

7.PERMUTATIONS AND COMBINATIONS

Single Correct Answer Type

1.	The total number of sele	ections of fruit which can be	e made from 3 bananas, 4 a	pples and 2 oranges, is
	a) 39	b) 315	c) 512	d) None of these
2.	If $m = {}^{n}C_2$, then ${}^{m}C_2$ is	,	,	2
	a) $3^{n}C_{4}$	b) $^{n+1}C_{A}$	c) 3 ^{.n+1} C ₄	d) 3. ^{<i>n</i>+1} <i>C</i> ₃
3.	<i>,</i> .	у <u>т</u>	ree boxes of different sizes.	- 0
		=	hat no box remains empty?	
	a) 50	b) 100	c) 150	d) 200
4.	-	-	60° each. The number of di	,
	a) 97	b) 105	c) 135	d) 146
5.		,	,	ow many ways are possible
	to do this $(m < n)$?	1 1	,	
		b) ^{<i>n</i>} <i>C</i> _{<i>m</i>}	c) ${}^{n}C_{n} \times (m-1)!$	d) $^{n-1}P_{m-1}$
6.	$\nabla^m n + r q$			
	a) $n+m+1C_{m+1}$	b) $^{n+m+2}C_{m}$	c) $^{n+m+3}C_{n-1}$	d) None of these
7.			three sets A, B, C of equal si	
	Thus, $A \cup B \cup C = S$	-)		
	$A \cup B = B \cup C = A \cup C$	= Ø		
	The number of ways to p			
	a) 12!/3! (4!) ³	· · · · ·	c) 12!/(4!) ³	d) 12! (3!) ⁴
8.		at least 4 candidates from		
-	a) 270	b) 70	c) 163	d) None of these
9.		,	all the permutations are ar	-
			ords that appear before the	
	a) 360	b) 192	c) 96	d) 48
10.		,	,	vays in which a village can go
	to the town and return b			
	a) 20	b) 25	c) 5	d) 10
11.		ositive number with exactl	y n digits. Nine hundred dis	stinct <i>n</i> -digit numbers are to
	be formed using only the	e three digits 2, 5 and 7. Th	e smallest value of <i>n</i> for wh	ich this is possible, is
			c) 8	
12.	If ${}^{n}C_{r-1} = 36$, ${}^{n}C_{r} = 84$	_	-	-
	a) <i>n</i> = 8, <i>r</i> = 4		c) <i>n</i> = 7, <i>r</i> = 5	d) None of these
13.	The total number of way	rs in which 11 identical app	oles can be distributed amo	ng 6 children is
	a) 252	b) 462	c) 42	d) None of these
14.	A polygon has 44 diagon	als, then the number of its	sides are	
	a) 11	b) 7	c) 8	d) None of these
15.	The number of ways in v	which 12 balls can be divide	ed between two friends, on	e receiving 8 an the other 4,
	is			
	a) $\frac{12!}{8!4!}$	b) $\frac{12!2!}{8!4!}$	c) <u>12 !</u>	d) None of these
	-	0.1.	0.1.2.	
16.			The number of <i>n</i> digit num	
	a) <i>n</i> !	b) 9!	c) 9 ⁿ	d) <i>n</i> ⁹
17.			order. The number of num	
	a) 72	b) 96	c) 90	d) 98
18.		-	nes. The maximum number	r of triangles formed with
	vertices at these points i	S		

	a) $p^3 + 3p^2$	b) $\frac{1}{2}(p^3 + p)$	c) $\frac{p^2}{2}(5p-3)$	d) $p^2(4p-3)$
19.		the form $(4n+2)$, $n \ge 0$ of t		
	a) 4	b) 8	c) 10	d) 3
20.	S are adjacent?	rds can be formed by jumbl b) 8. ${}^{6}C_{4}$. ${}^{7}C_{4}$	-	MISSISSIPPI in which no two d) 6.8. ${}^{7}C_{4}$
21				y 1
21.		is intersecting at <i>P</i> . If A_1, B_1 , incides with <i>P</i> , then the num		B_2, C_2, D_2, E_2 are points on l_2 these eight points, is
	a) 56	b) 55	c) 46	d) 45
22.	balls are taken out at ra	A has 3 distinct red balls a ndom and then transferred		e balls. From each urn two of ways in which this can be
	done, is			N 100
22	a) 3	b) 36	c) 66	d) 108
23.		hat can be formed out of the	e letters of the words 'ARTI	CE' so that the vowels occupy
	even places, is			
	a) 574	b) 36	c) 754	d) 144
24.	The value of 2 ^{<i>n</i>} [1.3.5			
	a) $\frac{(2n)!}{n!}$	b) $\frac{(2n)!}{2n}$	c) $\frac{n!}{(2n)!}$	d) None of these
	n:	Δ	(211).	
25.	The number of ways in	which one can post 5 letters	s in 7 letters boxes is	
	a) 35	b) ⁷ <i>P</i> ₅	c) 7 ⁵	d) 5 ⁷
26.	A car will hold 2 in the f	ront seat and 1 in the rear s	seat. If among 6 persons 2 c	an drive, then number of
	ways in which the car c	an be filled, is		
	a) 10	b) 20	c) 30	d) None of these
27		selecting 10 balls from unli	,	
	a) 286	b) 84	c) 715	d) None of these
28	,	n, a candidates is required to	,	-
20.	0	ining 5 questions. Further t	•	
			=	te up a choice of 6 questions,
	is	The section. The number of	i ways in which he can mak	te up a choice of o questions,
	-	L) 150	-) 100	4) 50
20	a) 200	b) 150	c) 100	d) 50
29.		-		plays 1 match with other are
	a) 9	b) 10	c) 8	d) 12
30.		ligit numbers which are div	risible by 4 that can be form	ned from the digits 1,2,3,4
	and 5 is			
	a) 125	b) 30	c) 95	d) None of these
31.	The number of committ	ees of 5 persons consisting	of at least one female mem	ber, that can be formed from
	6 males and 4 females,	S		
	a) 246	b) 252	c) 6	d) None of these
32.	The number of ways that	at 8 beads of different colur	es be string as a necklace, i	S
	a) 2520	b) 2880	c) 5040	d) 4320
33.	9 balls are to be placed	in 9 boxes and 5 of the balls	cannot fit into 3 small box	es. The number of ways of
	arranging one ball in ea			5
	a) 18720	b) 18270	c) 17280	d) 12780
34		,	,	4) 12/00
54.	a) $n^{+4}C_r$	$\cdot {}^{n}C_{r-1} + 6 \cdot {}^{n}C_{r-2} + 4 \cdot {}^{n}$ b) 2 · ${}^{n+4}C$		d) $11 \cdot {}^{n}C_{r}$
25	, ,	b) $2 \cdot {}^{n+4}C_{r-1}$		
35.		ural numbers of six digits th	nat can be made with digits	5 1, 2, 3, 4, 11 all digits are to
	appear in the same num		2 4 9 9 6	N 400
	a) 1560	b) 840	c) 1080	d) 480
36.	<i>m</i> men and <i>n</i> women ar	e to be seated in a row so th	nat no two women sit toget	her. If $m > n$, then the

	number of ways in which	they can be seated, is		
	-	-	(m-1)!(m+1)!	d) None of these
	a) $\frac{1}{(m-n+1)!}$	b) $\frac{m!(m-1)!}{(m-n+1)!}$	c) $(m-n+1)!$,
37.	If $a, b, c \in N$, The anumbe	r of points having position	vector $a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$ such the	hat $6 \le a + b + c \le 10$, is
	a) 110	b) 116	c) 120	d) 127
38.	If $^{n+2}C_8$: $^{n-2}P_4 = 57:1$	6, then the value of <i>n</i> is		
	a) 20	b) 19	c) 18	d) 17
39.	There are 10 points in a p	olane, out of these 6 are coll	inear. The number of trian	gles formed by joining
	these points is			
	a) 100	b) 120	c) 150	d) None of these
40.	A dictionary is printed co	nsisting of 7 letters words	only that can be made with	a letters of the word
	CRICKET. If the words are	e printed at the alphabetica	ll order as in an ordinary di	ictionary, then the number
	of words before the word	CRICKET is		
	a) 530	b) 480	c) 531	d) 481
41.	A man has 7 friends. In he	ow many ways he can invite	e one or more of them for a	tea party?
	a) 128	b) 256	c) 127	d) 130
42.	In how many ways can Re	s 16 be divided into 4 perso	ons when none of them get	less than Rs 3?
	a) 70	b) 35	c) 64	d) 192
43.	The number of divisors o	f the number of 38808 (exc	cluding 1 and the number it	cself)is
	a) 70	b) 72	c) 71	d) None of these
44.	The number of 4-digit even	en numbers that can be for	med using 0,1,2,3,4,5,6 wit	hout repetition is
	a) 120	b) 300	c) 420	d) 20
45.		= 252, then the ordered pa	ir (n, r) is equal to	
	a) (12, 6)	, , ,	c) (9, 4)	d) (16, 7)
46.	${}^{n}C_{r} + 2 {}^{n}C_{r-1} + {}^{n}C_{r-2}$ is	s equal to		
		b) $^{n+1}C_{r+1}$		
47.		bers can be formed by usin	ng the digits 2,2,3,3,5,5,8,8,	8 so that the odd digits
	occupy even positions?			
	a) 7560	b) 180	c) 16	d) 60
48.			ossible orders and these w	ords are written out as in a
	dictionary, then the rank			
	a) 614	b) 615	c) 613	d) 616
49.		nd 3 different dictionaries,		
	-	shelf so that the dictionary	is always in the middle. Th	en the number of such
	arrangement is	750		1000
	a) At least 500 but less th	an 750	b) At least 750 but less th	an 1000
F 0	c) At least 1000	· · · · · · · · · · · · · · · · · · ·	d) Less than 500	:
50.		e number of possible outcom		
۲1	a) 215 The number of work in w	b) 36 bigh thirty five apples can l	c) 125	d) 91
51.	-	nich thirty live apples can i	be distributed among 3 boy	rs so that each can have any
	number of apples, is a) 1332	b) 666	c) 333	d) None of these
F 2	-	-	-	uj Nolle of these
52.	a) 7	tisfying the inequlity ${}^{10}C_{x}$. b) 10	c) 9	d) 8
53	•	hich 5 pictures can be hung		,
55.	a) 7^5	b) 5^7	c) 2520	d) None of these
54	,	,		pecified speaker is to speak
54.	before another specified	-	under of ways in which a s	pecificu speaker is to speak
	a) 2520	b) 20160	c) 40320	d) None of these
55	•	•	,	identical boxes such that no
201				

	how contains more than a	ana hall is		
	box contains more than o		10!	d) None of these
	a) 10!	b) $\frac{10!}{5!}$	c) $\frac{10!}{(5!)^2}$	uj None of these
56	The number of numbers	of four different digits that		its of the number 12356
001	such that the numbers ar	-		
	a) 36	b) 48	c) 12	d) 24
57.	,	two sets of <i>m</i> lines parallel	•	
	formed is	······································		F
		b) $({}^{m+1}C_2)^2$	c) $({}^{m+2}C_2)^2$	d) None of these
58.	Sum of all the odd divisor			.,
	a) 76	b) 78	c) 80	d) 84
59.	,	formed from the letters of t	,	,
	together?			
	a) 4140	b) 4320	c) 432	d) 43
60.	•	digit 5 will be written when	n listing the integers from 1	
	a) 271	b) 272	c) 300	d) None of these
61.	The number of ways of pa	ainting the faces of a cube v	with six different colours is	
	a) 1	b) 6	c) 6 !	d) None of these
62.	How many four digit num	bers can be formed using t	he digits 1, 2, 3, 4, 5 such th	nat at least one of the digit
	is repeated?			
	a) 4 ⁴ – 5!	b) 4 ⁵ – 4!	c) $5^4 - 4!$	d) 5 ⁴ - 5!
63.	The number of ways of an	rranging 8 men and 4 wome	en around a circular table s	uch that no two women can
	sit together, is			
	a) 8!	b) 4!	c) 8! 4!	d) 7! ⁸ P ₄
64.	Let A be the set of 4 digit	number $a_1 a_2 a_3 a_4$, where $a_1 a_2 a_3 a_4$, where $a_2 a_3 a_4$	$a_1 < a_2 < a_3 < a_4$, then $n(a_1)$	4) is equal to
	a) 84	b) 126	c) 210	d) None of these
65.	If ${}^{56}P_{r+6}: {}^{54}P_{r+3} = 3080$)0: 1, then the value of r is		
	a) 40	b) 51	c) 41	d) 510
66.		of 9 distinct digits such that	-	=
	0	l the digits in the last four p		
	a) 48	b) 576	c) 8!	d) None of these
67.		words with the letters of th		
		together and m_2 be the num	iber of words which begin	with I and end with R, then
	m_1/m_2 is equal to			N 100
60	a) 30	b) 60	c) 90	d) 180
68.		hals. How many sides will it		N 05
(0	a) 12	b) 17	c) 20	d) 25
69.		r vowels, the number of wo	ords that can be formed using	ng six consonants and three
	vowels $10 \text{ p} \times 6 \text{ p}$	b) $10c \times 6c$	a) 10 c x 4 c x 0	ם 4 א מ 10 נו
70		b) ${}^{10}C_6 \times {}^{6}C_3$	$C_{6} \times C_{3} \times 9!$	$u_{1} = P_{6} \times P_{3}$
70.	The total number of all parts a) 120	b) 119	c) 118	d) None of these
71		different envelopes. The nu		d) None of these
/1.	wrong envelope, is	unierent envelopes. The nu	iniber of ways in which an	the letters can be put in
	a) 119	b) 44	c) 59	d) 40
72	-	en all the values of <i>n</i> are give	-	uj 10
12.	a) 28	b) 3, 6	c) 3	d) 6
73	•	or a post and one is to be sel	,	,
, 3.	which votes can be given	-		The number of ways ill
	a) 7^3	b) 3 ⁷	c) ${}^{7}C_{3}$	d) None of these
	,	, -	y - 5	,

74.	=	ossible selections which ions in a paper, when ea		answering one or more questions rnative is
	a) 256	b) 6560	c) 6561	d) None of these
75.	In a conference of 8 per shake hands shall be	rsons, if each person sha	ke hand with the other	one only, then the total number of
	a) 64	b) 56	c) 49	d) 28
76.	A person is permitted t	,		collection of $2n + 1$ (distinct) coins.
	a) 4	b) 8	c) 16	d) 32
77.	How many words can b	e made from the letters	of the word 'COMMITT	EE'?
	a) $\frac{9!}{(2!)^2!}$	b) $\frac{9!}{(2!)^{3!}}$	c) $\frac{9!}{2!}$	d) 9!
	$(2!)^2!$	$(2!)^3!$	$\frac{c}{2!}$	u)):
78.	Ramesh has 6 friends. I	= =	e invite one or more of	them at a dinner?
	a) 61	b) 62	c) 63	d) 64
79.	=	-		of the number 223355888 by
	rearrangement of the d	igits so that the odd digi	ts occupy even places?	
	a) 16	b) 36	c) 60	d) 180
80.	In how many ways a ga	rland can be made from	exactly 10 flowers?	
	a) 10!	b) 9!	c) 2(9!)	d) $\frac{9!}{2}$
81.	The number of ways in	which 20 different pear	ls of two colours can be	set alternately on a necklace, there
	being 10 pearls of each	colour, is		
	a) 9! × 10!	b) $5 \times (9!)^2$	c) (9!) ²	d) None of these
82.	Seven women and seve			there is a man on either side of
	every women; the num	ber of seating arrangem	ents is	
	a) $(7!)^2$	b) (6 !) ²	c) 6!×7!	d) 7 !
83.	The number of ways in		,	,
	a) 1680	b) 840	c) 560	d) 280
84.	The number of ways in		,	,
-	a) 7	b) 6		d) None of these
		-)	c) $\frac{6!}{3!}$	
85.		d 'SACHIN' are arranged rd 'SACHIN' appears at s		d these words are written out as in
	a) 602	b) 603	c) 600	d) 601
86.	If ${}^{k+5}P_{k+1} = \frac{11(k-1)}{2} \cdot k$,		
001	-			
	a) 7 and 11	b) 6 and 7	c) 2 and 11	d) 2 and 6
87.		=	=	question has 4 choices. Number of
		t can fail to get all answ		
	a) 11	b) 12	c) 27	d) 63
88.			-	they may be selected from among
	ten friends, if two of the	e friends will not, attend	s the party together is	
	a) 112	b) 140	c) 164	d) None of these
89.	Which of the following	is incorrect?		
	a) ${}^{n}C_{r} = {}^{n}C_{n-r}$			
	b) ${}^{n}C_{r} = {}^{n-1}C_{r} + {}^{n}C_{n}$			
	c) ${}^{n}C_{r} = {}^{n-1}C_{r} + {}^{n-1}C_{r}$	C_{r-1}		
	d) $r! {}^{n}C_{r} = {}^{n}P_{r}$			
90.	The number of triangle	s that can be formed by	5 points in a line and 3	points on a parallel line is
	a) ⁸ C ₃	b) ${}^{8}C_{3} - {}^{5}C_{3}$	c) ${}^{8}C_{3} - {}^{5}C_{3} - 1$	d) None of these
91.	Eight chair are number	ed 1 to 8. Two women a	nd three men wish to o	ccupy one chair each. First the

Page | 5

		-	arked 1 to 4; and then the	men select the chairs from	
		The number of possible arr			
	a) ${}^{6}C_{3} \times {}^{4}C_{2}$	b) ${}^{4}P_{2} \times {}^{6}P_{3}$		d) None of these	
92.	2. Out of 8 given points, 3 are collinear. How many different straight lines can be drawn by joining any two				
	points from those 8 point				
	a) 26	b) 28	c) 27	d) 25	
93.			ing the numbers 0, 1, 2, 3, 4	4 and 5, without repetition.	
	The total number of ways	s this can be done, is			
	a) 216	b) 240	c) 600	d) 3125	
94.	The number of five digits	numbers that can be form	ed without any restriction,	is	
	a) 990000	b) 100000	c) 90000	d) None of these	
95.	How many words can be	formed from the letters of	the word ARTICLE, if vowe	els always comes at the odd	
	places?				
	a) 60	b) 576	c) $\frac{7!}{3!}$	d) 120	
			5.		
96.		f 9600 including 1 and 96			
	a) 60	b) 58	c) 48	d) 46	
97.			can be made using all four		
	a) 1	b) 3	c) 2	d) 64	
98.		=		ned using 2 identical red, 2	
	-	ntical white strips, is equal			
	a) 4!	b) 3(4!)	c) 2(4!)	d) None of these	
99.	The total number of prop				
	a) 72	b) 70	c) 69	d) 71	
100		bers can be written by usin			
	a) ${}^{10}C_1 \times {}^{9}C_2$	2	c) ${}^{10}C_2$	d) 10!	
101	. Let $A = \{x_1, x_2, x_3, x_4, x_5, x_4, x_5, x_4, x_5, x_6, x_6, x_6, x_6, x_6, x_6, x_6, x_6$	x_{6} },			
	$B = \{y_1, y_2, y_3, y_4, y_5, y_6\}.$	Then the number of one –	one mapping from A to B su	uch that $f(x_i) \neq y_v i =$	
	1, 2, 3, 4, 5, 6 is				
	a) 720	b) 265	c) 360	d) 145	
102	. A man invites a party to ((m+n) friends to dinner a	nd places <i>m</i> at one round t	able and <i>n</i> at another. The	
	number of ways of arrang				
	(m+n)!	b) $\frac{(m+n)!}{(m-1)!(n-1)!}$	(1) (1) (1) (1) (1)	d) None of these	
	a) $\frac{(m+n)!}{m!n!}$	(m-1)!(n-1)!	c) $(m-1)!(n-1)!$		
103	. The number of ways in w	hich seven persons can be	arranged at a round table,	if two particular persons	
	may not sit together is				
	a) 480	b) 120	c) 80	d) None of these	
104	. If ${}^{2n+1}P_{n-1}$: ${}^{2n-1}P_n$: 3: 5,	then the value of <i>n</i> is equa	l to		
	a) 4	b) 3	c) 2	d) 1	
105	. The number of ways in w	hich a committee can be fo	ormed of 5 members from 6	6 men and 4 women if the	
	committee has at least or				
	a) 186	b) 246	c) 252	d) 244	
106	-	•) books, if two specific bool		
	a) 56	b) 65	c) 58	d) None of these	
107	•		,	nes intersecting another set	
-	of three parallel lines, is	,	r	0	
	a) 6	b) 18	c) 12	d) 9	
108		,	f another <i>n</i> parallel lines in	•	
200	parallelograms formed, is	-		r	
	a) ${}^{m-1}C_2$. ${}^{n-1}C_2$		c) $^{m-1}C_2$. $^{n}C_2$	d) ${}^{m}C_{2}$. ${}^{n-1}C_{2}$	
109	. The value of ${}^{50}C_4 + \sum_{r=1}^6$		-, - <u>-</u> , - <u>-</u>	·) · · · · · · · · · · · · · · · · · ·	

			N 55 -
a) ${}^{56}C_4$	b) ⁵⁶ C ₃	c) ${}^{55}C_3$	d) ${}^{55}C_4$
	bers of 4 digits which are no	•	N 4000
a) 7200	b) 3600	c) 14400	d) 1800
	•		Bhopal by a bus and comes back
-	her bus, then the total possib	-	
a) 12	b) 16	c) 4	d) 8
MISSISSIPPI is			e from the letters of the word
a) 150	b) 148	c) 149	d) None of these
			ines and if no two of them be
		- ,	ne exception of the original 6
- ,	er of distinct points or inters	-	
a) 105	b) 45	c) 51	d) None of these
	of ways of dividing 15 things		
a) $\frac{15!}{8!4!(3!)^2}$	b) $\frac{15!}{8!4!3!}$	c) $\frac{15!}{}$	d) None of these
		0.1.	
	_	-	ese four cages are so small that five
	annot enter into them. In how	w many ways will it be po	ossible to accommodate ten
animals in these ter	-		
a) 66400	b) 86400	c) 96400	d) None of these
		n be formed using the ver	tices of a regular polygon of n
sides. If $T_{n+1} - T_n =$			
a) 5	b) 7	c) 6	d) 4
			er than the number to be elected.
		. If a voter votes for at lea	ist one candidate, then the number
of ways in which he		-) 1110	
a) 6210	b) 385	c) 1110	d) 5040
		Din numbers 1, 2, 3, 4,,2	00. The number of factors out of
	which are multiples of 5, is	a) 01E0	d) None of these
	b) 7180	-	d) None of these
	of m elements subsets of the ontaining a_4 , then n is	$u_1, u_2, u_3, \dots u_n$	is x times the number of 5
a) $(m-1)\lambda$	b) $m\lambda$	c) $(m+1)\lambda$	d) 0
	iral numbers less than 1000,		2
a) 738	b) 792	c) 837	d) 720
,	,	,	then the expression ${}^{n}C_{r+1}$ +
${}^{n}C_{r-1} + 2 \times {}^{n}C_{r}, e$		t things takes t at a thine,	then the expression e_{r+1}
a) $n+2C_r$		c) $^{n+1}C_r$	d) $^{n+1}C_{r+1}$
, ,) 1	$a_j a_{r+1}$
	$\frac{a}{!}$, where $a, b, \in N$, then the or		
a) (9, 10)	b) (10, 9)	c) (7, 10)	d) (10, 7)
-	onals that can be drawn by j	-	_
a) 28	b) 48	c) 20	d) None of these
	dren takes 3 at a time to the gether more than once. The r		en as he can without taking the o to the garden, is
a) 112	b) 56	c) 336	d) None of these
125. If ${}^{189}C_{35} + {}^{189}C_x =$	$^{190}C_x$, then x is equal to		
a) 34	b) 35	c) 36	d) 37
	rs in which <i>n</i> ties can be sele	cted from a rack displayin	-
a) $\frac{3n !}{2n !}$	b) 3 × <i>n</i> !	c) (3 <i>n</i>) !	d) $\frac{3n!}{n!2n!}$
2n!	~, ~ · · · ·	-) (0.0)	n!2n!

127 The number of pern	nutations of 4 letters that (can be made out of the let	ters of the word EXAMINATION is
a) 2454	b) 2452	c) 2450	d) 1806
,		,	tograph so that no two girls sit next
to each other is			
		10!	. 10!
a) 6!.5!	b) (5!) ²	c) $\frac{10!}{(5!)}$	d) $\frac{10!}{(5!)^2}$
129. The number of diag	onals of a polygon of 20 sid		
a) 210	b) 190	c) 180	d) 170
130. The value of ${}^{47}C_4$ +	$\sum_{r=1}^{5} \sum_{r=1}^{52-r} C_3$ is equal to		-
a) ${}^{47}C_6$	b) ${}^{52}C_5$	c) ⁵³ C ₄	d) None of these
			w so that no two Hindi books are
together?	-	-	
a) 1540	b) 1450	c) 1504	d) 1405
132. In a group of boys, t	wo boys are brothers and	in this group, 6 more boy	s are there. In how many ways, they
can sit if the brother	rs are not to sit alongwith e	each other :	
a) 4820	b) 1410	c) 2830	d) None of these
133. All possible four-dig	git numbers are formed usi	ing the digits 0,1,2,3 so th	at no number has repeated digits.
The number of even	number among them is		
a) 9	b) 18	c) 10	d) None of these
134. In how many ways o	can 4 prizes be distributed	among 3 students, if each	n students can get all the 4 prizes?
a) 4!	b) 3 ⁴	c) 3 ⁴ − 1	d) 3 ³
135. In a chess tourname	ent where the participants	were to play one game w	ith one another, two players fell ill
having played 6 gan	nes each, without playing a	among themselves. If the t	otal number of games is 117, then
the number of parti	cipants at the beginning w	as	
a) 15	b) 16	c) 17	d) 18
136. How many even nur	mbers of 3 different digits	can be formed from the d	igits 1, 2, 3, 4, 5, 6, 7, 8, 9
(repetition of digits	is not allowed)?		
a) 224	b) 280	c) 324	d) None of these
137. If <i>a</i> denotes the nun	nber of permutations of x	+ 2 things taken all at a t	ime, <i>b</i> the number of permutations
of x things taken 11	at a time and <i>c</i> the numbe	er of permutations of x –	11 things taken all at a time such
that $a = 182 bc$, the			
a) 15	b) 12	c) 10	d) 18
			e places on a shelf. The number of
		-	e same subject are all together, is
a) 4! 2!	b) 11!	c) 5! 4! 3! 2!	d) None of these
		set $A = \{1, 2, 3\}$ into the	set $B = \{1, 2, 3, 4, 5, 6, 7\}$ such that
$f(i) \le f(j)$ whenev			
a) 84	b) 90	c) 88	d) None of these
	red triplets of positives inf	tegers which are solution	s of the equations of the equation
z + y + z = 100, is	12.4054) 5004	
a) 6005	b) 4851	c) 5081	d) None of these
			ot be meaningful) using the letters
	ERRANEAN such that the fi		
a) $\frac{11!}{2!2!2!}$	b) 59	c) 56	d) $\frac{11!}{3!2!2!}$
2.2.2.	n examination in which the	ere are four naners with a	maximum of <i>m</i> marks from each
	of ways in which one can g		manning of minarity if official
	s	4	
a) 2 <i>m</i> + 1		b) $\frac{1}{3}(m+1)(2m^2)$	+m+1)
1		d) None of the abo	We

c) $\frac{1}{3}(m+1)(2m^2+4m+3)$	d) None of the above
----------------------------------	----------------------

143. A father with 8 children takes th	em 3 at a time to the zoo	logical gardens as ofter	n as he can without taking
the same 3 children together mo			
a) 336 b) 11			d) None of these
144. A question paper is divided into			,
in which a candidate can answe	=		
a) 80 b) 10			d) None of these
145. Number if divisors of the form (,		·) · · · · · · · · · · · · · · · · · ·
a) 4 b) 8	c) (d) 3
146. The number of ways that 8 bead	s of different colours be	strung as a necklace is	,
a) 2520 b) 28		-	d) 4320
147. The number of arrangements of	the letters of the word B	BANANA in which the tw	o N's do not appear
adjacently, is			
a) 40 b) 60	c) 8	80	d) 100
148. The ten's digit in $1! + 4! + 7! + 3!$	10! + 12! + 13! + 15! + 12!	16! + 17! is divisible by	
a) 4 b) 3!	c) !	5	d) 7
149. The number of ways in which a			
a) ${}^{52}C_{13}$ b) 52	C ₄ c) -	52!	d) $\frac{52!}{(13!)^4 4!}$
150. The sides <i>AB</i> , <i>BC</i> , <i>CA</i> of a triangle			ly on them. The total
number of triangles that can be		=	
a) 220 b) 20		205	d) 195
151. ${}^{n}P_{r} = 3024$ and ${}^{n}C_{r} = 126$, the	n r is		
a) 5 b) 4 152. The value of ${}^{35}C_8 + \sum_{r=1}^7 {}^{42-r}C_{r=1}$	c) (3	d) 2
152. The value of ${}^{33}C_8 + \sum_{r=1}^{42-7}C_{r=1}$	$C_{7} + \sum_{s=1}^{3} C_{40-s}$, is C_{8} c)	47 0	1) 47 c
a) ${}^{46}C_7$ b) 46	-0	- /	d) ${}^{47}C_8$
153. In Q.65, the number of ways in v			d) None of these
a) 9 ! b) 2 ((9!) c)	$\frac{1}{2}(9!)$	d) None of these
154. The number of arrangements w	4	<u>L</u>	d <i>LAUGH</i> . if the vowels are
adjacent, is			, ,
a) 10 b) 24	c) 4	48	d) 120
155. How many ways are three to arr	ange the letters in the w	ord 'GARDEN' with the v	vowels in alphabetical
order?			
a) 120 b) 24	0 c) 1	360	d) 480
156. 7 relatives of a man comprise 4	ladies and 3 gentlemen h	nis wife has also 7 relativ	ves, 3 of them are ladies
and 4 gentlemen. In how many v	ways can they invite a dir	nner party of 3 ladies an	d 3 gentlemen so that
there are 3 of man's relative and	l 3 of the wife's relative?		
a) 485 b) 50	0 c) 4	486	d) 102
157. There are <i>n</i> -points in a plane of	which <i>p</i> points are collin	ear. How many lines car	n be formed from these
points?			
a) ${}^{n}C_{2} - {}^{p}C_{2} + 1$ b) ${}^{n}C_{2} + 1$		$n - {}^{p}C_{2}$	
158. How many numbers between 50		rmed using the digits 1,	2,3,4,5,6,7,8,9, each digit
appearing not more than once in			
5 0 5	0	-	d) 5 ! × ${}^{8}C_{3}$
159. The number of ways in which 20		distributed among 5 pe	ople such that each
person, gets at least 3 rupees, is			
a) 26 b) 63			d) None of these
160. The maximum number of points			1) 20
a) 25 b) 24			d) 30
161. The number of all five digit num	bers which are divisible	by 4 that can be formed	from the digits 0,1,2,3,4
(without repetition) is			

a) 36	b) 30	c) 34	d) None of these
162. The total number of w	ays in which 4 boys and 4 gi	rls can form a line, with bo	ys and girls alternating, is
a) $(4!)^2$	b) 8!	c) 2(4!) ²	d) $4! \cdot {}^{5}P_{4}$
163. The products of any <i>r</i>	consecutive natural number	s is always divisible by	
a) <i>r</i> !	b) <i>r</i> ²	c) r^n	d) None of these
,	,	,	t 5 women have to be included
	the number of committees in		
majority are respectiv			hajority and men are m
, , ,	•	c) 6062, 2702	d) 2702, 1008
a) 4784, 1008			,
		en 3000 and 4000 that car	n be formed from the digits 1,
	of digits is not allowed)?		
a) ⁶ P ₂	b) ⁵ <i>P</i> ₂	c) ${}^{4}P_{2}$	d) ${}^{6}P_{3}$
166. The total number of w	ays of arranging the letters .	AAAA BBB CC D E F in a r	ow such that letters C are
separated from one ar	other is		
a) 2772000	b) 1386000	c) 4158000	d) None of these
167. Total number of four of	ligit odd numbers that can b	e formed by using 0,1,2,3,5	5,7 is
a) 216	b) 375	c) 400	d) 720
168. If ${}^{12}P_r = 1320$, then r	is equal to		
a) 5	b) 4	c) 3	d) 2
	,	,	2,,9.The safe can be opened
		_	enough to open the safe. If the
	d 5 s are needed to dial one	=	shough to open the sale. If the
a) 9	b) 10	c) 11	d) 12
-	n which 6 rings can be worn	,	2
a) 4^6			
,	b) ⁶ C ₄	c) 6^4	d) 24
	rs which lie between 1 and 1		
a) 8550	b) 5382	c) 6062	d) 8055
			ne is joined to every point on
the other line by a line	segment drawn within the	ines. The number of points	s (between the lines) in which
these segments inters			
a) ${}^{2n}C_2 - 2 \cdot {}^{n}C_1 + 2$	b) ${}^{2n}C_2 - 2 \times {}^{n}C_2$	c) ${}^{n}C_{2} \times {}^{n}C_{2}$	d) None of these
173. The number of ways in	n which <i>mn</i> students can be	distributed equal among <i>n</i>	sections, is
$(mm)^n$	b) $\frac{(mn)!}{(m!)^n}$	c) $\frac{(mn)!}{m!}$	d) $\frac{(mn)!}{m!n!}$
a) $(mn)^n$	$\frac{(m!)^n}{(m!)^n}$	$\frac{c}{m!}$	$\frac{d}{m!n!}$
174. There were two wome	en participating in a chess to	ournament. Every participa	ant played two games with the
other participants. The	e number of games that the	nen played between thems	selves proved to exceed by 66
	that the men played with the		
a) 6	b) 11	c) 13	d) None of these
	,	,	the host be seated at circular
-	ular persons are to be seated		
a) 20!		a on chiner shae of the host	
-		c) 181	d) None of these
	b) 2! × 18!	c) 18! v also The total number of	d) None of these
	b) $2! \times 18!$ shakes hands with everybod	,	d) None of these Thand shakes is 66. The total
	b) 2! × 18! shakes hands with everybod the room is	y else. The total number of	hand shakes is 66. The total
a) 9	b) 2! × 18! shakes hands with everybod the room is b) 12	y else. The total number of c) 10	hand shakes is 66. The total d) 14
a) 9 177. The number of differe	b) 2! × 18! shakes hands with everybod the room is b) 12 nt words that can be formed	y else. The total number of c) 10	hand shakes is 66. The total d) 14
a) 9 177. The number of differe vowels are together, is	b) 2! × 18! shakes hands with everybod the room is b) 12 nt words that can be formed s	y else. The total number of c) 10 from the letters of the wo	'hand shakes is 66. The total d) 14 rd 'PENCIL' so that no two
a) 9 177. The number of differe vowels are together, is a) 120	b) 2! × 18! shakes hands with everybod the room is b) 12 nt words that can be formed s b) 260	y else. The total number of c) 10 from the letters of the wor c) 240	'hand shakes is 66. The total d) 14 rd 'PENCIL' so that no two d) 480
a) 9 177. The number of differe vowels are together, is a) 120 178. Consider the fourteen	b) 2! × 18! shakes hands with everybod the room is b) 12 nt words that can be formed s b) 260 lines in the plane given by y	y else. The total number of c) 10 from the letters of the wor c) 240 r = x + r, y = x + r, where	'hand shakes is 66. The total d) 14 rd 'PENCIL' so that no two d) 480
a) 9 177. The number of differe vowels are together, is a) 120 178. Consider the fourteen	b) 2! × 18! shakes hands with everybod the room is b) 12 nt words that can be formed s b) 260	y else. The total number of c) 10 from the letters of the wor c) 240 r = x + r, y = x + r, where	'hand shakes is 66. The total d) 14 rd 'PENCIL' so that no two d) 480
a) 9 177. The number of differe vowels are together, is a) 120 178. Consider the fourteen	b) 2! × 18! shakes hands with everybod the room is b) 12 nt words that can be formed s b) 260 lines in the plane given by y	y else. The total number of c) 10 from the letters of the wor c) 240 r = x + r, y = x + r, where	'hand shakes is 66. The total d) 14 rd 'PENCIL' so that no two d) 480

179. Let <i>A</i> be a set containing 10 distinct elements. Then a) 10! b) 10 ¹⁰	, the total number of distir c) 2 ¹⁰	the functions from <i>A</i> to <i>A</i> is d) $2^{10} - 1$
, , , , , , , , , , , , , , , , , , ,	-)	,
180. In a football championship, there were played 153 in		d one match with each other.
The number of teams participating in the champion	-	d) 12
a) 17 b) 18	c) 9	d) 13 n the Secretary is to sit on
181. In how many ways can 15 members of a council sit	-	n the secretary is to sit on
one side of the chairman and the Deputy Secretary		d) None of these
a) $2 \times 12!$ b) 24	c) $2 \times 15!$	d) None of these
182. If in a chess tournament each contestant plays once	against each of the other a	and in all 45 games are
played, then the number of participants is a) 9 b) 10	c) 15	d) None of these
a) 9 b) 10 183. These are 12 volleyball players in a college, out of w	,	d) None of these
		to be formed. If the captain
always remains the same, then in how many ways c	c) 99	d) 165
a) 36 b) 108	,	,
184. In how many ways can 5 red and 4 white balls be dr		
a) ${}^{8}C_{5} \times {}^{10}C_{4}$ b) ${}^{10}C_{5} \times {}^{8}C_{4}$		d) None of these
185. Five digited numbers with distinct digits are formed	a by using the digits, 5, 4, 3	, 2, 1, 0. The number of those
numbers which are multiples of 3, is	-) 21(4) 120
a) 720 b) 240	c) 216	d) 120
186. Consider the following statements :		
1. These are 12 points in a plane of which only 5 are	collinear, then the numbe	r of straight lines obtained
by joining these points in pairs is ${}^{12}C_2 - {}^{5}C_2$		
$2^{n+1}C_r - {}^{n-1}C_{r-1} = {}^nC_r + {}^nC_{r-2}$	- [[]	
3.Three letters can be posted in five letter boxes in	•	
Which of the statements given above is/are correct		
a) Only (1) b) Only (2)	c) Only(3)	d) None of these
187. A father with 8 children takes 3 at a time to the Zoo		
same 3 children together more than once. The num		
a) 56 b) 21	c) 112	d) None of these
188. The sum of all that can be formed with the digits 2,3		
a) 93324 b) 66666	c) 84844	d) None of these
189. The number of ways in which 52 cards can be divid	ed into 4 sets, three of the	m having 17 cards each and
the fourth one having just one card	F 1 1	
a) $\frac{52!}{(17!)^3}$ b) $\frac{52!}{(17!)^3 3!}$	c) $\frac{51!}{(1-1)^2}$	d) $\frac{51!}{(17!)^3 3!}$
	(1,1)	
190. A committee of 5 is to be formed from 9 ladies and 8	8 men. If the committee co	mmands a lady majority,
then the number of ways this can be done is	20060	N 2404
a) 2352 b) 1008	c) 3360	d) 3486
191. The number of straight lines can be formed out of 1	-	
a) 26 b) 21	c) 25	d) None of these
192. If <i>x</i> , <i>y</i> and <i>r</i> are positive integers, then ${}^{x}C_{r} + {}^{x}C_{r-1}$	$L^{y}L_{1} + {}^{x}L_{r-2}{}^{y}L_{2} + \dots + {}^{y}L_{r-2}$	$C_r =$
a) $\frac{x ! y !}{r !}$ b) $\frac{(x + y) !}{r !}$	c) $x+yC_r$	d) $^{xy}C_r$
<i>r</i> ! <i>r</i> ! <i>r</i> ! 193. The greatest possible number of points of intersect		1 circle is
a) 32 b) 64	c) 76	d) 104
194. If ${}^{16}C_r = {}^{16}C_{r+1}$, then the value of ${}^{r}P_{r-3}$ is	CJ 70	иј 10т
	c) 210	d) None of these
	CJ 210	d) None of these
195. $\sum_{r=0}^{m} {}^{n+r}C_n$ is equal to a) ${}^{n+m+1}C_{n+1}$ b) ${}^{n+m+2}C_n$	c) $^{n+m+3}C_{n-1}$	d) None of these
	c_{n-1}	d) None of these
196. The value of ${}^{n}P_{r}$ is equal to	b) $n \cdot n^{n-1} P_r + n^{n-1} P_{r-1}$	
a) $^{n-1}P_r + r. ^{n-1}P_{r-1}$	$V_{r} = P_{r} + P_{r-1}$	

c) $n(n^{-1}P_r + n^{-1}P_{r-1})$		d) $^{n-1}P_{r-1} + {}^{n-1}P_r$	
	n which 6 men and 5 wome		if no two woman are to sit
-	in which o men and 5 wome	II call ulle at a roullu table	, ii no two women are to sit
together, is	b) 20		
a) $6! \times 5!$	b) 30	c) 5! × 4!	d) 7! × 5!
198. The number of diagon	-		
a) 28	b) 20	c) 10	d) 16
199. A binary sequence is a number of 0's is	an array of 0's and 1's. The n	tumber of n –digit binary s	sequence which contain even
a) 2^{n-1}	b) $2^n - 1$	c) $2^{n-1} - 1$	d) 2 ⁿ
200. If $^{n-1}C_3 + {}^{n-1}C_4 > 1$		-	-
	b) $n > 5$	c) <i>n</i> > 7	d) None of these
•	number of contestants is on	,	
			e be 126, then the number of
a) 4	b) 5	c) 6	d) 7
-	$A_1 + 3 \cdot {}^n C_{n-r+2} + {}^n C_{n-r+3}$	2	
a) $n + 1$			d) <i>n</i> + 4
,	matrices having elements 0	,	
			d) None of these
a) 8	b) 16	c) 4	d) None of these
204. If there are n number possible to do this(m	-	-	
a) ^{<i>n</i>} <i>P_m</i>	b) ^{<i>n</i>} <i>C</i> _{<i>m</i>}	c) ${}^{n}C_{n} \times (m-1)!$	d) $^{n-1}P_{m-1}$
	l EAMCET are arranged in al are adjacent to each other, i		er of such arrangement in
a) 360	b) 144	c) 72	d) 54
206. In how many ways 5	different beads can be arran	ged to form a necklace?	-
a) 12	b) 120	c) 60	d) 24
	itations by taking all letters	,	the word COMBINE in the odd
places is			
-	b) 144	c) 512	d) 576
,	,	,	ow many prize lists could be
_	together 6 prizes of differen		
a) 16 × 15 × 14	b) $16^3 \times 15^2 \times 14$	c) $16^3 \times 15 \times 14^2$	d) $16^2 \times 15 \times 14$
	n 5 boys and 5 girls sit in a c		
			d) None of these
a) 5! × 5!	b) 4! × 5!	c) $\frac{5! \times 5!}{2}$	
210. The number of diagon	hals that can be drawn in a p	olygon of 15 sides, is	
a) 16	b) 60	c) 90	d) 80
•	,	,	ent blue balls and 3 different
red balls, if at latest 1	green and 1 blue ball is to b	e included, is	
a) 3700	b) 3720	c) 4340	d) None of these
		out of the letters a, b, c, d, e	f, f taken 3 together, such that
each word contains a			
a) 72	b) 48	c) 96	d) None of these
213. The number of ways i two of the <i>n</i> things matrix	n which $m + n(n \le m + 1)$ ay be together is	different things can be arr	anged in a row such that no
(m+n)!	m!(m+1)!	m!(m+1)!	d) None of these
a) $\frac{(m+n)!}{m!n!}$	(m+n)!	c) $\frac{m!(m+1)!}{(m-n+1)!}$	
214. Number of number g	, ,	, , ,	be formed with the digits 0, 1,
2, 3, 4, are	0		<u> </u>

a) 250 b) 27	75 a) 450	d) 576	
a) 350 b) 37	,	d) 576	
215. The number of ways in which 8	aliferent nowers can be strung	to form a garland so that 4 particu	ular
flowers are never separated is			
a) $4! \cdot 4!$ b) $\frac{8}{4}$	<u>:</u> c) 288	d) None of these	9
4	•		
216. The numbers of times the digits			
a) 269 b) 30	,	d) 302	
217. The number of triangles which	can be formed by using the ver	tices of a regular polygon of $(n + 3)$	3) sides is
220. Then, <i>n</i> is equal to			
a) 8 b) 9	c) 10	d) 11	
218. The number of ways in which 5	ladies and 7 gentlemen can be	seated in a round table so that no '	two ladies
sit together, is			
a) $\frac{7}{2}(720)^2$ b) 70	$(260)^2$ a) 7(720	d) 720	
$\frac{a}{2} = (720)^2$ b) 70	(360) ² c) 7(720)-	
219. How many numbers lying betw	veen 999 and 10000 can be form	ed with the help of the digits 0, 2,	3, 6, 7, 8
when the digits are not be repe	ated?		
a) 100 b) 20	00 c) 300	d) 400	
220. The sum of the digits in the unit	t place of all numbers formed w	ith the help of 3, 4, 5, 6 taken al, at	a time, is
a) 18 b) 10		d) 144	
221. There are <i>n</i> straight lines in a p	,	-	ame
point. Their points of intersecti			
		of fresh filles thus obtailed is	
a) $\frac{n(n-1)(n-2)}{8}$			
n(n-1)(n-2)(n-3)			
b) $\frac{n(n-1)(n-2)(n-3)}{6}$			
c) $\frac{n(n-1)(n-2)(n-3)}{8}$			
()			
8			
0			
d) None of the above	can be formed out the letters <i>a</i>	$h \ c \ d \ e \ f$ taken 3 together such t	hat each
d) None of the above 222. A total number of wards which		<i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> , <i>f</i> taken 3 together such t	that each
d) None of the above 222. A total number of wards which word contains at least one vow	el, is		
d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 48	rel, is 8 c) 96		
 d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 48 223. The number of positive odd div 	el, is 8	d) None of these	
 d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 48 223. The number of positive odd div a) 4 b) 6 	rel, is 8 c) 96		
 d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 48 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is 	el, is 8 c) 96 risors of 216 is c) 8	d) None of these d) 12	
 d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 48 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 	el, is 8 c) 96 visors of 216 is c) 8 4 c) 48	d) None of these d) 12 d) 52	2
 d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 44 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying between the second seco	rel, is 8 c) 96 risors of 216 is c) 8 4 c) 48 reen 10 and 1000 can be formed	d) None of these d) 12 d) 52	2
 d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 44 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying betw (repetition of digits is allowed) 	rel, is 8 c) 96 risors of 216 is c) 8 4 c) 48 reen 10 and 1000 can be formed	d) None of these d) 12 d) 52	2
 d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 44 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying between the second seco	rel, is 8 c) 96 visors of 216 is c) 8 4 c) 48 veen 10 and 1000 can be formed ?	d) None of these d) 12 d) 52	9
 d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 44 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying betw (repetition of digits is allowed) 	rel, is 8 c) 96 risors of 216 is 2) 8 4 c) 48 reen 10 and 1000 can be formed ? 10 c) 2346	d) None of these d) 12 d) 52 l from the digits 1, 2, 3, 4, 5, 6, 7, 8,	9
 d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 48 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying betw (repetition of digits is allowed) a) 1024 b) 85 	rel, is 8 c) 96 visors of 216 is c) 8 4 c) 48 veen 10 and 1000 can be formed ? 10 c) 2346 then the value of <i>r</i> is	d) None of these d) 12 d) 52 l from the digits 1, 2, 3, 4, 5, 6, 7, 8,	9
d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 48 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying betw (repetition of digits is allowed) a) 1024 b) 82 226. If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 30800 : 1$,	el, is 8 c) 96 visors of 216 is c) 8 4 c) 48 veen 10 and 1000 can be formed ? 10 c) 2346 then the value of <i>r</i> is 1 c) 42	d) None of these d) 12 d) 52 l from the digits 1, 2, 3, 4, 5, 6, 7, 8, d) None of these d) None of these	9
d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 44 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying betw (repetition of digits is allowed) a) 1024 b) 87 226. If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 30800 : 1$, a) 40 b) 47 227. How many numbers greater that	el, is 8 c) 96 visors of 216 is c) 8 4 c) 48 veen 10 and 1000 can be formed ? 10 c) 2346 then the value of <i>r</i> is 1 c) 42	d) None of these d) 12 d) 52 l from the digits 1, 2, 3, 4, 5, 6, 7, 8, d) None of these d) None of these	9
d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 48 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying betw (repetition of digits is allowed) a) 1024 b) 82 226. If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 30800 : 1$, a) 40 b) 42 227. How many numbers greater that repeated , is	el, is 8 c) 96 visors of 216 is c) 8 4 c) 48 veen 10 and 1000 can be formed ? 10 c) 2346 then the value of <i>r</i> is 1 c) 42 an 24000 can be formed by usin	d) None of these d) 12 d) 52 l from the digits 1, 2, 3, 4, 5, 6, 7, 8, d) None of these d) None of these sg the digits 1,2,3,4,5 when no digit	9
d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 44 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying betw (repetition of digits is allowed) a) 1024 b) 8 226. If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 30800 : 1$, a) 40 b) 4 227. How many numbers greater that repeated , is a) 36 b) 60	rel, is 8 c) 96 risors of 216 is c) 8 4 c) 48 reen 10 and 1000 can be formed ? 10 c) 2346 then the value of <i>r</i> is 1 c) 42 an 24000 can be formed by usin 0 c) 84	d) None of these d) 12 d) 52 l from the digits 1, 2, 3, 4, 5, 6, 7, 8, d) None of these d) None of these g the digits 1,2,3,4,5 when no digit d) 120	9
d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 48 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying betw (repetition of digits is allowed) a) 1024 b) 82 226. If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 30800 : 1$, a) 40 b) 42 227. How many numbers greater that repeated , is a) 36 b) 60 228. If 7 points out of 12 are in the s	el, is 8 c) 96 % c) 8 4 c) 48 4 c) 48 7 10 c) 2346 10 c) 2346 then the value of r is 1 1 c) 42 an 24000 can be formed by usin 0 c) 84 rame straight line, then the num	d) None of these d) 12 d) 52 l from the digits 1, 2, 3, 4, 5, 6, 7, 8, d) None of these d) None of these g the digits 1,2,3,4,5 when no digit d) 120 ber of triangles formed is	9
d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 48 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying betw (repetition of digits is allowed) a) 1024 b) 82 226. If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 30800 : 1,$ a) 40 b) 42 227. How many numbers greater that repeated , is a) 36 b) 60 228. If 7 points out of 12 are in the s a) 19 b) 15	el, is 8 c) 96 % c) 8 4 c) 48 4 c) 48 veen 10 and 1000 can be formed ? 10 c) 2346 then the value of r is 1 c) 42 an 24000 can be formed by usin 0 c) 84 ame straight line, then the num 58 c) 185	d) None of these d) 12 d) 52 l from the digits 1, 2, 3, 4, 5, 6, 7, 8, d) None of these d) None of these g the digits 1,2,3,4,5 when no digit d) 120 ber of triangles formed is d) 201	9 e t is
d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 48 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying betw (repetition of digits is allowed) a) 1024 b) 82 226. If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 30800 : 1$, a) 40 b) 42 227. How many numbers greater that repeated , is a) 36 b) 60 228. If 7 points out of 12 are in the s a) 19 b) 15 229. The sum of all five digit number	el, is 8 c) 96 % c) 8 4 c) 48 4 c) 48 veen 10 and 1000 can be formed ? 10 c) 2346 then the value of r is 1 c) 42 an 24000 can be formed by usin 0 c) 84 ame straight line, then the num 58 c) 185	d) None of these d) 12 d) 52 l from the digits 1, 2, 3, 4, 5, 6, 7, 8, d) None of these d) None of these g the digits 1,2,3,4,5 when no digit d) 120 ber of triangles formed is d) 201	9 e t is
d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 48 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying betw (repetition of digits is allowed) a) 1024 b) 82 226. If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 30800 : 1,$ a) 40 b) 42 227. How many numbers greater that repeated , is a) 36 b) 66 228. If 7 points out of 12 are in the s a) 19 b) 12 229. The sum of all five digit number not allowed, is	el, is 8 c) 96 % c) 8 4 c) 48 4 c) 48 veen 10 and 1000 can be formed ? 10 c) 2346 then the value of r is 1 c) 42 an 24000 can be formed by usin 0 c) 84 ame straight line, then the num 58 c) 185 rs that can be formed using the	d) None of these d) 12 d) 52 l from the digits 1, 2, 3, 4, 5, 6, 7, 8, d) None of these d) None of these d) None of these d) 120 ber of triangles formed is d) 201 digits 1, 2, 3, 4, 5 when repetition of	9 e t is
d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 44 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying betw (repetition of digits is allowed) a) 1024 b) 82 226. If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 30800 : 1$, a) 40 b) 42 227. How many numbers greater that repeated , is a) 36 b) 60 228. If 7 points out of 12 are in the s a) 19 b) 12 229. The sum of all five digit number not allowed, is a) 366000 b) 60	el, is 8 c) 96 % c) 16 is c) 8 4 c) 48 4 c) 48 96 c) 10 and 1000 can be formed 7 10 c) 2346 10 c) 42 an 24000 can be formed by usin 0 c) 84 ame straight line, then the num 58 c) 185 rs that can be formed using the 60000 c) 36000	d) None of these d) 12 d) 52 l from the digits 1, 2, 3, 4, 5, 6, 7, 8, d) None of these d) None of these d) None of these d) 120 ber of triangles formed is d) 201 digits 1, 2, 3, 4, 5 when repetition of d) 3999960	9 9 t is of digits is
d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 48 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying betw (repetition of digits is allowed) a) 1024 b) 82 226. If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 30800 : 1,$ a) 40 b) 42 227. How many numbers greater that repeated , is a) 36 b) 66 228. If 7 points out of 12 are in the s a) 19 b) 12 229. The sum of all five digit number not allowed, is a) 366000 b) 66 230. Eight different letters of an alph	el, is 8 c) 96 % sors of 216 is c) 8 4 c) 48 4 c) 48 veen 10 and 1000 can be formed ? 10 c) 2346 then the value of r is 1 c) 42 an 24000 can be formed by usin 0 c) 84 ame straight line, then the num 58 c) 185 rs that can be formed using the 60000 c) 36000 habet are given. Words of four let	d) None of these d) 12 d) 52 l from the digits 1, 2, 3, 4, 5, 6, 7, 8, d) None of these d) None of these d) None of these d) 120 ber of triangles formed is d) 201 digits 1, 2, 3, 4, 5 when repetition of d) 3999960	9 9 t is of digits is
d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 44 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying betw (repetition of digits is allowed) a) 1024 b) 87 226. If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 30800 : 1$, a) 40 b) 47 227. How many numbers greater that repeated , is a) 36 b) 66 228. If 7 points out of 12 are in the s a) 19 b) 19 229. The sum of all five digit numbers not allowed, is a) 366000 b) 66 230. Eight different letters of an alph such words with at least one left	el, is8c) 96visors of 216 isc) 84c) 484c) 48veen 10 and 1000 can be formed?10c) 2346then the value of r is1c) 42an 24000 can be formed by usin0c) 84ame straight line, then the num58c) 185rs that can be formed using the60000c) 36000habet are given. Words of four lefter repeated is	d) None of these d) 12 d) 52 l from the digits 1, 2, 3, 4, 5, 6, 7, 8, d) None of these d) None of these d) None of these d) 120 ber of triangles formed is d) 201 digits 1, 2, 3, 4, 5 when repetition of 0 d) 3999960 etters from these are formed. The se	9 9 t is of digits is
d) None of the above 222. A total number of wards which word contains at least one vow a) 72 b) 44 223. The number of positive odd div a) 4 b) 6 224. The exponent of 3 in 100 !, is a) 33 b) 44 225. How many numbers lying betw (repetition of digits is allowed) a) 1024 b) 8 226. If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 30800 : 1$, a) 40 b) 4 227. How many numbers greater that repeated , is a) 36 b) 66 228. If 7 points out of 12 are in the s a) 19 b) 15 229. The sum of all five digit number not allowed, is a) 366000 b) 66 230. Eight different letters of an alph such words with at least one left	el, is 8 c) 96 % sors of 216 is c) 8 4 c) 48 4 c) 48 veen 10 and 1000 can be formed ? 10 c) 2346 then the value of r is 1 c) 42 an 24000 can be formed by usin 0 c) 84 ame straight line, then the num 58 c) 185 rs that can be formed using the 60000 c) 36000 habet are given. Words of four let	d) None of these d) 12 d) 52 l from the digits 1, 2, 3, 4, 5, 6, 7, 8, d) None of these d) None of these d) None of these d) 120 ber of triangles formed is d) 201 digits 1, 2, 3, 4, 5 when repetition of 0 d) 3999960 etters from these are formed. The	9 9 t is of digits is

		-	king one or more at a time, is
a) 300	b) 225 rent permutations of the v	c) 450	d) 325
a) 6	b) 36	c) 30	d) 60
,		,	n 22 players including 2 of them
and excluding 4 of t		· · · · · · · · · · · · · · · · · · ·	
a) ¹⁶ C ₁₁		c) ¹⁶ C ₉	d) ${}^{20}C_9$
234. The number of pern		he word 'CONSEQUENCE' in	which all the three E's are
together, is			
a) 9! 3!	b) $\frac{9!}{2!2!}$	c) $\frac{9!}{2!2!3!}$	d) $\frac{9!}{2!3!}$
-	2.2.	2.2.5.	2: 5:
a) 32	b) 25	c) 31	sums of money she can form is d) None of these
,		,	e players have 17 cards each
and the fourth playe	-	ngst lour players so that thre	e players have 17 cards cach
= =	-	52!	d) None of these
a) $\frac{52!}{(17!)^3}$	b) 52!	c) $\frac{52!}{17!}$,
237. The total number of	seven-digit numbers the s	sum of whose digits is even is	3
a) 9000000	b) 4500000	c) 8100000	,
-	committees of 5 can be fo	rmed from 6 men and 4 won	nen on which exact 3 men and 2
women serve?			
a) 6	b) 20	c) 60	d) 120
=	s can 10 letters be placed i	n 10 marked envelopes, so th	hat no letter is in the right
envelope are	1 1)	/ 1 1	1 1 \
a) $10! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{1!}\right)$	$-\frac{1}{3!}+\ldots+\frac{1}{10!}$	b) $10! \left(1 + \frac{1}{1!} - \frac{1}{2!} + \frac{1}{2!}\right)$	$\frac{1}{3!} - \dots - \frac{1}{10!}$
c) $\left\{1 + \frac{1}{1!} - \frac{1}{2!} + \frac{1}{3!}\right\}$		d) 9! $\left\{1 + \frac{1}{1!} - \frac{1}{2!} + \frac{1}{3!}\right\}$	1)
$(J_1 + \frac{1}{11} - \frac{1}{21} + \frac{1}{21})$	$\frac{101}{101}$		$\frac{1}{1}$ $\frac{1}{101}$
(1; 2; 3;	10.)		. 10.7
240. If the letters of the v	vord KRISNA are arranged	in all possible ways and the	se words are written out as in a
240. If the letters of the v dictionary, then the	vord KRISNA are arranged rank of the word KRISNA	l in all possible ways and the is	se words are written out as in a
240. If the letters of the v dictionary, then the a) 324	vord KRISNA are arranged rank of the word KRISNA b) 341	l in all possible ways and the is c) 359	se words are written out as in a d) None of these
 240. If the letters of the v dictionary, then the a) 324 241. The number of all performance of all performanc	vord KRISNA are arranged rank of the word KRISNA b) 341 ossible words that can be f	l in all possible ways and the is c) 359 formed using the letters of th	d) None of these e word "MATHEMATICS" is
 240. If the letters of the v dictionary, then the a) 324 241. The number of all performance of all performanc	vord KRISNA are arranged rank of the word KRISNA b) 341	l in all possible ways and the is c) 359	se words are written out as in a d) None of these
240. If the letters of the v dictionary, then the a) 324 241. The number of all per a) $\frac{11!}{2!2!2!}$	vord KRISNA are arranged rank of the word KRISNA b) 341 ossible words that can be f b) 11 !	l in all possible ways and the is c) 359 formed using the letters of th c) ${}^{11}C_1$	d) None of these e word "MATHEMATICS" is
240. If the letters of the v dictionary, then the a) 324 241. The number of all per a) $\frac{11!}{2!2!2!}$	vord KRISNA are arranged rank of the word KRISNA b) 341 ossible words that can be f b) 11 !	l in all possible ways and the is c) 359 formed using the letters of th	d) None of these e word "MATHEMATICS" is
240. If the letters of the v dictionary, then the a) 324 241. The number of all per a) $\frac{11!}{2!2!2!}$ 242. let P_m stand for mP_m a) $(n-1)!$	vord KRISNA are arranged rank of the word KRISNA b) 341 ossible words that can be f b) 11 ! n . Then, $1 + P_1 + 2 P_2 + 3$	t in all possible ways and the is c) 359 formed using the letters of th c) ¹¹ C ₁ $P_3 + \dots + n \cdot P_n$ is equal to c) $(n + 1)! - 1$	se words are written out as in a d) None of these e word "MATHEMATICS" is d) None of these
240. If the letters of the v dictionary, then the a) 324 241. The number of all point a) $\frac{11!}{2!2!2!}$ 242. let P_m stand for mP_m a) $(n-1)!$ 243. A polygon has 54 dia a) 12	vord KRISNA are arranged rank of the word KRISNA b) 341 ossible words that can be f b) 11 ! n . Then, $1 + P_1 + 2 P_2 + 3$ b) n ! agonals. Number of sides o b) 15	t in all possible ways and the is c) 359 formed using the letters of th c) ${}^{11}C_1$ $P_3 + \dots + n \cdot P_n$ is equal to c) $(n + 1)! - 1$ of this polygon is c) 16	se words are written out as in a d) None of these e word "MATHEMATICS" is d) None of these d) None of these d) 9
240. If the letters of the v dictionary, then the a) 324 241. The number of all per- a) $\frac{11!}{2!2!2!}$ 242. let P_m stand for mP_m a) $(n-1)!$ 243. A polygon has 54 dia a) 12 244. Six X's have to be pl	vord KRISNA are arranged rank of the word KRISNA b) 341 ossible words that can be f b) 11 ! n . Then, $1 + P_1 + 2 P_2 + 3$ b) n ! agonals. Number of sides o b) 15 aced in the square of the f	formed using the letters of th c) ${}^{11}C_1$ $P_3 + \dots + n \cdot P_n$ is equal to c) $(n + 1)! - 1$ of this polygon is	se words are written out as in a d) None of these e word "MATHEMATICS" is d) None of these d) None of these d) 9
240. If the letters of the v dictionary, then the a) 324 241. The number of all point a) $\frac{11!}{2!2!2!}$ 242. let P_m stand for mP_m a) $(n-1)!$ 243. A polygon has 54 dia a) 12	vord KRISNA are arranged rank of the word KRISNA b) 341 ossible words that can be f b) 11 ! n . Then, $1 + P_1 + 2 P_2 + 3$ b) n ! agonals. Number of sides o b) 15 aced in the square of the f	t in all possible ways and the is c) 359 formed using the letters of th c) ${}^{11}C_1$ $P_3 + \dots + n \cdot P_n$ is equal to c) $(n + 1)! - 1$ of this polygon is c) 16	se words are written out as in a d) None of these e word "MATHEMATICS" is d) None of these d) None of these d) 9
240. If the letters of the v dictionary, then the a) 324 241. The number of all per- a) $\frac{11!}{2!2!2!}$ 242. let P_m stand for mP_m a) $(n-1)!$ 243. A polygon has 54 dia a) 12 244. Six X's have to be pl	vord KRISNA are arranged rank of the word KRISNA b) 341 ossible words that can be f b) 11 ! n . Then, $1 + P_1 + 2 P_2 + 3$ b) n ! agonals. Number of sides o b) 15 aced in the square of the f	t in all possible ways and the is c) 359 formed using the letters of th c) ${}^{11}C_1$ $P_3 + \dots + n \cdot P_n$ is equal to c) $(n + 1)! - 1$ of this polygon is c) 16	se words are written out as in a d) None of these e word "MATHEMATICS" is d) None of these d) None of these d) 9
240. If the letters of the v dictionary, then the a) 324 241. The number of all per- a) $\frac{11!}{2!2!2!}$ 242. let P_m stand for mP_m a) $(n-1)!$ 243. A polygon has 54 dia a) 12 244. Six X's have to be pl	vord KRISNA are arranged rank of the word KRISNA b) 341 ossible words that can be f b) 11 ! n . Then, $1 + P_1 + 2 P_2 + 3$ b) n ! agonals. Number of sides o b) 15 aced in the square of the f	t in all possible ways and the is c) 359 formed using the letters of th c) ${}^{11}C_1$ $P_3 + \dots + n \cdot P_n$ is equal to c) $(n + 1)! - 1$ of this polygon is c) 16	se words are written out as in a d) None of these e word "MATHEMATICS" is d) None of these d) None of these d) 9
240. If the letters of the v dictionary, then the a) 324 241. The number of all per- a) $\frac{11!}{2!2!2!}$ 242. let P_m stand for mP_m a) $(n-1)!$ 243. A polygon has 54 dia a) 12 244. Six X's have to be pl	vord KRISNA are arranged rank of the word KRISNA b) 341 ossible words that can be f b) 11 ! n . Then, $1 + P_1 + 2 P_2 + 3$ b) n ! agonals. Number of sides o b) 15 aced in the square of the f	t in all possible ways and the is c) 359 formed using the letters of th c) ${}^{11}C_1$ $P_3 + \dots + n \cdot P_n$ is equal to c) $(n + 1)! - 1$ of this polygon is c) 16	se words are written out as in a d) None of these e word "MATHEMATICS" is d) None of these d) None of these d) 9
240. If the letters of the v dictionary, then the a) 324 241. The number of all per- a) $\frac{11!}{2!2!2!}$ 242. let P_m stand for mP_m a) $(n - 1)!$ 243. A polygon has 54 dia a) 12 244. Six X's have to be pl many different ways	vord KRISNA are arranged rank of the word KRISNA b) 341 ossible words that can be f b) 11 ! n . Then, $1 + P_1 + 2 P_2 + 3$ b) n ! agonals. Number of sides o b) 15 aced in the square of the first scan this be done?	l in all possible ways and the is c) 359 formed using the letters of th c) ${}^{11}C_1$ $P_3 + \dots + n \cdot P_n$ is equal to c) $(n + 1)! - 1$ of this polygon is c) 16 igure such that each row con	se words are written out as in a d) None of these e word "MATHEMATICS" is d) None of these d) None of these d) 9 tains at least one ' <i>X</i> '. In how
240. If the letters of the v dictionary, then the a) 324 241. The number of all port a) $\frac{11!}{2!2!2!}$ 242. let P_m stand for mP_m a) $(n-1)!$ 243. A polygon has 54 dia a) 12 244. Six X's have to be plan many different ways	b) 27	c) 26	se words are written out as in a d) None of these e word "MATHEMATICS" is d) None of these d) None of these d) 9
240. If the letters of the v dictionary, then the a) 324 241. The number of all per- a) $\frac{11!}{2!2!2!}$ 242. let P_m stand for mP_m a) $(n - 1)!$ 243. A polygon has 54 dia a) 12 244. Six X's have to be pl many different ways a) 28 245. The total number of	b) 27 F ways of dividing mn thing	c) 26 gs into <i>n</i> equal groups, is	 a) None of these b) None of these c) None of these d) None of these d) None of these d) 9 tains at least one 'X'. In how d) None of these
240. If the letters of the v dictionary, then the a) 324 241. The number of all per- a) $\frac{11!}{2!2!2!}$ 242. let P_m stand for mP_m a) $(n - 1)!$ 243. A polygon has 54 dia a) 12 244. Six X's have to be pl many different ways a) 28 245. The total number of	b) 27 F ways of dividing mn thing	c) 26 gs into <i>n</i> equal groups, is	se words are written out as in a d) None of these e word "MATHEMATICS" is d) None of these d) None of these d) 9 tains at least one ' <i>X</i> '. In how
240. If the letters of the v dictionary, then the a) 324 241. The number of all point a) $\frac{11!}{2!2!2!}$ 242. let P_m stand for mP_m a) $(n-1)!$ 243. A polygon has 54 dia a) 12 244. Six X's have to be pl many different ways a) 28 245. The total number of a) $\frac{(m n)!}{m!n!}$	b) 27 word KRISNA are arranged rank of the word KRISNA b) 341 ossible words that can be f b) 11 ! n. Then, $1 + P_1 + 2 P_2 + 3$ b) n ! agonals. Number of sides of b) 15 aced in the square of the first s can this be done? b) 27 Fways of dividing mn thing b) $\frac{(m n) !}{(n)^m m !}$	c) 26 gs into <i>n</i> equal groups, is c) $\frac{(n+1)!}{2!} = 0$ formed using the ways and these is c) 359 formed using the letters of th c) ${}^{11}C_1$ $P_3 + \dots + n \cdot P_n$ is equal to c) $(n+1)! - 1$ of this polygon is c) 16 igure such that each row com	 a) None of these b) None of these c) None of these d) None of these d) None of these d) 9 tains at least one 'X'. In how d) None of these d) None of these
240. If the letters of the v dictionary, then the a) 324 241. The number of all point a) $\frac{11!}{2!2!2!}$ 242. let P_m stand for mP_m a) $(n-1)!$ 243. A polygon has 54 dia a) 12 244. Six X's have to be pl many different ways a) 28 245. The total number of a) $\frac{(m n)!}{m!n!}$ 246. 20 persons are invite	b) 27 b) 27 f ways of dividing <i>mn</i> thing b) $\frac{(m n)!}{(n)^m m!}$	c) 26 gs into <i>n</i> equal groups, is c) 26 gs into <i>n</i> equal groups, is c) $\frac{(m n)!}{(m!)^n n!}$	 a) None of these b) None of these c) None of these d) None of these d) None of these d) 9 tains at least one 'X'. In how d) None of these
240. If the letters of the v dictionary, then the a) 324 241. The number of all point a) $\frac{11!}{2!2!2!}$ 242. let P_m stand for mP_m a) $(n-1)!$ 243. A polygon has 54 dia a) 12 244. Six X's have to be pl many different ways a) 28 245. The total number of a) $\frac{(m n)!}{m!n!}$ 246. 20 persons are invite	b) 27 b) 27 f ways of dividing <i>mn</i> thing b) $\frac{(m n)!}{(n)^m m!}$	c) 26 gs into <i>n</i> equal groups, is c) $\frac{(n+1)!}{2!} = 0$ formed using the ways and these is c) 359 formed using the letters of th c) ${}^{11}C_1$ $P_3 + \dots + n \cdot P_n$ is equal to c) $(n+1)! - 1$ of this polygon is c) 16 igure such that each row com	 a) None of these b) None of these c) None of these d) None of these d) None of these d) 9 tains at least one 'X'. In how d) None of these

$247 + 10^{n-1} - 10^{n-1} - 10^{n-1}$		1	
	> ${}^{n}C_{3}$, then <i>n</i> is just greater	c) 4	4) 7
a) 5	b) 6	,	d) 7
	ive integers more than or each $(m + n)$! but not by $(m - m)$		(iii) ! is divisible by
	$(m + n)$! but not by $(m - n)$!, $(m !)^m$ but not by $(n !)^m$	<i>n</i>):	
,	(n + n)! and $(m - n)!$		
	(m - n)! and $(m - n)!$	m - n	
, , , , , ,			taining more than <i>n</i> elements is
equal to	1) clements. The number		taining more than <i>n</i> crements is
a) 2^{n-1}	b) 2 ⁿ	c) 2 ^{<i>n</i>+1}	d) 2^{2n}
-	,	-)	d, and an elector may vote for any
			the number of ways in which an
elector may vote is	es not greater than the num		the number of ways in which an
a) 25	b) 30	c) 32	d) None of these
,	,	,	c^4 when written at full length, is
a) 1260	b) 2520	c) 610	d) None of these
,	sets of {1, 2, 3,, 9} contain	,	
a) 324	b) 396	c) 496	d) 512
,	s in which 21 objects can be	,	
a) $\frac{20!}{8!+7!+6!}$	b) <u>8!7!</u>	c) <u>8!7!6!</u>	d) $\frac{21!}{8! + 7! + 6!}$
254. The number of way	s choosing a committee of 4	woman and 5 men from	10 women and 9 men, if Mr. A
refuses to serve on	the committee when Ms. B	is a member of the comm	iittee, is
a) 20580	b) 21000	c) 21580	d) All the above
255. Consider the follow	ing statements :		
1.The product of <i>r</i> c	consecutive natural number	s is always divisible by r	
2.The total number	of proper positive divisors	of 115500 is 94	
3. A pack of 52 card	s can be divided equally am	ong four players order in	$n \frac{52!}{(13!)^4}$ ways.
	nent given above is/are corr		(13.)
a) Only (1)	b) Only (2)	c) Only (3)	d) All of (1), (2) and (3)
	s greater than 40000 can be		
a) 12	b) 24	c) 36	d) 48
257. There are <i>n</i> differen	it books and p copies of eac	h. The number of ways ir	n which a selection can be made
from them is			
a) <i>n^p</i>	b) <i>p</i> ^{<i>n</i>}	c) $(p+1)^n - 1$	d) $(n+1)^p - 1$
258. In how many ways	can 5 boys and 5 girls sit in	a circle so that no two bo	oys sit together?
a) 5! × 5!	b) 4! × 5!	c) $\frac{5! \times 5!}{2}$	d) None of these
,	2		
		-	these words are written out as in a
-	rank of the word MODESTY		
a) 5040	b) 720	c) 1681	d) 2520
-		-	lictionary, then fifteen word is
a) NAAGI	b) NAGAI	c) NAAIG	d) NAIAG
= =	=		er of bottles of the same size of
	=		ne number of different ways of
	e varieties of perfumes in th	e show case is	
a) 6			
b) 50			
c) 150 d) None of these			
d) None of these			

d) None of these

262. The total number of wa ' – ' signs occur togeth		ır ' – ' signs can be arrange	d in a line such that no two
a) 35	b) 15	c) 30	d) None of these
,	,	,	ne number of papers in which
	successful. The number of w	• •	•••
a) 255	b) 256	c) 193	d) 319
264. The number of 5 digits	,	,	,
a) 90000	b) 100000	c) 30240	d) 69760
,	,	,	petical order as in dictionary
-	e rank of the permutation a	_	Section of del as in dictionary
a) 90	b) 91	c) 92	d) 93
,	,	,	to the others. If there are 20
	en the total number of greet		
a) ${}^{20}C_2$	b) $2 \cdot {}^{20}C_2$	c) $2 \times {}^{20}P_2$	d) None of these
, 1	, 1	, 1	•
		-	nt red dyes. The total number
_	s that can be chosen taking	-	
a) 3255	b) 2 ¹²	c) 3720	d) None of these
268. The maximum number		-	
a) 26	b) 50	c) 56	d) 72
269. If <i>n</i> is even and ${}^{n}C_{0} < $	${}^{n}\mathcal{L}_{1} < {}^{n}\mathcal{L}_{2} < \cdots < {}^{n}\mathcal{L}_{r} > 1$	$"\mathcal{L}_{r+1} > "\mathcal{L}_{r+2} > \cdots > "\mathcal{L}_{r}$	
a) $\frac{n}{2}$	b) $\frac{n-1}{2}$	c) $\frac{n-2}{2}$	d) $\frac{n+2}{2}$
2 270. Four couples (husband	2	<i>L</i>	Z
- ,	•		is. The number of unterent
a) 10	e formed in which no couple b) 12	c) 14	d) 16
,	-	,	,
271. Eight chairs are number		= =	
	irs from amongst the chairs		ien select the chairs ironi
	g. The number of possible and $4c \times 4c$	-	d) Nora of these
a) ${}^{6}C_{3} \times {}^{4}C_{2}$	b) ${}^4C_2 \times {}^4C_3$		d) None of these
272. If a polygon has 44 dia			
a) 11	b) 7	c) 8	d) None of these
273. The number of permut			
a) 60480	b) 30240	c) 10080	d) None of these
274. Let $f: \{1, 2, 3, 4, 5\} \rightarrow \{2\}$			
a) 9	b) 44	c) 16	d) None of these
			ned from these given letters.
	ords which have at least one	-	
a) 69760	b) 30240	c) 99748	d) None of these
276. In how many ways <i>n</i> b			
a) $n! - (n - 2)!$	b) $(n-1)!(n-2)$		d) $(n-2)n!$
277. The total numbers of g	reater than 100 and divisib	le by 5, that can be formed	from the digits 3,4,5,6 if no
digit is repeated is			
a) 24	b) 48	c) 30	d) 12
	rd <i>LATE</i> be permuted and the	ne words so formed be arra	nged as in a dictionary. Then,
the rank of <i>LATE</i> is			
a) 12	b) 13	c) 14	d) 15
_	in the square of the figure g	given, such that each row co	ontains at least one x , this can
be done in			

a) 24 ways	b) 28 ways	c) 26 ways	d) 36 ways
280. Three straight lines L_1 , L	· ·		, ,
	L_3 . The maximum number		
a) $^{m+n+k}C_3$	23. The maximum number	b) ${}^{m+n+k}C_3 - {}^{m}C_3 - {}^{n}C_3$	
c) ${}^{m+n+k}C_3 + {}^{m}C_3 + {}^{n}C_3$	C	d) None of the above	'3
281. All the words that can be			a dictionary (no alphabet is
replaced). Then, the ran			
a) 70	b) 71	c) 72	d) 74
282. The number of natural n	,	,	,
different is			inen un the algit al e
a) 5274	b) 5265	c) 4676	d) None of these
283. A code word consists of	,	,	
	is repeated in any code wo		-
a) 1404000	b) 16848000	c) 2808000	d) None of these
284. The number of 5 digits n	umbers of the from abcba	in which $a < b$, is	-
a) 320	b) 340	c) 360	d) 380
285. If eleven member of a co	mmittee sit at a round table	e so that the President and	Secretary always sit
together, then the numb	er of arrangements is		
a) 10! × 2	b) 10!	c) 9! × 2	d) None of these
286. The number of numbers	that can be formed by usin	g digits 1,2,3,4,3,2,1 so that	odd digits always occupy
odd places			
a) 3! 4!	b) 34	c) 18	d) 12
287. If the letters of the word	MOTHER are written in all	possible orders and these	words are written out as in a
dictionary then the rank	of the word MOTHER is		
a) 240	b) 261	c) 308	d) 309
288. Consider the following s	tatement:		
_	f arranging <i>m</i> different thin	gs taken all at a time in whi	ich $p \leq m$ perticular things
are never together is <i>m</i> !			
2. A pack of 52 cards can	be divided equally among	four players in order in $\frac{52}{(13)}$	$\frac{1}{1^4}$ ways
Which of these is/are co		(,
a) Only (1)	b) Only (2)	c) Both of these	d) None of these
289. If <i>N</i> is the number of pos			-
a) 250	b) 252	c) 254	d) 256
290. If a man and his wife ent	er in a bus, in which five sea	ats are vacant, then the nur	nber of different ways in
which they can be seated	l, is		
a) 2	b) 5	c) 20	d) 40
291. A lady gives a dinner par	rty to 5 guests to be selected	l from nine friends. The nu	mber of ways of forming the
party of 5, given that two	o of the friends will not atte	nd the party together is	
a) 56	b) 126	c) 91	d) None of these
292. These are <i>n</i> distinct poin	its on the circumference of	a circle. The number of pen	tagons that can be formed
with these points as vert	tices is equal to the number	of possible triangles. Then	, the value of n is
a) 7	b) 8	c) 15	d) 30
293. Four dice are rolled. The			ce shows 2 is
a) 625	b) 671	c) 1023	d) 1296
294. From 12 books, the diffe			when one specified book is
-	e specified book is always ir		N 222
a) 64	b) 118	c) 132	d) 330
295. There are <i>n</i> different boo	=		per of ways in which a
student can make a selec	ction of one or more books i	S	

a) $(m+1)^n$	b) $\frac{(mn)!}{(m1)^n}$	c) ${}^{mn}C_n \times {}^{n}C_1$	d) $(m+1)^n - 1$
	(111:)		BILE" when consonants always
occupy odd places, is			
a) 20	b) 36	c) 30	d) 720
	nd a table numbered 1,2,3,	, <i>n</i> . The number of ways ir	which $m(\leq n)$ persons can
take seat is			
	b) ${}^{n}C_{m} \times m!$		d) $(m-1)! \times (n-1)!$
	er of points of intersection of		
a) 16	b) 24	c) 28	d) 56
			may be selected from among
a) 112	he friends will not attent the b) 140	c) 164	d) None of these
	irrangements which can be m	,	-
	osition of vowels and consor		ie word nigebra, without
•			. 4!3!
a) $\frac{7!}{2!}$	b) 7 ! 2 ! 5 !	c) 4!3!	d) $\frac{4!3!}{2}$
301. There are 10 true-fals	se questions in an examinatio	on. Then, these questions c	an be answered in
a) 240 ways	b) 20 ways	-)) -	d) 100 ways
	of distributing 8 identical bal	ls in 3 distinct boxes, so th	at none of the boxes is empty,
is			
a) 5	b) 21	c) 3 ⁸	d) ${}^{8}C_{3}$
=		the no numbers 1,2, , 100). The number of factors out of
	ich are multiple of 3 is	.) 2720	
a) 2211	b) 4950	c) 2739	d) None of these
having an alternative	ssible selections of one or mo	rie questions from 10 giver	n questions, each question
a) 3^{10}		c) 3 ¹⁰ – 1	d) 2 ¹⁰
305. In how many ways ca		0,0 1	() <u>-</u>
a) $\frac{1}{2}$ 4!	b) $\frac{1}{2}$ 5!	c) 4!	d) 5!
	f different colours and four b		
-	balls, one in each box, could b	be placed such that a ball d	oes not go to box of its own
colour, is			
a) 8	b) 7	c) 9	d) None of these
			alves (not less then 12 each)
	n how many ways can the shi	-	4) (12) 3
a) $3^{12} - 1$	b) 3^{12}	c) $(12)^3 - 1$	d) (12) ³
a) 120	to arrange the letters of the v b) 240	c) 720	d) 6
	in which 5 boys and 3 girls ca	,	-
boys is	in which 5 boys and 5 girls ca	in be seated in a row so the	
a) 2880	b) 1880	c) 3800	d) 2800
	d 3 post-boxes. The number		
a) 6 ³	b) 3 ⁶	c) ${}^{6}C_{3}$	d) ${}^{6}P_{3}$
311. The packs of 52 cards	are shuffled together. The n	umber of ways in which a	man can be dealt 26 cards so
that he does not get t	wo cards of the same suit and	l same denomination, is	
a) ${}^{52}C_{26}$. 2^{26}	b) ¹⁰⁴ C ₂₆	c) 2. ⁵² C ₂₆	d) None of these
312. The number of prope	r divisors of 38808 is		
a) 70	b) 72	c) 71	d) None of these
313. If ${}^{8}C_{r} - {}^{7}C_{3} = {}^{7}C_{2}$, t	hen <i>r</i> is equal to		

a) 3	b) 4	c) 8	d) 6
	,	,	t all shall not have the same
neighbours in any two	=		
a) 24	b) 6	c) 3	d) 4
315. A three digit number n	is such that the last two dia	gits of it are equal and diffe	er from the first. The number
of such <i>n</i> 's is			
a) 64	b) 72	c) 81	d) 900
316. Ten persons, amongst	whom are <i>A</i> , <i>B</i> and <i>C</i> to spe	ak at a function. The numb	per of ways in which it can be
done, if A wants to spe	ak before <i>B</i> and <i>B</i> wants to	speak before C is	
a) $\frac{10!}{6}$	b) 3! 7!	c) ${}^{10}P_3$. 7!	d) None of these
0		2 0	
317. There are 15 persons i shakes is	n a party and each person s	nakes hand with another.	The total number of hand
a) ${}^{15}P_2$	b) ¹⁵ C ₂	a) 15 l	d) 2 × 15 !
, 1	, ,	,	books. If the total number of
	elect one book is 63, then t		books. If the total number of
a) 2	b) 3	c) 4	d) 1
319. There are 5 historical	,	,	,
	visits at least one shopping		
	b) $2^4 \cdot 2^6 \cdot (2^7 - 1)$		d) None of these
320. If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> are prime			
a) 94	b) 72	c) 36	d) 71
-	ermutations of $n(>1)$ diffe	2	e than r at a time, when each
	any number of times is	-	
$n(n^n-1)$	b) $\frac{n^r - 1}{n - 1}$	$n(n^r-1)$	d) None of these
$a_j = \frac{n-1}{n-1}$	$\frac{0}{n-1}$	n = 1	
<i>n</i> 1	<i>n</i> , T	<i>n</i> 1	
322. The number of ways fo	our boys can be seated arou	nd a round table in four ch	
322. The number of ways for a) 24	our boys can be seated arou b) 12	<i>n</i> 1	airs of different colours is d) 64
322. The number of ways fo	our boys can be seated arou b) 12	nd a round table in four ch c) 23	d) 64
322. The number of ways for a) 24	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals	nd a round table in four ch c) 23	
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n	nd a round table in four ch c) 23 c) $\frac{1}{2}na_n$	d) 64 d) None of these
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers co	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n bonsisting of 5 digits can be f	nd a round table in four ch c) 23 c) $\frac{1}{2}na_n$	d) 64
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n bonsisting of 5 digits can be f	nd a round table in four ch c) 23 c) $\frac{1}{2}na_n$	d) 64 d) None of these
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers conducted and the digit 5 is used a) 30	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n bonsisting of 5 digits can be f twice? b) 60	nd a round table in four ch c) 23 c) $\frac{1}{2}na_n$ ormed in which the digits 3 c) 45	d) 64 d) None of these 3, 4 and 7 are used only once
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers condition and the digit 5 is used a) 30 325. All letters of the word	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n bonsisting of 5 digits can be f twice? b) 60	nd a round table in four ch c) 23 c) $\frac{1}{2}na_n$ ormed in which the digits 3 c) 45 possible ways and the work	d) 64 d) None of these 3, 4 and 7 are used only once d) 90
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers condition and the digit 5 is used a) 30 325. All letters of the word	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n onsisting of 5 digits can be f twice? b) 60 AGAIN are permuted in all j	nd a round table in four ch c) 23 c) $\frac{1}{2}na_n$ ormed in which the digits 3 c) 45 possible ways and the work	d) 64 d) None of these 3, 4 and 7 are used only once d) 90
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers condition a) 30 325. All letters of the word meaning) are written and a) NAAGI	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n onsisting of 5 digits can be f twice? b) 60 AGAIN are permuted in all p as in dictionary, then the 50 b) IAANG	nd a round table in four ch c) 23 c) $\frac{1}{2}na_n$ ormed in which the digits 3 c) 45 possible ways and the work th word is c) NAAIG	d) 64 d) None of these 3, 4 and 7 are used only once d) 90 ds so formed (with or without
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers condition and the digit 5 is used a) 30 325. All letters of the word meaning) are written and a) NAAGI 326. The number of seven of and 3 only, is	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n onsisting of 5 digits can be f twice? b) 60 AGAIN are permuted in all p as in dictionary, then the 50 b) IAANG	nd a round table in four ch c) 23 c) $\frac{1}{2}na_n$ ormed in which the digits 3 c) 45 possible ways and the work th word is c) NAAIG	d) 64 d) None of these 3, 4 and 7 are used only once d) 90 ds so formed (with or without d) INAGA
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers conditionant of the digit 5 is used a) 30 325. All letters of the word meaning) are written and a) NAAGI 326. The number of seven of and 3 only, is a) 55	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n b) nsisting of 5 digits can be f twice? b) 60 AGAIN are permuted in all p as in dictionary, then the 50 b) IAANG ligit integers, with sum of th b) 66	nd a round table in four ch c) $\frac{1}{2}na_n$ ormed in which the digits 3 c) 45 possible ways and the work th word is c) NAAIG ne digits equal to 10 and fo c) 77	d) 64 d) None of these 3, 4 and 7 are used only once d) 90 ds so formed (with or without d) INAGA
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers condition and the digit 5 is used a) 30 325. All letters of the word for meaning) are written and a) NAAGI 326. The number of seven of and 3 only, is a) 55 327. If a polygon of <i>n</i> sided	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n onsisting of 5 digits can be f twice? b) 60 AGAIN are permuted in all p as in dictionary, then the 50 b) IAANG ligit integers, with sum of th b) 66 has 275 diaginals, then <i>n</i> is	nd a round table in four ch c) 23 c) $\frac{1}{2}na_n$ ormed in which the digits 3 c) 45 possible ways and the word th word is c) NAAIG he digits equal to 10 and fo c) 77 equal to	d) 64 d) None of these 3, 4 and 7 are used only once d) 90 ds so formed (with or without d) INAGA rmed by using the digits 1, 2 d) 88
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers condition and the digit 5 is used a) 30 325. All letters of the word meaning) are written and a) NAAGI 326. The number of seven of and 3 only, is a) 55 327. If a polygon of <i>n</i> sided a) 25	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n possisting of 5 digits can be f twice? b) 60 AGAIN are permuted in all p as in dictionary, then the 50 b) IAANG ligit integers, with sum of th b) 66 has 275 diaginals, then <i>n</i> is b) 35	nd a round table in four ch c) $\frac{1}{2}na_n$ ormed in which the digits 3 c) 45 possible ways and the work th word is c) NAAIG ne digits equal to 10 and fo c) 77 equal to c) 20	d) 64 d) None of these 3, 4 and 7 are used only once d) 90 ds so formed (with or without d) INAGA rmed by using the digits 1, 2 d) 88 d) 15
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers conditionant of the digit 5 is used a) 30 325. All letters of the word for meaning) are written and a) NAAGI 326. The number of seven of and 3 only, is a) 55 327. If a polygon of <i>n</i> sided a) 25 328. In how many different	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n b) na_n onsisting of 5 digits can be f twice? b) 60 AGAIN are permuted in all p as in dictionary, then the 50 b) IAANG ligit integers, with sum of th b) 66 has 275 diaginals, then <i>n</i> is b) 35 ways can the letters of the 50	nd a round table in four ch c) $\frac{1}{2}na_n$ c) $\frac{1}{2}na_n$ ormed in which the digits 3 c) 45 possible ways and the work th word is c) NAAIG ne digits equal to 10 and fo c) 77 equal to c) 20 word 'MATCHEMATICS' be	d) 64 d) None of these d) None of these 3, 4 and 7 are used only once d) 90 ds so formed (with or without d) INAGA rmed by using the digits 1, 2 d) 88 d) 15 e arranged?
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers condition and the digit 5 is used a) 30 325. All letters of the word for meaning) are written and a) NAAGI 326. The number of seven of and 3 only, is a) 55 327. If a polygon of <i>n</i> sided a) 25 328. In how many different a) 11!	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n onsisting of 5 digits can be f twice? b) 60 AGAIN are permuted in all p as in dictionary, then the 50 b) IAANG ligit integers, with sum of th b) 66 has 275 diaginals, then <i>n</i> is b) 35 ways can the letters of the b) 11!/2!	nd a round table in four ch c) $\frac{1}{2}na_n$ ormed in which the digits 3 c) 45 possible ways and the work th word is c) NAAIG ne digits equal to 10 and fo c) 77 equal to c) 20 word 'MATCHEMATICS' be c) 11!/(2!) ²	d) 64 d) None of these d) None of these 3, 4 and 7 are used only once d) 90 ds so formed (with or without d) INAGA rmed by using the digits 1, 2 d) 88 d) 15 e arranged? d) 11! (2!)
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers conditionant of the digit 5 is used a) 30 325. All letters of the word for meaning) are written and a) NAAGI 326. The number of seven of and 3 only, is a) 55 327. If a polygon of <i>n</i> sided a) 25 328. In how many different a) 11! 329. In how many ways can	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n onsisting of 5 digits can be f twice? b) 60 AGAIN are permuted in all p as in dictionary, then the 50 b) IAANG ligit integers, with sum of th b) 66 has 275 diaginals, then <i>n</i> is b) 35 ways can the letters of the b) 11!/2!	nd a round table in four ch c) $\frac{1}{2}na_n$ ormed in which the digits 3 c) 45 possible ways and the work th word is c) NAAIG ne digits equal to 10 and fo c) 77 equal to c) 20 word 'MATCHEMATICS' be c) 11!/(2!) ²	d) 64 d) None of these d) None of these 3, 4 and 7 are used only once d) 90 ds so formed (with or without d) INAGA rmed by using the digits 1, 2 d) 88 d) 15 e arranged?
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers condition and the digit 5 is used a) 30 325. All letters of the word for meaning) are written and a) NAAGI 326. The number of seven of and 3 only, is a) 55 327. If a polygon of <i>n</i> sided a) 25 328. In how many different a) 11!	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n onsisting of 5 digits can be f twice? b) 60 AGAIN are permuted in all p as in dictionary, then the 50 b) IAANG ligit integers, with sum of th b) 66 has 275 diaginals, then <i>n</i> is b) 35 ways can the letters of the b) 11!/2!	nd a round table in four ch c) $\frac{1}{2}na_n$ ormed in which the digits 3 c) 45 possible ways and the work th word is c) NAAIG ne digits equal to 10 and fo c) 77 equal to c) 20 word 'MATCHEMATICS' be c) 11!/(2!) ²	d) 64 d) None of these d) None of these 3, 4 and 7 are used only once d) 90 ds so formed (with or without d) INAGA rmed by using the digits 1, 2 d) 88 d) 15 e arranged? d) 11! (2!)
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers conditionant of the digit 5 is used a) 30 325. All letters of the word for meaning) are written and a) NAAGI 326. The number of seven of and 3 only, is a) 55 327. If a polygon of <i>n</i> sided a) 25 328. In how many different a) 11! 329. In how many ways can together? a) 1540	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n b) sisting of 5 digits can be f twice? b) 60 AGAIN are permuted in all p as in dictionary, then the 50 b) IAANG ligit integers, with sum of th b) 66 has 275 diaginals, then <i>n</i> is b) 35 ways can the letters of the f b) 11!/2! a 21 English and 19 Hindi bo b) 1450	nd a round table in four ch c) $\frac{1}{2}na_n$ ormed in which the digits 3 c) 45 oossible ways and the work th word is c) NAAIG ne digits equal to 10 and fo c) 77 equal to c) 20 word 'MATCHEMATICS' be c) $11!/(2!)^2$ ooks be placed in a row so c) 1504	d) 64 d) None of these d) None of these 3, 4 and 7 are used only once d) 90 ds so formed (with or without d) INAGA rmed by using the digits 1, 2 d) 88 d) 15 e arranged? d) 11! (2!) that no two Hindi books are
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers conditionant of the digit 5 is used a) 30 325. All letters of the word for meaning) are written and a) NAAGI 326. The number of seven of and 3 only, is a) 55 327. If a polygon of <i>n</i> sided a) 25 328. In how many different a) 11! 329. In how many ways can together? a) 1540	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n onsisting of 5 digits can be f twice? b) 60 AGAIN are permuted in all p as in dictionary, then the 50 b) IAANG ligit integers, with sum of th b) 66 has 275 diaginals, then <i>n</i> is b) 35 ways can the letters of the b) 11!/2! 21 English and 19 Hindi bo b) 1450 ls, a group of 7 is to be form	nd a round table in four ch c) $\frac{1}{2}na_n$ ormed in which the digits 3 c) 45 oossible ways and the work th word is c) NAAIG ne digits equal to 10 and fo c) 77 equal to c) 20 word 'MATCHEMATICS' be c) $11!/(2!)^2$ ooks be placed in a row so c) 1504	d) 64 d) None of these d) None of these 3, 4 and 7 are used only once d) 90 ds so formed (with or without d) INAGA rmed by using the digits 1, 2 d) 88 d) 15 e arranged? d) 11! (2!) that no two Hindi books are d) 1405
322. The number of ways for a) 24 323. If $a_n = \sum_{r=0}^m \frac{1}{n_{C_r}}$, then a) $(n-1)a_n$ 324. How many numbers condition and the digit 5 is used a) 30 325. All letters of the word meaning) are written and a) NAAGI 326. The number of seven of and 3 only, is a) 55 327. If a polygon of <i>n</i> sided a) 25 328. In how many different a) 11! 329. In how many ways can together? a) 1540 330. Out of 6 boys and 4 gin	bur boys can be seated arou b) 12 $\sum_{r=0}^{n} \frac{r}{n_{C_r}}$ equals b) na_n onsisting of 5 digits can be f twice? b) 60 AGAIN are permuted in all p as in dictionary, then the 50 b) IAANG ligit integers, with sum of th b) 66 has 275 diaginals, then <i>n</i> is b) 35 ways can the letters of the b) 11!/2! 21 English and 19 Hindi bo b) 1450 ls, a group of 7 is to be form	nd a round table in four ch c) $\frac{1}{2}na_n$ ormed in which the digits 3 c) 45 oossible ways and the work th word is c) NAAIG ne digits equal to 10 and fo c) 77 equal to c) 20 word 'MATCHEMATICS' be c) $11!/(2!)^2$ ooks be placed in a row so c) 1504	d) 64 d) None of these d) None of these 3, 4 and 7 are used only once d) 90 ds so formed (with or without d) INAGA rmed by using the digits 1, 2 d) 88 d) 15 e arranged? d) 11! (2!) that no two Hindi books are d) 1405

	ⁿ	· .	
331. If ${}^{n}C_{r} = {}^{n}C_{r-1}$ and ${}^{n}P_{r}$			
a) 3	b) 4	c) 2	d) 5
332. A rectangle with sides 2 which can be formed wir		into squere of unit length. T	The number of rectangle
a) $m^2 n^2$	b) $mn(m+1)(n+1)$	c) 4^{m+n-1}	d) None of these
333. How many words can be			in the middle of every word?
a) 12	b) 24	c) 60	d) 6
334. The total number of way			o of 4 persons each is
a) $\frac{12!}{(3!)^3 4!}$	b) $\frac{12!}{(4!)^3}$	c) $\frac{12!}{(4!)^3 3!}$	d) $\frac{12!}{(3!)^4}$
$(3!)^3 4!$	$(4!)^3$	$(4!)^3 3!$	$(3!)^4$
			r may vote for any number of
	er than the number to be c		
a) 216	b) 114	c) 218	d) None of these
336. There are 10 lamps in a		be switched on independen	itly. The number of ways in
which the hall can be illu			
a) 2 ¹⁰	b) 10!	c) 1023	d) 10 ²
337. If $S_n = \sum_{r=0}^n \frac{1}{n_{C_r}}$ and $t_n =$		to	
a) $\frac{n}{2}$	b) $\frac{n}{2} - 1$	c) <i>n</i> − 1	d) $\frac{2n-1}{2}$
2	2		2
338. If ${}^{n}C_{r-1} = 36$, ${}^{n}C_{r} = 84$ a) 1	b) 2	c) 3	d) None of these
339. The number of ways of a	,	,	
a) 60	b) 80	c) 100	d) 120
340. The rank of the word M	,	,	,
is	FILL WICH the letters of		abetically as in a dictionally,
a) 261	b) 343	c) 309	d) 273
341. The number of four-digi	t even numbers that can be	-	without repetition is
a) 120	b) 300	c) 420	d) 20
342. ${}^{n}C_{r} + 2 {}^{n}C_{r-1} + {}^{n}C_{r-2}$			
a) $^{n+1}C_r$		c) $^{n-1}C_{r+1}$	d) None of these
343. If ${}^{12}P_r = {}^{11}P_6 + 6 \cdot {}^{11}P_6$			
a) 6	b) 5	c) 7	d) None of these
344. A box contains two whit			ny ways can three balls be
	t least one black ball is to b		
a) 64	b) 45	c) 46	d) None of these
345. There are 18 points in a	=		except five points which are
	f triangles formed by these	-	
a) 805	b) 806	c) 816	d) None of these
346. A person wishes to make			
	nber of persons. The number		
a) 5 247 The sumber of discussed	b) 10	c) 8	d) None of these
347. The number of diagonal			1
	b) $\frac{1}{2!}m(m-1)$	c) $\frac{1}{2!}m(m-3)$	d) $\frac{1}{2!}m(m-2)$
348. The value of $\sum_{r=1}^{n} \frac{n_{P_r}}{r!}$ is			
a) 2 ⁿ	b) 2 ⁿ – 1	c) 2^{n-1}	d) 2 ⁿ + 1
349. The number of ways in v	which any four letters can b	e selected from the word '	CORGOO' is
a) 15	b) 11	c) 7	d) None of these
350. The number of ways in v	which one can select three o	distinct integers between 1	and 30, both inclusive,
whose sum is even, is			

a) 455	b) 1575	c) 1120	d) 2030
	3 letters can be posted in 4 le	tter-boxes, if all the letters	are not posted in the same
letter-box?			N 64
a) 63	b) 60	c) 77	d) 81
a) 19	are in the same straight line, b) 158	c) 185	d) 201
,	,		The number of selections of at
most 6 balls contair	ning balls of all the colours, is	_	
a) 42(4!)		c) $(2^6 - 1)(4!)$	
a) 8 ⁿ b) 9 ⁿ c) 9.10 ^{n–1} d) None of these	digit numbers ($n > 1$) having	the property that no two c	onsecutive digits are same, is
355. If $^{n-1}C_6 + {^{n-1}C_7} >$			
a) <i>n</i> > 4	,	c) <i>n</i> ≥ 13	,
	mber of different selections o er things are identical, is	f p + q thing taking r at a ti	me, where p things are
a) <i>p</i> + <i>q</i> − <i>r</i>	b) <i>p</i> + <i>q</i> − <i>r</i> + 1	c) $r - p - q + 1$	d) None of these
357. S_1, S_2, \dots, S_{10} are the speakers address is	e speakers in a conference. If S	S_1 addresses only after S_2 , t	hen the number of ways the
a) 10!	b) 9!	c) 10 × 8!	d) $\frac{10!}{2!}$
358. 12 persons are to b	e arranged to a round table. If	two particular persons am	ong them are not to be side by
side, the total numb a) 9 (10 !)	oer of arrangements is b) 2 (10 !)	c) 45 (8 !)	d) 10 !
	ver 10out of 13 questions in a		must choose at least 4 from
-	ons. The number of choices av		
a) 140	b) 196	c) 280	d) 346
	, I_2 , I_3 are parallel and lie in the points on I_3 . The maximum nu		with vertices at these points is
361. In a Mathematics pa	aper there are three sections of	containing 4, 5 and 6 questi	ons respectively. From each
-	are to be answered. In how n		-
a) 34	b) 800	c) 1600	d) 9600
			each of three books and single
	The total number of ways in w		
a) $\frac{(a+b+c+a)!}{(a+b+c+a)!}$	b) $\frac{(a+2b+3c+d)!}{a!(b!)^2(c!)^3}$	c) $\frac{(a+2b+3c+a)}{a+b+a+a}$	d) None of these
a! b! c! 363. If ${}^{n+2}C_8$: ${}^{n-2}P_4 = \frac{5}{1}$	-	a! b! c!	
a) 19	b) 2	c) 20	d) 5
364. If $\frac{1}{{}^{4}C_{n}} = \frac{1}{{}^{5}C_{n}} + \frac{1}{{}^{6}C_{n}}$, t	···)	0, 20	
a) 3	b) 2	c) 1	d) 0
365. If $P(n, r) = 1680$ a	nd C(n, r) = 70, then $69n + r$	'! is equal to	
a) 128	b) 576	c) 256	d) 625
	numbers can be written by us		
a) ${}^{10}C_1 + {}^{9}C_2$	b) 2 ¹⁰	c) ${}^{10}C_2$	d) 10!
	$_{n}$, then $1 + 1P_{1} + 2P_{2} + 3P_{3} + 3P_{3}$		
a) <i>n</i> !	b) $(n + 3)!$	c) $(n+2)!$	d) $(n + 1)!$

368. If $2^{n+1}P_{n-1}$:	${}^{2n-1}P_n = 3:5$, then <i>n</i> is equal t	0	
a) 4	b) 6	c) 3	d) 8
369. How many nu	mbers of 6 digits can be formed	from the digits of the i	number 112233?
a) 30	b) 60	c) 90	d) 120
370. If <i>r</i> , <i>s</i> , <i>t</i> are pr	ime numbers and <i>p</i> , <i>q</i> are the po	ositive integers such th	at LCM of p, q is $r^2 s^4 t^2$, then the
number of or	dered pairs (p,q) is		
a) 252	b) 254	c) 225	d) 224
371. The number of	of words which can be formed t	he letters of the word N	AXIMUM, if two consonants cannot
occur togethe	r, is		
a) 4!	b) 3! × 4!	c) 7!	d) None of these

7.PERMUTATIONS AND COMBINATIONS

						: ANS	WFI	K	FV •						
1)	d	2)	-	2)							d	101)	-	102)	
1) 5)	d	2)	c	3) 7)	C C	4) 9)		89) 93)	b d	190) 194)	d d	191) 195)	C 2	192) 196)	
5) 0)	a	6) 10)	a h	7) 11)	C h	8) 12)		,		,	d h	-	a	-	
9) 12)	C d	10) 14)	b	11) 15)	b h	12)		97) 01)	a d	198) 202)	b	199) 202)	a h	200) 204)	
13) 17)	d	14) 19)	a d	15) 10)	b	16) 20)		01) 05)	d	202) 206)	C	203) 207)	b d	204) 209)	
17) 21)	C d	18) 22)	d d	19) 22)	a d	20) 24)		05) 00)	C h	206) 210)	a	,	d h	208) 212)	
21) 25)	d	22) 26)	d h	23) 27)	d	24) 29)		09) 12)	b	210) 214)	C h	211)	b	212) 216)	
25) 20)	C	26) 20)	b	27) 21)	a	28) 22)		13) 17)	C h	214) 219)	b	215) 210)	a	216) 220)	
29) 22)	a	30) 24)	a	31) 25)	a	32) 26)		17) 21)	b	218) 222)	a	219) 222)	c	220) 224)	
33) 27)	C	34) 20)	a h	35)	a	36)		21)	C h	222)	C L	223)	a	224)	
37)	a	38) 42)	b h	39) 42)	a	40) 44)	a 22	-	b	226)	b	227)	C J	228)	
41)	C	42)	b	43)	a	44)		29)	d	230)	C	231)	d	232)	
45)	b	46)	C	47) 51)	d	48) 52)		33)	C	234)	b	235)	С	236)	
49) 52)	С	50)	d	51)	b	52)		37)	b	238)	d	239)	а	240)	
53)	С	54)	b	55) 5 0)	C	56)		41)	а	242)	C	243)	a	244)	
57)	С	58)	b	59)	b	60)		45)	C	246)	b	247)	d	248)	
61)	а	62)	d	63)	d	64)		49)	d	250)	а	251)	a	252)	
65)	С	66)	b	67)	a	68)		53)	d	254)	a	255)	d	256)	
69)	C	70)	C	71)	b	72)		57)	С	258)	b	259)	C	260)	
73)	b	74)	b	75)	d	76)		61)	С	262)	a	263)	b	264)	
77)	b	78)	С	79)	С	80)		65)	d	266)	b	267)	С	268)	
31)	b	82)	С	83)	a	84)		69)	a	270)	d	271)	d	272)	
85)	d	86)	b	87)	d	88)		73)	b	274)	b	275)	а	276)	
89)	b	90)	С	91)	b	92)		77)	d	278)	С	279)	С	280)	
93)	a	94)	С	95)	b	96)		81)	d	282)	а	283)	a	284)	
97)	d	98)	a	99)	b	100)		85)	С	286)	С	287)	d	288)	
101)	b	102)	d	103)	а	104)		89)	d	290)	С	291)	С	292)	
105)	b	106)	а	107)	С	108)		93)	b	294)	С	295)	d	296)	
109)	а	110)	а	111)	а	112)	c 29	-	b	298)	d	299)	b	300)	
13)	С	114)	b	115)	b	116)	b 3	-	С	302)	b	303)	С	304)	
117)	b	118)	b	119)	b	120)	a 3	-	а	306)	С	307)	b	308)	
21)	b	122)	а	123)	С	124)	b 3	-	а	310)	b	311)	а	312)	
125)	С	126)	d	127)	a	128)	a 31	-	а	314)	С	315)	С	316)	
129)	d	130)	С	131)	a	132)	d 3:	-	b	318)	b	319)	а	320)	
33)	С	134)	b	135)	a	136)	a 32	-	С	322)	а	323)	С	324)	
137)	b	138)	С	139)	а	140)	b 32	-	С	326)	С	327)	а	328)	
l 41)	b	142)	С	143)	С	144)	c 32	-	а	330)	d	331)	а	332)	
L45)	а	146)	а	147)	a	148)	b 33	-	b	334)	С	335)	С	336)	
149)	С	150)	С	151)	b	152)	d 33	-	a	338)	С	339)	b	340)	
L 53)	b	154)	С	155)	С	156)	a 34	-	С	342)	d	343)	а	344)	
157)	а	158)	а	159)	а	160)	d 34	-	b	346)	b	347)	С	348)	
161)	b	162)	С	163)	а	164)	d 34	-	С	350)	d	351)	b	352)	
165)	С	166)	b	167)	d	168)	c 3	-	а	354)	b	355)	d	356)	
169)	С	170)	а	171)	С	172)	c 3	-	d	358)	а	359)	b	360)	
173)	b	174)	С	175)	b	176)	b 3	-	b	362)	b	363)	а	364)	
177)	d	178)	С	179)	b	180)	b 3	-	b	366)	b	367)	d	368)	
181)	а	182)	b	183)	d	184)	b 3	69)	С	370)	С	371)	а		
185)	С	186)	d	187)	b	188)	а								

: HINTS AND SOLUTIONS :

4

1 (d)

We have,

Required number of ways = (2 + 1)(3 + 1)(4 + 10 - 1 = 59)

2 **(c)**

Given,
$$m = {}^{n}C_{2} = \frac{n!}{2!(n-2)!} = \frac{n(n-1)}{2}$$

Now, ${}^{n}C_{2} = \frac{m!}{2!(m-2)!} = \frac{m(m-1)}{2}$
 $= \frac{\frac{n(n-1)}{2} \cdot \left(\frac{n^{2}-n-2}{2}\right)}{2}$
 $= \frac{(n+1)n(n-1)(n-2)}{8}$
 $= 3. {}^{n+1}C_{4}$

3 **(c)**

Let the boxes be marked as *A*, *B*, *C*. We have to ensure that no box remains empty and all five balls have to put in. There will be two possibilities.

(i) Any two box containing one ball each and $3^{\rm rd}$ box containing 3 balls. Number of ways

= A(1)B(1)C(3)

$$= {}^{5}C_{1}.{}^{4}C_{1}.{}^{3}C_{3} = 5.4.1 = 20$$

Since, the box containing 3 balls could be any of the three aboxes *A*, *B*, *C*. Hence, the required number of ways $20 \times 3 = 60$

(ii) Any two box containing 2 balls each and 3rd containing 1 ball, the number of ways

$$= A(2)B(2)C(1) = {}^{5}C_{2} \cdot {}^{3}C_{2} \cdot {}^{1}C_{1}$$
$$= 10 \times 3 \times 1 = 30$$

Since, the box containing 1 ball could be any of the three boxes *A*, *B*, *C*. Hence, The required number of ways

 $= 30 \times 3 = 90$

Hence, total number of ways = 60 + 90 = 150

(c)

Let *n* be the number of sides of the polygon

$$n.\,160^\circ = (n-2).\,180^\circ$$

$$\Rightarrow 20^{\circ} n = 360^{\circ}$$

 $\therefore n = 18$

Then number of diagonals = ${}^{18}C_2 - 18 = 153 - 18 = 135$

(a)

5

6

7

8

9

Required number of ways = ${}^{n}C_{m} \times m! = {}^{n}P_{m}$

(a)

$$\sum_{r=0}^{m} {}^{n+r}C_n = \sum_{r=0}^{m} {}^{n+r}C_r$$

$$= {}^{n}C_0 + {}^{n+1}C_1 + {}^{n+2}C_2 + \dots + {}^{n+m}C_m$$

$$= {}^{n+1}C_0 + {}^{n+1}C_1 + {}^{n+2}C_2 + \dots + {}^{n+m}C_m$$

$$[\because {}^{n+1}C_0 = {}^{n}C_0]$$

$$= {}^{n+2}C_1 + {}^{n+2}C_2 + \dots + {}^{n+m}C_m$$

$$= {}^{n+m}C_{m-1} + {}^{n+m}C_m$$

$$= {}^{n+m+1}C_m \qquad [\because {}^{n}C_{r-1} + {}^{n}C_r = {}^{n+r}C_r]$$

$$= {}^{n+m+1}C_{n+1} \qquad [\because {}^{n}C_r = {}^{n}C_{n-r}]$$
(c)
Required number of ways

$$= {}^{12}C_4 \times {}^{8}C_4 \times {}^{4}C_4$$

$$= \frac{12!}{8! \times 4!} \times \frac{8!}{4! \times 4!} \times 1 = \frac{12!}{(4!)^3}$$

Required number of selections = ${}^{8}C_{4} + {}^{8}C_{5} + {}^{8}C_{6} + {}^{8}C_{7} + {}^{8}C_{8}$ = 70 + 56 + 28 + 8 + 1 = 163

(c)

Arrange the letter of the word COCHIN as in the order of dictionary CCHINO Which number of words with the two C's occupying first and second place= 4! Number of words starting with CH, CI, CN is 4! each \therefore Total number of ways = 4! + 4! + 4! + 4! = 96 There are 96 words before COCHIN **(b)** The villagers can go to the town in ${}^{5}C_{1}$ ways and they return back in ${}^{5}C_{1}$ ways.

 $\therefore \text{ Total number of ways} = {}^{5}C_{1} \times {}^{5}C_{1} = 25$

10

The number of distinct *n*-digit numbers to be formed using digits 2, 5 and 7 is 3^n . We have to find *n* so that

 $3^n \ge 900 \Rightarrow 3^{n-2} \ge 100$

 $\Rightarrow n-2 \ge 5 \Rightarrow n \ge 7$

So the least value of n is 7

12 **(b)**

We have, ${}^{n}C_{r-1} = 36, {}^{n}C_{r} = 84, {}^{n}C_{r+1} = 126$ $\Rightarrow \frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{84}{36} \text{ and } \frac{{}^{n}C_{r+1}}{{}^{n}C_{r}} = \frac{126}{84}$ $\Rightarrow \frac{n-r+1}{r} = \frac{7}{3} \text{ and } \frac{n-r}{r+1} = \frac{3}{2}$ $\Rightarrow 3n - 10r + 3 = 0 \text{ and } 2n - 5r - 3 = 0 \Rightarrow$ r = 3, n = 9

13 **(d)**

The required number is the coefficient of x^{11} in $(1 + x + x^2 + \dots + x^{11})^6 = {}^{11+6-1}C_{6-1} = {}^{16}C_5$

Let number of sides of polygon=n $\Rightarrow {}^{n}C_{2} - n = 44 \qquad [given]$ $\Rightarrow {}\frac{n!}{2!(n-2)!} - n = 44$ $\Rightarrow n(n-1) - 2n = 88$ $\Rightarrow n^{2} - 3n - 88 = 0$ $\Rightarrow (n-11)(n+8) = 0 \Rightarrow n = 11, -8$ Since, sides cannot be negative $\therefore n = 11$

15 **(b)**

12 balls can be distributed between two friends *A* and *B* in two ways

(i) Friend *A* receives 8 and *B* receives 4

(ii) Friend *B* receives 8 and *A* receives 4

: Required number of ways
$$=$$
 $\frac{12!}{8!4!} + \frac{12!}{4!8!} = 2(\frac{12!}{2})$

$$2\left(\frac{1}{8!4!}\right)$$

16 **(c)**

Digit at the extreme left can be chosen by 9 ways as zero cannot be the first digit. Now for the second digit it can be done in 9 ways as consecutive digits are not same. And this is same for next digits. Hence, number of ways are $9 \times 9 \times 9 \times ... \times n$ times= 9^n

17 **(c)**

The number forms by the figure 4, 5, 6, 7, 8 which is greater than 56000 is in two cases.

Case I Let the ten thousand digit place number be greater than 5. The number of numbers

 $= 3 \times 4 \times 3 \times 2 \times 1 = 72$

Case II Let the ten thousand digit number be 5 and thousand digit number be either 6 or greater than 6. Then, the number of numbers = $3 \times 3 \times 2 \times 1 = 18$

 \therefore Required number of ways = 72 + 18 = 90

18 **(d)**

Total number of points in a plane is 3p \therefore Maximum number of triangles $= {}^{3p}C_3 - 3$. ${}^{p}C_3$ [here, we subtract those triangles which points are in a line] $= \frac{(3p)!}{(3p-3)! 3!} - 3 \cdot \frac{p!}{(p-3)3!}$ $= \frac{3p(3p-1)(3p-2)}{3 \times 2} - \frac{3 \times p(p-1)(p-2)}{3 \times 2}$ $= \frac{p}{2}[9p^2 - 9p + 2 - (p^2 - 3p + 2)] = p^2(4p - 3)$ 19 (a) \therefore 240 = 2⁴.3.5 \therefore Total number of divisors=(4+1)(2)(2)=20 Out of these 2, 6, 10 and 30 are of the from 4n + 2

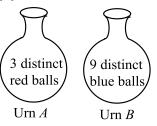
20 **(a)**

Given word is MISSISSIPPI

Here, I=4 times, S=4 times, P=2 times, M=1 time _M_I_I_I_P_P_

Required number of words = ${}^{8}C_{4} \times \frac{7!}{4!2!}$

$$= {}^{8}C_{4} \times \frac{7 \times 6!}{4! \, 2!} = 7. \, {}^{8}C_{4}. \, {}^{6}C_{4}$$


21 **(d)**

If triangle is formed including point 'P' the other points must be one from l_1 and other point from l_2 . Number of triangle formed with $P = {}^3C_1 \times {}^5C_1 = 15$ ways When P is not included.

Number of triangle formed

$$= {}^{3}C_{2} \times {}^{5}C_{1} + {}^{3}C_{1} \times {}^{5}C_{2} = 15 + 15 = 30$$

Total number of triangles=15+30=45

22 **(d)**

The number of ways in which two balls form urn *A* and two balls from urn *B* can be selected = ${}^{3}C_{2} \times {}^{9}C_{2} = 3 \times 36 = 108$ 23 (d)

The word 'ARTICLE' has 3 vowels and 4 consonants and according to problem we have to put the 3 vowels on 3 even places and 4 consonants in the remaining places.

∴ The required number of ways

 $= 3! \times 4! = 6 \times 24 = 144$

24 **(a)**

 $[1.3.5\ldots (2n-1)]2^n$

$$= \frac{1.2.3.4.5.6...(2n-1)(2n)2^n}{2.4.6...2n}$$
$$= \frac{(2n)! 2^n}{2^n (1.2.3...n)} = \frac{(2n)!}{n!}$$

25 **(c)**

Each letter can be posted in any one of the 7 letter boxes. So, required number of ways = $7 \times 7 = 7^5$

26 **(b)**

Since, 2 persons can drive the car, therefore we have to select 1 from these two. This can be done in ${}^{2}C_{1}$ ways. Now, from the remaining 5 persons we have to select 2 which can be done in ${}^{5}C_{2}$ ways.

Therefore, the required number of ways in which the car can be filled

$$= {}^{5}C_{2} \times {}^{2}C_{1} = 10 \times 2 = 20$$

27 **(a)**

We have, Required number of ways = Coefficient of x^{10} in $(1 + x + x^2 + \cdots)^4$ = Coefficient of x^{10} in $(1 - x)^{-4}$ = ${}^{10+4-1}C_{4-1} = {}^{13}C_3 = 286$

28 **(a)**

The required number of ways = ${}^{5}C_{4} \cdot {}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{2} \cdot {}^{5}C_{4}$ = 50 + 100 + 50 = 200

29 (a)

Let *n* be the number of terms

$$\begin{array}{ll} \vdots & {}^{n}C_{2} = 36 \\ \Rightarrow & \frac{n(n-1)}{1.2} = 36 \\ \Rightarrow & n(n-1) = 72 = 9 \times \\ \Rightarrow & n = 9 \end{array}$$

30 (a)

The number formed will be divisible by 4 if the number formed by the two digits on the extreme right is divisible by 4 i.e. it should be

8

12,24,32,52,44

The number of numbers ending in $12 = 5 \times 5$ The number of numbers ending in $24 = 5 \times 5$ The number of numbers ending in $32 = 5 \times 5$ The number of numbers ending in $52 = 5 \times 5$ The number of numbers ending in $44 = 5 \times 5$ Thus, the required number

 $= 5 \times 5 + 5 \times 5 + 5 \times 5 + 5 \times 5 + 5 \times 5 = 125$

32 **(a)**

8 different beads can be arranged in circular form in (8 - 1)! = 7! ways. Since, there is no distinction between the clockwise and anticlockwise arrangement. So, the required number of arrangements $=\frac{7!}{2}=2520$

33 **(c)**

Required number of arrangements = ${}^{6}P_{5} \times 4! = 720 \times 24 = 17280$

34 **(a)**

We have,

$${}^{n}C_{r} + 4 \cdot {}^{n}C_{r-1} + 6 \cdot {}^{n}C_{r-2} + 4 \cdot {}^{n}C_{r-3} + {}^{n}C_{r-4}$$

$$= ({}^{n}C_{r} + {}^{n}C_{r-1}) + 3({}^{n}C_{r-1} + {}^{n}C_{r-2})$$

$$+ 3({}^{n}C_{r-2} + {}^{n}C_{r-3}) + ({}^{n}C_{r-3}$$

$$+ {}^{n}C_{r-4})$$

$$= {}^{n+1}C_{r} + 3 \cdot {}^{n+1}C_{r-1} + 3 \cdot {}^{n+1}C_{r-2} + {}^{n+1}C_{r-3}$$

$$= ({}^{n+1}C_{r} + {}^{n+1}C_{r-1}) + 2({}^{n+1}C_{r-1} + {}^{n+1}C_{r-2})$$

$$+ ({}^{n+1}C_{r-2} + {}^{n+1}C_{r-3})$$

$$= {}^{n+2}C_{r} + 2 \cdot {}^{n+2}C_{r-1} + {}^{n+2}C_{r-2}$$

$$= ({}^{n+2}C_{r} + {}^{n+2}C_{r-1}) + ({}^{n+2}C_{r-1} + {}^{n+2}C_{r-2})$$

$$= {}^{n+3}C_{r} + {}^{n+3}C_{r-1} = {}^{n+4}C_{r}$$

35 **(a)**

There can be two types of numbers (i) any one of the digits 1,2,3,4 repeats thrice and the remaining digits only once i.e. of the type 1,2,3,4,4,4

(ii) any two of the digits 1,2,3,4 repeat twice and the remaining two only once i.e. of the type 1,2,3,4,4

Number of numbers of the type 1 2 3 4 4 4 6! ... 4C ... 400

$$=\frac{61}{3!} \times {}^{4}C_{1} = 480$$

Number of numbers of the type 1 2 3 3 4 4

$$=\frac{6!}{2!2!} \times {}^{4}C_{2} = 1080$$

So, the required number = 480 + 1080 = 1560

36 **(a)**

First arrange *m* men in a row in *m*! ways. Since, n < m and no two women can sit together in any one of the *m*! arrangement, there are (m + 1)places in which *n* women can be arranged in ${}^{m+1}P_n$ ways. \therefore The required number of arrangements of *m* men and *n* women (n < m)

$$= m!^{m+1} P_n = \frac{m! (m+1)!}{(m-n+1)!}$$

37 (a)

Given, $6 \le a + b + c \le 10$

$$\therefore a + b + c = 6, 7, 8, 9, 10$$

Here $a \ge 1, b \ge 1, c \ge 1$

∴ Required number of ways

$$= {}^{5}C_{2} + {}^{6}C_{2} + {}^{7}C_{2} + {}^{8}C_{2} + {}^{9}C_{2}$$

= 110

38 **(b)**

We have, ${}^{n+2}C_8: {}^{n-2}P_4 = 57: 16$ $\Rightarrow \frac{(n+2)!(n-6)!}{(n-6)!(n-2)!8!} = \frac{57}{16}$ $\Rightarrow (n+2)(n+1)n(n-1) = 143640$ $\Rightarrow (n^2+n-2)(n^2+n) = 143640$ $\Rightarrow (n^2+n)^2 - 2(n^2+n) + 1 = 143641$ $\Rightarrow (n^2+n-1)^2 = (379)^2$ $\Rightarrow n^2+n-1 = 379 \qquad [\because n^2+n-1 > 0]$ $\Rightarrow n^2+n-380 = 0$ $\Rightarrow (n+20)(n-19) = 0 \Rightarrow n = 19 \quad [\because n \text{ is not negative}]$

39 **(a)**

A triangle is obtained by joining three noncollinear points. So number of triangles on joining 3 points out of 10 points = ${}^{10}C_3$. But, 6 points are collinear and on joining any three out of these 6, we do not obtain a triangle Hence, the required number of triangles = ${}^{10}C_3 - {}^{6}C_3 = 120 - 20 = 100$

40 **(a)**

(a) \therefore Given word is CRICKET total number of letters are 7 out of which two letters 'C' are count as one \therefore Required number of ways of words before the word CRICKET= $5! \times 4 + 2 \times 4! + 2!$ = 480 + 48 + 2 = 530

41 (c)

A man has two options for every friend either they invited it or not.

 \therefore Required number of ways = $2^7 - 1 = 127$

[Since, we have to subtract those cases in which

he does not invite any friend *ie*, ${}^{n}C_{0} = 1$]

Alternate Solution

Required number of ways = ${}^{7}C_{1} + {}^{7}C_{2} + {}^{7}C_{3} + \cdots + {}^{7}C_{7}$

 $= 2^7 - 1$

42 **(b)**

Required number of ways

=coefficient of x^{16} in $(x^3 + x^4 + x^5 + \dots + x^{16})^4$ =coefficient of x^{16} in $x^{12}(1 + x + x^2 + \dots + x^{12})^4$ =coefficient of x^4 in $(1 - x^{13})^4(1 - x)^{-4}$ =coefficient of x^4 in $(1 - 13x^5 + \dots)$ $\times \left[1 + 4x + \dots + \frac{(r+1)(r+2)(r+3)}{3!}x^r\right]$ = $\frac{(4+1)(4+2)(4+3)}{3!} = 35$

43 **(a)**

Since, $38808 = 2^3 \times 3^2 \times 7^2 \times 11^1$

: Number of divisors = $4 \times 3 \times 3 \times 2 - 2$

$$= 72 - 2 = 70$$

44 **(c)**

An even number has an even digit at unit place : Required number of even numbers = Number of even numbers having 0 at unit's place + Number of even numbers having a non-zero digit at unit's place $= {}^{6}C_{3} \times 3! \times 1 + {}^{3}C_{1}({}^{6}C_{3} \times 3! - {}^{5}C_{2} \times 2!)$ $= 120 + 3 \times (120 - 20) = 420$ 45 **(b)** Given, ${}^{n}C_{r} = 30240$ and ${}^{n}C_{r} = 252$ $\frac{n!}{(n-r)!} = 30240$ and $\frac{n!}{(n-r)!r!} = 252$ $\Rightarrow r! = \frac{30240}{252} = 120 \Rightarrow r = 5$ $\therefore \quad \frac{n!}{(n-5)!} = 30240$ $\Rightarrow n(n-1)(n-2)(n-3)(n-4)$ = 10(10 - 1)(10 - 2)(10 - 3)(10 - 4) \Rightarrow n = 10Hence, required ordered pair is (10, 5)46 **(c)**

Page | 27

$${}^{n}C_{r} + 2 {}^{n}C_{r-1} + {}^{n}C_{r-2}$$

= ${}^{n}C_{r} + {}^{n}C_{r-1} + {}^{n}C_{r-1} + {}^{n}C_{r-2}$
= ${}^{n+1}C_{r} + {}^{n+1}C_{r-1} = {}^{n+2}C_{r}$

47 **(d)**

4 odd digits 3,3,5,5 can occupy 4 even places in $\frac{4!}{2!2!}$ ways and 5 even digits 2,2,8,8,8 can occupy 5 odd places in $\frac{5!}{3!2!}$ ways

 $\therefore \text{ Required number of nine digit numbers} = \frac{4!}{2!2!} \times \frac{5!}{3!2!} = 60$

48 **(a)**

In a dictionary the words at each stage are arranged in alphabetical order. In the given problem we must therefore consider the words beginning with A, D, M, N, O, R in order. A will occur in the first place as often as there are ways of arranging the remaining 5 letters all at a time. i.e. A will occur 5! Times. D, M, N, O will occur in the first place the same number of times. So, Number of words starting with A = 5 ! = 120 Number of words starting with D = 5 ! = 120 Number of words starting with M = 5 ! = 120 Number of words starting with N = 5 ! = 120 Number of words starting with N = 5 ! = 120 Number of words starting with O = 5 ! = 120 Number of words starting with O = 5 ! = 120 Number of words starting with O = 5 ! = 120 Number of words starting with O = 5 ! = 120 Number of words starting with O = 5 ! = 120 Number of words starting with O = 5 ! = 120 Number of words starting with O = 5 ! = 120

Now the words beginning with '*RAN*' must follow First one is *RANDMO* and the next one is *RANDOM*

: Rank of RANDOM = (5 !)5 + (3 !)2 + 2 = 614

49 **(c)**

The number of ways in which 4 novels can be selected

 $= {}^{6}C_{4} = 15$

The number of ways in which 1 dictionary can be selected

$$= {}^{3}C_{1} = 3$$

4 novels can be arranged in 4! ways

 \therefore The total number of ways

 $= 15 \times 4! \times 3 = 15 \times 24 \times 3 = 1080$

50 **(d)**

Required number of possible outcomes = Total number of possible outcomes – Number of possible outcomes in which 5 does not appear on any dice

$$= 6^3 - 5^3 = 216 - 125 = 91$$

We have,

The required number = ${}^{3+35-1}C_{3-1} = {}^{37}C_2 = 666$

52 **(d)**

We have,

$${}^{10}C_{x-1} > 2 {}^{10}C_x$$

 $\Rightarrow \frac{10!}{(11-x)!(x-1)!} > 2 \cdot \frac{10!}{(10-x)!x!}$
 $\Rightarrow \frac{1}{11-x} > \frac{2}{x}$
 $\Rightarrow 3x > 22 \Rightarrow x > \frac{22}{3} \Rightarrow x \ge 8$

Thus, the smallest value of x satisfying the above inequality is 8

53 **(c)**

The number of ways in which 5 pictures can be hung from 7 picture nailes on the wall is same as the number of arrangements of 7 things by taking 5 at a time.

Hence, the required number = ${}^{7}P_{5} = \frac{7!}{2!} = 2520$

54 **(b)**

Let *A*, *B* be the corresponding speakers. Without any restriction the eight persons can be arranged among themselves in 8 ! ways; but the number of ways in which *B* speaks *A* speaks before *B* and the number of ways in which *B* speaks before *A* make up 8 !. Also, the number of ways in which *A* speaks before *B* is exactly same as the number of ways in which *B* speaks before *A*.

So, the required number of ways $=\frac{1}{2}(8!) =$ 20160

56 **(a)**

A number is divisible by 4, if the number formed by the last two digits is divisible by 4. A four digit number divisible by 4 formed with the digits, 1,2,3,5,6 can have last two digits as follows:

- $\times \times 12$
- × × 16
- × × 32
- × × 36
- \times \times 52
- × × 56

Corresponding to each of these ways first two places can be filled in ${}^{3}C_{2} \times 2!$ Ways Hence, required number of numbers = ${}^{3}C_{2} \times 2! \times 6 = 36$

57 **(c)**

Each set is having (m + 2) parallel lines and each parallelogram is formed by choosing two straight lines from the first set and two straight lines from the second set. Two straight lines from the first set can be chosen in ${}^{m+2}C_2$ ways and two straight lines from the second set can be chosen in 9C_5 ways. Hence, the total number of parallelograms formed

 $= {}^{m+2}C_2 \cdot {}^{m+2}C_2 = ({}^{m+2}C_2)^2$

58 **(b)**

 $\because 720 = 2^4 \times 3^2 \times 5^1$

 \therefore Sum of all odd divisors = $(1 + 3 + 3^2)(1 + 5^1)$

 $= 13 \times 6 = 78$

59 **(b)**

Required number of ways = $6! \times 3! = 4320$

60 **(c)**

Since, 5 does not occur in 1000, we have to count the number of times 5 occurs when we list the integers from 1 to 999. Any number between 1 and 999 is of the form xyz, $0 \le x, y, z \le 9$ The number in which 5 occurs exactly once $= ({}^{3}C_{1})9 \times 9 = 243$ The number in which 5 occurs exactly

twice= $({}^{3}C_{2}, 9) = 27$

The number in which 5 occurs in all three digits =1

Hence, the number of times 5 occurs = $1 \times 243 + 2 \times 27 + 3 \times 1 = 300$

61 **(a)**

Since the number of faces is same as the number of colours. Therefore, the number of ways of painting them = 1

62 **(d)**

When repetition is allowed then, number of four digits numbers that can be formed using 1, 2, 3, 4, $5=5^4$

and when repetition of digits is not allowed, then number of 4 digits numbers which can be formed is ${}^{5}P_{4} = 5!$

: The number of ways in which at least one digit is repeated = $5^4 - 5!$

63 **(d)**

The number of ways of arranging 8 men= 7! The number of ways of arranging 4 women such that no two women can sit together= ${}^{8}P_{4}$ \therefore Required number of ways= 7! ${}^{8}P_{4}$

64 **(b)**

Required number of ways = ${}^{9}C_{4} = 126$

65 **(c**

 $\frac{{}^{56}P_{r+6}}{{}^{54}P_{r+3}} = 30800$

$$\Rightarrow \frac{56!}{54!} \times \frac{(51-r)!}{(50-r)!} = 30800$$

$$\Rightarrow 56 \times 55 \times (51-r) = 56 \times 55 \times 10$$

$$\Rightarrow 51-r = 10$$

$$\Rightarrow r = 41$$

66 **(b)**

Obviously, the digit in the middle must be 5. The digits in the first four places must be 1,2,3,4 and the digits in the last four places must be 6,7,8,9. Hence, required number of numbers = $4! \times 1 \times 4! = 576$

67 **(a)**

In the word INTEGER, we have 5 letters other than 'I' and 'N' of which two are identical (E's). We can arrange these letters in $\frac{5!}{2!}$ ways. In any such arrangements, 'I' and 'N' can be placed in 6 available gaps in ${}^{6}P_{2}$ ways.

So, required number of ways $=\frac{5!}{2!}$. ${}^6P_2 = m_1$. Now, if word start with 'I' and end with 'R', then the remaining letters are 5

So, total number of ways $=\frac{5!}{2!} = m_2$ $\therefore \frac{m_1}{m_2} = \frac{5!}{2!} \cdot \frac{6!}{4!} \cdot \frac{2!}{5!} = 30$

69 **(c)**

Six consonants and three vowels can be selected from 10 consonants and 4 vowels in ${}^{10}C_6 \times {}^{4}C_3$ ways. Now, these 9 letters can be arranged in 9! Ways.

So, required number of words = ${}^{10}C_6 \times {}^{4}C_3 \times 9!$

70 **(c)**

We have, $75600 = 2^4 \cdot 3^3 \cdot 5^2 \cdot 7$

The total number of ways of selecting some or all out of four 2's, three 3's, two 5's and one 7's = (4 + 1)(3 + 1)(2 + 1)(1 + 1) - 1 = 119But, this includes the given number itself.

Therefore, the required number of proper factors is 118

Required numbers= $5! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} \right]$ =44

72 **(b)**
We have,
$${}^{35}C_{n+7} = {}^{35}C_{4\,n-2}$$

 $\Rightarrow n+7+4\,n-2 = 35 \text{ or, } n+7 = 4\,n-2$
 $\Rightarrow n = 6 \text{ or, } n = 3$

73 **(b)**

Each man can be given a vote in 3 ways

 \therefore Total number of ways = 3^7

74 **(b)**

Each question can be omitted or one of the two parts can be attempted i.e. it can be taken in 3 ways.

So, 8 questions can be attempted in $3^8 - 1 = 6560$ ways

75 **(d)**

Total number of shake hands when each person shake hands with the other once only = ${}^{8}C_{2} = 28$

76 **(a)**

Since, the person is allowed to select at most n coins out of (2n + 1) coins, therefore in order to select one, two, three,..., n coins, if T is the total number of ways of selecting at least one coin, then

$$T = {}^{2n+1}C_1 + {}^{2n+1}C_2 + \dots + {}^{2n+1}C_n = 255 \dots (i)$$

Using the binomial theorem

$$\begin{split} & {}^{2n+1}C_0 + {}^{2n+1}C_1 + {}^{2n+1}C_2 + \ldots + {}^{2n+1}C_n \\ & + {}^{2n+1}C_{n+1} + {}^{2n+1}C_{n+2} + \ldots + {}^{2n+1}C_{2n+1} \\ & = (1+1)^{2n+1} = 2^{2n+1} \\ & \Rightarrow {}^{2n+1}C_0 + 2({}^{2n+1}C_1 + {}^{2n+1}C_2 + \ldots \\ & + {}^{2n+1}C_n) + {}^{2n+1}C_{2n+1} = 2^{2n+1} \\ & \Rightarrow 1 + 2(T) + 1 = 2^{2n+1} \\ & \Rightarrow 1 + T = \frac{2^{2n+1}}{2} = 2^{2n} \quad \text{[from Eq.(i)]} \\ & \Rightarrow 1 + 255 = 2^{2n} \\ & \Rightarrow 2^{2n} = 2^8 \Rightarrow n = 4 \end{split}$$

77 **(b)**

The number of words that can be formed by the given word is $\frac{9!}{(2!)^3}$

78 **(c)**

Required number = ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} + {}^{6}C_{4} + {}^{6}C_{5} + {}^{6}C_{6} = 2^{6} - 1$ = 63

79 **(c)**

In a nine digits number, there are four even places for the four odd digits 3, 3, 5, 5

 \therefore Required number of ways $=\frac{4!}{2!2!}\cdot\frac{5!}{2!3!}=60$

80 (d)

A garland can be made form 10 flowers in $\frac{1}{2}(9!)$ ways

81 **(b)**

Ten pearls of the one colour can be arranged in $\frac{1}{2}(10-1)! = \frac{9!}{2}$ ways

Now, 10 pearls of other colour can be arranged in 10 places between the pearls of first colour in 10! ways

Hence, required number of ways $=\frac{9!}{2} \times 10! = 5 \times (9!)^2$

82 **(c)**

7 women can sit on a round table in (7 - 1)! = 6!ways. Now, seven places are created which can be filled by 7 men in 7! ways

Hence, required number of ways = $6! \times 7!$

83 **(a)**

Since each group has 3 persons hence, required number of ways= $\frac{9!}{(3!)^3} = \frac{362880}{6\times6\times6} = 1680$

84 **(a)**

There are 6 letters in the word degree, namely 3 e's and d, g, r. Four letters out of these six can be selected in the following ways :

(i) 3 like letters and 1 different, viz, eee + d, g, or r

(ii) 2 like letters and 2 different, viz, *ee* + any two of *d*, *g*, *r*

(iii) all different letters, viz., 'e d g r'

So, the total number of ways = ${}^{3}C_{1} + {}^{3}C_{2} + 1 = 7$

85 **(d)**

In the word SACHIN order of alphabets is A, C, H, I, N, S.

The number of words starting with A, C, H, I, N are each equal to 5!

 $\therefore \text{ Total number of wards5} \times 5! = 600$

The first word starting with S is SACHIN So, word SACHIN appears at serial number 601

87 **(d)**

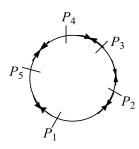
Each question can be answered in 4 ways and all question can be answered correctly in only one way.

So, required number of ways = $4^3 - 1 = 63$

88 **(b)**

Number of friends to be invited=6

	Let A, B be the friends who are not to attend the party together. Either none of A, B or one of A, B		N N
	attend the party		4
	$\therefore \text{ Number of ways of inviting friends} = {}^{10-2}C_6 \times {}^{2}C_0 + {}^{10-2}C_5 \times {}^{2}C_1$		N 4
	$= 28 \times 1 + 56 \times 2 = 140$		A
91	(b)		л
	Since, first the 2 women select the chairs amongst		=
	1 to 4 in 4P_2 ways.	98	(a
	Now, from the remaining 6 chairs three men		A
	could be arranged in ${}^{6}P_{3}$ ways.		0
	: Total number of arrangements = ${}^{4}P_{2} \times {}^{6}P_{3}$		W
92	(a)		
	Required number of straight lines= ${}^{8}C_{2} - {}^{3}C_{2} + 1 = 26$		n
93	(a)		÷
	Since, a five digit number is formed using digits {0, 1, 2, 3, 4 and 5} divisible by 3 <i>ie</i> , only possible	99	(I F
	when sum of digits is multiple of 3 which gives		3
	two cases.		Т
	Case I {using digits :0, 1, 2, 4, 5}		Sä
			a
	Number of numbers = $4 \times 4 \times 3 \times 2 \times 1 = 96$		T T
	Case II {using digits 1, 2, 3, 4, 5}		1
	Number of numbers = $5 \times 4 \times 3 \times 2 \times 1 = 120$		= B
	\therefore Total number of formed 120 + 96 = 216		Η
94	(c)	100	=
	Required number of ways= $9 \times 10 \times 10 \times 10 \times$	100	() T
	10		ti
	- 00000	101	0
	= 90000		
95	(b)		
	In a word ARTICLE, there are 7 letters. Out of 7		ie
	places, 4 places are odd and 3 even. Therefore 3		n
	vowels can be arranged in 4 odd places in ${}^{4}P_{3}$		
	ways and remaining 4 consonants can be		
	arranged in ${}^{4}P_{4}$ ways. Hence, required number of ways = ${}^{4}P_{3} \times {}^{4}P_{4} = 576$		_
96	(c)		
	\therefore The factors of 9600 = $2^7 \times 3^1 \times 5^2$		=
	: The number of divisors = $(7 + 1)(1 + 1)(2 + 1)$	102	(e M
	$= 8 \times 2 \times 3 = 48$		R
97	(d)		=
	Civen four numbers 1 2 3 and 4	100	


Given four numbers 1, 2, 3 and 4

Number of numbers of one digit = ${}^{4}P_{1} = 4$ Number of numbers of three digit numbers= ${}^{4}P_{3} = 24$ Number of numbers of three digit numbers= ${}^{4}P_{3} = 24$ And four digit numbers = ${}^{4}P_{4} = 24$: Total number of numbers that can be formed = 4 + 12 + 24 + 24 = 64a) All strips are of different colours, then the number of flags = 3! = 6When two strips are of same colour, then the number of flags = ${}^{3}C_{1}\frac{3!}{2}$. ${}^{2}C_{1} = 18$ Total number of flags = 6 + 18 = 24 = 4!b) Factorizing the given number, we have $38808 = 2^3 \times 3^2 \times 7^2 \times 11$ The total number of divisors of this number is ame as the number of ways of selecting some or all of two 2's, two 3's, two 7's and one 11. Therefore. The total number of divisors = (3 + 1)(2 +11+1-1 = 71 But, this includes the division by the number itself Hence, the required number of divisors = 71 - 1 = 70b) $Total number of numbers = 2 \times 2 \times 2 \dots 10$ times = 2^{10} b) $f(x_i) \neq y_i$ e, no object goes to its scheduled place. Then, number of one-one mappings $= 6! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} \right)$ $= 6! \left(\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} \right)$ = 360 - 120 + 30 - 6 + 1 = 265(d) Ne have, Required number of ways $= {}^{m+n}C_m \times (m-1)! \times (n-1)! = \frac{(m+n)!}{m n}$

103 **(a)**

∵ Remaining 5 can be seated in 4! ways.

Now, on cross marked five places 2 person can sit in 5P_2 ways

So, number of arrangements

$$= 4! \times \frac{5!}{3!}$$

 $= 24 \times 20 = 480$ ways

104 **(a)**

Given,
$${}^{2n+1}P_{n-1}$$
: ${}^{2n-1}P_n = 3:5$

$$\Rightarrow \frac{(2n+1)!}{(n+2)!} \times \frac{(n-1)!}{(2n-1)!} = \frac{3}{5}$$

$$\Rightarrow \frac{(2n+1)2n}{(n+2)(n+1)n} = \frac{3}{5}$$

$$\Rightarrow 10 (2n+1) = 3(n^2 + 3n + 2)$$

$$\Rightarrow 3n^2 - 11n - 4 = 0$$

$$\Rightarrow (3n+1)(n-4) = 0$$

$$\Rightarrow n = 4 \qquad (n \neq -\frac{1}{3})$$

105 **(b)**

Required number of ways

 $= {}^{4}C_{1} \times {}^{6}C_{4} + {}^{4}C_{2} \times {}^{6}C_{3} + {}^{4}C_{3} \times {}^{6}C_{2} + {}^{4}C_{4}$ $\times {}^{6}C_{1}$ = 60 + 120 + 60 + 6= 246

106 **(a)**

Required number of ways = ${}^{8}C_{5}$

$$=\frac{8\times7\times6}{3\times2\times1}=56$$

The total number of ways a voter can vote

$$= {}^{8}C_{1} + {}^{8}C_{2} + {}^{8}C_{3} + {}^{8}C_{4} + {}^{8}C_{5}$$
$$= 8 + 28 + 56 + 70 + 56 = 218$$

107 **(c)**

From the first set, the number of ways of selection two lines =⁴ C_2

From the second set, the number of ways of

selection two lines $=^{3} C_{2}$

Since, these sets are intersect, therefore they from a parallelogram,

 \therefore Required number of ways = ${}^{4}C_{2} \times {}^{3}C_{2}$

 $= 4 \times 3 = 12$

108 **(b)**

Since, a set of *m* parallel lines intersecting a set of another *n* parallel lines in a plane, then the number of parallelograms formed is ${}^{m}C_{2} \times {}^{n}C_{2}$.

$${}^{50}C_4 + \sum_{r=1}^{6} {}^{56-r}C_3$$

$$= {}^{50}C_4 + {}^{55}C_3 + {}^{54}C_3 + {}^{53}C_3 + {}^{52}C_3 + {}^{51}C_3 + {}^{50}C_3$$

$$= {}^{51}C_4 + {}^{51}C_3 + {}^{52}C_3 + {}^{53}C_3 + {}^{54}C_3 + {}^{55}C_3$$

$$[\because {}^{n}C_r + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}]$$

$$= {}^{52}C_4 + {}^{52}C_3 + {}^{53}C_3 + {}^{54}C_3 + {}^{55}C_3$$

$$= {}^{53}C_4 + {}^{53}C_3 + {}^{54}C_3 + {}^{55}C_3$$

$$= {}^{54}C_4 + {}^{54}C_3 + {}^{55}C_3 = {}^{55}C_4 + {}^{55}C_3 = {}^{56}C_4$$

110 (a)

Total number of four digit numbers = $9 \times 10 \times 10 \times 10$

= 9000

Total number of four digit numbers which divisible by 5

 $= 9 \times 10 \times 10 \times 2 = 1800$

 \therefore Required number of ways = 9000 - 1800 = 7200

111 (a)

Man goes from Gwalior to Bhopal in 4 ways and they come back in 3 ways.

 \therefore Total number of ways= 4 × 3 = 12 ways

112 **(c)**

Here, we have 1 M, 4 I's, 4 S's and 2 P's \therefore Total number of selections = (1 + 1)(4 + 1)(2 + 1) - 1 = 149113 (c)

Number of lines from 6 points $=^{6} C_{2} = 15$

Points of intersection obtained from these lines $=^{15} C_2 = 105$

Now, we find the number of times, the original 6

points come.

Consider one point say A_1 . Joining A_1 to remaiming 5 points, we get 5 lines and any two lines from these 5 lines gives A_1 as the point of intersection.

 $\therefore A_1$ is commom in ${}^5C_2 = 10$ times out of 105 points of intersections.

Similar is the case with other five points.

 \therefore 6 original points come 6 × 10 = 60 times in points of intersection.

Hence, the number of distinct points of intersection

= 105 - 60 + 6 = 51

115 **(b)**

At first we have to a accommodate those 5 animals in cages which cannot enter in 4 small cages, therefore, number of ways are 6P_5 and rest of the five animals arrange in 5! ways.

Total number of ways = $5! \times^6 P_5$

 $= 120 \times 720 = 86400$

116 **(b)**

1

$$T_{n} = {}^{n}C_{3} \text{ and } T_{n+1} - T_{n} = 21$$

$$\Rightarrow {}^{n+1}C_{3} - {}^{n}C_{3} = 21$$

$$\Rightarrow {}^{n}C_{2} + {}^{n}C_{3} - {}^{n}C_{3} = 21$$

$$\Rightarrow {}^{n}C_{2} = 21$$

$$\Rightarrow {}^{n}C_{2} = 21$$

$$\Rightarrow {}^{n^{2}} - n - 42 = 0$$

$$\Rightarrow {}^{n}(n-7)(n+6) = 0$$

$$\therefore {}^{n} = 7 \qquad [\because \neq -6]$$
117 (b)
Total number of ways

$$= {}^{10}C_{1} + {}^{10}C_{2} + {}^{10}C_{3} + {}^{10}C_{4}$$

$$= 10 + 45 + 120 + 210 = 385$$
118 (b)
The total number of two factors produced

The total number of two factors product = ${}^{n+2}C_8$. The number of numbers from 1 to 200 which are not multiples of 5 is 160. Therefore, total number of two factors product, which are not multiple of 5, is ${}^{160}C_2$

Hence, required number of factors = ${}^{200}C_2$ – $^{160}C_2$

= 19900 - 12720

= 7180

119 **(b)** Total number of *m*-elements subsetcs of $A = {}^{n}C_{m}$...(i)

and number of *m*-elements subsets of *A* each containing the element $a_4 = {}^{n-1}C_{m-1}$

According to question, ${}^{n}C_{m} = \lambda$. ${}^{n-1}C_{m-1}$

$$\Rightarrow \frac{n}{m} \cdot n^{-1} C_{m-1} = \lambda \cdot n^{-1} C_{m-1}$$
$$\Rightarrow \lambda = \frac{n}{m} \text{ or } n = m\lambda$$

120 (a)

The number of 1 digit numbers = 9The number of 2 digit non-repeated numbers= $9 \times 9 = 81$ The number of 3 digit non-repeated number $= 9 \times {}^{9}P_{2} = 9 \times 9 \times 8 = 648$ \therefore Required number of ways =9+81+648=738 121 **(b)** Now, ${}^{n}C_{r+1} + {}^{n}C_{r-1} + 2$. ${}^{n}C_{r}$ $= {}^{n}C_{r+1} + {}^{n}C_{r} + {}^{n}C_{r-1} + {}^{n}C_{r}$ $= {}^{n+1}C_{r+1} + {}^{n+1}C_r = {}^{n+2}C_{r+1}$ 122 (a) $\frac{2}{91} + \frac{2}{3171} + \frac{1}{5151}$ $=\frac{1}{1!9!}+\frac{1}{3!7!}+\frac{1}{5!5!}+\frac{1}{3!7!}+\frac{1}{9!1!}$ $=\frac{1}{10!}\left[\frac{10!}{1!\,9!}+\frac{10!}{3!\,7!}+\frac{10!}{5!\,5!}+\frac{10!}{3!\,7!}+\frac{10!}{9!\,1!}\right]$ $=\frac{1}{10!}\{{}^{10}C_1+{}^{10}C_3+{}^{10}C_5+{}^{10}C_7+{}^{10}C_9\}$ $=\frac{1}{10!}(2^{10-1})=\frac{2^9}{10!}=\frac{2^a}{b!}$ (given) $\Rightarrow a = 9, b = 10$

123 (c)

Total number of lines obtained by joining 8 vertices of octagon is ${}^{8}C_{2} = 28$. Out of these, 8 lines are sides and remaining diagonal.

So, number of diagonals = 28 - 8 = 20

124 **(b)**

The number of times he will go to the garden is same as the number of selecting 3 children from 8 children

 \therefore The required number of times = ${}^{8}C_{3} = 56$ 125 (c)

$$: \quad {}^nC_r + {}^nC_{r-1} = {}^{n+1}C_r$$

 $\therefore \quad {}^{189}C_{36} + \, {}^{189}C_{35} = \, {}^{190}C_{36}$ But ${}^{189}C_{35} + {}^{189}C_r = {}^{190}C_r$ Hence, value of *x* is 36 126 **(d)** Required number of ways = ${}^{3n}C_n = \frac{3n!}{n!2n!}$ 127 (a) The word EXAMINATION has 2A, 2I, 2N, E, M, O, T, X therefore 4 letters can be chosen in following wavs Case I When 2 alike of one kind and 2 alike of second kind is ${}^{3}C_{2}$ \therefore Number of words = ${}^{3}C_{2} \times \frac{4!}{2!2!} = 18$ Case II When 2 alike of one kind and 2 different ie, ${}^{3}C_{1} \times {}^{7}C_{2}$ $\therefore \text{ Number of words} = {}^{3}C_{1} \times {}^{7}C_{2} \times \frac{4!}{2!} = 756$ **Case III** When all are different *ie*, ${}^{8}C_{4}$ Hence, total number of words = 18 + 756 + 1680 = 2454128 (a) Required number of ways = $5! \times 6!$ 129 (d) Number of diagonals in a polygon of *n* sides $= {}^{n}C_{2} - n$ Here, n = 20 \therefore required number of diagonals = ${}^{20}C_2 - 20$ $=\frac{20 \times 19}{2 \times 1} - 20 = 170$ 130 (c) $^{47}C_4 + \sum_{r=1}^{52-r}C_3$ $= {}^{47}C_4 + {}^{51}C_3 + {}^{50}C_3 + {}^{49}C_3$ $+ {}^{48}C_3 + {}^{47}C_3$ $= {}^{51}C_3 + {}^{50}C_3 + {}^{49}C_3 + {}^{48}C_3 + ({}^{47}C_3 + {}^{47}C_4)$ $= {}^{52}C_{4}$ 131 (a)

First we fix the alternate position of 21 English book, in which 22 vacant places for Hindi books, hence total number of ways are ${}^{22}C_{19} = 1540$

132 **(d)**

Required number of ways

Total number of ways in which 8 boys can sit
Number of ways in which two brothers sit
together

 $= 8! - 7! \times 2! = 7! \times 6 = 30240$

133 **(c)**

In forming even numbers, the position on the right can be filled with either 0 or 2. When 0 is

filled, the remaining positions can be filled in 3! ways, and when 2 is filled, the position on the left can be filled in 2 ways (0 cannot be used) and the middle two positions in 2! ways (0 can be used) So, the number of even numbers formed = 3! + 2(2!) = 0

135 **(a)**

Let the number of participants at the beginning was *n*

$$\therefore \quad \frac{n(n-1)}{2} = 117 - 12$$

$$\Rightarrow \quad n(n-1) = 2 \times 105$$

$$\Rightarrow \quad n^2 - n - 210 = 0$$

$$\Rightarrow \quad (n-15)(n+14) = 0$$

$$\Rightarrow \quad n = 15 \quad [\because n \neq -14]$$

136 **(a)**

The number will be even if last digit is either 2, 4, 6 or 8 *ie* the last digit can be filled in 4 ways and remaining two digits can be filled in ${}^{8}P_{2}$ ways. Hence, required number of number of three different digits = ${}^{8}P_{2} \times 4 = 224$

137 **(b)**

We have, $a = {x+2 \choose x+2} = (x+2)!$,

and
$$b = {}^{x}P_{11} = \frac{x!}{(x-11)!}$$

and $c = {}^{x-11}P_{x-11} = (x - 11)!$
Now, $a = 182 \ bc$
 $\therefore (x + 2)! = 182 \cdot \frac{x!}{(x - 11)!} (x - 11)!$
 $\Rightarrow (x + 2)! = 182 \cdot x!$
 $\Rightarrow (x + 2)! = 182 \ x!$
 $\Rightarrow (x + 2)(x + 1) = 182$
 $\Rightarrow x^{2} + 3x - 180 = 0$
 $\Rightarrow (x - 12)(x + 15) = 0$
 $\Rightarrow x = 12, -15$
 \therefore Neglect the negative value of x .

 $\Rightarrow x = 12$

138 **(c)**

Since, the books consisting of 5 Mathematics, 4 physics, and 2 chemistry can be put together of the same subject is 5! 4! 2! ways

But these subject books can be arranged itself in

 \therefore Required number of ways = 5! 4! 3! 2!

139 **(a)**

If the function is one-one, then select any three from the set *B* in ${}^{7}C_{3}$ ways *i. e.*, 35 ways.

If the function is many-one, then there are two possibilities. All three corresponds to same element number of such functions = ${}^{7}C_{1} = 7$ ways. Two corresponds to same element. Select any two from the set *B*. The lerger one corresponds to the larger and the smaller one corresponds to the smaller the third may corresponds to any two. Number of such functions = ${}^{7}C_{2} \times 2 = 42$

So, the required number of mappings = 35 + 7 + 42 = 84

140 **(b)**

The number of ordered triples of positive integers which are solution of x + y + z = 100

=coefficient of
$$x^{100}$$
 in $(x + x^2 + x^3 + ...)^3$

=coefficient of x^{100} in $x^3(1-x)^{-3}$

=coefficient of x^{97} in

$$\left(1+3x+6x^2+\dots+\frac{(n+1)(n+2)}{2}x^n+\dots\right)$$
$$=\frac{(97+1)(97+2)}{2}=49\times99=4851$$

141 **(b)**

Word MEDITERRANEAN has 2A, 3E, 1D, 1I, 1M, 2N, 2R, 1T In out of four letters E and R is fixed and rest of the two letters can be chosen in following ways **Case I** Both letter are of same kind *ie*, ${}^{3}C_{2}$ ways,

therefore number of words = ${}^{3}C_{2} \times \frac{2!}{2!} = 3$

Case II Both letters are of different kinds *ie*, ${}^{8}C_{2}$ ways, therefore number of words= ${}^{8}C_{2} \times 2! = 56$ Hence, total number of words=56+3=59

142 **(c)**

Required number of ways

=coefficient of
$$x^{2m}$$
 in $(x^0 + x^1 + ... + x^m)^4$

=coefficient of x^{2m} in $\left(\frac{1-x^{m+1}}{1-x}\right)^4$

=coefficient of
$$x^{2m}$$
 in
 $(1 - 4x^{m+1} + 6x^{2m+2} + ...)(1 - x)^{-4}$
 $=^{2m+3} C_{2m} - 4^{m+2} C_{m-1}$
 $= \frac{(2m+1)(2m+2)(2m+3)}{6}$
 $-\frac{4m(m+1)(m+2)}{6}$
 $= \frac{(m+1)(2m^2 + 4m + 3)}{3}$

143 **(c)**

The number of times he will go to the garden is same as the number of selecting 3 children from 8.

Therefore, the required number of ways $= {}^{8}C_{3} = 56$

144 **(c)**

The number of ways that the candidate may select

(i) if 2 questions from A and 4 question from B

$$= {}^{5}C_{2} \times {}^{5}C_{4} = 50$$

(ii) 3 question from *A* and 3 questions from *B*

$$= {}^{5}C_{3} \times {}^{5}C_{3} = 100$$

and (iii) 4 questions from *A* and 2 questions from *B*

$$= {}^{5}C_{4} \times {}^{5}C_{2} = 50$$

Hence, total number of ways = 50 + 100 + 50 = 200

145 **(a)**

Since, $240 = 2^4 \cdot 3.5$

:. Total number of divisors =
$$(4 + 1)(1 + 1)(1 + 1) = 20$$

Out of these 2, 6, 10 and 30 are of the form 4n + 2

147 **(a)**

Required number of arrangements

$$=\frac{6!}{2!\,3!} - \frac{5!}{3!} = 60 - 20 = 40$$

148 **(b)**

As we know the last two digits of 10! and above factorials will be zero-zero

+ 17! $= 1 + 24 + 5040 + 10! + 12! + 13! + 15! + 16!$ $+ 17!$ $= 5065 + 10! + 12! + 13! + 15! + 16! + 17! in this series, the digit in the ten palce is 6 which is divisible by 3!$ $149 (C)$ As the players who are to receive the cards are different So, the required number of ways = $\frac{52!}{(13)!}$ $150 (C)$ We have, in all 12 points. Since 3 points are used to form a triangle, therefore the total number of triangles formed by collinear points on <i>AB</i> , <i>BC</i> and <i>CA</i> , is ${}^{12}C_3 = 220$. But, this includes the following: The number of triangles formed by 3 points on <i>AB</i> $= {}^{3}C_3 = 1,$ The number of triangles formed by 4 points on <i>BC</i> $= {}^{4}C_3 = 4,$ The number of triangles formed by 4 points on <i>BC</i> $= {}^{4}C_3 = 1,$ The number of triangles formed by 4 points on <i>BC</i> $= {}^{4}C_3 = 4,$ The number of triangles formed by 5 points on <i>CA</i> $= {}^{5}C_3 = 10,$ The number of triangles formed by 5 points on <i>CA</i> $= {}^{5}C_3 = 10,$ The number of triangles formed by 5 points on <i>CA</i> $= {}^{5}C_3 = 10,$ The number of triangles formed by 5 points on <i>CA</i> $= {}^{5}C_3 = 10,$ The number of triangles formed by 5 points on <i>CA</i> $= {}^{5}C_3 = 10,$ The number of triangles formed by 5 points on <i>CA</i> $= {}^{5}C_3 = 10,$ The number of triangles formed by 5 points on <i>CA</i> $= {}^{5}C_3 = 10,$ The number of triangles formed by 5 points on <i>CA</i> $= {}^{5}C_3 = 10,$ The number of triangles formed by 5 points on <i>CA</i> $= {}^{5}C_3 = 10,$ The number of triangles formed by 5 points on <i>CA</i> $= {}^{5}C_3 = 16.$ Case II A man invites (2 ladies, 1 gentlemen) ar woman invites (2 ladies, 1 gentlemen) ar woman invites (3 ladies), 1 gentlemen) ar woman invites (3 ladies), 2 {}^{2}C_3 {}^{2}C_3 = 16. Case IV A man invites (2 gentlemen) and woman invites (3 ladies), 2 {}^{2}C_3 {}^{2}C_3 = 16. Case IV A man invites (2 ladies, 1 gentlemen) $\Rightarrow ({}^{4}C_2, {}^{3}C_3, {}^{2}C_3 = 16.$ Case IV A man invites (3 ladies), 2 {}^{2}C_3, {}^{2}C_3 = 16. Case IV A man invites (3 ladies), 2 {}^{2}C_3 {}^{2}C_3 = 16. Case IV A m		-46C + 46C - 47C
$ = 1 + 24 + 5040 + 10! + 12! + 13! + 15! + 16! + 171 in this series, the digit in the ten palce is 6 which is divisible by 3! 149 (c) As the players who are to receive the cards are different within the part of the ten palce is 6 which is divisible by 3! 149 (c) As the players who are to receive the cards are different within the required number of 120 (c) As the players who are to receive the cards are different within the ten part of the triangles formed by 2 (c) linear points on AB, BC and CA, is {}^{12}C_{3} = 220.But, this includes the following: The number of triangles formed by 3 points on AB = {}^{3}C_{3} = 1, The number of triangles formed by 4 points on AB = {}^{3}C_{3} = 4, = 10.The number of triangles formed by 4 points on BC = {}^{4}C_{3} = 4, = 10.Hence, required number of triangles formed by 5 points on CC = {}^{3}C_{4} = 10.Hence, required number of triangles = 220 - (10 + 4 + 1) = 205 (15 (a)The number of triangles formed by 5 points on CC = {}^{3}C_{4} = {}^{2}C_{2} = 10.And {}^{n}C_{r} = {}^{n1}_{r(n-r)!} = 3024 \Rightarrow r = 4 (12 = {}^{3}2024 r_{1}^{2} r_{1}^{2} = {}^{2}4^{-2}r_{C_{7}} + {}^{5}S_{5} = {}^{-2}s^{-2}c_{4-5} r_{2}^{-1} = {}^{2}(2_{2} - {}^{2}C_{2}) = {}^{2}(2_{2$	$\therefore 1! + 4! + 7! + 10! + 12! + 13! + 15! + 16! + 17!$	$= {}^{46}C_8 + {}^{46}C_7 = {}^{47}C_8$
$ + 17! = 5065 + 10! + 12! + 13! + 16! + 171 in this series, the digit in the ten palce is 6 which is divisible by 3! 149 (c) As the players who are to receive the cards are different So, the required number of ways = \frac{52!}{(13.9)^1}150 (c) We have, in all 12 points. Since 3 points are used to form a triangle, therefore the total number of triangles, including the triangles formed by 2 collinear points on AB, BC and CA, is ^{12}C_3 = 220. But, this includes the following: The number of triangles formed by 3 points on AB = ^{2}C_3 = 1, The number of triangles formed by 4 points on BC = ^{5}C_3 = 10, The number of triangles formed by 5 points on CA = ^{5}C_3 = 10, The number of triangles formed by 5 points on CA = ^{5}C_3 = 10, The number of triangles formed by 5 points on CA = ^{5}C_3 = 10, (10 + 4 + 1) = 205151 (b) Given, ^{n}P_{i} = 3024 \Rightarrow 126 = \frac{3024}{i!} \Rightarrow r = 4 = 125 (d) We have, ^{35}C_8 + \frac{7}{i-1} = 4^{2}r^{-2}C_7 + \sum_{i=1}^{5} 4^{27-c}C_4 - 5}{i=3} 3024 \Rightarrow 126 = \frac{3024}{i!} \Rightarrow r = 4 = 152 (d) We have, ^{35}C_8 + \frac{14}{i!}C_7 + \frac{49}{i!}C_7 + \frac{59}{i!}C_7 + \frac{59}{$		
$\begin{array}{l} = 5065 + 10! + 12! + 13! + 15! + 16! + 17! \text{in this}\\ \text{series, the digit in the ten palce is 6 which is}\\ \text{divisible by 3!}\\ 149 (C)\\ \text{As the players who are to receive the cards are different}\\ \text{So, the required number of ways = \frac{52!}{(13!)!}150 (C)We have, in all 12 points. Since 3 points are used to form a triangle, therefore the total number of triangles formed by collinear points on AB, BC and CA, is \frac{12}{C_3} = 220.But, this includes the following:The number of triangles formed by 3 points on AB= {}^{4}C_{3} = 4,The number of triangles formed by 5 points on AB= {}^{4}C_{3} = 4,The number of triangles formed by 5 points on AB= {}^{4}C_{3} = 4,The number of triangles formed by 5 points on AB= {}^{4}C_{3} = 4,The number of triangles formed by 5 points on AB= {}^{4}C_{3} = 4,The number of triangles formed by 5 points on AB= {}^{4}C_{3} = 4,= {}^{4}C_{3} = 10,= {}^{4}C_{3} = 10,= {}^{4}C_{3} = 10,= {}^{6}C_{3} = 10,= {}^{6}C_{3} = 10,= {}^{7}C_{3} = 10,= {}^{7}C_{3} = 10,= {}^{7}C_{3} = 12,= {}^{7}C_{3} - {}^{7}C_{3} + {}^{5}T_{3} - {}^{5}C_{40-5},= {}^{3}C_{6} + {}^{2}T_{1} - {}^{5}T_{2} - {}^{5}C_{40-5},= {}^{3}C_{6} + {}^{4}C_{7} + {}^{4}C_{7} + {}^{39}C_{7} + {}^{30}C_{7} = {}^{2}C_{7} + {}^{32}C_{7} + {}^{39}C_{7} + {}^{39}C_{7} + {}^{39}C_{7} + {}^{39}C_{7} + {}^{39}C_{7} + {}^{30}C_{7} + {}^{32}C_{7} + {}^{32}C$		
series, the digit in the ten palce is 6 which is divisible by 3! 149 (c) As the players who are to receive the cards are different So, the required number of transples formed by collinear points on <i>AB</i> , <i>BC</i> and <i>CA</i> , is ${}^{12}C_3 = 220$. But, this includes the following: The number of triangles formed by 3 points on <i>AB</i> $= {}^{4}C_3 = 1$, The number of triangles formed by 4 points on <i>BA</i> $= {}^{4}C_3 = 1$, The number of triangles formed by 4 points on <i>BA</i> $= {}^{4}C_3 = 1$, The number of triangles formed by 5 points on <i>CA</i> $= {}^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> $= {}^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> $= {}^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> $= {}^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> $= {}^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> $= {}^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> $= {}^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> $= {}^{4}C_3 = 4$, $= {}^{1}C_1 = 3024$ \Rightarrow $r = 4$ $= {}^{2}a_{1} = 3024$ \Rightarrow $r = 4$ $= {}^{2}a_{2} = 2(2 - \frac{1}{(10 + 4 + 1)} = 205$ 152 (d) We have, ${}^{35}C_{9} + {}^{2}a_{1} - r_{2} + {}^{5}a_{1} - s_{2} - \frac{1}{(2 - r_{2} - r_{2})} = {}^{2}a_{2} - \frac{1}{(2 - r_{2} - r_{2} - r_{2} + \frac{1}{(2 - r$		
divisible by 3! 149 (c) As the players who are to receive the cards are different So, the required number of ways = $\frac{52!}{(3!)^4}$ 150 (c) We have, in all 12 points. Since 3 points are used to form a triangle, therefore the total number of triangles, including the triangles formed by collinear points on <i>AB</i> , <i>BC</i> and <i>CA</i> , is ${}^{12}C_3 = 220$. But, this includes the following: The number of triangles formed by 3 points on <i>AB</i> = ${}^{3}C_3 = 1$, The number of triangles formed by 4 points on <i>BC</i> = ${}^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{4}C_3 = 4$, (10 + 4 + 1) = 205 Given, ${}^{n}P_r = 3024$ $\Rightarrow n! = 24 = 4!$ $\Rightarrow r = 4$ 152 (d) We have, ${}^{35}C_6 + {}^{7}\frac{14^{2}C_7}{1!} + {}^{44}C_{7} + {}^{39}C_7 +$		
149 (c) As the players who are to receive the cards are different So, the required number of ways = $\frac{521}{(13)^4}$ 150 (c) We have, in all 12 points. Since 3 points are used to form a triangle, therefore the total number of triangles, including the triangles formed by collinear points on <i>AB</i> , <i>BC</i> and <i>CA</i> , is $^{12}C_3 = 220$. But, this includes the following: The number of triangles formed by 3 points on <i>AB</i> = $^{3}C_3 = 1$, The number of triangles formed by 4 points on <i>BG</i> = $^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>AB</i> = $^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> = $^{5}C_3 = 10$, Hence, required number of triangles = 220 – (10 + 4 + 1) = 205 151 (b) Given, $^{n}P_{r} = 3024$ $\Rightarrow \frac{n!}{(n-r)!} = 3024$ $\Rightarrow \frac{n!}{(n-r)!} = 3024$ $\Rightarrow 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ 152 (d) We have, $^{35}C_{6} + \frac{5^{7}}{r!} = ^{4^{-2}}C_{7} + \frac{5^{5}}{s!^{-1}} = ^{3^{2}}C_{3} - \frac{3^{2}}{s!} = ^{3^{2}}C_{7} + \frac{5^{5}}{s!^{-1}} = ^{3^{2}}C_{7} + \frac{5^{2}}{s!^{-1}} = ^{3^$		
As the players who are to receive the cards are different So, the required number of ways = $\frac{521}{(131)^4}$ 150 (C) We have, in all 12 points. Since 3 points are used to form a triangle, therefore the total number of triangles, including the triangles formed by collinear points on <i>AB</i> , <i>BC</i> and <i>CA</i> , is $^{12}C_3 = 220$. But, this includes the following: The number of triangles formed by 3 points on <i>AB</i> = $^{4}C_3 = 4$, The number of triangles formed by 4 points on <i>BC</i> = $^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> = $^{5}C_3 = 10$, Hence, required number of triangles = 220 – (10 + 4 + 1) = 205 151 (b) Given, $^{n}P_{r} = 3024$ $\Rightarrow ^{-1}(\frac{n}{(n-r)!} = ^{3}024$ And $^{n}C_{r} = \frac{m!}{r(1-r)!}$ $\Rightarrow 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ 152 (d) We have, $^{35}C_{9} + \sum_{r=1}^{7} 4^{2-r}C_7 + \sum_{s=1}^{5} 4^{7-s}C_{40-s}$ $= ^{35}C_{9} + {^{14}C_7 + {^{40}C_7 + {^{39}C_7 + {^{39}$	-	
different So, the required number of ways = $\frac{52!}{(13)^4}$ 150 (c) We have, in all 12 points. Since 3 points are used to form a triangle, therefore the total number of triangles, including the triangles formed by collinear points on <i>AB</i> , <i>BC</i> and <i>CA</i> , is $^{12}C_3 = 220$. But, this includes the following: The number of triangles formed by 3 points on <i>AB</i> = $^{4}C_3 = 4$, The number of triangles formed by 4 points on <i>BC</i> = $^{4}C_3 = 4$, The number of triangles formed by 5 points on <i>CA</i> = $^{5}C_3 = 10$, Hence, required number of triangles = 220 – (10 + 4 + 1) = 205 151 (b) Given, $^{n}P_r = 3024$ $\Rightarrow \frac{n!}{(n-r)!} = 3024$ $\Rightarrow 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ 152 (d) We have, $^{35}C_n + \sum_{r=1}^{7} \frac{42-r}{r}C_7 + \sum_{s=1}^{5} \frac{47-3}{r}C_{s0-s}}{s}$ $= ^{35}C_n + {\sum_{r=1}^{7} \frac{37-3}{r}C_7 + \cdots + {}^{47}C_7}{s}$ $+ {}^{46}C_{39} + {}^{35}C_7 + ({}^{35}C_7 + \cdots + {}^{47}C_7)$ $+ {}^{42}C_7 + {}^{35}C_7 + \cdots + {}^{45}C_7$ $= {}^{7}C_n + {}^{35}C_7 + \cdots + {}^{45}C_7$ $= {}^{7}C_n + {}^{35}C_7 + \cdots + {}^{45}C_7$ $= {}^{36}C_n + {}^{35}C_7 + ({}^{36}C_7 + \cdots + {}^{45}C_7)$ $= {}^{36}C_n + {}^{35}C_7 + ({}^{36}C_7 + \cdots + {}^{45}C_7)$ $= {}^{36}C_n + {}^{35}C_7 + ({}^{36}C_7 + \cdots + {}^{46}C_7)$ $= {}^{36}C_n + {}^{35}C_7 + ({}^{36}C_7 + \cdots + {}^{46}C_7)$ $= {}^{36}C_n + {}^{35}C_7 + ({}$		
150 for equivalent number of under (13) ⁴ 150 for a triangle, therefore the total number of triangles, including the triangles formed by collinear points on <i>AB</i> , <i>BC</i> and <i>CA</i> , is ¹² <i>C</i> ₃ = 220. But, this includes the following: The number of triangles formed by 3 points on <i>AB</i> = ${}^{3}C_{3} = 1$, The number of triangles formed by 4 points on <i>BC</i> = ${}^{4}C_{3} = 4$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{4}C_{3} = 4$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{4}C_{3} = 4$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{4}C_{3} = 10$, Hence, required number of triangles = 220 – (10 + 4 + 1) = 205 151 (b) Given, ${}^{n}P_{r} = 3024$ $\Rightarrow \frac{n!}{(n-r)!} = 3024$ $\Rightarrow n = 1226 = \frac{30224}{r!}$ $\Rightarrow r = 4$ 152 (d) We have, ${}^{35}C_{8} + \sum_{r=1}^{7} {}^{42-r}C_{7} + \sum_{s=1}^{5} {}^{47-s}C_{60-s}$ $= {}^{35}C_{8} + {}^{5}C_{1} + {}^{44}C_{7} + {}^{39}C_{7} + {}^{38}C_{7} + \cdots$ $+ {}^{35}C_{7}$ } $+ {}^{44}C_{7} + {}^{43}C_{7} + \cdots + {}^{42}C_{7}$ $= {}^{35}C_{8} + {}^{55}C_{7} + {}^{5}C_{7} + {}^{47-s}C_{60-s}$ $= {}^{35}C_{8} + {}^{55}C_{7} + {}^{36}C_{7} + \cdots + {}^{41}C_{7}$ } $+ {}^{42}C_{7} + {}^{43}C_{7} + \cdots + {}^{42}C_{7}$ $= {}^{36}C_{8} + {}^{35}C_{7} + {}^{36}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}$	different	ways. But, A and \mathcal{U} can be put together in 2! Ways.
150 (c) $= 4! \times 2! = 48$ 155 (c) Total number of triangles, formed by 2 points on <i>AB</i> , <i>BC</i> and <i>CA</i> , is ${}^{12}C_3 = 220$. But, this includes the following: The number of triangles formed by 3 points on <i>AB</i> $= {}^{3}C_3 = 1,$ The number of triangles formed by 5 points on <i>AB</i> $= {}^{4}C_3 = 4,$ The number of triangles formed by 5 points on <i>CA</i> $= {}^{5}C_3 = 10,$ Hence, required number of triangles = 220 - (10 + 4 + 1) = 205 151 (b) Given, ${}^{n}P_{T} = 3024$ $\Rightarrow \frac{n!!}{(n-r)!} = 3024$ $\Rightarrow \frac{n!!}{(n-r)!} = 24 = 4!$ $\Rightarrow r = 4$ 152 (d) We have, $\frac{3^{5}C_{8} + \sum_{r=1}^{7} 4^{2-r}C_{7} + \sum_{s=1}^{5} 4^{7-s}C_{40-s}$ $= 3^{5}C_{6} + \{ 4^{4}C_{7} + 4^{4}C_{7} + 3^{6}C_{7} + \cdots + 4^{4}C_{7} \}$ $= (4^{2}C_{7} + 3^{2}C_{7} + \cdots + 4^{4}C_{7} \}$ $= (4^{2}C_{7} + 3^{2}C_{7} + \cdots + 4^{4}C_{7} \}$ $= (3^{2}C_{8} + 3^{5}C_{7}) + (3^{3}C_{7} + \cdots + 4^{4}C_{7} + 3^{3}C_{7} + \cdots + 4^{4}C_{7} $ $= (3^{2}C_{8} + 3^{5}C_{7}) + (3^{3}C_{7} + \cdots + 4^{4}C_{7} + 3^{3}C_{7} + \cdots + 4^{4}C_{7} + $	So, the required number of ways $=\frac{52!}{(2)!}$	Thus, the required number of arrangements
We have, in all 12 points. Since 3 points are used to form a triangle, therefore the total number of triangles, including the triangles formed by collinear points on <i>AB</i> , <i>BC</i> and <i>CA</i> , is ¹² <i>C</i> ₃ = 220. But, this includes the following: The number of triangles formed by 3 points on <i>AB</i> = ${}^{4}C_{3} = 1$, The number of triangles formed by 4 points on <i>BC</i> = ${}^{4}C_{3} = 4$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{4}C_{3} = 4$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{4}C_{3} = 10$, Hence, required number of triangles = 220 – (10 + 4 + 1) = 205 Total number of sequence of the total number of total number of total number of the total number of total number of the total number of total number of the total number of the total number of the total number of total number of total number of total number of the total number of the total number of total number of the total number of total number of the total number of the total n		$= 4 ! \times 2 ! = 48$
to form a triangle, therefore the total number of triangles, including the triangles formed by collinear points on <i>AB</i> , <i>BC</i> and <i>CA</i> , is ${}^{12}C_3 = 220$. But, this includes the following: The number of triangles formed by 3 points on <i>AB</i> $= {}^{3}C_{3} = 1$, The number of triangles formed by 4 points on <i>BC</i> $= {}^{4}C_{3} = 4$, The number of triangles formed by 5 points on <i>CA</i> $= {}^{5}C_{3} = 10$, Hence, required number of triangles $= 220 - (10 + 4 + 1) = 205$ 151 (b) Given, ${}^{n}P_{r} = 3024$ $\Rightarrow \frac{n!}{(n-r)!} = 3024$ $\Rightarrow \frac{n!}{(n-r)!} = 3024$ $\Rightarrow 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ 152 (d) We have, ${}^{35}C_{8} + {}^{7}C_{7} + {}^{5}S_{7} + {}^{47-c}C_{40-s}$ $= {}^{35}C_{8} + {}^{7}C_{7} + {}^{5}S_{7} + {}^{47-c}C_{40-s}$ $= {}^{35}C_{8} + {}^{35}C_{7} + {}^{46}C_{3} + {}^{45}C_{7} + {}^{5}S_{7} + {}^{47-c}C_{40-s}$ $= {}^{35}C_{8} + {}^{35}C_{7} + {}^{36}C_{7} + {}^{-1}C_{7} + {}^{5}S_{7} + {}^{47-c}C_{40-s}$ $= {}^{35}C_{8} + {}^{35}C_{7} + {}^{36}C_{7} + {}^{-1}C_{7} + {}^{5}S_{7} + {}^{47-c}C_{40-s}$ $= {}^{35}C_{8} + {}^{35}C_{7} + {}^{36}C_{7} + {}^{-1}C_{7} + {}^{46}C_{3} + {}^{45}C_{7} + {}^{10}C_{7} + {}^{46}C_{7} + {}^{45}C_{7} + {}^{10}C_{7} + {}^{46}C_{7} + {}^{36}C_{7} + {}^{-1}C_{7} + {}^{46}C_{7} + {}^{36}C_{7} + {}^{-1}C_{7} + {}^{46}C_{7} + {}^{36}C_{7} + {}^{-1}C_{7} + {}^{46}C_{7} + {}^{45}C_{7} + {}^{36}C_{7} + {}^{-1}C_{7} + {}^{46}C_{7} + {}^{36}C_{7} + {}^{-1}$		155 (c)
triangles, including the triangles formed by collinear points on AB, BC and CA , is ${}^{12}C_3 = 220$. But, this includes the following: The number of triangles formed by 3 points on AB $= {}^{3}C_{3} = 1$, The number of triangles formed by 4 points on BC $= {}^{4}C_{3} = 4$, The number of triangles formed by 5 points on BC $= {}^{5}C_{3} = 10$, Hence, required number of triangles $= 220 - (10 + 4 + 1) = 205$ 151 (b) Given, ${}^{n}P_{r} = 3024$ $\Rightarrow \frac{n!}{(n-r)!} = 3024$ And ${}^{n}C_{r} = \frac{n!}{(n-r)!}$ $\Rightarrow 126 = \frac{3024}{rr!}$ $\Rightarrow r = 4$ 152 (d) We have, ${}^{35}C_{8} + {}^{7}r_{1}(r_{2} + {}^{40}C_{7} + {}^{39}C_{7} + {}^{38}C_{7} + \cdots + {}^{45}C_{7}$ $+ {}^{42}C_{7} + {}^{42}C_{$		Total number of ways in which all letters can be
collinear points on <i>AB</i> , <i>BC</i> and <i>CA</i> , is ¹² <i>C</i> ₃ = 220. But, this includes the following: The number of triangles formed by 3 points on <i>AB</i> = ${}^{3}C_{3} = 1$, The number of triangles formed by 4 points on <i>BC</i> = ${}^{4}C_{3} = 4$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{5}C_{3} = 1$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{5}C_{3} = 10$, Hence, required number of triangles = 220 – (10 + 4 + 1) = 205 151 (b) Given, ${}^{n}P_{r} = 3024$ $\Rightarrow \frac{n!}{(n-r)!} = 3024$ $\Rightarrow 126 = \frac{3024}{n!}$ $\Rightarrow r = 4$ 152 (d) We have, ${}^{35}C_{6} + {}^{7}C_{7} + {}^{5}\sum_{i=1}^{47-S}C_{40-S}$ $= {}^{35}C_{6} + {}^{41}C_{7} + {}^{40}C_{7} + {}^{39}C_{7} + \cdots$ $+ {}^{35}C_{7}$ $= {}^{35}C_{6} + {}^{35}C_{7} + {}^{36}C_{7} + \cdots + {}^{41}C_{7}$ } $+ {}^{44}C_{39} + {}^{45}C_{38} + \cdots + {}^{42}C_{7}$ $= {}^{35}C_{6} + {}^{35}C_{7} + {}^{36}C_{7} + \cdots + {}^{41}C_{7}$ $= {}^{(36}C_{6} + {}^{35}C_{7}) + {}^{36}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{6} + {}^{35}C_{7}) + {}^{37}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}$	_	
But, this includes the following: The number of triangles formed by 3 points on <i>AB</i> = ${}^{3}C_{3} = 1$, The number of triangles formed by 4 points on <i>BC</i> = ${}^{4}C_{3} = 4$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{5}C_{3} = 10$, Hence, required number of triangles = 220 – (10 + 4 + 1) = 205 151 (b) Given, ${}^{n}P_{r} = 3024$ $\Rightarrow \frac{n!}{(n-r)!} = 3024$ And ${}^{n}C_{r} = \frac{n!}{n(n-r)!}$ $\Rightarrow 126 = \frac{3024}{n!}$ $\Rightarrow r! = 24 = 4!$ $\Rightarrow r = 4$ 152 (d) We have, ${}^{35}C_{8} + {}^{7}{}^{42-r}C_{7} + {}^{5}{}^{47-s}C_{40-s}$ $= {}^{35}C_{8} + {}^{7}{}^{42-r}C_{7} + {}^{5}{}^{47-s}C_{40-s}$ $= {}^{35}C_{8} + {}^{41}C_{7} + {}^{40}C_{7} + {}^{39}C_{7} + {}^{38}C_{7} + \cdots$ $+ {}^{35}C_{7} + {}^{32}C_{7} + {}^{39}C_{7} + {}^{38}C_{7} + \cdots$ $+ {}^{35}C_{8} + {}^{42}C_{7} + {}^{43}C_{7} + {}^{39}C_{7} + {}^{38}C_{7} + \cdots$ $+ {}^{46}C_{73} + {}^{45}C_{7} + {}^{42}C_{7} + {}^{43}C_{7} + {}^{39}C_{7} + {}^{38}C_{7} + \cdots$ $+ {}^{46}C_{73} + {}^{45}C_{7} + {}^{42}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{(36}C_{8} + {}^{36}C_{7} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{(36}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{(36}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{(36}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{(36}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{(36}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{(37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{(36}C_{8} + {}^{36}C_{7} + {}^{37}C_{7} + {}^{46}C_{7}$ $= {}^{(36}C_{8} + {}^{36}C_{7} + {}^{37}C_{7} + {}^{46}C_{7}$ $= {}^{(36}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{(36}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{(36}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{(36}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{(36}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{(36}C_{8} + {}^{37}C_{7} + {}^{(36}C_$		
The number of triangles formed by 3 points on <i>AB</i> = ${}^{3}C_{3} = 1$, The number of triangles formed by 4 points on <i>BC</i> = ${}^{4}C_{3} = 4$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{5}C_{3} = 10$, Hence, required number of triangles = 220 – (10 + 4 + 1) = 205 151 (b) Given, ${}^{n}P_{r} = 3024$ $\Rightarrow \frac{n!}{(n-r)!} = 3024$ $\Rightarrow \frac{n!}{(n-r)!} = 3024$ $\Rightarrow 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ 152 (d) We have, ${}^{35}C_{8} + \sum_{r=1}^{7} 4^{2-r}C_{7} + \sum_{s=1}^{5} 4^{7-s}C_{40-s}$ $= {}^{35}C_{8} + {}^{41}C_{7} + {}^{40}C_{7} + {}^{39}C_{7} + {}^{38}C_{7} + \cdots$ $+ {}^{35}C_{7}$ } $+ {}^{46}C_{39} + {}^{45}C_{39} + {}^{-3}C_{7} + {}^{-38}C_{7} + \cdots$ $+ {}^{35}C_{7}$ } $+ {}^{46}C_{7} + {}^{36}C_{7} + {}^{-39}C_{7} + {}^{38}C_{7} + \cdots$ $+ {}^{35}C_{7}$ } $= {}^{(35}C_{8} + {}^{35}C_{7} + {}^{(36}C_{7} + \cdots + {}^{41}C_{7} + \cdots$ $+ {}^{46}C_{7}$] [: ${}^{n}C_{r}$ $= {}^{n}C_{n-r}$] $= ({}^{35}C_{8} + {}^{35}C_{7} + {}^{36}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{$		
$ = {}^{3}C_{3} = 1, $ The number of triangles formed by 4 points on <i>BC</i> $ = {}^{4}C_{3} = 4, $ The number of triangles formed by 5 points on <i>CA</i> $ = {}^{5}C_{3} = 4, $ The number of triangles formed by 5 points on <i>CA</i> $ = {}^{5}C_{3} = 10, $ Hence, required number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The possible cases are $ = {}^{4}C_{3} = 4, $ The possible cases are $ = {}^{4}C_{3} = 4, $ The possible case and woman invites $ = {}^{4}C_{3} = 4, $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The possible case and woman invites $ = {}^{4}C_{3} = 4, $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The possible case and woman invites $ = {}^{4}C_{3} = 4, $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = 220 - $ (10 + 4 + 1) = 205 $ The number of triangles = $10 + 324 + 144 + 1 = 485 $ The number of the digits $5, 6, 7, 8, 9$ at thousand's place. So, thousand's place can be filled by the remaining 3 places can be filled by the remaining 3 theore can be filled by the remaining 3 theore can be selected in ${}^{6}C_{2}$ The trianumber of points in intersection are $ {}^{6}C_{2} \times 2 = 30 $	_	0
The number of triangles formed by 4 points on <i>BC</i> = ${}^{4}C_{3} = 4$, The number of triangles formed by 5 points on <i>CA</i> = ${}^{5}C_{3} = 10$, Hence, required number of triangles = 220 – (10 + 4 + 1) = 205 151 (b) Given, ${}^{n}P_{r} = 3024$ $\Rightarrow \frac{n!}{(n-r)!} = 3024$ And ${}^{n}C_{r} = \frac{n!}{r(n-r)!}$ $\Rightarrow 126 = \frac{3024}{r!}$ $\Rightarrow r! = 24 = 4!$ $\Rightarrow r = 4$ 152 (d) We have, ${}^{35}C_{8} + {}^{7}a_{-2}rC_{7} + {}^{5}a_{-1}r_{$		\therefore Total number of required ways $=\frac{6!}{2!}=360$
$ = {}^{4}C_{3} = 4, $ The number of triangles formed by 5 points on CA $ = {}^{5}C_{3} = 10, $ Hence, required number of triangles = 220 - (10 + 4 + 1) = 205 The possible cases are Case I A man invites 3 ladies and woman invite gentleman $ \Rightarrow {}^{4}C_{3} = C_{3} = 16 $ Case II A man invites (2 ladies, 1 gentlemen) ard woman invites (2 gentlemen, 1 lady) $ \Rightarrow {}^{n}C_{r} = \frac{n!}{r(n-r)!} = 3024 $ Case II A man invites (2 ladies, 1 gentlemen) $ \Rightarrow 126 = \frac{3024}{r!} $ $ \Rightarrow r! = 24 = 4! $ $ \Rightarrow r = 4 $ The quart of triangles = 220 - (10 + 4 + 1) = 205 The number of triangles = 220 - (10 + 4 + 1) = 205 The number of triangles = 220 - (10 + 4 + 1) = 205 The number of triangles = 220 - (10 + 4 + 1) = 205 The possible cases are Case II A man invites (2 ladies, 1 gentlemen) ard woman invites (2 ladies, 1 gentlemen) $ \Rightarrow ({}^{4}C_{3} \cdot {}^{2}C_{3} \cdot {}^{2}C_{1} - {}^{4}C_{2} = {}^{3}C_{1} - {}^{4}C_{2} = {}^{3}C_{1} - {}^{4}C_{2} - {}^{2}C_{2} - {}^{4}C_{1} = {}^{4}C_{2} - {}^{4}C_{2} - {}^{4}C_{1} - {}^{4}C_{2} - {}^{2}C_{1} - {}^{4}C_{2} - {}$		156 (a)
$s_{3} = 5C_{3} = 10,$ Hence, required number of triangles = 220 - (10 + 4 + 1) = 205 $s_{3} = 10,$ Hence, required number of triangles = 220 - (10 + 4 + 1) = 205 $s_{3} = 10,$ Given, $^{n}P_{r} = 3024$ $\Rightarrow \frac{n!}{(n-r)!} = 3024$ And $^{n}C_{r} = \frac{n!}{r!(n-r)!}$ $\Rightarrow 126 = \frac{3024}{r!}$ $\Rightarrow r! = 24 = 4!$ $\Rightarrow r = 4$ $s_{2} = 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ $s_{2} = 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ $s_{3} = 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ $s_{3} = 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ $s_{3} = 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ $s_{3} = 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ $s_{3} = 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ $s_{3} = 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ $s_{3} = 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ $s_{3} = 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ $s_{3} = 126 = \frac{3024}{r!}$ $\Rightarrow r = 4$ $s_{3} = 16 + 324 + 144 + 1 = 485$ $s_{3} = 16 + 324 +$	$= {}^{4}C_{3} = 4,$	The possible cases are
Hence, required number of triangles = 220 – (10 + 4 + 1) = 205 151 (b) Given, ${}^{n}P_{r} = 3024$ $\Rightarrow \frac{n!}{(n-r)!} = 3024$ And ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ $\Rightarrow 126 = \frac{3024}{r!}$ $\Rightarrow r! = 24 = 4!$ $\Rightarrow r! = 24 = 4!$ $\Rightarrow r = 4$ 152 (d) We have, ${}^{35}C_{8} + \sum_{r=1}^{7} \frac{42-r}{c_{7}} + \sum_{s=1}^{5} \frac{47-s}{c_{40-s}}$ $= {}^{35}C_{8} + {}^{41}C_{7} + {}^{40}C_{7} + {}^{39}C_{7} + {}^{38}C_{7} + \cdots$ $+ {}^{35}C_{7}$ $+ {}^{46}C_{39} + {}^{45}C_{38} + \cdots + {}^{42}C_{35}$ } $= {}^{35}C_{8} + {}^{35}C_{7} + {}^{36}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{32}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$	The number of triangles formed by 5 points on CA	Case I A man invites 3 ladies and woman invites 3
(10 + 4 + 1) = 205 $(10 + 4 + 1) = 205$ $(10 + 4 + 1) = 205$ $(10 + 4 + 1) = 205$ $(10 + 4 + 1) = 205$ $(10 + 4 + 1) = 205$ $(10 + 4 + 1) = 205$ $(10 + 4 + 1) = 205$ $(11 +$	$= {}^{5}C_{3} = 10,$	
151 (b) Given, ${}^{n}P_{r} = 3024$ $\Rightarrow \frac{n!}{(n-r)!} = 3024$ And ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ $\Rightarrow 126 = \frac{3024}{r!}$ $\Rightarrow 126 = \frac{3024}{r!}$ $\Rightarrow r! = 24 = 4!$ $\Rightarrow r = 4$ 152 (d) We have, ${}^{35}C_{8} + \sum_{r=1}^{7} {}^{42-r}C_{7} + \sum_{s=1}^{5} {}^{47-s}C_{40-s}$ $= {}^{35}C_{8} + \{{}^{41}C_{7} + {}^{40}C_{7} + {}^{39}C_{7} + {}^{38}C_{7} + \cdots + {}^{45}C_{7}\}$ $+ \{{}^{46}C_{39} + {}^{45}C_{38} + \cdots + {}^{42}C_{35}\}$ $= {}^{35}C_{8} + \{{}^{41}C_{7} + {}^{40}C_{7} + {}^{39}C_{7} + {}^{38}C_{7} + \cdots + {}^{45}C_{7}\}$ $+ \{{}^{42}C_{7} + {}^{43}C_{7} + \cdots + {}^{42}C_{35}\}$ $= {}^{35}C_{8} + \{{}^{35}C_{7} + {}^{36}C_{7} + \cdots + {}^{41}C_{7}\}$ $+ \{{}^{42}C_{7} + {}^{43}C_{7} + \cdots + {}^{42}C_{7}\}$ $= ({}^{35}C_{8} + {}^{35}C_{7}) + ({}^{36}C_{7} + \cdots + {}^{41}C_{7} + \cdots + {}^{46}C_{7})$ $= ({}^{36}C_{8} + {}^{36}C_{7}) + {}^{37}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_$	Hence, required number of triangles $= 220 -$	
$\begin{array}{l} \Rightarrow \frac{n!}{(n-r)!} = 3024 \\ \Rightarrow \frac{n!}{r!(n-r)!} = 3$	(10+4+1) = 205	
$ \Rightarrow \frac{n!}{(n-r)!} = 3024 $ And ${}^{n}C_{r} = \frac{n!}{r!(n-r)!} = 3024 $ And ${}^{n}C_{r} = \frac{n!}{r!(n-r)!} = 3024 $ $ \Rightarrow 126 = \frac{3024}{r!} $ $ \Rightarrow 126 = \frac{3024}{r!} $ $ \Rightarrow r! = 24 = 4! $ $ \Rightarrow r = 4 $ 152 (d) We have, $ {}^{35}C_{8} + \sum_{r=1}^{7} {}^{42-r}C_{7} + \sum_{s=1}^{5} {}^{47-s}C_{40-s} $ $ = {}^{35}C_{8} + {}^{41}C_{7} + {}^{40}C_{7} + {}^{39}C_{7} + {}^{38}C_{7} + \cdots $ $ + {}^{35}C_{7} $ $ + {}^{46}C_{39} + {}^{45}C_{38} + \cdots {}^{42}C_{75} $ $ = {}^{35}C_{8} + {}^{35}C_{7} + \cdots {}^{41}C_{7} $ $ = {}^{n}C_{n-r} $ $ = {}^{35}C_{8} + {}^{35}C_{7} + \cdots {}^{44}C_{7} $ $ = {}^{n}C_{n-r} $ $ = {}^{35}C_{8} + {}^{35}C_{7} + \cdots {}^{41}C_{7} + \cdots $ $ + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{35}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{35}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{35}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots {}^{46}C_{7} $ $ =$		
$ \Rightarrow \frac{1}{(n-r)!} = 3024 $ $ \text{And } {}^{n}C_{r} = \frac{n!}{r!(n-r)!} $ $ \Rightarrow 126 = \frac{3024}{r!} $ $ \Rightarrow 126 = \frac{3024}{r!} $ $ \Rightarrow 126 = \frac{3024}{r!} $ $ \Rightarrow r = 4 $ $ \text{152 (d) } $ $ \text{We have, } $ $ {}^{35}C_{8} + \sum_{r=1}^{7} 4^{2-r}C_{7} + \sum_{s=1}^{5} 4^{7-s}C_{40-s} $ $ = {}^{35}C_{8} + \left\{ {}^{41}C_{7} + {}^{40}C_{7} + {}^{39}C_{7} + {}^{38}C_{7} + \cdots $ $ + {}^{35}C_{7} \right\} $ $ + \left\{ {}^{46}C_{39} + {}^{45}C_{38} + \cdots + {}^{42}C_{35} \right\} $ $ = {}^{35}C_{8} + \left\{ {}^{35}C_{7} + {}^{36}C_{7} + \cdots + {}^{41}C_{7} \right\} $ $ + \left\{ {}^{42}C_{7} + {}^{43}C_{7} + \cdots + {}^{46}C_{7} \right\} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{n}C_{n-r} \right] $ $ = \left({}^{36}C_{8} + {}^{36}C_{7} \right) + \left({}^{36}C_{7} + \cdots + {}^{46}C_{7} \right) $ $ = \left({}^{36}C_{8} + {}^{36}C_{7} \right) + {}^{37}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} $ $ = {}^{37}C_{$		
And ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ $\Rightarrow 126 = \frac{3024}{r!}$ $\Rightarrow r! = 24 = 4!$ $\Rightarrow r = 4$ 152 (d) We have, ${}^{35}C_{8} + \sum_{r=1}^{7} {}^{42-r}C_{7} + \sum_{s=1}^{5} {}^{47-s}C_{40-s}$ $= {}^{35}C_{8} + {}^{7} {}^{42-r}C_{7} + \sum_{s=1}^{5} {}^{47-s}C_{40-s}$ $= {}^{35}C_{8} + {}^{41}C_{7} + {}^{40}C_{7} + {}^{39}C_{7} + {}^{38}C_{7} + \cdots$ $+ {}^{35}C_{7}$ $+ {}^{46}C_{39} + {}^{45}C_{38} + \cdots + {}^{42}C_{35}$ $= {}^{35}C_{8} + {}^{45}C_{7} + {}^{36}C_{7} + \cdots + {}^{41}C_{7}$ } $+ {}^{42}C_{7} + {}^{43}C_{7} + {}^{36}C_{7} + \cdots + {}^{41}C_{7}$ } $= {}^{(35}C_{8} + {}^{35}C_{7}) + {}^{(36}C_{7} + \cdots + {}^{41}C_{7} + \cdots$ $+ {}^{46}C_{7})$ $= {}^{(36}C_{8} + {}^{36}C_{7}) + {}^{37}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7}$ $= {}^{37}C_{8} + {}^{37}C_{8} + {}^{37}C_{8} + {}^{37}C_{8}$	$\Rightarrow \frac{n!}{(n-1)!} = 3024$	
$\Rightarrow 126 = \frac{3024}{r!}$ $\Rightarrow r! = 24 = 4!$ $\Rightarrow r = 4$ 152 (d) We have, ${}^{35}C_8 + \sum_{r=1}^{7} {}^{42-r}C_7 + \sum_{s=1}^{5} {}^{47-s}C_{40-s}$ $= {}^{35}C_8 + {}^{7}\frac{42-r}C_7 + \sum_{s=1}^{5} {}^{47-s}C_{40-s}$ $= {}^{35}C_8 + {}^{41}C_7 + {}^{40}C_7 + {}^{39}C_7 + {}^{38}C_7 + \cdots$ $+ {}^{35}C_7$ $= {}^{35}C_8 + {}^{41}C_7 + {}^{40}C_7 + {}^{39}C_7 + {}^{38}C_7 + \cdots$ $+ {}^{45}C_{38} + \cdots + {}^{42}C_{35}$ $= {}^{35}C_8 + {}^{35}C_7 + {}^{36}C_7 + \cdots + {}^{41}C_7$ $+ {}^{42}C_7 + {}^{43}C_7 + \cdots + {}^{46}C_7$ $= {}^{n}C_{n-r}$ $= {}^{n}C_{n-r}$ $= {}^{37}C_8 + {}^{35}C_7 + {}^{36}C_7 + \cdots + {}^{41}C_7 + \cdots$ $+ {}^{46}C_7)$ $= {}^{(36}C_8 + {}^{36}C_7) + {}^{37}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$		
$ \Rightarrow 126 = \frac{3024}{r!} $ $ \Rightarrow r! = 24 = 4! $ $ \Rightarrow r = 4 $ 152 (d) We have, $ \frac{^{35}C_8 + \sum_{r=1}^{7} 4^{2-r}C_7 + \sum_{s=1}^{5} 4^{7-s}C_{40-s}}{164 + 324 + 144 + 1} = 485 $ 158 (a) A number between 5000 and 10,000 can have a of the digits 5,6,7,8,9 at thousand's place. So, thousand's place can be filled in 5 ways. $ = {}^{35}C_8 + {}^{41}C_7 + {}^{40}C_7 + {}^{39}C_7 + {}^{38}C_7 + \cdots + {}^{45}C_7 }{164 + 4^{20}C_7 + 4^{30}C_7 + \cdots + 4^{41}C_7 } $ $ + {}^{46}C_{79} + {}^{45}C_{38} + \cdots + {}^{42}C_{35} }{160 (d)} $ Two circles intersect maximum at two distinct points. Now, two circles can be selected in ${}^{6}C_2 \times 2 = 30 $ $ + {}^{46}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7 $	And ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$	
$ \Rightarrow r! = 24 = 4! \Rightarrow r = 4 152 (d) We have, 35C8 + \sum_{r=1}^{7} 4^{2-r}C_7 + \sum_{s=1}^{5} 4^{7-s}C_{40-s} = 35C8 + {41C_7 + 40C_7 + 39C_7 + 38C_7 + + 35C_7} = 35C8 + {41C_7 + 40C_7 + 39C_7 + 38C_7 + + 35C_7} + {46C_{39} + 45C_{38} + + 42C_{35} = 35C8 + {35C_7 + 36C_7 + + 41C_7} + {42C_7 + 43C_7 + + 46C_7} [: nC_r = nCn-r] = (35C8 + 35C_7) + (36C_7 + + 41C_7 + + 46C_7) [: nC_r = (36C8 + 35C_7) + 37C_7 + + 46C_7 = 37C8 + 37C_7 + 38C_7 + + 46C_7 = 37C8 + 37C_8 + 37C_7 + 38C_7 + + 46C_7 = 37$	\rightarrow 126 - $\frac{3024}{3024}$	
$\begin{array}{l} \therefore \ 7 = 24 - 41 \\ \Rightarrow \ r = 4 \\ 152 \ \textbf{(d)} \\ \text{We have,} \\ 3^{35}C_{8} + \sum_{r=1}^{7} 4^{2-r}C_{7} + \sum_{s=1}^{5} 4^{7-s}C_{40-s} \\ = \ 3^{5}C_{8} + \sum_{r=1}^{7} 4^{2-r}C_{7} + \sum_{s=1}^{5} 4^{7-s}C_{40-s} \\ = \ 3^{5}C_{8} + \left\{ {}^{41}C_{7} + {}^{40}C_{7} + {}^{39}C_{7} + {}^{38}C_{7} + \cdots \\ + \ 3^{5}C_{7} \right\} \\ + \left\{ {}^{46}C_{39} + {}^{45}C_{38} + \cdots + {}^{42}C_{35} \right\} \\ = \ 3^{5}C_{8} + \left\{ {}^{35}C_{7} + {}^{36}C_{7} + \cdots + {}^{41}C_{7} \right\} \\ + \left\{ {}^{42}C_{7} + {}^{43}C_{7} + \cdots + {}^{46}C_{7} \right\} \\ = \ \left({}^{35}C_{8} + {}^{35}C_{7} \right) + \left({}^{36}C_{7} + \cdots + {}^{41}C_{7} + \cdots \\ + {}^{46}C_{7} \right) \\ = \ \left({}^{36}C_{8} + {}^{36}C_{7} \right) + {}^{37}C_{7} + \cdots + {}^{46}C_{7} \\ = \ {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} \\ = \ {}^{37}C_{8} + {}^{37}C_{7} + {}^{38}C_{7} + \cdots + {}^{46}C_{7} \\ \end{array} $	\Rightarrow 120 - $\frac{r!}{r!}$	
= 7 = 4 $ = 16 + 324 + 144 + 1 = 485 $ $ = 16 + 324 + 144 + 1 = 485 + 1044 + 1 = 485 + 1044 + 1 = 485 + 1044 + 1 = 485$		
152 (d) We have, ${}^{35}C_8 + \sum_{r=1}^{7} {}^{42-r}C_7 + \sum_{s=1}^{5} {}^{47-s}C_{40-s}$ $= {}^{35}C_8 + {}^{41}C_7 + {}^{40}C_7 + {}^{39}C_7 + {}^{38}C_7 + \cdots$ $+ {}^{35}C_7$ } $+ {}^{46}C_{39} + {}^{45}C_{38} + \cdots + {}^{42}C_{35}$ } $= {}^{35}C_8 + {}^{35}C_7 + {}^{36}C_7 + \cdots + {}^{41}C_7$ } $+ {}^{42}C_7 + {}^{43}C_7 + \cdots + {}^{46}C_7$ } [$\because {}^{n}C_r$ $= {}^{n}C_{n-r}$] $= ({}^{36}C_8 + {}^{35}C_7) + ({}^{36}C_7 + \cdots + {}^{41}C_7 + \cdots$ $+ {}^{46}C_7)$ $= ({}^{36}C_8 + {}^{35}C_7) + ({}^{36}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$		5
We have, ${}^{35}C_8 + \sum_{r=1}^{7} {}^{42-r}C_7 + \sum_{s=1}^{5} {}^{47-s}C_{40-s}$ $= {}^{35}C_8 + {}^{41}C_7 + {}^{40}C_7 + {}^{39}C_7 + {}^{38}C_7 + \cdots$ $+ {}^{35}C_7$ } $+ {}^{46}C_{39} + {}^{45}C_{38} + \cdots + {}^{42}C_{35}$ } $= {}^{35}C_8 + {}^{35}C_7 + {}^{36}C_7 + \cdots + {}^{41}C_7$ } $+ {}^{42}C_7 + {}^{43}C_7 + \cdots + {}^{46}C_7$ [: ${}^{n}C_r$ $= {}^{n}C_{n-r}$] $= ({}^{35}C_8 + {}^{35}C_7) + ({}^{36}C_7 + \cdots + {}^{41}C_7 + \cdots$ $+ {}^{46}C_7)$ [: ${}^{n}C_r$ $= {}^{(36}C_8 + {}^{36}C_7) + {}^{37}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $+ {}^{35}C_2 + {}^{35}C_7 + {}^{36}C_7 + \cdots + {}^{46}C_7$ $+ {}^{35}C_2 + {}^{35}C_7 + {}^{36}C_7 + {}^{36}C_7 + \cdots + {}^{46}C_7$ $+ {}^{35}C_2 + {}^{35}C_7 + {}^{36}C_7 + {}^{3$		
$= {}^{35}C_8 + \{{}^{41}C_7 + {}^{40}C_7 + {}^{39}C_7 + {}^{38}C_7 + \cdots + {}^{42}C_{75}\}$ $+ \{{}^{46}C_{39} + {}^{45}C_{38} + \cdots + {}^{42}C_{35}\}$ $= {}^{35}C_8 + \{{}^{35}C_7 + {}^{36}C_7 + \cdots + {}^{41}C_7\}$ $+ \{{}^{42}C_7 + {}^{43}C_7 + \cdots + {}^{46}C_7\} \qquad [\because {}^{n}C_r \\ = {}^{n}C_{n-r}]$ $= ({}^{35}C_8 + {}^{35}C_7) + ({}^{36}C_7 + \cdots + {}^{41}C_7 + \cdots \\ + {}^{46}C_7)$ $= ({}^{36}C_8 + {}^{36}C_7) + {}^{37}C_7 + \cdots + {}^{46}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$	7 5	A number between 5000 and 10,000 can have any
$= {}^{35}C_8 + \{{}^{41}C_7 + {}^{40}C_7 + {}^{39}C_7 + {}^{38}C_7 + \cdots + {}^{42}C_{75}\}$ $+ \{{}^{46}C_{39} + {}^{45}C_{38} + \cdots + {}^{42}C_{35}\}$ $= {}^{35}C_8 + \{{}^{35}C_7 + {}^{36}C_7 + \cdots + {}^{41}C_7\}$ $+ \{{}^{42}C_7 + {}^{43}C_7 + \cdots + {}^{46}C_7\} \qquad [\because {}^{n}C_r \\ = {}^{n}C_{n-r}]$ $= ({}^{35}C_8 + {}^{35}C_7) + ({}^{36}C_7 + \cdots + {}^{41}C_7 + \cdots \\ + {}^{46}C_7)$ $= ({}^{36}C_8 + {}^{36}C_7) + {}^{37}C_7 + \cdots + {}^{46}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \cdots + {}^{46}C_7$	$^{35}C_{0} + \sum_{42-r}C_{7} + \sum_{47-s}C_{40}$	
$ + {}^{35}C_7 \} + {}^{35}C_7 + {}^{36}C_7 + \dots + {}^{42}C_{35} \} = {}^{35}C_8 + {}^{35}C_7 + {}^{36}C_7 + \dots + {}^{41}C_7 \} + {}^{42}C_7 + {}^{43}C_7 + \dots + {}^{46}C_7 \} [\because {}^{n}C_r \\ = {}^{n}C_{n-r}] = ({}^{35}C_8 + {}^{35}C_7) + ({}^{36}C_7 + \dots + {}^{41}C_7 + \dots \\ + {}^{46}C_7) \\ = ({}^{36}C_8 + {}^{36}C_7) + {}^{37}C_7 + \dots + {}^{46}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 \\ \end{array} $	$\sum_{r=1}^{10}$ $\sum_{r=1}^{10}$ $\sum_{s=1}^{10}$ C_{40-s}	thousand's place can be filled in 5 ways.
$ + \{ {}^{46}C_{39} + {}^{45}C_{38} + \dots + {}^{42}C_{35} \} $ $ = {}^{35}C_8 + \{ {}^{35}C_7 + {}^{36}C_7 + \dots + {}^{41}C_7 \} $ $ + \{ {}^{42}C_7 + {}^{43}C_7 + \dots + {}^{46}C_7 \} $ $ = {}^{n}C_{n-r}] $ $ = ({}^{35}C_8 + {}^{35}C_7) + ({}^{36}C_7 + \dots + {}^{41}C_7 + \dots + {}^{46}C_7) $ $ = ({}^{36}C_8 + {}^{36}C_7) + {}^{37}C_7 + \dots + {}^{46}C_7 $ $ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 $ $ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 $ $ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 $ $ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 $ $ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 $ $ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 $ $ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 $ $ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 $ $ = {}^{6}C_2 \times 2 = 30 $	$= {}^{35}C_8 + \{ {}^{41}C_7 + {}^{40}C_7 + {}^{39}C_7 + {}^{38}C_7 + \cdots \}$	Remaining 3 places can be filled by the remaining
$= {}^{35}C_8 + {}^{35}C_7 + {}^{36}C_7 + \dots + {}^{41}C_7 \}$ $+ {}^{42}C_7 + {}^{43}C_7 + \dots + {}^{46}C_7 \} \qquad [\because {}^{n}C_r$ $= {}^{n}C_{n-r}]$ $= ({}^{35}C_8 + {}^{35}C_7) + ({}^{36}C_7 + \dots + {}^{41}C_7 + \dots + {}^{46}C_7)$ $= ({}^{36}C_8 + {}^{36}C_7) + {}^{37}C_7 + \dots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7$	$+ {}^{35}C_7$	8 digits in ${}^{8}P_{3}$ ways
$ + \{ {}^{42}C_7 + {}^{43}C_7 + \dots + {}^{46}C_7 \} [\because {}^{n}C_r \\ = {}^{n}C_{n-r}] $ $ = ({}^{35}C_8 + {}^{35}C_7) + ({}^{36}C_7 + \dots + {}^{41}C_7 + \dots \\ + {}^{46}C_7) $ $ = ({}^{36}C_8 + {}^{36}C_7) + {}^{37}C_7 + \dots + {}^{46}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 $ $ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 $ $ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 $ $ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 $ $ = {}^{6}C_2 \times 2 = 30 $ $ Two circles intersect maximum at two distinct points. Now, two circles can be selected in {}^{6}C_2 \\ ways. \\ \therefore Total number of points in intersection are {}^{6}C_2 \times 2 = 30 $	$+\{ {}^{46}C_{39} + {}^{45}C_{38} + \dots + {}^{42}C_{35} \}$	Hence, required number = $5 \times {}^{8}P_{3}$
$= {}^{n}C_{n-r}]$ $= ({}^{35}C_8 + {}^{35}C_7) + ({}^{36}C_7 + \dots + {}^{41}C_7 + \dots + {}^{46}C_7)$ $= ({}^{36}C_8 + {}^{36}C_7) + {}^{37}C_7 + \dots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7$ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7$ $= {}^{6}C_2 \times 2 = 30$ $= {}^{30}C_8 + {}^{30}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7$	$= {}^{35}C_8 + \{ {}^{35}C_7 + {}^{36}C_7 + \dots + {}^{41}C_7 \}$	160 (d)
$= ({}^{35}C_8 + {}^{35}C_7) + ({}^{36}C_7 + \dots + {}^{41}C_7 + \dots + {}^{46}C_7) \\ = ({}^{36}C_8 + {}^{36}C_7) + {}^{37}C_7 + \dots + {}^{46}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{36}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{36}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{36}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{36}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{36}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{36}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{36}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{36}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{36}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{36}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{36}C_7 \\ = {}^{37}C_8 + {}^{37}C_7 + \dots + {}^{36}C_7 \\ = {}$	$+\{{}^{42}C_7 + {}^{43}C_7 + \dots + {}^{46}C_7\} \qquad [:: {}^{n}C_r$	
$\begin{array}{l} &+ \ ^{46}C_7) \\ = (\ ^{36}C_8 + \ ^{36}C_7) + \ ^{37}C_7 + \cdots + \ ^{46}C_7 \\ = \ ^{37}C_8 + \ ^{37}C_7 + \ ^{38}C_7 + \cdots + \ ^{46}C_7 \end{array} \qquad $		points. Now, two circles can be selected in ${}^{6}C_{2}$
$= ({}^{36}C_8 + {}^{36}C_7) + {}^{37}C_7 + \dots + {}^{46}C_7$ = ${}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7$ $\stackrel{6}{\sim} C_2 \times 2 = 30$		ways.
$= ({}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 $ $= {}^{37}C_8 + {}^{37}C_7 + {}^{38}C_7 + \dots + {}^{46}C_7 $ ${}^{6}C_2 \times 2 = 30$	//	∴ Total number of points in intersection are
	, , , , ,	$C_2 \times 2 = 50$

161	(b)
	The numbers formed will be divisible by 4 if the
	number formed by the two digits on the extreme
	right is divisible by 4, i.e. it should be
	04,12,20,24,32,40
	The number of numbers ending in $04 = 3! = 6$
	The number of numbers ending in $12 = 3! -$
	2! = 4
	The number of numbers ending in $20 = 3! = 6$
	The number of numbers ending in $24 = 3! -$
	2! = 4
	The number of numbers ending in $32 = 3! -$
	2! = 4
	The number of numbers ending in $40 = 3! = 6$
	So, the required number $= 6 + 4 + 6 + 4 + 4 + 4$
	6 = 30
162	(c)
	The four girls can first be arranged in 4 ! ways
	among themselves. In each of these arrangements
	there are 5 gaps (including the extremes) among
	the girls. Since the boys and girls are to alternate,
	we have to leave the first gap or last gap blank
	while arranging the boys. But, in each case the
	boys and girls can be arranged in 4 ! • 4 ! ways
	\therefore Required number of ways = 2(4! × 4!) =

The product of r consecutive natural numbers

 $= 1.2.3.4 \dots r = r!$

The natural number will divided by *r*!

164 **(d)**

The number of ways in which at least 5 women can be included in a committee

$$= {}^{9}C_{5} \times {}^{8}C_{7} + {}^{9}C_{6} \times {}^{8}C_{6} + {}^{9}C_{7} \times {}^{8}C_{5} + {}^{9}C_{8} \times {}^{8}C_{4} + {}^{9}C_{9} \times {}^{8}C_{3}$$

(i) Women are in majority, then number of ways

$$= {}^{9}C_{7} \times {}^{8}C_{5} + {}^{9}C_{8} \times {}^{8}C_{4} + {}^{9}C_{9} \times {}^{8}C_{3}$$

= 2016 + 630 + 56 = 2702

(ii) Men are in majority, then number of ways

$$= {}^{9}C_{5} \times {}^{8}C_{7} = 126 \times 8 = 1008$$

165 **(c)**

In the number which is divisible by 5 and lying between 3000 and 4000, 3 must be at thousand place and 5 must be at unit place. Therefore rest of the digits (1, 2, 3, 4, 6) fill in two places. The number of ways= ${}^{4}P_{2}$

166 **(b)**

We have 12 letters including 2 C's. Let us ignore 2 C's and thus we have 10 letters (4 *A*'s, 3 *B*'s, 1 *D*, 1 *E*, 1 *F*) and these 10 letters can be arrange in $\frac{10!}{4!3!}$ ways. Now, after arranging these 10 letters there will be 11 gaps in which two different letters can be arranged in ${}^{11}P_2$ ways. But, since 2 C's are alike, the number of arrangements will be $\frac{1}{2!} {}^{11}P_2 =$ 11! 9!2! So, total number of ways in which *C*'s are separated from one another $=\frac{10!}{4!3!}\cdot\frac{11!}{9!2!}=$ 1386000 167 (d) An odd number has an odd digit at unit's place So, unit's place can be filled in 4 ways Each of ten's and hundred's place can be filled in 6 ways Thousand place can be filled in 5 ways Hence, required number of numbers = $5 \times 6 \times$ $6 \times 4 = 720$ 168 (c) $\therefore {}^{12}P_r = 1320 = 12 \times 11 \times 10$ $\Rightarrow \frac{12!}{(12-r)!} = 12 \times 11 \times 10$ $\therefore r = 3$ 169 (c) Total time required=(total number of dials required to sure open the lock) \times 5s $= 10^5 \times 5s$ $=\frac{500000}{60 \times 60 \times 13}$ days = 10.7 days Hence, 11 days are enough to open the safe. 170 (a) There are 6 rings and 4 fingers. Since, each ring can be worn on any finger. \therefore Required number of ways= 4⁶ 171 (c) Consider the product $(x^{0} + x^{1} + x^{2} \dots + x^{9})(x^{0} + x^{1} + x^{2} \dots + x^{6}) \dots 6$ factors The number of ways in which the sum of the digits will be equal to 12 is equal to the coefficient of x^{12} in the above product. So, required number

of ways

= Coeff. Of
$$x^{12}$$
 in $\left(\frac{1-x^{10}}{1-x}\right)^6$
= Coeff. Of x^{12} in $(1-x^{10})^6(1-x)^{-6}$
= Coeff. Of x^{12} in $(1-x)^{-6}(1-{}^6C_1x^{10}+\cdots)$
= Coeff. Of x^{12} in $(1-x)^{-6} - {}^6C_1 \cdot \text{Coeff. of } x^2$ in
 $(1-x)^{-6}$
= ${}^{12+6-1}C_{6-1} - {}^6C_1 \times {}^{2+6-1}C_{6-1}$
= ${}^{17}C_5 - 6 \times {}^7C_5 = 6062$

172 **(c)**

We observe that a point is obtained between the lines of two of points on first line are joined by line segments to two points on the second line Hence, required number of points = ${}^{n}C_{2} \times {}^{n}C_{2}$

174 (c)

Let there be 'n' men participants. Then, the number of games that the men play between themselves is 2. ${}^{n}C_{2}$ and the number of games that the men played with the women is 2. (2n)

: 2.
$${}^{n}C_{2} - 2.2n = 66$$
 (given)

$$\Rightarrow n(n-1) - 4n - 66 = 0$$

$$\Rightarrow n^2 - 5n - 66 = 0$$

$$\Rightarrow (n+5)(n-11) = 0$$

 $\Rightarrow n = 11$

∴ Number of participants =11 men+2 women=13

175 **(b)**

There are total 20 + 1 = 21 persons. The two particular persons and the host be taken as one unit so that these remaining 21 - 3 + 1 = 19persons be arranged in round table in 18! ways. But the two persons on either side of the host can themselves be arranged in 2! ways \therefore required number of ways= $2! \times 18!$

176 **(b)**

Let the total number of persons in the room = n \therefore Total number of handshakes= ${}^{n}C_{2} = 66$ (given) $\Rightarrow \frac{n!}{2!(n-2)!} = 66 \Rightarrow \frac{n(n-1)}{2} = 66$

$$\Rightarrow \frac{1}{2!(n-2)!} = 66 \Rightarrow \frac{1}{2} = 66$$
$$\Rightarrow n^2 - n - 132 = 0$$
$$\Rightarrow (n - 12)(n + 11) = 0$$
$$\Rightarrow n = 12 \quad [\because n \neq -11]$$
177 (d)

Number of vowels=2 and number of consonants=4 \therefore 4 consonants can be arranged in 4! ways. \therefore Remaining two places can be filled by two vowels in ${}^{5}P_{2}$ ways. \therefore Total number of ways4! \times ⁵ $P_{2} = 24 \times 20 = 480$

180 **(b)**

Let there are *n* teams.

Each team play to every other team in ${}^{n}C_{23}$ ways

$$\therefore {}^{n}C_{2} = 153 \text{ (given)}$$

$$\Rightarrow \frac{n!}{(n-2)! \, 2!} = 153$$

$$\Rightarrow n(n-1) = 306$$

$$\Rightarrow n^{2} - n - 306 = 0$$

$$\Rightarrow (n - 18)(n + 17) = 0$$

$$\Rightarrow n = 18 \quad (\because n \text{ is never negative})$$

181 **(a)**

Since total number are 15, but three special members constitute one member.

Therefore, required number of arrangements are $12! \times 2$, because, chairman remains between the two specified persons and person can sit in two ways

182 **(b)**

Let there be *n* participants. Then, we have ${}^{n}C_{2} = 45$ $\Rightarrow \frac{n(n-1)}{2} = 45 \Rightarrow n^{2} - n - 9 = 0 \Rightarrow n = 10$ (d)

183 **(d)**

Required number of ways $=^{12-1} C_{9-1}$

$$=^{11} C_8 = \frac{11 \times 10 \times 9}{3 \times 2 \times 1} = 165$$

185 **(c)**

A number is divisible by 3, if the sum of the digits is divisible by 3 Since, 1+2+3+4+5=15 is divisible by 3, therefore total such numbers is 5! *ie*, 120 And, other five digits whose sum is divisible by 3 are 0, 1, 2, 4, 5 Therefore, number of such formed numbers= 5! - 4! = 96Hence, the required number if numbers=120+96=216

187 **(b)**

Each child will go as often as he (or she) can be accompanied by two others

 \therefore Required number = ${}^{7}C_{2} = 21$

188 (a)

We have,

Required sum = $(2 + 3 + 4 + 5)(4 - 1)! \left(\frac{10^4 - 1}{10 - 1}\right)$ = $14 \times 6 \times \left(\frac{10^4 - 1}{10 - 1}\right) = 93324$

189 **(b)**

Here, we have to divide 52 cards into 4 sets, three of them having 17 cards each and the fourth one having just one card. First we divide 52 cards into two groups of 1 card and 51 cards. This can be done in $\frac{52!}{1!51!}$ ways Now, every group of 51 cards can be divided into 3 groups of 17 each in $\frac{51!}{(17!)^3 3!}$

Hence, the required number of ways 52! 51! 52!

$$= \frac{1}{1!51!} \cdot \frac{1}{(17!)^33!} = \frac{1}{(17!)^33!}$$

190 **(d)**

The required number is ${}^{9}C_{5} + {}^{9}C_{4} \times {}^{8}C_{1} + {}^{9}C_{3} \times {}^{8}C_{2} = 3486$

191 **(c)**

If there were no three points collinear, we should have ${}^{10}C_2$ lines; but since 7 points are collinear we must subtract ${}^{7}C_2$ lines and add the one corresponding to the line of collinearity of the seven points.

Thus, the required number of straight lines = ${}^{10}C_2 - {}^{7}C_2 + 1 = 25$

193 **(d)**

The required number of points

$$= {}^{8}C_{2} \times 1 + {}^{4}C_{2} \times 2 + ({}^{8}C_{1} \times {}^{4}C_{1}) \times 2$$

$$= 28 + 12 + 32 \times 2 = 104$$

194 **(d)**

 ${}^{16}C_r = {}^{16}C_{r+1}$ $\Rightarrow {}^{16}C_{16-r} = {}^{16}C_{r+1} \quad [\because {}^{n}C_r = {}^{n}C_{n-r}] \\ \Rightarrow {}^{16}-r = r+1 \Rightarrow 2r = 15 \\ \Rightarrow {}^{r} = 7.5$

Which is not possible, since *r* should be an integer 195 **(a)**

We have,

$$\sum_{r=0}^{m} {}^{n+r}C_n = \sum_{r=0}^{m} {}^{n+r}C_r \qquad [\because {}^{n}C_r = {}^{n}C_{n-r}]$$

$$\Rightarrow \sum_{r=0}^{m} {}^{n+r}C_n = {}^{n}C_0 + {}^{n+1}C_1 + {}^{n+2}C_2 + \cdots + {}^{n+m}C_m$$

$$\Rightarrow \sum_{r=0}^{m} {}^{n+r}C_n = [1 + (n+1)] + {}^{n+2}C_2 + {}^{n+3}C_3 + \cdots + {}^{n+m}C_m$$

$$\Rightarrow \sum_{r=0}^{m} {}^{n+r}C_n = ({}^{n+2}C_1 + {}^{n+2}C_2) + {}^{n+3}C_3 + \cdots + {}^{n+m}C_m$$

$$\Rightarrow \sum_{r=0}^{m} {}^{n+r}C_n = ({}^{n+3}C_2 + {}^{n+3}C_3) + {}^{n+4}C_4 + \cdots + {}^{n+m}C_m$$

$$\Rightarrow \sum_{r=0}^{m} {}^{n+r}C_n = ({}^{n+4}C_3 + {}^{n+4}C_4) + \cdots + {}^{n+m}C_m$$

$$\Rightarrow \sum_{r=0}^{m} {}^{n+r}C_n = ({}^{n+4}C_3 + {}^{n+4}C_4) + \cdots + {}^{n+m}C_m$$

$$\Rightarrow \sum_{r=0}^{m} {}^{n+r}C_n = {}^{n+m+1}C_m$$

Taking option (a)

m

$${}^{n-1}P_r + r {}^{n-1}P_{r-1} = \frac{(n-1)!}{(n-1-r)!} + \frac{(n-1)!}{(n-r)!}$$
$$\left(\therefore {}^{n}P_r = \frac{n!}{(n-r)!} \right)$$

$$= \frac{(n-1)!}{(n-1-r)!} \left(1 + r \cdot \frac{1}{n-r}\right)$$
$$= \frac{(n-1)!}{(n-1-r)!} \left(\frac{n}{n-r}\right) = \frac{n!}{(n-r)!} = {}^{n}P_{r}$$

197 (a)

First we fix the position of 6 men, the number of ways to sit men= 5! and the number of ways to sit women ${}^{6}P_{5}$

:. Total number of ways = 5! ${}^{6}P_{5} = 5! \times 6!$ 198 **(b)**

In a octagon there are eight sides and eight points ∴ Required number of diagonals

$$= {}^{8}C_{2} - 8 = 28 - 8 = 20$$

199 **(a)**

The required number of ways=The even number of 0's *ie*, {0, 2, 4, 6, ...}

$$= \frac{n!}{n!} + \frac{n!}{2!(n-2)!} + \frac{n!}{4!(n-4)!} + \cdots$$

$$= {}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + \ldots = 2^{n-1}$$
200 (c)
We have,
 ${}^{n-1}C_{3} + {}^{n-1}C_{4} > {}^{n}C_{3}$
 $\Rightarrow {}^{n}C_{4} > {}^{n}C_{3} \quad [\because {}^{n}C_{r-1} + {}^{n}C_{r} = {}^{n+1}C_{r}]$
 $\Rightarrow \frac{n!}{(n-4)!4!} > \frac{n!}{(n-3)!3!}$
 $\Rightarrow \frac{1}{4} > \frac{1}{n-3} \Rightarrow n > 7$
201 (d)
Let the total number of contestants= n
A voter can vote to $(n-1)$ candidates
 $\therefore {}^{n}C_{1} + \cdots + {}^{n}C_{n-1} = 126$
 $\Rightarrow {} 2^{n} - 2 = 126$
 $\Rightarrow {} 2^{n} - 2 = 126$
 $\Rightarrow {} 2^{n} = 128 = 2^{7}$
 $\Rightarrow n = 7$
202 (c)
We have,
 ${}^{n}C_{n-r} + {}^{n}C_{n-r+1} + {}^{3} \cdot {}^{n}C_{n-r+2} + {}^{n}C_{n-r+3}$
 $= {}^{x}C_{r}$
 $\Rightarrow ({}^{n}C_{n-r} + {}^{n}C_{n-r+1}) + 2({}^{n}C_{n-r+1} + {}^{n}C_{n-r+2})$
 $+ ({}^{n}C_{n-r+2} + {}^{n}C_{n-r+3}) = {}^{x}C_{r}$
 $\Rightarrow {}^{n+1}C_{n-r+1} + {}^{n+1}C_{n-r+2} + {}^{n+1}C_{n-r+3} = {}^{r}C_{r}$
 $[\because {}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}]$
 $\Rightarrow {}^{n+1}C_{n-r+1} + {}^{n+1}C_{n-r+2} \}$

 $\Rightarrow {}^{n+1}C_{n-r+1} + 2 {}^{n+1}C_{n-r+2} + {}^{n+1}C_{n-r+3} = {}^{r}C_{r}$ $[\because {}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}]$ $\Rightarrow \{{}^{n+1}C_{n-r+1} + {}^{n+1}C_{n-r+2}\}$ $+ \{{}^{n+1}C_{n-r+2} + {}^{n+1}C_{n-r+3}\}$ $= {}^{x}C_{r}$ $\Rightarrow {}^{n+2}C_{n-r+2} + {}^{n+2}C_{n-r+3} = {}^{x}C_{r}$ $\Rightarrow {}^{n+3}C_{n-r+3} = {}^{x}C_{r}$ $\Rightarrow {}^{n+3}C_{r} = {}^{x}C_{r} [\because {}^{n+3}C_{n-r+3} = {}^{n+3}C_{r}]$ $\Rightarrow x = n + 3$ 203 (b)

A 2 \times 2 matrix has 4 elements such that each element can two values. Thus, total number of matrices

 $= 2 \times 2 \times 2 \times 2 = 16$

204 (a)

: Total number of seats = nand number of people = mIst person can be seated in n ways IInd person can be seated in (n - 1) ways

.....

*m*th person can be seated in (n - m + 1)ways \therefore Total number of ways $= n(n - 1)(n - 2) \dots (n - m + 1) = {}^{n}P_{m}$ **Alternate** In out of *n* seats *m* people can be seated in {}^{n}P_{m} ways 205 (c) Given word is EAMCET Here number of vowels are 3 ie, E, A, E and number of consonants are 3, ie, M, C, T and number of ways of arranging three consonants= 3! = 6VCVCVCV In the places 'V', we shall arrange vowels There are 4 places marked V : Number of ways of arranging vowels $= {}^{4}P_{3} + \frac{1}{2} = 12$ [: E is repeated twice] : Total number of words = $6 \times 12 = 72$ 207 (d) The vowels in the word "COMBINE" are O, I, E which can be arranged at 4 places in ${}^{4}P_{3}$ ways and other words can be arranged in 4! ways Hence, total number of ways = ${}^{4}P_{3} \times 4!$ $= 4! \times 4!$ = 576208 (b) Number of ways of giving one prize for running = 16Number of ways of giving one prizes for swimming $= 16 \times 15$ Number of ways of giving three prizes for riding $= 16 \times 15 \times 14$ $15 \times 16 \times 15 \times 14$ $= 16^3 \times 15^2 \times 14$ 209 (b) First we fix the alternate position of girls and they arrange in 4! ways and in the five places five boys can be arranged in ${}^{5}P_{5}$ ways : Total number of ways = $4! \times {}^5P_5 = 4! \times 5!$

210 **(c)**

Number of vertices=15

: Number of lines=¹⁵ $C_2 = 105$

∴ Number of diagonals=105-15=90

211 **(b)**

At least one green ball can be selected out of 5 green balls in $2^5 - 1 = 31$ ways. Similarly at least one blue ball can be selected from 4 blue balls in $2^4 - 1 = 15$ ways and at least one red or not red can be select in $2^3 = 8$ ways

Hence ,required number of ways = $31 \times 15 \times 8 =$

212 **(c)**

We have,

The required number of words = $({}^{2}C_{1} \times {}^{4}C_{2} + {}^{2}C_{2} \times {}^{4}C_{1}) 3! = 96$

213 **(c)**

First deduct the *n* things and arrange the *m* things in a row taken all at a time, which can be done in *m*! ways. Now in (m + 1) spaces between them (including the beginning and end) put the *n* things one in each space in all possible ways. This can be done in ${}^{m+1}P_n$ ways.

So, the required number = $m ! {}^{m+1}P_n = \frac{m!(m+1)!}{(m+1-n)!}$

214 **(b)**

Number greater than 1000 and less than or equal to 4000 will be of 4 digits and will have either 1 (expect 1000) or 2 or 3 in the first place with 0 in each of remaining places.

After fixing 1st place, the second place can be filled by any of the 5 numbers.

Similarly, third place can be filled up in 5 ways and 4th place can be filled up in 5 ways. Thus, there will be $25 \times 5 = 125$

Ways in which 1 will be in first place but this include 1000 also hence there will be 124 numbers having 1 in the first place. Similarly, 125 ways for each 2 or 3 in the Ist place.

One number will be in which 4 in the first place *ie*, 4000

Hence, the required number of numbers = 124 + 125 + 125 + 1 = 375

215 **(a)**

Considering four particular flowers as one flower, we have five flowers which can be strung to form a garland in 4! ways. But, 4 particular flowers can be arranged in 4! ways. Thus, the required number = $4! \times 4!$

216 **(b)**

Any number between 1 to 999 is a 3 digit number xyz where the digits x, y, z are any digits from 0 to 9.

Now, we first count the number in which 3 occurs once only. Since 3 can occur at one place in ${}^{3}C_{1}$ ways, there are ${}^{3}C_{1}$. (9 × 9) = 3.9² such numbers.

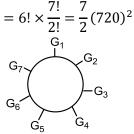
Again, 3 occur in exactly two places in ${}^{3}C_{2}$. (9) such numbers. Lastly 3 can occur in all the three

digits in one such number only 333

 \therefore The number of times 3 occurs

$$= 1 \times (3 \times 9^2) + 2 \times (3 \times 9) + 3 \times 1 = 300$$

217 **(b)**


Number of triangles= ${}^{n+3}C_3 = 220$ $\Rightarrow \frac{(n+3)!}{3!n!} = 220$ $\Rightarrow (n+1)(n+2)(n+3) = 1320$ $= 12 \times 10 \times 11$ = (9+1)(9+2)(9+3) $\therefore n = 9$

218 **(a)**

First we fix the alternate position of 7 gentlemen in a round table by 6! ways.

There are seven positions between the gentlemen in which 5 ladies can be seated in ${}^{7}P_{5}$ ways

 \therefore required number of ways

219 **(c)**

The number between 999 and 10000 are of four digit numbers.

The number of four digit numbers formed by digits 0, 2, 3, 6, 7, 8 is ${}^{6}P_{4} = 360$

But here those numbers are also involved which being from 0.

So, we take those numbers as three digit numbers. Taking initial digit 0, the number of ways to fill remaining 3 places from five digits 2, 3, 6, 7, 8 are ${}^{5}P_{3} = 60$

So the required numbers = 360 - 60 = 300

220 **(b)**

Required sum= 3!(3+4+5+6)

= 6 × 18 = 108 221 (c)

Since, no two lines are parallel and no three are concurrent, therefore *n* straight lines intersect at ${}^{n}C_{2} = N$ (say) points. Since, two points are required to determine a straight line, therefore the total number of lines obtained by joining *N* points is ${}^{N}C_{2}$. But in this each old line has been counted ${}^{n-1}C_{2}$ times. Since, on each old line there will be n - 1 lines. Hence, the required number of fresh lines.

$$= {}^{N}C_{2} - n {}^{n-1}C_{2}$$

$$= \frac{N(N-1)}{2} - \frac{n(n-1)(n-2)}{2}$$

$$= \frac{{}^{n}C_{2}({}^{n}C_{2}-1)}{2} - \frac{n(n-1)(n-2)}{2} \quad (\because N = {}^{n}C_{2})$$

$$= \frac{\frac{n(n-1)}{2}(\frac{n(n-1)}{2}-1)}{2} - \frac{n(n-1)(n-2)}{2}$$

$$= \frac{n(n-1)}{8} [(n^{2} - n - 2) - 4(n - 2)]$$

$$= \frac{n(n-1)}{8} [n^{2} - 5n + 6]$$

$$= \frac{n(n-1)(n-2)(n-3)}{8}$$

222 (c)

The required number of ways

$$= ({}^{2}C_{1} \times {}^{4}C_{2} + {}^{2}C_{2} \times {}^{4}C_{1}) \times 3!$$
$$= (2 \times 6 + 1 \times 4)6 = 96$$

223 (a)

The factor of $216 = 2^3 \cdot 3^3$ The odd divisors are the multiple of 3 \therefore The number of divisors=3+1=4

224 **(c)**

We have,

$$E_3(100 !) = \left[\frac{100}{3}\right] + \left[\frac{100}{3^2}\right] + \left[\frac{100}{3^3}\right] \left[\frac{100}{3^4}\right]$$
$$= 33 + 11 + 3 + 1 = 48$$

225 **(b)**

Case I When number in two digits.

Total number of ways = $9 \times 9 = 81$

Case II When number in three digits

Total number of ways = $9 \times 9 \times 9 = 729$

 \therefore Total number of ways = 81 + 729 = 810

226 **(b)**

We have,

$${}^{56}P_{r+6}: {}^{54}P_{r+3} = 30800:1$$

 $\Rightarrow \frac{56!}{(50-r)!} = 3800 \left(\frac{54!}{(51-r)!}\right)$
 $\Rightarrow 56 \times 55 = \frac{3800}{51-r}$
 $\Rightarrow 51 - r = 10 \Rightarrow r = 41$

227 **(c)**

We have,

Required number of numbers

= Total number of numbers formed by the digits 1,2,3,4,5

Number of numbers having 1 at ten thousand's place

Number of numbers having 2 at ten thousand's place and 1 at thousand's place

Number of numbers having 2 at ten thousand's place and 3 at thousand's place

$$= 5! - 4! - 3! - 3! = 120 - 24 - 6 - 6 = 84$$

228 **(c)**

The number of ways of selecting 3 points out of 12 points is ${}^{12}C_3$. Three points out of 7 collinear points can be selected in 7C_3 ways Hence, the number of triangles formed = ${}^{12}C_3 - {}^7C_3 = 185$

229 (d)

Required sum=(sum of the digits) $(n - 1)! \left(\frac{10^{n} - 1}{10 - 1}\right)$

$$= (1+2+3+4+5)(5-1)! \left(\frac{10^5-1}{10-1}\right)$$
$$= 360 \left(\frac{100000-1}{9}\right) = 40 \times 99999 = 3999960$$

230 (c)

Total number of words formed by 4 letters form given eight different letters with repetition= 8^4 and number of words with no repetition= $8^8 P_4$ \therefore Required number of words= $8^4 - 8^8 P_4$

231 **(d)**

Given number of flags= 5 Number of signals formed using one flag= ${}^{5}P_{1} = 5$

Similarly, using 2 flags= ${}^{5}P_{2}$ Using 3 flags= ${}^{5}P_{3}$ Using 4 flags= ${}^{5}P_{4}$ Using 5 flags= ${}^{5}P_{5}$ \therefore Total number of signals that can be formed = ${}^{5}P_{1} + {}^{5}P_{2} + {}^{5}P_{3} + {}^{5}P_{4} + {}^{5}P_{5}$ = 5 + 20 + 60 + 120 + 120 = 325

232 (d)

Required number of permutations = $\frac{6!}{3!2!} = 60$

233 **(c)**

Out of 22 players 4 are excluded and 2 are to be included in every selection. This means that 9 players are to be selected from the remaining 16 players which can be done in ${}^{16}C_{9}$ ways

234 **(b)**

The letters in the word 'CONSEQUENCE' are 2C, 3E, 2N, 1O, 1Q, 1S, 1U

: Required number of permutations = $\frac{9!}{2!2!}$

235 **(c)**

The number of different sums of money Sita can form is equal to the number of ways in which she can select at least one coin out of 5 different coins Hence, required number of ways = $2^5 - 1 = 31$

236 **(a)**

For the first player, distribute the cards in ${}^{52}C_{17}$ ways. Now, out of 35 cards left 17 cards can be put for second player in ${}^{35}C_{17}$ ways. Similarly, for third player put them in ${}^{18}C_{17}$ ways. One card for the last player can be put in ${}^{1}C_{1}$ way. Therefore, the required number of ways for the proper distribution

$$= {}^{52}C_{17} \times {}^{35}C_{17} \times {}^{18}C_{17} \times {}^{1}C_1$$
$$= {}^{52!}_{35!17!} \times {}^{35!}_{18!17!} \times {}^{18!}_{17!1!} \times 1! = {}^{52!}_{(17!)^3}$$

237 **(b)**

Suppose $x_1 x_2 x_3 x_4 x_5 x_6 x_7$ represents a seven digit number. Then x_1 takes the value 1,2,3, ...,9 and $x_2, x_3, ..., x_7$ all take values 0,1,2,3, ...,9 If we keep $x_1, x_2, ..., x_6$ fixed, then the sum $x_1 + x_2 + \cdots + x_6$ is either even or odd. Since x_7 takes 10 values 0,1,2, ... 9, five of the numbers so formed will be even and 5 odd Hence, the required number of numbers $= 9 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 5 = 4500000$

239 (a)

The required number of ways is equal to the number of dearrangements of 10 objects.

 \therefore Required number of ways

$$= 10! \left\{ 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{1}{10!} \right\}$$

240 (a)

The number of words starting from A are =5!=120

The number of words starting from I are =5!=120

The number of words starting from KA are =4!=24

The number of words starting from KI are

=4!=24

The number of words starting from KN are =4!=24

The number of words starting from KRA are =3!=6

The number of words starting from KRIA are =2!=2

The number of words starting from KRIN are =2!=2

The number of words starting from KRISA are=1!=1

The number of words starting from KRISNA are=1!=1

Hence, rank of the word KRISNA

$$= 2(120) + 3(24) + 6 + 2(2) + 2(1) = 324$$

241 **(a)**

Total number of words = Number of arrangements of the letters of the word 'MATHEMATICS' = $\frac{11!}{2!2!2!}$ 242 (c) We have, $P_m = {}^m P_m = m!$ $\therefore 1 + P_1 + 2 \cdot P_2 + 3 \cdot P_3 + \dots + n \cdot P_n$ $= 1 + 1 + 2 \cdot 2! + 3 \cdot 3! + \dots + n \cdot n!$ $= 1 + \sum_{r=1}^n r \cdot (r!) = 1 + \sum_{r=1}^n \{(r+1) - 1\}r!$ $= 1 + \sum_{r=1}^n [(r+1)! - r!]$ $= 1 + \{(2! - 1!) + (3! - 2!) + (4! - 3!) + \dots + ((n+1)! - n!)\}$

243 **(a)**

$$\therefore \quad \frac{n(n-3)}{2} = 54$$

$$\Rightarrow \quad n^2 - 3n - 108 = 0$$

$$\Rightarrow \quad (n-12)(n+9) = 0$$

$$\Rightarrow \quad n = 12 \quad [\because n \neq -9]$$
244 (c)

In all, we have 8 squares in which 6 'X' have to be placed and It can be done in ${}^{8}C_{6} = 28$ ways.

But this includes the possibility that either the top or horizontal row does not have any 'X'. Since, we

want each row must have at least one 'X', these two possibilities are to be excluded.

Hence, required number of ways = 28 - 2 = 26

245 (c)

We have, 11 letters, viz. A, A; I, I; N, N; E, X; M; T; O For groups of 4 we may arrange these as follows: (i) Two alike, two others alike (ii) Two alike, two different (iii) all four different (i) gives rise ${}^{3}C_{2}$ selections, (ii) gives rise $3 \times {}^{7}C_{2}$ selection and (iii) gives rise ${}^{8}C_{4}$ selections So, the number of permutations

$$= 3\frac{4!}{2!2!} + 63\frac{4!}{2!} + 70.4! = 2454$$

246 (b)

There are total 20+1=21 persons. The two particular persons and the host be taken as one unit so that these remain 21 - 3 + 1 = 19persons be arranged in round table in 18! ways. But the two persons on either sides of the host can themselves be arranged in 2! ways.

 \therefore Required number of ways = 2! 18! = 2.18!

247 (d)

$${}^{n-1}C_3 + {}^{n-1}C_4 > {}^{n}C_3 \Rightarrow {}^{n}C_4 > {}^{n}C_3 \Rightarrow {}^{n!} \frac{n!}{(n-4)! \, 4!} > \frac{n!}{(n-3)! \, 3!} \Rightarrow (n-3)(n-4)! > (n-4)! \, 4 \Rightarrow n > 7$$

248 (c)

We know that $\frac{(m n)!}{(m !)^n}$ is the number of ways of distributing *mn* distinct object in *n* persons equally Hence, $\frac{(mn)!}{(m!)^n}$ is a positive integer Consequently, (mn) ! is divisible by $(m !)^n$ Similarly, (mn) ! is divisible by $(n !)^m$ Now,

mn

 \Rightarrow (m+n)! | (mn)! and <math>(m-n)! | (mn)!249 (d)

> The number of subsets containing more than *n* elements is equal to

 $^{2n+1}C_{n+1} + {}^{2n+1}C_{n+2} + \dots + {}^{2n+1}C_{2n+1}$

$$= \frac{1}{2} \{ {}^{2n+1}C_0 + {}^{2n+1}C_1 + \dots + {}^{2n+1}C_{2n+1} \}$$
$$= \frac{1}{2} (2^{2n+1}) = 2^{2n}$$

251 (a)

2 We have, 9 letters 3a's, 2b's and 4c's. These 9 letters can be arranged in $\frac{9!}{3!2!4!} = 1260$ ways 252 (c) The total number of subsets of given set is $2^9 = 512$ **Case I** When selecting only one even number {2, 4, 6,8} Number of ways = ${}^{4}C_{1} = 4$ Case II When selecting only two even numbers= ${}^{4}C_{2} = 6$ Case III When selecting only three even numbers = ${}^4C_3 = 4$ Case IV When selecting only four even numbers $= {}^{4}C_{4} = 1$ ∴ Required number of ways = 512 - (4 + 6 + 4 + 1) - 1 = 496[here, we subtract 1 for due to the null set] 254 (a) The number of ways of choosing a committee if there is no restriction is ${}^{10}C_4 \cdot {}^{9}C_5 = \frac{10!}{4!6!} \cdot \frac{9!}{4!5!} = 26460$ The number of ways of choosing the committee if both Mr. A and Ms. B are included in the committee is ${}^{9}C_{3} \cdot {}^{8}C_{4} = 5880$ Therefore, the number of ways of choosing the committee when Mr. A and Ms. B are not together = 26480 - 5880 = 20580255 (d) (1) It is true that product of *r* consecutive natural numbers is always divisible by r. (2) Now, $115500 = 2^2 \times 3^1 \times 5^3 \times 7^1 \times 11^1$: Total number of proper divisor = (2 + 1)(1 + 1)(3 + 1)(1 + 1)(1 + 1) - 2= 96 - 2 = 94

(3) Total number of ways = $\frac{52!}{(13!)^4}$

Hence, all statements are true

256 (d)

Total numbers formed by using given 5 digits = $\frac{5!}{2!}$ For number greater than 40000, digit 2 cannot

come at first place. Hence, number formed in which 2 is at the first place = $\frac{4!}{2!}$

Hence, total numbers formed greater than 40000

$$=\frac{5!}{2!}=\frac{4!}{2!}=60-12=48$$

257 **(c)**

In the case of each book we may take 0,1,2,3, ... p copies; that is, we may deal with each book in p + 1 ways and therefore with all the books in $(p + 1)^n$ ways. But, this includes the case where all the books are rejected and no selection is made \therefore Number of ways in which selection can be made $= (p + 1)^n - 1$

258 **(b)**

First we fix the alternate position of the girls. Five girls can be seated around the circle in

(5-1)! = 4!, 5 boys can be seated in five vacant place by 5!

 \therefore Required number of ways= 4! \times 5!

259 (c)

The number of words start with D = 6! = 720

The number of words start with E = 6! = 720

The number of words start with MD = 5! = 120

261 **(c)**

We have the following possibilities: Number of selections Number of Arrangements

$${}^{3}C_{1} \times {}^{2}C_{2} \qquad {}^{3}C_{1} \times {}^{2}C_{2} \times \frac{5!}{3!} = 60$$

$${}^{3}C_{2} \times {}^{1}C_{1} \qquad {}^{3}C_{2} + {}^{1}C_{1} \times \frac{5!}{2! \, 2!} = 90$$

Three bottles of one type and two distinct. Two bottles of one type, two bottles of second type and one from the remaining.

Hence, required number of ways = 60 + 90 = 150

262 **(a)**

Six '+' signs can be arranged in a row in $\frac{6!}{6!} = 1$ way. Now, we are left with seven places in which 4 minus signs can be arranged in

$${}^{7}C_{4} \times \frac{4!}{4!} = 35$$

263 **(b)**

: The candidate is unsuccessful, if he fails in 9 or 8 or 7 or 6 or 5 papers.

 \therefore Numbers of ways to be unsuccessful

The number of words start with ME = 5! = 120

Now sthe first word start with MO is MODESTY.

Hence, rank of MODESTY = 720 + 720 + 120 + 120

= 1681

260 **(c)**

Starting with the letter A and arranging the other four letters, there are 4! = 24 words. The starting with G, and arranging A, A, I, and N in different ways, there are $\frac{4!}{2!} = 12$ words. Next the 37th word starts with I, there are 12 words starting with I. This accounts upto the 48th word. The 49th word in NAAGI. The 50th word is NAAAIG

$$= {}^{9}C_{9} + {}^{9}C_{8} + {}^{9}C_{7} + {}^{9}C_{6} + {}^{9}C_{5}$$

$$= {}^{9}C_{0} + {}^{9}C_{1} + {}^{9}C_{2} + {}^{9}C_{3} + {}^{9}C_{4}$$

$$= \frac{1}{2} ({}^{9}C_{0} + {}^{9}C_{1} + \dots + {}^{9}C_{9})$$

$$= \frac{1}{2} (2^{9}) = 2^{8} = 256$$

264 (d)

Using the digits 0, 1, 2,, 9 the number of five digits telephone numbers which can be formed is

 10^5 (since repetition is allowed).

The number of five digits telephone numbers, which have none of digits repeated = ${}^{10}P_5 = 30240$

 \div The required number of telephone number

 $= 10^5 - 30240 = 69760$

265 **(d)**

The number of words beginning with 'a' is same as the number of ways of arranging the remaining 4 letters taken all at a time. Therefore 'a' will occur in the first place 4 ! times. Similarly, b or c will occur in the first place the same number of times. Then, d occurs in the first place. Now, the number of words beginning with 'da, db or dc' is 3 !. Then, the words beginning with 'de' must follow. The first one is 'de abc', the next one is 'de acb' and the next to the next comes 'de bac'. So, the rank of 'de bac' = $3 \cdot 4 ! + 3 \cdot 3 ! + 3 = 93$

266 **(b)**

Required number = $2^{20}C_2$

267 **(c)**

The total number of combinations which can be formed of five different green dyes, taking one or more of them is $2^5 - 1 = 31$. Similarly, by taking one or more of four different red dyes

 $2^4 - 1 = 15$ combinations can be formed. The number of combinations which can be formed of three different red dyes, taking none, one or more of them is $2^3 = 8$

Hence, the required number of combinations of dyes

 $= 31 \times 15 \times 8 = 3720$

268 **(b)**

We observe that

4 lines intersect each other in ${}^4C_2 = 6$ points 4 circles intersect each other in ${}^4C_2 \times 2 = 12$ points A line cuts a circle in 2 points \therefore 4 lines will cut four circles into 2 \times 4 \times 4 = 32

points

Hence, required number of points = 6 + 12 + 32 = 50

269 **(a)**

From the given relation it is evident that ${}^{n}C_{r}$ is the greatest among the values ${}^{n}C_{0}$, ${}^{n}C_{1}$, ..., ${}^{n}C_{n}$ We know that ${}^{n}C_{r}$ is greatest for $r = \frac{n}{2}$. Hence,

270 (d)

A committee may consists of all men and no women or all women and no men or 3 men and 1 women whose is not among wives of 3 chosen men or, 2 men and 2 women who are not are not among the wives of 2 chosen men or 1 men and 3 women none of whom is wife of chosen men ∴ Required number of committees

$$= {}^{4}C_{4} + {}^{4}C_{4} + {}^{4}C_{3} \times {}^{1}C_{1} + {}^{4}C_{2} \times {}^{2}C_{2} + {}^{4}C_{1} \times {}^{3}C_{3} = 16$$

271 (d)

The women choose the chairs amongst the chairs marked 1 to 4 in ${}^{4}P_{2}$ ways and the men can select the chairs from remaining in ${}^{6}P_{3}$ ways

Total number of ways = ${}^{4}P_{2} \times {}^{6}P_{3}$

272 **(a)**

Let *n* be the number of diagonals of a polygon.

Then,
$${}^{n}C_{2} - n = 44$$

$$\Rightarrow \frac{n(n-1)}{2} - n = 44$$

$$\Rightarrow n^{2} - 3n - 88 = 0$$

$$\Rightarrow n = -8 \text{ or } 11$$

$$\therefore n = 11$$

273 **(b)**

In the word 'exercises' there are 9 letters of which 3 are e's and 2 are s's So, required number of permutations $=\frac{9!}{3!2!}=30240$

274 **(b)**

Total number of functions

=Number of dearrangement of 5 objects

$$= 5! \left(\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!}\right) = 44$$

275 **(a)**

The total number of ways in which words with five letters are formed from given 10 letters $= 10^5 = 100000$

Total number of ways in which words with five letters are formed (no repetition) = $10 \times 9 \times 8 \times 7 \times 6 = 30240$

 \therefore Required number of ways = 100000 - 30240 =

 $r = \frac{n}{2}$

69760

277 (d) We have, Required number of numbers = Number of three digit numbers divisible by 5 + number of 4 digit = numbers divisible by 5 $= {}^{3}C_{2} \times 2! \times 1 + ({}^{3}C_{3} \times 3!) \times 1 = 6 + 6 = 12$ 279 (c) 285 (c) In 8 squares 6x can be placed in 28 ways but there are two methods in which there is no *x* in first or last row. 2 ∴ required number of ways=28-2=26 280 (d) Total number of points on a three lines are 286 (c) m+n+k∴ maximum number of triangles $= {}^{m+n+k}C_3 - {}^{m}C_3 - {}^{n}C_3 - {}^{k}C_3$ (subtract those triangles in which point on the same line) 2! 2! 281 (d) In the word RAHUL the letters are (A, H, L, R, U) Number of words starting with A = 4! = 24Number of words starting with H=4!=24Number of words starting with L = 4! = 24287 (d) In the starting with R first one is RAHLU and next one is RAHUL. =5!=120 \therefore Rank of the word RAHUL= 3(24) + 2 = 74 282 (a) The required natural numbers consist of 4 digits, =5!=1203 digits, 2 digits and one digit so that their number is equal to $9 \cdot 9 \cdot 8 \cdot 7 + 9 \cdot 9 \cdot 8 + 9 \cdot 9 + 9 = 5274$ are=4!=24 283 (a) We have 26 letters (a to z) and 10 digits (0 to 9). are=4!=24 The first three places can be filled with letters in $^{26}P_3$ ways and the remaining 2 places can be filled with digits ${}^{10}P_2$ ways. Hence, the number of =3!=6ways in which the code word can be made $= ({}^{26}C_3 \times 3!) \times ({}^{10}C_2 \times 2!) = 1404000$ =3!=6284 (c) The first digit *a* can take any one of 1 to 8 The third digit *c* can take any one of 0 to 9 =3!=6When a = 1, b can take any one of 2 to 9=8 values =2!=2When a = 2, b can take any one of 3 to 9=7 values When a = 3, b can take any one of 4 to 9=6 values =1!=1...

Page | 47

When a = 8, b can take any one (b = 9) = 1values Thus, the number of total numbers

$$= (8 + 7 + 6 + ... + 2 + 1) \times 10 = \frac{8 \times 9}{2} \times 10$$

= 360

Since, out of eleven members two numbers sit together, then the number of arrangements = $9! \times$

(: Two numbers can be sit in two ways)

There are 4 odd places and there are 4 odd numbers viz. 1, 1, 3, 3. These, four numbers can be arranged in four places in

$$\frac{4!}{2!2!} = 6$$
 ways

In a seven digit are 3 even places namely 2nd, 4th and 6th in which 3 even numbers 2, 2, 4 can be arranged in $\frac{3!}{2!} = 3$ ways

Hence, the total number of numbers $= 6 \times 3 = 18$

The number of words starting from E are

The number of words starting from H are

The number of words starting from ME

The number of words starting from MH

The number of words starting from MOE are

The number of words starting from MOH are

The number of words starting from MOR are

The number of words starting from MOTE are

The number of words starting from MOTHER are

Hence, rank of the word MOTHER

$$= 2(120) + 2(24) + 3(6) + 2 + 1$$

= 309

288 **(c)**

(1) Total number of ways of arranging m things = m! To find the number of ways in which p particular things are together, we consider p particular thing as a group.

: Number of ways in which p particular things are together = (m - p + 1)! p!

So, number of ways in which \boldsymbol{p} particular things are not together

= m! - (m - p + 1)! p!

(2) Each player shall receive 13 cards.

Total number of ways = $\frac{52!}{(13!)^4}$

Hence, both statements are correct

289 **(d)**

Now, 770=2.5.7.11

We can assigned 2 to x_1 or x_2 or x_3 or x_4 . That is 2 can be assigned in 4 ways.

Similarly each of 5, 7 or 11 can be assigned in 4 ways.

 \therefore Required number of ways = $4^4 = 256$

290 **(c)**

There are five seats in a bus are vacant. A man sit on any one of 5 seats in 5 ways. After the man is seated his wife can be seated in any of 4 remaining seats in 4 ways. Hence, total number of ways of seating them= $5 \times 4 = 20$

291 **(c)**

Required number = ${}^9C_5 - {}^7C_3 = 91$

292 **(b)**

293 **(b)**

Since, there are *n* distinct points on a circle.

For making a pentagon it requires a five points

According to given condition

$${}^{n}C_{5} = {}^{n}C_{3} \Rightarrow n = 8$$

The total number of ways = $6^4 = 1296$ ∴ required number of ways =1296-(none of the number shows 2) $= 1296 - 5^4 = 671$ 294 (c) Required number of ways $= {}^{11}C_5 - {}^{11}C_4$ $=\frac{11!}{5!\,6!}=\frac{11!}{4!\,7!}=132$ 295 (d) There are (m + 1) choices for each of *n* different books. So, the total number of choice is $(m + 1)^n$ including one choice in which we do not select any book. Hence, the required number of ways is $(m+1)^n - 1$ 296 (b) There are 6 letters in the word 'MOBILE'. Consequently, there are 3 odd places and 3 even places. Three consonants *M*, *B* and *L* can occupy three odd places in 3 ! ways. Remaining three places can be filled by 3 vowels in 3 ! ways. Hence, required number of words = $3! \times 3! = 36$ 297 (b) As the seats are numbered so the arrangement is not circular Hence, required number of arrangements $= {}^{n}C_{m} \times m!$ 298 (d) Two circles can intersect at most in two points. Hence, the maximum number of points of intersection is ${}^{8}C_{2} \times 2 = 56$ 299 (b) There are two cases arise Case I They do not invite the particular friend $= {}^{8}C_{6} = 28$ Case II They invite one particular friend $= {}^{8}C_{5} \times {}^{2}C_{1} = 112$ \therefore Required number of ways = 28+112=140 300 (d) The consonants can be arranged in 4! ways, and the vowels in $\frac{3!}{2!}$ ways So, the required number of arrangements $=\frac{4!3!}{2}$

 \because Each true-false questions can be answered in 2 ways

 \therefore Number of ways in which 10 questions can be answered

 $= 2^{10} = 1024$

302 **(b)**

The required number of ways = ${}^{8-1}C_{3-1} = \frac{7!}{2!5!} = 21$

303 (c)

The total number of two factor products = ${}^{100}C_2$. Out of the numbers 1,2,3, ...,100; the multiples of 3 are 3,6,9, ...,99 i.e., there are 33 multiples of 3, and therefore there are 67 non-multiples of 3 So, the number of two factor products which are not multiples of 3 = ${}^{67}C_2$

So, the required number = ${}^{100}C_2 - {}^{67}C_2 = 2739$ (c)

304 **(c)**

Since each question can be dealt with in 3 ways, by selecting it or by selecting its alternative or by rejecting it. Thus, the total number of ways of dealing with 10 given questions is 3^{10} including a way in which we reject all the questions Hence, the number of all possible selections $= 3^{10} - 1$

306 **(c)**

The number of ways in which four different balls can be placed in four different boxes

 $=^{4} C_{1} + {}^{3}C_{1} + {}^{2}C_{1} + {}^{1}C_{1}$

= 4 + 3 + 2 + 1 = 10

 \therefore Required number of ways = 10 - 1 = 9

[Since only one way in which the same ball have a same box]

307 **(b)**

First stall can be filled in 3 ways, second stall can be filled in 3 ways and so on.

 \therefore Number of ways of loading steamer

 $= 3 \times 3 \times ... \times 3(12 \text{ times}) = 3^{12}$

309 (a)

Five boys can be seated in a row in 5 ! ways. There are 4 places between five boys in which 3 girls can be seated in ${}^{4}C_{3} \times 3$! ways

Hence, required number of ways = $5 ! \times {}^{4}C_{3} \times 3 ! = 2880$

310 **(b)**

: Each letter can be posted in 3 ways

 \therefore Total number of ways = 3^6

311 **(a)**

 \therefore 26 cards can be chosen out of 52 cards in ${}^{52}C_{26}$ ways. There are two ways in which each card can be dealt because a card can be either from the first pack or from the second.

: Total number of ways = ${}^{52}C_{26}$. 2²⁶

313 **(a)**

Given,

$${}^{8}C_{r} - {}^{7}C_{3} = {}^{7}C_{2}$$

$$\Rightarrow {}^{8}C_{r} = {}^{7}C_{3} + {}^{7}C_{2}$$

$$\Rightarrow {}^{8}C_{r} = {}^{8}C_{3}$$

$$\Rightarrow r = 3$$

315 **(c)**

If the last two digits are 0, 0 then in 1st digit any of the numbers expect 0 *ie*, 9 numbers If the last two digits are 1, 1, then in 1st digit any of the numbers expect 0 and 1 *ie*, 8 numbers \therefore The total number of numbers= 9 + 8 × 9 = 81

316 **(a)**

For *A*, *B*, *C* to speak in order of alphabets, 3 places out of 10 may be chosen first in ${}^{10}C_3$ ways. The remaining 7 persons can speak in 7! ways. Hence, the number of ways in which all the 10 persons can speak = ${}^{10}C_3$. 7! = $\frac{10!}{3!} = \frac{10!}{6}$

318 **(b)**

Since, a student is allowed to select at most *n* books out of (2n + 1)booksIf *T* is the total number of ways selecting one book, then $T = {}^{2n+1}C_1 + {}^{2n+1}C_2 + ... + {}^{2n+1}C_n = 63$...(i) Using the binomial theorem ${}^{2n+1}C_0 + {}^{2n+1}C_1 + ... + {}^{2n+1}C_n + {}^{2n+1}C_{n+1} + ...$ $= (1 + 1)^{2n+1} = 2^{2n+1}$ $\Rightarrow {}^{2n+1}C_0 + 2({}^{2n+1}C_1 + {}^{2n+1}C_2 + ... + {}^{2n+1}C_n)$ $+ {}^{2n+1}C_{2n+1} = 2^{2n+1}$ $\Rightarrow 1 + 2(63) + 1 = 2^{2n+1}$ $\Rightarrow 1 + 63 = {}^{2^{2n+1}} = 2^n$ $\Rightarrow 2^6 = 2^{2n} \Rightarrow n = 3$ (a)

319 **(a)**

For each historical monument, there are two possibilities either he visit or does not visit.

Total number of ways = $2^5 \cdot 2^6 (2^7 - 1)$

320 (d)

The number of divisors of ab^2c^2de

$$= (1+1)(2+1)(2+1)(1+1)(1+1) - 1$$

$$= 2.3.3.2.2. - 1 = 71$$

321 **(c)**

When we arrange one things at a time, the number of possible permutations is n. When we arrange them two at a time the number of possible permutations are $n \times n = n^2$

and so on. Thus, the total number of permutations 327 (a) are A p

$$n + n^2 + \dots + n^r = \frac{n(n^r - 1)}{n - 1} \quad (\because n > 1)$$

323 (c)

Given, $a_n = \sum_{r=0}^n \frac{1}{n_{Cr}}$

Let
$$b_n = \sum_{r=0}^n \frac{r}{n_{C_r}}$$

Then, $b_n = \frac{0}{n_{C_0}} + \frac{1}{n_{C_1}} + \frac{2}{n_{C_2}} + \dots + \frac{n}{n_{C_n}}$...(i)
 $\Rightarrow b_n = \frac{n}{n_{C_0}} + \frac{n-1}{n_{C_1}} + \frac{n-2}{n_{C_2}} + \dots + \frac{0}{n_{C_n}}$...(ii)
[$\because \ ^n C_0 = ^n \ C_n, \ ^n C_1 = \ ^n C_{n-1} \dots \text{ as } \ ^n C_r = \ ^n C_{n-r}$]

On adding Eqs. (i) and (ii), we get

$$2b_n = \frac{n}{nC_0} + \frac{n}{nC_1} + \dots + \frac{n}{nC_n}$$
$$= n \left[\frac{1}{nC_0} + \frac{1}{nC_1} + \frac{1}{nC_2} + \dots + \frac{1}{nC_n} \right]$$
$$\Rightarrow 2b_n = na_n$$
$$\therefore \ b_n = \frac{1}{2}na_n$$

324 **(b)**

Number of five digit numbers that can be formed by using the digits 3, 4 and 7 and 5 is used twice= $\frac{5!}{2!} = 60$

325 (c)

The number of words begin with A=4!=24

The number of words begin with $G = \frac{4!}{2!} = 12$

The number of words begin with I = $\frac{4!}{2!}$ = 12

So, 49th and 50th words begin with N and in dictionary order 49th is NAAGI and 50th will be NAAIG

326 **(c)**

There are two possible cases Case I Five 1's, one 2's, one 3's Number of numbers = $\frac{7!}{5!} = 42$ Case II Four 1's, three 2's Number of numbers = $\frac{7!}{4!3!}$ = 35 Total number of numbers 42 + 35 = 77A polygon of *n* sides has number of diagonals $= \frac{n(n-3)}{2} = 275 \quad \text{[given]}$ $\Rightarrow n^2 - 3n - 550 = 0$ $\Rightarrow (n-25)(n+22) = 0$ \Rightarrow n = 25 [: $n \neq -22$] 328 (d) In the word MATHEMATICS the letters are 2A, C, E, H, I, 2M, S, 2T \therefore Total number of different words = $\frac{11!}{2!2!2!} = \frac{11!}{(2!)^3}$ 329 (a) First we fix the alternate position of English books. Then there are 22 vacant places for Hindi books. Hence, total number of ways = ${}^{22}C_{19} = \frac{22!}{3|9|} =$ 1540 330 (d) The boys are in majority, if the groups are 4B, 3G, 5B, 2G, 6B 1G Total number of combinations $= {}^{6}C_{4} \times {}^{4}C_{3} + {}^{6}C_{5} \times {}^{4}C_{2} + {}^{6}C_{6} \times {}^{4}C_{1}$ $= 15 \times 4 + 6 \times 6 + 1 \times 4 = 100$ 331 (a) Given, ${}^{n}C_{r} = {}^{n}C_{r-1}$ and ${}^{n}P_{r} = {}^{n}P_{r+1}$ $\Rightarrow \frac{n!}{(n-r)!\,r!} = \frac{n!}{(n-r+1)!\,(r-1)!}$ and $\frac{n!}{(n-r)!} = \frac{n!}{(n-r-1)!}$ \Rightarrow n - r + 1 = r and n - r = 1 \Rightarrow *n* - 2*r* + 1 = 0 and *n* - *r* - 1 = 0

On solving, we get

n = 3, r = 2

332 (a)

For length, number of choices is

 $(2m-1) + 2m - 3) + \ldots + 3 + 1 = m^2$

Similarly, for breadth number of choices is

 $(2n - 1) + (2n - 3) + \ldots + 3 + 1 = n^2$

Hence, required number of choices is $m^2 n^2$

333 **(b)**

If *L* is middle, then first two places can be filled by ${}^{4}P_{2}$ ways and the last two digits can be filled in 2! Ways.

: Required number of ways = ${}^{4}P_{2} \times 2!$

 $= 12 \times 2 = 24$

334 (c)

Here, we are concerned with mere grouping and the number of persons in each group is same

 \therefore Required number of ways = $\frac{12!}{(4!)^3 3!}$

1

336 (c)

The hall can be illuminated by switched on at least one of the 10 bulbs. Therefore, the required number of ways is $2^{10} - 1 = 1023$

337 **(a)**

Given,
$$s_n = \sum_{r=0}^n \frac{1}{n_{C_r}} = \sum_{r=0}^n \frac{1}{n_{C_r}} \quad [\because {}^n C_r = {}^n C_r]$$

$$\Rightarrow ns_n = \sum_{r=0}^n \frac{n}{n_{C_{n-r}}} = \sum_{r=0}^n \left[\frac{n-r}{n_{C_{n-r}}} + \frac{r}{n_{C_{n-r}}} \right]$$

$$\Rightarrow ns_n = \sum_{r=0}^n \frac{n-r}{n_{C_{n-r}}} + \sum_{r=0}^n \frac{r}{n_{C_r}}$$

$$\Rightarrow ns_n = \left(\frac{n}{n_{C_n}} + \frac{n-1}{n_{C_{n-1}}} + \dots + \frac{1}{n_{C_0}} \right) \sum_{r=0}^n \frac{r}{n_{C_r}}$$

$$\Rightarrow ns_n = t_n + t_n = 2t_n$$

$$\Rightarrow \frac{t_n}{s_n} = \frac{n}{2}$$
338 (c)

Here,
$$\frac{n_{C_{r-1}}}{n_{C_r}} = \frac{36}{84}$$
 and $\frac{n_{C_r}}{n_{C_{r+1}}} = \frac{84}{126}$
 $\Rightarrow 3n - 10r = -3$
and $4n - 10r = 6$
On solving, we get $n = 9$ and $r = 3$
339 **(b)**

Given word is HAVANA (3A, 1H, 1N, 1V)

Total number of ways arranging the given word $=\frac{6!}{3!}=120$ Total number of words in which N, V together $=\frac{5!}{3!} \times 2! = 40$ \therefore Required number of ways= 120 - 40 = 80340 (c) Rank of word in a dictionary $= 2 \times 5! + 2 \times 4! + 3 \times 3! + 2! + 1$ = 240 + 48 + 18 + 2 + 1= 309342 (d) We have, ${}^{n}C_{r} + 2 {}^{n}C_{r-1} + {}^{n}C_{r-2}$ $= ({}^{n}C_{r} + {}^{n}C_{r-1}) + ({}^{n}C_{r-1} + {}^{n}C_{r-2})$ $= {}^{n+1}C_r + {}^{n+1}C_{r-1} = {}^{n+2}C_r$ 343 (a) We have. $r \cdot {}^{n-1}P_{r-1} + {}^{n-1}P_r = {}^{n}P_r$ $\Rightarrow 6 \cdot {}^{11}P_5 + {}^{11}P_6 = {}^{12}P_6$

344 **(a)**

 $^{12}P_r$ (given)]

A selection of 3 balls so as to include at least one black ball, can be made in the following 3 mutually exclusive ways

 $\Rightarrow {}^{12}P_r = {}^{12}P_6 \Rightarrow r = 6 \ [\because 6 \cdot {}^{11}P_5 + {}^{11}P_6 =$

(i) The number of ways in which 1 black balls and 2 others are selected

 $=^{3} C_{1} \times^{6} C_{2} = 3 \times 15 = 45$

(ii) The number of ways in which 2 black balls and 1 other are selected

 $=^{3} C_{2} \times^{6} C_{1} = 3 \times 6 = 18$

(iii) The number of ways in which 3 black balls and no other are selected $=^{3} C_{3} = 1$

 \therefore Total numbers of ways = 45 + 18 + 1 = 64

345 (b)

A triangle is obtained by joining three noncollinear point

 \therefore The total number of triangles = ${}^{18}C_3 - {}^{5}C_3 = 806$

346 **(b)**

Suppose he invites r friends at a time. Then the total number of parties is $20C_r$. We have to find the maximum value of $20C_r$, which is for r = 10 (if n is even, then ${}^{n}C_r$ is maximum for r = n/2).

Hence, he should invite 10 friends at a time in order to form the maximum number of parties

347 (c)

Required number of diagonals $=^m C_2 - m$

$$= \frac{m(m-1)}{2!} - m$$
$$= \frac{m}{2!}(m-3)$$

348 **(b)**

$${}^{n}P_{r} = {}^{n}C_{r} r !$$

$$\Rightarrow \frac{{}^{n}P_{r}}{r !} = {}^{n}C_{r}$$

$$\Rightarrow \sum_{r=1}^{n} \frac{{}^{n}P_{r}}{r !} = \sum_{r=1}^{n} {}^{n}C_{r} = {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$$

$$= 2^{n} - 1$$

349 **(c)**

Four letters can be selected in the following ways (i) all different i. e. *C*, *O*, *R*, *G*

(ii) 2 like and 2 different i.e. two *O*, 1 *R* and 1 *G*

(iii) 3 like and 1 different i.e. three *O* and 1 from *R*, *G* and *C*

The number of ways in (i) is ${}^{4}C_{4} = 1$

The number of ways in (ii) is ${}^{3}C_{2} \cdot {}^{2}C_{2} = 3$

The number of ways in (iii) is ${}^{3}C_{3} \times {}^{3}C_{1} = 3$

So, the required number of ways = 1 + 3 + 3 = 7

350 (d)

: Number are either all even or one even and other two odd

 $\therefore \text{ Required number of ways} = {}^{15}C_3 + {}^{15}C_1 \times {}^{15}C_2$ $= \frac{15!}{3! \times 12!} + \frac{15!}{14!} \times \frac{15!}{2! \times 13!}$ $= \frac{15 \times 14 \times 13}{6} + \frac{15 \times 15 \times 14}{2}$ = 455 + 1575 = 2030

351 **(b)**

Three letters can be posted in 4 letter boxes in $4^3 = 64$ ways but it consists the 4 ways that all letters may be posted in same box.

356 **(b)**

We have the following ways of selections:

 $p-identical things \quad q-identical things \quad Number of ways$ $p \qquad r-p \qquad 1$ $p-1 \qquad r-(p-1) \qquad 1$

Hence, required number of ways = 64 - 4 = 60

352 (c)

The number of ways of selecting 3 points out of 12 points is ${}^{12}C_3$. The number of ways of selecting 3 points out of 7 points on the same straight line is ${}^{7}C_3$.

Hence, the number of triangles formed = ${}^{12}C_3 - {}^{7}C_3 = 185$

353 **(a)**

Required number of selections

$${}^{3}C_{1} \times {}^{4}C_{1} \times {}^{2}C_{1}({}^{6}C_{3} + {}^{6}C_{2} + {}^{6}C_{1} + {}^{6}C_{0})$$

= 3 × 4 × 2(20 + 15 + 6 + 1) = 42(4!)

354 **(b)**

The digit x_1 can be selected in 9 ways as 0 cannot be selected. The digit x_2 can be selected in 9 ways as 0 can selected but digit in position x_1 cannot be selected. Similarly, all the remaining digits can also be selected in 9 ways.

Hence, total number of ways = 9^n

355 (d)

We have,

$${n-1 \choose 6} + {n-1 \choose 7} > {n \choose 6}$$

$$\Rightarrow {n \choose 7} > {n \choose 6}$$

$$\Rightarrow {n! \over (n-7)!71} > {n! \over (n-6)!6!}$$

$$\Rightarrow {1 \over 7} > {1 \over n-6} \Rightarrow n > 13$$

 $r - q \qquad q \qquad 1$ $\therefore \text{ Total number of ways} = p - (r - q) + 1 \text{ or, } q - (r - p) + 1$ = p + q - r + 1357 (d)
Since, S_1 speak after S_2 , Therefore two places can be chosen out of 10 place in ${}^{10}C_2$ ways and rest of the 8 speakers can speak in 8! ways. $\therefore \text{ Required number of ways} = {}^{10}C_2.8!$ $= \frac{10!}{2!8!} \cdot 8! = \frac{10!}{2!}$ 364 (b) 1

358 (a)

12 persons can be seated around a round table in 11 ! ways. The total number of ways in which 2 particular persons sit side by side is $10 ! \times 2 !$. Hence, the required number of arrangements = $11 ! - 10 ! \times 2 ! = 9 \times 10 !$

359 **(b)**

Total number of ways= ${}^{5}C_{4} \times {}^{8}C_{6} \times {}^{5}C_{5} \times {}^{8}C_{5}$ = $\frac{5!}{4! \times 1!} \times \frac{8!}{2! \times 6!} + \frac{8!}{5! \times 3!}$ = $\frac{5 \times 8 \times 7}{2} + \frac{8 \times 7 \times 6}{6}$ = 140 + 56 = 196

360 (b)

Total number of points are m + n + k, the triangles formed by these points = ${}^{m+n+k}C_3$

Joining of three points on the same line gives no triangle, the number of such triangles is ${}^{m}C_{3} + {}^{n}C_{3} + {}^{k}C_{3}$

 \therefore Required number of triangles

 $=^{m+n+k} C_3 - {}^m C_3 - {}^n C_3 - {}^k C_3$

361 (b)

Total number of selections = ${}^{4}C_{3} \times {}^{5}C_{3} \times {}^{6}C_{3}$ = 4 × 10 × 20 = 800

362 (b)

Total number of books = a + 2b + 3c + d

∴ The Total number of arrangements

$$=\frac{(a+2b+3c+d)!}{a!\,(b!)^2(c!)^3}$$

363 **(a)**

Given that,
$${}^{n+2}C_8$$
: ${}^{n-2}P_4 = \frac{57}{16}$
 $\Rightarrow \frac{(n+2)(n+1)n(n-1)}{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8} = \frac{57}{16}$
 $\Rightarrow (n+2)(n+1)n(n-1)$

 $=\frac{57}{16} \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8$ $= 57 \times 3 \times 4 \times 5 \times 6 \times 7$ $= 21 \times 20 \times 19 \times 18$ \Rightarrow n = 19 $\frac{1}{{}^{4}C_{n}} = \frac{1}{{}^{5}C_{n}} + \frac{1}{{}^{6}C_{n}}$ $\Rightarrow \frac{n! (4-n)!}{4!} = \frac{n! (5-n)!}{5!} + \frac{n! (6-n)!}{6!}$ $\Rightarrow \frac{(4-n)!}{4!} = \frac{(4-n)!(5-n)}{5 \times 4!}$ $\Rightarrow 1 = \frac{5-n}{5} + \frac{(6-n)(5-n)(4-n)!}{6\times5\times4!}$ $\Rightarrow n^2 - 17n + 30 = 0$ $\Rightarrow (n-15)(n-2) = 0$ \Rightarrow n = 2[: ${}^{4}C_{n}$ is not meaningful for n = 15] 365 **(b)** $\begin{array}{ll} \because & {}^{n}P_{r} = 1680 \\ \Rightarrow & \frac{n!}{(n-r)!} = 1680 & \dots(i) \end{array}$ And ${}^{n}C_{r} = 70$ $\Rightarrow \frac{n!}{(n-r)!r!} = 70$...(ii) From Eqs. (i) and (ii), we get $r! = \frac{1680}{70} = 24 = 4! \implies r = 4$ On putting the value of r in Eq. (i), we get $\Rightarrow \frac{n!}{(n-4)!} = 1680$ $\Rightarrow n(n-1)(n-2)(n-3) = 1680$ \Rightarrow n(n-1)(n-2)(n-3)= 8(8-1)(8-2)(8-3) \Rightarrow n = 8 $69n + r! = 69 \times 8 + 24 = 576$... 366 **(b)** Each digit can be placed in 2 ways. \therefore Required number of ways = 2^{10} 367 (d) $1 + 1.P_1 + 2.P_2 + 3.P_3 + \dots + n.P_n$ $= 1 + 1.(1!) + 2.(2!) + \dots + n(n!)$ $= 1 + (2 - 1)1! + (3 - 1)2! + \cdots$ +((n+1)-1)n! $= 1 + 2! - 1! + 3! - 2! + \ldots + (n + 1)! - n!$

$$= (n + 1)!$$
368 (a)
We have,
 $\frac{2n+1}{2n-1}P_{n-1} = \frac{3}{5}$
 $\Rightarrow 5 \cdot 2n+1P_{n-1} = 3 \cdot 2n-1P_n$
 $\Rightarrow 5 \cdot \frac{(2n+1)!}{(n+2)!} = \frac{3(2n-1)!}{(n-1)!}$
 $\Rightarrow \frac{5(2n+1)(2n)(2n-1)!}{(n+2)(n+1)n(n-1)!} = \frac{3 \cdot (2n-1)!}{(n-1)!}$
 $\Rightarrow 10(2n+1) = 3(n+2)(n+1)$
 $\Rightarrow 3n^2 - 11n - 4 = 0 \Rightarrow n = 4$
369 (c)
From the number 112233, the number of 6 digits
that can be formed the digits $= \frac{6!}{2!2!2!} = \frac{720}{8} = 90$
370 (c)
Since, *r*, *s*, *t* are prime numbers
 \therefore Selection of *p* and *q* are as under
 p q Number of ways
 r^0 r^2 1 way
 r^1 r^2 1 way

 s^3 s^4 1 way s^4 s^0, s^1, s^2, s^3, s^4 5 ways ∴ Total number of ways to select s = 9Similarly, the number of ways to select t = 5∴ Total number of ways5 × 9 × 5 = 225

371 **(a)**

In a given word 'MAXIMUM', vowels (A, I, U) fix the alternate position in 3! Ways.

And last of the consonants (M, M, M, X) in four places can be placed in $\frac{4!}{3!}$ ways.

: Required number of ways = $3! \times \frac{4!}{3!} = 4!$ ways

p	q Num	<i>q</i> Number of ways	
r^0	r^2	1 way	
r^1	r^2	1 way	
r^2	r^0,r^1,r^2	3 way	
\therefore Total number of ways to select $r = 5$			
<i>s</i> ⁰	S^4	1 way	
S^1	<i>s</i> ⁴	1 way	
<i>s</i> ²	S^4	1 way	