

Single Correct Answer Type

1.	Which among the following shows maximum oxid	lation state?	
	a) V b) Fe	c) Mn	d) Cr
2.	A substance, that by its sharp colour change indic	ates the completion of read	ction is known as :
	a) Acid b) Base	c) Indicator	d) None of these
3.	In the reaction, $CH_3OH \rightarrow HCOOH$, the number of	f electrons that must be ad	ded to the right is:
	a) 4 b) 3	c) 2	d) 1
4.	A solution of KMnO ₄ is reduced to MnO ₂ . The nor		
_	a) 1.8 <i>M</i> b) 0.6 <i>M</i>	c) 0.1 <i>M</i>	d) 0.2 <i>M</i>
5.	In the reaction of O_3 and H_2O_2 , the later acts as :		
	a) Oxidising agent		
	b) Reducing agent		
	c) Bleaching agent d) Both oxidising and bleaching agent		
6.	Of the following reactions, only one is a redox rea	ction Identify this reaction	
0.	a) $Ca(OH)_2 + 2HCI \rightarrow CaCl_2 + 2H_2O$	b) $2S_2O_7^{2-} + 2H_2O \rightarrow$	
	c) $BaCl_2 + MgSO_4 \rightarrow BaSO_4 + MgCl_2$	d) $Cu_2S + 2FeO \rightarrow 2C$	
7.	Reductants are substances which :	a) da ₂ 0 + 1100 - 10	
	a) Show an increase in their oxidation number du	ring a change	
	b) Lose electrons during a change	0 0	
	c) Reduce others and oxidise themselves		
	d) All of the above		
8.	In the equation, $SnCl_2 + 2HgCl_2 \rightarrow Hg_2Cl_2 +$	- SnCl ₄ . The equivalent v	weight of stannous chloride
	(molecular weight = 190) will be :		
0	a) 190 b) 95	c) 47.5	d) 154.5
9.	The oxoacid which acts both as oxidising and red		
10	a) H_2SO_4 b) H_3PO_4	c) HNO ₂	d) HClO ₄
10.	Oxidation state of oxygen is -1 in the compound a) NO ₂ b) MnO ₂	c) PbO ₂	d) Na_2O_2
11	When sulphur dioxide is passed in an acidified K_2	, –	
11.	from	of 207 solution, the oxidati	ion state of surprise is changed
	a) 4 to 0 b) 4 to 2	c) 4 to 6	d) 6 to 4
12.	Reduction is a process which involves :	.,	-)
	a) Electronation		
	b) Addition of hydrogen or removal of oxygen		
	c) Addition of metal or removal of non-metal		
	d) All of the above		
13.	The number of electrons lost or gained during the		$H_4 + H_2$ is
	a) 2 b) 4	c) 6	d) 8
14.	A group of methods of quantitative chemical an	alysis involving the measu	arement of volume of reacting
	substance is known as :	a) Dath (a) and (b)	d) None of the choice
1 ⊑	a) Gravimetric analysis b) Volumetric analysis Which one of the following reaction is possible at		d) None of the above
15.			
	a) $F_2 + 2e^- \rightarrow 2F^-$	b) $2H^+ + \frac{1}{2}O_2 + 2e^$	\rightarrow H ₂ O
	c) $2Cr^{3+} + 7H_2O \rightarrow Cr_2O_7^{2-} + 14H^+ + 6e^-$	d) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	
16.	The anion nitrate is converted into ammonium would be:	ion. The equivalent mass	of nitrate ion in the reaction

	a) 6.20 b) 7.75	c) 10.5	d) 21.0
17.	WI ich acts as a reducing agent?		
	a) HNO_3 b) $KMnO_4$	c) H_2SO_4	d) (COOH) ₂
18.	What weight of HNO_3 is needed to convert 5 g I_2 in		
	a) 4.13 g b) 24.8 g	c) 6.2 g	d) 10.2 g
19.	When SO_2 is passed in acidified potassium dichron		state of S is changed from :
	a) + 4 to 0 b) +4 to +2	c) +4 to +6	d) +6 to +4
20.	Among the properties given below, the set of prop	erties shown by CN ⁻ ion to	wards metal species is :
	1. Reducing; 2. Oxidising; 3. Complexation		
	a) 1, 3 b) 1, 2, 3	c) 1, 2	d) 2, 3
21.	Solution of sodium metal in liquid \ensuremath{NH}_3 is strongly	reducing due to the presence	ce of :
	a) Sodium atoms b) Solvated electrons	c) NaOH	d) Sodium amide
22.	Oxidation numbers of Fe in Fe ₃ O ₄ are :		
	a) +2 and +3 b) +1 and +2	c) +1 and +3	d) None of these
23.	It is found that V forms a double salt isomorpho	us with Mohr's salt. The or	xidation number of V in this
	compound is :		
	a) + 3 b) + 2	c) + 4	d) -4
24.	MnO_{4}^{-} is a good oxidising agent in different medium	n changing to	
	$MnO_4^- \rightarrow Mn^{2+}$		
	$\rightarrow Mn0_4^{2-}$		
	$\rightarrow MnO_2$		
	$\rightarrow Mn_2O_3$		
	Changes in oxidation number respectively are		
	a) 1,3,4,5 b) 5,4,3,2	c) 5,1,3,4	d) 2,6,4,3
25.	The oxidation number of Ba in barium peroxide is	:	-
	a) +2 b) -1	c) +4	d) +6
26.	Strongest reducing agent among the following is :		
	a) K b) Mg	c) Al	d) Ba
27.	The eq. wt. of $Na_2S_2O_3$ as reductant, in the reaction	n, $Na_2S_2O_3 + 5H_2O + 4Cl_2$	\rightarrow 2NaHSO ₄ + 8HCl :
	a) (Mol. wt.)/1 b) (Mol. wt.)/2		
28.	When Fe metal is rusted then Fe is :		
	a) Oxidised b) Reduced	c) Hydrolysed	d) Precipitated
29.	The value of n in MnO ₄ ⁻ + 8H ⁺ + $ne^- \rightarrow Mn^{2+} + 4$	H_20 is	
	a) 5 b) 4	c) 2	d) 3
30.	In nitric oxide (NO), the oxidation state of nitroger	n is :	
	a) -2 b) +1	c) -1	d) +2
31.	Reaction of acidified KMnO ₄ with ferrous oxalate g	gives oxidation products cor	ntaining :
	a) Fe ³⁺ b) CO ₂	c) Both (a) and (b)	d) None of these
32.	How many litre a 0.5 N solution of an oxidising ag	ent are reduced by 2 litre o	f 2.0 <i>N</i> solution of a reducing
	agent?		C C
	a) 8 litre b) 4 litre	c) 6 litre	d) 7 litre
33.	In which of the following oxygen shows -1 oxidati	on state?	-
	a) H_2O_2 b) CO_2	c) H ₂ 0	d) OF_2
34.	The coefficients of I^- , IO_3^- and H^+ in the redox re	eaction, $I^- + IO_3^- + H^+ \rightarrow I_2$	+ H ₂ O in the balanced form
	respectively are		
	a) 5, 1, 6 b) 1, 5, 6	c) 6, 1, 5	d) 5, 6, 1
35.	Which compound shows highest oxidation number	-	-
	a) HCl b) KClO	c) KClO ₃	d) KClO ₄
36.	The number of Fe ²⁺ ion oxidised by one mole of M		
	a) 1/5 b) 2/3	c) 5	d) 3/2
		-	2 1

37.	The oxidation number and covalency of sulphur in th	he sulphur molecule (S _o) a	re respectively :
	a) 0 and 2 b) + 6 and 8	c) 0 and 8	d) +6 and 2
38	The equivalent weight of iron in Fe_2O_3 would be :	-,	.,
00.	a) 18.6 b) 28	c) 56	d) 11
20	Oxidation number of carbon in carbon suboxide is :	c) 50	u) 11
57.		c) +4	4
	a) $+\frac{2}{3}$ b) $+\frac{4}{3}$	C) ++	d) $-\frac{4}{3}$
40.	Volumetric estimation of CuSO ₄ using hypo as inter	mediate solution along wi	th KI solution and starch as
	indicator is an example of :	0	
	a) Redox titration b) Acid-base titration	c) Precipitation titration	d) None of these
41.	Oxidation state of oxygen in H_2O_2 is		
	b) +2	. 1	
	a) -1	c) $+\frac{1}{2}$	d) -2
42.	Which reaction indicates the oxidising behavior of H	2S0 ₄ ?	
	a) $2PCl_5 + H_2SO_4 \rightarrow 2POCl_3 + 2HCl + SO_2Cl_2$		
	b) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$		
	c) NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl$		
	d) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$		
43.	HCO_3^- contains carbon in the oxidation state:		
	a) +5 b) +1	c) +4	d) zero
44.	Oxidation state of oxygen atom in potassium superor	,	
	a) -1/2 b) Zero	c) $+1/2$	d) -2
45.	Which of the following reaction involves oxidation a		
	a) NaBr + HCl \rightarrow NaCl + HBr	b) HBr +AgNO ₃ \rightarrow AgBr	+ HNO ₃
	c) $H_2 + Br_2 \rightarrow 2HBr$	d) $Na_20 + H_2SO_4 \rightarrow Na_2$	-
46.	The number of mole of oxalate ions oxidized by one		. 2
	a) 1/5 b) 2/5	c) 5/2	d) 5
47.	The number of mole of KMnO ₄ that will be needed t		ne mole of ferrous oxalate in
	acidic solution is :		
	a) 3/5 b) 2/5	c) 4/5	d) 1
48.	Equivalent mass of IO_4^- when it is converted to I_2 in a	acid medium :	
	a) <i>M</i> /6 b) <i>M</i> /7	c) <i>M</i> /5	d) <i>M</i> /4
49.	The eq. wt. of Fe_3O_4 in , $Fe_3O_4 + KMnO_4 \rightarrow Fe_2O_3$	$_3$ + MnO ₂ is:	
	a) <i>M</i> /6 b) <i>M</i>	c) 2 <i>M</i>	d) <i>M</i> /3
50.	What volume of 3 molar HNO ₃ is needed to oxidise 8	3 g of Fe^{2+} to Fe ³⁺ ? HNO ₃ ,	gets converted to NO :
	a) 8 mL b) 16 mL	c) 32 mL	d) 64 mL
51.	Which ordering of compounds is according to the de	creasing order of the oxida	tion state of nitrogen?
	a) HNO ₃ , NO, NH ₄ Cl, N ₂ b) HNO ₃ , NO, N ₂ , NH ₄ Cl	c) HNO ₃ , NH ₄ Cl, NO, N ₂	d) NO, HNO ₃ , NH ₄ Cl, N ₂
52.	The oxidation states of iodine in HIO_4 , H_3IO_5 and H_5	IO_6 are respectively	
	a) +1,+3,+7 b) +7,+7,+3	c) +7,+7,+7	d) +7,+5,+3
53.	In which reaction H_2O_2 acts as a reducing agent?		
	a) $Ag_2O + H_2O_2 \rightarrow 2Ag + H_2O + O_2$		
	b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$		
	c) $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O_4$		
	d) $H_2O_2 + SO_2 \longrightarrow H_2SO_4$		
54.	In the reaction ; $2Ag + 2H_2SO_4 \rightarrow Ag_2SO_4 + 2H_2O_4$	+ SO ₂ , H ₂ SO ₄ act as :	
	a) Oxidising agent b) Reducing agent		d) None of these
55.	Oxidants are substances which :	-	
	a) Show a decrease in their oxidation number during	g a change	
	b) Gain electrons during a change		
	c) Oxidise others and reduce themselves		

d) All of the above

	d) All of the above		
56.	One gas bleaches the colour of the flowers by reduct	tion while the other by oxid	lation. The gases are :
	a) CO, Cl_2 b) H_2S , Br_2	c) SO ₂ , Cl ₂	d) NH ₃ , SO ₃
57.	5 g of a sample of bleaching powder is treated wi		KI solution. The liberated I_2
	required 50 mL of $N/10$ hypo. The percentage of av		
	a) 3.55 b) 7.0	c) 35.5	d) 28.2% Cl ₂
58	The oxidation number of iodine in IF_5 is :	cj 55.5	u) 20.2 /0 012
50.	a) $+5$ b) -5	c) -1	d) +1
۲O		,	uj +1
59.	The eq. wt. of FeC ₂ O ₄ in , FeC ₂ O ₄ \rightarrow Fe ³⁺ + 2CO ₂ is		
6.0	a) its mol. wt. b) mol. wt./3	c) mol. wt./4	d) None of these
60.	Moles of H ₂ O ₂ required for decolorizing 1 mole of a		
	a) 1/2 b) 3/2	c) 5/2	d) 7/2
61.	Oxidation number of sulphur in Caro's acid is		
	a) +6 b) +4	c) +8	d) +7
62.	The equivalent weight of a reductant or an oxidant i	s given by :	
	a) Eq. wt. = $\frac{\text{mol. weight of reductatn or oxidant}}{\text{no. of electrons lost or gained by}}$		
	a) Eq. wt. – no. of electrons lost or gained by		
	1 molecule of reductant or oxidant		
	b) Eq. wt. = $\frac{\text{mol. wt.}}{\text{valence}}$		
	c) Eq. wt. = $\frac{\text{mol. wt.}}{\text{total charge on cation or anion}}$		
	d) All of the above		
63.	In presence of dil. H_2SO_4 . The equivalent weight of I	KMnO ₄ is :	
	a) 1/5 of its molecular weight		
	b) 1/6 of its molecular weight		
	c) 1/10 of its molecular weight		
	d) 1/2 of its molecular weight		
64.	Respiration is :		
	a) Oxidation b) Reduction	c) Both (a) and (b)	d) None of these
65.	$aK_2Cr_2O_7 + bKCl + cH_2SO_4 \rightarrow xCrO_2Cl_2 + yKHSO_4$	$_{\rm L} + z {\rm H}_2 0.$	-
	The above equation balances when		
	a) $a = 2, b = 4, c = 6$ and $x = 2, y = 6, z = 3$		
	b) $a = 4, b = 2, c = 6$ and $x = 6, y = 2, z = 3$		
	c) $a = 6, b = 4, c = 2$ and $x = 6, y = 3, z = 2$		
	d) $a = 1, b = 4, c = 6$ and $x = 2, y = 6, z = 3$		
66	Which of the following shows highest ox, no. in com	hinad stata?	
00.	a) Os b) Ru		d) None of these
67	-	c) Both (a) and (b)	uj none or these
07.	The oxidation number of sulphur in $H_2S_2O_8$ is :	-) + 7	
(0)	a) +2 b) +6	c) +7	d) +14
68.	In the following reaction		
	$M^{x+} + MnO_4 \qquad MO_3 + Mn^{2+} + \frac{1}{2}O_2,$		
		the value of wie	
	If one mole of MnO_4 oxidises 2.5 moles of M^{x+} then		N 2
60	a) 5 b) 3	c) 4	d) 2
69.	What volume of $N \text{ K}_2 \text{Cr}_2 \text{O}_7$ solution is required to	oxidise (in acid solution) a	a solution containing 10 g of
	$FeSO_4$? (mol.wt.of $FeSO_4 = 152$)		
	a) 65.78 mL b) 134 mL	c) 35 mL	d) 33.5 mL
70.	Bleaching action of chlorine in presence of moisture	e is :	
	a) Reduction b) Oxidation	c) Hydrolysis	d) substitution
71.	A mixture of potassium chlorate, oxalic acid and s	ulphuric acid and sulphur	ic acid is heated. During the

reaction which element undergoes maximum change in the oxidation number?

	reaction which element undergoes maximum chang	e in the oxidation number?	
	a) Cl		
	b) C		
	c) S		
	d) H		
72.	Stannous chloride gives a white precipitate with a	solution of mercuric chlori	de. In this process mercuric
	chloride is :		I
	a) Oxidized		
	b) Reduced		
	-	Sn and Hg	
	c) Converted into a complex compound containing S	Sh anu ng	
	d) Converted into a chloro complex of Hg		
73.	In the titration of $CuSO_4 vs$. Hypo in presence of KI,	which statement is wrong?	
	a) It is iodometric titration		
	b) I_2 with starch gives blue colour		
	c) $CuSO_4$ is reduced to white Cu_2I_2 during redox cha		
	d) The solution before titration, on addition of KI ap	pears blue	
74.	Manganese acts as strongest oxidising agent in the c	oxidation state	
	a) +7 b) +2	c) +4	d) +5
75.	The value of $'n'$ in the reaction		
	$Cr_2O_7^{2-} + 14H^+ + nFe^{2+} \rightarrow 2Cr^{3+} + nFe^{3+} + 7H^2O_7^{2-}$)	
	will be		
	a) 2 b) 3	c) 6	d) 7
76.	In a reaction 4 mole of electrons are transferred	,	2
	possible reduction product is :		
	a) $(1/2)$ mole N ₂ b) $(1/2)$ mole N ₂ 0	c) 1 mole of NO_2	d) 1 mole NH ₃
77	The oxidation number of phosphorus in PO_4^{3-} , P_4O_{10}		
,,,	a) +3 b) +2	c) -3	d) +5
78	In the equation ,	c) 3	4) 15
70.	$CrO_4^2 + SO_3^2$ $Cr(OH)_4 + SO_4^2$		
	the oxidation number of Cr changes from		
70	a) 6 to 4 b) 6 to 3	c) 8 to 4	d) 4 to 3
79.	Oxidation numbers of P in PO_4^{3-} of S in SO_4^{2-} and the		
	a) -3, +6 and +6 b) +5, +6 and +6	c) +3, +6 and +5	d) $+5$, $+3$ and $+6$
80.	In alkaline condition KMnO ₄ reacts as follows,		
	$2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$		
	Therefore, its equivalent weight will be :		
	a) 31.6 b) 52.7	c) 79.0	d) 158.0
81.	Oxidation number of S in SO_4^{2-}		
	a) +6 b) +3	c) +2	d) -2
82.	Which of the following is redox reaction?		
	a) $N_2O_5 + H_2O \rightarrow 2HNO_3$		
	b) $AgNO_3 + KI \rightarrow AgI + KNO_3$		
	c) $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$		
	d) $SnCl_2 + HgCl_2 \rightarrow SnCl_4 + Hg$		
83.	In which of the following compounds, the oxidation	number of iodine is fractio	onal?
	a) IF ₃ b) IF ₅	c) I ₃	d) IF ₇
84.	The oxidation number of Cl in KClO ₃ is :		<i>,</i> 1
	a) $+5$ b) -5	c) +3	d) -3
85.	The oxidation number of oxygen in KO_3 , Na_2O_2 is	- j · -	·, -
551	a) 3,2 b) 1,0	c) 0,1	d) -0.33,-1
	~j ~j = 0 j ±j0		

86. In the reaction, $I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$, Equivalent weight of iodine will be equal to: a) Its molecular weight b) 1/2 of its molecular weight c) 1/4 of its molecular weight d) Twice the molecular weight 87. The maximum oxidation number of transition metals may be: a) +4 b) +6 c) +8 d) +10 88. The ratio of amounts of H₂S needed to precipitate all the metal ions from 100 mL 1*M* AgNO₃ and 100 mL of 1M CuSO₄ is : a) 1:2 b) 2 : 1 c) Zero d) infinite 89. Oxidation state of sulphur in $Na_2S_2O_3$ and $Na_2S_4O_6$ b) 3 and 5 c) 2 and 2.5 a) 4 and 6 d) 6 and 6 90. Number of K⁺ ions and mole of K⁺ ions present in 1 litre of $\frac{N}{5}$ KMnO₄ acidified solution respectively are : a) 0.04 and 2.4 \times 10²² b) 2.4×10^{22} and 0.04c) 200 and 6.023 \times 10²³ d) 6.023 \times 10²³ and 200 91. Conversion of PbSO₄ to PbS is : b) Oxidation of S a) Reduction of S c) Dissociation d) None of these 92. Which change requires a reducing agent? a) $CrO_4^{2-} \rightarrow CrO_7^{2-}$ b) $BrO_3^- \rightarrow BrO^$ c) $H_2O_2 \rightarrow O_2$ d) $Al(OH)_3 \rightarrow Al(OH)_4^-$ 93. In the reaction, $N_2 \rightarrow NH_3$. The eq.wt. of N_2 and NH_3 are respectively equal to : a) $\frac{28}{3}$, $\frac{17}{3}$ b) $\frac{28}{6}$, $\frac{17}{3}$ c) $\frac{28}{2}$, $\frac{17}{2}$ d) $\frac{28}{5}, \frac{17}{5}$ 94. Which acts as reducing agent as well as oxidising agent? b) ClO₄ d) MnO_{4}^{-} a) 0_3 c) F_2 95. When Cl₂ gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from : a) Zero to -1 and zero to +3b) Zero to +1 and zero to -3c) Zero to +1 and zero to -5d) Zero to -1 and zero to +596. Which of the following is not a redox reaction? a) $2Na + Cl_2 \rightarrow 2NaCl$ b) $C + O_2 \rightarrow CO_2$ c) $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$ d) $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ 97. The difference in the oxidation numbers of the two types of sulphur atoms in $Na_2S_4O_6$ is a) 4 b) 5 c) 6 d) 7 98. A compound contains atoms *X*, *Y*, *Z*. The oxidation number of *X* is +2, *Y* is +5 and *Z* is -2. The possible formula of the compound is : a) XY_1Z_2 b) $Y_2(XZ_3)_2$ c) $X_3(YZ_4)_2$ d) $X_3(Y_4Z)_2$ 99. The equivalent weight of $SnCl_2$ in the reaction, $SnCl_2 + Cl_2 \rightarrow SnCl_4$ is : d) 59 a) 49 b) 95 c) 45 100. What is the ox. no. of Mn in K_2MnO_4 ? c) +2 a) +4 b) +6 d) +8 101. The stable oxidation states of Mn are : a) +2, +3 b) +3, +7 c) +2, +7 d) +3, +5102. 25 mL of 0.50 M H₂O₂ solution is added to 50 mL of 0.20 M KMnO₄ in acidic solution. Which of the following statements is true? a) 0.010 mole of oxygen is liberated

b) 0.005 mole of KMnO₄ are left

c) 0.030 g atom of oxyge	-		
	es not react with KMnO ₄		
103. Oxidation number of car			
a) +2	b) -2	c) +1	d) +3
104. The oxidation state of N			
a) Zero	b) +4	c) +8	d) +2
	ht of KMnO ₄ . The equivaler	it weight of KMnO ₄ when i	t is converted into K ₂ MnO ₄ is
:			
a) <i>M</i>	b) <i>M</i> /3	c) <i>M</i> /5	d) <i>M</i> /7
106. Oxidation number of Mr			
a) $+ 7$ and $+ 2$	b) $+6$ and $+2$	c) +5 and +2	d) +2 and +6
107. Which is the best descrip		ine in the reaction given be	10W?
$H_2O + Br_2 \rightarrow HBr + HO$	JRL	h) Dath avidiand and rad	lucad
a) Proton accepted onlyc) Oxidised only		b) Both oxidised and recd) Reduced only	luced
108. The oxidation number o	f D in KH DO is	u) Reduced only	
a) +1	b) +3	c) —3	d) +5
$109. \text{ LiAIH}_4$ is used as :	0) +3	cj —5	uj + 5
	b) Reducing agent	c) A mordant	d) Water softner
110. The brown ring complex			a) water solution
a) +1	b) +2	c) +3	d) +4
111. The oxidation state of Fe	,	6) 10	
a) +3	b) 8/3	c) +6	d) +2
112. In the reactions; As_2S_3 +	<i>,</i> ,	,	,
a) As only	b) S only	c) N only	d) As and S both
113. The eq. wt. of $KMnO_4$ in	· ·		-
a) 52.7	b) 158	c) 31.6	d) None of these
114. NO_3^- ions are converted	to NH_4^+ ions by a suitable r	eactant. The equivalent ma	ss of NO_3^- and NH_4^+ are :
a) 7.75, 2.25	b) 7.75, 7.75	c) 2.25, 7.75	d) 2.25, 2.25
115. Oxidation number of chl	orine in HClO ₄ is :		
a) +1	b) —1	c) -7	d) +7
116. Iodine has +7 oxidation	state in :		
a) HIO ₄	b) H ₃ IO ₅	c) H ₅ IO ₆	d) all of these
117. The violent reaction bet	ween sodium and water is a	an example of :	
a) Reduction			
b) Oxidation			
c) Redox reaction			
d) neutralisation reactio			
118. Oxidation number of Fe		. .	
a) +2	b) +3	c) +4	d) +1
119. One mole of acidified K_2			
a) 6	b) 1	c) 7	d) 3
120. In the preparation of chl			d) Debudyating agent
a) Reducing agent	b) oxidising agent	c) Catalytic agent	d) Dehydrating agent
	peroxide in an acidic solution		the action of 100 mL of 0.5
	$h_2 \rightarrow \text{KHSO}_4 + \text{MnSO}_4 + \text{H}_2$		or the reaction is,
a) 0.12 litre	b) 0.28 litre	c) 0.56 litre	d) 1.12 litre
122. Which quantities are con			aj 1.12 mai
a) Charge only	iser vea man omaation feu	b) Mass only	

c) Both charge and mass	d) Neither charge nor ma	ass
123. Which substance serves as a reducing agent in the f	-	
$14H^+ + Cr_2O_7^{2-} + 3Ni \rightarrow 2Cr^{3+} + 7H_2O + 3Ni^{2+}?$)	
a) H_2O b) Ni	c) H ⁺	d) $Cr_2O_7^{2-}$
124. Which of the following chemical reactions depicts the	he oxidising behaviour of H	I ₂ SO ₄ ?
a) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$	b) Ca(OH) ₂ + H ₂ SO ₄ \rightarrow	$CaSO_4 + 2H_2O$
c) NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl$	d) $2PCl_5 + H_2SO_4 \rightarrow 2P$	$OCl_3 + 2HCl + SO_2Cl_2$
125. In the aluminothermic process, aluminium acts as :		
a) An oxidising agent b) A flux	c) A reducing agent	d) A solder
126. In the reaction, $SO_2 + 2H_2S \rightarrow 3S + 2H_2O$ the subs	tance that oxidizes is,	
a) H_2S b) SO_2	c) S	d) H ₂ O
127. The oxidation number of sulphur in S_8 , S_2F_2 , H_2S results the second state of the second st	spectively are :	
a) 0, +1 and -2 b) +2, +1 and -2	c) 0, +1 and +2	d) -2 , $+1$ and -2
128. Maximum oxidation state is present in :		
a) CrO_2Cl_2 and MnO_4^-		
b) MnO ₂		
c) $[Fe(CN)_6]^{3-}$ and $[Co(CN)_6]^{3-}$		
d) MnO		
129. With which element oxygen shows positive oxidation	on state in its compounds?	
a) Na b) Cl	c) N	d) F
130. What is the oxidation number of chlorine in ClO_3^- ?		
a) +5 b) +3	c) +4	d) +2
131. NaClO solution reacts with H_2SO_3 as, NaClO + H_2SO_3	$h_3 \rightarrow \text{NaCl} + \text{H}_2\text{SO}_4$	-
A solution of NaClO used in the above reaction co		r litre. The normality of the
solution would be :	0 1	
a) 0.40 b) 0.20	c) 0.60	d) 0.80
132. In sodium hydride, oxidation state of sodium is :	,	
a) Zero b) +1	c) -1	d) +2
133. The oxidation number of xenon in $XeOF_2$ is	,	
a) Zero b) 2	c) 4	d) 3
134. Which is not a redox reaction?	,	
a) $H_2 + Br_2 \rightarrow 2HBr$		
b) $NH_4Cl \rightarrow NH_3 + HCl$		
c) $NH_4NO_3 \rightarrow N_2O + 2H_2O$		
d) Fe + S \rightarrow FeS		
135. In C + H ₂ O \rightarrow CO + H ₂ ; H ₂ O acts as :		
a) Oxidant b) Reductant	c) Both (a) and (b)	d) None of these
136. Millimole of a solute in a solution can be given by :		,
	wt.	d) Both (b) and (c)
a) $M \times V_{\text{in litre}}$ b) $M \times V_{\text{in mL}}$	c) $\frac{\text{wt.}}{\text{mol. wt.}} \times 1000$	
137. The oxidation number of carbon in $H_2C_2O_4$ is :		
a) +2 b) +3	c) +4	d) +1
138. What is the oxidation state of P in $Ba(H_2PO_2)_2$?		
a) +1 b) +2	c) +3	d) -1
139. Oxidation state of +1 for phosphorus is found in :		
a) H_3PO_3 b) H_3PO_4	c) H ₃ PO ₂	d) $H_4P_2O_7$
140. Oxidation number of S in $(CH_3)_2SO$ is :		
a) Zero b) +1	c) +2	d) +3
141. In which reaction the underlined substance has bee	n reduced?	
a) <u>Carbon monoxide</u> + copper oxide \rightarrow carbon diox	kide + copper	
b) <u>Copper oxide</u> + hydrochloric acid \rightarrow water + cop	pper chloride	

c) <u>Steam</u> + iron \rightarrow	hydrogen + iron oxide		
d) <u>Hydrogen</u> + iror	$n \text{ oxide} \rightarrow \text{water} + \text{iron}$		
142. The decomposition	of $KCIO_3$ to KCl and O_2 on he	ating is an example of :	
a) Intermolecular r	edox change		
b) Intramolecular r	edox change		
c) Disproportionat	ion or auto redox change		
d) None of the abov	/e		
143. Mohr's salt is oxidi	sed to in presence of acid	lized KMnO ₄ .	
a) Fe ²⁺	b) Fe ³⁺	c) Fe	d) None of these
144. Fluorine is a strong	oxidising agent because :		
a) It has several iso	otopes		
b) It is very small a	nd has 7 electrons in valency	shell	
c) Its valency is on	e		
d) It is the first me	nber of the halogen series		
145. In the conversion o	f Br ₂ to BrO $_3^-$, the oxidation n	umber of Br changes from	n
a) Zero to +5	b) +1 to +5	c) Zero to −3	d) +2 to +5
146. The oxidation num	ber of Cr in CrO ₅ is		
a) +3	b) +5	c) +6	d) 0
147. An indicator used f	or redox reaction is itself :		
a) Either an oxidan	t or a reductant		
b) Neither an oxida	nt nor a reductant		
c) Acid or base			
d) None of the abov	7e		
148. CrO_5 reacts with H	H_2SO_4 to give $Cr_2(SO_4)_3$, H_2O_4	and O_2 . Moles of O_2 lib	erated by 1 mole of CrO ₅ in this
reaction are :			
a) 2.5	b) 1.25	c) 4.5	d) 1.75
149. In the following rea	action, $4P + 3KOH + 3H_2O \rightarrow$	$3KH_2PO_2 + PH_3$	
a) P is only oxidize	d	b) P is only reduced	
c) P is both oxidize	d as well as reduced	d) None of the above	e
150. Oxidation number	of P in $P_2 O_7^{4-}$ is :		
a) +3	b) +4	c) +5	d) +6
151. In the conversion of	f $K_2Cr_2O_7$ to K_2CrO_4 the oxid	ation number of chromiu	m :
a) Increases	b) Remains the same	c) Decreases	d) None of these
152. In which of the foll	owing, the oxidation number	of oxygen has been arran	ged in increasing order?
a) OF ₂ < KO ₂ < Ba	$0_2 < 0_3$	b) $BaO_2 < KO_2 < O_3$	₃ < 0F ₂
c) $BaO_2 < O_3 < OB$	$F_2 < KO_2$	d) None of these	
153. Oxidation number	of sodium in sodium amalgan	ı is :	
a) +2	b) +1	c) -2	d) zero
154. The apparatus in w	hich standard solution is pre	pared is known as :	
a) Measuring flask	b) Round bottom flas	k c) Burette	d) None of these
155. K ₃ Fe(CN) ₆ is used	as Indicator for FeSO ₄ vs	$K_2Cr_2O_7$ titrations.	
a) Self	b) External	c) Internal	d) Not an
156. The oxidation num	ber of N in $N_2H_5^+$ is :		
a) —2	b) +3	c) +2	d) -3
157. Which can act as or	xidant?		
a) H ₂ O ₂	b) H ₂ S	c) NH ₃	d) None of these
158. What weight of H	NO_3 is needed to convert	5 g of iodine into iodic	acid according to the reaction,
$I_2 + HNO_3 \rightarrow HIO$	$_{3} + NO_{2} + H_{2}O?$		
a) 12.4 g	b) 24.8 g	c) 0.248 g	d) 49.6 g
159. In which SO_2 acts a	s oxidant, while reacting with	1:	

a) Acidified KMnO ₄ b) Acidified K ₂ 160. HBr and HI reduce H ₂ SO ₄ , HCl can reduce	
a) H_2SO_4 b) $K_2Cr_2O_7$ 161. Equivalent mass of $Na_2S_2O_3$ in its reaction	c) KMnO ₄ d) None of these
a) Molar mass of $\text{Ma}_2\text{S}_2\text{O}_3$ in its reaction a) Molar mass b) Molar mass j 162. Which of the following change represents a) $\text{Cl}_2 + 20\text{H}^- \rightarrow \text{Cl}0^- + \text{Cl}^- + \text{H}_2\text{O}$ b) $\text{Cu}_2\text{O} + 2\text{H}^+ \rightarrow \text{Cu} + \text{Cu}^{2+} + \text{H}_2\text{O}$	/ 2 c) Molar mass / 3 d) Molar mass / 4
c) $2HCuCl_2 \xrightarrow{\text{Dilution with}} Cu + Cu^{2+} + 4Cl^{-}$	+ 2H ⁺
d) All of the above	
163. Oxidation number of 'N' in N_3 H(hydrazoic	
a) $-\frac{1}{3}$ b) +3	c) 0 d) -3
for oxidation of ferrous ammonium sulpha	n permanganate are used as oxidising agents in acidic medium ate to ferric sulpahte. The ratio of number of moles of cerric ferrous ammonium sulphate to the number of moles of KMnO ₄ sulphate, is c) 0.6 d) 2.0
165. Eq.wt. of NH ₃ in, NH ₃ + $O_2 \rightarrow NO + H_2O$	is :
a) 3.4 b) 17	c) 8.5 d) None of these
166. Carbon is in the lowest oxidation state in :	
a) CH_4 b) CCl_4 167 When the ion $Cr_1 O^{2-}$ acts as an evident is	c) CO_2 d) CF_4
of Sn^{2+} would be oxidised to Sn^{4+} by one	n acidic aqueous solution the ion Cr^{3+} is formed. How many mole
a) 2/3 b) 3/2	c) 2 d) 3
	diluted to 1 litre, which of the following changes?
a) Molarity b) Millimole	c) Milliequivalent d) None of these
 169. If H₂S is passed through an acidified K₂Cr a) Will remain unchanged b) Will change to deep red c) Will change to dark green d) Will change to dark brown 	
170. Ozone tails mercury. The reaction isof H	-
a) Reduction b) Oxidation	c) Substitution d) None of these
171. The oxidation number of Cr in $[Cr(NH_3)_4(a) + 3]$ b) +2	$(1_2)^{-1_2}$ is: c) +1 d) zero
172. In the reaction, $VO + Fe_2O_3 \rightarrow FeO + V_2O_3$	
a) mol. wt. $r_2 c_3 = 100 + v_2 c_3$ b) mol. wt./8 173. The eq. wt. of K ₂ CrO ₄ as an oxidising agen	c) mol. wt./6 d) None of these
a) (mol. wt.)/2 b) (2 × mol. wt 174. Which reaction involves neither oxidation	.)/3 c) (mol. wt.)/3 d) (mol. wt.)/6
a) $\text{CrO}_4^{2^-} \rightarrow \text{Cr}_2\text{O}_7^{2^-}$ b) $\text{Cr} \rightarrow \text{CrCl}_3$	
175. The number of equivalent per mole of H ₂ S	
a) 3 b) 6	c) 4 d) 2
176. Oxidation number of sulphur in Na_2SO_4 is	
a) +2 b) +4	c) +6 d) -2
177. Which can have both +ve and -ve oxidati	on states?
a) F b) I	c) Na d) He
178. Milliequivalent of a solute in a solution can a) Mz. _{eq.} = $M \times V_{\text{in mL}}$	n be given by:

b) M_{eq} . = $N \times V_{\text{in mL}}$			
c) $Mz_{eq} = \frac{\text{wt}}{\text{Eq.wt.}} \times 1000$			
d) Both (b) and (c)			
179. H ₂ S is passed through a	n acidified solution of cop	per sulphate and a black p	precipitate is formed. This is
due to :			
a) Oxidation of Cu ²⁺			
b) Reduction of Cu ²⁺			
c) Double decomposition	n		
d) Reduction and oxidati	on		
180. Iodine has highest oxida	tion number in the compou	ınd :	
a) KIO ₄	b) IF ₅	c) KI ₂	d) KI
181. Oxidation number of S in	$S_2 O_3^{2-}$ is :		
a) +2	b) -2	-) -	d) zero
182. In the reaction, $Cr_2 0_7^{2-}$ +			
a) $\frac{\text{mol. wt.}}{3}$	b) $\frac{\text{at. wt.}}{6}$	at.wt.	d) $\frac{\text{mol. wt.}}{6}$
5	0	0	0
183. In the reaction, $H_2O_2 + N_1$			
a) H_2O_2	b) Na ₂ CO ₃	c) Na_2O_2	d) None of these
184. The least count of burett	-	-	d) 0.02 m l
a) 0.1 mL	b) 0.01 mL	c) 0.2 mL	d) 0.02 mL
185. Among NH ₃ , HNO ₃ , NaN ₃	$_3$ and Mg_3N_2 ; the number of	in molecules having mill oge.	ii iii negative oxidation state
is a) 1	b) 2	c) 3	d) 4
186. In which iron has the lov	,	0,5	u) 4
a) Fe(CO) ₅	vest oxidation state:		
b) Fe_2O			
c) K_4 Fe(CN) ₆			
d) FeSO ₄ . (NH ₄)2SO ₄ . 6H	1_0		
187. A chemical balance used	=	aboratory can weigh upto a	least count of :
a) 0.0001 g	b) 0.001 g	c) 0.0002 g	d) 0.002 g
188. When NaCl is dissolved i	, ,	, ,	
a) Oxidized	b) Reduced	c) Hydrolysed	d) hydrated
189. Which is not a redox rea	ction?		
a) $BaO_2 + H_2SO_4 \rightarrow BaS_4$	$50_4 + H_2 0_2$		
b) 2BaO + $O_2 \rightarrow 2BaO_2$			
c) $4\text{KCIO}_3 \rightarrow 4\text{KCIO}_2 +$	202		
d) $SO_2 + 2H_2S \rightarrow 2H_2O$	+ 3S		
190. When BrO_3^- ion reacts w	ith Br [–] ion in acidic solutio	on Br ₂ is liberated. The equ	ivalent weight of KBrO ₃ is :
a) <i>M</i> /8	b) <i>M</i> /3	c) <i>M</i> /5	d) <i>M</i> /6
191. Corrosion of iron is :			
a) Redox process			
b) Neutralization proces	S		
c) Precipitation process			
d) None of these			
192. During a redox titration			D_4^- in the presence of excess
	of electrons that gets transf	erred is	
a) 6	b) 5	c) 4	d) 2
193. In which of the following			
a) HClO	b) $HClO_2$	c) HClO ₃	d) HClO ₄
194. In the reaction, $Zn + 2H^2$	$+ 2CI^{-} \rightarrow Zn^{2+} 2CI^{-} +$	H ₂ , the spectator ion is :	

a) Cl ⁻	b) Zn ²⁺	c) H ⁺	d) All of these
195. Turn bull's blue is :			
	b) K ₄ Fe(CN) ₆	c) K ₃ Fe(CN) ₆	d) $Na_4Fe(CN)_6$
196. The oxidation state sho			
a) -2	b) -4	c) +4	d) +2
197. The compound that car	work both as an oxidising a	and reducing agent is:	-
a) KMnO ₄	b) H ₂ O ₂	c) $Fe_2(SO_4)_3$	d) $K_2 Cr_2 O_7$
198. An element A in a comp	ound ABD has oxidation nu	timber A^{n-} . It is oxidized by	$V \operatorname{Cr}_2 \operatorname{O}_7^{2-}$ in acidic medium. In
			$^{-3}$ mole of <i>ABD</i> . The new
oxidation number of A			
a) 3	b) 3 <i>– n</i>	c) <i>n</i> − 3	d) + <i>n</i>
199. The burning of hydroge	n is called :		
a) Hydrogenation	b) Hydration	c) Oxidation	d) reduction
200. Oxidation number of ch	lorine in chlorine heptaoxic	le is :	
a) +1	b) +4	c) +6	d) +7
201. The correct order of red	lucing power of halide ions	is :	
a) $Cl^- > Br^- > I^- > I$	7-		
b) $Cl^- > I^- > Br^- > I$	7-		
c) $Br^- > Cl^- > I^- > I$	2-		
d) $I^- > Br^- > Cl^- > I$	<u>-</u>		
202. The reaction, $3ClO^{-}(aq)$	$) \rightarrow ClO_3^-(aq) + 2Cl^-(aq)$	is an example of :	
a) Oxidation reaction			
b) Reduction reaction			
c) Disproportionation			
d) Decomposition react			
203. The ox.no. of S in Na_2S_4	0 ₆ is :		
a) + 2.5		-	
	ve +2 and other two have -	+3)	
- ,	have $+2$ and one S has $+3$)		
	e +5 and the other two S ha	ve 0)	
204. Oxidation is a process v			
a) de-electronation	b) Electronation	c) Addition of hydrogen	
		=	he gives that an oxide of the
-	eating. Which one is correct	{	
a) The statement and re			
b) The statement and rec) The statement is true			
d) None of the above	e but the reason is faise		
206. A sulphur containing sp	acies that cannot be an ovid	licing agont is :	
a) H_2SO_4	b) H ₂ S	c) SO_2	d) H_2SO_3
$207. \text{ KMnO}_4 \text{ acts as } \dots \text{ indi}$	· -	-	47112503
a) Self	b) External	c) Internal	d) Not an
208. In a reaction between z		,	*
a) Zinc ions	b) Iodide ions	c) Zinc atom	d) Iodine
209. The best oxidising agen	=	•) =••	a) 10 anno
a) Tellurium	b) Selenium	c) Sulphur	d) Oxygen
210. The oxidation state of in	•		J - JO
a) +2	b) +1	c) Zero	d) +3
211. A compound of Xe and	•	•	
a) -4	b) Zero	c) +4	d) +6
-	2	-	-

	s odd with respect to oxidatio	n numbers of S, Cr, N and H r	espectively:
a) H_2SO_5 , $H_2S_2O_8$, H_2			
b) K ₂ Cr ₂ O ₇ , K ₂ CrO ₄ ,			
c) NH ₃ , NH ₄ ⁺ , N ₃ H, NC	$\overline{)_2}$		
d) CaH ₂ , NaH, LiH, Mg	gH ₂		
213. 0.2 g of a sample of	H_2O_2 required 10 mL of N K	MnO_4 in a titration in the p	resence of H_2SO_4 . Purity of
H_2O_2 is :			
a) 25%	b) 85%	c) 65%	d) 95%
214. When KMnO ₄ as oxid	dising agent and ultimately fo	orms MnO ₄ ^{2–} , Mn ₂ O ₃ and Mn	²⁺ , the number of electrons
transferred per mole	of KMnO ₄ each case respective	vely is :	
a) 4, 3, 1, 5	b) 1, 5, 3, 7	c) 1, 3, 4, 5	d) 1, 3, 8, 5
215. Titration of KI with H	1_2O_2 in presence of acid is a :		
a) Clock reaction	b) Redox reaction	c) Intermolecular redox	d) All of these
216. Oxidation state of nit	rogen is incorrectly given for	:	
Compound	Oxidation state		
a) $[Co(NH_3)_5Cl]Cl_2$	-3		
b) NH ₂ OH	-1		
c) $(N_2H_5)_2SO_4$	+2		
d) Mg_3N_2	-3		
	y −1 oxidation state, while io	dine exhibits oxidation state	s of -1, +1, +3, +5 and +7.
This is due to :			
a) Fluorine being a ga	as		
b) Available <i>d</i> -orbital			
c) Non-availability of			
d) None of the above			
218. Elements which gene	rally exhibit multiple oxidation	on states and whose ions are	coloured are known as :
	rally exhibit multiple oxidation b) Non-metals		
a) Metalloid	b) Non-metals	c) Metals	coloured are known as : d) Transition metals
a) Metalloid 219. The oxidation state o	b) Non-metals f sulphur in sodium tetrathion	c) Metals nate (Na ₂ S ₄ O ₆) is	d) Transition metals
a) Metalloid 219. The oxidation state o a) 2	b) Non-metals f sulphur in sodium tetrathion b) 0	c) Metals	
 a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox 	b) Non-metals f sulphur in sodium tetrathion b) 0 kidising agent?	c) Metals nate (Na ₂ S ₄ O ₆) is c) 2.5	d) Transition metals d) 3.5
 a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) 0₃ 	b) Non-metals f sulphur in sodium tetrathion b) 0 sidising agent? b) O ₂	c) Metals nate (Na ₂ S ₄ O ₆) is	d) Transition metals
 a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) 0₃ 221. Sulphur has the higher 	 b) Non-metals f sulphur in sodium tetrathion b) 0 sidising agent? b) 02 est oxidation state in : 	c) Metals hate $(Na_2S_4O_6)$ is c) 2.5 c) Cl_2	d) Transition metals d) 3.5 d) F ₂
a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) O_3 221. Sulphur has the higher a) SO_2	b) Non-metals f sulphur in sodium tetrathion b) 0 sidising agent? b) O_2 est oxidation state in : b) SO_3	c) Metals nate (Na ₂ S ₄ O ₆) is c) 2.5	d) Transition metals d) 3.5
 a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) 0₃ 221. Sulphur has the higher a) SO₂ 222. Nitrogen has fraction 	b) Non-metals f sulphur in sodium tetrathion b) 0 sidising agent? b) O_2 est oxidation state in : b) SO_3 al oxidation number in :	c) Metals hate $(Na_2S_4O_6)$ is c) 2.5 c) Cl_2 c) H_2SO_3	 d) Transition metals d) 3.5 d) F₂ d) H₂S
a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) O_3 221. Sulphur has the higher a) SO_2 222. Nitrogen has fraction a) N_2H_4	b) Non-metals f sulphur in sodium tetrathion b) 0 sidising agent? b) O_2 est oxidation state in : b) SO_3 al oxidation number in : b) NH_4	c) Metals hate $(Na_2S_4O_6)$ is c) 2.5 c) Cl_2 c) H_2SO_3 c) HN_3	 d) Transition metals d) 3.5 d) F₂ d) H₂S d) N₂F₂
a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) O_3 221. Sulphur has the high a) SO_2 222. Nitrogen has fraction a) N_2H_4 223. As the oxidation state	b) Non-metals f sulphur in sodium tetrathion b) 0 sidising agent? b) O_2 est oxidation state in : b) SO_3 al oxidation number in : b) NH_4 e for any metal increases, the	c) Metals hate $(Na_2S_4O_6)$ is c) 2.5 c) Cl_2 c) H_2SO_3 c) HN_3 tendency to show ionic nature	d) Transition metals d) 3.5 d) F_2 d) H_2S d) N_2F_2 re:
a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) O_3 221. Sulphur has the high a) SO_2 222. Nitrogen has fraction a) N_2H_4 223. As the oxidation state a) Decreases	b) Non-metals f sulphur in sodium tetrathion b) 0 sidising agent? b) O_2 est oxidation state in : b) SO_3 al oxidation number in : b) NH_4 e for any metal increases, the b) Increases	c) Metals hate $(Na_2S_4O_6)$ is c) 2.5 c) Cl_2 c) H_2SO_3 c) HN_3 tendency to show ionic nature c) Remains same	 d) Transition metals d) 3.5 d) F₂ d) H₂S d) N₂F₂
a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) O_3 221. Sulphur has the higher a) SO_2 222. Nitrogen has fraction a) N_2H_4 223. As the oxidation state a) Decreases 224. In acid medium Zn results	b) Non-metals f sulphur in sodium tetrathion b) 0 sidising agent? b) O_2 est oxidation state in : b) SO_3 al oxidation number in : b) NH_4 e for any metal increases, the b) Increases educes nitrate ion to NH_4^+ ion	 c) Metals nate (Na₂S₄O₆) is c) 2.5 c) Cl₂ c) H₂SO₃ c) HN₃ tendency to show ionic nature c) Remains same according to the reaction 	d) Transition metals d) 3.5 d) F_2 d) H_2S d) N_2F_2 re:
a) Metalloid 219. The oxidation state of a) 2 220. Which is strongest ox a) O_3 221. Sulphur has the higher a) SO_2 222. Nitrogen has fraction a) N_2H_4 223. As the oxidation state a) Decreases 224. In acid medium Zn records $Zn + NO_3$ Zn^{24}	b) Non-metals f sulphur in sodium tetrathion b) 0 sidising agent? b) O_2 est oxidation state in : b) SO_3 al oxidation number in : b) NH_4 e for any metal increases, the b) Increases educes nitrate ion to NH_4^+ ion $h^+ + NH_4^+ + H_2O$ (unbalanced	 c) Metals hate (Na₂S₄O₆) is c) 2.5 c) Cl₂ c) H₂SO₃ c) HN₃ tendency to show ionic nature c) Remains same according to the reaction according to the reaction 	 d) Transition metals d) 3.5 d) F₂ d) H₂S d) N₂F₂ re: d) None of these
a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) O_3 221. Sulphur has the higher a) SO_2 222. Nitrogen has fraction a) N_2H_4 223. As the oxidation stater a) Decreases 224. In acid medium Zn ree Zn + NO_3 Zn ²⁴ How many moles of H	b) Non-metals f sulphur in sodium tetrathion b) 0 sidising agent? b) O_2 est oxidation state in : b) SO_3 al oxidation number in : b) NH_4 e for any metal increases, the b) Increases educes nitrate ion to NH_4^+ ion	 c) Metals hate (Na₂S₄O₆) is c) 2.5 c) Cl₂ c) H₂SO₃ c) HN₃ tendency to show ionic nature c) Remains same according to the reaction according to the reaction 	 d) Transition metals d) 3.5 d) F₂ d) H₂S d) N₂F₂ re: d) None of these
a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) O_3 221. Sulphur has the higher a) SO_2 222. Nitrogen has fraction a) N_2H_4 223. As the oxidation state a) Decreases 224. In acid medium Zn re Zn + NO_3 Zn ²⁴ How many moles of H of sufficient Zn.	b) Non-metals f sulphur in sodium tetrathion b) 0 sidising agent? b) O_2 est oxidation state in : b) SO_3 al oxidation number in : b) NH_4 e for any metal increases, the b) Increases educes nitrate ion to NH_4^+ ion $^+ + NH_4^+ + H_2O$ (unbalanced HCl are required to teduce hal	 c) Metals hate (Na₂S₄O₆) is c) 2.5 c) Cl₂ c) H₂SO₃ c) HN₃ tendency to show ionic nature c) Remains same according to the reaction ally f a mole of NaNO₃ completed 	 d) Transition metals d) 3.5 d) F₂ d) H₂S d) N₂F₂ re: d) None of these
a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) 0_3 221. Sulphur has the highe a) SO_2 222. Nitrogen has fraction a) N_2H_4 223. As the oxidation state a) Decreases 224. In acid medium Zn re Zn + NO_3 Zn ²⁴ How many moles of H of sufficient Zn. a) 5	b) Non-metals f sulphur in sodium tetrathion b) 0 sidising agent? b) O_2 est oxidation state in : b) SO_3 al oxidation number in : b) NH_4 e for any metal increases, the f b) Increases educes nitrate ion to NH_4^+ ion f + NH_4^+ + H_2O (unbalanced HCl are required to teduce hall b) 4	 c) Metals hate (Na₂S₄O₆) is c) 2.5 c) Cl₂ c) H₂SO₃ c) HN₃ tendency to show ionic nature c) Remains same according to the reaction f a mole of NaNO₃ completel c) 3 	 d) Transition metals d) 3.5 d) F₂ d) H₂S d) N₂F₂ re: d) None of these y? Assume the availability d) 2
a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) O_3 221. Sulphur has the higher a) SO_2 222. Nitrogen has fraction a) N_2H_4 223. As the oxidation state a) Decreases 224. In acid medium Zn rec Zn + NO ₃ Zn ²⁴ How many moles of H of sufficient Zn. a) 5 225. Weight of FeSO ₄ (mo	b) Non-metals f sulphur in sodium tetrathion b) 0 sidising agent? b) O_2 est oxidation state in : b) SO_3 al oxidation number in : b) NH_4 e for any metal increases, the b) Increases educes nitrate ion to NH_4^+ ion $^+ + NH_4^+ + H_2O$ (unbalanced HCl are required to teduce hal b) 4 l. wt. = 152) oxidized by 200	 c) Metals nate (Na₂S₄O₆) is c) 2.5 c) Cl₂ c) H₂SO₃ c) HN₃ tendency to show ionic nature c) Remains same according to the reaction l) f a mole of NaNO₃ completel c) 3 mL of 1 <i>N</i> KMnO₄ solution is 	 d) Transition metals d) 3.5 d) F₂ d) H₂S d) N₂F₂ re: d) None of these
a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) 0_3 221. Sulphur has the higher a) SO_2 222. Nitrogen has fraction a) N_2H_4 223. As the oxidation state a) Decreases 224. In acid medium Zn re Zn + NO_3 Zn ²⁴ How many moles of H of sufficient Zn. a) 5 225. Weight of FeSO ₄ (mod a) 30.4 g	b) Non-metals f sulphur in sodium tetrathion b) 0 sidising agent? b) O_2 est oxidation state in : b) SO_3 al oxidation number in : b) NH_4 e for any metal increases, the b) Increases educes nitrate ion to NH_4^+ ion $h^+ + NH_4^+ + H_2O$ (unbalanced HCl are required to teduce hal b) 4 l. wt. = 152) oxidized by 200 b) 15.2 g	 c) Metals hate (Na₂S₄O₆) is c) 2.5 c) Cl₂ c) H₂SO₃ c) HN₃ tendency to show ionic nature c) Remains same according to the reaction f a mole of NaNO₃ completel c) 3 	 d) Transition metals d) 3.5 d) F₂ d) H₂S d) N₂F₂ re: d) None of these y? Assume the availability d) 2
a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) O_3 221. Sulphur has the higher a) SO_2 222. Nitrogen has fraction a) N_2H_4 223. As the oxidation state a) Decreases 224. In acid medium Zn re Zn + NO ₃ Zn ²⁴ How many moles of H of sufficient Zn. a) 5 225. Weight of FeSO ₄ (mod a) 30.4 g 226. In the ionic equation	b) Non-metals f sulphur in sodium tetrathion b) 0 didising agent? b) O_2 est oxidation state in : b) SO_3 eal oxidation number in : b) NH_4 e for any metal increases, the b) Increases educes nitrate ion to NH_4^+ ion $^+ + NH_4^+ + H_2O$ (unbalanced HCl are required to teduce hall b) 4 l. wt. = 152) oxidized by 200 f b) 15.2 g	 c) Metals nate (Na₂S₄O₆) is c) 2.5 c) Cl₂ c) H₂SO₃ c) HN₃ tendency to show ionic nature c) Remains same according to the reaction l) f a mole of NaNO₃ completel c) 3 mL of 1 <i>N</i> KMnO₄ solution is 	 d) Transition metals d) 3.5 d) F₂ d) H₂S d) N₂F₂ re: d) None of these
a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) O_3 221. Sulphur has the higher a) SO_2 222. Nitrogen has fraction a) N_2H_4 223. As the oxidation state a) Decreases 224. In acid medium Zn reverses 224. In acid medium Zn reverses 225. Weight of FeSO ₄ (moverse) a) S_2 225. Weight of FeSO ₄ (moverse) a) 30.4 g 226. In the ionic equation $BiO_3^- + 6H^+ + xe^{-4}$	b) Non-metals f sulphur in sodium tetrathion b) 0 didising agent? b) O_2 est oxidation state in : b) SO_3 eal oxidation number in : b) NH_4 e for any metal increases, the b) Increases educes nitrate ion to NH_4^+ ion $^+ + NH_4^+ + H_2O$ (unbalanced HCl are required to teduce hall b) 4 l. wt. = 152) oxidized by 200 f b) 15.2 g	 c) Metals nate (Na₂S₄O₆) is c) 2.5 c) Cl₂ c) H₂SO₃ c) HN₃ tendency to show ionic nature c) Remains same according to the reaction l) f a mole of NaNO₃ completel c) 3 mL of 1 <i>N</i> KMnO₄ solution is 	 d) Transition metals d) 3.5 d) F₂ d) H₂S d) N₂F₂ re: d) None of these
a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) O_3 221. Sulphur has the higher a) SO_2 222. Nitrogen has fraction a) N_2H_4 223. As the oxidation state a) Decreases 224. In acid medium Zn re Zn + NO ₃ Zn ²⁴ How many moles of H of sufficient Zn. a) 5 225. Weight of FeSO ₄ (mod a) 30.4 g 226. In the ionic equation $BiO_3^- + 6H^+ + xe^-$ The values of x is	b) Non-metals f sulphur in sodium tetrathion b) 0 didising agent? b) O_2 est oxidation state in : b) SO_3 eal oxidation number in : b) NH_4 e for any metal increases, the b) Increases educes nitrate ion to NH_4^+ ion $^+ + NH_4^+ + H_2O$ (unbalanced HCl are required to teduce hal b) 4 l. wt. = 152) oxidized by 200 f b) 15.2 g	 c) Metals hate (Na₂S₄O₆) is c) 2.5 c) Cl₂ c) H₂SO₃ c) HN₃ tendency to show ionic nature c) Remains same according to the reaction 1) f a mole of NaNO₃ completel c) 3 mL of 1 <i>N</i> KMnO₄ solution is c) 60.8 g 	 d) Transition metals d) 3.5 d) F₂ d) H₂S d) N₂F₂ re: d) None of these y? Assume the availability d) 2 i d) 158 g
a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) O_3 221. Sulphur has the higher a) SO_2 222. Nitrogen has fraction a) N_2H_4 223. As the oxidation state a) Decreases 224. In acid medium Zn reverses 224. In acid medium Zn reverses 225. Weight of FeSO ₄ (moverse) a) 30.4 g 226. In the ionic equation $BiO_3^- + 6H^+ + xe^-r$ The values of x is a) 6	b) Non-metals f sulphur in sodium tetrathion b) 0 sidising agent? b) O_2 est oxidation state in : b) SO_3 al oxidation number in : b) NH_4 e for any metal increases, the f b) Increases educes nitrate ion to NH_4^+ ion $^+ + NH_4^+ + H_2O$ (unbalanced HCl are required to teduce hal b) 4 l. wt. = 152) oxidized by 200 f b) 15.2 g $^- \rightarrow Bi^{3+} + 3H_2O$ b) 2	 c) Metals hate (Na₂S₄O₆) is c) 2.5 c) Cl₂ c) H₂SO₃ c) HN₃ tendency to show ionic nature c) Remains same according to the reaction l) f a mole of NaNO₃ completel c) 3 mL of 1 <i>N</i> KMnO₄ solution is c) 60.8 g c) 4 	 d) Transition metals d) 3.5 d) F₂ d) H₂S d) N₂F₂ re: d) None of these
a) Metalloid 219. The oxidation state o a) 2 220. Which is strongest ox a) O_3 221. Sulphur has the higher a) SO_2 222. Nitrogen has fraction a) N_2H_4 223. As the oxidation state a) Decreases 224. In acid medium Zn re Zn + NO ₃ Zn ²⁺¹ How many moles of H of sufficient Zn. a) 5 225. Weight of FeSO ₄ (mo a) 30.4 g 226. In the ionic equation $BiO_3^- + 6H^+ + xe^-$ The values of x is a) 6 227. The reaction, $5H_2O_2$	b) Non-metals f sulphur in sodium tetrathion b) 0 didising agent? b) O_2 est oxidation state in : b) SO_3 eal oxidation number in : b) NH_4 e for any metal increases, the b) Increases educes nitrate ion to NH_4^+ ion $^+ + NH_4^+ + H_2O$ (unbalanced HCl are required to teduce hal b) 4 l. wt. = 152) oxidized by 200 f b) 15.2 g	c) Metals hate $(Na_2S_4O_6)$ is c) 2.5 c) Cl_2 c) H_2SO_3 c) HN_3 tendency to show ionic nature c) Remains same according to the reaction l) f a mole of NaNO ₃ completel c) 3 mL of 1 <i>N</i> KMnO ₄ solution is c) 60.8 g c) 4 $YO_2 + 6H_2O$ is balanced if :	 d) Transition metals d) 3.5 d) F₂ d) H₂S d) N₂F₂ re: d) None of these y? Assume the availability d) 2 i d) 158 g

228. What volume of 0.40 M Na ₂ S ₂ O ₃ would be require 50 mL of 0.20 M CuSO ₄ solution?	ed to react with the I_2 liber	rated by adding excess of KI to
a) 12.5 mL b) 25 mL	c) 50 mL	d) 2.5 mL
229. For the reaction, $2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4-}$	The normality of SnCl ₂	$_2$ (mol.wt. = 189.7) solution
prepared by dissolving 47.5 g in acid solution and	diluting with H ₂ O to a tota	l of 2.25 litre is :
a) 0.222 <i>N</i> b) 0.111 <i>N</i>	c) 0.333 <i>N</i>	d) 0.444 <i>N</i>
230. The eq.wt. of $Fe_2(SO_4)_3$, the salt to be used as an o	xidant in an acidic solution	1 is :
a) (Mol. wt.)/1 b) (Mol. wt.)/2	c) (Mol. wt.)/3	d) (Mol. wt.)/5
231. Oxalic acid on reacting with acidified $KMnO_4$ is ox	idised to :	
a) CO and H_2 b) CO ₂ and H_2	c) CO_2 and H_2O	d) CO and H_2O
232. The oxidation number of N and Cl in $NOClO_4$ resp	ectively are	
a) +2 and +7 b) +3 and +7	c) −3 and +5	d) +2 and -7
233. Sulphur in +3 oxidation state is present in		
a) Sulphurous acid b) Pyrosulphuric acid	c) Dithionous acid	d) Thiosulphuric acid
234. Among the properties (a) reducing, (b) oxidising	and (c) complexing the se	et of properties shown by CN ⁻
ion towards metal species is :		
a) a, b, c b) b, c	c) c, a	d) a, b
235. Magnesium reacts with acids producing hydroge	n and corresponding mag	nesium salts. In such reactions
magnesium undergoes :		
a) Oxidation		
b) Reduction		
c) Neither oxidation nor reduction		
d) Simple dissolution		
236. What volume of 0.1 <i>N</i> oxalic acid solution can b	e reduced by 250 g of an	8 per cent by weight KMnO ₄
solution?		
a) 6.3 litre b) 12.6 litre	c) 25.2 litre	d) 0.63 litre
	0) 2012 1101 0	
237. The oxidation state of $+3$ for phosphorus is in:	0, 2012 110 0	
a) Hypophosphorous acid	0, 2012 110 0	
a) Hypophosphorous acid b) Meta-phosphoric acid	c) _0 c	
a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid	c) _0 c	
a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid	-	
 a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution 	of potassium dichromate	
 a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chrometer 	of potassium dichromate	e, then chromium sulphate is
 a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chromal +4 to +2 b) +5 to +3 	of potassium dichromate ium is : c) +6 to +3	
 a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chroma a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are response of the solution of	of potassium dichromate ium is : c) +6 to +3 espectively :	e, then chromium sulphate is d) +7 to +2
 a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chroma a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are ra) +3, +5, +4 b) +4, +3, +5 	of potassium dichromate ium is : c) +6 to +3 espectively : c) +3, +4, +5	e, then chromium sulphate is
 a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chroma a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are ra a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate (S₂O₃²⁻) ions by iodine get a statement of the statement o	of potassium dichromate ium is : c) +6 to +3 espectively : c) +3, +4, +5 jives:	e, then chromium sulphate is d) +7 to +2 d) +5, +3, +4
 a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chroma a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are ra) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate (S₂O₃²⁻) ions by iodine gas a) SO₃⁻ 	of potassium dichromate ium is : c) +6 to +3 espectively : c) +3, +4, +5 ives: c) $S_40_6^{2-}$	e, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$
 a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chrome a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are real +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate (S₂O₃²⁻) ions by iodine general SO₃	of potassium dichromate ium is : c) +6 to +3 espectively : c) +3, +4, +5 fives: c) $S_4O_6^{2-}$ plution. The solution requi	e, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$
 a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chroma a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are railed a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate (S₂O₃²⁻) ions by iodine gas a) SO₃⁻ b) SO₄²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL secomplete oxidation. The % of oxalate ion in salt is 	of potassium dichromate ium is : c) +6 to +3 espectively : c) +3, +4, +5 fives: c) $S_4 O_6^{2-}$ plution. The solution requi	e, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ red 90 mL of <i>N</i> /20 KMnO ₄ for
 a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chroma a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are railed a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate (S₂O₃²⁻) ions by iodine gas a) SO₃⁻ b) SO₄²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL second complete oxidation. The % of oxalate ion in salt is: a) 33% b) 66% 	of potassium dichromate ium is : c) +6 to +3 espectively : c) +3, +4, +5 fives: c) $S_4O_6^{2-}$ plution. The solution requi c) 70%	e, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ red 90 mL of <i>N</i> /20 KMnO ₄ for d) 40%
a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO ₂ is passed through acidified solution formed. The change in oxidation number of chrom a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H ₄ P ₂ O ₅ , H ₄ P ₂ O ₆ , H ₄ P ₂ O ₇ are r a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate $(S_2O_3^{2^-})$ ions by iodine g a) SO ₃ b) SO ₄ ²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL so complete oxidation. The % of oxalate ion in salt is: a) 33% b) 66% 242. How many litre of Cl ₂ at STP will be liberated by the	of potassium dichromate ium is : c) +6 to +3 espectively : c) +3, +4, +5 jives: c) $S_4 O_6^{2-}$ plution. The solution requi c) 70% ne oxidation of NaCl with 1	e, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ red 90 mL of <i>N</i> /20 KMnO ₄ for d) 40% 0 g KMnO ₄ ?
 a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chroma a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are ra) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate (S₂O₃²⁻) ions by iodine gas) SO₃⁻ b) SO₄²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL so complete oxidation. The % of oxalate ion in salt is: a) 33% b) 66% 242. How many litre of Cl₂ at STP will be liberated by that a) 3.54 litre 	of potassium dichromate ium is : c) +6 to +3 espectively : c) +3, +4, +5 rives: c) $S_4O_6^{2-}$ plution. The solution requi c) 70% ne oxidation of NaCl with 1 c) 1.77 litre	e, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ red 90 mL of <i>N</i> /20 KMnO ₄ for d) 40% 0 g KMnO ₄ ? d) None of these
a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO ₂ is passed through acidified solution formed. The change in oxidation number of chrom a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H ₄ P ₂ O ₅ , H ₄ P ₂ O ₆ , H ₄ P ₂ O ₇ are r a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate $(S_2O_3^{2^-})$ ions by iodine g a) SO ₃ ⁻ b) SO ₄ ²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL se complete oxidation. The % of oxalate ion in salt is: a) 33% b) 66% 242. How many litre of Cl ₂ at STP will be liberated by th a) 3.54 litre b) 7.08 litre 243. What is the normality of a KMnO ₄ solution to be	of potassium dichromate ium is : c) +6 to +3 espectively : c) +3, +4, +5 ;ives: c) $S_4 O_6^{2-}$ plution. The solution requi c) 70% ne oxidation of NaCl with 1 c) 1.77 litre used as an oxidant in acid	e, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ red 90 mL of <i>N</i> /20 KMnO ₄ for d) 40% 0 g KMnO ₄ ? d) None of these
 a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chroma a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are ra) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate (S₂O₃²⁻) ions by iodine gas) SO₃⁻ b) SO₄²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL secomplete oxidation. The % of oxalate ion in salt is: a) 33% b) 66% 242. How many litre of Cl₂ at STP will be liberated by the algorithm of the normality of a KMnO₄ solution to be of the compound in 100 mL of solution? Mol. wt. or an algorithm of the compound in 100 mL of solution? Mol. wt. or algorithm of the compound in 100 mL of solution? Mol. wt. or algorithm of the compound in 100 mL of solution? 	of potassium dichromate ium is : c) +6 to +3 espectively : c) +3, +4, +5 vives: c) $S_4O_6^{2-}$ plution. The solution requi c) 70% ne oxidation of NaCl with 1 c) 1.77 litre used as an oxidant in acid f KMnO ₄ is 158 :	e, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ red 90 mL of <i>N</i> /20 KMnO ₄ for d) 40% 0 g KMnO ₄ ? d) None of these medium, which contain 15.8 g
 a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chroma a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are ra) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate (S₂O₃²⁻) ions by iodine gas) SO₃⁻ b) SO₄²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL secomplete oxidation. The % of oxalate ion in salt is: a) 33% b) 66% 242. How many litre of Cl₂ at STP will be liberated by the algorithm of Cl₂ at STP will be liberated by the algorithm of Cl₂ at STP will be liberated by the algorithm of Cl₂ at STP will be liberated by the algorithm of Cl₂ at STP will be liberated by the algorithm of Cl₂ at STP will be liberated by the algorithm of Cl₂ at STP will be liberated by the algorithm of Cl₂ at STP will be liberated by the algorithm of Cl₂ at STP will be liberated by the algorithm of Cl₂ at STP will be liberated by the algorithm of Cl₂ at STP will be liberated by the algorithm of Cl₂ at STP will be liberated by the algorithm of Cl₂ at STP will be liberated by the algorithm of Cl₂ at STP will be liberated by the algorithm of the compound in 100 mL of solution? Mol. wt. or algorithm of the compound in 100 mL of solution? Mol. wt. or algorithm of the compound in 100 mL of solution? Mol. wt. or algorithm of the compound in 100 mL of solution? Mol. wt. or algorithm of the compound in 100 mL of solution? Mol. wt. or algorithm of the compound in 100 mL of solution? Mol. wt. or algorithm of the compound in 100 mL of solution? Mol. wt. or algorithm of the compound in 100 mL of solution? Mol. wt. or algorithm of the compound in 100 mL of solution? Mol. wt. or algorithm of the compound in 100 mL of solution? Mol. wt. or algorithm of the compound in 100 mL of solution? <	of potassium dichromate ium is : c) +6 to +3 espectively : c) +3, +4, +5 ;ives: c) $S_4 O_6^{2-}$ plution. The solution requi c) 70% ne oxidation of NaCl with 1 c) 1.77 litre used as an oxidant in acid	e, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ red 90 mL of <i>N</i> /20 KMnO ₄ for d) 40% 0 g KMnO ₄ ? d) None of these
 a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chroma a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are r a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate (S₂O₃²⁻) ions by iodine g a) SO₃ b) SO₄²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL so complete oxidation. The % of oxalate ion in salt is: a) 33% b) 66% 242. How many litre of Cl₂ at STP will be liberated by the algorithm of Cl₂ at STP will be liberated by the algorithm of the compound in 100 mL of solution? Mol. wt. or a) 2 N b) 3 N 244. KMnO₄ in acid medium is always reduced to : 	of potassium dichromate ium is : c) +6 to +3 espectively : c) +3, +4, +5 ives: c) $S_4 O_6^{2-}$ olution. The solution requi c) 70% ne oxidation of NaCl with 1 c) 1.77 litre used as an oxidant in acid f KMnO ₄ is 158 : c) 4 <i>N</i>	e, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ red 90 mL of <i>N</i> /20 KMnO ₄ for d) 40% 0 g KMnO ₄ ? d) None of these medium, which contain 15.8 g d) 5 <i>N</i>
a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO ₂ is passed through acidified solution formed. The change in oxidation number of chrom a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H ₄ P ₂ O ₅ , H ₄ P ₂ O ₆ , H ₄ P ₂ O ₇ are r a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate $(S_2O_3^{2-})$ ions by iodine g a) SO ₃ ⁻ b) SO ₄ ²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL second complete oxidation. The % of oxalate ion in salt is: a) 33% b) 66% 242. How many litre of Cl ₂ at STP will be liberated by th a) 3.54 litre b) 7.08 litre 243. What is the normality of a KMnO ₄ solution to be of the compound in 100 mL of solution? Mol. wt. o a) 2 N b) 3 N 244. KMnO ₄ in acid medium is always reduced to : a) Mn ⁴⁺ b) Mn ²⁺	of potassium dichromate ium is : c) +6 to +3 espectively : c) +3, +4, +5 ives: c) $S_4O_6^{2-}$ plution. The solution requi c) 70% ne oxidation of NaCl with 1 c) 1.77 litre used as an oxidant in acid f KMnO ₄ is 158 : c) 4 <i>N</i> c) Mn ⁶⁺	e, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ red 90 mL of <i>N</i> /20 KMnO ₄ for d) 40% 0 g KMnO ₄ ? d) None of these medium, which contain 15.8 g d) 5 <i>N</i> d) Mn
 a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chroma a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are r a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate (S₂O₃²⁻) ions by iodine g a) SO₃ b) SO₄²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL so complete oxidation. The % of oxalate ion in salt is: a) 33% b) 66% 242. How many litre of Cl₂ at STP will be liberated by the algorithm of Cl₂ at STP will be liberated by the algorithm of the compound in 100 mL of solution? Mol. wt. or a) 2 N b) 3 N 244. KMnO₄ in acid medium is always reduced to : 	of potassium dichromate ium is : c) +6 to +3 espectively : c) +3, +4, +5 ives: c) $S_4O_6^{2-}$ plution. The solution requi c) 70% ne oxidation of NaCl with 1 c) 1.77 litre used as an oxidant in acid f KMnO ₄ is 158 : c) 4 <i>N</i> c) Mn ⁶⁺	e, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ red 90 mL of <i>N</i> /20 KMnO ₄ for d) 40% 0 g KMnO ₄ ? d) None of these medium, which contain 15.8 g d) 5 <i>N</i> d) Mn

246. What volume of 0.1 <i>M</i> KMnO ₄ is needed to oxidis	o 100 mg of FoC O in acidic	solution?
a) 4.1 mL b) 8.2 mL	c) 10.2 mL	d) 4.6 mL
247. Which one is not a redox titration?	C) 10.2 IIIL	u) 4.0 mL
a) FeSO ₄ vs. $K_2Cr_2O_7$ b) CuSO ₄ vs. hypo	c) L us huno	d) AgNO ₃ <i>vs</i> . KCl
248. A 0.518 g sample of lime stone is dissolved in H		,
filtering and washing the precipitate, it requires		
to titrate is as, $MnO_4^- + H^+ + C_2O_4^{2-} \rightarrow Mn^{2+} +$		
a) 54.0 % b) 27.1 %	c) 42%	d) 84%
249. The missing term in following equation is : $2Fe^{3+}$,	
a) Sn^{4+} b) Sn^{2+}	$(uq) \rightarrow 2re$ (uq) $\rightarrow 2re$ (uq) $\rightarrow 2re$ (uq)	d) None of these
250. Reaction of Br_2 with Na_2CO_3 in aqueous solution	,	,
evolution of CO_2 gas. The number of sodium bron		
equation is	inde molecules mvolved m ti	le balanceu chennical
a) 1 b) 3	c) 5	d) 7
251. Oxidation number of carbon in C_3O_2 , Mg_2C_3 are r	-	u) /
a) $-4/3$, $+4/3$ b) $+4/3$, $-4/3$	c) $-2/3$, $+2/3$	d) −2/3, + 4/3
252. The reaction; $KI + I_2 \rightarrow KI_3$ shows :	C) 2/3, 1 2/3	uj 2/3, 1 1 /3
a) Oxidation b) Reduction	c) Complex formation	d) All of these
253. The oxidation state of Cr in chromium trioxide is	c) complex formation	uj Ali ol tilese
a) $+3$ b) $+4$	c) +5	d) +6
254. Oxidation number of S in S_2Cl_2 is :	0,15	uj 10
a) +1 b) +6	c) Zero	d) —1
255. In which of the following N has lowest oxidation i	-	uj i
a) NO b) NO ₂	c) N_2O	d) $N_2 O_5$
256. 2 mole of FeSO ₄ are oxidized by 'X' mole of KMr	· -	, 1
$KMnO_4$. The ration f 'X' and 'Y' is :	104 whereas 2 more of reczy	54 are oxidized by T more of
a) 1:3 b) 1:2	c) 1:4	d) 1 : 5
$257. H_2S$ reacts with halogens, the halogens :	01.4	uj 1.5
	c) Form sulphur halides	d) None of these
258. In an experiment 50 mL of 0.1 <i>M</i> solution of a sal		
The half equation for the oxidation of sulphite ion		solution of sourain surplite.
$SO_3^{2-}(aq) + H_2O(l) \rightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2H^+(aq)$		
If the oxidation number of metal in the salt was 3		lation number of metal?
a) Zero b) 1	c) 2	d) 4
259. The most stable oxidation state of copper is :	0 2	uj +
a) $+2$ b) $+1$	c) +3	d) +4
260. White phosphorus reacts with caustic soda, the p		
example of		
a) Oxidation b) Reduction	c) Disproportionation	d) Neutralisation
261. When a sulphur atom becomes a sulphide ion :	c) Disproportionation	uj neutransation
a) It gains two electrons		
b) The mass number changes		
c) There is no change in the composition of atom		
d) None of the above		
262. Titre value is the volume of titrant used for a defi	nite amount of unknown rea	gent at its :
a) Equivalence point b) End point	c) Neutralization point	d) All of these
263. Oxidation states of <i>X</i> , <i>Y</i> , <i>Z</i> are $+2$, $+5$ and -2 resp	, .	
be	converger ormana or the com	r cana tormea by these wit
a) $X_2 Y Z_6$ b) $X Y_2 Z_6$	c) <i>XY</i> ₅	d) $X_3 Y Z_4$
264. In which compound, oxygen has an oxidation stat		/ 3 4
	· · · · · · · · · · · · · · · · · · ·	

a) H ₂ O ₂	b) H ₂ O	c) OF ₂	d) CO
	-	-	oxidise F^{2+} to F^{3+} in acidic
-	oxidant required for one mole		
a) $V_{KMnO_4} > V_{K_2Cr_2C}$			
b) $V_{KMnO_4} < V_{K_2Cr_2C}$			
c) $V_{KMnO_4} = V_{K_2Cr_2C}$			
d) Nothing can be p		le up 250 mL of a colution	of such strongth that 1 mL is
equivalent to 5.0 mg		ike up 250 mL of a solution	of such strength that 1 mL is
a) 1.414 g	b) 0.70 g	c) 3.16 g	d) 1.58 g
267. The oxidation numb	<i>y</i>	cj 5.10 g	u) 1.50 g
a) $+3$	b) -6	c) +6	d) -3
,	$_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2Na_2S_4O_6$,	,
a) Decreased	b) Increased	c) Unchanged	d) None of these
	$ht of KMnO_4$ (acidic medium)	, ,	2
a) 158	b) 15.8	c) 31.6	d) 3.16
	per of chromium in potassium		4) 0120
a) +2	b) +4	c) +6	d) +8
	sht of MnSO ₄ is half of its mole	,	,
a) Mn_2O_3	b) MnO ₂	c) MnO_4^-	d) Mn_4^{2-}
	SO_2 reacts with H ₂ S to precip	<i>,</i> .	, i
a) Catalyst	b) Reducing agent		d) Acid
273. Saline hydrides are			-)
a) Strong oxidants			
b) Strong reductants	S		
c) Strong dehydrati			
d) Strong bleaching			
274. State the oxidation r	number of carbonyl carbon in	methanal and methanoic ac	id respectively
a) 0 and 0	b) 0 and +2	c) +1 and +2	d) +1 and +3
275. The eq. wt. of I_2 in the	he change $I_2 \rightarrow IO_3^-$ is :		
a) 12.7	b) 63.5	c) 25.4	d) 2.54
276. Equivalent mass of o	oxidizing agent in the reaction	is.	
$SO_2 + 2H_2S \rightarrow 3S -$	+ 2H ₂ O		
a) 32	b) 64	c) 16	d) 8
277. In a conjugate pair o	of reductant and oxidant, the r	eductant has :	
a) Lower ox.no.	b) Higher ox.no.	c) Same ox.no.	d) Either of these
	wing reactions, hydrogen is a	cting as an oxidising agent?	
a) With Li to form L	,	c) With S to give H ₂ S	d) None of the above
	es of Mohr's salt required per a	mole of dichromate ion is :	
a) 3	b) 4	c) 5	d) 6
-	ole of Fe ²⁺ ion to Fe, the numb		
a) 2	b) 1	c) 1.5	d) 4
	$\rightarrow \text{Co}^{2+}(aq) + \text{Cu}(s)$. This rea		
a) Oxidation reactio		c) Redox reaction	d) None of these
282. The oxidation state			
a) +7	b) —1	c) +5	d) +1
283. The oxidation numb			
a) -3	b) +3	c) Zero	d) 5
	ted into Mn ⁷⁺ by reacting with		
a) SO ₂	b) Cl ₂	c) PbO ₂	d) SnCl ₂

285. The oxidation numb	per of Ni in $K_4[Ni(CN)_4]$ is :		
a) +1	b) +2	c) -1	d) 0
286. Which change occur	when lead monoxide is conv	erted into lead nitrate?	-
a) Oxidation			
b) Reduction			
c) Neither oxidation	n nor reduction		
d) Both oxidation a	nd reduction		
287. How many mole of	electron are involved in the r	eduction of one mole of Mi	nO_4^- ion in alkaline medium to
$MnO_3^-?$			
a) 2	b) 1	c) 3	d) 4
288. The oxidation numb	per of Fe in K ₄ Fe(CN) ₆ is :		
a) +2	b) +3	c) +4	d) +6
	$_3 + 0Cl^- \rightarrow N_2H_4 + Cl^-$		
	nedium, the coefficient of N ₂ H		
a) 1	b) 2	c) 3	d) 4
290. In the reaction H_2O			
a) H_2S is an acid and			
b) H_2S is a base and			
	ig agent and H_2O_2 is a reducin		
	agent and H_2O_2 is an oxidisin		
	verted into H_2SO_4 the change		
a) 0 to $+2$	b) $+2$ to $+4$	c) +4 to +2	d) +4 to +6
a) +1	ber of nitrogen in NH ₂ OH is : b) –1	c) -3	d) -2
,	,	,	valent weight of $CuSO_4$ to its
molecular weight is			alent weight of Cu304 to its
morecular weight is	•		
a) 1/8		c) 1/2	d) 1
a) 1/8 294. In the reaction betw	b) 1/4	c) 1/2 on (II) ions shown by the eq	d) 1 mation : $Cr_2 O_2^{2^-}(aa) +$
294. In the reaction betw	b) 1/4 veen acidified K ₂ Cr ₂ O ₇ and irc	on (II) ions shown by the eq	
294. In the reaction betw $6 \text{ Fe}^{2+}(aq) + 14 \text{H}^+$	b) $1/4$ ween acidified K ₂ Cr ₂ O ₇ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$	on (II) ions shown by the eq) + 6Fe ³⁺ (aq)	
294. In the reaction betw $6 \text{ Fe}^{2+}(aq) + 14 \text{H}^+$	b) $1/4$ ween acidified K ₂ Cr ₂ O ₇ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green	on (II) ions shown by the eq) + 6Fe ³⁺ (aq)	
294. In the reaction betw 6 Fe ²⁺ (aq) + 14H ⁺ a) The colour of the	b) $1/4$ ween acidified K ₂ Cr ₂ O ₇ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green are reduced	on (II) ions shown by the eq) + 6Fe ³⁺ (aq)	
294. In the reaction betw $6 \text{ Fe}^{2+}(aq) + 14\text{H}^+$ a) The colour of the b) The iron (II) ions	b) $1/4$ ween acidified K ₂ Cr ₂ O ₇ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green are reduced ions are reduced	on (II) ions shown by the eq) + 6Fe ³⁺ (aq)	
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\mathrm{H}^+$ a) The colour of the b) The iron (II) ions c) The dichromate i d) Hydrogen ions an	b) $1/4$ ween acidified K ₂ Cr ₂ O ₇ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green are reduced ions are reduced	on (II) ions shown by the eq) + $6Fe^{3+}(aq)$ to blue	uation : $Cr_2 O_7^{2-} (aq) +$
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\mathrm{H}^+$ a) The colour of the b) The iron (II) ions c) The dichromate i d) Hydrogen ions an	b) $1/4$ ween acidified K ₂ Cr ₂ O ₇ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green s are reduced ions are reduced re reduced	on (II) ions shown by the eq) + $6Fe^{3+}(aq)$ to blue	uation : $Cr_2 O_7^{2-} (aq) +$
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\mathrm{H}^+$ a) The colour of the b) The iron (II) ions c) The dichromate i d) Hydrogen ions an 295. Which is the reducin	b) $1/4$ ween acidified K ₂ Cr ₂ O ₇ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green s are reduced ions are reduced re reduced ing agent in the reaction, 8H ⁺ - b) Cl ⁻	on (II) ions shown by the eq) + 6Fe ³⁺ (aq) to blue + $4NO_3^- + 6Cl^- + Sn(s) \rightarrow$	SnCl ₆ ²⁻ + 4NO ₂ + 4H ₂ O?
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\mathrm{H}^+$ a) The colour of the b) The iron (II) ions c) The dichromate i d) Hydrogen ions an 295. Which is the reducin a) Sn(s) 296. Which is a redox reaction	b) $1/4$ ween acidified K ₂ Cr ₂ O ₇ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green s are reduced ions are reduced re reduced ing agent in the reaction, 8H ⁺ - b) Cl ⁻	on (II) ions shown by the eq) + 6Fe ³⁺ (aq) to blue + $4NO_3^- + 6Cl^- + Sn(s) \rightarrow$	SnCl ₆ ²⁻ + 4NO ₂ + 4H ₂ O?
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\operatorname{H}^{+}$ a) The colour of the b) The iron (II) ions c) The dichromate i d) Hydrogen ions an 295. Which is the reducin a) Sn(s) 296. Which is a redox real a) H ₂ SO ₄ + 2NaOH b) BaCl ₂ + H ₂ SO ₄ -	b) $1/4$ veen acidified $K_2Cr_2O_7$ and iro $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green s are reduced ions are reduced re reduced ng agent in the reaction, $8H^+ - b$) Cl^- action? $\rightarrow Na_2SO_4 + 2H_2O$ $\rightarrow BaSO_4 + 2HCl$	on (II) ions shown by the eq) + 6Fe ³⁺ (aq) to blue + $4NO_3^- + 6Cl^- + Sn(s) \rightarrow$	SnCl ₆ ²⁻ + 4NO ₂ + 4H ₂ O?
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\operatorname{H}^{+}$ a) The colour of the b) The iron (II) ions c) The dichromate i d) Hydrogen ions an 295. Which is the reducin a) Sn(s) 296. Which is a redox real a) H ₂ SO ₄ + 2NaOH b) BaCl ₂ + H ₂ SO ₄ - c) CH ₃ COOH + C ₂ H	b) $1/4$ veen acidified $K_2Cr_2O_7$ and iro $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green s are reduced ions are reduced re reduced re reduced ng agent in the reaction, $8H^+ - b$) Cl^- action? $\rightarrow Na_2SO_4 + 2H_2O$ $\rightarrow BaSO_4 + 2HCl$ $_5OH \rightarrow CH_3COOC_2H_5 + H_2O$	on (II) ions shown by the eq) + 6Fe ³⁺ (aq) to blue + $4NO_3^- + 6Cl^- + Sn(s) \rightarrow$	SnCl ₆ ²⁻ + 4NO ₂ + 4H ₂ O?
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\operatorname{H}^{+}$ a) The colour of the b) The iron (II) ions c) The dichromate i d) Hydrogen ions an 295. Which is the reducin a) Sn(s) 296. Which is a redox rea a) H ₂ SO ₄ + 2NaOH b) BaCl ₂ + H ₂ SO ₄ - c) CH ₃ COOH + C ₂ H d) 2FeCl ₃ + SnCl ₂ -	b) $1/4$ veen acidified $K_2Cr_2O_7$ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green s are reduced ions are reduced re reduced ng agent in the reaction, $8H^+ - b$) Cl^- action? $\rightarrow Na_2SO_4 + 2H_2O$ $\rightarrow BaSO_4 + 2H_2O$ $\rightarrow BaSO_4 + 2HCl$ $_5OH \rightarrow CH_3COOC_2H_5 + H_2O$ $\rightarrow 2FeCl_2 + SnCl_4$	on (II) ions shown by the eq $(1) + 6Fe^{3+}(aq)$ to blue $(4) + 4NO_3^- + 6Cl^- + Sn(s) \rightarrow $	SnCl ₆ ²⁻ + 4NO ₂ + 4H ₂ O?
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\operatorname{H}^+$ a) The colour of the b) The iron (II) ions c) The dichromate i d) Hydrogen ions an 295. Which is the reducin a) Sn(s) 296. Which is a redox real a) H ₂ SO ₄ + 2NaOH b) BaCl ₂ + H ₂ SO ₄ - c) CH ₃ COOH + C ₂ H d) 2FeCl ₃ + SnCl ₂ - 297. Which one of the for	b) $1/4$ veen acidified $K_2Cr_2O_7$ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green s are reduced ions are reduced re reduced ng agent in the reaction, $8H^+ - b$) Cl^- action? $\rightarrow Na_2SO_4 + 2H_2O$ $\rightarrow BaSO_4 + 2HCl$ $_5OH \rightarrow CH_3COOC_2H_5 + H_2O$ $\rightarrow 2FeCl_2 + SnCl_4$ llowing reactions involves disp	on (II) ions shown by the eq) + $6Fe^{3+}(aq)$ to blue + $4NO_3^- + 6Cl^- + Sn(s) \rightarrow$ c) NO_3^- proportionation?	uation : $Cr_2O_7^{2-}(aq) +$ $SnCl_6^{2-} + 4NO_2 + 4H_2O?$ d) $NO_2(g)$
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\operatorname{H}^{+}$ a) The colour of the b) The iron (II) ions c) The dichromate i d) Hydrogen ions an 295. Which is the reducin a) Sn(s) 296. Which is a redox rea a) H ₂ SO ₄ + 2NaOH b) BaCl ₂ + H ₂ SO ₄ - c) CH ₃ COOH + C ₂ H d) 2FeCl ₃ + SnCl ₂ - 297. Which one of the for a) 2H ₂ SO ₄ + Cu	b) $1/4$ veen acidified $K_2Cr_2O_7$ and iro $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green s are reduced ions are reduced re reduced ng agent in the reaction, $8H^+ - b$) Cl^- action? $\rightarrow Na_2SO_4 + 2H_2O$ $\rightarrow BaSO_4 + 2H_2O$ $\rightarrow BaSO_4 + 2HCl$ $_5OH \rightarrow CH_3COOC_2H_5 + H_2O$ $\rightarrow 2FeCl_2 + SnCl_4$ llowing reactions involves disp $CuSO_4 + 2H_2O + SO_2$	on (II) ions shown by the eq $(1) + 6Fe^{3+}(aq)$ to blue $(4) + 4NO_3^- + 6Cl^- + Sn(s) \rightarrow$	yuation : $Cr_2O_7^{2-}(aq) +$ SnCl ₆ ²⁻ + 4NO ₂ + 4H ₂ O? d) NO ₂ (g) As ₂ S ₃ + 3H ₂ O
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\operatorname{H}^{+}$ a) The colour of the b) The iron (II) ions c) The dichromate i d) Hydrogen ions an 295. Which is the reducin a) Sn(s) 296. Which is a redox real a) H ₂ SO ₄ + 2NaOH b) BaCl ₂ + H ₂ SO ₄ - c) CH ₃ COOH + C ₂ H d) 2FeCl ₃ + SnCl ₂ - 297. Which one of the for a) 2H ₂ SO ₄ + Cu c) 2KOH + Cl ₂	b) $1/4$ veen acidified $K_2Cr_2O_7$ and iro $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green s are reduced ions are reduced re reduced ng agent in the reaction, $8H^+ - b$) Cl^- action? $\rightarrow Na_2SO_4 + 2H_2O$ $\rightarrow BaSO_4 + 2HCl$ $_5OH \rightarrow CH_3COOC_2H_5 + H_2O$ $\rightarrow 2FeCl_2 + SnCl_4$ llowing reactions involves disp $CuSO_4 + 2H_2O + SO_2$ $KCl + KOCl + H_2O$	on (II) ions shown by the eq) + 6Fe ³⁺ (aq) to blue + 4NO ₃ ⁻ + 6Cl ⁻ + Sn(s) → c) NO ₃ ⁻ proportionation? b) As ₂ O ₃ + 3H ₂ S d) Ca ₃ P ₂ + 6H ₂ O	Putation : $Cr_2O_7^{2-}(aq) +$ $SnCl_6^{2-} + 4NO_2 + 4H_2O?$ d) $NO_2(g)$ $As_2S_3 + 3H_2O$ $3Ca(OH)_2 + 2PH_3$
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\operatorname{H}^{+}$ a) The colour of the b) The iron (II) ions c) The dichromate i d) Hydrogen ions an 295. Which is the reducin a) Sn(s) 296. Which is a redox rea a) H ₂ SO ₄ + 2NaOH b) BaCl ₂ + H ₂ SO ₄ - c) CH ₃ COOH + C ₂ H d) 2FeCl ₃ + SnCl ₂ - 297. Which one of the for a) 2H ₂ SO ₄ + Cu c) 2KOH + Cl ₂ 298. The oxidation state	b) $1/4$ veen acidified $K_2Cr_2O_7$ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green s are reduced ions are reduced re reduced ng agent in the reaction, $8H^+ -$ b) Cl ⁻ action? $\rightarrow Na_2SO_4 + 2H_2O$ $\rightarrow BaSO_4 + 2H_2O$ $\rightarrow BaSO_4 + 2HCl$ $_5OH \rightarrow CH_3COOC_2H_5 + H_2O$ $\rightarrow 2FeCl_2 + SnCl_4$ llowing reactions involves disp $CuSO_4 + 2H_2O + SO_2$ $KCl + KOCl + H_2O$ of chromium in the final prod	on (II) ions shown by the eq) + 6Fe ³⁺ (aq) to blue + 4NO ₃ ⁻ + 6Cl ⁻ + Sn(s) → c) NO ₃ ⁻ proportionation? b) As ₂ O ₃ + 3H ₂ S d) Ca ₃ P ₂ + 6H ₂ O	Putation : $Cr_2O_7^{2-}(aq) +$ $SnCl_6^{2-} + 4NO_2 + 4H_2O?$ d) $NO_2(g)$ $As_2S_3 + 3H_2O$ $3Ca(OH)_2 + 2PH_3$
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\operatorname{H}^{+}$ a) The colour of the b) The iron (II) ions c) The dichromate i d) Hydrogen ions and 295. Which is the reducin a) Sn(s) 296. Which is a redox reaction a) H ₂ SO ₄ + 2NaOH b) BaCl ₂ + H ₂ SO ₄ - c) CH ₃ COOH + C ₂ H d) 2FeCl ₃ + SnCl ₂ - 297. Which one of the for a) 2H ₂ SO ₄ + Cu c) 2KOH + Cl ₂ 298. The oxidation state potassium dichrom	b) $1/4$ veen acidified $K_2Cr_2O_7$ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green s are reduced ions are reduced re reduced ing agent in the reaction, $8H^+ - b$) Cl^- action? $\rightarrow Na_2SO_4 + 2H_2O$ $\rightarrow BaSO_4 + 2HCl$ $_5OH \rightarrow CH_3COOC_2H_5 + H_2O$ $\rightarrow 2FeCl_2 + SnCl_4$ llowing reactions involves disp $CuSO_4 + 2H_2O + SO_2$ $KCl + KOCl + H_2O$ of chromium in the final prod ate solution is	on (II) ions shown by the eq) + $6Fe^{3+}(aq)$ to blue + $4NO_3^- + 6Cl^- + Sn(s) \rightarrow$ c) NO_3^- proportionation? b) $As_2O_3 + 3H_2S$ d) $Ca_3P_2 + 6H_2O$ uct formed by the reaction b	Putation : $Cr_2O_7^{2-}(aq) +$ $SnCl_6^{2-} + 4NO_2 + 4H_2O?$ d) $NO_2(g)$ $As_2S_3 + 3H_2O$ $3Ca(OH)_2 + 2PH_3$ between KI and acidified
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\operatorname{H}^{+}$ a) The colour of the b) The iron (II) ions c) The dichromate i d) Hydrogen ions an 295. Which is the reducin a) Sn(s) 296. Which is a redox rea a) H ₂ SO ₄ + 2NaOH b) BaCl ₂ + H ₂ SO ₄ - c) CH ₃ COOH + C ₂ H d) 2FeCl ₃ + SnCl ₂ - 297. Which one of the for a) 2H ₂ SO ₄ + Cu c) 2KOH + Cl ₂ 298. The oxidation state potassium dichrom a) +3	b) $1/4$ veen acidified $K_2Cr_2O_7$ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green s are reduced ions are reduced re reduced re reduced ng agent in the reaction, $8H^+ - b$) Cl^- action? $\rightarrow Na_2SO_4 + 2H_2O$ $\rightarrow BaSO_4 + 2HCl$ $_5OH \rightarrow CH_3COOC_2H_5 + H_2O$ $\rightarrow 2FeCl_2 + SnCl_4$ llowing reactions involves disp $CuSO_4 + 2H_2O + SO_2$ $KCl + KOCl + H_2O$ of chromium in the final prod ate solution is b) $+2$	on (II) ions shown by the eq) + $6Fe^{3+}(aq)$ to blue + $4NO_3^- + 6Cl^- + Sn(s) \rightarrow$ c) NO_3^- proportionation? b) $As_2O_3 + 3H_2S$ d) $Ca_3P_2 + 6H_2O$ uct formed by the reaction 1 c) +6	Putation : $Cr_2O_7^{2-}(aq) +$ $SnCl_6^{2-} + 4NO_2 + 4H_2O?$ d) $NO_2(g)$ $As_2S_3 + 3H_2O$ $3Ca(OH)_2 + 2PH_3$
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\operatorname{H}^{+}$ a) The colour of the b) The iron (II) ions c) The dichromate i d) Hydrogen ions and 295. Which is the reducin a) Sn(s) 296. Which is a redox real a) H ₂ SO ₄ + 2NaOH b) BaCl ₂ + H ₂ SO ₄ - c) CH ₃ COOH + C ₂ H d) 2FeCl ₃ + SnCl ₂ - 297. Which one of the form a) 2H ₂ SO ₄ + Cu c) 2KOH + Cl ₂ 298. The oxidation state potassium dichrom a) +3 299. Which of the follow	b) $1/4$ veen acidified $K_2Cr_2O_7$ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green s are reduced ions are reduced re reduced ng agent in the reaction, $8H^+ - b$) Cl^- action? $\rightarrow Na_2SO_4 + 2H_2O$ $\rightarrow BaSO_4 + 2HCl$ $_5OH \rightarrow CH_3COOC_2H_5 + H_2O$ $\rightarrow 2FeCl_2 + SnCl_4$ llowing reactions involves disp $CuSO_4 + 2H_2O + SO_2$ $KCl + KOCl + H_2O$ of chromium in the final prod ate solution is b) $+2ing acts as an oxidising as wel$	on (II) ions shown by the eq) + $6Fe^{3+}(aq)$ to blue + $4NO_3^- + 6Cl^- + Sn(s) \rightarrow$ c) NO_3^- proportionation? b) $As_2O_3 + 3H_2S$ d) $Ca_3P_2 + 6H_2O$ uct formed by the reaction 1 c) +6 l as reducing agent?	Putation : $Cr_2O_7^{2-}(aq) +$ $SnCl_6^{2-} + 4NO_2 + 4H_2O?$ d) $NO_2(g)$ $As_2S_3 + 3H_2O$ $3Ca(OH)_2 + 2PH_3$ between KI and acidified d) +4
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\operatorname{H}^{+}$ a) The colour of the b) The iron (II) ions c) The dichromate in d) Hydrogen ions an 295. Which is the reducin a) Sn(s) 296. Which is a redox real a) H ₂ SO ₄ + 2NaOH b) BaCl ₂ + H ₂ SO ₄ - c) CH ₃ COOH + C ₂ H d) 2FeCl ₃ + SnCl ₂ - 297. Which one of the follow a) 2H ₂ SO ₄ + Cu c) 2KOH + Cl ₂ 298. The oxidation state potassium dichrom a) +3 299. Which of the follow a) Na ₂ O	b) $1/4$ veen acidified $K_2Cr_2O_7$ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green s are reduced ions are reduced re reduced re reduced ng agent in the reaction, $8H^+ - b$) Cl^- action? $\rightarrow Na_2SO_4 + 2H_2O$ $\rightarrow BaSO_4 + 2HCl$ $_5OH \rightarrow CH_3COOC_2H_5 + H_2O$ $\rightarrow 2FeCl_2 + SnCl_4$ llowing reactions involves disp $CuSO_4 + 2H_2O + SO_2$ $KCl + KOCl + H_2O$ of chromium in the final prod ate solution is b) $+2ing acts as an oxidising as welfb) Na_2O_2$	on (II) ions shown by the eq) + $6Fe^{3+}(aq)$ to blue + $4NO_3^- + 6Cl^- + Sn(s) \rightarrow$ c) NO_3^- proportionation? b) $As_2O_3 + 3H_2S$ d) $Ca_3P_2 + 6H_2O$ uct formed by the reaction 1 c) +6	Putation : $Cr_2O_7^{2-}(aq) +$ $SnCl_6^{2-} + 4NO_2 + 4H_2O?$ d) $NO_2(g)$ $As_2S_3 + 3H_2O$ $3Ca(OH)_2 + 2PH_3$ between KI and acidified
294. In the reaction betw $6 \operatorname{Fe}^{2+}(aq) + 14\operatorname{H}^{+}$ a) The colour of the b) The iron (II) ions c) The dichromate i d) Hydrogen ions and 295. Which is the reducin a) Sn(s) 296. Which is a redox real a) H ₂ SO ₄ + 2NaOH b) BaCl ₂ + H ₂ SO ₄ - c) CH ₃ COOH + C ₂ H d) 2FeCl ₃ + SnCl ₂ - 297. Which one of the form a) 2H ₂ SO ₄ + Cu c) 2KOH + Cl ₂ 298. The oxidation state potassium dichrom a) +3 299. Which of the follow	b) $1/4$ veen acidified $K_2Cr_2O_7$ and irc $(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ solution changes from green s are reduced ions are reduced re reduced re reduced ng agent in the reaction, $8H^+ - b$) Cl^- action? $\rightarrow Na_2SO_4 + 2H_2O$ $\rightarrow BaSO_4 + 2HCl$ $_5OH \rightarrow CH_3COOC_2H_5 + H_2O$ $\rightarrow 2FeCl_2 + SnCl_4$ llowing reactions involves disp $CuSO_4 + 2H_2O + SO_2$ $KCl + KOCl + H_2O$ of chromium in the final prod ate solution is b) $+2ing acts as an oxidising as welfb) Na_2O_2$	on (II) ions shown by the eq) + $6Fe^{3+}(aq)$ to blue + $4NO_3^- + 6Cl^- + Sn(s) \rightarrow$ c) NO_3^- proportionation? b) $As_2O_3 + 3H_2S$ d) $Ca_3P_2 + 6H_2O$ uct formed by the reaction 1 c) +6 l as reducing agent?	Putation : $Cr_2O_7^{2-}(aq) +$ $SnCl_6^{2-} + 4NO_2 + 4H_2O?$ d) $NO_2(g)$ $As_2S_3 + 3H_2O$ $3Ca(OH)_2 + 2PH_3$ between KI and acidified d) +4

301. Which compound has oxidation number of carbon	-	
a) C_6H_6 b) CH_3	c) C ₂ H ₄	d) $C_6 H_{12} O_6$
302. In the reaction, $2KMnO_4 + 16HCl \rightarrow 2KCl + 2MnO_4$	$Cl_2 + 8H_2O + 5Cl_2$, the redu	iction product is :
a) Cl ₂ b) MnCl ₂	c) KCl	d) H ₂ O
303. The oxidation number of phosphorus in $Mg_2P_2O_7$ i	s :	
a) + 5 b) - 5	c) +6	d) — 7
304. 1 mole of chlorine combines with a certain weig	,	
weight of the metal (assuming its valency to be 2)		
a) 40 b) 20	c) 80	d) None of these
305. Oxidation state of chromium	cj 00	u) None of these
Ĭ\ _Ĭ		
Cr		
o' II `o		
a) +10 b) +6	c) +3	d) +2
	•	
306. Oxidation states of the metal in the minerals haema		
a) II, III in haematite and III in magnetite	b) II, III in haematite and	0
c) II in haematite and II, III in magnetite	d) III in haematite and I	
307. The colour of $K_2Cr_2O_7$ changes from red-orange to	lemon-yellow on treatmer	it with KOH(<i>aq</i>) because of :
a) Reduction of Cr(VI) to Cr(III)		
b) Formation of chromium hydroxide		
c) Conversion of dichromate into chromate ion		
d) Oxidation of potassium hydroxide to potassium	peroxide	
308. How many electrons are involved in oxidation of K	MnO ₄ in basic medium?	
a) 1 b) 2	c) 5	d) 3
309. The oxidation state of nitrogen in NH_4NO_3 is :		-
a) -3 and $+5$ b) $+3$ and $+5$	c) +5	d) +3
310. When Sn(IV) chloride is treated with excess HCl,	-	2
Sn in this complex is:	ene compren [one-6] to re	
a) $+6$ b) -2	c) +4	d) —5
311. Oxidation number of chlorine in HOCl is :	C) 11	u) 5
	a) + 1	4) + 2
,	c) +1	d) +2
312. In the reaction, $C + 4HNO_3 \rightarrow CO_2 + 2H_2O + 4NO_3$	V_2 , HNO ₃ acts as :	
a) An oxidising agent		
b) An acid		
c) An acid as well as oxidising agent		
d) A reducing agent		
313. Change of hydrogen into proton is :		
a) Oxidation of hydrogen		
b) Acid-base reaction		
c) Reduction of hydrogen		
d) Displacement reaction		
314.8 g of sulphur are burnt to form SO_2 which is ox	idised by Cl_2 water. The s	olution is treated with BaCl ₂
solution. The amount of BaSO ₄ precipitated is :		
a) 1.0 mole b) 0.5 mole	c) 0.24 mole	d) 0.25 mole
315. The number of mole of ferrous oxalate oxidised by	_	~
a) 1/5 b) 3/5	c) 2/3	d) 5/3
316. Reactants react in the equal number of to give		
a) Mole b) Weights	c) Equivalent	d) All of these
317. Mole and millimole of reactants react in thea		2
	is represented by Datanced	storemonieti le equation.

a) Molar ratio	, i	c) Both (a) and (b)	-
		• · ·	ong with another phosphorus
containing compound	d. The reaction type the ox	idation states of phosphoru	s in phosphine and the other
product are respectiv			
a) Redox reaction; –	3 and -5		
b) Redox reaction; +	3 and +5		
c) Disproportionatio	n reaction; -3 and $+1$		
d) Disproportionatio	n reaction; -3 and $+3$		
319. Which can act only as	s oxidising agent?		
a) Oxygen	b) Fluorine	c) Iodine	d) H_2O_2
320. For the reaction : N_2	$+ 3H_2 \rightarrow 2NH_3$; if E_1 and	E_2 are equivalent masses of	NH_3 and N_2 respectively, then
$E_1 - E_2$ is :			
a) 1	b) 2	c) 3	d) 4
321. Bleaching action of S	O_2 is due to :	-	-
a) Reduction	b) Oxidation	c) Hydrolysis	d) Acidic nature
322. In $N_2 + 2H_2O \rightarrow NH$,	, , , , , , , , , , , , , , , , , , , ,	,
a) Oxidised	b) Reduced	c) Both (a) and (b)	d) None of these
-	-	final oxidation number will	-
a) Zero	b) +6	c) +2	d) +4
324. In the reaction, NaH	,	0) 1 2	
a) H ⁻ is oxidised			
b) Na ⁺ is reduced			
c) Both NaH and H_2C) are reduced		
d) None of the above			
	ng acts as an oxidizing agent	2	
			d) All of these
a) HNO_3	b) Cl ₂	c) FeCl ₃	d) All of these
		which requires 40 mL, or 0	$11 N \text{ Na}_2\text{S}_2\text{O}_3$ to react with it,
$S_2 O_3^{2-} + I_2 \rightarrow S_4 O_6^{2-}$			
a) 12.7 g	b) 0.558 g	, 0	, e
	of KMnO ₄ that will be need	ed to react with one mole of	sulphite ion in acidic solution
is:			
a) 2/5	b) 3/5	c) 4/5	d) 1
-			as an oxidising agent in the
	$0_3 \rightarrow 3Cu(NO_3)_2 + 2NO +$		
a) 63 g	b) 21 g	c) 42 g	d) 84 g
	f two sulphur atoms in H_2S_2	20 ₈	
a) —6	b) -2	c) +6	d) -4
330. In a conjugate pair of	reductant and oxidant, the	oxidant has :	
a) Higher ox.no.	b) Lower ox.no.	c) Same ox.no.	d) Either of these
331. In the equation, H_2S	$+ 2HNO_3 \rightarrow 2H_2O + 2NO_2$	+ S. The equivalent weight	of hydrogen sulphide is :
a) 17	b) 34	c) 68	d) 18
332. In which transfer of f	ive electrons takes place?		
a) $MnO_4^- \rightarrow Mn^{2+}$	b) $CrO_4^{2-} \rightarrow Cr^{3+}$	c) $MNO_4^- \rightarrow MnO_2$	d) $\operatorname{Cr}_2\operatorname{O}_7^{2-} \longrightarrow 2\operatorname{Cr}^{3+}$
333. Oxidation number of	nitrogen is highest in		
a) N ₃ H	b) N ₂ O ₄	c) NH ₂ OH	d) NH ₃
334. Starch gives blue colo	our with :		
a) KI	b) I ₂	c) Cl ₂	d) None of these
	, 1	· -	by one mole of permanganate
ion is :	· · · · · · · · · · · · · · · · · · ·		
a) 2/5	b) 4/5	c) 1	d) 5/4

336. When an acidifi oxidised is :	ed solution of ferrous ammon	ium sulphate is treated with KM	nO_4 solution, the ion which is
a) Fe ²⁺	b) SO ₄ ²⁻	c) NH ₄ ⁺	d) MnO ₄
337. Oxidation numb		0, 1114	aj 111104
a) -3	b) +3	c) Zero	d) -1/3
-	,	mposes on warming to give oxyg	<i>,</i>
$2H_2O_2(aq) \rightarrow$		itions where one mole of gas occu	
a) 2.5	b) 1	c) 0.5	d) 0.25
339. $CuSO_4$ and KI or			
		c) $Cu_2I_2 + K_2SO_4 + I_2$	d) $CuI_2 + K_2SO_4 + I_2$
340. Which metal ex	hibits more than one oxidation		
a) Na	b) Mg	c) Al	d) Fe
		nost common among the lanthan	
a) 4	b) 2	c) 5	d) 3
	m changes to Al ³⁺ in solution	by losing :	
a) 18×10^{23} e			
b) 6.023×10^2			
c) 3.01×10^{23}			
d) 9 \times 10 ²³ ele			
343. In CH ₂ Cl ₂ , the o	xidation number of C is :		
a) –4	b) +2	c) Zero	d) +4
344. In the compoun	ds $KMnO_4$ and $K_2Cr_2O_7$, the h	ighest oxidation state is of the el	ement
a) Mn	b) K	c) 0	d) Cr
345. The oxidation s	tate of nitrogen varies from :		
a) -3 to +5	b) 0 to +5	c) -3 to 1	d) +3 to +5
346. The oxidation s	tate of hydrogen in CaH ₂ is :		
a) +1	b) —1	c) Zero	d) +2
347. The most comm	non oxidation state of an elem	nent is -2 . The number of electr	rons present in its outermost
shell is :			
a) 2	b) 4	c) 6	d) 8
348. A good indicato	r must possess the following o	characteristics :	
a) The colour cl	nange should be sharp		
b) The colour cl	nange should be clear		
c) It must be se	nsitive to the equivalent point	t	
d) All of the abo	ve		
349. The oxidation r	number of Xe in XeF ₄ and XeO	₂ is	
a) +6	b) +4	c) +1	d) +3
350. The oxidation n	umber of arsenic in arsenate i	is :	
a) +5	b) +4	c) +6	d) +2
	$(s) \rightleftharpoons 2Ag^+(aq)$		
is an example of			
a) Reduction	b) Oxidation	c) Disproportionation	d) None of these
a) SO ₂ and H ₂ S		kture, on addition of dil. H ₂ SO ₄ , o	ne notice that:
S I brown		goes a redox change forming collo	oidal sulphur and thus, no
smell			
c) A smell of bu			
d) A smell of rot	tten egg		

252 Which is not an avidising ago	n+?		
353. Which is not an oxidising age a) KClO ₃ b)		c) C ₆ H ₁₂ O ₆	d) K ₂ Cr ₂ O ₇
354. The charge on cobalt in [Co(C	=	c_{1206}	uj K201207
		c) —3	d) +6
355. The most stable oxidation sta			uj to
		c) + 2	d) + 4
356. Arrange the following as incr		,	
$(i)Mn^{2+}$ $(ii)MnO_2$		-	
(iii) $KMnO_4$ (iv) K_2MnO_4			
a) (i)>(ii)>(iii)>(iv) b)	(i)<(ii)<(iv)<(iii)	c) (ii)<(iii)<(i)<(iv)	d) (iii)>(i)>(iv)>(ii)
357. What mass of MnO ₂ is reduce	ed by 35 mL of 0.16 N or	xalic acid in acidic solution	? The skeleton equation is,
$MnO_2 + H^+ + H_2C_2O_4 \rightarrow CO_4$	$D_2 + H_2 O + Mn^{2+}$:		
a) 8.7 g b)	0.24 g	c) 0.84 g	d) 43.5 g
358. Stronger is oxidising agent, m	iore is;		
a) Standard reduction potent	ial of that species		
b) The tendency to get itself o	oxidised		
c) The tendency to lose electr	rons by that species		
d) Standard oxidation potent	=		
359. How many g of KMnO ₄ are		5 litre of 0.850 N solutio	n if $KMnO_4$ is reduced as,
$MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+}$			
		, ,	d) 303.0 g KMnO ₄
360. When $KMnO_4$ is reduced with			
		•	d) +4 to +2
361. Addition of zinc powder to Cu			
a) Reduction of Cu ²⁺ b)			
362. Titrations in which liberatetitrations.	d I_2 is estimated to cal	rry out the volumetric e	stimations are known as
		rry out the volumetric es	d) Alkalimetric
titrations.	Iodimetric	-	
titrations. a) Iodometric b)	Iodimetric ction, an oxidant :	c) Acidimetric	d) Alkalimetric
titrations. a) Iodometric b) 363. In the course of chemical read a) Loses electron b) 364. In alkaline condition KMnO ₄ a	Iodimetric ction, an oxidant : Gains electron reacts as follows :	c) Acidimetric c) Either of these	d) Alkalimetric
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition $KMnO_4$ m $2KMnO_4 + 2KOH \rightarrow 2K_2MnC_4$	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O.$ The eq. w	c) Acidimetric c) Either of these rt. of KMnO ₄ is :	d) Alkalimetric d) None of these
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition $KMnO_4 + 2KOH \rightarrow 2K_2MnC_4$ a) 52.7b)	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158	c) Acidimetric c) Either of these	d) Alkalimetric
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition $KMnO_4 + 2KOH \rightarrow 2K_2MnC_4$ a) 52.7b)365. Oxidation number of nitrogen	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158 n in AgNO ₃ is:	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6	d) Alkalimetric d) None of these d) 79
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition $KMnO_4$ a $2KMnO_4 + 2KOH \rightarrow 2K_2MnG_4$ a) 52.7b)365. Oxidation number of nitrogera) +5b)	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158 n in AgNO ₃ is: -3	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6 c) +3	 d) Alkalimetric d) None of these d) 79 d) -2
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition $KMnO_4 + 2KOH \rightarrow 2K_2Mnd_4$ a) 52.7b)365. Oxidation number of nitrogera) +5b)366. Total number of AlF_3 moleculor	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158 n in AgNO ₃ is: -3 les in a sample of AlF ₃ co	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6 c) +3 pontaining 3.01 \times 10 ²³ ions	 d) Alkalimetric d) None of these d) 79 d) -2 s of F⁻ is :
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition $KMnO_4$ + $2KMnO_4 + 2KOH \rightarrow 2K_2MnG_4$ $2KMnO_4 + 2KOH \rightarrow 2K_2MnG_4$ $a) 52.7$ $b)$ 365. Oxidation number of nitroger $a) +5$ b)366. Total number of AlF ₃ molecul $a) 9 \times 10^{24}$ b)	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158 n in AgNO ₃ is: -3 les in a sample of AlF ₃ co 3×10^{24}	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6 c) +3	 d) Alkalimetric d) None of these d) 79 d) -2
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition $KMnO_4 + 2KOH \rightarrow 2K_2MnG_4$ a) 52.7b)365. Oxidation number of nitrogera) +5b)366. Total number of AlF_3 moleculara) 9 × 10^{24}b)367. Oxidation number of N in NO	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158 n in AgNO ₃ is: -3 les in a sample of AlF ₃ co 3×10^{24} Cl is :	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6 c) +3 ontaining 3.01×10^{23} ions c) 7×10^{23}	 d) Alkalimetric d) None of these d) 79 d) -2 s of F⁻ is : d) 10²³
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition $KMnO_4$ a $2KMnO_4 + 2KOH \rightarrow 2K_2MnG_4$ $2KMnO_4 + 2KOH \rightarrow 2K_2MnG_4$ $365.$ Oxidation number of nitroger $a) +5$ b)366. Total number of AlF_3 molecul $a) 9 \times 10^{24}$ b)367. Oxidation number of N in NOG $a) +3$ b)	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158 n in AgNO ₃ is: -3 les in a sample of AlF ₃ co 3×10^{24} Cl is : +2	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6 c) +3 ontaining 3.01 \times 10 ²³ ions c) 7 \times 10 ²³	 d) Alkalimetric d) None of these d) 79 d) -2 s of F⁻ is :
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition $KMnO_4 + 2KOH \rightarrow 2K_2Mnd_4$ a) 52.7b)365. Oxidation number of nitrogera) +5b)366. Total number of AlF_3 molecula) 9 × 10 ²⁴ b)367. Oxidation number of N in NOGa) +3b)368. The oxidation state of chlorin	Iodimetric ction, an oxidant : Gains electron reacts as follows : $0_4 + H_20 + 0$. The eq. w 158 n in AgNO ₃ is: -3 les in a sample of AlF ₃ co 3×10^{24} Cl is : +2 we is highest in the compo	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6 c) +3 ontaining 3.01×10^{23} ions c) 7×10^{23} c) +1 ound :	 d) Alkalimetric d) None of these d) 79 d) -2 s of F⁻ is : d) 10²³ d) +4
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition $KMnO_4$ a2KMnO_4 + 2KOH \rightarrow 2K ₂ Mna) 52.7b)365. Oxidation number of nitrogera) +5b)366. Total number of AlF ₃ molecula) 9 × 10 ²⁴ b)367. Oxidation number of N in NOGa) +3b)368. The oxidation state of chlorina) Cl ₂ b)	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158 n in AgNO ₃ is: -3 les in a sample of AlF ₃ co 3×10^{24} Cl is : +2 le is highest in the compo-	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6 c) +3 ontaining 3.01×10^{23} ions c) 7×10^{23} c) +1 ound : c) Cl ₂ O	d) Alkalimetric d) None of these d) 79 d) -2 s of F ⁻ is : d) 10^{23} d) $+4$ d) Cl ₂ O ₇
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition KMnO4 +2KMnO4 + 2KOH \rightarrow 2K2Mna) 52.7b)365. Oxidation number of nitrogera) +5b)366. Total number of AlF3 molecula) 9 × 10 ²⁴ b)367. Oxidation number of N in NO4a) +3b)368. The oxidation state of chlorina) Cl2b)369. How many gram of KMnO4 a	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158 n in AgNO ₃ is: -3 les in a sample of AlF ₃ co 3×10^{24} Cl is : +2 le is highest in the compo-	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6 c) +3 ontaining 3.01×10^{23} ions c) 7×10^{23} c) +1 ound : c) Cl ₂ O	d) Alkalimetric d) None of these d) 79 d) -2 s of F ⁻ is : d) 10^{23} d) $+4$ d) Cl ₂ O ₇
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition $KMnO_4$ and $2KMnO_4 + 2KOH \rightarrow 2K_2MnG_4$ a) 52.7b)365. Oxidation number of nitrogena) +5b)366. Total number of AlF_3 molecula) 9 × 10 ²⁴ b)367. Oxidation number of N in NOGa) +3b)368. The oxidation state of chlorina) Cl_2 b)369. How many gram of $KMnO_4$ and oxidant in acidic medium :	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158 n in AgNO ₃ is: -3 les in a sample of AlF ₃ co 3×10^{24} Cl is : +2 le is highest in the compo- HCl are contained in 4 litre	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6 c) +3 ontaining 3.01×10^{23} ions c) 7×10^{23} c) +1 ound : c) Cl ₂ O of 0.05 <i>N</i> solution? The I	d) Alkalimetric d) None of these d) 79 d) -2 s of F ⁻ is : d) 10^{23} d) $+4$ d) Cl_2O_7 KMnO ₄ is to be used as an
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition $KMnO_4$ a $2KMnO_4 + 2KOH \rightarrow 2K_2MnG_4$ $2KMnO_4 + 2KOH \rightarrow 2K_2MnG_4$ $a) 52.7$ $b)$ 365. Oxidation number of nitroger $a) +5$ $b)$ 366. Total number of AlF ₃ molecul $a) 9 \times 10^{24}$ $b)$ 367. Oxidation number of N in NOG $a) +3$ $b)$ 368. The oxidation state of chlorin $a) Cl_2$ $b)$ 369. How many gram of KMnO ₄ a $oxidant$ in acidic medium : $a) 1.58$ g $b)$	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158 n in AgNO ₃ is: -3 les in a sample of AlF ₃ co 3×10^{24} Cl is : +2 le is highest in the compo- HCl are contained in 4 litre 15.8 g	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6 c) +3 ontaining 3.01×10^{23} ions c) 7×10^{23} c) +1 ound : c) Cl ₂ O	d) Alkalimetric d) None of these d) 79 d) -2 s of F ⁻ is : d) 10^{23} d) $+4$ d) Cl ₂ O ₇
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition $KMnO_4$ + $2KMnO_4 + 2KOH \rightarrow 2K_2MnG_4$ a) 52.7b)365. Oxidation number of nitrogera) +5b)366. Total number of AlF_3 molecula) 9 × 10 ²⁴ b)367. Oxidation number of N in NOGa) +3b)368. The oxidation state of chlorina) Cl_2b)369. How many gram of $KMnO_4$ aoxidant in acidic medium :a) 1.58 gb)370. The reaction; $H_2S + H_2O_2$	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158 n in AgNO ₃ is: -3 les in a sample of AlF ₃ co 3×10^{24} Cl is : +2 le is highest in the compo- HCl are contained in 4 litre 15.8 g	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6 c) +3 ontaining 3.01×10^{23} ions c) 7×10^{23} c) +1 ound : c) Cl ₂ O of 0.05 <i>N</i> solution? The I	d) Alkalimetric d) None of these d) 79 d) -2 s of F ⁻ is : d) 10^{23} d) $+4$ d) Cl_2O_7 KMnO ₄ is to be used as an
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition KMnO4 +2KMnO4 + 2KOH \rightarrow 2K2Mna) 52.7b)365. Oxidation number of nitrogera) +5b)366. Total number of AIF3 molecula) 9 × 10 ²⁴ b)367. Oxidation number of N in NOGa) +3b)368. The oxidation state of chlorina) Cl2b)369. How many gram of KMnO4 +oxidant in acidic medium :a) 1.58 gb)370. The reaction; H2S + H2O2 -a) Acidic nature of H2O2	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158 n in AgNO ₃ is: -3 les in a sample of AlF ₃ co 3×10^{24} Cl is : +2 le is highest in the compo- HCl are contained in 4 litre 15.8 g	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6 c) +3 ontaining 3.01×10^{23} ions c) 7×10^{23} c) +1 ound : c) Cl ₂ O of 0.05 <i>N</i> solution? The I	d) Alkalimetric d) None of these d) 79 d) -2 s of F ⁻ is : d) 10^{23} d) $+4$ d) Cl_2O_7 KMnO ₄ is to be used as an
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition $KMnO_4$ + $2KOH \rightarrow 2K_2MnG_4$ a) 52.7b)365. Oxidation number of nitrogera) +5b)366. Total number of AlF_3 molecula) 9 × 10 ²⁴ b)367. Oxidation number of N in NOGa) +3b)368. The oxidation state of chlorina) Cl_2b)369. How many gram of $KMnO_4$ aoxidant in acidic medium :a) 1.58 gb)370. The reaction; $H_2S + H_2O_2$ b) Alkaline nature of H_2O_2	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158 n in AgNO ₃ is: -3 les in a sample of AlF ₃ co 3×10^{24} Cl is : +2 le is highest in the compo- HCl are contained in 4 litre 15.8 g	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6 c) +3 ontaining 3.01×10^{23} ions c) 7×10^{23} c) +1 ound : c) Cl ₂ O of 0.05 <i>N</i> solution? The I	d) Alkalimetric d) None of these d) 79 d) -2 s of F ⁻ is : d) 10^{23} d) $+4$ d) Cl_2O_7 KMnO ₄ is to be used as an
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition KMnO4 +2KMnO4 + 2KOH \rightarrow 2K2Mna) 52.7b)365. Oxidation number of nitrogera) +5b)366. Total number of AIF3 molecula) 9 × 10 ²⁴ b)367. Oxidation number of N in NOGa) +3b)368. The oxidation state of chlorina) Cl2b)369. How many gram of KMnO4 +oxidant in acidic medium :a) 1.58 gb)370. The reaction; H2S + H2O2 -a) Acidic nature of H2O2	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158 n in AgNO ₃ is: -3 les in a sample of AlF ₃ co 3×10^{24} Cl is : +2 le is highest in the compo- HCl are contained in 4 litre 15.8 g	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6 c) +3 ontaining 3.01×10^{23} ions c) 7×10^{23} c) +1 ound : c) Cl ₂ O of 0.05 <i>N</i> solution? The I	d) Alkalimetric d) None of these d) 79 d) -2 s of F ⁻ is : d) 10^{23} d) $+4$ d) Cl_2O_7 KMnO ₄ is to be used as an
titrations.a) Iodometricb)363. In the course of chemical reada) Loses electronb)364. In alkaline condition KMnO4 +2KMnO4 + 2KOH \rightarrow 2K2Mna) 52.7b)365. Oxidation number of nitrogera) +5b)366. Total number of AlF3 molecula) 9 × 10 ²⁴ b)367. Oxidation number of N in NO4a) +3b)368. The oxidation state of chlorina) Cl2b)369. How many gram of KMnO4a) 1.58 gb)370. The reaction; H2S + H2O2b) Alkaline nature of H2O2c) Oxidising action of H2O2	Iodimetric ction, an oxidant : Gains electron reacts as follows : $O_4 + H_2O + O$. The eq. w 158 n in AgNO ₃ is: -3 les in a sample of AlF ₃ co 3×10^{24} Cl is : +2 le is highest in the compo- HCl are contained in 4 litre 15.8 g	c) Acidimetric c) Either of these rt. of KMnO ₄ is : c) 31.6 c) +3 ontaining 3.01×10^{23} ions c) 7×10^{23} c) +1 ound : c) Cl ₂ O of 0.05 <i>N</i> solution? The I	d) Alkalimetric d) None of these d) 79 d) -2 s of F ⁻ is : d) 10^{23} d) $+4$ d) Cl_2O_7 KMnO ₄ is to be used as an

$MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$				
coefficient of reactants in balanced states are				
$MnO_4^ C_2O_4^{2-}$ H ⁺				
a) 2 5 16	b) 16	5	2	
c) 5 16 2	d) 2	5 16	5	
372. Chlorine has +1 oxidation state in :	u) 2	10	5	
				4) 101
a) HCl b) HClO ₃ 373. Which statement is incorrect?	c) Cl ₂ 0			d) ICl ₃
	ion of another			
a) Oxidation of a substance is followed by reduction				
b) Reduction of a substance is followed by oxidat				
c) Oxidation and reduction are complementary redd) It is not necessary that both oxidation and red		taka pla	oo in th	a came reaction
374. In the standardization of $Na_2S_2O_3$ using $K_2Cr_2O_7$		-		
a) (molecular weight)/2	by louoinetry,	, the equ	livaleli	t weight of $K_2 C I_2 O_7$ is :
b) (molecular weight)/6				
c) (molecular weight)/3				
d) Same as molecular weight				
375. When SO ₂ is passed in a solution of potassium iod	data tha avida	tion stat	oofio	ding changes from .
a) $+5$ to 0 b) $+5$ to -1	c) -5 to 0		e 01 10	d) -7 to -1
376. The halogen that shows same oxidation state in a	,		othor	,
a) I_2 b) F_2	c) Cl ₂	us with	other	d) Br_2
377. The reaction,	$C_{J} C_{2}$			
$P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$				
$r_4 + 3NaOn + 3n_2O \rightarrow 3Nan_2rO_2 + rn_3$ is an example of				
a) Disproportionation reaction	b) Neutra	lication	roactic	NR.
c) Double-decomposition reaction	d) Pyrolyt			511
378. Titrations in which I ₂ solution is used as intermed				ne
a) Iodometric b) Iodimetric	c) Acidim		111 at 10	d) alkalimetric
379. In the reaction, $Cr_2O_7^{2^-} + 14H^+ + 6I^- \rightarrow 2Cr^{3^+} -$			omont	2
a) I b) O				
380. Carbon reacts with oxygen to form two oxides, C	,			u) ei
a) Carbon has two crystalline forms	$5 \text{ and } \text{CO}_2$. This	s is Deca	use.	
b) Carbon has two oxidation states				
c) Oxygen donates as well as accept electrons				
d) Oxygen has a strong affinity for carbon				
381. How many milliliter of 0.5 N SnCl ₂ solution will r	educe 600 mI	of $0.1 N$	HoCla	to Hg_Cl_2
a) 120 mL b) 60 mL	c) 30 mL	01 0.1 //	iigci ₂	d) 240 mL
382. What weight of $FeSO_4$ (mol. wt. =152) will be)0 mI o	f norn	
solution?	Oxidised by 20		1 1101 11	har KMIIO ₄ solution in acture
a) 30.4 g b) 60.8 g	c) 121.6 g	r		d) 15.8 g
383. How many milligram of iron (Fe ²⁺) are equal to 1	, ,		- O- ea	, ,
a) 5.9 mg b) 0.59 mg	c) 59 mg	N K2CI	207 cq	d) 59 \times 10 ⁻³ mg
384. Number of moles of MnO ₄ ⁻ required to oxidise of	cj 59 mg	rroue of	valato i	5
	ne mole of fe		salate y	completely in actule medium
	one mole of fe			
will be :				d) 0.6 mole
will be : a) 0.4 mole b) 7.5 mole	c) 0.2 mol	le		d) 0.6 mole f_{1} states of $+2$ $+5$ and -2
will be : a) 0.4 mole b) 7.5 mole 385. <i>A</i> , <i>B</i> and <i>C</i> are three elements forming a par	c) 0.2 mol	le		
will be : a) 0.4 mole b) 7.5 mole 385. <i>A</i> , <i>B</i> and <i>C</i> are three elements forming a par respectively. What could be the compound?	c) 0.2 mol t of compoun	le d in ox		n states of $+2$, $+5$ and -2
will be : a) 0.4 mole b) 7.5 mole 385. <i>A</i> , <i>B</i> and <i>C</i> are three elements forming a par respectively. What could be the compound? a) $A_2(BC)_2$ b) $A_2(BC_4)_3$	c) 0.2 mol t of compoun c) $A_3(BC_4$	le d in ox 1)2	idatio	n states of $+2$, $+5$ and -2 d) <i>ABC</i>
will be : a) 0.4 mole b) 7.5 mole 385. <i>A</i> , <i>B</i> and <i>C</i> are three elements forming a par respectively. What could be the compound?	c) 0.2 mol t of compoun c) $A_3(BC_4$ + + ne, the ot	le d in ox 4) ₂ her me	idatio	n states of $+2$, $+5$ and -2 d) <i>ABC</i>

a) (n - 1)b) 1 d) 2 c) n 387. In which of the following reactions, chlorine acts as an oxidising agent? (i) $CH_3CH_2OH + Cl_2$ $CH_3CHO + HCl$ (ii) $CH_3CHO + Cl_2$ $CCl_3CHO + HCl$ $(iii)CH_4 + Cl_2$ $CH_3Cl + HCl$ The correct answer is a) (i) only b) (ii) only c) (i) and (iii) d) (i),(ii) and (iii) 388. During a redox change, the oxidant $K_2Cr_2O_7$ is always reduced to : c) Cr³⁺ d) Cr^{2+} a) Cr⁵⁺ b) Cr⁴⁺ 389. When potassium permanganate is titrated against ferrous ammonium sulphate, the equivalent weight of potassium permanganate is : a) Molecular weight/10 b) Molecular weight/5 c) Molecular weight/2 d) Molecular weight 390. Which conversion is an oxidation? b) $Cu^{2+} \rightarrow Cu$ c) $H^+ \rightarrow H$ a) $SO_4^{2-} \rightarrow SO_3^{2-}$ d) $H^- \rightarrow H$ 391. In which case +1 oxidation state is stable than +3? c) Tl d) B a) Ga b) Al 392. In the reduction of dichromate by Fe(II), the number of electrons involved per chromium atom is : a) 3 b) 1 c) 2 d) 4 393. When $K_2Cr_2O_7$ is converted into K_2CrO_4 , the change in oxidation number of chromium is a) 0 b) 5 c) 7 d) 9 394. Which of the following acts as both an oxidizing as well as reducing agent? a) HNO₃ b) HNO_2 c) HI d) H_2SO_4 395. In which of the following compounds, nitrogen exhibits highest oxidation state? b) NH₂OH d) NH_3 a) N₃H c) N_2H_4 396. 1 mole of MnO_4^{2-} in neutral aqueous medium disproportionates to : a) $\frac{2}{3}$ mole of MnO₄⁻ and $\frac{1}{3}$ mole of MnO₂ b) $\frac{1}{3}$ mole of MnO₄ and $\frac{2}{3}$ mole of MnO₂ c) $\frac{1}{3}$ mole of Mn₂O₇ and $\frac{1}{3}$ mole of MnO₂ d) $\frac{2}{2}$ mole of Mn₂O₇ and $\frac{1}{2}$ mole of MnO₂ 397. Which one of the compound does not decolourised an acidified solution of KMnO₄? a) SO_2 b) FeCl₃ c) H_2O_2 d) FeSO₄ 398. When one mole of KMnO₄ reacts with HCl, the volume of chlorine liberated at NTP will be: a) 11.2 litre b) 22.4 litre c) 44.8 litre d) 56.0 litre 399. What would happen when a small quantity of H_2O_2 is added to a solution of $FeSO_4$? a) Colour disappears b) H₂ is evolved c) An electron is added to Fe²⁺ d) An electron is lost by Fe²⁺ 400. The oxidation state of I in IPO_4 is a) +1 b) +3 c) +5 d) +7 401. The number of moles of KMnO₄ reduced by one mole of KI in alkaline medium is a) 1 b) 5 c) $\frac{1}{2}$ d) 1/5 402. A 0.50 M solution of KI reacts with excess of H_2SO_4 and KIO_3 solutions according to the equation, $6H^+ + 5I^- + IO_3^- \rightarrow 3I_2 + 3H_2O$. Which of the following statements is true? a) 200 mL of the KI solution reacts with 0.10 mole KIO₃.

b) 100 mL of the KI solution reacts with 0.060 M of H₂SO₄.

-	tion produces 0.15 mole of	I ₂	
d) None of the above			
403. Oxidation number of chr			
a) $+2$	b) +3	c) +6	d) —4
404. A standard solution is on	ie whose :		
a) Concentration is 1 <i>M</i>b) Concentration is unkr			
c) Concentration is know			
d) None of the above	V11		
405. In the reaction, $SO_2 + 2F$	$4.5 \rightarrow 35 \pm 24.0$ the subs	tance ovidised is	
a) H_2S	b) SO ₂ \rightarrow 55 + 21120, the subs	c) S	d) H ₂ 0
406. Oxidation number of P in		0) 5	u) 1120
a) +5	b) +6	c) +7	d) +3
407. The oxidation number th	,	,	
a) Zero	b) +1	c) +2	d) +3
408. Oxidation number of Cl i		•) • =	
a) +7	b) -7	c) +5	d) —5
409. In which reaction is hyd	,	,	
a) With iodine to give hy			
b) With lithium to give li			
c) With nitrogen to give	-		
d) With sulphur to give l			
410. In presence of moisture			
a) Gain electrons	-		
b) Lose electrons			
c) Act as oxidising agent			
d) Does not act as reduc	ing agent		
411. The oxidation number o	f Mn in MnO ₂ is :		
a) +4	b) +6	c) +2	d) -4
412. Which is not correct in c	ase of Mohr's salt?		
a) It decolourises KMnO	4		
b) It is primary standard	l		
c) It is a double salt			
d) Oxidation state of Fe i			
413. In the reduction of dichr			
a) 3	b) 1	c) 2	d) 4
414. Which of the following is			
a) NaCl + KNO ₃ \rightarrow NaN		b) $CaC_2O_4 + 2HCl \rightarrow CaC_2O_4 + 2HCL + 2HCL \rightarrow CaC_2O_4 + 2HCL $	
	$\rightarrow \text{CaCl}_2 + 2\text{NH}_3 + 2\text{H}_2\text{O}$		
415. What volume of $2N \text{ K}_2\text{C}$			
a) 47.8 mL	b) 23.8 mL	c) 40 mL	d) 72 mL
416. Oxidation number of As			
a) $+5$	b) +6	c) +4	d) -3
417. In the following chang		$+ 4H_2$. If the atomic weight	gnt of Iron is 56, then its
equivalent weight will b		-) (2	1) 04
a) 42	b) 21 (H, SO) the evidence m	c) 63	d) 84
418. In permonosulphuric act			d) + 6
a) +8 419. The reaction,	b) +4	c) +5	d) +6
Ag ²⁺ (aq) + Ag(s) \rightleftharpoons 2A	$a^+(aa)$		
$ng (ay) + ng(s) \leftarrow 2h$	s (uy)		

is an example of

a) Reduction b) Oxidation c) Comproportionation d) Disproportionation

- 420. Amount of oxalic acid present in a solution can be determined by its titration with $KMnO_4$ solution in the presence of H_2SO_4 . The titration gives unsatisfactory result when carried out in the presence of HCl, because HCl:
 - a) Oxidises oxalic acid to carbon dioxide and water
 - b) Gets oxidized by oxalic acid to chlorine
 - c) Furnishes H⁺ ions in addition to those from oxalic acid
 - d) Reduces permanganate to Mn²⁺
- 421. Which is not a redox change?

a)
$$CaCO_3 \rightarrow CaO + CO_2$$

b) $2H_2 + O_2 \rightarrow 2H_2O$
c) $Na + H_2O \rightarrow NaOH + \frac{1}{2}H_2$

d)
$$MnCl_3 \rightarrow MnCl_2 + \frac{1}{2}Cl_2$$

422. Sulphurous acid can be used as :

a) Oxidising agent b) Reducing agent

c) Bleaching agent

d) All of these

8.REDOX REACTIONS

h 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 5 1 5 1 5	j j 10) j 14) j 18) i 22) i 26) i 30) j 34) i 38) i 42) j 46) j i j	d d a a d d a d d d d	7) 11) 15) 19) 23) 27) 31) 35)	a d c d c b d c	12) 16) 20) 24) 28)	d b d b a c	189) 193) 197) 201) 205) 209)	a c b d	190) 194) 198) 202) 206)	c a b c b	191) 195) 199) 203) 207)	a a c d	192) 196) 200) 204) 208)	b b d
h 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 5 1 5 1 5	j j 10) j 14) j 18) i 22) i 26) i 30) j 34) i 38) i 42) j 50) j 60) j 61) j 62) j	d d a a d d a d d d d	7) 11) 15) 19) 23) 27) 31) 35)	d c d c b d c	8) 12) 16) 20) 24) 28)	b d b a c	193) 197) 201) 205)	c b d	194) 198) 202)	a b c	195) 199) 203)	a c	196) 200) 204)	b d
2 1 1 1 1 1 2 2 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	10) 0 14) 1 18) 3 22) 3 26) 3 30) 0 34) 3 42) 6 42) 0 46) 0 50) 1	d b a a d a a d d	11) 15) 19) 23) 27) 31) 35)	c d c b d c	12) 16) 20) 24) 28)	d b a c	197) 201) 205)	b d	198) 202)	b c	199) 203)	с	200) 204)	d
1 1 1 1 1 1 2 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 5 1 5 1 5 1 5	4) 1 18) 3 22) 3 26) 3 80) 6 84) 3 88) 3 42) 6 46) 6 50) 1	b a a d d a a d	15) 19) 23) 27) 31) 35)	d c b d c	16) 20) 24) 28)	b a c	201) 205)	d	202)	С	203)		204)	
1 1 2 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 5 1 5 1 5 1 5	18) ; 22) ; 26) ; 30) ; 34) ; 38) ; 38) ; 38) ; 38) ; 36) ; 46) ; 60) ;	a a d a a d	19) 23) 27) 31) 35)	c b d c	20) 24) 28)	a c	205)		-		-	d	-	
D 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 5 1 5 1 5	22) ; 26) ; 30) ; 34) ; 38) ; 38) ; 42) ; 46) ; 50) ;	a a d a a d	23) 27) 31) 35)	b d c	24) 28)	с		b	206)	h	2021		2081	а
1 2 1 3 1 3 1 3 1 4 2 4 5 5 1 5 1 5	26) ; 30) ; 34) ; 38) ; 38) ; 38) ; 39) ; 40) ; 50) ;	a d a a d	27) 31) 35)	d c	28)		209)	-	-	b	207)	a	-	С
a 3 a 3 a 4 c 4 c 5 a 5	30) 34) 38) 38) 42) 6) 6) 50)	d a a d	31) 35)	С	-	2	,		210)	а	211)	d	212)	С
1 3 1 3 1 4 2 4 5 1 5 1 5	34) a 38) a 42) a 46) a 50) 1	a a d	35)		32)		213)	b	214)	С	215)	d	216)	С
a 3 a 4 c 4 o 5 a 5 a 5	88) (2) (42) (4 (6) (6) (50) (1	a d	-	d	-		217)		218)	d	219)	С	220)	d
a 4 c 4 o 5 a 5 a 5	42) (6) (6)	d	39)		36)		221)	b	222)	С	223)	a	224)	а
2 4 5 5 6 5 6 5	6) 6) (,		225)		226)	b	227)	b	228)	b
D 5 1 5 1 5	50) I	С	43)		44)		229)		230)	b	231)	С	232)	b
a 5 a 5	-		,		,		233)		234)	С	235)	а	236)	а
a 5	54) a	b	,	b	52)		237)		238)	С	239)	С	240)	С
	-	a			,		241)		242)	a	243)	d	244)	b
n 6	58) a	a	,	b	60)		245)		246)	a	247)	d	248)	а
	,	a	63)	a	64)		249)		250)	С	251)	b	252)	d
i 6	6)	С	67)	b	68)		253)		254)	a	255)	С	256)	а
1 7	70) I	b	,	a	72)		257)		258)	С	259)	а	260)	С
i 7	'4) a	a	75)	С	76)	b	261)	a	262)	d	263)	b	264)	С
i 7	78) I	b	79)	b	80)		265)	a	266)	b	267)	С	268)	b
n 8	82) (d	83)	С	84)	a	269)	С	270)	С	271)	b	272)	С
i 8	86) I	b	87)	С	88)	a	273)	b	274)	b	275)	С	276)	С
: 9	0) I	b	91)	a	92)	b	277)	a	278)	a	279)	d	280)	а
b 9	94) a	a	95)	d	96)	С	281)	С	282)	a	283)	а	284)	С
o 9	98) (С	99)	b	100)	b	285)	d	286)	С	287)	a	288)	а
: 1	l02) l	b	103)	a	104)	а	289)	a	290)	d	291)	d	292)	b
n 1	.06) l	b	107)	b	108)	а	293)	d	294)	С	295)	a	296)	d
o 1	10) a	a	111)	b	112)	d	297)	С	298)	a	299)	d	300)	а
n 1	14) a	a	115)	d	116)	d	301)	d	302)	b	303)	а	304)	С
: 1	18) l	b	119)	d	120)	b	305)	b	306)	d	307)	С	308)	а
o 1	22) ;	a	123)	b	124)	а	309)	a	310)	С	311)	С	312)	а
: 1	26) a	a	127)	a	128)	а	313)	a	314)	d	315)	d	316)	С
i 1	l 30) a	a	131)	a	132)	b	317)	a	318)	с	319)	b	320)	а
: 1	. 34) I	b	135)	a	136)	d	321)	a	322)	С	323)	b	324)	a
o 1	(38)	a	139)	С	140)	a	325)	d	326)	b	327)	а	328)	С
: 1	42) I	b	143)	b	144)	b	329)	с	330)	a	331)	а	332)	а
n 1	46)	с	147)	a	148)	d	333)	b	334)	b	335)	d	336)	а
: 1	50)	с	151)	b	152)	b	337)	d	338)	a	339)	с	340)	d
i 1	54) a	a	155)	b	156)	а	341)	d	342)	d	343)	с	344)	а
n 1	58) a	a	159)	С	160)	d	345)	a	346)	b	347)	с	348)	d
n 1	62)	d	163)	a	164)	а	349)	b	350)	a	351)	d	352)	b
n 1	l66) a	a	167)	d	168)	a	353)	с	354)	b	355)	b	356)	b
	-				-		-	b	-	a	359)	а	360)	С
: 1		a	175)	b	176)	С	361)	a	362)	a	363)	b	364)	b
	-		-		-		-	a	-	d	367)	а	368)	d
	-		-				-		-		-			
ı 1		~	183)	d	184)	a	369)	С	370)	С	371)	а	372)	С
	9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	94) 98) 102) 106) 110) 114) 114) 122) 126) 130) 134) 138) 142) 146) 150) 154) 158) 162) 166) 170) 174) 178)	94)a98)c102)b106)b110)a114)a118)b122)a126)a130)a134)b138)a142)b146)c150)c154)a162)d166)a170)b174)a178)d	94)a95)98)c99)102)b103)106)b107)110)a111)114)a115)118)b119)122)a123)126)a127)130)a131)134)b135)138)a139)142)b143)146)c147)150)c151)154)a155)158)a159)162)d163)166)a167)170)b171)174)a175)178)d179)	94)a95)d98)c99)b102)b103)a106)b107)b110)a111)b114)a115)d118)b119)d122)a123)b126)a127)a130)a131)a134)b135)a138)a139)c142)b143)b150)c151)b154)a155)b158)a159)c162)d163)a166)a167)d170)b171)a174)a175)b178)d179)c	94)a95)d96)98)c99)b100)102)b103)a104)106)b107)b108)110)a111)b112)114)a115)d116)118)b119)d120)122)a123)b124)126)a127)a128)130)a131)a132)134)b135)a136)138)a139)c140)142)b143)b144)146)c147)a148)150)c151)b152)154)a155)b156)158)a159)c160)162)d163)a164)166)a167)d168)170)b171)a172)174)a175)b176)178)d179)c180)	94)a95)d96)c98)c99)b100)b102)b103)a104)a106)b107)b108)a110)a111)b112)d114)a115)d116)d118)b119)d120)b122)a123)b124)a126)a127)a128)a130)a131)a132)b134)b135)a136)d138)a139)c140)a142)b143)b144)b146)c147)a148)d150)c151)b152)b154)a155)b156)a158)a159)c160)d162)d163)a164)a166)a167)d168)a170)b171)a172)c174)a175)b176)c178)d179)c180)a	94)a95)d96)c281)98)c99)b100)b285)102)b103)a104)a289)106)b107)b108)a293)110)a111)b112)d297)114)a115)d116)d301)118)b119)d120)b305)122)a123)b124)a309)126)a127)a128)a313)130)a131)a132)b317)134)b135)a136)d321)138)a139)c140)a325)142)b143)b144)b329)146)c147)a148)d333)150)c151)b152)b337)154)a155)b156)a341)158)a159)c160)d345)162)d163)a164)a353)170)b171)a172)c357)174)a175)b176)c361)178)d179)c180)a365)	94)a95)d96)c281)c98)c99)b100)b285)d102)b103)a104)a289)a106)b107)b108)a293)d110)a111)b112)d297)c114)a115)d116)d301)d118)b119)d120)b305)b122)a123)b124)a309)a126)a127)a128)a313)a130)a131)a132)b317)a134)b135)a136)d321)a138)a139)c140)a325)d142)b143)b144)b329)c146)c147)a148)d333)b150)c151)b152)b337)d158)a159)c160)d345)a162)d163)a164)a353)c170)b171)a172)c357)b174)a167)d168)a353)c174)a175)b176)c361)a174)a<	94)a95)d96)c281)c282)98)c99)b100)b285)d286)102)b103)a104)a289)a290)106)b107)b108)a293)d294)110)a111)b112)d297)c298)114)a115)d116)d301)d302)118)b119)d120)b305)b306)122)a123)b124)a309)a310)126)a127)a128)a313)a314)130)a131)a132)b317)a318)134)b135)a136)d321)a322)138)a139)c140)a325)d326)142)b143)b144)b329)c330)146)c147)a148)d333)b334)150)c151)b152)b337)d338)154)a155)b156)a341)d342)158)a160)d345)a350)366)166)a167)d168)a353)c354)<	94) a 95) d 96) c 281) c 282) a 98) c 99) b 100) b 285) d 286) c 102) b 103) a 104) a 289) a 290) d 106) b 107) b 108) a 293) d 294) c 110) a 111) b 112) d 297) c 298) a 110) a 111) b 112) d 297) c 298) a 110) a 111) b 1120 d 301) d 302) b 118) b 119) d 120) b 305) b 306) d 122) a 123) b 124) a 309) a 310) c 126) a 127) a 128) a 313) a 314) d <td< td=""><td>94)a95)d96)c281)c282)a283)98)c99)b100)b285)d286)c287)102)b103)a104)a289)a290)d291)106)b107)b108)a293)d294)c295)110)a111)b112)d297)c298)a299)114)a115)d116)d301)d302)b303)118)b119)d120)b305)b306)d307)122)a123)b124)a309)a310)c311)126)a127)a128)a313)a314)d315)130)a131)a132)b317)a318)c319)134)b135)a136)d321)a322)c323)138)a139)c140)a325)d326)b327)142)b143)b152)b337)d338)a339)154)a155)b156)a341)d342)d343)158)a159)c160)d345)a350)a35</td><td>94)a95)d96)c281)c282)a283)a98)c99)b100)b285)d286)c287)a102)b103)a104)a289)a290)d291)d106)b107)b108)a293)d294)c295)a110)a111)b112)d297)c298)a299)d114)a115)d116)d301)d302)b303)a118)b119)d120)b305)b306)d307)c122)a123)b124)a309)a310)c311)c126)a127)a128)a313)a314)d315)d130)a131)a132)b317)a318)c319)b134)b135)a136)d321)a322)c323)b138)a139)c140)a325)d326)b327)a142)b143)b152)b337)d338)a339)c154)a155)b156)a341)d342)d343)</td><td>94) a 95) d 96) c 281) c 282) a 283) a 284) 98) c 99) b 100) b 285) d 286) c 287) a 288) 102) b 103) a 104) a 289) a 290) d 291) d 292) 106) b 107) b 108) a 293) d 294) c 295) a 296) 110) a 111) b 112) d 297) c 298) a 299) d 300) 114) a 115) d 116) d 301) d 302) b 303) a 304) 118) b 119) d 120) b 305) b 306) d 307) c 308) 122) a 123) b 124) a 310) c 311) c 312)</td></td<>	94)a95)d96)c281)c282)a283)98)c99)b100)b285)d286)c287)102)b103)a104)a289)a290)d291)106)b107)b108)a293)d294)c295)110)a111)b112)d297)c298)a299)114)a115)d116)d301)d302)b303)118)b119)d120)b305)b306)d307)122)a123)b124)a309)a310)c311)126)a127)a128)a313)a314)d315)130)a131)a132)b317)a318)c319)134)b135)a136)d321)a322)c323)138)a139)c140)a325)d326)b327)142)b143)b152)b337)d338)a339)154)a155)b156)a341)d342)d343)158)a159)c160)d345)a350)a35	94)a95)d96)c281)c282)a283)a98)c99)b100)b285)d286)c287)a102)b103)a104)a289)a290)d291)d106)b107)b108)a293)d294)c295)a110)a111)b112)d297)c298)a299)d114)a115)d116)d301)d302)b303)a118)b119)d120)b305)b306)d307)c122)a123)b124)a309)a310)c311)c126)a127)a128)a313)a314)d315)d130)a131)a132)b317)a318)c319)b134)b135)a136)d321)a322)c323)b138)a139)c140)a325)d326)b327)a142)b143)b152)b337)d338)a339)c154)a155)b156)a341)d342)d343)	94) a 95) d 96) c 281) c 282) a 283) a 284) 98) c 99) b 100) b 285) d 286) c 287) a 288) 102) b 103) a 104) a 289) a 290) d 291) d 292) 106) b 107) b 108) a 293) d 294) c 295) a 296) 110) a 111) b 112) d 297) c 298) a 299) d 300) 114) a 115) d 116) d 301) d 302) b 303) a 304) 118) b 119) d 120) b 305) b 306) d 307) c 308) 122) a 123) b 124) a 310) c 311) c 312)

377)	а	378)	b	379)	d	380)	b
381)	а	382)	а	383)	а	384)	d
385)	С	386)	С	387)	d	388)	С
389)	b	390)	d	391)	С	392)	а
393)	а	394)	b	395)	а	396)	a
397)	b	398)	d	399)	d	400)	b
401)	а	402)	С	403)	С	404)	С
405)	а	406)	b	407)	b	408)	a
409)	b	410)	b	411)	а	412)	d
413)	а	414)	d	415)	b	416)	а
417)	b	418)	d	419)	С	420)	d
421)	а	422)	d				

: HINTS AND SOLUTIONS :

		50	
1	(c)	13	(d)
	MN can exhibit + 7 oxidation no.		$3Fe \rightarrow Fe_3O_4 + 8e^-$ oxidation
2	(c)		$4\mathrm{H}_{2}\mathrm{O} + 8e^{-} \rightarrow 4\mathrm{H}_{2}$
	Indicators are the substances which indicates the		Thus, there are lose of 8 electrons in the reaction
	completion of a reaction.	14	(b)
3	(a)		It is definition of volumetric analysis.
	$CH_3OH \rightarrow HCOOH$	15	(d)
	$\operatorname{Or} C^2 \longrightarrow C^{2+} + 4e$		Oxidation takes place at anode (c) is not feasible,
4	(d)		<i>i. e.</i> , Cr^{3+} is not oxidised to $Cr_2O_7^{2-}$ under given
	$3e + Mn^{7+} \rightarrow Mn^{4+}$		conditions. Hence, option (d) is correct.
	$\therefore M = N$ /Valence factor = 0.6/3 = 0.2	16	(b)
5	(a)		$NO_3^- \rightarrow NH_4^+ \text{ or } N^{5+} + 8e \rightarrow N^{3-}$
U	$O_3 + H_2O_2 \rightarrow H_2O + 2O_2$; H_2O_2 is reduced.		
6	(d)		Thus, Eq. wt. of $NO_3^- = \frac{62}{8}$
0	Oxidation	17	(d)
	Oxidation		Carbon in oxalic acid has +3 oxidation state which
			may be increases to $+4$ (in CO_2) and thus, can act
	$\xrightarrow{+1}_{Cu_2S} \xrightarrow{+2}_{FeO} 2\overset{0}{Cu} \xrightarrow{+4}_{Fe} \xrightarrow{+1}_{SO_2}$		as reductant. Rest all have highest oxidation
	$Cu_2S + 2FeO \longrightarrow 2Cu + 2Fe + SO_2$		number. Ox.no. of N, Mn and S in
			HNO_3 (+5), $KMnO_4$ (+7) and H_2SO_4 (+6).
	Reduction	18	(a)
	Reduction		Meq. of $HNO_3 = Meq.$ of I_2
	In this reaction Cu and Fe undergo reduction		$\frac{w}{63/3} \times 1000 = \frac{5}{254/10} \times 1000$
	while sulphur undergoes oxidation. Hence, this is		63/3 ~ 1000 - 254/10 ~ 1000
	a redox reaction.		$\therefore w_{HNO_3} = 4.13 \text{ g}$
7	(d)	19	(c)
	do		$6e + \operatorname{Cr}_2^{6+} \longrightarrow 2\operatorname{Cr}^{3+}$
8	(b)		$S^{4+} \rightarrow S^{6+} + 2e$
	$\operatorname{Sn}^{2+} \longrightarrow \operatorname{Sn}^{4+} + 2e$	20	(a)
	190		CN [–] is reducing and complexing agent.
	$\therefore E = M/2 = \frac{190}{2} = 95$	21	(b)
9	(c)		$Na \xrightarrow{NH_3} Na^+ + (NH_3)x^e$ Ammonia solvated
	N has $+3$ ox.no. which may increase (upto $+5$) or		
	decrease (upto -3)		electrons are strongly reducing, impart blue
10	(d)		colour to solution and are good conductor of
	Na_2O_2 is sodium peroxide.	22	current.
11	(c)	22	(a) F_{2} (a) F_{2} (b) F_{2} (c)
	Acidified $K_2Cr_2O_7$ solution oxidises SO_2 into	22	Fe_3O_4 is a mixture of <i>FeO</i> and Fe_2O_3 .
	$Cr_2(SO_4)_3$.	23	(b) $V(c)$ is isomorphouse to $F(c)$ (NUL) SO (U.C.
	+4 +6	24	VSO_4 is isomorphous to, $FeSO_4$. $(NH_4)_2 SO_4$. $6H_2O$.
	$3SO_2 + K_2Cr_2O_7 + H_2SO_4 \rightarrow K_2SO_4 +$	24	(c) $M_{\rm T} = 17$
	$Cr_2(SO_4)_3 + H_2O_4$		$MnO_{4}^{-} = Mn = +7$
	Hence, oxidation state of sulphur changes from		$MnO_4^{2-} = Mn = +6$
	+4 to $+6$.		$MnO_2 = Mn = +4$
12	(d)		$Mn_2O_3 = Mn = +3$
	Electronation is gain of electrons i.e., $A + e \rightarrow$		Hence, changes in oxidation number are 5,1,3,4.
	A^-	25	(a)
	<u></u>		Alkaline earth metals have only $+2$ ox.no. in

combined state.

26 (a) Alkali metals are strongest reducing agents. 27 (d) $S_2^{2+} \rightarrow 2S^{6+} + 8e$ 28 (a) $2\mathrm{Fe}^0 \rightarrow \mathrm{Fe}_2^{3+} + 6e.$ 29 (a) $\mathrm{MnO_4^-} + 8\mathrm{H^+} + 5e^- \rightarrow \mathrm{Mn^{2+}} + 4\mathrm{H_2O}$ 30 (d) a + (-2) = 0 $\therefore a = +2$ 31 (c) $Mn^{7+} + 5e \rightarrow Mn^{2+}$ $FeC_2O_4 \rightarrow Fe^{3+} + 2CO_2 + 3e$ 32 (a) Meq. of oxidant = Meq. of reductant $0.5 \times V = 2 \times 2000$ \therefore V = 8 litre 33 (a) Oxygen shows -1 oxidation state in H_2O_2 . 2(+1) + 2x = 02x = -2x = -134 (a) $I^{-} + (IO_3)^{-1} + H^{+} \longrightarrow \begin{array}{c} 0\\ I_2 + H_2O \end{array}$ $2I^{-} \longrightarrow I_{2} + 2e^{-} \qquad \dots (i) \times 5$ $10e^{-} + 2(IO_{3})^{-1} \longrightarrow I_{2}^{0} \qquad \dots (ii)$ On adding Eq. (i) and (ii), we get $10I^- + 2IO_3^- \rightarrow 6I_2$ To balance O atom, add 6H₂O molecules on RHS and 12H⁺ on LHS, then $10I^- + 2IO_3^- + 12H^+ \to 6I_2 + 6H_2O$ or $5I^- + IO_3^- + 6H^+ \rightarrow 3I_2 + 3H_2O$ 35 (d) Cl has +7 ox.no. in KClO₄. 36 (c) $Mn^{7+} + 5e \rightarrow Mn^{2+};$ $Fe^{2+} \rightarrow Fe^{3+} + e$ 37 (a) Oxidation number in elemental form is zero. Covalency is two because of S-S-S-S-chain. 38 (a) Fe_2O_3 \therefore Total charge on cation or anion = +6 $Fe_2^{3+}O_3^{2-}$: $E = \frac{112}{6} \text{ or } \frac{56}{3}$

39 **(b)** C_3O_2 is carbon sub-oxide. Thus, $3a - (2 \times 2) = 0$ $a = +\frac{4}{3}$ 40 **(a)** $Cu^{2+} + 2I^- \rightarrow CuI_2 \rightarrow Cu_2I_2 + I_2$ $I_2 + Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2NaI$ (Redox change) 41 (a) Oxidation state of oxygen in H_2O_2 is -1. -1 is the intermediate oxidation state of oxygen. 42 (d) $2e + S^{6+} \rightarrow S^{4+}$ S of H₂SO₄ is reduced. 43 (c) $1 + a + 3 \times (-2) = -1$ $\therefore a = +4$ 44 (a) $1 + a \times 2 = 0$ $\therefore a = -\frac{1}{2}$ Ox.no. of alkali metals is always + 1. 45 (c) Oxidation 0 $H_2 + Br_2 \longrightarrow 2HBr$ 0 Reduction Only this reaction involves oxidation and reduction. 46 (c) $[Mn^{7+} + 5e \rightarrow Mn^{2+}] \times 2$ $[C_2^{3+} \rightarrow 2C^{4+} + 2e] \times 5$ 47 (a) $Mn^{7+} + 5e \rightarrow Mn^{2+}$ $Fe^{2+} \rightarrow Fe^{3+} + e$ $C_2^{3+} \rightarrow 2C^{4+} + 2e$ \therefore 3 mole of KMnO₄ = 5 mole of FeC₂O₄ 48 **(b)** $2I^{7+} + 14e \rightarrow (I^0)_2$ $E_{IO_4^-} = \frac{M}{7}$ 49 **(b)** $2e + 2Fe_3^{(8/3)+} \rightarrow 3Fe_2^{3+}$ $\therefore E_{Fe_3O_4}$ М = $\frac{1}{No. of electrons lost or gained by one molecule}$ $=\frac{M}{1}$

50 **(b)** oxidation state of S is Meq. of $HNO_3 = Meq.$ of Fe^{2+} (Eq. wt. of $HNO_3 = M/3$) $0r 3 \times 3 \times V = \frac{8}{56} \times 1000$ OH : V = 15.87 mLLet the oxidation state of S is *x*. 51 **(b)** H_2SO_5 (one peroxide bond) The oxidation state of N are +5, +2, 0 and -3 in +2 + x + 3(-2) + 1(-2) = 0HNO₃, NO, N₂ and NH₄Cl respectively. 2 + x - 6 - 2 = 052 (c) x - 6 = 0The oxidation state of iodine in HIO_4 is + 7 as x = 61 + x + 4(-2) = 062 **(a)** x = +7The formula for Eq. wt. of reductant or oxidant. The oxidation state of iodine in H_3IO_5 is +7 as 63 (a) 3+x+5(-2)=0 $Mn^{7+} + 5e \rightarrow Mn^{2+}$ *x* = +7 $\therefore E = M/5$ The oxidation state of iodine in H_5IO_6 is +7 as 64 (c) 5+x+6(-2)=0No doubt oxygen is taken in respiration, but x = +7oxidant-reduction occur simultaneously. 53 (a) 65 (d) Ag⁺is reduced to Ag. $a\mathrm{K}_{2}\mathrm{Cr}_{2}\mathrm{O}_{7} + b\mathrm{KCl} + c\mathrm{H}_{2}\mathrm{SO}_{4}$ 54 (a) $2e + S^{6+} \rightarrow S^{4+}$ $\rightarrow x \operatorname{CrO}_2 \operatorname{Cl}_2 + y \operatorname{KHSO}_4 + z \operatorname{H}_2 \operatorname{O}_2$ S of H_2SO_4 is reduced. 55 (d) 66 (c) The characteristics of oxidant. Note these. Both Os and Ru show + 8 ox.no. 56 (c) 67 **(b)** $SO_2 + H_2O \rightarrow SO_3 + 2H;$ Two oxygen atom have peroxide linkage, (i.e., -1) $Cl_2 + H_2O \rightarrow 2HCl + O$ oxidation number) and six have -2 ox.no. 57 (a) Thus, $2 \times 1 + 2 \times a + 6 \times (-2) + 2 \times (-1) =$ Meq. of bleaching powder = Meq. of Cl_2 = Meq. of 0 hypo $\therefore a = +6$ $\frac{w}{35.5} \times 1000 = 50 \times \frac{1}{10}$ $\therefore W_{Cl_2}$ 68 (b) = 0.1775 gOxidation ∴ Per cent $Cl_2 = \frac{0.1775}{5} \times 100 = 3.55 \%$ Change in oxidation state = 2 $5M^{x^+} + 2MnO_4 \longrightarrow M^{x^+}O_3 + Mn^{2^+} + \frac{1}{2}O_2$ 58 (a) $a + 5 \times (-1) = 0$ Change in oxidation state = 5 $\therefore a = +5$ Reduction 59 **(b)** x + 2 = 5 $Fe^{2+} \rightarrow Fe^{3+} + e$ $\frac{(C^{3+})_2 \to 2C^{4+} + 2e}{Fe^{2+} + C_2 O_4^{2-} \to CO_2 + Fe^{3+} + 3e}$ x = 5 - 2 = +3:. 69 (a) Meq. of $K_2Cr_2O_7 = Meq.$ of $FeSO_4$ $\therefore E = M/3$ $1 \times V = \frac{10}{152/1} \times 1000$ 60 (c) $(0^{-1})_2 \rightarrow 0^0_2 + 2e$: V = 65.78 mL $Mn^{7+} + 5e \rightarrow Mn^{2+}$ 70 **(b)** 5 mole $H_2O_2 \equiv 2$ mole KMnO₄ $Cl_2 + H_2O \rightarrow 2HCl + 0$; thus, matter is oxidised 61 (a) by liberated oxygen. Caro's acid is H₂SO₅. It has a peroxide linkage so, 72 (b)

 $SnCl_2 + 2HgCl_2 \rightarrow Hg_2Cl_2 + SnCl_4$ 73 (d) Addition of KI to CuSO₄ makes it dark brown. 74 (a) Mn is stronger oxidising agent in +7 oxidation state. e.g., KMnO₄. 75 (c) $Cr_2O_7^{2-} + 14H^+ + nFe^{2+}$ $\rightarrow 2Cr^{3+} + nFe^{3+} + 7H_2O$ $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ (reduction)...(i) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ (oxidation)...(ii) Eq.(ii) is multiplied by 6 $6Fe^{2+} \rightarrow 6Fe^{3+} + 6e^{-}$ Thus, balanced equation is $Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+}$ $\rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$ Hence, the value of 'n' is 6. 76 **(b)** $4e + N^{5+} \rightarrow N^+$ \therefore Possible product is N₂O. 77 (d) Find oxidation number of P in each. 78 **(b)** $CrO_4^{2-} + SO_3^{2-} \rightarrow Cr(OH)_4^{-} + SO_4^{2-}$ Let the oxidation number of Cr is x in CrO_4^{2-} x + 4(-2) = -2*x* = 6 and in $Cr(OH)_4^-$ the oxidation number of Cr is y y + 4(-2) + 4(1) = -1y - 8 + 4 = -1y = 3Hence, oxidation number of Cr changes from +6to +3. 79 **(b)** Find oxidation no.in each. 80 (d) $Mn^{7+} + e \rightarrow Mn^{6+}$ $\therefore E = M/1$ 81 (a) The sum of oxidation states of all elements in an ion is equal to charge on it. Let the oxidation state of S in $SO_4^{2-} = x$ $\therefore x + (-2 \times 4) = -2$ 0r x = +682 (d) 90 **(b)** Meq. of $K^+ = Meq.$ of $KMnO_4$

 $\operatorname{Sn}^{2+} \longrightarrow \operatorname{Sn}^{4+} + 2e; 2e + \operatorname{Hg}^{2+} \longrightarrow \operatorname{Hg}^{0}$ 83 (c) Oxidation number of iodine in given species is as follows O.N. of iodine in $IF_3 = +3$ 0.N. of iodine in $I_3^- = -\frac{1}{2}$ O.N. of iodine in $IF_5 = +5$ O.N. of iodine in $IF_7 = +7$ 84 (a) $1 + a + 3 \times (-2) = 0$ $\therefore a = +5$ 85 (d) KO₃ Na_2O_2 Suppose O.N. of O = xsuppose 0.N. of 0 = x $2 \times 1 + 2x = 0$ +1 + 3x = 03x = -12 + 2x = 0 $x = -\frac{1}{3}$ 2x = -2 $x = -\frac{2}{2}$ x = -0.33x = -186 **(b)** $I_2^0 \rightarrow 2I^- + 2e$ 87 (c) Os and Ru show +8 oxidation number. 88 (a) Meq. of $AgNO_3 = 100 \times 1 - 100$ Meq. of $CuSO_4 = 100 \times 1 \times 2 = 200$ Thus, H_2S is needed in the same Meq. ratio. 89 (c) $Na_2S_2O_3$, 2(+1) + 2x + 3(-2) = 02 + 2x - 6 = 0x = +2 $Na_2S_4O_6$ 2(+1) + 4(x) + 6(-2) = 02 + 4x - 12 = 04x = +10x = +2.5

 $=\frac{1}{5} \times 1000 = 200$: Eq. of K⁺ = $\frac{200}{1000}$ = 0.2 Also, mole of K⁺ = $\frac{0.2}{5} \left| \frac{\text{Valence factor} = 5}{\text{Mn}^{7+} + 5e} \xrightarrow{\text{Mn}^{2+}} \right| = 0.04$: No. of K⁺ = $\frac{0.2}{5}$ × 6.023 × 10²³ = 2.4 × 10²² $Mn^{7+}: 1s^2, 2s^22p^6, 3s^2 3p^6$ 92 (b) $4e + Br^{5+} \rightarrow Br^{1+}$; Thus, BrO_3^- is to be reduced 102 **(b)** by a reducing agent. Meq. of $H_2O_2 = 25 \times 0.5 \times 2 = 25$; 93 (b) Meq. of KMnO₄ = 50 \times 0.2 \times 5 = 50; $6e + (N^0)_2 \rightarrow 2N^{-3}$ \therefore 25 Meq. or 5 milli mole of KMnO₄ are left. $\therefore E_{N_2} = \frac{28}{6}; E_{NH_3} = \frac{17}{3}$ 103 (a) $K - C \equiv N$ 94 (a) N is more electronegative and thus, has -3 F_2 is oxidant; ClO_4^- and MnO_4^- are also oxidant. oxidation number as it involves three covalent 96 (c) bonds. None of elements in reaction (c) undergoes a Thus, 1 + a + (-3) = 0change in oxidation number, therefore reaction $\therefore a = +2$ (c) is not a redox reaction 104 (a) +1+5-2 +1-1 +1 -1 +1+5 -2 Ox.no.of Ni is equal to zero. $Ag NO_3 + NaCl \rightarrow Ag Cl + Na NO_3$ 105 (a) It is a double decomposition reaction $Mn^{7+} + le \rightarrow Mn^{6+}$ 97 (b) $\therefore E = M/1$ $Na_2S_4O_6$ is salt of $H_2S_4O_6$ which has the following 106 **(b)** structure Mn has +6 ox.no. in K_2MnO_4 and +2 ox.no. in MnSO₄. 107 (b) In reaction 0 +1-1 $H_2O + Br_2 \rightarrow HOBr + HBr$ The oxidation number of bromine increases from \Rightarrow Difference in oxidation number of two types of 0 to +1 and decreases from 0 to -1, so due to this sulphur = 5reason bromine is both oxidised as well as 98 (c) reduced in the above reaction. Sum of oxidation no. of atoms in it is zero. 108 (a) 99 (b) $1 + 2 \times (+1) + a + 2 \times (-2) = 0$ $Sn^{2+} \rightarrow Sn^{4+} + 2e$ $\therefore a = +1$ $\therefore E = M/2 = \frac{119 + 71}{2} = 95$ 109 **(b)** H in LiAIH₄ has -1 ox.no. and thus, easily 100 **(b)** oxidized. $2 \times 1 + a + 4 \times (-2) = 0$ 110 (a) $\therefore a = +6$ NO in iron complex has +1 ox.no. 101 (c) Thus, $a + 5 \times (0) + 1 + 1 \times (-2) = 0$ Electronic configuration of $\therefore a = +1$ Mn : $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2 \vdash$ More stable 111 **(b)** Let the oxidation state of Fe in $Fe_3O_4 = x$ due to $\therefore 3x + 4 \times (-2) = 0$ $Mn^{2+}: 1s^2, 2s^22p^6, 3s^23p^6 3d^5$ half filled d 0r 3x - 8 = 0

 $\therefore \quad x = \frac{8}{2}$ agent 125 (c) 112 (d) $As^{3+} \rightarrow As^{5+} + 2e$ 126 (a) $S^{2-} \rightarrow S^{6+} + 8e$ 113 (a) $3e + Mn^{7+} \rightarrow Mn^{4+}; E = \frac{158}{3} = 52.66$ 114 (a) 127 (a) $8e + N^{5+} \rightarrow N^{3-}$ $E_{\rm NO_3^-} = \frac{M}{8} = \frac{62}{8}$ In $E_{\rm NH_4^+} = \frac{M}{8} = \frac{18}{8}$ 128 (a) 115 (d) $1 + a + 4 \times (-2) = 0$ $\therefore a = +7$ 129 (d) 116 (d) Find oxidation number of iodine in each. 130 (a) 117 (c) $Na + H_2 O \rightarrow NaOH + (1/2)H_2$. 118 **(b)** $3 \times 1 + a + 6 \times (-1) = 0$ $\therefore a = +3$ 119 (d) 131 (a) $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ $(2I^- \to I_2 + 2e^-) \times 3$ Cr₂O₇²⁻ + 14H⁺ + 6I⁻ $\to 2Cr^{3+} + 7H_2O + 3I_2$ Hence, number of moles of I_2 produced = 3 132 **(b)** 120 **(b)** $Mn^{4+} + 2e \rightarrow Mn^{2+}$: 133 (c) MnO_2 is itself reduced. 121 **(b)** Meq. of $O_2 = Meq.$ of $KMnO_4 = 100 \times 0.5$ $\frac{w}{8} \times 1000 = 50$ $\therefore w_{0_2} = 0.4 \text{ g}$ 134 **(b)** $\therefore V_{O_2} = \frac{224 \times 0.4}{32} = 0.28 \text{ litre}$ 135 (a) 122 (a) Oxidation involves loss of electrons and reduction 136 (d) involves gain of electrons, hence in case of oxidation-reduction reactions(redox 137 **(b)** reactions)charge remains conserved 123 **(b)** $Ni \rightarrow Ni^{2+} + 2e$; Ni is oxidized and thus, reductant. 124 (a) +6 0 +4 $2\mathrm{HI} + \mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{I}_2 + \mathrm{SO}_2 + 2\mathrm{H}_2\mathrm{O}$ $H_2SO_4 - Reduced to \rightarrow SO_2$ oxidising

 $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr.$ $H_2 \stackrel{-2}{S} \longrightarrow \stackrel{0}{S}$ The oxidation number of S increases from -2 to 0 in elemental sulphur and hence, H₂S gets oxidized S₈has zero oxidation state of S. In $S_2F_2: 2 \times a + 2 \times (-1) = 0;$ $\therefore a = +1$ ∴a = -2 $H_2S: 2 \times 1 + a = 0;$ Cr in CrO_2Cl_2 has +6 and Mn in MNO_4^- has +7 oxidation number respectively, the highest value for them. F is more electronegative than oxygen. Oxidation number of Cl in ClO_3^- . $ClO_3 = -1$ x + 3(-2) = -1x = +6 - 1x = +5 $2e + Cl^+ \rightarrow Cl^ N = \frac{15}{74.5/2 \times 1} = 0.40$ In ionic hydrides, H has -1 ox.no. Let the oxidation number of Xe is x in XeOF₂. x + (-2) + 2(-1) = 0x - 2 - 2 = 0x = +4No change in ox.no. of any species. $H_2^{1+} + 2e \rightarrow H_2^0$ Both are same. $2 \times 1 + 2 \times 1 + 4 \times (-2) = 0$ $\therefore a = +3$

138 (a) either of the titre species to indicate end point. Let oxidation state of P in $Ba(H_2PO_2)_2$ is x, then 148 (d) 2(+1) + 2[2(+1) + x + 2(-2)] = 0 $4CrO_5 + 6H_2SO_4 \rightarrow 2Cr_2(SO_4)_3 + 6H_2O + 7O_2$ 2 + 2(2 + x - 4) = 0149 (c) 2 + 4 + 2x - 8 = 0+1 unit increases 2 + 2x - 4 = 02x = 2 $4P + 3KOH + 3H_2O \longrightarrow 3KH_2PO_2 + PH_3$ x = +1-3 unit decreases 139 (c) Hence, P is both oxidized as well as reduced $3 \times 1 + a + 2 \times (-2) = 0$ 150 (c) $\therefore a = +1$ $2 \times a + 7 \times (-2) = -4$ 140 **(a)** $\therefore a = +5$ Calculate ox.no. of S by assuming $(CH_3)^+$ and 151 (b) SO²⁻. $6e + Cr_2^{6+} \rightarrow 2Cr^{3+}$. 141 (c) 152 **(b)** $H_2^{1+}O \rightarrow H_2^0$; Steam is reduced. Let the oxidation number of oxygen in following 142 **(b)** compounds is x. $2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2$. An intramolecular redox $In OF_2$ change is one in which one element of a x + (-1)2 = 0compound is oxidized $(0^{2}$ to $0^{0}_{2})$ and one x = +2element is reduced (Cl^{5+} to Cl^{1-}) In KO₂ 143 **(b)** $+1 + (x \times 2) = 0$ $Mn^{7+} + 5e \rightarrow Mn^{2+}$ 2x = -1 $Fe^{2+} \rightarrow Fe^{3+} + e$ $x = -\frac{1}{2}$ 144 **(b)** Due to smallest halogen, it possesses maximum In BaO₂ tendency for accepting electron in aqueous $+2 + (x \times 2) = 0$ medium. 2x = -2(1/2) F₂ + e + aq \rightarrow F⁻, $\Delta H = -\text{ve}(\text{max. for F}_2)$ x = -1145 (a) In Bromine has zero oxidation state because it is in O₃, oxidation number of oxygen is zero because oxi free state. free state or in any of its allotropic form is always 0 zero. $Br_2 \rightarrow Br0_3^-$ Thus, the increasing order of oxidation number is Let the oxidation number of Br in BrO_3^- is x. $BaO_2 < KO_2 < O_3 < OF_2$ $x + (-2 \times 3) = -1$ -1 $-\frac{1}{2}$ 0 +2 x + (-6) = -1153 (d) x = +6 - 1Na-Hg is uncombined state of sodium. *x* = +5 154 (a) So, oxidation number changes from 0 to +5. A measuring flask has a definite volume. 146 (c) 155 (b) Since, $K_3Fe(CN)_6$ reacts with $FeSO_4$ (if added internally) to give blue colour of iron complex. ie, it has four peroxide bonds each 156 (a) having an oxidation number of -1 and one double $2 \times a + 5 \times 1 = +1$ bond in which oxidation number of 0 is -2 $\therefore a = -2$ Therefore, $x + 4 \times (-1) + 1 \times (-2) = 0$ 157 (a) $\therefore x = \times 6$ Oxygen of H_2O_2 gets reduced from -1 to -2. 147 (a) 158 (a) Indicator then only can show redox change with Meq. of $HNO_3 = Meq. of I_2$

 $\frac{w}{63/1} \times 1000 = \frac{5}{254/10} \times 1000$ $\therefore w = 12.4 \text{ g}$ 174 (a) 159 (c) $SO_2 + 2H_2S \rightarrow 2H_2O + 3S$ 175 **(b)** 160 (d) F^- can be oxidized to F_2 only by electrolysis. 161 (a) 176 (c) $2S_2^{2+} \rightarrow S_4^{(5/2)+} + 2e \therefore$ Eq. wt. of $Na_2S_2O_3 = \frac{M}{1}$ $I_2^0 + 2e \rightarrow 2I^-$ 177 **(b)** 162 (d) The same species in each reaction is oxidized and reduced as well to give disproportionation 178 (d) reaction. 163 (a) 179 (c) N₃H (hydrazoic acid) +3(x) + 1 = 0180 (a) 3x + 1 = 0 $x = -\frac{1}{2}$ 181 (a) 164 (a) $Fe^{2+} + Ce^{4+} \rightarrow Fe^{3+} + Ce^{3+}$ 182 (c) $5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$ Moles of cerric ammonium sulphate $\therefore \frac{1}{\text{Moles of potassium permanganate}} = \frac{1}{1/5}$ = 5.0183 (d) 165 (a) $N^{3-} \rightarrow N^{2+} + 5e$ $\therefore E_{\rm NH_3} = \frac{17}{5}$ number 166 (a) 184 (a) C has -4 ox.no. in CH₄, In rest all it has +4 ox.no. 185 (c) 167 (d) $[\operatorname{Cr}_2^{6+} + 6e \rightarrow 2\operatorname{Cr}^{3+}] \times 1; [\operatorname{Sn}^{2+} \rightarrow \operatorname{Sn}^{4+} + 2e]$ $\times 3$ x = -3168 (a) Milliequivalent $[(W/Eq. wt.) \times 1000]$ or millimole $\left[\left(\frac{W}{M}\right) \times 1000\right]$ do not change on x = 5dilution. 169 (c) Cr^{3+} ion is green; $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$. 170 **(b)** $Hg + O_3 \rightarrow HgO + O_2$ 171 (a) $a + (4 \times 0) + 2 \times (-1) = 1$ x = -3 $\therefore a = +3$ 172 (c) $2V^{2+} \rightarrow V_2^{5+} + 6e$ state. 173 (c) 186 (a)

 $Cr^{6+} + 3e \rightarrow Cr^{3+}$ $\therefore E = M/3$ Ox.no. of Cr on both side is +6 $S^{2-} \rightarrow S^{4+} + 6e$ \therefore Eq. = mole \times 6 $2 \times 1 + a + 4 \times (-2) = 0$ $\therefore a = +6$ Iodine has -1 (minimum ox.no.) and +7(maximum ox.no.). These are formulae of Meq. $CuSO_4 + H_2S \rightarrow CuS + H_2SO_4$ I in KIO_4 has +7 ox.no. $2 \times a + 3 \times (-2) = -2$ $\therefore a = +2$ $6e + Cr_2^{6+} \rightarrow 2Cr^{3+};$ Eq. wt. of $Cr = \frac{at. wt.}{3}$ -1 +2 +4 -2 +1 -1 +4 -2 -2 H₂O₂ + Na₂C O₃ \rightarrow Na₂O₂ + CO₂ + H₂O None of the elements changes its oxidation Usually burettes have least count of 0.1 mL. The oxidation state of N in NH₃ is x + 3(+1) = 0The oxidation state of N in HNO₃ is 1 + x + 3(-2) = 0The oxidation state in N in NaN₃ is +1 + 3x = 0x = -1/3The oxidation state of N in Mg₃N₂ is 3(2) + 2x = 06 + 2x = 0Hence, three molecules $(i. e., NH_3, NaN_3, Mg_3N_2)$ have negative oxidation

Fe in Fe $(CO)_5$ has zero oxidation no., *i.e.*, the Due to higher E_{OP}^0 order. lowest for metals. 202 (c) Cl atom is oxidised ($Cl^{1+} \rightarrow Cl^{5+} + 4e$) as well as 187 (c) The weight of rider used is 0.0002 g. Cl atom is reduced ($Cl^{1+} + 2e \rightarrow Cl^{-}$). Such 188 (d) auto redox reactions are called Ions are hydrated on dissolution of salt in water. disproportionation reactions. 189 (a) 203 (d) Ox.no. of each element on two sides is same. Ox.no. of S in Na₂S₄O₆ is no doubt 2.5 but it is 190 (c) average of two values, i.e., $\frac{2 \times (+5) + 2 \times 0}{4} = +5/2$ $10e + 2Br^{5+} \rightarrow Br_2^0$ \therefore Eq. wt. of KBrO₃ = $\frac{M}{r}$ $2Br^- \rightarrow Br_2 + 2e$ 204 (a) 191 (a) De-electronation is loss of electrons, i.e. Corrosion involves oxidation of species. $M \rightarrow M^{4+} + 4e$ 192 **(b)** 205 (b) $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ $CaCO_3 \xrightarrow{\Delta} CaO + CO_2;$ $[\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+} + e^{-}]^{5}$ This is simple $MnO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$ decomposition and not a redox change. 206 (b) .. Five electrons gets transferred. S^{2–}has minimum ox.no. and thus, can act only as 193 (c) reducing agent. $1 + a + 3 \times (-2) = 0$ 207 (a) $\therefore a = +5$ It imparts its colour at end point. 194 (a) 208 (c) The species present in solution but does not take $Zn^0 \rightarrow Zn^{2+} + 2e$ part in the reaction and are also omitted while 209 (d) writing the potential redox change are called Oxygen has highest electron affinity in its family. spectator ion. 210 (a) 195 (a) $Na_2[Fe(CN)_5NO]$ It is the formula of turns bull's blue. 211 (d) 196 **(b)** The formula is obtained by taking an account of g Si has 4 electrons in its valence shell. When it atoms. reacts with strongly electropositive metal like Na, $Xe = \frac{53.3}{131} = 0.4, F = \frac{46.5}{20} = 2.325,$ Mg, K etc., it gives 4 electrons and its oxidation state in this case is -4. *i.e.*, $1:6 \text{ or } XeF_6$ 197 (b) Oxygen in H_2O_2 has ox.no. -1 which can increase 212 (c) N in NH₃, NH₄⁺, N₃H and NO₂⁻ has -3, -3, -1/3or decrease. and +3 oxidation number respectively. 198 (b) $A^{n-} \to A^{a+} + (a+n)e$ 213 (b) $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$ Meq. of $H_2O_2 = Meq.$ of $KMnO_4$ $\frac{w}{34/2} \times 1000 = 10 \times 1$ Also, Meq of $A = Meq. of K_2Cr_2O_7$ $3.26 \times 10^{-3}(a+n) = 1.68 \times 10^{-3} \times 6$ $\therefore w_{H_2O_2} = 0.17$ Or a + n = 3 \therefore Per cent purity = $\frac{0.17}{0.2} \times 100 = 85\%$ $\therefore a = 3 - n$ 199 (c) 214 (c) $H_2^0 \rightarrow H_2^+ + 2e (H_2O \text{ is formed})$ $Mn^{7+} + e \rightarrow Mn^{6+}$ (MnO_4^{2-}) 200 (d) $Mn^{7+} + 3e \rightarrow Mn^{4+}$ (MnO₂) $2 \times a + 7 \times (-2) = 0$ $2\mathrm{Mn}^{7+} + 8e \longrightarrow (\mathrm{Mn}^{3+})_2 \qquad (\mathrm{Mn}_2\mathrm{O}_3)$ $\therefore a = +7$ $Mn^{7+} + 5e \rightarrow Mn^{2+}$ (MnO₂) 201 (d) 215 (d)

or

	ml	I	
	The reaction involves : $H_2O_2 + 2I^- + 2H^+ \rightarrow I_2 + 2H_2O(l)$	າງພ	= 5 moles of HCl
	$\begin{array}{c} n_2 O_2 + 2I + 2I & \rightarrow I_2 + 2I_2 O(I) \\ 2Na_2 S_2 O_3 + I_2 & \rightarrow Na_2 S_4 O_6 + 2NaI \end{array}$	225	Meq. of $FeSO_4 = Meq. of KMnO_4$
	The reaction gives blue colour only after all the		
	$Na_2S_2O_3$ is used. The reaction is carried out with		$\frac{W}{152/1} \times 1000 = 200 \times 1$
	adjusted amount of $Na_2S_2O_3$ so that only a		$\therefore w = 30.4 \text{ g}$
	fraction of H_2O_2 and KI reaction occurs before the	226	(b)
	blue colour of starch— I_2 appears, however the		$\mathrm{BiO}_3^- + 6\mathrm{H}^+ + 2e^- \longrightarrow \mathrm{Bi}^{3+} + 3\mathrm{H}_2\mathrm{O}$
	slow redox reaction of $H_2O_2 - I_2$ continues. The		x = 2
	appearance of blue colour is like clock alarm and	227	
	in such reactions time for the appearance of blue		$5H_2O_2 + 2CIO_2 + 2OH^- \rightarrow 2CI^- + 5O_2 + 6H_2O$
	colour is noticed. The phenomenon is used in	228	
	studying rate of reaction. If time taken for blue		Meq. of $Na_2S_2O_3 = Meq.$ of $CuSO_4$
	colour appearance is longer, the reaction is slow		$\therefore V \times 0.4 \times 1 = 50 \times 0.2 \times 1$ $\therefore V = 25 \text{ mL}$
	and vice – versa.	229	
216		22)	
017	N in $(N_2H_5)_2SO_4$ has -2 ox.no.		$N = \frac{47.5}{189.7/2 \times 2.25} = 0.222 N$
217	(D) The $5p$ -electrons of outermost shell in iodine are	230	(b)
	unpaired during their excitation to $5d$ –subshell.		$2e + Fe_2^{3+} \rightarrow 2Fe^{2+}$
218		231	(c)
210	A characteristic property of transition elements.		$Mn^{7+} + 5e \rightarrow Mn^{2+}$
219			$C_2^{3+} \longrightarrow 2C^{4+} + 2e$
	Let the oxidation state of sulphur in $Na_2S_4O_6$ is <i>x</i> .	232	
	$Na_2S_4O_6$		Oxidation no. of N in NO ⁺ is
	$1 \times 2 + 4 \times x + (-2) \times 6 = 0$		$(1 \times x) + 1 \times (-2) = +1$
	2 + 4x - 12 = 0		$\therefore x = +3$ Oxidation no. of Cl in ClO ₄ ⁻ is
	4x - 10 = 0		$(1 \times x) + 4 \times (-2) = -1$
	4x = 10 10		x = +7
	$x = \frac{10}{4} = 2.5$	233	
220	-		1. Sulphurous acid H_2SO_3
	F_2 is strongest oxidant among all the species.		
221			$2 + x + (-2 \times 3) = 0$
	S has +6 ox. no. in SO_3		x - 4 = 0
222			$\therefore x = 4$
	$3 \times a + 1 \times 1 = 0$ $\therefore a = -1/3$		$\cdots x - 4$
223			2. Pyrosulphuric acid $(H_2S_2O_7)$
	Tendency to lose more electron for cation		$2 + 2x + (-2 \times 7) = 0$
	decreases.		$2 + 2x + (-2 \times 7) = 0$
224	(a)		or $2x = 12$
	$\therefore 4\text{Zn} + \text{NO}_3^- + 10\text{H}^+ \longrightarrow 4\text{Zn}^{2+} + \text{NH}_4^+ +$		(
	$3H_2O(Net equation)$		$\therefore = 6$
	$4\text{Zn} + \text{NO}_3^- + 10\text{HCl} \rightarrow 4\text{Zn}^{2+} + \text{NH}_4^+ + 5\text{Cl}_2 +$		3. Thiosulphuric acid $(H_2S_2O_3)$
	$3H_2O$		
	\therefore 1 mole of NO ₃ (0r NaNO ₃) is reduced by =10 moles of HCl		$2 + 2x + (-2 \times 3) = 0$
	$\therefore \frac{1}{2}$ mole of No ₃ ⁻ will be reduced by		or $2x = 4$
	2		x = 2
	$= 10 \times \frac{1}{2}$ moles of HCl		$\lambda - \Delta$

4. Dithionous acid $(H_2S_2O_4)$ $2 + 2x + (-2 \times 4) = 0$ 2x = 6 $\therefore x = 3$ 234 (c) $KCN + AgCN \rightarrow KAg(CN)_2$ (Complex formation) CN⁻ also acts as reducing agent. 235 (a) $Mg + 2HCl \rightarrow MgCl_2 + H_2.$ 236 (a) Meq. of oxalic acid = Meq. of $KMnO_4$ $V \times 0.1 \frac{250 \times 8}{100 \times 31.6} \times 1000 = 6.3$ litre 237 (d) H₃PO₃ is phosphorous acid. 238 (c) $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$ 239 (c) $H_4P_2O_5: 4 \times 1 + 2 \times a - 5 \times 2 = 0$ a = +3 $H_4P_2O_6: 4 \times 1 + 2 \times a - 6 \times 2 = 0$ a = +4 $H_4P_2O_7: 4 \times 1 + 2 \times a - 7 \times 2 = 0$ a = +5240 (c) $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-.$ 241 (b) Meq. of oxalate = Meq. of KMnO4 $\frac{w}{88/2} \times 1000 = 90 \times \frac{1}{20}$ \therefore *w* oxalate ion = 0.198 g : % of oxalate ion = $\frac{0.198}{0.3} \times 100 = 66\%$ 242 (a) Meq. of $Cl_2 = Meq. of KMnO_4$ $\frac{w}{71/2} \times 1000 = \frac{10}{31.6} \times 1000$ $\therefore w_{\rm Cl_2} = 11.23 \, \rm g$ $\therefore V_{\text{Cl}_2} = \frac{22.4 \times 11.23}{71} = 3.54 \text{ litre}$ 243 (d) $N = \frac{15.8 \times 1000}{158/5 \times 100} = 5$ 244 **(b)** $Mn^{7+}5e \rightarrow Mn^{2+}$ 245 (d) $S_2 O_3^{2-} \rightarrow S(s)$ or $4e + S_2^{2+} \rightarrow 2S^0$

246 (a) Meq. of $KMnO_4 = Meq.$ of FeC_2O_4 $Fe^{2+}C_2^{2+}O_4 \rightarrow Fe^{3+} + 2C^{4+}O_2 + 3e$ $0.1 \times 5 \times V = \frac{100 \times 10^{-3}}{144/3} \times 1000$ \therefore V = 4.1 mL 247 (d) It is precipitation reaction. 248 (a) Meq. of lime stone = Meq. of CaC_2O_4 = Meq. of KMnO₄ = Meq. Of CaO $\therefore 40 \times 0.250 = \frac{w}{56/2} \times 1000$ $\therefore w_{CaO} = 0.28$: per cent of CaO = $\frac{0.28 \times 100}{0.518} = 54\%$ 249 (a) $\therefore a = +4$; Thus, Sn⁴⁺ is choice. 250 (c) Br₂ is disproportionated in basic medium as $3Br_2 + 3Na_2CO_3$ \rightarrow 5NaBr + NaBrO₃ + 3CO₂ 251 (b) Carbon has negative oxidation no.in Mg₃C₂ and positive oxidation number in C_3O_2 ; O is more electronegative than C. Mg is more electropositive than C. 252 (d) It is a complexation reaction involving reduction of I₂ and oxidation of KI. 253 (a) Oxidation state of Cr in Cr₂O₃ is Cr_2O_3 , 2x + (-2)3 = 02x - 6 = 02x = 6x = +3254 (a) $2 \times a + 2 \times (-1) = 0$ $\therefore a = +1$ 255 (c) N has + 1 ox.no. 256 (a) $Fe^{2+} \rightarrow Fe^{3+} + e$ $Mn^{7+} + 5e \rightarrow Mn^{2+}$ 5 mole $FeSO_4 = 1$ mole $KMnO_4$ $X' = \frac{2}{3}$ mole Or $Fe^{2+} \rightarrow Fe^{3+} + e$

$$(C^{3+})_2 \rightarrow 2C^{4+} + 2e$$
FeC₂O₄ $\rightarrow Fe^{3+} + 2C^{4+} + 3e$
Mn⁷⁺ + 5e \rightarrow Mn²⁺
5 mole FeC₂O₄ = 3 mole KMnO₄
 $\therefore 'Y' = \frac{3 \times 2}{5}$
257 (b)
H₂S + Cl₂ \rightarrow 2HCl + S
258 (c)
Meq. of salt = Meq. Of Na₂SO₃
50 \times 0.1 \times n = 25 \times 0.1 \times 2
 \therefore n = 1 (change in ox.no.)
 \therefore M³⁺ + e \rightarrow M²⁺
259 (a)
Cu²⁺ is more stable than Cu⁺ although later, has
 $3d^{10}$ configuration. In Cu⁺18 electron core is not
held properly by nuclear charge and thus, Cu⁺ is
readily converted to Cu²⁺.
260 (c)
 \therefore In this reaction phosphorus is simultaneously
oxidised and reduced.
 \therefore It is disproportionation reation.
 0 + $^{-3}$
P₄ + 3NaOH + 3H₂O \rightarrow 3NaH₂PO₂ + PH₃
261 (a)
S + 2e \rightarrow S²⁻.
262 (d)
All terms have same meaning.
263 (b)
The sum of the oxidation states is always zero in
neutral compound.
The oxidation state of X, Y, and Z are +2, +5 and
-2 respectively.
5. In X₂YZ₆
 $2 \times 2 + 5 + 6(-2) \neq 0$
6. In XY₂Z₆
 $2 \times 2 + 5 + 6(-2) \neq 0$
7. In XY₅
 $2 + 5 \times 2 + 6(-2) = 0$
7. In XY₅
 $2 + 5 \times 5 \neq 0$
8. In X₃YZ₄
 $3 \times 2 + 5 + 4(-2) \neq 0$
Hence, the formula of the compound is XY₂Z₆.
264 (c)
F is most electronegative element and thus, has
-1 ox.no.

hus, a + (-2) = 0a = +2a) $\ln^{7+} + 5e \rightarrow Mn^{2+}$ $(Cr^{6+})_2 + 6e \rightarrow 2Cr^{3+}$ $e^{2+} \rightarrow Fe^{3+} + e$ leq. of $e^{2+} = Meq. of KMnO_4 = Meq. of K_2Cr_2O_7$ \times 5 \times $V_{\text{KMnO}_4} = 1 \times$ 6 \times $V_{\text{K}_2\text{Cr}_2\text{O}_7}$ $V_{\rm KMnO_4} = \frac{6}{5} V_{\rm K_2Cr_2O_7}$ b) Meq. of KMnO₄ in 1 mL = Meq. of Fe = $\frac{5 \times 10^{-3}}{56/1} \times$.0³ Meq. if KMnO₄ in 250 mL = $\frac{5 \times 250}{56/1}$ 'hus, $\frac{w}{31.6} \times 1000 = \frac{5 \times 250}{56/1} = 0.7 \text{ g}$ c) et the oxidation number of Cr in K_2CrO_4 is x. (+1) + x + 4(-2) = 0+x - 8 = 0= +6 b) $2S_2^{2+} \longrightarrow S_4^{5/2} + 2e$ c) $4n^{7+} + 5e \rightarrow Mn^{2+}$ E = M/5c) Let the oxidation number of Cr be x For K₂Cr₂O₇ $+1 \times 2 + 2x + 7(-2) = 0$ 2 + 2x - 14 = 02x = 12 $\alpha = 6$ b) $\ln^{2+} \rightarrow Mn^{4+} + 2e$ $^{4+}$ + 4e \rightarrow S⁰; SO₂ is reduced and thus, oxidant. b) $H^- \rightarrow H_2 + 2e$ b) et the oxidation number of carbonyl carbon in nethanal (HCHO) and methanoic acid (HCOOH) is and *y* is respectively. n HCHO, (+1) + x + (-2) = 0+x - 2 = 0= 0n HCOOH,

2(+1) + y + 2(-2) = 02 + y - 4 = 0v = 2275 (c) $I_2^0 \rightarrow 2I^{5+} + 10e$ $\therefore E = \frac{M}{10} = \frac{254}{10} = 25.4$ 276 **(c)** $4e + S^{4+} \rightarrow S^0$ $\therefore \quad \mathrm{E}_{\mathrm{SO}_2} = \frac{64}{4} = 16$ 277 (a) $M^{5+} \rightarrow M^{7+} + 2e; M^{5+}$ is reductant. 278 (a) 0 +1 -1 $Li + H_2 \rightarrow 2LiH$ Oxidation number of hydrogen is decreasing from 0 to -1. So, H₂ is acting as oxidising agent in this reaction. 279 (d) Mohr's salt is FeSO₄. (NH₄)₂ SO₄. 6H₂O $Fe^{2+} \rightarrow Fe^{3+} + e \times 6$ $6e + Cr_2 O_7^{2-} \rightarrow 2Cr^{3+} \times 1$ 280 (a) 1 faraday of electricity involves change of one mole electron. $Fe^{2+} + 2e \rightarrow Fe$ 281 (c) Oxidation of Co and reduction of Cu^{2+} is taking place. 282 (a) $4 \times 1 + a + 6 \times (-2) = -1$ $\therefore a = +7$ 283 (a) $a + 3 \times (+1) = 0$ $\therefore a = -3$ 284 (c) $2MnCl_2 + 5PbO_2 + 6HNO_3$ \rightarrow 2HMnO₄ + 2PbCl₂ $+ 3Pb(NO_3)_2 + 2H_2O$ 285 (d) $4 \times 1 + a + 4 \times (-1) = 0$ $\therefore a = 0$ 286 (c) Ox. no. of each species remains same. 287 (a) $Mn^{7+} + 2e \rightarrow Mn^{5+}$. 288 (a) $4 \times 1 + a + 6 \times (-1) = 0$ $\therefore a = +2$ 289 (a)

290 (d) $H_2S + H_2O_2 \longrightarrow O_2 + 2H_2O$ $2e^{-}$ lose H₂S – Oxidation, Reducing agent. H_2O_2 – Reduction, Oxidising agent. 291 (d) $S^{4+} \rightarrow S^{6+} + 2e$. 292 (b) $a + 2 \times 1 - 1 = 0$ $\therefore a = -1$ 293 (d) $2\mathrm{Cu}^{2+} + 2e \rightarrow \mathrm{Cu}_2^{1+}$ $\therefore E = \frac{M}{1}$ 294 (c) $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$; $Cr^2 O_7^{2-}$ is reduced. 295 (a) $\operatorname{Sn}^0 \longrightarrow \operatorname{Sn}^{4+} + 4e$ 296 (d) $2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$ 297 (c) The reactions, in which the same element is oxidised as well as reduced, are called disproportionation reactions. $\begin{array}{c} & & & \\ & & & \\ & & \\ 2\text{KOH} + \text{Cl}_2 \longrightarrow \text{K} \text{Cl} + \text{KOCl} + \text{H}_2\text{O} \end{array}$ Oxidation In this reaction, the same element, ie., Cl₂ is oxidised as well as reduced, so it is an example of disproportionation reaction. 298 (a) $Cr_2O_7^{2-} + 14H^+ + 6I^- \rightarrow 2Cr^{3+} + 7H_2O + 3I_2$ $Cr_2O_7^{2-}$ is reduced to Cr^{3+} . Thus, final state of Cr is +3. Hence, (a) 299 (d) NaNO₂ (Sodium nitrite) acts both as oxidising as well as reducing agent because in it N-atom is in +3 oxidation state (intermediate oxidation state). Oxidising property $2NaNO_2 + 2KI + 2H_2SO_4$ \rightarrow Na₂SO₄ + K₂SO₄ + 2NO $+ 2H_2O + I_2$ Reducing property $H_2O_2 + NaNO_2 \rightarrow NaNO_3 + H_2O_3$

 $2NH_3 + OCl^- \rightarrow N_2H_4 + Cl^- + H_2O$

300 (a) Graphic is uncombined state of carbon. 301 (d) $6 \times a + 12 \times 1 + 6 \times (-2) = 0$ $\therefore a = 0$ 302 **(b)** $Mn^{7+} + 5e \rightarrow Mn^{2+}$ 303 (a) $2 \times 2 + 2 \times a + 7 \times (-2) = 0$ $\therefore a = +5$ 304 (c) Eq. of $Cl_2 = eq.$ of chloride $1 \times 2 = \frac{111}{E + 35.5}$ $\therefore E = 40$ $\therefore M = 40 \times 2 = 80$ (Metal is bivalent.) 305 **(b)** It is chromium peroxide. Let the oxidation number of Cr is ''x''. $Cr^{x+} + O_2^- + O_2^- + O_2^- - CrO_5$ x + (-1)2 + (-1)2 + (-2)1 = 0x - 6 = 0x = +6Hence, the oxidation state of Cr is +6. 306 (d) Haematite is Fe_2O_3 , in which oxidation number of iron is III. Magnetite is Fe_3O_4 which is infact a mixed oxide (FeO. Fe_2O_3 .), hence iron is present in both II and III oxidation state. 307 (c) $K_2Cr_2O_7 + 2KOH \rightarrow 2K_2CrO_4$ (red-orange) (lemon-yellow) 308 (a) In basic medium $2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$ Net reaction is +7 $MnO_4^- \rightarrow MnO_4^{-2}$ Change in oxidation number =7-6 = +1So, electrons involved $=1e^{-1}$ 309 (a) In NH₄⁺, N has ox.no. -3 and in NO₃⁻, N has ox.no. +5.310 (c) $a + 6 \times (-1) = -2$

 $\therefore a = +4$ 311 (c) $1 + 1 \times (-2) + a = 0$ $\therefore a = +1$ 312 (a) $e + N^{5+} \rightarrow N^{4+}$; Thus, HNO₃ is oxidant. 313 (a) $\mathrm{H}^{0} \longrightarrow \mathrm{H}^{1+} + \mathrm{l}e.$ 314 (d) $S \xrightarrow{O_2} SO_2 \xrightarrow{Cl_2} SO_4^{2-} \xrightarrow{BaCl_2} BaSO_4One$ mole of S will give one mole of BaSO₄. Thus, mole of BaSO₄ formed = mole of S = $\frac{8}{32} = \frac{1}{4}$ 315 (d) $[Mn^{7+} + 5e \rightarrow Mn^{2+}] \times 3$ $[Fe^{2+}C_2^{3+}O_4 \rightarrow Fe^{3+} + 2C^{4+}O_2 + 3e] \times 5$ 316 (c) Equal equivalent of species react together. 317 (a) It is a fact. 318 (c) The balanced disproportionation reaction involving white phosphorus with aq. NaOH is Oxidation of P^0 to P^{+1} state $P_{4}^{0} + 3NaOH + 3H_{2}O \longrightarrow PH_{3} + 3NaH_{2}PO_{2}$ Reduction of P^0 to P^{-3} state 319 **(b)** F can have only -ve ox.no., *i.e.*, $2e + F_2^0 \rightarrow 2F^{1-}$ or F₂ can be reduced only. 320 (a) $(N^0)_2 + 6e \rightarrow 2(N^{3-})$ $3(H^0)_2 \rightarrow 2(H^{+1})_3 + 6e$ $E_{N_2} = \frac{28}{6}; E_{NH_3} = \frac{17}{3}$ 321 (a) $SO_2 + 2H_2O \rightarrow H_2SO_4 + 2H$; thus, matter is reduced by liberated hydrogen. 322 (c) N₂ undergoes oxidation and reduction as well; $\mathrm{N}^{0}_{2} \longrightarrow 2\mathrm{N}^{3+} + 6e; \mathrm{N}^{0}_{2} + 6e \longrightarrow 2\mathrm{N}^{3-}$ 323 **(b)** $M^{3+} \rightarrow M^{6+} + 3e$. 324 (a) $2H^- \rightarrow H_2 + 2e$; Thus, H^- is oxidized. 325 (d) All these substances can accept electrons and can decrease their oxidation number and hence, all these act as oxidation agent

 $^{+5}_{\text{HNO}_3} \xrightarrow{+4}^{+2}_{\text{NO}_2 \text{ or NO}}$ $\begin{array}{c} 0 \\ \mathrm{Cl}_2 \end{array} \longrightarrow 2\mathrm{Cl}^- \end{array}$ $^{+3}_{\text{FeCl}_3} \longrightarrow ^{+2}_{\text{FeCl}_2}$ +3326 **(b)** Meq. of $I_2 =$ Meq. of $Na_2S_2O_3 = 40 \times 0.11$ $\therefore \frac{w}{254/2} \times 1000 = 40 \times 0.11$ $w_{\rm I_2} = 0.558 \, {\rm g}$ 327 (a) $5e + Mn^{7+} \rightarrow Mn^{2+}$ $S^{4+} \rightarrow S^{6+} + 2e$ 328 (c) Meq. of $HNO_3 = 1000 \times 2 = 2000$ $\therefore \frac{w}{63/3} \times 1000 = 2000$ $\therefore w = 42 \text{ g}$ 329 (c) The chemical structure of $H_2S_2O_8$ is as follows 0 0 Ш H - o - s - o - o - s - o - H0 0 $2 \times (+1) + 2 \times x + 6 \times (-2) + 2 \times (-1) = 0$ for H for S for O for 0_0 +2+2x - 12 - 2 = 02x = +12x = +6330 (a) $2e + M^{7+} \rightarrow M^{5+}, M^{7+}$ is oxidation: M^{+5} is reductant. 331 (a) $S^{2-} \rightarrow S^0 + 2e$ $\therefore E = M/2 = \frac{34}{2} = 17$ 332 (a) $Mn^{7+} + 5e \rightarrow Mn^{2+}$. 333 (b) In N₃H Oxidation number of N = $-\frac{1}{3}$ In N_2O_4 Oxidation number of N = +4In NH₂OH Oxidation number of N = -1In NH₃ Oxidation number of N = -3Hence, in N_2O_4 the oxidation number of nitrogen is highest. 334 **(b)** Starch + $I_2 \rightarrow$ Blue

335 (d) $[2C_2^{3+} \rightarrow 4C^{4+} + 4e] \times 5$ $[Mn^{7+} + 5e \rightarrow Mn^{2+}] \times 4$ 336 (a) $Fe^{2+} \rightarrow Fe^{3+} + e$. 337 (d) $3 \times a + (+1) = 0$ $\therefore a = -1/3$ 338 (a) Mole of O_2 formed = $\frac{3}{24} = \frac{1}{8}$ $\therefore \text{ Mole of H}_2O_2 = \frac{1}{8} \times 2 = \frac{1}{4}$ $\therefore 100 \times X = \frac{1}{A} \times 1000 \ (m \text{ mole} = M \times V)$ $\therefore X = 2.5$ 339 (c) $2CuSO_4 + 4KI \rightarrow Cu_2I_2 + 2K_2SO_4 + I_2$ 340 (d) +2 and +3341 (d) It is a fact. 342 (d) Al \rightarrow Al³⁺ + 3e Thus, 27 g Al forms Al^{3+} by losing 3N electrons \therefore 13.5 g Al will lose $\frac{3N \times 13.5}{27} = \frac{3}{2} N$ electrons 343 (c) $a + 2 \times 1 + 2 \times (-1) = 0$ $\therefore a = 0$ 344 (a) Mn has +7 oxidation state in KMnO₄. 1 + x + 4(-2) = 01 + x - 8 = 0x = +7345 (a) Minimum ox.no. = group no. -8. Maximum ox.no. = group no. 346 **(b)** H possesses negative one value of oxidation number in ionic hydrides. 347 (c) Due to -ve oxidation number it should be nonmetal having six electrons in outer shell. 348 (d) These are characteristics of indicator. 349 (b) The oxidation state of Xe in both XeO_2 and XeF_4 is 4. $\begin{array}{cc} XeO_2 & XeF_4 \\ x + 2(-2) = 0 & x + 4(-1) = 0 \end{array}$ x = 4 x = 4

350 (a) Na₃AsO₄ is sodium arsenate Or AsO_4^{-3} is arsenate. Thus, $a + 4 \times (-2) = -3$ $\therefore a = +5$ 351 (d) Reduction increase in O.N $Ag^{2+} + Ag(S) \longrightarrow 2Ag^{+}$ decrease in O.N. Oxidation Hence, those reactions in which two or more species undergo oxidation as well as reduction are called comproportionation. 352 (b) $SO_2 + 2H_2S \rightarrow 2H_2O + 3S$ 353 (c) Glucose is reducing agent. 354 **(b)** $a + 6 \times (-1) = -3$ $\therefore a = +3$ 355 **(b)** It is a fact. 356 **(b)** Oxidation state of Mn in $Mn^{2+} = +2$ 0. Let oxidation state of Mn in $MnO_2 = x$ \therefore $x + (2 \times -2) = 0$ $\therefore x = +4$ iii) Let the oxidation state of Mn in $KMnO_4 = x$ $\therefore +1 + x + (-2 \times 4) = 0$ $\therefore x = +7$ iv) Let oxidation state of Mn in $K_2MnO_4 = x$ \therefore (+1 × 2) + x + (-2 × 4) = 0 $\therefore x = +6$ ∴ Increasing order of oxidation states is (i) < (ii) < (iv) < (iii)357 (b) Meq. of $MnO_2 = Meq.$ of oxalic acid $= 0.16 \times 35 = 56$ $\therefore \frac{w}{87/2} \times 1000 = 5.6$

 $w_{\rm MnO_2} = 0.24 \, {\rm g}$ 358 (a) More is E_{RP}^{0} , more is the tendency to get itself reduced or more is oxidising power. 359 (a) Meq. of $KMnO_4 = 3750 \times 0.85$ $\therefore \frac{w}{31.6} \times 1000 = 3750 \times 0.85$: $w = 100.7 \, \text{g}$ 360 (c) $Mn^{7+} + 5e \rightarrow Mn^{2+}$ 361 (a) $Cu^{2+} + 2e \rightarrow Cu$ 362 (a) It is definition of iodimetric titrations. 363 (b) $M^{n+} + ne \rightarrow M$ 364 **(b)** $le + Mn^{7+} \rightarrow Mn^{6+}$ $\therefore E = M/1$ 365 (a) $1 + a + 3 \times (-2) = 0$ $\therefore a = +5$ 366 (d) : 3 ions of F⁻ from 1 molecule of AIF₃ $\therefore 3 \times 10^{23}$ ions of F⁻from 10²³ molecules of AIF₃ 367 (a) Calculate ox.no. by taking NO⁺ in NOCl 368 (d) Cl ha +7 ox.no. in Cl_2O_7 . 369 (c) Meq. of $KMnO_4 = 4000 \times 0.05$ $\therefore \frac{w}{31.6} \times 1000 = 4000 \times 0.05$ $w = 6.32 \, \mathrm{g}$ 370 (c) H_2O_2 oxidises S^{2-} to S^0 . 371 (a) Following is balanced redox reaction. $2MnO_4^- + 5C_2O_4^{2-} + 16H^+$ $\rightarrow 2\mathrm{Mn}^{2+} + 10\mathrm{CO}_2 + 8\mathrm{H}_2\mathrm{O}$ So, coefficients of MnO_4^- , $C_2O_4^{2-}$ and H⁺are 2,5, and 16 respectively. 372 (c) $2 \times a + 1 \times (-2) = 0$ $\therefore a = +1$ 373 (d) Oxidation-reduction takes place simultaneously. 374 (b) $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+};$

 \therefore Eq. wt. = $\frac{\text{mol. wt.}}{6}$ 375 (a) $S^{4+} \rightarrow S^{6+} + 2e$ $10e + 2I^{5+} \rightarrow I_2^0$ 376 (b) F_2 shows only -1 ox.no. 377 (a) Reduction (oxidation number decreases) $\begin{array}{c} 1 \\ 0 \\ P_4 + 3NaOH + 3H_2O \longrightarrow 3NaH_2PO_2 + PH_3 \\ 1 \end{array}$ Oxidation (oxidation number is increases) The reactions in which the same substance undergoes oxidation as well as reduction, are called disproportionation reactions. So, the above reaction is an example of disproportionation reaction. 378 (b) It is definition of iodimetric titrations. 379 (d) $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$ 380 **(b)** +2 oxidation state due to $1s^2$, $2s^2$, $2p^2$ configuration having 2 unpaired electrons in 2*p* –subshell. +4 oxidation state due to $1s^2$, $2s^12p^3$ configuration in excited state having four unpaired electrons. 381 (a) $Meq. if SnCl_2 = Meq. of HgCl_2$ $0.5 \times V = 600 \times 0.1$ $\therefore V = 120 \text{ mL}$ 382 (a) Meq. of FeSO₄ = Meq. of KMnO₄ = 200 \times 1 $\therefore \frac{w}{152/1} \times 1000 = 200$ $\therefore w = 30.4 \text{ g}$ 383 (a) Meq. of Fe = Meq. of $K_2Cr_2O_7$ $\frac{w}{56/1} \times 1000 = 1 \times 0.1055$ $w = 5.9 \times 10^{-3} \text{ g} = 5.9 \text{ mg}$ ÷ 384 (d) $[\mathrm{Mn}^{7+} + 5e \longrightarrow \mathrm{Mn}^{2+}] \times 3$ $Fe^{2+} \rightarrow Fe^{3+} + e$ $\frac{(C^{3+})_2 \to 2C^{4+} + 2e}{[FeC_2O_4 \to Fe^{3+} + 2C^{4+} + 3e] \times 5}$ \therefore 3 mole MnO₄⁻ \equiv 5 mole FeC₂O₄ 385 (c) The sum of oxidation number is zero. 386 (c)

Electrons released at anode = Electrons used at cathode. 388 (c) $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$

389 **(b)** $Mn^{7+} + 5e \rightarrow Mn^{2+}$ $Fe^{2+} \rightarrow Fe^{3+} + e$

390 **(d)**

Loss of an electron or increase in oxidation number is oxidation process.

i.e., $H^- \rightarrow H + e^-$

391 (c)

Due to inert pair effect which is more predominant in T1.

392 **(a)**

 $Fe^{2+} \rightarrow Fe^{3+} + le$

 $6e + Cr_2^{6+} \rightarrow 2Cr^{3+}$

Thus, electrons involved per Cr atom = 3.

393 **(a)**

Let oxidation state of Cr in $K_2Cr_2O_7 = x$ $(+1 \times 2) + 2x + (-2 \times 7) = 0$ or +2 + 2x - 14 = 0 $\therefore x = +6$ Let oxidation state of Cr in $K_2CrO_4 = x$ $+1 \times 2 + x + (-2 \times 4) = 0$ 2+x-8 = 0x = 6

 \div Change in oxidation state of Cr is zero when it changes from

 $K_2Cr_2O_7$ to K_2CrO_4 .

394 **(b)**

In HNO_2 , the oxidation number of N is + 3 which is less than the maximum possible, oxidation number *ie*, + 5 and more than the minimum possible oxidation number *ie*, -3, therefore, it can act both as an oxidizing as well as reducing agent

```
395 (a)
```

Ox. No. of N in N₃H, NH₂OH, N₂H₄, NH₃ are $-\frac{1}{3}$, -1, -2, -3 respectively.

396 **(a)**

 $\begin{array}{l} \mathrm{Mn}^{6+} \longrightarrow \mathrm{Mn}^{7+} + \mathrm{I}e \\ \mathrm{Mn}^{6+} + 2e \longrightarrow \mathrm{Mn}^{4+} \\ \mathrm{3MnO}_4^{2-} \longrightarrow 2\mathrm{MnO}_4^- + \mathrm{Mn}^{4+} \end{array}$

397 **(b)**

 FeCl_3 cannot be oxidised because Fe has highest oxidation state.

398 **(d)**

Meq. of KMnO₄ = Meq. Of Cl₂ 1 × 5 × 1000 = $\frac{W}{(71/2)}$ × 1000

: w = 177.5 g $\therefore V_{Cl_2} = 56$ litre at NTP 399 (d) $Fe^{2+} \rightarrow Fe^{3+} + e; 0^{1-}_2 + 2e \rightarrow 20^{2-};$ H_2O_2 acts as oxidant. 400 **(b)** Let oxidation state of I in IPO₄ = 'x'. x + (-3) = 0 (PO_4^{3-}) ion has charge equal to -3x = +3401 (a) In alkaline medium +7 +6 $KMnO_4 + OH^- \rightarrow K_2MnO_4$ Change in oxidation number =7-6= 1 Hence, moles of $KI = moles of KMnO_4$. 402 (c) 5 mole I⁻ gives 3 mole I₂ 403 (c) $2 \times 1 + 2 \times a + 7 \times (-2) = 0$ $\therefore a = +6$ 404 (c) The concentration of standard solution is known. 405 (a) | +4 -2 = 0 = 0SO₂ + 2H₂S Oxidation 3S + 2H₂O Reduction \therefore H₂S is oxidised in this reaction. 406 (b) $HP_{2}0_{7}^{-2}$ $+1+2x-2 \times 7 = -1$ x = +6407 **(b)** Iron usually shows zero, +2, +3 oxidation state. 408 (a) Calculate ox.no. of Cl in NOCIO₄ by assuming $CIO_4^$ and NO⁺. 409 **(b)** $2e + H_2^0 \rightarrow 2H^{1-}$ $Li \rightarrow Li^{1+} + e$ H₂ is reduced and thus, oxidant. 410 **(b)** $S^{4+} \rightarrow S^{6+} + 2e$ 411 (a) $a + 2 \times (-2) = 0$ $\therefore a = +4$ 412 **(d)**

Ox.no. Fe in Mohr's salt, $[FeSO_4. (NH_4)_2SO_4. 6H_2O]$ is +2. 413 (a) $\operatorname{Cr}_2^{6+} + 6e \rightarrow 2\operatorname{Cr}^{3+}$; $\operatorname{Fe}^{2+} \rightarrow \operatorname{Fe}^{3+} + e$ 414 (d) $2K[Ag(CN)_2] + Zn \rightarrow 2Ag +$ $K_2[Zn(CN)_4]$ $2K[Ag(CN)_2] + Zn \longrightarrow 2Ag + K_2[Zn(CN)_4]$ Reduction Oxidation 415 (b) Meq. of $K_2Cr_2O_7 = Meq.$ of H_2S $2 \ge V = \frac{0.81}{34/2} \ge 1000$ $\therefore V = 23.8 \text{ mL}$ 416 (a) $3 \times 1 + a + 4 \times (-2) = 0$ $\therefore a = +5$ 417 (b) $3Fe^0 \rightarrow Fe_3^{+(8/3)} + 8e$ $\therefore E = \frac{M}{8/3} = \frac{56 \times 3}{8} = 21$ 418 (d) Permonosulphuric acid (H₂SO₅) has two oxygen atoms in peroxide linkage, hence, 2(+1) + x + 2(-1) + 3(-2) = 02 + x - 2 - 6 = 0*x* =+6 419 (c) The reaction, in which two or more species undergo reduction as well as oxidation to give a single species are called comproportionation reaction. This is reverse of disproportionation reaction. $Ag^{2+}(aq) + Ag(s) \rightleftharpoons 2Ag^{+}(aq)$ 420 (d) HCl is also oxidised along with oxalic acid by KMnO₄. $2KMnO_4 + 16HCl$ \rightarrow 2KCl + 2MnCl₂ + 5Cl₂ + 8H₂O $2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4$ \rightarrow K₂SO₄ + 2MnSO₄ + 8H₂O $+10C0_{2}$ 421 (a) No change in oxidation no.in any of the species. 422 (d)

S in H_2SO_3 is in +4 oxidation state. It lies in between its maximum and minimum oxidation state, *i. e*, +6 and -2 and thus, S can increase or decrease its ox.no.as the case may be.

DCAM classes Dynamic Classes for Academic Mastery