Single Correct Answer Type

1. If n is a natural number. Then $\left[\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right]^{n}$, is
a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ if n is even
b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ if n is odd
c) $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ if n is a natural number
d) None of these
2. $\left[\begin{array}{ll}0 & a \\ b & 0\end{array}\right]^{4}=I$, then
a) $a=1=2 b$
b) $a=b$
c) $a=b^{2}$
d) $a b=1$
3. If a square matrix A is such that $A A^{T}=I=A^{T} A$, then $|A|$ is equal to
a) 0
b) ± 1
c) ± 2
d) None of these
4. If k is a scalar and I is a unit matrix of order 3 , then $\operatorname{adj}(k I)$ is equal to
a) $k^{3} I$
b) $k^{2} I$
c) $-k^{3} I$
d) $-k^{2} I$
5. If A is a singular matrix, then $A \operatorname{adj}(A)$ is a
a) Scalar matrix
b) Zero matrix
c) Identity matrix
d) Orthogonal matrix
6.

If $A=\left[\begin{array}{cc}\cos ^{2} \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin ^{2} \alpha\end{array}\right]$ and $A=\left[\begin{array}{cc}\cos ^{2} \beta & \cos \alpha \sin \beta \\ \cos \beta \sin \beta & \sin ^{2} \beta\end{array}\right]$ are two matrices such that the product $A B$ is null matrix, then $\alpha-\beta$ is
a) 0
b) Multiple of π
c) An odd multiple of $\pi / 2$
d) None of the above
7. Consider the following statements:

1. If A and B are two square matrices of same order and commute, then $(A+B)(A-B)=A^{2}-B^{2}$
2. If A and B are two square matrices of same order, then $(A B)^{n}=A^{n} B^{n}$
3. If A and B are two matrices such that $A B=A$ and $B A=B$, then A and B are idempotent

Which of these is/are not correct?
a) Only (1)
b) (2) and (3)
c) (3) and (1)
d) All of these
8.

If $A=\left[\begin{array}{ccc}2 & 4 & 5 \\ 4 & 8 & 10 \\ -6 & -12 & -15\end{array}\right]$, the rank of A is equal to
a) 0
b) 1
c) 2
d) 3
9. If A and B are 3×3 matrices such that $A B+B$ and $B A=A$, then
a) $A^{2}=A$ and $B^{2} \neq B$
b) $A^{2} \neq A$ and $B^{2}=B$
c) $A^{2}=A$ and $B^{2}=B$
d) $A^{2} \neq A$ and $B^{2} \neq B$
10.

The inverse of the matrix $\left[\begin{array}{ccc}7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$ is
a) $\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 4 & 3 \\ 3 & 3 & 4\end{array}\right]$
b) $\left[\begin{array}{lll}1 & 3 & 1 \\ 4 & 3 & 8 \\ 3 & 4 & 1\end{array}\right]$
c) $\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 3 & 4 \\ 3 & 4 & 3\end{array}\right]$
d) $\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$
11. If A is a skew-symmetric matrix and n is a positive integer, then A^{n} is
a) A symmetric matrix
b) Skew-symmetric matrix
c) Diagonal matrix
d) None of these
12. The number of 3×3 non-singular matrices, with four entries as 1 and all other entries as 0 ,is
a) Less than 4
b) 5
c) 6
d) At least 7
13. If $A=\left[\begin{array}{ccc}1 & -5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{array}\right]$, then trace of matrix A is
a) 17
b) 25
c) 3
d) 12
14. If $A=\left[\begin{array}{ll}3 & 4 \\ 2 & 4\end{array}\right], B=\left[\begin{array}{cc}-2 & -2 \\ 0 & -2\end{array}\right]$, then $(A+B)^{-1}$ is equal to
a) Is a skew-symmetric matrix
b) $A^{-1}+B^{-1}$
c) Does not exist
d) None of the above
15. If $f(x)=x^{2}-5 x, A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$, then $f(\mathrm{~A})$ is equal to
a) $\left[\begin{array}{cc}-7 & 0 \\ 0 & -7\end{array}\right]$
b) $\left[\begin{array}{ll}0-7 \\ -7 & 0\end{array}\right]$
c) $\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]$
d) $\left[\begin{array}{ll}0 & 7 \\ 7 & 0\end{array}\right]$
16. The adjoint matrix of $\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ is
а) $\left[\begin{array}{lll}4 & 8 & 3 \\ 2 & 1 & 6 \\ 0 & 2 & 1\end{array}\right]$
b) $\left[\begin{array}{ccc}1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3\end{array}\right]$
c) $\left[\begin{array}{ccc}11 & 9 & 3 \\ 1 & 2 & 8 \\ 6 & 9 & 1\end{array}\right]$
d) $\left[\begin{array}{ccc}1 & -2 & 1 \\ -1 & 3 & 3 \\ -2 & 3 & -3\end{array}\right]$
17. If the rank of the matrix $\left[\begin{array}{ccc}-1 & 2 & 5 \\ 2 & -4 & a-4 \\ 1 & -2 & a+1\end{array}\right]$ is 1 , than the value of a is
a) -1
b) 2
c) -6
d) 4
18. The value of λ such that $x+3 y+\lambda z=0,2 x+4 y-z=0, x+5 y-2 z=0$ has a non-trivial solution is
a) -1
b) 0
c) 1
d) 2
19. If $A=\left[a_{i j}\right]_{m \times n}$ is a matrix and B is a non-singular square submatrix of order r, then
a) Rank of A is r
b) Rank of A is greater than r
c) Rank of A is less than r
d) None of these
20. From the matrix equation $A B=A C$ we can conclude $B=C$ provided that
a) A is singular
b) A is non-singular
c) A is symmetric
d) A is square
21. The values of α for which the system of equations
$x+y+z=1$
$x+2 y+4 z=\alpha$
$x+4 y+10 z=\alpha^{2}$
Is consistent, are
a) $1,-2$
b) $-1,2$
c) 1,2
d) None of these
22. If A is a non-singular matrix such that $A^{3}=A+I$, then the inverse of $B=A^{6}-A^{5}$ is
a) A
b) A^{-1}
c) -A
d) $-A^{-1}$
23. If matrix $A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]$ where a, b, c are real positive numbers, $a b c=1$ and $A^{T} A=I$, then the value of $a^{3}+b^{3}+c^{3}$ is
a) 1
b) 2
c) 3
d) 4
24.

If $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, then $A^{2}-4 A$ is equal to
a) $2 I_{3}$
b) $3 I_{3}$
c) $4 I_{3}$
d) $5 I_{3}$
25. If $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$,then $A^{4}=$
a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
c) $\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$
d) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
26. The simultaneous equations $K x+2 y-z=1,(K-1) y-2 z=2$ and $(K+2) z=3$ have only one solution when
a) $K=-2$
b) $K=-1$
c) $K=0$
d) $K=1$
27. The system of equation,
$x+y+z=6$
$x+2 y+3 z=10$
And $\quad x+2 y+\lambda z=\mu$
Has no solution, if
a) $\lambda=3, \mu=10$
b) $\lambda \neq 3, \mu=10$
c) $\lambda \neq 3, \mu \neq 10$
d) $\lambda=3, \mu \neq 10$
28. If a square matrix A is such that $A A^{T}=I=A^{T} A$, then $|A|$ is equal to
a) 0
b) ± 1
c) ± 2
d) None of these
29.

Let $A=\left[\begin{array}{cc}\cos ^{2} \theta & \sin \theta \cos \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]$ and $B=\left[\begin{array}{cc}\cos ^{2} \theta & \sin \phi \cos \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{array}\right]$, then $A B=0$, if
a) $\theta=n \phi, n=0,1,2, \ldots$
b) $\begin{aligned} & \theta+\phi=n \pi, n \\ & =0,1,2, \ldots\end{aligned}$
c) $\theta=\phi+(2 n+1) \frac{\pi}{2}, n$
d) $\theta=\phi+n \frac{\pi}{2}, n$
$=0,1,2, \ldots$
$=0,1,2, \ldots$
30. If A, B are two square matrices such that $A B=A$ and $B A=B$, then
a) A, B are idempotent
b) Only A is idempotent
c) Only B is idempotent
d) None of these
31. If $\left[\begin{array}{c}x-y-z \\ -y+z \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 5 \\ 3\end{array}\right]$, than the values of x, y and z are
respectively
a) $5,2,2$
b) $1,-2,3$
c) $0,-3,3$
d) $11,8,3$
32. Inverse of the matrix $\left[\begin{array}{c}\cos 2 \theta-\sin 2 \theta \\ \sin 2 \theta \cos 2 \theta\end{array}\right]$ is
a) $\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]$
b) $\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]$
c) $\left[\begin{array}{c}\cos 2 \theta-\sin 2 \theta \\ \sin 2 \theta \\ \cos 2 \theta\end{array}\right]$
d) $\left[\begin{array}{c}\cos 2 \theta \\ \sin 2 \theta \\ -\sin 2 \theta \\ \cos 2 \theta\end{array}\right]$
33.

If $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right], 10 B=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right]$ and B is the inverse of A, then the value of α is
a) 2
b) 0
c) 5
d) 4
34.
$A=\left[\begin{array}{ccc}0 & 3 & 3 \\ -3 & 0 & -4 \\ -3 & 4 & 0\end{array}\right]$ and $B=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$, then $B^{\prime}(A B)$ is
a) Null matrix
b) Singular matrix
c) Unit matrix
d) Symmetric matrix
35.

If $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$, then A^{-1} is
a) $\left[\begin{array}{ccc}1 / a & 0 & 0 \\ 0 & 1 / b & 0 \\ 0 & 0 & 1 / c\end{array}\right]$
b) $\left[\begin{array}{ccc}-1 / a & 0 & 0 \\ 0 & -1 / b & 0 \\ 0 & 0 & -1 / c\end{array}\right]$
c) $\left[\begin{array}{llc}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 / c\end{array}\right]$
d) None of these
36. If $A=\left[\begin{array}{ccc}a & b & 0 \\ -b & a & 0 \\ 0 & 0 & 1\end{array}\right]$, where $a^{2}+b^{2}=1$, then $\operatorname{adj}(A)$ is equal to
(Here, A^{T} is the transpose of A)
a) A^{-1}
b) A^{T}
c) A
d) $-A$
37. The rank of a null matrix is
a) 0
b) 1
c) Does not exist
d) None of these
38. If A and B are matrices of the same order, then $(A+B)^{2}=A^{2}+2 A B+B^{2}$ is possible, iff
a) $A B=I$
b) $B A=I$
c) $A B=B A$
d) None of these
39. If $\mathrm{A}=\left[\begin{array}{ll}2 x & 0 \\ x & x\end{array}\right]$ and $A^{-1}=\left[\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right]$, then x equals
a) 2
b) $-\frac{1}{2}$
c) 1
d) $\frac{1}{2}$
40. If the system of equations
$a x+a y-z=0$
$b x-y+b z=0$
and $-x+c y+c z=0$
Has a non-trivial solution, then the value of
$\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}$ is
a) 0
b) 1
c) 2
d) 3
41. The system of equation
$3 x-y+4 z=3$
$x+2 y-3 z=-2$
$6 x+5 y+\lambda z=-3$
Has at least one solution, if
a) $\lambda=-5$
b) $\lambda=5$
c) $\lambda=3$
d) $\lambda=-13$
42. If A is a skew-symmetric matrix and n is an even positive integer, then A^{n} is
a) A symmetric matrix
b) A skew-symmetric matrix
c) A diagonal matrix
d) None of these
43. If $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 2\end{array}\right]$, then $|\operatorname{adj} A|$ is equal to
a) 0
b) 9
c) $\frac{1}{9}$
d) 81
44. If A is skew-symmetric matrix of order 3 , then matrix A^{3} is
a) Skew-symmetric matrix
b) Symmetric matrix
c) Diagonal matrix
d) None of the above
45. If $\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 1 \\ 0 & 3 & 2\end{array}\right]\left[\begin{array}{c}x \\ 1 \\ -2\end{array}\right]=0$, then the value of x is
a) 0
b) $\frac{2}{3}$
c) $\frac{5}{4}$
d) $-\frac{4}{5}$
46. If $A=\left[\begin{array}{ll}3 & 4 \\ 2 & 4\end{array}\right], B=\left[\begin{array}{cc}-2 & -2 \\ 0 & -1\end{array}\right]$, then $(A+B)^{-1}=$
a) Is a skew-symmetric matrix
b) $A^{-1}+B^{-1}$
c) Does not exist
d) None of these
47. Let A be an orthogonal non-singular matrix of order n, then the determinant of matrix ${ }^{\prime} A-I_{n}^{\prime}$ ie, $\left|A-I_{n}\right|$ is equal to
a) $\left|I_{n}-A\right|$
b) $|A|$
c) $|A|\left|I_{n}-A\right|$
d) $(-1)^{n}|A|\left|I_{n}-A\right|$
48.

The matrix $A=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{2}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]$ is
a) Unitary
b) Orthogonal
c) Nilpotent
d) Involutory
49. The inverse of a symmetric matrix is
a) Symmetric
b) Skew-symmetric
c) Diagonal matrix
d) None of these
50. The characteristic roots of the matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6\end{array}\right]$ are
a) 1, 3, 6
b) $1,2,4$
c) $4,5,6$
d) $2,4,6$
51. If matrix $A=\left[\begin{array}{ccc}3 & 2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1\end{array}\right]$ and $A^{-1}=\frac{1}{k} \operatorname{adj} A$, then k is
a) 7
b) -7
c) $\frac{1}{7}$
d) 11
52.

The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ has exactly two distinct solutions, is
a) 0
b) $2^{9}-1$
c) 168
d) 2
53. If A is an invertible matrix of order n, then the determinant of adj (A) is equal to
a) $|A|^{n}$
b) $|A|^{n+1}$
c) $|A|^{n-1}$
d) $|A|^{n+2}$
54.
$\operatorname{adj}\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1\end{array}\right]=\left[\begin{array}{ccc}5 & a & -2 \\ 1 & 1 & 0 \\ -2 & -2 & b\end{array}\right]$, then $\left[\begin{array}{ll}a & b\end{array}\right]$ is equal to
a) $\left[\begin{array}{cc}-4 & 1\end{array}\right]$
b) $\left[\begin{array}{ll}-4 & -1\end{array}\right]$
c) $\left[\begin{array}{ll}4 & 1\end{array}\right]$
d) $\left[\begin{array}{ll}4 & -1\end{array}\right]$
55.

If $A=\left[\begin{array}{lll}x & y & z\end{array}\right], B=\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]$ and $C=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ Then, $B^{\prime}(A B)=0$, if
a) $\left[a x^{2}+b y^{2}+c z^{2}+2 g x y+2 f y z+2 c z x\right]=0$
b) $\left[a x^{2}+c y^{2}+b z^{2}+x y+y z+z x\right]=0$
c) $\left[a x^{2}+b y^{2}+c z^{2}+2 h x y+2 b y+2 c z\right]=0$
d) $\left[a x^{2}+b y^{2}+c z^{2}+2 g z x+2 h x y+2 f y z\right]=0$
56. The multiplicative inverse of matrix $\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$ is
a) $\left[\begin{array}{cc}4 & -1 \\ -7 & -2\end{array}\right]$
b) $\left[\begin{array}{cc}-4 & -1 \\ 7 & -2\end{array}\right]$
c) $\left[\begin{array}{cc}4 & -7 \\ 7 & 2\end{array}\right]$
d) $\left[\begin{array}{cc}4 & -1 \\ -7 & 2\end{array}\right]$
57.

The rank of matrix $\left[\begin{array}{llll}4 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 6 & 0 & 2 & 0\end{array}\right]$ is
a) 4
b) 3
c) 2
d) 1
58. The solution of (x, y, z) the equation $\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ is (x, y, z)
a) $(1,1,1)$
b) $(0,-1,2)$
c) $(-1,2,2)$
d) $(-1,0,2)$
59.
$\left[\begin{array}{lll}7 & 1 & 2 \\ 9 & 2 & 1\end{array}\right]\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]+2\left[\begin{array}{l}4 \\ 2\end{array}\right]$ is equal to
a) $\left[\begin{array}{l}43 \\ 44\end{array}\right]$
b) $\left[\begin{array}{l}43 \\ 45\end{array}\right]$
c) $\left[\begin{array}{l}45 \\ 44\end{array}\right]$
d) $\left[\begin{array}{l}44 \\ 45\end{array}\right]$
60. Let A, B and C be $n \times n$ matrices. Which one of the following is a correct statements?
a) If $A B=A C$, then $B=C$
b) If $A^{3}+2 A^{2}+3 A+5 I=O$; then A is invertible
c) If $A^{2}=O$, then $A=0$
d) None of the above
61. If A and B are square matrices of order 3 such that $|A|=-1,|B|=3$, then $|3 A B|$ equals
a) -9
b) -81
c) -27
d) 81
62.

The rank of the matrix $\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right]$ is
a) 1
b) 2
c) 3
d) 4
63. If $A+1=\left[\begin{array}{rr}3 & -2 \\ 4 & 1\end{array}\right]$, then $(A=I) .(A-I)$ is equal to
a) $\left[\begin{array}{cc}-5 & -4 \\ 8 & -9\end{array}\right]$
b) $\left[\begin{array}{ll}-5 & 4 \\ -8 & 9\end{array}\right]$
c) $\left[\begin{array}{ll}5 & 4 \\ 8 & 9\end{array}\right]$
d) $\left[\begin{array}{ll}-5 & -4 \\ -8 & -9\end{array}\right]$
64. If $A=\left[a_{i j}\right]$ is a scalar matrix of order $n \times n$ such that $a_{i i}=k$ for all i, then $|A|=$
a) $n k$
b) $n+k$
c) n^{k}
d) k^{n}
65. If $\mathrm{A}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is such that $|A|=0$ and $A^{2}-(a-d) A+k I=0$, then k is equal to
a) $b+c$
b) $a+d$
c) $a b+c d$
d) Zero
66.

If $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1 \\ 3 & 2 \\ 1 & 1\end{array}\right]$, then $(A B)^{T}$ is equal to
a) $\left[\begin{array}{cc}-3 & -2 \\ 10 & 7\end{array}\right]$
b) $\left[\begin{array}{cc}-3 & 10 \\ -2 & 7\end{array}\right]$
c) $\left[\begin{array}{cc}-3 & 7 \\ 10 & 2\end{array}\right]$
d) None of these
67. If A is a matrix such that there exists a square submatrix of order r which is non-singular and every square submatrix of order $r+1$ or more is singular, then
a) $\operatorname{rank}(A)=r+1$
b) $\operatorname{rank}(A)=r$
c) $\operatorname{rank}(A)>r$
d) $\operatorname{rank}(A) \geq r+1$
68. If $A=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]$, then $A^{2}-5 A=$
a) I
b) $14 I$
c) 0
d) None of these
69.

The order of $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is
a) 3×1
b) 1×1
c) 1×3
d) 3×3
70. If $A+B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $A-2 B=\left[\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right]$, then $A=$
a) $\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$
b) $\left[\begin{array}{ll}2 / 3 & 1 / 3 \\ 1 / 3 & 2 / 3\end{array}\right]$
c) $\left[\begin{array}{ll}1 / 3 & 1 / 3 \\ 2 / 3 & 1 / 3\end{array}\right]$
d) None of these
71. If A is singular matrix, then A adj (A)
a) Is a scalar matrix
b) Is a zero matrix
c) Is an identity matrix
d) Is an orthogonal matrix
72. If $\left[\begin{array}{ll}3 & 1 \\ 4 & 1\end{array}\right] X=\left[\begin{array}{rr}5 & -1 \\ 2 & 3\end{array}\right]$, then X is equal to
a) $\left[\begin{array}{rr}-3 & 4 \\ 14 & -13\end{array}\right]$
b) $\left[\begin{array}{ll}3 & -4 \\ -14 & 13\end{array}\right]$
c) $\left[\begin{array}{cc}3 & 4 \\ 14 & 13\end{array}\right]$
d) $\left[\begin{array}{ll}-3 & 4 \\ -14 & 13\end{array}\right]$
73. For the matrix $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0\end{array}\right]$, which of the following is correct?
a) $A^{3}+3 A^{2}-I=0$
b) $A^{3}-3 A^{2}-I=0$
c) $A^{3}+2 A^{2}-I=0$
d) $A^{3}-A^{2}+I=0$
74. The matrices $P=\left[\begin{array}{lll}u_{1} & v_{1} & w_{1} \\ u_{2} & v_{2} & w_{2} \\ u_{3} & v_{3} & w_{3}\end{array}\right] ; Q=\frac{1}{9}\left[\begin{array}{ccc}2 & 2 & 1 \\ 12 & -5 & m \\ -8 & 1 & 5\end{array}\right]$ are such that $P Q=I$, an identity matrix. Solving the equation $\left[\begin{array}{lll}u_{1} & v_{1} & w_{1} \\ u_{2} & v_{2} & w_{2} \\ u_{3} & v_{3} & w_{3}\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 5\end{array}\right]$, the value of y comes out to be -3 . Then, the value of m is equal to
a) 27
b) 7
c) -27
d) -7
75. If A is an invertible matrix, then which of the following is correct
a) A^{-1} is multivalued
b) A^{-1} is singular
c) $\left(A^{-1}\right)^{T} \neq\left(A^{T}\right)^{-1}$
d) $|A| \neq 0$
76. If $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then the matrix A equals
a) $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
c) $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
d) $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
77. If A is any square matrix, then $\operatorname{det}\left(A-A^{T}\right)^{T}$ is equal to
a) 0
b) 1
c) Can be 0 or a perfect square
d) Cannot be determined
78. If $O(A)=2 \times 3, O(B)=3 \times 2$, and $O(c)=3 \times 3$, Which one of the following is not defined?
a) $C B+A^{\prime}$
b) $B A C$
c) $C\left(A+B^{\prime}\right)^{\prime}$
d) $C\left(A+B^{\prime}\right)$
79. Suppose A is a matrix of order 3 and $B=|A| A^{-1}$.If $|A|=-5$, then $|B|$ is equal to
a) 1
b) -5
c) -1
d) 25
80. $A=\left[\begin{array}{ll}-2 & 4 \\ -1 & 2\end{array}\right]$, the A^{2} is equal to
a) Null matrix
b) Unit matrix
c) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
d) $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
81. The system of simultaneous equations $k x+2 y-z=1(k-1) y-2 z=2$ and $(k+2) z=3$ has a unique solution, if k equals
a) -2
b) -1
c) 0
d) 1
82. If $A=\left[\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ 1\end{array}\right], A x=B$, then X is equal to
a) $\left[\begin{array}{ll}0 & 7\end{array}\right]$
b) $\frac{1}{3}\left[\begin{array}{l}5 \\ 7\end{array}\right]$
c) $\frac{1}{3}\left[\begin{array}{ll}5 & 7\end{array}\right]$
d) $\left[\begin{array}{l}5 \\ 7\end{array}\right]$
83. For the equations $x+2 y+3 z=1,2 x+y+3 z=2$ and $5 x+5 y+9 z=4$
a) There is only one solution
b) There exists infinitely many solutions
c) There is no solution
d) None of the above
84. If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $n \in N$, then A^{n} is equal to
a) $2^{n} A$
b) $2^{n-1} A$
c) $n A$
d) None of these
85. If $A=\left[\begin{array}{cc}2 & 2 \\ -3 & 2\end{array}\right], B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, then $\left(B^{-1} A^{-1}\right)^{-1}=$
а) $\left[\begin{array}{cc}2 & -2 \\ 2 & 3\end{array}\right]$
b) $\left[\begin{array}{cc}3 & -2 \\ 2 & 2\end{array}\right]$
c) $\frac{1}{10}\left[\begin{array}{cc}2 & 2 \\ -2 & 3\end{array}\right]$
d) $\frac{1}{10}\left[\begin{array}{cc}3 & 2 \\ -2 & 2\end{array}\right]$
86. If A is a skew symmetric matrix of order n and C is a column matrix of order $n \times 1$, then $C^{T} A C$ is
a) An identity matrix of order n
b) An identity matrix of order1
c) A zero matrix of order 1
d) None of the above
87. If A is a square matrix, then $A+A^{T}$ is
a) Non-singular matrix
b) Symmetric matrix
c) Skew-symmetric matrix
d) Unit matrix
88. If $\mathrm{A}=\left[a_{i j}\right]_{2 \times 2}$, where $a_{i j}=i+j$, then A is equal to
a) $\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$
c) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
d) $\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right]$
89. If $P=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]\left[\begin{array}{cc}-1 & -2 \\ -2 & 0 \\ 0 & -4\end{array}\right]\left[\begin{array}{rrr}-4 & 5 & -6 \\ 0 & 0 & 1\end{array}\right]$, then P_{22} is equal to
a) 40
b) -40
c) -20
d) 20
90. Which of the following is/are incorrect?
(i) adjoint of a symmetric matrix is symmetric
(ii) adjoint of a unit matrix is a unit matrix
(iii) $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$
(iv) adjoint of a diagonal matrix is a diagonal matrix
a) (i)
b) (ii)
c) (iii) and (iv)
d) None of these
91. If A and B are 3×3 matrices such that $A B=A$ and $B A=B$, then
a) $A^{2}=A$ and $B^{2} \neq B$
b) $A^{2} \neq A$ and $B^{2}=B$
c) $A^{2}=A$ and $B^{2}=B$
d) $A^{2} \neq A$ and $B^{2} \neq B$
92. Let A be a skew-symmetric matrix of even order, then $|A|$
a) Is a square
b) Is not a square
c) Is always zero
d) None of these
93.

If $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0\end{array}\right], B=(\operatorname{adj} A)$ and $C=5 A$, then $\frac{|\operatorname{adj} B|}{|C|}$ is equal to
a) 5
b) 25
c) -1
d) 1
94.

If $A=\left[\begin{array}{lll}6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1\end{array}\right]$ is the sum of a symmetric matrix B and skew-symmetric matrix, C, then B is
a) $\left[\begin{array}{lll}6 & 6 & 7 \\ 6 & 2 & 5 \\ 7 & 5 & 1\end{array}\right]$
b) $\left[\begin{array}{ccc}0 & 2 & -2 \\ -2 & 5 & -2 \\ 2 & 2 & 0\end{array}\right]$
c) $\left[\begin{array}{ccc}6 & 6 & 7 \\ -6 & 2 & -5 \\ -7 & 5 & 1\end{array}\right]$
d) $\left[\begin{array}{ccc}0 & 6 & -2 \\ 2 & 0 & -2 \\ -2 & -2 & 0\end{array}\right]$
95. The matrix $\left[\begin{array}{ccc}5 & 10 & 3 \\ -2 & -4 & 6 \\ -2 & -2 & b\end{array}\right]$ is a singular matrix, if b is equal to
a) -3
b) 3
c) 0
d) For any value of b
96. If A and B are square matrices of order 3×3, then which of the following is true?
a) $A B=O \Rightarrow A=O$ or $B=O$
b) $\operatorname{det}(2 \mathrm{AB})=8 \operatorname{det}(\mathrm{~A}) \operatorname{det}(\mathrm{B})$
c) $A^{2}-B^{2}=(A+B)(A-B)$
d) $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$
97. If $A=\left[a_{i j}\right]_{n \times n}$ be a diagonal matrix with diagonal element all different and $B=\left[b_{i j}\right]_{n \times n}$ be some another matrix. Let $A B=\left[C_{i j}\right]_{n \times n}$, then $c_{i j}$ is equal to
a) $a_{j j} b_{i j}$
b) $a_{i i} b_{i j}$
c) $a_{i j} b_{i j}$
d) $a_{i j} b_{j i}$
98. Let $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ -2 & 0 & 3 \\ 3 & -3 & 1\end{array}\right]$ be a matrix, then (determinant of $\left.A\right) \times($ adjoint of inverse A) is equal to
a) $O_{3 \times 3}$
b) $\left[\begin{array}{ccc}1 & 2 & -3 \\ -2 & 0 & 3 \\ 3 & -3 & 1\end{array}\right]$
c) I_{3}
d) $\left[\begin{array}{ccc}3 & -3 & 1 \\ 3 & 0 & -2 \\ -1 & 2 & -3\end{array}\right]$
99. The rank of $\left|\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1\end{array}\right|$ is
a) 0
b) 1
c) 2
d) 3
100. Let a, b, c are positive real numbers. The following system of equations $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=$ 1, $-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$, in x, y and z has
a) Infinite solutions
b) Unique solution
c) No solution
d) Finite number of solutions
101. If $A=\left[a_{i j}\right]_{m \times n}$ is a matrix of rank r and B is a square submatrix of order $r+1$, then
a) B is invertible
b) B is not invertible
c) B may or may not be invertible
d) None of these
102. If A is square matrix, A^{\prime}, is its transpose, then $\frac{1}{2}\left(A-A^{\prime}\right)$ is
a) A symmetric matrix
b) A skew-symmetric matrix
c) A unit matrix
d) An elementary matrix
103. Inverse of the matrix $A=\left[\begin{array}{rr}1 & -2 \\ 3 & 4\end{array}\right]$ is
a) $\frac{1}{10}\left[\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right]$
b) $\frac{1}{10}\left[\begin{array}{cc}4 & 2 \\ -3 & 1\end{array}\right]$
c) $\left[\begin{array}{cc}4 & 2 \\ -3 & 1\end{array}\right]$
d) $\frac{1}{10}\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$
104. Let A be a matrix of rank r. Then,
a) $\operatorname{rank}\left(A^{T}\right)=r$
b) $\operatorname{rank}\left(A^{T}\right)<r$
c) $\operatorname{rank}\left(A^{T}\right)>r$
d) None of these
105.

The adjoint matrix of $\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ is
а) $\left[\begin{array}{lll}4 & 8 & 3 \\ 2 & 1 & 6 \\ 0 & 2 & 1\end{array}\right]$
b) $\left[\begin{array}{ccc}1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3\end{array}\right]$
c) $\left[\begin{array}{ccc}11 & 9 & 3 \\ 1 & 2 & 8 \\ 6 & 9 & 1\end{array}\right]$
d) $\left[\begin{array}{ccc}1 & -2 & 1 \\ -1 & 3 & 3 \\ -2 & 3 & -3\end{array}\right]$
106. If a matrix A is such that $3 A^{3}+2 A^{2}+5 A+I=0$, then A^{-1} is equal to
a) $-\left(3 A^{2}+2 A+5\right)$
b) $3 A^{2}+2 A+5$
c) $3 A^{2}-2 A-5$
d) None of these
107. Let $A=\left[a_{i j}\right]_{n \times n}$ be a square matrix, and let $c_{i j}$ be cofactor of $a_{i j}$ in A. If $C=\left[c_{i j}\right]$, then
a) $|C|=|A|$
b) $|C|=|A|^{n-1}$
c) $|C|=|A|^{n-2}$
d) None of these
108. The system of equations $x+y+z=0,2 x+3 y+z=0$ and $x=2 y=0$ has
a) A unique solution; $x=0, y=0, z=0$
b) Infinite solutions
c) No solutions
d) Finite number of non-zero solutions
109. If $2 X-\left[\begin{array}{ll}1 & 2 \\ 7 & 4\end{array}\right]=\left[\begin{array}{cc}3 & 2 \\ 0 & -2\end{array}\right]$, then X is equal to
a) $\left[\begin{array}{ll}2 & 2 \\ 7 & 4\end{array}\right]$
b) $\left[\begin{array}{ll}\frac{1}{7} & 2 \\ \frac{1}{2} & 2\end{array}\right]$
c) $\left[\begin{array}{ll}2 & 2 \\ 7 & 1\end{array}\right]$
d) None of these
110. Let $A=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$ and $A^{-1}=x A+y I$, then the values of x and y are
a) $x=-\frac{1}{11}, y=\frac{2}{11}$
b) $x=-\frac{1}{11}, y=-\frac{2}{11}$
c) $x=\frac{1}{11}, y=\frac{2}{11}$
d) $x=\frac{1}{11}, y=-\frac{2}{11}$
111. Let A and B be two symmetric matrices of same order. Then, the matrix $A B-B A$ is
a) A symmetric matrix
b) A skew-symmetric matrix
c) A null matrix
d) The identity matrix
112. If $A=\left[\begin{array}{cc}1 & x \\ x^{2} & 4 y\end{array}\right] a, B=\left[\begin{array}{cc}-3 & 1 \\ 1 & 0\end{array}\right]$ and adj $A+B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then the values of x and y are respectively
a) $(1,1)$
b) $(-1,1)$
c) $(1,0)$
d) None of these
113. Let p is a non-singular matrix such that $1+p+p^{2}+\ldots+p^{n}=O$ (O denotes the null matrix), then p^{-1} is
a) p^{n}
b) $-p^{n}$
c) $-\left(1+p+\ldots+p^{n}\right)$
d) None of these
114.

If $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{40}\left[\begin{array}{ccc}5 & 10 & -5 \\ -5 & -2 & 13 \\ 10 & -4 & 6\end{array}\right]\left[\begin{array}{l}5 \\ 0 \\ 5\end{array}\right]$, then the value of $x+y+z$ is
a) 3
b) 0
c) 2
d) 1
115. The matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is the matrix reflection in the line
a) $x=1$
b) $x+y=1$
c) $y=1$
d) $x=y$
116. If $\left[\begin{array}{lr}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]^{-1}=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$, then
a) $a=1, b=1$
b) $a=\sin 2 \theta, b=\cos 2 \theta$
c) $a=\cos 2 \theta, b=\sin 2 \theta$
d) None of the above
117. If $A=\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$, then $\operatorname{adj} A$ is equal to
a) A
b) A^{\prime}
c) $3 A$
d) $3 A^{\prime}$
118. Let the homogeneous system of linear equations $p x+y+z=0, x+q y+z=0$, and $x+y+r z=$ 0 , where $p, q, r \neq 1$, have a non-zero solution, then the value of $\frac{1}{1-p}+\frac{1}{1-q}+\frac{1}{1-r}$ is
a) -1
b) 0
c) 2
d) 1
119. If $A=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right]$ and $A B=I$, then B is equal to
a) $\cos ^{2} \frac{\theta}{2} \cdot A$
b) $\cos ^{2} \frac{\theta}{2} \cdot A^{T}$
c) $\cos ^{2} \theta \cdot I$
d) $\sin ^{2} \frac{\theta}{2} \cdot A$
120. The values of x, y, z in order, if the system of equations $3 x+y+2 z=3,2 x-3 y-z=-3, x+2 y+z=$ 4 has unique solution, are
a) $2,1,5$
b) $1,1,1$
c) $1,-2,-1$
d) $1,2,-1$
121. Matrix A is such that $A^{2}=2 A-I$, where I is the indentity matrix, then for $n \geq 2, A^{n}$ is equal to
a) $n A-(n-1) I$
b) $n A-I$
c) $2^{n-1} A-(n-1) I$
d) $2^{n-1} A-I$
122. Matrix M_{r} is defined as $M_{r}=\left[\begin{array}{cc}r & r-1 \\ r-1 & r\end{array}\right], r \in N$ value of $\operatorname{det}\left(M_{1}\right)+\operatorname{det}\left(M_{2}\right)+\operatorname{det}\left(M_{3}\right)+\ldots+\operatorname{det}\left(M_{2007}\right)$ is
a) 2007
b) 2008
c) 2008^{2}
d) 2007^{2}
123. The number of solutions of the system of equations $x_{2}-x_{3}=1,-x_{1}+2 x_{3}=-2, x_{1}-2, x_{1}-2 x_{2}=3$ is
a) Zero
b) One
c) Two
d) Infinite
124. If $A=\left[a_{i j}\right]$ is a scalar matrix of order $n \times n$ such that $a_{i i}=k$ for all i, then trace of A is equal to
a) $n k$
b) $n+k$
c) n / k
d) None of these
125. If $D=\operatorname{diag}\left[d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right]$, where $d_{i} \neq 0 \forall i=1,2, \ldots, n$ then D^{-1} is equal to
a) 0
b) I_{n}
c) $\operatorname{diag}\left[d_{1}^{-1}, d_{2}^{-1}, \ldots, d_{n}^{-1}\right]$
d) None of the above
126. If $A=\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$, then $\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{n} A^{n}$ is
a) $\left[\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right]$
b) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
c) $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
d) None of these
127. The system of equations $2 x+y-5=0, x-2 y+1=0,2 x-14 y-a=0$, is consistent. Then, a is equal to
a) 1
b) 2
c) 5
d) None of these
128. The system of equation
$a x+y+z=\alpha-1$
$x+\alpha y+z=\alpha-1$
$x+y+\alpha z=\alpha-1$
Has no solution, if α is
a) 1
b) Not-2
c) Either-2 or1
d) -2
129. A matrix $A=\left|a_{i j}\right|$ is an upper triangular matrix, if
a) It is a square matrix and $a_{i j}=0, i<j$
b) It is a square matrix and $a_{i j}=0, i>j$
c) It is not a square matrix and $a_{i j}=0, i>j$
d) It is not a square matrix and $a_{i j}=0, i<j$
130. If $\mathrm{A}=\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right]$ and A^{2} is the identity matrix, then x is equal to
a) -1
b) 0
c) 1
d) 2
131. $A=\left[\begin{array}{ll}0 & 3 \\ 2 & 0\end{array}\right]$ and $A^{-1}=\lambda(\operatorname{adj} A)$, then λ equal to
a) $-\frac{1}{6}$
b) $\frac{1}{3}$
c) $-\frac{1}{3}$
d) $\frac{1}{6}$
132. If $A=\left[a_{i j}\right]$ is a 4×4 matrix and $C_{i j}$ is the cofactor of the element $a_{i j}$ in $|A|$, then the expression $a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}+a_{14} C_{14}$ is equal to
a) 0
b) -1
c) 1
d) $|A|$
133. For what value of λ, the system of equations $x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=10$ is consistent?
a) 1
b) 2
c) -1
d) 3
134. If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, then A^{100} is equal to
a) $2^{100} \mathrm{~A}$
b) $2{ }^{99} \mathrm{~A}$
c) 100 A
d) 299 A
135. Inverse of the matrix $\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]$ is
a) $\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]$
b) $\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]$
c) $\left[\begin{array}{ll}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]$
d) $\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]$
136. Which of the following is correct?
a) Determinant is square matrix
b) Determinant is a number associated to a matrix
c) Determinant is a number associated to a square matrix
d) None of these
137. If $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], J=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then B equals
a) $I \cos \theta+J \sin \theta$
b) $I \sin \theta+J \cos \theta$
c) $I \cos \theta-J \sin \theta$
d) $-I \cos \theta+J \sin \theta$
138. What must be the matrix X if $2 X+\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]$?
a) $\left[\begin{array}{rr}1 & 3 \\ 2 & -1\end{array}\right]$
b) $\left[\begin{array}{ll}1 & -3 \\ 2 & -1\end{array}\right]$
c) $\left[\begin{array}{rr}2 & 6 \\ 4 & -2\end{array}\right]$
d) $\left[\begin{array}{ll}2 & -6 \\ 4 & -2\end{array}\right]$
139. A and B be 3×3 matrices. Then, $A B=O$ implies
a) $A=O$ and $B=O$
b) $|A|=O$ and $|B|=O$
c) Either $|A|=O$ or $|B|=O$
d) $A=O$ or $B=O$
140.

Let $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], D=\left[\begin{array}{c}3 \\ 5 \\ 11\end{array}\right]$ and $A=\left[\begin{array}{ccc}1 & -1 & -2 \\ 2 & 1 & 1 \\ 4 & -1 & -2\end{array}\right]$, if $X=A^{-1} D$, then X is equal to
a) $\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$
b) $\left[\begin{array}{c}\frac{8}{3} \\ \frac{-1}{3} \\ 0\end{array}\right]$
c) $\left[\begin{array}{c}-\frac{8}{3} \\ 1 \\ 0\end{array}\right]$
d) $\left[\begin{array}{c}\frac{8}{3} \\ \frac{1}{3} \\ -1\end{array}\right]$
141. If A and B are matrics such that $A B$ and $A+B$ both are defined, then
a) A and B can be any two matrices
b) A and B are square matrices not necessarily of the same order
c) A, B are square matrices of the same order
d) Number of columns of A is same as the number of rows of B
142. Let a, b, c be any real numbers. Suppose that there are real numbers x, y, z not all zero such that $x=c y+b z, y=a z+c x$, and $z=b x+a y$ have non-zero solution. Then, $a^{2}+b^{2}+c^{2}+2 a b c$ is equal to
a) 1
b) 2
c) -1
d) 0
143. If I_{n} is the identity matrix of order n, then rank of I_{n} is
a) 1
b) n
c) 0
d) None of these
144.

If the matrix $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & \lambda\end{array}\right]$ is singular, then λ is equal to
a) 3
b) 4
c) 2
d) 5
145. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then $I+A+A^{2}+A^{3}+\cdots \infty$ equals to
a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
b) $\left[\begin{array}{ll}-1 & -2 \\ -3 & -4\end{array}\right]$
c) $\left[\begin{array}{cc}1 / 2 & -1 / 3 \\ -1 / 2 & 0\end{array}\right]$
d) $\left[\begin{array}{cc}-1 / 4 & 1 / 3 \\ 1 / 2 & 0\end{array}\right]$
146. If A is a non-singular square matrix of order n, then the rank of A is
a) Equal to n
b) Less than n
c) Greater than n
d) None of these
147. If $\mathrm{A}=\left[\begin{array}{cc}1 & -2 \\ 4 & 5\end{array}\right]$ and $f(t)=t^{2}-3 t+7$, then $f(A)+\left[\begin{array}{cc}3 & 6 \\ -12 & -9\end{array}\right]$ is equal to
a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
b) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
c) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
d) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
148. The system of linear equations
$x+y+z=2$
$2 x+y-z=3$
$3 x+2 y+k z=4$ has a unique solution if
a) $k \neq 0$
b) $-1<k<1$
c) $-2<k<2$
d) $k=0$
149. The number of solutions of the system of equations
$2 x+y-z=7, x-3 y+2 z=1, x+4 y-3 z=5$ is
a) 0
b) 1
c) 2
d) 3
150. If $X=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, the value of X^{n} is equal to
а) $\left[\begin{array}{cc}3 n & -4 n \\ n & -n\end{array}\right]$
b) $\left[\begin{array}{cc}2+n & 5-n \\ n & -n\end{array}\right]$
c) $\left[\begin{array}{ll}3^{n} & (-4)^{n} \\ 1^{n} & (-1)^{n}\end{array}\right]$
d) None of these
151. If I_{3} is the identity matrix of order 3 , then $\left(I_{3}\right)^{-1}=$
a) 0
b) $3 I_{3}$
c) I_{3}
d) Not necessarily exists
152. If $A=\left[a_{i j}\right]$ is a square matrix of order $n \times n$ and k is a scalar, then $|k A|=$
a) $k^{n}|A|$
b) $k|A|$
c) $k^{n-1}|A|$
d) None of these
153.

If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]$, then A^{2} is equal to
a) Null matrix
b) Unit matrix
c) $-A$
d) A
154. If $A=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$, then value of α for which $A^{2}=B$ is
a) 1
b) -1
c) 4
d) No real values
155.

If A is a square matrix such that $A(\operatorname{adj} A)=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]$, then $|\operatorname{adj} A|=$
a) 4
b) 16
c) 64
d) 256
156. If ω is a complex cube root of unity and $A=\left[\begin{array}{ll}\omega & 0 \\ 0 & \omega\end{array}\right]$, then A^{50} is
a) $\omega^{2} A$
b) $\omega \mathrm{A}$
c) A
d) 0
157. If $A=\left[\begin{array}{lll}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $A B=I_{3}$, then $x+y$ equals
a) 0
b) -1
c) 2
d) None of these
158. The adjoint of the matrix $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ is
a) $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
b) $\left[\begin{array}{cc}\sin \theta & \cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$
c) $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
d) $\left[\begin{array}{cc}-\sin \theta & \cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$
159.

The inverse matrix of $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$ is
a) $\left[\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2}\end{array}\right]$
b) $\left[\begin{array}{ccc}\frac{1}{2} & -4 & \frac{5}{2} \\ 1 & -6 & 3 \\ 1 & 2 & -1\end{array}\right]$
c) $\frac{1}{2}\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 4 & 2 & 3\end{array}\right]$
d) $\frac{1}{2}\left[\begin{array}{ccc}1 & -1 & -1 \\ -8 & 6 & -2 \\ 5 & -3 & 1\end{array}\right]$
160. If $f(\theta)=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$, then $\left\{f(\theta)^{-1}\right\}$ is equal to
a) $f(-\theta)$
b) $f(\theta)^{-1}$
c) $f(2 \theta)$
d) None of these
161. If the three linear equations
$x+4 a y+a z=0$
$x+3 b y+b z=0$
$x+2 c y+c z=0$
Have a non-trivial solution, where $a \neq 0, b \neq 0, c \neq 0$, then $a b+b c$ is equal to
a) $2 a c$
b) $-a c$
c) $a c$
d) $-2 a c$
162. If A and B are two matrices such that rank of $A=m$ and rank of $B=n$, then
a) $\operatorname{rank}(A B)=m n$
b) $\operatorname{rank}(A B) \geq \operatorname{rank}(A)$
c) $\operatorname{rank}(A B) \geq \operatorname{rank}(B)$
d) $\operatorname{rank}(A B) \leq \min (\operatorname{rank} A, \operatorname{rank} B)$
163. If A is a non-zero column matrix of order $m \times 1$ and B is a non-zero row matrix of order $1 \times n$, then rank of $A B$ equats
a) 1
b) 2
c) 3
d) 4
164. If $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then A is equal to
a) $-\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
c) $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
d) $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
165. If $A^{2}-A+I=0$, then the inverse of A is
a) $I-A$
b) $A-I$
c) A
d) $A+I$
166. If B is an invertible matrix and A is a matrix, then
a) $\operatorname{rank}(B A)=\operatorname{rank}(A)$
b) $\operatorname{rank}(B A) \geq \operatorname{rank}(B)$
c) $\operatorname{rank}(B A)>\operatorname{rank}(A)$
d) $\operatorname{rank}(B A)>\operatorname{rank}(B)$
167. If $A=\left[\begin{array}{ll}4 & 2 \\ 3 & 4\end{array}\right]$, $|\operatorname{adj} A|$ is equal to
a) 6
b) 16
c) 10
d) None of these
168. $\cos \theta\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]+\sin \theta\left[\begin{array}{cc}\sin \theta-\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$ is equal to
a) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
c) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
169. Let $A=\left[a_{i j}\right]_{m \times n}$ be a matrix such that $a_{i j}=1$ for all i, j. Then,
a) $\operatorname{rank}\left(A^{T}\right)>1$
b) $\operatorname{rank}(A)=1$
c) $\operatorname{rank}(A)=m$
d) $\operatorname{rank}(A)=n$
170. Let A be a square matrix all of whose entries are integers. Then, which one of the following is true?
a) If $\operatorname{det}(A)= \pm 1$, then A^{-1} need not exist
b) If $\operatorname{det}(A)= \pm 1$, then A^{-1} exists but all its entries are not necessarily integers
c) If $\operatorname{det}(A) \neq \pm 1$, then A^{-1} exists and all its entries are non - integers
d) If $\operatorname{det}(A)= \pm 1$,then A^{-1} exists and all its entries are integers
171.

Matrix $A=\left[\begin{array}{ccc}1 & 0 & -k \\ 2 & 1 & 3 \\ k & 0 & 1\end{array}\right]$ is invertible for
a) $k=1$
b) $k=-1$
c) $k= \pm 1$
d) None of these
172. If $\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$, then
a) $a=1, b=1$
b) $a=\cos 2 \theta, b=\sin 2 \theta$
c) $a=\sin 2 \theta, b=\cos 2 \theta$
d) None of these
173. If $x^{2}+y^{2}+z^{2} \neq 0, x=c y+b z, y=a z+c x$ and $z=b x+a y$, then $a^{2}+b^{2}+c^{2}+2 a b c=$
a) 2
b) $a+b+c$
c) 1
d) $a b+b c+c a$
174. If $A=\left[\begin{array}{cc}1 & -3 \\ 2 & k\end{array}\right]$ and $A^{2}-4 A=10 I=A$ then k is equal to
a) 0
b) -4
c) 4 and not 1
d) 1 or 4
175. Matrix A such that $A^{2}=2 A-I$, where I is the identity matrix. Then, for $n \geq 2, A^{n}$ is equal to
a) $n A-(n-1) I$
b) $n A-I$
c) $2^{n-1} A-(n-1) I$
d) $2^{n-1} A-I$
176. The matrix A satisfying the equation $\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] A=\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]$ is
а) $\left[\begin{array}{cc}1 & 4 \\ -1 & 0\end{array}\right]$
b) $\left[\begin{array}{cc}1 & -4 \\ 1 & 0\end{array}\right]$
c) $\left[\begin{array}{cc}1 & 4 \\ 0 & -1\end{array}\right]$
d) None of these
177. If A is an orthogonal matrix, then A^{-1} equals
a) A
b) A^{T}
c) A^{2}
d) None of these
178.

By elementary transformation method, the inverse of $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6\end{array}\right]$ is
а) $\left[\begin{array}{ccc}-2 & 0 & 1 \\ 0 & 3 & -2 \\ 1 & -2 & 1\end{array}\right]$
b) $\left[\begin{array}{ccc}2 & 0 & -1 \\ 0 & -3 & 2 \\ -1 & 2 & -1\end{array}\right]$
с) $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6\end{array}\right]$
d) None of these
179. What must be the matrix X, if $2 X+\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]$?
a) $\left[\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right]$
b) $\left[\begin{array}{ll}1 & -3 \\ 2 & -1\end{array}\right]$
c) $\left[\begin{array}{cc}2 & 6 \\ 4 & -2\end{array}\right]$
d) $\left[\begin{array}{ll}2 & -6 \\ 4 & -2\end{array}\right]$
180. If $A=\left[\begin{array}{cc}4 & x+2 \\ 2 x-3 & x+1\end{array}\right]$ is symmetric, then $x=$
a) 3
b) 5
c) 2
d) 4
181.

If $A=\left[\begin{array}{lll}3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3\end{array}\right], A^{4}$ is equal to
a) 27 A
b) 81 A
c) 243 A
d) 729 A
182. If ω is a complex cube root of unity, then the matrix $A=\left[\begin{array}{ccc}1 & \omega^{2} & \omega \\ \omega^{2} & \omega & 1 \\ \omega & 1 & \omega^{2}\end{array}\right]$ is a
a) Singular matrix
b) Non-symmetric matrix
c) Skew-symmetric matrix
d) None of these
183. The values of λ and μ for which of the system of equations $x+y+z=6, x=2 y+3 z=10$ and $x+2 y+$ $\lambda z=\mu$ have infinite number of solutions, are
a) $\lambda=3, \mu=10$
b) $\lambda=3, \mu=\neq 10$
c) $\lambda \neq 3, \mu=10$
d) $\lambda \neq 3, \mu=\neq 10$
184. If A and B are square matrices of the same order such that $(A+B)(A-B)=A^{2}-B^{2}$, than $\left(A B A^{-1}\right)^{2}$ is equal to
a) B^{2}
b) I
c) $A^{2} B^{2}$
d) A^{2}
185. If A is a skew-symmetric matrix, then trace of A is
a) 1
b) -1
c) 0
d) None of these
186. A square matrix P satisfies $P^{2}=I-P$, where I is the identity matrix. If $P^{n}=5 I-8 P$, then n is equal to
a) 4
b) 5
c) 6
d) 7
187. Let A and B are two square matrices such that $A B=A$ and $B A=B$, then A^{2} equals to
a) B
b) A
c) I
d) 0
188. A and B are two square matrices of same order and A^{\prime} denotes the transpose of A, then
a) $(A B)=B^{\prime} A^{\prime}$
b) $(A B)^{\prime}=A^{\prime} B^{\prime}$
c) $A B=0 \Rightarrow|A|=0$ or $|B|=0$
d) $A B=0 \Rightarrow A=0$ or $B=0$
189.

The element in the first row and third column of the inverse of the matrix $\left[\begin{array}{lll}1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$ is
a) -2
b) 0
c) 1
d) 7
190. If $A=\left[\begin{array}{ccc}\cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]=f(x)$, then A^{-1} is equal to
a) $f(-x)$
b) $f(x)$
c) $-f(x)$
d) $-f(-x)$
191. If $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$, then A^{-1} is
a) $-A$
b) A
c) 1
d) None of these
192. If $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right]$ and $A^{2}-k A-5 I_{2}=O$, then the value of k is
a) 3
b) 5
c) 7
d) -7
193. Consider the following statements :

1. There can exist two matrices A, B of order 2×2 such that $A B-B A=I_{2}$
2. Positive odd integral power of a skew-symmetric matrix is symmetric
a) Only (1)
b) Only (2)
c) Both of these
d) None of these
3. If $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -2 & -2 \\ 1 & 3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 3 \\ 4\end{array}\right]$, then $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is equal to
a) $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
b) $\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]$
c) $\left[\begin{array}{c}5 \\ -2 \\ 1\end{array}\right]$
d) $\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]$
4. The number of non-trivial solutions of the system $x-y+z=0, x+2 y-z=0,2 x+y+3 z=0$ is
a) 0
b) 1
c) 2
d) 3
5. If $\left[\begin{array}{ccc}1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1\end{array}\right]$ has no inverse, then the real value of x is
a) 2
b) 3
c) 0
d) 1
6. If $\left[\begin{array}{ccc}2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5\end{array}\right]$ is a singular matrix, then x is
a) $\frac{13}{25}$
b) $-\frac{25}{13}$
c) $\frac{5}{13}$
d) $\frac{25}{13}$
7. The rank of the matrix $A=\left[\begin{array}{cccc}2 & 3 & 1 & 4 \\ 0 & 1 & 2 & -1 \\ 0 & -2 & -4 & 2\end{array}\right]$ is
a) 2
b) 3
c) 1
d) Indeterminate
8. If $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ and $A^{2}=\left[\begin{array}{ll}\alpha & \beta \\ \beta & \alpha\end{array}\right]$, then
a) $\alpha=a^{2}+b^{2}, \beta=a b$
b) $\alpha=a^{2}+b^{2}, \beta=2 a b$
c) $\alpha=a^{2}+b^{2}, \beta=a^{2}-b^{2}$
d) $\alpha=2 a b,=a^{2}+b^{2}$
9. If $A=\left[a_{i j}\right]$ is a scalar matrix, then trace of A is
a) $\sum_{i} \sum_{j} a_{i j}$
b) $\sum_{i} a_{i j}$
c) $\sum_{j} a_{i j}$
d) $\sum_{i} a_{i i}$
10. The system of equations $x+2 y+3 z=1,2 x+y+3 z=2,5 x+5 y+9 z=5$ has
a) Unique solution
b) Infinite many solution
c) Inconsistent
d) None of the above
11.

The rank of the matrix $\left[\begin{array}{ccc}4 & 2 & (1-x) \\ 5 & k & 1 \\ 6 & 3 & (1+x)\end{array}\right]$ is 2, then
a) $k=\frac{5}{2}, x=\frac{1}{5}$
b) $k=\frac{5}{2}, x \neq \frac{1}{5}$
c) $k=\frac{1}{5}, x=\frac{5}{2}$
d) None of these
203. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$, then $A^{2}=$
а) $\left[\begin{array}{cc}8 & -5 \\ -5 & 3\end{array}\right]$
b) $\left[\begin{array}{cc}8 & -5 \\ 5 & 3\end{array}\right]$
c) $\left[\begin{array}{cc}8 & -5 \\ -5 & -3\end{array}\right]$
d) $\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]$
204. If ω is a root of unity and $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right]$, then A^{-1} is equal to
а) $\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega^{2} & 1 & \omega \\ \omega & \omega^{2} & 1\end{array}\right]$
b) $\frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2}\end{array}\right]$
c) $\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \\ 1 & 1 & 1\end{array}\right]$
d) $\frac{1}{2}\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \\ 1 & 1 & 1\end{array}\right]$
205. If $A=\left[a_{i j}\right]_{m \times n}$ is a matrix of rank r, then
a) $r=\min (m, n)$
b) $r<\min (m, n)$
c) $r \leq \min (m, n)$
d) None of these
206. For each real $x:-1<x<1$. Let $A(x)$ be the matrix $(1-x)^{-1}\left[\begin{array}{cc}1 & -x \\ -x & 1\end{array}\right]$ and $z=\frac{x+y}{1+x y}$, then
a) $A(z)=A(x) A(y)$
b) $A(z)=A(x)-A(y)$
c) $A(z)=A(x)[A(y)]^{-1}$
d) $A(z)=A(x)+A(y)$
207. If $A(\alpha)=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, then the matrix $A^{2}(\alpha)$ is
a) $\mathrm{A}(2 \alpha)$
b) $\mathrm{A}(\alpha)$
c) $\mathrm{A}(3 \alpha)$
d) $\mathrm{A}(4 \alpha)$
208. If A is a symmetric matrix and $n \in N$, then A^{n} is
a) Symmetric matrix
b) A diagonal matrix
c) Skew-symmetric matrix
d) None of the above
209.

The inverse matrix of $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$ is
a) $\left[\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2}\end{array}\right]$
b) $\left[\begin{array}{ccc}\frac{1}{2} & -4 & \frac{5}{2} \\ 1 & -6 & 3 \\ 1 & 2 & -1\end{array}\right]$
c) $\frac{1}{2}\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 4 & 2 & 3\end{array}\right]$
d) $\frac{1}{2}\left[\begin{array}{ccc}1 & -1 & -1 \\ -8 & 6 & -2 \\ 5 & -3 & 1\end{array}\right]$
210.

If $A=\left[\begin{array}{ccc}2 & 0 & -3 \\ 4 & 3 & 1 \\ -5 & 7 & 2\end{array}\right]$ is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is
а) $\left[\begin{array}{ccc}2 & 2 & -4 \\ 2 & 3 & 4 \\ -4 & 4 & 2\end{array}\right]$
b) $\left[\begin{array}{ccc}2 & 4 & -5 \\ 0 & 3 & 7 \\ -3 & 1 & 2\end{array}\right]$
c) $\left[\begin{array}{ccc}4 & 4 & -8 \\ 4 & 6 & 8 \\ -8 & 8 & 4\end{array}\right]$
d) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
211. If the system of linear equations $x+2 a y+a z=0, x+3 b y+b z=0$ and $x+4 c y+c z=0$ has a non-zero solution, then a, b, c
a) Are in AP
b) Are in GP
c) Are in HP
d) Satisfy $a+2 b+3 c=0$
212. For what value of k the following system of linear equations will have infinite solutions $x-y+z=3,2 x+y-z=2$ and $-3 x+2 k y+6 z=3$
a) $k \neq 2$
b) $k=0$
c) $k=3$
d) $k \in[2,3]$
213. The product of two orthogonal matrices is
a) Orthogonal
b) Involutory
c) Unitary
d) Idempotent
214. The system of equations $x+y+z=8, x-y+2 z=6,3 x+5 y-7 z=14$ has
a) No solution
b) Unique solution
c) Infinitely many solution
d) None of the above
215. If the system of equations $x+a y=0, a z+y=0$ and $a x+z=0$ has infinite solutions, then the value of a is
a) -1
b) 1
c) 0
d) No real values
216. $\left[\begin{array}{ll}-6 & 5 \\ -7 & 6\end{array}\right]^{-1}=$
a) $\left[\begin{array}{ll}-6 & 5 \\ -7 & 6\end{array}\right]$
b) $\left[\begin{array}{cc}6 & -5 \\ -7 & 6\end{array}\right]$
c) $\left[\begin{array}{ll}6 & 5 \\ 7 & 6\end{array}\right]$
d) $\left[\begin{array}{ll}6 & -5 \\ 7 & -6\end{array}\right]$
217.

Let $F(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$, then $[F(\alpha)]^{-1}$ is equal to
a) $F(-\alpha)$
b) $F\left(\alpha^{-1}\right)$
c) $F(2 \alpha)$
d) None of these
218. Let for any matrix M, M^{-1} exist which of the following is not true?
a) $\left|M^{-1}\right|=|M|^{-1}$
b) $\left(M^{2}\right)^{-1}=\left(M^{-1}\right)^{2}$
c) $\left(M^{T}\right)^{-1}=\left(M^{-1}\right)^{T}$
d) $\left(M^{-1}\right)^{-1}=M$
219. If A and B are square matrices of size $n \times n$ such that
$A^{2}-B^{2}=(A-B)(A+B)$, then which of the following will be always true?
a) $A B=B A$
b) Either of A or B is a zero matrix
c) Either of A or B is an identity matrix
d) $A=B$
220. $x_{1}+2 x_{2}+3 x_{3}=2 x_{1}+3 x_{2}+x_{3}=3 x_{1}+x_{2}+2 x_{3}=0$.

This system of equations has
a) Infinite solution
b) No solution
c) No solution
d) Unique solution
221. If A is a 3×4 matrix and B is a matrix such that $A^{T} B$ and $B A^{T}$ are both defined, then order of B is
a) 3×4
b) 3×3
c) 4×4
d) 4×3
222. If $X=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, then the value of X^{n} is
а) $\left[\begin{array}{cc}3 n & -4 n \\ n & -n\end{array}\right]$
b) $\left[\begin{array}{cc}2+n & 5-n \\ n & -n\end{array}\right]$
c) $\left[\begin{array}{ll}3^{n} & (-4)^{n} \\ 1^{n} & (-1)^{n}\end{array}\right]$
d) None of these
223. Let $f(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$, where $\alpha \in R$. Then, $(F(\alpha))^{-1}$ is equal to
a) $F(-\alpha)$
b) $F\left(\alpha^{-1}\right)$
c) $F(2 \alpha)$
d) None of these
224. For any square matrix $A, A A^{T}$ is a
a) Unit matrix
b) Symmetric matrix
c) Skew-symmetric matrix
d) Diagonal matrix
225. If A is a square matrix or order $n \times n$, then $\operatorname{adj}(\operatorname{adj} A)$ is equal to
a) $|A|^{n} A$
b) $|A|^{n-1} A$
c) $|A|^{n-2} A$
d) $|A|^{n-3} A$
226. If a system of the equations $(\alpha+1)^{3} x+(\alpha+2)^{3} y-(\alpha+3)^{3}=0$,
$(\alpha+1) x+(\alpha+2) y-(\alpha+3)=0$, and $x+y-1=0$ is consistent. What is the value of α ?
a) 1
b) 0
c) -3
d) -2
227. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then $\lim _{n \rightarrow \infty} \frac{1}{n} A^{n}$ is
a) A null matrix
b) An identity matrix
c) $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
d) None of these
228. If $A=\left[\begin{array}{cc}\cos ^{2} \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin ^{2} \alpha\end{array}\right]$
and, $B=\left[\begin{array}{cc}\cos ^{2} \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin ^{2} \beta\end{array}\right]$
are two matrices such that the product $A B$ is the null matrix, then $(\alpha-\beta)$ is
a) 0
b) Multiple of π
c) An odd multiple of $\pi / 2$
d) None of these
229. If A be a square matrix of order n and if $|A|=D$ and $|\operatorname{adj} A|=D^{\prime}$, then
a) $D D^{\prime}=D^{2}$
b) $D D^{\prime}=D^{-1}$
c) $D D^{\prime}=D^{n}$
d) None of these
230. If $1, \omega, \omega^{2}$ are the cube roots of unity and if $\left[\begin{array}{cc}1+\omega & 2 \omega \\ -2 \omega & -b\end{array}\right]+\left[\begin{array}{cc}a- & \omega \\ 3 \omega & 2\end{array}\right]=\left[\begin{array}{cc}0 & \omega \\ \omega & 1\end{array}\right]$, then $a^{2}+b^{2}$ is equal to
a) $1+\omega^{2}$
b) $\omega^{2}-1$
c) $1+\omega$
d) $(1+\omega)^{2}$
231. If a square matrix A is orthogonal as well as symmetric, then
a) A is involutory matrix
b) A is idempotent matrix
c) A is a diagonal matrix
d) None of these
232. The real value of k for which the system of equations $2 k x-2 y+3 z=0, x+k y+2 z=0,2 x+k z=0$, has non-trivial solution is
a) 2
b) -2
c) 3
d) -3
233.

If the matrices $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ 0 & 2 \\ 5 & 0\end{array}\right]$, then $A B$
а) $\left[\begin{array}{cc}17 & 0 \\ 4 & -2\end{array}\right]$
b) $\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]$
c) $\left[\begin{array}{cc}17 & 4 \\ 0 & -2\end{array}\right]$
d) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
234. If $A=\left[\begin{array}{ll}a & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$, then value of α for which $A^{2}=B$ is
a) 1
b) -1
c) 4
d) No real values
235. If $E(\theta)=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then $E(\alpha) E(\beta)$ is equal to
a) $E\left(0^{\circ}\right)$
b) $E(\alpha \beta)$
c) $E(\alpha+\beta)$
d) $E(\alpha-\beta)$
236. If $A=\left[\begin{array}{cc}b & b^{2} \\ -a^{2} & -a b\end{array}\right]$, then A is
a) Iidempotent
b) Involutory
c) Nilpotent
d) Scalar
237.

The matrix $A=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]$ is
a) Unitary
b) Orthogonal
c) Nilpotent
d) Involutory
238. Let $X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$. If $A X=B$, then X is equal to
a) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
b) $\left[\begin{array}{c}-1 \\ -2 \\ 3\end{array}\right]$
c) $\left[\begin{array}{l}-1 \\ -2 \\ -3\end{array}\right]$
d) $\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$
239. If A is a skew-symmetric matrix of odd order, then $|\operatorname{adj} A|$ is equal to
a) 0
b) n
c) n^{2}
d) None of these
240. The system of equations $x+3 y+2 z=0,3 x+y+z=0$ and $2 x-2 y-z=0$
a) Possesses a trivial solution only
b) Possesses a non-zero unique solution
c) Does not have a common non-zero solution
d) Has infinitely many solutions
241. Consider the following statements:

1. A square matrix A is hermitian, if $A=A^{\prime}$
2. Let $A=\left[a_{i j}\right]$ be a skew- hermitian matrix, then $a_{i j}$ is purely imaginary
3. All integer powers of a symmetric matrix are symmetric. Which of these is/are correct?
a) (1) and (2)
b) (2) and (3)
c) (3) and (1)
d) (1), (2) and (3)
4. If $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ are in AP with common difference $d \neq 0$, then the system of equations $a_{1} x+a_{2} y=$ $a_{3}, a_{4} x+a_{5} y=a_{6}$ has
a) Infinite number of solutions
b) Unique solution
c) No solution
d) Cannot say any thing
5. If I_{n} is the identity matrix of order n, then $\left(I_{n}\right)^{-1}$ is equal to
a) Does not exist
b) I_{n}
c) 0
d) $n I_{n}$
6. If A is a square matrix, then adj $A^{T}-(\operatorname{adj} A)^{T}$ is equal to
a) $2|A|$
b) $2|A| I$
c) Null matrix
d) Unit matrix
7.

If $\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 3 & -1 \\ 3 & 2 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}9 \\ 4 \\ 10\end{array}\right]$,then $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is equal to
a) $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$
b) $\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$
c) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
d) $\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$
246. Consider the system of equations
$a_{1} x+b_{1} y+c_{1} z=0$
$a_{2} x+b_{2} y+c_{2} z=0$
$a_{3} x+b_{3} y+c_{3} z=0$
if $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=0$, then the system has
a) More than two solutions
b) One trivial and one non-trivial solutions
c) No solution
d) Only trivial solution ($0,0,0$)
247. The number of solutions of the system of equations
$x-y+z=2$
$2 x+y-z=5$
$4 x+y+z=10$ is
a) ∞
b) 1
c) 2
d) 0
248. If $\left[\begin{array}{c}\cos \theta-\sin \theta \\ \sin \theta \\ \cos \theta\end{array}\right]$, then which of the following statement is not correct?
a) A is orthogonal matrix
b) A^{\prime} is orthogonal matrix
c) Determinant $A=1$
d) A is not invertible
249. If $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$, then A^{-1} is equal to
a) 2 A
b) A
c) $-A$
d) I
250.

The rank of the matrix $\left[\begin{array}{ccc}-1 & 2 & 5 \\ 2 & -4 & a-4 \\ 1 & -2 & a+1\end{array}\right]$ is
a) 1 if $a=6$
b) 2 if $a=1$
c) 3 if $a=2$
d) 4 if $a=-6$
251. If $D=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right)$, where $d_{i} \neq 0$ for all $i=1,2, \ldots, n$, then D^{-1} is equal to
a) D
b) diag $\left(d_{1}^{-1} d_{2}^{-1}, \ldots, d_{n}^{-1}\right)$
c) I_{n}
d) None of these
252. If $f(x)=x^{2}+4 x-5$ and $A=\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right]$, then $f(A) i s$ equal to
а) $\left[\begin{array}{rr}0 & -4 \\ 8 & 8\end{array}\right]$
b) $\left[\begin{array}{ll}2 & 1 \\ 2 & 0\end{array}\right]$
c) $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
d) $\left[\begin{array}{ll}8 & 4 \\ 8 & 0\end{array}\right]$
253. If $A=\left[\begin{array}{cr}2 & -1 \\ -1 & 2\end{array}\right]$ and I is the unit matrix of order 2 , then A^{2} equals
a) $4 A-3 I$
b) $3 A-4 I$
c) $A-I$
d) $A+I$
254. Which one of the following is true always for any two non-singular matrices A and B of same order?
a) $A B=B A$
b) $(A B)^{t}=A^{t} B^{t}$
c) $(A+B)(A-B)=A^{2}-B^{2}$
d) $(A B)^{-1}=B^{-1} A^{-1}$
255.

The inverse of $\left[\begin{array}{lll}0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0\end{array}\right]$ is
а) $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
b) $\left[\begin{array}{llr}1 / 2 & 0 & 2 \\ 0 & 1 / 2 & 0 \\ 0 & 0 & 1 / 2\end{array}\right]$
c) $\left[\begin{array}{lll}0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0\end{array}\right]$
d) $\left[\begin{array}{crr}0 & 0 & 1 / 2 \\ 0 & 1 / 2 & 0 \\ 1 / 2 & 0 & 0\end{array}\right]$
256. The values of a for which the system of equations $a x+y+z=0, x-a y+z=0$,
$x+y+z=0$ possesses non-zero solution, are given by
a) 1,2
b) $1,-1$
c) 0
d) None of these
257. If A is square matrix, then
a) $A+A^{T}$ is symmetric
b) $A A^{T}$ is skew-symmetric
c) $A^{T}+A$ is skew-symmetric
d) $A^{T} A$ is skew-symmetric
258. If $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]$, then $\operatorname{det}[\operatorname{adj}(\operatorname{adj} A)]$ is equal to
a) 12^{4}
b) 13^{4}
c) 14^{4}
d) None of these
259.

If $\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & -2 & -2 \\ 1 & 3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 3 \\ 4\end{array}\right]$, then $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is equal to
а) $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
b) $\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]$
c) $\left[\begin{array}{c}5 \\ -2 \\ 1\end{array}\right]$
d) $\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]$
260. If $A=\left[\begin{array}{cc}1 & 2 \\ -4 & -1\end{array}\right]$, then A^{-1} is
a) $\frac{1}{7}\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]$
b) $\frac{1}{7}\left[\begin{array}{cl}1 & 2 \\ -4 & -1\end{array}\right]$
c) $\frac{1}{7}\left[\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right]$
d) Does not exist
261. If the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is commutative with the matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, then
a) $a=0, b=c$
b) $b=0, c=d$
c) $c=0, d=a$
d) $d=0, a=b$
262.

If $A=\left[\begin{array}{rrr}1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$, then $A B$ is equal to
а) $\left[\begin{array}{lrr}5 & 1 & -3 \\ 3 & 2 & 6 \\ 14 & 5 & 0\end{array}\right]$
b) $\left[\begin{array}{ccc}11 & 4 & 3 \\ 1 & 2 & 3 \\ 0 & 3 & 3\end{array}\right]$
c) $\left[\begin{array}{lll}1 & 8 & 4 \\ 2 & 9 & 6 \\ 0 & 2 & 0\end{array}\right]$
d) $\left[\begin{array}{lll}0 & 1 & 2 \\ 5 & 4 & 3 \\ 1 & 8 & 2\end{array}\right]$
263. Let A be a skew-symmetric matrix of odd order, then $|A|$ is equal to
a) 0
b) 1
c) -1
d) None of these
264.

If $P=\left[\begin{array}{cc}\sqrt{3} / 2 & 1 / 2 \\ -1 / 2 & \sqrt{3} / 2\end{array}\right], A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $Q=P A P^{T}$, then $P^{T} Q^{2005} P$ is
a) $\left[\begin{array}{cc}1 & 2005 \\ 0 & 1\end{array}\right]$
b) $\left[\begin{array}{lr}1 & 2005 \\ 2005 & 1\end{array}\right]$
c) $\left[\begin{array}{cc}1 & 0 \\ 2005 & 1\end{array}\right]$
d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
265. If X and Y are 2×2 matrices such that $2 X+3 Y=O$ and $X+2 Y=I$, where O and I denote the 2×2 zero matrix and the 2×2 identity matrix, then X is equal to
a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
b) $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
c) $\left[\begin{array}{ll}-3 & 0 \\ 0 & -3\end{array}\right]$
d) $\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$
266. Consider the system of linear equations
$x_{1}+2 x_{2}+x_{3}=3$
$2 x_{1}+3 x_{2}+x_{3}=3$
$3 x_{1}+5 x_{2}+2 x_{3}=1$
The system has
a) Infinite number of solutions
b) Exactly 3 solutions
c) A unique solution
d) No solution
267.

If $A=\left[\begin{array}{rr}x & -2 \\ 3 & 7\end{array}\right]$ and $A^{-1}=\left[\begin{array}{cc}\frac{7}{34} & \frac{1}{17} \\ \frac{-3}{34} & \frac{2}{17}\end{array}\right]$, then the value of x is
a) 2
b) 3
c) -4
d) 4
268. If $A=\left[\begin{array}{ccr}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]$. The only correct statement about the matrix A is
a) A is a zero matrix
b) $A=(-1) I$, where I is a unit matrix
c) A^{-1} does not exist
d) $A^{2}=I$
269. The inverse of the matrix $\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]$ is equal to
a) $\left[\begin{array}{cc}10 & 3 \\ 3 & 1\end{array}\right]$
b) $\left[\begin{array}{cc}10 & -3 \\ -3 & 1\end{array}\right]$
c) $\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]$
d) $\left[\begin{array}{cc}-1 & -3 \\ -3 & -10\end{array}\right]$
270.

If $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$, then $A B$ is equal to
а) $\left[\begin{array}{ccc}5 & 1 & -3 \\ 3 & 2 & 6 \\ 14 & 5 & 0\end{array}\right]$
b) $\left[\begin{array}{ccc}11 & 4 & 3 \\ 1 & 2 & 3 \\ 0 & 3 & 3\end{array}\right]$
c) $\left[\begin{array}{lll}1 & 8 & 4 \\ 2 & 9 & 6 \\ 0 & 2 & 0\end{array}\right]$
d) $\left[\begin{array}{lll}0 & 1 & 2 \\ 5 & 4 & 3 \\ 1 & 8 & 2\end{array}\right]$
271.

If $F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$ and $G(y)=\left[\begin{array}{ccc}\cos x & 0 & \sin x \\ 0 & 1 & 0 \\ -\sin x & 0 & \cos x\end{array}\right]$, then $[F(x) G(y)]^{-1}$ is equal to
a) $F(-x) G(-y)$
b) $F\left(x^{-1}\right) G\left(y^{-1}\right)$
c) $G(-y) F(-x)$
d) $G\left(y^{-1}\right) F\left(x^{-1}\right)$
272. Let $A=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$ and $A^{-1}=x A+y I$, then the value of x and y are
a) $x=\frac{-1}{11}, y=\frac{2}{11}$
b) $x=\frac{-1}{11}, y=\frac{-2}{11}$
c) $x=\frac{1}{11}, y=\frac{2}{11}$
d) $x=\frac{1}{11}, y=\frac{-2}{11}$
273. If A^{T}, B^{T} are transpose matrices of the square matrices A, B respectively, then $(A B)^{T}$ is equal to
a) $A^{T} B^{T}$
b) $A B^{T}$
c) $B A^{T}$
d) $B^{T} A^{T}$
274. If $\left[\begin{array}{c}x+y+z \\ x+y \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$, then the value of (x, y, z) is
a) $(4,3,2)$
b) $(3,2,4)$
c) $(2,3,4)$
d) None of the above
275. If $A=\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]$, then A is equal to
a) Idempotent
b) Involuntary
c) Nilpotent
d) Scalar
276. For non-singular square matrices A, B and C of the same order, $\left(A B^{-1} C\right)^{-1}$ is equal to
a) $A^{-1} B C^{-2}$
b) $C^{-1} B^{-1} A^{-1}$
c) $C B A^{-1}$
d) $C^{-1} B A^{-1}$
277.

The matrix $\left[\begin{array}{ccc}\lambda & -1 & 4 \\ -3 & 0 & 1 \\ -1 & 1 & 2\end{array}\right]$ is invertible, if
a) $\lambda \neq-17$
b) $\lambda \neq-18$
c) $\lambda \neq-19$
d) $\lambda \neq-20$
278. If a, b, c are non-zero, then the number of solutions of following system of equation is
$\frac{2 x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$
$-\frac{x^{2}}{a^{2}}+\frac{2 y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$
$-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{2 z^{2}}{c^{2}}=0$
a) 6
b) 8
c) 9
d) Infinite
279. If $A=\left[\begin{array}{cc}1 & \log _{b} a \\ \log _{a} b & 1\end{array}\right]$, then $|A|$ is equal to
a) 1
b) 0
c) $\log _{a} b$
d) $\log _{b} a$
280. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then A^{-1} is equal to
a) $-\frac{1}{2}\left[\begin{array}{lr}4 & -2 \\ -3 & 1\end{array}\right]$
b) $\frac{1}{2}\left[\begin{array}{lr}4 & -2 \\ -3 & 1\end{array}\right]$
c) $\left[\begin{array}{cc}-2 & 4 \\ 1 & 3\end{array}\right]$
d) $\left[\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right]$
281. If $P=\left[\begin{array}{ccc}i & 0 & -i \\ 0 & -i & i \\ -i & i & 0\end{array}\right]$ and $Q=\left[\begin{array}{cc}-i & i \\ 0 & 0 \\ i & -i\end{array}\right]$, then $P Q$ is equal to
а) $\left[\begin{array}{cc}-2 & 2 \\ 1 & -1 \\ 1 & -1\end{array}\right]$
b) $\left[\begin{array}{cc}2 & -2 \\ -1 & 1 \\ -1 & 1\end{array}\right]$
c) $\left[\begin{array}{cc}2 & -2 \\ -1 & 1\end{array}\right]$
d) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
282. If $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0\end{array}\right]$ and $B=(\operatorname{adj} A)$, and $C=5 A$, then $\frac{|\operatorname{adj} B|}{|C|}$ is equal to
a) 5
b) 25
c) -1
d) 1
283. For $0<\theta<\pi$, if $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, then
a) $A^{T}=A$
b) $A^{T}=-A$
c) $A^{2}=I$
d) $A^{T}=A^{-1}$
284. The values of a for which the system of equations $x+y+z=0, x+a y+a z=0, x-a y+z=0$, possesses non-zero solutions, are given by
a) 1,2
b) $1,-1$
c) 1,0
d) None of these
285. If $x\left[\begin{array}{c}-3 \\ 4\end{array}\right]+y\left[\begin{array}{l}4 \\ 3\end{array}\right]=\left[\begin{array}{c}10 \\ -5\end{array}\right]$, then
a) $x=-2, y=1$
b) $x=-9, y=10$
c) $x=22, y=1$
d) $x=2, y=-1$
286. If A is a square matrix such that $A A^{T}=I=A^{T} A$, then A is
a) A symmetric matrix
b) A skew-symmetric matrix
c) A diagonal matrix
d) An orthogonal matrix
287. The inverse of the matrix $\left[\begin{array}{cc}5 & -2 \\ 3 & 1\end{array}\right]$ is
a) $\frac{1}{11}\left[\begin{array}{cc}1 & 2 \\ -3 & 5\end{array}\right]$
b) $\left[\begin{array}{cc}1 & 2 \\ -3 & 5\end{array}\right]$
c) $\frac{1}{13}\left[\begin{array}{cc}-2 & 5 \\ 1 & 3\end{array}\right]$
d) $\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]$
288. If $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$, then $A^{5}=$
a) 5 A
b) 10 A
c) $16 A$
d) 32 A
289. If $A(\theta)=\left[\begin{array}{lr}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]$ and $A B=I$, then $\left(\sec ^{2} \theta\right) B$ is equal to
a) $A(\theta)$
b) $A\left(\frac{\theta}{2}\right)$
c) $A(-\theta)$
d) $A\left(-\frac{\theta}{2}\right)$
290. If $A=\left[a_{i j}\right]$ is a skew-symmetric matrix of order n, then $a_{i i}=$
a) 0 for some i
b) 0 for all $i=1,2, \ldots, n$
c) 1 for some i
d) 1 for all $i=1,2, \ldots, n$
291.

Let $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]$, then A^{n} is equal to
а) $\left[\begin{array}{ccc}a^{n} & 0 & 0 \\ 0 & a^{n} & 0 \\ 0 & 0 & a\end{array}\right]$
b) $\left[\begin{array}{ccc}a^{n} & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]$
c) $\left[\begin{array}{ccc}a^{n} & 0 & 0 \\ 0 & a^{n} & 0 \\ 0 & 0 & a^{n}\end{array}\right]$
d) $\left[\begin{array}{ccc}n a & 0 & 0 \\ 0 & n a & 0 \\ 0 & 0 & n a\end{array}\right]$
292. If A, B are symmetric matrices of the same order then $A B-B A$ is
a) Symmetric matrix
b) Skew-symmetric matrix
c) Null matrix
d) Unit matrix
293. If A is any $m \times n$ matrix such that $A B$ and $B A$ are both defined., then B is an
a) $m \times n$ matrix
b) $n \times m$ matrix
c) $n \times n$ matrix
d) $m \times m$ matrix
294. If A is a square matrix of order $n \times n$ and k is a scalar, then $\operatorname{adj}(k A)$ is equal to
a) $k \operatorname{adj} A$
b) $k^{n} \operatorname{adj} A$
c) $k^{n-1} \operatorname{adj} A$
d) $k^{n+1} \operatorname{adj} A$
295. $x+k y-z=0,3 x-k y-z=0$ and $x-3 y+z=0$ has non-zero solution for k is equal to
a) -1
b) 0
c) 1
d) 2
296. If $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, I is the unit matrix of order 2 and a, b are arbitrary constants, then $(a I+b A)^{2}$ is equal to
a) $a^{2} I-a b A$
b) $a^{2} I+2 a b A$
c) $a^{2} I+b^{2} A$
d) None of the above
297. If A is an orthogonal matrix, then
a) $|A|=0$
b) $|A|= \pm 1$
c) $|A|= \pm 2$
d) None of these
298. Given $2 x-y+2 z=2, x-2 y+2 z=-4, x+y+\lambda z=4$ then the value of λ such that the given system of equations has no solution, is
a) 3
b) 1
c) 0
d) -3
299.

If $A=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & x\end{array}\right]$ is an idempotent matrix, then x is equal to
a) -5
b) -1
c) -3
d) -4
300.

If $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 3 & 0 \\ 0 & 1 & 2\end{array}\right]$ and adj $A=\left[\begin{array}{ccc}6 & -2 & -6 \\ -4 & 2 & x \\ y & -1 & -1\end{array}\right]$, then $x+y=$
a) 6
b) -1
c) 3
d) 1
301. If $\left[\begin{array}{ll}x+y & 2 x+z \\ x-y & 2 z+w\end{array}\right]=\left[\begin{array}{cc}4 & 7 \\ 0 & 10\end{array}\right]$, then the value of x, y, z, w are
a) $2,2,3,4$
b) $2,3,1,2$
c) $3,3,0,1$
d) None of these
302. If for a matrix $A, A^{2}+I=O$, where I is the identity matrix, then A equals
a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
b) $\left[\begin{array}{cc}-i & 0 \\ 0 & -i\end{array}\right]$
c) $\left[\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right]$
d) $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
303. If $m\left[\begin{array}{ll}-3 & 4\end{array}\right]+n\left[\begin{array}{ll}4 & -3\end{array}\right]=\left[\begin{array}{ll}10 & -11\end{array}\right]$, then $3 m+7 n$ is equal to
a) 3
b) 5
c) 10
d) 1
304. If $A=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$ and $A(\operatorname{adj} A)=k\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then the value of k is
a) $\sin x \cos x$
b) 1
c) 2
d) 3
305. If $A=\left[\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right]$, then $\left(A^{-1}\right)^{3}$ is equal to
а) $\frac{1}{27}\left[\begin{array}{cc}1 & -26 \\ 0 & 27\end{array}\right]$
b) $\frac{1}{27}\left[\begin{array}{cc}-1 & 26 \\ 0 & 27\end{array}\right]$
c) $\frac{1}{27}\left[\begin{array}{ll}1 & -26 \\ 0 & -27\end{array}\right]$
d) $\frac{1}{27}\left[\begin{array}{cc}-1 & -26 \\ 0 & -27\end{array}\right]$
306. Let $M=\left[a_{u v}\right]_{n \times n}$ be a matrix, where $a_{u v}=\sin \left(\theta_{u}-\theta_{v}\right)+i \cos \left(\theta_{u}-\theta_{v}\right)$, the M is equal to
a) \bar{M}
b) $-M$
c) \bar{M}^{T}
d) $-\bar{M}^{T}$
307. If the system of homogeneous equations $2 x-y+z=0, x-2 y+z=0, \lambda x-y+2 z=0$ has infinitely many solutions, then
a) $\lambda=5$
b) $\lambda=-5$
c) $\lambda \neq \pm 5$
d) None of these
308. Assuming that the sum and product given below are defined, which of the following is not true for matrices?
a) $A+B=B+A$
b) $A B=A C$ does not imply $B=C$
c) $A B=O$ implies $A=0$ or $B=0$
d) $(A B)^{\prime}=B^{\prime} A^{\prime}$
309. If $E(\theta)=\left[\begin{array}{lll}\cos ^{2} & \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]$ and θ and ϕ differ by an odd multiple of $\frac{\pi}{2}$, then $E(\theta) E(\varnothing)$ is a
a) Unit matrix
b) Null matrix
c) Diagonal matrix
d) None of these
310. Consider the system of equations in x, y, z as
$x \sin 3 \theta-y+z=0$
$x \cos 2 \theta+4 y+3 z=0$
and $2 x+7 y+7 z=0$
If this system has a non-trivial solution, then for integer n, values of θ are given by
а) $\pi\left(n+\frac{(-1)^{n}}{3}\right)$
b) $\pi\left(n+\frac{(-1)^{n}}{4}\right)$
c) $\pi\left(n+\frac{(-1)^{n}}{6}\right)$
d) $\frac{n \pi}{2}$
311. If $A=\left[\begin{array}{cc}0 & 2 \\ 3 & -4\end{array}\right]$ and $k A=\left[\begin{array}{cc}0 & 3 a \\ 2 b & 24\end{array}\right]$, then the values of k, a, b are respectively
a) $-6,-12,-18$
b) $-6,4,9$
c) $-6,-4,-9$
d) $-6,12,18$
312. If A is a non-singular matrix of order 3 , then $\operatorname{adj}(\operatorname{adj} A)$ is equal to
a) A
b) A^{-1}
c) $\frac{1}{|A|} A$
d) $|A| A$
313. If A is a matrix such that $A^{2}=A+1$, where I is the unit matrix, then A^{5} is equal to
a) $5 A+I$
b) $5 A+2 I$
c) $5 A+3 I$
d) $5 A+4 I$
314. If A and B are two matrices such that both $A+B$ and $A B$ are defined, then
a) A and B are of same order
b) A is of order $m \times m$ and B is of order $n \times n$
c) Both A and B are of same order $n \times n$
d) A is of order $m \times n$ and B is of order $n \times m$
315.

If $U=\left[\begin{array}{ll}2-3 & 4\end{array}\right], X=\left[\begin{array}{lll}0 & 2 & 3\end{array}\right], V=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ and $Y=\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right]$, then $U V+X Y$
a) [20]
b) 20
c) $[-20]$
d) -20
316. The matrix $A=\left[\begin{array}{ll}a & 2 \\ 2 & 4\end{array}\right]$ is singular, if
a) $a \neq 1$
b) $a=1$
c) $a=0$
d) $a=-1$
317. If $A=\left[\begin{array}{cc}1 & x \\ x^{2} & 4 y\end{array}\right]$ and $B=\left[\begin{array}{cc}-3 & 1 \\ 1 & 0\end{array}\right]$, adj $A+B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$,

Then values of x and y are
a) 1,1
b) $\pm 1,1$
c) 1,0
d) None of these
318. $A=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$, then A^{-1} is
a) A
b) $-A$
c) $\operatorname{adj}(A)$
d) -adj (A)
319. Which of the following is incorrect?
a) $A^{2}-B^{2}=(A+B)(A-B)$
b) $\left(A^{T}\right)^{T}=A$
c) $(A B)^{n}=A^{n} B^{n}$ where A, B commute
d) $(A-I)(I+A)=0 \Leftrightarrow A^{2}=I$
320. If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $f(x)=\frac{1+x}{1-x}$, then $f(A)$ is
a) $\left[\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$
c) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
d) None of these
321. If A is an invertible matrix, then $\operatorname{det}\left(A^{-1}\right)$ is equal to
a) $\operatorname{det}(A)$
b) $\frac{1}{\operatorname{det}(A)}$
c) 1
d) None of these
322. If A and B are square matrices of the same order and $A B=3 I$, then A^{-1} is equal to
a) $3 B$
b) $\frac{1}{3} B$
c) $3 B^{-1}$
d) $\frac{1}{3} B^{-1}$
323. If the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are collinear, then the rank of the matrix $\left[\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right]$ will always be less than
a) 2
b) 3
c) 1
d) None of these
324. If $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$ and I is the unit matrix of order 2 , then A^{2} equals
a) $4 A-3 I$
b) $3 A-4 I$
c) $A-I$
d) $A+I$
325. If $A=\left[\begin{array}{ll}-2 & 6 \\ -5 & 7\end{array}\right]$, then $\operatorname{adj} A$ is
a) $\left[\begin{array}{ll}7 & -6 \\ 5 & -2\end{array}\right]$
b) $\left[\begin{array}{ll}2 & -6 \\ 5 & -7\end{array}\right]$
c) $\left[\begin{array}{ll}7 & -5 \\ 6 & -2\end{array}\right]$
d) None of these
326. If $A=\left[\begin{array}{ll}3 & 4 \\ 5 & 7\end{array}\right]$ then A. (adj $\left.A\right)$ is equal to
a) A
b) $|A|$
c) $|A| I$
d) None of these
327. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right], a, b \in N$. Then
a) There exist more than one but finite number of B 's such that $A B=B A$
b) There exist exactly one $B \operatorname{such} A B=B A$
c) There exists infinitely many B 's such that $A B=B A$
d) There cannot exist any B such that $A B=B A$
328. If $2 A+3 B=\left[\begin{array}{rrr}2 & -1 & 4 \\ 3 & 2 & 5\end{array}\right]$ and $A+2 B=\left[\begin{array}{lll}5 & 0 & 3 \\ 1 & 6 & 2\end{array}\right]$, then B is
а) $\left[\begin{array}{ccc}8 & -1 & 2 \\ -1 & 10 & -1\end{array}\right]$
b) $\left[\begin{array}{ccc}8 & 1 & 2 \\ -1 & 10 & -1\end{array}\right]$
c) $\left[\begin{array}{ccc}8 & 1 & -2 \\ -1 & 10-1\end{array}\right]$
d) $\left[\begin{array}{ccc}8 & 1 & 2 \\ 1 & 10 & 1\end{array}\right]$
329. If I is unit matrix of order 10 , then the determinant of I is equal to
a) 10
b) 1
c) $1 / 10$
d) 9
330. Let $A=\left[\begin{array}{ll}3 & 5 \\ 2 & 0\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & 17 \\ 0 & -10\end{array}\right]$, then $|A B|$ is equal to
a) 80
b) 100
c) -110
d) 92
331.

If $A=\left[\begin{array}{lll}6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1\end{array}\right]$ is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is
a) $\left[\begin{array}{lll}6 & 6 & 7 \\ 6 & 2 & 5 \\ 7 & 5 & 1\end{array}\right]$
b) $\left[\begin{array}{ccc}0 & 2 & -2 \\ -2 & 5 & -2 \\ 2 & 2 & 0\end{array}\right]$
c) $\left[\begin{array}{llr}6 & 6 & 7 \\ -6 & 2 & -5 \\ -7 & 5 & 1\end{array}\right]$
d) $\left[\begin{array}{ccc}0 & 6 & -2 \\ 2 & 0 & -2 \\ -2 & -2 & 0\end{array}\right]$
332. Let A be a non-singular square matrix. Then, $|\operatorname{adj} A|$ is equal to
a) $|A|^{n}$
b) $|A|^{n-1}$
c) $|A|^{n-2}$
d) None of these
333. If $\mathrm{A}=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & a \\ 4 & b\end{array}\right](A=B)^{2}=A^{2}+B^{2}$.Then a and b are respectively
a) $1,-1$
b) $2,-3$
c) $-1,1$
d) $3,-2$
334. For non-singular square matrices A, B and C of same order, $\left(A B^{-1} C\right)^{-1}$ is equal to
a) $A^{-1} B C^{-1}$
b) $C^{-1} B^{-1} A^{-1}$
c) $C B^{-1} A^{-1}$
d) $C^{-1} B A^{-1}$
335. If $A=\left[\begin{array}{ll}5 & 2 \\ 3 & 1\end{array}\right]$, then $A^{-1}=$
a) $\left[\begin{array}{cc}1 & -2 \\ -3 & 5\end{array}\right]$
b) $\left[\begin{array}{cc}-1 & 2 \\ 3 & -5\end{array}\right]$
c) $\left[\begin{array}{ll}-1 & -2 \\ -3 & -5\end{array}\right]$
d) $\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]$

1)	a	2)	d	3)	b	4)	b	189)	d	190)	a	191)	b	192)
5)	b	6)	c	7)	a	8)	b	193)	d	194)	b	195)	a	196)
9)	c	10)	d	11)	d	12)	d	197)	b	198)	a	199)	b	200)
13)	a	14)	d	15)	a	16)	b	201)	a	202)	a	203)	d	204)
17)	c	18)	a	19)	d	20)	b	205)	c	206)	a	207)	a	208)
21)	c	22)	b	23)	d	24)	d	209)	a	210)	a	211)	c	212)
25)	a	26)	b	27)	d	28)	b	213)	a	214)	b	215)	a	216)
29)	c	30)	a	31)	b	32)	d	217)	a	218)	b	219)	a	220)
33)	c	34)	a	35)	a	36)	a	221)	a	222)	d	223)	a	224)
37)	c	38)	c	39)	d	40)	c	225)	c	226)	d	227)	a	228)
41)	a	42)	a	43)	d	44)	a	229)	c	230)	c	231)	a	232)
45)	c	46)	d	47)	c	48)	c	233)	a	234)	d	235)	c	236)
49)	a	50)	a	51)	d	52)	a	237)	c	238)	d	239)		240)
53)	c	54)	c	55)	d	56)	d	241)	b	242)	b	243)	b	244)
57)	c	58)	d	59)	a	60)	b	245)	c	246)	a	247)	b	248)
61)	a	62)	c	63)	a	64)	d	249)	b	250)	b	251)	b	252)
65)	d	66)	b	67)	b	68)	b	253)	a	254)	d	255)	d	256)
69)	b	70)	c	71)	b	72)	a	257)	a	258)	c	259)	b	260)
73)	b	74)	d	75)	d	76)	a	261)	c	262)	a	263)	a	264)
77)	c	78)	d	79)	d	80)	a	265)	c	266)	d	267)	d	268)
81)	b	82)	b	83)	a	84)	b	269)	b	270)	a	271)	c	272)
85)	a	86)	c	87)	b	88)	d	273)	d	274)	c	275)		276)
89)	a	90)	d	91)	c	92)	a	277)	a	278)	d	279)	b	280)
93)	d	94)	a	95)	d	96)	b	281)	b	282)	d	283)	d	284)
97)	b	98)	b	99)	d	100)	b	285)	a	286)	d	287)	a	288)
101)	b	102)	b	103)	b	104)	a	289)	c	290)	b	291)	c	292)
105)	b	106)	d	107)	b	108)	b	293)	b	294)	c	295)	c	296)
109)	c	110)	b	111)	b	112)	a	297)	b	298)	b	299)	c	300)
113)	a	114)	a	115)	d	116)	c	301)	a	302)	b	303)	d	304)
117)	d	118)	d	119)	b	120)	d	305)	a	306)	d	307)	a	308)
121)	a	122)	d	123)	a	124)	a	309)	b	310)	c	311)	c	312)
125)	c	126)	a	127)	d	128)	d	313)	c	314)	c	315)	a	316)
129)	b	130)	b	131)	a	132)	d	317)	a	318)	c	319)	a	320)
133)	d	134)	b	135)	d	136)	c	321)	b	322)	b	323)	b	324)
137)	a	138)	a	139)	c	140)	b	325)	a	326)	c	327)	c	328)
141)	b	142)	a	143)	b	144)	a	329)	b	330)	b	331)	a	332)
145)	c	146)	a	147)	b	148)	a	333)	a	334)	d	335)	b	
149)	a	150)	d	151)	c	152)	a							
153)	b	154)	d	155)	b	156)	a							
157)	a	158)	a	159)	a	160)	a							
161)	a	162)	d	163)	c	164)	c							
165)	a	166)	a	167)	c	168)	d							
169)	b	170)	d	171)	c	172)	b							
173)	c	174)	c	175)	a	176)	c							
177)	b	178)	a	179)	a	180)	b							
181)	d	182)	a	183)	a	184)	a							
185)	c	186)	c	187)	b	188)	a							

: HINTS AND SOLUTIONS :

1 (a)
Let $A=\left[\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right]$. Then,
$A^{2}=A A=\left[\begin{array}{ll}2 & -1 \\ 3 & -1\end{array}\right]\left[\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{ll}4-3 & -2+2 \\ 6-6 & -3+4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
$\therefore A^{3}=A, A^{4}=A^{2}=I, A^{2}=A^{4} A=I A=A$ etc.
Hence, $A^{n}=\left\{\begin{array}{l}A, \text { if } n \text { id odd } \\ 0, \text { if } n \text { is even }\end{array}\right.$
2 (d)
$\left[\begin{array}{ll}0 & a \\ b & 0\end{array}\right]^{2}=\left[\begin{array}{ll}0 & a \\ b & 0\end{array}\right]\left[\begin{array}{ll}0 & a \\ b & 0\end{array}\right]=\left[\begin{array}{cc}a b & 0 \\ 0 & a b\end{array}\right]$
and $\left[\begin{array}{ll}0 & a \\ b & 0\end{array}\right]^{4}=\left[\begin{array}{ll}0 & a \\ b & 0\end{array}\right]^{2}\left[\begin{array}{ll}0 & a \\ b & 0\end{array}\right]^{2}$

$$
=\left[\begin{array}{cc}
a^{2} b^{2} & 0 \\
0 & a^{2} b^{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { [given] }
$$

$\Rightarrow a^{2} b^{2}=1 \Rightarrow a b=1$
3 (b)
Given matrix A is a square matrix
And $A A^{T}=I=A^{T} A$
$\Rightarrow\left|A A^{T}\right|=|I|=\left|A^{T} A\right|$
$\Rightarrow|A|\left|A^{T}\right|=1=\left|A^{T}\right||A|$
$\Rightarrow|A|^{2}=1 \quad\left[\because A \cdot A^{T}=|A|^{2}\right]$
$\Rightarrow|A|= \pm 1$
Let $I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$,then, $k I=\left[\begin{array}{ccc}k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k\end{array}\right]$
$\Rightarrow \operatorname{adj}(k I)=\left[\begin{array}{ccc}k^{2} & 0 & 0 \\ 0 & k^{2} & 0 \\ 0 & 0 & K^{2}\end{array}\right]=k^{2} I$
5 (b)
Given, A is singular $\Rightarrow|A|=0$
Now, $A(\operatorname{adj} A)=|A| I_{n}=0$
$\therefore A(\operatorname{adj} A)=0 i e, A(\operatorname{adj} A)$ is a zero matrix.
6 (c)
Given, $\mathrm{AB}=0$
$\therefore\left[\begin{array}{ll}\cos ^{2} \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin ^{2} \alpha\end{array}\right] \times\left[\begin{array}{ll}\cos ^{2} \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin \beta\end{array}\right]$
$=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}\cos \alpha \cos \beta \cos (\alpha-\beta) & \cos \alpha \sin \beta \cos (\alpha-\beta) \\ \cos \beta \sin \alpha \cos (\alpha-\beta) & \sin \alpha \sin \beta \cos (\alpha-\beta)\end{array}\right]$
$=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$\Rightarrow \quad \cos (\alpha-\beta)=0$
$\Rightarrow \quad \alpha-\beta$ is an odd multiple of $\frac{\pi}{2}$

Given, $\quad A \left\lvert\, \begin{aligned} & 2 \\ & 4 \\ & -6\end{aligned}\right.$
Applying $R_{2} \rightarrow R_{2}$
$\Rightarrow A=\left|\begin{array}{lll}2 & 4 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right|$
Since the equivalent matrix in echelon from has only one non-zero row,
$\therefore \quad \operatorname{Rank}(A)=1$
$\because A B=B, B A=A$
$\therefore A^{2}+B^{2}=A A+B B=A(B A)+B(A B)$
$=(A B) A+(B A) B=B A+A B$
$=A+B$
$\Rightarrow A^{2}=A$ and $B^{2}=B$
10 (d)
$|A|=7(1-0)+3(-1-0)-3(0+1)=1$
Cofactors of matrix A are
$C_{11}=1, \quad C_{12}=1, C_{13}=1$
$C_{21}=3, \quad C_{22}=4, C_{23}=3$
$C_{31}=3, \quad C_{32}=3, C_{33}=4$
$\therefore \quad \operatorname{adj}(A)=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 4 & 3 \\ 3 & 3 & 4\end{array}\right]=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$
$\therefore \quad A^{-1}=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$
11 (d)
It is given that A is a skew-symmetric matrix
$\therefore A^{T}=-A$
$\Rightarrow\left(A^{T}\right)^{n}=(-A)^{n}$
$\Rightarrow\left(A^{n}\right)^{T}=(-1)^{n} A^{n}$
$\Rightarrow\left(A^{n}\right)^{T}=\left\{\begin{array}{l}A^{n} \text { if } n \text { is even } \\ -A^{n} \text { if } n \text { is odd }\end{array}\right.$
Hence, A^{n} is skew-symmetric when n is odd
12 (d)
Consider $\left[\begin{array}{lll}1 & * & * \\ * & 1 & * \\ * & * & 1\end{array}\right]$. By placing a_{1} in any one of the 6*
Position and 0 elsewhere. We get 6 non-singular matrices.
Similarly, $\left[\begin{array}{lll}* & * & 1 \\ * & 1 & * \\ 1 & * & *\end{array}\right]$ gives at least one non-singular. (a)

We know that, $\operatorname{Tr}(A)=\sum_{i=1}^{3} a_{i i}$
$\operatorname{Tr}(A)=1+7+9=17$
(d)

Now, $A+B=\left[\begin{array}{ll}3 & 4 \\ 2 & 4\end{array}\right]+\left[\begin{array}{cc}-2 & -2 \\ 0 & -2\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right]$
$\Rightarrow|A+B|=\left|\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right|=2-4=-2$
Also, $\operatorname{adj}(A+B)=\left[\begin{array}{cc}2 & -2 \\ -2 & 1\end{array}\right]$
$\therefore(A+B)^{-1}=-\frac{1}{2}\left[\begin{array}{cc}2 & -2 \\ -2 & 1\end{array}\right]$
$=\left[\begin{array}{cc}-1 & 1 \\ 1 & -1 / 2\end{array}\right]$
$A^{-1}=\frac{1}{4}\left[\begin{array}{cc}4 & -4 \\ -2 & 3\end{array}\right]$ and $B^{-1}=\frac{1}{4}\left[\begin{array}{cc}-2 & 2 \\ 0 & -2\end{array}\right]$
$\therefore A^{-1}+B^{-1}=\left[\begin{array}{cc}1 & -1 \\ -1 / 2 & 3 / 4\end{array}\right]+\left[\begin{array}{cc}-1 / 2 & 1 / 2 \\ 0 & -1 / 2\end{array}\right]$
$=\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ -1 / 2 & 1 / 4\end{array}\right]$
$\therefore(A+B)^{-1} \neq A^{-1}+B^{-1}$
15 (a)
$f(A)=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]-5\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
$=\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]-\left[\begin{array}{cc}15 & 5 \\ -5 & 10\end{array}\right]=\left[\begin{array}{cc}-7 & 0 \\ 0 & -7\end{array}\right]$
16 (b)
$C_{11}=1, \quad C_{12}=-2, C_{13}=-2$
$C_{21}=-1, C_{22}=3, C_{23}=3$
$C_{31}=0, C_{32}=-4, C_{33}=-3$
$\therefore \operatorname{adj}(A)=\left[\begin{array}{lrr}1 & -2 & -2 \\ -1 & 3 & 3 \\ 0 & -4 & -3\end{array}\right]^{T}=\left[\begin{array}{crc}1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3\end{array}\right]$
17 (c)
Since, the rank of given matrix is 1 , then
$\left[\begin{array}{cc}2 & 5 \\ -4 & a-4\end{array}\right]=0$
$\Rightarrow 2 a-8+20=0$
$\Rightarrow a=-6$
18 (a)
Since, given equations have a non-trivial solution
$\therefore \quad \Delta=0$
$\Rightarrow\left|\begin{array}{ccc}1 & 3 & \lambda \\ 2 & 4 & -1 \\ 1 & 5 & -2\end{array}\right|=0$
$\Rightarrow 1(-8+5)-3(-4+1)+\lambda(10-4)=0$
$\Rightarrow 6 \lambda=-6 \Rightarrow \lambda=-1$
20 (b)
Since, $|a| \neq 0$ So, A^{-1} exists
$\therefore A B=A C$
$\Rightarrow A^{-1}(A B)=A^{-1}(A C)$
$\Rightarrow\left(A^{-1} A\right) B=\left(A^{-1} A\right) C \Rightarrow B=C$
21 (c)
Let $A=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 10\end{array}\right|, B=\left[\begin{array}{c}1 \\ \alpha \\ \alpha^{2}\end{array}\right]$ and $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
For consistent, $|A|=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 10\end{array}\right|=0$
$\Rightarrow 1(20-16)-1(10-4)+1(4-2)=0$
$\Rightarrow 4-6+2=0$
$\Rightarrow 0=0$
and $(\operatorname{adj} A) B=O$
$\Rightarrow\left[\begin{array}{ccc}4 & -6 & 2 \\ -6 & 9 & -3 \\ 2 & -3 & 1\end{array}\right]\left[\begin{array}{c}1 \\ \alpha \\ \alpha^{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{c}4-6 \alpha+2 \alpha^{2} \\ -6+9 \alpha-3 \alpha^{2} \\ 2-3 \alpha+\alpha^{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow 2 \alpha^{2}-6 \alpha+4=0,-3 \alpha^{2}+9 \alpha-6=0$
and $\alpha^{2}-3 \alpha+2=0$
Now, $2 \alpha^{2}-6 \alpha+4=0$
$\Rightarrow(2 \alpha-2)(\alpha-2)=0$
$\Rightarrow \quad \alpha=1,2$
Similarly from other equations we also get the same value
22
(b)

Given, $\mathrm{B}=A^{6}-A^{5}$, where $A^{3}=A+I$
$\Rightarrow B=\left(A^{3}\right)^{2}-A^{3} A^{2}$
$=(A+I)^{2}-(A=I) A^{2}$
$=A^{2}+I^{2}+2 A I-A^{3}-A^{2} I$
$=I+2 A-(A+I)$
$\Rightarrow \quad B=A$
\therefore Inverse of $B=A^{-1}$
23 (d)
Since, $A^{T} A=I$
$\Rightarrow\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}a^{2}+b^{2}+c^{2} & a b+b c+c a & a b+b c+c a \\ a b+b c+c a & a^{2}+b^{2}+c 62 & a b+b c+c a \\ a b+b c+c a & a b+b c+c a & a^{2}+b^{2}+c^{2}\end{array}\right]$
$=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow a^{2}+b^{2}+c 62=1$ and $a b+b c+c a=0$
Now, $(a+b+c)^{2}=$
$a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
$=1+2 \cdot 0=1$
$\Rightarrow a+b+c=1$
Now, $\left(a^{3}+b^{3}+c^{3}\right)=(a+b+c)$
$\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)+3 a b c$
$=(a+b+c)+3$
$\Rightarrow a^{3}+b^{3}+c^{3}=1+3=4 \quad$ [using Eq. (i)]
24 (d)
$A^{2}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]=\left[\begin{array}{lll}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9\end{array}\right]$
Now,
$A^{2-} 4 A=\left[\begin{array}{lll}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9\end{array}\right]-\left[\begin{array}{lll}4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4\end{array}\right]=\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]=5 I_{3}$

We have,
$A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I_{2}$
$\Rightarrow A^{4}=A^{2} A^{2}=I_{2} I_{2}=I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
26 (b)
The system of given equation are
$K x+2 y-z=1$
$(K-1) y-2 z=2$
and $\quad(K+2) z=3$
This system of equations has a unique solution, if
$\left|\begin{array}{ccc}K & 2 & -1 \\ 0 & K-1 & -2 \\ 0 & 0 & K+2\end{array}\right| \neq 0$
$\Rightarrow(K=2)(K)(K-1) \neq 0$
$\Rightarrow \quad K \neq=2,0,1$
ie, $K=-1$, is a required answer.
27 (d)
Given, $x+y+z=6, x+2 y+3 z=10$ and $x+$
$2 y+\lambda z=\mu$
For no solution, $\Delta=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda\end{array}\right|=0$
$\Rightarrow 1(2 \lambda-6)-1(\lambda-3)+1(2-2)=0$ $\lambda-3=0 \Rightarrow \lambda=3$
and $\Delta_{1}=\left|\begin{array}{ccc}6 & 1 & 1 \\ 10 & 2 & 3 \\ \mu & 2 & 3\end{array}\right| \neq 0$
$\Rightarrow 6(6-6)-1(30-3 \mu)+1(20-2 \mu) \neq 0$
$\Rightarrow \mu-10 \neq 0 \Rightarrow \mu \neq 10$
28 (b)
$\left|A A^{T}\right|=|I|=\left|A^{T} A\right|$
$\Rightarrow|A|\left|A^{T}\right|=1=\left|A^{2}\right||A|$
$\Rightarrow|A|^{2}=1 \quad\left[\because\left|A^{T}\right|=|A|\right]$
$\Rightarrow|A|= \pm 1$
29 (c)
$A B$
$=\left[\begin{array}{cc}\cos ^{2} \theta & \sin \theta \cos \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]\left[\begin{array}{cc}\cos ^{2} \phi & \sin \phi \cos \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{array}\right.$
$=\left[\begin{array}{c}\cos ^{2} \theta \cos ^{2} \phi+\sin \theta \cos \phi \cos \theta \sin \phi \\ \cos ^{2} \phi \cos \theta \sin \theta+\sin ^{2} \theta \sin \phi \cos \phi \\ \cos ^{2} \theta \sin \phi \cos \phi+\sin ^{2} \phi \sin \theta \cos \theta \\ \cos \theta \sin \theta \sin \phi \cos \phi+\sin ^{2} \theta \sin ^{2} \phi\end{array}\right]$
$=\left[\begin{array}{cc}\cos \theta \cos \phi \cos (\theta-\phi) & \sin \phi \cos \theta \cos (\theta-\phi) \\ \sin \theta \cos \phi \cos (\theta-\phi) & \sin \theta \sin \phi \cos (\theta-\phi)\end{array}\right]$
$\because A B=0$
$\Rightarrow \cos (\theta-\phi)=0$
$\Rightarrow \cos (\theta-\phi)=\cos (2 n+1) \frac{\pi}{2}$
$\Rightarrow \theta=(2 n+1) \frac{\pi}{2}+\phi$, where $n=0,1,2, \ldots$
(a)

We have,
$A B=A$ and $B A=B$
Now, $A B=A$
$\Rightarrow(A B) A=A A$
$\Rightarrow A(B A)=A^{2}$
$\Rightarrow A B=A^{2} \quad[\because B A=B]$
$\Rightarrow A=A^{2} \quad[\because A B=A]$
and, $B A=B$
$\Rightarrow(B A) B=B^{2}$
$\Rightarrow B(A B)=B^{2}$
$\Rightarrow B A=B^{2} \quad[\because A B=A]$
$\Rightarrow B=B^{2} \quad[\because B A=B]$
$\therefore A^{2}=A$ and $B^{2}=B$
$\Rightarrow A$ and B are indempotent matrices
31 (b)
From given matrix equation, we have

$$
\begin{gathered}
x-y-z=0 \\
-y+z=5 \\
z=3 \\
\Rightarrow \quad x=1, y=-2, z=3
\end{gathered}
$$

32 (d)
Here, cofactors are
$C_{11}=\cos 2 \theta, \quad C_{12}=-\sin 2 \theta$
$C_{21}=\sin 2 \theta, \quad C_{22}=\cos 2 \theta$
$\therefore|A|=\left|\cos ^{2} 2 \theta+\sin ^{2} 2 \theta\right|=1$
$\therefore A^{-1}=\frac{1}{|A|}\left[\begin{array}{rr}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]^{2}=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos \theta\end{array}\right]$
(c)

Since, B is the inverse of A.
ie, $\quad B=A^{-1}$
So, $\quad 10 A^{-1}=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right]$
$\Rightarrow 10 A^{-1} A=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right] A$
$=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & - & 2\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{lrr}10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10\end{array}\right]=\left[\begin{array}{ccc}10 & 0 & 0 \\ -5+\alpha & 5+\alpha & -5+\alpha \\ 0 & 0 & 10\end{array}\right]$
$\Rightarrow \quad-5+\alpha=0 \Rightarrow \alpha=5$
34 (a)
$A B=\left[\begin{array}{ccc}0 & 3 & 3 \\ -3 & 0 & -4 \\ -3 & 4 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}3 y+3 z \\ -3 x-4 z \\ -3 x+4 y\end{array}\right]$
Now, $B^{\prime}(A B)=\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{c}3 y+3 z \\ -3 x-4 z \\ -3 x+4 y\end{array}\right]$
$=[3 x y+3 z x-3 x y-4 y z-3 x z+4 y z]$
$=[0]$
$\therefore B^{\prime}(A B)$ is a null matrix.

36 (a)
Given, $A=\left[\begin{array}{ccc}a & b & 0 \\ -b & a & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow|A|=a^{2}+b^{2}=1$
$\therefore \quad A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)=\operatorname{adj}(A)$
38 (c)
We have,
$(A+B)^{2}=A^{2}+2 A B+B^{2}$
$\Leftrightarrow(A+B)(A+B)=A^{2}+2 A B+B^{2}$
$\Leftrightarrow A^{2}+A B+B A+B^{2}=A^{2}+2 A B+B^{2}$
$\Leftrightarrow A B=B A$
Hence, $(A+B)^{2}=A^{2}+2 A B+B^{2} \Leftrightarrow A B=B A$
39 (d)
$A^{-1}=\frac{1}{2 x^{2}}\left[\begin{array}{cc}x & 0 \\ -x & 2 x\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2 x} & 0 \\ -\frac{1}{2 x} & \frac{1}{x}\end{array}\right]$
But $A^{-1}=\left[\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right]$
$\therefore\left[\begin{array}{cc}\frac{1}{2 x} & 0 \\ -\frac{1}{2 x} & \frac{1}{x}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right] \Rightarrow \frac{1}{2 x}=1 \Rightarrow x=\frac{1}{2}$
40 (c)
Given,
$\therefore\left|\begin{array}{ccc}a & a & -1 \\ b & -1 & b \\ -1 & c & c\end{array}\right|=0$
Applying $C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{1}$
$\Rightarrow\left|\begin{array}{ccc}a & 0 & -(1+a) \\ b & -(1+b) & 0 \\ -1 & c+1 & c+1\end{array}\right|=0$
$\Rightarrow-a(1+b)(1+c)-b[0+(1+a)(1+c)]$
$-1[0-(1+a)(1+b)]=0$
$\Rightarrow-a(1+b)(1+c)-b(1+a)(1+c)$
$+1(1+a)(1+b)=0$
On dividing by $(1+a)(1+b)(1+c)$, we get
$-\frac{a}{1+a}-\frac{b}{1+b}+\frac{1}{1+c}=0$
$\Rightarrow-\frac{a}{1+a}+1-\frac{b}{1+b}+1+\frac{1}{1+c}=2$
$\Rightarrow \frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2$
41 (a)
The given system of equation has at least one solution, if
$\left|\begin{array}{ccc}3 & -1 & 4 \\ 1 & 2 & -3 \\ 6 & 5 & \lambda\end{array}\right|=0$
$\Rightarrow 3(2 \lambda+15)+1(\lambda+18)+4(5-12)=0$
$\Rightarrow 7 \lambda=-35 \Rightarrow \lambda=-5$

Given, $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 2\end{array}\right]$
$C_{11}=4, C_{12}=1, C_{13}=-2$
$C_{21}=-2, C_{22}=4, C_{23}=1$
$C_{31}=1, C_{32}=-2, C_{33}=4$
$\therefore \quad \operatorname{adj}(A)=\left[\begin{array}{lrr}4 & 1 & -2 \\ -2 & 4 & 1 \\ 1 & -2 & 4\end{array}\right]^{T}=\left[\begin{array}{crr}4 & -2 & 1 \\ 1 & 4 & -2 \\ -2 & 1 & 4\end{array}\right]$
$\therefore|\operatorname{adj} A|=4(16+2)+2(4-4)+(1+8)$

$$
=72+0+9=81
$$

Alternate

$|A|\left|\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 2\end{array}\right|$
$=2(4-0)-1(0-1)=9$
$\therefore|\operatorname{adj} A|=|A|^{3-1}=(9)^{2}=81$
44 (a)
Since, $A^{\prime}=-A$
$\therefore A^{3}=A A A$
And $\left(A^{3}\right)^{\prime}=A^{\prime} A^{\prime} A^{\prime}=-A^{3}$
Hence, matrix A^{3} is a skew-symmetric matrix
(c)

Given, $\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 1 \\ 0 & 3 & 2\end{array}\right]\left[\begin{array}{c}x \\ 1 \\ -2\end{array}\right]=0$
$\Rightarrow \quad\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{l}x+2-6 \\ 0+5-2 \\ 0+3-4\end{array}\right]=0$
$\Rightarrow \quad\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{c}x-4 \\ 3 \\ -1\end{array}\right]=0$
$\Rightarrow x-4+3 x-1=0 \Rightarrow x=\frac{5}{4}$
(d)

We have, $A+b=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$
Clearly, $A+B$ is a symmetric matrix
Now,
$(A+B)^{-1}=-1\left[\begin{array}{cc}3 & -2 \\ -2 & 1\end{array}\right]=\left[\begin{array}{cc}-3 & 2 \\ 2 & -1\end{array}\right]$
$A^{-1}=\frac{1}{4}\left[\begin{array}{cc}4 & -4 \\ -2 & 3\end{array}\right], B^{-1}=\frac{1}{2}\left[\begin{array}{cc}-1 & 2 \\ 0 & -2\end{array}\right]$
$\therefore A^{-1}+B^{-1}=\frac{1}{4}\left[\begin{array}{cc}2 & 0 \\ -2 & -1\end{array}\right]$
We observe that $(A+b)^{-1}$ is a symmetric matrix and $(A+B)^{-1} \neq A^{-1}+B^{-1}$
47 (c)
$\because A \cdot A^{T}=I_{n}$
$\Rightarrow A-I_{n}=A-A A^{T}=A\left(I_{n}-A^{T}\right)$
$\Rightarrow\left|A-I_{n}\right|=\left|A\left(I_{n}-A^{T}\right)\right|$
$=|A|\left|I_{n}-A^{T}\right|$
$=|A|\left|I_{n}-A\right|$
(c)
$A^{2}=\left[\begin{array}{cr}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]$
$=\left[\begin{array}{ll}\frac{1}{2}-\frac{1}{2} & \frac{1}{2}-\frac{1}{2} \\ -\frac{1}{2}+\frac{1}{2} & \frac{1}{2}+\frac{1}{2}\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
\therefore Matrix A is nilpotent of order 2 .
49 (a)
Let A be a symmetric matrix. Then,
$A A^{-1}-I$
$\Rightarrow\left(A A^{-1}\right)^{T}=I$
$\Rightarrow\left(A^{-1}\right)^{T} A^{T}=I$
$\Rightarrow\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$
$\Rightarrow\left(A^{-1}\right)^{T}=(A)^{-1} \quad\left[\because A^{T}=A\right]$
$\Rightarrow A^{-1}$ is a symmetric matrix
50 (a)
Since, given matrix is a triangular matrix, so its characteristic roots are the diagonal elements.
Hence, required roots are 1, 3, 6 .
51 (d)
Given that, $A=\left[\begin{array}{ccc}3 & 2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1\end{array}\right]$
and $A^{-1}=\frac{1}{k} \operatorname{adj} A$
$\Rightarrow k=|A|$
$=\left|\begin{array}{ccc}3 & 2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1\end{array}\right|$
$=3(2+1)-2(1-0)+4(1-0)$
$=9-2+4=11$
52 (a)
Since, $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is linear equation in three variables and that could have only unique, no solution or infinitely many solution.
\therefore It is not possible to have two solutions.
Hence, number of matrices A is zero.
53 (c)
Since, A is invertible matrix of order n, then the determinant of adj $A=|A|^{n-1}$
54 (c)
Given, adj $\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1\end{array}\right]=\left[\begin{array}{ccc}5 & a & -2 \\ 1 & 1 & 0 \\ -2 & -2 & b\end{array}\right]$
Cofactors of $\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1\end{array}\right]$ are
$C_{11}=5, C_{12}=1, C_{13}=-2$
$C_{21}=4, C_{22}=1, C_{23}=-2$
$C_{31}=-2, C_{32}=0, C_{33}=1$
$\Rightarrow\left[\begin{array}{ccc}5 & 4 & -2 \\ 1 & 1 & 0 \\ -2 & -2 & 1\end{array}\right]=\left[\begin{array}{ccc}5 & a & -2 \\ 1 & 1 & 0 \\ -2 & -2 & b\end{array}\right]$
On comparing the corresponding elements, we get $a=4, \quad b=1$
$\therefore \quad\left[\begin{array}{ll}a & b\end{array}\right]=\left[\begin{array}{ll}4 & 1\end{array}\right]$
$A B=\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]$
$=[x a+y h+z g \quad x h+y b+z f \quad x g+y f+z c]$
Now, $A B C=0$
$\Rightarrow[x a+y h+z g \quad x h+y b+z f \quad x g+y f$

$$
+z c]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0
$$

$\Rightarrow\left[a x^{2}+h x y+g x z+h x y+y^{2} b+f z y+g x z+\right.$
$\left.y f z+z^{2} c\right]$
$=0$
$\Rightarrow\left[a x^{2}+b y^{2}+c z^{2}+2 g z x+2 h x y+2 f y z\right]=0$
56 (d)
Let $A=\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$
Let B be the multiplicative inverse of A, then
$A B=I$
$\Rightarrow B=A^{-1}$
$=\frac{1}{8-7}\left[\begin{array}{cc}4 & -1 \\ -7 & 2\end{array}\right]=\left[\begin{array}{cc}4 & -1 \\ -7 & 2\end{array}\right]$
57 (c)
Let $A=\left[\begin{array}{llll}4 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 6 & 0 & 2 & 0\end{array}\right]$
Now, we take a submatrix of order 3×3
$B=\left[\begin{array}{lll}4 & 1 & 0 \\ 3 & 0 & 1 \\ 6 & 0 & 2\end{array}\right]$
$|B|=-1(6-6)=0$
Now, we take a submatrix of order 2×2.
ie, $\quad C=\left[\begin{array}{ll}4 & 1 \\ 3 & 0\end{array}\right]$
$|C|=0-3 \neq 0$
\therefore Rank of matrix A is 2 .
58 (d)
Let $A=\left[\begin{array}{lrr}1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right] X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \operatorname{and} B=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$
$\therefore \quad A^{-1}=\frac{1}{2}\left[\begin{array}{rrr}1 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & 1\end{array}\right]$
Now, $X=A^{-1} B$
$=\frac{1}{2}\left[\begin{array}{rrr}1 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$
$=\frac{1}{2}\left[\begin{array}{c}-2 \\ 0 \\ 4\end{array}\right]=\left[\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right]$

59 (a)
$\left[\begin{array}{lll}7 & 1 & 2 \\ 9 & 2 & 1\end{array}\right]\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]+2\left[\begin{array}{l}4 \\ 2\end{array}\right]=\left[\begin{array}{c}21+4+10 \\ 27+8+5\end{array}\right]+\left[\begin{array}{l}8 \\ 4\end{array}\right]$
$=\left[\begin{array}{l}35 \\ 40\end{array}\right]+\left[\begin{array}{l}8 \\ 4\end{array}\right]=\left[\begin{array}{l}43 \\ 44\end{array}\right]$
60
(b)

Since, A, B and C are $n \times n$ matrices ans, if $A^{3}+2 A^{2}+3 A+5 I=0$, then A is invertible.
61 (a)
We have,
$|A|=-1,|B|=3$
$\therefore|3 A B|=3^{3}|A B|=3^{3}|A||B|=3 \times-1 \times 3$

$$
=-9
$$

62
(c)

Let $A=\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right]$.Then,
$A \sim\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$ By applying $R_{4} \rightarrow R_{4}-R_{3}-R_{2}-R_{1}$
$\Rightarrow A \sim\left[\begin{array}{cccc}1 & 2 & 3 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & -4 & -8 & 3 \\ 0 & 0 & 0 & 0\end{array}\right] \begin{gathered}\text { By applying } R_{2} \rightarrow R_{2}-2 R_{1}, \\ R_{3} \rightarrow R_{3}-3 R_{1}\end{gathered}$
We observe that the leading minor of the third order of this matrix is non-zero i.e.
$\left|\begin{array}{ccc}1 & 2 & 3 \\ 0 & 0 & -3 \\ 0 & -4 & -8\end{array}\right|=-12 \neq 0$. Hence, $\operatorname{rank}(A)=3$
63
(a)

Given, $\quad A+I=\left[\begin{array}{rr}3 & -2 \\ 4 & 1\end{array}\right]$
$\therefore A-I=A+I-2 I=\left[\begin{array}{rr}3 & -2 \\ 4 & 1\end{array}\right]-\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$

$$
=\left[\begin{array}{ll}
1 & -2 \\
4 & -1
\end{array}\right]
$$

$\therefore(A+I)(A-I)=\left[\begin{array}{rr}3 & -2 \\ 4 & 1\end{array}\right]\left[\begin{array}{ll}1 & -2 \\ 4 & -1\end{array}\right]=\left[\begin{array}{cc}-5 & -4 \\ 8 & -9\end{array}\right]$
64 (d)

We have,

$A=k I_{n} \Rightarrow|A|=\left|k I_{n}\right|=k^{n}\left|I_{n}\right|=k^{n}$
65

(d)

Given, $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
= & {\left[\begin{array}{ll}
a^{2}+b c & a b+b d \\
a c+d c & b c+d^{2}
\end{array}\right] } \\
\therefore & A^{2}-(a+d) A+k I=0 \\
\Rightarrow & {\left[\begin{array}{ll}
a^{2}+b c & a b+b d \\
a c+d c & b c+d^{2}
\end{array}\right]-\left[\begin{array}{ll}
a^{2}+a d & a b+b d \\
a c+d c & a d+d^{2}
\end{array}\right] } \\
& \quad+\left[\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

$\Rightarrow\left[\begin{array}{cc}b c-a d+k & 0 \\ 0 & b c-a d+k\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
On equating, we get
$b c-a d+k=0$
$\Rightarrow \quad k=a d-b c$
Also, $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=0$
$\Rightarrow \quad a d-b c=0$
\therefore From Eq. (i), $k=0$
66 (b)
Given that, $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1 \\ 3 & 2 \\ 1 & 1\end{array}\right]$
$\therefore A B=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & 3\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 3 & 2 \\ 1 & 1\end{array}\right]$
$=\left[\begin{array}{ll}2-6+1 & 1-4+1 \\ 4+3+3 & 2+2+3\end{array}\right]$
$=\left[\begin{array}{cc}-3 & -2 \\ 10 & 7\end{array}\right]$
$\Rightarrow(A B)^{T}=\left[\begin{array}{cc}-3 & 10 \\ -2 & 7\end{array}\right]$
(b)

We have,
$A^{2}=A A=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{cc}29 & -25 \\ -20 & 24\end{array}\right]$
$\therefore A^{2}-5 A=\left[\begin{array}{cc}29 & -25 \\ -20 & 24\end{array}\right]-5\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]$
$\Rightarrow A^{2}-5 A=\left[\begin{array}{cc}14 & 0 \\ 0 & 14\end{array}\right]=14 \mathrm{I}$
71 (b)
Given that A is a singular matrix
$\therefore|A|=0$
$\because A \operatorname{adj} A=|A|=0$
$\therefore A \operatorname{adj} A$ is a zero matrix
72 (a)
$\left[\begin{array}{ll}3 & 1 \\ 4 & 1\end{array}\right] X=\left[\begin{array}{cc}5 & -1 \\ 2 & 3\end{array}\right]$
$\Rightarrow X=\left[\begin{array}{ll}3 & 1 \\ 4 & 1\end{array}\right]^{-1}\left[\begin{array}{rr}5 & -1 \\ 2 & 3\end{array}\right]$
$=\frac{1}{-1}\left[\begin{array}{rr}1 & -1 \\ -4 & 3\end{array}\right]\left[\begin{array}{rr}5 & -1 \\ 2 & 3\end{array}\right]$
$=\left[\begin{array}{cc}-1 & 1 \\ 4 & -3\end{array}\right]\left[\begin{array}{cc}5 & -1 \\ 2 & 3\end{array}\right]$
$=\left[\begin{array}{rr}-3 & 4 \\ 14 & -13\end{array}\right]$
73 (b)
Given, $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0\end{array}\right]$
$\therefore A^{2}\left[\begin{array}{lll}2 & 3 & 1 \\ 5 & 6 & 2 \\ 3 & 4 & 1\end{array}\right]$ and $A^{3}=\left[\begin{array}{ccc}7 & 9 & 3 \\ 15 & 19 & 6 \\ 9 & 12 & 4\end{array}\right]$
Hence, $A^{3}-3 A^{2}-I=O$

74 (d)
$\because P Q=I \Rightarrow P^{-1}=Q$
Now, the system in matrix notation is $P X=B$
$\therefore X=P^{-1} B=Q B$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{9}\left[\begin{array}{ccc}2 & 2 & 1 \\ 13 & -5 & m \\ -8 & 1 & 5\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 5\end{array}\right]$
$\Rightarrow y=\frac{1}{9}(13-5+5 m)$
$\Rightarrow-27=8+5 m \quad($ given $y=-3)$
$\therefore m=-7$
75 (d)
Since A is invertible. Therefore, $|A| \neq 0$
Thus, option (d) is correct.
76 (a)
We have,
$\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\therefore A=\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right]^{-1}\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]^{-1}\right)$
$\Rightarrow A=\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 5 & 3\end{array}\right]\right)$
$\Rightarrow A=\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 5 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
77 (c)
If A is a square matrix, then $A-A^{T}$ is a skewsymmetric matrix, then $\left|A-A^{T}\right|$ is ' 0 ' or a perfect square as A is of odd order or even order
78 (d)
$O\left(A^{\prime}\right)=3 \times 2, O\left(B^{\prime}\right)=2 \times 3$
(a) $C B+A^{\prime}$

Now, order of CB
$=($ order of C is $3 \times 3)$ (order of B is 3×2)
$=$ order of $C B$ is 3×2
Since, $O\left(A^{\prime}\right)=3 \times 2$
\therefore Matrix $C B+A^{\prime}$ can be determined.
(b) $O(B A)=3 \times 3$
and $O(C)=3 \times 3$
\therefore Matrix $B A C$ can be determined.
(c) $O\left(A+B^{\prime}\right)=2 \times 3$
$\Rightarrow \quad O\left(A+B^{\prime}\right)^{\prime}=3 \times 2$
and $O(C)=3 \times 3$
\therefore Matrix $C\left(A+B^{\prime}\right)$ can be determined.
(d) $O\left(A+B^{\prime}\right)=2 \times 3$

And $O(C)=3 \times 3$
\therefore Matrix $C\left(A+B^{\prime}\right)$ cannot be determined.
79 (d)
Given A is a matrix of order 3 and $B=$
$|A| A^{-1},|A|=-5$
$\left.\therefore B=|A| \frac{(\operatorname{adj} A)}{|A|} \Rightarrow B=(\operatorname{adj}) A\right)$
$\Rightarrow \quad|B|=|A|^{3-1}=25$
(a)
$\because \quad A^{2}=\left[\begin{array}{ll}-2 & 4 \\ -1 & 2\end{array}\right]\left[\begin{array}{ll}-2 & 4 \\ -1 & 2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$\therefore A^{2}$ is null matrix.
81 (b)
For unique solution,
$\left|\begin{array}{ccc}k & 2 & -1 \\ 0 & k-1 & -2 \\ 0 & 0 & k+2\end{array}\right| \neq 0$
$\Rightarrow k(k-1)(k+2) \neq 0$
$\Rightarrow k \neq 0,1$ or -2
82 (b)
Given, $A=\left[\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ 1\end{array}\right]$
$\therefore \quad A^{-1}=-\frac{1}{3}\left[\begin{array}{ll}-1 & -2 \\ -2 & -1\end{array}\right]=\frac{1}{3}\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$
Also, $A X=B$
$\Rightarrow X=A^{-1} B=\frac{1}{3}\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}3 \\ 1\end{array}\right]$
$=\frac{1}{3}\left[\begin{array}{l}3+2 \\ 6+1\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}5 \\ 7\end{array}\right]$
83 (a)
$\Delta=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9\end{array}\right]$
$=1(9-15)-2(18-15)+3(10-5)$
$=-6-6+15$
$=3 \neq 0$
Hence, the system of equations has a unique solution.
84 (b)
It is given that
$A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
$\therefore A^{2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]=2 A$
$\Rightarrow A^{3}=2(A A)=2 A^{2}=2(2 A)=2^{2} A$
Continuing in this manner, we have $A^{n}=2^{n-1} A$
85 (a)
We have,
$\left(B^{-1} A^{-1}\right)^{-1}=\left(A^{-1}\right)^{-1}\left(B^{-1}\right)^{-1}\left[\because(P Q)^{-1}\right.$

$$
\left.=Q^{-1} P^{-1}\right]
$$

$\Rightarrow\left(B^{-1} A^{-1}\right)^{-1}=A B$
$\Rightarrow\left(B^{-1} A^{-1}\right)=\left[\begin{array}{cc}2 & 2 \\ -3 & 2\end{array}\right]\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
$\Rightarrow\left(B^{-1} A^{-1}\right)^{-1}=\left[\begin{array}{cc}2 & -2 \\ 2 & 3\end{array}\right]$
Hence, option (a) is correct
86 (c)
Here, C, A and C^{T} are matrix of order $n \times 1, n \times n$ and $1 \times n$ respectively.
Let $C^{T} A C=k$
Then, $\quad\left(C^{T} A C\right)^{T}=C^{T} A^{T}\left(C^{T}\right)^{T}$

$$
\begin{aligned}
& =C^{T} A^{T} C=C^{T}(-A) C \\
& =-C^{T} A C=-k
\end{aligned}
$$

$\Rightarrow k=-k \Rightarrow k=0$
$\Rightarrow C^{T} A C$ is null matrix.
Which shows that $C^{T} A C$ is a zero matrix of order1.

87
(b)

Since, $A+A^{T}$ is a square matrix
$\therefore\left(A+A^{T}\right)^{T}=A^{T}+\left(A^{T}\right)^{T}=A^{T}+A$
Hence, $A+A^{T}$ is symmetric matrix
88 (d)
$A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=\left[\begin{array}{ll}1+1 & 1+2 \\ 2+1 & 2+2\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right]$
89 (a)
Given, $\quad P=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]\left[\begin{array}{cc}-1 & -2 \\ -2 & 0 \\ 0 & -4\end{array}\right]\left[\begin{array}{rrr}-4 & -5 & -6 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]\left[\begin{array}{rrr}4 & 5 & 4 \\ 8 & 10 & 12 \\ 0 & 0 & -4\end{array}\right]$
$\therefore \quad P_{22}=\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]\left[\begin{array}{c}5 \\ 10 \\ 0\end{array}\right]$
$=10+30=40$
91 (c)
Given, $A B=A \Rightarrow B=I$
And $B A=B \Rightarrow A=I$
$\because \quad B=I$ and $A=I$
$\Rightarrow \quad B^{2}=B$ and $A^{2}=A$
92 (a)
Let $A=\left[\begin{array}{cccc}0 & x & y & z \\ -x & 0 & a & b \\ -y & -a & 0 & c \\ -z & -b & -c & 0\end{array}\right]$ be a skew-symmetric
matrix. Then,
$|A|=\left|\begin{array}{cccc}0 & x & y & z \\ -x & 0 & a & b \\ -y & -a & 0 & c \\ -z & -b & -c & 0\end{array}\right|=(c x-b y+a z)^{2}$
Since, $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0\end{array}\right]$
$\therefore B=\operatorname{adj} A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -6 & -2 & 3 \\ -4 & -3 & 2\end{array}\right]$
$\Rightarrow \quad \operatorname{adj} B=\left[\begin{array}{ccc}5 & -5 & 5 \\ 0 & 10 & -15 \\ 10 & 5 & 0\end{array}\right]$
$\Rightarrow|\operatorname{adj} B|=\left[\begin{array}{ccc}5 & -5 & 5 \\ 0 & 10 & -15 \\ 10 & 5 & 0\end{array}\right]=625$
Given that, $C=5 A$
$\Rightarrow|C|=5^{3}|A|=125\left|\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 2\end{array}\right|=625$
Hence, $\frac{|\operatorname{adj}(B)|}{|C|}=\frac{625}{625}=1$
$94 \quad$ (a)
Given, $A=\left[\begin{array}{lll}6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1\end{array}\right]$
amd symmetric matrix $B=\frac{A+A^{\prime}}{2}$
$\therefore B=\frac{1}{2}\left\{\left[\begin{array}{lll}6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1\end{array}\right]+\left[\begin{array}{lll}6 & 4 & 9 \\ 8 & 2 & 7 \\ 5 & 3 & 1\end{array}\right]\right\}=\left[\begin{array}{lll}6 & 6 & 7 \\ 6 & 2 & 5 \\ 7 & 5 & 1\end{array}\right]$
(d)

The matrix $\left[\begin{array}{ccc}5 & 10 & 3 \\ -2 & -4 & 6 \\ -1 & -2 & b\end{array}\right]$ is singular, if
$\left[\begin{array}{ccc}5 & 10 & 3 \\ -2 & -4 & 6 \\ -2 & -2 & b\end{array}\right]=0$
$\Rightarrow-1(60+12)+2(30+6)+b(-20+20)=0$
$\Rightarrow-72+72+0 b=0$
Hence, the given matrix is singular for any value of b
96 (b)
$\operatorname{det}(2 A B)=2^{3} \operatorname{det}(A) \operatorname{det}(B)$
$=8 \operatorname{det}(\mathrm{~A}) \operatorname{det}(\mathrm{B})$
97 (b)
$c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$ (In general)
And in a diagonal matrix non-diagonal elements are zero ie,
$a_{i j}=\left\{\begin{array}{cc}0, & \text { if } i \neq j \\ a_{i j}, & \text { if } i=j\end{array}\right.$
So, $c_{i j}=a_{i i} b_{i j}$
(b)

Here, $|A|=(1)(9)-2(-11)-3(6)$
$=9+22-18=33$
Since, $A^{-1} \operatorname{adj}\left(A^{-1}\right)=\left|A^{-1}\right| I_{3}$
$\Rightarrow A^{-1} \operatorname{adj}\left(A^{-1}\right)=\left(|A|^{-1}\right) I_{3}$
$\Rightarrow A \cdot A^{-1} \operatorname{adj}\left(A^{-1}\right)=(|A|)^{-1} A I_{3}$
$\Rightarrow \operatorname{adj}\left(A^{-1}\right)=(|A|)^{-1} A$
$\Rightarrow|A| \operatorname{adj}\left(A^{-1}\right)=A \quad($ But $|A| \neq 0)$
99 (d)
Let $A\left|\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1\end{array}\right|$
$\therefore|A|=1(1+1)+1(1-1)+1(1+1)=4 \neq 0$
\therefore Rank of matrix A is 3
100 (b)
Let $\frac{x^{2}}{a^{2}}=X, \frac{y^{2}}{b^{2}}=Y$ and $\frac{z^{2}}{c^{2}}=Z$, then given equation will be
$X+Y-Z=1, X-Y+Z=1,-X+Y+Z=1$
Here, $\quad A=\left[\begin{array}{crr}1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1\end{array}\right]$
Now, $|A|=-4 \neq 0$
Therefore, the given system of equation has
unique solution.
102 (b)
$\left[\frac{1}{2}\left(A-A^{\prime}\right)\right]^{\prime}=\frac{1}{2}\left(A-A^{\prime}\right)^{\prime}=\frac{1}{2}\left(A^{\prime}-A\right)$
$=-\frac{1}{2}\left(A-A^{\prime}\right)$
Hence, it is a skew-symmetric matrix.
103 (b)
$\because \quad \operatorname{adj} A=\left[\begin{array}{cc}4 & 2 \\ -3 & 1\end{array}\right]$
and $\quad|A|=\left|\begin{array}{rr}1 & -2 \\ 3 & 4\end{array}\right|=10$
$\therefore \quad A^{-1}=\frac{1}{10}\left[\begin{array}{cc}4 & 2 \\ -3 & 1\end{array}\right]$
105 (b)
Let $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$
$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}1 & -2 & -2 \\ -1 & 3 & 3 \\ 0 & -4 & -3\end{array}\right]^{T}$
$=\left[\begin{array}{ccc}1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3\end{array}\right]$
106 (d)
We have,
$3 A^{3}+2 A^{2}+5 A+I=0$
$\Rightarrow I=-3 A^{3}-2 A^{2}-5 A$
$\Rightarrow I A^{-1}=\left(-3 A^{3}-2 A^{2}-5 A\right) A^{-1}$
$\Rightarrow A^{-1}=-3 A^{2}-2 A-5 I$
108 (b)
The given system of equations are
$x+y+z=0$,
$2 x+3 y+z=0$ and $x+2 y=0$
Here, $\left|\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 2 & 0\end{array}\right|=1(0-2)-1(0-1)+(4-3)$
$=-2+1+1=0$
\therefore This system has infinite solutions
109 (c)
$2 X-\left[\begin{array}{ll}1 & 2 \\ 7 & 4\end{array}\right]=\left[\begin{array}{cc}3 & 2 \\ 0 & -2\end{array}\right]$
$\Rightarrow 2 X=\left[\begin{array}{cc}3 & 2 \\ 0 & -2\end{array}\right]+\left[\begin{array}{ll}1 & 2 \\ 7 & 4\end{array}\right]$
$\Rightarrow 2 X=\left[\begin{array}{ll}4 & 4 \\ 7 & 2\end{array}\right]$
$\Rightarrow X=\left[\begin{array}{cc}2 & 2 \\ 7 / 2 & 1\end{array}\right]$
111 (b)
Given, $A=A^{\prime}, B=B^{\prime}$
Now, $(A B-B A)^{\prime}=(A B)^{\prime}-(B A)^{\prime}$
$=B^{\prime} A^{\prime}-A^{\prime} B^{\prime}$
$=B A-A B$
$=-(A B-B A)$
$\therefore A B-B A$ is a skew-symmetric matrix.

113 (a)
Given that, p is a non-singular matrix such that
$1+p+p^{2}+\ldots+p^{n}=0$
$\Rightarrow(1+p)\left(1+p+p^{2}+\ldots+p^{n}\right)=0$
$\Rightarrow 1-p^{n+1}=0$
$\Rightarrow p^{n+1}=1$
$\Rightarrow p^{n} \times p^{1}=1$
$\Rightarrow p^{n}=1 / p$
$\therefore p^{-1}=p^{n}$
114 (a)
Given, $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{40}\left[\begin{array}{ccc}5 & 10 & -5 \\ -5 & -2 & 13 \\ 10 & -4 & 6\end{array}\right]\left[\begin{array}{l}5 \\ 0 \\ 5\end{array}\right]$
$=\frac{1}{40}\left[\begin{array}{c}25+0-25 \\ -25+0+65 \\ 50+0+30\end{array}\right]$
$=\frac{1}{40}\left[\begin{array}{c}0 \\ 40 \\ 80\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$
$\Rightarrow \quad x=0, y=1, z=2$
$\therefore x+y+z=0+1+2=3$
115 (d)
$\because\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}y \\ x\end{array}\right]=\left[\begin{array}{l}X \\ Y\end{array}\right]$
Then, $X=y$ and $Y=x$
ie, $y=x$
116 (c)
Given $\left[\begin{array}{lr}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]^{-1}=$ $\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$
$\Rightarrow\left[\begin{array}{lr}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right] \cdot \frac{1}{1+\tan ^{2} \theta}\left[\begin{array}{rr}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]$
$\quad=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
$\Rightarrow \frac{1}{1+\tan ^{2} \theta}\left[\begin{array}{cc}1-\tan ^{2} \theta & -2 \tan \theta \\ 2 \tan \theta & 1-\tan ^{2} \theta\end{array}\right]=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} & \frac{2 \tan \theta}{1+\tan ^{2} \theta} \\ \frac{2 \tan \theta}{1+\tan ^{2} \theta} & \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\end{array}\right]=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$
$\Rightarrow\left[\begin{array}{rr}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
$\Rightarrow a=\cos 2 \theta, \quad b=\sin 2 \theta$
117 (d)
Given, $A=\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$
$\therefore B=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]=\left[\begin{array}{ccc}-3 & -6 & -6 \\ 6 & 3 & -6 \\ 6 & -6 & 3\end{array}\right]$
$\Rightarrow \operatorname{adj} A=(B)^{\prime}=\left[\begin{array}{ccc}-3 & 6 & 6 \\ -6 & 3 & -6 \\ -6 & -6 & 3\end{array}\right]$
$=3\left[\begin{array}{ccc}-1 & 2 & 2 \\ -2 & 1 & -2 \\ -2 & -2 & 1\end{array}\right]=3 A^{\prime}$
118 (d)
Given equations are
$p x+y+z=0, x+q y+z=0, x+y+r z=0$
Since, the system have a non-zero solution, then
$\left[\begin{array}{lll}p & 1 & 1 \\ 1 & q & 1 \\ 1 & 1 & r\end{array}\right]=0$
Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{2}$
$\Rightarrow\left|\begin{array}{ccc}p & 1-p & 0 \\ 1 & q-1 & 1-q \\ 1 & 0 & r-1\end{array}\right|=0$
$\Rightarrow(1-p)(1-q)(1-r)\left|\begin{array}{ccc}\frac{p}{1-p} & 1 & 0 \\ \frac{1}{1-q} & -1 & 1 \\ \frac{1}{1-r} & 0 & -1\end{array}\right|=0$
$\Rightarrow(1-p)(1-q)(1-r)$
$\left[\frac{p}{1-p}(1)-1\left(-\frac{1}{1-q}-\frac{1}{1-r}\right)\right]=0$
Since, $p, q, r \neq 1$
$\therefore \frac{p}{1-p}+\frac{1}{1-q}+\frac{1}{1-r}=0$
$\Rightarrow \quad \frac{1}{1-p}-1+\frac{1}{1-q}+\frac{1}{1-r}=0$
$\Rightarrow \frac{1}{1-p}+\frac{1}{1-q}+\frac{1}{1-r}=0$
119
(b)

Given, $A B=I \Rightarrow B=A^{-1}$
Now, $A^{-1}=\frac{\operatorname{adj} A}{|A|}$
$=\frac{\left[\begin{array}{cc}1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1\end{array}\right]}{1+\tan ^{2} \frac{\theta}{2}}$
$=\frac{A^{T}}{\sec ^{2} \frac{\theta}{2}}=\cos ^{2} \frac{\theta}{2} A^{T}$

120 (d)

Given equations are
$3 x+y+2 z=3 \quad \ldots$ (i)
$2 x-3 y-z=-3$
and $x+2 y+z=4$
Let $A=\left[\begin{array}{ccc}3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1\end{array}\right], \quad B=\left[\begin{array}{c}3 \\ -3 \\ 4\end{array}\right], \quad X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
$\therefore \quad|A|=\left|\begin{array}{ccc}3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1\end{array}\right|$
$=3\left|\begin{array}{cc}-3 & -1 \\ 2 & 1\end{array}\right|-1\left|\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right|+2\left|\begin{array}{cc}2 & -3 \\ 1 & 2\end{array}\right|$
$=3(-3+2)-1(2+1)+2(4+3)$
$=-3-3+14=8$
adj. $A=\left[\begin{array}{ccc}-1 & -3 & 7 \\ 3 & 1 & -5 \\ 5 & 7 & -11\end{array}\right]^{T}$
$=\left|\begin{array}{ccc}-1 & 3 & 5 \\ -3 & 1 & 7 \\ 7 & -5 & -11\end{array}\right|$
$\therefore \quad A^{-1}=\frac{1}{|A|}$ adj $A=\frac{1}{8}\left[\begin{array}{ccc}-1 & 3 & 5 \\ -3 & 1 & 7 \\ 7 & -5 & -11\end{array}\right]$
Now, $X=A^{-1} B$
$=\frac{1}{8}\left[\begin{array}{ccc}-1 & 3 & 5 \\ -3 & 1 & 7 \\ 7 & -5 & -11\end{array}\right]\left[\begin{array}{c}3 \\ -3 \\ 4\end{array}\right]$
$=\frac{1}{8}\left[\begin{array}{c}-3-9+20 \\ -9-3+28 \\ 21+15-44\end{array}\right]=\frac{1}{8}\left[\begin{array}{c}8 \\ 16 \\ -8\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$
$\Rightarrow x=1, y=2, z=-1$
121 (a)
$A^{2}=2 A-I$
$\therefore \quad A^{2} A=2 A A-I A$
$=2 A^{2}-A=2(2 A-I)-A$
$\Rightarrow A^{3}=3 A-2 I$
$\Rightarrow A^{3} \cdot A=3 A A-2 I A=3(2 A-I)-2 A$
$\Rightarrow \quad A^{4}=4 A-3 I$
Similarly, $A^{n}=n A-(n-I) I$
122 (d)
$\operatorname{det}\left(M_{r}\right)=\left[\begin{array}{cc}r & r-1 \\ r-1 & r\end{array}\right]=2 r-1$
$\sum_{r=1}^{2007} \operatorname{det}\left(M_{r}\right)=2 \sum_{r=1}^{2007} r-2007$
$=2 \times \frac{2007 \times 2008}{2}-2007=(2007)^{2}$
123 (a)
Let $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0\end{array}\right]$
$\therefore \quad|A|=\left|\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0\end{array}\right|$
$=0\left|\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right|-1\left|\begin{array}{cc}-1 & 2 \\ 1 & 0\end{array}\right|-1\left|\begin{array}{cc}-1 & 0 \\ 1 & -2\end{array}\right|$
$=0+2-2=0$
$\Rightarrow|A|=0$
Now, $(\operatorname{adj} A) B=\left[\begin{array}{ccc}4 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & -1\end{array}\right]\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]$
$=\left[\begin{array}{l}4-4+6 \\ 2-2+3 \\ 2-2-3\end{array}\right]=\left[\begin{array}{c}6 \\ 3 \\ -3\end{array}\right] \neq 0$
\therefore This system of equation is inconsistent, so it has no solution
125 (c)
Given, $D=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right)$
$\Rightarrow \quad D^{-1}=\operatorname{diag}\left(d_{1}^{-1}, d_{2}^{-1}, \ldots, d_{n}^{-1}\right)$
126 (a)
We have,
$a=\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$
$\Rightarrow A^{n}=\left[\begin{array}{cc}1 & n a \\ 0 & 1\end{array}\right] \quad$ [Using PMI]
$\Rightarrow \frac{1}{n} A^{n}=\left[\begin{array}{ll}\frac{1}{n} & a \\ 0 & \frac{1}{n}\end{array}\right] \Rightarrow \lim _{n \rightarrow \infty} \frac{1}{2} A^{n}=\left[\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right]$
127 (d)
The given system of equations are
$2 x+y-5=0$
$x-2 y+1=0$
and $2 x-14 y-a=0$
This system is consistent.
$\therefore\left[\begin{array}{ccr}2 & 1 & -5 \\ 1 & -2 & 1 \\ 2 & -14 & -a\end{array}\right]=0$
$\Rightarrow 2(2 a+14)-1(-a-2)-5(-14+4)=0$
$\Rightarrow 4 a+28+a+2+50=0$
$\Rightarrow 5 a=-80 \Rightarrow a=-16$
128 (d)
The system of given equations has no solution,
if $\left|\begin{array}{lll}\alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha\end{array}\right|=0$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$ and taking
common $(\alpha+2)$ from C_{1}, we get
$(\alpha+2)\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha\end{array}\right|=0$
Applying $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$
$\Rightarrow \quad(\alpha+2)\left|\begin{array}{ccc}1 & 1 & 1 \\ 0 & a-1 & 0 \\ 0 & 0 & a-1\end{array}\right|=0$
$\Rightarrow \quad(\alpha+2)(\alpha-1)^{2}=0$
$\Rightarrow \quad \alpha=1,-2$
But $\alpha=1$ makes given three equations same. So, the system of equation have infinite solution. So, answer is $\alpha=-2$ for which the system of equations has no solution
130 (b)
Given, $A=\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right]$
$\therefore \quad A^{2}=\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}x^{2}+1 & x \\ x & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow \quad x^{2}+1=1, x=0$
$\Rightarrow \quad x=0$
131 (a)
Given that, $A^{-1}=\lambda(\operatorname{adj} A)$
On comparing with $A^{-1}=\frac{1}{|A| \text { adj }} A$ we get
$\lambda=\frac{1}{|A|}$
Now, $|A|=\left|\begin{array}{ll}0 & 3 \\ 2 & 0\end{array}\right|=0-6=-6$
$\Rightarrow \lambda=-\frac{1}{6}$
132 (d)
$a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}+a_{14} C_{14}=|A|$
133
(d)

Given equation are $x+y+z=6, x+2 y+3 z=$
10 and $x+2 y+\lambda z=10$
Since, it is consistent.
$\therefore\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda\end{array}\right|=0$
$\Rightarrow 1(2 \lambda-6)-1(\lambda-3)+1(2-2)=0$
$\Rightarrow \lambda-3=0 \Rightarrow \lambda=3$
134 (b)
$A^{2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=2\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=2 A$
$\therefore \quad A^{4}=2 A .2 A=4 A^{2}=4 \times 2 A=2^{3} A$
Similarly, $A^{8}=2^{7} A$
$\Rightarrow \quad A^{100}=2^{99} A$
135 (d)
Let $A=\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]$
$\therefore|A|=\cos ^{2} 2 \theta+\sin ^{2} 2 \theta=1$
and $\operatorname{adj} A=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]$
$\therefore A^{-1}=\frac{1}{1}\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]$
$=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]$
138 (a)
Give equation can be written as,
$2 X=\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]-\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
$\Rightarrow 2 X=\left[\begin{array}{rr}2 & 6 \\ 4 & -2\end{array}\right]=2\left[\begin{array}{rr}1 & 3 \\ 2 & -1\end{array}\right]$
$\Rightarrow \quad X=\left[\begin{array}{rr}1 & 3 \\ 2 & -1\end{array}\right]$
139 (c)
We have,
$A B=0$
$\Rightarrow|A B|=0$
$\Rightarrow|A||B|=0$
$\Rightarrow|A|=0$ or $|B|=0$
Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Then, $A B=O$. But $A \neq O, B \neq O$

140 (b)
Given, $A=\left[\begin{array}{ccc}1 & -1 & -2 \\ 2 & 1 & 1 \\ 4 & -1 & -2\end{array}\right]$
$\therefore A^{-1}=\frac{1}{3}\left[\begin{array}{ccc}-1 & 0 & 1 \\ 8 & 6 & -5 \\ -6 & -3 & 3\end{array}\right]$
Now, $A^{-1} D=\frac{1}{3}\left[\begin{array}{ccc}-1 & 0 & 1 \\ 8 & 6 & -5 \\ -6 & -3 & 3\end{array}\right]\left[\begin{array}{c}3 \\ 5 \\ 11\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}8 \\ -1 \\ 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}8 / 3 \\ -1 / 3 \\ 0\end{array}\right]$
142 (a)
Given equations are $x-c y-b z=0$
$c x-y+a z=0$ and $b x+a y-z=0$
For non-zero solution
$\left|\begin{array}{ccr}1 & -c & -b \\ c & -1 & a \\ b & a & -1\end{array}\right|=0$
$\Rightarrow 1\left(1-a^{2}\right)+c(-c-a b)-b(a c+b)=0$
$\Rightarrow a^{2}+b^{2}+c^{2}+2 a b c=1$
143 (b)
We have,
$\operatorname{Det}\left(I_{n}\right)=1(\neq 0) \Rightarrow \operatorname{rank}\left(I_{n}\right)=n$
144 (a)
The given matrix A is singular, if
$|A|=\left|\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & \lambda\end{array}\right|=0$
$\Rightarrow 8(7 \lambda-16)+6(-6 \lambda+8)+2(24-14)=0$
$\Rightarrow 56 \lambda-128-36 \lambda+48+20=0$
$\Rightarrow 20 \lambda=60$
$\Rightarrow \lambda=3$
145 (c)
Let $B=I+A+A^{2}+A^{3} \ldots \infty$
$\Rightarrow A B=A+A^{2}+A^{3}+\cdots \infty$
$\Rightarrow B-A B=I$
$\Rightarrow B(I-A)=I$
$\Rightarrow B=(I-A)^{-1}$
$\Rightarrow B=\left[\begin{array}{cc}0 & -2 \\ -3 & -3\end{array}\right]^{-1}=-\frac{1}{6}\left[\begin{array}{cc}-3 & 2 \\ 3 & 0\end{array}\right]$

$$
=\left[\begin{array}{cc}
1 / 2 & -1 / 3 \\
-1 / 2 & 0
\end{array}\right]
$$

146 (a)
Since A is non-singular matrix
$\therefore|A| \neq 0 \Rightarrow \operatorname{rank}(A)=n$
147
(b)
$A^{2}=\left[\begin{array}{rr}1 & -2 \\ 4 & 5\end{array}\right]\left[\begin{array}{rr}1 & -2 \\ 4 & 5\end{array}\right]=\left[\begin{array}{rr}-7 & -12 \\ 24 & 17\end{array}\right]$
Now, $f(A)=A^{2}-3 A+7$
$=\left[\begin{array}{rr}-7 & -12 \\ 24 & 17\end{array}\right]-3\left[\begin{array}{rr}1 & -2 \\ 4 & 5\end{array}\right]+7\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{rr}-3 & -6 \\ 12 & 9\end{array}\right]$
$\therefore f(A)+\left[\begin{array}{cc}3 & 6 \\ -12 & -9\end{array}\right]=\left[\begin{array}{cc}-3 & -6 \\ 12 & 9\end{array}\right]+\left[\begin{array}{cc}3 & 6 \\ -12 & -9\end{array}\right]=$ $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
148 (a)
The given system of equations will have a unique solution, if
$\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & k\end{array}\right| \neq 0 \Rightarrow k \neq 0$
149 (a)
Given, $2 x+y-z=7$
$x-3 y+2 z=1$
and $\quad x+4 y-3 z=5$
From Eqs.(i) and (ii), we get
$5 x-y=15$
From Eqs. (i) and (iii)
$5 x-y=16$
Eqs. (iv) and (v) shows that they are parallel and solution does not exist.
150 (d)
We have,
$X=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right] \Rightarrow X^{2}=\left[\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right]$
Clearly for $n=2$, the matrices in options (a), (b),
(c) do not tally with $\left[\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right]$

152 (a)
We have,
$A=\left[a_{i j}\right] \therefore|k A|=k^{n}|A|$
153 (b)
$A^{2}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]$
$=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I$
154
(d)

Given that, $A=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]$
$=\left[\begin{array}{cc}\alpha^{2}+0 & 0+0 \\ \alpha+1 & 0+1\end{array}\right]$
$=\left[\begin{array}{cc}\alpha^{2} & 0 \\ \alpha+1 & 1\end{array}\right]$
Also, $B=A^{2} \quad$ (given)
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]=\left[\begin{array}{cc}\alpha^{2} & 0 \\ \alpha+1 & 1\end{array}\right]$
Clearly this is not satisfied by any real value of α 155 (b)

We have,
$A(\operatorname{adj} A)=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]$
$\Rightarrow|A| I=4 I \quad[\because A(\operatorname{adj} A)=|A| I]$
$\Rightarrow|A|=4$
$\Rightarrow|\operatorname{adj} A|=|A|^{2} \quad\left[|\operatorname{adj} A|=|A|^{n-1}\right]$
156 (a)
Given, $A=\left[\begin{array}{cc}\omega & 0 \\ 0 & \omega\end{array}\right]$

$$
\begin{aligned}
A^{2} & =\left[\begin{array}{ll}
\omega & 0 \\
0 & \omega
\end{array}\right]\left[\begin{array}{ll}
\omega & 0 \\
0 & \omega
\end{array}\right]=\left[\begin{array}{ll}
\omega^{2} & 0 \\
0 & \omega^{2}
\end{array}\right] \\
\Rightarrow A^{3} & =\left[\begin{array}{cc}
\omega^{2} & 0 \\
0 & \omega^{2}
\end{array}\right]\left[\begin{array}{ll}
\omega & 0 \\
0 & \omega
\end{array}\right]=\left[\begin{array}{cc}
\omega^{3} & 0 \\
0 & \omega^{3}
\end{array}\right]
\end{aligned}
$$

Similarly, $A^{50}=\left[\begin{array}{lc}\omega^{50} & 0 \\ 0 & \omega^{50}\end{array}\right]$

$$
=\left[\begin{array}{lll}
\left(\omega^{2}\right)^{16} \omega^{2} & 0 \\
0 & \left(\omega^{3}\right)^{16} \omega^{2}
\end{array}\right]
$$

$=\left[\begin{array}{cc}\omega^{2} & 0 \\ 0 & \omega^{2}\end{array}\right]$
$=\omega^{2} \mathrm{~A}$
157 (a)
We have,
$A B=I_{3}$
$\Rightarrow\left[\begin{array}{lll}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}1 & 0 & x+y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow x+y=0$
158 (a)
Let $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
$\therefore \quad \operatorname{adj}(A)=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
159 (a)
$\because|A|=0-1(1-9)+2(1-6)$
$=8-10=-2 \neq 0$
$\operatorname{adj}(A)=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1\end{array}\right]$
$\therefore A^{-1}=\frac{1}{-2}\left[\begin{array}{ccc}-1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1\end{array}\right]=\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 1 / 2 \\ -4 & 3 & -1 \\ 5 / 2 & -3 / 2 & 1 / 2\end{array}\right]$
160 (a)
$|f(\theta)|=1\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1$
Now, $\operatorname{adj}\{f(\theta)\}=\left[\begin{array}{lll}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
$\therefore\{f(\theta)\}^{-1}=\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]=f(-\theta)$
161 (a)
Given, $\quad x+4 a y+a z=0$
$x+3 b y+b z=0$
And $x+2 c y+c z=0$
For non-trivial solution
$\left|\begin{array}{lll}1 & 4 a & a \\ 1 & 3 b & b \\ 1 & 2 c & c\end{array}\right|=0$
Applying $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$
$\Rightarrow\left|\begin{array}{ccc}1 & 4 a & a \\ 0 & 3 b-4 a & b-a \\ 0 & 2 c-4 a & c-a\end{array}\right|=0$
$\Rightarrow 1[(3 b-4 a)(c-a)-2(b-a)(c-2 a)]=0$
$\Rightarrow 3 b c-3 a b-4 a c+4 a^{2}$

$$
-2\left(b c-2 a b-a c+2 a^{2}\right)=0
$$

$\Rightarrow \quad b c+a b-2 a c=0$
$\Rightarrow \quad a b+b c=2 a c$

(d)

We know that
$\operatorname{rank}(A B) \leq \operatorname{rank}(A)$
and, $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$
$\therefore \operatorname{rank}(A B) \leq \min (\operatorname{rank} A, \operatorname{rank} B)$
163 (c)
Let $A=\left[\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{m 1}\end{array}\right]$ and $B=\left[\begin{array}{lllll}b_{11} & b_{12} & b_{13} & \cdots & b_{1 n}\end{array}\right]$ be two
non-zero column and row matrices respectively We have,
$A B=\left[\begin{array}{ccccc}a_{11} & b_{11} & a_{11} & b_{12} & a_{11} \\ b_{13} & \cdots & a_{11} b_{1 n} \\ a_{21} & b_{11} & a_{21} & b_{12} & a_{21} \\ b_{13} & a_{21} b_{1 n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m 1} & b_{11} & a_{m 1} & b_{12} & a_{m 1} \\ b_{13} & a_{m 1} & b_{1 n}\end{array}\right]$
Since A and B are non-zero matrices. Therefore, the matrix $A B$ will also be a non-zero matrix. The matrix $A B$ will have at least one non-zero element obtained by multiplying corresponding non-zero elements of A and B. All the two-rowed minors of A obviously vanish. But, A is a non-zero matrix. Hence, $\operatorname{rank}(A=1)$
(c)
$\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$A=\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right]^{-1}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]^{-1}$
$=-\left[\begin{array}{ll}2 & -1 \\ -3 & 2\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}-3 & -2 \\ -5 & -3\end{array}\right]$
$=\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 5 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
165 (a)
If A is any square matrix, then
$A A^{-1}=I$ and $A^{-1} I=A^{-1}$
Since, $\quad A^{2}-A+I=0$
$\Rightarrow \quad A^{-1} A^{2}-A^{-1} A+A^{-1} I=0$
$\Rightarrow \quad\left(A^{-1} A\right) A-\left(A^{-1} A\right)+A^{-1}=0$
$\Rightarrow A-1+A^{-1}=0 \Rightarrow A^{-1}=I-A$
166 (a)
Since, B is invertible, therefore B^{-1} exists
Now, $\operatorname{rank}(A)=\operatorname{rank}\left[(A B) B^{-1}\right] \leq \operatorname{rank}(A B)$

But $\quad \operatorname{rank}(A B) \leq \operatorname{rank}(A)$
$\therefore \quad \operatorname{rank}(A B)=\operatorname{rank}(A)$
167 (c)
Given, $A=\left[\begin{array}{ll}4 & 2 \\ 3 & 4\end{array}\right]$ of order $n=2$
$\therefore|\operatorname{adj}(A)|=|A|^{2-1}=\left[\begin{array}{ll}4 & 2 \\ 3 & 4\end{array}\right]=10$
168 (d)
$\cos \theta\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]+\sin \theta\left[\begin{array}{cc}\sin \theta-\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$
$=\left[\begin{array}{cc}\cos ^{2} \theta+\sin ^{2} \theta & 0 \\ 0 & \cos ^{2} \theta+\sin ^{2} \theta\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
169 (b)
Let A denote the matrix every element of which is unity. Then, all the 2-rowed minors of A obviously vanish. But A is a non-null matrix. Hence, rank of A is 1
170 (d)
As $\operatorname{det}(A)= \pm 1, A^{-1}$ exists
and $\quad A^{-1}=\frac{1}{\operatorname{det}(A)}(\operatorname{adj} A)= \pm(\operatorname{adj} A)$
All entries in adj (A) are integers.
$\therefore A^{-1}$ has integer entries.
171 (c)
Since, A is invertible
$\therefore|A| \neq 0 \Rightarrow\left[\begin{array}{ccc}1 & 0 & -k \\ 2 & 1 & 3 \\ k & 0 & 1\end{array}\right] \neq 0$
$\Rightarrow 1(1-0)+k(0-k) \neq 0$
$\Rightarrow 1-k^{2} \neq 0 \Rightarrow k \neq \pm 1$
172 (b)
We have,
$\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right] \frac{1}{1+\tan ^{2} \theta}\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]$ $=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
$\Rightarrow \frac{1}{1+\tan ^{2} \theta}\left[\begin{array}{cc}1-\tan ^{2} \theta & -2 \tan \theta \\ 2 \tan \theta & 1-\tan ^{2} \theta\end{array}\right]=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} & \frac{-2 \tan \theta}{1+\tan ^{2} \theta} \\ \frac{2 \tan \theta}{1+\tan ^{2} \theta} & \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\end{array}\right]=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
$\Rightarrow a=\cos 2 \theta, b=\sin 2 \theta$
173 (c)
We have,
$x^{2}+y^{2}+z^{2} \neq 0$
\Rightarrow At least one of x, y, z is non-zero
Now,
$x=c y+b z, y=a z+c x, z=b x+a y$
$\Rightarrow x-c y-b z=0$
$c x-y+a z=0$
$b x+z y-z=0$
As at least one of x, y, z is non-zero. Therefore, the above system of equations has non-trivial
solutions
$\therefore\left|\begin{array}{ccc}1 & -c & -b \\ c & -1 & a \\ b & a & -1\end{array}\right|=0 \Rightarrow a^{2}+b^{2}+c^{2}+2 a b c=1$
174 (c)
$A^{2}-4 A+10 I=A$
$\Rightarrow\left[\begin{array}{rr}1 & -3 \\ 2 & k\end{array}\right]\left[\begin{array}{rr}1 & -3 \\ 2 & k\end{array}\right]-4\left[\begin{array}{rr}1 & -3 \\ 2 & k\end{array}\right]+10\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
=\left[\begin{array}{cc}
1 & -3 \\
2 & k
\end{array}\right]
$$

$\Rightarrow\left[\begin{array}{cc}-5 & -3-3 k \\ 2+2 k & -6+k^{2}\end{array}\right]-\left[\begin{array}{cc}4 & -12 \\ 8 & 4 K\end{array}\right]+\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$
$=\left[\begin{array}{cc}1 & -3 \\ 2 & k\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}1 & 9-3 k \\ -6+2 k & 4+k^{2}-4 K\end{array}\right]=\left[\begin{array}{cc}1 & -3 \\ 2 & k\end{array}\right]$
$\Rightarrow 9-3 k=-3,-6+2 k=2$
and $4+k^{2}-4 k=k$
$\Rightarrow k^{2}-5 k+4=0 \Rightarrow k=4,1$
But $k=1$ is not satisfied the Eq (i).
175 (a)
Given, $A^{2}=2 A-I$
Now, $A^{3}=A^{2} \cdot A=2 A^{2}=-I A$
$=2 A^{2}-A=2(2 A-I)-A$
$=3 A-2 I=3 A-(3-1) I$
...
...
$A^{n}=n A-(n-1) I$
176 (c)
We have, $\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] A=\left[\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right]$
$\Rightarrow A=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]^{-1}\left[\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right]$
$\Rightarrow A=\left[\begin{array}{rr}1 & -3 \\ 0 & 1\end{array}\right]\left[\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right]$
$=\left[\begin{array}{rr}1 & 4 \\ 0 & -1\end{array}\right]$
177 (b)
It is given that A is an orthogonal matrix
$\therefore A A^{T}=I=A^{T} A \Rightarrow A^{-1}=A^{T}$
178 (a)
Let $A=I A$
$\Rightarrow\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow R_{2}-2 R_{1}$ and $R_{3} \rightarrow R_{3}-3 R_{1}$
$\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & -2 & -3\end{array}\right] \approx\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1\end{array}\right] A$
Applying $R_{3} \rightarrow R_{3}-2 R_{2}$
$\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & 0 & 1\end{array}\right] \approx\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1\end{array}\right] A$
Applying $R_{2} \rightarrow-R_{2}$ and $R_{2} \rightarrow R_{2}-2 R_{3}$
$\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \approx\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & -2 \\ 1 & -2 & 1\end{array}\right] A$
Applying $R_{1} \rightarrow R_{1}-2 R_{2}-3 R_{3}$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \approx\left[\begin{array}{ccc}-2 & 0 & 1 \\ 0 & 3 & -2 \\ 1 & -2 & 1\end{array}\right] A$
$\therefore \quad A^{-1}=\left[\begin{array}{ccc}-2 & 0 & 1 \\ 0 & 3 & -2 \\ 1 & -2 & 1\end{array}\right]$
179 (a)
Given that, $2 X+\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]$
$\Rightarrow 2 X=\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]-\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
$\Rightarrow 2 X=\left[\begin{array}{cc}2 & 6 \\ 4 & -2\end{array}\right]=2\left[\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right]$
$\Rightarrow X=\left[\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right]$
180 (b)
Since the given matrix is symmetric
$\therefore(A)_{12}=(A)_{21} \Rightarrow x+2=2 x-3 \Rightarrow x=5$
181 (d)
Given, $A=3\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
$\therefore \quad A^{2}=3\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right] \cdot 3\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right] 9 A$
$\therefore \quad A^{4}=A^{2} . A^{2}=9 A .9 A=81.9 A=729 A$
182 (a)
Now, $\left|\begin{array}{ccc}1 & \omega^{2} & \omega \\ \omega^{2} & \omega & 1 \\ \omega & 1 & \omega^{2}\end{array}\right|$
$=1\left(\omega^{3}-1\right)-\omega^{2}\left(\omega^{4}-\omega\right)+\omega\left(\omega^{2}-\omega^{2}\right)$
$=1(1-1)-\omega^{2}(\omega-\omega)+0$
$=0$
Hence, matrix A is singular
183 (a)
Given system of equations are
$x+y+z=6, x+2 y+3 z=10$
and $\quad x+2 y+\lambda z=\mu$
The given system of equations has infinite number of solutions, if any tow equations will be same ie, the last two equations will be same, if $\lambda=3, \mu=10$.
184 (a)
Given, $(A+B)(A-B)=A^{2}-B^{2}$
$\Rightarrow \quad A^{2}-A B+B A-B^{2}=A^{2}-B^{2}$
$\Rightarrow \quad A B=B A$
Now, $\left(A B A^{-1}\right)^{2}=\left(B A A^{-1}\right)^{2}=B^{2}$

185 (c)
Since diagonal elements of a skew -symmetric matrix are all zeros i.e. $a_{i i}=0$ for all i
$\therefore \operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}=0$
186 (c)
$\left.\because P 63=P(I-P) \quad \because P^{2}=I-P\right)$
$=P I-P^{2}=P I-(I-P)$
Now, $P^{4}=P \cdot P^{3}$
$\Rightarrow P^{4}=P(2 P-I)$
$\Rightarrow P^{4}=2 P^{2}-P$
$\Rightarrow P^{4}=2 I-2 P-P$
$\Rightarrow P^{4}=2 I-3 P$
And $P^{5}=P(2 I-3 P)$
$\Rightarrow \quad P^{5}=2 P-3(I-P)$
$\Rightarrow P^{5}=5 P-3 I$
Also, $P^{6}=P(5 P-3 I)$
$\Rightarrow P^{6}=5 P^{2}-3 P$
$\Rightarrow P^{6}=5(I-P)-3 P$
$\Rightarrow P^{6}=5 I-8 P$
So, $n=6$
Alternate Solution
$\because P^{n}=5 I-8 P$
$=5(I-P)-3 P$
$=P(5 P-3 I)\left(\because P^{2}=I-P\right)$
$=P\left(2 P-3 P^{2}\right)$
$=P^{2}(2 I-3 P)$
$=P^{2}[2(I-P)-P]$
$=P^{2}\left[2 P^{2}-P\right]$
$=P^{3}[2 P-I]$
$=P^{4}[I-P]$
$=P^{4} \cdot P^{2}=P^{6}$
$\Rightarrow n=6$
187 (b)
$A^{2}=A \cdot A=A B . A$
$=A \cdot B A=A B=A$
189 (d)
Let $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$
$\therefore \quad|A|=\left|\begin{array}{ccc}1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right|=\left|\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right|=1$
and $\operatorname{adj} A=\left[\begin{array}{ccc}1 & -2 & 7 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right]$
hence, $A^{-1}=\frac{1}{|A|}$ adj $A=\left[\begin{array}{ccc}1 & -2 & 7 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right]$
so, required element $=A_{13}^{-1}=7$
190 (a)
$\because|A|=1$
and $A^{c}=\left[\begin{array}{ccc}\cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$
and adj $A=\left(A^{c}\right)^{\prime}=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$
$\therefore A^{-1}=\frac{\operatorname{adj} A}{|A|}=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]=f(-x)$
191 (b)
$\because|A|=1(0-1)=-1$
\therefore Cofactors of A are
$C_{11}=0, C_{12}=0, C_{13}=-1$
$C_{21}=0, C_{22}=-1, C_{23}=0$
$C_{31}=-1, C_{32}=0, C_{33}=0$
$\therefore A^{-1}=\frac{1}{-1}\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]=A$
192 (b)
We have,
$A^{2}-5 I_{2}-\left[\begin{array}{ll}10 & 15 \\ 15 & 25\end{array}\right]-\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]=\left[\begin{array}{cc}5 & 15 \\ 15 & 20\end{array}\right]=5 A$
$\therefore k=5$
194 (b)
Let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -2 & -2 \\ 1 & 3 & 1\end{array}\right], \quad X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
and $B\left[\begin{array}{l}0 \\ 3 \\ 4\end{array}\right]$
$\therefore A X=B$
$\Rightarrow X=A^{-1} B$
Here, $A^{-1}=\frac{1}{6}\left[\begin{array}{ccc}4 & 2 & 0 \\ -3 & 0 & 3 \\ 5 & -2 & -3\end{array}\right]$
$\therefore X=\frac{1}{6}\left[\begin{array}{ccc}4 & 2 & 0 \\ -3 & 0 & 3 \\ 5 & -2 & -3\end{array}\right]\left[\begin{array}{l}0 \\ 3 \\ 4\end{array}\right]$
$=\frac{1}{6}\left[\begin{array}{c}0+6+0 \\ 0+0+12 \\ 0-6-12\end{array}\right]=\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]$
Thus, $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]$
195 (a)
The given system of equations can be rewritten as matrix from $A X=B$ as
$\left[\begin{array}{ccr}1 & -1 & 1 \\ 1 & 2 & -1 \\ 2 & 1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Now, $|A|=1(6+1)+1(3+2)+1(1-4)$
$=7+5-3=9 \neq 0$
Since, $|A \neq 0|$. So, the given system of equations has only trivial solution. So, there is no non-trivial solution.
196 (d)
If matrix has no inverse it means the value of
determinant should be zero.
$\therefore \quad\left|\begin{array}{rrr}1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1\end{array}\right|=0$
If we put $x=1$, then column Ist and IIIrd are identical.
197 (b)
Since, $\left[\begin{array}{ccc}2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5\end{array}\right]$ is a singular matrix
$\therefore\left|\begin{array}{ccc}2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5\end{array}\right|=0$
$\Rightarrow(2+x)(5-2)-3(-5-2 x)+4(1+x)=0$
$\Rightarrow 6+3 x+15+6 x+4+4 x=0$
$\Rightarrow 13 x+25=0 \Rightarrow x=-\frac{25}{13}$
198 (a)
We have,
$A=\left[\begin{array}{cccc}2 & 3 & 1 & 4 \\ 0 & 1 & 2 & -1 \\ 0 & -2 & -4 & 2\end{array}\right]$
$\Rightarrow A \sim\left[\begin{array}{llll}2 & 3 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 2\end{array}\right] \quad$ Applying $R_{2} \rightarrow 2 R_{2}+$
R_{3}
$\Rightarrow A \sim\left[\begin{array}{cccc}2 & 3 & -5 & 7 \\ 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0\end{array}\right] \quad \begin{gathered}\text { Applying } C_{3} \rightarrow C_{3}-2 C_{2} \\ C_{4} \rightarrow C_{4}+C_{2}\end{gathered}$
$\Rightarrow A \sim\left[\begin{array}{cccc}2 & 3 & -5 & 7 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad$ Applying $R_{2} \leftrightarrow R_{3}$
Clearly, $\left|\begin{array}{cc}2 & 3 \\ 0 & -2\end{array}\right| \neq 0$ and every minor of order 3 is zero
Hence, rank of A is 2
199 (b)
We have,
$A^{2}=A A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]=\left[\begin{array}{cc}a^{2}+b^{2} & 2 a b \\ 2 a b & a^{2}+b^{2}\end{array}\right]$
$\therefore A^{2}=\left[\begin{array}{ll}\alpha & \beta \\ \beta & \alpha\end{array}\right]$
$\Rightarrow \alpha=a^{2}+b^{2}, \beta^{2}=2 a b$

In a square matrix, the trace of A is defined as the sum of the diagonal elements
Hence, trace of $A=\sum_{i=1}^{n} a_{i i}$
201 (a)
Given system of equations is $x+2 y+3 z=1$,
$2 x+y+3 z=2$ and $5 x+5 y+9 z=5$
Now, $\Delta=\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9\end{array}\right|$
$=1(9-15)-2(18-15)+3(10-5)$
$=-6-6+15$
$=3 \neq 0$
Hence, it has unique solution
202 (a)
Let $\Delta=\left|\begin{array}{lll}4 & 2 & (1-x) \\ 5 & k & 1 \\ 6 & 3 & (1+x)\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}+R_{3}$
$\Rightarrow \Delta=\left|\begin{array}{llr}10 & 5 & 2 \\ 5 & k & 1 \\ 6 & 3 & 1+x\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}-2 C_{2}$
$\Rightarrow \quad \Delta=\left|\begin{array}{llr}0 & 5 & 2 \\ 5-2 k & k & 1 \\ 0 & 3 & 1+x\end{array}\right|$
$\Rightarrow \quad(5-2 k)(5+5 x-6)=0$
$\Rightarrow \quad k=\frac{5}{2}, \quad x=\frac{1}{5}$
204 (b)
Since, $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right] \cdot \frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\therefore \quad A^{-1}=\frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2}\end{array}\right]$
205 (c)
It is a direct consequence of the definition of rank 206 (a)

Now, $A(x) A(y)=(1-x)^{-1}\left[\begin{array}{cc}1 & -x \\ -x & 1\end{array}\right](1-$ $y-11-y-y 1$
$=[(1+x y)-(x+y)]^{-1}\left[\begin{array}{cc}1+x y & -(x+y) \\ -(x+y) & 1+x y\end{array}\right]$
$=\left(1-\frac{x+y}{1+x y}\right)^{-1}\left[\begin{array}{cc}1 & -\frac{x+y}{1+x y} \\ -\frac{x+y}{1+x y} & 1\end{array}\right]$
$=A(z)$
207 (a)
$A^{2}(\alpha)=\left|\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right|\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$
$=\left[\begin{array}{cc}\cos ^{2} \alpha-\sin ^{2} \alpha & 2 \cos \alpha \sin \alpha \\ -2 \sin \alpha \cos \alpha & \cos ^{2} \alpha-\sin ^{2} \alpha\end{array}\right]$
$=\left[\begin{array}{cc}\cos 2 \alpha & \sin 2 \alpha \\ -\sin 2 \alpha & \cos 2 \alpha\end{array}\right]=\mathrm{A}(2 \alpha)$
208 (a)
Since, A is symmetric matrix, therefore $A^{T}=A$
Now, $\left(A^{n}\right)^{T}=\left(A^{T}\right)^{n}=A^{n}$
Hence, A^{n} is a symmetric matrix.
209 (a)
Let $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$
$\therefore|A|=\left|\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right|$
$=0\left|\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right|-1\left|\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right|+2\left|\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right|$
$=-(1-9)+2(1-6)=8-10=-2$
and Adj $A=\left[\begin{array}{ccc}-1 & 8 & -5 \\ 1 & -6 & 3 \\ -1 & 2 & -1\end{array}\right]^{T}=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1\end{array}\right]$
Hence, $A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)$
$=-\frac{1}{2}\left[\begin{array}{ccc}-1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1\end{array}\right]$
$=\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 1 / 2 \\ -4 & 3 & -1 \\ 5 / 2 & -3 / 2 & 1 / 2\end{array}\right]$
210 (a)
We know that
$A=\frac{1}{2}\left(A+A^{T}\right)+\frac{1}{2}\left(A-A^{T}\right)$
Clearly, $\frac{1}{2}\left(A+A^{T}\right)$ is a symmetric matrix and
$\frac{1}{2}\left(A-A^{T}\right)$ is a skew-symmetric matrix
Now,
$\frac{1}{2}\left(A+A^{T}\right)=\frac{1}{0}\left\{\left[\begin{array}{ccc}2 & 0 & -3 \\ 4 & 3 & 1 \\ -5 & 7 & 2\end{array}\right]+\left[\begin{array}{ccc}2 & 4 & -5 \\ 0 & 3 & 7 \\ -3 & 1 & 2\end{array}\right]\right\}$
$\Rightarrow \frac{1}{2}\left(A+A^{T}\right)=\frac{1}{2}\left[\begin{array}{ccc}4 & 4 & -8 \\ 4 & 6 & 8 \\ -8 & 8 & 4\end{array}\right]=\left[\begin{array}{ccc}2 & 2 & -4 \\ 2 & 3 & 4 \\ -4 & 4 & 2\end{array}\right]$
211 (c)
Since, the system of linear equations has a non-
zero solution, then
$\left[\begin{array}{ccc}1 & 2 a & a \\ 1 & 3 b & b \\ 1 & 4 c & c\end{array}\right]=0$
Applying $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$
$\Rightarrow\left|\begin{array}{ccc}1 & 2 a & a \\ 0 & 3 b-2 a & b-a \\ 0 & 4 c-2 a & c-a\end{array}\right|=0$
$\Rightarrow \quad(3 b-2 a)(c-a)-(4 c-2 a)(b-a)=0$
$\Rightarrow 3 b c-3 b a-2 a c+2 a^{2}$

$$
=4 b c-2 a b-4 a c+2 a^{2}
$$

$\Rightarrow \quad 2 a c=b c+a b$
On dividing by $a b c$ both sides, we get
$\frac{2}{b}=\frac{1}{a}+\frac{1}{c}$
$\Rightarrow a, b, c$ are in HP.
212 (c)
Given system of equations is
$x-y+z=3$
$2 x+y-z=2$
and $-3 x-2 k y+6 z=3$
\therefore The given system will have infinite solutions.
$\therefore\left|\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -1 \\ -3 & -2 k & 6\end{array}\right|=0$
$\Rightarrow 6 k-18=0 \Rightarrow k=3$
213 (a)
The product of two orthogonal matrix is an orthogonal matrix
214

(b)

Given system of equations can be rewritten as
$A X=B$
$\Rightarrow\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & -1 & 2 \\ 3 & 5 & -7\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}8 \\ 6 \\ 14\end{array}\right]$
$\therefore \quad|A|=1(7-10)-1(-7-6)+1(5+3)$
$=-3+13+8=18 \neq 0$
\therefore Given system has unique solution.
215 (a)
Given, equations $(x+a y=0, a z+y=0, a x+$
$z=0$ has infinite soluations.
\therefore Using Crames's rule, its determinant $=0$
$\Rightarrow\left|\begin{array}{lll}1 & a & 0 \\ 0 & 1 & a \\ a & 0 & 1\end{array}\right| 0$
$\Rightarrow 1+a^{3}=0 \Rightarrow a=-1$
217 (a)
Given that, $F(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow \quad F(-\alpha)=\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$
$\therefore F(\alpha) F(-\alpha)$
$=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{cc}\cos ^{2} \alpha+\sin ^{2} \alpha & \cos \alpha \sin \alpha-\sin \alpha \cos \\ \sin \alpha \cos \alpha-\sin \alpha \cos \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha \\ 0 & 0\end{array}\right.$
$=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I$
$\Rightarrow[F(\alpha)]^{-1}=F(-\alpha)$
218 (b)
By using inverse of matrix, we know
$\left|M^{-1}\right|=|M|^{-1}$ holds true
$\left(M^{T}\right)^{-1}=\left(M^{-1}\right)^{T}$ holds true
and $\left(M^{-1}\right)^{-1}=M$ holds true
but $\left(M^{2}\right)^{-1}=\left(M^{-1}\right)^{-2}$ not true
219 (a)
Since, $A^{2}-B^{2}=(A-B)(A+B)$
$=A^{2}-B^{2}+A B-B A$
$\Rightarrow \quad A B=B A$
220 (c)
Given, $\quad x_{1}+2 x_{2}+3 x_{3}=0$
$2 x_{1}+3 x_{2}+x_{3}=0$
$3 x_{1}+x_{2}+2 x_{3}=0$
$\Rightarrow \quad \Delta=\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{array}\right|$
$=1(6-1)-2(4-3)+3(2-9)$
$=-18$
Then, this is system has the unique solution.
(d)
$X^{2}=X \cdot X=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]=\left[\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right]$
For $n=2$, no option is satisfied
Hence, option (d) is correct

We have,
$F(\alpha) F(-\alpha)$
$=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow F(\alpha) F(-\alpha)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I$
$\Rightarrow F(-\alpha)=[F(\alpha)]^{-1}$
224 (b)
We have, $\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}$
$\therefore A A^{T}$ is symmetric matrix
225 (c)
For any square matrix X, we have
$X(\operatorname{adj} X)=|X| I_{n}$
Taking $X=\operatorname{adj} A$, we have
$(\operatorname{adj} A)(\operatorname{adj}(\operatorname{adj} A))=|\operatorname{adj} A| I_{n}$
$\Rightarrow \operatorname{adj} A(\operatorname{adj}(\operatorname{adj} A))=|A|^{n-1} I_{n}[\because|\operatorname{adj} A|=$
$\left.|A|^{n-1}\right]$
$\Rightarrow(A \operatorname{adj} A)(\operatorname{adj}(\operatorname{adj} A))=|A|^{n-1} A \quad\left[\because A I_{n}=\right.$
A]
$\Rightarrow\left(|A| I_{n}\right)(\operatorname{adj}(\operatorname{adj} A))=|A|^{n-1} A$
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=|\mathrm{A}|^{n-2} A$
226
(d)

Given equations are
$(\alpha+1)^{3} x+(\alpha+2)^{3} y-(\alpha+3)^{3}=0$
$(\alpha+1) x+(\alpha+2) y-(\alpha+3)=0$
and
$x+y-1=0$
Since, this system of equations is consistent.
$\therefore\left|\begin{array}{ccc}(\alpha+1)^{3} & (\alpha+2)^{3} & -(\alpha+3)^{3} \\ (\alpha+1) & (\alpha+2) & -(\alpha+3)\end{array}\right|=0$
Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}+C_{1}$
$\Rightarrow\left[\begin{array}{c}(\alpha+1)^{3}(\alpha+2)^{3}-(\alpha+1)^{3} \\ (\alpha+1)^{3}-(\alpha+3)^{3} \\ (\alpha+1) \\ -(\alpha+3)+(\alpha)-(\alpha+1)\end{array}\right]=0$
$\Rightarrow\left[\begin{array}{ccc}(\alpha+1)^{3} & 3 \alpha^{2}+9 \alpha+7 & -6 \alpha^{2}-24 \alpha-26 \\ (\alpha+1) & 1 & -2 \\ 1 & 0 & 0\end{array}\right]$

$$
=0
$$

$\Rightarrow \quad-2\left(3 \alpha^{2}+9 \alpha+7\right)+6 \alpha^{2}+24 \alpha+26=0$
$\Rightarrow 6 \alpha+12=0 \quad \Rightarrow \alpha=-2$
227 (a)
We have,
$A^{n}=\left[\begin{array}{cc}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta\end{array}\right]$
$\Rightarrow \frac{1}{n} A^{n}=\left[\begin{array}{cc}\frac{\cos n \theta}{n} & \frac{\sin n \theta}{n} \\ \frac{-\sin n \theta}{n} & \frac{\cos n \theta}{n}\end{array}\right]$
$\Rightarrow \lim _{n \rightarrow \infty} \frac{1}{n} A^{n}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
228 (c)
We have,
$A B=O$
$\Rightarrow\left[\begin{array}{cc}\cos ^{2} \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin ^{2} \alpha\end{array}\right]\left[\begin{array}{cc}\cos ^{2} \beta & \cos \beta \sin \\ \cos \beta \sin \beta & \sin ^{2} \beta\end{array}\right.$
$=0$
$\Rightarrow\left[\begin{array}{ll}\cos \alpha \cos \beta \cos (\alpha-\beta) & \cos \alpha \sin \beta \cos (\alpha-\beta) \\ \cos \beta \sin \alpha \cos (\alpha-\beta) & \sin \alpha \sin \beta \cos (\alpha-\beta)\end{array}\right]$
$=0$
$\Rightarrow \cos (\alpha-\beta)=0$
$\Rightarrow \alpha-\beta$ is an odd multiple of $\frac{\pi}{2}$
229 (c)
$|A||\operatorname{adj} A|=|A|^{n}$ for order n
$\Rightarrow D D^{\prime}=D^{n}$
230 (c)
Given, $\left[\begin{array}{cc}1+\omega & 2 \omega \\ -2 \omega & -b\end{array}\right]+\left[\begin{array}{cc}a & -\omega \\ 3 \omega & 2\end{array}\right]=\left[\begin{array}{cc}0 & \omega \\ \omega & 1\end{array}\right]$
$\Rightarrow \quad\left[\begin{array}{ccc}1+\omega+a & \omega \\ \omega & 2-b\end{array}\right]=\left[\begin{array}{cc}0 & \omega \\ \omega & 1\end{array}\right]$
$\Rightarrow \quad 1+\omega+a=0,2-b=1$
$\Rightarrow \quad a=-1-\omega, b=1$
$\therefore \quad a^{2}+b^{2}=(-1-\omega)^{2}+1^{2}$

$$
=1+\omega^{2}+2 \omega+1^{2}
$$

$=0+\omega+1$
$\left(\because \quad 1+\omega+\omega^{2}=0\right)$
$=1+\omega$
232 (a)
Given, $2 k x-2 y+3 z=0, x+k y+2 z=0,2 x+$ $k z=0$
For non-trivial solution
$\left|\begin{array}{ccc}2 k & -2 & 3 \\ 1 & k & 2 \\ 2 & 0 & k\end{array}\right|=0$
$\Rightarrow 2 k\left(k^{2}-0\right)+2(k-4)+3(0-2 k)=0$
$\Rightarrow \quad 2 k^{3}-4 k-8=0$
$\Rightarrow(k-2)\left(2 k^{2}+4 k+4\right)=0$
$\Rightarrow \quad k=2$

233 (a)
$A B=\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & 1 & 0\end{array}\right]\left[\begin{array}{rr}1 & -1 \\ 0 & 2 \\ 5 & 0\end{array}\right]$
$\left[\begin{array}{ll}2+0+15 & -2+2+0 \\ 4+0+0 & -4+2+0\end{array}\right]$
$=\left[\begin{array}{rr}17 & 0 \\ 4 & -2\end{array}\right]$
234 (d)
$A^{2}=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}\alpha^{2} & 0 \\ \alpha+1 & 1\end{array}\right]$
$\therefore \quad A^{2}=B \Rightarrow\left[\begin{array}{cc}\alpha^{2} & 0 \\ \alpha+1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$
$\Rightarrow \quad \alpha^{2}=1$ and $\alpha+1=5$
Which is not possible at the same time.
\therefore No real values of α exists.
235 (c)
We have,
$E(\alpha) E(\beta)$
$=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \beta & \sin \beta \\ -\sin \beta & \cos \beta\end{array}\right]$
$=\left[\begin{array}{cc}\cos (\alpha+\beta) & \sin (\alpha+\beta) \\ -\sin (\alpha+\beta) & \cos (\alpha+\beta)\end{array}\right]=E(\alpha+\beta)$
Hence, option (c) is correct.
(c)

We have, $A=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]$
$\therefore A^{2}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]$
$=\left[\begin{array}{cc}\frac{1}{2}-\frac{1}{2} & \frac{1}{2}-\frac{1}{2} \\ -\frac{1}{2}+\frac{1}{2} & -\frac{1}{2}+\frac{1}{2}\end{array}\right]$
$=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
\therefore Matrix A is nilpotent
238 (d)
Since, $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{array}\right]$
Now, $|A|=1(0-2)+1(2-3)+2(4-0)=5$
$\therefore A^{-1}=\frac{1}{5}\left[\begin{array}{ccc}-2 & 5 & -1 \\ 1 & -5 & 3 \\ 4 & -5 & 2\end{array}\right]$
Now, $A^{-1} B=\frac{1}{5}\left[\begin{array}{ccc}-2 & 5 & -1 \\ 1 & -5 & 3 \\ 4 & -5 & 2\end{array}\right]\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$

239 (a)
Since, A is a skew-symmetric matrix. Therefore,
$A^{T}=-A \Rightarrow\left|A^{T}\right|=|-A|$
$\Rightarrow|A|=(-1)^{n}|A|$
Also, n is odd
$\therefore 2|A|=0 \Rightarrow|A|=0$
Thus, $|\operatorname{adj} A|=|A|^{2}=0$
240 (d)
Given System of equations are
$x+3 y+2 z=0$
$3 x+y+z=0$
and $2 x-2 y-z=0$
Now, $\Delta=\left|\begin{array}{ccc}1 & 3 & 2 \\ 3 & 1 & 1 \\ 2 & -2 & -1\end{array}\right|$
$=1(-1+2)-3(-3-2)+2(-6-2)$
$=1+15-16$
$=0$
Since, determinant is zero, then it has infinitely many solutions.
242 (b)
Let $\Delta=\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{4} & a_{5}\end{array}\right]$
$=a_{1} a_{5}-a_{2} a_{4}$
$=a_{1}\left(a_{1}+4 d\right)-\left(a_{1}+d\right)\left(a_{1}+3 d\right)$
$=a_{1}^{2}+4 a_{1} d-a_{1}^{2}-4 a_{1} d-3 d^{2}=-3 d^{2} \neq 0$
Hence, given system of equations has unique solution.
243 (b)
$\because I_{n}=\left[\begin{array}{ccccc}1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1\end{array}\right],\left|I_{n}\right|=1$
$\operatorname{adj}\left(I_{n}\right)=I_{n}$
$\therefore\left(I_{n}\right)^{-1}=I_{n}$
244 (c)
We know that
$(\operatorname{adj} A)^{T}=\operatorname{adj} A^{T}$
$\Rightarrow \operatorname{adj} A^{T}-(\operatorname{adj} A)^{T}=O$ (Null matrix)
245 (c)
Given, $\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 3 & -1 \\ 3 & 2 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}9 \\ 4 \\ 10\end{array}\right]$
It is of the form $A X=B$
$|A|=2(3+2)+1(1+3)+3(2-9)=-7$
$\therefore \quad \operatorname{adj}(A)=\left[\begin{array}{ccc}5 & 7 & -8 \\ -4 & -7 & 5 \\ -7 & -7 & 7\end{array}\right]$
$\Rightarrow A^{-1}=\frac{1}{-7}\left[\begin{array}{cccc}5 & 7 & -8 \\ -4 & -7 & 5 \\ -7 & -7 & 7\end{array}\right]$

From Eq.(i), $X=-\frac{1}{7}\left[\begin{array}{cccc}5 & 7 & -8 \\ -4 & -7 & 5 \\ -7 & -7 & 7\end{array}\right]\left[\begin{array}{c}9 \\ 4 \\ 10\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=-\frac{1}{7}\left[\begin{array}{c}-7 \\ -14 \\ -21\end{array}\right]$
$\Rightarrow \quad x=1, y=2, z=3$
247 (b)
$A=\left|\begin{array}{rrr}1 & -1 & 1 \\ 2 & 1 & -1 \\ 4 & 1 & 1\end{array}\right|$
$=1(1+1)+1(2+4)+1(2-4)=6 \neq 0$
Hence, it has unique solution.
248 (d)
Given, $A=\left[\begin{array}{lc}\cos \theta-\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
Now, $\quad|A|=\cos ^{2} \theta+\sin ^{2} \theta=1 \neq 0$.
$\therefore A$ is invertible.
249 (b)
$|A|=-1$ and adj $A=\left[\begin{array}{lrr}0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1\end{array}\right]$
Now, $\quad A^{-1}=\frac{1}{-1}\left[\begin{array}{lrr}0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1\end{array}\right]=A$
250 (b)
$A=\left|\begin{array}{lrr}-1 & 2 & 5 \\ 2 & -4 & a-4 \\ 1 & -2 & a+1\end{array}\right|=\left|\begin{array}{ccc}0 & 0 & a+6 \\ 0 & 0 & -a-6 \\ 1 & -2 & a+1\end{array}\right|$
[using $R_{1} \rightarrow R_{1}+R_{3}$ and $R_{2} \rightarrow R_{2}-2 R_{3}$]
$=\left|\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -a-6 \\ 1 & -2 & a+1\end{array}\right| \quad\left[\operatorname{using} R_{1} \rightarrow R_{1}+R_{2}\right]$
When $a=-6, \quad A=\left|\begin{array}{ccr}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & -2 & -5\end{array}\right| \quad \therefore \rho(A)=1$
When $a=6, \quad A=\left|\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -12 \\ 1 & -2 & 7\end{array}\right|, \quad \therefore \rho(A)=2$
When $a=1, \quad A=\left|\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -7 \\ 1 & -2 & 2\end{array}\right|, \quad \therefore \rho(A)=2$
When $a=2, \quad A=\left|\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -8 \\ 1 & -2 & 3\end{array}\right| \quad \therefore \rho(A)=2$
251 (b)
Let $D=\left[\begin{array}{ccccc}d_{1} & 0 & 0 & \cdots & 0 \\ 0 & d_{2} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \\ 0 & 0 & 0 & \cdots & d_{n}\end{array}\right]$
Then, $|D|=d_{1} d_{2} \cdots d_{n}$
Now, Cofactor of $D_{11}=d_{2} d_{3} \cdots d_{n}$
Cofactor of $D_{22}=d_{1} d_{3} \cdots d_{n}$ etc
And, Cofactor of $D_{i j}=0$ when $i \neq j$
$\therefore D^{-1}=\frac{1}{|D|}$ adj D
$=\frac{1}{d_{1} d_{2} \cdots d_{n}}\left[\left.\begin{array}{ccccc}d_{2} d_{3} \cdots d_{n} & 0 & 0 & \cdots & 0 \\ 0 & d_{2} d_{3} \cdots & d_{n} & 0 & \cdots \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & 0 & \cdots & d_{1} d_{2} \\ \cdots\end{array} \right\rvert\,\right.$
$\therefore D^{-1}=\left[\begin{array}{ccccc}\frac{1}{d_{1}} & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & \\ \vdots & \vdots & \vdots & & 1 \\ 0 & 0 & 0 & \frac{1}{d_{n}}\end{array}\right]=\operatorname{diag}\left(s_{1}^{-1} d_{2}^{-1} \cdots d_{n}^{-1}\right)$
252 (d)
$\because A^{2}=\left[\begin{array}{rr}1 & 2 \\ 4 & -3\end{array}\right]\left[\begin{array}{rr}1 & 2 \\ 4 & -3\end{array}\right]=\left[\begin{array}{cc}9 & -4 \\ -8 & 17\end{array}\right]$
$\therefore f(A)=A^{2}+4 A-5$
$=\left[\begin{array}{cc}9 & -4 \\ -8 & 17\end{array}\right]+\left[\begin{array}{cc}4 & 8 \\ 16 & -12\end{array}\right]-\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]$
$=\left[\begin{array}{ll}8 & 4 \\ 8 & 0\end{array}\right]$
253 (a)
$A^{2}=\left[\begin{array}{lr}2 & -1 \\ -1 & 2\end{array}\right]\left[\begin{array}{cr}2 & -1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cr}5 & -4 \\ -4 & 5\end{array}\right]$
Again now, $4 A-3 I=4\left[\begin{array}{cr}2 & -1 \\ -1 & 2\end{array}\right]-\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]=$ $\left[\begin{array}{cr}5 & -4 \\ -4 & 5\end{array}\right]$
\therefore

$$
A^{2}=4 A-3 I
$$

254 (d)
$\because(A B)^{-1}=B^{-1} A^{-1}$
255 (d)
$|A|=-8$
$\operatorname{adj}(A)=\left[\begin{array}{crr}0 & 0 & -4 \\ 0 & -4 & 0 \\ -4 & 0 & 0\end{array}\right]$
$A^{-1}=\frac{1}{-8}\left[\begin{array}{ccc}0 & 0 & -4 \\ 0 & -4 & 0 \\ -4 & 0 & 0\end{array}\right]$
$=\left[\begin{array}{ccc}0 & 0 & 1 / 2 \\ 0 & 1 / 2 & 0 \\ 1 / 2 & 0 & 0\end{array}\right]$
256 (b)
Since given system of equations possesses a nonzero solution.
$\therefore \quad \Delta=\left[\begin{array}{ccc}a & 1 & 1 \\ 1 & -a & 1 \\ 1 & 1 & 1\end{array}\right]=0$
$\Rightarrow a(-a-1)-1(1-1)+1(1+a)=0$
$\Rightarrow a^{2}=1 \Rightarrow a= \pm 1$
257 (a)
Now, $\left(A+A^{T}\right)^{T}=A^{T}+\left(A^{T}\right)^{T}=A^{T}+A$
$\therefore A+A^{T}$ is symmetric matrix.
258 (c)
$A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]=14$
$\because(\operatorname{adj}(\operatorname{adj} A))=|A|^{n-2} A=14^{3-2} A=14 A$
$\therefore|\operatorname{adj}(\operatorname{adj} A)|=|14 A|=14^{3}|A|=14^{4}$
259 (b)

Given,
$\left[\begin{array}{crc}1 & 1 & 1 \\ 1 & -2 & -2 \\ 1 & 3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 3 \\ 4\end{array}\right] \Rightarrow\left[\begin{array}{c}x+y+z \\ x-2 y-2 z \\ x+3 y+z\end{array}\right]=\left[\begin{array}{l}0 \\ 3 \\ 4\end{array}\right]$
On Comparing both sides, we get
$x+y+z=0$
$x-2 y-2 z=3$
and $x+3 y+z=4$
On solving Eqs. (i), (ii) and (iii), we get
$x=1, y=2$ and $z=-3$
260 (a)
$|A|=\left|\begin{array}{cc}1 & 2 \\ -4 & -1\end{array}\right|$
$=-1+8=7$
$\operatorname{adj} A=\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]$
$\therefore \quad A^{-1}=\frac{1}{7}\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]$
261 (c)
It is given that
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}a & a+b \\ c & c+d\end{array}\right]=\left[\begin{array}{cc}a+c & b+d \\ c & d\end{array}\right]$
$\Rightarrow a+c=a, a+b=b+d, c+d=d$
$\Rightarrow c=0$ and $a=d$
262 (a)
$A B=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}5 & 1 & -3 \\ 3 & 2 & 6 \\ 14 & 5 & 0\end{array}\right]$
263 (a)
Let A be a skew-symmetric matrix of odd order
$(2 n+1)$ say. Since A is skew-symmetric
$\therefore A^{T}=-A$
$\Rightarrow\left|A^{T}\right|=|-A|$
$\Rightarrow\left|A^{T}\right|=(-1)^{2 n+1}|A|$
$\Rightarrow\left|A^{T}\right|=-|A|$
$\Rightarrow|A|=-|A| \Rightarrow 2|A|=0 \Rightarrow|A|=0$
264 (a)
As, $P P^{T}=\left[\begin{array}{cc}\sqrt{3 / 2} & 1 / 2 \\ -1 / 2 & \sqrt{3} / 2\end{array}\right]\left[\begin{array}{ll}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow P P^{T}=I$ or $P^{T}=P^{-1}$
As, $\quad Q=P A P^{T}$
$\left.\therefore P^{T} Q^{2005} P=P^{T}\left[P A P^{T}\right)(P A P)^{T}\right) \ldots 2005$ times $] P$
$=\frac{\left(P^{T} P\right) A\left(P^{T} P\right) A\left(P^{T} P\right) \ldots\left(P^{T} P\right) A\left(P^{T} P\right)}{2005 \text { times }}$
$=I A^{2005}=A^{2005}$
$\therefore A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], A^{2}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
$A^{3}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \ldots$ and so on
$A^{2005}=\left[\begin{array}{rr}1 & 2005 \\ 0 & 1\end{array}\right]$
$\Rightarrow P^{T} Q^{2005} P=\left[\begin{array}{cc}1 & 2005 \\ 0 & 1\end{array}\right]$

265 (c)
Given, $2 X+3 Y=0$
and $X+2 Y=I$
where $O=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
On solving Eqs. (i) and (ii), we get
$X=-3 I=\left[\begin{array}{cc}-3 & 0 \\ 0 & -3\end{array}\right]$
266 (d)
Subtracting the addition of first two equations from third equation, we get
$0=-5$ which is an absurd result.
267 (d)
Given $A=\left[\begin{array}{rr}x & -2 \\ 3 & 7\end{array}\right]$
$|A|=\left|\begin{array}{rr}x & -2 \\ 3 & 7\end{array}\right|=7 x+6$
$\therefore \quad A^{-1}=\frac{1}{7 x+6}\left[\begin{array}{ll}7 & 2 \\ -3 & x\end{array}\right]$
But given $A^{-1}=\left[\begin{array}{ll}\frac{7}{34} & \frac{1}{17} \\ \frac{-3}{34} & \frac{2}{17}\end{array}\right]$
$\therefore \quad \frac{7}{7 x+6}=\frac{7}{34}$
$\Rightarrow 7 x+6=34 \Rightarrow 7 x=28 \Rightarrow x=4$
268 (d)
(a) It is clear that A is not a zero matrix.
(b) $(-1) I=-1\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right] \neq A$
ie, $\quad(-1) I \neq A$
(c) $|A|=0\left|\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right|-0\left|\begin{array}{ll}0 & 0 \\ -1 & 0\end{array}\right|-1\left|\begin{array}{cr}0 & -1 \\ -1 & 0\end{array}\right|$
$=0-0-1(-1)=1$
Since, $|A| \neq 0$ so A^{-1} exists.
(d) $A^{2}=\left[\begin{array}{lrr}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \Rightarrow A^{2}=I$
270 (a)
Since, $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$
$\therefore A B=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$
$=\left[\begin{array}{ccc}1+4+0 & 0+2-1 & 0+0-3 \\ 3+0+0 & 0+0+2 & 0+0+6 \\ 4+10+0 & 0+5+0 & 0+0+0\end{array}\right]$
$=\left[\begin{array}{ccc}5 & 1 & -3 \\ 3 & 2 & 6 \\ 14 & 5 & 0\end{array}\right]$

271 (c)
We have,
$[F(x) G(y)]^{-1}=[G(y)]^{-1}[f(x)]^{-1}$
$\Rightarrow[F(x) G(y)]^{-1}=G(-y) F(-x)$
272
(a)
$A^{-1}=\frac{1}{1+10}\left[\begin{array}{rr}1 & -2 \\ 5 & 1\end{array}\right]=\frac{1}{11}\left[\begin{array}{rr}1 & -2 \\ 5 & 1\end{array}\right]$
Also, $A^{-1}=x A+y I$
$\Rightarrow \frac{1}{11}\left[\begin{array}{rr}1 & -2 \\ 5 & 1\end{array}\right]=\left[\begin{array}{cc}x & 2 x \\ -5 x & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 0 & y\end{array}\right]$
$\Rightarrow \quad x+y=\frac{1}{11}, 2 x=\frac{-2}{11}$
$\Rightarrow \quad x=\frac{-1}{11}, y=\frac{2}{11}$
273 (d)
Now, $(A B)^{T}=B^{T} A^{T}$
274 (c)
On comparing corresponding elements, we get
$x+y+z=9$
$x+y=5$
and $y+z=7$
On solving these, we get $x=2, y=3, z=4$
$\Rightarrow \quad(x, y, z)=(2,3,4)$
(c)
A. $A=\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]$
$=\left[\begin{array}{lr}=a^{2} b^{2}-a^{2} b^{2} r & a b^{3}-a b^{3} \\ -a^{3} b+a^{3} b & -a^{2} b^{2}+a^{2} b^{2}\end{array}\right]$
$\Rightarrow \quad A^{2}=0$
$\therefore A$ is nilpotent matrix of order 2 .
(d)

Since A, B and C are non-singular matrices, then
$\left(A B^{-1} C\right)^{-1}=C^{-1}\left(A B^{-1}\right)^{-1}$
$=C^{-1}\left(\left(B^{-1}\right)^{-1} A^{-1}\right)=C^{-1} B A^{-1}$
(a)

Given matrix is invertible
$\Rightarrow\left|\begin{array}{lll}\lambda-1 & 4 \\ -3 & 0 & 1 \\ -1 & 1 & 2\end{array}\right| \neq 0$
$\Rightarrow \lambda(0-1)+1(-6+1)+4(-3-0) \neq 0$
$\Rightarrow \quad-\lambda-5-12 \neq 0$
$\Rightarrow \lambda \neq-17$

(d)

From Eqs. (ii) and (iii), we get
$\frac{3 y^{2}}{b^{2}}-\frac{3 z^{2}}{c^{2}}=0$
$\Rightarrow \frac{z^{2}}{c^{2}}=\frac{y^{2}}{b^{2}}$
On putting this value in Eq. (i), we get
$\frac{2 x^{2}}{a^{2}}-\frac{2 y^{2}}{b^{2}}=0$
$\Rightarrow \frac{x^{2}}{a 62}=\frac{y^{2}}{b^{2}}$
$\therefore \frac{x^{2}}{a^{2}}=\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}=k^{2} \quad$ (say)
$\Rightarrow x= \pm k a, y= \pm k b, z= \pm k c, \forall k \in R$
279 (b)
We have, $A=\left[\begin{array}{cc}1 & \log _{b} a \\ \log _{a} b & 1\end{array}\right]$
$\therefore|A|=1-\log _{a} b \log _{b} a=1-1=0$
280 (a)
$|A|=4-6=-2$
$\operatorname{adj}(A)=\left[\begin{array}{cr}4 & -2 \\ -3 & 1\end{array}\right]$
$\therefore A^{-1}=-\frac{1}{2}\left[\begin{array}{lr}4 & -2 \\ -3 & 1\end{array}\right]$
281
(b)

Since, $P=\left[\begin{array}{ccc}i & 0 & -i \\ 0 & -i & i \\ -i & i & 0\end{array}\right]$ and $Q=\left[\begin{array}{cc}-i & i \\ 0 & 0 \\ i & -i\end{array}\right]$
$\therefore P Q=\left[\begin{array}{ccc}i & 0 & -i \\ 0 & -i & i \\ -i & i & 0\end{array}\right]\left[\begin{array}{cc}-i & i \\ 0 & 0 \\ i & -i\end{array}\right]$
$=\left[\begin{array}{cc}-i^{2}-i^{2} & i^{2}+i^{2} \\ i^{2} & -i^{2} \\ i^{2} & -i^{2}\end{array}\right]$
$=\left[\begin{array}{cc}1+1 & -1-1 \\ -1 & 1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}2 & -2 \\ -1 & 1 \\ -1 & 1\end{array}\right]$
282
(d)
$B=\operatorname{adj}(A)=\left[\begin{array}{ccc}3 & 1 & 1 \\ -6 & -2 & 3 \\ -4 & -3 & 2\end{array}\right]$
Therefore, $\operatorname{adj}(B)=\left[\begin{array}{crc}5 & -5 & 5 \\ 0 & 10 & -15 \\ 10 & 5 & 0\end{array}\right]$
Now, $|\operatorname{adj} B|=\left|\begin{array}{ccc}5 & -5 & 5 \\ 0 & 10 & -15 \\ 10 & 5 & 0\end{array}\right|=625$
and $|C|=125|A|=125\left|\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 5 & 0\end{array}\right|=625$
$\therefore \frac{|\operatorname{adj}(B)|}{|C|}=\frac{625}{625}=1$

Alternate

$|A|=1(0+3)+1(0+6)+(0-4)$
Now, $\operatorname{adj} B=\operatorname{adj}(\operatorname{adj} A)$
$=|A| A=5 A$
$\therefore \frac{|\operatorname{adj} B|}{|C|}=\frac{|5 A|}{|5 A|}=1$
283
(d)

Given, $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
$\therefore \quad A^{-1}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]=A^{T}$

284 (b)
The given system of equations posses non-zero solutions,
$\therefore\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & a & a \\ 1 & -a & 1\end{array}\right]=0$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$
$\Rightarrow\left|\begin{array}{ccc}1 & 1 & 1 \\ 0 & a-1 & a-1 \\ 0 & -a-1 & 0\end{array}\right|=0$
$\Rightarrow \quad 1\left(0-\left(a^{2}-1\right)\right)=0$
$\Rightarrow a^{2}=1 \Rightarrow a= \pm 1$
285 (a
Given, $x\left[\begin{array}{c}-3 \\ 4\end{array}\right]+y\left[\begin{array}{l}4 \\ 3\end{array}\right]=\left[\begin{array}{c}10 \\ -5\end{array}\right]$
$\therefore-3 x+4 y=10$
and $\quad 4 x+3 y=-5$
On solving Eqs. (i) and (ii), we get $x=-2, y=1$
287 (a)
$|A|=5+6=11$
and \quad adj $A=\left[\begin{array}{cc}1 & 2 \\ -3 & 5\end{array}\right]$
$A^{-1}=\frac{1}{11}\left[\begin{array}{cc}1 & 2 \\ -3 & 5\end{array}\right]$
288 (c)
We know that, if
$A^{n}=\left[\begin{array}{ccc}d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3}\end{array}\right]=\operatorname{diag}\left[\begin{array}{lll}d_{1} & d_{2} & d_{3}\end{array}\right]$
Then,
$A^{n}=\left[\begin{array}{ccc}d_{1}^{n} & 0 & 0 \\ 0 & d_{2}^{n} & 0 \\ 0 & 0 & d_{3}^{n}\end{array}\right]=\operatorname{diag}\left[d_{1}^{n} d_{2}^{n} d_{3}^{n}\right]$
$\therefore A^{5}=\left[\begin{array}{ccc}2^{5} & 0 & 0 \\ 0 & 2^{5} & 0 \\ 0 & 0 & 2^{5}\end{array}\right]=16 A$
289 (c)
$A B=I \Rightarrow B=A^{-1}$
$=\frac{1}{1+\tan ^{2} \theta}\left[\begin{array}{lr}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]$
$=\frac{1}{\sec ^{2} \theta}\left[\begin{array}{lr}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]$
$\Rightarrow \quad\left(\sec ^{2} \theta\right) \mathrm{B}=\left[\begin{array}{lr}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]=\mathrm{A}(-\theta)$

290 (b)
It is given that $A=\left[a_{i j}\right]$ is a skew-symmetric matrix
$a_{i j}=-a_{j i}$ for all i, j
$\Rightarrow a_{i i}=-a_{i i}$ for all i
$\Rightarrow 2 a_{i i}=0$ for all $i \Rightarrow a_{i i}=0$ for all i

We know that, if $A=$ diag. $\left(d_{1} d_{2}, \ldots \ldots, d_{n}\right)$ is a
diagonal matrix, then for any $k \in N$
$A^{k}=\operatorname{diag}\left(d_{1}^{k}, d_{2}^{k}, \ldots, d_{n}^{k}\right)$
Here, $A=$ diag. (a, a, a)
$\therefore A^{n}=\operatorname{diag}\left(a^{n}, a^{n}, a^{n}\right)=\left[\begin{array}{ccc}a^{n} & 0 & 0 \\ 0 & a^{n} & 0 \\ 0 & 0 & a^{n}\end{array}\right]$
292 (b)
We have,
$(A B-B A)^{T}=(A B)^{T}-(B A)^{T}$

$$
=B^{T} A^{T}-A^{T} B^{T}
$$

$\Rightarrow(A B-B A)^{T}=B A-A B \quad\left[\because A^{T}=\right.$
$\left.A, B^{T}=B\right]$
$\Rightarrow(A B-B A)^{T}=-(A B-B A)$
So, $A B-B A$ is skew-symmetric matrix
293 (b)
Since $A B$ exists
\therefore No. of rows in $B=$ No. of columns in A
\Rightarrow No. of rows in $B=n$
Also, $B A$ exists
\Rightarrow No. of columns in $B=$ No. of rows in A
\Rightarrow No. of columns in $=m$
Hence, B is of order $n \times m$
294 (c)
We have,
$(k A)(\operatorname{adj} k A)=|k A| I_{n}$
$\Rightarrow k(A \operatorname{adj} k A)=k^{n}|A| I_{n} \quad\left[\because|k A|=k^{n}|A|\right]$
$\Rightarrow A(\operatorname{adj} k A)=k^{n-1}|A| I_{n}$
$\Rightarrow A \operatorname{adj}(k A)=k^{n-1} A(\operatorname{adj} A)[\because A \operatorname{adj} A=$
$|A| I_{n}$]
$\Rightarrow A \operatorname{adj}(k A)=A\left(k^{n-1} \operatorname{adj} \mathrm{~A}\right)$
$\Rightarrow A^{-1}(A \operatorname{adj}(k A))=A^{-1}\left(A\left(k^{n-1} \operatorname{adj} A\right)\right)$
$\Rightarrow\left(A^{-1} A\right)(\operatorname{adj} k A)=\left(A^{-1} A\right)\left(k^{n-1} \operatorname{adj} A\right)$
$\Rightarrow I(\operatorname{adj} k A)=I\left(k^{n-1} \operatorname{adj} A\right)$
$\Rightarrow \operatorname{adj} k A=k^{n-1}(\operatorname{adj} A)$
295 (c)
It has a non- zero solution if
$\left|\begin{array}{ccc}1 & k & -1 \\ 3 & -k & -1 \\ 1 & -3 & 1\end{array}\right|=0$
$\Rightarrow-6 k+6=0$
$\Rightarrow \quad k=1$
296 (b)
$(a I+b A)^{2}=(a I+b A)(a I+b A)$

$$
=a^{2} I^{2}+a I(b A)+b A(a I)+(b A)^{2}
$$

Now, $I^{2}=I$ and $I A=A$
$\therefore(a I+b A)^{2}=a^{2} I+2 a b A+b^{2}\left(A^{2}\right)$
Now, $A^{2}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
$\therefore(a I+b A)^{2}=a^{2} I+2 a b A$

297 (b)
Since A is orthogonal matrix
$\therefore A A^{T}=I=A^{T} A$
$\Rightarrow\left|A A^{T}\right|=|I|=\left|A^{T} A\right|$
$\Rightarrow|A|\left|A^{T}\right|=1=\left|A^{T}\right||A|$
$\Rightarrow|A|^{2}=1 \Rightarrow|A|= \pm 1$
298 (b)
Since, given system of equations has no solution,
$\Delta=0$ and any one amongst $\Delta x, \Delta y, \Delta z$ is non-zero.
Where $\Delta=\left|\begin{array}{crr}2 & -1 & 2 \\ 1 & -2 & 1 \\ 1 & 1 & \lambda\end{array}\right|=0$
And $\Delta z=\left|\begin{array}{ccr}2 & -1 & 2 \\ 1 & -2 & -4 \\ 1 & 1 & \lambda\end{array}\right|=6 \neq 0$
$\Rightarrow \lambda=1$
299 (c)
Since, A is an idempotent matrix, therefore $A^{2}=A$

$$
\begin{array}{r}
\Rightarrow\left[\begin{array}{ccc}
2 & -2 & -16-4 x \\
-1 & 3 & 16+4 x \\
4+x & -8-2 x & -12+x^{2}
\end{array}\right] \\
=\left[\begin{array}{ccc}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & x
\end{array}\right]
\end{array}
$$

On comparing, $16+4 x=4$
$\Rightarrow x=-3$
300 (a)
We have,
$A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 3 & 0 \\ 0 & 1 & 2\end{array}\right]$ and adj $A=\left[\begin{array}{ccc}6 & -2 & -6 \\ -4 & 2 & x \\ y & -1 & 1\end{array}\right]$
Clearly, $|A|=6-8+4=2$
$\therefore A(\operatorname{adj} A)=|A| I$
$\Rightarrow\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 3 & 0 \\ 0 & 1 & 2\end{array}\right]\left[\begin{array}{ccc}6 & -2 & -6 \\ -4 & 2 & x \\ y & -1 & -1\end{array}\right]=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}2 y-2 & 0 & 2 x-18 \\ 0 & 2 & 3 x-12 \\ 2 y-4 & 0 & x-2\end{array}\right]=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
$\Rightarrow 2 y-2=2,2 y-4=0,2 x-8=0,3 x-12$

$$
=0, x-2=2
$$

$\Rightarrow x=4, y=2 \Rightarrow x+y=6$
301 (a)
Since, $\left[\begin{array}{ll}x+y & 2 x+z \\ x-y & 2 z+w\end{array}\right]=\left[\begin{array}{cc}4 & 7 \\ 0 & 10\end{array}\right]$
$\Rightarrow x+y=4$
$x-y=0$
$2 x+z=7 \quad$...(iii)
and $2 z+w=10$
On solving these equations, we get $x=2, y=2, z=3, w=4$

We have,
$A=\left[\begin{array}{cc}-i & 0 \\ 0 & -i\end{array}\right]$
$\therefore A^{2}=\left[\begin{array}{cc}-i & 0 \\ 0 & -i\end{array}\right]\left[\begin{array}{cc}-i & 0 \\ 0 & -i\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
$\Rightarrow A^{2}=-I \Rightarrow A^{2}+I=0$
303 (d)
$m\left[\begin{array}{ll}-3 & 4\end{array}\right]+n\left[\begin{array}{ll}4 & -3\end{array}\right]=\left[\begin{array}{ll}10-11\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}-3 m+4 n & 4 m-3 n\end{array}\right]=\left[\begin{array}{cc}10-11\end{array}\right]$
$\Rightarrow \quad-3 m+4 n=10$
and $4 m-3 n=-11$
On solving Eqs. (i) and (ii), we get
$n=1, \quad m=-2$
Now, $3 m+7 n=3(-2)+7(1)=1$
304 (b)
We know that
$A(\operatorname{adj} A)=|A| I$
If $A=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$, then $|A|=1$
$\therefore A(\operatorname{adj} A)=I \Rightarrow K I=I \Rightarrow k=1$
305 (a)
$\because|A|=3, \operatorname{adj}(A)=\left[\begin{array}{cc}1 & -2 \\ 0 & 3\end{array}\right]$
$\therefore A^{-1}=\frac{1}{3}\left[\begin{array}{rr}1 & -2 \\ 0 & 3\end{array}\right]$
$\Rightarrow \quad\left(A^{-1}\right)^{3}=\frac{1}{27}\left[\begin{array}{rr}1 & -2 \\ 0 & 3\end{array}\right]^{3}$
$=\frac{1}{27}\left[\begin{array}{rr}1 & -26 \\ 0 & 27\end{array}\right]$
306 (d)
Given, $M=\left[a_{u v}\right]_{n \times n}$
$=\left[\sin \left(\theta_{u}-\theta_{v}\right)+i \cos \left(\theta_{u}-\theta_{v}\right)\right]$
$\Rightarrow \bar{M}=\left[\sin \left(\theta_{u}-\theta_{v}\right)-i \cos \left(\theta_{u}-\theta_{v}\right)\right]$
$\Rightarrow(\bar{M})^{T}=\left[\sin \left(\theta_{v}-\theta_{u}\right)-i \cos \left(\theta_{v}-\theta_{u}\right)\right]$
$=\left[-\sin \left(\theta_{u}-\theta_{v}\right)-i \cos \left(\theta_{u}-\theta_{v}\right)\right]$
$=-\left[\sin \left(\theta_{u}-\theta_{v}\right)+i \cos \left(\theta_{u}-\theta_{v}\right)\right]$
$=-M$
307 (a)
If given system of equations have infinitely many
solutions, then
$\left|\begin{array}{lll}2 & -1 & 1 \\ 1 & -2 & 1 \\ \lambda & -1 & 2\end{array}\right|=0$
$\Rightarrow 2(-4+1)+1(2-\lambda)+1(-1+2 \lambda)=0$
$\Rightarrow-6+2-\lambda-1+2 \lambda=0$
$\Rightarrow \quad \lambda-5=0$
$\Rightarrow \quad \lambda=5$
308 (c)
If $A B=O$, then A and B may be equal to O
individually. It is not necessary in any condition
(b)
$E(\theta) E(\emptyset)=\left[\begin{array}{lr}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]$
$\times\left[\begin{array}{lr}\cos ^{2} \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{array}\right]$
$=\left[\begin{array}{l}\cos ^{2} \theta \cos ^{2} \phi+\cos \theta \sin \theta \cos \phi \sin \phi \\ \cos \theta \sin \theta \cos ^{2} \phi+\sin ^{2} \theta \cos \phi \sin \phi\end{array}\right.$ $\cos ^{2} \theta \cos \phi \sin \phi+\cos \theta \sin \theta \sin ^{2} \phi$ $\left.\cos \theta \sin \theta \cos \phi \sin \phi+\sin ^{2} \theta \sin ^{2} \phi\right]$
$=\left[\begin{array}{c}\cos \theta \cos \phi \cos (\theta-\phi) \cos \theta \sin \phi \cos (\theta-\phi) \\ \cos \phi \sin \theta \cos (\theta-\phi) \sin \theta \sin \phi \cos (\theta-\phi)\end{array}\right]$
$=$
$\left[\begin{array}{c}\cos \theta \cos \phi \cos (2 n+1) \frac{\pi}{2} \\ \cos \theta \sin \phi \cos (2 n+1) \frac{\pi}{2} \\ \cos \theta \sin \phi \cos (2 n+1) \frac{\pi}{2} \\ \sin \theta \sin \phi(2 n+1) \frac{\pi}{2}\end{array}\right]$
$=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \quad\left[\because \cos (2 n+1) \frac{\pi}{2}=0\right]$
310 (c)
Given, $x \sin 3 \theta-y+z=0$
$x \cos 2 \theta+4 y+3 z=0$ and $2 x+7 y+7 z=0$
For non-trivial solution.
$\left|\begin{array}{ccc}\sin 3 \theta & -1 & 1 \\ \cos 2 \theta & 4 & 3 \\ 2 & 7 & 7\end{array}\right|=0$
$\Rightarrow \sin 3 \theta(28-21)$

$$
\begin{aligned}
& -\cos 2 \theta(-7-7)+2(-3-4) \\
& =0
\end{aligned}
$$

$\Rightarrow 7 \sin 3 \theta+14 \cos 2 \theta-14=0$
$\Rightarrow 7\left(3 \sin \theta-4 \sin ^{3} \theta\right)+14\left(1-2 \sin ^{2} \theta\right)-14=0$
$\Rightarrow-28 \sin ^{3} \theta-28 \sin ^{2} \theta+21 \sin \theta=0$
$\Rightarrow-7 \sin \theta\left(4 \sin ^{2} \theta+4 \sin \theta-3\right)=0$
$\Rightarrow \sin \theta(2 \sin \theta+3)(2 \sin \theta-1)=0$
$\Rightarrow \sin \theta=0, \sin \theta=\frac{1}{2} \quad\left(\because \sin \theta \neq-\frac{3}{2}\right)$
$\Rightarrow \theta=\mathrm{n} \pi, \mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}$
311 (c)
$\because k A=\left[\begin{array}{cc}0 & 3 a \\ 2 b & 24\end{array}\right]$
$\Rightarrow k\left[\begin{array}{cc}0 & 2 \\ 3 & -4\end{array}\right]=\left[\begin{array}{cc}0 & 3 a \\ 2 b & 24\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}0 & 2 k \\ 3 k & -4 k\end{array}\right]=\left[\begin{array}{cc}0 & 3 a \\ 2 b & 24\end{array}\right]$
$\Rightarrow 2 k=3 a, 3 k=2 b,-4 k=24$
$\Rightarrow a=\frac{2 k}{3}, b=\frac{3 k}{2}, k=-6$
$\therefore a=-4, b=-9, k=-6$
312 (d)
$\because \operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$
Here $n=3$
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=|A| A$

313 (c)
$A^{5}=A^{2} A^{2} A=(A+I)(A+I) A$
$=\left(A^{2}+2 A I+I^{2}\right) A$
$=(A+I+2 A+I) A=(3 A+2 I) A$
$=3 A^{2}+2 I A=3(A+I)+2 I A$
$=3 A+3 I+2 A=5 A+3 I$
314 (c)
Matrices $A+B$ and $A B$ are defined only if both A and B are of same order $n \times n$.
315 (a)
$U V+X Y=\left[\begin{array}{ll}2-3 & 4\end{array}\right]\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]+\left[\begin{array}{lll}0 & 2 & 3\end{array}\right]\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right]$
$=6-6+4]+[0+4+12]=[4]+[16]=[20]$
316 (b)
For matrix $A=\left[\begin{array}{ll}a & 2 \\ 2 & 4\end{array}\right]$ to be singular,
$\left|\begin{array}{ll}a & 2 \\ 2 & 4\end{array}\right|=0$
$\Rightarrow 4 a-4=0$
$\Rightarrow a=1$
317 (a)
$\operatorname{adj}(A)=\left[\begin{array}{lr}4 y & -x \\ -x^{2} & 1\end{array}\right]$
$\therefore \quad \operatorname{adj}(A)+B=\left[\begin{array}{cc}4 y & -x \\ -x^{2} & 1\end{array}\right]+\left[\begin{array}{cc}-3 & 1 \\ 1 & 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}4 y-3 & -x+1 \\ -x^{2}+1 & 1+0\end{array}\right]$
$\Rightarrow \quad 4 y-3=1 \Rightarrow y=1$
and $\quad-x+1=0 \Rightarrow x=1$
318 (c)
$|A|=1 .\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=1$
Now, $A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)=\operatorname{adj}(A)$
319 (a)
We have,
$(A+B)(A-B)=A^{2}-A B+B A-B^{2}$
So, option (a) is correct.
320 (a)
Given, $(1-x) f(x)=1+x$
$\Rightarrow(I-A) f(A)=(I+A)(\because$ Put $x=A)$
$\Rightarrow f(A)=(I-A)^{-1}(I+A)$
$=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]-\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\right)^{-1}\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\right)$
$\Rightarrow f(A)=\left[\begin{array}{cc}0 & -2 \\ -2 & 0\end{array}\right]^{-1}\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$
$=\frac{\left[\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right]\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]}{-4}$
$=\frac{\left[\begin{array}{ll}4 & 4 \\ 4 & 4\end{array}\right]}{-4}=\left[\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right]$
321
(b)

We have,
$A A^{-1}=I$
$\Rightarrow \operatorname{det}\left(\mathrm{AA}^{-1}=\operatorname{det}(\mathrm{I})\right.$
$\Rightarrow \operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$
$\left[\begin{array}{c}\because \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \\ \text { and } \operatorname{det}(I)-1)\end{array}\right]$
$\Rightarrow \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$
322 (b)
Since $A B=3 I$
$\Rightarrow \quad A^{-1} A B=3 I A^{-1}$
$\Rightarrow \quad B=3 A^{-1}$
$\Rightarrow \quad A^{-1}=\frac{B}{3}$
323 (b)
We have, $\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=\left|\begin{array}{ccc}x_{1} & y_{1} & 1 \\ x_{2-} x_{1} & y_{2-} y_{1} & 0 \\ x_{3-} x_{1} & y_{3-} y_{1} & 0\end{array}\right|=0$
[using $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$]
\because The given points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are collinear, therefore the rank of matrix is always greater than 0 and less than 3 .
324 (a)
$\because A^{2}=A \cdot A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$
$=\left[\begin{array}{cc}4+1 & -2-2 \\ -2-2 & 1+4\end{array}\right]$
$=\left[\begin{array}{cc}5 & -4 \\ -4 & 5\end{array}\right]$
And $4 A-3 I=4\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]-3\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{cc}8 & -4 \\ -4 & 8\end{array}\right]-\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]=\left[\begin{array}{cc}5 & -4 \\ -4 & 5\end{array}\right]$
$\therefore A^{2}=4 A-3 I$
325 (a)
Given, $A=\left[\begin{array}{ll}-2 & 6 \\ -5 & 7\end{array}\right]$
$\therefore \operatorname{adj} A\left[\begin{array}{ll}7 & -6 \\ 5 & -2\end{array}\right]$
326 (c)
Given, $A=\left[\begin{array}{ll}3 & 4 \\ 5 & 7\end{array}\right]$
$\Rightarrow|A|=1$
$\therefore A \operatorname{adj}(A)=\left[\begin{array}{ll}3 & 4 \\ 5 & 7\end{array}\right]\left[\begin{array}{cc}7 & -4 \\ -5 & 3\end{array}\right]$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=1\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=|A| I$
327 (c)
$A B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]=\left[\begin{array}{cc}a & 2 b \\ 3 a & 4 b\end{array}\right]$
And $B A=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}a & 2 b \\ 3 a & 4 b\end{array}\right]$
If $A B=B A$, than $a=b$
Hence, $A B=B A$ is possible for infinitely many values of B 's.
(b)

We have,
$2 A+3 B=\left[\begin{array}{ccc}2 & -1 & 4 \\ 3 & 2 & 5\end{array}\right]$
and $A+2 B=\left[\begin{array}{lll}5 & 0 & 3 \\ 1 & 6 & 2\end{array}\right]$
On multiplying Eq.(ii) by 2 and then subtracting
Eq.(i) from Eq.(ii), we get
$B=2\left[\begin{array}{lll}5 & 0 & 3 \\ 1 & 6 & 2\end{array}\right]-\left[\begin{array}{ccc}2 & -1 & 4 \\ 3 & 2 & 5\end{array}\right]=\left[\begin{array}{ccc}8 & 1 & 2 \\ -1 & 10 & -1\end{array}\right]$
329

(b)

Determinant of unit matrix of any order is 1
330 (b)
$A B=\left[\begin{array}{ll}3 & 5 \\ 2 & 0\end{array}\right]\left[\begin{array}{cc}1 & 17 \\ 0 & -10\end{array}\right]=\left[\begin{array}{rr}3 & 1 \\ 2 & 34\end{array}\right]$
$\Rightarrow|A B|=102-2$
$=100$
331 (a)
We have, $A=\left[\begin{array}{lll}6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1\end{array}\right]$ and $A^{\prime}=\left[\begin{array}{lll}6 & 4 & 9 \\ 8 & 2 & 7 \\ 5 & 3 & 1\end{array}\right]$
\therefore Symmetric matrix, $B=\frac{A+A^{\prime}}{2}$
$=\frac{1}{2}\left\{\left[\begin{array}{lll}6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1\end{array}\right]+\left[\begin{array}{lll}6 & 4 & 9 \\ 8 & 2 & 7 \\ 5 & 3 & 1\end{array}\right]\right\}$
$=\frac{1}{2}\left[\begin{array}{llr}12 & 12 & 14 \\ 12 & 4 & 10 \\ 14 & 10 & 2\end{array}\right]=\left[\begin{array}{lll}6 & 6 & 7 \\ 6 & 2 & 5 \\ 7 & 5 & 1\end{array}\right]$
332 (b)
Since A is non-singular. Therefore, A^{-1} exists
Now, $A(\operatorname{adj} A)=|A| I=(\operatorname{adj} A) A$
$\Rightarrow|A||\operatorname{adj} A|=|A|^{n}=|\operatorname{adj} A||A|$
$\Rightarrow|\operatorname{adj} A|=|A|^{n-1} \quad[\because|A| \neq 0]$
333 (a)
$\because A+B=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]+\left[\begin{array}{ll}1 & a \\ 4 & b\end{array}\right]=\left[\begin{array}{ll}2 & -1+a \\ 6 & -1+b\end{array}\right]$
$\Rightarrow(A+B)^{2}=\left[\begin{array}{ll}2 & -1+a \\ 6 & -1+b\end{array}\right]\left[\begin{array}{ll}2 & -1+a \\ 6 & -1+b\end{array}\right]$

$$
\left[\begin{array}{cc}
-2+6 a & -1+a-b+a b \\
6+6 b & -5+6 a-2 b+b^{2}
\end{array}\right]
$$

and

$$
A^{2}=\left[\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right]=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

Also, $\quad B^{2}=\left[\begin{array}{ll}1 & a \\ 4 & b\end{array}\right]\left[\begin{array}{ll}1 & a \\ 4 & b\end{array}\right]$

$$
=\left[\begin{array}{cc}
1+4 a & a+a b \\
4+4 b & 4 a+b^{2}
\end{array}\right]
$$

Given, $(A+B)^{2}=A^{2}+B^{2}$

$$
\therefore\left[\begin{array}{cc}
-2+6 a & -1+a-b+a b \\
6+6 b & -5+6 a-2 b+b^{2}
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1+4 a & a+a b \\
4+4 b & 4 a+b^{2}
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{ll}
-2+6 a & -1+a-b+a b \\
6+6 b & -5+6 a-2 b+b^{2}
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
4 a & a+a b \\
4+4 b & -1+4 a+b^{2}
\end{array}\right]
$$

On comparing both sides, we get
$-2+6 a=4 a$ and $6+6 b=4+4 b$
$\Rightarrow \quad a=1 \quad$ and $\quad b=-1$
334

$$
\left(A B^{-1} C\right)^{-1}=C^{-1}\left(B^{-1}\right)^{-1} A^{-1}=C^{-1} B A^{-1}
$$

