

6.LINEAR INEQUALITIES

Single Correct Answer Type

1.	If $3^x + 2^{2x} \ge 5^x$, then the	solution set for <i>x</i> is		
	a) (−∞,2]	b) [2,∞)	c) [0,2]	d) {2}
2.	$x^2 - 3 x + 2 < 0$, then x	belongs to		
	a) (1, 2)	b) (-2, -1)	c) (−2,−1) ∪ (1,2)	d) (-3, 5)
3.	Solution of $2^x + 2^{ x } \ge 2\sqrt{2}$	$\sqrt{2}$ is		
	a) $(-\infty, \log_2(\sqrt{2} + 1))$		b) (0,8)	
	c) $\left(\frac{1}{2}, \log_2(\sqrt{2}-1)\right)$		d) $(-\infty, \log_2(\sqrt{2} - 1)) \cup$	$\left(\frac{1}{2},\infty\right)$
4.	If $x_1, x_2,, x_n$ are real numbers $x_1, x_2,, x_n$ are real numbers x_1 is	mbers, then the largest valu	te of the expression $\sin x_1$ of	$\cos x_2 + \sin x_2 \cos x_3 + \dots +$
	a) <i>n</i>	b) $\frac{n}{2}$	c) $\frac{n}{4}$	d) $\sqrt{n^2 - 1}$
5.	If $a < b$, then the solution	$x^{2} + (a + b)x + ab < 0$ is	given by	
	a) (<i>a</i> , <i>b</i>)	b) $(-\infty, a) \cup (b, \infty)$	c) $(-b, -a)$	d) $(-\infty, -b) \cup (-a, \infty)$
6.	If $\log(x^3 + y^3) - \log_{10}(x^3)$	$(x^2 + y^2 - xy) \le 2$, then the	maximum value of <i>xy</i> , for a	Ill $x \ge 0, y \ge 0$ is
	a) 2500	b) 3000	c) 1200	d) 3500
7.	If $3^{x/2} + 2^x > 25$, then th	e solution set is		
	a) <i>R</i>	b) (2,∞)	c) (4,∞)	d) None of these
8.	If $ab = 4(a, b \in R^+)$, then	l		
	a) $a + b \le 4$	b) $a + b = 4$	c) $a + b \ge 4$	d) None of these
9.	Let $P_n(x) = 1 + 2x + 3x^2$	$+\cdots+(n+1)x^n$ be a poly	momial such that <i>n</i> is even.	Then, the number of real
	roots of $P_n(x)$, is			
10	a) 0	b) n	c) 1	d) None of these
10.	$(x-1)(x^2-5x+7) < (x-1)(x^2-5x+7) < (x-1)(x^2-$	x = 1), then x belongs to	(1, 1)	
11	a) $(1,2) \cup (3,\infty)$	b) $(2, 3)$	C) $(-\infty, 1) \cup (2,3)$	a) None of these
11.	$11 x = 10g_{2^2} 2 + 10g_{2^3} 2^- + 10g_{2^3} + 10g_{2^3} 2^- + 10g_{2^3} +$	$-10g_{2^{4}}Z^{2} + \dots + 10g_{2^{n+1}}Z^{n+1}Z^{n+1}$, then $n = \frac{1}{n}$	d) None of these
	a) $x \ge \left(\frac{1}{n+1}\right)^{n+1}$	b) $x \ge n\left(\frac{1}{n+1}\right)^{n+1}$	c) $x \ge \left(\frac{n}{n+1}\right)^{2/n}$	uj None or these
12.	The number of real soluti	ons (x, y, z, t) of simultaned	ous equations	
	$2y = \frac{11}{x} + x, 2z = \frac{11}{y} + y,$	$2t = \frac{11}{z} + z$, $2x = \frac{11}{t} + t$, is		
	a) 0	b) 1	c) 2	d) 4
13.	The solution set contained	d in <i>R</i> of the inequation 3^x	$+3^{1-x}-4 < 0$, is	
	a) (1, 3)	b) (0, 1)	c) (1, 2)	d) (0, 2)
14.	The range of <i>ab</i> if $ a \leq 1$	and $a + b = 1$, $(a, b \in R)$, i	S	
	a) [0, 1/4]	b) [-2, 1/4]	c) [1/4 ,2]	d) [0, 2]
15.	$If \sqrt{9x^2 + 6x + 1} < (2 - x)$	x), then		
	a) $x \in \left(-\frac{3}{2}, \frac{1}{4}\right)$	b) $x \in \left(-\frac{3}{2}, \frac{1}{4}\right)$	c) $x \in \left[-\frac{3}{2}, \frac{1}{4}\right]$	d) $x < \frac{1}{4}$
16.	If $5^x + (2\sqrt{3})^{2x} \ge 13^x$, the	nen the solution set for <i>x</i> is		
	a) [2,∞)	b) {2}	c) (−∞,2]	d) [0, 2]
17.	Solution set of inequality	$\log_e \frac{x-2}{x-3}$ is		
	a) (2,∞)	b) (−∞, 2)	c) (−∞,∞)	d) (3,∞)
18.	If $3 < 3t - 18 \le 18$, then	which one of the following	is true?	
	a) $15 \le 2t + 1 \le 20$	b) $8 \le t < 12$	c) $8 \le t + 1 \le 13$	d) $21 \le 3t \le 24$
19.	$\operatorname{Let} f(x) = ax^2 + bx + c a$	and $f(-1) < 1, f(1) > -1$,	$f(3) < -4$ and $a \neq 0$, then	

	a) $a > 0$	b) <i>a</i> < 0			
	c) Sign of a cannot be determined	d) None of the above			
20.	The set of admissible values of <i>x</i> such that $\frac{2x+3}{2x-9} < 0$	is			
	a) $\left(-\infty, -\frac{3}{2}\right) \cup \left(\frac{9}{2}, \infty\right)$ b) $\left(-\infty, 0\right) \cup \left(\frac{9}{2}, \infty\right)$	c) $\left(-\frac{3}{2},0\right)$	d) $\left(-\frac{3}{2},\frac{9}{2}\right)$		
21.	The number of irrational solutions of the equation $$	$\sqrt{x^2 + \sqrt{x^2 + 11}} + \sqrt{x^2 - \sqrt{x^2}}$	$x^2 + 11 = 4$, is		
	a) 0 b) 2	c) 4	d) 11		
22.	The number of solutions of the equation $\log_{x-3}(x^3 - x^3)$	$-3x^2 - 4x + 8) = 3$, is			
	a) 1 b) 2	c) 3	d) 4		
23.	The number of real solutions of the equation $\log_{0.5} x$	x = x , is			
	a) 1 b) 0	c) 2	d) None of these		
24.	The number of complex roots of the equation $x^4 - 4$	x - 1 = 0, is			
	a) 3 b) 2	c) 1	d) 0		
25.	If $\sin^x \alpha + \cos^x \alpha \ge 1, 0 < \alpha < \frac{\pi}{2}$, then				
	a) $x \in (2, \infty)$ b) $x \in (-\infty, 2]$	c) $x \in [-1.1]$	d) None of these		
26.	Consider the following statements:	-) L / J	,		
	$1. \frac{x}{x} < \tan^{-1} x < x; x > 0$				
	$1+x^2$				
	2. If $0 \le x < \frac{1}{2}$, sin $x + \tan x - 5x \ge 0$				
	Which of these is/are correct?				
0.5	a) Only (1) b) Only (2)	c) (1) and (2)	d) None of these		
27.	The number of solutions of the equation $2\cos(e^{*}) =$	$= 3^{n} + 3^{n}$, 1S			
20	a) 0 b) I The number of mode solutions of the constinuit 1 m	CJ Z	d) None of these		
28.	The number of real solutions of the equation $1 - x =$	$= [\cos x], \text{ is}$	d) None of these		
20	a) I DJ 2 Non-negative real numbers such that $a \perp a \perp \pm$	$a = n$ and $a = \sum_{i=1}^{n} a_i a_i a_i$	ben		
29.	$1 \qquad 1$	$u_n - p$ and $q - \Delta_i < j u_i u_j$, u_i	m ²		
	a) $q \le \frac{1}{2}p^2$ b) $q > \frac{1}{4}p^2$	c) $q < \frac{p}{2}$	d) $q > \frac{p}{2}$		
30.	If $(\sin a)^{x} + (\cos a)^{x} > 1$ $0 < a < \frac{\pi}{a}$ then	L	Z		
001	$a_{2} = \begin{bmatrix} 2 & a_{2} \\ a_{2} \end{bmatrix}$	a) $w \in [1, 1, 1]$	d) None of these		
21	a) $x \in [2, \infty)$ b) $x \in (-\infty, 2]$	c) $x \in [-1, 1]$	a) None of these		
51.	$\lim_{x \to \infty} x^2 + 2ax + 10 - 3a > 0 \text{ for all } x \in R, \text{ then}$		d) 2 < a < F		
22	$a_{1} - 5 < u < 2$ $b_{1} - u < -5$	(27-9x).	u) 2 < <i>u</i> < 5		
52.	The least integer satisfying $49.4 - \left(\frac{-10}{10}\right) < 47.4 - \left(\frac{-10}{10}\right)$	$\left(\frac{1}{10}\right)$, is			
	a) 2 b) 3	c) 4	d) None of these		
33.	For positive real number <i>a</i> , <i>b</i> , <i>c</i> which one of the following the fo	owing holds?			
	a) $a^2 + b^2 + c^2 \ge bc + ca + ab$	b) $(b + c)(c + a)(a + b)$	$\leq 8abc$		
	c) $\frac{a}{c} + \frac{b}{c} + \frac{c}{c} \le 3$	d) $a^3 + b^3 + c^3 \le 3 abc$			
24	b c a The least norimeter of a cyclic quadrilatoral of given	area A cauaro unita ia			
54.	The feast perimeter of a cyclic quadratter at of given $a_{1}\sqrt{4}$	area A square units is $a^{2}\sqrt{4}$	d) $4\sqrt{4}$		
25	a) \sqrt{A} b) $2\sqrt{A}$ The number of colutions of [circumber of colutions] = 2 + [CJ 3VA	$\begin{array}{c} \text{u} \\ \text{u} \\ \text{v} \\ $		
35.	The number of solutions of $[\sin x + \cos x] = 3 + [-3]$	$\sin x$ $+ [-\cos x]$ in the inte	ernal $[0, 2\pi]$ is (where $[.]$		
	a) 0 b) 4	a) Infinita	d) 1		
26	The number of colutions of $2 x = 2 $ will is	cj minite	u) I		
50.	The number of solutions of $3^{(n)} = 2 - x $ is				
27	aj u bj Z	CJ 4	a) infinite		
37.	If C is an obtuse angle in tringle, then		d) Nama (Cili		
20	a) $\tan A \tan B < 1$ D) $\tan A \tan B > 1$	cj tan A tan $B = 1$	u) None of these		
38.	If x, y, z are three real numbers such that $x + y + z =$ values of x, is	$= 4 \text{ and } x^2 + y^2 + z^2 = 6, t$	liien the exhaustive set of		

	a) [2/3, 2]	b) [0,2/3]	c) [0,2]	d) [-1/3, 2/3]
39.	The number of roots of th	ne equation $[\sin^{-1} x] = x - x$	[<i>x</i>], is	
	a) 0	b) 1	c) 2	d) None of these
40.	If $3^{x/2} + 2^x > 25$, then			
	a) $x \in [4, \infty)$	b) (4,∞)	c) $x \in (-\infty, 4]$	d) <i>x</i> ∈ [0, 4]
41.	The number of real solution	ions of the equation $27^{1/x}$ -	$12^{1/x} = 2.8^{1/x}$, is	
	a) 1	b) 2	c) 0	d) Infinite
42.	If roots of the equation <i>x</i> ⁴	$a^4 - 8x^3 + bx^2 + cx + 16 =$	0 are positive then	
	a) $b = 8 = c$	b) <i>b</i> = −24, <i>c</i> = −32	c) <i>b</i> = 24, <i>c</i> = −32	d) <i>b</i> = 24, <i>c</i> = 32
43.	If $3 < x < 6$, then <i>x</i> belon	gs to		
	a) (−6 , −3) ∪ (3,6)	b) (-6,6)	c) (−3,−3) ∪ (3,6)	d) None of these
44.	If <i>a</i> , <i>b</i> are distinct positive	e real numbers, then which	one of the following is true	?
	a) $a^4 + b^4 > a^3b + ab^3$	b) $a^4 + b^4 < a^3b + ab^3$	c) $a^3 + b^3 < a^2b + ab^2$	d) None of these
45.	The solution of the inequ	ation $4^{-x+0.5} - 7 \cdot 2^{-x} < 4$, x	$c \in R$ is	
	a) (−2,∞)	b) (2,∞)	c) $\left(2, \frac{7}{2}\right)$	d) None of tnese
46.	Suppose <i>a</i> , <i>b</i> and <i>c</i> are re-	al numbers such that $\frac{a}{1} > 1$	and $\frac{a}{-} < 0$. Which one of th	e following is true?
	a) $a + b - c > 0$	b) $a > b$	c) $(a - c)(b - c) > 0$	d) $a + b + c > 0$
47.	If <i>a</i> , <i>b</i> , <i>c</i> are positive real	numbers such that $a + b + b$	c = p then, which of the fo	llowing is true?
		1 2	, , , , , , , , , , , , , , , , , , ,	8
	a) $(p-a)(p-b)(p-c)$	$\geq \frac{1}{27}p^3$		
	b) $(p - a)(p - b)(p - c)$	$\geq 8abc$		
	c) $\frac{bc}{dc} + \frac{ca}{dc} + \frac{ab}{dc} \ge p$			
	a b c			
1.8	u) None of these	$(1 + \alpha x^2) \sqrt{1 + \alpha x^2}$	5	
40.	The number of solutions	of the equation $\frac{(1+e^{x})\sqrt{1+x^4}}{\sqrt{1+x^4}-x^2}$	$= 1 + \cos x$, is	
	.) 1	1.2.0	c) 3	d) 4
	aji	b) 2	CJ 5	•-) =
49.	a) I Let <i>n</i> be an odd integer si	b) 2 uch that the polynomial $P_n($	$f(x) = 1 + 2x + 3x^2 + \dots$	$(n + 1)x^n$ has exactly one
49.	a) I Let <i>n</i> be an odd integer sureal root. This real root α	b) 2 uch that the polynomial $P_n($ satisfies	$f(x) = 1 + 2x + 3x^2 + \dots$	$(n + 1)x^n$ has exactly one
49.	a) I Let <i>n</i> be an odd integer so real root. This real root α a) $-1 < \alpha < 0$	b) 2 uch that the polynomial $P_n($ satisfies b) $0 < \alpha < 1$	c) $0 \le \alpha \le 1$ c) $0 \le \alpha \le 1$	+ $(n + 1)x^n$ has exactly one d) $-1 \le \alpha \le 0$
49. 50.	a) I Let <i>n</i> be an odd integer survey real root. This real root α a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i>	b) 2 uch that the polynomial $P_n($ satisfies b) $0 < \alpha < 1$ (x) be a polynomial with in	c) $0 \le \alpha \le 1$ teger coefficients such that	$(n + 1)x^{n} \text{ has exactly one}$ $d) -1 \le \alpha \le 0$ f(b) - f(a) = 1. Then, the
49. 50.	a) 1 Let <i>n</i> be an odd integer so real root. This real root α a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is	b) 2 uch that the polynomial $P_n($ satisfies b) $0 < \alpha < 1$ (x) be a polynomial with in	c) $0 \le \alpha \le 1$ c) $0 \le \alpha \le 1$ teger coefficients such that	$(n + 1)x^{n} \text{ has exactly one}$ $(a) -1 \le \alpha \le 0$ (a) - f(a) = 1. Then, the
49. 50.	a) 1 Let <i>n</i> be an odd integer so real root. This real root α a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is a) 1	b) 2 uch that the polynomial $P_n(x)$ satisfies b) $0 < \alpha < 1$ (x) be a polynomial with in b) -1	c) $3 = 1 + 2x + 3x^2 + \dots$ c) $0 \le \alpha \le 1$ teger coefficients such that c) $1, -1$	$(n + 1)x^{n} \text{ has exactly one}$ $(n + 1)x^{n} \text$
49. 50. 51.	a) 1 Let <i>n</i> be an odd integer so real root. This real root α a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is a) 1 Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then	b) 2 uch that the polynomial $P_n(x)$ satisfies b) $0 < \alpha < 1$ (<i>x</i>) be a polynomial with in b) -1 all real values of <i>x</i> for whice	c) $3 = 1 + 2x + 3x^2 + \dots$ c) $0 \le \alpha \le 1$ teger coefficients such that c) $1, -1$ ch y takes real values, are	$(n + 1)x^{n} \text{ has exactly one}$ $d) -1 \le \alpha \le 0$ f(b) - f(a) = 1. Then, the d) None of these
49. 50. 51.	a) 1 Let <i>n</i> be an odd integer so real root. This real root α a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is a) 1 Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then a) $-1 \le x < 2$ or $x \ge 3$	b) 2 uch that the polynomial $P_n(x)$ satisfies b) $0 < \alpha < 1$ (<i>x</i>) be a polynomial with in b) -1 all real values of <i>x</i> for which b) $-1 \le x < 3$ or $x > 2$	c) $3 = 1 + 2x + 3x^2 + \dots$ c) $0 \le \alpha \le 1$ iteger coefficients such that c) $1, -1$ ch y takes real values, are c) $1 \le x < 2 \text{ or } x \ge 3$	h (n + 1) x^n has exactly one d) $-1 \le \alpha \le 0$ f (b) $-f(a) = 1$. Then, the d) None of these d) None of these
49. 50. 51. 52.	a) 1 Let <i>n</i> be an odd integer so real root. This real root α a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is a) 1 Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then a) $-1 \le x < 2$ or $x \ge 3$ If <i>a</i> , <i>b</i> , <i>c</i> > 0 and if <i>abc</i> =	b) 2 uch that the polynomial $P_n(x)$ satisfies b) $0 < \alpha < 1$ (<i>x</i>) be a polynomial with in b) -1 all real values of <i>x</i> for which b) $-1 \le x < 3$ or $x > 2$ 1, then the value of $a + b + 1$	c) $3 = 1 + 2x + 3x^2 + \dots$ c) $0 \le \alpha \le 1$ the end of the end of	h (n + 1) x^n has exactly one d) $-1 \le \alpha \le 0$ f (b) $-f(a) = 1$. Then, the d) None of these he interval
49. 50. 51. 52.	a) 1 Let <i>n</i> be an odd integer sore real root. This real root α a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is a) 1 Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then a) $-1 \le x < 2$ or $x \ge 3$ If <i>a</i> , <i>b</i> , <i>c</i> > 0 and if <i>abc</i> = a) $(\infty, -6)$	b) 2 uch that the polynomial $P_n(x)$ satisfies b) $0 < \alpha < 1$ (<i>x</i>) be a polynomial with in b) -1 all real values of <i>x</i> for whice b) $-1 \le x < 3$ or $x > 2$ 1, then the value of $a + b + b$ b) $(-6, 0)$	c) $3 = 1 + 2x + 3x^2 + \dots$ c) $0 \le \alpha \le 1$ iteger coefficients such that c) $1, -1$ ch y takes real values, are c) $1 \le x < 2 \text{ or } x \ge 3$ - $c + ab + bc + ca$ lies in th c) $(0, 6)$	$ (n + 1)x^n \text{ has exactly one} $ d) -1 ≤ α ≤ 0 t f(b) - f(a) = 1. Then, the d) None of these $ d) None of thesehe interval d) (6,∞) $
 49. 50. 51. 52. 53. 	a) 1 Let <i>n</i> be an odd integer sore real root. This real root α a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is a) 1 Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then a) $-1 \le x < 2$ or $x \ge 3$ If <i>a</i> , <i>b</i> , <i>c</i> > 0 and if <i>abc</i> = a) $(\infty, -6)$ The number of real roots	b) 2 uch that the polynomial $P_n(x)$ satisfies b) $0 < \alpha < 1$ (x) be a polynomial with in b) -1 all real values of x for whice b) $-1 \le x < 3$ or $x > 2$ 1, then the value of $a + b + b$ b) $(-6, 0)$ of the equation $(\sin 2^x)(\cos x)$	c) $3 = 1 + 2x + 3x^2 + \dots$ c) $0 \le \alpha \le 1$ iteger coefficients such that c) $1, -1$ ch y takes real values, are c) $1 \le x < 2 \text{ or } x \ge 3$ - $c + ab + bc + ca$ lies in th c) $(0, 6)$ s $2^x) = \frac{2^{x+2^{-x}}}{2}$, is	$ (n + 1)x^n $ has exactly one $ (n + 1)x^n $ has exactly on
 49. 50. 51. 52. 53. 	a) 1 Let <i>n</i> be an odd integer so real root. This real root <i>a</i> a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is a) 1 Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then a) $-1 \le x < 2$ or $x \ge 3$ If <i>a</i> , <i>b</i> , <i>c</i> > 0 and if <i>abc</i> = a) (∞ , -6) The number of real roots a) 1	b) 2 uch that the polynomial $P_n(x)$ satisfies b) $0 < \alpha < 1$ (<i>x</i>) be a polynomial with in b) -1 all real values of <i>x</i> for whice b) $-1 \le x < 3$ or $x > 2$ 1, then the value of $a + b + b$ b) $(-6, 0)$ of the equation $(\sin 2^x)(\cos b) 2$	c) 3^{2} c) $0 \le \alpha \le 1$ iteger coefficients such that c) $1, -1$ ch y takes real values, are c) $1 \le x < 2 \text{ or } x \ge 3$ -c + ab + bc + ca lies in th c) $(0, 6)$ s 2^{x}) $= \frac{2^{x+2^{-x}}}{2}$, is c) 3	h (n + 1) x^n has exactly one d) $-1 \le \alpha \le 0$ f (b) $-f(a) = 1$. Then, the d) None of these d) None of these he interval d) (6, ∞) d) None of these
 49. 50. 51. 52. 53. 54. 	a) 1 Let <i>n</i> be an odd integer soreal root. This real root α a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is a) 1 Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then a) $-1 \le x < 2$ or $x \ge 3$ If <i>a</i> , <i>b</i> , <i>c</i> > 0 and if <i>abc</i> = a) (∞ , -6) The number of real roots a) 1 The largest interval for w	b) 2 uch that the polynomial $P_n(x)$ satisfies b) $0 < \alpha < 1$ (x) be a polynomial with in b) -1 all real values of x for whice b) $-1 \le x < 3$ or $x > 2$ 1, then the value of $a + b + b$ b) $(-6, 0)$ of the equation $(\sin 2^x)(\cos b)$ 2 which $x^{12} - x^9 + x^4 - x + 1$	c) $3 = 1 + 2x + 3x^2 + \dots$ c) $0 \le \alpha \le 1$ iteger coefficients such that c) $1, -1$ ch y takes real values, are c) $1 \le x < 2 \text{ or } x \ge 3$ -c + ab + bc + ca lies in th c) $(0, 6)$ is $2^x) = \frac{2^{x+2^{-x}}}{2}$, is c) 3 > 0 is	h (n + 1) x^n has exactly one d) $-1 \le \alpha \le 0$ f (b) $-f(a) = 1$. Then, the d) None of these d) None of these he interval d) (6, ∞) d) None of these
 49. 50. 51. 52. 53. 54. 	a) 1 Let <i>n</i> be an odd integer soreal root. This real root <i>a</i> a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is a) 1 Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then a) $-1 \le x < 2$ or $x \ge 3$ If <i>a</i> , <i>b</i> , <i>c</i> > 0 and if <i>abc</i> = a) (∞ , -6) The number of real roots a) 1 The largest interval for we a) $-4 < x \le 0$	b) 2 uch that the polynomial $P_n(x)$ satisfies b) $0 < \alpha < 1$ (x) be a polynomial with in b) -1 all real values of x for whice b) $-1 \le x < 3$ or $x > 2$ 1, then the value of $a + b + b$ b) $(-6, 0)$ of the equation $(\sin 2^x)(\cos b)$ 2 which $x^{12} - x^9 + x^4 - x + 1$ b) $0 < x < 1$	c) 3^{2} c) $0 \le \alpha \le 1$ it eger coefficients such that c) $1, -1$ ch y takes real values, are c) $1 \le x < 2 \text{ or } x \ge 3$ -c + ab + bc + ca lies in th c) $(0, 6)$ is 2^{x}) $= \frac{2^{x}+2^{-x}}{2}$, is c) 3 > 0 is c) $-100 < x < 100$	$ (n + 1)x^n \text{ has exactly one} $ $ (f + 1)x^n has exactly$
 49. 50. 51. 52. 53. 54. 55. 	a) 1 Let <i>n</i> be an odd integer so real root. This real root α a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is a) 1 Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then a) $-1 \le x < 2$ or $x \ge 3$ If <i>a</i> , <i>b</i> , <i>c</i> > 0 and if <i>abc</i> = a) (∞ , -6) The number of real roots a) 1 The largest interval for w a) $-4 < x \le 0$ The number of negative r	b) 2 uch that the polynomial $P_n(x)$ satisfies b) $0 < \alpha < 1$ (x) be a polynomial with in b) -1 all real values of x for whice b) $-1 \le x < 3$ or $x > 2$ 1, then the value of $a + b + b$ b) $(-6, 0)$ of the equation $(\sin 2^x)(\cos b) 2$ which $x^{12} - x^9 + x^4 - x + 1$ b) $0 < x < 1$ real roots of $x^4 - 4x - 1 = 1$	c) $3 = 1 + 2x + 3x^2 + \dots$ c) $0 \le \alpha \le 1$ it eger coefficients such that c) $1, -1$ ch y takes real values, are c) $1 \le x < 2 \text{ or } x \ge 3$ c + ab + bc + ca lies in th c) $(0, 6)$ s $2^x) = \frac{2^{x+2^{-x}}}{2}$, is c) 3 > 0 is c) $-100 < x < 100$ 0, is	$(n + 1)x^{n} \text{ has exactly one}$ $(n + 1)x^{n} \text$
 49. 50. 51. 52. 53. 54. 55. 	a) 1 Let <i>n</i> be an odd integer so real root. This real root <i>a</i> a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is a) 1 Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then a) $-1 \le x < 2$ or $x \ge 3$ If <i>a</i> , <i>b</i> , <i>c</i> > 0 and if <i>abc</i> = a) (∞ , -6) The number of real roots a) 1 The largest interval for w a) $-4 < x \le 0$ The number of negative r a) 3	b) 2 uch that the polynomial $P_n(x)$ satisfies b) $0 < \alpha < 1$ (x) be a polynomial with in b) -1 all real values of x for whice b) $-1 \le x < 3$ or $x > 2$ 1, then the value of $a + b + b$ b) $(-6, 0)$ of the equation $(\sin 2^x)(\cos b) 2$ which $x^{12} - x^9 + x^4 - x + 1$ b) $0 < x < 1$ real roots of $x^4 - 4x - 1 = b$ b) 2	c) 3^{2} (x) = 1 + 2x + $3x^{2}$ + c) $0 \le \alpha \le 1$ (teger coefficients such that c) 1, -1 (c) 1, -1 (c) y takes real values, are c) $1 \le x < 2 \text{ or } x \ge 3$ (c) $1 \le x < 2 \text{ or } x \ge 3$ (c) $-1 \le x < 2 \text{ or } x \ge 3$ (c) $-1 \le x < 2 \text{ or } x \ge 3$ (c) $-1 \ge 2^{x+2^{-x}}$, is (c) $3^{2} \ge 0$ is (c) $-1 \ge 0 \le x < 100$ (d) (d) (d) (d) (d) (d) (d) (d) (d) (d)	$(n + 1)x^{n} \text{ has exactly one}$ $(n + 1)x^{n} \text$
 49. 50. 51. 52. 53. 54. 55. 56. 	a) 1 Let <i>n</i> be an odd integer so real root. This real root <i>a</i> a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is a) 1 Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then a) $-1 \le x < 2$ or $x \ge 3$ If <i>a</i> , <i>b</i> , <i>c</i> > 0 and if <i>abc</i> = a) (∞ , -6) The number of real roots a) 1 The largest interval for w a) $-4 < x \le 0$ The number of negative r a) 3 If $0 < x < \frac{\pi}{2}$, then minimum	b) 2 uch that the polynomial $P_n(x)$ satisfies b) $0 < \alpha < 1$ (x) be a polynomial with in b) -1 all real values of x for whice b) $-1 \le x < 3$ or $x > 2$ 1, then the value of $a + b + b$ b) $(-6, 0)$ of the equation $(\sin 2^x)(\cos b) 2$ which $x^{12} - x^9 + x^4 - x + 1$ b) $0 < x < 1$ real roots of $x^4 - 4x - 1 = b$ b) 2 um value of $\frac{\cos^3 x}{\sin x} + \frac{\sin^3 x}{\cos x}$ is	c) $3 = 1 + 2x + 3x^2 + \dots$ c) $0 \le \alpha \le 1$ it eger coefficients such that c) $1, -1$ ch y takes real values, are c) $1 \le x < 2 \text{ or } x \ge 3$ - $c + ab + bc + ca$ lies in th c) $(0, 6)$ s $2^x) = \frac{2^{x+2^{-x}}}{2}$, is c) 3 > 0 is c) $-100 < x < 100$ 0, is c) 1	$ (n + 1)x^{n} has exactly one (n + 1)x^{n} has exactly o$
 49. 50. 51. 52. 53. 54. 55. 56. 	a) 1 Let <i>n</i> be an odd integer soreal root. This real root <i>a</i> a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is a) 1 Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then a) $-1 \le x < 2$ or $x \ge 3$ If <i>a</i> , <i>b</i> , <i>c</i> > 0 and if <i>abc</i> = a) (∞ , -6) The number of real roots a) 1 The largest interval for w a) $-4 < x \le 0$ The number of negative r a) 3 If $0 < x < \frac{\pi}{2}$, then minimumal	b) 2 uch that the polynomial $P_n(x)$ satisfies b) $0 < \alpha < 1$ (x) be a polynomial with in b) -1 all real values of x for whice b) $-1 \le x < 3$ or $x > 2$ 1, then the value of $a + b + b$ b) $(-6, 0)$ of the equation $(\sin 2^x)(\cos b) = 2$ thich $x^{12} - x^9 + x^4 - x + 1$ b) $0 < x < 1$ real roots of $x^4 - 4x - 1 = b$ b) 2 un value of $\frac{\cos^3 x}{\sin x} + \frac{\sin^3 x}{\cos x}$ is b) $\frac{1}{-1}$	c) $3 = 1 + 2x + 3x^2 + \dots$ c) $0 \le \alpha \le 1$ itteger coefficients such that c) $1, -1$ ch y takes real values, are c) $1 \le x < 2 \text{ or } x \ge 3$ - $c + ab + bc + ca$ lies in th c) $(0, 6)$ is $2^x) = \frac{2^x + 2^{-x}}{2}$, is c) 3 > 0 is c) $-100 < x < 100$ 0, is c) 1	h (n + 1) x^n has exactly one d) $-1 \le \alpha \le 0$ f (b) $-f(a) = 1$. Then, the d) None of these d) None of these he interval d) (6, ∞) d) None of these d) 0 < x < ∞ d) 0 d) 1
 49. 50. 51. 52. 53. 54. 55. 56. 	a) 1 Let <i>n</i> be an odd integer so real root. This real root <i>a</i> a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is a) 1 Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then a) $-1 \le x < 2$ or $x \ge 3$ If <i>a</i> , <i>b</i> , <i>c</i> > 0 and if <i>abc</i> = a) (∞ , -6) The number of real roots a) 1 The largest interval for w a) $-4 < x \le 0$ The number of negative r a) 3 If $0 < x < \frac{\pi}{2}$, then minimute a) $\sqrt{3}$	b) 2 uch that the polynomial $P_n(x)$ satisfies b) $0 < \alpha < 1$ (x) be a polynomial with in b) -1 all real values of x for whice b) $-1 \le x < 3$ or $x > 2$ 1, then the value of $a + b + b$ b) $(-6, 0)$ of the equation $(\sin 2^x)(\cos b) 2$ which $x^{12} - x^9 + x^4 - x + 1$ b) $0 < x < 1$ real roots of $x^4 - 4x - 1 = b$ b) 2 un value of $\frac{\cos^3 x}{\sin x} + \frac{\sin^3 x}{\cos x}$ is b) $\frac{1}{2}$	c) 3^{2} (x) = 1 + 2x + $3x^{2}$ + c) $0 \le \alpha \le 1$ (teger coefficients such that c) 1, -1 (c) 1 \le x < 2 \text{ or } x \ge 3 (c) $1 \le x < 2 \text{ or } x \ge 3$ (c) $1 \le x < 2 \text{ or } x \ge 3$ (c) $1 \le x < 2 \text{ or } x \ge 3$ (c) $3 \ge 2^{x} \ge 2^{x+2^{-x}}$, is (c) $3 \ge 0$ is (c) $-100 < x < 100$ (d) $3 \ge 0$ is (e) $1 \le x < 2 \times 100$ (f) $3 \ge 0$ is (f) $1 \le x < 100$ (f) $3 \ge 1$ (f) $\frac{1}{3}$	$(n + 1)x^{n} \text{ has exactly one}$ $(n + 1)x^{n} \text$
 49. 50. 51. 52. 53. 54. 55. 56. 57. 	a) 1 Let <i>n</i> be an odd integer soreal root. This real root <i>a</i> a) $-1 < \alpha < 0$ Let <i>a</i> , <i>b</i> be integers and <i>f</i> value of $b - a$, is a) 1 Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then a) $-1 \le x < 2$ or $x \ge 3$ If <i>a</i> , <i>b</i> , <i>c</i> > 0 and if <i>abc</i> = a) (∞ , -6) The number of real roots a) 1 The largest interval for w a) $-4 < x \le 0$ The number of negative r a) 3 If $0 < x < \frac{\pi}{2}$, then minimumal a) $\sqrt{3}$ The number of solutions	b) 2 uch that the polynomial $P_n(x)$ satisfies b) $0 < \alpha < 1$ (x) be a polynomial with in b) -1 all real values of x for whice b) $-1 \le x < 3$ or $x > 2$ 1, then the value of $a + b + b$ b) $(-6, 0)$ of the equation $(\sin 2^x)(\cos b)$ 2 which $x^{12} - x^9 + x^4 - x + 1$ b) $0 < x < 1$ real roots of $x^4 - 4x - 1 = b$ b) 2 un value of $\frac{\cos^3 x}{\sin x} + \frac{\sin^3 x}{\cos x}$ is b) $\frac{1}{2}$ of $\sqrt{3x^2 + 6x + 7} + \sqrt{5x^2 + 10}$	c) $3^{x} = 1 + 2x + 3x^{2} + \dots$ c) $0 \le \alpha \le 1$ the end of the	$(n + 1)x^{n} \text{ has exactly one}$ $(n + 1)x^{n} \text$

58.	The solution set of $ x - 1$	$ < 1 - x , x \in R$ is					
	a) (-1,1)	b) (0,∞)	c) (−1,∞)	d) None of these			
59.	The minimum value of f	(x) = 3 - x + 7 is					
	a) 0	b) 6	c) 7	d) 8			
60.	The solution set of the in	equation $\frac{x+11}{x-2} > 0$ is					
	a) (−∞, 11) ∪ (3, ∞)	b) $(-\infty, -10) \cup (2, \infty)$	c) (−100, −11) ∪ (1,∞)	d) (−5, 0) ∪ (3, 7)			
61.	Solution of $2x - 1 = x + 1 $	- 7 is					
	a) -2	b) 8	c) −2,8	d) None of these			
62.	The number of positive r	eal roots of $x^4 - 4x - 1 = 0$	0, is	2			
	a) 3	b) 2	c) 1	d) 0			
63.	The solution set of the in	equality $\log_{\sin(\frac{\pi}{2})}(x^2 - 3x - 3x)$	$(+2) \ge 2$ is				
	(1)	(5)	r1 \ / 51	d) None of these			
	a) $\left(\frac{1}{2}, 2\right)$	b) $\left(1,\frac{1}{2}\right)$	c) $\left \frac{1}{2}, 1\right) \cup \left(2, \frac{1}{2}\right)$	a) None of these			
64.	If <i>a</i> , <i>b</i> , <i>c</i> are sides of trian	gle, then $\frac{(a+b+c)^2}{(ab+bc+ca)}$ always	belongs to				
	a) [1, 2]	b) [2, 3]	c) [3, 4]	d) [4, 5]			
65.	$(x-1)(x^2 - 5x + 7) < (x^2 - 5x + 7) <$	(x-1), then x belongs to					
	a) (1, 2) ∪ (3, ∞)	b) (−∞, 1) ∪ (2, 3)	c) 2, 3	d) None of these			
66.	The set of values of <i>x</i> for	which the inequalities x^2 –	$-3x - 10 < 0, 10x - x^2 - 1$	16 > 0 hold simultaneously,			
	is						
	a) $(-2, 5)$	h) (2, 8)	c) (-2.8)	d) (2 5)			
67	The solution of the inequ	ation $\log_{1/2}(r^2 + r + 1) +$	1 < 0 is	u) (2, 3)			
07.	a) $(-\infty - 2) \cup (1 \infty)$	b) $[-1, 2]$	(-2, 1)	d ($-\infty$ ∞)			
68	a) $(-\infty, -2) \cup (1, \infty)$	$\bigcup [-1, 2]$	(-2, 1)	$u_j(-\omega,\omega)$			
00.	The number of values of a for which the system of equation $2^{ x } + x = y + x^2 + a$ and $x^2 + y^2 = 1$ has only one solution where a, x, y are real is						
	a) 1	u, x, y al e l'eal, is					
	a) 1 b) 2						
	c) Finitely many but mor	re than 2					
	d) Infinitely many						
69.	The solution set of the in-	equation $\log_{1/2}(x^2 + x + 1)$) + 1 > 0, is				
07.	a) $(-\infty - 2) \cup (1 \infty)$	h) $[-1, 2]$	c) $(-2, 1)$	d) R			
70.	The set of all real number	rs satisfying the inequation	$r(\log_{10} x)^2 - 3(\log_{10} x) + 1 < 10$	00 is			
/ 01	(0, 1000)	b) (1000 m)	(0, 100)	d) None of these			
71	The set of all real α set of	b) $(1000, \infty)$	0	uj None of these			
, 1.	The set of all real x satisf	ying the mequality $\frac{1}{4- x }$	0				
	a) $[-3,3] \cup (-\infty,-4) \cup ($	(4,∞)	b) $(-\infty, -4) \cup (4, \infty)$				
	c) $(-\infty, -3) \cup (4, \infty)$		d) $(-\infty, -3) \cup (3, \infty)$				
72.	For positive real number	<i>a</i> , <i>b</i> , <i>c</i> which of the following	ng holds?				
	a) $a + b + c > 3 \Rightarrow a^2 + a^2$	$b^2 + c^2 > 3$	b) $a^6 + b^6 \le 12a^2b^2 - 64$				
	c) $a + b + c = \alpha \Rightarrow \frac{1}{r} + \frac{1}{r} + \frac{1}{r} \le \frac{9}{r}$ d) None of the above						
73	If $a_1 a_2 a_3$ be any positive	$c \alpha$ vertice α	h of the following statement	ts is not true			
/ 01	a) $3a_1, a_2, a_3 \le a_1^3 + a_2^3 =$	$+ a_3^3$					
	$a_1 a_2 a_3 a_1 a_2$						
	b) $\overline{a_2} + \overline{a_3} + \overline{a_1} \ge 3$						
	c) $(a_1 + a_2 + a_3) \left(\frac{1}{2} + \frac{1}{2}\right)$	$\left(\frac{1}{1}+\frac{1}{1}\right) > 9$					
	$a_1 + a_2 + a_3 + a_1 $	$a_2 + a_3 / \frac{2}{3}$					
	d) $(a_1 + a_2 + a_3) \left(\frac{1}{2} + \frac{1}{2}\right)$	$\left(\frac{1}{2}+\frac{1}{2}\right)^3 < 27$					
	$a_1 a_1 a_1 a_1 a_1 a_1 a_1 a_1 a_1 a_1 $	$a_2 ' a_3 / - ' $					

74.	If $x^2 + \frac{1}{x^2} = A$ and $x - \frac{1}{x} =$	B , where $x \in R$ and $B > 0$, then the minimum value o	of $\frac{A}{B}$ is
	a) $\sqrt{2}$	b) 2 √2	c) $\sqrt{2} + 2$	d) None of these
75.	Let <i>n</i> be an odd positive in $\dots \dots + (n + 1)x^n$, is	iteger. Then, the number of	f real roots of the polynomi	al $P_n(x) = 1 + 2x + 3x^2 +$
	a) 0	b) <i>n</i>	c) 1	d) None of these
76.	The number of positive in	tegers satisfying the inequa	ality $n + 1_{C_{n-2}} - n + 1_{C_{n-1}}$	\leq 50 is
	a) 9	b) 8	c) 7	d) 6
77.	For $\theta > \pi/3$, the value of j	$f(\theta) = \sec^2 \theta + \cos^2 \theta $ alwa	ays lies in the interval $(1, 2)$	d) [2 m)
78	If the product of n positive	DJ [0, 1] e numbers is <i>nⁿ</i> then their	$C_{J}(1,2)$	u) [2, ∞)
70.	a) A positive integer	b) Divisible by n	c) Equal to $n + \frac{1}{2}$	d) Never less than n^2
70	$\log_{1}(x^{2} - 3x + 18) < 4$ th	b) Divisible by n	c) Equal to $n + n$	
79.	$\log_2(x - 3x + 10) < 4,0$	b) $(2, 16)$	c) (1,16)	d) None of these
80.	If $[x]^2 = [x + 6]$, where $[x]^2 = [x + 6]$	[] = the greatest integer les	as than or equal to x , then x	must be such that
	a) $x = 3, -2$	b) $x \in [-2, -1)$	c) $x \in [3, 4)$	d) $x \in [-2, -1) \cup [3, 4)$
81.	If $a, b, c > 0$, the minimum	value of $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}$ is	5	
	a) 1	ы ³	c) 2	d) ⁵
~~		2		$\frac{1}{2}$
82.	The number of real solution	ons of the equation $e^{ x } - $	x = 0, is	
83	a) U If <i>n a r</i> are any real numb	0) I Vers then	CJ Z	a) None of these
05.	$\prod_{i=1}^{n} p_i q_i r \text{ are any rear function}$, cital	1	
	a) max $(p,q) = \max(p,q)$,r)	b) $\min(p,q) = \frac{1}{2}(P+q-1)$	p-q)
	c) $\max(p,q) < \min(p,q,r)$)	d) $\max(p,q) = \frac{1}{2}(p+q-1)$	p-q)
84.	The number of real solution	ons of $1 + e^x - 1 = e^x (e^x)$	(x - 2), is	
~-	a) 1	b) 2	c) 3	d) 4
85.	The solution set of the ine $(1/2, 1)$	quation $\log_{\sin 2\pi/3}(x^2 - 3x)$	$(2 + 2) \ge 2$, is	
06	a) $[1/2,1)$ If $x^2 + 6x = 27 < 0$ and x	b) $(2, 5/2]$	c) [1/2, 1) U (2, 5/2]	d) [1/2, 5/2]
00.	11x + 0x - 27 < 0 and x	-3x - 4 < 0, then		. 7
	a) <i>x</i> > 3	b) <i>x</i> < 4	c) $3 < x < 4$	d) $x = \frac{1}{2}$
87.	If $x, y \in R$, then $\frac{1}{2}(x + y +$	x - y) = x holds iff		
	a) $x > y$	b) <i>x</i> < <i>y</i>	c) $x = y$	d) $x \ge y$
88.	The set of all <i>x</i> satisfying t	the inequality $\frac{4x-1}{3x+1} \ge 1$ is		
	a) $\left(-\infty, -\frac{1}{3}\right) \cup \left[\frac{1}{4}, \infty\right]$	b) $\left(-\infty, -\frac{2}{3}\right) \cup \left[\frac{5}{4}, \infty\right]$	c) $\left(-\infty, -\frac{1}{3}\right) \cup [2, \infty)$	d) $\left(-\infty, -\frac{2}{3}\right)$ [4, ∞)
89.	The number of solutions of	of the inequality		
	$E = 2^{1/\sin^2 \alpha_2} \cdot 3^{1/\sin^2 \alpha_3} .$	$\dots n^{1/\sin^2\alpha_n} < n !$		
	Where $\alpha_i \in (-\pi, 2\pi)$ for <i>i</i>	= 2, 3,, n is	$-1 - 2^{n-1}$	
90	a) 0 The equation $e^{\chi} - r(r + $	$\begin{array}{c} 0 \\ 1 \\ r \\ \end{array} 0 \\ has \end{array}$	C) 3 ¹⁰	a) None of these
<i>J</i> 0.	a) No real roots set	1), x < 0 has		
	b) Exactly one real root			
	c) Two real roots			
	d) Infinitely many real roo	ots		
91.	Let $F(x)$ be a function defined by the function of $F(x)$ be a function defined by the function of $F(x)$ be a function of	fined by $F(x) = x - [x], 0$	$\neq x \in R$, where $[x]$ is the g	reatest integer less than or
	equal to x. Then, the numl	per of solutions of $F(x) + F(x)$	$F\left(\frac{1}{x}\right) = 1$	

	a) 0	b) Infinite	c) 1	d) 2
92.	The set of all real number	rs satisfying the inequation	$2^{x} + 2^{ x } \ge 2\sqrt{2}$, is	
	a) (1/2,∞)			
	b) $(-\infty, \log_2(\sqrt{2} - 1))$			
	c) $(-\infty, 1/2)$			
	d) $[1/2 \ m) \cup (-m \ \log_{1}(1/2 \ m))$	$\sqrt{2} - 1))$		
02	$(1)[1/2,\infty) \cup (-\infty,10g_2)$	(x) = (x)		
<i>9</i> 5.	Solution of the inequality	$\sin^4\left(\frac{\pi}{3}\right) + \cos^4\left(\frac{\pi}{3}\right) > \frac{\pi}{2}$, is	given by	
	a) <i>R</i>		b) $\frac{3n\pi}{1} + \frac{3\pi}{1}$	
	()) ()) ())	、 、		
	c) $R - \left\{ \left(\frac{3nn}{2} + \frac{3n}{4} \right), n \in \right\}$	<i>I</i> {	d) None of these	
94	((2 4)) If $(\log_{-} x)^{2} + (\log_{-} x) < 2$) 2 then x helongs to the inte	rval	
<i>J</i> 1.	$(1065 \times) + (1065 \times) \times 1$	b) (1/F 1/ \sqrt{F})		d) None of these
05	a) $(1/25, 5)$	$UJ(1/5,1/\sqrt{5})$	$(1, \infty)$	1[]:
95.	The number of real roots	of the equation $x^2 + x + 3$	$+ 2 \sin x = 0$ in the interva	$[1 [-\pi, \pi], 1S]$
06	a) Z			d) None of these
90.	If $\log_{\sqrt{3}}(\sin x + 2\sqrt{2}\cos x)$	$\geq 2, -2\pi \leq x \leq 2\pi$, then	the number of solutions of	<i>X</i> 1S
	a) 0	b) ∞	c) 3	d) 4
97.	Solution of $x^{(\log_{10} x)^2 - 3\log^2}$	$g_{10}x+1 > 1000$ for $x \in R$, i	S	
	a) (10,∞)	b) (100,∞)	c) (1000,∞)	d) (1,∞)
98.	The largest interval for w	hich $x^{12} - x^9 + x^4 - x + 1$	> 0 is	
	a) $-4 < x < 0$	b) 0 < <i>x</i> < 1	c) −100 < <i>x</i> < 100	d) $-\infty < x < \infty$
99.	The number of roots of th	the equation $\sin \pi x = \log x $	l, is	
	a) 2	b) 4	c) 5	d) 6
100	The equation $\sqrt{x+1} - \sqrt{x}$	$x-1 = \sqrt{4x-1}$ has		
	a) No solution			
	b) One solution			
	c) Two solutions			
	d) More than two solution	ns		
101	If $\log_3 x - \log_x 27 < 2$, th	en x belongs to the interval	1	
	a) (1/3 ,27)	b) (1/27 ,3)	c) (1/9,9)	d) None of these
102	The set of all solutions of	the inequation $x^2 - 2x + 5$	≤ 0 in R is	
	a) $R - (-\infty, -5)$	b) $R - (5, \infty)$	c) Ø	d) $R - (-\infty, -4)$
103	$2^{\sin^2 x} + 2^{\cos^2 x}$ is			
	a) ≤ 2	b) ≥ 2	c) ≤ 1	d) ≥ 1
104	If $a^2 + b^2 + c^2 = 1$, then	ab + bc + ca lies in the inte	erval	
	a) $\left[-\frac{1}{2}, 1\right]$	b) $\left[0,\frac{1}{2}\right]$	c) [0, 1]	d) [1, 2]
105	The equation $\sqrt{4x+9} - \frac{1}{2}$	$\sqrt{11x + 1} = \sqrt{7x + 4}$ has		
	a) No solution			
	b) One solution			
	c) Two solutions			
	d) More than two solution	15		
106	$\left x + \frac{2}{x} \right < 3$, then x belong	gs to		
	a) $(-2, -1) \cup (1, 2)$		b) (−∞, −2) ∪ (−1, 1) ∪ (2,∞)
	c) (-2, 2)		d) (-3, 3)	
107	If <i>a</i> , <i>b</i> , <i>c</i> are the sides of a	tringle, then $\frac{a}{b+c-a} + \frac{b}{c+a-b}$	$\frac{c}{a+b-c}$ is	
	a) ≤ 3	b) ≥ 3	c) ≥ 2	d) ≤ 2
108	. The minimum value of th	e sum of the lengths of diag	onals of a cyclic quadrilate	ral of area a^2 square units

	is			
	a) √2 <i>a</i>	b) 2√2 <i>a</i>	c) 2a	d) None of these
109.	2x - 3 < x + 5 , then x	belongs to		
	(-35)	b) (5, 9)	c) $\left(\begin{array}{c} 2 \\ - \end{array}\right)$	$dl\left(\frac{2}{\sqrt{2}}\right)$
	a) (-3,3)		$(-\frac{1}{3}, 0)$	$(-0, \frac{1}{3})$
110.	The number of real roots	of the equation $1 + a_1 x + a_2 x$	$a_2x^2 + \dots + a_nx^n = 0$, when	re $ x < \frac{1}{3}$ and $ a_n < 2$, is
	a) <i>n</i> if <i>n</i> is even	b) 1 if <i>n</i> is odd	c) 0 for any $n \in N$	d) None of these
111.	Consider the following sta	atements:		
	1. If x be real, then $-\frac{9}{4} < \frac{3}{4}$	$\frac{3x-4}{2} < \frac{1}{2}$		
	2 - 2	$x^2+1 = 2$		
	2. If x is real, then the greater $x = 1$	atest value of $\frac{x^2+2x+3}{x^2+2x+3}$ is 4		
	3. If $ax^2 + bx + c = 0$; $a = 0$	$\neq 0, a, b, c \in R$ has no real r	oots, then $(a + b + c)c > 0$	
	Which of these is/ are cor	rect?		
	a) Only (1)	b) Only(2)	c) Only (3)	d) All of these
112.	If <i>r</i> is a real number such	that $ r < 1$ and if $a = 5(1)$	-r), then	
	a) 0 < <i>a</i> < 5	b) $-5 < a < 5$	c) 0 < a < 10	d) $0 \le a < 10$
113.	The number of integral ro	bots of the equation e^{x-8} +	2x - 17 = 0, is	
	a) 1	b) 2	c) 4	d) 8
114.	The product of real roots	of the equation $x^2 + 18x +$	$30 = 2\sqrt{x^2 + 18x + 45}$, is	
	a) 720	b) 20	c) 36	d) None of these
115.	The set of values of x satis	stying $2 \le x - 3 < 4$ is		
	a) $(-1, 1] \cup [5, 7]$		b) $-4 \le x \le 2$	
110	$c_{j} - 1 < x < / \text{ or } x \ge 5$		a) $x < 7$ or $x \ge 5$	
110.	Let $x = \left\lfloor \frac{a+2b}{a+b} \right\rfloor$ and $y = \frac{a}{b}$,	where <i>a</i> and <i>b</i> are positive	integers. If $y^2 > 2$, then	
	a) $x^2 \le 2$	b) $x^2 < 2$	c) $x^2 > 2$	d) $x^2 \ge 2$
117.	The least value of $5^{\sin x - 1}$	$+5^{-\sin x-1}$ is		
	a) 10	b) $\frac{5}{-}$	c) $\frac{2}{-}$	d) $\frac{1}{-}$
440		2	5	5
118.	If $x^2 + 2x + n > 10$ for all	I real numbers x , then which	ch of the following condition	ns is true?
110	a) $n < 11$	b) $n = 10$	c) $n = 11$	a) n > 11
119.	I he minimum value of P :	= bcx + cay + abz, when x	dyz = abc, 1s	d) 1 aha
120	a) sabc If $\alpha > 0$ for $i = 1.2$	D) $6abc$	C) abc	a) $4abc$
120.	$\ln a_i > 0 \ 101 \ i = 1, 2, \dots, n \ 3$	and $a_1 a_2 \dots a_n = 1$, then min b) 2^n	a) 2^{2n}	$(1 + u_2) \dots (1 + u_n)$ is
101	d) $2^{n/2}$	$UJ Z^{n}$	$C_{1} Z^{-1}$	uj 1 o following is true?
121.	$a_1 a_2 b_3 c_4 a_1 e_1 positive real fa) (2 - a)(2 - b)(2 - c)^3$	$\sum_{n=1}^{\infty} a_n b_n c_n$	c = 2 then, which one of th	e following is true?
	$1 \ 1 \ 1 \ 1$			
	b) $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 2$			
	c) $(2-a)(2-b)(2-c)$	< 8abc		
	1 1 1 1			
	$a)\frac{a}{a} + \frac{b}{b} + \frac{c}{c} = 2$			
122.	If <i>x</i> , <i>y</i> , <i>z</i> are positive real r	numbers such that $x^2 + y^2$	$+ z^2 = 27$, then $x^3 + y^3 + y^3$	z^3 has
	a) Minimum value 81	b) Maximum value 81	c) Minimum value 27	d) Maximum value 27
123.	If x satisfies the inequation	$\cos 2x - 7 < 11, 3x + 4 < 10$	-5, then <i>x</i> lies in the interv	al
	a) $(-\infty, 3)$	b) (−∞, 2)	c) (−∞,−3)	d) (−∞,∞)
124.	$x^8 - x^5 - \frac{1}{x} + \frac{1}{x^4} > 0$, is sat	atisfied for		
	a) Only positive values of	x		
	b) Only negative values of	f x		
	c) All real numbers excep	t zero		
	d) Only for $x > 1$			

125. The soluti	on set of the in	equation $5^{(1/4)(\log_5 x)^2} \ge 5$	$x^{(1/5)(\log_5 x)}$, is	
a) (0, 5 ⁻²	⁽⁵]	b) [5 ^{2√5} ,∞)	c) $(0,5^{-2\sqrt{5}}] \cup [5^{2\sqrt{5}},\infty)$	d) (0,∞)
126. If $a + b =$	8, then <i>ab</i> is gr	eater when		
a) $a = 4, b$	p = 4	b) <i>a</i> = 3, <i>b</i> = 5	c) $a = 6, b = 2$	d) None of these
127. The numb	er of solutions	of the equation $\cos x + x =$	= 0 is	
a) 0		b) 1	c) 2	d) 3
128. If $0 < r < c$	$\frac{\pi}{2}$ then the min	simum value of $\frac{\cos^3 x}{x} + \frac{\sin^3 x}{x}$	$\frac{x}{1}$ is	
110 \ \ \ \	2 [']	$\sin x + \cos x$	(¹⁵	1) 1
a) √3		b) $\frac{1}{2}$	c) $\frac{1}{2}$	d) 1
129 If $r^2 + 4a$	r + 2 > 0 for a	ے Il values of r then a lies in t	o The interval	
a) $(-2, 4)$	<i>x</i> 2 > 0101 a	h) (1, 2)		(1 1)
u) (2, 1)		5)(1)=)	c) $(-\sqrt{2},\sqrt{2})$	d) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
130. If <i>a</i> and <i>b</i>	are two differe	nt positive real numbers the	en which of the following st	tatement is true?
a) $2\sqrt{ah}$	a + b	h) $2\sqrt{ah} < a + h$	() $2\sqrt{ah} - a + h$	d) None of these
131 The numb	or of pogative i	$5 7 2 \sqrt{ub} < u + b$	$(-1) 2 \sqrt{ab} - a + b$ $(-1) 2 \sqrt{ab} - 3 + 2 - x^2 + 2 x-3 + 4$	1 + 2x - 1 is
	er of fiegative i	h) Only one	$+ 2^{x} = x \cdot 2^{x}$	$\pm 2^{\circ}$, is
aj None	an of ordered A	b) Unly one tuples $(\alpha, \alpha, \sigma, w)$ where α	$C_{\rm J}$ I WO	u) Four fy the inequality
132. The humb	er of ordered 4	-tuples (x, y, z, w) where x ,	$y, z, w \in [0, 10]$ which satis	ly the mequality
$2^{\sin x} \times 3$	$x = \frac{1}{2} \times 4^{\sin 2}$	$\times 5^{\cos w} \ge 120$, is		
a) 81		b) 144	c) 0	d) Infinite
133. If <i>a</i> > 1, <i>b</i>	> 1, <i>c</i> > 1, <i>d</i> >	• 1, then the minimum value	e of $\log_b a + \log_a b + \log_d a$	$c + \log_c d$ is
a) 1	_	b) 2	c) 3	d) 4
134. The soluti	on set of inequ	ation $\log_{1/3}(2^{x+2}-4^x) \ge -$	–2, is	
a) (−∞, 2	$-\sqrt{13}$)	b) $(-\infty, 2 + \sqrt{13})$	c) (−∞,2)	d) None of these
135. If $\frac{2x}{x}$	$>\frac{1}{2}$, then			
$2x^2 + 5x + 2$ a) $-2 > x$	$x + 1^{-1}$	h) $-2 > r > -1$	c) $-2 < r < -1$	d) $-2 < r < -1$
136 The numb	er of real solut	$\frac{1}{100} \frac{1}{2} \frac{1}{2} \frac{1}{x} $		u) 2 < x <u>s</u> 1
a) 0	er of real solut	h) 1	c) 3	d) None of these
137 If ryz = a	hc then the les	st value of $hcr + cav + abr$	zis	a) None of these
$137.11 \times yz = u$		b) 6abc	c) abc	d) $4abc$
138 The much		$\sqrt{2u^2}$	$\frac{1}{\sqrt{5\pi^2 + 10\pi + 1}}$	$\frac{1}{1}$
130. The numb	er of solution(s	b) of the inequation $\sqrt{3x^2}$ +	$6x + 7 + \sqrt{5x^2} + 10x + 14$	$4 \leq 4 - 2x - x^2$, is
aj I			CJ 4	a) infinitely many
139. A Stick of	ength 20 units	is to be divided into <i>n</i> parts	s so that the product of the	lengths of the parts is
greater th	an unity. The m	aximum possible value of n	115	1) 04
a) 18	1:00	b) 19	c) 20	
140. If <i>a</i> , <i>b</i> , <i>c</i> and	e different pos	itive real number such that	(b + c - a), (c + a - b)and	(a + b - c) are positive,
then $(a + a)$	(b-c)(b+c-	a)(c+a-b) - abc is		
a) Positivo	2	b) Negative	c) Non-positive	d) Non-negative
141. $\log_{16} x^3 +$	$\left(\log_2 \sqrt{x}\right)^2 < 1$	1 iff <i>x</i> lies in		
a) (2, 16)		b) (0,1/16)	c) (1/16,2)	d) None of these
142. If $\log_{\cos x}$	$\sin x > 2 \text{ and } 0$	$< x < 3\pi$, then sin <i>x</i> lies in	the interval	
$\sqrt{5}-1$]	$\sqrt{5} - 1$	ر 1 ₁	d) None of these
$a = \frac{1}{2}$	-,1	b) $[0, -2]$	c) $\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$	
143. If $f(x) = 1$	$x^{2} + 2bx + 2c^{2}$	and $q(x) = -x^2 - 2cx + h$	p^2 such that min $f(x) > ma$	x a(x), then the relation
hetween h	and c is			
a) No real	value of h and	$(h) 0 < c < h\sqrt{2}$	c) $ c < b \sqrt{2}$	d) $ c > b \sqrt{2}$
1/1 If the sum	of the greatest	integer less than or equal t	$\nabla v > v V^2$	$ V \sim V V = 1$
thon the s	of the greatest	integer less than of equal t	o x and the least lifteger gr	
	oration set for 2	h $(0 E)$	a) [5 6)	d) None of these
aj (2, 3)		u) (0, 5)	CJ [3,0]	uj none or these

145	. The total number of roots	of the equation $ x - x^2 - x^2 $	$1 = 2x - 3 - x^2 $ is	
	a) 1	b) 2	c) 0	d) Infinitely many
146	For $\frac{ x-1 }{x+2} < 1$, x lies in the	interval		
	a) $(-\infty, -2) \cup \left(-\frac{1}{2}, \infty\right)$	b) (−∞, 1) ∪ [2, 3]	c) (−∞,−4)	d) $\left[-\frac{1}{2},1\right]$
147	Number of integer solutio	ns of $\frac{x+2}{x^2+1} > \frac{1}{2}$ is		
	a) 0	b) 1	c) 2	d) 3
148	Solution of the inequality	$ \tan\left(x+\frac{\pi}{3}\right) \ge 1 $ is		
	a) $\left(n\pi + \frac{\pi}{12}, n\pi + \frac{\pi}{6}\right)$	b) $\left(n\pi - \frac{\pi}{12}, n\pi + \frac{\pi}{6}\right)$	c) $\left(n\pi - \frac{\pi}{6}, n\pi - \frac{\pi}{12}\right)$	d) None of these
149	If $0 < a < 1$, then the solution	tion set of the inequation $\frac{1}{4}$	$\frac{1+(\log_a x)^2}{1+(\log_a x)} > 1$, is	
	a) (1, 1/a)	b) (0, a)	c) $(1, 1/a) \cup (0, a)$	d) None of these
150	$- \text{Let } x = \frac{a+2b}{a+b} \text{ and } y = \frac{a}{b}, \text{ w}$	herer <i>a</i> and <i>b</i> are positive i	integers. If $y^2 > 2$, then	
	a) $x^2 \le 2$	b) $x^2 < 2$	c) $x^2 > 2$	d) $x^2 \ge 2$
151	. The minimum value of si	$n x + \cos x + \tan x + \sec x$	$+ \operatorname{cosec} x + \operatorname{cot} x $ is	
	a) 2√ <u>2</u> − 1	b) $2\sqrt{2} + 1$	c) √2 − 1	d) $\sqrt{2} + 1$
152	If for $x \in R$, $\frac{1}{3} < \frac{x^2 - 2x + 4}{x^2 + 2x + 4} < \frac{1}{x^2 + 2x + 4}$	$3, \text{then} \frac{9 \cdot 3^{2x} - 6 \cdot 3^{x} + 4}{9 \cdot 3^{2x} + 6 \cdot 3^{x} + 4}$ lies betw	veen	
	a) $\frac{1}{2}$ and 2	b) $\frac{1}{2}$ and 3	c) 0 and 2	d) None of these
153	. The minimum value of 4^x	$+ 4^{1-x}, x \in R$, is		
	a) 1	b) 2	c) 4	d) None of these
154	The number of real solution	ons of the equation $3^{- x } - $	$2^{ x } = 0$, is	
	a) 0	b) 1	c) 2	d) None of these
155	The number of real roots	of the equation $1 + 3^{x/2} =$	2 ^{<i>x</i>} , is	
	a) 0	b) 1	c) 2	d) None of these
156	If <i>n</i> is even and $n \ge 4, x$ cannot exceed	$x_1, x_2, \dots, x_n \ge 0$ and $x_1 + x_2$	$x_2 + \dots + x_n = 1$, then $P =$	$x_1x_2 + x_2x_3 + \dots + x_n - x_n$
	a) $\frac{1}{1}$	b) $\frac{1}{1}$	c) $\frac{1}{2}$	d) None of these
157	n + 1 The number of real solution	n + 2	2n ris	
157		b) 1 $(1000 \text{ equation } \text{e}^{-7})$	c) 2	d) None of these
158	The solution set contained	$\frac{1}{1}$ in R of the inequation 3^{χ} .	$\pm 3^{1-x} - 4 < 0$ is	a) None of these
150	a) $(1,3)$	b) $(0, 1)$	(1 2)	d) (0, 2)
159	The solution of the inequa	1000000000000000000000000000000000000	iven hv	u) (0, 2)
107		3		3
	a) $\frac{1}{2} \le x \le 3$	b) $-3 \le x \le \frac{1}{2}$	c) $-3 \le x \le 3$	d) $\frac{1}{2} \le x \le 2$
160	If $0 < \theta < \pi$, then the min	imum value of $\sin^5 \theta + \cos^5 \theta$	ec ⁵ θ is	
	a) 0	b) 1	c) 2	d) None of these

6.LINEAR INEQUALITIES

						: ANS	W	ER K	EY :						
1)	а	2)	С	3)	d	4)	b	85)	С	86)	С	87)	d	88)	С
5)	С	6)	а	7)	С	8)	С	89)	С	90)	b	91)	b	92)	d
9)	а	10)	С	11)	b	12)	С	93)	С	94)	а	95)	d	96)	d
13)	b	14)	b	15)	d	16)	С	97)	С	98)	d	99)	d	100)	а
17)	b	18)	С	19)	b	20)	d	101)	d	102)	С	103)	b	104)	а
21)	b	22)	а	23)	а	24)	b	105)	b	106)	а	107)	b	108)	b
25)	b	26)	С	27)	а	28)	b	109)	С	110)	С	111)	d	112)	С
29)	а	30)	b	31)	а	32)	b	113)	а	114)	b	115)	a	116)	b
33)	а	34)	d	35)	С	36)	b	117)	С	118)	d	119)	а	120)	b
37)	а	38)	а	39)	b	40)	b	121)	а	122)	а	123)	С	124)	С
41)	С	42)	С	43)	а	44)	a	125)	С	126)	а	127)	a	128)	d
45)	а	46)	С	47)	b	48)	a	129)	d	130)	b	131)	a	132)	b
49)	а	50)	С	51)	а	52)	d	133)	d	134)	С	135)	С	136)	b
53)	d	54)	d	55)	С	56)	d	137)	а	138)	а	139)	b	140)	b
57)	а	58)	d	59)	С	60)	а	141)	С	142)	b	143)	d	144)	а
61)	b	62)	С	63)	С	64)	С	145)	а	146)	а	147)	d	148)	b
65)	b	66)	d	67)	а	68)	а	149)	С	150)	b	151)	а	152)	b
69)	С	70)	d	71)	а	72)	а	153)	С	154)	b	155)	b	156)	d
73)	С	74)	а	75)	С	76)	С	157)	b	158)	b	159)	b	160)	С
77)	d	78)	d	79)	а	80)	d			-		-		2	
81)	b	82)	а	83)	b	84)	а								

: HINTS AND SOLUTIONS :

4

5

6

7

1 (a)
We have,

$$3^{x} + 2^{2x} \ge 5^{x}$$

 $\Rightarrow \left(\frac{3}{5}\right)^{x} + \left(\frac{4}{5}\right)^{x} \ge 1$
 $\Rightarrow \left(\frac{3}{5}\right)^{x} + \left(\frac{4}{5}\right)^{x} \ge \left(\frac{3}{5}\right)^{2} + \left(\frac{4}{5}\right)^{2}$
 $\Rightarrow x \le 2 \Rightarrow x$
 $\in (-\infty, 2] \qquad \left[\text{If } a^{x} + b^{x} \ge 1 \text{ and } a^{2} + b^{2} = 1, \right] \\ \text{then } x \in (-\infty, 2) \qquad 2 \qquad (c)$
 $x^{2} - 3|x| + 2 < 0$
 $\Rightarrow |x|^{2} - 3|x| + 2 < 0$
 $\Rightarrow |x|^{2} - 3|x| + 2 < 0$
 $\Rightarrow (|x| - 1)(|x| - 2) < 0$
 $\Rightarrow 1 < |x| < 2$
 $\Rightarrow -2 < x < -1 \text{ or } 1 < x < 2$
 $\therefore x \epsilon(-2, -1) \cup (1, 2)$
3 (d)
We have, $2^{x} + 2^{|x|} \ge 2\sqrt{2}$
If $x \ge 0$, then $2^{x} + 2^{x} \ge 2\sqrt{2}$
 $\Rightarrow 2^{x} \ge \sqrt{2} \Rightarrow x \ge \frac{1}{2}$
and if $x < 0$, then $2^{x} + 2^{-x} \ge 2\sqrt{2}$
 $\Rightarrow t + \frac{1}{t} \ge 2\sqrt{2}$ (where $t = 2^{x}$)
 $\Rightarrow t^{2} - 2\sqrt{2}t + 1 \ge 0$
 $\Rightarrow (t - (\sqrt{2} - 1))(t - (\sqrt{2} + 1)) \ge 0$

 $\Rightarrow t \leq \sqrt{2} - 1 \text{ or } t \geq \sqrt{2} + 1$

 $\Rightarrow -\infty < x \le \log_2(\sqrt{2} - 1)$

But t > 0

 $\Rightarrow 0 < 2^x < \sqrt{2} - 1$

Or $x \ge \log_2(\sqrt{2} + 1)$

 $\operatorname{Or} 2^{x} \ge \sqrt{2} + 1$

 $\therefore x \in (-\infty, \log_2(\sqrt{2} - 1)) \cup \left[\frac{1}{2}, \infty\right)$ (b) Using G. M. \leq A. M., we have $\sin x_i \cos x_{i+1} \le \frac{\sin^2 x_i + \cos^2 x_{i+1}}{2} \text{ for } i$ $= 1, 2, 3, \dots, n$ where $x_{n+1} = x_1$ $\therefore \sin x_1 \cos x_2 + \sin x_2 \cos x_3 + \cdots$ $+\sin x_n \cos x_{n+1}$ $\leq \frac{\sin^2 x_1 + \cos^2 x_2}{2} + \frac{\sin^2 x_2 + \cos^2 x_3}{2} + \cdots$ $+\frac{\sin^2 x_n + \cos^2 x_1}{2}$ $\Rightarrow \sin x_1 \cos x_2 + \sin x_2 \cos x_3 + \cdots$ $+\sin x_n \cos x_1 \le \frac{n}{2}$ (c) We have, $x^{2} + (a + b)x + ab < 0$ $\Rightarrow (x+a)(x+b) < 0$ $\Rightarrow -b < x < -a$ (a) Given, $\log_{10}(x^3 + y^3) - \log_{10}(x^2 + y^2 - xy) \le 2$ $\Rightarrow \log_{10} \frac{(x^3 + y^3)}{x^2 + y^2 - xy} \le 2$ $\Rightarrow \log_{10}(x+y) \le 2 \Rightarrow x+y \le 100$ Using $AM \ge GM$ $\therefore \ \frac{x+y}{2} \ge \sqrt{xy}$ $\Rightarrow \quad \sqrt{xy} \le \frac{x+y}{2} \le \frac{100}{2}$ $\Rightarrow xy \le 2500$ (c) By trial, $3^{x/2} + 2^x \le 25$ for x = 1,2,3,4But $3^{x/2} + 2^x > 25$ for x > 4Hence, solution set for $3^{x/2} + 2^x > 25$ is $(4, \infty)$

Which is not possible, because x > 0

8 **(c)**

Since,

 $AM \ge GM$ $\Rightarrow \frac{a+b}{2} \ge \sqrt{ab}$ $\Rightarrow \frac{a+b}{2} \ge \sqrt{4} \quad (\because ab = 4, \text{ given})$ $\Rightarrow a+b \ge 4$

9 (a)

When x > 0, $P_n(x) > 0$ and so $P_n(x) = 0$ can have no positive real roots Now, $P_n(x) = 1 + 2x + 3x^2 + \dots + (n+1)x^n$ $\Rightarrow xP_n(x) = x + 2x^2 + 3x^3 + \dots + nx^n$ $+(n+1)x^{n+1}$ $\Rightarrow (1-x)P_n(x)$ $= 1 + x + x^2 + \dots + x^n$ $-(n+1)x^{n+1}$ $\Rightarrow P_n(x) = \frac{1 - (n+2)x^{n+1} + (n+1)x^{n+2}}{(1-x)^2}$ For negative values of x, $P_n(x)$ will vanish whenever $f(x) = 1 - (n+2)x^{n+1} + (n+1)x^{n+2} = 0$ Now. 1 - 1n + 2xn + 2...(i)

If *n* is even, there is no change of sign in this expression and so there is no negative real root of f(x)

10 **(c)**

 $(x-1)(x^2 - 5x + 7) < (x-1)$ $\Rightarrow (x-1)(x^2 - 5x + 6) < 0$ $\Rightarrow (x-1)(x-2)(x-3) < 0$ $\therefore x \in (-\infty, 1) \cup (2, 3)$

11 **(b)**

Using A. M. \geq G. M., we have $\frac{x}{n} \geq \{\log_{2^{2}} 2 \times \log_{2^{3}} 2^{2} \times \log_{2^{4}} 2^{3} \times ... \times \log_{2^{n+1}} 2^{n}\}^{1/n}$ $\Rightarrow x \geq n(\log_{2^{n+1}} 2)^{1/n}$ $\Rightarrow x \geq n\left(\frac{1}{n+1}\log_{2} 2\right)^{1/n} \Rightarrow x \geq n\left(\frac{1}{n+1}\right)^{1/n}$ 12 (c) We have, $\frac{1}{2}\left|a + \frac{11}{a}\right| \geq \sqrt{11}$, equality holding iff $a = \pm \sqrt{11}$

 $|x| \ge \sqrt{11}, |y| \ge \sqrt{11}, |z| \ge \sqrt{11}, |t| \ge \sqrt{11}$ Let $x \ge 0$, then $x \ge \sqrt{11}$, $y \ge \sqrt{11}$, $z \ge \sqrt{11}$ $\sqrt{11}$ and $t \ge \sqrt{11}$ Now, $y - \sqrt{11} = \frac{1}{2} \left(\frac{11}{x} + x \right) - \sqrt{11}$ $\Rightarrow y - \sqrt{11} = \frac{(x - \sqrt{11})^2}{2x} = \left(\frac{x - \sqrt{11}}{2x}\right)(x - \sqrt{11})$ $\Rightarrow y - \sqrt{11} = \frac{1}{2} \left(1 - \frac{\sqrt{11}}{x} \right) \left(x - \sqrt{11} \right)$ $<(x-\sqrt{11})$ \Rightarrow *y* < *x* i.e. *x* > *y* Similarly, we have y > z, z > t and $t > x \Rightarrow y > x$ $\therefore x = y = z = t = \sqrt{11}$ is the only solution for x > 0We observe that (x, y, z, t) is a solution iff (-x, -y, -z, -t) is a solution Thus, $x = y = z = t = -\sqrt{11}$ is the only other solution 13 (b) Given, $3 + \frac{3}{3^x} - 4 < 0 \implies 3^{2x} + 3 - 4 \cdot 3^x < 0$ $\Rightarrow (3^{x}-1)(3^{x}-3) < 0$ $1 < 3^x < 3 \Rightarrow 0 < x < 1$ \therefore The solution set is (0, 1) 14 **(b)** We have, $|a| \leq 1$ and a + b = 1i. e. $-1 \le a \le 1$ and b = 1 - a $\Rightarrow -1 \le a \le 1 \text{ and } 0 \le b \le 2 \Rightarrow -2 \le ab \le 2$...(i) Now, $ab \leq \left(\frac{a+b}{2}\right)^2 \Rightarrow ab \leq \frac{1}{4}$...(ii) From (i) and (ii), we have $-2 \le ab \le \frac{1}{4} \Rightarrow ab \in \left[-\frac{2,1}{4}\right]$ 15 (d) Given, $\sqrt{(3x+1)^2} < (2-x)$ $\Rightarrow (3x+1) < 2-x$ $\Rightarrow 3x + 1 < 2 - x \Rightarrow x < \frac{1}{4}$ 16 (c) Given, inequality can be rewritten as $\left(\frac{5}{12}\right)^{1}$ + $\left(\frac{12}{12}\right)^x \ge 1$ $\therefore \cos^x \alpha + \sin^x \alpha \ge 1$ Where, $\cos \alpha = \frac{5}{12}$

If x = 2, the above equality holds

If x < 2 both $\cos \alpha$ and $\sin \alpha$ increases in positive fraction

Hence, above inequality holds for $x \in (-\infty, 2]$

17 **(b)**

Let $f(x) = \log_e \frac{x-2}{x-3}$ f(x) is defined either (x - 2) > 0, (x - 3) > 0 or (x - 2) < 0 (x - 3) < 0 or $x \neq 2, 3$ $\Rightarrow f(x)$ is defined either x > 3 or x < 2 or $x \neq 2, 3$ $ie, x \in (-\infty, 2) \cup (3, \infty)$

18 **(c)**

 $3 \le 3t - 18 \le 18$ $\Rightarrow 21 \le 3t \le 36$ $\Rightarrow 7 \le t \le 12$ $\Rightarrow 8 \le t + 1 \le 13$

19 **(b)**

 $:: f(-1) < 1 \Rightarrow a - b + c < 1 \quad \dots(i)$

and f(1) > -1, f(3) < -4, then

$$a + b + c > -1$$
 ...(ii)

9a + 3b + c < -4 ...(iii)

From Eq. (ii),

$$-a - b - c < 1$$
(iv)

On solving Eqs. (i), (iii) and (iv), we get $a < -\frac{1}{8} \Rightarrow a$ is negative

20 **(d)**

Given, $\frac{2x+3}{2x-9} < 0$ $\Rightarrow 2x + 3 < 0 \text{ and } 2x - 9 > 0$ Or 2x + 3 > 0 and 2x - 9 < 0 and $x \neq \frac{9}{2}$ $\Rightarrow x < -\frac{3}{2} \text{ and } x > \frac{9}{2} \text{ or } x > -\frac{3}{2} \text{ and } x < \frac{9}{2} \text{ and}$ $x \neq \frac{9}{2}$ $\Rightarrow x \in \left(-\frac{3}{2}, \frac{9}{2}\right)$ (b)

21 **(b)**

We have, $\sqrt{x^2 + \sqrt{x^2 + 11}} - \sqrt{x^2 - \sqrt{x^2 + 11}} = 4$ Putting $x^2 + 11 = t^2$, we get $\sqrt{t^2 + t - 11} + \sqrt{t^2 - t - 11} = 4$...(i) But, $(t^2 + t - 11) - (t^2 - t - 11) = 2t$...(ii) Dividing (ii) by (i), we get

 $\sqrt{t^2 + t - 11} - \sqrt{t^2 - t - 11} = \frac{t}{2}$...(iii) Adding (i) and (iii), we get $2\sqrt{t^2 + t - 11} = 4 + \frac{t}{2}$ $\Rightarrow t^{2} + t - 11 = 4 + t + \frac{t^{2}}{16}$ $\Rightarrow t^2 = 16 \Rightarrow t = 4 \qquad \left[\because t = \sqrt{x^2 + 11} > 0 \right]$ $\therefore x = \pm \sqrt{5}$ 22 (a) We have, $\log_{x-3}(x^3 - 3x^2 - 4x + 8) = 3 \dots (i)$ $\Rightarrow x^3 - 3x^2 - 4x + 8 = (x - 3)^3$ $\Rightarrow 6x^{2} - 31x + 35 = 0 \Rightarrow (3x - 5)(2x - 7) = 0$ $\Rightarrow x = \frac{5}{3}, \frac{7}{2}$ The equation (i) exists, if $x - 3 > 0, x - 3 \neq 1$ and $x^3 - 3x^2 - 4x + 8 > 0$ Clearly, $x = \frac{7}{2}$ satisfies these conditions 23 (a) Curves $y = \log_{0.5} x$ and y = |x| intersect at one point in first quadrant. So, the equation $\log_{0.5} x = |x|$ has one real root 25 **(b)** $\cos^x \alpha + \sin^x \alpha \ge 1$ Equality holds when x = 2If x < 2, both $\cos \alpha$ and $\sin \alpha$ are increasing $\therefore \cos^x \alpha + \sin^x \alpha > 1$, if x < 2If x > 2, then $\cos^x \alpha + \sin^x \alpha < 1$ $\therefore x \in (-\infty, 2]$ 27 (a) We have, $2\cos(e^x) = 3^x + 3^{-x}$ We observe that $2\cos(e^x) < 2$ and $3^x + 3^{-x} \ge 2$. So, the given equation has no solution 28 (b) Graphs of y = 1 - x and $y = [\cos x]$ cut each other at point (0, 1) and at a point whose xcoordinate lie in $(\pi/2, \pi)$. So, the given equation has two real roots 30 **(b)** If $a^2 + b^2 = 1$, then $a^x + b^x \ge 1$ is true for all $x \in (-\infty, 2]$ $\therefore (\sin \alpha)^{x} + (\cos \alpha)^{x} \ge 1 \Rightarrow x \in (-\infty, 2]$ 31 (a) If f(x) > 0, then D < 0 $4a^2 - 4(10 - 3a) < 0$

$$\Rightarrow (a+5)(a-2) < 0$$

$$\Rightarrow -5 < a < 2$$

32 **(b)**

The given inequality is

$$49.4 - \left(\frac{27 - x}{10}\right) < 47.4 - \left(\frac{27 - 9x}{10}\right)$$
$$\Rightarrow 49.4 - 47.4 < \left(\frac{27 - x}{10}\right) - \left(\frac{27 - 9x}{10}\right)$$
$$\Rightarrow 2 < \frac{8x}{10} \Rightarrow x > \frac{5}{2}$$

 $\div \text{ Least integer is 3}$

33 **(a)**

Since, $AM \ge GM$

$$\therefore \frac{a^2 + b^2}{2} \ge \sqrt{a^2 b^2} = ab, \frac{b^2 + c^2}{2} \ge bc$$

and $\frac{c^2 + a^2}{2} \ge ca$

On adding, we get

$$a^{2} + b^{2} + c^{2} \ge ab + bc + ca$$

$$\Rightarrow (a) \text{ holds}$$
Next, $\frac{b+c}{2} \ge \sqrt{bc}$, $\frac{c+a}{2} \ge \sqrt{ca}$, $\frac{a+b}{2} \ge \sqrt{ab}$

$$\Rightarrow \left(\frac{b+c}{2}\right) \left(\frac{c+a}{2}\right) \left(\frac{a+b}{2}\right) \ge \sqrt{a^{2}b^{2}c^{2}}$$

$$\Rightarrow (b+c)(c+a)(a+b) \ge 8abc$$

$$\Rightarrow (b) \text{ does not hold}$$
Again, $\frac{1}{3} \left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a}\right) \ge \left(\frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{a}\right)^{1/3}$

$$\Rightarrow \frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge 3$$

$$\Rightarrow (c) \text{ does not hold}$$
Again, $\frac{a^{3}+b^{3}+c^{3}}{3} \ge (a^{3}b^{3}c^{3})^{1/3}$

$$\Rightarrow a^{3} + b^{3} + c^{3} \ge 3 abc$$

$$\Rightarrow (d) \text{ does not hold}$$

34 (d)

If *s* is the semi-perimeter of a cyclic quadrilateral of sides *a*, *b*, *c* and *d* units in length, then its area *A* is given by

 $A = \sqrt{(s-a)(s-b)(s-c)(s-d)}$ Using A. M. \geq G. M., we have $\frac{s-a+s-b+s-c+s-d}{4}$ $(-d)^{1/4}$ $\Rightarrow \frac{4s - 2s}{4} \ge \sqrt{A} \Rightarrow 2s \ge 4\sqrt{A}$ Hence, the least perimeter is $4\sqrt{A}$ 35 (c) Two curves $y = [\sin x + \cos x]$ and, $y = 3 + [-\sin x] + [-\cos x]$ $= 1 + [\sin x] + [\cos x]$ intersect at infinitely many points in $[0, 2\pi]$ So, the given equation has infinitely many solutions 36 **(b)** Two curves $y = 3^{|x|}$ and y = |2 - |x|| intersect at two points only. So, the equation $3^{|x|} = |2 - |x||$ has only two real roots 37 (a) Since, angle *C* is obtuse, angle *A* and *B* are actute \therefore tan *C* < 0 and tan *A* > 0, tan *B* > 0 Now, $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ $\Rightarrow \tan(\pi - C) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ $\Rightarrow -\tan C = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ $\Rightarrow 1 - \tan A \tan B > 0$ (:: Numerator are positive) $\Rightarrow \tan A \tan B < 1$ 38 (a) We have. x + y + z = 4 and $x^2 + y^2 + z^2 = 6$ $\Rightarrow y + z = 4 - x \text{ and } y^2 + z^2 = 6 - x^2$ $\therefore yz = \frac{1}{2} \{ (y+z)^2 - (y^2 + z^2) \}$ $=\frac{1}{2}\{(4-x)^2-(6-x)^2\}$ $\Rightarrow yz = x^2 - 4x + 5$ Thus, *y* and *z* are roots of the equation $t^2 - (4 - x)t + x^2 - 4x + 5 = 0$ As *y*, *z* are real $\therefore (4-x)^2 - 4(x^2 - 4x + 5) \ge 0$

$$\Rightarrow 3x^2 - 8x + 4 \le 0 \Rightarrow \frac{2}{3} \le x \le 2$$

40 **(b)**

We have, $3^{x/2} + 2^x > 25 \Rightarrow 3^{x/2} + 4^{x/2} > 25$ Clearly, $x \in (4, \infty)$ satisfies the above inequation

41 **(c)**

We have,

$$27^{1/x} + 12^{1/x} = 2 \times 8^{1/x}$$

 $\Rightarrow 3^{3/x} + 2^{2/x} \times 3^{1/x} = 2 \times 2^{3/x}$
 $\Rightarrow \left(\frac{3}{2}\right)^{3/x} + \left(\frac{3}{2}\right)^{1/x} = 2$
 $\Rightarrow y^3 + y - 2 = 0$, where $y = \left(\frac{3}{2}\right)^{1/x}$
 $\Rightarrow (y - 1)(y^2 + y - 2) = 0$
 $\Rightarrow y = 1, y = -2 \Rightarrow \left(\frac{3}{2}\right)^{1/x} = 1 \Rightarrow \left(\frac{3}{2}\right)^{1/x} = \left(\frac{3}{2}\right)^{0}$

But, there is no value of *x* for which $\frac{1}{x}$ is zero Hence, the given equation has no solution

42 **(c)**

Let x_1, x_2, x_3 and x_4 be four positive roots of the equation $x^4 - 8x^3 + bx^2 + cx + 16 = 0$. Then, $x_1 + x_2 + x_3 + x_4 = 8$ and $x_1 x_2 x_3 x_4 = 16$ $\Rightarrow \frac{x_1 + x_2 + x_3 + x_4}{4} = 2$ and $(x_1 x_2 x_3 x_4)^{1/4} = 2$ \Rightarrow A. M. and G. M. of x_1, x_2, x_3 and x_4 are equal $\Rightarrow x_1 = x_2 = x_3 = x_4$ $\Rightarrow x_1 = x_2 = x_3 = x_4 = 2$ $\therefore x^4 - 8x^3 + bx^2 + cx + 16 = (x - 2)^4$ $\Rightarrow b = {}^4C_2 \times 2^2 = 24$ and $c = -{}^4C_3 \times 2^3 = -32$ 43 (a) We have, $3 < |x| < 6 \Rightarrow -6 < x < -3$ or 3 < x < 6 $\therefore x \in (-6, -3) \cup (3, 6)$

44 (a)

We have,

$$a^4 + b^4 - a^3 b - ab^3 = a^3(a - b) - b^3(a - b)$$

 $= (a^3 - b^3)(a - b)$
 $\Rightarrow a^4 + b^4 - a^3b - ab^3$
 $> 0 \qquad \begin{bmatrix} \because a^3 - b^3 \text{ and} \\ a - b \text{ are of the same sign} \end{bmatrix}$
 $\Rightarrow a^4 + b^4 > a^3 b + ab^3$

The given inequation is

$$4^{-x+0.5} - 7 \cdot 2^{-x} < 4, x \in R$$

$$4^{-x+0.5} - 7 \cdot 2^{-x} < 4, x \in R$$

$$2t^{2} - 7t < 4$$

$$2t^{2} - 7t < 4$$

$$2t^{2} - 7t - 4 < 0$$

$$(2t + 1)(t - 4) <$$

As 2^x is an increasing function -x < 2 or x > -2

$$\therefore x = (-2, \infty)$$

46 **(c)**

45

Given condition are $\frac{a}{b} > 1$ and $\frac{a}{c} < 0$ 1. a > 0 iff c < 0 and also b > 02. a < 0 iff c > 0 and also b < 047 **(b)**

Proceeding as in the solution of Q. no. 10, we have $(a + b)(b + c)(c + a) \ge 8abc$

$$\Rightarrow (p-a)(p-b)(p-c) \ge 8abc \qquad [\because a+b+c \\ = p]$$

48 **(a)**

We have,

$$\frac{(1+e^{x^2})\sqrt{1+x^2}}{\sqrt{1+x^4}-x^2} = 1 + \cos x$$

$$\Rightarrow (1+e^{x^2})\sqrt{1+x^2}(\sqrt{1+x^4}+x^2) = 1 + \cos x$$
Clearly, LHS ≥ 2 and RHS ≤ 2 . So, the equation
exists when each side is equal to 2. This is for
 $x = 0$ only. Hence, it has only one solution
50 (c)
Let $f(x) = c_0 + c_1x + c_2x^2 + \dots + c_nx^n$. Then,
 $f(b) - f(a) = 1$
 $\Rightarrow c_1(b-a) + c_2(b^2 - a^2) + \dots + c_n(b^n - a^n)$
 $= 1$
 $\Rightarrow (b-a)\{c_1 + c_2(b+a) + \dots + c_n(b^{n-1} + b^{n-2}a + \dots + a^{n-1})\}$
 $= 1$
 $\Rightarrow (b-a)I = 1$, where I is an integer
 $\Rightarrow b - a = \pm 1$
52 (d)
Using, AM > GM

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} -2x-x^2=5-(x+1)^2\leq 5(=5 \ \mbox{ when } x\\ =-1)\\ \mbox{The lass, G(N > HM \\ \hline \begin{subarray}{l} \sqrt{abc} > \frac{3}{a+b+c} \\ \frac{1}{b+\frac{1}{a}+\frac{1}{c}}\\ \hline \begin{subarray}{l} \sqrt{abc} > \frac{3}{a+\frac{1}{b}+\frac{1}{c}}\\ \hline \begin{subarray}{l} \sqrt{abc} > \frac{2}{a+\frac{1}{2}+x}\\ \hline \begin{subarray}{l} \sqrt{abc} > \frac{2}{a+\frac{1}+x}\\ \hline \begin{subarray}{l} \sqrt{abc} > \frac{1}{a+\frac{$$

⇒ x = -2, which is not possible
62 (c) Let f(x) = x⁴ - 4x - 1. Then, the number of changes of signs in f(x) is 1. Therefore, f(x) can have at most one positive real root We have.

f(2) > 0 and f(0) < 1Therefore, f(x) has one positive real root between 1 and 2

 c^{a}

63 **(c)**

 $\log_{\sin\left(\frac{\pi}{3}\right)}(x^2 - 3x + 2) \ge 2$

$$\Rightarrow x^{2} - 3x + 2 \leq \frac{3}{4} \quad (\text{If } \log_{a} b = c \Rightarrow b =$$

$$\Rightarrow x^{2} - 3x + \frac{5}{4} \leq 0$$

$$\Rightarrow 4x^{2} - 12x + 5 \leq 0$$

$$\Rightarrow (2x - 5)(2x - 1) \leq 0$$

$$\Rightarrow \frac{1}{2} \leq x \leq \frac{5}{2} \quad \dots \text{(i)}$$
Also, $x^{2} - 3x + 2 > 0$

$$\Rightarrow (x - 1)(x - 2) > 0$$

$$\Rightarrow x < 1 \text{ or } x > 2 \quad \dots(\text{ii})$$

From relation (i) and (ii), we get

$$x \in \left[\frac{1}{2}, 1\right) \cup \left(2, \frac{5}{2}\right)$$

64 (c) Since, $(a - b)^2 + (b - c)^2 + (c - a)^2 \ge 0$ $\Rightarrow 2(a^2 + b^2 + c^2) \ge 2(ab + bc + ca)$ $\Rightarrow \frac{a^2 + b^2 + c^2}{(ab + bc + ca)} \ge 1$ $\Rightarrow \frac{a^2 + b^2 + c^2}{ab + bc + ca} \ge 1$ Hence, option (c) is correct 65 (b) Given, $(x - 1)(x^2 - 5x + 7) < (x - 1)$ $\Rightarrow (x - 1)(x^2 - 5x + 6) < 0$

$$\Rightarrow (x-1)(x-2)(x-3) < 0$$

$$\Rightarrow (x-1)(x-2)(x-3) < 0$$

 $\Rightarrow (x - 1)(x - 2)(x - 3)$ $\Rightarrow x \in (-\infty, 1) \cup (2, 3)$

66 (d) Given inequalities are $x^2 - 3x - 10 < 0$ and $10x - x^2 - 16 > 0$ \Rightarrow (x+2)(x-5) < 0 and (x-2)(x-8) < 0 $\Rightarrow x \in (-2,5)$ and $x \in (2,8)$ $\Rightarrow x \in (2,5)$ 67 (a) $\log_{1/3}(x^2 + x + 1) < -1 = \log_{1/3}\left(\frac{1}{2}\right)^{-1}$ $\Rightarrow x^2 + x + 1 > \left(\frac{1}{2}\right)^{-1}$ (: where 0 < a < 1, then $\log_a x < \log_a y \Rightarrow x >$ y) $\Rightarrow x^2 + x - 2 > 0 \Rightarrow (x + 2)(x - 1) > 0$ $\Rightarrow x \in (-\infty, -2) \cup (1, \infty)$ 68 (a) Let (α, β) be a solution of the system for some *a*. Then, $(-\alpha, \beta)$ is also a solution. So, the system will have unique solution only if

 $\alpha = -\alpha \Rightarrow \alpha = 0$ Putting $x = \alpha = 0$ and $y = \beta$ in $x^2 + y^2 = 1$, we get $\beta = \pm 1$ Putting $x = \alpha = 0$ and $y = \beta$ in $2^{|x|} + |x| = y + \beta$ $x^2 + a$, we get $\beta + a = 1 \Rightarrow a = 1 - \beta$ \therefore *a* = 0 when β = 1 and *a* = 2 when β = -1 <u>CASE I</u> When a = 0In this case, given equations become $2^{|x|} + |x| = y + x^2$ and $x^2 + y^2 = 1$ Now, $x^2 + y^2 = 1 \Rightarrow |x| \le 1$ and $|y| \le 2$ $\therefore 2^{|x|} + |x| = y + x^2$ and $1 + x^2 \ge y + x^2$ $\Rightarrow 2^{|x|} + |x| \le 1 + x^2$ $\Rightarrow 2^{|x|} + |x| \le 1 + |x|$ [: $x^2 \le |x|$ when |x| < 1] $\Rightarrow x = 0$ Putting x = 0 in $2^{|x|} + |x| = y + x^2$, we get y = 1Thus, for a = 0, the system has unique solution (0, 1)<u>CASE II</u> When a = 2In this case, the system of equation is $2^{|x|} + |x| = y + x^2 + 2$ and $x^2 + y^2 = 1$ Clearly, (0, -1), (1, 0) and (-1, 0) satisfy these equations. So, the system does not have unique solution

69 (c)
We have,

$$\log_{1/3}(x^2 + x + 1) + 1 > 0$$

 $\Rightarrow \log_{1/3}(x^2 + x + 1) > -1$
 $\Rightarrow x^2 + x + 1 < \left(\frac{1}{3}\right)^{-1}$
 $\Rightarrow x^2 + x + 1 < 3$
 $\Rightarrow x^2 + x - 2 < 0 \Rightarrow (x + 2)(x - 1) < 0 \Rightarrow x$
 $\in (-2, 1)$
70 (d)

We have, $x^{(\log_{10} x)^2 - 3(\log_{10} x) + 1} > 10^3$ $\Rightarrow (\log_{10} x)^2 - 3(\log_{10} x) + 1 > \log_x 10^3$ $\Rightarrow (\log_{10} x)^2 - 3(\log_{10} x) + 1 > \frac{3}{\log_{10} x}$ $\Rightarrow \frac{(\log_{10} x)^3 - 3(\log_{10} x)^2 + (\log_{10} x) - 3}{\log_{10} x} > 0$ $\Rightarrow \frac{\{(\log_{10} x)^2 + 1\}(\log_{10} x - 3)}{\log_{10} x} > 0$ $\Rightarrow \frac{(\log_{10} x - 3)}{(\log_{10} x - 0)} > 0$ $\Rightarrow \log_{10} x < 0 \text{ or,} \log_{10} x > 3$ $\Rightarrow x < 1 \text{ or, } x > 10^3$ $\Rightarrow x \in (0,1) \cup (10^3,\infty) [:: \log_{10} x \text{ is defined for } x$ > 0]

71 (a)

Given, $\frac{3-|x|}{4-|x|} \ge 0$ \Rightarrow 3 - $|x| \leq 0$ and 4 - |x| < 0Or $3 - |x| \ge 0$ and 4 - |x| > 0 \Rightarrow $|x| \ge 3$ and |x| > 4Or $|x| \le 3$ and |x| < 4 \Rightarrow |x| > 4 or $|x| \le 3$ $\Rightarrow (-\infty, -4) \cup [-3, 3] \cup (4, \infty)$

72 (a)
Now,
$$3(a^2 + b^2 + c^2) - (a + b + c)^2$$

 $= 2(a^2 + b^2 + c^2 - bc - ca - ab)$
 $= (b - c)^2 + (c - a)^2 + (a - b)^2 \ge 0$
 $\Rightarrow 3(a^2 + b^2 + c^2) \ge (a + b + c)^2 > 9$
 $\Rightarrow a^2 + b^2 + c^2 > 3 \Rightarrow (a)$ holds
Now, $a^6 + b^6 \ge 12a^2b^2 - 64$
If $a^6 + b^6 + 64 \ge 12a^2b^2$
ie, $a^6 + b^6 + 2^6 \ge 3 \cdot 2^2 \cdot a^2b^2$
ie, if $\frac{a^6 + b^6 + 2^6}{3} \ge (2^6a^6b^6)^{1/3}$ (\because AM \ge GM)
 \Rightarrow (b) does not hold
Again, since AM \ge HM
 $\therefore \frac{a + b + c}{3} \ge \frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}$
 $\Rightarrow \frac{a}{3} \ge \frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}$
 $\Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{9}{a}$
 $\Rightarrow (c)$ does not hold
73 (c)
Using A. M. \ge G. M., we have
 $\frac{a_1 + a_2 + a_3}{3} \ge (a_1 a_2 a_3)^{1/3}$ and $\frac{1}{3}(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3})$
 $\ge (\frac{1}{a_1 a_2 a_3})^{1/3}$
 $\Rightarrow (a_1 + a_2 + a_3)(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3}) \ge 9$
74 (a)
We have,
 $x - \frac{1}{x} = B$ and $x^2 + \frac{1}{x^2} = A$
 $\therefore (x - \frac{1}{x})^2 = B^2$
 $\Rightarrow A - 2 = B^2 \Rightarrow A = B^2 + 2 \Rightarrow \frac{A}{B} = B + \frac{2}{B}$
But, A. M. \ge G. M.
 $\Rightarrow B + \frac{2}{B} \ge 2\sqrt{B \times \frac{2}{B}} \Rightarrow B + \frac{2}{B} \ge 2\sqrt{2} \Rightarrow \frac{A}{B} \ge 2\sqrt{2}$

N

Hence, the minimum value of $\frac{A}{B}$ is $2\sqrt{2}$

75 **(c)**

As discussed in the above problem, if *n* is odd, there is one change of sign in (i). Therefore, f(x)can have at most one negative real root. In this case, we have f(-1) = -2n - 2 < 0, f(0) = 1 > 0

So, the negative real root lies between -1 and 0

76 **(c)**

Given,
$${}^{n+1}C_{n-2}{}^{-n+1}C_{n-1} \le 50$$

$$\Rightarrow \frac{(n-1)!}{3!(n-2)!} - \frac{(n+1)!}{2!(n-1)!} \le 50$$

$$\Rightarrow \frac{(n+1)!}{3!} \left[\frac{1}{(n-2)!} - \frac{3}{(n-1)!} \right] \le 50$$

$$\Rightarrow (n+1)! \left(\frac{n-1-3}{(n-1)!} \right) \le 300$$

$$\Rightarrow (n+1)n(n-4) \le 300$$
For $n = 8$, it satisfy to the above inequality
But $n = 1$ it does not satisfy the above inequality
(d)

77 **(d)**

We have, $f(\theta) = \sec^2 \theta + \cos^2 \theta = (\sec \theta - \cos \theta)^2 + 2 \ge 2$ $\Rightarrow f(\theta) \in [2, \infty)$ 83

78 **(d)**

Let a_1, a_2, \dots, a_n be *n* positive integers such that

 $a_1 a_2 \dots a_n = n^n$

Since, $AM \ge GM$

$$\therefore \frac{a_1 + a_2 + \ldots + a_n}{n} \ge (a_1 a_2 \ldots a_n)^{1/n}$$
$$\Rightarrow \frac{a_1 + a_2 + \ldots + a_n}{n} \ge n$$
$$\Rightarrow a_1 + a_2 + \ldots + a_n \ge n^2$$

79 **(a)**

 $log_{2}(x^{2} - 3x + 18) < 4$ $\Rightarrow x^{2} - 3x + 18 < 16 \quad (Iflog_{a} \ b < c \Rightarrow b < a^{c})$ $\Rightarrow x^{2} - 3x + 2 < 0$ $\Rightarrow (x - 1)(x - 2) < 0$ $\Rightarrow x \in (1, 2)$

80 **(d)**

We have, $[x]^2 = [x + 6]$ $\Rightarrow [x]^2 = [x] + 6$ $\Rightarrow [x]^2 - [x] - 6 = 0$

$$\Rightarrow ([x] - 3)([x] + 2) = 0$$

$$\Rightarrow [x] = 3, [x] = -2$$

$$\Rightarrow x \in [3,4) \text{ or } x \in [-2, -1) \Rightarrow x$$

$$\in [-2, -1) \cup [3,4)$$

Using AM
$$\geq$$
 GM

$$\frac{\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}}{3} \geq \sqrt[3]{\frac{abc}{(a+b)(b+c)(c+a)}} \dots (i)$$
Again, using AM \geq GM

$$\frac{a+b}{2} \geq \sqrt{ab}, \frac{b+c}{2} \geq \sqrt{bc}, \frac{c+a}{2} \geq \sqrt{ca}$$

$$\Rightarrow (a+b)(b+c)(c+a) \geq 8abc$$

$$\Rightarrow \sqrt[3]{\frac{abc}{(a+b)(b+c)(c+a)}} \leq \frac{1}{2}$$

$$\therefore \text{ From Eq. (i)}$$

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \geq \frac{3}{2}$$
82 (a)

Two curves $y = e^{|x|}$ and y = |x| does not intersect. So, the equation $e^{|x|} - |x| = 0$ has no solution

(b) $|p-q| = \begin{cases} p-q, p \ge q \\ q-p, p < q \end{cases}$

$$\Rightarrow \operatorname{RHS} = \frac{1}{2}(p+q-|p-q|), \text{ if } p > q$$

$$\Rightarrow \frac{1}{2}(p+q-p+q) = q$$

and LHS min(p,q) = q

$$\therefore \min(p,q) = \frac{1}{2}(p+q-|p-q|)$$

84 **(a)**

The given equation is $1 + |e^{x} - 1| = e^{x}(e^{x} - 2)$ $\Rightarrow |e^{x} - 1| + 2 = (e^{x} - 1)^{2}$ $\Rightarrow |e^{x} - 1|^{2} - (e^{x} - 1) - 2 = 0$ $\Rightarrow (|e^{x} - 1| - 2)(|e^{x} - 1| + 1) = 0$ $\Rightarrow |e^{x} - 1| - 2 = 0 \quad [\because |e^{x} - 1| + 1 \neq 0]$ $\Rightarrow e^{x} - 1 = \pm 2 \Rightarrow e^{x} = 3, -1$ $\Rightarrow e^{x} = 3 \Rightarrow x = \log_{e} 3 \quad [\because e^{x} > 0 \text{ for all } x]$ 85 (c) We have, $\log_{\sin^{\frac{2\pi}{2}}}(x^{2} - 3x + 2) \ge 2$

$$\Rightarrow (x^{2} - 3x + 2) \leq \left(\frac{\sqrt{3}}{2}\right)^{2} \text{ and } x^{2} - 3x + 2 > 0$$

$$\Rightarrow 4x^{2} - 12x + 5 \leq 0 \text{ and } (x - 1)(x - 2) > 0$$

$$\Rightarrow \frac{1}{2} \leq x \leq \frac{5}{2} \text{ and } x < 1 \text{ or } x > 2$$

$$\Rightarrow x \in [1/2, 1) \cup (2, 5/2]$$
86 (c)
We have, $x^{2} + 6x - 27 > 0$

$$\Rightarrow (x + 9)(x - 3) > 0 \Rightarrow x < -9 \text{ or } x > 3$$

$$\Rightarrow x \in (-\infty, -9) \cup (3, \infty) \dots (1)$$
And $x^{2} - 3x - 4 < 0$

$$\Rightarrow (x - 4)(x + 1) < 0$$

$$\Rightarrow -1 < x < 4 \dots (1)$$
From relations (i) and (ii), we get

$$3 < x < 4$$
87 (d)
We have,

$$\frac{1}{2}\{(x + y) + |x - y|\} = x$$

$$\Rightarrow \frac{1}{2}\{(x + y) + |x - y|\} = \frac{1}{2}\{(x + y) + (x - y)\}$$

$$\Rightarrow |x - y| = x - y \Rightarrow x \ge y$$
88 (c)
Given, $\frac{4x-1}{3x+1} - 1 \ge 0$

$$\Rightarrow \frac{x - 2}{3x + 1} \ge 0$$

$$\Rightarrow x - 2 \ge 0 \text{ and } 3x + 1 > 0$$

Or $x - 2 \le 0 \text{ and } 3x + 1 < 0$

$$\Rightarrow x \ge 2 \text{ and } x < -\frac{1}{3}$$

Or $x \le 2 \text{ and } x > -\frac{1}{3}$

$$\Rightarrow x \in (-\infty, -\frac{1}{3}) \cup [2, \infty)$$
89 (c)
Given inequality holds only, if

$$\sin^{2} \alpha_{i} = 1 \text{ or } \alpha_{i} = \pm \frac{\pi}{2}, \frac{3\pi}{2}; \quad (i = 2, 3, ..., n)$$

$$\Rightarrow \text{ Number of solutions} = 3 \times 3 \times 3 \times ... \times (n - 1) \text{ times}$$

$$= 3^{n-1}$$

90 **(b)** We have, $e^x = x(x+1), x < 0$

Consider the curves $y = e^x$ and y = x(x + 1) for x < 0. Graphs of these two curve intersect at exactly one point. So, the equation $e^x = x(x + 1)$ has exactly one real root 91 **(b)** Draw graphs of y = 1 - x + [x] and $y = \frac{1}{x} - \frac{1}{[x]}$ These two curves intersect it infinitely many points 92 (d) We have, $2^{x} + 2^{|x|} \ge 2\sqrt{2}$ Following cases arise: CASE I When $x \ge 0$ In this case, we have $2^{x} + 2^{x} \ge 2\sqrt{2} \Rightarrow 2^{x} \ge 2^{1/2} \Rightarrow x \ge \frac{1}{2} \Rightarrow x$ $\in \left[\frac{1}{2},\infty\right)$ <u>CASE II</u> When x < 0In this case, we have $2^{x} + 2^{-x} \ge 2\sqrt{2}$ $\Rightarrow (2^x)^2 - 2\sqrt{2} \times 2^x + 1 \ge 0$ $\Rightarrow \left(2^x - \sqrt{2}\right)^2 - 1 \ge 0$ $\Rightarrow (2^{x} - \sqrt{2} - 1)(2^{x} - \sqrt{2} + 1) \ge 0$ $\Rightarrow 2^x \le \sqrt{2} - 1$ or, $2^x \ge \sqrt{2} + 1$ $\Rightarrow x \leq \log_2(\sqrt{2}-1)$ or, $x \geq \log_2(\sqrt{2}+1)$ $\Rightarrow x \le \log_2(\sqrt{2} - 1) \Rightarrow x \in (-\infty, \log_2(\sqrt{2} - 1))$ Hence, $x \in (-\infty, \log_2(\sqrt{2} - 1)) \cup [1/2, \infty)$ 93 (c) $\sin^4 \frac{x}{3} + \cos^4 \frac{x}{3} > \frac{1}{2} \Rightarrow 1 - \frac{1}{2}\sin^2 \frac{2x}{3} > \frac{1}{2}$ $\Rightarrow \sin^2 \frac{2x}{3} < 1 \Rightarrow \frac{2x}{3} \in \left(R - (2n+1)\frac{\pi}{2}\right)$ $\Rightarrow x \in R - \left(\frac{3n\pi}{2} + \frac{3\pi}{4}\right); n \in I$ 94 (a) We have, $(\log_5 x)^2 + (\log_5 x) < 2$ $\Rightarrow (\log_5 x)^2 + (\log_5 x) - 2 < 0$

$$\Rightarrow (\log_5 x + 2)(\log_5 x - 1) < 0$$

$$\Rightarrow -2 < \log_5 x < 1 \Rightarrow 5^{-1} < x < 5 \Rightarrow x \in \left(\frac{1}{25}, 5\right)$$

96 (d) $\because \sin x + 2\sqrt{2}\cos x \ge \left(\sqrt{3}\right)^2$ $\Rightarrow \sin x + 2\sqrt{2} \cos x \ge 3$ $\Rightarrow \sin\left(a + \cos^{-1}\frac{1}{2}\right) \ge 1$ $\Rightarrow \sin\left(x + \cos^{-1}\frac{1}{2}\right) = 1$ (: $\sin x$ cannot be greater than 1) $\therefore x = n\pi + (-1)^n \frac{\pi}{2} - \cos^{-1} \frac{1}{2}$ For solution in the interval $[-2\pi, 2\pi]$, n =0, 1, -1, -297 (c) $x^{(\log_{10} x)^2 - 3\log_{10} x + 1} > 1000 = 10^3$ $\Rightarrow [(\log_{10} x)^2 - 3\log_{10} x]$ $+1]\log_{10} x > 3\log_{10} 10 = 3$ $\Rightarrow (\log_{10} x)^3 - 3(\log_{10} x)^2 + \log_{10} x > 3$ $\Rightarrow (\log_{10} x)(\log_{10} x - 3) + 1(\log_{10} x - 3) > 0$ $\Rightarrow (\log_{10} x - 3)(\log_{10} x + 1) > 0$ $\Rightarrow \log_{10} x - 3 > 0 \Rightarrow \log_{10} x > 3$ $\Rightarrow x > 10^3 = 1000$ $\Rightarrow x \in (1000, \infty)$ 98 (d) $x^{12} - x^9 + x^4 - x + 1 > 0$, three cases arise Case I When $x \le 0$ $x^{12} > 0, -x^9 > 0, x^4 > 0, -x > 0$ $\Rightarrow x^{12} - x^9 + x^4 + x + 1 > 0, \forall x \le 0 \dots (i)$ Case II When $0 < x \le 1$ $x^{9} < x^{4}, x < 1 \implies -x^{9} + x^{4} > 0 \text{ and } 1 - x > 0$ ∴ $x^{12} - x^9 + x^4 - x + 1 > 0$, $\forall 0 < x \le 1$...(ii) Case III When x > 1 $x^{12} > x^9, x^4 > x$ $\Rightarrow x^{12} - x^9 + x^4 - x + 1 > 0, \forall x > 1$...(iii) ∴ From Eqs. (i), (ii) and (iii) the above equation hold for $x \in R$ 100 (a) We have, $\sqrt{x+1} - \sqrt{x-1} = \sqrt{4x-1}$ $\Rightarrow x + 1 + x - 1 - 2\sqrt{x^2 - 1} = 4x - 1$ $\Rightarrow -2\sqrt{x^2-1} = 2x-1$

 $\Rightarrow 4(x^{2} - 1) = 4x^{2} - 4x + 1 \Rightarrow 4x - 5 = 0 \Rightarrow x$ $= \frac{5}{4}$ This we have a fixed as a part set is fix the sine equation.

This value of *x* does not satisfy the given equation. So, the equation has no solution

101 **(d)**

The LHS of the given inequality is meaningful for x > 0 and $x \neq 1$ Now. $\log_3 x - \log_x 27 < 2$ $\Rightarrow \log_3 x - 3 \log_x 3 < 2$ $\Rightarrow \log_3 x - \frac{3}{\log_2 x} < 2$ $\Rightarrow \frac{(\log_3 x)^2 - 3 - 2(\log_3 x)}{\log_3 x} < 0$ $\Rightarrow \frac{(\log_3 x - 3)(\log_3 x + 1)}{(\log_3 x - 0)} < 0$ $\Rightarrow \log_3 x < -1 \text{ or, } 0 < \log_3 x < 3$ $\Rightarrow x < 3^{-1} \text{ or, } 3^0 < x < 3^3 \Rightarrow x < \frac{1}{2} \text{ or, } 1 < x$ Also, x > 0 and $x \neq 1$ $\therefore x \in (0, 1/3) \cup (1, 27)$ 102 (c) Given inequation is $x^2 - 2x + 5 \le 0$ ∴ Roots are $x = \frac{-2 \pm \sqrt{4 - 20}}{2} = \frac{2 \pm 4i}{2}$: Roots are imaginary, therefore no real solutions exist 103 (b) We have, $\frac{2^{\sin^2 x} + 2^{\cos^2 x}}{2} \ge \sqrt{2^{\sin^2 x} \times 2^{\cos^2 x}}$ [Using A. M. \geq G. M.] $\Rightarrow 2^{\sin^2 x} + 2^{\cos^2 x} \ge 2\sqrt[3]{2} \Rightarrow 2^{\sin^2 x} + 2^{\cos^2 x} \ge 2$ 104 (a) Given that, $a^2 + b^2 + c^2 = 1$...(i) Now, $(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + bc)^2$ (ca) > 0 $\Rightarrow 2(ab + bc + ca) \ge -1$ [from Eq.(i)] $\Rightarrow ab + bc + ca \ge -\frac{1}{2}$...(iii) Also, $a^2 + b^2 + c^2 - ab - bc - ca$ $=\frac{1}{2}\{(a-b)^2+(b-c)^2+(c-a)^2\}\geq 0$ $\Rightarrow ab + bc + ca \le a^2 + b^2 + c^2$

 $\Rightarrow ab + bc + ca \le 1$ [from Eq.(i)] ...(iii)

From relation (ii) and (iii), we get

$$-\frac{1}{2} \le ab + bc + ca \le 1$$

105 **(b)**

We have,

$$\sqrt{4x+9} - \sqrt{11x+1} = \sqrt{7x+4}$$

 $\Rightarrow \sqrt{4x+9} - \sqrt{7x+4} = \sqrt{11x+1}$
 $\Rightarrow 4x+9+7x+4-2\sqrt{(4x+9)(7x+4)}$
 $= 11x+1$
 $\Rightarrow -2\sqrt{(4x+9)(7x+4)} = -12$
 $\Rightarrow (4x+9)(7x+4) = 36$
 $\Rightarrow 28x^2 + 79x = 0 \Rightarrow x = 0, -\frac{79}{28}$

Clearly, only x = 0 satisfies the given equation 106 (a)

Since,
$$-3 < x + \frac{2}{x} < 3$$

$$\Rightarrow -3 < \frac{(x^2 + 2)x}{x^2} < 3$$

$$\Rightarrow -3x^2 < (x^2 + 2)x < 3x^2 \quad (x \neq 0)$$

$$\Rightarrow x(x^2 + 3x + 2) > 0$$
And $x(x^2 - 3x + 2) < 0 \quad (x \neq 0)$

$$\Rightarrow x(x + 1)(x + 2) > 0$$
And $x(x - 1)(x - 2) < 0$

$$\Rightarrow x \in (-2, -1) \cup (0, \infty) \dots (i)$$
And $x \in (-\infty, 0) \cup (1, 2) \dots (ii)$
From relations (i) and (ii), we get
$$x \in (-2, -1) \cup (1, 2)$$

107 **(b)**

We have a, b, c are sides of a triangle $\therefore b + c - a > 0, c + a - b > 0, a + b - c > 0$ Let x = b + c - a, y = c + a - b, z = a + b - c $\Rightarrow y + z = 2a, z + x = 2b, x + y = 2c$ Now, $\frac{a}{b+c-a} + \frac{b}{c+a-b} + \frac{c}{a+b-c}$ $= \frac{y + z}{2x} + \frac{z + x}{2y} + \frac{x + y}{2z}$

$$= \frac{1}{2} \left(\frac{x}{y} + \frac{y}{z} + \frac{z}{x} + \frac{x}{z} + \frac{y}{x} + \frac{z}{y} \right)$$
$$\geq \frac{6}{2} \left(\frac{y}{x} \cdot \frac{x}{y} \cdot \frac{y}{z} \cdot \frac{z}{y} \cdot \frac{z}{x} \cdot \frac{x}{z} \right) \quad (\because AM \ge GM)$$
$$= 3$$

108 **(b)**

Let d_1, d_2 be the lengths of diagonals and θ be the angle between them. Then,

Area
$$= \frac{1}{2}d_1d_2\sin\theta \Rightarrow a^2$$

 $= \frac{1}{2}d_1d_2\sin\theta \Rightarrow d_1d_2 = \frac{2a^2}{\sin\theta}$

Using A. M. \geq G. M., we have

$$\frac{d_1 + d_2}{2} \ge \sqrt{d_1 d_2} \Rightarrow d_1 + d_2 \ge 2\sqrt{\frac{2a^2}{\sin\theta}} \ge 2\sqrt{2}a$$

109 **(c)**

We have, |2x - 3| < |x + 5| $\Rightarrow |2x - 3| - |x + 5| < 0$ $\Rightarrow \begin{cases} 3 - 2x + x + 5 < 0, x \le -5 \\ 3 - 2x - x - 5 < 0, -5 < x \le \frac{3}{2} \\ 2x - 3 - x - 5 < 0, x > \frac{3}{2} \end{cases}$ $\Rightarrow \begin{cases} x > 8, x \le -5 \\ x > -\frac{2}{3}, -5 < x \le \frac{3}{2} \\ x < 8, x > \frac{3}{2} \end{cases}$ $\Rightarrow x \in \left(-\frac{2}{3}, \frac{3}{2}\right] \cup \left(\frac{3}{2}, 8\right)$ $\Rightarrow x \in \left(-\frac{2}{3}, 8\right)$

110 **(c)**

```
We have,

\begin{aligned} |a_n| < 2 \text{ i. e.} -2 < a_n < 2 \\
\therefore \max(1 + a_1 x + a_2 x^2 + \dots + a_n x^n) \\
&= 1 + 2|x| + 2|x|^2 + \dots + 2|x|^n \\
&= 1 + 2|x| \left\{ \frac{1 - |x|^n}{1 - |x|} \right\} \\
&= 1 + 2 \cdot \frac{1}{3} \left\{ \frac{1 - 1/3^n}{1 - 1/3} \right\} > 0 \\
&= 1 + 2 \cdot \frac{1}{3} \left\{ \frac{1 - 1/3^n}{1 - 1/3} \right\} > 0 \\
&= 1 - 2|x| - 2|x|^2 \dots - 2|x|^n \\
&= -2[1 + |x| + |x|^2 + \dots + |x|^n] + 3 \end{aligned}
```

$$= -2\left\{\frac{1-|x|^n}{1-|x|}\right\} + 3$$
$$= -2\left\{\frac{1-1/3^n}{1-1/3}\right\} + 3 > 0$$

Thus, the curve $y = 1 + a_1x + a_2x^2 + \dots + a_nx^n$ does not meet *x*-axis for |x| < 1/3 and $|a_n| < 2$ Hence, the equation has no real roots

1

1

1

1

1

1

112 (c)

Since, $|r| < 1 \implies -1 < r < 1$ Also, a = 5(1 - r) $\Rightarrow 0 < a < 10 \quad \begin{bmatrix} \because & \text{at } r = -1, & a = 0 \\ \text{and at } r = 1, & a = 0 \end{bmatrix}$

113 (a)

Consider the curves $y = e^{x-8}$ and y = 17 - 2x. These two curves intersect at (8, 1) only. Hence, the equation $e^{x-8} + 2x - 17 = 0$ has exactly one root which is equal to 8

114 **(b)**

Let $x^2 + 18x + 30 = y$. Then, $x^{2} + 18x + 30 = 2\sqrt{x^{2} + 18x + 45}$ $\Rightarrow y = 2\sqrt{y + 15}$ $\Rightarrow y^2 - 4y - 60 = 0 \Rightarrow (y - 10)(y + 6) = 0 \Rightarrow y$ = 10 $\therefore x^{2} + 18x + 30 = y \Rightarrow x^{2} + 18x + 20 = 0$ \therefore Product of roots = 20 115 (a) Since, $2 \le |x - 3| < 4$ $\Rightarrow 2 \le x - 3 < 4$ Or $2 \le -(x-3) < 4$ \Rightarrow 5 \leq *x* < 7 or $-1 \leq -x < 1$

 \Rightarrow 5 $\leq x <$ 7 or $-1 < x \leq 1$

$\therefore x \in (-1, 1] \cup [5, 7)$ 116 **(b)**

Given that,
$$x = \left[\frac{a+2b}{a+b}\right]$$
 and $y = \frac{a}{b}$

$$\therefore \quad x = \frac{a+2b}{a+b} = \frac{\frac{a}{b}+2}{1+\frac{a}{b}} = 1 + \frac{1}{\frac{a}{b}+1}$$

$$\Rightarrow \quad x = 1 + \frac{1}{y+1} \quad [\because y = \frac{a}{b} \text{ and } y^2$$

$$> 2 \text{ (given)}]$$
Which shows $x^2 < 2$

$$\left[\because \frac{1}{y+1} < \text{as } y > 1\right]$$

117 (c)

Using A. M. \geq G. M., we have $5^{\sin x - 1} + 5^{-\sin x - 1} \ge 2\sqrt{5^{\sin x - 1} \times 5^{-\sin n - 1}}$ $\Rightarrow 5^{\sin x - 1} + 5^{-\sin x - 1} \ge \frac{2}{5}$

118 (d)
As we know, if
$$ax + bx + c > 0$$
, then $a > 0$ and
 $D < 0$
 $\therefore (2)^2 - 4(n - 10) < 0 \Rightarrow n > 11$
119 (a)
Since, $AM \ge GM$
 $\Rightarrow \frac{bcx + cay + abz}{3} \ge (a^2b^2c^2 \cdot xyz)^{1/3}$
 $\Rightarrow bcx + cay + abz \ge 3 abc \quad (\because xyz = abc)$
120 (b)
Since, $\frac{(1+a_1)}{2} \ge \sqrt{1 \cdot a_1} = \sqrt{a_1}$
 $\frac{(1 + a_2)}{2} \ge \sqrt{1 \cdot a_2} = \sqrt{a_2}$
 \vdots \vdots
 $\frac{(1 + a_n)}{2} \ge \sqrt{1 \cdot a_n} = \sqrt{a_n}$
 $\Rightarrow \frac{1}{2^n}(1 + a_1)(1 + a_2) \dots (1 + a_n) \ge \sqrt{a_1a_2 \dots a_n}$
 $= 1$
 $\Rightarrow (1 + a_1)(1 + a_2) \dots (1 + a_n) \ge 2^n$
121 (a)
Using A. M. \ge G. M., we have
 $a + b \ge 2\sqrt{ab}, b + c \ge 2\sqrt{bc}$ and $c + a \ge 2\sqrt{ca}$
 $\Rightarrow (a + b)(b + c)(c + a) \ge 8abc$
 $\Rightarrow (2 - a)(2 - b)(2 - c)$
 $\ge 8abc [\therefore a + b + c = 2]{(x + b + c)^2 + (x^2 - a)^2} \ge (\frac{x^2 + y^2 + x^2}{x})^{3/2}$
We have, $x^2 + y^2 + z^2 = 27$
Now,
 $\frac{(x^2)^{3/2} + (y^2)^{3/2} + (z^2)^{3/2}}{3} \ge (\frac{x^2 + y^2 + x^2}{x})^{3/2}$

23 (c)
Given,
$$2x - 7 < 11, 3x + 4 < -5$$

 $\Rightarrow x < 9, x < -3$
 $\Rightarrow x < -3$
 $\therefore x$ lies in the interval $(-\infty, -3)$
24 (c)
Let
 $f(x) = x^8 - x^5 - \frac{1}{x} + \frac{1}{x^4} = \frac{x^{12} - x^9 - x^3 + 1}{x^4}$
 $= \frac{(x^9 - 1)(x^3 - 1)}{x^4}$

Clearly, $f(x) \ge 0$ for all x < 0 and it is not defined

for
$$x = 0$$

For $0 < x < 1$, we have
 $x^9 - 1 < 0$ and $x^3 - 1 < 0 \Rightarrow f(x) > 0$
For $x \ge 1$, we have $x^9 - 1 \ge 0$ and $x^3 - 1 \ge 0$
 $f(x) \ge 0$
Hence, $f(x) \ge 0$ for all $x \ne 0$
125 (c)
We have,
 $5^{(1/4)(\log_5 x)^2} \ge 5 x^{(1/5)(\log_5 x)}$
 $\frac{1}{4}(\log_5 x)^2 \log_5 5 \ge \log_5 5 + \frac{1}{5}(\log_5 x) \log_5 x)$
 $\Rightarrow (\log_5 x)^2 \ge 20$
 $\Rightarrow (\log_5 x)^2 - (2\sqrt{5})^2 \ge 0$
 $\Rightarrow \log_5 x \le -2\sqrt{5} \text{ or, } \log_5 x \ge 2\sqrt{5}$
 $\Rightarrow x \le 5^{-2\sqrt{5}} \text{ or, } x \ge 5^{2\sqrt{5}}$
 $\Rightarrow x \le (0, 5^{-2\sqrt{5}})$
 $\cup [5^{2\sqrt{5}}, \infty)$ [log₅ x is defined for $x > 0$]
126 (a)

⇒

We know that.

AM > GM

$$\Rightarrow \frac{a+b}{2} \ge \sqrt{ab}$$
$$\Rightarrow 4 \ge \sqrt{ab} \quad (\because a+b=8 \text{ given})$$
$$\Rightarrow ab \le 16$$

Equality holds when number are equal. So, ab is equal to 16 when a = 4, b = 4

127 **(a)**

Curves $y = \cos x$ and y = -|x| do not intersect. So, the equation $\cos x + |x| = 0$ has no real root

128 **(d)**

Using A. $M \ge G$. M., we have

$$\frac{\cos^3 x}{\sin x} + \frac{\sin^3 x}{\cos x} \ge 2\sqrt{\frac{\cos^3 x}{\sin x} \times \frac{\sin^3 x}{\cos x}} \text{ for all } x$$
$$\in (0, \pi/2)$$
$$\Rightarrow \frac{\cos^3 x}{\sin x} + \frac{\sin^3 x}{\cos x} \ge \sin 2x \text{ for all } x \in (0, \pi/2)$$
$$\Rightarrow \frac{\cos^3 x}{\sin x} + \frac{\sin^3 x}{\cos x} \ge 1 \text{ for all } x \in (0, \pi/2)$$

129 (d) $x^2 + 4ax + 20$ $\therefore (4a)^2 - 4 \times 2 < 0$ [∵ if f(x) > 0, then] ⇒ $16a^2 < 8 \Rightarrow a^2 < \frac{1}{2}$ $\Rightarrow -\frac{1}{\sqrt{2}} < a < \frac{1}{\sqrt{2}}$ 130 **(b)** Using A. M. \geq G. M., we have $\frac{a+b}{2} > \sqrt{ab} \qquad [\because a \neq b]$ $\Rightarrow a + b > 2\sqrt{ab}$ 131 (a) We have. $x^{2} \cdot 2^{x+1} + 2^{|x-3|+2} = x^{2} \cdot 2^{|x-3|+4} + 2^{x-1}$ Now, two cases arise <u>CASE I</u> When $x \ge 3$: In this case, we have |x - 3| = x - 3So, the given equation reduces to $x^2 \cdot 2^{x+1} + 2^{x-1} = x^2 \cdot 2^{x+1} + 2^{x-1}$ Which is an identity in *x* and hence it is true for all $x \ge 3$ <u>CASE II</u> When x < 3: In this case, we have |x - 3| = -(x - 3)So, the given equation reduces to $x^2 \cdot 2^{x+1} + 2^{-x+5} = x^2 \cdot 2^{-x+7} + 2^{x-1}$ $\Rightarrow x^2 2^{x+1} - 2^{x-1} = x^2 \cdot 2^{-x+7} - 2^{-x+5}$ $\Rightarrow 2^{x-1}(4x^2 - 1) = 2^{-x+5}(4x^2 - 1)$ $\Rightarrow 2^{2x}(4x^2 - 1) = 2^6(4x^2 - 1)$ $\Rightarrow (2^{2x} - 2^6)(4x^2 - 1) = 0$ $\Rightarrow 2x = 6 \text{ or, } 4x^2 - 1 = 0$ $\Rightarrow x = 3 \text{ or, } x = \pm \frac{1}{2}$ But, x < 3. Therefore, $x = \pm \frac{1}{2}$ Hence, the given equation has no negative integral root 132 (b) We have, $2^{\sin^2 x} \cdot 3^{\cos^2 y} \cdot 4^{\sin^2 z} \cdot 5^{\cos^2 \omega} \ge 120$ $\Rightarrow 2^{\sin^2 x} \cdot 3^{\cos^2 y} \cdot 4^{\sin^2 z} \cdot 5^{\cos^2 \omega} > 2 \times 3 \times 4 \times 5$ $\Rightarrow \sin^2 x \log 2 + \cos^2 y \log_3 + \sin^2 z \log 4$ $+\cos^2\omega\log 5$ $\geq \log 2 + \log 3 + \log 4 + \log 5$ $\Rightarrow \cos^2 x \log 2 + \sin^2 y \log 3$ $+\cos^2 z \log 4 + \sin^2 \omega \log 5 \le 0$ $\Rightarrow \cos^2 x = 0, \sin^2 y$ = 0 $= 0, \cos^2 z = 0$ and $\sin^2 \omega = 0$ $\Rightarrow x = m\pi \pm \frac{\pi}{2}, m \in Z; y = n\pi, n \in Z$

 $z = r\pi \pm \frac{\pi}{2}, r \in Z; \ \omega = t \ \pi, t \in Z$ But, $x, y, z, \omega \in [0, 10]$ $\therefore x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, y = 0, \pi, 2\pi, 3\pi, z = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}$ and $\omega = 0, \pi, 2\pi, 3\pi$ Hence, the number of ordered 4-tuples is $3 \times 4 \times 3 \times 4 = 144$

133 (d)

We have, $\log_b a + \log_a b + \log_d c + \log_c d$ $= \left(\log_b a + \frac{1}{\log_b a}\right) + \left(\log_d c + \frac{1}{\log_d c}\right) \ge 2 + 2$ = 4

134 **(c)**

We have,

$$\log_{1/3}(2^{x+2} - 4^x) \ge -2$$

$$\Rightarrow 2^{x+2} - 4^x \le \left(\frac{1}{3}\right)^{-2} \text{ and } 2^{x+2} - 4^x > 0$$

$$\Rightarrow 4(2^x) - (2^x)^2 \le 9 \text{ and } 2^x(2^2 - 2^x) > 0$$

$$\Rightarrow (2^x)^2 - 4(2^x) + 9 \ge 0 \text{ and } 2^x < 2^2$$

$$\Rightarrow x < 2 \ [\because (2^x)^2 - 4(2^x) + 9 > 0 \text{ for all } x \in R]$$

$$\Rightarrow x \in (-\infty, 2)$$

135 (c)

Given,
$$\frac{2x}{(2x+1)(x+2)} - \frac{1}{(x+1)} > 0$$

 $\Rightarrow \frac{-3x-2}{(x+1)(x+2)(2x+1)} > 0$
Equating each factor equal to 0, we have
 $x = -2, -1, -\frac{2}{3}, -\frac{1}{2}$
It is clear $-\frac{2}{3} < x < -\frac{1}{2}$ or $-2 < x < -1$

136 (b)

We observe that the curves $y = \log_2 x$ and y = -|x| intersect at exactly one point. So, the equation $\log_2 x + |x| = 0$ has exactly one real root

137 (a) Using A. M. \geq G. M., we have $\frac{bcx + cay + abz}{3} \geq (bcx \times cay \times abz)^{1/3}$ $\Rightarrow bcx + cay + abz \geq 3(a^2b^2c^2 \times xyz)^{1/3}$ $\Rightarrow bcx + cay + abz \geq 3abc \qquad [\because xyz = abc]$

We have,

$$\sqrt{3x^2 + 6x + 7} + \sqrt{5x^2 + 10x + 14}$$

 $\leq 4 - 2x - x^2$
 $\Rightarrow \sqrt{3(x + 1)^2 + 4} + \sqrt{5(x + 1)^2 + 9}$
 $\leq (x + 1)^2 + 5$

Clearly, LHS \geq 5 and LHS \leq 5 So, the inequation holds when each side is equal to 5

This is true when x = -1

Hence, the given inequation has exactly one solution

139 **(b)**

Let $a_1, a_2, a_3, \dots, a_n$ be the lengths of *n* parts of the stick. Then,

$$a_1 + a_2 + a_3 + \dots + a_n = 20$$
 and $a_1 a_2 a_3 \dots a_n > 1$
Now, A. M. \geq G. M.

$$\Rightarrow \frac{a_1 + a_2 + \dots + a_n}{a_n} \ge (a_1 a_2 \dots a_n)^{1/n}$$
$$\Rightarrow \frac{20}{n} > 1 \Rightarrow n < 20$$

 \therefore Maximum possible value of *n* is 19

140 **(b)**

$$\therefore$$
 AM > GM

$$\frac{(a+b-c)+(b+c-a)}{2} > \sqrt{(a+b-c)(b+c-a)}$$

$$\Rightarrow b > \sqrt{(a+b-c)(b+c-a)} \quad ...(i)$$

Similarly,

$$\frac{(b+c-a)+(c+a-b)}{2} > \sqrt{(b+c-a)(c+a-b)}$$

$$\Rightarrow c > \sqrt{(b+c-a)(c+a-b)} \quad \dots (ii)$$
and
$$\frac{(c+a-b)+(a+b-c)}{2} > \sqrt{(c+a-b)(a+b-c)}$$

$$\Rightarrow a > \sqrt{(c+a-b)(a+b-c)} \quad \dots (iii)$$
On multiplying relations (i), (ii) and (iii), we get
$$abc > (a+b-c)(b+c-a)(c+a-b)$$

$$\Rightarrow (a+b-c)(b+c-a)(c+a-b) - abc < 0$$

141 **(c)**

We have, $\log_{16} x^3 + (\log_2 \sqrt{x})^2 < 1$ $\Rightarrow \frac{3}{4} \log_2 x + \frac{1}{4} (\log_2 x)^2 < 1$ $\Rightarrow (\log_2 x)^2 + 3 \log_2 x - 4 < 0$ $\Rightarrow (\log_2 x + 4)(\log_2 x - 1) < 0$ $\Rightarrow -4 < \log_2 x < 1 \Rightarrow 2^{-4} < x < 2 \Rightarrow x$ $\in (1/16, 2)$ Also, LHS of the given inequality is defined fro x > 0Hence, $x \in (1/16, 2)$

142 **(b)**

Since, $\sin x \le \cos^2 x$, becuase $\cos x$ must be a positive proper fraction

$$\sin^2 x + \sin x - 1 \le 0$$

$$\operatorname{Or}\left(\sin x + \frac{1}{2}\right)^2 - \frac{5}{4} \le 0$$

From the definition of logarithm

 $\sin x > 0, \cos x > 0, \cos x \neq 1$

 $\therefore \sin x + \frac{1}{2} \le \frac{\sqrt{5}}{2},$ $\Rightarrow 0 < \sin x \le \frac{\sqrt{5} - 1}{2}$

143 **(d)**

If $f(x) = x^2 + 2bx + 2c^2$ and $g(x) = -x^2 - 2c^2$ $2cx + b^2$ Then, f(x) is minimum and g(x) is maximum at $f(x) = \frac{-D}{4a}$, $\left(\because x = -\frac{-b}{a} \text{ and } f(x) = \frac{-D}{4a}\right)$ $\therefore \min\{f(x)\} = \frac{-(4b^2 - 8c^2)}{4} = (2c^2 - b^2)$ And $\max\{g(x)\} = -\frac{(4c^2+4b^2)}{4(-1)} = (b^2 + c^2)$ Since, $\min f(x) > \max g(x) \Rightarrow 2c^2 - b^2 > b^2 +$ с2 $c^2 > 2b^2 \Rightarrow |c| > \sqrt{2}|b|$ ⇒ 144 (a) We have, [x] + (x) = 5If $x \le 2$, then $[x] + (x) \le 2 + 2 < 5$ If $x \ge 3$, then $[x] + (x) \ge 3 + 3 > 5$ If 2 < x < 3, then [x] + (x) = 2 + 3 = 5Hence, the solution set is (2, 3)145 (a) We have, $|x - x^2 - 1| = |2x - 3 - x^2|$ $\Rightarrow |x^2 - x + 1| = |x^2 - 2x + 3|$ $\Rightarrow x^2 - x + 1$ $= x^{2} - 2x + 3$ $\begin{bmatrix} \because x^{2} - x + 1 > 0 \\ and x^{2} - 2x + 3 > 0 \text{ for all } x \end{bmatrix}$ $\Rightarrow x = 2$ 146 **(a)**

Given, $\frac{|x-1|}{x+2} - 1 < 0$ Case I When x < 1, |x - 1| = 1 - x $\therefore \frac{1-x}{x+2} - 1 < 0 \Rightarrow \frac{-2x-1}{x+2} < 0$ $\Rightarrow \frac{2x+1}{x+2} > 0 \Rightarrow x < -2 \text{ or } x > -\frac{1}{2}$ But x < 1 $\therefore x \in (-\infty, -2) \cup \left(-\frac{1}{2}, 1\right)$ Case II When $x \ge 1$, |x - 1| = x - 1 $\therefore \frac{x-1}{x+2} - 1 < 0 \implies -\frac{3}{x+2} < 0$ $\Rightarrow \frac{3}{x+2} > 0$ $\Rightarrow x > -2$ But $x \ge 1$ $\therefore x \ge 1$, ie, $x \in [1, \infty)$...(iii) ∴ From Eqs. (i) and (ii), we get $x \in (-\infty, -2) \cup \left(-\frac{1}{2}, \infty\right)$ 147 (d) Given that, $\frac{x+2}{x^2+1} > \frac{1}{2}$ $\Rightarrow x^2 - 2x - 3 < 0$ $\Rightarrow (x-3)(x+1) < 0$ $\Rightarrow -1 < x < 3$ The integer value of *x* are 0, 1, 2 : The number of integral solutions are 3 148 **(b)** $\because \tan\left(x + \frac{\pi}{2}\right) \ge 1 \Rightarrow \frac{\pi}{4} \le x + \frac{\pi}{2} < \frac{\pi}{2}$ $\Rightarrow -\frac{\pi}{12} \le x < \frac{\pi}{6}$ $\Rightarrow n\pi - \frac{\pi}{12} \le x \le n\pi + \frac{\pi}{6}$ 149 (c) We have, $\frac{1 + (\log_a x)^2}{1 + \log_a x} > 1$ $\Rightarrow \frac{1 + (\log_a x)^2}{1 + \log_a x} - 1 > 0$ $\Rightarrow \frac{(\log_a x)(\log_a x - 1)}{(1 + \log_a x)} > 0$ $\Rightarrow -1 < \log_a x < 0$ or, $\log_a x > 1$ $\Rightarrow a^{-1} > x > a^0$ or, $x < a \quad [:: 0 < a < 1]$ $\Rightarrow x \in (1, 1/a) \cup (0, a) \qquad [\because a > 0]$ 150 **(b)** We have, $x = \frac{y+2}{y+1}$

$$\Rightarrow y = \frac{2-x}{x-1}$$
$$\Rightarrow \left(\frac{2-x}{x-1}\right)^2 > 2 \qquad [\because y^2 > 2]$$
$$\Rightarrow (2-x)^2 > 2(x-1)^2 \Rightarrow x^2 < 2$$
1 (a)

Let
$$x = y - \frac{3\pi}{4}$$
. Then,
 $\sin x = -\left(\frac{\cos y + \sin y}{\sqrt{2}}\right)$ and $\cos x$
 $= -\left(\frac{\cos y - \sin y}{\sqrt{2}}\right)$

 $\Rightarrow \sin x + \cos x = -\sqrt{2} \cos y \text{ and } \sin x \cos x = 12(2\cos 2y - 1)$

Now,

15

 $|\sin x + \cos x + \tan x + \sec x + \csc x + \cot x|$ $= |(\sin x + \cos x) + (\tan x + \cot x) + (\sec x + \csc x)|$ $= |(\sin x + \cos x) + \frac{1}{\sin x \cos x} + \frac{\sin x + \cos x}{\sin x \cos x}|$ $= |(\sin x + \cos x) \left(1 + \frac{1}{\sin x \cos x}\right) + \frac{1}{\sin x \cos x}|$ $= |-\sqrt{2} \cos y \left(1 + \frac{2}{2 \cos^2 y - 1}\right) + \frac{2}{2 \cos^2 y - 1}|$ $= |-\sqrt{2} \cos y - \frac{2(\sqrt{2} \cos y - 1)}{2 \cos^2 y - 1}|$ $= |-\sqrt{2} \cos y - \frac{2}{\sqrt{2} \cos y + 1}|$ $= |\sqrt{2} \cos y + \frac{2}{\sqrt{2} \cos y + 1}|$ $= |\lambda + \frac{2}{\lambda + 1}|, \text{ where } \lambda = \sqrt{2} \cos y$ $= |(\lambda + 1) + \frac{2}{\lambda + 1} - 1| \ge |(\lambda + 1) + \frac{2}{(\lambda + 1)}| - 1$ $\ge 2\sqrt{(\lambda + 1) \times \frac{2}{(\lambda + 1)}} - 1 = 2\sqrt{2} - 1 \text{ [Using AM}$ $\ge \text{GM]}$

$$\frac{9 \cdot 3^{2x} - 6 \cdot 3^{x} + 4}{9 \cdot 3^{2x} + 6 \cdot 3^{x} + 4} = \frac{(3^{(x+1)})^{2} - 2(3^{(x+1)}) + 4}{(3^{(x+1)})^{2} + 2(3^{(x+1)}) + 4}$$
$$= \frac{t^{2} - 2t + 4}{t^{2} + 2t + 4} \quad \text{(where } t = 3^{x+1}) \dots\text{(i)}$$
Since, $\frac{1}{3} < \frac{x^{2} - 2x + 4}{x^{2} + 2x + 4} < 3$

∴ From Eq.(i), the given expression lies between 1/3 and 3

153 (c) Using A. M.
$$\geq$$
 G. M., we have

$$4^{x} + 4^{1-x} \ge 2\sqrt{4^{x} \times 4^{1-x}} \Rightarrow 4^{x} + 4^{1-x} \ge 4$$

154 **(b)**

We have,

$$3^{-|x|} - 2^{|x|} = 0 \Rightarrow 3^{-|x|} = 2^{|x|} \Rightarrow 6^{|x|} = 1 \Rightarrow x$$

 $= 0$

We have,

$$P \le (x_1 + x_2 + \dots + x_{n-1})(x_2 + x_4 + x_6 + \dots + x_n)$$

 $\Rightarrow P \le \frac{1}{4}(x_1 + x_2 + \dots + x_n)^2 = \frac{1}{4}$

157 **(b)**

We observe that $y = e^{-x}$ and y = x intersect at exactly one point. So, the equation $e^{-x} = x$ has exactly one real root:

158 **(b)**

We have,

$$3^{x} + 3^{1-x} - 4 < 0$$

 $\Rightarrow (3^{x})^{2} - 4(3^{x}) + 3 < 0$
 $\Rightarrow (3^{x} - 1)(3^{x} - 3) < 0$
 $\Rightarrow 1 < 3^{x} < 3 \Rightarrow 0 < x < 1 \Rightarrow x \in (0, 1)$
160 (c)
We know that $x + \frac{1}{2} \ge 2$ for all $x > 0$

 $\therefore \sin^{5} \theta + \csc^{5} \theta \ge 2 \text{ for } 0 < \theta < \pi$ Hence, the minimum value of $\sin^{5} \theta + \csc^{5} \theta$ is 2

