

4.PRINCIPLE OF MATHEMATICAL INDUCTION

Single Correct Answer Type

1.	For all positive integral v	calues of <i>n</i> , $3^{2n} - 2n + 1$ is a	divisible by	
	a) 2	b) 4	c) 8	d) 12
2.	3 + 13 + 29 + 51 + 79 +			
		b) $n^2 + 5n^3$		d) None of these
3.	If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ 1 \end{bmatrix}$, then which one of the	following holds for all $n \ge n$	1, by the principle of
	mathematical induction?	1,		
	a) $A^n = 2^{n-1}A + (n-1)$		b) $A^n = nA + (n-1)I$	
	c) $A^n = 2^{n-1}A - (n-1)$		d) $A^n = nA - (n-1)I$	
4.	If $(n): 1 + 3 + 5 + \dots + (2n)$, , ,	
	a) True for all $n \in N$	b) True for <i>n</i> > 1	c) True for no n	d) None of these
5.	For a positive integer <i>n</i> , I	Let $a(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$	+ $\frac{1}{(2^n)-1}$. Then	
		b) <i>a</i> (100) > 100		d) None of these
6.	If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, the formula of the second s	then for $n \in N$, A^n is equal to	0	
	a) $\begin{bmatrix} \cos^n \theta & \sin^n \theta \end{bmatrix}$	b) $\begin{bmatrix} \cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta \end{bmatrix}$	c) $\begin{bmatrix} n \cos \theta & n \sin \theta \end{bmatrix}$	d) None of the above
7.		$\beta^{J} L - \sin n \theta \cos n \theta^{J}$ hree consecutive natural n		
7.	a) 7	b) 9	c) 25	d) 26
8.	For all $n \in N$, $\sum n$	0))	CJ 25	u) 20
01		$(2n+1)^2$	$(2n+1)^2$	d) None of these
	a) $< \frac{\sqrt{3}}{8}$	b) $> \frac{(2n+1)^2}{8}$	$c) = \frac{c}{8}$,
9.	The product of three con	secutive natural numbers is	s divisible by	
	a) 5	b) 7	c) 6	d) 4
10.	For all $n \in N$, $5^{2n} - 1$ is c	livisible by		
	a) 6	b) 11	c) 24	d) 26
11.	$7^{2n} + 3^{n-1} \cdot 2^{3n-3}$ is divis	•		N 40
10	a) 24	b) 25	c) 9	d) 13
12.	For $n \in N$, $10^{n-2} \ge 81n$		a) m < f	d)
13.	a) $n > 5$	b) $n \ge 5$	c) <i>n</i> < 5	d) <i>n</i> > 8
13.	For all $n \in N$, $\frac{n^5}{5} + \frac{n^3}{3} + \frac{n^3}{15}$	$\frac{1}{5n}$ is		
	a) An integer	b) A natural number		d) None of these
14.		$(2k-1) = 3 + k^2$. Then, w	which of the following is tru	e?
	a) $S(1)$ is correct		b) $S(k) \Longrightarrow S(k+1)$	· . 1 · . 1
	c) $S(k) \Rightarrow S(k+1)$			ical induction can be used
15.		_ / n±1	to prove the formula $\sum_{n=1}^{n} a_{n}$	
13.	The smallest positive inte	eger <i>n</i> for which $n! < \left(\frac{n+1}{2}\right)$) holds, is	
	a) 1	b) 2	c) 3	d) 4
16.	The remainder when 599			
	a) 6	b) 8	c) 9	d) 10
17.	$10^n + 3(4^{n+2}) + 5$ is division			N 45
10	a) 7	b) 5	c) 9	d) 17
18.	For all $n \in N$, $n^3 + 2n$ is o		a) ()	d) 11
10	a) 3 For all $n \in N$, $7^{2n} - 48n$	b) 8 – 1 is divisible by	c) 9	d) 11
19.	a) 25	b) 26	c) 1234	d) 2304
	uj 20	0 / 20	0 1201	uj 2001

20	$10^n + 2(4^{n+2}) + F$ is divisible by $(m \in N)$		
20.	$10^n + 3(4^{n+2}) + 5$ is divisible by $(n \in N)$		J) 17
21	a) 7 b) 5	c) 9	d) 17
21.	The <i>n</i> th term of the series $4 + 14 + 30 +$		d) 2? + 2
22	a) $5n - 1$ b) $2n^2 + 2n$,	d) $2n^2 + 2$
ΖΖ.	If $P(n)$ is a statement $(n \in N)$ such that,		
22		-	d) Nothing can be said
23.	Using mathematical induction, then numl $2u^2$ is a specific term of $u \ge 0$. The		
	$a_0=1, a_{n+1}=3n^2+n+a_n, (n \ge 0)$ Then		1. 3 . 2
24	a) $n^3 + n^2 + 1$ b) $n^3 - n^2 + 1$	c) $n^{3} - n^{2}$	d) $n^3 + n^2$
24.	$\frac{(n+2)!}{(n-1)!}$ is divisible by		
	a) 6 b) 11	c) 24	d) 26
25.	If $P(n) = 2 + 4 + 6 + \dots + 2n, n \in N$, then	$P(k) = k(k+1) + 2 \Rightarrow P(k+1) = (k+1)$	$(k+1)(k+2) + 2$ for all $k \in \mathbb{C}$
	<i>N</i> . So, we can conclude that $P(n) = n(n + n)$		
	a) All $n \in N$ b) $n > 1$	c) <i>n</i> > 2	d) Nothing can be said
26.	For all $n \in N$, $2 \cdot 4^{2n+1} + 3^{3n+1}$ is divisib	le by	
	a) 2 b) 9	c) 3	d) 11
27.	For all $n \in N$, n^4 is less than		
	a) 10 ⁿ b) 4 ⁿ	c) 5 ⁿ	d) 10 ¹⁰
28.	The number $a^n - b^n(a, b \text{ are distinct ration})$	onal numbers and $n \in N$) is always d	ivisible by
	a) $a - b$ b) $a + b$	c) 2 <i>a</i> – <i>b</i>	d) <i>a</i> – 2 <i>b</i>
29.	If $n \in N$, then $3^{2n} + 7$ is divisible by		
	a) 3 b) 8	c) 9	d) 11
30.	For each, $n \in N$, $10^{2n-1} + 1$ is divisible by	y	
	a) 11 b) 13	c) 9	d) None of these
31.	If $10^n + 3.4^{n+2} + \lambda$ is exactly divisible by	9 for all $n \in N$, then the least positive	integral value of λ is
	a) 5 b) 3	c) 7	d) 1
32.	For all $n \in N$, $\cos \theta \cos 2\theta \cos 4\theta \dots \cos 2^n$		
	a) $\frac{\sin 2^n \theta}{2^n \sin \theta}$ b) $\frac{\sin 2^n \theta}{\sin \theta}$	c) $\frac{\cos 2^n \theta}{2^n \cos 2\theta}$	d) $\frac{\cos 2^n \theta}{2^n \sin \theta}$
		$2^n \cos 2\theta$	$2^n \sin \theta$
33.	The inequality $n! > 2^{n-1}$ is true for		
	a) $n > 2$ b) $n \in N$	c) $n > 3$	d) None of these
34.	If $P(n): 2 + 4 + 6 \dots + (2n), n \in N$, then		
	P(k) = k(k + 1) + 2implies		
	P(k) = (k+1)(k+2) + 2		
	is true for all $k \in N$. So, statement $P(n) =$		d) None of these
25	a) $n \ge 1$ If $B(n) : 2^n < n n \in N$ then $B(n)$ is true	c) <i>n</i> ≥ 3	d) None of these
35.	If $P(n): 3^n < n!, n \in N$, then $P(n)$ is true	c) For $n \geq 3$	d) For all m
26	a) For $n \ge 6$ b) For $n \ge 7$ Let $P(n)$ denotes the statement that $n^2 +$		d) For all n
50.	a) $n > 1$ b) n	c) $n > 2$	d) None of these
27	The sum to <i>n</i> terms of the series $1^3 + 3^3$.	2	uj None of these
57.	a) $n^2(n^2 - 1)$ b) $n^2(2n^2 - 1)$		d) $n^2(n^2 + 1)$
38	If $n \in N$, then $11^{n+2} + 12^{2n+1}$ is divisible		d f n (n + 1)
50.	a) 113 b) 123	c) 133	d) None of these
30	For natural number n , $2^n(n-1)! < n^n$, if	-	uj none of these
57.	a) $n < 2$ b) $n > 2$	c) <i>n</i> ≥ 2	d) never
40	If $n \in N$, then $n(n^2 - 1)$ is divisible by	$c_j n = 2$	
101	a) 6 b) 16	c) 36	d) 24
41.	$(2^{3n} - 1)$ will be divisible by $(\forall n \in N)$.,	, - .
	a) 25 b) 8	c) 7	d) 3
	, - ~, ~	- , -	y -

42.	If $n \in N$, then $x^{2n-1}y^{2n-1}$ is divisible by		
	a) $x + y$ b) $x - y$	c) $x^2 + y^2$	d) None of these
43.	If $x^{2n-1} + y^{2n-1}$ is divisible by $x + y$, if n is		
	a) A positive integer	b) An even positive integ	ger
	c) An odd positive integer	d) None of the above	
44.	If m, n are any two odd positive integer with $n < m$,	then the largest positive in	ntegers which divides all the
	numbers of the type $m^2 - n^2$ is		
	a) 4 b) 6	c) 8	d) 9
45.	If $x^n - 1$ is divisible by $x - k$, then the least positive	e integral value of <i>k</i> is	
	a) 1 b) 2	c) 3	d) 4
46.	If <i>n</i> is a positive integer, then $5^{2n+2} - 24n - 25$ isdi		
	a) 574 b) 575	c) 675	d) 576
47.	For all $n \in N$, $3^{3n} - 26^n - 1$ is divisible by		
	a) 24 b) 64	c) 17	d) 676
48.	Matrix <i>A</i> is such that $A^2 = 2A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A^2 = A - I$ where <i>I</i> is the identity of $A - I$ where <i>I</i> is the identity of $A - I$ where <i>I</i> is the identity of $A - I$ where <i>I</i> is the identity of $A - I$ where <i>I</i> is the identity of $A - I$ where <i>I</i> is the identity of $A - I$ where <i>I</i> is the identity of $A - I$ where <i>I</i> is the identity of $A - I$ where <i>I</i> is the identity of $A - I$ where <i>I</i> is the identity of $A - I$ where <i>I</i> is the identity of $A - I$ where <i>I</i> is the identity of $A - I$ where <i>I</i> is the identity of $A - I$ where <i>I</i> is the identity of $A - I$ where <i>I</i> is is the identity of A - I where <i>I</i> is the identity of		
		c) $2^{n-1}A - (n-1)I$	d) $2^{n-1}A - I$
49.	If $a_1 = 1$ and $a_n = na_{n-1}$ for all positive integer $n \ge 120$		
50	a) 125 b) 120	c) 100	d) 24
50.	For all $n \in N$, $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$ is		
	a) Equal to \sqrt{n}		
	b) Less than or equal to \sqrt{n}		
	c) Greater than or equal to \sqrt{n}		
	d) None of these		
51.	Let $P(n): n^2 + n + 1$ is an even integer. If $P(k)$ is as	sumed true $\Rightarrow P(k+1)$ is t	true. Therefore, $P(n)$ is true
	a) For $n > 1$ b) For all $n \in N$	c) For <i>n</i> > 2	d) None of these
52.	$2^{3n} - 7n - 1$ is divisible by		
	a) 64 b) 36	c) 49	d) 25
53.	For all $n \in N$, $3n^5 + 5n^3 + 7n$ is divisible by		
	a) 3 b) 5	c) 10	d) 15
54.	If <i>n</i> is a positive integer, then $n^3 + 2n$ is divisible by	,	
	a) 2 b) 6	c) 15	d) 3
55.	For all $n \in N$, $49^n + 16n - 1$ is divisible by		
	a) 64 b) 8	c) 16	d) 4
56.	If $P(n)$ is a statement such that $P(3)$ is true. Assume $P(3)$ is true if $P(n)$ is the statement of $P(n)$ is the statement o	ning $P(k)$ is true $\Rightarrow P(k +$	1) is true for all $k \ge 3$, then
	P(n) is true		
67	a) For all <i>n</i> b) For $n \ge 3$		d) None of these
57.	If <i>n</i> is an odd positive integer, then $a^n + b^n$ is divisil		d) None of these
۲O	a) $a + b$ b) $a - b$ The atth terms of the series $2 + 7 + 12 + 21 + \cdots$ is	c) $a^2 + b^2$	d) None of these
58.	The <i>n</i> th terms of the series $3 + 7 + 13 + 21 + \cdots$ is a) $4n - 1$ b) $n^2 + 2n$	a) $m^2 + m + 1$	$d = \frac{1}{2} + 2$
50	If <i>a</i> , <i>b</i> are distinct rational numbers, then for all $n \in$	-	-
59.	a) $a - b$ b) $a + b$	c) $2a - b$	d) $a - 2b$
60	$x(x^{n-1} - n\alpha^{n-1}) + \alpha^n(n-1)$ is divisible by $(x - \alpha)$	2	uju 20
00.	a) $n > 1$ b) $n > 2$		d) None of these
61	$2^{3n} - 7n - 1$ is divisible by	oj 11177 C 11	aj none or these
	a) 64 b) 36	c) 49	d) 25
62.	The sum of <i>n</i> terms of the series $1 + (1 + a) + (1 + a)$,	2
	a) $\frac{n}{1-a} - \frac{a(1-a^n)}{(1-a)^2}$ b) $\frac{n}{1-a} + \frac{a(1-a^n)}{(1-a)^2}$	c) $\frac{1}{1-a} + \frac{1}{(1-a)^2}$	d) $-\frac{1}{1-a} + \frac{1}{(1-a)^2}$
63.	For each $n \in N$, $3^{2n} - 1$ is divisible by		
	•		

	a) 8	b) 16	c) 32	d) None of these
64.	If <i>n</i> is an even positive int	eger, then $a^n + b^n$ is divisi	ble by	
	a) <i>a</i> + <i>b</i>	b) <i>a</i> – <i>b</i>	c) $a^2 - b^2$	d) None of these
65.	The greatest positive inte	ger, which divides $(n + 2)($	(n+3)(n+4)(n+5)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1	6) for all $n \in N$, is
	a) 4	b) 120	c) 240	d) 24
66.	If $3 + 5 + 9 + 17 + 33 + 33 + 33 + 33 + 33 + 33 + 33$	\cdots to <i>n</i> terms = $2^{n+1} + n - $	2, then <i>n</i> th term of LHS is	
	a) 3 ⁿ – 1	b) 2 <i>n</i> + 1	c) $2^n + 1$	d) 3 <i>n</i> – 1
67.	For all $n \in N$, $10^n + 3.4^{n+1}$	r^2 + 5 is divisible by		
	a) 23	b) 3	c) 9	d) 207
68.	For all $n \in N$, $4^n - 3n - 1$	is divisible by		
	a) 3	b) 8	c) 9	d) 11

4.PRINCIPLE OF MATHEMATICAL INDUCTION

						: ANS	W
1)	а	2)	С	3)	d	4)	а
5)	а	6)	b	7)	b	8)	а
9)	С	10)	С	11)	b	12)	b
13)	b	14)	b	15)	b	16)	b
17)	С	18)	а	19)	d	20)	С
21)	С	22)	d	23)	b	24)	а
25)	d	26)	d	27)	а	28)	а
29)	b	30)	а	31)	а	32)	а
33)	а	34)	d	35)	b	36)	d
37)	b	38)	С	39)	b	40)	а
41)	С	42)	а	43)	а	44)	С
45)	а	46)	d	47)	d	48)	а
49)	b	50)	b	51)	d	52)	С
53)	d	54)	d	55)	а	56)	b
57)	а	58)	С	59)	а	60)	С
61)	С	62)	а	63)	а	64)	d
65)	b	66)	С	67)	С	68)	С

: HINTS AND SOLUTIONS :

```
1
           (a)
            On putting n = 2 in 3^{2n} - 2n + 1, we get
                                                                                                                                          10 (c)
           3^{2 \times 2} - 2 \times 2 + 1 = 81 - 4 + 1 = 78
           Which is divisible by 2
2
            (c)
           Clearly, n^3 + 2n^2 gives the sum of the series for
           n = 1, 2, 3 etc.
3
           (d)
          A^{2} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}A^{3} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}
                                                                                                                                          12 (b)
           A^n = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} can be verified by induction. Now,
           taking option
          \begin{array}{l} \text{(b)} \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix} = \begin{bmatrix} n & 0 \\ n & n \end{bmatrix} + \begin{bmatrix} n-1 & 0 \\ 0 & n-1 \end{bmatrix} \\ \Rightarrow \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix} \neq \begin{bmatrix} 2n-1 & 0 \\ 1 & 2n-1 \end{bmatrix} \\ \text{(d)}nA - (n-1)I = \begin{bmatrix} n & 0 \\ n & n \end{bmatrix} - \begin{bmatrix} n-1 & 0 \\ 1 & n-1 \end{bmatrix} \end{array}
                                                                                                                                          14 (b)
           =\begin{bmatrix}1&0\\n&1\end{bmatrix}=A^n
                                                                                                                                                      \Rightarrow
4
           (a)
           Given, (n): 1 + 3 + 5 + ... + (2n - 1) = n^2
           P(1): 1 = 1(true)
           Let P(k) = 1 + 3 + 5 + \dots + (2k - 1) = k^2
           \therefore P(k+1) = 1 + 3 + 5 + \dots + (2k-1) + 2k + 1
            = k^{2} + 2k + 1 = (k + 1)^{2}
           So, it holds for all n.
5
           (a)
           It can be proved with the help of mathematical
                                                                                                                                          15 (b)
           induction that \frac{n}{2} < a(n) \leq n.
           \therefore \frac{200}{2} < a(200) \Rightarrow a(200) > 100
           and a(100) \le 100
                                                                                                                                                      1! ≮ 1
           (b)
6
          Given, A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}

Now, A^2 = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta \\ -\sin \theta \end{bmatrix}

= \begin{bmatrix} \cos^2 \theta - \sin^2 \theta & 2\sin \theta \cos \theta \\ -2\sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta \end{bmatrix}
                                                                                                       sin θ1
                                                                                                       cosθ
                                                                                                                                          16 (b)
            = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}
           \therefore \text{ By induction, } A^n = \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix}
9
           (c)
           Let P(n) \equiv n(n+1)(n+2)
                                                                                                                                         17 (c)
           P(1) \equiv 1 \cdot 2 \cdot 3 = 6
           P(2) \equiv 2 \cdot 3 \cdot 4 = 24
```

Hence, it is divisible by 6. We have, $5^{2n} - 1 = (5^2)^n - 1 = (1 + 24)^n - 1$ $\Rightarrow 5^{2n} - 1 = {}^{n}C_{1} \times 24 + {}^{n}C_{2} \times 24^{2} + \dots + {}^{n}C_{n}$ $\Rightarrow 5^{2n} - 1 = 24({}^{n}C_{1} + {}^{n}C_{2} \times 24 + \dots + {}^{n}C_{n} \times 24^{n-1})$ $\Rightarrow 5^{2n} - 1$ is divisible by 24 for all $n \in N$ Let $P(n): 10^{n-2} \ge 81n$ For n = 4, $10^2 \ge 81 \times 4$ For $n = 5, 10^3 \ge 81 \times 5$ Hence, by mathematical induction for $n \ge 5$, the proposition is true. $S(k) = 1 + 3 + 5 \dots + (2k - 1) = 3 + k^2$ Put k = 1 in both sides, we get LHS = 1 and RHS = 3 + 1 = 4LHS \neq RHS Put (k + 1) in both sides in the place of k, we get LHS = $1 + 3 + 5 \dots + (2k - 1) + (2k + 1)$ $RHS = 3 + (k + 1)^2 = 3 + k^2 + 2k + 1$ Let LHS = RHSThen, $1 + 3 + 5 \dots + (2k - 1) + (2k + 1)$ $= 3 + k^2 + 2k + 1$ \Rightarrow 1 + 3 + 5 +...+(2k - 1) = 3 + k^2 If S(k) is true, then S(k + 1) is also true. Hence, $S(k) \Rightarrow S(k+1)$ Given, $n! < \left(\frac{n+1}{2}\right)^n$ At n = 1, At n = 2, $2! < \left(\frac{3}{2}\right)$ \Rightarrow 2 < 2.25 which is true. $5^{99} = 5(5^2)^{49} = 5(25)^{49}$ $= 5(26 - 1)^{49}$ $= 5 \times 26 \times (Positive term) - 5$ So, when it is divided by 13, it gives the remainder -5 or 8. On putting n = 2 in $10^n + 3(4^{n+2}) + 5$, we get $10^2 + 3 \times 4^4 + 5 = 100 + 768 + 5 = 873$ Page 6 Which is divisible by 9

18 (a) For n = 1, 2, 3, we find that $n^3 + 2n$ takes values 3, 12 and 33, which are divisible by 3 19 (d) We have, $7^{2n} - 48n - 1 = (1 + 48)^n - 48n - 1$ $\Rightarrow 7^{2n} - 48n - 1$ $= {}^{n}C_{2} \times 48^{2} + {}^{n}C_{3} \times 48^{3} + \cdots$ + ${}^{n}C_{n} \times 48^{n}$ \Rightarrow 7²ⁿ - 48n - 1 divisible by 48² i.e., 2304 20 (c) For $n = 1, 10^n + 3 \cdot 4^{n+2} + 5$ $= 10 + 3 \cdot 4^3 + 5 = 207$ which is divisible by 9. \therefore By induction, the result is divisible by 9. 21 (c) We observe that $3n^2 + n$ gives various terms of the series by putting n = 1, 2, 3, ...22 (d) Unless we prove P(1) is true, nothing can be said. 23 **(b)** Given, $a_0 = 1$, $a_{n+1} = 3n^2 + n + a_n$ $\Rightarrow a_1 = 3(0) + 0 + a_0 = 1$ $\Rightarrow a_2 = 3(1)^2 + 1 + a_1 = 3 + 1 + 1 = 5$ From option (b), Let $P(n) = n^3 - n^2 + 1$ $\therefore P(0) = 0 - 0 + 1 = 1 = a_0$ $P(1) = 1^3 - 1^2 + 1 = 1 = a_1$ and $P(2) = (2)^3 - (2)^2 + 1 = 5 = a_2$ 25 (d) It is obvious, nothing can be said. 26 (d) Let $P(n) = 2 \cdot 4^{2n+1} + 3^{3n+1}$ $P(1) \equiv 128 + 81 = 209$ (divisible by 11 only) 28 (a) Let $P(n) \equiv a^n - b^n$ $P(1) \equiv a - b$ $P(2) \equiv a^2 - b^2$ Hence, it is divisible by a - b. 29 **(b)** $3^{2n} + 7$ is divisible by 8. This can be checked by putting n = 1, 2, 3 etc. 30 (a) Let $P(n) = 10^{2n-1} + 1$ P(1) = 10 + 1 = 11Let $P(k) \equiv 10^{2k-1} + 1 = 11I$ is true Now, $P(k + 1) = 10^{2k+1} + 1$ =(11I-1)100+1 $= 1100I - 99 = 11I_1$ So, P(k + 1) is true.

33 (a) Let $P(n) \equiv n! > 2^{n-1}$ $P(3) \equiv 6 > 4$ Let $P(k) \equiv k! > 2^{k-1}$ is true. $\therefore P(k+1) = (k+1)! = (k'+1)k!$ $> (k+1)2^{k-1}$ $> 2^k$ (as k + 1 > 2) 34 (d) Here, P(1) = 2 and from the equation P(k) = k(k+1) + 2 $\implies P(1) = 4$ So, P(1) is not true Hence, mathematical induction is not applicable. 35 **(b)** Given that, $P(n): 3^n < n!$ Now, $P(7): 3^7 < 7!$ is true Let $P(k): 3^k < k!$ $\Rightarrow P(k+1): 3^{k+1} = 3 \cdot 3^k < 3 \cdot k! < (k+1)!$:: k + 1 > 336 **(d)** $P(n) = n^2 + n$ It is always odd but square of any odd number is always odd and also sum of two odd number is always even. So, for no any *n* for which this statement is true. 37 **(b)** $n^2(2n^2-1)$ gives the sum of the series for n = 1, 2, etc. 38 (c) On putting n = 1 in $11^{n+2} + 12^{2n+1}$, we get $11^{1+2} + 12^{2 \times 1+1} = 11^3 + 12^3 = 3059$ Which is divisible by 133 39 **(b)** The condition $2^n(n-1)! < n^n$ is satisfied for n > 240 **(a)** We have, $n(n^2 - 1) = (n - 1)(n + 1)$, which is product of three consecutive natural numbers and hence divisible by 6 41 (c) $2^{3n} - 1 = (2^3)^n - 1$ $= 8^{n} - 1 = (1 + 7)^{n} - 1$ $= 1 + {}^{n}C_{1}7 + {}^{n}C_{2}7^{2} + ... + {}^{n}C_{n}7^{n} - 1$ $= 7 \left[{}^{n}C_{1} + {}^{n}C_{2}7 + ... + {}^{n}C_{n}7^{n-1} \right]$ $\therefore 2^{3n} - 1$ is divisible by 7 43 (a) Let $P(n) \equiv x^{2n-1} + y^{2n-1} = \lambda(x + y)$ $P(1) \equiv x + y = \lambda_1(x + y)$ $P(2) \equiv x^3 + y^3 = \lambda_2(x+y)$

Hence, for $\forall n \in N$, P(n) is true. 44 (c) Let m = 2k + 1, n = 2k - 1 ($k \in N$) $\therefore m^2 - n^2 = 4k^2 + 1 + 4k - 4k^2 + 4k - 1 = 8k$ Hence, All the numbers of the form $m^2 - n^2$ are always divisible by 8. 46 **(d)** Let $P(n) = 5^{2n+2} - 24n - 25$ For n = 1 $P(1) = 5^4 - 24 - 25 = 576$ $P(2) = 5^6 - 24(2) - 25 = 15552$ $= 576 \times 27$ Here, we see that P(n) is divisible by 576 47 (d) We have, $3^{3n} - 26n - 1 = 27^n - 26n - 1$ $\Rightarrow 3^{3n} - 26n - 1 = (1 + 26)^n - 26n - 1$ $\Rightarrow 3^{3n} - 26n - 1$ $= {}^{n}C_{2} \times 26^{2} + {}^{n}C_{3} \times 26^{3} + \cdots$ + ${}^{n}C_{n} \times 26^{n}$ Clearly, RHS is divisible 26² i.e. 676 48 (a) As we have $A^2 = 2A - I$ $A^{2}A = (2A - I)A = 2A^{2} - IA$ \Rightarrow $A^3 = 2(2A - I) - IA = 3A - 2I$ \Rightarrow Similarly, $A^4 = 4A - 3I$ $A^{5} = 5A - AI$ $A^n = nA - (n-1)I$ 49 **(b)** Given, $a_n = na_{n-1}$ For n = 2 $a_2 = 2a_1 = 2$ (:: $a_1 = 1$ given) $a_3 = 3a_2 = 3(2) = 6$ $a_4 = 4(a_3) = 4(6) = 24$ $a_5 = 5(a_4) = 5(24) = 120$ 51 (d) Given, $P(n): n^2 + n + 1$ At n = 1, P(1) : 3, which is not an even integer. \therefore *P*(1) is not true (Principle of Induction is not applicable). Also, n(n + 1) + 1 is always an odd integer. 52 (c) Let $P(n) = 2^{3n} - 7n - 1$ P(1) = 0, P(2) = 49... P(1) and P(2) are divisible by 49. Let $P(k) \equiv 2^{3k} - 7k - 1 = 49I$ $\therefore P(k+1) \equiv 2^{3k+3} - 7k - 8$ = 8(49I + 7k + 1) - 7k - 8 $= 49(8I) + 49k = 49I_1$ Alternate

$$P(n) = (1+7)^n - 7n - 1$$

= 1 + 7n + 7² $\frac{n(n-1)}{2!} + \dots - 7n - 1$
= 7² $\left(\frac{n(n-1)}{2!} + \dots\right)$

53 (d)

Putting $n = 1, 2, 3 \dots$, it can be checked that $3n^5 + 5n^3 + 7n$ is divisible by 15 54 (d) Let $P(n) = n^3 + 2n$ \Rightarrow P(1) = 1 + 2 = 3 \Rightarrow P(2) = 8 + 4 = 12 \Rightarrow P(3) = 27 + 6 = 33 Here, we see that all these number are divisible by 3 55 (a) We observe that $49^n + 16n - 1$ takes values 64 Hence, $49^n + 16n - 1$ is divisible by 64 56 **(b)** Since, P(3) is true. Assume P(k) is true $\Rightarrow P(k + 1)$ is true means, if P(3) is true \Rightarrow P(4) is true \Rightarrow P(5) is true and so on. So, statement is true for all $n \ge 3$. 58 (c) Putting n = 1, 2, 3 ..., we observe that 4n - 1 is the *n*th term 60 **(c)** Let $P(n) = x(x^{n-1} - n\alpha^{n-1}) + \alpha^n(n-1) =$ $(x-\alpha)^2 g(x)$ $P(1) \equiv 0$ is true. Let P(k) is true. *ie*, $x(x^{k-1} - k\alpha^{k-1}) + \alpha^k(k-1) = (x - \alpha)^2 g(x)$ Now, $P(k + 1) \equiv x[x^k - (k + 1)\alpha^k] + \alpha^{k+1}(k)$ $\equiv (x - \alpha)^2 [xg(x) + k\alpha^{k-1}]$ (True) So, holds for all $n \in N$. 61 (c) Let $P(n) = 2^{3n} - 7n - 1$ $\therefore P(1) = 0$ P(2) = 49P(1) and P(2) are divisible by 49. Let $P(k) \equiv 2^{3k} - 7k - 1 = 49I$ $\therefore P(k+1) \equiv 2^{3k+3} - 7k - 8$ = 8(49I + 7k + 1) - 7k - 8 $= 49(8I) + 49k = 49I_1$ Hence, by mathematical induction $2^{3n} - 7n - 1$ is divisible by 49. (a)

63

Let $P(n) = 3^{2n} - 1$ At n = 1, P(1) = 8 which is divisible by 8. $\therefore P(1)$ is true.

Let P(k) is true, then $P(k) \equiv 3^{2k} - 1 = 8I$ $\therefore P(k+1) \equiv 3^{2k+2} - 1 = (8I+1)9 - I$ $= 72I + 8 = 8I_1$ $\therefore P(n)$ is divisible by 8, $\forall n \in N$. 68 (c) It can be checked that $4^n - 3n - 1$ is divisible by 9 for n = 1, 2, 3, ...