Single Correct Answer Type

1. A sample contains $16 g$ of a radioactive material, the half life of which is two days. After 32 days, the amount of radioactive material left in the sample is
a) Less than 1 mg
b) $\frac{1}{4} g$
c) $\frac{1}{2} g$
d) 1 g
2. Neutron is a particle, which is
a) Charged and has spin
b) Charged and has no spin
c) Charge less and has spin
d) Charge less and has no spin
3. The ratio of half-life times of two elements A and B is $\frac{T_{A}}{T_{B}}$. The ratio of respectively decay constants $\frac{\lambda_{A}}{\lambda_{B}}$ is
a) $\frac{T_{B}}{T_{A}}$
b) $\frac{T_{A}}{T_{B}}$
c) $\frac{T_{A}+T_{B}}{T_{A}}$
d) $\frac{T_{A}-T_{B}}{T_{A}}$
4. In the following reaction the value of ' X^{\prime} is
${ }_{7} \mathrm{~N}^{14}+{ }_{2} \mathrm{He} \mathrm{e}^{4} \rightarrow \mathrm{X}+{ }_{1} \mathrm{H}^{1}$
a) ${ }_{8} N^{17}$
b) ${ }_{8} O^{17}$
c) ${ }_{7} \mathrm{O}^{16}$
d) ${ }_{7} N^{16}$
5. If $N_{1}=N_{0} e^{-\lambda t_{1}}$, then the number of atoms decayed during time interval from t_{1} and $t_{2}\left(t_{2}>t_{1}\right)$ will be
a) $N_{t_{1}}=N_{t_{2}}=N_{o}\left[e^{-\lambda t_{1}}-e^{-\lambda r_{2}}\right]$
b) $N_{t_{2}}=N_{t_{1}}=N_{o}\left[e^{-\lambda t_{2}}-e^{-\lambda t_{1}}\right]$
c) $N_{t_{2}}-N_{t_{1}}=N_{o}\left[e^{\lambda t} 2-e^{-\lambda t_{1}}\right]$
d) None of the above
6. The possible quantum numbers for $3 d$ electrons are
a) $n=3, l=1, m_{l}=+1, m_{s}=-\frac{1}{2}$
b) $n=3, l=2, m_{l}=+2, m_{s}=-\frac{1}{2}$
c) $n=3, l=1, m_{l}=-1, m_{s}=+\frac{1}{2}$
d) $n=3, l=0, m_{l}=+1, m_{s}=-\frac{1}{2}$
7. Calculate the energy released when three α - particles combined to from a ${ }^{12} \mathrm{C}$ nucleus , the mass defect is (atomic mass of ${ }_{2} \mathrm{He}^{4}$ is 4.002603 u)
a) 0.007809 u
b) $0.002603 u$
c) 4.002603 u
d) 0.5 u
8. In a hydrogen atom, which of the following electronic transitions would involve the maximum energy change
a) From $n=2$ to $n=1$
b) From $n=3$ to $n=1$
c) From $n=4$ to $n=2$
d) From $n=3$ to $n=2$
9. The energy equivalent to 1 mg of matter in MeV is
a) 56.25×10^{22}
b) 56.25×10^{24}
c) 56.25×10^{26}
d) 56.25×10^{28}
10. The mass defect in particular nuclear reaction if 0.3 g . The amount of energy liberated in kilowatt hour is (Velocity of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$)
a) 1.5×10^{6}
b) 2.5×10^{6}
c) 3×10^{6}
d) 7.5×10^{6}
11. An electron jumps from the $4^{\text {th }}$ orbit to the $2^{\text {nd }}$ orbit of hydrogen atom. Given the Rydberg's constant $R=10^{5} \mathrm{~cm}^{-1}$. The frequency in Hz of the emitted radiation will be
a) $\frac{3}{16} \times 10^{5}$
b) $\frac{3}{16} \times 10^{15}$
c) $\frac{9}{16} \times 10^{15}$
d) $\frac{3}{4} \times 10^{15}$
12. The electron in the hydrogen atom jumps from excited state $(n=3)$ to its ground state $(n=1)$ and the photons thus emitted irradiate a photosensitive material. If the work function of the material is 5.1 eV , the stopping potential is estimated to be (the energy of the electron in $n^{\text {th }}$ state $E_{n}=-\frac{13.6}{n^{2}} \mathrm{eV}$)
a) 5.1 V
b) 12.1 V
c) 17.2 V
d) 7 V
13. The number of α-particles and β - particles respectively emitted in the reaction ${ }_{88} A^{196} \rightarrow{ }_{78} B^{164}$ are
a) 8 and 8
b) 8 and 6
c) 6 and 8
d) 6 and 6
14. An electron passing through a potential difference of 4.9 V collides with a memory atom and transfers it to the first excited state. What is the wavelength of a photon corresponding to the transition of the mercury atom to its normal state
a) $2050 \AA$
b) $2240 \AA$
c) $2525 \AA$
d) $2935 \AA$
15. The half -life period of a radioactive substance is 3 days. Three fourth of substance decays in
a) 3 days
b) 6 days
c) 9 days
d) 12 days
16. What is the Q-value of the reaction
$P+{ }^{7} \mathrm{Li} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$
The atomic masses of ${ }^{1} \mathrm{H},{ }^{4} \mathrm{He}$ and ${ }^{7} \mathrm{Li}$ are $1.007825 \mathrm{u}, 4.002603 \mathrm{u}$ and 7.016004 u respectively
a) 17.35 MeV
b) 18.06 MeV
c) 177.35 MeV
d) 170.35 MeV
17. If one starts with one curie of radioactive substance $\left(T_{1 / 2}=12 \mathrm{hrs}\right)$ the activity left after a period of 1 week will be about
a) 1 curie
b) 120 micro curie
c) 60 micro curie
d) 8 mili curie
18. If the half life of a radioactive sample is 10 hours, its mean life is
a) 14.4 hours
b) 7.2 hours
c) 20 hours
d) 6.93 hours
19. The half-life of ${ }^{215} \mathrm{At}$ is $100 \mu \mathrm{~s}$. The time taken for the radioactivity of a sample of ${ }^{215} \mathrm{At}$ to decay to $\frac{1}{16}$ th of its initial value is
a) $400 \mu \mathrm{~s}$
b) $6.3 \mu \mathrm{~s}$
c) $40 \mu \mathrm{~s}$
d) $300 \mu \mathrm{~s}$
20. Half life of a radio-active substance is 20 minutes. The time between 20% and 80% decay will be
a) 20 minutes
b) 40 minutes
c) 30 minutes
d) 25 minutes
21. In which radioactive disintegration, neutron dissociates into proton and electron
a) He^{+1} emission
b) β-emission
c) γ-emission
d) Positron emission
22. Using the following data

Mass hydrogen atom $=1.00783 \mathrm{u}$
Mass of neutron $=1.00867 \mathrm{u}$
Mass of nitrogen atom $\left({ }_{7} \mathrm{~N}^{14}\right)=14.00307 \mathrm{u}$
The calculated value of the binding energy of the nucleus of the nitrogen atom (${ }_{7} \mathrm{~N}^{14}$) is close to
a) 56 MeV
b) 98 MeV
c) 104 MeV
d) 112 MeV
23. The ionization energy of $L i^{++}$is equal to
a) $9 \mathrm{hc} R$
b) $6 h c R$
c) $2 h c R$
d) $h c R$
24. In a fission process, nucleus A divides into two nuclei B and C, their binding energies being E_{a}, E_{b} and E_{c} respectively. Then
a) $E_{b}+E_{c}=E_{a}$
b) $E_{b}+E_{c}>E_{a}$
c) $E_{b}+E_{c}<E_{a}$
d) $E_{b} \cdot E_{c}=E_{a}$
25. According to Bohr's model, the radius of the second orbit of helium atom is
a) $0.53 \AA$
b) $1.06 \AA$
c) $2.12 \AA$
d) $0.265 \AA$
26. An electron has a mass of $9.1 \times 10^{-31} \mathrm{~kg}$. It revolves around the nucleus in a circular orbit of radius 0.529×10^{-10} metre at a speed of $2.2 \times 10^{6} \mathrm{~m} / \mathrm{s}$. The magnitude of its linear momentum in this motion is
a) $1.1 \times 10^{-34} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
b) $2.0 \times 10^{-24} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
c) $4.0 \times 10^{-24} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
d) $4.0 \times 10^{-31} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
27. According to the quark model, it is possible to build all the hadrons using
a) 2 quarks and 3 antiquarks
b) 3 quarks and 2 antiquarks
c) 3 quarks and 3 antiquarks
d) 2 quarks and 2 antiquarks
28. Atomic number of a nucleus is Z and atomic mass is M. The number of neutron is
a) $M-Z$
b) M
c) Z
d) $M+Z$
29. An electron of an atom transits from n_{1} to n_{2}. In which of the following maximum frequency of photon will be emitted
a) $n_{1}=1$ to $n_{2}=2$
b) $n_{1}=2$ to $n_{2}=1$
c) $n_{1}=2$ to $n_{2}=6$
d) $n_{1}=6$ to $n_{2}=2$
30. For uranium nucleus how does its mass vary with volume?
a) $m \propto V$
b) $m \propto 1 / V$
c) $m \propto \sqrt{V}$
d) $m \propto V^{2}$
31. Which of the following isotopes is normally fissionable
a) ${ }_{92} U^{238}$
b) ${ }_{93} N p^{239}$
c) ${ }_{92} U^{235}$
d) ${ }_{2} \mathrm{He}^{4}$
32. Which one of the following statements about uranium is correct
a) ${ }^{235} U$ is fissionable by thermal neutrons
b) Fast neutrons trigger the fission process in ${ }^{235} U$
c) ${ }^{235} U$ breaks up into fragments when bombarded by slow neutrons
d) ${ }^{235} U$ is an unstable isotope and undergoes spontaneous fission
33. Outside a nucleus
a) Neutron is stable
b) Proton and neutron both are stable
c) Neutron is unstable
d) Neither neutron nor proton is stable
34. If m, m_{n} and m_{p} are the masses of ${ }_{Z} X^{A}$ nucleus, neutron and proton respectively, then
a) $m<(A-Z) m_{n}+Z m_{p}$
b) $m=(A-Z) m_{n}+Z m_{p}$
c) $m=(A-Z) m_{p}+Z m_{n}$
d) $m>(A-Z) m_{n}+Z m_{p}$
35. The average binding energy per nucleon is maximum for the nucleus
a) ${ }_{2} \mathrm{He} e^{4}$
b) ${ }_{8} O^{16}$
c) ${ }_{26} F e^{56}$
d) ${ }_{92} \mathrm{He}^{238}$
36. In the nuclear reaction: $X(n, \alpha){ }_{3} L i^{7}$ the term X will be
a) ${ }_{5} B^{10}$
b) ${ }_{5} B^{9}$
c) ${ }_{5} B^{11}$
d) ${ }_{2} \mathrm{He}^{4}$
37. 3.8 days is the half-life period of a sample. After how many days, the sample will become $1 / 8$ th of the original substance
a) 11.4
b) 3.8
c) 3
d) None of these
38. The radius of nucleus is
a) Proportional to its mass number
b) Inversely Proportional to its mass number
c) Proportional to the cube root of its mass number
d) Not related to its mass number
39. Energy of an electron in $n^{\text {th }}$ orbit of hydrogen atom is $\left(k=\frac{1}{4 \pi \varepsilon_{0}}\right)$
a) $-\frac{2 \pi^{2} k^{2} m e^{4}}{n^{2} h^{2}}$
b) $-\frac{4 \pi^{2} m k e^{2}}{n^{2} h^{2}}$
c) $-\frac{n^{2} h^{2}}{2 \pi k m e^{4}}$
d) $-\frac{n^{2} h^{2}}{4 \pi^{2} k m e^{2}}$
40. The rest energy of an electron is
a) 510 KeV
b) 931 KeV
c) 510 MeV
d) 931 MeV
41. Consider α - Particles, β - Particles and γ - rays, each having an energy of 0.5 MeV . In increasing order of penetrating powers, the radiations are
a) α, β, γ
b) α, γ, β
c) β, γ, α
d) γ, β, α
42. The dependence of binding energy per nucleon, B_{N} on the mass number, A, is represented by
a)

b)

c)

d)

43. A radioactive isotope has a half-life of T years. How long will it take the activity to reduce to 1% of its original value
a) $3.2 T$ year
b) $4.6 T$ year
c) $6.6 T$ year
d) $9.2 T$ year
44. An artificial radioactive decay series begins with unstable ${ }_{94}^{241} \mathrm{Pu}$. The stable nuclide obtained after eight α-decays and five β-decays is
a) ${ }_{83}^{209} \mathrm{Bi}$
b) ${ }_{82}^{209} \mathrm{~Pb}$
c) ${ }_{82}^{205} \mathrm{Ti}$
d) ${ }_{82}^{201} \mathrm{Hg}$
45. A radioactive sample S_{1} having an activity of $5 \mu \mathrm{Ci}$ has twice the number of nuclei as another sample S_{2} which has an activity of $10 \mu \mathrm{Ci}$. The half lives of S_{1} and S_{2} can be
a) 20 yr and 5 yr , respectively
b) 20 yr and 10 yr , respectively
c) 10 yr each
d) 5 yr each
46. The rest mass of an electron as well as that of positron is 0.51 MeV . When an electron and positron are
annihilate, they produce gamma-rays of wavelength(s)
a) $0.012 \AA$
b) $0.024 \AA$
c) $0.012 \AA$ to ∞
d) $0.024 \AA$ to ∞
47. In Fig. X represents time and Y represents activity of a radioactive sample. Then the activity of sample, varies with time according to the curve

a) A
b) B
c) C
d) D
48. In the Bohr model of the hydrogen atom, let R, v and E represent the radius of the orbit, the speed of electron and the total energy of the electron respectively. Which of the following quantity is proportional to the quantum number n
a) R / E
b) E / v
c) $R E$
d) $u R$
49. In Bohr's model of hydrogen atom, which of the following pairs of quantities are quantized
a) Energy and linear momentum
b) Linear and angular momentum
c) Energy and angular momentum
d) None of the above
50. Two nucleons are at a separation of one fermi. Protons have a charge of $+1.6 \times 10^{-19} \mathrm{C}$. The net nuclear force between them is F_{1}, if both are neutrons, F_{2} if both are protons and F_{3} if one is proton and the other is neutron. Then
a) $F_{1}=F_{2}>F_{3}$
b) $F_{1}=F_{2}=F_{3}$
c) $F_{1}<F_{2}<F_{3}$
d) $F_{1}>F_{2}>F_{3}$
51. If r_{1} and r_{2} are the radii of the atomic nuclei of mass numbers 64 and 125 respectively, then the ratio (r_{1} / r_{2}) is
a) $\frac{64}{125}$
b) $\sqrt{\frac{64}{125}}$
c) $\frac{5}{4}$
d) $\frac{4}{5}$
52. In a material medium, when a positron meets an electron both the particles annihilate leading to the emission of two gamma ray photons. This process forms the basis of an important diagnostic procedure called
a) MRI
b) PET
c) CAT
d) SPECT
53. If $\lambda_{\max }$ is $6563 \AA$, then wavelength of second line for Balmer series will be
a) $\lambda=\frac{16}{3 R}$
b) $\lambda=\frac{36}{5 R}$
c) $\lambda=\frac{4}{3 R}$
d) None of the above
54. Rest mass energy of an electron is 0.54 MeV . If velocity of the electron is $0.8 c$, then K. E. of the electron is
a) 0.36 MeV
b) 0.41 MeV
c) 0.48 MeV
d) 1.32 MeV
55. If the binding energies of a deuteron and an alpha particle are 1.125 MeV and 7.2 MeV , respectively , then the more stable of the two is
a) deuteron
b) Alpha-particle
c) Both (a) and (b)
d) Sometimes deuteron and Sometimes Alpha-particle
56. Consider the following two statements
A. Energy spectrum of α-particles emitted in radioactive decay is discrete
B. Energy spectrum of β-particles emitted in radioactive decay is continuous
a) Only A is correct
b) Only B is correct
c) A is correct but B is wrong
d) Both A and B are correct
57. Two radioactive materials X_{1} and X_{2} have decay constants 10λ and λ repectively. If initially, they have the same number of nuclei, then the ratio of the number of nuclei of X_{1} to that of X_{2} will be $1 / e$ after a time
a) $\frac{1}{10 \lambda}$
b) $\frac{1}{11 \lambda}$
c) $\frac{11}{10 \lambda}$
d) $\frac{1}{9 \lambda}$
58. If half life of radium is 77 days. Its decay constant in day will be
a) $3 \times 10^{-13} /$ day
b) $9 \times 10^{-3} /$ day
c) $1 \times 10^{-3} /$ day
d) $6 \times 10^{-3} /$ day
59. Which of the following atoms has the lowest ionization potential
a) ${ }_{8}^{16} O$
b) ${ }_{7}^{14} \mathrm{~N}$
c) ${ }_{55}^{133} \mathrm{Cs}$
d) ${ }_{18}^{40} \mathrm{Ar}$
60. Isobars are formed by
a) α-decay
b) β-decay
c) γ-deacy
d) h-decay
61. A nuclear bomb exploded 200 km above the surface of moon. The sound of explosion on the moon
a) Will be heard before the explosion is seen
b) Will be heard at the same time
c) Will be heard after explosion
d) Will not be heard at all
62. An electron jumps from $5^{\text {th }}$ orbit of $4^{\text {th }}$ orbit of hydrogen atom. Taking the Rydberg constant as 10^{7} per metre what will be the frequency of radiation emitted
a) $6.75 \times 10^{12} \mathrm{~Hz}$
b) $6.75 \times 10^{14} \mathrm{~Hz}$
c) $6.75 \times 10^{13} \mathrm{~Hz}$
d) None of these
63. The fact that photons carry energy was established by
a) Doppler's effect
b) Compton's effect
c) Bohr's theory
d) Diffraction of light
64. The ratio of the longest to shortest wavelengths in Brackett series of hydrogen spectra is
a) $\frac{25}{9}$
b) $\frac{17}{6}$
c) $\frac{9}{5}$
d) $\frac{4}{3}$
65. After two hours, one-sixteenth of the starting amount of a certain radioactive isotope remained undecayed. The half life of the isotope is
a) 15 minutes
b) 30 minutes
c) 45 minutes
d) 1 hour
66. A reaction between a proton and ${ }_{8} O^{18}$ that produces ${ }_{9} F^{18}$ must also liberate
a) ${ }_{0} n^{1}$
b) ${ }_{1} e^{0}$
c) ${ }_{1} n^{0}$
d) ${ }_{0} e^{1}$
67. The half-life of a radioactive element is 3.8 days. The fraction left after 19 days will be
a) 0.124
b) 0.062
c) 0.093
d) 0.031
68. Select the wrong statement
a) Radioactivity is a statistical process.
b) Radioactivity is a spontaneous process.
c) Radioactivity is neutral characteristic of few elements.
d) Radioactive elements cannot be produced in the laboratory.
69. Half life of a radioactive element is 10 days. The time during which quantity remains $1 / 10$ of initial mass will be
a) 100 days
b) 50 days
c) 33 days
d) 16 days
70. $\mathbf{F}_{p e}$ represents electrical force on proton due to electron and $\mathbf{F}_{e p}$ on electron due to proton in a hydrogen atom.Similarly $\mathbf{F}_{p e}$ represents the gravitational force on proton due to electron and $\mathbf{F}_{e p}$ the corresponding force on electron due to proton. Which of the following is not true?
a) $\mathbf{F}_{P e}+\mathbf{F}_{e p}=0$
b) $\mathbf{F}_{P e}^{\prime}+\mathbf{F}_{e p}^{\prime}=0$
c) $\mathbf{F}_{P e}+\mathbf{F}_{P e}^{\prime}+\mathbf{F}_{e p}+\mathbf{F}_{e p}^{\prime}=0$
d) $\mathbf{F}_{P e}+\mathbf{F}_{P e}^{\prime}=0$
71. An electron changes its position from orbit $n=4$ to the orbit $n=2$ of an atom. The wavelength of the emitted radiation is ($R=$ Rydberg's constant)
a) $\frac{16}{R}$
b) $\frac{16}{3 R}$
c) $\frac{16}{5 R}$
d) $\frac{16}{7 R}$
72. Nuclear fission was discovered by
a) Ottohann and F. Strassmann
b) Fermi
c) Bethe
d) Rutherford
73. The energy required to excite an electron from the ground state of hydrogen atom to the first excited state, is
a) $1.602 \times 10^{-14} \mathrm{~J}$
b) $1.619 \times 10^{-16} \mathrm{~J}$
c) $1.632 \times 10^{-18} \mathrm{~J}$
d) $1.656 \times 10^{-20} J$
74. If M is the atomic mass and A is the mass number, packing fraction is given by
a) $\frac{M}{M-A}$
b) $\frac{M-A}{A}$
c) $\frac{A}{M-A}$
d) $\frac{A-M}{A}$
75. A mixture consists of two radioactive materials A_{1} and A_{2} with half lives of $20 s$ and $10 s$ respectively.

Initially the mixture has 40 g of A_{1} and 160 g of A_{2}. The amount of the two in the mixture will become equal after
a) 60 s
b) 80 s
c) 20 s
d) 40 s
76. The average binding energy per nucleon in the nucleus of an atom is approximately
a) 8 eV
b) 8 KeV
c) 8 MeV
d) 8 J
77. The phenomenon of radioactivity is
a) Exothermic change which increases or decreases with temperature
b) Increases on applied pressure
c) Nuclear process does not depend on external factors
d) None of the above
78. The speed of daughter nuclei is
a) $c \frac{\Delta m}{M+\Delta m}$
b) $c \sqrt{\frac{2 \Delta m}{M}}$
c) $c \sqrt{\frac{\Delta m}{M}}$
d) $c \sqrt{\frac{\Delta m}{M+\Delta m}}$
79. The most stable particle in Baryon group is
a) Proton
b) Lamda-particle
c) Neutron
d) Omega-particle
80. A radioactive sample is α-emitter with half life 138.6 days is observed by a student to have 2000 disintegration/s. The number of radioactive nuclei for given activity are
a) 3.45×10^{10}
b) 1×10^{10}
c) 3.45×10^{15}
d) 2.75×10^{11}
81. A radioactive material has a half life of 10 days. What fraction of the material would remain after 30 days
a) 0.5
b) 0.25
c) 0.125
d) 0.33
82. When a ${ }_{4} B e^{9}$ atom is bombarded with α-particles, one of the products of nuclear transmutation is ${ }_{6} C^{12}$. The other is
a) ${ }_{-1} e^{0}$
b) ${ }_{1} H^{1}$
c) ${ }_{1} D^{2}$
d) ${ }_{0} n^{1}$
83. Fission of nuclei is possible because the binding energy per nucleon in them
a) Increases with mass number at high mass numbers
b) Decreases with mass number at high mass numbers
c) Increases with mass number at low mass numbers
d) Decreases with mass number at low mass numbers
84. To explain his theory, Bohr used
a) Conservation of linear momentum
b) Conservation of angular momentum
c) Conservation of quantum frequency
d) Conservation of energy
85. A radioactive nucleus emits a beta particle. The parent and daughter nuclei are
a) Isotopes
b) Isotones
c) Isomers
d) Isobars
86. Nuclear fission experiments show that the neutrons split the uranium nuclei into two fragments of about same size. This process is accompanised by the emission of several
a) Protons and positrons
b) α-particles
c) Neutrons
d) Protons and α-particles
87. The shortest wavelength in the Lyman series of hydrogen spectrum is $912 \AA$ corresponding to a photon energy of 13.6 eV . The shortest wavelength in the Balmer series is about
a) $3648 \AA$
b) $8208 \AA$
c) $1228 \AA$
d) $6566 \AA$
88. The rest energy of an electron is 0.511 MeV . The electron is accelerated from rest to a velocity 0.5 c . The change in its energy will be
a) 0.026 MeV
b) 0.051 MeV
c) 0.079 MeV
d) 0.105 MeV
89. In any fission process the ratio $\frac{\text { mass of fission products }}{\text { mass of parent nucleus }}$ is
a) Less than 1
b) greater than 1
c) Equal to 1
d) Depends on the mass of parent nucleus
90. Half-life of a substance is 10 years. In what time, it becomes $\frac{1}{4}$ th part of the initial amount
a) 5 years
b) 10 years
c) 20 years
d) None of these
91. α-particles of energy 400 KeV are bombarded on nucleus of ${ }_{82} \mathrm{~Pb}$. In scattering of α-particles, its
minimum distance from nucleus will be
a) 0.59 nm
b) $0.59 \AA$
c) 5.9 pm
d) 0.59 pm
92. K_{α} and K_{β} X-rays are emitted when there is a transition of electron between the levels
a) $n=2$ to $n=1$ and $n=3$ to $n=1$ respectively
b) $n=2$ to $n=1$ and $n=3$ to $n=2$ respectively
c) $n=3$ to $n=2$ and $n=4$ to $n=2$ respectively
d) $n=3$ to $n=2$ and $n=4$ to $n=3$ respectively
93. The ratio of the radii of the nuclei ${ }_{13} \mathrm{Al}^{27}$ and ${ }_{52} \mathrm{Te}^{125}$ is approximately
a) $6: 10$
b) $13: 52$
c) $40: 17$
d) 14: 73
94. The fraction of the initial number of radioactive nuclei which remain undecayed after half of a half-life of the radioactive sample is
a) $\frac{1}{\sqrt{2}}$
b) $\frac{1}{2}$
c) $\frac{1}{2 \sqrt{2}}$
d) $\frac{1}{4}$
95. The nucleus ${ }_{48}^{115} C d$ after two successive β^{-}decays will give
a) ${ }_{46}^{115} \mathrm{~Pa}$
b) ${ }_{49}^{114} \mathrm{In}$
c) ${ }_{50}^{113} \mathrm{Sn}$
d) ${ }_{50}^{115} \mathrm{Sn}$
96. A radioactive nucleus (initial mass number A and atomic number Z) emits 3α - particles and 2 positrons. The ratio of number of neutrons to that of protons in the final nucleus will be
a) $\frac{A-Z-8}{Z-4}$
b) $\frac{A-Z-4}{Z-8}$
c) $\frac{A-Z-12}{Z-4}$
d) $\frac{A-Z-4}{Z-2}$
97. Half-life of radioactive substance is 3.20 h . What is the time taken for a 75% of substance to be used?
a) 6.38 h
b) 12 h
c) 4.18 day
d) 1.2 day
98. The spectral series of the hydrogen atom that lies in the visible region of the electromagnetic spectrum
a) Paschen
b) Balmer
c) Lyman
d) Brackett
99. What is the particle x in the following nuclear reaction ${ }_{4}^{9} \mathrm{Be}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{6}^{12} \mathrm{C}+x$
a) Electron
b) Proton
c) Photon
d) Neutron
100. The masses of two radioactive substances are same and their half-lives are 1 yr and 2 yr respectively. The ratio of their activities after 4 yr will be
a) $1: 4$
b) $1: 2$
c) $1: 3$
d) $1: 6$
101. Highly energetic electrons are bombarded on a target of an element containing 30 neutrons. The ratio of radii of nucleus to that of Helium nucleus is $14^{1 / 3}$. The atomic number of nucleus will be
a) 25
b) 26
c) 56
d) 30
102. Fusion reaction take place at high temperature because
a) Atoms are ionised at high temperature
b) Molecules break up at high temperature
c) Nuclei break up at high temperature
d) Kinetic energy is high enough to overcome repulsion between nuclei
103. In a sample of hydrogen like atoms all of which are in ground state, a photon beam containing photons of various energies is passed. In absorption spectrum, five dark lines, are observed. The number of bright lines in the emission spectrum will be (assume that all transitions takes place)
a) 5
b) 10
c) 15
d) None of these
104. The radioactive nucleus of mass number A, initially at rest, emits an α - particle with a speed v. The recoil speed of the daughter nucleus will be
a) $\frac{2 v}{A-4}$
b) $\frac{2 v}{A+4}$
c) $\frac{4 v}{A-4}$
d) $\frac{4 v}{A+4}$
105. A radioactive element ${ }_{90} X^{238}$ decays into ${ }_{83} Y^{222}$. The number of β-particles emitted are
a) 4
b) 6
c) 2
d) 1
106. A radioactive nucleus ${ }_{92} X^{235}$ decays to ${ }_{91} Y^{231}$. Which of the following particles are emitted
a) One alpha and one electron
b) Two deuterons and one positron
c) One alpha and one proton
d) One proton and four neutrons
107. In a mean life of a radioactive sample
a) About $1 / 3$ of substance disintegrates
b) About $2 / 3$ of the substance disintegrates
c) About 90% of the substance disintegrates
d) Almost all the substance disintegrates
108. The half life of a radioactive isotope X is 50 years. It decays to another element Y which is stable. The two elements X and Y were found to be in the ratio of $1: 16$ in a sample of a given rock. The age of the rock was estimated to be
a) 100 years
b) 150 years
c) 200 years
d) 250 years
109. A hypothetical radioactive nucleus decays according to the following series ${ }_{72} A^{180} \xrightarrow{\alpha} A_{1} \xrightarrow{\beta^{-}} A_{2} \xrightarrow{\alpha} A_{3} \xrightarrow{\gamma} A_{4}$ If the mass number and atomic number of A are respectively 180 and72. Then to atomic number and mass number of A will respectively be
a) 69,171
b) 70,172
c) 68,172
d) 69,172
110. The change density in a nucleus varies with distance from the centre of the nucleus according to the curve in Fig.
a)

b)

c)

d)

111. If the mass number of an atom is $A=0$ and its electron configuration is $1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}$, the number of neutrons and protons in its nucleus will be
a) 22,18
b) 18,22
c) 20,20
d) 18,18
112. The graph between the instantaneous concentration (N) of a radioactive element and time (t) is
a)

b)

c) N

d) N

113. For a nuclear to be in critical condition, the value of neutron multiplication factor (k) must be
a) $k>1$
b) $k<1$
c) $k=1$
d) $k=0$
114. Which state of triply ionized Beryllium ($B e^{+++}$) has the same orbital radius as that of the ground state of hydrogen
a) $n=4$
b) $n=3$
c) $n=2$
d) $n=1$
115. The nuclear reactor at Kaiga is a
a) Research reactor
b) Fusion reactor
c) Breeder reactor
d) Power reactor
116. If in nature there may not be an element for which the principle quantum number $n>4$, then the total possible number of elements will be
a) 60
b) 32
c) 4
d) 64
117. If ${ }_{92} U^{238}$ emits 8α-particles and 6β-particles, then the resulting nucleus is
a) ${ }_{82} U^{206}$
b) ${ }_{82} \mathrm{~Pb}^{206}$
c) ${ }_{82} U^{210}$
d) ${ }_{82} U^{214}$
118. The mass of a neutron is the same as that of
a) A proton
b) A meson
c) An epsilon
d) An electron
119. Radon (Rn) decays into Polonium (Po) by emitting an α-particle with half-life of 4 days. A sample contains 6.4×10^{10} atoms of $R n$. After 12 days, the number of atoms of $R n$ left in the sample will be
a) 3.2×10^{10}
b) 0.53×10^{10}
c) 2.1×10^{10}
d) 0.8×10^{10}
120. Consider two nuclei of the same radioactive nuclide. One of the nuclei was created in a supernova explosion 5 billion years ago. The probability of decay during the next time is
a) Different for each nuclei
b) Nuclei created in explosion decays first
c) Nuclei created in the reactor decays first
d) Independent of the time of creation
121. The ratio of minimum to maximum wavelength in Balmer series is
a) $5: 9$
b) $5: 36$
c) $1: 4$
d) $3: 4$
122. The half-life period of radium is 1600 years. Its average life time will be
a) 3200 years
b) 4800 years
c) 2319 years
d) 4217 years
123. The transition from the state $n=4$ to $n=3$ in a hydrogen like atom result in ultraviolet radiation. Infrared radiation will be obtained in the transition from
a) $2 \rightarrow 1$
b) $3 \rightarrow 2$
c) $4 \rightarrow 2$
d) $5 \rightarrow 4$
124. The count rate of a Geiger-Muller counter for the radiation of a radioactive material of half life of 30 minutes decreases to $5 s^{-1}$ after 2 hours. The initial count rate was
a) $25 \mathrm{~s}^{-1}$
b) $80 \mathrm{~s}^{-1}$
c) $625 \mathrm{~s}^{-1}$
d) $20 \mathrm{~s}^{-1}$
125. In Raman effect, Stoke's lines are spectral lines having
a) Frequency greater than that of the original line
b) Wavelength equal to that of the original line
c) Wavelength less than that of the original line
d) Wavelength greater than that of the original line
126. The fraction f of radioactive material that has decayed in time t, varies with time t. The correct variation is given by the curve

a) A
b) B
c) C
d) D
127. White light is passed through a dilute solution of potassium permanganate. The spectrum produced by the emergent light is
a) Band emission spectrum
b) Line emission spectrum
c) Band absorption spectrum
d) Line absorption spectrum
128. The ratio of the frequencies of the long wavelength limits of Lyman and Balmer series of hydrogen spectrum is
a) $27: 5$
b) $5: 27$
c) $4: 1$
d) $1: 4$
129. A radioactive nucleus of mass M emits a photon of frequency v and the nucleus recoils. The recoil energy will be
a) $h v$
b) $M c^{2}-h v$
c) $\frac{h^{2} v^{2}}{2 M c^{2}}$
d) Zero
130. In which of the following decay, the element does not change
a) β-decay
b) α-decay
c) γ-decay
d) None of these
131. Light energy emitted by stars is due to
a) Breaking of nuclei
b) Joining of nuclei
c) Burning of nuclei
d) Reflection of solar light
132. A nucleus decays by β^{+}-emission followed by a $\gamma-$ emission. If the atomic and mass numbers of the parent nucleus are Z and A respectively, the corresponding numbers for the daughter nucleus are respectively
a) $Z-1$ and $A-1$
b) $Z+1$ and A
c) $Z-1$ and A
d) $Z+1$ and $A-1$
133. In radioactive decay process, the negatively charged emitted β - particles are
a) The electrons present inside the nucleus
b) The electrons produced as a result of the decay of neutrons inside the nucleus
c) The electrons produced as a result of collisions between atoms.
d) The electrons orbiting around the nucleus.
134. The electron in a hydrogen atom makes a transition from $n=n_{1}$ to $n=n_{2}$ state. The time period of the electron in the initial state is eight times that in the final state. The possible values of n_{1} and n_{2} are
a) $n_{1}=6, n_{2}=2$
b) $n_{1}=2, n_{2}=1$
c) $n_{1}=8, n_{2}=2$
d) $n_{1}=4, n_{2}=2$
135. The ratio of the speed of the electron in the first Bohr orbit of hydrogen and the speed of light is equal to
(where e, h and c have their usual meanings)
a) $2 \pi h c / e^{2}$
b) $e^{2} h / 2 \pi c$
c) $e^{2} c / 2 \pi h$
d) $2 \pi e^{2} / h c$
136. In Rutherford scattering experiment, what will be the correct angle for α scattering for an impact parameter $b=0$
a) 90°
b) 270°
c) 0°
d) 180°
137. For maintaining sustained chain reaction, the following is required
a) Protons
b) electrons
c) neutrons
d) positons
138. Which of the transitions in hydrogen atom emits a photon of lowest frequency ($n=$ quantum number)
a) $n=2$ to $n=1$
b) $n=4$ to $n=3$
c) $n=3$ to $n=1$
d) $n=4$ to $n=2$
139. The spectral series of the hydrogen spectrum that lies in the ultraviolet region is the
a) Balmer series
b) Pfund series
c) Paschen series
d) Lyman series
140. The density of uranium is of the order of
a) $10^{20} \mathrm{kgm}^{-3}$
b) $10^{17} \mathrm{kgm}^{-3}$
c) $10^{14} \mathrm{kgm}^{-3}$
d) $10^{11} \mathrm{kgm}^{-3}$
141. The half-life of radon is 3.8 days. How many radon will be left out of 1024 mg after 38 days
a) 1 mg
b) 2 mg
c) 3 mg
d) 4 mg
142. For a radioactive nucleus, the mean life is T, If the number of decays per unit time is n at $t=0$, the number of decays between time 0 and t, is
a) $n T e^{-t / T}$
b) $n\left(1-e^{-t / T}\right)$
c) $n T\left(1-e^{-t / T}\right)$
d) $n e^{-t / T}$
143. ${ }_{7} \mathrm{~N}^{14}$ is bombarded with ${ }_{2} \mathrm{He}^{4}$. The resulting nucleus is ${ }_{8} \mathrm{O}^{17}$ with the emission of
a) Neutrino
b) Antineutrino
c) Proton
d) Neutron
144. The example of nuclear fusion is
a) Formation of barium and krypton from uranium
b) Formation of helium from hydrogen
c) Formation of plutonium 235 from uranium 235
d) Formation of water from hydrogen and oxygen
145. Isotopes are atoms having
a) Same number of protons but different number of neutrons
b) Same number of neutrons but different number of protons
c) Same number of protons and neutrons
d) None of the above
146. If the radius of a nucleus of mass number 3 is R, then the radius of a nucleus of mass number 81 is
a) $3 R$
b) $9 R$
c) $(27)^{1 / 2} R$
d) $27 R$
147. Which of the following radiations has the least wavelength
a) X-rays
b) γ-rays
c) β-rays
d) α-rays
148. An atomic power nuclear reactor can deliver 300 MW . The energy released due to fission of each nucleus of uranium atom U^{238} is 170 MeV . The number of uranium atoms fissioned per hour will be
a) 30×10^{25}
b) 4×10^{22}
c) 10×10^{20}
d) 5×10^{15}
149. The ratio of the kinetic energy to the total energy of an electron in a Bohr orbit is
a) -1
b) 2
c) $1: 2$
d) None of these
150. The rad is the correct unit used to report the measurement of
a) The ability of a beam of gamma ray photons to produce ions in a target
b) The energy delivered by radiation to a target
c) The biological effect of radiation
d) The rate of decay of a radioactive source
151. It is easier to ionize hydrogen as compared to deuterium, because
a) Hydrogen is lighter than deuterium
b) Atomic number of hydrogen is lesser than deuterium
c) Hydrogen is a diatomic gas
d) The statements is wrong
152. The first line of Balmer series has wavelength $6563 \AA$. What will be the wavelength of the first member of Lyman series
a) $1215.4 \AA$
b) $2500 \AA$
c) $7500 \AA$
d) $600 \AA$
153. Which of the following pairs is an isobar
a) ${ }_{1} H^{1}$ and ${ }_{1} H^{2}$
b) ${ }_{1} H^{2}$ and ${ }_{1} H^{3}$
c) ${ }_{6} \mathrm{C}^{12}$ and ${ }_{6} \mathrm{C}^{13}$
d) ${ }_{15} P^{30}$ and ${ }_{14} S i^{30}$
154. If N_{0} is the original mass of the substance of half life period $T_{1 / 2}=5$ years, then the amount of substance left after 15 years is
a) $N_{0} / 8$
b) $N_{0} / 16$
c) $N_{0} / 2$
d) $N_{0} / 4$
155. Mean life of neutron is about
a) 100 seconds
b) 1000 seconds
c) 10 seconds
d) 1 seconds
156. An element A decays into element C by a two step process
$A \rightarrow B+{ }_{2} \mathrm{He}^{4}$
$B \rightarrow C+2_{-1} e^{0}$
Then
a) A and C are isotopes
b) A and C are isobars
c) A and B are isotopes
d) A and B are isobars
157. In the reaction identify X ${ }_{7} N^{14}+\alpha \rightarrow{ }_{8} X^{17}+{ }_{1} p^{1}$
a) An oxygen nucleus with mass 17
b) An oxygen nucleus with mass 16
c) A nitrogen nucleus with mass 17
d) A nitrogen nucleus with mass 16
158. Ionisation potential of hydrogen atom is 13.6 eV . Hydrogen atoms in the ground state are excited by monochromatic radiation of photon energy 12.1 eV . The spectral lines emitted by hydrogen atoms according to Bohr's theory will be
a) One
b) Two
c) Three
d) Four
159. Heavy water is used in a nuclear reactor to
a) Absorb the neutrons
b) Slow down the neutrons
c) Act as coolant
d) None of the above
160. A radioactive element A decay into stable element B, initially a fresh sample of A is available. In this sample variation in number of nuclei of B with time is shown by
a)

b)

c)

d)

161. A radioactive sample of U^{238} decays to $P b$ through a process for which half life is 4.5×10^{9} years. The ratio of number of nuclei of $P b$ to U^{238} after a time of 1.5×10^{9} years (given $2^{1 / 3}=1.26$)
a) 0.12
b) 0.26
c) 1.2
d) 0.37
162. The mass and energy equivalent to 1 amu are respectively
a) $1.67 \times 10^{-27} \mathrm{gm}, 9.30 \mathrm{MeV}$
b) $1.67 \times 10^{-27} \mathrm{~kg}, 930 \mathrm{MeV}$
c) $1.67 \times 10^{-27} \mathrm{~kg}, 1 \mathrm{MeV}$
d) $1.67 \times 10^{-34} \mathrm{~kg}, 1 \mathrm{MeV}$
163. Hydrogen atom from excited state comes to the ground state by emitting a photon of wavelength λ. If R is the Rydberg constant, the principal quantum number n of the excited state is
a) $\sqrt{\frac{\lambda R}{\lambda R-1}}$
b) $\sqrt{\frac{\lambda}{\lambda R-1}}$
c) $\sqrt{\frac{\lambda R^{2}}{\lambda R-1}}$
d) $\sqrt{\frac{\lambda R}{\lambda-1}}$
164. Energy generation in stars is mainly due to
a) Chemical reactions
b) Fission of heavy nuclei
c) Fusion of light nuclei
d) Fusion of heavy nuclei
165. A radioactive nucleus undergoes α-emission to form a stable element. What will be the recoil velocity of the daughter nucleus if V is the velocity of α-emission and A is the atomic mass of radioactive nucleus
a) $\frac{4 V}{A-4}$
b) $\frac{2 V}{A-4}$
c) $\frac{4 V}{A+4}$
d) $\frac{2 V}{A+4}$
166. When a slow neutron goes sufficiently close to a U^{235} nucleus, then the process that takes place is
a) Fission of U^{235}
b) Fusion of neutron
c) Fusion of U^{235}
d) First (a) then (b)
167. The third line of Balmer series of an ion equivalent to hydrogen atom has wavelength of 108.5 nm . The ground state energy of an electron of this ion will be
a) 3.4 eV
b) 13.6 eV
c) 54.4 eV
d) 122.4 eV
168. A nucleus of mass 214 amu in free state decays to emit an α-particle. Kinetic energy of the α-particle emitted is 6.7 MeV . The recoil energy (in MeV) of the daughter nucleus is
a) 1.0
b) 0.5
c) 0.25
d) 0.125
169. The binding energy of nucleus is a measure of its
a) Charge
b) Mass
c) Momentum
d) Stability
170. Suppose an electron is attracted towards the origin by a force $\frac{k}{r}$ where ' k ' is a constant and ' r ' is the distance of the electron from the origin. By applying Bohr model to this system, the radius of the $n^{\text {th }}$ orbital of the electron is found to be ' r_{n} ' and the kinetic energy of the electron to be ' $\mathrm{T}_{\mathrm{n}}{ }^{\prime}$. Then which of the following is true
a) T_{n} independent of $n, r_{n} \propto n$
b) $\mathrm{T}_{\mathrm{n}} \propto \frac{1}{n}, \mathrm{r}_{\mathrm{n}} \propto \mathrm{n}$
c) $\mathrm{T}_{\mathrm{n}} \propto \frac{1}{n}, \mathrm{r}_{\mathrm{n}} \propto \mathrm{n}^{2}$
d) $\mathrm{T}_{\mathrm{n}} \propto \frac{1}{n^{2}}, \mathrm{r}_{\mathrm{n}} \propto \mathrm{n}^{2}$
171. v_{1} is the frequency of the series limit of Lyman series, v_{2} is the frequency of the first line of Lyman series and v_{3} is the frequency of the series limit of the Balmer series. Then
a) $v_{1}-v_{2}=v_{3}$
b) $v_{1}=v_{2}-v_{3}$
c) $\frac{1}{v_{2}}=\frac{1}{v_{1}}+\frac{1}{v_{3}}$
d) $\frac{1}{v_{1}}=\frac{1}{v_{2}}+\frac{1}{v_{3}}$
172. Which of the following has the mass closest in value to that of the positron (1 a.m. $u=931 \mathrm{MeV}$)
a) Proton
b) Electron
c) Photon
d) Neutrino
173. The set which represents the isotope, isobar and isotone respectively is
a) $\left({ }_{1} H^{2},{ }_{1} H^{3}\right),\left({ }_{79} A u^{197},{ }_{80} H g^{198}\right)$ and $\left({ }_{2} H e^{3},{ }_{1} H^{2}\right)$ b) $\left({ }_{2} H e^{3},{ }_{1} H^{1}\right),\left({ }_{79} A u^{197},{ }_{80} H g^{198}\right)$ and $\left({ }_{1} H^{1},{ }_{1} H^{3}\right)$
c) $\left({ }_{2} H e^{3},{ }_{1} H^{3}\right),\left({ }_{1} H^{2},{ }_{1} H^{3}\right)$ and $\left.\left({ }_{79} A u^{197},{ }_{80} H g^{198}\right) \mathrm{d}\right)\left({ }_{1} H^{2},{ }_{1} H^{3}\right),\left({ }_{2} H e^{3},{ }_{1} H^{3}\right)$ and $\left({ }_{79} A u^{197},{ }_{80} H g^{198}\right)$
174. The nucleus ${ }_{6} \mathrm{C}^{12}$ absorbs an energetic neutron and emits a beta particle (β). The resulting nucleus is
a) ${ }_{7} \mathrm{~N}^{14}$
b) ${ }_{7} \mathrm{~N}^{13}$
c) ${ }_{5} B^{13}$
d) ${ }_{6} \mathrm{C}^{13}$
175. The mass defect in a particular nuclear reaction is 0.3 grams . The amount of energy liberated in kilowatt hours is
(Velocity of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
a) 1.5×10^{6}
b) 2.5×10^{6}
c) 3×10^{6}
d) 7.5×10^{6}
176. Consider the following statements

S1: The nuclear force is independent of the charge of nucleons
S2: The number of nucleons in the nucleus of an atom is equal to the number of electrons in the atom
S3: All nuclei have masses that are less than the sum of the masses of constituent nucleons
S4: Nucleons belong to the family of leptons while electrons are members of the family of hadrons Choose the correct statement(s) from these
a) S1 only
b) S1 and S4
c) S2, S3 and S4
d) S1 and S3
177. Alpha rays emitted from a radioactive substance are
a) Negatively charged particles
b) Ionized hydrogen nuclei
c) Doubly ionized helium atom
d) Unchanged particles having the mass equal to proton
178. A radioactive sample at any instant has its disintegration rate 5000 disintegrations per minute. After 5 \min, the rate is 1250 disintegrations per min. Then, the decay constant (per minute) is
a) $0.4 \operatorname{In} 2$
b) $0.2 \operatorname{In} 2$
c) $0.1 \operatorname{In} 2$
d) $0.8 \operatorname{In} 2$
179. β-decay means emission of electron from
a) Innermost electron orbit
b) A stable nucleus
c) Outermost electron orbit
d) Radioactive nucleus
180. Excitation energy of a hydrogen like ion in its first excitation state is 40.8 eV . Energy needed to remove the electron from the ion in ground state is
a) 54.4 eV
b) 13.6 eV
c) 40.8 eV
d) 27.2 eV
181. In a hydrogen atom, the distance between the electron and proton is $2.5 \times 10^{-11} \mathrm{~m}$. The electrical force of attraction between them will be
a) $2.8 \times 10^{-7} \mathrm{~N}$
b) $3.7 \times 10^{-7} \mathrm{~N}$
c) $6.2 \times 10^{-7} \mathrm{~N}$
d) $9.1 \times 10^{-7} \mathrm{~N}$
182. Sun energy is due to
a) Fission of hydrogen
b) Fusion of hydrogen
c) Both fission and fusion
d) Neither fusion nor fission
183. The α-particle is the nucleus of an atom of
a) Neon
b) Hydrogen
c) Helium
d) Deuterium
184. The binding energy of an electron in the ground state of He is equal to 24.6 eV . The energy required to remove both the electrons is
a) 49.2 eV
b) 24.6 eV
c) 38.2 eV
d) 79.0 eV
185. The mass of an α-particle is
a) Less than the sum of masses of two protons and two neutrons
b) Equal to mass of four protons
c) Equal to mass of four neutrons
d) Equal to sum of masses of two protons and two neutrons
186. In artificial radioactivity, 1.414×10^{6} nuclei are disintegrated into 10^{6} nuclei in 10 min . The half-life in minutes must be
a) 5
b) 20
c) 15
d) 30
187. The energy in MeV is released due to transformation of 1 kg mass completely into energy ($c=3 \times$ $10^{8} \mathrm{~m} / \mathrm{s}$)
a) $7.625 \times 10 \mathrm{MeV}$
b) $10.5 \times 10^{29} \mathrm{MeV}$
c) $2.8 \times 10^{-28} \mathrm{MeV}$
d) $5.625 \times 10^{29} \mathrm{MeV}$
188. A radioactive substance emits
a) α-rays
b) β-rays
c) γ-rays
d) All of these
189. In the nuclear reaction ${ }_{85} X^{297} \rightarrow Y+4 \alpha, Y$ is
a) ${ }_{76} Y^{287}$
b) ${ }_{77} Y^{285}$
c) ${ }_{77} Y^{281}$
d) ${ }_{77} Y^{289}$
190. The ratio of minimum wavelengths of Lyman and Balmer series will be
a) 5
b) 10
c) 1.25
d) 0.25
191. The atoms of same element having different masses but same chemical properties, are called
a) Isotones
b) Isotopes
c) Isobars
d) Isomers
192. After 280 days, the activity of a radioactive sample is 6000 dps . The activity reduces to 3000 dps after another 140 days. The initial activity of the sample(in dps) is
a) 6000
b) 9000
c) 3000
d) 24000
193. Hydrogen bomb is based upon
a) Fission
b) fusion
c) Chemical reaction
d) Transmutation
194. What is the ground state energy of positronium
a) 13.6 eV
b) 27.2 eV
c) 5.4 eV
d) 1.8 eV
195. Nuclear reactions are given as
(i) $\square(n, p)_{15} p^{32}$
(ii) \square
$(p, \alpha){ }_{8} O^{16}$ (iii) ${ }_{7} N^{14}$ (iv) ${ }_{6} C^{14}$

Missing particle or nuclide (in box \square) in these reactions are respectively
a) $S^{32}, F^{19},{ }_{0} n^{1}$
b) $F^{19}, S^{32},{ }_{0} n^{1}$
c) $B e^{9}, F^{19},{ }_{0} n^{1}$
d) None of these
196. In a sample of radioactive material, what percentage of the initial number of active nuclei will decay during one mean life
a) 69.3%
b) 63%
c) 50%
d) 37%
197. If half life of a radioactive element is 3 hours, after 9 hours its activity becomes
a) $1 / 9$
b) $1 / 27$
c) $1 / 6$
d) $1 / 8$
198. The S.I. unit of radioactivity is
a) Roentgen
b) Rutherford
c) Curie
d) Becquerel
199. A nucleus ${ }_{n} X^{m}$ emits one α and one β-particle. The resulting nucleus is
a) ${ }_{n} X^{m-4}$
b) ${ }_{n-2} X^{m-4}$
c) ${ }_{n-4} Z^{m-4}$
d) ${ }_{n-1} Z^{m-4}$
200. Which of the relation is correct between time period and number of orbits while an electron is revolving in an orbit
a) n^{2}
b) $\frac{1}{n^{2}}$
c) n^{3}
d) $\frac{1}{n}$
201. Radioactive element decays to form a stable nuclide, then the rate of decay of reactant $\left(\frac{d N}{d t}\right)$ will vary with time (t) as shown in figure
a)

b)

c)

d)

202. When a radioactive substance emits an α-particle, its position in the periodic table is lowered by
a) One place
b) Two places
c) Three places
d) Four places
203. ${ }_{90}^{232} \mathrm{Th}$ an isotope of thorium decays in ten stages emitting six α-particles and four β-particles in all. The end product of the decay is
a) ${ }_{82}^{206} \mathrm{~Pb}$
b) ${ }_{82}^{209} \mathrm{~Pb}$
c) ${ }_{82}^{208} \mathrm{~Pb}$
d) ${ }_{83}^{209} \mathrm{Br}$
204. In hydrogen atom, when electron jumps from second to first orbit, then energy emitted is
a) -13.6 eV
b) -27.2 eV
c) -6.8 eV
d) None of these
205. The neutron was discovered by
a) Marie Curie
b) Pierre Curie
c) James Chadwick
d) Rutherford
206. ${ }_{92} \mathrm{U}^{235}$ undergoes successive disintegrations with the end product of ${ }_{82} \mathrm{~Pb}^{203}$. The number of α and β particles emitted are
a) $\alpha=6, \beta=4$
b) $\alpha=6, \beta=0$
c) $\alpha=8, \beta=6$
d) $\alpha=3, \beta=3$
207. A nuclear reaction given by ${ }_{Z} X^{A} \rightarrow{ }_{Z+1} Y^{A}+{ }_{-1} e^{0}+\bar{p}$ represents
a) γ-decays
b) Fusion
c) Fission
d) β-decay
208. Binding energy per nucleon plot against the mass number for stable nuclei is shown in the figure. which curve is correct

a) A
b) B
c) C
d) D
209. As per Bohr model, the minimum energy (in eV) required to remove an electron from the ground state of doubly ionized $L i$ atom $(Z=3)$ is
a) 1.51
b) 13.6
c) 40.8
d) 122.4
210. Energy levels $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of a certain atom corresponding to increasing values of energy, i.e., $E_{A}<E_{B}<E_{C}$. If $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are the wavelength of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is correct

a) $\lambda_{3}=\lambda_{1}+\lambda_{2}$
b) $\lambda_{3}=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}$
c) $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$
d) $\lambda_{3}^{2}=\lambda_{1}^{2}+\lambda_{2}^{2}$
211. A double charged lithium atom is equivalent to hydrogen whose atomic number is 3 . The wavelength of
required radiation for emitting electron from first to third Bohr orbit in Li^{++}will be (Ionisation energy of hydrogen atom is 13.6 eV)
a) $182.51 \AA$
b) $177.17 \AA$
c) $142.25 \AA$
d) $113.74 \AA$
212. The ratio of the longest to shortest wavelengths in Lyman series of hydrogen spectra is
a) $\frac{25}{9}$
b) $\frac{17}{6}$
c) $\frac{9}{5}$
d) $\frac{4}{3}$
213. A small quantity of solution containing $N a^{24}$ radio nuclide of activity 1 microcurie is injected into the blood of a person. A sample of the blood of volume $1 \mathrm{~cm}^{3}$ taken after 5 hours shows an activity of 296 disintegration per minute. What will be the total volume of the blood in the body of the person. Assume that the radioactive solution mixes uniformly in the blood of the person
(Take 1 curie $=3.7 \times 10^{10}$ disintegration per second and $e^{-\lambda t}=0.7927$; where $\lambda=$ disintegration constant)
a) 5.94 litre
b) 2 litre
c) 317 litre
d) 1 litre
214. A nuclear transformation is denoted by $X(n, \alpha) \rightarrow{ }_{3}^{7} \mathrm{Li}$. Which of the following is the nucleus of element X ?
a) ${ }_{6}^{12} \mathrm{C}$
b) ${ }_{5}^{10} \mathrm{~B}$
c) ${ }_{5}^{9} B$
d) ${ }_{4}^{11} \mathrm{Be}$
215. The binding energy per nucleon of O^{16} is 7.97 MeV and that of O^{17} is 7.75 MeV . The energy (in MeV) required to remove a neutron from O^{17} is
a) 3.52
b) 3.64
c) 4.23
d) 7.86
216. The end product of the decay of ${ }_{90} \mathrm{Th}^{232}$ is ${ }_{82} \mathrm{~Pb}^{208}$. The number of α and β-particles emitted are respectively
a) 6,4
b) 3,3
c) 4,6
d) 6,0
217. Half life of radioactive element depends upon
a) Amount of element present
b) Temperature
c) Pressure
d) Nature of element
218. A radioactive decay chain starts from ${ }_{92} N p^{237}$ produces ${ }_{90} \mathrm{Th}^{229}$ by successive emissions. The emitted particles can be
a) Two α-particles and one β-particle
b) Three β^{+}particles
c) One α-particle and two β^{+}particles
d) One α-particle and two β^{-}particles
219. Most suitable element for nuclear fission is the element with atomic number near
a) 11
b) 21
c) 52
d) 92
220. A certain radioactive material ${ }_{Z} X^{A}$ starts emitting α and β particles successively such that the end product is ${ }_{z-3} Y^{A-b}$. The number of α and β particles emitted are
a) 4 and 3 respectively
b) 2 and 1 respectively
c) 3 and 4 respectively
d) 3 and 8 respectively
221. ${ }_{92} \mathrm{U}^{238}$ on absorbing a neutron goes over to ${ }_{92} \mathrm{U}^{239}$. This nucleus emits an electron to go over electron goes over to Plutonium. The resulting Plutonium can be expressed as
a) ${ }_{94} \mathrm{U}^{239}$
b) ${ }_{92} \mathrm{U}^{239}$
c) ${ }_{93} \mathrm{U}^{240}$
d) ${ }_{92} \mathrm{U}^{240}$
222. The activity of a radioactive sample is measured as 9750 counts per minute at $t=0$ and as 975 counts per minute at $t=5$ minutes. The decay constant is approximately
a) 0.230 per minute
b) 0.461 per minute
c) 0.691 per minute
d) 0.922 per minute
223. The radius of germanium (Ge) nuclide is measured to be twice the radius of ${ }_{4}^{9} \mathrm{Be}$. The number of nucleons in Ge are
a) 73
b) 74
c) 75
d) 72
224. The activity of a sample of a radioactive material is A at time t_{1} and A_{2} at time $t_{2}\left(t_{2}>t_{1}\right)$. If its mean life is T, then
a) $A_{1} t_{1}=A_{2} t_{2}$
b) $A_{1}-A_{2}=t_{2}-t_{1}$
c) $A_{2}=A_{1} e^{\left(t_{1}-t_{2}\right) / T}$
d) $A_{2}=A_{1} e^{\left(t_{1} / t_{2}\right) / T}$
225. The first excited state of hydrogen atom is 10.2 eV above its ground state. The temperature is needed to excite hydrogen atoms to first excited level, is
a) $7.9 \times 10^{4} \mathrm{~K}$
b) $3.5 \times 10^{4} \mathrm{~K}$
c) $5.8 \times 10^{4} \mathrm{~K}$
d) $14 \times 10^{4} \mathrm{~K}$
226. A hydrogen atom in its ground state absorbs 10.2 eV of energy. The orbital angular momentum is increased by
(Given Planck's constant $h=6.6 \times 10^{-34} \mathrm{~J}-s$)
a) $1.05 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
b) $3.16 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
c) $2.11 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
d) $4.22 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
227. $F_{p p}, F_{n n}$ and $F_{n p}$ are the nuclear forces between proton-proton, neutron-neutron and neutron-proton respectively. Then relation between them is
a) $F_{p p}=F_{n n} \neq F_{n p}$
b) $F_{p p} \neq F_{n n}=F_{n p}$
c) $F_{p p}=F_{n n}=F_{n p}$
d) $F_{p p} \neq F_{n n} \neq F_{n p}$
228. The energy levels of the hydrogen spectrum is shown in figure. There are some transition A, B, C, D and E. Transition A, B and C respectively represent

a) First member of Lyman series, third spectral line of Balmer series and the second spectral line of Paschen series
b) Ionization potential of hydrogen, second spectral line of Balmer series and third spectral line of Paschen series
c) Series limit of Lyman series, third spectral line of Balmer series and second spectral line of Paschen series
d) Series limit of Lyman series, second spectral line of Balmer series and third spectral line of Paschen series
229. Energy of $1 g$ uranium is equal to
a) $9.0 \times 10^{13} \mathrm{~J}$
b) $9.0 \times 10^{19} \mathrm{~J}$
c) $3.0 \times 10^{16} \mathrm{~J}$
d) $3.0 \times 10^{17} \mathrm{~J}$
230. Energy required for the electron excitation in Li^{++}from the first to the third Bohr orbit is
a) 12.1 eV
b) 36.3 eV
c) 108.8 eV
d) 122.4 eV
231. A radioactive substance has a half-life of four months. Three-fourth of the substance will decay in
a) 3 months
b) 4 months
c) 8 months
d) 12 months
232. Energy E of a hydrogen atom with principal quantum number n is given by $E=\frac{-13.6}{n^{2}} e V$. The energy of a photon ejected when the electron jumps from $n=3$ state to $n=2$ state of hydrogen is approximately
a) 1.5 eV
b) 0.85 eV
c) 3.4 eV
d) 1.9 eV
233. The example of nuclear fusion is
a) Formation of $B a$ and $K r$ from U^{235}
b) Formation of He from H
c) Formation of $P u-235$ from $U-235$
d) Formation of water from hydrogen and oxygen
234. The masses of neutron and proton are 1.0087 a.m.u. and 1.0073 a.m.u. respectively. If the neutrons and protons combine to form a helium nucleus (alpha particles) of mass $4.0015 \mathrm{a} . \mathrm{m}$. u. the binding energy of the helium nucleus will be (1 a.m.u. $=931 \mathrm{MeV}$)
a) 28.4 MeV
b) 20.8 MeV
c) 27.3 MeV
d) 14.2 MeV
235. The nucleus ${ }_{92} \mathrm{U}^{234}$ splits exactly in half in a fission reaction in which two neutrons are released.The resultant nuclei are
a) ${ }_{46} \mathrm{Pd}^{116}$
b) ${ }_{45} \mathrm{Rh}^{117}$
c) ${ }_{45} \mathrm{Rh}^{116}$
d) ${ }_{46} \mathrm{Pd}^{117}$
236. When the number of nucleons in nuclei increase, the binding energy per nucleon
a) Increases continuously with mass number
b) Decreases continuously with mass number
c) Remains constant with mass number
d) First increases and then decreases with increases of mass number
237. Binding energy per nucleon verses mass number curve for nuclei is shown in the figure. W, X, Y and Z are four nuclei indicated on the curve. The process that would release energy is

a) $Y \rightarrow 2 Z$
b) $W \rightarrow X+Z$
c) $W \rightarrow 2 Y$
d) $X \rightarrow Y+Z$
238. Consider an initially pure ${ }^{\prime} M^{\prime} g$ sample of ${ }^{A} X$, an isotope that has a half life of T hour. What is it's initial decay rate ($N_{A}=$ Avogrado No.)
a) $\frac{M N_{A}}{T}$
b) $\frac{0.693 M N_{A}}{T}$
c) $\frac{0.693 M N_{A}}{A T}$
d) $\frac{2.303 M N_{A}}{A T}$
239. The nuclear radius of a certain nucleus is 7.2 fm and it has charge of $1.28 \times 10^{-17} \mathrm{C}$. The number of neutrons inside the nucleus is
a) 136
b) 142
c) 140
d) 132
240. If the binding energy per nucleon in ${ }_{3} \mathrm{Li}^{7}$ and ${ }_{2} \mathrm{He}^{4}$ nuclei are respectively 5.60 MeV and 7.06 MeV , then the energy of proton in the reaction ${ }_{3} \mathrm{Li}+p \rightarrow 2{ }_{2} \mathrm{He}^{4}$ is
a) 19.6 MeV
b) 2.4 MeV
c) 8.4 MeV
d) 17.3 MeV
241. If the binding energy per nucleon in ${ }_{3}^{7} \mathrm{Li}$ and ${ }_{2}^{4} \mathrm{He}$ nuclei are 5.60 MeV and 7.06 MeV respectively, then in the reaction
$p+{ }_{3}^{7} \mathrm{Li} \rightarrow 2{ }_{2}^{4} \mathrm{He}$
energy of proton must be
a) 28.24 MeV
b) 17.28 MeV
c) 1.46 MeV
d) 39.2 MeV
242. In nuclear fission, the fission reactions proceeds with a projectile. Which of the following suits the best
a) Slow proton
b) Fast neutron
c) Slow neutron
d) None of these
243. Neutron decay in free space is given as follows
${ }_{0} n^{1} \rightarrow{ }_{1} \mathrm{H}^{1}+-{ }_{1} e^{0}+[]$ Then the parenthesis represents a
a) Neutrino
b) Photon
c) Antineutrino
d) Graviton
244. What is the disintegration constant of radon if the number of its atoms diminishes by 18% in 24 h ?
a) $2.1 \times 10^{-3} \mathrm{~s}^{-1}$
b) $2.1 \times 10^{-4} \mathrm{~s}^{-1}$
c) $2.1 \times 10^{-5} \mathrm{~s}^{-1}$
d) $2.1 \times 10^{-6} \mathrm{~s}^{-1}$
245. What is the mass of one curie of U^{234} ?
a) $3.7 \times 10^{10} \mathrm{~g}$
b) $3.7 \times 10^{-10} \mathrm{~g}$
c) $6.25 \times 10^{-34} \mathrm{~g}$
d) $1.438 \times 10^{-11} \mathrm{~g}$
246. Half-life of a radioactive substance is 20 minutes. Difference between points of time when it is 33% disintegrated and 67% disintegrated is approximately
a) 10 min
b) 20 min
c) 30 min
d) 40 min
247. Which of these is non-divisible
a) Nucleus
b) Photon
c) Proton
d) Atom
248. For principal quantum number $n=3$, the possible values of orbital quantum number ' l ' are
a) $1,2,3$
b) $0,1,2,3$
c) $0,1,2$
d) $-1,0,+1$
249. 16 g sample of a radioactive element is taken from Bombay to Delhi in 2 hour and it was found that 1 g of the element remained (undisintegrated). Half life of the element is
a) 2 hour
b) 1 hour
c) $1 / 2$ hour
d) $1 / 4$ hour
250. If 20 g of a radioactive substance due to radioactive decay reduces to $10 g$ in 4 minutes, then in what time 80 g of the same substance will reduce to 10 g
a) In 8 minutes
b) In 12 minutes
c) In 16 minutes
d) In 20 minutes
251. In the nuclear reaction
${ }_{7}^{14} \mathrm{~N}+X \rightarrow{ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{H}$, the X will be
a) ${ }_{-1}^{0} \mathrm{e}$
b) ${ }_{1}^{1} \mathrm{H}$
c) ${ }_{1}^{2} \mathrm{H}$
d) ${ }_{0}^{1} n$
252. The mass number of nucleus is
a) Sometimes equal to its atomic number
b) Sometimes less than and sometimes more than its atomic number
c) Always less than its atomic number
d) Always more than its atomic number
253. The magnetic moment (μ) of a revolving electron around the nucleus varies with principal quantum number n as
a) $\mu \propto n$
b) $\mu \propto 1 / n$
c) $\mu \propto n^{2}$
d) $\mu \propto 1 / n^{2}$
254. A and B are two radioactive substances whose half-lives are 1 and 2 yr respectively. Initially 10 g of A and 1 g of B is taken. The time (approximate) after which they will have same quantity remaining is
a) 6.62 yr
b) 5 yr
c) 3.2 yr
d) 7 yr
255. The particle that possesses half integral spin as
a) Photon
b) Pion
c) Proton
d) K-meson
256. In a radioactive disintegration, the ratio of initial number of atoms to the number of atoms present at an instant of time equal to its mean life is
a) $\frac{1}{e^{2}}$
b) $\frac{1}{e}$
c) e
d) e^{2}
257. Which of the following is true
a) Lyman series is a continuous spectrum
b) Paschen series is a line spectrum in the infrared
c) Balmer series is a line spectrum in the ultraviolet
d) The spectral series formula can be derived from the Rutherford model of the hydrogen atom
258. Nuclear forces are
a) Short ranged attractive and charge independent
b) Short ranged attractive and charge dependent
c) Long ranged repulsive and charge independent
d) Long ranged repulsive and charge dependent
259. The radioactivity of a certain radioactive element drops to $1 / 64$ of its initial value in 30 seconds. Its half life is
a) 2 seconds
b) 4 seconds
c) 5 seconds
d) 6 seconds
260. If M_{0} is the mass of an oxygen isotope ${ }_{8} \mathrm{O}^{17}, M_{p}$ and M_{n} are the masses of a proton and a neutron, respectively, the nuclear binding energy of the isotope is
a) $\left(M_{o}-8 M_{p}\right) c^{2}$
b) $\left(M_{o}-8 M_{p}-9 M_{n}\right) c^{2}$
c) $M_{o} c^{2}$
d) $\left(M_{o}-17 M_{n}\right) c^{2}$
261. If the series limit of Lymen series for Hydrogen atom is equal to the series limit of Balmer series for a hydrogen like atom, then atomic number of this hydrogen like atom will be
a) 1
b) 2
c) 3
d) 4
262. The radius of the Bohr orbit in the ground state of hydrogen atom is $0.5 \AA$. The radius of the orbit of the electron in the third excited state of He^{+}will be
a) $8 \AA$
b) $4 \AA$
c) $0.5 \AA$
d) $0.25 \AA$
263. If an electron jumps from 1st orbital to 3 rd orbital, then it will
a) Absorb energy
b) Release energy
c) No gain of energy
d) None of these
264. The nuclide ${ }^{131} I$ is radioactive, with a half-life of 8.04 days. At noon on January 1, the activity of a certain sample is 600 Bq . The activity at noon on January 24 will be
a) 75 Bq
b) Less than $75 B q$
c) More than 75 Bq
d) 150 Bq
265. A π^{0} at rest decays into 2γ rays, $\pi^{0} \rightarrow \gamma+\gamma$. Then which of the following can happen
a) The two γ 's move in same direction
b) The two γ 's move in opposite direction
c) Both repel each other
d) Both attract each other
266. When a proton, anti-proton annihilate ,the energy released is
a) $1.5 \times 10^{-10} \mathrm{~J}$
b) $28.8 \times 10^{-10} \mathrm{~J}$
c) $6 \times 10^{-10} \mathrm{~J}$
d) $9 \times 10-10 \mathrm{~J}$
267. ${ }_{92}^{235} X \rightarrow{ }_{91}^{231} Y$

Number of particles emitted in the reaction is
a) One electron and one neutron
b) One neutron and one electron
c) One α and one neutron
d) One α and one electron
268. A sodium atom is in one of the states labeled 'Lowest excited levels'. It remains in that state for an average time of $10^{-8} s$, before it makes a transition back to a ground state. What is the uncertainty in energy of that excited state
a) $6.56 \times 10^{-8} \mathrm{eV}$
b) $2 \times 10^{-8} \mathrm{eV}$
c) $10^{-8} \mathrm{eV}$
d) $8 \times 10^{-8} \mathrm{eV}$
269. Age of a tree is determined using radio-isotope of
a) Carbon
b) Cobalt
c) Iodine
d) Phosphorus
270. In hydrogen atom, if the difference in the energy of the electron in $n=2$ and $n=3$ orbits is E, the ionization energy of hydrogen atom is
a) 13.2 E
b) 7.2 E
c) 5.6 E
d) 3.2 E
271. The large scale destruction, that would be caused due to the use of nuclear weapons is called
a) Nuclear holocaust
b) Thermo-nuclear reaction
c) Neutron reproduction factor
d) None of these
272. The half life of radium is 1620 years and its atomic weight is 226 kg per kilomol. The number of atoms that will decay from its 1 g sample per second will be (Avogadro's number $N=6.02 \times 10^{26}$ atom $/$ kilomol)
a) 3.61×10^{10}
b) 3.6×10^{12}
c) 3.11×10^{15}
d) 31.1×10^{15}
273. Which one of the following statement is true, if half-life of a radioactive substance is 1 month?
a) $7 / 8$ th part of the substance will disintegrate in 3 months
b) $1 / 8$ th part of the substance will remain undecayed at the end of 4 months.
c) The substance will disintegrate completely in 4 months.
d) 1.16 th part of the substance will remain undecayed at the end of 3 months
274. Taking Rydberg's constant $R_{H}=1.097 \times 10^{7} \mathrm{~m}$, first and second wavelength of Balmer series in hydrogen spectrum is
a) $2000 \AA, 3000 \AA$
b) $1575 \AA, 2960 \AA$
c) $6529 \AA, 4280 \AA$
d) $6552 \AA, 4863 \AA$
275. Assume that a neutron breaks into a photon and an electron. The energy released during this process is (mass of neutron $=1.6725 \times 10^{-27} \mathrm{~kg}$, Mass of proton $=1.6725 \times 10^{-27} \mathrm{~kg}$, mass of electron $=9 \times$ $10^{-31} \mathrm{~kg}$)
a) 0.73 MeV
b) 7.10 MeV
c) 6.30 MeV
d) 5.4 MeV
276. Which energy state of the triply ionized beryllium has the same electron orbital radius as that of ground state of hydrogen? Given Z for $\mathrm{Be}=4$
a) $n=4$
b) $n=3$
c) $n=2$
d) $n=1$
277. Given a sample of Radium-226 having half-life of 4 days. Find the probability, a nucleus disintegrates after 2 half lives
a) 1
b) $1 / 2$
c) 1.5
d) $3 / 4$
278. Which of the following rays are not electromagnetic waves
a) γ-rays
b) β-rays
c) Heat rays
d) X-rays
279. In hydrogen atom, electron makes transition from $n=4$ to $n=1$ level. Recoil momentum of the H atom will be
a) $3.4 \times 10^{-27} \mathrm{~N}-\mathrm{s}$
b) $6.8 \times 10^{-27} \mathrm{~N}-\mathrm{s}$
c) $3.4 \times 10^{-24} \mathrm{~N}-\mathrm{s}$
d) $6.8 \times 10^{-24} \mathrm{~N}-\mathrm{s}$
280. What is the respective number of α and β particles emitted in the following radioactive decay ${ }_{90} X^{200} \rightarrow{ }_{80} Y^{168}$
a) 6 and 8
b) 8 and 8
c) 6 and 6
d) 8 and 6
281. The electron in a hydrogen atom makes a transition from an excited state to the ground state. Which of the following statements is true
a) Its kinetic energy increases and its potential and total energies decrease
b) Its kinetic energy decreases, potential energy increases and its total energy remains the same
c) Its kinetic and total energies decrease and its potential energy increases
d) Its kinetic, potential and total energies decrease
282. Which of the following is true for number of spectral lines in going from Lyman series to P-fund series
a) Increases
b) Decreases
c) Unchanged
d) May decrease and increase
283. There are two radioactive substances A and B. Decay constant of B is two times that of A. Initially, both have equal number of nuclei. After n half lives of A, rate of disintegration of both are equal. The value of n is
a) 4
b) 2
c) 1
d) 5
284. The energy released in the fission of 1 Kg of ${ }_{92} \mathrm{U}^{235}$ is (energy per fission $=200 \mathrm{MeV}$)
a) $5.1 \times 10^{26} \mathrm{eV}$
b) $5.1 \times 10^{26} \mathrm{~J}$
c) $8.2 \times 10^{13} \mathrm{~J}$
d) $8.2 \times 10^{13} \mathrm{MeV}$
285. The fission of ${ }^{235} U$ can be triggered by the absorption of slow neutrons by a nucleus. Similarly a slow proton can also be used. This statement is
a) Correct
b) Wrong
c) Information is insufficient
d) None of these
286. The mass equivalent at 931 MeV energy is
a) $1.66 \times 10^{-27} \mathrm{~kg}$
b) $6.02 \times 10^{-24} \mathrm{~kg}$
c) $1.66 \times 10^{-20} \mathrm{~kg}$
d) $6.02 \times 10^{-27} \mathrm{~kg}$
287. If a radioactive substance reduces to $\frac{1}{16}$ of its original mass in 40 days, what is its half life
a) 10 days
b) 20 days
c) 40 days
d) None of these
288. Two radioactive nuclei P and Q, in a given sample decay into a stable nucleus R. At time $t=0$, number of P species are $4 N_{0}$ and that of Q are N_{0}. Half-life of P (for conversion to R) is 1 minute where as that of Q is 2 minutes. Initially there are no nuclei of R present in the sample. When number of nuclei of P and Q are equal, the number of nuclei of R present in the sample would be
a) $\frac{5 N_{0}}{2}$
b) $2 N_{0}$
c) $3 N_{0}$
d) $\frac{9 N_{0}}{2}$
289. The ratio of longest wavelength and the shortest wavelength observed in the five spectral series of emission spectrum of hydrogen is
a) $\frac{4}{3}$
b) $\frac{525}{376}$
c) 25
d) $\frac{900}{11}$
290. Two nucleons are at a separation of 1 fm . The net force between them is F_{1} if both neutrons, F_{2} if both are protons, and F_{3} if one is a proton and the other is a neutron.
a) $F_{1}>F_{2}>F_{3}$
b) $F_{2}>F_{1}>F_{3}$
c) $F_{1}=F_{3}>F_{2}$
d) $F_{1}=F_{2}>F_{3}$
291. The energy released in the explosion of an atom bomb is mainly due to
a) nuclear fusion
b) nuclear fission
c) Controlled nuclear chain reaction
d) None of the above
292. Consider the following two statements A and B identify the correct answer given

A: Nuclear density is same for all nuclei
B :Radius of the nucleus R and its mass the number A are related as $\sqrt{A} \propto R^{1 / 6}$
a) Both A and B are true
b) Both A and B are false
c) A is true but B is false
d) A is false but B is true
293. In the given nuclear reaction A, B, C, D, E represents ${ }_{92} U^{238} \xrightarrow{\alpha}{ }_{B} T h^{A} \xrightarrow{\beta}{ }_{D} P a^{C} \xrightarrow{e}{ }_{92} U^{234}$
a) $A=234, B=90, C=234, D=91, E=\beta$
b) $A=234, B=90, C=238, D=94, E=\alpha$
c) $A=238, B=93, C=234, D=91, E=\beta$
d) $A=234, B=90, C=234, D=93, E=\alpha$
294. Minimum excitation potential of Bohr's first orbit in hydrogen atom is
a) 13.6 V
b) 3.4 V
c) 10.2 V
d) 3.6 V
295. r_{1} and r_{2} are the radii of atomic nuclei of mass numbers 64 and 27 respectively. The ratio $\left(r_{1} / r_{2}\right)$ is
a) $64 / 27$
b) $27 / 64$
c) $4 / 3$
d) 1
296. A radioactive sample at any instant has its disintegration rate 5000 disintegrations per minute. After 5 \min, the rate becomes 1250 disintegration per minute. Then ,its decay constant (per minute) is
a) $0.8 \log _{e} 2$
b) $0.4 \log _{e} 2$
c) $0.2 \log _{e} 2$
d) $0.1 \log _{e} 2$
297. On bombarding U^{235} by slow neutrons, 200 MeV energy is released. If the power output of atomic reactor is 1.6 MW , then the rate of fission will be
a) $5 \times 10^{22} \mathrm{~s}^{-1}$
b) $5 \times 10^{16} \mathrm{~s}^{-1}$
c) $8 \times 10^{16} \mathrm{~s}^{-1}$
d) $20 \times 10^{16} \mathrm{~s}^{-1}$
298. Energy of an electron in an excited hydrogen atom is -3.4 eV . Its angular momentum will be ($h=6.626 \times$ $10^{-34} J-s$)
a) $1.11 \times 10^{34} \mathrm{~J} \mathrm{~s}$
b) $1.51 \times 10^{-31} \mathrm{~J}$
c) $2.11 \times 10^{-34} \mathrm{~J}$
d) $3.72 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
299. The wavelength of radiation emitted is λ_{0} when an electron jumps from the third to second orbit of hydrogen atom. For the electron jump from fourth to the second orbit of the hydrogen atom, the wavelength of radiation emitted will be
a) $(16 / 25) \lambda_{0}$
b) $(20 / 27) \lambda_{0}$
c) $(27 / 20) \lambda_{0}$
d) $(25 / 16) \lambda_{0}$
300. Consider an electron $\left(m=9.1 \times 10^{-31} \mathrm{~kg}\right)$ confined by electrical forces to move between two rigid walls separated by 1.0×10^{-9} metre, which is about five atomic diameters. The quantized energy value for the lowest stationary state is
a) 12×10^{-20} joule
b) 6.0×10^{-20} joule
c) 6.0×10^{-18} joule
d) 6 joule
301. What is used as a moderator in a nuclear reactor?
a) Water
b) Graphite
c) Cadmium
d) Steel
302. The half life of a radioactive element which has only $\frac{1}{32}$ of its original mass left after a lapse of 60 days is
a) 12 days
b) 32 days
c) 60 days
d) 64 days
303. The half-life of radioactive Polonium (Po) is 138.6 days. For ten lakh Polonium atoms, the number of disintegration in 24 hours is
a) 2000
b) 3000
c) 4000
d) 5000
304. The rate of disintegration of fixed quantity of a radioactive element can be increased by
a) Increasing the temperature
b) Increasing the pressure
c) Chemical reaction
d) It is not possible
305. The ratio of the radii of the nuclei ${ }_{13} \mathrm{Al}^{27}$ and ${ }_{54} \mathrm{Te}^{125}$ is
a) $\sqrt{13}: \sqrt{52}$
b) $2 \sqrt{13:} 3 \sqrt{52}$
c) $3 \sqrt{3}: 5 \sqrt{5}$
d) $3: 5$
306. In half life of a radio isotope is 2 seconds and number of atoms are only 4 , then after one half life remaining (without decay) atoms are probably
a) 1
b) 2
c) 3
d) All the above
307. The extreme wavelengths of Paschen series are
a) $0.365 \mu \mathrm{~m}$ and $0.565 \mu \mathrm{~m}$
b) $0.818 \mu \mathrm{~m}$ and $1.89 \mu \mathrm{~m}$
c) $1.45 \mu \mathrm{~m}$ and $0.04 \mu \mathrm{~m}$
d) $2.27 \mu \mathrm{~m}$ and $7.43 \mu \mathrm{~m}$
308. The ratio of the speed of the electrons in the ground state of hydrogen to the speed of light in vacuum is
a) $1 / 2$
b) $2 / 137$
c) $1 / 137$
d) $1 / 237$
309. The absorption transitions between the first and the fourth energy states of hydrogen atom are 3 . The emission transitions between these states will be
a) 3
b) 4
c) 5
d) 6
310. When an electron jumps from a level $n=4$ to $n=1$, momentum of the recoiled hydrogen atom will be
a) $6.8 \times 10^{-27} \mathrm{~kg}-\mathrm{ms}^{-1}$
b) $12.75 \times 10^{-19} \mathrm{~kg}-\mathrm{ms}^{-1}$
c) $136 \times 10^{-19} \mathrm{~kg}-\mathrm{ms}^{-1}$
d) zero
311. If the radioactive decay constant of radium is 1.07×10^{-4} per year, then its half life period is approximately equal to
a) 8,900 years
b) 7,000 years
c) 6,476 years
d) 2,520 years
312. Hydrogen (H), deuterium (D), singly ionized helium $\left(\mathrm{He}^{+}\right)$and doubly ionized lithium $\left(L i^{++}\right)$all have one electron around the nucleus. Consider $n=2$ to $n=1$ transition. The wavelengths of emitted radiations are $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4} respectively. Then approximately
a) $\lambda_{1}=\lambda_{2}=4 \lambda_{3}=9 \lambda_{4}$
b) $4 \lambda_{1}=2 \lambda_{2}=2 \lambda_{3}=\lambda_{4}$
c) $\lambda_{1}=2 \lambda_{2}=2 \sqrt{2} \lambda_{3}=3 \sqrt{2} \lambda_{4}$
d) $\lambda_{1}=\lambda_{2}=2 \lambda_{3}=3 \sqrt{2} \lambda_{4}$
313. Hydrogen bomb is based on which of the following phenomenon
a) Nuclear fission
b) Nuclear fusion
c) Radioactive decay
d) None of these
314. The fossil bone has a ${ }^{14} \mathrm{C}:{ }^{12} \mathrm{C}$ ratio, which is $\left[\frac{1}{16}\right]$ of that in a living animal bone. If the half-life of ${ }^{14} \mathrm{C}$ is

5730 yr , then the age of the fossil bone is
a) 11460 yr
b) 17190 yr
c) 22920 yr
d) 45840 yr
315. The decay constant of a radioactive sample is λ. The half-life and mean life of the sample are respectively given by
a) $\frac{1}{\lambda}$ and $\frac{\log _{e} 2}{\lambda}$
b) $\frac{\log _{e} 2}{\lambda}$ and $\frac{1}{\lambda}$
c) $\lambda\left(\log _{e} 2\right)$ and $\frac{1}{\lambda}$
d) $\frac{\lambda}{\log _{e} 2}$ and $\frac{1}{\lambda}$
316. The binding energy per nucleon of deuteron $\left({ }_{1}^{2} \mathrm{H}\right)$ and helium nucleus $\left({ }_{2}^{4} \mathrm{He}\right)$ is $1: 1 \mathrm{MeV}$ and 7 MeV respectively. If two deuteron nuclei react to form a single helium nucleus , then the energy released is
a) 13.9 MeV
b) 26.9 MeV
c) 23.6 MeV
d) 19.2 MeV
317. Two samples X and Y contain equal amount of radioactive substances. If $\frac{1}{16}$ th of the sample X and $\frac{1}{256}$ th of the sample Y, remain after 8 hours, then the ratio of half periods of X and Y is
a) $2: 1$
b) $1: 2$
c) $1: 4$
d) $1: 16$
318. The composition of an α-particle can be expressed be
a) $1 P+1 N$
b) $1 P+2 N$
c) $2 P+1 N$
d) $2 P+2 N$
319. Who discovered spin quantum number
a) Uhlenbeck \& Goudsmit
b) Niels's Bohr
c) Zeeman
d) Sommerfeld
320. Mean life of a radioactive sample is 100 s . Then its half-life(in minutes) is
a) 0.693
b) 1
c) 10^{-4}
d) 1.155
321. A radioactive nucleus A finally transforms into a stable nucleus B. Then A and B can be
a) Isobars
b) Isotones
c) Isotopes
d) None of these
322. The frequency of $1^{\text {st }}$ line of Balmer series in H_{2} atom is v_{0}. The frequency of line emitted by singly ionized He atom is
a) $2 v_{0}$
b) $4 v_{0}$
c) $v_{0} / 2$
d) $v_{0} / 4$
323. From a newly formed radioactive substance (Half life 2 hours), the intensity of radiation is 64 times the permissible safe level. The minimum time after which work can be done safely from this source is
a) 6 hours
b) 12 hours
c) 24 hours
d) 128 hours
324. During negative β-decay
a) Neutron converts into proton
b) Proton converts into neutron
c) Neutron proton ratio increases
d) None of these
325. The ratio of speed of an electron in ground state in Bohrs first orbit of hydrogen atom to velocity of light in air is
а) $\frac{e^{2}}{2 \varepsilon_{0} h c}$
b) $\frac{2 e^{2} \varepsilon_{0}}{h c}$
c) $\frac{e^{3}}{2 \varepsilon_{0} h c}$
d) $\frac{2 \varepsilon_{0} h c}{e^{2}}$
326. The half-life of a sample of a radioactive substance is 1 hour. If 8×10^{10} atoms are present at $t=0$, then the number of atoms decayed in the duration $t=2$ hour to $t=4$ hour will be
a) 2×10^{10}
b) 1.5×10^{10}
c) Zero
d) Infinity
327. If electron in a hydrogen atom has moved from $n=1$ to $n=10$ orbit, the potential energy of the system has
a) Increased
b) Decreased
c) Remained unchanged
d) Become zero
328. Which of the following cannot cause fission in a heavy nucleus
a) α-particle
b) Proton
c) Deutron
d) Laser rays
329. The binding energy per nucleon for the parent nucleus is E_{1} and that for the daughter nuclei is E_{2}. Then
a) $E_{2}=2 E_{1}$
b) $E_{1}>E_{2}$
c) $E_{2}>E_{1}$
d) $E_{1}=2 E_{2}$
330. Which one of the series of hydrogen spectrum is in the visible region
a) Lyman series
b) Balmer series
c) Paschen series
d) Bracket series
331. Electrons in the atom are held to the nucleus by
a) Coulomb's forces
b) Nuclear forces
c) Vander waal's forces
d) Gravitational forces
332. If the energy released in the fission of one nucleus is 200 MeV then the number of nuclei required per second in a power plant of 16 kW will be
a) 0.5×10^{14}
b) 0.5×10^{12}
c) 5×10^{12}
d) 5×10^{14}
333. If λ is decay constant and N the number of radioactive nuclei of an element, then the decay rate (R) of that element is
a) λN^{2}
b) λN
c) $\frac{\lambda}{N}$
d) $\lambda^{2} N$
334. The approximate nuclear radius is proportional to (A is the mass number and Z the atomic number)
a) \sqrt{A}
b) $A^{1 / 3}$
c) \sqrt{Z}
d) $Z^{1 / 3}$
335. A nucleus ${ }_{z} X^{A}$ emits an α-particle. The resultant nucleus emits a β^{+}particle. The respective atomic and mass numbers of the final nucleus will be
a) $Z-3, A-4$
b) $Z-1, A-4$
c) $Z-2, A-4$
d) $Z, A-2$
336. The wavelengths involved in the spectrum of deuterium (${ }_{1}^{2} D$) are slightly different from that of hydrogen spectrum, because
a) The attraction between the electron and the nucleus is different in the two cases
b) The size of the two nuclei are different
c) The nuclear forces are different in the two cases
d) The masses of the two nuclei are different
337. A radioactive sample has N_{0} active atoms $t=0$. If the rate of disintegration at any time is R and the number of atoms is N, then the ratio R / N varies with time as
a)

b)

c)

d)

338. Complete the equation for the following fission process ${ }_{92} U^{235}+{ }_{0} n^{1} \rightarrow{ }_{38} \mathrm{Sr}^{90}+\cdots$
a) ${ }_{54} X e^{143}+3{ }_{0} n^{1}$
b) ${ }_{54} \mathrm{X} e^{145}$
c) ${ }_{57} \mathrm{Xe}^{142}$
d) ${ }_{54} \mathrm{Xe}^{142}+{ }_{0} n^{1}$
339. The Bohr model of atom
a) Assumes that the angular momentum of electrons is quantized
b) Uses Einstein's photo-electric equation
c) Predicts continuous emission spectra for atoms
d) Predicts the same emission spectral for all types of atoms
340. A common example of β-decay is

$$
{ }_{15} P^{32} \rightarrow{ }_{16} P^{32}+x+y
$$

Then x and y stand for
a) Electron and neutrino
b) Positron and neutrino
c) Electron and antineutrino
d) Positron and antineutrino
341. Half-life of radioactive sample, when activity of material initially was 8 counts and after 3 h it becomes 1 count, is
a) 2 h
b) 1 h
c) 3 h
d) 4 h
342. The wavelength of light emitted from second orbit to first orbits in a hydrogen atom is
a) $1.215 \times 10^{-7} \mathrm{~m}$
b) $1.215 \times 10^{-5} \mathrm{~m}$
c) $1.215 \times 10^{-4} \mathrm{~m}$
d) $1.215 \times 10^{-3} \mathrm{~m}$
343. When ${ }_{3} \mathrm{Li}^{7}$ nuclei are bombarded by protons, and the resultant nuclei are ${ }_{4} \mathrm{Be}^{8}$, the emitted particles will be
a) alpha particles
b) beta particles
c) gamma photons
d) neutrons
344. If 200 MeV energy is released in the fission of a single U^{235} nucleus, the number of fissions required per second to produce 1 kilowatt power shall be (Given $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$)
a) 3.125×10^{13}
b) 3.125×10^{14}
c) 3.125×10^{15}
d) 3.125×10^{16}
345. As compound ${ }^{12} C$ atom, ${ }^{14} C$ atom has
a) Two extra protons and two extra electrons
b) Two extra protons but no extra electrons
c) Two extra neutrons and no extra electrons
d) Two extra neutrons and two extra electrons
346. M_{p} denotes the mass of a proton and M_{n} that of a neutron. A given nucleus, of binding energy B, contains Z protons and N neutrons. The mass $M(N, Z)$ of the nucleus is given by (c is the velocity of light)
a) $M(N, Z)=N M_{n}+Z M_{p}-B c^{2}$
b) $M(N, Z)=N M_{n}+Z M_{p}+B c^{2}$
c) $M(N, Z)=N M_{n}+Z M_{p}-B / c^{2}$
d) $M(N, Z)=N M_{n}+Z M_{p}+B / c^{2}$
347. In nuclear reaction ${ }_{2} H e^{4}+{ }_{z} X^{A} \rightarrow{ }_{z+2} Y^{A+3}+A, A$ denotes
a) Electron
b) Positron
c) Proton
d) Neutron
348. Li nucleus has three protons and four neutrons. Mass of lithium nucleus is 7.016005 amu . Mass of proton is 1.007277 amu and mass of neutron is 1.008665 amu . Mass defect for lithium nucleus in amu is
a) 0.04048 amu
b) 0.04050 amu
c) 0.04052 amu
d) 0.04055 amu
349. The energy of an electron in nth orbit of hydrogen atom is $-13.6 / n^{2} \mathrm{eV}$. Energy required to excite the electron from the first orbit to the third orbit is
a) 10.2 J
b) 12.09 J
c) 12.09 eV
d) 13.6 eV
350. In the following nuclear reaction
${ }_{6} C^{11} \rightarrow{ }_{5} B^{11}+\beta^{+}+X$
What does X stand for?
a) A neutron
b) A neutrino
c) An electron
d) A proton
351. The ionization potential of hydrogen atom is -13.6 eV . An electron in the ground state of a hydrogen atom absorbs a photon of energy 12.75 eV . How many different spectral lines can one expect when the electron make a downward transition
a) 1
b) 4
c) 2
d) 6
352. The half-life of radioactive Radon is 3.8 days. The time at the end of which $(1 / 20)$ th of the Radon sample will remain undecayed is (given $\log _{10} e=0.4343$)
a) 13.8 days
b) 16.5 days
c) 33 days
d) 76 days
353. The splitting of line into groups under the effect of magnetic field is called
a) Zeeman's effect
b) Bohr's effect
c) Heisenberg's effect
d) Magnetic effect
354. If the nuclear radius of ${ }^{27} \mathrm{Al}$ is 3.6 Fermi, the approximate nuclear radius of ${ }^{64} \mathrm{Cu}$ in Fermi is
a) 2.4
b) 1.2
c) 4.8
d) 3.6
355. Thermal neutrons can cause fission in
a) U^{235}
b) U^{238}
c) $P u^{238}$
d) $T h^{232}$
356. Complete the reaction $n+{ }_{92}^{235} U \rightarrow{ }_{56}^{144} B a+\cdots+3 n$
a) ${ }_{36}^{89} \mathrm{Kr}$
b) ${ }_{36}^{90} \mathrm{Kr}$
c) ${ }_{36}^{91} \mathrm{Kr}$
d) ${ }_{36}^{92} \mathrm{Kr}$
357. Following process is known as $h v \rightarrow e^{+}+e^{-}$
a) Pair production
b) Photoelectric effect
c) Compton effect
d) Zeeman effect
358. Rutherford's α-particle experiment showed that the atoms have
a) Proton
b) Nucleus
c) Neutron
d) Electrons
359. The radioactive decay of uranium into thorium is expressed by the equation ${ }_{92}^{238} U \rightarrow{ }_{90}^{234} \mathrm{Th}+X$, where ${ }^{\prime} X^{\prime}$ is
a) An electron
b) A proton
c) A deuteron
d) An alpha particle
360. The binding energy per nucleon for deuteron and helium are 1.1 MeV and 7.0 MeV . The energy released when two deuterons fuse to form a helium nucleus is
a) 23.6 MeV
b) 2.2 MeV
c) 30.2 MeV
d) 3.6 MeV
361. A radioactive material decays by simultaneous emission of two particles with half-lives 1620 yr and 810 yr respectively. The time in year after which one-fourth of the material remains, is
a) 4860 yr
b) 3240 yr
c) 2340 yr
d) 1080 yr
362. The nucleus of atomic mass A and atomic number Z emits a β-particle. The atomic mass and atomic number of the resulting nucleus are
a) A, Z
b) $A+1, Z$
c) $A, Z+1$
d) $A-4, Z-2$
363. Antiparticle of electron is
a) ${ }_{0} n^{1}$
b) ${ }_{1} H^{1}$
c) Positron
d) Neutrino
364. Which of the following processes represents a γ-decay?
a) ${ }_{Z} X^{A}+\gamma \rightarrow{ }_{(Z-1)} X^{A+a+b}$
b) ${ }_{Z} X^{A}+{ }_{0} n^{1} \rightarrow{ }_{(Z-2)} X^{(A-3)}+C$
c) ${ }_{Z} X^{A} \rightarrow_{Z} X^{A}+\gamma$
d) ${ }_{Z} X^{A}+{ }_{-1} e^{0} \rightarrow{ }_{A-1} X^{A+g}$
365. A free neutron decays spontaneously into
a) A proton ,an electron and antineutrino
b) A proton ,an electron and aneutrino
c) A proton and electron
d) A proton, and electron , a neutrino and an antineutrino
366. When hydrogen atom is in its first excited level, its radius is \qquad its ground state radius
a) Half
b) Same
c) Twice
d) Four times
367. A radioactive nucleus can decay simultaneously by two different processes which have decay constant λ_{1} and λ_{2}.The effective decay constant of the nuclide is λ, where
a) $\lambda=\lambda_{1}+\lambda_{2}$
b) $\lambda=2\left(\lambda_{1}+\lambda\right)$
c) $\frac{1}{\lambda}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}$
d) $\lambda=\sqrt{\lambda_{1} \lambda_{2}}$
368. Ionisation energy of an electron present in the second Bohr's orbit of hydrogen is
a) 54.4 eV
b) 13.6 eV
c) 1.5 eV
d) 3.4 eV
369. The electron in a hydrogen atom makes a transition $n_{1} \rightarrow n_{2}$ where n_{1} and n_{2} are the principal quantum numbers of the two states. Assume the Bohr model to be valid. The time period of electron in the initial state is 8 times that in the final state. The possible values of n_{1} and n_{2} are
a) $n_{1}=6, n_{2}=3$
b) $n_{1}=8, n_{2}=2$
c) $n_{1}=n_{2}=1$
d) $n_{1}=8, n_{2}=1$
370. The wavelength of the first spectral line in the Balmer series of hydrogen atom is $6561 \AA$. The wavelength of the second spectral line in the Balmer series of singly ionized helium atom is
a) $1215 \AA$
b) $1640 \AA$
c) $2430 \AA$
d) $4687 \AA$
371. The half life period of a radioactive substance is 5 min . The amount of substance decayed in 20 min will be
a) 93.75%
b) 75%
c) 25%
d) 6.25%
372. A count rate meter shows a count of 240 per minute from a given radioactive source. One hour later the meter shows a count rate of 30 per minute. The half-life of the source is
a) 120 min
b) 80 min
c) 30 min
d) 20 min
373. Half lives of two radioactive substances A and B are respectively 20 minutes and 40 minutes. Initially the sample of A and B have equal number of nuclei. After 80 minutes, the ratio of remaining number of A and B nuclei is
a) $1: 16$
b) $4: 1$
c) $1: 4$
d) $1: 1$
374. The energy equivalent to a kilogram of matter is about
a) $10^{20} \mathrm{~J}$
b) $10^{17} \mathrm{~J}$
c) $10^{14} \mathrm{~J}$
d) $10^{11} \mathrm{~J}$
375. Electron in hydrogen atom first jumps from third excited state to second excited state and then from second excited to the first excited state. The ratio of the wavelengths $\lambda_{1}: \lambda_{2}$ emitted in the two cases is
a) $7 / 5$
b) $27 / 20$
c) $27 / 5$
d) $20 / 7$
376. The subatomic particles proton and neutron fall under the group of
a) Mesons
b) Photons
c) Leptons
d) Baryons
377. If the wavelength of the first line of the Balmer series of hydrogen is $6561 \AA$, the wavelength of the second line of the series should be
a) $13122 \AA$
b) $3280 \AA$
c) $4860 \AA$
d) $2187 \AA$
378. Radioactive substances do not emit
a) Electron
b) Helium nucleus
c) Positron
d) Proton
379. Which one is correct about fission?
a) Approx 0.1% mass converts into energy
b) Most of energy of fission is in the form of heat
c) In a fission of U^{235} about 200 eV energy is released
d) On an average, one neutron is released per fission of U^{235}
380. Half-life is measured by
a) Geiger-Muller counter
b) Carbon dating
c) Spectroscopic method
d) Wilson-Cloud chamber
381. If a proton and anti-proton come close to each other and annihilate, how much energy will be released
a) $1.5 \times 10^{-10} \mathrm{~J}$
b) $3 \times 10^{-10} \mathrm{~J}$
c) $4.5 \times 10^{-10} \mathrm{~J}$
d) None of these
382. The transition of an electron from $n_{2}=5,6, \ldots \ldots$ to $n_{1}=4$ gives rise to
a) Pfund series
b) Lyman series
c) Paschen series
d) Brackett series
383. The radioactivity of a certain material drops to $\frac{1}{16}$ of the initial value in 2 h . The half-life of this radio nuclide is
a) 10 min
b) 20 min
c) 30 min
d) 40 min
384. Mass spectrometric analysis of potassium and argon atoms in a Moon rock sample shows that the ratio of the number of (stable) ${ }^{40} \mathrm{Ar}$ atoms present to the number of (radioactive) ${ }^{40} \mathrm{~K}$ atoms is 10.3 . Assume that all the argon atoms were produced by the decay of potassium atoms, with a half-life of $1.25 \times 10^{9} \mathrm{yr}$. How old is the rock?
a) $2.95 \times 10^{11} \mathrm{yr}$
b) $2.95 \times 10^{9} \mathrm{yr}$
c) $437 \times 10^{9} \mathrm{yr}$
d) $437 \times 10^{11} \mathrm{yr}$
385. The correct order of ionizing capacity of α, β and γ-rays is
a) $\alpha>\gamma>\beta$
b) $\alpha>\beta>\gamma$
c) $\alpha<\beta<\gamma$
d) $\gamma>\alpha>\beta$
386. A chain reaction is continuous due to
a) Large mass defect
b) Large energy
c) Production of more neutrons in fission
d) None of these
387. A nucleus of ${ }_{84} \mathrm{Po}^{210}$ originally at rest emits an α-particle with speed v. What will be recoil speed of the daughter nucleus?
a) $4 v / 206$
b) $4 v / 214$
c) $v / 206$
d) $v / 214$
388. In which of the following systems will the radius of the first orbit ($n=1$) be minimum
a) Single ionized helium
b) Deuterium atom
c) Hydrogen atom
d) Doubly ionized lithium
389. If 200 MeV energy is released in the fission of a single nucleus of ${ }_{92} \mathrm{U}^{235}$. How many fissions must occur per second to produce a power of 1 kW ?
a) 3.125×10^{13}
b) 6.250×10^{13}
c) 1.525×10^{13}
d) None of these
390. Which of the following is not conserved in nuclear reaction?
a) Total energy
b) Mass number
c) Charge number
d) Number of fundamental particles
391. The decay constant of a radio isotope is λ. If A_{1} and A_{2} are its activities at times t_{1} and t_{2} respectively, the number of nuclei which have decayed during the time $\left(t_{1}-t_{2}\right)$
a) $A_{1} t_{1}-A_{2} t_{2}$
b) $A_{1}-A_{2}$
c) $\left(A_{1}-A_{2}\right) / \lambda$
d) $\lambda\left(A_{1}-A_{2}\right)$
392. In hydrogen atom which quantity is integral multiple of $\frac{h}{2 \pi}$
a) Angular momentum
b) Angular velocity
c) Angular acceleration
d) Momentum
393. The particles emitted by radioactive decay are deflected by magnetic field. The particles will be
a) Protons and α-particles
b) Electrons, protons and α-particles
c) Electrons, protons and neutrons
d) Electrons and α-particles
394. Starting with a sample of pure ${ }^{66} \mathrm{Cu}, 7 / 8$ of it decays into Zn in 15 min . The corresponding half-life is
a) 10 min
b) 15 min
c) 5 min
d) $7 \frac{1}{2} \mathrm{~min}$
395. Out of the following which one is not a possible energy for a photon to be emitted by hydrogen atom according to Bohr's atomic model
a) 13.6 eV
b) 0.65 eV
c) 1.9 eV
d) 11.1 eV
396. For ionizing an excited hydrogen atom, the energy required (in eV) will be
a) A little less then 13.6
b) 13.6
c) More than 13.6
d) 3.4 or less
397. The radius of a nucleus of a mass number A is directly proportional to
a) A^{3}
b) A
c) $A^{2 / 3}$
d) $A^{1 / 3}$
398. Which of the following statements about the Bohr model of the hydrogen atom is false
a) Acceleration of electron in $n=2$ orbit is less than that in $n=1$ orbit
b) Angular momentum of electron in $n=2$ orbit is more than that in $n=1$ orbit
c) Kinetic energy of electron in $n=2$ orbit is less than that in $n=1$ orbit
d) Potential energy of electron in $n=2$ orbit is less than that in $n=1$ orbit
399. The nuclear fusion reaction is given ${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{0} \mathrm{He}^{3}+{ }_{0} n^{1}+Q$ (energy). If 2 mole of deuterium are fused the total released energy is
a) $2 Q$
b) $4 Q$
c) $Q \times 6.02 \times 10^{23}$
d) $Q \times 2 \times 6 \times 10^{23}$
400. The graph which represents the correct variation of logarithm of activity $(\log A)$ versus time, in figure is

a) A
b) B
c) C
d) D
401. In ${ }_{88} R a^{226}$ nucleus, there are
a) 138 protons and 88 neutrons
b) 138 neutrons and 88 protons
c) 226 protons and 88 electrons
d) 226 neutrons and 138 electrons
402. In Bohr's model of hydrogen atom, let $P E$ represents potential energy and $T E$ the total energy. In going to a higher level
a) $P E$ decreases, $T E$ increases
b) $P E$ increases, $T E$ increases
c) $P E$ decreases, $T E$ decreases
d) $P E$ increases, $T E$ decreases
403. Minimum energy required to takeout the only one electron from ground state of He^{+}is
a) 13.6 eV
b) 54.4 eV
c) 27.2 eV
d) 6.8 eV
404. The first member of the Paschen series in hydrogen spectrum is of wavelength $18,800 \AA$. The short wavelength limit of Paschen series is
a) $1215 \AA$
b) $6560 \AA$
c) $8225 \AA$
d) $12850 \AA$
405. If half-life of a radioactive atom is 2.3 days, then its decay constant would be
a) 0.1
b) 0.2
c) 0.3
d) 2.3
406. Pick out the correct statement from the following.
a) Energy released per unit mass of the reactant is less in case of fusion reaction
b) Packing fraction may be positive or may be negative
c) Pu^{239} is not suitable for a fission reaction
d) For stable nucleus, the specific binding energy is low
407. For the stability of any nucleus
a) Binding energy per nucleon will be more
b) Binding energy per nucleon will be less
c) Number of electrons will be more
d) None of the above
408. 80 kg of a radioactive material reduces to 10 kg in 1 h . The decay constant of the material is
a) $5.80 \times 10^{-4} \mathrm{~s}^{-1}$
b) $1.16 \times 10^{-3} \mathrm{~s}^{-1}$
c) $2.32 \times 10^{-3} \mathrm{~s}^{-1}$
d) $4.64 \times 10^{-3} \mathrm{~s}^{-1}$
409. When an electron in hydrogen atom is excited, from its $4^{\text {th }}$ to $5^{\text {th }}$ stationary orbit, the change in angular momentum of electron is (Planck's constant: $h=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}$)
a) $4.16 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
b) $3.32 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
c) $1.05 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
d) $2.08 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
410. A moderator is used in nuclear reactors in order to
a) Slow down the speed of the neutrons
b) Accelerate the neutrons
c) Increase the number of neutrons
d) Decrease the number of neutrons
411. When ${ }_{92} \mathrm{U}^{235}$ is bombarded with one neutron, fission occurs and the products are three neutrons, ${ }_{36} \mathrm{Kr}^{94}$, and
a) ${ }_{56} \mathrm{Ba}^{141}$
b) ${ }_{54} \mathrm{Xe}^{139}$
c) ${ }_{56} \mathrm{Ba}^{139}$
d) ${ }_{58} \mathrm{I}^{142}$
412. Activity of radioactive element decreased to one third of original activity R_{0} in 9 years. After further 9 years, its activity will be
a) R_{0}
b) $\frac{2}{3} R_{0}$
c) $R_{0} / 9$
d) $R_{0} / 6$
413. A radioactive element forms its own isotope after 3 consecutive disintegrations. The particles emitted are
a) 3β-particles
b) 2β-particles - 1α-particle
c) 2β-particles - 1γ-particle
d) 2α-particles - 1β-particle
414. In any Bohr orbit of the hydrogen atom, the ratio of kinetic energy to potential energy of the electron is
a) $1 / 2$
b) 2
c) $-1 / 2$
d) -2
415. Best neutron moderator is
a) Beryllium oxide
b) Pure water
c) Heavy water
d) Graphite
416. Some radioactive nucleus may emit
a) Only one α, β or γ at a time
b) All the three α, β and γ one after another
c) All the three α, β and γ simultaneously
d) Only α and β simultaneously
417. Which of the following cannot be emitted by radioactive substances during their decay?
a) Protons
b) Neutrinos
c) Helium nuclei
d) Electrons
418. If the ionization potential of helium atom is 24.6 volt, the energy required to ionize it will be
a) 24.6 eV
b) 24.6 V
c) 13.6 V
d) 13.6 eV
419. The number of neutrons released when ${ }_{92} U^{235}$ undergoes fission by absorbing ${ }_{0} n^{1}$ and $\left({ }_{56} B a^{144}+\right.$ ${ }_{36} \mathrm{Kr}^{89}$) are formed is
a) 0
b) 1
c) 2
d) 3
420. The first line in the Lyman series has wavelength λ. The wavelength of the first line in Balmer series is
a) $\frac{2}{9} \lambda$
b) $\frac{9}{2} \lambda$
c) $\frac{5}{27} \lambda$
d) $\frac{27}{5} \lambda$
421. Half-life of a radio active substance A is 4 days. The probability that a nucleus will decay in two half-lives is
a) $\frac{1}{4}$
b) $\frac{3}{4}$
c) $\frac{1}{2}$
d) 1
422. Radium has a half-life of 5 yr . The probability of decay of a radium nucleus in 10 yr is
a) 50%
b) 75%
c) 100%
d) 60%
423. For a nucleus to be stable, the correct relation between neutron number N and proton number Z is
a) $N>Z$
b) $N=Z$
c) $N<Z$
d) $N \geq Z$
424. According to classical theory, the circular path of an electron in Rutherford atom is
a) Spiral
b) Circular
c) Parabolic
d) Straight line
425. First Bohr radius of an atom with $Z=82$ is R. Radius of its third orbit is
a) $9 R$
b) $6 R$
c) $3 R$
d) R
426. In an atomic bomb, the energy is released due to
a) Chain reaction of neutrons and ${ }_{92} U^{235}$
b) Chain reaction of neutrons and ${ }_{92} U^{238}$
c) Chain reaction of neutrons and ${ }_{92} U^{240}$
d) Chain reaction of neutrons and ${ }_{92} U^{236}$
427. In nuclear reactions, we have the conservation of
a) Mass only
b) Energy only
c) Momentum only
d) Mass, energy and momentum
428. If the energy of a hydrogen atom in nth orbit is E_{n}, then energy in the nth orbit of a singly ionized helium atom will be
a) $4 E_{n}$
b) $E_{n} / 4$
c) $2 E_{n}$
d) $E_{n} / 2$
429. The shortest wavelength in hydrogen spectrum of Lyman series when $R_{H}=109678 \mathrm{~cm}^{-1}$ is
a) $1002.7 \AA$
b) $1215.67 \AA$
c) $1127.30 \AA$
d) $911.7 \AA$
430. Nuclear binding energy is equivalent to
a) Mass of proton
b) Mass of neutron
c) Mass of nucleus
d) Mass defect of nucleus
431. Two lithium nuclei in a lithium vapour at room temperature do not combine to form a carbon nucleus because
a) Carbon nucleus is an unstable particle
b) It is not energetically favourable
c) Nuclei do not come very close due to Coulombic repulsion
d) Lithium nucleus is more tightly bound than a carbon nucleus
432. The velocity of an electron in the second orbit of sodium atom (atomic number $=11$) is v. The velocity of an electron in its fifth orbit will be
a) v
b) $\frac{22}{5} v$
c) $\frac{5}{2} v$
d) $\frac{2}{5} v$
433. The ratio of ionization energy of Bohr's hydrogen atom and Bohr's hydrogen like lithium atom is
a) $1: 1$
b) $1: 3$
c) $1: 9$
d) None of these
434. If 10% of a radioactive material decays in 5 days, then the amount of original material left after 20 days is approximately
a) 60%
b) 65%
c) 70%
d) 75%
435. Which of the following is most unstable
a) Electrons
b) Protons
c) Neutrons
d) α-particle
436. Neutrons are used in nuclear fission, because
a) Neutrons are attracted by nucleus
b) Mass of neutrons is greater than protons
c) Neutrons are neutral and hence are not repelled by the nucleus
d) Neutrons could be accelerated to a greater energy
437. According to Bohr's theory the radius of electron in an orbit described by principle quantum number n and atomic number Z is proportional to
a) $Z^{2} n^{2}$
b) $\frac{Z^{2}}{n^{2}}$
c) $\frac{Z^{2}}{n}$
d) $\frac{n^{2}}{Z}$
438. The ratio between total acceleration of the electron in singly ionized helium atom and hydrogen atom (both in ground state) is
a) 1
b) 8
c) 4
d) 16
439. On the bombardment of neutron with Boron. α-particle is emitted and product nuclei formed is
a) ${ }_{6} \mathrm{C}^{12}$
b) ${ }_{3} L i^{6}$
c) ${ }_{3} L i^{7}$
d) ${ }_{4} B e^{9}$
440. The concept of stationary orbits was proposed by
a) Neil Bohr
b) J.J. Thomson
c) Rutherford
d) I. Newton
441. The volume of a nucleus is directly proportional to
a) A
b) A^{3}
c) \sqrt{A}
d) $\begin{aligned} & A^{1 / 3} \\ & \text { (where } A=\text { mass number of the nucleus) }\end{aligned}$
442. The mass number of a nucleus is equal to the number of
a) Electrons it contains
b) Protons it contains
c) Neutrons it contains
d) Nucleons it contains
443. The counting rate observed from a radioactive source at $t=9 \mathrm{~s}$ was 1600 counts $^{-1}$ and at $t=8$ sit was 100 counts s ${ }^{-1}$. The counting rate observed as counts per second at $t=6 \mathrm{~s}$,will be
a) 400
b) 300
c) 250
d) 200
444. In a radioactive material the activity at time t_{1} is R_{1} and at a later time t_{2}, it is R_{2}. If the decay constant of the material is λ, then
a) $R_{1}=R_{2} e^{-\lambda\left(t_{1}-t_{2}\right)}$
b) $R_{1}=R_{2} e^{\lambda\left(t_{1}-t_{2}\right)}$
c) $R_{1}=R_{2}\left(t_{2} / t_{1}\right)$
d) $R_{1}=R_{2}$
445. An electron in the $n=1$ orbit of hydrogen atom is bounded by 13.6 eV . Energy requires to ionize it is
a) 13.6 eV
b) 6.53 eV
c) 5.4 eV
d) 1.51 eV
446. Energy released in the fission of a single nucleus is 200 MeV . The fission rate of a ${ }_{92}^{235} \mathrm{U}$ filled reactor operating at a power level of 5 W is
a) $1.56 \times 10^{-10} \mathrm{~s}^{-1}$
b) $1.56 \times 10^{11} \mathrm{~s}^{-1}$
c) $1.56 \times 10^{-16} \mathrm{~s}^{-1}$
d) $1.56 \times 10^{-17} \mathrm{~s}^{-1}$
447. In hydrogen atom, the electron is moving round the nucleus with velocity $2.18 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in an orbit of radius $0.528 \AA$. The acceleration of the electron is
a) $9 \times 10^{18} \mathrm{~m} / \mathrm{s}^{2}$
b) $9 \times 10^{22} \mathrm{~m} / \mathrm{s}^{2}$
c) $9 \times 10^{-22} \mathrm{~m} / \mathrm{s}^{2}$
d) $9 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}$
448. A radioactive material has an initial amount 16 g . After 120 days it reduces to 1 g , then the half-life of radioactive material is
a) 60 days
b) 30 days
c) 40 days
d) 240 days
449. The ratio of the wavelengths for $2 \rightarrow 1$ transition on $\mathrm{Li}^{++}, \mathrm{He}^{+}$and H is
a) $1: 2: 3$
b) $1: 4: 9$
c) $4: 9: 36$
d) $3: 2: 1$
450. Pick out the incorrect statement from the following
a) β-emission from the nucleus is always accompanied with a neutrino
b) The energy of the α-particle emitted from a given nucleus is always constant
c) γ-ray emission makes the nucleus more stable
d) Nuclear force is charge-independent
451. The graph between number of decayed atoms N^{\prime} of a radioactive element and time t is
a) N

b) ${ }^{N}$

c)

d)

452. In gamma ray emission from a nucleus
a) Both the neutron number and the proton number change
b) There is no change in the proton number and the neutron number
c) Only the neutron number changes
d) Only the proton number changes
453. ${ }_{92}^{238} \mathrm{U}$ has 92 protons and 238 nucleons. It decays by emitting an alpha particle and becomes
a) ${ }_{92}^{234} \mathrm{U}$
b) ${ }_{90}^{234} \mathrm{Th}$
c) ${ }_{92}^{235} \mathrm{U}$
d) ${ }_{93}^{237} \mathrm{~Np}$
454. Which of the following is suitable for the fusion process
a) Heavy nuclei
b) Light nuclei
c) Atom bomb
d) Radioactive decay
455. A nucleus with $Z=92$ emits the following in a sequence : $\alpha, \alpha, \beta^{-}, \beta^{-}, \alpha, \alpha, \alpha, \alpha: \beta^{-}, \beta^{-}, \alpha, \beta^{+}, \beta^{+}, \alpha$. The Z of the resulting nucleus is
a) 76
b) 78
c) 82
d) 74
456. Two protons are kept at a separation of $40 \AA . F_{n}$ is the nuclear force and F_{e} is the electrostatic force between them. Then
a) $F_{n} \gg F_{e}$
b) $F_{n}=F_{e}$
c) $F_{n} \ll F_{e}$
d) $F_{n} \approx F_{e}$
457. Every series of hydrogen spectrum has an upper and lower limit in wavelength. The spectral series which has an upper limit of wavelength equal to $18752 \AA$ is
(Rydberg constant $R=1.097 \times 10^{7}$ per metre)
a) Balmer series
b) Lyman series
c) Paschen series
d) Pfund series
458. The ionisation energy of 10 times ionised sodium atom is
a) 13.6 eV
b) $13.6 \times 11 \mathrm{eV}$
c) $\frac{13.6}{11} \mathrm{eV}$
d) $13.6 \times(11)^{2} \mathrm{eV}$
459. ${ }_{92} \mathrm{U}^{235}$ and ${ }_{92} \mathrm{U}^{238}$ differ as
a) ${ }_{92} U^{235}$ has 2 protons less
b) $92 \mathrm{U}^{238}$ has 3 protons more
c) ${ }_{92} \mathrm{U}^{238}$ has 3 neutrons more
d) None of the above
460. In the following reaction ${ }_{12} \mathrm{Mg}^{24}+{ }_{2} \mathrm{He}^{4} \rightarrow{ }_{14} \mathrm{Si}^{X}+{ }_{0} n^{1}, X$ is
a) 28
b) 27
c) 26
d) 22
461. Consider a hydrogen like atom whose energy in $n^{\text {th }}$ excited state is given by $E_{n}=-\frac{13.6 Z^{2}}{n^{2}}$. When this excited atom makes a transition from excited state to ground state, most energetic photons have energy $E_{\max }=52.224 \mathrm{eV}$ and least energetic photons have energy $E_{\min }=1.224 \mathrm{eV}$. The atomic number of atom is
a) 2
b) 5
c) 4
d) None of these
462. γ-rays radiation can be used to create electron-positron pair. In this process of pair production, γ-rays energy cannot be less than
a) 5.0 MeV
b) 4.02 MeV
c) 15.0 MeV
d) 1.02 MeV
463. Two radioactive samples have decay constant $15 x$ and $3 x$. If they have the same number of nuclei initially,
the ratio of number of nuclei after a time $\frac{1}{6 x}$ is
a) $\frac{1}{e}$
b) $\frac{e}{2}$
c) $\frac{1}{e^{4}}$
d) $\frac{1}{e^{2}}$
464. If radius of the ${ }_{13}^{27} \mathrm{Al}$ nucleus is estimated to be 3.6 fermi then the radius of ${ }_{52}^{125} \mathrm{Te}$ nucleus be nearly
a) 4 Fermi
b) 5 Fermi
c) 6 Fermi
d) 8 Fermi
465. The wavelength of Lyman series is
a) $\frac{4}{3 \times 10967} \mathrm{~cm}$
b) $\frac{3}{4 \times 10967} \mathrm{~cm}$
c) $\frac{4 \times 10967}{3} \mathrm{~cm}$
d) $\frac{3}{4} \times 10967 \mathrm{~cm}$
466. The figure indicates the energy level diagram of an atom and the origin of six spectral lines in emission (e.g. line no. 5 arises from the transition from level B to A). Which of the following spectral lines will also occur in the absorption spectra

a) $1,4,6$
b) $4,5,6$
c) $1,2,3$
d) $1,2,3,4,5,6$
467. In a radioactive substance at $t=0$, the number of atoms is 8×10^{4}. Its half life period is 3 years. The number of atoms 1×10^{4} will remain after interval
a) 9 years
b) 8 years
c) 6 years
d) 24 years
468. If ${ }_{92} U^{238}$ undergoes successively 8α-decays and 6β-decays, then resulting nucleus is
a) ${ }_{82} U^{206}$
b) ${ }_{82} \mathrm{~Pb}^{206}$
c) ${ }_{82} U^{210}$
d) ${ }_{82} U^{214}$
469. As the electron in Bohr orbit of Hydrogen atom passes from state $n=2$ to $n=1$, the kinetic energy K and potential energy U change as
a) K two-fold, U four-fold
b) K four-fold, U two-fold
c) K four-fold, U also four-fold
d) K two-fold, U also two-fold
470. The largest wavelength in the ultraviolet region of the hydrogen spectrum is 122 nm . The smallest wavelength in the infrared region of the hydrogen spectrum (to the nearest integer is)
a) 802 nm
b) 823 nm
c) 1882 nm
d) 1648 nm
471. Nucleus of an atom whose atomic mass is 24 consists of
a) 11 electrons, 11 protons and 13 neutrons
b) 11 electrons, 13 protons and 11 neutrons
c) 11 protons and 13 neutrons
d) 11 protons and 13 electrons
472. Ionization power and penetration range of radioactive radiation increases in the order
a) γ, β, α and γ, β, α respectively
b) γ, β, α and α, β, γ respectively
c) α, β, γ and α, β, γ respectively
d) α, β, γ and γ, β, α respectively
473. The relationship between λ and half life $\left(T_{1 / 2}\right)$ of a radioactive substance is
a) $\lambda=\frac{\log _{10} 2}{T_{1 / 2}}$
b) $\lambda=\frac{\log _{e} 2}{T_{1 / 2}}$
c) $\lambda=\frac{\log _{2} 10}{T_{1 / 2}}$
d) $\lambda=\frac{\log _{2} e}{T_{1 / 2}}$
474. The ratio of molecular mass of two radioactive substances is $3 / 2$ and the ratio of their decay constants is $4 / 3$. Then, the ratio of their initial activity per mole will be
a) 2
b) $4 / 3$
c) $\frac{8}{9}$
d) $9 / 8$
475. Which one of the following is a possible nuclear reaction?
a) ${ }_{5}^{10} \mathrm{~B}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{7}^{13} \mathrm{~N}+{ }_{1}^{1} \mathrm{H}$
b) ${ }_{11}^{23} \mathrm{Na}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{10}^{20} \mathrm{Ne}+{ }_{2}^{4} \mathrm{He}$
c) ${ }_{93}^{239} \mathrm{~Np} \rightarrow{ }_{94}^{239} \mathrm{Pu}+\beta^{-}+\overline{\mathrm{v}}$
d) ${ }_{7}^{11} \mathrm{~N}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{6}^{12} \mathrm{C}+\beta^{-}+\overline{\mathrm{v}}$
476. Radius of the first orbit of the electron in a hydrogen atom is $0.53 \AA$. So, the radius of the third orbit will be
a) $2.12 \AA$
b) $4.77 \AA$
c) $1.06 \AA$
d) $1.59 \AA$
477. When ${ }_{88} \mathrm{Ra}^{236}$ decays in a series by emission of 3α-particles and one β-particle, isotope X formed is
a) ${ }_{83} X^{224}$
b) ${ }_{84} X^{218}$
c) ${ }_{84} X^{220}$
d) ${ }_{82} X^{223}$
478. The sun radiates energy in all directions. The average radiations received on the earth surface from the sun is 1.4 kilowatt $/ \mathrm{m}^{2}$. The average earth sun distance is 1.5×10^{11} metres. The mass lost by the sun per
day is $(1$ day $=86400$ seconds $)$
a) $4.4 \times 10^{9} \mathrm{~kg}$
b) $7.6 \times 10^{14} \mathrm{~kg}$
c) $3.8 \times 10^{12} \mathrm{~kg}$
d) $3.8 \times 10^{14} \mathrm{~kg}$
479. According to the Rutherford's atomic model, the electrons inside the atom are
a) Stationary
b) Not stationary
c) Centralized
d) None of these
480. The time of revolution of an electron around a nucleus of charge $Z e$ in $n^{\text {th }}$ Bohr orbit is directly proportional to
a) n
b) $\frac{n^{3}}{Z^{2}}$
c) $\frac{n^{2}}{Z}$
d) $\frac{Z}{n}$
481. $A^{238} \mathrm{U}$ nucleus at rest is decayed by emitting alpha particle into ${ }_{90}^{234} \mathrm{Th}$. The speeds of the alpha particle and the thorium nucleus are in the ratio.
a) $3: 58$
b) $58: 3$
c) $1: 58$
d) $58: 1$
482. 1 atomic mass unit is equal to
a) $\frac{1}{25}$ (mass of F_{2} molecule)
b) $\frac{1}{14}$ (mass of N_{2} molecule)
c) $\frac{1}{12}$ (mass of one C-atom)
d) $\frac{1}{16}$ (mass of O_{2} molecule)
483. An atom of mass number 15 and atomic number 7 captures an α-particle and then emits a proton. The mass number and atomic number of the resulting product will respectively be
a) 14 and 2
b) 15 and 3
c) 16 and 4
d) 18 and 8
484. 1 g of hydrogen is converted into 0.993 g of helium in a thermonuclear reaction. The energy released is
a) $63 \times 10^{7} \mathrm{~J}$
b) $63 \times 10^{10} \mathrm{~J}$
c) $63 \times 10^{14} \mathrm{~J}$
d) $63 \times 10^{20} \mathrm{~J}$
485. The mass number of a nucleus is 216 . The size of an atom without changing its chemical properties are called
a) $7.2 \times 10^{-13} \mathrm{~cm}$
b) $7.2 \times 10^{-11} \mathrm{~cm}$
c) $7.2 \times 10^{-10} \mathrm{~cm}$
d) $3.6 \times 10^{-11} \mathrm{~cm}$
486. In a sample of radioactive material, what fraction of the initial number of active nuclei will remain undisintegrated after half of a half-life of the sample
a) $\frac{1}{4}$
b) $\frac{1}{2 \sqrt{2}}$
c) $\frac{1}{\sqrt{2}}$
d) $2 \sqrt{2}$
487. The average number of prompt neutrons produced per fission of U^{235} is
a) More than 5
b) 3 to 5
c) 2 to 3
d) 1 to 2
488. In Bohr's model, if the atomic radius of the first orbit is r_{0}, then the radius of the fourth orbit is
a) r_{0}
b) $4 r_{0}$
c) $r_{0} / 16$
d) $16 r_{0}$
489. In a Rutherford scattering experiment when a projectile of charge z_{1} and mass M_{1} approaches a target nucleus of charge z_{2} and mass M_{2}, the distance of closest approach is r_{0}. The energy of the projectile is
a) Directly proportional to $M_{1} \times M_{2}$
b) Directly proportional to $z_{1} z_{2}$
c) Inversely proportional to z_{1}
d) Directly proportional to mass M_{1}
490. Nuclear fusion is common to the pair
a) Thermonuclear reactor, uranium based nuclear reactor
b) Energy production in sun, uranium based nuclear reactor
c) Energy production in sun, hydrogen bomb
d) Disintegration of heavy nuclei, hydrogen bomb
491. If in Rutherford's experiment, the number of particles scattered at 90° angle are 28 per min, then number of scattered particles at an angle 60° and 120° will be
a) $112 / \mathrm{min}, 12.5 / \mathrm{min}$
b) $100 / \mathrm{min}, 200 / \mathrm{min}$
c) $50 / \mathrm{min}, 125.5 / \mathrm{min}$
d) $117 / \mathrm{min}, 25 / \mathrm{min}$
492. Consider an electron in the $n^{\text {th }}$ orbit of a hydrogen atom in the Bohr model. The circumference of the orbit can be expressed in terms of the de Broglie wavelength λ of that electron as
a) $(0.259) n \lambda$
b) $\sqrt{n} \lambda$
c) $(13.6) \lambda$
d) $n \lambda$
493. Boron rods in nuclear reactor are used as a
a) Moderator
b) Control rods
c) Coolants
d) Protective shield
494. The element used for radioactive carbon dating for more than 56000 yr is
a) $\mathrm{C}-14$
b) U-234
c) $U-238$
d) $\mathrm{Po}-94$
495. The energy equivalent of the atomic mass unit is
a) $1.6 \times 10^{-19} \mathrm{~J}$
b) $6.02 \times 10^{-23} \mathrm{~J}$
c) 931 J
d) 931 MeV
496. The half-life period of a radioactive element X is same as the mean life time of another radioactive element Y. Initially they have the same number of atoms. Then
a) X will decay faster than Y
b) Y will decay faster than X
c) Y and X have same decay rate initially
d) X and Y decay at same rate always.
497. The half-life for the α-decay of uranium ${ }_{92} \mathrm{U}^{238}$ is $4.47 \times 10^{9} \mathrm{yr}$. If a rock contains sixty percent of its original ${ }_{92} \mathrm{U}^{238}$ atoms, its age is $[\log 6=0.778 ; \log 2=0.3]$
a) $3.3 \times 10^{9} \mathrm{yr}$
b) $6.6 \times 10^{9} \mathrm{yr}$
c) $1.2 \times 10^{8} \mathrm{yr}$
d) $5.4 \times 10^{7} \mathrm{yr}$
498. A freshly prepared radioactive source of half-life 2 h emits radiation of intensity which is 64 times the permissible safe level. Calculate the minimum time after which it would be possible to work safely with this source.
a) 12 h
b) 24 h
c) 6 h
d) 130 h
499. If the distance between nuclei is $2 \times 10^{-13} \mathrm{~cm}$, the density of nuclear material is
a) $3.21 \times 10^{-12} \mathrm{kgm}^{-3}$
b) $1.6 \times 10^{-3} \mathrm{kgm}^{-3}$
c) $2 \times 10^{9} \mathrm{kgm}^{-3}$
d) $4 \times 10^{17} \mathrm{kgm}^{-3}$
500. Hydrogen atom emits blue light when it changes from $n=4$ energy level to the $n=2$ level. Which colour of light would the atom emit when it changes from the $n=5$ level to the $n=2$ level
a) Red
b) Yellow
c) Green
d) Violet
501. The counting rate observed from a radioactive source at $t=0$ was $1600 \operatorname{counts}^{-1}$ and at $t=8 \mathrm{~s}$ it was 100 counts $^{-1}$. The counting rate observed as counts per seconds at $t=6 \mathrm{~s}$, will be
a) 400
b) 300
c) 250
d) 200
502. In Bohr model of the hydrogen atom, the lowest orbit corresponds to
a) Infinite energy
b) The maximum energy
c) The minimum energy
d) Zero energy
503. Which of the following particle has similar mass to electron
a) Proton
b) Neutron
c) Positron
d) Neutrino
504. Mark the correct statement
a) Nuclei of different elements can have the same number of neutrons
b) Every element has only two stable isotopes
c) Only one isotope of each element is stable
d) All isotopes of every element are radioactive
505. The nucleus which has radius one-third of the radius of $C s^{189}$ is
a) $B e^{9}$
b) $L i^{7}$
c) F^{19}
d) C^{12}
506. Four lowest energy levels of H-atom are shown in the figure. The number of possible emission lines would be

a) 3
b) 4
c) 5
d) 6
507. For a substance the average life for α-emission is 1620 years and for β emission is 405 years. After how much time the $1 / 4$ of the material remains after α and β emission
a) 1500 years
b) 300 years
c) 449 years
d) 810 years
508. In the Bohr's hydrogen atom model, the radius of the stationary orbit is directly proportional to $(n=$ principle quantum number)
a) n^{-1}
b) n
c) n^{-2}
d) n^{2}
509. Which one of the following nuclear reactions is a source of energy in the sun
a) ${ }_{4}^{9} \mathrm{Be}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{6}^{12} \mathrm{C}+{ }_{0}^{-1} n$
b) ${ }_{2}^{3} \mathrm{He}+{ }_{2}^{3} \mathrm{He} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{1}^{1} \mathrm{H}+{ }_{1}^{1} \mathrm{H}$
c) ${ }_{56}^{144} \mathrm{Ba}+{ }_{56}^{92} \mathrm{Kr} \rightarrow{ }_{92}^{235} \mathrm{U}+{ }_{0}^{-1} n$
d) ${ }_{26}^{56} \mathrm{Fe}+{ }_{48}^{112} \mathrm{Ca} \rightarrow{ }_{74}^{167} \mathrm{~W}+{ }_{0}^{-1} n$
510. Which of the following is a fusion reaction?
a) ${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{2} \mathrm{He}^{4}$
b) ${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow 2\left({ }_{1} \mathrm{H}^{2}\right)$
c) ${ }_{1} \mathrm{H}^{1}+{ }_{1} \mathrm{H}^{1} \rightarrow{ }_{2} \mathrm{H}^{4}$
d) ${ }_{1} \mathrm{H}^{1}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{2} \mathrm{H}^{4}+n$
511. A radioactive nucleus emits 3α-particles and 5β-particles. The ratio of number of neutrons to that of protons will be
a) $\frac{A-Z-12}{Z-6}$
b) $\frac{A-Z}{Z-1}$
c) $\frac{A-Z-11}{Z-6}$
d) $\frac{A-Z-11}{Z-1}$
512. An electron with kinetic energy 5 eV is incident on a H -atom in its ground state. The collision
a) Must be elastic
b) May be partially elastic
c) Must be completely elastic
d) May be completely inelastic
513. The radius of a nucleus with atomic mass number 7 is 2 fermi. Find the radius of nucleus with atomic number 189 .
a) 3 fermi
b) 4 fermi
c) 5 fermi
d) 6 fermi
514. How much work must be done to pull apart the electron and the proton that make up the Hydrogen atom, if the atom is initially in the state with $n=2$
a) $13.6 \times 1.6 \times 10^{-19} \mathrm{~J}$
b) $3.4 \times 1.6 \times 10^{-19} \mathrm{~J}$
c) $1.51 \times 1.6 \times 10^{-19} \mathrm{~J}$
d) 0
515. When a hydrogen atom is raised from the ground state to an excited state
a) P.E. increases and K.E. decreases
b) P.E. decreases and K.E. increases
c) Both kinetic energy and potential energy increase
d) Both K.E. and P.E. decrease
516. For thorium $A=232, Z=90$ at the end of some radioactive disintegration we obtain an isotope of lead with $A=208$ and $Z=82$, then the number of emitted α and β particles are
a) $\alpha=4, \beta=6$
b) $\alpha=5, \beta=5$
c) $\alpha=6, \beta=4$
d) $\alpha=6, \beta=6$
517. A hydrogen atom emits a photon corresponding to an electron transition from $n=5$ to $n=1$. The recoil speed of hydrogen atom is almost (mass of proton $=1.6 \times 10^{-27} \mathrm{~kg}$)
a) $10 \mathrm{~ms}^{-1}$
b) $2 \times 10^{-2} \mathrm{~ms}^{-1}$
c) $4 \mathrm{~ms}^{-1}$
d) $8 \times 10^{2} \mathrm{~ms}^{-1}$
518. When a hydrogen atom emits a photon in going from $n=5$ to $n=1$, its recoil speed is almost
a) $10^{-4} \mathrm{~ms}^{-1}$
b) $8 \times 10^{2} \mathrm{~ms}^{-1}$
c) $2 \times 10^{-2} \mathrm{~ms}^{-1}$
d) $4 \mathrm{~ms}^{-1}$
519. Which of the following is true for a sample of isotope containing U^{235} and U^{238}
a) Number of neutrons are same in both
b) Number of protons, electrons and neutrons are same in both
c) Contain same number of protons and electrons but U^{238} contains 3 more neutrons than U^{235}
d) U^{238} contains 3 less neutrons than U^{235}
520. The binding energies per nucleon of Li^{7} and He^{4} are 5.6 MeV and 7.06 MeV respectively, then the energy of the reaction $\mathrm{Li}^{7}+p=2\left[{ }_{2} \mathrm{He}^{4}\right]$ will be
a) 17.28 MeV
b) 39.2 MeV
c) 28.24 MeV
d) 1.46 MeV
521. The wavelength of the first line of Lyman series for hydrogen atom is equal to that of the second line of Balmer series for a hydrogen like ion. The atomic number Z of hydrogen like ion is
a) 2
b) 3
c) 4
d) 1
522. In the following transitions, which one has higher frequency
a) 3-2
b) 4-3
c) 4-2
d) 3-1
523. During the β - decay
a) An atomic electron is ejected
b) An electron, already present within the nucleus, is ejected.
c) A proton in the nucleus decays emitting an electron
d) A neutron in the nucleus decays emitting an electron
524. The half-life of Radioactive substance is 20 min . The approximate time interval $\left(t_{2}-t_{1}\right)$ between the time t_{2} when $\frac{2}{3}$ of it has decayed and time t_{1} when $\frac{1}{3}$ of it had decayed is
a) 14 min
b) 20 min
c) 28 min
d) 7 min
525. A radioactive substance has a half-life of 1 year. The fraction of this material, that would remain after 5 years will be
a) $\frac{1}{32}$
b) $\frac{1}{5}$
c) $\frac{1}{2}$
d) $\frac{4}{5}$
526. The radius of hydrogen atom in its ground state is $5.3 \times 10^{-11} \mathrm{~m}$. After collision with an electron it is found to have a radius of $21.2 \times 10^{-11} \mathrm{~m}$. What is the principal quantum number n of the final state of the atom
a) $n=4$
b) $n=2$
c) $n=16$
d) $n=3$
527. The energy spectrum of β - particles [number $\mathrm{N}(E)$ as a function of β-energy E] emitted from a radioactive source is
a)

b)

c)

d)

528. We have seen that a gamma-ray dose of 3 Gy is lethal to half the people exposed to it. If the equivalent energy were absorbed as heat, what rise in body temperature would result?
a) $300 \mu \mathrm{~K}$
b) $700 \mu \mathrm{~K}$
c) $455 \mu \mathrm{~K}$
d) $390 \mu \mathrm{~K}$
529. The number of neutrons released during the fission reaction is ${ }_{0}^{1} n+{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{51}^{133} \mathrm{Sb}+{ }_{41}^{99} \mathrm{Nb}+$ neutrons
a) 1
b) 92
c) 3
d) 4
530. Two radioactive nuclides x and y have half-lifes 1 h and 2 h respectively. Initially the samples have equal number of nuclei. After 4 h the ratio of the numbers x of y and is
a) $\frac{1}{2}$
b) 2
c) $\frac{1}{4}$
d) 1
531. A radioactive substance contains 10000 nuclei and its half-life period is 20 days. The number of nuclei present at the end of 10 days is
a) 7070
b) 9000
c) 8000
d) 7500
532. Which shows radioactivity?
a) Protium
b) Deuterium
c) Tritium
d) None of these
533. The activity of a radioactive element decreases to one-third of the original activity A_{0} in a period of 9 yr . After a further lapes of 9 yr , its activity will be
a) A_{0}
b) $\frac{2}{3} A_{0}$
c) $\frac{A_{0}}{9}$
d) $\frac{A_{0}}{6}$
534. Curie is a unit of
a) Energy of gamma-rays
b) Half-life
c) Radioactivity
d) Intensity of gamma-rays
535. A nucleus is bombarded with a high speed neutron so that resulting nucleus is a radioactive one. This phenomenon is called
a) Artificial radioactivity
b) Fusion
c) Fission
d) Radioactivity
536. The force acting between proton and proton inside the nucleus is
a) Coulombic
b) Nuclear
c) Both
d) None of these
537. Assume the graph of specific binding energy verses mass number is as shown in the figure. Using this graph, select the correct choice from the following.

a) Fusion of two nuclei of mass number lying in the range of $100<A<200$ will release energy.
c) Fusion of two nuclei of mass number lying in the range of $1<A<50$ will release energy.
b) Fusion of two nuclei of mass number lying in the range of $51<A<100$ will release energy. Fusion of the nucleus of mass number lying in the
d) range of $100<A<200$ will release energy when broken into two fragments.
538. The kinetic energy of electron in the first Bohr orbit of the hydrogen atom is
a) -6.5 eV
b) -27.2 eV
c) 13.6 eV
d) -13.6 eV
539. Atomic weight of boron is 10.81 and it has two isotopes ${ }_{5} \mathrm{~B}^{10}$ and ${ }_{5} \mathrm{~B}^{11}$. Then ratio of ${ }_{5} \mathrm{~B}^{10}:{ }_{5} \mathrm{~B}^{11}$ in nature would be
a) $19: 81$
b) $10: 11$
c) $15: 16$
d) $81: 19$
540. If T is the half life of a radioactive material, then the fraction that would remain after a time $\frac{T}{2}$ is
a) $\frac{1}{2}$
b) $\frac{3}{4}$
c) $\frac{1}{\sqrt{2}}$
d) $\frac{\sqrt{2}-1}{\sqrt{2}}$
541. The figure shows a graph between $\ln \left|\frac{A_{n}}{A_{1}}\right|$ and $\ln |n|$, where A_{n} is the area enclosed by the nth orbit in a hydrogen like atom. The correct curve is

a) 4
b) 3
c) 2
d) 1
542. In a beryllium atom, if a_{0} be the radius of the first orbit, then the radius of the second orbit will be will be in general
a) $n a_{0}$
b) a_{0}
c) $n^{2} a_{0}$
d) $\frac{a_{0}}{n^{2}}$
543. Ionization energy of hydrogen is 13.6 eV . If $h=6.6 \times 10^{-34} \mathrm{~J}-s$, the value of R will be of the order of
a) $10^{10} \mathrm{~m}^{-1}$
b) $10^{7} \mathrm{~m}^{-1}$
c) $10^{4} \mathrm{~m}^{-1}$
d) $10^{-7} \mathrm{~m}^{-1}$
544. The decay constant of radium is 4.28×10^{-4} per year. Its half life will be
a) 2000 years
b) 1240 years
c) 63 years
d) 1620 years
545. The curve of binding energy per nucleon as a function of a atomic mass number has a sharp peak for helium nucleus. This implies that helium
a) Can easily be broken up
b) Is very stable
c) Can be used as fissionable material
d) Is radioactive
546. Activity of a radioactive element decreased to one-third of original activity I_{0} in 9 yr . After further 9 yr , its activity will be
a) I_{0}
b) $\frac{2}{3} I_{0}$
c) $I_{0} / 9$
d) $I_{0} / 3$
547. An electron is
a) Hadron
b) Baryon
c) A nucleon
d) A lepton
548. Imagine an atom made up of a proton and a hypothetical particle of double the mass of the electron but having the same charge as the electron. Apply the Bohr's atom model and consider all possible transitions of this hypothetical particle to the first excited level. The longest wavelength photon that will be emitted has wavelength λ (given in terms of the Rydberg constant R for the hydrogen atom) is equal to
a) $9 /(5 R)$
b) $36 /(5 R)$
c) $18 /(5 R)$
d) $4 / R$
549. A radio isotope has a half life of 75 years. The fraction of the atoms of this material that would decay in 150 years will be
a) 66.6%
b) 85.5%
c) 62.5%
d) 75%
550. Which is the correct expression for half-life
a) $(t)_{1 / 2}=\log 2$
b) $(t)_{1 / 2}=\frac{\lambda}{\log 2}$
c) $(t)_{1 / 2}=\frac{\lambda}{\log 2}(2.303)$
d) $(t)_{1 / 2}=\frac{2.303 \log 2}{\lambda}$
551. Two protons exert a nuclear force on each other, the distance between them is
a) $10^{-14} \mathrm{~m}$
b) $10^{-10} \mathrm{~m}$
c) $10^{-12} \mathrm{~m}$
d) $10^{-8} \mathrm{~m}$
552. A radioactive sample S 1 having an activity of $5 \mu \mathrm{Ci}$ has twice the number of nuclei as another sample S 2 which has an activity of $10 \mu \mathrm{Ci}$. The half lives of S1 and S2 can be
a) 20 years and 5 years, respectively
b) 20 years and 10 years, respectively
c) 10 years each
d) 5 years each
553. An electron of a stationary hydrogen atom passes from the fifth energy level to the ground level. The velocity that the atom acquired as a result of photon emission will be
a) $24 \mathrm{hR} / 25 \mathrm{~m}$
b) $25 \mathrm{hR} / 24 \mathrm{~m}$
c) $25 \mathrm{~m} / 24 \mathrm{~h} R$
d) $24 \mathrm{~m} / 25 \mathrm{~h} R$
554. The radius of electron's second stationary orbit in Bohr's atom is R. The radius of the third orbit will be
a) $3 R$
b) $2.25 R$
c) $9 R$
d) $\frac{R}{3}$
555. A hydrogen like atom of atomic number Z is in an excited state of quantum number $2 n$. It can emit a maximum energy photon of 204 eV . If it makes a transition to quantum state n, a photon of energy 40.8 eV is emitted. The value of n will be
a) 1
b) 2
c) 3
d) 4
556. The diagram shows the energy levels for an electron in a certain atom. Which transition shown represents the emission of a photon with the most energy

a) I
b) II
c) III
d) IV
557. A particle moving with a velocity of $\frac{1}{100}$ th of that of light will cross a nucleus on about
a) $10^{-8} \mathrm{~S}$
b) $10^{-12} \mathrm{~s}$
c) 6×10^{-15} s
d) $10^{-20} \mathrm{~s}$
558. If Avogadro number is 6×10^{23}, then number of protons, neutrons and electrons is 14 g of ${ }_{6} \mathrm{C}^{14}$ are respectively
a) $36 \times 10^{23}, 48 \times 10^{23}, 36 \times 10^{23}$
b) $36 \times 10^{23}, 36 \times 10^{23}, 36 \times 10^{23}$
c) $48 \times 10^{23}, 36 \times 10^{23}, 48 \times 10^{23}$
d) $48 \times 10^{23}, 48 \times 10^{23}, 36 \times 10^{23}$
559. Fusion reaction takes place at high temperature because
a) KE is high enough to overcome repulsion between nuclei
b) nuclei are most stable at this temperature
c) nuclei are unstable at this temperature
d) None of the above
560. Two radioactive sources A and B of half lives 1 h and 2 h respectively initially contain the same number of radioactive atoms. At the end of two hours, their rates of disintegration are in the ratio of
a) $1: 4$
b) $1: 3$
c) $1: 2$
d) $1: 1$
561. m_{p} and m_{n} are masses of proton and neutron respectively. An element of mass M has Z protons and N neutrons then
a) $M>Z m_{p}+N m_{n}$
b) $M=Z m_{p}+N m_{n}$
c) $M<Z m_{p}+N m_{n}$
d) M may be greater than less than or equal to $Z m_{p}+N m_{n}$, depending on nature of element
562. The diagram shows the path of four α-particles of the same energy being scattered by the nucleus of an atom simultaneously. Which of these are/is not physically possible

a) 3 and 4
b) 2 and 3
c) 1 and 4
d) 4 only
563. The process by which a heavy nucleus splits into light nuclei is known as
a) Fission
b) α-decay
c) Fusion
d) Chain reaction
564. In the above figure D and E respectively represent
a) Absorption line of Balmer series and the ionization energy of hydrogen
b) Absorption line of Balmer series and the wavelength lesser than lowest of the Lyman series
c) Spectral line of Balmer series and the maximum wavelength of Lyman series
d) Spectral line of Lyman series and the absorption of greater wavelength of limiting value of Paschen series
565. Complete the equation for the following fission process ${ }_{92} \mathrm{U}^{235}+{ }_{0} n^{1} \rightarrow \ldots \ldots . .{ }_{38} \mathrm{Kr}^{90}+\ldots \ldots .$.
a) ${ }_{50} \mathrm{Xe}^{143}+3{ }_{0} n^{1}$
b) ${ }_{54} \mathrm{Xe}^{145}$
c) ${ }_{57} \mathrm{Xe}^{142}$
d) ${ }_{54} \mathrm{Xe}^{142}+{ }_{0} n^{1}$
566. Which of the following is in the increasing order for penetrating power
a) α, β, γ
b) β, α, γ
c) γ, α, β
d) γ, β, α
567. During a nuclear fusion reaction
a) A heavy nucleus breaks into two fragments by itself
b) A light nucleus bombarded by thermal neutrons break up
c) A heavy nucleus bombarded by thermal neutrons break up
d) Two light nuceli combine to give a heavier nucleus and possible other products
568. A deutron is bombarded on ${ }_{8} O^{16}$ nucleus and α-particle is emitted. The product nucleus is
a) ${ }_{7} N^{13}$
b) ${ }_{5} B^{10}$
c) ${ }_{4} B c^{9}$
d) ${ }_{7} \mathrm{~N}^{14}$
569. The number of beta particles emitted by a radioactive substance is twice the number of alpha particles emitted by it. The resulting daughter is an
a) Isobar of parent
b) Isomer of parent
c) Isotone of parent
d) Isotope of parent
570. The activity of a radioactive sample is measured as N_{0} counts per minute at $t=0$ and N_{0} / e counts per minute at $t=5$ minutes. The time (in minutes) at which the activity reduces to half its value is
a) $5 \log _{e} 2$
b) $\log _{e} 2 / 5$
c) $\frac{5}{\log _{e} 2}$
d) $5 \log _{10} 2$
571. Equivalent energy of mass equal to 1 a.m.u. is
a) 931 KeV
b) 931 eV
c) 931 MeV
d) 9.31 MeV
572. Two energy levels of an electron in an atom are separated by 2.3 eV . The frequency of radiation emitted when the electrons goes from higher to the lower level is
a) $6.95 \times 10^{14} \mathrm{~Hz}$
b) $3.68 \times 10^{15} \mathrm{~Hz}$
c) $5.6 \times 10^{14} \mathrm{~Hz}$
d) $9.11 \times 10^{15} \mathrm{~Hz}$
573. A radio-isotope has a half-life of 5 years. The fraction of the atoms of this material that would decay in 15 years will be
a) $1 / 8$
b) $2 / 3$
c) $7 / 8$
d) $5 / 8$
574. If a H_{2} nucleus is completely converted into energy, the energy produced will be around
a) 1 MeV
b) 938 MeV
c) 9.38 MeV
d) 238 MeV
575. A radioactive sample has 4×10^{10} nuclei at a certain time. The number of active nuclei still remaining after 4 half lives is
a) 1×10^{10}
b) 5×10^{9}
c) 25×10^{8}
d) 5×10^{8}
576. In β^{+}decay process, the following changes take place inside the nucleus
a) ${ }_{Z}^{A} X \rightarrow{ }_{Z_{-1}}^{A} Y+e^{+}+\gamma$
b) ${ }_{Z}^{A} X \rightarrow{ }_{Z+{ }_{1}}^{A} Y+e^{-}+\bar{r}$
c) ${ }_{Z}^{A} X \rightarrow{ }_{Z}^{A} Y+e^{-}+\gamma$
d) ${ }_{Z}^{A} X \rightarrow{ }_{Z}^{A} Y+e^{-}+\bar{\gamma}$
577. The average kinetic energy of the thermal neutrons is of the order of
a) 0.03 eV
b) 3 eV
c) 3 KeV
d) 3 MeV
578. The wavelength of yellow line of sodium is $5896 \AA$. Its wave number will be
a) 50883×10^{10} per second
b) 16961 per cm
c) 17581 per cm
d) 50883 per cm
579. The penetrating powers of α, β and γ radiations, in decreasing order are
a) γ, α, β
b) γ, β, α
c) α, β, γ
d) β, γ, α
580. Hydrogen atom excites energy level from fundamental state to $n=3$. Number of spectrum lines according to Bohr, is
a) 4
b) 3
c) 1
d) 2
581. The equation ${ }_{Z} X^{A} \rightarrow{ }_{Z+1} Y^{A}+{ }_{-1} e^{0}+\bar{v}$ is
a) β-emission
b) α-emission
c) e^{-}capture
d) Fission
582. A hydrogen atom and a Li^{++}ion are both in second excited state. If l_{H} and $l_{L i}$ are their respective electronic angular momenta, and E_{H} and $E_{L i}$ their respective energies, then
a) $l_{\mathrm{H}}>l_{\mathrm{Li}}$ and $\left|E_{\mathrm{H}}\right|>\left|>\left|E_{\mathrm{Li}}\right|\right.$
b) $L_{\mathrm{H}}=L_{\mathrm{i}}$ and $\left|E_{\mathrm{H}}\right|<E_{\mathrm{Li}} \mid$
c) $l_{\mathrm{H}}>l_{\mathrm{Li}}$ and $\left|E_{\mathrm{H}}\right|>E_{\mathrm{Li}} \mid$
d) $l_{\mathrm{H}}>l_{\mathrm{Li}}$ and $\left|E_{\mathrm{H}}\right| \ll E_{\mathrm{Li}} \mid$
583. The decay constant λ of the radioactive sample is the probability of decay of an atom in unit time, then
a) λ decreases as atoms become older
b) λ increases as the age of atoms increases
c) λ is independent of the age
d) Behavior of λ with time depends on the nature of the activity
584. The binding energy of two nuclei P^{n} and $Q^{2 n}$ are x joule and y joule respectively. If $2 x>y$, then the energy released in the reaction $P^{n}+P^{n}=Q^{2 n}$ will be
a) $2 x+y$
b) $2 x-y$
c) $x y$
d) $x+y$
585. The de-Broglie wavelength of an electron in the first Bohr orbit is
a) Equal to one fourth the circumference of the first orbit
b) Equal to half the circumference of the first orbit
c) Equal to twice the circumference of the first orbit
d) Equal to the circumference of the first orbit
586. One Becquerel is defined as
a) 1 disintegration per sec
b) 10^{6} disintegration per sec
c) 3.7×10^{10} disintegration per sec
d) 10^{3} disintegration per sec
587. The nucleus ${ }_{6} \mathrm{C}^{12}$ absorbs an energetic neutron and emits a beta particle (β). The resulting nucleus is
a) ${ }_{7} \mathrm{~N}^{14}$
b) ${ }_{5} \mathrm{~B}^{13}$
c) ${ }_{7} \mathrm{~N}^{13}$
d) ${ }_{6} \mathrm{C}^{13}$
588. The proper life of pion $\left(\pi^{+}\right)$is $2.5 \times 10^{-8} \mathrm{~s}$. In a beam of pions travelling with a speed of 0.9 c , the pion, in the laboratory frame, can travel a maximum distance of
a) 6.75 m
b) 15.49 m
c) 7.50 m
d) 17.10 m
589. If the binding energy of the electron in a hydrogen atom is 13.6 eV , the energy required to remove the electron from the first excited state of Li^{++}is
a) 122.4 eV
b) 30.6 eV
c) 13.6 eV
d) 3.4 eV
590. A radioactive nucleus with Z protons and N neutrons emits an α-particle, 2β-particles and 2 gamma rays. The number of protons and neutrons in the nucleus left after the decay respectively, are
a) $Z-3, N-1$
b) $Z-2, N-2$
c) $Z-1, N-3$
d) $Z, N-4$
591. Which of the following statements are true regarding radioactivity
(I) All radioactive elements decay exponentially with time
(II) Half life time of a radioactive element is time required for one half of the radioactive atoms to disintegrate
(III) Age of each can be determined with the help of radioactive dating
(IV) Half life time of a radioactive element is 50% of its average life period

Select correct answer using the codes given below
Codes:
a) I and II
b) I, III and IV
c) I, II and III
d) II and III
592. Three fourth of the active decays in a radioactive sample in $\frac{3}{4} s$. The half life of the sample is
a) $\frac{1}{2} s$
b) 1 s
c) $\frac{3}{8} s$
d) $\frac{3}{4} s$
593. Carbon dating is best suited for determining the age of fossils of their age in years is of the order of
a) 10^{3}
b) 10^{4}
c) 10^{5}
d) 10^{6}
594. The particle A is converted into Cvia following reaction.

$$
\begin{aligned}
& A \rightarrow B+{ }_{2} \mathrm{He}^{4} \\
& B \rightarrow C+2 e^{-}
\end{aligned}
$$

Then
a) A and C are isobars
b) A and C are isotopes
c) A and B are isobars
d) A and B are isotopes
595. Unit of radioactivity is Rutherford. Its value is
a) 3.7×10^{10} disintegrations $/ \mathrm{s}$
b) 3.7×10^{6} disintegrations $/ \mathrm{s}$
c) 1.0×10^{10} disintegrations $/ \mathrm{s}$
d) 1.0×10^{6} disintegrations $/ \mathrm{s}$
596. In Bohr model of hydrogen atom, the ratio of periods of revolution of an electron in $n=2$ and $n=1$ orbits is
a) $2: 1$
b) $4: 1$
c) $8: 1$
d) $16: 1$
597. Which of the following is not conserved in nuclear reaction?
a) Total energy
b) Mass number
c) Charge Number
d) Number of fundamental particles
598. Carbon - 14 decays with half-life of about 5,800 years. In a sample of bone, the ratio of carbon -14 to carbon -12 is found to be $\frac{1}{4}$ of what it is in free air. This bone may belong to a period about x centuries ago, where x is nearest to
a) 2×58
b) 58
c) $58 / 2$
d) 3×58
599. During mean life of a radioactive element, the fraction that disintegrates is
a) e
b) $\frac{1}{e}$
c) $\frac{e-1}{e}$
d) $\frac{e}{e-1}$
600. Which of the following spectral series in hydrogen atom give spectral line of $4860 \AA$
a) Lyman
b) Balmer
c) Paschen
d) Brackett
601. The Rutherford α-particle experiment shows that most of the α-particles pass through almost unscattered while some are scattered through the large angles. What information does it give about the structure of the atom
a) Atom is hollow
b) The whole mass of the atom is concentrated in a small centre called nucleus
c) Nucleus is positively charged
d) All the above
602. If the binding energy per nucleon of deutron is 1.115 MeV , its mass defect in atomic mass unit is
a) 0.0048
b) 0.0024
c) 0.0012
d) 0.0006
603. In a radioactive decay, neither the atomic number nor the mass number of changes. Which of the following would be emitted in the decay process
a) Proton
b) Neutron
c) Electron
d) Photon
604. The half life (T) and the disintegration constant (λ) of a radioactive substance are related as
a) $\lambda T=1$
b) $\lambda T=0.693$
c) $\frac{T}{\lambda}=0.693$
d) $\frac{\lambda}{T}=0.693$
605. A radioactive material has a half-life of 8 years. The activity of the material will decrease to about $1 / 8$ of its original value in
a) 256 years
b) 128 years
c) 64 years
d) 24 years
606. What is the ratio of wavelength of radiations emitted when an electron in hydrogen atom jumps from fourth orbit to second orbit and from third orbit to second orbit
a) $27: 25$
b) $20: 27$
c) $20: 25$
d) $25: 27$
607. The half life period of radium is 1600 years. The fraction of a sample of radium that would remain after 6400 years is
a) $1 / 4$
b) $1 / 2$
c) $1 / 8$
d) $1 / 16$
608. The Rydberg constant R for hydrogen is
a) $R=-\left(\frac{1}{4 \pi \varepsilon_{0}}\right) \cdot \frac{2 \pi^{2} m e^{2}}{c h^{2}}$
b) $R=\left(\frac{1}{4 \pi \varepsilon_{0}}\right) \cdot \frac{2 \pi^{2} m e^{4}}{c h^{2}}$
c) $R=\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \cdot \frac{2 \pi^{2} m e^{4}}{c^{2} h^{2}}$
d) $R=\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \cdot \frac{2 \pi^{2} m e^{4}}{c h^{3}}$
609. The count rate for 10 g of radioactive material was measured at different times and this has been shown in figure with scale given. The half-life of the material and the total count in the first half value period, respectively are

a) 4 h and 9000 (approximately)
b) 3 h and 14100 (approximately)
c) 3 h and 235 (approximately)
d) 10 h and 157 (approximately)
610. Nuclear fusion is common to the pair
a) Thermonuclear reactor, uranium based nuclear reactor
b) Energy production in sun, uranium based nuclear reactor
c) Energy production in sun, hydrogen bomb
d) Disintegration of heavy nuclei, hydrogen bomb
611.99% of a radioactive element will decay between
a) 6 and 7 half lives
b) 7 and 8 half lives
c) 8 and 9 half lives
d) 9 half lives
612. Which of the following particles are constituents of the nucleus
a) Protons and electrons
b) Protons and neutrons
c) Neutrons and electrons
d) Neutrons and positrons
613. The following diagram indicates the energy levels of a certain atom when the system moves from $4 E$ level to E. A photon of wavelength λ_{1} is emitted. The wavelength of photon produced during it's transition from $\frac{7}{3} E$ level to E is λ_{2}. The ratio $\frac{\lambda_{1}}{\lambda_{2}}$ will be

a) $\frac{9}{4}$
b) $\frac{4}{9}$
c) $\frac{3}{2}$
d) $\frac{7}{3}$
614. The ionization potential of H-atom is 13.6 V . When it is excited from ground state by monochromatic radiations of $970.6 \AA$, the number of emission lines will be (according to Bohr's theory)
a) 10
b) 8
c) 6
d) 4
615. The colour of the second line of Balmer series is
a) Blue
b) Yellow
c) Red
d) Violet
616. The curve between the activity A of a radioactive sample and the number of active atoms N is
a) A

b)

c)

d)

617. A radioactive sample with a half life of 1 month has the label: "Activity $=2$ micro curies on 1.8 .1991 ." What will be its activity two months later
a) 1.0 micro curies
b) 0.5 micro curies
c) 4 micro curies
d) 8 micro curies
618. Sun maintains its shining because of the
a) Fission of helium
b) chemical reaction
c) Fusion of hydrogen nuclei
d) Burning of carbon
619. Activity of a radioactive sample decreases to $(1 / 3)^{\text {rd }}$ of its original value in 3 days. Then, in 9 days its activity will become
a) $(1 / 27)$ of the original value
b) $(1 / 9)$ of the original value
c) $(1 / 18)$ of the original value
d) $(1 / 3)$ of the original value
620. The energy liberated on complete fission of 1 kg of ${ }_{92} U^{235}$ is (Assume 200 MeV energy is liberated on fission of 1 nucleus)
a) $8.2 \times 10^{10} \mathrm{~J}$
b) $8.2 \times 10^{9} \mathrm{~J}$
c) $8.2 \times 10^{13} \mathrm{~J}$
d) $8.2 \times 10^{16} \mathrm{~J}$
621. One milligram of matter converted into energy will give
a) 90 J
b) $9 \times 10^{3} \mathrm{~J}$
c) $9 \times 10^{10} \mathrm{~J}$
d) $9 \times 10^{5} \mathrm{~J}$
622. An ionic atom equivalent to hydrogen atom has wavelength equal to $1 / 4$ of the wavelength of hydrogen lines. The ion will be
a) He^{+}
b) Li^{++}
c) $\mathrm{Ne} e^{9+}$
d) $N a^{10+}$
623. If the mass of a radioactive sample is doubled, the activity of the sample and the disintegration constant of the sample are respectively
a) Increases, remains the same
b) Decreases, increases
c) Decreases, remains same
d) Increases, decreases
624. The energy of the highest energy photon of Balmer series of hydrogen spectrum is close to
a) 13.6 eV
b) 3.4 eV
c) 1.5 eV
d) 0.85 eV
625. Nucleus produced due to α-decay of the nucleus ${ }_{Z} X^{A}$ is
a) ${ }_{Z+2} Y^{A+4}$
b) ${ }_{Z} Y^{A}$
c) ${ }_{Z-2} Y^{A-4}$
d) ${ }_{Z-4} Y^{A-2}$
626. An energy of 24.6 eV is required to remove one of the electrons from a neutral helium atom. The energy (in eV) required to remove both the electrons from a neutral helium atom is
a) 79.0
b) 51.8
c) 49.2
d) 38.2
627. ${ }_{2}^{4} \mathrm{He}+{ }_{4}^{9} \mathrm{Be} \rightarrow{ }_{0}^{1} n+$?

The missing ion in the above nuclear reaction is
a) proton
b) Oxygen-12
c) Carbon-12
d) Nitrogen-12
628. The half-life of radium is about 1600 years. Of $100 g$ of radium existing now, $25 g$ will remain unchanged after
a) 2400 years
b) 3200 years
c) 4800 years
d) 6400 years
629. A nucleus disintegrates into two nuclear parts which have their velocities in the ratio $2: 1$. The ratio of their nuclear sizes will be
a) $2^{1 / 3}: 1$
b) $1: 3^{1 / 2}$
c) $3^{1 / 2}: 1$
d) $1: 2^{1 / 3}$
630. What percentage of original radioactive atoms is left after five half lives
a) 0.3%
b) 1%
c) 31%
d) 3.125%
631. Number of spectral lines in hydrogen atom is
a) 3
b) 6
c) 15
d) Infinite
632. Half life of $B i^{210}$ is 5 days. If we start with 50,000 atoms of this isotope, the number of atoms left over after 10 days is
a) 5,000
b) 25,000
c) 12,500
d) 20,000
633. Select the true statement from the following. Nuclear force is
a) Strong, short range and charge independent force.
b) charge independent, attractive and long range force.
c) Strong, charge dependent and short range attractive force
d) Long range, charge dependent and attractive force.
634. The ratio of areas within the electron orbits for the first excited state to the ground state for hydrogen atom is
a) $16: 1$
b) $18: 1$
c) $4: 1$
d) $2: 1$
635. At a given instant there are 25% undecayed radioactive nuclei. After $10 s$ the number of undecayed nuclei reduces to 6.25%, the mean life of the nuclei is
a) 14.43 s
b) 7.21 s
c) 5 s
d) 10 s
636. For effective nuclear forces, the distance should be
a) $10^{-10} \mathrm{~m}$
b) $10^{-13} \mathrm{~m}$
c) $10^{-15} \mathrm{~m}$
d) $10^{-20} \mathrm{~m}$
637. Radio carbon dating is done by estimating in specimen the
a) Amount of ordinary carbon still present
b) Amount of radio carbon still present
c) Ratio of amount of ${ }^{14} \mathrm{C}_{6}$ to ${ }^{12} \mathrm{C}_{6}$ still present
d) Ratio of amount of ${ }^{12} \mathrm{C}_{6}$ to ${ }^{14} \mathrm{C}_{6}$ still present
638. The power obtained in a reactor using U^{235} disintegration is 1000 kW . The mass decay of U^{235} per hour is
a) 1 microgram
b) 10 microgram
c) 20 microgram
d) 40 microgram
639. What will be ratio of radii of Li^{7} nucleus to Fe^{56} nucleus?
a) $1: 3$
b) $1: 2$
c) $1: 8$
d) $2: 6$
640. Bohr's atom model assumes
a) The nucleus is of infinite mass and is at rest
b) Electrons in a quantized orbit will not radiate energy
c) Mass of electron remains constant
d) All the above conditions
641. If an electron and a positron annihilate, then the energy released is
a) $3.2 \times 10^{-13} \mathrm{~J}$
b) $1.6 \times 10^{-13} \mathrm{~J}$
c) $4.8 \times 10^{-13} \mathrm{~J}$
d) $6.4 \times 10^{-13} \mathrm{~J}$
642. The fussion process is possible at high temperatures, because at higher temperatures
a) The nucleus disintegrates
b) The molecules disintegrates
c) Atom become ionized
d) The nucleus get sufficient energy to overcome the strong forces of repulsion
643. The following diagram indicates the energy levels of a certain atom when the system moves from $2 E$ level to E, emitting a photon of wavelength λ. The wavelength of photon produced during its transition from $\frac{4 E}{3}$
level to E is

a) $\lambda / 3$
b) $3 \lambda / 4$
c) $4 \lambda / 3$
d) 3λ
644. A nucleus with mass number 220 initially at rest emits an α-particle. If the Q value of the reaction is 5.5 MeV , calculate the kinetic energy of the α-particle
a) $10^{9} \mathrm{~K}$
b) $10^{7} \mathrm{~K}$
c) $10^{5} \mathrm{~K}$
d) $10^{3} \mathrm{~K}$
645. If half-life of a substance is 3.8 days and its quantity is 10.38 g . Then substance quantity remaining left after 19 days will be
a) 0.151 g
b) 0.32 g
c) 1.51 g
d) 0.16 g
646. Two nuclei have their mass numbers in the ratio of $1: 3$. The ratio of their nuclear densities would be
a) $1: 3$
b) $3: 1$
c) $(3)^{1 / 3}: 1$
d) $1: 1$
647. As mass number increases ,surface area
a) Decreases
b) Increases
c) Remains the same
d) Remains the same and Increases
648. The control rod in a nuclear reactor is made of
a) Uranium
b) Cadmium
c) Graphite
d) Plutonium
649. An archaeologist analysis the wood in a prehistoric structure and finds that C^{14} (Half life $=5700$ years) to C^{12} is only one-fourth of that found in the cells of buried plants. The age of the wood is about
a) 5700 years
b) 2850 years
c) 11,400 years
d) 22,800 years
650. A radioactive element A decays into B with a half-life of 2 days. A fresh prepared sample of A has a mass of 12 g . What mass of A and B are there in the sample after 4 days?
a) $A=3 \mathrm{~g}, B=9 \mathrm{~g}$
b) $A=6 \mathrm{~g}, B=6 \mathrm{~g}$
c) $A=12 \mathrm{~g}, B=0 \mathrm{~g}$
d) $A=9 \mathrm{~g}, B=3 \mathrm{~g}$
651. If in hydrogen atom, radius of $n^{\text {th }}$ Bohr orbit is r_{n}, frequency of revolution of electron in $n^{\text {th }}$ orbit is f_{n}, choose the correct option
a)

b)

c)

d) Both (a) and (b)
652. The functions of moderators in nuclear reactor is to
a) Decrease the speed of neutrons
b) Increase the speed of neutrons
c) Decrease the speed of electrons
d) Increase the speed of electrons
653. For electron moving in $n^{\text {th }}$ orbit of H-atom the angular velocity is proportional to
a) n
b) $1 / n$
c) n^{3}
d) $1 / n^{3}$
654. Which of the following transitions will have highest emission wavelength
a) $n=2$ to $n=1$
b) $n=1$ to $n=2$
c) $n=2$ to $n=5$
d) $n=5$ to $n=2$
655. The radioactivity isotope X with a half-life of 10^{9} year decays to Y which is stable. A sample of rocks were found to contain both the elements X and Y in the ratio 1:7. What is the age of the rocks?
a) $2 \times 10^{9} \mathrm{yr}$
b) $3 \times 10^{9} \mathrm{yr}$
c) $6 \times 10^{9} \mathrm{yr}$
d) $7 \times 1^{9} \mathrm{yr}$
656. 1 curie represents
a) 1 disintegration per second
b) 10^{6} disintegration per second
c) 3.7×10^{10} disintegration per second
d) 3.7×10^{7} disintegration per second
657. The phenomena in which proton flips is
a) Nuclear magnetic resonance
b) Lasers
c) Radioactivity
d) Nuclear fusion
658. The ratio of the energies of the hydrogen atom in its first to second excited state is
a) $1 / 4$
b) $4 / 9$
c) $9 / 4$
d) 4
659. When two deuterium nuclei fuse together to form a tritium nuclei, we get a
a) Neutron
b) Deuteron
c) α-particle
d) Proton
660. A radioactive substance has half-life of 60 min . During 3 h , the fraction of the substance that has to be decayed. will be
a) 87.5%
b) 52.5%
c) 25.5%
d) 8.5%
661. An observer A sees an asteroid with a radioactive element moving by at a speed $=0.3 \mathrm{c}$ and measures the radioactivity decay time to be T_{A}. Another observer B is moving with the asteroid and measures its decay time as T_{B}. Then T_{A} and T_{B} are related as below
a) $T_{B}<T_{A}$
b) $T_{B}=T_{A}$
c) $T_{B}>T_{A}$
d) Either (a) or (c) depending on whether the asteroid is approaching or moving away from A
662. π mesons can be
a) π^{+}or π^{-}
b) π^{+}or π^{0}
c) π^{-}or π^{0}
d) π^{+}, π^{-}or π^{0}
663. Radioactive ${ }_{27}^{60} \mathrm{Co}$ is transformed into stable ${ }_{28}^{60} \mathrm{Ni}$ by emitting two γ-rays of energies
a) 1.33 MeV and 1.17 MeV in succession
b) 1.17 MeV and 1.33 MeV in succession
c) 1.37 MeV and 1.13 MeV in succession
d) 1.13 MeV and 1.37 MeV in succession
664. According to Bohr's theory, the moment of momentum of an electron revolving in second orbit of hydrogen atom will be
a) $2 \pi h$
b) πh
c) $\frac{h}{\pi}$
d) $\frac{2 h}{\pi}$
665. Which sample contains greater number of nuclei : a $5.00-\mu C i$ sample of ${ }^{240} \mathrm{Pu}$ (half-life $6560 y$) or a $4.45-\mu C i$ sample of ${ }^{243} \mathrm{Am}$ (half-life 7370y)
a) ${ }^{240} \mathrm{Pu}$
b) ${ }^{243} \mathrm{Am}$
c) Equal in both
d) None of these
666. The ground state energy of hydrogen atom is -13.6 eV . What is the potential energy of the electron in this state
a) 0 eV
b) -27.2 eV
c) 1 eV
d) 2 eV
667. The kinetic energy of an electron revolving around a nucleus will be
a) Four times of P.E.
b) Double of P.E.
c) Equal to P.E.
d) Half of its P.E.
668. The mass number of He is 4 and that for sulphur is 32 . The radius of sulphur nucleus is larger than that of helium, by times
a) $\sqrt{8}$
b) 4
c) 2
d) 8
669. Heavy water is used as moderator in a nuclear reactor. The function of the moderator is
a) To control the energy released in the reactor
b) To absorb neutrons and stop chain reaction
c) To cool the reactor faster
d) To slow down the neutrons to thermal energies
670. The wavelength of the first line of Balmer series is 6563 Å. The Rydberg constant for hydrogen is about
a) $1.09 \times 10^{7} \mathrm{per} \mathrm{m}$
b) $1.09 \times 10^{8} \mathrm{per} \mathrm{m}$
c) 1.09×10^{9} per m
d) $1.09 \times 10^{5} \mathrm{per} \mathrm{m}$
671. The transition from the state $n=4$ to $n=3$ in a hydrogen, like atom results in ultraviolet radiation. Infrared radiation will be obtained in the transition
a) $2 \rightarrow 1$
b) $3 \rightarrow 2$
c) $4 \rightarrow 2$
d) $5 \rightarrow 4$
672. Hydrogen atom is excited from ground state to another state with principal quantum number equal to 4 . Then the number of spectral lines in the emission spectra will be
a) 2
b) 3
c) 5
d) 6
673. The half life period of a radioactive element X is same as the mean life time of another radioactive element Y. Initially both them have the same number of atoms. Then
a) X and Y have the same decay rate initially
b) X and Y decay at the same rate always
c) Y will decay at a faster rate than X
d) X will decay at a faster rate than Y
674. In a working nuclear reactor, cadmium rods (control rods) are used to
a) Speed up neutrons
b) Slow down neutrons
c) Absorb some neutrons
d) Absorb all neutrons
675. The plot of the number (N) of decayed atoms versus activity (A) of a radioactive substance is
a)

b)

c)

d)

676. A sample of an element is 10.38 g . If half-life of element is 3.8 days, then after 19 days, how much quantity of element remains?
a) 0.151 g
b) 0.32 g
c) 1.51 g
d) 0.16 g
677. Radioactive nuclei that are injected into a patient collect at certain sites within its body, undergoing radioactive decay and emitting electromagnetic radiation. These radiations can then be recorded by a detector. This procedure provides an important diagnostic tool called
a) Gamma camera
b) CAT scan
c) Radiotracer technique
d) Gamma ray spectroscopy
678. After five half lives what will be the fraction of initial substance
a) $\left(\frac{1}{2}\right)^{10}$
b) $\left(\frac{1}{2}\right)^{5}$
c) $\left(\frac{1}{2}\right)^{4}$
d) $\left(\frac{1}{2}\right)^{3}$
679. An electron makes a transition from orbit $n=4$ to the orbit $n=2$ of a hydrogen atom. The wave number of the emitted radiations ($R=$ Rydberg's constant) will be
a) $\frac{16}{3 R}$
b) $\frac{2 R}{16}$
c) $\frac{3 R}{16}$
d) $\frac{4 R}{16}$
680. Whenever a hydrogen atom emits a photon in the Balmer series
a) It may not emit any more photons
b) It may emit another photon in the Paschen series
c) It must emit another photon in the Lyman series
d) It may emit another photon in the Balmer series
681. Half-life of radio-active substance is 140 days. Initially, is 16 g . Calculate the time for this substance when it reduces to 1 g
a) 140 days
b) 280 days
c) 420 days
d) 560 days
682. In a radioactive decay. The half-life of radioactive substance is $T_{1 / 2}=69.3 \mathrm{~s}$. The decay constant is
a) $1.5 \mathrm{~s}^{-1}$
b) $2.21 \mathrm{~s}^{-1}$
c) $0.01 \mathrm{~s}^{-1}$
d) $3.01 \mathrm{~s}^{-1}$
683. The mass defect per nucleon is called
a) Binding energy
b) Packing fraction
c) Ionization energy
d) Excitation energy
684. C^{14} has half-life 5700 year. At the end of 11400 years, the actual amount left is
a) 0.5 of original amount
b) 0.25 of original amount
c) 0.125 of original amount
d) 0.0625 of original amount
685. The half-life of a radioactive substance is 40 years. How long will it take to reduce to one fourth of its original amount and what is the value of decay constant
a) 40 year, $0.9173 /$ year
b) 90 year, $9.017 /$ year
c) 80 year, $0.0173 /$ year
d) None of these
686. A heavy nucleus at rest breaks into two fragments which fly off with velocities in the ratio 8:1. The ratio of radii of the fragments is
a) $1: 2$
b) $1: 4$
c) $4: 1$
d) $2: 1$
687. Which of the following transition in Balmer series for hydrogen atom will have longest wavelength
a) $n=2$ to $n=1$
b) $n=6$ to $n=1$
c) $n=3$ to $n=2$
d) $n=6$ to $n=2$
688. An α-particle of 5 MeV energy strikes with a nucleus of uranium at stationary at an scattering angle of 180°. The nearest distance upto which α-particle reaches the nucleus will be of the order of
a) $1 \AA$
b) $10^{-10} \mathrm{~cm}$
c) $10^{-12} \mathrm{~cm}$
d) $10^{-15} \mathrm{~cm}$
689. For nuclear forces to be effective, the distance should be
a) $10^{-10} \mathrm{~m}$
b) $10^{-11} \mathrm{~m}$
c) $10^{-15} \mathrm{~m}$
d) $10^{-20} \mathrm{~m}$
690. U^{238} decays into $T h^{234}$ by the emission of an α-particle. There follows a chain of further radioactive decays, either by α-decay or by β-decay. Eventually a stable nuclide is reached and after that, no further
radioactive decay is possible. Which of the following stable nuclides is the end product of the U^{238} radioactive decay chain
a) $P b^{206}$
b) $P b^{207}$
c) $P b^{208}$
d) $P b^{209}$
691. Pick out the unmatched pair from the following
a) Moderator - Heavy water
b) Nuclear fuel - ${ }_{92} U^{235}$
c) Pressurized water reactor - water as the heat exchange system
d) Safety rods - Carbon
692. Heavy water is
a) Water is $4^{\circ} \mathrm{C}$
b) Compound of deuterium and oxygen
c) Compound of heavy oxygen and heavy hydrogen
d) Water, in which soap does not lather
693. The angular momentum of electron in $n^{\text {th }}$ orbit is given by
a) $n h$
b) $\frac{h}{2 \pi n}$
c) $n \frac{h}{2 \pi}$
d) $n^{2} \frac{h}{2 \pi}$
694. Consider a radioactive material of half-life 1.0 minute. If one of the nuclei decays now, the next one will decay
a) After 1 minute
b) After $\frac{1}{\log _{e} 2}$ minute
c) After $\frac{1}{N}$ minute, where N is the number of nuclei present at that moment
d) After any time
695. If the speed of light were $2 / 3$ of its present value, the energy released in a given atomic explosion will be decreased by a fraction
a) $2 / 3$
b) $4 / 9$
c) $3 / 4$
d) $5 / 9$
696. In the given reaction ${ }_{Z} X^{A} \rightarrow{ }_{Z+1} Y^{A} \rightarrow{ }_{Z-1} K^{A-4} \rightarrow{ }_{Z-1} K^{A-4}$ radioactive radiation are emitted in the sequence
a) α, β, γ
b) β, α, γ
c) γ, α, β
d) β, γ, α
697. Half-life of radium is 1600 yr . Its average life is
a) 3200 yr
b) 4800 yr
c) 2309 yr
d) 4217 yr
698. If a star can convert all the He nuclei completely into oxygen nuclei, the energy released per oxygen nuclei is (Mass of the nucleus is 4.0026 amu and mass of oxygen nucleus is 15.9994 amu)
a) 7.6 MeV
b) 56.12 MeV
c) 10.24 MeV
d) 23.9 MeV
699. Which of the following transitions in a hydrogen atom emits photon of the highest frequency
a) $n=1$ to $n=2$
b) $n=2$ to $n=1$
c) $n=2$ to $n=6$
d) $n=6$ to $n=2$
700. The half-life of At^{215} is $100 \mu \mathrm{~s}$. If a sample contains 215 mg of At^{215}, the activity of the sample initially is
a) $10^{2} \mathrm{~Bq}$
b) $3 \times 10^{10} \mathrm{~Bq}$
c) $4.17 \times 10^{24} \mathrm{~Bq}$
d) $1.16 \times 10^{5} \mathrm{~Bq}$
701. In the nuclear reaction ${ }_{92} U^{238} \rightarrow{ }_{z} T h^{A}+{ }_{2} H e^{4}$, the values of A and Z are
a) $A=234, Z=94$
b) $A=234, Z=90$
c) $A=238, Z=94$
d) $A=238, Z=90$
702. In a fission reaction ${ }_{92} \mathrm{U}^{236}=X^{117}+Y^{117}+n+n$, the binding energy per nucleon of X and Y is 8.5 MeV , whereas of U^{236} is 7.6 MeV .The total energy liberated will be about
a) 200 keV
b) 2 MeV
c) 200 MeV
d) 2000 MeV
703. The number of electrons, neutrons and protons in a species are equal to 10,8 and 8 respectively. The proper symbol of the species is
a) ${ }^{16} \mathrm{O}_{8}$
b) ${ }^{18} \mathrm{O}_{8}$
c) ${ }^{18} \mathrm{Ne} e_{10}$
d) ${ }^{16} O_{8}^{2-}$
704. If the binding energy of the deutrium is 2.23 MeV . The mass defect given in $a . m$.u. is
a) -0.0024
b) -0.0012
c) 0.0012
d) 0.0024
705. A count rate metre shows a count of 240 per minute from a given radioactive source later the metre shows a count rate of $30 \mathrm{~min}^{-1}$. The half-life of the source is
a) 80 min
b) 120 min
c) 20 min
d) 30 min
706. The distance of closest approach of an α-particle fired towards a nucleus with momentum p, is r. If the momentum of the α-particle is $2 p$, the corresponding distance of closest approach is
a) $r / 2$
b) $2 r$
c) $4 r$
d) $r / 4$
707. In beta decay
a) The parent and daughter nuclei have same number of protons
b) The daughter nucleus has one proton less than the parent nucleus
c) The daughter nucleus has one proton more than the parent nucleus
d) The daughter nucleus has one neutron more than the parent nucleus
708. If in a nuclear fusion process, the masses of the fusing nuclei be m_{1} and m_{2} and the mass of the resultant nucleus be m_{3}, then
a) $m_{3}=m_{1}+m_{2}$
b) $m_{3}=\left|m_{1} m_{2}\right|$
c) $m_{3}<\left(m_{1}+m_{2}\right)$
d) $m_{3}>\left(m_{1}+m_{2}\right)$
709. The ratio between Bohr radii are
a) $1: 2: 3$
b) $2: 4: 6$
c) $1: 4: 9$
d) $1: 3: 5$
710. A diatomic molecule is made of two masses m_{1} and m_{2} which are separated by a distance r. If we calculate its rotational energy by applying Bohr's rule of angular momentum quantization, its energy will be given by (n is an integer)
a) $\frac{\left(m_{1}+m_{2}\right)^{2} n^{2} h^{2}}{2 m_{1}^{2} m_{2}^{2} r^{2}}$
b) $\frac{n^{2} h^{2}}{2\left(m_{1}+m_{2}\right) r^{2}}$
c) $\frac{2 n^{2} h^{2}}{\left(m_{1}+m_{2}\right) r^{2}}$
d) $\frac{\left(m_{1}+m_{2}\right) n^{2} h^{2}}{2 m_{1} m_{2} r^{2}}$
711. The energy of a hydrogen atom in its ground state is -13.6 eV . The energy of the level corresponding to the quantum number $n=2$ (first excited state) in the hydrogen atom is
a) -2.72 eV
b) -0.85 eV
c) -0.54 eV
d) -3.4 eV
712. Consider an initially pure 3.4 g sample of ${ }^{67} \mathrm{Ga}$, an isotope that has a half-life of 78 h . What is its initial decay rate?
a) $8.00 \times 10^{16} \mathrm{~s}^{-1}$
b) $6.27 \times 10^{16} \mathrm{~s}^{-1}$
c) $7.53 \times 10^{16} \mathrm{~s}^{-1}$
d) $8.53 \times 10^{15} \mathrm{~s}^{-1}$
713. When a radioactive isotope ${ }_{88} \mathrm{R}^{228}$ decay in series by the emission of 3α-particles and β-particle, the isotope finally formed is
a) ${ }_{84} \mathrm{X}^{228}$
b) ${ }_{86} \mathrm{X}^{222}$
c) ${ }_{83} X^{216}$
d) ${ }_{83} X^{215}$
714. In terms of Rydberg's constant R, the wave number of the first Balmer line is
a) R
b) $3 R$
c) $\frac{5 R}{36}$
d) $\frac{8 R}{9}$
715. Which one of the following nuclear reaction is a source of energy in the sun?
a) ${ }_{4} \mathrm{Be}^{9}+{ }_{2} \mathrm{He}^{4} \rightarrow{ }_{6} \mathrm{C}^{12}+{ }_{0} n^{1}$
b) ${ }_{2} \mathrm{He}^{3}+{ }_{2} \mathrm{He}^{3} \rightarrow{ }_{2} \mathrm{He}^{4}+{ }_{1} \mathrm{H}^{1}+{ }_{1} \mathrm{H}^{1}$
c) ${ }_{56} \mathrm{Ba}^{144}+{ }_{36} \mathrm{Kr}^{92} \rightarrow{ }_{92} \mathrm{U}^{235}+{ }_{0} n^{1}$
d) ${ }_{26} \mathrm{Fe}^{50}+{ }_{48} \mathrm{Ca}^{112} \rightarrow \mathrm{~W}^{161}+{ }_{0} n^{1}$
716. The radius of the first (lowest) orbit of the hydrogen atom is a_{0}. The radius of the second (next higher) orbit will be
a) $4 a_{0}$
b) $6 a_{0}$
c) $8 a_{0}$
d) $10 a_{0}$
717. What will be the angular momentum of an electron, if energy of this electron in H-atom is -1.5 eV (in $\mathrm{J}-\mathrm{s}$)
a) 1.05×10^{-34}
b) 2.1×10^{-34}
c) 3.15×10^{-34}
d) -2.1×10^{-34}
718. If scattering particles are 56 for 90° angle, then at an angle 60° it will be
a) 224
b) 256
c) 98
d) 108
719. What was the fissionable material used in bomb dropped at Nagasaki (Japan) in the year 1945
a) Uranium
b) Nepturium
c) Berkelium
d) Plutonium
720. With the increase in principal quantum number, the energy difference between the two successive energy levels
a) Increases
b) Decreases
c) Remains constant
d) Sometimes increases and sometimes decreases
721. Which of the following phenomena suggests the presence of electron energy levels in atoms
a) Radio active decay
b) Isotopes
c) Spectral lines
d) α-particles scattering
722. A beam of fast moving alpha particles were directed towards a thin film of gold. The parts A^{\prime}, B^{\prime} and C^{\prime} of the transmitted and reflected beams corresponding to the incident parts A, B and C of the beam, are
shown in the adjoining diagram. The number of alpha particles in

a) B^{\prime} will be minimum and in C^{\prime} maximum
b) A^{\prime} will be maximum and in B^{\prime} minimum
c) A^{\prime} will be minimum and in B^{\prime} maximum
d) C^{\prime} will be minimum and in B^{\prime} maximum
723. In a radioactive reaction

$$
{ }_{92} X^{232} \rightarrow{ }_{82} X^{204}
$$

the number of α-particles emitted is
a) 7
b) 6
c) 5
d) 4
724. The electric potential between a proton and an electron is given by $V=V_{0} \ln \frac{r}{r_{0}}$, where r_{0} is a constant. Assuming Bohr's model to be applicable, write variation of r_{n} with n, n being the principal quantum number
a) $r_{n} \propto n$
b) $r_{n} \propto 1 / n$
c) $r_{n} \propto n^{2}$
d) $r_{n} \propto 1 / n^{2}$
725. The minimum energy required to excite a hydrogen atom from its ground state is
a) 13.6 eV
b) -13.6 eV
c) 3.4 eV
d) 10.2 eV
726. What fraction of a radioactive material will get disintegrated in a period of two half-lives
a) Whole
b) Half
c) One-fourth
d) Three-fourth
727. Atom bomb consists of two pieces of ${ }_{92} U^{235}$ and a source of
a) Proton
b) Neutron
c) Meson
d) Electron
728. The kinetic energy of the electron in an orbit of radius r in hydrogen atom is ($e=$ electronic charge)
a) $\frac{e^{2}}{r^{2}}$
b) $\frac{e^{2}}{2 r}$
c) $\frac{e^{2}}{r}$
d) $\frac{e^{2}}{2 r^{2}}$
729. Which can pass through 20 cm thickness of the steel
a) α-particles
b) β-particles
c) γ-rays
d) Ultraviolet rays
730. Neutrino emission in β - decay was predicted theoretically by
a) Planck
b) Heisenberg
c) Laue
d) Pauli
731. Orbital acceleration of electron is
a) $\frac{n^{2} h^{2}}{4 \pi^{2} m^{2} r^{3}}$
b) $\frac{n^{2} h^{2}}{2 n^{2} r^{3}}$
c) $\frac{4 n^{2} h^{2}}{\pi^{2} m^{2} n^{3}}$
d) $\frac{4 n^{2} h^{2}}{4 \pi^{2} m^{2} r^{3}}$
732. A nucleus of an element ${ }_{84} X^{202}$ emits an α-particle first, a β-particle next and then a gamma photon. The final nucleus formed has an atomic number
a) 200
b) 199
c) 83
d) 198
733. The radius of an electron orbit in a hydrogen atom is of the order of
a) $10^{-8} \mathrm{~m}$
b) $10^{-9} \mathrm{~m}$
c) $10^{-11} \mathrm{~m}$
d) $10^{-13} \mathrm{~m}$
734. Electrons in a certain energy level $n=n_{1}$, can emit 3 spectral lines. When they are in another energy level, $n=n_{2}$. They can emit 6 spectral lines. The orbital speed of the electrons in the two orbits are in the ratio
a) $4: 3$
b) $3: 4$
c) $2: 1$
d) $1: 2$
735. The number of revolutions per second made by an electron in the first Bohr orbit of hydrogen atom is of the order of
a) 10^{20}
b) 10^{19}
c) 10^{17}
d) 10^{15}
736. Consider a hypothetical annihilation of a stationary electron with a stationary positron. What is the wavelength of resulting radiation
($h=$ Planck's constant, $c=$ speed of light, $m_{0}=$ rest mass)
a) $\frac{h}{2 m_{0} c}$
b) $\frac{h}{m_{0} c}$
c) $\frac{2 h}{m_{0} c}$
d) $\frac{h}{m_{0} c^{2}}$
737. M_{n} and M_{p} represent mass of neutron and proton respectively. If an element having atomic mass M has N neutrons and Z-protons, then the correct relation will be
a) $M<\left[N M_{n}+Z M_{P}\right]$
b) $M>\left[N M_{n}+Z M_{P}\right]$
c) $M=\left[N M_{n}+Z M_{P}\right]$
d) $M=N\left[M_{n}+M_{P}\right]$
738. The rate of disintegration was observed to be 10^{17} disintegrations per sec when its half life period is 1445 years. The original number of particles are
a) 8.9×10^{27}
b) 6.6×10^{27}
c) 1.4×10^{16}
d) 1.2×10^{17}
739. In the uranium radioactive series, the initial nucleus is ${ }_{92} U^{238}$ and that the final nucleus is ${ }_{82} \mathrm{~Pb}^{206}$. When uranium nucleus decays to lead, the number of α-particle and β-particles emitted are
a) $8 \alpha, 6 \beta$
b) $6 \alpha, 7 \beta$
c) $6 \alpha, 8 \beta$
d) $4 \alpha, 3 \beta$
740. Which of the following statements is true
a) ${ }_{78} \mathrm{Pt}^{192}$ has 78 neutrons
b) ${ }_{84} \mathrm{Po}^{214} \rightarrow{ }_{82} \mathrm{~Pb}^{210}+\beta^{-}$
c) ${ }_{92} U^{238} \rightarrow{ }_{90} \mathrm{Th}^{234}+{ }_{2} \mathrm{He}^{4}$
d) ${ }_{90} \mathrm{Th}^{234} \rightarrow{ }_{91} \mathrm{~Pa}^{234}+{ }_{2} \mathrm{He}^{4}$
741. A neutron with velocity V strikes a stationary deuterium atom, its kinetic energy changes by a factor of
a) $15 / 16$
b) $1 / 2$
c) $2 / 1$
d) None of these
742. In the Bohr model of a hydrogen atom, the centripetal force is furnished by the coulomb attraction between the proton and the electron. If a_{0} is the radius of the ground state orbit, m is the mass, e is the charge on the electron and ε_{0} is the vacuum permittivity, the speed of the electron is
a) 0
b) $\frac{e}{\sqrt{\varepsilon_{0} a_{0} m}}$
c) $\frac{e}{\sqrt{4 \pi \varepsilon_{0} a_{0} m}}$
d) $\frac{\sqrt{4 \pi \varepsilon_{0} a_{0} m}}{e}$
743. After absorbing a slowly moving neutron of mass m_{N} (momentum ~ 0) a nucleus of mass M breaks into two nuclei of masses m_{1} and $5 m_{1}\left(6 m_{1}=M+m_{N}\right)$, respectively. If the de-Broglie wavelength of the nucleus with mass m_{1} is λ, then de- Broglie wavelength of the other nucleus will be
a) 25λ
b) 5λ
c) $\frac{\lambda}{5}$
d) λ
744. Plutonium decays with half-life of 24000 yr . If plutonium is stored for 7200 yr , the fraction of it that remains is
a) $1 / 8$
b) $1 / 3$
c) $1 / 4$
d) $1 / 2$
745. The ratio of the nuclear radii of elements with mass numbers 216 and 125 is
a) $216: 125$
b) $\sqrt{216}: \sqrt{125}$
c) $6: 5$
d) None of these
746. Mass of the nucleons together in a heavy nucleus is
a) Greater than mass of nucleus
b) Equal to mass of nucleus
c) Same as mass of nucleus
d) None of the above
747. The half-life of a radioactive substance against α-decay is $1.2 \times 10^{7} s$. What is the decay rate for 4×10^{15} atoms of the substance
a) 4.6×10^{12} atoms $/ \mathrm{s}$
b) 2.3×10^{11} atoms $/ \mathrm{s}$
c) $4.6 \times 10^{10} \mathrm{atoms} / \mathrm{s}$
d) 2.3×10^{8} atoms $/ \mathrm{s}$
748. The count rate of 10 g of radioactive material was measured at different times and this has been shown in the figure. The half life of material and the total counts (approximately) in the first half life period, respectively are

a) $4 \mathrm{~h}, 9000$
b) $3 h, 14000$
c) $3 h, 235$
d) $3 h, 50$
749. Ratio of the wavelengths of first line of Lyman series and first time of Balmer series is
a) $1: 3$
b) $27: 5$
c) $5: 27$
d) $4: 9$
750. If half-life of radium is 77 days,its decay constant will be
a) 3×10^{-3} day $^{-1}$
b) 9×10^{-3} day $^{-1}$
c) $1 \times 10^{-3}-$ day $^{-1}$
d) $6 \times 10^{-3} \mathrm{day}^{-1}$
751. When ${ }_{92} U^{235}$ undergoes fission, 0.1% of its original mass is changed into energy. How much energy is released if 1 kg of ${ }_{92} U^{235}$ undergoes fission
a) $9 \times 10^{10} \mathrm{~J}$
b) $9 \times 10^{11} \mathrm{~J}$
c) $9 \times 10^{12} \mathrm{~J}$
d) $9 \times 10^{13} \mathrm{~J}$
752. The radioactivity of a simple is I_{1} at a time t_{1} and I_{2} at a time t_{2}. If the half-life of the sample is $\tau_{1 / 2}$, then the number of nuclei that have disintegrated in the time $t_{2}-t_{1}$ is proportional to
a) $I_{1} t_{2}-I_{2} t_{1}$
b) $I_{1}-I_{2}$
c) $\frac{I_{1}-I_{2}}{\tau_{1 / 2}}$
d) $\left(I_{1}-I_{2}\right) \tau_{1 / 2}$
753. The operation of a nuclear reactor is said to be critical, if the multiplication factor (k) has a value
a) 1
b) 1.5
c) 2.1
d) 2.5
754. ${ }_{1} H^{1}+{ }_{1} H^{1}+{ }_{1} H^{2} \rightarrow X+{ }_{+1} e^{0}+$ energy. The emitted particle is
a) Neutron
b) Proton
c) α-particle
d) Neutrino
755. Cadmium rods are used in a nuclear reactor for
a) Slowing down fast neutrons
b) Speeding up slow neutrons
c) Absorbing neutrons
d) Regulating the power level of reactor.
756. Energy of electron in an orbit of H-atom is
a) Positive
b) Negative
c) Zero
d) Nothing can be said
757. A radioactive isotope X with a half-life of 1.37×10^{9} years decays to Y which is stable. A sample of rock from the moon was found to contain both the elements X and Y which were in the ratio 1:7. The age of the rock is
a) 1.96×10^{8} years
b) 3.85×10^{9} years
c) 4.11×10^{9} years
d) 9.59×10^{9} years
758. The half-life of a radioactive substance is 48 hours. How much time will it take to disintegrate to its $\frac{1}{16}$ th part
a) 12 h
b) 16 h
c) 48 h
d) 192 h
759. In the following atoms and molecules for the transition from $n=2$ to $n=1$, the spectral line of minimum wavelength will be produced by
a) Hydrogen atom
b) Deuterium atom
c) Uni-ionized helium
d) De-ionized lithium
760. The radioactivity of a given sample of whisky due to tritium (half life 12.3 years) was found to be only 3% of that measured in a recently purchased bottle marked " 7 years old". The sample must have been prepared about
a) 220 years back
b) 300 years back
c) 400 years back
d) 70 years back
761. The nuclear reaction ${ }^{2} H+{ }^{2} H \rightarrow{ }^{4} \mathrm{He}$ (mass of deuteron $=2.0141 \mathrm{a} . \mathrm{m} . u$. and mass of $H e=4.0024$ a.m.u.) is
a) Fusion reaction releasing 24 MeV energy
b) Fusion reaction absorbing 24 MeV energy
c) Fission reaction releasing 0.0258 MeV energy
d) Fission reaction absorbing 0.0258 MeV energy
762. ${ }^{234} U$ has 92 protons and 234 nucleons total in the nucleus. It decays by emitting an alpha particle. After the decay it becomes
a) ${ }^{232} U$
b) ${ }^{232} \mathrm{~Pa}$
c) ${ }^{230} \mathrm{Th}$
d) ${ }^{230} \mathrm{Ra}$
763. The intensity of gamma radiation from a given source is I_{o}. On passing through 37.5 mm of lead it is reduced to $I_{o} / 8$. The thickness of lead which will reduce it to $I_{o} / 2$ is
a) $(37.7)^{1 / 3} \mathrm{~mm}$
b) $(37.5)^{1 / 4} \mathrm{~mm}$
c) $37.5 / 3 \mathrm{~mm}$
d) $(37.5 / 4) \mathrm{mm}$
764. If R is the Rydberg's constant for hydrogen the wave number of the first line in the Lyman series will be
a) $\frac{R}{4}$
b) $\frac{3 R}{4}$
c) $\frac{R}{2}$
d) $2 R$
765. The mass of a ${ }_{3}^{7} L i$ nucleus is $0.042 u$ less than the sum of the masses of all its nucleons. The binding energy per nucleon of ${ }_{3}^{7} \mathrm{Li}$ nucleus is nearly
a) 23 MeV
b) 46 MeV
c) 5.6 MeV
d) 3.9 MeV
766. The mass defect for the nucleus of helium is 0.0303 a.m. u. What is the binding energy per nucleon for helium in MeV
a) 28
b) 7
c) 4
d) 1
767. When a neutron is disintegrated to give a β particle,
a) A neutrino alone is emitted
b) A proton and neutrino are emitted
c) A proton alone is emitted
d) A proton and an antineutrino are emitted
768. The principle of controlled chain reaction is used in
a) Atomic energy reactor
b) Atom bomb
c) In the core of sun
d) Artificial radioactivity
769. Two radioactive substances A and B have decay constants 5λ and λ respectively. At $t=0$ they have the same number of nuclei. The ratio of number of nuclei of A to those of B will be $\left(\frac{1}{e}\right)^{2}$ after a time interval
a) $\frac{1}{4 \lambda}$
b) 4λ
c) 2λ
d) $\frac{1}{2 \lambda}$
770. The size of an atom is of the order of
a) $10^{-8} \mathrm{~m}$
b) $10^{-10} \mathrm{~m}$
c) $10^{-12} \mathrm{~m}$
d) $10^{-14} \mathrm{~m}$
771. The difference between U^{235} and U^{238} atom is that
a) U^{238} contains 3 more protons
b) U^{238} contains 3 protons and 3 more electrons
c) U^{238} contains 3 more neutrons and 3 more electrons
d) U^{238} contains 3 more neutrons
772. A radioactive substance of half-life 6 min is placed near a Geiger counter which is found to resister 1024 particles per minute. How many particles per minute will it register after 42 min ?
a) 4 per min
b) 8 per min
c) 5 per min
d) 7 per min
773. If the decay constant of a radioactive substance is λ, then its half-life is
a) $\frac{1}{\lambda} \log _{e} 2$
b) $\frac{1}{\lambda}$
c) $\lambda \log _{e} 2$
d) $\frac{\lambda}{\log _{e} 2}$
774. 10 g of radioactive material of half-life 15 year is kept in store for 20 years. The disintegrated material is
a) 12.5 g
b) 10.5 g
c) 6.03 g
d) 4.03 g
775. The binding energies per nucleon for a deuteron and an $\alpha-$ particle are x_{1} and x_{2} respectively. What will be the energy Q released in the reaction ${ }_{1} H^{2}+{ }_{1} H^{2} \rightarrow_{2} H e^{4}+Q$
a) $4\left(x_{1}+x_{2}\right)$
b) $4\left(x_{2}-x_{1}\right)$
c) $2\left(x_{1}+x_{2}\right)$
d) $2\left(x_{2}-x_{1}\right)$
776. A nucleus ${ }_{Z}^{A} X$ has mass represented by $M(A, Z)$. If M_{P} and M_{n} denote the mass of proton and neutron respectively and B.E the binding energy in MeV , then
a) $B . E .=\left[M(A, Z)-Z M_{P}-(A-Z) M_{n}\right] C^{2}$
b) $B . E .=\left[Z M_{P}+(A-Z) M_{n}-M(A . Z) C^{2}\right.$
c) $B . E .=\left[Z M_{P}+A M_{n}-M(A . Z)\right] C^{2}$
d) $B . E .=M(A, Z)-Z M_{P}-(A-Z) M_{n}$
777. In helium nucleus, there are
a) 2 protons and 2 electrons
b) 2 neutrons, 2 protons and 2 electrons
c) 2 protons and 2 neutrons
d) 2 positrons and 2 protons
778. The energy level diagram for an hydrogen like atom is shown in the figure. The radius of its first Bohr orbit is
$0 \mathrm{eV} \longrightarrow$
$-6.04 \mathrm{eV} \longrightarrow$
$-13.6 \mathrm{eV} \longrightarrow$
-54.4 eV
$n=3$
$n=2$
$n=1$
a) $0.265 \AA$
b) $0.53 \AA$
c) $0.132 \AA$
d) None of these
779. Energy released in fusion of 1 kg of deuterium nuclei
a) $8 \times 10^{13} \mathrm{~J}$
b) $6 \times 10^{27} \mathrm{~J}$
c) $2 \times 10^{7} \mathrm{kwh}$
d) $8 \times 10^{23} \mathrm{MeV}$
780. The ionization energy of the electron in the hydrogen atom in its ground state is 13.6 eV . The atoms are excited to higher energy levels to emit radiations of 6 wavelengths. Maximum wavelength of emitted radiation corresponds to the transition between
a) $n=3$ to $n=2$ states
b) $n=3$ to $n=1$ states
c) $n=2$ to $n=1$ states
d) $n=4$ to $n=3$ states
781. When the wave of hydrogen atom comes from infinity into the first orbit then the value of wave number is
a) $109700 \mathrm{~cm}^{-1}$
b) $1097 \mathrm{~cm}^{-1}$
c) $109 \mathrm{~cm}^{-1}$
d) None of these
782. The energy of electron in the nth orbit of hydrogen atom is expressed as $E_{n}=\frac{-13.6}{n^{2}} e V$. The shortest and longest wavelength of Lyman series will be
a) $910 \AA 1,1213 \AA$
b) $5463 \AA, 7858 \AA$
c) $1315 \AA, 1530 \AA$
d) None of these
783. In a hypothetical Bohr hydrogen, the mass of the electron is doubled. The energy E_{0} and the radius r_{0} of the first orbit will be (a_{0} is the Bohr radius)
a) $E_{0}=-27.2 \mathrm{eV}$; $r_{0}=a_{0} / 2$
b) $E_{0}=-27.2 \mathrm{eV} ; r_{0}=a_{0}$
c) $E_{0}=-13.6 \mathrm{eV} ; r_{0}=a_{0} / 2$
d) $E_{0}=-13.6 \mathrm{eV} ; r_{0}=a_{0}$
784. The ionization energy of hydrogen atom is 13.6 eV . Following Bohr's theory, the energy corresponding to a transition between the 3rd and the 4th orbit is
a) 3.40 eV
b) 1.51 eV
c) 0.85 eV
d) 0.66 eV
785. The energy of a hydrogen atom in the ground state is -13.6 eV . The energy of a He^{+}ion in the first excited state will be
a) -6.8 eV
b) -13.6 eV
c) -27.2 eV
d) -54.4 eV
786. Decay constant of radium is λ. By a suitable process its compound radium bromide is obtained. The decay constant of radium bromide will be
a) λ
b) More than λ
c) Less than λ
d) Zero
787. In the reaction ${ }_{7} \mathrm{~N}^{14}+\alpha \rightarrow{ }_{8} X^{17}+{ }_{1} p^{1}$
identify X.
a) O_{2}
b) N_{2}
c) He
d) Ar
788. What is the radius of iodine atom (at. no. 53, mass number 126)
a) $2.5 \times 10^{-11} \mathrm{~m}$
b) $2.5 \times 10^{-9} \mathrm{~m}$
c) $7 \times 10^{-9} \mathrm{~m}$
d) $7 \times 10^{-6} \mathrm{~m}$
789. In the lowest energy level of hydrogen atom, the electron has the angular momentum
a) π / h
b) h / π
c) $h / 2 \pi$
d) $2 \pi / h$
790. Which of these is a fusion reaction
a) ${ }_{1}^{3} H+{ }_{1}^{2} H={ }_{2}^{4} H e+{ }_{0}^{1} n$
b) ${ }_{92}^{238} U \rightarrow{ }_{82}^{206} \mathrm{~Pb}+8\left({ }_{2}^{4} \mathrm{He}\right)+6\left({ }_{-1}^{0} \beta\right)$
c) ${ }_{7}^{12} C \rightarrow{ }_{6}^{12} C+\beta^{+}+\gamma$
d) None of these
791. Figure shows the energy levels P, Q, R, S and G of an atom where G is the ground state. A red line in the emission spectrum of the atom can be obtained by an energy level change from Q to S. A blue line can be obtained by following energy level change

	P
	Q
	R
	S

\qquad
a) P to Q
b) Q to R
c) R to S
d) R to G
792. To determine the half- life of radioactive element, a student plots graph of $\ln \left|\frac{d N(t)}{d t}\right|$ versus t. Here $\frac{d N(t)}{d t}$ is the rate of radioactive decay at time t. If the number of radioactive nuclei of this element decreases by a factor of p after 4.16 yr , the value of p is

a) 8
b) 7
c) 4
d) 8.5
793. The energy of electron in first excited state of H -atom is -3.4 eV its kinetic energy is
a) -3.4 eV
b) +3.4 eV
c) -6.8 eV
d) 6.8 eV
794. In a nuclear reactor, the fuel is consumed at the rate of $1 \mathrm{mgs}^{-1}$. The power generated in kilowatt is
a) 9×10^{4}
b) 9×10^{7}
c) 9×10^{8}
d) 9×10^{12}
795. The order of the size of nucleus and Bohr radius of an atom respectively are
a) $10^{-14} \mathrm{~m}, 10^{-10} \mathrm{~m}$
b) $10^{-10} \mathrm{~m}, 10^{-8} \mathrm{~m}$
c) $10^{-20} \mathrm{~m}, 10^{-16} \mathrm{~m}$
d) $10^{-8} \mathrm{~m}, 10^{-6} \mathrm{~m}$
796. Size of nucleus is of the order of
a) $10^{-10} \mathrm{~m}$
b) $10^{-15} \mathrm{~m}$
c) $10^{-12} \mathrm{~m}$
d) $10^{-19} \mathrm{~m}$
797. When a sample of solid lithium is placed in a flask of hydrogen gas then following reaction happened ${ }_{1}^{1} H+{ }_{3} L i^{7} \rightarrow{ }_{2} \mathrm{He}^{4}+{ }_{2} \mathrm{He}^{4}$
This statement is

a) True
b) False
c) May be true at a particular pressure
d) None of these
798. In the nuclear fusion reaction
${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+n$
given that the repulsive potential energy between the two nuclei is $7.7 \times 10^{-14} \mathrm{~J}$, the temperature at which the gases must be heated to initiate the reaction is nearly [Boltzmann's constant $k=1.38 \times$ $10^{-23} \mathrm{JK}^{-1}$]
a) $10^{7} \mathrm{~K}$
b) $10^{5} \mathrm{~K}$
c) $10^{3} \mathrm{~K}$
d) $10^{9} \mathrm{~K}$
799. Nuclear fission can be explained based on
a) Millikan's oil drop method
b) Liquid drop model
c) Shell model
d) Bohr's model
800. A radioactive substance has an average life of 5 h . In a time of 5 h
a) Half of the active nuclei decay
b) Less than half of the active nuclei decay
c) More than half of the active nuclei decay
d) All active nuclei decay
801. The wavelength of the energy emitted when electron comes from fourth orbit to second orbit in hydrogen is 20.397 cm . The wavelength of energy for the same transition in He^{+}is
a) $5.099 \mathrm{~cm}^{-1}$
b) $20.497 \mathrm{~cm}^{-1}$
c) $40.994 \mathrm{~cm}^{-1}$
d) $81.988 \mathrm{~cm}^{-1}$
802. The half-life of a radioactive substance is 3.6 days. How much of 20 mg of this radioactive substance will remain after 36 days
a) 0.0019 mg
b) 1.019 mg
c) 1.109 mg
d) 0.019 mg
803. The activity of a sample is $64 \times 10^{-5} \mathrm{Ci}$. Its half-life is 3 days. The activity will become $5 \times 10^{-6} \mathrm{Ci}$ after
a) 12 days
b) 7 days
c) 18 days
d) 21 days
804. The radioactive nucleus ${ }_{7} N^{13}$ decays to ${ }_{6} C^{13}$ through the emission of
a) Neutron
b) Proton
c) Electron
d) Positron
805. The half-life of $B i^{210}$ is 5 days. What time is taken by $(7 / 8)^{\text {th }}$ part of the sample to decay
a) 3.4 days
b) 10 days
c) 15 days
d) 64 days
806. If the atom ${ }_{100} \mathrm{Fm}^{257}$ follows the Bohr model and the radius of ${ }_{100} \mathrm{Fm}^{257}$ is n times the Bohr radius, then find n
a) 100
b) 200
c) 4
d) $1 / 4$
807. If the decay or disintegration constant of a radioactive substance is λ, then its half life and mean life are respectively
a) $\frac{1}{\lambda}$ and $\frac{\log _{e} 2}{\lambda}$
b) $\frac{\log _{e} 2}{\lambda}$ and $\frac{1}{\lambda}$
c) $\lambda \log _{e} 2$ and $\frac{1}{\lambda}$
d) $\frac{\lambda}{\log _{e} 2}$ and $\frac{1}{\lambda}$
808. The sodium nucleus ${ }_{11}^{23} \mathrm{Na}$ contains
a) 11 electrons
b) 12 protons
c) 23 protons
d) 12 neutrons
809. Atomic reactor is based on
a) Controlled chain reaction
b) uncontrolled chain reaction
c) Nuclear fission
d) Nuclear fussion
810. The binding energy of deuteron ${ }_{1}^{2} \mathrm{H}$ is 1.112 MeV per nucleon and an α-particle ${ }_{2}^{4} \mathrm{He}$ has a binding energy of 7.047 MeV per nucleon. Then in the fusion reaction ${ }_{1}^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{4} \mathrm{He}+Q$, the energy Q released is
a) 1 MeV
b) 11.9 MeV
c) 23.8 MeV
d) 931 MeV
811. Solar energy is mainly cause due to
a) Fission of uranium present in the sun
b) Fusion of protons during synthesis of heavier elements
c) Gravitational contraction
d) Burning of hydrogen in the oxygen
812. A free neutron decays into a proton, an electron and
a) A neutrino
b) An antineutrino
c) An alpha particle
d) A beta particle
813. The nuclei of which of the following pairs of nuclei are isotones
a) ${ }_{34} S e^{74},{ }_{31} C a^{71}$
b) ${ }_{42} M o^{92},{ }_{40} Z r^{92}$
c) ${ }_{38} \mathrm{Sr}^{81},{ }_{38} \mathrm{Sr}^{86}$
d) ${ }_{20} C a^{40},{ }_{16} S^{32}$
814. A gamma ray photon creates an electron-positron pair. If the rest mass energy of an electron is 0.5 MeV and the total K.E. of the electron-positron pair is 0.78 MeV , then the energy of the gamma ray photon must be
a) 0.78 MeV
b) 1.78 MeV
c) 1.28 MeV
d) 0.28 MeV
815. The binding energy per nucleon of deuterium and helium atom is 1.1 MeV and 7.0 MeV . If two deuterium nuclei fuse to form helium atom, the energy released is
a) 19.2 MeV
b) 23.6 MeV
c) 26.9 MeV
d) 13.9 MeV
816. The above is a plot of binding energy per nucleon E_{b}, against the nuclear mass $M ; A, B, C, D, E, F$ correspond to different nuclei. Consider four reactions
$A+B \rightarrow C+\varepsilon$
$C \rightarrow A+B+\varepsilon$
$D+E \rightarrow F+\varepsilon$
$F \rightarrow D+E+\varepsilon$

where ε is the energy released? In which reaction is ε positive?
a) (i) and (iv)
b) (i) and (iii)
c) (ii) and (iv)
d) (ii) and (iii)
817. A radioactive sample S_{1} having the activity A_{1} has twice the number of nuclei as another sample S_{2} of activity A_{2}. If $A_{2}=2 A_{1}$, then the ratio of half-life of S_{1} to the half-life of S_{2} is
a) 4
b) 2
c) 0.25
d) 0.75
818. Consider the nuclear reaction $X^{200} \rightarrow A^{110}+B^{80}$. If the binding energy per nucleon for X, A and B are 7.4 $\mathrm{MeV}, 8.2 \mathrm{MeV}$ and 8.1 MeV respectively, then the energy released in the reaction is
a) 70 MeV
b) 200 MeV
c) 190 MeV
d) 10 MeV
819. The decay constant of a radioactive element is 1.5×10^{-9} per second. Its mean life in seconds will be
a) 1.5×10^{9}
b) 4.62×10^{8}
c) 6.67×10^{8}
d) 10.35×10^{8}
820. How many neutrons are more than protons in ${ }_{92} \mathrm{U}^{235}$ nucleus?
a) 54
b) 49
c) 51
d) 143
821. The energy released in a typical nuclear fusion reaction is approximately
a) 25 MeV
b) 200 MeV
c) 800 MeV
d) 1050 MeV
822. The de Broglie wave present in fifth Bohr orbit is
a)

b)

c)

d)

823. An alpha nucleus of energy $\frac{1}{2} m v^{2}$ bombards a heavy nuclear target of charge $Z e$. Then the distance of closest approach for the alpha nucleus will be proportional to
a) $1 / \mathrm{m}$
b) $1 / v^{4}$
c) $1 / Z e$
d) v^{2}
824. In the reaction ${ }_{1}^{2} H+{ }_{1}^{3} H \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} n$ if the binding energies of ${ }_{1}^{2} H,{ }_{1}^{3} H$ and ${ }_{2}^{4} \mathrm{He}$ are respectively a, b and c (in MeV), then the energy (in MeV) released in this reaction is
a) $c+a-b$
b) $c-a-b$
c) $a+b+c$
d) $a+b-c$
825. The graph between wave number (\bar{v}) and angular frequency (ω) is
a)

b)

c)

d)

826. Which of the following statements are true regarding Bohr's model of hydrogen atom
(I) Orbiting speed of electron decreases as it shifts to discrete orbits away from the nucleus
(II) Radii of allowed orbits of electron are proportional to the principal quantum number
(III) Frequency with which electrons orbit around the nucleus is discrete orbits is inversely proportional to the cube of principal quantum number
(IV) Binding force with which the electron is bound to the nucleus increases as it shifts to outer orbits Select correct answer using the codes given below
a) I and III
b) II and IV
c) I, II and III
d) II, III and IV
827. A photon creates a pair of electron positron with equal kinetic energy. Let kinetic energy of each particle is 0.29 MeV . Then what should be energy of the photon?
a) 1.60 MeV
b) 1.63 MeV
c) 2.0 MeV
d) 1.90 MeV
828. In the options given below, let E denote the rest mass energy of a nucleus and n a neutron. the correct option is
a) $E\left({ }_{92}^{236} U\right)>E\left({ }_{53}^{137} I\right)+E\left({ }_{39}^{97} Y\right)+2 E(n)$
b) $E\left({ }_{92}^{236} U\right)<E\left({ }_{53}^{137} I\right)+E\left({ }_{39}^{97} Y\right)+2 E(n)$
c) $E\left({ }_{92}^{236} U\right)>E\left({ }_{56}^{140} \mathrm{Ba}\right)+E\left({ }_{36}^{94} \mathrm{Kr}\right)+2 E(n)$
d) $E\left({ }_{92}^{236} U\right)<E\left({ }_{56}^{140} \mathrm{Ba}\right)+E\left({ }_{36}^{94} \mathrm{Kr}\right)+2 E(n)$
: ANSWER KEY:

1)	a	2)	c	3)	a	4)	b	189)	c	190)	d	191)	b	192)
5)	a	6)	b	7)	a	8)	b	193)	b	194)	a	195)	a	196)
9)	a	10)	d	11)	c	12)	d	197)	d	198)	d	199)	d	200)
13)	b	14)	c	15)	b	16)	a	201)	c	202)	b	203)	c	204)
17)	c	18)	a	19)	a	20)	b	205)	c	206)	c	207)	d	208)
21)	b	22)	c	23)	a	24)	b	209)	d	210)	b	211)	d	212)
25)	b	26)	b	27)	c	28)	a	213)	a	214)	b	215)	c	216)
29)	b	30)	a	31)	c	32)	a	217)	d	218)	a	219)	d	220)
33)	c	34)	a	35)	c	36)	a	221)	a	222)	b	223)	d	224)
37)	a	38)	c	39)	a	40)	a	225)	a	226)	a	227)	c	228)
41)	a	42)	a	43)	c	44)	a	229)	a	230)	c	231)	c	232)
45)	a	46)	a	47)	b	48)	d	233)	b	234)	a	235)	a	236)
49)	c	50)	b	51)	d	52)	b	237)	c	238)	c	239)	a	240)
53)	a	54)	a	55)	b	56)	b	241)	b	242)	c	243)	c	244)
57)	d	58)	b	59)	c	60)	b	245)	d	246)	b	247)	b	248)
61)	d	62)	c	63)	c	64)	a	249)	c	250)	b	251)	d	252)
65)	b	66)	a	67)	d	68)	a	253)	a	254)	a	255)	c	256)
69)	c	70)	d	71)	b	72)	a	257)	b	258)	a	259)	c	260)
73)	c	74)	b	75)	d	76)	c	261)	b	262)	b	263)	a	264)
77)	c	78)	b	79)	a	80)	a	265)	b	266)	a	267)	d	268)
81)	c	82)	d	83)	b	84)	b	269)	a	270)	b	271)	a	272)
85)	d	86)	c	87)	a	88)	c	273)	a	274)	d	275)	a	276)
89)	a	90)	c	91)	d	92)	a	277)	d	278)	b	279)	b	280)
93)	a	94)	a	95)	d	96)	b	281)	a	282)	b	283)	c	284)
97)	a	98)	b	99)	d	100)	a	285)	b	286)	a	287)	a	288)
101)	b	102)	d	103)	c	104)	c	289)	d	290)	c	291)	b	292)
105)	d	106)	a	107)	b	108)	c	293)	a	294)	c	295)	c	296)
109)	d	110)	c	111)	a	112)	d	297)	b	298)	c	299)	b	300)
113)	c	114)	c	115)	d	116)	a	301)	b	302)	a	303)	d	304)
117)	b	118)	a	119)	d	120)	d	305)	d	306)	b	307)	b	308)
121)	a	122)	c	123)	d	124)	b	309)	d	310)	a	311)	c	312)
125)	d	126)	b	127)	a	128)	a	313)	b	314)	c	315)	b	316)
129)	c	130)	c	131)	b	132)	c	317)	a	318)	d	319)	a	320)
133)	b	134)	b	135)	d	136)	d	321)	c	322)	b	323)	b	324)
137)	c	138)	b	139)	d	140)	a	325)	a	326)	b	327)	a	328)
141)	a	142)	b	143)	c	144)	b	329)	c	330)	b	331)	a	332)
145)	a	146)	a	147)	b	148)	b	333)	b	334)	b	335)	b	336)
149)	a	150)	c	151)	a	152)	a	337)	d	338)	a	339)	a	340)
153)	d	154)	a	155)	b	156)	a	341)	b	342)	a	343)	c	344)
157)	a	158)	c	159)	b	160)	b	345)	c	346)	c	347)	d	348)
161)	b	162)	b	163)	a	164)	c	349)	c	350)	b	351)	d	352)
165)	a	166)	a	167)	c	168)	d	353)	a	354)	c	355)	a	356)
169)	d	170)	a	171)	a	172)	b	357)	a	358)	b	359)	d	360)
173)	d	174)	b	175)	d	176)	d	361)	d	362)	c	363)	c	364)
177)	c	178)	a	179)	d	180)	a	365)	a	366)	d	367)	a	368)
181)	b	182)	b	183)	c	184)	d	369)	a	370)	a	371)	a	372)
185)	a	186)	a	187)	d	188)	d	373)	c	374)	b	375)	d	376)

377)	c	378)	d	379)	a	380)	b	581)	a	582)	b	583)	c	584)
381)	b	382)	d	383)	c	384)	c	585)	d	586)	a	587)	c	588)
385)	b	386)	c	387)	a	388)	d	589)	b	590)	d	591)	c	592)
389)	a	390)	d	391)	c	392)	a	593)	b	594)	b	595)	d	596)
393)	b	394)	c	395)	d	396)	d	597)	d	598)	a	599)	c	600)
397)	d	398)	d	399)	c	400)	d	601)	d	602)	b	603)	d	604)
401)	b	402)	b	403)	b	404)	c	605)	d	606)	b	607)	d	608)
405)	c	406)	b	407)	a	408)	a	609)	b	610)	c	611)	a	612)
409)	c	410)	a	411)	c	412)	c	613)	b	614)	c	615)	a	616)
413)	b	414)	c	415)	a	416)	a	617)	b	618)	c	619)	a	620)
417)	a	418)	a	419)	d	420)	d	621)	c	622)	a	623)	a	624)
421)	b	422)	b	423)	d	424)	a	625)	c	626)	a	627)	c	628)
425)	a	426)	a	427)	d	428)	a	629)	d	630)	d	631)	d	632)
429)	d	430)	d	431)	c	432)	d	633)	a	634)	a	635)	b	636)
433)	c	434)	b	435)	c	436)	c	637)	c	638)	d	639)	b	640)
437)	d	438)	b	439)	c	440)	a	641)	b	642)	d	643)	d	644)
441)	a	442)	d	443)	d	444)	a	645)	b	646)	d	647)	b	648)
445)	a	446)	b	447)	b	448)	b	649)	c	650)	a	651)	d	652)
449)	c	450)	a	451)	c	452)	b	653)	d	654)	d	655)	b	656)
453)	b	454)	b	455)	b	456)	c	657)	a	658)	c	659)	d	660)
457)	c	458)	d	459)	c	460)	b	661)	a	662)	d	663)	b	664)
461)	a	462)	d	463)	d	464)	c	665)	c	666)	b	667)	d	668)
465)	a	466)	c	467)	a	468)	b	669)	d	670)	a	671)	d	672)
469)	c	470)	b	471)	c	472)	b	673)	c	674)	c	675)	d	676)
473)	b	474)	b	475)	c	476)	b	677)	c	678)	b	679)	c	680)
477)	a	478)	d	479)	b	480)	b	681)	d	682)	c	683)	b	684)
481)	d	482)	c	483)	d	484)	b	685)	c	686)	a	687)	c	688)
485)	a	486)	c	487)	c	488)	d	689)	c	690)	a	691)	d	692)
489)	b	490)	c	491)	a	492)	d	693)	c	694)	d	695)	b	696)
493)	b	494)	a	495)	d	496)	b	697)	c	698)	c	699)	a	700)
497)	a	498)	a	499)	d	500)	d	701)	b	702)	c	703)	d	704)
501)	d	502)	c	503)	c	504)	a	705)	c	706)	d	707)	c	708)
505)	b	506)	d	507)	c	508)	d	709)	c	710)	d	711)	d	712)
509)	b	510)	a	511)	d	512)	a	713)	c	714)	c	715)	b	716)
513)	d	514)	b	515)	a	516)	c	717)	c	718)	a	719)	d	720)
517)	c	518)	d	519)	c	520)	a	721)	c	722)	b	723)	a	724)
521)	a	522)	d	523)	d	524)	b	725)	d	726)	d	727)	b	728)
525)	a	526)	b	527)	a	528)	b	729)	c	730)	d	731)	a	732)
529)	d	530)	c	531)	a	532)	c	733)	c	734)	a	735)	d	736)
533)	c	534)	c	535)	c	536)	c	737)	a	738)	b	739)	a	740)
537)	b	538)	c	539)	a	540)	c	741)	d	742)	c	743)	d	744)
541)	a	542)	c	543)	b	544)	d	745)	c	746)	a	747)	d	748)
545)	b	546)	c	547)	d	548)	c	749)	c	750)	b	751)	d	752)
549)	d	550)	d	551)	a	552)	a	753)	a	754)	c	755)	c	756)
553)	a	554)	b	555)	b	556)	c	757)	c	758)	d	759)	d	760)
557)	d	558)	a	559)	a	560)	c	761)	a	762)	c	763)	c	764)
561)	c	562)	d	563)	a	564)	a	765)	c	766)	b	767)	d	768)
565)	a	566)	a	567)	d	568)	d	769)	d	770)	b	771)	d	772)
569)	d	570)	a	571)	c	572)	c	773)	a	774)	c	775)	b	776)
573)	c	574)	b	575)	c	576)	a	777)	c	778)	a	779)	d	780)
577)	a	578)	b	579)	b	580)	b	781)	a	782)	a	783)	a	784)

785)	b	786)	a	787)	a	788)	a
789)	c	790)	a	791)	d	792)	a
793)	b	794)	b	795)	a	796)	b
797)	b	798)	d	799)	b	800)	c
801)	a	802)	d	803)	d	804)	d
805)	c	806)	d	807)	b	808)	d
809)	a	810)	c	811)	b	812)	b
813)	a	814)	b	815)	b	816)	a
817)	a	818)	a	819)	C	820)	c
821)	a	822)	d	823)	a	824)	b
825)	a	826)	a	827)	a	828)	a

: HINTS AND SOLUTIONS :

1 (a)
Remaining amount
$=16 \times\left(\frac{1}{2}\right)^{32 / 2}=16 \times\left(\frac{1}{2}\right)^{16}=\left(\frac{1}{2}\right)^{12}<1 m g$
3 (a)
Half-life of a radioactive element

$$
\begin{aligned}
& T=\frac{0.693}{\lambda} \text { or } T \propto \frac{1}{\lambda} \\
\therefore \quad & \frac{\lambda_{A}}{\lambda_{B}}=\frac{T_{B}}{T_{A}}
\end{aligned}
$$

4 (b)
${ }_{7} \mathrm{~N}^{14}+{ }_{2} \mathrm{He}^{4} \rightarrow{ }_{8} \mathrm{O}^{17}+{ }_{1} \mathrm{H}^{1}$
5 (a)
$N_{t_{1}}=N_{0} e^{-\lambda t_{1}}$
$N_{t_{2}}=N_{0} e^{-\lambda t_{2}}$
$\therefore N_{t_{1}}-N_{t_{2}}=N_{0}\left(e^{-\lambda_{t_{2}}}-e^{-\lambda_{t_{2}}}\right)$
$7 \quad$ (a)
Mass defect
$\Delta m=$
Total mass of $\alpha-$ particles - mass of ${ }^{12} \mathrm{C}$ nucleus

$$
\begin{aligned}
& =3 \times 4.002603-12 \\
& =12.007809-12 \\
& =0.007809 \text { unit }
\end{aligned}
$$

8 (b)
From diagram

$E_{1}=-13.6-(-3.4)=-10.2 \mathrm{eV}$
$E_{2}=-13.6-(-1.51)=-12.09 \mathrm{eV}$
$E_{3}=-1.51-(-0.85)=-0.66 \mathrm{eV}$
$E_{4}=-3.4-(-0.85)=(-2.55) \mathrm{eV}$
E_{3} is least, i.e., frequency is lowest
9 (a)
$1 \mathrm{amu}($ or 1 u$)=1.6605402 \times 10^{-27} \mathrm{~kg}$

$$
=1.6 \times 10^{-24} \mathrm{~g}
$$

Moreover 1 amu is equivalent to 931 MeV
Or $1.6 \times 10^{-24} \mathrm{~g}$ is equivalent to 931 MeV
$\therefore 1 \mathrm{~g}$ is equivalent to $\frac{931}{1.6 \times 10^{-24}} \mathrm{MeV}$
and $10^{-3} \mathrm{~g}$ is equivalent to $\frac{931}{1.6 \times 10^{-24}} \times 10^{-3} \mathrm{MeV}$

$$
=5.6 \times 10^{23} \mathrm{MeV}
$$

10 (d)

$$
\begin{aligned}
\Delta m & =0.3 \mathrm{~g} \\
& =0.3 \times 10^{-3} \mathrm{~kg}=3 \times 10^{-4} \mathrm{~kg}
\end{aligned}
$$

Energy liberated, $E=\Delta m c^{2}$

$$
\begin{aligned}
& =3 \times 10^{-4} \times\left(3 \times 10^{8}\right)^{2} \\
& =3 \times 10^{-4} \times 9 \times 10^{16} \\
& =27 \times 10^{12} \mathrm{~J}=\frac{27 \times 10^{12}}{3.6 \times 10^{6}} \mathrm{kWh} \\
& =7.5 \times 10^{6} \mathrm{kWh}
\end{aligned}
$$

11 (c)
$\frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right)=\frac{3 R}{16} \Rightarrow \lambda=\frac{16}{3 R}=\frac{16}{3} \times 10^{-5} \mathrm{~cm}$
Frequency $n=\frac{c}{\lambda}=\frac{3 \times 10^{10}}{\frac{16}{3} \times 10^{-5}}=\frac{9}{16} \times 10^{15} \mathrm{~Hz}$
12 (d)
$V=(12.1-5.1)$ volt
$V_{\text {stopping }}=7 \mathrm{~V}$
13 (b)
${ }_{88} A^{196} \rightarrow{ }_{78} B^{164}$
Number of $\alpha-$ particles $=\frac{196-164}{4}=8$

$$
{ }_{88} A^{196} \xrightarrow{-8 \alpha}{ }_{72} X^{164} \rightarrow{ }_{78} B^{164}
$$

\therefore Number of $\beta-$ particles $=78-72=6$
14 (c)
$\frac{h c}{\lambda}=E=e V$
$\Rightarrow \lambda=\frac{h c}{e V}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{1.6 \times 10^{-19} \times 4.9}=2525 \AA$
(b)
$N=N_{0}\left(\frac{1}{2}\right)^{n}$
Remaining part $=N_{0}-\frac{3}{4} N_{0}$

$$
\begin{aligned}
& =\frac{1}{4} N_{0} \\
\frac{N_{0}}{4} & =N_{0}\left(\frac{1}{2}\right)^{n} \\
\left(\frac{1}{2}\right)^{2} & =\left(\frac{1}{2}\right)^{n} \\
n & =2
\end{aligned}
$$

Time $=$ Half year \times Number of half year $=3 \times 2=$ 6days
16 (a)
The total mass of the initial particles

$$
\begin{aligned}
m_{\mathrm{i}} & =1.007825+7.016004 \\
& =8.023829 \mathrm{u}
\end{aligned}
$$

and the total mass of final particles

$$
m_{f}=2 \times 4.002603=8.005206 \mathrm{u}
$$

Difference between initial and final mass of
particles

$$
\begin{aligned}
\Delta m=m_{i}-m_{f} & =8.023829-8.005206 \\
& =0.018623 \mathrm{u}
\end{aligned}
$$

The Q-value is given by

$$
\begin{aligned}
Q & =(\Delta m) c^{2} \\
& =0.018623 \times 931.5=17.35
\end{aligned}
$$

MeV
17 (c)
1 week $=7$ days $=7 \times 24 h r \simeq 14$ half lives
Number of atoms left $=\frac{N_{0}}{(2)^{14}}$, Activity $=N \lambda$
\therefore Activity left is $\frac{1}{(2)^{14}}$ times the initial
$\Rightarrow \frac{1}{(2)^{14}} \times 1$ curie $=\frac{1}{16384} \times 1$ curie $\cong 61 \times$
10^{-6} curie
$\approx 60 \mu$ curie
18 (a)
Mean life $=\frac{\text { Half life }}{0.6931}=\frac{10}{0.6931}=14.4$ hours
19 (a)
If R is activity of radioactive substance after n half lives,
then $R=R_{0}\left(\frac{1}{2}\right)^{n}$
$\frac{R_{0}}{16}=R_{0}\left(\frac{1}{2}\right)^{n} \therefore n=4$
$t=n T=4 \times 100=400 \mu \mathrm{~s}$
20 (b)
Here $T_{1 / 2}=20$ minutes, we know $\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / T_{1 / 2}}$
For $20 \% \operatorname{decay} \frac{N}{N_{0}}=\frac{80}{100}=\left(\frac{1}{2}\right)^{t_{1} / 20}$
For $80 \% \operatorname{decay} \frac{N}{N_{0}}=\frac{20}{100}=\left(\frac{1}{2}\right)^{t_{2} / 20}$
Dividing (ii) by (i)
$\frac{1}{4}=\left(\frac{1}{2}\right)^{\frac{\left(t_{2}-t_{1}\right)}{20}}$
On solving we get $t_{2}-t_{1}=40 \mathrm{~min}$
21 (b)
β-decay from nuclei is based on this process only
22 (c)
The binding energy of nucleus may be defined as the energy equivalent to the mass defect of the nucleus.
If Δm is mass defect than according to Einstein's mass energy relation.
Binding Energy

$$
\begin{aligned}
& =\Delta m c^{2}=\left[\left\{Z m_{p}+(A-Z) m_{n}\right]-M\right] c^{2} \\
& =(7 \times 1.00783+7 \times 1.00867-
\end{aligned}
$$

14.00307) c^{2}
or $\mathrm{BE}=0.1124 \times 931.5 \mathrm{MeV}$
or $\mathrm{BE}=104.6$
$23 \quad$ (a)
Ionisation energy of $L i^{++}=9 h c R$
Ionization energy $=\operatorname{Rch} Z^{2}=\operatorname{Rch}(3)^{2}$ (as $Z=3$
for $L i^{++}$)
$=9 h c R$
24
(b)
$E_{b}+E_{c}>E_{a}$
25 (b)
$r=\frac{n^{2}}{Z}\left(r_{0}\right) ; \Rightarrow r_{(n=2)}=\frac{(2)^{2}}{2} \times 0.53=1.06 \AA$
26 (b)
Linear momentum $=m v=9.1 \times 10^{-31} \times 2.2 \times$ 10^{6}
$=2.0 \times 10^{-24} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
27 (c)
According to the quark model, it is possible to build all hadrons using 3 quarks and 3 antiquarks Mesons and baryons are collectively known as hadrons
28 (a)
$N=M-Z=$ Total no. of nucleons - no. of protons
30 (a)
Nuclear density is constant hence, mass \propto volume Or $\quad m \propto V$
31 (c)
${ }_{92} U^{235}$ is normally fissionable
$33 \quad$ (c)
Out side the nucleus, neutron is unstable (life -932 s)
34 (a)
The mass of nucleus formed is always less than the sum of the masses of the constituent protons and neutrons i.e., $m<(A-Z) m_{n}+Z m_{p}$
35 (c)
Binding energy per nucleon increases with atomic number. The greater the binding energy per nucleon the more stable is the nucleus For ${ }_{26} \mathrm{Fe} e^{56}$ number of nucleons is 56 This is most stable nucleus, since maximum energy is needed to pull a nucleon away from it
36 (a)
$X(n, \alpha){ }_{3}^{7} L i \Rightarrow{ }_{Z} X^{A}+{ }_{0} n^{1} \rightarrow 3^{L i^{7}}+{ }_{2} H e^{4}$
$Z=3+2=5$ and $A=7+4-1=10$
$\therefore{ }_{5} X^{10}={ }_{5} B^{10}$
37
(a)
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n} \Rightarrow \frac{1}{8}=\left(\frac{1}{2}\right)^{n} \Rightarrow n=3$
Now $t=n \times T_{1 / 2}=3 \times 3.8=11.4$ days
38 (c)
Experimental measurements show that volume of a nucleus is proportional to its mass number A. If
R is the radius of the nucleus assumed to be
spherical, then its volume

$$
\left(\frac{4}{3} \pi R^{3}\right) \propto A
$$

or $\quad R \propto A^{1 / 3}$
or $\quad R=R_{0} A^{1 / 3}$
where R_{0} is an empirical constant whose value is found to be $1.1 \times 10^{-15} \mathrm{~m}$.
40 (a)
Rest energy of an electron $=m_{e} c^{2}$
Here $m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$ and $c=$ velocity of light
\therefore Rest energy $=9.1 \times 10^{-31} \times\left(3 \times 10^{8}\right)^{2}$ joule
$=\frac{9.1 \times 10^{-31} \times\left(3 \times 10^{8}\right)^{2}}{1.6 \times 10^{-19}} \mathrm{eV}=510 \mathrm{keV}$
41 (a)
In increasing order of penetrating powers, the radiations are,

$$
\alpha<\beta<\gamma
$$

42 (a)
B.E. per nucleon is maximum for $F e^{56}$. For futher detail refer theory
43 (c)
$N=N_{0}\left(\frac{1}{2}\right)^{n}$
$\Rightarrow \frac{1}{100} N_{0}=N_{0}\left(\frac{1}{2}\right)^{n} \Rightarrow \frac{1}{100}=\left(\frac{1}{2}\right)^{n} \Rightarrow n=\frac{2}{\log 2}$
$\Rightarrow \frac{t}{T}=\frac{2}{\log 2} \Rightarrow t=6.6 T$ year
44 (a)
Mass number decreases by $8 \times 4=32$
Atomic number decreases by $8 \times 2-5=11$
45 (a)
Activity of $S_{1}=\frac{1}{2}$ (activity of S_{2})
Or $\quad \lambda_{1} N_{1}=\frac{1}{2}\left(\lambda_{2} N_{2}\right)$
Or $\quad \frac{\lambda_{1}}{\lambda_{2}}=\frac{N_{2}}{2 N_{1}}$
Or $\quad \frac{T_{1}}{T_{2}}=\frac{2 N_{1}}{N_{2}}$
Given $\quad N_{1}=2 N_{2}$
$\therefore \quad \frac{T_{1}}{T_{2}}=4$
46 (a)
Since electron and positron annihilate
$\lambda=\frac{h c}{E_{\text {Total }}}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{(0.51+0.51) \times 10^{6} \times 1.6 \times 10^{-19}}$
$=1.21 \times 10^{-12} \mathrm{~m}=0.012 \AA$
47 (b)
Activity $=-\frac{d N}{d t}=\lambda N=\lambda N_{0} e^{-\lambda t}$
i.e., graph between activity and t, is exponential having negative slope
(d)

Rydberg constant $R=\frac{\varepsilon_{0} n^{2} h^{2}}{\pi m Z e^{2}}$
Velocity $v=\frac{Z e^{2}}{2 \varepsilon_{0} n h}$ and energy $E=-\frac{m Z^{2} e^{4}}{8 \varepsilon_{0}^{2} n^{2} h^{2}}$
Now, it is clear from above expressions $R . v \propto n$
(b)

Nuclear forces are charge independent so,

$$
F_{1}=F_{2}=F_{3} .
$$

51 (d)

$$
\begin{aligned}
& r=r_{0}(A)^{1 / 3} \\
& \therefore \quad \frac{r_{1}}{r_{2}}=\left(\frac{A_{1}}{A_{2}}\right)^{1 / 3}=\left(\frac{64}{125}\right)^{1 / 3} \\
& \quad=\left[\left(\frac{4}{5}\right)^{3}\right]^{1 / 3}=\frac{4}{5}
\end{aligned}
$$

52 (b)
In a material medium, when a positron meets an electron both the particles annihilate leading to the emission of two γ-ray photons. This process forms the basis of an important diagnostic procedure called PET
53 (a)
For Balmer series $\frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right)$ where $n=3,4,5$
For second line $n=4$
So $\frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right)=\frac{3}{16} R \Rightarrow \lambda=\frac{16}{3 R}$
54 (a)
$m_{0} c^{2}=0.54 \mathrm{MeV}$ and K.E. $=m c^{2}-m_{0} c^{2}$
Also $m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{m_{0}}{\sqrt{1-(0.8)^{2}}}=\frac{m_{0}}{0.6}$
$\therefore E=m c^{2}=\frac{m_{0}}{0.6} c^{2}=\frac{0.54}{0.6}=0.9 \mathrm{MeV}$
\therefore K.E. $=(0.9-0.54)=0.36 \mathrm{MeV}$
55 (b)
In order to compare the stability of the nuclei of different atoms, binding energy per nucleon is determined. Higher the binding energy per nucleon more stable is the nucleus.
\therefore BE per nucleon of deuteron $=\frac{1.125}{2}$

$$
=0.5625 \mathrm{MeV}
$$

BE per nucleon of alpha particle $=\frac{7.2}{4}=1.8 \mathrm{MeV}$ Since, binding energy per nucleon of alpha particle is more, hence it is more stable.
57 (d)

Here, $\frac{N_{x_{1}}(t)}{N_{x_{2}}(t)}=\frac{1}{e}$
or $\frac{N_{0} e^{-10 \lambda t}}{N_{0} e^{-\lambda t}}=\frac{1}{e}$
(Because initially, both have the same number of nuclei, N_{0}).
or $e=\frac{e^{-\lambda t}}{e^{-10 \lambda t}}=e^{9 \lambda t}$
$9 \lambda t=1$
$t=\frac{1}{9 \lambda}$
58 (b)
$\lambda=\frac{0.693}{T_{1 / 2}}=\frac{0.693}{77}=9 \times 10^{-3} / d a y$
59 (c)
Since the ${ }_{55}^{133} C s$ has larger size among the four atoms given, thus the electrons present in the outermost orbit will be away from the nucleus and the electrostatic force experienced by electrons due to nucleus will be minimum.
Therefore the energy required to liberate electron from outer will be minimum in the case of ${ }_{55}^{133} \mathrm{Cs}$
61 (d)
Because sound waves require medium to travel through and there is no medium (air) on moon's surface
62 (c)
By using $v=R c\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$
$\Rightarrow v=10^{7} \times\left(3 \times 10^{8}\right)\left[\frac{1}{4^{2}}-\frac{1}{5^{2}}\right]$

$$
=6.75 \times 10^{13} \mathrm{~Hz}
$$

64 (a)
For Bracket series $\frac{1}{\lambda_{\max }}=R\left[\frac{1}{4^{2}}-\frac{1}{5^{2}}\right]=\frac{9}{25 \times 16} R$ and $\frac{1}{\lambda_{\text {min }}}=R\left[\frac{1}{4^{2}}-\frac{1}{\infty^{2}}\right]=\frac{R}{16} \Rightarrow \frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}=\frac{25}{9}$
65
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / T} \Rightarrow\left(\frac{1}{16}\right)=\left(\frac{1}{2}\right)^{2 / T} \Rightarrow\left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)^{2 / T}$
$\Rightarrow T=0.5$ hour $=30$ minutes
66 (a)
${ }_{8} O^{18}+{ }_{1} H^{1} \rightarrow{ }_{9} F^{18}+{ }_{o} n^{1}$
67
(d)

In time $t=T, N=\frac{N_{0}}{2}$
In another half-life,(ie, after 2 half-lives)

$$
N=\frac{1}{2} \frac{N_{0}}{2}=\frac{N_{0}}{4}=N_{0}\left(\frac{1}{2}\right)^{2}
$$

After yet another half-life ,(ie, after 3 half-lives)
$N=\frac{1}{2}\left(\frac{N_{0}}{4}\right)=\frac{N_{0}}{8}=N_{0}\left(\frac{1}{2}\right)^{3}$ and so on. Hence, after n
half-lives

$$
\begin{aligned}
N & =N_{0}\left(\frac{1}{2}\right)^{n} \\
& =N_{0}\left(\frac{1}{2}\right)^{t / T}
\end{aligned}
$$

where $t=n \times T=$ total time of n half-lives.
Here, $\quad n=\frac{t}{T}=\frac{19}{3.8}$

$$
=5
$$

\therefore The fraction left
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$

$$
=0.031
$$

69 (c)
$N=N_{0} e^{-\lambda t} \Rightarrow \ln \frac{N_{0}}{N}=\lambda t$
$t=\frac{1}{\lambda} \ln \frac{N_{0}}{N} \Rightarrow t=\frac{2.303 \times T_{1 / 2}}{0.693} \log _{10} \frac{N_{0}}{N}$
$\frac{N_{0}}{N}=10, T_{1 / 2}=10$ day $\Rightarrow t=33.23$ days
70 (d)
In vector form of Coulomb's law proves that the forces \mathbf{F}_{12} and \mathbf{F}_{21} are equal and opposite.
or $\quad \mathbf{F}_{21}=\mathbf{F}_{12}$

$$
\mathbf{F}_{p e}=\mathbf{F}_{e p}
$$

$$
\mathbf{F}_{p e}^{\prime}=\mathbf{F}_{e p}^{\prime}
$$

And $\quad \mathbf{F}_{p e}+\mathbf{F}_{e p}=-\mathbf{F}_{e p}^{\prime}+\mathbf{F}_{p e}^{\prime}$
So option (d) is incorrect.
71 (b)
$\frac{1}{\lambda}=R\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]=R\left[\frac{1}{(2)^{2}}-\frac{1}{(4)^{2}}\right] \Rightarrow \lambda=\frac{16}{3 R}$
73 (c)
Energy to excite the e^{-}from $n=1$ to $n=2$
First excited state $\quad n=2(-3.4 \mathrm{eV})$

For H_{2}
$E=-3.4-(-13.6)=10.2 \mathrm{eV}$

$$
=10.2 \times 1.6 \times 10^{-19}
$$

$=1.632 \times 10^{-18} \mathrm{~J}$
74 (b)
The mass excess per nucleon of isotopes of atom is known as packing fraction given by

$$
P=\frac{M-A}{A}
$$

Where M is the actual mass of isotope and A is its atomic mass.
Packing fraction is positive for isotope having
very low or very high mass number and negative for all others.
75 (d)
$N_{1}=\frac{N_{01}}{(2)^{t / 20}}, N_{2}=\frac{N_{02}}{(2)^{t / 10}}$
$N_{1}=N_{2}$
$\frac{40}{(2)^{t / 20}}=\frac{160}{(2)^{t / 10}} \Rightarrow 2^{t / 20}=2^{\left(\frac{t}{10}-2\right)}$
$\Rightarrow \frac{t}{20}=\frac{t}{10}-2 \Rightarrow \frac{t}{20}-\frac{t}{10}=-2$
$\Rightarrow \frac{t}{20}=2 \Rightarrow t=40$
78 (b)
Conserving the momentum

$$
\begin{aligned}
& 0=\frac{M}{2} v_{1}-\frac{M}{2} v_{2} \\
& v_{1}=v_{2} \\
& \Delta m c^{2}=\frac{1}{2} \cdot \frac{M}{2} v_{1}^{2}+\frac{1}{2} \cdot \frac{M}{2} v_{2}^{2} \\
& \Delta m c^{2}=\frac{M}{2} v_{1}^{2} \\
& \frac{2 \Delta m c^{2}}{M}=v_{1}^{2} \\
& v_{1}=c \sqrt{\frac{2 \Delta m}{M}}
\end{aligned}
$$

79 (a)
The proton is the most stable in the Baryon group
80 (a)
Activity of substance that has 2000
disintegrations/sec
$=\frac{2000}{3.7 \times 10^{10}}=0.054 \times 10^{-6} c i=0.054 \mu c i$
The number of radioactive nuclei having activity A
$N=\frac{A}{\lambda}=\frac{2000 \times T_{1 / 2}}{\log _{e} 2}$
$=\frac{2000 \times 138.6 \times 24 \times 3600}{0.693}=3.45 \times 10^{10}$
81 (c)
$N=N_{0}\left(\frac{1}{2}\right)^{\frac{t}{T_{1 / 2}}} \Rightarrow \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{\frac{30}{10}}=\frac{1}{8}=0.125$
82 (d)

$$
{ }_{4} B e^{9}+{ }_{2} \mathrm{He}^{4} \rightarrow{ }_{6} \mathrm{C}^{12}+{ }_{0} n^{1}
$$

83
(b)

84
(b)

Bohr postulated that the angular momentum of
the electron is conserved
85 (d)
After emitting β-particle (${ }_{-1} e^{0}$) mass of nucleus doesn't change
86 (c)
In nuclear fission, neutrons are released
87 (a)
In Lyman series $\left(\lambda_{\text {min }}\right)_{L}=\frac{1}{R}$ and $\left(\lambda_{\text {min }}\right)_{B}=\frac{4}{R}$
$\Rightarrow\left(\lambda_{\min }\right)_{B}=4 \times\left(\lambda_{\min }\right)_{L}=4 \times 912=3648 \AA$
88 (c)
$\Delta E=m c^{2}-m_{0} c^{2}=\frac{m_{0} c^{2}}{\sqrt{1-\left(v^{2} / c^{2}\right)}}-m_{0} c^{2}$
$=m_{0} c^{2}\left(\frac{1}{\sqrt{1-\left(v^{2} / c^{2}\right)}}-1\right)=0.511\left(\frac{1}{\sqrt{0.75}}-1\right)$
$=0.079 \mathrm{MeV}$
89 (a)
In fission process, when a parent nucleus breaks into daughter products, then some mass is lost in the form of energy. Thus, mass of fission products
< mass of parent nucleus
$\Rightarrow \quad \frac{\text { Mass of fission products }}{\text { Mass of parent nucleus }}<1$
$90 \quad$ (c)
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{\frac{t}{t_{1 / 2}}} \Rightarrow \frac{1}{4}=\left(\frac{1}{2}\right)^{\frac{t}{10}}$
$\Rightarrow \frac{t}{10}=2 \Rightarrow t=20$
91 (d)
Suppose closest distance is r, according to
conservation of energy
$400 \times 10^{3} \times 1.6 \times 10^{-19}=9 \times 10^{9} \frac{(z e)(2 e)}{r}$
$\Rightarrow 6.4 \times 10^{-14}$
$=\frac{9 \times 10^{9} \times\left(82 \times 1.6 \times 10^{-19}\right) \times\left(2 \times 1.6 \times 10^{-14}\right.}{r}$
$\Rightarrow r=5.9 \times 10^{-13} \mathrm{~m}=0.59 \mathrm{pm}$
93 (a)
$\frac{R_{1}}{R_{2}}=\left(\frac{A_{1}}{A_{2}}\right)^{1 / 3}=\left(\frac{27}{125}\right)^{1 / 3}=\frac{3}{5}=6: 10$
94 (a)

$$
N=\frac{N_{0}}{2^{n}}=\frac{N_{0}}{2^{1 / 2}}=\frac{N_{0}}{\sqrt{2}}
$$

95 (d)
${ }_{48} C d^{115} \xrightarrow{2\left({ }_{-1} \beta^{0}\right)}{ }_{50} S n^{115}$
(b)

In positive beta decay a proton is transformed into a neutron and a positron is emitted.

$$
p^{+} \rightarrow n^{0}+e^{+}
$$

Number of neutrons initially was $A-Z$.
Number of neutrons after decay $(A-Z)-3 \times$ 2 (due to alpha particles) $+2 \times 1$ (due to positive beta decay).
The number of protons will reduce by 8 [as 3×2 (due to alpha particles) +2 (due to positive beta decay)].
Hence, atomic number reduces by 8 .
So, the ratio number of neutrons to that of protons

$$
=\frac{A-Z-4}{Z-8}
$$

97 (a)
The activity or decay rate R of radioactive substance is the number of decays per second.
$\therefore \quad R=\lambda N$
or $R=\lambda N_{0}\left(\frac{1}{2}\right)^{t / T_{1 / 2}}$
or $R=R_{0}\left(\frac{1}{2}\right)^{t / T_{1 / 2}}$
where $R_{0}=\lambda N_{0}$ is the activity of radioactive substance at time $t=0$.
According to question,

$$
\begin{aligned}
& \quad \quad \frac{R}{R_{0}}=1-\frac{75}{100}=25 \% \\
& \therefore \quad \\
& \quad \frac{25}{100}=\left(\frac{1}{2}\right)^{t / T_{1 / 2}} \\
& \text { or }\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{t / T_{1 / 2}} \\
& \text { or } \frac{t}{T_{1 / 2}}=2 \\
& \therefore \quad t=2 T_{1 / 2}=2 \times 3.20=6.40 \mathrm{~h} \\
& \text { or } \quad \mathrm{t} \approx 6.38 \mathrm{~h}
\end{aligned}
$$

98 (b)
In the spectral series of the hydrogen atom, Lyman series is in the ultraviolet region, Balmer series is in the visible region, paschen, Brackett and pfund are in the infrared region of the electromagnetic spectrum
99 (d)

$$
{ }_{4}^{9} \mathrm{Be}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{6}^{12} \mathrm{C}+{ }_{0}^{1} x
$$

Clearly, it is a neutron
100 (a)
Let initial activity of both substances are same.

$$
\begin{aligned}
& R=R_{0}\left(\frac{1}{2}\right)^{n}=R_{0}\left(\frac{1}{2}\right)^{t / t_{1 / 2}} \\
\therefore & \frac{R_{1}}{R_{2}}=\frac{\left(\frac{1}{2}\right)^{4 / 1}}{\left(\frac{1}{2}\right)^{4 / 2}}=\frac{\left(\frac{1}{2}\right)^{4}}{\left(\frac{1}{2}\right)^{2}}=\left(\frac{1}{2}\right)^{2} \\
\Rightarrow & \quad \frac{R_{1}}{R_{2}}=\frac{1}{4}
\end{aligned}
$$

101 (b)
By using $R=R_{0} A^{1 / 3} \Rightarrow \frac{R_{1}}{R_{2}}=\left(\frac{A_{1}}{A_{2}}\right)^{1 / 3}$
$\Rightarrow \frac{R}{R_{H e}}=\left(\frac{A}{4}\right)^{1 / 3} \Rightarrow(14)^{1 / 3}=\left(\frac{A}{4}\right)^{1 / 3}$
$\Rightarrow A=56$ so $Z=56-30=26$
102 (d)
Extremely high temperature needed for fusion make KE large enough to overcome repulsion between nuclei.

103 (c)
Number of lines in absorption spectrum $=(n-1)$
$\Rightarrow 5=n-1 \Rightarrow n=6$
\therefore Number of bright lines in the emission spectrum
$=\frac{n(n-1)}{2}=\frac{6(6-1)}{2}=15$

(c)

From conservation of momentum

$$
\begin{aligned}
4 v & =(A-4) v_{1} \\
v_{1} & =\left(\frac{4 v}{A-4}\right)
\end{aligned}
$$

105 (d)
Number of α-particles emitted $=\frac{238-222}{4}=4$
This decreases atomic number to $90-4 \times 2=82$
Since atomic number of ${ }_{83} Y^{222}$ is 83 , this is
possible of one β-particle is emitted
106 (a)
${ }_{92} X^{235} \xrightarrow{\alpha}{ }_{90} X^{231} \xrightarrow{{ }_{-1} e^{0}}{ }_{91} Y^{231}$
107 (b)
By using $N=N_{0} e^{-\lambda t}$ and $t=\tau=\frac{1}{\lambda}$
Substance remains $=N=\frac{N_{0}}{e}=0.37 N_{0} \simeq \frac{N_{0}}{3}$
\therefore Substance disintegrated $=N_{0}-\frac{N_{0}}{3}=\frac{2 N_{0}}{3}$
108 (c)
After t second fractional amount of X left is $\frac{1}{16}$ or $\left(\frac{1}{2}\right)^{4}$
$\therefore t=4 \times T_{1 / 2}=4 \times 50=200$ years
109 (d)
${ }_{72} A^{100} \xrightarrow{-\alpha}{ }_{70} A_{1}^{176} \xrightarrow{-\beta}{ }_{71} A_{2}^{176} \xrightarrow{-\alpha}$
${ }_{69} A_{3}^{172} \xrightarrow{\gamma}{ }_{69} A_{4}^{172}$
110 (c)
Charge density is uniform inside and then falls rapidly near the surface of the nucleus
111 (a)
Number of protons $=2+2+6+2+6=18$
Number of neutrons $=40-18=22$
112 (d)
By using $N=N_{0} e^{-\lambda t}$ and $\frac{d N}{d t}=-\lambda N$
It shows that N decreases exponentially with time
113 (c)

In critical condition, $k=1$. The chain reaction will be steady. The size of the fissionable material used is said to be critical size and its mas the critical mass.
114 (c)
Radius of $n^{\text {th }}$ orbit for any hydrogen like atom $r_{n}=r_{0}\left(\frac{n^{2}}{Z}\right)\left(r_{0}=\right.$ radius of first orbit of H_{2}-atom $)$ If $r_{n}=r_{0} \Rightarrow n=\sqrt{2}$. For $B e^{+++}, Z=4 \Rightarrow n=2$
116 (a)
For $n=1$, maximum number of states $=2 n^{2}=2$ and for $n=2,3,4$, maximum number of states would be 8, 18, 32 respectively, Hence number of possible elements
$=2+8+18+32=60$
117 (b)
After one α-emission, the daughter Nucleus reduces in mass number by 4 unit and in atomic number by 2 unit. In β-emission the atomic number of daughter nucleus increases by 1 unit. The reaction can be written as
${ }_{92} \mathrm{U}^{238} \xrightarrow{-8 \alpha}{ }_{76} X^{206} \xrightarrow{-6 \beta}{ }_{82} Y^{206}$
Thus, the resulting nucleus is ${ }_{82} Y^{206} \mathrm{ie},{ }_{82} \mathrm{~Pb}^{206}$.
119 (d)
In the given case, 12 days $=3$ half lives Number of atoms left after 3 half live
$=6.4 \times 10^{10} \times \frac{1}{2^{3}}=0.8 \times 10^{10}$
120 (d)
Radioactive decay does not depend upon the time of creation.
121 (a)
$\frac{1}{\lambda}=R\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right] \Rightarrow \frac{\lambda_{\min }}{\lambda_{\max }}=\frac{\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]}{\left[\frac{1}{2^{2}}-\frac{1}{\infty}\right]}=\frac{5}{9}$
122 (c)
Average life $\frac{1}{\lambda}=\frac{1600}{0.693}=2308 \approx 2319$ years
123 (d)
$\lambda_{I R}>\lambda_{U V}$ also wavelength of emitted radiation $\lambda \propto \frac{1}{\Delta E}$
124
(b)
$A=A_{0}\left(\frac{1}{2}\right)^{t / T_{1 / 2}} \Rightarrow 5=A_{0}\left(\frac{1}{2}\right)^{\frac{2 \times 60}{30}}=\frac{A_{0}}{16} \Rightarrow A_{0}$

$$
=80 s^{-1}
$$

125 (d)
In Raman effect, Stoke's lines are spectral lines having lower frequency or wavelength greater than that of the original line
126 (b)
Number of atoms undecayed $N=N_{0} e^{-\lambda t}$

Number of atoms decayed $=N_{0}-N=N_{0}(1-$ $\left.e^{-\lambda t}\right)$
\Rightarrow Decyaed fraction $f=\frac{N_{0}-N}{N_{0}}=1-e^{-\lambda t}$
i.e., fraction will rise up to 1 , following
exponential path as shown in graph (B)
128 (a)
For Lyman series
$v_{\text {Lyman }}=\frac{c}{\lambda_{\text {max }}}=R O\left[\frac{1}{(1)^{2}}-\frac{1}{(2)^{2}}\right]=\frac{3 R C}{4}$
For Balmer series
$v_{\text {Balmer }}=\frac{c}{\lambda_{\max }}=R O\left[\frac{1}{(2)^{2}}-\frac{1}{(3)^{2}}\right]=\frac{5 R C}{36}$
$\therefore \frac{v_{\text {Lyman }}}{v_{\text {Balmer }}}=\frac{27}{5}$
129 (c)
$E=\frac{(\text { momentum) })^{2}}{2 M}=\frac{\left(\frac{h v}{c}\right)^{2}}{2 M}$
130 (c)
As the γ-particle has no charge and mass
131 (b)
Nuclear fusion takes place in stars which results in joining of nuclei accompanied by release of tremendous amount of energy
132
(c)

When there is an excess of protons in the nucleus and it is not energetically possible to emit an $\alpha-$ particle, β^{+}decay occurs.
Resulting in reducing atomic numbers by 1 . New atomic number $=Z-1$, mass number $=A$.
Gamma ray emission occurs with β^{+}emission.
Since, gamma rays have no charge or mass their emission does not change the chemical composition of the atom.
Hence atomic number $=Z-1$,
mass number $=A$
133 (b)
In negative β-decay a neutron in the nucleus is transformed into a proton, an electron and an antineutrino. Hence, in radioactivity decay process, the negatively charged emitted β particles are the electrons produced as a result of the decay of neutrons present inside the nucleus.
134 (b)
According to Kepler's 3rd law.
$T^{2} \propto r^{3}$
$\therefore \frac{T_{1}}{T_{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{3 / 2}=8$
$\frac{r_{1}}{r_{2}}=8^{2 / 3}=4$
According to Bohr atom model, $r \propto n^{2}$
$\therefore \frac{n_{1}^{2}}{n_{2}^{2}}=\frac{r_{1}}{r_{2}}=4 ; \frac{n_{1}}{n_{2}}=2$
If $n_{1}=2$, then $n_{2}=1$
135 (d)
Speed of electron in $n^{\text {th }}$ orbit (in CGS)
$v_{n}=\frac{2 \pi Z e^{2}}{n h}(k=1)$
For first orbit of $H_{1} ; n=1$ and $Z=1$
So $v=\frac{2 \pi e^{2}}{h} \Rightarrow \frac{v}{c}=\frac{2 \pi e^{2}}{h c}$
136 (d)
Impact parameter $b \propto \cot \frac{\theta}{2}$
Here $b=0$, hence $\theta=180^{\circ}$
137 (c)
When uranium is bombarded by neutrons, each uranium nucleus is broken into nearly equal fragments and along with it huge energy and two or three fresh neutrons are liberated. Under favourable conditions these neutrons fission other uranium nuclei in the same way. Thus, a chain of nuclear fission is established which continues till the whole of uranium is consumed.
138 (b)
From diagram

$E_{1}=-13.6-(-3.4)=-10.2 \mathrm{eV}$
$E_{2}=-13.6-(-1.51)=-12.09 \mathrm{eV}$
$E_{3}=-1.51-(-0.85)=-0.66 \mathrm{eV}$
$E_{4}=-3.4-(-0.85)=(-2.55) \mathrm{eV}$
E_{3} is least, i.e., frequency is lowest
139 (d)
Lyman series lies in the UV region
140 (a)
Mass of Uranium nucleus $=$ mass of proton + mass of neutron.

$$
\begin{aligned}
& \quad=92 \times 1.6725 \times 10^{-27}+143 \times 1.6747 \times \\
& \left.10^{-27}\right) \\
& \quad=\left(153.87 \times 10^{-27}+239.48 \times 10^{-27}\right) \\
& \quad=3.93 .35 \times 10^{-27} \mathrm{Kg}
\end{aligned}
$$

since, radius of nucleus is of the order of $10^{-15} \mathrm{~m}$, hence, volume is

$$
V \propto\left(10^{-15}\right)^{3} \mathrm{~m}^{3} \propto 10^{-45} \mathrm{~m}^{3}
$$

\therefore Density $=\frac{\text { mass }}{\text { volume }}=\frac{393.35 \times 10^{-27}}{10^{-45}}=10^{20} \mathrm{kgm}^{-3}$

141 (a)

From Rutherford-Soddy law

$$
\begin{aligned}
& N=N_{0}\left(\frac{1}{2}\right)^{n} \\
& n=\frac{38}{3.8}=10
\end{aligned}
$$

The initial quantity of radon $N_{0}=1024 \mathrm{mg}$.
Therefore, the mass of radon left after 10 halflives is

$$
N=1024 \times\left(\frac{1}{2}\right)^{10}=\frac{1024}{1024}=1 \mathrm{mg}
$$

142 (b)
$N=N_{0} e^{-\lambda t}$
$N=n e^{-\lambda t}$
The number of decay between 0 and $t N_{0}-N$
$=n-n e^{-\lambda t}=n\left(1-e^{-\lambda t}\right)=n\left(1-e^{-t / T}\right)$
143 (c)
The nuclear reactions is as follows

$$
{ }_{7} \mathrm{~N}^{14}+{ }_{2} \mathrm{H} e^{4} \rightarrow{ }_{8} \mathrm{O}^{17}+{ }_{q} X^{p}
$$

Conservation of mass number gives

$$
P=14+4-17=1
$$

Conservation of atomic number gives

$$
a=7+2-8=1
$$

Hence, particle is a proton ${ }_{1} \mathrm{H}^{1}$.
144 (b)
${ }_{1} H^{2}+{ }_{1} H^{2} \rightarrow{ }_{2} H e^{4}+Q$
145 (a)
For isotopes Z is same and A is different.
Therefore the number of neutrons $A-Z$ will also be different
148 (b)

$$
\begin{aligned}
\text { Power }=\frac{\text { energy }}{\text { time }} & =300 \times 10^{6} \mathrm{watt} \\
& =3 \times 10^{8} \mathrm{~J} / \mathrm{s} \\
170 \mathrm{MeV} & =170 \times 10^{6} \times 1.6 \times 10^{-19} \\
& =27.2 \times 10^{-12} \mathrm{~J}
\end{aligned}
$$

Number of atoms fissioned per second

$$
\begin{aligned}
& =\frac{3 \times 10^{8}}{27.2 \times 10^{-12}} \\
& =\frac{3 \times 10^{20}}{27.2}
\end{aligned}
$$

Number of atoms fissioned per hour

$$
\begin{aligned}
& =\frac{3 \times 10^{20} \times 3600}{27.2} \\
& =\frac{3 \times 36}{27.2} \times 10^{22}=4 \times 10^{22} \mathrm{~m}
\end{aligned}
$$

149 (a)
K.E. $=-$ (T.E.)

150 (c)
'Rad' is used to measure biological effect of radiation.
$\frac{1}{\lambda_{\text {Balmer }}}=R\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]=\frac{5 R}{36}, \frac{1}{\lambda_{\text {Lyman }}}=R\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right]$
$=\frac{3 R}{4}$
$\therefore \lambda_{\text {Lyman }}=\lambda_{\text {Balmer }} \times \frac{5}{27}=1215.4 \AA$
154 (a)
$N=N_{0}\left(\frac{1}{2}\right)^{\frac{t}{T_{1 / 2}}}=N_{0}\left(\frac{1}{2}\right)^{\frac{15}{5}}=\frac{N_{0}}{8}$
155 (b)
Half life of neutron $T_{1 / 2}=12 \mathrm{~min}$
Mean life $=T_{1 / 2}+44 \%$ of $T_{1 / 2}$
$\approx 17 \mathrm{~min} \approx 1000 \mathrm{sec}$
156 (a)
A and C are isotopes as their charge number is same

158 (c)
Energy in excited state $=-13.6+12.1=-1.5 \mathrm{eV}$
$\therefore \frac{-13.6}{n^{2}}=-1.5$
$\therefore n=\sqrt{\frac{13.6}{1.5}}=3$
Number of spectral lines
$=\frac{n(n-1)}{2}=\frac{3(3-1)}{2}=3$
159 (b)
Heavy water is used in certain type of nuclear where it acts as a neutron moderator to slow down neutrons so that they can react with uranium in the reactor.
160 (b)
$N=N_{0} e^{-\lambda t}$
Variation of N is exponential
161 (b)
Here $\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{1 / 3}$
Where $n=$ Number of half lives $=\frac{1}{3}$
$\Rightarrow \frac{N}{N_{0}}=\frac{1}{1.26} \Rightarrow \frac{N_{U}}{N_{P b}+N_{U}}=\frac{1}{1.26}$
$\Rightarrow N_{P b}=0.26 N_{U} \Rightarrow \frac{N_{P b}}{N_{U}}=0.26$
163 (a)
According to Rydberg's formula
$\frac{1}{\lambda}=R\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)$
Here, $n_{f}=1, n_{i}=n$
$\therefore \frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{n^{2}}\right) \Rightarrow \frac{1}{\lambda}=R\left(1-\frac{1}{n^{2}}\right)$
Multiplying equation (i) by λ on both sides,
$1=\lambda R\left(1-\frac{1}{n^{2}}\right) \Rightarrow \frac{1}{\lambda R}=1-\frac{1}{n^{2}}$
$\Rightarrow \frac{1}{n^{2}}=1-\frac{1}{\lambda R} \Rightarrow \frac{1}{n^{2}}=\frac{\lambda R-1}{\lambda R} \Rightarrow n=\sqrt{\frac{\lambda R}{\lambda R-1}}$
164 (c)
Energy of stars is due to the fusion of light hydrogen nuclei into He . In this process much energy is released
165 (a)

According to conservation of momentum
$4 v=(A-4) v^{\prime}$
$\Rightarrow v^{\prime}=\frac{4 v}{A-4}$
167 (c)
For third line of Balmer series $n_{1}=2, n_{2}=5$
$\therefore \frac{1}{\lambda}=R Z^{2}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$ gives $Z^{2}=\frac{n_{1}^{2} n_{2}^{2}}{\left(n_{2}^{2}-n_{1}^{2}\right) \lambda R}$
On putting values $Z=2$
From $E=-\frac{13.6 Z^{2}}{n^{2}}=\frac{-13.6(2)^{2}}{(1)^{2}}=-54.4 \mathrm{eV}$
168 (d)
Using conservation of momentum $P_{\text {daughter }}=P_{\alpha}$
$\Rightarrow \frac{E_{d}}{E_{\alpha}}=\frac{m_{\alpha}}{m_{d}} \Rightarrow E_{d}=\frac{E_{\alpha} \times m_{\alpha}}{m_{d}}=\frac{6.7 \times 4}{214}$

$$
=0.125 \mathrm{MeV}
$$

169 (d)
B.E. per nucleon \propto stability

170 (a)
According to Bohr theory, $m v r=n \frac{h}{2 \pi} \Rightarrow v=\frac{n h}{2 \pi m r}$ and $\frac{m v^{2}}{r} \propto \frac{k}{r} \Rightarrow \frac{m}{r}\left(\frac{n^{2} h^{2}}{4 \pi^{2} m^{2} r^{2}}\right) \propto \frac{k}{r} \Rightarrow r_{n} \propto n$
Kinetic energy $T=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(\frac{n^{2} h^{2}}{4 \pi^{2} m^{2} r^{2}}\right) \Rightarrow T_{n} \propto$ $\frac{n^{2}}{r^{2}}$
But as $r \propto n$ therefore $T \propto n^{0}$
171 (a)
For Lyman series $v=R C\left[\frac{1}{1^{2}}-\frac{1}{n^{2}}\right]$
Where $n=2,3,4, \ldots \ldots$
For the series limit of Lyman series $n=\infty$
$\therefore v_{1}=R C\left[\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right]=R C$
For the first line of Lyman series, $n=2$
$\therefore v_{2}=R C\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right]=\frac{3}{4} R C$

For Balmer series $v=R C\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right)$
Where $n=3,4,5 \ldots$
For the series limit of Balmer series $n=\infty$
$\therefore v_{3}=R C\left[\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right]=\frac{R C}{4}$
From equations (i), (ii) and (iii), we get
$v_{1}=v_{2}+v_{3} \Rightarrow v_{1}-v_{2}=v_{3}$
172 (b)
Positron is the antiparticle of electron
173 (d)
Nuclides with same atomic number Z but different mass number A are known as isotopes
Nuclides with same mass number A but different atomic number Z are known as isobars
Nuclides with same neutron number $N=(A-Z)$ but different atomic number Z are known as isotones
${ }_{1} H^{2}$ and ${ }_{1} H^{3}$ are isotopes
${ }_{2} \mathrm{He}^{3}$ and ${ }_{1} \mathrm{H}^{3}$ are isobars
${ }_{79} \mathrm{~A} u^{197}$ and ${ }_{80} \mathrm{Hg}^{198}$ are isotones
174 (b)
${ }_{6} \mathrm{C}^{12}+{ }_{0} n^{1} \rightarrow{ }_{7} \mathrm{~N}^{13}+{ }_{-1} e^{0}+\bar{v}$
(Neutron) (Beta (Anti
particle) neutrino)
On equating atomic numbers and atomic masses, the atomic number and atomic mass for resulting nucleus is 7 and 13, which is for nitrogen nucleus.
175 (d)
$E=\Delta m c^{2} \Rightarrow E=\frac{0.3}{1000} \times\left(3 \times 10^{8}\right)^{2}$

$$
=2.7 \times 10^{13} \mathrm{~J}
$$

$=\frac{2.7 \times 10^{13}}{3.6 \times 10^{6}}=7.5 \times 10^{6} \mathrm{kWh}$
176 (d)
The number force is charge independent
No. of nucleons $=$ No. of protons + no. of neutrons
= Mass number
All nuclei have masses that are less than the sum of the masses of its constituents. The difference in mass of a nucleus and its constituents is known as mass defect.
Nucleons belong to the family of hadrons while electrons belong to family of leptons
178 (a)
Given $N_{0} \lambda=5000, N \lambda=1250$

$$
N=N_{0} e^{-\lambda t}=N_{0} e^{-5 \lambda}
$$

Where λ is decay constant per min.

$$
\begin{aligned}
N \lambda & =N_{0} \lambda e^{-5 \lambda} \\
1250 & =N_{0} \lambda e^{-5 \lambda} \\
\therefore \quad e^{-5 \lambda} & =\frac{5000}{1250}=4
\end{aligned}
$$

$$
\begin{aligned}
e^{5 \lambda} & =4 \\
5 \lambda & =2 \log _{e} 2 \\
\lambda & =0.4 \ln 2
\end{aligned}
$$

179 (d)
β-emission takes place from a radioactive nucleus as

$$
{ }_{15}^{32} P \xrightarrow{-\beta}{ }_{16}^{32} S+{ }_{-1} e^{0}+\bar{v}_{1}
$$

Where \bar{v} is the anti-neutrino.
In β^{+}decay a positron is emitted as

$$
{ }_{11}^{22} \mathrm{Na} \rightarrow{ }_{10}^{22} \mathrm{Ne}+_{-1} e^{0}+v
$$

180 (a)
Excitation energy $\Delta E=E_{2}-E_{1}=13.6 Z^{2}\left[\frac{1}{1^{2}}-\right.$ 122
$\Rightarrow 40.8=13.6 \times \frac{3}{4} \times Z^{2} \Rightarrow Z=2$
Now required energy to remove the electron from ground state $=\frac{+13.6 Z^{2}}{(1)^{2}}=13.6(Z)^{2}=54.4 \mathrm{eV}$
181 (b)

$$
\begin{aligned}
& F=k q_{1} q_{2} / r^{2}, i . e ., \\
& \begin{aligned}
& F=\frac{9 \times 10^{9} \times 1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{\left(2.5 \times 10^{-11}\right)^{2}} \\
&=3.7 \times 10^{-7} \mathrm{~N}
\end{aligned}
\end{aligned}
$$

184 (d)
Helium atom has 2 electrons. When one electron is removed, the remaining atom is hydrogen like atom, whose energy in first orbit is
$E_{1}=-(2)^{2}(13.6 \mathrm{eV})=-54.4 \mathrm{eV}$
Therefore, to remove the second electron from the atom, the additional energy of 54.4 eV is required. Hence, total energy required to remove both the electrons $=24.6+54.4=79.0 \mathrm{eV}$

185 (a)
This is due to mass defect because a part of mass is used in keeping the neutrons and protons bound as α-particle
186 (a)
From Rutherford-Soddy law

$$
\begin{aligned}
N & =N_{0}\left(\frac{1}{2}\right)^{n} \\
n & =\frac{t}{T} \\
\therefore \quad 10^{6} & =1.414 \times 10^{6}\left(\frac{1}{2}\right)^{t / T} \\
\Rightarrow \quad \frac{1000}{1414} & =\left(\frac{1}{2}\right)^{t / T} \\
\Rightarrow \quad\left(\frac{1}{2}\right)^{2} & =\left(\frac{10}{12}\right)^{2} \quad \text { (Approximately) } \\
\Rightarrow \quad n & =2
\end{aligned}
$$

$\Rightarrow \quad \mathrm{n}=\frac{t}{T}=2$
$\Rightarrow \quad T=\frac{10}{2}=5 \mathrm{~min}$
187 (d)
$E=\Delta m c^{2}=1 \times\left(3 \times 10^{8}\right)^{2}=9 \times 10^{16} J$
$\Rightarrow E=\frac{9 \times 10^{16}}{1.6 \times 10^{-19}}=5.625 \times 10^{35} \mathrm{eV}$

$$
=5.625 \times 10^{29} \mathrm{MeV}
$$

189 (c)

$$
{ }_{85} X^{297} \rightarrow{ }_{77} Y^{281}+4\left({ }_{2} H e^{4}\right)
$$

190 (d)
Minimum wavelength is for highest energy
$n=1 \rightarrow n=\infty$, energy $=E_{0}$
$n=2 \rightarrow n=\infty$, energy $=E_{0} / 4$
$\square \begin{aligned} & n=\infty E=0 \\ & n=2 E_{0} / 4 \\ & n=1 E\end{aligned}$
\therefore Balmer line has 4 times the wavelength
\therefore Ratio of minimum wavelength is $1 / 4=0.25$
192 (d)
Activity reduces from 6000dps to 3000 dps in 140 days. It implies that half-life of the radioactive sample is 140 days. In 280 days (or two halflives)activity will remain $\frac{1}{4}$ th of the initial activity . Hence the initial activity of the sample is
$4 \times 6000 \mathrm{dps}=24000 \mathrm{dps}$
193 (b)
The working of hydrogen bomb is based upon nuclear fusion.
195 (a)
(i) ${ }_{16} S^{32}+{ }_{0} n^{1} \rightarrow{ }_{15} p^{32}+{ }_{1} H^{1}$
(ii) ${ }_{9} F^{19}+{ }_{1} H^{1} \rightarrow{ }_{2} \mathrm{He}^{4}+{ }_{8} \mathrm{O}^{16}$
(iii) ${ }_{7} N^{14}+{ }_{0} n^{1} \rightarrow{ }_{6} C^{14}+H_{1} H^{1}$

196 (b)
Number of atoms remains undecayed $N=N_{0} e^{-\lambda t}$ Number of atoms decayed $=N_{0}\left(1-e^{-\lambda t}\right)$
$=N_{0}\left(1-e^{-\lambda \times \frac{1}{\lambda}}\right)=N_{0}\left(1-\frac{1}{e}\right)=0.63 N_{0}=63 \%$ of N_{0}
197 (d)
By using $A=A_{0}\left(\frac{1}{2}\right)^{\frac{1}{T_{1 / 2}}} \Rightarrow \frac{A}{A_{0}}=\left(\frac{1}{2}\right)^{9 / 3}=\frac{1}{8}$
199 (d)
Decrease in mass number $=4$
Decreases in charge number $=2-1=1$
200 (c)
$T \propto n^{3}$
201
(c)
$N=N_{0} e^{-\lambda t} \Rightarrow \frac{d N}{d t}=-N_{0} \lambda e^{-\lambda t}$
$i . e .$, Rate of decay $\left(\frac{d N}{d t}\right)$ varies exponentially with time (t)
202 (b)

$$
{ }_{Z} X^{A} \xrightarrow{\alpha}{ }_{Z-2} X^{A-4}
$$

203 (c)
New mass number $A^{\prime}=A-4 n_{\alpha}=232-4 \times 6=$ 208
Atomic number $Z^{\prime}=Z+n_{\beta}-2 n_{\alpha}=90+4-$
$2 \times 6=82$
204 (d)
$E_{n_{1} \rightarrow n_{2}}=-13.6\left[\frac{1}{n_{2}^{2}}-\frac{1}{n_{1}^{2}}\right] ; n_{1}=2 \& n_{2}=1$
$\Rightarrow E_{I I} \rightarrow E_{I}=-13.6 \times \frac{3}{4}=-10.2 \mathrm{eV}$
205 (c)
James Chadwick discovered the neutron
(c)

Let number of α particles decayed be x and number of β particles decayed bey.
Then equation for the decay is given by
${ }_{92} \mathrm{U}^{235} \rightarrow x \alpha_{2}^{4}+y \beta_{-1}^{0}+\mathrm{Pb}_{82}^{203}$
Equating the mass number on both sides

$$
\begin{equation*}
235=4 x+203 \tag{i}
\end{equation*}
$$

Equating atomic number on both sides

$$
\begin{equation*}
92=2 x-y+82 \tag{ii}
\end{equation*}
$$

Solving Equ.(i) and(ii), we get

$$
x=8, y=6
$$

$\therefore 8 \alpha$ particles and 6β particles are emitted in disintegration.
209
(d)
$E=-Z^{2} \times 13.6 \mathrm{eV}=-9 \times 13.6 \mathrm{eV}=-122.4 \mathrm{eV}$
So ionization energy $=+122.4 \mathrm{eV}$
210 (b)
Let the energy in A, B and C states be $E_{A} . E_{B}$ and E_{C}, then from the figure

$\left(E_{C}-E_{B}\right)+\left(E_{B}-E_{A}\right)=\left(E_{C}-E_{A}\right)$ or
$\frac{h c}{\lambda_{1}}+\frac{h c}{\lambda_{2}}=\frac{h c}{\lambda_{3}}$
$\Rightarrow \lambda_{3}=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}$
211 (d)
$E_{n}=-13.6 \frac{Z^{2}}{n^{2}} \mathrm{eV}$. Required energy for said transition
$\Delta E=E_{3}-E_{1}=13.6 Z^{2}\left[\frac{1}{1^{2}}-\frac{1}{3^{2}}\right]$
$\Rightarrow \Delta E=13.6 \times 3^{2}\left[\frac{8}{9}\right]=108.8 \mathrm{eV}$
$\Rightarrow \Delta E=108.8 \times 1.6 \times 10^{-19} \mathrm{~J}$
Now $\Delta E=\frac{h c}{\lambda}=108.8 \times 1.6 \times 10^{-19}$
$\Rightarrow \lambda=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{108.8 \times 1.6 \times 10^{-19}}$
$=0.11374 \times 10^{-7} \mathrm{~m}=113.74 \AA$
212 (d)
For Lyman series $\frac{1}{\lambda_{\text {max }}}=R\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right]=\frac{3}{4} R$ and
$\frac{1}{\lambda_{\text {min }}}=R\left[\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right]=\frac{R}{1} \Rightarrow \frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}=\frac{4}{3}$
213 (a)
$R_{0}=$ Initial activity $=1$ micro curie $=3.7 \times$
$10^{4} \mathrm{~d} p s$
$r=$ Activity in $1 \mathrm{~cm}^{3}$ of blood at $t=5 \mathrm{hr}$
$=\frac{296}{60} d p s=4.93 \mathrm{dps}$
$R=$ Activity of whole blood at time $t=5 \mathrm{hr}$
Total volume should be $V=\frac{R}{r}=\frac{R_{0} e^{-\lambda t}}{r}$
$=\frac{3.7 \times 10^{4} \times 0.7927}{4.93}=5.94 \times 10^{3} \mathrm{~cm}^{3}$ $=5.94$ litre
214 (b)
${ }_{Z}^{A} X+{ }_{0}^{1} n \rightarrow{ }_{3}^{7} \mathrm{Li}+{ }_{2}^{4} \mathrm{He}$
It implies that $A+1=7+4$
$\Rightarrow \quad A=10$
and $\quad Z+0=3+2$
\Rightarrow
$Z=5$
Thus, it is boron ${ }_{5}^{10} \mathrm{~B}$.
215 (c)
The equation is $O^{17} \rightarrow_{0} n^{1}+O^{16}$
\therefore Energy required $=$ B.E. of $O^{17}-$ B.E. of O^{16}
$=17 \times 7.75-16 \times 7.97=4.23 \mathrm{MeV}$
216 (a)
Let α-particles emitted are x and β - particles emitted are y
${ }_{90} \mathrm{Th}^{232} \rightarrow{ }_{82} \mathrm{~Pb}^{208}+x_{2} \mathrm{He}^{4}+y{ }_{-1} e^{0}$
On comparing atomic number

$$
\begin{array}{rr}
& 90=82+2 x-y \\
\text { or } & 2 x-y=8 \tag{i}
\end{array}
$$

On comparing mass number

$$
232=208+4 x
$$

or $\quad x=6$
Putting the value of x in Eq.(i), we get

$$
y=4
$$

217 (d)
Half life of a substance doesn't depends upon
amount, temperature and pressure. It depends upon the nature of the substance
218 (a)
By using $n_{\alpha}=\frac{A-A^{\prime}}{4}$ and $n_{\beta}=2 n_{\alpha}-Z+Z^{\prime}$
220 (b)
Let there be $x \alpha$-particles and $\gamma \beta$-particles
${ }_{\mathrm{z}} X^{4} \rightarrow x \mathrm{He}_{2}^{4}+y \beta_{-1}^{0}+Y_{Z-3}^{A-8}$
Then equating the mass numbers

$$
\begin{equation*}
A=4 x+A-8 \tag{i}
\end{equation*}
$$

and Equating atomic number

$$
\begin{equation*}
Z=2 x-y+Z-3 \tag{ii}
\end{equation*}
$$

Solving Eqs.(i) and (ii),we get

$$
x=2 \text { and } \mathrm{y}=1
$$

\therefore The number of α and β particles emitted are 2 and 1 respectively.
221 (a)
${ }_{92} \mathrm{U}^{239} \longrightarrow{ }_{94} \mathrm{Pu}^{239}+2\left({ }_{-1} e^{0)}\right.$
222 (b)
$A=A_{0} e^{-\lambda t} \Rightarrow 975=9750 e^{-\lambda \times 5} \Rightarrow e^{5 \lambda}=10$
$\Rightarrow 5 \lambda=\log _{e} 10=2.3026 \log _{10} 10=2.3026$
$\Rightarrow \lambda=0.461$
223 (d)
Let radius of ${ }_{4}^{9} \mathrm{Be}$ nucleus be r. Then radius of germanium (Ge) nucleus will be $2 r$.
Radius of nucleus is given by

$$
\begin{aligned}
R & =R_{0} A^{1 / 3} \\
\therefore \quad \frac{R_{1}}{R_{2}} & =\left(\frac{A_{1}}{A_{2}}\right)^{1 / 3} \\
\Rightarrow \quad \frac{r}{2 r} & =\left(\frac{9}{A^{2}}\right)^{1 / 3} \quad\left(\because A_{1}=9\right) \\
\Rightarrow \quad\left(\frac{1}{2}\right)^{3} & =\frac{9}{A^{2}}
\end{aligned}
$$

Hence, $A_{2}=9 \times(2)^{3}=9 \times 8=72$
Thus, in germanium (Ge) nucleus number of nucleons is 72.
224 (c)
$A=A_{0} e^{-\lambda t}=A_{0} e^{-t / \tau} ;$ where $\tau=$ mean life
So $A_{1}=A_{0} e^{-t_{1} / T}$
$\Rightarrow A_{0}=\frac{A_{1}}{e^{-t_{1} / T}}=A_{1} e^{t_{1} / T}$
$\therefore A_{2}=A_{0} e^{-t / T}=\left(A_{1} e^{t_{1} / T}\right) e^{-t_{2} / T}$
$\Rightarrow A_{2}=A_{1} e^{\left(t_{1}-t_{2}\right) / T}$
225 (a)
According to kinetic interpretation of temperature
$K . E .=\left(\frac{1}{2} m v^{2}\right)=\frac{3}{2} k T$
$\Rightarrow 10.2 \times 1.6 \times 10^{-19}=\frac{3}{2} \times\left(1.38 \times 10^{-23}\right) T$
$\Rightarrow T=7.9 \times 10^{4} \mathrm{~K}$

226 (a)
Electron after absorbing 10.2 eV energy goes to its first excited state ($n=2$) from ground state ($n=1$)
\therefore Increase in momentum $=\frac{h}{2 \pi}$
$=\frac{6.6 \times 10^{-34}}{6.28}=1.05 \times 10^{-34} \mathrm{~J}-s$
227 (c)
Nuclear force between two particles is independent of charges of particle.
$\Rightarrow \quad F_{p p}=F_{n n}=F_{n p}$
228 (c)
Transition A ($n=\infty$ to 1) : Series limit of Lyman series
Transition B ($n=5$ to $n=2$): Third spectral line of Balmer series
Transition C ($n=5$ to $n=3$) : Second spectral line of Paschen series
229 (a)
$E=m c^{2}=\left(1 \times 10^{-3}\right)\left(3 \times 10^{8}\right)^{2}=9 \times 10^{13} \mathrm{~J}$
230 (c)
$E_{1}=-\frac{13.6(3)^{2}}{(1)^{2}}$
$E_{3}=-\frac{13.6(3)^{2}}{(3)^{2}}$
$\therefore \Delta E=E_{3}-E_{1}=13.6(3)^{2}\left[1-\frac{1}{9}\right]$

$$
=\frac{13.6 \times 9 \times 8}{9}
$$

$\Rightarrow \Delta E=108.8 \mathrm{eV}$
231 (c)
From Rutherford-Soddy's law

$$
N=N_{0}\left(\frac{1}{2}\right)^{n}
$$

Given, $\quad N=1-\frac{3}{4}=\frac{1}{4} N_{0}, n=\frac{t}{T}=\frac{t}{4}$
$\therefore \quad \frac{1}{4}=\left(\frac{1}{2}\right)^{t / 4}$
$\Rightarrow \quad\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{t / 4}$
$\Rightarrow \quad 2=\frac{t}{4}$
$\Rightarrow \quad t=8$ months
232 (d)

$\square \quad n=1(-13.6 \mathrm{eV})$
$E_{3 \rightarrow 2}=-1.51-(-3.4)=1.89 \mathrm{eV}$
$\Rightarrow\left|E_{3 \rightarrow 2}\right|=1.9 \mathrm{eV}$
234 (a)

$$
\begin{aligned}
& \text { B.E. }=\Delta m c^{2}=\Delta \times 931 \mathrm{MeV} \\
& \begin{aligned}
=[2(1.0087 & +1.0073)-4.0015] \times 931 \\
& =28.4 \mathrm{MeV}
\end{aligned}
\end{aligned}
$$

235 (a)
The splitting of ${ }_{92} \mathrm{U}^{234}$ is as follows ${ }_{92} \mathrm{U}^{234} \rightarrow{ }_{46} X^{116}+{ }_{46} X^{116}+2{ }_{0} n^{1}+$ energy $\therefore{ }_{46} X^{116}$ is ${ }_{46} P^{116}$
236 (d)
Average $\mathrm{BE} /$ nucleon increase first, and then decreases, as is clear from BE curve.

237 (c)

Energy is released in a process when total binding energy (B.E.) of the nucleus is increased or we can say when total B. E. of products is more than the reactants. By calculation we can see that only in case of option (c), this happens
Given $W \rightarrow 2 Y$
B. E. of reactants $=120 \times 7.5=900 \mathrm{MeV}$
and $B . E$. of products $=2 \times(60 \times 8.5)=$
1020 MeV
i.e., B.E. of products $>B$. E. of reactants

238 (c)
$N=N_{0} e^{-\lambda t} \Rightarrow\left|\frac{d N}{d t}\right|=N_{0} \lambda e^{-\lambda t}$
Initially at $t=0,\left|\frac{d N}{d t}\right|_{t=0}=N_{0} \lambda$
Where $N_{0}=$ Initial number of undecayed atoms
$=\frac{\text { Mass of the sample }}{\text { Mass of a single atom of } X}=\frac{M}{A / N_{A}}=\frac{M N_{A}}{A}$
$\therefore\left|\frac{d N}{d t}\right|_{t=0}=\frac{M N_{A} \lambda}{A}=\frac{0.693 M N_{A}}{A T}$
239 (a)
$R=R_{0} A^{1 / 3}$
Here, $R=7.2 \times 10^{-15} \mathrm{~m}, R_{0}=1.2 \times 10^{-15} \mathrm{~m}$ $\therefore A=\left(\frac{R}{R_{0}}\right)^{3}=\left(\frac{7.2 \times 10^{-15}}{1.2 \times 10^{-15}}\right)^{3}=(6)^{3}=216$
Also, atomic number $Z=\frac{q}{e}=\frac{1.28 \times 10^{-17}}{1.6 \times 10^{-19}}=80$
Therefore, number of neutrons

$$
N=A-Z=216-80=136
$$

240 (d)
Applying principle of energy conservation.
Energy of proton=total BE of 2α-energy of Li^{7}
$=8 \times 7.06 \times 7 \times 5.6$
$=56.48-39.2=17.28 \mathrm{MeV}$

241 (b)

Energy of proton $+7 \times 5.60=2 \times[4 \times 7.06]$
\therefore Energy of proton $=17.28 \mathrm{MeV}$

242 (c)
Fast neutrons can escape from the reaction. So as to proceed the chain reaction slow neutrons are best
243 (c)
An electron is accompanied by an antineutrino.
244 (d)
Undisintegrated part

$$
\frac{N}{N_{0}}=(100-18) \%=82 \%
$$

Using relation $N=N_{0}\left(e^{-\lambda t}\right)$
$\frac{82}{100}=\mathrm{e}^{-(24 \times 60 \times 60 \lambda)}$
$\therefore 24 \times 60 \times 60 \times \lambda=\log \left(\frac{100}{82}\right)$
or $\quad \lambda=2.1 \times 10^{-6} \mathrm{~s}^{-1}$
245 (d)
One curie $=3.71 \times 10^{10}$ disintegrations S^{-1}
Mass of 6.023×10^{23} atoms of $U^{234}=234 \mathrm{~g}$
Mass of 3.71×10^{10} atoms
$=\frac{234 \times 3.71 \times 10^{10}}{6.023 \times 10^{23}}=1.438 \times 10^{11} \mathrm{~g}$
246 (b)
$\lambda=\frac{0.693}{T_{1 / 2}}=\frac{0.693}{20}=0.03465$
Now time of decay $t=\frac{2.303}{\lambda} \log \frac{N_{0}}{N}$
$\Rightarrow t_{1}=\frac{2.303}{0.03465} \log \frac{100}{67}=11.6 \mathrm{~min}$ min
and $t_{2}=\frac{2.303}{0.03465} \log \frac{100}{33}=32 \mathrm{~min}$
Thus time difference between points of time $=t_{1}-t_{2}=32-11.6=20.4 \mathrm{~min}=20 \mathrm{~min}$
248 (c)
\therefore Orbital quantum number has values : 0 to ($n-1$)
For $n=3$, orbital quantum number $l=0,1,2$
249 (c)

$$
\begin{aligned}
N=N_{0}\left(\frac{1}{2}\right)^{t / T_{1 / 2}} & \Rightarrow 1=16\left(\frac{1}{2}\right)^{\frac{2}{T_{1 / 2}}} \Rightarrow T_{1 / 2} \\
& =\frac{1}{2} \text { hour }
\end{aligned}
$$

250

(b)

$20 g$ substance reduces to $10 g$ (i.e., becomes half in 4 min . So $T_{1 / 2}=4 \mathrm{~min}$. Again $M=M_{0}=$ $\left(\frac{1}{2}\right)^{t / T_{1 / 2}}$
$\begin{aligned} \Rightarrow 10=80\left(\frac{1}{2}\right)^{t / 4} & \Rightarrow \frac{1}{8}=\left(\frac{1}{2}\right)^{3}=\left(\frac{1}{2}\right)^{t / 4} \Rightarrow t \\ & =12 \mathrm{~min}\end{aligned}$

$$
=12 \mathrm{~min}
$$

(a)

Mass number of an element is the total number of protons and neutrons present inside the atomic nucleus of the element. It is represented by $A . A$ is different for different elements. Mass number of a nucleus is sometimes equal to its atomic number, for example in case of hydrogen, number of neutrons $=0$. So, mass number $=$ atomic number.
254 (a)
$N=N_{0}\left(\frac{1}{2}\right)^{t / T_{1 / 2}}$
$\Rightarrow \quad N_{A}=10\left(\frac{1}{2}\right)^{t / 1}$ and $N_{B}=1\left(\frac{1}{2}\right)^{t / 2}$
Given $N_{A}=N_{B}$
$\Rightarrow 10\left(\frac{1}{2}\right)^{t}=\left(\frac{1}{2}\right)^{t / 2} \Rightarrow 10=\left(\frac{1}{2}\right)^{-t / 2}$
$\Rightarrow \quad 10=2^{t / 2}$
Taking log on both the sides

$$
\begin{aligned}
\log _{10} 10 & =\frac{t}{2} \log _{10} 2 \Rightarrow 1=\frac{t}{2} \times 0.3010 \\
\Rightarrow \quad t & =6.62 \mathrm{yr}
\end{aligned}
$$

256 (c)
Let the initial number of atoms at time
$t=0$ be N_{0}.
Let N be the number of atoms at any instant t.
Mean life $\tau=\frac{1}{\lambda}$, where λ is disintegration
constant.
Given , $t=\tau$
According to radioactive disintegration law,

$$
\begin{aligned}
& N=N_{0} e^{-\lambda t} \\
\text { or } \quad N & =N_{0} e^{-\lambda \times \frac{1}{\lambda}}=\frac{N_{0}}{e} \\
\text { or } \quad \frac{N_{0}}{N} & =e
\end{aligned}
$$

257 (b)
Paschen series lies in the infrared region
258 (a)
Nuclear force is charge independent, it also acts between two neutrons
259 (c)
$N=N_{0}\left(\frac{1}{2}\right)^{t / T} \Rightarrow \frac{N_{0}}{64}=N_{0}\left(\frac{1}{2}\right)^{30 / T} \Rightarrow T=\frac{30}{6}=5 s$
(b)

Binding energy

$$
B E=\left(M_{\text {nucleus }}-M_{\text {nucleons }}\right) c^{2}=
$$

$$
\left(M_{o}-8 M_{p}-9 M_{n}\right) c^{2}
$$

261 (b)

By using $\frac{1}{\lambda}=R Z^{2}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$
For Hydrogen atom $\frac{1}{\left(\lambda_{\min }\right)_{H}}=R\left[\frac{1}{1^{2}}-\frac{1}{\infty}\right]=R$
$\Rightarrow\left(\lambda_{\min }\right)_{H}=\frac{1}{R}$
For hydrogen like atom $\left(\frac{1}{\lambda_{\min }}\right)_{\text {atom }}=$
$R Z^{2}\left(\frac{1}{2^{2}}-\frac{1}{\infty}\right)$
$\Rightarrow\left(\lambda_{\min }\right)_{\text {atom }}=\frac{4}{R Z^{2}}$
From equation (i) and (ii), $\frac{1}{R}=\frac{4}{R Z^{2}} \Rightarrow Z=2$
262

(b)

By using $r_{n}=r_{0} \frac{n^{2}}{z}$; where $r_{0}=$ Radius of the Bohr orbit in the ground state atom. So for He^{+}third excited state $n=4, Z=2, r_{0}=0.5 \AA \Rightarrow r_{4}=0.5 \times$ $\frac{4^{2}}{2}=4 \AA$
263 (a)
When an electron jumps from the orbit of lower energy ($n=1$) to the orbit of higher energy ($n=3$), energy is absorbed
264 (c)
Number of days from January $1^{\text {st }}$ to January $24^{\text {th }}=$ 23 days
Number of half lives $n=\frac{23}{8.04}=2.86(<3)$

In three half lives activity becomes 75 Bq , but the given number of half lives are lesser than 3 so activity becomes greater than $75 B q$
265 (b)
They move in opposite direction to conserve linear momentum
266 (a)
Einstein's mass energy relation , the energy released is

$$
\Delta E=\Delta m c^{2}
$$

Where, c is speed of light and Δm is mass.
Given,

$$
\begin{aligned}
& \Delta m=1.67 \times 10^{-27} \mathrm{~kg}, c=3 \times 10^{8} \mathrm{~ms}^{-1} \\
& \therefore \quad \Delta E=1.67 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2} \\
& \Delta E \approx 1.5 \times 10^{-10} \mathrm{~J}
\end{aligned}
$$

267 (d)
The complete reaction is
${ }_{93}^{235} X \rightarrow{ }_{91}^{231} Y+{ }_{2} \mathrm{He}^{4}+{ }_{-1} e^{0}$

$$
(\alpha-\text { particle) (electron) }
$$

268 (a)
The average time that the atom spends in this excited sate is equal to Δt, so by using $\Delta E . \Delta t=\frac{h}{2 \pi}$

$$
\begin{aligned}
& \Rightarrow \text { Unertainty in energy }=\frac{h / 2 \pi}{\Delta t} \\
& \begin{array}{r}
=\frac{6.6 \times 10^{-34}}{2 \times 3.14 \times 10^{-8}}=1.05 \times 10^{-26} \mathrm{~J} \\
\quad=6.56 \times 10^{-8} \mathrm{eV}
\end{array}
\end{aligned}
$$

269 (a)
Carbon dating
270 (b)
Energy $E=K\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right] \quad(K=$ constant $)$
$n_{1}=2$ and $n_{2}=3$, so $E=\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]=K\left[\frac{5}{36}\right]$
For removing an electron, $n_{1}=1$ to $n_{2}=\infty$
Energy $E_{1}=K[1]=\frac{36}{5} E=7.2 E$
\therefore Ionization energy $=7.2 E$
272 (a)
$\frac{d N}{d t}=\lambda N ; \lambda=\frac{0.6931}{t_{12}}$

$$
=\frac{0.6931}{1620 \times 365 \times 24 \times 60 \times 60}
$$

$N=\frac{6.023 \times 10^{23}}{226}$
$\therefore \frac{d N}{d t}=\frac{0.6931 \times 6.023 \times 10^{23}}{1620 \times 365 \times 24 \times 60 \times 60 \times 226}$

$$
=3.61 \times 10^{10}
$$

273 (a)
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}$ or $\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / t_{1 / 2}}$ or $\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / 1}$
For $t=3$ months

$$
\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{3}=\frac{1}{8}
$$

Therefore , disintegrated part of substance in 3 months

$$
=1-\frac{1}{8}=\frac{7}{8}
$$

(d)
$\frac{1}{\lambda}=R\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$. For first wavelength $n_{1}=2, n_{2}=$
$3 \Rightarrow \lambda_{1}=6563$ Å. For second wavelength
$n_{1}=2, n_{2}=4 \Rightarrow \lambda_{2}=4861 \AA$
275 (a)
${ }_{0} n^{1} \rightarrow{ }_{1} H^{1}+{ }_{-1} e^{0}+\bar{v}+Q$
$\Delta m=m_{n}-m_{\alpha}-m_{e}$
$=\left(1.6725 \times 10^{-27}-1.6725 \times 10^{-27}-9\right.$

$$
\left.\times 10^{-31}\right) \mathrm{kg}
$$

$=-9 \times 10^{-31} \mathrm{~kg}$
Energy $=9 \times 10^{-31} \times\left(3 \times 10^{8}\right)^{2}$
$=0.511 \mathrm{MeV}$
Which is nearly equal to 0.73 MeV

For an atom of atomic number Z, radius of nth orbit is given by
$r_{n}=\frac{k n^{2}}{Z} \ldots$ (i) where $k=$ constant
For ground state of hydrogen, $Z=1, n=1$, so that
$r_{1}=\frac{k 1^{2}}{1}=k$
Let n be the energy state of Be^{+++}for which orbital radius is r_{1}. Put
$Z=4$ and $r_{n}=r_{1}=k$ in Eq.(i)
$r_{1}=\frac{r_{1} n^{2}}{4}$ or $n^{2}=4 ; n=2$
277 (d)
$N=N_{0}\left(\frac{1}{2}\right)^{2} \Rightarrow \frac{N}{N_{0}}=\frac{1}{4}$
Probability $=1-\frac{N}{N_{0}}=1-\frac{1}{4}=\frac{3}{4}$
279 (b)
Recoil momentum $=$ momentum of photon $=\frac{h}{\lambda}$ $=h R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)=\frac{h R \times 15}{16}=6.8 \times 10^{-27} \mathrm{~N} \times \mathrm{s}$
280 (d)
$n_{\alpha}=\frac{A-A^{\prime}}{4}=\frac{200-168}{4}=8$
$n_{\beta}=2 n_{a}-Z+Z^{\prime}=2 \times 8-90+80=6$
281 (a)
For hydrogen and hydrogen like atoms
$E_{n}=-13.6 \frac{z^{2}}{n^{2}} e V$
$U_{n}=2 E_{n}=-27.2 \frac{z^{2}}{n^{2}} \mathrm{eV}$ and $K_{n}=\left|E_{n}\right|=$
$13.6 \frac{z^{2}}{n^{2}} \mathrm{eV}$
From these three relations we can see that as n decreases, K_{n} will increase but E_{n} and U_{n} will decrease
282 (b)
Maximum number of spectral lines are observed in Lyman series
283 (c)
Let $\lambda_{A}=\lambda \therefore \lambda_{B}=2 \lambda$
If N_{0} is total number of atoms in A and B at $t=0$, then initial rate of disintegration of $A=\lambda N_{0}$, and initial rate of disintegration of $B=2 \lambda N_{0}$

As $\lambda_{B}=2 \lambda_{A}$
$\therefore T_{B}=\frac{1}{2} T_{A}$
$i e$, half-life of B is half the half-life of A.
After one half-life of A
$\left(-\frac{d N}{d t}\right)_{A}=\frac{\lambda N_{0}}{2}$
Equivalently, after two half lives of B
$\left(-\frac{d N}{d t}\right)_{B}=\frac{2 \lambda N_{0}}{4}=\frac{\lambda N_{0}}{2}$
Clearly, $\left(-\frac{d N}{d t}\right)_{A}=-\left(\frac{d N}{d t}\right)_{B}$
after $n=1 i e$, one half-life of A
284 (c)
Energy released from 1 kg of uranium

$$
\begin{aligned}
& =\frac{200 \times 10^{6} \times 1.6 \times 10^{-19} \times 6.023 \times 10^{26}}{235} \\
& =8.2 \times 10^{13} \mathrm{~J}
\end{aligned}
$$

285 (b)
Because the neutron has no electric charge, it experience no electric repulsion from a U^{235} nucleus. Hence a slow moving neutron can approach and enter a U^{235} nucleus, thereby providing the excitation needed to trigger fission. By contrast a slow moving proton feels a strong repulsion from a U^{235} nucleus. It never get's close to the nucleus, so it cannot trigger fission
286 (a)
$m=\frac{E}{c^{2}}=\frac{931 \times 1.6 \times 10^{-13}}{\left(3 \times 10^{8}\right)^{2}}=1.66 \times 10^{-27} \mathrm{~kg}$
287 (a)
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n} \Rightarrow \frac{1}{16}=\left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)^{n} \Rightarrow n=4$
Also $n=\frac{t}{T_{1 / 2}} \Rightarrow T_{1 / 2}=\frac{40}{4}=10$ days
288 (d)
Initially $P \rightarrow 4 N_{0} ; Q \rightarrow N_{0}$
Half life $T_{p}=1 \mathrm{~min} ; T_{Q}=2 \mathrm{~min}$
Let after time t number of nuclei of P and Q are equal
That is $\frac{4 N_{0}}{2^{t / 1}}=\frac{N_{0}}{2^{t / 2}}$
Or $\frac{4}{2^{t / 2}}=1$ or $t=4 \mathrm{~min}$
So at $t=4 \mathrm{~min}$
$N_{P}=\frac{\left(4 N_{0}\right)}{2^{4 / 1}}=\frac{N_{0}}{4}$
At $t=4 \mathrm{~min} . N_{Q}=\frac{N_{0}}{2^{4 / 2}}=\frac{N_{0}}{4}$
Or no. of nuclei of $\mathrm{R}=\left(4 N_{0}-\frac{N_{0}}{4}\right)+\left(N_{0}-\frac{N_{0}}{4}\right)$
$=\frac{9 N_{0}}{2}$

289 (d)
Shortest wavelength comes from $n_{1}=\infty$ to $n_{2}=1$ and longest wavelength comes from $n_{1}=6$ to $n_{2}=5$ in the given case. Hence
$\frac{1}{\lambda_{\text {min }}}=R\left(\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right)=R$
$\frac{1}{\lambda_{\max }}=R\left(\frac{1}{5^{2}}-\frac{1}{6^{2}}\right)=R\left(\frac{36-25}{25 \times 36}\right)=\frac{11}{900} R$
$\therefore \frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}=\frac{900}{11}$
290 (c)
Nuclear force of attraction between any two nucleons ($n-n, p-p ; p-n$) is same. The difference comes up only due to electrostatic force of repulsion between two protons.
$\therefore F_{1}=F_{3} \neq F_{2}$. As $F_{2}<F_{3}>F_{1}$
$\therefore F_{1}=F_{3}>F_{2}$

291 (b)

In atom bomb nuclear fission takes place with huge temperature.
292 (c)
Nuclear density for all nuclei is same and equal to $10^{17} \mathrm{kgm}^{-3}$
Radius of nucleus and mass number are related as

$$
\begin{aligned}
& R=R_{0}(A)^{1 / 3} \\
\text { or } & R \propto(A)^{1 / 3}
\end{aligned}
$$

Thus, (A) is true but (B) is false.
293 (a)
${ }_{92} U^{238} \xrightarrow{\alpha}{ }_{90} \mathrm{Th}^{234} \xrightarrow{\beta}{ }_{91} \mathrm{~Pa}^{234} \xrightarrow{e\left({ }_{-1} \beta^{0}\right)}{ }_{92} U^{234}$
294 (c)
Excitation potential $=\frac{\text { Excitation energy }}{e}$
Minimum excitation energy corresponds to
excitation from $n=1$ to $n=2$
\therefore Minimum excitation energy in hydrogen atom
$=-3.4-(-13.6)=+10.2 \mathrm{eV}$
So minimum excitation potential $=10.2 \mathrm{~V}$
295 (c)
$\frac{r_{1}}{r_{2}}=\left(\frac{A_{1}}{A_{2}}\right)^{1 / 3}=\left(\frac{64}{27}\right)^{1 / 3}=\frac{4}{3}$
296 (b)
Given, $R=1250, R_{0}=5000$ and $t=5 \mathrm{~min}$

$$
R=R_{0} e^{-\lambda t}
$$

$$
1250=5000 e^{-\lambda \times 5}
$$

$$
\lambda=0.4 \log _{e} 2
$$

297 (b)
Energy released on bombarding U^{235} by
neutron=200 MeV
Power output of atomic reactor $=1.6 \mathrm{MW}$
\therefore Rate of fission $=\frac{1.6 \times 10^{6}}{200 \times 10^{6} \times 1.6 \times 10^{-19}}$

$$
=5 \times 10^{16} \mathrm{~s}^{-1}
$$

(c)

The electron is in the second orbit ($n=2$)
Hence $L=\frac{n h}{2 \pi}=\frac{2 h}{2 \pi}=\frac{6.6 \times 10^{-34}}{\pi}=2.11 \times 10^{-34} \mathrm{~J}-$ s

299 (b)
$\frac{\lambda}{\lambda_{0}}=\frac{\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]}{\left[\frac{1}{2^{2}}-\frac{1}{4^{2}}\right]}=\frac{5}{36} \times \frac{16}{3}=\frac{20}{27}$
$\lambda=\frac{20}{27} \lambda_{0}$
300 (b)
It will form a stationary wave
$\lambda=2 l=2 \times 10^{-9} \mathrm{~m}$
$\Rightarrow \lambda=\frac{h}{\sqrt{2 m E}}$

$\Rightarrow E=\frac{h^{2}}{2 m \lambda^{2}}=6 \times 10^{-20} \mathrm{~J}$
301 (b)
Moderator is used to slow down neutrons. Heavy water, graphite or beryllium oxide are used for this purpose. Heavy water is the best moderator.
302 (a)
$\frac{N_{0}}{32}=N_{0}\left(\frac{1}{2}\right)^{60 / T} \Rightarrow 5=\frac{60}{T} \Rightarrow T=12$ days
(d)
$n=\frac{24}{24 \times 138.6}=\frac{1}{138.6} ; \operatorname{Now} \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{1 / 138.6}$
$\Rightarrow N=10,00000\left(\frac{1}{2}\right)^{1 / 138.6}=995011$
So number of disintegration
$=1000000-995011=4989=5000$
305 (d)
$\frac{R_{1}}{R_{2}}=\left(\frac{A_{1}}{A_{2}}\right)^{1 / 3}=\left(\frac{27}{125}\right)^{1 / 3}=\frac{3}{5}$
306 (b)
$N=N_{0}\left(\frac{1}{2}\right) n=4 \times \frac{1}{2}=2$
307 (b)
In Paschen series $\frac{1}{\lambda_{\text {max }}}=R\left[\frac{1}{(3)^{2}}-\frac{1}{(4)^{2}}\right]$
$\Rightarrow \lambda_{\text {max }}=\frac{144}{7 R}=\frac{144}{7 \times 1.1 \times 10^{7}}=1.89 \times 10^{-6} \mathrm{~m}$

$$
=1.89 \mu \mathrm{~m}
$$

Similarly $\lambda_{\text {min }}=\frac{9}{R}=\frac{9}{1.1 \times 10^{7}}=0.818 \mu m$
308 (c)
Speed of electron in $n^{\text {th }}$ orbit of hydrogen atom
$v=\frac{e^{2}}{2 \varepsilon_{0} n h}$
In ground state $n=1 \Rightarrow v=\frac{e^{2}}{2 \varepsilon_{0} h}$
$\Rightarrow \frac{v}{c}=\frac{e^{2}}{2 \varepsilon_{0} c h}$
$=\frac{\left(1.6 \times 10^{-19}\right)^{2}}{2 \times 8.85 \times 10^{-12} \times 3 \times 10^{8} \times 6.6 \times 10^{-34}}$
$=\frac{1}{137}$
309 (d)
By using $N_{E}=\frac{n(n-1)}{2} \Rightarrow N_{E}=\frac{4(4-1)}{2}=6$
310 (a)
$E=E_{4}-E_{1}=-\frac{13.6}{4^{2}}-\left(-\frac{13.6}{1^{2}}\right)$
$=-0.85+13.6=12.75 \mathrm{eV}$
$=12.75 \times 1.6=10^{-14} \mathrm{~J}$
$P=\frac{E}{C}=\frac{12.75 \times 1.6 \times 10^{-19}}{3 \times 10^{8}}$
$=6.8 \times 10^{-27} \mathrm{~kg} \mathrm{~ms}^{-1}$
This must be the momentum of recoiled hydrogen atom (in opposite direction)

311 (c)
Half-life $T_{1 / 2}=\frac{0.693}{\lambda}=\frac{0.693}{1.07 \times 10^{-4}}=6476$ years
312 (a)
Using $\Delta E \propto Z^{2} \quad\left[\therefore n_{1}\right.$ and n_{2} are same $]$
$\Rightarrow \frac{h c}{\lambda} \propto Z^{2} \Rightarrow \lambda Z^{2}=\mathrm{constant}$
$\Rightarrow \lambda_{1} Z_{1}^{2}=\lambda_{2} Z_{2}^{2}=\lambda_{3} Z_{3}^{2}=\lambda_{4} Z_{4}^{2}$
$\Rightarrow \lambda_{1} \times 1=\lambda_{2} \times 1^{2}=\lambda_{3} \times 2^{2}=\lambda_{4} \times 3^{3}$
$\Rightarrow \lambda_{1}=\lambda_{2}=4 \lambda_{3}=9 \lambda_{4}$
313 (b)
Hydrogen bomb is based on nuclear fusion
314 (c)
After n half-lives(ie, at $t=n T$) the number of nuclides left undecayed,

$$
N=N_{0}\left(\frac{1}{2}\right)^{n}
$$

Given, $\quad \frac{N}{N_{0}}=\frac{1}{16}$
$\therefore \quad \frac{1}{16}=\left(\frac{1}{2}\right)^{n}$
or $\quad\left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)^{n}$
Equating the powers, we obtain

$$
\begin{aligned}
n & =4 \\
i e, \quad \frac{t}{T} & =4
\end{aligned}
$$

or $\quad t=4 T$
Or $\quad t=4 \times 5730=22929 \mathrm{yr} \quad(\because T=$ 5730 yr)
315 (b)
$T_{h}=\frac{\log _{e}^{2}}{\lambda}, \tau_{m}=\frac{1}{\lambda}$
316 (c)
As given
${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{2} \mathrm{He}^{4}+$ energy
The binding energy per nucleon of a
deuteron $\left({ }_{1} \mathrm{H}^{2}\right)$

$$
=1.1 \mathrm{MeV}
$$

\therefore Total binding energy of one deuteron nucleus

$$
=2 \times 1.1=2.2 \mathrm{MeV}
$$

\therefore The binding energy per nucleon of
Helium (${ }_{2} \mathrm{He}^{4}$)

$$
=7 \mathrm{MeV}
$$

\therefore Total binding energy

$$
=4 \times 7=28 \mathrm{MeV}
$$

Hence, energy released in the above process

$$
\begin{aligned}
& =28-2 \times 2.2 \\
& =28-4.4=23.6 \mathrm{MeV}
\end{aligned}
$$

317 (a)
As $\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}$; where, Number of half lives, $n=\frac{t}{T}$ T is the half life period
For X sample,
$\frac{1}{16}=\left(\frac{1}{2}\right)^{8 / T_{X}}$ or $\left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)^{8 / T_{X}} \Rightarrow 4=\frac{8}{T_{X}}$
For Y sample,
$\left(\frac{1}{256}\right)=\left(\frac{1}{2}\right)^{8 / T_{Y}}$ or $\left(\frac{1}{2}\right)^{8}=\left(\frac{1}{2}\right)^{8 / T_{Y}} \Rightarrow 8=\frac{8}{T_{Y}}$
...(ii)
Divide (i) by (ii) we get
$\frac{4}{8}=\frac{8}{T_{X}} \times \frac{T_{Y}}{8} \Rightarrow \frac{1}{2}=\frac{T_{Y}}{T_{X}}$ or $\frac{T_{X}}{T_{Y}}=\frac{2}{1}$
320 (d)
Half-life $T / 2=\frac{T}{1.44}=\frac{100}{1.44} \mathrm{~s}=69.44 \mathrm{~s}$

$$
=\frac{69.44}{60} \approx 1.155 \mathrm{~min}
$$

321 (c)
A and B can be isotopes if number of β-decays is two times the number of $\alpha-$ decays.

322 (b)
$v \propto Z^{2} \Rightarrow \frac{v_{H_{2}}}{v_{H e}}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \Rightarrow v_{H e}=4 v_{H_{2}}=4 v_{0}$
323 (b)
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n} \Rightarrow \frac{1}{64}=\left(\frac{1}{2}\right)^{6}=\left(\frac{1}{2}\right)^{n} \Rightarrow n=6$
After 6 half lives intensity emitted will be safe
\therefore Total time taken $=6 \times 2=12 \mathrm{hrs}$
325 (a)
Speed of electron in $n^{\text {th }}$ orbit (in CGS)
$v_{n}=\frac{2 \pi Z e^{2}}{n h}(k=1)$
For first orbit of $H_{1} ; n=1$ and $Z=1$
So $v=\frac{2 \pi e^{2}}{h} \Rightarrow \frac{v}{c}=\frac{2 \pi e^{2}}{h c}$
326 (b)
$N=N_{0}\left(\frac{1}{2}\right)^{\frac{t}{T_{1 / 2}}}$
No of atoms at $t=2 h r, N_{1}=8 \times 10^{10}\left(\frac{1}{2}\right)^{\frac{2}{1}}=2 \times$ 10^{10}
No. of atoms at $t=4 h r, N_{2}=8 \times 10^{10}\left(\frac{1}{2}\right)^{\frac{4}{1}}=\frac{1}{2} \times$ 10^{10}
\therefore No. of atoms decayed in given duration
$=\left(2-\frac{1}{2}\right) \times 10^{10}=1.5 \times 10^{10}$
327 (a)
$r_{n} \propto n^{2}$ in Bohr atom model
Potential energy $=\frac{-1}{4 \pi \varepsilon_{0}} \cdot \frac{e^{2}}{r_{n}}$
For the $10^{\text {th }}$ orbit, it is $=\frac{-1}{4 \pi \varepsilon_{0}} \cdot \frac{e^{2}}{r_{1}(100)}$
$\frac{1}{100}$ times less than the potential energy in the first orbit
Potential energy will decrease but with negative sign. Therefore when an electron in hydrogen atom jumps from $n=1$ to $n=10$ orbit, the potential energy of the system will increase
329 (c)
After decay, the daughter nuclei will be more stable hence, binding energy per nucleon will be more than that of their parent nucleus.
330 (b)
Balmer series lies in the visible region
332 (d)
Energy released in the fission of one nucleus
$=200 \mathrm{MeV}$
$=200 \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J}=3.2 \times 10^{-11} \mathrm{~J}$
$P=16 \mathrm{~kW}=16 \times 10^{3} \mathrm{watt}$
Now, number of nuclei required per second
$n=\frac{P}{E}=\frac{16 \times 10^{3}}{3.2 \times 10^{-11}}=5 \times 10^{14}$
333 (b)
At any instant the rate of decay of radioactive atoms is proportional to the number of atoms present at that instant ie,

$$
\begin{aligned}
-\frac{d N}{d t} & \propto N \\
-\frac{d N}{d t} & =R=\lambda N
\end{aligned}
$$

where λ is decay constant.
334 (b)
Experimentally it is found that the volume of a nucleus is directly proportional to its mass number. From this it is concluded that the density of each nucleus is uniform, it does not depend on the size of the nucleus.
It the nucleus is assumed to be a sphere of radius R and its mass number is A, then volume of nucleus $V=\frac{4}{3} \pi R^{3}$.
Thus, $\quad \frac{4}{3} \pi R^{3} \propto A$ or $R^{3} \propto A$
Or $\quad R \propto A^{1 / 3}$
$i e$, the radius of nucleus is directly proportional to the cube root(or $\frac{1}{3}$ power) of its mass number A.

Aliter

Nuclear radius

$$
\begin{aligned}
& R=R_{0} A^{1 / 3} \\
\therefore \quad & R \propto A^{1 / 3}
\end{aligned}
$$

335 (b)

$$
\begin{aligned}
& { }_{Z} X^{A} \rightarrow{ }_{Z-2} X^{A-4}+{ }_{2} \mathrm{He}^{4} \\
& { }_{Z-2} X^{A-4} \rightarrow{ }_{Z-2} X^{A-4}+-1 e^{0}
\end{aligned}
$$

337 (d)
Rate $R=-\frac{d N}{d t}=\lambda N_{0} e^{-\lambda t}=\lambda N \Rightarrow \frac{R}{N}=\lambda$
(constant) i.e., graph between $\frac{R}{N}$ and t, is a straight line parallel to the time axis
338 (a)
${ }_{92} U^{235}+{ }_{0} n^{1} \rightarrow{ }_{38} S r^{90}+{ }_{54} X e^{143}+3{ }_{0} n^{1}$
341 (b)
Here $A_{0}=8$ counts, $A=1$ counts $t=3 \mathrm{~h}$.

$$
\begin{aligned}
\frac{A}{A_{0}} & =\left(\frac{1}{2}\right)^{n} \\
\Rightarrow \quad \frac{1}{8} & =\left(\frac{1}{2}\right)^{n} \\
\text { or }\left(\frac{1}{2}\right)^{3} & =\left(\frac{1}{2}\right)^{n} \Rightarrow n=3 \\
\text { So, } T_{1 / 2} & =\frac{t}{n}=\frac{3}{3}=1 h
\end{aligned}
$$

342 (a)
Energy constant $E=10.2 \mathrm{eV}=10.2 \times 1.6 \times$
$10^{-19} \mathrm{~J}$
$\Rightarrow E=\frac{h c}{\lambda} \Rightarrow \lambda=1.215 \times 10^{-7} \mathrm{~m}$
343 (c)
The nuclear reaction can be represented as

$$
{ }_{3} \mathrm{Li}^{7}+{ }_{1} \mathrm{H}^{1} \rightarrow{ }_{4} \mathrm{Be}^{8}+{ }_{z} X^{A}
$$

Applying conservation of atomic number (charge)

$$
3+1=4+Z \Rightarrow Z=0
$$

Applying conservation of atomic mass

$$
7+1=8+A \Rightarrow A=0
$$

Thus, the emitted particles are γ-photons (${ }_{0} X^{0}$).
344 (a)

$$
\begin{aligned}
& P=n\left(\frac{E}{t}\right) \Rightarrow 1000 \\
& \quad=\frac{n \times 200 \times 10^{6} \times 1.6 \times 10^{-19}}{t} \\
& \Rightarrow \frac{n}{t}=3.125 \times 10^{13}
\end{aligned}
$$

345 (c)
For ${ }_{6} C^{12}, p=6, e=6, n=6$
For ${ }_{6} C^{14}, p=6, e=6, n=8$
346 (c)
$B=\left[Z M_{p}+N M_{n}-M(N, Z) c^{2}\right.$
$\Rightarrow M(M, Z)=Z M_{p}+N M_{n}-B / c^{2}$
347 (d)
The given equation is ${ }_{2} \mathrm{He}^{4}+{ }_{z} X^{A} \rightarrow{ }_{z+2} Y^{A+3}+$ A
Applying charge and mass conservation

$$
4+A=A+3+x \Rightarrow x=1 \Rightarrow 2+z=z+2+n
$$

$$
\Rightarrow n=0
$$

Hence A is a neutron
349 (c)
$E=E_{3}-E_{1}=-\frac{13.6}{3^{2}}-\left(-\frac{13.6}{1^{2}}\right)$
$E=-1.51+13.6=12.09 \mathrm{eV}$
350 (b)
The nuclear reaction can be put as
${ }_{6} \mathrm{C}^{1} \rightarrow{ }_{5} \mathrm{~B}^{11}+_{+1} e^{0}+{ }_{z} X^{A}$
Applying conservation of mass number and charge number, we find that
$A=0$ and $Z=0$
Therefore, X stands for a neutrino
351 (d)
$E=E_{1} / n^{2}$

Energy used for excitation is 12.75 eV
i.e., $(-13.6+12.75) \mathrm{eV}=-0.85 \mathrm{eV}$

The photons of energy 12.75 eV can excite the fourth level of H-atom. Therefore six lines will be emitted ($n \frac{(n-1)}{2}$ lines)
352 (b)
$\left(\frac{1}{2}\right)^{n}=\frac{N}{N_{0}}=\frac{1}{20}$ given $n=4.32$
$t=n \times T=4.32 \times 3.8$
$=16.4$ days
354 (c)
$R=R_{0}(A)^{1 / 3}$
$\frac{R_{2}}{R_{1}}=\left(\frac{A_{2}}{A_{1}}\right)^{1 / 3}=\left(\frac{64}{27}\right)^{1 / 3}=\frac{4}{3}$
$R_{2}=3.6 \times \frac{4}{3}=4.8$
356 (a)
${ }_{0} n^{1}+{ }_{92} U^{235} \rightarrow{ }_{56} B a^{144}+{ }_{36} K r^{89}+3{ }_{0} n^{1}$
359 (d)
${ }_{92} U^{238} \rightarrow{ }_{90} \mathrm{Th}^{234}+{ }_{2} \mathrm{He}^{4}$
360 (a)
Ratio of n / p will decrease

$$
2_{1} \mathrm{H}^{2} \rightarrow{ }_{2} \mathrm{He}^{4}+Q
$$

Energy released

$$
Q=4 \times 7-4 \times 1.1=23.6 \mathrm{MeV}
$$

361 (d)
From Rutherford-Soddy law, the number of atoms left after n half-lives is given by

$$
N=N_{0}\left(\frac{1}{2}\right)^{n}
$$

Where, N_{0} is original number of atoms.
The number of half-life

$$
n=\frac{\text { time of decay }}{\text { effective half }- \text { life }}
$$

Relation between effective disintegration constant (λ) and half-life (T) is

$$
\lambda=\frac{\ln 2}{T}
$$

$\therefore \quad \lambda_{1}+\lambda_{2}=\frac{\ln 2}{T_{1}}+\frac{\ln 2}{T_{2}}$
Effective half -life

$$
\begin{aligned}
& \frac{1}{T}=\frac{1}{T_{1}}+\frac{1}{T_{2}}=\frac{1}{1620}+\frac{1}{810} \\
& \frac{1}{T}=\frac{1+2}{1620} \Rightarrow T \Rightarrow 540 \mathrm{yr}
\end{aligned}
$$

$\therefore \quad n=\frac{t}{540}$
$\therefore \quad N=N_{0}\left(\frac{1}{2}\right)^{t / 540}$
$\Rightarrow \quad \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{t / 540}$
$\Rightarrow \quad \frac{t}{540}=2$
$\Rightarrow \quad t=2 \times 540=1080 \mathrm{yr}$
362 (c)
In β-decay, mass number is unaffected. Atomic number increase by one.

364 (c)
During γ-decay, neither charge number Z nor mass number A changes. So the only correct option is (c).

365 (a)
$n \rightarrow p+\bar{e}+v$ (anti -neutrino)
366 (d)
$r \propto n^{2}$. For ground state $n=1$ and for first excited state $n=2$
367 (a)
As disintegration by two different processes is simultaneous, therefore, effective decay constant $\lambda=\left(\lambda_{1}+\lambda_{2}\right)$

368 (d)
In the second orbit, $n=2$
Ionisation energy, $E=\frac{13.6}{2^{2}}=3.4 \mathrm{eV}$
369 (a)
As $T=\frac{2 \pi r}{v}$ or $V=\frac{n h}{2 \pi m r}$
$\therefore T=\frac{2 \pi r}{n h / 2 \pi m r}=\frac{m r^{2}}{n h} \propto \frac{r^{2}}{n}$

But $r \propto n^{2} \therefore T \propto n^{3}$
or $\frac{T_{1}}{T_{2}}=\left(\frac{n_{1}}{n_{2}}\right)^{3}$, As $T_{1}=8 T_{2}$
$\therefore\left(\frac{n_{1}}{n_{2}}\right)^{3}=8, \frac{n_{1}}{n_{2}}=2$
Therefore, in given values $n_{1}=6, n_{2}=3$

370 (a)
$\begin{aligned} \frac{1}{\lambda_{H_{2}}} & =R Z_{H}^{2}\left[\frac{1}{4}-\frac{1}{9}\right]=R(1)^{2}\left[\frac{5}{36}\right] \\ \frac{1}{\lambda_{H e}} & =R Z_{H e}^{2}\left[\frac{1}{4}-\frac{1}{16}\right]=R(4)\left[\frac{3}{16}\right]\end{aligned}$
$\frac{\lambda_{H e}}{\lambda_{H_{2}}}=\frac{1}{4}\left[\frac{16}{3} \times \frac{5}{36}\right]=\frac{5}{27}$
$\lambda_{\text {He }}=\frac{5}{27} \times 6561=1215 \AA$
371 (a)
Fraction of material decayed $=1-\frac{N}{N_{0}}$
$=1-\left(\frac{1}{2}\right)^{t / T_{1 / 2}}=1-\left(\frac{1}{2}\right)^{20 / 5}=1-\frac{1}{16}=\frac{15}{16}$

$$
=93.75 \%
$$

372 (d)
$A=A_{0}\left(\frac{1}{2}\right)^{n} \Rightarrow 30=240\left(\frac{1}{2}\right)^{n} \Rightarrow\left(\frac{1}{2}\right)^{3}=\left(\frac{1}{2}\right)^{n}$

$$
\Rightarrow n=3
$$

$\therefore \frac{t}{T_{1 / 2}}=3 \Rightarrow T_{1 / 2}=\frac{t}{3}=\frac{1}{3} h r=20 \mathrm{~min}$
373 (c)
For 80 minutes, number of half lives of sample $A=n_{A}=\frac{80}{20}=4$ and number of half lives of sample $B=n_{B}=\frac{80}{40}=2$. Also by using
$N=N_{0}\left(\frac{1}{2}\right)^{n}$
$\Rightarrow N \propto \frac{1}{2^{n}} \Rightarrow \frac{N_{A}}{N_{B}}=\frac{2^{n_{B}}}{2^{n_{A}}}=\frac{2^{2}}{2^{4}}=\frac{1}{4}$
374 (b)
Energy is given by

$$
\begin{aligned}
E & =m c^{2}=1 \times\left(3 \times 10^{8}\right)^{2} \\
& =9 \times 10^{16}=10^{17} \text { joule }
\end{aligned}
$$

approximately
375
(d)

	$E_{1}=\frac{h c}{\lambda_{1}}$
	$E_{2}=\frac{h c}{\lambda_{2}}$
	$\mathrm{n}=4$
	$\mathrm{n}=3$
	$\mathrm{n}=2$

$E_{1}=\frac{h c}{\lambda_{1}}=13.6\left[\frac{1}{(3)^{2}}-\frac{1}{(4)^{2}}\right]$
$E_{2}=\frac{h c}{\lambda_{2}}=13.6\left[\frac{1}{(2)^{2}}-\frac{1}{(3)^{2}}\right]$
Dividing eq. (ii) by eq. (i)
$\frac{\lambda_{1}}{\lambda_{2}}=\frac{\frac{1}{4}-\frac{1}{9}}{\frac{1}{9}-\frac{1}{16}}=\frac{20}{7}$
(d)

Elementary particles are mainly classified into two parts viz. Bosons \& Fermions. Photons and mesons belong to Bosons. Fermions and further divided into leptons and conservation of charge principle. Baryons which are lighter and heavier particles respectively. Electrons belong to leptons. Neutrons and protons belong to Baryons. Baryons
and mesons are together known as Hadrons
377 (c)
The wavelength of spectral line in Balmer series is given by
$\frac{1}{\lambda}=R\left[\frac{1}{2^{2}}-\frac{1}{n^{2}}\right]$
For first line of Balmer series, $n=3$
$\Rightarrow \frac{1}{\lambda_{1}}=R\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]=\frac{5 R}{36}$; For second line $n=4$
$\Rightarrow \frac{1}{\lambda_{2}}=R\left[\frac{1}{2^{2}}-\frac{1}{4^{2}}\right]=\frac{3 R}{16}$
$\therefore \frac{\lambda_{2}}{\lambda_{1}}=\frac{20}{27} \Rightarrow \lambda_{2}=\frac{20}{27} \times 6561=4860 \AA$
379 (a)
(i) When ${ }_{92} \mathrm{U}^{235}$ undergoes fission, 0.1% of its original mass is changed into energy.
(ii) Most of energy released appears in the form of kinetic energy of fission fragments.
(iii) The energy released in U^{235} fission in about 200 MeV .
(iv) By fission of ${ }_{92} \mathrm{U}^{235}$, on the average 2.5 neutrons are liberated.

381 (b)
Mass of proton $=$ mass of antiproton
$=1.67 \times 10^{-27} \mathrm{~kg}=1 \mathrm{amu}$
Energy equivalent to $1 \mathrm{amu}=931 \mathrm{MeV}$
So energy equivalent to $2 \mathrm{amu}=2 \times 931 \mathrm{MeV}$
$=1862 \times 10^{6} \times 1.6 \times 10^{-19}$
$=2.97 \times 10^{-10} \mathrm{~J}=3 \times 10^{-10} \mathrm{~J}$
382 (d)
Upto $n=1$ it gives Lyman series
Upto $n=2$ it gives Balmer series
Upto $n=3$ it gives Paschen series
Upto $n=4$ it gives Brackett series
Upto $n=5$ it gives Pfund series
383 (c)
After n half-lives the quantity of a radioactive substance left intact (undecayed) is given by

$$
\begin{aligned}
N & =N_{0}\left(\frac{1}{2}\right)^{n} \\
& =N_{0}\left(\frac{1}{2}\right)^{t / T_{1 / 2}}
\end{aligned}
$$

Here, $\quad N=\frac{1}{16} N_{0}, t=2 h$

$$
\begin{aligned}
& \frac{1}{16} N_{0}=N_{0}\left(\frac{1}{2}\right)^{\frac{2}{T_{1}}} \frac{1}{2} \\
& \left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)^{2 / T_{1 / 2}}
\end{aligned}
$$

Equating the powers on both sides

$$
\begin{aligned}
4 & =\frac{2}{T_{1 / 2}} \\
T_{1 / 2} & =\frac{1}{2} \mathrm{~h}=30 \mathrm{~min}
\end{aligned}
$$

(c)

If N_{0} potassium atoms were present at the time the rock was formed by solidification from a molten form, the number of potassium atoms remaining at the time of analysis is,

$$
\begin{equation*}
N_{K}=N_{0} e^{-\lambda t} \tag{i}
\end{equation*}
$$

In which t is the age of the rock.
For every potassium atom that decays, an argon atom is produced. Thus, the number of argon atoms present at the line of the analysis is

$$
\begin{equation*}
N_{\mathrm{Ar}}=N_{0}-N_{K} \tag{ii}
\end{equation*}
$$

We cannot measure N_{0}, so let's eliminate it from Eqs.(i) and (ii). We find , after some algebra, that $\lambda t=\ln \left(1+\frac{N_{\mathrm{Ar}}}{N_{\mathrm{K}}}\right)$
in which $N_{\mathrm{Ar}} / N_{\mathrm{K}}$ can be measured. Solving for t

$$
\begin{aligned}
t & =\frac{T_{1 / 2} \ln \left(1+N_{\mathrm{Ar}} / N_{K}\right)}{\operatorname{In} 2} \\
& =\frac{\left.\left(1.25 \times 10^{9} y\right)\right)[\ln (1+10.3)]}{\ln 2}=4.37 \times 10^{9} \mathrm{yr} .
\end{aligned}
$$

385 (b)
Ionizing property depends upon the charge and mass
386 (c)
Due to the production of neutrons, a chain of nuclear fission is established which continues until the whole of the source substance is consumed
387 (a)
Applying principle of conservation of linear momentum,
$m_{\alpha} v_{\alpha}+{ }^{m} N^{v} N=0$
$4 v+(210-4)^{v} N=0$
${ }^{v} N=\frac{-4 v}{206}$
Negative sigh for recoil speed
388 (d)
$r \propto \frac{1}{Z^{\prime}}$ for double ionized lithium $Z(=3)$ will be maximum. So r will be minimum
389 (a)
We know that $1 \mathrm{~kW}=1 \times 10^{3} \mathrm{Js}^{-1}$
Also, $1.6 \times 10^{-9} \mathrm{~J}=1 \mathrm{eV}$
$\therefore \mathrm{MeV}=200 \times 1.6 \times 10^{-19} \times 10^{6} \mathrm{~J}$
Number of fissions $=\frac{\text { Power }}{\text { Energy released }}$
$=\frac{10^{3}}{200 \times 1.6 \times 10^{-13}}=3.125 \times 10^{13}$
391 (c)
$A_{1}=\lambda N_{1}$
$A_{2}=\lambda N_{2}$
$N_{1}-N_{2}=\left[\frac{A_{1}-A_{2}}{\lambda}\right]$
394 (c)

$$
N=N_{0}\left(1-e^{-\lambda t}\right)
$$

$\Rightarrow \frac{N_{0}-N}{N_{0}}=e^{-\lambda t}$
$\therefore \quad \frac{1}{8}=e^{-\lambda t}$
$\Rightarrow \quad 8=e^{\lambda t}$
$\Rightarrow 3 \operatorname{In} 2=\lambda t$
$\Rightarrow \quad \lambda=\frac{3 \times 0.693}{15}$
Half-life period

$$
\begin{aligned}
& t_{1 / 2}=\frac{0.693}{3 \times 0.693} \times 15 \\
& t_{1 / 2}=5 \mathrm{~min}
\end{aligned}
$$

395 (d)

Obviously, difference of 11.1 eV is not possible
396 (d)
Energy required for ionizing an excited hydrogen atom $=$ ionization energy - excitation energy
$=13.6-10.2=3.4 \mathrm{eV}$
397 (d)
$R=R_{0} A^{1 / 3} \Rightarrow R \propto A^{1 / 3}$
398 (d)
As n increases P.E. also increases
399 (c)
${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{2} \mathrm{He}^{3}+{ }_{0} n^{1}+Q$ (energy)
$\because 2$ molecules of deuterium are fused, then
released energy $=Q$
Hence, energy released per molecule $=\frac{Q}{2}$
Now, we know that number of molecules in one mole

$$
=6.02 \times 10^{23}
$$

Hence number of molecules in two moles $=$
$2 \times 6.02 \times 10^{23}$
Hence, energy released when two mole of deuterium are fused $\quad=\frac{Q}{2} \times 2 \times 6.02 \times$ $10^{23}=Q \times 6.02 \times 10^{23}$
400 (d)
Activity $A=\lambda N_{0} e^{-\lambda t}$
$\Rightarrow \log _{e} A=\log _{e} \lambda N_{0}+\log _{e} e^{-\lambda t}$
$\Rightarrow \log _{e} A=\log _{e} C-\lambda t \quad\left[\right.$ Take $\left.\lambda N_{0}=C\right]$
$\Rightarrow \log _{e} A=-\lambda t+\log _{e} C$
This is the equation of a straight line having negative slope $(=-\lambda)$ and positive intercept on $\log _{e} A$ axis
401 (b)
${ }_{e} X^{A}={ }_{88} R a^{226}$
Number of protons $=Z=88$
Number of neutrons $=A-Z=226-88=138$
402 (b)
As n increases P.E. increases and K.E. decreases
403 (b)

$$
\begin{gathered}
E_{n}=-\frac{13.6 z^{2}}{n^{2}} e V \Rightarrow E_{1}=-\frac{13.6 \times(2)^{2}}{(1)^{2}} \\
=-54.4 \mathrm{eV}
\end{gathered}
$$

404 (c)
For Paschen series $\bar{v}=\frac{1}{\lambda}=R\left[\frac{1}{3^{2}}-\frac{1}{n^{2}}\right] ; n=$ 4, 5, $6 \ldots$
For first member of Paschen series $n=4$
$\frac{1}{\lambda_{1}}=R\left[\frac{1}{3^{2}}-\frac{1}{4^{2}}\right] \Rightarrow \frac{1}{\lambda_{1}}=\frac{7 R}{144}$
$\Rightarrow R=\frac{144}{7 \lambda_{1}}=\frac{144}{7 \times 18800 \times 10^{-10}}=1.1 \times 10^{7}$
For shortest wave length $n=\infty$
So, $\frac{1}{\lambda}=R\left[\frac{1}{3^{2}}-\frac{1}{\infty^{2}}\right]=\frac{R}{9}$
$\Rightarrow \lambda=\frac{9}{R}=\frac{9}{1.1 \times 10^{7}}=8.225 \times 10^{7} \mathrm{~m}=8225 \AA$
405 (c)
$\lambda=\frac{0.693}{T_{1 / 2}}=\frac{0.693}{2.3}=0.3$
406 (b)
Mass defect per nucleon is called packing fraction.
Packing fraction
(f) $=\frac{\Delta m}{A}=\frac{m-A}{A}$, where $m=$ mass of nucleus,
$A=$ mass number. Packing fraction measures the stability of a nucleus. Smaller the value of packing fraction, larger is the stability of nucleus. Packing fraction may be positive, negative or zero.
407 (a)
For the stability of the nucleus it should have high binding energy per nucleon
408 (a)
Fraction of material that remains undecayed

$$
\begin{aligned}
\frac{10}{80} & =\left(\frac{1}{2}\right)^{\frac{1 h}{T_{1 / 2}}} \\
3 & =\frac{1 h}{T_{1 / 2}}
\end{aligned}
$$

or $T_{1 / 2}=\frac{60}{3} \mathrm{~min}=20 \mathrm{~min}=1200 \mathrm{~s}$

Now, $\quad \lambda=\frac{0.693}{T_{1 / 2}}=\frac{0.693}{1200}=5.8 \times 10^{-4} \mathrm{~s}^{-1}$
409 (c)
Change in the angular momentum
$\Delta L=L_{2}-L_{1}=\frac{n_{2} h}{2 \pi}-\frac{n_{1} h}{2 \pi} \Rightarrow \Delta L=\frac{h}{2 \pi}\left(n_{2}-n_{1}\right)$
$=\frac{6.6 \times 10^{-34}}{2 \times 3.14}(5-4)=1.05 \times 10^{-34} \mathrm{~J}-s$
410 (a)
Moderator slows down neutrons
411 (c)
When a slow neutron strikes a U^{235} nucleus it is absorbed by the nucleus and the following reaction occurs.

$$
\begin{gathered}
{ }_{92} \mathrm{U}^{235}+{ }_{0} n^{1} \rightarrow{ }_{36} \mathrm{Kr}^{94}+{ }_{56} \mathrm{Ba}^{139}+3{ }_{0} n^{1} \\
\\
+ \text { energy }
\end{gathered}
$$

Hence, ${ }_{56} B a^{139}$ is another product.
412 (c)
Activity $R=R_{0} e^{-\lambda t}$
$\frac{R_{0}}{3}=R_{0} e^{-\lambda \times 9} \Rightarrow e^{-9 \lambda}=\frac{1}{3}$
After further 9 years $R^{\prime}=R e^{-\lambda t}=\frac{R_{0}}{3} \times e^{-\lambda \times 9}$

From equation (i) and (ii), $R^{\prime}=\frac{R_{0}}{9}$
413 (b)
To form its own isotope atomic number (Z) should remain same.
So, the emission of one α - particle and two $\beta-$ particles will maintain the Z same.
Where α-particle $={ }_{2} \mathrm{He}^{4} ; \beta-$ particle $=$ ${ }_{-1} \beta^{0}$
414 (c)
$K . E=\frac{k Z e^{2}}{2 r}$ and P.E. $=-\frac{k Z e^{2}}{r} ; \therefore \frac{K . E .}{P . E .}=-\frac{1}{2}$
416 (a)
No radioactive substance emits both α and β particles simultaneously. Some substances emit α-particles and some other emits β-particles, γ-rays are emitted along with both α and β-particles
417 (a)
Proton cannot be emitted by radioactive substances during their decay.
418 (a)
Energy required to ionize helium atom $=24.6 \mathrm{eV}$
419 (d)
${ }_{92} U^{235}+{ }_{0} n^{1} \rightarrow{ }_{92} U^{236}$ and ${ }_{92} U^{236} \rightarrow$ ${ }_{56} B a^{144}+{ }_{36} K r^{89}+3{ }_{0} n^{1}+Q$
420
(d)

For first line in Lyman series $\lambda_{L_{1}}=\frac{4}{3 R}$

For first line in Balmer series $\lambda_{B_{1}}=\frac{36}{5 R}$
From equations (i) and (ii)
$\frac{\lambda_{B_{1}}}{\lambda_{L_{1}}}=\frac{27}{5} \Rightarrow \lambda_{B_{1}}=\frac{27}{5} \lambda_{L_{1}} \Rightarrow \lambda_{B_{1}}=\frac{27}{5} \lambda$
(b)

After two half-lives $\frac{1}{4}$ th fraction of nuclei will remain undecayed or $\frac{3}{4}$ th fraction will decay.
Hence, the probability that a nucleus decays in two half-lives is $\frac{3}{4}$.
422 (b)
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / T}=\left(\frac{1}{2}\right)^{\frac{10}{5}}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} 25 \%$
This is probability of remaining portion of radium.
So, probability of decay

$$
=(100-25) \%=75 \%
$$

423 (d)
For stability in case of lighter nuclei $\frac{N}{Z}=1$ and for heavier nuclei $\frac{N}{Z}>1$
425 (a)
The radius of the Bohr atom model, which is valued only for hydrogen or other ionized atoms with a single electron is given by $r_{n}=$ $\left(\frac{n^{2}}{m}\right)\left(\frac{h}{2 \pi}\right)^{2}\left(\frac{4 \pi \varepsilon_{0}}{Z e^{2}}\right)$
\therefore For a given $Z=82, r \propto n^{2}$
\therefore If the radius of the first orbit is R, the radius of the third orbit is $n^{2} R$ i.e. , $9 R$
427 (d)
No energy and mass enters or goes out of the system of the reaction and no external force is assumed to act
428 (a)

$$
\begin{gathered}
E_{n} \propto Z^{2} \Rightarrow \frac{\left(E_{n}\right)_{H e}}{\left(E_{n}\right)_{H}}=\frac{Z_{H e}^{2}}{Z_{H}^{2}}=4 \Rightarrow\left(E_{n}\right)_{H e} \\
=4 \times\left(E_{n}\right)_{H}
\end{gathered}
$$

429 (d)
The wavelength of different spectral lines of Lyman series is given by
$\frac{1}{\lambda}=R_{H}\left[\frac{1}{1^{2}}-\frac{1}{n^{2}}\right]$; where $n=2,3,4, \ldots$.
For shortest wavelength, $n=\infty$
$\therefore \frac{1}{\lambda}=\frac{R_{H}}{1}$
Or $\lambda=\frac{1}{R_{H}}=\frac{1}{109678 \mathrm{~cm}^{-1}}$
$=9.117 \times 10^{-6} \mathrm{~cm}=9.117 \times 10^{-8} \mathrm{~m}$
$=911.7 \times 10^{-10} \mathrm{~m}=911.7 \AA$
430 (d)
B. $E .=\Delta m a m u=\Delta m \times 931 \mathrm{MeV}$

431 (c)
Lithium nucleus and carbon nucleus are positively charge. According to coulomb law same charge repal each other. So, nuclei do not come very close.
432 (d)
$v_{n} \propto \frac{1}{n} \Rightarrow \frac{v_{5}}{v_{2}}=\frac{2}{5} \Rightarrow v_{5}=\frac{2}{5} v_{2}=\frac{2}{5} v$
433 (c)
Energy of an electron in ground state of an atom
(Bohr's hydrogen like atom) is given as
$E=-13.6 Z^{2} \mathrm{eV} \quad[Z=$ atomic number of the
atom]
$\Rightarrow E_{\text {ionisation }}=13.6 Z^{2}$
$\Rightarrow \frac{\left(E_{\text {ion }}\right)_{H}}{\left(E_{\text {ion }}\right)_{L i}}=\left(\frac{Z_{H}}{Z_{L i}}\right)^{2}=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$
434 (b)
$N=N_{0} e^{-\lambda t}$
$\therefore 0.9 N_{0}=N_{0} e^{-\lambda \times 5} \Rightarrow 5 \lambda=\log _{e} \frac{1}{0.9}$
and $x N_{0}=N_{0} e^{-\lambda \times 20} \Rightarrow 20 \lambda=\log _{e}\left(\frac{1}{x}\right)$
Dividing (i) by (ii), we get
$\frac{1}{4}=\frac{\log _{e}(1 / 0.9)}{\log _{e}(1 / x)}=\frac{\log _{10}(1 / 0.9)}{\log _{10}(1 / x)}=\frac{\log _{10} 0.9}{\log _{10} x}$
$\Rightarrow \log _{10} x=4 \log _{10} 0.9 \Rightarrow x=0.658=65.8 \%$
435 (c)
Neutrons are unstable and having mean life time of 32 sec , decay by emitting an electron and antineutrino to become proton
437 (d)
$r=\frac{\varepsilon_{0} n^{2} h^{2}}{\pi Z m e^{2}} ; \therefore r \propto \frac{n^{2}}{Z}$
(b)

Acceleration $a \propto \frac{v^{2}}{r}$
Where $v \propto \frac{Z}{n}$ and $r \propto \frac{n^{2}}{Z} \Rightarrow a \propto \frac{Z^{3}}{n^{4}}$
Since both are in ground state i.e., $n=1$
So $a \propto Z^{3} \Rightarrow \frac{a_{H e^{+}}}{a_{H}}=\left(\frac{Z_{\mathrm{He}^{+}}}{Z_{H}}\right)^{3}=\left(\frac{2}{1}\right)^{3}=\frac{8}{1}$
439 (c)
${ }_{5} B^{10}+{ }_{0} n^{1} \rightarrow{ }_{3} L i^{7}+{ }_{2} \mathrm{He}^{4}$
441 (a)
Radius of nucleus $R=R_{0} A^{1 / 3}$
Where $R_{0}=1.2 \times 10^{-15} \mathrm{~m}$
Volume of nucleus (V) $=\frac{4}{3} \pi R^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \pi\left[R_{0} A^{1 / 3}\right]^{3} \\
& =\frac{4}{4} \pi R_{0}^{3} A
\end{aligned}
$$

$\therefore \quad V \propto A$
443 (d)

The half-life of source $=\frac{8}{4}=2 \mathrm{~s}$
Now,

$$
\begin{aligned}
R & =R_{0}\left(\frac{1}{2}\right)^{n} \\
R & =1600\left(\frac{1}{2}\right)^{\frac{6}{2}} \\
& =1600\left(\frac{1}{2}\right)^{3}=200
\end{aligned}
$$

444 (a)
From radioactive decay law.

$$
-\frac{d N}{d t} \propto N \text { or }-\frac{d N}{d t}=\lambda N
$$

Thus, $\quad R=-\frac{d N}{d t}$
Or $\quad R=\lambda N$ or $R=\lambda N_{0} e^{-\lambda t}$
Where $R_{0}=\lambda N_{0}$ is the activity of the radioactive materialat time $t=0$.
At time $t_{1}, \quad R_{1}=R_{0} e^{-\lambda t}$
At time $t_{2}, \quad R_{2}=R_{0} e^{-\lambda t}$
Dividing Eq. (ii) by (iii), we have

$$
\begin{equation*}
\frac{R_{1}}{R_{2}}=\frac{e^{-\lambda t_{1}}}{e^{-\lambda t_{2}}}=e^{-\lambda\left(t_{1}-t_{2}\right)} \tag{iii}
\end{equation*}
$$

or $\quad R_{1}=R_{2} e^{-\lambda\left(t_{1}-t_{2}\right)}$
445 (a)
Ionization energy $=$ Binding energy
446 (b)
Fission rate $=\frac{\text { total power }}{\text { energy/fission }}$
$=\frac{5}{200 \times 1.6 \times 10^{-13}}=1.56 \times 10^{11} \mathrm{~s}^{-1}$
447 (b)
The electron in a hydrogen atom, moves with constant acceleration, called centripetal acceleration, round the nucleus. Acceleration of electron $a=\frac{v^{2}}{r}$
Given, $v=2.18 \times 10^{6} \mathrm{~m} / \mathrm{s}$
$r=0.528 \AA=0.528 \times 10^{-10} \mathrm{~m}$
$\therefore a=\frac{\left(2.18 \times 10^{6}\right)^{2}}{0.528 \times 10^{-10}}=9 \times 10^{22} \mathrm{~m} / \mathrm{s}^{2}$
448 (b)
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / T_{1 / 2}} \Rightarrow\left(\frac{1}{16}\right)=\left(\frac{1}{2}\right)^{120 / T_{1 / 2}}$
$\left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)^{120 / T_{1 / 2}} \Rightarrow 4=\frac{120}{T_{1 / 2}} \Rightarrow T_{1 / 2}=30$
449 (c)
$\frac{1}{\lambda}=R Z^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \Rightarrow \lambda \propto \frac{1}{Z^{2}}$
$\lambda_{L i++:} \lambda_{H e^{+}} \lambda_{H}=4: 9: 36$
β^{-}emission from the nucleus is always
accompanied with a antineutrino
The β^{-}decays is $n \rightarrow p+e^{-}+\bar{v}$ electron antineutrino
451 (c)
Number of atoms decayed $N^{\prime}=N_{0}\left(1-e^{-\lambda t}\right)$
N^{\prime} will increase with time (t) exponentially
452 (b)
In gamma ray emission the energy is released from nucleus, so that nucleus get stabilised.
453 (b)
Let the daughter nucleus be ${ }_{Z}^{A} X$. So, reaction can be shown as

$$
{ }_{92}^{238} \mathrm{U} \rightarrow{ }_{Z}^{A} X+{ }_{2}^{4} \mathrm{He}
$$

From conservation of atomic mass

$$
\begin{array}{rlrl}
& & 238 & =A+4 \\
\Rightarrow & A & =234
\end{array}
$$

From conservation of atomic number

$$
\begin{array}{ll}
& 92=Z+2 \\
\Rightarrow \quad & Z=90
\end{array}
$$

So, the resultant nucleus is ${ }_{90}^{234} X, i e,{ }_{90}^{234} \mathrm{Th}$.
455 (b)
Since, 8α - particles 4β-particles are emitted, and $2 \beta^{+}$particles are emitted so new atomic number.

$$
\begin{aligned}
Z^{\prime} & =Z-8 \times 2+4 \times 1-2 \times 1 \\
& =92-16+4-2 \\
& =92-14 \\
& =78
\end{aligned}
$$

456 (c)
F_{n} is stronger than $F_{e} . F_{n}$ operates at very short range inside the nucleus as little as $10^{-15} \mathrm{~m}$. As in the given case two protons are kept at a separation of $40 \AA$. $F_{n} \ll F_{e}$.
457 (c)
$\frac{1}{\lambda}=R\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right] \Rightarrow \frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}=\frac{1}{R \lambda}$
$=\frac{1}{1.097 \times 10^{7} \times 18752 \times 10^{-10}}=0.0486=\frac{7}{144}$. But
$\frac{1}{3^{2}}-\frac{1}{4^{2}}=\frac{7}{144} \Rightarrow n_{1}=3$ and $n_{2}=4$ [Paschen
series]
458 (d)
$\left(E_{i o n}\right)_{N a}=Z^{2}\left(E_{i o n}\right)_{H}=(11)^{2} 13.6 \mathrm{eV}$
459 (c)
Number of protons in each $=92$
Number of neutrons $=235-92=143$ in ${ }_{92} U^{235}$
$=238-92=146$ in ${ }_{92} \mathrm{U}^{238}$
460 (b)
$x+1=24+4 \Rightarrow x=27$

461 (a)
Maximum energy is liberated for transition $E_{n} \rightarrow 1$ and minimum energy for $E_{n} \rightarrow E_{n-1}$ Hence $\frac{E_{1}}{n^{2}}-E_{1}=52.224 \mathrm{eV}$
and $\frac{E_{1}}{n^{2}}-\frac{E_{1}}{(n-1)^{2}}=1.224 \mathrm{eV}$
Solving equations (i) and (ii), we get
$E_{1}=-54.4 \mathrm{eV}$ and $n=5$
Now $E_{1}=-\frac{13.6 Z^{2}}{1^{2}}=-54.4 \mathrm{eV}$. Hence $Z=2$
462 (d)
Energy released by γ-rays for pair production must be greater than 1.02 MeV
463 (d)
Using
$N=N_{0} e^{-\lambda t} \Rightarrow \frac{N_{1}}{N_{2}}=\frac{1}{e^{2}}$
464 (c)
$r \propto A^{1 / 3} \Rightarrow \frac{r_{1}}{r_{2}}=\left(\frac{A_{1}}{A_{2}}\right)^{1 / 3}$
$\Rightarrow \frac{3.6}{r_{2}}=\left(\frac{27}{125}\right)^{1 / 3}=\frac{3}{5} \Rightarrow r_{2}=6$ fermi
465 (a)
$\frac{1}{\lambda}=R_{H}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$. For Lyman series $n_{1}=1$ and
$n_{2}=2,3,4 \ldots$
When $n_{2}=2$, we get $\lambda=\frac{4}{3 R_{H}}=\frac{4}{3 \times 10967} \mathrm{~cm}$
466 (c)
The absorption lines are obtained when the electron jumps from ground state ($n=1$) to the higher energy states. Thus only 1, 2 and 3 lines will be obtained
467 (a)
By formula $N=N_{0}\left(\frac{1}{2}\right)^{t / T}$ or $10^{4}=8 \times 10^{4}\left(\frac{1}{2}\right)^{t / 3}$
Or $\left(\frac{1}{8}\right)=\left(\frac{1}{2}\right)^{t / 3}$ or $\left(\frac{1}{2}\right)^{3}=\left(\frac{1}{2}\right)^{t / 3} \Rightarrow 3=\frac{t}{3}$
Hence $t=9$ years
468 (b)
${ }_{(Z=92)} U^{(A=238)} \xrightarrow{(8 \alpha, 6 \beta)} z^{\prime} X^{A^{\prime}}$
So $A^{\prime}=A-4 n_{\alpha}=238-4 \times 8=206$
and $Z^{\prime}=n_{\beta}-2 n_{\sigma}+z=6-2 \times 8+92=82$
469 (c)
$U=2 E, K=-E$ and $E=-\frac{13.6}{n^{2}}=\mathrm{eV}$
470 (b)
$\frac{1}{122 n m}=R\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=\frac{3 R}{4}$
$\Rightarrow \frac{1}{\lambda}=R\left(\frac{1}{3^{2}}-\frac{1}{\infty^{2}}\right)=\frac{R}{9} \Rightarrow \frac{\lambda}{122}=\frac{3}{4} \times 9=\frac{27}{4}$
$\Rightarrow \lambda=823 \mathrm{~nm}$

Nucleus does not contain electron
472 (b)
Because of large mass and large velocity, $\alpha-$ particles have large ionising power. Each α particle produces thousands of ions before being absorbed. The β-particles ionise the gas through which they pass, but their ionising power is only $\frac{1}{100}$ th that of α-particles. γ-rays have got small ionising power.
Because of large mass, the penetrating power of α-particles is very small, it being $1 / 100$ times that to β-rays and $1 / 10000$ times that of γ-rays. α particles can be easily stopped by an Aluminium sheet, only 0.02 mm thick. β-particles have very small mass, so their penetrating power is large. γ rays have very large penetrating power.
474 (b)
Activity, $A=\frac{-N}{d t}=\lambda N$
As the number of nuclei (N) per mole are equal for both the substances, irrespective of their molecular mass, therefore, $A \propto \lambda$
$\frac{A_{1}}{A_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=\frac{4}{3}$

475 (c)

In any nuclear reaction mass number and atomic number should remain conserved. Reaction (c) satisfies this condition. Also for ${ }_{93}^{239} \mathrm{~Np}$, neutron to proton ratio is greater than 1.52 which makes it unstable.
476 (b)
$r_{n} \propto n^{2} \Rightarrow \frac{r_{3}}{r_{1}}=\frac{3^{2}}{1} \Rightarrow r_{3}=9 r_{1}=9 \times 0.53=4.77 \AA$
477 (a)
$\left(3_{2}^{4} \mathrm{He}+1_{-1} e^{0}\right)$ result in decrease in mass number
$=3 \times 4$ and
Decrease in charge number $=3 \times 2+1(-1)=5$
\therefore Isotope (X) has mass number $=236-12=$ 224
and charge number $=88-5=83$
478 (d)
Energy radiated $=1.4 \mathrm{~kW} / \mathrm{m}^{2}$
$=1.4 \mathrm{~kJ} / \mathrm{s} \mathrm{m}^{2}=\frac{1.4 \mathrm{~kJ}}{\frac{1}{86400} \text { day m}^{2}}=\frac{1.4 \times 86400 \mathrm{~kJ}}{\text { day m }^{2}}$

Total energy radiated/day
$=\frac{4 \pi \times\left(1.5 \times 10^{11}\right)^{2} \times 1.4 \times 86400}{1} \frac{\mathrm{~kJ}}{d a y}=E$
$\therefore E=m c^{2} \Rightarrow m=\frac{E}{c^{2}}$
$=\frac{4 \pi \times\left(1.5 \times 10^{11}\right)^{2} \times 1.4 \times 86400}{\left(3 \times 10^{8}\right)^{2}} \times 10^{3}$

$$
=3.8 \times 10^{14} \mathrm{~kg}
$$

480 (b)
$T=\frac{2 \pi r}{v} ; r=$ radius of $n^{\text {th }}$ orbit $=\frac{n^{2} h^{2}}{\pi M Z e^{2}}$
$v=$ speed of e^{-}in $n^{\text {th }}$ orbit $=\frac{z e^{2}}{2 \varepsilon_{0} n h}$
$\therefore T=\frac{4 \varepsilon_{0}^{2} n^{3} h^{3}}{m Z^{2} e^{4}} \Rightarrow T \propto \frac{n^{3}}{Z^{2}}$
481 (d)
According to conservation of momentum

$$
\begin{aligned}
& 4 v=234 v^{\prime} \\
& \frac{v}{v^{\prime}}=\frac{234}{4}=\frac{58}{1}
\end{aligned}
$$

483 (d)

$$
{ }_{7} X^{15}+{ }_{2} H e^{4} \rightarrow_{1} p^{1}+{ }_{8} Y^{18}
$$

484 (b)
$\Delta m=1-0.993=0.007 \mathrm{gm}$
$\therefore E=(\Delta m) c^{2}=\left(0.007 \times 10^{-3}\right)\left(3 \times 10^{8}\right)^{2}$

$$
=63 \times 10^{10} J
$$

485 (a)
$R=R_{0} A^{1 / 3}=1.2 \times 10^{-13} \times(216)^{1 / 3}$
$=7.2 \times 10^{-13} \mathrm{~cm}$
486 (c)
$\therefore \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / T_{1 / 2}}=\left(\frac{1}{2}\right)^{1 / 2}=\frac{1}{\sqrt{2}}$
488 (d)
$r_{n} \propto n^{2} \Rightarrow \frac{r_{4}}{r_{1}}=\left(\frac{4}{1}\right)^{2}=\frac{16}{1} \Rightarrow r_{4}=16 r_{1} \Rightarrow r_{4}$

$$
=16 r_{0}
$$

490 (c)
The energy released in sun and hydrogen bomb are due to nuclear fusion
491 (a)
$N \propto\left[\frac{1}{\sin ^{4} \theta / 2}\right] \Rightarrow N_{1}=7 \times \frac{1}{\left(\sin 30^{\circ}\right)^{4}}=112$
and $N_{2}=7 \times \frac{1}{\left(\sin 60^{\circ}\right)^{4}}=12.5$
492 (d)
According to Bohr's theory mvr $=n \frac{h}{2 \pi}$
\Rightarrow Circumference $2 \pi r=n\left(\frac{h}{m v}\right)=n \lambda$
494 (a)
$\mathrm{C}-14$ is the element used in radioactive carbon
dating
495 (d)
$1 \mathrm{amu}=931 \mathrm{MeV}$
496 (b)
$T_{1 / 2}(X)=\tau(Y)$
$\Rightarrow \quad \frac{0.693}{\lambda_{x}}=\frac{1}{\lambda_{y}}$
$\Rightarrow \quad \lambda_{\gamma}=\frac{\lambda_{x}}{0.693}$
$\Rightarrow \quad \lambda_{r}>\lambda_{x}$
(So, Y will decay faster than X)
497 (a)
Here, $T=4.47 \times 10^{9} \mathrm{yr}$
$\frac{N}{N_{0}}=\frac{60}{100}=\left(\frac{1}{2}\right)^{n}$ or $2^{n}=\frac{10}{6}$
$n \log 2=\log 10-\log 6=1-0.778=0.222$
$n=\frac{0.222}{\log 2}=\frac{0.222}{0.3}=0.74$
$t=n T=0.74 \times 4.47 \times 10^{9} \mathrm{yr}$
$=3.3 \times 10^{9} \mathrm{yr}$
498 (a)
For working safely, the activity must reduce to $\frac{1}{64}$

$$
\begin{aligned}
& & \frac{N}{N_{0}} & =\left(\frac{1}{2}\right)^{n}=\frac{1}{64} \\
& \therefore & n & =6
\end{aligned}
$$

Thus, $t=n T=6 \times 2=12 \mathrm{~h}$
499 (d)
Density of nuclear material=mass/volume.
$\frac{10^{-27}}{\frac{4}{3} \pi r^{3}}=\frac{3 \times 10^{-27}}{4 \pi\left(2 \times 10^{-15}\right)^{3}}=10^{17} \mathrm{kgm}^{-3}$
500 (d)
In the transition from orbit $5 \rightarrow 2$, more energy is liberated as compared to transition from $4 \rightarrow 2$
501 (d)
The half-life of source $=\frac{8}{4}=2 \mathrm{~s}$
Now, $R=R_{0}\left(\frac{1}{2}\right)^{n}$

$$
\begin{aligned}
R & =1600\left(\frac{1}{2}\right)^{\frac{6}{2}} \\
& =1600\left(\frac{1}{2}\right)^{3} \\
& =200
\end{aligned}
$$

502 (c)
In hydrogen atom, the lowest orbit ($n=1$)
corresponds to minimum energy (-13.6 eV)
504 (a)
Nuclei of different elements having the same mass number are called isotones e.g., ${ }_{4} B e^{9}$ and ${ }_{5} B^{10}$
505 (b)
Let nucleus be ${ }_{Z} X^{A}$. Nuclear radius, $R=R_{0} A^{1 / 3}$ where R_{0} is a constant whose value is found to be $1.2 \times 10^{-15} \mathrm{~m}$ and A is the mass number
$\therefore \frac{R_{X}}{R_{C s}}=\left(\frac{A}{189}\right)^{1 / 3}, \therefore \frac{1}{3}=\left(\frac{A}{189}\right)^{1 / 3}$
$A=\frac{189}{3^{3}}=\frac{189}{27}=7$
The given nucleus is $L i^{7}$
506 (d)
Number of possible emission lines $=\frac{n(n-1)}{2}$
Where $n=4$; Number $=\frac{4(4-1)}{2}=6$
507 (c)
$\lambda_{\alpha}=\frac{1}{1620}$ per year and $\lambda_{\beta}=\frac{1}{405}$ per year and it is given that the fraction of the remained activity
$\frac{A}{A_{0}}=\frac{1}{4}$
Total decay constant
$\lambda=\lambda_{\alpha}+\lambda_{\beta}=\frac{1}{1620}+\frac{1}{405}=\frac{1}{324}$ per year
We know that $A=A_{0} e^{-\lambda t} \Rightarrow t=\frac{1}{\lambda} \log _{e} \frac{A_{0}}{A}$
$\Rightarrow t=\frac{1}{\lambda} \log _{e} 4=\frac{2}{\lambda} \log _{e} 2=324 \times 2 \times 0.693$

$$
=449 \text { years }
$$

508 (d)
Bohr radius $r=\frac{\varepsilon_{0} n^{2} h^{2}}{\pi Z m e^{2}} ; \therefore r \propto n^{2}$
509 (b)
Energy is released in the sun due to fusion
511 (d)
Let
${ }_{z} X^{A} \xrightarrow{3 \alpha}{ }_{(Z-6)} Y^{(A-12)} \xrightarrow{5 \beta}{ }_{Z-1} Y^{\prime(A-12)}$
$\therefore \frac{\text { No. of neutrons }}{\text { No. of protons }}=\frac{A-12-(Z-1)}{Z-1}$

$$
=\frac{A-Z-11}{Z-1}
$$

512 (a)
In hydrogen atom $E_{2}-E_{1}=10.2 \mathrm{eV}$
Since, $5 \mathrm{eV}<10.2 \mathrm{eV}$
The electron excites the hydrogen atom. The collision must be therefore elastic
513 (d)
$R=R_{0} A^{1 / 3}$

$$
\begin{array}{rlrl}
\therefore & \frac{R_{1}}{R_{2}} & =\left(\frac{A_{1}}{A_{2}}\right)^{1 / 3} \\
& & \frac{2}{R_{2}} & =\left(\frac{7}{189}\right)^{1 / 3} \\
& \Rightarrow & R_{2} & =6 \text { Fermi }
\end{array}
$$

514 (b)
The electrostatic P. E. is zero when the electron and proton are far apart from each other. Work done in pulling electron and proton far away from each other
$W=E_{f}-E_{i}=0-E_{i}=-\left(-\frac{13.6}{n^{2}} \mathrm{eV}\right)$
$\Rightarrow W=\frac{13.6}{(2)^{2}} \times 1.6 \times 10^{-19} \mathrm{~J}=3.4 \times 1.6 \times 10^{-19} \mathrm{~J}$
515 (a)
P. E. $\propto-\frac{1}{r}$ and K.E. $\propto \frac{1}{r}$

As r increases $K . E$. decreases but P. E. increases
516 (c)
Given ${ }_{90} \mathrm{Th}^{232} \rightarrow{ }_{82} \mathrm{~Pb}^{208}$
Change in mass number

$$
=232-208=24
$$

No. of α-particles emitted $=\frac{24}{4}=6$
Now. Eq. (i) becomes

$$
{ }_{90} \mathrm{Th}^{232} \xrightarrow{-6 \alpha}{ }_{78} \mathrm{~A}^{208} \xrightarrow{-n \beta}{ }_{82} \mathrm{~Pb}^{208}
$$

Further change in atomic number is $82-78=4$ It means atomic no. 78 is increased by 4 to make the atomic no 82.
Therefore 6α-particles and 4β - particles will be emitted.
517 (c)
The Hydrogen atom before the transition was at rest. Therefore from conservation of momentum
$p_{H-\text { atom }}=p_{\text {photon }}=\frac{E_{\text {radiated }}}{c}=\frac{13.6\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \mathrm{eV}}{c}$
$1.6 \times 10^{-27} \times v=\frac{13.6\left(\frac{1}{1^{2}}-\frac{1}{5^{2}}\right) \times 1.6 \times 10^{-19}}{3 \times 10^{8}}$
$\Rightarrow v=4.352 \mathrm{~m} / \mathrm{s}=4 \mathrm{~m} / \mathrm{sec}$
518 (d)
Energy of photon emitted,
$E=13.6\left(\frac{1}{1^{2}}-\frac{1}{5^{2}}\right) \mathrm{eV}=13.6 \times \frac{24}{25} \mathrm{eV}$
Momentum of photon $=\frac{E}{c}$
The momentum of hydrogen atom is equal and opposite to the momentum of photon. If m is the mass of hydrogen atom $\left(=1.67 \times 10^{-27} \mathrm{~kg}\right)$ and v is recoil speed of hydrogen atom , then
$m v=\frac{E}{c}$
$v=\frac{E}{m c}=\frac{13.01 \times 1.6 \times 10^{-19}}{1.67 \times 10^{-27} \times 3 \times 10^{8}}$
$v=4.15 \mathrm{~ms}^{-1}$
520 (a)
The reaction is ${ }_{3} \mathrm{Li}^{7}+{ }_{1} P^{1} \rightarrow 2\left({ }_{2} \mathrm{He}^{4}\right)$
$\therefore \quad E_{p}=2 E\left({ }_{2} \mathrm{He}^{4}\right) E_{(\mathrm{Li})}$
$=2(4 \times 7.06)-7 \times 5.6$
$=56.48-39.2=17.28 \mathrm{MeV}$
521 (a)
$\left(1-\frac{1}{4}\right)=Z^{2}\left[\frac{1}{4}-\frac{1}{16}\right]$
$\therefore Z=2$
522 (d)
3-1 transition has higher energy so it has higher frequency $\left(v-\frac{E}{h}\right)$
523 (d)
In β-decay a neutron is transformed into a proton and an electron and an antineutrino is emitted.

$$
n^{0} \rightarrow p+e^{-}+v^{-}
$$

524 (b)

$$
\begin{aligned}
& N_{1}=N_{0}-\frac{1}{3} N_{0}=\frac{2}{3} N_{0} \\
& N_{2}=N_{0}-\frac{2}{3} N_{0}=\frac{1}{3} N_{0} \\
\therefore \quad & \frac{N_{1}}{N_{2}}=\left(\frac{1}{2}\right)^{n} \\
& n=1 \\
\therefore \quad & t_{2}-t_{1}=\text { one half }- \text { life }=20 \mathrm{~min}
\end{aligned}
$$

525 (a)
Number of half lives $n=\frac{5}{1}=5$
Now $\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n} \Rightarrow \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$
526 (b)
$r \propto n^{2}$, i.e.,$\frac{r_{f}}{r_{i}}=\left(\frac{n_{f}}{n_{i}}\right)^{2}$
$\Rightarrow \frac{21.2 \times 10^{-11}}{5.3 \times 10^{-11}}=\left(\frac{n}{1}\right)^{2} \Rightarrow n^{2}=4 \Rightarrow n=2$
527 (a)
Energy spectrum of emitted β - particles from a radioactive source drawn as

528 (b)
We can relate an absorbed energy Q and the resulting temperature increase ΔT with relation $Q=c m \Delta T$. In this equation, m is the mass of the material absorbing the energy and c is the specific heat of that material. An absorbed does of 3 Gy corresponds to an absorbed energy per unit mass of $3 \mathrm{JKg}^{-1}$. Let us assume that c the specific heat of human body, is the same as that of water, $4180 \mathrm{JKg}^{-1} \mathrm{~K}$. Then we find that
$\Delta T=\frac{Q / m}{c}=\frac{3}{4180}=7.2 \times 10^{-4} \mathrm{~K} \approx 700 \mu \mathrm{~K}$
Obviously the damage done by ionizing radiation has nothing to do with thermal heating. The harmful effects arise because the radiation damages DNA and thus interferes with the normal functioning of tissues in which it is absorbed.
529 (d)
${ }_{0} n^{1}+{ }_{92} \mathrm{U}^{235} \longrightarrow{ }_{51} \mathrm{Sb}^{133}+{ }_{41} \mathrm{Nb}^{99}+$ Neutrons
Charge number is conserved $(92=51+41)$
Applying principle of conservation of mass number
$133+99+x=235+1$
$x=236-232=4$
\therefore Number of neutrons $\left({ }_{1} n^{1}\right)=4$
530 (c)
$\frac{N_{1}}{N_{2}}=\frac{(1 / 2)^{4 / 1}}{(1 / 2)^{4 / 2}}=\frac{(1 / 16)}{(1 / 4)}=\frac{1}{4}$
531 (a)
We Know, $\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / T}$

$$
\begin{aligned}
\frac{N}{10000} & =\left(\frac{1}{2}\right)^{10 / 20} \\
N=\frac{10000}{\sqrt{2}} & =\frac{10000}{1.414}=7070
\end{aligned}
$$

532 (c)
Protium (${ }_{1}^{1} \mathrm{H}$), deuterium $\left({ }_{1}^{2} \mathrm{H}\right)$ and tritium $\left({ }_{1}^{3} \mathrm{H}\right)$ are the isotopes of hydrogen. Out of the three,
protium is most stable, deuterium is again stable but tritium is radioactive and eventually decays into an isotope of helium.
533 (c)

$$
\begin{aligned}
\frac{A_{0}}{3} & =A_{0}\left(\frac{1}{2}\right)^{9 / T_{1 / 2}} \\
A^{\prime} & =\frac{A_{0}}{3}\left(\frac{1}{2}\right)^{9 / T_{1 / 2}} \\
\therefore \quad \frac{A^{\prime}}{A_{0} / 3} & =\frac{1}{3} \\
\text { or } \quad A^{\prime} & =\frac{A_{0}}{9}
\end{aligned}
$$

534 (c)
Curie is a unit of radioactivity.
535 (c)
When atoms of an element are bombarded by neutrons, the atomic nuclei are (artificially) disintegrated and emit lighter particle (eg. α - particle, β - particle,proton etc.). Sometimes a neutron is observed by the nucleus which is converted into its heavier isotope and energy is emitted in the form of γ-photons. This process in which heavy nucleus is broken into two nearly equal fragments is called nuclear fission.
536 (c)
Both coulomb and nuclear force act inside the nucleus
537 (b)
When two nuclei of mass number lying in the range of $51<A<100$ combined, then a nucleus is formed in the range $100<A<150$ which has high value of specific binding energy. Thus, the fusion of two nuclei of mass number lying in range of $51<A<100$ will release energy.
538 (c)
K.E. $=-($ Total energy $)=-(-13.6 \mathrm{eV})=$ $+13.6 \mathrm{eV}$
539 (a)
Let the percentage of B^{10} atoms be x, then average atomic weight

$$
\begin{aligned}
& =\frac{10 x+11(100-x)}{100}=10.81 \\
x & =19 \\
\therefore \quad \frac{N_{B^{10}}}{N_{B^{11}}} & =\frac{19}{81}
\end{aligned}
$$

540 (c)
Fraction remains after n half lives $\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=$ $\left(\frac{1}{2}\right)^{t / T}$
$\therefore \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{\frac{T / 2}{T}}=\left(\frac{1}{2}\right)^{1 / 2}=\frac{1}{\sqrt{2}}$

541 (a)
$A_{n}=\pi r_{n}^{2} \Rightarrow \frac{A_{n}}{A_{1}}=\left(\frac{r_{n}}{r_{1}}\right)^{2}=\left(\frac{n}{1}\right)^{4} \quad\left[\because r_{n} \propto n^{2}\right]$
Taking $\log _{e}$ on both the sides $\log _{e} \frac{A_{n}}{A_{1}}=4 \log _{e}(n)$ Comparing it with $y=m x+c$, graph (4) is correct
542 (c)
$r \propto n^{2} \Rightarrow r_{n}=n^{2} a_{0}\left[\because r_{1}=a_{0}\right]$
543 (b)
$E=-R c h \Rightarrow R=-\frac{E}{c h}=\frac{13.6 \times 1.6 \times 10^{-19}}{3 \times 10^{8} \times 6.6 \times 10^{-34}}$
$=1.098 \times 10^{7}$ per m
544 (d)

$$
\begin{aligned}
T=\frac{0.6931 \times 1}{\lambda} & =\frac{0.6931}{4.28 \times 10^{-4}} \text { year } \\
& =1620 \text { years }
\end{aligned}
$$

545 (b)
In order to compare the stability of the nuclei of different atoms we determine the binding energy per nucleon. Higher the binding energy per nucleon. More stable is the nucleus. A graph between energy per nucleon and the mass number of nuclei is called the binding energy curve. It gives the following information that of two or more very light nuclei (nucleus of heavy hydrogen ${ }_{1} \mathrm{H}^{2}$ fuse into a relatively heavier nucleus (${ }_{2} \mathrm{He}^{4}$), then binding energy will increase showing that helium is stable.

546 (c)
In 9 years, activity becomes $I=\frac{I_{0}}{3}$
In further 9 years, activity would becomes
$I^{\prime}=\frac{I}{3}=\frac{I_{0}}{3 \times 3}=\frac{I_{0}}{9}$
547 (d)
An electron is a lepton
548 (c)
In hydrogen atom $E_{n}=-\frac{R h c}{n^{2}}$
Also $E_{n} \propto m$; where m is the mass of the electron. Here the electron has been replaced by a particle whose mass is double of an electron. Therefore,
for this hypothetical atom energy in $n^{\text {th }}$ orbit will be given by $E_{n}=-\frac{2 R h c}{n^{2}}$
The longest wavelength $\lambda_{\text {max }}$ (or minimum energy) photon will correspond to the transition of particle from $n=3$ to $n=2 \Rightarrow \frac{h c}{\lambda_{\max }}=E_{3}-$
$E_{2}=2 R h c\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)$
This gives $\lambda_{\text {max }}=\frac{18}{5 R}$
549 (d)
Number of half lives in 150 years $n=\frac{150}{75}=2$
Fraction of the atoms decayed $=1-\left(\frac{1}{2}\right)^{n}$
$=1-\left(\frac{1}{2}\right)^{2}=\frac{3}{4}=0.75 \Rightarrow$ Percentage decay $=$ 75\%
550
(d)
$T_{1 / 2}=\frac{\log _{e} 2}{\lambda}=\frac{2.303 \log _{10} 2}{\lambda}$
552 (a)
Given that $\lambda_{1} N_{1}=5 \mu C i ; \lambda_{2} N_{2}=10 \mu C i ; \lambda_{2} N_{2}=$ $2 \lambda_{1} N_{1}$
Also $N_{1}=2 N_{2}$; Then $\lambda_{2} N_{2}=2 \lambda_{1}\left(2 N_{2}\right) \Rightarrow \lambda_{2}=$ $4 \lambda_{1}$
553 (a)
For emission
$\frac{1}{\lambda}=R z^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
$=R\left(\frac{1}{1^{2}}-\frac{1}{5^{2}}\right)$
$\frac{1}{\lambda}=R \frac{24}{25}$
Linear momentum
$P=\frac{h}{\lambda}=h \times R \times \frac{24}{25}$
$=m v=\frac{24 h R}{25}$
$\Rightarrow v=\frac{24 h R}{25 m}$
554 (b)
$r \propto n^{2} \Rightarrow \frac{r_{(n=2)}}{r_{(n=3)}}=\frac{4}{9} \Rightarrow r_{(n=3)}=\frac{9}{4} R=2.25 R$
555 (b)
Let ground state energy (in eV) be E_{1}
Then from the given condition
$E_{20}-E_{1}=204 e V$
Or $\frac{E_{1}}{4 n^{2}}-E_{1}=204 \mathrm{eV}$
$\Rightarrow E_{1}\left(\frac{1}{4 n^{2}}-1\right)=204 e V$
and $E_{2 n}-E_{n}=40.8 \mathrm{eV}$
$\Rightarrow \frac{E_{1}}{4 n^{2}}-\frac{E_{1}}{n^{2}}=E_{1}\left(-\frac{3}{4 n^{2}}\right)=40.8 \mathrm{eV}$
From equation (i) and (ii)
$\frac{1-\frac{1}{4 n^{2}}}{\frac{3}{4 n^{2}}}=5 \Rightarrow n=2$
556 (c)
Emitted enegy $\Delta E=\frac{h c}{\lambda}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
557 (d)
$t=\frac{\text { nuclear distance }}{\text { velocity }}=\frac{10^{-14}}{3 \times 10^{6}} \approx 10^{-20} \mathrm{~s}$
558 (a)
Each atom of ${ }_{6} C^{14}$ contains $6 p, 6 e$ and $8 n$
\therefore In 14 g of ${ }_{6} \mathrm{C}^{14}$
$p=6 \times 6 \times 10^{23}=36 \times 10^{23}$
$n=8 \times 6 \times 10^{23}=48 \times 10^{23}$
$e=p=36 \times 10^{23}$
560 (c)
Rate of disintegration \propto Number of atoms left
In case of source $A, \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
In case of source $B, \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{1}=\frac{1}{2}$
$\therefore \frac{R_{A}}{R_{B}}=\frac{N_{0} / 4}{N_{0} / 2}=\frac{1}{2}$
561 (c)
When a nucleus is formed, then the mass of nucleus is slightly less than the sum of the mass of Z protons and N neutrons.
ie, $\quad M<\left(Z m_{p}+N m_{n}\right)$
562 (d)
α-particles cannot be attracted by the nucleus
564 (a)
D is excitation of electron from $2^{\text {nd }}$ orbit
corresponding to absorption line in Balmer series and E is the energy released to bring the electron from ∞ to ground state i.e., ionization energy
565 (a)
Applying conservation of mass number and charge number, only (a) is correct.

566 (a)
Penetration power of γ is 100 times of β, while that of β is 100 times of α
567 (d)
In fusion, two lighter nuclei combine to give a
heavier nucleus and possibly other products.
568 (d)
${ }_{8} \mathrm{O}^{16}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{7} \mathrm{~N}^{14}+{ }_{2} \mathrm{He}^{4}$
570 (a)
$N=N_{0} e^{-\lambda t} \Rightarrow \frac{N_{0}}{e}=N_{0} e^{-\lambda(5)} \Rightarrow \lambda=\frac{1}{5}$
Now $\frac{N_{0}}{2}=N_{0} e^{-\lambda(t)} \Rightarrow t=\frac{1}{\lambda} \ln 2=5 \ln 2$
572 (c)

$E_{2}-E_{1}=h v$ or $v=\frac{E_{2}-E_{1}}{h}=\frac{2.3 \times 1.6 \times 10^{-19} J}{6.6 \times 10^{-34} \mathrm{Js}}$
$=0.56 \times 10^{15} S^{-1}=5.6 \times 10^{14} \mathrm{~Hz}$
573 (c)
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{15 / 5}=\frac{1}{8} \Rightarrow$ Decayed fraction $=1-\frac{1}{8}=\frac{7}{8}$
574 (b)
Mass of H_{2} nucleus = mass of proton $=1 \mathrm{amu}$ energy equivalent to 1 amu is 931 MeV so correct option is (b)
(c)

Here, $N_{0}=4 \times 10^{10}$
Number of half lives, $n=4$, As $\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}$
$\therefore N=N_{0}\left(\frac{1}{2}\right)^{4}=\frac{N_{0}}{16}=\frac{4 \times 10^{10}}{16}$
$=0.25 \times 10^{10}=25 \times 10^{8}$
576 (a)
Nuclides for which $\frac{N}{Z}$ is too small for stability can emit a positron, the electron's antiparticle which is identical to the electron, but with positive charge. The basic process called β^{+}decay.
${ }_{Z}^{A} X \rightarrow{ }_{Z-1}^{A} Y+e^{+}+\gamma$
($\gamma=$ neutrino)

578

(b)

Wave number $\bar{v}=\frac{1}{\lambda}=\frac{1}{5896 \times 10^{-8}}=16961$ per cm
(b)

Penetrating power varies inversely as mass of penetrating radiation. Therefore, γ radiations have maximum penetrating power and α-particles have minimum penetrating power.

580 (b)

No. of lines $N_{E}=\frac{n(n-1)}{2}=\frac{3(3-1)}{2}=3$

582 (b)
In the second excited state, $n=3$
$\therefore l_{\mathrm{H}}=l_{\mathrm{Li}}=3\left(\frac{h}{2 \mathrm{~m}}\right)$
As $E \propto Z^{2}$ and $Z_{\mathrm{H}}=1$, and $Z_{\mathrm{Li}}=3$
$\therefore\left|E_{\mathrm{Li}}\right|=9\left|E_{\mathrm{H}}\right|$ or $\left|E_{\mathrm{H}}\right|<\left|E_{\mathrm{Li}}\right|$

584 (b)

Energy released
$=$ initial $\mathrm{BE}-$ final $\mathrm{BE}=2 x-y$
585 (d)
$m v r_{n}=\frac{n h}{2 \pi} \Rightarrow p r_{n}=\frac{n h}{2 \pi} \Rightarrow \frac{h}{\lambda} \times r_{n}=\frac{n h}{2 \pi}$
$\Rightarrow \lambda=\frac{2 \pi r_{n}}{n}$, for first orbit $n=1$ so $\lambda=2 \pi r_{1}$
$=$ circumference of first orbit
586 (a)
One Becquerel is equal to one disintegration per second.
587 (c)
${ }_{6} \mathrm{C}^{12}+{ }_{0} n^{1} \rightarrow{ }_{Z} X^{A}+{ }_{-1} e^{0}$
$\therefore A=12+1=13$
$Z=6+1=7$

588 (a)

The pion, in the laboratory frame can travel

$$
=2.5 \times 10^{-8} \times 0.9 \times 3 \times 10^{8} \mathrm{~m}=6.75 \mathrm{~m}
$$

589 (b)

$E_{n}=\frac{13.6}{n^{2}} \times Z^{2}$. For first excited state $n=2$ and for ${L i^{++}}^{2}, z=3 \Rightarrow E=\frac{13.6}{4} \times 9=30.6 \mathrm{eV}$
590 (d)
(With emission of an α particle (${ }_{2} \mathrm{He}^{4}$) mass number decreases by 4 unit and atomic number decrease by 2 units and with emission of $2 \beta^{-1}$ particles atomic number increases by 2 units. So Z will remain same and N will become $N-4$)
592 (c)
$\frac{3}{4}$ th active decay takes place to time
$t=2\left(T_{1 / 2}\right) \Rightarrow \frac{3}{4}=2\left(T_{1 / 2}\right) \Rightarrow T_{1 / 2}=\frac{3}{8} s$
594 (b)
Let x be the mass number of A and y the atomic number. Then, since atomic number and mass number remain conserved, we have
$y A^{x} \rightarrow{ }_{2-2} B^{x-4}+{ }_{2} \mathrm{He}^{4}$
$y-2 B^{x-4} \rightarrow{ }_{y} C^{x-4}+2{ }_{-1} e^{0}$

Hence, we observe that A and C are isotopes as their atomic numbers are same but mass numbers are different.
596 (c)
$T \propto n^{3} \Rightarrow \frac{T_{2}}{T_{1}}=\frac{2^{3}}{1^{3}}=\frac{8}{1}$
598 (a)
To becomes $\frac{1}{4}$ th, it requires time of two half lives i.e., $t=2\left(T_{1 / 2}\right)=2 \times 5800=2 \times 58$ centuries

599 (c)
By using $N=N_{0} e^{-\lambda t}$ and average life time $t=\frac{1}{\lambda}$
So $N=N_{0} e^{-\lambda \times 1 / \lambda}=N_{0} e^{-1} \Rightarrow \frac{N}{N_{0}}=e^{-1}=\frac{1}{e}$
Now disintegrated fraction $=1-\frac{N}{N_{0}}=1-\frac{1}{e}=$ $\frac{e-1}{e}$
602 (b)
Mass defect $=\frac{2 \times 1.115}{931}=0.0024$ unit
604 (b)
By using $N=N_{0} e^{-\lambda t} \Rightarrow \frac{N_{0}}{2}=N_{0} e^{-\lambda T_{1 / 2}} \Rightarrow 2=$ $e^{\lambda T_{1 / 2}}$
By using $\log _{e}$ both the side
$\log _{e} 2=\lambda T_{1 / 2} \Rightarrow \lambda T_{1 / 2}=0.693$
605 (d)
$\frac{A}{A_{0}}=\left(\frac{1}{2}\right)^{t / T_{1 / 2}} \Rightarrow \frac{1}{8}=\left(\frac{1}{2}\right)^{t / 8} \Rightarrow t=24$ years
606 (b)
By using $\frac{1}{\lambda}=R\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$
607 (d)
Fraction $=\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{\frac{6400}{1600}}=\left(\frac{1}{2}\right)^{4}=\frac{1}{16}$
608 (d)
$R=\frac{2 \pi^{2} k^{2} e^{4} m}{c h^{3}}=\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \frac{2 \pi^{2} m e^{4}}{c h^{3}}$
609 (b)
Taking average count per minute in the first half value period as $(100+50) / 2 i e, 75$

Total number of counts during this period $=75 \times 3 \times 60=13500$ which is closest to the given result (14100)

611 (a)

$$
\begin{aligned}
N=N_{0}\left(\frac{1}{2}\right)^{n} \Rightarrow & \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n} \Rightarrow \frac{1}{100}-\left(\frac{1}{2}\right)^{n} \\
& \Rightarrow 2^{n}-100
\end{aligned}
$$

n comes out in between 6 and 7
613 (b)
Transition from $4 E$ to E
$(4 E-E)=\frac{h c}{\lambda_{1}} \Rightarrow \lambda_{1}=\frac{h c}{3 E}$
Transition from $\frac{7}{3} E$ to E
$\left(\frac{7}{3} E-E\right)=\frac{h c}{\lambda_{2}} \Rightarrow \lambda_{2}=\frac{3 h c}{4 E}$
From equation (i) and (ii), $\frac{\lambda_{1}}{\lambda_{2}}=\frac{4}{9}$
614 (c)
$\frac{1}{\lambda}=R\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$
$\Rightarrow \frac{1}{970.6 \times 10^{-10}}=1.097 \times 10^{7}\left[\frac{1}{1^{2}}-\frac{1}{n_{2}^{2}}\right] \Rightarrow n_{2}$

$$
=4
$$

\therefore Number of emission lines $N=\frac{n(n-1)}{2}=\frac{4 \times 3}{2}=6$
616 (b)
$\left|\frac{d N}{d t}\right|=\lambda N \Rightarrow\left|\frac{d N}{d t}\right| \propto N$
617 (b)
In two half lives, the activity becomes one fourth
618 (c)
The sun is continuously emitting light and heat at a very high rate. The source of the huge solar energy is the fusion of lighter nuclei. About 90% of the mass is composed of hydrogen and helium and rest 10% contains other elements. The temperature of interior of sun is very high. Continuous fusion of hydrogen nuclei into helium nucleus is taking place, which result in the liberation of huge amount of energy.
619 (a)
$R=R_{0} e^{-\lambda t}$
$\Rightarrow \quad\left(\frac{1}{3}\right)=e^{-\lambda \times 3}=e^{-3 \lambda}$
Again $\frac{R^{\prime}}{R_{0}}=e^{-\lambda \times 9}=e^{-9 \lambda}=\left(e^{-3 \lambda}\right)^{3}$

$$
\begin{aligned}
& =\left(\frac{1}{3}\right)^{3} \quad \text { [From Eq. (i)] } \\
& =\frac{1}{27} \\
\Rightarrow \quad R^{\prime} & =\frac{R_{0}}{27}
\end{aligned}
$$

Hence, in 9 days activity will become $\left(\frac{1}{27}\right)$ of the original value.
620 (c)
Mass of a uranium nucleus
$=92 \times 1.6725 \times 10^{-27}+143 \times 1.6747 \times 10^{-27}$
$=393.35 \times 10^{-27} \mathrm{~kg}$
Number of nuclei in the given mass
$=\frac{1}{393.35 \times 10^{-27}}=2.542 \times 10^{24}$
Energy released $=200 \times 2.542 \times 10^{24} \mathrm{MeV}$
$=5.08 \times 10^{26} \mathrm{MeV}=8.135 \times 10^{13} \mathrm{~J}=8.2 \times 10^{13} \mathrm{~J}$
$E=\Delta m c^{2}=10^{-6} \times\left(3 \times 10^{8}\right)^{2}=9 \times 10^{10} J$
622 (a)
$\bar{v} \propto \frac{1}{\lambda} \propto Z^{2} \Rightarrow \lambda Z^{2}=\mathrm{constant} \Rightarrow \lambda=\frac{\lambda}{4} Z^{2} \Rightarrow Z=2$
623 (a)
Activity depends upon mass, but λ doesn't change
624 (b)
$E=13.6\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$. For highest energy in Balmer series
$n_{1}=2$ and $n_{2}=\infty \Rightarrow E=13.6\left[\frac{1}{(2)^{2}}-\frac{1}{(\infty)^{2}}\right]=$ 3.4 eV

626 (a)
After the removal of first electron remaining atom will be hydrogen like atom
So energy required to remove second electron
from the atom $E=13.6 \times \frac{2^{2}}{1}=54.4 \mathrm{eV}$
\therefore Total energy required $=24.6+54.4=79 \mathrm{eV}$
627 (c)
From the conservation of mass number and charge number

$$
{ }_{2}^{4} \mathrm{He}+{ }_{4}^{9} \mathrm{Be} \rightarrow{ }_{0}^{1} n+{ }_{6}^{12} X
$$

Here, X can be carbon.
628 (b)

$$
\begin{aligned}
M=M_{0}\left(\frac{1}{2}\right)^{\frac{t}{T_{1} / 2}} & \Rightarrow 25=100\left(\frac{1}{2}\right)^{\frac{t}{1600}} \Rightarrow t \\
& =3200 \text { years }
\end{aligned}
$$

629 (d)
Law of conservation of momentum gives

$$
\begin{array}{cc}
& m_{1} v_{1}=m_{2} v_{2} \\
\Rightarrow & \frac{m_{1}}{m_{2}}=\frac{v_{2}}{v_{1}}
\end{array}
$$

$$
\text { But } \quad m=\frac{4}{3} \pi r^{3} \rho
$$

$$
\text { or } \quad m \propto r^{3}
$$

$$
\therefore \quad \frac{m_{1}}{m_{2}}=\frac{r_{1}^{3}}{r_{2}^{3}}=\frac{v_{2}}{v_{1}}
$$

$$
\Rightarrow \quad \frac{r_{1}}{r_{2}}=\left(\frac{1}{2}\right)^{1 / 3}
$$

$$
\therefore \quad r_{1}: r_{2}=1: 2^{1 / 3}
$$

630 (d)
Fraction of atoms remains after five half lives
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / T}=\left(\frac{1}{2}\right)^{5 T / T}=\frac{1}{32}$
\Rightarrow Percentage atom remains $=\frac{1}{32} \times 100=$ 3.125\%

631 (d)
Infinitely large transitions are possible (in principle) for the hydrogen atom
(c)
$N_{t}=N_{0}\left(\frac{1}{2}\right)^{t / T}=50000\left(\frac{1}{2}\right)^{10 / 5}=12500$
633 (a)
Nuclear force has the following properties
(i) Nuclear force is a short range force whose range is of the order of 2 to 3 femtometre.
(ii) Nuclear force is a strongest force in nature.
(iii) Nuclear force is an attractive force acting between nucleons, which is charge independent.

Therefore, nuclear force is strong, short range and charge independent force.

634 (a)
$r_{n} \propto n^{2} \Rightarrow A_{n} \propto n^{4} \Rightarrow \frac{A_{1}}{A_{0}}=\left(\frac{2}{1}\right)^{4}=\frac{16}{1}$
635 (b)
In $10 s$, number of nuclei has been reduced to one fourth (25% to 6.25%)
Therefore it's half life is $T_{1 / 2}=5 \mathrm{~s}$
\therefore Mean life $T=\frac{T_{1 / 2}}{0.693}=\frac{5}{0.693}=7.21 \mathrm{~s}$
637 (c)
Radiocarbon dating relies on a simple natural phenomenon. As the earth's upper is bombarded by cosmic radiation, atmospheric nitrogen is broken down into an unstable isotope of carboncarbon (C-14).
The unstable isotope is brought to earth by atmospheric activity, such as storms, and becomes fixed in the biosphere. Because it reacts identically to $\mathrm{C}-12$ and $\mathrm{C}-13, \mathrm{C}-14$ attached to complex organic molecules through photosynthesis in plants and becomes their molecular makeup. Animals eating those plants in turn absorb carbon-14 as well as stable isotopes. This process of ingesting C - 14 continues as long as the plant or animal remains alive.
The C-14 within an organism is continually decaying into stable carbon isotopes, but organism is absorbing more $\mathrm{C}-14$ during its life, the ratio of $C-14$ to $C-12$ remains about same as the ratio in the atmosphere. Where the organism dies, the ratio of $\mathrm{C}-14$ within its carcass begins to gradually decrease.
638 (d)
$E=m c^{2}$
$1000 \times 10^{3} \times 3600=m\left(3 \times 10^{8}\right)^{2}$
639 (b)
Nuclear radius is proportional to $A^{1 / 3}$

$$
\begin{array}{rlrl}
R & =R_{0} A^{1 / 3} \\
& \therefore & \frac{R_{1}}{R_{2}} & =\left[\frac{7}{56}\right]^{1 / 3}=\frac{1}{2}
\end{array}
$$

641 (b)
Mass of electron $=$ mass of positron $=9.1 \times$ $10^{-31} \mathrm{~kg}$
Energy released $E=(2 m) . c^{2}$
$=2 \times 9.1 \times 10^{-31} \times\left(3 \times 10^{8}\right)^{2}=1.6 \times 10^{-13} \mathrm{~J}$
In practise, nuclear fusion is very difficult process. This is so when positively charged nuclei come very close for fusion, the force of electrical repulsion between them becomes very strong. For fusion against this force, they require very high energy. To impart, so much energy to them, very high temperature and very high pressure is required.
643 (d)
$2 E-E=\frac{h c}{\lambda} \Rightarrow E=\frac{h c}{\lambda}$
$\frac{4 E}{3}-E=\frac{h c}{\lambda^{\prime}} \Rightarrow \frac{E}{3}=\frac{h c}{\lambda^{\prime}}: \frac{\lambda^{\prime}}{\lambda}=3 \Rightarrow \lambda^{\prime}=3 \lambda$
644 (b)

Q-value of the reaction is 5.5 MeV
i.e., $k_{1}+k_{2}=5.5 \mathrm{MeV} \quad$...(i)

By conservation of linear momentum
$p_{1}=p_{2} \Rightarrow \sqrt{2(216) / k_{1}}=\sqrt{2(4) k_{2}}$
$\Rightarrow k_{2}=54 k_{1} \quad$...(ii)
On solving equation (i) and (ii)
We get $k_{2}=5.4 \mathrm{MeV}$
645 (b)
Number of half lives $n=\frac{19}{3.8}=5$; Now $\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}$

$$
\Rightarrow \frac{N}{10.38}=\left(\frac{1}{2}\right)^{5} \Rightarrow N=10.38 \times\left(\frac{1}{2}\right)^{5}=0.32 g
$$

646 (d)
Density of nuclear matter is independent of mass number, so the required ratio is $1: 1$.
649 (c)
$\frac{C_{14}}{C_{12}}=\frac{1}{4}=\left(\frac{1}{2}\right)^{t / 5700} \Rightarrow \frac{t}{5700}=2 \Rightarrow t$

$$
=11400 \text { years }
$$

650 (a)
After 2 days, we have

$$
A=6 g, B=(12-6) g=6 g
$$

After 4 days, we have

$$
A=3 g, B=(12-3) g=9 g
$$

651 (d)
Radius of $n^{\text {th }}$ orbit $r_{n} \propto n^{2}$, graph between r_{n} and n is a parabola. Also, $\frac{r_{n}}{n_{1}}=\left(\frac{n}{1}\right)^{2} \Rightarrow \log _{e}\left(\frac{r_{n}}{r_{1}}\right)=$

$2 \log e(n)$

Comparing this equation with $y=m x+c$ Graph between $\log _{e}\left(\frac{r_{n}}{r_{1}}\right)$ and $\log _{e}(n)$ will be a straight line, passing from origin
Similarly it can be proved that graph between $\log _{e}\left(\frac{f_{n}}{f_{1}}\right)$ and $\log _{e} n$ is a straight line. But with negative slope
652 (a)
In nuclear reactors the moderators are used to decrease (slowdown) the speed of neutrons. Heavy water, graphite is used for this purpose. While heavy water is the best moderator
654 (d)
$\because E_{2}<E_{1} \Rightarrow \lambda_{2}>\lambda_{1}$

655 (b)
$\frac{N}{N_{0}}=\frac{1}{1+7}=\frac{1}{8}$
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=\frac{1}{8}$
$\therefore n=3$
$t=n T=3 \times 10^{9} \mathrm{yr}$
656 (c)
$1 \mathrm{Ci}=3.7 \times 10^{10} \mathrm{dis} / \mathrm{s}$
657 (a)
The phenomena in which proton flips is nuclear magnetic resonance
658 (c)
First excited state i.e., second orbit ($n=2$)
Second excited state i.e., third orbit ($n=3$)
$\because E=-\frac{13.6}{n^{2}} \Rightarrow \frac{E_{2}}{E_{3}}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}$
659 (d)
${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{1} \mathrm{H}^{3}+{ }_{1} \mathrm{H}^{1}$
660 (a)
We know,

$$
N=N_{0}\left(\frac{1}{2}\right)^{n}
$$

Where N_{0} is original number of atoms, n is
number of half-lives

$$
\begin{array}{ll}
& n=\frac{t}{T_{1 / 2}}=\frac{180}{60}=3 \\
\therefore & \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{3}=\frac{1}{8} \\
\therefore & N=\frac{N_{0}}{8}=0.125 N_{0}=12.5 \% N
\end{array}
$$

Amount decayed $=100-12.5=87.5 \% \mathrm{~N}$
661 (a)
$T=\frac{T_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
T is the time observed by the person on earth in relative motion w.r.t. the asteroid. T_{0} is measured by the person at rest
$\therefore T_{A}>T_{B}\left(T_{B}=T_{0}\right)$
662 (d)
$p \rightarrow \pi^{+}+n, n \rightarrow p+\pi^{-}$and $n \rightarrow n^{\prime}+\pi^{0}$
663 (b)
The successive emission of gamma rays of energies 1.17 MeV and 1.33 MeV from the deexcitation of ${ }_{28}^{60} \mathrm{Ni}$ nuclei formed from β-decay of ${ }_{27}^{60} \mathrm{Co}$. This process is as shown in the figure through an energy level diagram

664 (c)
Angular momentum
$=n\left(\frac{h}{2 \pi}\right)=2\left(\frac{h}{2 \pi}\right)=\frac{h}{\pi}$
665 (c)
The activity $\left(-\frac{d N}{d t}\right)=\lambda N \Rightarrow N=\left(-\frac{d N}{d t}\right)\left(\frac{T_{1 / 2}}{\log _{e} 2}\right)$
Taking the ratio of this expression for ${ }^{240} \mathrm{Pu}$ to this same expression for ${ }^{243} \mathrm{Am}$
$\frac{N_{P u}}{N_{A m}}=\frac{\left(-\frac{d N_{P u}}{d t}\right)\left(T_{1 / 2}\right)_{P u}}{\left(-\frac{d N_{A m}}{d t}\right)\left(T_{1 / 2}\right)_{A m}}=\frac{(5 \mu c i) \times(6560 y)}{(4.45 \mu c i) \times(7370 y)}$

$$
=1
$$

i.e., the two samples contains equal number of nuclei
666 (b)
P.E. $=2 \times$ Total energy $=2 \times(-13.6)=-27.2 \mathrm{eV}$

668 (c)
$r \propto(A)^{1 / 3}$

670 (a)
$\frac{1}{\lambda}=R\left[\frac{1}{4}-\frac{1}{9}\right]=\frac{5 R}{36}$
$\therefore R=\frac{36}{5 \lambda}=\frac{36}{5 \times 6563 \times 10^{-10}}=1.09 \times 10^{7} \mathrm{~m}^{-1}$
671 (d)
The infrared radiations have lower energy than $u v$ radiations. Therefore, the only possible transition is from $n=5$ to $n=4$. As n increases, difference of energy levels and hence energy emitted decreases
672 (d)
If $n=4$
Lines $=\frac{n(n-1)}{2}=6$
673 (c)
$\left(T_{1 / 2}\right)_{x}=\left(t_{\text {mean }}\right)_{y}$
$\Rightarrow \frac{0.693}{\lambda_{x}}=\frac{1}{\lambda_{y}} \Rightarrow \lambda_{x}=0.693 \lambda_{y}$ or $\lambda_{x}<\lambda_{y}$
Also rate of decay $=\lambda N$
Initially number of atoms (N) of both are equal but since $\lambda_{y}>\lambda_{x}$, therefore, y will decay at a faster rate than x
674 (c)
Cadmium rods absorb the neutrons so they are used to control the chain reaction process
675 (d)
$N=N_{0} e^{-\lambda t}$ and $A=A_{0} e^{-\lambda t}=\lambda N_{0} e^{-\lambda t}$
$\therefore N_{\text {decayed }}=N_{0}-N=N_{0}-N_{0} e^{-\lambda t} \Rightarrow N_{\text {decayed }}$

$$
=N_{0}-\frac{A}{\lambda}
$$

This is equation of straight line with negative slope
676 (b)
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / T}=\frac{m}{m_{0}}\left(\frac{1}{2}\right)^{19 / 3.8}=\frac{m}{10.38}$
$\left(\frac{1}{2}\right)^{19 / 3.8}=\frac{m}{10.38}$
$m=10.38 \times\left(\frac{1}{2}\right)^{5}=\frac{10.38}{32}=0.32 \mathrm{~g}$
678 (b)
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{5}$
679 (c)
Wave number $\frac{1}{\lambda}=R\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]=R\left[\frac{1}{4}-\frac{1}{16}\right]=\frac{3 R}{16}$
680 (c)
Since in spectral series of hydrogen atom, Lyman series lies lower to Balmer series

681 (d)

$$
\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=\frac{1}{16} ; n=4
$$

$\therefore t=4 \times 140=560$ days
682 (c)
Decay constant $\lambda=\frac{0.693}{T_{1 / 2}}$

$$
=\frac{0.693}{69.3}=0.01 \mathrm{~s}^{-1}
$$

684 (b)

$$
\begin{aligned}
N & =N_{0} \times\left(\frac{1}{2}\right)^{11400 / 5700} \\
& =N_{0}\left(\frac{1}{2}\right)^{2}=0.25 N_{0}
\end{aligned}
$$

685 (c)
To nucleus one fourth it takes time $t=2\left(T_{1 / 2}\right)=$ $2 \times 40=80$ years
Decay constant $\lambda=\frac{0.693}{T_{1 / 2}}=\frac{0.693}{40}=0.0173$ years
686 (a)

By conservation of momentum $m_{1} v_{1}=m_{2} v_{2}$ $\Rightarrow \frac{v_{1}}{v_{2}}=\frac{8}{1}=\frac{m_{2}}{m_{1}}$
Also from $r \propto A^{1 / 3} \Rightarrow \frac{r_{1}}{r_{2}}=\left(\frac{A_{1}}{A_{2}}\right)^{1 / 3}=\left(\frac{1}{8}\right)^{1 / 3}=\frac{1}{2}$
687 (c)
$\frac{1}{\lambda}=R z^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
688 (c)
At closest distance of approach
Kinetic energy $=$ Potential energy
$\Rightarrow 5 \times 10^{6} \times 1.6 \times 10^{-19}=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{(z e)(2 e)}{r}$
For uranium $z=92$, so $r=5.3 \times 10^{-12} \mathrm{~cm}$
690 (a)
$(4 n+2)$ series starts from U^{238} and it's stable end product is $P b^{206}$
691 (d)
Control rods or safety rods used in a nuclear reactor are cadmium rods or boron rods

693 (c)
According to Bohr's second postulate
(d)

Because radioactivity is a spontaneous phenomenon

695 (b)
Energy $\propto c^{2} ;:$ Decrease in energy $\propto \frac{4}{9}$
696 (b)
${ }_{Z} X^{A} \xrightarrow{-1 \beta^{0}} Z+1 Y^{A} \xrightarrow{2 H e^{4}(\alpha)}{ }_{Z-1} K^{A-4}$

$$
\xrightarrow{\mathrm{o} \mathrm{\gamma}^{0}} Z_{-1} K^{A-4}
$$

697 (c)
$\tau_{m}=1.442 T$
$T=1.442 \times 1600=2308 \mathrm{yr}$
698 (c)
$4\left({ }_{2} \mathrm{He}^{4}\right)={ }_{8} \mathrm{O}^{16}$
Mass defect,

$$
\begin{gathered}
\Delta m=\{4(4.0026)-15.9994\} \mathrm{amu} \\
=0.01 \text { lamu }
\end{gathered}
$$

\therefore Energy released per oxygen nuclei

$$
\begin{aligned}
& =(0.011)(931.48) \mathrm{MeV} \\
& =10.24 \mathrm{MeV}
\end{aligned}
$$

699 (a)
$\because E_{1}>E_{2}$
$\therefore v_{1}>v_{2}$
i.e., photons of higher frequency will be emitted if transition takes place from $n=2$ to 1

700 (c)
$T=100 \mu s=10^{-4} \mathrm{~s}$

$$
\lambda=\frac{0.6931}{T}=\frac{0.6931}{10^{-4}}=0.6931 \times 10^{4} \mathrm{~s}^{-1}
$$

Number of atoms in 215 mg

$$
=\frac{0.6931 \times 10^{23}}{215} \times 215 \times 10^{-3}
$$

$\therefore N=6.023 \times 10^{20}$
Activity, $\frac{d N}{d t}=\lambda N$

$$
\begin{aligned}
& =0.6931 \times 10^{4} \times 6.023 \times 10^{20} \\
& =4.17 \times 10^{24} \mathrm{~Bq}
\end{aligned}
$$

701 (b)
$A=238-4=234$ and $Z=92-2=90$
702 (c)
Energy liberated
$=2 \times 117 \times 8.5-236 \times 7.6$
= 1989 - 1793.6
$=195.4 \mathrm{MeV} \approx 200 \mathrm{MeV}$

703 (d)
Number of electrons $=8+2=10$
Number of protons $=8$
Number of neutrons, $N=8$
Atomic number, $Z=$ number of protons $=8$
Mass number, $A=Z+N=8+8=16$
The proper symbol of the species is ${ }^{16} O_{8}^{2-}$
(d)

Mass defect $\Delta m=\frac{2.23}{931}=0.0024 \mathrm{amu}$
The number of counts left after time t

$$
\begin{array}{r}
N=N_{0}\left(\frac{1}{2}\right)^{\frac{t}{T_{1 / 2}}} \\
\therefore \quad 30=240\left(\frac{1}{2}\right)^{\frac{60}{T_{1 / 2}}}
\end{array}
$$

or $\quad(\because t=1 \mathrm{~h}=60 \mathrm{~min})$

$$
\begin{gathered}
\frac{30}{240}=\left(\frac{1}{2}\right)^{\frac{60}{T_{1 / 2}}} \\
\text { or }\left(\frac{1}{2}\right)^{3}=\left(\frac{1}{3}\right)^{\frac{60}{T_{1 / 2}}}
\end{gathered}
$$

Comparing the powers, we get

$$
\begin{aligned}
\therefore \frac{60}{T_{1 / 2}} & =3 \\
T_{1 / 2} & =\frac{60}{3} \\
T_{1 / 2} & =20 \mathrm{~min}
\end{aligned}
$$

706 (d)
At the distance of closest approach, r
$K=\frac{1}{4 \pi \varepsilon_{0}} \frac{(2 e)(Z e)}{r}$
$r=\frac{2 Z e^{2}}{4 \pi \varepsilon_{0} K}$
Where, $Z e=$ charge of the nucleus
$2 e=$ charge of the alpha particle
$K=$ kinetic energy of the alpha particle
$\therefore K=\frac{p^{2}}{2 m}$
Where p is the momentum of the α-particle and m is the mass of the electron
$\therefore r=\frac{2 Z e^{2} 2 m}{4 \pi \varepsilon_{0} p^{2}}$
Or $r \propto \frac{1}{p^{2}}$
$\frac{r^{\prime}}{r}=\left(\frac{p}{p^{\prime}}\right)^{2}=\left(\frac{p}{2 p}\right)^{2}=\frac{1}{4} \Rightarrow r^{\prime}=\frac{r}{4}$
708 (c)
In a nuclear fusion, when two light nuclei of different masses are combined to form a stable nucleus, then some mass is lost and appears in the form of energy called the mass defect. So, the mass of resultant nucleus is always less than the
sum of masses of fusing nuclei, ie, $m_{3}<$ ($m_{1}+$ m_{2}).
710 (d)

$m_{1} r_{1}=m_{2} r_{2}$
$r_{1}+r_{2}=r$
$\therefore r_{1}=\frac{m_{2} r}{m_{1}+m_{2}}, r_{2}=\frac{m_{1} r}{m_{1}+m_{2}}$
$\therefore \varepsilon=\frac{1}{2} I \omega^{2}$
$=\frac{1}{2}\left(m_{1} r_{1}^{2}+m_{2} r_{2}^{2}\right) \cdot \omega^{2}$
$m v r=\frac{n h}{2 \pi}=I \omega$
$\Rightarrow \omega=\frac{n h}{2 \pi l}$
$\therefore \varepsilon=\frac{1}{2} I \cdot \frac{n^{2} h^{2}}{4 \pi^{2} I^{2}}$
$=\frac{n^{2} h^{2}}{8 \pi^{2}} \cdot \frac{1}{\left(m_{1} r_{1}^{2}+m_{2} r_{2}^{2}\right)}$
$=\frac{n^{2} h^{2}}{8 \pi^{2}} \frac{1}{m_{1} \frac{m_{2}^{2} r^{2}}{\left(m_{1}+m^{2}\right)^{2}}+m_{2} \frac{m_{1}^{2} r^{2}}{\left(m_{1}+m_{2}\right)^{2}}}$
$=\frac{n^{2} h^{2}}{8 \pi^{2} r^{2}} \frac{\left(m_{1}+m_{2}\right)^{2}}{m_{1} m_{2}\left(m_{1}+m_{2}\right)}=\frac{\left(m_{1}+m_{2}\right) n^{2} h^{2}}{8 \pi^{2} r^{2} m_{1} m_{2}}$
$=\frac{\left(m_{1}+m_{2}\right) n^{2} \hbar^{2}}{2 m_{1} m_{2} r^{2}}$
711 (d)
$E_{n}=\frac{-13.6}{n^{2}}=\frac{-13.6}{4}=-3.4 \mathrm{eV}$
712 (c)
Decay rate $R=\lambda N$

$$
\begin{aligned}
R & =R_{0}=\lambda N_{0} \\
\lambda & =(\ln 2) / T_{1 / 2}=(\ln 2) /(78 \mathrm{~h}) \\
& =8.89 \times 10^{-3} \mathrm{~h}^{-1} \text { then } N_{0}=M / m \\
\text { Now } \quad m & =(67 u)\left(1.661 \times 10^{-24} \mathrm{~g} / \mathrm{u}\right) \\
& =1.113 \times 10^{-22} \mathrm{~g}
\end{aligned}
$$

and $\quad N_{0}=(3.4 \mathrm{~g}) /\left(1.113 \times 10^{-22} \mathrm{~g}\right)$

$$
=3.05 \times 10^{22}
$$

Thus, $\quad R_{0}=\left(8.89 \times 10^{-3} \mathrm{~h}^{-1}\right)\left(3.05 \times 10^{22}\right)$

$$
=2.71 \times 10^{20} \mathrm{~h}^{-1}=7.53 \times 10^{16} \mathrm{~s}^{-1}
$$

713 (c)
Decrease in mass number due to emission of $3 \alpha-$ particles
and a β - particle $=3 \times 4=12$
Decrease in charge number in the process
$=3 \times 2-1=5$
\therefore For the resulting element,
$A=228-12=216$
$Z=88-5=83$

714 (c)

Wave number $=\frac{1}{\lambda}=R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
For first Balmer line $n_{1}=2, n_{2}=3$
\therefore Wave number $=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=R\left(\frac{9-4}{9 \times 4}\right)=\frac{5 R}{36}$

715 (b)

Energy from the sun is released on account of fusion reaction of ${ }_{2} \mathrm{He}^{3}$

716 (a)
$r_{n} \propto n^{2}$
717 (c)
Energy of electron in H atom $E_{n}=\frac{-13.6}{n^{2}} \mathrm{eV}$
$\Rightarrow-1.5=\frac{-13.6}{n^{2}} \Rightarrow n^{2}=\frac{13.6}{1.5}=3$
Now angular momentum
$L=n \frac{h}{2 \pi}=\frac{3 \times 6.6 \times 10^{-34}}{2 \times 3.14}=3.15 \times 10^{-34} \mathrm{~J} \times s$
718 (a)
According to scattering formula
$N \propto \frac{1}{\sin ^{4}(\theta / 2)} \Rightarrow \frac{N_{2}}{N_{1}}=\left[\frac{\sin \left(\theta_{1} / 2\right)}{\sin \left(\theta_{2} / 2\right)}\right]^{4}$
$\Rightarrow \frac{N_{2}}{N_{1}}=\left[\frac{\sin \frac{90^{\circ}}{2}}{\sin \frac{60^{\circ}}{2}}\right]^{4}=\left[\frac{\sin 45^{\circ}}{\sin 30^{\circ}}\right]^{4}$
$\Rightarrow N_{2}=(\sqrt{2})^{4} \times N_{1}=4 \times 56=224$
720 (b)
$E_{1}>E_{2}>E_{3}$

722 (b)
Because atom is hollow and whole mass of atom is concentrated in a small centre called nucleus
723 (a)
When an α-particle is emitted from a nucleus, the resultant nucleus reduces in mass number by 4 unit and in atomic number by 2 unit.
Loss in number $=232-204=28$
Therefore, number of α-particles emitted

$$
\begin{aligned}
& =\frac{28}{4} \\
& =7
\end{aligned}
$$

724 (a)
Potential energy $U=e V=e V_{0} \ln \frac{r}{r_{0}}$
\therefore Force $F=-\left|\frac{d U}{d t}\right|=\frac{e V_{0}}{r}$
\therefore The force will provide the necessary centripetal force. Hence $\frac{m v^{2}}{r}=\frac{e V_{0}}{r}$
$\therefore \Rightarrow v=\sqrt{\frac{e V_{0}}{m}}$
and $m v r=\frac{n h}{2 \pi}$
From equations (i) and (ii)
$m r=\left(\frac{n h}{2 \pi}\right) \sqrt{\frac{m}{e V_{0}}}$ or $r \propto n$
725 (d)
Minimum energy required to excite from ground state
$=13.6\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right]=10.2 \mathrm{eV}$
726 (d)
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}, n=2 \Rightarrow \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
So disintegrated part $=1-\frac{N}{N_{0}}=1-\frac{1}{4}=\frac{3}{4}$
728 (b)
Potential energy of electron in $n^{\text {th }}$ orbit of radius r in H-atom $U=-\frac{e^{2}}{r}$ (in CGS)
\because K.E. $=\frac{1}{2}|P . E.| \Rightarrow K=\frac{e^{2}}{2 r}$
729 (c)
γ-rays are highly penetrating
730 (d)
Pauli proposed the existence of a particle neutrino to account for the abnormalities in β - decay.
731 (a)
$m v r=\frac{n h}{2 \pi} \Rightarrow v=\frac{n h}{2 \pi m r} \Rightarrow \frac{v^{2}}{r}=\frac{n^{2} h^{2}}{4 \pi^{2} m^{2} r^{3}}$
732 (c)
${ }_{84} X^{202} \xrightarrow{\alpha-\text { decay }}{ }_{82} Y^{198}+{ }_{2} \mathrm{He}^{4}$ and
${ }_{82} Y^{198} \xrightarrow{\beta \text {-decay }}{ }_{83} Z^{198}+{ }_{-1} \beta^{0}$
733 (c)
The radius of an electron in a hydrogen atom is of the order of $10^{-11} \mathrm{~m}$. The value of Bohr's radius is $5.29 \times 10^{-11} \mathrm{~m}$
734 (a)
Number of emission spectral lines
$N=\frac{n(n-1)}{2}$
$\therefore 3=\frac{n_{1}\left(n_{1}-1\right)}{2}$, in first case
Or $n_{1}^{2}-n_{1}-6=0$ or $\left(n_{1}-3\right)\left(n_{1}+2\right)=0$
Take positive root
$\therefore n_{1}=3$
Again, $6=\frac{n_{2}\left(n_{2}-1\right)}{2}$, in second case
Or $n_{2}^{2}-n_{2}-12=0$ or $\left(n_{2}-4\right)\left(n_{2}+3\right)=0$
Take positive root, or $n_{2}=4$
Now velocity of electron $v=\frac{2 \pi K Z e^{2}}{n h}$
$\therefore \frac{v_{1}}{v_{2}}=\frac{n_{2}}{n_{1}}=\frac{4}{3}$
(d)
$m v r=\frac{h}{2 \pi}$ (for first orbit)
$\Rightarrow m \omega r^{2}=\frac{h}{2 \pi} \Rightarrow m \times 2 \pi v \times r^{2}=\frac{h}{2 \pi} \Rightarrow v$

$$
\begin{gathered}
=\frac{h}{4 \pi^{2} m r^{2}} \\
=\frac{6.6 \times 10^{-34}}{4(3.14)^{2} \times 9.1 \times 10^{-31} \times\left(0.53 \times 10^{-10}\right)^{2}} \\
=6.5 \times 10^{15} \frac{\mathrm{rev}}{\mathrm{~s}}
\end{gathered}
$$

736 (b)
From conservation of momentum, two identical photons must travel in opposite directions with equal magnitude of momentum and energy $\frac{h c}{\lambda}$ from conservation of energy $\frac{h c}{\lambda}+\frac{h c}{\lambda}=m_{0} c^{2}+$ $m_{0} c^{2}$
$\Rightarrow \lambda=\frac{h}{m_{0} c}$
737 (a)
Actual mass of the nucleus is always less than total mass of nucleons, so $M<\left(N M_{n}+Z m_{p}\right)$

Rate of disintegration $\frac{d N}{d t}=10^{17} \mathrm{~s}^{-1}$
Halt life $T_{1 / 2}=1445$ year
$=1445 \times 365 \times 24 \times 60 \times 60=4.55 \times 10^{10} s$
Now decay constant
$\lambda=\frac{0.693}{T_{1 / 2}}=\frac{0.693}{4.55 \times 10^{10}}=1.5 \times 10^{-11}$ per s
The rate of disintegration
$\frac{d N}{d t}=\lambda \times N_{0} \Rightarrow 10^{17}=1.5 \times 10^{-11} \times N_{0}$
$\Rightarrow N_{0}=6.6 \times 10^{27}$
739 (a)
Let number of α-particles emitted be x and number of β-particles emitted be y.

Difference in mass number $4 x=238-206=32$
$x=8$
Difference in charge number $2 x-1 y=92-$ $82=10$
$16-y=10, y=6$
741 (d)
Neutron velocity $=v$, mass $=m$
Deuteron contains 1 neutron and 1 proton, mass $=2 m$

In elastic collision both momentum and K.E. are conserved $p_{i}=p_{f}$
$m v=m_{1} v_{1}+m_{2} v_{2} \Rightarrow m v=m v_{1}+2 m v_{2}$
By conservation of kinetic energy
$\frac{1}{2} m v^{2}=\frac{1}{2} m v_{1}^{2}+\frac{1}{2}(2 m) v_{2}^{2}$
By solving (i) and (ii), we get
$v_{1}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v+\frac{2 m_{2}}{\left(m_{1}+m_{2}\right)} v \Rightarrow v_{1}=\frac{m_{1}+2 m}{3 m}$

$$
=-\frac{v}{3}
$$

$K_{i}=\frac{1}{2} m v^{2}, K_{f}=\frac{1}{2} m v_{1}^{2} \Rightarrow \frac{K_{i}-K_{f}}{K_{i}}=1-\frac{v_{1}^{2}}{v^{2}}$
$=1-\frac{1}{9}=\frac{8}{9}$ [Fractional change in $\left.K . E.\right]$
742 (c)
$\frac{m v^{2}}{a_{0}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{a_{0}^{2}} \Rightarrow v=\frac{e}{\sqrt{4 \pi \varepsilon_{0} a_{0} m}}$
743 (d)
de-Broglie wavelength $\lambda=\frac{-h}{m v}=\frac{h}{p}$
Where $p=$ momentum
By conservation of momentum

$$
\begin{aligned}
P_{1}+P_{2} & =0 \\
P_{1} & =P_{2} \\
\lambda_{1} & =\lambda_{2}=\lambda
\end{aligned}
$$

744 (a)
$n=\frac{72000}{24000}=3$
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$

745 (c)

Nuclear radius is proportional to $A^{1 / 3}$, where A is the mass number of Nucleus

$$
R=R_{0} A^{1 / 3}
$$

where

$$
\begin{aligned}
& R_{0}=1.2 \mathrm{fm} \\
& \frac{R_{1}}{R_{2}}=\frac{R_{0}(216)^{1 / 3}}{R_{0}(125)^{1 / 3}}=\frac{6}{5}
\end{aligned}
$$

746 (a)
When nuclear masses are measured, the mass is always found to be less than the sum of the
masses of the individual nucleons bound in the nucleus. This difference between the nuclear mass and the sum of individual masses is known as mass defect. Hence
Mass of nucleons $=$ isotopic mass + mass defect Hence, mass of nucleons together in a heavy nucleus is greater than the mass of nucleus.
747 (d)
$\frac{d N}{d t}=-\lambda N \Rightarrow\left|\frac{d N}{d t}\right|=\frac{0.693}{T_{1 / 2}} \times N$
$=\frac{0.693}{1.2 \times 10^{7}} \times 4 \times 10^{15}=2.3 \times 10^{8}$ atoms $/ \mathrm{s}$

748 (b)

Read time for 50 count rate, it gives half life period of 3 hrs , one small square gives 600 counts (10×60). The number of small squares between graph and time axis are approx 24
Hence count rate $=24 \times 600=14400$
749 (c)
$\frac{1}{\lambda}=R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
For first line of Lyman series $n_{1}=1$ and $n_{2}=2$
For first line of Balmer series $n_{2}=2$ and $n_{2}=3$
So, $\frac{\lambda_{\text {Lyman }}}{\lambda_{\text {Balmer }}}=\frac{5}{27}$
750 (b)
The time required for the number of parent nuclei to fall to 50% is called half-life $T^{1 / 2}$ and may be related to λ as follows.
Since $\quad 0.5 N_{0}=N_{0} e^{-T_{1 / 2}}$
We have, $\quad \lambda T_{1 / 2}=\ln (2)=0.693$
Or

$$
T_{1 / 2}=\frac{0.693}{\lambda}
$$

Or

$$
\lambda=\frac{0.693}{T_{1 / 2}}
$$

Given,

$$
T_{1 / 2}=77 \text { days }
$$

$$
\lambda=\frac{0.693}{77}=9 \times 10^{-3} \text { days }^{-1}
$$

751 (d)
$E=\Delta m c^{2}, \Delta m=\frac{0.1}{100}=10^{-3} \mathrm{~kg}$
$\therefore E=10^{-3} \times\left(3 \times 10^{8}\right)^{2}=10^{-3} \times 9 \times 10^{16}$

$$
=9 \times 10^{13} \mathrm{~J}
$$

752 (d)

$$
T_{1 / 2}=\frac{0.693}{\lambda}
$$

Activity $I_{1}=N_{1} \lambda, I_{2}=N_{2} \lambda$
Let $\lambda=$ disintegration constant

$$
\begin{aligned}
& \left(I_{1}-I_{2}\right)=\left(N_{1}-N_{2}\right) \frac{0.693}{\tau_{1 / 2}} \\
& \left(N_{1}-N_{2}\right) \propto\left(I_{1}-I_{2}\right) \tau_{1 / 2}
\end{aligned}
$$

753 (a)
The multiplication factor (k) is an important
reactor parameter and is the ratio of number of neutrons present of the beginning of a particular generation to the number present at the beginning of the next generation. It is a measure of the growth rate of the neutrons in the reactor. For $k=1$, the operation of the reactor is said to be critical
Note: If k becomes greater than one, the reaction rate and the reactor power increase
exponentially. Unless the factor k is brought down very close to unity, the reactor will become supercritical and can even explode
754 (c)
${ }_{1} H^{1}+{ }_{1} H^{1}+{ }_{1} H^{2} \rightarrow{ }_{2} \mathrm{He}^{4}+{ }_{+1} e^{0}+$ energy
755 (c)
Cadmium rods are used in the form of control rods. In a nuclear reactor the material that can absorb the neutrons are used to control the nuclear chain reaction. Cadmium and Boron rods are used for this purpose.
756 (b)
$E_{n}=-\frac{13.6}{n^{2}} \mathrm{eV}$
757 (c)
If in the rock there is no Y element, then the time taken by element X to reduce to $\frac{1}{8}$ th the initial value will be equal to $\frac{1}{8}=\left(\frac{1}{2}\right)^{n}$ or $n=3$
Therefore, from the beginning three half life time is spent. Hence the age of the rock is
$=3 \times 1.37 \times 10^{9}=4.11 \times 10^{9}$ years
758 (d)
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / T} \Rightarrow \frac{1}{16}=\left(\frac{1}{2}\right)^{t / 48}$
$\Rightarrow\left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)^{t / 48} \Rightarrow t=192$ hours
759 (d)
$\frac{1}{\lambda}=R Z^{2}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)$
For di-ionised lithium the value of Z is maximum
760 (d)
After one half life period, the activity of Tritium becomes 50\%
After 2 half life period 25\%
After 3 half life period 12.5%
After 4 half life period 6.25\%
After 5 half life period $3.12 \%=3 \%$
It is 5×12.5 years +7 years i.e. approximately 70 years only
761
Total mass of reactants
$=(2.0141) \times 2=4.0282 \mathrm{amu}$
Total mass of products $=4.0024 \mathrm{amu}$
Mass defect $=4.0282 \mathrm{amu}-4.0024 \mathrm{amu}$
$=0.0258 \mathrm{amu}$
\therefore Energy released $E=931 \times 0.0258=24 \mathrm{MeV}$
762 (c)
${ }_{92}^{234} U \xrightarrow{\alpha}{ }_{90}^{230} T h+\alpha$
The mass number of thorium is 230 and its atomic number, Z is 90
763 (c)
As $\frac{I}{I_{0}} e^{-\mu x} \therefore \frac{1}{8}=e^{-\mu} 37.5$
and $\frac{1}{2}=e^{-\mu x}$
Put in Eq. (i), $e^{-3 \mu x}=e^{-\mu}(37.5)$
$x=\frac{37.5}{3}=12.5 \mathrm{~mm}$
764 (b)
For Lyman series
$\bar{v}=\frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{n^{2}}\right)$ here $n=2,3,4,5 \ldots$
For first time $\bar{v}=R\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right) \Rightarrow \bar{v}=R\left(1-\frac{1}{4}\right)=$ $\frac{3 R}{4}$
765 (c)
$\frac{B E}{\text { nucleon }}=\frac{0.042 \times 931}{7}=5.6 \mathrm{MeV}$
766 (b)
$\frac{\text { Binding energy }}{\text { Nucleon }}=\frac{0.0303 \times 931}{4}=7$
767 (d)
A beta minus particle (β^{-}) is an electron.
Emission of β^{-}involves transformation of a neutron into a proton, an electron and a third particle called antineutrino (\bar{v}).

$$
{ }_{0} n^{1}={ }_{1} p^{1}+{ }_{-1} \beta^{0}+\bar{v}
$$

769 (d)
Number of nuclei remained after time t can be written as

$$
N=N_{0} e^{-\lambda t}
$$

Where N_{0} is initial number of nuclei of both the substances.

$$
\begin{align*}
& N_{1} \tag{i}
\end{align*}=N_{0} e^{-5 \lambda t}, ~=~ N_{2}=N_{0} e^{-\lambda t}
$$

Dividing Eq.(i) by Eq.(ii) , we obtain

$$
\frac{N_{1}}{N_{2}}=e^{(-5 \lambda+\lambda) t}=e^{-4 \lambda t}=\frac{1}{e^{4 \lambda t}}
$$

But, we have given

$$
\frac{N_{1}}{N_{2}}=\left(\frac{1}{e}\right)^{2}=\frac{1}{e^{2}}
$$

Hence,$\frac{1}{e^{2}}=\frac{1}{e^{4 \lambda t}}$
Comparing the powers, we get

$$
2=4 \lambda t
$$

or $\quad t=\frac{2}{4 \lambda}=\frac{1}{2 \lambda}$
770 (b)
The size of the atom is of the order of $1 \AA=10^{-10} \mathrm{~m}$
771 (d)
As charge number is fixed $(=92)$, therefore, number of protons and electrons is same. As atomic weight is greater by 3 , therefore ${ }_{92} \mathrm{U}^{238}$ contains 3 more neutrons.

772
(b)
$n=\frac{t}{T}=\frac{42}{6}=7$
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{7}=\frac{1}{128}$
As rate of disintegration $\propto N$,
$\therefore \frac{R}{R_{0}}=\frac{1}{128} ; R=\frac{R_{0}}{128}=\frac{1024}{128}=8 \min ^{-1}$
773 (a)
Relation between half-life and decay constant is

$$
T=\frac{1}{\lambda}=\log _{e} 2
$$

774 (c)
Remaining material $N=\frac{N}{2^{t / T}}$
$\Rightarrow N=\frac{10}{(2)^{20 / 15}}=\frac{10}{2.51}=3.96 g$
So decayed material $=10-3.96=6.04 g$
775 (b)
$Q=4\left(x_{2}-x_{1}\right)$
777 (c)
Helium nucleus $\rightarrow{ }_{2} \mathrm{He}^{4}$
Number of protons $=Z=2$
Number of neutrons $=A-Z=2$
778 (a)
We know that $E_{n}=-13.6 \frac{Z^{2}}{n^{2}}=\mathrm{eV}$ and
$r_{n}=0.53 \frac{n^{2}}{z}(\AA)$
Here for $n=1, E_{1}=-54.4 \mathrm{eV}$
Therefore $-54.4=-13.6 \frac{Z^{2}}{1^{2}} \Rightarrow Z=2$
Hence radius of first Bohr orbit $r=\frac{0.53(1)^{2}}{2}=$ 0.265 Å

779 (d)

Fusion reaction of deuterium is
${ }_{1} H^{2}+{ }_{1} H^{2} \rightarrow{ }_{2} \mathrm{He}^{3}+{ }_{0} n^{1}+3.27 \mathrm{MeV}$
So $E=\frac{6.02 \times 10^{23} \times 10^{3} \times 3.27 \times 1.6 \times 10^{-13}}{2 \times 2}=7.8 \times 10^{13} \mathrm{~J}$
$=8 \times 10^{13} \mathrm{~J}$
780 (d)
Number of wavelength $=\frac{n(n-1)}{2}$, where $n=$ No. of orbit from which transition takes place
$\therefore 6=\frac{n(n-1)}{2} \Rightarrow n=4$
In all given options wavelength of emitted radiation's will be maximum for transition $n=4$ to $n=3$
781 (a)
Wave number $\bar{v}=\frac{1}{\lambda}=R\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right] ; n_{2}=\infty$ and
$n_{1}=1$
$\Rightarrow \bar{v}=R=1.097 \times 10^{7} \mathrm{~m}^{-1}=109700 \mathrm{~cm}^{-1}$
782 (a)
$\frac{1}{\lambda_{\max }}=R\left[\frac{1}{(1)^{2}}-\frac{1}{(2)^{2}}\right] \Rightarrow \lambda_{\max }=\frac{4}{3 R} \approx 1213 \AA$
and $\frac{1}{\lambda_{\text {min }}}=R\left[\frac{1}{(1)^{2}}-\frac{1}{\infty}\right] \Rightarrow \lambda_{\text {min }}=\frac{1}{R} \approx 910 \AA$
783 (a)
Here radius of electron orbit $r \propto 1 / m$ and energy $E \propto m$, where m is the mass of the electron
Hence energy of hypothetical atom
$E_{0}=2 \times(-13.6 \mathrm{eV})=-27.2 \mathrm{eV}$ and radius
$r_{0}=\frac{a_{0}}{2}$
784 (d)
$E_{3}=-\frac{13.6}{9}=-1.51 \mathrm{eV} ; E_{4}=-\frac{13.6}{16}=-0.85 \mathrm{eV}$
$\therefore E_{4}-E_{3}=0.66 \mathrm{eV}$
785 (b)
$E_{n}=-13.6\left(\frac{z^{2}}{n^{2}}\right)=-13.6\left(\frac{4}{4}\right)=-13.6 \mathrm{eV}$
786 (a)
Decay constant remains unchanged in a chemical reaction
787 (a)
In the reaction

$$
{ }_{7} \mathrm{~N}^{14}+\alpha \rightarrow{ }_{8} X^{17}+{ }_{1} p^{1}
$$

8 is the atomic number of oxygen molecule.
So, here X is oxygen $\left(\mathrm{O}_{2}\right)$ molecule.
788 (a)
Electronic configuration of iodine is $2,8,18,18,7$
Here $r_{n}=\left(0.053 \times 10^{-9} m\right) \frac{n^{2}}{Z}$
Here $n=5$ and $Z=53$
Hence $r_{n}=2.5 \times 10^{-11} \mathrm{~m}$
789 (c)
$m v r=\frac{n h}{2 \pi}$, for $n=1$ it is $\frac{h}{2 \pi}$

790 (a)
In fusion reaction, two lighter nuclei combine
791 (d)
If E is the energy radiated in transition then
$E_{R \rightarrow G}>E_{Q \rightarrow S}>E_{R \rightarrow S}>E_{Q \rightarrow R}>E_{P \rightarrow Q}$
For getting blue line energy radiated should be maximum $\left(E \propto \frac{1}{\lambda}\right)$. Hence (d) is the correct option
792 (a)
$\left|\frac{d N}{d t}\right|=\mid$ Activity of radioactive substance \mid

$$
=\lambda N=\lambda N_{0} e^{-\lambda t} \quad\left(\because N=N_{0} e^{-\lambda t}\right)
$$

Taking \log both sides

$$
\ln \left|\frac{d N}{d t}\right|=\ln \left(\lambda N_{0}\right)-\lambda t
$$

Hence, $\ln \left|\frac{d N}{d t}\right|$ versus t graph is a straight line with slope- λ.
From the graph we can see that,

$$
\lambda=\frac{1}{2}=0.5 y r^{-1}
$$

Now applying the equation

$$
\begin{aligned}
N & =N_{0} e^{-\lambda t}=N_{0} e^{-0.5 \times 4.16} \\
& =N_{0} e^{-2.08}=0.125 N_{0} \\
& =\frac{N_{0}}{8}
\end{aligned}
$$

$i e$, nuclei decreases by a factor of 8 .
Hence the answer is 8 .
793 (b)
Kinetic energy $=\mid$ Total energy \mid
794 (b)
From Einstein's mass energy relation the energy released is

$$
\Delta E=\Delta m c^{2}
$$

where Δm is mass and c is speed is light.
Given

$$
\Delta m=1 \mathrm{mg}=1 \times 10^{-6} \mathrm{~kg}, c=3 \times
$$

$10^{8} \mathrm{~m} / \mathrm{s}$
$\therefore \quad \Delta E=1 \times 10^{-6} \times\left(3 \times 10^{8}\right)^{2}$
$\Delta E=9 \times 10^{10} \mathrm{~J}$
The rate at which energy is dissipated is known as power, ie,
$P=\frac{\Delta E}{t}=\frac{9 \times 10^{10}}{1}=9 \times 10^{10} \mathrm{~W}$
Since, $10^{3} \mathrm{~W}=1 \mathrm{~kW}$
$\therefore \quad P=9 \times 10^{7} \mathrm{~kW}$
795 (a)
Diameter of nucleus is of the order of $10^{-14} \mathrm{~m}$ and radius of first Bohr orbit of hydrogen atom
$r=0.53 \times 10^{-10} \mathrm{~m}$
797 (b)
The given reaction is a nuclear reaction, which can take place only if a proton (a hydrogen
nucleus) comes into contact with a lithium nucleus. If the hydrogen is in the atomic from, the interaction between it's electron cloud and the electron cloud of a lithium atom keeps the two nuclei from getting close to each other. Even if isolated protons are used, they must be fired at the $L i$ atom with enough kinetic energy to overcome the electric repulsion between the proton and $L i$ atom
798
(d)
$\frac{3}{2} k T=7.7 \times 10^{-14} \mathrm{~J}$

$$
\mathrm{T}=\frac{2 \times 7.7 \times 10^{-14}}{3 \times 1.38 \times 10^{-23}}=3.7 \times 10^{9} \mathrm{~K}
$$

799 (b)
Millikan oil drop method determines the charge on an electron. Liquid drop model explains nuclear fission, Shell model explains the stability of nuclei and Bohr's model accounts for the stability of the atom and the line spectra of hydrogen atom.
800 (c)
Average life $=5 h$, in one average life approximately 63 \% radioactive nuclei decay.
801 (a)
$E\left(=\frac{h c}{\lambda}\right) \propto \frac{Z^{2}}{n^{2}} \Rightarrow \lambda \propto \frac{1}{Z^{2}}$
Hence $\lambda_{\mathrm{He}^{+}}=\frac{20.397}{4}=5.099 \mathrm{~cm}$
802 (d)

$$
\begin{aligned}
M=M_{0}\left(\frac{1}{2}\right)^{\frac{t}{T_{1 / 2}}} & =20 \times\left(\frac{1}{2}\right)^{\frac{36}{3.6}}=20 \times\left(\frac{1}{2}\right)^{10} \\
& =0.019 \mathrm{mg}
\end{aligned}
$$

803 (d)
$A=A_{0}\left(\frac{1}{2}\right)^{t / T_{1 / 2}} \Rightarrow 5 \times 10^{-6}=64 \times 10^{-5}\left(\frac{1}{2}\right)^{t / 3}$ $\Rightarrow \frac{1}{128}=\left(\frac{1}{2}\right)^{t / 3} \Rightarrow t=21$ days
804 (d)
${ }_{7} N^{13} \rightarrow{ }_{6} C^{13}+{ }_{+1} e^{0}$
805 (c)
By using $N=N_{0}\left(\frac{1}{2}\right)^{t / T}$; where $N=\left(1-\frac{7}{8}\right) N_{0}=$ $\frac{1}{8} N_{0}$
So $\frac{1}{8} N_{0}=N_{0}\left(\frac{1}{2}\right)^{t / T} \Rightarrow\left(\frac{1}{2}\right)^{3}=\left(\frac{1}{2}\right)^{t / 5} \Rightarrow t=$ 15 days
806 (d)
$(r m)=\left(\frac{m^{2}}{Z}\right)(0.53 \AA)=(n \times 0.53 \AA) \Rightarrow \frac{m^{2}}{Z}=n$
$m=5$ for ${ }_{100} \mathrm{Fm}^{257}$ [the outermost shell]
and $z=100 \Rightarrow n=\frac{(5)^{2}}{100}=\frac{1}{4}$
808 (d)
Number of neutrons $=A-Z=23-11=12$
809 (a)
An atomic reactor or a nuclear pile is a device in which a self-sustaining controlled chain reaction is produced in a fissionable material. It is thus, a source of controlled energy which is utilised for many useful purposes.
810 (c)
Energy equivalent to ${ }_{1} H^{2}=2 \times 1.112=$ 2.224 MeV

Energy equivalent to ${ }_{2} \mathrm{He}^{4}=4 \times 7.047=$ 28.188 MeV

From the equation, energy released
$=28.188-2 \times 2.224=23.74 \mathrm{MeV} \approx 24 \mathrm{MeV}$
812 (b)
${ }_{0} n^{1}={ }_{1} p^{1}+{ }_{-1} e^{0}+\bar{v}$
Antineutrino is required for conservation of spin
813 (a)
The nuclei having different Z and A but equal $(A-Z)$ are called isotones
814 (b)
Energy of γ-ray photon $=0.5+0.5+0.78=$ 1.78 MeV

815 (b)
${ }_{1} H^{2}+{ }_{1} H^{2} \rightarrow{ }_{2} H e^{4}+$ energy
Binding energy of a (${ }_{1} H^{2}$) deuterium nuclei
$=2 \times 1.1=2.2 \mathrm{MeV}$
Total binding energy of two deuterium nuclei
$=2.2 \times 2=4.4 \mathrm{MeV}$
Binding energy of a (${ }_{2} H^{4}$) nuclei $=4 \times 7=$ 28 MeV
So, energy released in fusion $=28-4.4=$ 23.6 MeV

816 (a)
Energy ε is related only when lighter nuclei fuse to form a heavier nucleus such as in reaction (i)

$$
A+B \rightarrow C+\varepsilon
$$

Again ,energy is released when a heavy nucleus splits into lighter nuclei as in(iv)

$$
F \rightarrow D+E+\varepsilon
$$

817 (a)
Activity, $A=\lambda N=\frac{0.693}{T_{1 / 2}} \mathrm{~N}$
Where $T_{1 / 2}$ is the half-life of a radioactive sample,

$$
\begin{aligned}
\therefore \quad & \frac{A_{1}}{A_{2}}
\end{aligned}=\frac{N_{1}}{T_{1}} \times \frac{T_{2}}{N_{2}}, ~ \frac{T_{1}}{T_{2}}=\frac{A_{2}}{A_{1}} \times \frac{N_{1}}{N_{2}}
$$

$$
=\frac{2 A_{1}}{A_{1}} \times \frac{2 N_{2}}{N_{2}}=\frac{4}{1}
$$

818 (a)
For X, energy $=200 \times 7.4=1480 \mathrm{MeV}$
For A, energy $=110 \times 8.2=902 \mathrm{MeV}$
For B, energy $=80 \times 8.1=648 \mathrm{MeV}$
Therefore energy released

$$
\begin{aligned}
& =(902+648)-1480 \\
& =1550-1480=70 \mathrm{MeV}
\end{aligned}
$$

819 (c)
Mean life $=\frac{1}{\lambda}=6.67 \times 10^{8} S$
820 (c)
Number of neutrons in ${ }_{92} \mathrm{U}^{235}$

$$
=235-92=143
$$

and number of protons $=92$
\therefore Number of neutrons more than number of protons

$$
=143-92=51
$$

823 (a)
Distance of closest approach $r_{0}=\frac{Z e^{2}}{2 m v^{2} \pi \varepsilon_{0}}$ $\Rightarrow r_{0} \propto \frac{1}{m}$
824 (b)
During fusion binding energy of daughter nucleus is always greater than the total energy of the parent nuclei so energy released $=c-(a+b)=$ $c-a-b$
825 (a)
$\omega=2 \pi v=\frac{2 \pi c}{\lambda}=2 \pi c \bar{v} \Rightarrow \omega \propto \bar{v}$
826 (a)
Orbital speed varies inversely as the radius of the orbit
$v \propto \frac{1}{n}$
827 (a)
The energy required to produce a pair of electron -positron is 1.02 MeV
Now, the kinetic energy of electron-positron pair

$$
=2 \times 0.29 \mathrm{MeV}=0.58 \mathrm{MeV}
$$

Hence, the energy of photon

$$
=(1.02+0.58) \mathrm{MeV}=1.60 \mathrm{MeV}
$$

828 (a)
Rest mass of parent nucleus should be greater than the rest mass of daughter nuclei.

