Single Correct Answer Type

1. For all positive integral values of $n, 3^{2 n}-2 n+1$ is divisible by
a) 2
b) 4
c) 8
d) 12
2. $3+13+29+51+79+\cdots$ to n terms $=$
a) $2 n^{2}+7 n^{3}$
b) $n^{2}+5 n^{3}$
c) $n^{3}+2 n^{2}$
d) None of these
3. If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then which one of the following holds for all $n \geq 1$, by the principle of mathematical induction?
a) $A^{n}=2^{n-1} A+(n-1) I$
b) $A^{n}=n A+(n-1) I$
c) $A^{n}=2^{n-1} A-(n-1) I$
d) $A^{n}=n A-(n-1) I$
4. If $(n): 1+3+5+\ldots+(2 n-1)=n^{2}$ is
a) True for all $n \in N$
b) True for $n>1$
c) True for no n
d) None of these
5. For a positive integer n, Let $a(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{\left(2^{n}\right)-1}$. Then
a) $a(100) \leq 100$
b) $a(100)>100$
c) $a(200) \leq 100$
d) None of these
6. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then for $n \in N, A^{n}$ is equal to
a) $\left[\begin{array}{cc}\cos ^{n} \theta & \sin ^{n} \theta \\ -\sin ^{n} \theta & \cos ^{n} \theta\end{array}\right]$
b) $\left[\begin{array}{cc}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta\end{array}\right]$
c) $\left[\begin{array}{cc}n \cos \theta & n \sin \theta \\ -n \sin \theta & n \cos \theta\end{array}\right]$
d) None of the above
7. The sum of the cubes of three consecutive natural numbers is divisible by
a) 7
b) 9
c) 25
d) 26
8. For all $n \in N, \sum n$
a) $<\frac{(2 n+1)^{2}}{8}$
b) $>\frac{(2 n+1)^{2}}{8}$
c) $=\frac{(2 n+1)^{2}}{8}$
d) None of these
9. The product of three consecutive natural numbers is divisible by
a) 5
b) 7
c) 6
d) 4
10. For all $n \in N, 5^{2 n}-1$ is divisible by
a) 6
b) 11
c) 24
d) 26
11. $7^{2 n}+3^{n-1} \cdot 2^{3 n-3}$ is divisible by
a) 24
b) 25
c) 9
d) 13
12. For $n \in N, 10^{n-2} \geq 81 n$ is
a) $n>5$
b) $n \geq 5$
c) $n<5$
d) $n>8$
13. For all $n \in N, \frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7}{15 n}$ is
a) An integer
b) A natural number
c) A positive fraction
d) None of these
14. Let $S(k)=1+3+5 \ldots+(2 k-1)=3+k^{2}$. Then, which of the following is true?
a) $S(1)$ is correct
b) $S(k) \Rightarrow S(k+1)$
c) $S(k) \nRightarrow S(k+1)$
d) Principle of mathematical induction can be used to prove the formula
15. The smallest positive integer n for which $n!<\left(\frac{n+1}{2}\right)^{n}$ holds, is
a) 1
b) 2
c) 3
d) 4
16. The remainder when 5^{99} is divided by 13 , is
a) 6
b) 8
c) 9
d) 10
17. $10^{n}+3\left(4^{n+2}\right)+5$ is divisible by $(n \in N)$
a) 7
b) 5
c) 9
d) 17
18. For all $n \in N, n^{3}+2 n$ is divisible by
a) 3
b) 8
c) 9
d) 11
19. For all $n \in N, 7^{2 n}-48 n-1$ is divisible by
a) 25
b) 26
c) 1234
d) 2304
20. $10^{n}+3\left(4^{n+2}\right)+5$ is divisible by $(n \in N)$
a) 7
b) 5
c) 9
d) 17
21. The nth term of the series $4+14+30+52+80+114+\cdots$ is
a) $5 n-1$
b) $2 n^{2}+2 n$
c) $3 n^{2}+n$
d) $2 n^{2}+2$
22. If $P(n)$ is a statement $(n \in N)$ such that, if $P(k)$ is true, $P(k+1)$ is true for $k \in N$, then $p(n)$ is true
a) For all n
b) For all $n>1$
c) For all $n>2$
d) Nothing can be said
23. Using mathematical induction, then numbers $a_{n}{ }^{\prime} s$ are defined by $a_{0}=1, a_{n+1}=3 n^{2}+n+a_{n},(n \geq 0)$ Then, a_{n} is equal to
a) $n^{3}+n^{2}+1$
b) $n^{3}-n^{2}+1$
c) $n^{3}-n^{2}$
d) $n^{3}+n^{2}$
24. $\frac{(n+2)!}{(n-1)!}$ is divisible by
a) 6
b) 11
c) 24
d) 26
25. If $P(n)=2+4+6+\ldots+2 n, n \in N$, then $P(k)=k(k+1)+2 \Rightarrow P(k+1)=(k+1)(k+2)+2$ for all $k \in$ N. So, we can conclude that $P(n)=n(n+1)+2$ for
a) All $n \in N$
b) $n>1$
c) $n>2$
d) Nothing can be said
26. For all $n \in N, 2 \cdot 4^{2 n+1}+3^{3 n+1}$ is divisible by
a) 2
b) 9
c) 3
d) 11
27. For all $n \in N, n^{4}$ is less than
a) 10^{n}
b) 4^{n}
c) 5^{n}
d) 10^{10}
28. The number $a^{n}-b^{n}(a, b$ are distinct rational numbers and $n \in N)$ is always divisible by
a) $a-b$
b) $a+b$
c) $2 a-b$
d) $a-2 b$
29. If $n \in N$, then $3^{2 n}+7$ is divisible by
a) 3
b) 8
c) 9
d) 11
30. For each, $n \in N, 10^{2 n-1}+1$ is divisible by
a) 11
b) 13
c) 9
d) None of these
31. If $10^{n}+3.4^{n+2}+\lambda$ is exactly divisible by 9 for all $n \in N$, then the least positive integral value of λ is
a) 5
b) 3
c) 7
d) 1
32. For all $n \in N, \cos \theta \cos 2 \theta \cos 4 \theta \ldots \cos 2^{n-1} \theta$ equals to
a) $\frac{\sin 2^{n} \theta}{2^{n} \sin \theta}$
b) $\frac{\sin 2^{n} \theta}{\sin \theta}$
c) $\frac{\cos 2^{n} \theta}{2^{n} \cos 2 \theta}$
d) $\frac{\cos 2^{n} \theta}{2^{n} \sin \theta}$
33. The inequality $n!>2^{n-1}$ is true for
a) $n>2$
b) $n \in N$
c) $n>3$
d) None of these
34. If $P(n): 2+4+6 \ldots+(2 n), n \in N$, then
$P(k)=k(k+1)+2$ implies
$P(k)=(k+1)(k+2)+2$
is true for all $k \in N$. So, statement $P(n)=n(n+1)+2$ is true for
a) $n \geq 1$
b) $n \geq 2$
c) $n \geq 3$
d) None of these
35. If $P(n): 3^{n}<n!, n \in N$, then $P(n)$ is true
a) For $n \geq 6$
b) For $n \geq 7$
c) For $n \geq 3$
d) For all n
36. Let $P(n)$ denotes the statement that $n^{2}+n$ is odd. It is seen that $P(n) \Rightarrow P(n+1), P(n)$ is true for all
a) $n>1$
b) n
c) $n>2$
d) None of these
37. The sum to n terms of the series $1^{3}+3^{3}+5^{3}+\cdots$ is
a) $n^{2}\left(n^{2}-1\right)$
b) $n^{2}\left(2 n^{2}-1\right)$
c) $n^{2}\left(2 n^{2}+1\right)$
d) $n^{2}\left(n^{2}+1\right)$
38. If $n \in N$, then $11^{n+2}+12^{2 n+1}$ is divisible by
a) 113
b) 123
c) 133
d) None of these
39. For natural number $n, 2^{n}(n-1)!<n^{n}$, if
a) $n<2$
b) $n>2$
c) $n \geq 2$
d) never
40. If $n \in N$, then $n\left(n^{2}-1\right)$ is divisible by
a) 6
b) 16
c) 36
d) 24
41. $\left(2^{3 n}-1\right)$ will be divisible by $(\forall n \in N)$
a) 25
b) 8
c) 7
d) 3
42. If $n \in N$, then $x^{2 n-1} y^{2 n-1}$ is divisible by
a) $x+y$
b) $x-y$
c) $x^{2}+y^{2}$
d) None of these
43. If $x^{2 n-1}+y^{2 n-1}$ is divisible by $x+y$, if n is
a) A positive integer
b) An even positive integer
c) An odd positive integer
d) None of the above
44. If m, n are any two odd positive integer with $n<m$, then the largest positive integers which divides all the numbers of the type $m^{2}-n^{2}$ is
a) 4
b) 6
c) 8
d) 9
45. If $x^{n}-1$ is divisible by $x-k$, then the least positive integral value of k is
a) 1
b) 2
c) 3
d) 4
46. If n is a positive integer, then $5^{2 n+2}-24 n-25$ isdivisible by
a) 574
b) 575
c) 675
d) 576
47. For all $n \in N, 3^{3 n}-26^{n}-1$ is divisible by
a) 24
b) 64
c) 17
d) 676
48. Matrix A is such that $A^{2}=2 A-I$ where I is the identity matrix, then for $n \geq 2, A^{n}$ is equal to
a) $n A-(n-1) I$
b) $n A-I$
c) $2^{n-1} A-(n-1) I$
d) $2^{n-1} A-I$
49. If $a_{1}=1$ and $a_{n}=n a_{n-1}$ for all positive integer $n \geq 2$, then a_{5} is equal to
a) 125
b) 120
c) 100
d) 24
50. For all $n \in N, 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}$ is
a) Equal to \sqrt{n}
b) Less than or equal to \sqrt{n}
c) Greater than or equal to \sqrt{n}
d) None of these
51. Let $P(n): n^{2}+n+1$ is an even integer. If $P(k)$ is assumed true $\Rightarrow P(k+1)$ is true. Therefore, $P(n)$ is true
a) For $n>1$
b) For all $n \in N$
c) For $n>2$
d) None of these
52. $2^{3 n}-7 n-1$ is divisible by
a) 64
b) 36
c) 49
d) 25
53. For all $n \in N, 3 n^{5}+5 n^{3}+7 n$ is divisible by
a) 3
b) 5
c) 10
d) 15
54. If n is a positive integer, then $n^{3}+2 n$ is divisible by
a) 2
b) 6
c) 15
d) 3
55. For all $n \in N, 49^{n}+16 n-1$ is divisible by
a) 64
b) 8
c) 16
d) 4
56. If $P(n)$ is a statement such that $P(3)$ is true. Assuming $P(k)$ is true $\Rightarrow P(k+1)$ is true for all $k \geq 3$, then $P(n)$ is true
a) For all n
b) For $n \geq 3$
c) For $n>4$
d) None of these
57. If n is an odd positive integer, then $a^{n}+b^{n}$ is divisible by
a) $a+b$
b) $a-b$
c) $a^{2}+b^{2}$
d) None of these
58. The nth terms of the series $3+7+13+21+\cdots$ is
a) $4 n-1$
b) $n^{2}+2 n$
c) $n^{2}+n+1$
d) $n^{2}+2$
59. If a, b are distinct rational numbers, then for all $n \in N$ the number $a^{n}-b^{n}$ is divisible by
a) $a-b$
b) $a+b$
c) $2 a-b$
d) $a-2 b$
60. $x\left(x^{n-1}-n \alpha^{n-1}\right)+\alpha^{n}(n-1)$ is divisible by $(x-\alpha)^{2}$ for
a) $n>1$
b) $n>2$
c) All $n \in N$
d) None of these
61. $2^{3 n}-7 n-1$ is divisible by
a) 64
b) 36
c) 49
d) 25
62. The sum of n terms of the series $1+(1+a)+\left(1+a+a^{2}\right)+\left(1+a+a^{2}+a^{3}\right)+\cdots$, is
a) $\frac{n}{1-a}-\frac{a\left(1-a^{n}\right)}{(1-a)^{2}}$
b) $\frac{n}{1-a}+\frac{a\left(1-a^{n}\right)}{(1-a)^{2}}$
c) $\frac{n}{1-a}+\frac{a\left(1+a^{n}\right)}{(1-a)^{2}}$
d) $-\frac{n}{1-a}+\frac{a\left(1-a^{n}\right)}{(1-a)^{2}}$
63. For each $n \in N, 3^{2 n}-1$ is divisible by
a) 8
b) 16
c) 32
d) None of these
64. If n is an even positive integer, then $a^{n}+b^{n}$ is divisible by
a) $a+b$
b) $a-b$
c) $a^{2}-b^{2}$
d) None of these
65. The greatest positive integer, which divides $(n+2)(n+3)(n+4)(n+5)(n+6)$ for all $n \in N$, is
a) 4
b) 120
c) 240
d) 24
66. If $3+5+9+17+33+\cdots$ to n terms $=2^{n+1}+n-2$, then nth term of LHS is
a) $3^{n}-1$
b) $2 n+1$
c) $2^{n}+1$
d) $3 n-1$
67. For all $n \in N, 10^{n}+3.4^{n+2}+5$ is divisible by
a) 23
b) 3
c) 9
d) 207
68. For all $n \in N, 4^{n}-3 n-1$ is divisible by
a) 3
b) 8
c) 9
d) 11

: ANSWER KEY:

1)	a	2)	c	3)	d	4)	a
5)	a	6)	b	7)	b	8)	a
9)	c	10)	c	11)	b	12)	b
13)	b	14)	b	15)	b	16)	b
17)	c	18)	a	19)	d	20)	c
21)	c	22)	d	23)	b	24)	a
25)	d	26)	d	27)	a	28)	a
29)	b	30)	a	31)	a	32)	a
33)	a	34)	d	35)	b	36)	d
37)	b	38)	c	39)	b	40)	a
41)	c	42)	a	43)	a	44)	c
45)	a	46)	d	47)	d	48)	a
49)	b	50)	b	51)	d	52)	c
53)	d	54)	d	55)	a	56)	b
57)	a	58)	c	59)	a	60)	c
61)	c	62)	a	63)	a	64)	d
65)	b	66)	c	67)	c	68)	c

: HINTS AND SOLUTIONS :

1 (a)
On putting $n=2$ in $3^{2 n}-2 n+1$, we get
$3^{2 \times 2}-2 \times 2+1=81-4+1=78$
Which is divisible by 2
2 (c)
Clearly, $n^{3}+2 n^{2}$ gives the sum of the series for $n=1,2,3$ etc.
3 (d)
$A^{2}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$
$A^{3}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$
$A^{n}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ can be verified by induction. Now, taking option
(b) $\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]=\left[\begin{array}{ll}n & 0 \\ n & n\end{array}\right]+\left[\begin{array}{cc}n-1 & 0 \\ 0 & n-1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right] \neq\left[\begin{array}{cc}2 n-1 & 0 \\ 1 & 2 n-1\end{array}\right]$
(d) $n A-(n-1) I=\left[\begin{array}{ll}n & 0 \\ n & n\end{array}\right]-\left[\begin{array}{cc}n-1 & 0 \\ 1 & n-1\end{array}\right]$ $=\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]=A^{n}$
4 (a)
Given, $(n): 1+3+5+\ldots+(2 n-1)=n^{2}$
$P(1): 1=1$ (true)
Let $P(k)=1+3+5+\ldots+(2 k-1)=k^{2}$
$\therefore P(k+1)=1+3+5+\ldots+(2 k-1)+2 k+1$
$=k^{2}+2 k+1=(k+1)^{2}$
So, it holds for all n.
5 (a)
It can be proved with the help of mathematical induction that $\frac{n}{2}<a(n) \leq n$.
$\therefore \frac{200}{2}<a(200) \Rightarrow a(200)>100$
and $a(100) \leq 100$
6 (b)
Given, $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
Now, $A^{2}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
$=\left[\begin{array}{cc}\cos ^{2} \theta-\sin ^{2} \theta & 2 \sin \theta \cos \theta \\ -2 \sin \theta \cos \theta & \cos ^{2} \theta-\sin ^{2} \theta\end{array}\right]$
$=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]$
\therefore By induction, $A^{n}=\left[\begin{array}{cc}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta\end{array}\right]$
9 (c)
Let $P(n) \equiv n(n+1)(n+2)$
$P(1) \equiv 1 \cdot 2 \cdot 3=6$
$P(2) \equiv 2 \cdot 3 \cdot 4=24$

Hence, it is divisible by 6 .
10
(c)

We have,
$5^{2 n}-1=\left(5^{2}\right)^{n}-1=(1+24)^{n}-1$
$\Rightarrow 5^{2 n}-1={ }^{n} C_{1} \times 24+{ }^{n} C_{2} \times 24^{2}+\cdots+{ }^{n} C_{n}$

$$
\times 24^{n}
$$

$\Rightarrow 5^{2 n}-1=24\left({ }^{n} C_{1}+{ }^{n} C_{2} \times 24+\cdots+{ }^{n} C_{n}\right.$ $\left.\times 24^{n-1}\right)$
$\Rightarrow 5^{2 n}-1$ is divisible by 24 for all $n \in N$
12 (b)
Let $P(n): 10^{n-2} \geq 81 n$
For $n=4,10^{2} \geq 81 \times 4$
For $n=5,10^{3} \geq 81 \times 5$
Hence, by mathematical induction for $n \geq 5$, the proposition is true.
14 (b)
$S(k)=1+3+5 \ldots+(2 k-1)=3+k^{2}$
Put $k=1$ in both sides, we get
LHS $=1$ and $\mathrm{RHS}=3+1=4$
$\Rightarrow \quad$ LHS \neq RHS
Put $(k+1)$ in both sides in the place of k, we get

$$
\mathrm{LHS}=1+3+5 \ldots+(2 k-1)+(2 k+1)
$$

RHS $=3+(k+1)^{2}=3+k^{2}+2 k+1$
Let LHS = RHS
Then, $1+3+5 \ldots+(2 k-1)+(2 k+1)$

$$
=3+k^{2}+2 k+1
$$

$\Rightarrow 1+3+5+\ldots+(2 k-1)=3+k^{2}$
If $S(k)$ is true, then $S(k+1)$ is also true.
Hence, $S(k) \Longrightarrow S(k+1)$
15 (b)
Given, $n!<\left(\frac{n+1}{2}\right)^{n}$
At $n=1$,
1 ! <1
At $n=2$,
$2!<\left(\frac{3}{2}\right)^{2}$
$\Rightarrow 2<2.25$ which is true.
16 (b)
$5^{99}=5\left(5^{2}\right)^{49}=5(25)^{49}$
$=5(26-1)^{49}$
$=5 \times 26 \times($ Positive term $)-5$
So, when it is divided by 13, it gives the remainder -5 or 8 .
17 (c)
On putting $n=2$ in $10^{n}+3\left(4^{n+2}\right)+5$, we get
$10^{2}+3 \times 4^{4}+5=100+768+5=873$

Which is divisible by 9
18 (a)
For $n=1,2,3$, we find that $n^{3}+2 n$ takes values 3,12 and 33 , which are divisible by 3
19 (d)
We have,
$7^{2 n}-48 n-1=(1+48)^{n}-48 n-1$
$\Rightarrow 7^{2 n}-48 n-1$

$$
\begin{aligned}
& ={ }^{n} C_{2} \times 48^{2}+{ }^{n} C_{3} \times 48^{3}+\cdots \\
& +{ }^{n} C_{n} \times 48^{n}
\end{aligned}
$$

$\Rightarrow 7^{2 n}-48 n-1$ divisible by 48^{2} i.e., 2304
20 (c)
For $n=1,10^{n}+3 \cdot 4^{n+2}+5$
$=10+3 \cdot 4^{3}+5=207$ which is divisible by 9 .
\therefore By induction, the result is divisible by 9 .
21 (c)
We observe that $3 n^{2}+n$ gives various terms of the series by putting $n=1,2,3, \ldots$
22 (d)
Unless we prove $P(1)$ is true, nothing can be said.
23 (b)
Given, $a_{0}=1, a_{n+1}=3 n^{2}+n+a_{n}$
$\Rightarrow a_{1}=3(0)+0+a_{0}=1$
$\Rightarrow a_{2}=3(1)^{2}+1+a_{1}=3+1+1=5$
From option (b),
Let $P(n)=n^{3}-n^{2}+1$
$\therefore \quad P(0)=0-0+1=1=a_{0}$

$$
P(1)=1^{3}-1^{2}+1=1=a_{1}
$$

and $P(2)=(2)^{3}-(2)^{2}+1=5=a_{2}$
25 (d)
It is obvious, nothing can be said.
26 (d)
Let $P(n)=2 \cdot 4^{2 n+1}+3^{3 n+1}$
$P(1) \equiv 128+81=209$ (divisible by 11 only)
28 (a)
Let $P(n) \equiv a^{n}-b^{n}$
$P(1) \equiv a-b$
$P(2) \equiv a^{2}-b^{2}$
Hence, it is divisible by $a-b$.
29 (b)
$3^{2 n}+7$ is divisible by 8 . This can be checked by putting $n=1,2,3$ etc.
30 (a)
Let $P(n)=10^{2 n-1}+1$
$P(1)=10+1=11$
Let $P(k) \equiv 10^{2 k-1}+1=11 I$ is true
Now, $P(k+1)=10^{2 k+1}+1$
$=(11 I-1) 100+1$
$=1100 I-99=11 I_{1}$
So, $P(k+1)$ is true.

33 (a)
Let $P(n) \equiv n!>2^{n-1}$
$P(3) \equiv 6>4$
Let $P(k) \equiv k!>2^{k-1}$ is true.
$\therefore P(k+1)=(k+1)!=\left(k^{\prime}+1\right) k!$
$>(k+1) 2^{k-1}$
$>2^{k} \quad($ as $k+1>2)$
(d)

Here, $P(1)=2$ and from the equation
$P(k)=k(k+1)+2$
$\Rightarrow \quad P(1)=4$
So, $P(1)$ is not true
Hence, mathematical induction is not applicable.
35 (b)
Given that, $P(n): 3^{n}<n$!
Now, $P(7): 3^{7}<7$! is true
Let $P(k): 3^{k}<k$!
$\Rightarrow P(k+1): 3^{k+1}=3 \cdot 3^{k}<3 \cdot k!<(k+1)!($

$$
\because k+1>3)
$$

36 (d)
$P(n)=n^{2}+n$
It is always odd but square of any odd number is always odd and also sum of two odd number is always even. So, for no any n for which this statement is true.
37 (b)
$n^{2}\left(2 n^{2}-1\right)$ gives the sum of the series for
$n=1,2$, etc.
$38 \quad$ (c)
On putting $n=1$ in $11^{n+2}+12^{2 n+1}$, we get
$11^{1+2}+12^{2 \times 1+1}=11^{3}+12^{3}=3059$
Which is divisible by 133
39 (b)
The condition $2^{n}(n-1)!<n^{n}$ is satisfied for $n>2$
40 (a)
We have,
$n\left(n^{2}-1\right)=(n-1)(n+1)$, which is product of three consecutive natural numbers and hence divisible by 6
41 (c)
$2^{3 n}-1=\left(2^{3}\right)^{n}-1$
$=8^{n}-1=(1+7)^{n}-1$
$=1+{ }^{n} C_{1} 7+{ }^{n} C_{2} 7^{2}+\ldots+{ }^{n} C_{n} 7^{n}-1$
$=7\left[{ }^{n} C_{1}+{ }^{n} C_{2} 7+\ldots+{ }^{n} C_{n} 7{ }^{n-1}\right]$
$\therefore 2^{3 n}-1$ is divisible by 7
43 (a)
Let $P(n) \equiv x^{2 n-1}+y^{2 n-1}=\lambda(x+y)$
$P(1) \equiv x+y=\lambda_{1}(x+y)$
$P(2) \equiv x^{3}+y^{3}=\lambda_{2}(x+y)$

Hence, for $\forall n \in N, P(n)$ is true.
44 (c)
Let $m=2 k+1, n=2 k-1(k \in N)$
$\therefore m^{2}-n^{2}=4 k^{2}+1+4 k-4 k^{2}+4 k-1=8 k$
Hence, All the numbers of the form $m^{2}-n^{2}$ are always divisible by 8 .
46 (d)
Let $P(n)=5^{2 n+2}-24 n-25$
For $\quad n=1$

$$
\begin{gathered}
P(1)=5^{4}-24-25=576 \\
P(2)=5^{6}-24(2)-25=15552 \\
=576 \times 27
\end{gathered}
$$

Here, we see that $P(n)$ is divisible by 576
47 (d)
We have,
$3^{3 n}-26 n-1=27^{n}-26 n-1$
$\Rightarrow 3^{3 n}-26 n-1=(1+26)^{n}-26 n-1$
$\Rightarrow 3^{3 n}-26 n-1$

$$
\begin{aligned}
& ={ }^{n} C_{2} \times 26^{2}+{ }^{n} C_{3} \times 26^{3}+\cdots \\
& +{ }^{n} C_{n} \times 26^{n}
\end{aligned}
$$

Clearly, RHS is divisible 26^{2} i.e. 676
48 (a)
As we have $A^{2}=2 A-I$
$\Rightarrow \quad A^{2} A=(2 A-I) A=2 A^{2}-I A$
$\Rightarrow \quad A^{3}=2(2 A-I)-I A=3 A-2 I$
Similarly, $\quad A^{4}=4 A-3 I$

$$
A^{5}=5 A-A I
$$

$$
A^{n}=n A-(n-1) I
$$

49 (b)
Given, $a_{n}=n a_{n-1}$
For $\quad n=2$

$$
\begin{aligned}
& a_{2}=2 a_{1}=2 \quad\left(\because a_{1}=1 \text { given }\right) \\
& a_{3}=3 a_{2}=3(2)=6 \\
& a_{4}=4\left(a_{3}\right)=4(6)=24 \\
& a_{5}=5\left(a_{4}\right)=5(24)=120
\end{aligned}
$$

51 (d)
Given, $P(n): n^{2}+n+1$
At $n=1, P(1): 3$, which is not an even integer.
$\therefore P(1)$ is not true (Principle of Induction is not applicable).
Also, $n(n+1)+1$ is always an odd integer.
52 (c)
Let $P(n)=2^{3 n}-7 n-1$
$\therefore \quad P(1)=0, P(2)=49$
$P(1)$ and $P(2)$ are divisible by 49 .
Let $P(k) \equiv 2^{3 k}-7 k-1=49 I$
$\therefore P(k+1) \equiv 2^{3 k+3}-7 k-8$

$$
=8(49 I+7 k+1)-7 k-8
$$

$$
=49(8 I)+49 k=49 I_{1}
$$

Alternate

$$
\begin{gathered}
P(n)=(1+7)^{n}-7 n-1 \\
=1+7 n+7^{2} \frac{n(n-1)}{2!}+\cdots-7 n-1 \\
=7^{2}\left(\frac{n(n-1)}{2!}+\cdots\right)
\end{gathered}
$$

53 (d)
Putting $n=1,2,3 \ldots$..., it can be checked that $3 n^{5}+5 n^{3}+7 n$ is divisible by 15
(d)

Let $P(n)=n^{3}+2 n$
$\Rightarrow P(1)=1+2=3$
$\Rightarrow P(2)=8+4=12$
$\Rightarrow P(3)=27+6=33$
Here, we see that all these number are divisible by 3

55 (a)
We observe that $49^{n}+16 n-1$ takes values 64 Hence, $49^{n}+16 n-1$ is divisible by 64
56 (b)
Since, $P(3)$ is true.
Assume $P(k)$ is true $\Rightarrow P(k+1)$ is true means, if $P(3)$ is true $\Rightarrow P(4)$ is true $\Rightarrow P(5)$ is true and so on. So, statement is true for all $n \geq 3$.
58 (c)
Putting $n=1,2,3 \ldots$, we observe that $4 n-1$ is the nth term
60 (c)
Let $P(n)=x\left(x^{n-1}-n \alpha^{n-1}\right)+\alpha^{n}(n-1)=$ $(x-\alpha)^{2} \mathrm{~g}(x)$
$P(1) \equiv 0$ is true.
Let $P(k)$ is true.
$i e, x\left(x^{k-1}-k \alpha^{k-1}\right)+\alpha^{k}(k-1)=(x-\alpha)^{2} \mathrm{~g}(x)$
Now, $P(k+1) \equiv x\left[x^{k}-(k+1) \alpha^{k}\right]+\alpha^{k+1}(k)$
$\equiv(x-\alpha)^{2}\left[x \mathrm{~g}(x)+k \alpha^{k-1}\right]$
(True)
So, holds for all $n \in N$.
61 (c)
Let $P(n)=2^{3 n}-7 n-1$
$\therefore P(1)=0$
$P(2)=49$
$P(1)$ and $P(2)$ are divisible by 49 .
Let $P(k) \equiv 2^{3 k}-7 k-1=49 I$
$\therefore P(k+1) \equiv 2^{3 k+3}-7 k-8$
$=8(49 I+7 k+1)-7 k-8$
$=49(8 I)+49 k=49 I_{1}$
Hence, by mathematical induction $2^{3 n}-7 n-1$ is divisible by 49 .
63 (a)
Let $P(n)=3^{2 n}-1$
At $n=1, P(1)=8$ which is divisible by 8 .
$\therefore P(1)$ is true.

Let $P(k)$ is true, then
$P(k) \equiv 3^{2 k}-1=8 I$
$\therefore P(k+1) \equiv 3^{2 k+2}-1=(8 I+1) 9-I$
$=72 I+8=8 I_{1}$
$\therefore P(n)$ is divisible by $8, \forall n \in N$.

68 (c)
It can be checked that $4^{n}-3 n-1$ is divisible by 9 for $n=1,2,3, \ldots$

