

3.MATRICES

Single Correct Answer Type

If *n* is a natural number. Then $\begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}^n$, is 1. a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ if *n* is even b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ if *n* is odd c) $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ if *n* is a natural number d) None of these $\begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix}^4 = I$, then 2. b) a = bc) $a = b^2$ a) a = 1 = 2bd) ab = 1If a square matrix A is such that $AA^T = I = A^T A$, then |A| is equal to 3. a) 0 b) ±1 d) None of these c) ±2 If k is a scalar and I is a unit matrix of order 3, then adj (kI) is equal to 4. a) $k^3 I$ b) $k^2 I$ c) $-k^{3}I$ d) $-k^2 I$ If *A* is a singular matrix, then *A* adj (*A*) is a 5. a) Scalar matrix b) Zero matrix c) Identity matrix d) Orthogonal matrix If $A = \begin{bmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{bmatrix}$ and $A = \begin{bmatrix} \cos^2 \beta & \cos \alpha \sin \beta \\ \cos \beta \sin \beta & \sin^2 \beta \end{bmatrix}$ are two matrices such that 6. the product AB is null matrix, then $\alpha - \beta$ is a) 0 b) Multiple of π c) An odd multiple of $\pi/2$ d) None of the above 7. Consider the following statements: 1. If *A* and *B* are two square matrices of same order and commute, then $(A + B)(A - B) = A^2 - B^2$ 2. If *A* and *B* are two square matrices of same order, then $(AB)^n = A^n B^n$ 3. If A and B are two matrices such that AB = A and BA = B, then A and B are idempotent Which of these is/are not correct? a) Only (1) c) (3) and (1) b) (2) and (3) d) All of these If $A = \begin{bmatrix} 2 & 4 & 5 \\ 4 & 8 & 10 \\ -6 & -12 & -15 \end{bmatrix}$, the rank of A is equal to 8. a) 0 c) 2 d) 3 b) 1 If *A* and *B* are 3×3 matrices such that AB + B and BA = A, then 9. a) $A^2 = A$ and $B^2 \neq B$ b) $A^2 \neq A$ and $B^2 = B$ c) $A^2 = A$ and $B^2 = B$ d) $A^2 \neq A$ and $B^2 \neq B$ The inverse of the matrix $\begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ is a) $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 4 & 3 \\ 3 & 3 & 4 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 3 & 1 \\ 4 & 3 & 8 \\ 3 & 4 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 4 \\ 3 & 4 & 3 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ 10. 11. If A is a skew-symmetric matrix and n is a positive integer, then A^n is a) A symmetric matrix b) Skew-symmetric matrix c) Diagonal matrix d) None of these 12. The number of 3×3 non-singular matrices, with four entries as 1 and all other entries as 0, is a) Less than 4 b) 5 c) 6 d) At least 7

If $A = \begin{bmatrix} 1 & -5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9 \end{bmatrix}$, then trace of matrix *A* is 13. c) 3 b) 25 d) 12 14. If $A = \begin{bmatrix} 3 & 4 \\ 2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -2 & -2 \\ 0 & -2 \end{bmatrix}$, then $(A + B)^{-1}$ is equal to a) Is a skew-symmetric matrix b) $A^{-1} + B^{-1}$ c) Does not exist d) None of the above 15. If $f(x) = x^2 - 5x$, $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then *f* (A) is equal to a) $\begin{bmatrix} -7 & 0 \\ 0 & -7 \end{bmatrix}$ b) $\begin{bmatrix} 0 & -7 \\ -7 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$ d) $\begin{bmatrix} 0 & 7 \\ 7 & 0 \end{bmatrix}$ The adjoint matrix of $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ is a) $\begin{bmatrix} 4 & 8 & 3 \\ 2 & 1 & 6 \\ 0 & 2 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$ c) $\begin{bmatrix} 11 & 9 & 3 \\ 1 & 2 & 8 \\ 6 & 9 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 1 & -2 & 1 \\ -1 & 3 & 3 \\ -2 & 3 & -3 \end{bmatrix}$ If the rank of the matrix $\begin{bmatrix} -1 & 2 & 5 \\ 2 & -4 & a - 4 \\ 1 & -2 & a + 1 \end{bmatrix}$ is 1, than the value of *a* is a) -1 b) 2 c) -6 d) 4 16. 17. a) –1 c) -6 d) 4 18. The value of λ such that $x + 3y + \lambda z = 0$, 2x + 4y - z = 0, x + 5y - 2z = 0 has a non-trivial solution is a) -1 b) 0 c) 1 d) 2 19. If $A = [a_{ij}]_{m \times n}$ is a matrix and *B* is a non-singular square submatrix of order *r*, then d) 2 a) Rank of A is r b) Rank of A is greater than r c) Rank of *A* is less than *r* d) None of these 20. From the matrix equation AB = AC we can conclude B = C provided that b) *A* is non-singular c) *A* is symmetric a) A is singular d) A is square 21. The values of α for which the system of equations x + y + z = 1 $x + 2y + 4z = \alpha$ $x + 4y + 10z = \alpha^2$ Is consistent, are d) None of these a) 1, -2 b) -1, 2 c) 1, 2 d) Normalized as a non-singular matrix such that $A^3 = A + I$, then the inverse of $B = A^6 - A^5$ is a) 1, −2 b) –1, 2 c) 1, 2 c) -A b) A⁻¹ a) A If matrix $A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$ where a, b, c are real positive numbers, abc = 1 and $A^T A = I$, then the value of 23. $a^3 + b^3 + c^3$ is b) 2 c) 3 d) 4 a) 1 If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, then $A^2 - 4A$ is equal to 24. 25. If $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then $A^4 = \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ c) 4*I*₃ d) $5I_3$ b) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 26. The simultaneous equations Kx + 2y - z = 1, (K - 1)y - 2z = 2 and (K + 2)z = 3 have only one solution when

a) K = -2b) K = -1c) K = 0d) K = 127. The system of equation, x + y + z = 6x + 2y + 3z = 10And $x + 2y + \lambda z = \mu$ Has no solution, if b) $\lambda \neq 3, \mu = 10$ c) $\lambda \neq 3, \mu \neq 10$ d) $\lambda = 3, \mu \neq 10$ a) $\lambda = 3, \mu = 10$ 28. If a square matrix A is such that $AA^T = I = A^T A$, then |A| is equal to $b) \pm 1 \qquad b) \pm 1 \qquad c) \pm 2 \qquad d) N$ Let $A = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$ and $B = \begin{bmatrix} \cos^2 \theta & \sin \phi \cos \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{bmatrix}$, then AB = O, if d) None of these 29. a) $\theta = n\phi, n = 0, 1, 2, ...$ b) $\begin{array}{l} \theta + \phi = n\pi, n \\ = 0, 1, 2, ... \end{array}$ c) $\begin{array}{l} \theta = \phi + (2n+1)\frac{\pi}{2}, n \\ = 0, 1, 2, ... \end{array}$ d) $\begin{array}{l} \theta = \phi + n\frac{\pi}{2}, n \\ = 0, 1, 2, ... \end{array}$ 30. If A, B are two square matrices such that AB = A and BA = B, then a) A, B are idempotent b) Only A is idempotent c) Only B is idempotent d) None of these 31. If $\begin{bmatrix} x - y - z \\ -y + z \\ -z \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \\ 2 \end{bmatrix}$, than the values of x, y and z are respectively a) 5, 2, 2 d) 11, 8, 3 b) 1, -2, 3 c) 0, -3, 3 32. Inverse of the matrix $\begin{bmatrix} \cos 2\theta - \sin 2\theta \\ \sin 2\theta \cos 2\theta \end{bmatrix}$ is a) $\begin{bmatrix} \cos 2\theta - \sin 2\theta \\ \sin 2\theta \cos 2\theta \end{bmatrix}$ b) $\begin{bmatrix} \cos 2\theta \sin 2\theta \\ \sin 2\theta - \cos 2\theta \end{bmatrix}$ c) $\begin{bmatrix} \cos 2\theta - \sin 2\theta \\ \sin 2\theta \cos 2\theta \end{bmatrix}$ d) $\begin{bmatrix} \cos 2\theta \sin 2\theta \\ -\sin 2\theta \cos 2\theta \end{bmatrix}$ 33. If $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$, $10 B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}$ and B is the inverse of A, then the value of α is a) 2 b) 0 c) 5 d) 4 $A = \begin{bmatrix} 0 & 3 & 3 \\ -3 & 0 & -4 \\ -3 & 4 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \text{ then } B'(AB) \text{ is }$ 34. b) Singular matrix a) Null matrix c) Unit matrix d) Symmetric matrix If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$, then A^{-1} is a) $\begin{bmatrix} 1/a & 0 & 0 \\ 0 & 1/b & 0 \\ 0 & 0 & 1/c \end{bmatrix}$ 35. b) $\begin{bmatrix} -1/a & 0 & 0 \\ 0 & -1/b & 0 \\ 0 & 0 & -1/c \end{bmatrix}$ c) $\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1/c \end{bmatrix}$ d) None of these 36. If $A = \begin{bmatrix} a & b & 0 \\ -b & a & 0 \\ 0 & 0 & 1 \end{bmatrix}$, where $a^2 + b^2 = 1$, then adj(A) is equal to (Here, A^T is the transpose of A) a) A⁻¹ b) *A*^{*T*} c) A d) – A 37. The rank of a null matrix is c) Does not exist d) None of these a) 0 b) 1 38. If *A* and *B* are matrices of the same order, then $(A + B)^2 = A^2 + 2AB + B^2$ is possible, iff b) BA = Ic) AB = BAa) AB = Id) None of these

39.	If $A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$, then x equals								
	a) 2 b)	$\frac{1}{2}$	c) 1	d) $\frac{1}{2}$						
40.	If the system of equations	Z		2						
	ax + ay - z = 0									
	bx - y + bz = 0									
	and $-x + cy + cz = 0$									
	Has a non-trivial solution, the	en the value of								
	1 1 1									
	$\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c}$ IS									
	a) 0 b)	1	c) 2	d) 3						
41.	The system of equation									
	3x - y + 4z = 3									
	x + 2y - 3z = -2									
	$6x + 5y + \lambda z = -3$									
	Has at least one solution, if									
	a) $\lambda = -5$ b)	$\lambda = 5$	c) $\lambda = 3$	d) $\lambda = -13$						
42.	If <i>A</i> is a skew-symmetric mat	trix and <i>n</i> is an even pos	itive integer, then A^n is							
	a) A symmetric matrix									
	b) A skew-symmetric matrix									
	c) A diagonal matrix									
	d) None of these									
43.	$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 4 \end{bmatrix}$	1.								
	If $A = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix}$, then adj A is equal to									
	a) 0 b)	9	. 1	d) 81						
			c) $\frac{1}{9}$	4)01						
44.	If A is skew-symmetric matri	ix of order 3, then matrix	$x A^3$ is							
	a) Skew-symmetric matrix		b) Symmetric matrix							
	c) Diagonal matrix		d) None of the above							
45.	$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}_{[x]}$									
	If $\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 0 & 5 & 1 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = 0$, the	the value of x is								
	a) 0	2	. 5	. 4						
	b)	3	c) $\frac{1}{4}$	d) $-\frac{1}{5}$						
46.	$If A = \begin{bmatrix} 3 & 4 \end{bmatrix}_{B} = \begin{bmatrix} -2 & -2 \end{bmatrix}$	then $(A \perp B)^{-1}$ –	1	U						
	$IIA = \begin{bmatrix} 2 & 4 \end{bmatrix}, D = \begin{bmatrix} 0 & -1 \end{bmatrix}$	$\int_{a}^{b} (\ln(n + D)) =$								
	a) Is a skew-symmetric matr	ix								
	b) $A^{-1} + B^{-1}$									
	c) Does not exist									
	d) None of these									
47.	Let <i>A</i> be an orthogonal non-s	ingular matrix of order	<i>n</i> , then the determinant of	matrix ' $A - I'_n$ ie, $ A - I_n $ is						
	equal to									
	a) $ I_n - A $ b)	A	c) $ A I_n - A $	d) $(-1)^n A I_n - A $						
48.	$\frac{1}{\sqrt{2}}$ $\frac{2}{\sqrt{2}}$									
	I ne matrix $A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$	15								
	$\left[\sqrt{2} \sqrt{2} \right]$									
40	a) Unitary b)	Urthogonal	cj Nilpotent	a) Involutory						
49.	i ne inverse of a symmetric n	natrix is								
	a) Symmetric b)	Skew-symmetric	cj Diagonal matrix	a) None of these						

The characteristic roots of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{bmatrix}$ are 50. a) 1, 3, 6 b) 1, 2, 4 c) 4, 5, 6 d) 2, 4, 6 If matrix $A = \begin{bmatrix} 3 & 2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1 \end{bmatrix}$ and $A^{-1} = \frac{1}{k}$ adj A, then k is 51. d) 11 a) 7 c) $\frac{1}{7}$ b) -7 52. The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system $A\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}1\\0\\0\end{bmatrix}$ has exactly two distinct solutions, is b) $2^9 - 1$ a) 0 c) 168 d) 2 53. If *A* is an invertible matrix of order *n*, then the determinant of adj (*A*) is equal to d) $|A|^{n+2}$ c) $|A|^{n-1}$ a) $|A|^{n}$ b) $|A|^{n+1}$ adj $\begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & a & -2 \\ 1 & 1 & 0 \\ -2 & -2 & b \end{bmatrix}$, then $\begin{bmatrix} a & b \end{bmatrix}$ is equal to 54. a) [-4 1] c) [4 1] d) [4 -1] If $A = [x \ y \ z], B = \begin{bmatrix} a & h & g \\ h & b & f \\ a & f & c \end{bmatrix}$ and $C = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ Then, B'(AB) = 0, if 55. a) $[ax^{2} + by^{2} + cz^{2} + 2gxy + 2fyz + 2czx] = 0$ b) $[ax^2 + cy^2 + bz^2 + xy + yz + zx] = 0$ d) $[ax^2 + by^2 + cz^2 + 2gzx + 2hxy + 2fyz] = 0$ c) $[ax^2 + by^2 + cz^2 + 2hxy + 2by + 2cz] = 0$ ^{56.} The multiplicative inverse of matrix $\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}$ is a) $\begin{bmatrix} 4 & -1 \\ -7 & -2 \end{bmatrix}$ b) $\begin{bmatrix} -4 & -1 \\ 7 & -2 \end{bmatrix}$ c) $\begin{bmatrix} 4 & -7 \\ 7 & 2 \end{bmatrix}$ d) $\begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix}$ The rank of matrix $\begin{bmatrix} 4 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 6 & 0 & 2 & 0 \end{bmatrix}$ is 57. a) 4 c) 2 b) 3 d) 1 58. The solution of (x, y, z) the equation $\begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \text{is } (x, y, z)$ a) (1, 1, 1) b) (0, -1, 2) c) (-1, 2, 2) d) (-1, 0, 2) 59. $\begin{bmatrix} 7 & 1 & 2 \\ 9 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ is equal to a) $\begin{bmatrix} 43 \\ 44 \end{bmatrix}$ b) $\begin{bmatrix} 43 \\ 45 \end{bmatrix}$ c) $\begin{bmatrix} 45\\ 44 \end{bmatrix}$ d) $\begin{bmatrix} 44\\ 45 \end{bmatrix}$ 60. Let *A*, *B* and *C* be $n \times n$ matrices. Which one of the following is a correct statements? b) If $A^3 + 2A^2 + 3A + 5I = 0$; then A is invertible a) If AB = AC, then B = Cc) If $A^{2} = 0$, then A = 0d) None of the above 61. If *A* and *B* are square matrices of order 3 such that |A| = -1, |B| = 3, then |3AB| equals a) –9 b) -81 c) -27 d) 81 The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ is 62. b) 2 c) 3 a) 1 d) 4 63. If $A + 1 = \begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix}$, then (A = I). (A - I) is equal to b) $\begin{bmatrix} -5 & 4 \\ -8 & 9 \end{bmatrix}$ d) $\begin{bmatrix} -5 & -4 \\ -8 & -9 \end{bmatrix}$ a) $\begin{bmatrix} -5 & -4 \\ 8 & -9 \end{bmatrix}$ c) $\begin{bmatrix} 5 & 4 \\ 8 & 9 \end{bmatrix}$

64.	If $A = [a_{ij}]$ is a scalar matrix of order $n \times n$ such that	$t a_{ii} = k$ for all <i>i</i> , then $ A =$	=				
	a) nk b) $n + k$	c) <i>n^k</i>	d) <i>k</i> ^{<i>n</i>}				
65.	If $A\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is such that $ A =0$ and $A^2 - (a-d)A + k$	kI = 0, then k is equal to					
	a) $b + c$ b) $a + d$	c) $ab + cd$	d) Zero				
66.	If $A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix}$, then $(AB)^T$ is equivalent of the equivalence of the	qual to					
	a) $\begin{bmatrix} -3 & -2\\ 10 & 7 \end{bmatrix}$ b) $\begin{bmatrix} -3 & 10\\ -2 & 7 \end{bmatrix}$	c) $\begin{bmatrix} -3 & 7\\ 10 & 2 \end{bmatrix}$	d) None of these				
67.	If <i>A</i> is a matrix such that there exists a square subma	atrix of order <i>r</i> which is nor	n-singular and every square				
	submatrix of order $r + 1$ or more is singular, then						
	a) $rank(A) = r + 1$ b) $rank(A) = r$	c) rank $(A) > r$	d) rank (A) $\geq r + 1$				
68.	If $A = \begin{bmatrix} 3 & -5 \\ 4 & 2 \end{bmatrix}$, then $A^2 - 5A =$						
	a) I b) 14 I	c) ()	d) None of these				
69.	$\begin{bmatrix} a & h & a \end{bmatrix}_{rY_2}$						
	The order of $[x \ y \ z] \begin{bmatrix} x & y & z \\ h & b & f \\ g & f & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ is						
	a) 3 × 1 b) 1 × 1	c) 1 × 3	d) 3 × 3				
70.	If $A + B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $A - 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$, then $A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$, then $A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$.	=					
	a) $\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix}$	c) $\begin{bmatrix} 1/3 & 1/3 \\ 2/3 & 1/3 \end{bmatrix}$	d) None of these				
71.	If A is singular matrix, then A adj (A)						
	a) Is a scalar matrix	b) Is a zero matrix					
	c) Is an identity matrix	d) Is an orthogonal matrix	K				
72.	If $\begin{bmatrix} 3 & 1 \\ 4 & 1 \end{bmatrix} X = \begin{bmatrix} 5 & -1 \\ 2 & 3 \end{bmatrix}$, then X is equal to	- 2 4 -					
	a) $\begin{bmatrix} -3 & 4 \\ 14 & -13 \end{bmatrix}$ b) $\begin{bmatrix} 3 & -4 \\ -14 & 13 \end{bmatrix}$	c) $\begin{bmatrix} 3 & 4 \\ 14 & 13 \end{bmatrix}$	d) $\begin{bmatrix} -3 & 4 \\ -14 & 13 \end{bmatrix}$				
73.	For the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$, which of the followin	g is correct?					
74	a) $A^3 + 3A^2 - I = 0$ b) $A^3 - 3A^2 - I = 0$ W_1 W_2 W_2 V_3 V_4	c) $A^3 + 2A^2 - I = 0$	d) $A^3 - A^2 + I = 0$				
74.	The matrices $P = \begin{bmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{bmatrix}$; $Q = \frac{1}{9} \begin{bmatrix} 2 & 2 \\ 12 & -5 \\ -8 & 1 \end{bmatrix}$	$\begin{bmatrix} n \\ 5 \end{bmatrix}$ are such that $PQ = I$, an	identity matrix. Solving the				
	equation $\begin{bmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix}$, the value of y corr	the sout to be -3 . Then, the	value of <i>m</i> is equal to				
	a) 27 b) 7	c) —27	d) -7				
75.	If <i>A</i> is an invertible matrix, then which of the followi	ng is correct					
	a) A^{-1} is multivalued b) A^{-1} is singular	c) $(A^{-1})^T \neq (A^T)^{-1}$	d) $ A \neq 0$				
76.	If $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then the matrix A eq	uals					
	a) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$	c) $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$	d) $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$				
77.	If A is any square matrix, then det $(A - A^T)^T$ is equal	to	r1 11				
	a) 0	b) 1					
	c) Can be 0 or a perfect square	d) Cannot be determined					
78.	If $O(A) = 2 \times 3$, $O(B) = 3 \times 2$, and $O(c) = 3 \times 3$. W	hich one of the following is	s not defined?				
	a) $CB + A'$ b) BAC	c) $C(A + B')'$	d) $C(A + B')$				
79.	Suppose <i>A</i> is a matrix of order 3 and $B = A A^{-1}$. If	A = -5, then $ B $ is equal to)				
	a) 1 b) -5	c) -1	d) 25				

80.	$A = \begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix}$, the A^2 is equal to											
	a) Null matrix b) Unit matrix	c) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	d) $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$									
81.	The system of simultaneous equations $kx + 2y - z$	= 1 (k-1)y - 2z = 2 and	(k+2)z = 3 has a unique									
	solution, if <i>k</i> equals											
	a) -2 b) -1	c) 0	d) 1									
82.	If $A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $Ax = B$, then X is equ	al to										
	$1[0, 7]$ 1^{-1}	1	₄) [5]									
	a) $\begin{bmatrix} 0 \\ 7 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 3 \\ 7 \end{bmatrix}$	$\frac{c}{3}$ [5 /]										
83.	For the equations $x + 2y + 3z = 1$, $2x + y + 3z = 2$	and $5x + 5y + 9z = 4$										
	a) There is only one solution	b) There exists infinitely many solutions										
04	c) There is no solution d) None of the above											
84.	If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $n \in N$, then A^n is equal to											
	a) $2^n A$ b) $2^{n-1} A$	c) <i>n A</i>	d) None of these									
85.	If $A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, then $(B^{-1}A^{-1})^{-1} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$											
	[-3, 2] $[1, 0]$	<u>1</u> [2 2]	<u>, 1 [3 2]</u>									
	a) $\begin{bmatrix} 2 & 3 \end{bmatrix}$ b) $\begin{bmatrix} 2 & 2 \end{bmatrix}$	$\frac{c}{10}\begin{bmatrix} -2 & -2\\ -2 & 3 \end{bmatrix}$	d) $\frac{10}{10} \begin{bmatrix} 0 & -2 \\ -2 & 2 \end{bmatrix}$									
86.	If A is a skew symmetric matrix of order n and C is a	column matrix of order <i>n</i>	\times 1, then $C^T A C$ is									
	a) An identity matrix of order <i>n</i>	b) An identity matrix of o	rder1									
	c) A zero matrix of order 1	d) None of the above										
87.	If <i>A</i> is a square matrix, then $A + A^{T}$ is											
	a) Non-singular matrix	b) Symmetric matrix										
00	c) Skew-symmetric matrix	d) Unit matrix										
00.	If $A = [a_{ij}]_{2\times 2}$, where $a_{ij} = i + j$, then A is equal to											
	a) $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$	c) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	d) $\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$									
89.	$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} -1 & -2 \end{bmatrix} \begin{bmatrix} -4 & -5 & -6 \end{bmatrix}$	-0 1-	-0 1-									
	If $P = \begin{bmatrix} 2 & 3 & 4 \\ 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then P_{22} is eq	ual to										
	a) 40 b) -40	c) -20	d) 20									
90.	Which of the following is/are incorrect?	•) =•	~) _ ~									
	(i) adjoint of a symmetric matrix is symmetric											
	(ii) adjoint of a unit matrix is a unit matrix											
	(iii) $A(\operatorname{adj} A) = (\operatorname{adj} A)A = A I$											
	(iv) adjoint of a diagonal matrix is a diagonal matrix											
	a) (i) b) (ii)	c) (iii) and (iv)	d) None of these									
91.	If A and B are 3×3 matrices such that $AB = A$ and A	BA = B, then										
	a) $A^2 = A$ and $B^2 \neq B$	b) $A^2 \neq A$ and $B^2 = B$										
02	c) $A^{2} = A$ and $B^{2} = B$ Let A be a show symmetric matrix of even order the	a) $A^2 \neq A$ and $B^2 \neq B$										
92.	a) Is a square b) Is not a square	c) Is always zero	d) None of these									
93	[1 -1 1]	cj is always zero	uj None of these									
, 0.	If $A = \begin{bmatrix} 0 & 2 & -3 \end{bmatrix}$, $B = (\operatorname{adj} A)$ and $C = 5A$, then	$\frac{ adjB }{ c }$ is equal to										
	$\begin{bmatrix} 12 & 1 & 0 \end{bmatrix}$	a) 1	d) 1									
94	[6 8 5]	cj =1	uj I									
די.	If $A = \begin{bmatrix} 4 & 2 & 3 \end{bmatrix}$ is the sum of a symmetric matrix <i>B</i>	3 and skew-symmetric mat	rix, C, then B is									
		Γ.	ГО <i>С</i> ЭТ									
	a) $\begin{vmatrix} 0 & 0 & 7 \\ 6 & 2 & 5 \end{vmatrix}$ b) $\begin{vmatrix} 0 & 2 & -2 \\ -2 & 5 & -2 \end{vmatrix}$	c) $\begin{vmatrix} 0 & 0 & 7 \\ -6 & 2 & -5 \end{vmatrix}$	d) $\begin{bmatrix} 0 & 0 & -2 \\ 2 & 0 & -2 \end{bmatrix}$									
		$\begin{bmatrix} -7 & 5 & 1 \end{bmatrix}$	$\begin{bmatrix} -2 & -2 & 0 \end{bmatrix}$									

95. The matrix $\begin{bmatrix} 5 & 10 & 3 \\ -2 & -4 & 6 \\ -2 & -2 & b \end{bmatrix}$ is a singular matrix, if *b* is equal to d) For any value of b a) –3 b) 3 c) 0 96. If *A* and *B* are square matrices of order 3×3 , then which of the following is true? a) $AB = 0 \Rightarrow A = 0$ or B = 0b) det (2AB) = 8 det (A) det (B)c) $A^2 - B^2 = (A + B)(A - B)$ d) det (A + B)=det (A)+det (B)97. If $A = [a_{ij}]_{n \times n}$ be a diagonal matrix with diagonal element all different and $B = [b_{ij}]_{n \times n}$ be some another matrix. Let $AB = [C_{ij}]_{n \times n}$, then c_{ij} is equal to a) $a_{jj} b_{ij}$ b) *a_{ii}b_{ii}* c) $a_{ij}b_{ij}$ d) $a_{ij}b_{ji}$ Let $A = \begin{bmatrix} 1 & 2 & -3 \\ -2 & 0 & 3 \\ 2 & 2 & 1 \end{bmatrix}$ be a matrix, then (determinant of A)× (adjoint of inverse A) is equal to 98. b) $\begin{bmatrix} 1 & 2 & -3 \\ -2 & 0 & 3 \\ 3 & -3 & 1 \end{bmatrix}$ c) I_3 d) $\begin{bmatrix} 3 & -3 & 1 \\ 3 & 0 & -2 \\ -1 & 2 & -2 \end{bmatrix}$ a) *0*_{3×3} The rank of $\begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{vmatrix}$ is 99. c) 2 a) 0 b) 1 100. Let *a*, *b*, *c* are positive real numbers. The following system of equations $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 1, $-\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, in *x*, *y* and *z* has a) Infinite solutions b) Unique solution c) No solution d) Finite number of solutions 101. If $A = [a_{ij}]_{m \times n}$ is a matrix of rank r and B is a square submatrix of order r + 1, then a) *B* is invertible b) *B* is not invertible c) *B* may or may not be invertible d) None of these 102. If *A* is square matrix, *A*', is its transpose, then $\frac{1}{2}(A - A')$ is a) A symmetric matrix b) A skew-symmetric matrix c) A unit matrix d) An elementary matrix 103. Inverse of the matrix $A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ is a) $\frac{1}{10} \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ b) $\frac{1}{10} \begin{bmatrix} 4 & 2 \\ -3 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 4 & 2 \\ -3 & 1 \end{bmatrix}$ d) $\frac{1}{10} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$ 104. Let *A* be a matrix of rank *r*. Then, c) rank $(A^T) > r$ b) rank $(A^T) < r$ a) rank $(A^T) = r$ d) None of these The adjoint matrix of $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ is a) $\begin{bmatrix} 4 & 8 & 3 \\ 2 & 1 & 6 \\ 0 & 2 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$ c) $\begin{bmatrix} 11 & 9 & 3 \\ 1 & 2 & 8 \\ 6 & 9 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 1 & -2 & 1 \\ -1 & 3 & 3 \\ -2 & 3 & -3 \end{bmatrix}$ 105. 106. If a matrix A is such that $3A^3 + 2A^2 + 5A + I = 0$, then A^{-1} is equal to a) $-(3A^2 + 2A + 5)$ b) $3A^2 + 2A + 5$ c) $3A^2 - 2A - 5$ d) Nor 107. Let $A = [a_{ij}]_{n \times n}$ be a square matrix, and let c_{ij} be cofactor of a_{ij} in A. If $C = [c_{ij}]$, then d) None of these b) $|C| = |A|^{n-1}$ c) $|C| = |A|^{n-2}$ a) |C| = |A|d) None of these 108. The system of equations x + y + z = 0, 2x + 3y + z = 0 and x = 2y = 0 has a) A unique solution; x = 0, y = 0, z = 0b) Infinite solutions c) No solutions d) Finite number of non-zero solutions

^{109.} If $2X - \begin{bmatrix} 1 & 2 \\ 7 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 0 & -2 \end{bmatrix}$, then X is equal to b) $\begin{bmatrix} 1 & 2 \\ 7 & 2 \end{bmatrix}$ c) $\begin{bmatrix} 2 & 2 \\ 7 & 1 \end{bmatrix}$ d) None of these a) $\begin{bmatrix} 2 & 2 \\ 7 & 4 \end{bmatrix}$ ^{110.} Let $A = \begin{bmatrix} 1 & 2 \\ -5 & 1 \end{bmatrix}$ and $A^{-1} = xA + yI$, then the values of x and y are a) $x = -\frac{1}{11}$, $y = \frac{2}{11}$ b) $x = -\frac{1}{11}$, $y = -\frac{2}{11}$ c) $x = \frac{1}{11}$, $y = \frac{2}{11}$ d) $x = \frac{1}{11}$, $y = -\frac{2}{11}$ 111. Let A and B be two symmetric matrices of same order. Then, the matrix AB - BA is a) A symmetric matrix b) A skew-symmetric matrix c) A null matrix d) The identity matrix ^{112.} If $A = \begin{bmatrix} 1 & x \\ x^2 & 4y \end{bmatrix} a$, $B = \begin{bmatrix} -3 & 1 \\ 1 & 0 \end{bmatrix}$ and adj $A + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then the values of *x* and *y* are respectively d) None of these a) (1, 1) b) (-1, 1) c) (1,0) 113. Let *p* is a non-singular matrix such that $1 + p + p^2 + ... + p^n = 0$ (*O* denotes the null matrix), then p^{-1} is c) $-(1 + p + ... + p^n)$ a) p^n b) $-p^n$ d) None of these ^{114.} If $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{40} \begin{bmatrix} 5 & 10 & -5 \\ -5 & -2 & 13 \\ 10 & -4 & 6 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \\ 5 \end{bmatrix}$, then the value of x + y + z is c) 2 d) 1 ^{115.} The matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is the matrix reflection in the line c) y = 1a) *x* = 1 b) x + y = 1d) x = y^{116.} If $\begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, then a) a = 1, b = 1b) $a = \sin 2\theta$, $b = \cos 2\theta$ c) $a = \cos 2\theta, b = \sin 2\theta$ 117. If $A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$, then adj A is equal to d) None of the above c) 3A b) *A'* a) A d) 3*A*′ 118. Let the homogeneous system of linear equations px + y + z = 0, x + qy + z = 0, and x + y + rz = 00, where $p, q, r \neq 1$, have a non-zero solution, then the value of $\frac{1}{1-p} + \frac{1}{1-q} + \frac{1}{1-r}$ is b) 0 c) 2 a) -1 d) 1 119. If $A = \begin{bmatrix} 1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1 \end{bmatrix}$ and AB = I, then *B* is equal to b) $\cos^2 \frac{\theta}{2} \cdot A^T$ c) $\cos^2 \theta \cdot I$ d) $\sin^2 \frac{\theta}{2} \cdot A$ a) $\cos^2 \frac{\theta}{2} \cdot A$ 120. The values of x, y, z in order, if the system of equations 3x + y + 2z = 3, 2x - 3y - z = -3, x + 2y + z = -34 has unique solution, are a) 2, 1, 5 b) 1, 1, 1 c) 1, -2, -1d) 1, 2, −1 121. Matrix *A* is such that $A^2 = 2A - I$, where *I* is the indentity matrix, then for $n \ge 2$, A^n is equal to c) $2^{n-1}A - (n-1)I$ d) $2^{n-1}A - I$ b) *nA* − *I* a) nA - (n - 1)I122. Matrix M_r is defined as $M_r = \begin{bmatrix} r & r-1 \\ r-1 & r \end{bmatrix}$, $r \in N$ value of $det(M_1) + det(M_2) + det(M_3) + \dots + det(M_{2007})$ is c) 2008² d) 2007^2 a) 2007 b) 2008 123. The number of solutions of the system of equations $x_2 - x_3 = 1$, $-x_1 + 2x_3 = -2$, $x_1 - 2$, $x_1 - 2x_2 = 3$ is a) Zero b) One c) Two d) Infinite 124. If $A = [a_{ij}]$ is a scalar matrix of order $n \times n$ such that $a_{ii} = k$ for all *i*, then trace of *A* is equal to a) nk b) *n* + *k* c) *n/k* d) None of these 125. If $D = \text{diag}[d_1, d_2, d_3, ..., d_n]$, where $d_i \neq 0 \forall i = 1, 2, ..., n$ then D^{-1} is equal to

a) 0 b) I_n c) diag $[d_1^{-1}, d_2^{-1}, \dots, d_n^{-1}]$ d) None of the above ^{126.} If $A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$, then $\lim_{n \to \infty} \frac{1}{n} A^n$ is c) $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ b) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ d) None of these 127. The system of equations 2x + y - 5 = 0, x - 2y + 1 = 0, 2x - 14y - a = 0, is consistent. Then, *a* is equal to a) 1 b) 2 c) 5 d) None of these 128. The system of equation $ax + y + z = \alpha - 1$ $x + \alpha y + z = \alpha - 1$ $x + y + \alpha z = \alpha - 1$ Has no solution, if α is a) 1 b) Not-2 c) Either-2 or1 d) -2 129. A matrix $A = |a_{ij}|$ is an upper triangular matrix, if a) It is a square matrix and $a_{ij} = 0, i < j$ b) It is a square matrix and $a_{ij} = 0, i > j$ c) It is not a square matrix and $a_{ij} = 0, i > j$ d) It is not a square matrix and $a_{ij} = 0$, i < j^{130.} If $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ and A^2 is the identity matrix, then x is equal to a) -1 b) 0 131. $A = \begin{bmatrix} 0 & 3 \\ 2 & 0 \end{bmatrix}$ and $A^{-1} = \lambda$ (adj A), then λ equal to a) $-\frac{1}{6}$ b) $\frac{1}{3}$ c) 1 d) 2 c) $-\frac{1}{3}$ d) $\frac{1}{6}$ 132. If $A = [a_{ij}]$ is a 4 × 4 matrix and C_{ij} is the cofactor of the element a_{ij} in |A|, then the expression $a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} + a_{14}C_{14}$ is equal to b) -1 c) 1 d) |A| 133. For what value of λ , the system of equations x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = 10$ is consistent? a) 1 c) -1 d) 3 ^{134.} If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then A^{100} is equal to a) $2^{100}A$ b) $2^{99}A$ 135. Inverse of the matrix $\begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ is a) $\begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ b) $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$ c) 100 A d) 299 A c) $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ d) $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$ 136. Which of the following is correct? a) Determinant is square matrix b) Determinant is a number associated to a matrix c) Determinant is a number associated to a square matrix d) None of these ^{137.} If $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then *B* equals b) $I \sin \theta + I \cos \theta$ a) $I \cos \theta + J \sin \theta$ c) $I \cos \theta - J \sin \theta$ d) $-I \cos \theta + J \sin \theta$ a) $I \cos \theta + J \sin \theta$ $S_{1} = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}$? 138. What must be the matrix X if $2X + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}$? a) $\begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 1 - 3 \\ 2 & -1 \end{bmatrix}$ c) $\begin{bmatrix} 2 & 6 \\ 4 & -2 \end{bmatrix}$ d) $\begin{bmatrix} 2 & -6 \\ 4 & -2 \end{bmatrix}$ 139. *A* and *B* be 3×3 matrices. Then, AB = 0 implies a) A = 0 and B = 0

a) Null matrix b) Unit matrix cj -A154. If $A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$, then value of α for which $A^2 = B$ is d) A b) -1 a) 1 d) No real values If *A* is a square matrix such that *A* (adj *A*) = $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$, then |adj *A*| = 155. a) 4 b) 16 d) 256 156. If ω is a complex cube root of unity and $A = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$, then A^{50} is a) $\omega^2 A$ c) A d) 0 157. If $A = \begin{bmatrix} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $AB = I_3$, then x + y equals $\begin{array}{cccc} & & & & & & \\ 158. \text{ The adjoint of the matrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \text{ is } \\ & & & \\ a) \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} & b) \begin{bmatrix} \sin\theta & \cos\theta \\ \cos\theta & \sin\theta \end{bmatrix} \\ & & \\ b) \begin{bmatrix} \sin\theta & \cos\theta \\ \cos\theta & \sin\theta \end{bmatrix} \\ & & \\ c) \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \\ & & \\ d) \begin{bmatrix} -\sin\theta & \cos\theta \\ \cos\theta & \sin\theta \end{bmatrix} \\ & \\ 159. \\ \text{The inverse matrix of } A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} \text{ is } \end{array}$ a) 0 c) 2 d) None of these a) $\begin{bmatrix} \frac{1}{2} - \frac{1}{2} & \frac{1}{2} \\ -4 & 3 - 1 \\ \frac{5}{2} - \frac{3}{2} & \frac{1}{2} \end{bmatrix}$ b) $\begin{bmatrix} \frac{1}{2} - 4 & \frac{5}{2} \\ 1 & -6 & 3 \\ 1 & 2 - 1 \end{bmatrix}$ c) $\frac{1}{2} \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 4 & 2 & 3 \end{bmatrix}$ d) $\frac{1}{2} \begin{bmatrix} 1 & -1 & -1 \\ -8 & 6 & -2 \\ 5 & -3 & 1 \end{bmatrix}$ $\begin{bmatrix} \overline{2} & \overline{2} & 2 \end{bmatrix}$ 160. If $f(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 \end{bmatrix}$, then{ $f(\theta)^{-1}$ } is equal to b) $f(\theta)^{-1}$ c) $f(2\theta)$ a) $f(-\theta)$ d) None of these 161. If the three linear equations x + 4ay + az = 0x + 3by + bz = 0x + 2cy + cz = 0Have a non-trivial solution, where $a \neq 0, b \neq 0, c \neq 0$, then ab + bc is equal to a) 2*ac* b) –*ac* c) ac d) -2ac 162. If A and B are two matrices such that rank of A = m and rank of B = n, then a) rank (AB) = mnb) rank $(AB) \ge$ rank (A)c) rank $(AB) \ge rank(B)$ d) rank (*AB*) \leq min(rank *A*, rank *B*) 163. If *A* is a non-zero column matrix of order *m* × 1 and *B* is a non-zero row matrix of order 1 × *n*, then rank of AB equats c) 3 a) 1 d) 4 164. If $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then A is equal to b) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ a) $-\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ 165. If $A^2 - A + I = 0$, then the inverse of A is a) *I* − *A* b) *A* − *I* c) A d) A + I166. If *B* is an invertible matrix and *A* is a matrix, then a) $\operatorname{rank}(BA) = \operatorname{rank}(A)$ b) $\operatorname{rank}(BA) \ge \operatorname{rank}(B)$ c) rank(BA) > rank(A)d) rank(BA) > rank(B) ^{167.} If $A = \begin{bmatrix} 4 & 2 \\ 3 & 4 \end{bmatrix}$, |adj A|is equal to b) 16 d) None of these a) 6 c) 10

168. $\cos\theta \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta \begin{bmatrix} \sin\theta - \cos\theta \\ \cos\theta & \sin\theta \end{bmatrix}$ is equal to a) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ c) d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 169. Let $A = [a_{ij}]_{m \times n}$ be a matrix such that $a_{ij} = 1$ for all i, j. Then, a) rank $(A^T) > 1$ c) rank (A) = mb) rank (A) = 1d) rank (A) = n170. Let *A* be a square matrix all of whose entries are integers. Then, which one of the following is true? a) If det (A)= ± 1 , then A^{-1} need not exist b) If det $(A) = \pm 1$, then A^{-1} exists but all its entries are not necessarily integers c) If det $(A) \neq \pm 1$, then A^{-1} exists and all its entries are non – integers d) If det (A) = ± 1 , then A^{-1} exists and all its entries are integers Matrix $A = \begin{bmatrix} 1 & 0 & -k \\ 2 & 1 & 3 \\ k & 0 & 1 \end{bmatrix}$ is invertible for 171. 172. If $\begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, then a) a = 1, b = 1d) None of these a) a = 1, b = 1b) $a = \cos 2\theta$, $b = \sin 2\theta$ c) $a = \sin 2\theta$, $b = \cos 2\theta$ d) None of these 173. If $x^2 + y^2 + z^2 \neq 0$, x = cy + bz, y = az + cx and z = bx + ay, then $a^2 + b^2 + c^2 + 2abc = az + cx$ a) 2 174. If $A = \begin{bmatrix} 1 & -3 \\ 2 & k \end{bmatrix}$ and $A^2 - 4A = 10I = A$ then k is equal to c) 1 d) ab + bc + caa) 0 b) -4 c) 4 and not 1 d) 1 or 4 175. Matrix *A* such that $A^2 = 2A - I$, where *I* is the identity matrix. Then, for $n \ge 2$, A^n is equal to c) $2^{n-1}A - (n-1)I$ b) *nA* − *I* d) $2^{n-1}A - I$ a) nA - (n - 1)I^{176.} The matrix *A* satisfying the equation $\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$ is c) $\begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 1 & -4 \\ 1 & 0 \end{bmatrix}$ a) $\begin{bmatrix} 1 & 4 \\ -1 & 0 \end{bmatrix}$ d) None of these 177. If A is an orthogonal matrix, then A^{-1} equals b) *A*^{*T*} d) None of these a) A By elementary transformation method, the inverse of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}$ is 178. a) $\begin{bmatrix} -2 & 0 & 1 \\ 0 & 3 & -2 \\ 1 & -2 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 2 & 0 & -1 \\ 0 & -3 & 2 \\ -1 & 2 & -1 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}$ 179. What must be the matrix X, if $2X + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}$? d) None of these b) $\begin{bmatrix} 1 & -3 \\ 2 & -1 \end{bmatrix}$ 180. If $A = \begin{bmatrix} 4 & x+2 \\ 2x-3 & x+1 \end{bmatrix}$ is symmetric, then $x = \begin{bmatrix} 3 & 3 & 3 \end{bmatrix}$ 181. [3 3 3] d) $\begin{bmatrix} 2 & -6 \\ 4 & -2 \end{bmatrix}$ d) 4 181. If $A = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 2 & 3 & 3 \end{bmatrix}$, A^4 is equal to a) 27*A* If ω is a complex cube root of unity, then the matrix $A = \begin{bmatrix} 1 & \omega^2 & \omega \\ \omega^2 & \omega & 1 \\ \omega & 1 & \omega^2 \end{bmatrix}$ is a b) 81A d) 729A a) 27A c) 243A 182. a) Singular matrix b) Non-symmetric matrix

c) Skev	y-symmetric mat	rix	d) None of these	
183. The val	ues of λ and μ for	r which of the system of eq	uations $x + y + z = 6$, $x = 2$	2y + 3z = 10 and $x + 2y + 3z = 10$
$\lambda z = \mu$	have infinite nun	nber of solutions, are		
a) λ = 1	$B_{\mu} = 10$	b) $\lambda = 3, \mu = \neq 10$	c) $\lambda \neq 3, \mu = 10$	d) $\lambda \neq 3, \mu = \neq 10$
184. If <i>A</i> and	<i>B</i> are square ma	atrices of the same order su	uch that	
(A + B)	$(A - B) = A^2 - A^2$	B^2 , than $(ABA^{-1})^2$ is equa	l to	
a) B^2		b) I	c) $A^2 B^2$	d) A^2
185. If <i>A</i> is a	skew-symmetric	c matrix, then trace of A is	-,	
a) 1	Shew by mineer h	h) -1	c) ()	d) None of these
186 A squar	o matrix P satisf	$D_{J} = I - P$ where I is t	be identity matrix. If $P^n = 5$	I = 8P then n is equal to
200. A Squar		$\frac{1031}{100} = 1 1, \text{ where } 130$	c) 6	d) 7
197 Lot / 20	d R are two cau	0 J	$= A$ and $BA = B$ then A^2 as	u) /
107. Let A al	iu <i>D</i> ale two squ	b) A	-A allu DA - D, ulell A eq	
d J D	ana truca aguana	UJA matrices of some order on	C_{JI}	uj U
100. A allu E	are two square $- P'A'$	matrices of same of the and	a A denotes the transpose of	n A, then
a) (AB)	= B A			
D (AB)	= A B			
$C \int AB =$	$= 0 \Rightarrow A = 0 \text{ or}$	B = 0		
d) <i>AB</i> =	$= 0 \Rightarrow A = 0 \text{ or } B$	r = 0	г1	0 01
189. The ele	ment in the first	row and third column of th	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	2 - 3 1 2 is
The cie	inche in the mist			
a) —2		b) 0	c) 1	d) 7
190.	$\cos x \sin x$	0]		2
If $A =$	$-\sin x \cos x$	$0 = f(x)$, then A^{-1} is equal	al to	
	0 0	1]		
a) f (-:	()	b) $f(x)$	c) $-f(x)$	d) $-f(-x)$
191.	$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ \end{pmatrix}$ then 4	-1;c		
II A –		15		
a) —A		b) <i>A</i>	c) 1	d) None of these
192. If 4 – [1 3] and $4^2 - 1$	kA = 5L = 0 then the value	u_{A} of k is	2
	$\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $A = R$	$IA = JI_2 = 0$, then the val	ue 01 k 15	
a) 3		b) 5	c) 7	d) -7
193. Conside	er the following s	statements :		
1. Ther	e can exist two m	hatrices A, B of order 2×2	such that $AB - BA = I_2$	
2. Posit	ive odd integral j	power of a skew-symmetri	c matrix is symmetric	
a) Only	(1)	b) Only (2)	c) Both of these	d) None of these
194. [1	$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$		
	-2 -2 y = 0	3, then y is equal to		
ГО ГОЛ	5 1] -2) - [/	[1]	[5]	[1]
a) 1		b) 2	c) –2	d) –2
		[-3]	$\begin{bmatrix} 1 \end{bmatrix}$	
195. The nu	nber of non-trivi	ial solutions of the system :	x - y + z = 0, x + 2y - z =	0, 2x + y + 3z = 0 is
a) 0		b) 1	c) 2	d) 3
196. [1 -	$\begin{bmatrix} x \end{bmatrix}$			
	$\begin{array}{c}1\\1\end{array}$ has no inv	erse, then the real value of	<i>X</i> 1S	
Lx = a	1 11	h) 3	c) ()	d) 1
197 Γ2 +	c 3 4 1	5,5		uj 1
If 1	-1 2 is a	singular matrix, then x is		
L x	1 –5]			
a) <u>13</u>		b) $-\frac{25}{2}$	c) <u>5</u>	d) $\frac{25}{2}$
[~] , 25		13	13	13

198. The rank of the matrix $A = \begin{bmatrix} 2 & 3 & 1 & 4 \\ 0 & 1 & 2 & -1 \\ 0 & -2 & -1 & -2 \end{bmatrix}$	1 is	
a) 2 b) 3	c) 1	d) Indeterminate
^{199.} If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$, then		,
a) $\alpha = a^2 + b^2$, $\beta = ab$		
b) $\alpha = a^2 + b^2$, $\beta = 2 ab$		
c) $\alpha = a^2 + b^2$, $\beta = a^2 - b^2$		
a) $\alpha = 2 ab$, $= a^2 + b^2$ 200 If $A = [a_{12}]$ is a scalar matrix then trace of A	ic	
$\sum \sum $	∇	$\mathbf{\nabla}$
a) $\sum_{i} \sum_{j} a_{ij}$ b) $\sum_{i} a_{ij}$	c) $\sum_{j} a_{ij}$	d) $\sum_{i} a_{ii}$
201. The system of equations $x + 2y + 3z = 1, 2z$	x + y + 3z = 2, 5x + 5y + 9z =	5 has
a) Unique solution	b) Infinite many solution	on
$(1-x)^{-1}$	d) None of the above	
The rank of the matrix $\begin{bmatrix} 1 & 2 & (1 & x) \\ 5 & k & 1 \\ 6 & 3 & (1+x) \end{bmatrix}$ is 2, t	:hen	
a) $k = \frac{5}{2}, x = \frac{1}{5}$ b) $k = \frac{5}{2}, x \neq \frac{1}{5}$	c) $k = \frac{1}{5}, x = \frac{5}{2}$	d) None of these
^{203.} If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then $A^2 =$		
a) $\begin{bmatrix} 8 & -5 \\ -5 & 3 \end{bmatrix}$ b) $\begin{bmatrix} 8 & -5 \\ 5 & 3 \end{bmatrix}$	c) $\begin{bmatrix} 8 & -5 \\ -5 & -3 \end{bmatrix}$	d) $\begin{bmatrix} 8 & 5\\ -5 & 3 \end{bmatrix}$
204. If ω is a root of unity and $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{bmatrix}$, t	hen A^{-1} is equal to	
a) $\begin{bmatrix} 1 & \omega & \omega^2 \\ \omega^2 & 1 & \omega \\ \omega & \omega^2 & 1 \end{bmatrix}$ b) $\frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{bmatrix}$	$] c) \begin{bmatrix} 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \\ 1 & 1 & 1 \end{bmatrix} $	d) $\frac{1}{2} \begin{bmatrix} 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \\ 1 & 1 & 1 \end{bmatrix}$
205. If $A = [a_{ij}]_{m \times n}$ is a matrix of rank r , then		
a) $r = \min(m, n)$ b) $r < \min(m, n)$	c) $r \leq \min(m, n)$	d) None of these $x+y$
200. For each real x : $-1 < x < 1$. Let $A(x)$ be the	matrix $(1-x)^{-1}\begin{bmatrix} 1 & x \\ -x & 1 \end{bmatrix}$ and	$z = \frac{x+y}{1+xy}$, then
a) $A(z) = A(x)A(y)$ b) $A(z) = A(x) - A(x)$	• $A(y)$ c) $A(z) = A(x)[A(y)]^{-1}$	¹ d) $A(z) = A(x) + A(y)$
²⁰⁷ . If $A(\alpha) = \begin{bmatrix} cos\alpha & sin\alpha \\ -sin\alpha & cos\alpha \end{bmatrix}$, then the matrix A^2	(α) is	
a) $A(2\alpha)$ b) $A(\alpha)$	c) A(3α)	d) A(4 α)
208. If A is a symmetric matrix and $n \in N$, then A'	¹ is b) A diagonal matrix	
a) Symmetric matrix	d) None of the above	
209. The inverse matrix of $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ is		
a) $\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$ b) $\begin{bmatrix} \frac{1}{2} & -4 & \frac{5}{2} \\ 1 & -6 & 3 \\ 1 & 2 & -1 \end{bmatrix}$	c) $\frac{1}{2} \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 4 & 2 & 3 \end{bmatrix}$	d) $\frac{1}{2} \begin{bmatrix} 1 & -1 & -1 \\ -8 & 6 & -2 \\ 5 & -3 & 1 \end{bmatrix}$
210. If $A = \begin{bmatrix} 2 & 0 & -3 \\ 4 & 3 & 1 \\ -5 & 7 & 2 \end{bmatrix}$ is expressed as the sum	۱ of a symmetric and skew-symm	netric matrix, then the
symmetric matrix is		

	a) $\begin{bmatrix} 2 & 2 & -4 \\ 2 & 3 & 4 \\ -4 & 4 & 2 \end{bmatrix}$	b) $\begin{bmatrix} 2 & 4 & -5 \\ 0 & 3 & 7 \\ -3 & 1 & 2 \end{bmatrix}$	c) $\begin{bmatrix} 4 & 4 & -8 \\ 4 & 6 & 8 \\ -8 & 8 & 4 \end{bmatrix}$	d) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$				
211.	If the system of linear equ	ations $x + 2ay + az = 0, x$	x + 3by + bz = 0 and $x + 4$	cy + cz = 0 has a non-zero				
	solution, then <i>a</i> , <i>b</i> , <i>c</i>							
	a) Are in AP		b) Are in GP					
	c) Are in HP		d) Satisfy $a + 2b + 3c = 0$)				
212.	For what value of <i>k</i> the fo	llowing system of linear eq	uations will have infinite so	olutions				
	x - y + z = 3, 2x + y - z	= 2	L. C.					
	and $-3x + 2kv + 6z = 3$							
	a) $k \neq 2$	b) $k = 0$	c) $k = 3$	d) $k \in [2, 3]$				
213.	The product of two orthog	gonal matrices is	-)					
	a) Orthogonal	b) Involutory	c) Unitary	d) Idempotent				
214.	The system of equations 2	x + y + z = 8, x - y + 2z =	= 6.3x + 5y - 7z = 14 has	.)				
	a) No solution		b) Unique solution					
	c) Infinitely many solution	n	d) None of the above					
215.	If the system of equations	x + ay = 0, $az + y = 0$ and	dax + z = 0 has infinite so	lutions, then the value of a				
	is							
	a) -1	b) 1	c) 0	d) No real values				
216.	$[-6, 5]^{-1}$	~) -						
	$\begin{bmatrix} 0 & 5 \\ -7 & 6 \end{bmatrix} =$							
	-6 5]	$h_{\rm h}$ [6 -5]	ى [6 5]	$d_{1}[6 -5]$				
	a [-7 6]	$[-7 \ 6]$	$[7 \ 6]$	[17 -6]				
217.	Let $F(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \\ \sin \alpha & \cos \alpha \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} \alpha & 0 \\ \alpha & 0 \end{bmatrix}$, then $[F(\alpha)]^{-1}$ is equ	al to					
	a) $F(-\alpha)$	b) $F(\alpha^{-1})$	c) $F(2\alpha)$	d) None of these				
218.	Let for any matrix M, M^{-1}	exist which of the followin	ig is not true?	-				
	a) $ M^{-1} = M ^{-1}$	b) $(M^2)^{-1} = (M^{-1})^2$	c) $(M^T)^{-1} = (M^{-1})^T$	d) $(M^{-1})^{-1} = M$				
219.	If A and B are square mat	rices of size $n \times n$ such that	t					
	$A^2 - B^2 = (A - B)(A + B)$), then which of the follow	ing will be always true?					
	a) $AB = BA$,,	b) Either of A or B is a zero matrix					
	c) Either of <i>A</i> or <i>B</i> is an id	lentity matrix	d) $A = B$					
220	$x_1 + 2x_2 + 3x_3 = 2x_1 + 3$	$3x_2 + x_2 = 3x_1 + x_2 + 2x_2$	= 0.					
	This system of equations	has	0.					
	a) Infinite solution	b) No solution	c) No solution	d) Unique solution				
221	If A is a 3×4 matrix and	<i>B</i> is a matrix such that $A^T B$	and BA^T are both defined	then order of <i>B</i> is				
	a) 3×4	h) 3×3	c) 4×4	d) 4×3				
222	13 - 41	$b = C x^n$						
	If $X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, then the v	alue of X ⁿ is						
	a) $\begin{bmatrix} 3n & -4n \\ n & -n \end{bmatrix}$	b) $\begin{bmatrix} 2+n & 5-n \\ n & -n \end{bmatrix}$	c) $\begin{bmatrix} 3^n & (-4)^n \\ 1^n & (-1)^n \end{bmatrix}$	d) None of these				
223.	Let $f(\alpha) = \begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \\ 0 & 0 \end{vmatrix}$	$\alpha = 0$ $\alpha = 0$, where $\alpha \in R$. Then,	$(F(\alpha))^{-1}$ is equal to					
	a) $F(-\alpha)$	b) $F(\alpha^{-1})$	c) $F(2\alpha)$	d) None of these				
224.	For any square matrix A, A	AA^T is a						
	a) Unit matrix		b) Symmetric matrix					
	c) Skew-symmetric matri	Х	d) Diagonal matrix					
225.	If <i>A</i> is a square matrix or o	order $n \times n$, then adi(adi A)) is equal to					
_01	a) $ A ^n A$	b) $ A ^{n-1}A$	(c) $ A ^{n-2}A$	d) $ A ^{n-3}A$				
226	If a system of the equation	$a^{(\alpha+1)^3x} + (\alpha+2)^3v -$	$-(\alpha + 3)^3 = 0.$, i ••				
	$(\alpha + 1)x + (\alpha + 2)y - (\alpha$	(x + 3) = 0, and $x + y - 1 =$	0 is consistent. What is the	e value of α ?				
		-						

Page | 16

c) -3 d) -2 b) 0 a) 1 ^{227.} If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then $\lim_{n \to \infty} \frac{1}{n} A^n$ is c) $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ a) A null matrix b) An identity matrix d) None of these ^{228.} If $A = \begin{bmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{bmatrix}$ and, $B = \begin{bmatrix} \cos^2 \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin^2 \beta \end{bmatrix}$ are two matrices such that the product *AB* is the null matrix, then $(\alpha - \beta)$ is a) 0 b) Multiple of π c) An odd multiple of $\pi/2$ d) None of these 229. If *A* be a square matrix of order *n* and if |A| = D and |adj A| = D', then a) $DD' = D^2$ b) $DD' = D^{-1}$ c) $DD' = D^n$ d) None of these 230. If 1, ω , ω^2 are the cube roots of unity and if $\begin{bmatrix} 1 + \omega & 2\omega \\ -2\omega & -b \end{bmatrix} + \begin{bmatrix} a - \omega \\ 3\omega & 2 \end{bmatrix} = \begin{bmatrix} 0 & \omega \\ \omega & 1 \end{bmatrix}$, then $a^2 + b^2$ is equal to a) $1+\omega^2$ b) $\omega^2 - 1$ d) $(1+\omega)^2$ c) $1 + \omega$ 231. If a square matrix A is orthogonal as well as symmetric, then a) A is involutory matrix b) A is idempotent matrix c) A is a diagonal matrix d) None of these 232. The real value of k for which the system of equations 2k x - 2y + 3z = 0, x + ky + 2z = 0, 2x + kz = 0, has non-trivial solution is a) 2 d) -3 c) 3 If the matrices $A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 5 & 0 \end{bmatrix}$, then ABa) $\begin{bmatrix} 17 & 0 \\ 4 & -2 \end{bmatrix}$ b) $\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$ c) $\begin{bmatrix} 17 & 4 \\ 0 & -2 \end{bmatrix}$ 233. d) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ 234. If $A = \begin{bmatrix} a & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$, then value of α for which $A^2 = B$ is a) 1 (1) 13 (2) 1 (2) 4 (2) 4 (2) 4 (2) 5 (3) 1 (3) 1 (4) 2 (5) 4 (5) 4 (5) 4 (5) 4 (6) 1 (7) 4 (7) 4 (7) 4 (7) 4 (7) 4 (7) 4 (7) 4 (7) 4 (7) 4 (7) 4 (7) 6 (7) 4 (7) 6 (7) 7 (d) No real values d) $E(\alpha - \beta)$ ^{236.} If $A = \begin{bmatrix} b & b^2 \\ -a^2 & -ab \end{bmatrix}$, then A is The matrix $A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$ is a) Unitor c) Nilpotent d) Scalar 237. a) Unitary b) Orthogonal d) Involutory c) Nilpotent 238. Let $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}$. If AX = B, then X is equal to a) $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ b) $\begin{bmatrix} -1\\ -2\\ 3 \end{bmatrix}$ c) $\begin{bmatrix} -1 \\ -2 \\ 2 \end{bmatrix}$ d) $\begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$ 239. If *A* is a skew-symmetric matrix of odd order, then |adj *A*| is equal to b) n d) None of these 240. The system of equations x + 3y + 2z = 0, 3x + y + z = 0 and 2x - 2y - z = 0

a) Possesses a trivial solution only b) Possesses a non-zero unique solution c) Does not have a common non-zero solution d) Has infinitely many solutions 241. Consider the following statements: 1. A square matrix A is hermitian, if A = A'2. Let $A = [a_{ij}]$ be a skew- hermitian matrix, then a_{ij} is purely imaginary 3. All integer powers of a symmetric matrix are symmetric. Which of these is/are correct? a) (1) and (2) b) (2) and (3) c) (3) and (1) d) (1), (2) and (3) 242. If $a_1, a_2, a_3, a_4, a_5, a_6$ are in AP with common difference $d \neq 0$, then the system of equations $a_1x + a_2y =$ $a_3, a_4x + a_5y = a_6$ has a) Infinite number of solutions b) Unique solution c) No solution d) Cannot say any thing 243. If I_n is the identity matrix of order *n*, then $(I_n)^{-1}$ is equal to a) Does not exist c) 0 d) nI_n b) *I*_n 244. If *A* is a square matrix, then adj $A^T - (adj A)^T$ is equal to a) 2 |A| b) 2 |*A*|*I* c) Null matrix d) Unit matrix If $\begin{bmatrix} 2 & -1 & 3 \\ 1 & 3 & -1 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 4 \\ 10 \end{bmatrix}$, then $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ is equal to a) $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ b) $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ 245. a) [3] b) 3 c) 2 d) 1 246. Consider the system of equations $a_1 x + b_1 y + c_1 z = 0$ $a_2 x + b_2 y + c_2 z = 0$ $a_3 x + b_3 y + c_3 z = 0$ if $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$, then the system has a) More than two solutions b) One trivial and one non-trivial solutions c) No solution d) Only trivial solution (0,0,0) 247. The number of solutions of the system of equations x - y + z = 22x + y - z = 54x + y + z = 10 is c) 2 a) ∞ b) 1 d) 0 ^{248.} If $\begin{bmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, then which of the following statement is not correct? a) *A* is orthogonal matrix b) A' is orthogonal matrix c) Determinant A = 1d) *A* is not invertible [0 1 0] 249. If $A = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, then A^{-1} is equal to L0 0 1 a) 2A c) −A d) *I* The rank of the matrix $\begin{bmatrix} -1 & 2 & 5\\ 2 & -4 & a - 4\\ 1 & -2 & a + 1 \end{bmatrix}$ is 250. c) 3 if *a* = 2 a) 1 if a = 6b) 2 if a = 1d) 4 if a = -6251. If $D = \text{diag}(d_1, d_2, d_3, ..., d_n)$, where $d_i \neq 0$ for all i = 1, 2, ..., n, then D^{-1} is equal to a) D b) diag $(d_1^{-1}d_2^{-1}, ..., d_n^{-1})$ c) I_n d) None of these 252. If $f(x) = x^2 + 4x - 5$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$, then f(A) is equal to

a) $\begin{bmatrix} 0 & -4 \\ 8 & 8 \end{bmatrix}$ b) $\begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ d) $\begin{bmatrix} 8 & 4 \\ 8 & 0 \end{bmatrix}$ ^{253.} If $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and *I* is the unit matrix of order 2, then A^2 equals b) 3*A* – 4*I* c) *A* − *I* d) *A* + *I* a) 4A – 3I 254. Which one of the following is true always for any two non-singular matrices A and B of same order? b) $(AB)^{t} = A^{t}B^{t}$ a) AB = BAd) $(AB)^{-1} = B^{-1}A^{-1}$ c) $(A + B)(A - B) = A^2 - B^2$ The inverse of $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix}$ is 255. b) $\begin{bmatrix} 1/2 & 0 & 2 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/2 \end{bmatrix}$ c) $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix}$ d) $\begin{bmatrix} 0 & 0 & 1/2 \\ 0 & 1/2 & 0 \\ 1/2 & 0 & 0 \end{bmatrix}$ a) $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ 256. The values of *a* for which the system of equations ax + y + z = 0, x - ay + z = 0x + y + z = 0 possesses non-zero solution, are given by a) 1, 2 b) 1, -1 d) None of these c) 0 257. If *A* is square matrix, then a) $A + A^T$ is symmetric b) *AA^T* is skew-symmetric c) $A^T + A$ is skew-symmetric d) $A^T A$ is skew-symmetric If $A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$, then det [adj(adj A)] is equal to 258. c) 14⁴ a) 12⁴ b) 13⁴ d) None of these 259. If $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & -2 \\ 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$, then $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ is equal to a) $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ b) $\begin{bmatrix} 1\\2\\-3 \end{bmatrix}$ c) $\begin{bmatrix} 5\\-2\\1 \end{bmatrix}$ d) $\begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$ 260. If $A = \begin{bmatrix} 1 & 2 \\ -4 & -1 \end{bmatrix}$, then A^{-1} is a) $\frac{1}{7} \begin{bmatrix} -1 & -2 \\ 4 & 1 \end{bmatrix}$ b) $\frac{1}{7} \begin{bmatrix} 1 & 2 \\ -4 & -1 \end{bmatrix}$ c) $\frac{1}{7} \begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix}$ d) Does not exist c) c = 0, d = ad) d = 0, a = b(a) $\begin{bmatrix} 0 & 1 & 2 \\ 5 & 4 & 3 \\ 1 & 0 & 2 \end{bmatrix}$ 263. Let A be a skew-symmetric matrix of odd order, then |A| is equal to d) None of these a) 0 b) 1 c) -1 264. If $P = \begin{bmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^T$, then $P^T Q^{2005} P$ is a) $\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 2005 \\ 2005 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 0 \\ 2005 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

265. If *X* and *Y* are 2×2 matrices such that 2X + 3Y = 0 and X + 2Y = I, where *O* and *I* denote the 2×2 zero matrix and the 2×2 identity matrix, then *X* is equal to

a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 b) $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ c) $\begin{bmatrix} -3 & 0 \\ 0 & -3 \end{bmatrix}$ d) $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$
266. Consider the system of linear equations
 $x_1 + 2x_2 + x_3 = 3$
 $3x_1 + 3x_2 + 2x_3 = 1$
The system has
a) Infinite number of solutions b) Exactly 3 solutions
c) A unique solution d) No solution
267.
If $A = \begin{bmatrix} x & -2 \\ 3 & -7 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} \frac{7}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \\ \frac{7}{3}, \frac{1}{3}, \frac$

 $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{2z^2}{c^2} = 0 \quad \dots \text{(iii)}$ c) 9 d) Infinite b) 8 ^{279.} If $A = \begin{bmatrix} 1 & \log_b a \\ \log_a b & 1 \end{bmatrix}$, then |A| is equal to c) $\log_a b$ d) $\log_b a$ ^{280.} If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then A^{-1} is equal to a) $-\frac{1}{2}\begin{bmatrix}4 & -2\\-3 & 1\end{bmatrix}$ b) $\frac{1}{2}\begin{bmatrix}4 & -2\\-3 & 1\end{bmatrix}$ c) $\begin{bmatrix}-2 & 4\\1 & 3\end{bmatrix}$ 281. If $P = \begin{bmatrix}i & 0 & -i\\0 & -i & i\\-i & i & 0\end{bmatrix}$ and $Q = \begin{bmatrix}-i & i\\0 & 0\\i & -i\end{bmatrix}$, then PQ is equal to a) $\begin{bmatrix}-2 & 2\\1 & -1\\1 & -1\end{bmatrix}$ b) $\begin{bmatrix}2 & -2\\-1 & 1\\-1 & 1\end{bmatrix}$ c) $\begin{bmatrix}2 & -2\\-1 & 1\end{bmatrix}$ d) $\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ If $A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{bmatrix}$ and B = (adj A), and C = 5A, then $\frac{|adj B|}{|C|}$ is equal to 282. a) 5 c) -1 d) 1 b) 25 283. For $0 < \theta < \pi$, if $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, then c) $A^2 = I$ a) $A^T = A$ b) $A^T = -A$ d) $A^{T} = A^{-1}$ 284. The values of *a* for which the system of equations x + y + z = 0, x + ay + az = 0, x - ay + z = 0, possesses non-zero solutions, are given by a) 1.2 b) 1,-1 c) 1,0 d) None of these ^{285.} If $x \begin{bmatrix} -3 \\ 4 \end{bmatrix} + y \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 10 \\ -5 \end{bmatrix}$, then b) x = -9, y = 10 c) x = 22, y = 1 d) x = 2, y = -1a) x = -2, y = 1286. If *A* is a square matrix such that $AA^T = I = A^T A$, then *A* is a) A symmetric matrix b) A skew-symmetric matrix c) A diagonal matrix d) An orthogonal matrix 287. The inverse of the matrix $\begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}$ is a) $\frac{1}{11} \begin{bmatrix} 1 & 2 \\ -3 & 5 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 2 \\ -3 & 5 \end{bmatrix}$ c) $\frac{1}{13} \begin{bmatrix} -2 & 5\\ 1 & 3 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 3\\ -2 & 5 \end{bmatrix}$ 288. If $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, then $A^5 =$ a) 5A b) 10A c) 16A289. If $A(\theta) = \begin{bmatrix} 1 & \tan \theta \\ -\tan \theta & 1 \end{bmatrix}$ and AB = I, then $(\sec^2 \theta)B$ is equal to d) 32A b) $A\left(\frac{\theta}{2}\right)$ d) $A\left(-\frac{\theta}{2}\right)$ c) $A(-\theta)$ a) *A*(θ) 290. If $A = [a_{ii}]$ is a skew-symmetric matrix of order *n*, then $a_{ii} =$ b) 0 for all i = 1, 2, ..., n c) 1 for some ia) 0 for some i d) 1 for all i = 1, 2, ..., nLet $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$, then A^n is equal to a) $\begin{bmatrix} a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a \end{bmatrix}$ b) $\begin{bmatrix} a^n & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$ c) $\begin{bmatrix} a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a^n \end{bmatrix}$ d) $\begin{bmatrix} na & 0 & 0 \\ 0 & na & 0 \\ 0 & 0 & na \end{bmatrix}$ Letter AB = BA is 291. 292. If A, B are symmetric matrices of the same order then AB - BA i a) Symmetric matrix

	b) Skew-symmetric matrix	X		
	c) Null matrix			
	d) Unit matrix			
293.	If <i>A</i> is any $m \times n$ matrix su	ich that AB and BA are bot	h defined., then <i>B</i> is an	
	a) $m \times n$ matrix	b) $n \times m$ matrix	c) $n \times n$ matrix	d) $m \times m$ matrix
294.	If A is a square matrix of o	rder $n \times n$ and k is a scalar	; then adj (kA) is equal to	
	a) <i>k</i> adj A	b) <i>kⁿ</i> adj <i>A</i>	c) <i>k</i> ^{<i>n</i>-1} adj <i>A</i>	d) k^{n+1} adj A
295.	x + ky - z = 0, 3x - ky - k	z = 0 and $x - 3y + z = 0$	has non-zero solution for k	is equal to
	a) -1	b) 0	c) 1	d) 2
296.	If $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, <i>I</i> is the unit m	natrix of order 2 and <i>a, b</i> ar	e arbitrary constants, then	$(aI + bA)^2$ is equal to
	a) $a^2I - abA$	b) $a^2 I + 2abA$	c) $a^2 I + b^2 A$	d) None of the above
297.	If A is an orthogonal matri	ix, then		
	a) $ A = 0$	b) $ A = \pm 1$	c) $ A = \pm 2$	d) None of these
298.	Given $2x - y + 2z = 2$, x -	$-2y + 2z = -4, x + y + \lambda z$	$t = 4$ then the value of λ such	ch that the given system of
	equations has no solution,	is		
	a) 3	b) 1	c) 0	d) -3
299.	If $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & 2 & -4 \end{bmatrix}$ is a	n idempotent matrix, then	x is equal to	
	1 -2 x	h) _1	c) _3	d) _4
300	aj – J [1 2 2]	1 - 2 - 61	CJ = 5	u) –4
500.	If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ and adj A	$A = \begin{bmatrix} 0 & 2 & 0 \\ -4 & 2 & x \\ y & -1 & -1 \end{bmatrix}, \text{ then } x$	x + y =	
	a) 6	b) —1	c) 3	d) 1
301.	If $\begin{bmatrix} x+y & 2x+z\\ x-y & 2z+w \end{bmatrix} = \begin{bmatrix} 4\\ 0 \end{bmatrix}$	$\begin{bmatrix} 7\\10 \end{bmatrix}$, then the value of <i>x</i> , <i>y</i> ,	z,ware	
	a) 2, 2, 3, 4	b) 2, 3, 1, 2	c) 3, 3, 0, 1	d) None of these
302.	If for a matrix A , $A^2 + I =$	<i>O</i> , where <i>I</i> is the identity m	natrix, then A equals	
	a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	b) $\begin{bmatrix} -i & 0 \\ 0 & -i \end{bmatrix}$	c) $\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$	d) $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
303.	If $m[-3 \ 4] + n[4 \ -3] =$	[10 - 11], then $3m + 7n$	is equal to	
	a) 3	b) 5	c) 10	d) 1
304.	If $A = \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}$ and	$A(\operatorname{adj} A) = k \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then	the value of k is	
	a) $\sin x \cos x$	b) 1	c) 2	d) 3
305.	If $A = \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix}$, then $(A^{-1})^3$	is equal to	1 -1 -0	1 - 1 - 26-
	a) $\frac{1}{27}\begin{bmatrix} 1 & -26 \\ 0 & 27 \end{bmatrix}$	b) $\frac{1}{27} \begin{bmatrix} -1 & 26 \\ 0 & 27 \end{bmatrix}$	c) $\frac{1}{27}\begin{bmatrix} 1 & -26\\ 0 & 27 \end{bmatrix}$	d) $\frac{1}{27} \begin{bmatrix} -1 & -26 \\ 0 & 27 \end{bmatrix}$
306	Z/10 $Z/3Let M - [a] be a main$	Z/LU Z/J triv where	2/10 -2/1	2/10 -2/1
500.	$a = \sin(A - A) + i\cos(A - A)$	x(A - A) the M is equal to	0	
	$u_{uv} = \sin(0_u - 0_v) + i\cos(0_u)$	$(0_u - 0_v)$, the <i>M</i> is equal to b) $-M$	c) \overline{M}^T	d) $-\overline{M}^T$
207	a) M	0 $-M$	-0 x - 2y + z = 0 + 3x - 1	$u_j = M$ $u_j = 2\pi = 0$ has infinitely
507.	many solutions, then	z = y + z	= 0, x - 2y + 2 = 0, xx - y	r + 22 = 0 has minintery
	a) $\lambda = 5$	b) $\lambda = -5$	c) $\lambda \neq \pm 5$	d) None of these
308.	Assuming that the sum an matrices?	d product given below are	defined, which of the follow	ving is not true for
	a) $A + B = B + A$		b) $AB = AC$ does not impl	y B = C
	c) $AB = 0$ implies $A = 0$	or $B = O$	d) $(AB)' = B'A'$	
309.	If $E(\theta) = \begin{bmatrix} \cos^2 \theta & \cos\theta & \sin\theta \\ \cos\theta & \sin\theta & \sin^2\theta \end{bmatrix}$	$\begin{bmatrix} in & \theta \\ 2 & \theta \end{bmatrix}$ and θ and ϕ differ by	y an odd multiple of $\frac{\pi}{2}$, then	$E(\theta) \to (\emptyset)$ is a
	a) Unit matrix	b) Null matrix	c) Diagonal matrix	d) None of these
310.	Consider the system of eq	uations in <i>x, y, z</i> as		

	$x\sin 3\theta - y + z = 0$			
	$x\cos 2\theta + 4y + 3z = 0$			
	and $2x + 7y + 7z = 0$			
	If this system has a non-tr	ivial solution, then for inte	ger <i>n</i> , values of θ are given	by
	a) $\pi\left(n + \frac{(-1)^n}{3}\right)$	b) $\pi\left(n+\frac{(-1)^n}{4}\right)$	c) $\pi\left(n+\frac{(-1)^n}{6}\right)$	d) $\frac{n\pi}{2}$
311.	If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA =$	$\begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the values of	of k, a, b are respectively	
	a) -6, -12, -18	b) -6, 4, 9	c) -6, -4, -9	d) —6, 12, 18
312.	If A is a non-singular matr	fix of order 3, then adj (adj	A) is equal to	
	a) <i>A</i>	b) <i>A</i> ⁻¹	c) $\frac{1}{ A }A$	d) <i>A</i> <i>A</i>
313.	If <i>A</i> is a matrix such that <i>A</i>	$A^2 = A + 1$, where <i>I</i> is the u	nit matrix, then A^5 is equal	to
	a) 5 <i>A</i> + <i>I</i>	b) 5 <i>A</i> + 2 <i>I</i>	c) 5 <i>A</i> + 3 <i>I</i>	d) 5 <i>A</i> + 4 <i>I</i>
314.	If <i>A</i> and <i>B</i> are two matrice	es such that both <i>A+B</i> and <i>A</i>	<i>AB</i> are defined, then	
	a) A and B are of same or	ler	b) A is of order $m \times m$ and	B is of order $n \times n$
045	c) Both A and B are of san	ne order $n \times n$	d) A is of order $m \times n$ and	B is of order $n \times m$
315.	If $U = [2 - 3 \ 4], X = [0 \ 2]$	2 3], $V = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ and $Y = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$, t	then $UV + XY$	
	a) [20]	b) 20	c) [-20]	d) -20
316.	The matrix $A = \begin{bmatrix} a & 2 \\ 2 & 4 \end{bmatrix}$ is	singular, if		
	a) <i>a</i> ≠ 1	b) <i>a</i> = 1	c) $a = 0$	d) <i>a</i> = −1
317.	If $A = \begin{bmatrix} 1 & x \\ x^2 & 4y \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$	$\begin{bmatrix} -3 & 1 \\ 1 & 0 \end{bmatrix}$, adj $A + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$],	
	Then values of <i>x</i> and <i>y</i> are	2		
	a) 1, 1	b) ±1, 1	c) 1, 0	d) None of these
318.	$A = \begin{bmatrix} \cos \alpha - \sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}, \text{ the}$	en A^{-1} is		
	a) <i>A</i>	b) <i>–A</i>	c) adj (A)	d) -adj (<i>A</i>)
319.	Which of the following is i	incorrect?		
	a) $A^2 - B^2 = (A + B)(A - B)^2$	- B)		
	b) $(A^T)^T = A$			
	c) $(AB)^n = A^n B^n$ where $A^n B^n$	A, B commute		
	d) $(A - I)(I + A) = 0 \Leftrightarrow A$	$4^2 = I$		
320.	If $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and $f(x) = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$	$\frac{1+x}{1-x}$, then $f(A)$ is	-1 17	
	a) $\begin{vmatrix} -1 & -1 \\ -1 & -1 \end{vmatrix}$	b) $\begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix}$	c) $\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$	d) None of these
321.	If <i>A</i> is an invertible matrix	, then det (A^{-1}) is equal to	-1 1-	
			c) 1	d) None of these
	a) det (A)	b) $\frac{det(A)}{det(A)}$,	
322.	If A and B are square mat	rices of the same order and	$AB = 3I$, then A^{-1} is equal	l to
	a) 3 <i>B</i>	b) $\frac{1}{3}B$	c) 3 <i>B</i> ⁻¹	d) $\frac{1}{3}B^{-1}$
323.	If the points (x_1, y_1) , (x_2, y_1)	(x_2) and (x_3, y_3) are collinear,	,	
	then the rank of the matr	$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_2 & y_2 & 1 \end{bmatrix}$ will always by	be less than	
	a) 2	b) 3	c) 1	d) None of these
324.	$I_{fA} = \begin{bmatrix} 2 & -1 \end{bmatrix}_{and find}$	-hounit matrix of and an 0 +	4^2 aquala	a, none of these
	$II A = \begin{bmatrix} -1 & 2 \end{bmatrix}$ and I is t	the unit matrix of order 2, t	nen A ⁻ equais	

b) 3*A* – 4*I* c) *A* − *I* d) *A* + *I* a) 4*A* – 3*I* ^{325.} If $A = \begin{bmatrix} -2 & 6 \\ -5 & 7 \end{bmatrix}$, then adj A is a) $\begin{bmatrix} 7 & -6 \\ 5 & -2 \end{bmatrix}$ b) $\begin{bmatrix} 2 & -6 \\ 5 & -7 \end{bmatrix}$ 326. If $A = \begin{bmatrix} 3 & 4 \\ 5 & 7 \end{bmatrix}$ then A. (adj A) is equal to c) $\begin{bmatrix} 7 & -5 \\ 6 & -2 \end{bmatrix}$ d) None of these c) |A|I d) None of these 327. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, $a, b \in N$. Then a) There exist more than one but finite number of B's such that AB = BAb) There exist exactly one B such AB = BAc) There exists infinitely many B's such that AB = BAd) There cannot exist any *B* such that AB = BA^{328.} If $2A + 3B = \begin{bmatrix} 2 & -1 & 4 \\ 3 & 2 & 5 \end{bmatrix}$ and $A + 2B = \begin{bmatrix} 5 & 0 & 3 \\ 1 & 6 & 2 \end{bmatrix}$, then *B* is a) $\begin{bmatrix} 8 & -1 & 2 \\ -1 & 10 & -1 \end{bmatrix}$ b) $\begin{bmatrix} 8 & 1 & 2 \\ -1 & 10 & -1 \end{bmatrix}$ c) c) $\begin{bmatrix} 8 & 1 - 2 \\ -1 & 10 & -1 \end{bmatrix}$ d) $\begin{bmatrix} 8 & 1 & 2 \\ 1 & 10 & 1 \end{bmatrix}$ 329. If *I* is unit matrix of order 10, then the determinant of *I* is equal d) 9 c) 1/10 a) 10 b) 1 ^{330.} Let $A = \begin{bmatrix} 3 & 5 \\ 2 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 17 \\ 0 & -10 \end{bmatrix}$, then |AB| is equal to c) -110 d) 92 a) 80 331. If $A = \begin{bmatrix} 6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1 \end{bmatrix}$ is the sum of a symmetric matrix *B* and skew-symmetric matrix *C*, then *B* is b) $\begin{bmatrix} 0 & 2 & -2 \\ -2 & 5 & -2 \\ 2 & 2 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 6 & 6 & 7 \\ -6 & 2 & -5 \\ -7 & 5 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 0 & 6 & -2 \\ 2 & 0 & -2 \\ -2 & -2 & 0 \end{bmatrix}$ a) [6 6 7] 6 2 5 7 5 1 332. Let A be a non-singular square matrix. Then, adj A is equal to c) $|A|^{n-2}$ b) $|A|^{n-1}$ d) None of these ^{333.} If $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & a \\ 4 & b \end{bmatrix}$ $(A = B)^2 = A^2 + B^2$. Then *a* and *b* are respectively c) -1, 1 d) 3, -2 b) 2, -3 334. For non-singular square matrices A, B and C of same order, $(AB^{-1}C)^{-1}$ is equal to b) *C*⁻¹*B*⁻¹*A*⁻¹ a) $A^{-1}BC^{-1}$ c) $CB^{-1}A^{-1}$ d) C⁻¹BA⁻¹ 335. If $A = \begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix}$, then $A^{-1} =$ a) $\begin{bmatrix} 1 & -2 \\ -3 & 5 \end{bmatrix}$ b) $\begin{bmatrix} -1 & 2 \\ 3 & -5 \end{bmatrix}$ c) $\begin{bmatrix} -1 & -2 \\ -3 & -5 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$

-: ANSWER KEY :															
1)	а	2)	d	3)	b	4)	b	189)	d	190	a	191)	b	192) b
5)	b	6)	C	7)	а	8)	b	193)	d	194	b	195)	а	196) d
9)	С	10)	d	11)	d	12)	d	197)	b	198)	a	199)	b	200) d
13)	a	14)	d	15)	а	16)	b	201)	а	202]	a	203)	d	204)) b
17)	С	18)	а	19)	d	20)	b	205)	С	206]	a	207)	а	208) a
21)	С	22)	b	23)	d	24)	d	209)	а	210]	a	211)	С	212) C
25)	а	26)	b	27)	d	28)	b	213)	а	214)	b	215)	а	216) a
29)	С	30)	а	31)	b	32)	d	217)	а	218)	b	219)	а	220)) C
33)	С	34)	а	35)	а	36)	a	221)	а	222]	d	223)	а	224)) b
37)	С	38)	С	39)	d	40)	С	225)	С	226]	d	227)	а	228)) C
41)	а	42)	а	43)	d	44)	a	229)	С	230]	C	231)	а	232]) a
45)	С	46)	d	47)	С	48)	С	233)	а	234]	d	235)	С	236)) C
49)	a	50)	а	51)	d	52)	a	237)	С	238]	d	239)	а	240)) d
53)	С	54)	С	55)	d	56)	d	241)	b	242]	b	243)	b	244)) C
57)	С	58)	d	59)	а	60)	b	245)	С	246)	a	247)	b	248) d
61)	а	62)	С	63)	а	64)	d	249)	b	250)	b	251)	b	252)) d
65)	d	66)	b	67)	b	68)	b	253)	а	254)	d	255)	d	256)) b
69)	b	70)	С	71)	b	72)	a	257)	а	258)	C	259)	b	260)) a
73)	b	74)	d	75)	d	76)	a	261)	С	262]	a	263)	а	264)	a
77)	С	78)	d	79)	d	80)	a	265)	С	266]	d	267)	d	268)) d
81)	b	82)	b	83)	а	84)	b	269)	b	270]	a	271)	С	272) a
85)	а	86)	С	87)	b	88)	d	273)	d	274]	C	275)	С	276) d
89)	a	90)	d	91)	С	92)	a	277)	a	278]	d	279)	b	280	a
93)	d	94)	а	95)	d	96)	b	281)	b	282	d	283)	d	284) b
97)	b	98)	b	99)	d	100)	b	285)	а	286)	d	287)	а	288) C
101)	b	102) b	103)	b	104)	a	289)	C	290]	b	291)	С	292) b
105)	b	106) a	107)	b	108)	b	293)	b	294) C	295)	С	296) b
109)	С	110) b	111)	b	112)	a	297)	b	298	b	299)	C	300) a
113)	a	114) a	115)	d	116)	C	301)	а	302	b	303)	d	304) b
117)	a	118) a	119)	D	120)	a	305)	a L	306	a	307J	а	308) C
121) 125)	a	122) a	123)	a d	124)	a J	309)	D	310	C	311) 215)	C	312) a \
125)	C h	120	ja v k	127)	a	128)	u J	313J	C	314	C	315)	a	310	
129J 122)	U A	130) D) h	131J 12E)	a d	132)	u c	31/J 221)	a h	310) 222)	h h	319J 222)	a h	320 224) a) a
133J 127)	u	134) U) a	135)	u	130)	ι h	321J 225)	U a	226		323J 227)	U C	324 270) a) h
137J 141)	d h	130) a) a	139	L h	140)	U a	323J 220)	d h	320) 220)	h h	347J 221)	L D	340 222) D) h
141)	U C	144) a) a	145)	b	149	a a	329)	U D	330)	b b	331)	a h	552	, ,
143)	с э	140) d	151)	U C	152)	a ว	5555	а	334	u	3335	U		
152)	a h	154) u) d	151)	L h	156)	a ว								
155)	a	158) u) a	159)	2	160)	u a								
161)	a	162) d	163)	a C	164)	a c								
165)	a	166) u) a	167)	c	161)	с d								
169)	h	170) d	171)	c	172)	u h								
173)	c	174) <u> </u>	175)	a	176)	c								
177)	b	178) a	179)	a	180)	b								
181)	ď	182) a	183)	a	184)	ã								
, 185)	с	186) c	, 187)	b	188)	a								
-				2		-									

3.MATRICES

3.MATRICES

: HINTS AND SOLUTIONS :

9

1 (a) Let $A = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$. Then, $A^{2} = AA = \begin{bmatrix} 2 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$ $\Rightarrow A^{2} = \begin{bmatrix} 4-3 & -2+2 \\ 6-6 & -3+4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ $\therefore A^{3} = A, A^{4} = A^{2} = I, A^{2} = A^{4}A = IA = A \text{ etc.}$ Hence, $A^n = \begin{cases} A, \text{ if } n \text{ id odd} \\ 0, \text{ if } n \text{ is even} \end{cases}$ 2 (d) $\begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix} \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix} = \begin{bmatrix} ab & 0 \\ 0 & ab \end{bmatrix}$ and $\begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix}^4 = \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix}^2 \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix}^2$ $= \begin{bmatrix} a^2 b^2 & 0 \\ 0 & a^2 b^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ [given]}$ $\Rightarrow a^2 b^2 = 1 \Rightarrow ab = 1$ 3 **(b)** Given matrix *A* is a square matrix And $AA^T = I = A^T A$ $\Rightarrow |AA^T| = |I| = |A^TA|$ $\Rightarrow |A||A^T| = 1 = |A^T||A|$ $\Rightarrow |A|^2 = 1 \quad [\because A \cdot A^T = |A|^2]$ $\Rightarrow |A| = \pm 1$ **(b)** 4 Let $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, then, $kI = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}$ $\Rightarrow \operatorname{adj}(kI) = \begin{bmatrix} k^2 & 0 & 0\\ 0 & k^2 & 0\\ 0 & 0 & k^2 \end{bmatrix} = k^2 I$ 5 **(b)** Given, *A* is singular \Rightarrow |A| = 0Now, $A(adjA) = |A|I_n = 0$ $\therefore A(\operatorname{adj} A) = 0$ ie, $A(\operatorname{adj} A)$ is a zero matrix. 6 (c) Given, AB = O $\therefore \begin{bmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{bmatrix} \times \begin{bmatrix} \cos^2 \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin \beta \end{bmatrix}$ $=\begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} \cos \alpha \cos \beta \cos(\alpha - \beta) & \cos \alpha \sin \beta \cos(\alpha - \beta) \\ \cos \beta \sin \alpha \cos(\alpha - \beta) & \sin \alpha \sin \beta \cos(\alpha - \beta) \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\Rightarrow \cos(\alpha - \beta) = 0$ $\Rightarrow \alpha - \beta$ is an odd multiple of $\frac{\pi}{2}$ 8 **(b)**

Given, $A \begin{vmatrix} 2 & 4 & 5 \\ 4 & 8 & 10 \\ -6 & -12 & -15 \end{vmatrix}$ Applying $R_2 \rightarrow R_2 - 2R_1$ and $R_3 \rightarrow R_3 + 3R_1$ $\Rightarrow A = \begin{vmatrix} 2 & 4 & 5 \\ 0 & 0 & 0 \end{vmatrix}$ Since the equivalent matrix in echelon from has only one non-zero row, \therefore Rank(A) = 1 (c) $\therefore AB = B, BA = A$ $\therefore A^2 + B^2 = AA + BB = A(BA) + B(AB)$ = (AB)A + (BA)B = BA + AB= A + B $\Rightarrow A^2 = A$ and $B^2 = B$ 10 **(d)** |A| = 7(1 - 0) + 3(-1 - 0) - 3(0 + 1) = 1Cofactors of matrix A are $C_{11} = 1, \qquad C_{12} = 1, \qquad C_{13} = 1$ $C_{21} = 3, \qquad C_{22} = 4, \qquad C_{23} = 3$ $C_{31} = 3, \qquad C_{32} = 3, \qquad C_{33} = 4$ $\therefore \text{ adj } (A) = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 4 & 3 \\ 3 & 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ $\therefore \quad A^{-1} = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 2 & 4 \end{bmatrix}$ 11 (d) It is given that *A* is a skew-symmetric matrix $\therefore A^T = -A$ $\Rightarrow (A^T)^n = (-A)^n$ $\Rightarrow (A^n)^T = (-1)^n A^n$ $\Rightarrow (A^n)^T = \begin{cases} A^n & \text{if } n \text{ is even} \\ -A^n & \text{if } n \text{ is odd} \end{cases}$ Hence, A^n is skew-symmetric when n is odd 12 (d) Consider $\begin{bmatrix} 1 & * & * \\ * & 1 & * \\ * & * & 1 \end{bmatrix}$. By placing a_1 in any one of the 6* Position and 0 elsewhere. We get 6 non-singular matrices. Similarly, $\begin{vmatrix} 1 & 1 \\ * & 1 \\ 1 & * \end{vmatrix}$ gives at least one non-singular. 13 (a) We know that, $Tr(A) = \sum_{i=1}^{3} a_{ii}$ Tr(A) = 1 + 7 + 9 = 1714 (d)

Now,
$$A + B = \begin{bmatrix} 3 & 4 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} -2 & -2 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$$

 $\Rightarrow |A + B| = | \begin{bmatrix} 2 & 2 \\ -2 & 1 \end{bmatrix}$
 $\therefore (A + B)^{-1} = -\frac{1}{2} \begin{bmatrix} 2 & -2 \\ -2 & 1 \end{bmatrix}$
 $\Rightarrow [A + B]^{-1} = \begin{bmatrix} -1 & 2 \\ -2 & 1 \end{bmatrix}$
 $a = \begin{bmatrix} -1 & 1 \\ 1 & -1/2 \end{bmatrix}$
 $A^{-1} = \frac{1}{4} \begin{bmatrix} 4 & -4 \\ -2 & 3 \end{bmatrix}$ and $B^{-1} = \frac{1}{4} \begin{bmatrix} -2 & 2 \\ 0 & -2 \end{bmatrix}$
 $\therefore A^{-1} + B^{-1} = \begin{bmatrix} 1 & -1 \\ -1/2 & 3/4 \end{bmatrix} + \begin{bmatrix} -1/2 & 1/2 \\ 0 & -1/2 \end{bmatrix}$
 $\Rightarrow \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/4 \end{bmatrix}$
 $\therefore (A + B)^{-1} \neq A^{-1} + B^{-1}$
15 (a)
 $f(A) = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} - 5 \begin{bmatrix} 3 & 1 \\ 0 & -7 \end{bmatrix}$
16 (b)
 $C_{11} = 1, \quad C_{12} = -2, C_{13} = -2$
 $C_{21} = -1, C_{22} = 3, C_{23} = 3$
 $C_{31} = 0, C_{32} = -4, C_{33} = -3$
 $\therefore \text{ adj}(A) = \begin{bmatrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\ 0 & -4 & -3 \end{bmatrix}^{T} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$
17 (c)
Since, the rank of given matrix is 1, then
 $\begin{bmatrix} 2 & 5 \\ -4 & a - 4 \\ 1 & 5 - 2 \end{bmatrix} = 0$
 $\Rightarrow 2a - 8 + 20 = 0$
 $\Rightarrow a = -6$
18 (a)
Since, given equations have a non-trivial solution
 $\therefore \quad \Delta = 0$
 $\Rightarrow 1(-8 + 5) - 3(-4 + 1) + \lambda(10 - 4) = 0$
 $\Rightarrow 6\lambda = -6 \Rightarrow \lambda = -1$
20 (b)
Since, $|a| \neq 0$ So, A^{-1} exists
 $\therefore AB = AC$
 $\Rightarrow A^{-1}(AB) = A^{-1}(AC)$
 $\Rightarrow (A^{-1}A)B = (A^{-1}A)C \Rightarrow B = C$
21 (c)
Let $A = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 1 \\ 1 & 4 & 10 \end{vmatrix}$, $B = \begin{bmatrix} 1 \\ \alpha \\ \alpha^2 \\ and X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
For consistent, $|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 10 \end{vmatrix}$

 \Rightarrow 4 - 6 + 2 = 0 $\Rightarrow 0 = 0$ and $(\operatorname{adj} A)B = 0$ $\begin{bmatrix} 4 & -6 & 2 \\ -6 & 9 & -3 \\ 2 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ \alpha \\ \alpha^2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ ⇒ $\Rightarrow \begin{bmatrix} 4 - 6\alpha + 2\alpha^2 \\ -6 + 9\alpha - 3\alpha^2 \\ 2 - 3\alpha + \alpha^2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $\Rightarrow 2\alpha^2 - 6\alpha + 4 = 0, -3\alpha^2 + 9\alpha - 6 = 0$ and $\alpha^2 - 3\alpha + 2 = 0$ Now, $2\alpha^2 - 6\alpha + 4 = 0$ \Rightarrow $(2\alpha - 2)(\alpha - 2) = 0$ $\Rightarrow \alpha = 1, 2$ Similarly from other equations we also get the same value 22 **(b)** Given, $B = A^6 - A^5$, where $A^3 = A + I$ $\Rightarrow B = (A^3)^2 - A^3 A^2$ $= (A + I)^2 - (A = I)A^2$ $= A^2 + I^2 + 2AI - A^3 - A^2I$ = I + 2A - (A + I) $\Rightarrow B = A$ \therefore Inverse of $B = A^{-1}$ 23 (d) Since, $A^T A = I$ $[a \ b \ c] [a \ b \ c] [1 \ 0 \ 0]$ $\Rightarrow |b \ c \ a| |b \ c \ a| = |0 \ 1 \ 0|$ $\begin{bmatrix} c & a & b \end{bmatrix} \begin{bmatrix} c & a & b \end{bmatrix} \begin{bmatrix} c & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} a^2 + b^2 + c^2 & ab + bc + ca & ab + bc + ca \\ ab + bc + ca & a^2 + b^2 + c62 & ab + bc + ca \end{bmatrix}$ $\lfloor ab + bc + ca \quad ab + bc + ca \quad a^2 + b^2 + c^2 \rfloor$ [1 0 0] $= | 0 \ 1 \ 0 |$ lo 0 1 \Rightarrow $a^2 + b^2 + c62 = 1$ and ab + bc + ca = 0Now, $(a + b + c)^2 =$ $a^{2} + b^{2} + c^{2} + 2(ab + bc + ca)$ $= 1 + 2 \cdot 0 = 1$ \Rightarrow a + b + c = 1 ...(i) Now, $(a^3 + b^3 + c^3) = (a + b + c)$ $(a^{2} + b^{2} + c^{2} - ab - bc - ca) + 3abc$ = (a + b + c) + 3 $\Rightarrow a^3 + b^3 + c^3 = 1 + 3 = 4$ [using Eq. (i)] 24 (d) $A^{2} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix}$ Now. $A^{2-}4A = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} - \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} = 5I_3$

25 **(a)**

We have, $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\Rightarrow A^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$ $\Rightarrow A^4 = A^2 A^2 = I_2 I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 26 **(b)** The system of given equation are Kx + 2y - z = 1...(i) (K-1)y - 2z = 2...(ii) and (K + 2)z = 3...(iii) This system of equations has a unique solution, if Κ 2 - 1 $K-1 - 2 \neq 0$ 0 0 K + 20 $\Rightarrow (K = 2)(K)(K - 1) \neq 0$ $K \neq = 2, 0, 1$ \Rightarrow *ie*, K = -1, is a required answer. 27 (d) Given, x + y + z = 6, x + 2y + 3z = 10 and x + 3z = 10 $2y + \lambda z = \mu$ For no solution, $\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda \end{vmatrix} = 0$ $\Rightarrow 1(2\lambda - 6) - 1(\lambda - 3) + 1(2 - 2) = 0$ $\lambda - 3 = 0 \Rightarrow \lambda = 3$ $\Delta_1 = \begin{vmatrix} 6 & 1 & 1 \\ 10 & 2 & 3 \\ \mu & 2 & 3 \end{vmatrix} \neq 0$ and $\Rightarrow 6(6-6) - 1(30 - 3\mu) + 1(20 - 2\mu) \neq 0$ $\Rightarrow \mu - 10 \neq 0 \Rightarrow \mu \neq 10$ 28 **(b)** $|AA^T| = |I| = |A^TA|$ $\Rightarrow |A||A^T|=1=|A^2||A|$ $\Rightarrow |A|^2 = 1$ $[\because |A^T| = |A|]$ $\Rightarrow |A| = \pm 1$ 29 (c) AB $= \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix} \begin{bmatrix} \cos^2 \phi \\ \cos \phi \sin \phi \end{bmatrix}$ $\sin \phi \cos \phi$ $\sin^2 \phi$ $[\cos^2\theta\cos^2\phi + \sin\theta\cos\phi\cos\theta\sin\phi]$ $\cos^2 \phi \cos \theta \sin \theta + \sin^2 \theta \sin \phi \cos \phi$ $\cos^2 \theta \sin \phi \cos \phi + \sin^2 \phi \sin \theta \cos \theta$ $\log \theta \sin \theta \sin \phi \cos \phi + \sin^2 \theta \sin^2 \phi$ $[\cos\theta\cos\phi\cos(\theta-\phi)]$ $\sin\phi\cos\theta\cos(\theta-\phi)$] $\left[\sin\theta\cos\phi\cos(\theta-\phi) \quad \sin\theta\sin\phi\cos(\theta-\phi)\right]$ $\therefore AB = 0$ $\Rightarrow \cos(\theta - \phi) = 0$ $\Rightarrow \cos(\theta - \phi) = \cos(2n + 1)\frac{\pi}{2}$ $\Rightarrow \theta = (2n+1)\frac{\pi}{2} + \phi$, where n = 0, 1, 2, ...30 (a)

We have, A B = A and B A = BNow, A B = A $\Rightarrow (A B)A = A A$ $\Rightarrow A(BA) = A^2$ $\Rightarrow A B = A^2$ [:: B A = B] $\Rightarrow A = A^2$ $[\because AB = A]$ and, B A = B $\Rightarrow (B A)B = B^2$ $\Rightarrow B(A B) = B^2$ $\Rightarrow B A = B^2$ $[\because AB = A]$ $\Rightarrow B = B^2$ $[\because B A = B]$ $\therefore A^2 = A$ and $B^2 = B$ \Rightarrow *A* and *B* are indempotent matrices 31 **(b)** From given matrix equation, we have x - y - z = 0-y + z = 5z = 3x = 1, y = -2, z = 3⇒ 32 (d) Here, cofactors are $C_{11} = \cos 2\theta, \qquad C_{12} = -\sin 2\theta$ $C_{21} = \sin 2\theta, \qquad C_{22} = \cos 2\theta$ $\therefore |A| = |\cos^2 2\theta + \sin^2 2\theta| = 1$ $\therefore A^{-1} = \frac{1}{|A|} \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}^2 = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos \theta \end{bmatrix}$ 33 (c) Since, *B* is the inverse of *A*. *ie*, $B = A^{-1}$ So, $10A^{-1} = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}$ $\Rightarrow \ 10A^{-1}A = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}A$ $= \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix} = \begin{bmatrix} 10 & 0 & 0 \\ -5 + \alpha & 5 + \alpha & -5 + \alpha \\ 0 & 0 & 10 \end{bmatrix}$ \Rightarrow $-5 + \alpha = 0 \Rightarrow \alpha = 5$ 34 (a) $AB = \begin{bmatrix} 0 & 3 & 3 \\ -3 & 0 & -4 \\ -3 & 4 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3y + 3z \\ -3x - 4z \\ -3x + 4y \end{bmatrix}$ Now, $B'(AB) = [x \ y \ z] \begin{bmatrix} 3y + 3z \\ -3x - 4z \\ -3y \pm 4y \end{bmatrix}$ = [3xy + 3zx - 3xy - 4yz - 3xz + 4yz]= [0] $\therefore B'(AB)$ is a null matrix.

36 (a)
Given,
$$A = \begin{bmatrix} a & b & 0 \\ -b & a & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $\Rightarrow |A| = a^{2} + b^{2} = 1$
 $\therefore A^{-1} = \frac{1}{|A|} adj (A) = adj(A)$
38 (c)
We have,
 $(A + B)^{2} = A^{2} + 2AB + B^{2}$
 $\Leftrightarrow (A + B)(A + B) = A^{2} + 2AB + B^{2}$
 $\Leftrightarrow A^{2} + AB + BA + B^{2} = A^{2} + 2AB + B^{2}$
 $\Leftrightarrow AB = BA$
Hence, $(A + B)^{2} = A^{2} + 2AB + B^{2} \Leftrightarrow AB = BA$
39 (d)
 $A^{-1} = \frac{1}{2x^{2}} \begin{bmatrix} x & 0 \\ -x & 2x \end{bmatrix} = \begin{bmatrix} \frac{1}{2x} & 0 \\ -\frac{1}{2x} & \frac{1}{x} \end{bmatrix}$
But $A^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$
 $\therefore \begin{bmatrix} \frac{1}{2x} & 0 \\ -\frac{1}{2x} & \frac{1}{x} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} \Rightarrow \frac{1}{2x} = 1 \Rightarrow x = \frac{1}{2}$
40 (c)
Given,
 $\therefore \begin{vmatrix} a & a & -1 \\ b & -1 & b \\ -1 & c & c \end{vmatrix} = 0$
Applying $C_{2} \Rightarrow C_{2} - C_{1}, C_{3} \Rightarrow C_{3} - C_{1}$
 $\Rightarrow \begin{vmatrix} a & 0 & -(1 + a) \\ b & -(1 + b) & 0 \\ -1 & c + 1 & c + 1 \end{vmatrix} = 0$
 $\Rightarrow -a(1 + b)(1 + c) - b(1 + a)(1 + c)]$
 $-1[0 - (1 + a)(1 + b)] = 0$
 $\Rightarrow -a(1 + b)(1 + c) - b(1 + a)(1 + c)$
 $+1(1 + a)(1 + b) = 0$
On dividing by $(1 + a)(1 + b)(1 + c)$, we get
 $-\frac{a}{1 + a} - \frac{b}{1 + b} + \frac{1}{1 + c} = 0$
 $\Rightarrow -\frac{a}{1 + a} + 1 - \frac{b}{1 + b} + 1 + \frac{1}{1 + c} = 2$
41 (a)
The given system of equation has at least one solution, if
 $\begin{vmatrix} 3 & -1 & 4 \\ 1 & 2 & -3 \\ 6 & 5 & \lambda \end{vmatrix} = 0$
 $\Rightarrow 3(2\lambda + 15) + 1(\lambda + 18) + 4(5 - 12) = 0$

43 **(d)**

Given, $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix}$ $C_{11} = 4, C_{12} = 1, C_{13} = -2$ $C_{21} = -2, C_{22} = 4, C_{23} = 1$ $C_{31} = 1, C_{32} = -2, C_{33} = 4$ $\therefore \operatorname{adj}(A) = \begin{bmatrix} 4 & 1 & -2 \\ -2 & 4 & 1 \\ 1 & -2 & 4 \end{bmatrix}^{T} = \begin{bmatrix} 4 & -2 & 1 \\ 1 & 4 & -2 \\ -2 & 1 & 4 \end{bmatrix}$ $\therefore |\text{adj } A| = 4(16 + 2) + 2(4 - 4) + (1 + 8)$ = 72 + 0 + 9 = 81Alternate |2 1 0| |A| 0 2 1 1 0 2 = 2(4 - 0) - 1(0 - 1) = 9 $\therefore |\operatorname{adj} A| = |A|^{3-1} = (9)^2 = 81$ 44 (a) Since, A' = -A $\therefore A^3 = AAA$ And $(A^3)' = A'A'A' = -A^3$ Hence, matrix A^3 is a skew-symmetric matrix 45 (c) Given, $[1 \ x \ 1] \begin{bmatrix} 1 \ 2 \ 3 \\ 0 \ 5 \ 1 \\ 0 \ 3 \ 2 \end{bmatrix} \begin{bmatrix} x \\ 1 \\ -2 \end{bmatrix} = 0$ $\Rightarrow \quad [1 \ x \ 1] \begin{bmatrix} x + 2 - 6 \\ 0 + 5 - 2 \\ 0 + 3 - 4 \end{bmatrix} = 0$ $\Rightarrow \quad [1 \ x \ 1] \begin{bmatrix} x - 4 \\ 3 \\ -1 \end{bmatrix} = 0$ $\Rightarrow x - 4 + 3x - 1 = 0 \Rightarrow x = \frac{5}{4}$ 46 **(d)** We have, $A + b = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ Clearly, A + B is a symmetric matrix Now, $(A+B)^{-1} = -1\begin{bmatrix} 3 & -2\\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 2\\ 2 & -1 \end{bmatrix}$ $A^{-1} = \frac{1}{4} \begin{bmatrix} 4 & -4 \\ -2 & 3 \end{bmatrix}, B^{-1} = \frac{1}{2} \begin{bmatrix} -1 & 2 \\ 0 & -2 \end{bmatrix}$ $\therefore A^{-1} + B^{-1} = \frac{1}{4} \begin{bmatrix} 2 & 0\\ -2 & -1 \end{bmatrix}$ We observe that $(A + b)^{-1}$ is a symmetric matrix and $(A + B)^{-1} \neq A^{-1} + B^{-1}$ 47 **(c)** $\therefore A \cdot A^T = I_n$ $\Rightarrow A - I_n = A - AA^T = A(I_n - A^T)$ $\Rightarrow |A - I_n| = |A(I_n - A^T)|$ $= |A||I_n - A^T|$ $= |A||I_n - A|$ 48 (c)

$$A^{2} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \\ = \begin{bmatrix} \frac{1}{2} - \frac{1}{2} & \frac{1}{2} - \frac{1}{2} \\ -\frac{1}{2} + \frac{1}{2} & \frac{1}{2} - \frac{1}{2} \\ -\frac{1}{2} + \frac{1}{2} & \frac{1}{2} + \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

 \therefore Matrix *A* is nilpotent of order 2.

49 (a)

Let *A* be a symmetric matrix. Then, $A A^{-1} - I$ $\Rightarrow (A A^{-1})^T = I$ $\Rightarrow (A^{-1})^T A^T = I$ $\Rightarrow (A^{-1})^T = (A^T)^{-1}$ $\Rightarrow (A^{-1})^T = (A)^{-1}$ [:: $A^T = A$] $\Rightarrow A^{-1}$ is a symmetric matrix

50 (a)

Since, given matrix is a triangular matrix, so its characteristic roots are the diagonal elements. Hence, required roots are 1, 3, 6.

51 **(d)**

Given that,
$$A = \begin{bmatrix} 3 & 2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

and $A^{-1} = \frac{1}{k} \operatorname{adj} A$
 $\Rightarrow k = |A|$
 $= \begin{vmatrix} 3 & 2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1 \end{vmatrix}$
 $= 3(2+1) - 2(1-0) + 4(1-0)$
 $= 9 - 2 + 4 = 11$

52 **(a)**

Since, $A\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}1\\0\\0\end{bmatrix}$ is linear equation in three variables and that could have only unique, no

solution or infinitely many solution. ∴ It is not possible to have two solutions.

Hence, number of matrices A is zero.

53 **(c)**

Since, *A* is invertible matrix of order *n*, then the determinant of adj $A = |A|^{n-1}$

54 **(c)**

Given,
$$\operatorname{adj} \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & a & -2 \\ 1 & 1 & 0 \\ -2 & -2 & b \end{bmatrix}$$
 ...(i)
Cofactors of $\begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1 \end{bmatrix}$ are
 $C_{11} = 5, C_{12} = 1, C_{13} = -2$
 $C_{21} = 4, C_{22} = 1, C_{23} = -2$
 $C_{31} = -2, C_{32} = 0, C_{33} = 1$

 $\Rightarrow \begin{bmatrix} 5 & 4 & -2 \\ 1 & 1 & 0 \\ -2 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & a & -2 \\ 1 & 1 & 0 \\ -2 & -2 & b \end{bmatrix}$ On comparing the corresponding elements, we get $a = 4, \quad b = 1$ \therefore [a b] = [4 1] 55 (d) $AB = [x \ y \ z] \begin{bmatrix} a \ h \ g \\ h \ b \ f \\ g \ f \ c \end{bmatrix}$ $= [xa + yh + zg \quad xh + yb + zf \quad xg + yf + zc]$ Now, ABC = O \Rightarrow [xa + yh + zg xh + yb + zf xg + yf $+zc]\begin{bmatrix}x\\y\\z\end{bmatrix}=0$ $\Rightarrow [ax^2 + hxy + gxz + hxy + y^2b + fzy + gxz +$ $yfz + z^2c$] = 0 $\Rightarrow [ax^2 + by^2 + cz^2 + 2gzx + 2hxy + 2fyz] = 0$ 56 (d) Let $A = \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}$ Let *B* be the multiplicative inverse of *A*, then AB = I $\Rightarrow B = A^{-1}$ $=\frac{1}{8-7}\begin{bmatrix}4 & -1\\-7 & 2\end{bmatrix} = \begin{bmatrix}4 & -1\\-7 & 2\end{bmatrix}$ 57 **(c)** $\operatorname{Let} A = \begin{bmatrix} 4 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 6 & 0 & 2 & 0 \end{bmatrix}$ Now, we take a submatrix of order 3×3 $B = \begin{bmatrix} 4 & 1 & 0 \\ 3 & 0 & 1 \\ 6 & 0 & 2 \end{bmatrix}$ |B| = -1(6-6) = 0Now, we take a submatrix of order 2×2 . $C = \begin{bmatrix} 4 & 1 \\ 3 & 0 \end{bmatrix}$ ie, $|C| = 0 - 3 \neq 0$ \therefore Rank of matrix *A* is 2. 58 (d) Let $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ $\therefore A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$ Now. $X = A^{-1}B$ $=\frac{1}{2}\begin{bmatrix}1 & -1 & -1\\1 & 1 & -1\\1 & 1 & 1\end{bmatrix}\begin{bmatrix}1\\1\\2\end{bmatrix}$ $=\frac{1}{2}\begin{vmatrix} -2\\0\\0\end{vmatrix} = \begin{vmatrix} -1\\0\\0\end{vmatrix}$

59 (a) $\begin{bmatrix} 7 & 1 & 2 \\ 9 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ r \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 21+4+10 \\ 27+8+5 \end{bmatrix} + \begin{bmatrix} 8 \\ 4 \end{bmatrix}$ $= \begin{bmatrix} 35\\ 40 \end{bmatrix} + \begin{bmatrix} 8\\ 4 \end{bmatrix} = \begin{bmatrix} 43\\ 44 \end{bmatrix}$ 60 **(b)** Since, *A*, *B* and *C* are $n \times n$ matrices ans, if $A^3 + 2A^2 + 3A + 5I = 0$, then A is invertible. 61 (a) We have, |A| = -1, |B| = 3 $\therefore |3 AB| = 3^3 |AB| = 3^3 |A| |B| = 3 \times -1 \times 3$ = -962 (c) Let $A = \begin{vmatrix} 2 & 2 & 3 & 2 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \end{vmatrix}$. Then, $A \sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ By applying $R_4 \to R_4 - R_3 - R_2 - R_1 \begin{bmatrix} \Rightarrow & 0 \\ 68 & (b) \\ We \end{bmatrix}$ $\Rightarrow A \sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & -4 & -8 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ By applying $R_2 \rightarrow R_2 - 2 R_1$, $R_3 \rightarrow R_3 - 3 R_1$ We observe that the leading minor of the third order of this matrix is non-zero i.e. $\begin{vmatrix} 1 & 2 & 3 \\ 0 & 0 & -3 \\ 0 & -4 & -8 \end{vmatrix} = -12 \neq 0.$ Hence, rank (A) = 3 (a) 63 Given, $A + I = \begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix}$ $\therefore \ A - I = A + I - 2I = \begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ $= \begin{bmatrix} 1 & -2 \\ 4 & -1 \end{bmatrix}$ $\therefore (A+I)(A-I) = \begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 4 & -1 \end{bmatrix} = \begin{bmatrix} -5 & -4 \\ 8 & -9 \end{bmatrix}$ 64 (d) We have, $A = k I_n \Rightarrow |A| = |k I_n| = k^n |I_n| = k^n$ 65 (d) Given, $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $A^{2} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $= \begin{bmatrix} a^{2} + bc & ab + bd \\ ac + dc & bc + d^{2} \end{bmatrix}$ $\therefore A^2 - (a+d)A + kI = 0$ $\Rightarrow \begin{bmatrix} a^2 + bc & ab + bd \\ ac + dc & bc + d^2 \end{bmatrix} - \begin{bmatrix} a^2 + ad & ab + bd \\ ac + dc & ad + d^2 \end{bmatrix} + \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

 $\Rightarrow \begin{bmatrix} bc - ad + k & 0 \\ 0 & bc - ad + k \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ On equating, we get bc - ad + k = 0k = ad - bc...(i) ⇒ Also, $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 0$ \Rightarrow ad -bc = 0 \therefore From Eq. (i), k = 066 **(b)** Given that, $A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix}$ $\therefore AB = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix}$ $= \begin{bmatrix} 2-6+1 & 1-4+1 \\ 4+3+3 & 2+2+3 \end{bmatrix}$ $= \begin{bmatrix} -3 & -2 \\ 10 & 7 \end{bmatrix}$ $\Rightarrow (AB)^T = \begin{bmatrix} -3 & 10 \\ -2 & 7 \end{bmatrix}$ We have, $A^{2} = AA = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$ $\Rightarrow A^2 = \begin{bmatrix} 29 & -25 \\ -20 & 24 \end{bmatrix}$ $\therefore A^{2} - 5A = \begin{bmatrix} 29 & -25 \\ -20 & 24 \end{bmatrix} - 5 \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$ $\Rightarrow A^2 - 5A = \begin{bmatrix} 14 & 0 \\ 0 & 14 \end{bmatrix} = 14 I$ 71 **(b)** Given that *A* is a singular matrix $\therefore |A| = 0$ \therefore A adj A = |A| = 0 \therefore *A* adj *A* is a zero matrix 72 (a) $\begin{bmatrix} 3 & 1 \\ 4 & 1 \end{bmatrix} X = \begin{bmatrix} 5 & -1 \\ 2 & 3 \end{bmatrix}$ $\Rightarrow X = \begin{bmatrix} 3 & 1 \\ 4 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 5 & -1 \\ 2 & 3 \end{bmatrix}$ $=\frac{1}{-1}\begin{bmatrix}1&-1\\-4&3\end{bmatrix}\begin{bmatrix}5&-1\\2&3\end{bmatrix}$ $=\begin{bmatrix} -1 & 1 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 2 & 3 \end{bmatrix}$ $=\begin{bmatrix} -3 & 4\\ 14 & -13 \end{bmatrix}$ 73 **(b)** Given, $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$ $\therefore A^{2} \begin{bmatrix} 2 & 3 & 1 \\ 5 & 6 & 2 \\ 3 & 4 & 1 \end{bmatrix} \text{ and } A^{3} = \begin{bmatrix} 7 & 9 & 3 \\ 15 & 19 & 6 \\ 9 & 12 & 4 \end{bmatrix}$ Hence, $A^3 - 3A^2 - I = 0$

74 (d) $: PQ = I \implies P^{-1} = 0$ Now, the system in matrix notation is PX = B $\therefore X = P^{-1}B = QB$ $\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 2 & 2 & 1 \\ 13 & -5 & m \\ -8 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix}$ $\Rightarrow y = \frac{1}{9}(13 - 5 + 5m)$ $\Rightarrow -27 = 8 + 5m$ (given y = -3) $\therefore m = -7$ 75 (d) Since *A* is invertible. Therefore, $|A| \neq 0$ Thus, option (d) is correct. 76 (a) We have, $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{array}{l} \therefore A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}^{-1} \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix}^{-1} \\ \Rightarrow A = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix}) \\ \Rightarrow A = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ 77 (c) If *A* is a square matrix, then $A - A^T$ is a skewsymmetric matrix, then $|A - A^T|$ is '0' or a perfect square as A is of odd order or even order 78 (d) $0(A') = 3 \times 2, O(B') = 2 \times 3$ (a) CB + A'Now, order of CB =(order of C is 3×3)(order of B is 3×2) = order of *CB* is 3×2 Since, $O(A') = 3 \times 2$: Matrix CB + A' can be determined. (b) $O(BA) = 3 \times 3$ and $O(C) = 3 \times 3$: Matrix *BAC* can be determined. (c) $O(A + B') = 2 \times 3$ $\Rightarrow O(A + B')' = 3 \times 2$ and $O(C) = 3 \times 3$: Matrix C(A + B') can be determined. (d) $O(A + B') = 2 \times 3$ And $O(C) = 3 \times 3$: Matrix C(A + B') cannot be determined. 79 (d) Given *A* is a matrix of order 3 and B = $|A|A^{-1}, |A| = -5$ $\therefore B = |A| \frac{(\operatorname{adj} A)}{|A|} \Rightarrow B = (\operatorname{adj}) A)$ $|B| = |A|^{3-1} = 25$ ⇒ 80 (a)

 $\therefore A^2 = \begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\therefore A^2$ is null mat 81 **(b)** For unique solution, $\begin{vmatrix} 0 & k-1 & -2 \end{vmatrix} \neq 0$ 0 0 $\Rightarrow k(k-1)(k+2) \neq 0$ $\Rightarrow k \neq 0, 1 \text{ or } -2$ 82 **(b)** Given, $A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ $\therefore A^{-1} = -\frac{1}{3} \begin{bmatrix} -1 & -2 \\ -2 & -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ Also, AX = B $\Rightarrow X = A^{-1}B = \frac{1}{3} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ $=\frac{1}{3}\begin{bmatrix}3+2\\6+1\end{bmatrix}=\frac{1}{3}\begin{bmatrix}5\\7\end{bmatrix}$ 83 (a) [1 2 3] $\Delta = \begin{vmatrix} -2 & -2 \end{vmatrix} = 1 = 3$ 559 = 1(9 - 15) - 2(18 - 15) + 3(10 - 5)= -6 - 6 + 15 $= 3 \neq 0$ Hence, the system of equations has a unique solution. 84 (b) It is given that $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\therefore A^2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = 2 A$ $\Rightarrow A^3 = 2 (A A) = 2 A^2 = 2(2 A) = 2^2 A$ Continuing in this manner, we have $A^n = 2^{n-1} A$ 85 (a) We have, $(B^{-1} A^{-1})^{-1} = (A^{-1})^{-1} (B^{-1})^{-1} [:: (PQ)^{-1}]$ $= Q^{-1} P^{-1}]$ $\Rightarrow (B^{-1} A^{-1})^{-1} = AB$ $\Rightarrow (B^{-1} A^{-1}) = \begin{bmatrix} 2 & 2 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ $\Rightarrow (B^{-1} A^{-1})^{-1} = \begin{bmatrix} 2 & -2 \\ 2 & 3 \end{bmatrix}$ Hence, option (a) is correct 86 (c) Here, *C*, *A* and C^T are matrix of order $n \times 1$, $n \times n$ and $1 \times n$ respectively. Let $C^T A C = k$ Then, $(C^T A C)^T = C^T A^T (C^T)^T$ $= C^T A^T C = C^T (-A)C$ $=-C^TAC = -k$

 $\Rightarrow k = -k \Rightarrow k = 0$ $\Rightarrow C^T A C$ is null matrix. Which shows that $C^{T}AC$ is a zero matrix of order1. 87 **(b)** Since, $A + A^T$ is a square matrix $\therefore (A + A^T)^T = A^T + (A^T)^T = A^T + A$ Hence, $A + A^T$ is symmetric matrix (d) 88 $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 1+1 & 1+2 \\ 2+1 & 2+2 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$ 89 Given, $P = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ -2 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} -4 - 5 - 6 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} 4 & 5 & 4 \\ 8 & 10 & 12 \\ 0 & 0 & -4 \end{bmatrix}$ $\therefore \quad P_{22} = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 5 \\ 10 \\ 0 \end{bmatrix}$ = 10 + 30 = 4091 (c) Given, $AB = A \Rightarrow B = I$ And $BA = B \Rightarrow A = I$ \therefore B = I and A = I $\Rightarrow B^2 = B \text{ and } A^2 = A$ 92 (a) Let $A = \begin{bmatrix} 0 & x & y & z \\ -x & 0 & a & b \\ -y -a & 0 & c \\ -z & -b & -c & 0 \end{bmatrix}$ be a skew-symmetric matrix. Then, $|A| = \begin{vmatrix} 0 & x & y & z \\ -x & 0 & a & b \\ -y - a & 0 & c \\ -y - b & -c & 0 \end{vmatrix} = (cx - by + az)^2$ (d) 93 Since, $A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{bmatrix}$ $\therefore B = \operatorname{adj} A = \begin{bmatrix} 3 & 1 & 1 \\ -6 & -2 & 3 \\ -4 & -3 & 2 \end{bmatrix}$ $\Rightarrow \operatorname{adj} B = \begin{bmatrix} 5 & -5 & 5 \\ 0 & 10 & -15 \\ 10 & 5 & 0 \end{bmatrix}$ $\Rightarrow |\operatorname{adj} B| = \begin{bmatrix} 5 & -5 & 5 \\ 0 & 10 & -15 \\ 10 & 5 & 0 \end{bmatrix} = 625$ Given that, C = 5A $\Rightarrow |C| = 5^{3}|A| = 125 \begin{vmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 2 \end{vmatrix} = 625$ Hence, $\frac{|\text{adj}(B)|}{|C|} = \frac{625}{625} = 1$

Given, $A = \begin{bmatrix} 6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1 \end{bmatrix}$ amd symmetric matrix $B = \frac{A+A'}{2}$ $\therefore B = \frac{1}{2} \left\{ \begin{bmatrix} 6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1 \end{bmatrix} + \begin{bmatrix} 6 & 4 & 9 \\ 8 & 2 & 7 \\ 5 & 3 & 1 \end{bmatrix} \right\} = \begin{bmatrix} 6 & 6 & 7 \\ 6 & 2 & 5 \\ 7 & 5 & 1 \end{bmatrix}$ 95 (d) The matrix $\begin{bmatrix} 5 & 10 & 3 \\ -2 & -4 & 6 \\ -1 & -2 & b \end{bmatrix}$ is singular, if $\begin{bmatrix} 5 & 10 & 3 \\ -2 & -4 & 6 \\ -2 & -2 & b \end{bmatrix} = 0$ (60 + 12) + 2(30 + 6) + b(-20 + 20) = 0 $\Rightarrow -72 + 72 + 0b = 0$ Hence, the given matrix is singular for any value of b 96 **(b)** $\det (2AB) = 2^3 \det(A) \det(B)$ = 8det (A) det (B) 97 **(b)** $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ (In general) And in a diagonal matrix non-diagonal elements are zero ie, $a_{ij} = \begin{cases} 0, & \text{if } i \neq j \\ a_{ij}, & \text{if } i = j \end{cases}$ So, $c_{ii} = a_{ii}b_{ii}$ 98 **(b)** Here, |A| = (1)(9) - 2(-11) - 3(6)= 9 + 22 - 18 = 33Since, A^{-1} adj $(A^{-1}) = |A^{-1}|I_3$ $\Rightarrow A^{-1}$ adj $(A^{-1}) = (|A|^{-1})I_3$ $\Rightarrow A \cdot A^{-1} \operatorname{adj} (A^{-1}) = (|A|)^{-1} A I_3$ \Rightarrow adj $(A^{-1}) = (|A|)^{-1}A$ \Rightarrow |A|adj(A⁻¹) = A (But |A| \neq 0) 99 (d) Let $A \begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{vmatrix}$ $\therefore |A| = 1(1+1) + 1(1-1) + 1(1+1) = 4 \neq 0$ \therefore Rank of matrix *A* is 3 100 **(b)** Let $\frac{x^2}{a^2} = X$, $\frac{y^2}{b^2} = Y$ and $\frac{z^2}{c^2} = Z$, then given equation X + Y - Z = 1, X - Y + Z = 1, -X + Y + Z = 1Here, $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$ Now, $|A| = -4 \neq 0$ Therefore, the given system of equation has

94 (a)

unique solution.

102 **(b)**
$$\left[\frac{1}{2}(A - A')\right]' = \frac{1}{2}(A - A')' = \frac{1}{2}(A' - A)$$
$$= -\frac{1}{2}(A - A')$$

Hence, it is a skew-symmetric matrix.

103 **(b)**

$$∴ adj A = \begin{bmatrix} 4 & 2 \\ -3 & 1 \end{bmatrix}$$

and $|A| = \begin{vmatrix} 1 & -2 \\ 3 & 4 \end{vmatrix} = 10$
$$∴ A^{-1} = \frac{1}{10} \begin{bmatrix} 4 & 2 \\ -3 & 1 \end{bmatrix}$$

105 **(b)**

Let
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$

 $\therefore \text{ adj } A = \begin{bmatrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\ 0 & -4 & -3 \end{bmatrix}^{T}$
 $= \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$

106 **(d)**

We have,

$$3 A^3 + 2 A^2 + 5 A + I = 0$$

 $\Rightarrow I = -3 A^3 - 2 A^2 - 5 A$
 $\Rightarrow I A^{-1} = (-3 A^3 - 2 A^2 - 5 A) A^{-1}$
 $\Rightarrow A^{-1} = -3 A^2 - 2 A - 5 I$

108 **(b)**

The given system of equations are x + y + z = 0, 2x + 3y + z = 0 and x + 2y = 0Here, $\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 2 & 0 \end{vmatrix} = 1(0 - 2) - 1(0 - 1) + (4 - 3)$ = -2 + 1 + 1 = 0 \therefore This system has infinite solutions 109 (c) $2X - \begin{bmatrix} 1 & 2 \\ 7 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 0 & -2 \end{bmatrix}$

$$\Rightarrow 2X = \begin{bmatrix} 3 & 2 \\ 0 & -2 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 7 & 4 \end{bmatrix}$$
$$\Rightarrow 2X = \begin{bmatrix} 4 & 4 \\ 7 & 2 \end{bmatrix}$$
$$\Rightarrow X = \begin{bmatrix} 2 & 2 \\ 7/2 & 1 \end{bmatrix}$$
111 **(b)**
Given, $A = A', B = B'$
Now, $(AB - BA)' = (AB)' - (AB)'$

Now, (AB - BA)' = (AB)' - (BA)'=B'A' - A'B'=BA - AB=-(AB - BA) $\therefore AB - BA$ is a skew-symmetric matrix. 113 (a) Given that, p is a non-singular matrix such that $1 + p + p^2 + \ldots + p^n = 0$ $\Rightarrow (1+p)(1+p+p^2+\ldots+p^n) = 0$ $\Rightarrow 1 - p^{n+1} = 0$ $\Rightarrow p^{n+1} = 1$ $\Rightarrow p^n \times p^1 = 1$ $\Rightarrow p^n = 1/p$ $\therefore p^{-1} = p^n$ 114 (a) Given, $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{40} \begin{bmatrix} 5 & 10 & -5 \\ -5 & -2 & 13 \\ 10 & -4 & 6 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \\ 5 \end{bmatrix}$ $=\frac{1}{40}\begin{bmatrix} 25+0-25\\-25+0+65\\50+0+30\end{bmatrix}$ $=\frac{1}{40}\begin{bmatrix}0\\40\\80\end{bmatrix}$ $\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ $\Rightarrow x = 0, y = 1, z = 2$ $\therefore x + y + z = 0 + 1 + 2 = 3$ 115 (d) $\because \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix} = \begin{bmatrix} X \\ Y \end{bmatrix}$ Then, X = y and Y = xie, y = x116 (c) Given $\begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{bmatrix}^{-1} =$ $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & -\tan\theta\\ \tan\theta & 1 \end{bmatrix} \cdot \frac{1}{1 + \tan^2\theta} \begin{bmatrix} 1 & -\tan\theta\\ \tan\theta & 1 \end{bmatrix}$ $\Rightarrow \frac{1}{1 + \tan^2 \theta} \begin{bmatrix} 1 - \tan^2 \theta & -2\tan \theta \\ 2\tan \theta & 1 - \tan^2 \theta \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ $\Rightarrow \begin{bmatrix} \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} & \frac{2 \tan \theta}{1 + \tan^2 \theta} \\ \frac{2 \tan \theta}{1 - \tan^2 \theta} & \frac{1 - \tan^2 \theta}{1 - \tan^2 \theta} \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ $\frac{1}{1 + \tan^2 \theta}$ $\frac{1 + \tan^2 \theta}{1 + \tan^2 \theta}$ $\Rightarrow \begin{bmatrix} \cos 2\theta - \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ $\Rightarrow a = \cos 2\theta, b = \sin 2\theta$ 117 (d) Given, $A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ $\therefore B = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} = \begin{bmatrix} -3 & -6 & -6 \\ 6 & 3 & -6 \\ 6 & -6 & 3 \end{bmatrix}$

$$\Rightarrow \operatorname{adj} A = (B)' = \begin{bmatrix} -3 & 6 & 6 \\ -6 & 3 & -6 \\ -6 & -6 & 3 \end{bmatrix}$$
$$= 3 \begin{bmatrix} -1 & 2 & 2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix} = 3A'$$

118 (d)

Given equations are px + y + z = 0, x + qy + z = 0, x + y + rz = 0Since, the system have a non-zero solution, then $\begin{bmatrix} p & 1 & 1 \\ 1 & q & 1 \\ 1 & 1 & r \end{bmatrix} = 0$ Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_2$ $\Rightarrow \begin{vmatrix} p & 1-p & 0 \\ 1 & q-1 & 1-q \\ 1 & 0 & r-1 \end{vmatrix} = 0$ $\Rightarrow (1-p)(1-q)(1-r) \begin{vmatrix} \frac{p}{1-p} & 1 & 0\\ \frac{1}{1-q} & -1 & 1 \end{vmatrix} = 0$ $\frac{1}{1-\pi}$ 0 - 2 $\Rightarrow (1-p)(1-q)(1-r)$ $\left[\frac{p}{1-p}(1) - 1\left(-\frac{1}{1-q} - \frac{1}{1-r}\right)\right] = 0$ Since, $p, q, r \neq 1$ $\therefore \frac{p}{1-p} + \frac{1}{1-q} + \frac{1}{1-r} = 0$ $\Rightarrow \frac{1}{1-n} - 1 + \frac{1}{1-a} + \frac{1}{1-r} = 0$ $\Rightarrow \frac{1}{1-n} + \frac{1}{1-a} + \frac{1}{1-r} = 0$ 119 (b) Given, $AB = I \Rightarrow B = A^{-1}$ Now, $A^{-1} = \frac{\mathrm{adj}}{|A|}$ $=\frac{\begin{bmatrix}1 & -\tan\frac{\theta}{2}\\\tan\frac{\theta}{2} & 1\end{bmatrix}}{1+\tan^{2}\theta}$ $=\frac{A^{T}}{\sec^{2}\frac{\theta}{2}}=\cos^{2}\frac{\theta}{2}A^{T}$ 120 (d) Given equations are 3x + y + 2z = 3 ...(i) 2x - 3y - z = -3 ...(ii) and x + 2y + z = 4 ...(iii) Let $A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \\ 13 & 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 3 \\ -3 \\ 4 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

 $\therefore |A| = \begin{vmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \end{vmatrix}$

 $=3\begin{vmatrix} -3 & -1 \\ 2 & 1 \end{vmatrix} - 1\begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} + 2\begin{vmatrix} 2 & -3 \\ 1 & 2 \end{vmatrix}$ = 3(-3+2) - 1(2+1) + 2(4+3)= -3 - 3 + 14 = 8adj. $A = \begin{bmatrix} -1 & -3 & 7 \\ 3 & 1 & -5 \\ 5 & 7 & -11 \end{bmatrix}^{T}$ $= \begin{vmatrix} -1 & 3 & 5 \\ -3 & 1 & 7 \\ 7 & -5 & -11 \end{vmatrix}$ $\therefore A^{-1} = \frac{1}{|A|} \operatorname{adj} A = \frac{1}{8} \begin{vmatrix} -1 & 3 & 5 \\ -3 & 1 & 7 \\ 7 & -5 & -11 \end{vmatrix}$ Now, $X = A^{-1}B$ $= \frac{1}{8} \begin{bmatrix} -1 & 3 & 5 \\ -3 & 1 & 7 \\ 7 & -5 & -11 \end{bmatrix} \begin{bmatrix} 3 \\ -3 \\ 4 \end{bmatrix}$ $= \frac{1}{8} \begin{bmatrix} -3 - 9 + 20 \\ -9 - 3 + 28 \\ 21 + 15 - 44 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 8 \\ 16 \\ -8 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$ $\Rightarrow x = 1, y = 2, z = -1$ 121 (a) $A^2 = 2A - I$ $\therefore A^2A = 2AA - IA$ $= 2A^2 - A = 2(2A - I) - A$ $\Rightarrow A^3 = 3A - 2I$ $\Rightarrow A^3 \cdot A = 3AA - 2IA = 3(2A - I) - 2A$ $\Rightarrow A^4 = 4A - 3I$ Similarly, $A^n = nA - (n - I)I$ 122 (d) $\det(M_r) = \begin{bmatrix} r & r-1 \\ r-1 & r \end{bmatrix} = 2r - 1$ $\sum_{r=1}^{2007} \det(M_r) = 2 \sum_{r=1}^{2007} r - 2007$ $= 2 \times \frac{2007 \times 2008}{2} - 2007 = (2007)^2$ 123 (a) Let $A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $\therefore |A| = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $= 0 \begin{vmatrix} 0 & 2 \\ -2 & 0 \end{vmatrix} - 1 \begin{vmatrix} -1 & 2 \\ 1 & 0 \end{vmatrix} - 1 \begin{vmatrix} -1 & 0 \\ 1 & -2 \end{vmatrix}$ = 0 + 2 - 2 = 0 $\Rightarrow |A| = 0$ Now, $(adj A)B = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$ $= \begin{bmatrix} 4 - 4 + 6 \\ 2 - 2 + 3 \\ 2 - 2 + 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ - 2 \end{bmatrix} \neq 0$

 \div This system of equation is inconsistent, so it has no solution

125 (c)

Given,
$$D = \text{diag}(d_1, d_2, d_3, ..., d_n)$$

 $\Rightarrow D^{-1} = \text{diag}(d_1^{-1}, d_2^{-1}, ..., d_n^{-1})$

126 **(a)**

we have,

$$a = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow A^{n} = \begin{bmatrix} 1 & na \\ 0 & 1 \end{bmatrix} \qquad \text{[Using PMI]}$$

$$\Rightarrow \frac{1}{n}A^{n} = \begin{bmatrix} \frac{1}{n} & a \\ 0 & \frac{1}{n} \end{bmatrix} \Rightarrow \lim_{n \to \infty} \frac{1}{2}A^{n} = \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}$$

127 (d)

The given system of equations are 2x + y - 5 = 0 ...(i) x - 2y + 1 = 0 ...(ii) and 2x - 14y - a = 0 ...(iii) This system is consistent. $\therefore \begin{bmatrix} 2 & 1 & -5 \\ 1 & -2 & 1 \\ 2 & -14 & -a \end{bmatrix} = 0$ $\Rightarrow 2(2a + 14) - 1(-a - 2) - 5(-14 + 4) = 0$ $\Rightarrow 4a + 28 + a + 2 + 50 = 0$ $\Rightarrow 5a = -80 \Rightarrow a = -16$

128 (d)

The system of given equations has no solution, if $\begin{vmatrix} \alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha \end{vmatrix} = 0$ Applying $C_1 \rightarrow C_1 + C_2 + C_3$ and taking common $(\alpha + 2)$ from C_1 , we get $(\alpha + 2) \begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha \end{vmatrix} = 0$ Applying $R_2 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 - R_1$ $\Rightarrow (\alpha + 2) \begin{vmatrix} 1 & 1 & 1 \\ 0 & \alpha - 1 & 0 \\ 0 & 0 & \alpha - 1 \end{vmatrix} = 0$ $\Rightarrow (\alpha + 2)(\alpha - 1)^2 = 0$ $\Rightarrow \alpha = 1, -2$

But $\alpha = 1$ makes given three equations same. So, the system of equation have infinite solution. So, answer is $\alpha = -2$ for which the system of equations has no solution

130 **(b)**

Given, $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ $\therefore \quad A^2 = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ $\Rightarrow \quad \begin{bmatrix} x^2 + 1 & x \\ x & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow \quad x^2 + 1 = 1, x = 0$

x = 0⇒ 131 (a) Given that, $A^{-1} = \lambda$ (adj *A*) On comparing with $A^{-1} = \frac{1}{|A| \operatorname{adj}} A$ we get $\lambda = \frac{1}{|A|}$ Now, $|A| = \begin{vmatrix} 0 & 3 \\ 2 & 0 \end{vmatrix} = 0 - 6 = -6$ $\Rightarrow \lambda = -\frac{1}{6}$ 132 (d) $a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} + a_{14}C_{14} = |A|$ 133 (d) Given equation are x + y + z = 6, x + 2y + 3z =10 and $x + 2y + \lambda z = 10$ Since, it is consistent. |1 1 1| $\therefore |1 \ 2 \ 3| = 0$ $\Rightarrow 1(2\lambda - 6) - 1(\lambda - 3) + 1(2 - 2) = 0$ $\Rightarrow \lambda - 3 = 0 \Rightarrow \lambda = 3$ 134 **(b)** $A^{2} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 2 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 2A$ $\therefore A^4 = 2A. 2A = 4A^2 = 4 \times 2A = 2^3A$ Similarly, $A^8 = 2^7 A$ $\Rightarrow A^{100} = 2^{99}A$ 135 (d) Let $A = \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ $\therefore |A| = \cos^2 2\theta + \sin^2 2\theta = 1$ and adj $A = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$ $\therefore A^{-1} = \frac{1}{1} \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$ $= \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$ 138 (a) Give equation can be written as, $2X = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ $\Rightarrow 2X = \begin{bmatrix} 2 & 6 \\ 4 & -2 \end{bmatrix} = 2 \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$ $\Rightarrow X = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$ 139 (c) We have, AB = 0 $\Rightarrow |A B| = 0$ $\Rightarrow |A| |B| = 0$ $\Rightarrow |A| = 0 \text{ or } |B| = 0$ Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Then, AB = O. But $A \neq 0, B \neq 0$

140 (b)

(b) Given, $A = \begin{bmatrix} 1 & -1 & -2 \\ 2 & 1 & 1 \\ 4 & -1 & -2 \end{bmatrix}$ $\therefore A^{-1} = \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ 8 & 6 & -5 \\ -6 & -3 & 3 \end{bmatrix}$ Now, $A^{-1}D = \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ 8 & 6 & -5 \\ -6 & -3 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 11 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 8 \\ -1 \\ 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8/3 \\ -1/3 \end{bmatrix}$ 142 (a) Given equations are x - cy - bz = 0cx - y + az = 0 and bx + ay - z = 0For non-zero solution $\begin{vmatrix} 1 & -c & -b \\ c & -1 & a \\ b & a & -1 \end{vmatrix} = 0$ $\Rightarrow 1(1 - a^2) + c(-c - ab) - b(ac + b) = 0$ $\Rightarrow a^2 + b^2 + c^2 + 2abc = 1$ 143 **(b)** We have, $Det (I_n) = 1 (\neq 0) \Rightarrow rank (I_n) = n$ 144 (a) The given matrix A is singular, if $|A| = \begin{vmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & \lambda \end{vmatrix} = 0$ $\Rightarrow 8(7\lambda - 16) + 6(-6\lambda + 8) + 2(24 - 14) = 0$ $\Rightarrow 56\lambda - 128 - 36\lambda + 48 + 20 = 0$ $\Rightarrow 20\lambda = 60$ $\Rightarrow \lambda = 3$ 145 (c) Let $B = I + A + A^2 + A^3 \dots \infty$ $\Rightarrow AB = A + A^2 + A^3 + \cdots \infty$ $\Rightarrow B - AB = I$ $\Rightarrow B(I - A) = I$ $\Rightarrow B = (I - A)^{-1}$ $\Rightarrow B = \begin{bmatrix} 0 & -2 \\ -3 & -3 \end{bmatrix}^{-1} = -\frac{1}{6} \begin{bmatrix} -3 & 2 \\ 3 & 0 \end{bmatrix}$ $=\begin{bmatrix} 1/2 & -1/3\\ -1/2 & 0 \end{bmatrix}$ 146 (a) Since *A* is non-singular matrix $\therefore |A| \neq 0 \Rightarrow \operatorname{rank}(A) = n$ 147 **(b)** $A^{2} = \begin{bmatrix} 1 & -2 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} -7 & -12 \\ 24 & 17 \end{bmatrix}$ Now, $f(A) = A^2 - 3A +$ $=\begin{bmatrix} -7 - 12\\ 24 & 17 \end{bmatrix} - 3\begin{bmatrix} 1 & -2\\ 4 & 5 \end{bmatrix} + 7\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$ $=\begin{bmatrix} -3 & -6\\ 12 & 9 \end{bmatrix}$

 $\therefore f(A) + \begin{bmatrix} 3 & 6 \\ -12 & -9 \end{bmatrix} = \begin{bmatrix} -3 & -6 \\ 12 & 9 \end{bmatrix} + \begin{bmatrix} 3 & 6 \\ -12 & -9 \end{bmatrix} =$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ 148 (a) The given system of equations will have a unique solution, if $\begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & k \end{vmatrix} \neq 0 \Rightarrow k \neq 0$ 149 (a) Given, 2x + y - z = 7...(i) x - 3y + 2z = 1...(ii) and x + 4y - 3z = 5...(iii) From Eqs.(i) and (ii), we get 5x - y = 15 ...(iv) From Eqs. (i) and (iii) 5x - y = 16...(v) Eqs. (iv) and (v) shows that they are parallel and solution does not exist. 150 (d) We have, $X = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix} \Rightarrow X^2 = \begin{bmatrix} 5 & -8 \\ 2 & -3 \end{bmatrix}$ Clearly for n = 2, the matrices in options (a), (b), (c) do not tally with $\begin{bmatrix} 5 & -8 \\ 2 & -2 \end{bmatrix}$ 152 (a) We have, $A = \begin{bmatrix} a_{ii} \end{bmatrix} \therefore |k A| = k^n |A|$ 153 **(b)** $A^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$ 154 (d) Given that, $A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$ $\Rightarrow A^{2} = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$ $= \begin{bmatrix} \alpha^{2} + 0 & 0 + 0 \\ \alpha + 1 & 0 + 1 \end{bmatrix}$ $= \begin{bmatrix} \alpha^{2} & 0 \\ \alpha + 1 & 1 \end{bmatrix}$ Also, $B = A^2$ (given) $\Rightarrow \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} \alpha^2 & 0 \\ \alpha + 1 & 1 \end{bmatrix}$ Clearly this is not satisfied by any real value of α 155 **(b)** We have, $A (adj A) = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$

 $\Rightarrow |A| I = 4 I \qquad [\because A(\operatorname{adj} A) = |A| I]$ $\Rightarrow |A| = 4$ $\Rightarrow |\operatorname{adj} A| = |A|^2 \quad [|\operatorname{adj} A| = |A|^{n-1}]$ 156 (a) Given, $A = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$ $A^{2} = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix} \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix} = \begin{bmatrix} \omega^{2} & 0 \\ 0 & \omega^{2} \end{bmatrix}$ $\Rightarrow A^{3} = \begin{bmatrix} \omega^{2} & 0 \\ 0 & \omega^{2} \end{bmatrix} \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix} = \begin{bmatrix} \omega^{3} & 0 \\ 0 & \omega^{3} \end{bmatrix}$ Similarly, $A^{50} = \begin{bmatrix} \omega^{50} & 0 \\ 0 & \omega^{50} \end{bmatrix}$ $= \begin{bmatrix} (\omega^2)^{16} \omega^2 & 0 \\ 0 & (\omega^3)^{16} \omega^2 \end{bmatrix}$ $= \begin{bmatrix} \omega^2 & 0 \\ 0 & \omega^2 \end{bmatrix}$ $=\omega^2 A$ 157 (a) We have, $AB = I_3$ $\Rightarrow \begin{bmatrix} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & x + y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow x + y = 0$ 158 (a) Let $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ $\therefore \operatorname{adj}(A) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ 159 (a) |A| = 0 - 1(1 - 9) + 2(1 - 6) $= 8 - 10 = -2 \neq 0$ adj (A) = $\begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$ $\therefore A^{-1} = \frac{1}{-2} \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ -4 & 3 & -1 \\ 5/2 & -3/2 & 1/2 \end{bmatrix}$ 160 (a) $|f(\theta)| = 1(\cos^2\theta + \sin^2\theta) = 1$ Now, $\operatorname{adj}\{f(\theta)\} = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$ $\therefore \ \{f(\theta)\}^{-1} = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} = f(-\theta)$ 161 (a) Given, x + 4ay + az = 0...(i) x + 3by + bz = 0...(ii) And x + 2cy + cz = 0...(iii) For non-trivial solution

1 4a a $\begin{vmatrix} 1 & 3b & b \end{vmatrix} = 0$ 1 2c cApplying $R_2 \rightarrow R_2 - R_1$, $R_3 \rightarrow R_3 - R_1$ $\Rightarrow \begin{vmatrix} 1 & 4a & a \\ 0 & 3b - 4a & b - a \end{vmatrix} = 0$ $\begin{bmatrix} 0 & 2c - 4a & c - a \end{bmatrix}$ $\Rightarrow 1[(3b - 4a)(c - a) - 2(b - a)(c - 2a)] = 0$ $\Rightarrow 3bc - 3ab - 4ac + 4a^2$ $-2(bc - 2ab - ac + 2a^2) = 0$ bc + ab - 2ac = 0ab + bc = 2ac⇒ 162 (d) We know that $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$ and, rank $(A B) \leq \operatorname{rank}(B)$ \therefore rank (*A B*) \leq min(rank *A*, rank *B*) 163 (c) Let $A = \begin{bmatrix} a_{21} \\ a_{21} \\ \vdots \\ a_{n4} \end{bmatrix}$ and $B = [b_{11} \ b_{12} \ b_{13} \ \cdots \ b_{1n}]$ be two non-zero column and row matrices respectively We have, $AB = \begin{bmatrix} a_{11} b_{11} & a_{11} b_{12} & a_{11} b_{13} & \cdots & a_{11} b_{1n} \\ a_{21} b_{11} & a_{21} b_{12} & a_{21} b_{13} & a_{21} b_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$ $[a_{m1} b_{11} a_{m1} b_{12} a_{m1} b_{13} a_{m1} b_{1n}]$ Since *A* and *B* are non-zero matrices. Therefore, the matrix AB will also be a non-zero matrix. The matrix AB will have at least one non-zero element obtained by multiplying corresponding non-zero elements of A and B. All the two-rowed minors of A obviously vanish. But, A is a non-zero matrix. Hence, rank (A = 1)164 (c) $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix}^{-1}$ $= -\begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -3 & -2 \\ -5 & -3 \end{bmatrix}$ $= \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ 165 (a) If *A* is any square matrix, then $AA^{-1} = I$ and $A^{-1}I = A^{-1}$ Since, $A^2 - A + I = 0$ $\Rightarrow A^{-1}A^2 - A^{-1}A + A^{-1}I = 0$ \Rightarrow $(A^{-1}A)A - (A^{-1}A) + A^{-1} = 0$ $\Rightarrow \quad A - 1 + A^{-1} = 0 \Rightarrow A^{-1} = I - A$

166 **(a)**

Since, *B* is invertible, therefore B^{-1} exists Now, rank (*A*) = rank[(*AB*) B^{-1}] \leq rank(*AB*)

But $rank(AB) \leq rank(A)$ cx - y + az = 0 \therefore rank (*AB*) = rank(*A*) 167 (c) Given, $A = \begin{bmatrix} 4 & 2 \\ 3 & 4 \end{bmatrix}$ of order n = 2 $\therefore |\operatorname{adj}(A)| = |A|^{2-1} = \begin{bmatrix} 4 & 2 \\ 3 & 4 \end{bmatrix} = 10$ 168 (d) $\cos\theta \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta \begin{bmatrix} \sin\theta - \cos\theta \\ \cos\theta & \sin\theta \end{bmatrix}$ $= \begin{bmatrix} \cos^2\theta + \sin^2\theta & 0 \\ 0 & \cos^2\theta + \sin^2\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 174 (c) 169 (b) Let A denote the matrix every element of which is unity. Then, all the 2-rowed minors of A obviously vanish. But A is a non-null matrix. Hence, rank of *A* is 1 170 (d) As $det(A) = \pm 1, A^{-1}exists$ and $A^{-1} = \frac{1}{\det(A)} (\operatorname{adj} A) = \pm (\operatorname{adj} A)$ All entries in adj (*A*) are integers. $\therefore A^{-1}$ has integer entries. 171 (c) 175 (a) Since, *A* is invertible $\therefore |A| \neq 0 \Rightarrow \begin{bmatrix} 1 & 0 & -k \\ 2 & 1 & 3 \\ k & 0 & 1 \end{bmatrix} \neq 0$ $\Rightarrow 1(1-0) + k(0-k) \neq 0$ $\Rightarrow 1 - k^2 \neq 0 \Rightarrow k \neq \pm 1$ 172 **(b)** We have, $\begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \frac{1}{1 + \tan^2\theta} \begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix}$ 176 (c) $= \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ $\Rightarrow \frac{1}{1 + \tan^2 \theta} \begin{bmatrix} 1 - \tan^2 \theta & -2 \tan \theta \\ 2 \tan \theta & 1 - \tan^2 \theta \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ $\Rightarrow \begin{bmatrix} \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} & \frac{-2 \tan \theta}{1 + \tan^2 \theta} \\ \frac{2 \tan \theta}{1 + \tan^2 \theta} & \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ $\Rightarrow \begin{bmatrix} \cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ 177 (b) 178 (a) $\Rightarrow a = \cos 2\theta, b = \sin 2\theta$ 173 (c) We have, $x^2 + y^2 + z^2 \neq 0$ \Rightarrow At least one of x, y, z is non-zero Now, x = cy + bz, y = az + cx, z = bx + ay $\Rightarrow x - cy - bz = 0$

bx + zy - z = 0As at least one of *x*, *y*, *z* is non-zero. Therefore, the above system of equations has non-trivial solutions $\therefore \begin{vmatrix} 1 & -c & -b \\ c & -1 & a \\ b & a & -1 \end{vmatrix} = 0 \Rightarrow a^2 + b^2 + c^2 + 2abc = 1$ $A^2 - 4A + 10I = A$ $\Rightarrow \begin{bmatrix} 1 & -3 \\ 2 & k \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 2 & k \end{bmatrix} - 4 \begin{bmatrix} 1 & -3 \\ 2 & k \end{bmatrix} + 10 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & -3 \\ 2 & k \end{bmatrix}$ $\Rightarrow \begin{bmatrix} -5 & -3 & -3k \\ 2 + 2k & -6 + k^2 \end{bmatrix} - \begin{bmatrix} 4 & -12 \\ 8 & 4K \end{bmatrix} + \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$ $= \begin{bmatrix} 1 & -3 \\ 2 & k \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 9 - 3k \\ -6 + 2k & 4 + k^2 - 4K \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 2 & k \end{bmatrix}$ $\Rightarrow 9 - 3k = -3, -6 + 2k = 2$...(i) and $4 + k^2 - 4k = k$ $\Rightarrow k^2 - 5k + 4 = 0 \Rightarrow k = 4,1$ But k = 1 is not satisfied the Eq (i). Given, $A^2 = 2A - I$ Now. $A^3 = A^2 \cdot A = 2A^2 = -IA$ $= 2A^2 - A = 2(2A - I) - A$ = 3A - 2I = 3A - (3 - 1)I... $A^n = nA - (n-1)I$ We have, $\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$ $\Rightarrow A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$ $\Rightarrow A = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix}$ It is given that *A* is an orthogonal matrix $\therefore A A^T = I = A^T A \Rightarrow A^{-1} = A^T$ Let A = IA $\Rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$ Applying $R_2 \rightarrow R_2 - 2R_1$ and $R_3 \rightarrow R_3 - 3R_1$ $\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & -2 & -3 \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} A$ Applying $R_3 \rightarrow R_3 - 2R_2$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & 0 \\ -1 & -2 & 1 \end{bmatrix} A$$
Applying $R_2 \rightarrow -R_2$ and $R_2 \rightarrow R_2 - 2R_3$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$
Applying $R_1 \rightarrow R_1 - 2R_2 - 3R_3$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} -2 & 0 & 1 \\ 0 & 3 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

$$\therefore A^{-1} = \begin{bmatrix} -2 & 0 & 1 \\ 0 & 3 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$
179 (a)
Given that $2X + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}$

$$\Rightarrow 2X = \begin{bmatrix} 3 & 8 \\ 2 & -2 \end{bmatrix} = 2\begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$$

$$\Rightarrow X = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$$
180 (b)
Since the given matrix is symmetric
$$\therefore (A)_{12} = (A)_{21} \Rightarrow x + 2 = 2x - 3 \Rightarrow x = 5$$
181 (d)
Given, $A = 3\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

$$\therefore A^2 = 3\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A^4 = A^2 \cdot A^2 = 9A \cdot 9A = 81 \cdot 9A = 729A$$
182 (a)
Now, $\begin{vmatrix} u^2 & \omega & 1 \\ \omega & 1 & \omega^2 \end{vmatrix}$

$$= 1(\omega^3 - 1) - \omega^2(\omega^4 - \omega) + \omega(\omega^2 - \omega^2)$$

$$= 1(1 - 1) - \omega^2(\omega - \omega) + 0$$

$$= 0$$
Hence, matrix A is singular
183 (a)
Given system of equations are
$$x + y + z = 6, x + 2y + 3z = 10$$
and
$$x + 2y + \lambda z = \mu$$
The given system of equations has infinite number of solutions, if any tow equations will be same *ie*, the last two equations will be same, if
$$\lambda = 3, \mu = 10.$$
184 (a)
Given, $(A + B)(A - B) = A^2 - B^2$

$$\Rightarrow A^2 - AB + BA - B^2 = A^2 - B^2$$

$$\Rightarrow AB = BA$$
Now, $(ABA^{-1})^2 = (BAA^{-1})^2 = B^2$

185 **(c)**

Since diagonal elements of a skew –symmetric matrix are all zeros i.e. $a_{ii} = 0$ for all *i*

$$\therefore \operatorname{tr} (A) = \sum_{i=1}^{n} a_{ii} = 0$$

186 (c)

$$: P63 = P(I - P) :: P^{2} = I - P)$$

$$= PI - P^{2} = PI - (I - P)$$
Now, $P^{4} = P \cdot P^{3}$

$$\Rightarrow P^{4} = P(2P - I)$$

$$\Rightarrow P^{4} = 2I - 2P - P$$

$$\Rightarrow P^{4} = 2I - 3P$$
And $P^{5} = P(2I - 3P)$

$$\Rightarrow P^{5} = 5P - 3I$$
Also, $P^{6} = P(5P - 3I)$

$$\Rightarrow P^{6} = 5I - 8P$$
So, $n = 6$
Alternate Solution

$$: P^{n} = 5I - 8P$$

$$= 5(I - P) - 3P$$

$$= P(5P - 3I) (: P^{2} = I - P)$$

$$= P(2P - 3P^{2})$$

$$= P^{2}(2I - 3P)$$

$$= P^{2}[2P^{2} - P]$$

$$= P^{3}[2P - I]$$

$$= P^{4} [I - P]$$

$$= P^{4} \cdot P^{2} = P^{6}$$

$$\Rightarrow n = 6$$
187 (b)
 $A^{2} = A \cdot A = AB \cdot A$

$$= A \cdot BA = AB = A$$
189 (d)
Let $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

$$= \begin{bmatrix} 1 & -2 & 7 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$
hence, $A^{-1} = \frac{1}{|A|}$ adj $A = \begin{bmatrix} 1 & -2 & 7 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$
hence, $A^{-1} = \frac{1}{|A|}$ adj $A = \begin{bmatrix} 1 & -2 & 7 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$
so, required element = $A_{13}^{-1} = 7$
190 (a)

$$: |A| = 1$$

and
$$A^{c} = \begin{bmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and $\operatorname{adj} A = (A^{c})' = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $\therefore A^{-1} = \frac{\operatorname{adj} A}{|A|} = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} = f(-x)$
191 (b)
 $\therefore |A| = 1(0 - 1) = -1$
 $\therefore \operatorname{Cofactors of} A \operatorname{are}$
 $C_{11} = 0, C_{12} = 0, C_{13} = -1$
 $C_{21} = 0, C_{22} = -1, C_{23} = 0$
 $C_{31} = -1, C_{32} = 0, C_{33} = 0$
 $\therefore A^{-1} = \frac{1}{-1} \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix} = A$
192 (b)
We have,
 $A^{2} - 5I_{2} - \begin{bmatrix} 10 & 15 \\ 15 & 25 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 5 & 15 \\ 15 & 20 \end{bmatrix} = 5A$
 $\therefore k = 5$
194 (b)
Let $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -2 & -2 \\ 1 & 3 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
and $B \begin{bmatrix} 0 \\ 3 \\ 4 \\ 0 \\ \frac{5}{5} - 2 & -3 \end{bmatrix}$
 $\therefore X = \frac{1}{6} \begin{bmatrix} 4 & 2 & 0 \\ -3 & 0 & 3 \\ 5 & -2 & -3 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 4 \\ \frac{1}{2} \end{bmatrix}$
 $\therefore X = \frac{1}{6} \begin{bmatrix} 0 + 6 + 0 \\ -3 & 0 & 3 \\ 5 & -2 & -3 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 4 \\ 1 \\ \frac{1}{2} \end{bmatrix}$
Thus, $\begin{bmatrix} x \\ y \\ z \\ \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$
Thus, $\begin{bmatrix} x \\ y \\ z \\ \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$
The given system of equations can be rewritten as matrix from $AX = B$ as
 $\begin{bmatrix} 1 - 1 & 1 \\ 1 & 2 - 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
Now, $|A| = 1(6 + 1) + 1(3 + 2) + 1(1 - 4)$
 $= 7 + 5 - 3 = 9 \neq 0$

Since, $|A \neq 0|$. So, the given system of equations has only trivial solution. So, there is no non-trivial solution.

196 (d)

If matrix has no inverse it means the value of

determinant should be zero. $\begin{vmatrix} 1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1 \end{vmatrix} = 0$ If we put x = 1, then column Ist and IIIrd are identical. 197 (b) Since, $\begin{bmatrix} 2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5 \end{bmatrix}$ is a singular matrix $\therefore \begin{vmatrix} 2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5 \end{vmatrix} = 0$ $\Rightarrow (2+x)(5-2) - 3(-5-2x) + 4(1+x) = 0$ $\Rightarrow 6 + 3x + 15 + 6x + 4 + 4x = 0$ $\Rightarrow 13x + 25 = 0 \Rightarrow x = -\frac{25}{13}$ 198 (a) We have. $A = \begin{bmatrix} 2 & 3 & 1 & 4 \\ 0 & 1 & 2 & -1 \\ 0 & -2 & -4 & 2 \end{bmatrix}$ $\Rightarrow A \sim \begin{bmatrix} 2 & 3 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & -2 & -4 & 2 \end{bmatrix} \quad \text{Applying } R_2 \rightarrow 2R_2 + R_2$ R_3 $\Rightarrow A \sim \begin{bmatrix} 2 & 3 & -5 & 7 \\ 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \end{bmatrix}$ Applying $C_3 \rightarrow C_3 - 2C_2$ $C_4 \rightarrow C_4 + C_2$ $\Rightarrow A \sim \begin{bmatrix} 2 & 3 & -5 & 7 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ Applying $R_2 \leftrightarrow R_3$ Clearly, $\begin{vmatrix} 2 & 3 \\ 0 & -2 \end{vmatrix} \neq 0$ and every minor of order 3 is zero Hence, rank of A is 2 199 (b) We have, $A^{2} = AA = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} a & b \\ b & a \end{bmatrix} = \begin{bmatrix} a^{2} + b^{2} & 2 & ab \\ 2 & ab & a^{2} + b^{2} \end{bmatrix}$ $\therefore A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$ $\Rightarrow \alpha = a^2 + b^2, \beta^2 = 2 ab$ 200 (d) In a square matrix, the trace of *A* is defined as the sum of the diagonal elements Hence, trace of $A = \sum_{i}^{n} a_{ii}$ 201 (a) Given system of equations is x + 2y + 3z = 1, 2x + y + 3z = 2 and 5x + 5y + 9z = 5Now, $\Delta = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9 \end{vmatrix}$

= 1(9 - 15) - 2(18 - 15) + 3(10 - 5)

$$= -6 - 6 + 15$$

$$= 3 \neq 0$$

Hence, it has unique solution
202 (a)
Let $\Delta = \begin{vmatrix} 4 & 2 & (1 - x) \\ 5 & k & 1 \\ 6 & 3 & (1 + x) \end{vmatrix}$
Applying $R_1 \rightarrow R_1 + R_3$
 $\Rightarrow \Delta = \begin{vmatrix} 10 & 5 & 2 \\ 5 & k & 1 \\ 6 & 3 & 1 + x \end{vmatrix}$
Applying $C_1 \rightarrow C_1 - 2C_2$
 $\Rightarrow \Delta = \begin{vmatrix} 0 & 5 & 2 \\ 5 - 2k & k & 1 \\ 0 & 3 & 1 + x \end{vmatrix}$
 $\Rightarrow (5 - 2k)(5 + 5x - 6) = 0$
 $\Rightarrow k = \frac{5}{2}, \quad x = \frac{1}{5}$
204 (b)
Since, $\begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{bmatrix} \cdot \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega & \omega^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $\therefore A^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{bmatrix}$

205 **(c)**

It is a direct consequence of the definition of rank 206 **(a)**

Now,
$$A(x)A(y) = (1 - x)^{-1} \begin{bmatrix} 1 & -x \\ -x & 1 \end{bmatrix} (1 - y - 1)^{-1} y - y^{-1} y - y^{-1$$

$$= [(1+xy) - (x+y)]^{-1} \begin{bmatrix} 1+xy & -(x+y) \\ -(x+y) & 1+xy \end{bmatrix}$$
$$= \left(1 - \frac{x+y}{1+xy}\right)^{-1} \begin{bmatrix} 1 & -\frac{x+y}{1+xy} \\ -\frac{x+y}{1+xy} & 1 \end{bmatrix}$$
$$= A(z)$$
$$207 (a)$$
$$A^{2}(\alpha) = \begin{vmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{vmatrix} \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{vmatrix}$$
$$= \begin{bmatrix} \cos^{2}\alpha - \sin^{2}\alpha & 2\cos\alpha \sin\alpha \end{bmatrix}$$

 $=\begin{bmatrix} \cos^2 \alpha & \sin^2 \alpha & 2\cos^2 \alpha \sin^2 \alpha \\ -2\sin\alpha\cos\alpha & \cos^2\alpha - \sin^2\alpha \end{bmatrix}$

$$= \begin{bmatrix} \cos 2\alpha & \sin 2\alpha \\ -\sin 2\alpha & \cos 2\alpha \end{bmatrix} = A(2\alpha)$$

208 (a)

Since, *A* is symmetric matrix, therefore $A^T = A$ Now, $(A^n)^T = (A^T)^n = A^n$ Hence, A^n is a symmetric matrix.

209 (a)

 $\operatorname{Let} A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$

$$\therefore |A| = \begin{vmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{vmatrix}$$

= $0 \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} - 1 \begin{vmatrix} 3 & 3 \\ 3 & 1 \end{vmatrix} + 2 \begin{vmatrix} 3 & 2 \\ 3 & 1 \end{vmatrix}$
= $-(1 - 9) + 2(1 - 6) = 8 - 10 = -2$
and Adj $A = \begin{bmatrix} -1 & 8 & -5 \\ 1 & -6 & 3 \\ -1 & 2 & -1 \end{vmatrix}^T = \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$
Hence, $A^{-1} = \frac{1}{|A|} (adj A)$
= $-\frac{1}{2} \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$
= $\begin{bmatrix} 1/2 & -1/2 & 1/2 \\ -4 & 3 & -1 \\ 5/2 & -3/2 & 1/2 \end{bmatrix}$
210 (a)
We know that
 $A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A - A^T)$
Clearly, $\frac{1}{2}(A + A^T)$ is a symmetric matrix and
 $\frac{1}{2}(A - A^T)$ is a skew-symmetric matrix
Now,
 $\frac{1}{2}(A + A^T) = \frac{1}{0} \left\{ \begin{bmatrix} 2 & 0 & -3 \\ 4 & 3 & 1 \\ -5 & 7 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 4 & -5 \\ 0 & 3 & 7 \\ -3 & 1 & 2 \end{bmatrix} \right\}$
 $\Rightarrow \frac{1}{2}(A + A^T) = \frac{1}{2} \begin{bmatrix} 4 & 4 & -8 \\ 4 & 6 & 8 \\ -8 & 8 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 2 & -4 \\ 2 & 3 & 4 \\ -4 & 4 & 2 \end{bmatrix}$

211 **(c)**

Since, the system of linear equations has a nonzero solution , then

$$\begin{bmatrix} 1 & 2a & a \\ 1 & 3b & b \\ 1 & 4c & c \end{bmatrix} = 0$$

Applying $R_2 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 - R_1$

$$\Rightarrow \begin{vmatrix} 1 & 2a & a \\ 0 & 3b - 2a & b - a \\ 0 & 4c - 2a & c - a \end{vmatrix} = 0$$

$$\Rightarrow (3b - 2a)(c - a) - (4c - 2a)(b - a) = 0$$

$$\Rightarrow (3b - 2a)(c - a) - (4c - 2a)(b - a) = 0$$

$$\Rightarrow 3bc - 3ba - 2ac + 2a^2$$

$$= 4bc - 2ab - 4ac + 2a^2$$

$$\Rightarrow 2ac = bc + ab$$

On dividing by *abc* both sides ,we get

$$\frac{2}{b} = \frac{1}{a} + \frac{1}{c}$$

$$\Rightarrow a, b, c \text{ are in HP.}$$

212 (c)
Given system of equations is
 $x - y + z = 3$
 $2x + y - z = 2$
and $-3x - 2ky + 6z = 3$
 \therefore The given system will have infinite solutions.

$$\begin{array}{c|c} \vdots & 1 & -1 & 1 \\ 2 & 1 & -1 \\ -3 & -2k & 6 \\ \end{array} = 0 \\ \Rightarrow & 6k - 18 = 0 \Rightarrow k = 3 \end{array}$$

213 **(a)**

The product of two orthogonal matrix is an orthogonal matrix

214 **(b)**

Given system of equations can be rewritten as AX = B $\Rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 3 & 5 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \\ 14 \end{bmatrix}$

- $\therefore |A| = 1(7 10) 1(-7 6) + 1(5 + 3)$
- $= -3 + 13 + 8 = 18 \neq 0$
- ∴ Given system has unique solution.

215 (a)

Given, equations (x + ay = 0, az + y = 0, ax + y = 0z=0 has infinite solutions. ∴ Using Crames's rule, its determinant=0 $|1 \ a \ 0|$ $\Rightarrow \begin{bmatrix} 0 & 1 & a \\ a & 0 & 1 \end{bmatrix} 0$ \Rightarrow 1 + $a^3 = 0 \Rightarrow a = -1$ 217 (a) Given that, $F(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & \hat{} \end{bmatrix}$ $\Rightarrow F(-\alpha) = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\therefore F(\alpha)F(-\alpha)$ $= \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha & 0\\ -\sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$ L 0 $\cos^2 \alpha + \sin^2 \alpha$ $\cos\alpha\sin\alpha-\sin\alpha\cos$ $\sin^2 \alpha + \cos^2 \alpha$ = $|\sin \alpha \cos \alpha - \sin \alpha \cos \alpha|$ 0 0 [1 0 0] $= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$ $\Rightarrow [F(\alpha)]^{-1} = F(-\alpha)$ 218 **(b)** By using inverse of matrix, we know $|M^{-1}| = |M|^{-1}$ holds true $(M^{T})^{-1} = (M^{-1})^{T}$ holds true and $(M^{-1})^{-1} = M$ holds true but $(M^2)^{-1} = (M^{-1})^{-2}$ not true 219 (a) Since, $A^2 - B^2 = (A - B)(A + B)$ $=A^2 - B^2 + AB - BA$ $\Rightarrow AB = BA$ 220 (c) Given, $x_1 + 2x_2 + 3x_3 = 0$...(i)

 $2x_1 + 3x_2 + x_3 = 0$...(ii) $3x_1 + x_2 + 2x_3 = 0$...(iii) $\Delta = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{vmatrix}$ = 1(6-1) - 2(4-3) + 3(2-9)= -18Then, this is system has the unique solution. 222 (d) $X^{2} = X \cdot X = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 5 & -8 \\ 2 & -3 \end{bmatrix}$ For n = 2, no option is satisfied Hence, option (d) is correct 223 (a) We have, $F(\alpha)F(-\alpha)$ $= \begin{bmatrix} \cos \alpha & -\sin \alpha & 1\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha & 0\\ -\sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow F(\alpha)F(-\alpha) = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} = I$ $\Rightarrow F(-\alpha) = [F(\alpha)]^{-1}$ 224 (b) We have, $(AA^T)^T = (A^T)^T A^T = AA^T$ $\therefore AA^T$ is symmetric matrix 225 (c) For any square matrix *X*, we have $X(\operatorname{adj} X) = |X| I_n$ Taking $X = \operatorname{adj} A$, we have $(\operatorname{adj} A)(\operatorname{adj} (\operatorname{adj} A)) = |\operatorname{adj} A| I_n$ $\Rightarrow \operatorname{adj} A(\operatorname{adj} (\operatorname{adj} A)) = |A|^{n-1} I_n [\because |\operatorname{adj} A| =$ $|A|^{n-1}$] \Rightarrow (A adj A)(adj (adj A)) = $|A|^{n-1}A$ [: A I_n = A] $\Rightarrow (|A| I_n) (\operatorname{adj} (\operatorname{adj} A)) = |A|^{n-1} A$ \Rightarrow adj (adj A) = $|A|^{n-2} A$ 226 (d) Given equations are $(\alpha + 1)^3 x + (\alpha + 2)^3 y - (\alpha + 3)^3 = 0$ $(\alpha + 1)x + (\alpha + 2)y - (\alpha + 3) = 0$ x + y - 1 = 0and Since, this system of equations is consistent. $\therefore \begin{vmatrix} (\alpha + 1)^3 & (\alpha + 2)^3 & -(\alpha + 3)^3 \\ (\alpha + 1) & (\alpha + 2) & -(\alpha + 3) \end{vmatrix} = 0$ Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 + C_1$ $[(\alpha + 1)^3 (\alpha + 2)^3 - (\alpha + 1)^3]$ $(\alpha + 1)^3 - (\alpha + 3)^3$ $\Rightarrow \begin{vmatrix} (\alpha + 1) & (\alpha + 2) & -(\alpha + 1) \\ -(\alpha + 3) + & (\alpha + 1) \end{vmatrix} = 0$

 $\Rightarrow \begin{bmatrix} (\alpha+1)^3 & 3\alpha^2+9\alpha+7 & -6\alpha^2-24\alpha-26\\ (\alpha+1) & 1 & -2\\ 1 & 0 & 0 \end{bmatrix}$ $AB = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 5 & 0 \end{bmatrix}$ $\begin{bmatrix} 2+0+15 & -2+2+0 \\ 4+0+0 & -4+2+0 \end{bmatrix}$ $\Rightarrow -2(3\alpha^2 + 9\alpha + 7) + 6\alpha^2 + 24\alpha + 26 = 0$ $\Rightarrow 6\alpha + 12 = 0 \Rightarrow \alpha = -2$ $=\begin{bmatrix} 17 & 0\\ 4-2 \end{bmatrix}$ 227 (a) 234 (d) We have, $A^{2} = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \alpha^{2} & 0 \\ \alpha + 1 & 1 \end{bmatrix}$ $\therefore \quad A^{2} = B \Rightarrow \begin{bmatrix} \alpha^{2} & 0 \\ \alpha + 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ $A^{n} = \begin{bmatrix} \cos n \, \theta & \sin n \, \theta \\ -\sin n \, \theta & \cos n \, \theta \end{bmatrix}$ $\Rightarrow \frac{1}{n} A^n = \begin{bmatrix} \frac{\cos n \theta}{n} & \frac{\sin n \theta}{n} \\ \frac{-\sin n \theta}{n} & \frac{\cos n \theta}{n} \end{bmatrix}$ $\Rightarrow \alpha^2 = 1 \text{ and } \alpha + 1 = 5$ Which is not possible at the same time. $\Rightarrow \lim_{n \to \infty} \frac{1}{n} A^n = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ \therefore No real values of α exists. 235 (c) 228 (c) We have, We have, $E(\alpha) E(\beta)$ AB = 0 $= \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{bmatrix}$ $= \begin{bmatrix} \cos(\alpha + \beta) & \sin(\alpha + \beta) \\ -\sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix} = E (\alpha + \beta)$ $\Rightarrow \begin{bmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{bmatrix} \begin{bmatrix} \cos^2 \beta \\ \cos \beta \sin \beta \end{bmatrix}$ $\cos\beta\sin$ $\sin^2 \beta$ = 0 $\Rightarrow \begin{bmatrix} \cos \alpha \cos \beta \cos(\alpha - \beta) & \cos \alpha \sin \beta \cos(\alpha - \beta) \\ \cos \beta \sin \alpha \cos(\alpha - \beta) & \sin \alpha \sin \beta \cos(\alpha - \beta) \end{bmatrix} \begin{bmatrix} -1 \\ Her \\ 237 \\ (c) \end{bmatrix}$ Hence, option (c) is correct. = 0We have, $A = \begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{vmatrix}$ $\Rightarrow \cos(\alpha - \beta) = 0$ $\Rightarrow \alpha - \beta$ is an odd multiple of $\frac{\pi}{2}$ $\therefore A^{2} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$ 229 (c) |A||adj $A| = |A|^n$ for order n $\Rightarrow DD' = D^n$ 230 (c) $= \begin{bmatrix} \frac{1}{2} - \frac{1}{2} & \frac{1}{2} - \frac{1}{2} \\ -\frac{1}{2} + \frac{1}{2} & -\frac{1}{2} + \frac{1}{2} \end{bmatrix}$ Given, $\begin{bmatrix} 1 + \omega & 2\omega \\ -2\omega & -b \end{bmatrix} + \begin{bmatrix} a & -\omega \\ 3\omega & 2 \end{bmatrix} = \begin{bmatrix} 0 & \omega \\ \omega & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 + \omega + a & \omega \\ \omega & 2 - b \end{bmatrix} = \begin{bmatrix} 0 & \omega \\ \omega & 1 \end{bmatrix}$ \Rightarrow 1 + ω + a = 0, 2 - b = 1 $=\begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix} = 0$ \Rightarrow $a = -1 - \omega, b = 1$ \therefore Matrix *A* is nilpotent $a^{2} + b^{2} = (-1 - \omega)^{2} + 1^{2}$.**.**. 238 (d) $= 1 + \omega^2 + 2\omega + 1^2$ Since, $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix}$ $= 0 + \omega + 1$ (: $1 + \omega + \omega^2 = 0$) $=1+\omega$ Now, |A| = 1(0-2) + 1(2-3) + 2(4-0) = 5 $\therefore A^{-1} = \frac{1}{5} \begin{bmatrix} -2 & 5 & -1 \\ 1 & -5 & 3 \\ 4 & -5 & 2 \end{bmatrix}$ Now, $A^{-1}B = \frac{1}{5} \begin{bmatrix} -2 & 5 & -1 \\ 1 & -5 & 3 \\ 4 & -5 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}$ 232 (a) Given, 2kx - 2y + 3z = 0, x + ky + 2z = 0, 2x + 3z = 0kz = 0For non-trivial solution |2k - 2 | 3| $\begin{vmatrix} 1 & k & 2 \\ 2 & 0 & k \end{vmatrix} = 0$ $\Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$ $\Rightarrow 2k(k^2 - 0) + 2(k - 4) + 3(0 - 2k) = 0$ $\Rightarrow \quad 2k^3 - 4k - 8 = 0$ $\Rightarrow (k-2)(2k^2+4k+4) = 0$ $\Rightarrow k = 2$

239 (a) Since, A is a skew-symmetric matrix. Therefore, $A^T = -A \Rightarrow |A^T| = |-A|$ $\Rightarrow |A| = (-1)^n |A|$ Also, *n* is odd $\therefore 2|A| = 0 \Rightarrow |A| = 0$ Thus, $|adj A| = |A|^2 = 0$ 240 (d) Given System of equations are x + 3y + 2z = 03x + y + z = 0and 2x - 2y - z = 0Now, $\Delta = \begin{vmatrix} 1 & 3 & 2 \\ 3 & 1 & 1 \\ 2 & -2 & -1 \end{vmatrix}$ = 1(-1+2) - 3(-3-2) + 2(-6-2)= 1 + 15 - 16

Since, determinant is zero, then it has infinitely many solutions.

242 **(b)**

Let $\Delta = \begin{bmatrix} a_1 & a_2 \\ a_4 & a_5 \end{bmatrix}$ $= a_1 a_5 - a_2 a_4$ $= a_1(a_1 + 4d) - (a_1 + d)(a_1 + 3d)$ $= a_1^2 + 4a_1d - a_1^2 - 4a_1d - 3d^2 = -3d^2 \neq 0$ Hence, given system of equations has unique solution.

243 **(b)**

$$: I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}, |I_n| = 1$$

adj $(I_n) = I_n$
$$: (I_n)^{-1} = I_n$$

244 (c)

We know that $(\operatorname{adj} A)^T = \operatorname{adj} A^T$ $\Rightarrow \operatorname{adj} A^T - (\operatorname{adj} A)^T = 0 \text{ (Null matrix)}$ 245 (c) Given, $\begin{bmatrix} 2 & -1 & 3 \\ 1 & 3 & -1 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 4 \\ 10 \end{bmatrix}$ It is of the form AX = B...(i) |A| = 2(3+2) + 1(1+3) + 3(2-9) = -7 $\therefore \text{ adj}(A) = \begin{bmatrix} 5 & 7 - 8 \\ -4 & -7 & 5 \\ -7 & -7 & 7 \end{bmatrix}$ $\Rightarrow A^{-1} = \frac{1}{-7} \begin{bmatrix} 5 & 7 & -8 \\ -4 & -7 & 5 \\ 7 & 7 & 7 \end{bmatrix}$

From Eq.(i), $X = -\frac{1}{7} \begin{bmatrix} 5 & 7 & -8 \\ -4 & -7 & 5 \\ -7 & -7 & 7 \end{bmatrix} \begin{bmatrix} 9 \\ 4 \\ 10 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{7} \begin{bmatrix} -7 \\ -14 \\ 24 \end{bmatrix}$ \Rightarrow x = 1, y = 2, z = 3247 **(b)** $A = \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ 4 & 1 & 1 \end{vmatrix}$ $= 1(1+1) + 1(2+4) + 1(2-4) = 6 \neq 0$ Hence, it has unique solution. 248 (d) Given, $A = \begin{bmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ Now, $|A| = \cos^2 \theta + \sin^2 \theta = 1 \neq 0.$ \therefore *A* is invertible. 249 (b) |A| = -1 and $\operatorname{adj} A = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ Now, $A^{-1} = \frac{1}{-1} \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = A$ 250 (b) $A = \begin{vmatrix} -1 & 2 & 5 \\ 2 & -4 & a - 4 \\ 1 & -2 & a + 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & a + 6 \\ 0 & 0 & -a - 6 \\ 1 & -2 & a + 1 \end{vmatrix}$ $\begin{bmatrix} \text{using } R_1 \to R_1 + R_3 \text{ and } R_2 \to R_2 - 2R_3 \end{bmatrix}$ $= \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 - a - 6 \\ 1 & -2 & a + 1 \end{vmatrix} \qquad \begin{bmatrix} \text{using } R_1 \to R_1 + R_2 \end{bmatrix}$ 251 (b) Let $D = \begin{bmatrix} d_1 & 0 & 0 \cdots & 0 \\ 0 & d_2 & 0 \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 \cdots & d_n \end{bmatrix}$ Then, $|D| = d_1 d_2 \cdots d_n$ Now, Cofactor of $D_{11} = d_2 d_3 \cdots d_n$ Cofactor of $D_{22} = d_1 d_3 \cdots d_n$ etc And, Cofactor of $D_{ii} = 0$ when $i \neq j$ $\therefore D^{-1} = \frac{1}{|D|} \operatorname{adj} D$

$$= \frac{1}{d_{1} d_{2} \cdots d_{n}} \begin{bmatrix} a^{2} - 3 & a^{n} d_{2} d_{3} \cdots d_{n} & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & d_{1} d_{2} & \cdots & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & d_{1} d_{2} & \cdots & d_{n}^{-1} \end{bmatrix}$$

$$\therefore D^{-1} = \begin{bmatrix} \frac{1}{d_{0}} 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \frac{1}{d_{n}} \end{bmatrix} = \text{diag} (s_{1}^{-1} d_{2}^{-1} \cdots d_{n}^{-1})$$

$$252 \text{ (d)}$$

$$\therefore A^{2} = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 9 - 4 \\ -8 & 17 \end{bmatrix}$$

$$\therefore f(A) = A^{2} + 4A - 5$$

$$= \begin{bmatrix} 9 - 4 \\ -8 & 17 \end{bmatrix} + \begin{bmatrix} 4 & 8 \\ 16 - 12 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 5 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 4 \\ 8 & 0 \end{bmatrix}$$

$$253 \text{ (a)}$$

$$A^{2} = \begin{bmatrix} 2 - 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 - 1 \\ -1 & 2 \end{bmatrix} - \begin{bmatrix} 5 & -4 \\ 0 & -4 & 5 \end{bmatrix}$$
Again now, $4A - 3I = 4 \begin{bmatrix} 2 - 1 \\ -1 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 - 4 \\ -4 & 5 \end{bmatrix}$
Again now, $4A - 3I = 4 \begin{bmatrix} 2 - 1 \\ -1 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 - 4 \\ -4 & 5 \end{bmatrix}$

$$\therefore A^{2} = 4A - 3I$$

$$254 \text{ (d)}$$

$$\therefore (AB)^{-1} = B^{-1}A^{-1}$$

$$255 \text{ (d)}$$

$$|A| = -8$$

$$adj(A) = \begin{bmatrix} 0 & 0 & -4 \\ 0 - 4 & 0 \\ -4 & 0 & 0 \end{bmatrix}$$

$$A^{-1} = \frac{1}{-8} \begin{bmatrix} 0 & 0 & -4 \\ 0 - 4 & 0 \\ -4 & 0 & 0 \end{bmatrix}$$

$$a^{-1} = \frac{1}{-8} \begin{bmatrix} 0 & 0 & -4 \\ 0 - 4 & 0 \\ -4 & 0 & 0 \end{bmatrix}$$

$$a^{-1} = \frac{1}{-8} \begin{bmatrix} 0 & 0 & -4 \\ 0 - 4 & 0 \\ 0 \end{bmatrix}$$

$$a^{-1} = \frac{1}{-8} \begin{bmatrix} 1 & -2 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = 0$$

$$\text{Since given system of equations possesses a non-zero solution.$$

$$\therefore \Delta = \begin{bmatrix} a & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = 0$$

$$\Rightarrow a^{2} = 1 \Rightarrow a = \pm 1$$

$$257 \text{ (a)}$$

$$\text{Now}, (A + A^{T})^{T} = A^{T} + (A^{T})^{T} = A^{T} + A$$

$$\therefore A + A^{T} \text{ is symmetric matrix.}$$

$$258 \text{ (c)}$$

$$A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix} = 14$$

$$\therefore (adj(adj A)) = |A|^{n-2}A = 14^{3-2}A = 14A$$

$$\therefore |adj(adj A)| = |14A| = 14^{3}|A| = 14^{4}$$

$$259 \text{ (b)}$$

 $\begin{bmatrix} d_1 & d_2 & \cdots & d_n & 0 & 0 & \cdots \end{bmatrix}$

0

0

Given, $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & -2 \\ 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} \Rightarrow \begin{bmatrix} x+y+z \\ x-2y-2z \\ x+3y+z \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$ On Comparing both sides, we get x + y + z = 0 ...(i) x - 2y - 2z = 3 ...(ii) and x + 3y + z = 4 ...(iii) On solving Eqs. (i), (ii) and (iii), we get x = 1, y = 2 and z = -3260 **(a)** $|A| = \begin{vmatrix} 1 & 2 \\ -4 & -1 \end{vmatrix}$ = -1 + 8 = 7 $\operatorname{adj} A = \begin{bmatrix} -1 & -2 \\ 4 & 1 \end{bmatrix}$ $\therefore \quad A^{-1} = \frac{1}{7} \begin{bmatrix} -1 & -2 \\ 4 & 1 \end{bmatrix}$ 261 (c) It is given that $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $\Rightarrow \begin{bmatrix} a & a+b \\ c & c+d \end{bmatrix} = \begin{bmatrix} a+c & b+d \\ c & d \end{bmatrix}$ $\Rightarrow a + c = a, a + b = b + d, c + d = d$ $\Rightarrow c = 0$ and a = d262 (a) $AB = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 1 & -3 \\ 3 & 2 & 6 \\ 14 & 5 & 0 \end{bmatrix}$ 263 (a) Let A be a skew-symmetric matrix of odd order (2 n + 1) say. Since A is skew-symmetric $\therefore A^T = -A$ $\Rightarrow |A^T| = |-A|$ $\Rightarrow |A^T| = (-1)^{2n+1}|A|$ $\Rightarrow |A^T| = -|A|$ $\Rightarrow |A| = -|A| \Rightarrow 2|A| = 0 \Rightarrow |A| = 0$ 264 (a) As, $PP^{T} = \begin{bmatrix} \sqrt{3/2} & 1/2 \\ -1/2 & \sqrt{3}/2 \end{bmatrix} \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow PP^T = I \text{ or } P^T = P^{-1}$ As, $Q = PAP^T$ $P^{T}Q^{2005}P = P^{T}[PAP^{T})(PAP)^{T}) \dots 2005 \text{ times}]P$ $= \frac{(P^{T}P)A(P^{T}P)A(P^{T}P)\dots(P^{T}P)A(P^{T}P)}{2005 \text{ times}}$ $= IA^{2005} = A^{2005}$ $A^{3} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, A^{2} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ $A^{3} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$...and so on $A^{2005} = \begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow P^T Q^{2005} P = \begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$

265 (c)
Given,
$$2X + 3Y = 0$$
 ... (i)
and $X + 2Y = I$...(ii)
where $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
On solving Eqs. (i) and (ii), we get
 $X = -3I = \begin{bmatrix} -3 & 0 \\ 0 & -3 \end{bmatrix}$

266 (d)

Subtracting the addition of first two equations from third equation, we get

0 = -5 which is an absurd result.

267 (d)

Given
$$A = \begin{bmatrix} x & -2 \\ 3 & 7 \end{bmatrix}$$

 $|A| = \begin{vmatrix} x & -2 \\ 3 & 7 \end{vmatrix} = 7x + 6$
 $\therefore A^{-1} = \frac{1}{7x + 6} \begin{bmatrix} 7 & 2 \\ -3 & x \end{bmatrix}$
But given $A^{-1} = \begin{bmatrix} \frac{7}{34} & \frac{1}{17} \\ \frac{-3}{34} & \frac{2}{17} \end{bmatrix}$
 $\therefore \quad \frac{7}{7x + 6} = \frac{7}{34}$
 $\Rightarrow \quad 7x + 6 = 34 \Rightarrow 7x = 28 \Rightarrow x = 4$

268 (d)

(a) It is clear that A is not a zero matrix.
(b)
$$(-1)I = -1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \neq A$$

ie, $(-1)I \neq A$
(c) $|A| = 0 \begin{vmatrix} -1 & 0 \\ 0 & 0 \end{vmatrix} - 0 \begin{vmatrix} -1 & 0 \\ -1 & 0 \end{vmatrix} - 1 \begin{vmatrix} 0 & -1 \\ -1 & 0 \end{vmatrix}$
 $= 0 - 0 - 1(-1) = 1$
Since, $|A| \neq 0$ so A^{-1} exists.
(d) $A^2 = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$
 $\Rightarrow A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow A^2 = I$
270 (a)
 $\therefore AB = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$
 $= \begin{bmatrix} 1 + 4 + 0 & 0 + 2 - 1 & 0 + 0 - 3 \\ 3 + 0 + 0 & 0 + 0 + 2 & 0 + 0 + 6 \\ 4 + 10 + 0 & 0 + 5 + 0 & 0 + 0 + 0 \end{bmatrix}$
 $= \begin{bmatrix} 5 & 1 & -3 \\ 3 & 2 & 6 \\ 14 & 5 & 0 \end{bmatrix}$

271 (c) We have, $[F(x) G(y)]^{-1} = [G(y)]^{-1} [f(x)]^{-1}$ $\Rightarrow [F(x) G(y)]^{-1} = G(-y) F(-x)$ 272 (a) $A^{-1} = \frac{1}{1+10} \begin{bmatrix} 1 & -2 \\ 5 & 1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 1 & -2 \\ 5 & 1 \end{bmatrix}$ Also, $A^{-1} = xA + yI$ $\Rightarrow \frac{1}{11} \begin{bmatrix} 1 & -2 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} x & 2x \\ -5x & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 0 & y \end{bmatrix}$ $\Rightarrow x + y = \frac{1}{11}, 2x = \frac{-2}{11}$ $\Rightarrow x = \frac{-1}{11}, y = \frac{2}{11}$ 273 (d) Now, $(AB)^T = B^T A^T$ 274 (c) On comparing corresponding elements, we get x + y + z = 9x + y = 5and y + z = 7On solving these, we get x = 2, y = 3, z = 4 \Rightarrow (*x*, *y*, *z*) = (2,3,4) 275 (c) $A.A = \begin{bmatrix} ab & b^{2} \\ -a^{2} & -ab \end{bmatrix} \begin{bmatrix} ab & b^{2} \\ -a^{2} & -ab \end{bmatrix} \\ = \begin{bmatrix} a^{2}b^{2} - a^{2}b^{2} & ab^{3} - ab^{3} \\ -a^{3}b + a^{3}b & -a^{2}b^{2} + a^{2}b^{2} \end{bmatrix}$ $A^2 = 0$ ⇒ \therefore *A* is nilpotent matrix of order 2. 276 (d) Since A,B and C are non-singular matrices, then $(AB^{-1}C)^{-1} = C^{-1}(AB^{-1})^{-1}$ $= C^{-1}((B^{-1})^{-1}A^{-1}) = C^{-1}BA^{-1}$ 277 (a) Given matrix is invertible $\Rightarrow \begin{vmatrix} \lambda - 1 & 4 \\ -3 & 0 & 1 \\ -1 & 1 & 2 \end{vmatrix} \neq 0$ $\Rightarrow \lambda \ (0-1) + 1(-6+1) + 4(-3-0) \neq 0$ $\Rightarrow \quad -\lambda - 5 - 12 \neq 0$ $\Rightarrow \lambda \neq -17$ 278 (d) From Eqs. (ii) and (iii), we get $\frac{3y^2}{b^2} - \frac{3z^2}{c^2} = 0$ $\Rightarrow \frac{z^2}{c^2} = \frac{y^2}{b^2}$ On putting this value in Eq. (i), we get $\frac{2x^2}{a^2} - \frac{2y^2}{b^2} = 0$ $\Rightarrow \frac{x^2}{a62} = \frac{y^2}{b^2}$

 $\therefore \frac{x^2}{a^2} = \frac{y^2}{b^2} = \frac{z^2}{c^2} = k^2$ (say) $\Rightarrow x = \pm ka, y = \pm kb, z = \pm kc, \forall k \in R$ 279 **(b)** We have, $A = \begin{bmatrix} 1 & \log_b a \\ \log_a b & 1 \end{bmatrix}$ $\therefore |A| = 1 - \log_a b \log_b a = 1 - 1 = 0$ 280 (a) |A| = 4 - 6 = -2 $adj(A) = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$ $\therefore A^{-1} = -\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -2 & 1 \end{bmatrix}$ 281 (b) Since, $P = \begin{bmatrix} i & 0 & -i \\ 0 & -i & i \\ -i & i & 0 \end{bmatrix}$ and $Q = \begin{bmatrix} -i & i \\ 0 & 0 \\ i & -i \end{bmatrix}$ $\therefore PQ = \begin{bmatrix} i & 0 & -i \\ 0 & -i & i \\ -i & i & 0 \end{bmatrix} \begin{bmatrix} -i & i \\ 0 & 0 \\ i & -i \end{bmatrix}$ $= \begin{bmatrix} -i^2 - i^2 & i^2 + i^2 \\ i^2 & -i^2 \\ i^2 & -i^2 \end{bmatrix}$ $= \begin{bmatrix} 1+1 & -1-1 \\ -1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -1 & 1 \\ -1 & 1 \end{bmatrix}$ 282 (d) $B = \operatorname{adj}(A) = \begin{bmatrix} 3 & 1 & 1 \\ -6 & -2 & 3 \\ -4 & -3 & 2 \end{bmatrix}$ Therefore, $adj(B) = \begin{bmatrix} 5 - 5 & 5 \\ 0 & 10 & -15 \\ 10 & 5 & 0 \end{bmatrix}$ Now, $|adj B| = \begin{vmatrix} 5 & -5 & 5 \\ 0 & 10 & -15 \\ 10 & 5 & 0 \end{vmatrix} = 625$ and $|C| = 125|A| = 125 \begin{vmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 5 & 0 \end{vmatrix} = 625$ $\therefore \frac{|\mathrm{adj}(B)|}{|C|} = \frac{625}{625} = 1$ Alternate |A| = 1(0+3) + 1(0+6) + (0-4)Now, $\operatorname{adj} B = \operatorname{adj}(\operatorname{adj} A)$ = |A|A = 5A $\therefore \frac{|\operatorname{adj} B|}{|C|} = \frac{|5A|}{|5A|} = 1$ 283 (d) Given, $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ $\therefore A^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = A^T$

284 **(b)**

The given system of equations posses non-zero solutions,

 $\therefore \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a \\ 1 - a & 1 \end{bmatrix} = 0$ Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$ $\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 0 & a-1 & a-1 \\ 0 & -a-1 & 0 \end{vmatrix} = 0$ \Rightarrow 1(0-(a^2 -1)) = 0 $\Rightarrow a^2 = 1 \Rightarrow a = \pm 1$ 285 (a) Given, $x \begin{bmatrix} -3 \\ 4 \end{bmatrix} + y \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 10 \\ -5 \end{bmatrix}$ $\therefore -3x + 4y = 10$...(i) 4x + 3y = -5 ...(ii) and On solving Eqs. (i) and (ii), we get x = -2, y = 1287 (a) |A| = 5 + 6 = 11and $\operatorname{adj} A = \begin{bmatrix} 1 & 2 \\ -3 & 5 \end{bmatrix}$ $A^{-1} = \frac{1}{11} \begin{bmatrix} 1 & 2 \\ -3 & 5 \end{bmatrix}$ 288 (c) We know that, if $A^{n} = \begin{bmatrix} d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3} \end{bmatrix} = \text{diag} [d_{1} d_{2} d_{3}]$ Then, $A^{n} = \begin{bmatrix} d_{1}^{n} & 0 & 0\\ 0 & d_{2}^{n} & 0\\ 0 & 0 & d_{3}^{n} \end{bmatrix} = \text{diag} \left[d_{1}^{n} d_{2}^{n} d_{3}^{n} \right]$ $\therefore A^5 = \begin{bmatrix} 2^5 & 0 & 0 \\ 0 & 2^5 & 0 \\ 0 & 0 & 2^5 \end{bmatrix} = 16 A$ 289 (c) $AB = I \Rightarrow B = A^{-1}$ $=\frac{1}{1+\tan^2\theta}\begin{bmatrix}1&-\tan\theta\\\tan\theta&1\end{bmatrix}$ $=\frac{1}{\sec^2\theta}\begin{bmatrix}1&-\tan\theta\\\tan\theta&1\end{bmatrix}$ $\Rightarrow (\sec^2 \theta) B = \begin{bmatrix} 1 & -\tan \theta \\ \tan \theta & 1 \end{bmatrix} = A(-\theta)$ 290 (b) It is given that $A = [a_{ij}]$ is a skew-symmetric matrix $a_{ij} = -a_{ji}$ for all i, j $\Rightarrow a_{ii} = -a_{ii}$ for all *i*

$$\Rightarrow 2 a_{ii} = 0$$
 for all $i \Rightarrow a_{ii} = 0$ for all i

291 (c) We know that, if $A = \text{diag.} (d_1 d_2, ..., d_n)$ is a

diagonal matrix, then for any $k \in N$ $A^{k} = \text{diag}(d_{1}^{k}, d_{2}^{k}, ..., d_{n}^{k})$ Here, A = diag.(a, a, a) $\therefore A^{n} = \text{diag}(a^{n}, a^{n}, a^{n}) = \begin{bmatrix} a^{n} & 0 & 0\\ 0 & a^{n} & 0\\ 0 & 0 & c^{n} \end{bmatrix}$ 292 **(b)** We have, $(A B - B A)^T = (A B)^T - (B A)^T$ $= B^T A^T - A^T B^T$ $\Rightarrow (A B - B A)^T = B A - A B$ [:: $A^T =$ $A, B^T = B$] $\Rightarrow (A B - B A)^T = -(A B - B A)$ So, AB - BA is skew-symmetric matrix 293 (b) Since *A B* exists \therefore No. of rows in B = No. of columns in A \Rightarrow No. of rows in B = nAlso, *B A* exists \Rightarrow No. of columns in B = No. of rows in A \Rightarrow No. of columns in = mHence, *B* is of order $n \times m$ 294 (c) We have, $(k A)(\operatorname{adj} k A) = |k A| I_n$ $\Rightarrow k(A \operatorname{adj} k A) = k^n |A| I_n$ $[\because |k A| = k^n |A|]$ $\Rightarrow A(\operatorname{adj} k A) = k^{n-1}|A| I_n$ \Rightarrow A adj (k A) = $k^{n-1}A(adj A)$ [:: A adj A = $|A| I_n$] \Rightarrow A adj (k A) = A(k^{n-1}adj A) $\Rightarrow A^{-1}(A \operatorname{adj}(kA)) = A^{-1}(A(k^{n-1}\operatorname{adj}A))$ $\Rightarrow (A^{-1}A)(\operatorname{adj} k A) = (A^{-1}A)(k^{n-1}\operatorname{adj} A)$ $\Rightarrow I(\operatorname{adj} k A) = I(k^{n-1} \operatorname{adj} A)$ \Rightarrow adj $k A = k^{n-1}$ (adj A) 295 (c) It has a non-zero solution if $|1 \ k - 1|$ 3 - k - 1 = 0|1 - 3 | $\Rightarrow -6k + 6 = 0$ k = 1 \Rightarrow 296 **(b)** $(aI + bA)^2 = (aI + bA)(aI + bA)$ $= a^{2}I^{2} + aI(bA) + bA(aI) + (bA)^{2}$ Now, $I^2 = I$ and IA = A $\therefore (aI + bA)^2 = a^2I + 2abA + b^2(A^2)$ Now, $A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$ $\therefore (aI + bA)^2 = a^2I + 2abA$

297 (b) Since A is orthogonal matrix $\therefore A A^T = I = A^T A$ $\Rightarrow |A A^T| = |I| = |A^T A|$ $\Rightarrow |A||A^T| = 1 = |A^T||A|$ $\Rightarrow |A|^2 = 1 \Rightarrow |A| = \pm 1$ 298 (b) Since, given system of equations has no solution, $\Delta = 0$ and any one amongst Δx , Δy , Δz is non-zero. Where $\Delta = \begin{vmatrix} 2 & -1 & 2 \\ 1 & -2 & 1 \\ 1 & 1 & \lambda \end{vmatrix} = 0$ And $\Delta z = \begin{vmatrix} 2 & -1 & 2 \\ 1 & -2 & -4 \\ 1 & 1 & \lambda \end{vmatrix} = 6 \neq 0$ $\Rightarrow \lambda = 1$ 299 (c) Since, *A* is an idempotent matrix, therefore $A^2 = A$ $\Rightarrow \begin{bmatrix} 2 & -2 & -16 - 4x \\ -1 & 3 & 16 + 4x \\ 4 + x & -8 - 2x & -12 + x^2 \end{bmatrix} \\ = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & x \end{bmatrix}$ On comparing, 16 + 4x = 4 $\Rightarrow x = -3$ 300 (a) We have, $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{bmatrix} \text{ and adj } A = \begin{bmatrix} 6 & -2 & -6 \\ -4 & 2 & x \\ y & -1 & 1 \end{bmatrix}$ Clearly, |A| = 6 - 8 + 4 = 2 $\therefore A (\operatorname{adj} A) = |A| I$ $\Rightarrow \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 6 & -2 & -6 \\ -4 & 2 & x \\ y & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 2y-2 & 0 & 2x-18\\ 0 & 2 & 3x-12\\ 2y-4 & 0 & x-2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{bmatrix}$ $\Rightarrow 2y - 2 = 2, 2y - 4 = 0, 2x - 8 = 0, 3x - 12$ = 0, x - 2 = 2 $\Rightarrow x = 4, y = 2 \Rightarrow x + y = 6$ 301 (a) Since, $\begin{bmatrix} x+y & 2x+z \\ x-y & 2z+w \end{bmatrix} = \begin{bmatrix} 4 & 7 \\ 0 & 10 \end{bmatrix}$ $\Rightarrow x + y = 4$...(i) x - y = 0 ...(ii) 2x + z = 7 ...(iii) and 2z + w = 10 ...(iv) On solving these equations, we get x = 2, y = 2, z = 3, w = 4302 **(b)** We have,

 $A = \begin{bmatrix} -i & 0 \\ 0 & -i \end{bmatrix}$ $\therefore A^2 = \begin{bmatrix} -i & 0 \\ 0 & -i \end{bmatrix} \begin{bmatrix} -i & 0 \\ 0 & -i \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ $\Rightarrow A^2 = -I \Rightarrow A^2 + I =$ 303 (d) $m[-3 \ 4] + n[4 \ -3] = [10 - 11]$ $\Rightarrow [-3m + 4n \ 4m - 3n] = [10 - 11]$ $\Rightarrow -3m + 4n = 10$...(i) and 4m - 3n = -11...(ii) On solving Eqs. (i) and (ii), we get n = 1, m = -2Now, 3m + 7n = 3(-2) + 7(1) = 1304 (b) We know that $A(\operatorname{adj} A) = |A| I$ If $A = \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}$, then |A| = 1 $\therefore A (\operatorname{adj} A) = I \Rightarrow KI = I \Rightarrow k = 1$ 305 (a) \therefore |A| = 3, $\operatorname{adj}(A) = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$ $\therefore A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -2 \\ 0 & 2 \end{bmatrix}$ $\Rightarrow (A^{-1})^3 = \frac{1}{27} \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}^3$ $=\frac{1}{27}\begin{bmatrix}1 & -26\\0 & 27\end{bmatrix}$ 306 (d) Given, $M = [a_{uv}]_{n \times n}$ $= [\sin(\theta_u - \theta_v) + i\cos(\theta_u - \theta_v)]$ $\Rightarrow \overline{M} = [\sin(\theta_u - \theta_v) - i\cos(\theta_u - \theta_v)]$ $\Rightarrow (\overline{M})^T = [\sin(\theta_v - \theta_u) - i\cos(\theta_v - \theta_u)]$ $= \left[-\sin(\theta_u - \theta_v) - i\cos(\theta_u - \theta_v)\right]$ $= -[\sin(\theta_u - \theta_v) + i\cos(\theta_u - \theta_v)]$ = -M307 (a) If given system of equations have infinitely many solutions, then $\begin{vmatrix} 2 & -1 & 1 \\ 1 & -2 & 1 \end{vmatrix} = 0$ $\lambda - 1 2$ $\Rightarrow 2(-4+1) + 1(2-\lambda) + 1(-1+2\lambda) = 0$ $\Rightarrow -6 + 2 - \lambda - 1 + 2\lambda = 0$ $\lambda - 5 = 0$ \Rightarrow $\lambda = 5$ ⇒ 308 (c) If AB = O, then A and B may be equal to O individually. It is not necessary in any condition 309 (b) $E(\theta)E(\phi) = \begin{bmatrix} \cos^2\theta & \cos\theta\sin\theta\\ \cos\theta\sin\theta & \sin^2\theta \end{bmatrix}$

 $\times \begin{bmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{bmatrix}$ $\cos^2\theta \cos^2\phi + \cos\theta \sin\theta \cos\phi \sin\phi$ $\cos\theta \sin\theta \cos^2 \phi + \sin^2 \theta \cos\phi \sin \phi$ $\cos^2\theta\cos\phi\sin\phi+\cos\theta\sin\theta\sin^2\phi$ $\cos\theta \sin\theta \cos\phi \sin\phi + \sin^2\theta \sin^2\phi$ $\left[\cos\theta\cos\phi\cos(\theta-\varphi)\cos\theta\sin\phi\cos(\theta-\varphi)\right]$ $\left[\cos\phi\sin\theta\cos(\theta-\phi)\sin\theta\sin\phi\cos(\theta-\phi)\right]$ $\cos\theta\cos\phi\cos(2n+1)\frac{\pi}{2}$ $\cos\theta \sin\phi \cos(2n+1)\frac{\pi}{2}$ $\cos\theta \sin\phi \cos(2n+1)\frac{\pi}{2}$ $\sin\theta\sin\phi(2n+1)\frac{\pi}{2}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \left[\because \cos(2n+1)\frac{\pi}{2} = 0 \right]$ 310 (c) Given, $x \sin 3\theta - y + z = 0$ $x\cos 2\theta + 4y + 3z = 0$ and 2x + 7y + 7z = 0For non-trivial solution. $|\sin 3\theta - 1|$ $\cos 2\theta \quad 4 \quad 3 = 0$ $\Rightarrow \sin 3\theta(28 - 21)$ $-\cos 2\theta(-7-7) + 2(-3-4)$ -0 \Rightarrow 7 sin3 θ + 14 cos2 θ - 14 = 0 $\Rightarrow 7(3\sin\theta - 4\sin^3\theta) + 14(1 - 2\sin^2\theta) - 14 = 0$ $\Rightarrow -28\sin^3\theta - 28\sin^2\theta + 21\sin\theta = 0$ $\Rightarrow -7 \sin\theta (4 \sin^2 \theta + 4 \sin \theta - 3) = 0$ $\Rightarrow \sin\theta(2\sin\theta + 3)(2\sin\theta - 1) = 0$ $\Rightarrow \sin\theta = 0, \sin\theta = \frac{1}{2} \quad \left(\because \sin\theta \neq -\frac{3}{2}\right)$ $\Rightarrow \theta = n\pi, n\pi + (-1)^n \frac{\pi}{6}$ 311 (c) $\therefore kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$ $\Rightarrow k \begin{bmatrix} 0 & 2\\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 0 & 3a\\ 2b & 24 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 0 & 2k\\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a\\ 2b & 24 \end{bmatrix}$ $\Rightarrow 2k = 3a \cdot 3k = 2b \cdot -4k = 24$ $\Rightarrow a = \frac{2k}{3}, b = \frac{3k}{2}, k = -6$ $\therefore a = -4, b = -9, k = -6$ 312 (d) \therefore adj (adj A) = $|A|^{n-2}A$ Here n = 3 \Rightarrow adj (adj A) = |A|A

313 (c) $A^{5} = A^{2} A^{2} A = (A + I)(A + I)A$ $= (A^2 + 2AI + I^2)A$ = (A + I + 2A + I)A = (3A + 2I)A $=3A^{2} + 2IA = 3(A + I) + 2IA$ =3A + 3I + 2A = 5A + 3I314 (c) Matrices A + B and AB are defined only if both A and *B* are of same order $n \times n$. 315 (a) $UV + XY = \begin{bmatrix} 2 - 3 & 4 \end{bmatrix} \begin{vmatrix} 3 \\ 2 \\ 4 \end{vmatrix} + \begin{bmatrix} 0 & 2 & 3 \end{bmatrix} \begin{vmatrix} 2 \\ 2 \\ 4 \end{vmatrix}$ = 6 - 6 + 4] + [0 + 4 + 12] = [4] + [16] = [20]316 (b) For matrix $A = \begin{bmatrix} a & 2 \\ 2 & 4 \end{bmatrix}$ to be singular, $\begin{vmatrix} a & 2 \\ 2 & 4 \end{vmatrix} = 0$ \Rightarrow 4a - 4 = 0 $\Rightarrow a = 1$ 317 (a) $\operatorname{adj}(A) = \begin{bmatrix} 4y - x \\ -x^2 & 1 \end{bmatrix}$ $\therefore \quad \operatorname{adj} (A) + B = \begin{bmatrix} 4y & -x \\ -x^2 & 1 \end{bmatrix} + \begin{bmatrix} -3 & 1 \\ 1 & 0 \end{bmatrix}$ $\Rightarrow \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4y - 3 & -x + 1 \\ -x^2 + 1 & 1 + 0 \end{bmatrix}$ \Rightarrow 4y - 3 = 1 \Rightarrow y = 1 and $-x + 1 = 0 \Rightarrow x = 1$ 318 (c) $|A| = 1.(\cos^2 \alpha + \sin^2 \alpha) = 1$ Now, $A^{-1} = \frac{1}{|A|} \operatorname{adj}(A) = \operatorname{adj}(A)$ 319 (a) We have, $(A + B)(A - B) = A^2 - AB + BA - B^2$ So, option (a) is correct. 320 (a) Given, (1 - x)f(x) = 1 + x $\Rightarrow (I - A)f(A) = (I + A) \quad (\because \operatorname{Put} x = A)$ $\Rightarrow f(A) = (I - A)^{-1}(I + A)$ $= \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \right)^{-1} \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \right)$ $\Rightarrow f(A) = \begin{bmatrix} 0 & -2 \\ -2 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ $=\frac{\begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}}{\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}}$ $=\frac{\begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix}}{4} = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$ 321 **(b)** We have, $AA^{-1} = I$

 $\Rightarrow \det(AA^{-1} = \det(I))$ $\Rightarrow \det(A) \det(A^{-1}) = 1$ $[\because \det(A B) = \det(A) \det(B)]$ and det(I) - 1) $\Rightarrow \det(A^{-1}) = \frac{1}{\det(A)}$ 322 (b) Since AB = 3I $\Rightarrow A^{-1}AB = 3IA^{-1}$ $\Rightarrow B = 3A^{-1}$ $\Rightarrow A^{-1} = \frac{B}{2}$ 323 (b) We have, $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \begin{vmatrix} x_1 & y_1 & 1 \\ x_{2-}x_1 & y_{2-}y_1 & 0 \\ x_{3-}x_1 & y_{3-}y_1 & 0 \end{vmatrix} = 0$ [using $R_2 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 -$: The given points (x_1, y_1) , (x_2, y_2) and (x_3, y_3) are collinear, therefore the rank of matrix is always greater than 0 and less than 3. 324 (a) $: A^{2} = A \cdot A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \\ = \begin{bmatrix} 4+1 & -2-2 \\ -2-2 & 1+4 \end{bmatrix}$ $=\begin{bmatrix}5 & -4\\-4 & 5\end{bmatrix}$ And $4A - 3I = 4\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} - 3\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 8 & -4 \\ -4 & 8 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}$ $\therefore A^2 = 4A -$ 325 (a) Given, $A = \begin{bmatrix} -2 & 6 \\ -5 & 7 \end{bmatrix}$ $\therefore \operatorname{adj} A \begin{bmatrix} 7 & -6 \\ 5 & -2 \end{bmatrix}$ 326 (c) Given, $A = \begin{bmatrix} 3 & 4 \\ 5 & 7 \end{bmatrix}$ $\Rightarrow |A| = 1$ $\therefore A \operatorname{adj} (A) = \begin{bmatrix} 3 & 4 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 7 & -4 \\ -5 & 3 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = |A|I$ 327 (c) $AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} a & 2b \\ 3a & 4b \end{bmatrix}$ And $BA = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a & 2b \\ 3a & 4b \end{bmatrix}$ If AB = BA, than a = bHence, AB = BA is possible for infinitely many values of B's. 328 **(b)** We have,

 $2A + 3B = \begin{bmatrix} 2 & -1 & 4 \\ 3 & 2 & 5 \end{bmatrix}$...(i) and $A + 2B = \begin{bmatrix} 5 & 0 & 3 \\ 1 & 6 & 2 \end{bmatrix}$...(ii) On multiplying Eq.(ii) by 2 and then subtracting Eq.(i) from Eq.(ii), we get $B = 2\begin{bmatrix} 5 & 0 & 3 \\ 1 & 6 & 2 \end{bmatrix} - \begin{bmatrix} 2 & -1 & 4 \\ 3 & 2 & 5 \end{bmatrix} = \begin{bmatrix} 8 & 1 & 2 \\ -1 & 10 & -1 \end{bmatrix}$ 329 (b) Determinant of unit matrix of any order is 1 330 **(b)** $AB = \begin{bmatrix} 3 & 5 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 17 \\ 0 & -10 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 34 \end{bmatrix}$ $\Rightarrow |AB| = 102 - 2$ = 100331 (a) We have, $A = \begin{bmatrix} 6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1 \end{bmatrix}$ and $A' = \begin{bmatrix} 6 & 4 & 9 \\ 8 & 2 & 7 \\ 5 & 3 & 1 \end{bmatrix}$::Symmetric matrix, $B = \frac{A+A'}{2}$ $= \frac{1}{2} \left\{ \begin{bmatrix} 6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1 \end{bmatrix} + \begin{bmatrix} 6 & 4 & 9 \\ 8 & 2 & 7 \\ 5 & 3 & 1 \end{bmatrix} \right\}$ $= \frac{1}{2} \begin{bmatrix} 12 & 12 & 14 \\ 12 & 4 & 10 \\ 14 & 10 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 6 & 7 \\ 6 & 2 & 5 \\ 7 & 5 & 1 \end{bmatrix}$ 332 **(b)** Since *A* is non-singular. Therefore, A^{-1} exists Now, $A(\operatorname{adj} A) = |A|I = (\operatorname{adj} A)A$ \Rightarrow |A||adj A| = |A|ⁿ = |adj A||A| $\Rightarrow |\operatorname{adj} A| = |A|^{n-1} \qquad [\because |A| \neq 0]$ 333 (a) $\therefore A + B = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} + \begin{bmatrix} 1 & a \\ 4 & b \end{bmatrix} = \begin{bmatrix} 2 & -1 + a \\ 6 & -1 + b \end{bmatrix}$

 $\Rightarrow (A+B)^{2} = \begin{bmatrix} 2 & -1 + a \\ 6 & -1 + b \end{bmatrix} \begin{bmatrix} 2 & -1 + a \\ 6 & -1 + b \end{bmatrix} \begin{bmatrix} -2 + 6a & -1 + a - b + ab \\ 6 + 6b & -5 + 6a - 2b + b^{2} \end{bmatrix}$ and $A^{2} = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ Also, $B^{2} = \begin{bmatrix} 1 & a \\ 4 & b \end{bmatrix} \begin{bmatrix} 1 & a \\ 4 & b \end{bmatrix}$ $= \begin{bmatrix} 1 + 4a & a + ab \\ 4 + 4b & 4a + b^{2} \end{bmatrix}$ Given, $(A + B)^{2} = A^{2} + B^{2}$ $\therefore \begin{bmatrix} -2 + 6a & -1 + a - b + ab \\ 6 + 6b & -5 + 6a - 2b + b^{2} \end{bmatrix}$ $= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 + 4a & a + ab \\ 4 + 4b & 4a + b^{2} \end{bmatrix}$ $\Rightarrow \begin{bmatrix} -2 + 6a & -1 + a - b + ab \\ 6 + 6b & -5 + 6a - 2b + b^{2} \end{bmatrix}$ $= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 + 4a & a + ab \\ 4 + 4b & 4a + b^{2} \end{bmatrix}$ On comparing both sides, we get -2 + 6a = 4a and 6 + 6b = 4 + 4b $\Rightarrow a = 1$ and b = -1334 (d) $(AB^{-1}C)^{-1} = C^{-1}(B^{-1})^{-1}A^{-1} = C^{-1}BA^{-1}$

