Single Correct Answer Type

1. $\quad H$:Set of holiday, S : Set of Sunday and U :Set of day's

Then, the Venn diagram of statement, 'Every Sunday implies holiday' is
a)

b)

c)

d)

2. Simplify $(p \vee q) \wedge(p \vee \sim q)$
a) p
b) T
c) F
d) q
3. The statement $p \Rightarrow p \vee q$ is
a) A tautology
b) A contradiction
c) Both a tautology and contradiction
d) Neither a tautology nor a contradiction
4. $\quad p \rightarrow q$ is logically equivalent to
a) $p \wedge \sim q$
b) $\sim p \rightarrow \sim q$
c) $\sim q \rightarrow \sim p$
d) None of these
5. Which of the following is logically equivalent to $p \wedge q$?
a) $p \rightarrow \sim q$
b) $\sim p \vee \sim q$
c) $\sim(p \rightarrow \sim q)$
d) $\sim(\sim p \wedge \sim q)$
6. Some triangles are not isosceles. Identify the Venn diagram
a)

b)

c)

d)

7. Which of the following is contingency?
a) $p \vee \sim p$
b) $p \wedge q \Rightarrow p \vee q$
c) $p \wedge \sim q$
d) None of these
8. $\sim(p \vee q) \vee(\sim p \wedge q)$ is logically equivalent to
a) $\sim p$
b) p
c) q
d) $\sim q$
9. A compound sentence formed by two simple statements p and q using connective 'or' is called
a) Conjunction
b) Disjunction
c) Implication
d) None of these
10. If p and q are two statements, then $p \vee \sim(p \Rightarrow \sim q)$ is equivalent to
a) $p \wedge \sim q$
b) p
c) q
d) $\sim p \wedge q$
11. Let $p \wedge(q \vee r)=(p \wedge q) \vee(p \wedge r)$. Then, this law is known as
a) Commutative law
b) Associative law
c) De-Morgan's law
d) Distributive law
12. If p and q are two statements, then statement $p \Rightarrow q \wedge \sim q$ is
a) Tautology
b) Contradiction
c) Neither tautology not contradiction
d) None of the above
13. Which of the following is logically equivalent to $\sim(\sim p \rightarrow q)$?
a) $p \wedge q$
b) $p \wedge \sim q$
c) $\sim p \wedge q$
d) $\sim p \wedge \sim q$
14. The statement $(p \Rightarrow q) \Leftrightarrow(\sim p \wedge q)$ is a
a) Tautology
b) Contradiction
c) Neither (a) nor (b)
d) None of these
15. A compound sentence formed by two simple statements p and $q u s i n g$ connective 'and' is called
a) Conjunction
b) Disjunction
c) Implication
d) None of these
16. Let p : is not greater than and q : Pairs is in France Be two statements. Then, $\sim(p \vee q)$ is the statement
a) 7 is greater than or Pairs is not in France
b) 7 is not greater than 4 and Pairs is not in France
c) 7 is greater than 4 and Pairs is in France
d) 7 is greater than 4 and Pairs is not in France
17. If p and q are two simple propositions, then $p \leftrightarrow \sim q$ is true when
a) p and q both are true
b) Both p and q are false
c) p is false and q is true
d) None of these
18. Negation of "Pairs is in France and Londan is in England" is
a) Pairs is in England and Londan is in France
b) Pairs is not in France or Londan is not in England
c) Pairs is in England or Londan is in France
d) None of the above
19. If truth value of $p \vee q$ is true, then truth value of $\sim p \wedge q$ is
a) False if p is true
b) True if p is true
c) False if q is true
d) True if q is true
20. The logically equivalent proposition of $p \Leftrightarrow q$ is
a) $(p \wedge q) \vee(p \wedge q)$
b) $(p \Rightarrow q) \wedge(q \Rightarrow p)$
c) $(p \wedge q) \vee(q \Rightarrow p)$
d) $(p \wedge q) \Rightarrow(p \vee q)$
21. Which of the following connectives satisfy commutative law?
a) \wedge
b) V
c) \Leftrightarrow
d) All the above
22. Which of the following propositions is a contradiction?
a) $(\sim p \vee \sim q) \vee(p \vee \sim q)$
b) $(p \rightarrow q) \vee(p \wedge \sim q)$
c) $(\sim p \wedge q) \wedge(\sim q)$
d) $(\sim p \wedge q) \vee(\sim q)$
23. Let p be the proposition Mathematics is interesting and let q be the proposition that Mathematics is difficult, then the symbol $p \wedge q$ means
a) Mathematics is interesting implies that Mathematics is difficult
b) Mathematics is interesting implies and is implied by Mathematics is difficult
c) Mathematics is intersecting and Mathematics is difficult
d) Mathematics is intersecting or Mathematics is difficult
24. If $(p \wedge \sim r) \rightarrow(\sim p \vee q)$ is false, then the truth values of p, q and r are respectively
a) T, F and F
b) F, F and T
c) F, T and T
d) T, F and T
25. If statements p and r are false and q is true, then truth value of $\sim p \Rightarrow(q \wedge r) \vee r$ is
a) T
b) F
c) Either T or F
d) Neither T nor F
26. Let p and q be two statements, then $(p \vee q) \vee \sim p$ is
a) Tautology
b) Contradiction
c) Both (a) and (b)
d) None of these
27. the contrapositive of "If two triangles are identical, then these are similar" is
a) If two triangles are not similar, then these are not identical
b) If two triangles are not identical, then these are not similar
c) If two triangles are not identical, then these are similar
d) if two triangles are not similar, then these are identical
28. Simplify the following circuit and find the boolean polynomial.

a) $p \vee(q \wedge r)$
b) $p \wedge(q \vee r)$
c) $p \vee(q \vee r)$
d) $p \wedge(q \wedge r)$
29. Which of the following statement is a tautology
a) $(\sim q \wedge p) \wedge q$
b) $(\sim q \wedge p) \wedge(p \wedge \sim p)$
c) $(\sim q \wedge p) \vee(p \wedge \sim p)$
d) $(p \wedge q) \wedge(\sim(p \wedge q))$
30. The negation of the proposition "If 2 is prime, then 3 is odd" is
a) If 2 is not prime, then 3 is not odd
b) 2 is prime and 3 is not odd
c) 2 is not prime and 3 is odd
d) If 2 is not prime, then 3 is odd
31. If p, q, and r are simple propositions with truth values T, F, T, then the truth value of $(\sim p \vee q) \wedge \wedge \sim q \rightarrow p$ is
a) True
b) False
c) True, if r is false
d) None of these
32. Switching function of the network is

a) $(a \wedge b) \vee c \vee\left(a^{\prime} \wedge b^{\prime} \wedge c^{\prime}\right)$
b) $(a \wedge b) \vee c \vee\left(a^{\prime} \wedge b^{\prime} \wedge c\right)$
c) $(a \vee b) \wedge c \wedge\left(a^{\prime} \vee b^{\prime} \vee c^{\prime}\right)$
d) None of the above
33. The negation of the proposition $q \vee \sim(p \wedge r)$ is
a) $\sim q \vee(p \wedge r)$
$\mathrm{b}) \sim q \wedge(p \wedge r)$
c) $\sim p \vee \sim q \vee \sim r$
d) None of these
34. Which of the following pairs are logically equivalent?
a) Conditional, Contrapositive
b) Conditional, Inverse
c) Contrapositive, Converse
d) Inverse, Contrapositive
35. The statement $(\sim p \wedge q) \vee \sim q$ is
a) $p \vee q$
b) $p \wedge q$
c) $\sim(p \vee q)$
d) $\sim(p \wedge q)$
36. $\sim[(p \wedge q) \rightarrow(\sim p \vee q)]$ is
a) Tautology
b) Contradiction
c) neither (a) nor (b)
d) either (a) or (b)
37. If $p \rightarrow(q \vee r)$ is false, then the truth values of p, q, r are respectively
a) $\mathrm{F}, \mathrm{T}, \mathrm{T}$
b) T, T, F
c) T, F, F
d) F, F, F
38. Let R be the set of real numbers and $x \in R$. Then, $x+3=8$ is
a) Open statement
b) A true statement
c) False statement
d) None of these
39. Which of the following not a statement in logic?

1. Earth is planet.
2. Plants are living objects.
3. $\sqrt{-3}$ is a rational number.
4. $x^{2}-5 x+6<0$, when $x \in-R$.
a) 1
b) 3
c) 2
d) 4
5. Dual of $(x \wedge y) \vee(x \wedge 1)=x \wedge x \vee y \wedge y$ is
a) $(x \vee y) \wedge(x \vee 0)=x \vee(x \wedge y) \vee y$
b) $(x \wedge y) \wedge(x \vee 1)=x \vee(x \wedge y) \vee y$
c) $(x \vee y) \vee(x \vee 0)=x \vee(x \wedge y) \vee y$
d) None of the above
6. The contrapositive of $(\sim p \wedge q) \rightarrow \sim r$ is
a) $(p \wedge q) \rightarrow r$
b) $(p \vee q) \rightarrow r$
c) $r \rightarrow(p \vee \sim q)$
d) None of these
7. $\sim p \wedge q$ is logically equivalent to
a) $p \rightarrow q$
b) $q \rightarrow p$
c) $\sim(p \rightarrow q)$
d) $\sim(q \rightarrow p)$
8. $p \wedge(q \wedge r)$ is logically equivalent to
a) $p \vee(q \wedge r)$
b) $(p \wedge q) \wedge r$
c) $(p \vee q) \vee r$
d) $p \rightarrow(q \wedge r)$
9. If $p=\mathrm{He}$ is intelligent
$q=\mathrm{He}$ is strong
Then, symbolic form of statement
"It is wrong that he is intelligent or strong," is
a) $\sim p \vee \sim p$
b) $\sim(p \wedge q)$
c) $\sim(p \vee q)$
d) $p \vee \sim q$
10. Which of the following is a contradiction?
a) $(p \wedge q) \wedge(\sim(p \vee q))$
b) $p \vee(\sim p \wedge q)$
c) $(p \rightarrow q) \rightarrow p$
d) None of these
11. The statement $p \vee q$ is
a) A tautology
b) A contradiction
c) Contingency
d) None of these
12. When does the value of the statement $p(\wedge r) \Leftrightarrow(r \wedge q)$ become false?
a) p is T, q is F
b) p is, r is F
c) p is F, q is F and r is F
d) None of these
13. $(p \wedge \sim q) \wedge(\sim p \wedge q)$ is
a) a tautology
b) a contradiction
c) tautology and
d) neither a tautology not a contradiction
14. If p always speaks against q, then $p \Rightarrow p \vee \sim q$ is
a) A tautology
b) Contradiction
c) Contingency
d) None of these
15. If p, q, r have truth values T, F, T respectively, which of the following is true?
a) $(p \rightarrow q) \wedge r$
b) $(p \rightarrow q) \wedge \sim r$
c) $(p \wedge q) \wedge(p \vee r)$
d) $q \rightarrow(p \wedge r)$
16. Dual of $\left(x^{\prime} \vee y^{\prime}\right)^{\prime}=x \wedge y$ is
a) $\left(x^{\prime} \vee y^{\prime}\right)=x \vee y$
b) $\left(x^{\prime} \wedge y^{\prime}\right)^{\prime}=x \vee y$
c) $\left(x^{\prime} \wedge y^{\prime}\right)^{\prime}=x \wedge y$
d) None of the above
17. $p \vee q$ is true when
a) Both p and q are true
b) p is true and q is false
c) p is false and q is true
d) All of these
18. Which of the following propositions is a tautology?
a) $(\sim p \vee \sim q) \vee(p \vee \sim q)$
b) $(\sim p \vee \sim q) \wedge(p \vee \sim q)$
c) $\sim p \wedge(\sim p \vee \sim q)$
d) $\sim q \wedge(\sim p \vee \sim q)$
19. For any two statements p and $q, \sim(p \vee q) \vee(\sim p \wedge q)$ is logically equivalent to
a) p
b) $\sim p$
c) q
d) $\sim q$
20. Identify the false statement
a) $\sim[p \vee(\sim q)] \equiv(\sim p) \wedge q$
b) $[p \vee q] \vee(\sim p)$ is a tautology
c) $[p \wedge q] \wedge(\sim p)$ is a contradiction
d) $\sim(p \vee q) \equiv(\sim p) \vee(\sim q)$
21. $\sim[p \leftrightarrow q]$ is
a) Tautology
b) Contradiction
c) neither (a) nor (b)
d) either (a) or (b)
22. Let truth values of p be F and q be T. Then, truth value of $\sim(\sim p \vee q)$ is
a) T
b) F
c) Either T or F
d) Neither T nor F
23. Which of the following statements is a tautology?
a) $(\sim q \wedge p) \wedge q$
b) $(\sim q \wedge p) \wedge(p \wedge \sim p)$
c) $(\sim q \wedge p) \vee(p \vee \sim p)$
d) $(p \wedge q) \wedge(\sim(p \wedge q))$
24. Consider the proposition : "If we control population growth, we prosper". Negative of this proposition is
a) If we do not control population growth, we prosper
b) If we control population, we do not prosper
c) We control population but we do not prosper
d) We do not control population but we prosper
25. Which of the following is not a proposition?
a) 3 is prime
b) $\sqrt{2}$ is irrational
c) Mathematics is interesting
d) 5 is an even integer
26. If p and q are two statements, then $(p \Rightarrow q) \Leftrightarrow(\sim q \Rightarrow \sim p)$ is a
a) Contradiction
b) Tautology
c) Neither (a) nor (b)
d) None of these
27. The logically equivalent proposition of $p \rightarrow q$ is
a) $(p \rightarrow q) \vee(q \rightarrow p)$
b) $(p \vee q) \rightarrow(p \vee q)$
c) $(p \wedge q) \wedge(p \vee q)$
d) $(p \rightarrow q) \wedge(q \rightarrow p)$
28. If p and q are statements, then $\sim(p \wedge q) \vee \sim(q \Leftrightarrow p)$ is
a) Tautology
b) Contradiction
c) Neither tautology nor contradiction
d) Either tautology or contradiction
29. Consider the proposition : " If the pressure increases, the volume decreases:. The negation of this proposition is
a) If the pressure does not increase the volume does not decrease
b) If the volume increases, the pressure decreases
c) If the volume does not decreases, the pressure does not increase
d) If the volume decreases, then the pressure does not increase
30. The dual of the statement $[p \vee(\sim q)] \wedge(\sim p)$ is
a) $p \vee(\sim q) \vee \sim p$
b) $(p \wedge \sim q) \vee \sim p$
c) $p \wedge \sim(q \vee \sim p)$
d) None of these
31. Which of the following is logically equivalent to $(p \wedge q)$?
a) $p \rightarrow q$
b) $\sim p \wedge \sim q$
c) $p \wedge \sim q$
d) $\sim(p \rightarrow \sim q)$
32. The proposition $p \rightarrow \sim(p \wedge \sim q)$ is
a) A contradiction
b) A tautology
c) Either a tautology or a contradiction
d) Neither a tautology nor a contradiction
33. Which of the following statement has the truth value 'F'?
a) A quadratic equation has always a real root
b) The number of ways of seating 2 persons in two chairs out of n persons is $P(n, 2)$
c) The cube roots of unity are in GP
d) None of the above
34. The negative of the proposition : "If a number is divisible by 15 , then it is divisible by 5 or 3 "
a) If a number is divisible by 15 , then it is not divisible by 5 and 3
b) A number is divisible by 15 and it is not divisible by 5 and 3
c) A number is divisible by 15 and it is not divisible by 5 or 3
d) A number is not divisible by 15 or it is not divisible by 5 and 3
35. $p \wedge q \rightarrow p$ is
a) A tautology
b) A contradiction
c) Neither a tautology n or a contradiction
d) None of these
36. All teachers are scholar, Identify the Venn diagram
a)

b)

c)

d)

37. the negation of the statement "he is rich and happy" is given by
a) he is not rich and not happy
b) he is not rich or not happy
c) he is rich and happy
d) he is not rich and happy
38. The property $\sim(p \wedge q) \equiv \sim p \vee \sim q$ is called
a) Associative law
b) De morgan's law
c) Commutative law
d) Idempotent law
39. The negation of the compound proposition $p \vee(\sim p \vee q)$ is
a) $(p \wedge \sim q) \wedge \sim p$
b) $(p \wedge \sim q) \vee \sim p$
c) $(p \wedge \sim q) \vee \sim p$
d) None of these
40. The negation of $q \vee \sim(p \wedge r)$ is
a) $\sim q \vee \sim(p \wedge r)$
b) $\sim q \vee(p \wedge r)$
c) $\sim q \wedge(p \wedge r)$
d) $\sim q \wedge \sim(p \wedge r)$
41. $\sim(\sim p) \leftrightarrow p$ is
a) A tautology
b) A contradiction
c) Neither a contradiction nor a tautology
d) None of these
42. The contrapositive of $2 x+3=9 \Rightarrow x \neq 4$ is
a) $x=4 \Rightarrow 2 x+3 \neq 9$
b) $x=4 \Rightarrow 2 x+3=9$
c) $x \neq 4 \Rightarrow 2 x+3 \neq 9$
d) $x \neq 4 \Rightarrow 2 x+3=9$
43. Negation of the conditional, "If it rains, I shall go to school" is
a) It rains and I shall go to school
b) It rains and I shall not go to school
c) It does not rains and I shall go to school
d) None of the above
44. If a compound statement r is contradiction, then the truth value of $(p \Rightarrow q) \wedge r \wedge p[p \Rightarrow \sim r]$ is
a) $T M$
b) F
c) T or F
d) None of these
45. The statement $p \vee \sim p$ is
a) Tautology
b) Contradiction
c) Neither a tautology nor a contradiction
d) None of the above
46. If $p \rightarrow(q \vee r)$ is false, then the truth values of p, q, r are respectively
a) T, T, T
b) F, T, T
c) F, F, F
d) T, F, F
47. If p : Ram is smart
q : Ram is intelligent
Then, the symbolic form Ram is smart and intelligent, is
a) $(p \wedge q)$
b) $(p \vee q)$
c) $(p \wedge \sim q)$
d) $(p \vee \sim q)$
48. Which of the following is not a proposition?
a) $\sqrt{3}$ is a prime
b) $\sqrt{2}$ is irrational
c) Mathematics is interesting
d) 5 is an even integer
49. $\sim[\sim p \wedge(p \Leftrightarrow q)] \equiv$
a) $p \vee q$
b) $q \wedge p$
c) T
d) F
50. Which of the following is equivalent to $p \Rightarrow q$?
a) $p \Rightarrow q$
b) $q \Rightarrow p$
c) $(p \Rightarrow q) \wedge(q \Rightarrow p)$
d) None of these
51. Let p and q be two propositions. Then the inverse of the implication $p \rightarrow q$ is
a) $q \rightarrow p$
b) $\sim p \rightarrow \sim q$
c) $p \rightarrow q$
d) $\sim q \rightarrow \sim p$
52. Let p and q be two properties. Then, the contrapositive of the implication $p \rightarrow q$ is
a) $\sim q \rightarrow \sim p$
b) $p \rightarrow \sim q$
c) $q \rightarrow p$
d) $p \leftrightarrow q$
53. If p and q are two propositions, then $\sim(p \leftrightarrow q)$ is
a) $\sim p \wedge \sim q$
b) $\sim p \vee \sim q$
c) $(p \wedge \sim q) \vee(\sim p \wedge q)$
d) None of these
54. Which of the following is logically equivalent to $\sim(\sim p \rightarrow q)$?
a) $p \wedge q$
b) $p \wedge \sim q$
c) $\sim p \wedge q$
d) $\sim p \wedge \sim q$
55. The contrapositive of $p \Rightarrow \sim q$ is
a) $\sim p \Rightarrow q$
b) $\sim q \Rightarrow p$
c) $q \Rightarrow \sim p$
d) None of these
56. In which of the following cases, $p \Rightarrow q$ is true?
a) p is true, q is true
b) p is false, q is true
c) p is true, q is false
d) None of these
57. Which of the following propositions is a tautology?
a) $\sim(p \rightarrow q) \vee(p \wedge \sim q)$
b) $(p \rightarrow q) \rightarrow(p \wedge \sim q)$
c) $(p \rightarrow q) \vee(p \wedge \sim q)$
d) $(p \rightarrow q) \wedge(p \wedge \sim q)$
58. If $p: A$ man is happy
$q: A$ man is rich
Then, the statement, "If a man is not happy, then he is not rich" is written as
a) $\sim p \rightarrow \sim q$
b) $\sim q \rightarrow p$
c) $\sim q \rightarrow \sim p$
d) $q \rightarrow \sim p$
59. Which of the following is false?
a) $p \vee \sim p$ is a tautology
b) $\sim(\sim) \leftrightarrow p$ is a tautology
c) $(p \wedge(p \rightarrow)) \rightarrow$ is a contradiction
d) $p \wedge \sim p$ is a contradiction
60. Let p and q be two statements. Then, $(\sim p \vee q) \wedge(\sim p \wedge \sim q)$ is a
a) Tautology
b) Contradiction
c) Neither tautology nor contradiction
d) Both tautology and contradiction
61. Logical equivalent proposition to the proposition $\sim(p \vee q)$
a) $\sim p \wedge \sim q$
b) $\sim p \vee \sim q$
c) $\sim p \rightarrow \sim q$
d) $\sim p \leftrightarrow \sim q$
62. What are the truth values of $(\sim p \Rightarrow \sim q)$ and $\sim(\sim p \Rightarrow q)$ respectively, when p and q always speak true in any argument?
a) T, T
b) F, F
c) T, F
d) F, T
63. Which of the following is a proposition?
a) I am a lion
b) A half open door is half closed
c) A triangle is a circle and 10 is a prime number
d) Logic is an interesting subject
64. Which of the following is the inverse of the proposition : "If a number is a prime, then it is odd"?
a) If a number is not a prime, then it is odd
b) If a number is not a prime, then it is not odd
c) If a number is not odd, then it is not a prime
d) If a number is odd, then it is a prime
65. Let p be the statement 'Ravi races' and let q be the statement 'Ravi wins'. Then, the verbal translation of $\sim(p \vee(\sim q))$ is
a) Ravi does not race and Ravi does not win
b) It is not true that Ravi races and that Ravi does not win
c) Ravi does not race and Ravi wins
d) It is not true that Ravi races or that Ravi does not win
66. The contrapositive of $(p \vee q) \rightarrow r$ is
a) $\sim r \rightarrow(p \vee q)$
b) $r \rightarrow(p \vee q)$
c) $\sim r \rightarrow(\sim p \wedge \sim q)$
d) $p \rightarrow(q \vee r)$
67. Which is not a statement?
a) $3>4$
b) $4>3$
c) Raju is an intelligent boy
d) He lives in Agra
68. If $p=\triangle A B C$ is equilateral and $q=$ each angle is 60°. Then, symbolic form of statement
a) $p \vee p$
b) $p \wedge q$
c) $p \Rightarrow q$
d) $p \Leftrightarrow q$
69. Consider the following statements:
p : I shall pass, q : I study
The symbolic representation of the proposition "I shall pass iff I study" is
a) $p \rightarrow q$
b) $q \rightarrow p$
c) $p \rightarrow \sim q$
d) $p \leftrightarrow q$
70. The false statement in the following is
a) $p \wedge(\sim p)$ is a contradiction
b) $(p \Rightarrow q) \Leftrightarrow(\sim q \Rightarrow \sim p)$ is a contradiction
c) $\sim(\sim p) \Leftrightarrow p$ is a tautology
d) $p \vee(\sim p)$ is a tautology
71. The negation of $p \wedge(q \rightarrow \sim r)$ is
a) $\sim p \wedge(q \wedge r)$
b) $p \vee(q \vee r)$
c) $p \vee(q \wedge r)$
d) $\sim p \vee(q \wedge r)$
72. H : Set of holidays
S : Set of Sundays
U :Set of day's
Then, the Venn diagram of statement, "Every Sunday implies holiday" is
a)

b)

c)

d)

73. The switching function for switching work is

a) $x \wedge y \wedge z$
b) $x \vee y \wedge x \vee z$
c) $x \wedge y \wedge x \vee z$
d) None of these
74. If p and q are two simple propositions, then $p \leftrightarrow q$ is false when
a) p and q both are true
b) p is false and q is true
c) p is fale and q is true
d) None of these
75. Let S be a non-empty subset of R. Consider the following statement
P : There is a rational number $x \in S$ such that $x>0$.
Which of the following statements is the negation of the statement P ?
a) There is a rational number $x \in S$ such that $x \leq 0$
b) There is no rational number $x \in S$ such that $x \leq 0$
c) Every rational number $x \in S$ satisfies $x \leq 0$
d) $x \in S$ and $x \leq 0 \Rightarrow x$ is not rational
76. $\sim(p \vee q) \vee(\sim p \wedge q)$ is logically equivalent to
a) $\sim p$
b) p
c) q
d) $\sim q$
77. Let p and q be two statements. Then, $p \vee q$ is false, if
a) p is false and q is true
b) Both p and q are false
c) Both p and q are true
d) None of these
78. The statement $\sim(p \rightarrow q)$ is equivalent to
a) $p \wedge(\sim q)$
b) $\sim p \wedge q$
c) $p \wedge q$
d) $\sim p \wedge \sim q$
79. For the circuit shown below, the Boolean polynomial is

a) $(\sim p \vee q) \vee(p \vee \sim q)$
b) $(\sim p \wedge q) \wedge(p \wedge q)$
c) $(\sim p \wedge \sim q) \wedge(q \wedge p)$
d) $(\sim p \wedge q) \vee(p \vee \sim q)$
80. The switching function of network is

a) $\sim p \vee r \wedge(\sim q \wedge \sim r) \wedge p^{\prime} \vee q$
b) $(\sim p \wedge r) \wedge(\sim q \vee \sim r) \wedge p^{\prime} \vee q$
c) $(\sim p \wedge r) \wedge(\sim q \vee \sim r) \wedge p^{\prime} \vee q$
d) None of the above
81. The proposition $(p \rightarrow \sim p) \wedge(\sim p \rightarrow p)$ is a
a) Tautology
b) Contradiction
c) Neither a tautology nor a contradiction
d) Tautology and contradiction
82. If $p \Rightarrow(\sim p \vee q)$ is false, the truth value of p and q are respectively
a) F, T
b) F, F
c) T, T
d) T, F
83. Which of the following is a contradiction?
a) $p \vee q$
b) $p \wedge q$
c) $p \vee \sim p$
d) $p \wedge \sim p$
84. $\sim(\sim p \rightarrow q) \equiv$
a) $p \wedge \sim q$
b) $\sim p \wedge q$
c) $\sim p \wedge \sim q$
d) $\sim p \vee \sim q$
85. The converse of the contrapositive of the conditional $p \rightarrow \sim q$ is
a) $p \rightarrow q$
b) $\sim p \rightarrow \sim q$
c) $\sim q \rightarrow p$
d) $\sim p \rightarrow q$
86. A proposition is called a tautology, if it is
a) Always T
b) Always F
c) Sometimes T, sometimes F
d) None of the above
87. If p : 4 an even prime number q : 6 is a divisor of 12 and r :the HCF of 4 and 6 is 2 , then which one of the following is true?
a) $(p \vee q)$
b) $(p \vee q) \wedge \sim r$
c) $\sim(q \wedge r) \vee p$
d) $\sim p \vee(q \wedge r)$
88. The switching function for the following network is

a) $(p \wedge q \vee r) \wedge t$
b) $(p \wedge q \vee r) \vee t$
c) $p \vee r \wedge q \vee t$
d) None of these
89. Which of the following is logically equivalent to $\sim(p \leftrightarrow q)$?
a) $(p \wedge \sim q) \wedge(q \wedge \sim p)$
b) $p \vee q$
c) $(p \wedge \sim q) \vee(q \wedge \sim p)$
d) None of these
90. The inverse of the proposition $(p \wedge \sim q) \rightarrow r$ is
a) $\sim r \rightarrow \sim p \vee q$
b) $\sim p \vee q \rightarrow \sim r$
c) $r \rightarrow p \wedge \sim q$
d) None of these
91. Which is a statement?
a) $x+1=6$
b) $5 \in N$
c) $x+y<12$
d) None of these
92. Let inputs of p and q be 1 and 0 respectively in electric circuit. Then, output of $p \wedge q$ is
a) 1
b) 0
c) Both 1 and 0
d) Neither 1 nor 0
93. When does the inverse of the statement $\sim p \Rightarrow q$ results in T ?
a) p and q both are true
b) p is true and q is false
c) p is false and q is false
d) Both (b) and (c)
94. The switching function for switching network is

a) $\left(x \wedge y^{\prime}\right) \vee\left(y \wedge z^{\prime}\right) \vee\left(z \wedge x^{\prime}\right)$
b) $(x \wedge y \wedge z) \vee\left(x^{\prime} \wedge y^{\prime} \wedge z^{\prime}\right)$
c) $\left(x \vee y^{\prime}\right) \wedge\left(y \vee z^{\prime}\right) \wedge\left(z \vee x^{\prime}\right)$
d) None of the above
95. If $S(p, q, r)=(\sim P) \vee[\sim(q \wedge r)]$ is a compound statement, then $S(\sim p, \sim q, \sim r)$ is
a) $\sim S(p, q, r)$
b) $S(p, q, r)$
c) $p \vee(q \wedge r)$
d) $p \vee(q \vee r)$
96. Some triangles are not isosceles. Identify the Venn diagram
a)

b)

c)

d)

97. The negation of $p \wedge \sim(q \wedge r)$ is
a) $\sim p \vee(q \wedge r)$
b) $\sim p \vee(\sim q \vee \sim r)$
c) $p \vee(q \wedge r)$
d) $\sim p \wedge(q \vee r)$
98. Dual of $x \wedge(y x)=x$ is
a) $x \vee(y \wedge x)=x$
b) $x \vee(y \vee x)=x$
c) $(x \wedge y) \vee(x \wedge x)=x$
d) None of these
99. Which of the following sentences is a statements?
a) AArushi is a pretty girl
b) What are you doing?
c) Oh! It is amazing
d) 2 is the smallest prime number
100. The contrapositive of the statement $\sim p \Rightarrow(p \wedge \sim q)$ is
a) $p \Rightarrow(\sim p \vee q)$
b) $p \Rightarrow(p \wedge q)$
c) $p \Rightarrow(\sim p \wedge q)$
d) $\sim p \vee q \Rightarrow p$
101. The statement $p \rightarrow(q \rightarrow p)$ is equivalent to
a) $p \rightarrow(p \leftrightarrow q)$
b) $p \rightarrow(p \rightarrow q)$
c) $p \rightarrow(p \vee q)$
d) $p \rightarrow(p \wedge q)$
102. Dual of $\left(x^{\prime} \wedge y^{\prime}\right)^{\prime}=x \vee y$ is
a) $\left(x^{\prime} \wedge y^{\prime}\right)=x \wedge y$
b) $\left(x^{\prime} \vee y^{\prime}\right)^{\prime}=x \wedge y$
c) $\left(x^{\prime} \vee y^{\prime}\right)^{\prime}=x y$
d) None of these
103. If $p: A$ man is happy
$q: A$ man is rich
Then, the statement, " "If a man is not happy, then he is not rich" is written as
a) $\sim p \rightarrow \sim q$
b) $\sim q \rightarrow p$
c) $\sim q \rightarrow \sim p$
d) $q \rightarrow \sim p$
104. Which of the following is a tautology?
a) $p \wedge q$
b) $p \vee q$
c) $p \vee \sim p$
d) $p \wedge \sim p$
105. Let p and q be two statement, then $(p \vee q) \vee \sim p$ is
a) Tautology
b) Contradiction
c) Both (a) and (b)
d) None of these
106. For any three propositions p, q and r, the proposition $(p \wedge q) \wedge(q \wedge r)$
a) p, q, r are all false
b) p, q, r are all true
c) p, q are true and r is false
d) p is true and q and r are false
107. Given that water freezes below zero degree Celsius. Consider the following statements : p : Water froze this morning, q : This morning temperature was below $0^{\circ} \mathrm{C}$
Which of the following is the correct?
a) p and q are logically equivalent
b) p is the inverse of q
c) p is the converse of q
d) p is the contrapositive of q

: ANSWER KEY :

1)	c	2)	a	3)	a	4)	c
5)	C	6)	b	7)	c	8)	a
9)	b	10)	b	11)	d	12)	c
13)	d	14)	a	15)	a	16)	d
17)	c	18)	b	19)	a	20)	b
21)	d	22)	c	23)	c	24)	a
25)	b	26)	a	27)	a	28)	a
29)	c	30)	b	31)	a	32)	a
33)	b	34)	a	35)	d	36)	b
37)	c	38)	a	39)	c	40)	a
41)	c	42)	d	43)	b	44)	c
45)	a	46)	c	47)	d	48)	b
49)	a	50)	d	51)	b	52)	d
53)	a	54)	b	55)	d	56)	c
57)	b	58)	c	59)	c	60)	c
61)	b	62)	d	63)	c	64)	c
65)	b	66)	d	67)	d	68)	a
69)	b	70)	a	71)	c	72)	b
73)	b	74)	a	75)	c	76)	a
77)	a	78)	b	79)	b	80)	a
81)	d	82)	a	83)	c	84)	a
85)	c	86)	b	87)	a	88)	c
89)	d	90)	c	91)	a	92)	c
93)	a	94)	c	95)	c	96)	a
97)	C	98)	C	99)	b	100)	c
101)	c	102)	c	103)	d	104)	d
105)	b	106)	d	107)	c	108)	b
109)	C	110)	c	111)	a	112)	b
113)	a	114)	d	115)	a	116)	b
117)	d	118)	d	119)	c	120)	d
121)	a	122)	d	123)	b	124)	c
125)	b	126)	b	127)	a	128)	d
129)	a	130)	d	131)	b	132)	a
133)	a	134)	d	135)	d	136)	c
137)	b	138)	a	139)	c	140)	a
141)	b	142)	a				

: HINTS AND SOLUTIONS :

1 (c)
The required Venn diagram of given statement is given below

2 (a)
$(p \vee q) \wedge(p \vee \sim q)$
$=p \vee(q \wedge \sim q)$ (distributive law)
$=p \vee 0$ (complement law)
$=p(0$ is identify for v$)$
4 (c)
We have
$p \rightarrow q \cong \sim p \vee q$
and, $\sim q \rightarrow \sim p \cong \sim(\sim q) \vee \sim p \cong q \vee \sim p \cong \sim p \vee q$

$$
\cong p \rightarrow q
$$

5 (c)
We have,
$p \rightarrow q \cong \sim p \vee q$
$\therefore p \rightarrow \sim q \cong \sim p \vee \sim q \cong \sim(p \wedge q)$
So, option (a) is not correct
$\sim p \vee \sim q=\sim(p \wedge q)$
So, option (b) is not correct
$\sim(p \rightarrow \sim q)=\sim(\sim p \vee \sim q)=p \wedge q$
So, option (c) is incorrect
6 (b)
Some triangles are not isosceles.

8 (a)
$\sim(p \vee q) \vee(\sim p \wedge q)$
$\cong(\sim p \wedge \sim q) \vee(\sim p \wedge q)$
$\cong \sim p \wedge(\sim q \vee q) \cong \sim p \vee t \cong \sim p$
9 (b)
A compound sentence formed by two simple statements p and q using connective 'or' is called disjunction
12 (c)
By truth table

p	q	$\sim q$	$q \wedge$ $\sim q$	$p \Rightarrow q \wedge$ $\sim q$
T	T	F	F	F
T	F	T	F	F
F	T	F	F	T
F	F	T	F	T

Hence, it is neither a tautology nor contradiction

13 (d)
We have,
$p \rightarrow q \cong \sim p \vee q$
$\therefore \sim(\sim p \rightarrow q) \cong \sim(p \vee q) \cong \sim p \wedge \sim q$
(d)
$\sim(p \vee q) \equiv \sim p \wedge \sim q$
$\therefore 7$ is greater than 4 and Paris is not in France.
17 (c)
From the truth table of $p \leftrightarrow q$ it is evident that $p \leftrightarrow q$ is true when p and q both are true or both are false
$\therefore p \leftrightarrow \sim q$ is true when p is false and $\sim q$ is false
i. e. p is false and q is true
(b)

Let p :Pairs is in France and q : London is in
England
Given, $\quad p \wedge q$
Its negation is $\sim(p \wedge q) \equiv \sim p \vee \sim q$
Hence, paris is not in France or London is not in England.
20 (b)

$$
(p \Rightarrow q) \wedge(q \Rightarrow p) \text { means } p \Leftrightarrow q
$$

22 (c)
$(\sim p \wedge q) \wedge \sim q=\sim p \wedge(q \wedge \sim q)=\sim p \wedge c=c$
(c)
$p \wedge q$ means Mathematics is interesting and Mathematics is difficult
24 (a)
Truth Table

p	q	r	$\sim p$	$\sim r$	$p \wedge$ $\sim r$	$(\sim p$ $\vee q)$	$(p \wedge \sim r)$ \rightarrow $(\sim p \vee q)$
T	T	T	F	F	F	T	T
T	T	F	F	T	T	T	T
T	F	T	F	F	F	F	T
T	F	F	F	T	T	F	F
F	T	T	T	F	F	T	T
F	T	F	T	T	F	T	T
F	F	T	T	F	F	T	T
F	F	F	T	T	F	T	T

Hence, $(p \wedge \sim r) \rightarrow(\sim p \vee q)$ is F .
When $p=\mathrm{T}, q=\mathrm{F}, r=\mathrm{F}$
26 (a)
By truth table
$\left.\begin{array}{|l|l|l|l|l|}\hline p & q & p & \sim p & (p \\ \vee q\end{array}\right)$

F	T	T	T	T
F	F	F	T	T

It is clear that $(p \vee q) \vee \sim p$ is a tautology
27 (a)
Let p : Two triangles are identical
q : Two triangles are similar
Clearly, the given statement in symbolic form is $p \rightarrow q$.
\therefore Its contrapositive is given by $\sim q \rightarrow \sim p$.
$i e$, If two triangles are not similar, then these are not identical.
28 (a)
$(p \vee q) \wedge(p \vee r)=p \vee(q \wedge r)$
29 (c)
Truth table

p	q	$\sim p$	$\sim q$	$\sim q$	$(\sim q$	$(p$	$(\sim q$	$(\sim q$
				$\wedge p$	$\wedge p)$	\wedge	$\wedge p)$	$\wedge p)$
					$\wedge q$	$\sim p)$	$\vee(p$	$\vee(p$
							\wedge	\wedge
$\sim p)$	$\sim p)$							
T	T	F	F	F	F	T	F	T
T	F	F	T	T	F	T	F	T
F	T	T	F	F	F	T	F	T
F	F	T	T	F	F	T	F	T

It is clear from the table that last column have all true values. Hence option (c) is correct
30 (b)
Let $p=2$ is prime
and $q=3$ is odd
Given, $p \rightarrow q$
Negation of $p \rightarrow q$ is $\sim(p \rightarrow q)$
$\Rightarrow \quad p \wedge \sim q$
$\Rightarrow 2$ is prime and 3 is not odd.
31 (a)

$\left.$| p | q | r | $\sim p$ | $\sim q$ | $\sim p$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\vee q$ | | | | | |\(\left|\begin{array}{l}(\sim p

\vee q)

\wedge \sim q\end{array}\right|\)| $(\sim p q)$ |
| :--- |
| $\vee \sim q$ |
| $\wedge \sim p$ | \right\rvert\,

32

(a)

Since, switches a and b and a^{\prime}, b^{\prime} and c^{\prime} are
parallel which is denoted by $a \wedge b$ and $a^{\prime} \wedge b^{\prime} \wedge c^{\prime}$ respectively
Now, $(a \wedge b), c$ and $\left(a^{\prime} \wedge b^{\prime} \wedge c^{\prime}\right)$ are connected in series, then switching function of complete network is
$(a \wedge b) \vee c \vee\left(a^{\prime} \wedge b^{\prime} \wedge c^{\prime}\right)$
33 (b)
The negation of $q \vee \sim(p \wedge r)$ is given by
$\sim\{q \vee \sim(p \wedge r)\} \cong \sim q \wedge(p \wedge r)$
35
(d)
$(\sim p \wedge q) \vee \sim q \equiv \sim q \vee(\sim p \wedge q)$

Commutative law)
$\equiv \sim q \vee(q \wedge q \sim p)$ (By Commutative law)
$\equiv \sim q \vee q(\sim q \vee \sim p)$ (By Distributive law)
$\equiv \sim(q \wedge p)$
$\equiv \sim(p \wedge q)$
(b)

p	q	$\begin{aligned} & p \\ & \wedge q \end{aligned}$	$\sim p$	$\begin{aligned} & \sim p \\ & \vee q \end{aligned}$	$\begin{aligned} & (p \\ & \wedge q) \\ & \overrightarrow{(} \\ & \sim \\ & \sim p \\ & \vee q) \end{aligned}$	$\begin{aligned} & \sim[(p \\ & \wedge q) \\ & \rightarrow \\ & (\sim p \\ & \vee q)] \end{aligned}$
T	T	T	F	T	T	F
T	F	F	F	F	T	F
F	T	F	T	T	T	F
F	F	F	T	T	T	F

It is clear from the table that
$\sim[(p \wedge q) \rightarrow(\sim p \vee q)]$
is a contradiction.

Plants are living objects is not a statement.
(c)

We know that the contrapositive of $p \rightarrow q$ is
$\sim q \rightarrow \sim p$. Therefore, contrapositive of
$(\sim p \wedge q) \rightarrow \sim r$ is
$r \rightarrow \sim(\sim p \wedge q)$ or, $r \rightarrow p \vee \sim q$

p	q	$\sim p$	$\sim p \wedge q$	$q \rightarrow p$	$\sim(q \rightarrow p)$
T	T	F	F	T	F
T	F	F	F	T	F
F	T	T	T	F	T
F	F	T	F	T	F

From the table
$\sim p \wedge q \equiv \sim(q \rightarrow p)$
43 (b)
Clearly, $(p \wedge q) \wedge r \cong p \wedge(q \wedge r)$
(c)

The symbolic form of given statement is $\sim(p \vee q)$
45 (a)
$(p \wedge q) \wedge(\sim(p \vee q))$
$\cong(p \wedge q) \wedge(\sim p \wedge \sim q)$
$\cong q \wedge(p \wedge \sim p) \wedge \sim q$
$\cong q \wedge c \wedge \sim \cong$
So, statement in option (a) is a contradiction
48
(b)

p	q	$\sim p$	$\sim q$	p	$\sim p$	$(p$
				$\wedge \sim q$	$\wedge q$	$\wedge \sim q)$
$(\sim p$						

T	T	F	F	F	F	F
T	F	F	T	T	F	F
F	T	T	F	F	T	F
F	F	T	T	F	F	F

It is clear from, the table that $(p \wedge \sim q) \wedge(\sim p \wedge$ q)is a contradiction.
50 (d)
Since p is true and q is false
$\therefore p \rightarrow q$ has truth value F
Statement r has truth value T
$\therefore(p \rightarrow q) \wedge r$ has truth value F. Also,
$(p \rightarrow q) \wedge \sim r$ has truth value F
$p \wedge q$ has truth value F and $p \vee r$ has truth value T
$\therefore(p \wedge q) \wedge(p \vee r)$ has truth value F
As $p \wedge r$ has truth value T. Therefore, $q \rightarrow(p \wedge r)$ has truth value T
(b)
(b)
(d)

p	q	$\sim p$	$\sim q$	$p \vee$ $(\sim q)$	$(\sim p)$ $\wedge q$	$p \vee q$	$\sim(p \vee q)$	$(\sim p)$ \vee $(\sim q)$	$(p \vee q)$ \vee $(\sim p)$
T	T	F	F	T	F	T	F	F	T
F	T	T	F	F	T	T	F	T	T
T	F	F	T	T	F	T	F	T	T
F	F	T	T	T	F	F	T	T	T

It is clear from the table that columns 8 and 9 are not equal, ie, $\sim(p \vee q)$ is not equivalent to $(\sim p) \vee(\sim q)$. Hence, option (e) is false statement.
56 (c)

p	q	$p \leftrightarrow q$	$\sim[p \leftrightarrow q]$
T	T	T	F
T	F	F	T
F	T	F	T
F	F	T	F

It is clear from the table that, it is neither tautology nor contradiction.

Truth Table

p	q	$\sim p$	$\sim q$	$\sim q$ $\wedge p$	$(\sim q \wedge p)$ $\wedge q$	$p \vee \sim p$	$(p \wedge q) \wedge$ $(\sim(p \wedge q))$	$(\sim q \wedge p)$ \vee $(p \vee \sim p)$
T	T	F	F	F	F	T	F	T
T	F	F	T	T	F	T	F	T
F	T	T	F	F	F	T	F	T
F	F	T	T	F	F	T	F	T

It is clear from the table that the last column has all true values.

(c)

Consider the following statements:
p : We control the population growth
q : We become prosper
The given statement is $p \rightarrow q$ and its negation is $p \wedge \sim q$
i.e. We control population but we donot become prosper
60
(c)

Mathematics is interestring is not a proposition.
63 (c)
By the truth table

p	q	$\begin{aligned} & (p \\ & \wedge q) \end{aligned}$	$\begin{aligned} & \sim(p \\ & \wedge q) \end{aligned}$	$\begin{aligned} & q \\ & \Leftrightarrow p \end{aligned}$	$\begin{aligned} & \sim(q \\ & \Leftrightarrow p) \end{aligned}$	$\begin{aligned} & \sim(p \\ & \wedge q) \vee \\ & \sim(q \\ & \Leftrightarrow p) \end{aligned}$
T	T	T	F	T	F	F
T	F	F	T	T	F	T
F	T	F	T	F	T	T

F	F	F	T	F	T	T

It is clear that it is neither tautology nor contradiction
64 (c)
We know that $p \rightarrow q \cong \sim q \rightarrow \sim p$
So, the given statement is equivalent to:
If the volume does not decrease, the pressure does not increase
65 (b)
The dual of the given statement is $(p \wedge \sim q) \vee \sim p$.
66 (d)
We have,
$\sim(p \rightarrow \sim q) \cong \sim(\sim p \vee \sim q) \cong p \wedge q$
67 (d)
$p \rightarrow \sim(p \wedge \sim q)$
$\cong \sim p \vee \sim(p \wedge \sim q) \cong \sim p \vee(\sim p \vee q) \cong \sim p \vee q$
Clearly, it is neither a tautology nor a contradiction
68 (a)
The root of the quadric equation can be imaginary.
69 (b)
Consider the following statements:
$p=$ Number is divisible by 15
$q=$ Number is divisible by 5 or 3
We have,
$p \rightarrow q \cong \sim p \vee q$
$\therefore \sim(p \rightarrow q) \cong \sim(\sim p \vee q) \cong p \wedge \sim q$
Clearly, $p \wedge \sim q$ is equivalent to:
A number is divisible by 15 and it is not divisible by 5 and 3
70 (a)
Clearly, $p \wedge q \rightarrow p$ is always true. So, it is a tautology
ALITER We know that $p \rightarrow q \cong \sim p \vee q$
$\therefore p \wedge q \rightarrow p \cong \sim(p \wedge q) \vee p \cong(\sim p \vee \sim q) \vee p$
$\cong(\sim p \vee p) \vee \sim q \cong t \vee q \cong t$
71 (c)
All teachers are scholars

72 (b)
The negation of the given statement is "he is not rich or not happy".
74 (a)
We have,
$\sim\{p \vee(\sim p \vee q)\}$
$\cong \sim\{(p \vee \sim p) \vee q\} \cong \sim(t \vee q) \cong \sim t \cong c$
Also,
$(p \wedge \sim q) \wedge \sim p \cong(p \wedge \sim p \wedge \sim q) \cong c \wedge \sim q \cong c$

So, option (a) is correct
75 (c)
$\sim\{q \vee \sim(p \wedge r)\}=\sim q \wedge(p \wedge r)$
(a)

We have,
$\sim(\sim p)=p$
$\therefore \sim(\sim p) \leftrightarrow p \cong p \leftrightarrow p$
Hence, $\sim(\sim p) \leftrightarrow p$ is a tautology
(a)

The contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$
So, the contrapositive of $2 x+3=2 \rightarrow x \neq 4$ is $x=4 \rightarrow 2 x+3 \neq 9$
(b)

Let p : It rains, q : I shall go to school
Thus, we have $p \rightarrow q$
Its negation is $\sim(p \rightarrow q) i e, p \wedge \sim q$
$i e$, It rains and I shall not go to school.
81 (d)
We know that $p \rightarrow q$ is false when p is true and q is false. So, $p \rightarrow(q \vee r)$ is false when p is true and $q \vee r$ is false. But, $q \vee r$ is false when q and r both are false
Hence, $p \rightarrow(q \vee r)$ is false when p is true and q and r both are false
82 (a)
Given that
p : Ram is smart
q :Ram is intelligent
The symbolic form of "Ram is smart and
intelligent." is $(p \wedge q)$
83 (c)
Mathematics is interesting is not a logical sentence. It may be intersecting for some persons and may not be interesting for others
\therefore This is not a proposition
86 (b)
By definition, the inverse of implication $p \rightarrow q$ is
$\sim p \rightarrow \sim q$
88 (c)
We know that
$p \rightarrow q \cong \sim p \vee q$ and $q \rightarrow p \cong \sim q \vee p$
$\therefore p \leftrightarrow q \cong(\sim p \vee q) \wedge(\sim q \vee p)$
$\sim(p \leftrightarrow q) \cong \sim(\sim p \vee q) \vee \sim(\sim q \vee p)$
$\sim(p \leftrightarrow q) \cong(p \wedge \sim q) \vee(q \wedge \sim p))$
89 (d)
$\sim(\sim p \rightarrow q) \cong \sim(p \vee q) \cong \sim p \wedge \sim q$
92 (c)
We have,
$p \leftrightarrow q \cong \sim p \vee q$
$\therefore(p \leftrightarrow q) \vee(p \wedge \sim q)$
$=(\sim p \vee q) \vee(p \wedge \sim q)$
$=\{(\sim p \vee q) \vee p\} \wedge\{(\sim p \vee q) \vee \sim q)\}$
$=\{(\sim p \vee p) \vee q\} \wedge\{\sim p \vee(q \vee \sim q)\}$
$=(t \vee q) \wedge(\sim p \vee t)$
$=t \wedge t=t$
93 (a)
'If a man is not happy, then he is not rich' is written as $\sim p \rightarrow \sim q$.
94 (c)
Clearly,
$p \vee \sim p$ is always true. So, it is a tautology We have,
$\sim(\sim p) \leftrightarrow p \cong p \leftrightarrow p$
So, $\sim(\sim p) \leftrightarrow p$ is always true. So, it is a tautology
We know that $p \rightarrow q \cong \sim p \vee q$
$\therefore p \wedge(p \rightarrow q) \cong p \wedge(\sim p \vee q) \cong(p \wedge$

$$
\sim p) \vee(p \wedge q)
$$

$\cong c \vee(p \wedge q) \cong p \wedge q$
$\therefore p \wedge(p \rightarrow q) \rightarrow p \cong p \wedge q \rightarrow p$ which is a
tautology
So, option (c) is false
96 (a)
By De'Morgan's law, we have
$\sim(p \vee q)=\sim p \wedge \sim q$
98 (c)
Clearly, statement in option (c) is false. So, it has definite truth value. Hence, it is a proposition
99 (b)
Let p : A number is a prime
q : It is odd
Given proposition is $p \rightarrow q$ its inverse is $\sim q \rightarrow \sim q$. $i e$, If a number is not prime, then it is not odd.
100 (c)
Given, p :Ravi races, q : Ravi wins
\therefore The statement of given proposition $\sim(p \vee(\sim q))$
Which is equivalent to $\sim p \wedge q$.
"It is not true that Ravi races or that Ravi does not win."
101 (c)
Contrapositive of $(p \vee q) \rightarrow r$
is $\sim r \rightarrow \sim(p \vee q) \equiv \sim r \rightarrow(\sim p \wedge \sim q)$
103 (d)
The symbolic form of given statement is $p \Leftrightarrow q$
105 (b)
$p \Rightarrow q$ is logically equivalent to $\sim q \Rightarrow \sim p$
$\therefore(p \Rightarrow q) \Leftrightarrow(\sim q \Rightarrow \sim p)$
Is a tautology but not a contradiction
106 (d)
$\sim(p \wedge(q \longrightarrow \sim r))=\sim p \vee \sim(q \longrightarrow \sim r)$
$=\sim p \vee(q \wedge \sim(\sim r))$
$=\sim p \vee(q \wedge r)$

107 (c)
The required venn diagram of given statement is

109 (c)
The truth table that of $p \rightarrow q$ is as follows:

p	q	$p \rightarrow q$
T	T	T
F	T	T
T	F	F
F	F	T

110 (c)
P : There is rational number $x \in S$ such that $x>0$
$\sim P$: Every rational number $x \in S$ satisfies $x \leq 0$
111 (a)
$\sim(p \vee q) \vee(\sim p \wedge q) \equiv(\sim p \wedge \sim q) \vee(\sim p \wedge q)$
$\equiv \sim p \wedge(\sim q \vee q) \equiv \sim p \wedge t \equiv \sim p$
113 (a)

p	q	$p \rightarrow q$	$\sim(p \rightarrow q)$	$\sim q$	$p \wedge(\sim q)$
T	T	T	F	F	F
T	F	F	T	T	T
F	T	T	F	F	F
F	F	T	F	T	F

From the table $\sim(p \rightarrow q) \equiv p \wedge(\sim q)$
\therefore All the values are same.
114 (d)
For the given circuit, Boolean polynomial is
$(\sim p \wedge q) \vee(p \vee \sim q)$.
116 (b)
We have,
$p \rightarrow \sim p \cong \sim p \vee \sim p \cong \sim p$ and $\sim p \rightarrow p \cong p \vee p \cong$ p
$\therefore(p \rightarrow \sim p) \wedge(\sim p \rightarrow p) \cong \sim p \wedge p \cong c$
117 (d)
$p \Rightarrow(\sim p \vee q)$ is false means p is true and $\sim p \vee q$ is false
$\Rightarrow p$ is true and both $\sim p$ and q are false
$\Rightarrow p$ is true and q is false
119 (c)
$\sim(\sim p \rightarrow q) \equiv \sim p \wedge \sim q$
120 (d)
The contrapositive of $p \rightarrow \sim q$ is
$\sim(\sim q) \rightarrow \sim p$ or $q \rightarrow \sim p$
Also, converse of $q \rightarrow \sim p$ is $\sim p \rightarrow q$.
122 (d)
$\therefore p: 4$ is an even prime number.
$q: 6$ is a divisor of 12
And r : the HCF of 4 and 6 is 2
$\therefore \sim p \vee(q \wedge r)$ is true.

123 (b)
The switching function for the given network is $(p \wedge q \vee r) \vee t$
124 (c)
We have,
$p \leftrightarrow q \cong(p \rightarrow q) \wedge(q \rightarrow p)$
$\cong(\sim p \vee q) \wedge(\sim q \vee p)$
$\therefore \sim(p \leftrightarrow q) \cong \sim(\sim p \vee q) \vee \sim(\sim q \vee p)$
$\cong(p \wedge \sim q) \vee(q \wedge \sim p)$
125 (b)
The inverse of $(p \wedge \sim q) \rightarrow r$ is
$\sim(p \wedge \sim q) \rightarrow \sim r$
$\Rightarrow(\sim p \vee q) \rightarrow \sim r$
129 (a)
\because Switches x and y^{\prime} are connected parallel which is denoted by $\left(x \wedge y^{\prime}\right)$
Similarly, y and z^{\prime} and z and x^{\prime} are also connected parallel
Which are denoted by $\left(y \wedge z^{\prime}\right)$ and $\left(z \wedge x^{\prime}\right)$ respectively
Now, $x \wedge y^{\prime}, y \wedge z^{\prime}$ and $z \wedge x^{\prime}$ are connected in series. So, switching function of given network is $\left(x \wedge y^{\prime}\right) \vee\left(y \wedge z^{\prime}\right) \vee\left(z \wedge x^{\prime}\right)$
130 (d)

$$
\begin{aligned}
& S(p, q, r)=(\sim p) \vee[\sim(q \wedge r)] \\
&=(\sim p) \vee[\sim q \vee \sim r] \\
& \Rightarrow S(\sim p, \sim q, \sim r)=p \vee(q \vee r)
\end{aligned}
$$

131 (b)
Some triangles are not isosceles

136 (c)

q	p	q $\rightarrow p$	$p \rightarrow(q$ $\rightarrow p)$	$p \vee q$	p $\rightarrow(p \vee q)$
T	T	T	T	T	T

T	F	F	T	T	T
F	T	T	T	T	T
F	F	T	T	F	T

\therefore Statement $p \rightarrow(q \rightarrow p)$ is equivalent
to $p \rightarrow(p \vee q)$.
138 (a)
$\because p$: A man is happy
and q : A man is rich
'If a man is not happy, then he is not rich' is written as $\sim p \rightarrow \sim q$
140 (a)

p	q	$p \vee q$	$\sim p$	$(p \vee q)$ $\vee \sim p$
T	T	T	F	T
T	F	T	F	T
F	T	T	T	T
F	F	F	T	T

It is clear that $(p \vee q) \vee \sim p$ is a tautology.
141 (b)
$(p \wedge q) \wedge(q \wedge r)$ is true
$\Rightarrow p \wedge q$ and $q \wedge r$ are true
$\Rightarrow(p$ and q are true) and (q and r are true)
$\Rightarrow p, q$ and r are true
142
Clearly, $p \leftrightarrow q$

