Single Correct Answer Type

1. If $3^{x}+2^{2 x} \geq 5^{x}$, then the solution set for x is
a) $(-\infty, 2]$
b) $[2, \infty)$
c) $[0,2]$
d) $\{2\}$
2. $\quad x^{2}-3|x|+2<0$, then x belongs to
a) $(1,2)$
b) $(-2,-1)$
c) $(-2,-1) \cup(1,2)$
d) $(-3,5)$
3. Solution of $2^{x}+2^{|x|} \geq 2 \sqrt{2}$ is
a) $\left(-\infty, \log _{2}(\sqrt{2}+1)\right)$
b) $(0,8)$
c) $\left(\frac{1}{2}, \log _{2}(\sqrt{2}-1)\right)$
d) $\left(-\infty, \log _{2}(\sqrt{2}-1)\right) \cup\left[\frac{1}{2}, \infty\right)$
4. If $x_{1}, x_{2}, \ldots, x_{n}$ are real numbers, then the largest value of the expression $\sin x_{1} \cos x_{2}+\sin x_{2} \cos x_{3}+\cdots+$ $\sin x n \cos x 1$ is
a) n
b) $\frac{n}{2}$
c) $\frac{n}{4}$
d) $\sqrt{n^{2}-1}$
5. If $a<b$, then the solution $x^{2}+(a+b) x+a b<0$ is given by
a) (a, b)
b) $(-\infty, a) \cup(b, \infty)$
c) $(-b,-a)$
d) $(-\infty,-b) \cup(-a, \infty)$
6. If $\log \left(x^{3}+y^{3}\right)-\log _{10}\left(x^{2}+y^{2}-x y\right) \leq 2$, then the maximum value of $x y$, for all $x \geq 0, y \geq 0$ is
a) 2500
b) 3000
c) 1200
d) 3500
7. If $3^{x / 2}+2^{x}>25$, then the solution set is
a) R
b) $(2, \infty)$
c) $(4, \infty)$
d) None of these
8. If $a b=4\left(a, b \in R^{+}\right)$, then
a) $a+b \leq 4$
b) $a+b=4$
c) $a+b \geq 4$
d) None of these
9. Let $P_{n}(x)=1+2 x+3 x^{2}+\cdots+(n+1) x^{n}$ be a polynomial such that n is even. Then, the number of real roots of $P_{n}(x)$, is
a) 0
b) n
c) 1
d) None of these
10. $(x-1)\left(x^{2}-5 x+7\right)<(x-1)$, then x belongs to
a) $(1,2) \cup(3, \infty)$
b) $(2,3)$
c) $(-\infty, 1) \cup(2,3)$
d) None of these
11. If $x=\log _{2^{2}} 2+\log _{2^{3}} 2^{2}+\log _{2^{4}} 2^{3}+\ldots+\log _{2^{n+1}} 2^{n}$, then
a) $x \geq\left(\frac{1}{n+1}\right)^{1 / n}$
b) $x \geq n\left(\frac{1}{n+1}\right)^{1 / n}$
c) $x \geq\left(\frac{n}{n+1}\right)^{1 / n}$
d) None of these
12. The number of real solutions (x, y, z, t) of simultaneous equations $2 y=\frac{11}{x}+x, 2 z=\frac{11}{y}+y, 2 t=\frac{11}{z}+z, 2 x=\frac{11}{t}+t$, is
a) 0
b) 1
c) 2
d) 4
13. The solution set contained in R of the inequation $3^{x}+3^{1-x}-4<0$, is
a) $(1,3)$
b) $(0,1)$
c) $(1,2)$
d) $(0,2)$
14. The range of $a b$ if $|a| \leq 1$ and $a+b=1,(a, b \in R)$, is
a) $[0,1 / 4]$
b) $[-2,1 / 4]$
c) $[1 / 4,2]$
d) $[0,2]$
15. If $\sqrt{9 x^{2}+6 x+1}<(2-x)$, then
a) $x \in\left(-\frac{3}{2}, \frac{1}{4}\right)$
b) $x \in\left(-\frac{3}{2}, \frac{1}{4}\right)$
c) $x \in\left[-\frac{3}{2}, \frac{1}{4}\right]$
d) $x<\frac{1}{4}$
16. If $5^{x}+(2 \sqrt{3})^{2 x} \geq 13^{x}$, then the solution set for x is
a) $[2, \infty)$
b) $\{2\}$
c) $(-\infty, 2]$
d) $[0,2]$
17. Solution set of inequality $\log _{e} \frac{x-2}{x-3}$ is
a) $(2, \infty)$
b) $(-\infty, 2)$
c) $(-\infty, \infty)$
d) $(3, \infty)$
18. If $3<3 t-18 \leq 18$, then which one of the following is true?
a) $15 \leq 2 t+1 \leq 20$
b) $8 \leq t<12$
c) $8 \leq t+1 \leq 13$
d) $21 \leq 3 t \leq 24$
19. Let $f(x)=a x^{2}+b x+c$ and $f(-1)<1, f(1)>-1, f(3)<-4$ and $a \neq 0$, then
a) $a>0$
b) $a<0$
c) Sign of a cannot be determined
d) None of the above
20. The set of admissible values of x such that $\frac{2 x+3}{2 x-9}<0$ is
а) $\left(-\infty,-\frac{3}{2}\right) \cup\left(\frac{9}{2}, \infty\right)$
b) $(-\infty, 0) \cup\left(\frac{9}{2}, \infty\right)$
c) $\left(-\frac{3}{2}, 0\right)$
d) $\left(-\frac{3}{2}, \frac{9}{2}\right)$
21. The number of irrational solutions of the equation $\sqrt{x^{2}+\sqrt{x^{2}+11}}+\sqrt{x^{2}-\sqrt{x^{2}+11}}=4$, is
a) 0
b) 2
c) 4
d) 11
22. The number of solutions of the equation $\log _{x-3}\left(x^{3}-3 x^{2}-4 x+8\right)=3$, is
a) 1
b) 2
c) 3
d) 4
23. The number of real solutions of the equation $\log _{0.5} x=|x|$, is
a) 1
b) 0
c) 2
d) None of these
24. The number of complex roots of the equation $x^{4}-4 x-1=0$, is
a) 3
b) 2
c) 1
d) 0
25. If $\sin ^{x} \alpha+\cos ^{x} \alpha \geq 1,0<\alpha<\frac{\pi}{2}$, then
a) $x \in(2, \infty)$
b) $x \in(-\infty, 2]$
c) $x \in[-1,1]$
d) None of these
26. Consider the following statements:
27. $\frac{x}{1+x^{2}}<\tan ^{-1} x<x ; x>0$
28. If $0 \leq x<\frac{\pi}{2}, \sin x+\tan x-3 x \geq 0$

Which of these is/are correct?
a) Only (1)
b) Only (2)
c) (1) and (2)
d) None of these
27. The number of solutions of the equation $2 \cos \left(e^{x}\right)=3^{x}+3^{-x}$, is
a) 0
b) 1
c) 2
d) None of these
28. The number of real solutions of the equation $1-x=[\cos x]$, is
a) 1
b) 2
c) 3
d) None of these
29. Non- negative real numbers such that $a_{1}+a_{2}+\ldots+a_{n}=p$ and $q=\sum_{i<j} a_{i} a_{j}$, then
a) $q \leq \frac{1}{2} p^{2}$
b) $q>\frac{1}{4} p^{2}$
c) $q<\frac{p}{2}$
d) $q>\frac{p^{2}}{2}$
30. If $(\sin a)^{x}+(\cos \alpha)^{x} \geq 1,0<a<\frac{\pi}{2}$, then
a) $x \in[2, \infty)$
b) $x \in(-\infty, 2]$
c) $x \in[-1,1]$
d) None of these
31. If $x^{2}+2 a x+10-3 a>0$ for all $x \in R$, then
a) $-5<a<2$
b) $a<-5$
c) $a>5$
d) $2<a<5$
32. The least integer satisfying $49.4-\left(\frac{27-x}{10}\right)<47.4-\left(\frac{27-9 x}{10}\right)$, is
a) 2
b) 3
c) 4
d) None of these
33. For positive real number a, b, c which one of the following holds?
a) $a^{2}+b^{2}+c^{2} \geq b c+c a+a b$
b) $(b+c)(c+a)(a+b) \leq 8 a b c$
c) $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \leq 3$
d) $a^{3}+b^{3}+c^{3} \leq 3 a b c$
34. The least perimeter of a cyclic quadrilateral of given area A square units is
a) \sqrt{A}
b) $2 \sqrt{A}$
c) $3 \sqrt{A}$
d) $4 \sqrt{A}$
35. The number of solutions of $[\sin x+\cos x]=3+[-\sin x]+[-\cos x]$ in the internal $[0,2 \pi]$ is (where $[$.] denotes the greatest integer function)
a) 0
b) 4
c) Infinite
d) 1
36. The number of solutions of $3^{|x|}=|2-|x||$ is
a) 0
b) 2
c) 4
d) Infinite
37. If C is an obtuse angle in tringle, then
a) $\tan A \tan B<1$
b) $\tan A \tan B>1$
c) $\tan A \tan B=1$
d) None of these
38. If x, y, z are three real numbers such that $x+y+z=4$ and $x^{2}+y^{2}+z^{2}=6$, then the exhaustive set of values of x, is
a) $[2 / 3,2]$
b) $[0,2 / 3]$
c) $[0,2]$
d) $[-1 / 3,2 / 3]$
39. The number of roots of the equation $\left[\sin ^{-1} x\right]=x-[x]$, is
a) 0
b) 1
c) 2
d) None of these
40. If $3^{x / 2}+2^{x}>25$, then
a) $x \in[4, \infty)$
b) $(4, \infty)$
c) $x \in(-\infty, 4]$
d) $x \in[0,4]$
41. The number of real solutions of the equation $27^{1 / x}+12^{1 / x}=2.8^{1 / x}$, is
a) 1
b) 2
c) 0
d) Infinite
42. If roots of the equation $x^{4}-8 x^{3}+b x^{2}+c x+16=0$ are positive then
a) $b=8=c$
b) $b=-24, c=-32$
c) $b=24, c=-32$
d) $b=24, c=32$
43. If $3<|x|<6$, then x belongs to
a) $(-6,-3) \cup(3,6)$
b) $(-6,6)$
c) $(-3,-3) \cup(3,6)$
d) None of these
44. If a, b are distinct positive real numbers, then which one of the following is true?
a) $a^{4}+b^{4}>a^{3} b+a b^{3}$
b) $a^{4}+b^{4}<a^{3} b+a b^{3}$
c) $a^{3}+b^{3}<a^{2} b+a b^{2}$
d) None of these
45. The solution of the inequation $4^{-x+0.5}-7 \cdot 2^{-x}<4, x \in R$ is
a) $(-2, \infty)$
b) $(2, \infty)$
c) $\left(2, \frac{7}{2}\right)$
d) None of tnese
46. Suppose a, b and c are real numbers such that $\frac{a}{b}>1$ and $\frac{a}{c}<0$. Which one of the following is true?
a) $a+b-c>0$
b) $a>b$
c) $(a-c)(b-c)>0$
d) $a+b+c>0$
47. If a, b, c are positive real numbers such that $a+b+c=p$ then, which of the following is true?
a) $(p-a)(p-b)(p-c) \geq \frac{1}{27} p^{3}$
b) $(p-a)(p-b)(p-c) \geq 8 a b c$
c) $\frac{b c}{a}+\frac{c a}{b}+\frac{a b}{c} \geq p$
d) None of these
48. The number of solutions of the equation $\frac{\left(1+e^{x^{2}}\right) \sqrt{1+x^{2}}}{\sqrt{1+x^{4}-x^{2}}}=1+\cos x$, is
a) 1
b) 2
c) 3
d) 4
49. Let n be an odd integer such that the polynomial $P_{n}(x)=1+2 x+3 x^{2}+\ldots \ldots+(n+1) x^{n}$ has exactly one real root. This real root α satisfies
a) $-1<\alpha<0$
b) $0<\alpha<1$
c) $0 \leq \alpha \leq 1$
d) $-1 \leq \alpha \leq 0$
50. Let a, b be integers and $f(x)$ be a polynomial with integer coefficients such that $f(b)-f(a)=1$. Then, the value of $b-a$, is
a) 1
b) -1
c) $1,-1$
d) None of these
51. Let $y=\sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then all real values of x for which y takes real values, are
a) $-1 \leq x<2$ or $x \geq 3$
b) $-1 \leq x<3$ or $x>2$
c) $1 \leq x<2$ or $x \geq 3$
d) None of these
52. If $a, b, c>0$ and if $a b c=1$, then the value of $a+b+c+a b+b c+c a$ lies in the interval
a) $(\infty,-6)$
b) $(-6,0)$
c) $(0,6)$
d) $(6, \infty)$
53. The number of real roots of the equation $\left(\sin 2^{x}\right)\left(\cos 2^{x}\right)=\frac{2^{x}+2^{-x}}{2}$, is
a) 1
b) 2
c) 3
d) None of these
54. The largest interval for which $x^{12}-x^{9}+x^{4}-x+1>0$ is
a) $-4<x \leq 0$
b) $0<x<1$
c) $-100<x<100$
d) $0<x<\infty$
55. The number of negative real roots of $x^{4}-4 x-1=0$, is
a) 3
b) 2
c) 1
d) 0
56. If $0<x<\frac{\pi}{2}$, then minimum value of $\frac{\cos ^{3} x}{\sin x}+\frac{\sin ^{3} x}{\cos x}$ is
a) $\sqrt{3}$
b) $\frac{1}{2}$
c) $\frac{1}{3}$
d) 1
57. The number of solutions of $\sqrt{3 x^{2}+6 x+7}+\sqrt{5 x^{2}+10 x+14}=4-2 x-x^{2}$, is
a) 1
b) 2
c) 3
d) 4
58. The solution set of $||x|-1|<|1-x|, x \in R$ is
a) $(-1,1)$
b) $(0, \infty)$
c) $(-1, \infty)$
d) None of these
59. The minimum value of $f(x)=|3-x|+7$ is
a) 0
b) 6
c) 7
d) 8
60. The solution set of the inequation $\frac{x+11}{x-3}>0$ is
a) $(-\infty, 11) \cup(3, \infty)$
b) $(-\infty,-10) \cup(2, \infty)$
c) $(-100,-11) \cup(1, \infty)$
d) $(-5,0) \cup(3,7)$
61. Solution of $2 x-1=|x+7|$ is
a) -2
b) 8
c) $-2,8$
d) None of these
62. The number of positive real roots of $x^{4}-4 x-1=0$, is
a) 3
b) 2
c) 1
d) 0
63. The solution set of the inequality $\log _{\sin \left(\frac{\pi}{3}\right)}\left(x^{2}-3 x+2\right) \geq 2$ is
a) $\left(\frac{1}{2}, 2\right)$
b) $\left(1, \frac{5}{2}\right)$
c) $\left[\frac{1}{2}, 1\right) \cup\left(2, \frac{5}{2}\right]$
d) None of these
64. If a, b, c are sides of triangle, then $\frac{(a+b+c)^{2}}{(a b+b c+c a)}$ always belongs to
a) $[1,2]$
b) $[2,3]$
c) $[3,4]$
d) $[4,5]$
65. $(x-1)\left(x^{2}-5 x+7\right)<(x-1)$, then x belongs to
a) $(1,2) \cup(3, \infty)$
b) $(-\infty, 1) \cup(2,3)$
c) 2, 3
d) None of these
66. The set of values of x for which the inequalities $x^{2}-3 x-10<0,10 x-x^{2}-16>0$ hold simultaneously, is
a) $(-2,5)$
b) $(2,8)$
c) $(-2,8)$
d) $(2,5)$
67. The solution of the inequation $\log _{1 / 3}\left(x^{2}+x+1\right)+1<0$ is
a) $(-\infty,-2) \cup(1, \infty)$
b) $[-1,2]$
c) $(-2,1)$
d) $(-\infty, \infty)$
68. The number of values of a for which the system of equation $2^{|x|}+|x|=y+x^{2}+a$ and $x^{2}+y^{2}=1$ has only one solution where a, x, y are real, is
a) 1
b) 2
c) Finitely many but more than 2
d) Infinitely many
69. The solution set of the inequation $\log _{1 / 3}\left(x^{2}+x+1\right)+1>0$, is
a) $(-\infty,-2) \cup(1, \infty)$
b) $[-1,2]$
c) $(-2,1)$
d) R
70. The set of all real numbers satisfying the inequation $x^{\left(\log _{10} x\right)^{2}-3\left(\log _{10} x\right)+1}>1000$, is
a) $(0,1000)$
b) $(1000, \infty)$
c) $(0,100)$
d) None of these
71. The set of all real x satisfying the inequality $\frac{3-|x|}{4-|x|}>0$
a) $[-3,3] \cup(-\infty,-4) \cup(4, \infty)$
b) $(-\infty,-4) \cup(4, \infty)$
c) $(-\infty,-3) \cup(4, \infty)$
d) $(-\infty,-3) \cup(3, \infty)$
72. For positive real number a, b, c which of the following holds?
a) $a+b+c>3 \Rightarrow a^{2}+b^{2}+c^{2}>3$
b) $a^{6}+b^{6} \leq 12 a^{2} b^{2}-64$
c) $a+b+c=\alpha \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{9}{\alpha}$
d) None of the above
73. If a_{1}, a_{2}, a_{3} be any positive real numbers, then which of the following statements is not true
a) $3 a_{1}, a_{2}, a_{3} \leq a_{1}^{3}+a_{2}^{3}+a_{3}^{3}$
b) $\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{1}} \geq 3$
c) $\left(a_{1}+a_{2}+a_{3}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right) \geq 9$
d) $\left(a_{1}+a_{2}+a_{3}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right)^{3} \leq 27$
74. If $x^{2}+\frac{1}{x^{2}}=A$ and $x-\frac{1}{x}=B$, where $x \in R$ and $B>0$, then the minimum value of $\frac{A}{B}$ is
a) $\sqrt{2}$
b) $2 \sqrt{2}$
c) $\sqrt{2}+2$
d) None of these
75. Let n be an odd positive integer. Then, the number of real roots of the polynomial $P_{n}(x)=1+2 x+3 x^{2}+$ $\ldots \ldots+(n+1) x^{n}$, is
a) 0
b) n
c) 1
d) None of these
76. The number of positive integers satisfying the inequality $n+1_{C_{n-2}}-n+1_{C_{n-1}} \leq 50$ is
a) 9
b) 8
c) 7
d) 6
77. For $\theta>\pi / 3$, the value of $f(\theta)=\sec ^{2} \theta+\cos ^{2} \theta$ always lies in the interval
a) $(0,2)$
b) $[0,1]$
c) $(1,2)$
d) $[2, \infty)$
78. If the product of n positive numbers is n^{n}, then their sum is
a) A positive integer
b) Divisible by n
c) Equal to $n+\frac{1}{n}$
d) Never less than n^{2}
79. $\log _{2}\left(x^{2}-3 x+18\right)<4$, then x belongs to
a) $(1,2)$
b) $(2,16)$
c) $(1,16)$
d) None of these
80. If $[x]^{2}=[x+6]$, where $[x]=$ the greatest integer less than or equal to x, then x must be such that
a) $x=3,-2$
b) $x \in[-2,-1)$
c) $x \in[3,4)$
d) $x \in[-2,-1) \cup[3,4)$
81. If $a, b, c>0$, the minimum value of $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$ is
a) 1
b) $\frac{3}{2}$
c) 2
d) $\frac{5}{2}$
82. The number of real solutions of the equation $e^{|x|}-|x|=0$, is
a) 0
b) 1
c) 2
d) None of these
83. If p, q, r are any real numbers, then
a) $\max (p, q)=\max (p, q, r)$
b) $\min (p, q)=\frac{1}{2}(P+q-|p-q|)$
c) $\max (p, q)<\min (p, q, r)$
d) $\max (p, q)=\frac{1}{2}(p+q-|p-q|)$
84. The number of real solutions of $1+\left|e^{x}-1\right|=e^{x}\left(e^{x}-2\right)$, is
a) 1
b) 2
c) 3
d) 4
85. The solution set of the inequation $\log _{\sin 2 \pi / 3}\left(x^{2}-3 x+2\right) \geq 2$, is
a) $[1 / 2,1)$
b) $(2,5 / 2]$
c) $[1 / 2,1) \cup(2,5 / 2]$
d) $[1 / 2,5 / 2]$
86. If $x^{2}+6 x-27<0$ and $x^{2}-3 x-4<0$, then
a) $x>3$
b) $x<4$
c) $3<x<4$
d) $x=\frac{7}{2}$
87. If $x, y \in R$, then $\frac{1}{2}(x+y+|x-y|)=x$ holds iff
a) $x>y$
b) $x<y$
c) $x=y$
d) $x \geq y$
88. The set of all x satisfying the inequality $\frac{4 x-1}{3 x+1} \geq 1$ is
a) $\left(-\infty,-\frac{1}{3}\right) \cup\left[\frac{1}{4}, \infty\right]$
b) $\left(-\infty,-\frac{2}{3}\right) \cup\left[\frac{5}{4}, \infty\right]$
c) $\left(-\infty,-\frac{1}{3}\right) \cup[2, \infty)$
d) $\left(-\infty,-\frac{2}{3}\right)[4, \infty)$
89. The number of solutions of the inequality $E=2^{1 / \sin ^{2} \alpha_{2}} \cdot 3^{1 / \sin ^{2} \alpha_{3}} \ldots n^{1 / \sin ^{2} \alpha_{n}}<n!$
Where $\alpha_{i} \in(-\pi, 2 \pi)$ for $i=2,3, \ldots, n$ is
a) 0
b) 2^{n-1}
c) 3^{n-1}
d) None of these
90. The equation $e^{x}=x(x+1), x<0$ has
a) No real roots set
b) Exactly one real root
c) Two real roots
d) Infinitely many real roots
91. Let $F(x)$ be a function defined by $F(x)=x-[x], 0 \neq x \in R$, where $[x]$ is the greatest integer less than or equal to x. Then, the number of solutions of $F(x)+F\left(\frac{1}{x}\right)=1$
a) 0
b) Infinite
c) 1
d) 2
92. The set of all real numbers satisfying the inequation $2^{x}+2^{|x|} \geq 2 \sqrt{2}$, is
a) $(1 / 2, \infty)$
b) $\left(-\infty, \log _{2}(\sqrt{2}-1)\right)$
c) $(-\infty, 1 / 2)$
d) $[1 / 2, \infty) \cup\left(-\infty, \log _{2}(\sqrt{2}-1)\right)$
93. Solution of the inequality $\sin ^{4}\left(\frac{x}{3}\right)+\cos ^{4}\left(\frac{x}{3}\right)>\frac{1}{2}$, is given by
a) R
b) $\frac{3 n \pi}{2}+\frac{3 \pi}{4}$
c) $R-\left\{\left(\frac{3 n \pi}{2}+\frac{3 \pi}{4}\right), n \in I\right\}$
d) None of these
94. If $\left(\log _{5} x\right)^{2}+\left(\log _{5} x\right)<2$, then x belongs to the interval
a) $(1 / 25,5)$
b) $(1 / 5,1 / \sqrt{5})$
c) $(1, \infty)$
d) None of these
95. The number of real roots of the equation $x^{2}+x+3+2 \sin x=0$ in the interval $[-\pi, \pi]$, is
a) 2
b) 4
c) 6
d) None of these
96. If $\log _{\sqrt{3}}(\sin x+2 \sqrt{2} \cos x) \geq 2,-2 \pi \leq x \leq 2 \pi$, then the number of solutions of x is
a) 0
b) ∞
c) 3
d) 4
97. Solution of $x^{\left(\log _{10} x\right)^{2}-3 \log _{10} x+1}>1000$ for $x \in R$, is
a) $(10, \infty)$
b) $(100, \infty)$
c) $(1000, \infty)$
d) $(1, \infty)$
98. The largest interval for which $x^{12}-x^{9}+x^{4}-x+1>0$ is
a) $-4<x<0$
b) $0<x<1$
c) $-100<x<100$
d) $-\infty<x<\infty$
99. The number of roots of the equation $\sin \pi x=|\log | x| |$, is
a) 2
b) 4
c) 5
d) 6
100. The equation $\sqrt{x+1}-\sqrt{x-1}=\sqrt{4 x-1}$ has
a) No solution
b) One solution
c) Two solutions
d) More than two solutions
101. If $\log _{3} x-\log _{x} 27<2$, then x belongs to the interval
a) $(1 / 3,27)$
b) $(1 / 27,3)$
c) $(1 / 9,9)$
d) None of these
102. The set of all solutions of the inequation $x^{2}-2 x+5 \leq 0$ in R is
a) $R-(-\infty,-5)$
b) $R-(5, \infty)$
c) \varnothing
d) $R-(-\infty,-4)$
103. $2^{\sin ^{2} x}+2^{\cos ^{2} x}$ is
a) ≤ 2
b) ≥ 2
c) ≤ 1
d) ≥ 1
104. If $a^{2}+b^{2}+c^{2}=1$, then $a b+b c+c a$ lies in the interval
a) $\left[-\frac{1}{2}, 1\right]$
b) $\left[0, \frac{1}{2}\right]$
c) $[0,1]$
d) $[1,2]$
105. The equation $\sqrt{4 x+9}-\sqrt{11 x+1}=\sqrt{7 x+4}$ has
a) No solution
b) One solution
c) Two solutions
d) More than two solutions
106. $\left|x+\frac{2}{x}\right|<3$, then x belongs to
a) $(-2,-1) \cup(1,2)$
b) $(-\infty,-2) \cup(-1,1) \cup(2, \infty)$
c) $(-2,2)$
d) $(-3,3)$
107. If a, b, c are the sides of a tringle, then $\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}$ is
a) ≤ 3
b) ≥ 3
c) ≥ 2
d) ≤ 2
108. The minimum value of the sum of the lengths of diagonals of a cyclic quadrilateral of area a^{2} square units
is
a) $\sqrt{2} a$
b) $2 \sqrt{2} a$
c) $2 a$
d) None of these
109. $|2 x-3|<|x+5|$, then x belongs to
a) $(-3,5)$
b) $(5,9)$
c) $\left(-\frac{2}{3}, 8\right)$
d) $\left(-8, \frac{2}{3}\right)$
110. The number of real roots of the equation $1+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0$, where $|x|<\frac{1}{3}$ and $\left|a_{n}\right|<2$, is
a) n if n is even
b) 1 if n is odd
c) 0 for any $n \in N$
d) None of these
111. Consider the following statements:

1. If x be real, then $-\frac{9}{2} \leq \frac{3 x-4}{x^{2}+1} \leq \frac{1}{2}$
2. If x is real, then the greatest value of $\frac{x^{2}+14 x+9}{x^{2}+2 x+3}$ is 4
3. If $a x^{2}+b x+c=0 ; a \neq 0, a, b, c \in R$ has no real roots, then $(a+b+c) c>0$

Which of these is/ are correct?
a) Only (1)
b) Only (2)
c) Only (3)
d) All of these
112. If r is a real number such that $|r|<1$ and if $a=5(1-r)$, then
a) $0<a<5$
b) $-5<a<5$
c) $0<a<10$
d) $0 \leq a<10$
113. The number of integral roots of the equation $e^{x-8}+2 x-17=0$, is
a) 1
b) 2
c) 4
d) 8
114. The product of real roots of the equation $x^{2}+18 x+30=2 \sqrt{x^{2}+18 x+45}$, is
a) 720
b) 20
c) 36
d) None of these
115. The set of values of x satisfying $2 \leq|x-3|<4$ is
a) $(-1,1] \cup[5,7)$
b) $-4 \leq x \leq 2$
c) $-1<x<7$ or $x \geq 5$
d) $x<7$ or $x \geq 5$
116. Let $x=\left[\frac{a+2 b}{a+b}\right]$ and $y=\frac{a}{b}$, where a and b are positive integers. If $y^{2}>2$, then
a) $x^{2} \leq 2$
b) $x^{2}<2$
c) $x^{2}>2$
d) $x^{2} \geq 2$
117. The least value of $5^{\sin x-1}+5^{-\sin x-1}$ is
a) 10
b) $\frac{5}{2}$
c) $\frac{2}{5}$
d) $\frac{1}{5}$
118. If $x^{2}+2 x+n>10$ for all real numbers x, then which of the following conditions is true?
a) $n<11$
b) $n=10$
c) $n=11$
d) $n>11$
119. The minimum value of $P=b c x+c a y+a b z$, when $x y z=a b c$, is
a) $3 a b c$
b) $6 a b c$
c) $a b c$
d) $4 a b c$
120. If $a_{i}>0$ for $i=1,2, \ldots, n$ and $a_{1} a_{2} \ldots a_{n}=1$, then minimum value of $\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots\left(1+a_{n}\right)$ is
a) $2^{n / 2}$
b) 2^{n}
c) $2^{2 n}$
d) 1
121. If a, b, c are positive real numbers such that $a+b+c=2$ then, which one of the following is true?
a) $(2-a)(2-b)(2-c) \geq 8 a b c$
b) $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq 2$
c) $(2-a)(2-b)(2-c)<8 a b c$
d) $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2$
122. If x, y, z are positive real numbers such that $x^{2}+y^{2}+z^{2}=27$, then $x^{3}+y^{3}+z^{3}$ has
a) Minimum value 81
b) Maximum value 81
c) Minimum value 27
d) Maximum value 27
123. If x satisfies the inequations $2 x-7<11,3 x+4<-5$, then x lies in the interval
a) $(-\infty, 3)$
b) $(-\infty, 2)$
c) $(-\infty,-3)$
d) $(-\infty, \infty)$
124. $x^{8}-x^{5}-\frac{1}{x}+\frac{1}{x^{4}}>0$, is satisfied for
a) Only positive values of x
b) Only negative values of x
c) All real numbers except zero
d) Only for $x>1$
125. The solution set of the inequation $5^{(1 / 4)\left(\log _{5} x\right)^{2}} \geq 5 x^{(1 / 5)\left(\log _{5} x\right)}$, is
a) $\left(0,5^{-2 \sqrt{5}}\right]$
b) $\left[5^{2 \sqrt{5}}, \infty\right)$
c) $\left(0,5^{-2 \sqrt{5}}\right] \cup\left[5^{2 \sqrt{5}}, \infty\right)$
d) $(0, \infty)$
126. If $a+b=8$, then $a b$ is greater when
a) $a=4, b=4$
b) $a=3, b=5$
c) $a=6, b=2$
d) None of these
127. The number of solutions of the equation $\cos x+|x|=0$ is
a) 0
b) 1
c) 2
d) 3
128. If $0<x<\frac{\pi}{2}$, then the minimum value of $\frac{\cos ^{3} x}{\sin x}+\frac{\sin ^{3} x}{\cos x}$ is
a) $\sqrt{3}$
b) $\frac{1}{2}$
c) $\frac{1}{3}$
d) 1
129. If $x^{2}+4 a x+2>0$ for all values of x, then a lies in the interval
a) $(-2,4)$
b) $(1,2)$
c) $(-\sqrt{2}, \sqrt{2})$
d) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
130. If a and b are two different positive real numbers then which of the following statement is true?
a) $2 \sqrt{a b}>a+b$
b) $2 \sqrt{a b}<a+b$
c) $2 \sqrt{a b}=a+b$
d) None of these
131. The number of negative integral solutions of $x^{2} \cdot 2^{x+1}+2^{|x-3|+2}=x^{2} \cdot 2^{|x-3|+4}+2^{x-1}$, is
a) None
b) Only one
c) Two
d) Four
132. The number of ordered 4-tuples (x, y, z, w) where $x, y, z, w \in[0,10]$ which satisfy the inequality $2^{\sin ^{2} x} \times 3^{\cos ^{2} y} \times 4^{\sin ^{2} z} \times 5^{\cos ^{2} w} \geq 120$, is
a) 81
b) 144
c) 0
d) Infinite
133. If $a>1, b>1, c>1, d>1$, then the minimum value of $\log _{b} a+\log _{a} b+\log _{d} c+\log _{c} d$ is
a) 1
b) 2
c) 3
d) 4
134. The solution set of inequation $\log _{1 / 3}\left(2^{x+2}-4^{x}\right) \geq-2$, is
a) $(-\infty, 2-\sqrt{13})$
b) $(-\infty, 2+\sqrt{13})$
c) $(-\infty, 2)$
d) None of these
135. If $\frac{2 x}{2 x^{2}+5 x+2}>\frac{1}{x+1}$, then
a) $-2>x>-1$
b) $-2 \geq x \geq-1$
c) $-2<x<-1$
d) $-2<x \leq-1$
136. The number of real solutions of $\log _{2} x+|x|=0$, is
a) 0
b) 1
c) 3
d) None of these
137. If $x y z=a b c$, then the least value of $b c x+c a y+a b z$ is
a) $3 a b c$
b) $6 a b c$
c) $a b c$
d) $4 a b c$
138. The number of solution(s) of the inequation $\sqrt{3 x^{2}+6 x+7}+\sqrt{5 x^{2}+10 x+14} \leq 4-2 x-x^{2}$, is
a) 1
b) 2
c) 4
d) Infinitely many
139. A stick of length 20 units is to be divided into n parts so that the product of the lengths of the parts is greater than unity. The maximum possible value of n is
a) 18
b) 19
c) 20
d) 21
140. If a, b, c are different positive real number such that $(b+c-a),(c+a-b)$ and $(a+b-c)$ are positive, then $(a+b-c)(b+c-a)(c+a-b)-a b c$ is
a) Positive
b) Negative
c) Non-positive
d) Non-negative
141. $\log _{16} x^{3}+\left(\log _{2} \sqrt{x}\right)^{2}<1$ iff x lies in
a) $(2,16)$
b) $(0,1 / 16)$
c) $(1 / 16,2)$
d) None of these
142. If $\log _{\cos x} \sin x>2$ and $0<x<3 \pi$, then $\sin x$ lies in the interval
a) $\left[\frac{\sqrt{5}-1}{2}, 1\right]$
b) $\left[0, \frac{\sqrt{5}-1}{2}\right]$
c) $\left[0, \frac{1}{2}\right]$
d) None of these
143. If $f(x)=x^{2}+2 b x+2 c^{2}$ and $g(x)=-x^{2}-2 c x+b^{2}$ such that $\min f(x)>\max g(x)$, then the relation between b and c, is
a) No real value of b and c b)
b) $0<c<b \sqrt{2}$
c) $|c|<|b| \sqrt{2}$
d) $|c|>|b| \sqrt{2}$
144. If the sum of the greatest integer less than or equal to x and the least integer greater than or equal to x is 5 , then the solution set for x is
a) $(2,3)$
b) $(0,5)$
c) $[5,6)$
d) None of these
145. The total number of roots of the equation $\left|x-x^{2}-1\right|=\left|2 x-3-x^{2}\right|$ is
a) 1
b) 2
c) 0
d) Infinitely many
146. For $\frac{|x-1|}{x+2}<1, x$ lies in the interval
a) $(-\infty,-2) \cup\left(-\frac{1}{2}, \infty\right)$
b) $(-\infty, 1) \cup[2,3]$
c) $(-\infty,-4)$
d) $\left[-\frac{1}{2}, 1\right]$
147. Number of integer solutions of $\frac{x+2}{x^{2}+1}>\frac{1}{2}$ is
a) 0
b) 1
c) 2
d) 3
148. Solution of the inequality $\tan \left(x+\frac{\pi}{3}\right) \geq 1$ is
a) $\left(n \pi+\frac{\pi}{12}, n \pi+\frac{\pi}{6}\right)$
b) $\left(n \pi-\frac{\pi}{12}, n \pi+\frac{\pi}{6}\right)$
c) $\left(n \pi-\frac{\pi}{6}, n \pi-\frac{\pi}{12}\right)$
d) None of these
149. If $0<a<1$, then the solution set of the inequation $\frac{1+\left(\log _{a} x\right)^{2}}{1+\left(\log _{a} x\right)}>1$, is
a) $(1,1 / a)$
b) $(0, a)$
c) $(1,1 / a) \cup(0, a)$
d) None of these
150. Let $x=\frac{a+2 b}{a+b}$ and $y=\frac{a}{b}$, wherer a and b are positive integers. If $y^{2}>2$, then
a) $x^{2} \leq 2$
b) $x^{2}<2$
c) $x^{2}>2$
d) $x^{2} \geq 2$
151. The minimum value of $|\sin x+\cos x+\tan x+\sec x+\operatorname{cosec} x+\cot x|$ is
a) $2 \sqrt{2}-1$
b) $2 \sqrt{2}+1$
c) $\sqrt{2}-1$
d) $\sqrt{2}+1$
152. If for $x \in R, \frac{1}{3}<\frac{x^{2}-2 x+4}{x^{2}+2 x+4}<3$, then $\frac{9 \cdot 3^{2 x}-6 \cdot 3^{x}+4}{9 \cdot 3^{2 x}+6 \cdot 3^{x}+4}$ lies between
a) $\frac{1}{2}$ and 2
b) $\frac{1}{3}$ and 3
c) 0 and 2
d) None of these
153. The minimum value of $4^{x}+4^{1-x}, x \in R$, is
a) 1
b) 2
c) 4
d) None of these
154. The number of real solutions of the equation $3^{-|x|}-2^{|x|}=0$, is
a) 0
b) 1
c) 2
d) None of these
155. The number of real roots of the equation $1+3^{x / 2}=2^{x}$, is
a) 0
b) 1
c) 2
d) None of these
156. If n is even and $n \geq 4, x_{1}, x_{2}, \ldots, x_{n} \geq 0$ and $x_{1}+x_{2}+\cdots+x_{n}=1$, then $P=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n}-x_{n}$ cannot exceed
a) $\frac{1}{n+1}$
b) $\frac{1}{n+2}$
c) $\frac{1}{2 n}$
d) None of these
157. The number of real solutions of the equation $e^{-x}=x$, is
a) 0
b) 1
c) 2
d) None of these
158. The solution set contained in R of the inequation $3^{x}+3^{1-x}-4<0$, is
a) $(1,3)$
b) $(0,1)$
c) $(1,2)$
d) $(0,2)$
159. The solution of the inequation $2 x^{2}+3 x-9 \leq 0$ is given by
a) $\frac{3}{2} \leq x \leq 3$
b) $-3 \leq x \leq \frac{3}{2}$
c) $-3 \leq x \leq 3$
d) $\frac{3}{2} \leq x \leq 2$
160. If $0<\theta<\pi$, then the minimum value of $\sin ^{5} \theta+\operatorname{cosec}^{5} \theta$ is
a) 0
b) 1
c) 2
d) None of these

: ANSWER KEY :

1)	a	2)	c	3)	d	4)	b	85)	c	86)	c	87)	d	88)
5)	c	6)	a	7)	c	8)	c	89)	c	90)	b	91)	b	92)
9)	a	10)	c	11)	b	12)	c	93)	c	94)	a	95)	d	96)
13)	b	14)	b	15)	d	16)	c	97)	c	98)	d	99)	d	100)
17)	b	18)	c	19)	b	20)	d	101)	d	102)	c	103)	b	104)
21)	b	22)	a	23)	a	24)	b	105)	b	106)	a	107)	b	108)
25)	b	26)	c	27)	a	28)	b	109)	c	110)	c	111)	d	112)
29)	a	30)	b	31)	a	32)	b	113)	a	114)	b	115)	a	116)
33)	a	34)	d	35)	c	36)	b	117)	c	118)	d	119)	a	120)
37)	a	38)	a	39)	b	40)	b	121)	a	122)	a	123)	c	124)
41)	c	42)	c	43)	a	44)	a	125)	c	126)	a	127)	a	128)
45)	a	46)	c	47)	b	48)	a	129)	d	130)	b	131)	a	132)
49)	a	50)	c	51)	a	52)	d	133)	d	134)	c	135)	c	136)
53)	d	54)	d	55)	c	56)	d	137)	a	138)	a	139)	b	140)
57)	a	58)	d	59)	c	60)	a	141)	c	142)	b	143)	d	144)
61)	b	62)	c	63)	c	64)	c	145)	a	146)	a	147)	d	148)
65)	b	66)	d	67)	a	68)	a	149)	c	150)	b	151)	a	152)
69)	c	70)	d	71)	a	72)	a	153)	c	154)	b	155)	b	156)
73)	c	74)	a	75)	c	76)	c	157)	b	158)	b	159)	b	160)
77)	d	78)	d	79)	a	80)	d							
81)	b	82)	a	83)	b	84)	a							

: HINTS AND SOLUTIONS :

1 (a)
We have,
$3^{x}+2^{2 x} \geq 5^{x}$
$\Rightarrow\left(\frac{3}{5}\right)^{x}+\left(\frac{4}{5}\right)^{x} \geq 1$
$\Rightarrow\left(\frac{3}{5}\right)^{x}+\left(\frac{4}{5}\right)^{x} \geq\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}$
$\Rightarrow x \leq 2 \Rightarrow x$
$\in(-\infty, 2] \quad\left[\begin{array}{c}\text { If } a^{x}+b^{x} \geq 1 \text { and } a^{2}+b^{2}=1, \\ \text { then } x \in(-\infty, 2)\end{array}\right]$
2 (c)
$x^{2}-3|x|+2<0$
$\Rightarrow|x|^{2}-3|x|+2<0$
$\Rightarrow(|x|-1)(|x|-2)<0$
$\Rightarrow 1<|x|<2$
$\Rightarrow-2<x<-1$ or $1<x<2$
$\therefore x \in(-2,-1) \cup(1,2)$
3 (d)
We have, $2^{x}+2^{|x|} \geq 2 \sqrt{2}$
If $x \geq 0$,then $2^{x}+2^{x} \geq 2 \sqrt{2}$
$\Rightarrow 2^{x} \geq \sqrt{2} \Rightarrow x \geq \frac{1}{2}$
and if $x<0$, then $2^{x}+2^{-x} \geq 2 \sqrt{2}$
$\Rightarrow t+\frac{1}{t} \geq 2 \sqrt{2} \quad\left(\right.$ where $\left.t=2^{x}\right)$
$\Rightarrow t^{2}-2 \sqrt{2} t+1 \geq 0$
$\Rightarrow(t-(\sqrt{2}-1))(t-(\sqrt{2}+1)) \geq 0$
$\Rightarrow t \leq \sqrt{2}-1$ or $t \geq \sqrt{2}+1$
But $t>0$
$\Rightarrow 0<2^{x} \leq \sqrt{2}-1$
Or $2^{x} \geq \sqrt{2}+1$
$\Rightarrow-\infty<x \leq \log _{2}(\sqrt{2}-1)$
Or $x \geq \log _{2}(\sqrt{2}+1)$

Which is not possible, because $x>0$
$\therefore x \in\left(-\infty, \log _{2}(\sqrt{2}-1)\right) \cup\left[\frac{1}{2}, \infty\right)$
4 (b)
Using G. M. \leq A. M., we have
$\sin x_{i} \cos x_{i+1} \leq \frac{\sin ^{2} x_{i}+\cos ^{2} x_{i+1}}{2}$ for i

$$
=1,2,3, \ldots, n
$$

where $x_{n+1}=x_{1}$
$\therefore \sin x_{1} \cos x_{2}+\sin x_{2} \cos x_{3}+\cdots$

$$
+\sin x_{n} \cos x_{n+1}
$$

$\leq \frac{\sin ^{2} x_{1}+\cos ^{2} x_{2}}{2}+\frac{\sin ^{2} x_{2}+\cos ^{2} x_{3}}{2}+\cdots$

$$
+\frac{\sin ^{2} x_{n}+\cos ^{2} x_{1}}{2}
$$

$\Rightarrow \sin x_{1} \cos x_{2}+\sin x_{2} \cos x_{3}+\cdots$

$$
+\sin x_{n} \cos x_{1} \leq \frac{n}{2}
$$

5 (c)
We have, $x^{2}+(a+b) x+a b<0$
$\Rightarrow(x+a)(x+b)<0$
$\Rightarrow-b<x<-a$
6
(a)

Given, $\log _{10}\left(x^{3}+y^{3}\right)-\log _{10}\left(x^{2}+y^{2}-x y\right) \leq 2$
$\Rightarrow \log _{10} \frac{\left(x^{3}+y^{3}\right)}{x^{2}+y^{2}-x y} \leq 2$
$\Rightarrow \log _{10}(x+y) \leq 2 \Rightarrow x+y \leq 100$
Using AM $\geq \mathrm{GM}$
$\therefore \frac{x+y}{2} \geq \sqrt{x y}$
$\Rightarrow \sqrt{x y} \leq \frac{x+y}{2} \leq \frac{100}{2}$
$\Rightarrow \quad x y \leq 2500$
(c)

By trial,
$3^{x / 2}+2^{x} \leq 25$ for $x=1,2,3,4$
But $3^{x / 2}+2^{x}>25$ for $x>4$
Hence, solution set for $3^{x / 2}+2^{x}>25$ is $(4, \infty)$

8 (c)
Since,
$\mathrm{AM} \geq \mathrm{GM}$
$\Rightarrow \frac{a+b}{2} \geq \sqrt{a b}$
$\Rightarrow \frac{a+b}{2} \geq \sqrt{4} \quad(\because a b=4$, given $)$
$\Rightarrow a+b \geq 4$
$9 \quad$ (a)
When $x>0, P_{n}(x)>0$ and so $P_{n}(x)=0$ can have no positive real roots
Now,
$P_{n}(x)=1+2 x+3 x^{2}+\cdots+(n+1) x^{n}$
$\Rightarrow x P_{n}(x)=x+2 x^{2}+3 x^{3}+\cdots+n x^{n}$

$$
+(n+1) x^{n+1}
$$

$\Rightarrow(1-x) P_{n}(x)$

$$
\begin{aligned}
& =1+x+x^{2}+\cdots+x^{n} \\
& -(n+1) x^{n+1}
\end{aligned}
$$

$\Rightarrow P_{n}(x)=\frac{1-(n+2) x^{n+1}+(n+1) x^{n+2}}{(1-x)^{2}}$
For negative values of $x, P_{n}(x)$ will vanish whenever
$f(x)=1-(n+2) x^{n+1}+(n+1) x^{n+2}=0$
Now,
$f(-x)=1-(n+2)(-1)^{n+1} x^{n+1}+(n+$
$1-1 n+2 x n+2 \ldots$ (i)
If n is even, there is no change of sign in this expression and so there is no negative real root of $f(x)$
10 (c)
$(x-1)\left(x^{2}-5 x+7\right)<(x-1)$
$\Rightarrow(x-1)\left(x^{2}-5 x+6\right)<0$
$\Rightarrow(x-1)(x-2)(x-3)<0$
$\therefore x \in(-\infty, 1) \cup(2,3)$
11 (b)
Using A. M. \geq G. M., we have
$\frac{x}{n} \geq\left\{\log _{2^{2}} 2 \times \log _{2^{3}} 2^{2}\right.$
$\left.\times \log _{2^{4}} 2^{3} \times \ldots \times \log _{2^{n+1}} 2^{n}\right\}^{1 / n}$
$\Rightarrow x \geq n\left(\log _{2^{n+1}} 2\right)^{1 / n}$
$\Rightarrow x \geq n\left(\frac{1}{n+1} \log _{2} 2\right)^{1 / n} \Rightarrow x \geq n\left(\frac{1}{n+1}\right)^{1 / n}$
12 (c)
We have,
$\frac{1}{2}\left|a+\frac{11}{a}\right| \geq \sqrt{11}$, equality holding iff $a= \pm \sqrt{11}$
$\therefore|x| \geq \sqrt{11},|y| \geq \sqrt{11},|z| \geq \sqrt{11},|t| \geq \sqrt{11}$
Let $x \geq 0$, then $x \geq \sqrt{11}, y \geq \sqrt{11}, z \geq$
$\sqrt{11}$ and $t \geq \sqrt{11}$
Now, $y-\sqrt{11}=\frac{1}{2}\left(\frac{11}{x}+x\right)-\sqrt{11}$
$\Rightarrow y-\sqrt{11}=\frac{(x-\sqrt{11})^{2}}{2 x}=\left(\frac{x-\sqrt{11}}{2 x}\right)(x-\sqrt{11})$
$\Rightarrow y-\sqrt{11}=\frac{1}{2}\left(1-\frac{\sqrt{11}}{x}\right)(x-\sqrt{11})$

$$
<(x-\sqrt{11})
$$

$\Rightarrow y<x$ i. e. $x>y$
Similarly, we have
$y>z, z>t$ and $t>x \Rightarrow y>x$
$\therefore x=y=z=t=\sqrt{11}$ is the only solution for $x>0$
We observe that (x, y, z, t) is a solution iff ($-x,-y,-z,-t$) is a solution
Thus, $x=y=z=t=-\sqrt{11}$ is the only other solution
13 (b)
Given, $3+\frac{3}{3^{x}}-4<0 \Rightarrow 3^{2 x}+3-4.3^{x}<0$
$\Rightarrow\left(3^{x}-1\right)\left(3^{x}-3\right)<0$
$1<3^{x}<3 \Rightarrow 0<x<1$
\therefore The solution set is $(0,1)$
14 (b)
We have, $|a| \leq 1$ and $a+b=1$
i. e. $-1 \leq a \leq 1$ and $b=1-a$
$\Rightarrow-1 \leq a \leq 1$ and $0 \leq b \leq 2 \Rightarrow-2 \leq a b \leq 2$

Now,
$a b \leq\left(\frac{a+b}{2}\right)^{2} \Rightarrow a b \leq \frac{1}{4}$
From (i) and (ii), we have
$-2 \leq a b \leq \frac{1}{4} \Rightarrow a b \in\left[-\frac{2,1}{4}\right]$
(d)

Given, $\sqrt{(3 x+1)^{2}}<(2-x)$
$\Rightarrow(3 x+1)<2-x$
$\Rightarrow 3 x+1<2-x \Rightarrow x<\frac{1}{4}$
16 (c)
Given, inequality can be rewritten as $\left(\frac{5}{13}\right)^{x}+$
$\left(\frac{12}{13}\right)^{x} \geq 1$
$\therefore \cos ^{x} \alpha+\sin ^{x} \alpha \geq 1$
Where, $\cos \alpha=\frac{5}{13}$

If $x=2$, the above equality holds
If $x<2$ both $\cos \alpha$ and $\sin \alpha$ increases in positive fraction

Hence, above inequality holds for $x \in(-\infty, 2]$
17 (b)
Let $f(x)=\log _{\mathrm{e}} \frac{x-2}{x-3}$
$f(x)$ is defined either $(x-2)>0,(x-3)>0$ or $(x-2)<0$
$(x-3)<0$ or $x \neq 2,3$
$\Rightarrow f(x)$ is defined either $x>3$ or $x<2$ or $x \neq 2,3$ $i e, x \in(-\infty, 2) \cup(3, \infty)$
18 (c)
$3 \leq 3 t-18 \leq 18$
$\Rightarrow 21 \leq 3 t \leq 36$
$\Rightarrow 7 \leq t \leq 12$
$\Rightarrow 8 \leq t+1 \leq 13$
19 (b)
$\because f(-1)<1 \Rightarrow a-b+c<1$
and $f(1)>-1, f(3)<-4$, then
$a+b+c>-1$
$9 a+3 b+c<-4$
From Eq. (ii),
$-a-b-c<1$

On solving Eqs. (i), (iii) and (iv), we get $a<-\frac{1}{8} \Rightarrow a$ is negative

20 (d)
Given, $\frac{2 x+3}{2 x-9}<0$
$\Rightarrow 2 x+3<0$ and $2 x-9>0$
Or $2 x+3>0$ and $2 x-9<0$ and $x \neq \frac{9}{2}$
$\Rightarrow \quad x<-\frac{3}{2}$ and $x>\frac{9}{2}$ or $x>-\frac{3}{2}$ and $x<\frac{9}{2}$ and
$x \neq \frac{9}{2}$
$\Rightarrow x \in\left(-\frac{3}{2}, \frac{9}{2}\right)$
21 (b)
We have,
$\sqrt{x^{2}+\sqrt{x^{2}+11}}-\sqrt{x^{2}-\sqrt{x^{2}+11}}=4$
Putting $x^{2}+11=t^{2}$, we get
$\sqrt{t^{2}+t-11}+\sqrt{t^{2}-t-11}=4$
But, $\left(t^{2}+t-11\right)-\left(t^{2}-t-11\right)=2 t \ldots(i i)$
Dividing (ii) by (i), we get
$\sqrt{t^{2}+t-11}-\sqrt{t^{2}-t-11}=\frac{t}{2}$
Adding (i) and (iii), we get
$2 \sqrt{t^{2}+t-11}=4+\frac{t}{2}$
$\Rightarrow t^{2}+t-11=4+t+\frac{t^{2}}{16}$
$\Rightarrow t^{2}=16 \Rightarrow t=4 \quad\left[\because t=\sqrt{x^{2}+11}>0\right]$
$\therefore x= \pm \sqrt{5}$
22 (a)
We have,
$\log _{x-3}\left(x^{3}-3 x^{2}-4 x+8\right)=3 \ldots$ (i)
$\Rightarrow x^{3}-3 x^{2}-4 x+8=(x-3)^{3}$
$\Rightarrow 6 x^{2}-31 x+35=0 \Rightarrow(3 x-5)(2 x-7)=0$

$$
\Rightarrow x=\frac{5}{3}, \frac{7}{2}
$$

The equation (i) exists, if
$x-3>0, x-3 \neq 1$ and $x^{3}-3 x^{2}-4 x+8>0$
Clearly, $x=\frac{7}{2}$ satisfies these conditions
(a)

Curves $y=\log _{0.5} x$ and $y=|x|$ intersect at one point in first quadrant. So, the equation
$\log _{0.5} x=|x|$ has one real root
(b)
$\cos ^{x} \alpha+\sin ^{x} \alpha \geq 1$
Equality holds when $x=2$
If $x<2$, both $\cos \alpha$ and $\sin \alpha$ are increasing
$\therefore \cos ^{x} \alpha+\sin ^{x} \alpha>1$, if $x<2$
If $x>2$, then $\cos ^{x} \alpha+\sin ^{x} \alpha<1$
$\therefore x \in(-\infty, 2]$
27 (a)
We have,
$2 \cos \left(e^{x}\right)=3^{x}+3^{-x}$
We observe that $2 \cos \left(e^{x}\right)<2$ and $3^{x}+3^{-x} \geq 2$.
So, the given equation has no solution
28 (b)
Graphs of $y=1-x$ and $y=[\cos x]$ cut each
other at point $(0,1)$ and at a point whose x -
coordinate lie in $(\pi / 2, \pi)$. So, the given equation has two real roots
30 (b)
If $a^{2}+b^{2}=1$, then $a^{x}+b^{x} \geq 1$ is true for all $x \in(-\infty, 2]$
$\therefore(\sin \alpha)^{x}+(\cos \alpha)^{x} \geq 1 \Rightarrow x \in(-\infty, 2]$
31 (a)
If $f(x)>0$,then $D<0$
$4 a^{2}-4(10-3 a)<0$
$\Rightarrow(a+5)(a-2)<0$
$\Rightarrow-5<a<2$

32 (b)
The given inequality is
$49.4-\left(\frac{27-x}{10}\right)<47.4-\left(\frac{27-9 x}{10}\right)$
$\Rightarrow 49.4-47.4<\left(\frac{27-x}{10}\right)-\left(\frac{27-9 x}{10}\right)$
$\Rightarrow 2<\frac{8 x}{10} \Rightarrow x>\frac{5}{2}$
\therefore Least integer is 3
33 (a)
Since, AM \geq GM
$\therefore \frac{a^{2}+b^{2}}{2} \geq \sqrt{a^{2} b^{2}}=a b, \frac{b^{2}+c^{2}}{2} \geq b c$
and $\frac{c^{2}+a^{2}}{2} \geq c a$
On adding, we get
$a^{2}+b^{2}+c^{2} \geq a b+b c+c a$
\Rightarrow (a) holds
Next, $\frac{b+c}{2} \geq \sqrt{b c}, \frac{c+a}{2} \geq \sqrt{c a}, \frac{a+b}{2} \geq \sqrt{a b}$
$\Rightarrow\left(\frac{b+c}{2}\right)\left(\frac{c+a}{2}\right)\left(\frac{a+b}{2}\right) \geq \sqrt{a^{2} b^{2} c^{2}}$
$\Rightarrow(b+c)(c+a)(a+b) \geq 8 a b c$
\Rightarrow (b) does not hold
Again, $\frac{1}{3}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \geq\left(\frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{a}\right)^{1 / 3}$
$\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq 3$
\Rightarrow (c)does not hold
Again, $\frac{a^{3}+b^{3}+c^{3}}{3} \geq\left(a^{3} b^{3} c^{3}\right)^{1 / 3}$
$\Rightarrow a^{3}+b^{3}+c^{3} \geq 3 a b c$
$\Rightarrow(d)$ does not hold
34 (d)
If s is the semi-perimeter of a cyclic quadrilateral of sides a, b, c and d units in length, then its area A is given by
$A=\sqrt{(s-a)(s-b)(s-c)(s-d)}$
Using A. M. \geq G. M., we have
$\frac{s-a+s-b+s-c+s-d}{4}$

$$
\geq\{(s-a)(s-b)(s-c)(s
$$

$$
-d)\}^{1 / 4}
$$

$\Rightarrow \frac{4 s-2 s}{4} \geq \sqrt{A} \Rightarrow 2 s \geq 4 \sqrt{A}$
Hence, the least perimeter is $4 \sqrt{A}$
(c)

Two curves
$y=[\sin x+\cos x]$
and, $y=3+[-\sin x]+[-\cos x]$

$$
=1+[\sin x]+[\cos x]
$$

intersect at infinitely many points in $[0,2 \pi]$
So, the given equation has infinitely many
solutions
Two curves $y=3^{|x|}$ and $y=|2-|x||$ intersect at two points only. So, the equation $3^{|x|}=|2-|x||$ has only two real roots
(a)

Since, angle C is obtuse, angle A and B are actute
$\therefore \tan C<0$ and $\tan A>0, \tan B>0$
Now, $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
$\Rightarrow \tan (\pi-C)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
$\Rightarrow-\tan C=\frac{\tan A+\tan B}{1-\tan A \tan B}$
$\Rightarrow 1-\tan A \tan B>0 \quad(\because$ Numerator are positive)
$\Rightarrow \tan A \tan B<1$
38 (a)
We have,
$x+y+z=4$ and $x^{2}+y^{2}+z^{2}=6$
$\Rightarrow y+z=4-x$ and $y^{2}+z^{2}=6-x^{2}$
$\therefore y z=\frac{1}{2}\left\{(y+z)^{2}-\left(y^{2}+z^{2}\right)\right\}$

$$
=\frac{1}{2}\left\{(4-x)^{2}-(6-x)^{2}\right\}
$$

$\Rightarrow y z=x^{2}-4 x+5$
Thus, y and z are roots of the equation
$t^{2}-(4-x) t+x^{2}-4 x+5=0$
As y, z are real
$\therefore(4-x)^{2}-4\left(x^{2}-4 x+5\right) \geq 0$
$\Rightarrow 3 x^{2}-8 x+4 \leq 0 \Rightarrow \frac{2}{3} \leq x \leq 2$
40 (b)
We have,
$3^{x / 2}+2^{x}>25 \Rightarrow 3^{x / 2}+4^{x / 2}>25$
Clearly, $x \in(4, \infty)$ satisfies the above inequation
41 (c)
We have,
$27^{1 / x}+12^{1 / x}=2 \times 8^{1 / x}$
$\Rightarrow 3^{3 / x}+2^{2 / x} \times 3^{1 / x}=2 \times 2^{3 / x}$
$\Rightarrow\left(\frac{3}{2}\right)^{3 / x}+\left(\frac{3}{2}\right)^{1 / x}=2$
$\Rightarrow y^{3}+y-2=0$, where $y=\left(\frac{3}{2}\right)^{1 / x}$
$\Rightarrow(y-1)\left(y^{2}+y-2\right)=0$
$\Rightarrow y=1, y=-2 \Rightarrow\left(\frac{3}{2}\right)^{1 / x}=1 \Rightarrow\left(\frac{3}{2}\right)^{1 / x}=\left(\frac{3}{2}\right)^{0}$
But, there is no value of x for which $\frac{1}{x}$ is zero
Hence, the given equation has no solution
42 (c)
Let x_{1}, x_{2}, x_{3} and x_{4} be four positive roots of the equation $x^{4}-8 x^{3}+b x^{2}+c x+16=0$. Then,
$x_{1}+x_{2}+x_{3}+x_{4}=8$ and $x_{1} x_{2} x_{3} x_{4}=16$
$\Rightarrow \frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}=2$ and $\left(x_{1} x_{2} x_{3} x_{4}\right)^{1 / 4}=2$
\Rightarrow A. M. and G. M. of x_{1}, x_{2}, x_{3} and x_{4} are equal
$\Rightarrow x_{1}=x_{2}=x_{3}=x_{4}$
$\Rightarrow x_{1}=x_{2}=x_{3}=x_{4}=2$
$\therefore x^{4}-8 x^{3}+b x^{2}+c x+16=(x-2)^{4}$
$\Rightarrow b={ }^{4} C_{2} \times 2^{2}=24$ and $c=-{ }^{4} C_{3} \times 2^{3}=-32$
43 (a)
We have, $3<|x|<6 \Rightarrow-6<x<-3$ or $3<x<$ 6
$\therefore x \in(-6,-3) \cup(3,6)$
44 (a)
We have,
$a^{4}+b^{4}-a^{3} b-a b^{3}=a^{3}(a-b)-b^{3}(a-b)$

$$
=\left(a^{3}-b^{3}\right)(a-b)
$$

$\Rightarrow a^{4}+b^{4}-a^{3} b-a b^{3}$
$>0 \quad\left[\begin{array}{c}\because a^{3}-b^{3} \text { and } \\ a-b \text { are of the same sign }\end{array}\right]$
$\Rightarrow a^{4}+b^{4}>a^{3} b+a b^{3}$
$45 \quad$ (a)
The given inequation is
$4^{-x+0.5}-7 \cdot 2^{-x}<4, x \in R$
Let $2^{-x}=t$
$\therefore 2 t^{2}-7 t<4$
$\Rightarrow 2 t^{2}-7 t-4<0$
$\Rightarrow(2 t+1)(t-4)<0$
$\Rightarrow-\frac{1}{2}<t<4$
$\Rightarrow 0<t<4 \quad\left(\because t=2^{-x}>0\right)$
$\Rightarrow 0<2^{-x}<2^{2}$
As 2^{x} is an increasing function $-x<2$ or $x>-2$
$\therefore x=(-2, \infty)$
46
(c)

Given condition are $\frac{a}{b}>1$ and $\frac{a}{c}<0$

1. $a>0$ iff $c<0$ and also $b>0$
2. $a<0$ iff $c>0$ and also $b<0$
(b)

Proceeding as in the solution of Q. no. 10, we have $(a+b)(b+c)(c+a) \geq 8 a b c$
$\Rightarrow(p-a)(p-b)(p-c) \geq 8 a b c \quad[\because a+b+c$ $=p]$
(a)

We have,
$\frac{\left(1+e^{x^{2}}\right) \sqrt{1+x^{2}}}{\sqrt{1+x^{4}}-x^{2}}=1+\cos x$
$\Rightarrow\left(1+e^{x^{2}}\right) \sqrt{1+x^{2}}\left(\sqrt{1+x^{4}}+x^{2}\right)=1+\cos x$
Clearly, LHS ≥ 2 and RHS ≤ 2. So, the equation exists when each side is equal to 2 . This is for $x=0$ only. Hence, it has only one solution
50 (c)
Let $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}$. Then,
$f(b)-f(a)=1$
$\Rightarrow c_{1}(b-a)+c_{2}\left(b^{2}-a^{2}\right)+\cdots+c_{n}\left(b^{n}-a^{n}\right)$ $=1$
$\Rightarrow(b-a)\left\{c_{1}+c_{2}(b+a)+\cdots\right.$
$\left.+c_{n}\left(b^{n-1}+b^{n-2} a+\cdots+a^{n-1}\right)\right\}$ $=1$
$\Rightarrow(b-a) I=1$, where I is an integer $\Rightarrow b-a= \pm 1$
(d)

Using, AM > GM
$\therefore \frac{a+b+c}{3}>\sqrt[3]{a b c}$
$\Rightarrow a+b+c>3$
$[\therefore a b c=1$ given $]$
Also, GM > HM
$\sqrt[3]{a b c}>\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}$
$\Rightarrow \quad(1)^{1 / 3}>\frac{3 a b c}{b c+a c+a b}$
$\Rightarrow a b+b c+a c>3$
\therefore From Eqs. (i) and (ii), we get
$a+b+c+a b+b c+a c>6$
53 (d)
We have,
$\sin \left(2^{x}\right) \cos \left(2^{x}\right)=\frac{2^{x}+2^{-x}}{2}$
$\Rightarrow \sin \left(2^{x+1}\right)=2^{x}+2^{-x}$
Clearly, RHS ≥ 2 and LHS lies between -1 and 1 .
So, the given equation has no solution
54 (d)
$x^{12}-x^{9}+x^{4}-x+1>0$
When $0<x<1 ; x^{4}>x^{9}$ and $1>x$
$\therefore x^{12}+\left(x^{4}-x^{9}\right)+(1-x)>0$
\Rightarrow Positive for all x

Again, when $x>1$:
$x^{12}-x^{9}+x^{4}-x+1>0$
\therefore Largest interval $(0, \infty)$, also the above inequality is true for $x<0$

56 (d)
$\because \mathrm{AM} \geq \mathrm{GM}$
$\Rightarrow \frac{\frac{\cos ^{3} x}{\sin x}+\frac{\sin ^{3} x}{\cos x}}{2} \geq\left(\frac{\cos ^{3} x}{\sin x} \cdot \frac{\sin ^{3} x}{\cos x}\right)^{1 / 2}$
$\Rightarrow \frac{\cos ^{3} x}{\sin x}+\frac{\sin ^{3} x}{\cos x} \geq 2 \sin x \cos x \geq 1$
Hence, option (d) is correct
57 (a)
We have,
$\sqrt{3 x^{2}+6 x+7}=\sqrt{3(x+1)^{2}+4} \geq 2($
$=2$ when $x=-1$)
$\sqrt{5 x^{2}+10 x+14}=\sqrt{5(x+1)^{2}+9} \geq 3($

$$
=3 \text { when } x=-1)
$$

and,

$$
\begin{aligned}
4-2 x-x^{2}= & 5-(x+1)^{2} \leq 5(=5 \text { when } x \\
& =-1)
\end{aligned}
$$

Thus, LHS ≥ 5 and RHS ≤ 5
So, the given equation is valid when each sides is equal to 5 .
This happens only when $x=-1$
Hence, the given equation has only one solution
58 (d)
$||x|-1|<|1-x|$
Case I $x \geq 0$
\therefore Inequality (i) becomes $|x-1|<x-1$ or $\mid 1-$ $x \mid<1-x$ which is not satisfied by any x, because
$|a| \geq \forall a \in R$
Case II - $1 \leq x<0$
\therefore Inequality (i) becomes $|-1-x|<1-$
x or $|x+1|<1-x$
Or $x+1<1-x$ or $x<0$

Thus, inequality (i) is satisfied for $-1 \leq x<0$
Case III $x<-1$
Inequality (i) becomes $|-1-x|<1-x \Rightarrow$ $|1+x|<1-x$
$\Rightarrow-(1+x)<1-x \Rightarrow-2<0$, which is true
So, solution set is $(-\infty, 0)$
59 (c)
Minimum value of $f(x)$
Is attained at $x=3$
\therefore Minimum value of $f(x)=7$
60 (a)
$\frac{x+11}{x-3}>0$
$\Rightarrow(x-3)(x+11)>0$
$\Rightarrow \quad x<-11, x>3$
$\Rightarrow \quad x \in(-\infty,-1) \cup(3, \infty)$
61 (b)
$2 x-1=|x+7|=\left\{\begin{array}{c}x+7, \text { if } x \geq-7 \\ -(x+7), \text { if } x<-7\end{array}\right.$
\therefore If $x \geq-7,2 x-1=x+7 \Rightarrow x=8$
If $x<-7,2 x-1=-(x+7)$
$\Rightarrow 3 x=-6$
$\Rightarrow x=-2$, which is not possible
62 (c)
Let $f(x)=x^{4}-4 x-1$. Then, the number of changes of signs in $f(x)$ is 1 . Therefore, $f(x)$ can have at most one positive real root We have,
$f(2)>0$ and $f(0)<1$
Therefore, $f(x)$ has one positive real root between 1 and 2
63 (c)
$\log _{\sin \left(\frac{\pi}{3}\right)}\left(x^{2}-3 x+2\right) \geq 2$
$\Rightarrow x^{2}-3 x+2 \leq \frac{3}{4}\left(\right.$ If $\left.\log _{a} b=c \Rightarrow b=c^{a}\right)$
$\Rightarrow x^{2}-3 x+\frac{5}{4} \leq 0$
$\Rightarrow 4 x^{2}-12 x+5 \leq 0$
$\Rightarrow(2 x-5)(2 x-1) \leq 0$
$\Rightarrow \frac{1}{2} \leq x \leq \frac{5}{2}$
Also, $x^{2}-3 x+2>0$
$\Rightarrow(x-1)(x-2)>0$
$\Rightarrow x<1$ or $x>2$
From relation (i) and (ii), we get
$x \in\left[\frac{1}{2}, 1\right) \cup\left(2, \frac{5}{2}\right]$
64 (c)
Since, $(a-b)^{2}+(b-c)^{2}+(c-a)^{2} \geq 0$
$\Rightarrow 2\left(a^{2}+b^{2}+c^{2}\right) \geq 2(a b+b c+c a)$
$\Rightarrow \frac{a^{2}+b^{2}+c^{2}}{(a b+b c+c a)} \geq 1$
$\Rightarrow \frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}+2 \geq 3$
Hence, option (c) is correct
65 (b)
Given, $(x-1)\left(x^{2}-5 x+7\right)<(x-1)$
$\Rightarrow(x-1)\left(x^{2}-5 x+6\right)<0$
$\Rightarrow(x-1)(x-2)(x-3)<0$
$\Rightarrow \quad x \in(-\infty, 1) \cup(2,3)$

66 (d)
Given inequalities are
$x^{2}-3 x-10<0$ and $10 x-x^{2}-16>0$
$\Rightarrow(x+2)(x-5)<0$ and $(x-2)(x-8)<0$
$\Rightarrow \quad x \in(-2,5)$ and $x \in(2,8)$
$\Rightarrow x \in(2,5)$
67 (a)
$\log _{1 / 3}\left(x^{2}+x+1\right)<-1=\log _{1 / 3}\left(\frac{1}{3}\right)^{-1}$
$\Rightarrow x^{2}+x+1>\left(\frac{1}{3}\right)^{-1}$
$\left(\because\right.$ where $0<a<1$, then $\log _{a} x<\log _{a} y \Rightarrow x>$ y)
$\Rightarrow x^{2}+x-2>0 \Rightarrow(x+2)(x-1)>0$
$\Rightarrow x \in(-\infty,-2) \cup(1, \infty)$
68 (a)
Let (α, β) be a solution of the system for some a. Then, $(-\alpha, \beta)$ is also a solution. So, the system will have unique solution only if
$\alpha=-\alpha \Rightarrow \alpha=0$
Putting $x=\alpha=0$ and $y=\beta$ in $x^{2}+y^{2}=1$, we get $\beta= \pm 1$
Putting $x=\alpha=0$ and $y=\beta$ in $2^{|x|}+|x|=y+$ $x^{2}+a$, we get
$\beta+a=1 \Rightarrow a=1-\beta$
$\therefore a=0$ when $\beta=1$ and $a=2$ when $\beta=-1$
CASEI When $a=0$
In this case, given equations become
$2^{|x|}+|x|=y+x^{2}$ and $x^{2}+y^{2}=1$
Now, $x^{2}+y^{2}=1 \Rightarrow|x| \leq 1$ and $|y| \leq 2$
$\therefore 2^{|x|}+|x|=y+x^{2}$ and $1+x^{2} \geq y+x^{2}$
$\Rightarrow 2^{|x|}+|x| \leq 1+x^{2}$
$\Rightarrow 2^{|x|}+|x| \leq 1+|x| \quad\left[\because x^{2} \leq|x|\right.$ when $\left.|x|<1\right]$
$\Rightarrow x=0$
Putting $x=0$ in $2^{|x|}+|x|=y+x^{2}$, we get $y=1$
Thus, for $a=0$, the system has unique solution $(0,1)$
CASE II When $a=2$
In this case, the system of equation is
$2^{|x|}+|x|=y+x^{2}+2$ and $x^{2}+y^{2}=1$
Clearly, $(0,-1),(1,0)$ and $(-1,0)$ satisfy these equations.
So, the system does not have unique solution

69 (c)
We have,
$\log _{1 / 3}\left(x^{2}+x+1\right)+1>0$
$\Rightarrow \log _{1 / 3}\left(x^{2}+x+1\right)>-1$
$\Rightarrow x^{2}+x+1<\left(\frac{1}{3}\right)^{-1}$
$\Rightarrow x^{2}+x+1<3$
$\Rightarrow x^{2}+x-2<0 \Rightarrow(x+2)(x-1)<0 \Rightarrow x$

$$
\in(-2,1)
$$

70 (d)

We have,

$x^{\left(\log _{10} x\right)^{2}-3\left(\log _{10} x\right)+1}>10^{3}$
$\Rightarrow\left(\log _{10} x\right)^{2}-3\left(\log _{10} x\right)+1>\log _{x} 10^{3}$
$\Rightarrow\left(\log _{10} x\right)^{2}-3\left(\log _{10} x\right)+1>\frac{3}{\log _{10} x}$
$\Rightarrow \frac{\left(\log _{10} x\right)^{3}-3\left(\log _{10} x\right)^{2}+\left(\log _{10} x\right)-3}{\log _{10} x}>0$
$\Rightarrow \frac{\left\{\left(\log _{10} x\right)^{2}+1\right\}\left(\log _{10} x-3\right)}{\log _{10} x}>0$
$\Rightarrow \frac{\left(\log _{10} x-3\right)}{\left(\log _{10} x-0\right)}>0$
$\Rightarrow \log _{10} x<0$ or, $\log _{10} x>3$
$\Rightarrow x<1$ or, $x>10^{3}$
$\Rightarrow x \in(0,1) \cup\left(10^{3}, \infty\right)\left[\because \log _{10} x\right.$ is defined for x >0]
71 (a)
Given, $\frac{3-|x|}{4-|x|} \geq 0$
$\Rightarrow 3-|x| \leq 0$ and $4-|x|<0$
Or $3-|x| \geq 0$ and $4-|x|>0$
$\Rightarrow|x| \geq 3$ and $|x|>4$
Or $|x| \leq 3$ and $|x|<4$
$\Rightarrow \quad|x|>4$ or $|x| \leq 3$
$\Rightarrow(-\infty,-4) \cup[-3,3] \cup(4, \infty)$
$72 \quad$ (a)
Now, $3\left(a^{2}+b^{2}+c^{2}\right)-(a+b+c)^{2}$
$=2\left(a^{2}+b^{2}+c^{2}-b c-c a-a b\right)$
$=(b-c)^{2}+(c-a)^{2}+(a-b)^{2} \geq 0$
$\Rightarrow 3\left(a^{2}+b^{2}+c^{2}\right) \geq(a+b+c)^{2}>9$
$\Rightarrow a^{2}+b^{2}+c^{2}>3 \Rightarrow$ (a)holds
Now, $a^{6}+b^{6} \geq 12 a^{2} b^{2}-64$
If $a^{6}+b^{6}+64 \geq 12 a^{2} b^{2}$
ie, $a^{6}+b^{6}+2^{6} \geq 3 \cdot 2^{2} \cdot a^{2} b^{2}$
$i e$, if $\frac{a^{6}+b^{6}+2^{6}}{3} \geq\left(2^{6} a^{6} b^{6}\right)^{1 / 3} \quad(\because \mathrm{AM} \geq \mathrm{GM})$
\Rightarrow (b)does not hold
Again, since AM $\geq \mathrm{HM}$
$\therefore \frac{a+b+c}{3} \geq \frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}$
$\Rightarrow \frac{\alpha}{3} \geq \frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}$
$\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{9}{\alpha}$
\Rightarrow (c) does not hold
73 (c)
Using A. M. \geq G. M., we have
$\frac{a_{1}+a_{2}+a_{3}}{3} \geq\left(a_{1} a_{2} a_{3}\right)^{1 / 3}$ and $\frac{1}{3}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right)$

$$
\geq\left(\frac{1}{a_{1} a_{2} a_{3}}\right)^{1 / 3}
$$

$\Rightarrow\left(a_{1}+a_{2}+a_{3}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right) \geq 9$
74 (a)
We have,
$x-\frac{1}{x}=B$ and $x^{2}+\frac{1}{x^{2}}=A$
$\therefore\left(x-\frac{1}{x}\right)^{2}=B^{2}$
$\Rightarrow A-2=B^{2} \Rightarrow A=B^{2}+2 \Rightarrow \frac{A}{B}=B+\frac{2}{B}$
But, A. M. \geq G. M.
$\Rightarrow B+\frac{2}{B} \geq 2 \sqrt{B \times \frac{2}{B}} \Rightarrow B+\frac{2}{B} \geq 2 \sqrt{2} \Rightarrow \frac{A}{B} \geq 2 \sqrt{2}$

Hence, the minimum value of $\frac{A}{B}$ is $2 \sqrt{2}$
75 (c)
As discussed in the above problem, if n is odd, there is one change of sign in (i). Therefore, $f(x)$ can have at most one negative real root. In this case, we have
$f(-1)=-2 n-2<0, f(0)=1>0$
So, the negative real root lies between -1 and 0
76 (c)
Given, ${ }^{n+1} \mathrm{C}_{n-2}{ }^{-n+1} C_{n-1} \leq 50$
$\Rightarrow \frac{(n-1)!}{3!(n-2)!}-\frac{(n+1)!}{2!(n-1)!} \leq 50$
$\Rightarrow \frac{(n+1)!}{3!}\left[\frac{1}{(n-2)!}-\frac{3}{(n-1)!}\right] \leq 50$
$\Rightarrow(n+1)!\left(\frac{n-1-3}{(n-1)!}\right) \leq 300$
$\Rightarrow(n+1) n(n-4) \leq 300$
For $n=8$, it satisfy to the above inequality
But $n=1$ it does not satisfy the above inequality
77 (d)
We have,
$f(\theta)=\sec ^{2} \theta+\cos ^{2} \theta=(\sec \theta-\cos \theta)^{2}+2 \geq 2$ $\Rightarrow f(\theta) \in[2, \infty)$
(d)

Let $a_{1}, a_{2}, \ldots, a_{n}$ be n positive integers such that
$a_{1} a_{2} \ldots a_{n}=n^{n}$
Since, $A M \geq G M$
$\therefore \frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \geq\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n}$
$\Rightarrow \frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \geq n$
$\Rightarrow a_{1}+a_{2}+\ldots+a_{n} \geq n^{2}$
79 (a)
$\log _{2}\left(x^{2}-3 x+18\right)<4$
$\Rightarrow x^{2}-3 x+18<16 \quad\left(\operatorname{Iflog}_{a} b<c \Rightarrow b<a^{c}\right)$
$\Rightarrow x^{2}-3 x+2<0$
$\Rightarrow(x-1)(x-2)<0$
$\Rightarrow x \in(1,2)$
80 (d)
We have,
$[x]^{2}=[x+6]$
$\Rightarrow[x]^{2}=[x]+6$
$\Rightarrow[x]^{2}-[x]-6=0$
$\Rightarrow([x]-3)([x]+2)=0$
$\Rightarrow[x]=3,[x]=-2$
$\Rightarrow x \in[3,4)$ or $x \in[-2,-1) \Rightarrow x$

$$
\in[-2,-1) \cup[3,4)
$$

81 (b)
Using $\mathrm{AM} \geq \mathrm{GM}$
$\frac{\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}}{3} \geq \sqrt[3]{\frac{a b c}{(a+b)(b+c)(c+a)}} \ldots$ (i)
Again, using $\mathrm{AM} \geq \mathrm{GM}$
$\frac{a+b}{2} \geq \sqrt{a b}, \frac{b+c}{2} \geq \sqrt{b c}, \frac{c+a}{2} \geq \sqrt{c a}$
$\Rightarrow(a+b)(b+c)(c+a) \geq 8 a b c$
$\Rightarrow \sqrt[3]{\frac{a b c}{(a+b)(b+c)(c+a)}} \leq \frac{1}{2}$
\therefore From Eq. (i)
$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2}$
82 (a)
Two curves $y=e^{|x|}$ and $y=|x|$ does not intersect. So, the equation $e^{|x|}-|x|=0$ has no solution
83 (b)
$|p-q|=\left\{\begin{array}{l}p-q, p \geq q \\ q-p, p<q\end{array}\right.$
$\therefore \min (p, q)=\left\{\begin{array}{l}p, p<q \\ q, q<p\end{array}\right.$
\Rightarrow RHS $=\frac{1}{2}(p+q-|p-q|)$, if $p>q$
$\Rightarrow \frac{1}{2}(p+q-p+q)=q$
and LHS $\min (p, q)=q$
$\therefore \min (p, q)=\frac{1}{2}(p+q-|p-q|)$
84 (a)
The given equation is
$1+\left|e^{x}-1\right|=e^{x}\left(e^{x}-2\right)$
$\Rightarrow\left|e^{x}-1\right|+2=\left(e^{x}-1\right)^{2}$
$\Rightarrow\left|e^{x}-1\right|^{2}-\left(e^{x}-1\right)-2=0$
$\Rightarrow\left(\left|e^{x}-1\right|-2\right)\left(\left|e^{x}-1\right|+1\right)=0$
$\Rightarrow\left|e^{x}-1\right|-2=0 \quad\left[\because\left|e^{x}-1\right|+1 \neq 0\right]$
$\Rightarrow e^{x}-1= \pm 2 \Rightarrow e^{x}=3,-1$
$\Rightarrow e^{x}=3 \Rightarrow x=\log _{e} 3 \quad\left[\because e^{x}>0\right.$ for all $\left.x\right]$
85 (c)
We have,
$\log _{\sin \frac{2 \pi}{3}}\left(x^{2}-3 x+2\right) \geq 2$
$\Rightarrow\left(x^{2}-3 x+2\right) \leq\left(\frac{\sqrt{3}}{2}\right)^{2}$ and $x^{2}-3 x+2>0$
$\Rightarrow 4 x^{2}-12 x+5 \leq 0$ and $x^{2}-3 x+2>0$
$\Rightarrow(2 x-1)(2 x-5) \leq 0$ and $(x-1)(x-2)>0$
$\Rightarrow \frac{1}{2} \leq x \leq \frac{5}{2}$ and $x<1$ or $x>2$
$\Rightarrow x \in[1 / 2,1) \cup(2,5 / 2]$
86 (c)
We have, $x^{2}+6 x-27>0$
$\Rightarrow(x+9)(x-3)>0 \Rightarrow x<-9$ or $x>3$
$\Rightarrow x \in(-\infty,-9) \cup(3, \infty)$
And $x^{2}-3 x-4<0$
$\Rightarrow(x-4)(x+1)<0$
$\Rightarrow-1<x<4$

From relations (i) and (ii), we get
$3<x<4$
87 (d)
We have,
$\frac{1}{2}\{(x+y)+|x-y|\}=x$
$\Rightarrow \frac{1}{2}\{(x+y)+|x-y|\}=\frac{1}{2}\{(x+y)+(x-y)\}$
$\Rightarrow|x-y|=x-y \Rightarrow x \geq y$
88 (c)
Given, $\frac{4 x-1}{3 x+1}-1 \geq 0$
$\Rightarrow \quad \frac{x-2}{3 x+1} \geq 0$
$\Rightarrow \quad x-2 \geq 0$ and $3 x+1>0$
Or $x-2 \leq 0$ and $3 x+1<0$
$\Rightarrow x \geq 2$ and $x<-\frac{1}{3}$
Or $x \leq 2$ and $x>-\frac{1}{3}$
$\Rightarrow x \in\left(-\infty,-\frac{1}{3}\right) \cup[2, \infty)$
89 (c)
Given inequality holds only, if
$\sin ^{2} \alpha_{i}=1$ or $\alpha_{i}= \pm \frac{\pi}{2}, \frac{3 \pi}{2} ; \quad(i=2,3, \ldots, n)$
\Rightarrow Number of solutions $=3 \times 3 \times 3 \times \ldots \times(n-$
1)times
$=3^{n-1}$
(b)

We have, $e^{x}=x(x+1), x<0$

Consider the curves $y=e^{x}$ and $y=x(x+1)$ for $x<0$. Graphs of these two curve intersect at
exactly one point. So, the equation $e^{x}=x(x+1)$ has exactly one real root
91 (b)
Draw graphs of $y=1-x+[x]$ and $y=\frac{1}{x}-\frac{1}{[x]}$
These two curves intersect it infinitely many points
92 (d)
We have, $2^{x}+2^{|x|} \geq 2 \sqrt{2}$
Following cases arise:
CASE I When $x \geq 0$
In this case, we have

$$
\begin{aligned}
2^{x}+2^{x} \geq 2 \sqrt{2} & \Rightarrow 2^{x} \geq 2^{1 / 2} \Rightarrow x \geq \frac{1}{2} \Rightarrow x \\
& \in\left[\frac{1}{2}, \infty\right)
\end{aligned}
$$

CASE II When $x<0$
In this case, we have
$2^{x}+2^{-x} \geq 2 \sqrt{2}$
$\Rightarrow\left(2^{x}\right)^{2}-2 \sqrt{2} \times 2^{x}+1 \geq 0$
$\Rightarrow\left(2^{x}-\sqrt{2}\right)^{2}-1 \geq 0$
$\Rightarrow\left(2^{x}-\sqrt{2}-1\right)\left(2^{x}-\sqrt{2}+1\right) \geq 0$
$\Rightarrow 2^{x} \leq \sqrt{2}-1$ or, $2^{x} \geq \sqrt{2}+1$
$\Rightarrow x \leq \log _{2}(\sqrt{2}-1)$ or, $x \geq \log _{2}(\sqrt{2}+1)$
$\Rightarrow x \leq \log _{2}(\sqrt{2}-1) \Rightarrow x \in\left(-\infty, \log _{2}(\sqrt{2}-1)\right)$
Hence, $x \in\left(-\infty, \log _{2}(\sqrt{2}-1)\right) \cup[1 / 2, \infty)$
93 (c)
$\sin ^{4} \frac{x}{3}+\cos ^{4} \frac{x}{3}>\frac{1}{2} \Rightarrow 1-\frac{1}{2} \sin ^{2} \frac{2 x}{3}>\frac{1}{2}$
$\Rightarrow \sin ^{2} \frac{2 x}{3}<1 \Rightarrow \frac{2 x}{3} \in\left(R-(2 n+1) \frac{\pi}{2}\right)$
$\Rightarrow x \in R-\left(\frac{3 n \pi}{2}+\frac{3 \pi}{4}\right) ; n \in I$
94 (a)
We have,
$\left(\log _{5} x\right)^{2}+\left(\log _{5} x\right)<2$
$\Rightarrow\left(\log _{5} x\right)^{2}+\left(\log _{5} x\right)-2<0$
$\Rightarrow\left(\log _{5} x+2\right)\left(\log _{5} x-1\right)<0$
$\Rightarrow-2<\log _{5} x<1 \Rightarrow 5^{-1}<x<5 \Rightarrow x \in\left(\frac{1}{25}, 5\right)$

96
(d)
$\because \sin x+2 \sqrt{2} \cos x \geq(\sqrt{3})^{2}$
$\Rightarrow \sin x+2 \sqrt{2} \cos x \geq 3$
$\Rightarrow \sin \left(a+\cos ^{-1} \frac{1}{3}\right) \geq 1$
$\Rightarrow \sin \left(x+\cos ^{-1} \frac{1}{3}\right)=1 \quad(\because \sin x$ cannot be greater than 1)
$\therefore x=n \pi+(-1)^{n} \frac{\pi}{2}-\cos ^{-1} \frac{1}{3}$
For solution in the interval $[-2 \pi, 2 \pi], n=$ $0,1,-1,-2$

97 (c)

$$
\begin{aligned}
& x^{\left(\log _{10} x\right)^{2}-3 \log _{10} x+1}>1000=10^{3} \\
& \Rightarrow\left[\left(\log _{10} x\right)^{2}-3 \log _{10} x\right. \\
& +1] \log _{10} x>3 \log _{10} 10=3 \\
& \Rightarrow\left(\log _{10} x\right)^{3}-3\left(\log _{10} x\right)^{2}+\log _{10} x>3 \\
& \Rightarrow\left(\log _{10} x\right)\left(\log _{10} x-3\right)+1\left(\log _{10} x-3\right)>0 \\
& \Rightarrow\left(\log _{10} x-3\right)\left(\log _{10} x+1\right)>0 \\
& \Rightarrow \log _{10} x-3>0 \Rightarrow \log _{10} x>3 \\
& \Rightarrow x>10^{3}=1000 \\
& \Rightarrow x \in(1000, \infty)
\end{aligned}
$$

98 (d)
$x^{12}-x^{9}+x^{4}-x+1>0$, three cases arise
Case I When $x \leq 0$
$x^{12}>0,-x^{9}>0, x^{4}>0,-x>0$
$\Rightarrow x^{12}-x^{9}+x^{4}+x+1>0, \forall x \leq 0$
Case II When $0<x \leq 1$
$x^{9}<x^{4}, x<1 \Rightarrow-x^{9}+x^{4}>0$ and $1-x>0$
$\therefore x^{12}-x^{9}+x^{4}-x+1>0, \forall 0<x \leq 1$
Case III When $x>1$
$x^{12}>x^{9}, x^{4}>x$
$\Rightarrow x^{12}-x^{9}+x^{4}-x+1>0, \forall x>1$
\therefore From Eqs. (i), (ii) and (iii) the above equation hold for $x \in R$
100 (a)
We have,

$$
\begin{aligned}
& \sqrt{x+1}-\sqrt{x-1}=\sqrt{4 x-1} \\
& \Rightarrow x+1+x-1-2 \sqrt{x^{2}-1}=4 x-1 \\
& \Rightarrow-2 \sqrt{x^{2}-1}=2 x-1
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow 4\left(x^{2}-1\right)= & 4 x^{2}-4 x+1 \Rightarrow 4 x-5=0 \Rightarrow x \\
& =\frac{5}{4}
\end{aligned}
$$

This value of x does not satisfy the given equation.
So, the equation has no solution
101 (d)
The LHS of the given inequality is meaningful for $x>0$ and $x \neq 1$
Now,
$\log _{3} x-\log _{x} 27<2$
$\Rightarrow \log _{3} x-3 \log _{x} 3<2$
$\Rightarrow \log _{3} x-\frac{3}{\log _{3} x}<2$
$\Rightarrow \frac{\left(\log _{3} x\right)^{2}-3-2\left(\log _{3} x\right)}{\log _{3} x}<0$
$\Rightarrow \frac{\left(\log _{3} x-3\right)\left(\log _{3} x+1\right)}{\left(\log _{3} x-0\right)}<0$
$\Rightarrow \log _{3} x<-1$ or, $0<\log _{3} x<3$
$\Rightarrow x<3^{-1}$ or, $3^{0}<x<3^{3} \Rightarrow x<\frac{1}{3}$ or, $1<x$
<27
Also, $x>0$ and $x \neq 1$
$\therefore x \in(0,1 / 3) \cup(1,27)$
102 (c)
Given inequation is $x^{2}-2 x+5 \leq 0$
\therefore Roots are
$x=\frac{-2 \pm \sqrt{4-20}}{2}=\frac{2 \pm 4 i}{2}$
\therefore Roots are imaginary, therefore no real solutions exist
103 (b)
We have,
$\frac{2^{\sin ^{2} x}+2^{\cos ^{2} x}}{2} \geq \sqrt{2^{\sin ^{2} x} \times 2^{\cos ^{2} x}}$ [Using A.M. \geq G. M.]
$\Rightarrow 2^{\sin ^{2} x}+2^{\cos ^{2} x} \geq 2 \sqrt{2} \Rightarrow 2^{\sin ^{2} x}+2^{\cos ^{2} x} \geq 2$
104 (a)
Given that, $a^{2}+b^{2}+c^{2}=1$
Now, $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+$ $c a) \geq 0$
$\Rightarrow 2(a b+b c+c a) \geq-1$ [from Eq.(i)]
$\Rightarrow a b+b c+c a \geq-\frac{1}{2}$
Also, $a^{2}+b^{2}+c^{2}-a b-b c-c a$
$=\frac{1}{2}\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\} \geq 0$
$\Rightarrow a b+b c+c a \leq a^{2}+b^{2}+c^{2}$
$\Rightarrow a b+b c+c a \leq 1 \quad[$ from Eq.(i) $]$...(iii)
From relation (ii) and (iii), we get
$-\frac{1}{2} \leq a b+b c+c a \leq 1$
105 (b)
We have,
$\sqrt{4 x+9}-\sqrt{11 x+1}=\sqrt{7 x+4}$
$\Rightarrow \sqrt{4 x+9}-\sqrt{7 x+4}=\sqrt{11 x+1}$
$\Rightarrow 4 x+9+7 x+4-2 \sqrt{(4 x+9)(7 x+4)}$

$$
=11 x+1
$$

$\Rightarrow-2 \sqrt{(4 x+9)(7 x+4)}=-12$
$\Rightarrow(4 x+9)(7 x+4)=36$
$\Rightarrow 28 x^{2}+79 x=0 \Rightarrow x=0,-\frac{79}{28}$
Clearly, only $x=0$ satisfies the given equation
106 (a)
Since, $-3<x+\frac{2}{x}<3$
$\Rightarrow-3<\frac{\left(x^{2}+2\right) x}{x^{2}}<3$
$\Rightarrow-3 x^{2}<\left(x^{2}+2\right) x<3 x^{2} \quad(x \neq 0)$
$\Rightarrow x\left(x^{2}+3 x+2\right)>0$
And $x\left(x^{2}-3 x+2\right)<0 \quad(x \neq 0)$
$\Rightarrow x(x+1)(x+2)>0$
And $x(x-1)(x-2)<0$
$\Rightarrow x \in(-2,-1) \cup(0, \infty)$
And $x \in(-\infty, 0) \cup(1,2) \quad$...(ii)
From relations (i) and (ii), we get
$x \in(-2,-1) \cup(1,2)$
107 (b)
We have a, b, c are sides of a triangle
$\therefore b+c-a>0, c+a-b>0, a+b-c>0$
Let $x=b+c-a, y=c+a-b, z=a+b-c$
$\Rightarrow y+z=2 a, z+x=2 b, x+y=2 c$
Now, $\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}$
$=\frac{y+z}{2 x}+\frac{z+x}{2 y}+\frac{x+y}{2 z}$
$=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}+\frac{y}{x}+\frac{z}{y}\right)$
$\geq \frac{6}{2}\left(\frac{y}{x} \cdot \frac{x}{y} \cdot \frac{y}{z} \cdot \frac{z}{y} \cdot \frac{z}{x} \cdot \frac{x}{z}\right) \quad(\because \mathrm{AM} \geq \mathrm{GM})$
$=3$
108 (b)
Let d_{1}, d_{2} be the lengths of diagonals and θ be the angle between them. Then,
Area $=\frac{1}{2} d_{1} d_{2} \sin \theta \Rightarrow a^{2}$

$$
=\frac{1}{2} d_{1} d_{2} \sin \theta \Rightarrow d_{1} d_{2}=\frac{2 a^{2}}{\sin \theta}
$$

Using A. M. \geq G. M., we have
$\frac{d_{1}+d_{2}}{2} \geq \sqrt{d_{1} d_{2}} \Rightarrow d_{1}+d_{2} \geq 2 \sqrt{\frac{2 a^{2}}{\sin \theta}} \geq 2 \sqrt{2} a$
109 (c)
We have, $|2 x-3|<|x+5|$
$\Rightarrow|2 x-3|-|x+5|<0$
$\Rightarrow\left\{\begin{array}{c}3-2 x+x+5<0, x \leq-5 \\ 3-2 x-x-5<0,-5<x \leq \frac{3}{2} \\ 2 x-3-x-5<0, x>\frac{3}{2}\end{array}\right.$
$\Rightarrow\left\{\begin{array}{c}x>8, x \leq-5 \\ x>-\frac{2}{3},-5<x \leq \frac{3}{2} \\ x<8, x>\frac{3}{2}\end{array}\right.$
$\Rightarrow x \in\left(-\frac{2}{3}, \frac{3}{2}\right] \cup\left(\frac{3}{2}, 8\right)$
$\Rightarrow x \in\left(-\frac{2}{3}, 8\right)$
110 (c)
We have,
$\left|a_{n}\right|<2$ i. e. $-2<a_{n}<2$
$\therefore \max \left(1+a_{1} x+a_{2} x^{2}+\cdots a_{n} x^{n}\right)$
$=1+2|x|+2|x|^{2}+\cdots+2|x|^{n}$
$=1+2|x|\left\{\frac{1-|x|^{n}}{1-|x|}\right\}$
$=1+2 \cdot \frac{1}{3}\left\{\frac{1-1 / 3^{n}}{1-1 / 3}\right\}>0$
and,
$\min \left(1+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)$
$=1-2|x|-2|x|^{2} \ldots-2|x|^{n}$
$=-2\left[1+|x|+|x|^{2}+\cdots+|x|^{n}\right]+3$
$=-2\left\{\frac{1-|x|^{n}}{1-|x|}\right\}+3$
$=-2\left\{\frac{1-1 / 3^{n}}{1-1 / 3}\right\}+3>0$
Thus, the curve $y=1+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ does not meet x-axis for $|x|<1 / 3$ and $\left|a_{n}\right|<2$ Hence, the equation has no real roots
112 (c)
Since, $|r|<1 \Rightarrow-1<r<1$
Also, $a=5(1-r)$
$\Rightarrow 0<a<10 \quad\left[\begin{array}{ll}\because \text { at } r=-1, & a=0 \\ \text { and at } r=1, & a=0\end{array}\right]$
113 (a)
Consider the curves $y=e^{x-8}$ and $y=17-2 x$.
These two curves intersect at $(8,1)$ only. Hence, the equation $e^{x-8}+2 x-17=0$ has exactly one root which is equal to 8
114 (b)
Let $x^{2}+18 x+30=y$. Then,
$x^{2}+18 x+30=2 \sqrt{x^{2}+18 x+45}$
$\Rightarrow y=2 \sqrt{y+15}$
$\Rightarrow y^{2}-4 y-60=0 \Rightarrow(y-10)(y+6)=0 \Rightarrow y$

$$
=10
$$

$\therefore x^{2}+18 x+30=y \Rightarrow x^{2}+18 x+20=0$
\therefore Product of roots $=20$
115 (a)
Since, $2 \leq|x-3|<4$
$\Rightarrow 2 \leq x-3<4$
Or $2 \leq-(x-3)<4$
$\Rightarrow 5 \leq x<7$ or $-1 \leq-x<1$
$\Rightarrow 5 \leq x<7$ or $-1<x \leq 1$
$\therefore \quad x \in(-1,1] \cup[5,7)$
116 (b)
Given that, $x=\left[\frac{a+2 b}{a+b}\right]$ and $y=\frac{a}{b}$
$\therefore \quad x=\frac{a+2 b}{a+b}=\frac{\frac{a}{b}+2}{1+\frac{a}{b}}=1+\frac{1}{\frac{a}{b}+1}$
$\Rightarrow \quad x=1+\frac{1}{y+1} \quad\left[\because y=\frac{a}{b}\right.$ and y^{2}

$$
>2 \text { (given)] }
$$

Which shows $x^{2}<2 \quad\left[\because \frac{1}{y+1}<\right.$ as $\left.y>1\right]$
117 (c)
Using A. M. \geq G. M., we have
$5^{\sin x-1}+5^{-\sin x-1} \geq 2 \sqrt{5^{\sin x-1} \times 5^{-\sin n-1}}$
$\Rightarrow 5^{\sin x-1}+5^{-\sin x-1} \geq \frac{2}{5}$

As we know, if $a x+b x+c>0$, then $a>0$ and $D<0$
$\therefore \quad(2)^{2}-4(n-10)<0 \Rightarrow n>11$
119 (a)
Since, $A M \geq G M$
$\Rightarrow \frac{b c x+c a y+a b z}{3} \geq\left(a^{2} b^{2} c^{2} \cdot x y z\right)^{1 / 3}$
$\Rightarrow b c x+c a y+a b z \geq 3 a b c \quad(\because x y z=a b c)$

120 (b)

Since, $\frac{\left(1+a_{1}\right)}{2} \geq \sqrt{1 \cdot a_{1}}=\sqrt{a_{1}}$

$$
\begin{gathered}
\frac{\left(1+a_{2}\right)}{2} \geq \sqrt{1 \cdot a_{2}}=\sqrt{a_{2}} \\
\vdots
\end{gathered}
$$

$$
\frac{\left(1+a_{n}\right)}{2} \geq \sqrt{1 \cdot a_{n}}=\sqrt{a_{n}}
$$

$$
\Rightarrow \frac{1}{2^{n}}\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots\left(1+a_{n}\right) \geq \sqrt{a_{1} a_{2} \ldots a_{n}}
$$

$$
=1
$$

$$
\Rightarrow\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots\left(1+a_{n}\right) \geq 2^{n}
$$

121 (a)
Using A. M. \geq G. M., we have
$a+b \geq 2 \sqrt{a b}, b+c \geq 2 \sqrt{b c}$ and $c+a \geq 2 \sqrt{c a}$
$\Rightarrow(a+b)(b+c)(c+a) \geq 8 a b c$
$\Rightarrow(2-a)(2-b)(2-c)$

$$
\geq 8 a b c\left[\begin{array}{c}
\because a+b+c=2 \\
\therefore b+c=2-a \text { etc }
\end{array}\right]
$$

122 (a)
We have, $x^{2}+y^{2}+z^{2}=27$
Now,
$\frac{\left(x^{2}\right)^{3 / 2}+\left(y^{2}\right)^{3 / 2}+\left(z^{2}\right)^{3 / 2}}{3} \geq\left(\frac{x^{2}+y^{2}+z^{2}}{z}\right)^{3 / 2}$
$\Rightarrow x^{3}+y^{3}+z^{3} \geq 81$
123 (c)
Given, $2 x-7<11,3 x+4<-5$
$\Rightarrow \quad x<9, x<-3$
$\Rightarrow \quad x<-3$
$\therefore x$ lies in the interval $(-\infty,-3)$
124 (c)
Let

$$
\begin{gathered}
f(x)=x^{8}-x^{5}-\frac{1}{x}+\frac{1}{x^{4}}=\frac{x^{12}-x^{9}-x^{3}+1}{x^{4}} \\
=\frac{\left(x^{9}-1\right)\left(x^{3}-1\right)}{x^{4}}
\end{gathered}
$$

Clearly, $f(x) \geq 0$ for all $x<0$ and it is not defined
for $x=0$
For $0<x<1$, we have
$x^{9}-1<0$ and $x^{3}-1<0 \Rightarrow f(x)>0$
For $x \geq 1$, we have $x^{9}-1 \geq 0$ and $x^{3}-1 \geq 0 \Rightarrow$ $f(x) \geq 0$
Hence, $f(x) \geq 0$ for all $x \neq 0$
125 (c)
We have,
$5^{(1 / 4)\left(\log _{5} x\right)^{2}} \geq 5 x^{(1 / 5)\left(\log _{5} x\right)}$
$\frac{1}{4}\left(\log _{5} x\right)^{2} \log _{5} 5 \geq \log _{5} 5+\frac{1}{5}\left(\log _{5} x\right) \log _{5} x$
$\Rightarrow\left(\log _{5} x\right)^{2} \geq 20$
$\Rightarrow\left(\log _{5} x\right)^{2}-(2 \sqrt{5})^{2} \geq 0$
$\Rightarrow \log _{5} x \leq-2 \sqrt{5}$ or, $\log _{5} x \geq 2 \sqrt{5}$
$\Rightarrow x \leq 5^{-2 \sqrt{5}}$ or, $x \geq 5^{2 \sqrt{5}}$
$\Rightarrow x$
$\in\left(0,5^{-2 \sqrt{5}}\right]$
$\cup\left[5^{2 \sqrt{5}}, \infty\right) \quad\left[\log _{5} x\right.$ is defined for $\left.x>0\right]$
126 (a)
We know that,
$\mathrm{AM} \geq \mathrm{GM}$
$\Rightarrow \frac{a+b}{2} \geq \sqrt{a b}$
$\Rightarrow 4 \geq \sqrt{a b} \quad(\because a+b=8$ given $)$
$\Rightarrow a b \leq 16$
Equality holds when number are equal. So, $a b$ is equal to 16 when $a=4, b=4$

127 (a)
Curves $y=\cos x$ and $y=-|x|$ do not intersect.
So, the equation $\cos x+|x|=0$ has no real root
128 (d)
Using A. M. \geq G. M., we have
$\frac{\cos ^{3} x}{\sin x}+\frac{\sin ^{3} x}{\cos x} \geq 2 \sqrt{\frac{\cos ^{3} x}{\sin x} \times \frac{\sin ^{3} x}{\cos x}}$ for all x

$$
\in(0, \pi / 2)
$$

$\Rightarrow \frac{\cos ^{3} x}{\sin x}+\frac{\sin ^{3} x}{\cos x} \geq \sin 2 x$ for all $x \in(0, \pi / 2)$
$\Rightarrow \frac{\cos ^{3} x}{\sin x}+\frac{\sin ^{3} x}{\cos x} \geq 1$ for all $x \in(0, \pi / 2)$

129 (d)
$x^{2}+4 a x+20$
$\therefore(4 a)^{2}-4 \times 2<0$
$[\because$ if $f(x)>0$, then]
$\Rightarrow 16 a^{2}<8 \Rightarrow a^{2}<\frac{1}{2}$
$\Rightarrow-\frac{1}{\sqrt{2}}<a<\frac{1}{\sqrt{2}}$
130 (b)
Using A. M. \geq G. M., we have
$\frac{a+b}{2}>\sqrt{a b} \quad[\because a \neq b]$
$\Rightarrow a+b>2 \sqrt{a b}$
131 (a)
We have,
$x^{2} \cdot 2^{x+1}+2^{|x-3|+2}=x^{2} \cdot 2^{|x-3|+4}+2^{x-1}$
Now, two cases arise
CASE I When $x \geq 3$:
In this case, we have $|x-3|=x-3$
So, the given equation reduces to
$x^{2} \cdot 2^{x+1}+2^{x-1}=x^{2} \cdot 2^{x+1}+2^{x-1}$
Which is an identity in x and hence it is true for all $x \geq 3$
CASE II When $x<3$:
In this case, we have $|x-3|=-(x-3)$
So, the given equation reduces to
$x^{2} \cdot 2^{x+1}+2^{-x+5}=x^{2} \cdot 2^{-x+7}+2^{x-1}$
$\Rightarrow x^{2} 2^{x+1}-2^{x-1}=x^{2} \cdot 2^{-x+7}-2^{-x+5}$
$\Rightarrow 2^{x-1}\left(4 x^{2}-1\right)=2^{-x+5}\left(4 x^{2}-1\right)$
$\Rightarrow 2^{2 x}\left(4 x^{2}-1\right)=2^{6}\left(4 x^{2}-1\right)$
$\Rightarrow\left(2^{2 x}-2^{6}\right)\left(4 x^{2}-1\right)=0$
$\Rightarrow 2 x=6$ or, $4 x^{2}-1=0$
$\Rightarrow x=3$ or, $x= \pm \frac{1}{2}$
But, $x<3$. Therfore, $x= \pm \frac{1}{2}$
Hence, the given equation has no negative integral root
132 (b)
We have,
$2^{\sin ^{2} x} \cdot 3^{\cos ^{2} y} \cdot 4^{\sin ^{2} z} \cdot 5^{\cos ^{2} \omega} \geq 120$
$\Rightarrow 2^{\sin ^{2} x} \cdot 3^{\cos ^{2} y} \cdot 4^{\sin ^{2} z} \cdot 5^{\cos ^{2} \omega} \geq 2 \times 3 \times 4 \times 5$
$\Rightarrow \sin ^{2} x \log 2+\cos ^{2} y \log _{3}+\sin ^{2} z \log 4$
$+\cos ^{2} \omega \log 5$
$\geq \log 2+\log 3+\log 4+\log 5$
$\Rightarrow \cos ^{2} x \log 2+\sin ^{2} y \log 3$

$$
+\cos ^{2} z \log 4+\sin ^{2} \omega \log 5 \leq 0
$$

$\Rightarrow \cos ^{2} x=0, \sin ^{2} y$

$$
=0, \cos ^{2} z=0 \text { and } \sin ^{2} \omega=0
$$

$\Rightarrow x=m \pi \pm \frac{\pi}{2}, m \in Z ; y=n \pi, n \in Z$
$z=r \pi \pm \frac{\pi}{2}, r \in Z ; \omega=t \pi, t \in Z$
But, $x, y, z, \omega \in[0,10]$
$\therefore x=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, y=0, \pi, 2 \pi, 3 \pi, z=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}$
and $\omega=0, \pi, 2 \pi, 3 \pi$
Hence, the number of ordered 4-tuples is
$3 \times 4 \times 3 \times 4=144$
133 (d)
We have,
$\log _{b} a+\log _{a} b+\log _{d} c+\log _{c} d$
$=\left(\log _{b} a+\frac{1}{\log _{b} a}\right)+\left(\log _{d} c+\frac{1}{\log _{d} c}\right) \geq 2+2$

$$
=4
$$

134 (c)
We have,
$\log _{1 / 3}\left(2^{x+2}-4^{x}\right) \geq-2$
$\Rightarrow 2^{x+2}-4^{x} \leq\left(\frac{1}{3}\right)^{-2}$ and $2^{x+2}-4^{x}>0$
$\Rightarrow 4\left(2^{x}\right)-\left(2^{x}\right)^{2} \leq 9$ and $2^{x}\left(2^{2}-2^{x}\right)>0$
$\Rightarrow\left(2^{x}\right)^{2}-4\left(2^{x}\right)+9 \geq 0$ and $2^{x}<2^{2}$
$\Rightarrow x<2\left[\because\left(2^{x}\right)^{2}-4\left(2^{x}\right)+9>0\right.$ for all $\left.x \in R\right]$
$\Rightarrow x \in(-\infty, 2)$
135
(c)

Given, $\frac{2 x}{(2 x+1)(x+2)}-\frac{1}{(x+1)}>0$
$\Rightarrow \frac{-3 x-2}{(x+1)(x+2)(2 x+1)}>0$
Equating each factor equal to 0 , we have
$x=-2,-1,-\frac{2}{3},-\frac{1}{2}$
It is clear $-\frac{2}{3}<x<-\frac{1}{2}$ or $-2<x<-1$
136 (b)
We observe that the curves $y=\log _{2} x$ and $y=-|x|$ intersect at exactly one point. So, the equation $\log _{2} x+|x|=0$ has exactly one real root

137 (a)
Using A. M. \geq G. M. , we have
$\frac{b c x+c a y+a b z}{3} \geq(b c x \times c a y \times a b z)^{1 / 3}$
$\Rightarrow b c x+c a y+a b z \geq 3\left(a^{2} b^{2} c^{2} \times x y z\right)^{1 / 3}$
$\Rightarrow b c x+c a y+a b z \geq 3 a b c \quad[\because x y z=a b c]$

138 (a)
We have,

$$
\begin{gathered}
\sqrt{3 x^{2}+6 x+7}+\sqrt{5 x^{2}+10 x+14} \\
\leq 4-2 x-x^{2} \\
\Rightarrow \sqrt{3(x+1)^{2}+4}+\sqrt{5(x+1)^{2}+9} \\
\leq(x+1)^{2}+5
\end{gathered}
$$

Clearly, LHS ≥ 5 and LHS ≤ 5
So, the inequation holds when each side is equal to 5
This is true when $x=-1$
Hence, the given inequation has exactly one solution
139 (b)
Let $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be the lengths of n parts of the stick. Then,
$a_{1}+a_{2}+a_{3}+\cdots+a_{n}=20$ and $a_{1} a_{2} a_{3} \ldots a_{n}>1$ Now, A. M. \geq G. M.
$\Rightarrow \frac{a_{1}+a_{2}+\cdots+a_{n}}{a_{n}} \geq\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n}$
$\Rightarrow \frac{20}{n}>1 \Rightarrow n<20$
\therefore Maximum possible value of n is 19
140 (b)
$\because \mathrm{AM}>G M$
$\frac{(a+b-c)+(b+c-a)}{2}$

$$
\begin{equation*}
>\sqrt{(a+b-c)(b+c-a)} \tag{i}
\end{equation*}
$$

$\Rightarrow b>\sqrt{(a+b-c)(b+c-a)}$
Similarly,
$\frac{(b+c-a)+(c+a-b)}{2}>\sqrt{(b+c-a)(c+a-b)}$
$\Rightarrow c>\sqrt{(b+c-a)(c+a-b)}$
and $\frac{(c+a-b)+(a+b-c)}{2}>\sqrt{(c+a-b)(a+b-c)}$
$\Rightarrow a>\sqrt{(c+a-b)(a+b-c)}$
On multiplying relations (i), (ii) and (iii), we get
$a b c>(a+b-c)(b+c-a)(c+a-b)$
$\Rightarrow(a+b-c)(b+c-a)(c+a-b)-a b c<0$
141 (c)
We have,
$\log _{16} x^{3}+\left(\log _{2} \sqrt{x}\right)^{2}<1$
$\Rightarrow \frac{3}{4} \log _{2} x+\frac{1}{4}\left(\log _{2} x\right)^{2}<1$
$\Rightarrow\left(\log _{2} x\right)^{2}+3 \log _{2} x-4<0$
$\Rightarrow\left(\log _{2} x+4\right)\left(\log _{2} x-1\right)<0$
$\Rightarrow-4<\log _{2} x<1 \Rightarrow 2^{-4}<x<2 \Rightarrow x$

$$
\in(1 / 16,2)
$$

Also, LHS of the given inequality is defined fro $x>0$
Hence, $x \in(1 / 16,2)$
142 (b)
Since, $\sin x \leq \cos ^{2} x$, becuase $\cos x$ must be a positive proper fraction
$\sin ^{2} x+\sin x-1 \leq 0$
Or $\left(\sin x+\frac{1}{2}\right)^{2}-\frac{5}{4} \leq 0$
From the definition of logarithm
$\sin x>0, \cos x>0, \cos x \neq 1$
$\therefore \sin x+\frac{1}{2} \leq \frac{\sqrt{5}}{2}$,
$\Rightarrow 0<\sin x \leq \frac{\sqrt{5}-1}{2}$
143 (d)
If $f(x)=x^{2}+2 b x+2 c^{2}$ and $g(x)=-x^{2}-$ $2 c x+b^{2}$
Then, $f(x)$ is minimum and $g(x)$ is maximum at
$f(x)=\frac{-D}{4 a}, \quad\left(\because x=-\frac{-b}{a}\right.$ and $\left.f(x)=\frac{-D}{4 a}\right)$
$\therefore \min \{f(x)\}=\frac{-\left(4 b^{2}-8 c^{2}\right)}{4}=\left(2 c^{2}-b^{2}\right)$
And $\max \{g(x)\}=-\frac{\left(4 c^{2}+4 b^{2}\right)}{4(-1)}=\left(b^{2}+c^{2}\right)$
Since, $\min f(x)>\max g(x) \Rightarrow 2 c^{2}-b^{2}>b^{2}+$ c2
$\Rightarrow \quad c^{2}>2 b^{2} \quad \Rightarrow \quad|c|>\sqrt{2}|b|$
144 (a)
We have, $[x]+(x)=5$
If $x \leq 2$, then $[x]+(x) \leq 2+2<5$
If $x \geq 3$, then $[x]+(x) \geq 3+3>5$
If $2<x<3$, then $[x]+(x)=2+3=5$
Hence, the solution set is $(2,3)$
145 (a)
We have,
$\left|x-x^{2}-1\right|=\left|2 x-3-x^{2}\right|$
$\Rightarrow\left|x^{2}-x+1\right|=\left|x^{2}-2 x+3\right|$
$\Rightarrow x^{2}-x+1$
$=x^{2}-2 x+3\left[\begin{array}{c}\because x^{2}-x+1>0 \\ \text { and } x^{2}-2 x+3>0 \text { for all } x\end{array}\right]$
$\Rightarrow x=2$
146 (a)

Given, $\frac{|x-1|}{x+2}-1<0$
Case I When $x<1,|x-1|=1-x$
$\therefore \frac{1-x}{x+2}-1<0 \Rightarrow \frac{-2 x-1}{x+2}<0$
$\Rightarrow \frac{2 x+1}{x+2}>0 \Rightarrow x<-2$ or $x>-\frac{1}{2}$
But $x<1$
$\therefore x \in(-\infty,-2) \cup\left(-\frac{1}{2}, 1\right)$
Case II When $x \geq 1,|x-1|=x-1$
$\therefore \frac{x-1}{x+2}-1<0 \Rightarrow-\frac{3}{x+2}<0$
$\Rightarrow \frac{3}{x+2}>0$
$\Rightarrow x>-2$
But $x \geq 1$
$\therefore \quad x \geq 1$, ie, $x \in[1, \infty)$...(iii)
\therefore From Eqs. (i) and (ii), we get
$x \in(-\infty,-2) \cup\left(-\frac{1}{2}, \infty\right)$

147 (d)

Given that, $\frac{x+2}{x^{2}+1}>\frac{1}{2}$
$\Rightarrow \quad x^{2}-2 x-3<0$
$\Rightarrow \quad(x-3)(x+1)<0$
$\Rightarrow-1<x<3$
The integer value of x are $0,1,2$
\therefore The number of integral solutions are 3
148 (b)
$\because \tan \left(x+\frac{\pi}{3}\right) \geq 1 \Rightarrow \frac{\pi}{4} \leq x+\frac{\pi}{3}<\frac{\pi}{2}$
$\Rightarrow-\frac{\pi}{12} \leq x<\frac{\pi}{6}$
$\Rightarrow n \pi-\frac{\pi}{12} \leq x \leq n \pi+\frac{\pi}{6}$
149 (c)
We have,
$\frac{1+\left(\log _{a} x\right)^{2}}{1+\log _{a} x}>1$
$\Rightarrow \frac{1+\left(\log _{a} x\right)^{2}}{1+\log _{a} x}-1>0$
$\Rightarrow \frac{\left(\log _{a} x\right)\left(\log _{a} x-1\right)}{\left(1+\log _{a} x\right)}>0$
$\Rightarrow-1<\log _{a} x<0$ or, $\log _{a} x>1$
$\Rightarrow a^{-1}>x>a^{0}$ or, $x<a \quad[\because 0<a<1]$
$\Rightarrow x \in(1,1 / a) \cup(0, a) \quad[\because a>0]$
150 (b)
We have,
$x=\frac{y+2}{y+1}$
$\Rightarrow y=\frac{2-x}{x-1}$
$\Rightarrow\left(\frac{2-x}{x-1}\right)^{2}>2 \quad\left[\because y^{2}>2\right]$
$\Rightarrow(2-x)^{2}>2(x-1)^{2} \Rightarrow x^{2}<2$
151
(a)

Let $x=y-\frac{3 \pi}{4}$. Then,
$\sin x=-\left(\frac{\cos y+\sin y}{\sqrt{2}}\right)$ and $\cos x$

$$
=-\left(\frac{\cos y-\sin y}{\sqrt{2}}\right)
$$

$\Rightarrow \sin x+\cos x=-\sqrt{2} \cos y$ and $\sin x \cos x=$
$12(2 \cos 2 y-1)$
Now,
$|\sin x+\cos x+\tan x+\sec x+\operatorname{cosec} x+\cot x|$
$=\mid(\sin x+\cos x)+(\tan x+\cot x)$
$+(\sec x+\operatorname{cosec} x) \mid$
$=\left|(\sin x+\cos x)+\frac{1}{\sin x \cos x}+\frac{\sin x+\cos x}{\sin x \cos x}\right|$
$=\left|(\sin x+\cos x)\left(1+\frac{1}{\sin x \cos x}\right)+\frac{1}{\sin x \cos x}\right|$
$=\left|-\sqrt{2} \cos y\left(1+\frac{2}{2 \cos ^{2} y-1}\right)+\frac{2}{2 \cos ^{2} y-1}\right|$
$=\left|-\sqrt{2} \cos y-\frac{2(\sqrt{2} \cos y-1)}{2 \cos ^{2} y-1}\right|$
$=\left|-\sqrt{2} \cos y-\frac{2}{\sqrt{2} \cos y+1}\right|$

$$
=\left|\sqrt{2} \cos y+\frac{2}{\sqrt{2} \cos y+1}\right|
$$

$=\left|\lambda+\frac{2}{\lambda+1}\right|$, where $\lambda=\sqrt{2} \cos y$
$=\left|(\lambda+1)+\frac{2}{\lambda+1}-1\right| \geq\left|(\lambda+1)+\frac{2}{(\lambda+1)}\right|-1$
$\geq 2 \sqrt{(\lambda+1) \times \frac{2}{(\lambda+1)}}-1=2 \sqrt{2}-1[$ Using AM \geq GM]
152

(b)

$\frac{9 \cdot 3^{2 x}-6 \cdot 3^{x}+4}{9 \cdot 3^{2 x}+6 \cdot 3^{x}+4}=\frac{\left(3^{(x+1)}\right)^{2}-2\left(3^{(x+1)}\right)+4}{\left(3^{(x+1)}\right)^{2}+2\left(3^{(x+1)}\right)+4}$
$=\frac{t^{2}-2 t+4}{t^{2}+2 t+4} \quad\left(\right.$ where $\left.t=3^{x+1}\right)$
Since, $\frac{1}{3}<\frac{x^{2}-2 x+4}{x^{2}+2 x+4}<3$
\therefore From Eq.(i), the given expression lies between $1 / 3$ and 3

153 (c)
Using A. M. \geq G. M., we have
$4^{x}+4^{1-x} \geq 2 \sqrt{4^{x} \times 4^{1-x}} \Rightarrow 4^{x}+4^{1-x} \geq 4$
154 (b)
We have,

$$
\begin{aligned}
3^{-|x|}-2^{|x|}=0 & \Rightarrow 3^{-|x|}=2^{|x|} \Rightarrow 6^{|x|}=1 \Rightarrow x \\
& =0
\end{aligned}
$$

156 (d)
We have,
$P \leq\left(x_{1}+x_{2}+\cdots+x_{n-1}\right)\left(x_{2}+x_{4}+x_{6}+\cdots\right.$

$$
\left.+x_{n}\right)
$$

$\Rightarrow P \leq \frac{1}{4}\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{2}=\frac{1}{4}$
(b)

We observe that $y=e^{-x}$ and $y=x$ intersect at exactly one point. So, the equation $e^{-x}=x$ has exactly one real root:

158 (b)
We have,
$3^{x}+3^{1-x}-4<0$
$\Rightarrow\left(3^{x}\right)^{2}-4\left(3^{x}\right)+3<0$
$\Rightarrow\left(3^{x}-1\right)\left(3^{x}-3\right)<0$
$\Rightarrow 1<3^{x}<3 \Rightarrow 0<x<1 \Rightarrow x \in(0,1)$
160 (c)
We know that $x+\frac{1}{x} \geq 2$ for all $x>0$
$\therefore \sin ^{5} \theta+\operatorname{cosec}^{5} \theta \geq 2$ for $0<\theta<\pi$
Hence, the minimum value of $\sin ^{5} \theta+\operatorname{cosec}^{5} \theta$ is 2

