

Single Correct Answer Type

1.	A fair die is tossed eight t	imes. The probability that	a third six is observed on th	ne eight throw, is
	a) $\frac{{}^{7}C_{2} \times 5^{5}}{c^{7}}$	b) $\frac{{}^{7}C_{2} \times 5^{5}}{C^{2}}$	c) $\frac{{}^7C_2 \times 5^5}{}$	d) None of these
2	6^{7}	6 ⁸ osen at random from the fi	6° ret 100 natural numbers Tl	ao probability that
۷.	$x + \frac{100}{5} > 50$ is		ist 100 haturai humbers. H	ie probability that
	$x + \frac{1}{x} > 50$ is	11	11	
	a) $\frac{1}{10}$	b) $\frac{11}{50}$	c) $\frac{11}{22}$	d) None of these
2	10 A coin is tossed 4 times 7	50 The probability that at least	² 20	
5.	1	2	14	15
	a) $\frac{1}{16}$	b) $\frac{2}{16}$	c) $\frac{11}{16}$	d) $\frac{15}{16}$
4.	There are 4 white and 4 h	plack balls in a bag and 3 ba	alls are drawn at random. If	balls of same colour are
	identical, the probability	that none of them is black.	is	
	a) 1/4	b) 1/14	c) 1/2	d) None of these
5.	A box contains 10 mango	es out of which 4 are rotte	n. 2 mangoes are taken out	together. If one of them is
	found to be good, the pro	bability that the other is al	so good is	U
	a) 1/3	b) 8/15	c) 5/13	d) 2/3
6.	A five digit number is cho	osen at random. The probal	oility that all the digit are di	istinct and digits at odd
	places are odd and digits	at even place are even, is		
	$\frac{1}{2}$	$b)$ $\frac{2}{}$	$(1) \frac{1}{2}$	$d) \frac{1}{2}$
	$\frac{a}{60}$	75	$\frac{0}{50}$	75
7.	If two dice are thrown to	gether, then the probability	/ that the sum of numbers a	ppearing on them is 9, is
	a) $\frac{1}{9}$	b) $\frac{1}{6}$	c) $\frac{1}{4}$	d) $\frac{1}{3}$
8.	If <i>X</i> follows a binomial di	stribution with parameters	s n = 6 and p. If $4(P(X = 4))$	P(X = 2), then $p = p(X = 2)$
	a) 1/2	b) 1/4	c) 1/6	d) 1/3
9.	A man is known to speak	truth in 75% cases. If he th	nrows an unbiased die and t	tells his friend that it is a six,
	then the probability that	it is actually a six, is		
	a) 1/6	b) 1/8	c) 3/4	d) 3/8
10.	If <i>m</i> rupee coins and <i>n</i> te	n paise coins are placed in	a line, then the probability	that the extreme coins are
	ten paise coins, is			
	a) ^{m+n}C	h) $\frac{n(n-1)}{n(n-1)}$	c) $m+np$	d) $m+np$
	$u_j u_m$	(m+n)(m+n-1)	c) ^r m	aj n
11.	The number of times a di	e must be tossed to obtain	a 6 at least once with proba	ability exceeding 0.9 is at
	least			
10	a) 13	b) 19	c) 25	d) None of these
12.	Two dice are thrown $n \tan n$	mes in succession. The pro	bability of obtaining a doub	le six at least once is
	a) $\left(\frac{1}{36}\right)^n$	b) $1 - \left(\frac{35}{36}\right)^{1}$	c) $\left(\frac{1}{12}\right)^n$	d) None of these
13.	Seven chits are numbered	d 1 to 7. Four chits are drav	wn one by one with replace	ment. The probability that
	the least number appeari	ing on any selected chit is 5	, is	
	$(3)^{4}$	$(6)^{3}$	$5 \times 4 \times 3$	$(3)^{4}$
	$a_{1}\left(\frac{1}{7}\right)$	$\left(\frac{7}{7}\right)$	7^{3}	$\left(\frac{1}{4}\right)$
14.	Probability of throwing 1	6 in one throw with three	dice is	
	a) $\frac{1}{2}$	$h)\frac{1}{}$	$(1) \frac{1}{2}$	$d)\frac{1}{-}$
4 -		-, 18	⁻ , 72	-''9
15.	For two events A and B, i	$f P(A) = P\left(\frac{A}{B}\right) = \frac{1}{4} \text{ and } P\left(\frac{A}{B}\right)$	$\left(\frac{B}{A}\right) = \frac{1}{2}$, then	

	a) <i>A</i> and <i>B</i> are independe	nt	b) $P\left(\frac{A'}{B}\right) = \frac{3}{4}$	
	c) $P\left(\frac{B'}{A'}\right) = \frac{1}{2}$		d) All of the above	
16.	If the probability that <i>A</i> and only one of them will be a	nd <i>B</i> will die with in a year live at the end of the year i	are <i>p</i> and <i>q</i> respectively, this	hen the probability that
	a) <i>p</i> + <i>q</i>	b) <i>p</i> + <i>q</i> − 2 <i>pq</i>	c) $p + q - pq$	d) $p + q + pq$
17.	In a binomial distribution	the mean is 15 and varian	ce is 10. Then parameter <i>n</i>	is
	a) 28	b) 16	c) 45	d) 25
18.	Three squares of a chess l	ooard are chosen at randor	n, the probability that two	are of one colour and one of
	another			
	a) 16/21	b) 8/21	c) 32/12	d) None of these
19.	If A and B are any two eve	ents, then probability that (exactly one of them occurs	is
	a) $P(A) + P(B) + 2 P(A)$	<i>א</i> ר <i>B</i>)	5	
	b) $P(A) + P(B) - P(A \cap B)$	B)		
	c) $P(\bar{A}) + P(\bar{B}) + 2 P(\bar{A})$	(\bar{B})		
	d) $P(A \cap \overline{R}) + P(\overline{A} \cap R)$)		
20	The mean and variance of	f a hinomial variable X are	2 and 1 respectively. The n	robability that X takes
20.	values greater than 1 is		2 unu 1 respectively. The p	robubility that it takes
	5	8	11	1
	a) $\frac{3}{16}$	b) $\frac{1}{16}$	c) $\frac{1}{16}$	d) $\frac{1}{16}$
21.	If a fair coin is tossed 20 t	imes and let we get head <i>n</i>	times, then probability that	at <i>n</i> is odd, is
	, 1	1,1	5	
	$a) \frac{1}{2}$	b) <u>-</u> 6	$c_{1}\frac{1}{8}$	$d \int \frac{1}{8}$
22.	If a dice is thrown twice, t	he probability of occurren	ce of 4 at least once, is	
	a) 11/36	b) 7/12	c) 35/36	d) None of these
23.	A box contains 9 tickets n	umbered 1 to 9 inclusive. I	f 3 tickets are drawn from	the box without
	replacement. The probabi	ility that they are alternativ	vely either {odd, even, odd}	of {even, odd, even} is
	a) 5	4 b)	ی ⁵	d) 5
	a) <u>17</u>	17	$\frac{1}{16}$	$\frac{1}{18}$
24.	If the range of a random v	variable X is {0,1,2,3,4,}w	ith $P(X = k) = \frac{(k+1)a}{3^k}$ for k	\geq 0, then <i>a</i> is equal to
	a) $\frac{2}{2}$	b) $\frac{4}{2}$	c) $\frac{8}{1}$	d) $\frac{16}{24}$
25	If A and D and two events	auch that $D(A) > 0$ and $D(A) > 0$	$\overline{27}$	- 81
23.	II A allu D alle two events	Such that $F(A) > 0$ and $F($	$D \neq 1$, ule ii $F(A D)$ is equal $1 = D(A \cap P)$	
	a) $1 - P(A \overline{B})$	b) $1 - P(\bar{A} B)$	c) $\frac{1-I(A+D)}{D(P)}$	d) $\frac{P(\overline{R})}{R(\overline{R})}$
26	Two numbers are colocted	d randomly from the get C	F(D) = (1.2.2.4 E(c) without non	P(D)
20.	nrobability that minimum	a f the two number is less	$-\{1,2,3,4,3,0\}$ without rep	lacement one by one. The
		14	1	4
	a) $\frac{1}{15}$	b) $\frac{11}{15}$	c) $\frac{1}{5}$	d) $\frac{1}{5}$
27	A number is chosen at rar	idom among the first 120 r	o natural numbers. The prob	ability of the number
	chosen being a multiple o	f 5 or 15 is		
	1	. 1	. 1	1
	a) $\frac{1}{8}$	b) $\frac{1}{5}$	c) $\frac{1}{24}$	d) $\frac{1}{6}$
28.	Four numbers are chosen	at random from {1,2,3,,4	0}. The probability that the	ey are not consecutive, is
	2) 1	4 b)	2469	J) 7965
	2470	7969	2470	^u) 7969
29.	A person draws a card from	om a pack of playing cards,	replaces it and shuffles the	pack. He continues doing
	this until he draws a spad	e. The chance that he fail tl	he first two times is	
	$\frac{9}{-}$	h) $\frac{1}{2}$	$(1) \frac{1}{1}$	d) <u></u>
	⁴ 64	⁵ , 64	^c , 16	^u , 16

30.	Two numbers <i>a</i> and <i>b</i> a	are chosen at random from	the set of first 30 natural	numbers. The probability that
	$a^2 - b^2$ is divisible by 3	3 is		
	a) $\frac{9}{87}$	b) $\frac{12}{87}$	c) $\frac{15}{87}$	d) $\frac{47}{87}$
31.	A coin is tossed 10 time	es. The probability of gettin	ng exactly six heads is	
	a) $\frac{512}{513}$	b) $\frac{105}{512}$	c) $\frac{100}{153}$	d) ${}^{10}C_6$
32.	Let $A = \{1, 3, 5, 7, 9\}, B$	$= \{2, 4, 6, 8\}$. If a cartesian	product $A \times B$, if chosen a	t random, the probability of
	a + b = 9 is			
	a) $\frac{1}{4}$	b) $\frac{1}{5}$	c) 1	d) 0
33.	One hundred identical	coins, each with probabilit	y p or showing up heads a	re tossed once. If 0
	and the probability of h	neads showing on 50 coins	is equal to that of heads sh	nowing on 51 coins, then the
	value of <i>p</i> is			
	ي ¹	b) 49	ي 50 د)	d) 51
	$\frac{a}{2}$	101	101	$\frac{101}{101}$
34.	India plays two ODI ma	atches each with Australia	and Pakistan. The probabi	lity of India getting 0, 1, 2 are
	0.45, 0.05, 0.50. The pr	obability of India getting a	t least 7 points in the serie	s is
	a) 0.00875	b) 0.875	c) 0.0875	d) None of these
35.	For a poisson variate X	, if $P(X = 2) = 3P(X = 3)$, then the mean of X is	
	a) 1	b) ¹	$\frac{1}{2}$	d) ¹
		$\frac{0}{2}$	$\frac{c}{3}$	$\frac{d}{4}$
36.	If A and B are two inde	pendent events, the proba	bility that both A and B oc	cur is 1/8 and the probability
	that neither of them oc	curs is 3/8. The probabilit	y of the occurrence of A, is	
	11	$h = \frac{1}{2} \frac{1}{2}$	$(1) \frac{1}{2} \frac{1}{2}$	$d) \frac{1}{2} \frac{1}{2}$
	2'4	3'4	4'6	5'2
37.	The probability that a d	certain kind of component	will survive a given shock	test is $\frac{3}{4}$. The probability that
	exactly 2 of the next 4 of	components tested survive	is	
	9	بر 25 ا	ي 1 ما	ع 27
	$\frac{1}{41}$	128	$\frac{c}{5}$	$\frac{1}{128}$
38.	A bag contains 2 white	and 4 black balls. A ball is	drawn 5 times with replac	ement. The probability that at
	least 4 of the balls draw	vn are white, is		
	$a) \frac{8}{3}$	h) $\frac{10}{10}$	c) <u>11</u>	$\frac{8}{8}$
	141	243	243	41
39.	6 boys and 6 girls sit in	a row randomly. The prob	bability that all 6 girls sit to	ogether, is
	a) $\frac{1}{1}$	b) $\frac{1}{-}$	c) $\frac{1}{1}$	d) None of these
40	⁶⁴	- 8 5 haaraan ha aitin a maaa th	² 132	
40.	If there are 6 girls and	5 DOYS WHO SIT IN A FOW, TH	en the probability that no t	two boys sit together is
	a) $\frac{0!0!}{2!11!}$	b) $\frac{7!5!}{2!11!}$	c) $\frac{0!7!}{2!11!}$	a) None of these
41	2!11! In 0 14 if $m > n$ then t	2 ! 1 ! ! he probability that the ma	2 ! 11 ! nning selected is an injecti	ve man is
41.	n!	n!	<i>n</i>	d) None of these
	a) $\frac{n!}{(n-m)!m^n}$	b) $\frac{n!}{(n-m)!n^m}$	c) $\frac{c_m}{n^m}$	u) None of these
42.	If $\left(\frac{1+a}{3}\right)$ and $\left(\frac{1-a}{4}\right)$ are	e probability of two mutua	lly exclusive events, then s	set of all values of <i>a</i> is
	a) $-1 \le a \le 1$	b) $-7 \le a \le 5$	c) $-1 \le a \le 2$	d) $-4 \le a \le 1$
43.	An urn contains nine b	alls of which three are red,	four are blue and two are	green. Three balls are drawn
	at random without rep	lacement from the urn. The	e probability that the three	e balls have different colours, is
	$\frac{1}{2}$	$h)\frac{2}{}$	$() \frac{1}{1}$	d) <u>2</u>
	<u> </u>	<u>5,</u> 7	$\frac{0}{21}$	$\frac{1}{23}$
44.	If <i>X</i> is a random-variab	le with distribution given	below:	
	X : 0 1 2	2 3		

 $P(X = x): k \quad 3k \quad 3k \quad k$

	The value of k and its varia	ance are		
	a) 1/8.22/27	b) $1/8.23/27$	c) 1/8.24/27	d) 1/8.3/4
45.	If the letters of the word 'N	AISSISSIPPI' are written do	own at random in a row, the	e probability that four S' s
	come consecutively is		,	1 5
	a) ⁸	4 b)	ي 161 دا	d) None of these
	a) <u>165</u>	165	165	
46.	Probability of all 3 digit nu	mbers having all the digits	s same is	
	a) $\frac{1}{100}$	b) $\frac{3}{100}$	c) $\frac{7}{100}$	d) None of these
17	100 A random variable V has t	² 100 ha fallowing probability di	100 stribution	
47.	\mathbf{V} 1 2 2		Suibulion	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{4}{4k}$		
	Then, the mean of <i>X</i> is			
	a) 3	b) 1	c) 4	d) 2
48.	In a test, an examines eithe	er guesses or copies or kno	ows the answer to a multipl	e choice questions with
	four choices. The probability	ity that he makes a guess is	s $\frac{1}{2}$ and the probability that	he copies the answer is $\frac{1}{c}$.
	The probability that his an	swer is correct given that	be conjest it is $\frac{1}{2}$. The probab	o nility that his answer is
	The probability that his an			Shirty that his answer is
	correct, given that he gues	ses it is $\frac{1}{4}$. The probability t	hat they knew the answer t	to the questions given that
	he correctly answered is			
	a) $\frac{24}{}$	b) $\frac{31}{-1}$	c) $\frac{24}{3}$	d) $\frac{29}{}$
40	³¹ The probability that a pum	² 24	29 29	24 = 50 (m) > 27 ic
49.		3	3	$\frac{50}{1} > \frac{27}{15}$
	a) $\frac{7}{30}$	b) $\frac{3}{10}$	c) $\frac{3}{5}$	d) $\frac{1}{5}$
50.	Let <i>A</i> and <i>B</i> are two events	s and $P(A') = 0.3, P(B) =$	$0.4, P(A \cap B') = 0.5, \text{then}P$	$P(A \cup B')$ is
	a) 0.5	b) 0.8	c) 1	d) 0.1
51.	If A and B are two events s	such that $P(A) \neq 0$ and $P(B)$	(a) \neq 1, then $P(\overline{(\frac{A}{-})})$ is equal to	0
		(Ā)	$1 - P(A \cup R)$	$D(\bar{A})$
	a) $1 - P\left(\frac{A}{R}\right)$	b) $1 - P\left(\frac{n}{R}\right)$	c) $\frac{1}{P(\bar{R})}$	d) $\frac{P(R)}{P(R)}$
52	If the letters of the word 'N	AISSISSIPPI' are written do	wn at random in a row the	P probability that no two 'S'
02.	occur together is			
	5	, 7	6	d) None of these
	a) $\frac{1}{33}$	$\frac{5}{33}$	$\frac{c}{31}$,
53.	Suppose <i>E</i> and <i>F</i> are two i	ndependent events of a rai	ndom experiment. If the pr	obability of occurrence of E
	$is\frac{1}{5}$ and the probability of o	ccurrence of F given E is $\frac{1}{1}$,then the probability of no	n-occurrence of at least
	one of the events <i>E</i> and <i>F</i> is	is	•	
	$a) \frac{1}{2}$	h) $\frac{1}{-}$	c) $\frac{49}{-}$	$d) \frac{1}{2}$
	18	2	50	50
54.	If X is a binomial variate v	vith the range {0,1,2,3,4,5,6	6} and $P(X = 2) = 4P(X = 2)$	4), then the parameter p
	0f X 1S 1	1	2	3
	a) $\frac{1}{3}$	b) $\frac{1}{2}$	c) $\frac{2}{3}$	d) $\frac{3}{4}$
55.	If A and B are arbitrary ev	ents, then	5	Т
	a) $P(A \cap B) \ge P(A) + P(B)$	3)	b) $P(A \cup B) \le P(A) + P(B)$	B)
	c) $P(A \cap B) = P(A) + P(B)$	3)	d) None of the above	
56.	For two events A and B if A	$P(A) = P\left(\frac{A}{a}\right) = \frac{1}{a} \text{ and } P\left(\frac{B}{a}\right)$	$=\frac{1}{2}$, then	
	,	(B) 4 (A)	(A') = 3	
	a) A and B are independer	nt events	b) $P\left(\frac{B}{B}\right) = \frac{B}{4}$	
			\ / -	

c) $P\left(\frac{B'}{A}\right) = \frac{1}{2}$ d) All of the above 57. Let 0 < P(A) < 1, 0 < P(B) < 1 and $P(A \cup B) = P(A) + P(B) - P(A) P(B)$. Then, a) P(B/A) = P(B) - P(A)b) $P(A^c \cup B^c) = P(A^c) + P(B^c)$ c) $P((A \cup B)^c) = P(A^c)P(B^c)$ d) P(A/B) = P(B)58. A number *n* is chosen at random from {1, 2, 3, 4,,1000}. The probability that *n* is a number that leaves remainder 1 when divided by 7, is a) $\frac{71}{500}$ b) $\frac{143}{1000}$ c) $\frac{72}{500}$ d) $\frac{71}{1000}$ 59. If from each of three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, one ball is drawn at random, then the probability that 2 white and 1 black ball will be drawn, is a) $\frac{13}{32}$ b) $\frac{1}{4}$ c) $\frac{1}{32}$ d) $\frac{3}{16}$ 60. A random variable *X* has poisson distribution with mean 2. Then, P(X > 1.5) equals b) $1 - \frac{3}{e^2}$ c) 0 d) $\frac{2}{a^2}$ a) $\frac{3}{\rho^2}$ 61. If $P(A \cup B) = 0.8$ and $P(A \cap B) = 0.3$, then P(A') + P(B') equals to b) 0.5 a) 0.3 c) 0.7 d) 0.9 62. The probability that a candidate secures a seat in Engineering through "EAMCET" is 1/10.7 candidates are selected at random from a centre. The probability that exactly two will get seats is a) $15 (0.1)^2 (0.9)^5$ b) 20 $(0.1)^2 (0.9)^5$ c) 21 $(0.1)^2 (0.9)^5$ d) 23 $(0.1)^2 (0.9)^5$ 63. A committee of five is to be chosen from a group of 9 people. The probability that a certain married couple will either serve together or not at all is c) $\frac{4}{9}$ d) $\frac{2}{3}$ a) $\frac{1}{2}$ b) $\frac{5}{9}$ 64. Three numbers are chosen from 1 to 30. The probability that they are not consecutive is b) $\frac{143}{145}$ a) $\frac{144}{145}$ c) $\frac{142}{145}$ d) None of these 65. A bag contains 6 red and 3 white balls. Four balls are drawn one by one and not replaced. The probability that they are alternatively of different colours, is a) $\frac{4}{42}$ c) $\frac{7}{42}$ b) $\frac{5}{42}$ d) $\frac{8}{42}$ 66. Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the same house, is b) $\frac{8}{9}$ c) $\frac{1}{9}$ d) $\frac{2}{9}$ a) $\frac{7}{9}$ 67. India plays a two ODI matches each with Australia and Pakistan. The probability of India getting points 0,1,2 are 0.45, 0.05, 0.50. The probability of India getting at least 7 points in the series is a) 0.00875 b) 0.875 c) 0.0875 d) None of these 68. If *A* and *B* are two mutually exclusive events, then a) $P(A) < P(\overline{B})$ b) $P(A) > P(\overline{B})$ c) P(A) < P(B)d) None of these 69. If $f(x) = \lambda e^{-ax} (a > 0)$ for $0 \le x < \infty$ is a prabability density, then λ is equal to c) $\frac{1}{a}$ b) *a*² d) *a*³ a) a 70. 10 different books and 2 different pens are given to 3 boys so that each gets equal number of things. The probability that the some boy does not receive both the pens is a) 5/11 b) 7/11 c) 2/3 d) 6/11

71. From a set of 100 cards numbered 1 to 100, one card is drawn at random. The probability that the number obtained on the card is divisible by 6 or 8 but not by 24, is

a)
$$\frac{6}{25}$$
 b) $\frac{1}{4}$ c) $\frac{1}{6}$ d) $\frac{1}{5}$
2. What is the probability that when one die is thrown, the number appearing on top is even?
a) 1/6 b) 1/3 c) 1/2 d) None of these
3. If in a trial the probability of success is twice the probability of allare. In six trials the probability of at least four successes is
a) $\frac{496}{722}$ b) $\frac{400}{722}$ c) $\frac{500}{722}$ d) $\frac{600}{722}$
7. An insurance salesman sells policies to 5 men, all of identical age and in good health. The probability that a man of this particular age will be alive after 30 years is 2/3. The probability that after the lapse of 30 years all the five persons will be alive, is
a) $\frac{1}{16}$ b) $\frac{16}{61}$ c) $\frac{32}{243}$ d) None of these
a) 0.4 b) 0.25 c) 0.45 d) 0.43
7. The probability that number selected at random from the numbers 1, 2, 3, 4, 5, 6, 7, 8,, 100 is a prime, is
a) 0.4 b) 0.25 c) 0.45 d) 0.43
7. There are 7 seats in a row. Three persons take seats at random. The probability that the middle seat is
always occupied and no two persons are consecutive is
a) 9/70 b) 9/35 c) 4/35 d) None of these
3) 9/70 b) 0.9(5) $\frac{5}{24} \in P(B) \leq \frac{3}{4}$ c) $\frac{1}{2} \leq P(B) \leq \frac{3}{5}$ d) None of these
3) $\frac{1}{5} \leq E/B \leq \frac{3}{9}$ b) $\frac{1}{52} \leq E/B \geq \frac{3}{4}$ c) $\frac{1}{2} \leq P(B) \leq \frac{3}{5}$ d) None of these
3) $\frac{1}{6} (\frac{1}{4})^6 (\frac{3}{4})^{10}$ b) $\frac{1}{6c_6} (\frac{1}{4})^6 (\frac{3}{4})^{12}$ d) $\frac{1}{6c_9} (\frac{1}{4})^{16} (\frac{3}{4})^{20}$
7. At a telephone enquiry system the number of phone calls regarding relevant enquiry follow poisson distribution is
a) $\frac{1}{6} (\frac{1}{6})^6 (\frac{3}{4})^{10}$ b) $\frac{1}{20} (\frac{1}{6})^{12} (\frac{3}{2})^{20}$ c) $\frac{1}{6} \frac{5}{6}$ d) $\frac{6}{5c}$
8. And B are two events A are 2 to 1 and odds in favour of $A \cup B$ are 3 to 1. If $x \leq P(B) \leq y$, then ordered pair (x, y) is
a) $(\frac{5}{12}, \frac{3}{4})$ b) $(\frac{2}{3}, \frac{3}{4})$ c) $(\frac{1}{3}, \frac{3}{4})$ d) None of these
8. A fine probability that the two digit number formed by digit 1, 2, 3, 4, 5, is divisible by 4 (while repetition of digit is allowed). Is

	a) $\left[\frac{1}{3}, \frac{1}{2}\right]$	b) $\left[\frac{1}{3}, \frac{2}{3}\right]$	c) $\left[\frac{1}{3}, \frac{13}{3}\right]$	d) [0, 1]	
86.	If a dice is thrown twice,	the probability of occurren	ce of 4 at least once is		
	a) $\frac{11}{36}$	b) $\frac{35}{36}$	c) $\frac{7}{12}$	d) None of these	
87.	The probability that at le	ast one of the events A and	B occurs is 0.7 and they oc	cur simultaneously with	
	probability 0.2. Then, $P(\overline{A}) + P(\overline{B}) =$				
	a) 1.8	b) 0.6	c) 1.1	d) 1.4	
88.	Two persons A and B tak	e turns in throwing a pair o	of dice. The first person to t	hrough 9 from both dice	
	will be awarded the prize	e. If <i>A</i> throws first, then the	probability that <i>B</i> wins the	e game, is 1	
	a) $\frac{3}{17}$	b) $\frac{0}{17}$	c) $\frac{\sigma}{q}$	d) $\frac{1}{9}$	
89.	The probability that a tea	acher will give an unannour	nced test during any class n	neeting is $1/5$. If a student is	
	absent twice, the probab	ility that he will miss atleas	st one test, is		
	a) 7/25	b) 9/25	c) 16/25	d) 24/25	
90	If $P(A \cup B) = 3/4$ and $P(A \cup B) = 3/4$	$(\bar{A}) = 2/3$ then $P(\bar{A} \cap R)$ is	sequal to	a) = 1/ =0	
<i>y</i> 0.	a) $1/12$	($n = 2/3$, then $n (n + D)$ is b) $7/12$	c) $5/12$	d) 1/2	
91	$a_{j} = 1/12$	$\frac{1}{12}$	(A')	u) 1/2	
<i>)</i> 1.	Given $P(A) = 0.5, P(B) =$	$= 0.4, P(A \cap B) = 0.3, \text{then } A$	$P\left(\frac{1}{B'}\right)$ is equal to		
	a) $\frac{1}{-}$	b) $\frac{1}{-}$	c) $\frac{2}{-}$	d) $\frac{3}{-}$	
0.2	3	2	³ 3	4	
92.	A natural number is sele	cted from 1 to 1000 at rand	lom, then the probability th	at a particular non-zero	
	digit appears at most one	ce, is	11	220	
	a) $\frac{243}{252}$	b) $\frac{13}{15}$	c) $\frac{11}{17}$	d) $\frac{239}{250}$	
02	250 Lot A. D. C. ho three mutu	15 allusindanan dant ayanta Co	15 maidan tha tura atatamanta	250 Cand C. C. Mand B.L.C.	
95.	Let A, D, C be three mutu	any independent events. Co	then	$S_1 \text{ and } S_2, S_1 : A \text{ and } D \cup C$	
	all e independent, $S_2 \cdot A$ a	ind B II C are independent,	h) Only C is true		
	a) Dould S_1 all S_2		b) Unity S_1 is true		
0.4	c) Only S_2 is true		d) Neither S_1 and S_2 is true	le	
94.	A blased die is tossed and	a the respective probabilition	es for various faces to turn	up are	
	Face : 1 Z	3 4 5 6			
	Probability: $0.1 0.24$				
	If an even face has turned	d up, then the probability th	hat it is face 2 or face 4, is		
~ -	a) 0.25	b) 0.42	c) 0.75	d) 0.9	
95.	A bag X contains 2 white	and 3 black bails and anoth	her bag Y contains 4 white	and 2 black balls. One bag is	
	selected at random and a	i ball is drawn from it. Then	i, the probability for the bal	l chosen be white, is	
	a) $\frac{2}{15}$	b) $\frac{7}{15}$	c) $\frac{0}{15}$	d) $\frac{14}{15}$	
96	15	$\frac{15}{2}$	15	15	
<i>J</i> 0.	Probability $P(A) = \frac{1}{5}, P(A)$	$B = -and P(A \cap B) = -2, tn$	$\operatorname{Ien} P(A \cap B)$ is equal to	_	
	a) <u></u>	b) $\frac{5}{-}$	c) $\frac{2}{-}$	d) $\frac{5}{-}$	
~-	10	2	5	7	
97.	'X' speaks truth in 60% a	and 'Y' in 50% of the cases.	The probability that they co	ontradict each other	
	narrating the same incid	ent is	1	2	
	a) $\frac{1}{-1}$	b) $\frac{1}{2}$	c) $\frac{1}{2}$	d) $\frac{2}{2}$	
00	4 Truchua tichata ana numh	3 and from 1 to 12 One tick	2 at is drawn at random than	3	
90.	number to be divisible by	$r^2 \circ r^2$ is	et is urawn at random, then	i the probability of the	
	$\frac{1}{2}$	y 2 01 3, 18 7	5	3	
	a) $\frac{2}{3}$	b) $\frac{7}{12}$	c) $\frac{3}{6}$	d) $\frac{3}{4}$	
99	A and B appeared for an	interview for two nosts Th	e probability of <i>A</i> 's selection	on is $1/3$ and that of $B's$	
•	selection is 2/5. The prol	bability that only one of the	em is selected, is		
	a) 7/15	b) 8/15	c) 2/15	d) 4/15	
	<i>, , ,</i>	<i>J I</i>	<i>, , , ,</i>	<i>i i</i>	

100.	If <i>A</i> and <i>B</i> are mutually ex	clusive events with $P(B) \neq$	\neq 1,then $P(A B)$ is equal to	(Here, <i>B</i> is the complement
	1	1	$P(\Delta)$	P(A)
	a) $\frac{1}{P(B)}$	b) $\frac{1}{1 - P(B)}$	c) $\frac{P(B)}{P(B)}$	d) $\frac{P(B)}{1 - P(B)}$
101.	Unbiased die is thrown, pi	robability that outcome is g	greater than 4, is	
	a) $\frac{3}{4}$	b) $\frac{4}{5}$	c) $\frac{1}{2}$	d) $\frac{5}{c}$
102	4 If A and B are independen	r_{2}	้ว ท	0
102.	a) <i>A</i> and <i>C</i> are independent	nt	11	
	b) <i>B</i> and <i>C</i> are independent	nt		
	c) <i>A</i> , <i>B</i> and <i>C</i> are independent	dent		
	d) All of these			
103.	A dice is thrown 100 time	s, getting an even number i	is considered a success. The	e variance of the number of
	successes is			
	a) 10	b) 25	c) 18	d) 10
104.	A five digit number is form	ned by writing the digits 1,	2, 3, 4, 5, in a random orde	er without repetitions. Then
	the probability that the nu	mber is divisible by 4, is		
	a) 3/5	b) 18/5	c) 1/5	d) 6/5
105.	A coin is tossed 10 times.	The probability of getting e	exactly six heads, is	
	a) $\frac{512}{2}$	$h) \frac{105}{105}$	c) $\frac{100}{100}$	d) ¹⁰ C.
	u) <u>513</u>	512	153	u) 0 ₆
106.	Seven white balls and three	ee black balls are randomly	placed in a row. The proba	ability that no two black
	balls are placed adjacently	<i>r</i> , equals		_
	a) $\frac{1}{-}$	b) $\frac{7}{1-7}$	c) $\frac{2}{12}$	d) $\frac{1}{1}$
107	2	⁷ 15	⁹ 15	⁵ 13
107.	If A and B are any two eve	ents, then $P(A \cup B)$ is equal	l to	
	a) $P(A)P(B)$		b) $1 - P(A) - P(B)$	
	c) $P(A) + P(B) - P(A \cap B)$	3)	d) $P(B) - P(A \cap B)$	
108.	The probability of obtaining	ng sum '8' in a single throw	v of two dice is	<i>.</i>
	a) $\frac{1}{2}$	b) $\frac{5}{24}$	c) $\frac{4}{24}$	d) $\frac{6}{24}$
100	36 A nair of a dias thrown if	³⁶ 36	36 Sthe dias then the probab	36 ility that the sum is 10 or
109.	A pair of a dice thrown, if	5. appears on at least one c	of the dice, then the probab	inty that the sum is 10 or
	greater, is	2	3	1
	a) $\frac{11}{36}$	b) $\frac{2}{9}$	c) $\frac{3}{11}$	d) $\frac{1}{12}$
110.	A coin is tossed <i>n</i> times. T	he probability of getting he	ead at least once is greater i	than 0.8. then the least
1101	value of <i>n</i> is	ne probability of getting it		
	a) 2	b) 3	c) 4	d) 5
111.	Let <i>S</i> be the sample space	of the random experiment	of throwing simultaneous	v two unbiased dice with
	six faces (numbered 1 to 6	6) and let $E_k = \{(a, b) \in S:$	$ab = k$ for $k \ge 1$.	•
	If $p_k = P(E_k)$ for $k \ge 1$, th	ien the correct among the f	following, is	
	a) $p_1 < p_{30} < p_4 < p_6$	b) $p_{36} < p_6 < p_2 < p_4$	c) $p_1 < p_{11} < p_4 < p_6$	d) $p_{36} < p_{11} < p_6 < p_4$
112.	Suppose $n (\geq 3)$ persopns	are sitting in a row. Two o	f them are selected at rand	om. The probability that
	they are not together is	-		
	2	b) ²	a) 1	d) None of these
	a) $1 - \frac{n}{n}$	$b \int \frac{1}{n-1}$	$\frac{1-\frac{1}{n}}{n}$	
113.	If $P(A \cap B) = \frac{1}{3}$, $P(A \cup B)$	$=\frac{5}{6}$, and $P(A) = \frac{1}{2}$, then w	hich one of the following is	correct?
	a) A and B are independent	nt events	b) A and B are mutually e	xclusive events
	c) $P(A) = P(B)$		d) None of the above	
114.	A man is known to speak t	the truth 3 out of 4 times. H	Ie throws a die and reports	s that it is six. The
	probability that it is actua	lly a six, is		

	a) $\frac{3}{8}$	b) $\frac{1}{5}$	c) $\frac{3}{4}$	d) None of these
115.	A man takes a step forwar	d with probability 0.4 and	back-ward with probabilit	v 0.6. The probability that
110.	at the end of eleven steps	he is one step away from t	he starting point is	
	a) ${}^{11}C_c(0.24)^5$	b) ${}^{11}C_c(0.4)^6(0.6)^5$	c) ${}^{11}C_c(0.6)^6(0.4)^5$	d) None of these
116.	A coin is tossed three time	es. The probability of gettin	ig a head once and a tail tw	ice is
110.	1	. 1		1
	a) $\frac{-}{8}$	b) $\frac{1}{3}$	c) $\frac{1}{8}$	d) $\frac{1}{2}$
117.	The probability that a main	n will hit a target in shootir	ng practice is 0.3. If he shoo	ts 10 times, the probability
	that he hits the target is			
	a) 1	b) $1 - (0.7)^{10}$	c) (0.7) ¹⁰	d) (0.3) ¹⁰
118.	Seven chits are numbered	l 1 to 7. Four chits are draw	n one by one with replace	ment. The probability that
	the least number appearing	ng on any selected chit is 5,	is	
	$(3)^{4}$	$(6)^{3}$	$5 \cdot 4 \cdot 3$	$(3)^{3}$
	$a_{\overline{7}}(\overline{7})$	$\left(\frac{7}{7}\right)$	7^{3}	$(\frac{1}{4})$
119.	It is given the events A an	d <i>B</i> are such that $P(A) = \frac{1}{4}$	$P(A B) = \frac{1}{2} \text{ and } P(B A) =$	$\frac{2}{3}$. Then, $P(B)$ is
	a) ¹	$h)$ $\frac{1}{2}$	$\frac{1}{2}$	d^2
	<u>2</u>	6	$\frac{1}{3}$	$\frac{1}{3}$
120.	A and B toss a coin altern	ately till one of them tosse	s heads and wins the game	, their respective
	probability of winning are	2		
	$\begin{pmatrix} 1 & 3 \\ a \end{pmatrix} - and -$	b) $\frac{1}{-}$ and $\frac{1}{-}$	$\frac{1}{2}$ c) $\frac{1}{2}$ and $\frac{2}{2}$	$\begin{pmatrix} 1 & 4 \\ d \end{pmatrix} - and -$
101		2 2 2	3 3	$5^{}5$
121.	Let E_1, E_2 be two mutually	exclusive events of an exp	periment with $P(notE_2) = 0$	$0.6 = P(E_1 \cup E_2).1$ nen,
	$P(E_1)$ is equal to			
400	a) 0.1	b) 0.3	c) 0.4	d) 0.2
122.	If two events A and B are	such that $P(A^c) = 0.3, P(E)$	$(A \cap B^c) = 0.4, P(A \cap B^c) = 0.5, t$	then $P(B/A \cup B^c) =$
	a) 0.20	b) 0.25	c) 0.30	d) 0.35
123.	The odds against a certain	event are 5:2 and the odd	is in favour of another inde	ependent event are 6 : 5.
	The probability that at lea	ist one of the events will ha	ippen, is	
	a) $\frac{25}{77}$	b) $\frac{52}{77}$	c) $\frac{12}{77}$	d) $\frac{65}{77}$
124			//	
147.	A and B are two independ	ient events such that their j	probabilities are $\frac{-10}{10}$ and $\frac{-5}{5}$ re	espectively. The probability
	of exactly one of the even	ts happening is		
	a) 23/50	b) 1/2	c) 31/50	d) None of these
125.	A fair coin is tossed a fixe	d number of times. If the pr	obability of getting 4 head	s equals the probability of
	getting 7 heads, then the p	probability of getting 2 hea	ds is	
	a) $\frac{55}{1000}$	b) $\frac{3}{100}$	c) $\frac{1}{100}$	d) None of these
100	2048	⁴⁰⁹⁶	1024	
126.	If $P(A) = P(B) = x$ and P	$P(A \cap B) = P(A' \cap B') = \frac{1}{3},$	then x is equal to	
	$\frac{1}{2}$	$h)\frac{1}{2}$	$\frac{1}{2}$	$d)\frac{1}{2}$
	$\frac{1}{2}$	3	$\frac{1}{4}$	6
127.	A bag contains 7 red and 2	2 white balls and another b	ag contains 5 red and 4 wh	iite balls. Two balls are
	drawn, one from each bag	g. The probability that both	the balls are white, is	
	a) 2/9	b) 2/3	c) 8/81	d) 35/81
128.	If $P(A \cap B) = \frac{1}{3}$, $P(A \cup B)$	$=\frac{5}{6}$ and $P(A)=\frac{1}{2}$, then wh	nich one of the following is	correct?
	a) A and B are independe	nt events	b) A and B are mutually e	xclusive events
	c) $P(A) = P(B)$		d) P(A) < P(B)	
129.	A speaks truth 4 out of 5 t	imes. A die is tossed. He re	ports that there is a six. Th	e probability that actually
	there was a six, is			
	a) 4/9	b) 5/9	c) 3/10	d) None of these

130	130. There are 12 white and 12 red balls in a bag. Balls are drawn one by one with replacement from the bag.				
	The probability that 7th d	rawn ball is 4th white, is	1	1	
	a) $\frac{1}{4}$	b) $\frac{1}{8}$	c) $\frac{1}{2}$	d) $\frac{1}{3}$	
131	. If birth to male child and l	pirth to female child are eq	ual-probable, then what is	the probability that at least	
	one of the three children born to a couple is male?				
	a) $\frac{4}{-}$	b) $\frac{7}{-}$	c) 8	d) $\frac{1}{-}$	
100	5		7		
132	probability that they are t	he same letters is	a another is taken out from	1 STATISTICS. The	
	$a)\frac{1}{2}$	h) $\frac{13}{1}$	$()\frac{19}{-}$	d) None of these	
400	45	⁹⁰	90		
133	A and B toss a coin alternative probability that A wins th	ately on the understanding e toss	that the first to obtain hea	d win the toss. The	
	a) $\frac{1}{2}$	b) $\frac{2}{2}$	c) $\frac{1}{4}$	d) $\frac{3}{4}$	
12/	3 If A and P are independent	$\frac{1}{3}$	$1 \frac{4}{2}$	4	
134	a) A and B are mutually α	$\frac{1}{2} \frac{1}{2} \frac{1}$	$(D) \ge 0$, then		
	h) A and \overline{B} are dependent	xciusive			
	c) \overline{A} and \overline{B} are dependent				
	d) $P(A/B) + P(\overline{A}/B) = 1$				
135	The probability that in a factor f	amily of 5 members, exact	2 members have birthday (on Sunday, is	
200	12×5^3	10×6^2	2	10×6^3	
	a) $-\frac{7^5}{7^5}$	b) $-\frac{7^5}{7^5}$	c) $\frac{1}{5}$	d) $-\frac{7^5}{7^5}$	
136	A manufacture of cotter p guarantees that not more will fail to meet the guara	ins knows that 5% of his pr than one pin will be defect nteed quality, the probabili	roduct is defective. He sells ive in a box. In order to fin- ity distribution one has to e	s pins in boxes of 100 and d the probability that a box employ is	
405	a) Binomial	b) Poisson	c) Normal	d) exponential	
137	. The probability that a leap	year will have 53 Fridays	or 53 Saturdays, is	1	
	a) $\frac{2}{7}$	b) $\frac{3}{7}$	c) $\frac{4}{7}$	d) $\frac{1}{7}$	
138	, Five boys and three girls a	are seated at random in a ro	ow. The probability that no	boy sits between two girls	
		1) 1 /0	.) 2 (20		
120	a) 1/56 A dia is topsed thrice. If or	DJ 1/8	C) $3/28$	d) None of these	
139	two successes is	ent of getting an even num	iber is a success, then the p	brobability of getting at least	
	a) $\frac{7}{2}$	b) $\frac{1}{4}$	c) $\frac{2}{2}$	d) $\frac{1}{2}$	
140	δ Out of 40 consecutive inte	4 gers two are chosen at rar	ى Not the probability that t	ے their sum is odd is	
110	a) 14/29	h) 20/39	c) $1/2$	d) None of these	
141	. A bag contains 5 blue ball	s and unknown numbers o	f red balls, two balls are dr	awn	
	at random. The probabilit	y of both of them are blue i	is $\frac{5}{14}$, then the number of re	ed ballsare	
	a) 3	b) 2	c) 4	d) 5	
142	. Two unbiased dice are thi	own simultaneously. The p	probability to get a sum mo	ore than 8 is	
	a) $\frac{5}{}$	$b) \frac{5}{-}$	c) <u>5</u>	d) $\frac{2}{-}$	
4.40	36	⁵ 18	⁵ , 12	⁽¹⁾ 9	
143	. If A and B are two events,	then P (neither A nor B) e	quals		
1 / /	a) $I = P(A \cup B)$	$\bigcup P(A) + P(B)$	CJ = P(A) - P(B)	uj None of these	
144	An unbiased die is tossed	until a number greater tha	ii 4 appears. The probabilit	ly that an even number of	
	1	2	1	2	
	a) $\frac{1}{2}$	b) $\frac{1}{5}$	c) $\frac{1}{5}$	d) $\frac{1}{3}$	

	e tossed. The probability tha	t both coins fall heads and t	the die shows a 3 or 6, is
a) 1/8	b) 1/12	c) 1/16	d) None of these
146. A six faced die is a bias	ed one. It is thrice more like	ly to show an odd number t	han show an even number.
It is thrown twice. The	probability that the sum of	the numbers in the two thro	ows is even, is
a) 5/9	b) 5/8	c) 1/2	d) None of these
147. A man and his wife app	ear for an interview for two	posts. The probability of th	he man's selection is 1/5 and
that of his wife's select	ion is $1/7$. The probability	hat at least one of them is se	elected, is
a) <u>9</u>	b) $\frac{12}{}$	c) $\frac{2}{-}$	d) $\frac{11}{1}$
35	^{-,} 35	⁵ , 7	35
148. In Q. 90, the probabilition Q^n	ty that the last digit is $2,4,6$	or 8, is $A^n = 2^n$	
a) $\frac{8^{3}}{5^{2}}$	b) $\frac{8^{n}-2^{n}}{5^{n}}$	c) $\frac{4^{n}-2^{n}}{\pi^{n}}$	d) None of these
149	5"	5^{n}	
A and B are two events	such that $P(A) > 0, P(B) \neq$	$(\frac{1}{\bar{B}})$ is equal to	
(A)	(\overline{A})	$1 - P(A \cup B)$	$P(\overline{A})$
a) $1 - P\left(\frac{1}{B}\right)$	b) $1 - P\left(\frac{B}{B}\right)$	$P(\overline{B})$	a) $\frac{P(\overline{B})}{P(\overline{B})}$
150. Given that X is discrete	random variable which tak	es the values $0.1.2$ and $P(X)$	$(-0) - \frac{144}{144} P(X-1) - \frac{1}{144}$
			$= 0) = \frac{169}{169}, r (x = 1) = \frac{169}{169}, r (x = 1)$
then the value of $P(X = 14\Gamma)$	= 2) IS	n	142
a) $\frac{145}{162}$	b) $\frac{24}{160}$	c) $\frac{2}{160}$	d) $\frac{143}{162}$
169 151 A dia is thrown Lat A h	169 the grant that the number	169 sobtained is greater than 2	169 Lot P ha the event that the
151. A ule is ullowii. Let A b	s than 5 Thon $P(A \cup R)$ is	obtailleu is greater than 5.	Let <i>b</i> be the event that the
2	$\frac{3}{2}$	a) ()	d) 1
a) $\frac{2}{5}$	b) $\frac{5}{5}$		u) 1
152. If $P(A) = P(B) = P(C)$	$-\frac{1}{2}P(AR) - P(CR) - 0$	nd $P(AC) = \frac{1}{2}$ then $P(A \perp B)$) is equal to
r(D) = r(D) = r(C)	$-\frac{1}{4}, r(AD) = r(CD) = 0 a$	$\lim_{B \to 0} F(AC) = \frac{-}{8}, \text{ then } F(A + D)$	
a) $\frac{5}{2}$	b) $\frac{37}{64}$	c) $\frac{3}{4}$	d) $\frac{1}{2}$
8	<i>I</i> - <i>I</i>		
1E2 In a class of 12E studen	04 ots 70 passed in Mathematic	4 c. EE in Statistic and 20 in h	2 oth The probability that a
153. In a class of 125 studen	ot its 70 passed in Mathematic	s, 55 in Statistic and 30 in b	z oth. The probability that a
153. In a class of 125 studen student selected at ran	ts 70 passed in Mathematic dom from the class, has pas	4 s, 55 in Statistic and 30 in b sed in only one subject is	د oth. The probability that a م) ۹/25
 153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th 	of hts 70 passed in Mathematic dom from the class, has pass b) 3/25 rown the probability of gett	4 s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic	2 oth. The probability that a d) 8/25
 153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th 1 	ts 70 passed in Mathematic dom from the class, has pas b) 3/25 rown the probability of gett	4 s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic	d) 8/25 e simultaneously, is
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$	tts 70 passed in Mathematic dom from the class, has pass b) 3/25 rown the probability of gett b) $\frac{1}{108}$	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$	oth. The probability that a d) 8/25 e simultaneously, is d) None of these
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$	the probability of gett b) $\frac{1}{108}$	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$	2 oth. The probability that a d) 8/25 e simultaneously, is d) None of these
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independent	the formula for the second se	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$ $p(B) = \frac{1}{3}$, then $P(D)$	 a) 8/25 b) 8/25 c) 8/25 <
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independent a) $\frac{2}{2}$	the second seco	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$ $p_{1}^{\frac{1}{2}}$ and $P(B) = \frac{1}{3}$, then $P(B)$	oth. The probability that a d) 8/25 e simultaneously, is d) None of these wither <i>A</i> nor <i>B</i>)is equal to d) $\frac{1}{2}$
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independence a) $\frac{2}{3}$	hts 70 passed in Mathematic dom from the class, has pass b) 3/25 rown the probability of gett b) $\frac{1}{108}$ endent events such that $P(A)$ b) $\frac{1}{6}$	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$ $\frac{1}{2}$ and $P(B) = \frac{1}{3}$, then $P(ne)$ c) $\frac{5}{6}$	oth. The probability that a d) 8/25 e simultaneously, is d) None of these either <i>A</i> nor <i>B</i>)is equal to d) $\frac{1}{3}$
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independence a) $\frac{2}{3}$ 156. The probability that the	ts 70 passed in Mathematic dom from the class, has pass b) 3/25 rown the probability of gett b) $\frac{1}{108}$ endent events such that $P(A)$ b) $\frac{1}{6}$ e 13th day of a randomly ch	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$) $\frac{1}{2}$ and $P(B) = \frac{1}{3}$, then $P(ne)$ c) $\frac{5}{6}$ osen month is a Friday, is	oth. The probability that a d) 8/25 e simultaneously, is d) None of these either <i>A</i> nor <i>B</i>)is equal to d) $\frac{1}{3}$
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independence a) $\frac{2}{3}$ 156. The probability that the a) $\frac{1}{12}$	the second seco	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$) $\frac{1}{2}$ and $P(B) = \frac{1}{3}$, then $P(\text{ne}$ c) $\frac{5}{6}$ osen month is a Friday, is c) $\frac{1}{84}$	oth. The probability that a d) 8/25 e simultaneously, is d) None of these either <i>A</i> nor <i>B</i>)is equal to d) $\frac{1}{3}$ d) None of these
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independent a) $\frac{2}{3}$ 156. The probability that the a) $\frac{1}{12}$ 157. Three coins are tossed.	then what is the probability of a randomly characteristic of a randomly c	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$) $\frac{1}{2}$ and $P(B) = \frac{1}{3}$, then $P(ne)$ c) $\frac{5}{6}$ osen month is a Friday, is c) $\frac{1}{84}$ v that at least two heads app	oth. The probability that a d) 8/25 e simultaneously, is d) None of these either <i>A</i> nor <i>B</i>)is equal to d) $\frac{1}{3}$ d) None of these bears on upper face?
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independence a) $\frac{2}{3}$ 156. The probability that the a) $\frac{1}{12}$ 157. Three coins are tossed,	then what is the probability 104 passed in Mathematic 105 dom from the class, has pass b) $3/25$ rown the probability of gett b) $\frac{1}{108}$ 108	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$) $\frac{1}{2}$ and $P(B) = \frac{1}{3}$, then $P(\text{ne}$ c) $\frac{5}{6}$ osen month is a Friday, is c) $\frac{1}{84}$ v that at least two heads app	oth. The probability that a d) 8/25 e simultaneously, is d) None of these wither <i>A</i> nor <i>B</i>) is equal to d) $\frac{1}{3}$ d) None of these pears on upper face? d) None of these
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independent a) $\frac{2}{3}$ 156. The probability that the a) $\frac{1}{12}$ 157. Three coins are tossed, a) $\frac{5}{8}$	the probability of a randomly characteristic for the probability of getters b) $\frac{1}{108}$ and the probability of getters such that $P(A = b) \frac{1}{6}$ and the probability of a randomly characteristic b) $\frac{1}{7}$ then what is the probability b) 40	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$) $\frac{1}{2}$ and $P(B) = \frac{1}{3}$, then $P(ne)$ c) $\frac{5}{6}$ osen month is a Friday, is c) $\frac{1}{84}$ v that at least two heads app c) $\frac{8}{5}$	oth. The probability that a d) 8/25 e simultaneously, is d) None of these either <i>A</i> nor <i>B</i>)is equal to d) $\frac{1}{3}$ d) None of these pears on upper face? d) None of these
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independent a) $\frac{2}{3}$ 156. The probability that the a) $\frac{1}{12}$ 157. Three coins are tossed, a) $\frac{5}{8}$ 158. If the letters of the work	the probability of a randomly characteristic for the second seco	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$) $\frac{1}{2}$ and $P(B) = \frac{1}{3}$, then $P(\text{ne}$ c) $\frac{5}{6}$ osen month is a Friday, is c) $\frac{1}{84}$ v that at least two heads app c) $\frac{8}{5}$ ed at random, the probabilit	oth. The probability that a d) 8/25 e simultaneously, is d) None of these either <i>A</i> nor <i>B</i>) is equal to d) $\frac{1}{3}$ d) None of these pears on upper face? d) None of these y that there will be exactly 4
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independent a) $\frac{2}{3}$ 156. The probability that the a) $\frac{1}{12}$ 157. Three coins are tossed, a) $\frac{5}{8}$ 158. If the letters of the worletters between <i>R</i> and <i>L</i>	then what is the probability b) $\frac{1}{7}$ then what is the probability b) $\frac{1}{6}$ c) $\frac{1}{7}$ c) $\frac{1}{7}$	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$) $\frac{1}{2}$ and $P(B) = \frac{1}{3}$, then $P(nec)$ c) $\frac{5}{6}$ osen month is a Friday, is c) $\frac{1}{84}$ v that at least two heads app c) $\frac{8}{5}$ ed at random, the probabilit	oth. The probability that a d) 8/25 e simultaneously, is d) None of these either <i>A</i> nor <i>B</i>) is equal to d) $\frac{1}{3}$ d) None of these pears on upper face? d) None of these y that there will be exactly 4
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independent a) $\frac{2}{3}$ 156. The probability that the a) $\frac{1}{12}$ 157. Three coins are tossed, a) $\frac{5}{8}$ 158. If the letters of the worletters between <i>R</i> and <i>R</i> a) 1/10	the probability of a randomly characteristic for the probability of getters b) $\frac{1}{108}$ and the probability of getters b) $\frac{1}{108}$ and the probability of getters such that $P(A = b) \frac{1}{6}$ and the probability of a randomly characteristic b) $\frac{1}{7}$ then what is the probability b) 40 and the probability b) 40 and the probability b) 1/9	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$) $\frac{1}{2}$ and $P(B) = \frac{1}{3}$, then $P(ne)$ c) $\frac{5}{6}$ osen month is a Friday, is c) $\frac{1}{84}$ v that at least two heads app c) $\frac{8}{5}$ ed at random, the probabilit c) 1/5	oth. The probability that a d) 8/25 e simultaneously, is d) None of these wither <i>A</i> nor <i>B</i>) is equal to d) $\frac{1}{3}$ d) None of these bears on upper face? d) None of these y that there will be exactly 4 d) 1/2
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independent a) $\frac{2}{3}$ 156. The probability that the a) $\frac{1}{12}$ 157. Three coins are tossed, a) $\frac{5}{8}$ 158. If the letters of the worletters between <i>R</i> and <i>L</i> a) 1/10 159. A bag contains 3 black,	then what is the probability b) $\frac{1}{7}$ then what is the probability b) $\frac{1}{6}$ c 13th day of a randomly ch b) $\frac{1}{6}$ c 13th day of a randomly ch b) $\frac{1}{7}$ then what is the probability b) 40 c 1/9 c 2 white and 2 red balls. One	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$) $\frac{1}{2}$ and $P(B) = \frac{1}{3}$, then $P(\text{ne}$ c) $\frac{5}{6}$ osen month is a Friday, is c) $\frac{1}{84}$ v that at least two heads app c) $\frac{8}{5}$ ed at random, the probabilit c) 1/5 e by one, three balls are draw	oth. The probability that a d) 8/25 e simultaneously, is d) None of these either <i>A</i> nor <i>B</i>)is equal to d) $\frac{1}{3}$ d) None of these bears on upper face? d) None of these y that there will be exactly 4 d) 1/2 wn without replacement.
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independent a) $\frac{2}{3}$ 156. The probability that the a) $\frac{1}{12}$ 157. Three coins are tossed, a) $\frac{5}{8}$ 158. If the letters of the word letters between <i>R</i> and <i>L</i> a) 1/10 159. A bag contains 3 black, The probability that the	the probability of gett b) $3/25$ rown the probability of gett b) $\frac{1}{108}$ endent events such that $P(A = b) \frac{1}{6}$ e 13th day of a randomly ch b) $\frac{1}{6}$ then what is the probability b) 40 d 'REGULATION' be arrange E is b) $1/9$ 3 white and 2 red balls. One e third ball is red, is equal to	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$) $\frac{1}{2}$ and $P(B) = \frac{1}{3}$, then $P(ne)$ c) $\frac{5}{6}$ osen month is a Friday, is c) $\frac{1}{84}$ v that at least two heads app c) $\frac{8}{5}$ ed at random, the probabilit c) 1/5 e by one, three balls are draw	oth. The probability that a d) 8/25 e simultaneously, is d) None of these wither <i>A</i> nor <i>B</i>) is equal to d) $\frac{1}{3}$ d) None of these bears on upper face? d) None of these y that there will be exactly 4 d) 1/2 wn without replacement.
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independent a) $\frac{2}{3}$ 156. The probability that the a) $\frac{1}{12}$ 157. Three coins are tossed, a) $\frac{5}{8}$ 158. If the letters of the word letters between <i>R</i> and <i>A</i> a) 1/10 159. A bag contains 3 black, The probability that the a) $\frac{2}{3}$	then what is the probability b) $\frac{1}{7}$ then what is the probability b) $\frac{1}{6}$ then what is the probability b) $\frac{1}{6}$ then what is the probability b) $\frac{1}{7}$ then what is the probability b) $\frac{1}{7}$ then what is the probability b) $\frac{1}{7}$	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$) $\frac{1}{2}$ and $P(B) = \frac{1}{3}$, then $P(\text{ne}$ c) $\frac{5}{6}$ osen month is a Friday, is c) $\frac{1}{84}$ v that at least two heads app c) $\frac{8}{5}$ ed at random, the probabilit c) 1/5 e by one, three balls are draw	oth. The probability that a d) 8/25 e simultaneously, is d) None of these either <i>A</i> nor <i>B</i>) is equal to d) $\frac{1}{3}$ d) None of these bears on upper face? d) None of these y that there will be exactly 4 d) 1/2 wn without replacement. d) $\frac{14}{3}$
153. In a class of 125 studen student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independent a) $\frac{2}{3}$ 156. The probability that the a) $\frac{1}{12}$ 157. Three coins are tossed, a) $\frac{5}{8}$ 158. If the letters of the work letters between <i>R</i> and <i>L</i> a) 1/10 159. A bag contains 3 black, The probability that the a) $\frac{2}{56}$	the probability of gett b) $3/25$ rown the probability of gett b) $\frac{1}{108}$ endent events such that $P(A = b) \frac{1}{6}$ e 13th day of a randomly ch b) $\frac{1}{7}$ then what is the probability b) 40 d 'REGULATION' be arrange E is b) $1/9$ 3 white and 2 red balls. One e third ball is red, is equal to b) $\frac{3}{56}$	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$) $\frac{1}{2}$ and $P(B) = \frac{1}{3}$, then $P(nec- c) \frac{5}{6}osen month is a Friday, isc) \frac{1}{84}v that at least two heads appc) \frac{8}{5}ed at random, the probabilitc) 1/5e by one, three balls are drawc) \frac{1}{56}$	oth. The probability that a d) 8/25 e simultaneously, is d) None of these wither <i>A</i> nor <i>B</i>) is equal to d) $\frac{1}{3}$ d) None of these bears on upper face? d) None of these y that there will be exactly 4 d) 1/2 wn without replacement. d) $\frac{14}{56}$
153. In a class of 125 studer student selected at ran a) 13/25 154. When three dice are th a) $\frac{1}{72}$ 155. <i>A</i> and <i>B</i> are two independent a) $\frac{2}{3}$ 156. The probability that the a) $\frac{1}{12}$ 157. Three coins are tossed, a) $\frac{5}{8}$ 158. If the letters of the work letters between <i>R</i> and <i>R</i> a) 1/10 159. A bag contains 3 black, The probability that the a) $\frac{2}{56}$ 160. If two dice are thrown	the probability of a randomly characteristic by $\frac{1}{108}$ and $\frac{1}{10$	s, 55 in Statistic and 30 in b sed in only one subject is c) 17/25 ing 4 or 5 on each of the dic c) $\frac{1}{24}$ c) $\frac{1}{2}$ and $P(B) = \frac{1}{3}$, then $P(\text{ne}$ c) $\frac{5}{6}$ osen month is a Friday, is c) $\frac{1}{84}$ v that at least two heads app c) $\frac{8}{5}$ ed at random, the probabilit c) 1/5 e by one, three balls are draw c) $\frac{1}{56}$ oility that 1 comes on first d	oth. The probability that a d) 8/25 e simultaneously, is d) None of these either A nor B) is equal to d) $\frac{1}{3}$ d) None of these pears on upper face? d) None of these y that there will be exactly 4 d) 1/2 wn without replacement. d) $\frac{14}{56}$ ice, is

161. In a book number o	of 500 pages, it is found that there of errors per page. Then, the probab	are 250 typing errors. Assu ility that a random sample	ime that poisson law holds for the of 2 pages will contain no error, is
a) $e^{-0.3}$	b) $e^{-0.5}$	c) e^{-1}	d) e^{-2}
162. If birth to	a male child and birth to a female o	child are equal-probable, th	ien what is the probability that at
least one	of the three children born to a coup	ole is male?	1
a) $\frac{4}{5}$	b) $\frac{7}{8}$	c) $\frac{0}{7}$	d) $\frac{1}{2}$
163. A card is	drawn from a pack of cards. The pro	obability that the card will	be a queen or a heart, is
a) $\frac{4}{2}$	b) $\frac{16}{2}$	c) $\frac{4}{12}$	d) $\frac{5}{2}$
$\frac{1}{3}$	fair dias is through independently th	- 13 Maa timaa Tha uuahahilituu	of gotting a googe of evently 0 trying
is	fair dice is thrown independently th	free times. The probability	of getting a score of exactly 9 twice
13	8	8	8
a) $\frac{-}{729}$	b) $\frac{1}{9}$	c) $\frac{1}{729}$	d) $\frac{1}{243}$
165. Three let	ters are written to different persons	s and addresses to three en	velops are also written. Without
looking a	t the addresses, the probability that	the letters go into right en	velops is
a) 1/27	b) 1/6	c) 1/9	d) None of these
166. If $P(B) =$	$=\frac{3}{4}$, $P(A \cap B \cap \overline{C}) = \frac{1}{3}$ and $P(\overline{A} \cap B)$	$\cap \overline{C} = \frac{1}{3}$, then $P(B \cap C)$ is	
$a)\frac{1}{}$	$h \frac{1}{2}$	$() \frac{1}{1}$	$\frac{1}{2}$
^u) 12	6	15	9
167. A person	draws out two balls successively fr	om a bag containing 6 red a	and 4 white balls. The probability
that at lea	ast one of them will be red, is	40	10
a) $\frac{78}{22}$	b) $\frac{30}{32}$	c) $\frac{48}{22}$	d) $\frac{12}{22}$
- 90 160 Ametric	is sharen at usual surfaces the set of	90 - 90	90 - 90 The much shilite
168. A matrix	is chosen at random from the set of	all 2×2 matrices with ele	ments 0 and 1 only. The probability
$\frac{11}{2}$	b) 2/16	$\frac{11}{12}$	d) 12/16
$a_{J} 1/2$	b) 3710	cj 11/10	u_{j} 13/10
109. Two uice	are cossed once. The probability of 3	11	
a) $\frac{1}{36}$	b) $\frac{3}{36}$	c) $\frac{11}{36}$	d) $\frac{3}{9}$
170. The prob	ability of forming a three digit num	bers with the same digits y	when three digit numbers are
formed o	ut of the digit 0. 2. 4. 6. 8 is		
、1	1	<u> </u>	. 1
a) $\frac{16}{16}$	b) $\frac{12}{12}$	c) $\frac{1}{645}$	d) $\frac{1}{25}$
171. A bag cor	tains a white and b black balls. Two	o players A and B alternate	ely draw a ball from the bag
replacing	g the ball each time after the draw ti	ll one of them draws a whit	te ball and wins the game. A begins
the game	. If the probability of <i>A</i> winning the	game is three times that of	B, then the ratio $a: b$ is
a) 1 : 1	b) 1 : 2	c) 2:1	d) None of these
172. The prob	ability that a leap year selected at ra	andom will contain either 5	53 Thursdays or 53 Fridays, is
a) $\frac{3}{7}$	b) $\frac{2}{7}$	c) $\frac{5}{7}$	d) $\frac{1}{7}$
/ 173 For the tl	/ hree events A_R and C_P (exactly or	$^{\prime}$	rs) = P(exactly one of the events R)
or C occu	P (exactly one of the events C	or A occurs) = n and P (all	the three events occur
simultan	$(c, a, c, y) = n^2 \text{where } 0 < n < 1$ Then	the probability of at least	$r_{\rm one}$ of the three events $4 P$ and C
sinuitano	$(p < \frac{1}{2})$.	i, the probability of at least	one of the three events A, B and C
occuring,		. 0. 2	
a) $\frac{3p+2}{2}$	b) $\frac{p+3p^2}{p+3p^2}$	c) $\frac{p+3p^2}{2}$	d) $\frac{3p + 2p^2}{2p^2}$
174	4	ANT' and enother is tale	4
1/4. A letter is	s taken out at random from ASSIS1.	AINT AND ANOTHER IS TAKEN (Juchom Statistics. The
probabili 1	ity that they are same letters, is	19	d) None of these
a) 🗕	b) $\frac{13}{-1}$	c) <u></u>	uj none of these

a) $\frac{1}{45}$ b) $\frac{1}{90}$ c) $\frac{1}{90}$ c) $\frac{1}{90}$ the state of the state of

is
a) 1/34 b) 1/35 c) 1/17 d) 1/68
176. The probability of getting at least one tail in 4 throws of a coin is
a)
$$\frac{15}{15}$$
 b) $\frac{1}{16}$ c) $\frac{1}{4}$ d) None of these
177. If a coin be tossed n times, then probability that the head comes odd times is
a) 1/2 b) 1/2ⁿ c) 1/2ⁿ⁻¹ d) None of these
178. The probability that a number selected at random from the set of numbers 1.2,3.4, ...,100 is a cube, is
a) $\frac{1}{25}$ b) $\frac{2}{25}$ c) $\frac{3}{25}$ c) $\frac{3}{25}$ d) $\frac{4}{25}$
179. Seven digits from the digits 1,2,3.4,5,6,7,8,9 are written in a random order. The probability that this seven
digit number is divisible by 9 is
a) 2/9 b) 1/5 c) 1/3 d) 1/9
180. A bag contains 5 red, 3 white and 2 black balls. If a ball is picked at random, the probability that it is red is
a) 1/2 c) 3/10 d) 9/10
181. To open a lock, a key is taken out from a collection of *n* keys at random. If the lock is not opened with this
key, it is put back into the collection and another key is tried. The process is repeated again and again. If it
is given that with only one key in the collection, the lock can be opened, then the probability that the lock
will open in n trials, is
a) $\left(\frac{1}{n}\right)^n$ b) $\left(\frac{n-1}{n}\right)^n$ c) $1 - \left(\frac{n-1}{n}\right)^n$ d) None of these
182. Let *A* and *B* two events such that $P(\overline{A \cup B}) = \frac{1}{6}$, $P(A \cap B) = \frac{1}{4}$ and $P(\overline{A}) = \frac{1}{4}$, where \overline{A} stands for
complement of event A. Then, events A and B are
a) Mutually exclusive and independent
b) Independent but not equally likely
c) Equally likely but not independent
d) Equally likely and nutually exclusive
183. If the probability of A to fail in an examination is 0.2 and that for *B* is 0.3, then probability that either *A* or
B is fail, is
a) 0.5 b) 0.44 c) 0.3 d) 0.25
184. In a binomial distribution $B\left(n, P = \frac{1}{2}\right)$. If the probability of at least one success is greater than or equal to
 $\frac{3}{10}$ the *n* is greater than
a) $\frac{1}{6}$ b) $\frac{5}{11}$ c) $\frac{6}{51}$ d) $\frac{5}{63}$ d) None of these
185. A fait die is r

190.	190. If p is chosen at random in the interval $0 \le p \le 5$, the probability that the roots of the equation			
	$x^2 + px + \frac{p}{4} + \frac{1}{2} = 0$ are re-	eal, is		
	a) 1/5	b) 2/5	c) 3/5	d) 4/5
191.	One card is drawn randon	nly from a pack of 52 cards	, then the probability that i	t is a king of spade, is
	a) 1/26	b) 3/26	c) 4/13	d) 3/13
192.	If the probability for A to a	fail in an examination is 0.2	and that for <i>B</i> is 0.3, then	the probability that either
	A or B fails, is			
	a) 0.38	b) 0.44	c) 0.50	d) 0.94
193.	The mean and the variance	e of a binomial distributior	n are 4 and 2 respectively. T	۲hen, the probability of 2
	successes is			
	$31 \frac{37}{37}$	$h) \frac{219}{1}$	c) $\frac{128}{128}$	d) $\frac{28}{28}$
	256	256	256	256
194.	If the mean of a binomial of	distribution is 25, then its s	standard deviation lies in th	ie interval given below:
	a) [0,5)	b) (0,5]	c) [0,25)	d) (0,25]
195.	Let $A < B$ and C be the thr	ee events such that $P(A) =$	= 0.3, P(B) = 0.4, P(C) = 0	$.8, P(A \cap B) =$
	$0.08, P(A \cap C) = 0.28, P(A \cap C)$	$A \cap B \cap C) = 0.09$. If $P(A \cup$	$(B \cup C) \ge 0.75$, then $P(B \cap C)$	C) satisfies
	a) $P(B \cap C) \leq 0.23$		b) $P(B \cap C) \le 0.48$	
	c) $0.23 \le P(B \cap C) \le 0.43$	8	d) $0.23 \le P(B \cap C) \ge 0.4$	8
196.	A determinant of second of	order is made with the elen	nents 0, 1. What is the prob	ability that the
	determinant is positive?			
	ر ۲	b) ¹¹	a) 3	d) ¹⁵
	a) <u>12</u>	12	$\frac{16}{16}$	$\frac{1}{16}$
197.	If <i>m</i> and σ^2 are the mean	and variance of the randon	n variable X. whose distrib	ution is given by
	X 0 1 2	3		
	$\left \begin{array}{c c} P(X) & \underline{1} & \underline{1} \\ \end{array} \right = 0$	1		
		6		
	then		2 4	\mathbf{D} \mathbf{D} \mathbf{C}
100	a) $m = \sigma^2 = 2$	b) $m = 1, \sigma^2 = 2$	C) $m = \sigma^2 = 1$	a) $m = 2, \sigma^2 = 1$
198.	If two coins are tossed 5 t	imes, then the probability of	of getting 5 neads and 5 tail	IS IS 0
	a) $\frac{03}{256}$	b) $\frac{1}{1024}$	c) $\frac{2}{205}$	d) $\frac{9}{64}$
100	250 K.W. J.W. J. J. J.	1024	205	04
1)).	If X and Y are independent	t binomial variates $B\left(5, \frac{-}{2}\right)$	and $B\left(\frac{7}{2}, \frac{-}{2}\right)$, then	
	P(X + Y = 3) is			
	35	h) <u>55</u>	c) $\frac{220}{2}$	d) $\frac{11}{1}$
	47	1024	5 512	204
200.	A pack of cards contains 4	aces, 4 kings, 4 queens and	d 4 jacks. Two cards are dra	awn at random from this
	pack without replacement	t. The probability that at lea	ast one of them will be an a	ce, is
	a) $\frac{1}{-}$	b) $\frac{9}{1}$	c) $\frac{1}{-}$	d) $\frac{1}{2}$
0.01	² 5	² 20	6	59
201.	A random variable has the	e following probability dist	ribution.	
	x : 0 1 2 3 4	567		
	$p(x): 0 2p 2p 3p p^2$	$2p^{2}/p^{2}/2p$		
	The value of <i>p</i> , is			
	a) 1/10	b) —1	c) -1/10	d) None of these
202.	Let <i>E</i> and <i>F</i> be two indepe	endent events. The probabi	lity that both <i>E</i> and <i>F</i> happ	en is $1/12$ and the
	probability that neither E	nor <i>F</i> occurs is 1/2. Then,		
	a) $P(E) = \frac{1}{2} P(E) = \frac{1}{2}$	b) $P(E) = \frac{1}{2} P(E) = \frac{1}{2}$	c) $P(E) = \frac{1}{2} P(E) = \frac{1}{2}$	d) $P(E) = \frac{1}{2} P(E) = \frac{2}{2}$
0.00	3, 4	2, 6	6, 2	4 3
203	Six ordinary dice are rolle 2^4	a. The probability that at le	east half of them will show 2^4	at least 3 is
	a) $41 \times \frac{2^{+}}{25}$	b) $\frac{2^{4}}{2^{6}}$	c) $20 \times \frac{2^{+}}{25}$	a) None of these
	36	3°	36	

204. The probability that at least one of A and B occurs is 0.6. If A and B occur simultaneously with probability 0.3, then P(A') + P(B') is a) 0.9 b) 0.15 c) 1.1 d) 1.2 205. A pair of dice is rolled together till a sum of either 5 or 7 is obtained. The probability that 5 comes before 7 is b) 1/5 a) 2/5 c) 3/5 d) None of these 206. If events are independent and $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{3}$, $P(C) = \frac{1}{4}$, then $P(A' \cap B' \cap C')$ is equal to a) $\frac{1}{4}$ b) $\frac{1}{12}$ d) $\frac{5}{12}$ c) $\frac{1}{2}$ 207. Three dice are thrown. The probability that the sum of the number appearing is 15, is a) 1/216 b) 1/72 c) 5/108 d) 1/18 208. In a poisson distribution mean is 16, then standard deviation is a) 16 b) 256 c) 128 d) 4 209. Six faces of an unbiased die are numbered with 2, 3, 5, 7, 11 and 13. If two such dice are thrown, then the probability that the sum on the uppermost faces of the dice is an odd number, is a) $\frac{5}{18}$ b) $\frac{5}{36}$ c) $\frac{13}{18}$ d) $\frac{25}{36}$ 210. The mean and variance of a binomial distribution are 4 and 3 respectively, then the probability of getting exactly six successes in this distribution is a) ${}^{16}C_6\left(\frac{1}{4}\right)^{10}\left(\frac{3}{4}\right)^6$ b) ${}^{16}C_6\left(\frac{1}{4}\right)^6\left(\frac{3}{4}\right)^{10}$ c) ${}^{12}C_6\left(\frac{1}{4}\right)^{10}\left(\frac{3}{4}\right)^6$ d) ${}^{12}C_6\left(\frac{1}{4}\right)^6\left(\frac{3}{4}\right)^6$ 211. *A* and *B* are two independent events. The probability that both *A* and *B* occur is 1/6 and the probability that neither of them occurs is 1/3. Then, a) P(A) = 1/2, P(B) = 1/3b) P(A) = 1/2, P(B) = 1/6c) P(A) = 1/3, P(B) = 1/6d) None of these 212. If A and B are independent events of a random experiments such that $P(A \cap B) = \frac{1}{6}$ and $P(\overline{A} \cap \overline{B}) = \frac{1}{3}$, then P(A) is equal to c) $\frac{5}{7}$ b) $\frac{1}{3}$ a) $\frac{1}{4}$ 213. If the integers *m* and *n* are chosen at random between 1 and 100, then the probability that a number of the form $7^m + 7^n$ is divisible by 5, equals b) $\frac{1}{7}$ c) $\frac{1}{8}$ a) d) $\frac{1}{49}$ 214. Let ω be a complex cube root of unity with $\omega \neq 1$. A fair die is thrown three times. If r_1, r_2 and r_3 are the numbers obtained on the die, then the probability that $\omega^{r_1} + \omega^{r_2} + \omega^{r_3} = 0$ is c) $\frac{2}{9}$ b) $\frac{1}{9}$ a) $\frac{1}{18}$ d) $\frac{1}{36}$ 215. A mapping is selected at random from the set of all the mappings of the set $A = \{1, 2, ..., n\}$ into itself. The probability that the mapping selected is an injection is

b)
$$\frac{1}{n!}$$
 c) $\frac{(n-1)!}{n^{n-1}}$ d) $\frac{n!}{n^{n-1}}$

a) $\frac{1}{n^n}$

216. An urn contains five balls. Two balls are drawn and are found to be white. The probability that the balls selected are white is

- a) 3/4b) 3/5c) 3/10d) 1/2217. A single letter is selected at random from the word 'PROBABILITY'. The probability that it is a vowel is
a) 3/11b) 4/11c) 2/11d) None of these
- 218. A die is thrown. If it shows a six, we draw a ball from a bag consisting 2 black balls and 6 white balls. If it

	does not show a six, then	we toss a coin. Then, the sa	mple space of this experim	ent consists of
	a) 13 points	b) 18 points	c) 10 points	d) None of these
219.	For a binomial variate X v	with $n = 6$, if $P(X = 2) = 9$	P(X = 4), then its variance	is
	$a) = \frac{8}{2}$	h) $\frac{1}{-}$	<u> 9</u>	d) 4
	⁽¹⁾ 9	³ 4	⁶ 8	
220.	Out of 13 applicants for a	job, there are 5 women and	d 8 men. It is desired to sele	ect 2 persons for the job.
	The probability that at lea	ist one of the selected perso	ons will be a women is $r_{12} = r_{12}$	1) 10/12
221	a) 25/39	D) $14/39$	CJ 5/13 D' = 0.9 and $D(4) = 0.2$	(a) $10/13$
221.	2 A and B are two independ	2	(A) = 0.8 and P(A) = 0.3.	1 men, $P(B)$ is
	a) $\frac{2}{7}$	b) $\frac{2}{3}$	c) $\frac{3}{8}$	d) $\frac{1}{8}$
222.	, Suppose that a die (with f	aces marked 1 to 6) is load	ed in such a manner that fo	or $K = 1, 2, 3, \dots, 6$ the
	probability of the face ma	rked <i>K</i> turning up when di	e is tossed is proportional t	to <i>K</i> . The probability of the
	event that the outcome of	a toss of the die will be an	even number, is equal to	
	ي ¹	h $\frac{4}{}$	ي 2 د)	d) ¹
	$\frac{a}{2}$	0) <u>-</u> 7	$\frac{0}{5}$	$\frac{1}{21}$
223.	Three are six verities of a	regular hexagon are chose	n at random, then the possi	bility that the triangle with
	three vertices is equilater	al, is equal to	1	1
	a) $\frac{1}{2}$	b) $\frac{1}{2}$	c) $\frac{1}{10}$	d) $\frac{1}{20}$
224	Let If a committee of 3 is to be	3 e chosen from a group of 38	10 R neonle of which you are a	20 member What is the
	probability that you will h	e on the committee?	s people of which you are a	includer. What is the
	(38)	(37)	(37) (38)	d) 666/8436
	a) $\begin{pmatrix} 3 \end{pmatrix}$	b) $\begin{pmatrix} 2 \end{pmatrix}$	c) $\binom{2}{2}$ / $\binom{3}{3}$	
225.	The probability that in a y	ear of the 22nd century ch	osen at random there will l	pe 53 Sundays, is
	3 - 3	h) $\frac{2}{}$	c) 7	പ <u>5</u>
	28	28	28	28
226.	Two cards are drawn with	nout replacement from a w	ell-shuffled pack. The prob	ability that one of them is
	an ace of heart, is	1	1	d) Nama af thana
	a) $\frac{1}{25}$	b) $\frac{1}{26}$	c) $\frac{1}{52}$	a) None of these
227.	A binary operation is chosen	sen at random from the set	of all binary operations on	a set A containing n
	elements. The probability	that the binary operation i	is commutative, is	
	n^n	$n^{n/2}$	$n^{n/2}$	d) None of these
	a) $\frac{1}{n^{n^2}}$	b) $\frac{1}{n^{n^2}}$	c) $\frac{1}{n^{n^2/2}}$	
228.	A lot consists of 102 good	pencils, 6 with minor defe	cts and 2 with major defect	s. A pencil is choosen at
	random. The probability t	hat this pencil is not defect	tive is	
	a) 3/5	b) 3/10	c) 4/5	d) 1/2
229.	If A and B are events of th	e same experiments with <i>I</i>	P(A) = 0.2, P(B) = 0.5, the	n maximum value of
	$P(A' \cap B)$ is			
	a) 0.2	b) 0.5	c) 0.63	d) 0.25
230.	Four tickets marked 00,02	1,10,11, respectively are pl	aced in a bag. A ticket is dra	awn at random five times,
	being replaced each time.	The probability that the su	Im of the numbers on ticket	ts thus drawn is 23, is
004	a) 25/256	b) 100/256	c) 231/256	d) None of these
231.	Two dice are tossed 6 tim	es. Then the probability the	at / will show an exactly fo	ur of the tosses is
	a) $\frac{225}{19442}$	b) $\frac{110}{20002}$	c) $\frac{125}{1552}$	a) None of these
232	Out of $3n$ consecutive nat	ural numbers. 3 natural nu	mbers are chosen at rando	m without replacement.
	The probability that the s	um of the chosen numbers	is divisible by 3. is	·
	$n(3n^2 - 3n + 2)$	$(3n^2 - 3n + 2)$	$(3n^2 - 3n + 2)$	n(3n-1)(3n-2)
	a) <u>2</u>	b) $\frac{1}{2(3n-1)(3n-2)}$	c) $\frac{1}{(3n-1)(3n-2)}$	a) $\frac{3(n-1)}{3(n-1)}$

233. *A* and *B* are two independent witnesses (*ie*, there is no collusion between them) in a case. The probability

	that A will speak the truth is x and the probability that B will speak the truth is y , A and B agree in a			
	certain statement. The pr	obability that the statemer	nt is true, is	
	a) $\frac{x-y}{x-y}$	h) $\frac{xy}{x}$	(x-y)	d) $\frac{xy}{xy}$
	x + y	$x^{(j)}1 + x + y + xy$	x - y + 2xy	$x^{y}1 - x - y + 2xy$
234	Five persons A, B, C, D and 1	d <i>E</i> are in queue of a shop.	The probability that <i>A</i> and 2	<i>E</i> always together, is
	a) $\frac{-}{4}$	b) $\frac{1}{3}$	c) _	d) $\frac{1}{5}$
235	. Three dice are thrown. Th	ne probability that the sam	e number will appear on ea	ich of them, is
	a) 1/6	b) 1/18	c) 1/36	d) None of these
236	A bag contains 8 red and	7 black balls. Two balls are	drawn at random. The pro	bability that both the balls
	are of the same colour, is		-	
	14	L) 11	7	4 d)
	$\frac{1}{15}$	^b) <u>15</u>	$\frac{c}{15}$	$\frac{1}{15}$
237	A bag contains 10 white a	nd 3 black balls. Balls are o	drawn one-by-one without	replacement till all the
	black balls are drawn. The	e probability that the proce	edure of drawing balls will	come to an end at the
	seventh draw is			
	a) ¹⁰⁵	b) ¹⁵	c) ¹⁸¹	d) None of these
	286	286	286	
238	. Two events A and B have	e probability 0.25 and 0.50	respectively. The probabi	lity that both A and B occur
	simultaneously is 0.14. The	ien, the probability that ne	ither A nor B occur, is	
	a) 0.39	b) 0.25	c) 0.11	d) None of these
239	. There are 9999 tickets be	aring numbers 0001, 0002	2,,99999. If one ticket is se	lected from these tickets at
	random, the probability t	hat the number on the tick	et will consists of all differe	ent digits, is
	a) $\frac{5040}{1000}$	b) $\frac{5000}{1000}$	$() \frac{5030}{5030}$	d) None of these
	9999	9999	9999	
240	. The probability of choosi	ng randomly a number <i>c</i> fr	om the set {1, 2, 3,,9} suc	ch that the quadratic
	equation $x^2 + 4x + c = 0$	has real roots is	0	
	a) $\frac{1}{2}$	b) $\frac{2}{2}$	c) $\frac{3}{2}$	d) $\frac{4}{2}$
0.4.1	⁵ 9	· 9		· 9
241	If A and B are two indepe	ndent events, then the pro	bability that only one of A a	and B occur is
	a) $P(A) + P(B) - 2P(A)$			
	$D(A) + P(B) - P(A \cap A)$	5)		
	C) P(A) + P(B)			
0.40	a) None of these			
242	Let $0 < P(A) < 1, 0 < P(A)$	$B < 1$ and $P(A \cap B) = P(A \cap B)$	A) + $P(B) - P(A)P(B)$, the	en an
	a) $P(B A) = P(B) - P(A)$		b) $P(A^c \cup B^c) = P(A^c) +$	$P(B^{\circ})$
0.40	c) $P(A \cup B)^c = P(A^c)P(B)$		(a) $P(A B) = P(A) + P(B)$	~)
243	The probability distributi	on of a random variable X	is given as	
	X 0			
	54321			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	Then, the value of <i>P</i> is			
	、1			
	a) $\frac{1}{72}$			
	ы ³			
	73			
	c) <u>5</u>			
	72			
	d) $\frac{1}{74}$			
	74			

244. In a college 25% boys and 10% girls offer Mathematics. There are 60% girls in the college. If a Mathematics student is chosen at random, then the probability that the student is a girl, will be

	a) $\frac{1}{-}$	b) $\frac{3}{-}$	c) 5	d) -		
245	6 A biased coin with probab	$^{\circ}$ 8 ility n 0 < n < 1 of heads	8 is tossed until a head annea	6 ors for the first time. If the		
273	probability that the numb	er of tossed required is eve	en is			
	$\frac{2}{5}$, then p equals					
	a) $\frac{1}{3}$	b) $\frac{2}{3}$	c) $\frac{2}{5}$	d) $\frac{3}{5}$		
246	For any two independent	events E_1 and E_2 , $P\{(E_1 \cup P_1) \in \mathbb{R} \}$	$(\overline{E}_2) \cap (\overline{E}_1) \cap (\overline{E}_2)$ is			
247	a) $\leq 1/4$	DJ > 1/4	$CJ \ge 1/2$	d) None of these $\frac{1}{2}$ and the		
217	A and b are the independe	int events. The probability		ously is $\frac{-}{6}$ and the		
	probability that neither oc	ccur is $\frac{-}{3}$. The probability of	occurrence of the events A	and B is		
	a) $\frac{1}{2}, \frac{3}{2}$	b) $\frac{1}{2}, \frac{1}{3}$	c) Not possible	d) None of these		
248	If in a distribution each <i>x</i> i when the probability of ge	is replaced by correspondi etting x_i is p_i , is	ng value of $f(x)$, then the p	robability of getting $f(x_i)$		
	a) <i>p_i</i>	b) $f(p_i)$	c) $f\left(\frac{1}{n}\right)$	d) None of these		
249	The distribution of a rando	om variable X is given belo	W W			
	X -2 -1 0	1 2 3				
	$\left P(X) \right \frac{1}{10} \left k \right \frac{1}{r}$	$2k \frac{3}{10} k$				
	The value of k is					
	a) $\frac{1}{1}$	b) $\frac{2}{1}$	c) $\frac{3}{11}$	d) $\frac{7}{1}$		
250	10 The probability that a mar	10 1 can hit a target is 3/4. He	10 tries 5 times The probabil	⁻ 10 ity that he will hit the		
250	target at least three times	is	the probabil	ity that he will he the		
	a) 291/364	b) 371/464	c) 471/502	d) 459/512		
251	Two cards are drawn from	n a well shuffled deck of 52	cards. The probability that	one is red card and the		
	other is a queen is $1/51$	h) 1(/221	\sim) $\Gamma_0/(c)$	d) None of these		
252	a) $4/51$	D = 1 then D = 0	CJ 50/003	a) None of these		
202	II 4P(A) = 6P(B) = 10P(A)	$A \cap B = 1$, then $P\left(\frac{-}{A}\right)$ is eq	qual to	10		
	a) $\frac{2}{5}$	b) $\frac{3}{5}$	c) $\frac{7}{10}$	d) $\frac{19}{60}$		
253	In a binomial distribution,	the mean is 4 and varianc	e is 3. Then, its mode is	00		
	a) 5	b) 6	c) 4	d) None of these		
254	If two events A and B are s	such that $P(A^c) = 0.3, P(B)$	$= 0.4 \text{ and } P(A \cap B^c) = 0.4$	5, then $P\left[\frac{B}{(A \cup B^{c})}\right]$ is equal		
	to					
	a) $\frac{1}{-}$	b) $\frac{1}{-}$	c) $\frac{1}{-}$	d) None of these		
255	2 A and B play a game when	² 3 re each is asked to select a i	⁷ 4 number from 1 to 25. If the	two numbers match both		
200	of them win a prize. The probability that they will not win a prize in a single trial is					
	a $\frac{1}{2}$	h) $\frac{24}{-}$	$() \frac{2}{2}$	d) None of these		
254	[~] 25	⁷ 25	²⁵ 25	norum The probability that		
256	A DOX CONTAINS 100 DUIDS (out of which 10 are defecti	ve. A sample of 5 builds is d	rawn. The probability that		
	$(1)^5$	$(1)^{5}$	$(9)^{5}$. 9		
	a) $\left(\frac{10}{10}\right)$	$DJ\left(\frac{1}{2}\right)$	$c_{J}\left(\frac{1}{10}\right)$	$a_{j}\frac{10}{10}$		
257	A random variable X can a	ttain only the value 1, 2, 3,	4.5 with respective proba	bilities k. 2k. 3k. 2k. k. If m		

is the mean of the probability distribution, then (k, m) is equal to

a) $\left(3,\frac{1}{9}\right)$	b) $\left(\frac{1}{9},3\right)$	c) $\left(\frac{1}{8}, 4\right)$	d) (1,3)
258. A complete cycle of a traf red for 30 s. At a random	fic light takes 60 s. During e ly chosen time, the probabi	each cycle the light is green lity that the light will not be	for 25 s, yellow for 5 s and e green, is
a) $\frac{1}{3}$	b) $\frac{1}{4}$	c) $\frac{4}{17}$	d) $\frac{7}{12}$
259. From a group of 8 boys a	nd 3 girls, a committee of 5	members to be formed. Fin	id the probability that 2
particular girls are includ	led in the committee		
a) <u>4</u>	b) $\frac{2}{}$	c) <u>6</u>	d) <u></u>
11 200 There are a latters and a	11	11	11
260. There are n letters and n	addressed envelopes, the p	probability that all the letter	rs are not kept in the right
1	1	1	
a) <u>n</u> !	b) $1 - \frac{1}{n!}$	c) $1 - \frac{1}{n}$	d) <i>n</i> !
261. The probability that the s	ame number appear on thr	owing three dice simultane	eously, is
a) 1/6	b) 1/36	c) 5/36	d) None of these
262. If $P(A) = P(B) = x$ and B	$P(A \cap B) = P(A' \cap B') = \frac{1}{3},$	then x is equal to	
a) $\frac{1}{2}$	b) $\frac{1}{4}$	c) $\frac{1}{2}$	d) $\frac{1}{\epsilon}$
263. One ticket is selected at r	andom from 50 tickets num	onbered 00.01.0249. Ther	1. the probability that the
sum of the digits on the s	elected ticket is 8, given that	at the product of these digit	s is zero equals
ي 1 آ	h ¹	ی 5	a ¹
$\frac{1}{14}$	0) <u>-</u> 7	$()\frac{1}{14}$	u) <u>50</u>
264. If <i>n</i> integers taken at rand	dom are multiplied togethe	r, then the probability that	the last digit of the product
is 1,3,7 or 9, is 2^{n}	4 ⁿ 0 ⁿ	4 M	
a) $\frac{Z^n}{\Gamma^n}$	b) $\frac{4^n - 2^n}{r^n}$	c) $\frac{4^n}{\Gamma^n}$	d) None of these
265 Among the workers in a f	5" actory only 30% receive bo	5" onus and among those recei	ving honus only 20% are
skilled. The probability th	nat a randomly selected wo	rker is skilled and is receivi	ing bonus is
a) 0.03	b) 0.02	c) 0.06	d) 0.015
266. A box contains 10 good a	rticles and 6 with defects, o	ne article is chosen at rand	om. What is the probability
that it is either good or ha	as a defect?		
$a) \frac{24}{2}$	b) $\frac{40}{}$	c) $\frac{49}{-}$	d) 1
64 267 A set set for direct	⁻⁵ 64	⁶⁴	
267. A coin and six faced die. I	soth unblased, are thrown s	simultaneously. The probab	onity of getting a nead on
	3	. 1	2
a) $\frac{1}{2}$	b) $\frac{3}{4}$	c) $\frac{1}{4}$	d) $\frac{-}{3}$
268. An anti-aircraft gun can t	ake a maximum of four sho	ts at any plane moving awa	y from it. The probabilities
of hitting the plane at the	1st, 2nd ,3rd and 4th shots	are 0.4, 0.3, 0.2 and 0.1 res	spectively. What is the
probability that at least o	ne shot hits the plane?		
a) 0.6976	b) 0.3024	c) 0.72	d) 0.6431
269. A coin is tossed three tim	es. The probability of gettir	ng head and tail alternative	ly, is
a) $\frac{1}{9}$	b) $\frac{1}{2}$	c) $\frac{1}{4}$	d) None of these
270. A bag contains 4 tickets r	umbered 1.2.3.4 and anoth	er bag contains 6 tickets nu	umbered 2.4.6.7.8.9. One
bag is chosen and a ticket	is drawn. The probability t	that the ticket bears the nu	mber 4 is
a) 1/48	b) 1/8	c) 5/24	d) None of these
271. Six coins are tossed simu	ltaneously. The probability	of getting at least 4 heads i	S
a) 11/64	b) 11/32	c) 15/44	d) 21/32
272. Two cards are drawn suc of the number of aces is	cessively with replacement	from a well shuffled deck of	of 52 cards, then the mean

	a) $\frac{1}{13}$	b) $\frac{3}{13}$	c) $\frac{2}{13}$	d) None of these
273.	Given two mutually excluse $\frac{63}{1}$	sive events <i>A</i> and <i>B</i> such th b) 0.8	at $P(A) = 0.45$ and $P(B) = \frac{63}{2}$	= 0.35, $P(A \cap B)$ is equal to d) 0
274.	There is an objective type not studied the topic on w correct answer, is	question with 4 answer ch hich the question has been	oices exactly one of which set. The probability that th	is correct. A student has he student guesses the
	a) $\frac{1}{2}$	b) $\frac{1}{4}$	c) $\frac{1}{8}$	d) None of these
275.	If E and F are two independence a) E and F^c are independence c) $P\left(\frac{E}{F}\right) + P\left(\frac{E^c}{F^c}\right) = 1$	ndent events such that 0 < ent	P(E) < 1 and $0 < P(F) <b) E^c and F^c are independentd) None of these$	1, then ent
276.	An integer is chosen at ran chosen is divisible by 6 or	ndom from first two hundr 8 is	ed numbers. Then, the prol	bability that the integer
	a) $\frac{1}{4}$	b) $\frac{2}{4}$	c) $\frac{3}{4}$	d) None of these
277.	The mean and variance of then $P(X = 1)$ is	a random variable <i>X</i> havin	g a binomial distribution a	re 4 and 2 respectively,
278.	a) $\frac{1}{32}$ One hundred identical coin	b) $\frac{1}{16}$ ns, each with probability <i>p</i>	c) $\frac{1}{8}$ of showing heads are tosse	d) $\frac{1}{4}$ ed once. If $0 and$
	the probability of head sho a) $\frac{1}{2}$	b) $\frac{51}{100}$	to that of head showing on c) $\frac{49}{421}$	51 coins, the value of <i>p</i> is d) None of these
279.	Z The probability of choosin	101 Ig a number divisible by 6 o	101 or 8 from among 1 to 90 is	
	a) $\frac{1}{6}$	b) $\frac{1}{90}$	c) $\frac{1}{30}$	d) $\frac{23}{90}$
280.	An urn contains 6 white an urn. The probability that t	nd 4 black balls. A fair die i he balls selected are white	s rolled and that number o is	f balls are chosen from the
281.	a) 1/5 In a certain population 10 probability that a person p equal to	b) 1/6 % of the people are rich, 59 picked at random from the	c) 1/7 % are famous and 3% are r population is either famou	d) 1/8 rich and famous. The is or rich but not both, is
282.	a) 0.07 Two aeroplanes I and II bo 0.3 and 0.2, respectively. T that the target is hit by the	b) 0.08 omb a target in succession. The second plane will bomb e second plane, is	c) 0.09 The probabilities of I and I o only if the first misses the	d) 0.12 Il scoring a hit correctly are e target. The probability
283.	a) 0.06 Box <i>A</i> contains 2 black and one is selected at random; drawn from the selected b	b) 0.14 d 3 red balls. While box <i>B</i> c and the probability of cho box, then the probability tha	c) 0.32 ontains 3 black and 4 red b osing box <i>A</i> is double that o at it has come from box <i>B</i> . is	d) 0.7 balls. Out of these two boxes of box <i>B</i> . If a red ball is s
	a) $\frac{21}{41}$	b) $\frac{10}{31}$	c) $\frac{12}{31}$	d) $\frac{13}{41}$
284.	A, B, C are any three event	ts. If $P(S)$ denotes the prob	ability of <i>S</i> happening, the	$n P(A \cap (B \cup C)) =$
	a) $P(A) + P(B) + P(C) -$ b) $P(A) + P(B) + P(C) -$ c) $P(A \cap B) + P(A \cap C) -$ d) $P(A) + P(B) + P(C)$	$P(A \cap B) - P(A \cap C)$ P(B)P(C) $P(A \cap B \cap C)$		
285.	The value of <i>C</i> for which <i>P</i> takes value 0, 1, 2, 3, 4 is	$P(X = k) = C k^2$ can serve	as the probability function	of a random variable X that

a) $\frac{1}{1}$	b) $\frac{1}{1}$	c) $\frac{1}{2}$	d) $\frac{1}{1}$
$^{\circ}$ 30 286 In tossing of a coin ($m \pm i$	10 $(m > n)$ times the proba	³ 3 bility of coming consecutiv	² 15 re heads at least <i>m</i> times is
n+2	m - n	m + n	mn
a) $\frac{1}{2^{m+1}}$	b) $\frac{1}{2^{m+n}}$	c) $\frac{1}{2^{m+n}}$	d) $\frac{1}{2^{m+n}}$
287. In $x = 33^n$, <i>n</i> is a positive	integral value, then what is	s the probability that <i>x</i> will	have 3 at its units place?
a) 1/3	b) 1/4	c) 1/5	d) 1/2
288. Two numbers are selected	d randomly from the set <i>S</i> =	= {1, 2, 3, 4, 5, 6} without re	placement one by one. The
probability that minimum	of the two numbers is less	than, 4 is	
a) 1/15	b) 14/15	c) 1/5	d) 4/5 -
289. A and B are two independ	lent event such that $P(A) =$	$=\frac{1}{5}, P(A \cup B) = \frac{1}{10}$. Then, P	(B) =
a) 3/8	b) 2/7	c) 7/9	d) None of these
290. In Q. 12 the probability th	at the mapping is a bijectio	n, is	
a) $\frac{1}{n}$	b) $\frac{1}{1}$	c) $\frac{(n-1)!}{n-1}$	d) $\frac{n!}{n-1}$
n^n 291 An unbiased coin is tossed	n ! 1 to get 2 points for turning	n^{n-1}	n^{n-1} or the tail. If three unbiased
coins are tossed simultan	eously, then the probability	y of getting a total of odd ni	imber of points
	1		3
$a_{j}\frac{1}{2}$	b) $\frac{-}{4}$	c) $\frac{1}{8}$	a) -
292. In a precision bombing at	tack there is a 50% chance	that any one bomb will str	ike the target. Two direct
hits are required to destro	by the target completely. The	ne minimum number of boi	nbs which should be
dropped to give a 99% ch	ance or better of completel	y destroying the target is	
a) 10	b) 11	c) 12	d) None of these
293. A coin is tossed n times the	ie probability of getting hea	ad at least once is greater th	han 0.8. Then the least
value of such n is	h) 3	c) <i>A</i>	d) 5
$\frac{294}{164}$ If $\frac{1}{164}$ $\frac{1}{164}$ $\frac{1}{164}$ are minded	DJJ	$(A) = \frac{1}{i} = 12$ m T	uj 5
$=$ H_1, H_2, \dots, H_n are n independent of the second	pendent events such that r	$(A_i) = \frac{1}{i+1}, i = 1, 2,, n.$	le probability that holle of
the <i>n</i> events occurs, is n	1	n	d) None of these
a) $\frac{1}{n+1}$	b) $\frac{1}{n+1}$	c) $\frac{1}{(n+1)(n+2)}$	uj none or these
295. A random variate <i>X</i> takes	the values 0, 1, 2, 3 and its	mean is 1.3. If $P(X = 3) =$	2P(X = 1) and
P(X = 2) = 0.3, then $P(X = 2)$	= 0) is equal to		
a) 0.1	b) 0.2	c) 0.3	d) 0.4
296. Three dice are thrown sin	nultaneously, then probabi	lity of throwing a total grea	iter than 4 is
a) $\frac{1}{1}$	b) $\frac{53}{-1}$	c) $\frac{5}{100}$	d) None of these
54	54 d 4 black balls. Two balls a	108 ro drawn at random Tho n	robability that they are of
the same colours is	u 4 black balls. I wo balls a	re urawn at ranuom. The p	Tobability that they are of
	. 2	<u></u> 4	. 7
a) <u>15</u>	b) _	c) $\frac{15}{15}$	d) $\frac{15}{15}$
298. A box contains 3 white an	d 2 red balls. If we draw or	e ball and without replacir	ng the first ball, the
probability of drawing red	d ball in the second draw is		
a) $\frac{8}{27}$	b) $\frac{2}{\pi}$	c) $\frac{3}{-}$	d) $\frac{21}{27}$
² 25 200 An unbiased coin is tessed	⁵ fixed number of times. If t	5	² 25
nrobability of getting 7 he	a fixed fullible of times. If the back then the probability of	f getting 2 heads is	lieaus equais tile
a) 55/2048	b) 1/1024	c) 3/4096	d) None of these
300. If $P(A \cap R) = \frac{1}{2} P(\bar{A} \cap \bar{R})$	$=\frac{1}{2}P(A) = n P(B) = 2 m$	then the value of <i>n</i> is give	n hv
$(1/2) = \frac{1}{2}$	$_{3}^{''}$ $_{3}^{''}$ $_{2}^{'''}$ $_{2}^{''}$ $_{2}^{''}$ $_{2}^{''}$ $_{2}^{''}$ $_{2$	c) 1/9	
aj 1/3 301 icitar e la latera de la companya de la company	UJ // IU	$y = \frac{x}{2}$	(X>15)
so in the probability density	function of a random varial	Due x is $f(x) = \frac{1}{2}$ in $0 \le x \le \frac{1}{2}$	$\frac{1}{2}$ 2, then $P\left(\frac{1}{X>1}\right)$ is equal

	to			
	a) $\frac{7}{16}$	b) $\frac{3}{4}$	c) $\frac{7}{12}$	d) $\frac{21}{64}$
302	. The probability that A ca	4 n solve a problem is 2/3 an	12 d <i>B</i> can solve it is 3/4. If bo	oth attempt the problem.
	what is the probability th	at the problem gets solved	?	r r r ,
	a) 11/12	b) 7/12	c) 5/12	d) 9/12
303	. Given $P(A \cup B) = 0.6, P(A \cup B)$	$(A \cap B) = 0.2$, the probabilit	ty of exactly one of the even	it occurs is
	a) 0.4	b) 0.2	c) 0.6	d) 0.8
304	. Fifteen coupons are num	bered 1 to 15. Seven coupo	ns are selected at random,	one at a time with
	replacement. The probab	$\frac{1}{\sqrt{9}}$	r^{7}	d) None of those
	a) $\left(\frac{1}{15}\right)$	b) $\left(\frac{8}{18}\right)$	c) $\left(\frac{3}{5}\right)$	u) None of these
305	. A dice is rolled three time	es. The probability of gettin	g a larger number than the	previous number each time
	is			•
	a) $\frac{15}{15}$	b) <u>5</u>	c) <u>13</u>	$d)$ $\frac{1}{}$
200	216	54	216 $P(x-k)$	18
306	\cdot If <i>X</i> has binomial distribution	ition with mean <i>np</i> and var	fiance <i>npq</i> , then $\frac{P(X=k)}{P(X=k-1)}$ is	equal to
	a) $\frac{n-k}{2} \frac{p}{2}$	$n-k+1 \frac{p}{2}$	$(n+1) \frac{n+1}{q}$	d) $\frac{n-1}{2} \frac{q}{2}$
	k - 1 q	b) k q	^c k p	k+1 p
307	. The probability distribut	ion of a random variable <i>X</i>	is given by	
	X = x : 0 1 2 P(X = x) : 0.4 0.2 0.1	3 4		
	$P(X = X): 0.4 \ 0.5 \ 0.1$ The variance of X is	0.1 0.1		
	a) 1.76	b) 2.45	c) 3.2	d) 4.8
308	. A bag contains four ticke	ts marked with numbers 11	12,121,211,222. One ticket	is drawn at random from
	the bag. Let E_i (<i>i</i> = 1,2,3)	denote the event that <i>i</i> th d	igit on the ticket is 2. Then,	which one of the following
	is incorrect?			
	a) E_1 and E_2 are independent	dent		
	b) E_2 and E_3 are independent	dent		
	c) E_3 and E_1 are independent of E_1 and E_2 and E_3 are independent of E_3 and E_4 are independent of E_3 are independent of E_3 and E_4 are independent of E_3 are independent of E_3 are independent of E_4 are independent of E_3 are independent of E_3 are independent of E_4 are independent of E	dent		
309	u) E_1, E_2, E_3 are independent	$\frac{3}{3}$	$(4 \circ R) \stackrel{1}{\longrightarrow} R(\bar{A}) \stackrel{2}{\longrightarrow} have$	$D(\bar{A} \circ D)$ is smaller
507	\cdot If A and B are two events	$P(A \cup B) = \frac{1}{4}, P$	$(A \cap B) = \frac{1}{4}, P(A) = \frac{1}{3}, \text{ then}$	$P(A \cap B)$ is equal to
	a) $\frac{5}{12}$	b) $\frac{3}{8}$	c) $\frac{5}{6}$	d) $\frac{1}{2}$
310	. Let S be a set containing	<i>n</i> elements. Two subsets <i>A</i>	and <i>B</i> os <i>S</i> are chosen at ra	ndom. The probability that
	$A \cup B = S$ is			r i j
	$2^{2n}C_n$	$h^{(3)}$	c) <u>1</u>	d) None of these
	$\frac{2^{2n}}{2^{2n}}$	$\left(\frac{1}{4}\right)$	$C \int \frac{1}{2nC_n}$	
311	. A rod of length 10 cm is b	proken into three parts, so t	hat each part is having a le	ngth as an integral multiple
	of 1 cm,. The probability	that the parts are forming a	a triangle, is	1) 1 / 2
212	a) 1/4	DJ 1/2	CJ 3/4	$a_{J}1/3$
512	• The probability that a con	mpany executive will travel	I by train is $\frac{1}{3}$ and that he will	$\frac{1111}{5}$ The $\frac{1111}{5}$
	probability of his journey	<i>i</i> by train or plane is	15	15
	a) $\frac{2}{15}$	b) $\frac{15}{15}$	c) $\frac{15}{12}$	d) $\frac{15}{2}$
313	. A three digit number, wh	ich is a multiple of 11, is ch	osen at random. Probabilit	v that the number so chosen
	is also a multiple of 9, is e	equal to		,
	a) $\frac{1}{-}$	$b)\frac{2}{-}$	c) $\frac{1}{1}$	d) <u> </u>
.	^w 9	⁹ 9	⁵ 100	⁴ , 100
314	. Four positive integers are	e taken at random and are 1	multiplied together. Then t	he probability that the

	product ends in an odd dig	git other than 5, is		
	a) 609/625	b) 16/625	c) 2/5	d) 3/5
315	. A pair of fair dice is throw	n independently 4 times. T	he probability of getting a	sum of exactly 7 twice is
	a) $\frac{3}{81}$	b) $\frac{23}{243}$	c) $\frac{25}{216}$	d) $\frac{123}{648}$
316	. Five horses are in a race. N	Mr. A selects two of the hor	rses at random and bets on	them. The probability that
	Mr. <i>A</i> selected the winning	g horse, is	1	0
	a) $\frac{4}{5}$	b) $\frac{3}{5}$	c) $\frac{1}{5}$	d) $\frac{2}{5}$
317	. A number <i>n</i> is chosen at ra	andom from $S = \{1, 2, 3,$, 50}.	
	$\operatorname{Let} A = \left\{ n \in S \colon n + \frac{50}{n} > 2 \right\}$	$27 \bigg\}, B = \{n \in S: n \text{ is a prim} \}$	ne} and	
	$C = \{n \in S : n \text{ is a square}\}.$	Then, correct order of the	ir probabilities is	
	a) $P(A) < P(B) < P(C)$	b) $P(A) > P(B) > P(C)$	c) $P(B) < P(A) < P(C)$	d) $P(A) > P(C) > P(B)$
318	A bag contains 5 white and probability that they are a	d 3 black balls and 4 balls a liternately of different colo	are successively drawn out urs, is	and not replaced. The
	a) $\frac{1}{100}$	b) $\frac{2}{\pi}$	c) $\frac{1}{\pi}$	d) $\frac{13}{56}$
210	196 Three numbers are chosed	n at random from 1 to 20 1	/ The probability that they ar	56
319	1	1		5
	a) $\frac{190}{190}$	b) $\frac{120}{120}$	c) $\frac{1}{190}$	d) $\frac{1}{190}$
320	. Out of 40 consecutive natu	ural numbers, two are chos	en at random. Probability	that the sum of the
	numbers is odd, is			
	a) $\frac{14}{}$	b) $\frac{20}{$	c) $\frac{1}{-}$	d) None of these
221	29 A norrow muta three courds	39	$\frac{1}{2}$	a with three different
321	addresses without looking	g. What is the probability th	nat the cards go into their r	espective envelopes?
	a) $\frac{2}{3}$	b) $\frac{1}{6}$	c) $\frac{1}{5}$	d) $\frac{2}{5}$
322	• The probability that A spe	eaks truth is $\frac{4}{5}$ while this properties of the second seco	obability for B is $\frac{3}{4}$. The pro	bability that they
	contradict each other whe	en asked to speak on a fact,	is 7	4
	a) $\frac{3}{20}$	b) $\frac{1}{5}$	c) $\frac{7}{20}$	d) $\frac{4}{5}$
323	. A box contains 100 tickets	s numbered 1,2, ,100. Tw	o tickets are choosen at rai	ndom. It is given that the
	maximum number on the number is 5 is	two choosen tickets is not	more than 10. The probabi	lity that the minimum
	a) 13/15	b) 1/330	c) 1/3	d) 1/9
324	. Three identical dice are ro	olled. The probability that t	he same number will appe	ar on each of them, is
	a) 1/6	b) 1/36	c) 1/18	d) 3/28
325	. For $k = 1,2,3$ the box B_k c	ontains k red balls and $(k$	+ 1)	
	white balls, Let $P(B_1) = \frac{1}{2}$	$P(B_2) = \frac{1}{3} \text{ and } P(B_3) = \frac{1}{6}$		
	A box is selected at random	m and a ball is drawn from	it. If a red ball is drawn, th	en the probability that it
	has come from box B_2 , is			
	a) $\frac{35}{78}$	b) $\frac{14}{39}$	c) $\frac{10}{13}$	d) $\frac{12}{13}$
326	. Two persons each makes	a single throw with a pair of	of dice. The probability that	t the throws are unequal is
	given by	C I	1 2	•
	a) 1/6 ³	b) 73/6 ³	c) 51/6 ³	d) None of these
327	. Two cards are drawn at ra	andom from a pack of 52 ca	ards. The probability of get	ting at least a spade and an
	ace is			
	a) 1/34	b) 8/221	c) 1/26	d) 2/51

328	A bag contain 5 black ball	ls, 4 white balls and 3 red b	alls. If a ball is selected ran	domly, the probability that
	it is a black or red ball, is	1244		1) 0 /0
220	a) 1/3	b) 1/4	c) 5/12	d) 2/3
329	. Of a total of 600 bolts, 20	% are too large and 10% at	re too small. The remainder	are considered to be
	suitable. If a bolt is select	ed at random, the probabili	ity that it will be suitable is	2
	a) $\frac{1}{r}$	b) $\frac{7}{10}$	c) $\frac{1}{10}$	d) $\frac{3}{10}$
330	J Probability that a student	10 t will succeed in LLT entra	10 nce test is 0.2 and that he w	10 vill succeed in Roorkee
550	entrance test is 0.5 If the	nrobability that he will such	cossful at both the places is	x 0.3 then the probability
	that he does not succeed	at both the places is	ceessial at both the places is	5 0.5, then the probability
	a) 0.4	h) 0.3	c) 0.2	d) 0.6
331	If A and B each toss three	coins. The probability that	t both get the same number	of heads is
001	1	3	5	. 3
	a) $\frac{1}{9}$	b) $\frac{16}{16}$	c) $\frac{16}{16}$	d) $\frac{1}{8}$
332	. An unbiased die is tossed	until a number greater tha	in 4 appears. The probabilit	ty that an even number of
	tosses needed, is			
	$\frac{1}{2}$	h^2	$(1)\frac{1}{2}$	$d)$ $\frac{2}{}$
	$\frac{1}{2}$	<u>5</u>	$\frac{5}{5}$	$\frac{1}{3}$
333	. One Indian and four Ame	rican men and their wifes a	are to be seated randomly a	round a circular table. Then
	the conditional probabili	ty that the Indian man is se	ated adjacent to his wife giv	ven that each American
	man is seated adjacent to	his wife, is	0	4
	a) $\frac{1}{2}$	b) $\frac{1}{2}$	c) $\frac{2}{\pi}$	d) $\frac{1}{z}$
224	² An alminah atawa E blaak	3 r and 4 white goals wall mi	5 vod A how pull out 2 godra	5 at random The probability
334	that 2 are of the same col	and 4 white socks well hill	xeu. A boy puil out 2 socks a	at random. The probability
	$\frac{1}{2}$ $\frac{1}$	b) E /Q	c) E /0	d) 7/12
22E	d) 4/9 A pack of plying cards we	UJ 5/0	CJ J/9 cords If the first 12 cords u	uj //12 which are examined are all
333	rod thon the probability	that the missing cards is he	calus. Il ule ili st 15 calus v	villen alle examined alle all
	1	2	1	25 <i>C</i>
	a) $\frac{1}{2}$	b) $\frac{2}{2}$	c) $\frac{1}{2}$	d) $\frac{c_{13}}{51C}$
336	J In order to get at least on	o ce a head with probability	2	$2 - C_{13}$
330		b) A	≥ 0.9 , the number of times	d) None of these
337	a) J Three letters are written	to there different persons ?	cj J and addresses on the three	anvelones are also written
557	Without looking at the ad	Idresses the letters are ker	and addresses on the three	robability that all the
	letters are not placed into	their right envelopes is	the menese envelopes. The p	Tobability that all the
	. 1	1	. 1	5
	a) $\frac{-}{2}$	b) $\frac{-}{3}$	c) $\frac{-}{6}$	d) $\frac{1}{6}$
338	Suppose $f(x) = x^3 + ax^2$	$a^2 + bx + c$, where a, b, c are	e chosen respectively by thr	owing a dice three times.
	Then, the probability that	t $f(x)$ is an increasing function	tion, is	0
	4	3	2	J) 16
	$a_{\frac{1}{9}}$	b) 8	$\frac{c}{5}$	$\frac{1}{34}$
339	A sample of a 4 times is d	rawn at a random without	replacement from a lot of 1	0 items containing 3
	defectives. If <i>x</i> denotes the	ne number of defective item	is in the sample, then $P(0 < $	x < 3)is equal to
	a) $\frac{3}{3}$	$h)\frac{4}{-}$	$(1) \frac{1}{2}$	$d)\frac{1}{d}$
	10	5	2	6
340	The mean and variance o	t a random variable X havii	ng a binomial distribution a	re 4 and 2 respectively.
	Then, $P(X > 6)$ is equal t	0	0	7
	a) $\frac{1}{2\Gamma(c)}$	b) $\frac{s}{2\Gamma c}$	c) $\frac{9}{256}$	d) $\frac{7}{2\Gamma c}$
341	200 An integer is chosen at ra	200 Indom from first two hundr	200 ed digits Then the probab	200 ility that the integer chosen

341. An integer is chosen at random from first two hundred digits. Then, the probability that the integer chosen is divisible by 6 or 8, is

	a) $\frac{1}{4}$	b) $\frac{2}{4}$	c) $\frac{3}{4}$	d) None of these	
342.	For a random variable <i>X</i> , <i>I</i>	$E(X) = 3$ and $E(X^2) = 11.7$	Then, variable of <i>X</i> is		
	a) 8	b) 5	c) 2	d) 1	
343.	A coin is tossed <i>n</i> times. T value of <i>n</i> is	he probability of getting he	ad at least once is greater	than 0.8, then the least	
	a) 2	b) 3	c) 5	d) 4	
344.	If any four numbers are se or 7, is	elected and they are multipl	lied, then the probability tl	nat the last digit will 1,3,5	
	a) 4/625	b) 18/625	c) 16/625	d) None of these	
345.	If A and B are two indepe	ndent events such that $P(A)$	$\cap B') = \frac{3}{25}$ and $P(A' \cap B) =$	$=\frac{8}{25}$, then $P(A)$ is equal to	
	a) ¹	b ³	2 ²³	23 4	
	a) <u>-</u> 5	<u> 8</u>	5	u) <u>-</u>	
346.	If, $x \in [0,5]$, then what is t	the probability that $x^2 - 3x$	$x + 2 \ge 0?$		
o .	a) 4/5	b) 1/5	c) 2/5	d) None of these	
347.	Three coins are tossed tog	gether, then the probability	of getting at least one head	l is 7	
	a) $\frac{1}{2}$	b) $\frac{3}{4}$	c) $\frac{1}{9}$	d) $\frac{7}{8}$	
348.	A random variable X follo	ws binomial distribution w	ith mean α and variance β	.Then	
	a) 0 < α < β	b) $0 < \beta < \alpha$	c) $\alpha < 0 < \beta$	d) $\beta < 0 < \alpha$	
349.	Probability of getting posi	itive integral roots of the eq	uation $x^2 - n = 0$ for the	integer $n, 1 \le n \le 40$ is	
	$\frac{1}{2}$	$h)\frac{1}{2}$	$c)\frac{3}{3}$	$d)\frac{1}{d}$	
	⁴ 5	10	20	20	
350.	The probability that the th	nree cards drawn from a pa	ck of 52 cards, are all blac	k, is	
	a) $\frac{1}{17}$	b) $\frac{2}{17}$	c) $\frac{3}{17}$	d) $\frac{2}{10}$	
351.	Three six faced dice are to	ossed together, then the pro	bability that exactly two o	f the three numbers are	
	equal is				
	a) 165/216	b) 177/216	c) 51/216	d) 90/216	
352.	If A and B are two independent	ndent events such that $P(B)$	$P = \frac{2}{7}, P(A \cup B^c) = 0.8$, the	en $P(A)$ is equal to	
	a) 0.1	b) 0.2	c) 0.3	d) 0.4	
353.	An experiment yields 3 r	nutually exclusive and exh	austive events A, B, C. If P	(A) = 2P(B) = 3P(C), then	
	P(A) is equal to				
	$a) \frac{1}{2}$	$b)\frac{2}{2}$	c) $\frac{3}{-1}$	d) $\frac{6}{}$	
254	11 A random variable V take	11	¹ 11	11	
354.	A ranuom variable x take	s values 0, 1, 2, 3, with pro	boadinty		
	$P(X=x) = k(x+1)\left(\frac{1}{5}\right)$, where <i>k</i> is constant, then	P(X=0) is		
	a) 7	b) $\frac{18}{-1}$	c) $\frac{13}{1}$	d) $\frac{16}{16}$	
255	25	25	25	25	
355.	355. If A and B are two events such that $P(A \cup B) = \frac{3}{6}$,				
	$P(A \cap B) = \frac{1}{3}$ and $P(\overline{B}) =$	$\frac{1}{3}$, then the value of $P(A)$ is	1	2	
	a) $\frac{1}{3}$	b) $\frac{1}{4}$	c) $\frac{1}{2}$	d) $\frac{2}{3}$	
356.	In a bag there are three ti	ckets numbered 1,2,3. A ticl	ket is drawn at random and	d put back, and this is done	
	four times. The probabilit	y that the sum of the number	ers is even, is	<u>r</u> ,	
	a) 41/81	b) 39/81	c) 40/81	d) None of these	
357.	A box contains 24 identica	al balls of which 12 are whit	te and 12 are black. The ba	lls are drawn at random	
	from the box one at a time the 7th draw, is	e with replacement. The pro	bability that a white ball is	s drawn for the 4th time on	

a) <u>5</u>	b) $\frac{27}{32}$	c) $\frac{5}{32}$	d) $\frac{1}{2}$		
358. Out of 15 persons 10 can the probability that one p	speak Hindi and 8 can spe person speaks Hindi only a	ak English. If two persons a nd the other speaks both Hi	re chosen at random, then indi and English is		
a) $\frac{3}{5}$	b) $\frac{7}{12}$	c) $\frac{1}{5}$	d) $\frac{2}{5}$		
359. A purse contains 4 copper taken out from any purse	er and 3 silver coins. Anothe e, the probability that it is a	er purse contains 6 copper silver coin, is	and 2 silver coins. A coin is		
a) $\frac{37}{56}$	b) $\frac{19}{56}$	c) $\frac{4}{7}$	d) $\frac{2}{3}$		
360. Two dice are thrown tog	ether. If the numbers appea is 6?	aring on the two dice are di	fferent, then what is the		
a) <u></u>	b) $\frac{1}{-}$	c) $\frac{2}{$	d) None of these		
³ 36 361. If <i>A</i> and <i>B</i> are events of a	6 1 random experiment such 1	f 15 that $P(A \cup B) = \frac{4}{2} P(\overline{A} \cup \overline{B})$	$=\frac{7}{2}$ and $P(B) = \frac{2}{2}$		
then <i>P</i> (<i>A</i>) equals	· · · · · · · · · · · · · · · · · · ·	5,1 (1102) 5,1 (1102	10 10 5'		
a) $\frac{9}{10}$	b) $\frac{8}{10}$	c) $\frac{7}{10}$	d) $\frac{3}{r}$		
362. Two cards are drawn on	e by one from a pack of car	ds. The probability of gettin	ig first card an ace and		
second a coloured one is	(before drawing second ca	ard first card is not placed a	gain in the pack)		
363. 4 five-rupee coins, 3 two	-rupee coins and 2 one-rup	bee coins are stacked togeth	ler in a column at random.		
The probability that the	coins of the same denomina	ator are consecutive is			
a) 13/9! 364. If two squares are chosen	b) 1/210 n at random on a chess boa	c) 1/35 rd, the probability that they	d) None of these have a side in common is		
a) 1/9	b) 1/18	c) 2/7	d) None of these		
365. In an entrance test there are multiple choice questions. There are four possible answers to each question of which one is correct. The probability that a student knows the answer to a question is 90%. If					
be gets the correct answ	er to a question, then the pr	robability that he was guess	sing, is		
a) $\frac{37}{40}$	b) $\frac{1}{37}$	c) $\frac{36}{37}$	d) $\frac{1}{9}$		
366. If <i>A</i> and <i>B</i> are any two ev	vents, then $P(A \cap B')$ is equ	ial to	5		
a) $P(A) + P(B')$ 267 Two dias are relied on a	b) $P(A)P(B)$	c) $P(B) - P(A \cap B)$	d) $P(A) - P(A \cap B)$		
number on the second is	alter the other. The probab	inty that the number on the	inst is smaller than the		
a) $\frac{1}{2}$	b) $\frac{3}{4}$	c) $\frac{7}{10}$	d) $\frac{5}{12}$		
2 368. A fair coin is tossed repe	4 atedly. If the tail appears of	n first four tosses, then the	12 probability of the head		
appearing on the fifth to	ss, equals	21	1		
a) $\frac{1}{2}$	b) $\frac{1}{32}$	c) $\frac{31}{32}$	d) $\frac{1}{5}$		
369. A bag contains $(2 n + 1)$	coins. It is known that <i>n</i> of	these coins have a head on	both sides, whereas the		
remaining $n + 1$ coins ar	e fair. A coin is picked up a head is 31/42 then <i>n</i> is equ	t random from the bag and	tossed. If the probability		
a) 10	b) 11	c) 12	d) 13		
370. The mode of the binomia	l distribution for which me	ean and standard deviation	are 10 and $\sqrt{5}$ respectively,		
is a) 7	b) 8	c) 9	d) 10		
371. The mean and standard of	deviation of a binomial vari	iate X are 4 and $\sqrt{3}$ respect	ively. Then, $P(X \ge 1)$ is		
equal to		1			

a)
$$1 - \left(\frac{2}{3}\right)^{16}$$
 b) $1 - \left(\frac{2}{3}\right)^{16}$ c) $1 - \left(\frac{2}{3}\right)^{16}$ d) $1 - \left(\frac{1}{3}\right)^{16}$
372. A box contains 15 transistors, 5 of which are defective. An inspector takes out one transistor at random, examines it for defects and replaces it. After it has replaced another inspector does the same thing and then so does a third inspector. The probability that atleast one of the inspectors finds a defective transistor, is equal to
a) $1/27$ b) $8/27$ c) $19/27$ d) $26/27$
373. The records of a hospital show that 10% of the cases of a certain disease are fatal. If 6 patients are suffering from the disease, then the probability that only three will die, is
a) 8748×10^{-5} b) 1458×10^{-5} c) 1458×10^{-6} d) 41×10^{-6}
374. The probability that at least one of the events *A* and *B* occurs is 0.6. If *A* and *B* occur simultaneously with probability 0.2, then $P(A) + P(B)$ is
a) 0.4 b) 0.8 c) 1.2 d) 1.4
375. The probability that in the toss of two dice, we obtain the sum 7 or 11, is
a) $\frac{1}{6}$ b) $\frac{1}{18}$ c) $\frac{2}{9}$ d) $\frac{23}{108}$
376. If $a \in [-20.0]$, then the probability that the graph of the function $y = 16 x^2 + 8(a + 5)x - 7 a - 5$ is strictly above the *x*-axis is
a) $1/2$ b) $1/17$ c) $17/20$ d) None of these
377. There are 5 duplicate and 10 original items in an automobile shop and 3 items are brought at random by a customer. The probability that none of the items is duplicate, is
a) $2/9/1$ b) $22/91$ c) $24/91$ d) $89/91$
378. There are four machines and it is known that exactly two of them are faulty. They are tested, one by one in a random order till both the faulty machines are identified. Then, the probability that only two tests are needed, is
a) $\frac{1}{3}$ b) $\frac{1}{6}$ c) $\frac{1}{2}$ c) $\frac{1}{2}$ d) $\frac{1}{4}$
379. A bag contains 50 tickets numbered 1,2,3, ..., 50 of which five are drawn at random and arranged in ascending order of magnitude $(x_1 < x_2 < x_3 < x_4 < x_5)$. The probability that $x_3 = 30$, is
a) $\frac{2^{5}}{8G_{5}}$ b) $\frac{2^{5}}{$

both 2 and 3, is

a)
$$\frac{4}{105}$$
 b) $\frac{4}{33}$ c) $\frac{4}{35}$ d) $\frac{4}{115}$
366. The probability that in a family of 5 members, exactly 2 members have birthday on sunday, is
a) $\frac{12 \times 5^2}{75}$ b) $\frac{10 \times 6^2}{75^2}$ c) $\frac{2}{5}$ d) $\frac{10 \times 6^2}{75}$
377. If the mean and standard deviation of a binomial distribution are 12 and 2 respectively, then value of its
parameter *p* is
a) $1/2$ b) $1/3$ c) $2/3$ d) $1/4$
378. If the mean and standard deviation of a binomial distribution are 12 and 2 respectively, then value of its
parameter *p* is
a) $\frac{1}{256}$ b) $\frac{1}{270725}$ c) $\frac{2197}{20825}$ d) None of these
378. The probability of India winning a test match against West-Indies is $\frac{1}{2}$ assuming
independence from match to match the probability that in a match series India's second win occurs at the
third test, is
a) $\frac{1}{8}$ b) $\frac{1}{4}$ c) $\frac{1}{2}$ d) $\frac{2}{3}$
379. If n positive integers are taken at random and multiplied together, the probability that the last digit of the
product $82, 4, 6$ or $8, 15$
a) $\frac{4^{4+27}}{5^{4}}$ b) $\frac{4^{4+27}}{5^{5}}$ c) $\frac{4^{4-27}}{5^{5}}$ d) None of these
371. A bag contains 5 white and 3 black balls and 4 balls are successively drawn out and not replaced. The
probability that they are alternately of different colours, is
a) $\frac{1}{106}$ b) $\frac{2}{7}$ c) $\frac{13}{56}$ d) $\frac{1}{7}$
379. If X follows a binomial distribution with parameters $n = 100$ and $P = \frac{1}{3}$ then $P(X = r)$ is maximum when
 r is equal to
a) $1/16$ b) 32 c) 33 d) None of these
374. A carton contains 5 which are defective, is
a) $1/16$ b) 34 c) $1/4$ d) $(\frac{1}{4} + \frac{3}{4})^{12}$ c) $(\frac{1}{4} + \frac{3}{4})^{12}$ d) $(\frac{2}{4} + \frac{3}{4})^{2}$
375. In a binomial distribution, mean is 3 and standard deviation is
a) $(\frac{2}{4} + \frac{1}{4})^{12}$ b) $(\frac{1}{4} + \frac{3}{4})^{12}$ c) $(\frac{1}{4} + \frac{3}{4})^{3}$ d) $1/24$
375. In a dimensial distribution, mean is 3 and standard deviation is
a) $(\frac{2}{4} + \frac{1}{4})^{7}$ b) $(\frac{1}{4} + \frac{3}{4})^{12}$ c) $(\frac{2}{4} + \frac{3}{4})^{3}$ d) $(\frac{2}{4} + \frac{1}{4})^{7$

401. If $\frac{1+4p}{p}$, $\frac{1-p}{4}$, $\frac{1-2p}{2}$ are probabilities of three mutually exclusive events, then a) $\frac{1}{3} \le p \le \frac{1}{2}$ b) $\frac{1}{2} \le p \le \frac{2}{3}$ c) $\frac{1}{6} \le p \le \frac{1}{2}$ d) None of these
a) $\frac{1}{3} \le p \le \frac{1}{2}$ b) $\frac{1}{2} \le p \le \frac{2}{3}$ c) $\frac{1}{6} \le p \le \frac{1}{2}$ d) None of these
402. A wire of length <i>l</i> is cut into three pieces. What is the probability that the three pieces from a triangle?a) 1/2b) 1/4c) 2/3d) None of these
403. A die has four blank faces and two faces marked 3. The change of getting a total of 12 in 5 throws is
a) ${}^{5}C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)$ b) ${}^{5}C_{4}\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{4}$ c) ${}^{5}C_{4}\left(\frac{1}{6}\right)^{5}$ d) ${}^{5}C_{4}\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)$
404. Twenty five coins are tossed simultaneously. The probability that the fifth coin will fall with head upward
is for the second s
a) $\frac{5}{25}$ b) $\frac{5}{225}$ c) $\frac{1}{2}$ d) None of these
405. Which one of the following is not correct?
a) The probability that in a family of 4 children, there will be at least one boy, is $\frac{15}{15}$
Two cards are drawn with replacement from a well shuffled pack. The probability of drawing both aces b) is $\frac{1}{169}$
c) The probability guessing at least 8 out 10 answers in a true false examination, is $\frac{7}{64}$
d) A coin is tossed three times. The probability of getting exactly two heads, is $\frac{3}{2}$
406. A parents has two children. If one of them is boy, then the probability that other is, also a boy, is
a) $\frac{1}{2}$ b) $\frac{1}{2}$ c) $\frac{1}{2}$ d) None of these
2 4 3 4 3 4 3 4 3 4 3 4 3 4 3 7 20 and 0.15 respectively.
The probability that he will receive at least <i>C</i> grade, is
a) 0.65 b) 0.85 c) 0.80 d) 0.20
408. An ordinary cube has four blank faces, one face marked 2 and another marked 3. Then the probability of
obtaining 9 in 5 throws, is
a) $\frac{31}{1}$ b) $\frac{5}{1}$ c) $\frac{5}{1}$ d) $\frac{5}{1}$
⁽¹⁾ 7776 ⁽¹⁾ 2592 ⁽¹⁾ 1944 ⁽¹⁾ 1296
409. For a party 8 guests are invited by a husband and his wife. They sit for a dinner around a round table. The
probability that the husband and his wife sit together, is
a) $\frac{2}{7}$ b) $\frac{2}{9}$ c) $\frac{1}{9}$ d) $\frac{1}{9}$
410. If A and B are two independent events, then A and \overline{B} are
a) Not independent b) Also independent c) Mutually exclusive d) None of these
411. Three mangoes and three apples are kept in a box. If two fruits are selected at random from the box, the
probability that the selection will contain one mango and one apple, is
a) $\frac{3}{2}$ b) $\frac{5}{2}$ c) $\frac{1}{24}$ d) None of these
5 6 36 412 In an assembly of 4 persons the probability that at least 2 of them have the same birthday is
$a_1 = 0.293$ b) 0.24 c) 0.0001 d) 0.016
413 Four persons are chosen at random from a group of 3 men 2 women and 4 children. The chance that
exactly 2 of them are children, is
$a)\frac{10}{11}$ $b)\frac{11}{11}$ $c)\frac{13}{13}$ $d)^{21}$
$a_{j}\frac{1}{21}$ $b_{j}\frac{1}{13}$ $b_{j}\frac{1}{25}$ $a_{j}\frac{1}{32}$
414. Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is
a) $\frac{14}{20}$ b) $\frac{16}{20}$ c) $\frac{15}{20}$ d) $\frac{10}{20}$
415. An unbiased die with faces marked 1. 2. 3. 4. 5 and 6 is rolled four times. Out of four face values obtained.

the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5, is

a)
$$\frac{16}{81}$$
 b) $\frac{1}{81}$ c) $\frac{80}{81}$ d) $\frac{65}{81}$

416. A dice is thrown 5 times, then the probability that an even number will come up exactly 3 times, is

a)
$$\frac{5}{16}$$
 b) $\frac{1}{2}$ c) $\frac{3}{16}$ d) $\frac{3}{2}$

417. Among 15 players, 8 are batsman and 7 are bowlers. The probability that a team is chosen of 6 batsman and 5 bowlers, is

a)
$$\frac{{}^{8}C_{6} \times {}^{7}C_{5}}{{}^{15}C_{11}}$$
 b) $\frac{{}^{8}C_{6} + {}^{7}C_{5}}{{}^{15}C_{11}}$ c) $\frac{15}{28}$ d) None of these

418. Two dice are thrown together. Then, the probability that the sum of numbers appearing on them is a prime number, is

a)
$$\frac{5}{12}$$
 b) $\frac{7}{18}$ c) $\frac{13}{36}$ d) $\frac{11}{36}$

419. If *E* and *F* are events with $P(E) \le P(F)$ and $P(E \cup F) > 0$, then

- a) Occurrence of $E \Rightarrow$ occurrence of F b) Occurrence of $F \Rightarrow$ occurrence of E
- c) Non-occurrence of E ⇒ Non ccurence of F
 d) None of the above
 420. In a college, 25% of the boys and 10% of the girls offer Mathematics. The girls constitute 60% of the total number of students. If a student is selected at random and is found to be studying Mathematics. The
 - probability that the student is a girl is
- a) 1/6 b) 3/8 c) 5/8 d) 5/6 421. Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is a) 1/32 b) 1/16 c) 3/16 d) 5/16
- 422. A basket contains 5 apples and 7 oranges and another basket contains 4 apples and 8 oranges. One fruit is
picked out from each basket. The probability that the fruits are both apples or both oranges, is
a) 24/144b) 56/144c) 68/144d) 76/144

423. For *n* independent events A_i 's, $P(A_i) = 1/(1+i)$, i = 1, 2, ..., n. The probability that atleast one of the events occurs is

a) 1/n b) 1/(n + 1) c) n/(n + 1) d) None of these 424. Consider two events *A* and *B* such that $P(A) = \frac{1}{4}$, $P\left(\frac{B}{A}\right) = \frac{1}{2}$, $P\left(\frac{A}{B}\right) = \frac{1}{4}$. For each of the following statements, which is true?

- 1. $P(A^{c} + B^{c}) = \frac{3}{4}$
- 2. The events *A* and *B* are mutually exclusive.
- 3. $P(A/B) + P(A/B^{c}) = 1$

a) (1) only b) (1) and (2) c) (1) and (3) d) (2) and (3)

^{425.} A signal which can be green or red with probability $\frac{4}{5}$ and $\frac{1}{5}$ respectively, is received by station *A* and then transmitted to station *B*. The probability of each station receiving the signal correctly is $\frac{3}{4}$. If the signal received at station *B* is green, then the probability that the original signal green is a) $\frac{3}{5}$ b) $\frac{6}{7}$ c) $\frac{20}{23}$ d) $\frac{9}{20}$

a)
$$\frac{3}{5}$$
 b) $\frac{6}{7}$ c) $\frac{20}{23}$ d) $\frac{9}{20}$
426. The probability that the roots of the equation $x^2 + nx + \frac{1}{2} + \frac{n}{2} = 0$ are real where $n \in N$ such that $n \leq 5$, is

a) 1/5 b) 2/5 c) 3/5 d) 4/5

427. The probability that in a random arrangement of the letters of the word 'UNIVERSITY', the two *I*'s do not come together is

a)
$$4/5$$
 b) $1/5$ c) $1/10$ d) $9/10$
 $428.$ If $P(B) = \frac{3}{4}$, $P(A \cap B \cap \overline{C}) = \frac{1}{3}$ and $P(\overline{A} \cap B \cap \overline{C}) = \frac{1}{3}$, then $P(B \cap C)$ is
a) $\frac{1}{12}$ b) $\frac{1}{6}$ c) $\frac{1}{15}$ d) $\frac{1}{9}$

429. If $P(A) = 1/3$, $P(B) = 1/a$, a) Mutually exclusive	$2 \text{ and } P(A \cup B) = 5/6, \text{ the}$	n events A and B are b) Independent as well as	s mutually exhaustive
c) Independent430. If <i>X</i> is a poisson variate v	with $P(X = 0) = 0.8$, then the theorem (19) of the second secon	d) Dependent only on <i>A</i> he variance of <i>X</i> is	
a) log _e 20	b) log ₁₀ 20	c) $\log_e \frac{5}{4}$	d) 0
431. If A and B are mutually e	xclusive events with $P(A)$ =	$=\frac{1}{2} \times P(B)$ and $A \cup B = S$, (1)	total sample space) then
P(A) is equal to			
a) $\frac{2}{3}$	b) $\frac{1}{3}$	c) $\frac{1}{4}$	d) $\frac{3}{4}$
432. A coin is tossed 2 <i>n</i> times	. The chance that the numb	er of times one gets head is	not equal to the number of
times one gets tail, is	(21)	(21) 1	d) None of these
a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{-n}$	b) $1 - \frac{(2n!)}{(n!)^2}$	c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$	a) None of these
433. The probability of getting	g a total of at least 6 in the s	simultaneously throw of the	ree dice is
a) $\frac{6}{100}$	b) $\frac{5}{27}$	c) $\frac{1}{24}$	d) $\frac{103}{100}$
434. In the above question the	27 probability that the binary e	24 v operation is non-commut	108 ative is
$n^{n^2} - n^{n(n+1)}$	$n^2 = \frac{n(n+1)}{n}$	$n^2/2$ $\frac{n(n+1)}{2}$	d) None of these
a) $\frac{n^2 - n^2}{m^2}$	b) $\frac{n^{n} - n^{2}}{n^{2}}$	c) $\frac{n^{n/2} - n^2}{n^2/2}$,
n^{n} 435 A bag A contains A green	$n^{n^{-}}$ and 3 red balls and bag <i>B</i> ($n^{n^{-/2}}$	halls. One hag is taken at
random and a ball is drav	wn and noted to be green. T	The probability that it come	s from bag B , is
a) $\frac{2}{7}$	b) $\frac{2}{2}$	c) $\frac{3}{7}$	d) $\frac{1}{2}$
436. From a pack of cards two	are accidently dropped. Pr	cobability that they are of o	pposite shade is
13	1	26	d) None of these
$\frac{a}{51}$	57×51	$\frac{c}{51}$	2
437. In a binomial distribution	n the probability of getting	a success is 1/4 and standa	rd deviation is 3, then its
mean is			
a) 6	b) 8	c) 12	d) 10
438. Past records reveal that (during a particular was, out	t of 9 vessels expected to ar	rive at the Mumbai harbour
exactly / reached the hal	bour safely. If 3 vessels we	re expected to arrive there	on a particular data, the
	92	95	d) None of these
a) $\frac{51}{243}$	b) $\frac{52}{243}$	c) $\frac{33}{243}$	u) None of these
439. A coin is tossed <i>n</i> times.	The probability that head w	vill turn up an odd number	of times, is
2 1	n+1	n-1	$2^{n-1}-1$
$\frac{a}{2}$	$\frac{10}{2n}$	$\frac{c}{2n}$	$\frac{1}{2^n}$
440. If <i>A</i> and <i>B</i> are independe	nt events such that $P(A) >$	0, P(B) > 0, then	
a) A and B are mutually a	exclusive		
b) A and B are independe	ent		
c) $P(A \cup B) = P(A)P(B)$			
d) $P(A/B) = P(A/B)$			
441. The probability that the	6th day of a randomly chose	en month of a year is a Sun	day, is
a) $\frac{1}{12}$	b) $\frac{1}{17}$	c) $\frac{1}{94}$	d) None of these
442. If the letters of the word	'REGULATIONS' be arrange	ed at random, the probabilit	ty that there will be exactly
4 letters between <i>R</i> and <i>R</i>	E is	a at random, the probability	if that there will be chackly
6	b) ³	49	d) None of these
a) <u>55</u>	55	55	-
443. Five different objects A_1 ,	A_2, A_3, A_4, A_5 are distribute	ed randomly in 5 places ma	rked 1,2,3,4,5. One

	rrangement is picked at random. The probability that in the selected arrangement, none of the object									
	occupies the place corresponding to its number, is									
	a) 119/120	b) 1/15	c) 11/30	d) None of these						
444	. If <i>M</i> and <i>N</i> are any two ev	vents. The probability, that	exactly one of them occurs	, is						
	a) $P(M) + P(N) - P(M \cap$	N)	b) $P(M) + P(N) + P(M \cap$	n N)						
	c) $P(M) + P(N)$		d) $P(M) + P(N) - 2P(M \cap N)$							
445	. The probability that the s	ame number appear on thr	owing three dice simultane	eously, is						
	a) $\frac{1}{}$	b) $\frac{5}{}$	c) $\frac{1}{-}$	d) $\frac{4}{}$						
	36	³ 36	6	13						
446	6. One hundred cards are numbered from 1 to 100. The probability that a randomly chosen card has a digit 5 is									
	1	9	19	d) None of these						
	a) $\frac{100}{100}$	$\frac{100}{100}$	$\frac{100}{100}$							
447	. A and B stand in a ring wi	ith 10 other persons. If the	arrangement of the person	s is at random, then the						
	probability that there are	exactly 3 persons between	A and B is							
	a) 2/11	b) 9/11	c) 1/11	d) None of these						
448	. If the random variable X t	takes the values x_1, x_2, x_{10}	with probability $P(X = x_1)$	= ki, then the value of k is						
	equal to									
	$a) \frac{1}{2}$	$h \frac{1}{2}$	c) $\frac{1}{1}$	d) $\frac{7}{-}$						
	10	4	55	⁽¹⁾ 12						
449	. The chances to fail in phy	sics are 20% and the chanc	es to fail in mathematics an	re 10%. What are the						
	chances to fail in at least of	one object?	. ====	N 2224						
	a) 28%	b) 38%	c) 72%	d) 82%						
450	. Two friends A and B have	e equal number of daughter	s. There are three cinema t	cickets which are to be						
	distributed among the da	aughters of A and B. The pr	obability that all the tickets	s got to daughters of A is						
	1/20. The number of daug	ghters each of them have is		N 0						
	a) 4	b) 5	c) 6	d) 3						
451	1. Three of the six vertices of a regular hexagon are chosen at random. The probability that the triangle with									
	these three vertices is equ	uilateral, equals	1	1						
	a) $\frac{1}{2}$	b) $\frac{1}{r}$	c) $\frac{1}{10}$	d) $\frac{1}{20}$						
452	L If there a students A.D.C.s.	5 	10 - h - h : litti ¹ ¹ d ¹	20 time the second she ilitar						
752	• If three students A, B, C ca	an solve a problem with pro-	$\frac{1}{3}, \frac{1}{4}$ and $\frac{1}{5}$ respectively.	tively, then the probability						
	that the problem will be s	olved is	0	4.7						
	a) $\frac{3}{-}$	b) $\frac{4}{\pi}$	c) $\frac{2}{\pi}$	d) $\frac{47}{12}$						
450	5 In the choice question the	5	⁵ 5	60						
455	$\frac{10}{2}$ in the above question the	b) 1 /4		d) None of these						
454	d J	UJ 1/4	() 1/0	u) None of the superiment If						
434	54. An experiment has 10 equally likely outcomes. Let <i>A</i> and <i>B</i> be two non-empty events of the experiment. If									
	A consists of 4 outcomes, a) $2.4 \text{ or } 9$	b) 2 6 or 0	a) 1 or 9	d) E or 10						
155	a) 2,4 01 0 The probability that at les	UJ 3,0 01 9	CJ = 4010 Posserve is 0.6. If A and P	uj 5 01 10						
455	. The probability that at lease $D(\bar{A})$	$ASU ONE OF THE EVENTS A and \overline{D}$	D occurs is 0.0. If A all D (iccul simultaneously with						
	probability 0.2, then $P(A)$	F + F(D), IS	a) 1 0	d) 1 4						
156	d) 0.4 A hag contains E brown of	UJ U.O nd A white cooles. A man nu	UJ 1.2	UJ 1.4						
450	. A bag contains 5 brown a	nu 4 white socks. A man pu	ins out two socks. The prot	admity that these are of the						
	same colour, is (100)	h) 10/100	പ 20/100	d) 40/100						
457	a) 5/100 A five digite number is for	UJ 10/100	$C_{J} = 0.07100$	uj 40/100						
437	Then the probability that the number is divisible by 4 is									
	3	18	т, is 1	6						
	a) $\frac{1}{5}$	b) $\frac{10}{5}$	c) $\frac{1}{5}$	d) $\frac{1}{5}$						
458	. In an experiment the succ	cess is twice that of failure.	If the experiment is repeat	ed 6 times, the probability						
	•			· · · · · · · · · · · · · · · · · · ·						

th	at at least 4 times f	avourable is								
a)	$\frac{64}{720}$	b) $\frac{192}{720}$	c) $\frac{240}{720}$	d) $\frac{496}{720}$						
459. If	729 729 729 $72959. If P(A) = 0.25, P(B) = 0.50 and P(A \cap B) = 0.14 then P(A \cap \overline{B}) is equal to$									
a)	0.61	b) 0.39	c) 0.48	d) None of these						
460. A	random variable X	has the probability distribution	1	,						
X	X 1 2 3 4	5 6 7 8								
F	> 0. 0. 0 0	0 0. 0. 0.								
((X) 1 2 . .	. 0 0 0								
Fc	or the events $E = \{Z \mid 0\}$	X is a prime number} and $F = \{$	$X < 4$ },then $P(E \cup F)$ is							
a)	0.77	b) 0.87	c) 0.35	d) 0.50						
461. If	X is a poisson varia	ate such that $P(X = 1) = P(X =$	= 2), then $P(X = 4)$ is equal	to						
a)	1	h) <u>1</u>	c) $\frac{2}{2}$	d) $\frac{1}{2}$						
	2 <i>e</i> ²	$3e^2$	$3e^2$	e^2						
462. In	a lottery three we	re 90 tickets numbered 1 to 90.	Five tickets were drawn at	random. The probability						
th	that two of the tickets drawn numbers 15 and 89, is									
a)	2/801	b) 2/623	c) 1/267	d) 1/623						
463. Tř	he probability that a	a man will live 10 more years is e probability that neither will b	= 1/4 and the probability th	at his wife will live 10 more						
a)	5/12	b) 1/2	c) $7/12$	d) 11/12						
464. A	cricket club has 15	members. of whom only 5 can	bowl. If the names of 15 me	embers are put into a box						
and 11 are drawn at random, then the probability of obtaining an eleven containing at least 3 bowlers is										
a)	7/13	b) 6/13	c) 11/15	d) 12/13						
465. A	465. A bag X contains 2 white and 3 black balls and another bag Y contains 4 white and 2 black balls. One bag is									
se	selected at random and a ball is drawn from it. Then, probability for the ball chosen be white, is									
പ	2	b) 7	c) ⁸	d) ¹⁴						
aj	25	$\frac{5}{15}$	$\frac{15}{15}$	$\frac{1}{15}$						
466. A	466. A bag contains 4 brown and 5 white balls. A man pulls two balls at random without replacement. The									
pr	probability that the man gets both the balls of the same colour is									
a)	5	b) $\frac{1}{\epsilon}$	c) $\frac{5}{10}$	d) $\frac{4}{2}$						
-	108	6	18	9						

: ANSWER KEY : a 189) 190) 2) 3) d 4) С 191) С С С d 7) 8) d 193) d 195) 6) 194) С a a 10) b 11) 12) b 197) С 198) 199) b а a 14) 15) С 16) b 201) 202) 203) а а а а 19) d 20) 205) 206) 207) 18) С а С С а d 209) 22) 23) 24) b а 210) b 211) а а 26) d 27) b 28) С 213) а 214) С 215) С 30) d 31) b 32) b 217) b 218) b 219) С 34) 35) 36) 221) 222) 223) С а а а а С 38) С 39) С 40) С 225) d 226) b 227) С d 229) 42) а 43) b 44) b 230) a 231) С 46) а 47) а 48) С 233) d 234) С 235) С b 237) 239) 50) b 51) С 52) b 238) a a d 241) 242) 243) 54) а 55) b 56) а С а 58) b 59) 60) b 245) 246) 247) b а а а 62) 63) 64) 249) 250) d 251) С С a а С 66) 67) **68)** a 253) С 254) С 255) b С С 70) 71) d 72) 257) b 258) d 259) b С а 75) b 261) b 263) 74) С 76) С 262) а а 79) 78) С 80) d 265) С 266) d 267) а С d 83) 269) 270) 271) 82) а 84) С С С b b 273) d 274) 86) 87) С 88) b 275) а С 279) 90) 91) 92) 277) 278) b d С С а а 281) 282) 94) 95) 96) a С С 283) b С С

d

С

b

а

С

С

а

а

С

b 321)

b

С

d

c 341)

С

d

b

a

а

b 365)

285)

289)

293)

297)

301)

305)

309)

313)

317)

325)

333)

337)

345)

349)

353)

357)

361)

a 369)

d 373)

b 329)

а

а

b

d

С

b

a

а

b

b

b

b

С

b

а

а

С

d

С

С

b

а

b

286)

290)

294)

298)

302)

306)

310)

314)

318)

322)

326)

330)

334)

338)

342)

346)

350)

354)

358)

362)

366)

370)

374)

а

С

b

b

а

b

b

b

С

С

d

d

а

а

С

а

b

d

С

С

d

d

С

287)

291)

295)

299)

303)

307)

311)

315)

319)

323)

327)

331)

335)

339)

343)

347)

351)

355)

359)

363)

367)

371)

375)

b

а

d

а

а

a

a

С

С

d

С

С

b

b

b

d

d

С

b

b

d

b

С

100)

104)

108)

112)

116)

120)

124)

128)

132)

136)

140)

144)

148)

152)

156)

160)

164)

168)

172)

176)

180)

184)

188)

16.PROBABILITY

1)

5)

9)

13)

17)

21)

25)

29)

33)

37)

41)

45)

49)

53)

57)

61)

65)

69)

73)

77)

81)

85)

89)

93)

97)

101)

105)

109)

113)

117)

121)

125)

129)

133)

137)

141)

145)

149)

153)

157)

161)

165)

169)

173)

177)

181)

185)

b

С

d

а

С

а

а

d

d

d

d

b

d

С

С

d

b

а

а

b

а

а

b

а

С

С

b

d

а

b

d

а

а

b

b

а

b

С

а

d

С

b

d

а

а

С

b

98)

102)

106)

110)

114)

118)

122)

126)

130)

134)

138)

142)

146)

150)

154)

158)

162)

166)

170)

174)

178)

182)

186)

а

d

b

b

а

а

b

а

С

d

С

b

b

b

d

b

b

а

d

С

а

b

С

99)

103)

107)

111)

115)

119)

123)

127)

131)

135)

139)

143)

147)

151)

155)

159)

163)

167)

171)

175)

179)

183)

187)

а

b

d

а

а

С

b

С

b

d

d

а

d

d

d

d

С

а

С

b

d

b

С

192)

196)

200)

204)

208)

212)

216)

220)

224)

228)

232)

236)

240)

244)

248)

252)

256)

260)

264)

268)

272)

276)

280)

284)

288)

292)

296)

300)

304)

308)

312)

316)

320)

324)

328)

332)

336)

340)

344)

348)

352)

356)

360)

364)

368)

372)

376)

b

С

b

С

d

b

d

а

С

а

С

С

d

b

а

а

С

b

а

а

С

а

а

С

d

а

b

b

С

d

b

d

b

b

d

b

b

С

С

b

С

С

С

b

а

С

а

377)	С	378)	b	379)	С	380) a	425)	С	426)	d	427)	а	428)	а
381)	а	382)	b	383)	b	384) c	429)	а	430)	С	431)	b	432)	С
385)	d	386)	d	387)	С	388) c	433)	d	434)	b	435)	С	436)	С
389)	b	390)	С	391)	d	392) a	437)	С	438)	d	439)	а	440)	b
393)	С	394)	С	395)	а	396) d	441)	С	442)	а	443)	С	444)	d
397)	а	398)	С	399)	b	400) d	445)	а	446)	С	447)	а	448)	С
401)	d	402)	b	403)	а	404) c	449)	а	450)	d	451)	С	452)	а
405)	С	406)	С	407)	d	408) d	453)	a	454)	d	455)	С	456)	d
409)	b	410)	b	411)	а	412) d	457)	С	458)	d	459)	d	460)	а
413)	а	414)	С	415)	а	416) a	461)	С	462)	а	463)	b	464)	d
417)	a	418)	а	419)	d	420) b	465)	С	466)	d				
421)	d	422)	d	423)	С	424) a								
							I							

: HINTS AND SOLUTIONS :

6

7

8

9

2

(b) Required probability = ${}^{7}C_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{5} \times \frac{1}{6}$ = $\frac{{}^{7}C_{2} \times 5^{5}}{6^{8}}$ (c) $x + \frac{100}{x} > 50$ $\Rightarrow x^{2} + 100 > 50 x \quad (\because x \in N)$ $\Rightarrow x^{2} - 50x + 100 > 0$ $\Rightarrow (x - 25)^{2} > 525$ $\Rightarrow x - 25 < -\sqrt{525} \text{ or } x - 25 > \sqrt{525}$ $\Rightarrow x < 25 - 22.9 \text{ or } x > 25 + 22.9$ $\Rightarrow x \le 2 \text{ or } x \ge 48$ Hence, the number of favourable cases = 2 + 53 = 55Thus, required probability = $\frac{55}{100} = \frac{11}{20}$

3 **(d)**

The probability of getting head and tail in one toss is $\frac{1}{2}$. *P* (atleast one *H*) = 1 – *P* (no head in four toss) = 1 – *P* (four tails)

$$= 1 - \left(\frac{1}{2}\right)^4 = 1 - \frac{1}{16} = \frac{15}{16}$$

4 **(a)**

Three balls can be selected in the following ways: White : $3 \ 2 \ 1 \ 0$

Black : 0 1 2 3

 \therefore Total number of ways = 4,

Clearly, there is only one favourable ways in which three balls are white

Hence, required probability $=\frac{1}{4}$

<u>NOTE</u> It should be noted that the number of ways of selecting 3 white balls from 4 white balls is not equal to ${}^{4}C_{3}$, because all white balls are identical and all black balls are also identical

5 **(c)**

Let A be the event that the first mango is good and B denotes the event that the second is good. Then,

Required probability =
$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$

Now,

 $P(A \cap B)$ = Probability that both mangoes are good

$$\Rightarrow P(A \cap B) = \frac{{}^{6}C_{2}}{{}^{15}C_{2}}$$

P(A) = Probability that first mango is good $\Rightarrow P(A) = \frac{{}^{6}C_{2} + {}^{6}C_{1} \times {}^{4}C_{1}}{{}^{15}C_{2}}$ $\therefore \text{ Required probability} = P(B/A) = \frac{{}^{6}C_{2}}{{}^{6}C_{2} + {}^{6}C_{1} \times {}^{4}C_{1}}$ $=\frac{15}{15+24}=\frac{5}{13}$ (d) Total number of 5 digit number = $9 \times 10 \times 10 \times$ $10 \times 10 = 90000$ Number of favourable numbers = $5 \times 5 \times 4 \times 4 \times$ 3 = 12000Thus, required probability $=\frac{1200}{90000}=\frac{1}{75}$ (a) Total number of cases $= 6^2 = 36$ Let E = Event of getting sum is 9 $= \{(3,6), (6,3), (4,5), (5,4)\}$ \therefore n(E) = 4 \therefore Required probability $=\frac{4}{36}=\frac{1}{9}$ (d) We have, 4 P(X = 4)P(X = 2) $\Rightarrow 4 \ {}^{6}C_{4} \ p^{4}q^{2} = \ {}^{6}C_{2} \ p^{2}q^{4}$ $\Rightarrow 4 p^2 = q^2$ $\Rightarrow 4 p^2 = (1-p)^2 \Rightarrow 3 p^2 + 2 p - 1 = 0 \Rightarrow p$ (d) Let *E* denote the event that a six occurs and *A* the event that the man reports it is a six. We have $P(E) = 1/6, P(E') = 5/6, P(A/E) = \frac{3}{4}$ and

$$P(A/E') = 1/4$$

By Bay's theorem
$$P(E/A) = \frac{P(E) \cdot P(A/E)}{P(E) \cdot P(A/E) + P(E') \cdot P(A/E')}$$

$$=\frac{\left(\frac{1}{6}\right)\left(\frac{3}{4}\right)}{\left(\frac{1}{6}\right)\left(\frac{3}{4}\right)+\left(\frac{5}{6}\right)\left(\frac{1}{4}\right)}=\frac{3}{8}$$

(b)

10

m one rupee coins and *n* ten paise coins can be placed in a line in $\frac{(m+n)!}{m!n!}$ ways

:. Total number of elementary events $= \frac{(m+n)!}{m!n!}$ If the extreme coins are ten paise coins, then the remaining (n-2) ten paise coins and m one rupee coins can be arranged in a line a $\frac{(m+n-2)!}{m!(n-2)!}$
ways

: Favourable number of elementary events $=\frac{(m+n-2)!}{m!(n-2)!}$

\therefore Required probability =

11 (a)

Let the die be tossed *n* times and let *X* denote the number of sixes obtained in *n* tosses

Clearly,
$$p = \text{Probability of getting a six in a toss}$$

$$= \frac{1}{6}$$
Now,
 $P(X \ge 1) \ge 0.9$
 $\Rightarrow 1 - P(X = 0) \ge 0.9$
 $\Rightarrow 1 - \left(\frac{5}{6}\right)^n \ge 0.9$
 $\Rightarrow \left(\frac{5}{6}\right)^n \le 0.1$
 $\Rightarrow n(\log_{10} 5 - \log_{10} 6) \le -1$
 $\Rightarrow n \ge \frac{1}{\log_{10} 6 - \log_{10} 5} = 12.6$
 $\Rightarrow n = 13, 14, 15, \dots$
The least value of n is 13

12 **(b)**

Here, p = Probability of getting double six in two dice $=\frac{1}{6^2}=\frac{1}{36}$ and $q=\frac{35}{36}$ ∴ Required probability = 1 - (Probability of not getting double six $)^n$ $=1-\left(\frac{35}{36}\right)^n$ (a)

The probability that the number appearing on the selected chit is greater than or equal to 5 is 3/7. Therefore, the probability that in each of the four

draws, the chits bear 5 or 6 or 7 is $\left(\frac{3}{7}\right)^4$

14 (a)

13

The total number of possible ways $n(S) = 6 \times 6 \times 6 = 216$ Now, we find out how many ways are favourable to the total of 16 points in one throw. Let A, B, C be three dice, then favourable ways happen only

as follows (6,6,4),(6,4,6),(6,5,5),(5,5,6),(5,6,5),(4,6,6). Hence, the total number of favourable ways n(A) = 6

 \therefore Required probability $= \frac{n(A)}{n(S)} = \frac{6}{216} = \frac{1}{36}$

Given that, $P\left(\frac{B}{A}\right) = \frac{1}{2} \Rightarrow \frac{P(B \cap A)}{P(A)} = \frac{1}{2}$ $\Rightarrow P(B \cap A) = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$ $P\left(\frac{A}{B}\right) = \frac{1}{4} \Rightarrow \frac{P(A \cap B)}{P(B)} = \frac{1}{4},$ $\Rightarrow P(B) = 4P(A \cap B) \Rightarrow P(B) = \frac{1}{2}$ $\therefore P(A \cap B) = \frac{1}{8} = \frac{1}{2} \cdot \frac{1}{4} = P(A) \cdot P(B)$: Events *A* and *B* are independent. Now, $P\left(\frac{A'}{B}\right) = \frac{P(A' \cap B')}{P(B)}$ $=\frac{P(A')P(B')}{P(B)}=\frac{3}{A}$ and $P\left(\frac{B'}{A'}\right) = \frac{P(B' \cap A')}{P(A')}$ $=\frac{P(B')P(A')}{P(A')}=\frac{1}{2}$ 16 **(b)** Given, P(A) = p, P(B) = q $\Rightarrow P(\overline{A}) = 1 - P, \qquad P(\overline{B}) = 1 - q$ Probability that one person is alive there are two cases arise, (i) A dies and B lives (ii) B dies and A lives : Required probability = p(1-q) + q(1-p)= p + q - 2pq(c) Given mean, np = 15and variance np(1-P) = 10

:
$$1 - p = \frac{10}{15} = \frac{2}{3} \Rightarrow p = \frac{1}{3}$$

$$\therefore n = 15 \times 3 = 45$$

18 (a)

17

Three squares can be chosen out of 64 squares in $^{64}C_3$ ways. Two squares of one colour and one another colour can be the following chosen in two mutually exclusive ways:

(i) two white and one black

and (ii) two black and one white

: Favourable number of ways = ${}^{32}C_2 \times {}^{32}C_1 +$ ${}^{32}C_1 \times {}^{32}C_2$

Hence, required probability = $\frac{2 \times {}^{32}C_1 \times {}^{32}C_2}{{}^{64}C_2} = \frac{16}{21}$

20 (c)

Given, mean np = 2 ...(i)

And variance npq = 1 ...(ii)

From Eqs.(i) and (ii), we get

$$q = \frac{1}{2}$$

$$\therefore p = 1 - q = \frac{1}{2}$$

From Eq.(i), $n \times \frac{1}{2} = 2$

 $\therefore n = 4$

The binomial distribution is $\left(\frac{1}{2} + \frac{1}{2}\right)^4$

Now, P(X > 1) = P(X = 2) + P(X = 3) + P(X = 4)

$$= {}^{4}C_{2} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)^{2} + {}^{4}C_{3} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right)^{1} + {}^{4}C_{4} \left(\frac{1}{2}\right)^{4}$$
$$= \frac{6+4+1}{16}$$
$$= \frac{11}{16}$$

21 **(a)**

Probability of getting head in one trial, $P = \frac{1}{2}$ and probability of not getting head, $q = \frac{1}{2}$ Probability of getting head odd times $= {}^{26}C_1 \left(\frac{1}{2}\right)^1 \left(\frac{1}{2}\right)^{19}$ $+ {}^{20}C_3 \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^{17} + \ldots + {}^{20}C_{19} \left(\frac{1}{2}\right)^1 \left(\frac{1}{2}\right)^{19}$ $= \frac{1}{220} [{}^{20}C_1 + {}^{20}C_3 + \ldots + {}^{20}C_{19}]$

$$= \frac{1}{2^{20}} \times 2^{20-1}$$

$$=\frac{2^{19}}{2^{20}}=\frac{1}{2}$$

22 **(a)**

Probability of occurrence of $4 = \frac{1}{6}$ Probability of non-occurrence of $4 = \frac{5}{6}$

Required probability

$$= {}^{2}C_{1}\left(\frac{1}{6}\right)\left(\frac{5}{6}\right) + {}^{2}C_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{0}$$
$$= 2 \cdot \frac{5}{36} + 1 \cdot \frac{1}{36} = \frac{10}{36} + \frac{1}{36} = \frac{11}{36}$$

23 (d)

In out of 9 tickets, 5 tickets are odd number and 4 tickets are even numbers. ∴Required probability $= \left\{ \frac{{}^{5}C_{1}}{{}^{9}C_{1}} \times \frac{{}^{4}C_{1}}{{}^{8}C_{1}} \times \frac{{}^{4}C_{1}}{{}^{7}C_{1}} + \frac{{}^{4}C_{1}}{{}^{9}C_{1}} \times \frac{{}^{5}C_{1}}{{}^{8}C_{1}} \times \frac{{}^{3}C_{1}}{{}^{7}C_{1}} \right\}$ $= \frac{5}{9} \times \frac{4}{8} \times \frac{4}{7} + \frac{4}{9} \times \frac{5}{8} \times \frac{3}{7}$ $= \frac{140}{504} = \frac{5}{18}$ 24 (b) Given, $P(X = k) = \frac{(k+1)a}{3^{k}}$, for $x \in \{0, 1, 2, ..., \infty\}$ As we know that $P(0) + P(1) + P(2) + ..., \infty = 1$ $\Rightarrow a + \frac{2a}{3} + \frac{3a}{3^{2}} + ..., \infty = 1 ...(i)$ Let $S = a \left(1 + \frac{2}{3} + \frac{3}{3^{2}} + \frac{4}{3^{3}} + ..., \infty\right)$ $\Rightarrow \frac{\frac{1}{3}S = a \left(\frac{1}{3} + \frac{2}{3^{2}} + \frac{3}{3^{3}} + ..., \infty\right)}{S - \frac{1}{3}S = a \left(1 + \frac{1}{3} + \frac{1}{3^{2}} + \frac{1}{3^{3}} + ..., \infty\right)}$ $\Rightarrow \frac{2}{3}S = a \left(\frac{1}{1 - \frac{1}{3}}\right) \Rightarrow S = \frac{9a}{4}$ \therefore From Eq.(i)

$$\frac{9a}{4} = 1 \implies a = \frac{4}{9}$$

(a) We know that, $P(A|\overline{B}) + P(\overline{A}|\overline{B}) = 1$

$$\Rightarrow P(\bar{A}|\bar{B}) = 1 - P(A|\bar{B})$$

26 **(d)**

25

Total ways = $6 \times 5 = 30$ Favourable events = The minimum of the two numbers is less than 4. $n(E) = 6 \times 4 = 24$ [We can select one from {1, 2, 3, 4} and other from (1, 2, 3, 4, 5, 6)] \therefore Required probability = $\frac{24}{30} = \frac{4}{5}$

27 **(b)**

In first 120 natural number total number of multiple of 5, n(A) = 24 and total number of multiple of 15, n(B) = 8 and $n(A \cap B) = 8$

 $\therefore n(A \cup B) = n(A) + n(B) - n(A \cap B)$

$$= 24 + 8 - 8 = 24$$

$$\therefore$$
 Required probability= $\frac{24}{120} = \frac{1}{5}$

> Probability that four of the numbers are consecutive

$$=\frac{{}^{37}C_1}{{}^{40}C_4}$$

Now, probability that four of the numbers are not consecutive

$$= 1 - \frac{{}^{37}C_1}{{}^{40}C_4} = 1 - \frac{37}{91390} = \frac{2469}{2470}$$

29 (d)

Total number of cards =52

Probability of getting spade = $\frac{13}{52} = \frac{1}{4}$ Probability of not getting spade = $1 - \frac{1}{4} = \frac{3}{4}$ $\therefore \text{ Required probability} = \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{14}$

30 (d)

The total number of ways of choosing two numbers out of 1,2,3, ...,30 is ${}^{30}C_2 = 435$. Now, $a^2 - b^2$ will be divisible by 3 iff either *a* and *b* both are divisible by 3 or none of *a* and *b* is divisible by 3 : Favourable number of ways = ${}^{10}C_2 + {}^{20}C_2 =$

235 Hence, required probability $=\frac{235}{435}=\frac{47}{87}$

31 (b)

Let $p = P(\text{getting a head}) = \frac{1}{2}$, q = P(getting no)head) = $\frac{1}{2}$

By using binomial distribution,

Required probability *P*(six heads)

$$= {}^{10}C_6 \left(\frac{1}{2}\right)^6 \left(\frac{1}{2}\right)^7 = \frac{10!}{6! \, 4!} \times \frac{1}{2^{10}}$$
$$= \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2} \times \frac{1}{2^{10}} = \frac{105}{512}$$

32 (b)

Total number of cases=20 Favorable cases = $\{(1,8), (3,6), (5,4), (7,2)\} = 4$ \therefore Required probability $=\frac{4}{20}=\frac{1}{5}$

33 (d)

Let *X* be the number of coins showing heads. Let *X* be a binomial variate with parameters n = 100and p probability of success. According to question

$$P(X = 50) = P(X = 51)$$

$$\Rightarrow {}^{100}C_{50} p^{50} (1-p)^{50} = {}^{100}C_{51}(p)^{51} (1-p)^{49}$$

$$\Rightarrow \frac{(100)!}{(50!)(50!)} \cdot \frac{(51!) \times (49!)}{100!} = \frac{p}{1-p}$$

$$\Rightarrow \frac{p}{1-p} = \frac{51}{50} \Rightarrow p = \frac{51}{101}$$

34 (c)

Matches played by India = 4Maximum points in any match = 2: Maximum points in four matches can be 8 only. Therefore, atleast 7 points means 7 or 8 points. : Required probability = P(7) + P(8) $= {}^{4}C_{1}(0.05)(0.5)^{3} + (0.5)^{4}$ = 0.0250 + 0.0625 = 0.0875(a)

35

Given, $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$

Since,
$$P(X = 2) = 3P(X = 3)$$

$$\Rightarrow \frac{\lambda^2 e^{-\lambda}}{2!} = 3. \frac{\lambda^3 e^{-\lambda}}{3!} \Rightarrow \lambda = 1$$

 \therefore Mean of poisson distribution is 1

36 (a)

Since A and B are independent events $\therefore P(A \cap B) = \frac{1}{8} \text{ and } P(\overline{A} \cap \overline{B}) = \frac{3}{8}$ $\Rightarrow P(A)P(B) = \frac{1}{8} \text{ and } P(\overline{A})P(\overline{B}) = \frac{3}{8}$ Now, $P(\bar{A} \cap \bar{B}) = \frac{3}{8}$ $\Rightarrow 1 - P(A \cup B) = \frac{3}{8}$ $\Rightarrow 1 - \{P(A) + P(B) - P(A \cap B)\} = \frac{3}{8}$ $\Rightarrow 1 - \{P(A) + P(B)\} + \frac{1}{8} = \frac{3}{8}$ $\Rightarrow P(A) + P(B) = \frac{3}{4}$ The quadratic equation whose roots are P(A) and ה: (ת) ת

$$P(B) IS x^{2} - x\{P(A) + P(B)\} + P(A)P(B) = 0 \Rightarrow x^{2} - \frac{3}{4}x + \frac{1}{8} = 0 \Rightarrow 8 x^{2} - 6 x + 1 = 0 \Rightarrow x = \frac{1}{2}, \frac{1}{4} \therefore P(A) = \frac{1}{2}, \frac{1}{4}$$

37 (d)

Required probability = ${}^{4}C_{2}\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}\right)^{2}$

$$=\frac{4!}{2!\,2!} \times \frac{9}{16} \times \frac{1}{16} = \frac{27}{128}$$

38 (c)

Probability for selecting a white ball $=\frac{2}{6}=\frac{1}{2}$ Probability for selecting a black ball = $\frac{4}{6} = \frac{2}{3}$

 \therefore Required probability = ${}^{5}C_{5}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)^{0}$ +

$${}^{5}C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)$$
$$= \left(\frac{1}{3}\right)^{5} + 5\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)$$
$$= \left(\frac{1}{3}\right)^{4}\left[\frac{1}{3} + 5 \cdot \frac{2}{3}\right]$$
$$= \frac{11}{3^{5}} = \frac{11}{243}$$
(c)

Assuming all six girls as one unit.

$$\therefore$$
 Required probability $=\frac{7!\,6!}{12!}=\frac{1}{132}$

40 (c)

Six girls and 5 boys can sit in a row in 11 ! ways : Total number of elementary events = 11!Six girl can sit in a row in 6! and in each such arrangement there are 7 places between them in which 5 boys can be seated in ${}^{7}C_{5} \times 5$! ways. Therefore, the total number of ways in which no two boys sit together = $6 ! \times {^7C_5} \times 5 !$ Hence, required probability = $\frac{6! \cdot 7C_5 \times 5!}{11!} = \frac{6!7!}{2!11!}$

41 (d)

If m > n, then there is no injective map from *A* to B

 \therefore Required probability = 0

42 (a)

Since, $0 \le \frac{1+a}{3} \le 1 \implies -1 \le a \le 2$...(i) and $0 \le \frac{1-a}{4} \le 1 \implies -3 \le a \le 1$...(ii) Also, as $\frac{1+a}{3}$ and $\frac{1-a}{4}$ are the probabilities of two mutually exclusive events. $\therefore 0 \le \frac{1+a}{3} + \frac{1-a}{4} \le 1 \implies -7 \le a \le 5$...(iii) From relations (i), (ii) and (iii), we get $-1 \le a \le 1$

43 **(b)**

Total number of cases = ${}^{9}C_{3} = 84$ Number of favourable cases = ${}^{3}C_{1}$. ${}^{4}C_{1}$. ${}^{2}C_{1}$ = 24 $\therefore P = \frac{24}{84} = \frac{2}{7}$

44 (d)

The given distribution will be a probability distribution, if

$$P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 1$$

$$\Rightarrow k + 3k + 3k + k = 1 \Rightarrow k = \frac{1}{8}$$
48

Computation of Variance:

X	p(x)	xp(x)	$x^{2}p(x)$
0	1	0	0
	8		

	1	3 8	$\frac{3}{8}$	$\frac{3}{8}$	
	2	$\frac{3}{8}$	$\frac{6}{8}$	$\frac{12}{8}$	
	3	$\frac{1}{8}$	$\frac{3}{8}$	<u>9</u> 8	
	Total		$\sum_{x \neq x \neq$	$\sum_{x^2 p(x)} x^2 p(x)$	
	∴ Varian	$ce = \Sigma$	$\frac{8}{r^2n(r)-\{\Sigma\}}$	$\frac{8}{rn(r)^{2}}$	
	$24 (12)^2 = 9 = 3$				
	$\Rightarrow \text{Variance} = \frac{21}{8} - \left(\frac{12}{8}\right) = 3 - \frac{1}{4} = \frac{3}{4}$				
	(b)				
	Total number of permutations of the 11 letters of				
	the word 'MISSISSIPPI', in which 4 are of one kind				
	(viz, <i>S</i>), 4 of other kind (viz, <i>I</i>), 2 of third kind				
	(viz, <i>P</i>) and one of fourth kind (viz; <i>M</i>), is				
	11!	11			
	4!4!2!1! The number of wave in which for C some teacther				
	^{8!}				
	- 4!2!				
	Hence, required probability = $\frac{6!}{4!2!1!} + \frac{11!}{4!4!2!1!} =$				
	$\frac{4}{165}$				
	(a)				
There are 9 favourable cases in which all three					
digits are same.					
	$\therefore \text{ Required probability} = \frac{9}{900} = \frac{1}{100}$				
	(a)				

We know, sum of probability distribution is 1

$$\therefore k + 2k + 3k + 4k = 1 \implies k = \frac{1}{10}$$

Now, mean

45

46

47

$$\bar{X} = k \times 1 + 2k \times 2 + 3k \times 3 + 4k \times 4$$

$$= k + 4k + 9k + 16k = 30k$$

$$\Rightarrow \bar{X} = 30 \times \frac{1}{10} = 3$$

(c)

Let E_1 , E_2 and E_3 are the examines guesses, copies and knows the answer

and E =Event that he answers correctly

Then,
$$P(E_1) = \frac{1}{3}$$
, $P(E_2) = \frac{1}{6}$

and $P(E_3) = 1 - \left(\frac{1}{2} + \frac{1}{6}\right) = \frac{1}{2}$: Required probability = $P\left(\frac{E_3}{F}\right)$ $= \frac{P\left(\frac{E}{E_3}\right).P(E_3)}{P\left(\frac{E}{E_4}\right).P(E_1) + P\left(\frac{E}{E_2}\right).P(E_2) + P\left(\frac{E}{E_3}\right).P(E_3)}$ $=\frac{1\times\frac{1}{2}}{\left(\frac{1}{4}\times\frac{1}{2}\right)+\left(\frac{1}{2}\times\frac{1}{2}\right)+\left(1\times\frac{1}{2}\right)}=\frac{24}{29}$ 49 (d) Total outcomes=30 Now, $n + (\frac{50}{n}) > 27$ $\Rightarrow n^2 - 27n + 50 > 0$ $\Rightarrow (n-2)(n-25) > 0$ Favourable outcomes are 1,26,27,28,29,30 Number of favourable outcomes=6 \therefore Required probability $=\frac{6}{30}=\frac{1}{5}$ 50 **(b)** Here, P(B') = 1 - 0.4 = 0.6and P(A) = 1 - 0.3 = 0.7 $\therefore P(A \cup B') = P(A) + P(B') - P(A \cap B')$ = 0.7 + 0.6 - 0.5 = 0.851 **(c**) $P\left(\overline{\frac{A}{B}}\right) = \frac{P(\overline{A} \cap \overline{B})}{P(\overline{B})} = \frac{P(\overline{A \cup B})}{P(\overline{R})}$ $=\frac{1-P(A\cup B)}{P(\bar{B})}$ 52 **(b)** We have, Total number of arrangements $=\frac{11!}{4!2!2!1!}=$ 34650 The number of ways in which 4 *I*'s, 2 *P*'s and 1 *M* can be arranged in a row $=\frac{7!}{2!4!}=105$ After arranging this 7 letters (viz, IIIIPPM) there are 8 places in which 4S's can be arranged in ${}^{8}C_{4}$ ways \therefore Number of ways in which no 2 S's are together

$$= \frac{7!}{2!4!} \times {}^{8}C_{4}$$

$$\therefore \text{ Required probability} = \frac{7!}{2!4!} \times {}^{8}C_{4} + \frac{11!}{4!2!2!1!} = \frac{7}{33}$$

53 (c)

Probability of both occurrence,

$$P(E \cap F) = P(E)P(F)$$
$$= \frac{1}{5} \cdot \frac{1}{10} = \frac{1}{50}$$

Required probability = $1 - P(E \cap F)$

$$= 1 - \frac{1}{50} = \frac{49}{50}$$

54 **(a)** Here, *n* = 6

According to the question

$${}^{6}C_{2}p^{2}q^{4} = 4. {}^{6}C_{4}p^{4}q^{2}$$

$$\Rightarrow q^{2} = 4p^{2}$$

$$\Rightarrow (1-p)^{2} = 4p^{2}$$

$$\Rightarrow 3p^{2} + 2P - 1 = 0$$

$$\Rightarrow (p+1)(3p-1) = 0$$

$$\Rightarrow p = \frac{1}{3}(\because p \text{ cannot be negative})$$

We know, $P(A \cup B) = P(A) + P(B) - P(A \cap B) \le P(A) + P(B)$ [:: $P(A \cap B) \ge 0$] 56 (d) Given, $P\left(\frac{B}{A}\right) = \frac{1}{2} \Rightarrow P(B \cap A) = \frac{1}{8}$

and
$$P\left(\frac{A}{B}\right) = \frac{1}{4} \Rightarrow P(B) = \frac{1}{2}$$

$$\therefore P(A \cap B) = \frac{1}{8} = P(A).P(B)$$

 \therefore Events are independent

Now,
$$P\left(\frac{A'}{B}\right) = \frac{P(A' \cap B)}{P(B)} = \frac{P(B) - P(A \cap B)}{P(B)} = \frac{3}{4}$$

and
$$P\left(\frac{B'}{A}\right) = \frac{P(A \cap B')}{P(A)} = \frac{P(A) - P(A \cap B)}{P(A)} = \frac{1}{2}$$

57 **(c)**

We know that $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ But, it is given that $P(A \cup B) = P(A) + P(B) - P(A)P(B)$ $\therefore P(A \cap B) = P(A)P(B)$ $\Rightarrow A \text{ and } B \text{ are independent events}$ $\Rightarrow P((A \cup B)^c) = P(A^c \cap B^c) = P(A^c)P(B^c)$ and, P(A/B) = P(A)

58 **(b)**

Let *A* be the set of all numbers from {1,2,3,...,1000} that leave remainder 1 when divided by 7 $A = \{1,8,15,22, \dots, 995\}$ $\Rightarrow n(A) = \frac{995 - 1}{7} + 1 = 143$

∴
$$P(A) = \frac{143}{1000}$$

59 **(a)**

 $P(2 \text{ white and 1 black}) = P(W_1W_2B_3 \text{ or } W_1B_2W_3 \text{ or } B_1W_2W_3) = P(W_1)P(W_2)P(B_3) + P(W_1)P(B_2)P(W_3) + P(B_1)P(W_2)P(W_3) = \left(\frac{3}{4}\right)\left(\frac{2}{4}\right)\left(\frac{3}{4}\right) + \left(\frac{3}{4}\right)\left(\frac{2}{4}\right)\left(\frac{1}{4}\right) + \left(\frac{1}{4}\right)\left(\frac{2}{4}\right)\left(\frac{1}{4}\right) = \frac{1}{32}(9+3+1) = \frac{13}{32}$

60 **(b)**

∴
$$P(X > 1.5) = P(2) + P(3) + ... ∞$$

$$= 1 - [P(0) + P(1)]$$
$$= 1 - \left(e^{-2} + \frac{e^{-2} \times 2}{1}\right) = 1 - \frac{3}{e^2}$$

61 **(d)**

Now, $P(A' \cap B') = P(A \cup B)'$ = 1 - $P(A \cup B) = 1 - 0.8 = 0.2$ and $P(A' \cup B') = 1 - P(A \cap B) = 1 - 0.3 = 0.7$ But $P(A' \cup B') = P(A') + P(B') - P(A' \cap B')$ $\Rightarrow 0.7 = P(A') + P(B') - 0.2$ $\Rightarrow P(A') + P(B') = 0.9.$

62 **(c)**

We have,

Required probability = ${}^{7}C_{2}\left(\frac{1}{10}\right)^{2}\left(\frac{9}{10}\right)^{5} = 21(0.1)^{2}(0.9)^{5}$

63 **(c)**

64

The couple server the committee in ${}^{7}C_{3} \times {}^{2}C_{2}$ ways. The couple does not serve the committee in ${}^{7}C_{5}$ ways

 $\therefore \text{Required probability} = \frac{{}^{7}C_{3} \times {}^{2}C_{2} + {}^{7}C_{5}}{{}^{9}C_{5}}$ $= \frac{56}{126} = \frac{4}{9}$

$$=\frac{1}{126}=\frac{1}{126}$$

The total number of ways in which 3 numbers can be chosen out of 30 numbers = ${}^{30}C_3 = 4060$ The number of ways of choosing 3 consecutive numbers is 28. Therefore, the number of ways in which the three numbers chosen are not consecutive is 4060 - 28 = 4032Hence, required probability $= \frac{4032}{4060} = \frac{144}{145}$

65 **(b)**

Four balls can be drawn alternatively in the following two ways *RWRW* or *WRWR* If red ball is drawn first, then probability of drawing the balls alternatively

$$=\frac{6}{9}\times\frac{3}{8}\times\frac{5}{7}\times\frac{2}{6}=\frac{5}{84}$$

If white ball is drawn first, then probability of drawing the balls alternatively

$$= \frac{3}{9} \times \frac{6}{8} \times \frac{2}{7} \times \frac{5}{6} = \frac{5}{84}$$

Since, these two are mutually exclusive ways.

: Required probability $=\frac{5}{84} + \frac{5}{84} = \frac{10}{84} = \frac{5}{42}$

66 **(c)**

Since, all three persons have three options to apply.

 \therefore Total cases= 3^3

Favorable cases=3

: Required probability $=\frac{3}{3^3}=\frac{1}{9}$

67 **(c)**

Maximum points in four matches can be 8 only. Therefore, at least 7 points means 7 or 8 points \therefore Required probability= P(7) + P(8)

$$= {}^{4}C_{1}(0.05)(0.5)^{3} + (0.5)^{4}$$

= 0.0250 + 0.0625

68 **(a)**

Since, *A* and *B* are mutually exclusive events, therefore

$$A \cap B = \phi \Rightarrow A \subseteq \overline{B} \text{ and } B \subseteq \overline{A}$$

$$\Rightarrow P(A) \le P(\bar{B}) \text{ and } P(B) \le P(\bar{A})$$

Given, $f(x) = \lambda e^{-ax}$, for $0 \le x < \infty$ and a > 0

$$\therefore \int_0^\infty \lambda e^{-ax} = 1 \ [$$

 \because sum of total distribution is one]

$$\Rightarrow \lambda \left[\frac{e^{-ax}}{-a}\right]_{0}^{\infty} = 1$$
$$\Rightarrow \lambda \left[0 + \frac{1}{a}\right] = 1 \Rightarrow \lambda = a$$

70 **(a)**

Ten different books and 2 different pens can be distributed equally among 3 boys in ${}^{12}C_4 \times {}^{8}C_4 \times {}^{4}C_4$ ways

Required probability

= 1 - Probability that 2 pens are received by the same boy

$$= 1 - \left(\frac{{}^{10}C_2 \times {}^{8}C_4 \times {}^{4}C_4}{{}^{12}C_4 \times {}^{8}C_4 \times {}^{4}C_4}\right) \times 3! = 1 - \frac{6}{1} = \frac{5}{11}$$

71 **(d)**

E =Set of number divisible by 6

= {6,12,18,24,30,,96}

F =Set of number divisible by 8

= {8,16,24,,96}

 $E \cap F$ =Set of number divisible by 24

= {24,48,72,96}

$$:: n(E) = 16, n(F) = 12. n(E \cap F) = 4$$

Let
$$n(A) = n(E) + n(F) - 2n(E \cap F)$$

= 16 + 12 - 8 = 20

and n(S) = 100

: Required probability

$$=\frac{n(E\cup F)}{n(S)}=\frac{20}{100}=\frac{1}{5}$$

72 **(c)**

Number of favourable cases = 3 Required probability = $\frac{3}{6} = \frac{1}{2}$

73 (a)

Let the probability of success and failure are p and q respectively

$$\therefore p = 2q \text{ and } p + q = 1$$

$$\Rightarrow 3q = 1 \Rightarrow q = \frac{1}{3} \text{ and } p = \frac{2}{3}$$

 \therefore Required probability

$$= {}^{6}C_{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{2} + {}^{6}C_{5}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right) + {}^{6}C_{6}\left(\frac{2}{3}\right)^{6}$$
$$= \frac{240}{729} + \frac{192}{729} + \frac{64}{729} = \frac{496}{729}$$

74 **(c)**

Probability that one person is alive $=\frac{2}{3}$ Probability that all five are alive $=\left(\frac{2}{3}\right)^5 = \frac{32}{243}$ 75 **(b)** Let E =Event of getting prime number from 1 to 100

 $= \{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59, \\ \therefore n(E) = 25$

: Required probability = $\frac{25}{100} = 0.25$

76 **(c)**

Seven persons can sit in a row in 7! Ways. No two persons will sit consecutively if one person sits at any one of the two marked seats on the left and other sits at any one of the marked seats on the right of the middle seat. Number of seating arrangements in which no two persons sit consecutively = ${}^{2}C_{1} \times {}^{2}C_{1} \times {}^{1}C_{1} \times 3! = 24$ Hence, required probability = $\frac{24}{7!} = \frac{4}{25}$

78 **(a)**

Given, np = 4, npq = 3

$$\Rightarrow P = \frac{1}{4}, q = \frac{3}{4}$$
$$\therefore P(X = 6) = {}^{16}C_6 \left(\frac{1}{4}\right)^6 \cdot \left(\frac{3}{4}\right)^{10}$$

7

Required probability = P(X = 0) + P(X = 1)

$$= \frac{e^{-5}}{0!} \cdot 5^0 + \frac{e^{-5}}{1!} \cdot 5^1$$
$$= e^{-5} + 5e^{-5} = \frac{6}{e_5}$$

80 **(d)**

Total number of numbers = $(5)^2$ Number of numbers which are divisible by 4 = 5 \therefore Required probability $= \frac{5}{25} = \frac{1}{5}$

81 **(a)**

Given A and B are two events odds against A are 2 to 1, odds in favour of $A \cup B$ are 3 to 1 also $x \le P(B) \le y$ Given $P(A) = \frac{1}{3}, P(A \cup B) = \frac{3}{4}$ $\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\Rightarrow \frac{1}{3} + P(B) - P(A \cap B) = \frac{3}{4}$ $\Rightarrow P(A \cap B) = P(B) - \frac{5}{12}$ $\Rightarrow P(B) \ge \frac{5}{12}$ Again, $P(B) = \frac{5}{12} + P(A \cap B)$ $\Rightarrow P(B) \le \frac{5}{12} + P(A)$ [:: $P(A \cap B) \le P(A)$]

$$\Rightarrow P(B) \le \frac{5}{12} + \frac{1}{3} \Rightarrow P(B) \le \frac{3}{4}$$
$$\therefore \frac{5}{12} \le P(B) \le \frac{3}{4}$$
But $x \le P(B) \le y$

82 **(d)**

Total number of ways in which 5 boys and 5 girls are sitting in a row alternatively = 2.5! 5! \therefore Required probability = $\frac{2.5!5!}{10!} = \frac{1}{126}$

83 (a)

Given, $P(E_1) = \frac{1}{2}$, $P(E_2) = \frac{1}{3}$ and $P(E_3) = \frac{1}{4}$ $\therefore P(E_1 \cup E_2 \cup E_3) = 1 - P(\overline{E}_1)P(\overline{E}_2)P(\overline{E}_3)$ $= 1 - \left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{4}\right)$ $= 1 - \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} = \frac{3}{4}$

84 **(c)**

Number which are divisible by either 3 or 5 are 12,15,18,20,21,24,25,27,30 Total number=9 $P(\text{number either divisible by 3 or 5}) = \frac{9}{20}$ P(number neither divisible by 3 nor 5)= 1 - P(either divisible by 3 or 5)

$$= 1 - \frac{9}{20} = \frac{11}{20}$$

85 **(a)**

Since, $0 \le P(A) \le 1, 0 \le P(B) \le 1, 0 \le P(C) \le 1$

and
$$0 \le P(A) + P(B) + P(C) \le 1$$

$$\therefore \ 0 \le \frac{3x+1}{3} \le 1 \Rightarrow \ -\frac{1}{3} \le x \le \frac{2}{3} \quad \dots(i) 0 \le \frac{1-x}{4} \le 1 \Rightarrow \ -3 \le x \le 1 \dots(ii) 0 \le \frac{1-2x}{2} \le 1 \Rightarrow \ -\frac{1}{2} \le x \le \frac{1}{2} \quad \dots(iii) and \ 0 \le \frac{3x+1}{3} + \frac{1-x}{4} + \frac{1-2x}{2} \le 1 \Rightarrow \ \frac{1}{3} \le x \le \frac{13}{3} \quad \dots(iv)$$

From Eqs. (i), (ii), (iii) and (iv), we get

$$\frac{1}{3} \le x \le \frac{1}{2}$$

86 **(a)**

Probability of getting $4 = \frac{1}{6}$

Probability of not getting $4 = 1 - \frac{1}{6} = \frac{5}{6}$

 \therefore Probability of getting 4 at least once in two throw of dice

$$= {}^{2}C_{1}\left(\frac{1}{6}\right)\left(\frac{5}{6}\right) + {}^{2}C_{2}\left(\frac{1}{6}\right)^{2}$$
$$= 2 \cdot \frac{5}{36} + 1 \cdot \frac{1}{36} = \frac{11}{36}$$

87 (c)

We have, $P(A \cup B) = 0.7 \text{ and } P(A \cap B) = 0.2$ Now, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\Rightarrow P(A) + P(B) = 0.9$ $\Rightarrow 1 - P(\overline{A}) + 1 - P(\overline{B}) = 0.9$ $\Rightarrow P(\overline{A}) + P(\overline{B}) = 1.1$

88 **(b)**

The probability of throwing 9 with two dice $=\frac{4}{36}=\frac{1}{9}$

:. The probability of not throwing 9 with two dice = $1 - \frac{1}{9} = \frac{8}{9}$

If *A* is to win, he should throw 9, in Ist or 3rd or 5th and so on.

If *B* is to win, he should throw, 9 in 2nd, 4th and so on.

B can be get the chance only when *A* should not get it.

$$\therefore B' \text{s chances} = \left(\frac{8}{9}\right) \cdot \frac{1}{9} + \left(\frac{8}{9}\right)^3 \cdot \frac{1}{9} + \dots$$
$$= \frac{\frac{8}{9} \times \frac{1}{9}}{1 - \left(\frac{8}{9}\right)^2} = \frac{8}{17}$$

89 **(b)**

Probability of student (if he miss no test)

$$= \left(1 - \frac{1}{5}\right) \times \left(1 - \frac{1}{5}\right)$$
$$= \frac{16}{25}$$

Hence, probability that he will miss atleast one test

$$= 1 - \frac{16}{25} = \frac{9}{25}$$

90 **(c)**

Since $\overline{A} \cap B$ and A are mutually exclusive events such that

 $A \cup B = (\bar{A} \cap B) \cup A$

$$\therefore P(A \cup B) = P(\bar{A} \cap B) + P(A)$$

$$\Rightarrow \frac{3}{4} = P(\bar{A} \cap B) + 1 - \frac{2}{3} \Rightarrow P(\bar{A} \cap B) = \frac{5}{12}$$
91 (c)

$$P(A'|B') = \frac{P(A' \cap B')}{P(B')}$$

$$= \frac{P(A \cup B')}{P(B')}$$

$$= \frac{1 - P(A \cup B)}{1 - P(B)}$$

$$= \frac{1 - P(A) + P(B) - P(A \cap B)}{1 - P(B)}$$

$$= \frac{1 - [-0.5 + 0.4 - 0.3]}{1 - 0.4} = \frac{0.4}{0.6} = \frac{2}{3}$$

92 (a)

There is only one two digit number not satisfying the given property. Again there are 27 three digit numbers not satisfying the given property. Hence, required probability

 $= 1 - \frac{27 + 1}{1000} = \frac{243}{250}$

94 **(c)**

Let A be the even that an even face turns up and B be the event that it is 2 or 4. Then, P(A) = 0.24 + 0.18 + 0.14 = 0.56 and, P(B) = 0.24 + 0.18 = 0.42 \therefore Required probability = P(B/A)

 $\Rightarrow \text{Required probability} = \frac{P(A \cap B)}{P(A)} = \frac{P(B)}{P(A)} \quad [\because B \subset$

A]

 \Rightarrow Required probability $=\frac{0.42}{0.56}=\frac{3}{4}=0.75$

95 **(c)**

Probability of selecting a white ball from X bag= $\frac{2}{5}$

Probability of selecting a white ball from *Y* bag

$$=\frac{4}{6}=\frac{2}{3}$$

Probability of selecting a white ball from *X* or *Y* bags

$$=\frac{2}{5}+\frac{2}{3}=\frac{16}{15}$$

Probability of selecting the white ball from one of the bags

$$=\frac{1}{2}\cdot\frac{16}{15}=\frac{8}{15}$$

96 **(a)**

Here, $P(B) = 1 - P(B') = 1 - \frac{2}{5} = \frac{3}{5}$ $\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= \frac{4}{5} + \frac{3}{5} - \frac{1}{2} = \frac{9}{10}$ $\therefore P(A \cap B') = P(A \cup B) - P(B)$ $= \frac{9}{10} - \frac{3}{5} = \frac{3}{10}$

Given,
$$P(X) = 60\% = \frac{3}{5}$$
,
 $P(Y) = 50\% = \frac{1}{2}$
 $\Rightarrow P(X') = 1 - \frac{3}{5} = \frac{2}{5}$,
 $P(Y') = 1 - \frac{1}{2} = \frac{1}{2}$

[: If both speak truth or both speak false narrating the same incident, then thry will not contradict each other].

∴ Required probability that they contradict each other narrating the same incident= $1 - [P(X) \times P(Y') + P(X') \times P(Y)]$

$$= 1 - \left[\frac{3}{5} \times \frac{1}{2} + \frac{2}{5} \times \frac{1}{2}\right]$$
$$= 1 - \left[\frac{3}{10} + \frac{2}{10}\right] = \frac{1}{2}$$

98 **(a)**

Let E be the event of numbers to be divisible by 2 or 3

$$\therefore E = \{2, 3, 4, 6, 8, 9, 10, 12\}$$

 \Rightarrow n(E) = 8 and n(S) = 12

Hence, required probability = $\frac{n(E)}{n(S)}$

$$=\frac{8}{12}=\frac{2}{3}$$

100 **(d)**

Given A and B are mutually exclusive events

$$\therefore P(A \cap B) = \phi$$
Now, $P(A|\overline{B}) = \frac{P(A \cap \overline{B})}{P(B)}$

$$= \frac{P(A) - P(A \cap B)}{P(\overline{B})}$$

$$= \frac{P(A)}{1 - P(B)}$$

101 **(c)**

S = {1,2,3,4,5,6} and *E* = {5,6} ∴ *n*(*S*) = 6 and *n*(*E*) = 2 ∴ Required probability = $\frac{n(E)}{n(S)} = \frac{2}{6} = \frac{1}{3}$

102 **(d)**

Clearly, $A \cap C$, $B \cap C$ and $A \cap B \cap C$ are subsets of C $\therefore P(A \cap C) \le P(C), P(B \cap C)$ $\le P(C), P(A \cap B \cap C) \le P(C)$

 $\Rightarrow P(C), P(A \cap B \cap C) \leq P(C)$ $\Rightarrow P(A \cap C) \leq 0, P(B \cap C) \leq 0, P(A \cap B \cap C) \leq 0$ But, $P(A \cap C) \geq 0, P(B \cap C) \geq 0, P(A \cap B \cap C) \geq 0$ $\Rightarrow P(A \cap C) = 0 = P(B \cap C) = P(A \cap B \cap C)$ $\Rightarrow P(A \cap C) = 0 = P(A) P(C)$ $P(B \cap C) = 0 = P(B) P(C)$ and, $P(A \cap B \cap C) = 0 = P(A) P(B) P(C)$ Hence, A and C; B and C and A, B and C are independent events

103 **(b)**

Let E =Event of getting an even numbers

= {2,4,6}

$$n(E) = 3$$

: Probability of success, $P = \frac{3}{6} = \frac{1}{2}$

and probability of failure, $q = \frac{1}{2}$

: Variance =
$$npq = 100 \times \frac{1}{2} \times \frac{1}{2} = 25$$

104 **(c)**

The number of divisible by 4, if last two digits are 12, 24, 32 and 52.

Remaining three place can be filled by 3! ways. \therefore Favourable cases = $3! \times 4$ Required probability = $\frac{3! \times 4}{5!}$ $=\frac{3!\times4}{5\times4\times3!}=\frac{1}{5}$ 105 (b) $\therefore P = P(\text{getting a head}) = \frac{1}{2}$ $\therefore q = \frac{1}{2}$ ∴ Required probability $= {}^{10}C_6\left(\frac{1}{2}\right)^6\left(\frac{1}{2}\right)^4$ $=\frac{10!}{6!4!}\times\frac{1}{2^{10}}=\frac{105}{512}$ 107 (d) $P(\overline{A} \cap B) = P(B) - P(A \cap B)$ A $P(\bar{A} \cap B)$ 108 (b) Favourable ways are (2, 6), (3, 5), (4, 4), (5, 3) and (6, 2) \therefore Required probability = $\frac{5}{26}$ 109 (d) Favourable cases of getting 10 or greater than 10, if 5 appears on atleast one of dice. $= \{(5,6), (6,5), (5,5)\}$ Number of favourable cases =3Total number of cases = 36 \therefore Required probability $=\frac{3}{36}=\frac{1}{12}$ 110 **(b)** Let *X* be the number of heads getting in *n* tossed. X follows binomial distribution with parameters $n, p = \frac{1}{2}, q = \frac{1}{2}.$ Given that, $P(X \ge 1) \ge 0.8$ $\Rightarrow 1 - P(X = 0) > 0.8$

$$\Rightarrow P(X = 0) \leq 0.3$$

$$\Rightarrow P(X = 0) \leq 0.2$$

$$\Rightarrow {}^{n}C_{0} \left(\frac{1}{2}\right)^{n} \left(\frac{1}{2}\right)^{0} \leq 0.2$$

$$\Rightarrow \frac{1}{2^{n}} \leq \frac{1}{5}$$

$$\Rightarrow 2^{n} \geq 5$$

=

 \therefore The least value of *n* is 3.

111 (a) Given, $E_k = \{(a, b) \in S : ab = k\}$ for $k \ge 1$ and $p_k = P(E_k)$ Now, $E_1 = \{1,1\} \Rightarrow p_1 = P(E_1)$ $\Rightarrow P_1 = \frac{1}{36}$ $E_2 = \{(1,2), (2,1)\} \Rightarrow p_2 = P(E_2)$ $\Rightarrow P_2 = \frac{2}{36}$ $E_4 = \{(1,4), (4,1), (2,2)\}$ $\Rightarrow P_4 = P(E_4)$ $\Rightarrow P_4 = \frac{3}{36}$ $E_6 = \{(1,6), (6,1), (2,3), (3,2)\}$ $\Rightarrow P_6 = P(E_6) \Rightarrow P_6 = \frac{4}{36}$ and $E_{30} = \{(5,6), (6,5)\} \Rightarrow p_{30} = p(E_{30})$ $\Rightarrow p_{30} = \frac{2}{36}$ \therefore From the above results, we get

$$p_1 < p_{30} < p_4 < p_6$$

The total number of ways of choosing 2 persons out of *n* is ${}^{n}C_{2}$

After selecting two persons when the remaining (n-2) persons sit in row (n-1) places are created between them in which 2 persons can be arranged in ${}^{n-1}C_2 \times 2$! ways

So, required probability = $\frac{n-1}{C_2 \times 2!} = \frac{n-2}{n} = 1 - \frac{2}{n}$

113 **(a)**

Given that, $P(A \cap B) = \frac{1}{3}$, $P(A \cup B) = \frac{5}{6}$, and $P(A) = \frac{1}{2}$ $\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\Rightarrow \frac{5}{6} = \frac{1}{2} + P(B) - \frac{1}{3}$ $\Rightarrow P(B) = \frac{5}{6} + \frac{1}{3} - \frac{1}{2} = \frac{4}{6} = \frac{2}{3}$ $\therefore P(A) \times P(B) = \frac{1}{2} \times \frac{2}{3} = \frac{1}{3} = P(A \cap B)$ This shows that *A* and *B* are independent events.

114 **(a)**

Let *E* denote the event that a six occurs and *A* the event that the man reports that it is a '6'. We have

$$P(E) = \frac{1}{6}, P'(E) = \frac{5}{6}$$
$$P\left(\frac{A}{E}\right) = \frac{3}{4} \text{ and } P\left(\frac{A}{E'}\right) = \frac{1}{4}$$

From Baye's theorem,

$$P\left(\frac{E}{A}\right) = \frac{P(E) \cdot P\left(\frac{A}{E}\right)}{P(E) \cdot P\left(\frac{A}{E}\right) + P(E') \cdot P\left(\frac{A}{E'}\right)}$$
$$= \frac{\frac{1}{6} \times \frac{3}{4}}{\frac{1}{6} \times \frac{3}{4} + \frac{5}{6} \times \frac{1}{4}} = \frac{3}{8}$$

115 (a)

The man will be one step away from the starting point if (i) either he is one step ahead or (ii) one step behind the starting point : Required probability = P(i) + P(ii)The man will be one step ahead at the end of eleven steps if he moves six steps forward and five steps backward. The probability of this even is ${}^{11}C_6(0.4)^6 (0.6)^5$ The man will be one step behind at the end of eleven steps if he moves six steps backward and five steps forward The probability of this event is ${}^{11}C_6(0.6)^6 (0.4)^5$ Hence, required probability $= {}^{11}C_6(0.4)^6(0.6)^5 + {}^{11}C_6(0.6)^6(0.4)^5$ $= {}^{11}C_6(0.4)^5(0.6)^5(0.4+0.6) = {}^{11}C_6(0.24)^5$ 116 (c) Total number of outcomes=8 Favorable cases are HTT, THT, TTH \therefore Number of favourable outcomes =3 \therefore Required probability= $\frac{3}{8}$ 117 (b) We have, Required probability = 1 - Probability that he does not hit the target in any trial $= 1 - (0.7)^{10}$

118 (a)

The probability that the number appearing on the selected chit is greater than or equal to 5 is 3/7

$$\therefore$$
 Required probability = $\left(\frac{3}{7}\right)^2$

We know, $P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)}$

and
$$P\left(\frac{B}{A}\right) = \frac{P(B \cap A)}{P(A)}$$

 $\therefore P(B) = \frac{P\left(\frac{B}{A}\right) \cdot P(A)}{P\left(\frac{A}{B}\right)}$

$$=\frac{\binom{2}{3}\binom{1}{4}}{\binom{1}{2}}=\frac{1}{3}$$

A and *B* toss a coin alternately till one of them tosses heads and win the game, their respectively probabilities of winning are $\frac{1}{3}$ and $\frac{2}{3}$ respectively.

121 (d)

Since, E_1 , E_2 are mutually exclusive events, then

 $P(E_1 \cap E_2) = 0$ Now, $P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$ $\Rightarrow 0.6 = P(E_1) + 1 - P(\overline{E_2}) - 0$ $\Rightarrow 0.6 = P(E_1) + 0.4$ $\Rightarrow P(E_1) = 0.2$

122 **(b)**

We have, $P(A \cap B^{c}) = P(A) - P(A \cap B)$ $\Rightarrow P(A \cap B) = P(A) - P(A \cap B^{c}) = 0.7 - 0.5$ = 0.2Now, $P(A \cup B^{c}) = P(A) + P(B^{c}) - P(A \cap B^{c})$ $\Rightarrow P(A \cup B^{c}) = 0.7 + 0.6 - 0.5 = 0.8$ $\therefore P\{B \cap (A \cup B^{c})\} = P[(B \cap A) \cup (B \cap B^{c})]$ $= P(A \cap B)$ $\Rightarrow P(A \cup B^{c})P(B/A \cup B^{c}) = P(A \cap B)$ $\Rightarrow 0.8 P(B/A \cup B^{c}) = 0.2 \Rightarrow P(B/A \cup B^{c}) = \frac{0.2}{0.8}$ = 0.25

123 **(b)**

Let A and B are two events

$$P(A) = \frac{2}{7}, P(B) = \frac{6}{11}$$

$$Required probability = 1 - P(\bar{A})P(\bar{B})$$

$$= 1 - \left(1 - \frac{2}{7}\right)\left(1 - \frac{6}{11}\right)$$

$$= \frac{52}{77}$$

124 **(a)**

We have, $P(A) = \frac{3}{10}$ and $P(B) = \frac{2}{5}$ Required probability = $P(A) + P(B) - 2P(A \cap B)$ \Rightarrow Required probability = $P(A) + P(B) - 2P(A \cap B)$ \Rightarrow Required probability = $P(A) + P(B) - 2P(A \cap B)$ [$\because A$ and B are independent events] \Rightarrow Required probability = $\frac{3}{10} + \frac{2}{5} - 2 \times \frac{3}{10} \times \frac{2}{5} = \frac{23}{50}$ 125 (a) Let the coin be tossed n times and let X denote the number of heads in n tosses. Then,

$$P(X = r) = {}^{n}C_{r}\left(\frac{1}{2}\right)^{n}$$
Now, $P(X = 4) = P(X = 7)$
 $\Rightarrow {}^{n}C_{4}\left(\frac{1}{2}\right)^{n} = {}^{n}C_{7}\left(\frac{1}{2}\right)^{n}$
 $\Rightarrow {}^{n}C_{4} = {}^{n}C_{7}$
 $\Rightarrow n = 11 \qquad [\because {}^{n}C_{x} = {}^{n}C_{y} \Rightarrow x + y = n]$
 $\therefore P(X = 2) = {}^{11}C_{2}\left(\frac{1}{2}\right)^{11} = \frac{55}{2048}$
126 (a)
 $P(A' \cap B') = 1 - P(A \cup B) = \frac{1}{3}$ [given]
 $\Rightarrow P(A \cup B) = \frac{2}{3}$
 $\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $\Rightarrow \frac{2}{3} = x + x - \frac{1}{3} \Rightarrow x = \frac{1}{2}$
127 (c)
Required probability $= \frac{{}^{2}C_{1}}{{}^{2}C_{1}} \times \frac{{}^{4}C_{1}}{{}^{6}C_{1}} = \frac{8}{81}$
128 (a)
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $\Rightarrow \frac{5}{6} = \frac{1}{2} + P(B) - \frac{1}{3}$
 $\Rightarrow P(B) = \frac{2}{3}$
Also, $P(A) \cdot P(B) = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$
 $\therefore P(A \cap B) = P(A) \cdot P(B)$
Hence, A and B are independent events
130 (c)
Since, balls are replaced, then the probability that
7th drawn ball is 4th white $= \frac{1}{2}$
131 (b)
Let
 $S = \{BBB, BBG, BGB, GBB, GBB, GBB, GBB, GBG, GBG, GBG, BGG\}$

$$\therefore P(E) = \frac{n(E)}{n(S)} = \frac{7}{8}$$

132 (c) ASSISTANT : A A I N SSS TT STATISTICS : A C II SSS TTT Same letters can be A, I, S, T Probability of choosing, $A = \frac{{}^{2}C_{1}}{{}^{9}C_{1}} \times \frac{{}^{1}C_{1}}{{}^{10}C_{1}} = \frac{1}{45}$ Probability choosing, $I = \frac{{}^{1}C_{1}}{{}^{9}C_{1}} \times \frac{{}^{2}C_{1}}{{}^{10}C_{1}} = \frac{1}{45}$ Probability of choosing, $S = \frac{{}^{3}C_{1}}{{}^{9}C_{1}} \times \frac{{}^{3}C_{1}}{{}^{10}C_{1}} = \frac{1}{10}$ Probability of choosing, $T = \frac{{}^{2}C_{1}}{{}^{9}C_{1}} \times \frac{{}^{3}C_{1}}{{}^{10}C_{1}} = \frac{1}{15}$ So, total probability $= \frac{19}{90}$

133 **(b)**

 $P(H) = P(T) = \frac{1}{2}$ $\therefore \text{ Required probability} = P(A) + P(\overline{A} \cap \overline{B} \cap A + ...$

$$=\frac{1}{2} + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^5 + \ldots = \frac{\frac{1}{2}}{1 - \frac{1}{4}} = \frac{2}{3}$$

134 (d)

Since *A* and *B* are independent events $\therefore P(A \cap B) = P(A)P(B), P(A/B) = P(A)$ and, $P(\bar{A}/B) = P(\bar{A})$ Now, $P(A \cap B) = P(A)P(B) \neq 0$ \Rightarrow A and B are not mutually exclusive Since $A \cap B$ and $A \cap \overline{B}$ are mutually exclusive events such that $(A \cap B) \cup (A \cap \overline{B}) = A$ $\therefore P(A \cap B) + P(A \cap \overline{B}) = P(A)$ $\Rightarrow P(A)P(B) + P(A \cap \overline{B}) = P(A)$ $\Rightarrow P(A \cap \overline{B}) = P(A) - P(A)P(B)$ $\Rightarrow P(A \cap \overline{B}) = P(A)(1 - P(B))$ $\Rightarrow P(A \cap \overline{B}) = P(A)P(\overline{B})$ So, *A* and \overline{B} are independent events Similarly, \overline{A} and B are also independent events Now, P(A/B) = P(A) and $P(\overline{A}/B) = P(\overline{A})$ $\Rightarrow P(A/B) + P(\overline{A}/B) = P(A) + P(\overline{A}) = 1$ 136 **(b)**

Required probability distribution is poisson

distribution.

137 **(b)**

In a leap year there are 366 days in which 52 weeks and two days. The combination of 2 days may be: Sun-Mon, Mon-Tue, Tue-Wed, Wed-Thu, Thu-Fri, Fri-Sat, Sat-Sun.

P(53Fri) = $\frac{2}{7}$; P(53 Sat) = $\frac{2}{7}$ and P(53 Fri and 53 Sat) = $\frac{1}{7}$ ∴ P(53 Fri or Sat) = P(53 Fri) + P(53 Sat) - P(53 Fri and Sat) = $\frac{2}{7} + \frac{2}{7} - \frac{1}{7} = \frac{3}{7}$ 138 (c)

Five boys and 3 girls can sit in a row in 8 ! ways. Considering three girls as one individual. There are 6 persons, who can sit in a row in 6 ! ways. But, 3 girls can sit together in 3! Ways \therefore Number of ways in which 5 boys and 3 girls can sit in a row when 3 girls sit together = $6! \times 3!$ Hence, required probability = $\frac{6!\times3}{8!} = \frac{3}{28}$

139 **(d)**

Let $E = \{2,4,6\}$ [:: *A* and *B* are independent events]

$$\therefore n(E) = 3 \text{ and } n(S) = 6$$

$$\therefore P(E) = \frac{1}{2}$$

Probability of failure = $1 - \frac{1}{2} = \frac{1}{2}$

 \therefore Probability of at least two success

$$= P(X=2) + P(X=3)$$

$$= {}^{3}C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{1} + {}^{3}C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{0}$$
$$= \frac{3}{8} + \frac{1}{8} = \frac{1}{2}$$

140 **(b)**

The total number of ways in which 2 integers can be chosen from the given 40 integers is ${}^{40}C_2 = 780$

The sum of the selected numbers is odd if exactly one of them is odd and other is even \therefore Favourable number of ways = ${}^{20}C_1 \times {}^{20}C_1 =$

400

Hence, required probability $=\frac{400}{780}=\frac{20}{39}$

141 **(a)**

Let the number of red balls be *x*. According to the given condition,

$$\frac{{}^{5}C_{2}}{{}^{5+x}C_{2}} = \frac{5}{14}$$

$$\Rightarrow \frac{20(3+x)!}{(5+x)!} = \frac{5}{14}$$

$$\Rightarrow 56 = (5+x)(4+x) \Rightarrow x = 3$$
142 **(b)**
Total number of outcomes=36
Favourable outcomes are
(3,6),(4,5),(5,5),(6,5),(6,4),(4,6),(6,3),(5,4),(6,6),
(5,6)

Number of favourable outcomes =10

 \therefore Required probability $=\frac{10}{36}=\frac{5}{18}$ 143 (a) Required probability = $P(\overline{A} \cap \overline{B}) = 1 - P(A \cup B)$ 144 (b) $p = Probability of success (s) = \frac{2}{6} = \frac{1}{3}$ q = Probability of failure $(f) = 1 - \frac{1}{2} = \frac{2}{2}$ Probability that success occurs in even number of tosses $= P(fs) + P(f f f s) + P(f f f f f s) + \dots$ $= qp + q^3p + q^5p + \ldots = \frac{qp}{1 - a^2}$ $=\frac{\frac{2}{3}\times\frac{1}{3}}{1-\left(\frac{2}{3}\right)^5}=\frac{\frac{2}{9}}{1-\frac{4}{9}}=\frac{2}{9}\times\frac{9}{5}=\frac{2}{5}$ 145 **(b)** Consider the following events: $A \rightarrow$ Getting head on first coin $B \rightarrow$ Getting head on second coin $C \rightarrow$ Getting 3 or 6 on die

These three events are independent with respective probabilities given by

$$P(A) = \frac{1}{2}, P(B) = \frac{1}{2}, P(C) = \frac{2}{6} = \frac{1}{3}$$

∴ Required probability = $P(A \cap B \cap C)$
= $P(A) P(B) P(C)$
= $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} = \frac{1}{12}$

146 **(b)**

Let p be the probability of getting an even number. Then by hypothesis, the probability of getting an odd number in 3p. Since the events of getting an even number and an odd number are mutually exclusive and exhaustive

 $\therefore p + 3\,p = 1 \, \Rightarrow p = 1/4$

Thus, the probability of getting an odd number in a single throw is 3/4 and that of an even number is 1/4

If the die is thrown twice, then the sum of the numbers in two throws is even if both the numbers are even or both are odd

$$\therefore \text{ Required probability} = \frac{3}{4} \times \frac{3}{4} + \frac{1}{4} \times \frac{1}{4} = \frac{10}{16} = \frac{5}{8}$$

147 **(d)**

 $P(A \cup B) = P(A) + P(B) - P(AB)$ $P(A \cup B) = P(A) + P(B) - P(A) \cdot P(B)$ (A and B are independents events) $= \frac{1}{5} + \frac{1}{7} - \frac{1}{35} = \frac{11}{35}$ 148 (c)

If the last digit is 2,4,6 or 8, none of the numbers

can end in 0 or 5 and one of the last digits must be even. Now 8n is the number of ways in which 0 and 5 can be excluded and of these we have further to include 4n cases in which the last digit can be selected solely from 1,3,7 or 9 : Favourable number of ways = $8^n - 4^n$ Hence, required probability = $\frac{8^n - 4^n}{10^n} = \frac{4^n - 2^n}{5^n}$ 150 (b) Given, $P(X = 0) = \frac{144}{169}$ and $P(X = 1) = \frac{1}{169}$ P(X = 2) = 1 - P(X = 1) - P(X = 0) $= 1 - \frac{1}{169} - \frac{144}{169} = \frac{169 - 145}{169} = \frac{24}{169}$ 151 (d) Since, $A = \{4, 5, 6\}$ and $B = \{1, 2, 3, 4\}$ $\therefore A \cap B = \{4\}$ $\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\Rightarrow P(A \cup B) = \frac{3}{6} + \frac{4}{6} - \frac{1}{6} = 1$ 152 (d) Given, $P(A) = P(B) = P(C) = \frac{1}{4}$ P(AB) = P(CB) = 0and $P(AC) = \frac{1}{2}$ Now, P(A + B) = P(A) + P(B) - P(AB) $=\frac{1}{4}+\frac{1}{4}-0=\frac{1}{2}$ 153 (a) Consider the following events: A = A student is passed in Mathematics, B = A student is passed in Statistics Clearly, $P(A) = \frac{70}{125}, P(B) = \frac{55}{125}, P(A \cap B) = \frac{30}{125}$ \therefore Required probability = $P(A \cap \overline{B}) + P(\overline{A} \cap B)$ \Rightarrow Required probability = $P(A) - P(A \cap B) +$ $P(B) - P(A \cap B)$

 $\Rightarrow \text{Required probability} = \frac{70}{125} + \frac{55}{125} - \frac{60}{125} = \frac{65}{125} = \frac{13}{25}$

154 **(d)**

Total number of cases= $6^3 = 216$ Favorable cases are (4,4,5),(4,5,4),(5,4,4),(4,5,5),(5,4,5),(5,5,4),(5,5,5),(4,4,4,4). \therefore Total number of cases=8 $\therefore \text{Required probability} = \frac{8}{216} = \frac{1}{27}$

155 (d)

Since, A and B are independent events.

$$\therefore P(A \cap B) = P(A).P(B) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$

Now, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
$$= \frac{1}{2} + \frac{1}{3} - \frac{1}{6} = \frac{2}{3}$$
$$\therefore P(\bar{A} \cap \bar{B}) = 1 - P(A \cup B)$$
$$= 1 - \frac{2}{3} = \frac{1}{3}$$

156 **(c)**

Consider the following events : A = Selecting a month of the year $B = 13^{th}$ day of a month is Friday We have, $P(A) = \frac{1}{12}$ and $P(B/A) = \frac{1}{7}$ \therefore Required probability = $P(A \cap B)$ $= P(A)P(B/A) = \frac{1}{12} \times \frac{1}{7} = \frac{1}{84}$

157 (d)

Here, $n(S) = 2^3 = 8$ and $E = \{HTH, HHT, THH, HHH\}$ and n(E) = 4 \therefore Required probability $= \frac{n(E)}{n(S)} = \frac{4}{8} = \frac{1}{2}$

158 **(b)**

There are 10 letters in the word "REGULATION". These 10 letters can be arranged in 10 ! ways Exactly 4 letters can be put between *R* and *E* in ${}^{8}C_{4} \times 4 ! \times 2 ! \times 5 !$ ways

Hence, required probability = $\frac{{}^{8}C_{4} \times 4! \times 2! \times 5!}{10!} = \frac{1}{9}$

159 **(d)**

Three possible cases are

I I I I I I I I I I			
Ist draw	IIst draw	IIIst draw	
Red	Non Red	Red	
Non Red	Red	Red	
Non Red	Non Red	Red	
∴ Required probability			
$=\frac{2}{8}\times\frac{6}{7}\times\frac{6}{6}$	$\frac{1}{6} + \frac{6}{8} \times \frac{2}{7} \times$	$\frac{1}{6} + \frac{6}{8} \times \frac{5}{7} \times \frac{2}{6}$	
$=\frac{1}{56}$			

161 (c)

Here, number of errors per page

$$p = \frac{150}{500} = \frac{1}{2}$$

and n = 2

$$\therefore \ \lambda = np = 2 \times \frac{1}{2} = 1$$

and probability of no error

$$P(X = 0) = \frac{e^{-1} \times (1)^0}{0!} = e^{-1}$$

162 **(b)**

 $S = \{BBB, BBG, BGB, GBB, GGB, GBG, BGG, GGG\}$ and $E = \{BBB, BBG, BGB, GBB, GGB, GBG, BGG\}$ n(E) = 7 and n(S) = 8 $\therefore P(E) = \frac{n(E)}{n(S)} = \frac{7}{8}$

163 **(c)**

 $P \text{ (getting a queen)} = \frac{4}{52} = \frac{1}{13}$ $P \text{ (getting a heart)} = \frac{13}{52} = \frac{1}{4}$ $P \text{ (getting a heart queen)} = \frac{1}{52}$ $P \text{ (queen or heart)} = \frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{4}{13}$

164 **(d)**

Probability of getting score 9 in a single throw

$$=\frac{4}{36}=\frac{1}{9}$$

Probability of getting score 9 exactly in double throw

$$= {}^{3}C_{2} \times \left(\frac{1}{9}\right)^{2} \times \frac{8}{9} = \frac{8}{243}$$

165 **(b)**

Three letters can be placed in three envelops in 3 ! ways.

There is only one way of putting all the letters in the correct envelops

Hence, required probability = 1/6

166 **(a)**

From Venn diagram, we can see that

$$A \cap B \cap \overline{C}$$

$$B$$

$$\overline{A \cap B \cap \overline{C}}$$

$$B$$

 $P(B \cap C) = P(B) - P(A \cap B \cap \overline{C}) - P(\overline{A} \cap B \cap \overline{C})$ $= \frac{3}{4} - \frac{1}{3} - \frac{1}{3} = \frac{1}{12}$

167 (a)

Required probability=
$$P(WR) + P(RW) + P(RR)$$

= $\frac{6}{10} \times \frac{4}{9} + \frac{4}{10} \times \frac{6}{9} + \frac{6}{10} \times \frac{5}{9}$

$$=\frac{24+24+30}{90}=\frac{78}{90}$$

168 **(b)**

Since each entry (element) of a 2×2 matrix, with elements 0 and 1 only, can be filled in 2 ways. Therefore, the total number of 2×2 matrices $= 2^4 = 16$ There are three 2×2 matrices whose determinants are positive viz. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ Hence, the required probability = $\frac{3}{16}$

169 (d)

Let A = Event of getting even number on first die $=\{(2, 1), \dots, (2, 6)\}$ (4, 1)....(4, 6) (6, 1).....(6, 6)and B = Events of getting a sum of 8 $= \{(2,6), (3,5), (4,4), (5,3), (6,2)\}$ $A \cap B = \{(2, 6), (4, 4), (6, 2)\}$ \therefore $n(A) = 18, n(B) = 5, n(A \cap B) = 3$ $\Rightarrow n(A \cup B) = 18 + 5 - 3 = 20$ $\therefore P(A \cup B) = \frac{n(A \cup B)}{n(S)} = \frac{20}{36} = \frac{5}{9}$

170 (d)

Total number of cases = $4 \times 5 \times 5 = 100$ Favourable cases are 222, 444, 666, 888 Number of favourable cases = 4 \therefore Required probability= $\frac{4}{100} = \frac{1}{25}$

171 (c)

Let *W* denotes the events of drawing a white ball at any draw and *B* that for a black ball.

Then
$$P(W) = \frac{a}{a+b}$$
, $P(B) = \frac{b}{a+b}$
 $P(A \text{ wins the game}) = P(W \text{ or } BBBBW \text{ or } ...)$
 $= P(W) + P(B)P(B)P(W)$
 $+ P(B)P(B)P(B)P(B)P(B)P(W)+....$
 $= \frac{P(W)}{1-P(B)^2} = \frac{\frac{a}{a+b}}{1-\frac{b^2}{(a+b)^2}} \frac{a(a+b)}{a^2+2ab} = \frac{(a+b)}{a+2b}$
Also $P(B \text{ wins the game}) = 1 - \frac{a+b}{a+2b} = \frac{b}{a+2b}$
According to the given condition,
 $\frac{a+b}{a+2b} = 3 \cdot \frac{b}{a+2b} \Rightarrow a = 2b \Rightarrow a : b = 2 : 1$

A leap year consists of 366 days ie, 52 full weeks and two extra days. These two extra days can be any one of the following possible outcomes; (i) Monday and Tuesday, (ii) Tuesday and Wednesday, (iii) Wednesday and Thursday, (iv) Thursday and Friday, (v) Friday and Saturday, (vi) Saturday and Sunday, (vii) Sunday and Monday.

Let *A* and *B* be the events that a leap year contains 53 Thursdays and 53 Fridays respectively. Then,

$$P(A) = \frac{2}{7}, P(B) = \frac{2}{7} \text{ and } P(A \cap B) = \frac{1}{7}$$

∴ Required probability is given by

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= \frac{2}{7} + \frac{2}{7} - \frac{1}{7} = \frac{3}{7}$$

173 (a)

We know that, *P* (exactly one of *A* or *B* occurs) $= P(A) + P(B) - 2P(A \cap B)$ Therefore, $P(A) + P(B) - 2P(A \cap B) = p$...(i) Similarly, $P(B) + P(C) - 2P(B \cap C) = p$...(ii) and $P(C) + P(A) - 2P(C \cap A) = p$(iii) Adding Eqs. (i), (ii) and (iii), we get $2[P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C)]$ $-P(C \cap A) = 3P$ $\Rightarrow P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) P(C \cap A) = \frac{3P}{2}$ (iv) We are also given that $P(A \cap B \cap C) = p^2 \quad \dots(v)$ Now, *P* (at least one of *A*, *B* and *C*) $= P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) P(C \cap A) + P(A \cap B \cap C)$ [from Eqs. (iv) and (v)] $=\frac{3p}{2}+p^{2}$ $=\frac{3p+p^2}{2}$ 174 (c)

Given, ASSISTANT \rightarrow AA I N SSS TT \rightarrow STATISTICS→AC II SSS TTT Hence, N and C are not common Same letters can be A, I, S, T Probability of choosing 'A'

$$\frac{{}^{2}C_{1}}{{}^{9}C_{1}} \times \frac{{}^{1}C_{1}}{{}^{10}C_{1}} = \frac{2}{9} \times \frac{1}{10} = \frac{1}{45}$$
Probability of choosing '*I*'

172 (a)

$$= \frac{1}{{}^{9}C_{1}} \times \frac{{}^{2}C_{1}}{{}^{10}C_{1}} = \frac{1}{9} \times \frac{2}{10} = \frac{1}{45}$$
Probability of choosing 'S'
$$= \frac{{}^{3}C_{1}}{{}^{9}C_{1}} \times \frac{{}^{3}C_{1}}{{}^{10}C_{1}} = \frac{3}{9} \times \frac{3}{10} = \frac{1}{10}$$
Probability of choosing 'T'
$$= \frac{{}^{2}C_{1}}{{}^{9}C_{1}} \times \frac{{}^{3}C_{1}}{{}^{10}C_{1}} = \frac{2}{9} \times \frac{3}{10} = \frac{1}{15}$$
Hence, required probability
$$= \frac{1}{45} + \frac{1}{45} + \frac{1}{10} + \frac{1}{15} = \frac{19}{90}$$
175 **(b)**

First we fix the position of a girl between one place. Girls can be arranged in 3! ways.
There are four alternate places to be left.
Therefore four boys occupy the place in 4! ways.
∴ The favourable cases = 4! × 3!
Hence, the required probability

$$=\frac{4!\times3!}{7!}=\frac{6}{7\times6\times5}=\frac{1}{35}$$
176 (a)

Required probability= $1 - \left(\frac{1}{2}\right)^4 = \frac{15}{16}$

177 **(a)**

A coin is tossed *n* times.

 \therefore Total number of ways = 2^n

If head comes odd times, then favourable ways $= 2^{n-1}$.

∴ Required probability of getting odd times head = $\frac{2^{n-1}}{2^n} = \frac{1}{2}$

178 **(a)**

Out of numbers 1,2,3, ...,100 one number can be chosen in ${}^{100}C_1$ ways.

Clearly, 1,8,27,64 are cubes between 1 and 100 \therefore Required probability = $\frac{4}{100} = \frac{1}{25}$

179 **(d)**

We have, $1 + 2 + 3 + \dots + 9 = 45$. Therefore, a seven digit number formed will be divisible by 9, if the two digits which are not used are 1,8 or 2,7 or 3,6 or 4,5 \therefore Favourable number of ways = 4 Since two digits out of 9 can be left in ${}^{9}C_{2}$ ways \therefore Total number of ways = ${}^{9}C_{2}$

Thus, the probability of the required event

$$=\frac{4}{{}^{9}C_{2}}=\frac{1}{9}$$

180 **(b)**

Required probability $=\frac{{}^{5}C_{1}}{{}^{10}C_{1}}=\frac{5}{10}=\frac{1}{2}$

Required probability = 1 - P(not opened the lock in *n* trials) = 1 - $\left(\frac{n-1}{n}\right)^n$ 182 (b) Given, $P(\overline{A \cup B}) = \frac{1}{6}$ $\Rightarrow 1 - P(A \cup B) = \frac{1}{6}$ $\Rightarrow 1 - P(A) - P(B) + P(A \cap B) = \frac{1}{6}$ $\Rightarrow P(\overline{A}) - P(B) + P(A \cap B) = \frac{1}{6}$ $\Rightarrow \frac{1}{4} - P(B) + \frac{1}{4} = \frac{1}{6}$ $\Rightarrow P(B) = \frac{1}{3}$ and $P(A) = 1 - P(\overline{A}) = 1 - \frac{1}{4} = \frac{3}{4}$

Since, $P(A \cap B) = P(A) \cdot P(B)$ so the events *A* and *B* are independent events but not equally likely

183 **(b)**

Here, A and B are independent events

 $\therefore P(A \cap B) = P(A).P(B) = 0.06$ Now, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

$$= 0.2 + 0.3 - 0.06 = 0.44$$

184 **(a)**

According to the condition $1 - \left(\frac{3}{4}\right)^n \ge \frac{9}{10}$

$$\Rightarrow \left(\frac{3}{4}\right)^n \le 1 - \frac{9}{10} = \frac{1}{10}$$
$$\Rightarrow \left(\frac{4}{3}\right)^n \ge 10$$

$$\Rightarrow n[\log_{10} 4 - \log_{10} 3] \ge \log_{10} 10 = 1$$

$$\Rightarrow n \ge \frac{1}{\log_{10} 4 - \log_{10} 3}$$

185 **(b)** Let *E* be the event of getting 1 on a die $\Rightarrow P(E) = \frac{1}{6}$ and $P(\overline{E}) = \frac{5}{6}$ $\therefore P(\text{first time 1 occurs at the even throw})$ $= t_2 \text{ or } t_4 \text{ or } t_6 \text{ or } t_8 \dots \text{ and so on.}$

$$= \{P(\bar{E}_{1}).P(E_{2})\} + \{P(\bar{E}_{1})P(\bar{E}_{2})P(\bar{E}_{3})P(E_{4})\} + \dots \infty$$
$$= \left(\frac{5}{6}.\frac{1}{6}\right) + \left(\frac{5}{6}\right)^{3} \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^{3} \left(\frac{1}{6}\right) + \dots \infty$$
$$= \frac{\frac{5}{36}}{1 - \frac{25}{36}} = \frac{5}{11}$$

Required probability = P(Ist is red and IInd is blue)= P(Ist is blue and IInd is also blue) $=\frac{3}{8}\times\frac{5}{7}+\frac{5}{8}\times\frac{4}{7}=\frac{5}{8}$ 189 (c)

> Favourable ways, $= {}^{5}C_{3} \times {}^{6}C_{4} = {}^{5}C_{2} \times {}^{6}C_{2}$ and total number of ways = ${}^{11}C_7$ $\therefore \text{Required probability} = \frac{{}^{5}C_{2} \times {}^{6}C_{2}}{{}^{11}C_{7}}$

190 (c)

The roots of the equation $x^2 + px + \frac{p}{4} + \frac{1}{2} = 0$ are real, if $p^2 - 4\left(\frac{p}{4} + \frac{1}{2}\right) \ge 0$ $\Rightarrow p^2 - p - 2 \ge 0 \Rightarrow p \ge 2 \text{ or } p \le -1 \Rightarrow 2 \le p \le 2$ $5 [:: 0 \le p \le 5]$

Hence, required probability $=\frac{\int_2^5}{\int_0^5 dp} = \frac{5-2}{5-0} = \frac{3}{5}$

191 (c)

Probability of getting a king $=\frac{4}{52}=\frac{1}{13}$ Probability of getting a spade $=\frac{13}{52}=\frac{1}{4}$ Probability of getting king and a spade = $\frac{1}{52}$ \therefore P(king or spade) = P(king) + P(spade) - P(king) and spade) $=\frac{1}{13}+\frac{1}{4}-\frac{1}{52}=\frac{4+13-1}{52}=\frac{16}{52}=\frac{4}{13}$ 192 **(b)** $P(\overline{A}) = 0.2, P(\overline{B}) = 0.3$ P(A) = 0.8, P(B) = 0.7∴ Required probability $= P(\overline{A})P(B) + P(A)P(\overline{B}) + P(\overline{A})P(\overline{B})$ $= 0.2 \times 0.7 + 0.8 \times 0.3 + 0.2 \times 0.3$ = 0.44

193 (d)

Given, np = 4, npq = 2

$$\Rightarrow p = q = \frac{1}{2}$$

Also, n = 8

∴ Probability of 2 successes,

$$P(X = 2) = \frac{8!}{2! \times 6!} \times \left(\frac{1}{2}\right)^2 \times \left(\frac{1}{2}\right)^6 = \frac{28}{256}$$

194 (a)
We have,
$$np = 25$$

Now,
 $0 \le p < 1$ and $0 \le q \le 1$
 $\Rightarrow 0 \le npq \le np$
 $\Rightarrow 0 \le \sqrt{npq} \le \sqrt{np}$
 $\Rightarrow 0 \le S. D. \le 5$
But, $p \ne 0$, therefore $0 \le S. D. < 5 \Rightarrow S. D. \in [0, 5)$
195 (c)
Given, $P(A) = 0.3, P(B) = 0.4, P(C) = 0.8,$
 $P(A \cap B) = 0.08, P(A \cap C) = 0.28,$
 $P(A \cap B \cap C) = 0.09$
Since, $P(A \cup B \cup C) \ge 0.75$
 $\Rightarrow P(A) + P(B) + P(C) - P(A \cap C) - P(A \cap C)$
 $-P(B \cap C) + P(A \cap B \cap C) \ge 0.75$
 $\Rightarrow 0.3 + 0.4 + 0.8 - 0.08 - 0.28 - P(B \cap C)$
 $+ 0.09 \ge 0.75$
 $\Rightarrow P(B \cap C) \le 0.48$
Also, $P(A \cup B \cup C) \le 1$
 $\Rightarrow 1.23 - P(B \cap C) \le 1$
 $\Rightarrow P(B \cap C) \ge 0.23$
 $\therefore 0.23 \le P(B \cap C) \le 0.48$
196 (c)
Total number of ways = 16
The favourable ways are
 $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix}$
 \therefore Required probability $= \frac{3}{16}$
197 (c)
Given, distribution is

 $\begin{array}{c|c} \mathbf{A} & \mathbf{C} \\ \hline \mathbf{P}(\mathbf{X}) & \frac{1}{3} & \frac{1}{2} \\ \therefore \text{ Mean, } m = \sum_{i=1}^{4} p_i x_i \end{array}$ $= 0 \times \frac{1}{3} + 1 \times \frac{1}{2} + 2 \times 0 + 3 \times \frac{1}{6}$

0

 $\frac{1}{2}$

3

 $\frac{1}{6}$

$$= 0 + \frac{1}{2} + 0 + \frac{1}{2} = 1$$

Variance, $\sigma^2 = \sum_{i=1}^4 p_i (x_1 - m)^2$
$$= \frac{1}{3} (0 - 1)^2 + \frac{1}{2} (1 - 1)^2 + 0(2 - 1)^1$$

$$+ \frac{1}{6} (3 - 1)^2$$

$$= \frac{1}{3} + 0 + 0 + \frac{2}{3} = 1$$

 $\therefore m = \sigma^2 = 1$

198 (a)

Probability of getting a head $=\frac{1}{2}$

$$ie, p = \frac{1}{2} \Rightarrow q = \frac{1}{2}$$

$$\therefore \text{ Required probability} = {}^{10}C_5 \left(\frac{1}{2}\right)^5 \left(\frac{1}{2}\right)^5$$

$$= \frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2} \left(\frac{1}{2}\right)^{10} = \frac{63}{256}$$

199 **(b)**

For *X* binomial variate $B(5, \frac{1}{2})$

$$\Rightarrow p = \frac{1}{2}, n = 5, q = \frac{1}{2}$$

For *Y* binomial variate B $\left(7, \frac{1}{2}\right)$

$$\Rightarrow p = \frac{1}{2}, n = 7, q = \frac{1}{2}$$

Now, X + Y = 3

(i) When X = 0, Y = 3, possible cases

$$= {}^{5}C_{0} \left(\frac{1}{2}\right)^{5} \cdot {}^{7}C_{3} \left(\frac{1}{2}\right)^{7}$$
$$= 35 \left(\frac{1}{2}\right)^{12}$$

(ii) When X = 1, Y = 2, possible cases

$$={}^{5} C_{1} \left(\frac{1}{2}\right)^{5} \cdot {}^{7} C_{2} \left(\frac{1}{2}\right)^{7}$$
$$= 105 \left(\frac{1}{2}\right)^{12}$$

(iii) When X = 2, Y = 1, possible cases

$$= {}^{5}C_{2}\left(\frac{1}{2}\right)^{5} \cdot {}^{7}C_{1}\left(\frac{1}{2}\right)^{7}$$

$$= 70 \left(\frac{1}{2}\right)^{12}$$
(iv) When $X = 3, Y = 0$, possible cases

$$= {}^{5}C_{3} \left(\frac{1}{2}\right)^{3} \cdot {}^{7}C_{0} \left(\frac{1}{2}\right)^{7}$$

$$= 10 \left(\frac{1}{2}\right)^{12}$$

$$\therefore \text{ Total cases} = \left(\frac{1}{2}\right)^{12} [35 + 105 + 70 + 10]$$

$$= \frac{220}{2^{12}} = \frac{55}{1024}$$
201 (a)
Since the given distribution is a probability distribution

$$\therefore 0 + 2n + 2n + 3n + n^{2} + 2n^{2} + 7n^{2} + 2n$$

$$\begin{array}{l} \dots 0 + 2p + 2p + 3p + p^{-} + 2p^{-} + 7p^{-} + 2p \\ = 1 \\ \Rightarrow 10p^{2} + 9p - 1 = 0 \Rightarrow (10p - 1)(p + 1) = 0 \\ \Rightarrow p = 1/10 \end{array}$$

202 **(a)**

We have,

$$P(E \cap F) = \frac{1}{12} \text{ and } P(\overline{E} \cap \overline{F}) = \frac{1}{2}$$

$$\Rightarrow P(E)P(F) = \frac{1}{12} \text{ and } P(\overline{E})P(\overline{F}) = \frac{1}{2}$$
[: E and F are independent events]

$$\Rightarrow P(E)P(F) = \frac{1}{12} \text{ and } \{1 - P(E)\}\{1 - P(F)\} = \frac{1}{2}$$

$$\Rightarrow P(E)P(F) = \frac{1}{12} \text{ and } 1 - \{P(E) + P(F)\} + \frac{1}{12}$$

$$= \frac{1}{2}$$

$$\Rightarrow P(E)P(F) = \frac{1}{12} \text{ and } 1 - \{P(E) + P(F)\} + \frac{1}{12}$$

$$= \frac{1}{2}$$

$$\Rightarrow P(E)P(F) = \frac{1}{12} \text{ and } P(E) + P(F) = \frac{7}{12}$$
The quadratic equation having $P(E)$ and $P(F)$ as its roots is

$$x^{2} - \{P(E) + P(F)\}x + P(E)P(F) = 0$$

$$\Rightarrow x^{2} - \frac{7}{12}x + \frac{1}{12} = 0 \Rightarrow x = \frac{1}{3}, \frac{1}{4}$$

$$\therefore P(E) = \frac{1}{3} \text{ and } P(F) = \frac{1}{4} \text{ or, } P(E) = \frac{1}{4} \text{ and } P(F)$$

$$= \frac{1}{3}$$

203 **(a)**

We have, p = Probability of getting at least 3 in a throw

$$=\frac{4}{6} = \frac{2}{3}$$

$$\therefore q = 1 - p = \frac{1}{3}$$

Required probability

$$= {}^{6}C_{3} \left(\frac{2}{3}\right)^{3} \left(\frac{1}{3}\right)^{3} + {}^{6}C_{4} \left(\frac{2}{3}\right)^{4} \left(\frac{1}{3}\right)^{2} + {}^{6}C_{5} \left(\frac{2}{3}\right)^{5} \left(\frac{1}{3}\right)^{4} + {}^{6}C_{6} \left(\frac{2}{3}\right)^{6}$$

$$+ {}^{6}C_{6} \left(\frac{2}{3}\right)^{6}$$

$$= 41 \times \frac{2^{4}}{3^{6}}$$

Given $P(A \cup B) = 0.6$, $P(A \cap B) = 0.3$ $\therefore P(A') + P(B')$ $= 1 - P(A) + 1 - P(B) = 2 - \{P(A) + P(B)\}$ $= 2 - \{P(A \cup B) + P(A \cap B)\}$ $= 2 - \{0.6 + 0.3\} = 2 - 0.9 = 1.1$ (c)

206 **(c)**

Given, $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{3}$ and $P(C) = \frac{1}{4}$ $\therefore P(A') = \frac{2}{3}$, $P(B') = \frac{2}{3}$ and $P(C') = \frac{3}{4}$ Now, $P(A' \cap B' \cap C') = P(A')P(B')P(C')$ [$\because A, B$ and C are independent events] $= \frac{2}{3} \times \frac{2}{3} \times \frac{3}{4} = \frac{1}{3}$

207 (c)

Total number of elementary events = $6^3 = 216$ Favourable number of elementary events = Coeff. of x^{15} in $(x^1 + x^2 + x^3 + \dots + x^6)^3$ = Coeff. of x^{15} in $x^3 \left(\frac{1-x^6}{1-x}\right)^3$ = Coeff. of x^{15} in $(1 - 3x^6 + 3x^{12} - x^{18})(1-x)^{-3}$ = Coeff. of x^{12} in $(1 - x)^{-3}$ - 3 Coeff. of x^6 in $(-x)^{-3}$ + 3 Coeff. of x^0 in $(1 - x)^{-3}$ = ${}^{12+3-1}C_{3-1} - 3 \times {}^{6+3-1}C_{3-1} + 3 = {}^{14}C_2 - 3$ = ${}^{14}C_2 - 3 \times {}^{8}C_2 + 3 = 91 - 84 + 3 = 10$ So, required probability = $\frac{10}{216} = \frac{5}{108}$ 208 (d) For a Poisson distribution, mean = variance

⇒ Variance = 16 ∴ Standard deviation = $\sqrt{Variance}$ = $\sqrt{16} = 4$

209 (a)

The sum of two numbered on a dice is odd only, whence once is odd and second is even. ∴ Required probability

 $= 2 \times \text{probability of odd number}$

×probability of even number

[: Here, we multiply by 2 because either the even number is on first or second dice.]

$$= 2 \times \left(\frac{5}{6}\right) \times \left(\frac{1}{6}\right) = \frac{5}{18}$$

210 **(b)** In binomial distribution, variance = npq and mean = np. From the given condition npq = 3 and np = 4 $\therefore \frac{npq}{np} = \frac{3}{4}$ $\Rightarrow q = \frac{3}{4}, p = \frac{1}{4}$ and n = 16Probability of exactly six success $= {}^{16}C_6 \left(\frac{1}{4}\right)^6 \left(\frac{3}{4}\right)^{10}$

211 (a)

Since A and B are independent events

$$\therefore P(A \cap B) = \frac{1}{6} \text{ and } P(\overline{A} \cap \overline{B}) = \frac{1}{3}$$

$$\Rightarrow P(A)P(B) = \frac{1}{6} \text{ and } P(\overline{A})P(\overline{B}) = \frac{1}{3}$$

$$\Rightarrow P(A)P(B) = \frac{1}{6} \text{ and } \{(1 - P(A))\}\{(1 - P(B))\}$$

$$= \frac{1}{3}$$

$$\Rightarrow 1 - [P(A) + P(B)] + \frac{1}{6} = \frac{1}{3}$$

$$\Rightarrow P(A) + P(B) = \frac{5}{6}$$
Solving $P(A) P(B) = \frac{1}{6} \text{ and } P(A) + P(B) = \frac{5}{6}, \text{ we get}$

$$P(A) = \frac{1}{2} \text{ and } P(B) = \frac{1}{3} \text{ or, } P(A) = \frac{1}{3} \text{ and } P(B)$$

$$= \frac{1}{2}$$

Hence, option (a) is correct

212 **(b)** Since, *A* and *B* are independent events $\therefore P(A)P(B) = \frac{1}{6}$ and $P(\bar{A})P(\bar{B}) = \frac{1}{3}$ $\Rightarrow [1 - P(A)][1 - P(B)] = \frac{1}{3}$ $\Rightarrow 1 - [P(A) + P(B)] + P(A)P(B) = \frac{1}{3}$ $\Rightarrow 1 + \frac{1}{6} - \frac{1}{3} = P(A) + P(B)$ $\Rightarrow P(A) + P(B) = \frac{5}{6}$ $\Rightarrow P(A) = \frac{1}{2}, P(B) = \frac{1}{3},$ or $P(A) = \frac{1}{3}, P(B) = \frac{1}{2}$ 213 **(a)** $7^1 = 7, 7^2 = 49, 7^3 = 343, 7^4 = 2401, \dots$ Therefore, for $7^r, r \in N$ the no. ends at unit place 7, 9, 3, 1, 7,

 $\therefore 7^m + 7^n$ will be divisible by 5, if it end at 5 or 0. But it cannot end at 5.

Also it cannot end at 0.

For this *m* and *n* should be as follows :

	т	n
1	4 <i>r</i>	4r + 2
2	4r + 1	4 <i>r</i> + 3
3	4r + 2	4 <i>r</i>
4	4r + 3	4r + 1

For any given value of *m*, there will be 25 values of *n*. Hence, the probability of the required event is $\frac{100 \times 25}{100 \times 100} = \frac{1}{4}$.

214 **(c)**

A dice is thrown thrice, $n(S) = 6 \times 6 \times 6$ Favorable events of $\omega^{r_1} + \omega^{r_2} + \omega^{r_3} = 0$ *ie*, (r_1, r_2, r_3) are ordered triplets which can take values,

(1, 2, 3), (1, 5, 3), (4, 2, 3), (4, 5, 3)(1, 2, 6), (1, 5, 6), (4, 2, 6), (4, 5, 6)

ie, 8 ordered triplets and each can be arranged in 3! ways = 6

$$\therefore n(E) = 8 \times 6$$

$$\Rightarrow P(E) = \frac{8 \times 6}{6 \times 6 \times 6}$$

$$= \frac{2}{9}$$

We have,

Total number of functions from *A* to itself = n^n Out of these functions, *n*! Function are injections So, required probability = $\frac{n!}{n^n} = \frac{(n-1)!}{n^{n-1}}$

216 (d)

Let A_i (i = 1,2,3,4) be the event that the urn contains 2,3,4 or 5 white balls and E the event that two white balls are drawn. Since the four events A_1, A_2, A_3, A_4 are equally likely. Therefore, $P(A_i) = \frac{1}{4}$, i = 1,2,3,4We have,

 $P(E/A_1)$ = Prob. that the urn contains 2 white balls and both have been drawn

$$\Rightarrow P(E/A_1) = \frac{{}^2C_2}{{}^5C_2} = \frac{1}{10}$$

Similarly, we have

$$P(E/A_2) = \frac{{}^{3}C_2}{{}^{5}C_2} = \frac{3}{10}, P(E/A_3) = \frac{{}^{4}C_2}{{}^{5}C_2}$$
$$= \frac{3}{5}, P(E/A_4) = \frac{{}^{5}C_2}{{}^{5}C_2} = 1$$

Required probability = $P(A_4/E) = \frac{P(A_4)P(E/A_4)}{\sum_{i=1}^{4} P(A_i)P(E/A_i)}$

$$=\frac{\frac{1}{4}\times 1}{\frac{1}{4}\left(\frac{1}{10}+\frac{3}{10}+\frac{3}{5}+1\right)}=\frac{1}{2}$$

217 **(b)**

There are 11 letters in word 'PROBABILITY' out of which 1 can be selected in ¹¹C₁ ways. There are four vowels viz. *A*, *I*, *O*. Therefore, Number of ways of selecting a vowel = ${}^{4}C_{1} = 4$ Hence, required probability = $\frac{4}{11}$

218 **(b)**

If the show a six, then number of outcomes =8 If die not show a six. Then number of outcomes=2 \therefore Sample space = $1 \times 8 + 2 \times 5 = 18$ points

1

219 **(c)**

Given,
$$n = 6$$
 and

$$P(X = 2) = 9P(X = 4)$$

$$\Rightarrow {}^{6}C_{2}p^{2}q^{4} = 9.{}^{6}C_{4}p^{4}q^{2}$$

$$\Rightarrow 9p^{2} = q^{2}$$

$$\Rightarrow P = \frac{1}{3}q$$

$$\therefore \text{ We know that } p + q =$$

$$\Rightarrow \frac{q}{2} + q = 1$$

$$\Rightarrow q = \frac{3}{4} \text{ and } p = \frac{1}{4}$$

 \therefore Variance = npq

$$= 6.\frac{1}{4}.\frac{3}{4} = \frac{9}{8}$$

220 **(a)**

222 (a)

Required probibility
$$= \frac{{}^{5}C_{1} \times {}^{8}C_{1}}{{}^{13}C_{2}} + \frac{{}^{5}C_{2}}{{}^{13}C_{2}} = \frac{25}{39}$$
221 (a)
 $P(A \cup B') = P(A) + P(B') - P(A)P(B')$
 $\therefore 0.8 = 0.3 + P(B') - 0.3P(B')$
 $\Rightarrow 0.5 = P(B')(0.7)$
 $\Rightarrow P(B') = \frac{5}{7}$
 $\therefore P(B) = 1 - \frac{5}{7} = \frac{2}{7}$

Required probability $=\frac{3}{6}=\frac{1}{2}$

223 (c)

There are two equilateral triangles in a regular hexagon

 \therefore Required probability $=\frac{2}{20}=\frac{1}{10}$

224 (c)

From the given condition it is clear that a particular person is always in a committee of 3 persons. It means we have to select 2 person out of 37 persons.

: Required probability = $\frac{{}^{37}C_2}{{}^{38}C_2}$

225 (d)

We know a leap year is fallen within 4 yr, so its probability $=\frac{25}{100}=\frac{1}{4}$.

In a century the probability of 53rd Sunday in a leap year $=\frac{1}{4} \times \frac{2}{7} = \frac{2}{28}$

Non-leap year in century = 75

Probability of selecting is non-leap year $=\frac{75}{100}=\frac{3}{4}$

53rd Sunday in non-leap year = $\frac{1}{7}$

Similarly, in a century probabilities of 53rd Cundary in a non-loon woon

$$= \frac{3}{4} \times \frac{1}{7} = \frac{3}{28}$$

$$\therefore \text{ Required probability} = \frac{2}{28} + \frac{3}{28} = \frac{5}{28}$$

226 **(b)**

There are two conditions arise.

(i) When first is an ace of heart and second one is non-ace of heart, the probability = $\frac{1}{52} \times \frac{51}{51} = \frac{1}{52}$ (ii) When first is non-ace of heart and second one is an ace of heart, the probability $=\frac{51}{52} \times \frac{1}{51} = \frac{1}{52}$ \therefore Required probability = $\frac{1}{52} + \frac{1}{52} = \frac{1}{26}$

227 (c)

We have,

Total number of binary operations on $A = n^{n^2}$ Total number of commutative binary operations on A +1)

$$= n^{\frac{n(n+1)}{2}}$$

$$\therefore \text{ Required probability} = \frac{n^{\frac{n(n+1)}{2}}}{n^{n^2}} = \frac{n^{n/2}}{n^{n^2/2}}$$

228 (a)

Required probability = $\frac{{}^{12}C_1}{{}^{20}C_1} = \frac{3}{5}$

229 (b)

 $P(A') = 1 - P(A) = 0.8, P(A' \cap B)$ will maximum, if $B \subseteq A'$ in which case $A' \cap B = B$. So, $P(A' \cap B) = P(B) = 0.5$

230 (a) The total number of ways in which 4 tickets can be drawn 5 times = $4^5 = 1024$ The number of ways of getting a sum of 23 = Coeff. of x^{23} in $(x^{00} + x^{01} + x^{10} + x^{11})^5$ = Coeff. of x^{23} in $[(1 + x)(1 + x^{10})]^5$ = Coeff. of x^{23} in $(1 + x)^5 (1 + x^{10})^5$ = Coeff. of x^{23} in {(1 + 5 x + 10 x² + 10 x³ + 5 x⁴) $+x^{5}$) (1 + 5 x^{10} + 10 x^{20} $+10 x^{30} + \cdots)$ = 100Hence, required probability $=\frac{100}{1024}=\frac{25}{256}$ 231 (c) Required probability = ${}^{6}C_{4}\left(\frac{1}{4}\right)^{4}\left(\frac{5}{6}\right)^{2} = \frac{125}{1552}$ 232 (c) In 3*n* conseecutive natural numbers, either (i) *n* numbers are of from 3*P* (ii) *n* numbers are of from 3P + 1(*iii*)*n* numbers are of from 3P + 2Here favourable number of cases = Either we can select three numbers from any of the set or we can select one from each set $= {}^{n}C_{3} + {}^{n}C_{3} + {}^{n}C_{3} + ({}^{n}C_{1} \times {}^{n}C_{1} \times {}^{n}C_{1})$ $= 3\left(\frac{n(n-1)(n-2)}{6}\right) + n^3$ $=\frac{n(n-1(n-2))}{2}+n^{3}$ Total number of selections = ${}^{3n}C_3$ ∴Required probability

$$=\frac{\frac{n(n-1)(n-2)}{2}+n^3}{\frac{3n(3n-1)(3n-2)}{6}}$$
$$=\frac{3n^2-3n+2}{(3n-1)(3n-2)}$$

233 (d)

A and B will agree in a certain statement if both speak truth or both tell a lie. We define following events

 $E_1 = A$ and B both speak truth $\Rightarrow P(E_1) = xy$

 $E_2 = A$ and B both tell a lie $\Rightarrow P(E_2) =$ (1-x)(1-y)

E = A and B agree in a certain statement

Clearly, $P(E|E_1) = 1$ and $P(E|E_2) = 1$

The required probability is $P(E_1|E)$

Using Bayes' theorem

$$P(E_{1}|E) = \frac{P(E_{1})P(E|E_{1})}{P(E_{1})P(E|E_{1}) + P(E_{2})P(E|E_{2})}$$

$$= \frac{xy.1}{xy.1 + (1-x)(1-y).1} = \frac{xy}{1-x-y+2xy}$$
234 (c)

 \therefore Total number of ways = 5!
and favourable number of ways = 2 · 4!
Hence, required probability $= \frac{2 · 4!}{5!} = \frac{2}{5}$
235 (c)
Three dice can be thrown in $6^{3} = 216$ ways.
The same number can appear on three dice in the following ways:
 $(1,1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,5), (6,6,6)$
 \therefore Favourable number of elementary events = 6
Hence, required probability $= \frac{6}{216} = \frac{1}{36}$
236 (c)
Probability that both are of red colours $= \frac{^{8}C_{2}}{^{15}C_{2}} = \frac{4}{15}$
And probability that both are of black colours
 $= \frac{^{7}C_{2}}{^{13}C_{2}} = \frac{3}{15}$
 \therefore Probability that they are of same colour
 $= \frac{4}{15} + \frac{3}{15} = \frac{7}{15}$
237 (b)
Consider the following events :
 $A = Getting 2$ black balls and 4 white in first 6 draws
 $B = Getting a$ black ball in 7th draw
Required probability $= \frac{^{3}C_{2} \times ^{10}C_{4}}{^{13}C_{6}} \times \frac{1}{7} = \frac{15}{286}$
238 (a)
 $P(A) = 0.25, P(B) = 0.50, P(A \cap B) = 0.14$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $= 0.25 + 0.50 - 0.14 = 0.61$
 $\therefore P(\overline{A} \cap \overline{B}) = P(\overline{A} \cup \overline{B}) = 1 - P(A \cup B)$
 $= 1 - 0.61 = 0.39$
239 (a)
Total number of cases = 9999
Favourable cases = 10 $\times 9 \times 8 \times 7 = 5040$
 \therefore Probability $= \frac{5040}{9999}$
Favourable cases = 10 $\times 9 \times 8 \times 7 = 5040$
 \therefore Probability $= \frac{5040}{9999}$

 \Rightarrow *c* = 1, 2, 3, 4 will satisfy the above inequality \therefore Required probability = $\frac{4}{\alpha}$ 241 (a) The required probability is given by $P\{(A \cap \overline{B}) \cup (\overline{A} \cap B)\}$ $= P(A \cap \overline{B}) + P(\overline{A} \cap B)$ [By add. Theorem for mutually] exclusive events $= P(A)P(\overline{B}) + P(\overline{A})P(B)$ [: *A*, *B* are independent events] = P(A)(1 - P(B) + (1 - (A))P(B))= P(A) + P(B) - 2 P(A)P(B) $= P(A) + P(B) - 2 P(A \cap B)$ 242 (c) Since, $P(A \cap B) = P(A)P(B)$ \Rightarrow *A* and *B* are independent events \Rightarrow A^c and B^c will also independent events Hence, $P(A \cup B)^c = P(A^c \cap B^c)$ $= P(A^c)P(B^c)$ 243 (a) Sum of Probabilities=1 $\Rightarrow p + 2p + 3p + 4p + 5p + 7p + 8p + 9p$ +10p + 11p + 12p = 1 $\Rightarrow 72p = 1 \Rightarrow p = \frac{1}{72}$ 244 (b) Let the total number of students be 100, then in which 60 girls and 40 boys As 25% of boys offer Mathematics = $\frac{25}{100} \times 40$ = 10 boys and 10% of girls offer Mathematics = $\frac{10}{100} \times 60$ = 6 girls : Total number of students, whose offers Mathematics is 16 \therefore Required probability $=\frac{6}{16}=\frac{3}{9}$ 245 (a) Let q = 1 - p. Since, head appears first time in an even throw 2 or 4 or 6 $\therefore \frac{2}{5} = qp + q^3p + q^5p + \dots$ $\therefore \frac{2}{5} = \frac{qp}{1 - q^2}$

$$\Rightarrow \frac{2}{5} = \frac{(1-p)p}{1-(1-p)^2}$$
$$\Rightarrow \frac{2}{5} = \frac{1-p}{2-p}$$
$$\Rightarrow 4-2P = 5-5P \Rightarrow p = \frac{1}{3}$$

246 **(a)**

We have, $P[(E_1 \cup E_2) \cap (\overline{E}_1) \cap (\overline{E}_2)]$ $= P[(E_1 \cup E_2) \cap (\overline{E}_1 \cap \overline{E}_2)]$ $= P[(E_1 \cup E_2) \cap (\overline{E}_1 \cup \overline{E}_2)] = P(\phi) = 0 \le 1/4$ 247 **(b)** Given, $P(A \cap B) = \frac{1}{6}$ $\Rightarrow P(A)P(B) = \frac{1}{6}$...(i) and $P(\overline{A} \cap \overline{B}) = \frac{1}{3}$ $\Rightarrow P(\overline{A})P(\overline{B}) = \frac{1}{3}$ $\Rightarrow \{1 - P(A)\}\{1 - P(B)\} = \frac{1}{3}$ $\Rightarrow \{1 - P(A)\}\{1 - P(B)\} = \frac{1}{3}$ $\Rightarrow 1 - \frac{1}{3} + P(A)P(B) = P(A) + P(B)$ $\Rightarrow \frac{2}{3} + \frac{1}{6} = P(A) + P(B)$ [from Eq.(i)] $\Rightarrow P(A) + P(B) = \frac{5}{6}$...(ii) On solving Eqs. (i) and (ii), we get

$$P(A) = \frac{1}{2}, P(B) = \frac{1}{3}$$

or $P(A) = \frac{1}{3}, P(B) = \frac{1}{2}$

249 (a)

We know, total probability distribution is 1.

$$\therefore \frac{1}{10} + k + \frac{1}{5} + 2k + \frac{3}{10} + k = 1$$
$$\Rightarrow \frac{6}{10} + 4k = 1$$
$$\Rightarrow k = \frac{1}{10}$$

250 (d)

We have, p = 3/4 and n = 5 \therefore Required probability

$$= {}^{5}C_{3}\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)^{2} + {}^{5}C_{4}\left(\frac{3}{4}\right)^{4}\left(\frac{1}{4}\right) + {}^{5}C_{5}\left(\frac{3}{4}\right)^{5}$$
$$= \frac{459}{512}$$

One red card one queen can be drawn in the following mutually exclusive ways: (I) By drawing one red card out of 24 red cards (excluding 2 red queens) and one red queen out of 2 red queens. Let this event be *A* (II) By drawing one red card out of 26 red cards (including 2 red queens) and one queen out of 2 black queens. Let *B* \therefore Required probability = $P(A \cup B) = P(A) + P(B)$ $= \frac{{}^{24}C_1 \times {}^{2}C_1}{{}^{52}C_2} + \frac{{}^{26}C_1 \times {}^{2}C_1}{{}^{52}C_2} = \frac{50}{663}$ 252 (a) Given, $4P(A) = 6P(B) = 10P(A \cap B) = 1$

$$\therefore P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{10}}{\frac{1}{4}} = \frac{2}{5}$$

Given, np = 4, $npq = 3V \Rightarrow p = \frac{1}{4}$, $q = \frac{3}{4}$

Mode is an integer *x* such that

$$\Rightarrow 4 + \frac{1}{4} > x > 4 - \frac{3}{4}$$
$$\Rightarrow 3.25 < x < 4.25$$
$$\therefore x = 4$$

$$P\left(\frac{B}{A \cup B^{c}}\right) = \frac{P(B \cap (A \cup B^{c}))}{P(A \cup B^{c})}$$
$$= \frac{P(A \cap B)}{P(A) + P(B^{c}) - P(A \cap B^{c})}$$
$$= \frac{P(A) - P(A \cap B^{c})}{P(A) + P(B^{c}) - P(A \cap B^{c})}$$
$$= \frac{0.7 - 0.5}{0.8} = \frac{1}{4}$$

255 **(b)**

The number of ways in which either player can choose a number from 1 to 25 is 25, so the total number of ways a choosing numbers is $25 \times 25 = 625$. So, the probability that they will not win a prize in a single trial

$$= 1 - \frac{1}{25} = \frac{24}{25}$$

Let *X* be the number of defective bulbs in a sample of 5 bulbs.

Probability that a bulb is defective = $p = \frac{10}{100} = \frac{1}{10}$ Then, $P(X = r) = {}^{5}C_{r} \left(\frac{1}{10}\right)^{r} \left(\frac{9}{10}\right)^{5-r}$

$$\therefore \text{ Required probability} = P(X = 0) = {}^{5}C_{0}\left(\frac{1}{10}\right)^{0}\left(\frac{9}{10}\right)^{5} = \left(\frac{9}{10}\right)^{5}$$

257 **(b)**

We know sum of probability distribution is 1

$$\therefore k + 2k + 3k + 2k + k = 1$$

$$\Rightarrow k = \frac{1}{9}$$

$$\therefore \text{ Mean, } m = \sum_{i=1}^{5} P_i x_i$$

$$= k(1) + 2k(2) + 3k(3) + 2k(4) + k(5)$$

$$= k(1 + 4 + 9 + 8 + 5) = \frac{1}{9} \times 27 = 3$$

$$\therefore (k, m) = \left(\frac{1}{9}, 3\right)$$

258 **(d)**

 $\therefore \text{ Required probability} = \frac{30+5}{60} = \frac{7}{12}$

259 **(b)**

Total number of ways= ${}^{11}C_5 = 462$ Number of ways in which 2 particular girls are included ${}^9C_3 = 84$

 \therefore Required probability= $\frac{84}{462} = \frac{2}{11}$

260 **(b)**

Required probability= 1 - P(all letters in right envelope)

$$=1-\frac{1}{n!}$$

261 **(b)**

Total number of ways = $6 \times 6 \times 6$ Favourable number of ways = 6 \therefore Required probability = $\frac{6}{6 \times 6 \times 6} = \frac{1}{36}$

262 **(a)**

Given,
$$P(A) = P(B) = x$$

and
$$P(A \cap B) = P(A' \cap B') = \frac{1}{3}$$

$$\therefore P(A' \cap B') = 1 - P(A \cup B)$$

$$\Rightarrow P(A \cup B) = 1 - \frac{1}{3} = \frac{2}{3} \quad \dots(i)$$
Also, $P(A \cup B) = P(A) + P(B) - P(A) \cap B$)
$$\Rightarrow \frac{2}{3} = 2x - \frac{1}{3} \quad [\text{from Eq } (i)]$$

$$\Rightarrow x = \frac{1}{2}$$
263 (a)

 $S = \{00,01,02,\dots,49\}$

Let *A* be the event that sum of the digits on the selected ticket is 8, then

$$A = \{08, 17, 26, 35, 44\}$$

Let *B* be the event that the product of the digits is zero

$$B = \{00, 01, 02, 03, \dots, 09, 10, 20, 30, 40\}$$

 $\therefore A \cap B = \{8\}$

 \therefore Required probability= $P\left(\frac{A}{R}\right)$

$$=\frac{P(A\cap B)}{P(B)}=\frac{\frac{1}{50}}{\frac{14}{50}}=\frac{1}{14}$$

264 **(a)**

If any number the last digits can be 0,1,2,3,4,5,6,7,8,9. Therefore, last digit of each number can be chosen in 10 ways. \therefore The last digit of all numbers can be chosen in 10^n ways. If the last digit is to be 1,3,7, or 9, then none of the numbers can be even or end in 0 or 5. Thus, we have a choice of 4 digits viz. 1,3,7, or 9 with which each of n numbers should end. So, favourable number of ways = 4^n

Hence, required probability $=\frac{4^n}{10^n}=\left(\frac{2}{5}\right)^n$

265 **(c)**

Consider the following events:

A = A worker receives bonus, B = A worker is skilled.

We have,

$$P(A) = \frac{30}{100} \text{ and } P(B/A) = \frac{20}{100}$$

∴ Required probability = $P(A \cap B) = P(A)P(B/A)$
⇒ Required probability = $\frac{30}{100} \times \frac{20}{100} = 0.06$

266 (d)

$$\therefore \text{ Required probability} = \frac{{}^{10}C_1 + {}^6C_1}{{}^{16}C_1}$$

$$= \frac{16}{16} = 1$$
267 (c)

Let E =Event of getting a head from a coin

F =Event of getting an odd number {1, 3,5}, from a die

 $P(E) = \frac{1}{2}, P(F) = \frac{3}{6} = \frac{1}{2}$

Since, *E* and *F* are independent events

∴
$$P(E \cap F) = P(E) \cap P(F) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

268 (a)

Probability that at least one shot hits the plane = 1 - P(none of the shot hits the plane) = $1 - 0.6 \times 0.7 \times 0.8 \times 0.9$ = 1 - 0.3024 = 0.6976(c)

269 **(c)**

Number of favourable cases (*HTH*, *HTH*) = 2 Number of total cases = $2^3 = 8$ \therefore Required probability = $\frac{2}{8} = \frac{1}{4}$

270 **(c)**

Consider the following events: $E_1 = \text{Selecting first bag}$ $E_2 = \text{Selecting second bag}$ A = Getting a ticket bearing number 4 $\therefore \text{ Required probability} = P((E_1 \cap A) \cup (E_2 \cap A))$ $= P(E_1 \cap A) + P(E_2 \cap A)$ $= P(E_1)P(A/E_1) + P(E_2)P(A/E_2)$ $= \frac{1}{2} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{6} = \frac{5}{24}$

271 **(b)**

We have, Required probability = ${}^{6}C_{4}\left(\frac{1}{2}\right)^{6} + {}^{6}C_{5}\left(\frac{1}{2}\right)^{6} + {}^{6}C_{6}\left(\frac{1}{2}\right)^{6} = \frac{11}{32}$ (a)

272 **(c)**

Let *X* denote the number of aces.

Probability of selecting aces,

$$P = \frac{4}{52} = \frac{1}{13}$$

Probability of not selecting aces,

$$q = 1 - \frac{1}{13} = \frac{12}{13}$$

$$P(X = 1) = 2 \times \left(\frac{1}{13}\right) \times \left(\frac{12}{13}\right) = \frac{24}{169}$$

$$P(X = 2) = 2 \left(\frac{1}{13}\right)^2 \cdot \left(\frac{12}{13}\right)^0 = \frac{2}{169}$$
Mean = $\Sigma P_1 X_i = \frac{24}{169} + \frac{2}{169} = \frac{2}{13}$
273 (d)
$$P(A) = 0.45,$$

$$P(B) = 0.35 \quad (\text{events are mutually exclusive})$$

$$\boxed{A \quad B}$$

$$P(A \cap B) = 0$$
274 (b)
$$Total cases = 4$$

$$Correct option = 1$$

$$So, probability of correct answer = \frac{1}{4}$$
275 (c)
$$P(E \cap F) = P(E) \cdot P(F)$$

$$Now, P(E \cap F) = P(E) - P(E \cap F) = P(E)[1 - P(F)]$$

$$= P(E).P(F^c)$$

and
$$P(E^c \cap F^c) = 1 - P(E \cup F)$$

$$= 1 - [P(E) + P(F) - P(E \cap F)]$$
$$= [1 - P(E)][1 - P(F)] = P(E^{c})P(F^{c})$$

Also
$$P(E/F) = P(E)$$
 and $P(E^c/F^c) = P(E^c)$

$$\Rightarrow P(E/F) + P(E^c/F^c) = 1$$

276 **(a)**

One integer can be chosen out of 200 integers in ${}^{200}C_1$ ways. Let *A* be the event that an integer selected is divisible by 6 and *B* that it is divisible by 8

Then,
$$P(A) = \frac{33}{200}$$
, $P(B) = \frac{25}{200}$
and $P(A \cap B) = \frac{8}{200}$
 $\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)$

$$=\frac{33}{200}+\frac{25}{200}-\frac{8}{200}=\frac{1}{4}$$

277 (a)

Given, np = 4, npq = 2

$$\Rightarrow p = q = \frac{1}{2}, n = 8$$

We know, $P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$

$$\therefore P(X = 1) = {}^{8}C_{1}\left(\frac{1}{2}\right)^{7}\left(\frac{1}{2}\right)^{1} = 8 \times \frac{1}{2^{8}} = \frac{1}{32}$$

278 **(b)**

Let *X* be binomial variate with parameter n = 100 and *P*

Since,
$$P(X = 50) = P(X = 51)$$
 [given]
 $\Rightarrow {}^{100}C_{50}p^{50}(1-p)^{50} = {}^{100}C_{51}p^{51}(1-p)^{49}$
 $\Rightarrow \frac{100!}{50!50!} \times \frac{51!49!}{100!} = \frac{p}{1-p}$
 $\Rightarrow \frac{51}{50} = \frac{p}{1-p}$
 $\Rightarrow p = \frac{51}{101}$

279 **(d)**

Total number=90 Number divisible by 6 are {6,12,18,24,30,36,42,48,54,60,66,72,78,84,90} Numbers divisible by 8 are {8,16,24,32,40,48,56,64,72,80,88} Numbers divisible by 6 and 8 are {24,48,72} Total number of numbers divisible by 6 or 8 = 15 + 11 - 3 = 23 \therefore Required probability= $\frac{23}{90}$

280 (a)

Let A_i denote the event that the number i appears on the die, and let E denote the event that only white balls are drawn. Then,

 $P(A_i) = \frac{1}{6} \text{ and, } P(E/A_i) = \frac{{}^6C_i}{{}^{10}C_i}, i = 1, 2, \dots, 6$ Required probability = P(E)

$$= P\left(\bigcup_{i=1}^{6} (E \cap A_{i})\right)$$

$$= \sum_{i=1}^{6} P(E \cap A_{i})$$

$$= \sum_{i=1}^{6} P(A_{i})P(E/A_{i})$$

$$= \frac{1}{6} \left\{ \frac{6}{10} + \frac{15}{45} + \frac{20}{120} + \frac{15}{210} + \frac{6}{252} + \frac{1}{210} \right\} = \frac{1}{5}$$
281 (c)
Let $P(R) = 10\% = \frac{1}{10}$
 $P(F) = 5\% = \frac{1}{20}$
 $P(R \cap F) = 3\% = \frac{3}{100}$
Probability of getting either rich or famous but not both

$$= P(R \cap F') + P(R' \cap F)$$

= $P(R) - P(R \cap F) + P(F) - P(R \cap F)$
= $P(R) + P(F) - 2P(R \cap F)$
= $\frac{1}{10} + \frac{1}{20} - \frac{6}{100} = \frac{10 + 5 - 6}{100} = 0.09$

282 (c)

Let A and B are the Ist and IInd aeroplane hit the target respectively and their corresponding probabilities are P(A) = 0.3 and P(B) = 0.2 $\Rightarrow P(\bar{A}) = 0.7 \text{ and } P(\bar{B}) = 0.8$ \therefore Required probability $= P(\bar{A})P(B) + P(\bar{A})P(\bar{B})P(\bar{A})P(B) + ...$ = (0.7)(0.2) + (0.7)(0.8)(0.7)(0.2) + ... $= 0.14[1 + (0.56) + (0.56)^2 + ...]$ $= 0.14(\frac{1}{1 - 0.56}) = 0.32$

283 **(b)**

Let probability of box B, P(B) = P

According to given condition

$$P(A) = 2P(B) = 2P$$

Now,
$$P\left(\frac{R}{A}\right) = \frac{{}^{3}C_{1}}{{}^{5}C_{1}} = \frac{3}{5}$$

and
$$P\left(\frac{R}{B}\right) = \frac{{}^{4}C_{1}}{{}^{7}C_{1}} = \frac{4}{7}$$

$$\therefore P\left(\frac{B}{R}\right) = \frac{P(B) \cdot P\left(\frac{R}{B}\right)}{P(A) \cdot P\left(\frac{R}{A}\right) + P(B) \cdot P\left(\frac{R}{B}\right)}$$

$$= \frac{p \cdot \frac{4}{7}}{P(A) - \frac{10}{7}} = \frac{10}{7}$$

$$=\frac{p.\frac{4}{7}}{2p.\frac{3}{5}+p.\frac{4}{7}}=\frac{10}{31}$$

Clearly, $P[A \cap (B \cup C)] = P[(A \cap B) \cup (A \cap C)]$ $= P(A \cap B) + P(A \cap C) - P[(A \cap B) \cap (A \cap C)]$ $= P(A \cap B) + P(B \cap C) - P(A \cap B \cap C)$

285 (a)

We have,

$$\sum_{k=0}^{4} P(X = k) = 1$$

$$\Rightarrow \sum_{k=0}^{4} C k^{2} = 1 \Rightarrow C(1^{2} + 2^{2} + 3^{2} + 4^{2}) = 1 \Rightarrow C$$

$$= \frac{1}{30}$$

286 **(a)**

Let 'H' denote the head and any of them come is 'A'.Suppose the sequence of m consecutive heads start with first throw, then

$$P[(HH \dots m \text{ times})(AA \dots n \text{ times})]$$
$$= \left(\frac{1}{2} \cdot \frac{1}{2} \dots m \text{ times}\right)(1 \dots n \text{ times})$$
$$= \left(\frac{1}{2}\right)^{m}$$

Now, suppose the sequence of *m* consecutive heads start with second throw, the first must be a tail,

$$\therefore P[T(H.H...m \text{ times})(A.A...n-1 \text{ times})]$$

$$=\frac{1}{2}\cdot\frac{1}{2^m}\times(1)^{n-1}=\frac{1}{2^{m+1}}$$

Similarly, as above

∴Required probability

$$= \frac{1}{2^m} + \left(\frac{1}{2^{m+1}} + \frac{1}{2^{m+1}} + \dots n \text{ times}\right)$$
$$= \frac{1}{2^m} + \frac{n}{2^{m+1}} = \frac{n+2}{2^{m+1}}$$

287 **(b)**

Given that, $x = 33^n$ Where, n is a positive integral value. Here, only four digits may be at the unit place ie, 1, 3, 7, 9. $\therefore n(S) = 4$

Let *E* be the event of getting 3 at its units place. n(E) = 1

$$\therefore P(E) = \frac{n(E)}{n(S)} = \frac{1}{4}$$

288 (d)

Here, two numbers are selected from {1,2,3,4,5,6,} $\Rightarrow n(S) = 6 \times 5$ {as one by one without

replacement}

Favourable cases,

First number	Possible value for second number
1	2, 3, 4, 5, 6
2	3, 4, 5, 6
3	4, 5, 6

There are 12 ways but the numbers may be interchanged

$$\therefore n(E) = 2 \times 12 = 24$$

 $\therefore \text{ Required probability} = \frac{n(E)}{n(S)} = \frac{24}{30} = \frac{4}{5}$

289 **(a)**

We have, $P(A) = \frac{1}{5}$ and $P(A \cup B) = \frac{7}{10}$ Now,

$$P(A \cup B) = \frac{7}{10}$$

$$\Rightarrow 1 - P(\overline{A})P(\overline{B}) = \frac{7}{10} [\because A \text{ and } B \text{ are independent events}]$$

$$\Rightarrow 1 - \frac{4}{5}P(\overline{B}) = \frac{7}{10} \Rightarrow \frac{4}{5}P(\overline{B}) = \frac{3}{10} \Rightarrow P(\overline{B}) = \frac{3}{8}$$

290 **(c)**

Since *A* is a finite set, therefore every injective map from *A* to itself is bijective also

 $\therefore \text{Required probability} = \frac{n!}{n^n} = \frac{(n-1)!}{n^{n-1}}$

291 (a)

We are getting a odd number of points, if it will comes (two heads, one tail and three tails)

$$\therefore P(H) = P(T) = \frac{1}{2}$$

∴Required probability=Probability of getting two heads and one tail + Probability of all three tails

$$= {}^{3}C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{1} + \left(\frac{1}{2}\right)^{3}$$
$$= 3\left(\frac{1}{2}\right)^{3} + \left(\frac{1}{2}\right)^{3}$$
$$= \frac{3}{8} + \frac{1}{8} = \frac{1}{2}$$

292 (a)

We have,

p = Probability that the bomb strikes the target = 1/2

Let *n* be the number of bombs which should be dropped to ensure 99% chance or better of completely destroying the target. Then, the probability that out of *n* bombs, at least two strike the target, is greater than 0.99

Let *X* denote the number of bombs striking the target. Then,

$$P(X = r) = {^{n}C_{r}} \left(\frac{1}{2}\right)^{r} \left(\frac{1}{2}\right)^{n-r} = {^{n}C_{r}} \left(\frac{1}{2}\right)^{n}, r$$

= 0, 1, 2, ..., n

Now,

$$\begin{split} P(X \ge 2) \ge 0.99 \\ \Rightarrow \{1 - P(X < 2)\} \ge 0.99 \\ \Rightarrow 1 - \{P(X = 0) + P(X = 1)\} \ge 0.99 \\ \Rightarrow 1 - \left\{(1 + n)\frac{1}{2^n}\right\} \ge 0.99 \\ \Rightarrow 0.01 \ge \frac{1 + n}{2^n} \\ \Rightarrow 2^n > 100 + 100 \ n \ \Rightarrow n \ge 11 \end{split}$$

Thus, the minimum number of bombs is 11

293 **(b)**

The probability of getting head at least once in *n* times

$$= 1 - P(\text{None of the trial getting head})$$
$$= 1 - \left(\frac{1}{2}\right)^{n}$$
Given $1 - \left(\frac{1}{2}\right)^{n} > 0.8 \Rightarrow \left(\frac{1}{2}\right)^{n} < 0.2$
$$\Rightarrow 2^{n} > \frac{1}{0.2} \Rightarrow 2^{n} > 5$$
Hence begins of n is 2

Hence, least value of n is 3

294 **(b)**

Required probability = $P(\bar{A}_1 \cap \bar{A}_2 \cap ... \cap \bar{A}_n)$ = $P(\bar{A}_1)P(\bar{A}_2) ... P(\bar{A}_n) = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot ... \cdot \frac{n}{n+1}$ = $\frac{1}{n+1}$

295 (d)

Given, mean= $\Sigma X_k P(X = k) = 1.3$

$$\Rightarrow X_0 P(X = 0) + X_1(X = 1) + X_2 P(X = 2)$$

$$+X_3P(X=3) = 1.3$$

$$\Rightarrow 0.P(X = 0) + 1.P(X = 1) + 2.P(X = 2)$$

+3.P(X = 3) = 1.3

$$\Rightarrow P(X = 1) + 2(0.3) + 3.2P(X = 1) = 1.3$$

 \Rightarrow 7P(X = 1) = 0.7 $\Rightarrow P(X = 1) = 0.1$ Since, P(X = 3) = 2P(X = 1) = 2(0.1) = 0.2Also, P(X = 0) + P(X = 1) + P(X = 2) +P(X = 3) = 1 $\Rightarrow P(X = 0) + 0.1 + 0.3 + 0.2 = 1$ $\Rightarrow P(X = 0) = 1 - 0.6 = 0.4$ 296 (b) *P*(getting a sum greater than 4) = 1 - P(getting a sum less than 5) ...(i) For sum 3, Number of cases=1 For sum 4, Number of cases=3 \therefore Total number of cases=4 From Eq.(i), $P = 1 - \frac{4}{216} = 1 - \frac{1}{54} = \frac{53}{54}$ 297 (d) The required probability = $\frac{{}^{6}C_{2} + {}^{4}C_{2}}{{}^{10}C_{2}} = \frac{7}{15}$ 298 (b) There are two cases arise. Case I If Ist ball is white, then $P = \frac{{}^{3}C_{1}}{{}^{5}C_{1}} \times \frac{{}^{2}C_{1}}{{}^{4}C_{1}} = \frac{6}{20} = \frac{3}{10}$ Case II If Ist ball is red. then $P = \frac{{}^{2}C_{1}}{{}^{5}C_{1}} \times \frac{{}^{1}C_{1}}{{}^{4}C_{1}} = \frac{2}{20} = \frac{1}{10}$ \therefore Required probability $=\frac{3}{10}+\frac{1}{10}=\frac{2}{5}$ 299 (a) Let the coin be tossed n times and let X denote the number of heads obtained. Then, $P(X=r) = {}^{n}C_{r}\left(\frac{1}{2}\right)^{n}$ We have, $P(X = 4) = P(X = 7) \Rightarrow {}^{n}C_{4} = {}^{n}C_{7} \Rightarrow n = 11$ $\therefore P(X = 2) = {}^{11}C_2 \left(\frac{1}{2}\right)^{11} = \frac{55}{2048}$ 300 (b) We have, $P(\bar{A} \cap \bar{B}) = \frac{1}{2}$ $\Rightarrow P(\overline{A \cup B}) = \frac{1}{3} \Rightarrow 1 - P(A \cup B) = \frac{1}{3} \Rightarrow P(A \cup B)$

 $=\frac{2}{3}$

$$\Rightarrow P(A) + P(B) - P(A \cap B) = \frac{2}{3} \Rightarrow p + 2p - \frac{1}{2}$$

$$= \frac{2}{3} \Rightarrow p = \frac{7}{18}$$
301 (c)
Given, $f(x) = \frac{x}{2}$ $[0 \le x \le 2]$
 $\therefore P(X > 1.5) = \int_{1.5}^{2} \frac{x}{2} dx = \left[\frac{x^2}{4}\right]_{1.5}^{2}$
 $= 0.4375$
and $P(X > 1) = \int_{1}^{2} \frac{x}{2} dx = \left[\frac{x^2}{4}\right]_{1}^{2} = 0.75$
 $\therefore P\left(\frac{X > 1.5}{X > 1}\right) = \frac{P(X > 1.5)}{P(X > 1)}$
 $= \frac{0.4375}{0.75} = \frac{7}{12}$
302 (a)
Required probability = $1 - \left(1 - \frac{2}{3}\right)\left(1 - \frac{3}{4}\right) = \frac{11}{12}$
303 (a)
Given, $P(A \cup B) = 0.6$, $P(A \cap B) = 0.2$
Probability of exactly one of the event occurs is
 $P(\overline{A} \cap B) + P(A \cap \overline{B})$
 $= P(B) - P(A \cap B) + P(A) - P(A \cap B)$
 $= P(A \cup B) + P(A \cap B) - 2P(A \cap B)$

$$[: P(A \cup B) = P(A) + P(B) - P(A \cap B)]$$

$$= P(A \cup B) - P(A \cap B)$$

$$= 0.6 - 0.2 = 0.4$$

Probability of each case $=\frac{9}{15}=\frac{3}{5}$

Required probability (with replacement) = $\left(\frac{3}{5}\right)^7$

305 **(b)**

The total number of ways = $6^3 = 216$ If the second number is i(i > 1), then the total number of favourable ways

$$=\sum_{i=1}^{5} (i-1)(6-i) = 20$$

 \therefore Required probability $=\frac{20}{216}=\frac{5}{54}$

306 **(b)**

$$\frac{P(X = K)}{P(X = k - 1)} = \frac{{}^{n}C_{k}p^{k}q^{n-k}}{{}^{n}C_{k-1}p^{k-1}q^{n-k+1}}$$

$$= \left(\frac{n-k+1}{k}\right) \cdot \frac{p}{q}$$

308 (d)

We have, $P(E_i) = \frac{1}{2}$ for i = 1,2,3For $i \neq j$, we have, $P(E_i \cap E_j) = \frac{1}{4} = P(E_i)P(E_j)$ $\Rightarrow E_i$ and E_j are independent events for $i \neq j$ Also, $P(E_1 \cap E_2 \cap E_3) = \frac{1}{4} \neq P(E_1) P(E_2) P(E_3)$ $\Rightarrow E_1, E_2, E_3$ are not independent Hence option (d) is not correct

309 **(a)**

$$P(A) = 1 - P(\bar{A}) = 1 - \frac{2}{3} = \frac{1}{3}$$

Using, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

$$\Rightarrow \frac{3}{4} = \frac{1}{3} + P(B) - \frac{1}{4} \Rightarrow P(B) = \frac{2}{3}$$

Now,
$$P(\bar{A} \cap B) = (B) - P(A \cap B) = \frac{2}{3} - \frac{1}{4} = \frac{5}{12}$$

311 **(a)**

Let *x*, *y* and *z* be the parts and $x \le y \le z$. Then, (*x*, *y*, *z*) \in (1, 1, 8), (1, 2, 7), (1, 3, 6), (1, 4, 5), (2, 2, 6), (2, 3, 5), .Only the cases when (*x*, *y*, *z*) formed a triangle are {(3, 3, 4), (2, 4, 4)}, Required probability = $\frac{2}{8} = \frac{1}{4}$.

312 **(b)**

Let E_1 denote the event of travelling by train and E_2 denote the event travelling by plane.

$$P(E_1) = \frac{2}{3}, P(E_2) = \frac{1}{5}$$
$$P(E_1 \cup E_2) = P(E_1) + P(E_2)$$
$$= \frac{2}{3} + \frac{1}{5} = \frac{13}{15}$$

313 **(a)**

Three digit numbers multiple of 11 are 110, 121,...,990 (81 numbers). Now number also divisible by 9 are divisible by 99. So, numbers are 198, 297,...,990(9 numbers).

So, required probability $=\frac{9}{81}=\frac{1}{9}$.

314 **(b)**

If any number the last digit can be 0,1,2,3,4,5,6,7,8,9. We want that the last digit in

the product is an odd digit other than 5 i.e. it is any one of the digits 1,3,7,9. This means that the product is not divisible by 2 or 5. The probability that a number is divisible by 2 or 5 is $\frac{6}{10}$ and in the case the last digit can be one of 0,2,4,5,6 or 8. The probability that the number is not divisible by 2 or 5, is $1 - \frac{6}{10} = \frac{2}{5}$ In order that the product is not divisible by 2 or 5, none of the constituent numbers should be divisible by 2 or 5 and its probability is $\left(\frac{2}{5}\right)^4 = \frac{16}{125}$ 315 (c) Let E = Event of getting sum of 7 in two dice $= \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$ Now, $P(E) = \frac{6}{36} = \frac{1}{6}$ (say) $\Rightarrow p = \frac{1}{6}$ $\therefore q = 1 - p = \frac{5}{6}$ Required probability = ${}^{4}C_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{2}$ $= 6 \times \frac{5^2}{6^4} = \frac{25}{216}$ 316 (d) The probability that Mr. A selected the loosing horse $=\frac{4}{5} \times \frac{3}{4} = \frac{3}{5}$ The probability that Mr. A selected the winning horse $=1-\frac{3}{5}=\frac{2}{5}$ 317 (b) Given, $S = \{1, 2, 3 \dots, 50\}$ $A = \left\{ n \in S : n + \frac{50}{n} > 27 \right\}$ $= \{n \in S: n^2 - 27n + 50 > 0\}$ $= \{n \in S: n < 2 \text{ or } n > 25\}$ $= \{1, 26, 27, \dots, 50\}$ \Rightarrow n(A) = 26 $B = \{n \in S: n \text{ is a prime}\}\$ $= \{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47\}$ \Rightarrow n(B) = 15 \therefore $C = \{n \in S: n \text{ is a square}\}$ $= \{1,4,9,16,25,36,49\}$ \Rightarrow n(C) = 7 $\therefore P(A) = \frac{n(A)}{n(S)} = \frac{26}{50}, P(B) = \frac{15}{50}, P(C) = \frac{7}{50}$ $\Rightarrow P(A) > P(B) > P(C)$ 318 (c) ∴ Required probability

$$= P(WBWB) + (BWBW)$$

= $\frac{{}^{5}C_{1} \times {}^{3}C_{1} \times {}^{4}C_{1} \times {}^{2}C_{1}}{{}^{8}C_{1} \times {}^{7}C_{1} \times {}^{6}C_{1} \times {}^{5}C_{1}}$
+ $\frac{{}^{3}C_{1} \times {}^{5}C_{1} \times {}^{2}C_{1} \times {}^{4}C_{1}}{{}^{8}C_{1} \times {}^{7}C_{1} \times {}^{6}C_{1} \times {}^{5}C_{1}}$
= $2\left(\frac{5 \times 3 \times 4 \times 2}{8 \times 7 \times 6 \times 5}\right) = \frac{1}{7}$
(c)

319 **(c)**

The total number of favourable cases, n(E) = 18The total number of cases, $n(S) = {}^{20}C_3$ $= \frac{20 \times 19 \times 18}{3 \times 2 \times 1} = 1140$ \therefore Required probability $= \frac{18}{1140} = \frac{3}{190}$

320 **(b)**

The sum of two numbers is odd only when one is odd and other is even.

: Required probability =
$$\frac{20C_1 \cdot 20C_1}{40C_2}$$

= $\frac{20 \times 20}{\frac{40 \times 39}{2 \times 1}} = \frac{20 \times 20}{20 \times 39}$
= $\frac{20}{39}$

321 (b)

Total number of ways placing 3 letters in three envelopes

$$= 3! = 3 \times 2 \times 1 = 6$$

Out of these ways only one way is correct

 \therefore The required probability $=\frac{1}{6}$

322 **(c)**

323

Given probability of speaking truth are

$$P(A) = \frac{4}{5} \text{ and } P(B) = \frac{3}{4}$$

And their corresponds probabilities of not speaking truth are

$$P(\overline{A}) = \frac{1}{5}$$
 and $P(\overline{B}) = \frac{1}{4}$

The probability that they contradict each other = $P(A) \times P(\overline{B}) + P(\overline{A}) \times P(B)$ 4 1 1 3

$$= \frac{1}{5} \times \frac{1}{4} + \frac{1}{5} \times \frac{3}{4}$$
$$= \frac{1}{5} + \frac{3}{20}$$
$$= \frac{7}{20}$$
(d)
Consider the following events:

A = Numbers on two tickets are not more than 10 B = Lowest number on two tickets is 5 \therefore Required probability = P(B/A)

 \Rightarrow Required Probability

$$= \frac{P(A \cap B)}{P(A)} = \frac{{}^{5}C_{1} \times {}^{1}C_{1}/{}^{100}C_{2}}{{}^{10}C_{2}/{}^{100}C_{2}} = \frac{1}{9}$$
324 **(b)**
Let A_{i} denote an event of getting number
 $i(i = 1, 2, ..., 6)$ on each die. Then, A_{i} , $i = 1, 2, ..., 6$
are mutually exclusive events
 \therefore Required probability $= P(A_{1}) + P(A_{2}) + ... + P(A_{6})$...(i)
Now,
 $P(A_{i}) = \text{Probability of getting number } i \text{ on each}$
die
 $\Rightarrow P(A_{i}) = \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} = \frac{1}{216}$
So, required probability $= \frac{6}{216} = \frac{1}{36}$ [From (i)]
ALITER We have,
Total number of elementary events $= 6 \times 6 \times 6 = 216$
Same number can be obtained on each die in one
of the following ways:
 $(1,1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,5), (6,6,6)$
Favourable number of elementary events $= 6$
Hence, required probability $= \frac{6}{216} = \frac{1}{36}$

32

$$P\left(\frac{B_2}{R}\right) = \frac{P(B_2)P\left(\frac{R}{B_2}\right)}{P(B_1)P\left(\frac{R}{B_1}\right) + P(B_2)P\left(\frac{R}{B_2}\right) + P(B_3)P\left(\frac{R}{B_3}\right)}$$
$$= \frac{\frac{1}{3} \times \frac{2}{5}}{\frac{1}{2} \times \frac{1}{3} + \frac{1}{3} \times \frac{2}{5} + \frac{1}{6} \times \frac{3}{7}}$$
$$= \frac{\frac{2}{15}}{\frac{1}{6} + \frac{2}{15} + \frac{1}{14}} = \frac{14}{39}$$

326 (d)

Total number of elementary events associated to the random experiment is $36 \times 36 = 36^2$ Throws of the two persons are equal means the sum of the numbers are same. The sum of the numbers can be 2,3, ...,12.

: Favourable number of elementary events $= 2(1 \times 1 + 2 \times 2 + \dots + 3 \times 3 + 5 \times 5) + 6 \times 6$ = 146

Hence, required probability = $-1\frac{146}{36^2} = \frac{572}{648}$

327 (c)

At least one spade and one ace can be drawn in two mutually exclusive ways:

(i) Drawing one spade and one ace from 3 aces

other than ace of spade (ii) Drawing ace of spade and one other spade. ∴ Required probability $=\frac{{}^{13}C_1 \times {}^{3}C_1 + {}^{12}C_1 \times {}^{1}C_1}{{}^{52}C_2} = \frac{51}{{}^{52}C_2} = \frac{1}{26}$ 328 (d) P (selecting a black ball) = $\frac{{}^{5}C_{1}}{{}^{12}C_{1}}$ P (selecting a red ball) = $\frac{{}^{3}C_{1}}{{}^{12}C_{1}}$ *P* (black ball or red ball) = $\frac{{}^{5}C_{1} + {}^{3}C_{1}}{{}^{12}C_{1}} = \frac{2}{3}$ 329 (b) Given total number of bolts=600 Numbers of large bolts=20% of 600 $=\frac{20}{100} \times 600 = 120$ Number of small bolts=10% of 600 $=\frac{10}{100} \times 600 = 60$: Number of suitable bolts = 600 - 120 - 60 = 420: Probability of selecting suitable bolt $=\frac{420}{600}=\frac{7}{10}$ 330 (d) Let A denote the event that the student is selected in I.I.T. entrance test and B denotes the event that he is selected in Roorkee entrance test. Then, $P(A) = 0.2, P(B) = 0.5 \text{ and } P(A \cap B) = 0.3$ \therefore Required probability = $P(\bar{A} \cap \bar{B})$

 \Rightarrow Required probability = $1 - P(A \cup B)$

0.6

 \Rightarrow Required probability = $1 - \{P(A) + P(B) - P(A) + P(B) - P(B) - P(B) + P(B) - P(B) + P(B$ $P(A \cap B)$ \Rightarrow Required probability = 1 - (0.2 + 0.5 - 0.3) =

The probability that *A* get *r* heads in the three tosses of a coin is

 $P(X = r) = {}^{3}C_{r}\left(\frac{1}{2}\right)^{3}$. The probability that *A* and *B* both get *r* heads in three tosses of a coin is

 ${}^{3}C_{r}\left(\frac{1}{2}\right)^{3} \cdot {}^{3}C_{r}\left(\frac{1}{2}\right)^{3}$ $= ({}^{3}C_{r})^{2}\left(\frac{1}{2}\right)^{6}$

: Required probability = $\sum_{r=0}^{3} ({}^{3}C_{r})^{2} (\frac{1}{2})^{6}$

$$=\left(\frac{1}{2}\right)^{6}(1+9+9+1)=\frac{20}{64}=\frac{5}{16}$$

332 **(b)**

We have, $P(S) = P\{5, 6\} = \frac{2}{6} = \frac{1}{3}$

Let us denote the occurrence of a number greater than 4 in a single throw of the die and *F* denote its failure.

$$\Rightarrow P(F) = \frac{2}{3}$$

$$P \text{ (an even number of tosses is needed)}$$

$$= P(FS \text{ or } FFFS \text{ or } FFFFS \text{ or } ...)$$

$$= P(F)P(S) + P(F)^3P(S) + P(F)^5P(S) + ...$$

$$= \frac{P(F)P(S)}{1 - P(F)^2} = \frac{\frac{2}{9}}{1 - \frac{4}{9}} = \frac{2}{5}$$

333 (c)

Let E =event when each American man is seated adjacent to his wife

and *A* =event when Indian man is seated adjacent to his wife.

Now, $n(A \cap E) = (4!) \times (2!)^5$

Even when each American man is seated adjacent to his wife.

Again, $n(E) = (5!) \times (2!)^4$

$$\therefore P\left(\frac{A}{E}\right) = \frac{n(A \cap E)}{n(E)}$$
$$= \frac{(4!) \times (2!)^3}{(5!) \times (2!)^4} = \frac{2}{5}$$

334 (a)

Required probability = $\frac{{}^5C_2 + {}^4C_2}{{}^9C_2} = \frac{4}{9}$

335 **(b)**

Let A_1 be the event that the black card is lost, A_2 be the event that red card is lost and let E be the event that first 13 cards examined are red. Then, Required probability = $P(A_1/E)$ We have,

 $P(A_1) = P(A_2) = 1/2$, as black and red cards were initially equal in number

Also,
$$P(E/A_1) = \frac{{}^{26}C_{13}}{{}^{51}C_{13}}$$
 and $P(E/A_2) = \frac{{}^{25}C_{13}}{{}^{51}C_{13}}$
 \therefore Required probability = $P(A_1/E)$

$$= \frac{P(E/A_1)P(A_1)}{P(E/A_1)P(A_1) + P(E/A_2)P(A_2)}$$

$$= \frac{\frac{1}{2} \times \frac{{}^{26}C_{13}}{{}^{51}C_{13}}}{\frac{1}{2} \times \frac{{}^{26}C_{13}}{{}^{51}C_{13}} + \frac{1}{2} \times \frac{{}^{25}C_{13}}{{}^{51}C_{13}}} = \frac{2}{3}$$

336 (b)

The probability of getting at least one head in *n* tosses of a coin = $1 - \left(\frac{1}{2}\right)^n$ $\therefore 1 - \left(\frac{1}{2}\right)^n \ge 0.9 \Rightarrow \left(\frac{1}{2}\right)^n \le 0.1 \Rightarrow 2^n \ge 10 \Rightarrow n$ ≥ 4

Hence, the least value of *n* is 4

337 (b) Favourable ways = $3! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{2!} \right) = 2$ Total ways = 3! \therefore Probability $=\frac{2}{3!}=\frac{1}{2}$ 338 (a) $\therefore f(x) = x^3 + ax^2 + bx + c$ $\therefore f'(x) = 3x^2 + 2ax + b$ y = f(x) is increasing. $\Rightarrow f'(x) \ge 0, \forall x$ And for f'(x) = 0 should not form an interval. $\Rightarrow 4a^2 - 4 \times 3 \times b \le 0$ $\Rightarrow a^2 - 3b \le 0$ This is true for exactly 16 ordered pairs $(a, b), 1 \le a, b \le 6$ namely (1, 1), (1, 2), (1, 3), (1, 3)4); (1, 5), (1, 6), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6); (3, 3),(3, 4),(3, 5),(3, 6) and (4, 6). Thus, required probability $=\frac{16}{26}=\frac{4}{9}$ 339 (b) P(0 < x < 3) = P(x = 1) + P(x = 2) $=\frac{{}^{3}C_{1}\times^{7}C_{3}}{{}^{10}C_{4}}+\frac{{}^{3}C_{2}\times^{7}C_{2}}{{}^{10}C_{4}}=\frac{3\times35}{210}+\frac{3\times21}{210}=\frac{4}{5}$ 340 (c) Given, np = 4, npq = 2 $\Rightarrow p = q = \frac{1}{2}$

$$\therefore n = 4 \times 2 = 8$$

$$\therefore P(X > 6) = {}^{8}C_{7} \left(\frac{1}{2}\right)^{7} \left(\frac{1}{2}\right) + {}^{8}C_{8} \left(\frac{1}{2}\right)^{8}$$

$$= \frac{8}{256} + \frac{1}{256} = \frac{9}{256}$$

341 (a)

Given, one integer is chosen at random from the first 200 positive integers and integer chosen is divisible by 6 or 8.

 \div One integer can be chosen out of 200 integers in ${}^{200}C_1$ ways.

Let *A* be the event that an integer selected is divisible by 6 and *B* that it is divisible by 8.

Then,
$$P(A) = \frac{33}{200}$$
, $P(B) = \frac{25}{200}$
and $P(A \cap B) = \frac{8}{200}$
 $\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $= \frac{33}{200} + \frac{25}{200} - \frac{8}{200} = \frac{1}{4}$
(c)

342 (c)

Given that, E(X) = 3 and $E(X^2) = 11$ Variance of $X = E(X^2) - [E(X)]^2$ $= 11 - (3)^2 = 11 - 9 = 2$

343 **(b)**

Let *X* be the number of heads getting in *n* tossed. Therefore, *X* follows binomial distribution with parameters

$$n, P = \frac{1}{2}, q = \frac{1}{2}$$

Since, $P(X \ge 1) \ge 0.8$ [given]

$$\therefore 1 - P(X = 0) \ge 0.8$$

$$\Rightarrow P(X = 0) \le 0.2$$
$$\Rightarrow {}^{n}C_{0} \left(\frac{1}{2}\right)^{0} \left(\frac{1}{2}\right)^{n} \le 0.2$$
$$\Rightarrow \frac{1}{2^{n}} \le \frac{1}{5} \Rightarrow 2^{n} \ge 5$$

Hence, least value of n is 3

344 (c)

Total number of digits in any number at the unit place is 10.

 \therefore n(S) = 10

To get the last digit in product is 1, 3, 5 or 7, it is necessary the last digit in each number must be 1, 3, 5 or 7.

$$n(A) = 4,$$

$$\therefore P(A) = \frac{4}{10} = \frac{2}{5}$$

Hence, required probability $= \left(\frac{2}{5}\right)^4 = \frac{16}{625}$ 345 **(a)** Since, events are independent, so

 $P(A \cap B') = P(A) \times P(B') = \frac{3}{25}$ $\Rightarrow P(A) \times [(1 - P(B)] = \frac{3}{25} \dots (i)$ Similarly, $P(B) \times [1 - P(A)] = \frac{8}{25}$...(ii) : From Eqs.(i) and (ii), $P(A) = \frac{1}{5}$ 346 (a) We have. $x^2 - 3x + 2 \ge 0 \Rightarrow (x - 1)(x - 2) \ge 0 \Rightarrow x < 1$ or x > 2 $\therefore \text{ Required probability} = \frac{\int_0^1 dx + \int_2^5 dx}{\int_0^5 dx} = \frac{4}{5}$ 347 (d) P(At least on head) = 1 - P(zero head)= 1 - P(all three tails) $=1-\frac{1}{8}=\frac{7}{8}$ 348 (b) For binomial distribution 0<variance<mean $\Rightarrow 0 < \beta < \alpha$ 349 (c) Given, $x^2 - n = 0$ $\Rightarrow x = \pm \sqrt{n}$ $\therefore n = 1, 4, 9, 16, 25, 36$ \therefore Required probability $=\frac{6}{40}=\frac{3}{20}$ 350 (b) In a pack of 52 cards, there are 26 black cards. $\therefore \text{ Required probability} = \frac{{}^{26}C_3}{{}^{52}C_2}$ $=\frac{26\times25\times24}{3\times2\times1}\times\frac{3\times2\times1}{52\times51\times50}$ $=\frac{1}{17}$ 351 (d) We have,

Total number of elementary events $= 6^3 = 216$

Exactly two of three dice will show the same

Page | 70

number in ${}^{6}C_{1} \times {}^{5}C_{1} \times \frac{3!}{2!}$ ways \therefore Favourable number of elementary events $= {}^{6}C_{1} \times {}^{5}C_{1} \times \frac{3!}{2!} = 90$ Hence, required probability = $\frac{90}{216}$ 352 (c) Since, $P(B) = \frac{2}{7}$ and $P(A \cup B^{c}) = 0.8$ $P(B^c) = 1 - \frac{2}{7} = \frac{5}{7}$ Using, $P(A \cup B^c) = P(A) + P(B^c) - P(A) \cdot P(B^c)$ $\Rightarrow 0.8 = P(A) + \frac{5}{7} - \frac{5}{7}P(A)$ $\Rightarrow 0.8 = \frac{5}{7} + \frac{2}{7}P(A)$ $\Rightarrow P(A) = 0.3$ 353 (d) Clearly, $P(A \cup B \cup C) = 1$ $\Rightarrow P(A) + P(B) + P(C) = 1$ $\Rightarrow P(A) + \frac{1}{2}P(A) + \frac{1}{3}P(A) = 1$ $\Rightarrow \frac{11}{6}P(A) = 1$ $\Rightarrow P(A) = \frac{6}{11}$

354 (d) $P(X = 0) = k, P(X = 1)2k \left(\frac{1}{5}\right)^{1}$ $P(X=2) = 3k\left(\frac{1}{5}\right)^2, \dots$ Since, P(X = 0) + P(X = 1) + P(X = 2) + ... = 1 $\therefore k + 2k\left(\frac{1}{5}\right) + 3k\left(\frac{1}{5}\right)^2 + \ldots = 1$ and $+\frac{k}{5} + 2k\left(\frac{1}{5}\right)^2 + ... = \frac{1}{5}$ $k + k\left(\frac{1}{5}\right) + k\left(\frac{1}{5}\right)^2 + \ldots = \frac{4}{5}$ $\Rightarrow \frac{k}{1-\frac{1}{2}} = \frac{4}{5}$ $\Rightarrow k = \frac{16}{25}$ $\therefore P(X=0) = \frac{16}{25}(0+1)\left(\frac{1}{5}\right)^0 = \frac{16}{25}$ 355 (c) Given, $P(\overline{B}) = \frac{1}{2} \Rightarrow P(B) = \frac{2}{2}$ $P(A \cup B) = \frac{5}{6}, P(A \cap B) = \frac{1}{2}$ Now, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\Rightarrow \frac{5}{6} = P(A) + \frac{2}{3} - \frac{1}{3}$ $\Rightarrow P(A) = \frac{5}{6} - \frac{2}{2} + \frac{1}{2} = \frac{1}{2}$ 356 (c) We have, Total number of ways of selecting 4 tickets $= 3^4 = 81$ Favourable number of ways = Sum of the coefficients of x^2 , x^4 , ... in $(x + x^2 +$ x34 = Sum of the coefficients of $x^2, x^4, ...$ in $x^4(1+x+x^2)^4$ Let $(1 + x + x^2)^4 = 1 + a_1 x + a_2 x^2 + \dots + a_8 x^8$ Putting x = 1 and x = -1 respectively, we get

 $3^{4} = 1 + a_{1} + a_{2} + a_{3} + \dots + a_{8}$ and, $1 = 1 - a_{1} + a_{2} - a_{3} + \dots + a_{8}$ $\therefore 3^{4} + 1 = 2(1 + a_{2} + a_{4} + a_{6} + a_{8})$ $\Rightarrow a_{2} + a_{4} + a_{6} + a_{8} = 40$ Thus, the sum of the coefficients of $x^{2}, x^{4}, \dots = 40$ Hence, required probability $= \frac{40}{81}$

357 (c)

Probability of getting a white ball at any draw is, $p = \frac{12}{24} = \frac{1}{2}$.

The probability of getting a white ball 4th in the 7th draw

= P (getting 3 white balls in 6 draws)× P (white ball at the 7th draw)

$$= {}^{6}C_{3}\left(\frac{1}{2}\right)^{6} \cdot \frac{1}{2} = \frac{20}{2^{7}} = \frac{5}{32}$$

358 **(c)**

Total number of persons = 15 and number of persons who can speak Hindi and English both

= 10 + 8 - 15 = 3 \therefore Required probability= $\frac{{}^{7}C_{1} \times {}^{3}C_{1}}{{}^{15}C_{2}} = \frac{{}^{7 \times 3}}{{}^{15 \times 14}} = \frac{1}{5}$

359 **(b)**

Required probability = $\frac{1}{2} \left(\frac{{}^{3}C_{1}}{{}^{7}C_{1}} + \frac{{}^{2}C_{1}}{{}^{8}C_{1}} \right)$ = $\frac{1}{2} \left(\frac{3}{7} + \frac{2}{8} \right) = \frac{19}{56}$

360 **(c)**

Favourable cases will be (5,1),(4,2),(2,4),(1,5)Hence, required probability $=\frac{4}{6.5}=\frac{2}{15}$

361 **(c)**

Given, $P(\overline{A} \cup \overline{B}) = P(\overline{A \cap B}) = \frac{7}{10}$

Since, $P(A \cap B) + P(\overline{A \cap B}) = 1$

$$\Rightarrow P(A \cap B) = 1 - \frac{7}{10} = \frac{3}{10}$$

Also, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
$$\Rightarrow \frac{4}{5} = P(A) + \frac{2}{5} - \frac{3}{10}$$

$$\Rightarrow P(A) = \frac{4}{5} - \frac{2}{5} + \frac{3}{10}$$

$$= \frac{2}{3} + \frac{3}{10} = \frac{7}{10}$$

362 **(c)**

Probability of getting an ace

$$P(E_1) = \frac{4}{52} = \frac{1}{13}, P\left(\frac{E_2}{E_1}\right) = \frac{15}{51} = \frac{5}{17}$$

$$P(E_1 \cap E_2) = P(E_1) \cdot P\left(\frac{E_2}{E_1}\right)$$
$$= \frac{1}{13} \cdot \frac{5}{17} = \frac{5}{221}$$

363 **(b)**

4 five-rupee, 3 two-rupee and 2 one-rupee coins can be stacked together in a column in $\frac{9!}{4!3!2!}$ ways The number of ways in which coins of the same denomination the consecutive is same as the number of ways of arranging 3 distinct items i.e. 3! Ways

Hence, required probability = $\frac{3!}{\frac{9!}{4! \ 3! \ 2!}} = \frac{1}{210}$

364 **(b)**

The total number of ways of selecting two squares is 64×63

For each of the four corner squares, the favourable number of way is 2

For each of the 24 non-corner squares on either side of chess board, the favourable number of cases is 3

For each of the 36 remaining squares, the favourable, number of ways is 4 Thus, the total number of favourable ways

$$= 4 \times 2 + 24 \times 3 + 36 \times 4 = 224$$

Hence, required probability = $\frac{224}{64 \times 63} = \frac{1}{18}$

365 **(b)**

We define the following events:

 A_1 : He knows the answer;

 A_2 :He does not know the answer;

E:He gets the correct answer

Then,
$$P(A_1) = \frac{9}{10}$$
, $P(A_2) = 1 = \frac{9}{10} = \frac{1}{10}$,

$$P(E|A_1) = 1, P(E|A_2) = \frac{1}{4}$$

 $\therefore \text{ Required probability} = P(A_2|E)$

$$= \frac{P(A_2)P(E/A_2)}{P(A_1)P(E|A_1) + P(A_2)P(E|A_2)} = \frac{\frac{1}{10} \cdot \frac{1}{4}}{\frac{9}{10} \cdot 1 + \frac{1}{10} \cdot \frac{1}{4}}$$
$$= \frac{1}{37}$$

366 (d) $P(A \cap B') = P(A) - P(A \cap B)$ 367 (d) Let A =Event of getting i on first dice
and B =Event of getting more than i on second dice

$$\therefore \text{ Required probability} = \sum_{i=1}^{5} P(A_i \cap B_1)$$
$$= \frac{1}{6} [P(B_1) + P(B_2) + P(B_3) + P(B_4) + P(B_5)]$$
$$= \frac{1}{6} [\frac{5}{6} + \frac{4}{6} + \frac{3}{6} + \frac{2}{6} + \frac{1}{6}]$$
$$= \frac{15}{36} = \frac{5}{12}$$

368 (a)

The event that the fifth toss results in a head is independent of the event that the first four tosses result in tails.

: Probability of the required event = $\frac{1}{2}$

369 (a)

Let A_1 denote the event that a coin having heads on both sides is chosen, and A_2 denote the event that a fair coin is chosen. Let E denote the event that head occurs. Then

$$P(A_{1}) = \frac{n}{2n+1}, P(A_{2}) = \frac{n+1}{2n+1}, P(E/A_{1})$$

$$= 1, P(E/A_{2}) = \frac{1}{2}$$
Now, $P(E) = P(A_{1} \cap E) + P(A_{2} \cap E)$

$$\Rightarrow P(E) = P(A_{1})P(E/A_{1}) + P(A_{2})P(E/A_{2})$$

$$\Rightarrow \frac{31}{42} = \frac{n}{2n+1} \times 1 + \frac{n+1}{2n+1} \times \frac{1}{2}$$

$$\Rightarrow \frac{31}{42} = \frac{3n+1}{2(2n+1)}$$

$$\Rightarrow 124n + 62 = 126n + 42$$

$$\Rightarrow 2n = 20 \Rightarrow n = 10$$
370 (d)

In binomial distribution, mean= np = 10, variance= npq = 5

$$\therefore p = q = \frac{1}{2}$$

Let *x* be the mode, then

$$np + p < x > np - q$$

$$\therefore 10 + \frac{1}{2} > x > 10 - \frac{1}{2}$$

$$\Rightarrow \frac{21}{2} > x > \frac{19}{2} \Rightarrow 9.5 < x < 10.5$$

$$\therefore x = 10$$

Mean= np = 4, variance= nqp = 3On solving, we get $q = \frac{3}{4}$, n = 16, $p = \frac{1}{4}$ Now, $P(X \ge 1) = 1 - P(X = 0) = 1 - {^nC_0p^0q^{n-0}} = 1 - \left(\frac{3}{4}\right)^{16}$

372 **(c)**

Probability of defective transistor $=\frac{5}{15}=\frac{1}{3}$ and probability of non-defective transistor

$$=1-\frac{1}{3}=\frac{2}{3}$$

Probability that the inspectors finds non-defective transistors

$$=\frac{2}{3}\times\frac{2}{3}\times\frac{2}{3}=\frac{8}{27}$$

Hence, probability that atleast one of the inspectors finds a defective transistor

$$= 1 - \frac{8}{27} = \frac{19}{27}$$

373 **(b)**

3

The probability of suffering of a disease is 10%

$$p = \frac{10}{100} = \frac{1}{10}$$
 and $q = \frac{9}{10}$

Total number of patients, n = 6

∴ Required probability

$$= {}^{6}C_{3} \left(\frac{1}{10}\right)^{3} \left(\frac{9}{10}\right)^{3}$$
$$= \frac{6.5.4}{3.2.1} \times \frac{1}{1000} \times \frac{9 \times 9 \times 9}{1000}$$
$$= \frac{2}{10^{5}} \times 729 = 1458 \times 10^{-5}$$

74 (c)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\therefore 0.6 = P(A) + P(B) - 0.2$$

$$\Rightarrow P(A) + P(B) = 0.8$$

$$\Rightarrow P(\bar{A}) + P(\bar{B}) = 12 \ [\because P(A) = 1 - P(\bar{A})]$$

375 (c) n(S) = 36Let E =Event of getting sum 7 $= \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$

E =Event of getting sum 11 $= \{(6,5), (5,6)\}$ \therefore n(F) = 2Also $n(E \cap F) = 0$ $\therefore n(E \cup F) = n(E) + n(F) - n(E \cap F)$ = 6 + 2 = 8: Required probability = $\frac{8}{36} = \frac{2}{9}$ 376 (a) Since the graph of $y = 16 x^2 + 8(a + 5)x - 7 a - 7$ 5 is strictly above x-axis. Therefore, y > 0 for all x $\Rightarrow 16 x^2 + 8(a+5)x - 7 a - 5 > 0$ for all x $\Rightarrow 64(a+5)^2 + 64(7a+5) < 0$ [:: Disc < 0] $\Rightarrow a^2 + 17 a + 30 < 0$ $\Rightarrow -15 < a < -2$ $\therefore \text{ Required probability} = \frac{\int_{-15}^{-2} dx}{\int_{-15}^{0} dx} = \frac{13}{20}$ 377 (c) Duplicate =5, original =10Taking 3 times. The probability that none of the items is duplicate ie, all the three are original $=\frac{{}^{10}C_3}{{}^{15}C_2}=\frac{24}{91}$ 378 (b) The probability that only two tests are needed = (probability that the first tested machine is faulty) × (probability that the second tested machine is faulty given the first machine tested is faulty) = $\frac{2}{4} \times \frac{1}{3} = \frac{1}{6}$. 379 (c) Five tickets out of 50 can be drawn in ${}^{50}C_5$ ways. Since $x_1 < x_2 < x_3 < x_4 < x_5$ and $x_3 = 30$. Therefore, $x_1, x_2 < 30$ i.e. x_1 and x_2 should come from tickets numbered 1 to 29 and this may happen in ${}^{29}C_2$ ways. Remaining two i.e. $x_4, x_5 < 30$, should come from 20 tickets numbered 31 to 50 in ${}^{29}C_2$ ways. So, favourable number of elementary events $= {}^{29}C_2 \times {}^{20}C_2$ Hence, required probability = $\frac{{}^{29}C_2 \times {}^{20}C_2}{{}^{50}C_2}$ 380 (a)

 $\therefore n(E) = 6$

Probability of no tail in four throws $=\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}$ $\frac{1}{16}$ Probability of atleast one tail = $1 - \frac{1}{16} = \frac{15}{16}$ 381 (a) Clearly, *X* is a binomial variate with p = 1/2 $\therefore P(X = r) = {}^{n}C_{r}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{n-r} = {}^{n}C_{r}\left(\frac{1}{2}\right)^{n}$ It is given that P(X = 4), P(X = 5) and P(X = 6)are in AP $\therefore 2 P(X = 5) = P(X = 4) + P(X = 6)$ $\Rightarrow 2 \ ^nC_5 = \ ^nC_4 + \ ^nC_6$ $\Rightarrow 2 = \frac{nC_4}{nC_r} + \frac{nC_6}{nC_r}$ $\Rightarrow 2 = \frac{5}{n-4} + \frac{n-5}{6}$ $\Rightarrow n^2 - 21 n + 98 = 0 \Rightarrow n = 7.14$ 382 (b) Three letters can be placed in 3 envelopes in 3! ways, whereas there is only one way of placing them in their right envelopes. So. Probability that all the letters are placed in the right envelopes = $\frac{1}{2}$ Hence, required probability = $1 - \frac{1}{2!} = \frac{5}{6}$ 383 (b) We have, Total number of mappings from *A* to $B = n^m$ Number of injective mappings from A to $B = {}^{n}C_{m} \times m!$ Hence, required probability = $\frac{n_{C_m \times m!}}{m^m}$ = $(n-m)!n^m$ 384 (c) Let *x* be the probability of success in each trial, then (1 - x) will be the probability of failure in each trial. Thus, probability of exactly successes in a series of three trials $= P(\overline{E}_1 E_2 E_3 + E_1 \overline{E}_2 E_3 + E_1 E_2 \overline{E}_3)$ $= (1-x)x \cdot x + x(1-x)x + x \cdot x(1-x)$ $= 3x^2(1-x)$ and the probability of three success $P(E_1E_2E_3) = x \cdot x \cdot x = x^3$ According to question, $9x^3 - 3x^2(1-x)$ $\Rightarrow 3x = 1 - x$ $\Rightarrow 4x = 1$ $\Rightarrow x = \frac{1}{4}$

Hence, the probability of success in each trial is $\frac{1}{a}$.

385 (d)

Let E = E =Events of numbers divisible by 2 and 3 [*ie*, divisible by 6] = (6, 12, ..., 96) n(E) = 16 \therefore Required probability = $\frac{{}^{16}C_3}{{}^{100}C_3}$ = $\frac{\frac{16 \times 15 \times 14}{3 \times 2 \times 1}}{\frac{100 \times 99 \times 98}{3 \times 2 \times 1}} = \frac{4}{1155}$

386 **(d)**

Probability of getting a Sunday in a week,

$$p = \frac{1}{7}, q = \frac{6}{7}$$

Required probability = ${}^{5}C_{2}\left(\frac{1}{7}\right)^{2}\left(\frac{6}{7}\right)^{3} = \frac{10 \times 6^{3}}{7^{5}}$

387 (c)

Given that, np = 12 ...(i) and $\sqrt{npq} = 2 \Rightarrow npq = 4$...(ii) From Eqs. (i) and (ii), we get $12 \times q = 4 \Rightarrow q = \frac{1}{3}$ and we know that, $p + q = 1 \Rightarrow p = 1 - \frac{1}{3} = \frac{2}{3}$ 388 (c) Total cases = ${}^{52}C_4$ Favourable cases = $({}^{13}C_1)^4$ So, probability $= \frac{(1^{3}C_{1})^{4}}{5^{2}C_{4}}$ $=\frac{13 \times 13 \times 13 \times 13 \times 13 \times 1 \times 2 \times 3 \times 4}{52 \times 51 \times 50 \times 49}$ $=\frac{2197}{20825}$ 389 **(b) Required probability** $P(A_1 \cap A'_2 \cap A_3) + P(A_1' \cap A_2 \cap A_3)$ $= P(A_1)P(A'_2)P(A_3) + P(A'_1)P(A_2)P(A_3)$ $=\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{3}$ $=\frac{1}{8}+\frac{1}{8}=\frac{1}{4}$

390 (c)

The last digit of the product will be 1, 2, 3, 4, 5, 6, 7, 8 or 9 if and only if each of the *n* positive integers ends in any of these digits. Now the probability of an integer ending

in 1, 2, 3, 4, 5, 6, 7, 8 or 9 is $\frac{8}{10}$. Therefore the probal product of *n* integer in

1, 2, 3, 4, 5, 6, 7, 8 or 9 is $\left(\frac{4}{5}\right)^n$. The probability for an integer to end in 1, 3, 7 or 9 is $\frac{4}{10} = \frac{2}{5}$ Therefore the probability for the product of *n* positive integers to end in 1, 3, 7 or 9 is $\left(\frac{2}{5}\right)^n$ Hence the required probability = $\left(\frac{4}{5}\right)^n - \left(\frac{2}{5}\right)^n = \frac{4^n - 2^n}{5^n}$

391 (d)

Required probability = P(WBWB) + P(BWBW)

$$= \left(\frac{{}^{5}C_{1} \times {}^{3}C_{1} \times {}^{4}C_{1} \times {}^{2}C_{1}}{{}^{8}C_{1} \times {}^{7}C_{1} \times {}^{6}C_{1} \times {}^{5}C_{1}}\right) + \left(\frac{{}^{5}C_{1} \times {}^{3}C_{1} \times {}^{4}C_{1} \times {}^{2}C_{1}}{{}^{8}C_{1} \times {}^{7}C_{1} \times {}^{6}C_{1} \times {}^{5}C_{1}}\right) = \frac{1}{14} + \frac{1}{14} = \frac{2}{14} = \frac{1}{7}$$

392 (a)

Let *X* denotes the number of red balls. Here probability of getting red balls, $p = \frac{3}{7}$ and probability of getting red bills, $q = \frac{4}{7}$

1.
$$P_1(X=0) = {}^3C_0\left(\frac{3}{7}\right)^0\left(\frac{4}{7}\right)^3 = \frac{64}{(7)^3}$$

2.
$$P_2(X=1) = {}^3C_1\left(\frac{3}{7}\right)^1\left(\frac{4}{7}\right)^2 = \frac{144}{(7)^3}$$

3.
$$P_3(X=2) = {}^3C_2\left(\frac{3}{7}\right)^2\left(\frac{4}{7}\right)^1\frac{108}{(7)^3}$$

4.
$$P_4(X=3) = {}^3C_3\left(\frac{3}{7}\right)^3 = \frac{27}{(7)^2}$$

: Variance = $\sum_{i=0}^{3} P_i x_i^2 - (\sum_{i=0}^{3} P_i x_i)^2$

$$= \left[\frac{64}{(7)^3} \times 0 + \frac{144}{(7)^3} \times (1)^2 + \frac{108}{(7)^3} \times (2)^2 + \frac{27}{(7)^3} \times (3)^2\right]$$
$$\times (3)^2 \right]$$

$$-\left[\frac{64}{(7)^3} \times 0 + \frac{144}{(7)^3} \times 1 + \frac{108}{(7)^3} \times 2 + \frac{27}{(7)^3} \times 3\right]^2$$
$$= \left[0 + \frac{144}{343} + \frac{432}{343} + \frac{243}{343}\right]$$
$$-\left[0 + \frac{144}{343} + \frac{216}{343} + \frac{81}{343}\right]^2$$
$$= \frac{819}{343} - \left(\frac{441}{343}\right)^2$$
$$= \frac{280917 - 194481}{(343)^2} = \frac{36}{49}$$

Now, standard deviation = $\sqrt{\text{variance}}$

$$=\sqrt{\frac{36}{49}}=\frac{6}{7}$$

393 **(c)**

Since, $n(n + 1)P = \frac{101}{3}$ is not an integer Therefore, P(X = r) is maximum when $r = \left[\frac{101}{3}\right] = 33$

394 **(c)**

We have,

 $p = \text{Probability that a bulb is defective} = \frac{5}{20} = \frac{1}{4}$ $\therefore q = 1 - p = 1 - \frac{1}{4} = \frac{3}{4}$ Let *X* denote the number of defective bulbs in a sample of 3 bulbs. Then, *X* is a binomial variate with parameter n = 3 and $p = \frac{1}{4}$ such that

$$P(X = r) = {}^{3}C_{r} \left(\frac{1}{4}\right)^{r} \left(\frac{3}{4}\right)^{3-r}$$

$$\Rightarrow P(X = 2) = {}^{3}C_{2} \left(\frac{1}{4}\right)^{2} \left(\frac{3}{2}\right) = \frac{9}{64}$$

$$395 \text{ (a)}$$

$$\text{Given, } np = 3 = \sqrt{npq} = \frac{3}{2}$$

$$\Rightarrow q = \frac{npq}{np} = \frac{9}{4 \times 3} = \frac{3}{4}$$

$$\Rightarrow p = 1 - \frac{3}{4} = \frac{1}{4}$$

$$\text{Also, } np = 3 \Rightarrow n = 12$$

Hence, binomial distribution is

$$(q+p)^n = \left(\frac{3}{4} + \frac{1}{4}\right)^{12}$$

396 **(d)**

Since each element of a determinant of order 2 can be 0 or 1. Therefore, the total number of determinants with entries 0 or 1 is $2^4 = 16$. Out of these 16 determinants, there are 3 positive and 3 negative

$$\therefore P(A) = P(B) = \frac{3}{16} \neq \frac{1}{2}$$

397 (a) $P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A \cap B)}$

$$\therefore \frac{1}{15} = \frac{P(A \cap B)}{\frac{1}{12}}$$
$$\Rightarrow P(A \cap B) = \frac{1}{180}$$

Also,
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\Rightarrow P(A \cup B) = \frac{1}{12} + \frac{5}{12} - \frac{1}{180} = \frac{89}{180}$$

399 **(b)** We have, np = 20 and $npq = 4 \Rightarrow q = \frac{1}{5} \Rightarrow p = \frac{4}{5}$ Now, $np = 20 \Rightarrow n = 25$ 400 **(d)** Let *A*be the event of obtaining an even sum and *B* be the event of obtaining a sum less five. Then, we have to find $P(A \cup B)$.Since, A, B are not 402 (b) mutually exclusive, we have

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= \frac{18}{36} + \frac{6}{36} - \frac{4}{36}$$
$$= \frac{5}{9}$$

[Since, there are 18 ways to get an even sum and 6 ways to get a sum less than 5 *ie*. (1,3), (3,1), (2,2), (1,2), (2,1), (1,1)

and 4 ways to get an even sum less than 5, ie, (1,3), (3,1), (2,2), (1,1).

401 (d)

Since $\frac{1+4p}{p}$, $\frac{1-p}{2}$ and $\frac{1-2p}{2}$ are probabilities of three mutually exclusive eve $\therefore 0 \le \frac{1+4p}{p} 1, 0 \le \frac{1-p}{2} \le 1, 0 \le \frac{1-2p}{2} \le 1$ $0 \le \frac{1+4p}{n} + \frac{1-p}{2} + \frac{1-2p}{2} \le 1$ $\Rightarrow -\frac{1}{4} \le p \le \frac{3}{4}, -1 \le p \le 1, -\frac{1}{2} \le p \le \frac{1}{2} \text{ and } \frac{1}{2}$ $\leq p \leq \frac{5}{2}$ $\Rightarrow \max\left\{-\frac{1}{4}, -1, -\frac{1}{2}, \frac{1}{2}\right\} \le p \le \min\left\{\frac{3}{4}, 1, \frac{1}{2}, \frac{5}{2}\right\}$ $\Rightarrow \frac{1}{2} \le p \le \frac{1}{2} \Rightarrow p = \frac{1}{2}$

Let the lengths of three parts of the rod be x, y and a - (x + y). Then,

$$x > 0, y > 0$$
 and $a - (x + y) > 0$, i. e. $x + y < a$ or $y < a - x$

Since in a triangle, the sum of any two sides is greater than the third. Therefore,

$$x + y > a - (x + y) \Rightarrow y > \frac{a}{2} - x$$

$$x + a - (x + y) > y \Rightarrow y < \frac{a}{2}$$

$$y + a - (x + y) > x \Rightarrow y < \frac{a}{2}$$

$$\therefore \text{ Required probability} = \frac{\int_{0}^{1/2} \int_{1/2-3}^{1/2} dy \, dx}{\int_{0}^{a} \int_{0}^{a-x} dy \, dx}$$

$$= \frac{\int_{0}^{a/2} [a/2 - (a/2 - x)] dx}{\int_{0}^{a} (a - x) \, dx} = \frac{\int_{0}^{a/2} x \, dx}{\int_{0}^{a} (a - x) \, dx}$$

$$= \left[\frac{x^{2}}{2}\right]_{0}^{a/2} [ax - x^{2}/2]_{0}^{a} = \frac{a^{2}/8}{a^{2}/2} = \frac{1}{4}$$
403 (a)

Probability of success, $P = \frac{2}{6} = \frac{1}{3}$ and probability of failure, $q = \frac{2}{2}$

: Required probability =
$${}^{5}C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)$$

404 (c)

There is no condition on other coins only 5th coin will fall head upwards. So, probability $=\frac{1}{2}$

405 (c)

(a) P (no boy in family of 4) = P (all girls in it) = $\left(\frac{1}{2}\right)^4 = \frac{1}{16}$ Hence, the probability of having at least one boy $= 1 - \frac{1}{16} = \frac{15}{16}$ (b)P (first card is an ace) = $\frac{1}{13}$ and *P* (second card is an ace) = $\frac{1}{13}$ Therefore, P (both cards are aces) = $\frac{1}{13} \times \frac{1}{13} = \frac{1}{169}$ (c) Let guessing correctly one answer as a success. Then, we have $p = \frac{1}{2}, q = \frac{1}{2}, n = 10$ $\therefore P(8) + P(9) + P(10)$ $= {}^{10}C_8 \left(\frac{1}{2}\right)^8 \left(\frac{1}{2}\right)^2 + {}^{10}C_9 \left(\frac{1}{2}\right)^9 \left(\frac{1}{2}\right) + {}^{10}C_{10} \left(\frac{1}{2}\right)^{10}$ $=\frac{45+10+1}{1024}=\frac{7}{128}$ (d) we have, $n = 3, p = \frac{1}{2}, q = \frac{1}{2}$

Where obtaining a head has been reckoned a success.

Now, $P(2) = {}^{3}C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{1} = \frac{3}{8}$

Hence, it is clear that option (c) is not correct. 406 **(c)**

Total cases are BB.BG, GB, GG = 4

Favourable cases are BB, BG, GB = 3

Let P(A) =Probability of a boy in two children

 $=\frac{3}{4}$

Let P(B) =The probability that the second child is also a boy

$$=\frac{1}{4}$$

Here, $P(A \cap B) = \frac{1}{4}$

$$\therefore P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}$$

407 (d)

Grade order is A > B > C > DFor atleast *C* grade, he will get grade *A* or grade *B* or grade *C*

: Required probability = 0.30 + 0.35 + 0.20 = 0.85

408 **(d)**

A total of 9 can be obtained in the following mutually exclusive ways:

(I) 2 occurs in 3 throws out of 5 and 3 occurs in one out of the remaining 2 throws. The number of such ways is ${}^{5}C_{3} \cdot {}^{2}C_{1}$

(II) 3 occurs three times out of 5 throws. The number of such ways is ${}^{5}C_{3}$ So, required probability

$$= P(I) + P(II) = \frac{{}^{5}C_{3} \times {}^{2}C_{1}}{6^{5}} + \frac{{}^{5}C_{3}}{6^{5}} = \frac{5}{1296}$$

409 **(b)**

Total number of ways of sitting= 9! and number of favourable ways of sitting= $2 \times 8!$ \therefore Required probability= $\frac{2 \times 8!}{9!} = \frac{2}{9}$

410 **(b)**

We have, $P(A \cap B) = P(A)P(B)$ Now, $P(A \cap \overline{B}) = P(A) - P(A \cap B)$ $\Rightarrow P(A \cap \overline{B}) = P(A) - P(A)P(B) = P(A)P(\overline{B})$ \therefore *A* and \overline{B} are independent events 412 (d)

Required probability

= P(when two persons have some birthday)+P(when three persons have same birthday)+P(when four persons have same birthday)

$$= {}^{4}C_{2} \times \frac{1}{365} \times \left(\frac{364}{365}\right)^{2} + {}^{4}C_{3} \frac{1}{(365)^{2}} \times \frac{364}{365} + {}^{4}C_{4} \left(\frac{1}{365}\right)^{3}$$
$$= \frac{6(364)^{2} + 4 \times 364 + 1}{(365)^{3}} = \frac{794976 + 1456 + 1}{(365)^{3}}$$

$$=\frac{796433}{48627125}=0.016$$

413 **(a)**

Let *E* =Number of ways of choosing 2 children out of 4 and 2 persons out (3+2)persons $\therefore n(E) = ({}^{4}C_{2} \times {}^{5}C_{2})$ \therefore Required probability= $\frac{{}^{4}C_{2} \times {}^{5}C_{2}}{2} = \frac{60}{2} = \frac{10}{2}$

Required probability =
$$\frac{{}^{4}C_{2} \times {}^{3}C_{2}}{{}^{9}C_{4}} = \frac{60}{126} = \frac{10}{21}$$

414 **(c)**

The sum of the selected numbers is odd, if exactly one of them is even and one is odd.

: Favourable number of cases $= {}^{15}C_1 \cdot {}^{15}C_1$

 $\therefore \text{ Required probability} = \frac{{}^{15}C_1 \cdot {}^{15}C_1}{{}^{30}C_2} = \frac{15}{29}$

415 **(a)**

Let A = getting not less than 2 and not greater than 5.

$$\Rightarrow A = \{2, 3, 4, 5\}$$
$$\Rightarrow P(A) = \frac{4}{6}$$

But dice is rolled four times, therefore the probability in getting four throws.

$$= \left(\frac{4}{6}\right) \left(\frac{4}{6}\right) \left(\frac{4}{6}\right) \left(\frac{4}{6}\right) = \frac{16}{81}$$

416 **(a)**

Required probability=
$${}^{5}C_{3}\left(\frac{1}{2}\right)^{3} \times \left(\frac{1}{2}\right)^{2} = \frac{5}{16}$$

417 **(a)**

Total number of ways of selecting 11 players = $^{15} C_{11}$

Favourable cases = ${}^{8}C_{6} \times {}^{7}C_{5}$

$$\therefore$$
 Required probability = $\frac{10}{15}C_{11}$

418 **(a)**

The prime numbers between 2 to12 are 2, 3, 5, 7, 11

Case I When sum is 2, total cases are (1, 1) *ie*, 1 **Case II** When sum is 3, total cases are (1, 2), (2, 1) ie,2

Case III When sum is 5, total cases are (1, 4), (2, 3), (4, 1), (3, 2) *ie*, 4 **Case IV** When sum is 7, total cases are (1, 6), (2, 5), (3, 4), (6, 1), (5, 2), (4, 3) *ie*, 6 **Case V** When sum is 11, total cases are (5, 6), (6, 5) *ie*, 2

 $\therefore \text{ Required probability} = \frac{15}{36} = \frac{5}{12}$

420 **(b)**

Let total number of students be 100 in which 60% girls and 40% boys.

Number of boys =40,number of girls =60 25% of boys offer Mathematics = $\frac{25}{100} \times 40 = 10$ boys

10% girls offer Mathematics = $\frac{10}{100} \times 60 = 6$ girls It means, 16 students offer Mathematics.

: Required probability $=\frac{6}{16}=\frac{3}{8}$

421 **(d)**

The probability of getting a number either 2 or 3 in one toss is $\frac{1}{2}$

Condition for getting the sum 12 in five tossed is (2, 2, 2, 3, 3).

$$\therefore \text{ Required probability} = {}^{5}C_{3} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right)^{2}$$
$$= \frac{5 \times 4}{2 \times 1} \left(\frac{1}{2}\right)^{5}$$
$$= 10 \cdot \frac{1}{2^{5}} = \frac{5}{16}$$

422 (d)

P (selecting an apple from both baskets) $= P(apple from first basket) \cdot P(apple from second basket)$

$$=\frac{{}^{5}C_{1}}{{}^{12}C_{1}}\cdot\frac{{}^{4}C_{1}}{{}^{12}C_{1}}$$

 $P \text{ (selecting a orange from both baskets)} = P(\text{orange from first basket}) \cdot P(\text{orange from } P($

second basket)

$$=\frac{{}^{7}C_{1}}{{}^{12}C_{1}}\cdot\frac{{}^{8}C_{1}}{{}^{12}C_{1}}$$

Required probability = $\frac{{}^{5}C_{1} {}^{4}C_{1}}{{}^{12}C_{1} {}^{12}C_{1}} + \frac{{}^{7}C_{1} {}^{8}C_{1}}{{}^{12}C_{1} {}^{12}C_{1}}$

$$=\frac{20+56}{144}=\frac{76}{144}$$

423 **(c)**

The probability = $P(\overline{A}_1 \cap \overline{A}_2 \cap \overline{A}_3 \cap ... \cap \overline{A}_n)$ (none of the events occur) = $P(\overline{A}_1)P(\overline{A}_2)P(\overline{A}_3) ... P(\overline{A}_n)$ = $\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} ... \frac{n}{n+1}$

 $=\frac{1}{(n+1)}$ \therefore Probability that atleast one of the events occurs $=1-\frac{1}{n+1}=\frac{n}{n+1}$ 424 (a) $\therefore P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)}$ $\Rightarrow \frac{1}{2} = \frac{P(A \cap B)}{\frac{1}{4}}$ $\Rightarrow P(A \cap B) = \frac{1}{2}$ Hence, event A and B are not mutually exclusive. : Statement 2 is incorrect. $P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)}$ $\Rightarrow P(B) = \frac{P(A \cap B)}{P\left(\frac{A}{D}\right)} = \frac{\frac{1}{8}}{\frac{1}{4}}$ $\Rightarrow P(B) = \frac{1}{2}$ \therefore Event A and B are independent events. $P\left(\frac{A^c}{B^c}\right) = \frac{P(A^c \cap B^c)}{P(B^c)} = \frac{P(A^c)P(B^c)}{P(B^c)}$ $\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{2}{1} = \frac{3}{4}$ Hence. statement 1 is correct. Again, $P\left(\frac{A}{B}\right) + P\left(\frac{A}{B^{c}}\right) = \frac{1}{4} + \frac{P(A \cap B^{c})}{P(B^{c})}$ $=\frac{1}{4}+\frac{P(A)-P(A\cap B)}{P(B^{c})}$ $=\frac{1}{4} + \frac{\frac{1}{4} - \frac{1}{8}}{\frac{1}{2}} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ Hence, statement 3 is correct.

425 **(c)**

From the three diagram it follows that

$$P(B_G) = \frac{46}{80}$$
$$P(B_G \mid G) = \frac{10}{16} = \frac{5}{8}$$

$$P(B_G \cap G) = \frac{5}{8} \times \frac{4}{5} = \frac{1}{2}$$

$$P(G|B_G) = \frac{P(B_G \cap G)}{P(B_G)} = \frac{1}{2} \times \frac{80}{46} = \frac{20}{23}$$

426 (d)

Clearly *n* taken values 1,2,3,4,5. Therefore. Total number of ways = 5 The equation $x^2 + nx + \frac{1}{2}n + \frac{1}{2} = 0$ will have real roots, if

$$n^{2} - 4\left(\frac{n}{2} + \frac{1}{2}\right) \ge 0 \Rightarrow n^{2} - 2n - 2 \ge 0 \Rightarrow n$$

= 2,3,4,5.

So, favourable number of ways = 4Hence, required probability = 4/5

427 (a)

The total number of arrangements of the letters of the word 'UNIVERSITY' is $\frac{10!}{2!}$ as there are two *I*'s Considering 2 *I*'s as one letter, number of ways of arrangements in which both *I*'s are together = 9 !. Therefore,

Number of ways in which 2 *I*'s are not together = $\frac{10!}{2!} - 9!$

Hence, required probability $=\frac{\frac{10!}{2!}-9!}{\frac{10!}{2!}} = 1 - \frac{2!9!}{10!} =$

45

428 (a) $P(\overline{A} \cap (B \cap \overline{C})) = P(B \cap \overline{C}) - P(A \cap B \cap \overline{C})$ $= P(B) - P(B \cap C) - P(A \cap B \cap \overline{C})$ $\Rightarrow -P(\overline{A} \cap B \cap \overline{C}) - P(A \cap B \cap \overline{C}) + P(B)$ $= P(B \cap C)$ $\Rightarrow P(B \cap C) = \frac{3}{4} - \frac{1}{3} - \frac{1}{3} = \frac{1}{12}$

429 **(a)**

We know,
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\frac{5}{6} = \frac{1}{3} + \frac{1}{2} - P(A \cap B)$$

$$\Rightarrow \frac{5}{6} = \frac{5}{6} - P(A \cap B)$$

$$\Rightarrow P(A \cap B) = 0$$

: Events *A* and *B* are mutually exclusive.

430 (c)
Given,
$$P(X) = \frac{e^{-m}m^x}{x!}$$

 $\therefore P(X = 0) = \frac{e^{-m}1}{1}$
 $\Rightarrow 0.8 = e^{-m} \Rightarrow -m \log_e 0.8$
 $\Rightarrow m = \log_e \frac{10}{8} = \log_e \frac{5}{4}$
 \therefore Variance $= m = \log_e \frac{5}{4}$

431 **(b)** Given $A \cup B = S$

$$\therefore P(A \cup B) = P(S) = 1$$

$$\Rightarrow P(A) + P(B) = 1 \quad [\because P(A \cap B) = 0]$$

$$\Rightarrow P(A) + 2P(A) = 1$$

$$\Rightarrow P(A) = \frac{1}{3} \quad [\because P(B) = 2P(A), \text{given}]$$

432 **(c)**

The required probability = 1 - probability of equal number of heads and tails.

Out of 2n tossed n times heads and n times tails.

$$= 1 - {}^{2n}C_n \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^{2n-n}$$

= $1 - \frac{(2n)!}{n! n!} \left(\frac{1}{2}\right)^{2n} = 1 - \frac{(2n)!}{(n!)^2} \cdot \frac{1}{4^n}$

433 **(d)**

Total number of cases = $6^3 = 216$

Let *A* denote the event of getting at least 6, \overline{A} will denote the event of getting less than 6 for three dice.

:

$$\begin{split} \bar{A} &= \{(1,1,1), (1,12), (1,1,3,), (1,2,1), (1,3,1), (2,1,2), (1,2,2), (2,2,1), (2,1,1), (3,1,1)\} \\ &\Rightarrow n(\bar{A}) &= 10 \end{split}$$

Probability of getting less than $6 = \frac{10}{216} = \frac{5}{108}$ Now, $P(A) = 1 - P(\bar{A}) = 1 - \frac{5}{108} = \frac{103}{108}$

434 **(b)**

Required probability = $1 - \frac{n^{\frac{n(n+1)}{2}}}{n^{n^2}}$

435 **(c)**

$$P\left(\frac{G}{A}\right) = \frac{{}^{4}C_{1}}{{}^{7}C_{1}} = \frac{4}{7} \text{ and } P\left(\frac{G}{B}\right) = \frac{{}^{3}C_{1}}{{}^{7}C_{1}} = \frac{3}{7}$$

Now,
$$P\left(\frac{B}{G}\right) = \frac{P(G).P\left(\frac{G}{B}\right)}{P(A)P\left(\frac{G}{A}\right) + P(B)P\left(\frac{G}{B}\right)}$$

$$=\frac{\frac{1}{2}\cdot\frac{3}{7}}{\frac{1}{2}\cdot\frac{4}{7}+\frac{1}{2}\cdot\frac{3}{7}}=\frac{3}{7}$$

436 **(c)**

 $P(\text{getting 2 different coloured cards}) = \frac{{}^{26}C_1 \times {}^{26}C_1}{{}^{52}C_2}$ $= \frac{26 \times 26 \times 2}{52 \times 51} = \frac{26}{51}$

437 (c)

Given that, probability of success $p = \frac{1}{4}$ and probability of unsuccess $q = \frac{3}{4}$ \therefore Mean = npand standard deviation = $\sqrt{\text{variance}}$ $\Rightarrow 3 = \sqrt{\text{Variance}}$ $\Rightarrow \text{variance} = 9$ $\Rightarrow npq = 9$ $\Rightarrow n \cdot \frac{1}{4} \cdot \frac{3}{4} = 9$ $\Rightarrow n = \frac{9 \cdot 4 \cdot 4}{3} \Rightarrow n = 48$ \therefore Mean = $np = \frac{1}{4} \times 48 = 12$

438 (d)

On the basis of past records, the probability of safe arrival of a vessel on Mumbai harbor is 7/9. Since, arrival of all the vessels is independent and there are only two possibilities on every namely safe arrival and unsafe arrival. We can use the binomial distribution. Here

$$n = 3, p = \frac{7}{9}, q = \frac{2}{9} \text{ and } r = 2$$

 $\therefore P(2) = {}^{3}C_{2}\left(\frac{7}{9}\right)^{2}\left(\frac{2}{9}\right) = \frac{98}{243}$

439 **(a)**

Let *X* denote the number of heads in *n* trials. Then,

$$P(X = r) = {}^{n}C_{r} \left(\frac{1}{2}\right)^{r} \left(\frac{1}{2}\right)^{n-r} = {}^{n}C_{r} \left(\frac{1}{2}\right)^{n}$$

$$\therefore \text{ Required probability}$$

$$= P(X = 1) + P(X = 3) + P(X = 5) + \cdots$$

$$= {}^{n}C_{1} \left(\frac{1}{2}\right)^{n} + {}^{n}C_{3} \left(\frac{1}{2}\right)^{n} + {}^{n}C_{5} \left(\frac{1}{2}\right)^{n} + \cdots$$

$$= \left(\frac{1}{2}\right)^{n} \{ {}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \cdots \} = \frac{1}{2^{n}} (2^{n-1}) = \frac{1}{2}$$

441 **(c)**

Any month out of 12 months can be chosen with

probability $\frac{1}{12}$

There are 7possiblle ways, in which the month can start and it will be a Sunday on 6th day, if the first day of the month is Tuesday, whose probability is $\frac{1}{7}$

 \therefore Required probability is $\frac{1}{7}$

: Required probability = $\frac{1}{12} \times \frac{1}{7} = \frac{1}{84}$

442 **(a)**

There are 11 letters in the word "REGULATIONS" which can be arranged in 111 ways Other than *R* and *E* there are 9 letters out of which 4 can be chosen in ${}^{9}C_{4}$ ways. These four letters can be arranged between *R* and *E* in 4! Ways. Also, *R* and *E* can interchange their positions in 2! Ways.

: Number of ways in which there are exactly four letters between *R* and $E = {}^{9}C_{4} \times 4! \times 2!$ Considering this group of 6 letters as one letters and the remaining 5 letters can be arranged in 6! ways

: Number of arrangements of the letters of the word "REGULATIONS" in which there are exactly four letters between *R* and $E = {}^{9}C_{4} \times 4! \times 2! \times 6!$

Hence, required probability = $\frac{{}^{9}C_{4} \times 4! \times 2! \times 6!}{11!} = \frac{6}{55}$

443 **(c)**

We have,

Total number of arrangements of 5 objects = 5 ! We know that the total number of de-rangements of *n* objects in which none of the object occupies its original position is given by

$$n!\left\{1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}\dots+\frac{(-1)^n}{n!}\right\}$$

Therefore, the total number of de-rangements in which none of the 5 object occupies the place corresponding to it

$$= 5! \left\{ 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} \right\} = 44$$

Hence, required probability $= \frac{44}{120} = \frac{11}{30}$

 $\therefore \text{Probability} = P(M \cap \overline{N}) + P(\overline{M} \cap N)$

$$\Rightarrow P = P(M) - P(M \cap N) + P(N) - P(M \cap N)$$

 $\Rightarrow P = P(M) + P(N) - 2P(M \cap N)$

445 (a)

Total number of favorable cases =6 Total number of cases =216

$$\therefore$$
 Required probability $=\frac{6}{216}=\frac{1}{36}$

There are 10 numbers from 50 to 59 such that each has a digit 5 and there are 9 other numbers, 5,15,25,35,45,65,75,85,95 each containing a digit 5

So, the favourable number of elementary events = 19

Total number of elementary events is 100 Hence, required probability = $\frac{19}{100}$

447 **(a)**

The total number of ways in which 12 persons can stand in a ring = 11 !. Three persons between *A* and *B* can be selected in ${}^{10}C_3$ ways. *A* and *B* can interchange their positions in 2 ! ways. Also, 3 persons between *A* and *B* can stand in 3 ! ways and the other in 7 in 7 ! ways \therefore Favourable number of ways = 2 ! 3 ! 7 ! \cdot ${}^{10}C_3$ =

2!10!

Hence, required probability $=\frac{2!10!}{11!}=\frac{2}{11}$

448 **(c)**

As we know, the sum of probability density function is one.

$$\therefore P(X = x_1) + P(X = x_2) + \dots + P(X = x_{10}) = 1$$

$$\Rightarrow 1k + 2k + 3k + \dots + 10k = 1$$

$$\Rightarrow \frac{10(10+1)}{2}k = 1$$

449 (a)

 $\Rightarrow k = \frac{1}{55}$

Let
$$P(A) = \frac{20}{100} = \frac{1}{5}$$
, $P(B) = \frac{10}{100} = \frac{1}{100}$

Since, events are independent and we have to find

$$P(A \cup B) = P(A) + P(B) - P(A) \cdot P(B)$$
$$= \frac{1}{5} + \frac{1}{10} - \frac{1}{5} \cdot \frac{1}{10}$$
$$= \frac{14}{50} \times 100 = 28\%$$

450 **(d)**

Let each of the friends has x daughters. Then, Probability that all the tickets go to the daughters

of
$$A = \frac{c_3}{2x_{C_3}}$$

 $\therefore \frac{{}^xC_3}{2x_{C_3}} = \frac{1}{20} \Rightarrow \frac{x-2}{4(2x-1)} = \frac{1}{20} \Rightarrow 5x - 10$
 $= 2x - 1 \Rightarrow x = 3$
451 (c)

We can choose three vertices out of 6 in ${}^{6}C_{3} = 20$ ways. Chosen vertices can form an equilateral triangle in just two ways *viz*, A_{1} , A_{3} , A_{5} and A_{2} , A_{4} , A_{6} .

 $\therefore \text{ Required probability} = \frac{2}{20} = \frac{1}{10}.$

452 **(a)**

Given, the probability of solving the problem are $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{5}$ respectively and corresponding probabilities of not solving the problem are $\frac{2}{3}$, $\frac{3}{4}$ and $\frac{4}{2}$ respectively \therefore Required probability = 1 - P(not solving the problem)

$$= 1 - \left(\frac{2}{3} \times \frac{3}{4} \times \frac{4}{5}\right)$$
$$= 1 - \frac{2}{5} = \frac{3}{5}$$

453 **(a)**

The number formed is odd if it has 1,3 or 5 at units place. Therefore, units place can be filled in 3 ways and the remaining 3 places can be filled with other digits in 3 ! ways.

Hence, the number of ways in which odd numbers can be formed is 3(3 !) = 18

Hence, required probability $=\frac{18}{24}=\frac{3}{4}$

454 **(d)**

$$P(A) = \frac{2}{5}$$

For independent events,

$$P(A \cap B) = P(A)P(B)$$

 $\Rightarrow P(A \cap B) \le \frac{2}{5}$

$$\Rightarrow P(A \cap B) = \frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{4}{10}$$

[Maximum 4 outcomes may be in $P(A \cap B)$]

1. When
$$P(A \cap B) = \frac{1}{10}$$

 $\Rightarrow P(A) \cdot P(B) = \frac{1}{10}$
 $\Rightarrow P(B) = \frac{1}{10} \times \frac{5}{2} = \frac{1}{4}$, not possible
2. When $P(A \cap B) = \frac{2}{10} \Rightarrow \frac{2}{5} \times P(B) = \frac{2}{10}$
 $\Rightarrow P(B) = \frac{5}{10}$, outcomes of $B = 5$

3. When
$$P(A \cap B) = \frac{3}{10}$$

$$\Rightarrow P(A)P(B) = \frac{3}{10}$$

$$\Rightarrow \frac{2}{5} \times P(B) = \frac{3}{10}$$

$$P(B) = \frac{3}{4}, \text{not possible}$$
4. When $P(A \cap B) = \frac{4}{10}$

$$\Rightarrow P(A). P(A) = \frac{4}{10}$$

$$\Rightarrow P(B) = 1, \text{ outcomes of } B = 10$$
5. (c)

455

We have, $P(A \cup B) = 0.6$ and $P(A \cap B) = 0.2$ $\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\Rightarrow 0.6 = P(A) + P(B) - 0.2$ $\Rightarrow P(A) + P(B) = 0.8$ $\Rightarrow 1 - P(\bar{A}) + 1 - P(\bar{B}) = 0.8 \Rightarrow P(\bar{A}) + P(\bar{B})$ = 1.2

456 (d)

Total number of socks = 5+4 = 9The number of ways to select 2 socks out of 9 $= {}^{9}C_{2}$

Number of ways to select both brown socks $= {}^{5}C_{2}$

And number of ways to select both white socks $= {}^{4}C_{2}$

 $\therefore P(\text{Either both brown or white}) = \frac{{}^{5}C_{2} + {}^{4}C_{2}}{{}^{9}C_{2}}$

$$= \frac{\frac{5!}{3! \cdot 2!} + \frac{4!}{2! \cdot 2!}}{\frac{9!}{7! \cdot 2!}} = \frac{10 + 6}{36}$$
$$= \frac{16}{36} \times \frac{3}{3} = \frac{48}{108}$$

457 (c)

Total number of ways to from the numbers of five digits with 1, 2, 3, 4, 5 are = 5! = n(S)Total number of numbers which are divisible by 4 $n(E) = 3! \times 4 = 4!$

: Required probability $=\frac{n(E)}{n(S)}=\frac{4!}{5!}=\frac{1}{5}$

458 (d)

Let *p* be the probability of success in a trial. Then,

$$p = 2(1-p) \Rightarrow p = \frac{2}{3}$$

 \therefore Required probability

$$= {}^{6}C_{4} \left(\frac{2}{3}\right)^{4} \left(\frac{1}{3}\right)^{2} + {}^{6}C_{5} \left(\frac{2}{3}\right)^{5} \left(\frac{1}{3}\right) + {}^{6}C_{6} \left(\frac{2}{3}\right)^{6}$$

$$= \frac{496}{729}$$
460 (a)

$$P(E) = P(X = 2) + P(X = 3) + P(X = 5) + P(X = 7)$$

$$= 0.23 + 0.12 + 0.20 + 0.07 = 0.62$$

$$P(F) = P(X = 1) + P(X = 2) + P(X = 3)$$

$$= 0.15 + 0.23 + 0.12 = 0.5$$

$$P(E \cap F) = P(X = 2) + P(X = 3)$$

$$= 0.23 + 0.12 = 0.35$$

$$\therefore P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

$$= 0.62 + 0.5 - 0.35 = 0.77$$
461 (c)
Given $P(X = 1) = P(X = 2)$

$$\therefore \frac{e^{-\lambda}\lambda^{1}}{1!} = \frac{e^{-\lambda}\lambda^{2}}{2!} \Rightarrow \lambda = 2$$

$$\therefore P(X = 4) = \frac{e^{-2}(2)^{4}}{4!} = \frac{2}{3e^{2}}$$

462 (a)

Out of 90 tickets, two tickets already considered, instead of selecting 5 tickets we have to select only 3 tickets out of 88 tickets.

$$\therefore \text{ Required probability} = \frac{\frac{88C_3}{90}C_5}{\frac{3\times2\times1}{90\times89\times88\times87\times86}}$$
$$= \frac{\frac{5\times4}{90\times89}}{\frac{5\times4\times3\times2\times1}{801}}$$
$$= \frac{5\times4}{90\times89} = \frac{2}{801}$$
(b)

Required probability = $\left(1 - \frac{1}{4}\right)\left(1 - \frac{1}{3}\right) = \frac{1}{2}$

464 (d)

463

The total number of ways of choosing 11 players out of 15 is ${}^{15}C_{11}$

A team of 11 players containing at least 3 bowlers can be chosen in the following mutually exclusive ways:

(I) Three bowlers out of 5 bowlers and 8 other players out of the remaining 10 players (II) Four bowlers out of 5 bowlers and 7 other players out of the remaining 10 players (III) Five bowlers out of 5 bowlers and 6 other players out of the remaining 10 players \therefore required probability = P(I) + P(II) + P(III)

$$=\frac{{}^{5}C_{3} \times {}^{10}C_{8}}{{}^{15}C_{11}} + \frac{{}^{5}C_{4} \times {}^{10}C_{7}}{{}^{15}C_{11}} + \frac{{}^{5}C_{5} \times {}^{10}C_{6}}{{}^{15}C_{11}}$$
$$=\frac{1260}{1365} = \frac{12}{13}$$

Let *A* be the event of selecting bag *X*, *B* be the event of selecting bag *Y* and *E* be the event of drawing a white ball, then probability of selecting a bag

 $P(A) = \frac{1}{2}, P(B) = \frac{1}{2},$ $P\left(\frac{E}{A}\right) = \frac{2}{5}, P\left(\frac{E}{B}\right) = \frac{4}{6} = \frac{2}{3}.$ Required probability,

$$P(E) = P(A) P\left(\frac{E}{A}\right) + P(B) P\left(\frac{E}{B}\right)$$
$$= \frac{1}{2} \cdot \frac{2}{5} + \frac{1}{2} \cdot \frac{2}{3}$$

$$= \frac{8}{15}$$
466 (d)

$$\therefore \text{ Required probability} = \frac{{}^{4}C_{2} + {}^{5}C_{2}}{{}^{9}C_{2}}$$

$$= \frac{6+10}{36} = \frac{16}{36}$$

$$= \frac{4}{9}$$

