Since $f: R \rightarrow A$ is a surjection. Therefore, A is the range of f(x)

Let
$$f(x) = y$$
. Then, $y \ge 0$ and, $f(x) = y$

$$\therefore \frac{x^2}{x^2 + 1} = y$$

$$\Rightarrow \frac{x^2 + 1}{x^2} = \frac{1}{y} \text{ for } y > 0$$

$$\Rightarrow \frac{1}{x^2} = \frac{1-y}{y} \Rightarrow x = \sqrt{\frac{y}{1-y}}$$

Now,

$$\sqrt{\frac{y}{1-y}}$$
 is real $\Rightarrow \frac{y}{1-y} \ge 0 \Rightarrow 0 \le y < 1$

So, Range of
$$f(x)$$
 is $[0, 1)$. Hence, $A = [0, 1)$
40 **(c)**
For $f(x)$ to be defined $F = 4x - x^2 > 0$ and

For
$$f(x)$$
 to be defined, $5 - 4x - x^2 \ge 0$ and $x + 4 > 0$

$$\Rightarrow -5 \le x \le 1$$

And $x > -4$

$$\Rightarrow -4 < x \le 1$$
41 (d)

$$\because f(x) = a^{\{\tan(\pi x) + x - [x]\}}$$

$$= a^{\{\tan(\pi x) + (x)\}}$$

 $= a^{\tan \pi x} a^{\{x\}}$

Hence, period of f(x) is 1.

42 **(a)**

For f(x) to be defined x - 1 > 0 and 2x - 1 > 0 and $2x - 1 \neq 1$ $\Rightarrow x > 1, x > \frac{1}{2}$ and $x \neq 1$ $\Rightarrow x > 1$ Hence, domain is $(1, \infty)$.

43 (c)
We have,

$$f(x) = \sin x$$
 and $g(x) = x^2$
 $\therefore f \circ g(x) = f(g(x)) = f(x^2) = \sin x^2$
44 (d)
 $f(x) = f(y) - \frac{1}{2} \left[f\left(\frac{x}{y}\right) \right] + f(x y)$
 $= \cos (\log x) . \cos (\log y)$
 $-\frac{1}{2} \left[\cos \left(\log \left(\frac{x}{y} \right) \right) + \cos (\log xy) \right]$
 $= \cos (\log x) \cos (\log y) - \frac{1}{2}$
 $\times 2 \cos (\log x) \cos (\log y)$
 $= \cos (\log x) \cos (\log y)$
 $- \cos (\log x) \cos (\log y)$

$$= 0$$

45 **(b)**

We have,

$$f(x) = \sqrt{\frac{-\log_{0.3}(x-1)}{-x^2+3x+18}} = \sqrt{\frac{\log_{0.3}(x-1)}{x^2-3x-18}}$$

$$f(x) \text{ is defined, if}$$

$$\frac{\log_{0.3}(x-1)}{x^2-3x-18} \ge 0$$

$$\Rightarrow \begin{cases} \log_{0.3}(x-1) \ge 0 \text{ and } x^2-3x \\ 0R \\ -18 \\ \log_{0.3}(x-1) < 0 \text{ and } x^2-3x-18 < 0 \end{cases}$$

$$\Rightarrow 0$$

$$\Rightarrow \begin{cases} 1 < x \le 2 \text{ and } x < -3 \text{ or } x > 6 \\ 0R \\ x > 2 \text{ and } -3 < x < 3 \\ 3 < 2 < x < 6 \Rightarrow x \in (2,6) \end{cases}$$
Hence domain of $f(x) = (2,6)$

46 **(c)**

For even f(-x) = f(x) and for odd, f(-x) = -f(x)And f(x) is increasing, if f'(x) > 0. Here, f(x) is not differentiable at $x \in I$ and above two cases are also not satisfied by f(x). $\therefore f(x) = [x]$ is neither even nor odd.

47 **(a)**

For f(x) to be real, we must have

$$-\log_4\left(\frac{6x-4}{6x+5}\right) > 0, \frac{6x-4}{6x+5} > 0 \text{ and } 6x+5 \neq 0$$

$$\Rightarrow \log_4\left(\frac{6x-4}{6x+5}\right) < 0, \frac{6x-4}{6x+5} > 0 \text{ and } 6x+5 \neq 0$$

$$\Rightarrow \frac{6x-4}{6x+5} > 4^0, \frac{6x-4}{6x+5} > 0 \text{ and } x \neq \frac{-5}{6}$$

$$\Rightarrow \frac{-9}{6x+5} < 0, \frac{6x-4}{6x+5} > 0 \text{ and } x \neq \frac{-5}{6}$$

$$\Rightarrow 6x+5 > 0, \frac{6x-4}{6x+5} > 0 \text{ and } x \neq \frac{-5}{6}$$

 $\Rightarrow 6x - 4 > 0 \text{ and } x \neq \frac{-5}{6}$ $\Rightarrow x > \frac{2}{3} \text{ and } x \neq \frac{-5}{6}$ $\Rightarrow x \in (2/3, \infty)$ 48 **(c)** *R* is not anti-symmetric. 49 (d) Given, n(A) = 4 and n(B) = 6Here, n(B) > n(A)Since, the function *f* is one-one and onto. ∴ Required number of ways $={}^{6}P_{4}=\frac{6!}{2!}=360$ 50 (d) We have, $f(x^{2}) = x^{2} - \frac{1}{x^{2}} = \left(x - \frac{1}{x}\right)\left(x + \frac{1}{x}\right)$ $=\left(x+\frac{1}{r}\right)f(x)$ 51 (d) We have, $f(x^2) = |x^2 - 1| \neq |x - 1|^2 = [f(x)]^2$ $f(|x|) = ||x| - 1 \neq |x - 1| = |f(x)|$ and. $f(x + y) = |x + y - 1| \neq |x - 1| + |y - 1|$ $\neq f(x) + f(y)$ Hence, none of the given option is true 52 (d) Given, f(x + y) = f(x) + f(y)x = 1, y = 1 we get For f(2) = f(1) + f(1)= 2. f(1) = 10Also f(3) = f(2) + f(1) = 15f(n) = 5n⇒ :. f(100) = 50053 (d) Since, *R* is defined as *aRb* iff |a - b| > 0. **Reflexive** : aRa iff |a - a| > 0Which is not true. So, *R* is not reflexive. **Symmetric** : aRb iff |a - b| > 0Now, bRa iff |b - a| > 0 $|a-b| > 0 \Rightarrow aRb$ ⇒ Thus, *R* is symmetric. **Transitive** : aRb iff |a - b| > 0bRc iff |b - c| > 0|a-b+b-c| > 0 \Rightarrow |a - c| > 0⇒ $|c-a| > 0 \Rightarrow aRc$ ⇒

Thus, *R* is also transitive. 54 (a) $fof = \frac{1 - f(x)}{1 + f(x)} = \frac{1 - \frac{1 - x}{1 + x}}{1 + \frac{1 - x}{1 + x}}$ \Rightarrow f[f(x)] = x $f(x) = f^{-1}(x)$ \Rightarrow 55 **(b)** Given, $f(x) = \log(x + \sqrt{x^2 + 1})$ $\therefore f(x) + f(-x)$ $= \log(x + \sqrt{x^2 + 1})$ $+\log(-x+\sqrt{x^{2}+1})$ $= \log(1) = 0$ Hence, f(x) is an odd function. 56 (c) Given, $f(x) = \log\{(ax^2 + bx + c)(x + 1)\}$ $= \log(ax^{2} + bx + c) + \log(x + 1)$ For f(x) to be defined $ax^{2} + bx + c > 0$ and x + 1 > 0x > -1⇒ Hence, option (c) is correct. 57 (d) We have, $f(x) = x^2 + x$ Clearly, $y = x^2 + x$ is a parabola opening upward having its vertex at $\left(-\frac{1}{2}, -\frac{1}{4}\right)$. So, *f* is a many-one into function <u>ALITER</u> We have, f(0) = f(-1) = 0So, *f* is many-one Also, $f(x) = x^2 + x = \left(x + \frac{1}{2}\right)^2 - \frac{1}{4} \ge -\frac{1}{4}$ for all x \therefore Range $(f) = [-1/4, \infty] \neq$ Co-domain (f)So, f is into 58 (c) We have, $T_1 = 1 \text{ and } T_2 = \frac{1}{2}$ Clearly, $T_1 = 3 T_2$ 59 (c) Let x + y = u and x - y = v \Rightarrow $x = \frac{u+v}{2}$ and $y = \frac{u-v}{2}$ $\therefore \quad f(u,v) = \left(\frac{u+v}{2}\right) \left(\frac{u-v}{2}\right)$ The arithmetic mean of f(u, v) and f(v, u) $=\frac{f(u,v)+f(v,u)}{2}$ $=\frac{\frac{u+v}{2}\left(\frac{u-v}{2}\right)+\left(\frac{u+v}{2}\right)\left(\frac{v-u}{2}\right)}{2}=0$ 60 (c) Since, $f(x) = x - [x] - \frac{1}{2}$

Also, $f(x) = \frac{1}{2}$ $\therefore \quad \frac{1}{2} = x - [x] - \frac{1}{2}$ $\Rightarrow x - [x] = 1$ $\Rightarrow \{x\} = 1$ $[: x = [x] + {x}]$ Which is not possible. $\therefore \left\{ x \in R : f(x) = \frac{1}{2} \right\}$ is an empty set. 61 (b) We know that $|\sin x| + |\cos x|$ is periodic with period $\frac{\pi}{2}$ $\therefore f(x) = |\sin 3x| + |\cos 3x|$ I periodic with period 62 (d) Given, f(x) = x - [x]For 2 < x < 3, then value of [x] is 2 y = f(x) = x - 2, 2 < x < 3Let x = 2 + y \Rightarrow :. $f^{-1}(x) = 2 + x$ 63 (a) We have, $f(x) = \left(\frac{1}{2}\right)^{\sin x}$ Since, sin *x* is a periodic function with period 2 π . Therefore, f(x) is periodic with period 2 π . We also know that every function can be uniquely expressed as the sum of an even function and an odd function Hence, option (a) is true. 64 (d) Given, $f(x) = \sqrt{x}$ $\therefore \quad \frac{f(25)}{f(16) + f(1)} = \frac{\sqrt{25}}{\sqrt{16} + \sqrt{16}}$ $=\frac{5}{4+1}=1$ 66 (a) The even extension of f(x) on the interval [-1, 1]

is given by

$$g(x) = \begin{cases} f(x) \text{ for } 0 \le x \le 1 \\ f(-x) \text{ for } -1 \le x < 0 \end{cases}$$

$$\Rightarrow g(x)$$

$$= \begin{cases} 3x^2 - 4x + 8\log(1 + |x|) \text{ for } 0 \le x \le 1 \\ 3x^2 + 4x + 8 + \log(1 + |x|) \text{ for } -1 \le x < 0 \end{cases}$$
(c)

Let
$$y = \frac{x^2 + x + 2}{x^2 + x + 1}$$

 $\Rightarrow x^2(y-1) + x(y-1) + (y-2) = 0, \forall x \in R$
Now, $D \ge 0 \Rightarrow (y-1)^2 - 4(y-1)(y-2) \ge 0$
 $\Rightarrow (y-1)\{(y-1) - 4(y-2)\} \ge 0$
 $\Rightarrow (y-1)(-3y+7) \ge 0$

67

$$\begin{array}{c} - + - \\ + - \\ 1 \\ 1 \\ - 7 \\ 3 \end{array}$$

$$1 \le y \le \frac{7}{3}$$

68 **(a)**

⇒

We observe that

Period of $\sin\left(\frac{\pi x}{2}\right)$ is $\frac{2\pi}{\pi/2} = 4$, Period of $\cos\frac{\pi x}{2}$ is $\frac{2\pi}{\pi/2} = 4$, So, period of $\sin\frac{\pi x}{2} + \cos\frac{\pi x}{2}$ is LCM of (4, 4) = 4

69 **(b)**

We have, $f(x) = \sin^4 x + \cos^4 x$ $\Rightarrow f(x) = (\sin^2 x + \cos^2 x) - 2\sin^2 x \cos^2 x$ $\Rightarrow f(x) = 1 - \frac{1}{2}(\sin 2x)^2 = 1 - \frac{1}{2}\left\{\frac{1 - \cos 4x}{2}\right\}$ $= \frac{3}{4} + \frac{1}{4}\cos 4x$

Since $\cos x$ is periodic with period 2π . Therefore, $\cos 4x$ is periodic with period $\pi/2$ and hence f(x) is periodic with period $\pi/2$

70 **(a)**

73 (c)

Given, $(x, y) \Leftrightarrow x^2 - 4xy + 3y^2 = 0$ $Or (x, y) \Leftrightarrow (x - y)(x - 3y) = 0$ (i) Reflexive $xRx \Rightarrow (x-x)(x-3x) = 0$ \therefore It is reflexive. (ii) Symmetric Now, $xRy \Leftrightarrow (x - y)(x - 3y) = 0$ And, $yRx \Leftrightarrow (y - x)(y - 3x) = 0 \Rightarrow xRy \neq yRx$ \therefore It is not symmetric. Similarly, it is not transitive. 71 **(b)** We have, f(x) = (x - 1)(x - 2)(x - 3) $\Rightarrow f(1) = f(2) = f(3) = 0$ \Rightarrow f(x) is not one-one For each $y \in R$, there exists $x \in R$ such that f(x) = y. Therefore, f is onto Hence, $f: R \rightarrow R$ is onto but not one-one 72 (c) Since, $f: X \to Y$ and $f(x) = \sin x$ Now, take option (c).

Domain = $\left[0, \frac{\pi}{2}\right]$, Range = $\left[-1, 1\right]$

For every value of x, we get unique value of y. But the value of y in [-1, 0) does not have any preimage. \therefore Function is one-one but not onto.

Since, $f: R \to R$ such that $f(x) = 3^{-x}$ Let y_1 and y_2 be two elements of f(x) such that $y_1 = y_2$ $\Rightarrow \quad 3^{-x_1} = 3^{-x_2} \Rightarrow \quad x_1 = x_2$ Since, if two images are equal, then their elements are equal, therefore it is one-one function. Since, f(x) is positive for every value of x, therefore f(x) in into. On differentiating w.r.t. *x*, we get $\frac{dy}{dx} =$ $-3^{-x}\log 3 < 0$ for every value of *x*. ∴ It is decreasing function. : Statement I and II are true. 74 (d) We have, f(x) = x[x] = kx, when $k \le x < k + 1$ and $k \in Z$ Clearly, it is not a periodic function 75 (a) Let f(x) = y. Then, $\frac{3x+2}{5x-3} = y \Rightarrow x = \frac{3y+2}{5y-3}$ $\therefore f^{-1}(y) = \frac{3y+2}{5y-3} \text{ or, } f^{-1}(x) = \frac{3x+2}{5x-3}$ = f(x) for all x 76 (c) Given, $f(x) = \frac{\sqrt{4-x^2}}{\sin^{-1}(2-x)}$ For f(x) to be defined $4 - x^2 \ge 0$; $-1 \le 2 - x \le 1$ and $2 - x \neq 0$ $\Rightarrow -2 \le x \le 2$; $1 \le x \le 3$ and $x \ne 2$ \therefore Domian of f(x) is [1, 2). 77 (a) Clearly, f(x) is defined for all x satisfying $-1 \le |x - 1| - 2 \le 1$ $\Rightarrow 1 \le |x - 1| \le 3$ $\Rightarrow 1 \le (x-1) \le 3$ or, $-3 \le x-1 \le -1$ $\Rightarrow 2 \le x \le 4 \text{ or}, -2 \le x \le 0 \Rightarrow x$ $\in [2, 4] \cup [-2, 0]$ 78 (a) For f(x) to be defined, we must have $-1 \leq [\sec x] \leq 1$ $\Rightarrow -1 \leq \sec x < 2$ $\Rightarrow 2m \pi \le x < 2m\pi + \frac{\pi}{3}, m \in \mathbb{Z} \text{ or, } x$ $= (2n + 1)\pi, n \in Z$ $\Rightarrow x \in \{x : x = (2n+1)\pi, n \in Z\}$ $\cup \{ x : 2m \, \pi \le x < 2m \, \pi + \pi/3, m \in Z \}$ 79 (d) For domain of $\sin^{-1}(\log_3 x)$ $-1 \leq \log_3 x \leq 1$

 $3^{-1} < x < 3$

⇒

$$\therefore \text{ Domain of } \sin^{-1}(\log_3 x) \text{ is } \left[\frac{1}{3}, 3\right].$$
80 **(b)**
We have,
 $f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2}$
 $\Rightarrow f\left(x + \frac{1}{x}\right) = \left(x + \frac{1}{x}\right)^2 - 2$
 $\Rightarrow f(y) = y^2 - 2, \text{ where } y = x + \frac{1}{x}$
Now,
 $y = x + \frac{1}{x}, x \neq 0$
 $\Rightarrow y \ge 2 \text{ or, } y \le -2 \Rightarrow |y| \ge 2$
Thus, $f(y) = y^2 - 2 \text{ for all } |y| \ge 2$
81 **(a)**
Given, $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos \left(\frac{\pi}{3} + \cos x \sin \frac{\pi}{3}\right)^2$
 $+ \cos x \left[\cos x \cos \frac{\pi}{3} + \cos x \sin \frac{\pi}{3}\right]^2$
 $+ \cos x \left[\cos x \cos \frac{\pi}{3} - \sin x \sin \frac{\pi}{3}\right]$
 $= \sin^2 x + \left[\frac{\sin x}{2} + \cos x \cdot \frac{\sqrt{3}}{2}\right]$
 $+ \cos x \left[\frac{\cos x}{2} - \sin x \cdot \frac{\sqrt{3}}{2}\right]$
 $+ \sin x \cos x \cdot \frac{\sqrt{3}}{2}$
 $+ \frac{\cos^2 x}{4} - \sin x \cos \frac{\sqrt{3}}{2}$
 $= \frac{5 \sin^2 x}{4} + 5 \frac{\cos^2 x}{4} = \frac{5}{4}$
 $\therefore gof(x) = g[f(x)] = g\left(\frac{5}{4}\right) = 1$
(given)
82 **(a)**
We have,
 $f(x) = \sec\left(\frac{\pi}{4}\cos^2 x\right), x \in (-\infty, \infty)$
Clearly,
 $0 \le \frac{\pi}{4}\cos^2 x \le \frac{\pi}{4} \text{ for all } x \in (-\infty, \infty) \Rightarrow f(x)$
 $\in [1, \sqrt{2}]$
83 **(d)**
We have,

$$f(x) = \frac{e^{|x|} - e^{-x}}{e^x + e^{-x}} = \begin{cases} \overline{e^x + e^{-x}}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

$$\Rightarrow f(x) \text{ is many-one into as range } (f) = [0, \infty)$$

84 **(b)** Given, f(x) = (x - 1)(x - 2)(x - 3) $\Rightarrow f(1) = f(2) = f(3) = 0$ $\Rightarrow f(x)$ is not one-one. For each $y \in R$, there exists $x \in R$ such that f(x) = y. Therefore, f is onto. 85 **(c)** Given, $f(n) = \begin{cases} \frac{n-1}{2}, \text{ when } n \text{ is odd} \\ -\frac{n}{2}, \text{ when } n \text{ is even} \end{cases}$

And $f: N \to I$, where *N* is the set of natural numbers and *I* is the set of integers. Let $x, y \in N$ and both are even. Then, f(x) = f(y) $\Rightarrow -\frac{x}{2} = -\frac{y}{2} \Rightarrow x = y$ Again, $x, y \in N$ and both are odd. Then, f(x) = f(y) $\Rightarrow \frac{x-1}{2} = \frac{y-1}{2}$ $\Rightarrow x = y$

So, mapping is one-one.

Since, each negative integer is an image of even natural number and positive integer is an image of odd natural number. So, mapping is onto.

86 **(a)**

Since
$$\sqrt{\cos(\sin x)}$$
 exists for all $x \in R$ and
 $\sin^{-1}\left(\frac{1+x^2}{2x}\right)$ exists for $x = \pm 1$. Therefore,
 $f(x) = \sqrt{\cos(\sin x)} + \sin^{-1}\left(\frac{1+x^2}{2x}\right)$ is defined for
 $x \in [-1, 1]$

87 **(a)**

Here,
$$f(x) = \log \frac{10+x}{10-x}$$

Given that,
$$f(x) = k f\left(\frac{200x}{100+x^2}\right)$$

$$\Rightarrow \log \frac{10+x}{10-x} = k \cdot \log \left\{\frac{10+\frac{200x}{100+x^2}}{10-\frac{200x}{100+x^2}}\right\}$$

$$= k \log \left(\frac{10+x}{10-x}\right)^2$$

$$\Rightarrow \log \frac{10+x}{10-x} = 2k \log \frac{10+x}{10-x}$$

$$\Rightarrow k = 0.5$$

88 **(d)**

Since, $f(n) = \begin{cases} n^2, & \text{if } n \text{ odd} \\ 2n+1, & \text{if } n \text{ is even} \end{cases}$ $f(1) = 1^2 = 1$ f(2) = 2(2) + 1 = 5 $f(3) = 3^2 = 9$ f(4) = 2(4) + 1 = 9 \therefore f(3) = f(4) \therefore f is not injective. Also, *f* is not surjective as every element of *N* is not the image of any element of *N*

89 (a)

$$f(y) = f\left(\frac{x+2}{x-1}\right) = \frac{\frac{x+2}{x-1}+2}{\frac{x+2}{x-1}-1}$$

$$f(y) = x$$

90 **(c)**

 $(f \circ g)(x) = f[g(x)] = f(|3x + 4|)$ Since, the domain of f is [-3, 5] $\therefore -3 \le |3x + 4| \le 5$ $\Rightarrow |3x + 4| \le 5$ $\Rightarrow -5 \le 3x + 4 \le 5$ $\Rightarrow -9 \le 3x \le 1$ $\Rightarrow -3 \le x \le \frac{1}{3}$ \therefore Domian of f og is $\left[-3, \frac{1}{3}\right]$.

92 **(b)**

g(x) = 1 + x - [x] is greater than 1 since x - [x] > 0, $f\{g(x)\} = 1$

93 **(c)**

We have, f(x) = x - [x] $\Rightarrow f(x) = \begin{cases} x - n, \text{ if } n < x < n + 1 \\ n - n = 0, \text{ if } x = n \end{cases}$, where $n \in Z$ Thus, f(x) is a many-one function Consequently, $f^{-1}(x)$ is not defined (a)

94 **(a)**

Given, P(x) = x + ax + b:. P(10) = 10 + 10a + b = 10 + 5 = 15And P(11) = 11 + 11a + b= 11 + 5 + a = 16 + aP(10)P(11) = P(n)÷ 15(16 + a) = n + na + b \Rightarrow 240 + 15a = n + na + 5 - 10a \Rightarrow \Rightarrow n + na - 25a - 235 = 0(a) When n = 1515 + 15a - 25a - 235 = 0a = -22 and b = 225⇒ (b) When n = 6465 + 65a - 25a - 235 = 0 $a = -\frac{17}{4}$ which is not integer. (c) When n = 115115 + 115a - 25a - 235 = 0 $a = \frac{4}{2}$ which is not integer. ⇒ (d) When n = 165165 + 165a - 25a - 235 = 0 $a = \frac{1}{2}$ which is not integer. ⇒

We have. $fof^{-1}(x) = x$ for all $x \in (-\infty, 2]$ $\Rightarrow f(f^{-1}(x)) = x$ $\Rightarrow 4f^{-1}(x) - {f^{-1}(x)}^2 = x$ $\Rightarrow \{f^{-1}(x)\}^2 - 4f^{-1}(x) + x = 0$ $\Rightarrow f^{-1}(x) = \frac{4 \pm \sqrt{16 - 4x}}{2} = 2 \pm \sqrt{4 - x}$ $\Rightarrow f^{-1}(x) = 2 - \sqrt{4 - x}$ [:: $-\infty < f^{-1}(x) \le 2$] 97 **(b)** We have, $f(x) = (a - x^n)^{1/n}, n \in N$ $\Rightarrow fof(x) = f(f(x))$ $\Rightarrow fof(x) = f((a-x^n)^{1/n})$ $\Rightarrow fof(c) = \left[a - \left\{(a - x^n)^{1/n}\right\}^n\right]^{1/n}$ $\Rightarrow fof(x) = \{a - (a - x^n)\}^{1/n} = (x^n)^{1/n} = x$ 98 (d) We have, $f(x) = \log_3 |\log_e x|$ Clearly, f(x) is defined, if $\log_e x \neq 0$ and $x > 0 \Rightarrow x \neq 1$ and $x > 0 \Rightarrow x \in$ $(0,1) \cup (1,\infty)$ 99 (d) Since $f: R \to R$ and $g: R \to R$, given by f(x) = 2 x - 3 and $g(x) = x^3 + 5$ respectively, are bijections. Therefore, f^{-1} and g^{-1} exist We have, f(x) = 2x - 3 $\therefore f(x) = y$ $\Rightarrow 2x - 3 = y \Rightarrow x = \frac{y + 3}{2}$ $\Rightarrow f^{-1}(y) = \frac{y+3}{2}$ Thus, f^{-1} is given by $f^{-1}(x) = \frac{x+3}{3}$ for all $x \in R$ Similarly, $g^{-1}(x) = (x - 5)^{1/3}$ for all $x \in R$ Now, $(f \circ g)^{-1}(x) = (g^{-1} \circ f^{-1})(x) = g^{-1}(f^{-1}(x))$ $\Rightarrow (fog)^{-1}(x) = g^{-1}\left(\frac{x+3}{2}\right) = \left(\frac{x+3}{2} - 5\right)^{1/3}$ $=\left(\frac{x-7}{2}\right)^{1/3}$ 100 (c) Since, f(x) is a many-one function. so its inverse does not exist. 101 (b)

Clearly, $f(x) = \frac{x}{2}$ is one-one but not onto as range of f is $[1/2, 1/2] \neq A$ The graph of $g(x) = \sin\left(\frac{\pi x}{2}\right)$ is as shown in Fig.S.1 Evidently, it is a bijection h(x) = |x| is many one as h(-1/2) = h(1/2) and k(x) is also many-one as k(-1/2) = k(1/2)

10

102 (b)
For domain of
$$f(x), 2 - 2x - x^2 \ge 0$$

 $\Rightarrow x^2 + 2x - 2 \le 0$
 $\Rightarrow -1 - \sqrt{3} \le x < -1 + \sqrt{3}$
103 (c)
 $fogoh(x) = (fog)(h(x)) = (fog)(2x)$
 $= f(g(2x)) = f([4x^2])$
 $\Rightarrow fogoh(x) = \begin{cases} f(1), & \text{if } \frac{1}{2} \le x < \frac{1}{\sqrt{2}} \\ f(2), & \text{if } x = \frac{1}{\sqrt{2}} \end{cases}$
 $\Rightarrow fogoh(x) = \begin{cases} \sin^{-1}(1), & \text{if } \frac{1}{2} \le x < \frac{1}{\sqrt{2}} \\ \sin^{-1}(2), & \text{if } x = \frac{1}{\sqrt{2}} \end{cases}$
 $\Rightarrow fogoh(x) = \begin{cases} \frac{\pi}{2}, & \text{if } \frac{1}{2} \le x < \frac{1}{\sqrt{2}} \\ \text{Does not exist, if } x = \frac{1}{\sqrt{2}} \end{cases}$
Thus, option (a) and (b) are not correct
Now,
 $hofog(x) = 2 \sin^{-1}[x^2] \text{ and }, hogof(x) = 2[\{\sin^{-1}x\}^2] \Rightarrow hofog(x) = 2 \sin^{-1}0 \text{ and}$
 $hogof(x)$
 $= 2 \times 0 \qquad \begin{bmatrix} \because \frac{1}{4} \le x^2 \le 1/2 \Rightarrow [x^2] = 0 \\ and \\ \frac{1}{2} \le x \le \frac{1}{\sqrt{2}} \\ \Rightarrow \pi/6 \le \sin^{-1}x \le \pi/4 \\ \Rightarrow [\{\sin^{-1}x\}^2] = \end{bmatrix}$
 $\Rightarrow hofog(x) = hogof(x) \text{ for all } x \in [1/2, 1/\sqrt{2}]$
104 (c)
Let $x, y \in N$ be such that
 $f(x) = f(y) \\ \Rightarrow x^2 + x + 1 = y^2 + y + 1 \\ \Rightarrow (x - y)(x + y + 1) = 0 \\ \Rightarrow x = y \qquad [\because x + y + 1 \neq 0]$

 $\therefore f: N \to N$ is one-one

f is not onto, because $x^2 + x + 1 \ge 3$ for all $x \in N$ So, 1, 2 do not have their pre-image

105 **(b)** We have.

$$f(x) = \begin{cases} 0, x = 0 \\ x^{2} \sin\left(\frac{\pi}{2x}\right), |x| < 1 \\ x|x|, |x| \ge 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} -x^{2}, & x \le -1 \\ x^{2} \sin\left(\frac{\pi}{2x}\right), -1 < x < 0 \\ 0, & x = 0 \\ x^{2} \sin\left(\frac{\pi}{2x}\right), 0 < x < 1 \\ x^{2}, & x \le 1 \end{cases}$$

$$\Rightarrow f(-x) = \begin{cases} -(-x)^{2}, & -x \le -1 \\ (-x)^{2} \sin\left(\frac{\pi}{-2x}\right), -1 < -x < 0 \\ 0, & x = 0 \\ (-x)^{2} \sin\left(\frac{\pi}{-2x}\right), & 0 < -x < 1 \\ (-x)^{2}, & -x \ge 1 \\ -x^{2} \sin\left(\frac{\pi}{2x}\right), & 0 < x < 1 \end{cases}$$

$$\Rightarrow f(-x) = \begin{cases} -x^{2} \sin\left(\frac{\pi}{2x}\right), & 0 < x < 1 \\ 0, & x = 0 \\ -x^{2} \sin\left(\frac{\pi}{2x}\right), & 0 < x < 1 \\ 0, & x = 0 \\ -x^{2} \sin\left(\frac{\pi}{2x}\right), & -1 < x < 0 \\ x^{2}, & x \le -1 \end{cases}$$

 $\Rightarrow f(-x) = -f(x)$ for all x Hence, f(x) is an odd function

106 (d)

Here, we have to find the range of the function which [-1/3, 1]

108 **(b)**

The function $f(x) = x^3$ is not a surjective map from *Z* to itself, because $2 \in Z$ does not have any pre-image in *Z*. The function f(x) = x + 2 is a bijection from Z to itself. The function f(x) = 2x + 1 is not a surjection from Z to itself and $f(x) = x^2 + x$ is not an injection map from Z to self

109 (d)

For f(x) to be real, we must have $|\cos x| + \cos x > 0$ $\Rightarrow 2\cos x > 0 \quad [\because \cos x < 0 \Rightarrow |\cos x| + \cos x = 0]$ $\Rightarrow \cos x > 0$ $\Rightarrow 2n\pi - \frac{\pi}{2} < x < 2n \pi + \frac{\pi}{2} \Rightarrow x$ $\in \left((4n-1)\frac{\pi}{2}, (4n+1)\frac{\pi}{2} \right)$ Hence, domain $(f) = \left((4n-1)\frac{\pi}{2}, (4n+1)\frac{\pi}{2} \right)$ 110 (d)

We have,

$$f(x) = (25 - x^4)^{1/4}$$

 $\therefore fof(x) = f(f(x)) = f((25 - x^4)^{1/4})$
 $\Rightarrow fof(x) = [25 - \{(25 - x^4)^{1/4}\}^4]^{1/4}$
 $= \{25 - (25 - x^4)\}^{1/4}$
 $\Rightarrow fof(x) = x$ for all x
 $\therefore fof(\frac{1}{2}) = \frac{1}{2}$
ALITER We have,
 $f(f(\frac{1}{2})) = f((25 - \frac{1}{16})^{\frac{1}{4}})$
 $\Rightarrow f(f(\frac{1}{2})) = f((\frac{399}{16})^{\frac{1}{4}}) = (25 - \frac{399}{16})^{\frac{1}{4}} = \frac{1}{2}$
111 (b)
 $f(x) = \sec(\ln(x + \sqrt{1 + x^2})) = \sec(\text{odd}$
function)=even function
 $\therefore \sec is an even function$
112 (b)
We have, $f(x) = \sin(\log x)$
 $\therefore f(xy) + f(\frac{x}{y}) - 2f(x)\cos(\log y)$
 $= \sin\{\log(xy)\} + \sin\{\log(\frac{x}{y})\}$
 $-2\sin(\log x)\cos(\log y)$
 $= \sin(\log x + \log y) + \sin(\log x - \log y)$
 $-2\sin(\log x)\cos(\log y)$

114 (c)

The total number of bijections from a set containing n elements to itself is n !. Hence, required number = (106) !

= 0

 $= 2\sin(\log x)\cos(\log y) - 2\sin(\log x)\cos(\log y)$

115 (c)

We have,

$$f(x) = \log_{0.5} \left\{ -\log_2 \left(\frac{3x-1}{3x+2} \right) \right\}$$

Clearly, $f(x)$ id defined if
 $-\log_2 \left(\frac{3x-1}{3x+2} \right) > 0$ and $\frac{3x-1}{3x+2} > 0$
 $\Rightarrow \log_2 \left(\frac{3x-1}{3x+2} \right) < 0$ and $x < -\frac{2}{3}$ or $x > \frac{1}{3}$
 $\Rightarrow \frac{3x-1}{3x+2} < 20$ and $x \in (-\infty, -2/3) \cup (1/3, \infty)$
 $\Rightarrow \frac{-3}{3x+2} > 0$ and $x \in (-\infty, -2/3) \cup (1/3, \infty)$
 $\Rightarrow x > -\frac{2}{3}$ and $x \in (-\infty, -2/3) \cup (1/3, \infty)$
 $\Rightarrow x \in (1/3, \infty)$
117 **(b)**

 $f(x) = |\sin x|$ has its inverse if it is a bijection. Clearly $f(x) = |\sin x|$ is injective if its domain is $[0, \pi/2]$. Also, f(x) is surjective if its co-domain is [0, 1]Hence, $f(x) = |\sin x|$ is invertible if it is a function from $[0, \pi/2]$ to [0, 1]118 (b) We have. $f(x) = \log\left(x + \sqrt{x^2 + 1}\right)$ $\therefore f(-x) + f(x)$ $= \log(x + \sqrt{x^2 + 1})$ $+ \lg(-x + \sqrt{x^2 + 1})$ $\Rightarrow f(-x) + f(x) = \log(-x^2 + x^2 + 1) = \log 1 = 0$ for all *x* $\Rightarrow f(-x) = -f(x)$ for all x \Rightarrow *f*(*x*) is an odd function 119 (a) $aRb \Leftrightarrow a = 2^k \cdot b$ for some integer. **Reflexive** \therefore *aRb* for k = 0**Symmetric** $aRb \Leftrightarrow a = 2^k b$ $\Rightarrow b = 2^{-k}a \Leftrightarrow bRa$ **Transitive** $aRb \Leftrightarrow a = 2^{k_1}b$ $bRc \Leftrightarrow b = 2^{k_2}c$ $a = 2^{k_1} \cdot 2^{k_2} c$ \Rightarrow $a = 2^{k_1 + k_2} c \Leftrightarrow aRc$ ⇒ $\Rightarrow aRb, bRc \Rightarrow aRc$ \therefore *R* is an equivalent relation. 120 (c) We have, $f(x)f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) \Rightarrow f(x) = x^n + 1$ Now. $f(10) = 1001 \Rightarrow 10^n + 1 = 1001 \Rightarrow n = 3$ $f(x) = x^3 + 1 \Rightarrow f(20) = 20^3 + 1 = 8001$ 121 **(b)** We have, $f(x) = \frac{\sin^4 x + \cos^4 x}{x + x^2 \tan x}$ $\Rightarrow f(-x) = \frac{\sin^4 x + \cos^4 x}{-x + x^2 \tan(-x)} = -\frac{\sin^4 x + \cos^4 x}{x + x^2 \tan x}$ =-f(x)So, f(x) is an odd function Obviously, f(x) is not a periodic function due to the presence of *x* in the denominator 122 (b) Since, $[b(x + 1)^2 + c(x + 1) + d] - [bx^2 + cx + d]$ d-8x+3(2b)x + (b+c) = 8x + 3⇒ $2b = 8, b + c = 3 \Rightarrow b = 4, c = -1$ ⇒

123 (c) Let $f(x) = bx^2 + ax + c$ Since, $f(0) = 0 \Rightarrow c = 0$ And $f(1) = 0 \Rightarrow a + b = 1$ \therefore $f(x) == ax + (1-a)x^2$ Also, f'(x) > 0 for $x \in (0, 1)$ $a + 2(1-a)x > 0 \quad \Rightarrow \quad a(1-2x) + 2x$ > 0 $a > \frac{2x}{2x-1} \Rightarrow 0 < a < 2$ Since, $x \in (0, 1)$ $f(x) = ax + (1 - a)x^2; 0 < a < 2$ *:*. 124 (c) Put, $x = 1, -\frac{1}{2}$ in given function respectively, we get $2f(2) + f\left(\frac{1}{2}\right) = 2$... (ii) $2f\left(\frac{1}{2}\right) + f(2) = -1$ And On solving Eqs. (i) and (ii), we get $f(2) = \frac{5}{2}$ 125 (d) Let $\phi(x) = f(x) - g(x)$ $= \begin{cases} x, x \in \mathcal{Q} \\ -x, x \notin \mathcal{Q} \end{cases}$ For one-one Take any straight line parallel to x-axis which will intersect $\phi(x)$ only at one point. $\Rightarrow \phi(x)$ is one-one. Foe onto As, $\phi(x) = \begin{cases} x, x \in Q \\ -x, x \notin Q \end{cases}$ which shows y = x and y = -x for irrational values $\Rightarrow y \notin$ real numbers. ∴ Range=Codomain $\Rightarrow \phi(x)$ is onto. Thus, f - g is one-one and onto. 126 (b) We have, $y = \log_2 \left\{ -\log_{1/2} \left(1 + \frac{1}{r^{1/4}} \right) - 1 \right\}$ Clearly, y will take real values, if $-\log_{1/2}\left(1+\frac{1}{x^{1/4}}\right)-1>0$ and x>0 $\Rightarrow \log_2\left(1 + \frac{1}{x^{\frac{1}{4}}}\right) - 1 > 0 \text{ and } x > 0$ $\Rightarrow 1 + \frac{1}{x^{1/4}} > 2 \text{ and } x > 0$ $\Rightarrow \frac{1}{x^{1/4}} > 1 \text{ and } x > 0 \Rightarrow x \in (0, 1)$ 127 (b) We observe that $\cos^{-1}\left(\frac{2-|x|}{4}\right)$ is defined, for

 $-1 \leq \frac{2 - |x|}{4} \leq 1$ $\Leftrightarrow -6 \leq -|x| \leq 2 \Leftrightarrow -2 \leq |x| \leq 6 \Leftrightarrow |x| \leq 6$ Thus, the domain o $\cos^{-1}\left(\frac{2 - |x|}{4}\right)$ is $D_1 = [-6, 6]$ The domain of $\frac{1}{\log_{10}(3 - x)}$ is the set of all real numbers for which 3 - x > 0 and $3 - x \neq 1$, i.e., x > 3 and $x \neq 2$ Hence, the domain of the given function is $\{x: -6 \leq x \leq 6\} \cap \{x: x \neq 2, x < 3\}$ $= [-6, 2) \cup (2, 3)$ 128 **(b)** We have, $f(x) = 1 + \frac{\sin x}{1 + \sin^2 x} = 1 + \frac{\sin x}{\cos^2 x}$

$$f(x) = 1 + \frac{\sin x}{1 - \sin^2 x} = 1 + \frac{\sin x}{\cos^2 x}$$
$$= 1 + \tan x \sec x$$
$$\therefore f'(x) = \sec^3 x + \sec x \tan^2 x > 0 \text{ for all}$$
$$x \in (-\pi/2, \pi/2)$$
$$\Rightarrow f(x) \text{ is an increasing function on } (-\pi/2, \pi/2)$$
Now,

$$\lim_{x \to \pi/2} f(x) = \lim_{x \to \pi/2} \left(1 + \frac{\sin x}{1 - \sin^2 x} \right) = \infty$$

and,

$$\lim_{x \to -\pi/2} f(x) = \lim_{x \to -\pi/2} \left(1 + \frac{\sin x}{1 - \sin^2 x} \right) = -\infty$$

Hence, range $(f) = \left(f(-\pi/2), f(\pi/2) \right) =$
 $(-\infty, \infty) = R$

129 **(a)**

If *A* and *B* are two sets having *m* and *n* elements respectively such that $1 \le n \le m$, then number of onto mapping from *A* to *B*

$$=\sum_{r=1}^{n}(-1)^{n-1}n\mathcal{C}_{r}r^{m}$$

Here, m = 100, n = 2 \therefore The number of onto mappings from *A* to *B*

$$= \sum_{r=1}^{2} (-1)^{2-r} {}^{2}C_{r} r^{100}$$

= $(-1)^{2-1.2}C_{1} \times 1^{100} + (-1)^{2-2.2}C_{2} \cdot 2^{100}$
= $2^{100} - 2$

130 (c)

Given,
$$f\{f(x)\} = x + 1$$
 ... (i)
 $\therefore \quad f\{f(0)\} = x + 1$
 $\Rightarrow \quad f\left(\frac{1}{2}\right) = 1$ [:: $f(0) = \frac{1}{2}$]
Now, put $x = \frac{1}{2}$ in Eq. (i), we get
 $f\left\{f\left(\frac{1}{2}\right)\right\} = \frac{1}{2} + 1$

$$f(1) = \frac{3}{2}$$

$$f(1) = \frac{3}{2}$$
(c)

131 **(c)**

We have, $f(x) = \frac{\sin 8x \cos x - \sin 6x \cos 3x}{\cos x \cos 2x - \sin 3x \sin 4x}$ $\Rightarrow f(x) = \frac{(\sin 9x + \sin 7x) - (\sin 9x + \sin 3x)}{(\cos 3x + \cos x) - (\cos x - \cos 7x)}$ $\Rightarrow f(x) = \frac{\sin 7x - \sin 3x}{\cos 3x + \cos 7x}$ $\Rightarrow f(x) = \frac{2\sin 2x \cos 5x}{2\cos 5x \cos 2x}$ $\Rightarrow f(x) = \tan 2x$ Since $\tan x$ is period with period π . Therefore, $f(x) = \tan 2x$ is periodic with period $\frac{\pi}{2}$ 133 (b) Since f(x) is an even function. So f'(x) is an odd function 134 (c) Since, $f(n) = 1 + n^2$ For one-to-one, $1 + n_1^2 = 1 + n_2^2$ $n_1^2 - n_2^2 = 0$ ⇒ $n_1 = n_2$ (:: $n_1 + n_2 \neq 0$) ⇒ \therefore f(n) is one-to-one. But f(n) is not onto as every element of codomain is not the image of any element of domains. Hence, f(n) is one-to-one but not onto. 136 (b) Given, $f(x) = (a - x^n)^{1/n} = g(x)$ fof(x) = f(f(x))**:**. $= \left[a - \left\{(a - x^n)^{\frac{1}{n}}\right\}^n\right]^{1/n} = [a - (a - x^n)]^{1/n}$ 137 (b) Given, $r = \{(a, b) | a, b \in R \text{ and } a - b + \sqrt{3} \text{ is an }$ irrational number} (i) Reflexive $ara = a - a + \sqrt{3} = \sqrt{3}$ which is irrational number. (ii) Symmetric Now, $2r\sqrt{3} = 2 - \sqrt{3} + \sqrt{3} = 2$ Which is not an irrational. Also, $\sqrt{3}r^2 = \sqrt{3} - 2 + \sqrt{3} = 2\sqrt{3} - 2$ which is an irrational. $2r\sqrt{3} \neq \sqrt{3}r2$ Which is not symmetric. (iii) Transitive Now, $\sqrt{3}r^2$ and $2r^4\sqrt{5}$, ie, $\sqrt{3} - 2 + \sqrt{3} + 2 - 4\sqrt{5} + \sqrt{3}$ $= 2\sqrt{3} - 4\sqrt{5} + \sqrt{3} \neq \sqrt{3}r4\sqrt{5}$ ∴ It is not transitive. 138 (a) Given, $y = x - 3 \Rightarrow x - y = 3$

 $\therefore \quad R = \{(11, 8), (13, 10)\}$ $\Rightarrow R^{-1} = \{(8, 11), (10, 13)\}$ 139 (d) Let $y = x^2 - 6x - 14 \implies y = (x - 3)^2 - 23$ $x = \pm \sqrt{y + 23} + 3$ ⇒ $f^{-1}(x) = \pm \sqrt{x + 23} + 3$ ⇒ $f^{-1}(2) = \pm \sqrt{25} + 3 = -2.8$ ÷ It means we do not define a inverse function $f^{-1}(2) = \Phi$:. 140 (c) Clearly, $f(x) = \sqrt[3]{\frac{2x+1}{x^2-10x-11}}$ is defined for all x except $x^2 - 10x - 11 = 0$ i. e. x = 11, -1: Domain $(f) = R - \{-1, 11\}$ 141 (d) Period of $\sin\left(\frac{3x}{2}\right) = \frac{2\pi}{3/2} = \frac{4\pi}{3}$ And period of $\sin\left(\frac{2x}{3}\right) = \frac{2\pi}{2/3} = 3\pi$ $\therefore \text{ Period of } \sin\left(\frac{2x}{3}\right) + \sin\left(\frac{3x}{2}\right) = \frac{\text{LCM } (3\pi, 4\pi)}{\text{HCF } (1,3)}$ 142 (d) Let $f(x) = e^{x^2/2}$:. $f(-x) = e^{(-x)^2} = e^{x^{2/2}}$ And $\frac{f'(x)}{x} = \frac{1}{x} \left(e^{x^2/2} \cdot \frac{2x}{2} \right) = e^{x^2/2}$ $\Rightarrow f(x) = f(-x)$ $=\frac{f'(x)}{x}$ 143 (c) Given, $f(n) = \begin{cases} \frac{n}{2}, n \text{ is even} \\ 0, n \text{ is odd} \end{cases}$ Here, we see that for every odd values of *z*, it will give zero. It means that it is a many one function. For every even values of z, we will get a set of integers $(-\infty, \infty)$. So, it is onto. Hence, it is surjective but not injective. 145 (c) Let $f^{-1}(17) = x$. Then, $f(x) = 17 \Rightarrow x^2 + 1 = 17 \Rightarrow x \pm 4$ Let $f^{-1}(-3) = x$ Then, $f(x) = -3 \Rightarrow x^2 + 1 = -3 \Rightarrow x^2 = -4$ which is not possible for any real number *x* 147 (a) We have, $f(x) = \frac{|x|}{x} = \begin{cases} 1, 0 < x \le 4\\ -1, -4 \le x < 0 \end{cases}$ $\therefore \text{ Range } (f) = \{-1,$ 148 (b) We have,

$$f(x) = (9x + 0.5) \log_{(0.5+x)} \left\{ \frac{x^2 + 2x - 3}{4x^2 - 4x - 3} \right\}$$

Clearly, $f(x)$ will assume real values, if
 $0.5 + x > 0, 0.5 + x \neq 1$ and $\frac{x^2 + 2x - 3}{4x^2 - 4x - 3} > 0$
Clearly, $f(x)$ will assume real values, if
 $0.5 + x > 0, 0.5 + x \neq 1$ and $\frac{x^2 + 2x - 3}{4x^2 - 4x - 3} > 0$
 $\Rightarrow x > -\frac{1}{2}, x \neq \frac{1}{2}$ and $\frac{(x + 3)(x - 1)}{(2x - 3)(2x + 1)} > 0$
 $\Rightarrow x > -\frac{1}{2}, x \neq \frac{1}{2}, x \neq \frac{1}{2}$
and, $x \in (-\infty, -3) \cup (-1/2, 1) \cup (3/2, \infty)$
 $\Rightarrow x \in (-1/2, 1/2) \cup (1/2, 1) \cup (3/2, \infty)$
149 (b)
 $ho(fog)(x) = hof\{g(x)\}$
 $= hof\{\sqrt{(x^2 + 1)}\}$
 $= h\{x^2 + 1 - 1\}$
 $= h\{x^2\} = x^2$
150 (b)
Number of reflexive relations of a set of 4
elements= $2^{4^2 - 4}$
 $= 2^{12}$
151 (d)
Clearly, $g(x)$ is the inverse of $f(x)$ and is given
 $g(x) = \left(\frac{x^{1/3} - b}{a}\right)^{1/2}$

by (a) 153 (d) We have, $f(x) = \tan\left(\frac{\pi}{[x+2]}\right)$ Clearly, f(x) is defined, if $[x + 2] \neq 0$ and $[x + 2] \neq 2$ $\Rightarrow x + 2 \notin [0, 1) \text{ and } x + 2 \in [2, 3)$ $\Rightarrow x \in (-2, -1)$ and $x \notin [0, 1)$ $\Rightarrow x \in (-\infty, -2) \cup [-1, 0) \cup [1, \infty)$ Hence, domain of $f = (-\infty, -2) \cup [-1, 0) \cup [1, \infty)$ 154 (b) Since, $A = \{x: -1 \le x \le 1\}$ And $B = \{y : 1 \le y \le 2\}$ Also, $y = f(x) = 1 + x^2$ For x = -1, $y = 1 + (-1)^2 = 2$ And for x = 1, $y = 1 + 1^2 = 2$ \therefore *f* is not injective. (one-one) Here, $\forall B$ their is a preimage. Hence, *f* is surjective.

155 (d)

We have,

f(x) = [x] = k for $k \le x < k + 1$, where $k \in Z$

So, *f* is many-one into 157 (c) $f\left(x+\frac{1}{x}\right) = x^{2} + \frac{1}{x^{2}} = \left(x+\frac{1}{x}\right)^{2} - 2$ $\therefore \quad f(x) = x^2 - 2$ 158 (c) The relation $R = \{(1, 1), (2, 2), (3, 3)\}$ on the set $\{1, 2, 3\}$ is an equivalent relation. 159 (c) We have, f(x) = ax + b, g(x) = c x + d $\therefore f(g(x)) = g(f(x))$ for all x \Leftrightarrow f(c x + d) = g(a x + b) for all x $\Leftrightarrow a(c x + d) + b = c(a x + b) + d \text{ for all } x$ \Leftrightarrow ad + b = c b + d [Putting x = 0 on both sides] $\Leftrightarrow f(d) = g(b)$ 160 **(b)** Let *x* be any real number. Then, there exists an integer *k* such that $k \le x < k + 1$ If $k \le x < k + \frac{1}{2}$, then $\Rightarrow 2k \leq 2x < 2k + 1 \Rightarrow [2x] = 2k$ and [x] = k $\therefore f(x) = [2x] - 2[x] = 2k - 2k = 0$ If $k + \frac{1}{2} \le x < k + 1$, then $2k + 1 \le 2x < 2k + 2$ \Rightarrow [2x] = 2k + 1 and [x] = k $\therefore f(x) = [2x] - 2[x] = 2k + 1 - 2k = 1$ Hence, Range $(f) = \{f(x) : x \in R\} = \{0, 1\}$ 161 (b) f(x) is defined, if $\log_{10}(1+x^3) > 0 \Rightarrow 1+x^3 > 10^0 \Rightarrow x^3 > 0 \Rightarrow x$ $> 0 \Rightarrow x \in (0, \infty)$ Hence, domain of $f = (0, \infty)$ 162 (d) Since, (3, 3), (6, 6), (9, 9), $(12, 12) \in R \Rightarrow R$ is reflexive. Now, $(6, 12) \in R$ but $(12, 6) \notin R \Rightarrow R$ is not symmetric. Also, (3, 6), $(6, 12) \in R \Rightarrow (3, 12) \in R$ \Rightarrow *R* is transitive. 163 (a) We have, f(x+2) - 2f(x+1) + f(x) $= a^{x+2} - 2 a^{x+1} + a^x = a^x (a^2 - 2 a + 1)$ $= a^{x}(a-1)^{2} = (a-1)^{2}f(x)$ So, option (a) holds It can be easily checked that all other options are not true 164 (a)

We have,

$$f(x) = \frac{10^{x} - 10^{-x}}{10^{x} + 10^{-x}} + 1$$

$$\therefore fof^{-1}(x) = x$$

$$\Rightarrow f(f^{-1}(x)) = x$$

$$\Rightarrow f(y) = x, \text{ where } y = f^{-1}(x)$$

$$\Rightarrow \frac{10^{y} - 10^{-y}}{10^{y} + 10^{-y}} + 1 = x$$

$$\Rightarrow \frac{10^{2y} - 1}{10^{2y} + 1} + 1 = x$$

$$\Rightarrow \frac{10^{2y} - 1}{10^{2y} + 1} = x - 1 \Rightarrow \frac{2 \times 10^{2y}}{-2} = \frac{x}{x - 2} \Rightarrow 10^{2y}$$

$$= \frac{x}{2 - x}$$

$$\Rightarrow 2y = \log_{10}\left(\frac{x}{2 - x}\right) \Rightarrow y = \frac{1}{2}\log_{10}\left(\frac{x}{2 - x}\right)$$

$$\Rightarrow f^{-1}(x) = \frac{1}{2}\log_{10}\left(\frac{x}{2 - x}\right)$$

165 **(b)**

We have, $fog(x) = \sqrt{|3^{\tan \pi x} - 3^{1-\tan \tan \pi}|} - 2$ For fog(x) to be defined, we must have $|3^{\tan \pi x} - 3^{1-\tan \pi x}| - 2 > 0$ $\Rightarrow \left| 3^{\tan \pi x} - \frac{3}{3^{\tan \pi x}} \right| \ge 2$ $\Rightarrow \left| t - \frac{3}{t} \right| \ge 2$, where $t = 3^{\tan \pi x} > 0$ $\Rightarrow t - \frac{3}{t} \ge 2 \text{ or } t - \frac{3}{t} \le -2$ $\Rightarrow t^2 - 2t - 3 \ge 0 \text{ or } t^2 + 2t - 3 \le 0$ $\Rightarrow (t-3)(t+1) \ge 0 \text{ or } (t+3)(t-1) \le 0$ $\Rightarrow t \ge 3 \text{ or } 0 < t \le 1 \quad [\because t > 0]$ $\Rightarrow 3^{\tan \pi x} \ge 3 \text{ or, } 3^{\tan \pi x} \le 1$ $\Rightarrow \tan \pi x \ge 1 \text{ or, } \tan \pi x \le 0$ $\Rightarrow n \pi + \frac{\pi}{4} \le \pi x < n\pi + \frac{\pi}{2} \text{ or } n \pi - \frac{\pi}{2} < \pi x$ $<\pi x < n \pi, n \in \mathbb{Z}$ $\Rightarrow n \pi + \frac{\pi}{4} \le \pi x < n \pi + \frac{\pi}{2} \text{ or, } n \pi + \frac{\pi}{2} \le \pi x$ $< (n+1) \pi, n \in Z$ $\Rightarrow x \in \left(n + \frac{1}{4}, n + \frac{1}{2}\right) \cup \left(n + \frac{1}{2}, n + 1\right)$ 166 (c) Let $f^{-1}(5) = x$. Then, $f(x) = 5 \Rightarrow 3x - 4 = 5 \Rightarrow x = 3 \Rightarrow f^{-1}(5) = 3$ $\therefore g^{-1}(f^{-1}(5)) = g^{-1}(3)$ Let $g^{-1}(3) = y$. Then, $g(y) = 3 \Rightarrow 3y + 2 = 3 \Rightarrow$ $y = \frac{1}{2}$ $\therefore g^{-1}(f^{-1}(5)) = \frac{1}{3}$

167 **(d)** We have,

 $f(x) + g(x) = e^x$ and $f(x) - g(x) = e^{-x}$ $\Rightarrow f(x) = \frac{e^x + e^{-x}}{2} \text{ and } g(x) = \frac{e^x - e^{-x}}{2}$ Clearly, f(-x) = f(x) and g(-x) = -g(x) for all $x \in R$ Hence, f(x) is an even function and g(x) is an odd function 168 (c) Given, $f(x) = \frac{1}{2} - \tan\left(\frac{\pi x}{2}\right), -1 < x < 1$ Given, domain of f(x) is $d_1 = (-1, 1)$ For domain of g(x), $3 + 4x - 4x^2 \ge 0$ $(2x - 3)(2x + 1) \le 0$ ⇒ \therefore Domain of g(x) is $d_2 = \left[-\frac{1}{2}, \frac{3}{2}\right]$ Hence, domain of $(f + g) = d_1 \cap d_2 = \left| -\frac{1}{2}, 1 \right|$ 169 (b) Given, $f(x) = 2x^6 + 3x^4 + 4x^2$ Now, $f(-x) = 2(-x)^6 + 3(-x)^4 + 4(-x)^2$ $= 2x^{6} + 3x^{4} + 4x^{2} = f(x) \therefore f(-x)$ = f(x) \Rightarrow *f*(*x*) is an even function. \Rightarrow f'(x) is an odd function. 170 (b) $f(x) = \left| \cos^{-1} \left(\frac{1 - |x|}{2} \right) \right|$ $-1 \le \frac{1 - |x|}{2} \le 1 \Rightarrow -2 - 1 \le -|x| \le 2 - 1$ $\Rightarrow -3 \leq -|x| \leq 1 \Rightarrow -1 \leq |x| \leq 3 \Rightarrow x \in [-3, 3]$ 171 (d) Graph of sin x

In the given options (a), (b), (c), (e) the curves are decreasing and increasing in the given intervals, so it is not one-to-one function. But in option (d), the curve is only increasing in the given intervals, so it is one-to-one function. We have,

$$f(x) = \log\left(\frac{1+x}{1-x}\right) \text{ and } g(x) = \frac{3x+x^3}{1+3x^2}$$

$$\therefore fog(x) = f(g(x)) = f\left(\frac{3x+x^3}{1+3x^2}\right)$$

$$\Rightarrow fog(x) = \log\left(\frac{1+\frac{3x+x^3}{1+3x^2}}{1-\frac{3x+x^3}{1+3x^2}}\right) = \log\frac{(1+x)^3}{(1-x)^3}$$

$$\Rightarrow fog(x) = \log\left(\frac{1+x}{1-x}\right)^2$$

$$= 3\log\left(\frac{1+x}{1-x}\right) = 3f(x)$$

173 (d) For f(x) to be defined $\frac{x-1}{x} \ge 0$ $\Rightarrow x \ge 1$ and x < 0 \therefore Required interval is $(-\infty, 0) \cup [1, \infty)$. 174 (c) If $f(x) = \sin x + \left[\frac{x^2}{a}\right]$ is an odd function, then f(-x) = -f(x) for all $x \in [-2, 2]$ $\Rightarrow -\sin x + \left[\frac{x^2}{a}\right] = -\sin x - \left[\frac{x^2}{a}\right]$ for all x

$$\in [-2, 2]$$

$$\Rightarrow \left[\frac{x^2}{a}\right] = 0 \text{ for all } x \in [-2, 2]$$

$$\Rightarrow 0 \le \frac{x^2}{a} < 1 \text{ for all } x \in [-2, 2]$$

$$\Rightarrow a > 0 \text{ and } a > x^2 \text{ for all } x \in [-2, 2]$$

$$\Rightarrow a > 0 \text{ and } a > 4 \Rightarrow a \in (4, \infty)$$

175 **(b)**

(i) *aRa*, then GCD of *a* and *a* is *a*.
∴ *R* is not reflexive.
(ii) *aRb* ⇒ *bRa*If GCD of *a* and *b* is 2, then GCD of *b* and *a* is 2.
∴ *R* is symmetric.
(iii) *aRa*, *bRc* ⇒ *cRa*

If GCD of *a* and *b* is 2 and GCD of *b* and *c* is 2, then it is need not to be GCD of *c* and *a* is 2.

 \therefore *R* is not transitive.

176 **(b)**

We have,

$$f(x + \lambda) = 1 + [1 + \{1 - f(x)\}^5]^{1/5}$$

 $\Rightarrow f(x + \lambda) - 1 = [1 + \{1 - f(x)\}^5]^{1/5}$
 $\Rightarrow g(x + \lambda) = [1 - \{g(x)\}^5]^{1/5}$, where $g(x)$
 $= f(x) - 1$
 $\Rightarrow g(x + 2\lambda) = [1 - \{g(x + \lambda)\}^5]^{1/5}$
 $\Rightarrow g(x + 2\lambda) = [1 - [1 - \{g(x)\}^5]^{1/5}$
 $\Rightarrow g(x + 2\lambda) = g(x)$
 $\Rightarrow f(x + 2\lambda) - 1 = f(x) - 1$ for all $x \in R$
 $\Rightarrow f(x + 2\lambda) = f(x)$ for all $x \in R$

Hence, f(x) is periodic with period 2 λ 177 (b) We observe that f(x) is defined for $\log\left(\frac{1}{|\sin r|}\right) \ge 0$ $\Rightarrow \frac{1}{|\sin x|} \ge 1$ and $|\sin x| \ne 0$ $\Rightarrow |\sin x| \neq 0 \quad \left[\because \frac{1}{|\sin x|} \ge 1 \text{ for all } x \right]$ $\Rightarrow x \neq n \pi, n \in Z$ Hence, domain of $f(x) = R - \{n \pi : n \in Z\}$ 178 (c) $f\left(\frac{x+y}{1+xy}\right) = \log\left(\frac{1+\frac{x+y}{1+xy}}{1-\frac{x+y}{1+xy}}\right)$ $= \log\left(\frac{1+xy+x+y}{1+xy-x-y}\right)$ $= \log\left(\frac{(1+x)(1+y)}{(1-x)(1-y)}\right)$ $=\log\left(\frac{1+x}{1-x}\right)+\log\left(\frac{1+y}{1-x}\right)$ = f(x) + f(y)179 (a) It is given that f(x) is defined on [0, 1]. Therefore, $f(\tan x)$ exists, if $0 \le \tan x \le 1$ $\Rightarrow n\pi \le x \le n\pi + \frac{\pi}{4}, n \in \mathbb{Z} \Rightarrow x \in \left[n\pi, n\pi + \frac{\pi}{4}\right], n$ 180 (d) Given, F(0) = 2, F(1) = 3, Since, F(n + 2) = 2F(n) - F(n + 1)At n = 0, F(0 + 2) = 2F(0) - F(1)F(2) = 2(2) - 3 = 1⇒ At n = 1, F(1 + 2) = 2F(1) - F(2)F(3) = 2(3) - 1 = 5⇒ At $n = 2, F(2 + 2) = 2F(2) - F(3) \Rightarrow F(4) =$ 2(1) - 5 = -3At n = 3, F(3 + 2) = 2F(3) - F(4) = 2(5) -(-3) \Rightarrow F(5) = 13181 (b) We observe that $\sqrt{\sin^{-1}(\log_2 x)}$ exists for $\sin^{-1}(\log_2 x) \ge 0$ i.e. for $0 \le \log_2 x \le 1 \Rightarrow 2^0 \le$ $x \le 2 \Rightarrow 1 \le x \le 2$ 182 (d) We have, $f(x) = \begin{cases} 1, x \in Q \\ 0, x \notin Q \end{cases}$ We observe that for every rational number T

$$f(x+T) = \begin{cases} 1, x \in Q\\ 0, x \notin Q \end{cases}$$

But, there is no least position rational number Hence, f(x) is periodic with indeterminate period

184 **(b)**

We have,

$$f(x) = |\cos x| = \sqrt{\frac{1 + \cos 2x}{2}}$$

Since $\cos x$ is periodic with period 2 π . Therefore, f(x) is periodic with period $(2 \pi/2) = \pi$

185 **(d)**

We have, gof(x) = n g(x) $\Rightarrow g(f(x)) = n g(x) \Rightarrow g(x^n) = n g(x)$...(i) Also, $\log x^n = n \log |x|$...(ii) From (i) and (ii), we get $g(x) = \log |x|$

187 **(b)**

Let
$$y = f(x) = 2^{x(x-1)}$$

 $\Rightarrow \log_2 y = x^2 - x \Rightarrow x^2 - x - \log_2 y = 0$
 $\Rightarrow x = \frac{1 \pm \sqrt{1 + 4 \log_2 y}}{2} = \frac{1 + \sqrt{1 + 4 \log_2 y}}{2}$
 $\left[\because x = \frac{1 - \sqrt{1 + 4(x^2 - x)}}{2} = \frac{1 - (2x - 1)}{2} \right]$
 < 0 domain is not defined

188 **(c)**

Given that, f(x) = |x| and g(x) = [x - 3]For $-\frac{8}{3} < x < \frac{8}{5}, 0 \le f(x) < \frac{8}{5}$ Now, for $0 \le f(x) < 1$, g(f(x)) = [f(x) - 3] = -3 $[\because -3 \le f(x) - 3 < -2]$ Again, for $1 \le f(x) < 16$ g(f(x)) = -2 $[\because -2 \le f(x) - 3 < -14]$ Hence, required set is $\{-3, -2\}$.

189 **(b)**

We have, $f(x) = \log_{10}\{1 - \log_{10}(x^2 - 5x + 16)\}$ Clearly, f(x) is defined if $1 - \log_{10}(x^2 - 5x + 16) > 0$ and $x^2 - 5x + 16$ > 0 $\Rightarrow \log_{10}(x^2 - 5x + 16) < 1 [\because x^2 - 5x + 16$ > 0 for all $x \in R$] $\Rightarrow x^2 - 5x + 16 < 10$ $\Rightarrow x^2 - 5x + 6 < 0 \Rightarrow (x - 2)(x - 3) < 0 \Rightarrow x$ $\in (2, 3)$ 190 **(b)** $f(x) = \sin^4 x + \cos^4 x$ $= (\sin^2 x \cos^2 x)^2 - 2 \sin^2 x \cos^2 x$

 $=1-\frac{1}{2}(\sin 2x)^2$ $=\frac{3}{4}+\frac{1}{4}\cos 4x$ \therefore The period of $f(x) = \frac{2\pi}{4} = \frac{\pi}{2}$ 191 (b) $\therefore g(f(x)) = (\sin x + \cos x)^2 - 1$, is invertible (*ie*, bijective) $\Rightarrow g(f(x)) = \sin 2x$, is bijective We know sin x is bijective only when $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Thus, g(f(x)) is bijective if, $-\frac{\pi}{2} \le 2x \le \frac{\pi}{2}$ $-\frac{\pi}{\Lambda} \le x \le \frac{\pi}{\Lambda}$ 192 (a) Here, $f(x) = \sqrt{\sin^{-1}(2x) + \frac{\pi}{6}}$, to find domain we must have $\sin^{-1}(2x) + \frac{\pi}{6} \ge 0$ $\left(\operatorname{but}-\frac{\pi}{2}\leq \operatorname{sin}^{-1}\theta\leq \frac{\pi}{2}\right)$ $\therefore \qquad -\frac{\pi}{6} \le \sin^{-1}(2x) \le \frac{\pi}{2}$ $\Rightarrow \sin\left(-\frac{\pi}{6}\right) \le 2x \le \sin\left(\frac{\pi}{2}\right)$ $\Rightarrow -\frac{1}{2} \le 2x \le 1 \Rightarrow x \in \left[-\frac{1}{4}, \frac{1}{2}\right]$ 193 (d) $f\left(\frac{2x}{1+x^2}\right) = \log\left[\frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1+x^2}}\right] = \log\left(\frac{1+x}{1-x}\right)^2$ $f\left(\frac{2x}{1+x^2}\right) = 2f(x)$:. 194 (c) We have, $f(x) = \log_e |\log_e x|$ Clearly, f(x) is defined for all x satisfying $|\log_e x| > 0 \Rightarrow x \in (0, \infty) \text{ and } x \neq 1 \Rightarrow x \in$ $(0,1) \cup (1,\infty)$ 196 (c) For f(x) to be defined, $\frac{x}{1-|x|} > 0$ *ie*, x > 0, 1 - |x| > 0 or x < 0, 1 - |x| < 0 $\Rightarrow x \in (0, 1) \text{ or } x \in (-\infty, -1)$ $\therefore x \in (-\infty, -1) \cup (0, 1)$ 197 (a) Given, $f(x) = \begin{cases} [x] & \text{if } -3 < x \le -1 \\ |x| & \text{if } -1 < x < 1 \\ |[x]| & \text{if } 1 \le x < 3 \end{cases}$ When $-3 < x \le -1$, $f(x) = [x] \Rightarrow f(x) < 0$ When -1 < x < 1, $f(x) = |x| \Rightarrow f(x) > 0$

When $1 \le x < 3$, $f(x) = |[x]| \Rightarrow f(x) > 0$

: The set $(x : f(x) \ge 0) = (-1, 3)$. 198 (a)

$$(fof)x = f\left(\frac{x}{x-1}\right)$$
$$= \frac{\frac{x}{x-1}}{\left(\frac{x}{x-1}\right) - 1} = x$$
$$\Rightarrow \quad (fof of)x = f(fof)x = f(x) = \frac{x}{x-1}$$
$$\therefore \quad (fof of \dots 19 \text{ times})(x) = \frac{x}{x-1}$$

199 (a)

For the given function to be defined, we must have

 $x - 4 \ge 0$ and $6 - x \ge 0$ $\Rightarrow x \ge 4$ and $x \le 6 \Rightarrow x \in [4, 6]$ \therefore The domain of f(x) is [4, 6]

200 (c)

We have, f(n) = Sum of positive divisors of n $\therefore f(2^k \times 3) =$ Sum of positive divisors of $2^k \times 3$ $\Rightarrow f(2^k \times 3) = \sum_{r=0}^k (2^r \times 3)$ $\Rightarrow f(2^k \times 3) = 3 + 2 \times 3 + 2^2 \times 3 + \dots + 2^k \times 3$ $\Rightarrow f(2^{k} \times 3) = 3\left(\frac{2^{k+1}-1}{2-1}\right) = 3(2^{k+1}-1)$

201 (a) We have

$$f(x) = x|x| = \begin{cases} x^2, & 0 \le x \le 1 \\ -x^2, & -1 \le x < 0 \end{cases}$$

The graph of f(x) is as shown below. Clearly, it is a bijection

1

202 (b)

Foe domain of given function

$$-1 \le \log_2 \frac{x^2}{2} \le 1$$

$$\Rightarrow 2^{-1} \le \frac{x^2}{2} \le 2 \Rightarrow 1 \le x^2 \le 4$$

$$\Rightarrow |x| \le 2 \text{ and } |x| \ge 1$$

$$\Rightarrow x \in [-2, 2] - (-1, 1)$$

203 (c)
Given, $f(x) = ax + b$, $g(x) = cx + d$

$$\because f\{g(x)\} = g\{f(x)\}$$

f(cx+d) = g(ax+b)⇒ $\Rightarrow a(cx+d)+b=c(ax+b)+d$ ad + b = bc + d⇒ ⇒ f(d) = g(b)

204 (c)

Since $\phi(x) = \sin^4 x + \cos^4 x$ is periodic with period $\pi/2$ $\therefore f(x) = \sin^4 3x + \cos^4 3x$ is periodic with period $\frac{1}{3}\left(\frac{\pi}{2}\right) = \frac{\pi}{6}$

205 (b)

We have,

$$f(x) = \log\left(\frac{1+x}{1-x}\right) \text{ and } g(x) = \frac{3x+x^3}{1+3x^2}$$

$$\therefore fog(x) = f(g(x))$$

$$\Rightarrow fog(x) = f\left(\frac{3x+x^3}{1+3x^2}\right)$$

$$= \log\left(\frac{1+\frac{3x+x^3}{1+3x^2}}{1-\frac{3x+x^3}{1+3x^2}}\right)$$

$$= \log\left\{\frac{(1+x)^3}{(1-x)^3}\right\}$$

$$\Rightarrow fog(x) = \log\left(\frac{1+x}{1-x}\right)^3 = 3\log\left(\frac{1+x}{1-x}\right)$$

$$= 3f(x)$$

206 (b)

For choice (a), we have $f(x) = f(y); x, y \in [-1, \infty)$ $\Rightarrow |x+1| = |y+1| \Rightarrow x+1 = y+1 \Rightarrow x = y$ So, *f* is an injection For choice (b), we obtain

$$g(2) = \frac{5}{2}$$
 and $g\left(\frac{1}{2}\right) = \frac{5}{2}$
So, $g(x)$ is not injective

It can be easily seen that the functions in choices in options (c) and (d) are injective maps

207 (b)

Given,
$$f(x) = x - [x], g(x) = [x]$$
 for $x \in R$.
 $\therefore f(g(x)) = f([x])$
 $= [x] - [x]$

208 (a)

We have,

$$f(x) = \sqrt{\frac{\log_{0.3}|x - 2}{|x|}}$$

We observe that f(x) assumes real values, if $\frac{\log_{0.3}|x-2|}{|x|} \ge 0 \text{ and } |x-2| > 0$ $\Rightarrow \log_{0.3} |x - 2| \ge 0$ and $x \ne 0, 2$ $\Rightarrow |x-2| \leq 1 \text{ and } x \neq 0, 2$

 $\Rightarrow x \in [1,3] \text{ and } x \neq 2 \Rightarrow x \in [1,2) \cup (2,3]$ 209 (d) Since $g(x) = 3 \sin x$ is a many-one function. Therefore, $f(x) - 3 \sin x$ is many-one Also, $-1 \le \sin x \le 1$ $\Rightarrow -3 \leq -3 \sin x + 3$ $\Rightarrow 2 \leq 5 - 3 \sin x \leq 8$ $\Rightarrow 2 \le f(x) \le 8 \Rightarrow$ Range of $f(x) = [2, 8] \ne R$ So, f(x) is not onto Hence, f(x) is neither one-one nor onto 210 (a) We have, f(x + 2y, x - 2y) = xy(i) Let x + 2y = u and x - 2y = v. Then, $x = \frac{u+v}{2}$ and $y = \frac{u-v}{4}$ Substituting the values of *x* and *y* in (i), we obtain $f(u,v) = \frac{u^2 - v^2}{2}$ and $f(x,y) = \frac{x^2 - y^2}{8}$ 211 (c) Given, $f(x) = y = (1 - x)^{1/3}$ $\Rightarrow y^3 = 1 - x$ $x = 1 - y^3$ \Rightarrow :. $f^{-1}(x) = 1 - x^3$ 212 (a) We have, f(x + 2y, x - 2y) = xy...(i) Let x + 2y = u and x - 2y = v $x = \frac{u+v}{2}$ and $y = \frac{u-v}{4}$ Then, Subtracting the values of *x* and *y* in Eq. (i), we obtain $f(u,v) = \frac{u^2 - v^2}{8} \Rightarrow f(x,y) = \frac{x^2 - y^2}{8}$ 213 (d) Given, $f(x) = 5^{x(x-4)}$ for $f: [4, \infty[\rightarrow [4, \infty[$ At x = 4 $f(x) = 5^{4(4-4)} = 1$ Which is not lie in the interval $[4, \infty)$ ∴ Function is not bijective. Hence, $f^{-1}(x)$ is not defined. 214 **(b)** Given, $f(x) = x^3 + 3x - 2$ On differentiating w.r.t. x, we get $f'(x) = 3x^2 + 3$ Put $f'(x) = 0 \Rightarrow 3x^2 + 3 = 0$ $x^2 = -1$ ⇒ \therefore f(x) is either increasing or decreasing. At x = 2, $f(2) = 2^3 + 3(2) - 2 = 12$ At x = 3, $f(3) = 3^3 + 3(3) - 2 = 34$ $f(x) \in [12, 34]$

215 **(b)** We have, $f(\theta) = \sin^2 \theta = \frac{1 - \cos 2\theta}{2}$ $\therefore f(\theta)$ is periodic with period $\frac{2\pi}{2} = \pi$ 216 (c) Since, period of $\cos nx = \frac{2\pi}{n}$ And period of $\sin\left(\frac{x}{n}\right) = 2n\pi$ \therefore Period of $\frac{\cos nx}{\sin(\frac{x}{2})}$ is $2n\pi$ $\Rightarrow 2n\pi = 4\pi \Rightarrow n = 2$ 217 (c) Given, $f(x) = x^3 + 5x + 1$ Now, $f'(x) = 3x^2 + 5 > 0, \forall x \in R$ \therefore f(x) is strictly increasing function. \therefore *f*(*x*) is one-one function. Clearly, f(x) is a continous function and also increasing on R, $\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to \infty} = \infty$ \therefore f(x) takes every value between $-\infty$ and ∞ Thus, f(x) is onto function. 218 (c) The function $f(x) = \frac{1}{2 - \cos 3x}$ is defined for all $x \in R$. Therefore, domain of f(x) is R Let f(x) = y. Then, $\frac{1}{2 - \cos 3 x} = y \text{ and } y > 0$ $\Rightarrow 2 - \cos 3x = \frac{1}{y}$ $\Rightarrow \cos 3 x = \frac{2 y - 1}{y} \Rightarrow x = \frac{1}{3} \cos^{-1} \left(\frac{2 y - 1}{y} \right)$ Now. $x \in R$, if $-1 \le \frac{2y-1}{y} \le 1$ $\Rightarrow -1 \le 2 - \frac{1}{v} \le 1$ $\Rightarrow -3 \leq -\frac{1}{n} \leq -1$ $\Rightarrow 3 \ge \frac{1}{y} \ge 1 \Rightarrow \frac{1}{3} \le y \le 1 \Rightarrow y \in [1/3, 1]$ 219 (c) Given, $A = \{2, 3, 4, 5, \dots, 16, 17, 18\}$ And (a,b) = (c,d) \therefore Equivalence class of (3, 2) is $\{(a, b) \in A \times A: (a, b)R(3, 2)\}$ $= \{(a, b) \in A \times A : 2a = 3b\}$ $= \left\{ (a,b) \in A \times A \colon b = \frac{2}{3}a \right\}$

 $\left\{ \left(a, \frac{2}{3}a\right) : a \in A \times A \right\}$ $= \{(3, 2), (6, 4), (9, 6), (12, 8), (15, 10), (18, 12)\}$: Number of ordered pairs of the equivalence class=6. 220 (c) Given function is $f(n) = 8^{-n}P_{n-4}$, $4 \le n \le 6$. It is defined, if $1.8 - n > 0 \Rightarrow n < 8$...(i) 2. $n - 4 \ge 0 \Rightarrow n \ge 4$... (ii) $3. n - 4 \le 8 - n \Rightarrow n \le 6$... (iii) From Eqs. (i), (ii) and (iii), we get n = 4, 5, 6Hence, range of $f(n) = \{{}^{4}P_{0}, {}^{3}P_{1}, {}^{2}P_{2}\} = \{1, 3, 2\}$ 221 (c) Clearly, $X = R^+$ and Y = R222 (b) Given, $f(x) \cdot f\left(\frac{1}{2}\right) = f(x) + f\left(\frac{1}{x}\right)$ Let $f(x) = x^n \pm 1$, where $n \in I$. f(4) = 65Now, Case I Let $f(x) = x^n + 1$ \Rightarrow $f(4) = 4^n + 1$ $\Rightarrow 65 = 4^n + 1$ \Rightarrow n = 3Case II Let $f(x) = x^n - 1$ $\Rightarrow f(4) = 4^n - 1 \Rightarrow 65 = 4^n - 1$ $4^n = 66$ ⇒ The quality does not hold true for $n \in Z$. Therefore, $f(x) = x^3 + 1$ $f(6) = 6^3 + 1 = 216 + 1 = 217$ Now, 223 **(b)** Since, the graph is symmetrical about the line= x = 2 $\Rightarrow f(2+x) = f(2-x)$ 224 (c) We have, $f(x) = \begin{cases} -1, \ x < 0\\ 0, \ x = 0\\ 1, \ x > 0 \end{cases} \text{ and } g(x) = x(1 - x^2)$ $\therefore fog(x) = f(g(x))$ $\Rightarrow fog(x) = \begin{cases} -1, \text{ if } g(x) < 0\\ 0, \text{ if } g(x) = 0\\ 1, \text{ if } g(x) > 0 \end{cases}$ $\Rightarrow fog(x) = \begin{cases} -1, \text{ if } x \in (-1,0) \cup (1,\infty) \\ 0, \text{ if } x = 0, \pm 1\\ 1, \text{ if } x \in (-\infty, -1) \cup (0, 1) \end{cases}$ 225 **(b) Reflexive** *xRx* Since, $x^2 = x \cdot x$ $x^2 = xv$

Transitive, $xRy \Rightarrow x^2 = xy$ And $yRz \Rightarrow y^2 = yz$ Now, $x^2y^2 = xy^2z \Rightarrow x^2 = xz$ $\Rightarrow xRz$ \therefore It is transitive. 226 (c) We have, $f(x) = \sin\left(\frac{\pi x}{n-1}\right) + \cos\left(\frac{\pi x}{n}\right), n \in \mathbb{Z}, n > 2$ Since $\sin\left(\frac{\pi x}{n-1}\right)$ and $\cos\left(\frac{\pi x}{n}\right)$ are periodic functions with period 2(n-1) and 2n respectively. Therefore, f(x) is periodic with period equal to LCM of (2n, 2(n-1)) = 2n(n-1)227 (b) Let g(x) be the even extension of f(x) on [-4,4]Then, $g(x) = \begin{cases} f(x) \text{ for } x \in [-4, 0] \\ f(-x) \text{ for } x \in [0, 4] \end{cases}$ $\Rightarrow g(x) = \begin{cases} e^x + \sin x \text{ for } x \in [-4, 0] \\ e^{-x} + \sin(-x) \text{ for } x \in [0, 4] \end{cases}$ $\Rightarrow g(x) = \begin{cases} e^x + \sin x \text{ for } x \in [-4, 0] \\ e^{-x} - \sin x \text{ for } x \in [0, 4] \end{cases}$ $\Rightarrow g(x) = e^{-|x|} - \sin|x|$ for $x \in [-4, 4]$ 228 (d) Clearly, f(x) is an even function and f(x) < 0 for all x > 0Therefore, the graph of f(x) lies in the third and fourth quadrants 229 (d) The given function is $f(x) = \sqrt{1 - 2x} + 2\sin^{-1}\left(\frac{3x - 1}{2}\right)$ For domain of f(x), $1 - 2x \ge 0$ and $-1 \le \frac{3x-1}{2} \le 1$ $\Rightarrow x \leq \frac{1}{2} \text{ and } -2 \leq 3x - 1 \leq 2$ $\Rightarrow x \leq \frac{1}{2} \text{ and } -\frac{1}{3} \leq x \leq 1$ \therefore Domain of $f(x) = \left|-\frac{1}{2}, \frac{1}{2}\right|$ 230 (c) We have, $f(x) = \log_{(x+3)}(x^2 - 1)$ Clearly, f(x) is defined for x satisfying the following conditions (i) $x^2 - 1 > 0$ (ii) x + 3 > 0 and $x + 3 \neq 1$ Now, $x^2 - 1 > 0 \Rightarrow x \in (-\infty, -1) \cup (1, \infty)$ and. x + 3 > 0 and $x + 3 \neq 1 \Rightarrow x > -3$ and x = -2 $\Rightarrow x \in (-3, -2) \cup (-2, \infty)$ Hence, the domain of f(x) is $(-3, -2) \cup$ $(-2, -1) \cup (1, \infty)$

231 (b)

$$x^{2} - 6x + 7 = (x - 3)^{2} - 2$$

Obviously, minimum value is -2 and maximum is
 ∞ .
232 (d)
We have,
 $fof^{-1}(x) = x$
 $\Rightarrow f(y) = x$ where $y = f^{-1}(x)$
 $\Rightarrow \frac{e^{y} - e^{-y}}{e^{y} + e^{-y}} + 2 = x \Rightarrow \frac{e^{y} - e^{-y}}{e^{y} + e^{-y}} = x - 2$
 $\Rightarrow \frac{2e^{y}}{e^{y} + e^{-y}} + 2 = x \Rightarrow \frac{e^{y} - e^{-y}}{e^{y} + e^{-y}} = x - 2$
 $\Rightarrow \frac{2e^{y}}{e^{2} - 2e^{-y}} = \frac{x - 1}{x - 3}$
 $\Rightarrow e^{2y} = \frac{x - 1}{3 - x}$
 $\Rightarrow y = \frac{1}{2} \log\left(\frac{x - 1}{3 - x}\right)$
 $\Rightarrow f^{-1}(x) = \frac{1}{2} \log\left(\frac{x - 1}{3 - x}\right)$
233 (b)
 $f(x) = \frac{4^{x}}{4^{x} + 2}$
 $= \frac{4}{4 + 2.4^{x}} + \frac{4^{x}}{4^{x} + 2} = \frac{2}{2 + 4^{x}} + \frac{4^{x}}{4^{x} + 2} = 1$
By putting $x = \frac{1}{97}, \frac{2}{97}, \frac{3}{97}, \dots, \frac{48}{97}$
And adding, we get
 $f\left(\frac{1}{97}\right) + f\left(\frac{2}{97}\right) + \dots + f\left(\frac{96}{97}\right) = 48$
234 (c)
Given, $f(x) = \frac{2 \sin 8x \cos x - 2 \sin 6x \cos 3x}{2 \cos 5x \cos x - 2 \sin 3x \sin 4x}$
 $= \frac{(\sin 9x + \sin 7x) + (\sin 9x + \sin 3x)}{(\cos 3x + \cos x) + (\cos 7x - \cos x)}$
 $= \frac{\sin 7x - \sin 3x}{\cos 7x + \cos 3x}$
 $= \frac{2 \cos 5x \sin 2x}{2 \cos 5x \sin 2x} = \tan 2x$
 \therefore Period of $f(x) = \frac{\pi}{2}$
235 (d)
 $gof = g\{f(x)\} = g(x^{2}) = x^{2} + 5$
236 (b)
We have,
 $f(x) = \log_{2x-5}(x^{2} - 3x - 10)$
For $f(x)$ to be defined, we must have
 $x^{2} - 3x - 10 > 0, 2x - 5 > 0$ and $2x - 5 \neq 1$
 $\Rightarrow (x - 5)(x + 2) > 0, x > \frac{5}{2}$ and $\frac{5}{2}$ and $x \neq 3$
 $\Rightarrow x > 5 \Rightarrow x \in (5, \infty)$
237 (c)

Since, f(x) is an even function therefore its values

is always greater than equal to 0 and we know $x^2 < x^2 + 1$ or $\frac{x^2}{x^2 + 1} < 1$ \therefore Required range is [0, 1). 238 (d) We have, $f(x^2) = |x^2 - 1| \neq |x - 1|^2 = [f(x)]^2$ $f(|x|) = ||x| - 1| \neq |x - 1| = |f(x)|$ And, $f(x + y) = |x + y - 1| \neq |x - 1| + |y - 1|$ = f(x) + f(y)Hence, none of the above given option is true 239 (d) We have, f(x+2) - 2f(x+1) + f(x) $= a^{x+2} - 2 a^{x+1} + a^x$ $= a^{x}(a^{2} - 2a + 1) = a^{x}(a - 1)^{2} = (a - 1)^{2}f(x)$ So, option (a) holds It can be easily checked that options (b) and (c) are also true but option (d) is not true 240 (b) It can be easily seen that $f: A \rightarrow A$ is a bijection. Let f(x) = y. Then, f(x) = y $\Rightarrow x(2-x) = y$ $\Rightarrow x^2 - 2x + y = 0$ $\Rightarrow x^2 - 2x + y = 0$ $\Rightarrow x = \frac{2 \pm \sqrt{4 - 4y}}{2}$ $\Rightarrow x = 1 \pm \sqrt{1-y}$ $\Rightarrow x - 1 \pm \sqrt{1 - y}$ $\Rightarrow x = 1 - \sqrt{1 - y} \qquad [\because x \le 1]$ $\Rightarrow f^{-1}(y) = 1 - \sqrt{1-y}$ Hence, $f^{-1}: A \rightarrow A$ is defined as $f^{-1}(x) = 1 - 1$ $\sqrt{1-x}$ 241 (d) We observe that Period of $\sin \frac{\pi x}{2}$ is $\frac{2\pi}{\pi/2} = 4$, Period of $\cos \frac{\pi x}{3}$ is $\frac{2\pi}{\pi/3} = 6,$ and, Period of $\tan \frac{\pi x}{4}$ is $\frac{\pi}{\pi/4} = 4$ \therefore Period of f(x) = LCM of (4, 6, 4) = 12242 (c) We have, $f(x) = \lim_{x \to \infty} \frac{x^n + x^{-n}}{x^n + x^{-n}}$ $\Rightarrow f(x) = \lim_{x \to \infty} \frac{x^{2n} - 1}{x^{2n} + 1} = \frac{0 - 1}{0 + 1} = -1, \text{ if } -1 < x$ < 1

If |x| > 1, then $x^{2n} \to \infty$ as $n \to \infty$ $\therefore f(x) = \lim_{x \to \infty} \frac{1 - \frac{1}{x^{2n}}}{1 + \frac{1}{x^{2n}}} = \frac{1 - 0}{1 + 1}, = 1, \text{ if } |x| > 1$ If |x| = 1, then $x^{2n} = 1$ $\therefore f(x) = \lim_{x \to \infty} \frac{x^{2n} - 1}{x^{2n} + 1} = \frac{1 - 1}{1 + 1} = 0$ Thus, we have $f(x) = \begin{cases} -1, & \text{if } |x| < 1\\ 0, & \text{if } |x| = 1\\ 1, & \text{if } |x| > 1 \end{cases}$ 243 (c) $R = \{(1,3), (4,2), (2,4), (2,3), (3,1)\}$ is a relation on $A = \{1, 2, 3, 4\}$, then (a) since, $(2, 4) \in R$ and $(2, 3) \in R$, so R is not a function. (b) since, $(1,3) \in R$ and $(3,1) \in R$ but $(1,1) \notin R$. So, *R* is not transitive. (c) since, $(2,3) \in R$ but $(3,2) \notin R$, so R is not symmetric. (d) since, $(4, 4) \notin R$, so R is not reflexive. 244 (a) We have, $f(x) = {}^{16-x}C_{2x-1} + {}^{20-3x}P_{4x-5}$ Clearly, f(x) is defined, if $16 - x \ge 2x - 1 > 0, 20 - 3x \ge 4x - 5 > 0$ and $x \in Z$ $\Rightarrow x \in \{1, 2, 3, 4, 5\}, x \in \{2, 3\} \text{ and } x \in Z$ $\Rightarrow x \in \{2,3\}$: Domain $(f) = \{2,3\}$ 245 (d) Given, $f(x) = e^{2ix}$ and $f: R \to C$. Function f(x) is not one-one, because after some values of $x(ie, \pi)$ it will give the same values. Also, f(x) is not onto, because it has minimum and maximum values -1 - i and 1 + irespectively. 246 (a) For f(x) to be defined, $x - 4 \ge 0$ and $6 - x \ge 0 \implies x \ge 4$ and $x \le 6$ Therefore, the domain is [4, 6]. 247 (d) We have, $hogof(x) = \cos^{-1}(|\sin x|)$ and, fogoh $(x) = \sin^2\left(\sqrt{\cos^{-1} x}\right)$ Clearly, $hogof(x) \neq fogoh(c)$ Thus, option (a) is not correct Now,

 $gofoh(x) = |sin(cos^{-1}x)|$ $= \left| \sin \left(\sin^{-1} \sqrt{1 - x^2} \right) \right| = \sqrt{1 - x^2}$ and, folog $(x) = \sin^2(\cos^{-1}\sqrt{x})$ $= 1 - \cos^2(\cos^{-1}\sqrt{x})$ \Rightarrow folog (x) = 1 - {cos(cos^{-1}\sqrt{x})}^2 = 1 - x \therefore gofoh (x) \neq fohog(x) Thus, option (b) is correct Also, $hogof(x) = \cos^{-1}(|\sin x|)$ and, fohog(x)= 1 - x \therefore hogof(x) \neq fohog(x) Thus, option (c) is not correct Hence, option (d) is correct 248 (a) We have, $f(x) = \frac{2^x + 2^{-x}}{2}$ $\therefore f(x+y)f(x-y)$ $=\frac{2^{x+y}+2^{-x-y}}{2}\times\frac{2^{x-y}+2^{-x+y}}{2}$ $\Rightarrow f(x+y)f(x-y) = \frac{2^{2x} + 2^{-2y} + 2^{2y} + 2^{-2x}}{4}$ $\Rightarrow f(x+y)f(x-y)$ $=\frac{1}{2}\left(\frac{2^{2x}+2^{-2x}}{2}+\frac{2^{2y}+2^{-2y}}{2}\right)$ $\Rightarrow f(x+y) f(x-y) = \frac{1}{2} \{ f(2x) + f(2y) \}$ 249 (b) $R = \{(a, b): a, b \in N, a - b = 3\}$ $= \{ [(n+3), n] : n \in N \}$ $= \{(4, 1), (5, 2), (6, 3), \dots\}$ 250 (a) Clearly, $f(x) = \sin^{-1} \left\{ \log_3 \left(\frac{x}{3} \right) \right\}$ exists if $-1 \le \log_3\left(\frac{x}{3}\right) \le 1 \Leftrightarrow 3^{-1} \le \frac{x}{3} \le 3^1 \Leftrightarrow 1 \le x \le 9$ Hence, domain of f(x) is [1, 9] 251 (c) For f(x) to be defined, we must have $\frac{\sqrt{4-x^2}}{1-x} > 0, 4-x^2 > 0 \text{ and } 1-x \neq 0$ $\Rightarrow 1 - x > 0.4 - x^2 > 0$ and $1 - x \neq 0$ $\Rightarrow x < 1, x \in (-2, 2)$ and $x \neq 1 \Rightarrow x \in (-2, 1)$: Domain (f) = (-2, 1)Now, for $x \in (-2, 1)$, we have $-\infty < \log\left(\frac{\sqrt{4-x^2}}{1-x}\right) < \infty$ $\Rightarrow -1 \le \sin\left\{\log\left(\frac{\sqrt{4-x^2}}{1-x}\right)\right\} \le 1 \Rightarrow -1 \le f(x)$ < 1

Hence, Range (f) = [-1, 1]252 (a) Given, $f(x) = \frac{ax+b}{cx+d}$ and fof(x) = x $f\left(\frac{ax+b}{cx+d}\right) = x$ $\Rightarrow \frac{a\left(\frac{ax+b}{cx+d}\right)+b}{c\left(\frac{ax+b}{cx+d}\right)+d} = x$ $\Rightarrow \quad \frac{x(a^2 + bc) + ab + bd}{x(ac + cd) + bc + d^2} = x$ ⇒ 253 (c) If $f: C \to C$ given by $f(x) = \frac{ax+b}{cx+d}$ is a constant function, then $f(x) = \text{Constant} (= \lambda, \text{say}) \text{ for all } x \in C$ $\Rightarrow \frac{ax+b}{cx+d} = \lambda$ for all $x \in C$ \Rightarrow $(a - \lambda c) x + (b - \lambda d) = 0$ for all $x \in C$ $\Rightarrow a - \lambda c = 0 \text{ and } b - \lambda d = 0 \Rightarrow \frac{a}{c} = \frac{b}{d} \Rightarrow ad = bc$ 254 (d) Periods of $\sin \lambda x + \cos \lambda x$ and $|\sin x| + |\cos x|$ are $\frac{2\pi}{\lambda}$ and $\frac{\pi}{2}$ respectively $\therefore \frac{\pi}{2} = \frac{2\pi}{\lambda} \Rightarrow \lambda = 4$ 255 **(b)** We have, $f(x) = \sqrt{\log_{16} x^2}$ Clearly, f(x) exists, if $\log_{16} x^2 \ge 0 \Rightarrow x^2 \ge 1 \Leftrightarrow |x| \ge 1$ 256 (b) Since, f(x) is an even function, therefore f'(x) is an odd function f'(-e) = -f'(e)ie, $\therefore f'(e) + f'(-e) = 0$ 257 (c) We have, $f(x) = \log\left(\frac{1+x}{1-x}\right)$ $\therefore f\left(\frac{2x}{1+x^2}\right) = \log\left\{\frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1+x^2}}\right\} = \log\left(\frac{x+1}{1-x}\right)^2$ $\Rightarrow f\left(\frac{2x}{1+x^2}\right) = \log\left(\frac{1+x}{1-x}\right) = 2f(x)$ 258 (c) $f(x) = \cos^2 x + \sin^4 x = 1 - \cos^2 x + \cos^4 x$ $\Rightarrow f(x) = \left(\cos^2 x - \frac{1}{2}\right)^2 + \frac{3}{4} \ge \frac{3}{4} \quad \text{for all } x$ Also, $f(x) = \cos^2 x + \sin^4 x \le \cos^2 x + \sin^2 x = 1$: Range (f) = [3/4, 1]Hence, f(R) = [3/4, 1]259 (d)

For domain of given function $-1 \le \log_2\left\{\frac{x}{12}\right\} \le 1$ $\Rightarrow 2^{-1} \leq \frac{x}{12} \leq 2$ $\Rightarrow 6 < x < 24$ $\Rightarrow x \in [6, 24]$ 260 (d) Given, $f(x) = 4^{-x^2} + \cos^{-1}\left(\frac{x}{2} - 1\right) + \log(\cos x)$ Here, 4^{-x^2} is defined for $\left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\}$, $\cos^{-1}\left(\frac{x}{2}-1\right)$ is defined. If $-1 \le \frac{x}{2} - 1 \le 1 \Rightarrow 0 \le x \le 4$ And log(cos x) is defined, if cos x > 0 $\Rightarrow -\frac{\pi}{2} < x < \frac{\pi}{2}$ Hence, f(x) is defined for $x \in [0, \frac{\pi}{2}]$ 261 (a) Let $f^{-1}(x) = y$. Then, $x = f(y) \Rightarrow x = 3 y - 4 \Rightarrow y = \frac{x+4}{3}$ $\therefore f^{-1}(x) = y \Rightarrow f^{-1}(x) = \frac{x+4}{2}$ 262 (d) Here, we have to find the range of the function which is [-1/3, 1]263 (a) For f(x) to be real, we must have x > 0 and $\log_{10} x \neq 0$ $\Rightarrow x > 0 \text{ and } x \neq 1 \Rightarrow x > 0 \text{ and } x \neq 1 \Rightarrow x \in$ $(0,1) \cup (1,\infty)$ 264 (a) Let $W = \{cat, toy, you, ...\}$ Clearly, *R* is reflexive and symmetric but not transitive. [Since, $_{cat}R_{toy}$, $_{toy}R_{you} \Rightarrow _{cat}R_{you}$] 265 (c) Given, $f(x) = \frac{ax+b}{cx+d}$ It reduces the constant function if $\frac{a}{c} = \frac{b}{d} \Rightarrow ad = bc$ 267 (c) Since, the relation *R* is defined as $R = \{(x, y) | x, y \text{ are real numbers and } x = wy \text{ for }$ some rational number *w*} (i) Reflexive $xRx \Rightarrow x = wx$ $w = 1 \in \text{Rational number}$ \Rightarrow The relation *R* is reflexive. (ii) Symmetric $xRy \Rightarrow yRx$ As 0R1 $\Rightarrow 0 = 0 (1)$ but $1R0 \Rightarrow 1 = w. (0)$,

Which is not true for any rational number \Rightarrow The relation *R* is not symmetric Thus, *R* is not equivalent relation. Now, for the relation *S* is defined as $\left[\left(m,m\right)\right]$

 $S = \left\{ \left(\frac{m}{n}, \frac{m}{n} \right) \right\}$ m, n, p and $q \in$ integers such that $n, q \neq 0$ and qm = pn(i) Reflexive $\frac{m}{n}S\frac{m}{n} \Rightarrow mn = mn$ (True) \Rightarrow The relation *S* is reflexive (ii) Symmetric $\frac{m}{n}S\frac{p}{q} \Rightarrow mq = np$ $\Rightarrow np = mq \Rightarrow \frac{p}{q}S\frac{m}{n}$ \Rightarrow The relation *S* is symmetric. (iii) Transitive $\frac{m}{n}S\frac{p}{q}$ and $\frac{p}{q}S\frac{r}{s}$ \Rightarrow mg = np and ps = rg $\Rightarrow mq. ps = np. rq$ $\Rightarrow ms = nr \quad \Rightarrow \frac{m}{n} = \frac{r}{s} \Rightarrow \frac{m}{n}S\frac{r}{s}$ \Rightarrow The relation *S* is transitive \Rightarrow The relation *S* is equivalent relation. 268 (a) We know that $\tan x$ has period π . Therefore, $|\tan x|$ has period $\frac{\pi}{2}$. Also, $\cos 2x$ has period π . Therefore, period of $|\tan x| + \cos 2x$ is π . Clearly, $2\sin\frac{\pi x}{3} + 3\cos\frac{2\pi x}{3}$ has its period equal to the LCM of 6 and 3 i.e., 6 $6\cos(2\pi x + \pi/4) + 5\sin(\pi x + 3\pi/4)$ has period 2 The function $|\tan 4x| + |\sin 4x|$ has period $\frac{\pi}{2}$ 269 (a) Let $y = f(x) = \sqrt{(x-1)(3-x)}$ $\Rightarrow x^2 - 4x + 3 + y^2 = 0$ This is a quadratic in *x*, we get $x = \frac{+4 \pm \sqrt{16 - 4(3 + y^2)}}{2(1)} = \frac{4 \pm 2\sqrt{1 - y^2}}{2(1)}$ Since, *x* is real, then $1 - y^2 \ge 0 \Rightarrow -1 \le y \le 1$ But f(x) attains only non-negative values. Hence, y = f(x) = [0, 1]270 (d) $\{(z, b), (y, b), (a, d)\}$ is not a relation from A to B because $a \notin A$

272 (a)

For $x \ge 1$, we have $x \le x^2 \Rightarrow \min\{x, x^2\} = x$ For $0 \le x < 1$, we have, $x^2 < x \Rightarrow \min\{x, x^2\} = x^2$ For x < 0, we have

 $x < x^2 \Rightarrow \min\{x, x^2\} =$ Hence, $f(x) = \min\{x, x^2\} = \begin{cases} x, x > 1 \\ x^2, 0 \le x < 1 \\ x x < 0 \end{cases}$ <u>ALITER</u> Draw the graphs of y = x and $y = x^2$ to obtain f(x)273 (a) Clearly, mapping f given in option (a) satisfies the given conditions 274 (b) Given, $f(x) = e^{\sqrt{5x-3-2x^2}}$ For domain of f(x) $2x^2 - 5x + 3 \le 0$ $\Rightarrow (2x-3)(x-1) \le 0$ $1 \le x \le \frac{3}{2}$ $\therefore \text{ Domain of } f(x) = \left[1, \frac{3}{2}\right].$ 275 (d) Given, $f(x) = x + \sqrt{x^2}$ Since, this function is not defined 276 (a) We have, $f(x) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}$ $\Rightarrow f(x) = \frac{(1 - \cos^2 x)^2 + \cos^2 x}{1 - \cos^2 x + \cos^4 x} = 1$ for all *x* :: f(2010) = 1277 (c) We have, $f(x) = \log\{ax^3 + (a+b)x^2 + (b+c)x + c\}$ $\Rightarrow f(x) = \log\{(ax^2 + bx + c)(x + 1)\}$ $\Rightarrow f(x) = \log\left\{a\left(x + \frac{b}{2a}\right)^2(x+1)\right\}$ $\Rightarrow f(x) = \log a + \log \left(x + \frac{b}{2a}\right)^2 + \log(x+1)$ Since a > 0, therefore f(x) is defined for $x \neq -\frac{b}{2a}$ and x + 1 > 0i. e., $x \in R - \left\{ \left\{ -\frac{b}{2a} \right\} \cap (-\infty, -1) \right\}$

278 (a)

$$y = \frac{10^{x} - 10^{-x}}{10^{x} + 10^{-x}}$$

$$\Rightarrow \frac{y+1}{y-1} = \frac{10^{x}}{-10^{-x}}$$
[using componendo and dividendo rule]
$$\Rightarrow 10^{2x} = \frac{1+y}{1-y}$$

$$\Rightarrow 2x \log_{10} 10 = \log_{10} \left(\frac{1+y}{1-y}\right)$$

$$\Rightarrow x = \frac{1}{2} \log_{10} \left(\frac{1+y}{1-y}\right)$$

$$\therefore f^{-1}(x) = \frac{1}{2} \log_{10} \left(\frac{1+x}{1-x}\right)$$
279 (b)
$$= x = 10^{2x} = 10^{2x} = 10^{2x}$$

Given, $f(x) = \begin{cases} -1, \text{ when } x \text{ is rational} \\ 1, \text{ when } x \text{ is irrational} \end{cases}$ Now, $(fof)(1 - \sqrt{3}) = f[f(1 - \sqrt{3})] = f(1) = -1$

280 (c)

We have, $f(x) = 6^x + 6^{|x|} > 0$ for all $x \in R$ \therefore Range $(f) \neq (Co - \text{domain } (f)$ So, $f: R \rightarrow R$ is an into function For any $x, y \in R$, we find that $x \neq y \Rightarrow 2^x \neq 2^y \Rightarrow 2^{x+|x|} \neq 2^{y+|y|} \Rightarrow f(x)$ $\neq f(y)$ So, f is one-one Hence, f is a one-one into function 281 (a)

Here, $Y = \{7, 11, ..., \infty\}$ Let $y = 4x + 3 \Rightarrow \frac{y-3}{4}$ Inverse of f(x) is $g(y) = \frac{y-3}{4}$

282 **(b)**

We have, $f(x) = \sqrt{\cos(\sin x)} + \sqrt{\sin(\cos x)}$ We observe that f(x) is not defined in $(\pi/2, 3\pi/2)$ and it is aperiodic function with period 2π . So, let us consider the internal $[-\pi/2, \pi/2]$ as it domain. Further, since f(x) is an even function. So, we will consider f(x) defined on $[0, \pi/2]$ only. Clearly, $\sqrt{\cos(\sin x)}$ and $\sqrt{\sin(\cos x)}$ are decreasing functions on $[0, \pi/2]$ Range $(f) = \left[f\left(\frac{\pi}{2}\right), f(0)\right] = \left[\sqrt{\cos 1}, 1 + \sqrt{\sin 1}\right]$ 284 (c) We have, $\log x > 1$ for all $x \in (e, \infty)$ $\Rightarrow \log(\log x) > 0 \text{ for all } x \in (e, \infty)$ $\Rightarrow f(x) - \log[\log(\log x)] \in (-\infty, \infty) \text{ for all}$ $x \in (e, \infty)$ Also, *f* is one-one. Hence, *f* is both one-one and onto

285 **(a)**

Given, $f(x) = x^2 - 3$ Now, $f(-1) = (-1)^2 - 3 = -2$ $\Rightarrow fof(-1) = f(-2) = (-2)^2 - 3 = 1$ $fofof(-1) = f(1) = 1^2 - 3 = -2$ Now, $f(0) = 0^2 - 3 = -3$ \Rightarrow fof (0) = f(-3) = (-3)^2 - 3 = 6 $fof(0) = f(6) = 6^2 - 3 = 33$ Again, $f(1) = 1^2 - 3 = -2$ $fof(1) = f(-2) = (-2)^2 - 3 = 1$ ⇒ fofof(-1) + fofof(0) + fofof(1)= -2 + 33 - 2 = 29Now, $f(4\sqrt{2}) = (4\sqrt{2})^2 - 3 = 32 - 3 = 29$ 286 (b) For any $x, y \in R$, we observe that $f(x) = f(y) \Rightarrow \frac{x-m}{x-n} = \frac{y-m}{y-n} \Rightarrow x = y$ So, *f* is one-one Let $\alpha \in R$ such that $f(x) = \alpha$ $\Rightarrow \frac{x-m}{x-n} = \alpha \Rightarrow x = \frac{m-n\alpha}{1-\alpha}$ Clearly, $x \in R$ for $\alpha = 1$. So, f is not onto Hence, *f* is one-one into. This fact can also be observed from the graph of the function 287 (b) We have, D(f) = R and $D(g) = R - \{0\}$ $\therefore D(h) = R - \{0\}$ Hence, $h(x) = f(x)g(x) = x \times \frac{1}{x} = 1$ for all $x \in R - \{0\}$ 288 (b) Since $\cos \sqrt{x}$ is not a periodic function. Therefore, $f(x) = \cos \sqrt{x} + \cos^2 x$ is not a periodic function 289 (b) We have, $f(x) = 2^x$ $\therefore \frac{f(n+1)}{f(n)} = \frac{2^{n+1}}{2^n} = 2 \text{ for all } n \in N$ Hence, f(0), f(1), f(2), ... are in G.P. 290 (d) We have, $f(\sin x) - f(-\sin x) = x^2 - 1$ for all $x \in R$...(i) Replacing *x* by -x, we get $f(-\sin x) - f(\sin x) = x^2 - 1$...(ii) Adding (i) and (ii), we get $2(x^2 - 1) = 0 \Rightarrow x = \pm 1$

 $\therefore x^2 - 2 = 1 - 2 = -1$ 292 (d) For f(x) to be defined $[\because -1 \le \sin^{-1} x \le 1]$ $-1 \le \log_2 x \le 1$ $\Rightarrow \frac{1}{2} \le x \le 2$ 293 (a) We have, f(x) = |x| and g(x) = [x] $\therefore g(f(x)) \le f(g(x))$ $\Rightarrow g(|x|) \le f([x]) \Rightarrow [|x|] \le |[x]|$ Clearly, [|x|] = |[x]| for all $x \in Z$ Let $x \in (-\infty, 0)$ such that $x \notin Z$. Then, there exists positive integer k such that -k - 1 < x < -k \Rightarrow [x] = -k - 1 and k < |x| < k + 1 \Rightarrow |[x]| = k + 1 and [|x|] = k $\Rightarrow [|x|] < |[x]|$ Hence, $[|x|] \leq ||x||$ for all $x \in Z \cup (-\infty, 0)$ i.e. $\{x \in R : g(f(x)) \le f(g(x))\} = Z \cup (-\infty, 0)$ 294 (d) $\therefore f\left(\frac{3x+x^3}{1+3x^2}\right) - f\left(\frac{2x}{1+x^2}\right)$ $= \log\left(\frac{1 + \left(\frac{3x + x^{3}}{1 + 3x^{2}}\right)}{1 - \left(\frac{3x + x^{3}}{1 + 2x^{2}}\right)}\right) - \log\left(\frac{1 + \frac{2x}{1 + x^{2}}}{1 - \frac{2x}{1 + x^{2}}}\right)$ $= \log\left(\frac{1+x}{1-x}\right)^3 - \log\left(\frac{1+x}{1-x}\right)^2$ $= \log\left(\frac{1+x}{1-x}\right) = f(x)$ 295 (d) Clearly, f(x) is defined if $= \log_{10} \log_{10} \dots \log_{10} x > 0$ $\xrightarrow{\rightarrow (n-1) \text{ times}} \leftarrow$ $\Rightarrow \underbrace{\log_{10} \, \log_{10} \dots \, \log_{10} \, x > 1}_{(n-2) \text{ times}}$ $\Rightarrow \underbrace{\log_{10} \ \log_{10} \dots \ \log_{10} x > 10}_{(n-3) \text{ times}}$ $\Rightarrow x > 10^{10^{10} \cdot (n-2) \text{ times}}$ Thus, domain of $f = \left(10^{10^{10} \cdot (n-2) \text{ times}}, \infty\right)$ 296 (a) Let $y = \sin^{-1} \left[\log_3 \left(\frac{x}{3} \right) \right]$ $\Rightarrow -1 \le \log_3\left(\frac{x}{3}\right) \le 1$ $\Rightarrow \frac{1}{2} \le \frac{x}{2} \le 3$ $1 \le x \le 9$ 297 (d)

Since, $f(x) = \frac{3}{4-x^2} + \log_{10}(x^3 - x)$ For domain of f(x), $x^3 - 1 > 0, 4 - x^2 \neq 0$ $\Rightarrow x(x-1)(x+1) > 0 \text{ and } x \neq \pm 2$ $\Rightarrow x \in (-1,0) \cup (1,\infty), \quad x \neq \pm 2$ $\Rightarrow x \in (-1,0) \cup (1,2) \cup (2,\infty)$ 298 (c) The given data is shown in the figure below $f^{-1}(D) = x$ Since, f(x) = D⇒ if $B \subset X, f(B) \subset D$ Now, $f^{-1}(f(B)) = B$ ⇒ 299 (b) Clearly, f(x) is an odd function 300 (c) We have, $f(x) = \begin{cases} -1, -2 \le x \le 0\\ x - 1, 0 \le x \le 2 \end{cases}$ $[\because x \leq 0]$ $\therefore f(|x|) = x$ $\Rightarrow f(-x) = x$ $\Rightarrow -x - 1 = x \Rightarrow x = -\frac{1}{2}$ 301 (a) Given, $2f(x^2) + 3f\left(\frac{1}{x^2}\right) = x^2 - 1$...(i) Replacing x by $\frac{1}{x}$, we get $2f\left(\frac{1}{r^2}\right) + 3f(x^2) = \frac{1}{r^2} - 1$...(ii) On multiplying Eq. (i) by 2, Eq. (ii) by 3 and subtracting Eq. (i) from Eq. (ii), we get $5f(x^2) = \frac{3}{x^2} - 1 - 2x^2$ $f(x^2) = \frac{1}{5x^2} (3 - x^2 - 2x^4)$ $f(x^4) = \frac{1}{5x^4}(3 - x^4 - 2x^8)$ ⇒ [Replacing x by x^2] $=\frac{(1-x^4)(2x^4+3)}{5x^4}$ 302 (c) The function $f(x) = {}^{7-x}P_{x-3}$ is defined only if x

is an integer satisfying the following inequalities: (i) $7 - x \ge 0$ (ii) $x - 3 \ge 0$ (iii) $7 - x \ge x - 3$ Now,

 $\left. \begin{array}{c} 7-x \geq 0 \Rightarrow x \leq 7 \\ x-3 \geq 0 \Rightarrow x \geq 3 \\ 7-x \geq x-3 \Rightarrow x \leq 5 \end{array} \right\} \Rightarrow 3 \leq x \leq 5$ Hence, the required domain is $\{3, 4, 5\}$ 303 (a) We have, f(x) = x, g(x) = |x| for all $x \in R$ and $\phi(x)$ satisfies the relation $[\phi(x) - f(x)]^2 + [\phi(x) - g(x)]^2 = 0$ $\Rightarrow \phi(x) - f(x) = 0$ and $\phi(x) - g(x) = 0$ $\Rightarrow \phi(x) = f(x)$ and $\phi(x) = g(x)$ $\Rightarrow f(x) = g(x) = \phi(x)$ But, f(x) = g(x) = x, for all $x \ge 0$ [:: |x| =x for all $x \ge 0$] $\therefore \phi(x) = x \text{ for all } x \in [0, \infty)$ 304 (b) We observe that $f(x) = 3 \sin\left(\sqrt{\frac{\pi^2}{16} - x^2}\right)$ exists for $\frac{\pi^2}{16} - x^2 \ge 0 \Rightarrow -\frac{\pi}{4} \le x \le \frac{\pi}{4}$ The least value of $\frac{\pi^2}{16} - x^2$ is 0 for $x = \pm \frac{\pi}{4}$ and the greatest value is $\frac{\pi^2}{16}$ for x = 0. Therefore, the greatest value of f(x) occurs at x = 0 and the least value occurs at $x = \pm \pi/4$ Thus, greatest and least values of f(x) are $f(0) = 3\sin\left(\sqrt{\frac{\pi^2}{16}}\right) = 3\sin\frac{\pi}{4} = \frac{3}{\sqrt{2}} \text{ and, } f\left(\frac{\pi}{4}\right)$ $= 3 \sin 0 = 0$ Hence, the value of f(x) lie in the interval $[0, 3/\sqrt{2}]$ ALITER For $x \in [-\pi/4, \pi/4] = Dom(f)$, we find that $\sqrt{\frac{\pi^2}{16} - x^2} \in [0, \pi/4]$ Since sin *x* is an increasing function on $[0, \pi/4]$ $\therefore \sin x \le \sin \sqrt{\frac{\pi^2}{16} - x^2} \le \sin \pi/4$ $\Rightarrow 0 \le 3 \sin \sqrt{\frac{\pi^2}{16} - x^2} \le \frac{3}{\sqrt{2}} \Rightarrow 0 \le f(x) \le \frac{3}{\sqrt{2}}$ 305 (b) $f\left(\frac{\pi}{2} + x\right) = \left|\sin\left(\frac{\pi}{2} + x\right)\right| + \left|\cos\left(\frac{\pi}{2} + x\right)\right|$ $= |\cos x| + |\sin x|$ for all x. Hence, f(x) is periodic with period $\frac{\pi}{2}$. 306 (d) It can be easily checked that $g(x) = \left(\frac{x^{1/3}-b}{a}\right)^{1/2}$ satisfies the relation fog(x) = gof(x)

307 (a) Since, $(1, 2) \in S$ but $(2, 1) \notin S$ \therefore *S* is not symmetric. Hence, *S* is not an equivalent relation. Given, $T = \{(x, y) : (x - y) \in I\}$ Now, $xTx \Rightarrow x - x = 0 \in I$, it is reflexive relation Again, $xTy \Rightarrow (x - y) \in I$ $\Rightarrow y - x \in I \Rightarrow yTx$ it is symmetric relation. Let xTy and yTz $\therefore x - y = I_1 \text{ and } y - z = I_2$ Now, $x - z = (x - y) + (y - z) = I_1 + I_2 \in I$ $\Rightarrow x - z \in I$ $\Rightarrow xTz$ \therefore *T* is transitive. Hence, *T* is an equivalent relation. 308 (d)

Since, $-1 \le x \le 1$, therefore $-1 \le f(x) \le 1$ ∴ Function is one-one onto.

309 (c)

We have,

$$f(x) = \frac{1-x}{1+x}$$

$$\Rightarrow f(f(x)) = f\left(\frac{1-x}{1+x}\right) = \frac{1-\frac{1-x}{1+x}}{1+\frac{1-x}{1+x}} = x$$

Again,

$$f(x) = \frac{1-x}{1+x}$$

$$\Rightarrow f\left(\frac{1}{x}\right) = \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \frac{x-1}{x+1}$$

$$\therefore f\left(f\left(\frac{1}{x}\right)\right) = f\left(\frac{x-1}{x+1}\right) = \frac{1-\frac{x-1}{x+1}}{1+\frac{x-1}{x+1}} = \frac{1}{x}$$

$$\therefore \alpha = f(f(x)) + f\left(f\left(\frac{1}{x}\right)\right) = x + \frac{1}{x}$$

$$\Rightarrow |\alpha| = \left|x + \frac{1}{x}\right| \ge 2$$

$$0 \text{ (b)}$$
Let $A = \{1, 2, 3\}$

31

Let two transitive relations on the set A are $R = \{(1, 1), (1, 2)\}$ $S = \{(2, 2), (2, 3)\}$ And

Now, $R \cup S = \{(1, 1), (1, 2), (2, 2), (2, 3)\}$ Here, $(1, 2), (2, 3) \in R \cup S \Rightarrow (1, 3) \notin R \cup S$ $\therefore R \cup S$ is not transitive. 311 (c) f(1) = 3, f(2) = 4, f(3) = 5, f(4) = 6 $\Rightarrow 1 \in B, 2 \in B$ do not have any pre-image in A \Rightarrow *f* is one-one and into 312 **(b)** We observe that $|f(x) + \phi(x)| = |f(x)| + |\phi(x)|$ is true, if $f(x) \ge 0$ and $\phi(x) \ge 0$ OR f(x) < 0 and $\phi(x) < 0$ \Rightarrow (x > -1 and x > 2) or (x < -1 and x < 2) $\Rightarrow x \in (2, \infty) \cup (-\infty, -1)$ 313 (b) We have, $f(x) = \frac{\sin^{-1}(3-x)}{\log_{2}(|x|-2)}$ $\sin^{-1}(3-x)$ is defined for all x satisfying $-1 \le 3 - x \le 1 \Rightarrow -4 \le -x \le -2 \Rightarrow x \in [2, 4]$ $\log_{e}(|x| - 2)$ is defined for all x satisfying $|x| - 2 > 0 \Rightarrow x \in (-\infty, -2) \cup (2, \infty)$ Also, $\log_{e}(|x| - 2) = 0$ when |x| - 2 = 1 i.e., $x = \pm 3$ Hence, domain of $f = (2,3) \cup (3,4]$ 314 (a) f(x) is defined When |x| > x \Rightarrow x < -x, x > x $\Rightarrow 2x < 0, (x > x \text{ is not possible})$ $\Rightarrow x < 0$ Hence domain of f(x) is $(-\infty, 0)$. 315 (d) We have, $f(x) = \log_{10}\{(\log_{10} x)^2 - 5(\log_{10} x) + 6\}$ Clearly, f(x) assumes real values, if $(\log_{10} x)^2 - 5\log_{10} x + 6 > 0$ and x > 0 $\Rightarrow (\log_{10} x - 2)(\log_{10} - 3) > 0 \text{ and } x > 0$ \Rightarrow (log₁₀ x < 2 or log₁₀ x > 3) and x > 0 \Rightarrow ($x < 10^2$ or, $x > 10^3$) and $x > 0 \Rightarrow x \in$ $(0,10^2) \cup (10^3,\infty)$ 316 **(b)** We have, $f\left(x+\frac{1}{x}\right) = x^{2} + \frac{1}{x^{2}} = \left(x+\frac{1}{x}\right)^{2} - 2$ $\Rightarrow f(y) = y^2 - 2$, where $y = x + \frac{1}{x}$ Now, $x > 0 \Rightarrow y = x + \frac{1}{x} \ge 2$ and, $x < 0 \Rightarrow y = x + \frac{1}{x} \le x$ -2Thus, $f(y) = y^2 - 2$ for all y satisfying $|y| \ge 2$

317 (c) Since sin *x* is a periodic function with period 2π and $f(x) = \sin\left(\frac{2x+3}{6\pi}\right) = \sin\left(\frac{x}{3\pi} + \frac{1}{2\pi}\right)$ $\therefore f(x)$ is periodic with period $= \frac{2\pi}{1/3\pi} = 6\pi^2$ 318 (c) Let f(x) = y. Then, $10 x - 7 = y \Rightarrow x = \frac{y + 7}{10} \Rightarrow f^{-1}(y) = \frac{y + 7}{10}$ Hence, $f^{-1}(x) = \frac{x+7}{10}$ 319 (b) $\therefore f(2.5) = [2.5 - 2] = [0.5] = 0$ 320 (c) We have, f(x) $= \sqrt{\log_{10}(\log_{10} x) - \log_{10}(4 - \log_{10} x) - \log_{10} 3}$ Clearly, f(x) assumes real values, if $\log_{10}(\log_{10} x) - \log_{10}(4 - \log_{10} x) - \log_{10} 3 \ge 0$ $\Rightarrow \log_{10}\left\{\frac{\log_{10} x}{3(4 - \log_{10} x)}\right\} \ge 0$ $\Rightarrow \frac{\log_{10} x}{3(4 - \log_{10} x)} \ge 1$ $\Rightarrow \frac{4\log_{10} x - 12}{3(4 - \log_{10} x)} \ge 0$ $\Rightarrow \frac{\log_{10} x - 3}{\log_{10} x - 4} \le 0$ $\Rightarrow 3 \le \log_{10} x < 4 \Rightarrow 10^3 \le x < 10^4 \Rightarrow x$ $\in [10^3, 10^4)$ Hence, domain of $f = [10^3, 10^4)$ 321 (a) We observe that the periods of sin x and sin $\frac{x}{n}$ are $\frac{2\pi}{|n|}$ and $2|n|\pi$ respectively Therefore, f(x) is periodic with period $2|n|\pi$ But, f(x) has period 4 π $\therefore 2|n|\pi = 4 \pi \Rightarrow |n| = 2 \Rightarrow n = \pm 2$ 322 (b) It can be easily checked that $f: R \rightarrow R$ given by $f(x) = \log_a(x + \sqrt{x^2 + 1})$ is a bijection Now, $f(f^{-1}(x)) = x$ $\Rightarrow \log_a \left(f^{-1}(x) + \sqrt{\{f^{-1}(x)\}^2 + 1} \right) = x$ $\Rightarrow f^{-1}(x) + \sqrt{\{f^{-1}(x)\}^2 + 1} = a^x$...(i) $\Rightarrow \frac{1}{f^{-1}(x) + \sqrt{\{f^{-1}(x)\}^2 + 1}} = a^{-x}$ $\Rightarrow -f^{-1}(x) + \sqrt{\{f^{-1}(x)\}^2 + 1} = a^{-x}$...(ii) Subtracting (ii) from (i), we get

 $2f^{-1}(x) = a^x - a^{-x}$

$$\Rightarrow f^{-1}(x) = \frac{1}{2}(a^x - a^{-x})$$

323 (d)

We have,

$$f(x) = x \frac{1 + \frac{2}{\sqrt{x+4}}}{2 - \sqrt{x+4}} + \sqrt{x+4} + 4\sqrt{x+4}$$

Clearly, $f(x)$ is defined for $x + 4 > 0$ and $x \neq 0$

So, Domain of f(x) is $(-4, 0) \cup (0, \infty)$

324 (d)

$$f(f(x)) = f\left(\frac{\alpha x}{x+1}\right)$$

$$= \frac{\alpha\left(\frac{\alpha x}{x+1}\right)}{\left(\frac{\alpha x}{x+1}\right)+1} = \frac{\alpha^2 x}{\alpha x + x + 1}$$

$$\Rightarrow \quad \frac{\alpha^2 x}{\alpha x + x + 1} = x$$
[given]
$$\Rightarrow \quad \alpha^2 = \alpha x + x + 1$$

$$\Rightarrow \quad \alpha^2 - 1 = (\alpha + 1)x$$

$$\Rightarrow \quad (\alpha + 1)(\alpha - 1 - x) = 0$$

$$\Rightarrow \quad \alpha + 1 = 0 \Rightarrow \quad \alpha = -1 \quad [\because \alpha - 1 - x]$$

$$\neq 0$$

325 (d)

$$f(x) = \csc^2 3x + \cot 4x$$

Period of $\csc^2 3x$ is $\frac{\pi}{3}$ and $\cot 4x$ is $\frac{\pi}{4}$.
 \therefore Period of $f(x) = \text{LCM of } \left\{\frac{\pi}{3} \text{ and } \frac{\pi}{4}\right\}$
$$= \frac{\text{LCM of } (\pi, \pi)}{\text{HCF of } (3, 4)} = \frac{\pi}{1} = \pi$$

326 **(b)**

Given, $f(x) = \sqrt{1 + \log_e(1 - x)}$ For domain, (1 - x) > 0 and $\log_e(1 - x) \ge -1$ $\Rightarrow x < 1$ and $1 - x \ge e^{-1}$ $\Rightarrow x < 1$ and $x \le 1 - \frac{1}{e}$ $\Rightarrow -\infty < x \le \frac{e - 1}{e}$

327 (d)

$$\sin(\sin^{-1} x + \cos^{-1} x) = \sin\left(\frac{\pi}{2}\right) = 1$$

$$\therefore \text{ Range of } \sin(\sin^{-1} x + \cos^{-1} x) \text{ is } 1.$$
328 (d)
Given, $f(x) = \cos x - \sin x$

$$= \sqrt{2} \left(\frac{1}{\sqrt{2}} \cos x - \frac{1}{\sqrt{2}} \sin x\right)$$

$$= \sqrt{2} \cos\left(\frac{\pi}{2} + x\right)$$
Since, $-1 \le \cos x \le 1 \implies -1 \le \cos\left(\frac{\pi}{4} + x\right) \le 1$

$$\Rightarrow -\sqrt{2} \le \sqrt{2} \cos\left(\frac{\pi}{4} + x\right) \le \sqrt{2}$$

$$\therefore \text{ Range is } [-\sqrt{2}, \sqrt{2}]$$
329 (a)

Given, $f(x) = x^2 + \frac{1}{x^2 + 1}$ $=(x^{2}+1)-\left(\frac{x^{2}}{x^{2}+1}\right)$ $= 1 + x^2 \left(1 - \frac{1}{x^2 + 1} \right) \ge 1, \forall x \in \mathbb{R}$ Hence, range of f(x) is $[1, \infty)$. 330 (b) Let $y = \sqrt{\sin 2x} \Rightarrow 0 \le \sin 2x \le 1$, $\Rightarrow 0 \le 2x \le \frac{\pi}{2}$ $\Rightarrow 0 \le x \le \frac{\pi}{4}$ $\Rightarrow x \in \left[n\pi, n\pi + \frac{\pi}{4}\right]$ 331 (c) We have, $f(x) = x - [x] - \frac{1}{2}$ $\therefore f(x) = \frac{1}{2} \Rightarrow x - [x] = 1$ But, for any $x \in R$, $0 \le x - [x] < 1$ $\therefore x - [x] \neq 1$ for any $x \in R$ Hence, $\left\{x \in R : f(x) = \frac{1}{2}\right\} = \phi$ 332 (c) Since, $x \in [-2, 2]$, $x \le 0$ and f(|x|) = xFor -2 < x < 0 $f(-x) = x \Rightarrow \leq (-x) - 1 = x \Rightarrow x = -\frac{1}{2}$ 333 (d) Given, $f(x) = \sin x$ And $g(x) = \sqrt{x^2 - 1}$ \therefore Range of $f = [-1, 1] \notin$ domain of $g = (1, \infty)$ \therefore *gof* is not defined. 334 (d) Given, $f: C \to R$ such that f(z) = |z|We know modulus of z and \overline{z} have same values, so f(z) has many one. Also, |z| is always non-negative real numbers, so it is not onto function. 335 (b) We have, $f(x) = \frac{x-1}{x+1}$ $\Rightarrow \frac{f(x)+1}{f(x)-1} = \frac{2x}{-2} [\text{Applying componendo-dividendo}]$ $\Rightarrow x = \frac{f(x) + 1}{1 - f(x)}$ $\therefore f(2x) = \frac{2x-1}{2x+1} = \frac{2\left\{\frac{f(x)+1}{1-f(x)}\right\} - 1}{2\left\{\frac{f(x)+1}{1-f(x)}\right\} + 1} = \frac{3f(x)+1}{f(x)+3}$ 336 (b) Given, $f(x) = \tan \sqrt{\frac{\pi}{9} - x^2}$

For f(x) to be defined $\frac{\pi^2}{9} - x^2 \ge 0$ $\Rightarrow x^2 \leq \frac{\pi^2}{9} \Rightarrow -\frac{\pi}{2} \leq 3 \leq \frac{\pi}{2}$ \therefore Domain of $f = \left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$ The greatest value of $f(x) = \tan \sqrt{\frac{\pi^2}{9}} - 0$, when x = 0And the least value of $f(x) = \tan \sqrt{\frac{\pi^2}{9} - \frac{\pi^2}{9}}$, when $x = \frac{\pi}{2}$: The greatest value of $f(x) = \sqrt{3}$ and the least value of f(x) = 0 \therefore Range of $f = [0, \sqrt{3}]$. 337 (b) We have, $0, 0 \le x < \pi/2$ $[\sin x] = \begin{cases} 1, x = \pi/2 \\ 0, \pi/2 < x \le \pi \\ -1, \pi < x < 2\pi \\ 0, x = \pi/2 \\ \pi \end{cases}$ And, $\operatorname{cosec}^{-1} x$ is defined for $x \in (-\infty, -] \cup [1, \infty)$ $\therefore f(x) = \csc^{-1}[\sin x]$ is defined for $x = \frac{\pi}{2}$ and $x \in (\pi, 2\pi)$ Hence, domain of $\operatorname{cosec}^{-1}[\sin x]$ is $(\pi, 2\pi) \cup \left\{\frac{\pi}{2}\right\}$ 338 (a) aRa if |a - a| = 0 < 1, which is true. \therefore It is reflexive. Now, *aRb*, $|a - b| \le 1 \Rightarrow |b - a| \le 1$ $\Rightarrow aRb \Rightarrow bRa$ \therefore It is symmetric. 339 (b) Given $f(x) = \log_e(x - [x]) = \log_e\{x\}$ When *x* is an integer, then the function is not defined. : Domain of the function R - Z. 340 (b) Here, $f: [0, \infty] \rightarrow [0, \infty)ie$, domain is $[0, \infty)$ and codomain is $[0, \infty)$. For one-one $f(x) = \frac{x}{1+x}$ $f'(x) = \frac{1}{(1+x)^2} > 0, \forall x \in [0,\infty)$ \therefore f(x) is increasing in its domain. Thus, f(x) is one-one in its domain. For onto (we find range) $f(x) = \frac{x}{1+x}$ ie, $y = \frac{x}{1+x} \Rightarrow y + yx = x$ $\Rightarrow x = \frac{y}{1-y} \Rightarrow \frac{y}{1-y} \ge 0 \text{ as } x \ge 0 \therefore 0 \le y \ne 1$

ie, Range \neq Codomain \therefore f(x) is one-one but not onto. 341 (c) Given, $f(x) = x^3 - 1$ Let $x_1, x_2 \in R$ Now, $f(x_1) = f(x_2)$ $\Rightarrow x_1^3 - 1 = x_2^3 - 1$ $\Rightarrow x_1^3 = x_2^3$ $\Rightarrow x_1 = x_2$ \therefore f(x) is one-one. Also, it is onto as range of f = RHence, it is a bijection. 342 (d) Given f(x) = [x] and g(x) = |x|Now, $f\left(g\left(\frac{8}{5}\right)\right) = f\left(\frac{8}{5}\right) = \left[\frac{8}{5}\right] = 1$ And $g\left(f\left(-\frac{8}{5}\right)\right) = g\left(\left[-\frac{8}{5}\right]\right) = g(-2) = 2$ $\therefore f\left(g\left(\frac{8}{5}\right)\right) - g\left(f\left(-\frac{8}{5}\right)\right) = 1 - 2 = -1$ 343 (a) $\therefore f(x) = \frac{\cos^{-1} x}{[x]}$ For f(x) to be defined $-1 \le x \le 1$ and $[x] \neq 0 \Rightarrow x \notin [0, 1)$ \therefore Domain of f(x) is $[-1, 0) \cup \{1\}$. 344 (c) Let f(x) = g(x) + h(x) + u(x), where $g(x) = \frac{1}{x}, h(x) = 2^{\sin^{-1}x}$ and $u(x) = \frac{1}{\sqrt{x-2}}$ The domain of g(x) is the set of all real numbers other than zero i.e. $R - \{0\}$ The domain of h(x) is the set [-1, 1] and the domain of u(x) is the set of all reals greater than 2, i.e., (2,∞) Therefore, domain of $f(x) = R - \{0\} \cap [-1, 1] \cap$ $(2,\infty) = \Phi$ 345 (b) Given, $2f(x) + f(1 - x) = x^2$...(i) Replacing *x* by (1 - x), we get $2f(1-x) + f(x) = (1-x)^2$ $2f(1-x) + f(x) = 1 + x^2 - 2x$...(ii) ⇒ On multiplying Eq. (i) by 2 and subtracting from Eq. (ii), we get $3f(x) = x^2 + 2x - 1 \Rightarrow f(x) = \frac{x^2 - 2x - 1}{2}$ 346 (d) f(x) = a + bx: $f{f(x)} = a + b(a + bx) = a(1 + b)b^2x$ $\Rightarrow \quad f[f\{f(x)\}] = f\{a(1+b) + b^2x\}$ $= a(1 + b + b^2) + b^3x$

$$f^{r}(x) = a(1+b+b^{2}+\dots+b^{r-1})+b^{r}x$$
$$= a\left(\frac{b^{r}-1}{b-1}\right)+b'x$$

347 (b)

We have, $f(x) = \frac{x-1}{x+1}$ $\Rightarrow \frac{f(x)+1}{f(x)-1} = \frac{2x}{-2}$ $\Rightarrow x = \frac{f(x)+1}{1-f(x)}$ $\therefore f(2x) = \frac{2x-1}{2x+1} = \frac{2\left\{\frac{f(x)+1}{1-f(x)}\right\} - 1}{2\left(\frac{f(x)+1}{1-f(x)}\right) + 1} = \frac{3f(x)+1}{f(x)+3}$

348 (a)

Since,
$$f(-x) = -f(x)$$
 and $f(x + 2) = f(x)$
 $\therefore f(x) = f(0)$ and $f(-2) = f(-2 + 2) = f(0)$
Now, $f(0) = f(-2) = -f(2) = -f(0)$
 $\Rightarrow 2f(0) = 0 \Rightarrow f(0) = 0$
 $\therefore f(4) = f(2) = f(0) = 0$

349 **(c)**

We observe that
$$\frac{1}{x^2-36}$$
 is not defined for $x = \pm 6$
Also, $\sqrt{\log_{0.4}\left(\frac{x-1}{x+5}\right)}$ is a real number, if
 $0 < \frac{x-1}{x+5} \le 1$
 $\Rightarrow 0 < \frac{x-1}{x+5}$ and $\frac{x-1}{x+5} \le 1$
 $\Rightarrow (x-1)(x+5) > 0$ and $1 - \frac{6}{x+5} \le 1$
 $\Rightarrow (x < -5 \text{ or } x > 1)$ and $-\frac{6}{x+5} \le 0$
 $\Rightarrow (x < -5 \text{ or } x > 1)$ and $x + 5 > 0$
 $\Rightarrow (x < -5 \text{ or } x > 1)$ and $x > -5$
Hence, domain of $f(x) = (1, \infty) - \{6\}$
350 (b)
Given, $f(x) = \log_2(\log_3(\log_4 x))$
We know, $\log_a x$ is defined, if $x > 0$
For $f(x)$ to be defined.
 $\log_3\log_4 x > 0$, $\log_4 x > 0$ and $x > 0$
 $\Rightarrow \log_4 x > 3^0 = 1, x > 4^0 = 1$ and $x > 0$
 $\Rightarrow x > 4, x > 1$ and $x > 0$
 $\Rightarrow x > 4, x > 1$ and $x > 0$
 $\Rightarrow x > 4, x > 1$ and $x > 0$
 $\Rightarrow x > 4, x > 1$ and $x > 0$
 $\Rightarrow x > 4, x > 1$ and $x > 0$

$$\therefore g(x) = f(x+1) = \begin{cases} -3x+6, & \text{if } x < 1\\ x-2, & \text{if } 1 \le x < 2\\ x, & \text{if } 2 \le x < 3\\ 3x-6, & \text{if } x \ge 3 \end{cases}$$

Clearly, $g(x)$ is neither even nor odd. Also, $g(x)$ is not a periodic function

352 **(b)**

We have, $f: [2,\infty) \rightarrow B$ such that $f(x) = x^2 - 4x + 5$ Since *f* is a bijection. Therefore, B =Range of *f* Now. $f(x) = x^2 - 4x + 5 = 5 = (x - 2)^2 + 1$ for all $x \in [2, \infty)$ $\Rightarrow f(x) \ge 1$ for all $x \in [2, \infty) \Rightarrow$ Range of $f = [1, \infty)$ Hence, $B = [1, \infty)$ 353 (d) Given, $R = \{(x, y): 4x + 3y = 20\}.$ Since, *R* is a relation on *N*, therefore *x*, *y* are the elements of N. But in options (a) and (b) elements are not natural numbers and option (c) does not satisfy the given relation 4x + 3y = 20. 354 (b)

Since the function $f: R \to R$ given by $f(x) = x^3 + 5$ is a bijection. Therefore, f^{-1} exists Let f(x) = y. Then, $x^3 + 5 = y$ $\Rightarrow x = (y - 5)^{1/3}$ [:: $f(x) = y \Leftrightarrow x = f^{-1}(y)$] Hence, $f^{-1}(x) = (x - 5)^{1/3}$

355 (a)

We have, f(x) = x, g(x) = |x| for all $x \in R$ Now, $[\phi(x) - f(x)]^2 + [\phi(x) - g(x)]^2 = 0$ $\Rightarrow \phi(x) - f(x) = 0$ and $\phi(x) - g(x) = 0$ $\Rightarrow \phi(x) = f(x)$ and $\phi(x) = g(x)$ $\Rightarrow f(x) = g(x) = \phi(x)$ But, f(x) = g(x) = x, for all $x \ge 0$ [:: |x| =*x* for all $x \ge 0$ $\therefore \phi(x) = x \text{ for all } x \in [0, \infty)$ 356 (b) Since f(x) is defined for $x \in [0, 1]$. Therefore, f(2x+3) exists if $0 \le 2x + 3 \le 1 \Rightarrow -\frac{3}{2} \le x \le -1 \Rightarrow x$ $\in [-3/2, -1]$ 358 (a) $fog(-1) = f\{g(-1)\}$ = f(-7) = 5 - 49 = -44359 (a) We have,

 $f(x) = \frac{e^{x^2} - e^{-x^2}}{e^{x^2} + e^{-x^2}}$ for all $x \in R$ Clearly, f(-x) = f(x) for all $x \in R$ So, *f* is a many-one function Also, $e^{x^2} > e^{-x^2} > 0$ So, f(x) attains only positive values Consequently, range of $\neq R$ Hence, *f* is many-one into function 360 (c) Let $x, y \in N$ such that f(x) = f(y) \Rightarrow $x^2 + x + 1 = y^2 + y + 1$ $\Rightarrow (x-y)(x+y+1) = 0$ \Rightarrow $x = y \text{ or } x = (-y - 1) \notin N$ $\therefore f$ one-one. Also, *f* is not onto. 361 (c) The period of the function in option (a) is 2. The period of the function in option (b) is 24. The period of the function in option (c) is 2π . 362 (a) We have, $f(x) = \sqrt{3}\sin x + \cos x + 4$ $\Rightarrow f(x) = 2(\sin x \cos \pi/6 + \cos x \sin \pi/6) + 4$ $\Rightarrow f(x) = 2\sin(x + \pi/6) + 4$ Clearly, f(x) will be a bijection, if $sin(x + \pi/6)$ is a bijection Now, $sin(x + \pi/6)$ is a bijection $\Rightarrow -\pi/2 \le x + \pi/6 \le \pi/2$ $\Rightarrow -2\pi/3 \le x \le \pi/3$ $\Rightarrow x \in [-2\pi/3, \pi/3]$ For $x \in [-2/3\pi, \pi/3]$, we have $-1 \le \sin(x + \pi/6) \le 1$ $\Rightarrow -2 \leq 2\sin(x + \pi/6) \leq 2$ $\Rightarrow -2 + 4 \le 2 \sin(x + \pi/6) + 4 \le 2 + 4$ $\Rightarrow 2 \leq f(x) \leq 6$ \Rightarrow Range of f(x) = [2, 6]Hence, $A = [-2\pi/3, \pi/3]$ and B = [2, 6]363 (c) We have, f(x) = 2x + 3 and $g(x) = x^2 + 7$ $\therefore g(f(x)) = g(2x+3) = (2x+3)^2 + 7$ Now, g(f(x)) = 8 $\Rightarrow (2x+3)^2 + 7 = 8$ $\Rightarrow (2x+3)^2 = 1$ $\Rightarrow 2x + 3 = \pm 1 \Rightarrow 2x = -4, -2 \Rightarrow x = -1, -2$ 364 (c) We have,

 $f(x) = \sin^{-1}\left(\frac{x-3}{2}\right) - \log(4-x) = g(x) + h(x)$ where $g(x) = \sin^{-1}\left(\frac{x-3}{2}\right)$ and h(x) $= -\log(4-x)$ now, g(x) is defined for $-1 \le \frac{x-3}{2} \le 1 \Rightarrow -2 \le x-3 \le 2 \Rightarrow 1 \le x \le 5$ and, h(x) is defined for $4 - x > 0 \Rightarrow x < 4$ So, domain of $f(x) = [1, 5] \cap [-\infty, 4] = [1, 4]$ 365 (a) Let $y = f(x) = \frac{1-x}{1+x}$ $[\because x \neq -1]$ $\Rightarrow x = \frac{1-y}{1+y}$:. $f^{-1}(x) = \frac{1-x}{1-x} = f(x)$ 366 (b) Since, $3f(x) + 2f\left(\frac{x+59}{x-1}\right) = 10x + 30$... (i) Replacing x by $\frac{x+59}{x-1}$ in Eq. (i), we get $\therefore \quad 3\left(\frac{x+59}{x-1}\right) + 2f(x) = \frac{40x+560}{x-1}$...(ii) On solving Eqs. (i) and (ii), we get $f(x) = \frac{6x^2 - 4x - 242}{x - 1}$ $f(7) = \frac{6 \times 49 - 28 - 242}{6} = 4$:. 367 (c) $\left[\frac{2}{3} + \frac{r}{99}\right] = \begin{cases} 0, & r < 33\\ 1, & r \ge 33 \end{cases}$ $\therefore \quad \sum_{r=0}^{98} \left[\frac{2}{3} + \frac{r}{99}\right] = \sum_{r=0}^{32} \left[\frac{2}{3} + \frac{r}{99}\right] + \sum_{r=33}^{98} \left[\frac{2}{3} + \frac{r}{99}\right]$ = 0 + 66 = 66368 **(b)** We have, Domain (f) = [0, 1] $\therefore f(3x^2)$ is defined, if $0 < 3x^2 < 1$ $\Rightarrow 0 \le x^2 \le \frac{1}{3} \Rightarrow |x| \le \frac{1}{\sqrt{3}} \Rightarrow x \in \left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$ 369 (d) $\sin x - \sqrt{3}\cos x = 2\sin\left(x - \frac{\pi}{2}\right)$ Since, $-2 \le 2\sin\left(x - \frac{\pi}{3}\right) \le 2$ $\Rightarrow -1 \le 1 + 2\sin\left(x - \frac{\pi}{3}\right) \le 3$ \therefore Range of S = [-1, 3]370 (b) Given, $f(x) = e^x$ and $g(x) = \log_e x$ Now, $f\{g(x)\} = e^{\log_e x} = x$ $g\{f(x)\} = \log_e e^x = x$ And $\therefore f\{g(x)\} = g\{f(x)\}$

371 (a) The function $f(x) = {}^{7-x}P_{x-3}$ is defined only if x is an integer satisfying the following inequalities: $(i)7 - x \ge 0$ $(ii)x - 3 \ge 0$ $(iii)7 - x \ge x - 3$ Now, $\left. \begin{array}{c} 7-x \ge 0 \Rightarrow x \le 7\\ x-3 \ge 0 \Rightarrow x \ge 3\\ 7-x \ge x-3 \Rightarrow x \le 5 \end{array} \right\} \Rightarrow 3 \le x \le 5$ Hence, the required domain is $\{3, 4, 5\}$ Now, $f(3) = {}^{7-3}P_0, f(4) = {}^{3}P_1 = 3 \text{ and } f(5) = {}^{2}P_2 =$ Hence, range of $f = \{1, 2, 3\}$ 372 (c) We have, $f(x) = \log_{1.7} \left\{ \frac{2 - \varphi'(x)}{x + 1} \right\}$, where $\varphi(x)$ $=\frac{x^3}{2}-\frac{3}{2}x^2-2x+\frac{3}{2}x^2$ For f(x) to be defined, we must have $\frac{2-\varphi'(x)}{x+1} > 0, x \neq -1$ $\Rightarrow \frac{2 - (x^2 - 3x - 2)}{3x + 1} > 0, x \neq -1$ $\Rightarrow \frac{x^2 - 3x - 4}{x + 1} < 0, x \neq -1$ $\Rightarrow \frac{(x-4)(x+1)}{x+1} < 0, x \neq -1$ $\Rightarrow x - 4 < 0, x \neq -1$ $\Rightarrow x < 4, x \neq -1$ $\Rightarrow x \in (-\infty, 4), x \neq -1 \Rightarrow x \in (-\infty, -1) \cup (-1, 4)$ 373 (a) f(x) is defined, if $-1 \le \frac{4}{3+2\cos x} \le 1$ $\Rightarrow \frac{4}{3+2\cos x} \le 1 \qquad [\because 3+2\cos x > 0]$ $\Rightarrow 4 \le 3 + 2\cos x$ $\Rightarrow \cos x \ge \frac{1}{2} \Rightarrow 2n\pi - \frac{\pi}{6} \le x \le \frac{\pi}{6}, n \in \mathbb{Z}$ 374 (c) The period of the function in (a) is 2. The period of the function in (b) is 24. The period of the function in (c) is 2π 375 (a) $R = \{(a, b): 1 + ab > 0\}$ It is clear that the given relation on *S* is reflexive, symmetric but not transitive. 377 (a) We have, $f(x) = \max\{(1-x), 2, (1+x)\}$ For $x \leq -1$, we find that

 $1 - x \ge 2$, and $1 - x \ge 1 + x$: $Max\{(1-x), 2, (1+x)\} = 1-x$ For -1 < x < 1, we find that 0 < 1 - x < 2, and 0 < 1 + x < 2: $Max\{(1-x), (1+x)\} = 2$ For $x \ge 1$, we observe that $1 + x \ge 2, 1 + x > 1 - x$ \therefore Max{(1 - x), 2, (1 + x)} = 1 + x Hence, $f(x) = \begin{cases} 1 - x, & x \le -1 \\ 2, & -1 < x < 1 \\ 1 + x, & x > 1 \end{cases}$ NOTE Students are advised to solve this problem by d y = 1 - x, y = 2 and y = 1 + x378 (d) Period of $\sin\frac{\theta}{3} = 6\pi$ And period of $\cos\frac{\theta}{2} = 4\pi$ \therefore Period of $f(x) = LCM(6\pi, 4\pi) = 12\pi$ 379 (b) To make f(x) an odd function in the interval [-1,1], we re-define f(x) as follows: $f(x) = \begin{cases} f(x), & 0 \le x \le 1 \\ -f(-x), & -1 \le x < 0 \end{cases}$ $=\begin{cases} x^2 + x + \sin x - \cos x + \log(1 + |x|), & 0 \le x \\ -(x^2 - x - \sin x - \cos x + \log(1 + |x|)), & -1 \end{cases}$ $\Rightarrow f(x)$ $=\begin{cases} x^{2} + x + \sin x - \cos x + \log(1 + |x|), 0 \le x \le \\ -x^{2} + x + \sin x + \cos x - \log(1 + |x|), -1 \le x \end{cases}$ Thus, the odd extension of f(x) to the interval [-1, 1] is $-x^{2} + x + \sin x + \cos x - \log(1 + |x|)$ 380 **(b)** We have, $g(x) = 1 + \sqrt{x}$ and $f(g(x)) = 3 + 2\sqrt{x} + x$ Now, $f(g(x)) = 3 + 2\sqrt{x} + x$ $\Rightarrow f(g(x)) = 2 + (1 + \sqrt{x})^2$ $\Rightarrow f(g(x)) = 2 + \{g(x)\}^2$ $\Rightarrow f(x) = 2 + x^2$ 381 (a) Given, $f(x) = \tan^{-1} \frac{2x}{1-x^2} = 2 \tan^{-1} x (x^2 < 1)$ Since, $x \in (-1, 1)$. $\Rightarrow \tan^{-1} x \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ $\Rightarrow 2 \tan^{-1} x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ So, $f(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 382 (a)

Let
$$y = f(x) = x^3$$

 $\therefore x = y^{1/3}$
 $\Rightarrow f^{-1}(x) = x^{1/3}$
 $\therefore f^{-1}(8) = (8)^{1/3} = 2$
383 (d)
For $f(x) = \log_{\left(\frac{x-2}{x+3}\right)} 2$ to exist, we must have
 $\frac{x-2}{x+3} > 0$ and $\frac{x-2}{x+3} \neq 1 \Rightarrow x < -3$ or $x > 2, x$
 $\neq -3, x \neq 2$
For $g(x) = \frac{1}{\sqrt{x^2-9}}$ to exist, we must have
 $x^2 - 9 > 0 \Rightarrow x < -3$ or $x > 0$
Thus, $f(x)$ and $g(x)$ both do not exist for
 $-3 < x < 2$, i.e., for $x \in (-3, 2)$
384 (b)
For choice (a), we have
 $f(x) = f(y), x, y \in [-1, \infty)$
 $\Rightarrow |x + 1| = |y + 1| \Rightarrow x + 1 = y + 1 \Rightarrow x = y$
So, f is an injection
For choice (b), we have
 $g(2) = \frac{5}{2}$ and $g(1/2) = \frac{5}{2}$
 $\therefore 2 \neq \frac{1}{2}$ but $g(2) = g(1/2)$
Thus, $g(x)$ is not injective
It can be easily seen that choices $h(x)$ and $k(x)$
are injections
385 (b)
We have
 $f(n) = \begin{cases} 2 \text{ if } n = 3k, k \in Z \\ 10 \text{ if } n = 3k + 1, k \in Z \\ 0 \text{ if } n = 3k + 2, k \in Z \end{cases}$
For $f(n) > 2$, we take $n = 3k + 1, k \in Z$
For $f(n) > 2$, we take $n = 3k + 1, k \in Z$
 $\Rightarrow n = 1, 4, 7$
 \therefore Required set $\{n \in Z; f(n) > 2\} = \{1, 4, 7\}$
386 (b)
Let $y = \frac{2x-1}{x+5}$
 $\Rightarrow x = \frac{5y+1}{2-y}$
 $\therefore f^{-1}(x) = \frac{5x+1}{2-x}, x \neq 2$
387 (b)
We have,
 $f(a + x) = b + [b^3 + 1 - 3b^2f(x) + 3b\{f(x)\}^2$
 $f(x^3I/3 \text{ for all } x \in R$
 $\Rightarrow f(a + x) - b = [1 - {f(x) - b}^3]^{1/3} \text{ for all } x \in R$
 $\Rightarrow g(a + x) = [1 - {g(x)}^3]^{1/3} \text{ for all } x \in R$,
Where $g(x) = f(x) - 1$

 $\Rightarrow g(2a + x) = [1 - \{g(a + x)\}^3]^{1/3}$ for all $x \in R$ $\Rightarrow g(2a + x) = \left[1 - \left\{1 - \left(g(x)\right)^3\right\}\right]^{1/3}$ for all $x \in R$ $\Rightarrow g(2a + x) = g(x)$ for all $x \in R$ $\Rightarrow f(2a + x) - 1 = f(x) - 1$ for all $x \in R$ $\Rightarrow f(2a + x) = f(x)$ for all $x \in R$ \Rightarrow *f*(*x*) is periodic with period 2*a* 388 (a) Given a set containing 10 distinct elements and $f: A \rightarrow A$ Now, every element of a set A can make image in 10 ways. : Total number of ways in which each element make images = 10^{10} . 389 (c) Given, $f\left(\frac{p}{q}\right) = \sqrt{p^2 - q^2}$, for $\frac{p}{q} = Q$ If p < q, then $f\left(\frac{p}{q}\right)$ is not real. Hence, statement I is false while statement II is true. 390 (c) The given function is defined when $x^2 - 1$; 3 + x > 0 and $3 + x \neq 1$ \Rightarrow $x^2 > 1$; 3 + x > 0 and $x \neq -2$ \Rightarrow -1 > x > 1; x > -3, $x \neq -2$ ∴ Domain of the function is $D_f = (-3, -2) \cup (-2, -1) \cup (1, \infty)$ 391 (a) Let *x* and *y* be two arbitary elements in *A*. Then, f(x) = f(y) $\Rightarrow \quad \frac{x-2}{x-3} = \frac{y-2}{y-3}$ $\Rightarrow xy - 3x - 2y + 6 = xy - 3y - 2x + 6$ $\Rightarrow x = y, \forall x, y \in A$ So, *f* is an injective mapping. Again, let y be an orbitary element in B, then f(x) = y $\frac{x-2}{x-3} = y$ $x = \frac{3y - 2}{y - 1}$ \Rightarrow Clearly, $\forall y \in B, x = \frac{3y-2}{y-1} \in A$, thus for all $y \in B$ there exists $x \in A$ such that $f(x) = f\left(\frac{3y-1}{y-1}\right) = \frac{\frac{3y-2}{y-1} - 2}{\frac{3y-2}{y-1} - 3} = y$ Thus, every element in the codomain *B* has its preimage in *A*, so *f* is a surjection. Hence,

 $f: A \rightarrow B$ is bijective. 392 (a)

f(x) is defined for $\sin x \ge 0$ and $1 + \sqrt[3]{\sin x} \ne 0$ $\Rightarrow \sin x \ge 0$ and $\sin x \ne -1$ $\Rightarrow \sin x \ge 0$ $\Rightarrow x \in [2n \pi, (2n+1)\pi], n \in \mathbb{Z}$ $\Rightarrow D = \bigcup_{n \in Z} [2n \pi, (2n+1)\pi]$ Clearly, it contains the interval $(0, \pi)$ 393 (a) $fog(x) = f(g(x)) = f(3x - 1) = 3(3x - 1)^2 + 2$ $= 27x^2 - 18x + 5$ 394 (c) We have, $|x| = \begin{cases} x, \ x \ge 0\\ x, \ x < 0 \end{cases} \Rightarrow |x| - x = \begin{cases} 0, \ x \ge 0\\ -2x, \ x < 0 \end{cases}$ Hence, domain of $f(x) \frac{1}{\sqrt{|x|-x}}$ is the set of all negative real numbers, i.e., $(-\infty, 0)$ 396 (c) $gof(x) = g\{f(x)\}$ $= q(x^{2} - 1) = (x^{2} - 1 + 1)^{2}$ $= r^4$ 397 (d) $\sum_{r} f(r) = f(1) + f(2) + f(3) + \dots + f(n)$ $= f(1) + 2f(1) + 3f(1) + \dots nf(n)$ [since, f(x + y) = f(x) + f(y)] $= (1 + 2 + 3 + \dots + n)f(1) = f(1)\sum n$ $=\frac{7n(n+1)}{2}$ [:: f(1) = 7 (given)] 398 (c) Given, $f(x) = 2x^4 - 13x^2 + ax + b$ is divisible by (x-2)(x-1) $\therefore \quad f(2) = 2(2)^4 - 13(2)^2 + a(2) + b = 0$

 $\Rightarrow 2a + b = 20$... (i)

 $f(1) = 2(1)^4 - 13(1)^2 + a + b = 0$ And a + b = 11⇒ ... (ii) On solving Eqs. (i) and (ii), we get a = 9, b = 2399 (d) We have, $f(x) = \frac{x^2 - 8}{x^2 + 2}$ Clearly, f(-x) = f(x). Therefore, *f* is not one-one Again, $f(x) = \frac{x^2 - 8}{x^2 + 2} = 1 - \frac{10}{x^2 + 2}$ for all $x \in R$ $\Rightarrow f(x) < 1$ \Rightarrow Range $f \neq$ Co-domain of f i.e.R. So, *f* is not onto. Hence, *f* is neither one-one nor onto 400 **(b)** $\sin^{-1}(x-3)$ is defined for the values of x satisfying $-1 \le x - 3 \le 1 \Rightarrow 2 \le x \le 4 \Rightarrow x \in [2, 4]$ $\sqrt{9-x^2}$ is defined for the values of *x* satisfying

 $9 - x^2 \ge 0 \Rightarrow x^2 - 9 \le 0 \Rightarrow x \in [-3, 3]$ Also, $\sqrt{9 - x^2} = 0 \Rightarrow x = \pm 3$ Hence, the domain of f(x) is $[2, 4] \cap [-3, 3] - \{-3, 3\} = [2, 3)$

DCAM classes