

14.MATHEMATICAL REASONING

Single Correct Answer Type

1	U.Cat of haliday, C. Cat	f Cunday and U.Cat of day!	-	
1.	-	of Sunday and U:Set of day's		
		of statement, 'Every Sunda		
	a) $\left(\begin{array}{c} s \\ H \end{array} \right)$	b) $\left(\begin{array}{c} (H) \\ S \end{array} \right)$	c) $(S)^{H}$	d) (H) (s)
2.	Simplify $(p \lor q) \land (p \lor q)$	~q)		
	a) <i>p</i>	b) <i>T</i>	c) <i>F</i>	d) <i>q</i>
3.	The statement $p \Rightarrow p \lor q$	q is		
	a) A tautology			
	b) A contradiction			
	c) Both a tautology and	contradiction		
	d) Neither a tautology n	or a contradiction		
4.	$p \rightarrow q$ is logically equivative			
	a) <i>p</i> ∧~ <i>q</i>	b) ~ $p \rightarrow ~ q$	c) ~ $q \rightarrow \sim p$	d) None of these
5.	_	s logically equivalent to <i>p</i> /	-	
	a) $p \rightarrow \sim q$	b) ~ $p \lor ~ q$	c) ~ $(p \rightarrow \sim q)$	d) ~ (~ $p \land ~ q$)
6.	Some triangles are not i	sosceles. Identify the Venn	diagram	
	T U		U	
	a) $\left \left(\begin{array}{c} I \end{array} \right) \right $	b) $\left \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right $	c) $\left \begin{array}{c} I \\ T \end{array} \right $	d) $\left(I \left(I \right) \right)$
7.	Which of the following i	s contingency?		
/.	a) $p \lor p$	b) $p \land q \Rightarrow p \lor q$	c) <i>p</i> ∧~ <i>q</i>	d) None of these
8.	$\sim (p \lor q) \lor (\sim p \land q)$ is	<i>.</i>	c) pri q	uj None of these
0.	a) $\sim p$	b) p	c) <i>q</i>	d) ~ <i>q</i>
9.	· ·		nents p and q using connec	· ·
	a) Conjunction	b) Disjunction	c) Implication	d) None of these
10.		nents, then $p \lor \sim (p \Rightarrow \sim q)$.,
	a) $p \wedge q$	b) <i>p</i>	c) q	d) ~ $p \wedge q$
11.) $\vee (p \wedge r)$. Then, this law is		
	a) Commutative law	b) Associative law	c) De-Morgan's law	d) Distributive law
12.	If p and q are two states	nents, then statement $p \Rightarrow$	$q \wedge \sim q$ is	
	a) Tautology		b) Contradiction	
	c) Neither tautology not	t contradiction	d) None of the above	
13.	Which of the following i	s logically equivalent to \sim ($\sim p \rightarrow q$?	
	a) $p \wedge q$	b) <i>p</i> ∧~ <i>q</i>	c) ~ $p \wedge q$	d) ~ $p \land ~ q$
14.	The statement $(p \Rightarrow q)$	$\Leftrightarrow (\sim p \land q)$ is a		
	a) Tautology	b) Contradiction	c) Neither (a) nor (b)	d) None of these
15.	-		nents <i>p</i> and <i>q</i> using connec	
	a) Conjunction	b) Disjunction	c) Implication	d) None of these
16.			Be two statements. Then, \sim ($p \lor q$) is the statement
	a) 7 is greater than or P			
		4 and Pairs is not in France	2	
	c) 7 is greater than 4 an			
<i>.</i> –	d) 7 is greater than 4 an			
17.	If p and q are two simpl	e propositions, then $p \leftrightarrow \sim$	<i>q</i> is true when	

17. If *p* and *q* are two simple propositions, then $p \leftrightarrow \neg q$ is true when

a) p and q both are true b) Both *p* and *q* are false c) *p* is false and *q* is true d) None of these 18. Negation of "Pairs is in France and Londan is in England" is a) Pairs is in England and Londan is in France b) Pairs is not in France or Londan is not in England c) Pairs is in England or Londan is in France d) None of the above 19. If truth value of $p \lor q$ is true, then truth value of $\sim p \land q$ is a) False if *p* is true b) True if *p* is true c) False if *q* is true d) True if *q* is true 20. The logically equivalent proposition of $p \Leftrightarrow q$ is a) $(p \land q) \lor (p \land q)$ b) $(p \Rightarrow q) \land (q \Rightarrow p)$ c) $(p \land q) \lor (q \Rightarrow p)$ d) $(p \land q) \Rightarrow (p \lor q)$ 21. Which of the following connectives satisfy commutative law? a) ∧ b) V c) ⇔ d) All the above 22. Which of the following propositions is a contradiction? a) $(\sim p \lor \sim q) \lor (p \lor \sim q)$ b) $(p \to q) \lor (p \land \sim q)$ c) $(\sim p \land q) \land (\sim q)$ d) (~ $p \land q$) V (~ q) 23. Let *p* be the proposition Mathematics is interesting and let *q* be the proposition that Mathematics is difficult, then the symbol $p \land q$ means a) Mathematics is interesting implies that Mathematics is difficult b) Mathematics is interesting implies and is implied by Mathematics is difficult c) Mathematics is intersecting and Mathematics is difficult d) Mathematics is intersecting or Mathematics is difficult 24. If $(p \land \neg r) \rightarrow (\neg p \lor q)$ is false, then the truth values of *p*, *q* and *r* are respectively a) T, F and F b) F, F and T c) F, T and T d) T, F and T 25. If statements *p* and *r* are false and *q* is true, then truth value of $\sim p \Rightarrow (q \land r) \lor r$ is a) T b) F c) Either T or F d) Neither T nor F 26. Let *p* and *q* be two statements, then $(p \lor q) \lor \sim p$ is a) Tautology b) Contradiction d) None of these c) Both (a) and (b) 27. the contrapositive of "If two triangles are identical, then these are similar" is a) If two triangles are not similar, then these are not identical b) If two triangles are not identical, then these are not similar c) If two triangles are not identical, then these are similar d) if two triangles are not similar, then these are identical 28. Simplify the following circuit and find the boolean polynomial. a) $p \vee (q \wedge r)$ b) $p \land (q \lor r)$ c) $p \lor (q \lor r)$ d) $p \land (q \land r)$ 29. Which of the following statement is a tautology c) $(\sim q \land p) \lor (p \land \sim p)$ d) $(p \land q) \land (\sim (p \land q))$ b) $(\sim q \land p) \land (p \land \sim p)$ a) $(\sim q \wedge p) \wedge q$ 30. The negation of the proposition "If 2 is prime, then 3 is odd" is a) If 2 is not prime, then 3 is not odd b) 2 is prime and 3 is not odd c) 2 is not prime and 3 is odd d) If 2 is not prime, then 3 is odd 31. If *p*, *q*, and *r* are simple propositions with truth values T,F,T, then the truth value of $(\sim p \lor q) \land \land \sim q \rightarrow p$ is c) True, if *r* is false a) True b) False d) None of these 32. Switching function of the network is (a)

	a) $(a \land b) \lor c \lor (a' \land b' \land$	c'	b) $(a \land b) \lor c \lor (a' \land b' \land$	c)
	c) $(a \lor b) \land c \land (a' \lor b' \lor$	•	d) None of the above	()
22	The negation of the property	•	uj None of the above	
55.	a) ~ $q \lor (p \land r)$		c) ~ $p \lor ~ q \lor ~ r$	d) None of these
24		irs are logically equivalent		uj Nolle of these
54.			i	
	a) Conditional, Contrapos	siuve		
	b) Conditional, Inverse	10.0		
	c) Contrapositive, Converd) Inverse, Contrapositive			
25				
35.	The statement $(\sim p \land q)$		a $(m)(m)$	
26	a) $p \lor q$	b) $p \wedge q$	c) ~ $(p \lor q)$	d) ~ $(p \land q)$
36.	$\sim [(p \land q) \rightarrow (\sim p \lor q)]$ is			
	a) Tautology	b) Contradiction		d) either (a) or (b)
37.		n the truth values of p, q, r a		
•	a) F, T, T	b) T, T, F	c) T, F, F	d) F, F, F
38.		mbers and $x \in R$. Then, $x +$		
	a) Open statement	b) A true statement	c) False statement	d) None of these
39.	Which of the following no	ot a statement in logic?		
	1. Earth is planet.			
	2. Plants are living objects			
	3. $\sqrt{-3}$ is a rational numb			
	4. $x^2 - 5x + 6 < 0$, when			
	a) 1	b) 3	c) 2	d) 4
40.	Dual of $(x \land y) \lor (x \land 1) =$			
	a) $(x \lor y) \land (x \lor 0) = x \lor$, .	b) $(x \land y) \land (x \lor 1) = x \lor$	$(x \land y) \lor y$
	c) $(x \lor y) \lor (x \lor 0) = x \lor$		d) None of the above	
41.	The contrapositive of (\sim			
	a) $(p \land q) \rightarrow r$, ,	c) $r \rightarrow (p \lor \neg q)$	d) None of these
42.	$\sim p \land q$ is logically equival			
	a) $p \rightarrow q$	<i>y</i>	c) $\sim (p \rightarrow q)$	d) $\sim (q \rightarrow p)$
43.	$p \land (q \land r)$ is logically equ			
	a) $p \lor (q \land r)$	b) $(p \land q) \land r$	c) $(p \lor q) \lor r$	d) $p \rightarrow (q \wedge r)$
44.	If $p =$ He is intelligent			
	q =He is strong			
	Then, symbolic form of st			
	"It is wrong that he is inte			
	a) ~ <i>p</i> ∨~ <i>p</i>	b) ~ $(p \land q)$	c) ~ $(p \lor q)$	d) <i>p</i> ∨~ <i>q</i>
45.	Which of the following is			
	a) $(p \land q) \land (\sim (p \lor q))$	b) $p \lor (\sim p \land q)$	c) $(p \rightarrow q) \rightarrow p$	d) None of these
46.	The statement $p \lor q$ is			
	a) A tautology	b) A contradiction	c) Contingency	d) None of these
47.		the statement $p(\wedge r) \Leftrightarrow (r \wedge r)$		
	a) <i>p</i> is <i>T</i> , <i>q</i> is <i>F</i>	b) <i>p</i> is, <i>r</i> is <i>F</i>	c) p is F , q is F and r is F	d) None of these
48.	$(p \land \sim q) \land (\sim p \land q)$ is			
	a) a tautology	b) a contradiction	c) tautology and	d) neither a tautology not
			contradiction	a contradiction
49.	If p always speaks agains			
	a) A tautology	b) Contradiction	c) Contingency	d) None of these
50.		T, F, T respectively, which		
	a) $(p \rightarrow q) \wedge r$	b) $(p \rightarrow q) \land \sim r$	c) $(p \land q) \land (p \lor r)$	d) $q \rightarrow (p \land r)$

51. Dual of $(x' \lor y')' = x \land y$ is b) $(x' \land y')' = x \lor y$ c) $(x' \land y')' = x \land y$ d) None of the above a) $(x' \lor y') = x \lor y$ 52. $p \lor q$ is true when a) Both p and q are true b) p is true and q is false c) p is false and q is true d) All of these 53. Which of the following propositions is a tautology? a) $(\sim p \lor \sim q) \lor (p \lor \sim q)$ b) (~ $p \lor ~ q$) $\land (p \lor ~ q)$ c) ~ $p \land (~ p \lor ~ q)$ d) ~ $q \land (\sim p \lor \sim q)$ 54. For any two statements p and q, $\sim (p \lor q) \lor (\sim p \land q)$ is logically equivalent to a) p b) ~*p* c) *q* d) ~q 55. Identify the false statement a) $\sim [p \lor (\sim q)] \equiv (\sim p) \land q$ b) $[p \lor q] \lor (\sim p)$ is a tautology d) $\sim (p \lor q) \equiv (\sim p) \lor (\sim q)$ c) $[p \land q] \land (\sim p)$ is a contradiction 56. $\sim [p \leftrightarrow q]$ is a) Tautology b) Contradiction c) neither (a) nor (b) d) either (a) or (b) 57. Let truth values of *p* be *F* and *q* be *T*. Then, truth value of $\sim (\sim p \lor q)$ is c) Either T or F a) T b) F d) Neither T nor F 58. Which of the following statements is a tautology? a) $(\sim q \wedge p) \wedge q$ b) $(\sim q \land p) \land (p \land \sim p)$ c) $(\sim q \land p) \lor (p \lor \sim p)$ d) $(p \land q) \land (\sim (p \land q))$ 59. Consider the proposition : "If we control population growth, we prosper". Negative of this proposition is a) If we do not control population growth, we prosper b) If we control population, we do not prosper c) We control population but we do not prosper d) We do not control population but we prosper 60. Which of the following is not a proposition? a) 3 is prime b) $\sqrt{2}$ is irrational d) 5 is an even integer c) Mathematics is interesting 61. If *p* and *q* are two statements, then $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$ is a a) Contradiction b) Tautology c) Neither (a) nor (b) d) None of these 62. The logically equivalent proposition of $p \rightarrow q$ is a) $(p \rightarrow q) \lor (q \rightarrow p)$ b) $(p \lor q) \rightarrow (p \lor q)$ d) $(p \rightarrow q) \land (q \rightarrow p)$ c) $(p \land q) \land (p \lor q)$ 63. If *p* and *q* are statements, then ~ $(p \land q) \lor (q \Leftrightarrow p)$ is a) Tautology b) Contradiction c) Neither tautology nor contradiction d) Either tautology or contradiction 64. Consider the proposition : " If the pressure increases, the volume decreases:. The negation of this proposition is a) If the pressure does not increase the volume does not decrease b) If the volume increases, the pressure decreases c) If the volume does not decreases, the pressure does not increase d) If the volume decreases, then the pressure does not increase 65. The dual of the statement $[p \lor (\sim q)] \land (\sim p)$ is a) $p \lor (\sim q) \lor \sim p$ b) $(p \land \sim q) \lor \sim p$ c) $p \land \sim (q \lor \sim p)$ d) None of these 66. Which of the following is logically equivalent to $(p \land q)$? d) ~ $(p \rightarrow \sim q)$ b) ~ $p \wedge q$ c) *p* ∧~ *q* a) $p \rightarrow q$ 67. The proposition $p \rightarrow \sim (p \land \sim q)$ is a) A contradiction b) A tautology c) Either a tautology or a contradiction d) Neither a tautology nor a contradiction

- 68. Which of the following statement has the truth value 'F'?
 - a) A quadratic equation has always a real root
 - b) The number of ways of seating 2 persons in two chairs out of n persons is P(n, 2)
 - c) The cube roots of unity are in GP
 - d) None of the above

69. The negative of the proposition : "If a number is divisible by 15, then it is divisible by 5 or 3"

- a) If a number is divisible by 15, then it is not divisible by 5 and 3
- b) A number is divisible by 15 and it is not divisible by 5 and 3
- c) A number is divisible by 15 and it is not divisible by 5 or 3
- d) A number is not divisible by 15 or it is not divisible by 5 and 3
- 70. $p \land q \rightarrow p$ is

a)

- a) A tautology
- b) A contradiction
- c) Neither a tautology *n* or a contradiction
- d) None of these
- 71. All teachers are scholar, Identify the Venn diagram
 - S
- b) (7)

				· 例:在"在我时间是中国"。
72.	the negation of the stater	nent "he is rich and happy'	' is given by	
	a) he is not rich and not l	парру	b) he is not rich or not ha	арру
	c) he is rich and happy		d) he is not rich and happ	ру
73.	The property $\sim (p \land q) \equiv$	$a \sim p \lor \sim q$ is called		
	a) Associative law	b) De morgan's law	c) Commutative law	d) Idempotent law
74.	The negation of the comp	bound proposition $p \lor (\sim p$	$v \lor q$) is	
	a) $(p \land \sim q) \land \sim p$	b) $(p \land \sim q) \lor \sim p$	c) $(p \land \sim q) \lor \sim p$	d) None of these
75.	The negation of $q \lor \sim (p)$	-		
	a) ~ $q \vee (p \wedge r)$	b) ~ $q \lor (p \land r)$	c) ~ $q \wedge (p \wedge r)$	d) ~ $q \wedge \sim (p \wedge r)$
76.	$\sim (\sim p) \leftrightarrow p$ is			
	a) A tautology			
	b) A contradiction			
	c) Neither a contradiction	n nor a tautology		
	d) None of these			
77.	The contrapositive of $2x$			
			c) $x \neq 4 \Rightarrow 2x + 3 \neq 9$	d) $x \neq 4 \Rightarrow 2x + 3 = 9$
78.		hal, "If it rains, I shall go to s		
	a) It rains and I shall go t		b) It rains and I shall not	go to school
	c) It does not rains and I		d) None of the above	
79.	-		e truth value of $(p \Rightarrow q) \land r$	
	a) TM	b) <i>F</i>	c) <i>T</i> or <i>F</i>	d) None of these
80.	The statement $p \lor \sim p$ is			
	a) Tautology		b) Contradiction	
04	c) Neither a tautology no		d) None of the above	
81.		en the truth values of p, q, r		
00	a) <i>T</i> , <i>T</i> , <i>T</i>	b) <i>F</i> , <i>T</i> , <i>T</i>	c) <i>F</i> , <i>F</i> , <i>F</i>	d) <i>T</i> , <i>F</i> , <i>F</i>
82.	If <i>p</i> : Ram is smart			
	<i>q</i> : Ram is intelligent	Dom is smart and intelliger	at in	
	-	Ram is smart and intelliger		d (m) (m)
02	a) $(p \land q)$ Which of the following is	b) $(p \lor q)$	c) (<i>p</i> ∧~ <i>q</i>)	d) (<i>p</i> ∨~ <i>q</i>)
03.	Which of the following is	not a proposition:	b $\sqrt{2}$ · · · · · ·	
	a) $\sqrt{3}$ is a prime		b) $\sqrt{2}$ is irrational	

	c) Mathematics is interesting	d) 5 is an even integer	
84.	$\sim [\sim p \land (p \Leftrightarrow q)] \equiv$		
	a) $p \lor q$ b) $q \land p$	c) <i>T</i>	d) <i>F</i>
85.	Which of the following is equivalent to $p \Rightarrow q$?		
	a) $p \Rightarrow q$ b) $q \Rightarrow p$	c) $(p \Rightarrow q) \land (q \Rightarrow p)$	d) None of these
86.	Let p and q be two propositions. Then the inverse of	the implication $p \rightarrow q$ is	
	a) $q \rightarrow p$ b) $\sim p \rightarrow \sim q$	c) $p \rightarrow q$	d) $\sim q \rightarrow \sim p$
87.	Let p and q be two properties. Then, the contrapositi	ve of the implication $p \rightarrow q$	is
	a) $\sim q \rightarrow \sim p$ b) $p \rightarrow \sim q$	c) $q \rightarrow p$	d) $p \leftrightarrow q$
88.	If p and q are two propositions, then $\sim (p \leftrightarrow q)$ is		
		c) $(p \land \sim q) \lor (\sim p \land q)$	d) None of these
89.	Which of the following is logically equivalent to \sim (\sim	$p \rightarrow q$?	
	a) $p \wedge q$ b) $p \wedge \sim q$		d) ~ $p \wedge q$
90.	The contrapositive of $p \Rightarrow \sim q$ is		
	a) $\sim p \Rightarrow q$ b) $\sim q \Rightarrow p$	c) $q \Rightarrow \sim p$	d) None of these
91.	In which of the following cases, $p \Rightarrow q$ is true?		
	a) <i>p</i> is true, <i>q</i> is true b) <i>p</i> is false, <i>q</i> is true	c) <i>p</i> is true, <i>q</i> is false	d) None of these
92.	Which of the following propositions is a tautology?		-
	a) ~ $(p \rightarrow q) \lor (p \land \sim q)$ b) $(p \rightarrow q) \rightarrow (p \land \sim q)$	c) $(p \rightarrow q) \lor (p \land \sim q)$	d) $(p \rightarrow q) \land (p \land \sim q)$
93.	If <i>p</i> :A man is happy		
	q:A man is rich		
	Then, the statement, "If a man is not happy, then he i	s not rich" is written as	
	a) $\sim p \rightarrow \sim q$ b) $\sim q \rightarrow p$	c) $\sim q \rightarrow \sim p$	d) $q \rightarrow \sim p$
94.	Which of the following is false?		
	a) $p \lor \sim p$ is a tautology		
	b) \sim (\sim) \leftrightarrow <i>p</i> is a tautology		
	c) $(p \land (p \rightarrow)) \rightarrow$ is a contradiction		
	d) $p \wedge p$ is a contradiction		
95.	Let <i>p</i> and <i>q</i> be two statements. Then, $(\sim p \lor q) \land (\sim p)$	$p \wedge \sim q$) is a	
	a) Tautology	b) Contradiction	
	c) Neither tautology nor contradiction	d) Both tautology and con	tradiction
96.	Logical equivalent proposition to the proposition \sim ($p \lor q$)	
	a) ~ $p \land \sim q$ b) ~ $p \lor \sim q$	c) ~ $p \rightarrow ~ q$	d) $\sim p \leftrightarrow \sim q$
97.	What are the truth values of $(\sim p \Rightarrow \sim q)$ and $\sim (\sim p$	\Rightarrow <i>q</i>) respectively, when <i>p</i>	and <i>q</i> always speak true in
	any argument?		
	a) <i>T</i> , <i>T</i> b) <i>F</i> , <i>F</i>	c) <i>T</i> , <i>F</i>	d) <i>F</i> , <i>T</i>
98.	Which of the following is a proposition?	-	-
	a) I am a lion		
	b) A half open door is half closed		
	c) A triangle is a circle and 10 is a prime number		
	d) Logic is an interesting subject		
99.	Which of the following is the inverse of the propositi	on : "If a number is a prime	, then it is odd"?
	a) If a number is not a prime, then it is odd	b) If a number is not a prin	me, then it is not odd
	c) If a number is not odd, then it is not a prime	d) If a number is odd, ther	ı it is a prime
100	. Let p be the statement 'Ravi races' and let q be the st	atement 'Ravi wins'. Then,	the verbal translation of
	$\sim (p \lor (\sim q))$ is		
	a) Ravi does not race and Ravi does not win		
	b) It is not true that Ravi races and that Ravi does no	t win	
	c) Ravi does not race and Ravi wins		
	d) It is not true that Ravi races or that Ravi does not	win	
101	The contrapositive of $(p \lor q) \rightarrow r$ is		

P a g e **| 6**

a) $\sim r \rightarrow (p \lor q)$ b) $r \rightarrow (p \lor q)$ c) $\sim r \rightarrow (\sim p \land \sim q)$ d) $p \rightarrow (q \lor r)$ 102. Which is not a statement? a) 3 > 4b) 4 > 3c) Raju is an intelligent boy d) He lives in Agra 103. If $p = \Delta ABC$ is equilateral and q =each angle is 60°. Then, symbolic form of statement a) $p \vee p$ b) $p \wedge q$ c) $p \Rightarrow q$ d) $p \Leftrightarrow q$ 104. Consider the following statements : *p* : I shall pass, *q* : I study The symbolic representation of the proposition "I shall pass iff I study" is a) $p \rightarrow q$ b) $q \rightarrow p$ c) $p \rightarrow \sim q$ d) $p \leftrightarrow q$ 105. The false statement in the following is a) $p \land (\sim p)$ is a contradiction b) $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$ is a contradiction c) ~ (~ p) \Leftrightarrow p is a tautology d) $p \lor (\sim p)$ is a tautology 106. The negation of $p \land (q \rightarrow \sim r)$ is c) $p \lor (q \land r)$ a) $\sim p \land (q \land r)$ b) $p \lor (q \lor r)$ d) $\sim p \lor (q \land r)$ 107. *H*: Set of holidays S: Set of Sundays U:Set of day's Then, the Venn diagram of statement, "Every Sunday implies holiday" is 11 a) b) c) 108. The switching function for switching work is (y)a) $x \wedge y \wedge z$ b) $x \lor y \land x \lor z$ d) None of these c) $x \wedge y \wedge x \vee z$ 109. If *p* and *q* are two simple propositions, then $p \leftrightarrow q$ is false when a) *p* and *q* both are true b) *p* is false and *q* is true c) *p* is fale and *q* is true d) None of these 110. Let *S* be a non-empty subset of *R*. Consider the following statement *P*: There is a rational number $x \in S$ such that x > 0. Which of the following statements is the negation of the statement *P*? a) There is a rational number $x \in S$ such that $x \leq 0$ b) There is no rational number $x \in S$ such that $x \leq 0$ c) Every rational number $x \in S$ satisfies $x \leq 0$ d) $x \in S$ and $x \leq 0 \Rightarrow x$ is not rational 111. $\sim (p \lor q) \lor (\sim p \land q)$ is logically equivalent to a) ~p b) p c) q d) ~q 112. Let *p* and *q* be two statements. Then, $p \lor q$ is false, if a) *p* is false and *q* is true b) Both *p* and *q* are false c) Both *p* and *q* are true d) None of these 113. The statement $\sim (p \rightarrow q)$ is equivalent to a) $p \land (\sim q)$ b) $\sim p \wedge q$ c) $p \land q$ d) $\sim p \land \sim q$ 114. For the circuit shown below, the Boolean polynomial is b) $(\sim p \land q) \land (p \land q)$ c) $(\sim p \land \sim q) \land (q \land p)$ d) $(\sim p \land q) \lor (p \lor \sim q)$ a) $(\sim p \lor q) \lor (p \lor \sim q)$ 115. The switching function of network is

c) $(x \lor y') \land (y \lor z') \land (z$		d) None of the above	-
130. If $S(p,q,r) = (\sim P) \vee [\sim ($			
a) $\sim S(p,q,r)$		c) $p \lor (q \land r)$	d) $p \lor (q \lor r)$
131. Some triangles are not is	osceles. Identify the Venn c	liagram	
a)	b)	c) (τ)	d)
132. The negation of $p \wedge \sim (q)$	$\wedge r$) is		
a) ~ $p \lor (q \land r)$	b) ~ $p \vee (~ q \vee ~ r)$	c) $p \lor (q \land r)$	d) ~ $p \land (q \lor r)$
133. Dual of $x \land (yx) = x$ is			
a) $x \lor (y \land x) = x$	b) $x \lor (y \lor x) = x$	c) $(x \land y) \lor (x \land x) = x$	d) None of these
134. Which of the following se	entences is a statements?		
a) AArushi is a pretty gir	1		
b) What are you doing?			
c) Oh! It is amazing			
d) 2 is the smallest prime	e number		
135. The contrapositive of the		is	
a) $p \Rightarrow (\sim p \lor q)$		c) $p \Rightarrow (\sim p \land q)$	d) ~ $p \lor q \Rightarrow p$
136. The statement $p \rightarrow (q \rightarrow q)$			
a) $p \rightarrow (p \leftrightarrow q)$		c) $p \rightarrow (p \lor q)$	d) $p \rightarrow (p \land q)$
137. Dual of $(x' \land y')' = x \lor y$		c) p ' (p V q)	
	b) $(x' \lor y')' = x \land y$	c) $(x' \vee y')' = xy$	d) None of these
	$DJ(x \vee y) = x \wedge y$	$(x \vee y) - xy$	uj Nolle of these
138. If <i>p</i> : <i>A</i> man is happy			
q: A man is rich		· · · · · · · · · · · · · · · · · · ·	
	a man is not happy, then he		D.
	b) $\sim q \rightarrow p$	c) ~ $q \rightarrow \sim p$	d) $q \rightarrow \sim p$
139. Which of the following is		`	
a) $p \wedge q$	b) <i>p</i> ∨ <i>q</i>	c) <i>p</i> ∨~ <i>p</i>	d) <i>p</i> ∧~ <i>p</i>
140. Let p and q be two stater			
a) Tautology	b) Contradiction	c) Both (a) and (b)	d) None of these
141. For any three proposition	ns p, q and r , the proposition	on $(p \land q) \land (q \land r)$	
a) <i>p</i> , <i>q</i> , <i>r</i> are all false			
b) <i>p</i> , <i>q</i> , <i>r</i> are all true			
c) <i>p</i> , <i>q</i> are true and <i>r</i> is fa	alse		
d) <i>p</i> is true and <i>q</i> and <i>r</i> a	re false		
142. Given that water freezes	below zero degree Celsius.	Consider the following stat	tements :
<i>p</i> : Water froze this morn	ing, q: This morning tempe	rature was below 0°C	
Which of the following is	the correct?		
a) p and q are logically equivalent equivalent and q are logically equivalent equ	quivalent		
b) <i>p</i> is the inverse of <i>q</i>	-		
c) <i>p</i> is the converse of <i>q</i>			
d) <i>p</i> is the contrapositive	e of <i>a</i>		

14.MATHEMATICAL REASONING

						: ANS	W
1)	С	2)	а	3)	а	4)	С
5)	c	-) 6)	b	7)	c	8)	a
9)	b	10)	b	11)	d	12)	c
13)	d	10) 14)	a	15)	a	16)	d
13) 17)		14)	a b	13) 19)	a	10) 20)	u b
21)	c d	13) 22)		19) 23)		20) 24)	
21) 25)		-	C 2	-	C 2	-	a
-	b	26) 20)	a	27)	а	28)	а
29)	C	30)	b	31)	a	32)	a
33)	b	34)	а	35)	d	36)	b
37)	С	38)	а	39)	С	40)	а
41)	С	42)	d	43)	b	44)	С
45)	а	46)	С	47)	d	48)	b
49)	а	50)	d	51)	b	52)	d
53)	а	54)	b	55)	d	56)	С
57)	b	58)	с	59)	С	60)	С
61)	b	62)	d	63)	С	64)	С
65)	b	66)	d	67)	d	68)	a
69)	b	70)	a	71)	С	72)	b
73)	b	73) 74)	a	75)	c	76)	a
77)	a	78)	b	79)	b	80)	a
81)	a d	82)	a	83)		84)	
-		-		-	C	-	a
85) 80)	C d	86) 00)	b	87) 01)	a	88) 02)	C
89)	d	90) 04)	С	91) 95)	а	92) 96)	С
93)	а	94)	С	95)	C	96)	a
97)	С	98)	С	99)	b	100)	С
101)	С	102)	С	103)	d	104)	d
105)	b	106)	d	107)	С	108)	b
109)	С	110)	С	111)	а	112)	b
113)	а	114)	d	115)	а	116)	b
117)	d	118)	d	119)	С	120)	d
121)	а	122)		123)	b	124)	С
125)	b	126)		127)	а	128)	d
129)	a	130)		131)	b	132)	a
133)	a	134)		135)	d	132)	c
137)	b	131)		139)	c c	130) 140)	a
141)	b	130)		1375	·	110]	a
141)	U	142)	a				

	: HINTS AND	SO	LUTI	ON	S :					
1	(c)		(d)							
	The required Venn diagram of given statement is		We hav	ve.						
	given below		$p \rightarrow q$		v ∨ a					
			∴~ (~				(∇q)	≅~ p /	$\wedge \sim q$	
		16	(d)	Ľ	1)	Q.	1)	Ľ	1	
		10	~ (p ∨	a =	=~ n	∧~ a				
2	(a)		~		-	-		Paris is	not in F	rance
-	$(p \lor q) \land (p \lor \sim q)$	17	(c)	sicat			ana i	ai 15 15	not in i	rance.
	$= p \lor (q \land \sim q) \text{ (distributive law)}$	1/		ho t	ruth	tabla	ofn	⇒ aiti	s evider	at that
	$= p \lor 0 \text{ (complement law)}$						-	-		
					uew	nen p	anu	q both	are true	e or both
л	= p (0 is identify for v)		are fals			. 1				:- (-)
4	(c) We have							s faise	and ~q	is faise
	We have	10	i. e. <i>p</i> is	s fals	e and	d <i>q</i> is	true			
	$p \to q \cong \sim p \lor q$	18	(b)			_				
	and, $\sim q \rightarrow \sim p \cong \sim (\sim q) \lor \sim p \cong q \lor \sim p \cong \sim p \lor q$		-		is in	Fran	ce an	d q: Lo	ndon is	in
_	$\cong p \to q$		Englan							
5	(c)		Given,	-	-					
	We have,		Its neg			-		-	-	
	$p o q \cong \sim p \lor q$		Hence,	par	is is ı	not in	Fran	ce or L	ondon i	is not in
	$\therefore p \to \sim q \cong \sim p \lor \sim q \cong \sim (p \land q)$		Englan	ıd.						
	So, option (a) is not correct	20	(b)							
	$\sim p \lor \sim q = \sim (p \land q)$		$(p \Rightarrow q$	i) V ($(q \Rightarrow$	<i>p</i>) m	eans	$p \Leftrightarrow q$		
	So, option (b) is not correct	22	(c)							
	$\sim (p \rightarrow \sim q) = \sim (\sim p \lor \sim q) = p \land q$		$(\sim p \land$	q) /	$\sim q$	$= \sim p$	$\wedge (q$	$\wedge \sim q)$	$= \sim p \land$	c = c
	So, option (c) is incorrect	23	(c)							
6	(b)		$p \wedge q$ n	nean	is Ma	them	atics	is inter	resting a	and
	Some triangles are not isosceles.		Mathe	mati	cs is	diffic	ult			
		24	(a)							
	$\left \left(\begin{array}{c} 1 \\ 1 \end{array}\right)\right $		Truth '	Tabl	e					
			р	q	r	$\sim p$	~ <i>r</i>	$p \wedge$	(~ <i>p</i>	$(p \land \sim r)$
8	(a)							$\sim r$	v q	\rightarrow
	$\sim (p \lor q) \lor (\sim p \land q)$									$(\sim p \lor q)$
	$\cong (\sim p \land \sim q) \lor (\sim p \land q)$		Т	Т	Т	F	F	F	Т	Т
	$\cong \sim p \land (\sim q \lor q) \cong \sim p \lor t \cong \sim p$		Т	Т	F	F	Т	Т	Т	Т
9	(b)		Т	F F	T F	F F	F T	F T	F F	T F
	A compound sentence formed by two simple		F	г Т	г Т	_г Т	 F	F	<u>г</u> Т	T
	statements p and q using connective 'or' is called		F	T	F	T	T	F	T	T
	disjunction		F	F	T	Т	F	F	T	T
12	(c)		F	F	F	Т	Т	F	Т	Т
12	By truth table		Hence,	, (p /	$(\sim r)$	\rightarrow (γ	$\sim p \vee d$	q) is F.		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		When	<i>p</i> =	T, q =	= F, <i>r</i>	= F			
	$\begin{bmatrix} p & q & q & q & p \neq q \\ & & & -q & -q \end{bmatrix}$	26	(a)							
	T T F F F		By trut	th ta	ble					
	T F T F F		p q	p	~	p	(<i>p</i>			
	F T F F T			V			√ q) \	/		
	F F T F T						~ p			
	Hence, it is neither a tautology nor contradiction		T T	Т	F		Г			
			T F	Т	F		Г			

F	Т	Т	Т	Т
F	F	F	Т	Т

It is clear that $(p \lor q) \lor \sim p$ is a tautology

27 **(a)**

Let *p*: Two triangles are identical

q: Two triangles are similar

Clearly, the given statement in symbolic form is $p \rightarrow q$.

: Its contrapositive is given by $\sim q \rightarrow \sim p$.

ie, If two triangles are not similar, then these are not identical.

28 **(a)**

 $(p \lor q) \land (p \lor r) = p \lor (q \land r)$

29 **(c)**

Truth table

р	q	$\sim p$	$\sim q$	$\sim q$	(~ q		(~ q	(~ q
				$\wedge p$	$\land p)$	٨	$\wedge p$)	$\wedge p$)
					$\wedge q$	$\sim p)$	V (p	V (p
							Λ	Λ
							~ <i>p</i>)	~ <i>p</i>)
Т	Т	F	F	F	F	Т	F	Т
Т	F	F	Т	Т	F	Т	F	Т
F	Т	Т	F	F	F	Т	F	Т
F	F	Т	Т	F	F	Т	F	Т
		0					1	

It is clear from the table that last column have all true values. Hence option (c) is correct

30 **(b)**

Let p = 2 is prime and q = 3 is odd Given, $p \rightarrow q$ Negation of $p \rightarrow q$ is $\sim (p \rightarrow q)$ $\Rightarrow p \land \sim q$ $\Rightarrow 2$ is prime and 3 is not odd.

31 (a)

р	q	r	~ p	$\sim q$	$\sim p$ V q	$(\sim p \ \lor q) \ \land \sim q$	$(\sim p \\ \lor q) \\ \land \sim q$
							$\rightarrow p$
Т	F	Т	F	Т	F	F	Т

32 (a)

Since, switches *a* and *b* and *a*', *b*' and *c*' are parallel which is denoted by $a \wedge b$ and $a' \wedge b' \wedge c'$ respectively

Now, $(a \land b)$, c and $(a' \land b' \land c')$ are connected in series, then switching function of complete network is

 $(a \wedge b) \vee c \vee (a' \wedge b' \wedge c')$

33 **(b)**

The negation of $q \lor (p \land r)$ is given by $\sim \{q \lor (p \land r)\} \cong \sim q \land (p \land r)$

 $(\sim p \land q) \lor \sim q \equiv \sim q \lor (\sim p \land q)$

Commutative law)

$$= \sim q \lor (q \land q \sim p)$$
 (By Commutative law)
$$= \sim q \lor q(\sim q \lor \sim p)$$
 (By Distributive law)
$$= \sim (q \land p)$$

$$= \sim (p \land q)$$

36 **(b)**

p	q	p	$\sim p$	$\sim p$	(<i>p</i>	~[(p
		$\wedge q$		$\vee q$	$\wedge q$)	$\land q)$
					\rightarrow	\rightarrow
					((~ <i>p</i>
					$\sim p$	V q)]
					$\vee q$)	-
Т	Т	Т	F	Т	Т	F
Т	F	F	F	F	Т	F
F	Т	F	Т	Т	Т	F
F	F	F	Т	Т	Т	F

It is clear from the table that

 $\sim [(p \land q) \to (\sim p \lor q)]$

is a contradiction.

39 **(c)**

Plants are living objects is not a statement.

41 **(c)**

We know that the contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$. Therefore, contrapositive of $(\sim p \land q) \rightarrow \sim r$ is $r \rightarrow \sim (\sim p \land q)$ or, $r \rightarrow p \lor \sim q$

42 **(d)**

р	q	$\sim p$	$\sim p \land q$	$q \rightarrow p$	$\sim (q \rightarrow p)$
Т	Т	F	F	Т	F
Т	F	F	F	Т	F
F	Т	Т	Т	F	Т
F	F	Т	F	Т	F

From the table

$$\sim p \land q \equiv \sim (q \rightarrow p)$$

Clearly, $(p \land q) \land r \cong p \land (q \land r)$

44 **(c)**

45

The symbolic form of given statement is $\sim (p \lor q)$ (a)

$$(p \land q) \land (\sim (p \lor q))$$

$$\cong (p \land q) \land (\sim p \land \sim q)$$

$$\cong q \land (p \land \sim p) \land \sim q$$

$$= q \land (p \land \sim p) \land \sim = q \land c \land \sim \simeq c$$

So, statement in option (a) is a contradiction

(Bv

$$\begin{bmatrix} p & q & \sim p & \sim q & p & \sim p & (p) \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$$

Т	Т	F	F	F	F	F	
Т	F	F	Т	Т	F	F	
F	Т	Т	F	F	Т	F	
F	F	Т	Т	F	F	F	
It is clear from the table that $(m \land a) \land (m)$							

It is clear from, the table that $(p \land \neg q) \land (\neg p \land q)$ is a contradiction.

50 **(d)**

Since *p* is true and *q* is false

 $\therefore p \rightarrow q$ has truth value *F*

Statement r has truth value T

 $\therefore (p \rightarrow q) \land r$ has truth value *F*. Also,

 $(p \rightarrow q) \wedge \sim r$ has truth value *F*

 $p \wedge q$ has truth value F and $p \vee r$ has truth value T

$$\therefore (p \land q) \land (p \lor r)$$
 has truth value *F*

As $p \wedge r$ has truth value *T*. Therefore, $q \rightarrow (p \wedge r)$ has truth value *T*

51 **(b)**

55 (d)

(^u)									
р	q	$\sim p$	$\sim q$	$p \lor$	(~ <i>p</i>)	$p \lor q$	$\sim (p \lor q)$	(~ <i>p</i>)	$(p \lor q)$
				(~ <i>q</i>)	$\wedge q$			V	V
								(~ <i>q</i>)	(~ <i>p</i>)
Т	Т	F	F	Т	F	Т	F	F	Т
F	Т	Т	F	F	Т	Т	F	Т	Т
Т	F	F	Т	Т	F	Т	F	Т	Т
F	F	Т	Т	Т	F	F	Т	Т	Т
	•								

 $\equiv (\sim p \land \sim q) \lor (\sim p \land q)$ $\equiv \sim p \land (\sim q \lor q)$ $\equiv \sim p$

We have,

 $\sim (p \lor q) \lor (\sim p \land q)$

53 (a)

54 **(b)**

Dual of $(x' \lor y')' = x \land y$ is $(x' \land y') = x \lor y$

 $(\sim p \lor \sim q) \lor (p \lor \sim q) = \sim p \lor (\sim q \lor (p \lor \sim q))$

 $= \sim p \lor (p \lor \sim q) = (\sim p \lor p) \lor \sim q = t \lor \sim q = t$

It is clear from the table that columns 8 and 9 are not equal, ie, $\sim (p \lor q)$ is not equivalent to $(\sim p) \lor (\sim q)$. Hence, option (e) is false statement.

56 **(c)**

p	q	$p \leftrightarrow q$	$\sim [p \leftrightarrow q]$
Т	Т	Т	F
Т	F	F	Т
F	Т	F	Т
F	F	Т	F
	1	C 11	

It is clear from the table that, it is neither

tautology nor contradiction.

58 **(c)**

Truth Table

пu		abic						
р	q	$\sim p$	$\sim q$	$\sim q$	$(\sim q \wedge p)$	$p \lor \sim p$	$(p \land q) \land$	$(\sim q \wedge p)$
				$\wedge p$	$\wedge q$		$(\sim (p \land q))$	V
							1	$(p \lor \sim p)$
Т	Т	F	F	F	F	Т	F	Т
Т	F	F	Т	Т	F	Т	F	Т
F	Т	Т	F	F	F	Т	F	Т
F	F	Т	Т	F	F	Т	F	Т

It is clear from the table that the last column has all true values.

59 **(c)**

Consider the following statements:

p: We control the population growth

q: We become prosper

The given statement is $p \rightarrow q$ and its negation is $p \wedge \sim q$

i.e. We control population but we donot become prosper

60 **(c)**

Mathematics is interestring is not a proposition.

63 (c) By the truth table

By the truth table							
р	q	(<i>p</i>	~ (p	q	$\sim (q$	~ (p	
		$\land q)$	$\land q)$	$\Leftrightarrow p$	$\Leftrightarrow p)$	$\land q) \lor$	
						$\sim (q$	
						$\Leftrightarrow p)$	
Т	Т	Т	F	Т	F	F	
Т	F	F	Т	Т	F	Т	
F	Т	F	Т	F	Т	Т	
	p T T	p q T T T F	$\begin{array}{c c} p & q & (p \\ & & \wedge q) \end{array}$ $\begin{array}{c} T & T \\ T & F \\ T & F \end{array}$	$ \begin{array}{c c} p & q & (p & \sim (p \\ & \wedge q) & \wedge q) \\ \hline T & T & T & F \\ T & F & F & T \\ \end{array} $	$ \begin{array}{c cccc} p & q & (p & \sim (p & q \\ & \wedge q) & \wedge q) & \Leftrightarrow p \\ \hline T & T & T & F & T \\ T & F & F & T & T \\ \end{array} $	$ \begin{array}{c c} p & q & (p & \sim (p & q & \sim (q \\ \wedge q) & \wedge q) & \Leftrightarrow p & \Leftrightarrow p) \end{array} $ $ \begin{array}{c c} T & T & T & F & T & F \\ T & F & F & T & T & F \end{array} $	

	FFFT FTT		So, option (a) is correct
	It is clear that it is neither tautology nor	75	(c)
	contradiction		$\sim \{q \lor \sim (p \land r)\} = \sim q \land (p \land r)$
64	(c)	76	(a)
	We know that $p \rightarrow q \cong \sim q \rightarrow \sim p$		We have,
	So, the given statement is equivalent to:		$\sim (\sim p) = p$
	If the volume does not decrease, the pressure		$\therefore \sim (\sim p) \leftrightarrow p \cong p \leftrightarrow p$
	does not increase		Hence, $\sim (\sim p) \leftrightarrow p$ is a tautology
65	(b)	77	(a)
	The dual of the given statement is $(p \land \neg q) \lor \neg p$.		The contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$
66	(d)		So, the contrapositive of $2x + 3 = 2 \rightarrow x \neq 4$ is
	We have,		$x = 4 \rightarrow 2x + 3 \neq 9$
	$\sim (p \rightarrow \sim q) \cong \sim (\sim p \lor \sim q) \cong p \land q$	78	(b)
67	(d)		Let <i>p</i> : It rains, <i>q</i> : I shall go to school
	$p \rightarrow \sim (p \land \sim q)$		Thus, we have $p \rightarrow q$
	$\cong p \lor (p \land p) \cong p \lor (p \lor q) \cong p \lor q$		Its negation is $\sim (p \rightarrow q)ie, p \land \sim q$
	Clearly, it is neither a tautology nor a		<i>ie</i> ,It rains and I shall not go to school.
	contradiction	81	(d)
68	(a)	01	We know that $p \rightarrow q$ is false when p is true and q
	The root of the quadric equation can be		is false. So, $p \rightarrow (q \lor r)$ is false when p is true and
	imaginary.		$q \lor r$ is false. But, $q \lor r$ is false when q and r both
69	(b)		are false
	Consider the following statements:		Hence, $p \rightarrow (q \lor r)$ is false when p is true and q
	p = Number is divisible by 15		and <i>r</i> both are false
	q = Number is divisible by 5 or 3	82	(a)
	We have,		Given that
	$p \rightarrow q \cong \sim p \lor q$		<i>p</i> : Ram is smart
	$\therefore \sim (p \to q) \cong \sim (\sim p \lor q) \cong p \land \sim q$		<i>q</i> :Ram is intelligent
	Clearly, $p \wedge \sim q$ is equivalent to:		The symbolic form of "Ram is smart and
	A number is divisible by 15 and it is not divisible		intelligent." is $(p \land q)$
	by 5 and 3	83	(c)
70	(a)		Mathematics is interesting is not a logical
	Clearly, $p \land q \rightarrow p$ is always true. So, it is a		sentence. It may be intersecting for some persons
	tautology		and may not be interesting for others
	ALITER We know that $p \rightarrow q \cong \sim p \lor q$		∴ This is not a proposition
	$\therefore p \land q \to p \cong \sim (p \land q) \lor p \cong (\sim p \lor \sim q) \lor p$	86	(b)
	$\cong (\sim p \lor p) \lor \sim q \cong t \lor q \cong t$		By definition, the inverse of implication $p \rightarrow q$ is
71	(c)		$\sim p \rightarrow \sim q$
	All teachers are scholars	88	(c)
	S U		We know that
	(\overline{O})		$p \to q \cong \sim p \lor q \text{ and } q \to p \cong \sim q \lor p$
			$\therefore p \leftrightarrow q \cong (\sim p \lor q) \land (\sim q \lor p)$
72	(b)		$\sim (p \leftrightarrow q) \cong \sim (\sim p \lor q) \lor \sim (\sim q \lor p)$
	The negation of the given statement is "he is not		$\sim (p \leftrightarrow q) \cong (p \land \sim q) \lor (q \land \sim p))$
	rich or not happy".	89	(d)
74	(a)		$\sim (\sim p \to q) \cong \sim (p \lor q) \cong \sim p \land \sim q$
	We have,	92	(c)
	$\sim \{p \lor (\sim p \lor q)\}$		We have,
	$\cong \sim \{ (p \lor \sim p) \lor q \} \cong \sim (t \lor q) \cong \sim t \cong c$		$p \leftrightarrow q \cong \sim p \lor q$
	Also,		$\therefore (p \leftrightarrow q) \lor (p \land \sim q)$
	$(p \land \sim q) \land \sim p \cong (p \land \sim p \land \sim q) \cong c \land \sim q \cong c$		$= (\sim p \lor q) \lor (p \land \sim q)$

107 (c) $= \{ (\sim p \lor q) \lor p \} \land \{ (\sim p \lor q) \lor \sim q) \}$ $= \{ (\sim p \lor p) \lor q \} \land \{\sim p \lor (q \lor \sim q) \}$ The required venn diagram of given statement is $= (t \lor q) \land (\sim p \lor t)$ $= t \wedge t = t$ 93 (a) 109 (c) 'If a man is not happy, then he is not rich' is The truth table that of $p \rightarrow q$ is as follows: written as $\sim p \rightarrow \sim q$. $p \rightarrow q$ р q 94 (c) Т Т Т Clearly, F Т Т $p \lor \sim p$ is always true. So, it is a tautology Т F F We have, F Т F $\sim (\sim p) \leftrightarrow p \cong p \leftrightarrow p$ 110 (c) So, $\sim (\sim p) \leftrightarrow p$ is always true. So, it is a tautology *P* : There is rational number $x \in S$ such that x > 0We know that $p \rightarrow q \cong \sim p \lor q$ $\sim P$: Every rational number $x \in S$ satisfies $x \leq 0$ $\therefore p \land (p \to q) \cong p \land (\sim p \lor q) \cong (p \land$ 111 (a) $\sim p) \lor (p \land q)$ $\sim (p \lor q) \lor (\sim p \land q) \equiv (\sim p \land \sim q) \lor (\sim p \land q)$ $\cong c \lor (p \land q) \cong p \land q$ $\equiv \sim p \land (\sim q \lor q) \equiv \sim p \land t \equiv \sim p$ $\therefore p \land (p \rightarrow q) \rightarrow p \cong p \land q \rightarrow p$ which is a 113 (a) tautology So, option (c) is false $p \rightarrow q$ $\sim (p \rightarrow q)$ 96 (a) p q Т Т Т F By De'Morgan's law, we have Т F F Т $\sim (p \lor q) = \sim p \land \sim q$ F Т Т F 98 (c) Т F F F Clearly, statement in option (c) is false. So, it has From the table $\sim (p \rightarrow q) \equiv p \land (\sim q)$ definite truth value. Hence, it is a proposition \therefore All the values are same. 99 **(b)** 114 (d) Let *p*: A number is a prime For the given circuit, Boolean polynomial is q: It is odd $(\sim p \land q) \lor (p \lor \sim q).$ Given proposition is $p \rightarrow q$ its inverse is $\sim q \rightarrow \sim q$. 116 **(b)** *ie*, If a number is not prime, then it is not odd. We have, 100 (c) $p \rightarrow \sim p \cong \sim p \lor \sim p \cong \sim p \text{ and } \sim p \rightarrow p \cong p \lor p \cong$ Given, p:Ravi races, q: Ravi wins р : The statement of given proposition ~ $(p \lor (\sim q))$ $\therefore (p \to \sim p) \land (\sim p \to p) \cong \sim p \land p \cong c$ Which is equivalent to $\sim p \wedge q$. 117 (d) "It is not true that Ravi races or that Ravi does not $p \Rightarrow (\sim p \lor q)$ is false means p is true and $\sim p \lor q$ win." is false 101 (c) \Rightarrow *p* is true and both ~ *p* and *q* are false Contrapositive of $(p \lor q) \rightarrow r$ \Rightarrow *p* is true and *q* is false is $\sim r \rightarrow \sim (p \lor q) \equiv \sim r \rightarrow (\sim p \land \sim q)$ 119 (c) 103 (d) $\sim (\sim p \rightarrow q) \equiv \sim p \land \sim q$ The symbolic form of given statement is $p \Leftrightarrow q$ 120 (d) 105 **(b)** The contrapositive of $p \rightarrow \sim q$ is $p \Rightarrow q$ is logically equivalent to $\sim q \Rightarrow \sim p$ $\sim (\sim q) \rightarrow \sim p \text{ or } q \rightarrow \sim p$ $\therefore (p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$ Also, converse of $q \rightarrow \sim p$ is $\sim p \rightarrow q$. Is a tautology but not a contradiction 122 (d) 106 (d) \therefore *p*: 4 is an even prime number. $\sim (p \land (q \rightarrow \sim r)) = \sim p \lor \sim (q \rightarrow \sim r)$ q: 6 is a divisor of 12 $= \sim p \lor (q \land \sim (\sim r))$ And r: the HCF of 4 and 6 is 2 $= \sim p \lor (q \land r)$ $\therefore \sim p \lor (q \land r)$ is true.

 $p \wedge (\sim q)$

F

Т

F

F

 $\sim q$

F

Т

F

Т

The switching function for the given network is $(p \land q \lor r) \lor t$

124 **(c)**

We have, $p \leftrightarrow q \cong (p \rightarrow q) \land (q \rightarrow p)$ $\cong (\sim p \lor q) \land (\sim q \lor p)$ $\therefore \sim (p \leftrightarrow q) \cong \sim (\sim p \lor q) \lor \sim (\sim q \lor p)$ $\cong (p \land \sim q) \lor (q \land \sim p)$ (b)

125 **(b)**

The inverse of $(p \land \sim q) \rightarrow r$ is $\sim (p \land \sim q) \rightarrow \sim r$ $\Rightarrow (\sim p \lor q) \rightarrow \sim r$

129 **(a)**

: Switches x and y' are connected parallel which is denoted by $(x \land y')$ Similarly, y and z' and z and x' are also connected

parallel similarly, y and z and z and z and x^* are also connected

Which are denoted by $(y \land z')$ and $(z \land x')$ respectively

Now, $x \land y', y \land z'$ and $z \land x'$ are connected in series. So, switching function of given network is $(x \land y') \lor (y \land z') \lor (z \land x')$

130 **(d)**

 $S(p,q,r) = (\sim p) \lor [\sim (q \land r)]$ $= (\sim p) \lor [\sim q \lor \sim r]$ $\Rightarrow S(\sim p, \sim q, \sim r) = p \lor (q \lor r)$

131 **(b)**

Some triangles are not isosceles

136 **(c)**

q	p	q	$p \rightarrow (q$	$p \lor q$	p
		$\rightarrow p$	$\rightarrow p)$		$\rightarrow (p \lor q)$
Т	Т	Т	Т	Т	Т

Т	F	F	Т	Т	Т
F	Т	Т	Т	Т	Т
F	F	Т	Т	F	Т

: Statement $p \rightarrow (q \rightarrow p)$ is equivalent to $p \rightarrow (p \lor q)$.

:: *p*: A man is happy and *q*: A man is rich 'If a man is not happy, then he is not rich' is written as ~ *p* →~ *q*

140 **(a)**

p		q	$p \lor q$	~ <i>p</i>	$(p \lor q)$ $\lor \sim p$
,	Г	Т	Т	F	Т
'	Г	F	Т	F	Т
	F	Т	Т	Т	Т
	F	F	F	Т	Т

It is clear that $(p \lor q) \lor \sim p$ is a tautology.

141 **(b)**

 $(p \land q) \land (q \land r)$ is true

 $\Rightarrow p \land q$ and $q \land r$ are true

 \Rightarrow (*p* and *q* are true) and (*q* and *r* are true)

$$\Rightarrow$$
 p, *q* and *r* are true

142 **(a)**

 $\text{Clearly}, p \leftrightarrow q$

