

13.NUCLEI

Single Correct Answer Type

1.	A sample contains 16 g o amount of radioactive ma	f a radioactive material, the aterial left in the sample is	e half life of which is two da	ays. After 32 days, the
	a) Less than 1 <i>mg</i>	b) $\frac{1}{4}g$	c) $\frac{1}{2}g$	d) 1 <i>g</i>
2.	Neutron is a particle, whi a) Charged and has spin c) Charge less and has sp	ch is in	b) Charged and has no sp d) Charge less and has no	vin o spin
3.	The ratio of half-life time	s of two elements A and B i	s $\frac{T_A}{T_B}$. The ratio of respectiv	vely decay constants $\frac{\lambda_A}{\lambda_B}$ is
	a) $\frac{T_B}{T_A}$	b) $\frac{T_A}{T_B}$	c) $\frac{T_A + T_B}{T_A}$	d) $\frac{T_A - T_B}{T_A}$
4.	In the following reaction $_7N^{14}+_2He^4 \rightarrow X + _1H^1$	the value of 'X' is x^{17}		10 m1(
F	a) $_8N^{17}$	b) $_{8}O^{17}$	c) $_70^{16}$	d) $_7N^{10}$
5.	If $N_1 = N_0 e^{-\lambda t_1}$, then the	number of atoms decayed $a^{-\lambda r_2}$	auring time interval from t	t_1 and $t_2(t_2 > t_1)$ will be
	a) $N_{t_1} - N_{t_2} - N_0 [e^{\lambda t_2}]$	$-e^{-\lambda t_{1}}$	d) None of the above	-e -]
6	C) $N_{t_2} = N_{t_1} = N_0 [e 2 =$	· e · · · · · · · · · · · · · · · · · ·	uj None of the above	
0.		1		1
	a) $n = 3, l = 1, m_l = +1,$	$m_s = -\frac{1}{2}$	b) $n = 3, l = 2, m_l = +2,$	$m_s = -\frac{1}{2}$
	c) $n = 3, l = 1, m_l = -1,$	$m_s = +\frac{1}{2}$	d) $n = 3, l = 0, m_l = +1,$	$m_s = -\frac{1}{2}$
7.	Calculate the energy releases of $_{2}$ He ⁴ is 4	ased when three α – partic 4 002603 u	les combined to from a ¹² (C nucleus , the mass defect is
	a) 0.007809 u	b) 0.002603 u	c) 4.002603 u	d) 0.5 u
8.	In a hydrogen atom, whic	ch of the following electroni	ic transitions would involve	e the maximum energy
0	a) From $n = 2$ to $n = 1$	b) From $n = 3$ to $n = 1$	c) From $n = 4$ to $n = 2$	d) From $n = 3$ to $n = 2$
9.	The energy equivalent to 2×10^{22}	1 mg of matter in MeV is b) $E6.2E \times 10^{24}$	a) $E(2E \times 10^{26})$	d) $E = 2E \times 10^{28}$
10	The mass defect in partic	0 0 0 0 0 0 0 0 0 0	σ The amount of energy lik	uj 50.25 × 10 *
10.	(Velocity of light= 3×3	10^8 ms^{-1})	g. The amount of energy in	
	a) 1.5 \times 10 ⁶	b) 2.5 \times 10 ⁶	c) 3 \times 10 ⁶	d) 7.5×10^{6}
11.	An electron jumps from t	he 4 th orbit to the 2 nd orbit	t of hydrogen atom. Given t	the Rydberg's constant
	$R = 10^5 cm^{-1}$. The freque	ency in <i>Hz</i> of the emitted ra	adiation will be	
	a) $\frac{3}{16} \times 10^5$	b) $\frac{3}{16} \times 10^{15}$	c) $\frac{9}{16} \times 10^{15}$	d) $\frac{3}{4} \times 10^{15}$
12.	The electron in the hydro photons thus emitted irra	ogen atom jumps from excit adiate a photosensitive mat	ted state $(n = 3)$ to its grouterial. If the work function of	and state $(n = 1)$ and the of the material is 5.1 eV, the
	stopping potential is estin	mated to be (the energy of	the electron in n^{th} state E_n	$=-\frac{13.6}{m^2}eV$
	a) 5.1 V	b) 12.1 V	c) 17.2 V	d) 7 V
13.	The number of α-particle	s and β – particles respect	ively emitted in the reactio	on $_{88}^{}A^{196} \rightarrow _{78}^{}B^{164}$ are
	a) 8 and 8	b) 8 and 6	c) 6 and 8	d) 6 and 6
14.	An electron passing throu the first excited state. Wh atom to its normal state	ugh a potential difference o hat is the wavelength of a pl	f 4.9 <i>V</i> collides with a mem hoton corresponding to the	ory atom and transfers it to transition of the mercury
	a) 2050 Å	b) 2240 Å	c) 2525 Å	d) 2935 Å

15.	The half -life period of a	radioactive substance is 3 c	lays. Three fourth of substa	nce decays in
	a) 3 days	b) 6 days	c) 9 days	d) 12 days
16.	What is the <i>Q</i> -value of the	e reaction		
	$P + {^7}\text{Li} \rightarrow {^4}\text{He} + {^4}\text{He}$			
	The atomic masses of ¹ H	I, 4 He and 7 Li are 1.00782	5 u, 4.002603 u and 7.0160	04 u respectively
	a) 17.35 MeV	b) 18.06 MeV	c) 177.35 MeV	d) 170.35 MeV
17.	If one starts with one cur	rie of radioactive substance	$(T_{1/2} = 12hrs)$ the activity	v left after a period of 1
	week will be about			
	a) 1 curie	b) 120 micro curie	c) 60 micro curie	d) 8 mili curie
18.	If the half life of a radioa	ctive sample is 10 <i>hours</i> , its	s mean life is	
	a) 14.4 <i>hours</i>	b) 7.2 <i>hours</i>	c) 20 hours	d) 6.93 <i>hours</i>
19.	The half-life of ²¹⁵ At is 1	.00 μs. The time taken for t	he radioactivity of a sample	of ²¹⁵ At to decay to $\frac{1}{16}$ th of
	its initial value is			10
	a) $400 \mu s$	b) 6.3 us	c) 40 us	d) 300 us
20.	Half life of a radio-active	substance is 20 <i>minutes</i> . T	The time between 20% and	80% decay will be
	a) 20 minutes	b) 40 minutes	c) 30 minutes	d) 25 minutes
21.	In which radioactive disi	ntegration. neutron dissoci	ates into proton and electro	on
	a) He^{+1} emission	b) β –emission	c) ν –emission	d) Positron emission
22.	Using the following data	-)	-) /	
	Mass hydrogen atom = 1	.00783 u		
	Mass of neutron $= 1.008$	67 u		
	Mass of nitrogen atom ($_{7}N^{14}) = 14.00307 \text{ u}$		
	The calculated value of t	he binding energy of the nu	cleus of the nitrogen atom	(₇ N ¹⁴) is close to
	a) 56 MeV	b) 98 MeV	c) 104 MeV	d) 112 MeV
23.	The ionization energy of	Li^{++} is equal to	0) 101 1101	() <u></u>
_0.	a) 9hcR	b) 6 <i>hcR</i>	c) 2 <i>hcR</i>	d) <i>hcR</i>
24.	In a fission process, nucl	eus A divides into two nucl	ei <i>B</i> and <i>C</i> , their binding en	ergies being E_a . E_b and E_c
	respectively. Then			
	a) $E_{h} + E_{c} = E_{a}$	b) $E_{h} + E_{c} > E_{a}$	c) $E_h + E_c < E_a$	d) E_h . $E_c = E_a$
25.	According to Bohr's mod	el, the radius of the second	orbit of helium atom is	y b c u
	a) 0.53 Å	b) 1.06 Å	c) 2.12 Å	d) 0.265 Å
26.	An electron has a mass o	$f 9.1 \times 10^{-31} kg$. It revolves	s around the nucleus in a cir	cular orbit of radius
	0.529×10^{-10} metre at a	speed of 2.2 $\times 10^6 m/s$. Th	e magnitude of its linear m	omentum in this motion is
	a) $1.1 \times 10^{-34} kg - m/s$	b) $2.0 \times 10^{-24} kg - m/s$	c) $4.0 \times 10^{-24} kg - m/s$	d) $4.0 \times 10^{-31} kg - m/s$
27.	According to the quark n	nodel, it is possible to build	all the hadrons using	
	a) 2 quarks and 3 antiqu	arks	b) 3 quarks and 2 antiqua	arks
	c) 3 quarks and 3 antiqu	arks	d) 2 guarks and 2 antigua	arks
28.	Atomic number of a nucl	eus is Z and atomic mass is	<i>M</i> . The number of neutron	is
	a) <i>M – Z</i>	b) <i>M</i>	c) <i>Z</i>	d) <i>M</i> + <i>Z</i>
29.	An electron of an atom ti	cansits from n_1 to n_2 . In wh	ich of the following maximu	im frequency of photon will
	be emitted	1 2	0	
	a) $n_1 = 1$ to $n_2 = 2$	b) $n_1 = 2$ to $n_2 = 1$	c) $n_1 = 2$ to $n_2 = 6$	d) $n_1 = 6$ to $n_2 = 2$
30.	For uranium nucleus how	w does its mass vary with v	olume?	
	a) $m \propto V$	b) $m \propto 1/V$	c) $m \propto \sqrt{V}$	d) $m \propto V^2$
31.	Which of the following is	otopes is normally fissiona	ble	,
01	a) $_{02}U^{238}$	b) $_{nn}Nn^{239}$	c) $a_2 U^{235}$	d) $_{2}He^{4}$
32	Which one of the followi	ng statements about uraniu	im is correct	, 2
	a) ^{235}U is fissionable by	thermal neutrons		
	b) Fast neutrons trigger	the fission process in $235II$		
	c) ^{235}U breaks un into fi	ragments when hombarded	by slow neutrons	
	-,			

	d) ^{235}U is an unstable isotope and undergoes spont	aneous fission	
33.	Outside a nucleus		
	a) Neutron is stable	b) Proton and neutron bo	th are stable
	c) Neutron is unstable	d) Neither neutron nor pr	oton is stable
34.	If m, m_n and m_p are the masses of $_Z X^A$ nucleus, neu	tron and proton respective	ly, then
	a) $m < (A - Z)m_n + Zm_n$	b) $m = (A - Z)m_n + Zm_n$	1
	c) $m = (A - Z)m_n + Zm_n$	d) $m > (A - Z)m_m + Zm_n$	
35	The average hinding energy per nucleon is maximum	n for the nucleus)
55.	a) $_{-}H_{\rho}^{4}$ b) $_{-}O^{16}$	Fe^{56}	d) $= H \rho^{238}$
36	In the nuclear reaction: $Y(n, \alpha)$ Li^7 the term Y will	bo	uj 9211e
50.	P^{10}	$r = R^{11}$	d) μ_0^4
27	a) $5D$ b) $5D$ 2.9 days is the half life period of a sample After here	U 5D umanu davis the sample wil	l bacama 1/8th af tha
57.	original substance	many days, the sample wi	ii become 1/our or the
	a = b = 2	c) 2	d) None of these
20	a) 11.4 D) 5.0	CJ 5	uj Nolle of these
50.	a) Proportional to its mass number		
	a) Froportional to its mass number		
	c) Proportional to the cube root of its mass number		
	d) Not related to its mass number		
30		(1, 1)	
59.	Energy of an electron in n^{ch} orbit of hydrogen atom	$k = \frac{1}{4\pi\varepsilon_0}$	
	$2\pi^2 k^2 m e^4$ b) $4\pi^2 m k e^2$	n^2h^2	n^2h^2
	$a_j = \frac{1}{n^2 h^2}$ $b_j = \frac{1}{n^2 h^2}$	$c_{J} = \frac{1}{2\pi k m e^4}$	$dJ = \frac{4\pi^2 k me^2}{4\pi^2 k me^2}$
40.	The rest energy of an electron is		
	a) 510 <i>KeV</i> b) 931 <i>KeV</i>	c) 510 <i>MeV</i>	d) 931 <i>MeV</i>
41.	Consider α – Particles, β – Particles and γ – rays, ea	ch having an energy of 0.5 l	MeV. In increasing order of
	penetrating powers, the radiations are		
	a) α, β, γ b) α, γ, β	c) β,γ,α	d) γ, β, α
42.	The dependence of binding energy per nucleon, B_N of	on the mass number, A, is re	epresented by
	a) $B_{\mu} \uparrow \uparrow$	b) B_{μ}	
	$_{A=EC} $.
	A-50 A	A=124 A	
		a) $B_N \uparrow [$	
		A=96 A	→
	$A=96$ \overline{A}	A	
43.	A radioactive isotope has a half-life of <i>T</i> years. How	long will it take the activity	to reduce to 1% of its
	original value		
	a) 3.2 <i>T</i> year b) 4.6 <i>T</i> year	c) 6.6 <i>T</i> year	d) 9.2 <i>T</i> year
44.	An artificial radioactive decay series begins with uns	stable $\frac{241}{94}$ <i>Pu</i> . The stable nu	clide obtained after eight
	α –decays and five β –decays is		
	a) $\frac{209}{83}Bi$ b) $\frac{209}{82}Pb$	c) $\frac{205}{82}Ti$	d) $^{201}_{82}Hg$
45.	A radioactive sample S_1 having an activity of 5 μ Ci has t	twice the number of nuclei a	s another sample S_2 which
	has an activity of 10 μ Ci. The half lives of S_1 and S_2 c	an be	
			_

- a) 20 yr and 5 yr ,respectively b) 20 yr and 10 yr ,respectively c) 10 yr each
 - d) 5 yr each
- 46. The rest mass of an electron as well as that of positron is 0.51 *MeV*. When an electron and positron are

annihilate, they produce gamma-rays of wavelength(s)

a)
$$0.012 \text{ Å}$$
 b) 0.024 Å c) 0.012 Å to ∞ d) 0.024 Å to ∞

47. In Fig. X represents time and Y represents activity of a radioactive sample. Then the activity of sample, varies with time according to the curve

b) *B* c) C d) D 48. In the Bohr model of the hydrogen atom, let *R*, *v* and *E* represent the radius of the orbit, the speed of electron and the total energy of the electron respectively. Which of the following quantity is proportional to the quantum number *n*

d) *uR*

- a) *R/E*
- b) *E*/*v* c) *RE* 49. In Bohr's model of hydrogen atom, which of the following pairs of quantities are quantized
 - b) Linear and angular momentum a) Energy and linear momentum
 - c) Energy and angular momentum d) None of the above
- 50. Two nucleons are at a separation of one fermi. Protons have a charge of + 1.6×10^{-19} C. The net nuclear force between them is F_1 , if both are neutrons F_2 if both are protons and F_3 if one is proton and the other is neutron. Then

a)
$$F_1 = F_2 > F_3$$
 b) $F_1 = F_2 = F_3$ c) $F_1 < F_2 < F_3$ d) $F_1 > F_2 > F_3$

51. If r_1 and r_2 are the radii of the atomic nuclei of mass numbers 64 and 125 respectively, then the ratio (r_1/r_1) r_2) is

a)
$$\frac{64}{125}$$
 b) $\sqrt{\frac{64}{125}}$ c) $\frac{5}{4}$ d) $\frac{4}{5}$

52. In a material medium, when a positron meets an electron both the particles annihilate leading to the emission of two gamma ray photons. This process forms the basis of an important diagnostic procedure called

d) SPECT a) MRI b) PET c) CAT

53. If λ_{max} is 6563 Å, then wavelength of second line for Balmer series will be 16 36 4

a)
$$\lambda = \frac{16}{3R}$$
 b) $\lambda = \frac{36}{5R}$ c) $\lambda = \frac{4}{3R}$ d) None of the above

54. Rest mass energy of an electron is 0.54 MeV. If velocity of the electron is 0.8c, then K.E. of the electron is c) 0.48 *MeV* a) 0.36 MeV b) 0.41 MeV d) 1.32 MeV

55. If the binding energies of a deuteron and an alpha particle are 1.125MeV and 7.2MeV, respectively, then the more stable of the two is

- a) deuteron
- b) Alpha-particle
- c) Both (a) and (b)
- d) Sometimes deuteron and Sometimes Alpha-particle
- 56. Consider the following two statements
 - A. Energy spectrum of α -particles emitted in radioactive decay is discrete
 - B. Energy spectrum of β -particles emitted in radioactive decay is continuous
 - a) Only A is correct b) Only B is correct
 - c) *A* is correct but *B* is wrong d) Both A and B are correct
- 57. Two radioactive materials X_1 and X_2 have decay constants 10λ and λ repectively. If initially, they have the same number of nuclei, then the ratio of the number of nuclei of X_1 to that of X_2 will be 1/e after a time

a)
$$\frac{1}{10\lambda}$$
 b) $\frac{1}{11\lambda}$ c) $\frac{11}{10\lambda}$ d) $\frac{1}{9\lambda}$

58.	If half life of radium is 77	days. Its decay constant in	day will be	
	a) 3×10^{-13} /day	b) 9×10^{-3} /day	c) 1×10^{-3} /day	d) 6×10^{-3} /day
59.	Which of the following at	oms has the lowest ionizati	on potential	
	a) ¹⁶ ₂ 0	b) ¹⁴ ₇ N	c) $\frac{133}{55}$ Cs	d) $\frac{40}{18}Ar$
60.	Isobars are formed by	5 /	2 33	5 10
	a) α –decav	b) β –decay	c) γ –deacy	d) h –decav
61.	A nuclear bomb exploded	$200 \ km$ above the surface	of moon. The sound of expl	losion on the moon
01	a) Will be heard before th	e explosion is seen	b) Will be heard at the sar	ne time
	c) Will be heard after exp	losion	d) Will not be heard at all	
62	An electron jumps from 5	th orbit of 4 th orbit of hydro	gen atom. Taking the Rydh	erg constant as
02.	10^7 ner metre what will k	the frequency of radiation	n emitted	erg constant as
	a) $6.75 \times 10^{12} H_7$	b) 6 75 $\times 10^{14} H_{7}$	c) $6.75 \times 10^{13} H_{7}$	d) None of these
63	The fact that photons car	bj 0.75 × 10 112 ry operay was established k	0.75×10 HZ	uj None or these
03.	a) Dopplor's offect	b) Compton's offect	a) Pahr'a thaamu	d) Diffraction of light
61	The ratio of the longest to	b) Compton's effect	c) Doni Stneory	u) Diff action of fight
04.		17	g	
	a) $\frac{25}{2}$	b) $\frac{17}{6}$	c) $\frac{7}{r}$	d) $\frac{1}{2}$
65	9 After two hours one-sixt	0 A ponth of the starting amour	J It of a certain radioactive is	3 otone remained
05.	undecayed The half life o	f the jectore is		otopereinamen
	a) 15 minutes	h) 30 minutas	c) 15 minutos	d) $1 hour$
66	A reaction between a pro	top and Ω^{18} that produce	$E_{\rm J}$ = E^{18} must also liborato	uj i nour
00.	A reaction between a pro	b) a^0	$s_{9}r$ must also indefate	d) a1
67	d) $_0 n$	UJ ₁ e ²	$J_1 ll^2$	uj ₀ e
07.	1100000000000000000000000000000000000	b) 0.062	a) 0.002	
60	a) 0.124 Soloat the umong stateme	DJ 0.002	CJ 0.095	u) 0.031
00.	a) De diaectivity is a stati	III		
	a) Radioactivity is a statis	stical process.		
	b) Radioactivity is a spon	taneous process.		
	c) Radioactivity is neutra	I characteristic of few elem	ents.	
(0	d) Radioactive elements (cannot be produced in the R	aboratory.	······································
69.	Half life of a radioactive e	lement is 10 days. The time	e during which quantity ren	nains 1/10 of initial mass
	will be			
70	a) 100 days	DJ 50 days	CJ 33 days	a) 16 days
70.	\mathbf{F}_{pe} represents electrical i	force on proton due to elect	from and \mathbf{F}_{ep} on electron due	e to proton in a nydrogen
	atom. Similarly \mathbf{F}_{pe} repres	ents the gravitational force	e on proton due to electron	and \mathbf{F}_{ep} the corresponding
	force on electron due to p	proton. Which of the followi	ng is not true?	
	a) $\mathbf{F}_{Pe} + \mathbf{F}_{ep} = 0$		b) $\mathbf{F'}_{Pe} + \mathbf{F'}_{ep} = 0$	
	c) \mathbf{F}_{Pe} + \mathbf{F}'_{Pe} + \mathbf{F}_{ep} + 1	$F'_{ep} = 0$	d) $\mathbf{F}_{Pe} + \mathbf{F}'_{Pe} = 0$	
71.	An electron changes its p	osition from orbit $n = 4$ to	the orbit $n = 2$ of an atom.	The wavelength of the
	emitted radiation is $(R =$	Rydberg's constant)		
	$\frac{16}{10}$	h) $\frac{16}{10}$	$\frac{16}{16}$	d) $\frac{16}{16}$
	R	³ 3R	^c) 5 <i>R</i>	7R
72.	Nuclear fission was disco	vered by		
	a) Ottohann and F. Strass	mann	b) Fermi	
	c) Bethe		d) Rutherford	
73.	The energy required to ex	xcite an electron from the g	round state of hydrogen at	om to the first excited state,
	is			
	a) 1.602 × 10 ⁻¹⁴ J	b) 1.619 × 10 ^{–16} J	c) $1.632 \times 10^{-18} J$	d) 1.656 × 10 ⁻²⁰ J
74.	If <i>M</i> is the atomic mass an	nd A is the mass number, pa	acking fraction is given by	
	a) <u> </u>	b) $\frac{M-A}{M-A}$	c) <u>A</u>	d) $\frac{A-M}{M}$
	M - A		M - A	
75.	A mixture consists of two	radioactive materials A_1 as	nd A_2 with half lives of 20 s	and 10 s respectively.

	Initially the mixture has 40	$0 g \text{ of } A_1 \text{ and } 160 g \text{ of } A_2.7$	Гhe amount of the two in th	ne mixture will become
	equal after			
	a) 60 <i>s</i>	b) 80 <i>s</i>	c) 20 <i>s</i>	d) 40 <i>s</i>
76.	The average binding energ	gy per nucleon in the nucle	us of an atom is approxima	itely
	a) 8 <i>eV</i>	b) 8 <i>KeV</i>	c) 8 <i>MeV</i>	d) 8 <i>J</i>
77.	The phenomenon of radioa	activity is		
	a) Exothermic change whi	ch increases or decreases	with temperature	
	b) Increases on applied pre-	essure		
	c) Nuclear process does no	ot depend on external facto	ors	
	d) None of the above			
78.	The speed of daughter nuc	lei is		
	a) $c \frac{\Delta m}{M + \Delta m}$	b) $c \frac{2\Delta m}{M}$	c) $c \left \frac{\Delta m}{M} \right $	d) $c \int \frac{\Delta m}{M + \Delta m}$
	$M + \Delta m$	\sqrt{M}	\sqrt{M}	$\sqrt{M + \Delta m}$
79.	The most stable particle in	Baryon group is		
	a) Proton	b) Lamda-particle	c) Neutron	d) Omega-particle
80.	A radioactive sample is α -e	emitter with half life 138.6	days is observed by a stud	lent to have 2000
	disintegration/s. The num	ber of radioactive nuclei fo	or given activity are	
	a) 3.45×10^{10}	b) 1×10^{10}	c) 3.45×10^{15}	d) 2.75×10^{11}
81.	A radioactive material has	a half life of 10 days. What	t fraction of the material w	ould remain after 30 days
	a) 0.5	b) 0.25	c) 0.125	d) 0.33
82.	When a ${}_4Be^9$ atom is bom	barded with α –particles,	one of the products of nuc	lear transmutation is ${}_6C^{12}$.
	The other is			
	a) $_{-1}e^{0}$	b) ₁ <i>H</i> ¹	c) $_{1}D^{2}$	d) ₀ n ¹
83.	Fission of nuclei is possible	e because the binding ener	gy per nucleon in them	
	a) Increases with mass nu	mber at high mass number	rs	
	b) Decreases with mass nu	mber at high mass numbe	ers	
	c) Increases with mass nu	mber at low mass number	S	
	d) Decreases with mass nu	imber at low mass number	ſS	
84.	To explain his theory, Boh	r used		
	a) Conservation of linear n	nomentum	b) Conservation of angula	r momentum
	c) Conservation of quantum	m frequency	d) Conservation of energy	7
85.	A radioactive nucleus emit	s a beta particle. The pare	nt and daughter nuclei are	
	a) Isotopes	b) Isotones	c) Isomers	d) Isobars
86.	Nuclear fission experiment	ts show that the neutrons	split the uranium nuclei in	to two fragments of about
	same size. This process is a	accompanised by the emis	sion of several	
	a) Protons and positrons		b) α -particles	
	c) Neutrons		d) Protons and α -particle	S
87.	The shortest wavelength in	n the Lyman series of hydr	ogen spectrum is 912Å cor	responding to a photon
	energy of 13.6 eV. The sho	rtest wavelength in the Ba	llmer series is about	
	a) 3648 Å	b) 8208 Å	c) 1228 Å	d) 6566 Å
88.	The rest energy of an elect	ron is 0.511 <i>MeV</i> . The elec	ctron is accelerated from re	est to a velocity 0.5 <i>c</i> . The
	change in its energy will be	e		
	a) 0.026 <i>MeV</i>	b) 0.051 <i>MeV</i>	c) 0.079 <i>MeV</i>	d) 0.105 <i>MeV</i>
89.	In any fission process the r	ratio $\frac{\text{mass of fission products}}{\text{mass of parent nucleus}}$ is	S	
	a) Less than 1		b) greater than 1	
	c) Equal to 1		d) Depends on the mass o	f parent nucleus
90.	Half-life of a substance is 1	0 <i>years</i> . In what time, it b	becomes $\frac{1}{4}th$ part of the init	ial amount
	a) 5 years	b) 10 years	c) 20 years	d) None of these
91.	α –particles of energy 400	<i>KeV</i> are bombarded on n	ucleus of 82 <i>Pb</i> . In scatterin	ng of α –particles, its

	minimum distance from nucleus will be		
	a) 0.59 <i>nm</i> b) 0.59 Å	c) 5.9 <i>pm</i>	d) 0.59 <i>pm</i>
92.	K_{α} and K_{β} X-rays are emitted when ther	e is a transition of electron betw	veen the levels
	a) $n = 2$ to $n = 1$ and $n = 3$ to $n = 1$ res	pectively	
	b) $n = 2$ to $n = 1$ and $n = 3$ to $n = 2$ res	pectively	
	c) $n = 3$ to $n = 2$ and $n = 4$ to $n = 2$ res	pectively	
	d) $n = 3$ to $n = 2$ and $n = 4$ to $n = 3$ res	pectively	
93.	The ratio of the radii of the nuclei ${}_{13}Al^{27}$	and $_{52}$ Te ¹²⁵ is approximately	
	a) 6: 10 b) 13: 52	c) 40:17	d) 14:73
94.	The fraction of the initial number of radi	oactive nuclei which remain un	decayed after half of a half-life of
	the radioactive sample is		
	1 1	1	J) 1
	a) $\frac{1}{\sqrt{2}}$ b) $\frac{1}{2}$	$\frac{c}{2\sqrt{2}}$	$\frac{1}{4}$
95.	The nucleus $\frac{115}{48}Cd$ after two successive	β^- decays will give	
	a) $\frac{^{115}}{^{46}}Pa$ b) $\frac{^{114}}{^{49}}In$	c) $\frac{113}{50}Sn$	d) $\frac{115}{50}Sn$
96.	A radioactive nucleus (initial mass numb	er <i>A</i> and atomic number <i>Z</i>) emi	ts 3 α – particles and 2 positrons.
	The ratio of number of neutrons to that	of protons in the final nucleus w	ill be
	A-Z-8 $A-Z-4$	A - Z - 12	A-Z-4
	a) $\overline{Z-4}$ b) $\overline{Z-8}$	$CJ = \frac{Z-4}{Z-4}$	U = Z - 2
97.	Half-life of radioactive substance is 3.20	h. What is the time taken for a 7	75% of substance to be used?
	a) 6.38 h b) 12 h	c) 4.18 day	d) 1.2 day
98.	The spectral series of the hydrogen atom	n that lies in the visible region of	f the electromagnetic spectrum
	a) Paschen b) Balmer	c) Lyman	d) Brackett
99.	What is the particle <i>x</i> in the following nu	clear reaction	
	${}^9_4Be + {}^4_2He \rightarrow {}^{12}_6C + x$		
	a) Electron b) Proton	c) Photon	d) Neutron
100	The masses of two radioactive substance	es are same and their half-lives	are 1 yr and 2 yr respectively. The
	ratio of their activities after 4 yr will be		
	a) 1:4 b) 1:2	c) 1:3	d) 1:6
101	Highly energetic electrons are bombarde	ed on a target of an element con	taining 30 neutrons. The ratio of
	radii of nucleus to that of Helium nucleu	s is 14 ^{1/3} . The atomic number o	f nucleus will be
	a) 25 b) 26	c) 56	d) 30
102	Fusion reaction take place at high temper	rature because	
	a) Atoms are ionised at high temperatur	e	
	b) Molecules break up at high temperatu	ire	
	c) Nuclei break up at high temperature		
	d) Kinetic energy is high enough to over	come repulsion between nuclei	
103	In a sample of hydrogen like atoms all of	which are in ground state, a ph	oton beam containing photons of
	various energies is passed. In absorption	n spectrum, five dark lines, are o	bserved. The number of bright
	lines in the emission spectrum will be (a	ssume that all transitions takes	place)
	a) 5 b) 10	c) 15	d) None of these
104	The radioactive nucleus of mass number	A, initially at rest, emits an α –	particle with a speed <i>v</i> . The recoil
	speed of the daughter nucleus will be		4
	a) $\frac{2v}{1-1}$ b) $\frac{2v}{1-1}$	c) $\frac{4v}{1-\frac{1}{2}}$	d) $\frac{4v}{4v}$
105	A - 4 $A + 4$	A - 4	A + 4
102	A radioactive element $_{90}A^{}$ decays int	$\sigma_{83}I$. The number of $p - pa$	d) 1
106	A radioactive puclous V^{235} decays to	UJ 4 V ²³¹ Which of the following r	uj i
100	a) One alpha and one electron	b) Two douterors	and one positron
	a) One alpha and one proton	d) One proton and	four poutrons
	cj one alpha and one proton	uj one proton and	

a) 5 : 9	b) 5 : 36	c) 1:4	d) 3 : 4
122. T	he half-life period of rac	dium is 1600 <i>years</i> . Its aver	rage life time will be	
а) 3200 years	b) 4800 <i>years</i>	c) 2319 years	d) 4217 <i>years</i>
123. T	he transition from the s	tate $n = 4$ to $n = 3$ in a hyd	lrogen like atom result in u	ltraviolet radiation.
Iı	nfrared radiation will be	e obtained in the transition	from	
a	$) 2 \rightarrow 1$	b) 3 → 2	c) $4 \rightarrow 2$	d) $5 \rightarrow 4$
124. T	he count rate of a Geige	r-Muller counter for the rac	liation of a radioactive mat	erial of half life of
3	0 <i>minutes</i> decreases to	$5 s^{-1}$ after 2 hours. The ini	tial count rate was	
a	$25 \mathrm{s}^{-1}$	b) 80 s^{-1}	c) $625 \mathrm{s}^{-1}$	d) 20 s ⁻¹
125 h	n Raman effect. Stoke's l	ines are spectral lines havi	ο, ο <u>-</u> ο ο ησ	a) <u>-</u> 0 0
22011) Frequency greater tha	n that of the original line	8	
h) Wavelength equal to t	hat of the original line		
c c) Wavelength less than t	that of the original line		
d d) Wavelength rest than	an that of the original line		
и 126 Т	be fraction f of radioact	tive material that has decay	red in time t varies with tir	ng t. The correct variation is
120.1	iven by the curve	live material that has uetay	eu in time t, van ies with th	
g				
j				
	X			
(t t			
а) A	b) <i>B</i>	c) <i>C</i>	d) <i>D</i>
127. V	Vhite light is passed thro	ough a dilute solution of pot	tassium permanganate. The	e spectrum produced by the
e	mergent light is			
a) Band emission spectru	ım	b) Line emission spectrum	m
C) Band absorption spect	rum	d) Line absorption spectr	·um
128. T	he ratio of the frequenc	ies of the long wavelength l	imits of Lyman and Balmer	r series of hydrogen
S	pectrum is			
a) 27 : 5	b) 5 : 27	c) 4:1	d) 1 : 4
129. A	radioactive nucleus of	mass <i>M</i> emits a photon of fr	requency <i>v</i> and the nucleus	recoils. The recoil energy
W	vill be			
		b) Ma^2 but	$h^2 v^2$	d) Zero
d	jnv	$D M C^2 - h V$	$\frac{c}{2Mc^2}$	
130. Iı	n which of the following	decay, the element does no	ot change	
a)β-decay	b) α -decay	c) γ-decay	d) None of these
131. L	ight energy emitted by s	stars is due to		
a) Breaking of nuclei		b) Joining of nuclei	
c) Burning of nuclei		d) Reflection of solar ligh	t
132. A	nucleus decays by β^+ -e	mission followed by $a\gamma - e$	mission. If the atomic and	mass numbers of the parent
n	ucleus are Z and A resp	ectively, the corresponding	numbers for the daughter	nucleus are respectively
a) $Z - 1$ and $A - 1$	b) $Z + 1$ and A	c) $Z - 1$ and A	d) $Z + 1$ and $A - 1$
133. Iı	n radioactive decay proc	cess, the negatively charged	emitted β – particles are	2
a) The electrons present	inside the nucleus		
b) The electrons produce	ed as a result of the decay of	neutrons inside the nucleu	us
c) The electrons produce	ed as a result of collisions be	etween atoms.	
d) The electrons orbiting	around the nucleus.		
134. T	he electron in a hydroge	en atom makes a transition	from $n = n_1$ to $n = n_2$ state	. The time period of the
Р Р	lectron in the initial stat	e is eight times that in the f	inal state. The possible val	ues of n_1 and n_2 are
a	$n_1 = 6, n_2 = 2$	b) $n_1 = 2$, $n_2 = 1$	c) $n_1 = 8$, $n_2 = 2$	d) $n_1 = 4$, $n_2 = 2$
u	, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~ j ··· i = j ··· 2 · ·	-, 5,	,
135 Т	he ratio of the speed of	the electron in the first Boh	r orbit of hydrogen and the	e speed of light is equal to

P a g e **| 9**

(where *e*, *h* and *c* have their usual meanings) a) $2\pi hc/e^2$ b) $e^{2}h/2\pi c$ c) $e^{2}c/2\pi h$ d) $2\pi e^2/hc$ 136. In Rutherford scattering experiment, what will be the correct angle for α scattering for an impact parameter b = 0a) 90° b) 270° c) 0° d) 180° 137. For maintaining sustained chain reaction, the following is required a) Protons b) electrons c) neutrons d) positons 138. Which of the transitions in hydrogen atom emits a photon of lowest frequency (n = quantum number) a) n = 2 to n = 1b) n = 4 to n = 3c) n = 3 to n = 1d) n = 4 to n = 2139. The spectral series of the hydrogen spectrum that lies in the ultraviolet region is the a) Balmer series b) Pfund series c) Paschen series d) Lyman series 140. The density of uranium is of the order of d) 10¹¹ kgm⁻³ c) 10^{14} kgm^{-3} a) 10^{20} kgm^{-3} b) 10^{17} kgm⁻³ 141. The half-life of radon is 3.8 days. How many radon will be left out of 1024 mg after 38 days a) 1 mg b) 2 mg c) 3 mg d) 4 mg 142. For a radioactive nucleus, the mean life is T, If the number of decays per unit time is n at t = 0, the number of decays between time 0 and t, is b) $n(1 - e^{-t/T})$ c) $nT(1 - e^{-t/T})$ d) $ne^{-t/T}$ a) $nTe^{-t/T}$ 143. $_7N^{14}$ is bombarded with $_2$ He⁴. The resulting nucleus is $_8O^{17}$ with the emission of b) Antineutrino a) Neutrino c) Proton d) Neutron 144. The example of nuclear fusion is a) Formation of barium and krypton from uranium b) Formation of helium from hydrogen c) Formation of plutonium 235 from uranium 235 d) Formation of water from hydrogen and oxygen 145. Isotopes are atoms having a) Same number of protons but different number of neutrons b) Same number of neutrons but different number of protons c) Same number of protons and neutrons d) None of the above 146. If the radius of a nucleus of mass number 3 is *R*, then the radius of a nucleus of mass number 81 is b) 9R c) $(27)^{1/2}R$ d) 27*R* a) 3R 147. Which of the following radiations has the least wavelength a) X-rays b) γ -rays c) β -rays d) α -rays 148. An atomic power nuclear reactor can deliver 300 MW. The energy released due to fission of each nucleus of uranium atom U²³⁸ is 170 MeV. The number of uranium atoms fissioned per hour will be a) 30×10^{25} b) 4×10^{22} c) 10×10^{20} d) 5×10^{15} 149. The ratio of the kinetic energy to the total energy of an electron in a Bohr orbit is a) –1 b) 2 d) None of these c) 1:2 150. The rad is the correct unit used to report the measurement of a) The ability of a beam of gamma ray photons to produce ions in a target b) The energy delivered by radiation to a target c) The biological effect of radiation d) The rate of decay of a radioactive source 151. It is easier to ionize hydrogen as compared to deuterium, because a) Hydrogen is lighter than deuterium b) Atomic number of hydrogen is lesser than deuterium d) The statements is wrong c) Hydrogen is a diatomic gas 152. The first line of Balmer series has wavelength 6563 Å. What will be the wavelength of the first member of Lyman series

a) 1215.4 Å	b) 2500 Å	c) 7500 Å	d) 600 Å
153. Which of the following pa	irs is an isobar	,)
a) $_1H^1$ and $_1H^2$	b) $_1H^2$ and $_1H^3$	c) ${}_{6}C^{12}$ and ${}_{6}C^{13}$	d) $_{15}P^{30}$ and $_{14}Si^{30}$
154. If N_0 is the original mass	of the substance of half life	e period $T_{1/2} = 5$ years, the	n the amount of substance
left after 15 <i>years</i> is			
a) <i>N</i> ₀ /8	b) <i>N</i> ₀ /16	c) N ₀ /2	d) N ₀ /4
155. Mean life of neutron is ab	out		
a) 100 seconds	b) 1000 seconds	c) 10 seconds	d) 1 seconds
156. An element <i>A</i> decays into	element <i>C</i> by a two step p	process	
$A \rightarrow B +_2 \text{He}^4$			
$B \to C + 2_{-1}e^{0}$			
I nen	b) A and C are isobars	a) 1 and P are isotopos	d) A and P are icohard
157 In the reaction identify X	DJ A allu C al e ISODal S	cj A allu D alle isotopes	uj A aliu D al e isobal s
$N^{14} + \alpha \rightarrow N^{17} + n^{1}$			
a) An oxygen nucleus wit	h mass 17	b) An oxygen nucleus wit	th mass 16
c) A nitrogen nucleus wit	h mass 17	d) A nitrogen nucleus wi	th mass 16
158. Ionisation potential of hy-	drogen atom is 13.6 eV. Hy	drogen atoms in the groun	d state are excited by
monochromatic radiation	of photon energy 12.1eV.	The spectral lines emitted	by hydrogen atoms
according to Bohr's theor	y will be		
a) One	b) Two	c) Three	d) Four
159. Heavy water is used in a r	nuclear reactor to		
a) Absorb the neutrons		b) Slow down the neutro	ns
c) Act as coolant	lacarrinta stabla alamant E	a) None of the above	A is available. In this cample
variation in number of nu	iecay fillo stable element i	n hv	A is available. In this sample
		l	
	No	No	
a) $\frac{N_0}{N_0}$	b) ¹¹⁰	c) ¹¹⁰	d) 10
	<u>/</u>		
161 A radioactive sample of <i>II</i>	2^{238} decays to <i>Ph</i> through :	a process for which half life	is $4.5 \times 10^9 vears$ The ratio
of number of nuclei of <i>Ph</i>	to U^{238} after a time of 1.5	$\times 10^9$ years (given $2^{1/3}$ =	1 26)
a) 0.12	b) 0.26	c) 1.2	d) 0.37
162. The mass and energy equ	ivalent to 1 <i>amu</i> are respe	ectively	
a) $1.67 \times 10^{-27} gm$, 9.30	MeV	b) $1.67 \times 10^{-27} kg$, 930 M	1eV
c) $1.67 \times 10^{-27} kg$, 1 MeV	7	d) $1.67 \times 10^{-34} kg$, 1 Me	7
163. Hydrogen atom from exci	ted state comes to the gro	und state by emitting a pho	ton of wavelength λ . If <i>R</i> is
the Rydberg constant, the	e principal quantum numb	er <i>n</i> of the excited state is	
λR	λ	λR^2	λR
a) $\sqrt{\frac{\lambda R-1}{\lambda R-1}}$	$\frac{1}{\sqrt{\lambda R-1}}$	$\frac{c}{\sqrt{\lambda R-1}}$	$\frac{\alpha}{\sqrt{\lambda-1}}$
164. Energy generation in star	rs is mainly due to	N	N
a) Chemical reactions		b) Fission of heavy nucle	i
c) Fusion of light nuclei		d) Fusion of heavy nuclei	
165. A radioactive nucleus und	lergoes α -emission to form	n a stable element. What wi	ll be the recoil velocity of
the daughter nucleus if V	is the velocity of α -emission	on and A is the atomic mass	s of radioactive nucleus
a) $\frac{4V}{}$	b) $\frac{2V}{2V}$	c) $\frac{4V}{}$	d) $\frac{2V}{2V}$
A-4	A-4	$^{-7}A + 4$	A + 4
106. When a slow neutron goe	es sufficiently close to a U^2	\sim nucleus, then the process	s that takes place is
aj fission ol U ²⁰⁰	of rusion of neutron	C Γ U	uj riist (a) tileli (D)

167.	The third line of Balmer s	eries of an ion equivalent to	o hydrogen atom has wave	length of 108.5 <i>nm</i> . The
	ground state energy of an	electron of this ion will be		N 400 4 11
4.60	a) 3.4 eV	b) 13.6 <i>eV</i>	c) 54.4 <i>eV</i>	d) 122.4 <i>eV</i>
168.	A nucleus of mass 214 am emitted is 6.7 <i>MeV</i> . The r	iu in free state decays to en ecoil energy (in <i>MeV</i>) of the	hit an α -particle. Kinetic en e daughter nucleus is	ergy of the α -particle
	a) 1.0	b) 0.5	c) 0.25	d) 0.125
169.	The binding energy of nu	cleus is a measure of its		
	a) Charge	b) Mass	c) Momentum	d) Stability
170.	Suppose an electron is at	tracted towards the origin h	by a force $\frac{k}{r}$ where 'k' is a co	onstant and 'r' is the
	distance of the electron fr orbital of the electron is f following is true	rom the origin. By applying found to be 'r _n ' and the kine	Bohr model to this system, etic energy of the electron t	, the radius of the n th o be 'T _n '. Then which of the
	a) T_n independent of n, r_n	\propto n	b) $T_n \propto \frac{1}{n}, r_n \propto n$	
	c) $T_n \propto \frac{1}{n}$, $r_n \propto n^2$		d) $T_n \propto \frac{1}{n^2}$, $r_n \propto n^2$	
171.	v_1 is the frequency of the	series limit of Lyman series	s, v_2 is the frequency of the	e first line of Lyman series
	and v_3 is the frequency of	f the series limit of the Balm	ner series. Then	
	a) $v_1 - v_2 = v_3$	b) $v_1 = v_2 - v_3$	c) $\frac{1}{v_2} = \frac{1}{v_1} + \frac{1}{v_3}$	d) $\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$
172.	Which of the following ha	s the mass closest in value	to that of the positron	
	(1 a. m. u = 931 MeV)			
	a) Proton	b) Electron	c) Photon	d) Neutrino
173.	The set which represents	the isotope, isobar and isot	tone respectively is	
	a) $(_{1}H^{2}, _{1}H^{3}), (_{79}Au^{197},$	$_{80}Hg^{198}$) and ($_{2}He^{3}$, $_{1}H^{2}$)) b) (₂ He ³ , ₁ H ¹), (₇₉ Au ¹⁹⁷	7 , $_{80}Hg^{198}$) and $(_{1}H^{1}, _{1}H^{3})$
	c) $(_{2}He^{3}, _{1}H^{3}), (_{1}H^{2}, _{1}H^{3})$	(H^3) and $(_{79}Au^{197}, _{80}Hg^{198})$) d) (₁ H ² , ₁ H ³), (₂ He ³ , ₁ H	(1^{3}) and $(_{79}Au^{197}, _{80}Hg^{198})$
174.	The nucleus ${}_{6}C^{12}$ absorb	s an energetic neutron and	emits a beta particle (β). T	The resulting nucleus is
	a) ₇ N ¹⁴	b) ₇ N ¹³	c) ₅ B ¹³	d) ₆ C ¹³
175.	The mass defect in a part	icular nuclear reaction is 0.	3 grams. The amount of er	nergy liberated in kilowatt
	hours is			
	(Velocity of light = 3×10^{-10}	$0^8 m/s$)		
	a) 1.5 × 10 ⁶	b) 2.5 × 10 ⁶	c) 3×10^{6}	d) 7.5×10^{6}
176.	Consider the following sta	atements		
	S1 : The nuclear force is in	ndependent of the charge o	f nucleons	
	S2 : The number of nucleo	ons in the nucleus of an ato	m is equal to the number o	f electrons in the atom
	S3 : All nuclei have masse	es that are less than the sum	n of the masses of constitue	ent nucleons
	S4 : Nucleons belong to th	ne family of leptons while el	lectrons are members of th	e family of hadrons
	Choose the correct staten	nent(s) from these		
	a) S1 only	b) S1 and S4	c) S2, S3 and S4	d) S1 and S3
177.	Alpha rays emitted from a	a radioactive substance are		
	a) Negatively charged par	rticles		
	b) Ionized hydrogen nucl	ei		
	c) Doubly ionized helium	atom		
	d) Unchanged particles ha	aving the mass equal to pro	ton	
178.	A radioactive sample at a	ny instant has its disintegra	ation rate 5000 disintegrati	ions per minute. After 5
	min, the rate is 1250 disir	ntegrations per min. Then, t	the decay constant (per min	nute) is
	a) 0.4 In 2	b) 0.2 In 2	c) 0.1 In 2	d) 0.8 In 2
179.	β -decay means emission	of electron from		
	a) Innermost electron or	pit	b) A stable nucleus	
	c) Outermost electron or	bit	d) Radioactive nucleus	

180.	Excitation energy of a hyd	lrogen like ion in its first ex	citation state is 40.8 eV. Er	nergy needed to remove the
	electron from the ion in g	round state is		
	a) 54.4 <i>eV</i>	b) 13.6 <i>eV</i>	c) 40.8 eV	d) 27.2 <i>eV</i>
181.	In a hydrogen atom, the d	istance between the electro	on and proton is 2.5×10^{-1}	<i>m</i> . The electrical force of
	attraction between them $\sqrt{2}$	will be 10^{-7} N	-) () () () () () () () () () (1) 0 1 10 - 7 N
100	a) $2.8 \times 10^{-7} N$	$DJ 3.7 \times 10^{-7} N$	$CJ 6.2 \times 10^{-7} N$	a) 9.1 × 10 ° N
182.	Sun energy is due to			
	a) Fission of nydrogen		b) Fusion of nydrogen	
100	c) Both fission and fusion		a) Neither fusion nor fissi	on
183.	The α -particle is the nucle	eus of an atom of		
104	a) Neon	b) Hydrogen	c) Helium	d) Deuterium
184.	I ne binding energy of an	electron in the ground state	e of He is equal to 24.6 eV.	I ne energy required to
	remove both the electrons	S IS	.) 20.2 .11	
105	a) 49.2 eV	b) 24.6 eV	c) 38.2 eV	d) /9.0 eV
185.	The mass of an α -particle	IS Creation of the second seco		
	a) Less than the sum of m	asses of two protons and to	wo neutrons	
	b) Equal to mass of four p	rotons		
	c) Equal to mass of four n	eutrons		
100	d) Equal to sum of masses	s of two protons and two ne	eutrons	
186.	In artificial radioactivity,	$1.414 \times 10^{\circ}$ nuclei are dis	integrated into 10° nuclei i	n 10 min. The half-life in
	minutes must be			
	a) 5	b) 20	c) 15	d) 30
187.	The energy in <i>MeV</i> is rele $10^8 m/s$)	ased due to transformation	t of 1 kg mass completely i	nto energy ($c = 3 \times$
	a) 7.625 × 10 <i>MeV</i>	b) 10.5 × 10 ²⁹ <i>MeV</i>	c) $2.8 \times 10^{-28} MeV$	d) 5.625 × 10 ²⁹ <i>MeV</i>
188.	A radioactive substance e	mits	-	-
	a) α-rays	b)β-rays	c) γ-rays	d) All of these
189.	In the nuclear reaction 85	$X^{297} \rightarrow Y + 4\alpha, Y$ is		,
	a) $_{76}Y^{287}$	b) $_{77}Y^{285}$	c) $_{77}Y^{281}$	d) ₇₇ Y ²⁸⁹
190.	The ratio of minimum wa	velengths of Lyman and Ba	lmer series will be	
	a) 5	b) 10	c) 1.25	d) 0.25
191.	The atoms of same element	nt having different masses	but same chemical propert	ies, are called
	a) Isotones	b) Isotopes	c) Isobars	d) Isomers
192.	After 280 days, the activit	y of a radioactive sample is	6000 dps. The activity red	uces to 3000dps after
	another 140 days. The ini	tial activity of the sample(i	n dps) is	
	a) 6000	b) 9000	c) 3000	d) 24000
193.	Hydrogen bomb is based	upon		
	a) Fission	b) fusion	c) Chemical reaction	d) Transmutation
194.	What is the ground state of	energy of positronium	-	
	a) 13.6 eV	b) 27.2 <i>eV</i>	c) 5.4 <i>eV</i>	d) 1.8 <i>eV</i>
195.	Nuclear reactions are give	en as	-	
	(i) \Box (<i>n</i> , <i>p</i>) ₁₅ <i>p</i> ³² (ii) \Box	$(p, \alpha)_8 O^{16}$ (iii) $_7 N^{14}$ (iv) $_6$	<i>C</i> ¹⁴	
	Missing particle or nuclid	e (in box \Box) in these react	tions are respectively	
	a) S^{32} , F^{19} , $_0n^1$	b) F ¹⁹ , S ³² , ₀ n ¹	c) Be ⁹ , F ¹⁹ , ₀ n ¹	d) None of these
196.	In a sample of radioactive	material, what percentage	of the initial number of act	tive nuclei will decay
	during one mean life			
	a) 69.3%	b) 63%	c) 50%	d) 37%
197.	If half life of a radioactive	element is 3 hours, after 9	hours its activity becomes	
	a) 1/9	b) 1/27	c) 1/6	d) 1/8
198.	The S.I. unit of radioactivi	ty is		

100	a) Roentgen	b) Rutherford	c) Curie	d) Becquerel
199.	A nucleus ${}_{n}X^{m}$ emits one	α and one β -particle. The r	esulting nucleus is a^{m-4}	m=4
200	a) nX^{m} which of the relation is a	D) $n-2X^{m-1}$	C) $n-4Z^{m-1}$	d) $n-1Z^{m-1}$
200.	an orbit	orrect between time period	and number of orbits whit	e an electron is revolving in
	anorbit	1		1
	a) <i>n</i> ²	b) $\frac{1}{n^2}$	c) <i>n</i> ³	d) $\frac{1}{n}$
201.	· Radioactive element deca	ys to form a stable nuclide,	then the rate of decay of re	eactant $\left(\frac{dN}{dt}\right)$ will vary with
	time (t) as shown in figur	e		
	dN	dN	dN	dN
	dt	dt	dt	dt
	a)	b)	c)	d) /
		, 		
202	When a radioactive subst	ance emits an <i>a</i> -particle its	s position in the periodic to	ble is lowered by
202.	a) One place	h) Two places	c) Three places	d) Four places
203	$\frac{232}{2}$ Th an isotone of thori	um decays in ten stages em	itting six α -narticles and for	α β
200	end product of the decay	is	tening six a particles and te	fui p particles in all. The
	a) $\frac{206}{Ph}$ Ph	b) $\frac{209}{Ph}$	c) $\frac{208}{20}$ Ph	d) ^{209}Br
204	In hydrogen stom when	b) 82 1 b	to first orbit then energy	amitted is
204.	-12.6 eV	b) $-27.2 \rho V$	c = 6.8 aV	d) None of these
205	The neutron was discover	red by	0.0 27	uj None of these
200	a) Marie Curie	h) Pierre Curie	c) James Chadwick	d) Rutherford
206	a) Marie Garie	sive disintegrations with the	e end product of _{en} Ph ²⁰³	The number of α and β -
200	narticles emitted are	sive alonitegrations with th	e ena produce or 821 b	The number of a anap
	a) $\alpha = 6$, $\beta = 4$	b) $\alpha = 6$, $\beta = 0$	c) $\alpha = 8$, $\beta = 6$	d) $\alpha = 3$, $\beta = 3$
207.	A nuclear reaction given h)V		uju 0,p 0
-	$_{7}X^{A} \rightarrow _{7+1}Y^{A} + _{-1}e^{0} +$	\bar{p} represents		
	a) γ -decays	b) Fusion	c) Fission	d)β-decay
208.	. Binding energy per nucle	on plot against the mass nu	mber for stable nuclei is sh	nown in the figure. which
	curve is correct	1 0		0
	$\xrightarrow{\text{m}} A$ Mass number			
		ם (ג		ע (ך
200	a) A	DJB	C) C	$a_{J} D$
209.	As per Bonr model, the m	Inimum energy (in ev) req	ulred to remove an electro	in from the ground state of
	a) 1 E1	$h = 3 \int 18$	a) 10.9	d) 122 /
210	a) 1.51 Energy levels A B C of a	UJ 13.0 Sertain atom corresponding	to increasing values of en	$u_{j} 122.4$
210.	λ , λ , λ , are the wavelend	oth of radiations corresponding	ding to the transitions (to	B B to A and C to A
	respectively, which of the	following statements is co	rrect	
	λ_1			
	B			
	λ_2 λ_3			
	• • A	1 1		
	a) $\lambda_3 = \lambda_1 + \lambda_2$	b) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$	c) $\lambda_1 + \lambda_2 + \lambda_3 = 0$	d) $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$
~				

211. A double charged lithium atom is equivalent to hydrogen whose atomic number is 3. The wavelength of

hy	1	ting electron nom mist to	thind boin of bit in Lt W	ill be (lonisation energy of
-	ydrogen atom is 13.6 <i>eV</i>)			
a)) 182.51 Å	b) 177.17 Å	c) 142.25 Å	d) 113.74 Å
212. T	he ratio of the longest to	shortest wavelengths in Ly	yman series of hydrogen sp	oectra is
ຊີ	25	h) $\frac{17}{-1}$	9 c) -	$d) \frac{4}{-}$
uj	9	6	5	3
213. A	small quantity of solutio	n containing Na^{24} radio n	uclide of activity 1 <i>microci</i>	<i>trie</i> is injected into the
b	lood of a person. A samp	le of the blood of volume 1	<i>cm</i> ³ taken after 5 hours sh	ows an activity of 296
di	isintegration per minute.	What will be the total volu	ime of the blood in the bod	ly of the person. Assume
th	hat the radioactive solution	on mixes uniformly in the l	blood of the person	
(1	Take 1 curie = 3.7×10^{1}	^o disintegration per secon	d and $e^{-\pi t} = 0.7927$; wher	e λ = disintegration
CC	onstant)			
aj) 5.94 litre	b) 2 litre	c) 317 litre	d) 1 litre
214. A	nuclear transformation	is denoted by $X(n,\alpha) \rightarrow {}_{3}L$	i. Which of the following is	the nucleus of element X ?
aj) ¹² 6C	b) ¹⁰ ₅ B	c) ⁵ ₅ B	d) ¹¹ ₄ Be
215. T	he binding energy per nu	cleon of O^{16} is 7.97 <i>MeV</i> at	nd that of O^{17} is 7.75 MeV.	The energy (in <i>MeV</i>)
re	equired to remove a neut	ron from O^{17} is		
aj) 3.52	b) 3.64	c) 4.23	d) 7.86
216. T	he end product of the de	cay of $_{90}$ Th ²³² is $_{82}$ Pb ²⁰⁸ .	The number of α and β -pa	rticles emitted are
re	espectively			
aj) 6,4	b) 3,3	c) 4,6	d) 6,0
217. Н	alf life of radioactive elei	nent depends upon		
aj) Amount of element pres	sent	b) Temperature	
C)) Pressure	N. 237	a) Nature of element	m l
218. A	radioactive decay chain	starts from $_{92}Np^{237}$ produ	$1 \cos_{90} I h^{22}$ by successive	emissions. The emitted
pa	articles call be	a l' narticla	h) Three Ot norticles	
a)) Two α -particles and two	e^{p} -particles	d) One α particle and two	P particlas
210 M	$\int O dt = \mu dt$	p particles	u) One α -particle and two	op particles
219.10	iost suitable element ioi	inuclear fission is the elenno	ent with atomic number ne	al
2) 11	h) 21	c) 52	d) 92
a] 220 م) 11 certain radioactive mate	b) 21 X^A starts emitting α	c) 52	d) 92 v such that the end product
a) 220. A) 11 certain radioactive mate V^{A-b} The number of	b) 21 trial $_Z X^A$ starts emitting α f gand β particles emitted a	c) 52 and β particles successivel	d) 92 y such that the end product
a) 220. A is) 11 certain radioactive mate $z_{z-3}Y^{A-b}$. The number of 4 and 3 respectively	b) 21 erial $_Z X^A$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively	c) 52 and β particles successivel are c) 3 and 4 respectively	d) 92 y such that the end product
a) 220. A is a) 221) 11 certain radioactive mate $z_{-3}Y^{A-b}$. The number o) 4 and 3 respectively $z_{-1}U^{238}$ on absorbing a per-	b) 21 rial $_Z X^A$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively utron goes over to $\alpha = U^{239}$.	 c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect 	d) 92y such that the end productd) 3 and 8 respectivelyron to go over electron
a) 220. A is a) 221. 9) 11 certain radioactive mate $z_{-3}Y^{A-b}$. The number o) 4 and 3 respectively ${}_{2}U^{238}$ on absorbing a new presover to Plutonium Th	b) 21 trial $_Z X^A$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively utron goes over to $_{92}U^{239}$.	 c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect be expressed as 	d) 92y such that the end productd) 3 and 8 respectivelyron to go over electron
a) 220. A is a) 221. 9 go a)) 11 certain radioactive mate $z_{-3}Y^{A-b}$. The number of) 4 and 3 respectively ${}_{2}U^{238}$ on absorbing a new oes over to Plutonium. The out U^{239}	b) 21 rial $_Z X^A$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively utron goes over to $_{92}U^{239}$. he resulting Plutonium can b) $_{92}U^{239}$	 c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect be expressed as c) apll²⁴⁰ 	 d) 92 y such that the end product d) 3 and 8 respectively ron to go over electron d) eall²⁴⁰
a) 220. A is a) 221. 9 g0 a) 222. T) 11 certain radioactive mate $z_{-3}Y^{A-b}$. The number o) 4 and 3 respectively ${}_{2}U^{238}$ on absorbing a new oes over to Plutonium. Th) ${}_{94}U^{239}$ he activity of a radioactive	b) 21 erial $_Z X^A$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively utron goes over to $_{92}U^{239}$. The resulting Plutonium can b) $_{92}U^{239}$ we sample is measured as 9	 c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect be expressed as c) ₉₃U²⁴⁰ 750 counts <i>per minute</i> at 	d) 92 y such that the end product d) 3 and 8 respectively ron to go over electron d) $_{92}U^{240}$ t = 0 and as 975 counts
a) 220. A is a) 221. 9 go a) 222. T) 11 . certain radioactive mate $x_{z-3}Y^{A-b}$. The number of) 4 and 3 respectively ${}_{2}U^{238}$ on absorbing a new oes over to Plutonium. Th) ${}_{94}U^{239}$ he activity of a radioactive er minute at $t = 5$ minute	b) 21 rial $_Z X^A$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively utron goes over to $_{92}U^{239}$. The resulting Plutonium can b) $_{92}U^{239}$ we sample is measured as 9 tes. The decay constant is	 c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect be expressed as c) ₉₃U²⁴⁰ 750 counts <i>per minute</i> at approximately 	d) 92 y such that the end product d) 3 and 8 respectively ron to go over electron d) $_{92}U^{240}$ t = 0 and as 975 counts
a) 220. A is a) 221. 9 go a) 222. T <i>p</i> a) 11 . certain radioactive mate : $_{z-3}Y^{A-b}$. The number of) 4 and 3 respectively $_{2}U^{238}$ on absorbing a new coes over to Plutonium. The) $_{94}U^{239}$ he activity of a radioactive <i>er minute</i> at $t = 5$ <i>minu</i>) 0.230 <i>per minute</i>	b) 21 rial $_ZX^A$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively utron goes over to $_{92}U^{239}$. The resulting Plutonium can b) $_{92}U^{239}$ we sample is measured as 9 tes. The decay constant is b) 0.461 per minute	 c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect be expressed as c) ₉₃U²⁴⁰ 750 counts <i>per minute</i> at approximately c) 0.691 <i>per minute</i> 	d) 92 y such that the end product d) 3 and 8 respectively ron to go over electron d) $_{92}U^{240}$ t = 0 and as 975 counts d) 0.922 <i>per minute</i>
a) 220. A is a) 221. 9 go a) 222. T po a) 223. T) 11 . certain radioactive mate . certain radioactive mate . certain radioactive mate . certain radioactively . 2 U ²³⁸ on absorbing a new oes over to Plutonium. Th . 94 U ²³⁹ he activity of a radioactive er minute at $t = 5$ minute . 0.230 per minute he radius of germanium	b) 21 rial $_Z X^A$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively atron goes over to $_{92}U^{239}$. The resulting Plutonium can b) $_{92}U^{239}$ we sample is measured as 9 tes. The decay constant is 4 b) 0.461 <i>per minute</i> (Ge) nuclide is measured t	 c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect be expressed as c) ₉₃U²⁴⁰ 750 counts <i>per minute</i> at approximately c) 0.691 <i>per minute</i> o be twice the radius of ²/₂Be 	d) 92 y such that the end product d) 3 and 8 respectively ron to go over electron d) $_{92}U^{240}$ t = 0 and as 975 counts d) 0.922 <i>per minute</i> e. The number of nucleons
a) 220. A is a) 221. 9 go a) 222. T <i>p</i> a) 223. T in) 11 certain radioactive mate $z_{-3}Y^{A-b}$. The number of) 4 and 3 respectively ${}_{2}U^{238}$ on absorbing a new oes over to Plutonium. Th) ${}_{94}U^{239}$ he activity of a radioactive er minute at $t = 5$ minut) 0.230 per minute he radius of germanium of Ge are	b) 21 rrial $_ZX^A$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively utron goes over to $_{92}U^{239}$. The resulting Plutonium can b) $_{92}U^{239}$ we sample is measured as 9 tes. The decay constant is b) 0.461 <i>per minute</i> (Ge) nuclide is measured to	c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect be expressed as c) ${}_{93}U^{240}$ 750 counts <i>per minute</i> at approximately c) 0.691 <i>per minute</i> o be twice the radius of ${}_{4}^{9}Be$	d) 92 y such that the end product d) 3 and 8 respectively ron to go over electron d) $_{92}U^{240}$ t = 0 and as 975 counts d) 0.922 <i>per minute</i> e. The number of nucleons
a) 220. A is a) 221. 9 go a) 222. T po a) 223. T in a)) 11 certain radioactive mate $z_{-3}Y^{A-b}$. The number of) 4 and 3 respectively ${}_{2}U^{238}$ on absorbing a new oes over to Plutonium. Th) ${}_{94}U^{239}$ he activity of a radioactive er minute at $t = 5$ minute he radius of germanium of Ge are) 73	b) 21 rial $_ZX^A$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively utron goes over to $_{92}U^{239}$. The resulting Plutonium can b) $_{92}U^{239}$ re sample is measured as 9 tes. The decay constant is a b) 0.461 <i>per minute</i> (Ge) nuclide is measured t b) 74	c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect be expressed as c) ${}_{93}U^{240}$ 750 counts <i>per minute</i> at approximately c) 0.691 <i>per minute</i> o be twice the radius of ${}_{4}^{9}Be$ c) 75	d) 92 y such that the end product d) 3 and 8 respectively ron to go over electron d) $_{92}U^{240}$ t = 0 and as 975 counts d) 0.922 <i>per minute</i> e. The number of nucleons d) 72
a) 220. A is a) 221. 9 go a) 222. T po a) 223. T in a) 224. T) 11 certain radioactive mate $z_{-3}Y^{A-b}$. The number of) 4 and 3 respectively ${}_{2}U^{238}$ on absorbing a new oes over to Plutonium. Th) ${}_{94}U^{239}$ he activity of a radioactive <i>er minute</i> at $t = 5$ <i>minu</i>) 0.230 <i>per minute</i> he radius of germanium of Ge are) 73 he activity of a sample of	b) 21 rial $_ZX^A$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively utron goes over to $_{92}U^{239}$. The resulting Plutonium can b) $_{92}U^{239}$ we sample is measured as 9 tes. The decay constant is b) 0.461 <i>per minute</i> (Ge) nuclide is measured t b) 74 a radioactive material is A	c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect be expressed as c) ${}_{93}U^{240}$ 750 counts <i>per minute</i> at approximately c) 0.691 <i>per minute</i> o be twice the radius of ${}_{4}^{9}Be$ c) 75 at time t_{1} and A_{2} at time t	d) 92 y such that the end product d) 3 and 8 respectively ron to go over electron d) $_{92}U^{240}$ t = 0 and as 975 counts d) 0.922 <i>per minute</i> e. The number of nucleons d) 72 $_{2}(t_{2} > t_{1})$. If its mean life is
a) 220. A is a) 221. 9 go a) 222. T po a) 223. T in a) 224. T T) 11 certain radioactive mate $z_{-3}Y^{A-b}$. The number of) 4 and 3 respectively ${}_{2}U^{238}$ on absorbing a new oes over to Plutonium. Th) ${}_{94}U^{239}$ he activity of a radioactive er minute at $t = 5$ minute he radius of germanium of Ge are) 73 he activity of a sample of , then	b) 21 rial $_Z X^A$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively atron goes over to $_{92}U^{239}$. The resulting Plutonium can b) $_{92}U^{239}$ re sample is measured as 9 tes. The decay constant is a b) 0.461 <i>per minute</i> (Ge) nuclide is measured t b) 74 a radioactive material is A	c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect be expressed as c) ${}_{93}U^{240}$ 750 counts <i>per minute</i> at approximately c) 0.691 <i>per minute</i> o be twice the radius of ${}_{4}^{9}Be$ c) 75 at time t_{1} and A_{2} at time t	d) 92 y such that the end product d) 3 and 8 respectively ron to go over electron d) $_{92}U^{240}$ t = 0 and as 975 counts d) 0.922 <i>per minute</i> e. The number of nucleons d) 72 $_{2}(t_{2} > t_{1})$. If its mean life is
a) 220. A is a) 221. 9 go a) 222. T po a) 222. T in a) 223. T in a) 224. T a)) 11 . certain radioactive mate . certain radioactive mate $z_{-3}Y^{A-b}$. The number of) 4 and 3 respectively $z^{2}U^{238}$ on absorbing a new oes over to Plutonium. The $y_{-4}U^{239}$ he activity of a radioactive <i>er minute</i> at $t = 5$ <i>minu</i>) 0.230 <i>per minute</i> he radius of germanium in Ge are) 73 he activity of a sample of <i>t</i> , then) $A_1t_1 = A_2t_2$	b) 21 rrial $_{Z}X^{A}$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively utron goes over to $_{92}U^{239}$. The resulting Plutonium can b) $_{92}U^{239}$ we sample is measured as 9 <i>tes</i> . The decay constant is 5 b) 0.461 <i>per minute</i> (Ge) nuclide is measured t b) 74 Ta radioactive material is A b) $A_{1} - A_{2} = t_{2} - t_{1}$	c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect be expressed as c) ${}_{93}U^{240}$ 750 counts <i>per minute</i> at approximately c) 0.691 <i>per minute</i> o be twice the radius of ${}_{4}^{9}Be$ c) 75 at time t_{1} and A_{2} at time t c) $A_{2} = A_{1}e^{(t_{1}-t_{2})/T}$	d) 92 y such that the end product d) 3 and 8 respectively ron to go over electron d) $_{92}U^{240}$ t = 0 and as 975 counts d) 0.922 <i>per minute</i> e. The number of nucleons d) 72 $_{2}(t_{2} > t_{1})$. If its mean life is d) $A_{2} = A_{1}e^{(t_{1}/t_{2})/T}$
a) 220. A is a) 221. 9 go a) 222. T in a) 223. T in a) 224. T a) 225. T) 11 certain radioactive mate $z_{-3}Y^{A-b}$. The number of) 4 and 3 respectively ${}_{2}U^{238}$ on absorbing a new oes over to Plutonium. Th) ${}_{94}U^{239}$ he activity of a radioactive er minute at $t = 5$ minut) 0.230 per minute he radius of germanium in Ge are) 73 he activity of a sample of f, then) $A_1t_1 = A_2t_2$ he first excited state of h	b) 21 erial $_ZX^A$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively utron goes over to $_{92}U^{239}$. The resulting Plutonium can b) $_{92}U^{239}$ we sample is measured as 9 tes. The decay constant is b) 0.461 <i>per minute</i> (Ge) nuclide is measured t b) 74 Ta radioactive material is A b) $A_1 - A_2 = t_2 - t_1$ ydrogen atom is 10.2 <i>eV</i> al	c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect be expressed as c) ${}_{93}U^{240}$ 750 counts <i>per minute</i> at approximately c) 0.691 <i>per minute</i> o be twice the radius of ${}_{4}^{9}B^{0}$ c) 75 at time t_{1} and A_{2} at time t c) $A_{2} = A_{1}e^{(t_{1}-t_{2})/T}$ pove its ground state. The t	d) 92 y such that the end product d) 3 and 8 respectively ron to go over electron d) $_{92}U^{240}$ t = 0 and as 975 counts d) 0.922 <i>per minute</i> e. The number of nucleons d) 72 $_{2}(t_{2} > t_{1})$. If its mean life is d) $A_{2} = A_{1}e^{(t_{1}/t_{2})/T}$ remperature is needed to
a) 220. A is a) 221. 9 go a) 222. T po a) 222. T in a) 223. T a) 224. T c a) 225. T c ex) 11 certain radioactive mate $z_{-3}Y^{A-b}$. The number of) 4 and 3 respectively ${}_{2}U^{238}$ on absorbing a new oes over to Plutonium. Th) ${}_{94}U^{239}$ he activity of a radioactive <i>er minute</i> at $t = 5$ <i>minu</i>) 0.230 <i>per minute</i> he radius of germanium of Ge are) 73 he activity of a sample of <i>t</i> , then) $A_1t_1 = A_2t_2$ he first excited state of he axcite hydrogen atoms to a	b) 21 rrial $_{Z}X^{A}$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively utron goes over to $_{92}U^{239}$. The resulting Plutonium can b) $_{92}U^{239}$ we sample is measured as 9 tes. The decay constant is 5 b) 0.461 <i>per minute</i> (Ge) nuclide is measured t b) 74 Ta radioactive material is A b) $A_{1} - A_{2} = t_{2} - t_{1}$ ydrogen atom is 10.2 <i>eV</i> al first excited level, is	c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect be expressed as c) ${}_{93}U^{240}$ 750 counts <i>per minute</i> at approximately c) 0.691 <i>per minute</i> o be twice the radius of ${}_{4}^{9}Be$ c) 75 at time t_{1} and A_{2} at time t c) $A_{2} = A_{1}e^{(t_{1}-t_{2})/T}$ pove its ground state. The t	d) 92 y such that the end product d) 3 and 8 respectively ron to go over electron d) $_{92}U^{240}$ t = 0 and as 975 counts d) 0.922 <i>per minute</i> e. The number of nucleons d) 72 $_{2}(t_{2} > t_{1})$. If its mean life is d) $A_{2} = A_{1}e^{(t_{1}/t_{2})/T}$ remperature is needed to
a) 220. A is a) 221. 9 go a) 222. Ti po a) 222. Ti in a) 223. Ti a) 224. Ti a) 225. Ti ex a)) 11 certain radioactive mate $z_{-3}Y^{A-b}$. The number of) 4 and 3 respectively ${}_{2}U^{238}$ on absorbing a new oes over to Plutonium. The) ${}_{94}U^{239}$ he activity of a radioactive <i>er minute</i> at $t = 5$ <i>minu</i>) 0.230 <i>per minute</i> he radius of germanium of Ge are) 73 he activity of a sample of <i>then</i>) $A_{1}t_{1} = A_{2}t_{2}$ he first excited state of he xcite hydrogen atoms to a) 7.9 × 10 ⁴ K	b) 21 erial $_ZX^A$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively atron goes over to $_{92}U^{239}$. The resulting Plutonium can b) $_{92}U^{239}$ we sample is measured as 9 tes. The decay constant is 5 b) 0.461 <i>per minute</i> (Ge) nuclide is measured t b) 74 Ta radioactive material is A b) $A_1 - A_2 = t_2 - t_1$ ydrogen atom is 10.2 <i>eV</i> alfirst excited level, is b) 3.5 × 10 ⁴ <i>K</i>	c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect be expressed as c) ${}_{93}U^{240}$ 750 counts <i>per minute</i> at approximately c) 0.691 <i>per minute</i> o be twice the radius of ${}_{4}^{9}B^{0}$ c) 75 at time t_{1} and A_{2} at time t c) $A_{2} = A_{1}e^{(t_{1}-t_{2})/T}$ pove its ground state. The t	d) 92 y such that the end product d) 3 and 8 respectively ron to go over electron d) $_{92}U^{240}$ t = 0 and as 975 counts d) 0.922 <i>per minute</i> e. The number of nucleons d) 72 $_{2}(t_{2} > t_{1})$. If its mean life is d) $A_{2} = A_{1}e^{(t_{1}/t_{2})/T}$ remperature is needed to d) 14 × 10 ⁴ K
a) 220. A is a) 221. 9 go a) 222. T po a) 223. T in a) 224. T 7 a) 225. T ex a) 225. T ex a) 226. A) 11 . certain radioactive mate $z_{-3}Y^{A-b}$. The number of) 4 and 3 respectively ${}_{2}U^{238}$ on absorbing a new oes over to Plutonium. Th) ${}_{94}U^{239}$ he activity of a radioactive <i>er minute</i> at $t = 5$ <i>minu</i>) 0.230 <i>per minute</i> he radius of germanium a Ge are) 73 he activity of a sample of <i>t</i> , then) $A_1t_1 = A_2t_2$ he first excited state of he xcite hydrogen atoms to 5) 7.9 × 10 ⁴ K	b) 21 rrial $_ZX^A$ starts emitting α f α and β particles emitted a b) 2 and 1 respectively atron goes over to $_{92}U^{239}$. The resulting Plutonium can b) $_{92}U^{239}$ we sample is measured as 9 tes. The decay constant is 5 b) 0.461 <i>per minute</i> (Ge) nuclide is measured t b) 74 Ta radioactive material is A b) $A_1 - A_2 = t_2 - t_1$ ydrogen atom is 10.2 <i>eV</i> alfirst excited level, is b) 3.5 × 10 ⁴ <i>K</i> b) 3.5 × 10 ⁴ <i>K</i>	c) 52 and β particles successivel are c) 3 and 4 respectively This nucleus emits an elect be expressed as c) ${}_{93}U^{240}$ 750 counts <i>per minute</i> at approximately c) 0.691 <i>per minute</i> o be twice the radius of ${}_{4}^{9}Be$ c) 75 at time t_{1} and A_{2} at time t c) $A_{2} = A_{1}e^{(t_{1}-t_{2})/T}$ pove its ground state. The t	d) 92 y such that the end product d) 3 and 8 respectively ron to go over electron d) $_{92}U^{240}$ t = 0 and as 975 counts d) 0.922 <i>per minute</i> e. The number of nucleons d) 72 $_{2}(t_{2} > t_{1})$. If its mean life is d) $A_{2} = A_{1}e^{(t_{1}/t_{2})/T}$ remperature is needed to d) $14 \times 10^{4} K$ ular momentum is

(Given Planck's constant $h = 6.6 \times 10^{-34}J - s$) a) $1.05 \times 10^{-34}J - s$ b) $3.16 \times 10^{-34}J - s$ c) $2.11 \times 10^{-34}J - s$ d) $4.22 \times 10^{-34}J - s$

227. F_{pp} , F_{nn} and F_{np} are the nuclear forces between proton-proton, neutron-neutron and neutron-proton respectively. Then relation between them is

a)
$$F_{pp} = F_{nn} \neq F_{np}$$
 b) $F_{pp} \neq F_{nn} = F_{np}$ c) $F_{pp} = F_{nn} = F_{np}$ d) $F_{pp} \neq F_{nn} \neq F_{np}$

228. The energy levels of the hydrogen spectrum is shown in figure. There are some transition *A*, *B*, *C*, *D* and *E*. Transition *A*, *B* and *C* respectively represent

- a) First member of Lyman series, third spectral line of Balmer series and the second spectral line of Paschen series
- b) Ionization potential of hydrogen, second spectral line of Balmer series and third spectral line of Paschen series
- c) Series limit of Lyman series, third spectral line of Balmer series and second spectral line of Paschen series
- d) Series limit of Lyman series, second spectral line of Balmer series and third spectral line of Paschen series
- 229. Energy of 1g uranium is equal to

b) 9.0×10^{19} c) 3.0×10^{16} / a) 9.0×10^{13} d) $3.0 \times 10^{17} I$ 230. Energy required for the electron excitation in Li^{++} from the first to the third Bohr orbit is a) 12.1 eV b) 36.3 eV c) 108.8 eV d) 122.4 *eV* 231. A radioactive substance has a half-life of four months. Three-fourth of the substance will decay in c) 8 months d) 12 months a) 3 months b) 4 months 232. Energy *E* of a hydrogen atom with principal quantum number *n* is given by $E = \frac{-13.6}{n^2} eV$. The energy of a photon ejected when the electron jumps from n = 3 state to n = 2 state of hydrogen is approximately a) 1.5 eV b) 0.85 eV c) 3.4 eV d) 1.9 eV 233. The example of nuclear fusion is a) Formation of Ba and Kr from U²³⁵ b) Formation of *He* from *H* c) Formation of Pu - 235 from U - 235d) Formation of water from hydrogen and oxygen 234. The masses of neutron and proton are 1.0087 *a.m.u.* and 1.0073 *a.m.u.* respectively. If the neutrons and protons combine to form a helium nucleus (alpha particles) of mass 4.0015 a.m.u. the binding energy of the helium nucleus will be (1 a. m. u. = 931 MeV)c) 27.3 MeV a) 28.4 *MeV* b) 20.8 MeV d) 14.2 MeV 235. The nucleus ₉₂U²³⁴ splits exactly in half in a fission reaction in which two neutrons are released. The resultant nuclei are a) ₄₆Pd¹¹⁶ b) $_{45}$ Rh¹¹⁷ c) $_{45}Rh^{116}$ d) ₄₆Pd¹¹⁷ 236. When the number of nucleons in nuclei increase, the binding energy per nucleon a) Increases continuously with mass number b) Decreases continuously with mass number c) Remains constant with mass number d) First increases and then decreases with increases of mass number 237. Binding energy per nucleon verses mass number curve for nuclei is shown in the figure. W, X, Y and Z are four nuclei indicated on the curve. The process that would release energy is

	x y x x x x x x x x	♥ W 20 clei		
	a) $Y \rightarrow 2Z$	b) $W \rightarrow X + Z$	c) $W \rightarrow 2Y$	d) $X \rightarrow Y + Z$
238.	Consider an initially pure	$'M'g$ sample of ^{A}X , an isot	tope that has a half life of <i>T</i>	hour. What is it's initial
	decay rate (N_A = Avograd	o No.)		
	MN_A	$0.693 M N_A$	$0.693 M N_A$	$2.303 M N_A$
	$\frac{T}{T}$	T	CJ = AT	AT
239.	The nuclear radius of a ce	rtain nucleus is 7.2 fm and	it has charge of $1.28 \times 10^{\circ}$	⁻¹⁷ C. The number of
	neutrons inside the nucle	us is		
	a) 136	b) 142	c) 140	d) 132
240.	If the binding energy per i	nucleon in ₃ Li ⁷ and ₂ He ⁴ n	uclei are respectively 5.60 I	MeV and 7.06 MeV, then the
	energy of proton in the re	action $_{3}\text{Li} + p \rightarrow 2_{2}\text{He}^{4}$ is		
	a) 19.6 MeV	b) 2.4 MeV	c) 8.4 MeV	d) 17.3 MeV
241.	If the binding energy per i	nucleon in $^{7}_{3}$ Li and $^{4}_{2}$ He nuc	lei are 5.60 MeV and 7.06 M	leV respectively, then in
	the reaction			
	$p + {}^7_3\text{Li} \rightarrow 2 {}^4_2\text{He}$			
	energy of proton must be			
	a) 28.24MeV	b) 17.28MeV	c) 1.46MeV	d) 39.2MeV
242.	In nuclear fission, the fissi	ion reactions proceeds wit	h a projectile. Which of the	following suits the best
	a) Slow proton	b) Fast neutron	c) Slow neutron	d) None of these
243.	Neutron decay in free spa	ce is given as follows		
	$_{0}n^{1} \rightarrow _{1}H^{1} +{1}e^{0} + []$	Then the parenthesis repre	sents a	
	a) Neutrino	b) Photon	c) Antineutrino	d) Graviton
244.	What is the disintegration	constant of radon if the nu	umber of its atoms diminish	nes by 18%in 24 h?
	a) 2.1 \times 10 ⁻³ s ⁻¹	b) $2.1 \times 10^{-4} \mathrm{s}^{-1}$	c) 2.1 $\times 10^{-5} \text{ s}^{-1}$	d) 2.1 $\times 10^{-6} \text{ s}^{-1}$
245.	What is the mass of one cu	urie of U ²³⁴ ?		
	a) 3.7×10^{10} g	b) 3.7 × 10 ⁻¹⁰ g	c) 6.25×10^{-34} g	d) 1.438 × 10 ⁻¹¹ g
246.	Half-life of a radioactive s	ubstance is 20 <i>minutes</i> . Di	fference between points of	time when it is 33%
	disintegrated and 67% dis	sintegrated is approximate	ly	
	a) 10 <i>min</i>	b) 20 <i>min</i>	c) 30 min	d) 40 <i>min</i>
247.	Which of these is non-divi	sible		
	a) Nucleus	b) Photon	c) Proton	d) Atom
248.	For principal quantum nu	mber $n = 3$, the possible v	alues of orbital quantum nu	umber ' <i>l</i> ' are
	a) 1, 2, 3	b) 0, 1, 2, 3	c) 0, 1, 2	d) -1, 0, +1
249.	16 g sample of a radioacti	ve element is taken from E	Sombay to Delhi in 2 <i>hour</i> a	nd it was found that $1 g$ of
	the element remained (un	disintegrated). Half life of	the element is	
	a) 2 <i>hour</i>	b) 1 <i>hour</i>	c) 1/2 hour	d) 1/4 <i>hour</i>
250.	If 20 g of a radioactive sul	ostance due to radioactive	decay reduces to $10 g$ in 4	minutes, then in what time
	80 <i>g</i> of the same substance	e will reduce to 10 g		
	a) In 8 <i>minutes</i>	b) In 12 <i>minutes</i>	c) In 16 <i>minutes</i>	d) In 20 minutes
251.	In the nuclear reaction			
	$^{14}_{7}\text{N} + X \rightarrow ^{14}_{6}\text{C} + ^{1}_{1}\text{H}$, the	<i>X</i> will be		
	a)1^e	b) ¹ ₁ H	c) ² ₁ H	d) ${}_{0}^{1}n$
252.	The mass number of nucle	eus is		
	a) Sometimes equal to its	atomic number		

	b) Sometimes less than and sometimes more than its atomic numberc) Always less than its atomic numberb) Always less than its atomic number				
252	a) Always more than its a	itomic number	ound the nucleus veries wi	the arrival arranting	
253.	The magnetic moment (μ) of a revolving electron are	bund the nucleus varies wi	th principal quantum	
	number n as		2		
054	a) $\mu \propto n$	b) $\mu \propto 1/n$	c) $\mu \propto n^2$	d) $\mu \propto 1/n^2$	
254.	A and B are two radioactiv	ve substances whose half-li	ves are 1 and 2 yr respectiv	vely. Initially 10 g of A and 1	
	g of B is taken. The time (approximate) after which t	hey will have same quantit	y remaining is	
	a) 6.62 yr	b) 5 yr	c) 3.2 yr	d) 7yr	
255.	The particle that possess	es half integral spin as			
	a) Photon	b) Pion	c) Proton	d) <i>K</i> -meson	
256.	In a radioactive disintegr	ation , the ratio of initial nu	mber of atoms to the numb	per of atoms present at an	
	instant of time equal to it	s mean life is			
	a) $\frac{1}{2}$	b) 1	c) e	d) <i>e</i> ²	
257.	<i>e²</i> . Which of the following is	e true			
_	a) Lyman series is a conti	nuous spectrum			
	b) Paschen series is a line	e spectrum in the infrared			
	c) Balmer series is a line	spectrum in the ultraviolet			
	d) The spectral series for	mula can be derived from t	he Rutherford model of the	hydrogen atom	
258	Nuclear forces are				
_000	a) Short ranged attractive	e and charge independent			
	b) Short ranged attractive	e and charge dependent			
	c) Long ranged repulsive	and charge independent			
	d) Long ranged repulsive	and charge dependent			
259	The radioactivity of a cert	tain radioactive element dr	ons to 1/64 of its initial val	ue in 30 seconds. Its half	
207	life is				
	a) 2 seconds	b) 4 seconds	c) 5 seconds	d) 6 seconds	
260.	If M_0 is the mass of an ox	vgen isotope $_{\circ}O^{17}$. $M_{-}and$	$M_{\rm m}$ are the masses of a prot	ton and a neutron.	
	respectively the nuclear	hinding energy of the isotor	ne is	,	
	a) $(M = 8M)c^2$	b) $(M = 8M = 9M)c^2$	c) $M c^2$	d) $(M = 17 M)c^2$	
261	$a_{0} \left(\frac{m_{0}}{m_{0}} - \frac{m_{p}}{m_{p}} \right) c$	$D \int (M_0 - 0M_p) M_n fc$	$C_{0} M_{0}C_{0}$	$m_0 = 17 m_n c$	
201.	hudragan like atom than	atomia numbor of this hydr	is equal to the series minu	of ballier series for a	
	nyurogen nike atom, then	atomic number of this light	a) 2	4) 4	
262	dj 1 The redius of the Dohr or	UJ Z bit in the ground state of h	СЈЭ rduo gon otom io ОГ Å The	uj 4	
202.	aloctron in the third excit	on in the ground state of hy	drogen atom is 0.5 A. The	radius of the orbit of the	
		b) 4 Å	-) ог Å		
262	a) 8 A	0J 4 A	CJ 0.5 A	u) 0.25 A	
263.	If an electron jumps from	1st orbital to 3rd orbital, th	nen it will		
264	a) Absorb energy	b) Release energy	c) No gain of energy	d) None of these	
264.	I ne nuclide 1317 is radioa	active, with a half-life of 8.0	4 days. At noon on January	1, the activity of a certain	
	sample is $600 Bq$. The act	civity at noon on January 24	will be	N 450 D	
265	a) $75 Bq$	b) Less than 75 Bq	c) More than 75 Bq	d) 150 <i>Bq</i>	
265.	A π° at rest decays into 2	γ rays, $\pi^{\circ} \rightarrow \gamma + \gamma$. Then we	hich of the following can ha	appen	
	a) The two γ 's move in sa	ime direction	b) The two γ 's move in op	oposite direction	
	c) Both repel each other		d) Both attract each other	•	
266.	When a proton, anti-prot	on annihilate ,the energy re	leased is		
0.47	a) 1.5 \times 10 ⁻¹⁰ J	b) 28.8×10^{-10} J	$c_{J} 6 \times 10^{-10} J$	aj 9 × 10 – 10 J	
267.	$\chi^{235}_{02} X \rightarrow \chi^{231}_{04} Y$				
	92 91 Number of particles omit	tad in the reaction is			
	manufer of particles enne				

	a) One electron and one r	neutron	b) One neutron and one	electron
0.00	c) One α and one neutron		d) One α and one electron	n
268	A sodium atom is in one of 10^{-8}	of the states labeled Lowes	t excited levels'. It remains	in that state for an average
	time of 10°s, before it m	lakes a transition back to a	ground state. What is the u	incertainty in energy of that
	excited state	$1 > 0 = 40^{-8} $) 40- ⁸ U	$120 - 40^{-8}$ U
	a) $6.56 \times 10^{-6} eV$	b) $2 \times 10^{-6} eV$	c) 10 °eV	d) $8 \times 10^{-6} eV$
269	. Age of a tree is determine	ed using radio-isotope of		
	a) Carbon	b) Cobalt	c) lodine	d) Phosphorus
270	. In hydrogen atom, if the c	difference in the energy of t	the electron in $n = 2$ and n	= 3 orbits is <i>E</i> , the
	ionization energy of hydr	ogen atom is		
	a) 13.2 <i>E</i>	b) 7.2 E	c) 5.6 E	d) 3.2 E
271	. The large scale destruction	on, that would be caused du	ie to the use of nuclear wea	apons is called
	a) Nuclear holocaust		b) Thermo-nuclear react	ion
	c) Neutron reproduction	factor	d) None of these	
272	. The half life of radium is	1620 years and its atomic v	veight is 226 kg per kilom	ol. The number of atoms
	that will decay from its 1	g sample per second will l	be	
	(Avogadro's number $N =$	6.02 × 10 ²⁶ atom/kilomo	l)	45
	a) 3.61×10^{10}	b) 3.6×10^{12}	c) 3.11×10^{15}	d) 31.1×10^{15}
273	. Which one of the followin	ng statement is true, if half-	life of a radioactive substan	nce is 1 month?
	a) 7/8th part of the subst	tance will disintegrate in 3	months	
	b) 1/8th part of the subst	tance will remain undecaye	ed at the end of 4 months.	
	c) The substance will disi	integrate completely in 4 m	ionths.	
	d) 1.16th part of the subs	tance will remain undecay	ed at the end of 3 months	
274	. Taking Rydberg's constar	nt $R_H = 1.097 \times 10^7 m$, first	t and second wavelength of	f Balmer series in hydrogen
	spectrum is			
	a) 2000 Å, 3000Å	b) 1575 Å, 2960 Å	c) 6529 Å, 4280 Å	d) 6552 Å, 4863 Å
275	. Assume that a neutron br	reaks into a photon and an	electron. The energy releas	ed during this process is
	(mass of neutron $= 1.672$	$25 imes 10^{-27} kg$, Mass of prot	$ on = 1.6725 \times 10^{-27} kg $, m	ass of electron = $9 \times$
	$10^{-31}kg$)			
	a) 0.73 <i>MeV</i>	b) 7.10 <i>MeV</i>	c) 6.30 <i>MeV</i>	d) 5.4 <i>MeV</i>
276	. Which energy state of the	e triply ionized beryllium ha	as the same electron orbita	l radius as that of ground
	state of hydrogen? Given	Z for Be=4		
	a) <i>n</i> = 4	b) <i>n</i> = 3	c) <i>n</i> = 2	d) <i>n</i> = 1
277	. Given a sample of <i>Radiur</i>	n-226 having half-life of 4 of	days. Find the probability, a	a nucleus disintegrates after
	2 half lives			
	a) 1	b) 1/2	c) 1.5	d) 3/4
278	. Which of the following ra	ys are not electromagnetic	waves	
	a) γ-rays	b) β-rays	c) Heat rays	d) X-rays
279	. In hydrogen atom, electro	on makes transition from <i>n</i>	= 4 to $n = 1$ level. Recoil i	momentum of the <i>H</i> atom
	will be			
	a) $3.4 \times 10^{-27} N - s$	b) $6.8 \times 10^{-27} N - s$	c) $3.4 \times 10^{-24} N - s$	d) $6.8 \times 10^{-24} N - s$
280	. What is the respective nu	mber of α and β particles e	emitted in the following rac	lioactive decay
	$_{90}X^{200} \rightarrow _{80}Y^{168}$		0	,
	a) 6 and 8	b) 8 and 8	c) 6 and 6	d) 8 and 6
281	. The electron in a hydroge	en atom makes a transition	from an excited state to the	e ground state. Which of the
	following statements is tr	rue		5
	a) Its kinetic energy incre	eases and its potential and	total energies decrease	
	b) Its kinetic energy decr	eases, potential energy incl	reases and its total energy	remains the same
	c) Its kinetic and total en	ergies decrease and its not	ential energy increases	
	d) Its kinetic, potential ar	id total energies decrease		
		0		

282. Which of the following is	true for number of spectral	lines in going from Lyman	series to <i>P</i> -fund series
a) Increases		b) Decreases	
c) Unchanged		d) May decrease and incre	ease
283. There are two radioactive	e substances A and B. Decay	constant of <i>B</i> is two times	s that of A. Initially, both
have equal number of nuc	clei. After <i>n</i> half lives of <i>A</i> , r	ate of disintegration of bot	h are equal. The value of <i>n</i>
is			
a) 4	b) 2	c) 1	d) 5
284. The energy released in th	e fission of 1Kg of $_{92}U^{235}$ is	s (energy per fission $=200$	MeV)
a) $5.1 \times 10^{26} \text{eV}$	b) 5.1 \times 10 ²⁶ J	c) 8.2×10^{13} J	d) $8.2 \times 10^{13} \text{ MeV}$
285. The fission of ^{235}U can be proton can also be used.	e triggered by the absorptic This statement is	on of slow neutrons by a nu	cleus. Similarly a slow
a) Correct		b) Wrong	
c) Information is insuffici	ent	d) None of these	
286. The mass equivalent at 93	31 <i>MeV</i> energy is		
a) $1.66 \times 10^{-27} kg$	b) $6.02 \times 10^{-24} kg$	c) $1.66 \times 10^{-20} kg$	d) $6.02 \times 10^{-27} kg$
287. If a radioactive substance	reduces to $\frac{1}{16}$ of its original	l mass in 40 <i>days,</i> what is i	ts half life
a) 10 <i>days</i>	b) 20 days	c) 40 <i>days</i>	d) None of these
288. Two radioactive nuclei P	and Q , in a given sample de	ecay into a stable nucleus R	At time $t = 0$, number of <i>P</i>
species are $4N_0$ and that c	of Q are N_0 . Half-life of P (for	or conversion to R) is 1 mir	nute where as that of Q is 2
minutes. Initially there ar	e no nuclei of <i>R</i> present in	the sample. When number	of nuclei of <i>P</i> and <i>Q</i> are
equal, the number of nucl	ei of R present in the samp	le would be	
$_{2}$ 5 N_{0}	h $2N$	a) 2N	$3N_0$
a_{j} $\frac{1}{2}$	0J 2N ₀	c) 3N ₀	2
289. The ratio of longest wave	length and the shortest way	velength observed in the fiv	ve spectral series of
emission spectrum of hyd	lrogen is		
a) $\frac{4}{-}$	b) $\frac{525}{$	c) 25	d) $\frac{900}{$
· 3	³ 376		
290. Two nucleons are at a sep	baration of 1 fm. The net for	ce between them is F_1 if bo	th neutrons, F_2 if both are
protons, and F_3 if one is a	proton and the other is a n	eutron.	
a) $F_1 > F_2 > F_3$	$DJF_2 > F_1 > F_3$	C) $F_1 = F_3 > F_2$	a) $F_1 = F_2 > F_3$
291. The energy released in th	e explosion of an atom bon	ib is mainly due to	
a) fuctear fusion	·	d) News of the shares	
c) Controlled nuclear cha	in reaction	d) None of the above	
292. Consider the following tw	o statements A and B ident	tily the correct answer give	en
A: Nuclear density is sam	e for all nuclei	$1 \cdot 1 \sqrt{4} = \frac{1}{6}$	
B:Radius of the nucleus R	and its mass the number A	are related as $\sqrt{A} \propto R^{1/6}$	
a) Both A and B are true		b) Both A and B are false	
c) A is true but B is false		d) A is false but B is true	
^{293.} In the given nuclear react	ion A, B, C, D, E represents	$_{92}U^{238} \xrightarrow{a}_{B} Th^{A} \xrightarrow{\beta}_{D} Pa^{C}$	$\xrightarrow{v}_{92}U^{234}$
a) $A = 234, B = 90, C = 2$	$234, D = 91, E = \beta$	b) $A = 234, B = 90, C = 2$	238, $D = 94, E = \alpha$
c) $A = 238, B = 93, C = 2$	$234, D = 91, E = \beta$	d) $A = 234, B = 90, C = 2$	$234, D = 93, E = \alpha$
294. Minimum excitation pote	ntial of Bohr's first orbit in	hydrogen atom is	
a) 13.6 V	b) 3.4 V	c) 10.2 V	d) 3.6 <i>V</i>
295. r_1 and r_2 are the radii of at	tomic nuclei of mass numbe	ers 64 and 27 respectively.	The ratio (r_1/r_2) is
a) 64/27	b) 27/64	c) 4/3	d) 1
296. A radioactive sample at a	ny instant has its disintegra	ation rate 5000 disintegrati	ons per minute. After 5
min, the rate becomes 12	50 disintegration per minut	te. Then ,its decay constant	(per minute) is
a) 0.8 log _e 2	b) 0.4 log _e 2	c) 0.2 log _e 2	d) 0.1 log _e 2
297. On bombarding U ²³⁵ by s	low neutrons, 200MeV ene	rgy is released. If the powe	r output of atomic reactor
is 1.6 MW, then the rate o	f fission will be		

a) 5 × 10^{22} s ⁻¹	b) $5 \times 10^{16} \text{s}^{-1}$	c) 8 \times 10 ¹⁶ s ⁻¹	d) 20 $\times 10^{16} \mathrm{s}^{-1}$		
298. Energy of an electron in a	an excited hydrogen atom is	s – 3.4 eV. Its angular mom	entum will be ($h = 6.626 \times$		
$10^{-34} I - s$)	$10^{-34}I - s$)				
a) 1.11×10^{34} / s	b) 1.51 × 10 ⁻³¹ / s	c) 2.11×10^{-34} / s	d) 3.72×10^{-34} Js		
299. The wavelength of radiat	tion emitted is λ_0 when an el	lectron jumps from the thir	d to second orbit of		
hydrogen atom. For the e	electron jump from fourth to	o the second orbit of the hy	drogen atom, the		
wavelength of radiation	emitted will be	5	5 ,		
a) $(16/25)\lambda_0$	b) $(20/27)\lambda_0$	c) $(27/20)\lambda_0$	d) $(25/16)\lambda_0$		
300. Consider an electron (<i>m</i>	$= 9.1 \times 10^{-31} kg$) confined	by electrical forces to mov	e between two rigid walls		
separated by 1.0×10^{-9}	<i>metre</i> , which is about five a	tomic diameters. The quan	tized energy value for the		
lowest stationary state is	3	1.1			
a) 12×10^{-20} ioule	b) 6.0×10^{-20} ioule	c) 6.0 × 10 ⁻¹⁸ <i>joule</i>	d) 6 <i>joule</i>		
301. What is used as a modera	ator in a nuclear reactor?	-)			
a) Water	b) Graphite	c) Cadmium	d) Steel		
302. The half life of a radioact	ive element which has only	$\frac{1}{2}$ of its original mass left a	after a lanse of 60 days is		
		$\frac{1}{32}$ of its of ignial mass left a			
a) 12 days	b) 32 days	c) 60 days	d) 64 days		
303. The half-life of radioactiv	re Polonium (Po) is 138.6 d	ays. For ten lakh Polonium	atoms, the number of		
disintegration in 24 hour	'S IS	2 4000	N 5000		
a) 2000	b) 3000	c) 4000	d) 5000		
304. The rate of disintegration	n of fixed quantity of a radic	bactive element can be incr	eased by		
a) Increasing the temper	ature	b) Increasing the pressur	e		
c) Chemical reaction	1 1 1 1 27 1 m 12	d) It is not possible			
305. The ratio of the radii of the	he nuclei $_{13}$ Al ²⁷ and $_{54}$ Te ¹²	Sis			
a) √13: √52	b) 2√13: 3√52	c) 3√3:5√5	d) 3:5		
306. In half life of a radio isoto	ope is 2 seconds and numbe	r of atoms are only 4, then	after one half life remaining		
(without decay) atoms a	re probably				
a) 1	b) 2	c) 3	d) All the above		
307. The extreme wavelength	s of Paschen series are				
a) 0.365µm and 0.565µn	ı	b) 0.818µm and 1.89µm			
c) $1.45 \mu m$ and $0.04 \mu m$		d) 2.27µm and 7.43µm			
308. The ratio of the speed of	the electrons in the ground	state of hydrogen to the sp	eed of light in vacuum is		
a) 1/2	b) 2/137	c) 1/137	d) 1/237		
309. The absorption transition	ns between the first and the	fourth energy states of hy	drogen atom are 3. The		
emission transitions betw	ween these states will be				
a) 3	b) 4	c) 5	d) 6		
310. When an electron jumps	from a level $n = 4$ to $n = 1$,	, momentum of the recoiled	l hydrogen atom will be		
a) 6.8×10^{-27} kg – ms ⁻¹		b) 12.75×10^{-19} kg – ms ⁻	-1		
c) 136×10^{-19} kg – ms ⁻¹					
		d) zero			
311. If the radioactive decay of	constant of radium is 1.07 $ imes$	d) zero 10 ⁻⁴ per year, then its hal	f life period is		
approximately equal to	constant of radium is 1.07 ×	d) zero 10 ⁻⁴ per year, then its hal	f life period is		
approximately equal to a) 8,900 <i>years</i>	constant of radium is 1.07 × b) 7,000 <i>years</i>	 d) zero 10⁻⁴ per year, then its hal c) 6,476 <i>years</i> 	f life period is d) 2,520 <i>years</i>		
 approximately equal to a) 8,900 years 312. Hydrogen (H), deuterium 	constant of radium is 1.07 × b) 7,000 <i>years</i> n (<i>D</i>), singly ionized helium	 d) zero 10⁻⁴ per year, then its hal c) 6,476 <i>years</i> (<i>He</i>⁺) and doubly ionized 	f life period is d) 2,520 <i>years</i> lithium (<i>Li</i> ⁺⁺) all have one		
 311. If the radioactive decay of approximately equal to a) 8,900 <i>years</i> 312. Hydrogen (<i>H</i>), deuterium electron around the nucl 	constant of radium is $1.07 \times$ b) 7,000 <i>years</i> n (<i>D</i>), singly ionized helium eus. Consider $n = 2$ to $n = 1$	 d) zero 10⁻⁴ per year, then its hal c) 6,476 <i>years</i> (<i>He</i>⁺) and doubly ionized 1 transition. The waveleng 	f life period is d) 2,520 <i>years</i> lithium (<i>Li</i> ⁺⁺) all have one ths of emitted radiations		
311. If the radioactive decay of approximately equal to a) 8,900 years 312. Hydrogen (<i>H</i>), deuterium electron around the nucl are $\lambda_1, \lambda_2, \lambda_3$ and λ_4 resp	constant of radium is $1.07 \times b$) 7,000 <i>years</i> n (<i>D</i>), singly ionized helium eus. Consider $n = 2$ to $n = 1$ ectively. Then approximatel	 d) zero 10⁻⁴ per year, then its hal c) 6,476 years (He⁺) and doubly ionized 1 transition. The waveleng 	f life period is d) 2,520 <i>years</i> lithium (<i>Li</i> ⁺⁺) all have one ths of emitted radiations		
311. If the radioactive decay of approximately equal to a) 8,900 <i>years</i> 312. Hydrogen (<i>H</i>), deuterium electron around the nucl are $\lambda_1, \lambda_2, \lambda_3$ and λ_4 response) a) $\lambda_1 = \lambda_2 = 4\lambda_3 = 9\lambda_4$	constant of radium is $1.07 \times$ b) 7,000 <i>years</i> n (<i>D</i>), singly ionized helium eus. Consider $n = 2$ to $n =$ ectively. Then approximatel	d) zero 10^{-4} per year, then its hal c) 6,476 <i>years</i> (<i>He</i> ⁺) and doubly ionized 1 transition. The waveleng y b) $4\lambda_1 = 2\lambda_2 = 2\lambda_3 = \lambda_4$	f life period is d) 2,520 <i>years</i> lithium (<i>Li</i> ⁺⁺) all have one ths of emitted radiations		
311. If the radioactive decay of approximately equal to a) 8,900 <i>years</i> 312. Hydrogen (<i>H</i>), deuterium electron around the nucl are $\lambda_1, \lambda_2, \lambda_3$ and λ_4 respective a) $\lambda_1 = \lambda_2 = 4\lambda_3 = 9\lambda_4$ c) $\lambda_1 = 2\lambda_2 = 2\sqrt{2}\lambda_3 = 3$	constant of radium is $1.07 \times b$) 7,000 <i>years</i> n (<i>D</i>), singly ionized helium eus. Consider $n = 2$ to $n = 1$ ectively. Then approximatel $3\sqrt{2}\lambda_4$	d) zero 10^{-4} per year, then its hal c) 6,476 <i>years</i> (<i>He</i> ⁺) and doubly ionized 1 transition. The waveleng y b) $4\lambda_1 = 2\lambda_2 = 2\lambda_3 = \lambda_4$ d) $\lambda_1 = \lambda_2 = 2\lambda_3 = 3\sqrt{2}\lambda$	f life period is d) 2,520 <i>years</i> lithium (<i>Li</i> ⁺⁺) all have one ths of emitted radiations		
311. If the radioactive decay of approximately equal to a) 8,900 <i>years</i> 312. Hydrogen (<i>H</i>), deuterium electron around the nucl are $\lambda_1, \lambda_2, \lambda_3$ and λ_4 respective a) $\lambda_1 = \lambda_2 = 4\lambda_3 = 9\lambda_4$ c) $\lambda_1 = 2\lambda_2 = 2\sqrt{2}\lambda_3 = 3$ 313. Hydrogen bomb is based	constant of radium is $1.07 \times b$) 7,000 <i>years</i> n (<i>D</i>), singly ionized helium eus. Consider $n = 2$ to $n = 1$ ectively. Then approximatel $3\sqrt{2}\lambda_4$ on which of the following p	d) zero 10^{-4} per year, then its hal c) 6,476 <i>years</i> (<i>He</i> ⁺) and doubly ionized 1 transition. The waveleng y b) $4\lambda_1 = 2\lambda_2 = 2\lambda_3 = \lambda_4$ d) $\lambda_1 = \lambda_2 = 2\lambda_3 = 3\sqrt{2}\lambda$ whenomenon	f life period is d) 2,520 <i>years</i> lithium (<i>Li</i> ⁺⁺) all have one ths of emitted radiations		
311. If the radioactive decay of approximately equal to a) 8,900 <i>years</i> 312. Hydrogen (<i>H</i>), deuterium electron around the nucl are $\lambda_1, \lambda_2, \lambda_3$ and λ_4 resp a) $\lambda_1 = \lambda_2 = 4\lambda_3 = 9\lambda_4$ c) $\lambda_1 = 2\lambda_2 = 2\sqrt{2}\lambda_3 = 3$ 313. Hydrogen bomb is based a) Nuclear fission	constant of radium is $1.07 \times b$) 7,000 <i>years</i> n (<i>D</i>), singly ionized helium eus. Consider $n = 2$ to $n = 1$ ectively. Then approximatel $3\sqrt{2}\lambda_4$ on which of the following p b) Nuclear fusion	d) zero 10^{-4} per year, then its hal c) 6,476 <i>years</i> (<i>He</i> ⁺) and doubly ionized 1 transition. The waveleng y b) $4\lambda_1 = 2\lambda_2 = 2\lambda_3 = \lambda_4$ d) $\lambda_1 = \lambda_2 = 2\lambda_3 = 3\sqrt{2\lambda}$ bhenomenon c) Radioactive decay	f life period is d) 2,520 <i>years</i> lithium (<i>Li</i> ⁺⁺) all have one ths of emitted radiations 4 d) None of these		

5730 yr, then the age of the fossil bone is b) 17190 yr a) 11460 yr c) 22920 yr d) 45840yr 315. The decay constant of a radioactive sample is λ . The half-life and mean life of the sample are respectively given by a) $\frac{1}{\lambda}$ and $\frac{\log_e 2}{\lambda}$ b) $\frac{\log_e 2}{\lambda}$ and $\frac{1}{\lambda}$ c) $\lambda(\log_e 2)$ and $\frac{1}{\lambda}$ d) $\frac{\lambda}{\log_e 2}$ and $\frac{1}{\lambda}$ 316. The binding energy per nucleon of deuteron $\binom{2}{1}$ H) and helium nucleus $\binom{4}{2}$ He) is 1:1 MeV and 7 MeV respectively. If two deuteron nuclei react to form a single helium nucleus, then the energy released is a) 13.9MeV b) 26.9MeV c) 23.6MeV d) 19.2MeV 317. Two samples X and Y contain equal amount of radioactive substances. If $\frac{1}{16}$ th of the sample X and $\frac{1}{256}$ th of the sample Y, remain after 8 hours, then the ratio of half periods of X and Y is a) 2 : 1 b) 1:2 c) 1:4 d) 1:16 318. The composition of an α -particle can be expressed be a) 1P + 1Nb) 1P + 2N d) 2P + 2Nc) 2P + 1N319. Who discovered spin quantum number a) Uhlenbeck & Goudsmit b) Niels's Bohr c) Zeeman d) Sommerfeld 320. Mean life of a radioactive sample is 100 s. Then its half-life(in minutes) is c) 10⁻⁴ a) 0.693 b) 1 d) 1.155 321. A radioactive nucleus A finally transforms into a stable nucleus B. Then A and B can be b) Isotones c) Isotopes a) Isobars d) None of these 322. The frequency of 1st line of Balmer series in H_2 atom is v_0 . The frequency of line emitted by singly ionized He atom is c) $v_0/2$ a) $2v_0$ b) $4v_0$ d) $v_0/4$ 323. From a newly formed radioactive substance (Half life 2 hours), the intensity of radiation is 64 times the permissible safe level. The minimum time after which work can be done safely from this source is b) 12 hours c) 24 hours d) 128 hours a) 6 hours 324. During negative β -decay a) Neutron converts into proton b) Proton converts into neutron c) Neutron proton ratio increases d) None of these 325. The ratio of speed of an electron in ground state in Bohrs first orbit of hydrogen atom to velocity of light in air is c) $\frac{e^3}{2\varepsilon_0 hc}$ a) $\frac{e^2}{2\varepsilon_0 hc}$ b) $\frac{2e^2\varepsilon_0}{hc}$ d) $\frac{2\varepsilon_0 hc}{\rho^2}$ 326. The half-life of a sample of a radioactive substance is 1 hour. If 8×10^{10} atoms are present at t = 0, then the number of atoms decayed in the duration t = 2 hour to t = 4 hour will be a) 2×10^{10} b) 1.5×10^{10} c) Zero d) Infinity 327. If electron in a hydrogen atom has moved from n = 1 to n = 10 orbit, the potential energy of the system has b) Decreased c) Remained unchanged d) Become zero a) Increased 328. Which of the following cannot cause fission in a heavy nucleus a) α -particle b) Proton c) Deutron d) Laser rays 329. The binding energy per nucleon for the parent nucleus is E_1 and that for the daughter nuclei is E_2 . Then a) $E_2 = 2E_1$ b) $E_1 > E_2$ c) $E_2 > E_1$ d) $E_1 = 2E_2$ 330. Which one of the series of hydrogen spectrum is in the visible region a) Lyman series b) Balmer series c) Paschen series d) Bracket series 331. Electrons in the atom are held to the nucleus by a) Coulomb's forces b) Nuclear forces c) Vander waal's forces d) Gravitational forces 332. If the energy released in the fission of one nucleus is 200 MeV then the number of nuclei required per second in a power plant of 16 kW will be

a) 0.5×10^{14} b) 0.5×10^{12} c) 5×10^{12} d) 5×10^{14}

333. If λ is decay constant and *N* the number of radioactive nuclei of an element, then the decay rate (*R*) of that element is

a) λN^2 b) λN

a) *Z* − 3, *A* − 4

- c) $\frac{\lambda}{N}$ 334. The approximate nuclear radius is proportional to (*A* is the mass number and *Z* the atomic number) b) $A^{1/3}$ d) $Z^{1/3}$ a) √<u>A</u> c) \sqrt{Z}
- 335. A nucleus $_{z}X^{A}$ emits an α -particle. The resultant nucleus emits a β^{+} particle. The respective atomic and mass numbers of the final nucleus will be

b)
$$Z - 1, A - 4$$
 c) $Z - 2, A - 4$ d) $Z, A - 2$

d) $\lambda^2 N$

- 336. The wavelengths involved in the spectrum of deuterium $\binom{2}{1}D$ are slightly different from that of hydrogen spectrum, because
 - a) The attraction between the electron and the nucleus is different in the two cases
 - b) The size of the two nuclei are different
 - c) The nuclear forces are different in the two cases
 - d) The masses of the two nuclei are different
- 337. A radioactive sample has N_0 active atoms t = 0. If the rate of disintegration at any time is R and the number of atoms is N, then the ratio R/N varies with time as

346. M_p denotes the mass of a proton and M_n that of a neutron. A given nucleus, of binding energy B , contains Z						
protons and N neutrons. T	he mass $M(N, Z)$ of the nu	cleus is given by (<i>c</i> is the v	elocity of light)			
a) $M(N,Z) = NM_n + ZM_p$	$-Bc^2$	b) $M(N,Z) = NM_n + ZM_p$	$+ Bc^{2}$			
c) $M(N,Z) = NM_n + ZM_p$	$-B/c^2$	d) $M(N,Z) = NM_n + ZM_p$	$A + B/c^2$			
347. In nuclear reaction $_2He^4$ -	$+ _{z}X^{A} \rightarrow _{z+2}Y^{A+3} + A, A $	lenotes				
a) Electron	b) Positron	c) Proton	d) Neutron			
348. Li nucleus has three proto	ns and four neutrons. Mass	s of lithium nucleus is 7.016	5005 amu. Mass of proton			
is 1.007277 amu and mass	of neutron is 1.008665 an	nu. Mass defect for lithium	nucleus in amu is			
a) 0.04048 amu	b) 0.04050 amu	c) 0.04052 amu	d) 0.04055 amu			
349. The energy of an electron i	in <i>n</i> th orbit of hydrogen at	om is $-13.6/n^2$ eV. Energy	required to excite the			
electron from the first orbi	it to the third orbit is		-			
a) 10.2 J	b) 12.09 J	c) 12.09 eV	d) 13.6 eV			
350. In the following nuclear re	action					
$_{6}C^{11} \rightarrow {}_{5}B^{11} + \beta^{+} + X$	${}_{6}C^{11} \rightarrow {}_{5}B^{11} + \beta^+ + X$					
What does <i>X</i> stand for?						
a) A neutron	b) A neutrino	c) An electron	d) A proton			
351. The ionization potential of	hydrogen atom is –13.6 e	V. An electron in the grour	nd state of a hydrogen atom			
absorbs a photon of energ	y 12.75 <i>eV</i> . How many diffe	erent spectral lines can one	expect when the electron			
make a downward transiti	on					
a) 1	b) 4	c) 2	d) 6			
352. The half-life of radioactive	Radon is 3.8 days. The time	he at the end of which $(1/2)$	0)th of the Radon sample			
will remain undecayed is (given $\log_{10}e = 0.4343$)					
a) 13.8 days	b) 16.5 days	c) 33 days	d) 76 days			
353. The splitting of line into gr	oups under the effect of m	agnetic field is called				
a) Zeeman's effect	b) Bohr's effect	c) Heisenberg's effect	d) Magnetic effect			
354. If the nuclear radius of 27	4 <i>l</i> is 3.6 Fermi, the approxi	imate nuclear radius of 64 (Cu in Fermi is			
a) 2.4	b) 1.2	c) 4.8	d) 3.6			
355. Thermal neutrons can caus	se fission in					
a) <i>U</i> ²³⁵	b) <i>U</i> ²³⁸	c) Pu^{238}	d) <i>Th</i> ²³²			
356. Complete the reaction n +	${}^{235}_{92}U \rightarrow {}^{144}_{56}Ba + \dots + 3n$					
a) $^{89}_{36}Kr$	b) $^{90}_{36}Kr$	c) $^{91}_{36}Kr$	d) $^{92}_{36}Kr$			
357. Following process is know	$n \text{ as } hv \rightarrow e^+ + e^-$					
a) Pair production	b) Photoelectric effect	c) Compton effect	d) Zeeman effect			
358. Rutherford's α -particle exp	periment showed that the	atoms have				
a) Proton	b) Nucleus	c) Neutron	d) Electrons			
359. The radioactive decay of u	ranium into thorium is exp	pressed by the equation $\frac{23}{92}$	$^{B}U \rightarrow {}^{234}_{90}Th + X$, where 'X'			
is						
a) An electron	b) A proton	c) A deuteron	d) An alpha particle			
360. The binding energy per nu	cleon for deuteron and he	lium are 1.1MeV and 7.0Me	eV. The energy released			
when two deuterons fuse	to form a helium nucleus i	S				
a) 23.6MeV	b) 2.2MeV	c) 30.2MeV	d) 3.6MeV			
361. A radioactive material decay	ys by simultaneous emissior	n of two particles with half-li	ives 1620 yr and 810 yr			
respectively. The time in yea	ar after which one-fourth of	the material remains , is				
a) 4860 yr	b) 3240 yr	c) 2340 yr	d) 1080yr			
362. The nucleus of atomic mas	s A and atomic number Z	emits a β -particle. The ator	nic mass and atomic			
number of the resulting nu	icleus are					
a) <i>A</i> , <i>Z</i>	b) <i>A</i> + 1, <i>Z</i>	c) <i>A</i> , <i>Z</i> + 1	d) <i>A</i> − 4, <i>Z</i> − 2			
363. Antiparticle of electron is	4					
a) ₀ <i>n</i> ¹	b) ₁ <i>H</i> ¹	c) Positron	d) Neutrino			
364. Which of the following pro	cesses represents a γ-deca	ay?				

a) $_{Z}X^{A} + \gamma \longrightarrow_{(Z-1)} X^{A+a+b}$	b) $_{Z}X^{A} + _{0}n^{1} \rightarrow _{(Z-2)} X^{(A)}$	(1-3) + C
c) $z X^A \rightarrow z X^A + \gamma$	d) $_{Z}X^{A} + _{A}e^{0} \rightarrow _{A}X$	A+g
365 A free neutron decays spontaneously into		
a) A proton an electron and antineutrino		
b) A proton an electron and aneutrino		
c) A proton and electron		
d) A proton, and electron, a neutrino and an antine	itrino	
366. When hydrogen atom is in its first excited level, its r	adius is its ground stat	e radius
a) Half b) Same	c) Twice	d) Four times
367. A radioactive nucleus can decay simultaneously by t	wo different processes whi	ich have decay constant
λ_1 and λ_2 . The effective decay constant of the nuclide	is λ , where	
	1 1 1	
a) $\lambda = \lambda_1 + \lambda_2$ b) $\lambda = 2(\lambda_1 + \lambda)$	c) $\frac{1}{\lambda} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}$	d) $\lambda = \sqrt{\lambda_1 \lambda_2}$
368. Ionisation energy of an electron present in the secon	d Bohr's orbit of hydrogen	is
a) 54.4 eV b) 13.6 eV	c) 1.5 eV	d) 3.4 eV
369. The electron in a hydrogen atom makes a transition	$n_1 \rightarrow n_2$ where n_1 and n_2 are	e the principal quantum
numbers of the two states. Assume the Bohr model t	to be valid. The time period	of electron in the initial
state is 8 times that in the final state. The possible va	alues of n_1 and n_2 are	
a) $n_1 = 6, n_2 = 3$ b) $n_1 = 8, n_2 = 2$	c) $n_1 = n_2 = 1$	d) $n_1 = 8, n_2 = 1$
370. The wavelength of the first spectral line in the Balme	er series of hydrogen atom	is 6561 Å. The wavelength
of the second spectral line in the Balmer series of sir	igly ionized helium atom is	
a) 1215 Å b) 1640 Å	c) 2430 Å	d) 4687 Å
371. The half life period of a radioactive substance is 5 m	<i>in</i> . The amount of substand	ce decayed in 20 <i>min</i> will be
a) 93.75% b) 75%	c) 25%	d) 6.25%
372. A count rate meter shows a count of 240 per minute	from a given radioactive s	ource. One hour later the
meter shows a count rate of 30 per minute. The half	life of the source is	
a) 120 min b) 80 min	c) 30 min	d) 20 <i>min</i>
373. Half lives of two radioactive substances <i>A</i> and <i>B</i> are	respectively 20 minutes a	nd 40 <i>minutes</i> . Initially the
sample of A and B have equal number of nuclei. Afte	r 80 minutes, the ratio of r	emaining number of A and
<i>B</i> nuclei is		
a) 1 : 16 b) 4 : 1	c) 1:4	d) 1 : 1
374. The energy equivalent to a kilogram of matter is abo	out	
a) 10 ²⁰ J b) 10 ¹⁷ J	c) 10 ¹⁴ J	d) 10 ¹¹ J
375. Electron in hydrogen atom first jumps from third ex	cited state to second excite	d state and then from
second excited to the first excited state. The ratio of	the wavelengths $\lambda_1:\lambda_2$ emi	tted in the two cases is
a) 7/5 b) 27/20	c) 27/5	d) 20/7
376. The subatomic particles proton and neutron fall und	er the group of	
a) Mesons b) Photons	c) Leptons	d) Baryons
377. If the wavelength of the first line of the Balmer serie	s of hydrogen is 6561 Å, th	e wavelength of the second
line of the series should be		
a) 13122 Å b) 3280 Å	c) 4860 Å	d) 2187 Å
378. Radioactive substances do not emit		
a) Electron b) Helium nucleus	c) Positron	d) Proton
379. Which one is correct about fission?		
a) Approx 0.1 % mass converts into energy		
b) Most of energy of fission is in the form of heat		
c) In a fission of U ²³⁵ about 200 eV energy is release	d	
d) On an average, one neutron is released per fission	n of U ²³⁵	
380. Half-life is measured by		

a) Geiger-Muller counter

b) Carbon dating

	c) Spectroscopic method		d) Wilson-Cloud chamber		
381.	If a proton and anti-proto	n come close to each other	and annihilate, how much	energy will be released	
	a) $1.5 \times 10^{-10} J$	b) $3 \times 10^{-10} J$	c) $4.5 \times 10^{-10} J$	d) None of these	
382.	The transition of an electr	ron from $n_2 = 5, 6,$ to n	$_1 = 4$ gives rise to		
	a) Pfund series	b) Lyman series	c) Paschen series	d) Brackett series	
383.	The radioactivity of a cert	ain material drops to $\frac{1}{2}$ of	the initial value in 2h. The l	half-life of this radio	
	nuelide ie	16 16			
	ilucilue is	h) 20	a) 20 min	J) 40;	
204	aj 10 mm		cj su min	a) 40 mm	
384.	Mass spectrometric analy	sis of potassium and argon	atoms in a Moon rock sam	ple snows that the ratio of	
	the number of (stable) ¹⁰ Ar atoms present to the number of (radioactive) ¹⁰ K atoms is 10.3. Assume th				
	all the argon atoms were	produced by the decay of p	otassium atoms, with a half	$1-1110 \text{ of } 1.25 \times 10^{\circ} \text{ yr. How}$	
	old is the rock?		107 109	1) 405 4011	
205	a) 2.95×10^{-1} yr	b) $2.95 \times 10^{5} \text{yr}$	$cJ 437 \times 10^{9} yr$	a) 437 × 10 ¹¹ yr	
385.	The correct order of ioniz	ing capacity of α, β and $\gamma =$	-rays is		
200	a) $\alpha > \gamma > \beta$	b) $\alpha > \beta > \gamma$	c) $\alpha < \beta < \gamma$	a) $\gamma > \alpha > \beta$	
386.	A chain reaction is continu	uous due to			
	a) Large mass defect		b) Large energy		
	c) Production of more neu	atrons in fission	d) None of these		
387.	A nucleus of $_{84}Po^{210}$ origi	nally at rest emits an α -par	ticle with speed v. What w	ill be recoil speed of the	
	daughter nucleus?				
	a) $4v/206$	b) 4v/214	c) v/206	d) v/214	
388.	In which of the following :	systems will the radius of t	he first orbit $(n = 1)$ be mi	nimum	
	a) Single ionized helium		b) Deuterium atom		
	c) Hydrogen atom		d) Doubly ionized lithium	<i>a</i>	
389.	If 200 MeV energy is relea	ised in the fission of a singl	e nucleus of ${}_{92}U^{233}$. How r	nany fissions must occur	
	per second to produce a p	ower of 1 kW?			
	a) 3.125×10^{13}	b) 6.250×10^{13}	c) 1.525×10^{13}	d) None of these	
390.	Which of the following is a	not conserved in nuclear re	eaction?		
	a) Total energy		b) Mass number		
	c) Charge number		d) Number of fundamenta	ll particles	
391.	The decay constant of a random number of nuclei which has	adio isotope is λ . If A_1 and A_2 ave decayed during the tim	A_2 are its activities at times le $(t_1 - t_2)$	t_1 and t_2 respectively, the	
	a) $A_1 t_1 - A_2 t_2$	b) $A_1 - A_2$	c) $(A_1 - A_2)/\lambda$	d) $\lambda(A_1 - A_2)$	
392.	In hydrogen atom which o	uantity is integral multiple	e of $\frac{h}{h}$		
	a) Angular momentum	h) Angular volocity	2π	d) Momentum	
202	The particles emitted by r	of Aliguial velocity	tod by magnetic field. The	narticles will be	
393.	a) Protons and a particle	autoactive decay are defied	b) Electrons protons and	a particles	
	a) Flotons and α -particles	es noutrong	d) Electrons and <i>x</i> parti	alog	
204	C) Electronis, protons and	$\frac{66}{10} = \frac{7}{9} = \frac{66}{10} = \frac{7}{9} = \frac{66}{10} = \frac{7}{9} = \frac{10}{10} $	u) Electrons and α -particulation particulation α -particulation	ules	
594.	a) 10 min	b) 15 min	a) E min	esponding nan-me is	
	aj 10 mm	0) 13 IIIII	CJ 5 IIIII	d) $7\frac{1}{2}$ min	
395.	Out of the following which	n one is not a possible ener	gy for a photon to be emitte	ed by hydrogen atom	
	according to Bohr's atomi	c model			
	a) 13.6 <i>eV</i>	b) 0.65 <i>eV</i>	c) 1.9 <i>eV</i>	d) 11.1 <i>eV</i>	
396.	For ionizing an excited hy	drogen atom, the energy re	equired (in <i>eV</i>) will be		
	a) A little less then 13.6	b) 13.6	c) More than 13.6	d) 3.4 or less	
397.	The radius of a nucleus of	a mass number A is direct	ly proportional to		
	a) <i>A</i> ³	b) <i>A</i>	c) $A^{2/3}$	d) <i>A</i> ^{1/3}	
398.	Which of the following sta	tements about the Bohr m	odel of the hydrogen atom	is false	
	a) Acceleration of electron	n in $n = 2$ orbit is less than	that in $n = 1$ orbit		

b) Angular momentum of electron in n = 2 orbit is more than that in n = 1 orbit

c) Kinetic energy of electron in n = 2 orbit is less than that in n = 1 orbit

d) Potential energy of electron in n = 2 orbit is less than that in n = 1 orbit

399. The nuclear fusion reaction is given $_{1}H^{2} + _{1}H^{2} \rightarrow _{0}He^{3} + _{0}n^{1} + Q$ (energy). If 2 mole of deuterium are fused the total released energy is

a) 2*Q* b) 4*Q* c) $Q \times 6.02 \times 10^{23}$ d) $Q \times 2 \times 6 \times 10^{23}$ 400. The graph which represents the correct variation of logarithm of activity (log *A*) versus time, in figure is

Log A time t a) A b) *B* c) C d) D 401. In $_{88}Ra^{226}$ nucleus, there are a) 138 protons and 88 neutrons b) 138 neutrons and 88 protons d) 226 neutrons and 138 electrons c) 226 protons and 88 electrons 402. In Bohr's model of hydrogen atom, let *PE* represents potential energy and *TE* the total energy. In going to a higher level a) PE decreases, TE increases b) *PE* increases, *TE* increases c) PE decreases, TE decreases d) PE increases, TE decreases 403. Minimum energy required to takeout the only one electron from ground state of He^+ is b) 54.4 eV c) 27.2 eV a) 13.6 eV d) 6.8 eV 404. The first member of the Paschen series in hydrogen spectrum is of wavelength 18,800 Å. The short wavelength limit of Paschen series is a) 1215 Å b) 6560 Å c) 8225 Å d) 12850 Å 405. If half-life of a radioactive atom is 2.3 days, then its decay constant would be a) 0.1 b) 0.2 c) 0.3 d) 2.3 406. Pick out the correct statement from the following. a) Energy released per unit mass of the reactant is less in case of fusion reaction b) Packing fraction may be positive or may be negative c) Pu²³⁹ is not suitable for a fission reaction d) For stable nucleus, the specific binding energy is low 407. For the stability of any nucleus a) Binding energy per nucleon will be more b) Binding energy per nucleon will be less c) Number of electrons will be more d) None of the above 408. 80 kg of a radioactive material reduces to 10 kg in 1 h. The decay constant of the material is a) 5.80 \times 10⁻⁴ s⁻¹ b) 1.16 \times 10⁻³ s⁻¹ c) $2.32 \times 10^{-3} \text{ s}^{-1}$ d) $4.64 \times 10^{-3} \text{ s}^{-1}$ 409. When an electron in hydrogen atom is excited, from its 4th to 5th stationary orbit, the change in angular momentum of electron is (Planck's constant: $h = 6.6 \times 10^{-34}$ J-s) b) 3.32×10^{-34} /-s c) 1.05×10^{-34} /-s d) 2.08×10^{-34} *I*-s a) 4.16×10^{-34} /-s 410. A moderator is used in nuclear reactors in order to a) Slow down the speed of the neutrons b) Accelerate the neutrons c) Increase the number of neutrons d) Decrease the number of neutrons 411. When $_{92}U^{235}$ is bombarded with one neutron, fission occurs and the products are three neutrons, $_{36}Kr^{94}$, and c) ₅₆Ba¹³⁹ a) $_{56}Ba^{141}$ b) $_{54}Xe^{139}$ d) $_{58}I^{142}$ 412. Activity of radioactive element decreased to one third of original activity R_0 in 9 years. After further 9 years, its activity will be

a) R_0 b) $\frac{2}{3}R_0$ c) $R_0/9$ d) $R_0/6$

413.	A radioactive element for	ns its own isotope after 3 c	onsecutive disintegrations	. The particles emitted are
	a) 3 β-particles		b) 2 β -particles - 1 α -particles	icle
	c) 2 β -particles - 1 γ -parti	cle	d) 2 α -particles - 1 β -particles	icle
414.	In any Bohr orbit of the hy	drogen atom, the ratio of k	inetic energy to potential e	energy of the electron is
	a) 1/2	b) 2	c) -1/2	d) -2
415.	Best neutron moderator is	5		
	a) Beryllium oxide	b) Pure water	c) Heavy water	d) Graphite
416.	Some radioactive nucleus	may emit		
	a) Only one α , β or γ at a t	ime	b) All the three α , β and γ	one after another
	c) All the three α , β and γ	simultaneously	d) Only α and β simultane	eously
417.	Which of the following car	not be emitted by radioact	tive substances during thei	r decay?
	a) Protons	b) Neutrinos	c) Helium nuclei	d) Electrons
418.	If the ionization potential	of helium atom is 24.6 volt	, the energy required to jo	nize it will be
	a) 24.6 <i>eV</i>	b) 24.6 <i>V</i>	c) 13.6 V	d) 13.6 <i>eV</i>
419.	The number of neutrons r	eleased when $_{92}U^{235}$ unde	ergoes fission by absorbing	$a_0 n^1$ and (${}_{56} B a^{144} +$
	$_{26}Kr^{89}$) are formed is)2	0 , 0	
	a) 0	h) 1	c) 2	d) 3
420	The first line in the Lyman	series has wavelength λ. Τ	'he wavelength of the first	line in Balmer series is
120	2	9	5	27
	a) $\frac{1}{9}\lambda$	b) $\frac{1}{2}\lambda$	c) $\frac{1}{27}\lambda$	d) $\frac{1}{5}\lambda$
421.	Half-life of a radio active s	ubstance A is 4 days. The p	probability that a nucleus w	vill decay in two half-lives is
	<u>_</u> 1	, 3	、1 	d) 1
	a) $\frac{-}{4}$	b) $\frac{-}{4}$	$c_{\frac{1}{2}}$,
422.	Radium has a half-life of 5	yr. The probability of deca	y of a radium nucleus in 10) yr is
	a) 50 %	b) 75%	c) 100%	d) 60%
423.	For a nucleus to be stable,	the correct relation betwe	en neutron number N and	proton number Z is
	a) <i>N > Z</i>	b) $N = Z$	c) <i>N</i> < <i>Z</i>	d) $N \ge Z$
424.	According to classical theo	ory, the circular path of an e	electron in Rutherford ator	n is
	a) Spiral	b) Circular	c) Parabolic	d) Straight line
425.	First Bohr radius of an ato	om with $Z = 82$ is R . Radius	s of its third orbit is	
	a) 9 <i>R</i>	b) 6 <i>R</i>	c) 3 <i>R</i>	d) <i>R</i>
426.	In an atomic bomb, the en	ergy is released due to		
	a) Chain reaction of neutr	ons and $_{92}U^{235}$	b) Chain reaction of neutr	cons and $_{92}U^{238}$
	c) Chain reaction of neutr	ons and $_{92}U^{240}$	d) Chain reaction of neutr	cons and $_{92}U^{236}$
427.	In nuclear reactions, we h	ave the conservation of	,	
	a) Mass only		b) Energy only	
	c) Momentum only		d) Mass, energy and mom	entum
428.	If the energy of a hydroge	n atom in <i>n</i> th orbit is E_n , th	en energy in the <i>n</i> th orbit	of a singly ionized helium
	atom will be			
	a) $4E_n$	b) $E_n/4$	c) $2E_n$	d) $E_n/2$
429.	The shortest wavelength i	n hydrogen spectrum of Ly	man series when $R_H = 10^{\circ}$	$9678 \ cm^{-1}$ is
	a) 1002.7 Å	b) 1215.67 Å	c) 1127.30 Å	d) 911.7 Å
430	Nuclear hinding energy is	equivalent to	·)/	
100	a) Mass of proton	oquit monto to	h) Mass of neutron	
	c) Mass of nucleus		d) Mass defect of nucleus	
431	Two lithium nuclei in a lit	hium vanour at room temp	erature do not combine to	form a carbon nucleus
101	hecause	inam vapoar at room temp		
	a) Carbon nucleus is an ur	istable particle		
	h) It is not energetically for	vourable		
	c) Nuclei do not come ver	v close due to Coulombic re	nulsion	
	e, macier ao not come ver	, close due to doulomble It	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

d) Lithium nucleus is more tightly bound than a carbon nucleus

432.	432. The velocity of an electron in the second orbit of sodium atom (atomic number = 11) is v . The velocity of an electron in its fifth orbit will be				
	a) <i>v</i>	b) $\frac{22}{5}v$	c) $\frac{5}{2}v$	d) $\frac{2}{5}v$	
433.	The ratio of ionization end	ergy of Bohr's hydrogen at	om and Bohr's hydrogen lik	te lithium atom is	
	a) 1 : 1	b) 1 : 3	c) 1:9	d) None of these	
434.	If 10% of a radioactive ma	aterial decays in 5 days, the	en the amount of original m	aterial left after 20 days is	
	approximately	5 5 .	0		
	a) 60%	b) 65%	c) 70%	d) 75%	
435.	Which of the following is	most unstable	-) - / 3		
100.	a) Electrons	b) Protons	c) Neutrons	d) α -particle	
436	Neutrons are used in nucl	ear fission, because	.)		
100	a) Neutrons are attracted	by nucleus			
	b) Mass of neutrons is gre	eater than protons			
	c) Neutrons are neutral a	nd hence are not repelled b	ov the nucleus		
	d) Neutrons could be acce	derated to a greater energy	1		
437	According to Bohr's theor	w the radius of electron in :	an orhit described by princ	inle quantum number <i>n</i>	
157.	and atomic number 7 is n	ronortional to	an orbit described by prine	ipie quantani number <i>n</i>	
	and atomic number 2 is p	7 ²	72	n^2	
	a) $Z^2 n^2$	b) $\frac{z}{r^2}$	c) $\frac{z}{z}$	d) $\frac{\pi}{7}$	
438	The ratio between total a	n^{-}	n in singly ionized helium atc	Z om and hydrogen atom	
150.	(both in ground state) is		in singly ionized hendin ate	fin and nyur ogen atom	
	a) 1	h) 8	c) 4	d) 16	
130	On the hombardment of n	oj o Autron with Boron <i>a</i> -part	icle is emitted and product	nuclei formed is	
439.	c^{12}	b) I_{i}^{6}	Li^7	d) Ro ⁹	
110	a) $_{6}$	UJ 3Ll	CJ <u>3</u> Li	uj ₄ De	
440.	a) Neil Bohn	b) II. Themson	a) Duth orford	d) I. Nourton	
111	a) Nell Dolli The velume of a nucleus i	DJ J.J. I HOIHSOH	c) Rumerioru	uj I. Newton	
441.	The volume of a nucleus is	s directly proportional to	1.) 43		
	a) A		$DJ A^3$		
	c) \sqrt{A}		d) $A^{1/3}$		
			(where A=mass numb	er of the nucleus)	
442.	The mass number of a nuc	cleus is equal to the numbe	er of		
	a) Electrons it contains	b) Protons it contains	c) Neutrons it contains	d) Nucleons it contains	
443.	The counting rate observe	ed from a radioactive sourc	the at $t = 9$ s was 1600 counts	s^{-1} and at $t = 8$ sit was 100	
	counts s^{-1} . The counting	rate observed as counts pe	r second at $t = 6$ s,will be		
	a) 400	b) 300	c) 250	d) 200	
444.	In a radioactive material t	the activity at time t_1 is R_1	and at a later time t_2 , it is R	_{2.} If the decay constant of	
	the material is λ , then				
	a) $R_1 = R_2 e^{-\lambda(t_1 - t_2)}$	b) $R_1 = R_2 e^{\lambda(t_1 - t_2)}$	c) $R_1 = R_2 (t_2/t_1)$	d) $R_1 = R_2$	
445.	An electron in the $n = 1$ of	orbit of hydrogen atom is b	ounded by 13.6 eV. Energy	requires to ionize it is	
	a) 13.6 <i>eV</i>	b) 6.53 <i>eV</i>	c) 5.4 <i>eV</i>	d) 1.51 <i>eV</i>	
446.	Energy released in the fis	sion of a single nucleus is 2	00MeV. The fission rate of	a ²³⁵ U filled reactor	
	operating at a power leve	l of 5W is			
	a) $1.56 \times 10^{-10} \text{s}^{-1}$	b) $1.56 \times 10^{11} \text{s}^{-1}$	c) $1.56 \times 10^{-16} \text{s}^{-1}$	d) $1.56 \times 10^{-17} \text{s}^{-1}$	
447.	In hydrogen atom, the ele	ctron is moving round the	nucleus with velocity 2.18	$\times 10^6 m/s$ in an orbit of	
	radius 0.528Å. The accele	ration of the electron is			
	a) $9 \times 10^{18} m/s^2$	b) $9 \times 10^{22} m/s^2$	c) $9 \times 10^{-22} m/s^2$	d) $9 \times 10^{12} m/s^2$	
448	A radioactive material has	s an initial amount 16 <i>a</i> . Aft	ter 120 days it reduces to 1	<i>a</i> , then the half-life of	
110	radioactive material is	uniount 109.111			
	a) 60 days	b) 30 <i>days</i>	c) $40 days$	d) 240 <i>days</i>	
	~,	~,,.	-, 10 000,0	~, <u> </u>	

449	The ratio of the waveleng	ths for $2 \rightarrow 1$ transition on	Li^{++} , He^+ and H is		
	a) 1 : 2 : 3	b) 1 : 4 : 9	c) 4:9:36	d) 3 : 2 : 1	
450	Pick out the incorrect stat	ement from the following	-		
	a) β -emission from the nucleus is always accompanied with a neutrino				
	b) The energy of the α -pa	rticle emitted from a given	nucleus is always constant		
	c) γ -ray emission makes t	the nucleus more stable			
	d) Nuclear force is charge	-independent			
451	The graph between numb	er of decayed atoms N' of a	a radioactive element and t	ime t is	
	a) <i>N</i>	b) <i>N</i> ↑	c) N″	d) ^{N′} ↑	
	l l				
				/	
450	t			\longrightarrow t	
452.	a) Both the neutron numb	om a nucleus	ahanga		
	a) Both the neutron humit	ber and the proton number	change		
	a) Only the neutron num	he proton number and the	neutron number		
	c) Only the neutron num	ber changes			
452	238U has 02 meeting and 2	er changes	····::		
453	$^{2}_{92}$ U has 92 protons and 2	238 nucleons. It decays by	emitting an alpha particle a	and becomes	
. – .	a) $^{2}_{92}$ U	b) $^{2}_{90}$ h	c) $^{233}_{92}$ U	d) $^{237}_{93}$ Np	
454.	Which of the following is :	suitable for the fusion proc	ess		
455	a) Heavy nuclei	b) Light nuclei	c) Atom bomb	d) Radioactive decay	
455.	A nucleus with $Z = 92em$	its the following in a seque	nce: α, α, β , β , $\alpha, \alpha, \alpha, \alpha; \beta$	β , β , α , β' , β' , α . The Z of	
	the resulting nucleus is	1.) 70			
450	a) /6	D) /8	C) 82	a) /4	
456	Two protons are kept at a	separation of 40 A. F_n is the	ie nuclear force and F_e is the	e electrostatic force	
	between them. Then				
457	a) $F_n >> F_e$	$F_n = F_e$	c) $F_n \ll F_e$	a) $F_n \approx F_e$	
457.	Every series of hydrogen	spectrum nas an upper and	l lower limit in wavelength	. The spectral series which	
	nas an upper limit of wave	elength equal to $18/52$ A is	5		
	(Rydberg constant $R = 1$.	$097 \times 10^{\circ} \text{ per metre})$			
450	a) Balmer series	b) Lyman series	c) Paschen series	d) Pfund series	
458	I ne ionisation energy of J	to times ionised sodium ato	12.6		
	a) 13.6 <i>eV</i>	b) 13.6 × 11 <i>eV</i>	c) $\frac{13.0}{11} eV$	d) $13.6 \times (11)^2 eV$	
459	$\sim 11^{235}$ and $\sim 11^{238}$ differ	25	11		
10,7	a) $_{oo}$ U^{235} has 2 protons le	200	b) $_{aa}$ U ²³⁸ has 3 protons n	nore	
	c) $_{02}$ U ²³⁸ has 3 neutrons	more	d) None of the above		
460	In the following reaction				
100	$_{12}Ma^{24} + _{2}He^4 \rightarrow _{14}Si^X$	$+ n^1 X$ is			
	a) 28	b) 27	c) 26	d) 22	
461	Concidor o hydrogon lileo	etom where enough in wth	ovoited state is given by E	$13.6Z^2$ When this	
	Consider a nydrogen like	atom whose energy in n ²²	excited state is given by E_n	$=-\frac{n^2}{n^2}$. When this	
	excited atom makes a tran	nsition from excited state to	o ground state, most energe	etic photons have energy	
	$E_{\rm max} = 52.224 \ eV$ and lea	st energetic photons have	energy $E_{\min} = 1.224 \ eV.$ The second sec	he atomic number of atom	
	is				
	a) 2	b) 5	c) 4	d) None of these	
462	γ -rays radiation can be us	ed to create electron-posit	ron pair. In this process of	pair production, γ -rays	
	energy cannot be less that				
100	aj 5.0 <i>MeV</i>	DJ 4.U <i>2 MeV</i>	cj 15.0 <i>MeV</i>	aj 1.02 <i>MeV</i>	
463	Two radioactive samples	have decay constant $15x$ as	nd $3x$. If they have the same	e number of nuclei initially,	

the ratio of number of nuclei after a time $\frac{1}{6x}$ is a) <u>1</u> c) $\frac{1}{e^4}$ d) $\frac{1}{\rho^2}$ b) $\frac{1}{2}$ 464. If radius of the $\frac{27}{13}Al$ nucleus is estimated to be 3.6 *fermi* then the radius of $\frac{125}{52}Te$ nucleus be nearly b) 5 Fermi c) 6 Fermi d) 8 Fermi a) 4 Fermi 465. The wavelength of Lyman series is series is b) $\frac{3}{4 \times 10967}$ cm c) $\frac{4 \times 10967}{3}$ cm a) $\frac{4}{3 \times 10967}$ cm d) $\frac{3}{4} \times 10967 cm$ 466. The figure indicates the energy level diagram of an atom and the origin of six spectral lines in emission (e. g. line no. 5 arises from the transition from level B to A). Which of the following spectral lines will also occur in the absorption spectra a) 1, 4, 6 c) 1, 2, 3 b) 4, 5, 6 d) 1, 2, 3, 4, 5, 6 467. In a radioactive substance at t = 0, the number of atoms is 8×10^4 . Its half life period is 3 *years*. The number of atoms 1×10^4 will remain after interval a) 9 years b) 8 years c) 6 years d) 24 years 468. If $_{92}U^{238}$ undergoes successively 8 α -decays and 6 β -decays, then resulting nucleus is a) $_{82}U^{206}$ b) ₈₂*Pb*²⁰⁶ c) $_{82}U^{210}$ d) $_{82}U^{214}$ 469. As the electron in Bohr orbit of Hydrogen atom passes from state n = 2 to n = 1, the kinetic energy *K* and potential energy *U* change as a) K two-fold, U four-fold b) K four-fold, U two-fold c) K four-fold, U also four-fold d) K two-fold, U also two-fold 470. The largest wavelength in the ultraviolet region of the hydrogen spectrum is 122 nm. The smallest wavelength in the infrared region of the hydrogen spectrum (to the nearest integer is) a) 802 nm b) 823 nm c) 1882 nm d) 1648 nm 471. Nucleus of an atom whose atomic mass is 24 consists of a) 11 electrons, 11 protons and 13 neutrons b) 11 electrons, 13 protons and 11 neutrons c) 11 protons and 13 neutrons d) 11 protons and 13 electrons 472. Ionization power and penetration range of radioactive radiation increases in the order a) γ , β , α and γ , β , α respectively b) γ , β , α and α , β , γ respectively c) α , β , γ and α , β , γ respectively d) α , β , γ and γ , β , α respectively 473. The relationship between λ and half life $(T_{1/2})$ of a radioactive substance is c) $\lambda = \frac{\log_2 10}{T_{1/2}}$ d) $\lambda = \frac{\log_2 e}{T_{1/2}}$ b) $\lambda = \frac{\log_e 2}{T_{1/2}}$ a) $\lambda = \frac{\log_{10} 2}{T_{1/2}}$ 474. The ratio of molecular mass of two radioactive substances is 3/2 and the ratio of their decay constants is 4/3. Then, the ratio of their initial activity per mole will be c) $\frac{8}{9}$ a) 2 b) 4/3 d) 9/8 475. Which one of the following is a possible nuclear reaction? a) ${}^{10}_{5}B + {}^{4}_{2}He \rightarrow {}^{13}_{7}N + {}^{1}_{1}H$ b) $^{23}_{11}Na + ^{1}_{1}H \rightarrow ^{20}_{10}Ne + ^{4}_{2}He$ d) ${}^{11}_{7}N + {}^{1}_{1}H \rightarrow {}^{12}_{6}C + \beta^{-} + \overline{v}$ c) $^{239}_{93}\text{Np} \rightarrow ^{239}_{94}\text{Pu} + \beta^- + \overline{\text{v}}$ 476. Radius of the first orbit of the electron in a hydrogen atom is 0.53 Å. So, the radius of the third orbit will be a) 2.12 Å b) 4.77 Å c) 1.06 Å d) 1.59 Å 477. When $_{88}$ Ra²³⁶ decays in a series by emission of 3 α -particles and one β -particle, isotope X formed is a) ${}_{83}X^{224}$ b) $_{84}X^{218}$ c) $_{84}X^{220}$ d) $_{82}X^{223}$ 478. The sun radiates energy in all directions. The average radiations received on the earth surface from the sun is 1.4 *kilowatt*/ m^2 . The average earth sun distance is 1.5×10^{11} metres. The mass lost by the sun per

	day is $(1 day = 86400 se$	conds)		
	a) $4.4 \times 10^9 kg$	b) $7.6 \times 10^{14} kg$	c) $3.8 \times 10^{12} kg$	d) $3.8 \times 10^{14} kg$
479	. According to the Rutherfo	ord's atomic model, the elec	ctrons inside the atom are	
	a) Stationary	b) Not stationary	c) Centralized	d) None of these
480	. The time of revolution of	an electron around a nucle	us of charge <i>Ze</i> in n th Bohr	orbit is directly
	proportional to			
	a) <i>n</i>	h) n^3	n^2	$\frac{Z}{Z}$
		$\frac{1}{Z^2}$	$\frac{z}{Z}$	n
481	A^{238}_{92} U nucleus at rest is de	ecayed by emitting alpha p	article into $^{234}_{90}$ Th. The spee	ds of the alpha particle and
	the thorium nucleus are in	n the ratio.		
	a) 3:58	b) 58:3	c) 1:58	d) 58:1
482	. 1 atomic mass unit is equation	al to	1	
	a) $\frac{1}{25}$ (mass of F_2 molecule	e)	b) $\frac{1}{14}$ (mass of N_2 molecul	e)
	c) $\frac{1}{12}$ (mass of one <i>C</i> -atom	l)	d) $\frac{1}{16}$ (mass of O_2 molecul	e)
483	An atom of mass number	15 and atomic number 7 ca	aptures an α – particle and	then emits a proton. The
100	mass number and atomic	number of the resulting pr	oduct will respectively be	
	a) 14 and 2	b) 15 and 3	c) 16 and 4	d) 18 and 8
484	. 1 <i>g</i> of hydrogen is conver	ted into 0.993 g of helium	in a thermonuclear reaction	n. The energy released is
	a) $63 \times 10^7 I$	b) $63 \times 10^{10} I$	c) 63×10^{14} /	d) 63×10^{20}
485	. The mass number of a nu	cleus is 216. The size of an	atom without changing its	chemical properties are
	called			
	a) 7.2×10^{-13} cm	b) 7.2×10^{-11} cm	c) 7.2×10^{-10} cm	d) 3.6×10^{-11} cm
486	. In a sample of radioactive	material, what fraction of	the initial number of active	e nuclei will remain
	undisintegrated after half	of a half-life of the sample		
	ي ¹	b <u>1</u>	$\frac{1}{2}$	d) $2\sqrt{2}$
	$\frac{a}{4}$	$\frac{1}{2\sqrt{2}}$	$\sqrt{\frac{1}{\sqrt{2}}}$	u) 2V2
487	. The average number of pr	compt neutrons produced p	per fission of U^{235} is	
	a) More than 5	b) 3 to 5	c) 2 to 3	d) 1 to 2
488	. In Bohr's model, if the ato	mic radius of the first orbit	t is r_0 , then the radius of the	e fourth orbit is
	a) <i>r</i> ₀	b) 4 <i>r</i> ₀	c) <i>r</i> ₀ /16	d) 16 <i>r</i> ₀
489	. In a Rutherford scattering	g experiment when a projec	ctile of charge z_1 and mass	M_1 approaches a target
	nucleus of charge z_2 and r_2	mass M_2 , the distance of clo	bsest approach is r_0 . The en	ergy of the projectile is
	a) Directly proportional t	$M_1 \times M_2$	b) Directly proportional t	0 <i>Z</i> ₁ <i>Z</i> ₂
100	c) Inversely proportional	to z_1	d) Directly proportional t	o mass M_1
490	Nuclear fusion is common	to the pair		
	a) Thermonuclear reactor	r, uranium based nuclear re	eactor	
	b) Energy production in s	un, uramum based nuclear	reactor	
	d) Disintegration of heavy	un, nyurogen bomb		
1.01	If in Rutherford's experim	ant the number of particle	e scattered at 90° angle ar	a 28 nar <i>min</i> than numbar
471	of scattered particles at a	n angle 60° and 120° will h	e	e 20 per <i>mun</i> , then number
	a) 112 /min 12 5 /min	b) $100/min \ 200/min$	c) $50/min \ 125 \ 5/min$	d) 117/min 25/min
492	Consider an electron in th	$n = n^{\text{th}}$ orbit of a hydrogen a	tom in the Bohr model The	circumference of the orbit
172	can be expressed in terms	s of the de Broglie wavelen	α that electron as	
	a) $(0.259)n\lambda$	b) $\sqrt{n}\lambda$	c) $(13.6)\lambda$	d) $n\lambda$
493	Boron rods in nuclear rea	ctor are used as a		aj m
175	a) Moderator	b) Control rods	c) Coolants	d) Protective shield
494	. The element used for radi	oactive carbon dating for r	nore than 56000 vr is	aj i roccerve sinera
1	a) C-14	b) U-234	c) U-238	d) Po-94
495	. The energy equivalent of	the atomic mass unit is	,	,

a) 1.6 × 10) ⁻¹⁹ J b)	6.02×10^{-23} J	c) 931 J	d) 931 MeV	
496. The half-li	fe period of a radio	pactive element X is sam	ne as the mean life time of a	nother radioactive element	
<i>Y</i> . Initially they have the same number of atoms. Then					
a) X will d	ecay faster than Y		b) <i>Y</i> will decay faster than <i>X</i>		
c) Y and X	have same decay	rate initially	d) X and Y decay at same rate always.		
497. The half-li	97. The half-life for the α -decay of uranium $_{92}U^{238}$ is 4.47 ×			\times 10 ⁹ yr. If a rock contains sixty percent of its	
original $_{92}U^{238}$ atoms, its age is $[\log 6 = 0.778; \log 2 = 0.3]$					
a) 3.3×10^{-1}) ⁹ yr b)	$6.6 \times 10^{9} \text{yr}$	c) 1.2×10^8 yr	d) $5.4 \times 10^7 \text{yr}$	
498. A freshly p	prepared radioactiv	ve source of half-life 2 h	emits radiation of intensity	which is 64 times the	
permissib	e safe level. Calcul	ate the minimum time a	fter which it would be poss	sible to work safely with	
this source	2.				
a) 12 h	b)	24 h	c) 6 h	d) 130 h	
499. If the distance between nuclei is 2×10^{-13} cm, the density of nuclear material is					
a) 3.21 × 1	a) $3.21 \times 10^{-12} \text{kgm}^{-3}$ b) $1.6 \times 10^{-3} \text{kgm}^{-3}$				
c) 2 × 10 ⁹	kgm ⁻³		d) $4 \times 10^{17} \text{kgm}^{-3}$		
500. Hydrogen atom emits blue light when it changes from $n = 4$ energy level to the $n = 2$ level. Which colour					
of light wo	uld the atom emit	when it changes from th	he $n = 5$ level to the $n = 2$	level	
a) Red	b)	Yellow	c) Green	d) Violet	
501. The counting rate observed from a radioactive source at $t = 0$ was 1600 counts ⁻¹ and at $t = 8$ s it was					
100counts ⁻¹ . The counting rate observed as counts per seconds at $t = 6s$, will be					
a) 400	b)	300	c) 250	d) 200	
502. In Bohr model of the hydrogen atom, the lowest orbit corresponds to					
a) Infinite energy b) 7			כ) The maximum energy		
c) The minimum energy			d) Zero energy		
503. Which of t	he following partic	cle has similar mass to e	lectron		
a) Proton	b)	Neutron	c) Positron	d) Neutrino	
504. Mark the c	orrect statement				
a) Nuclei of different elements can have the same number of neutrons					
b) Every element has only two stable isotopes					
c) Only on	c) Only one isotope of each element is stable				
d) All isotopes of every element are radioactive					
505. The nucleu	is which has radiu	s one-third of the radius	s of Cs^{189} is	10	
a) <i>Be⁹</i>	b)	Li'	c) F^{19}	d) C ¹²	
506. Four lowest energy levels of <i>H</i> -atom are shown in the figure. The number of possible emission lines would					
be		- 4			
	/	1 = 4 n = 3			
		7 - 5			
	r	1 = 2			
	/	n = 1			
a) 3	b)	4	c) 5	d) 6	
507. For a subs	tance the average	life for α -emission is 16	20 <i>years</i> and for β emissio	n is 405 <i>years</i> . After how	
much time the 1/4 of the material remains after α and β emission					
a) 1500 ye	ears b)	300 years	c) 449 <i>years</i>	d) 810 years	
508. In the Bohr's hydrogen atom model, the radius of the stationary orbit is directly proportional to ($n =$					
principle quantum number)					
a) n ⁻¹	b)	n	c) <i>n</i> ⁻²	d) <i>n</i> ²	
509. Which one of the following nuclear reactions is a source of energy in the sun					
a) ${}^{9}_{4}Be + {}^{4}_{2}He \rightarrow {}^{12}_{6}C + {}^{-1}_{0}n$ b) ${}^{3}_{2}He + {}^{3}_{2}He \rightarrow {}^{4}_{2}He + {}^{1}_{1}H + {}^{1}_{1}H$				${}^{1}_{1}H + {}^{1}_{1}H$	
c) $\frac{144}{56}Ba + \frac{92}{56}Kr \rightarrow \frac{235}{92}U + \frac{-1}{0}n$			d) ${}^{56}_{26}Fe + {}^{112}_{48}Ca \rightarrow {}^{167}_{74}W + {}^{-1}_{0}n$		

510. Which of the following is a fusion reaction? a) $_1H^2 + _1H^2 \rightarrow _2He^4$ b) $_{1}H^{2} + _{1}H^{2} \rightarrow 2(_{1}H^{2})$ c) $_{1}H^{1} + _{1}H^{1} \rightarrow _{2}H^{4}$ d) $_{1}H^{1} + _{1}H^{2} \rightarrow _{2}H^{4} + n$ 511. A radioactive nucleus emits 3α -particles and 5β -particles. The ratio of number of neutrons to that of protons will be a) $\frac{A-Z-12}{Z-6}$ b) $\frac{A-Z}{Z-1}$ c) $\frac{A-Z-11}{Z-6}$ d) $\frac{A-Z-11}{Z-1}$ 512. An electron with kinetic energy 5 eV is incident on a H-atom in its ground state. The collision a) Must be elastic b) May be partially elastic c) Must be completely elastic d) May be completely inelastic 513. The radius of a nucleus with atomic mass number 7 is 2fermi. Find the radius of nucleus with atomic number 189. a) 3 fermi b) 4 fermi c) 5 fermi d) 6 fermi 514. How much work must be done to pull apart the electron and the proton that make up the Hydrogen atom, if the atom is initially in the state with n = 2b) $3.4 \times 1.6 \times 10^{-19} J$ a) $13.6 \times 1.6 \times 10^{-19}$ c) $1.51 \times 1.6 \times 10^{-19}$ d) 0 515. When a hydrogen atom is raised from the ground state to an excited state a) P.E. increases and K.E. decreases b) P.E. decreases and K.E. increases c) Both kinetic energy and potential energy increase d) Both K.E. and P.E. decrease 516. For thorium A=232, Z=90 at the end of some radioactive disintegration we obtain an isotope of lead with A = 208 and Z = 82, then the number of emitted α and β particles are a) $\alpha = 4, \beta = 6$ b) $\alpha = 5, \beta = 5$ c) $\alpha = 6, \beta = 4$ d) $\alpha = 6, \beta = 6$ 517. A hydrogen atom emits a photon corresponding to an electron transition from n = 5 to n = 1. The recoil speed of hydrogen atom is almost (mass of proton = $1.6 \times 10^{-27} kg$) d) $8 \times 10^2 \ ms^{-1}$ a) 10 ms⁻¹ b) $2 \times 10^{-2} m s^{-1}$ c) $4 m s^{-1}$ 518. When a hydrogen atom emits a photon in going from n = 5 to n = 1, its recoil speed is almost b) $8 \times 10^2 \text{ ms}^{-1}$ c) $2 \times 10^{-2} \text{ ms}^{-1}$ a) 10^{-4} ms^{-1} d) 4 ms^{-1} 519. Which of the following is true for a sample of isotope containing U^{235} and U^{238} a) Number of neutrons are same in both b) Number of protons, electrons and neutrons are same in both c) Contain same number of protons and electrons but U^{238} contains 3 more neutrons than U^{235} d) U^{238} contains 3 less neutrons than U^{235} 520. The binding energies per nucleon of Li⁷ and He⁴ are 5.6 MeV and 7.06 MeV respectively, then the energy of the reaction $Li^7 + p = 2[_2He^4]$ will be a) 17.28 MeV b) 39.2 MeV c) 28.24 MeV d) 1.46 MeV 521. The wavelength of the first line of Lyman series for hydrogen atom is equal to that of the second line of Balmer series for a hydrogen like ion. The atomic number Z of hydrogen like ion is a) 2 b) 3 c) 4 d) 1 522. In the following transitions, which one has higher frequency a) 3 – 2 b) 4 – 3 c) 4 – 2 d) 3 – 1 523. During the β – decay a) An atomic electron is ejected b) An electron, already present within the nucleus, is ejected. c) A proton in the nucleus decays emitting an electron d) A neutron in the nucleus decays emitting an electron 524. The half-life of Radioactive substance is 20 min. The approximate time interval $(t_2 - t_1)$ between the time

 t_2 when $\frac{2}{3}$ of it has decayed and time t_1 when $\frac{1}{3}$ of it had decayed is

- a) 14 minb) 20 minc) 28 mind) 7 min525. A radioactive substance has a half-life of 1 year. The fraction of this material, that would remain after
5 years will be
 - a) $\frac{1}{32}$ b) $\frac{1}{5}$ c) $\frac{1}{2}$ d) $\frac{4}{5}$

526. The radius of hydrogen atom in its ground state is $5.3 \times 10^{-11}m$. After collision with an electron it is found to have a radius of $21.2 \times 10^{-11}m$. What is the principal quantum number *n* of the final state of the atom a) n = 4 b) n = 2 c) n = 16 d) n = 3

527. The energy spectrum of β – particles [number N(*E*) as a function of β –energy *E*] emitted from a radioactive source is

c) Fission

d) Radioactivity

- 536. The force acting between proton and proton inside the nucleus is
- a) Coulombic b) Nuclear c) Both d) None of these 537. Assume the graph of specific binding energy verses mass number is as shown in the figure. Using this graph, select the correct choice from the following.

- Fusion of two nuclei of mass number lying in the range of 100 < A < 200 will release energy. a)
- Fusion of two nuclei of mass number lying in the range of 1 < A < 50 will release energy.
- Fusion of two nuclei of mass number lying in the range of 51 < A < 100 will release energy.
- Fusion of the nucleus of mass number lying in the d) range of 100 < A < 200 will release energy when
- broken into two fragments.
- 538. The kinetic energy of electron in the first Bohr orbit of the hydrogen atom is
- c) 13.6 eV d) -13.6 eV a) -6.5 eV b) -27.2 eV 539. Atomic weight of boron is 10.81 and it has two isotopes ${}_{5}B^{10}$ and ${}_{5}B^{11}$. Then ratio of ${}_{5}B^{10}$: ${}_{5}B^{11}$ in nature would be
 - a) 19:81 b) 10:11 c) 15:16 d) 81:19
- 540. If T is the half life of a radioactive material, then the fraction that would remain after a time $\frac{T}{2}$ is

a)
$$\frac{1}{2}$$
 b) $\frac{3}{4}$ c) $\frac{1}{\sqrt{2}}$ d) $\frac{\sqrt{2}-1}{\sqrt{2}}$

541. The figure shows a graph between $\ln \left| \frac{A_n}{A_1} \right|$ and $\ln |n|$, where A_n is the area enclosed by the *n*th orbit in a hydrogen like atom. The correct curve is

c) 2

c) $n^2 a_0$

- d) 1
- 542. In a beryllium atom, if a_0 be the radius of the first orbit, then the radius of the second orbit will be will be in general

a) na_0

- d) $\frac{a_0}{n^2}$ 543. Ionization energy of hydrogen is 13.6 eV. If $h = 6.6 \times 10^{-34} J - s$, the value of R will be of the order of a) $10^{10}m^{-1}$ b) $10^7 m^{-1}$ c) $10^4 m^{-1}$ d) $10^{-7}m^{-1}$
- 544. The decay constant of radium is 4.28×10^{-4} per year. Its half life will be a) 2000 years b) 1240 years c) 63 years d) 1620 years
- 545. The curve of binding energy per nucleon as a function of a atomic mass number has a sharp peak for helium nucleus. This implies that helium b) Is very stable
 - a) Can easily be broken up

b) 3

b) a_0
546.	c) Can be used as fissional Activity of a radioactive el activity will be	ble material ement decreased to one-th	d) Is radioactive ird of original activity I ₀ in	9 yr. After further 9 yr, its
	a) <i>I</i> ₀	b) $\frac{2}{3}I_0$	c) <i>I</i> ₀ /9	d) <i>I</i> ₀ /3
547.	An electron is a) Hadron	b) Barvon	c) A nucleon	d) A lepton
548.	Imagine an atom made up having the same charge as of this hypothetical particl has wavelength λ (given in a) 9/(5 <i>R</i>)	of a proton and a hypothet the electron. Apply the Bo le to the first excited level. terms of the Rydberg con b) 36/(5 <i>R</i>)	tical particle of double the r hr's atom model and consider The longest wavelength ph stant R for the hydrogen at c) $18/(5R)$	mass of the electron but der all possible transitions oton that will be emitted com) is equal to d) $4/R$
549.	A radio isotope has a half 1 150 <i>years</i> will be	life of 75 years. The fractio	in of the atoms of this mate	rial that would decay in
550.	a) 66.6% Which is the correct expre	b) 85.5% ession for half-life	c) 62.5%	d) 75%
	a) $(t)_{1/2} = \log 2$	b) $(t)_{1/2} = \frac{\lambda}{\log 2}$	c) $(t)_{1/2} = \frac{\lambda}{\log 2} (2.303)$	d) $(t)_{1/2} = \frac{2.303 \log 2}{\lambda}$
551.	Two protons exert a nucle a) $10^{-14}m$	ar force on each other, the b) $10^{-10}m$	distance between them is c) $10^{-12}m$	d) 10 ⁻⁸ m
552.	A radioactive sample S1 has which has an activity of 10 a) 20 years and 5 years, re c) 10 years each	aving an activity of $5\mu Ci$ ha $0\mu Ci$. The half lives of S1 an espectively	 b) 20 years and 10 years, 1 c) 5 years each 	ei as another sample S2 respectively
553.	An electron of a stationary velocity that the atom acq	v hydrogen atom passes fro uired as a result of photon	m the fifth energy level to t emission will be	the ground level. The
554.	a) 24 <i>hR</i> /25 <i>m</i> The radius of electron's se	b) 25 <i>hR</i> /24 <i>m</i> cond stationary orbit in Bo	c) 25 <i>m</i> /24 <i>hR</i> hr's atom is <i>R</i> . The radius o	d) 24 <i>m/</i> 25 <i>hR</i> of the third orbit will be
	a) 3 <i>R</i>	b) 2.25 <i>R</i>	c) 9 <i>R</i>	d) $\frac{R}{3}$
555.	A hydrogen like atom of at maximum energy photon is emitted. The value of n	comic number <i>Z</i> is in an exc of 204 <i>eV</i> . If it makes a trar will be	cited state of quantum num isition to quantum state n ,	ber 2 <i>n</i> . It can emit a a photon of energy 40.8 <i>eV</i>
556.	The diagram shows the entry the emission of a photon v n = n = n = n = n = n = n = n = n = n =	 b) Z argy levels for an electron with the most energy 4 3 2 1 b) II 	c) III	d) IV
557.	A particle moving with a v	elocity of $\frac{1}{1}$ th of that of li	ght will cross a nucleus on	about
	a) 10 ⁻⁸ s	b) 10^{-12} s	c) 6×10^{-15} s	d) 10 ⁻²⁰ s
558.	If Avogadro number is 6 × respectively	10^{23} , then number of prot	cons, neutrons and electron	is is 14 g of ${}_{6}C^{14}$ are
	a) $36 \times 10^{23}, 48 \times 10^{23}, 36 \times 10^{23}, 48 \times 10^{23$	6×10^{23} 8×10^{23}	b) 36×10^{23} , 36×10^{23} , 3 d) 48×10^{23} , 48×10^{23} , 3	6×10^{23} 6×10^{23}

559. Fusion reaction takes place at high temperature because

- a) KE is high enough to overcome repulsion between nuclei
- b) nuclei are most stable at this temperature
- c) nuclei are unstable at this temperature
- d) None of the above
- 560. Two radioactive sources *A* and *B* of half lives 1h and 2h respectively initially contain the same number of radioactive atoms. At the end of two hours, their rates of disintegration are in the ratio ofa) 1:4b) 1:3c) 1:2d) 1:1

561. m_p and m_n are masses of proton and neutron respectively. An element of mass M has Z protons and N neutrons then

- a) $M > Zm_p + Nm_n$
- b) $M = Zm_p + Nm_n$
- c) $M < Zm_p + Nm_n$
- d) *M* may be greater than less than or equal to $Zm_p + Nm_n$, depending on nature of element
- 562. The diagram shows the path of four α -particles of the same energy being scattered by the nucleus of an atom simultaneously. Which of these are/is not physically possible

	× ×					
	a) 3 and 4	b) 2 and 3	c) 1 and 4	d) 4 only		
563.	563. The process by which a heavy nucleus splits into light nuclei is known as					
	a) Fission	b) α -decay	c) Fusion	d) Chain reaction		
564.	In the above figure <i>D</i> and	<i>E</i> respectively represent				
	a) Absorption line of Bali	ner series and the ionizatio	on energy of hydrogen			
	b) Absorption line of Bali	ner series and the wavelen	gth lesser than lowest of th	e Lyman series		
	c) Spectral line of Balmer	r series and the maximum v	vavelength of Lyman series	5		
	d) Spectral line of Lyman series	series and the absorption	of greater wavelength of lin	niting value of Paschen		
565.	Complete the equation fo	r the following fission proc	ess $_{92}U^{235} +_0 n^1 \rightarrow \dots \dots$	₃₈ Kr ⁹⁰ +		
	a) ${}_{50}$ Xe ¹⁴³ + 3 ${}_{0}n^1$	b) ₅₄ Xe ¹⁴⁵	c) ${}_{57}$ Xe ¹⁴²	d) $_{54}$ Xe ¹⁴² + $_0n^1$		
566.	Which of the following is	in the increasing order for	penetrating power			
	a) <i>α</i> , <i>β</i> , <i>γ</i>	b) β, α, γ	c) γ, α, β	d) γ, β, α		
567.	During a nuclear fusion r	eaction				
	a) A heavy nucleus break	s into two fragments by its	elf			
	b) A light nucleus bomba	rded by thermal neutrons b	oreak up			
	c) A heavy nucleus bomb	arded by thermal neutrons	break up			
	d) Two light nuceli comb	ine to give a heavier nucleu	s and possible other produ	cts		
568.	A deutron is bombarded	on $_8O^{16}$ nucleus and α -par	ticle is emitted. The produc	ct nucleus is		
	a) ₇ N ¹³	b) ₅ B ¹⁰	c) ₄ <i>Bc</i> ⁹	d) $_7N^{14}$		
569.	The number of beta parti	cles emitted by a radioactiv	ve substance is twice the nu	umber of alpha particles		
	emitted by it. The resulting	ng daughter is an				
	a) Isobar of parent	b) Isomer of parent	c) Isotone of parent	d) Isotope of parent		
570.	The activity of a radioact	ive sample is measured as <i>l</i>	N_0 counts per minute at $t =$	= 0 and N_0/e counts per		
	minute at $t = 5$ minutes.	The time (in minutes) at w	hich the activity reduces to	half its value is		
	2 $5 \log 2$	h log $2/5$	c) <u>5</u>	d) 5 log 2		
	a) $5 \log_e 2$	$0 \int \log_e 2/5$	$\log_e 2$	$0 5 10g_{10} 2$		
571.	Equivalent energy of mas	ss equal to 1 <i>a.m.u</i> . is				
	a) 931 <i>KeV</i>	b) 931 <i>eV</i>	c) 931 <i>MeV</i>	d) 9.31 <i>MeV</i>		
572.	Two energy levels of an e when the electrons goes	electron in an atom are sepa from higher to the lower le	arated by 2.3 <i>eV</i> . The freque vel is	ency of radiation emitted		
				P a g e 38		

a) 6.95 $\times 10^{14} Hz$	b) $3.68 \times 10^{15} Hz$	c) $5.6 \times 10^{14} Hz$	d) $9.11 \times 10^{15} Hz$
573. A radio-isotope h	as a half-life of 5 years. The	fraction of the atoms of this	s material that would decay in
15 <i>years</i> will be			
a) 1/8	b) 2/3	c) 7/8	d) 5/8
574. If a H_2 nucleus is	completely converted into e	nergy, the energy produced	will be around
a) 1 <i>MeV</i>	b) 938 <i>MeV</i>	c) 9.38 <i>MeV</i>	d) 238 <i>MeV</i>
575. A radioactive san	nple has $4 imes 10^{10}$ nuclei at a	certain time. The number of	of active nuclei still remaining
after 4 half lives i	S		_
a) 1 × 10 ¹⁰	b) 5 × 10 ⁹	c) 25×10^8	d) 5×10^8
576. In β^+ decay proce	ess, the following changes ta	ke place inside the nucleus	-
a) $\frac{A}{Z}X \rightarrow \frac{A}{Z-1}Y +$	$e^+ + \gamma$	b) ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + e$	\bar{r} + \bar{r}
c) $\frac{A}{Z}X \rightarrow \frac{A}{Z}Y + e^{-1}$	+γ	d) $\frac{A}{Z}X \rightarrow \frac{A}{Z}Y + e^- +$	$-\bar{\gamma}$
577. The average kine	tic energy of the thermal neu	atrons is of the order of	
a) 0.03 eV	b) 3 <i>eV</i>	c) 3 <i>KeV</i>	d) 3 <i>MeV</i>
578. The wavelength of	of yellow line of sodium is 58	896Å. Its wave number will	be
a) 50883×10^{10}	per second	b) 16961 per <i>cm</i>	
c) 17581 per <i>cm</i>	<u>r</u>	d) 50883 per <i>cm</i>	
579. The penetrating	powers of α , β and γ radiatio	ns, in decreasing order are	
a) γ, α, β	b) γ , β , α	c) α, β, γ	d) β.γ.α
580. Hydrogen atom e	excites energy level from fun	damental state to $n = 3$. Nu	mber of spectrum lines according
to Bohr, is			
a) 4	b) 3	c) 1	d) 2
581. The equation $_{7}X$	$A \rightarrow {}_{Z+1}Y^{A} + {}_{-1}e^{0} + \bar{v}$ is	,	
a) β -emission	b) α -emission	c) <i>e</i> ⁻ capture	d) Fission
582. A hydrogen atom	and a Li ⁺⁺ ion are both in se	cond excited state. If l_H and	l <i>l_{Li}</i> are their respective electronic
angular momenta	a, and E_H and E_{Li} their respec	tive energies, then	
a) $l_{\rm H} > l_{\rm Li}$ and $ E_{\rm I} $	$ > > E_{\rm Li} $	b) $L_{\rm H} = L_{\rm i}$ and $ E_{\rm H} $	$< E_{\rm Li}$
c) $l_{\rm H} > l_{\rm Li}$ and $ E_{\rm I} $	$ H > E_{\rm Li} $	d) $l_{\rm H} > l_{\rm Li}$ and $ E_{\rm H} $	$<< E_{\rm Li}$
583. The decay consta	nt λ of the radioactive same	le is the probability of decay	y of an atom in unit time, then
a) λ decreases as	atoms become older		
b) λ increases as	the age of atoms increases		
c) λ is independe	ent of the age		
d) Behavior of λ	with time depends on the na	ture of the activity	
584. The binding ener	gy of two nuclei P^n and Q^{2n}	are x joule and y joule resp	ectively. If 2 $x > y$, then the
energy released i	n the reaction $P^n + P^n = Q^2$	²ⁿ will be	
a) 2 <i>x</i> + <i>y</i>	b) 2 <i>x</i> – <i>y</i>	c) <i>xy</i>	d) <i>x</i> + <i>y</i>
585. The de-Broglie w	avelength of an electron in t	he first Bohr orbit is	
a) Equal to one fo	ourth the circumference of th	ne first orbit	
b) Equal to half th	ne circumference of the first	orbit	
c) Equal to twice	the circumference of the first	st orbit	
d) Equal to the ci	rcumference of the first orbi	t	
586. One Becquerel is	defined as		
a) 1 disintegration	n per sec	b) 10 ⁶ disintegrati	on per sec
c) 3.7 × 10 ¹⁰ di	sintegration per sec	d) 10 ³ disintegration	on per sec
587. The nucleus ${}_{6}C^{12}$	² absorbs an energetic neutro	on and emits a beta particle	(β). The resulting nucleus is
a) ₇ N ¹⁴	b) ₅ B ¹³	c) ₇ N ¹³	d) ₆ C ¹³
588. The proper life of	f pion (π^+) is 2.5 × 10 ⁻⁸ s. Ir	n a beam of pions travelling	with a speed of 0.9 c, the pion, in
the laboratory fra	ame, can travel a maximum c	listance of	
a) 6.75 m	b) 15.49 m	c) 7.50 m	d) 17.10 m

589. If the binding energy of the electron in a hydrogen atom is 13.6 eV , the energy required to remove the					
electron from the first exe	cited state of Ll^{++} is	-) 10 (-W	J. D. 4 . 12		
a) $122.4 eV$	DJ 30.6 <i>eV</i>	CJ 13.6 eV	(1) 3.4 <i>ev</i>		
The number of protons and neutrons in the nucleus left after the decay respectively, are					
a) <i>Z</i> − 3, <i>N</i> − 1	b) <i>Z</i> − 2, <i>N</i> − 2	c) <i>Z</i> − 1, <i>N</i> − 3	d) <i>Z</i> , <i>N</i> − 4		
591. Which of the following sta	atements are true regarding	g radioactivity			
(I) All radioactive elements decay exponentially with time					
(II) Half life time of a rad	ioactive element is time rec	uired for one half of the ra	dioactive atoms to		
disintegrate					
(III) Age of each can be d	etermined with the help of	radioactive dating			
(IV) Half life time of a rad	lioactive element is 50% of	its average life period			
Select correct answer usi	ng the codes given below				
Codes:					
a) I and II	b) I, III and IV	c) I, II and III	d) II and III		
592. Three fourth of the active	e decays in a radioactive sar	nple in $\frac{3}{4}s$. The half life of the table of the second sec	he sample is		
a) $\frac{1}{2}s$	b) 1 <i>s</i>	c) $\frac{3}{8}s$	d) $\frac{3}{4}s$		
593. Carbon dating is best suit	ed for determining the age	of fossils of their age in yea	ars is of the order of		
a) 10 ³	b) 10 ⁴	c) 10 ⁵	d) 10 ⁶		
594. The particle <i>A</i> is converted	ed into <i>Cvia</i> following react	tion.			
$A \rightarrow B + _{2} He^{4}$					
$B \rightarrow C + 2e^{-}$					
Then					
a) A and C are isobars	b) A and C are isotopes	c) A and B are isobars	d) A and B are isotopes		
595. Unit of radioactivity is Ru	<i>therford</i> . Its value is	_			
a) 3.7×10^{10} disintegra	tions/s	b) 3.7×10^6 disintegrati	ions/s		
c) 1.0×10^{10} disintegra	tions/s	d) 1.0×10^6 disintegrati	lons/s		
596. In Bohr model of hydroge	en atom, the ratio of periods	s of revolution of an electro	on in $n = 2$ and $n = 1$ orbits		
a) 2 : 1	b) 4 : 1	c) 8:1	d) 16 : 1		
597. Which of the following is	not conserved in nuclear re	eaction?	,		
a) Total energy		b) Mass number			
c) Charge Number		d) Number of fundamenta	al particles		
598. Carbon – 14 decays with	half-life of about 5,800 year	rs. In a sample of bone, the	ratio of carbon – 14 to		
carbon – 12 is found to be	$e^{\frac{1}{4}}$ of what it is in free air. T	his bone may belong to a p	eriod about <i>x</i> centuries ago,		
where <i>x</i> is nearest to					
a) 2 × 58	b) 58	c) 58/2	d) 3 × 58		
599. During mean life of a radi	oactive element, the fractio	on that disintegrates is	0		
a) <i>e</i>	b) $\frac{1}{e}$	c) $\frac{e-1}{e}$	d) $\frac{e}{e-1}$		
600. Which of the following sp	ectral series in hydrogen a	tom give spectral line of 48	60 Å		
a) Lyman	b) Balmer	c) Paschen	d) Brackett		
601. The Rutherford α -particle	e experiment shows that m	ost of the α -particles pass t	hrough almost unscattered		
while some are scattered	through the large angles. V	Vhat information does it giv	ve about the structure of the		
atom					
a) Atom is hollow					
b) The whole mass of the	atom is concentrated in a s	mall centre called nucleus			
cj Nucleus is positively cl	narged				

602. If the binding energy	per nucleon of deutron is 1	115 MeV, its mass defect	in atomic mass unit is
a) 0.0048	b) 0.0024	c) 0.0012	d) 0.0006
603. In a radioactive decay	, neither the atomic numb	er nor the mass number o	f changes. Which of the following
would be emitted in t	he decay process		
a) Proton	b) Neutron	c) Electron	d) Photon
604. The half life (T) and t	he disintegration constant	(λ) of a radioactive subst	ance are related as
a) $\lambda T = 1$	b) $\lambda T = 0.693$	c) $\frac{T}{\lambda} = 0.693$	d) $\frac{\lambda}{T} = 0.693$
605. A radioactive materia original value in	l has a half-life of 8 years. T	Γhe activity of the materia	l will decrease to about 1/8 of its
a) 256 years	b) 128 years	c) 64 years	d) 24 years
606. What is the ratio of w	avelength of radiations em	itted when an electron in	hydrogen atom jumps from
fourth orbit to second	orbit and from third orbit	to second orbit	
a) 27 : 25	b) 20 : 27	c) 20:25	d) 25 : 27
607. The half life period of	radium is 1600 years. The	e fraction of a sample of ra	adium that would remain after
6400 <i>years</i> is			
a) 1/4	b) 1/2	c) 1/8	d) 1/16
608. The Rydberg constant	R for hydrogen is		
a) $R = -\left(\frac{1}{4\pi\varepsilon_0}\right) \cdot \frac{2\pi^2}{c}$	$\frac{me^2}{h^2}$	b) $R = \left(\frac{1}{4\pi\varepsilon_0}\right) \cdot \frac{2\pi^2}{ct}$	$\frac{me^4}{n^2}$
c) $R = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \cdot \frac{2\pi^2 r}{c^2 h}$	$\frac{ne^4}{i^2}$	d) $R = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \cdot \frac{2\pi^2}{c}$	$\frac{2me^4}{h^3}$
609. The count rate for 10	g of radioactive material w	as measured at different t	imes and this has been shown in
figure with scale given	n. The half-life of the mater	rial and the total count in t	the first half value period,
respectively are			
100 100 100 100 25 12.5 0,0 3 6 9 7 thours)			

a) 4 h and 9000 (approximately)

b) 3 h and 14100 (approximately)d) 10 h and 157 (approximately)

c) 3 h and 235 (approximately) 610. Nuclear fusion is common to the pair

- a) Thermonuclear reactor, uranium based nuclear reactor
- b) Energy production in sun, uranium based nuclear reactor
- c) Energy production in sun, hydrogen bomb
- d) Disintegration of heavy nuclei, hydrogen bomb
- 611. 99% of a radioactive element will decay between

a) 6 and 7 half lives b) 7 and 8 half lives c) 8 and 9 half lives d) 9 half lives

612. Which of the following particles are constituents of the nucleus

- a) Protons and electrons b) Protons and neutrons
- c) Neutrons and electrons d) Neutrons and positrons

613. The following diagram indicates the energy levels of a certain atom when the system moves from 4*E* level to *E*. A photon of wavelength λ_1 is emitted. The wavelength of photon produced during it's transition from $\frac{7}{3}E$ level to *E* is λ_2 . The ratio $\frac{\lambda_1}{\lambda_2}$ will be

4	Ε		
$\frac{7}{3}$	· E		
— ¥ ¥ E	4	2	7
a) $\frac{9}{4}$	b) $\frac{4}{2}$	c) $\frac{3}{2}$	d) $\frac{7}{2}$
4 614. The ionization potentia	9 1 of H-atom is 13.6V. When	د it is excited from groun	3 d state by monochromatic
radiations of 970 6 Å th	te number of emission line	s will be (according to B	a state by monocinomatic
a) 10	b) 8	c) 6	d) 4
615. The colour of the secon	d line of Balmer series is	c) c	
a) Blue	b) Yellow	c) Red	d) Violet
616. The curve between the	activity A of a radioactive s	sample and the number of	of active atoms <i>N</i> is
a) ⊿ ↑	b) ^A ↑	c) ∧ ↑,	d) ^ ↑
× N			
617 A radioactive sample w	ith a half life of 1 month ha	s the label: "Activity - 2	micro curias on 1.81991"
What will be its activity	two months later	s the label. Activity $= 2$	
a) 10 micro curies	h) 0 5 micro curies	c) 4 micro curies	d) 8 micro curies
618 Sun maintains its shinir	ig because of the	ej i miero curies	
a) Fission of helium	is because of the	b) chemical reaction	
c) Fusion of hydrogen r	nuclei	d) Burning of carbon	
619. Activity of a radioactive	$\frac{1}{2}$ sample decreases to $(1/3)$) rd of its original value in	3 days. Then, in 9 days its
activity will become	F	,	
a) $(1/27)$ of the original	l value	b) $(1/9)$ of the origin	al value
c) $(1/18)$ of the origina	l value	d) $(1/3)$ of the origin	al value
620. The energy liberated or	n complete fission of 1 <i>kg</i> o	f $_{92}U^{235}$ is (Assume 200	<i>MeV</i> energy is liberated on
fission of 1 nucleus)			
a) $8.2 \times 10^{10} J$	b) 8.2 × 10 ⁹ J	c) 8.2 × 10 ¹³ J	d) $8.2 \times 10^{16} J$
621. One milligram of matter	r converted into energy wil	ll give	
a) 90 <i>J</i>	b) 9 × 10 ³ J	c) $9 \times 10^{10} J$	d) 9 × 10 ⁵ J
622. An ionic atom equivaler	nt to hydrogen atom has wa	avelength equal to $1/4$ or	f the wavelength of hydrogen
lines. The ion will be			
a) <i>He</i> +	b) <i>Li</i> ++	c) <i>Ne</i> ⁹⁺	d) <i>Na</i> ¹⁰⁺
623. If the mass of a radioact	tive sample is doubled, the	activity of the sample an	d the disintegration constant of
the sample are respecti	vely		
a) Increases, remains th	ie same	b) Decreases, increas	Ses
c) Decreases, remains s	ame	d) Increases, decreas	ies
624. The energy of the highe	st energy photon of Balme	r series of hydrogen spec	ctrum is close to
a) 13.6 <i>eV</i>	b) 3.4 <i>eV</i>	c) 1.5 <i>eV</i>	a) 0.85 <i>eV</i>
625. Nucleus produced due t	α -decay of the nucleus Z	$X^{\prime\prime}$ 1S	4 x^{4-2}
a) $_{Z+2}$ f $^{Z+2}$ f $^{Z+2}$ f $^{Z+2}$	$DJ_Z Y^{\prime\prime}$	$CJ_{Z-2}Y$	a) $Z - 4Y = 2$
626. All ellergy of 24.6 eV is	required to remove one of	the electrons from a neu	ia
(111 ev) required to rem	b) 51.8		15 d) 28 2
$627 \frac{4}{10} \pm \frac{9}{10} = \frac{1}{10} \pm 2$	0) 51.0	CJ 49.2	u) 58.2
The missing ion in the r	hove nuclear reaction is		
a) proton	h) Oxygen-12	c) Carbon-12	d) Nitrogen-12
628. The half-life of radium i	s about 1600 years Of 100	a of radium existing nor	w. 25 a will remain unchanged
after		g of reasons onlying no	, _o g remain anenangeu

, ,	b) 3200 years	c) 4800 years	d) 6400 years	
629. A nucleus disintegra	tes into two nuclear parts whi	ch have their velocities	in the ratio 2:1. The ratio of their	
nuclear sizes will be				
a) 2 ^{1/3} : 1	b) 1: 3 ^{1/2}	c) 3 ^{1/2} :1	d) 1: $2^{1/3}$	
630. What percentage of	original radioactive atoms is le	ft after five half lives		
a) 0.3%	b) 1%	c) 31%	d) 3.125%	
631. Number of spectral	lines in hydrogen atom is			
a) 3	b) 6	c) 15	d) Infinite	
632. Half life of Bi^{210} is 5	days. If we start with 50,000 a	atoms of this isotope, th	e number of atoms left over	
after 10 days is				
a) 5,000	b) 25,000	c) 12,500	d) 20,000	
633. Select the true state	ment from the following. Nucle	ar force is		
a) Strong, short rang	ge and charge independent for	ce.		
b) charge independe	ent, attractive and long range fo	orce.		
c) Strong, charge de	pendent and short range attrac	ctive force		
d) Long range, charg	ge dependent and attractive for	ce.		
634. The ratio of areas w	ithin the electron orbits for the	first excited state to th	e ground state for hydrogen	
atom is				
a) 16 : 1	b) 18 : 1	c) 4:1	d) 2 : 1	
635. At a given instant th	ere are 25% undecayed radioa	ctive nuclei. After 10 s	the number of undecayed nuclei	
reduces to 6.25%, th	e mean life of the nuclei is			
a) 14.43 <i>s</i>	b) 7.21 <i>s</i>	c) 5 <i>s</i>	d) 10 <i>s</i>	
636. For effective nuclear	forces, the distance should be		20	
a) $10^{-10}m$	b) 10 ⁻¹³ m	c) $10^{-15}m$	d) $10^{-20}m$	
637. Radio carbon dating	is done by estimating in speci	nen the		
a) Amount of ordina	ry carbon still present	b) Amount of radio of	carbon still present	
	11. 12		- 12 - 11	
c) Ratio of amount of	of ${}^{14}C_6$ to ${}^{12}C_6$ still present	d) Ratio of amount o	f ${}^{12}C_6$ to ${}^{14}C_6$ still present	
c) Ratio of amount of 638. The power obtained	of ${}^{14}C_6$ to ${}^{12}C_6$ still present in a reactor using U^{235} disinte	d) Ratio of amount o gration is 1000 <i>kW</i> . Th	f ${}^{12}C_6$ to ${}^{14}C_6$ still present e mass decay of U^{235} per hour is	
c) Ratio of amount of638. The power obtaineda) 1 microgram	of ${}^{14}C_6$ to ${}^{12}C_6$ still present in a reactor using U^{235} disinte b) 10 microgram	 d) Ratio of amount o gration is 1000 kW. Th c) 20 microgram 	f ¹² C ₆ to ¹⁴ C ₆ still present e mass decay of U ²³⁵ per hour is d) 40 microgram	
 c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of 	of ¹⁴ C ₆ to ¹² C ₆ still present in a reactor using U ²³⁵ disinte b) 10 microgram f radii of Li ⁷ nucleus to Fe ⁵⁶ nu	d) Ratio of amount o gration is 1000 <i>kW</i> . Th c) 20 microgram cleus?	f ¹² C ₆ to ¹⁴ C ₆ still present e mass decay of U ²³⁵ per hour is d) 40 microgram	
 c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 	of ¹⁴ C ₆ to ¹² C ₆ still present in a reactor using U ²³⁵ disinte b) 10 microgram f radii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2	d) Ratio of amount o gration is 1000 <i>kW</i> . Th c) 20 microgram cleus? c) 1:8	f ¹² C ₆ to ¹⁴ C ₆ still present e mass decay of U ²³⁵ per hour is d) 40 microgram d) 2:6	
 c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a 	of ¹⁴ C ₆ to ¹² C ₆ still present in a reactor using U ²³⁵ disinte b) 10 microgram f radii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2	d) Ratio of amount o gration is 1000 <i>kW</i> . Th c) 20 microgram cleus? c) 1:8	f ¹² C ₆ to ¹⁴ C ₆ still present e mass decay of U ²³⁵ per hour is d) 40 microgram d) 2:6	
 c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) () The nucleus is of b) () () () () () () () () () () () () ()	of ¹⁴ C ₆ to ¹² C ₆ still present in a reactor using U ²³⁵ disinte b) 10 microgram f radii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest	d) Ratio of amount o gration is 1000 <i>kW</i> . Th c) 20 microgram cleus? c) 1:8	f ¹² C ₆ to ¹⁴ C ₆ still present e mass decay of U ²³⁵ per hour is d) 40 microgram d) 2:6	
 c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a quantum of a b. Marco and and a b. Marco and and and and a b. Marco and and and and and and and and and and	of ¹⁴ C ₆ to ¹² C ₆ still present in a reactor using U ²³⁵ disinte b) 10 microgram f radii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate er	d) Ratio of amount o gration is 1000 <i>kW</i> . Th c) 20 microgram cleus? c) 1:8	f ¹² C ₆ to ¹⁴ C ₆ still present e mass decay of U ²³⁵ per hour is d) 40 microgram d) 2:6	
 c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a quatic) Mass of electron in a participation of the formation of the formati	of ¹⁴ C ₆ to ¹² C ₆ still present in a reactor using U ²³⁵ disinte b) 10 microgram f radii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate er	d) Ratio of amount o gration is 1000 <i>kW</i> . Th c) 20 microgram cleus? c) 1:8	f ¹² C ₆ to ¹⁴ C ₆ still present e mass decay of U ²³⁵ per hour is d) 40 microgram d) 2:6	
 c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a quacc) Mass of electron and All the above comed. 	of ¹⁴ C ₆ to ¹² C ₆ still present in a reactor using U ²³⁵ disinter b) 10 microgram f radii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate er remains constant ditions	 d) Ratio of amount o gration is 1000 kW. Th c) 20 microgram cleus? c) 1:8 	f ¹² C ₆ to ¹⁴ C ₆ still present e mass decay of U ²³⁵ per hour is d) 40 microgram d) 2:6	
 c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a quacc) Mass of electron of d) All the above come 641. If an electron and a power of the second second	of ${}^{14}C_6$ to ${}^{12}C_6$ still present in a reactor using U^{235} disinte b) 10 microgram fradii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate er remains constant ditions positron annihilate, then the er	d) Ratio of amount o gration is 1000 <i>kW</i> . Th c) 20 microgram cleus? c) 1:8 hergy released is	 f ¹²C₆ to ¹⁴C₆ still present e mass decay of U²³⁵ per hour is d) 40 microgram d) 2:6 	
c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a qua c) Mass of electron of d) All the above cond 641. If an electron and a p a) $3.2 \times 10^{-13} J$	of ${}^{14}C_6$ to ${}^{12}C_6$ still present in a reactor using U^{235} disinter b) 10 microgram fradii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate er remains constant ditions positron annihilate, then the er b) 1.6 × 10 ⁻¹³ J	 d) Ratio of amount or or or of a state of a st	f ${}^{12}C_6$ to ${}^{14}C_6$ still present e mass decay of U^{235} per hour is d) 40 microgram d) 2:6 d) 6.4 × $10^{-13}J$	
c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a qua c) Mass of electron of d) All the above com 641. If an electron and a p a) $3.2 \times 10^{-13} J$ 642. The fussion process	of ${}^{14}C_6$ to ${}^{12}C_6$ still present in a reactor using U^{235} disinter b) 10 microgram fradii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate er remains constant ditions positron annihilate, then the er b) 1.6 × 10 ⁻¹³ J is possible at high temperature	 d) Ratio of amount or gration is 1000 kW. The c) 20 microgram cleus? c) 1:8 hergy hergy released is c) 4.8 × 10⁻¹³ J hers, because at higher term 	f ${}^{12}C_6$ to ${}^{14}C_6$ still present e mass decay of U^{235} per hour is d) 40 microgram d) 2:6 d) 6.4 × $10^{-13}J$ mperatures	
c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a qua c) Mass of electron of d) All the above cond 641. If an electron and a p a) $3.2 \times 10^{-13}J$ 642. The fussion process a) The nucleus disin b) The melogylog dis	of ${}^{14}C_6$ to ${}^{12}C_6$ still present in a reactor using U^{235} disinter b) 10 microgram fradii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate er remains constant ditions positron annihilate, then the er b) 1.6 × 10 ⁻¹³ J is possible at high temperature tegrates	d) Ratio of amount o gration is 1000 <i>kW</i> . Th c) 20 microgram cleus? c) 1:8 hergy hergy released is c) $4.8 \times 10^{-13}J$ es, because at higher ter	f ${}^{12}C_6$ to ${}^{14}C_6$ still present e mass decay of U^{235} per hour is d) 40 microgram d) 2:6 d) $6.4 \times 10^{-13}J$ mperatures	
c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a qua c) Mass of electron in d) All the above com 641. If an electron and a p a) $3.2 \times 10^{-13} J$ 642. The fussion process a) The nucleus disin b) The molecules dis	of ${}^{14}C_6$ to ${}^{12}C_6$ still present in a reactor using U^{235} disinter b) 10 microgram fradii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate er remains constant ditions positron annihilate, then the er b) 1.6 × 10 ⁻¹³ J is possible at high temperature tegrates sintegrates	 d) Ratio of amount o gration is 1000 kW. Th c) 20 microgram cleus? c) 1:8 hergy hergy released is c) 4.8 × 10⁻¹³ J hers, because at higher term 	f ${}^{12}C_6$ to ${}^{14}C_6$ still present e mass decay of U^{235} per hour is d) 40 microgram d) 2:6 d) 6.4 × $10^{-13}J$ mperatures	
c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a qua c) Mass of electron of d) All the above cond 641. If an electron and a p a) $3.2 \times 10^{-13}J$ 642. The fussion process a) The nucleus disin b) The molecules disin d) The nucleus disin	of ${}^{14}C_6$ to ${}^{12}C_6$ still present in a reactor using U^{235} disinter b) 10 microgram fradii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate er remains constant ditions positron annihilate, then the er b) $1.6 \times 10^{-13}J$ is possible at high temperature tegrates sintegrates ized	d) Ratio of amount o gration is 1000 <i>kW</i> . Th c) 20 microgram cleus? c) 1:8 hergy hergy released is c) $4.8 \times 10^{-13}J$ es, because at higher ter	f ${}^{12}C_6$ to ${}^{14}C_6$ still present e mass decay of U^{235} per hour is d) 40 microgram d) 2:6 d) 2:6 d) $6.4 \times 10^{-13}J$ mperatures	
c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a qua c) Mass of electron in d) All the above cond 641. If an electron and a p a) $3.2 \times 10^{-13}J$ 642. The fussion process a) The nucleus disin b) The molecules dis c) Atom become ion d) The nucleus get s	of ${}^{14}C_6$ to ${}^{12}C_6$ still present in a reactor using U^{235} disinter b) 10 microgram fradii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate er remains constant ditions positron annihilate, then the er b) 1.6 × 10 ⁻¹³ J is possible at high temperature tegrates sintegrates ized ufficient energy to overcome the	 d) Ratio of amount or or or of a second control of a seco	f ${}^{12}C_6$ to ${}^{14}C_6$ still present e mass decay of U^{235} per hour is d) 40 microgram d) 2:6 d) 2:6 d) $6.4 \times 10^{-13}J$ mperatures	
c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a qua c) Mass of electron of d) All the above cond 641. If an electron and a p a) $3.2 \times 10^{-13}J$ 642. The fussion process a) The nucleus disin b) The molecules dis c) Atom become ion d) The nucleus get s 643. The following diagra	of ${}^{14}C_6$ to ${}^{12}C_6$ still present in a reactor using U^{235} disinter b) 10 microgram fradii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate er remains constant ditions positron annihilate, then the er b) $1.6 \times 10^{-13}J$ is possible at high temperature tegrates sintegrates ized ufficient energy to overcome the am indicates the energy levels of	d) Ratio of amount o gration is 1000 kW. Th c) 20 microgram cleus? c) 1:8 hergy hergy released is c) $4.8 \times 10^{-13}J$ es, because at higher ten he strong forces of repu	f ${}^{12}C_6$ to ${}^{14}C_6$ still present e mass decay of U^{235} per hour is d) 40 microgram d) 2:6 d) 2:6 d) $6.4 \times 10^{-13}J$ mperatures lsion the system moves from 2 <i>E</i> level	
c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a qua c) Mass of electron in d) All the above com 641. If an electron and a p a) $3.2 \times 10^{-13}J$ 642. The fussion process a) The nucleus disin b) The molecules dis c) Atom become ion d) The nucleus get s 643. The following diagrat to <i>E</i> , emitting a phot	of ${}^{14}C_6$ to ${}^{12}C_6$ still present in a reactor using U^{235} disinter b) 10 microgram fradii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate er remains constant ditions positron annihilate, then the er b) $1.6 \times 10^{-13}J$ is possible at high temperature tegrates sintegrates ized ufficient energy to overcome th am indicates the energy levels of con of wavelength λ . The wavel	d) Ratio of amount o gration is 1000 kW . Th c) 20 microgram cleus? c) 1:8 hergy hergy released is c) $4.8 \times 10^{-13}J$ es, because at higher ten he strong forces of reput of a certain atom when a ength of photon product	f ${}^{12}C_6$ to ${}^{14}C_6$ still present e mass decay of U^{235} per hour is d) 40 microgram d) 2:6 d) 2:6 d) $6.4 \times 10^{-13}J$ mperatures lsion the system moves from 2 <i>E</i> level ced during its transition from $\frac{4E}{3}$	
c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a qua c) Mass of electron n d) All the above cond 641. If an electron and a p a) $3.2 \times 10^{-13}J$ 642. The fussion process a) The nucleus disin b) The molecules dis c) Atom become ion d) The nucleus get s 643. The following diagra to <i>E</i> , emitting a phot	of ${}^{14}C_6$ to ${}^{12}C_6$ still present in a reactor using U^{235} disinter b) 10 microgram fradii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate er remains constant ditions positron annihilate, then the er b) $1.6 \times 10^{-13}J$ is possible at high temperature tegrates sintegrates ized ufficient energy to overcome the am indicates the energy levels of con of wavelength λ . The wavel	d) Ratio of amount o gration is 1000 <i>kW</i> . Th c) 20 microgram cleus? c) 1:8 hergy hergy released is c) $4.8 \times 10^{-13}J$ es, because at higher ter he strong forces of repund of a certain atom when the ength of photon product	f ¹² C ₆ to ¹⁴ C ₆ still present e mass decay of U^{235} per hour is d) 40 microgram d) 2:6 d) $6.4 \times 10^{-13}J$ mperatures lsion the system moves from 2 <i>E</i> level ced during its transition from $\frac{4E}{3}$	
c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a qua c) Mass of electron n d) All the above cond 641. If an electron and a p a) $3.2 \times 10^{-13}J$ 642. The fussion process a) The nucleus disin b) The molecules dis c) Atom become ion d) The nucleus get s 643. The following diagra to <i>E</i> , emitting a phot	of ${}^{14}C_6$ to ${}^{12}C_6$ still present in a reactor using U^{235} disinter b) 10 microgram fradii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate er remains constant ditions positron annihilate, then the er b) $1.6 \times 10^{-13}J$ is possible at high temperature tegrates sintegrates ized ufficient energy to overcome th am indicates the energy levels of con of wavelength λ . The wavel	d) Ratio of amount o gration is 1000 <i>kW</i> . Th c) 20 microgram cleus? c) 1:8 hergy hergy released is c) $4.8 \times 10^{-13}J$ es, because at higher ten he strong forces of reput of a certain atom when a ength of photon product	f ¹² C ₆ to ¹⁴ C ₆ still present e mass decay of U^{235} per hour is d) 40 microgram d) 2:6 d) $6.4 \times 10^{-13}J$ mperatures lsion the system moves from 2 <i>E</i> level ced during its transition from $\frac{4E}{3}$	
c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a qua c) Mass of electron n d) All the above cond 641. If an electron and a p a) $3.2 \times 10^{-13} J$ 642. The fussion process a) The nucleus disin b) The molecules dis c) Atom become ion d) The nucleus get s 643. The following diagra to <i>E</i> , emitting a phot 2 <i>E</i>	of ${}^{14}C_6$ to ${}^{12}C_6$ still present in a reactor using U^{235} disinter b) 10 microgram f radii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate erremains constant ditions positron annihilate, then the err b) $1.6 \times 10^{-13}J$ is possible at high temperature tegrates sintegrates ized ufficient energy to overcome tham indicates the energy levels of con of wavelength λ . The wavel	d) Ratio of amount o gration is 1000 <i>kW</i> . Th c) 20 microgram cleus? c) 1:8 hergy hergy released is c) $4.8 \times 10^{-13}J$ es, because at higher ter he strong forces of repu of a certain atom when a ength of photon produc	f ¹² C ₆ to ¹⁴ C ₆ still present e mass decay of U^{235} per hour is d) 40 microgram d) 2:6 d) $6.4 \times 10^{-13}J$ mperatures lsion the system moves from 2 <i>E</i> level ced during its transition from $\frac{4E}{3}$	
c) Ratio of amount of 638. The power obtained a) 1 microgram 639. What will be ratio of a) 1:3 640. Bohr's atom model a a) The nucleus is of b) Electrons in a qua c) Mass of electron in d) All the above cond 641. If an electron and a p a) $3.2 \times 10^{-13} J$ 642. The fussion process a) The nucleus disin b) The molecules dis c) Atom become ion d) The nucleus get s 643. The following diagra to <i>E</i> , emitting a phot 2E ——	of ${}^{14}C_6$ to ${}^{12}C_6$ still present in a reactor using U^{235} disinter b) 10 microgram fradii of Li ⁷ nucleus to Fe ⁵⁶ nu b) 1:2 assumes infinite mass and is at rest antized orbit will not radiate er remains constant ditions positron annihilate, then the er b) $1.6 \times 10^{-13}J$ is possible at high temperature tegrates sintegrates ized ufficient energy to overcome th am indicates the energy levels of con of wavelength λ . The wavel	d) Ratio of amount o gration is 1000 <i>kW</i> . Th c) 20 microgram cleus? c) 1:8 hergy hergy released is c) $4.8 \times 10^{-13} J$ es, because at higher ten he strong forces of reput of a certain atom when the ength of photon product	f ¹² C ₆ to ¹⁴ C ₆ still present e mass decay of U^{235} per hour is d) 40 microgram d) 2:6 d) $6.4 \times 10^{-13}J$ mperatures lsion the system moves from 2 <i>E</i> level ced during its transition from $\frac{4E}{3}$	

a) $\lambda/3$ b) $3\lambda/4$	c) 4λ/3	d) 3λ			
644. A nucleus with mass number 220 initially at rest em	its an $lpha$ -particle. If the Q va	alue of the reaction is			
5.5 <i>MeV</i> , calculate the kinetic energy of the α -particle					
a) $10^9 K$ b) $10^7 K$	c) 10 ⁵ <i>K</i>	d) 10 ³ <i>K</i>			
645. If half-life of a substance is 3.8 days and its quantity	is 10.38 <i>a</i> . Then substance	quantity remaining left			
after 19 days will be		4			
a) $0.151 a$ b) $0.32 a$	c) 1 51 <i>a</i>	d) 0 16 a			
646 Two nuclei have their mass numbers in the ratio of 1	1.31 y	ar densities would be			
a) 1.2 b) 2.1	(2)1/3.1	d) 1.1			
$a_{j} = 1.5 \qquad \qquad b_{j} = 5.1$	$(3)^{-7}$	u) 1.1			
647. As mass number increases ,surface area					
a) Decreases	b) Increases				
c) Remains the same	d) Remains the same and	Increases			
648. The control rod in a nuclear reactor is made of					
a) Uranium b) Cadmium	c) Graphite	d) Plutonium			
649. An archaeologist analysis the wood in a prehistoric s	structure and finds that C^{12}	(Half life = 5700 years) to			
C ¹² is only one-fourth of that found in the cells of bu	ried plants. The age of the	wood is about			
a) 5700 years b) 2850 years	c) 11,400 years	d) 22,800 years			
650. A radioactive element A decays into B with a half-life	e of 2 days. A fresh prepare	d sample of <i>A</i> has a mass of			
12 g. What mass of <i>A</i> and <i>B</i> are there in the sample a	fter 4 days?				
a) $A = 3g$, $B = 9g$ b) $A = 6g$, $B = 6g$	c) $A = 12g$, $B = 0g$	d) <i>A</i> =9g , <i>B</i> =3g			
651. If in hydrogen atom, radius of n^{th} Bohr orbit is r_n , free	equency of revolution of el	ectron in n^{th} orbit is f_{n} ,			
choose the correct option					
a) $r_n \uparrow$	(a)	d) Both (a) and (b)			
$\log\left(\frac{r_n}{r_n}\right)$	$\log\left(\frac{f_n}{f}\right)$				
\mathbf{h}	(J_1)				
(52) The functions of moderators in molecular states in the function of the states in the states	0 log n				
o n o $log652. The functions of moderators in nuclear reactor is to$	O log n				
o n o $log652. The functions of moderators in nuclear reactor is toa) Decrease the speed of neutrons$	b) Increase the speed of r	neutrons			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons	b) Increase the speed of r d) Increase the speed of e	eutrons electrons			
 652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in nth orbit of <i>H</i>-atom the angular 	b) Increase the speed of r d) Increase the speed of e lar velocity is proportional	neutrons electrons to			
$ \begin{array}{c} $	b) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3	to d) $1/n^3$			
 652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in <i>n</i>th orbit of <i>H</i>-atom the angula a) <i>n</i> b) 1/<i>n</i> 654. Which of the following transitions will have highest of the following transitions will have high	b) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength	to d) $1/n^3$			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$	b) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$	heutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 year	b) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab	neutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 year found to contain both the elements <i>X</i> and <i>Y</i> in the radioactivity isotope <i>X</i> with a half-life of 10^9 year	b) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab tio 1:7. What is the age of	heutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were the rocks?			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 yea found to contain both the elements <i>X</i> and <i>Y</i> in the ra a) 2×10^9 yr b) 3×10^9 yr	b) Increase the speed of r d) Increase the speed of c lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab tio 1: 7. What is the age of c) 6×10^9 yr	neutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were the rocks? d) 7×1^9 yr			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 yea found to contain both the elements <i>X</i> and <i>Y</i> in the ra a) 2×10^9 yr b) 3×10^9 yr 656. 1 curie represents	b) Increase the speed of r d) Increase the speed of c lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab tio 1: 7. What is the age of c) 6×10^9 yr	heutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were the rocks? d) 7×1^9 yr			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest a a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 year found to contain both the elements <i>X</i> and <i>Y</i> in the ra a) 2×10^9 yr b) 3×10^9 yr 656. 1 curie represents a) 1 disintegration per second	b) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab tio 1: 7. What is the age of c) 6×10^9 yr b) 10^6 disintegration per	heutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were the rocks? d) 7×1^9 yr			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest of a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 year found to contain both the elements <i>X</i> and <i>Y</i> in the ra a) 2×10^9 yr b) 3×10^9 yr 656. 1 curie represents a) 1 disintegration per second c) 3.7×10^{10} disintegration per second	b) Increase the speed of r d) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab tio 1: 7. What is the age of c) 6×10^9 yr b) 10^6 disintegration per d) 3.7×10^7 disintegrati	heutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were the rocks? d) 7×1^9 yr			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 yea found to contain both the elements <i>X</i> and <i>Y</i> in the ra a) 2×10^9 yr b) 3×10^9 yr 656. 1 curie represents a) 1 disintegration per second c) 3.7×10^{10} disintegration per second 657. The phenomena in which proton flips is	b) Increase the speed of r d) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab tio 1: 7. What is the age of c) 6×10^9 yr b) 10^6 disintegration per d) 3.7×10^7 disintegration	heutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were the rocks? d) 7×1^9 yr			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 year found to contain both the elements <i>X</i> and <i>Y</i> in the ra a) 2×10^9 yr b) 3×10^9 yr 656. 1 curie represents a) 1 disintegration per second c) 3.7×10^{10} disintegration per second 657. The phenomena in which proton flips is a) Nuclear magnetic resonance	b) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab tio 1: 7. What is the age of c) 6×10^9 yr b) 10^6 disintegration per d) 3.7×10^7 disintegrati	heutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were the rocks? d) 7×1^9 yr			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest a a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 yea found to contain both the elements <i>X</i> and <i>Y</i> in the ra a) 2×10^9 yr b) 3×10^9 yr 656. 1 curie represents a) 1 disintegration per second c) 3.7×10^{10} disintegration per second 657. The phenomena in which proton flips is a) Nuclear magnetic resonance c) Padioactivity	b) Increase the speed of r d) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab tio 1: 7. What is the age of c) 6×10^9 yr b) 10^6 disintegration per d) 3.7×10^7 disintegrati b) Lasers d) Nuclear fusion	heutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were the rocks? d) 7×1^9 yr • second on per second			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 yea found to contain both the elements <i>X</i> and <i>Y</i> in the ra a) 2×10^9 yr b) 3×10^9 yr 656. 1 curie represents a) 1 disintegration per second c) 3.7×10^{10} disintegration per second 657. The phenomena in which proton flips is a) Nuclear magnetic resonance c) Radioactivity	b) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab tio 1: 7. What is the age of c) 6×10^9 yr b) 10^6 disintegration per d) 3.7×10^7 disintegration b) Lasers d) Nuclear fusion	heutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were the rocks? d) 7×1^9 yr r second on per second			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 yea found to contain both the elements <i>X</i> and <i>Y</i> in the ra a) 2×10^9 yr b) 3×10^9 yr 656. 1 curie represents a) 1 disintegration per second c) 3.7×10^{10} disintegration per second 657. The phenomena in which proton flips is a) Nuclear magnetic resonance c) Radioactivity 658. The ratio of the energies of the hydrogen atom in its a) $1/4$ b) $4/0$	b) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab tio 1: 7. What is the age of c) 6×10^9 yr b) 10^6 disintegration per d) 3.7×10^7 disintegrati b) Lasers d) Nuclear fusion first to second excited stat	heutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were the rocks? d) 7×1^9 yr second on per second			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 yea found to contain both the elements <i>X</i> and <i>Y</i> in the ra a) 2×10^9 yr b) 3×10^9 yr 656. 1 curie represents a) 1 disintegration per second c) 3.7×10^{10} disintegration per second 657. The phenomena in which proton flips is a) Nuclear magnetic resonance c) Radioactivity 658. The ratio of the energies of the hydrogen atom in its a) $1/4$ b) $4/9$	b) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab tio 1: 7. What is the age of c) 6×10^9 yr b) 10^6 disintegration per d) 3.7×10^7 disintegrati b) Lasers d) Nuclear fusion first to second excited stat c) $9/4$	heutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were the rocks? d) 7×1^9 yr second on per second e is d) 4			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 yea found to contain both the elements <i>X</i> and <i>Y</i> in the ra a) 2×10^9 yr b) 3×10^9 yr 656. 1 curie represents a) 1 disintegration per second c) 3.7×10^{10} disintegration per second 657. The phenomena in which proton flips is a) Nuclear magnetic resonance c) Radioactivity 658. The ratio of the energies of the hydrogen atom in its a) $1/4$ b) $4/9$ 659. When two deuterium nuclei fuse together to form a final function of the second form a final function of the second function of the second function of the second function form a final function of the second function function form a final function of the second function function function function form a final function of the second function functi	b) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab tio 1: 7. What is the age of c) 6×10^9 yr b) 10^6 disintegration per d) 3.7×10^7 disintegrati b) Lasers d) Nuclear fusion first to second excited stat c) $9/4$ tritium nuclei, we get a	heutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were the rocks? d) 7×1^9 yr r second on per second e is d) 4			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest of a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 yea found to contain both the elements <i>X</i> and <i>Y</i> in the ra a) 2×10^9 yr b) 3×10^9 yr 656. 1 curie represents a) 1 disintegration per second c) 3.7×10^{10} disintegration per second 657. The phenomena in which proton flips is a) Nuclear magnetic resonance c) Radioactivity 658. The ratio of the energies of the hydrogen atom in its a) $1/4$ b) $4/9$ 659. When two deuterium nuclei fuse together to form a far a) Neutron b) Deuteron	b) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab tio 1: 7. What is the age of c) 6×10^9 yr b) 10^6 disintegration per d) 3.7×10^7 disintegrati b) Lasers d) Nuclear fusion first to second excited stat c) $9/4$ tritium nuclei, we get a c) α -particle	heutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were the rocks? d) 7×1^9 yr second on per second e is d) 4 d) Proton			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angul a) n b) $1/n$ 654. Which of the following transitions will have highest a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 yea found to contain both the elements <i>X</i> and <i>Y</i> in the ra a) 2×10^9 yr b) 3×10^9 yr 656. 1 curie represents a) 1 disintegration per second c) 3.7×10^{10} disintegration per second 657. The phenomena in which proton flips is a) Nuclear magnetic resonance c) Radioactivity 658. The ratio of the energies of the hydrogen atom in its a) $1/4$ b) $4/9$ 659. When two deuterium nuclei fuse together to form a a) Neutron b) Deuteron 660. A radioactive substance has half-life of 60 min. Durin	b) Increase the speed of r d) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab tio 1: 7. What is the age of c) 6×10^9 yr b) 10 ⁶ disintegration per d) 3.7×10^7 disintegrati b) Lasers d) Nuclear fusion first to second excited stat c) $9/4$ tritium nuclei, we get a c) α -particle ng 3 h, the fraction of the su	heutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were the rocks? d) 7×1^9 yr second on per second e is d) 4 d) Proton ubstance that has to be			
652. The functions of moderators in nuclear reactor is to a) Decrease the speed of neutrons c) Decrease the speed of electrons 653. For electron moving in n^{th} orbit of <i>H</i> -atom the angula a) n b) $1/n$ 654. Which of the following transitions will have highest a) $n = 2$ to $n = 1$ b) $n = 1$ to $n = 2$ 655. The radioactivity isotope <i>X</i> with a half-life of 10^9 year found to contain both the elements <i>X</i> and <i>Y</i> in the ra a) 2×10^9 yr b) 3×10^9 yr 656. 1 curie represents a) 1 disintegration per second c) 3.7×10^{10} disintegration per second 657. The phenomena in which proton flips is a) Nuclear magnetic resonance c) Radioactivity 658. The ratio of the energies of the hydrogen atom in its a) $1/4$ b) $4/9$ 659. When two deuterium nuclei fuse together to form a fall a) Neutron b) Deuteron 660. A radioactive substance has half-life of 60 min. Durin decayed. will be	b) Increase the speed of r d) Increase the speed of r d) Increase the speed of e lar velocity is proportional c) n^3 emission wavelength c) $n = 2$ to $n = 5$ r decays to Y which is stab tio 1: 7. What is the age of c) 6×10^9 yr b) 10^6 disintegration per d) 3.7×10^7 disintegrati b) Lasers d) Nuclear fusion first to second excited stat c) $9/4$ tritium nuclei, we get a c) α -particle ng 3 h, the fraction of the su	heutrons electrons to d) $1/n^3$ d) $n = 5$ to $n = 2$ le. A sample of rocks were the rocks? d) 7×1^9 yr r second on per second e is d) 4 d) Proton abstance that has to be			

661. An observer <i>A</i> sees an aster	oid with a radioactive ele	ement moving by at a speed	l = 0.3 c and measures the
radioactivity decay time to I	be I_A . Another observer <i>E</i>	a is moving with the astero	id and measures its decay
time as I_B . Then I_A and I_B a	are related as below		
a) $I_B < I_A$ b) $T_A = T_A$			
$\begin{array}{c} \text{DJ} I_B - I_A \\ \text{c)} T > T \end{array}$			
c) $I_B > I_A$ d) Fither (a) or (a) dependi	ng on whathar the actors	id is approaching or movin	a away from 1
(a) of (c) dependent	lig oli whether the astero	iu is approaching of movin	g away 110111 A
3 π^+ or π^-	$a) = \pi^{+} a \pi^{0}$	a) π^- or π^0	d) π^+ π^- or π^0
a) π of π	$J_{II} = 0I II$	$C_{J} \pi = 01 \pi$	ujn, n oin
$_{27}CO$ is training training $_{27}CO$ is training $_{27}CO$ is training training $_{27}CO$ is training tra	n augaaagian	emitting two γ -rays of energy h) 1 17 MeV and 1 22 MeV	ligies
a) 1.35 MeV and 1.17 MeV in c) 1.27 MeV and 1.12 MeV in	n succession	d) 1.17 MeV and 1.35 MeV	
664 According to Pohr's theory	the moment of momentu	uj 1.15 Mev allu 1.57 Mev	in socond orbit of
budragon atom will be	the moment of momentu	ini of all electron revolving	
nyur ogen atom win be		h	2h
a) $2\pi h$ b	o) π <i>h</i>	c) $\frac{\pi}{\pi}$	d) $\frac{2\pi}{\pi}$
665. Which sample contains grea	ater number of nuclei : a !	$5.00 - \mu Ci$ sample of ²⁴⁰ Pi	μ (half-life 6560v) or a
$4.45 - \mu Ci$ sample of ²⁴³ An	n (half-life 7370v)		
a) ^{240}Pu h	(1411 m c + c + c + c + c + c + c + c + c + c	c) Equal in both	d) None of these
666. The ground state energy of	hydrogen atom is -13.6 e	eV. What is the potential er	ergy of the electron in this
state			
a) 0 <i>eV</i> b	(-27.2 eV)	c) 1 <i>eV</i>	d) 2 <i>eV</i>
667. The kinetic energy of an ele	ctron revolving around a	nucleus will be	.)
a) Four times of P.E.) Double of P.E.	c) Equal to P.E.	d) Half of its P.E.
668. The mass number of <i>He</i> is 4	and that for sulphur is 3	2. The radius of sulphur nu	cleus is larger than that of
helium, by times	r i i i i i i i i i i i i i i i i i i i	r i i i i i i i i i i i i i i i i i i i	
a) $\sqrt{8}$ b	o) 4	c) 2	d) 8
669. Heavy water is used as mod	, lerator in a nuclear reacto	or. The function of the mod	erator is
a) To control the energy rel	eased in the reactor		
b) To absorb neutrons and s	stop chain reaction		
c) To cool the reactor faster	r		
d) To slow down the neutro	ons to thermal energies		
670. The wavelength of the first	line of Balmer series is 6	563 Å. The Rydberg consta	nt for hydrogen is about
a) $1.09 \times 10^7 ner m$ h	1.09 × $10^8 ner m$	c) 1.09 × 10 ⁹ ner m	d) 1.09 × 10^5 ner m
671. The transition from the stat	re n = 4 to $n = 3$ in a hyd	rogen, like atom results in i	ultraviolet radiation.
Infrared radiation will be of	btained in the transition		
a) $2 \rightarrow 1$ h	$3 \rightarrow 2$	c) $4 \rightarrow 2$	d) $5 \rightarrow 4$
672. Hydrogen atom is excited fr	om ground state to anoth	er state with principal qua	ntum number equal to 4.
Then the number of spectra	al lines in the emission sp	ectra will be	
a) 2 b	o) 3	c) 5	d) 6
673. The half life period of a radi	ioactive element X is sam	e as the mean life time of a	nother radioactive element
Y. Initially both them have t	the same number of atom	s. Then	
a) X and Y have the same de	ecay rate initially		
b) X and Y decay at the sam	ie rate always		
c) Y will decay at a faster ra	ate than X		
d) X will decay at a faster ra	ate than Y		
674. In a working nuclear reacto	or, cadmium rods (control	rods) are used to	
a) Speed up neutrons		b) Slow down neutrons	
c) Absorb some neutrons		d) Absorb all neutrons	
675. The plot of the number (N)	of decayed atoms versus	activity (A) of a radioactiv	e substance is

a) ^N	b) N	c) ^N	d) ^N
		$c \rightarrow c$	
676. A sample of an element i	s 10.38 g. If half-life of elem	ient is 3.8 days, then after 1	9 days, how much quantity
of element remains?	1.) 0.22) 4 5 4	1) 0.1 (
a) 0.151 g	b) 0.32 g	C) 1.51 g	a) 0.16 g
6/7. Radioactive nuclei that a	re injected into a patient co	illect at certain sites within	its body, undergoing
radioactive decay and en	nung electromagnetic rad	auon. These radiations car	T then be recorded by a
a) Camma camora	provides an important diag	b) CAT ccon	
a) Dadiotracor tochnique		d) Camma ray spectrosed	
678 After five half lives what	will be the fraction of initia	uj Gamma ray specirosco	уру
oro. After five half fives what	will be the fraction of finitia $_{1,5}$.1, 3
a) $\left(\frac{1}{2}\right)$	b) $\left(\frac{1}{2}\right)^{-1}$	c) $\left(\frac{1}{2}\right)$	d) $\left(\frac{1}{2}\right)^{-1}$
(2)	(2)	(2)	(2)
6/9. All electron makes a tran	SILION IFOID OF DIL $n = 4 \text{ to } \text{ t}$	the orbit $n = 2$ of a hydrogen will be	en atom. The wave number
	(R = Ryaderg s constant)		1.D
a) $\frac{10}{2R}$	b) $\frac{2\pi}{16}$	c) $\frac{3\pi}{16}$	d) $\frac{4\pi}{16}$
680 Whenever a hydrogen at	om emits a photon in the B	almer series	10
a) It may not emit any m	ore photons		
b) It may emit another n	hoton in the Paschen series		
c) It must emit another r	photon in the Lyman series		
d) It may emit another n	hoton in the Balmer series		
681. Half-life of radio-active s	ubstance is 140 days. Initia	lly, is 16 g. Calculate the tir	ne for this substance when
it reduces to 1 g		,, ,	
a) 140 days	b) 280 days	c) 420 days	d) 560 davs
682. In a radioactive decay. T	half-life of radioactive su	ubstance is $T_{1/2} = 69.3$ s. The	e decay constant is
a) $1.5 \mathrm{s}^{-1}$	b) 2.21 s ^{-1}	c) 0.01 s^{-1}	d) 3.01 s ⁻¹
683. The mass defect per nucl	eon is called	0,01020	
a) Binding energy	b) Packing fraction	c) Ionization energy	d) Excitation energy
$684. C^{14}$ has half-life 5700 ve	r. At the end of 11400 year	s, the actual amount left is	
a) 0.5 of original amount		b) 0.25 of original amour	ıt
c) 0.125 of original amou	int	d) 0.0625 of original amo	ount
685. The half-life of a radioact	ive substance is 40 vears. H	low long will it take to redu	uce to one fourth of its
original amount and what	it is the value of decay cons	tant	
a) 40 year. 0.9173/year	b) 90 year. 9.017/year	c) 80 year. 0.0173/year	d) None of these
686. A heavy nucleus at rest b	reaks into two fragments w	which fly off with velocities	in the ratio 8:1. The ratio of
radii of the fragments is		, , , , , , , , , , , , , , , , , , ,	
a) 1 : 2	b) 1 : 4	c) 4:1	d) 2 : 1
687. Which of the following tr	ansition in Balmer series for	or hydrogen atom will have	longest wavelength
a) $n = 2$ to $n = 1$	b) $n = 6$ to $n = 1$	c) $n = 3$ to $n = 2$	d) $n = 6$ to $n = 2$
688. An α -particle of 5 <i>MeV</i> e	nergy strikes with a nucleu	s of uranium at stationary a	at an scattering angle of
180°. The nearest distan	ce upto which α -particle real	aches the nucleus will be o	f the order of
a) 1 Å	b) 10^{-10} cm	c) 10^{-12} cm	d) 10^{-15} cm
689. For nuclear forces to be	offective, the distance shoul	d he	uj 10 0111
a) 10^{-10} m	h) 10^{-11} m	c) 10^{-15} m	d) 10 ⁻²⁰ m
690 II^{238} decays into Th^{234} h	v the emission of an α - nation	rticle There follows a chair	of further radioactive
decays, either by α –dec	ay or by β –decay. Eventua	illy a stable nuclide is reach	ied and after that, no further

radioactive decay is possible. Which of the following stable nuclides is the end product of the U^{238} radioactive decay chain

a) Pb^{206} b) Pb^{207}

d) *Pb*²⁰⁹

691. Pick out the unmatched pair from the following

- a) Moderator Heavy water
- b) Nuclear fuel $_{92}U^{235}$
- c) Pressurized water reactor water as the heat exchange system
- d) Safety rods Carbon
- 692. Heavy water is
 - a) Water is 4°C
 - b) Compound of deuterium and oxygen
 - c) Compound of heavy oxygen and heavy hydrogen
 - d) Water, in which soap does not lather
- 693. The angular momentum of electron in n^{th} orbit is given by

a)
$$nh$$
 b) $\frac{h}{2\pi n}$ c) $n\frac{h}{2\pi}$ d) $n^2\frac{h}{2\pi}$

694. Consider a radioactive material of half-life 1.0 *minute*. If one of the nuclei decays now, the next one will decay

- a) After 1 minute
- b) After $\frac{1}{\log_e 2}$ minute
- c) After $\frac{1}{N}$ minute, where N is the number of nuclei present at that moment
- d) After any time
- 695. If the speed of light were 2/3 of its present value, the energy released in a given atomic explosion will be decreased by a fraction

	a) 2/3	b) 4/9	c) 3/4	d) 5/9	
696.	In the given reaction	$_Z X^A \rightarrow _{Z+1} Y^A \rightarrow$	$_{Z-1}K^{A-4} \rightarrow _{Z-1}K^{A-4}$	⁴ radioactive radiation are emitted in	the
	sequence				

a) α, β, γ b) β, α, γ c) γ, α, β d) β, γ, α 697. Half-life of radium is 1600 yr. Its average life is a) 3200 yr b) 4800 yr c) 2309 yr d) 4217 yr

698. If a star can convert all the He nuclei completely into oxygen nuclei, the energy released per oxygen nuclei is (Mass of the nucleus is 4.0026 amu and mass of oxygen nucleus is 15.9994 amu)
a) 7.6MeV
b) 56.12MeV
c) 10.24MeV
d) 23.9MeV

699. Which of the following transitions in a hydrogen atom emits photon of the highest frequency a) n = 1 to n = 2 b) n = 2 to n = 1 c) n = 2 to n = 6 d) n = 6 to n = 2700. The half-life of At²¹⁵ is 100µs. If a sample contains 215 mg of At²¹⁵, the activity of the sample initially is

a) 10^{2} Bq b) 3×10^{10} Bq c) 4.17×10^{24} Bq d) 1.16×10^{5} Bq 701. In the nuclear reaction ${}_{92}U^{238} \rightarrow {}_{z}Th^{A} + {}_{2}He^{4}$, the values of A and Z are

a) A = 234, Z = 94 b) A = 234, Z = 90 c) A = 238, Z = 94 d) A = 238, Z = 90702. In a fission reaction ${}_{92}U^{236} = X^{117} + Y^{117} + n + n$, the binding energy per nucleon of X and Y is 8.5 MeV, whereas of U^{236} is 7.6 MeV. The total energy liberated will be about

a) 200 keV b) 2 MeV c) 200 MeV d) 2000 MeV

703. The number of electrons, neutrons and protons in a species are equal to 10, 8 and 8 respectively. The proper symbol of the species is

a) ${}^{16}O_8$ b) ${}^{18}O_8$ c) ${}^{18}Ne_{10}$ d) ${}^{16}O_8^{2-}$ 704. If the binding energy of the deutrium is 2.23 *MeV*. The mass defect given in *a.m. u.* isa) -0.0024b) -0.0012c) 0.0012d) 0.0024

705. A count rate metre shows a count of 240 per minute from a given radioactive source later the metre shows a count rate 0f 30 min^{-1} . The half-life of the source is

	a) 80 min	b) 120 min	c) 20 min	d) 30 min
706	. The distance of closest ap	pproach of an α -particle fire	ed towards a nucleus with r	nomentum <i>p</i> , is <i>r</i> . If the
	momentum of the α -part	icle is 2 <i>p</i> , the correspondin	g distance of closest approa	ach is
	a) <i>r</i> /2	b) 2 <i>r</i>	c) 4 <i>r</i>	d) r/4
707	'. In beta decay			
	a) The parent and daught	er nuclei have same numb	er of protons	
	b) The daughter nucleus	has one proton less than th	e parent nucleus	
	c) The daughter nucleus	has one proton more than t	he parent nucleus	
	d) The daughter nucleus	has one neutron more than	the parent nucleus	
708	3. If in a nuclear fusion proc nucleus be m_3 , then	cess, the masses of the fusin	ig nuclei be m_1 and m_2 and γ	the mass of the resultant
	a) $m_3 = m_1 + m_2$	b) $m_3 = m_1 m_2 $	c) $m_3 < (m_1 + m_2)$	d) $m_3 > (m_1 + m_2)$
709	. The ratio between Bohr r	adii are	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
	a) 1:2:3	b) 2 : 4 : 6	c) 1:4:9	d) 1 : 3 : 5
710	. A diatomic molecule is ma	ade of two masses m_1 and m_2	n_2 which are separated by	a distance r . If we calculate
	its rotational energy by a	pplying Bohr's rule of angu	lar momentum quantizatio	n, its energy will be given
	by (<i>n</i> is an integer)			
	$(m_1 + m_2)^2 n^2 h^2$	n^2h^2	$2n^2h^2$	$(m_1 + m_2) n^2 h^2$
	$2m_1^2m_2^2r^2$	$10 \int \frac{1}{2(m_1 + m_2)r^2}$	$(m_1 + m_2)r^2$	$2m_1m_2r^2$
711	. The energy of a hydrogen	atom in its ground state is	-13.6 eV. The energy of the	ne level corresponding to
	the quantum number $n =$	2 (first excited state) in th	e hydrogen atom is	
	a) –2.72 <i>eV</i>	b) –0.85 <i>eV</i>	c) −0.54 <i>eV</i>	d) −3.4 <i>eV</i>
712	. Consider an initially pure	$^{3.4}$ g sample of 67 Ga, an is	otope that has a half-life of	78 h. What is its initial
	decay rate?			
	a) 8.00 $\times 10^{16} \text{s}^{-1}$	b) 6.27 $\times 10^{16} \text{s}^{-1}$	c) 7.53 $\times 10^{16} \text{s}^{-1}$	d) $8.53 \times 10^{15} \text{s}^{-1}$
713	. When a radioactive isoto	pe ₈₈ R ²²⁸ decay in series by	the emission of 3α -particl	les and β -particle, the
	isotope finally formed is			
	a) ₈₄ X ²²⁸	b) ₈₆ X ²²²	c) $_{83}X^{216}$	d) ₈₃ X ²¹⁵
714	. In terms of Rydberg's con	istant <i>R</i> , the wave number	of the first Balmer line is	0.0
	a) <i>R</i>	b) 3 <i>R</i>	c) $\frac{5R}{2c}$	d) $\frac{8R}{2}$
715	Which one of the followin	a nuclear reaction is a sou	36	9
/15	a) $Be^9 + Be^4 \rightarrow C^{12}$	$+ n^1$	b) $_{2}\text{He}^{3} + _{2}\text{He}^{3} \rightarrow _{2}\text{He}^{4}$	$+ H^{1} + H^{1}$
	(c) $r_c Ba^{144} + c_c Kr^{92} \rightarrow c$	$11^{235} + n^{1}$	d) $c_{\text{Fe}^{50}} + c_{\text{Ca}^{112}} \rightarrow W$	$V^{161} + n^1$
716	The radius of the first (lo	west) orbit of the hydroger	atom is a_0 . The radius of t	he second (next higher)
/10	orbit will be	west) of the fire fiy at oger		ine second (next ingher)
	a) 4 <i>a</i> ₀	b) 6a ₀	c) 8 <i>a</i> ₀	d) 10a ₀
717	. What will be the angular	momentum of an electron,	if energy of this electron in	<i>H</i> -atom is $-1.5eV$ (in <i>J</i> -s)
	a) 1.05×10^{-34}	b) 2.1×10^{-34}	c) 3.15×10^{-34}	d) -2.1×10^{-34}
718	B. If scattering particles are	56 for 90° angle, then at ar	angle 60° it will be	
	a) 224	b) 256	c) 98	d) 108
719	0. What was the fissionable	material used in bomb dro	pped at Nagasaki (Japan) ii	n the year 1945
700	a) Uranium	b) Nepturium	c) Berkelium	d) Plutonium
/20	. With the increase in prine	cipal quantum number, the	energy difference between	the two successive energy
	levels		h) Degraage	
	a) Increases		d) Competing of in process	nd comotimos do success
701	Which of the following at	anomana auggasta tha pro	uj sometimes increases a	nu somenmes decreases
121	a) Radio active decay	h) Isotones	c) Spectral lines	d) a-narticles scattering
722	A heam of fast moving alr	ha narticles were directed	towards a thin film of gold	The narts $A' R'$ and C' of
,	the transmitted and refle	cted beams corresponding	to the incident parts A, B as	nd <i>C</i> of the beam, are

shown in the adjoining diagram. The number of alpha particles in

C'		
a) B' will be minimum and in C' n	$\begin{array}{c} aximum \\ b) A' will be n \\ b C' \\ c' \\$	naximum and in <i>B'</i> minimum
c) A' will be minimum and in B' n 722. In a radioactive reaction	aximum d) C will be n	ninimum and in B' maximum
$\chi^{232} \rightarrow \chi^{204}$		
the number of α -particles emitted	is	
a) 7 b) 6	c) 5	d) 4
724. The electric potential between a p	proton and an electron is given by	$V = V_0 \ln \frac{r}{r}$, where r_0 is a constant.
Assuming Bohr's model to be app number	licable, write variation of r_n with r_n	n, n being the principal quantum
a) $r_n \propto n$ b) $r_n \propto n$	1/n c) $r_n \propto n^2$	d) $r_n \propto 1/n^2$
725. The minimum energy required to	excite a hydrogen atom from its g	ground state is
a) 13.6 <i>eV</i> b) -13	.6 <i>eV</i> c) 3.4 <i>eV</i>	d) 10.2 <i>eV</i>
726. What fraction of a radioactive ma	terial will get disintegrated in a pe	eriod of two half-lives
a) Whole b) Half	c) One-fourth	d) Three-fourth
727. Atom bomb consists of two pieces	s of $_{92}U^{235}$ and a source of	
a) Proton b) Neu	tron c) Meson	d) Electron
728. The kinetic energy of the electron $\frac{2}{3}$	in an orbit of radius r in hydroge	en atom is ($e =$ electronic charge)
a) $\frac{e^2}{2}$ b) $\frac{e^2}{2}$	c) $\frac{e^2}{2}$	d) $\frac{e^2}{2r^2}$
r^2 $2r$ 729 Which can pass through 20 cm th	r	222
a) α -particles b) β -	particles c) ν –rays	d) Ultraviolet rays
730. Neutrino emission in β – decay v	vas predicted theoretically by	
a) Planck b) Heis	c) Laue	d) Pauli
731. Orbital acceleration of electron is	5	,
n^2h^2 h^2h^2	2^2 $4n^2h^2$	$4n^2h^2$
a) $\frac{1}{4\pi^2 m^2 r^3}$ b) $\frac{1}{2n^2}$	r^3 CJ $\frac{\pi^2 m^2 n^3}{\pi^2 m^2 n^3}$	$d \int \frac{1}{4\pi^2 m^2 r^3} dr$
732. A nucleus of an element ${}_{84}X^{202}$ e	mits an α -particle first, a β -partic	le next and then a gamma photon. The
final nucleus formed has an atom	c number	
a) 200 b) 199	c) 83	d) 198
733. The radius of an electron orbit in	a hydrogen atom is of the order of	f
a) $10^{-8}m$ b) 10^{-1}	m c) $10^{-11}m$	d) $10^{-13}m$
734. Electrons in a certain energy leve	$n = n_1$, can emit 3 spectral lines.	. When they are in another energy level,
$n = n_2$. They can emit 6 spectral l	ines. The orbital speed of the elec	trons in the two orbits are in the ratio
a) 4:5 DJ 5:4	CJZ: I cond made by an electron in the f	u) 1 : 2 irst Bohr orbit of hydrogen atom is of
the order of	cond made by an electron in the h	ist boin of bit of nyur ogen atom is of
a) 10^{20} b) 10^{19}	c) 10 ¹⁷	d) 10 ¹⁵
736. Consider a hypothetical annihilat	on of a stationary electron with a	stationary positron. What is the
wavelength of resulting radiation		
(h = Planck's constant, c = speed	of light, $m_0 = \text{rest mass}$)	
h h	2 <i>h</i>	h h
a) $\frac{1}{2m_0c}$ b) $\frac{1}{m_0c}$	c) $\frac{1}{m_0c}$	a) $\frac{1}{m_0c^2}$
737. M_n and M_p represent mass of neuronal sector M_n and M_n and M_n and M_n and M_n represent mass of neuronal sector M_n and	tron and proton respectively. If an	n element having atomic mass <i>M</i> has <i>N</i> -
neutrons and Z-protons, then the	correct relation will be	

	a) $M < [NM_n + ZM_P]$	b) $M > [NM_n + ZM_P]$	c) $M = [NM_n + ZM_P]$	d) $M = N[M_n + M_P]$
738.	The rate of disintegr	ation was observed to be 10^{17}	disintegrations per sec wh	en its half life period is 1445
	years. The original n	umber of particles are		
	a) 8.9 × 10 ²⁷	b) 6.6×10^{27}	c) 1.4×10^{16}	d) 1.2×10^{17}
739.	In the uranium radio	active series, the initial nucleu	is is $_{92}U^{238}$ and that the fin	al nucleus is 82Pb ²⁰⁶ . When
	uranium nucleus dec	cays to lead, the number of α -p	article and β -particles emit	tted are
	a) 8α,6β	b) 6α, 7β	c) 6α,8β	d) 4α, 3β
740.	Which of the following	ng statements is true	<i>y i</i> 1	
	a) $_{70}Pt^{192}$ has 78 ne	eutrons	b) $a_{A}Po^{214} \rightarrow a_{B}Pb^{210}$.	$+\beta^{-}$
	() $a_0 U^{238} \rightarrow a_0 Th^{23}$	$4^{4} + {}_{2}He^{4}$	d) $a_7 T h^{234} \rightarrow a_7 P a^{234}$ -	$+ \rho$
741	A neutron with veloc	rity V strikes a stationary deut	erium atom its kinetic ener	$r_{\rm Z}$ row changes by a factor of
/ 11.	a) 15/16	h) 1/2	c) $2/1$	d) None of these
742	In the Bohr model of	5 172	tal force is furnished by th	e coulomb attraction
/ 72.	hetween the proton	anythogen atom, the centrific	dius of the ground state or	bit m is the mass a is the
	charge on the electro	and the electron. If u_0 is the rational state $ration = 1$	tivity the speed of the elec	tron is
	a) 0	e	<i>e</i>	
	aju	b) $\frac{1}{\sqrt{s a m}}$	c) $\sqrt{4\pi c_a m}$	d) $\frac{\sqrt{4\pi\varepsilon_0 a_0 m}}{1-2}$
740		$\sqrt{c_0 u_0 m}$	$\sqrt{4\pi c_0 u_0 m}$	e Mikasalas inte
743.	After absorbing a sio	wiy moving neutron of mass <i>n</i>	n_N (momentum ~0) a nucle	eus of mass <i>M</i> breaks into
	two nuclei of masses	m_1 and $5m_1$ ($6m_1 = M + m_1$	$_N$), respectively. If the de-B	roglie wavelength of the
	nucleus with mass m	a_1 is λ , then de-Broglie wavel	ength of the other nucleus	will be
	a) 25λ	b) 5λ	c) $\frac{\lambda}{z}$	d) λ
711	Distantium de corre sui	the helf life of 24000 run If white	5 onium is stand for 7200 m	the fraction of it that
/44.	Plutoinum decays wi	iui nan-me of 24000 yr. ii pluto	omum is stored for 7200 yr	
	remains is		> 4 / 4	1.1.12
	a) 1/8	b) 1/3	c) 1/4	d) 1/2
745.	The ratio of the nucl	ear radii of elements with mas	ss numbers 216 and 125 is	
	a) 216:125	b) √216: √125	c) 6:5	d) None of these
746.	Mass of the nucleons	together in a heavy nucleus is	5	
	a) Greater than mass	s of nucleus	b) Equal to mass of nucl	eus
	c) Same as mass of r	nucleus	d) None of the above	
747.	The half-life of a radi	ioactive substance against α -de	ecay is $1.2 \times 10^7 s$. What is	the decay rate for $4 imes 10^{15}$
	atoms of the substan	ce		
	a) $4.6 \times 10^{12} a toms/$	(s b) $2.3 \times 10^{11} a toms/s$	c) $4.6 \times 10^{10} a toms/s$	d) $2.3 \times 10^8 atoms/s$
748.	The count rate of 10	g of radioactive material was r	neasured at different times	and this has been shown in
	the figure. The half li	fe of material and the total cou	ints (approximately) in the	first half life period,
	respectively are			
	100			
	eg 80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	E 60			
	ber 40			
	20 Luno			
	0 2 4 6	8 10		
	Time	e (hours)		
	a) 4 <i>h</i> ,9000	b) 3 <i>h</i> , 14000	c) 3 <i>h</i> ,235	d) 3 <i>h</i> , 50
749.	Ratio of the wavelen	gths of first line of Lyman serie	es and first time of Balmer	series is
	a) 1:3	b) 27 : 5	c) 5:27	d) 4 : 9
750	If half-life of radium	is 77days.its decay constant w	ill be	,
	a) 3 $\times 10^{-3} d_{2}v^{-1}$	h) 9 x 10^{-3} day ⁻¹	c) 1 x 10^{-3} day ⁻¹	d) 6 x 10^{-3} day $^{-1}$
	uj 5 A 10 uay	bj 7 A 10 uay	CJIAIO - Uay	ajo n io udy

751. When ${}_{92}U^{235}$ undergoes fission, 0.1% of its orig	inal mass is changed into e	energy. How much energy is
released if $1kg$ of $_{92}U^{233}$ undergoes fission	$10 40^{12}$	
a) 9×10^{10} b) 9×10^{11}	$c_{J} = 9 \times 10^{12} J$	$a) 9 \times 10^{13} J$
752. The radioactivity of a simple is I_1 at a time t_1 and	I_2 at a time t_2 . If the half-	life of the sample $1s\tau_{1/2}$, then the
number of nuclei that have disintegrated in the t	time $t_2 - t_1$ is proportional	l to
a) $I_1 t_2 - I_2 t_1$ b) $I_1 - I_2$	c) $\frac{I_1 - I_2}{\tau_{1/2}}$	d) $(I_1 - I_2)\tau_{1/2}$
753. The operation of a nuclear reactor is said to be c	ritical, if the multiplicatior	factor (k) has a value
a) 1 b) 1.5	c) 2.1	d) 2.5
754. $_{1}H^{1} + _{1}H^{1} + _{1}H^{2} \rightarrow X + _{+1}e^{0}$ + energy. The energy.	mitted particle is	
a) Neutron b) Proton	c) α –particle	d) Neutrino
755. Cadmium rods are used in a nuclear reactor for		
a) Slowing down fast neutrons	b) Speeding up slow	neutrons
c) Absorbing neutrons	d) Regulating the po	wer level of reactor.
756. Energy of electron in an orbit of <i>H</i> -atom is		
a) Positive b) Negative	c) Zero	d) Nothing can be said
757. A radioactive isotope X with a half-life of 1.37 \times	10 ⁹ years decays to Y whi	ch is stable. A sample of rock
from the moon was found to contain both the ele rock is	ements X and Y which wer	e in the ratio 1:7. The age of the
a) 1.96×10^8 vears b) 3.85×10^9 vears	c) 4.11×10^9 vears	d) 9.59 $\times 10^{9}$ vears
758. The half-life of a radioactive substance is 48 hou	rs How much time will it t	take to disintegrate to its $\frac{1}{2}$ th
		16 16
part back		N 100 I
a) $12 h$ b) $16 h$	c) 48 n	$\begin{array}{c} \text{a) 192 } n \\ 1 the set of the se$
759. In the following atoms and molecules for the trai	nsition from $n = 2$ to $n =$	1, the spectral line of minimum
wavelength will be produced by		
a) Hydrogen atom b) Deuterium atom	c) Uni-ionized neitur	n a) De-Ionized lithium
760. The radioactivity of a given sample of whisky du	e to tritium (nair me 12.3)	years) was found to be only 3%
of that measured in a recently purchased bottle	marked / years old . The	sample must have been
prepareu about	a) 400 waara baali	d) 70 waara baab
a) 220 years back b) 300 years back $7(1 \text{ The surplus rest in } ^2 H + ^2 H + ^2 H + ^4 H + (mass of the surplus rest in) (1 \text{ The surplus rest in } ^2 H + ^$	c) 400 years back	d) 70 years back
761. The nuclear reaction $-H + -H \rightarrow -He$ (mass of	deuteron = $2.0141 a.m.u$	and mass of
$He = 4.0024 \ a.m.u.)$ is		
a) Fusion reaction releasing 24 MeV energy		
b) Fusion reaction absorbing 24 MeV energy		
c) Fission reaction releasing 0.0258 <i>MeV</i> energy	7	
d) Fission reaction absorbing 0.0258 <i>MeV</i> energ	У	
762. 234 U has 92 protons and 234 nucleons total in the	he nucleus. It decays by en	hitting an alpha particle. After
the decay it becomes	220-1	12.220 -
a) ^{232}U b) ^{232}Pa	c) ²³⁰ Th	d) ²³⁰ <i>Ra</i>
763. The intensity of gamma radiation from a given so reduced to $I_o/8$. The thickness of lead which will	ource is I_o . On passing three left to $I_o/2$ is	ough 37.5 mm of lead it is
a) $(37.7)^{1/3}$ mm b) $(37.5)^{1/4}$ mm	c) 37.5/3 mm	d) (37.5/4) mm
764. If <i>R</i> is the Rydberg's constant for hydrogen the w	vave number of the first lin	ne in the Lyman series will be
a) $\frac{R}{R}$ b) $\frac{3R}{R}$	r R	d) 2 <i>R</i>
4 4	2	u) 21
765. The mass of a $\frac{1}{3}Li$ nucleus is 0.042 <i>u</i> less than the	e sum of the masses of all i	ts nucleons. The binding energy
per nucleon of $\frac{7}{3}Li$ nucleus is nearly		
a) 23 <i>MeV</i> b) 46 <i>MeV</i>	c) 5.6 <i>MeV</i>	d) 3.9 <i>MeV</i>
766. The mass defect for the nucleus of helium is 0.03 helium in <i>MeV</i>	303 <i>a.m.u</i> . What is the bin	ding energy per nucleon for

a) 28 b) 7 c) 4 d) 1 767. When a neutron is disintegrated to give a β particle, a) A neutrino alone is emitted b) A proton and neutrino are emitted c) A proton alone is emitted d) A proton and an antineutrino are emitted 768. The principle of controlled chain reaction is used in a) Atomic energy reactor b) Atom bomb c) In the core of sun d) Artificial radioactivity 769. Two radioactive substances A and B have decay constants 5 λ and λ respectively. At t = 0 they have the same number of nuclei. The ratio of number of nuclei of A to those of B will be $\left(\frac{1}{\rho}\right)^2$ after a time interval d) $\frac{1}{2\lambda}$ a) $\frac{1}{4\lambda}$ b) 4λ c) 2λ 770. The size of an atom is of the order of a) $10^{-8}m$ b) $10^{-10}m$ c) $10^{-12}m$ d) $10^{-14}m$ 771. The difference between U²³⁵ and U²³⁸ atom is that a) U²³⁸contains 3 more protons b) U²³⁸contains 3 protons and 3 more electrons c) U²³⁸contains 3 more neutrons and 3 more electrons d) U²³⁸contains 3 more neutrons 772. A radioactive substance of half-life 6 min is placed near a Geiger counter which is found to resister 1024 particles per minute. How many particles per minute will it register after 42 min? a) 4 per min b) 8 per min c) 5 per min d) 7 per min 773. If the decay constant of a radioactive substance is λ , then its half-life is d) $\frac{\lambda}{\log_{2} 2}$ b) $\frac{1}{1}$ a) $\frac{1}{2}\log_e 2$ c) $\lambda \log_e 2$ 774. 10 g of radioactive material of half-life 15 year is kept in store for 20 years. The disintegrated material is a) 12.5 g b) 10.5 g c) 6.03 g d) 4.03 g 775. The binding energies per nucleon for a deuteron and an α – particle are x_1 and x_2 respectively. What will be the energy Q released in the reaction $_{1}H^{2} + _{1}H^{2} \rightarrow_{2} He^{4} + Q$ a) $4(x_1 + x_2)$ b) $4(x_2 - x_1)$ c) $2(x_1 + x_2)$ d) $2(x_2 - x_1)$ 776. A nucleus ${}^{A}_{Z}X$ has mass represented by M(A, Z). If M_{P} and M_{n} denote the mass of proton and neutron respectively and B.E the binding energy in *MeV*, then b) $B.E. = [ZM_P + (A - Z)M_n - M(A.Z)C^2]$ a) $B.E. = [M(A,Z) - ZM_P - (A - Z)M_n]C^2$ d) $B.E. = M(A,Z) - ZM_P - (A - Z)M_n$ c) $B.E. = [ZM_P + AM_n - M(A.Z)]C^2$ 777. In helium nucleus, there are a) 2 protons and 2 electrons b) 2 neutrons, 2 protons and 2 electrons c) 2 protons and 2 neutrons d) 2 positrons and 2 protons 778. The energy level diagram for an hydrogen like atom is shown in the figure. The radius of its first Bohr orbit is 0 *eV* ______ *n* = ∞ – 6.04 eV — – 13.6 eV — – 54.4 eV ____ _ *n* = 1 c) 0.132 Å a) 0.265 Å b) 0.53 Å d) None of these 779. Energy released in fusion of 1 *kg* of deuterium nuclei b) $6 \times 10^{27} I$ c) $2 \times 10^7 kwh$ d) $8 \times 10^{23} MeV$ a) 8×10^{13} 780. The ionization energy of the electron in the hydrogen atom in its ground state is 13.6 eV. The atoms are excited to higher energy levels to emit radiations of 6 wavelengths. Maximum wavelength of emitted radiation corresponds to the transition between a) n = 3 to n = 2 states b) n = 3 to n = 1 states c) n = 2 to n = 1 states d) n = 4 to n = 3 states

781. When the wave	e of hydrogen atom comes fro	om infinity into the first orbit	then the value of wave number is
a) 109700 <i>cm</i> ⁻	⁻¹ b) 1097 cm ⁻¹	c) 109 cm ⁻¹	d) None of these
782. The energy of e	electron in the <i>n</i> th orbit of hy	drogen atom is expressed as a	$E_n = \frac{-13.6}{n^2} eV$. The shortest and
longest wavele	ngth of Lyman series will be	S	
a) 910A, 1213A	b) 5463A, 7858A	c) 1315A, 1530A	d) None of these
783. In a hypothetic	al Bohr hydrogen, the mass o	of the electron is doubled. The	energy E_0 and the radius r_0 of
the first orbit v	vill be $(a_0 \text{ is the Bohr radius})$		
a) $E_0 = -27.2$	$eV; r_0 = a_0/2$	b) $E_0 = -27.2 \ eV; r$	$a_0 = a_0$
c) $E_0 = -13.6$	$eV; r_0 = a_0/2$	d) $E_0 = -13.6 eV; r$	$a_0 = a_0$
784. The ionization	energy of hydrogen atom is 1	13.6 <i>eV</i> . Following Bohr's theo	ory, the energy corresponding to a
transition betw	veen the 3rd and the 4th orbi	tis	
a) 3.40 <i>eV</i>	b) 1.51 <i>eV</i>	c) 0.85 <i>eV</i>	d) 0.66 <i>eV</i>
785. The energy of a	a hydrogen atom in the groun	id state is $-13.6 eV$. The energy	gy of a He^+ ion in the first excited
state will be			
a) –6.8 eV	b) –13.6 <i>eV</i>	c) $-27.2 eV$	d) -54.4 eV
786. Decay constant	t of radium is λ . By a suitable	process its compound radium	bromide is obtained. The decay
constant of rad	ium bromide will be		N 7
a) λ	b) More than λ	c) Less than λ	d) Zero
787. In the reaction			
$_7N^{1+} + \alpha \rightarrow$	$_{8}X^{1}$ + $_{1}p^{1}$		
identify X.			
a) O_2	b) N ₂	c) He	d) Ar
788. What is the rac	lius of iodine atom (at. no. 53	3, mass number 126	
a) 2.5×10^{-11}	n b) $2.5 \times 10^{-5} m$	c) $7 \times 10^{-5} m$	d) $7 \times 10^{-6} m$
789. In the lowest e	nergy level of hydrogen atom	h, the electron has the angular	momentum
a) π/h	b) h/π	c) $h/2\pi$	d) $2\pi/h$
790. Which of these $3u + 2u$	is a fusion reaction	12 238 4 206 54	
a) $_{1}^{H}H + _{1}^{H}H =$	$\frac{1}{2}He + \frac{1}{0}n$	b) $_{92}^{25}U \rightarrow _{82}^{25}Pb +$	$-8(\frac{1}{2}He) + 6(\frac{1}{-1}\beta)$
c) $\frac{12}{7}C \rightarrow \frac{12}{6}C$	$+\beta^{+}+\gamma$	d) None of these	
791. Figure shows t	he energy levels P, Q, R, S and	d G of an atom where G is the	ground state. A red line in the
emission spect	rum of the atom can be obtai	ned by an energy level change	e from Q to S. A blue line can be
obtained by fol	lowing energy level change		
	P Q		
	R		
	S		
	5		
	G		
a) <i>P</i> to <i>Q</i>	b) <i>Q</i> to <i>R</i>	c) <i>R</i> to <i>S</i>	d) <i>R</i> to <i>G</i>
792. To determine t	he half- life of radioactive ele	ement, a student plots graph o	$f \ln \left \frac{dN(t)}{dt} \right $ versus t. Here $\frac{dN(t)}{dt}$ is
the rate of radi	oactive decay at time <i>t</i> . If the	number of radioactive nuclei	of this element decreases by a
factor of <i>n</i> after	r 4 16 yr the value of n is		
	o 5		
	4		
	2345678 Year		
a) 8	h) 7	റി 4	d) 8 5

a) –3.4 <i>eV</i>	b) +3.4 <i>eV</i>	c) −6.8 <i>eV</i>	d) 6.8 <i>eV</i>
794. In a nuclear reactor, th	e fuel is consumed at the rat	e of 1 mgs ⁻¹ . The power ge	nerated in kilowatt is
a) 9 $\times 10^4$	b) 9 × 10 ⁷	c) 9 × 10 ⁸	d) 9 $\times 10^{12}$
795. The order of the size of	f nucleus and Bohr radius of	an atom respectively are	
a) 10 ⁻¹⁴ <i>m</i> , 10 ⁻¹⁰ <i>m</i>	b) 10 ⁻¹⁰ <i>m</i> , 10 ⁻⁸ <i>m</i>	c) $10^{-20}m$, $10^{-16}m$	d) 10 ⁻⁸ m, 10 ⁻⁶ m
796. Size of nucleus is of the	e order of		
a) 10 ⁻¹⁰ m	b) 10 ⁻¹⁵ m	c) $10^{-12}m$	d) 10 ⁻¹⁹ m
797. When a sample of solid	l lithium is placed in a flask o	of hydrogen gas then follow	ing reaction happened
$^{1}_{1}H + {}_{3}Li^7 \rightarrow {}_{2}He^4 +$	₂ He ⁴		
This statement is			
H_2			
{ Li }			
a) True		b) False	
c) May be true at a par	ticular pressure	d) None of these	
798. In the nuclear fusion re	eaction		
$^{2}_{1}\text{H} + ^{3}_{1}\text{H} \rightarrow ^{4}_{2}\text{H}e + n$			
given that the repulsiv	e potential energy between	the two nuclei is 7.7 $ imes 10^{-1}$	¹⁴ J, the temperature at
which the gases must b	be heated to initiate the reac	tion is nearly [Boltzmann's	constant $k = 1.38 \times$
10^{-23}JK^{-1}]			
a) 10 ⁷ K	b) 10 ⁵ K	c) 10 ³ K	d) 10 ⁹ K
799. Nuclear fission can be	explained based on		
a) Millikan's oil drop m	nethod	b) Liquid drop model	
c) Shell model		d) Bohr's model	
800. A radioactive substanc	e has an average life of 5h. In	n a time of 5 h	
a) Half of the active nu	clei decay	b) Less than half of the a	ctive nuclei decay
c) More than half of the	e active nuclei decay	d) All active nuclei decay	7
801. The wavelength of the	energy emitted when electro	on comes from fourth orbit	to second orbit in hydrogen
is 20.397 <i>cm</i> . The wave	length of energy for the sam	te transition in He^+ is	
a) $5.099 \ cm^{-1}$	b) 20.497 <i>cm</i> ⁻¹	c) $40.994 \ cm^{-1}$	d) 81.988 cm ⁻¹
802. The half-life of a radioa	active substance is 3.6 days.	How much of 20 <i>mg</i> of this	radioactive substance will
remain after 36 days			N 0 0 1 0
a) 0.0019 mg	b) 1.019 <i>mg</i>	c) 1.109 <i>mg</i>	d) 0.019 mg
803. The activity of a sample	e is 64×10^{-5} Ci. Its half-life	is 3 days. The activity will	become 5×10^{-6} Ci after
a) 12 days	b) 7 days c^{12}	c) 18 days	d) 21 <i>days</i>
804. The radioactive nucleu	s $_7N^{13}$ decays to $_6C^{13}$ through	ugh the emission of	
a) Neutron	b) Proton	c) Electron	d) Positron
805. The half-life of Bi^{210} is	5 days. What time is taken h	by $(7/8)^{\text{th}}$ part of the sample	le to decay
a) 3.4 days	b) 10 days	c) 15 days	d) 64 days
806. If the atom $_{100}Fm^{257}$ f	ollows the Bohr model and t	the radius of $_{100}Fm^{257}$ is n	times the Bohr radius, then
find <i>n</i>		•	N
a) 100	b) 200	c) 4	d) 1/4
80/. If the decay or disinteg	ration constant of a radioact	tive substance is λ , then its	half life and mean life are
respectively		4	1 1
a) $\frac{1}{\lambda}$ and $\frac{\log_e 2}{\lambda}$	b) $\frac{\log_e 2}{\lambda}$ and $\frac{1}{\lambda}$	c) $\lambda \log_e 2$ and $\frac{1}{\lambda}$	d) $\frac{\lambda}{\log_e 2}$ and $\frac{1}{\lambda}$
808. The sodium nucleus ²³	^{3}Na contains	~~	
11	Nu contains		
a) 11 electrons	b) 12 protons	c) 23 protons	d) 12 neutrons

a) Controlled chain reaction	b) uncontrolled chain rea	ction
c) Nuclear fission	d) Nuclear fussion	
810. The binding energy of deuteron ${}_{1}^{2}H$ is 1.112 <i>MeV</i> per	r nucleon and an α -particle	$2^{\frac{4}{2}He}$ has a binding energy
of 7.047 <i>MeV</i> per nucleon. Then in the fusion reactio	$n_1^2H + {}_1^2H \rightarrow {}_2^4He + Q, \text{ the}$	e energy Q released is
a) 1 <i>MeV</i> b) 11.9 <i>MeV</i>	c) 23.8 <i>MeV</i>	d) 931 <i>MeV</i>
811. Solar energy is mainly cause due to		
a) Fission of uranium present in the sun		
b) Fusion of protons during synthesis of heavier elen	nents	
c) Gravitational contraction		
d) Burning of hydrogen in the oxygen		
812. A free neutron decays into a proton, an electron and		
a) A neutrino b) An antineutrino	c) An alpha particle	d) A beta particle
813. The nuclei of which of the following pairs of nuclei and	re isotones	
a) $_{34}Se^{74}$, $_{31}Ca^{71}$ b) $_{42}Mo^{92}$, $_{40}Zr^{92}$	c) ₃₈ Sr ⁸¹ , ₃₈ Sr ⁸⁶	d) ₂₀ Ca ⁴⁰ , ₁₆ S ³²
814. A gamma ray photon creates an electron-positron pa	ir. If the rest mass energy	of an electron is 0.5 <i>MeV</i>
and the total K.E. of the electron-positron pair is 0.78	<i>MeV</i> , then the energy of t	he gamma ray photon must
be		
a) 0.78 <i>MeV</i> b) 1.78 <i>MeV</i>	c) 1.28 <i>MeV</i>	d) 0.28 <i>MeV</i>
815. The binding energy per nucleon of deuterium and he	lium atom is 1.1 <i>MeV</i> and	7.0 <i>MeV</i> . If two deuterium
nuclei fuse to form helium atom, the energy released	is	
a) 19.2 <i>MeV</i> b) 23.6 <i>MeV</i>	c) 26.9 <i>MeV</i>	d) 13.9 <i>MeV</i>
816. The above is a plot of binding energy per nucleon E_h .	, against the nuclear mass <i>l</i>	M; A, B, C, D, E, F
correspond to different nuclei. Consider four reaction	ns	
$A + B \rightarrow C + \varepsilon$		
$C \rightarrow A + B + \varepsilon$		
$D + E \rightarrow F + \varepsilon$		
$F \rightarrow D + E + \varepsilon$		
E_{L}		
$- \phi _A$		
M		
where ε is the energy released? In which reaction is	ε positive?	
a) (i) and (iv) b) (i) and (iii)	c) (ii) and (iv)	d) (ii) and (iii)
817. A radioactive sample S_1 having the activity A_1 has twice	e the number of nuclei as a	nother sample S_2 of
activity A_2 . If $A_2 = 2A_1$, then the ratio of half-life of S_1	to the half-life of S_2 is	F Z
a) 4 b) 2	c) 0.25	d) 0.75
818 Consider the nuclear reaction $X^{200} \rightarrow A^{110} + B^{80}$ If	the hinding energy per nuc	cleon for X A and B are 7.4
MeV 8.2 MeV and 8.1 MeV respectively, then the energy	row released in the reaction	
a) 70 MeV h^2 b) 200 MeV	c) 190 MeV	d) 10 MeV
819 The decay constant of a radioactive element is 1.5 ×	10^{-9} per second Its mean	life in seconds will be
a) 1.5×10^9 b) 1.62×10^8	c) 6.67×10^8	d) 10 25 \vee 10 ⁸
aj 1.3 \wedge 10 UJ 4.02 \times 10 ²	5 muclous?	uj 10.33 × 10
$_{20}$ $_{20$	nucleus:	
al 144	പ 51	d) 1/2
021 The energy released in a tension line for the set of the	c) 51	d) 143

						: ANSW	F	R K	EY:								
1)	а	2)	С	3)	а	4) b	1	189)	С	-	190)	d	191)	b	192)	d
5)	a	_) 6)	b	7)	a	8) b	1	193)	b		194)	a	195)	a	196)	b
9)	a	10)	d	, 11)	С	12) d	1	197)	d		198)	d	199)	d	200)	С
13)	b	14)	С	15)	b	16) a	2	201)	С	2	202)	b	203)	С	204)	d
17)	С	18)	а	19)	а	20) b	2	205)	С	2	206)	С	207)	d	208)	С
21)	b	22)	С	23)	а	24) b	2	209)	d	2	210)	b	211)	d	212)	d
25)	b	26)	b	27)	С	28) a	2	213)	а		214)	b	215)	С	216)	a
29)	b	30)	а	31)	С	32) a	2	217)	d		218)	а	219)	d	220)	b
33)	С	34)	а	35)	С	36) a	2	221)	а	2	222)	b	223)	d	224)	С
37)	а	38)	С	39)	а	40) a	2	225)	а	2	226)	а	227)	С	228)	С
41)	а	42)	а	43)	С	44) a	2	229)	а	2	230)	С	231)	С	232)	d
45)	а	46)	а	47)	b	48) d	2	233)	b	2	234)	а	235)	а	236)	d
49)	С	50)	b	51)	d	52) b	2	237)	С	2	238)	С	239)	а	240)	d
53)	а	54)	а	55)	b	56) b	2	241)	b	2	242)	С	243)	С	244)	d
57)	d	58)	b	59)	С	60) b	2	245)	d	2	246)	b	247)	b	248)	С
61)	d	62)	С	63)	С	64) a	2	249)	С	2	250)	b	251)	d	252)	a
65)	b	66)	а	67)	d	68) a	2	253)	а	2	254)	а	255)	С	256)	С
69)	С	70)	d	71)	b	72) a	2	257)	b	2	258)	а	259)	С	260)	b
73)	С	74)	b	75)	d	76) c	2	261)	b	2	262)	b	263)	а	264)	С
77)	С	78)	b	79)	а	80) a	2	265)	b	2	266)	а	267)	d	268)	a
81)	С	82)	d	83)	b	84) b	2	269)	а	2	270)	b	271)	а	272)	a
85)	d	86)	С	87)	а	88) c	2	273)	а	2	274)	d	275)	а	276)	d
89)	а	90)	С	91)	d	92) a	2	277)	d	2	278)	b	279)	b	280)	d
93)	а	94)	а	95)	d	96) b	2	281)	а		282)	b	283)	С	284)	С
97)	а	98)	b	99)	d	100) a	2	285)	b	2	286)	а	287)	а	288)	d
101)	b	102)	d	103)	С	104) c	2	289)	d	2	290)	С	291)	b	292)	С
105)	d	106)	а	107)	b	108) c	2	293)	a	2	294)	С	295)	С	296)	b
109)	d	110)	С	111)	a	112) d		297)	b	4	298)	С	299)	b	300)	b
113)	C	114)	С	115)	d	116) a	1	301)	b		302)	a	303)	d	304)	d
117)	b	118)	а	119)	d	120) d		305)	d		306)	b	307)	b	308)	С
121)	a	122)	C	123)	d	124) b		309)	d		310)	а	311)	C	312)	a
125)	d	126)	b	127)	a	128) a		313)	b		314)	C	315)	b	316)	C
129)	C L	130)	C L	131) 125)	b	132) c		317)	а		318)	d L	319)	a L	320)	d
133)	D	134)	D	135)	a	136) d		321) 225)	С		322)	D	323)	D	324	J	a
137]	C	138)	D h	139)	a	140) a		325)	a		326)	D h	327)	a	328))	a J
141J	a	142J	D	143J 147)	C L	144J D		529J	C h		33UJ	D	331)	d L	334	ן א	u d
145J 140)	a	140J 150)	a	147)	D	148J D		555J 227)	D d		534J	D	335J	D	330	ן א	a
149J	a d	150J 154)	C	151J 155)	d h	152J a		55/J 241)	a h		538J	a	339J	a	340	ן א	C
155J 157)	u	154J 159)	d	155)	U h	150J a 160) b)41j)45)	U C		044J 046)	d	343J 247)	L d	244	ן ו	d h
157J 161)	d h	150)	L h	159)	U a	100) D		243J 240)	C C		250)	L h	347J 251)	u d	252	ן ו	U h
165)	D D	166)	0	103)	a	169) d		252)	ι 2		254)	U C	255)	u a	256	ן ו	U n
160)	a d	100J 170)	d ว	107J 171)	ι ο	177) h		333J 2571	a a		228J	ι h	3221	a d	320 220	ן ו	d D
107J	u d	170J 174)	d h	1/1J 175)	a d	176) J		337J 261)	a d		2621	U C	222J	u c	264	ן ו	a c
177)	u C	179)	U a	170)	u d	180) a		265)	u a		266)	с d	367)	L 2	304 269	י ר	с d
181)	с h	187)	a h	183)	u r	184) A		3691	a	ŗ	3701	u a	371)	a a	300	י ו	d d
185)	a	186)	2	187)	d	1881 d		3731	u c		3741	a h	375)	d	374	י ו	d
1001	a	1003	a	10/ J	u	100j u	۱ ۰		L	•	JITJ	U	5755	u	570	J	u

13.NUCLEI

377)	С	378)	d	379)	а	380) b	581)	а	582)	b	583)	С	584)	b
381)	b	382)	d	383)	С	384) c	585)	d	586)	а	587)	С	588)	а
385)	b	386)	С	387)	а	388) d	589)	b	590)	d	591)	С	592)	С
389)	а	390)	d	391)	С	392) a	593)	b	594)	b	595)	d	596)	С
393)	b	394)	С	395)	d	396) d	597)	d	598)	а	599)	С	600)	b
397)	d	398)	d	399)	С	400) d	601)	d	602)	b	603)	d	604)	b
401)	b	402)	b	403)	b	404) c	605)	d	606)	b	607)	d	608)	d
405)	С	406)	b	407)	а	408) a	609)	b	610)	С	611)	а	612)	b
409)	С	410)	а	411)	С	412) c	613)	b	614)	С	615)	а	616)	b
413)	b	414)	С	415)	а	416) a	617)	b	618)	С	619)	а	620)	С
417)	а	418)	а	419)	d	420) d	621)	с	622)	а	623)	а	624)	b
421)	b	422)	b	423)	d	424) a	625)	с	626)	а	627)	с	628)	b
, 425)	а	426)	а	427)	d	428) a	629)	d	630)	d	631)	d	632)	С
429)	d	430)	d	431)	С	432) d	633)	а	634)	а	635)	b	636)	С
433)	C	434)	b	435)	c	436) c	637)	C	638)	d	639)	b	640)	d
437)	d	438)	b	439)	c	440) a	641)	b	642)	d	643)	d	644)	h
441)	a	442)	d	443)	d	444) a	645)	h	646)	d	647)	h	648)	h
445)	a	446)	h	447)	h	448) h	649)	c	650)	a	651)	d	652)	a
449)	a c	450)	и 2	451)	c	452) b	653)	d	654)	d	655)	h	656)	a c
453)	L h	454)	a h	455)	с h	456) c	657)	u o	658)	u c	659)	d	660)	с э
457)	C C	458)	d	450)	C	450) t	661)	a a	662)	d d	663)	h	664)	a
457)	נ ה	450)	u d	439)	L d	400) D	665)	a	666)	u h	667)	d	668)	c c
401) 465)	a	402)	u	403)	u	404) C	660)	L d	670)	U a	671)	u d	672)	L d
403)	a	400)	L h	407)	a	400J D 472) h	672)	u	674)	a	071) 675)	u d	676)	u h
409)	L h	470) 474)	U h	4/1) 475)	C	472J U 476) h	073J 677)	ι c	074J 670)	l h	670)	u	670J	U
473J	D	4/4J 470)	U d	475J 470)	C L	470J U	0//)	C d	070J	D	0/9J	C h	00UJ	C L
4//J	a d	4/0J 402)	u	4/9J 402)	d d	400J D	001) 605)	u	002J	C	003J 697)	D	004J	D
401) 405)	u	402J	C	403J	u	404J U	005)	C	000J	a	007J	С ч	000J	C L
485)	a h	486J	C	487J	C	488) a	689)	C	690J	a	691) (05)	a h	692)	D
489)	D	490)	С	491)	a	492) a	693J	С	694J	a	695J	D	696J	D
493)	D	494)	а	495)	a	496) D	697J	C	698J	С	699J	a	700)	C
497)	a	498) - 00)	а	499) - 00)	d	500) d	701)	b	702)	C	703)	d	704)	d
501)	d	502)	C	503)	С	504) a	705)	С	706)	d	707)	C	708)	С
505)	b	506)	d	507)	С	508) d	709)	С	710)	d	711)	d	712)	С
509)	b	510)	a	511)	d	512) a	713)	С	714)	С	715)	b	716)	a
513)	d	514)	b	515)	а	516) c	717)	С	718)	a	719)	d	720)	b
517)	С	518)	d	519)	С	520) a	721)	С	722)	b	723)	а	724)	а
521)	а	522)	d	523)	d	524) b	725)	d	726)	d	727)	b	728)	b
525)	а	526)	b	527)	а	528) b	729)	С	730)	d	731)	а	732)	С
529)	d	530)	С	531)	а	532) c	733)	С	734)	а	735)	d	736)	b
533)	С	534)	С	535)	С	536) c	737)	а	738)	b	739)	а	740)	С
537)	b	538)	С	539)	а	540) c	741)	d	742)	С	743)	d	744)	а
541)	а	542)	С	543)	b	544) d	745)	С	746)	а	747)	d	748)	b
545)	b	546)	С	547)	d	548) c	749)	С	750)	b	751)	d	752)	d
549)	d	550)	d	551)	а	552) a	753)	а	754)	С	755)	С	756)	b
553)	а	554)	b	555)	b	556) c	757)	С	758)	d	759)	d	760)	d
557)	d	558)	а	559)	а	560) c	761)	а	762)	С	763)	С	764)	b
561)	С	562)	d	563)	а	564) a	765)	С	766)	b	767)	d	768)	a
565)	а	566)	а	567)	d	568) d	769)	d	770)	b	771)	d	772)	b
569)	d	570)	а	571)	С	572) c	773)	а	774)	С	775)	b	776)	b
573)	с	574)	b	575)	С	576) a	777)	С	778)	а	779)	d	780)	d
577)	а	578)	b	579)	b	580) b	781)	а	782)	а	783)	a	784)	d
							•							

785)	b	786)	а	787)	а	788)	a	
789)	С	790)	а	791)	d	792)	a	
793)	b	794)	b	795)	а	796)	b	
797)	b	798)	d	799)	b	800)	С	
801)	а	802)	d	803)	d	804)	d	
805)	С	806)	d	807)	b	808)	d	
809)	а	810)	С	811)	b	812)	b	
813)	а	814)	b	815)	b	816)	а	
817)	а	818)	а	819)	С	820)	С	
821)	а	822)	d	823)	а	824)	b	
825)	а	826)	а	827)	а	828)	a	

13.NUCLEI

: HINTS AND SOLUTIONS :

1 (a) Remaining amount $= 16 \times \left(\frac{1}{2}\right)^{32/2} = 16 \times \left(\frac{1}{2}\right)^{16} = \left(\frac{1}{2}\right)^{12} < 1mg$ 3 (a) Half-life of a radioactive element $T = \frac{0.693}{\lambda} \text{ or } T \propto \frac{1}{\lambda}$ $\therefore \qquad \frac{\lambda_A}{\lambda_B} = \frac{T_B}{T_A}$ 4 **(b)** $_{7}N^{14} + _{2}He^{4} \rightarrow _{8}O^{17} + _{1}H^{1}$ 5 $N_{t_{\star}} = N_0 e^{-\lambda t_1}$ $N_{t_2} = N_0 e^{-\lambda t_2}$ $\therefore N_{t_1} - N_{t_2} = N_0 (e^{-\lambda_{t_2}} - e^{-\lambda_{t_2}})$ 7 (a) Mass defect $\Delta m =$ Total mass of α – particles – mass of ¹²C nucleus $= 3 \times 4.002603 - 12$ = 12.007809 - 12= 0.007809 unit 8 **(b)** From diagram F_4 n=3 (-1.51 eV) E_1 _____ n=1 (– 13.6 eV) $E_1 = -13.6 - (-3.4) = -10.2eV$ $E_2 = -13.6 - (-1.51) = -12.09 eV$ $E_3 = -1.51 - (-0.85) = -0.66eV$ $E_4 = -3.4 - (-0.85) = (-2.55)eV$ *E*³ is least, *i. e.*, frequency is lowest 9 (a) $1amu (or 1 u) = 1.6605402 \times 10^{-27} kg$ $= 1.6 \times 10^{-24} \text{ g}$ Moreover 1 amu is equivalent to 931 MeV $0r 1.6 \times 10^{-24}$ g is equivalent to 931 MeV \therefore 1g is equivalent to $\frac{931}{1.6 \times 10^{-24}}$ MeV and 10^{-3} g is equivalent to $\frac{931}{1.6 \times 10^{-24}} \times 10^{-3}$ MeV

 $= 5.6 \times 10^{23} \text{ MeV}$

10 (d) $\Delta m = 0.3 a$ $= 0.3 \times 10^{-3} \text{ kg} = 3 \times 10^{-4} \text{ kg}$ Energy liberated , $E = \Delta m c^2$ $= 3 \times 10^{-4} \times (3 \times 10^8)^2$ $= 3 \times 10^{-4} \times 9 \times 10^{16}$ $= 27 \times 10^{12} \text{ J} = \frac{27 \times 10^{12}}{36 \times 10^6} \text{ kWh}$ $= 7.5 \times 10^{6} \text{ kWh}$ 11 (c) $\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{4^2}\right) = \frac{3R}{16} \Rightarrow \lambda = \frac{16}{3R} = \frac{16}{3} \times 10^{-5} cm$ Frequency $n = \frac{c}{\lambda} = \frac{3 \times 10^{10}}{\frac{16}{2} \times 10^{-5}} = \frac{9}{16} \times 10^{15} Hz$ 12 (d) V = (12.1 - 5.1)volt $V_{stopping} = 7V$ 13 **(b)** ${}_{88}A^{196} \rightarrow {}_{78}B^{164}$ Number of α – particles = $\frac{196-164}{4}$ = 8 ${}_{88}A^{196} \xrightarrow{-8\alpha} {}_{72}X^{164} \rightarrow {}_{78}B^{164}$ \therefore Number of β – particles = 78 – 72 = 6 14 (c) $\frac{hc}{\lambda} = E = eV$ $\Rightarrow \lambda = \frac{hc}{eV} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19} \times 4.9} = 2525 \text{ Å}$ 15 **(b)** $N = N_0 \left(\frac{1}{2}\right)^n$ Remaining part = $N_0 - \frac{3}{4}N_0$ $=\frac{1}{4}N_0$ $\frac{N_0}{4} = N_0 \left(\frac{1}{2}\right)^n$ $\left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^n$ Time = Half year \times Number of half year = 3×2 = 6days 16 **(a)** The total mass of the initial particles $m_i = 1.007825 + 7.016004$ = 8.023829 u and the total mass of final particles $m_f = 2 \times 4.002603 = 8.005206 \,\mathrm{u}$ Difference between initial and final mass of

particles $\Delta m = m_i - m_f = 8.023829 - 8.005206$ = 0.018623 uThe *Q*-value is given by $Q = (\Delta m)c^2$ $= 0.018623 \times 931.5 = 17.35$ MeV 17 (c) 1 week = 7 days = $7 \times 24hr \simeq 14$ half lives Number of atoms left = $\frac{N_0}{(2)^{14}}$, Activity = $N\lambda$ \therefore Activity left is $\frac{1}{(2)^{14}}$ times the initial $\Rightarrow \frac{1}{(2)^{14}} \times 1curie = \frac{1}{16384} \times 1$ curie $\cong 61 \times 1$ 10^{-6} curie $\approx 60 \mu curie$ 18 **(a)** Mean life = $\frac{\text{Half life}}{0.6931} = \frac{10}{0.6931} = 14.4 \text{ hours}$ 19 (a) If *R* is activity of radioactive substance after *n* half lives. then $R = R_0 \left(\frac{1}{2}\right)^n$ $\frac{R_0}{16} = R_0 \left(\frac{1}{2}\right)^n \therefore n = 4$ $t = n T = 4 \times 100 = 400 \ \mu s$ 20 **(b)** Here $T_{1/2} = 20 \text{ minutes}$, we know $\frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T_{1/2}}$ For 20% decay $\frac{N}{N_0} = \frac{80}{100} = \left(\frac{1}{2}\right)^{t_1/20}$...(i) For 80% decay $\frac{N}{N_0} = \frac{20}{100} = \left(\frac{1}{2}\right)^{t_2/20}$...(ii) Dividing (ii) by (i) $\frac{1}{4} = \left(\frac{1}{2}\right)^{\frac{(t_2 - t_1)}{20}}$ On solving we get $t_2 - t_1 = 40 \min$ 21 **(b)** β –decay from nuclei is based on this process only 22 (c) The binding energy of nucleus may be defined as the energy equivalent to the mass defect of the nucleus. If Δm is mass defect than according to Einstein's mass energy relation. **Binding Energy** $= \Delta mc^{2} = [\{Zm_{p} + (A - Z)m_{n}] - M]c^{2}$

 $= (7 \times 1.00783 + 7 \times 1.00867 -$

 $14.00307)c^2$ or BE = $0.1124 \times 931.5 \, MeV$ or BE = 104.623 (a) Ionisation energy of $Li^{++} = 9hcR$ Ionization energy = $RchZ^2 = Rch(3)^2$ (as Z = 3for Li^{++}) = 9hcR24 **(b)** $E_b + E_c > E_a$ 25 **(b)** $r = \frac{n^2}{7}(r_0); \Rightarrow r_{(n=2)} = \frac{(2)^2}{2} \times 0.53 = 1.06 \text{ Å}$ 26 **(b)** Linear momentum = $mv = 9.1 \times 10^{-31} \times 2.2 \times$ 10^{6} $= 2.0 \times 10^{-24} kg - m/s$ 27 (c) According to the quark model, it is possible to build all hadrons using 3 quarks and 3 antiquarks Mesons and baryons are collectively known as hadrons 28 (a) N = M - Z = Total no. of nucleons – no. of protons 30 (a) Nuclear density is constant hence, mass \propto volume $m \propto V$ 0r 31 (c) $_{92}U^{235}$ is normally fissionable 33 (c) Out side the nucleus, neutron is unstable (life -932 s) 34 (a) The mass of nucleus formed is always less than the sum of the masses of the constituent protons and neutrons *i*. *e*., $m < (A - Z)m_n + Zm_p$ 35 (c) Binding energy per nucleon increases with atomic number. The greater the binding energy per nucleon the more stable is the nucleus For ${}_{26}Fe^{56}$ number of nucleons is 56 This is most stable nucleus, since maximum energy is needed to pull a nucleon away from it 36 (a) $X(n,\alpha) {}^{7}_{3}Li \Rightarrow {}_{Z}X^{A} + {}_{0}n^{1} \rightarrow 3^{Li^{7}} + {}_{2}He^{4}$ Z = 3 + 2 = 5 and A = 7 + 4 - 1 = 10 $\therefore_5 X^{10} =_5 B^{10}$ 37 (a)

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n \Rightarrow \frac{1}{8} = \left(\frac{1}{2}\right)^n \Rightarrow n = 3$$

Now $t = n \times T_{1/2} = 3 \times 3.8 = 11.4 \ days$

38 **(c)**

Experimental measurements show that volume of a nucleus is proportional to its mass number*A*. If *R* is the radius of the nucleus assumed to be spherical, then its volume

 $\begin{pmatrix} \frac{4}{3}\pi R^3 \end{pmatrix} \propto A$ $R \propto A^{1/3}$ $R = R_0 A^{1/3}$

where R_0 is an empirical constant whose value is found to be 1.1×10^{-15} m.

40 **(a)**

or

or

Rest energy of an electron = $m_e c^2$ Here $m_e = 9.1 \times 10^{-31} kg$ and c = velocity of light \therefore Rest energy = $9.1 \times 10^{-31} \times (3 \times 10^8)^2$ joule = $\frac{9.1 \times 10^{-31} \times (3 \times 10^8)^2}{1.6 \times 10^{-19}} eV = 510 \ keV$

41 **(a)**

In increasing order of penetrating powers, the radiations are,

 $\alpha < \beta < \gamma$

42 **(a)**

B.E. per nucleon is maximum for Fe^{56} . For futher detail refer theory

43 **(c)**

$$N = N_0 \left(\frac{1}{2}\right)^n$$

$$\Rightarrow \frac{1}{100} N_0 = N_0 \left(\frac{1}{2}\right)^n \Rightarrow \frac{1}{100} = \left(\frac{1}{2}\right)^n \Rightarrow n = \frac{2}{\log 2}$$

$$\Rightarrow \frac{t}{T} = \frac{2}{\log 2} \Rightarrow t = 6.6T \text{ year}$$

44 **(a)**

Mass number decreases by $8 \times 4 = 32$ Atomic number decreases by $8 \times 2 - 5 = 11$

of S_2)

45 **(a)**

Activity of
$$S_1 = \frac{1}{2}$$
 (activity
Or $\lambda_1 N_1 = \frac{1}{2} (\lambda_2 N_2)$
Or $\frac{\lambda_1}{\lambda_2} = \frac{N_2}{2N_1}$
Or $\frac{T_1}{T_2} = \frac{2N_1}{N_2}$
Given $N_1 = 2N_2$
 $\therefore \quad \frac{T_1}{T_2} = 4$

46 **(a)**

Since electron and positron annihilate

$$\lambda = \frac{hc}{E_{Total}} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{(0.51 + 0.51) \times 10^6 \times 1.6 \times 10^{-19}}$$

 $= 1.21 \times 10^{-12} m = 0.012 \text{\AA}$ 47 **(b)**

Activity $= -\frac{dN}{dt} = \lambda N = \lambda N_0 e^{-\lambda t}$

i. e., graph between activity and *t*, is exponential having negative slope

48 **(d)**

Rydberg constant $R = \frac{\varepsilon_0 n^2 h^2}{\pi m 7 e^2}$

Velocity
$$v = \frac{Ze^2}{2\varepsilon_0 nh}$$
 and energy $E = -\frac{mZ^2e^4}{8\varepsilon_0^2n^2h^2}$
Now, it is clear from above expressions $R, v \propto n$

50 **(b)**

Nuclear forces are charge independent so,

$$r = r_0(A)^{1/3}$$

$$\therefore \quad \frac{r_1}{r_2} = \left(\frac{A_1}{A_2}\right)^{1/3} = \left(\frac{64}{125}\right)^{1/3}$$

$$= \left[\left(\frac{4}{5}\right)^3\right]^{1/3} = \frac{4}{5}$$

(b)

 $F_1 = F_2 = F_3$.

52 **(b)**

In a material medium, when a positron meets an electron both the particles annihilate leading to the emission of two γ -ray photons. This process forms the basis of an important diagnostic procedure called PET

53 **(a)**

For Balmer series $\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$ where n = 3, 4, 5For second line n = 4So $\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{4^2}\right) = \frac{3}{16}R \Rightarrow \lambda = \frac{16}{3R}$ 54 (a) $m_0c^2 = 0.54 \text{ MeV}$ and K.E. $= mc^2 - m_0c^2$ Also $m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{m_0}{\sqrt{1 - (0.8)^2}} = \frac{m_0}{0.6}$ $\therefore E = mc^2 = \frac{m_0}{0.6}c^2 = \frac{0.54}{0.6} = 0.9 \text{ MeV}$ \therefore K.E. = (0.9 - 0.54) = 0.36 MeV

55 **(b)**

57

In order to compare the stability of the nuclei of different atoms, binding energy per nucleon is determined. Higher the binding energy per nucleon more stable is the nucleus. $\therefore BE \text{ per nucleon of deuteron} = \frac{1.125}{2}$ = 0.5625 MeVBE per nucleon of alpha particle = $\frac{7.2}{2}$ = 1.8 MeV

BE per nucleon of alpha particle $=\frac{7.2}{4} = 1.8$ MeV Since, binding energy per nucleon of alpha particle is more, hence it is more stable. (d)

Here,
$$\frac{N_{x_1}(t)}{N_{x_2}(t)} = \frac{1}{e}$$

or $\frac{N_0 e^{-10\lambda t}}{N_0 e^{-\lambda t}} = \frac{1}{e}$

(Because initially, both have the same number of nuclei, N_0).

or
$$e = \frac{e^{-\lambda t}}{e^{-10\lambda t}} = e^{9\lambda t}$$

 $9\lambda t = 1$
 $t = \frac{1}{9\lambda}$

58 **(b)**

$$\lambda = \frac{0.693}{T_{1/2}} = \frac{0.693}{77} = 9 \times 10^{-3} / day$$

59 (c)

Since the $\frac{133}{55}Cs$ has larger size among the four atoms given, thus the electrons present in the outermost orbit will be away from the nucleus and the electrostatic force experienced by electrons due to nucleus will be minimum. Therefore the energy required to liberate electron from outer will be minimum in the case of $\frac{133}{55}Cs$

61 (d)

Because sound waves require medium to travel through and there is no medium (air) on moon's surface

62 **(c)**

By using
$$v = Rc \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

 $\Rightarrow v = 10^7 \times (3 \times 10^8) \left[\frac{1}{4^2} - \frac{1}{5^2} \right]$
 $= 6.75 \times 10^{13} Hz$

64 (a)

For Bracket series $\frac{1}{\lambda_{\max}} = R \left[\frac{1}{4^2} - \frac{1}{5^2} \right] = \frac{9}{25 \times 16} R$ and $\frac{1}{\lambda_{\min}} = R \left[\frac{1}{4^2} - \frac{1}{\infty^2} \right] = \frac{R}{16} \Rightarrow \frac{\lambda_{\max}}{\lambda_{\min}} = \frac{25}{9}$ 65 **(b)** $\frac{N}{N_0} = \left(\frac{1}{2} \right)^{t/T} \Rightarrow \left(\frac{1}{16} \right) = \left(\frac{1}{2} \right)^{2/T} \Rightarrow \left(\frac{1}{2} \right)^4 = \left(\frac{1}{2} \right)^{2/T}$ $\Rightarrow T = 0.5 \ hour = 30 \ minutes$ 66 **(a)** ${}_8O^{18} + {}_1H^1 \Rightarrow {}_9F^{18} + {}_on^1$ 67 **(d)** In time t = T, $N = \frac{N_0}{2}$ In another half-life, (ie, after 2 half-lives)

 $N = \frac{1}{2} \frac{N_0}{2} = \frac{N_0}{4} = N_0 \left(\frac{1}{2}\right)^2$

After yet another half-life ,(*ie*, after 3 half-lives) $N = \frac{1}{2} \left(\frac{N_0}{4} \right) = \frac{N_0}{8} = N_0 \left(\frac{1}{2} \right)^3$ and so on. Hence, after *n*

half-lives

$$N = N_0 \left(\frac{1}{2}\right)^n$$
$$= N_0 \left(\frac{1}{2}\right)^{t/T}$$

where $t = n \times T$ = total time of *n* half-lives. Here, $n = \frac{t}{T} = \frac{19}{3.8}$

 \therefore The fraction left

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^5 = \frac{1}{32} = 0.031$$

69 **(c)**

$$N = N_0 \ e^{-\lambda t} \Rightarrow \ln \frac{N_0}{N} = \lambda t$$

$$t = \frac{1}{\lambda} \ln \frac{N_0}{N} \Rightarrow t = \frac{2.303 \times T_{1/2}}{0.693} \log_{10} \frac{N_0}{N}$$

$$\frac{N_0}{N} = 10, T_{1/2} = 10 \ day \Rightarrow t = 33.23 \ days$$

70 (d)

In vector form of Coulomb's law proves that the forces ${\bf F}_{12}$ and ${\bf F}_{21}$ are equal and opposite.

or
$$\mathbf{F}_{21} = \mathbf{F}_{12}$$

 $\mathbf{F}_{pe} = \mathbf{F}_{ep}$
 $\mathbf{F}'_{pe} = \mathbf{F}'_{ep}$
And $\mathbf{F}_{pe} + \mathbf{F}_{ep} = -\mathbf{F}'_{ep} + \mathbf{F}'_{pe}$
So option (d) is incorrect.

71 **(b)**

$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = R \left[\frac{1}{(2)^2} - \frac{1}{(4)^2} \right] \Rightarrow \lambda = \frac{16}{3R}$$

73 **(c)**

Energy to excite the e^- from n = 1 to n = 2First excited state n = 2(-3.4 eV)

Ground state (For H_2 - atom)

$$E = -3.4 - (-13.6) = 10.2eV$$

= 10.2 × 1.6 × 10⁻¹⁹
= 1.632 × 10⁻¹⁸ I

74 **(b**)

The mass excess per nucleon of isotopes of atom is known as packing fraction given by

$$P = \frac{M-A}{A}$$

Where *M* is the actual mass of isotope and *A* is its atomic mass.

Packing fraction is positive for isotope having

very low or very high mass number and negative for all others.

75 (d)

$$N_{1} = \frac{N_{01}}{(2)^{t/20}}, N_{2} = \frac{N_{02}}{(2)^{t/10}}$$

$$N_{1} = N_{2}$$

$$\frac{40}{(2)^{t/20}} = \frac{160}{(2)^{t/10}} \Rightarrow 2^{t/20} = 2^{\left(\frac{t}{10} - 2\right)}$$

$$\Rightarrow \frac{t}{20} = \frac{t}{10} - 2 \Rightarrow \frac{t}{20} - \frac{t}{10} = -2$$

$$\Rightarrow \frac{t}{20} = 2 \Rightarrow t = 40$$

78 **(b)**

Conserving the momentum

$$0 = \frac{M}{2}v_{1} - \frac{M}{2}v_{2}$$

$$v_{1} = v_{2} \qquad \dots (i)$$

$$\Delta mc^{2} = \frac{1}{2} \cdot \frac{M}{2}v_{1}^{2} + \frac{1}{2} \cdot \frac{M}{2}v_{2}^{2} \qquad \dots (ii)$$

$$\Delta mc^{2} = \frac{M}{2}v_{1}^{2}$$

$$\frac{2\Delta mc^{2}}{M} = v_{1}^{2}$$

$$v_{1} = c\sqrt{\frac{2\Delta m}{M}}$$

79 **(a)**

The proton is the most stable in the Baryon group

80 (a)

Activity of substance that has 2000 disintegrations/sec

$$=\frac{2000}{3.7 \times 10^{10}} = 0.054 \times 10^{-6} ci = 0.054 \ \mu ci$$

The number of radioactive nuclei having activity

$$A = \frac{A}{\lambda} = \frac{2000 \times T_{1/2}}{\log_e 2}$$
$$= \frac{2000 \times 138.6 \times 24 \times 3600}{0.693} = 3.45 \times 10^{10}$$

81 (c)

$$N = N_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}} \Rightarrow \frac{N}{N_0} = \left(\frac{1}{2}\right)^{\frac{30}{10}} = \frac{1}{8} = 0.125$$
82 (d)
₄Be⁹ + ₂He⁴ → ₆C¹² + ₀n¹
83 (b)

B.E. 1 •⁺ • Fission A Fusion Α

+ŀ

the electron is conserved
85 (d)
After emitting
$$\beta$$
-particle $(-_1e^0)$ mass of nucleus
doesn't change
86 (c)
In nuclear fission, neutrons are released
87 (a)
In Lyman series $(\lambda_{\min})_L = \frac{1}{R}$ and $(\lambda_{\min})_B = \frac{4}{R}$
 $\Rightarrow (\lambda_{\min})_B = 4 \times (\lambda_{\min})_L = 4 \times 912 = 3648 \text{ Å}$
88 (c)
 $\Delta E = mc^2 - m_0c^2 = \frac{m_0c^2}{\sqrt{1 - (v^2/c^2)}} - m_0c^2$
 $= m_0c^2 \left(\frac{1}{\sqrt{1 - (v^2/c^2)}} - 1\right) = 0.511 \left(\frac{1}{\sqrt{0.75}} - 1\right)$
 $= 0.079 \text{ MeV}$
89 (a)
In fission process, when a parent nucleus breaks
into daughter products, then some mass is lost in
the form of energy. Thus, mass of fission products
 $< \text{mass of parent nucleus}$
 $\Rightarrow \frac{\text{Mass of fission products}}{\text{Mass of parent nucleus}} < 1$
90 (c)
 $\frac{N}{N_0} = \left(\frac{1}{2}\right)^{\frac{r}{11/2}} \Rightarrow \frac{1}{4} = \left(\frac{1}{2}\right)^{\frac{1}{10}}$
 $\Rightarrow \frac{t}{10} = 2 \Rightarrow t = 20$
91 (d)
Suppose closest distance is r , according to
conservation of energy
 $400 \times 10^3 \times 1.6 \times 10^{-19} = 9 \times 10^9 \frac{(ze)(2e)}{r}$
 $\Rightarrow 6.4 \times 10^{-14}$
 $= \frac{9 \times 10^9 \times (82 \times 1.6 \times 10^{-19}) \times (2 \times 1.6 \times 10^{-14})}{r}$
 $\Rightarrow r = 5.9 \times 10^{-13}m = 0.59 \text{ pm}$
93 (a)
 $\frac{R_1}{R_2} = \left(\frac{A_1}{A_2}\right)^{1/3} = \left(\frac{27}{125}\right)^{1/3} = \frac{3}{5} = 6:10$
94 (a)
 $N = \frac{N_0}{2^n} = \frac{N_0}{2^{1/2}} = \frac{N_0}{\sqrt{2}}$
95 (d)
 $A_8Cd^{115} \frac{2(-1\beta^0)}{2^{1/2}} = \frac{N_0}{\sqrt{2}}$
95 (d)
In positive beta decay a proton is transformed
into a neutron and a positron is emitted.

$$p^+ \rightarrow n^0 \ + \ e^+$$

Number of neutrons initially was A - Z. Number of neutrons after decay $(A - Z) - 3 \times 2$ (due to alpha particles) + 2 × 1(due to positive beta decay).

The number of protons will reduce by 8 [as 3×2 (due to alpha particles) + 2(due to positive beta decay)].

Hence, atomic number reduces by 8.

So, the ratio number of neutrons to that of protons

$$=\frac{A-Z-4}{Z-8}$$

97 **(a)**

The activity or decay rate *R* of radioactive substance is the number of decays per second. $\therefore R = \lambda N$

or
$$R = \lambda N_0 \left(\frac{1}{2}\right)^{t/T_{1/2}}$$

or $R = R_0 \left(\frac{1}{2}\right)^{t/T_{1/2}}$

where $R_0 = \lambda N_0$ is the activity of radioactive substance at time t = 0. According to question,

$$\frac{R}{R_0} = 1 - \frac{75}{100} = 25\%$$

$$\therefore \quad \frac{25}{100} = \left(\frac{1}{2}\right)^{t/T_{1/2}}$$

or $\left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^{t/T_{1/2}}$
or $\frac{t}{T_{1/2}} = 2$
 $\therefore \quad t = 2T_{1/2} = 2 \times 3.20 = 6.40 h$
or $t \approx 6.38 h$

98 **(b)**

In the spectral series of the hydrogen atom, Lyman series is in the ultraviolet region, Balmer series is in the visible region, paschen, Brackett and pfund are in the infrared region of the electromagnetic spectrum

99 **(d)**

 ${}^{9}_{4}Be + {}^{4}_{2}He \rightarrow {}^{12}_{6}C + {}^{1}_{0}x$ Clearly, it is a neutron

100 (a)

Let initial activity of both substances are same.

$$R = R_0 \left(\frac{1}{2}\right)^n = R_0 \left(\frac{1}{2}\right)^{t/t_{1/2}}$$

$$\therefore \quad \frac{R_1}{R_2} = \frac{\left(\frac{1}{2}\right)^{4/1}}{\left(\frac{1}{2}\right)^{4/2}} = \frac{\left(\frac{1}{2}\right)^4}{\left(\frac{1}{2}\right)^2} = \left(\frac{1}{2}\right)^2$$

$$\Rightarrow \qquad \frac{R_1}{R_2} = \frac{1}{4}$$

101 **(b)**

By using
$$R = R_0 A^{1/3} \Rightarrow \frac{R_1}{R_2} = \left(\frac{A_1}{A_2}\right)^{1/3}$$

$$\Rightarrow \frac{R}{R_{He}} = \left(\frac{A}{4}\right)^{1/3} \Rightarrow (14)^{1/3} = \left(\frac{A}{4}\right)^{1/3}$$
$$\Rightarrow A = 56 \text{ so } Z = 56 - 30 = 26$$

102 **(d)**

Extremely high temperature needed for fusion make KE large enough to overcome repulsion between nuclei.

103 **(c)**

Number of lines in absorption spectrum = (n - 1) $\Rightarrow 5 = n - 1 \Rightarrow n = 6$ \therefore Number of bright lines in the emission spectrum $= \frac{n(n-1)}{2} = \frac{6(6-1)}{2} = 15$

104 **(c)**

From conservation of momentum

$$4v = (A-4)v_1$$
$$v_1 = \left(\frac{4v}{A-4}\right)$$

105 **(d)**

Number of α –particles emitted = $\frac{238-222}{4} = 4$ This decreases atomic number to 90 – 4 × 2 = 82 Since atomic number of $_{83}Y^{222}$ is 83, this is possible of one β –particle is emitted

106 **(a)**

$${}_{92}X^{235} \xrightarrow{\alpha} {}_{90}X^{231} \xrightarrow{-{}_{1}e^{0}} {}_{91}Y^{231}$$

107 **(b)** By using $N = N_0 e^{-\lambda t}$ and $t = \tau = \frac{1}{\lambda}$ Substance remains $= N = \frac{N_0}{e} = 0.37N_0 \simeq \frac{N_0}{3}$ \therefore Substance disintegrated $= N_0 - \frac{N_0}{3} = \frac{2N_0}{3}$

108 **(c)**

After *t* second fractional amount of *X* left is $\frac{1}{16}$ or

$$\left(\frac{1}{2}\right)^4$$

$$\therefore t = 4 \times T_{1/2} = 4 \times 50 = 200 \text{ years}$$

109 **(d)**

$$\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

110 **(c)**

Charge density is uniform inside and then falls rapidly near the surface of the nucleus

111 (a) Number of protons = 2 + 2 + 6 + 2 + 6 = 18Number of neutrons = 40 - 18 = 22

112 **(d)**

By using $N = N_0 e^{-\lambda t}$ and $\frac{dN}{dt} = -\lambda N$

It shows that *N* decreases exponentially with time 113 **(c)**

In critical condition, k=1. The chain reaction will be steady. The size of the fissionable material used is said to be critical size and its mas the critical mass.

114 (c)

Radius of *n*th orbit for any hydrogen like atom $r_n = r_0 \left(\frac{n^2}{2}\right) (r_0 = \text{radius of first orbit of } H_2\text{-atom})$ If $r_n = r_0 \Rightarrow n = \sqrt{2}$. For $Be^{+++}, Z = 4 \Rightarrow n = 2$

116 (a)

For n = 1, maximum number of states $= 2n^2 = 2$ and for n = 2, 3, 4, maximum number of states would be 8, 18, 32 respectively, Hence number of possible elements = 2 + 8 + 18 + 32 = 60

117 **(b)**

After one α - emission, the daughter Nucleus reduces in mass number by 4 unit and in atomic number by 2 unit. In β - emission the atomic number of daughter nucleus increases by 1 unit. The reaction can be written as

$${}_{92}U^{238} \xrightarrow{-8\alpha} {}_{76}X^{206} \xrightarrow{-6\beta} {}_{82}Y^{206}$$

Thus, the resulting nucleus is
$${}_{82}Y^{206}$$
ie, ${}_{82}Pb^{206}$
119 (d)

In the given case, 12 days = 3 half lives Number of |132| (c) atoms left after 3 half live

$$= 6.4 \times 10^{10} \times \frac{1}{2^3} = 0.8 \times 10^{10}$$

120 (d)

Radioactive decay does not depend upon the time of creation.

121 (a)

$$\frac{1}{\lambda} = R\left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right] \Rightarrow \frac{\lambda_{\min}}{\lambda_{\max}} = \frac{\left[\frac{1}{2^2} - \frac{1}{3^2}\right]}{\left[\frac{1}{2^2} - \frac{1}{\infty}\right]} = \frac{5}{9}$$

122 (c)

Average life
$$\frac{1}{\lambda} = \frac{1600}{0.693} = 2308 \approx 2319$$
 years

 $\lambda_{IR} > \lambda_{UV}$ also wavelength of emitted radiation $\lambda \propto \frac{1}{\Lambda E}$

124 **(b)**

$$A = A_0 \left(\frac{1}{2}\right)^{t/T_{1/2}} \Rightarrow 5 = A_0 \left(\frac{1}{2}\right)^{\frac{2\times60}{30}} = \frac{A_0}{16} \Rightarrow A_0$$
$$= 80s^{-1}$$

125 (d)

In Raman effect, Stoke's lines are spectral lines having lower frequency or wavelength greater than that of the original line

126 **(b)**

Number of atoms undecayed $N = N_0 e^{-\lambda t}$

Number of atoms decayed = $N_0 - N = N_0 (1 - N)$ $e^{-\lambda t}$)

 \Rightarrow Decyaed fraction $f = \frac{N_0 - N}{N_0} = 1 - e^{-\lambda t}$

i.e., fraction will rise up to 1, following exponential path as shown in graph (B)

128 (a)

For Lyman series

 $v_{\text{Lyman}} = \frac{c}{\lambda_{\text{max}}} = RO\left[\frac{1}{(1)^2} - \frac{1}{(2)^2}\right] = \frac{3RC}{4}$ For Balmer series ſ 1 1 j 5RC С

$$v_{\text{Balmer}} = \frac{1}{\lambda_{\text{max}}} = RO\left[\frac{1}{(2)^2} - \frac{1}{(3)^2}\right] = \frac{1}{36}$$
$$\therefore \frac{v_{\text{Lyman}}}{v_{\text{Balmer}}} = \frac{27}{5}$$

129 (c)

$$E = \frac{(\text{momentum})^2}{2M} = \frac{\left(\frac{hv}{c}\right)^2}{2M}$$

130 (c)

As the γ –particle has no charge and mass 131 **(b)**

> Nuclear fusion takes place in stars which results in joining of nuclei accompanied by release of tremendous amount of energy

When there is an excess of protons in the nucleus and it is not energetically possible to emit an α – particle, β^+ decay occurs.

Resulting in reducing atomic numbers by 1. New atomic number = Z - 1, mass number = A. Gamma ray emission occurs with β^+ emission. Since, gamma rays have no charge or mass their emission does not change the chemical composition of the atom.

Hence atomic number = Z - 1, mass number = A

133 **(b)**

In negative β -decay a neutron in the nucleus is transformed into a proton, an electron and an antineutrino. Hence, in radioactivity decay process, the negatively charged emitted βparticles are the electrons produced as a result of the decay of neutrons present inside the nucleus.

134 **(b)**

According to Kepler's 3rd law.

$$T^2 \propto r^3$$

$$\therefore \ \frac{T_1}{T_2} = \left(\frac{r_1}{r_2}\right)^{3/2} = 8$$

$$\frac{r_1}{r_2} = 8^{2/3} = 4$$

According to Bohr atom model, $r \propto n^2$

$$\therefore \ \frac{n_1^2}{n_2^2} = \frac{r_1}{r_2} = 4; \ \frac{n_1}{n_2} = 2$$

If $n_1 = 2$, then $n_2 = 1$

135 **(d)**

Speed of electron in n^{th} orbit (in CGS) $v_n = \frac{2\pi Z e^2}{nh} (k = 1)$ For first orbit of H_1 ; n = 1 and Z = 1So $v = \frac{2\pi e^2}{h} \Rightarrow \frac{v}{c} = \frac{2\pi e^2}{hc}$ 136 (d)

> Impact parameter $b \propto \cot \frac{\theta}{2}$ Here b = 0, hence $\theta = 180^{\circ}$

137 **(c)**

When uranium is bombarded by neutrons, each uranium nucleus is broken into nearly equal fragments and along with it huge energy and two or three fresh neutrons are liberated. Under favourable conditions these neutrons fission other uranium nuclei in the same way. Thus, a chain of nuclear fission is established which continues till the whole of uranium is consumed.

138 **(b)**

 $V \propto (10^{-15})^3 \text{ m}^3 \propto 10^{-45} \text{ m}^3$: Density = $\frac{\text{mass}}{\text{volume}} = \frac{393.35 \times 10^{-27}}{10^{-45}} = 10^{20} \text{ kgm}^{-3}$ 141 (a) From Rutherford-Soddy law $N = N_0 \left(\frac{1}{2}\right)^n$ $n = \frac{38}{3.8} = 10$ The initial quantity of radon $N_0 = 1024 mg$. Therefore, the mass of radon left after 10 halflives is $N = 1024 \times \left(\frac{1}{2}\right)^{10} = \frac{1024}{1024} = 1$ mg. 142 (b) $N = N_0 e^{-\lambda t}$ $N = ne^{-\lambda t}$ The number of decay between 0 and $t N_0 - N$ $= n - ne^{-\lambda t} = n(1 - e^{-\lambda t}) = n(1 - e^{-t/T})$ 143 (c) The nuclear reactions is as follows $_{7}N^{14} + _{2}He^{4} \rightarrow _{8}O^{17} + _{a}X^{p}$ Conservation of mass number gives P = 14 + 4 - 17 = 1Conservation of atomic number gives a = 7 + 2 - 8 = 1Hence, particle is a proton $_1$ H¹. 144 **(b)** $_1H^2 + _1H^2 \rightarrow _2He^4 + Q$ 145 (a) For isotopes *Z* is same and *A* is different. Therefore the number of neutrons A - Z will also be different 148 (b) Power = $\frac{\text{energy}}{\text{time}}$ = 300 × 10⁶ watt $= 3 \times 10^8 \, \text{J/s}$ $170 \text{ MeV} = 170 \times 10^6 \times 1.6 \times 10^{-19}$ $= 27.2 \times 10^{-12}$ J Number of atoms fissioned per second $=\frac{3 \times 10^8}{27.2 \times 10^{-12}}$ $=\frac{3 \times 10^{20}}{27.2}$ Number of atoms fissioned per hour $= \frac{3 \times 10^{20} \times 3600}{27.2}$ $= \frac{3 \times 36}{27.2} \times 10^{22} = 4 \times 10^{22} \text{ m}$ 149 (a) K.E. = -(T.E.)150 (c) 'Rad' is used to measure biological effect of radiation. 152 (a)

$$\frac{1}{\lambda_{\text{Balmer}}} = R\left[\frac{1}{2^2} - \frac{1}{3^2}\right] = \frac{5R}{36}, \frac{1}{\lambda_{\text{Lyman}}} = R\left[\frac{1}{1^2} - \frac{1}{2^2}\right]$$
$$= \frac{3R}{4}$$
$$\therefore \lambda_{\text{Lyman}} = \lambda_{\text{Balmer}} \times \frac{5}{27} = 1215.4 \text{ Å}$$

154 (a)

$$N = N_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}} = N_0 \left(\frac{1}{2}\right)^{\frac{15}{5}} = \frac{N_0}{8}$$

155 **(b)**

Half life of neutron $T_{1/2} = 12 \text{ min}$ Mean life = $T_{1/2} + 44\%$ of $T_{1/2}$ $\approx 17 \text{ min} \approx 1000 \text{sec}$

156 **(a)**

A and C are isotopes as their charge number is same

158 (c)

Energy in excited state = -13.6 + 12.1 = -1.5 eV

$$\therefore \ \frac{-13.6}{n^2} = -1.5$$
$$\therefore \ n = \sqrt{\frac{13.6}{1.5}} = 3$$

Number of spectral lines

$$=\frac{n(n-1)}{2}=\frac{3(3-1)}{2}=3$$

159 **(b)**

Heavy water is used in certain type of nuclear where it acts as a neutron moderator to slow down neutrons so that they can react with uranium in the reactor.

160 **(b)**

$$N = N_0 e^{-\lambda t}$$

Variation of N is exponential

161 **(b)**

Here
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^{1/3}$$

Where $n =$ Number of half lives $= \frac{1}{2}$
 $\Rightarrow \frac{N}{N_0} = \frac{1}{1.26} \Rightarrow \frac{N_U}{N_{Pb} + N_U} = \frac{1}{1.26}$
 $\Rightarrow N_{Pb} = 0.26 N_U \Rightarrow \frac{N_{Pb}}{N_U} = 0.26$

163 **(a)**

According to Rydberg's formula $\frac{1}{\lambda} = R\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$ Here, $n_f = 1, n_i = n$

$$\therefore \frac{1}{\lambda} = R\left(\frac{1}{1^2} - \frac{1}{n^2}\right) \Rightarrow \frac{1}{\lambda} = R\left(1 - \frac{1}{n^2}\right) \quad \dots \text{ (i)}$$
Multiplying equation (i) by λ on both sides,

$$1 = \lambda R\left(1 - \frac{1}{n^2}\right) \Rightarrow \frac{1}{\lambda R} = 1 - \frac{1}{n^2}$$

$$\Rightarrow \frac{1}{n^2} = 1 - \frac{1}{\lambda R} \Rightarrow \frac{1}{n^2} = \frac{\lambda R - 1}{\lambda R} \Rightarrow n = \sqrt{\frac{\lambda R}{\lambda R - 1}}$$

164 **(c)**

Energy of stars is due to the fusion of light hydrogen nuclei into *He*. In this process much energy is released

165 **(a)**

$$(A) \longrightarrow (V') (A-4) + (4) \longrightarrow (V') (A-4) + (A-4$$

According to conservation of momentum 4v = (A - 4)v'

$$\Rightarrow v' = \frac{4v}{A-4}$$

167 (c) For third line of Balmer series $n_1 = 2, n_2 = 5$ $\therefore \frac{1}{\lambda} = RZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$ gives $Z^2 = \frac{n_1^2 n_2^2}{(n_2^2 - n_1^2)\lambda R}$ On putting values Z = 2From $E = -\frac{13.6Z^2}{n^2} = \frac{-13.6(2)^2}{(1)^2} = -54.4eV$

168 (d)

Using conservation of momentum $P_{daughter} = P_{\alpha}$ $\Rightarrow \frac{E_d}{E_{\alpha}} = \frac{m_{\alpha}}{m_d} \Rightarrow E_d = \frac{E_{\alpha} \times m_{\alpha}}{m_d} = \frac{6.7 \times 4}{214}$ = 0.125 MeV

169 (d)

B.*E*. per nucleon \propto stability

170 **(a)**

According to Bohr theory,
$$mvr = n \frac{h}{2\pi} \Rightarrow v = \frac{nh}{2\pi mr}$$

and $\frac{mv^2}{r} \propto \frac{k}{r} \Rightarrow \frac{m}{r} \left(\frac{n^2h^2}{4\pi^2m^2r^2}\right) \propto \frac{k}{r} \Rightarrow r_n \propto n$
Kinetic energy $T = \frac{1}{2}mv^2 = \frac{1}{2}m\left(\frac{n^2h^2}{4\pi^2m^2r^2}\right) \Rightarrow T_n \propto \frac{n^2}{r^2}$
But as $r \propto n$ therefore $T \propto n^0$
171 (a)
For Lyman series $v = RC\left[\frac{1}{1^2} - \frac{1}{n^2}\right]$
Where $n = 2, 3, 4,$
For the series limit of Lyman series $n = \infty$
 $\therefore v_1 = RC\left[\frac{1}{1^2} - \frac{1}{\infty^2}\right] = RC$...(i)
For the first line of Lyman series, $n = 2$
 $\therefore v_2 = RC\left[\frac{1}{1^2} - \frac{1}{2^2}\right] = \frac{3}{4}RC$...(ii)

For Balmer series $v = RC\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$ Where $n = 3, 4, 5 \dots$ For the series limit of Balmer series $n = \infty$ $\therefore v_3 = RC \left[\frac{1}{2^2} - \frac{1}{\omega^2} \right] = \frac{RC}{4} \quad \dots \text{(iii)}$ From equations (i), (ii) and (iii), we get $v_1 = v_2 + v_3 \Rightarrow v_1 - v_2 = v_3$ 172 **(b)** Positron is the antiparticle of electron 173 (d) Nuclides with same atomic number Z but different mass number A are known as isotopes Nuclides with same mass number A but different atomic number Z are known as isobars Nuclides with same neutron number N = (A - Z)but different atomic number Z are known as isotones $_1H^2$ and $_1H^3$ are isotopes $_2He^3$ and $_1H^3$ are isobars $_{79}Au^{197}$ and $_{80}Hg^{198}$ are isotones 174 **(b)** ${}_{6}C^{12} + {}_{0}n^{1} \rightarrow {}_{7}N^{13} + {}_{-1}e^{0} + \bar{v}$ (Neutron) (Beta (Anti particle) neutrino) On equating atomic numbers and atomic masses, the atomic number and atomic mass for resulting nucleus is 7 and 13, which is for nitrogen nucleus. 175 (d) $E = \Delta mc^2 \Rightarrow E = \frac{0.3}{1000} \times (3 \times 10^8)^2$ $= 2.7 \times 10^{13} J$ $=\frac{2.7\times10^{13}}{3.6\times10^6}=7.5\times10^6 kWh$ 176 (d)

The number force is charge independent No. of nucleons = No. of protons + no. of neutrons |185 (a)

= Mass number

All nuclei have masses that are less than the sum of the masses of its constituents. The difference in mass of a nucleus and its constituents is known as mass defect.

Nucleons belong to the family of hadrons while electrons belong to family of leptons

178 (a)

Given $N_0 \lambda = 5000$, $N \lambda = 1250$ $N = N_0 e^{-\lambda t} = N_0 e^{-5\lambda}$ Where λ is decay constant per min. $N\lambda = N_0\lambda e^{-5\lambda}$ $1250 = N_0 \lambda e^{-5\lambda}$ $\therefore e^{-5\lambda} = \frac{5000}{1250} = 4$

$$e^{5\lambda} = 4$$

$$5\lambda = 2\log_e 2$$

$$\lambda = 0.4 \ln 2$$

179 (d)

β-emission takes place from a radioactive nucleus as

 $^{32}_{15}P \xrightarrow{-\beta} ^{32}_{16}S +_{-1}e^0 + \bar{v}_1$

Where \bar{v} is the anti-neutrino. In β^+ decay a positron is emitted as

 $^{22}_{11}\text{Na} \rightarrow ^{22}_{10}\text{Ne}_{-1}e^0 + v$

180 (a)

Excitation energy $\Delta E = E_2 - E_1 = 13.6 Z^2 \left[\frac{1}{1^2} - \right]$ 122

$$\Rightarrow 40.8 = 13.6 \times \frac{3}{4} \times Z^2 \Rightarrow Z = 2$$

Now required energy to remove the electron from ground state $=\frac{+13.6Z^2}{(1)^2} = 13.6(Z)^2 = 54.4 \ eV$

181 (b)

$$F = kq_1 q_2/r^2, i. e.,$$

$$F = \frac{9 \times 10^9 \times 1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{(2.5 \times 10^{-11})^2}$$

$$= 3.7 \times 10^{-7} N$$

184 (d)

Helium atom has 2 electrons. When one electron is removed, the remaining atom is hydrogen like atom, whose energy in first orbit is

$$E_1 = -(2)^2 (13.6 \text{ eV}) = -54.4 \text{ eV}$$

Therefore, to remove the second electron from the atom, the additional energy of 54.4 eV is required. Hence, total energy required to remove both the electrons = 24.6 + 54.4 = 79.0 eV

This is due to mass defect because a part of mass is used in keeping the neutrons and protons bound as α – particle

186 (a)

From Rutherford-Soddy law

$$N = N_0 \left(\frac{1}{2}\right)^n$$

$$n = \frac{t}{T}$$

$$\therefore 10^6 = 1.414 \times 10^6 \left(\frac{1}{2}\right)^{t/T}$$

$$\Rightarrow \frac{1000}{1414} = \left(\frac{1}{2}\right)^{t/T}$$

$$\Rightarrow \left(\frac{1}{2}\right)^2 = \left(\frac{10}{12}\right)^2 \qquad \text{(Approximately)}$$

$$\Rightarrow n = 2$$

$$\Rightarrow \qquad n = \frac{t}{T} = 2$$
$$\Rightarrow \qquad T = \frac{10}{2} = 5 \text{ min}$$

$$E = \Delta mc^{2} = 1 \times (3 \times 10^{8})^{2} = 9 \times 10^{16} J$$

$$\Rightarrow E = \frac{9 \times 10^{16}}{1.6 \times 10^{-19}} = 5.625 \times 10^{35} eV$$

$$= 5.625 \times 10^{29} MeV$$

189 **(c)**

$$_{85}X^{297} \rightarrow _{77}Y^{281} + 4(_{2}He^{4})$$

190 **(d)**

Minimum wavelength is for highest energy $n = 1 \rightarrow n = \infty$, energy $= E_0$ $n = 2 \rightarrow n = \infty$, energy $= E_0/4$

$$n = 2 \rightarrow n = \infty, \text{ energy} = E_0/4$$

$$n = \infty E = 0$$

$$n = 2 E_0/4$$

$$n = 1 E_0$$

 \therefore Balmer line has 4 times the wavelength

$$\therefore$$
 Ratio of minimum wavelength is $1/4 = 0.25$

192 **(d)**

Activity reduces from 6000dps to 3000dps in 140 days. It implies that half-life of the radioactive sample is 140 days. In 280 days (or two half-

lives) activity will remain $\frac{1}{4}$ th of the initial activity

. Hence the initial activity of the sample is $4 \times 6000 \text{ dps} = 24000 \text{ dps}$

193 **(b)**

The working of hydrogen bomb is based upon nuclear fusion.

195 **(a)**

(i)
$${}_{16}S^{32} + {}_0n^1 \rightarrow {}_{15}p^{32} + {}_1H^1$$

(ii) ${}_9F^{19} + {}_1H^1 \rightarrow {}_2He^4 + {}_8O^{16}$
(iii) ${}_7N^{14} + {}_0n^1 \rightarrow {}_6C^{14} + {}_1H^1$

196 **(b)**

Number of atoms remains undecayed $N = N_0 e^{-\lambda t}$ Number of atoms decayed $= N_0 (1 - e^{-\lambda t})$

$$= N_0 \left(1 - e^{-\lambda \times \frac{1}{\lambda}} \right) = N_0 \left(1 - \frac{1}{e} \right) = 0.63 N_0 = 63\%$$

of N_0

197 **(d)**

By using $A = A_0 \left(\frac{1}{2}\right)^{\frac{1}{T_{1/2}}} \Rightarrow \frac{A}{A_0} = \left(\frac{1}{2}\right)^{9/3} = \frac{1}{8}$

199 **(d)**

Decrease in mass number = 4

Decreases in charge number = 2 - 1 = 1

200 **(c)**

 $T \propto n^3$

201 **(c)**

 $N = N_0 e^{-\lambda t} \Rightarrow \frac{dN}{dt} = -N_0 \lambda e^{-\lambda t}$ *i.e.*, Rate of decay $\left(\frac{dN}{dt}\right)$ varies exponentially with time (t) 202 (b) $_{Z}X^{A} \xrightarrow{\alpha} _{Z-2}X^{A-4}$ 203 (c) New mass number $A' = A - 4n_{\alpha} = 232 - 4 \times 6 =$ 208 Atomic number $Z' = Z + n_\beta - 2n_\alpha = 90 + 4 - 2n_\beta$ $2 \times 6 = 82$ 204 (d) $E_{n_1 \to n_2} = -13.6 \left[\frac{1}{n_2^2} - \frac{1}{n_1^2} \right]; n_1 = 2 \& n_2 = 1$ $\Rightarrow E_{II} \rightarrow E_I = -13.6 \times \frac{3}{4} = -10.2 \ eV$ 205 (c) James Chadwick discovered the neutron 206 (c) Let number of α particles decayed be *x* and number of β particles decayed bey. Then equation for the decay is given by $_{92}U^{235} \rightarrow x\alpha_2^4 + y\beta_{-1}^0 + Pb_{82}^{203}$ Equating the mass number on both sides 235 = 4x + 203...(i) Equating atomic number on both sides 92 = 2x - y + 82...(ii) Solving Equ.(i) and(ii), we get x = 8, y = 6 \therefore 8 α particles and 6 β particles are emitted in disintegration. 209 (d) $E = -Z^2 \times 13.6 \ eV = -9 \times 13.6 \ eV = -122.4 \ eV$ So ionization energy = +122.4 eV210 (b) Let the energy in *A*, *B* and *C* states be E_A . E_B and E_{C} , then from the figure $(E_C - E_B) + (E_B - E_A) = (E_C - E_A)$ or $\frac{hc}{\lambda_1} + \frac{hc}{\lambda_2} = \frac{hc}{\lambda_3}$ $\Rightarrow \lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$

211 (d)

 $E_n = -13.6 \frac{z^2}{n^2} eV$. Required energy for said transition

$$\Delta E = E_3 - E_1 = 13.6 Z^2 \left[\frac{1}{12} - \frac{1}{32} \right]$$

$$\Rightarrow \Delta E = 13.6 \times 3^2 \left[\frac{8}{9} \right] = 108.8 eV$$

$$\Rightarrow \Delta E = 108.8 \times 1.6 \times 10^{-19} J$$
Now $\Delta E = \frac{hc}{\lambda} = 108.8 \times 1.6 \times 10^{-19}$

$$\Rightarrow \lambda = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{108.8 \times 1.6 \times 10^{-19}}$$

$$= 0.11374 \times 10^{-7}m = 113.74 Å$$
212 (d)
For Lyman series $\frac{1}{\lambda_{max}} = R \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = \frac{3}{4}R$ and
 $\frac{1}{\lambda_{min}} = R \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right] = \frac{R}{1} \Rightarrow \frac{\lambda_{max}}{\lambda_{min}} = \frac{4}{3}$
213 (a)
 $R_0 = \text{Initial activity} = 1 \text{ micro curie} = 3.7 \times 10^4 d ps$
 $r = \text{Activity in } 1 cm^3 \text{ of blood at } t = 5 hr$
 $= \frac{296}{60} dps = 4.93 dps$
 $R = \text{Activity of whole blood at time $t = 5 hr$
Total volume should be $V = \frac{R}{r} = \frac{R_0 e^{-\lambda t}}{r}$
 $= \frac{3.7 \times 10^4 \times 0.7927}{4.93} = 5.94 \times 10^3 cm^3$
 $= 5.94 \ litre$
214 (b)
 $\frac{4}{2}X + \frac{1}{0}n \rightarrow \frac{7}{3}\text{Li} + \frac{4}{2}\text{He}$
It implies that $A + 1 = 7 + 4$
 $\Rightarrow A = 10$
and $Z + 0 = 3 + 2$
 $\Rightarrow Z = 5$
Thus, it is boron ^{10}B .
215 (c)
The equation is $0^{17} \rightarrow_0 n^1 + 0^{16}$
 \therefore Energy required = B.E. of $0^{17} - \text{B.E. of } 0^{16}$
 $= 17 \times 7.75 - 16 \times 7.97 = 4.23 \ \text{MeV}$
216 (a)
Let α -particles emitted are x and β - particles
emitted are y
 $90 = 82 + 2x - y$
or $2x - y = 8$...(i)
On comparing atomic number
 $90 = 82 + 2x - y$
or $2x - y = 8$...(i)
On comparing mass number
 $232 = 208 + 4x$
or $x = 6$
Putting the value of x in Eq.(i), we get
 $y = 4$
217 (d)$

Half life of a substance doesn't depends upon

 $\Rightarrow T = 7.9 \times 10^4 K$

amount, temperature and pressure. It depends upon the nature of the substance

218 (a)
By using
$$n_{\alpha} = \frac{A-A'}{4}$$
 and $n_{\beta} = 2n_{\alpha} - Z + Z'$
220 (b)
Let there be $x\alpha$ -particles and $\gamma\beta$ - particles
 ${}_{z}X^{4} \rightarrow xHe_{2}^{4}+y\beta_{-1}^{0}+Y_{Z-3}^{A-3}$
Then equating the mass numbers
 $A = 4x + A - 8$...(i)
and Equating atomic number
 $Z = 2x - y + Z - 3$...(ii)
Solving Eqs.(i) and (ii),we get
 $x=2$ and $y=1$
 \therefore The number of α and β particles emitted are 2
and 1 respectively.
221 (a)
 ${}_{92}U^{239} \rightarrow {}_{94}Pu^{239}+2({}_{-1}e^{0})$
222 (b)
 $A = A_0e^{-\lambda t} \Rightarrow 975 = 9750 \ e^{-\lambda \times 5} \Rightarrow e^{5\lambda} = 10$
 $\Rightarrow 5\lambda = \log_{e} 10 = 2.3026 \log_{10} 10 = 2.3026$
 $\Rightarrow \lambda = 0.461$
223 (d)
Let radius of ${}_{9}^{3}$ Be nucleus be r . Then radius of
germanium (Ge) nucleus will be2 r .
Radius of nucleus is given by
 $R = R_0A^{1/3}$
 $\therefore \frac{R_1}{R_2} = (\frac{A_1}{A_2})^{1/3}$ ($\because A_1 = 9$)
 $\Rightarrow (\frac{1}{2})^3 = \frac{9}{A^2}$
Hence, $A_2 = 9 \times (2)^3 = 9 \times 8 = 72$
Thus, in germanium (Ge) nucleus number of
nucleons is 72.
224 (c)
 $A = A_0e^{-\lambda t} = A_0e^{-t/\tau}$; where τ = mean life
So $A_1 = A_0e^{-t_1/T} = A_1e^{t_1/T}$
 $\therefore A_2 = A_0e^{-t_1/T} = (A_1e^{t_1/T})e^{-t_2/T}$
 $\Rightarrow A_2 = A_1e^{(t_1-t_2)/T}$
225 (a)
According to kinetic interpretation of
temperature
 $K. E. = (\frac{1}{2}mv^2) = \frac{3}{2}kT$
 $\Rightarrow 10.2 \times 1.6 \times 10^{-19} = \frac{3}{2} \times (1.38 \times 10^{-23})T$

226	(2)
220	$\begin{bmatrix} a \end{bmatrix}$
	Electron after absorbing 10.2 eV energy goes to
	its first excited state $(n = 2)$ from ground state
	(n = 1)
	\therefore Increase in momentum = $\frac{h}{2\pi}$
	6.6×10^{-34}
	$=\frac{1.05 \times 10^{-34}}{6.28} = 1.05 \times 10^{-34}$
227	(c)
	Nuclear force between two narticles is
	independent of sharess of particles is
	independent of charges of particle.
	$\Rightarrow \qquad F_{pp} = F_{nn} = F_{np}$
228	(c)
	Transition A ($n = \infty$ to 1) : Series limit of Lyman
	series
	Transition B $(n - 5 \text{ to } n - 2)$ · Third spectral line
	$\int D dr = 5 \ (n - 2) \ f = 2 \ (n - 2)$
	of Balmer series
	Transition C ($n = 5$ to $n = 3$): Second spectral
	line of Paschen series
229	(a)
	$E = mc^2 = (1 \times 10^{-3})(3 \times 10^8)^2 = 9 \times 10^{13}$
230	(c)
200	$13.6(3)^2$
	$E_1 = -\frac{15.0(3)}{(4)^2}$
	$(1)^2$
	$F = -\frac{13.6(3)^2}{2}$
	$L_3 = -\frac{1}{(3)^2}$
	$12 (2)^{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
	$\therefore \Delta E = E_3 - E_1 = 13.0(3)^2 \left[1 - \frac{1}{9} \right]$
	$13.6 \times 9 \times 8$
	=9
	$\Rightarrow \Delta E = 108.8 eV$
231	(c)
-01	From Butherford-Soddy's law
	$r_{10}n$
	$N = N_0 \left(\frac{1}{2}\right)$
	Civen $N = 1 = \frac{3}{2} = \frac{1}{2}N$ $n = \frac{t}{2} = \frac{t}{2}$
	Given, $N = 1$ $\frac{4}{4}$ $\frac{4}{4}$ $\frac{1}{4}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{4}$
	$\frac{1}{1} - \frac{1}{1}^{t/4}$
	$\frac{1}{4} = \left(\frac{1}{2}\right)$
	$(1)^2 (1)^{t/4}$
	$\Rightarrow \left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)$
	$\Rightarrow 2 = \frac{1}{4}$
	\Rightarrow $t = 8$ months
232	ወ
202	n = 3 (- 1.51 eV)
	E ₃
	<i>n</i> = 2 (− 3.4 <i>eV</i>)
	n = 1 (- 13 6 PV)
	$E_{0,0} = -151 - (-34) = 189 \rho V$
	$ = \frac{1}{3} = \frac{1}{2} = \frac$
<u></u>	$\rightarrow E_{3\rightarrow 2} = 1.9ev$
234	(a)

B.E. = $\Delta mc^2 = \Delta \times 931 \, MeV$ = [2(1.0087 + 1.0073) - 4.0015] × 931 = 28.4 MeV

235 **(a)**

The splitting of ${}_{92}U^{234}$ is as follows ${}_{92}U^{234} \rightarrow {}_{46}X^{116} + {}_{46}X^{116} + 2 {}_{0}n^{1} + \text{energy}$ $\therefore {}_{46}X^{116}$ is ${}_{46}Pd^{116}$

236 (d)

Average BE/nucleon increase first, and then decreases, as is clear from BE curve.

237 **(c)**

Energy is released in a process when total binding energy (B.E.) of the nucleus is increased or we can say when total *B*. *E*. of products is more than the reactants. By calculation we can see that only in case of option (*c*), this happens Given $W \rightarrow 2Y$

B.E. of reactants = $120 \times 7.5 = 900 \text{ MeV}$ and B.E. of products = $2 \times (60 \times 8.5) =$

1020 MeV

i.e., B.E. of products > B.E. of reactants 238 (c)

$$N = N_0 e^{-\lambda t} \Rightarrow \left| \frac{dN}{dt} \right| = N_0 \lambda e^{-\lambda t}$$
Initially at $t = 0$, $\left| \frac{dN}{dt} \right|_{t=0} = N_0 \lambda$
Where N_0 = Initial number of undecayed atoms

$$= \frac{\text{Mass of the sample}}{\text{Mass of a single atom of } X} = \frac{M}{A/N_A} = \frac{MN_A}{A}$$

$$\therefore \left| \frac{dN}{dt} \right|_{t=0} = \frac{MN_A \lambda}{A} = \frac{0.693MN_A}{AT}$$
239 (a)
 $R = R_0 A^{1/3}$
Here, $R = 7.2 \times 10^{-15} m$, $R_0 = 1.2 \times 10^{-15} m$
 $\therefore A = \left(\frac{R}{R_0}\right)^3 = \left(\frac{7.2 \times 10^{-15}}{1.2 \times 10^{-15}}\right)^3 = (6)^3 = 216$
Also, atomic number $Z = \frac{q}{e} = \frac{1.28 \times 10^{-17}}{1.6 \times 10^{-19}} = 80$
Therefore, number of neutrons
 $N = A - Z = 216 - 80 = 136$
240 (d)
Applying principle of energy conservation.
Energy of proton=total BE of 2 α -energy of Li⁷
 $= 8 \times 7.06 \times 7 \times 5.6$
 $= 56.48 - 39.2 = 17.28$ MeV
241 (b)
Energy of proton +7 $\times 5.60 = 2 \times [4 \times 7.06]$

 \therefore Energy of proton = 17.28 MeV
242 (c)

Fast neutrons can escape from the reaction. So as to proceed the chain reaction slow neutrons are best

243 (c)

An electron is accompanied by an antineutrino.

244 (d)

Undisintegrated part $\frac{N}{N_0} = (100 - 18)\% = 82\%$ Using relation $N = N_0(e^{-\lambda t})$ $\frac{82}{100} = e^{-(24 \times 60 \times 60\lambda)}$ $\therefore 24 \times 60 \times 60 \times \lambda = \log\left(\frac{100}{82}\right)$ or $\lambda = 2.1 \times 10^{-6} \text{ s}^{-1}$ 245 (d) One curie = 3.71×10^{10} disintegrations S⁻¹

Mass of 6.023 \times $10^{23} atoms of U^{234}$ = 234 g

Mass of 3.71 \times $10^{10} \rm atoms$

$$=\frac{234\times3.71\times10^{10}}{6.023\times10^{23}}=1.438\times10^{11}\mathrm{g}$$

246 **(b)**

$$\lambda = \frac{0.693}{T_{1/2}} = \frac{0.693}{20} = 0.03465$$

Now time of decay $t = \frac{2.303}{\lambda} \log \frac{N_0}{N}$
$$\Rightarrow t_1 = \frac{2.303}{0.03465} \log \frac{100}{67} = 11.6 \text{ min } min$$
and $t_2 = \frac{2.303}{0.03465} \log \frac{100}{33} = 32min$

Thus time difference between points of time = $t_1 - t_2 = 32 - 11.6 = 20.4 \text{ min} = 20 \text{ min}$ 248 (c)

 \therefore Orbital quantum number has values : 0 to (n-1)

For n = 3, orbital quantum number l = 0, 1, 2249 (c)

$$N = N_0 \left(\frac{1}{2}\right)^{t/T_{1/2}} \Rightarrow 1 = 16 \left(\frac{1}{2}\right)^{\frac{2}{T_{1/2}}} \Rightarrow T_{1/2}$$
$$= \frac{1}{2}hour$$

250 **(b)**

20 g substance reduces to 10 g (*i. e.*, becomes half in 4 min. So $T_{1/2} = 4$ min. Again $M = M_0 =$ $\left(\frac{1}{2}\right)^{t/T_{1/2}}$ (M)

$$\Rightarrow 10 = 80 \left(\frac{1}{2}\right)^{t/4} \Rightarrow \frac{1}{8} = \left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^{t/4} \Rightarrow t$$
$$= 12 \ min$$

252 (a)

Mass number of an element is the total number of protons and neutrons present inside the atomic nucleus of the element .It is represented by *A*. *A* is different for different elements. Mass number of a nucleus is sometimes equal to its atomic number, for example in case of hydrogen, number of neutrons=0. So, mass number = atomic number.

$$N = N_0 \left(\frac{1}{2}\right)^{t/T_{1/2}}$$

$$\Rightarrow N_A = 10 \left(\frac{1}{2}\right)^{t/1} \text{ and } N_B = 1 \left(\frac{1}{2}\right)^{t/2}$$
Given $N_A = N_B$

$$\Rightarrow 10 \left(\frac{1}{2}\right)^t = \left(\frac{1}{2}\right)^{t/2} \Rightarrow 10 = \left(\frac{1}{2}\right)^{-t/2}$$

$$\Rightarrow 10 = 2^{t/2}$$
Taking log on both the sides

$$\log_{10} 10 = \frac{t}{2} \log_{10} 2 \implies 1 = \frac{t}{2} \times 0.3010$$
$$t = 6.62 \text{ yr}$$

256 (c)

 \Rightarrow

Let the initial number of atoms at time t = 0 be N_0 . Let N be the number of atoms at any instant t. Mean life $\tau = \frac{1}{\lambda}$, where λ is disintegration constant. Given, $t = \tau$ According to radioactive disintegration law, $N = N_0 e^{-\lambda t}$ or $N = N_0 e^{-\lambda \times \frac{1}{\lambda}} = \frac{N_0}{2}$

or
$$\frac{N_0}{N} = e$$

257 **(b)**

Paschen series lies in the infrared region

258 (a)

Nuclear force is charge independent, it also acts between two neutrons

259 (c)

$$N = N_0 \left(\frac{1}{2}\right)^{t/T} \Rightarrow \frac{N_0}{64} = N_0 \left(\frac{1}{2}\right)^{30/T} \Rightarrow T = \frac{30}{6} = 5s$$

Binding energy

$$BE = (M_{\text{nucleus}} - M_{\text{nucleons}})c^2 = (M_o - 8M_p - 9M_n)c^2$$
261 **(b)**

Page | 73

By using $\frac{1}{\lambda} = RZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$ For Hydrogen atom $\frac{1}{(\lambda_{\min})_H} = R \left[\frac{1}{1^2} - \frac{1}{\infty} \right] = R$ $\Rightarrow (\lambda_{\min})_H = \frac{1}{R}$...(i) For hydrogen like atom $\left(\frac{1}{\lambda_{\min}}\right)_{\text{atom}} =$ $RZ^2\left(\frac{1}{2^2}-\frac{1}{\infty}\right)$ $\Rightarrow (\lambda_{\min})_{\text{atom}} = \frac{4}{RZ^2} \quad ...(i)$ From equation (i) and (ii), $\frac{1}{R} = \frac{4}{RZ^2} \Rightarrow Z = 2$ 262 (b) By using $r_n = r_0 \frac{n^2}{z}$; where r_0 = Radius of the Bohr orbit in the ground state atom. So for He^+ third excited state $n = 4, Z = 2, r_0 = 0.5 \text{\AA} \Rightarrow r_4 = 0.5 \times$ $\frac{4^2}{2} = 4\text{\AA}$ 263 (a) When an electron jumps from the orbit of lower energy (n = 1) to the orbit of higher energy (n = 3), energy is absorbed 264 (c) Number of days from January 1st to January 24th = 23 days Number of half lives $n = \frac{23}{8.04} = 2.86 (< 3)$ 600 *Bq* In three half lives activity becomes 75 Bq, but the given number of half lives are lesser than 3 so activity becomes greater than 75 Bq 265 (b) They move in opposite direction to conserve linear momentum 266 (a) Einstein's mass energy relation, the energy released is $\Delta E = \Delta m c^2$ Where, *c* is speed of light and Δm is mass. Given, $\Delta m = 1.67 \times 10^{-27} \text{ kg}$, $c = 3 \times 10^8 \text{ ms}^{-1}$ $\therefore \quad \Delta E = 1.67 \, \times \, 10^{-27} \, \times \, (3 \, \times \, 10^8)^2$ $\Delta E \approx 1.5 \times 10^{-10}$ J 267 (d) The complete reaction is $^{235}_{93}X \rightarrow ^{231}_{91}Y + _{2}\text{He}^{4} + _{-1}e^{0}$ $(\alpha - \text{particle})$ (electron) 268 (a) The average time that the atom spends in this excited sate is equal to Δt , so by using $\Delta E \cdot \Delta t = \frac{h}{2\pi}$

 \Rightarrow Unertainty in energy $= \frac{h/2\pi}{\Delta t}$ $=\frac{6.6\times10^{-34}}{2\times3.14\times10^{-8}}=1.05\times10^{-26}J$ $= 6.56 \times 10^{-8} eV$ 269 (a) Carbon dating 270 (b) Energy $E = K \left[\frac{1}{n_{\star}^2} - \frac{1}{n_{\star}^2} \right] (K = \text{constant})$ $n_1 = 2$ and $n_2 = 3$, so $E = \left[\frac{1}{2^2} - \frac{1}{3^2}\right] = K \left[\frac{5}{3^2}\right]$ For removing an electron, $n_1 = 1$ to $n_2 = \infty$ Energy $E_1 = K[1] = \frac{36}{5}E = 7.2E$ \therefore Ionization energy = 7.2 *E* 272 (a) $\frac{dN}{dt} = \lambda N; \lambda = \frac{0.6931}{t_{12}}$ $= \frac{0.6931}{1620 \times 365 \times 24 \times 60 \times 60}$ $N = \frac{6.023 \times 10^{23}}{226}$ $\therefore \frac{dN}{d!} = - \frac{0.6022}{0.6022}$ $\therefore \frac{dN}{dt} = \frac{0.6931 \times 6.023 \times 10^{23}}{1620 \times 365 \times 24 \times 60 \times 60 \times 226}$ $= 3.61 \times 10^{10}$ 273 (a) $\frac{N}{N_0} = \left(\frac{1}{2}\right)^n or \ \frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/t_{1/2}} or \ \frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/1}$ For t = 3 months $\frac{N}{N_2} = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$ Therefore, disintegrated part of substance in 3 months $= 1 - \frac{1}{8} = \frac{7}{8}$ 274 (d) $\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_1^2} \right]$. For first wavelength $n_1 = 2, n_2 =$ $3 \Rightarrow \lambda_1 = 6563$ Å. For second wavelength $n_1 = 2, n_2 = 4 \Rightarrow \lambda_2 = 4861 \text{ Å}$ 275 (a) $_{0}n^{1} \rightarrow _{1}H^{1} + _{-1}e^{0} + \overline{v} + Q$ $\Delta m = m_n - m_\alpha - m_e$ $= (1.6725 \times 10^{-27} - 1.6725 \times 10^{-27} - 9)$ $\times 10^{-31})kg$ $= -9 \times 10^{-31} kg$ Energy = $9 \times 10^{-31} \times (3 \times 10^8)^2$ = 0.511 MeV

Which is nearly equal to 0.73*MeV*

276 (d)

For an atom of atomic number Z, radius of *n*th orbit is given by

 $r_n = \frac{kn^2}{Z} \dots$ (i) where k = constant

For ground state of hydrogen, Z = 1, n = 1, so that

$$r_1 = \frac{k1^2}{1} = k$$

Let *n* be the energy state of Be $^{+++}$ for which orbital radius is r_1 . Put

Z = 4 and
$$r_n = r_1 = k$$
 in Eq.(i)
 $r_1 = \frac{r_1 n^2}{4}$ or $n^2 = 4; n = 2$

277 (d)

$$N = N_0 \left(\frac{1}{2}\right)^2 \Rightarrow \frac{N}{N_0} = \frac{1}{4}$$

Probability = $1 - \frac{N}{N_0} = 1 - \frac{1}{4} = \frac{3}{4}$

279 **(b)**

Recoil momentum = momentum of photon = $\frac{h}{\lambda}$

$$= hR\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) = \frac{hR \times 15}{16} = 6.8 \times 10^{-27} N \times s$$

280 (d)

$$n_{\alpha} = \frac{A - A'}{4} = \frac{200 - 168}{4} = 8$$
$$n_{\beta} = 2n_{a} - Z + Z' = 2 \times 8 - 90 + 80 = 6$$

281 (a)

For hydrogen and hydrogen like atoms $E_n = -13.6 \frac{z^2}{n^2} eV$

$$U_n = 2E_n = -27.2 \frac{z^2}{n^2} eV$$
 and $K_n = |E_n| = 13.6 \frac{z^2}{n^2} eV$

From these three relations we can see that as n decreases, K_n will increase but E_n and U_n will decrease

282 **(b)**

Maximum number of spectral lines are observed in Lyman series

283 **(c)**

Let $\lambda_A = \lambda \therefore \lambda_B = 2\lambda$

If N_0 is total number of atoms in A and B at t = 0, then initial rate of disintegration of $A = \lambda N_0$, and initial rate of disintegration of $B = 2\lambda N_0$

As $\lambda_B = 2\lambda_A$ $\therefore T_B = \frac{1}{2}T_A$ *ie*, half-life of *B* is half the half-life of *A*.

After one half-life of A

$$\left(-\frac{dN}{dt}\right)_A = \frac{\lambda N_0}{2}$$

Equivalently, after two half lives of *B*

$$\left(-\frac{dN}{dt}\right)_{B} = \frac{2\lambda N_{0}}{4} = \frac{\lambda N_{0}}{2}$$

Clearly,
$$\left(-\frac{dN}{dt}\right)_A = -\left(\frac{dN}{dt}\right)_B$$

after n = 1 *ie*, one half-life of A

284 **(c)**

Energy released from 1 kg of uranium
=
$$\frac{200 \times 10^6 \times 1.6 \times 10^{-19} \times 6.023 \times 10^{26}}{235}$$

= 8.2 × 10¹³ J

285 **(b)**

Because the neutron has no electric charge, it experience no electric repulsion from a U^{235} nucleus. Hence a slow moving neutron can approach and enter a U^{235} nucleus, thereby providing the excitation needed to trigger fission. By contrast a slow moving proton feels a strong repulsion from a U^{235} nucleus. It never get's close to the nucleus, so it cannot trigger fission

286 (a)

$$m = \frac{E}{c^2} = \frac{931 \times 1.6 \times 10^{-13}}{(3 \times 10^8)^2} = 1.66 \times 10^{-27} kg$$
287 (a)

7 (a)

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n \Rightarrow \frac{1}{16} = \left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^n \Rightarrow n = 4$$
Also $n = \frac{t}{T_{1/2}} \Rightarrow T_{1/2} = \frac{40}{4} = 10 days$

288 (d)

Initially $P \rightarrow 4 N_0$; $Q \rightarrow N_0$ Half life $T_p = 1$ min; $T_Q = 2$ min Let after time *t* number of nuclei of *P* and *Q* are equal That is $\frac{4N_0}{2^{t/1}} = \frac{N_0}{2^{t/2}}$

Or
$$\frac{\pi}{2^{t/2}} = 1$$
 or $t = 4$ min
So at $t = 4$ min
 $N_P = \frac{(4N_0)}{2^{4/1}} = \frac{N_0}{4}$
At $t = 4$ min. $N_Q = \frac{N_0}{2^{4/2}} = \frac{N_0}{4}$
Or no. of nuclei of $R = (4N_0 - \frac{N_0}{4}) + (N_0 - \frac{N_0}{4})$
 $= \frac{9N_0}{2}$

289 (d)

Shortest wavelength comes from $n_1 = \infty$ to $n_2 = 1$ and longest wavelength comes from $n_1 = 6$ to $n_2 = 5$ in the given case. Hence $\frac{1}{\lambda_{\min}} = R\left(\frac{1}{1^2} - \frac{1}{\infty^2}\right) = R$ $\frac{1}{\lambda_{\max}} = R\left(\frac{1}{5^2} - \frac{1}{6^2}\right) = R\left(\frac{36 - 25}{25 \times 36}\right) = \frac{11}{900}R$ $\therefore \frac{\lambda_{\max}}{\lambda_{\min}} = \frac{900}{11}$

290 (c)

Nuclear force of attraction between any two nucleons (n - n, p - p; p - n) is same. The difference comes up only due to electrostatic force of repulsion between two protons.

∴
$$F_1 = F_3 \neq F_2$$
. As $F_2 < F_3 > F_1$

 $\therefore F_1 = F_3 > F_2$

291 **(b)**

In atom bomb nuclear fission takes place with huge temperature.

292 (c)

Nuclear density for all nuclei is same and equal to $10^{17}\ kgm^{-3}$

Radius of nucleus and mass number are related as

 $R = R_0(A)^{1/3}$

or
$$R \propto (A)^{1/3}$$

Thus, (A) is true but (B) is false.

293 (a)

$$_{92}U^{238} \xrightarrow{\alpha} _{90}Th^{234} \xrightarrow{\beta} _{91}Pa^{234} \xrightarrow{e(-1\beta^0)} _{92}U^{234}$$

294 **(c)**

Excitation potential = $\frac{\text{Excitation energy}}{e}$ Minimum excitation energy corresponds to excitation from n = 1 to n = 2 \therefore Minimum excitation energy in hydrogen atom = -3.4 - (-13.6) = +10.2eVSo minimum excitation potential = 10.2V

295 (c)

 $\frac{r_1}{r_2} = \left(\frac{A_1}{A_2}\right)^{1/3} = \left(\frac{64}{27}\right)^{1/3} = \frac{4}{3}$

296 **(b)**

Given, R = 1250, $R_0 = 5000$ and t = 5 min $R = R_0 e^{-\lambda t}$ $1250 = 5000 e^{-\lambda \times 5}$ $\lambda = 0.4 \log_e 2$

Energy released on bombarding U²³⁵ by

neutron=200 MeV Power output of atomic reactor = 1.6 MW \therefore Rate of fission= $\frac{1.6 \times 10^6}{1.6 \times 10^6}$

$$= 5 \times 10^{16} \, \mathrm{s}^{-1}$$

The electron is in the second orbit
$$(n = 2)$$

Hence $L = \frac{nh}{2\pi} = \frac{2h}{2\pi} = \frac{6.6 \times 10^{-34}}{\pi} = 2.11 \times 10^{-34} J - 10^{-34} J$

299 **(b)**

S

$$\frac{\lambda}{\lambda_0} = \frac{\left[\frac{1}{2^2} - \frac{1}{3^2}\right]}{\left[\frac{1}{2^2} - \frac{1}{4^2}\right]} = \frac{5}{36} \times \frac{16}{3} = \frac{20}{27}$$
$$\lambda = \frac{20}{27}\lambda_0$$

300 **(b)**

It will form a stationary wave $\lambda = 2l = 2 \times 10^{-9} m$

301 **(b)**

Moderator is used to slow down neutrons. Heavy water, graphite or beryllium oxide are used for this purpose. Heavy water is the best moderator. 302 (a)

$$\frac{N_0}{32} = N_0 \left(\frac{1}{2}\right)^{60/T} \Rightarrow 5 = \frac{60}{T} \Rightarrow T = 12 \text{days}$$

$$n = \frac{24}{24 \times 138.6} = \frac{1}{138.6}; \text{ Now } \frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^{1/138.6}$$
$$\Rightarrow N = 10,00000 \left(\frac{1}{2}\right)^{1/138.6} = 995011$$

So number of disintegration = 1000000 - 995011 = 4989 = 5000

305 **(d)**

$$\frac{R_1}{R_2} = \left(\frac{A_1}{A_2}\right)^{1/3} = \left(\frac{27}{125}\right)^{1/3} = \frac{3}{5}$$

306 **(b)**

$$N = N_0 \left(\frac{1}{2}\right) n = 4 \times \frac{1}{2} = 2$$

307 **(b)**

In Paschen series $\frac{1}{\lambda_{\text{max}}} = R \left[\frac{1}{(3)^2} - \frac{1}{(4)^2} \right]$

 $\Rightarrow \lambda_{\max} = \frac{144}{7R} = \frac{144}{7 \times 1.1 \times 10^7} = 1.89 \times 10^{-6} m$ Similarly $\lambda_{\min} = \frac{9}{R} = \frac{9}{1.1 \times 10^7} = 0.818 \mu m$ 308 (c) Speed of electron in n^{th} orbit of hydrogen atom $v = \frac{e^2}{2\varepsilon_0 nh}$ In ground state $n = 1 \Rightarrow v = \frac{e^2}{2\varepsilon_0 h}$ $\Rightarrow \frac{v}{c} = \frac{e^2}{2\varepsilon_0 ch}$ $=\frac{(1.6\times10^{-19})^2}{2\times8.85\times10^{-12}\times3\times10^8\times6.6\times10^{-34}}$ $=\frac{137}{137}$ 309 (d) By using $N_E = \frac{n(n-1)}{2} \Rightarrow N_E = \frac{4(4-1)}{2} = 6$ 310 (a) $E = E_4 - E_1 = -\frac{13.6}{4^2} - \left(-\frac{13.6}{1^2}\right)$ = -0.85 + 13.6 = 12.75 eV $= 12.75 \times 1.6 = 10^{-14}$ J $P = \frac{E}{c} = \frac{12.75 \times 1.6 \times 10^{-19}}{3 \times 10^8}$ $= 6.8 \times 10^{-27} \text{kg ms}^{-1}$ This must be the momentum of recoiled hydrogen atom (in opposite direction) 311 (c) Half-life $T_{1/2} = \frac{0.693}{\lambda} = \frac{0.693}{1.07 \times 10^{-4}} = 6476$ years 312 (a) Using $\Delta E \propto Z^2$ [$\therefore n_1$ and n_2 are same] $\Rightarrow \frac{hc}{\lambda} \propto Z^2 \Rightarrow \lambda Z^2 = \text{constant}$ $\Rightarrow \lambda_1 Z_1^2 = \lambda_2 Z_2^2 = \lambda_3 Z_3^2 = \lambda_4 Z_4^2$ $\Rightarrow \lambda_1 \times 1 = \lambda_2 \times 1^2 = \lambda_3 \times 2^2 = \lambda_4 \times 3^3$ $\Rightarrow \lambda_1 = \lambda_2 = 4\lambda_3 = 9\lambda_4$ 313 (b) Hydrogen bomb is based on nuclear fusion 314 (c) After *n* half-lives(*ie*, at t = nT) the number of nuclides left undecayed, $N = N_0 \left(\frac{1}{2}\right)^n$ $\frac{N}{N_0} = \frac{1}{16}$ Given,

 $\frac{1}{16} = \left(\frac{1}{2}\right)^{7}$

...

 $\left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^n$ or Equating the powers, we obtain n = 4 $\frac{t}{T} = 4$ ie. t = 4Tor Or $t = 4 \times 5730 = 22929 \text{ yr}$ (:: T =5730 yr) 315 (b) $T_h = \frac{\log_e^2}{2}$, $\tau_m = \frac{1}{2}$ 316 (c) As given $_{1}H^{2} + _{1}H^{2} \rightarrow _{2}He^{4} + energy$ The binding energy per nucleon of a deuteron($_1H^2$) = 1.1 MeV: Total binding energy of one deuteron nucleus $= 2 \times 1.1 = 2.2 MeV$: The binding energy per nucleon of Helium($_{2}$ He⁴) =7MeV ∴ Total binding energy $= 4 \times 7 = 28 \text{MeV}$ Hence, energy released in the above process $= 28 - 2 \times 2.2$ = 28 - 4.4 = 23.6 MeV317 (a) As $\frac{N}{N_2} = \left(\frac{1}{2}\right)^n$; where, Number of half lives, $n = \frac{t}{T}$ T is the half life period For X sample, $\frac{1}{16} = \left(\frac{1}{2}\right)^{8/T_X} \text{ or } \left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^{8/T_X} \Rightarrow 4 = \frac{8}{T_X} \dots (i)$ For *Y* sample. $\left(\frac{1}{256}\right) = \left(\frac{1}{2}\right)^{8/T_Y}$ or $\left(\frac{1}{2}\right)^8 = \left(\frac{1}{2}\right)^{8/T_Y} \Rightarrow 8 = \frac{8}{T_Y}$...(ii) Divide (i) by (ii) we get $\frac{4}{8} = \frac{8}{T_Y} \times \frac{T_Y}{8} \Rightarrow \frac{1}{2} = \frac{T_Y}{T_Y} \text{ or } \frac{T_X}{T_Y} = \frac{2}{1}$ 320 (d) Half-life $T/2 = \frac{T}{144} = \frac{100}{144}$ s = 69.44 s $=\frac{69.44}{60} \approx 1.155 \text{ min}$ 321 (c) A and B can be isotopes if number of β -decays is two times the number of α – decays.

$$v \propto Z^2 \Rightarrow \frac{v_{H_2}}{v_{He}} = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \Rightarrow v_{He} = 4v_{H_2} = 4v_0$$

323 **(b)**

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n \Rightarrow \frac{1}{64} = \left(\frac{1}{2}\right)^6 = \left(\frac{1}{2}\right)^n \Rightarrow n = 6$$

After 6 half lives intensity emitted will be safe

 $\therefore \text{ Total time taken} = 6 \times 2 = 12 hrs$

325 **(a)**

Speed of electron in n^{th} orbit (in CGS) $v_n = \frac{2\pi Z e^2}{nh} (k = 1)$ For first orbit of H_1 ; n = 1 and Z = 1So $v = \frac{2\pi e^2}{h} \Rightarrow \frac{v}{c} = \frac{2\pi e^2}{hc}$

326 **(b)**

 $N = N_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$

No of atoms at t = 2hr, $N_1 = 8 \times 10^{10} \left(\frac{1}{2}\right)^{\frac{2}{1}} = 2 \times 10^{10}$

No. of atoms at t = 4hr, $N_2 = 8 \times 10^{10} \left(\frac{1}{2}\right)^{\frac{4}{1}} = \frac{1}{2} \times 10^{10}$

 \div No. of atoms decayed in given duration

$$= \left(2 - \frac{1}{2}\right) \times 10^{10} = 1.5 \times 10^{10}$$

327 (a)

 $r_n \propto n^2$ in Bohr atom model

Potential energy $= \frac{-1}{4\pi\varepsilon_0} \cdot \frac{e^2}{r_n}$ For the 10th orbit, it is $= \frac{-1}{4\pi\varepsilon_0} \cdot \frac{e^2}{r_1(100)}$

 $\frac{1}{100}$ times less than the potential energy in the first orbit

Potential energy will decrease but with negative sign. Therefore when an electron in hydrogen atom jumps from n = 1 to n = 10 orbit, the potential energy of the system will increase

329 (c)

After decay, the daughter nuclei will be more stable hence, binding energy per nucleon will be more than that of their parent nucleus.

330 **(b)**

Balmer series lies in the visible region

332 (d)

Energy released in the fission of one nucleus = 200 *MeV*

$$= 200 \times 10^6 \times 1.6 \times 10^{-19} J = 3.2 \times 10^{-11} J$$

$$P = 16kW = 16 \times 10^3 watt$$

Now, number of nuclei required per second

$$n = \frac{P}{E} = \frac{16 \times 10^3}{3.2 \times 10^{-11}} = 5 \times 10^{14}$$

333 **(b)**

At any instant the rate of decay of radioactive atoms is proportional to the number of atoms present at that instant *ie*,

$$-\frac{dN}{dt} \propto N$$
$$-\frac{dN}{dt} = R = \lambda N$$

where λ is decay constant.

334 **(b)**

0r

Experimentally it is found that the volume of a nucleus is directly proportional to its mass number. From this it is concluded that the density of each nucleus is uniform, it does not depend on the size of the nucleus.

It the nucleus is assumed to be a sphere of radius *R* and its mass number is *A*, then volume of nucleus $V = \frac{4}{2}\pi R^3$.

Thus,
$$\frac{4}{3}\pi R^3 \propto A \text{ or } R^3 \propto A$$

Or $R \propto A^{1/3}$

Or $R \propto A^{1/3}$ *ie*, the radius of nucleus is directly proportional to the cube root(or $\frac{1}{3}$ power) of its mass number *A*.

Aliter

Nuclear radius $R = R_0 A^{1/3}$ $\therefore \quad R \propto A^{1/3}$ 335 **(b)** ${}_Z X^A \longrightarrow {}_{Z-2} X^{A-4} + {}_2 \text{He}^4$

$$_{Z-2}X^{A-4} \rightarrow _{Z-2}X^{A-4} + - 1e^{-4}$$

337 (d)
Rate
$$R = -\frac{dN}{dt} = \lambda N_0 e^{-\lambda t} = \lambda N \Rightarrow \frac{R}{N} = \lambda$$

(constant) *i. e.*, graph between $\frac{R}{N}$ and *t*, is a
straight line parallel to the time axis
338 (a)
 $_{92}U^{235} + _0n^1 \rightarrow _{38}Sr^{90} + _{54}Xe^{143} + 3_0n^1$
341 (b)
Here $A_0 = 8$ counts, $A = 1$ counts $t = 3h$.
 $\frac{A}{A_0} = \left(\frac{1}{2}\right)^n$
 $\Rightarrow \quad \frac{1}{8} = \left(\frac{1}{2}\right)^n$
or $\left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^n \Rightarrow n = 3$
So, $T_{1/2} = \frac{t}{n} = \frac{3}{3} = 1h$
342 (a)
Energy constant $E = 10.2eV = 10.2 \times 1.6 \times$

 $10^{-19}I$ $\Rightarrow E = \frac{hc}{\lambda} \Rightarrow \lambda = 1.215 \times 10^{-7} m$ 343 (c) The nuclear reaction can be represented as $_{3}\text{Li}^{7} + _{1}\text{H}^{1} \rightarrow _{4}\text{Be}^{8} + _{z}X^{A}$ Applying conservation of atomic number (charge) $3 + 1 = 4 + Z \implies Z = 0$ Applying conservation of atomic mass $7 + 1 = 8 + A \implies A = 0$ Thus, the emitted particles are γ -photons ($_0X^0$). 344 (a) $P = n\left(\frac{E}{t}\right) \Rightarrow 1000$ $=\frac{n \times 200 \times 10^{6} \times 1.6 \times 10^{-19}}{t}$ $\Rightarrow \frac{n}{t} = 3.125 \times 10^{13}$ 345 (c) For ${}_{6}C^{12}$, p = 6, e = 6, n = 6For ${}_{6}C^{14}$, p = 6, e = 6, n = 8346 (c) $B = [Z M_n + N M_n - M(N,Z)c^2]$ $\Rightarrow M(M,Z) = ZM_n + NM_n - B/c^2$ 347 (d) The given equation is $_{2}He^{4} + _{z}X^{A} \rightarrow _{z+2}Y^{A+3} +$ Applying charge and mass conservation $4 + A = A + 3 + x \Rightarrow x = 1 \Rightarrow 2 + z = z + 2 + n$ $\Rightarrow n = 0$ Hence *A* is a neutron 349 (c) $E = E_3 - E_1 = -\frac{13.6}{2^2} - \left(-\frac{13.6}{1^2}\right)$ E = -1.51 + 13.6 = 12.09 eV350 (b) The nuclear reaction can be put as

 $_{6}C^{1} \rightarrow_{5} B^{11} +_{+1}e^{0} +_{z}X^{A}$

Applying conservation of mass number and charge number, we find that

A = 0 and Z = 0

Therefore, *X* stands for a neutrino

351 (d)

 $E = E_{1}/n^{2}$

 $n=3 E_3=-1.51 eV$ $n=2 E_2=-3.4 eV$ $n=1 E_1 = -13.6 eV$ Energy levels of H-atom Energy used for excitation is 12.75 eV i.e., (-13.6 + 12.75)eV = -0.85 eVThe photons of energy 12.75 eV can excite the fourth level of *H*-atom. Therefore six lines will be emitted $\left(n\frac{(n-1)}{2}\right)$ lines 352 (b) $\left(\frac{1}{2}\right)^n = \frac{N}{N_0} = \frac{1}{20}$ given n = 4.32 $t = n \times T = 4.32 \times 3.8$ = 16.4 days354 (c) $R = R_0(A)^{1/3}$ $\frac{R_2}{R_4} = \left(\frac{A_2}{A_1}\right)^{1/3} = \left(\frac{64}{27}\right)^{1/3} = \frac{4}{3}$ $R_2 = 3.6 \times \frac{4}{2} = 4.8$ 356 (a) $_{0}n^{1}+_{92}U^{235} \rightarrow_{56} Ba^{144}+_{36}Kr^{89}+3_{0}n^{1}$ 359 (d) $_{92}U^{238} \rightarrow _{90}Th^{234} + _2He^4$ 360 (a) Ratio of n/p will decrease $2_1 H^2 \rightarrow {}_2 He^4 + Q$ Energy released $0 = 4 \times 7 - 4 \times 1.1 = 23.6$ MeV 361 (d) From Rutherford-Soddy law, the number of atoms left after *n* half-lives is given by $N = N_0 \left(\frac{1}{2}\right)^n$ Where, N_0 is original number of atoms. The number of half-life $n = \frac{\text{time of decay}}{\text{effective half} - \text{life}}$ Relation between effective disintegration constant (λ) and half-life (T) is $\lambda = \frac{\ln 2}{T}$ $\therefore \quad \lambda_1 + \lambda_2 = \frac{\ln 2}{T_1} + \frac{\ln 2}{T_2}$ Effective half –life $\frac{1}{T} = \frac{1}{T_1} + \frac{1}{T_2} = \frac{1}{1620} + \frac{1}{810}$ $\frac{1}{T} = \frac{1+2}{1620} \Rightarrow T \Rightarrow 540 \text{ yr}$

$$\therefore \qquad n = \frac{t}{540}$$

$$\therefore \qquad N = N_0 \left(\frac{1}{2}\right)^{t/540}$$

$$\Rightarrow \qquad \frac{N}{N_0} = \left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^{t/540}$$

$$\Rightarrow \qquad \frac{t}{540} = 2$$

$$\Rightarrow \qquad t = 2 \times 540 = 1080 \text{ yr}$$

362 (c)

In β -decay, mass number is unaffected. Atomic number increase by one.

364 (c)

During γ -decay, neither charge number *Z* nor mass number A changes. So the only correct option is (c).

365 (a)

 $n \rightarrow p + \bar{e} + v$ (anti –neutrino)

366 (d)

 $r \propto n^2$. For ground state n = 1 and for first excited state n = 2

367 (a)

As disintegration by two different processes is simultaneous, therefore, effective decay constant $\lambda = (\lambda_1 + \lambda_2)$

368 (d)

In the second orbit, n = 2

Ionisation energy,
$$E = \frac{13.6}{2^2} = 3.4 \text{ eV}$$

-- I-

369 (a)

As
$$T = \frac{2\pi r}{v}$$
 or $V = \frac{nn}{2\pi mr}$
 $\therefore T = \frac{2\pi r}{nh/2\pi mr} = \frac{mr^2}{nh} \propto \frac{r^2}{n}$

But $r \propto n^2 \therefore T \propto n^3$

or
$$\frac{T_1}{T_2} = \left(\frac{n_1}{n_2}\right)^3$$
, As $T_1 = 8T_2$
 $\therefore \left(\frac{n_1}{n_2}\right)^3 = 8, \frac{n_1}{n_2} = 2$

Therefore, in given values $n_1 = 6, n_2 = 3$

370 (a)

$$\frac{1}{\lambda_{H_2}} = RZ_H^2 \left[\frac{1}{4} - \frac{1}{9} \right] = R(1)^2 \left[\frac{5}{36} \right]$$
$$\frac{1}{\lambda_{He}} = RZ_{He}^2 \left[\frac{1}{4} - \frac{1}{16} \right] = R(4) \left[\frac{3}{16} \right]$$

$$\frac{\lambda_{He}}{\lambda_{H_2}} = \frac{1}{4} \left[\frac{16}{3} \times \frac{5}{36} \right] = \frac{5}{27}$$

$$\lambda_{He} = \frac{5}{27} \times 6561 = 1215 \text{ Å}$$
371 (a)
Fraction of material decayed = $1 - \frac{N}{N_0}$
= $1 - \left(\frac{1}{2}\right)^{t/T_{1/2}} = 1 - \left(\frac{1}{2}\right)^{20/5} = 1 - \frac{1}{16} = \frac{15}{16}$
= 93.75%
372 (d)
$$A = A_0 \left(\frac{1}{2}\right)^n \Rightarrow 30 = 240 \left(\frac{1}{2}\right)^n \Rightarrow \left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^n$$
 $\Rightarrow n = 3$
 $\therefore \frac{t}{T_{1/2}} = 3 \Rightarrow T_{1/2} = \frac{t}{3} = \frac{1}{3}hr = 20 \text{ min}$
373 (c)
For 80 minutes, number of half lives of sample $A = n_A = \frac{80}{20} = 4$ and number of half lives of sample $B = n_B = \frac{80}{40} = 2$. Also by using
$$N = N_0 \left(\frac{1}{2}\right)^n$$
 $\Rightarrow N \propto \frac{1}{2n} \Rightarrow \frac{N_A}{N_B} = \frac{2^{n_B}}{2^{n_A}} = \frac{2^2}{2^4} = \frac{1}{4}$
374 (b)
Energy is given by
$$E = mc^2 = 1 \times (3 \times 10^8)^2$$
 $= 9 \times 10^{16} = 10^{17}$ joule approximately
375 (d)
$$\frac{1}{E_1 = \frac{hc}{\lambda_1}} = 13.6 \left[\frac{1}{(2)^2} - \frac{1}{(3)^2}\right] \dots(i)$$
 $E_2 = \frac{hc}{\lambda_2} = 13.6 \left[\frac{1}{(2)^2} - \frac{1}{(3)^2}\right] \dots(i)$
Dividing eq. (ii) by eq. (i)
 $\frac{\lambda_1}{\lambda_2} = \frac{\frac{1}{4} - \frac{1}{9}}{\frac{1}{2} - \frac{1}{16}} = \frac{20}{7}$
376 (d)
Energy arc is a set in the set in the set in the set is the set in the set in the set in the set in the set is the set in the set in the set is the set in the set in the set is the set in the set is the set in the set in the set in the set is the set in the set is the set in the set is the set in the set in the set is the set in the set in the set is the set in the set in the set is the set in the set in the set in the set is the set in the set in the set is the set in the set is the set in the set in the set is the set in the set

d into two parts viz. Bosons & Fermions. Photons and mesons belong to Bosons. Fermions and further divided into leptons and conservation of charge principle. Baryons which are lighter and heavier particles respectively. Electrons belong to leptons. Neutrons and protons belong to Baryons. Baryons

 $\left(\frac{1}{2}\right)^n$

and mesons are together known as Hadrons

377 **(c)**

The wavelength of spectral line in Balmer series is given by

$$\frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{n^2} \right]$$

For first line of Balmer series,
$$n = 3$$

$$\Rightarrow \frac{1}{\lambda_1} = R \left[\frac{1}{2^2} - \frac{1}{3^2} \right] = \frac{5R}{36}; \text{ For second line } n = 4$$

$$\Rightarrow \frac{1}{\lambda_2} = R \left[\frac{1}{2^2} - \frac{1}{4^2} \right] = \frac{3R}{16}$$

$$\therefore \frac{\lambda_2}{\lambda_1} = \frac{20}{27} \Rightarrow \lambda_2 = \frac{20}{27} \times 6561 = 4860\text{\AA}$$

379 (a)

(i) When $_{92}U^{235}$ undergoes fission, 0.1 % of its original mass is changed into energy.

(ii) Most of energy released appears in the form of kinetic energy of fission fragments.

(iii) The energy released in U^{235} fission in about 200 MeV.

(iv) By fission of $_{92}U^{235}$ on the average 2.5 neutrons are liberated.

381 **(b)**

Mass of proton = mass of antiproton = $1.67 \times 10^{-27} kg = 1 amu$ Energy equivalent to 1 amu = 931 MeVSo energy equivalent to $2 amu = 2 \times 931 MeV$ = $1862 \times 10^6 \times 1.6 \times 10^{-19}$ = $2.97 \times 10^{-10} J = 3 \times 10^{-10} J$

382 (d)

Upto n = 1 it gives Lyman series Upto n = 2 it gives Balmer series Upto n = 3 it gives Paschen series Upto n = 4 it gives Brackett series Upto n = 5 it gives Pfund series

383 (c)

After *n* half-lives the quantity of a radioactive substance left intact (undecayed) is given by

$$N = N_0 \left(\frac{1}{2}\right)^n$$

= $N_0 \left(\frac{1}{2}\right)^{t/T_{1/2}}$
Here, $N = \frac{1}{16} N_0, t = 2h$
 $\frac{1}{16} N_0 = N_0 \left(\frac{1}{2}\right)^{\frac{2}{T_1}}$
 $\left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^{2/T_{1/2}}$

Equating the powers on both sides

$$4 = \frac{2}{T_{1/2}}$$
$$T_{1/2} = \frac{1}{2}h = 30 \text{ min}$$

384 **(c)**

If N_0 potassium atoms were present at the time the rock was formed by solidification from a molten form, the number of potassium atoms remaining at the time of analysis is,

$$N_K = N_0 e^{-\lambda t} \qquad \dots (i)$$

In which *t* is the age of the rock. For every potassium atom that decays, an argon atom is produced. Thus, the number of argon atoms present at the line of the analysis is

$$N_{\rm Ar} = N_0 - N_K \quad \dots (ii$$

We cannot measure N_0 , so let's eliminate it from Eqs.(i) and (ii). We find , after some algebra, that $\lambda t = \ln \left(1 + \frac{N_{\rm AF}}{N_{\rm K}}\right)$

in which $N_{\text{Ar}}/N_{\text{K}}$ can be measured. Solving for t $t = \frac{T_{1/2} \ln (1 + N_{\text{Ar}}/N_{\text{K}})}{1 + N_{\text{Ar}}/N_{\text{K}}}$

$$= \frac{\ln 2}{\ln 2}$$

= $\frac{(1.25 \times 10^9 y))[\ln(1+10.3)]}{\ln 2} = 4.37 \times 10^9 \text{ yr}.$

385 **(b)**

Ionizing property depends upon the charge and mass

386 **(c)**

Due to the production of neutrons, a chain of nuclear fission is established which continues until the whole of the source substance is consumed

387 **(a)**

Applying principle of conservation of linear momentum,

$$m_{\alpha}v_{\alpha}+^{m}N^{\nu}N=0$$

$$4v + (210 - 4)^v N = 0$$

$$v_N = \frac{-4v}{206}$$

Negative sigh for recoil speed

388 **(d)**

 $r \propto \frac{1}{Z}$, for double ionized lithium Z(=3) will be maximum. So r will be minimum

389 (a) We know that $1 \text{ kW} = 1 \times 10^3 \text{ Js}^{-1}$ Also, $1.6 \times 10^{-9} \text{ J} = 1 \text{ eV}$ $\therefore \text{ MeV} = 200 \times 1.6 \times 10^{-19} \times 10^6 \text{ J}$ Number of fissions $= \frac{\text{Power}}{\text{Energy released}}$

 $=\frac{10^3}{200 \times 1.6 \times 10^{-13}} = 3.125 \times 10^{13}$ 391 (c) $A_1 = \lambda N_1$ $A_2 = \lambda N_2$ $N_1 - N_2 = \left[\frac{A_1 - A_2}{2}\right]$ 394 (c) $N = N_0(1 - e^{-\lambda t})$ $\Rightarrow \frac{N_0 - N}{N_0} = e^{-\lambda t}$ $\therefore \qquad \frac{1}{8} = e^{-\lambda t}$ \Rightarrow 8 = $e^{\lambda t}$ \Rightarrow 3 In 2 = λt $\lambda = \frac{3 \times 0.693}{15}$ ⇒ Half-life period $t_{1/2} = \frac{0.693}{3 \times 0.693} \times 15$ $t_{1/2} = 5 \min$ 395 (d) -0.58 eV --0.85 eV — $\begin{array}{c|c} -3.4 \text{ eV} & 12.09 \text{ eV} \\ \hline & 10.2 \text{ eV} \\ \hline & 10.2 \text{ eV} \end{array} n=2$ -1.51 eV ——

Obviously, difference of 11.1 *eV* is not possible 396 **(d)**

Energy required for ionizing an excited hydrogen atom = ionization energy – excitation energy = 13.6 - 10.2 = 3.4eV

397 (d)

 $R = R_0 A^{1/3} \Rightarrow R \propto A^{1/3}$

398 **(d)**

As *n* increases P.E. also increases

399 (c)

 $_{1}\text{H}^{2} + _{1}\text{H}^{2} \rightarrow _{2}\text{He}^{3} + _{0}n^{1} + Q(\text{energy})$ \therefore 2 molecules of deuterium are fused, then released energy = Q

Hence, energy released per molecule = $\frac{Q}{2}$

Now, we know that number of molecules in one mole

 $= 6.02 \times 10^{23}$

Hence number of molecules in two moles = $2 \times 6.02 \times 10^{23}$ Hence, energy released when two mole of deuterium are fused $= \frac{Q}{2} \times 2 \times 6.02 \times 10^{23}$

deuterium are fused $= \frac{c}{2} \times 2 \times 6$ $10^{23} = Q \times 6.02 \times 10^{23}$

Activity $A = \lambda N_0 e^{-\lambda t}$

 $\Rightarrow \log_e A = \log_e \lambda N_0 + \log_e e^{-\lambda t}$ $\Rightarrow \log_e A = \log_e C - \lambda t \quad [\text{Take } \lambda N_0 = C]$ $\Rightarrow \log_e A = -\lambda t + \log_e C$ This is the equation of a straight line having negative slope (= $-\lambda$) and positive intercept on $\log_e A$ axis 401 (b) $_{e}X^{A} = {}_{88}Ra^{226}$ Number of protons = Z = 88Number of neutrons = A - Z = 226 - 88 = 138402 (b) As n increases P.E. increases and K.E. decreases 403 (b) $E_n = -\frac{13.6z^2}{n^2} eV \Rightarrow E_1 = -\frac{13.6 \times (2)^2}{(1)^2}$ $= -54.4 \, eV$ 404 (c) For Paschen series $\overline{v} = \frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{n^2} \right]$; n =4, 5, 6 ... For first member of Paschen series n = 4 $\begin{aligned} \frac{1}{\lambda_1} &= R \left[\frac{1}{3^2} - \frac{1}{4^2} \right] \Rightarrow \frac{1}{\lambda_1} = \frac{7R}{144} \\ &\Rightarrow R = \frac{144}{7\lambda_1} = \frac{144}{7 \times 18800 \times 10^{-10}} = 1.1 \times 10^7 \end{aligned}$ For shortest wave length $n = \infty$ So, $\frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{\infty^2} \right] = \frac{R}{9}$ $\Rightarrow \lambda = \frac{9}{R} = \frac{9}{1.1 \times 10^7} = 8.225 \times 10^7 m = 8225 \text{ Å}$ 405 (c) $\lambda = \frac{0.693}{T_{1/2}} = \frac{0.693}{2.3} = 0.3$ 406 (b) Mass defect per nucleon is called packing fraction. Packing fraction $(f) = \frac{\Delta m}{A} = \frac{m-A}{A}$, where m=mass of nucleus, A=mass number. Packing fraction measures the stability of a nucleus. Smaller the value of packing fraction, larger is the stability of nucleus. Packing fraction may be positive, negative or zero. 407 (a) For the stability of the nucleus it should have high binding energy per nucleon 408 (a) Fraction of material that remains undecayed

$$\frac{10}{80} = \left(\frac{1}{2}\right)^{\frac{1h}{T_{1/2}}}$$
$$3 = \frac{1h}{T_{1/2}}$$
$$T_{1/2} = \frac{60}{3} \min = 20 \min = 1200s$$

or

Now,
$$\lambda = \frac{0.693}{T_{1/2}} = \frac{0.693}{1200} = 5.8 \times 10^{-4} \text{ s}^{-1}$$

409 (c)

Change in the angular momentum

$$\Delta L = L_2 - L_1 = \frac{n_2 h}{2\pi} - \frac{n_1 h}{2\pi} \Rightarrow \Delta L = \frac{h}{2\pi} (n_2 - n_1)$$
$$= \frac{6.6 \times 10^{-34}}{2 \times 3.14} (5 - 4) = 1.05 \times 10^{-34} J - s$$

410 (a)

Moderator slows down neutrons

411 **(c)**

When a slow neutron strikes a U²³⁵ nucleus it is absorbed by the nucleus and the following reaction occurs.

$${}_{92}U^{235} + {}_{0}n^{1} \rightarrow {}_{36}Kr^{94} + {}_{56}Ba^{139} + {}_{30}n^{1} + energy$$

Hence, ${}_{56}Ba^{139}$ is another product.

412 **(c)**

Activity $R = R_0 e^{-\lambda t}$

 $\frac{R_0}{3} = R_0 e^{-\lambda \times 9} \Rightarrow e^{-9\lambda} = \frac{1}{3} \quad \dots(i)$ After further 9 years $R' = R e^{-\lambda t} = \frac{R_0}{3} \times e^{-\lambda \times 9}$

From equation (i) and (ii), $R' = \frac{R_0}{R_0}$

413 **(b)**

To form its own isotope atomic number (Z) should remain same.

So, the emission of one α – particle and two β – particles will maintain the *Z* same.

Where α – particle = $_{2}$ He⁴; β – particle = $_{-1}\beta^{0}$

414 (c)

 $K.E = \frac{kZe^2}{2r}$ and $P.E. = -\frac{kZe^2}{r}$; $\therefore \frac{K.E.}{P.E.} = -\frac{1}{2}$

416 **(a)**

No radioactive substance emits both α and β particles simultaneously. Some substances emit α –particles and some other emits β –particles, γ –rays are emitted along with both α and β –particles

417 **(a)**

Proton cannot be emitted by radioactive substances during their decay.

418 (a)

Energy required to ionize helium atom = 24.6 eV419 (d)

$$_{92}U^{235} + _{0}n^{1} \rightarrow _{92}U^{236} \text{ and } _{92}U^{236} \rightarrow _{56}Ba^{144} + _{36}Kr^{89} + 3_{0}n^{1} + Q$$

420 **(d)**

For first line in Lyman series $\lambda_{L_1} = \frac{4}{3R}$...(i)

For first line in Balmer series $\lambda_{B_1} = \frac{36}{5R}$...(ii) From equations (i) and (ii)

$$\frac{\lambda_{B_1}}{\lambda_{L_1}} = \frac{27}{5} \Rightarrow \lambda_{B_1} = \frac{27}{5} \lambda_{L_1} \Rightarrow \lambda_{B_1} = \frac{27}{5} \lambda_{B_1}$$

421 **(b)**

After two half-lives $\frac{1}{4}$ th fraction of nuclei will remain undecayed or $\frac{3}{4}$ th fraction will decay. Hence , the probability that a nucleus decays in two half-lives is $\frac{3}{4}$.

422 **(b)**

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T} = \left(\frac{1}{2}\right)^{\frac{10}{5}} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}25\%$$

This is probability of remaining portion of radium. So, probability of decay

423 **(d)**

For stability in case of lighter nuclei $\frac{N}{Z} = 1$ and for heavier nuclei $\frac{N}{Z} > 1$

425 **(a)**

The radius of the Bohr atom model, which is valued only for hydrogen or other ionized atoms with a single electron is given by $r_n =$

$$\left(\frac{n^2}{m}\right) \left(\frac{h}{2\pi}\right)^2 \left(\frac{4\pi\varepsilon_0}{Ze^2}\right)$$

 \therefore For a given $Z = 82, r \propto n^2$

: If the radius of the first orbit is R, the radius of the third orbit is $n^2 R$ *i. e.*, 9R

427 (d)

No energy and mass enters or goes out of the system of the reaction and no external force is assumed to act

428 **(a)**

$$E_n \propto Z^2 \Rightarrow \frac{(E_n)_{He}}{(E_n)_H} = \frac{Z_{He}^2}{Z_H^2} = 4 \Rightarrow (E_n)_{He}$$
$$= 4 \times (E_n)_H$$

429 **(d)**

The wavelength of different spectral lines of Lyman series is given by

$$\frac{1}{\lambda} = R_H \left[\frac{1}{1^2} - \frac{1}{n^2} \right]; \text{ where } n = 2, 3, 4, \dots$$

For shortest wavelength, $n = \infty$
 $\therefore \frac{1}{\lambda} = \frac{R_H}{1}$
Or $\lambda = \frac{1}{R_H} = \frac{1}{109678 cm^{-1}}$
 $= 9.117 \times 10^{-6} cm = 9.117 \times 10^{-8} m$
 $= 911.7 \times 10^{-10} m = 911.7 \text{\AA}$
430 **(d)**
B. E. = $\Delta m \ amu = \Delta m \times 931 \ MeV$

431 (c)

Lithium nucleus and carbon nucleus are positively charge. According to coulomb law same charge repal each other. So, nuclei do not come very close.

432 (d)

$$v_n \propto \frac{1}{n} \Rightarrow \frac{v_5}{v_2} = \frac{2}{5} \Rightarrow v_5 = \frac{2}{5}v_2 = \frac{2}{5}v$$

433 **(c)**

Energy of an electron in ground state of an atom (Bohr's hydrogen like atom) is given as $E = -13.6Z^2 eV$ [Z = atomic number of the atom]

$$\Rightarrow E_{\text{ionisation}} = 13.6 Z^{2}$$
$$\Rightarrow \frac{(E_{ion})_{H}}{(E_{ion})_{Li}} = \left(\frac{Z_{H}}{Z_{Li}}\right)^{2} = \left(\frac{1}{3}\right)^{2} = \frac{1}{9}$$

434 **(b)**

$$N = N_0 e^{-\lambda t}$$

$$\therefore 0.9N_0 = N_0 e^{-\lambda \times 5} \Rightarrow 5\lambda = \log_e \frac{1}{0.9} \quad \dots(i)$$

and $xN_0 = N_0 e^{-\lambda \times 20} \Rightarrow 20\lambda = \log_e \left(\frac{1}{x}\right) \quad \dots(ii)$
Dividing (i) by (ii), we get

$$\frac{1}{4} = \frac{\log_e(1/0.9)}{\log_e(1/x)} = \frac{\log_{10}(1/0.9)}{\log_{10}(1/x)} = \frac{\log_{10} 0.9}{\log_{10} x}$$

$$\Rightarrow \log_{10} x = 4 \log_{10} 0.9 \Rightarrow x = 0.658 = 65.8\%$$

435 **(c)**

Neutrons are unstable and having mean life time of 32 *sec*, decay by emitting an electron and antineutrino to become proton

437 (d)

$$r = \frac{\varepsilon_0 n^2 h^2}{\pi Z m e^2}; \ \therefore \ r \propto \frac{n^2}{Z}$$

438 **(b)**

Acceleration $a \propto \frac{v^2}{r}$ Where $v \propto \frac{Z}{n}$ and $r \propto \frac{n^2}{Z} \Rightarrow a \propto \frac{Z^3}{n^4}$ Since both are in ground state *i.e.*, n = 1So $a \propto Z^3 \Rightarrow \frac{a_{He^+}}{a_H} = \left(\frac{Z_{He^+}}{Z_H}\right)^3 = \left(\frac{2}{1}\right)^3 = \frac{8}{1}$

439 **(c)**

$$_{5}B^{10} + _{0}n^{1} \rightarrow _{3}Li^{7} + _{2}He^{4}$$

441 (a)
Radius of nucleus
$$R = R_0 A^{1/3}$$

Where $R_0 = 1.2 \times 10^{-15}$ m
Volume of nucleus $(V) = \frac{4}{3}\pi R^3$
 $= \frac{4}{3}\pi [R_0 A^{1/3}]^3$
 $= \frac{4}{4}\pi R_0^3 A$
 $\therefore \qquad V \propto A$
443 (d)

The half-life of source = $\frac{8}{4}$ = 2s Now, $R = R_0 \left(\frac{1}{2}\right)^n$ $R = 1600 \left(\frac{1}{2}\right)^{\frac{6}{2}}$ $= 1600 \left(\frac{1}{2}\right)^3 = 200$

444 **(a)**

From radioactive decay law. $-\frac{dN}{dt} \propto N \text{ or } -\frac{dN}{dt} = \lambda N$ $R = -\frac{dN}{dt}$ Thus, $R = \lambda N \text{ or } R = \lambda N_0 e^{-\lambda t}$... (i) 0r Where $R_0 = \lambda N_0$ is the activity of the radioactive materialat time t = 0. At time t_1 , $R_1 = R_0 e^{-\lambda t}$... (ii) At time t_2 , $R_2 = R_0 e^{-\lambda t}$... (iii) Dividing Eq. (ii) by (iii), we have $\frac{R_1}{R_2} = \frac{e^{-\lambda t_1}}{e^{-\lambda t_2}} = e^{-\lambda (t_1 - t_2)}$ $R_1 = R_2 e^{-\lambda(t_1 - t_2)}$ or 445 (a) Ionization energy = Binding energy

446 **(b)** Fission rate = $\frac{\text{total power}}{\text{energy/fission}}$

$$=\frac{5}{200\times1.6\times10^{-13}}=1.56\times10^{11}\mathrm{s}^{-1}$$

447 **(b)**

The electron in a hydrogen atom, moves with constant acceleration, called centripetal acceleration, round the nucleus. Acceleration of electron $a = \frac{v^2}{r}$

Given,
$$v = 2.18 \times 10^6 m/s$$

 $r = 0.528 \text{ Å} = 0.528 \times 10^{-10} m$
 $\therefore a = \frac{(2.18 \times 10^6)^2}{0.528 \times 10^{-10}} = 9 \times 10^{22} m/s^2$

448 **(b)**

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T_{1/2}} \Rightarrow \left(\frac{1}{16}\right) = \left(\frac{1}{2}\right)^{120/T_{1/2}}$$
$$\left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^{120/T_{1/2}} \Rightarrow 4 = \frac{120}{T_{1/2}} \Rightarrow T_{1/2} = 30$$

449 (c) $\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \Rightarrow \lambda \propto \frac{1}{Z^2}$

 $\lambda_{Li}^{++}:\lambda_{He}^{+}:\lambda_{H}=4:9:36$ 450 (a)

 β^- emission from the nucleus is always

accompanied with a antineutrino The β^- decays is $n \to p + e^-$ + \overline{v} electron antineutrino 451 (c) Number of atoms decayed $N' = N_0(1 - e^{-\lambda t})$ N' will increase with time (t) exponentially 452 (b) In gamma ray emission the energy is released from nucleus, so that nucleus get stabilised. 453 (b) Let the daughter nucleus be ${}^{A}_{Z}X$. So, reaction can be shown as $^{238}_{92}$ U $\rightarrow ^{A}_{Z}X + ^{4}_{2}$ He From conservation of atomic mass 238 = A + 4⇒ A = 234From conservation of atomic number 92 = Z + 2Z = 90⇒ So, the resultant nucleus is $^{234}_{90}X$, *ie*, $^{234}_{90}$ Th. 455 (b) Since, 8α – particles 4β –particles are emitted, and $2\beta^+$ particles are emitted so new atomic number. $Z' = Z - 8 \times 2 + 4 \times 1 - 2 \times 1$ = 92 - 16 + 4 - 2= 92 - 14= 78456 (c) F_n is stronger than F_e . F_n operates at very short range inside the nucleus as little as 10^{-15} m. As in the given case two protons are kept at a separation of 40Å. $F_n \ll F_e$. 457 (c) $\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \Rightarrow \frac{1}{n_1^2} - \frac{1}{n_2^2} = \frac{1}{R\lambda}$ $= \frac{1}{1.097 \times 10^7 \times 18752 \times 10^{-10}} = 0.0486 = \frac{7}{144}.$ But $\frac{1}{3^2} - \frac{1}{4^2} = \frac{7}{144} \Rightarrow n_1 = 3 \text{ and } n_2 = 4 \text{ [Paschen]}$ series 458 (d) $(E_{ion})_{Na} = Z^2 (E_{ion})_H = (11)^2 13.6 \, eV$ 459 (c) Number of protons in each =92 Number of neutrons = 235 - 92 = 143in ₉₂U²³⁵ = 238 - 92 = 146 in $_{92}U^{238}$ 460 **(b)** $x + 1 = 24 + 4 \Rightarrow x = 27$

461 (a)

Maximum energy is liberated for transition $E_n \rightarrow 1$ and minimum energy for $E_n \rightarrow E_{n-1}$ Hence $\frac{E_1}{n^2} - E_1 = 52.224 eV$...(i) and $\frac{E_1}{n^2} - \frac{E_1}{(n-1)^2} = 1.224 eV$...(ii) Solving equations (i) and (ii), we get $E_1 = -54.4 \ eV$ and n = 5Now $E_1 = -\frac{13.6Z^2}{1^2} = -54.4 \text{ eV}$. Hence Z = 2462 (d) Energy released by γ –rays for pair production must be greater than 1.02 MeV 463 (d) Using $N = N_0 e^{-\lambda t} \Rightarrow \frac{N_1}{N_0} = \frac{1}{e^2}$ 464 (c) $r \propto A^{1/3} \Rightarrow \frac{r_1}{r_2} = \left(\frac{A_1}{A_1}\right)^{1/3}$ $\Rightarrow \frac{3.6}{r_2} = \left(\frac{27}{125}\right)^{1/3} = \frac{3}{5} \Rightarrow r_2 = 6 \ fermi$ 465 (a) $\frac{1}{\lambda} = R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$. For Lyman series $n_1 = 1$ and $n_2 = 2,3,4 \dots$ When $n_2 = 2$, we get $\lambda = \frac{4}{3R_H} = \frac{4}{3 \times 10967} cm$ 466 (c) The absorption lines are obtained when the electron jumps from ground state (n = 1) to the higher energy states. Thus only 1, 2 and 3 lines will be obtained 467 (a) By formula $N = N_0 \left(\frac{1}{2}\right)^{t/T}$ or $10^4 = 8 \times 10^4 \left(\frac{1}{2}\right)^{t/3}$ Or $\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^{t/3}$ or $\left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^{t/3} \Rightarrow 3 = \frac{t}{2}$ Hence t = 9 years 468 **(b)** $(Z=92)U^{(A=238)} \xrightarrow{(8\alpha,6\beta)} _{Z'}X^{A'}$ So $A' = A - 4n_{\alpha} = 238 - 4 \times 8 = 206$ and $Z' = n_{\beta} - 2n_{\sigma} + z = 6 - 2 \times 8 + 92 = 82$ 469 (c) U = 2E, K = -E and $E = -\frac{13.6}{n^2} = eV$ 470 (b) $\frac{1}{122nm} = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right) = \frac{3R}{4}$ $\Rightarrow \frac{1}{\lambda} = R\left(\frac{1}{3^2} - \frac{1}{\infty^2}\right) = \frac{R}{9} \Rightarrow \frac{\lambda}{122} = \frac{3}{4} \times 9 = \frac{27}{4}$ $\Rightarrow \lambda = 823 nm$ 471 (c)

Nucleus does not contain electron

472 **(b)**

Because of large mass and large velocity, α particles have large ionising power. Each α particle produces thousands of ions before being absorbed. The β -particles ionise the gas through which they pass, but their ionising power is only $\frac{1}{100}$ th that of α -particles. γ -rays have got small ionising power.

Because of large mass, the penetrating power of α -particles is very small, it being 1/100 times that to β -rays and 1/10000 times that of γ -rays. α -particles can be easily stopped by an Aluminium sheet, only 0.02 mm thick. β -particles have very small mass, so their penetrating power is large. γ -rays have very large penetrating power.

474 **(b)**

Activity, $A = \frac{-N}{dt} = \lambda N$

As the number of nuclei (*N*) per mole are equal for both the substances, irrespective of their molecular mass, therefore, $A \propto \lambda$

$$\frac{A_1}{A_2} = \frac{\lambda_1}{\lambda_2} = \frac{4}{3}$$

475 (c)

In any nuclear reaction mass number and atomic number should remain conserved. Reaction (c) satisfies this condition. Also for²³⁹₉₃Np, neutron to proton ratio is greater than 1.52 which makes it unstable.

476 **(b)**

 $r_n \propto n^2 \Rightarrow \frac{r_3}{r_1} = \frac{3^2}{1} \Rightarrow r_3 = 9r_1 = 9 \times 0.53 = 4.77\text{\AA}$

477 **(a)**

 $(3_2^4\text{He} + 1_{-1}e^0)$ result in decrease in mass number

 $= 3 \times 4$ and

Decrease in charge number = $3 \times 2 + 1(-1) = 5$

 \therefore Isotope (X) has mass number = 236 - 12 = 224

and charge number = 88 - 5 = 83

478 **(d)**

Energy radiated = $1.4 \ kW/m^2$

$$= 1.4 \ kJ/s \ m^2 = \frac{1.4 \ kJ}{\frac{1}{86400} \ day \ m^2} = \frac{1.4 \times 86400 \ kJ}{day \ m^2}$$

Total energy radiated/day $= \frac{4\pi \times (1.5 \times 10^{11})^2 \times 1.4 \times 86400}{1} \frac{kJ}{day} = E$ $\therefore E = mc^2 \Rightarrow m = \frac{E}{c^2}$ $= \frac{4\pi \times (1.5 \times 10^{11})^2 \times 1.4 \times 86400}{(3 \times 10^8)^2} \times 10^3$ $= 3.8 \times 10^{14} kg$

480 **(b)**

$$T = \frac{2\pi r}{v}; r = \text{radius of } n^{\text{th}} \text{ orbit} = \frac{n^2 h^2}{\pi M Z e^2}$$
$$v = \text{speed of } e^- \text{ in } n^{\text{th}} \text{ orbit} = \frac{z e^2}{2\varepsilon_0 n h}$$
$$\therefore T = \frac{4\varepsilon_0^2 n^3 h^3}{m Z^2 e^4} \Rightarrow T \propto \frac{n^3}{Z^2}$$

481 (d)

According to conservation of momentum

$$4v = 234v' \\ \frac{v}{v'} = \frac{234}{4} = \frac{58}{1}$$

$$_7X^{15} + _2He^4 \rightarrow _1 p^1 + _8Y^{18}$$

484 **(b)**

$$\Delta m = 1 - 0.993 = 0.007 \ gm$$

$$\therefore E = (\Delta m)c^2 = (0.007 \times 10^{-3})(3 \times 10^8)^2$$

$$= 63 \times 10^{10} I$$

485 (a)

$$R = R_0 A^{1/3} = 1.2 \times 10^{-13} \times (216)^{1/3}$$

 $= 7.2 \times 10^{-13} \text{ cm}$

486 **(c)**

$$\therefore \frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T_{1/2}} = \left(\frac{1}{2}\right)^{1/2} = \frac{1}{\sqrt{2}}$$

488 **(d)**

$$r_n \propto n^2 \Rightarrow \frac{r_4}{r_1} = \left(\frac{4}{1}\right)^2 = \frac{16}{1} \Rightarrow r_4 = 16 r_1 \Rightarrow r_4$$
$$= 16 r_0$$

490 (c)

The energy released in sun and hydrogen bomb are due to nuclear fusion

491 (a) $N \propto \left[\frac{1}{\sin^4 \theta/2}\right] \Rightarrow N_1 = 7 \times \frac{1}{(\sin 30^\circ)^4} = 112$ and $N_2 = 7 \times \frac{1}{(\sin 60^\circ)^4} = 12.5$

492 **(d)**

According to Bohr's theory $mvr = n\frac{h}{2\pi}$ \Rightarrow Circumference $2\pi r = n\left(\frac{h}{mv}\right) = n\lambda$

494 **(a)**

C-14 is the element used in radioactive carbon

dating

495 (d) 1 amu = 931 MeV496 (b) $T_{1/2}(X) = \tau(Y)$ $\frac{0.693}{\lambda_x} = \frac{1}{\lambda_y}$ $\Rightarrow \qquad \lambda_{\gamma} = \frac{\lambda_x}{0.693}$ $\lambda_{\gamma} > \lambda_{x}$ \Rightarrow (So, *Y* will decay faster than *X*) 497 (a) Here, $T = 4.47 \times 10^9 \text{ yr}$ $\frac{N}{N_0} = \frac{60}{100} = \left(\frac{1}{2}\right)^n$ or $2^n = \frac{10}{6}$ $n \log 2 = \log 10 - \log 6 = 1 - 0.778 = 0.222$ $n = \frac{0.222}{\log 2} = \frac{0.222}{0.3} = 0.74$ $t = nT = 0.74 \times 4.47 \times 10^9 \text{yr}$ $= 3.3 \times 10^{9} \text{vr}$

498 (a)

For working safely, the activity must reduce to $\frac{1}{64}$

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \frac{1}{64}$$

$$\therefore \quad n = 6$$

Thus, $t = nT = 6 \times 2 = 12h$

499 (d)

Density of nuclear material=mass/volume.

$$\frac{10^{-27}}{\frac{4}{3}\pi r^3} = \frac{3 \times 10^{-27}}{4\pi (2 \times 10^{-15})^3} = 10^{17} \text{kgm}^{-3}$$

500 (d)

In the transition from orbit 5 \rightarrow 2, more energy is liberated as compared to transition from 4 \rightarrow 2

501 **(d)**

The half-life of source $=\frac{8}{4}=2s$ Now, $R = R_0 \left(\frac{1}{2}\right)^n$ $R = 1600 \left(\frac{1}{2}\right)^{\frac{6}{2}}$ $= 1600 \left(\frac{1}{2}\right)^3$ = 200502 (c)

In hydrogen atom, the lowest orbit (n = 1)

corresponds to minimum energy (-13.6 eV)

504 **(a)**

Nuclei of different elements having the same mass number are called isotones *e.g.*, $_4Be^9$ and $_5B^{10}$

505 **(b)**

Let nucleus be $_Z X^A$. Nuclear radius, $R = R_0 A^{1/3}$ where R_0 is a constant whose value is found to be $1.2 \times 10^{-15} m$ and A is the mass number

$$\therefore \frac{R_X}{R_{Cs}} = \left(\frac{A}{189}\right)^{1/3}, \therefore \frac{1}{3} = \left(\frac{A}{189}\right)^{1/3}$$
$$A = \frac{189}{3^3} = \frac{189}{27} = 7$$

The given nucleus is Li^7

506 (d)

5

Number of possible emission lines $=\frac{n(n-1)}{2}$ Where n = 4; Number $=\frac{4(4-1)}{2} = 6$

07 (c)

$$\lambda_{\alpha} = \frac{1}{1620} per year \text{ and } \lambda_{\beta} = \frac{1}{405} per year \text{ and it is}$$

given that the fraction of the remained activity
 $\frac{A}{A_0} = \frac{1}{4}$
Total decay constant
 $\lambda = \lambda_{\alpha} + \lambda_{\beta} = \frac{1}{1620} + \frac{1}{405} = \frac{1}{324} per year$
We know that $A = A_0 e^{-\lambda t} \Rightarrow t = \frac{1}{\lambda} \log_e \frac{A_0}{A}$
 $\Rightarrow t = \frac{1}{\lambda} \log_e 4 = \frac{2}{\lambda} \log_e 2 = 324 \times 2 \times 0.693$
 $= 449 years$

508 (d)

Bohr radius $r = \frac{\varepsilon_0 n^2 h^2}{\pi Z m e^2}$; $\therefore r \propto n^2$

509 (b)Energy is released in the sun due to fusion511 (d)

Let

$$_{Z}X^{A} \xrightarrow{3\alpha} _{(Z-6)}Y^{(A-12)} \xrightarrow{5\beta} _{Z-1}Y'^{(A-12)}$$

$$\therefore \frac{\text{No. of neutrons}}{\text{No. of protons}} = \frac{A - 12 - (Z - 1)}{Z - 1}$$
$$= \frac{A - Z - 11}{Z - 1}$$

512 (a) In hydrogen atom $E_2 - E_1 = 10.2eV$ Since, 5eV < 10.2eVThe electron excites the hydrogen atom. The collision must be therefore elastic 513 (d) $R = R_0 A^{1/3}$

$$\therefore \qquad \frac{R_1}{R_2} = \left(\frac{A_1}{A_2}\right)^{1/3}$$
$$\frac{2}{R_2} = \left(\frac{7}{189}\right)^{1/3}$$
$$\Rightarrow \qquad R_2 = 6 \text{ Fermi}$$

514 **(b)**

The electrostatic *P*. *E*. is zero when the electron and proton are far apart from each other. Work done in pulling electron and proton far away from each other

$$W = E_f - E_i = 0 - E_i = -\left(-\frac{13.6}{n^2}eV\right)$$

$$\Rightarrow W = \frac{13.6}{(2)^2} \times 1.6 \times 10^{-19}J = 3.4 \times 1.6 \times 10^{-19}J$$

515 (a)

 $P.E. \propto -\frac{1}{r}$ and $K.E. \propto \frac{1}{r}$

As *r* increases *K*.*E*. decreases but *P*.*E*. increases 516 **(c)**

Given ${}_{90}\text{Th}^{232} \rightarrow {}_{82}\text{Pb}^{208}$...(i) Change in mass number = 232 - 208 = 24No. of α -particles emitted $= \frac{24}{4} = 6$

Now. Eq. (i) becomes

 $_{90}$ Th²³² $\xrightarrow{-6\alpha}_{78}$ $A^{208} \xrightarrow{-n\beta}_{82}$ Pb²⁰⁸ Further change in atomic number is 82 - 78 = 4 It means atomic no. 78 is increased by 4 to make the atomic no 82.

Therefore $6\alpha\mbox{-particles}$ and $4\beta\mbox{--particles}$ will be emitted.

517 **(c)**

The Hydrogen atom before the transition was at rest. Therefore from conservation of momentum

$$p_{H-\text{atom}} = p_{\text{photon}} = \frac{E_{\text{radiated}}}{c} = \frac{13.6 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) eV}{c}$$

$$1.6 \times 10^{-27} \times v = \frac{13.6 \left(\frac{1}{1^2} - \frac{1}{5^2}\right) \times 1.6 \times 10^{-19}}{3 \times 10^8}$$

$$\Rightarrow v = 4.352 \text{ m/s} = 4\text{m/sec}$$

518 (d)

Energy of photon emitted,

$$E = 13.6 \left(\frac{1}{1^2} - \frac{1}{5^2}\right) eV = 13.6 \times \frac{24}{25} eV$$

Momentum of photon = $\frac{E}{c}$

The momentum of hydrogen atom is equal and opposite to the momentum of photon. If *m* is the mass of hydrogen atom (= 1.67×10^{-27} kg)and *v* is recoil speed of hydrogen atom , then

$$mv = \frac{E}{c}$$

$$v = \frac{E}{mc} = \frac{13.01 \times 1.6 \times 10^{-19}}{1.67 \times 10^{-27} \times 3 \times 10^8}$$

$$v = 4.15 \text{ ms}^{-1}$$

520 **(a)**

The reaction is ${}_{3}\text{Li}^{7} + {}_{1}P^{1} \rightarrow 2({}_{2}\text{He}^{4})$ $\therefore E_{p} = 2E({}_{2}\text{He}^{4})E_{(\text{Li})}$ $= 2(4 \times 7.06) - 7 \times 5.6$ = 56.48 - 39.2 = 17.28 MeV

521 (a)

$$\begin{bmatrix} 1 - \frac{1}{4} \end{bmatrix} = Z^2 \begin{bmatrix} \frac{1}{4} - \frac{1}{16} \end{bmatrix}$$

522 (d)

3 – 1 transition has higher energy so it has higher frequency $\left(v - \frac{E}{h}\right)$

523 **(d)**

In $\beta\text{-}decay$ a neutron is transformed into a proton and an electron and an antineutrino is emitted.

 $n^0 \rightarrow p + e^- + \bar{\nu^-}$

524 **(b)**

:.

$$N_{1} = N_{0} - \frac{1}{3}N_{0} = \frac{2}{3}N_{0}$$
$$N_{2} = N_{0} - \frac{2}{3}N_{0} = \frac{1}{3}N_{0}$$
$$\frac{N_{1}}{N_{2}} = \left(\frac{1}{2}\right)^{n}$$
$$n = 1$$

 $\therefore \quad t_2 - t_1 = \text{one half} - \text{life} = 20 \text{ min}$ 525 (a)

Number of half lives
$$n = \frac{5}{1} = 5$$

Now $\frac{N}{N_0} = \left(\frac{1}{2}\right)^n \Rightarrow \frac{N}{N_0} = \left(\frac{1}{2}\right)^5 = \frac{1}{32}$

526 **(b)**

$$r \propto n^{2}, i.e., \frac{r_{f}}{r_{i}} = \left(\frac{n_{f}}{n_{i}}\right)^{2}$$

$$\Rightarrow \frac{21.2 \times 10^{-11}}{5.3 \times 10^{-11}} = \left(\frac{n}{1}\right)^{2} \Rightarrow n^{2} = 4 \Rightarrow n = 2$$
7 (a)

527 (a)

Energy spectrum of emitted $\beta-$ particles from a radioactive source drawn as

528 (b)

We can relate an absorbed energy Q and the resulting temperature increase ΔT with relation $Q = cm\Delta T$. In this equation, *m* is the mass of the material absorbing the energy and *c* is the specific heat of that material. An absorbed does of 3 Gy corresponds to an absorbed energy per unit mass of 3 JKg^{-1} . Let us assume that c the specific heat of human body, is the same as that of water, 4180 JKg⁻¹K. Then we find that

$$\Delta T = \frac{Q/m}{c} = \frac{3}{4180} = 7.2 \times 10^{-4} \,\mathrm{K} \approx 700 \,\,\mu\mathrm{K}$$

Obviously the damage done by ionizing radiation has nothing to do with thermal heating. The harmful effects arise because the radiation damages DNA and thus interferes with the normal functioning of tissues in which it is absorbed.

529 (d)

 $_{0}n^{1} + _{92}U^{235} \rightarrow _{51}Sb^{133} + _{41}Nb^{99} + Neutrons$

Charge number is conserved (92=51+41)

Applying principle of conservation of mass number

133 + 99 + x = 235 + 1

$$x = 236 - 232 = 4$$

 \therefore Number of neutrons $(_1n^1) = 4$

530 (c)

$$\frac{N_1}{N_2} = \frac{(1/2)^{4/1}}{(1/2)^{4/2}} = \frac{(1/16)}{(1/4)} = \frac{1}{4}$$

531 (a)

We Know,
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T}$$

 $\frac{N}{10000} = \left(\frac{1}{2}\right)^{10/20}$
 $N = \frac{10000}{\sqrt{2}} = \frac{10000}{1414} = 7070$

532 (c)

Protium $\binom{1}{1}$ H), deuterium $\binom{2}{1}$ H) and tritium $\binom{3}{1}$ H) are the isotopes of hydrogen. Out of the three,

protium is most stable, deuterium is again stable but tritium is radioactive and eventually decays into an isotope of helium.

533 (c)

$$\frac{A_0}{3} = A_0 \left(\frac{1}{2}\right)^{9/T_{1/2}}$$
$$A' = \frac{A_0}{3} \left(\frac{1}{2}\right)^{9/T_{1/2}}$$
$$\therefore \frac{A'}{A_0/3} = \frac{1}{3}$$
or $A' = \frac{A_0}{9}$

534 (c)

:.

Curie is a unit of radioactivity.

535 (c)

When atoms of an element are bombarded by neutrons, the atomic nuclei are (artificially) disintegrated and emit lighter particle (eg. α – particle, β – particle, proton etc.). Sometimes a neutron is observed by the nucleus which is converted into its heavier isotope and energy is emitted in the form of γ -photons. This process in which heavy nucleus is broken into two nearly equal fragments is called nuclear fission.

536 (c)

Both coulomb and nuclear force act inside the nucleus

537 (b)

When two nuclei of mass number lying in the range of 51<*A*<100 combined, then a nucleus is formed in the range 100 < A < 150 which has high value of specific binding energy. Thus, the fusion of two nuclei of mass number lying in range of 51<*A*<100 will release energy.

538 (c)

K.E. = - (Total energy) = -(-13.6 eV) = +13.6 eV

539 (a)

Let the percentage of B^{10} atoms be *x*, then average atomic weight

$$= \frac{10x + 11(100 - x)}{100} = 10.81$$
$$x = 19$$
$$\frac{N_{B^{10}}}{N_{B^{11}}} = \frac{19}{81}$$

540 (c)

:.

Fraction remains after *n* half lives $\frac{N}{N_0} = \left(\frac{1}{2}\right)^n =$

$$\left(\frac{1}{2}\right)^{1/T} \\ \therefore \frac{N}{N_0} = \left(\frac{1}{2}\right)^{\frac{T/2}{T}} = \left(\frac{1}{2}\right)^{1/2} = \frac{1}{\sqrt{2}}$$

541 (a) $A_n = \pi r_n^2 \Rightarrow \frac{A_n}{A_1} = \left(\frac{r_n}{r_1}\right)^2 = \left(\frac{n}{1}\right)^4 \quad [\because r_n \propto n^2]$ Taking log_e on both the sides $\log_e \frac{A_n}{A_1} = 4 \log_e(n)$ Comparing it with y = mx + c, graph (4) is correct 542 (c) $r \propto n^2 \Rightarrow r_n = n^2 a_0 [\because r_1 = a_0]$ 543 (b) $E = -Rch \Rightarrow R = -\frac{E}{ch} = \frac{13.6 \times 1.6 \times 10^{-19}}{3 \times 10^8 \times 6.6 \times 10^{-34}}$ $= 1.098 \times 10^7 per m$ 544 (d) $T = \frac{0.6931 \times 1}{\lambda} = \frac{0.6931}{4.28 \times 10^{-4}} year$ 545 (b) In order to compare the stability of the nuclei of different atoms we determine the binding energy per nucleon. Higher the binding energy per nucleon. More stable is the nucleus. A graph between energy per nucleon and the mass number of nuclei is called the binding energy curve. It gives the following information that of two or more very light nuclei (nucleus of heavy

hydrogen ${}_{1}H^{2}$ fuse into a relatively heavier nucleus (${}_{2}He^{4}$), then binding energy will increase showing that helium is stable.

546 **(c)**

In 9 years, activity becomes $I = \frac{I_0}{2}$

In further 9 years, activity would becomes

$$I' = \frac{I}{3} = \frac{I_0}{3 \times 3} = \frac{I_0}{9}$$

547 **(d)**

An electron is a lepton

548 **(c)**

In hydrogen atom $E_n = -\frac{Rhc}{n^2}$

Also $E_n \propto m$; where *m* is the mass of the electron. Here the electron has been replaced by a particle whose mass is double of an electron. Therefore,

for this hypothetical atom energy in n^{th} orbit will be given by $E_n = -\frac{2Rhc}{n^2}$ The longest wavelength λ_{max} (or minimum energy) photon will correspond to the transition of particle from n = 3 to $n = 2 \Rightarrow \frac{hc}{\lambda max} = E_3 - E_3$ $E_2 = 2Rhc\left(\frac{1}{2^2} - \frac{1}{3^2}\right)$ This gives $\lambda_{\max} = \frac{18}{50}$ 549 (d) Number of half lives in 150 years $n = \frac{150}{75} = 2$ Fraction of the atoms decayed = $1 - \left(\frac{1}{2}\right)^{r}$ $= 1 - \left(\frac{1}{2}\right)^2 = \frac{3}{4} = 0.75 \Rightarrow$ Percentage decay = 75% 550 (d) $T_{1/2} = \frac{\log_e 2}{\lambda} = \frac{2.303 \log_{10} 2}{\lambda}$ 552 (a) Given that $\lambda_1 N_1 = 5\mu Ci$; $\lambda_2 N_2 = 10\mu Ci$; $\lambda_2 N_2 =$ $2\lambda_1 N_1$ Also $N_1 = 2N_2$; Then $\lambda_2 N_2 = 2\lambda_1(2N_2) \Rightarrow \lambda_2 =$ 4λ1 553 (a) For emission $\frac{1}{\lambda} = Rz^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$ $= R\left(\frac{1}{1^2} - \frac{1}{5^2}\right)$ $\frac{1}{\lambda} = R \frac{24}{25}$ Linear momentum $P = \frac{h}{\lambda} = h \times R \times \frac{24}{25}$ $=mv=\frac{24hR}{25}$ $\Rightarrow v = \frac{24hR}{25m}$ 554 (b) $r \propto n^2 \Rightarrow \frac{r_{(n=2)}}{r_{(n=2)}} = \frac{4}{9} \Rightarrow r_{(n=3)} = \frac{9}{4}R = 2.25 R$ 555 (b) Let ground state energy (in eV) be E_1 Then from the given condition $E_{20} - E_1 = 204 eV$ $\operatorname{Or} \frac{E_1}{4n^2} - E_1 = 204eV$ $\Rightarrow E_1\left(\frac{1}{4n^2} - 1\right) = 204eV \qquad \dots(i)$ and $E_{2n} - E_n = 40.8 eV$ $\Rightarrow \frac{E_1}{4n^2} - \frac{E_1}{n^2} = E_1 \left(-\frac{3}{4n^2} \right) = 40.8 eV \quad \dots (ii)$

From equation (i) and (ii)

$$\frac{1-\frac{1}{4n^2}}{\frac{3}{4n^2}} = 5 \Rightarrow n = 2$$

556 (c)
Emitted enegy
$$\Delta E = \frac{hc}{\lambda} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

 $t = \frac{\text{nuclear distance}}{\text{velocity}} = \frac{10^{-14}}{3 \times 10^6} \approx 10^{-20} \text{s}$

558 **(a)**

Each atom of ${}_{6}C^{14}$ contains 6p, 6e and 8n

: In 14 g of ${}_{6}C^{14}$ $p = 6 \times 6 \times 10^{23} = 36 \times 10^{23}$ $n = 8 \times 6 \times 10^{23} = 48 \times 10^{23}$ $e = p = 36 \times 10^{23}$

560 **(c)**

Rate of disintegration ∝ Number of atoms left

In case of source A, $\frac{N}{N_0} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$ In case of source B, $\frac{N}{N_0} = \left(\frac{1}{2}\right)^1 = \frac{1}{2}$

$$\therefore \ \frac{R_A}{R_B} = \frac{N_0/4}{N_0/2} = \frac{1}{2}$$

561 **(c)**

When a nucleus is formed, then the mass of nucleus is slightly less than the sum of the mass of *Z* protons and *N* neutrons.

ie, $M < (Zm_p + Nm_n)$

562 **(d)**

 $\alpha\text{-}\mathrm{particles}$ cannot be attracted by the nucleus

564 **(a)**

D is excitation of electron from 2^{nd} orbit corresponding to absorption line in Balmer series and *E* is the energy released to bring the electron from ∞ to ground state *i. e.*, ionization energy

565 **(a)**

Applying conservation of mass number and charge number, only (a) is correct.

566 **(a)**

Penetration power of γ is 100 times of β , while that of β is 100 times of α

567 **(d)**

In fusion, two lighter nuclei combine to give a

heavier nucleus and possibly other products.

568 (d)

$${}_{8}O^{16}+{}_{1}H^{2} \rightarrow_{7} N^{14}+{}_{2}He^{4}$$

570 (a)
 $N = N_{0}e^{-\lambda t} \Rightarrow \frac{N_{0}}{e} = N_{0}e^{-\lambda(5)} \Rightarrow \lambda = \frac{1}{5}$
Now $\frac{N_{0}}{2} = N_{0}e^{-\lambda(t)} \Rightarrow t = \frac{1}{\lambda} \ln 2 = 5 \ln 2$
572 (c)
 E_{2}
 $2.3eV$
 E_{1}
 $E_{2} - E_{1} = hv \text{ or } v = \frac{E_{2}-E_{1}}{h} = \frac{2.3 \times 1.6 \times 10^{-19} f}{6.6 \times 10^{-34} fs}$
 $= 0.56 \times 10^{15} s^{-1} = 5.6 \times 10^{14} Hz$
573 (c)
 $\frac{N}{N_{0}} = (\frac{1}{2})^{15/5} = \frac{1}{8} \Rightarrow \text{Decayed fraction} = 1 - \frac{1}{8} = \frac{7}{8}$
574 (b)
Mass of H_{2} nucleus = mass of proton = 1 *amu*
energy equivalent to 1 *amu* is 931 *MeV* so correct
option is (b)
575 (c)
Here, $N_{0} = 4 \times 10^{10}$
Number of half lives, $n = 4$, As $\frac{N}{N_{0}} = (\frac{1}{2})^{n}$
 $\therefore N = N_{0}(\frac{1}{2})^{4} = \frac{N_{0}}{16} = \frac{4 \times 10^{10}}{16}$
 $= 0.25 \times 10^{10} = 25 \times 10^{8}$
576 (a)
Nuclides for which $\frac{N}{2}$ is too small for stability can
emit a positron, the electron's antiparticle which
is identical to the electron, but with positive
charge. The basic process called β^{+} decay.
 $\frac{A}{2}X \rightarrow z - \frac{1}{4}Y + e^{+} + \gamma$ (γ = neutrino)
578 (b)
Wave number $\overline{v} = \frac{1}{\lambda} = \frac{1}{5896 \times 10^{-9}} = 16961$ per *cm*
579 (b)
Penetrating power varies inversely as mass of
penetrating radiation. Therefore, γ radiations
have maximum penetrating power.
580 (b)

No. of lines
$$N_E = \frac{n(n-1)}{2} = \frac{3(3-1)}{2} = 3$$

582 **(b)**

In the second excited state, n = 3

$$\therefore l_{\rm H} = l_{\rm Li} = 3\left(\frac{h}{2\pi}\right)$$

As $E \propto Z^2$ and $Z_{\rm H} = 1$, and $Z_{\rm Li} = 3$

$$\therefore |E_{\text{Li}}| = 9|E_{\text{H}}| \text{ or } |E_{\text{H}}| < |E_{\text{Li}}|$$

584 **(b)**

Energy released

=initial BE-final BE = 2x - y

585 (d)

$$mvr_n = \frac{nh}{2\pi} \Rightarrow pr_n = \frac{nh}{2\pi} \Rightarrow \frac{h}{\lambda} \times r_n = \frac{nh}{2\pi}$$

 $\Rightarrow \lambda = \frac{2\pi r_n}{n}$, for first orbit $n = 1$ so $\lambda = 2\pi r_n$
= circumference of first orbit

586 (a)

One Becquerel is equal to one disintegration per second.

587 (c)

 ${}_{6}C^{12} + {}_{0}n^{1} \rightarrow {}_{Z}X^{A} + {}_{-1}e^{0}$ $\therefore A = 12 + 1 = 13$ Z = 6 + 1 = 7

588 (a)

The pion, in the laboratory frame can travel = $2.5 \times 10^{-8} \times 0.9 \times 3 \times 10^{8}$ m = 6.75m

589 (b)

 $E_n = \frac{13.6}{n^2} \times Z^2$. For first excited state n = 2 and for $Li^{++}, z = 3 \Rightarrow E = \frac{13.6}{4} \times 9 = 30.6 \ eV$

590 **(d)**

(With emission of an α particle ($_2He^4$) mass number decreases by 4 unit and atomic number decrease by 2 units and with emission of $2\beta^{-1}$ particles atomic number increases by 2 units. So Z will remain same and *N* will become N - 4)

592 **(c)**

 $\frac{3}{4}$ th active decay takes place to time

$$t = 2(T_{1/2}) \Rightarrow \frac{3}{4} = 2(T_{1/2}) \Rightarrow T_{1/2} = \frac{3}{8}s$$
(b)

594 **(b)**

Let *x* be the mass number of *A* and *y* the atomic number. Then , since atomic number and mass number remain conserved, we have

$$_{y}A^{x} \rightarrow _{y-2}B^{x-4} + _{2}\text{He}^{4}$$

 $_{y-2}B^{x-4} \rightarrow _{y}C^{x-4} + 2_{-1}e^{0}$

Hence, we observe that A and C are isotopes as their atomic numbers are same but mass numbers are different. 596 (c) $T \propto n^3 \Rightarrow \frac{T_2}{T_1} = \frac{2^3}{1^3} = \frac{8}{1}$ 598 (a) To becomes $\frac{1}{4}$ th, it requires time of two half lives *i.e.*, $t = 2(T_{1/2}) = 2 \times 5800 = 2 \times 58$ centuries 599 (c) By using $N = N_0 e^{-\lambda t}$ and average life time $t = \frac{1}{\lambda}$ So $N = N_0 e^{-\lambda \times 1/\lambda} = N_0 e^{-1} \Rightarrow \frac{N}{N_0} = e^{-1} = \frac{1}{e}$ Now disintegrated fraction = $1 - \frac{N}{N_0} = 1 - \frac{1}{e} =$ е-: е 602 (b) Mass defect = $\frac{2 \times 1.115}{931}$ = 0.0024 unit 604 (b) By using $N = N_0 e^{-\lambda t} \Rightarrow \frac{N_0}{2} = N_0 e^{-\lambda T_{1/2}} \Rightarrow 2 =$ $\rho^{\lambda T_{1/2}}$ By using \log_e both the side $\log_e 2 = \lambda T_{1/2} \Rightarrow \lambda T_{1/2} = 0.693$ 605 (d) $\frac{A}{A_0} = \left(\frac{1}{2}\right)^{t/T_{1/2}} \Rightarrow \frac{1}{8} = \left(\frac{1}{2}\right)^{t/8} \Rightarrow t = 24 \text{ years}$ 606 (b) By using $\frac{1}{\lambda} = R \left[\frac{1}{n^2} - \frac{1}{n^2} \right]$ 607 (d) Fraction $= \frac{N}{N_0} = \left(\frac{1}{2}\right)^{\frac{6400}{1600}} = \left(\frac{1}{2}\right)^4 = \frac{1}{16}$ 608 (d) $R = \frac{2\pi^2 k^2 e^4 m}{ch^3} = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{2\pi^2 m e^4}{ch^3}$ 609 **(b)** Taking average count per minute in the first half value period as (100+50)/2 ie, 75 Total number of counts during this period

= $75 \times 3 \times 60 = 13500$ which is closest to the given result (14100)

611 **(a)**

$$N = N_0 \left(\frac{1}{2}\right)^n \Rightarrow \frac{N}{N_0} = \left(\frac{1}{2}\right)^n \Rightarrow \frac{1}{100} - \left(\frac{1}{2}\right)^n$$
$$\Rightarrow 2^n - 100$$

n comes out in between 6 and 7

613 **(b)**

Transition from 4E to E

$$(4E - E) = \frac{hc}{\lambda_1} \Rightarrow \lambda_1 = \frac{hc}{3E} \qquad \dots(i)$$

Transition from $\frac{7}{3}E$ to E
 $\left(\frac{7}{3}E - E\right) = \frac{hc}{\lambda_2} \Rightarrow \lambda_2 = \frac{3hc}{4E} \qquad \dots(ii)$
From equation (i) and (ii), $\frac{\lambda_1}{\lambda_2} = \frac{4}{9}$
614 **(c)**

$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

$$\Rightarrow \frac{1}{970.6 \times 10^{-10}} = 1.097 \times 10^7 \left[\frac{1}{1^2} - \frac{1}{n_2^2} \right] \Rightarrow n_2$$

$$= 4$$

: Number of emission lines $N = \frac{n(n-1)}{2} = \frac{4 \times 3}{2} = 6$

616 (b) dN_1

$$\left|\frac{dN}{dt}\right| = \lambda N \Rightarrow \left|\frac{dN}{dt}\right| \propto N$$
617 **(b)**

dN

In two half lives, the activity becomes one fourth 618 (c)

The sun is continuously emitting light and heat at a very high rate. The source of the huge solar energy is the fusion of lighter nuclei. About 90 % of the mass is composed of hydrogen and helium and rest 10% contains other elements. The temperature of interior of sun is very high. Continuous fusion of hydrogen nuclei into helium nucleus is taking place, which result in the liberation of huge amount of energy.

619 (a)

$$R = R_0 e^{-\lambda t}$$

$$\Rightarrow \left(\frac{1}{3}\right) = e^{-\lambda \times 3} = e^{-3\lambda} \quad \dots (i)$$
Again $\frac{R'}{R_0} = e^{-\lambda \times 9} = e^{-9\lambda} = (e^{-3\lambda})^3$

$$= \left(\frac{1}{3}\right)^3 \quad [\text{From Eq. (i)}]$$

$$= \frac{1}{27}$$

$$\Rightarrow R' = \frac{R_0}{27}$$

Hence, in 9 days activity will become $\left(\frac{1}{27}\right)$ of the original value.

620 (c)

Mass of a uranium nucleus

 $= 92 \times 1.6725 \times 10^{-27} + 143 \times 1.6747 \times 10^{-27}$ $= 393.35 \times 10^{-27} kg$ Number of nuclei in the given mass $=\frac{1}{393.35\times10^{-27}}=2.542\times10^{24}$ Energy released = $200 \times 2.542 \times 10^{24} MeV$ $= 5.08 \times 10^{26} MeV = 8.135 \times 10^{13} I = 8.2 \times 10^{13} I 632$ (c)

$$E = \Delta mc^2 = 10^{-6} \times (3 \times 10^8)^2 = 9 \times 10^{10} J$$

622 (a)
$$\overline{v} \propto \frac{1}{\lambda} \propto Z^2 \Rightarrow \lambda Z^2 = \text{constant} \Rightarrow \lambda = \frac{\lambda}{4} Z^2 \Rightarrow Z = 2$$

623 (a)
Activity depends upon mass, but λ doesn't change

624 (b) $E = 13.6 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$. For highest energy in Balmer series $n_1 = 2 \text{ and } n_2 = \infty \Rightarrow E = 13.6 \left[\frac{1}{(2)^2} - \frac{1}{(\infty)^2} \right] =$

After the removal of first electron remaining atom will be hydrogen like atom

So energy required to remove second electron

from the atom
$$E = 13.6 \times \frac{2^2}{1} = 54.4 eV$$

 \therefore Total energy required = 24.6 + 54.4 = 79 eV

627 (c)

From the conservation of mass number and charge number

$${}_{2}^{4}\text{He} + {}_{4}^{9}\text{Be} \rightarrow {}_{0}^{1}n + {}_{6}^{12}X$$

Here, X can be carbon.

628 **(b)**

$$M = M_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}} \Rightarrow 25 = 100 \left(\frac{1}{2}\right)^{\frac{t}{1600}} \Rightarrow t$$

= 3200 years

629 (d)

Law of conservation of momentum gives

$$m_1v_1 = m_2v_2$$

$$\Rightarrow \qquad \frac{m_1}{m_2} = \frac{v_2}{v_1}$$
But
$$m = \frac{4}{3}\pi r^3 \rho$$
or
$$m \propto r^3$$

$$\therefore \qquad \frac{m_1}{m_2} = \frac{r_1^3}{r_2^3} = \frac{v_2}{v_1}$$

$$\Rightarrow \qquad \frac{r_1}{r_2} = \left(\frac{1}{2}\right)^{1/3}$$

$$\therefore \qquad r_1: r_2 = 1: 2^{1/3}$$
630 (d)

Fraction of atoms remains after five half lives

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T} = \left(\frac{1}{2}\right)^{5T/T} = \frac{1}{32}$$

$$\Rightarrow \text{Percentage atom remains} = \frac{1}{32} \times 100 = 3.125\%$$

631 (d)

Infinitely large transitions are possible (in principle) for the hydrogen atom

$$N_t = N_0 \left(\frac{1}{2}\right)^{t/T} = 50000 \left(\frac{1}{2}\right)^{10/5} = 12500$$

633 (a)

Nuclear force has the following properties (i) Nuclear force is a short range force whose range is of the order of 2 to 3femtometre.

(ii) Nuclear force is a strongest force in nature.

(iii) Nuclear force is an attractive force acting between nucleons, which is charge independent.

Therefore, nuclear force is strong, short range and charge independent force.

634 (a)

$$r_n \propto n^2 \Rightarrow A_n \propto n^4 \Rightarrow \frac{A_1}{A_0} = \left(\frac{2}{1}\right)^4 = \frac{16}{1}$$

635 (b)

In 10 s, number of nuclei has been reduced to one fourth (25% to 6.25%)

Therefore it's half life is $T_{1/2} = 5 s$

: Mean life
$$T = \frac{T_{1/2}}{0.693} = \frac{5}{0.693} = 7.21 s$$

637 (c)

Radiocarbon dating relies on a simple natural phenomenon. As the earth's upper is bombarded by cosmic radiation, atmospheric nitrogen is broken down into an unstable isotope of carboncarbon (C-14).

The unstable isotope is brought to earth by atmospheric activity, such as storms, and becomes fixed in the biosphere. Because it reacts identically to C-12 and C-13, C-14 attached to complex organic molecules through photosynthesis in plants and becomes their molecular makeup. Animals eating those plants in turn absorb carbon–14 as well as stable isotopes. This process of ingesting C - 14 continues as long as the plant or animal remains alive. The C - 14 within an organism is continually decaying into stable carbon isotopes, but organism is absorbing more C - 14 during its life, the ratio of C - 14 to C - 12 remains about same as the ratio in the atmosphere. Where the organism dies, the ratio of C-14 within its carcass begins to gradually decrease.

638 (d)

 $E = mc^2$ $1000 \times 10^3 \times 3600 = m(3 \times 10^8)^2$

639 **(b)**

Nuclear radius is proportional to $A^{1/3}$

$$R = R_0 A^{1/3}$$
$$\frac{R_1}{R_2} = \left[\frac{7}{56}\right]^{1/3} = \frac{1}{2}$$

641 (b)

...

Mass of electron = mass of positron = $9.1 \times$ $10^{-31} kg$ Energy released $E = (2m) \cdot c^2$

$$= 2 \times 9.1 \times 10^{-31} \times (3 \times 10^8)^2 = 1.6 \times 10^{-13} J$$

642 (d)

In practise, nuclear fusion is very difficult process. This is so when positively charged nuclei come very close for fusion, the force of electrical repulsion between them becomes very strong. For fusion against this force, they require very high energy. To impart, so much energy to them, very high temperature and very high pressure is required.

643 (d)

$$2E - E = \frac{hc}{\lambda} \Rightarrow E = \frac{hc}{\lambda}$$
$$\frac{4E}{3} - E = \frac{hc}{\lambda'} \Rightarrow \frac{E}{3} = \frac{hc}{\lambda'} \therefore \frac{\lambda'}{\lambda} = 3 \Rightarrow \lambda' = 3\lambda$$
$$4 \text{ (b)}$$

Q-value of the reaction is 5.5 MeV *i.e.*, $k_1 + k_2 = 5.5 MeV$...(i) By conservation of linear momentum $p_1 = p_2 \Rightarrow \sqrt{2(216)/k_1} = \sqrt{2(4)k_2}$ $\Rightarrow k_2 = 54 k_1 \dots$ (ii) On solving equation (i) and (ii) We get $k_2 = 5.4 MeV$

645 **(b)**

Number of half lives
$$n = \frac{19}{3.8} = 5$$
; Now $\frac{N}{N_0} = \left(\frac{1}{2}\right)^n$
 $\Rightarrow \frac{N}{10.38} = \left(\frac{1}{2}\right)^5 \Rightarrow N = 10.38 \times \left(\frac{1}{2}\right)^5 = 0.32g$

646 (d)

Density of nuclear matter is independent of mass number, so the required ratio is 1:1.

649 (c)

$$\frac{C_{14}}{C_{12}} = \frac{1}{4} = \left(\frac{1}{2}\right)^{t/5700} \Rightarrow \frac{t}{5700} = 2 \Rightarrow t$$

$$= 11400 \ years$$

650 (a)

After 2 days, we have A = 6g, B = (12 - 6)g = 6gAfter 4 days, we have A = 3g, B = (12 - 3)g = 9g

651 **(d)**

Radius of n^{th} orbit $r_n \propto n^2$, graph between r_n and n is a parabola. Also, $\frac{r_n}{n_1} = \left(\frac{n}{1}\right)^2 \Rightarrow \log_e\left(\frac{r_n}{r_1}\right) = 2\log_e(n)$ Comparing this equation with y = mx + cGraph between $\log_e\left(\frac{r_n}{r_1}\right)$ and $\log_e(n)$ will be a straight line, passing from origin Similarly it can be proved that graph between $\log_e\left(\frac{f_n}{f_1}\right)$ and $\log_e n$ is a straight line. But with negative slope

652 **(a)**

In nuclear reactors the moderators are used to decrease (slowdown) the speed of neutrons. Heavy water, graphite is used for this purpose. While heavy water is the best moderator

654 **(d)**

655 **(b)**

$$\frac{N}{N_0} = \frac{1}{1+7} = \frac{1}{8}$$
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \frac{1}{8}$$

$$\therefore n = 3$$

$$t = nT = 3 \times 10^9 \,\mathrm{yr}$$

656 **(c)**

 $1 \text{ Ci} = 3.7 \times 10^{10} \text{ dis/s}$

657 **(a)**

The phenomena in which proton flips is nuclear magnetic resonance

658 **(c)**

First excited state *i.e.*, second orbit (n = 2)Second excited state *i.e.*, third orbit (n = 3)

$$\therefore E = -\frac{13.6}{n^2} \Rightarrow \frac{E_2}{E_3} = \left(\frac{3}{2}\right)^2 = \frac{9}{4}$$

659 **(d)**

 $_{1}H^{2} + _{1}H^{2} \rightarrow _{1}H^{3} + _{1}H^{1}$

660 **(a)** We know,

$$N = N_0 \left(\frac{1}{2}\right)$$

Where N_0 is original number of atoms, n is

number of half-lives

$$n = \frac{t}{T_{1/2}} = \frac{180}{60} = 3$$

$$\therefore \qquad \frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$\therefore \qquad N = \frac{N_0}{8} = 0.125 N_0 = 12.5 \% N$$

Amount decayed = 100 - 125 - 875 %

Amount decayed = 100 - 12.5 = 87.5 % N 661 (a)

 $T = \frac{T_0}{\sqrt{1-T_0}}$

$$= \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

T is the time observed by the person on earth in relative motion *w*. *r*. *t*. the asteroid. T_0 is measured by the person at rest

$$\therefore T_A > T_B(T_B = T_0)$$

662 **(d)**

$$p \rightarrow \pi^+ + n, n \rightarrow p + \pi^- \text{ and } n \rightarrow n' + \pi^0$$

63 **(b)**

663 **(b)**

The successive emission of gamma rays of energies 1.17 MeV and 1.33 MeV from the deexcitation of ${}^{60}_{28}Ni$ nuclei formed from β –decay of ${}^{60}_{27}Co$. This process is as shown in the figure through an energy level diagram

664 **(c)**

60 27 Co

Angular momentum

$$= n\left(\frac{h}{2\pi}\right) = 2\left(\frac{h}{2\pi}\right) = \frac{h}{\pi}$$

665 **(c)**

The activity
$$\left(-\frac{dN}{dt}\right) = \lambda N \Rightarrow N = \left(-\frac{dN}{dt}\right) \left(\frac{T_{1/2}}{\log_e 2}\right)$$

Taking the ratio of this expression for ^{240}Pu to this same expression for ^{243}Am

$$\frac{N_{Pu}}{N_{Am}} = \frac{\left(-\frac{dN_{Pu}}{dt}\right) \left(T_{1/2}\right)_{Pu}}{\left(-\frac{dN_{Am}}{dt}\right) \left(T_{1/2}\right)_{Am}} = \frac{(5\mu ci) \times (6560y)}{(4.45\mu ci) \times (7370y)}$$
$$= 1$$

i. e., the two samples contains equal number of nuclei

666 **(b)**

P.E. = 2 × Total energy = 2 × (-13.6) = -27.2*eV* 668 (c) $r \propto (A)^{1/3}$ 670 (a) $\frac{1}{\lambda} = R \left[\frac{1}{4} - \frac{1}{9} \right] = \frac{5R}{36}$ $\therefore R = \frac{36}{5\lambda} = \frac{36}{5 \times 6563 \times 10^{-10}} = 1.09 \times 10^7 m^{-1}$ 671 (d) The infrared radiations have lower energy than *uv* radiations. Therefore, the only possible transition is from *n* = 5 to *n* = 4. As *n* increases, difference of energy levels and hence energy emitted decreases 672 (d) If *n* = 4 Lines = $\frac{n(n-1)}{2} = 6$

 $(T_{1/2})_{\chi} = (t_{\text{mean}})_{y}$ $\Rightarrow \frac{0.693}{\lambda_{\chi}} = \frac{1}{\lambda_{y}} \Rightarrow \lambda_{\chi} = 0.693\lambda_{y} \text{ or } \lambda_{\chi} < \lambda_{y}$

Also rate of decay = λN

Initially number of atoms (*N*) of both are equal but since $\lambda_y > \lambda_x$, therefore, *y* will decay at a faster rate than *x*

674 (c)

Cadmium rods absorb the neutrons so they are used to control the chain reaction process

675 **(d)**

$$N = N_0 e^{-\lambda t} \text{ and } A = A_0 e^{-\lambda t} = \lambda N_0 e^{-\lambda t}$$

$$\therefore N_{\text{decayed}} = N_0 - N = N_0 - N_0 e^{-\lambda t} \Rightarrow N_{\text{decayed}}$$

$$= N_0 - \frac{A}{\lambda}$$

This is equation of straight line with negative slope

676 **(b)**

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T} = \frac{m}{m_0} \left(\frac{1}{2}\right)^{19/3.8} = \frac{m}{10.38}$$
$$\left(\frac{1}{2}\right)^{19/3.8} = \frac{m}{10.38}$$
$$m = 10.38 \times \left(\frac{1}{2}\right)^5 = \frac{10.38}{32} = 0.32 \text{ g}$$

678 **(b)**

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^5$$
679 (c)

Wave number $\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = R \left[\frac{1}{4} - \frac{1}{16} \right] = \frac{3R}{16}$

680 **(c)**

Since in spectral series of hydrogen atom, Lyman series lies lower to Balmer series

681 **(d)**
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \frac{1}{16}; n = 4$$

 $\therefore t = 4 \times 140 = 560 \text{ days}$

682 (c)
Decay constant
$$\lambda = \frac{0.693}{T_{1/2}}$$

 $= \frac{0.693}{69.3} = 0.01 \text{ s}^{-1}$
684 (b)
 $N = N_0 \times \left(\frac{1}{2}\right)^{11400/5700}$

 $0.25 N_0$

$$= N_0 \left(\frac{1}{2}\right)^2 =$$

685 **(c)**

To nucleus one fourth it takes time $t = 2(T_{1/2}) = 2 \times 40 = 80$ years

Decay constant
$$\lambda = \frac{0.693}{T_{1/2}} = \frac{0.693}{40} = 0.0173$$
 years

686 (a)

By conservation of momentum
$$m_1v_1 = m_2v_2$$

 $\Rightarrow \frac{v_1}{v_2} = \frac{8}{1} = \frac{m_2}{m_1} \dots$ (i)

Also from $r \propto A^{1/3} \Rightarrow \frac{r_1}{r_2} = \left(\frac{A_1}{A_2}\right)^{1/3} = \left(\frac{1}{8}\right)^{1/3} = \frac{1}{2}$

687 **(c)**

$$\frac{1}{\lambda} = Rz^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

688 **(c)** At closest distance of approach

Kinetic energy = Potential energy

$$\Rightarrow 5 \times 10^6 \times 1.6 \times 10^{-19} = \frac{1}{4\pi\varepsilon_0} \times \frac{(ze)(2e)}{r}$$

For uranium
$$z = 92$$
, so $r = 5.3 \times 10^{-12} cm$

690 **(a)**

(4n + 2) series starts from U^{238} and it's stable end product is Pb^{206}

691 **(d)**

Control rods or safety rods used in a nuclear reactor are cadmium rods or boron rods

693 **(c)**

According to Bohr's second postulate

694 **(d)**

Because radioactivity is a spontaneous phenomenon

695 (b) Energy $\propto c^2$; \therefore Decrease in energy $\propto \frac{4}{c}$ 696 (b) $_{Z}X^{A} \xrightarrow{-1\beta^{0}} _{Z+1}Y^{A} \xrightarrow{_{2}He^{4}(\alpha)} _{Z-1}K^{A-4}$ $\xrightarrow{0}^{0} \gamma^{0} \xrightarrow{}_{Z-1} K^{A-4}$ 697 (c) $\tau_m = 1.442 T$ $T = 1.442 \times 1600 = 2308 \text{ yr}$ 698 (c) $4(_{2}\text{He}^{4}) = _{8}0^{16}$ Mass defect, $\Delta m = \{4(4.0026) - 15.9994\}$ amu = 0.01 lamu ∴ Energy released per oxygen nuclei = (0.011)(931.48) MeV = 10.24 MeV699 (a) $\therefore E_1 > E_2$ $\therefore v_1 > v_2$ *i.e.*, photons of higher frequency will be emitted if transition takes place from n = 2 to 1 — *n*=6 $E_2 \longrightarrow$ E_1 700 (c) $T = 100 \ \mu s = 10^{-4} \ s$ $\lambda = \frac{0.6931}{T} = \frac{0.6931}{10^{-4}} = 0.6931 \times 10^4 \text{s}^{-1}$ Number of atoms in 215 mg $=\frac{0.6931 \times 10^{23}}{215} \times 215 \times 10^{-3}$ $\therefore N = 6.023 \times 10^{20}$ Activity, $\frac{dN}{dt} = \lambda N$ $= 0.6931 \times 10^4 \times 6.023 \times 10^{20}$ $= 4.17 \times 10^{24} Bg$ 701 **(b)** A = 238 - 4 = 234 and Z = 92 - 2 = 90702 (c) **Energy** liberated $= 2 \times 117 \times 8.5 - 236 \times 7.6$ = 1989 - 1793.6 $= 195.4 \text{ MeV} \approx 200 \text{ MeV}$

703 (d) Number of electrons = 8 + 2 = 10Number of protons = 8Number of neutrons, N = 8Atomic number, Z = number of protons = 8 Mass number, A = Z + N = 8 + 8 = 16The proper symbol of the species is ${}^{16}O_8^{2-}$ 704 (d) Mass defect $\Delta m = \frac{2.23}{931} = 0.0024 \ amu$ 705 (c) The number of counts left after time t $N = N_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$ $\therefore \quad 30 = 240 \left(\frac{1}{2}\right)^{\frac{30}{T_{1/2}}}$ or $(\because t = 1h = 60 \text{ min})$ $\frac{30}{240} = \left(\frac{1}{2}\right)^{\frac{60}{T_{1/2}}}$ or $\left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^{\frac{60}{T_{1/2}}}$ Comparing the powers, we get $\therefore \frac{60}{T_{1/2}} = 3$ $T_{1/2} = \frac{60}{3}$ $T_{1/2} = 20 \text{ min}$ 706 (d) At the distance of closest approach, r $K = \frac{1}{4\pi\varepsilon_0} \frac{(2e)(Ze)}{r}$ $r = \frac{2Ze^2}{4\pi\varepsilon_0 K}$ Where, Ze = charge of the nucleus2e = charge of the alpha particleK = kinetic energy of the alpha particle $\therefore K = \frac{p^2}{2m}$ Where *p* is the momentum of the α -particle and m is the mass of the electron $\therefore r = \frac{2Ze^2 2m}{4\pi\varepsilon_0 p^2}$ $\operatorname{Or} r \propto \frac{1}{n^2}$ $\frac{r'}{r} = \left(\frac{p}{n'}\right)^2 = \left(\frac{p}{2n}\right)^2 = \frac{1}{4} \Rightarrow r' = \frac{r}{4}$ 708 (c) In a nuclear fusion, when two light nuclei of

different masses are combined to form a stable nucleus, then some mass is lost and appears in the form of energy called the mass defect. So, the mass of resultant nucleus is always less than the

sum of masses of fusing nuclei, *ie*, $m_3 < (m_1 + m_3)$ m_2). 710 (d) $m_1 r_1 = m_2 r_2$ $r_1 + r_2 = r$ $\therefore r_1 = \frac{m_2 r}{m_1 + m_2}, r_2 = \frac{m_1 r}{m_1 + m_2}$ $\therefore \varepsilon = \frac{1}{2}I\omega^2$ $=\frac{1}{2}(m_1r_1^2+m_2r_2^2).\omega^2$...(i) $mvr = \frac{nh}{2\pi} = I\omega$ $\Rightarrow \omega = \frac{nh}{2\pi l}$ $\therefore \varepsilon = \frac{1}{2}I.\frac{n^2h^2}{4\pi^2I^2}$ $=\frac{n^2h^2}{8\pi^2}\cdot\frac{1}{(m_1r_1^2+m_2r_2^2)}$ $=\frac{n^2h^2}{8\pi^2}\frac{1}{m_1\frac{m_2^2r^2}{(m_1+m_2)^2}+m_2\frac{m_1^2r^2}{(m_1+m_2)^2}}$ $=\frac{n^2h^2}{8\pi^2r^2}\frac{(m_1+m_2)^2}{m_1m_2(m_1+m_2)}=\frac{(m_1+m_2)n^2h^2}{8\pi^2r^2m_1m_2}$ $=\frac{(m_1+m_2)n^2\hbar^2}{2m_1m_2r^2}$ 711 (d) $E_n = \frac{-13.6}{n^2} = \frac{-13.6}{4} = -3.4 eV$ 712 (c) Decay rate $R = \lambda N$ $R = R_0 = \lambda N_0$ $\lambda = (\ln 2) / T_{1/2} = (\ln 2) / (78 \text{ h})$ $= 8.89 \times 10^{-3} h^{-1}$ then $N_0 = M/m$ $m = (67u)(1.661 \times 10^{-24} \text{ g/u})$ Now $= 1.113 \times 10^{-22} \text{ g}$ $N_0 = (3.4 \text{ g})/(1.113 \times 10^{-22} \text{ g})$ and $= 3.05 \times 10^{22}$ $R_0 = (8.89 \times 10^{-3} \,\mathrm{h^{-1}})(3.05 \times 10^{22})$ Thus, $= 2.71 \times 10^{20} h^{-1} = 7.53 \times 10^{16} s^{-1}$ 713 (c) Decrease in mass number due to emission of 3αparticles and a β – particle = 3 × 4 = 12 Decrease in charge number in the process

∴ For the resulting element, A = 228 - 12 = 216Z = 88 - 5 = 83714 (c) Wave number $= \frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$ For first Balmer line $n_1 = 2, n_2 = 3$: Wave number = $R\left(\frac{1}{2^2} - \frac{1}{3^2}\right) = R\left(\frac{9-4}{9\times 4}\right) = \frac{5R}{36}$ 715 (b) Energy from the sun is released on account of fusion reaction of 2He³ 716 (a) $r_n \propto n^2$ 717 (c) Energy of electron in *H* atom $E_n = \frac{-13.6}{n^2} eV$ $\Rightarrow -1.5 = \frac{-13.6}{n^2} \Rightarrow n^2 = \frac{13.6}{15} = 3$ Now angular momentu $L = n \frac{h}{2\pi} = \frac{3 \times 6.6 \times 10^{-34}}{2 \times 3.14} = 3.15 \times 10^{-34} J \times s$ 718 (a) According to scattering formula $N \propto \frac{1}{\sin^4(\theta/2)} \Rightarrow \frac{N_2}{N_1} = \left[\frac{\sin(\theta_1/2)}{\sin(\theta_2/2)}\right]^4$ $\Rightarrow \frac{N_2}{N_1} = \left[\frac{\sin\frac{90^\circ}{2}}{\sin\frac{60^\circ}{2}}\right]^4 = \left[\frac{\sin 45^\circ}{\sin 30^\circ}\right]^4$ $\Rightarrow N_2 = \left(\sqrt{2}\right)^4 \times N_1 = 4 \times 56 = 224$

720 **(b)**

$$E_1 > E_2 > E_3$$

 $1 > E_2 > E_3$
 E_2
 E_2
 E_1
 E_2
 $1 = 1$

722 (b)

Because atom is hollow and whole mass of atom is concentrated in a small centre called nucleus

concentrated in a small centre called nucleus 723 (a) When an α -particle is emitted from a nucleus, the resultant nucleus reduces in mass number by 4 unit and in atomic number by 2 unit. Loss in number = 232 - 204 = 28 Therefore, number of α -particles emitted = $\frac{28}{4}$ = 7

 $= 3 \times 2 - 1 = 5$

724 (a) Potential energy $U = eV = eV_0 \ln \frac{r}{r_0}$ \therefore Force $F = -\left|\frac{dU}{dt}\right| = \frac{eV_0}{r}$ \therefore The force will provide the necessary centripetal force. Hence $\frac{mv^2}{r} = \frac{eV_0}{r}$ $\therefore \Rightarrow v = \sqrt{\frac{eV_0}{m}}$...(i) and $mvr = \frac{nh}{2\pi}$...(ii) From equations (i) and (ii) $mr = \left(\frac{nh}{2\pi}\right) \sqrt{\frac{m}{eV_0}}$ or $r \propto n$ 725 (d) Minimum energy required to excite from ground state $= 12.6 \left[\frac{1}{2} - \frac{1}{2}\right] = 10.2 eV$

$$= 13.6 \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = 10.2 eV$$
726 (d)

 $\frac{N}{N_0} = \left(\frac{1}{2}\right)^n, n = 2 \Rightarrow \frac{N}{N_0} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$ So disintegrated part = $1 - \frac{N}{N_0} = 1 - \frac{1}{4} = \frac{3}{4}$

728 (b)

Potential energy of electron in n^{th} orbit of radius r in H-atom $U = -\frac{e^2}{r}$ (in CGS) \therefore K. E. $=\frac{1}{2}|P.E.| \Rightarrow K = \frac{e^2}{2r}$

729 **(c)**

 γ -rays are highly penetrating

730 (d)

Pauli proposed the existence of a particle neutrino to account for the abnormalities in β - decay.

731 **(a)**

$$mvr = \frac{nh}{2\pi} \Rightarrow v = \frac{nh}{2\pi mr} \Rightarrow \frac{v^2}{r} = \frac{n^2h^2}{4\pi^2m^2r^3}$$
732 (c)

$${}_{84}X^{202} \xrightarrow{\alpha-\text{decay}} {}_{82}Y^{198} + {}_{2}He^4 \text{ and}$$

$${}_{82}Y^{198} \xrightarrow{\beta-\text{decay}} {}_{83}Z^{198} + {}_{-1}\beta^0$$

733 (c)

The radius of an electron in a hydrogen atom is of the order of 10^{-11} *m*. The value of Bohr's radius is 5.29×10^{-11} m

734 (a)

Number of emission spectral lines $N = \frac{n(n-1)}{2}$ $\therefore 3 = \frac{n_1(n_1-1)}{2}, \text{ in first case}$ Or $n_1^2 - n_1 - 6 = 0$ or $(n_1 - 3)(n_1 + 2) = 0$ Take positive root $\therefore n_{1} = 3$ Again, $6 = \frac{n_{2}(n_{2}-1)}{2}$, in second case Or $n_{2}^{2} - n_{2} - 12 = 0$ or $(n_{2} - 4)(n_{2} + 3) = 0$ Take positive root, or $n_{2} = 4$ Now velocity of electron $v = \frac{2\pi KZe^{2}}{nh}$ $\therefore \frac{v_{1}}{v_{2}} = \frac{n_{2}}{n_{1}} = \frac{4}{3}$ 735 (d) $mvr = \frac{h}{2\pi}$ (for first orbit) $\Rightarrow m\omega r^{2} = \frac{h}{2\pi} \Rightarrow m \times 2\pi v \times r^{2} = \frac{h}{2\pi} \Rightarrow v$ $= \frac{h}{4\pi^{2}mr^{2}}$ $= \frac{6.6 \times 10^{-34}}{4(3.14)^{2} \times 9.1 \times 10^{-31} \times (0.53 \times 10^{-10})^{2}}$ $= 6.5 \times 10^{15} \frac{rev}{s}$

736 **(b)**

From conservation of momentum, two identical photons must travel in opposite directions with equal magnitude of momentum and energy $\frac{hc}{\lambda}$ from conservation of energy $\frac{hc}{\lambda} + \frac{hc}{\lambda} = m_0 c^2 + m_0 c^2$ $\Rightarrow \lambda = \frac{h}{m_0 c}$

737 **(a)**

Actual mass of the nucleus is always less than total mass of nucleons, so $M < (NM_n + Zm_p)$

738 **(b)**

82 = 10

Rate of disintegration $\frac{dN}{dt} = 10^{17} s^{-1}$ Halt life $T_{1/2} = 1445 \ year$ $= 1445 \times 365 \times 24 \times 60 \times 60 = 4.55 \times 10^{10} s$ Now decay constant $\lambda = \frac{0.693}{T_{1/2}} = \frac{0.693}{4.55 \times 10^{10}} = 1.5 \times 10^{-11} \text{ per s}$ The rate of disintegration $\frac{dN}{dt} = \lambda \times N_0 \Rightarrow 10^{17} = 1.5 \times 10^{-11} \times N_0$ $\Rightarrow N_0 = 6.6 \times 10^{27}$ 739 (a) Let number of α -particles emitted be x and number of β -particles emitted be y. Difference in mass number 4x = 238 - 206 = 32 x = 8Difference in charge number 2x - 1y = 92 - 1

$$16 - y = 10, y = 6$$

741 (d)

Neutron velocity = v, mass = m

Deuteron contains 1 neutron and 1 proton, mass = 2m

$$N \xrightarrow{v} d \xrightarrow{u=0} N \xrightarrow{v_1} d \xrightarrow{v_2} m$$
before
$$M \xrightarrow{v_1} d \xrightarrow{v_2} M$$

In elastic collision both momentum and K.E. are conserved $p_i = p_f$ $mv = m_1v_1 + m_2v_2 \Rightarrow mv = mv_1 + 2mv_2$...(i) By conservation of kinetic energy $\frac{1}{2}mv^2 = \frac{1}{2}mv_1^2 + \frac{1}{2}(2m)v_2^2 \qquad \dots \text{(ii)}$ By solving (i) and (ii), we get $v_1 = \frac{m_1 - m_2}{m_1 + m_2}v + \frac{2m_2}{(m_1 + m_2)}v \Rightarrow v_1 = \frac{m_1 + 2m}{3m}$ $K_i = \frac{1}{2}mv^2, K_f = \frac{1}{2}mv_1^2 \Rightarrow \frac{K_i - K_f}{K_i} = 1 - \frac{v_1^2}{v^2}$ $= 1 - \frac{1}{9} = \frac{8}{9}$ [Fractional change in *K*.*E*.] 742 (c) $\frac{mv^2}{a_0} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{a_0^2} \Rightarrow v = \frac{e}{\sqrt{4\pi\varepsilon_0 a_0 m}}$ 743 (d) de-Broglie wavelength $\lambda = \frac{-h}{mv} = \frac{h}{v}$ Where p = momentumBy conservation of momentum $P_1 + P_2 = 0$ $P_1 = P_2$ $\lambda_1 = \lambda_2 = \lambda$ 744 (a) $n = \frac{72000}{24000} = 3$ $\frac{N}{N_{\rm o}} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$

745 **(c)**

Nuclear radius is proportional to $A^{1/3}$, where A is the mass number of Nucleus

 $R = R_0 A^{1/3}$ where $R_0 = 1.2$ fm

$$\frac{R_0}{R_2} = \frac{R_0(216)^{1/3}}{R_0(125)^{1/3}} = \frac{6}{5}$$

746 (a)

When nuclear masses are measured, the mass is always found to be less than the sum of the

masses of the individual nucleons bound in the nucleus. This difference between the nuclear mass and the sum of individual masses is known as mass defect. Hence

Mass of nucleons = isotopic mass + mass defect Hence, mass of nucleons together in a heavy nucleus is greater than the mass of nucleus.

747 (d)

$$\frac{dN}{dt} = -\lambda N \Rightarrow \left|\frac{dN}{dt}\right| = \frac{0.693}{T_{1/2}} \times N$$

$$= \frac{0.693}{1.2 \times 10^7} \times 4 \times 10^{15} = 2.3 \times 10^8 a toms/s$$
740 (b)

748 **(b)**

Read time for 50 count rate, it gives half life period of 3 *hrs*, one small square gives 600 counts (10×60) . The number of small squares between graph and time axis are approx 24

Hence count rate = $24 \times 600 = 14400$

749 **(c)**

$$\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

For first line of Lyman series $n_1 = 1$ and $n_2 = 2$ For first line of Balmer series $n_2 = 2$ and $n_2 = 3$ So $\frac{\lambda_{\text{Lyman}}}{2} = \frac{5}{2}$

$$0, \frac{1}{\lambda_{\text{Balmer}}} = \frac{1}{27}$$

750 **(b)**

The time required for the number of parent nuclei to fall to 50% is called half-life $T^{1/2}$ and may be related to λ as follows.

Since $0.5 N_0 = N_0 e^{-T_{1/2}}$ We have, $\lambda T_{1/2} = \ln (2) = 0.693$ Or $T_{1/2} = \frac{0.693}{\lambda}$ Or $\lambda = \frac{0.693}{T_{1/2}}$ Given, $T_{1/2} = 77$ days $\therefore \qquad \lambda = \frac{0.693}{77} = 9 \times 10^{-3}$ days⁻¹

751 **(d)**

$$E = \Delta mc^{2}, \Delta m = \frac{0.1}{100} = 10^{-3} kg$$

$$\therefore E = 10^{-3} \times (3 \times 10^{8})^{2} = 10^{-3} \times 9 \times 10^{16}$$

$$= 9 \times 10^{13} J$$

752 **(d)**

 $T_{1/2} = \frac{0.693}{\lambda}$ Activity $I_1 = N_1 \lambda$, $I_2 = N_2 \lambda$ Let λ = disintegration constant $(I_1 - I_2) = (N_1 - N_2) \frac{0.693}{\tau_{1/2}}$ $(N_1 - N_2) \propto (I_1 - I_2)\tau_{1/2}$ 753 (a)

The multiplication factor (k) is an important

reactor parameter and is the ratio of number of neutrons present of the beginning of a particular generation to the number present at the beginning of the next generation. It is a measure of the growth rate of the neutrons in the reactor. For k = 1, the operation of the reactor is said to be critical **Note**: If k becomes greater than one, the reaction

Note: If k becomes greater than one, the reactionTherate and the reactor power increasenumexponentially. Unless the factor k is brought down763 (c)

very close to unity, the reactor will become supercritical and can even explode

754 **(c)**

 $_{1}H^{1} + _{1}H^{1} + _{1}H^{2} \rightarrow _{2}He^{4} + _{+1}e^{0} + \text{energy}$ 755 (c)

Cadmium rods are used in the form of control rods. In a nuclear reactor the material that can absorb the neutrons are used to control the nuclear chain reaction. Cadmium and Boron rods are used for this purpose.

756 **(b)**

$$E_n = -\frac{13.6}{n^2} eV$$

757 **(c)**

If in the rock there is no *Y* element, then the time taken by element *X* to reduce to $\frac{1}{8}th$ the initial value will be equal to $\frac{1}{8} = \left(\frac{1}{2}\right)^n$ or n = 3Therefore, from the beginning three half life time

is spent. Hence the age of the rock is

 $= 3 \times 1.37 \times 10^9 = 4.11 \times 10^9 years$

758 **(d)**

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T} \Rightarrow \frac{1}{16} = \left(\frac{1}{2}\right)^{t/48}$$
$$\Rightarrow \left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^{t/48} \Rightarrow t = 192 \text{ hours}$$

759 **(d)**

$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{1^2} - \frac{1}{2^2}\right)$$

For di-ionised lithium the value of *Z* is maximum 760 **(d)**

After one half life period, the activity of Tritium becomes 50%

After 2 half life period 25%

After 3 half life period 12.5%

After 4 half life period 6.25%

After 5 half life period 3.12% = 3%

It is 5×12.5 years + 7 years *i.e.* approximately 70 years only

761 **(a)**

Total mass of reactants

 $= (2.0141) \times 2 = 4.0282$ amu Total mass of products = 4.0024 amu Mass defect = 4.0282 amu - 4.0024 amu= 0.0258 amu \therefore Energy released $E = 931 \times 0.0258 = 24 MeV$ 762 (c) $^{234}_{92}U \xrightarrow{\alpha} ^{230}_{90}Th + \alpha$ The mass number of thorium is 230 and its atomic number, Z is 90 As $\frac{l}{l_0}e^{-\mu x}$: $\frac{1}{8} = e^{-\mu}37.5$...(i) and $\frac{1}{2} = e^{-\mu x}$ Put in Eq. (i), $e^{-3\mu x} = e^{-\mu}(37.5)$ $x = \frac{37.5}{2} = 12.5 \text{ mm}$ 764 (b) For Lyman series $\overline{v} = \frac{1}{\lambda} = R\left(\frac{1}{1^2} - \frac{1}{n^2}\right)$ here n = 2, 3, 4, 5 For first time $\overline{v} = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right) \Rightarrow \overline{v} = R\left(1 - \frac{1}{4}\right) =$ 3R 4 765 (c) $\frac{BE}{nucleon} = \frac{0.042 \times 931}{7} = 5.6 MeV$ 766 (b) $\frac{\text{Binding energy}}{\text{Nucleon}} = \frac{0.0303 \times 931}{4} = 7$ 767 (d) A beta minus particle (β^{-}) is an electron. Emission of β^- involves transformation of a neutron into a proton, an electron and a third particle called antineutrino (\bar{v}) . $_{0}n^{1} = _{1}p^{1} + _{-1}\beta^{0} + \bar{\nu}$ 769 (d) Number of nuclei remained after time *t* can be written as $N = N_0 e^{-\lambda t}$ Where N_0 is initial number of nuclei of both the substances.

$$N_{1} = N_{0}e^{-5\lambda t} \qquad \dots (i)$$

and
$$N_{2} = N_{0}e^{-\lambda t} \qquad \dots (ii)$$

Dividing Eq.(i) by Eq.(ii), we obtain
$$\frac{N_{1}}{N_{2}} = e^{(-5\lambda+\lambda)t} = e^{-4\lambda t} = \frac{1}{e^{4\lambda t}}$$

But, we have given
$$\frac{N_{1}}{N_{2}} = \left(\frac{1}{e}\right)^{2} = \frac{1}{e^{2}}$$

Hence
$$\frac{1}{e^2} = \frac{1}{e^{4\lambda t}}$$

Comparing the powers, we get

$$2 = 4\lambda t$$

or
$$t = \frac{2}{4\lambda} = \frac{1}{2\lambda}$$

770 **(b)**

The size of the atom is of the order of $1 \text{\AA} = 10^{-10} m$

771 **(d)**

As charge number is fixed (=92), therefore, number of protons and electrons is same. As atomic weight is greater by 3, therefore $_{92}U^{238}$ contains 3 more neutrons.

772 **(b)**

 $n = \frac{t}{T} = \frac{42}{6} = 7$ $\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^7 = \frac{1}{128}$

As rate of disintegration $\propto N$,

$$\therefore \ \frac{R}{R_0} = \frac{1}{128}; R = \frac{R_0}{128} = \frac{1024}{128} = 8 \text{ min}^{-1}$$

773 **(a)**

Relation between half-life and decay constant is

$$T = \frac{1}{\lambda} = \log_e 2$$

774 (c)

Remaining material $N = \frac{N}{2^{t/T}}$ $\Rightarrow N = \frac{10}{(2)^{20/15}} = \frac{10}{2.51} = 3.96g$ So decayed material = 10 - 3.96 = 6.04 g775 (b) $Q = 4(x_2 - x_1)$ 777 (c) Helium nucleus $\rightarrow {}_{2}He^{4}$ Number of protons = Z = 2Number of neutrons = A - Z = 2778 (a) We know that $E_n = -13.6 \frac{Z^2}{n^2} = eV$ and $r_n = 0.53 \frac{n^2}{7}$ (Å) Here for $n = 1, E_1 = -54.4 \ eV$ Therefore $-54.4 = -13.6 \frac{Z^2}{12} \Rightarrow Z = 2$ Hence radius of first Bohr orbit $r = \frac{0.53(1)^2}{2} =$ 0.265 Å 779 (d) Fusion reaction of deuterium is

$${}_{1}H^{2} + {}_{1}H^{2} \rightarrow {}_{2}He^{3} + {}_{0}n^{1} + 3.27 MeV$$

So $E = \frac{6.02 \times 10^{23} \times 10^{3} \times 3.27 \times 1.6 \times 10^{-13}}{2 \times 2} = 7.8 \times 10^{13}J$
= $8 \times 10^{13}J$

780 **(d)**

Number of wavelength = $\frac{n(n-1)}{2}$, where n = No. of orbit from which transition takes place

$$\therefore 6 = \frac{n(n-1)}{2} \Rightarrow n = 4$$

In all given options wavelength of emitted radiation's will be maximum for transition n = 4 to n = 3

781 (a) Wave number $\overline{v} = \frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]; n_2 = \infty$ and $n_1 = 1$ $\Rightarrow \overline{v} = R = 1.097 \times 10^7 m^{-1} = 109700 \ cm^{-1}$

$$\frac{1}{\lambda_{\max}} = R \left[\frac{1}{(1)^2} - \frac{1}{(2)^2} \right] \Rightarrow \lambda_{\max} = \frac{4}{3R} \approx 1213 \text{ Å}$$

and $\frac{1}{\lambda_{\min}} = R \left[\frac{1}{(1)^2} - \frac{1}{\infty} \right] \Rightarrow \lambda_{\min} = \frac{1}{R} \approx 910 \text{ Å}$

783 **(a)**

Here radius of electron orbit $r \propto 1/m$ and energy $E \propto m$, where *m* is the mass of the electron Hence energy of hypothetical atom $E_0 = 2 \times (-13.6eV) = -27.2eV$ and radius $r_0 = \frac{a_0}{2}$

$$E_3 = -\frac{13.6}{9} = -1.51eV; E_4 = -\frac{13.6}{16} = -0.85eV$$

$$\therefore E_4 = -\frac{13.6}{16} = -0.85eV$$

785 **(b)**

$$E_n = -13.6\left(\frac{z^2}{n^2}\right) = -13.6\left(\frac{4}{4}\right) = -13.6eV$$

786 **(a)**

Decay constant remains unchanged in a chemical reaction

787 **(a)**

In the reaction

 $_{7}N^{14} + \alpha \rightarrow _{8}X^{17} + _{1}p^{1}$

8 is the atomic number of oxygen molecule.

So, here X is oxygen (O₂) molecule.

788 **(a)**

Electronic configuration of iodine is 2, 8, 18, 18, 7

Here $r_n = (0.053 \times 10^{-9}m)\frac{n^2}{Z}$ Here n = 5 and Z = 53Hence $r_n = 2.5 \times 10^{-11}m$ 789 (c) $mvr = \frac{nh}{2\pi}$ for n = 1 it is $\frac{h}{2\pi}$ 790 (a) In fusion reaction, two lighter nuclei combine 791 (d) If *E* is the energy radiated in transition then $E_{R \to G} > E_{O \to S} > E_{R \to S} > E_{O \to R} > E_{P \to O}$ For getting blue line energy radiated should be maximum $\left(E \propto \frac{1}{\lambda}\right)$. Hence (d) is the correct option 792 (a) $\left|\frac{dN}{dt}\right| = |Activity of radioactive substance|$ 798 $(\because N = N_0 e^{-\lambda t})$ $= \lambda N = \lambda N_0 e^{-\lambda t}$ Taking log both sides $\ln \left| \frac{dN}{dt} \right| = \ln(\lambda N_0) - \lambda t$ Hence, $\ln \left| \frac{dN}{dt} \right|$ versus *t* graph is a straight line with slope- λ . From the graph we can see that, $\lambda = \frac{1}{2} = 0.5 \ yr^{-1}$ Now applying the equation $N = N_0 e^{-\lambda t} = N_0 e^{-0.5 \times 4.16}$ $= N_0 e^{-2.08} = 0.125 N_0$ $=\frac{N_0}{8}$ ie, nuclei decreases by a factor of 8. 801 (a) Hence the answer is 8. 793 (b) Kinetic energy = |Total energy|794 (b) From Einstein's mass energy relation the energy released is $\Delta E = \Delta m c^2$ where Δm is mass and *c* is speed is light. Given $\Delta m = 1$ mg = 1 × 10⁻⁶kg, c = 3 × 10^{8} m/s $\Delta E = 1 \times 10^{-6} \times (3 \times 10^8)^2$ ÷ $\Delta E = 9 \times 10^{10} \text{ J}$ 80 The rate at which energy is dissipated is known as power, ie, $P = \frac{\Delta E}{t} = \frac{9 \times 10^{10}}{1} = 9 \times 10^{10} W$ Since, $10^3 W = 1 k W$ *:*. $P = 9 \times 10^7 \,\mathrm{kW}$ 795 (a) Diameter of nucleus is of the order of $10^{-14}m$ and radius of first Bohr orbit of hydrogen atom $r = 0.53 \times 10^{-10} m$ 797 (b)

The given reaction is a nuclear reaction, which can take place only if a proton (a hydrogen

nucleus) comes into contact with a lithium nucleus. If the hydrogen is in the atomic from, the interaction between it's electron cloud and the electron cloud of a lithium atom keeps the two nuclei from getting close to each other. Even if isolated protons are used, they must be fired at the *Li* atom with enough kinetic energy to overcome the electric repulsion between the proton and Li atom

(d)

$$\frac{3}{2}kT = 7.7 \times 10^{-14} \text{ J}$$

 $T = \frac{2 \times 7.7 \times 10^{-14}}{3 \times 1.38 \times 10^{-23}} = 3.7 \times 10^9 \text{ K}$

799 (b)

Millikan oil drop method determines the charge on an electron. Liquid drop model explains nuclear fission, Shell model explains the stability of nuclei and Bohr's model accounts for the stability of the atom and the line spectra of hydrogen atom.

800 (c)

Average life = 5h, in one average life approximately 63 % radioactive nuclei decay.

$$E\left(=\frac{hc}{\lambda}\right) \propto \frac{Z^2}{n^2} \Rightarrow \lambda \propto \frac{1}{Z^2}$$

Hence $\lambda_{He^+} = \frac{20.397}{4} = 5.099 \ cm$

802 (d)

$$M = M_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}} = 20 \times \left(\frac{1}{2}\right)^{\frac{36}{3.6}} = 20 \times \left(\frac{1}{2}\right)^{10} = 0.019mg$$

803 (d)

$$A = A_0 \left(\frac{1}{2}\right)^{t/T_{1/2}} \Rightarrow 5 \times 10^{-6} = 64 \times 10^{-5} \left(\frac{1}{2}\right)^{t/3}$$
$$\Rightarrow \frac{1}{128} = \left(\frac{1}{2}\right)^{t/3} \Rightarrow t = 21 \ days$$

4 (d)

 $_7N^{13} \rightarrow _6C^{13} + _{+1}e^0$ 805 (c) By using $N = N_0 \left(\frac{1}{2}\right)^{t/T}$; where $N = \left(1 - \frac{7}{8}\right) N_0 =$ $\frac{1}{2}N_0$ So $\frac{1}{8}N_0 = N_0 \left(\frac{1}{2}\right)^{t/T} \Rightarrow \left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^{t/5} \Rightarrow t =$ 15 davs

806 (d) $(rm) = \left(\frac{m^2}{Z}\right) \left(0.53\text{\AA}\right) = \left(n \times 0.53\text{\AA}\right) \Rightarrow \frac{m^2}{Z} = n$ m = 5 for $_{100}Fm^{257}$ [the outermost shell]

and $z = 100 \Rightarrow n = \frac{(5)^2}{100} =$	$=\frac{1}{4}$		$=\frac{2A_1}{A_1} \times \frac{2N_2}{N_2} = \frac{4}{1}$
808 (d)	81	18	(a)
Number of neutrons $= A$	-Z = 23 - 11 = 12		For X, energy = $200 \times 7.4 = 1480$ MeV
809 (a)			For A, energy = $110 \times 8.2 = 902$ MeV
An atomic reactor or a nu	clear pile is a device in		For <i>B</i> , energy = $80 \times 8.1 = 648$ MeV
which a self-sustaining co	ontrolled chain reaction		Therefore energy released
is produced in a fissionab	le material. It is thus, a		= (902 + 648) - 1480
source of controlled energy	gy which is utilised for		= 1550 - 1480 = 70 MeV
many useful purposes.	81	19	(c)
810 (c)			Mean life $=\frac{1}{\lambda} = 6.67 \times 10^8 s$
Energy equivalent to $_1H^2$	$r = 2 \times 1.112 = 82$	20	(c)
2.224 <i>MeV</i>	4 4 7 0 4 7		Number of neutrons in 92U ²³⁵
Energy equivalent to $_2He$	$e^{1} = 4 \times /.04 / =$		= 235 - 92 = 143
28.188 Mev	u valaagad		and number of protons=92
-29199 -2×224	y released 22.74 MeV ~ 24 MeV		\therefore Number of neutrons more than number of
$= 20.100 - 2 \times 2.224 - 2$	$25.74 \text{ MeV} \approx 24 \text{ MeV}$		protons
$n^1 - n^1 + n^0 + \overline{n}$			= 143 - 92 = 51
$_{0}n{1}p{-1}e{1}v$ Antineutrino is required f	for conservation of spin	23	(a)
813 (a)	for conservation of spin		Distance of closest approach $r_0 = \frac{Ze^2}{2m^2 - r_0}$
The nuclei having differen	nt Z and A but equal		1
(A - Z) are called isotone	es		$\Rightarrow r_0 \propto \frac{1}{m}$
814 (b)	82	24	(b)
Energy of γ -ray photon =	0.5 + 0.5 + 0.78 =		During fusion binding energy of daughter nucleus
1.78 <i>MeV</i>			is always greater than the total energy of the
815 (b)			parent nuclei so energy released = $c - (a + b) =$
$_1H^2 + _1H^2 \rightarrow_2 He^4 + \text{energy}$	rgy		c-a-b
Binding energy of a ($_1H^2$)) deuterium nuclei 82	25	(a)
$= 2 \times 1.1 = 2.2 MeV$			$\omega = 2\pi v = \frac{2\pi c}{c} = 2\pi c \overline{v} \Rightarrow \omega \propto \overline{v}$
Total binding energy of tw	wo deuterium nuclei	26	λ (2)
$= 2.2 \times 2 = 4.4 MeV$	02	20	(a) Orbital speed varies inversely as the radius of the
Binding energy of a ($_2H^4$) nuclei = $4 \times 7 =$		orbit
28 MeV			1
So, energy released in fus	10n = 28 - 4.4 =		$v \propto \frac{1}{n}$
23.6 MeV	82	27	(a)
510 (a) Energy s is related only w	yhan lightar nuclai fusa		The energy required to produce a pair of electron
to form a heavier nucleus	such as in reaction (i)		–positron is 1.02 MeV
$A + B \rightarrow C + \varepsilon$	such as in reaction (1)		Now, the kinetic energy of electron-positron pair
Again energy is released	when a heavy nucleus		$= 2 \times 0.29 \text{ MeV} = 0.58 \text{ MeV}$
splits into lighter nuclei a	s in(iv)		Hence, the energy of photon
$F \rightarrow D + E + \varepsilon$			= (1.02 + 0.58) MeV = 1.60 MeV
817 (a)	82	28	(a)
Activity, $A = \lambda N = \frac{0.693}{T_{1/2}} N$	V		Rest mass of parent nucleus should be greater than the rest mass of daughter nuclei.
Where $T_{1/2}$ is the half-life	of a radioactive sample,		0
$\therefore \qquad \frac{A_1}{A_2} = \frac{N_1}{T_1} \times \frac{T_2}{N_2}$			
$T_1 _ A_2 \lor N_1$			
$\overline{T_2} - \overline{A_1} \wedge \overline{N_2}$			