

13.KINETIC THEORY

Single Correct Answer Type

1.	The speeds of 5 molecules of these molecules is	of a gas (in arbitrary units) and	re as follows: 2,3,4,5,6. The	root mean square speed for		
	a) _{2.91}	b) _{3.52}	^{c)} 4.00	d) _{4.24}		
2.	The rate of cooling at 600 H	K, if surrounding temperature	e is 300 K is R . The rate of co	ooling at 900 K is		
	a) $\frac{16}{3}R$	b) _{2 <i>R</i>}	c) _{3 <i>R</i>}	d) $\frac{2}{3}R$		
3.	For a diatomic gas change is respectively. $U_1: U_2$ is	n internal energy for unit cha	ange in temperature for const	ant volume is U_1 and U_2		
	^{a)} 5:3	^{b)} 3:5	c) 1:1	d) 5:7		
4.	The temperature of a piece increased to	of metal is increased from 2	7°C to 84°C. The rate at whi	ich energy is radiated is		
	a) Four times	b) Two times	c) Six times	d) Eight times		
5.	The kinetic energy of transl $8.3 J/mol/K$)	ation of $20 g$ of oxygen at 4	7 °C is (molecular wt. of oxy	gen is $32g/moland R =$		
	^{a)} 2490 joules	^{b)} 2490 ergs	c) 830 joules	^{d)} 124.5 <i>joules</i>		
6.	Two thermally insulated ver	ssels 1 and 2 are filled with a	ir at temperatures (T_1, T_2) ve	olume (V_1, V_2) and pressure		
	(P_1, P_2) respectively. If the equilibrium will be	e valve joining the two vessel	s is opened, the temperature	inside the vessel at		
	a) $T_1 + T_2$	b) $(T_1 + T_2)/2$	c) $\frac{T_1 T_2 (P_1 V_1 + P_2 V_2)}{P_1 V_1 T_2 + P_2 V_2 T_1}$	d) $\frac{T_1 T_2 (P_1 V_1 + P_2 V_2)}{P_1 V_1 T_1 + P_2 V_2 T_2}$		
7.	The pressure and volume of thereby volume becomes V	f saturated water vapour are 1/2, the final pressure will be	P and V respectively. It is co	mpressed isothermally		
	a) More than 2 P	b) _P	c) _{2 P}	d) ₄ _P		
8.	At which temperature the v	elocity of O_2 molecules will	be equal to the velocity of N	$_2$ molecules at 0 °C		
	a) 40 °C	b) 93 ℃	c) <u>39</u> ℃	d) Cannot be calculated		
9.	Kinetic theory of gases prov	Kinetic theory of gases provide a base for				
	a) Charle's law		b) Boyle's law			
	c) Charle's law and Boyle's	law	d) None of these			
10.	The time average of the kinetic energy of one molecule of a gas taken over a long period of time					
	a) Is proportional to the square root of the absolute temperature of the gas					
	b) Is proportional to the absolute temperature of the gas					
	c) Is proportional to the squ	are of the absolute temperat	ure of the gas			
	d) Does not depend upon the	ne absolute temperature of th	e gas			
11.	Kinetic theory of gases was	put forward by				
	a) Einstein	b) Newton	c) Maxwell	d) Raman		
12.	In kinetic theory of gases, v	which of the following statem	ents regarding elastic collision	ons of the molecules is wrong		

	a) Kinetic energy is lost in collisions		
	b) Kinetic energy remains constant in collision		
	c) Momentum is conserved in collision		
	d) Pressure of the gas remains constant in collisions		
13.	If γ is the ratio of specific heats and R is the unit constant volume C_{γ} is given by a) $_{\gamma R}$ b) $\frac{(\gamma - 1)R}{(\gamma - 1)R}$	iversal gas constant, then th	e molar specific heat at d) $\underline{\gamma R}$
14.	The variour of a substance behaves as a gas	γ-1	γ - 1
	a) Below critical temperature	b) Above critical tempe	rature
		d) . 1000 cc	
15.	If the temperature of an ideal gas increases three tim	At 1000 °C	become
101	a) $\sqrt{2}$ b) 3 times	c) One third	d) Remains same
16	The relationship between pressure and the density of $\sqrt{3}$ times	f a gas expressed by Boyle's la	P = KD holds true
10.	a) For any gas under any conditions	h) For some gases under	$r_{\rm anv}$ conditions
	c) Only if the temperature is kent constant	d) Only if the density is	constant
17	ej oniy il the temperature is kept constant	1	constant
17.	If the ratio of vapour density for hydrogen and oxyg	en is $\frac{1}{16}$, then under constant	t pressure the ratio of their rms
	velocities will be a) $\frac{4}{1}$ b) $\frac{1}{4}$	c) $\frac{1}{16}$	d) <u>16</u> 1
18.	The gases carbon-monoxide (CO) and nitrogen	at the same temperature ha	ve kinetic energies $E_1 \wedge E_2$
	respectively. Then a) $E_1 = E_2$	b) $E_1 > E_2$	
	c) $E_1 < E_2$	d) E_1 and E_2 cannot be	compared
19.	What is the mass of 2 L of nitrogen at 22.4 atm	pressure and 273 K?	
	a) 28 g b) $_{14} \times 22.4$ g	c) 56 g	d) None of these
20.	The average kinetic energy of a gas molecules is	S	
	a) Proportional to pressure of gas	b) Inversely proportion	nal to volume of gas
	c) Inversely proportional to absolute temperatur gas	e of d) Directly proportion gas	al to absolute temperature of
21.	The adjoining figure shows graph of pressure and vo following inferences is correct $P = \frac{1}{T_1} + $	olume of a gas at two tempera	tures T_1 and T_2 . Which of the
	a) $T_1 > T_2$	b) $T_1 = T_2$	

d) No interference can be drawn

c) $T_1 < T_2$

22.	At room temperature $(27^{\circ}C^{i})$ the rms speed of the molecules of a certain diatomic gas is found to be 1920 m s^{-1} .				
	The gas is	b) e	c)	d)	
	a) Cl_2	O_{O_2}	V_{N_2}	$^{\text{u}}H_2$	
23.	At a given temperature, the	pressure of an ideal gas of d	ensity ρ is proportional to		
	a) $\frac{1}{\rho^2}$	b) <u>1</u> ρ	c) ρ^2	d) _p	
24.	Temperature remaining c volume	constant, the pressure of ga	s is decreased by 20%. Th	e percentage change in	
	a) Increases by 20%	b) Decreases by 20%	c) Increases by 25%	d) decreases by 25%	
25.	The rms velocity of gas n	nolecules is $300 m s^{-1}$. The	rms velocity of molecules	of gas with twice the	
	a) $300 ms^{-1}$	b) $600 m s^{-1}$	c) $75 m s^{-1}$	d) $150 m s^{-1}$	
26.	A jar contains a gas and few temperature of jar is reduce and $25 mm$ of mercury. The	v drops of water at TK . The ed by 1%. The saturated vapore of the new pressure in the jac	e pressure in the jar is $830 m$ pur pressure of water at the tw r will be	<i>m</i> of mercury. The wo temperatures are 30 <i>mm</i>	
	^{a)} 917 mm of Hg	b) 717 mm of Hg	c) 817 mm of Hg	d) None of these	
27.	The gas equation $\frac{PV}{T} = i c$	onstant is true for a constant	mass of an ideal gas undergo	ping	
	a) Isothermal change	b) Adiabatic change	c) Isobaric change	d) Any type of change	
28.	The pressure and temperatukeeping the same volume and	the of two different gases is <i>H</i> and temperature, the pressure	P and T having the volume V of the mixture will be	for each. They are mixed	
	^a) P/2	ы) <u>Р</u>	C) 2 P	^{u)} 4 P	
29.	Vessel A is filled with hydroxygen at the same temperation $A = A + A + A + A + A + A + A + A + A + $	ogen while vessel B , whose ture. The ratio of the mean B	volume is twice that of A , is kinetic energies of hydrogen	filled with the same mass of and oxygen is	
20	^w 16:1	² , 1:8	9 8:1	⁽¹⁾ 1:1	
30.	oxygen molecules at 900 K	will be	00 K is 1930 m/s. Then the	1020	
	a) 1930 $\sqrt{3} m/s$	^{b)} 836 m/s	c) 63 <i>m</i> /s	d) $\frac{1930}{\sqrt{3}}$ m/s	
31.	A cylinder rolls without slip	pping down an inclined plane	, the number of degrees of fr	reedom it has, is	
	a) 2	b) 3	c) 5	d) 1	
32.	Two spheres made of same radiation energy emitted per $a > 1 + 2$	material have radii in the rat r second by them is b) $1 \cdot 4$	io1:2. Both are at same tem	d) 1 · 16	
22		V = 1040 m/s	-2^{-2}	3	
33.	If $r.m.s.$ velocity of a gas be	$_{18}$ V $_{rms}$ – 1040 m/s and its c	lensity $\rho = 8.99 \times 10^{-2} kg/m$	n° , the pressure of the gas will	
	a) $1.01 N/m^2$	b) $1.01 \times 10^3 N/m^2$	c) $1.01 \times 10^5 N/m^2$	d) $1.01 \times 10^7 N/m^2$	
34.	An ideal gas ($\gamma = 1.5$) is e	xpanded adiabatically. Ho	w many times has the gas	to be expanded to reduce	
	a) 4 times	b) 16 times	es? c) 8 times	d) 2 times	
35.	The quantity of heat require	ed to raise one mole through	one degree kelvin for a mono	patomic gas at constant	
	a) $\frac{3}{2}R$	b) $\frac{5}{2}R$	c) $\frac{7}{2}R$	d) _{4 R}	

same temperature. b) 1:8 c) 1:2 d) 1:6 a) 1:4 37. At constant pressure, the ratio of increase in volume of an ideal gas per degree rise in kelvin temperature to it's original volume is (T = i absolute temperature of the gas)b) _T d) $\frac{1}{T^2}$ c) 1/Ta) T^{2} 38. Pressure versus temperature graphs of an ideal gas are as shown in figure. Choose the wrong statement Ρ Т Т т (ii) (iii) b) Density of gas is decreasing in graph (ii) a) Density of gas is increasing in graph (i) c) Density of gas is constant in graph (iii) d) None of these 39. A body takes 10 min to cool from 60°C to 50°C. If the temperature of surroundings is 25°C and 527°C respectively. The ratio of energy radiated by $P \wedge Q$ is c) 49°C d) $_{42.85}$ °C a) _{48°C} b) $_{46}$ °C 40. A cylinder of radius r and thermal conductivity K_1 is surrounded by a cylindrical shell of linear radius r and outer radius 2r, whose thermal conductivity is K_2 . There is no loss of heat across cylindrical surfaces, when the ends of the combined system are maintained at temperatures $T_1 \wedge T_2$. The effective thermal conductivity of the system, in the steady state is a) $\frac{K_1 K_2}{K_1 + K_2}$ c) $\frac{K_1 + 3K_2}{4}$ d) $\frac{3K_1 + K_2}{4}$ b) $K_1 + K_2$ 41. A gaseous mixture consists of 16 g of helium and 16 g of oxygen. The ratio $\frac{C_P}{C_V}$ of the mixture is a) 1.4 b) 1.54 c) 1.59 d) 1.62 42. Mean free path of a gas molecule is a) Inversely proportional to number of molecules per unit volume b) Inversely proportional to diameter of the molecule c) Directly proportional to the square root of the absolute temperature d) Directly proportional to the molecular mass 43. The value of densities of two diatomic gases at constant temperature and pressure are d_1 and d_2 , then the ratio of speed of sound in these gases will be c) $\sqrt{d_1/d_2}$ d) $\sqrt{d_1 d_2}$ b) $\sqrt{d_2/d_1}$ a) $d_1 d_2$ 44. If the internal energy of n_1 moles of He at temperature 10 T is equal to the internal energy of n_2 mole of hydrogen at temperature 6 T. the ratio of $\frac{n_1}{n_2}$ is a) <u>3</u> b) 2 c) 1 d) <u>5</u> 3 45. The heat capacity per mole of water is (R is universal gas constant) b) $\frac{9}{2}R$ c) 6Rd) 5Ra) _{9 R}

36. Calculate the ratio of rms speeds of oxygen gas molecules to that of hydrogen gas molecules kept at the

46. If number of molecules of H_2 are double than that of O_2 , then ratio of kinetic energy of hydrogen and that of

	over at $300 K$ is			
	a) 1:1	b) _{1:2}	c) _{2:1}	d) _{1:16}
47.	According to the kinetic	theory of gases, the temper	rature of a gas is a measure	e of average
	a) Velocities of its molec	ules	b) Linear momenta of its	molecules
	c) Kinetic energies of its	molecules	d) Angular momenta of it	ts molecules
48.	Air is filled in a bottle at atra atmospheric pressure than u a) 325.5 °C	nospheric pressure and it is c ipto what temperature should b) 851 °C	corked at $35 ^{\circ}C$. If the cork c I the bottle be heated in order c) $651 ^{\circ}C$	can come out at 3 to remove the cork d) None of these
49.	The temperature at which that an electron in accelerating fraction a $4.6 \times 10^{3} K$	The average translational kinet from rest through a potential b) $11.6 \times 10^3 K$	ic energy of a molecule is eq difference of 1 volt is c) $23.2 \times 10^3 \text{ K}$	ual to the energy gained by d) $7.7 \times 10^3 K$
50.	The average momentum of	a molecule in an ideal gas de	pends on	
	a) Temperature	b) Volume	c) Molecular mass	d) None of these
51.	If pressure of CO_2 (real gas	s) in a container is given by ¹	$P = \frac{RT}{2V-b} - \frac{a}{4b^2}$, then mass	ss of the gas in container is
	a) 11 <i>g</i>	b) ₂₂ g	c) _{33 g}	d) ₄₄ g
52.	For an ideal gas of diatomic	e molecules		
	a) $C_p = \frac{5}{2}R$	b) $C_v = \frac{3}{2}R$	c) $C_p - C_v = 2R$	d) $C_p = \frac{7}{2}R$
53.	What is the value of $\frac{R}{C_{\rm p}}$ for	r diatomic gas		
	a) 3/4	b) _{3/5}	c) _{2/7}	d) _{5/7}
54.	When volume of system is i	increased two times and temp	perature is decreased half of i	its initial temperature, then
	pressure becomes a) 2 times	b) 4 times	c) $\frac{1}{4} \times i$	d) $\frac{1}{2} \times i$
55.	A vessel of volume 4 L con The pressure exerted by the	tains a mixture of 8 g of oxy; mixture is	gen, 14 g of nitrogen and 22	g of carbon dioxide at $27^{\circ}C$.
	^{a)} $5.79 \times 10^5 N m^{-2}$	b) $6.79 \times 10^5 N m^{-2}$	c) $7.79 \times 10^3 N m^{-2}$	d) $7.79 \times 10^5 N m^{-2}$
56.	$2g$ of O_2 gas is taken at 27	$^{\circ}C$ and pressure 76 cm. Hg	. Find out volume of gas (in l	litre)
	a) 1.53	b) 2.44	c) 3.08	d) 44.2
57.	When an air bubble of radiu pressure of the atmosphere surface tension is neglected	as 'r' rises from the bottom is equal to the $10m$ height o , the depth of the lake is	to the surface of a lake, its ra f water column). If the tempe	dius becomes $5r/4$ (the erature is constant and the
	a) 3.53 <i>m</i>	^{b)} 6.53 <i>m</i>	c) 9.53 <i>m</i>	d) 12.53 <i>m</i>
58.	At what temperature will	the rms speed of air mole	cules be double than that a	t NTP?
	^{a)} 519℃	^{b)} 619℃	c) ₇₁₉ ℃	d) _{819°C}
59.	The kinetic energy per g me	ol for a diatomic gas at room	temperature is	
	a) 3 RT	b) $\frac{5}{2}RT$	c) $\frac{3}{2}RT$	d) $\frac{1}{2}RT$

60. The average kinetic energy of a gas at $-23 \,^{\circ}C$ and $75 \, cm$ pressure is $5 \times 10^{-14} \, erg$ for H_2 . The mean kinetic energy of the O_2 at 227 $^{\circ}C$ and 150 cm pressure will be

- a) $\sqrt{2}:1$ b) $1:\sqrt{2}$ c) 1:2 d) 2:1
- 65. A vessel contains 14 g (7 moles) of hydrogen and 96 g (9 moles) of oxygen at STP. Chemical reaction is induced by passing electric spark in the vessel till one of the gases is consumed. The temperature is brought back to it's starting value 273 K. The pressure in the vessel is

66. When the temperature of a gas is raised from 27 °C to 90 °C, the percentage increase in the *r*.*m*.*s*. velocity of the molecules will be
a) 10%
b) 15%
c) 20%
d) 17.5%

67. One litre of oxygen at a pressure of 1 atm and two litres of nitrogen at a pressure of 0.5 atm, are introduced into a vessel of volume 1 L. If there is no change in temperature, the final pressure of the mixture of gas (in atm) is

a) 1.5
b) 2.5
c) 2
d) 4

68. The power radiated by a black body is P, and it radiates maximum energy around the wavelength λ₀. If the temperature of black body is now changed so that it radiates maximum energy around a wavelength λ₀/4, the power radiated by it will increase by a factor of

a) 4/3
b) 16/9
c) 64/27
d) 256/81

69. Figure shows two flasks connected to each other. The volume of the flask 1 is twice that of flask 2. The system is filled with an ideal gas at temperature 100 K and 200 K respectively. If the mass of the gas in 1 be *m* then what is the mass of the gas in flask 2

70. Under constant temperature, graph between P and 1/V is

71. A gas mixture consists of molecules of type 1,2 and 3, with molar masses $m_1 > m_2 > m_3$. V_{rms} and K are the r.m.s. speed and average kinetic energy of the gases. Which of the following is true a) $(V_{rms}) = (V_{rms}) = (V_{rms$

b)
$$(V_{rms})_1 < (V_{rms})_2 < (V_{rms})_3$$
 and $(K)_1 = (K)_2 = (K_3)$
b) $(V_{rms})_1 = (V_{rms})_2 \le (V_{rms})_3$ and $(K)_1 = (K)_2 > (K)_3$
c) $(V_{rms})_1 > (V_{rms})_2 < (V_{rms})_3$ and $(K)_1 < (K)_2 > (K_3)$

d)
$$(V_{rms})_1 > (V_{rms})_2 > (V_{rms})_3$$
 and $(K)_1 < (K)_2 < (K)_3$

72. The ratio of mean kinetic energy of hydrogen and nitrogen at temperature 300 K and 450 K respectively is

a)
$$_{3:2}$$
 b) $_{2:3}$ c) $_{2:21}$ d) $_{4:9}$

73. Equation of gas in terms of pressure (P), absolute temperature (T) and density (d) is

a)
$$\frac{P_1}{T_1 d_1} = \frac{P_2}{T_2 d_2}$$
 b) $\frac{P_1 T_1}{d_1} = \frac{P_2 T_2}{d_2}$ c) $\frac{P_1 d_2}{T_1} = \frac{P_2 d_1}{T_1}$ d) $\frac{P_1 d_1}{T_1} = \frac{P_2 d_2}{T_2}$

74. On 0 °C pressure measured by barometer is 760 mm. What will be pressure at 100 °C

75. The r.m.s. speed of the molecules of a gas in a vessel is $400 m s^{-1}$. If half of the gas leaks out, at constant temperature, the r.m.s. speed of the remaining molecules will be

a)
$$800 m s^{-1}$$
 b) $400 \sqrt{2} m s^{-1}$ c) $400 m s^{-1}$ d) $200 m s^{-1}$

76. Volume-temperature graph at atmospheric pressure for a monoatomic gas ($V \in m^3$, $T \in Ci$ is

- 77. The temperature of argon, kept in a vessel, is raised by 1 °C at a constant volume. The total heat supplied to the gas is a combination of translation and rotational energies. Their respective shares are a) 60% and 40% b) 40% and 60% c) 50% and 50% d) 100% and 0%
- 78. The molar heat capacity at constant volume of oxygen gas at STP is nearly $\frac{5R}{2}$ and it approaches $\frac{7R}{2}$ as the temperature is increased. This happens because at higher temperature

a) Oxygen becomes triatomic

- b) Oxygen does not behaves as an ideal gas
- c) Oxygen molecules rotate more vigorously
- d) Oxygen molecules start vibrating
- 79. Three containers of the same volume contain three different gases. The masses of the molecules are m_1, m_2 and m_3 and the number of molecules in their respective containers are N_1, N_2 and N_3 . The gas pressure in the containers are P_1, P_2 and P_3 respectively. All the gases are now mixed and put in one of the containers. The pressure P of mixture will be

a)
$$P < (P_1 + P_2 + P_3)$$
 b) $P = \frac{P_1 + P_2 + P_3}{3}$ c) $P = P_1 + P_2 + P_3$ d) $P > (P_1 + P_2 + P_3)$

80. If temperature of gas increases from 27 °C to 927 °C the K.E. will be

a) Double b) Half c) One fourth d) Four times

81. A mixture of 2 moles of helium gas (atomic mass = 4 amu), and 1 mole of argon gas (atomic mass = 40 amu) is

kept at $300 K$ in a conta	iner. The ratio of th	e rms speeds $\left[\frac{V_{rms}(helium)}{V_{rms}(argon)} \right]$	is
a) 0.32	b) 0.45	c) 2.24	d) 3.16

82. The value of the gas constant (R) calculated from the perfect gas equation is 8.32 *joules/g* mole K, whereas its value calculated from the knowledge of C_P and C_V of the gas is 1.98 cal/g mole K. From this data, the value of J is

- 83. S.I. unit of universal gas constant is
 - a) $cal/^{\circ}C$ b) J/mol c) $Jmol^{-1}K^{-1}$ d) J/kg

84. In Boyle's law what remains constant

- a) $_{PV}$ b) $_{TV}$ c) $\frac{V}{T}$ d) $\frac{P}{T}$
- 85. To what temperature should the hydrogen at $327^{\circ}C$ be cooled at constant pressure, so that the root mean square velocity of its molecules becomes half of its previous value? a) $_{-123^{\circ}C}$ b) $_{123^{\circ}C}$ c) $_{-100^{\circ}C}$ d) $_{0^{\circ}C}$
- 86. Two gases *A* and *B* having same pressure *p*, volume *V* and absolute temperature *T* are mixed. If the mixture has the volume and temperature as *V* and *T* respectively, then the pressure of the mixture is a) $_{2p}$ b) $_{p}$ c) $\frac{p}{2}$ d) $_{4p}$

87. The density (ρ) versus pressure (P) of a given mass of an ideal gas is shown at two temperatures T_1 and T_2

P

Then relation between T_1 and T_2 may be

- a) $T_1 > T_2$ b) $T_2 > T_1$ c) $T_1 = T_2$ d) All the three are possible
- 88. The gas in vessel is subjected to a pressure of 20 atmosphere at a temperature $27 \,^{\circ}C$. The pressure of the gas in a vessel after one half of the gas is released from the vessel and the temperature of the remainder is raised by 50 $^{\circ}C$ is

	a) 8.5 <i>atm</i>	b) 10.8 <i>atm</i>	c) 11.7 atm	d) 17 atm
89.	On any planet, the presence	c of atmosphere implies (C_{m}	$=\frac{i}{c}$ root mean square veloci	ty of molecules and $V_{a}=i$
	escape velocity)			
	a) $C_{rms} \ll V_e$	b) $C_{rms} > V_e$	c) $C_{rms} = V_e$	d) $C_{rms} = 0$
90.	The degrees of freedom of	a stationary rigid body about	its axis will be	
	a) One	b) Two	c) Three	d) Four
91.	From the following $V - T$ of $V = \begin{bmatrix} V & P^2 & P^2 \\ P_1 & P_1 & P^2 \\ P_1 & P_1 & P^2 \\ P_1 & P_1 & P^2 \\ P_1 & P^2 & $	diagram we can conclude		
	a) $P_1 = P_2$	b) $P_1 > P_2$	c) $P_1 < P_2$	d) None of these
92.	An electron tube was sealed volume is $100 c m^3$. The number of the sealed search was a search with the search was search was search with the search was search wa	l off during manufacture at a umber of molecules that rema	pressure of $1.2 \times 10^{-7} mm$ of 1.12×10^{-7} mm of 1.2×1	of mercury at 27 °C. Its
	a) 2×10^{16}	b) 3×10^{15}	c) 3.86×10^{11}	d) 5×10^{11}
93.	The average kinetic energy energy of oxygen molecules	of hydrogen molecules at 30 s will be	0K is E . At the same temp	erature, the average kinetic
	a) E/4	^{b)} E/16	c) _E	d) _{4 E}
94.	The temperature of an ideal becomes	l gas is increased from 27 °C	to 927 °C. The root mean s	square speed of its molecules
	a) Twice	b) Half	c) Four times	d) One-fourth
95.	A given mass of a gas is all	owed to expand freely until in	ts volume becomes double. It	f C_b and C_a are the velocities
	of sound in this gas before a	and after expansion respectiv	ely, then C_a is equal to	d) 1 -
	a) $2C_b$	$\sqrt{2C_b}$	C_{b}	$\frac{1}{\sqrt{2}}C_b$
96.	For a gas at a temperature 7	Γ the root-mean-square veloc	ity v_{rms} , the most probable s	peed V_{mp} , and the average
	speed V_{av} obey the relations	ship		D
	a) $v_{av} > v_{rms} > v_{mp}$	$v_{rms} > v_{av} > v_{mp}$	$V_{mp} > V_{av} > V_{rms}$	a) $v_{mp} > v_{rms} > v_{av}$
97.	Two chambers containing <i>n</i>	$m_1 \wedge m_2$ gram of a gas at press	sures $p_1 \wedge p_2$ respectively are	e put in communication with
	each other, temperature rem	naining constant. The commo	on pressure reached will be $m m (n + n)$	n m m n
	a) $\frac{P_1 P_2(m_1 + m_2)}{n_1 m_1 + n_2 m_2}$	b) $\frac{p_1 p_2 m_1}{p_2 m_1 + p_1 m_2}$	c) $\frac{m_1 m_2 (p_1 + p_2)}{n_1 m_2 + n_1 m_2}$	d) $\frac{m_1 m_2 P_2}{n_2 m_1 + n_1 m_2}$
98.	The root mean square speed molecules dissociate into tw	d of the molecules of a diator vo atoms. The new root mean	nic gas is v . When the temp square speed of the atom is	erature is doubled, the
	a) $\sqrt{2v}$	ט _ע	c_{2v}	a_{4v}
99.	The ends of 2 different mat of 1:2 maintained at tempe	terials with their thermal con erature difference. If the rate	ductivities, radii of cross sec of the flow of heat in the lon	tion and length all in the ratio ager rod is $4 \text{ cal } s^{-1}$, that in the
	shorter rod in $cals^{-1}$ will be			
	a) 1	bJ 2	cJ 8	d] 6
100	An experiment is carried or	h a fixed amount of gas at different difference $\frac{P}{P}$	Ferent temperatures and at hi $\frac{V}{V}$ with P is shown in the di	gh pressure such that it
	ueviales monitule ideal gas	\overline{R}	T	agrann. The correct variation
	will correspond to			

Page | 10

	a) _{1:1}	b) 1:2	c) _{2:1}	d) _{4:1}
113	• Suppose ideal gas equation respectively. If gas expands a) T	follows $V P^3 = i$ constant. In to 27 V then its temperature b) 9 T	iitial temperature and volume e will become c) $_{27 T}$	e of the gas are T and V d) $T/9$
114	. For ideal gas, which statem	ent is not true		
	a) It obeys Boyle's law		b) If follows $PV = RT$	
	c) Internal energy depends	on temperature only	d) It follows Vander-Waal's	s equation
115	$\frac{1}{2}$ mole of helium gas is congas, keeping the volume con	ntained in a container at S.T.I nstant (specific heat of the ga	P. The heat energy needed to s $i 3J g m^{-1} K^{-1}$) is c) $g_{10} J$	double the pressure of the $d_{100} = I$
116	• 52765 . A vertical column 50 cm lo	ng at 50°C balances another	column of liquid 60 cm long	at $100^{\circ}C$. The coefficient of
	absolute expansion of the li	quid is	-)	
	a) $0.005 \circ C^{-1}$	^b J 0.0005°C ⁻¹	$^{\rm CJ}$ 0.002° C^{-1}	a) $0.0002 \circ C^{-1}$
117	• The diameter of oxygen mo	blecule is $2.94 \times 10^{-10} m$. Th	e Vander Waal's gas constan	t 'b' in m^3/mol will be
	a) _{3.2}	b) ₁₆	c) $_{32 \times 10^{-4}}$	d) $_{32 \times 10^{-6}}$
118	In a certain region of space K. The pressure of this d a^{2} 20.7 × 10 ⁻¹⁷ N m ⁻¹	there are only 5 molecular illute gas is $(k = 1.38 \times 10^{-2})$ b) $15.3 \times 10^{-13} N m^{-1}$	les per $c m^2$ on an average. ³ $J K^{-1} \dot{c}$ ^{c)} $2.3 \times 10^{-10} N m^{-1}$	The temperature there is 3 d) $5.3 \times 10^{-5} N m^{-1}$
119	The temperature at which the will be	he $r.m.s$. speed of hydroge	n molecules is equal to escap	e velocity on earth surface,
	a) 1060 K	^{b)} 5030 K	c) 8270 K	d) 10063 K
120	• What is the velocity of wav	e in monoatomic gas having	pressure 1 kilopascal and de	ensity $2.6 kg/m^3$
	a) 3.6 <i>m/s</i>	b) $8.9 \times 10^3 m/s$	c) Zero	d) None of these
121	The temperature at which p 4.14 × $10^{-14} J$ is (Boltzman	brotons in proton gas would h the constant $\frac{1}{3} \cdot 1.38 \times 10^{-23} J K$	ave enough energy to overco (1^{-1})	me. Coulomb barrier of
	a) $2 \times 10^9 K$	b) $10^9 K$	c) $6 \times 10^{9} K$	d) $3 \times 10^{9} K$
122	• KE per unit volume is E .	The pressure exerted by t	he gas is given by	
	a) <u>E</u>	b) $\frac{2E}{3}$	c) $\frac{3E}{2}$	d) $\frac{E}{2}$
123	Two cylindrical conductors the ratio2:1. If the tempera $A \land B$ per second is a) 1:2	$A \wedge B$ of same metallic mathematic difference between their b) 1 : 4	terial have their diameters in r ends is same, the ratio of he c) 1 : 16	the ratio 1:2 and lengths in eat conducted respectively by d) 1:8
124	A gas is collected over the vapour pressure at $25 ^{\circ}C$ is	water at $25 ^{\circ}C$. The total pre 23.8 mm. Then the pressure	ssure of moist gas was 735 <i>n</i> e of dry gas is	nm of mercury. If the aqueous
	a) 760 <i>mm</i>	^{b)} 758.8 <i>mm</i>	c) 710.8 <i>mm</i>	d) 711.2 <i>mm</i>
125	• Two moles of oxygen is n	nixed with eight moles of	helium. The effective spec	ific heat of the mixture at
	constant volume is $^{a)}$ 1.3 R	b) 1.4 R	c) _{1.7 R}	d) 1.9 R

126. Mean kinetic energy (or average energy) per g molecule of a monoatomic gas is given by

	a) $\frac{3}{2}RT$	b) $\frac{1}{2}kT$	c) $\frac{1}{2}RT$	d) $\frac{3}{2}kT$
127	A cylinder of fixed capacity amount of heat required to (R = universal gas constant)	7 44.8 <i>litre</i> contains a monoa cylinder by 10 °C will be)	tomic gas at standard temper	ature and pressure. The
	a) _R	^{b)} 10 R	c) _{20 R}	d) _{30 R}
128	• Air is pumped into an aut temperature is 22°C. Dur pressure of the air in the a) 212 kPa	tomobile tube upto a press ring the day, temperature r tube at this temperature, w b) 209 kPa	ure of 200 kPa in the morr ises to 42°C and the tube e vill be approximately c) 206 kPa	ning when the air expands by 2%. The d) 200 kPa
129	• The volume of a gas at pres quantity of gas in $g-mole$	sure $21 \times 10^4 N/m^2$ and tem will be	sperature 27 °C is 83 litres.	If $R = 8.3 J/mol K$, then the
	a) 15	bJ 42	c) 7	aj 14
130	• What is an ideal gas?			
	a) One that consists of m	olecules	b) A gas satisfying the ass	sumptions of kinetic theory
	c) A gas having Maxwell	ian distribution of speed	d) A gas consisting of ma	ssless particles
131. The relation between the gas pressure P and average kinetic energy per unit volume E is				
	a) $P = \frac{1}{2}E$	b) $P = E$	c) $P = \frac{3}{2}E$	d) $P = \frac{2}{3}E$
132	132. For a gas $\gamma = 7/5$. The gas may probably be			
	a) Helium	b) Hydrogen	c) Argon	d) Neon
133	. When a vander waal's gas u	ndergoes free expansion ther	n its temperature	
	a) Decreases		b) Increases	
	c) Does not change		d) Depends upon the nature	e of the gas
134	• If the oxygen (O_2) has root (H_2) will be	mean square velocity of Cn	ns^{-1} , then root mean square	velocity of the hydrogen
	a) Cms^{-1}	b) $\frac{1}{C}ms^{-1}$	c) $4 Cm s^{-1}$	d) $\frac{C}{4}ms^{-1}$
135	A gas at the temperature 25 percentage increase in its p	50 K is contained in a closed ressure will be	vessel. If the gas is heated th	rough $1K$, then the
	a) 0.4 %	^{b)} 0.2%	c) 0.1%	d) 0.8%
136	• To what temperature should R.M.S. velocity of its molec	the hydrogen at room temp cules becomes double of its p	erature $(27 ^{\circ}C)$ be heated at previous value	constant pressure so that the
107	a) 1200 °C	927°C	c) 600 °C	u) 108 °C
137	distributed in the collection $a^{1} 2V/\pi$. What is the magnitude of th b) V/π	the relative velocity between a $^{\rm c)}$ 8V/ π	pairs in the collection d) $4V/\pi$
138	A pressure cooker contains pressure $\geq 3 atm$, then the	air at 1 atm and 30 °C. If the maximum temperature of the	e safety value of the cooler b air, inside the cooker can be	blows when the inside
	a) 90 °C	b) 636 ℃	с) 909 °C	d) ₃₆₃ ∘ <i>C</i>
139	The value of $\frac{pV}{T}$ for one	mole of an ideal gas is near	arly equal to	

a) $2J mol^{-1}K^{-1}$	b) 8.3 $J mol^{-1} K^{-1}$	c) 4.2 $J mol^{-1}K^{-1}$	d) $2 cal mol^{-1} K^{-1}$	
140. $CO_2(O-C-O)$ is a triatomic gas. Mean kinetic energy of one gram gas will be (If <i>N</i> -Avogadro's number, <i>k</i> -				
a) $(3/88) NkT$	b) $(5/88) NkT$	c) $(6/88) NkT$	d) (7/88) <i>NkT</i>	
141. To double the volume of a	given mass of an ideal gas at	$27 ^{\circ}C$ keeping the pressure	constant, one must raise the	
temperature in degree cent	igrade to b_{1-2}	()	d)	
142 The following sets of value	$5^{\circ} 270^{\circ}$	been reported by different a	600°	
<i>mole-K</i> . Which of these s	sets is most reliable	s been reported by amerent s	tudents. The units are currg-	
a) $C_v = 3, C_p = 5$	b) $C_v = 4, C_p = 6$	c) $C_V = 3, C_P = 2$	d) $C_v = 3, C_p = 4.2$	
143. At what temperature is the molecules at $47 ^{\circ}C$	root mean square velocity of	f gaseous hydrogen molecules	s equal to that of oxygen	
^{a)} 20 K	^{b)} 80 K	c) $-73 K$	d) 3 <i>K</i>	
144. Molecules of a gas behave	like			
a) Inelastic rigid sphere		b) Perfectly elastic non-rig	id sphere	
c) Perfectly elastic rigid sp	bhere	d) Inelastic non-rigid spher	re	
145. A cylinder contains $10 kg$ pressure is $2.5 \times 10^6 N/m$	of gas at pressure of $10^7 N/r$, will be (Temperature of ga	n^2 . The quantity of gas taken is is constant)	out of the cylinder, if final	
^{a]} 15.2 kg	^{b]} 3.7 kg	c) Zero	^d) 7.5 kg	
P (0,0) P $(0,0)$ H $(0,0)$ H $(0,0)$				
<i>EF</i> represents liquificat	ion	^{OJ}CB represents liquificat	ion	
<i>c) HI</i> represents the critic	al temperature	a) AB represents gas at a h	high temperature	
147. One mole of an ideal mono constant temperature. If th required is	batomic gas requires $210 J$ he e same gas is heated at consta	eat to raise the temperature b ant volume to raise the tempe	y 10 K, when heated at brature by 10 K then heat	
a) $_{238J}$	b) ₁₂₆ <i>J</i>	c) ₂₁₀ <i>J</i>	d) ₃₅₀ <i>J</i>	
148. The ratio of root mean square velocity of $O_3 \wedge O_2$ is				
a) 1:1	^{b)} 2:3	c) 3:2	d) $\sqrt{2}:\sqrt{3}$	
149. At a given temperature the	r.m.s. velocity of molecular	es of the gas is		
a) Same				
b) Proportional to molecular weight				
c) Inversely proportional to	o molecular weight			
d) Inversely proportional to square root of molecular weight				
150. Graph of specific heat at constant volume for a monoatomic gas is				

151. PV versus T graph of equal masses of H_2 , He and O_2 is shown in fig. Choose the correct alternative

a) C corresponds to H_2 , B to He and A to O_2

- b) A corresponds to He, B to H_2 and C to O_2
- c) A corresponds to He, B to O_2 and C to H_2
- d) A corresponds to O_2 , B to H_2 and C to He
- 152. Which of the following cylindrical rods will conduct maximum heat, when their ends are maintained at a constant temperature difference?

a)
$$l=1m, r=0.2m$$
 b) $l=1m, r=0.1m$ c) $l=10m, r=0.1m$ d) $l=0.1m, r=0.3m$

153. A container with insulating walls is divided into two equal parts by a partition fitted with a value. One part is filled with an ideal gas at a pressure p and temperature T, whereas the other part is completely evacuated. If the value is suddenly opened, the pressure and temperature of the gas will be

a)
$$\frac{p}{2}, T$$
 b) $\frac{p}{2}, \frac{T}{2}$ c) p, T d) $p, \frac{T}{2}$

154. Four molecules of a gas have speeds 1, 2, 3 and 4 $km s^{-1}$. The value of rms speed of the gas molecules is

a)
$$\frac{1}{2}\sqrt{15} \, km \, s^{-1}$$
 b) $\frac{1}{2}\sqrt{10} \, km \, s^{-1}$ c) $2.5 \, km \, s^{-1}$ d) $\sqrt{\frac{15}{2}} \, km \, s^{-1}$

155. A body cools from 50°C to 40°C in 5 min. Its temperature comes down to 33.33°C in next 5 min. The temperature of surroundings is

a)
$$_{15^{\circ}C}$$
 b) $_{20^{\circ}C}$ c) $_{25^{\circ}C}$ d) $_{10^{\circ}C}$

- 156. Which of the following statements is true
 - a) Absolute zero degree temperature is not zero energy temperature
 - b) Two different gases at the same temperature pressure have equal root mean square velocities
 - c) The root mean square speed of the molecules of different ideal gases, maintained at the same temperature are the same
 - d) Given sample of 1 cc of hydrogen and 1 cc of oxygen both at NTP; oxygen sample has a large number of molecules
- ^{157.} The figure below shows the plot of $\frac{pV}{nT}$ versus p for oxygen gas at two different temperatures.

Read the following statements concerning the above curves.

	I. The dotted line corresponds to the ideal gas behavior II. $T_1 > T_2$			
	III. The value of $\frac{pV}{nT}$ at t	the point where the curves	meet on the y-axis is the s	same for all gases.
	a) (i) only	b) (i) and (ii) only	c) All of these	d) None of these
158	. The absolute temperature o	f a gas is determined by		
	a) The average momentum	of the molecules	b) The velocity of sound in	the gas
	c) The number of molecule	es in the gas	d) The mean square velocit	y of the molecules
159	If V_H , V_N and V_0 denote the respectively at a given temperature V_0 .	he root –mean square velocit perature, then	ies of molecules of hydrogen	d) W = W = W
	$V_N > V_O > V_H$	$V_H > V_N > V_O$	$V_{O} = V_{N} = V_{H}$	$v_{O} = V_{H} = V_{N}$
160	• Air inside a closed contai vapour pressure of water temperature constant, the	iner is saturated with water is p . If the mixture is com- pressure becomes	r vapour. The air pressure in pressed to one half of its v	is <i>p</i> and the saturated volume by maintaining
	a) 2(p+ý)	b) (2 <i>p</i> + <i>ý</i>)	c) ز	d) p+2 ģ
161	. The average kinetic energy	of a gas molecule can be det	ermined by knowing	
	a) The number of molecule	es in the gas	b) The pressure of the gas of	only
	c) The temperature of the g	gas only	d) None of the above is end	ough by itself
162	162. Volume, pressure and temperature of an ideal gas are V, P and T respectively. If mass of its molecule is m, then its density is $[k = i]$ boltzmann's constant]			
	a) mkT	b) $\frac{P}{kT}$	c) $\frac{P}{kTV}$	d) <u><i>Pm</i></u> <u><i>kT</i></u>
163	• One kg of a diatomic gas	is at a pressure of 8×10^4 .	Nm^{-2} . The density of the g	gas is $4 kg m^{-3}$. What is the
	energy of the gas due to i	ts thermal motion?	`	D.
	^{a)} $3 \times 10^4 J$	^{b)} $5 \times 10^4 J$	c) $6 \times 10^4 J$	a) $7 \times 10^4 J$
164	Graph between volume and	temperature for a gas is show	wn in figure. If $\alpha = i$ volume	coefficient of gas
	$\begin{array}{c} i \frac{1}{273} \text{ per } ^{\circ}C \text{, then what is} \\ V(litre) 1 \\ 0.75 \\ 0.5 \\ 0.25 \\ 0.25 \\ \end{array}$	the volume of gas at a temp	erature of 819 ℃	D
	a) $1 \times 10^{-3} m^3$	b) $2 \times 10^{-3} m^3$	c) $3 \times 10^{-3} m^3$	d) $4 \times 10^{-3} m^3$
165	• A lead bullet of 10 g travell	ing at 300 ms ^{-1} strikes agair	nst a block of wood comes to	rest. Assuming 50% of heat
	is absorbed by the bullet, th a) $100^{\circ}C$	increase in is temperature b) $_{125}$ °C	is (Specific heat of lead = 15 ^{c)} 150°C	$\begin{array}{c} 0 \text{ Jkg}K^{-1} \\ \text{d} \end{array} \\ \begin{array}{c} 200 \\ 200 \\ \end{array} \end{array} \\ \end{array} $
166	When the pressure on 1200	<i>ml</i> of a gas in increased from will be	m 70 <i>cm</i> to 120 <i>cm</i> of merce	ary at constant temperature,
	a) 700 ml	^{b)} 600 ml	c) 500 ml	d) 400 ml
167	. At constant temperature on	increasing the pressure of a	gas by 5% its volume will de	ecrease by

168. The average kinetic energy of a helium atom at $30 \,^{\circ}C$ is

- a) Less than 1 eV b) A few keV c) 50-60 eV d) 13.6 eV
- 169. A diatomic gas is heated at constant pressure. What fraction of the heat energy is used to increase the thermal energy
 - a) $_{3/5}$ b) $_{3/7}$ c) $_{5/7}$ d) $_{5/9}$

170. The molecules of a given mass of a gas have a rms velocity of 200 m/s at 27°C and $1.0 \times 10^5 N/m^2$ pressure. When the temperature is 127°C and pressure is $0.5 \times 10^5 N/m^2$, the rms velocity in m/s will be a) $\frac{100\sqrt{2}}{3}$ b) $100\sqrt{2}$ c) $\frac{400}{\sqrt{3}}$ d) None of these

171. Three perfect gases at absolute temperature T_1 , $T_2 \wedge T_3$ are mixed. The masses of molecules are m_1 , $m_2 \wedge m_3$ and the number of molecules are n_1 , $n_2 \wedge n_3$ respectively. Assuming no loss of energy, the final temperature of the mixture is

a)
$$\frac{n_{1}T_{1}+n_{2}T_{2}+n_{3}T_{3}}{n_{1}+n_{2}+n_{3}}$$
b)
$$\frac{n_{1}T_{1}^{2}+n_{2}T_{2}^{2}+n_{3}T_{3}^{2}}{n_{1}T_{1}+n_{2}T_{2}^{2}+n_{3}T_{3}^{2}}$$
c)
$$\frac{n_{1}^{2}T_{1}^{2}+n_{2}^{2}T_{2}^{2}+n_{3}^{2}T_{3}^{2}}{n_{1}T_{1}+n_{2}T_{2}+n_{3}T_{3}}$$
d)
$$\frac{T_{1}+T_{2}+T_{3}}{3}$$

172. The density of a substance at $0^{\circ}C$ is 10 g/cc and at $100^{\circ}C$, its density is 9.7 g/cc. The coefficient of linear expansion of the substance is

a)
$$10^{-4} \circ C^{-1}$$
 b) $10^{-2} \circ C^{-1}$ c) $10^{-3} \circ C^{-1}$ d) $10^{2} \circ C^{-1}$

- 173. Molecular motion shows itself as
 - a) Temperature b) Internal Energy c) Friction d) Viscosity

174. Three rods made of same material and having same cross-section have been joined as shown in figure. Each rod is of same length. The left and right ends are kept at $0^{\circ}C$ and $90^{\circ}C$ respectively. The temperature of the junction of the three rods will be

$$\begin{array}{c} 2 & 90^{\circ}C \\ \hline \\ 1 & & \\ 0^{\circ}C & & \\ 3 & 90^{\circ}C \\ a)_{45}^{\circ}C & b)_{60}^{\circ}C & c)_{30}^{\circ}C & d)_{20}^{\circ}C \end{array}$$

175. An air bubble of volume $1.0 c m^3$ rises from the bottom of a lake 40 m deep at a temperature of 12 °C. The volume of the bubble when it reaches the surface, which is at a temperature of 35 °C, will be a) $5.4 c m^3$ b) $4.9 c m^3$ c) $2.0 c m^3$ d) $10.0 c m^3$

176. The mean kinetic energy of a gas at 300 K is 100 J. The mean energy of the gas at 450 K is equal to

a) $_{100J}$ b) $_{3000J}$ c) $_{450J}$ d) $_{150J}$

177. Two identical vessels A and B with frictionless pistons conatin the same ideal gas at the same temperature and the same volume V. The masses of gas in A and B are $m_A \wedge m_B$ respectively. The gases are allowed to expand isothermally to same final volume 2V. The change in pressures of the gas in A and B are found to be $\Delta p \wedge 1.5\Delta p$ respectively. Then

a)
$$9m_A = 4m_B$$
 b) $3m_A = 2m_B$ c) $2m_A = 3m_B$ d) $4m_A = 9m_B$

178. The identical square rods of metal are welded end to end as shown in figure, Q cal of heat flow through this combination in 4 min. If the rods were welded as shown in figure, the same amount of heat will flow through the combination in

	(a)			
	(b)			
a)	16 min	b) 12 min	c) 1 min	d) 4 min
179. A s gro a)	steel ball of mass 0.1 kg found. If the dissipated end $0.01 ^{\circ}C$	falls freely from a height of a fergy in this process is absorb b) $0.1^{\circ}C$	10 m of 10 m and bounces to ed by the ball, the rise in its c 1.1 $^{\circ}C$	a height of 5.4 m from the temperature is d) $1^{\circ}C$
180. Th	e ratio of the vapour de	ensities of two gases at a g	iven temperature is 9:8. T	The ratio of the rms
vel a)	locities of their molecu $3:2\sqrt{2}$	lles is b) $2\sqrt{2}:3$	c) 9:8	d) 8:9
181. The ten	$r \cdot m \cdot s \cdot velocity$ of a generature. The gas can be	as at a certain temperature is	$\sqrt{2}$ times than that of the ox	ygen molecules at that
a)	H_2	^{b)} He	c) <i>CH</i> ₄	d) SO_2
182. Th wi	ne equation of state for ll be	5g of oxygen at a pressure	p and temperature T , where T	en occupying a volume V ,
a)	pV = (5/32)RT	b) $pV=5RT$	c) $pV = (5/2) RT$	d) $pV = (5/16)RT$
183. At	NTP, sample of equal vo	blume of chlorine and oxyger	n is taken. Now ratio of no. o	f molecules is
a)	1:1	b) 32:27	c) 2:1	d) 16:14
184. 12 fille a)	184. $125 ml$ of gas A at 0.60 atmosphere and $150 ml$ of gas B at 0.80 atmospheric pressure at same temperature is filled in a vessel of $1 litre$ volume. What will be the total pressure of mixture at the same temperature a) 0.140 atmosphere b) 0.120 atmosphere c) 0.195 atmosphere d) 0.212 atmosphere			
185. Th	e gas having average s	peed four times as that of	SO ₂ (molecular mass 64) i	S
a)	He (molecular mass 4)		b) $O_2(molecular mass 32)$)
c)	$H_2(molecular mass 2)$		d) CH_4 (molecular mass	16)
186. A inc a)	bubble of 8 mole of he creases by 30 °C. How 1 4000 J	lium is submerged at a cer much heat is added approx b) 3000 J	tain depth in water. The te simately to helium during o c) 3500 J	emperature of water expansion? d) 4500 J
187. In	187. In Vander Waal's equation a and b represent $\left(P + \frac{a}{V^2}\right)(V-b) = RT$			
a)	a) Both a and b represent correction in volume			
b)	b) Both a and b represent adhesive force between molecules			
c)	c) a represents adhesive force between molecules and b correction in volume			
d)	d) a represents correction in volume and b represents adhesive force between molecules			
188. Th	e molar specific heat at c	onstant pressure for a monoa	tomic gas is	
a)	$\frac{3}{2}R$	b) $\frac{5}{2}R$	c) $\frac{7}{2}R$	d) _{4 R}
189. The rate of diffusion is				

- a) Faster in solids than in liquids and gases
- b) Faster in liquids than in solids and gases

c) Equal to solids, liquids and gases

d) Faster in gases than in liquids and solids

190. At what temperature the kinetic energy of gas molecule is half of the value at $27^{\circ}C$?

a) $_{13.5^{\circ}C}$ b) $_{150^{\circ}C}$ c) 75 K d) $_{-123^{\circ}C}$

191. A horizontal uniform glass tube of 100 cm length sealed at both ends contains 10 cm mercury column in the middle. The temperature and pressure of air on either side of mercury column are respectively $31^{\circ}C$ and 76 cm of mercury. If the air column at one end is kept at $0^{\circ}C$ and the other end at $273^{\circ}C$, the pressure of air which is at $0^{\circ}C$ is (in cm of Hg) a) 76 b) 88.2 c) 102.4 d) 12.2

192. A pressure P-absolute temperature T diagram was obtained when a given mass of gas was heated. During the heating process from the state 1 to state 2 the volume

c) Increased

. .

d) Changed erratically

) Remained constant b) Decreased

193. If mass of He atom is 4 times that of hydrogen atom then mean velocity of He is

a) 2 times of H -mean value	b) $1/2$ times of <i>H</i> -mean value
c) 4 times of H -mean value	d) Same as <i>H</i> -mean value

- 194. r.m.s. velocity of nitrogen molecules at NTP is
 - a) 492 m/s b) 517 m/s c) 546 m/s d) 33 m/s

195. Two gases of equal mass are in thermal equilibrium. If P_a , P_b and V_a and V_b are their respective pressure and volumes, then which relation is true

a)
$$P_a \neq P_b$$
; $V_a = V_b$ b) $P_a = P_b$; $V_a \neq V_b$ c) $\frac{P_a}{V_a} = \frac{P_b}{V_b}$ d) $P_a V_a = P_b V_b$

196. The ratio of the molar heat capacities of a diatomic gas at constant pressure to that at constant volume is

- a) $\frac{7}{2}$ b) $\frac{3}{2}$ c) $\frac{3}{5}$ d) $\frac{7}{5}$
- 197. It is seen that in proper ventilation of building, windows must be opened near the bottom and the top of the walls, so as to let pass
 - a) In hot near the roof and cool air out near theb) Out hot air near the roof bottom
 - c) In cool air near the bottom and hot air our near d) In more air the roof
- 198. A vessel is partitioned in two equal halves by a fixed diathermic separator. Two different ideal gases are filled in left (L) and right (R) halves. The *rms* speed of the molecules in L part is equal to the mean speed of molecules in the <u>R</u> part. Then the ratio of the mass of a molecule in L part to that of a molecule in R part is

199. An ideal gas is filled in a vessel, then

- a) If it is placed inside a moving train, its temperature increases
- b) Its centre of mass moves randomly

d) $3\pi/8$

c) Its temperature remains constant in a moving car

d) None of these If one mole of a monoatomic gas $\left(\gamma = \frac{5}{3}\right)$ is mixed with one mole of a diatomic gas $\left(\gamma = \frac{7}{5}\right)$, the value of 200. y for the mixture is a) 1.40 b) 1.50 d) 3.07 c) 1.53 201. The kinetic energy of one g-mole of a gas at normal temperature and pressure is (R=8.31 J/mol-K)c) $_{2.7 \times 10^2 I}$ b) $1.3 \times 10^{2} I$ d) $3.4 \times 10^{3} I$ a) $0.56 \times 10^4 J$ 202. 1 mol of gas occupies a volume of 200 mL at 100 mm pressure. What is the volume occupied by two moles of gas at 400 mm pressure and at same temperature? a) 50 mL b) 100 mL d) 400 mL c) 200 mL 203. The curve between absolute temperature and v_{rms}^2 is v 2rms/ v 2rms b) v 2rms v 2rms a) c) d) 204. The temperature of the mixture of one mole of helium and one mole of hydrogen is increased from $0 \,^{\circ}C$ to 100 °C at constant pressure. The amount of heat delivered will be b) 1200 cal d) $_{3600\,cal}$ a) 600 cal c) 1800 cal 205. The velocity of 4 gas molecules are given by 1 km/s, 3 km/s, 5 km/s and 7 km/s. Calculate the difference between average and rms velocity. a) 0.338 b) 0.438 c) 0.583 d) 0.683 206. A perfect gas at 27 °C is heated at constant pressure to 327 °C. If original volume of gas at 27 °C is V then volume at 327 $^{\circ}C$ is d) $_{V/2}$ b) $_{3V}$ a) _V c) $_{2V}$ 207. Two containers of equal volume contain the same gas at the pressure $p_1 \wedge p_2$ and absolute temperatures $T_1 \wedge T_2$ respectively. On joining the vessels, the gas reaches a common pressure p and a common temperature T. The ratio p/T is equal to a) $\frac{p_1 T_2 + p_2 T_1}{T_1 \times T_2}$ b) $\frac{p_1T_2 + p_2T_1}{T_1 + T_2}$ c) $\frac{1}{2} \left[\frac{p_1 T_2 + p_2 T_1}{T_1 T_2} \right]$ d) $\frac{p_1 T_2 - p_2 T_1}{T_1 \times T_2}$ 208. The kinetic energy, due to translation motion, of most of the molecules of an ideal gas at absolute temperature Tis b) $_{k/T}$ a) kTc) T/kd) 1/kT

209. The latent heat of vaporization of water is 2240 J. If the work done in the process of vaporization of 1 g is 168 J, then increase in internal energy is a) 2072 J b) 1904 J c) 2408 J d) 2240 J

210. At what temperature the rms velocity of helium molecules will be equal to that of hydrogen molecules at NTP?

a) 844 K b) 64 K d) 273 K c) 273°C

211. Which law states that effect of pressure is same for all portions

a) Pascal's law b) Gay Lussac's law c) Dalton's law d) None of these

212. A closed vessel is maintained at a constant temperature. It is first evacuated and then vapour is injected

into it continuously. The pressure of the vapour in the vessel

- a) Increases continuously b) First increases and then remains constant
- c) First increases and then decreases
- 213. An ideal gas is expanding such that pT^2 = constant. The coefficient of volume expansion of the gas is

d) None of the above

a)
$$\frac{1}{T}$$
 b) $\frac{2}{T}$ c) $\frac{3}{T}$ d) $\frac{4}{T}$

214. Mean free path of gas molecule of constant temperature is inversely proportional to

a) $_P$ b) $_V$ c) $_m$ d) $_n$ (number density)

215. A closed compartment containing gas is moving with some acceleration in horizontal direction. Neglect effect of gravity. Then the pressure in the compartment isa) Same everywhereb) Lower in the front side

- c) Lower in the rear side d) Lower in the upper side
- 216. At what temperature rms speed of air molecules is doubled of that at NTP?
 - a) $_{819^{\circ}\text{C}}$ b) $_{719^{\circ}\text{C}}$ c) $_{909^{\circ}\text{C}}$ d) None of these

217. In the two vessels of same volume, atomic hydrogen and helium at pressure 1 atm and 2 atm are filled. If temperature of both the samples is same, then average speed of hydrogen atoms $i C_H > i$ will be related to that of helium $i C_{He} > i$ as

- a) $_{i}CH \ge \sqrt{2} < C_{He} > i$ b) $_{i}C_{H} \ge i C_{He} > i$ c) $_{i}C_{H} \ge 2 < C_{He} > i$ d) $_{i}C_{H} \ge i C_{He} > \frac{i}{2}i$
- 218. Two spherical vessel of equal volume, are connected by a a narrow tube. The apparatus contains an ideal gas at one atmosphere and 300 K. Now if one vessel is immersed in a bath of constant temperature 600 K and the other in a bath of constant temperature 300 K. Then the common pressure will be

c) $\frac{4}{3}atm$ d) $\frac{3}{4}atm$

219.

At constant volume the specific heat of a gas is $\frac{3R}{2}$, then the value of 'y' will be

- a) $\frac{3}{2}$ b) $\frac{5}{2}$ c) $\frac{5}{3}$ d) None of the above
- 220. Gas at a pressure P_0 in contained is a vessel. If the masses of all the molecules are halved and their speeds are doubled, the resulting pressure P will be equal to
 - a) $_{4P_{0}}$ b) $_{2P_{0}}$ c) $_{P_{0}}$ d) $\frac{P_{0}}{2}$
- 221. The translational kinetic energy of gas molecule for one mole of the gas is equal to

a)
$$\frac{3}{2}RT$$
 b) $\frac{2}{3}RT$ c) $\frac{1}{2}RT$ d) $\frac{2}{3}KT$

222. The product of the pressure and volume of an ideal gas is

- a) A constant b) Approx. equal to the universal gas constant
- c) Directly proportional to its temperature d) Inversely proportional to its temperature
- 223. The diameter of oxygen atom is 3Å. The fraction of molecular volume to the actual volume occupied by oxygen

	at STP is a) 6×10^{-28}	b) 8×10^{-4}	c) $_{4 \times 10^{-10}}$	d) $_{4 \times 10^{-4}}$			
224	A gas is allowed to expand	isothermally. The root mean	square velocity of the molec	ules			
	a) Will increase		b) Will decrease				
	c) Will remain unchanged		d) Depends on the other fac	ctors			
225	Two different isotherms rep the same ideal gas are show $P = 1 + m^2$ m^2	presenting the relationship being for masses m_1 and m_2 of the	tween pressure p and volume gas respectively in the figure p and	e V at a given temperature of the given, then			
	a) $m_1 > m_2$	b) $m_1 = m_2$	c) $m_1 < m_2$	d) $m_1 \frac{l}{m_2} m_2$			
226	At 100 K and 0.1 atmospheric doubled, its temperature wire a) 400 K	eric pressure, the volume of h ll change to b) 127 K	nelium gas is $10 litres$. If vo c) $200 K$	lume and pressure are d) $25 K$			
227	Two balloons are filled, o	ne with pure He gas and th	e other by air, respectively	v. If the pressure and			
	temperature of these balle a) More in the He filled b	oons are same, then the num alloon	mber of molecules per unit volume is b) Same in both balloons				
	c) More in air filled ballo	on	d) In the ratio of 1:4				
228	If the rms velocity of a ga	as is v , then					
	a) $v^2T = constant$		b) $v^2/T = constant$				
	c) $vT^2 = constant$		^{d)} v is independent of T				
229	The ratio of two specific he	ats $\frac{C_P}{C_V}$ of CO is					
	a) 1.33	b) 1.40	c) 1.29	d) 1.66			
230	A gas is filled in a closed acceleration. Neglecting a a) Uniform everywhere	container and its molecule acceleration due to gravity,	s are moving in horizontal the pressure inside the co b) Less in the front	direction with uniform ontainer is			
	c) Less at the back		d) Less at the top				
231	A closed gas cylinder is div respectively are $(P, 5V)$ an process, then the volume of a) $2V.4V$	ided into two parts by a pisto d (10 P, V \dot{c} . If now the pisto the gas in two parts respective b) $3V$. $3V$	n held tight. The pressure an on is left free and the system vely are $^{\rm c)}$ 5 V V	d volume of gas in two parts undergoes isothermal d) $4V.2V$			
232	On colliding in a closed con	tainer the gas molecules		,			
	a) Transfer momentum to t	he walls	b) Momentum becomes zer	0.			
	c) Move in opposite directi	ons	d) Perform Brownian motio	on			
233	A sealed container with neg it is heated from 300 K to (a) Halved	ligible coefficient of volumet $500 K$, the average K.E. of h	ric expansion contains helium felium atoms is b) Unchanged	m (a monoatomic gas). When			

c) Doubled		d) Increased by factor $\sqrt{2}$				
234. A monoatomic gas is kep $k = 1.38 \times 10^{-23} MKS$ u	ot at room temperature 300 K nits)	• Calculate the average kine	tic energy of gas molecule (Use			
^{a)} 0.138 <i>eV</i>	b) $0.062 eV$	c) $0.039 eV$	^{d)} 0.013 <i>eV</i>			
235. When the temperature temperature?	of a gas increases by $1^{\circ}C$,	its pressure increases 0.49	6. What is its initial			
a) 250 K	b) 125 K	c) 195 K	d) 329 K			
236. A bubble is at the botto three times. If atmosphain 261	om of the lake of depth <i>h</i> . A heric pressure is equal to <i>l</i> m b) <i>l</i>	As the bubble comes to sea netre of water column, the ^{c)} 251	a level, its radius increases n <i>h</i> is equal to d) 301			
237. A diatomic gas molecule	has translational, rotational a	nd vibrational degrees of fre	bedom. The C_P/C_V is			
a) 1.67	b) 1.4	c) 1.29	d) 1.33			
238. In the absence of intern	molecular forces of attraction	on, the observed pressure	<i>p</i> will be			
a) _p	b) _{ز p}	c) _{¿ p}	d) Zero			
239. At 0 K which of the following the fo	owing properties of a gas will	be zero				
a) Kinetic energy	b) Potential energy	c) Vibrational energy	d) Density			
240. The equation for an idea	l gas is $PV = RT$, where V re	epresents the volume of				
a) ₁ <i>g</i> gas	b) Any mass of the gas	c) One g mol gas	d) One litre gas			
241. A gas at 27 °C has a volu	time V and pressure P . On he	ating its pressure is doubled	and volume becomes three			
a) $1800 ^{\circ}C$	b) $162 ^{\circ}C$	c) ₁₅₂₇ ℃	d) 600 °C			
242. The figure shows the volupressures of P_1 and P_2 .	The V versus temperature T . What inference can you draw	graphs for a certain mass of from the graphs	a perfect gas at two constant			
a) $P_1 > P_2$		b) $P_1 < P_2$				
c) $P_1 = P_2$		d) No interference can be drawn due to insufficient				
243. For hydrogen gas $C_P - C$	$C_V = a$ and for oxygen gas C_P	$-C_v = b$. So the relation be	tween a and b is given by			
a) $a = 16 b$	b) $b = 16 a$	c) $a = 4 b$	d) $a=b$			
244. For a real gas (van der	Waal's gas)					
a) Boyle temperature is	s a/Rb					
b) Critical temperature	is a/Rb					
^{c)} Triple temperature i	s 2 a/ Rb					
d) Inversion temperatu	re is a/2 Rb					
245. According to the kinetic	theory of gases the $r.m.s.v$	elocity of gas molecules is d	irectly proportional to			

	a) _T	b) \sqrt{T}	c) T^{2}	d) $1/\sqrt{T}$				
246	. Root mean square velocity	of a particle is v at pressure r	P. If pressure is increased tw	to times, then the $r.m.s$.				
	velocity becomes a) $_{2v}$	b) _{3 v}	c) _{0.5v}	d) _v				
247	The average translational ki [Boltzmann's constant $k_B =$	as molecules at NTP will be						
	a) 0.186×10^{-20} Joule	b) 0.372×10^{-20} Joule	c) 0.56×10^{-20} Joule	d) 5.6×10^{-20} Joule				
248	The efficiency of a Carnot e constant and its efficiency ra a) 100 K	engine is 50% and temperatur aised to 60%, then the requir b) 600 K	re of sink is 500 K. If temper ed temperature of sink will b c) 400 K	ature of source is kept e d) 500 K				
249	• The temperature of a give	en mass is increased from	$27^{\circ}C$ to $327^{\circ}C$. The rms v	elocity of the molecules				
	increases a) $\sqrt{2} \times i$	b) 2 times	c) _{2√2×i}	d) 4 times				
250	• A real gas behaves like a	n ideal gas if its						
	a) Pressure and temperate	ure are both high	b) Pressure and temperatu	b) Pressure and temperature are both low				
	c) Pressure is high and te	emperature is low	d) Pressure is low and temperature is high					
251	• A gas mixture consists of vibrational moles, the tota a) 4 RT	² 2 moles of oxygen and 4 m al internal energy of the sy ^{b)} 15 <i>RT</i>	moles of argon at temperat stem is ^{c)} 9 <i>RT</i>	ure <i>T</i> . Neglecting all ^{d)} 11 <i>RT</i>				
252	Six moles of O_2 gas is he	ated from $20 ^{\circ}\text{C}^{\text{i}}_{\text{i}} 35 ^{\circ}\text{C}$ at	constant volume. If specific	c heat capacity at constant				
	pressure is 8 cal mol^{-1} – . a) 180 cal	K^{-1} and $R = 8.31 Jmol^{-1} -$ b) 300 cal	K^{-1} , what is change in interest of the c) 360 cal	ernal energy of gas? d) 540 cal				
253	• Read the given statements a (I) Energy of one molecule (II) $r \cdot m \cdot s$ · speeds of diffe (III) For one gram of all ide (IV) For one mole of all ide a) All are correct	and decide which is/are corre at absolute temperature is ze rent gases are same at same t cal gas kinetic energy is same cal gases mean kinetic energy b) I and IV are correct	ct on the basis of kinetic theo ro emperature at same temperature r is same at same temperature c) IV is correct	ory of gases d) None of these				
254	A perfect gas at 27°C is h	neated at constant pressure	so as to double its volume	. The increase in				
	temperature of the gas with a^{3}_{300} °C	ll be ^{b)} 54℃	c) _{327°C}	d) 600°C				
255	Cooking gas containers are inside will a) Increase	kept in a lorry moving with u	uniform speed. The temperatu	ure of the gas molecules				
	c) Remain same		d) Decrease for some, while increase for others					
256	. The root mean square speed	l of the molecules of a gas is						
	a) Independent of its pressu	re but directly proportional t	to its Kelvin temperature					
	b) Directly proportional to	the square roots of both its pa	ressure and its Kelvin temper	ature				
	c) Independent of its pressu	re but directly proportional t	to the square root of its Kelvi	n temperature				
	d) Directly proportional to	both its pressure and its kelvi	in temperature					

^{257.} The mean kinetic energy of one mole of gas per degree of freedom (on the basis of kinetic theory of

gases) is
a)
$$\frac{1}{2}kT$$
 b) $\frac{3}{2}kT$ c) $\frac{3}{2}RT$ d) $\frac{1}{2}RT$
258. Two different masses *m* and 3*m* of an ideal gas are heated separately in a vessel of constant volume, the pressure *P* and absolute temperature *T*, graphs for these two cases are shown in the figure as *A* and *B*. The ratio of slopes of curves 8 to *A* is
a) $\frac{3}{2}$, $\frac{1}{1}$ b) $\frac{1}{1:3}$ c) $9_{1:1}$ d) $\frac{1}{1:9}$
259. Mean kinetic energy per degree of freedom of gas molecules is
a) $\frac{3}{2}kT$ b) kT c) $\frac{1}{2}kT$ d) $\frac{3}{2}RT$
260. 22 g of carbon dixide at 27°C is mixed in a closed container with 16 g of oxygen at 37°C. If both gases are considered as ideal gases, then the temperature of the mixture is
a) $\frac{2}{2}\chi^2$ b) $\frac{2}{2}8,5^{\circ}$ c) $\frac{1}{3}1,5^{\circ}$ d) $\frac{3}{3},5^{\circ}$ C
261. 70 cal of heat are required to raise the temperature of 2 mole of an ideal gas at constant pressure from 30°C to 35 °C. The amount of hear required to raise the temperature of 2 mole of an ideal gas at constant pressure from 30°C to 35 °C. The amount of hear required to raise the temperature of the same sample of the gas through the same range at constant volume is nearly (Gas constant = 1.99 cal K⁻¹-mol⁻¹/c
a) 30 cal b) 50 cal c) 70 cal d) 90 cal
262. Which of the following formula is wrong
a) $C_V = \frac{R}{V-1}$ b) $C_P = \frac{\sqrt{R}}{V-1}$ c) $C_P/C_V = Y$ d) $C_P - C_V = 2R$
263. Ideal gas and real gas has major difference of
a) Phase transition b) Temperature c) Pressure d) None of them
264. If mass of H-mean value
b) $\frac{1}{2}$ times of H-mean value
c) 4 times of H-mean value
265. Supposing the distance between the atoms of a diatomic gas to be constant, its specific heat at constant volume per
mole (grant mole) is
a) $\frac{3}{2}R$ c) R d) $\frac{1}{2}R$
266. At what temperature is the kinetic energy of a gas molecule double that of its value of $27^{\circ}C_{\circ}$
a) $54^{\circ}C_{\circ}$ b) $300K$ c) $232^{\circ}C_{\circ}$ d) $100^{\circ}C_{\circ}$
267. A flast of volume 10° cc is completely filled with mercury at 0°C. The coefficient of cubical expans

268. The pressure is exerted by the gas on the walls of the container because

- a) It loses kinetic energy
- c) On collision with the walls there is a change in momentum

b) It sticks with the walls

- d) It is accelerated towards the walls
- 269. A balloon contains $500 m^3$ of helium at 27 °C and 1 atmosphere pressure. The volume of the helium at -3 °C temperature and 0.5 atmosphere pressure will be
 - a) $500 m^3$ b) $700 m^3$ c) $900 m^3$ d) $1000 m^3$

270. An ideal gas has an initial pressure of 3 pressure units and an initial volume of 4 volume units. The table gives the final the final pressure and volume of the gas (in those same units) in four, processes. Which processes start and end on the same isotherm

	Α	В	С	D			
Р	5	4	12	6			
V	7	6	1	3			
a) _/	1	1	I	I	b) _B	c) C	d) D

271. Specific heats of monoatomic and diatomic gases are same and satisfy the relation which is

- a) $C_p(mono) = C_p(dia)$ b) $C_p(mono) = C_v(dia)$ c) $C_v(mono) = C_v(dia)$ d) $C_v(mono) = C_p(dia)$
- 272. The root mean square velocity of gas molecules at $27^{\circ}C$ is $1365 \,m\,s^{-1}$. The gas is
 - a) O_2 b) He c) N_2 d) CO_2

273. A volume V and pressure P diagram was obtained from state 1 to state 2 when a given mass of a gas is subjected to temperature changes. During this process the gas is

a) Heated continuously

b) Cooled continuously

c) Heated in the beginning and cooled towards the end d) Cooled in the beginning and heated towards the end

274. At constant pressure, which of the following is true?

a)
$$_{v \propto \sqrt{\rho}}$$
 b) $_{v \propto \frac{1}{\rho}}$ c) $_{v \propto \rho}$ d) $_{v \propto \frac{1}{\sqrt{\rho}}}$

275. A vessel contains 32 g of O_2 at a temperature T. The pressure of the gas is p. An identical vessel containing 4 g of H_2 at a temperature 2T has a pressure of

a)
$$_{8p}$$
 b) $_{4p}$ c) $_{p}$ d) $\frac{p}{8}$

276. Root mean square speed of the molecules of ideal gas is *v*. If pressure is increased two times at constant temperature, the rms speed will become

a)
$$\frac{v}{2}$$
 b) $_{v}$ c) $_{2v}$ d) $_{4v}$

277. Relationship between P, V, and E for a gas is

a)
$$P = \frac{3}{2}EV$$
 b) $V = \frac{2}{3}EP$ c) $PV = \frac{3}{2}E$ d) $PV = \frac{2}{3}E$

278. The specific heat relation for ideal gas is

	a) $C_p + C_v = R$	b) $C_P - C_V = R$	c) $C_P/C_V = R$	d) $C_V / C_P = R$			
279	The temperature of an ideal	l gas is increased from 27 °C	to $127 ^\circ C$, then percentage	increase in V_{rms} is			
	a) 37%	b) 11%	c) 33%	d) 15.5%			
280	The coefficiency of apparent	nt expansion of a liquid when	determined using two differ	ent vessels $A \wedge B$ are λ_1 and			
	λ_2 , respectively. If the coef	ficient of linear expansion of	the vessel A is α , the coeffic	ient of linear expansion of			
	a) $\alpha \gamma_1 \gamma_2$	b) $\gamma_1 - \gamma_2$	c) $\gamma_1 - \gamma_2 + \alpha$	d) $\gamma_1 - \gamma_2$			
201	$\frac{\gamma_1 + \gamma_2}{\gamma_2}$	$\frac{2\alpha}{2}$	<u>3α</u>	$3 - \frac{1}{3} + \alpha$			
281	for the tape. What would be	ength of a copper rod as 90.0 e tape read for the length of t	cm, when both are at 10° C, he rod when both are at 30° C	the calibration temperature, C . Given, α for steel			
	1.2×10^{-5} °C ⁻¹ and α for co	pper is $1.7 \times 10^{-5} ^{\circ}C^{-1}$.					
	a) 90.01 cm	b) 89.90 cm	c) 90.22 cm	d) 89.80 cm			
282	According to the kinetic the	eory of gases, at absolute tem	perature				
	a) Water freezes		b) Liquid helium freezes				
	c) Molecular motion stops		d) Liquid hydrogen freezes				
283	At the same temperature an	d pressure and volume of two	p gases, which of the followi	ng quantities is constant			
	a) Total number of molecul	les	b) Average kinetic energy				
	c) Root mean square veloci	ty	d) Mean free path				
284	A diatomic molecule has he	ow many degrees of freedom					
	a) 3	b) 4	c) 5	d) 6			
	u) 9			-			
285	For a gas if $\gamma = 1.4$, then at	somicity, C_P and C_V of the g	as are respectively				
285	For a gas if $\gamma = 1.4$, then at a) Monoatomic, $\frac{5}{2}R, \frac{3}{2}R$	comicity, C_P and C_V of the g b) Monoatomic, $\frac{7}{2}R$, $\frac{5}{2}R$	as are respectively c) Diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$			
285 286	For a gas if $\gamma = 1.4$, then at ^{a)} Monoatomic, $\frac{5}{2}R, \frac{3}{2}R$ Simple behaviour under all	tomicity, C_P and C_V of the g b) Monoatomic, $\frac{7}{2}R, \frac{5}{2}R$ conditions of real gas is gove	as are respectively (c) Diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ rned by the equation	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$			
285 286	For a gas if $\gamma = 1.4$, then at ^{a)} Monoatomic, $\frac{5}{2}R$, $\frac{3}{2}R$ Simple behaviour under all ^{a)} $Pv = uRT$	tomicity, C_P and C_V of the g b) Monoatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ conditions of real gas is gove	as are respectively c) Diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ armed by the equation b) $\left(P + \frac{a}{2}\right)(v-b) = \mu RT$	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$			
285 286	For a gas if $\gamma = 1.4$, then at a) Monoatomic, $\frac{5}{2}R$, $\frac{3}{2}R$ Simple behaviour under all a) $Pv = \mu RT$	tomicity, C_P and C_V of the g b) Monoatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ conditions of real gas is gove	as are respectively c) Diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ armed by the equation b) $\left(P + \frac{a}{v^2}\right)(v-b) = \mu RT$	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$			
285	For a gas if $\gamma = 1.4$, then at a) Monoatomic, $\frac{5}{2}R, \frac{3}{2}R$ Simple behaviour under all a) $Pv = \mu RT$ c) $Pv = i$ constant	tomicity, C_P and C_V of the g b) Monoatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ conditions of real gas is gove	as are respectively c) Diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ armed by the equation b) $\left(P + \frac{a}{v^2}\right)(v-b) = \mu RT$ d) $Pv^{\gamma} = i$ constant	d) Triatomic, $\frac{7}{2}R, \frac{5}{2}R$			
285 286 287	For a gas if $\gamma = 1.4$, then at a) Monoatomic, $\frac{5}{2}R$, $\frac{3}{2}R$ Simple behaviour under all a) $Pv = \mu RT$ c) $Pv = i$ constant A metal ball immersed in v less than that water. Then	tomicity, C_P and C_V of the g b) Monoatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ conditions of real gas is gove	as are respectively c) Diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ armed by the equation b) $\left(P + \frac{a}{v^2}\right)(v-b) = \mu RT$ d) $Pv^{\gamma} = i$ constant eat 50°C. The coefficient of	d) Triatomic, $\frac{7}{2}R, \frac{5}{2}R$ cubical expansion of metal is			
285 286 287	For a gas if $\gamma = 1.4$, then at a) Monoatomic, $\frac{5}{2}R$, $\frac{3}{2}R$ Simple behaviour under all a) $Pv = \mu RT$ c) $Pv = i$ constant A metal ball immersed in v less than that water. Then a) $w_1 < w_2$	tomicity, C_P and C_V of the g b) Monoatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ conditions of real gas is gove water weights $w_1 at \ 0 \ ^{\circ}C \land w$ b) $w_1 > w_2$	as are respectively c) Diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ arned by the equation b) $\left(P + \frac{a}{v^2}\right)(v-b) = \mu RT$ d) $Pv^{\gamma} = i$ constant eat 50°C. The coefficient of c) $w_1 = w_2$	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ cubical expansion of metal is d) Data is not sufficient			
285 286 287 288	For a gas if $\gamma = 1.4$, then at a) Monoatomic, $\frac{5}{2}R$, $\frac{3}{2}R$ Simple behaviour under all a) $Pv = \mu RT$ c) $Pv = i$ constant A metal ball immersed in v less than that water. Then a) $w_1 < w_2$ If the volume of the gas con	tomicity, C_P and C_V of the g b) Monoatomic, $\frac{7}{2}R, \frac{5}{2}R$ conditions of real gas is gove water weights $w_1 at \ 0 \ ^{\circ}C \land w_1$ b) $w_1 > w_2$ ntaining <i>n</i> number of molecu	as are respectively c) Diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ arred by the equation b) $\left(P + \frac{a}{v^2}\right)(v-b) = \mu RT$ d) $Pv^{y} = i$ constant equat 50°C. The coefficient of c) $w_1 = w_2$ les is V, then the pressure w	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ cubical expansion of metal is d) Data is not sufficient ill decrease due to force of			
285 286 287 288	For a gas if $\gamma = 1.4$, then at a) Monoatomic, $\frac{5}{2}R$, $\frac{3}{2}R$ Simple behaviour under all a) $Pv = \mu RT$ c) $Pv = i$ constant A metal ball immersed in v less than that water. Then a) $w_1 < w_2$ If the volume of the gas cori intermolecular attraction in a) n/V	tomicity, C_P and C_V of the g b) Monoatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ conditions of real gas is gove water weights $w_1 at \ 0 \ ^{\circ}C \land w_1$ b) $w_1 > w_2$ ntaining <i>n</i> number of molecu the proportion b) $_{n/V^2}$	as are respectively c) Diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ arred by the equation b) $\left(P + \frac{a}{v^2}\right)(v-b) = \mu RT$ d) $Pv^y = i$ constant equat 50°C. The coefficient of c) $w_1 = w_2$ les is V, then the pressure w c) $(n/V)^2$	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ cubical expansion of metal is d) Data is not sufficient ill decrease due to force of d) $1/V^2$			
285 286 287 288 288	For a gas if $\gamma = 1.4$, then at a) Monoatomic, $\frac{5}{2}R$, $\frac{3}{2}R$ Simple behaviour under all a) $Pv = \mu RT$ c) $Pv = i$ constant A metal ball immersed in v less than that water. Then a) $w_1 < w_2$ If the volume of the gas corritermolecular attraction in a) n/V The temperature of an ideal	tomicity, C_P and C_V of the g b) Monoatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ conditions of real gas is gove water weights $w_1 at \ 0 \ ^{\circ}C \land w_1$ b) $w_1 > w_2$ ntaining <i>n</i> number of molecu the proportion b) $_n/V^2$ l at atmospheric pressure is 3	as are respectively c) Diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ arred by the equation b) $\left(P + \frac{a}{v^2}\right)(v-b) = \mu RT$ d) $Pv^{\gamma} = i$ constant equat 50°C. The coefficient of c) $w_1 = w_2$ les is V, then the pressure w c) $(n/V)^2$ 00 K and volume $1 m^3$. If te	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ cubical expansion of metal is d) Data is not sufficient ill decrease due to force of d) $1/V^2$ emperature and volume			
285 286 287 288 289	For a gas if $\gamma = 1.4$, then at a) Monoatomic, $\frac{5}{2}R$, $\frac{3}{2}R$ Simple behaviour under all a) $Pv = \mu RT$ c) $Pv = i$ constant A metal ball immersed in v less than that water. Then a) $w_1 < w_2$ If the volume of the gas con intermolecular attraction in a) n/V The temperature of an ideal become double, then pressu a) $to 5 W = 2$	tomicity, C_P and C_V of the g b) Monoatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ conditions of real gas is gove water weights $w_1 at \ 0 \ ^{\circ}C \land w_1$ b) $w_1 > w_2$ ntaining <i>n</i> number of molecul the proportion b) n/V^2 l at atmospheric pressure is 3 ure will be b) $a_1 + 40^5 N(-2)^2$	as are respectively c) Diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ arred by the equation b) $\left(P + \frac{a}{v^2}\right)(v-b) = \mu RT$ d) $Pv^{\gamma} = i$ constant c) $w_1 = w_2$ les is V, then the pressure w c) $(n/V)^2$ 00 K and volume $1m^3$. If te	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ cubical expansion of metal is d) Data is not sufficient ill decrease due to force of d) $1/V^2$ emperature and volume d) 4 = 105 m/c^2			
 285 286 287 288 289 290 	For a gas if $\gamma = 1.4$, then at a) Monoatomic, $\frac{5}{2}R$, $\frac{3}{2}R$ Simple behaviour under all a) $Pv = \mu RT$ c) $Pv = i$ constant A metal ball immersed in v less than that water. Then a) $w_1 < w_2$ If the volume of the gas con- intermolecular attraction in a) $_{n/V}$ The temperature of an ideal become double, then pressu a) $10^5 N/m^2$	tomicity, C_P and C_V of the g b) Monoatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ conditions of real gas is gove water weights $w_1 at \ 0 \ ^{\circ}C \land w_1$ b) $w_1 > w_2$ ntaining <i>n</i> number of molecu the proportion b) n/V^2 I at atmospheric pressure is 3 ure will be b) $2 \times 10^5 N/m^2$ ur times if	as are respectively c) Diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ arned by the equation b) $\left(P + \frac{a}{v^2}\right)(v-b) = \mu RT$ d) $Pv^{\gamma} = i$ constant c) $w_1 = w_2$ les is V, then the pressure w c) $(n/V)^2$ 00 K and volume $1 m^3$. If ter c) $0.5 \times 10^5 N/m^2$	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ cubical expansion of metal is d) Data is not sufficient ill decrease due to force of d) $1/V^2$ emperature and volume d) $4 \times 10^5 N/m^2$			
285 286 287 288 289 290	For a gas if $\gamma = 1.4$, then at a) Monoatomic, $\frac{5}{2}R$, $\frac{3}{2}R$ Simple behaviour under all a) $Pv = \mu RT$ c) $Pv = i$ constant A metal ball immersed in v less than that water. Then a) $w_1 < w_2$ If the volume of the gas con- intermolecular attraction in a) $_{n/V}$ The temperature of an ideal become double, then pressur a) $10^5 N/m^2$ Volume of gas becomes for	tomicity, C_P and C_V of the g b) Monoatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ conditions of real gas is gove water weights $w_1 at \ 0 \ ^{\circ}C \land w_1$ b) $w_1 > w_2$ ntaining <i>n</i> number of molecu the proportion b) n/V^2 I at atmospheric pressure is 3 ure will be b) $2 \times 10^5 N/m^2$ or times of constant economic	as are respectively c) Diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ arned by the equation b) $\left(P + \frac{a}{v^2}\right)(v-b) = \mu RT$ d) $Pv^{y} = i$ constant c) $w_1 = w_2$ les is V, then the pressure w c) $(n/V)^2$ 00 K and volume $1 m^3$. If terms c) $0.5 \times 10^5 N/m^2$	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ cubical expansion of metal is d) Data is not sufficient ill decrease due to force of d) $1/V^2$ emperature and volume d) $4 \times 10^5 N/m^2$			
285 286 287 288 289 290	For a gas if $\gamma = 1.4$, then at a) Monoatomic, $\frac{5}{2}R$, $\frac{3}{2}R$ Simple behaviour under all a) $Pv = \mu RT$ c) $Pv = i$ constant A metal ball immersed in v less than that water. Then a) $w_1 < w_2$ If the volume of the gas con- intermolecular attraction in a) $_{n/V}$ The temperature of an ideal become double, then pressu a) $10^5 N/m^2$ Volume of gas becomes for a) Temperature becomes for	tomicity, C_P and C_V of the g b) Monoatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ conditions of real gas is gove water weights $w_1 at \ 0 \ ^{\circ}C \land w_1$ b) $w_1 > w_2$ ntaining <i>n</i> number of molecu the proportion b) n/V^2 I at atmospheric pressure is 3 are will be b) $2 \times 10^5 N/m^2$ ar times if pur times at constant pressure	as are respectively c) Diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ arned by the equation b) $\left(P + \frac{a}{v^2}\right)(v-b) = \mu RT$ d) $Pv^{y} = i$ constant cat 50°C. The coefficient of c) $w_1 = w_2$ les is V, then the pressure w c) $(n/V)^2$ 00 K and volume $1 m^3$. If te c) $0.5 \times 10^5 N/m^2$	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ cubical expansion of metal is d) Data is not sufficient ill decrease due to force of d) $1/V^2$ emperature and volume d) $4 \times 10^5 N/m^2$			

- b) Temperature becomes one fourth at constant pressure
- c) Temperature becomes two times at constant pressure
- d) Temperature becomes half at constant pressure
- 291. The root mean square velocity of a gas molecule of mass m at a given temperature is proportional to

	a) m^{0}	b) _m	c) \sqrt{m}	d) $\frac{1}{\sqrt{m}}$		
292.	If universal gas constant i	s R, the essential heat to ir	crease from 273 K to 473	K at constant volume for		
	ideal gas of 4 mol is	b) 400 B		d) 1200 B		
293.	Universal gas constant is	400 R	³ 800 K	1200 R		
	C					
	a) $\frac{C_p}{C_V}$		b) $C_p - C_V$			
	c) $C_P + C_V$		d) $\frac{C_V}{C_r}$			
294.	22 g of CO_2 at 27 °C is min	xed with 16 g of oxygen at 37	$7^{\circ}C$. The temperature of the	mixture is		
	a) _{32°C}	b) _{27°C}	c) _{37°C}	d) _{30°C}		
295.	The molecular weight of a g	gas is 44. The volume occupie	ed by $2.2g$ of this gas at 0°	C and $2 atm$. pressure will be		
	a) 0.56 litre	b) 1.2 litres	c) 2.4 litres	d) 5.6 litres		
296.	A box contains n molecules	of a gas. How will the pressu	ure of the gas be effected, if	the number of molecules is		
	a) Pressure will decrease		b) Pressure will remain unchanged			
	c) Pressure will be doubled		d) Pressure will become three times			
297.	Consider a gas with density system moves as whole with	ρ and \dot{c} as the root mean square velocity v , then the pressure	are velocity of its molecules e exerted by the gas is	contained in a volume. If the		
	a) $\frac{1}{3}\rho \dot{c}^2$	b) $\frac{1}{3}\rho(c+\nu)^2$	c) $\frac{1}{3}\rho(\dot{c}-v)^2$	d) $\frac{1}{3} \rho (c^{-2} - v)^2$		
298.	At constant volume, temper	ature is increased. Then				
	a) Collision on walls will be	eless	b) Number of collisions per	unit time will increase		
	c) Collisions will be in strai	ght lines	d) Collisions will not change			
299.	One mole of an ideal gas red If the same gas is heated at (Given the gas constant $R =$	quires 207 J heat to raise the constant volume to raise the $(3.3 J/mol - K)$	temperature by $10 K$ when temperature by the same $10 L$	heated at constant pressure. K , the heat required is		
	a) 198.7 <i>J</i>	b) ₂₉ <i>J</i>	c) _{215.3} <i>J</i>	d) ₁₂₄ <i>J</i>		
300.	At what temperature volume	e of an ideal gas at $0 {}^\circ C$ beco	omes triple			
	a) ₅₄₆ ℃	b) _{182 ℃}	c) ₈₁₉ ℃	d) ₆₄₆ °C		

301. An air bubble doubles its radius on raising from the bottom of water reservoir to be the surface of water in it. If the atmospheric pressure is equal to 10m of water, the height of water in the reservoir is

— — — — —	

a) 10 m	b) _{20 m}	c) _{70 m}	d) 80 m							
. A cylinder of 5 <i>litre</i> capacit capacity. The resultant air p	ty, filled with air at N.T.P. is ressure in both the cylinders	connected with another evacuation will be	uated cylinder of 30 litres of							
a) 38.85 <i>cm</i> of <i>Hg</i>	b) 21.85 cmof Hg	c) 10.85 cmof Hg	d) 14.85 <i>cm</i> of <i>Hg</i>							
03. In gases of diatomic molecules, the ratio of the two specific heats of gases C_P/C_V is										
a) 1.66	b) 1.40	c) 1.33	d) 1.00							
04. Oxygen boils at $(-183 ^{\circ}C)$. The temperature on the Fahrenheit scale is										
a) _297.4 °F	b) _{-253.6} °F	c) _342.6 °F	d) _{-225.3 °F}							
05. The specific heats at constant pressure is greater than that of the same gas at constant volume because										
a) At constant pressure work is done in expanding the gas										
b) At constant volume work is done in expanding the gas										
c) The molecular attraction	increases more at constant p	ressure								
d) The molecular vibration	increases more at constant pr	ressure								
. A type kept outside in sunli	ght bursts off after sometime	because of								
a) Increases in pressure	b) Increases in volume	c) Both (a) and (b)	d) None of these							
. 10 moles of an ideal monoa	tomic gas at 10 °C is mixed	with 20 moles of another mo	noatomic gas at $20 ^\circ C$. Then							
(a) $15.5 ^{\circ}C$	b) $15 ^{\circ}C$	c) _{16 °C}	d) _{16.6} ℃							
. The number of translational	degrees of freedom for a dia	atomic gas is								
a) 2	b) 3	c) 5	d) 6							
Let A and B the two gases a	and given $\frac{T_B}{M_A} = 4. \frac{T_B}{M_B}$; wh	ere T is the temperature and	M is molecular mass. If C_A							
and C_B are the $r.m.s.$ spec	ed, then the ratio $\frac{C_A}{C_B}$ will be	equal to								
a) 2	b) 4	c) 1	d) 0.5							
• The value of C_V for one mo	ble of neon gas is									
a) $\frac{1}{2}R$	b) $\frac{3}{2}R$	c) $\frac{5}{2}R$	d) $\frac{7}{2}R$							
. Two spheres made of same	substance have diameters in	the ratio1:2. Their thermal c	capacities are in the ratio of							
a) 1 : 2	b) 1 : 8	c) 1 : 4	d) 2 : 1							
· For an ideal gas										
a) C_p is less than C_V		b) C_p is equal $\frac{i}{b}C_v$								
	a) $10 m$ A cylinder of $5 litre$ capacity. The resultant air p a) $38.85 cmof Hg$ In gases of diatomic molecular a) 1.66 Oxygen boils at $(-183 \ C)$ a) $-297.4 \ F$ The specific heats at constant a) At constant pressure work b) At constant volume work c) The molecular attraction d) The molecular vibration A type kept outside in sunlifing a) Increases in pressure 10 moles of an ideal monoar the temperature of the mixt a) $15.5 \ C$ The number of translational a) 2 Let A and B the two gases at and C_B are the $r \cdot m \cdot s \cdot spections and C_B are the r \cdot m \cdot s \cdot spections and C_Band C_V for one models of C_V for one models and C_P is less than C_V$	a) $10m$ b) $20m$ A cylinder of 5 <i>litre</i> capacity, filled with air at N.T.P. is capacity. The resultant air pressure in both the cylinders a) $38.85 cmof Hg$ b) $21.85 cmof Hg$ In gases of diatomic molecules, the ratio of the two spece a) 1.66 b) 1.40 Oxygen boils at $(-183 °C)$. The temperature on the Fail a) $-297.4 °F$ b) $-253.6 °F$ The specific heats at constant pressure is greater than that a) At constant pressure work is done in expanding the gas b) At constant volume work is done in expanding the gas c) The molecular attraction increases more at constant pressure b) At constant volume work is done in expanding the gas c) The molecular vibration increases more at constant pressure b) Increases in volume 10 moles of an ideal monoatomic gas at $10 °C$ is mixed the temperature of the mixture is a) $15.5 °C$ b) $15 °C$ The number of translational degrees of freedom for a dia a) 2 b) 3 Let A and B the two gases and given $\frac{T_B}{M_A} = 4$. $\frac{T_B}{M_B}$; wh and C_B are the $r.m.s$. speed, then the ratio $\frac{C_A}{C_B}$ will be a) 2 b) 4 The value of C_V for one mole of neon gas is a) $\frac{1}{2}R$ b) $\frac{3}{2}R$ Two spheres made of same substance have diameters in a) $1:2$ b) $1:8$ For an ideal gas a) C_p is less than C_V	a) $10m$ b) $20m$ c) $70m$ A cylinder of 5 <i>litre</i> capacity, filled with air at N.T.P. is connected with another evaculapacity. The resultant air pressure in both the cylinders will be a) $38.85 cmof Hg$ b) $21.85 cmof Hg$ c) $10.85 cmof Hg$ In gases of diatomic molecules, the ratio of the two specific heats of gases C_P/C_V is a) 1.66 b) 1.40 c) 1.33 Oxygen boils at $(-183 ^{\circ}\text{C})$. The temperature on the Fahrenheit scale is a) $_{-297.4} ^{\circ}\text{F}$ b) $_{-253.6} ^{\circ}\text{F}$ c) $_{-342.6} ^{\circ}\text{F}$ The specific heats at constant pressure is greater than that of the same gas at constant a) At constant pressure work is done in expanding the gas b) At constant volume work is done in expanding the gas c) The molecular attraction increases more at constant pressure d) The molecular vibration increases more at constant pressure d) The molecular vibration increases more at constant pressure d) Increases in pressure b) Increases in volume c) Both (a) and (b) 10 moles of an ideal monoatomic gas at $10 ^{\circ}\text{C}$ is mixed with 20 moles of another more the temperature of the mixture is a) $15.5 ^{\circ}\text{C}$ b) $15 ^{\circ}\text{C}$ c) $16 ^{\circ}\text{C}$ The number of translational degrees of freedom for a diatomic gas is a) 2 b) 3 c) 5 Let A and B the two gases and given $\frac{T_B}{M_A} = 4, \frac{T_B}{M_B}$; where T is the temperature and and C_B are the $r.m.s.$ speed, then the ratio $\frac{C_A}{C_B}$ will be equal to a) 2 b) 4 c) 1 The value of C_V for one mole of neon gas is a) $\frac{1}{2}R$ b) $\frac{3}{2}R$ c) $\frac{5}{2}R$ Two spheres made of same substance have diameters in the ratio 1:2. Their thermal of a) $1:2$ b) $1:8$ c) $1:4$ For an ideal gas a) C_P <i>is legs than</i> C_V b) $1:8$ c) $1:4$							

c) C_p is greater than C_V d) $C_p = C_V = 0$

313. From the following P-T graph what inference can be drawn

324. O_2 gas is filled in a vessel. If pressure is doubled, temperature becomes four times, how many times its density

will become			
a) 2	b) 4	c) <u>1</u>	d) <u>1</u>
		4	2

325. The ratio of mean kinetic energy of hydrogen and oxygen at a given temperature is

a) 1:16 b) 1:8 c) 1:4 d) 1:1

326. For matter to exist simultaneously in gas and liquid phases

a) The temperature must be 0K

b) The temperature must be less than $0 \,^{\circ}C$

- c) The temperature must be less than the critical temperature
- d) The temperature must be less than the reduced temperature

327. Which one of the following graphs represents the behaviour of an ideal gas?

328. Pressure versus temperature graph of an ideal gas at constant volume V of an ideal gas is shown by the straight line A. Now mass of the gas is doubled and the volume is halved, then the corresponding pressure versus temperature graph will be shown by the line

c) C

d) None of these

329. If a Vander-Waal's gas expands freely, then final temperature is

b) _B

a) Less than the initial temperature

b) Equal to the initial temperature

c) More than the initial temperature

- d) Less or more than the initial temperature depending on the nature of the gas
- 330. Oxygen and hydrogen are at the same temperature *T*. The ratio of the mean kinetic energy of oxygen molecules to that of the hydrogen molecules will be a) $_{16:1}$ b) $_{1:1}$ c) $_{4:1}$ d) $_{1:4}$
- 331. At temperature *T*, the *r*.*m*.*s*. speed of helium molecules is the same as *r*.*m*.*s*. speed of hydrogen molecules at normal temperature and pressure. The value of *T* is a) $_{273}$ °C b) $_{546}$ °C c) $_{0}$ °C d) $_{136.5}$ °C

332	. The pressure and temperatu	re of an ideal gas in a closed	vessel are 720 kPa and 40 °	C respectively. If $\frac{1}{4}$ th of
	the gas is released from the of the gas is	vessel and the temperature o	f the remaining gas is raised	to $353 ^{\circ}C$, the final pressure
	^{a)} 1440 kPa	^{b)} 1080 kPa	c) 720 kPa	d) 540 kPa
333	 A cylinder of fixed capacity needed to raise the tempera a) 996 J 	y (of 44.8 litres) contains 2 m ture of the gas in the cylinder b) 831 J	oles of helium gas at STP. W by $20 \degree C$ (Use $R = 8.31 J$ m c) 498 J	What is the amount of heat no $l^{-1}K^{-1}$) d) 374 J
334	A thin copper wire of length area 2 <i>l</i> × <i>l</i> is heated from 0 a) 1%	 h l increase in length by 1%, °C to 100°C, the percentage b) 4% 	when heated from 0°C to 10 increase in its area would be c) 3%	$00^{\circ}C$. If a thin copper plate of d) 2%
335	• The $r.m.s$. speed of the m pressure is kept constant bu a) $1.5 km s^{-1}$	tolecules of a gas at a pressur t temperature is raised to 819 b) $2 km s^{-1}$	e $10^5 Pa$ and temperature 0 $9^{\circ}C$, the velocity will becon ^{c}C 5 km s ⁻¹	$^{\circ}C$ is 0.5 km sec ⁻¹ . If the ne d) 1 km s ⁻¹
336	. For one gram mol of a gas,	the value of R in the equation	PV = RT is nearly	
	^{a)} 2 cal/K	b) 10 cal/K	c) 0.2 cal/ K	d) 200 cal/K
337 338	• A solid whose volume does fractions $f_1 \wedge f_2$ of volume a) $\frac{f_1 - f_2}{f_2 t_1 - f_1 t_2}$ • Find the ratio of specific he	not change with temperature of solid remain submerged. W b) $\frac{f_1 - f_2}{f_1 t_1 - f_2 t_2}$ at at constant pressure to the	floats in liquid. For two difference of the coefficient of volume of $\frac{f_1+f_2}{f_2t_1-f_1t_2}$ specific heat constant volume	erent temperatures $t_1 \wedge t_2$, the ume expansion of liquid? d) $\frac{f_1 + f_2}{f_1 t_1 - f_2 t_2}$ e for NH_3
	^{a)} 1.33	b) _{1.44}	c) _{1.28}	d) _{1.67}
339	• What is the ratio of specific	heats of constant pressure ar	nd constant volume for NH_3	3
	a) 1.33	b) 1.44	c) 1.28	d) 1.67
340	For a gas molecule with 6 relation between the mole	b degrees of freedom the lateral decular specific heat (C_V) are	w of equipartition of enernd gas constant (R)	gy gives the following
	a) $C_v = \frac{R}{2}$	b) $C_v = R$	c) $C_v = 2R$	d) $C_V = 3R$
341	• A polyatomic gas with <i>n</i> de (<i>N</i> is Avogadro's number)	grees of freedom has a mean	energy per molecule given b	ру
	a) $\frac{nkT}{N}$	b) <u>nkT</u> 2 N	c) <u>nkT</u>	d) $\frac{3kT}{2}$
342	. If the mean free path of ato	ms is doubled then the pressu	are of gas will become	_
	^{a)} P/4	b) _{P/2}	c) _{P/8}	d) _P
343	• The temperature of a gas	is -68°C. At what tempera	ture will the average kinet	tic energy of its molecules
	be twice that of at $-68^{\circ}C^{\circ}$? b)	c)	d)
244	^a ^J 137 ℃	^b ^j 127℃	^c ^j 100℃	^u ^j 105℃
344	For a gas $\frac{R}{C_v} = 0.67$. This	gas is made up of molecules	which are	
	a) Diatomic		b) Mixture of diatomic and	polyatomic molecules
	c) Monoatomic		d) Polyatomic	
345	. The specific heat of a gas			

a) Has only two values C_P and C_V

b) Has a unique value at a given temperature

c) Can have any value between 0 and ∞ d) Depends upon the mass of the gas

346. For a certain gas, the ratio of specific heats is given to be $\gamma = 1.5$. For this gas

a)
$$C_{v} = \frac{3R}{J}$$
 b) $C_{p} = \frac{3R}{J}$ c) $C_{p} = \frac{5R}{J}$ d) $C_{v} = \frac{5R}{J}$

347. For the specific heat of 1 mole of an ideal gas at constant pressure (C_P) and at constant volume (C_V) which is correct

a) C_P of hydrogen gas is $\frac{5}{2}R$ b) C_V of hydrogen gas is $\frac{7}{2}R$

c) H_2 has very small values of C_P and C_V d) $C_P - C_V = 1.99 \, cal/mole - K$ for H_2

348. The value of critical temperature in terms of Vander Waal's constant a and b is

a)
$$T_c = \frac{8a}{27Rb}$$
 b) $T_c = \frac{a}{2Rb}$ c) $T_c = \frac{8}{27Rb}$ d) $T_c = \frac{27a}{8Rb}$

349. When temperature of an ideal gas is increased from 27 °C to 227 °C, its r.m.s. speed changed from 400 metre/s to V_s . The V_s is

a) 516 metre/s b) 450 metre/s c) 310 metre/s d) 746 metre/s

350. The temperature of a gas at pressure P and volume V is $27 \,^{\circ}C$. Keeping its volume constant if its temperature is raised to $927 \,^{\circ}C$, then its pressure wil be a) $_{2P}$ b) $_{3P}$ c) $_{4P}$ d) $_{6P}$

351. If the degree of freedom of a gas are f , then the ratio of two specific heats C_P/C_V is given by

a)
$$\frac{2}{f} + 1$$
 b) $1 - \frac{2}{f}$ c) $1 + \frac{1}{f}$ d) $1 - \frac{1}{f}$

352. A gas at 27 °C temperature and 30 atmospheric pressure is allowed to expand to the atmospheric pressure. If the volume becomes 10 times its initial volume, then the final temperature becomes a) $100 \circ C$ b) $173 \circ C$ c) $273 \circ C$ d) $-173 \circ C$

353. In thermal equilibrium, the average velocity of gas molecules is

a) Proportional to \sqrt{T} b) Proportional to T^2 c) Proportional to T^3 d) Zero

354. In kinetic theory of gases, a molecule of mass m of an ideal gas collides with a wall of vessel with velocity V. The change in the linear momentum of the molecule is

a)
$$_{2mV}$$
 b) $_{mV}$ c) $_{-mV}$ d) Zero

355. The translatory kinetic energy of a gas per g is

a) $\frac{3}{2}\frac{RT}{N}$ b) $\frac{3}{2}\frac{RT}{M}$ c) $\frac{3}{2}RT$ d) $\frac{3}{2}NKT$

356. 310 J of heat is required to raise the temperature of 2 mole of an ideal gas at constant pressure from 25 °C to 35 °C. The amount of heat required to raise the temperature of the gas through the same range at constant volume is a) $_{384 J}$ b) $_{144 J}$ c) $_{276 J}$ d) $_{452 J}$

357. Which of the following statements about kinetic theory of gases is wrong

a) The molecules of a gas are in continuous random motion

- b) The molecules continuously undergo inelastic collisions
- c) The molecules do not interact with each other except during collisions

d) The collisions amongst the molecules are of short duration

- 358. At what temperature, the mean kinetic energy of O_2 will be the same for H_2 molecules at $-73 \,^{\circ}\text{C}$
 - a) $_{127} \circ C$ b) $_{527} \circ C$ c) $_{-73} \circ C$ d) $_{-173} \circ C$

359. The relation between two specific heats of a gas is

a)
$$C_P - C_V = \frac{R}{J}$$
 b) $C_V - C_P = \frac{R}{J}$ c) $C_P - C_V = J$ d) $C_V - C_P = J$

360. One mole of a monoatomic ideal gas is mixed with one mole of a diatomic ideal gas. The molar specific heat of the mixture at constant volume is

- a) (3/2) R b) (5/2) R c) 2 R d) 4 R
- 361. Two moles of monoatomic gas is mixed with three moles of a diatomic gas. The molar specific heat of the mixture at constant volume is

a)
$$1.55 R$$
 b) $2.10 R$ c) $1.63 R$ d) $2.20 R$
362. In the relation $n = \frac{PV}{RT}, n = i$

a) Number of molecules b) Atomic number c) Mass number d) Number of moles

363. The root mean square speed of hydrogen molecules of an ideal hydrogen gas kept in a gas chamber at $0 \,^{\circ}C$ is 3180 metres/second. The pressure on the hydrogen gas is (Density of hydrogen gas is $8.99 \times 10^{-2} kg/m^3$, $1 \, atmosp \, h \, ere = 1.01 \times 10^5 \, N/m^2$) a) 1.0 etc. b) 1.5 etc. c) 2.0 etc. d) 2.0 etc.

364. Pressure of an ideal gas is increased by keeping temperature constant. What is the effect on kinetic energy of molecules?

a) Increases b) Decrease

c) No change d) Can't be determined

365. The volume of a gas at 20 °C is 200 ml. If the temperature is reduced to -20 °C at constant pressure, its volume will be

- 366. At 0 °C the density of a fixed mass of a gas divided by pressure is x. At 100 °C, the ratio will be
 - a) $_{X}$ b) $\frac{273}{373}_{X}$ c) $\frac{373}{273}_{X}$ d) $\frac{100}{273}_{X}$

367. A wheel is 80.3 cm in circumference. An iron tyre measures 80.0 cm around its inner face. If the coefficient of linear expansion for iron is $12 \times 10^{-6} \,^{\circ}C^{-1}$, the temperature of the tyre must be raised by a) $_{105}^{\circ}C$ b) $_{417}^{\circ}C$ c) $_{312}^{\circ}C$ d) $_{223}^{\circ}C$

368. Which one of the following is not an assumption of kinetic theory of gases?

a) The volume occupied by the molecules of the gas is negligible

- b) The force of attraction between the molecules is negligible
- c) The collision between the molecules are elastic
- d) All molecules have same speed

369.

The equation of state of a gas is given by $\left(P + \frac{aT^2}{V}\right)V^c = (RT + b)$, where *a*, *b*, *c* and *R* are constants. The isotherms can be represented by $P = AV^m - BV^n$, where *A* and *B* depend only on temperature and

	a) $m = -c$ and $n = -1$	b) $m = c$ and $n = 1$	c) $m = -c$ and $n = 1$	d) $m = c$ and $n = -1$		
370	• The temperature gradient in $s^{-1}c m^{-1}cC^{-1}$. Considering	the earth's crust is $32^{\circ}C$ km g earth to be a sphere of radiu	n^{-1} and the mean conductivity us 6000 km loss of heat by ea	y of earth is 0.008 cal arth everyday is about		
	a) 10^{30} cal	^{b)} 10^{40} cal	c) 10^{20} cal	d) 10^{18} cal		
371	. For a gas, the $r.m.s$ spee	d at 800 K is				
	a) Four times the value at 2	200 K	b) Half the value at $200 K$			
	c) Twice the value at 200 <i>I</i>	K	d) Same as at 200 K			
372	.8 g of O_2 , 14 g of N_2 and 2 the mixture in terms of atm $(R=0.082 L atm K^{-1} mol)$	22 g of CO_2 is mixed in a conspheric pressure is $^{-1}\dot{\iota}$	ontainer of 10 L capacity at 2	7°C. The pressure exerted by		
	a) _{1.4<i>atm</i>}	^{b)} 2.5 <i>atm</i>	c) 3.7 atm	d) _{8.7 atm}		
373	. Vapour is injected at a unif	form rate in a closed vessel w	hich was initially evacuated.	The pressure in the vessel		
	a) Increases continuously		b) Decreases continuously			
	c) First increases and then	decreases	d) First increases and then l	becomes constant		
374	• At what temperature the $127^{\circ}C$?	molecule of nitrogen will l	nave same rms velocity as t	the molecule of oxygen at		
	a) _{457°C}	b) ₂₇₃ °C	c) _{350°C}	d) 77°C		
375	. The temperature of an idea	l gas is reduced from 927 °C	to $27 ^{\circ}C$. The $r.m.s$. velo	city of the molecules		
	becomes a) Double the initial value		b) Half of the initial value			
	c) Four times the initial val	ue	d) Ten times the initial value			
376	At a given temperature the	root mean square velocities of	of oxygen and hydrogen molecules are in the ratio			
	^{a)} 16:1	^{b)} 1:16	^{c)} 4:1	d) _{1:4}		
377	• The temperature of 5 mo internal energy is 80 J. th a) 8	les of a gas at constant vol e total heat capacity of the b) 4	ume is changed from 100° gas at constant volume wi c) 0.8	C to 120° C. The change in ll be in $J K^{-1}$ is d) 0.4		
378	• One mole of monoatomic specific heat $(i J K^{-1} mol)$ a) 18.7	c gas and three moles of di ⁻¹) at constant volume is (<i>I</i> b) 18.9	atomic gas are put together R=8.3 $J K^{-1} mo l^{-1}$ c) 19.2	r in a container. The molar d) None of these		
379	· If masses of all molecule	s of a gas are halved and th	neir speeds are doubles, the	en the ratio of initial and		
	a) 1:2	b) _{2:1}	c) _{4:1}	d) 1:4		
380	• The molar specific heat at c	constant pressure of an ideal g	gas is $(7/2)R$. The ratio of s	pecific heat at constant		
	a) 5/7	b) 9/7	c) _{7/5}	d) _{8/7}		
381	. The specific heat of an idea	l gas is				
	a) Proportional to T	b) Proportional to T^2	c) Proportional to T^3	d) Independent of T		
382	. Speed of sound in a gas is V	r and r . m . s . velocity of the	gas molecules is C . The ratio	o of V to C is		

a)
$$\frac{3}{\gamma}$$
 b) $\frac{\gamma}{3}$ c) $\sqrt{\frac{3}{\gamma}}$ d) $\sqrt{\frac{\gamma}{3}}$

383. The molecular weights of O_2 and N_2 are 32 and 28 respectively. At 15 °C, the pressure of $1 g O_2$ will be the same as that of $1 g N_2$ in the same bottle at the temperature

a)
$$-21 \,^{\circ}C$$
 b) $13 \,^{\circ}C$ c) $15 \,^{\circ}C$ d) $56.4 \,^{\circ}C$

384. On giving equal amount of heat at constant volume to 1 *mole* of a monoatomic and a diatomic gas the rise in temperature

- a) Monoatomic b) Diatomic c) Same for both d) Can not be predicted
- 385. The r.m.s. speed of gas molecules is given by

a)
$$_{2.5}\sqrt{\frac{RT}{M}}$$
 b) $_{1.73}\sqrt{\frac{RT}{M}}$ c) $_{2.5}\sqrt{\frac{M}{RT}}$ d) $_{1.73}\sqrt{\frac{M}{RT}}$

386. A sample of an ideal gas occupies a volume V at a pressure P and absolute temperature T, the mass of each molecule is m. The expression for the density of gas is (k = iBoltzmaan's constant)

a)
$$_{mkT}$$
 b) $_{P/kT}$ c) $_{P/kTV}$ d) $_{Pm/kT}$

387. A gaseous mixture contains equal number of hydrogen and nitrogen and nitrogen molecules. Specific heat measurements on this mixture at temperatures below 100 K would indicate that the of γ (ratio specific heats) for this mixture is

a) _{3/2} b) _{4/3} c) _{5/3} d) _{7/5}

13.KINETIC THEORY

: ANSWER KEY :

1)	d	2)	а	3)	с	4)	b	169)	с	170)	с	171)	а	172)	а
5)	a	6)	С	7)	b	8)	С	173)	а	174)	b	175)	а	176)	d
9)	С	10)	b	11)	С	12)	а	177)	а	178)	С	179)	b	180)	b
13)	С	14)	b	15)	а	16)	С	181)	С	182)	а	183)	а	184)	С
17)	a	18)	а	19)	а	20)	d	185)	а	186)	b	187)	С	188)	b
21)	С	22)	d	23)	d	24)	С	189)	d	190)	d	191)	С	192)	С
25)	d	26)	С	27)	d	28)	С	193)	b	194)	b	195)	d	196)	d
29)	d	30)	b	31)	а	32)	b	197)	С	198)	d	199)	С	200)	С
33)	С	34)	b	35)	а	36)	а	201)	d	202)	b	203)	b	204)	b
37)	С	38)	С	39)	d	40)	С	205)	С	206)	С	207)	С	208)	а
41)	d	42)	а	43)	b	44)	С	209)	а	210)	С	211)	а	212)	b
45)	а	46)	а	47)	С	48)	С	213)	С	214)	d	215)	b	216)	a
49)	d	50)	d	51)	b	52)	d	217)	С	218)	С	219)	С	220)	b
53)	с	54)	С	55)	d	56)	а	221)	а	222)	С	223)	b	224)	С
57)	с	58)	d	59)	b	60)	d	225)	с	226)	а	227)	b	228)	b
61)	а	62)	b	63)	b	64)	а	229)	b	230)	а	231)	а	232)	а
65)	a	66)	а	67)	С	68)	d	233)	с	234)	С	235)	а	236)	a
69)	с	70)	С	71)	а	72)	b	237)	d	238)	С	239)	а	240)	С
73)	а	74)	d	75)	С	76)	С	241)	С	242)	а	243)	d	244)	b
77)	d	78)	d	79)	С	80)	d	245)	b	246)	d	247)	С	248)	С
81)	d	82)	С	83)	С	84)	а	249)	а	250)	С	251)	d	252)	d
85)	а	86)	а	87)	b	88)	С	253)	d	254)	а	255)	С	256)	С
89)	а	90)	С	91)	b	92)	С	257)	d	258)	а	259)	С	260)	С
93)	с	94)	а	95)	С	96)	b	261)	b	262)	d	263)	а	264)	b
97)	а	98)	С	99)	а	100)	b	265)	а	266)	С	267)	b	268)	С
101)	d	102)	С	103)	С	104)	а	269)	С	270)	С	271)	b	272)	b
105)	а	106)	С	107)	d	108)	а	273)	С	274)	d	275)	b	276)	b
109)	с	110)	b	111)	b	112)	d	277)	d	278)	b	279)	d	280)	d
113)	b	114)	d	115)	b	116)	а	281)	а	282)	С	283)	b	284)	С
117)	d	118)	а	119)	d	120)	d	285)	С	286)	b	287)	а	288)	С
121)	а	122)	b	123)	d	124)	d	289)	а	290)	а	291)	d	292)	d
125)	с	126)	а	127)	d	128)	b	293)	b	294)	а	295)	а	296)	С
129)	с	130)	b	131)	d	132)	b	297)	а	298)	b	299)	d	300)	а
133)	а	134)	С	135)	а	136)	b	301)	С	302)	С	303)	b	304)	а
137)	d	138)	b	139)	d	140)	d	305)	а	306)	а	307)	d	308)	b
141)	с	142)	а	143)	а	144)	С	309)	а	310)	b	311)	b	312)	С
145)	d	146)	b	147)	b	148)	d	313)	а	314)	а	315)	d	316)	а
149)	d	150)	с	151)	а	152)	d	317)	b	318)	с	319)	b	320)	a
153)	а	154)	d	155)	b	156)	а	321)	С	322)	d	323)	а	324)	d
, 157)	С	158) 158)	d	159)	b	160)	b	325)	d	326)	с	327)	d	328)	b
, 161)	С	162)	d	163)	b	164)	b	329)	а	330)	b	331)	а	332)	b
, 165)	С	, 166)	а	, 167)	d	168)	а	333)	с	334)	d	335)	d	336)	а
,		,		,		,				,		,		,	

337)	а	338)	С	339)	а	340)	d
341)	С	342)	b	343)	а	344)	С
345)	С	346)	b	347)	d	348)	а
349)	а	350)	С	351)	а	352)	d
353)	а	354)	а	355)	b	356)	b
357)	b	358)	С	359)	а	360)	С
361)	b	362)	d	363)	d	364)	С
365)	а	366)	b	367)	С	368)	d
369)	a	370)	d	371)	С	372)	С
373)	С	374)	d	375)	b	376)	d
377)	b	378)	a	379)	b	380)	С
381)	d	382)	d	383)	а	384)	а
385)	b	386)	d	387)	С		

: HINTS AND SOLUTIONS :

7

8

(d)
$$v_{rms} = \sqrt{\frac{v_1^2 + v_2^2 + v_3^2 + v_4^2 + v_5^2}{5}} = 4.24$$

2 **(a)**

1

Rate of cooling proportional to $(T^4 - T_0^4)$, as per Stefan's Law.

$$\begin{aligned} \therefore \frac{R}{R} &= \frac{(900)^4 - (300)^4}{(600)^4 - (300)^4} \\ \dot{c} \frac{9^4 - 3^4}{6^4 - 3^4} &= \frac{3^4 (3^4 - 1)}{3^4 (2^4 - 1)} \\ &= \frac{80}{15} = \frac{16}{3} \\ R' &= \frac{16}{3} R \end{aligned}$$

3 (c)

The temperature rises by the same amount in the two cases and the internal energy of an ideal gas depends only on it's temperature

Hence
$$\frac{U_1}{U_2} = \frac{1}{1}$$

4 **(b)**

$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4$$
$$= \left(\frac{273 + 84}{273 + 27}\right)^4 = \left(\frac{357}{300}\right)^4 = 2.0$$

5 **(a)**

Kinetic energy for mg gas $E = \frac{f}{2}mrT$ If only translational degree of freedom is considered Then $f = 3 \Rightarrow E_{Trans} = \frac{3}{2}mrT = \frac{3}{2}m\left(\frac{R}{M}\right)T$

$$\frac{3}{2} \times 20 \times \frac{8.3}{32} \times (273 + 47) = 2490 J$$

(c)

6

The number of moles of the system remains same, $\frac{P_1V_1}{RT_1} + \frac{P_2V_2}{RT_2} = \frac{P(V_1 + V_2)}{RT} \Rightarrow T = \frac{P(V_1 + V_2)T_1T_2}{(P_1V_1T_2 + P_2V_2)}$ According to Boyle's law,

$$P_{1}V_{1}+P_{2}V_{2}=P(V_{1}+V_{2})::T=\frac{(P_{1}V_{1}+P_{2}V_{2})T_{1}T}{(P_{1}V_{1}T_{2}+P_{2}V_{2}T_{1})}$$
(b)

Saturated water vapour do not obey gas laws

$$v_{rms} = \sqrt{\frac{3 RT}{M}} \Rightarrow T \propto M[\because v_{rms}, R \rightarrow constant]$$

$$\Rightarrow \frac{T_{O_2}}{T_{N_2}} = \frac{M_{O_2}}{M_{N_2}} \Rightarrow \frac{T_{O_2}}{(273+0)} = \frac{32}{28} \Rightarrow T_{O_2} = 312 K = 39^{\circ}$$

Boyle's and Charle's law follow kinetic theory of gases

(b)
$$F = \frac{3}{2}kT \Rightarrow E \propto T$$

12 **(a)**

10

13

In elastic collision kinetic energy is conserved

(c)
From the Mayer's formula

$$C_p - C_V = R$$

...(i)
and $\gamma = \frac{C_p}{C_V}$
 $\Rightarrow \gamma C_V = C_p$
...(ii)
Substituting Eq. (ii) in Eq. (i) we get
 $\Rightarrow \gamma C_V - C_V = R$

$$C_{v} = R$$

$$C_{v}(\gamma - 1) = R$$

$$C_{v} = \frac{R}{\Gamma}$$

$$Z_v = \frac{\pi}{\gamma - 1}$$

14 **(b)**

From Andrews curve

15 **(a)**

The rms velocity of an ideal gas is

$$v_{rms} = \sqrt{\frac{3 RT}{M}}$$

Where *T* is the absolute temperature and *M* is the molar mass of an ideal gas Since *M* remains the same $\therefore v_{rms} \propto \sqrt{T}$

$$\frac{v'_{rms}}{v_{rms}} = \sqrt{\frac{T'}{T}} = \sqrt{\frac{3T}{T}}$$
$$\Rightarrow v'rms = \sqrt{3}v_{rms}$$

16 **(c)**

At constant temperature; PV = i constant

$$\Rightarrow P \times \left(\frac{m}{D}\right) = constant$$
$$\Rightarrow \frac{P}{D} = constant = K \cdot [D = i \text{ Density}]$$

17 (a)

$$v_{rms} = \sqrt{\frac{3p}{\rho}} \Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{\rho_2}{\rho_1}} = \sqrt{\frac{16}{1}} = \frac{4}{1}$$

18 (a)

The gases carbon monoxide (CO) and nitrogen ($N_2 \dot{\iota}$ are diatomic, so both have equal kinetic

energy
$$\frac{5}{2}kT$$
, *ie*. $E_1 = E_2$.

19 (a)

From ideal gas equation, we have pV = nRT

$$n = \frac{pV}{RT}$$

Given,
$$p = 22.4 atm pressure$$

 $i 22.4 \times 1.01 \times 10^5 N m^{-2}$,
 $V = 2L = 2 \times 10^{-3} m^3$,
 $R = 8.31 J mo l^{-1} - K^{-1}$,
 $T = 273 K$
 $\therefore n = \frac{22.4 \times 1.01 \times 10^5 \times 2 \times 10^{-3}}{8.31 \times 273}$
 $n = 1.99 \approx 2$
Since, $n = \frac{Mass}{Atomics wight}$

ince,
$$n = \frac{1}{Atomic weight}$$

We have,

 $mass = n \times atomic \ weight = 2 \times 14 = 28 \ g$

20 (d)

Average kinetic energy $E = \frac{3}{2}kT$

$\Rightarrow E \propto T$

Thus, average kinetic energy of a gas molecule is directly proportional to the absolute temperature of gas.

21 (c)

For a given pressure, volume will be more if temperature is more [Charle's law]

From the graph it is clear that $V_2 > V_1 \Rightarrow T_2 > T_1$ 22 (d)

$$C_{rms} = \sqrt{\frac{3 RT}{M}}$$

Or $M = \frac{3 RT}{C_{rms}^2} = \frac{3 \times 8.31 \times 300}{(1920)^2}$
 $= 2 \times 10^{-3} \text{ kg} = 2\text{g}$

Since, M = 2 for the hydrogen molecule. Hence, the gas is hydrogen.

23 (d)

$$v_{rms} = \sqrt{\frac{3P}{\rho}} = P \propto \rho \ [v_{rms} \text{ is constant for fixed} temperature}]$$

24 (C)

According to Boyle's law

$$p_1V_1 = p_2V_2$$

As the pressure is decreased by 20%, so

$$p_{2} = \frac{80}{100} p_{1}$$

$$p_{1}V_{1} = \frac{80}{100} p_{1}V_{2}$$

$$V_{1} = \frac{80}{100} V_{2}$$

Percentage increase in volume

$$\frac{i}{V_2 - V_1} \times 100$$
$$\frac{i}{V_1} \times 100 = 25\%$$

25 (d)

Root mean square velocity,

$$c = \sqrt{\frac{3 pV}{M}} = \sqrt{\frac{3 RT}{M}}$$
$$c_1 = \sqrt{\frac{3 R(T/2)}{2M}} = \frac{1}{2} \sqrt{\frac{3 RT}{M}}$$
$$\dot{c}_2 = \frac{300}{2} = 150 \, m \, s^{-1}$$

26 **(c)**

At TK, pressure of gas (P) in the jar = Total pressure – saturated vapour pressure $\Rightarrow P = (830 - 30) = 800 \, mm \, of Hg$

New temperature
$$T' = \left(T - \frac{T}{100}\right) = \frac{99T}{100}$$

Using Charle's law $\frac{P}{T} = \frac{P'}{T'} \Rightarrow P' = \frac{PT'}{T}$
 $i \frac{800 \times 99T}{100T} = 792 \, mm \, of \, Hg$
Saturated vapour pressure at $T' = 25 \, mm \, of \, Hg$
 \therefore Total pressure in the jar
 i Actual pressure of gas + i Saturated vapour
pressure
 $i 792 + 25 = 817 \, mm \, of \, Hg$
(c)
 $\mu_1 = \frac{PV}{RT}, \mu_2 = \frac{PV}{RT}$
 $P' = \frac{(\mu_1 + \mu_2)RT}{V} = \frac{2PV}{RT} \times \frac{RT}{V} = 2P$
(d)

29 (d)

28

Average kinetic energy $E = \frac{f}{2}kT$

Since f and T are same for both the gases so they will have equal energies also

30 **(b)**

$$V_{rms} = \sqrt{\frac{3 RT}{M}} \Rightarrow \frac{(V_{rms})_{O_2}}{(V_{rms})_{H_2}} = \sqrt{\frac{T_{O_2}}{T_{H_2}}} \times \frac{M_{H_2}}{M_{O_2}}$$
$$\Rightarrow \frac{(V_{rms})_{O_2}}{(V_{rms})_{H_2}} = \sqrt{\frac{900}{300}} \times \frac{2}{32} = \frac{\sqrt{3}}{4}$$
$$\Rightarrow (v_{rms})_{O_2} = 836 \, m/s$$

31 **(a)**

As degree of freedom is defined as the number of independent variables required to define body's motion completely. Here f=2 (1 Translational + 1 Rotational)

32 **(b)**

$$\frac{E_1}{E_2} = \frac{A_1}{A_2} \cdot \left(\frac{T_1}{T_2}\right)^4 = \frac{4\pi r_1^2}{4\pi r_2^2} \times 1 = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

33 **(c)**

$$V_{rms} = \sqrt{\frac{3P}{\rho}} \vee P = \frac{\rho V_{rms}^2}{3}$$

$$\frac{8.99 \times 10^{-2} \times 1840 \times 1840}{3} = 1.01 \times 10^5 N/m^2$$

34 **(b)**

$$v_{rms} = \sqrt{\frac{3 RT}{M}} \vee v_{rms} \propto \sqrt{T}$$

 v_{rms} is to reduce two times, *ie*, the temperature of the gas will have to reduce force times or

$$\frac{T'}{T} = \frac{1}{4}$$

During adiabatic process,

$$TV^{\gamma-1} = T'V^{\gamma-1}$$

or
$$\frac{V'}{V} = \left(\frac{T}{T'}\right)^{\frac{1}{\gamma-1}}$$
$$\dot{\iota}(4)^{\frac{1}{1.5-1}} = 4^2 = 16$$
$$\therefore \quad V' = 16V$$

35 **(a)**

$$(\Delta Q)_V = \mu C_V \Delta T \Rightarrow (\Delta Q)_V = 1 \times C_V \times 1 = C_V$$

For monoatomic gas $C_V = \frac{3}{2}R$

$$\therefore (\Delta Q)_V = \frac{3}{2}R$$

36 **(a)**

Root mean square velocity

$$v_{rms} \propto \frac{1}{\sqrt{M}}$$

So $\frac{(v_{rms})_{O2}}{(v_{rms})_{H2}} = \sqrt{\frac{M_{H2}}{M_{O2}}}$
 $i\sqrt{\frac{2}{32}} = \frac{1}{4}$

37 **(c)**

38

At constant pressure
$$V \propto T \Rightarrow \frac{\Delta V}{V} = \frac{\Delta T}{T}$$

Hence ratio of increase in volume per degree rise in kelvin temperature to it's original volume

$$i \frac{(\Delta V / \Delta T)}{V} = \frac{1}{T}$$
(c)

 $\rho = \frac{FM}{RT}$

Density ρ remains constant when P/T or volume remains constant.

In graph (i) Pressure is increasing at constant temperature hence volume is decreasing so density is increasing. Graphs (ii) and (iii) volume is increasing hence, density is decreasing. Note that volume would had been constant in case the straight line the graph (iii) had passed through origin

According to Newton's law

$$\frac{\theta_1 - \theta_2}{t} = K \left[\frac{\theta_1 + \theta_2}{2} - \theta_0 \right]$$

$$\therefore \frac{60-50}{10} = K \left[\frac{60+50}{2} - 25 \right] \dots (i)$$

Let θ be the temperature after another 10 min

$$\therefore \frac{50-\theta}{10} = K \left[\frac{\theta+50}{2} - 25 \right] \qquad \dots (ii)$$

Dividing Eq.(i) by Eq. (ii), we get
$$\frac{10}{50-\theta} = \frac{30 \times 2}{\theta} \therefore \theta = 42.85 \,^{\circ}\text{C}$$

40 **(c)**

$$\frac{\left(\frac{\Delta Q}{\Delta t}\right)_{inner}}{l} + \left(\frac{\Delta Q}{\Delta t}\right)_{outer} = \left(\frac{\Delta Q}{\Delta t}\right)_{total}$$

$$\frac{K_1 \pi r^2 (T_2 - T_1)}{l} + \frac{K_2 \pi \left[(2r)^2 - r^2\right] (T_2 - T_1)}{l} = \frac{K\pi (2r)^2}{l}$$
or $(K_1 + 3K_2) \frac{\pi r^2 (T_2 - T_1)}{l} = \frac{K\pi 4 r^2 (T_2 - T_1)}{l}$

$$\therefore K = \frac{K_1 + 3K_2}{4}$$

41 **(d)**

$$\gamma_{mixture} = \frac{\frac{\mu_1 \gamma_1}{\gamma_1 - 1} + \frac{\mu_2 \gamma_2}{\gamma_2 - 1}}{\frac{\mu_1}{\gamma_1 - 1} + \frac{\mu_2}{\gamma_2 - 1}}$$

$$\mu_1 = i \text{ moles of helium } i \frac{16}{4} = 4$$

$$\mu_2 = i \text{ moles of oxygen } i \frac{16}{32} = \frac{1}{2}$$

$$= \gamma_{mix} = \frac{\frac{4 \times 5/3}{5} + \frac{1/2 \times 7/5}{\frac{5}{3} - 1} + \frac{1/2 \times 7/5}{\frac{7}{5} - 1}}{\frac{4}{5} - 1} = 1.62$$

42 (a)

Mean free path, $\lambda = \frac{1}{\sqrt{2} \pi d^2 n}$ Where, n = i Number of molecules per unit volume d = i Diameter of the molecules

43 **(b)**

44

Speed of sound in gases in given by

$$v_{sound} = \sqrt{\frac{\gamma P}{\rho}} \Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{\rho_2}{\rho_1}} = \sqrt{\frac{d_2}{d_1}}$$
(c)

$$n_1 C_{v1} \Delta T_1 = n_2 C_{v2} \Delta T_2$$

$$\Rightarrow n_1 \times \frac{3}{2} R \times 10 = n_2 \times \frac{5}{2} R \times 6 \Rightarrow \frac{n_1}{n_2} = 1$$

45 **(a)**

We treat water like a solid. For each atom average

energy is $3k_BT$. Water molecule has three atoms, two hydrogen and one oxygen. The total energy of one mole of water is

$$U = 3 \times 3k_BT \times N_A = 9RT \left[\because k_B = \frac{R}{N_A} \right]$$

: Heat capacity per mole of water is

$$C = \frac{\Delta Q}{\Delta T} = \frac{\Delta U}{\Delta T} = 9 R$$

46 **(a)**

K.E. is function of temperature. So
$$\frac{E_{H_2}}{E_{O_2}} = \frac{1}{1}$$

47 **(c)**

According to kinetic theory of gases the temperature of a gas is a measure of the kinetic energies of the molecules of the gas.

48 **(c)**

At constant volume

$$\frac{P_1}{T_1} = \frac{P_2}{T_2} \Rightarrow T_2 = \left(\frac{P_2}{P_1}\right) T_1$$
$$\Rightarrow T_2 = \left(\frac{3P}{P}\right) \times (273 + 35) = 3 \times 308 = 924 \text{ K} = 651 \text{ °C}$$
(d)

$$\frac{3}{2}kT = 1 eV \Rightarrow T = \frac{2}{3} \frac{eV}{k} = \frac{\frac{2}{3} \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23}} = 7.7 \times 10^{-23}$$

Vander Waal's gas equation for μ mole of real gas

$$\left(P + \frac{\mu^2 a}{V^2}\right) (V - \mu b) = \mu RT$$

$$P = \left(\frac{\mu RT}{V - \mu b} - \frac{\mu^2 a}{V^2}\right)$$

Given equation,

$$P = \left(\frac{RT}{2V - b} = \frac{a}{4b^2}\right)$$

On comparing the given equation with this standard equation, we get

$$\mu = \frac{1}{2}$$
Hence, $\mu = \frac{m}{M}$

$$\Rightarrow mass of gas, m = \mu M = \frac{1}{2} \times 44 = 22g$$
52 (d)
$$C_{P} = \left(\frac{f}{2} + 1\right)R = \left(\frac{5}{2} + 1\right)R = \frac{7}{2}R$$
53 (c)

$$\frac{R}{C_p} = \frac{R}{7/2R} = \frac{2}{7} \left[\because C_p = \frac{7}{2}R \right]$$
(c)

As temperature decreases to half and volume made twice, hence pressure becomes $\frac{1}{4}$ times

55 (d)

54

$$p = p_{1} + p_{2} + p_{3}$$

$$= \left(\frac{nRT}{V}\right)_{O2} + \left(\frac{nRT}{V}\right)_{N2} + \left(\frac{nRT}{V}\right)_{CO2}$$

$$= \left(n_{O2} + n_{N2} + n_{CO2}\right)\frac{RT}{V}$$

$$= \frac{(0.25 + 0.5 + 0.5)(8.31) \times 300}{4 \times 10^{-3}}$$

$$= 7.79 \times 10^{5} N m^{-2}$$

56 (a)

$$PV = \mu RT = \frac{m}{M} RT \Rightarrow V = \frac{mRT}{MP}$$

$$\frac{2 \times 10^{-3} \times 8.3 \times 300}{32 \times 10^{-3} \times 10^{-5}} = 1.53 \times 10^{-3} m^{3} = 1.53 \, litre$$

57 (c)

According to Boyle's law (P V) = (P V)

$$\Rightarrow P_1 V_1 = (P_1 + h) V_2 \Rightarrow 10 \times \frac{4}{3} \pi \left(\frac{5r}{4}\right)^3$$
$$\Rightarrow (10 + h) \times \frac{4}{3} \pi r^3 \Rightarrow h = \frac{610}{64} = 9.53 m$$

58 (d)

We have $v_{rms} = \sqrt{\frac{3 RT}{M}}; at T = T_0(NTP)$ $v_{rms} = \sqrt{\frac{3 RT_0}{M}}$

But at temperature T,

$$v_{rms} = 2 \times \sqrt{\frac{3 RT_0}{M}}$$

$$\Rightarrow \sqrt{\frac{3 RT}{M}} = 2\sqrt{\frac{3 RT_0}{M}}$$

$$\Rightarrow \sqrt{T} = \sqrt{4T_0}$$

or

$$T = 4 T_0$$

$$T = 4 \times 273 \text{K} = 1092 \text{K}$$

$$\therefore T = 819 \,^{\circ}\text{C}$$

59 **(b)** $E = \frac{f}{2}RT; f = 5 \text{ for diatomis gas} \Rightarrow E = \frac{5}{2}RT$ 60 **(d)** Average kinetic energy

$$E = \frac{3}{2}kT \Rightarrow \frac{E_1}{E_2} = \frac{T_1}{T_2} = \frac{(273 - 23)}{(273 + 227)} = \frac{250}{500} = \frac{1}{2}$$

$$\Rightarrow E_2 = 2E_1 = 2 \times 5 \times 10^{-14} = 10 \times 10^{-14} erg$$

(a)

A monoatomic gas molecule has only three translational degrees of freedom62 (b)

$$\gamma_{mix} = \frac{\frac{\mu_1 \gamma_1}{\gamma_1 - 1} + \frac{\mu_2 \gamma_2}{\gamma_2 - 1}}{\frac{\mu_1}{\gamma_1 - 1} + \frac{\mu_2}{\gamma_2 - 1}} = \frac{\frac{3 \times 1.3}{(1.3 - 1)} + \frac{2 \times 1.4}{(1.4 - 1)}}{\frac{3}{(1.3 - 1)} + \frac{2}{(1.4 - 1)}} = 1.33$$
(b)

(b) At critical temperature the horizontal portion in P-V curve almost vanishes as at temperature T_2 .

$$v_{rms} \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{(v_{rms})_{H_2}}{(v_{rms})_{He}} = \sqrt{\frac{M_{He}}{M_{H_2}}} = \sqrt{\frac{4}{2}} = \frac{\sqrt{2}}{1}$$

65 **(a)**

61

63

When electric spark is passed, hydrogen reads with oxygen to form water (H_2O) . Each gram of hydrogen reacts with eight grams of oxygen. Thus 96 gm of oxygen will be totally consumed together with 12 gm of hydrogen. The gas left in the vessel will be 2 gm of hydrogen *i.e.*

Number of moles
$$\mu = \frac{2}{2} = 1$$

Using
$$PV = \mu RT \Rightarrow P \propto \mu \Rightarrow \frac{P_2}{P_1} = \frac{\mu_2}{\mu_1}$$

 $(\mu_1 = \dot{\iota} \text{ Initial number of moles } \dot{\iota} 7+3=10 \text{ and } \mu_2 = \dot{\iota}$ Final number of moles $\dot{\iota} 1$)

$$\Rightarrow \frac{P_2}{1} = \frac{1}{10} \Rightarrow P_2 = 0.1 atm$$

66 **(a)**

$$v_{rms} = \sqrt{\frac{3 RT}{M}} \Rightarrow \frac{v_2}{v_1} = \sqrt{\frac{T_2}{T_1}} = \sqrt{\frac{(273+90)}{(273+27)}} = 1.1$$

% increase $i \left(\frac{v_2}{v_1} - 1 \right) \times 100 = 0.1 \times 100 = 10$ %

67 **(c)**

Ideal gas equation is given by pV = nRT

For oxygen, p=1 atm, V=1 L, $n=n_{O2}$ Therefore, Eq. (i) becomes $\therefore 1 \times 1 = n_{O2} RT$

$$\Rightarrow n_{O2} = \frac{1}{RT}$$

For nitrogen p = i0.5 atm, V = i2 L, $n = n_N$ $\therefore 0.5 \times 2 = n_{N_2} RT$

$$\Rightarrow n_{N2} = \frac{1}{RT}$$

For mixture of gas

$$p_{mix} V_{mix} = n_{mix} RT$$

Here, $n_{mix} = n_{O2} + n_{N2}$
$$\therefore \frac{p_{mix} V_{mix}}{RT} = \frac{1}{RT} + \frac{1}{RT}$$

$$\Rightarrow p_{mix} V_{mix} = 2 \qquad (V_{mix} = 1)$$

68 **(d)**

Let T_0 be the initial temperature of the black body $\therefore \lambda_0 T_0 = b$ (Wien's law)

Power radiated, $P_0 = C T_0^4$, where, *C* is constant. If *T* is new temperature of black body, then

$$\frac{3\lambda_0}{4}T = b = \lambda_0 T_0 \lor T = \frac{4}{3}T_0$$

Power radiated, $P = C T^4 = C T_0^4 \left(\frac{4}{3}\right)^4$

$$P = P_0 \times \frac{256}{81} \vee \frac{P}{P_0} = \frac{256}{81}$$

69 **(c)**

$$PV = \frac{m}{M} RT \Rightarrow V \propto mT \Rightarrow \frac{V_1}{V_2} = \frac{m_1}{m_2} \cdot \frac{T_1}{T_2}$$
$$\lambda \frac{2V}{V} = \frac{m}{m_2} \times \frac{100}{200} \Rightarrow m_2 = \frac{m}{4}$$

70 **(c)**

At constant temperature PV = i constant $\Rightarrow P \propto \frac{1}{V}$

$$v_{rms} \propto \frac{1}{\sqrt{M}} \Rightarrow (v_{rms})_1 < (v_{rms})_2 < (v_{rms})_3$$
 also in mixture

temperature of each gas will be same, hence kinetic energy also remains same

72 **(b)**

$$\frac{E_1}{E_2} = \frac{T_1}{T_2} = \frac{300}{450} = \frac{2}{3}$$

74

$$PV = \mu RT = \frac{m}{M} RT \Rightarrow P = \frac{d}{M} RT \left[Density \ d = \frac{m}{V} \right]$$
$$\Rightarrow \frac{P}{dT} = constant \lor \frac{P_1}{d_1 T_1} = \frac{P_2}{d_2 T_2}$$
(d)

$$P \propto T \Rightarrow \frac{P_2}{P_1} = \frac{T_2}{T_1} = \frac{(273 + 100)}{(273 + 0)} = \frac{373}{273}$$
$$\Rightarrow P_2 = \frac{760 \times 373}{273} = 1038 \, mm$$

75 **(c)**

76

Since temperature is constant, so v_{rms} remains same (c)

At constant pressure, the volume of a given mass of a gas is directly proportional to its absolute temperature ($T\dot{\iota}$.

This is another form of Charles' law. Hence, variation of volume with temperature is as shown.

Hence, correct graph will be (C).

77 **(d)**

Argon is a monoatomic gas so it has only translational energy

79 **(c)**

According to the Dalton's law of partial pressure, the total pressure will be $P_1 + P_2 + P_3$

80 **(d)**

Kinetic energy \propto Temperature

$$\Rightarrow \frac{E_1}{E_2} = \frac{T_1}{T_2} \Rightarrow \frac{E_1}{E_2} = \frac{(273 + 27)}{(273 + 927)} = \frac{300}{1200} = \frac{1}{4}$$
$$\Rightarrow E_2 = 4E_1$$

81 **(d)**

$$\frac{V_{rmsHe}}{V_{rmsAr}} = \frac{\sqrt{\frac{3 RT}{m_{He}}}}{\sqrt{\frac{3 RT}{m_{Ar}}}} = \sqrt{\frac{m_{Ar}}{m_{He}}} = \sqrt{\frac{40}{4}} = \sqrt{10} \approx 3.16$$

82 **(c)**

We know that
$$C_P - C_V = \frac{R}{J}$$

 $\Rightarrow I = \frac{R}{J}$

$$C_{P} - C_{V} = 1.98 \frac{cal}{g - mol - K}$$

$$R = 8.32 \frac{J}{g - mol - K}$$

$$\therefore J = \frac{8.32}{1.98} = 4.20 J/cal$$
83 (c)
S.I. unit of R is $J/mol - K$

84 (a)

According to Boyle's law PV = i constant 85 (a)

$$v_{rms} \propto \sqrt{\frac{3 RT}{M}}$$

$$\Rightarrow T \propto v_{rms}^{2}$$

$$\Rightarrow \frac{T_{2}}{T_{1}} = \left[\frac{v_{2}}{v_{1}}\right]^{2} = \frac{1}{4} \Rightarrow T_{2} = \frac{T_{1}}{4} = \frac{273 + 327}{4}$$

$$i 150 K = -123 \ ^{\circ}C$$

86 (a)

The total pressure exerted by a mixture of nonreacting gases occupying a vessel is equal to the sum of the individual pressure which each gas exert if it alone occupied the same volume at a given temperature.

For two gases,

$$p = p_1 + p_2 = p + p = 2p$$

87 **(b)**

88

According to ideal gas equation PV = nRT

$$PV = \frac{m}{M} RT, P = \frac{\rho}{M} RT \text{ or } \frac{\rho}{P} = \frac{M}{RT} \text{ or } \frac{\rho}{P} \propto \frac{1}{T}$$

Here, $\frac{\rho}{P}$ represent the slope of graph
Hence $T_2 > T_1$
(c)

$$PV = \mu RT = \frac{m}{M} RT \Rightarrow P \propto mT$$

$$\Rightarrow \frac{P_2}{P_1} = \frac{m_2}{m_1} \frac{T_2}{T_1} = \frac{1}{2} \times \frac{(273 + 27 + 50)}{(273 + 27)} = \frac{7}{12}$$

$$\Rightarrow P_2 = \frac{7}{12} P_1 = \frac{7}{12} \times 20 = 11.67 atm. \approx 11.7 atm$$

89 **(a)**

92

Since $c_{rms} \ll V_e$, hence molecules do not escape out 91 **(b)**

In case of given graph, V and T are related as V = aT - b, where a and b are constants. From ideal gas equation, $PV = \mu RT$ We find $P = \frac{\mu RT}{aT - b} = \frac{\mu R}{a - b/T}$ Since $T_2 > T_1$, therefore $P_2 < P_1$ (c)

Gas equation for N molecules PV = NkT $\Rightarrow N = \frac{PV}{kT} = \frac{1.2 \times 10^{-10} \times 13.6 \times 10^{3} \times 10 \times 10^{-4}}{1.38 \times 10^{-23} \times 300}$ $i3.86 \times 10^{11}$ 93 (c) $E \propto T$ 94 (a) $v_{rms} \propto \sqrt{T}, \frac{v_2}{v_1} = \sqrt{\frac{T_2}{T_1}} \Rightarrow v_2 = \sqrt{\frac{(273+927)}{(273+27)}} v_1 \Rightarrow v_2 = 2$ 95 (c) For ideal gas, on free expansion there is no change in temperature. Hence $C_a = C_b$ 96 **(b)** $v_{rms} > v_{av} > v_{mp}$ 97 (a) According to Boyle's law, pV = k(a constant)Or $p\frac{m}{p} = k \lor p = \frac{pm}{k}$ Or $p = \frac{p}{k} \dot{c}$ a constant) So, $\rho_1 = \frac{p_1}{k} \wedge V_1 \frac{p_1}{k} = \frac{m_1}{p_1} = \frac{m_1}{p_1/k} = \frac{k m_1}{\rho_1}$ Similarly, $V_2 = \frac{k m_2}{p_2}$ Total volume = $V_1 + V_2 = k \left(\frac{m_1}{p_1} + \frac{m_2}{p_2} \right)$ Let *p* be the common pressure and ρ be the common density of mixture. Then $m_1 + m_2$ $m_1 + m_2$

$$\rho = \frac{1}{V_1 + V_2} = \frac{1}{k \left(\frac{m_1}{P_1} + \frac{m_2}{P_2} \right)}$$
$$\therefore p = k\rho = \frac{m_1 + m_2}{\frac{m_1}{P_1} + \frac{m_2}{P_2}} = \frac{P_1 P_2 (m_1 + m_2)}{(m_1 P_2 + m_2 P_1)}$$

98 **(c)**

99

 $v_{rms} = \sqrt{\frac{3 RT}{M}}$. According to problem T will become 2 T and M will becomes M/2 so the value of v_{rms} will increase by $\sqrt{4} = 2 \times , i.e.$, new root mean square velocity will be 2v(a)

Here,
$$\frac{K_1}{K_2} = \frac{1}{2}, \frac{r_1}{r_2} = \frac{1}{2}$$

 $\therefore \frac{A_1}{A_2} = \frac{1}{4}$

$$\frac{dx_1}{dx_2} = \frac{1}{2}, \frac{dQ_2}{dt} = 4 \, cal \, s^{-1}, \frac{dQ_1}{dt} = ?$$

$$\frac{dQ_2/dt}{dQ_1/dt} = \frac{K_2 A_2 \, dT/dx_2}{K_1 A_1 \, dT/dx_1} = \frac{K_2}{K_1} \frac{A_2}{A_1} \frac{dx_1}{dx_2}$$

$$= 2 \times 4 \times \frac{1}{2} = 4$$

$$\frac{dQ_1}{dt} = \frac{dQ_2/dt}{4} = \frac{4}{4} = 1 \, cal \, s^{-1}$$

100 **(b)**

At lower pressure we can assume that given gas behaves as ideal gas so $\frac{PV}{RT} = i$ constant but when pressure increases, the decrease in volume will not take place in same proportion so $\frac{PV}{RT}$ will increase

101 (d)

Let initial conditions i V, TAnd final conditions i V', T'By Charle's law $V \propto T$ [P remains constant]

$$\frac{V}{T} = \frac{V}{T} \Rightarrow \frac{V}{T} = \frac{V}{1.2T} \Rightarrow V' = 1.2V$$

But as per question, volume is reduced by 10% means V = 0.9 V

So percentage of volume leaked out $\frac{(1.2-0.9)V}{1.2V} \times 100 = 25\%$

102 (c)

As temperature requirement is not given so, the molecule of a triatomic gas has a tendency of rotating about any of three coordinate axes. So, it has 6 degrees of freedom; 3 translational and 3 rotational.

Thus,

(3 translational+3 rotational) at room temperature.

We have
$$v_{rms} = \sqrt{\frac{v_1^2 + v_2^2 + ... + v_n^2}{n}}$$

= $\sqrt{\frac{4 + 25 + 9 + 36 + 9 + 25}{6}}$
= $\sqrt{\frac{108}{6}} = \sqrt{18} = 3\sqrt{2} = 3 \times 1.414 = 4.242$ unit.

104 **(a)**

According to ideal gas equation

$$PV = nRT$$
 or $\frac{V}{T} = \frac{nR}{P}$

At constant pressure

$$\frac{V}{T} = i$$
 constant

Hence graph (a) is correct

105 **(a)**

Temperatures $T_1 = 15 \text{ °C} = 15 + 273 = 288 \text{ K}$ $T_2 = 35 \text{ °C} = 35 + 273 = 308 \text{ K}$

Volume remains constant.

So,
$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$

 $\frac{p_1}{p_2} = \frac{T_1}{T_2} \Rightarrow \frac{p_1}{p_2} = \frac{288}{308}$
 $\frac{p_2}{p_1} = \frac{308}{288}$

% increases in pressure= $\frac{p_2 - p_1}{p_1} \times 100$

$$\frac{100}{288} \times 100 \approx 7\%$$

$$v_{av} = \sqrt{\frac{8 RT}{\pi M}} \Rightarrow T \propto M[\because v_{av}, R \rightarrow constant]$$

$$\Rightarrow \frac{T_{H_2}}{T_{O_2}} = \frac{M_{H_2}}{M_{O_2}} \Rightarrow \frac{T_{H_2}}{(273+31)} = \frac{2}{32}$$

$$\Rightarrow T_{H_2} = 19 K = -254 \,^{\circ}C$$

107 (d)

Kinetic energy per g mole $E = \frac{f}{2}RT$

If nothing is said about gas then we should calculate the translational kinetic energy

i.e.,
$$E_{Trans} = \frac{3}{2}RT = \frac{3}{2} \times 8.31 \times (273 + 0) = 3.4 \times 10^3$$

108 (a)

According to Gay Lussac's law $p \propto T$

$$\therefore \frac{dp}{p} \times 100 = \frac{dT}{T} \times 100$$
$$1 = \frac{1}{T} \times 100$$
$$\Rightarrow T = 100 \text{ K}$$

109 **(c)**

Specific heat at constant pressure (C_p) is the amount of heat (Q) required to raise *n* moles of substance by $\Delta \theta$ when pressure is kept constant. Then

$$C_{p} = \frac{Q}{n\Delta\theta}$$

Given, Q=70 cal, n=2,
$$\Delta\theta = (35 - 35)^{\circ}C = 5^{\circ}C$$

$$\therefore \qquad C_{p} = \frac{70}{2 \times 5} = 7 \text{ cal } mo l^{-1} - K^{-1}$$

where *R* is gas constant (
$$i 2 cal mol^{-1}$$
)
 $\therefore 7 - C_V = 2$

$$\Rightarrow C_V = 5 \ calmold l^{-1} - K^{-1}$$

Hence, amount of heat required at constant volume (C_v) is

$$Q' = nC_V \Delta \theta$$
$$Q' = 2 \times 5 \times 5 = 50 \, cal$$

110 **(b)**

 $v_{rms} \propto \sqrt{T}$; To double the *rms* velocity temperature should be made four times, *i.e.*,

$$T_2 = 4 T_1 = 4(273 + 0) = 1092 K = 819$$
°C

111 **(b)**

In a given mass of the gas

$$n = \frac{pV}{kT}$$

k being Boltzmann's constant.

112 **(d)**

$$PV = NkT \Rightarrow \frac{N_A}{N_B} = \frac{P_A V_A}{P_B V_B} \times \frac{T_B}{T_A}$$
$$\Rightarrow \frac{N_A}{N_B} = \frac{P \times V \times (2T)}{2P \times \frac{V}{4} \times T} = \frac{4}{1}$$

113 **(b)**

$$V P^{3} = \mathbf{i} \operatorname{constant} \mathbf{i} k \Rightarrow P = \frac{k}{V^{1/3}}$$

Also $PV = \mu RT \Rightarrow \frac{k}{V^{1/3}}$. $V = \mu RT \Rightarrow V^{2/3} = \frac{\mu RT}{k}$
Hence $\left(\frac{V_{1}}{V_{2}}\right)^{2/3} = \frac{T_{1}}{T_{2}} \Rightarrow \left(\frac{V}{27V}\right)^{2/3} = \frac{T}{T_{2}} \Rightarrow T_{2} = 9T$
114 (d)

Vander waal's equation is followed by real gases 115 **(b)**

Molecular mass of He; M=4g \Rightarrow Molar value of

$$C_v = M c_v = 4 \times 3 = 12 \frac{J}{mole - kelvin}$$

At constant volume $P \propto T$, therefore on doubling the pressure temperature also doubles

$$i.e.,T_2 = 2T_1 \Rightarrow \Delta T = T_2 - T_1 = 273 K$$

Also
$$(\Delta Q)_V = \mu C_V \Delta T = \frac{1}{2} \times 12 \times 273 = 1638 J$$

116 **(a)**

Here,
$$h_1 = 50 \ cm$$
, $t_1 = 50 \ °C$
 $h_2 = 60 \ cm$, $t_2 = 100 \ °C$
Now, $\frac{h_1}{h_2} = \frac{d_2}{d_1} = \frac{d_0}{1 + \gamma t_2} \times \frac{1 + \gamma t_1}{d_0}$
 $\frac{50}{60} = \frac{1 + \gamma \times 50}{1 + \gamma \times 100}$
 $\therefore \gamma = \frac{1}{200} = 0.005 \ °C^{-1}$

117 (d)

Vander Waal's gas constant $b=4 \times \text{total volume of}$ all the molecules of the gas in the enclosure

Or
$$b = 4 \times N \times \frac{4}{3} \pi \left(\frac{d}{2}\right)^3 = \frac{2}{3} \pi N d^3$$

 $\frac{2}{3} \times 3.14 \times 6.02 \times 10^{23} \times (2.94 \times 10^{-10})^3 = 32 \times 10^{-10}$

118 **(a)**

From ideal gas equation pV = nkT

$$p = \frac{n}{V}kT$$
Here, $\frac{n}{V} = 5/c m^3 = 5 \times 10^6/m^3$
 $\therefore p = i$
 $p = 20.7 \times 10^{-17} N m^{-2}$

119 **(d)**

Escape velocity from the earth's surface is 11.2 *km/sec*

So,
$$v_{rms} = v_{escape} = \sqrt{\frac{3RT}{M}} \Rightarrow T = \frac{\left(v_{escape}\right)^2 \times M}{3R}$$

 $i \frac{\left(11.2 \times 10^3\right)^2 \times (2 \times 10^{-3})}{3 \times 8.31} = 10063 K$

120 (d) $v = \sqrt{\frac{\gamma P}{\rho}} = \sqrt{\frac{\frac{5}{3} \times 10^3}{2.6}} = 25 \, m/s$ 121 (a)

The temperature at which protons in a proton gas would have enough energy to overcome Coulomb barrier between them is given by

$$\frac{3}{2}k_BT = K_{av} \quad \dots (i)$$

Where k_{av} is the average kinetic energy of the proton, T is the temperature of the proton gas and k_B is the Boltzmann constant

From (i), we get
$$T = \frac{2K_{av}}{3K_B}$$

Substituting the values, we get

$$T = \frac{2 \times 4.14 \times 10^{-14} J}{3 \times 1.38 \times 10^{-23} J K^{-1}} = 2 \times 10^9 K$$

122 **(b)**

The pressure exerted by the gas,

$$p = \frac{1}{3} \rho c^{2}$$

$$i \frac{1}{3} \frac{m}{V} \dot{c}^{2}$$

$$i \frac{2}{3} \left(\frac{1}{2} m \dot{c}^{2} \right)$$

$$(\because \frac{1}{2} m \dot{c}^{2} = \frac{E}{V} = energy \ per \ unit \ volume \ , V = 1)$$

$$p = \frac{2}{3} E$$

123 (d)

Here,
$$\frac{D_1}{D_2} = \frac{1}{2}$$

 $\frac{A_1}{A_2} = \frac{D_1^2}{D_2^2} = \frac{1}{4}$
 $\frac{dx_1}{dx_2} = \frac{2}{1}$
 $\frac{dQ_1}{dt} = K A_1 \frac{dT}{dx_1} : \frac{dQ_2}{dt} = K A_2 \frac{dT}{dx_2}$
 $\frac{dQ_1/dt}{dQ_2/dt} = \frac{A_1}{dx_1} \cdot \frac{dx_2}{A_2} = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$

124 (d)

Total pressure (P) of gas = Actual pressure of gas $P_a + i$ aqueous vapour pressure (P_V) $\Rightarrow P_a = P - P_V = 735 - 23.8 = 711.2 \, mm$

125 **(c)**

Let for mixture of gases, specific heat at constant volume be C_V

$$C_{V} = \frac{n_{1}(C_{V})_{1} + n_{2}(C_{V})_{2}}{n_{1} + n_{2}}$$

where for oxygen; $C_{V1} = \frac{5R}{2}$, $n_{1} = 2 \mod$
For helium; $C_{V2} = \frac{3R}{2}$, $n_{2} = 8 \mod$
Therefore, $C_{V} = \frac{\frac{2 \times 5R}{2} + 8 \times \frac{3R}{2}}{2 + 8} = \frac{17R}{10} = 1.7R$

126 **(a)**

For one *g mole*; average kinetic energy $\frac{2}{3}RT$

127 (d)

As we know 1 *mol* of any ideal gas at *STP* occupies a volume of 22.4 *litres*.

Hence number of moles of gas $\mu = \frac{44.8}{22.4} = 2$

Since the volume of cylinder is fixed, $I_{\text{Lense}} (A O) = u C A T$

Hence
$$(\Delta Q)_V = \mu C_V \Delta T$$

 $i 2 \times \frac{3}{2} R \times 10 = 30 R \left[\because (C_V)_{mono} = \frac{3}{2} R \right]$

128 **(b)**

The ideal gas law is the equation of state of an ideal gas. The state of an amount of gas is determined by its pressure, volume and temperature. The equation has the form pV=nRT

where, p is pressure, V the volume, n the number of moles, R the gas constant and T the temperature.

$$\cdot \frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

Given,

$$p_{1}=200 \, kPa, V_{1}=V, T_{1}=273+22=295 \, K, V_{2}=V$$

$$T_{2}=273+42=315 \, K$$

$$\frac{200 \times V}{295} = \frac{p_{2} \times 1.02 \, V}{315}$$

$$\Rightarrow p_{2}=\frac{200 \times 315}{295 \times 1.02}$$

$$p_{2}=209 \, kPa$$

129 **(c)**

$$PV = \mu RT \Rightarrow \mu = \frac{PV}{RT} = \frac{21 \times 10^4 \times 83 \times 10^{-3}}{8.3 \times 300} = 7$$

130 **(b)**

An ideal gas is a gas which satisfying the assumptions of the kinetic energy.

131 (d)

$$P = \frac{2}{3}E$$
132 (b)

$$\gamma = 7/5 \text{ for a diatomic gas}$$
134 (c)

$$v_{rms} \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{v_{O_2}}{v_{H_2}} = \sqrt{\frac{M_{H_2}}{M_{O_2}}} \Rightarrow \frac{C}{v_{H_2}} = \sqrt{\frac{2}{32}} = \frac{1}{4}$$

$$\Rightarrow v_{H_2} = 4C \text{ cm/s}$$
135 (a)

$$P \propto T \Rightarrow \frac{P_1}{P_2} = \frac{T_1}{T_2} \Rightarrow \frac{P_2 - P_1}{P_1} = \frac{T_2 - T_1}{T_1}$$

$$\Rightarrow \left(\frac{\Delta P}{P}\right) \% = \left(\frac{251 - 250}{250}\right) \times 100 = 0.4\%$$
136 (b)

$$v_{rms} \propto \sqrt{T} \Rightarrow \frac{(v_{rms})_2}{(v_{rms})_1} = \sqrt{\frac{T_2}{T_1}}$$

$$\Rightarrow 2 = \sqrt{\frac{T_2}{300}} \Rightarrow T_2 = 1200 \text{ K} = 927 \,^{\circ}\text{C}$$

Figure shows the particles each moving with same speed v but in different directions. Consider any two particles having angle θ between directions of their velocities

Then,
$$\overrightarrow{v_{rel}} = \overrightarrow{v_B} - \overrightarrow{v_A}$$

i.e., $v_{rel} = \sqrt{v^2 + v^2 - 2vv\cos\theta}$
 $\Rightarrow v_{rel} = \sqrt{2v^2(1 - \cos\theta)} = 2v\sin(\theta/2)$
So averaging v_{rel} over all pairs
 $\dot{v_{rel}} = \frac{\int_{0}^{2\pi} v_{rel} d\theta}{\int_{0}^{2\pi} d\theta} = \frac{\int_{0}^{2\pi} 2v\sin(\theta/2)}{\int_{0}^{2\pi} d\theta} = \frac{2v \times 2[-\cos(\theta/2)/2\pi)}{2\pi}$
 $\Rightarrow \dot{v_{rel}} = (4v/\pi) > v \quad [as 4/\pi > 1]$
138 (b)
Since volume is constant,
Hence $\frac{P_1}{P_2} = \frac{T_1}{T_2} \Rightarrow \frac{1}{3} = \frac{(273 + 30)}{T_2}$
 $\Rightarrow T_2 = 909 K = 636 \,^{\circ}C$
139 (d)

139 **(d)**

The value of $\frac{pV}{T}$ for one mole of an ideal gas

= gas constant
= 2 cal
$$mol^{-1}K^{-1}$$

140 (d)

Mean kinetic energy for μ mole gas $i \mu \cdot \frac{f}{2} RT$

$$\therefore E = \mu \frac{7}{2} RT = \left(\frac{m}{M}\right) \frac{7}{2} NkT = \frac{1}{44} \left(\frac{7}{2}\right) NkT$$

$$\delta \frac{7}{88} NkT \left[As f = 7 \land M = 44 \text{ for } CO_2\right]$$

$$141 \text{ (c)}$$

$$V \propto T \Rightarrow \frac{V_1}{V_2} = \frac{T_1}{T_2} \Rightarrow \frac{V}{2V} = \frac{(273 + 27)}{T_2} = \frac{300}{T_2}$$

$$\Rightarrow T_2 = 600 K = 327 \text{ °C}$$

142 (a)

$$C_p - C_v = R = 2. \frac{cal}{g - mol - K}$$

Which is correct for option (a) and (b). Further the

ratio
$$\frac{C_P}{C_V}(\dot{c}\gamma)$$
 should be equal to some standard value

corresponding to that of either, mono, di, or triatomic gases. From this point of view option (a) is correct

because
$$\left(\frac{C_P}{C_V}\right)_{mono} = \frac{5}{3}$$

143 (a)
 $v_{rms} = \sqrt{\frac{3 RT}{M}} \Rightarrow T \propto M[\because v_{rms}, R \rightarrow constant]$
 $T_{H_2} = M_{H_2} = T_{H_2} = 20 K$

$$\frac{T_{H_2}}{T_{O_2}} = \frac{T_{H_2}}{M_{O_2}} = \frac{T_{H_2}}{(273+47)} = \frac{2}{32} \Rightarrow T_{H_2} = 20 K$$

144 (c)

Molecules of ideal gas behaves like perfectly elastic rigid sphere

$$PV = mrT \Rightarrow P \propto m\dot{\iota} \text{ constant}]$$

$$\Rightarrow \frac{m_1}{m_2} = \frac{P_1}{P_2} \Rightarrow \frac{10}{m_2} = \frac{10^7}{2.5 \times 10^6} \Rightarrow m_2 = 2.5 \, kg$$

Hence mass of the gas taken out of the cylinder i10 - 2.5 = 7.5 kg

147 **(b)**

$$(\Delta Q)_{P} = \mu C_{P} \Delta T \text{ and } (\Delta Q)_{V} = \mu C_{V} \Delta T$$

$$\Rightarrow \frac{(\Delta Q)_{V}}{(\Delta Q)_{P}} = \frac{C_{V}}{C_{P}} = \frac{\frac{3}{2}R}{\frac{5}{2}R} = 3/5$$

$$\left[\because (C_{V})_{mono} = \frac{3}{2}R, (C_{P})_{mono} = \frac{5}{2}R \right]$$

$$\Rightarrow (\Delta Q)_{V} = \frac{3}{5} \times (\Delta Q)_{P} = \frac{3}{5} \times 210 = 126J$$

Root mean square velocity of gas molecules

$$v_{rms} = \sqrt{\frac{3 RT}{M}}$$

$$i v_{rms} \propto \frac{1}{\sqrt{M}}$$

$$i \frac{v_{O3}}{v_{O2}} = \sqrt{\frac{M_{O2}}{M_{O3}}}$$

Here, $M_{O2} = 32, M_{O3} = 48$
$$\therefore \frac{v_{O3}}{v_{O2}} = \sqrt{\frac{32}{48}} = \frac{\sqrt{2}}{\sqrt{3}}$$

149 (d)

$$v_{rms} = \sqrt{\frac{3 RT}{M}} \Rightarrow v_{rms} \propto \frac{1}{\sqrt{M}}$$

150 (c)

For mono atomic gas, C_V is constant $\left(\frac{3}{2}R\right)$. It

doesn't vary with temperature

151 **(a)**

$$PV = \mu RT = \frac{m}{M} RT$$

$$\Rightarrow \frac{PV}{T} \propto \frac{1}{M} i \text{ molecule mass}]$$

From graph $\left(\frac{PV}{T}\right)_{A} < \left(\frac{PV}{T}\right)_{B} < \left(\frac{PV}{T}\right)_{C}$

$$\Rightarrow M_{A} > M_{B} > M_{C}$$

152 (d)

$$\frac{\Delta Q}{\Delta t} = KA \left(\frac{\Delta T}{\Delta x}\right) = K\pi r^{2} \left(\frac{\Delta T}{l}\right) \propto \frac{r^{2}}{l}$$

As $\frac{r^{2}}{l}$ is maximum for (d), it is the correct choice

153 **(a)**

Internal energy of the gas remains constant, hence

Using

$$T_{2}=T$$

$$p_{1}V_{1}=p_{2}V_{2}$$

$$p_{2}\frac{V}{2}=p_{2}V_{2}$$

$$p_{2}=\frac{p}{2}$$

154 **(d)**

The square root of $\dot{\nu}^2$ is called the root mean square velocity (rms) speed of the molecules.

$$v_{rms} = \sqrt{\dot{v}^2} = \sqrt{\frac{v_1^2 + v_2^2 + v_3^3 + v_4^4}{4}}$$

$$i\sqrt{\frac{(1)^2 + (2)^2 + (3)^2 + (4)^2}{4}}$$
$$i\sqrt{\frac{1 + 4 + 9 + 16}{4}} = \sqrt{\frac{30}{4}} = \sqrt{\frac{15}{2}} km s^{-1}$$

155 **(b)**

Using Newton's law of cooling,

$$\log \frac{\theta_2 - \theta_0}{\theta_1 - \theta_0} = -Kt$$

$$\log \frac{40 - \theta_0}{50 - \theta_0} = -K \times 5 \qquad \dots (i)$$

$$\log \frac{33.33 - \theta_0}{40 - \theta_0} = -K \times 5 \qquad \dots (ii)$$
From Eqs.(i) and (ii),
$$\frac{40 - \theta_0}{50 - \theta_0} = \frac{33.33 - \theta_0}{40 - \theta_0}$$
On solving, we get
$$\theta_0 = 19.95 \ C \approx 20 \ C$$

157 **(c)**

- 1. The dotted line in the diagram shows that there is no derivation in the value of $\frac{pV}{nT}$ for different temperature $T_1 \wedge T_2$ for increasing pressure so, this gas behaves ideally. Hence, dotted line corresponds to 'ideal' gas behavior.
- 2. At high temperature, the derivation of the gas is less and at low temperature the derivation of gas is more. In the graph, derivation for T_2 is greater than for T_1 . Thus,

$$T_{1} > T_{2}$$

3. Since, the two curves intersect at dotted line so, the value of $\frac{pV}{nT}$ at that point on the *y*-axis is same for all gases.

158 **(d)**

Since $v_{rms} \propto \sqrt{T}$. Also mean square velocity $v^2 = v_{rms}^2$ 159 **(b)**

$$v_{rms} \propto \frac{1}{\sqrt{M}} \Rightarrow V_H > V_N > V_O [:: M_H < M_N < M_O]$$

160 **(b)**

$P_f = 2p + p$

Saturated vapour pressure will not change if temperature remains constant.

161 **(c)**

Kinetic energy ∝ Temperature

162 (d)

$$PV = nRT$$

 $\Rightarrow PV = \frac{\omega}{M} RT$
 $\frac{PM}{RT} = \frac{\omega}{V} = e$
 $\Rightarrow e = \frac{PM}{RT} = \frac{P \times m \times N_A}{RT} = \frac{Pm}{\left(\frac{R}{N_A}\right)T} = \frac{Pm}{kT}$

163 **(b)**

Thermal energy corresponds to internal energy

Mass=1 kg
Density = 4 kg m⁻³
Volume =
$$\frac{Mass}{Density} = \frac{1}{4}m^3$$

Pressure = 8 × 10⁴ N m⁻²
∴ Internal energy = $\frac{5}{2}p \times V = 5 \times 10^4 J$

164 **(b)**

$$V_t = V_0(1 + \alpha t) = 0.5 \left(1 + \frac{1}{273} \times 819 \right) = 2 \, litre = 2 \times 10^{-10}$$

165 (c)

Here,
$$m = 10 \text{ g} = 10^{-2} \text{ kg}$$

 $v = 300 \text{ m s}^{-1}, \theta = ? \text{ C}, = 150 \text{ J-k} \text{ g}^{-1} \text{ K}^{-1}$
 $Q = \frac{50}{100} \left(\frac{1}{2} \text{ m v}^2\right) = \frac{1}{4} \times 10^{-2} (300)^2 = 225 \text{ J}$
From $Q = cm\theta$
 $\theta = \frac{Q}{cm} = \frac{225}{150 \times 10^{-2}} = 150 \text{ °C}$

166 (a)

At constant temperature PV = i constant

$$\Rightarrow \frac{P_1}{P_2} = \frac{V_2}{V_1} \Rightarrow \frac{70}{120} = \frac{V_2}{1200} \Rightarrow V_2 = 700 \, ml$$
167 (d)

$$P \propto \frac{1}{V} \Rightarrow \frac{V_2}{V_1} = \frac{P_1}{P_2} = \frac{100}{105} \Rightarrow V_2 = \frac{100}{105} V_1 = 0.953 V_1$$

% change in volume $\frac{V_1 - V_2}{V_1} \times 100$
 $\frac{V_1 - 0.953 V_1}{V_1} \times 100 = 4.76\%$

168 **(a)**

Average kinetic energy
$$E = \frac{I}{2}kT = \frac{3}{2}kT$$

 $\Rightarrow E = \frac{3}{2} \times (1.38 \times 10^{-23})(273 + 30) = 6.27 \times 10^{-21}J$

 $\& 0.039 \, eV < 1 \, eV$

175

169 (c)

$$\therefore C_p - C_v = R$$

Fractional part of heat energy $i \frac{C_p - R}{C_p}$
 $\frac{7}{2}R - R$

$$\frac{i}{\frac{2}{\frac{7}{2}R}} = \frac{5}{7}$$

170 **(c)**

RMS velocity doesn't depend upon pressure, it depends upon temperature only,

$$ie., v_{rms} \propto \sqrt{T}.$$

$$\Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}} \Rightarrow \frac{200}{v_2} = \sqrt{\frac{(273+27)}{(273+127)}} = \sqrt{\frac{300}{400}}$$

$$\Rightarrow v_2 = \frac{400}{\sqrt{3}} \text{ m/s}$$

171 (a)

$$\frac{F}{2}n_{1}kT_{1} + \frac{F}{2}n_{2}kT_{2} + \frac{F}{2}n_{3}kT_{3}$$

$$= \frac{F}{2}(n_{1} + n_{2} + n_{3})kT$$

$$T = \frac{n_{1}T_{1} + n_{2}T_{2} + n_{3}T_{3}}{n_{1} + n_{2} + n_{3}}$$

172 (a)
As
$$\rho - \rho_0 (1 - \gamma \Delta T)$$

 $\therefore 9.7 = 10(1 - \gamma \times 100)$
 $\frac{9.7}{10} = 1 - \gamma \times 100$
 $\gamma \times 100 = 1 - \frac{9.7}{10} = \frac{0.3}{10} = 3 \times 10^{-2}$

$$\gamma = 3 \times 10^{-4} \therefore \alpha = \frac{1}{3} \gamma = 10^{-4} \circ C^{-1}.$$

174 **(b)**

Let the temperature of junction beQ. In equilibrium, rate of flow of heat through rod 1= sum of rate of flow of heat through rods 2 and 3.

$$\left(\frac{dQ}{dt}\right)_{1} = \left(\frac{dQ}{dt}\right)_{2} + \left(\frac{dQ}{dt}\right)_{3}$$

$$KA \frac{(\theta - 0)}{l} = \frac{KA(90^{\circ} - \theta)}{l} + \frac{KA(90^{\circ} - \theta)}{l}$$

$$\theta = 2(90^{\circ} - \theta)$$

$$3\theta = 180^{\circ}, \theta = \frac{180^{\circ}}{3} = 60^{\circ}$$

(a)

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$
$$\frac{(P+h\rho g)1.0}{273+12} = \frac{P.V_2}{273+35}$$
$$V_2 = 5.4 \, c \, m^3$$

176 **(d)**

Average kinetic energy \propto Temperature E_1 T_1 100 300 E 150

$$\Rightarrow \frac{1}{E_2} = \frac{1}{T_2} \Rightarrow \frac{100}{E_2} = \frac{300}{450} \Rightarrow E_2 = 150J$$

177 **(a)**

Let $p_1 \wedge p_2$ are the initial and final pressures of the gas filled in A. Then

$$p_{1} = \frac{n_{A}RT}{V} \wedge p_{2} = \frac{n_{A}RT}{2V}$$
$$\Delta p = p_{2} - p_{1} = \frac{-n_{A}RT}{2V}$$
$$\dot{c} - \left(\frac{m_{A}}{M}\right)\frac{RT}{2V} \qquad \dots (i)$$

where M is the atomic weight of the gas.

Similarly, $1.5\Delta p = -\left(\frac{m_B}{M}\right)\frac{RT}{2V}$

...(ii)

Dividing Eq.(ii) by Eq. (i), we get

 $1.5 = \frac{m_B}{m_A} \vee \frac{3}{2} = \frac{m_B}{m_A}$ $3m_A = 2m_B$

or

178 (c)
From
$$\frac{\Delta Q}{\Delta t} = KA\left(\frac{\Delta T}{\Delta x}\right)$$

 $\Delta t = \frac{\Delta Q \Delta x}{KA(\Delta T)}$
In arrangement (b) A is doubled and Δx is

In arrangement (b), A is doubled and Δx is halved. $\therefore \Delta t \rightarrow \frac{1/2}{2} \rightarrow \frac{1}{4}$ time $ie, \frac{1}{4} \times 4$ min= 1 min

179 **(b)**

Here, m=0.1kg, $h_1=10 m$, $h_2=5.4 m$ $c=460 \text{ J-k}g^{-1} \circ C^{-1}$, $g=10 m s^{-2}$, $\theta=?$ Energy dissipated, $Q=mg(h_1-h_2)$ $= 0.1 \times 10(10-5.4)=4.6 \text{ j J}$ From $Q=cm\theta$ $\theta=\frac{Q}{cm}=\frac{4.6}{460 \times 0.1}=0.1 \circ C$ 180 **(b)**

Root mean square speed

$$v_{rms} \propto \frac{1}{\sqrt{\rho}}$$

$$\therefore \frac{v_{rms1}}{v_{rms2}} = \sqrt{\frac{\rho_2}{\rho_1}}$$

Given, $\frac{\rho_1}{\rho_2} = \frac{9}{8}$
$$\Rightarrow \frac{v_{rms1}}{v_{rms2}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}$$

181 **(c)**

$$v_{rms} \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{M_2}{M_1}}$$

 $\therefore \frac{1}{\sqrt{2}} = \sqrt{\frac{M_2}{32}} \Rightarrow M_2 = 16.$ Hence the gas is CH_4
182 (a)

No. of moles
$$n = \frac{m}{molecular weight} = \frac{5}{32}$$

So, from ideal gas equation pV = nRT

$$\Rightarrow pV = \frac{5}{32}RT$$

183 **(a)**

According to Avogadro's hypothesis

184 **(c)**

Pressure of gas A, $P_A = \frac{125 \times 0.6}{1000} = 0.075 atm$ Pressure of gas B, $P_B = \frac{150 \times 0.8}{100} = 0.120 atm$ Hence, by using Dalton's law of pressure $P_{mixture} = P_A + P_B = 0.075 + 0.120 = 0.195 atm$ 185 (a) Average speed (v_{av}) of gas molecules is

$$v_{av} = \sqrt{\frac{8 RT}{\pi M}}$$

where R is gas constant and M the molecular weight.

Given,
$$v_1 = v$$
, $M_1 = 64$, $v_2 = 4v$

$$\therefore \frac{v_1}{v_2} = \sqrt{\frac{M_2}{M_1}}$$

$$\frac{v}{4v} = \sqrt{\frac{M_2}{64}}$$

$$\Rightarrow M_2 = \frac{64}{16} = 4$$

Hence, the gas is helium (molecular mass 4).

186 **(b)**

Heat added to helium during expansion

$$H = nC_{v}\Delta T = 8 \times \frac{3}{2}R \times 30 \Big(C_{v} \text{ for monoatomic gas}$$

= 360 R
= 360 × 8.31 J (R=
8.31 J mol⁻¹ - K⁻¹ i
~ 3000 J

187 (c)

In Vander Waal's equation $\left(P + \frac{a}{V_2}\right)(V - b) = RT$

a represents intermolecular attractive force and *b* represents volume correction

188 **(b)**

$$C_{P} - C_{V} = R \Rightarrow C_{P} = R + C_{V} = R + \frac{f}{2}R$$

$$i R + \frac{3}{2}R = \frac{5}{2}R$$

189 (d)

It is because of their low densities

190 (d)

Kinetic energy of a gas molecule

$$E = \frac{3}{2}kT$$

where *k* is Boltzmann's constant. $\therefore E \propto T$

or
$$\frac{E_1}{E_2} = \frac{T_1}{T_2} \lor \frac{E}{(E/2)} = \frac{300}{T_2}$$

or $T_2 = 150 \text{ K}$

 $T_2 = 150 - 273 = -123 \,^{\circ}C$

191 **(c)**

On keeping the temperature of the ends of tube at $0^{\circ}C$ and $273^{\circ}C$.

difference
$$p_2 - p_3 = 0 \Rightarrow p_2 = p_3 i$$

 $\therefore \qquad \frac{p_2 \times l}{273} = \frac{p_2(90 - l)}{546}$
 $\Rightarrow 2l = 90 - l \Rightarrow l = 30 \text{ cm}$
From I and II
 $\frac{76 \times 45}{304} = \frac{p_2 \times 30}{273}$
 $\Rightarrow p_2 = \frac{76 \times 45 \times 273}{30 \times 304}$
 $p_2 = 102.4$
192 (c)
 $P_1 = \mu RT$
 $\Rightarrow V \propto \frac{T}{P} i$ and R are fixed i
Since, T increases rapidly and P increases slowly

thus volume of the gas increases 193 **(b)**

$$v_{av} \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{v_{He}}{v_H} = \sqrt{\frac{M_H}{M_{He}}} = \sqrt{\frac{1}{4}} = \frac{1}{2} \Rightarrow v_{He} = \frac{v_H}{2}$$

194 **(b)**

$$v_{rms} = \sqrt{\frac{3 RT}{M}} = \sqrt{\frac{3 \times 8.3 \times 300}{28 \times 10^{-3}}} = 517 \, m/s$$

195 (d)

Thermal equilibrium implies that the temperature of gases is same. Hence Boyle's law is applicable i.e $P_aV_a = P_bV_b$

$$C_{v} = \frac{5}{2}R \wedge C_{p} = \frac{7}{2}R$$
$$\therefore \gamma = \frac{C_{p}}{C_{v}} = \frac{7}{5}$$

197 (c)

Moist and hot air being lighter rises up and leaves the room throught the ventilator near the roof and fresh air rushes into the room throught the doors.

198 (d)

Root means square velocity of molecule in left part

$$v_{rms} = \sqrt{\frac{3 KT}{m_L}}$$

Mean or average speed of molecule in right part

$$v_{av} = \sqrt{\frac{8}{\pi} \frac{KT}{m_R}}$$

According to problem $\sqrt{\frac{3 KT}{m_L}} = \sqrt{\frac{8}{\pi} \frac{KT}{m_R}}$ $\Rightarrow \frac{3}{m_L} = \frac{8}{\pi m_R} \Rightarrow \frac{m_L}{m_R} = \frac{3 \pi}{8}$

199 (c)

Temperature of the gas is concerned only with it's disordered motion. It is no way concerned with it's ordered motion

200 (c)

$$\gamma_{max} = \frac{\frac{\mu_1 \gamma_1}{\gamma_1 - 1} + \frac{\mu_2 \gamma_2}{\gamma_2 - 1}}{\frac{\mu_1}{\gamma_1 - 1} + \frac{\mu_2}{\gamma_2 - 1}}$$

$$i \times \frac{5}{3} + \frac{1 \times \frac{7}{5}}{\left[\frac{5}{3} - 1\right]} + \frac{1 \times \frac{7}{5}}{\left[\frac{7}{5} - 1\right]} = \frac{3}{2} = 1.5$$
$$i \left[\frac{1}{\frac{5}{3} - 1}\right] + \left[\frac{1}{\frac{7}{5} - 1}\right]$$

201 (d)

$$E = \frac{3}{2}RT = \frac{3}{2} \times 8.31 \times 273 = 3.4 \times 10^3 J$$

202 **(b)**

Given, $p_1 = 100 \text{ mm}$, $V_1 = 200 \text{ mL} \land p_2 = 400 \text{ mm}$ From Boyle' Law

$$p_1V_1 = p_2V_2$$

 $V_2 = \frac{p_1V_1}{p_2}$

$$\frac{100 \times 200}{400}$$

V₂=50 mL

Volume of 2 mol gas= $2 \times 50 = 100 \text{ mL}$

203 **(b)**

$$v_{rms} = \sqrt{\frac{3 RT}{M}} \Rightarrow v_{rms}^2 \propto T$$

204 **(b)**

$$(C_{P})_{mix} = \frac{\mu_{1}C_{P_{1}} + \mu_{2}C_{P_{2}}}{\mu_{1} + \mu_{2}}(C_{P_{1}}(He)) = \frac{5}{2}R \wedge C_{P_{2}}(H_{2}) = \frac{1 \times \frac{5}{2}R + 1 \times \frac{7}{2}R}{1 + 1} = 3R = 3 \times 2 = 6 \text{ cal/mol.} \circ C$$

 \therefore Amount of heat needed to raise the temperature from 0 °C to 100 °C

$$(\Delta Q)_p = \mu C_p \Delta T = 2 \times 6 \times 100 = 1200 \, cal$$

205 **(c)**

The average velocity

$$v_{av} = \frac{v_1 + v_2 + v_3 + \dots + v_n}{N}$$

$$i\frac{1+3+5+7}{4} = 4$$
 km/s

Root mean square velocity

$$v_{rms} = \sqrt{\frac{v_1^2 + v_2^2 + v_3^2 + \dots + v_n^2}{N}}$$
$$\frac{i}{\sqrt{\frac{1 + (3)^2 + (5)^2 + (7)^2}{4}}}$$
$$\frac{i}{\sqrt{21} = 4.583 \text{ km/s}}$$

Difference between average velocity and root

mean square velocity =4.583-4 =0.583 km/s

206 (c)

$$V \propto T \Rightarrow \frac{V_1}{V_2} = \frac{T_1}{T_2}$$
$$\Rightarrow \frac{V}{V_2} = \frac{(273 + 27)}{(273 + 327)} = \frac{300}{600} = \frac{1}{2} \Rightarrow V_2 = 2V$$

207 (c)

For a closed system, the total number of moles remains constant. So

$$p_{1}V = n_{1}RT_{1} \wedge p_{2}V = n_{2}RT_{2}$$

$$\therefore p(2V) = (n_{1} + n_{2})RT$$

$$\therefore \frac{p}{T} = \frac{(n_{1} + n_{2})}{2}R = \frac{1}{2} \left[\frac{P_{1}}{T_{1}} + \frac{P_{2}}{T_{2}} \right]$$

$$= \frac{1}{2} \left[\frac{p_{1}T_{2} + p_{2}T_{1}}{T_{1}T_{2}} \right]$$

208 (a)

Most probable speed $v_{mp} = \sqrt{\frac{2kT}{m}} \Rightarrow \frac{1}{2}mv_{mp}^2 = kT$

209 (a)

As
$$dQ = dU + dW$$

∴ $dU = dQ - dW = 2240 - 168$
= 2072 J

210 **(c)**

The root mean square velocity

$$v_{rms} = \sqrt{\frac{3 RT}{M}}$$

where R is gas constant, T the temperature and M the molecular weight.

Given,
$$v_{He} = v_H$$
, $T_H = 273 K$, $M_H = 2$, $M_{He} = 4$

$$\therefore \frac{v_H}{v_{He}} = \sqrt{\frac{T_H}{T_{He}} \times \frac{M_{He}}{M_H}}$$

$$\therefore 1 = \sqrt{\frac{273}{T_{He}} \times \frac{4}{2}}$$

$$\Rightarrow T_{He} = 546 K$$
In °C, $T_{He} = (546 - 273)$ °C = 273 °C

212 **(b)**

The molecules of a gas are in a state of random motion. They continuously collide against the walls of the container. Even at ordinary temperature and pressure, the number of molecular collisions with walls is very large. During each collision, certain momentum is transferred to the walls of the container. The pressure exerted by the gas is due to continuous bombardment of gas molecules against the walls of the container. Due to this continuous bombardment, the walls of the container experience a continuous force which is equal to the total momentum imparted to the walls per second. The average force experienced per unit area of the walls container determines the pressure exerted by the gas. This should be clear from the fact that although the molecular collisions are random the pressure remains constant.

213 **(c)**

Given,
$$pT^2 = \text{constant}$$

 $\therefore \left(\frac{nRT}{V}\right)T^2 = i \text{constant}$
or $T^3V^{-1} = i \text{ cons}$

$$T^{3}V^{-1} = i$$
 constant

Differentiating the equation, we get

$$\frac{T^2}{V} \cdot dT - \frac{T^3}{V^2} \cdot dV = 0$$
$$3 \cdot dT = \frac{T}{V} \cdot dV$$

or

gas

3

From the equation, $dV = V_{\gamma} \cdot dT$

 $\gamma = i$ coefficient of volume expansion of

$$i \frac{dV}{V.dT}$$
$$\gamma = \frac{dV}{V.dT} = \frac{3}{T}$$

215 **(b)**

ŀ

Pressure will be less in front portion of the compartment because in accelerated frame molecules will feel pseudo force in backward direction. Also density of gas will be more in the back portion

216 (a)

$$v_{rms} \propto \sqrt{T}$$
$$\Rightarrow \frac{v_1^2}{v_2^2} = \frac{T_1}{T_2}$$

$$\Rightarrow \frac{v^2}{2v^2} = \frac{273}{T_2}$$
$$\Rightarrow T_2 = 1092 \text{ K}$$
$$= 819^{\circ}C$$

Average velocity of gas molecule is

$$v_{av} = \sqrt{\frac{8 RT}{\pi M}} \Rightarrow v_{av} \times \frac{1}{\sqrt{M}}$$
$$\Rightarrow i C_{H} > \frac{i}{i C_{He}} > i = \sqrt{\frac{M_{He}}{M_{H}}} = \sqrt{\frac{4}{1}} = 2 \Rightarrow \langle C_{H} \geq 2 \langle C_{H} \rangle$$

218 (c)

$$\mu = \mu_{1} + \mu_{2}$$

$$\frac{P(2V)}{RT_{1}} = \frac{P'V}{RT_{1}} + \frac{P'V}{RT_{2}} \Rightarrow \frac{2P}{RT_{1}} = \frac{P'}{R} \left[\frac{T_{2} + T_{1}}{T_{1}T_{2}} \right]$$

$$P' = \frac{2PT_{2}}{(T_{1} + T_{2})} = \frac{2 \times 1 \times 600}{(300 + 600)} = \frac{4}{3} atm$$

219 (c)

$$C_{v} = \frac{R}{(\gamma - 1)} \Rightarrow \gamma = 1 + \frac{R}{C_{v}} = 1 + \frac{R}{\frac{3}{2}R} = \frac{5}{3}$$

220 **(b)**

$$v_{rms} = \sqrt{\frac{3P}{\rho}} = \sqrt{\frac{3PV}{m}} \Rightarrow v_{rms} \propto \sqrt{\frac{P}{m}}$$
$$\Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{P_1}{P_2} \times \frac{m_2}{m_1}} \Rightarrow \frac{v_2}{2v} = \sqrt{\frac{P_0}{P_2} \times \frac{m/2}{m}} \Rightarrow P_2 = 2P_0$$

221 (a)

Kinetic energy for 1 mole gas $E = \frac{f}{2}RT$

$$\Rightarrow E_{Translation} = \frac{3}{2}RT$$

[: For all gases translational degree of freedom f=3]

222 **(c)**

 $PV = \mu RT$ [Gas equation] $\Rightarrow PV \propto T$ 223 **(b)**

Neglecting bond length, the volume of an oxygen molecule has been taken as 2 times that of one oxygen atom.

In 22.4 *litres i.e.*, 22.4 × $10^{-3} m^3$, there are $N_A = 6.23 \times 10^{23}$ molecules

Total volume of oxygen molecules $\dot{c} 2 \times \frac{4}{3} \pi r^3 \times N_A$

22.4 × $10^{-3} m^3$ is occupied by N_A molecules ∴ Fraction of volume occupied

$$i \frac{2 \times \frac{4}{3} \times \pi \times (1.5 \times 10^{-10})^3 \times 6.2 \times 10^{23}}{(22.4 \times 10^{-3})} = 8 \times 10^{-4}$$

224 **(c)**

No change, because *rms* velocity of gas depends upon temperature only

225 **(c)**

$$P$$
 m_2 m_1 m_2 W W_1 W_2 W

$$PV = \mu RT = \frac{m}{M} RT$$

For 1st graph,

$$P = \frac{m_1}{M} \frac{RT}{V_1} \quad \dots (i)$$

For 2nd graph,

$$P = \frac{m_2}{M} \frac{RT}{V_2} \quad \dots \text{(ii)}$$

Equating the two, we get, $\frac{m_1}{m_2} = \frac{V_1}{V_2} \Rightarrow m \propto V$

$$A_{\rm S} V_2 > V_1 \Longrightarrow m_1 < m_2$$

226 **(a)**

 $PV \!=\! \mu RT \! \Rightarrow \! PV \! \propto T$

If P and V are doubled then T becomes four times, *i.e.*,

$$T_2 = 4 T_1 = 4 \times 100 = 400 K$$

227 **(b)**

Ideal gas equation can be written as pV = nRT

...(i)

From Eq. (i), we have

$$\frac{n}{V} = \frac{p}{RT} = i_{\text{constant}}$$

So, at constant pressure and temperature, all gases will contain equal number of molecules per unit volume.

228 **(b)**

RMS velocity is given by

$$v = \sqrt{\frac{3kT}{m}} \lor v^2 = \frac{3kT}{m}$$

For a gas, *k* and *m* are constants.

$$\frac{v^2}{T} = i \text{ constant}$$

229 **(b)**

CO is diatomic gas, for diatomic gas

$$C_P = \frac{7}{2} R_{\text{and}} C_V = \frac{5}{2} R \Rightarrow \gamma_{di} = \frac{C_P}{C_V} = \frac{7 R/2}{5 R/2} = 1.4$$

230 (a)

When gas is filled in a closed container, it exerts pressure on the walls of the vessel.

According to kinetic theory this pressure is developed due to the collisions of the moving molecules on the walls of the vessels. Whenever a molecules collides with the wall, it return with changed momentum and an equal momentum is transferred to the wall. According to Newton's law of motion, the rate of change of momentum of the ball is equal to the force exerted on the wall. Since, the gas contains a large number of molecules which are colliding with the walls of the vessel, they exert a steady force on the walls. This force measured per unit area gives pressure, which is same as the molecules are moving in horizontal direction with constant acceleration.

231 (a)

Part (i)	Part (ii)
<i>P</i> , 5V	10 <i>P,</i> V

When the piston is allowed to move the gases are kept separated but the pressure has to be equal.

 $(P_1=P_2)$ and final volume x and (6V-x), the no of moles are same in initial and final position at each parts.

$$\therefore P_1 = P_2 P_V = n_1 RT$$

$$\frac{n_1 RT}{x} = \frac{n_2 RT}{6V - x} n_1 = \frac{5PV}{RT}$$

$$\frac{n_1}{x} = \frac{n_2}{6V - x} n_2 = \frac{10PV}{RT}$$

$$\Rightarrow \frac{5PV}{xRT} = \frac{10PV}{(6V - x)RT} \Rightarrow \frac{1}{x} = \frac{2}{6V - x}$$

$$\Rightarrow 6V - x = 2x \Rightarrow x 2V \text{ and}$$

$$6V - x \Rightarrow 6V - 2V = 4V$$

∴(2V,4V) 233 **(c)**

Kinetic energy ∝ Temperature. Hence if temperature is doubles, kinetic energy will also be doubled 234 (c)

The average kinetic energy of monoatomic gas

molecule is
$$K = \frac{3}{2}k_B T$$

Where k_B is the Boltzmann constant and T is the temperature of the gas in kelvin

$$K = \frac{3}{2} \times (1.38 \times 10^{-23} J K^{-1}) \times (300 K)$$

$$i \frac{3 \times (1.38 \times 10^{-23} J K^{-1}) \times (300 K)}{2 \times (1.6 \times 10^{-19} J/eV)}$$

$$i 3.9 \times 10^{-2} eV = 0.039 eV$$

235 (a)

If the volume remains constant, then

$$\frac{p_1}{p_2} = \frac{T_1}{T_2}$$

$$\Rightarrow \frac{p}{p + \frac{0.4}{100}p} = \frac{T}{T+1}$$
or
$$T = 250_{\text{K}}$$

236 **(a)**

From Boyle's law

$$pV = i \text{ constant}$$

 $\therefore p_1 V_1 = p_2 V_2$
Here, $p_1 = (h+l), V_1 = \frac{4}{3}\pi r^3$
 $p_2 = l, V_2 = \frac{4}{3}\pi i$
 $\therefore (h+l) \frac{4}{3}\pi r^3 = l \times \frac{4}{3}\pi (3r)^3$
orh+l=27l
 $\therefore h=26l$

237 (d)

Degree of freedom f=3 (Translatory)+2(rotatory) +1(vibratory) = 6

$$\Rightarrow \frac{C_P}{C_V} = \gamma = 1 + \frac{2}{f} = 1 + \frac{2}{6} = \frac{4}{3} = 1.33$$

238 (c)

In the absence of intermolecular forces, there

will be no stickness of molecules. Hence, pressure will increase.

239 (a)
At
$$T=0$$
 K, $v_{rms}=0$
240 (c)
The given equation is for $1 g \mod gas$
241 (c)
 $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$
 $T_2 = \frac{P_2V_2}{P_1V_1}T_1 = \frac{2}{1} \times \frac{3}{1} \times 300 = 1800 \ K = 1527 \ ^{\circ}C$
242 (a)
 $\therefore \theta_1 < \theta_2 \Rightarrow \tan \theta_1 < \tan \theta_2 \Rightarrow \left(\frac{V}{T}\right)_1 < \left(\frac{V}{T}\right)_2$
Form $PV = \mu RT$; $\frac{V}{T} \propto \frac{1}{P}$
Hence $\left(\frac{1}{P}\right)_1 < \left(\frac{1}{P}\right)_2 \Rightarrow P_1 > P_2$
243 (d)
 $C_P - C_V = R$ and R is constant for all gases

244 **(b)**

For a real gas the two van der Waal's constants and Boyle's temperature (T_B) are related as

 $T_{B} = \frac{a}{bR}$

245 **(b)**

 $v_{rms} \propto \sqrt{T}$ 246 (d)

r.m.s. velocity does not depend upon pressure 247 (c)

$$E_{av} = \frac{f}{2}kT = \frac{3}{2} \times 1.38 \times 10^{-23} \times 273 = 0.56 \times 10^{-20} J$$

248 (c)

As
$$\eta = 1 = \frac{T_2}{T_1}$$

 $\therefore \frac{50}{100} = 1 = \frac{500}{T_1} \lor T_1 = 1000 K$
Again, $\frac{60}{100} = 1 - \frac{T_2}{1000}$
Or $T_2 = 400 K$

249 **(a)**

Root mean square velocity (v_{rms}), given by

$$v_{rms} = \sqrt{\frac{3 RT}{M}}$$

where R is gas constant, T the temperature and M molecular weight.

Given, $T_1 = 27 \circ C = 273 + 27 = 300 K$, $T_2 = 327 \circ C = 327 + 273 = 600 \text{ K}$ $\therefore \frac{(v_{rms})_1}{(v_{rms})_2} = \sqrt{\frac{300}{600}} = \sqrt{\frac{1}{2}}$ $\Rightarrow (v_{rms})_2 = \sqrt{2}(v_{rms})_1$

Hence, rms speed increases $\sqrt{2}$ times.

251 **(d)**

Oxygen being a diatomic gas possesses 5 degrees of freedom, 3 translational and 2 rotational. Argon being monoatomic has 3 translational degrees of freedom.

Total energy of the system

$$i E_{oxygen} + E_{argon}$$

$$i n_1 f_1 \left(\frac{1}{2}RT\right) + n_2 f_2 \left(\frac{1}{2}RT\right)$$

$$i 2 \times 5 \times \frac{1}{2}RT + 4 \times 3 \times \frac{1}{2}RT$$

$$i 5 RT + 6 RT = 11RT$$

252 **(d)**

Consider n moles of a gas which undergo isochoric process, *ie*, V=constant. From first law of thermodynamics,

$$\Delta Q = \Delta W + \Delta U$$

...(i)

Here, $\Delta W = 0$ as V = constant $\Delta Q = nC_V \Delta T$

Substituting in Eq. (i), we get $\Delta U = n C_V \Delta T$

Mayer's relation can be written as

$$C_{p} - C_{V} = R$$
$$C_{V} = C_{p} - R$$

...(iii)

⇒

From Eqs. (ii) and (iii), we have $\Delta U = n(C_p - R)\Delta T$ Given, $n=6, C_p = 8 \, cal \, mo \, l^{-1} - K^{-1}$, $R = 8.31 \, J \, mo \, l^{-1} - K^{-1}$ $\approx 2 \, cal \, mo \, l^{-1} - K^{-1}$ Hence, $\Delta U = 6(8-2)(35-20)$ $i_{0}6 \times 6 \times 15 = 540 \, cal$

253 **(d)**

Mean kinetic energy of any ideal gas is given by $E = \frac{f}{2}RT$ which is different gases. (*f* is not same for all gases)

254 (a)

$$\frac{V_1}{V_2} = \frac{T_1}{T_2}$$

$$\frac{1}{2} = \frac{300}{T_2}$$

$$T_2 = 600 K = 600 - 273 = 327 ^{\circ}C$$

$$\Delta t = 327 - 27 = 300 ^{\circ}C$$

255 (c)

Since P and V are not changing, so temperature remains same

256 **(c)**

 $v_{r.m.s.}$ is independent of pressure but depends upon temperature as $v_{rms} \propto \sqrt{T}$

257 (d)

The main kinetic energy of one mole of gas n degree of freedom.

$$E = \frac{n}{2} RT$$

The mean kinetic energy of one mole of gas per degree of freedom.

$$E' = \frac{E}{n} = \frac{\frac{n}{2}RT}{n}$$
$$E' = \frac{1}{2}RT$$

258 (a)

Р

$$B$$
 $3m$
 A
 m
 T

For a gas, $PV = \mu RT = \frac{m}{M} RT$ For graph A, $PV = \frac{m}{M} RT$ Slope of graph A, $\left(\frac{P}{T}\right) = \frac{m}{M} \frac{R}{V}$...(i) For graph B, $PV = \frac{3m}{M} RT$ Slope of graph B, $\left(\frac{P}{T}\right) = \frac{3m}{M} \frac{R}{V}$...(ii) $\frac{Slope of curve B}{Slope of curve A} = \frac{\frac{3m}{M} \frac{R}{V}}{\frac{m}{M} \frac{R}{V}} = \frac{3}{1}$ 259 (c)

According to law of equipartion of energy, kinetic energy per degree of freedom of a gas molecule is

$$\frac{1}{2}kT$$

260 (c)

For carbon dioxide, number of moles $(n_1) = \frac{22}{44} = \frac{1}{2}$;

molar specific heat of CO_2 at constant volume $C_{V1} = 3R$

For oxygen, number of moles $(n_2) = \frac{16}{32} = \frac{1}{2}$;

molar specific heat of O_2 at constant volume

$$C_{V2} = \frac{5R}{2}$$

Let *TK* be the temperature of mixture. Heat lost by O_2 = Heat gained by CO_2 . $n_2 C_{V2} \Delta T_2 = n_1 C_{V1} \Delta T_1$ $\frac{1}{2} \left(\frac{5}{2} R \right) (310 - T) = \frac{1}{2} \times (3R) (T - 300)$ Or 1550 - 5T = 6T - 1800Or T = 304.54 K = 31.5 °C

261 (b)

As
$$dQ = C_p m \Delta T$$

 $\therefore 70 = C_p \times 2(35 - 30)$
 $C_v = C_p - R$
 $= 7 - 1.99 = 5.01 \, calmo \, l^{-1} \circ C^{-1}$
 $\therefore dQ' = C_v m \Delta T$
 $= 5.01 \times 2 \times (35 - 30) = 50.1 \, cal$

262 (d)

The difference of C_P and C_V is equal to R, not 2 R 264 (b)

 $\dot{v} = \sqrt{\frac{8 RT}{\pi M}} \lor \dot{v} \propto \frac{1}{\sqrt{M}}$

 $\frac{\dot{v}_H}{\dot{u}} = \sqrt{\frac{M_{He}}{M}}$

Average speed or mean speed of gas molecules

or

Here,
$$M_{He} = 4 M_H$$

 $\dot{V}_{He} = 1$

$$\frac{\dot{v}_{H}}{\dot{v}_{He}} = \sqrt{\frac{4}{1}} = 2 \vee \dot{v}_{He} = \frac{1}{2} \dot{v}_{H}$$

265 (a)

·

 $C_v = \frac{f}{2}R$

For diatomic gas f = 5

$$\therefore C_{v} = \frac{5}{2}R$$
266 (c)

$$\frac{E_{1}}{E_{2}} = \frac{T_{1}}{T_{2}} \Rightarrow \frac{E}{2E} = \frac{(273+27)}{T_{2}} \Rightarrow T_{2} = 600 K = 327 °C$$
267 (b)
Here, $V_{0} = 10^{3} cc$
 $\gamma_{r} = 180 \times 10^{-6} °C^{-1}$, $t = 100 °C$
 $\gamma_{a} = \gamma_{r} - g = (180 - 40) 10^{-6}$
 $V_{t} = V_{0} (1 + 140 \times 10^{-6} \times 10^{2})$
 $= (10^{3} + 14) cc$
 \therefore Volume of mercury that will overflow
 $= V_{t} - V_{0} = 14 cc$
268 (c)
Pressure, $P = \frac{F}{A} = \frac{1}{A} \cdot \frac{\Delta p}{\Delta t} \dot{c}$ change in momentum.
269 (c)
 $\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}} \Rightarrow \frac{1 \times 500}{300} = \frac{0.5 \times V_{2}}{270} \Rightarrow V_{2} = 900 m^{3}$
270 (c)
For same isotherm; $T \rightarrow \text{ constant}$
 $\therefore P \propto \frac{1}{V} \Rightarrow P_{1}V_{1} = P_{2}V_{2}$
272 (b)
Given that, $T = 27 °C = 300 K$
 $v_{rms} = 1365 m s^{-1}$
We know that
 $v_{rms} = \sqrt{\frac{3RT}{M}}$
 $\dot{c} V_{rms}^{2} = \frac{3RT}{M}$
 $\dot{c} M = \frac{3RT}{V_{rms}^{2}}$
 $\Rightarrow M = \frac{3 \times 8.31 \times 300}{3 \times 6.21 \times 1007} \text{ kg}$

$$v_{rms} = \sqrt[4]{M}$$

$$i v_{rms}^{2} = \frac{3 RT}{M}$$

$$i M = \frac{3 RT}{v_{rms}^{2}}$$

$$\Rightarrow M = \frac{3 \times 8.31 \times 300}{1365 \times 1365} \text{ kg}$$

$$i \frac{3 \times 8.31 \times 300}{1365 \times 1365} \times 1000 \text{ g=4 g}$$

The molecular weight of helium is 4.

Draw two isothermals one passing through points 1 and 2 the other through mid point of straight line

joining 1 and 2

 $T_2 > T_1$, at point 1 temperature is T_1 and that at mid point is T_2 and then at point 2 again it is T_1

 \therefore The gas is first heated and then cooled towards end 274 (d)

Pressure due to an ideal gas is given by

$$p = \frac{M}{3V} v^{2}$$
Putting $\frac{M}{V} = \rho$, the density of gas
$$p = \frac{1}{3}\rho v^{2}$$

$$\Rightarrow v = \sqrt{\left(\frac{3p}{\rho}\right)}$$

$$\therefore v \propto \frac{1}{\sqrt{\rho}}$$

275 (b)

 $\therefore p_1$

For first vessel, number of moles

$$n_1 = \frac{m_1}{M_1} = \frac{32}{32} = 1$$

Volume=V, Temperature=T
 $\therefore p_1 V = RT$...(i)

For second vessel number of moles

$$=n_2 = \frac{m_2}{M_2} = \frac{4}{2} = 2$$

Volume=V, Temperature=2T
 $\therefore p_2 V = 2 R(2T)$...(ii)
From Eqs. (i) and (ii),
 $p_2 = 4 p_1 = 4 p$

276 (b)

RMS speed of gas molecules does not depends on the pressure of gas (if temperature remains constant) because $p \propto \rho$. If pressure is increased *n* times density will also increase by *n* times but v_{rms} remains constant.

277 (d)

$$P = \frac{2}{3} \times \text{(Energy per unit volume)}$$

$$i \frac{2}{3} \frac{E}{V} \Rightarrow PV = \frac{2}{3}E$$
278 (b)

$$C_P - C_V = R = i \text{ Universal gas constant}$$
279 (d)

$$V_{rms} = \sqrt{\frac{3RT}{M}}$$

% increase in
$$V_{rms} = \frac{\sqrt{\frac{3RT_2}{M}} - \sqrt{\frac{3RT_1}{M}}}{\sqrt{\frac{3RT_1}{M}}} \times 100\%$$

$$\frac{20-17.32}{17.32} \times 100 = 15.5\%$$

280 (d)

Using
$$\gamma_r = \gamma_a + i\beta$$
 g, we get
 $\gamma_r = \gamma_1 + 3\alpha = \gamma_2 + 3\beta$
 $\therefore \beta = \frac{\gamma_1 - \gamma_2}{3} + \alpha$

281 (a)

As the steel tape is calibrated at $10 \,^{\circ}C$, therefore, adjacent centimeter marks on the steel tape will be separated by a distance of

$$l_t = l_{10} (1 + \alpha_s \Delta T) = (1 + \alpha_s 20) \text{ cm}$$

Length of copper rod at 30°C

$$=90(1+\alpha_c 20)$$
cm

Therefore, number of centimeters read on the tape will be

$$= \frac{90(1+\alpha_c 20)}{1(1+\alpha_s 20)} = \frac{90(1+1.7 \times 10^{-5} \times 20)}{1(1+1.2 \times 10^{-5} \times 20)}$$
$$= \frac{90 \times 1.00034}{1.00024} = 90.01 \text{ cm}$$

282 (c)

At absolute temperature
$$T = 0 \Rightarrow v_{rms} = \sqrt{\frac{3 RT}{M}} = 0$$

Therefore, there is no motion of gas molecules at this temperature

283 **(b)**

Average kinetic energy \propto Temperature

284 (c)

A diatomic molecule has three translational and two rotational degrees of freedom

Hence total degrees of freedom f=3+2=5

285 **(c)**

$$\gamma = 1 + \frac{2}{f} \Rightarrow 1.4 = 1 + \frac{2}{f} \Rightarrow \text{Degree of freedom } f = 5$$

 \Rightarrow Degree of freedom of diatomic gas is 5 and it's

$$C_{P} = \frac{7}{2} R \text{ and } C_{V} = \frac{5}{2} R$$

287 (a)

Apparent weight (w_a) = Actual weight (w)-upthrust(F), where upthrust = weight of water displaced = $V p\omega$ g Now, $F_0 = V_0 \rho_0$ g and $F_{50} = V_{50} \rho_{50}$ g

$$\therefore \frac{F_{50}}{F_0} = \frac{V_{50}\rho_{50}g}{V_0\rho_0g} = \frac{1+\gamma_m \times 50}{1+\gamma_w \times 50}$$

As $\gamma_m < \gamma_w$, therefore, $F_{50} < F_0$
Hence, $(w_a)_{50}(w_a)_0 \lor w_2 > w_1 \lor w_1 < w_2$

288 **(c)**

For intermolecular attraction is considered in real gas and for real gases pressure is given by

$$P = \frac{nRT}{V - nb} - \frac{n^2 a}{V^2}. Here\left(\frac{n}{V}\right)^2$$
 represents the

reduction in pressure due to intermolecular attraction 289 (a)

$$PV = \mu RT \Rightarrow P \propto \frac{T}{V}$$
. If T and V both doubled then

pressure remains same,

i.e.,
$$P_2 = P_1 = 1 atm = 1 \times 10^5 N/m^2$$

$$V \propto T$$
 [as constant pressure]

291 **(d)**

$$v_{rms} = \sqrt{\frac{3kT}{m}} = v_{rms} \propto \frac{1}{\sqrt{m}}$$

292 (d)

Specific heat for a monoatomic gas

$$C_v = \frac{3}{2}R$$

$$\therefore Heat \, d \, Q = \mu C_V \Delta T$$

$$d \, Q = \mu \times \frac{3}{2} \times R \, (473 - 273)$$

$$\dot{\iota} \, 4 \times \frac{3}{2} \times R \times 200 \, (\because \mu = 4)$$

$$\therefore \qquad d \, Q = 4 \times 300 \, R$$

$$\dot{\iota} \, 1200 \, R$$

293 **(b)**

Universal gas constant $R = C_p - C_V$

294 **(a)**

22 g of C O₂ is half mole of C O₂ ie, n₁=0.5 16 g of O₂ is half mole of O₂ie, n₂=0.5 $\therefore T = \frac{n_1 T_1 + n_2 T_2}{n_1 + n_2}$ $= \frac{0.5 \times (27 + 273) + 0.5 (37 + 273)}{0.5 + 0.5}$ = 305 K = 305 - 273 = 32 °C295 (a) $PV = mrT = m \left(\frac{R}{M}\right)T$ $\Rightarrow V = \left(\frac{m}{M}\right)\frac{RT}{P} = \left(\frac{2.2}{44}\right) \times \frac{8.31 \times (273 + 0)}{2 \times (1 \times 10^5)}$ $\vdots 5.67 \times 10^{-4} m^3 = 0.56 \text{ litre}$ 296 (c) If number of molecules in gas increases then number of collisions of molecules with walls of container would also increase and hence the pressure increases, $i.e., P \propto N$.

$$\Rightarrow \frac{P_2}{P_1} = \frac{N_2}{N_1} = \frac{2}{1} \Rightarrow P_2 = 2P_1$$

297 (a)

Pressure of the gas will not be affected by motion of the system, hence by

$$v_{rms} = \sqrt{\frac{3P}{\rho}} \Rightarrow \dot{c}^2 = \frac{3P}{\rho} \Rightarrow P = \frac{1}{3}\rho \dot{c}^2$$

298 **(b)**

As the temperature increases, the average velocity increases. So the collisions are faster

299 (d)

$$(\Delta Q)_{p} = \mu C_{p} \Delta T \Rightarrow 207 = 1 \times C_{p} \times 10$$

$$\Rightarrow C_{p} = 20.7 \frac{Joule}{mol - K} \cdot Also C_{p} - C_{V} = R$$

$$\Rightarrow C_{V} = C_{p} - R = 20.7 - 8.3 = 12.4 \frac{Joule}{mole - K}$$

So, $(\Delta Q)_{V} = \mu C_{V} \Delta T = 1 \times 12.4 \times 10 = 124 J$
300 (a)

At sonstant pressure

$$V \propto T \Rightarrow \frac{V_2}{V_1} = \frac{T_2}{T_1} \Rightarrow T_2 = \left(\frac{V_2}{V_1}\right) T_1$$
$$\Rightarrow T_2 = \left(\frac{3V}{V}\right) \times 273 = 819 K = 546 \text{ °C}$$

301 (c)

According to Boyle's law $(P_1 V_1)_{bottom} = (P_2 V_2)_{top}$

$$(10+h) \times \frac{4}{3}\pi r_1^3 = 10 \times \frac{4}{3}\pi r_2^3 \text{ but } r_2 = 2r_1$$

$$\therefore (10+h)r_1^3 = 10 \times 8r_1^3 \Rightarrow 10+h = 80 \therefore h = 70 m$$

(c)

302 (c)

Here temperature remain constant So $P_1V_1 = P_2V_2 \Rightarrow 76 \times 5 = P_2 \times 35$ $\Rightarrow P_2 = \frac{76 \times 5}{35} = 10.85 \, cm \, of \, Hg$

303 **(b)**

For diatomic gases
$$\frac{C_P}{C_V} = \gamma = 1.4$$

304 (a)

Using
$$\frac{C}{5} = \frac{F-32}{9}$$

 $\frac{-183}{5} = \frac{F-32}{9}$
 $F-32 = \frac{-183 \times 9}{5} = -329.4$
 $F = -329.4 + 32 = -297.4^{\circ}$

307 **(d)**

$$n_{1}C_{v}\Delta T_{1} = n_{2}C_{v}\Delta T_{2}$$

$$10 \times (T - 10) = 20(20 - T)$$

$$T - 10 = 40 - 2T$$

$$3T = 50 \Rightarrow T = 16.6 \text{ }^{\circ}C$$
308 **(b)**

Number of translational degrees of freedom (3) are same for all types of gases

309 **(a)**

$$\frac{T_A}{M_A} = 4 \frac{T_B}{M_B} \Rightarrow \sqrt{\frac{T_A}{M_A}} = 2 \sqrt{\frac{T_B}{M_B}}$$
$$\Rightarrow \sqrt{\frac{3RT_A}{M_A}} = 2 \sqrt{\frac{3RT}{M_B}} \Rightarrow C_A = 2 C_B \Rightarrow \frac{C_A}{C_B} = 2$$

310 **(b)**

Neon gas is monoatomic and for monoatomic gases $C_V = \frac{3}{2}R$

Thermal capacity = Mass × Specific heat Due to same material both spheres will have same specific heat.

Also mass = Volume $(V) \times Density (\rho i)$

: Ratio of thermal capacity

$$\dot{\iota} \frac{m_1}{m_2} = \frac{V_1 \rho}{V_2 \rho} = \frac{\frac{4}{3} \pi r_1^3}{\frac{3}{4} \pi r_2^3} = \left(\frac{r_1}{r_2}\right)^3$$
$$= \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

312 (c)

$$C_p$$
 is always greater than C_V
ie, $C_p > C_V$

As
$$\theta_2 > \theta_1 \Rightarrow \tan \theta_2 > \tan \theta_1 \Rightarrow \left(\frac{T}{P}\right)_2 > \left(\frac{T}{P}\right)_1$$

Also from $PV = \mu RT$; $\frac{T}{P} \propto V \Rightarrow V_2 > V_1$

314 (a)

According to kinetic theory, molecules of a liquid are in a state of continuous random motion. They continuously collide against the walls of the container. During each collision, certain momentum is transferred to the walls of the container. So, kinetic energy of molecules increases, hence due to random motion, the temperature increase. So, random motion of molecules and not ordered motion cause rise of temperature.

315 (d)

From Maxwell's velocity distribution law, we infer that

 $v_{rms} > v > v_{mp}$

ie, most probable velocity is less than the root mean square velocity.

316 **(a)**

Mayer Formula

317 **(b)**

Temperature remain constant so

$$v_{rms} \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{v_{O_2}}{v_{H_2}} = \sqrt{\frac{M_{H_2}}{M_{O_2}}} = \sqrt{\frac{1}{16}} = \frac{1}{4}$$

318 (c)

Mean kinetic energy of gas molecule

$$E = \frac{f}{2}kT = \frac{f}{2}k(t + 273) = \left(\frac{f}{2}k\right)t + \frac{f}{2} \times 273k;$$

Comparing it with standard equation of straight line

$$y = mx + c$$
. We get $m = \frac{f}{2}k$ and $c = \frac{f}{2}273k$

So the graph between E and t will be straight line with positive intercept on E-axis and positive slope with t-axis

319 **(b)**

In isothermal changes, temperature remains constant 320 (a)

$$E = \frac{3}{2}RT \Rightarrow \frac{E'}{E} = \frac{T'}{T} = \frac{400}{300} = \frac{4}{3} = 1.33$$

321 (c)

When saturated vapour is compressed some of the vapour condenses but pressure does not change

322 (d)

10 g of ice at $-10 \,^{\circ}C$ to ice at $0 \,^{\circ}C$ $Q_1 = cm, \Delta \theta = 0.5 \times 10 \times 10 = 50 \,_{cal}$ 10 g of ice $0 \,^{\circ}C$ to water at $0 \,^{\circ}C$ $Q_2 = mL = 10 \times 80 = 800 \,_{cal}$ 10 g of water at $0 \,^{\circ}C$ to water at $100 \,^{\circ}C$ $Q_3 = cm, \Delta \theta = 1 \times 10 \times 100 = 1000 \,_{cal}$ 10 g water at $100 \,^{\circ}C$ to steam at $100 \,^{\circ}C$ $Q_4 = mL = 10 \times 540 = 5400 \,_{cal}$ Total heat required, $Q + Q_1 + Q_2 + Q_3 + Q_4$ $= 50 + 800 + 1000 + 5400 = 7250 \,_{cal}$

323 (a)

When the piston is in equilibrium, the pressure is same on both the sides of the piston. It is given that temperature and weight of gas on the two sides of piston not change. From ideal gas equation, pV = n RT, we have $V \propto \text{mass of the gas.}$

So,
$$\frac{V_1}{V_2} = \frac{m_1}{m_2} \lor \frac{V_1}{V_2} + 1 = \frac{m_1}{m_2} + 1$$

Or $\frac{V_1 + V_2}{V_2} = \frac{m_1 + m_2}{m_2}$
Or $\frac{V_2}{V_1 + V_2} = \frac{m_2}{m_1 + m_2} = \frac{2m}{m + 2m} = \frac{2}{3}$

324 (d)

$$PV = \mu RT \Rightarrow P\left(\frac{m}{\rho}\right) = \mu RT \Rightarrow \rho \propto \frac{P}{T}$$

Since T becomes four times and P becomes twice so

$$\rho$$
 becomes $\frac{1}{2}$ times

325 (d)

Kinetic energy is function of temperature

327 **(d)**

For an ideal gas keeping the temperature same throughout,

pV = iconstant

Hence, for a given mass, the graph between $pV \wedge V$ will be a straight line parallel to V-axis whatever may be the volume.

328 **(b)**

$$P = \frac{\mu RT}{V} = \frac{mRT}{MV} \left(\mu = \frac{m}{M}\right)$$

So, at constant volume pressure-versus temperature graph is a straight line passing through origin with

slope $\frac{mR}{MV}$. As the mass is doubled and volume is

halved slope becomes four times. Therefore, pressure versus temperature graph will be shown by the line *B* 329 (a)

In free expansion of Vander waal's gas, its temperature decreases

330 **(b)**

The mean kinetic energy for gas molecules

$$E = \frac{3}{2} kT \Longrightarrow E \propto T$$

So,
$$\frac{E_1}{E_2} = \frac{T_1}{T_2} \dots (i)$$

According to question both gases are at the same temperature T.

So,
$$\frac{E_1}{E_2} = \frac{T}{T} = \frac{1}{1}$$
$$\Rightarrow E_1: E_2 = 1: 1$$

331 **(a)**

$$v_{rms} = \sqrt{\frac{3 RT}{M}} \Rightarrow T \propto M \Rightarrow \frac{T_{He}}{T_{H}} = \frac{M_{He}}{M_{H}}$$

$$\Rightarrow \frac{(273+0)}{T_{He}} = \frac{2}{4} \Rightarrow T_{He} = 546 K = 273 °C$$

332 **(b)**

$$P_{1} = 720 kPa, T_{1} = 40 °C = 273 + 40 = 313 K$$

$$P \propto mT \Rightarrow \frac{P_{2}}{P_{1}} = \frac{m_{2}}{m_{1}} \frac{T_{2}}{T_{1}} = \frac{3}{4} \times \frac{626}{313} = 1.5$$

$$\Rightarrow P_{2} = 1.5 P_{1} = 1.5 \times 720 = 1080 kPa$$

333 **(c)**

Since the v

Since the volume of cylinder is fixed, the heat required is determined by C_V

He is a monoatomic gas.

Therefore, its molar specific heat at constant volume is

$$C_v = \frac{3}{2}R$$

 \therefore Heat required = no. of moles \times molar specific \times rise in temperature

$$i 2 \times \frac{3}{2}R \times 20 = 60R = 60 \times 8.31 = 498.6 J$$

334 (d)

$$l = l_0 \left(1 + \frac{1}{100} \right)$$

$$\therefore 2 l^2 = 2 l_0^2 \left(1 + \frac{1}{100} \right)^2$$

Or $2 l^2 - 2 l_0^2 = 2 l_0^2 \times \frac{2}{100}$
Or $\Delta S = S \times \frac{2}{100} \vee \frac{\Delta S}{S} = \frac{2}{100} = 2\%$

335 (d)

$$\frac{(v_{rms})_1}{(v_{rms})_2} = \sqrt{\frac{T_1}{T_2}} \Rightarrow \frac{500}{(v_{rms})_2} = \sqrt{\frac{0+273}{819+273}} = \sqrt{\frac{273}{1092}}$$
$$(v_{rms})_2 = 500\sqrt{\frac{1092}{273}} = 500\sqrt{4} = 1000\frac{m}{s} = 1\frac{km}{s}$$

336 **(a)**

The value of universal gas constant is approx.

$$\frac{cur}{mole - Kelvin}$$

337 (a)

Let V be the volume of solid ; d be its density and m be its mass ; if g coefficient of volume expansion of liquid, then

Density at temperature $t_1 is$, $d_1 = \frac{d_0}{1 + \gamma t_1}$

Density at temperature $t_2 is$, $d_2 = \frac{d_0}{1 + \gamma t_2}$

According to Archimede's principle, f V d = m = f V d

$$\begin{aligned} &\int_{1} \nabla d_{1} = m = f_{2} \nabla d_{2} \\ &\text{Or } \frac{d_{1}}{d_{2}} = \frac{f_{2}}{f_{1}} = \frac{d_{0}}{(1 + \gamma t_{1})} \frac{(1 + \gamma t_{2})}{d_{0}} \\ &\text{Or } f_{1} + f_{1} \gamma t_{2} = f_{2} + f_{2} \gamma t_{1} \\ &f_{1} - f_{2} = \gamma (f_{2} t_{1} - f_{1} t_{2}) \\ &\gamma = \frac{(f_{1} - f_{2})}{f_{2} t_{1} - f_{1} t_{2}} \end{aligned}$$

338 (c)

γ

f

$$_{vib}^{poly} = \frac{(4+f_{vib})}{(3+f_{vib})}$$

 $_{vib} = i$ degree of freedom due

$$\Rightarrow \gamma_{poly} < \frac{4}{3}$$

Or $\gamma_{poly} < 1.33$

Also you can remember that as the atomicity of gas increases the value of γ -decreases

to vibration

339 **(a)**

For
$$NH_3$$
, degree of freedom $f=6$

$$\Rightarrow \frac{C_P}{C_V} = \gamma = 1 + \frac{2}{f} = 1 + \frac{2}{6} = \frac{4}{3} = 1.33$$

340 **(d)**

From
$$C_v = \frac{1}{2} fR = \frac{1}{2} \times 6R = 3R$$

341 **(c)**

Mean kinetic energy per molecule $E = \frac{f}{2}kT = \frac{n}{2}kT$

342 **(b)**

Mean free path $\lambda \propto \frac{1}{P}$; If λ is doubled then P

becomes half 343 (a)

Average kinetic theory of one molecule is $E = \frac{3}{2}kT$

where k is Boltzmann constant and T the absolute temperature.

Given, $T_1 = -68 \circ C = 273 - 68 = 205 K$, $E_1 = E, E_2 = 2E$

$$\therefore \frac{E_1}{E_2} = \frac{T_1}{T_2}$$
$$\Rightarrow T_2 = \frac{T_1 E_2}{E_1}$$

$$T_2 = \frac{205 \times 2E}{E} = 410 K$$

344 (c)

$$C_v = \frac{R}{0.67} = 1.5 R = \frac{3}{2} R$$

This is the value for monoatomic gases 345 (c)

$$C_{isothermal} = \infty \wedge C_{adiabatic} = 0$$
346 (b)

$$C_{P} - C_{V} = \frac{R}{J} \Rightarrow C_{P} = \frac{R}{J} + C_{V} = \frac{R}{J} + \frac{R}{J(\gamma - 1)}$$
$$\Rightarrow C_{P} = \frac{R}{J} \left(\frac{\gamma}{\gamma - 1}\right) = \frac{R}{J} \left(\frac{1.5}{1.5 - 1}\right) = \frac{3R}{J}$$
347 (d)

For any gas
$$C_P - C_V = 1.99 = 2 \frac{cal}{mol - K}$$

349 (a)

$$\frac{v_2}{v_1} = \sqrt{\frac{T_2}{T_1}} \Rightarrow \frac{v_s}{400} = \sqrt{\frac{(273+227)}{(273+27)}} = \sqrt{\frac{5}{3}}$$
$$\Rightarrow v_s = 400\sqrt{5/3} = 516 \, m/s$$

350 (c)

Using pressure or Gay-Lussac's law $\frac{P_1}{P_2} = \frac{T_1}{T_2}$ $_{\text{or}}P_2 = \frac{P_1T_2}{T_1} = \frac{P(273+927)}{(273+27)} = 4P$ 351 (a) $1 + \frac{2}{f}$

$$\frac{C_P}{C_V} = \gamma = 1$$
352 (d)

$$\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}} \Rightarrow T_{2} = \frac{P_{2}V_{2}}{P_{1}V_{1}} \times T_{1}$$

$$\delta T_{2} = \frac{1}{30} \times \frac{10}{1} \times 300 = 100 \, K = -173 \, ^{\circ}C$$

353 (a)

$$v_{average} = \sqrt{\frac{8RT}{\pi M}} \Rightarrow v_{av} \propto \sqrt{T}$$
354 (a)

$$\Delta p = mV - (-mV) = 2mV$$

Kinetic energy for $1g \Rightarrow E_{Trans} = \frac{3}{2}rT = \frac{3}{2}\frac{RT}{M}$ 356 (h)

$$C_P - C_V = R$$

At constant pressure, Heat
$$inC_p\theta$$

 $\Rightarrow 310 = 2 \times C_p \times (35 - 25) = 20C_p$
 $\Rightarrow C_p = \frac{310}{20} = 15.5$

At constant volume, Heat required $in C_V \theta$

$$\Rightarrow Q = 2 \times (C_P - R) \times (32 - 25)$$

$$\therefore 2 \times (15.5 - 8.3) \times 10 = 2 \times 7.2 \times 10 = 144 J$$

357 (b)

The collision of molecules of ideal gas is elastic collision

358 (c)

Mean kinetic energy of molecule depends upon temperature only. For O_2 it is same as that of H_2 at the same temperature of $-73 \,^{\circ}C$

359 (a)

When C_P and C_V are given with *calorie* and *R* with Joule then $C_P - C_V = R/J$

360 (c)
$$C_{V} = \frac{n_{1}C_{v1} + n_{2}C_{V2}}{n_{1} + n_{2}}$$

$$k \frac{1 \times \frac{3}{2}R + 1 \times \frac{5}{2}R}{1 + 1} = 2R$$

361 (b)

Molar specific heat of the mixture at constant volume is

$$C_{V} = \frac{n_{1}C_{V1} + n_{2}C_{V2}}{(n_{1} + n_{2})}$$
$$= \frac{2\left(\frac{3}{2}R\right) + 3\left(\frac{5}{2}R\right)}{2 + 3} = 2.1R$$

363 (d)

$$v_{rms} = \sqrt{\frac{3P}{\rho}} \Rightarrow P = \frac{v_{rms}^2 \rho}{3} = \frac{(3180)^2 \times 8.99 \times 10^{-2}}{3}$$

 $\therefore 3.03 \times 10^5 N/m^2 = 3 atm$

364 (c)

Kinetic energy of ideal gas depends only on its temperature. Hence, it remains constant whether its pressure is increased or decreased.

365 (a)

$$V \propto T \Rightarrow \frac{V_1}{V_2} = \frac{T_1}{T_2} \Rightarrow \frac{200}{V_2} = \frac{(273 + 20)}{(273 - 20)} = \frac{293}{253}$$

 $\Rightarrow V_2 = \frac{200 \times 253}{293} = 172.6 \, ml$

366 (b)

$$PV = \mu RT = \frac{m}{M} RT \Rightarrow \frac{m}{VP} \Rightarrow \frac{density}{P} = \frac{M}{RT}$$
$$\left(\frac{density}{P}\right)_{At \ 0^{\circ}C} = \frac{M}{R(273)} = x \quad \dots(i)$$
$$\left(\frac{density}{P}\right)_{At \ 100^{\circ}C} = \frac{M}{R(373)} \quad \dots(ii)$$

$$\Rightarrow \left(\frac{density}{P}\right)_{At\,100\,\,^{\circ}C} = \frac{273\,x}{373}$$
367 (c)
Here, $\Delta l = 80.3 - 80.0 = 0.3$ cm
 $l = 80\,\,cm, \alpha = 12 \times 10^{-6}\,^{\circ}C^{-1}$
Rise in temperature $\Delta T = \frac{\Delta l}{l\alpha}$
 $\Delta T = \frac{0.3}{80 \times 12 \times 10^{-6}} = 312.5\,^{\circ}C$
369 (a)
 $\left(= \alpha T^2 \right)_{abc} = \alpha (\alpha - \beta)_{abc} = \beta (\alpha - \beta)_{abc}$

$$\left(P + \frac{aT^2}{V}\right)V^c = (RT + b) \Rightarrow P = (RT + b)V^{-c} - (aT^2)V$$
372
Comparing this spectrum with $P = AV^m - PV^n$

Comparing this equation with $P = AV^m - BV$ We get m = -c and n = -1

370 (d)

$$\Delta Q = KA \left(\frac{\Delta T}{\Delta x} \right) \Delta t \text{, where } A = 4 \pi r^2$$
$$= 0.008 \times 4 \times \frac{22}{7} (6 \times 10^8)^2 \times \left(\frac{32}{10^5} \right) \times 86400$$
$$= 10^{18} \text{ cal}$$

371 (c)

$$v_{rms} \propto \sqrt{T} \Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}} = \sqrt{\frac{200}{800}} = \frac{1}{2} \Rightarrow v_2 = 2v_1$$

372 (c)

$$p = \frac{n_1 RT + n_2 RT + n_3 RT}{V}$$

= $(n_1 + n_2 + n_3) \frac{RT}{V}$
= $\left(\frac{8}{16} + \frac{14}{28} + \frac{22}{44}\right) \times \frac{0.082 \times 300}{10} = 3.69 \text{ atm}$

373 (c)

As number of moles increases, pressure increases and at certain pressure vapour condenses hence pressure now decreases

374 (d)

Root mean square velocity

$$v_{rms} = \sqrt{\frac{3 RT}{M}}$$

where R is gas constant, T the temperature and M molecular weight.

Given,

$$M_{N2} = 28, M_{O2} = 32, T_{O2} = 127 \,^{\circ}C = 127 + 273 = 400$$

K
$$\therefore \frac{V_{O2}}{V_{N2}} = \sqrt{\frac{T_{O2}}{M_{O2}} \times \frac{M_{N2}}{T_{N2}}} = \sqrt{\frac{400}{32} \times \frac{28}{T_{N2}}} = 1$$

 $\Rightarrow T_{N2} = 350 K = 77 \,^{\circ}C$. 375 (b) Temperature becomes $\frac{1}{4}th$ of initial value $[1200K = 927 \circ C \rightarrow 300K = 27 \circ C]$ So, using $v_{rms} \propto \sqrt{T} \cdot r \cdot m \cdot s$. velocity will be half of the initial value 376 (d) $v_{rms} \propto \frac{1}{\sqrt{M}}$; so $\frac{(v_{rms})_{O_2}}{(v_{rms})_{H_2}} = \sqrt{\frac{M_{H_2}}{M_{O_2}}} = \sqrt{\frac{2}{32}} = 1:4$ 7 **(b)** Number of moles $n=5 \mod T_1=100 \degree C$, $T_2 = 120 \,^{\circ}C, \Delta U = 80 J$ Rise in temperature $\Delta t = 120 - 100 = 20 \,^{\circ}C$ $\Delta U = ms \Delta t$ $\frac{80}{5} = 1 \times s \times 20$ s = 0.8 JFor 5 mol, $s=0.8 \times 5J K^{-1}=4J K^{-1}$ ċ.

378 (a)

379

Ratio of specific heat for a monoatomic gas is $\frac{5}{3}$

and for diatomic gas is
$$\frac{7}{5}$$
.
Given, $n_1 = 1, n_2 = 3, n = 4$
 $\therefore \frac{n}{\gamma - 1} = \frac{n_1}{\gamma_1 - 1} + \frac{n_2}{\gamma_2 - 1}$
 $\frac{4}{\gamma - 1} = \frac{1}{\frac{5}{3} - 1} + \frac{3}{\frac{7}{5} - 1}$
 $\Rightarrow \frac{4}{\gamma - 1} = \frac{3}{2} + \frac{15}{2} = 9$
 $\therefore 4 = 9\gamma - 9$
 $\Rightarrow 9\gamma = 13 \Rightarrow \gamma = \frac{13}{9}$
Now, $C_V(\gamma - 1) = R$
or $C_V = \frac{R}{\gamma - 1} = \frac{8.3}{\frac{13}{9} - 1} = \frac{8.3 \times 9}{4}$
 $\Rightarrow C_V = 18.7 J mo I^{-1} - K^{-1}$
(b)

Using the relation $p = \frac{1}{3} \frac{mnv^2}{V}$...(i)

and also

$$p' = \frac{1}{3} \frac{\frac{m}{2} n(2v)^2}{V}$$

...(ii)

Dividing Eq.(ii) by Eq. (i), we get
$$p'_{-2}$$

So,

The ratio of initial and final pressures is 1:2.

р

p:p=1:2

380 (c)

Molar specific heat at constant pressure $C_p = \frac{7}{2}R$

Since,
$$C_P - C_V = R \Rightarrow C_V = C_P - R = \frac{7}{2}R - R = \frac{5}{2}R$$

$$\therefore \frac{C_P}{C_V} = \frac{(7/2)R}{(5/2)R} = \frac{7}{5}$$

381 (d)

According to the equilibrium theorem, the molar heat capacities should be independent of temperature. However, variations in C_V and C_P are observed as the temperature changes. At very high temperatures, vibrations are also important and that affects the values of C_V and C_P for diatomic and polyatomic gases. Here in this question according to given information (d) may be correct answer

382 (d)

We know
$$v_s = \sqrt{\frac{\gamma P}{\rho}} \wedge v_{rms} = \sqrt{\frac{3P}{\rho}}$$

$$\therefore \frac{v_{rms}}{v_s} = \sqrt{\frac{\gamma}{3}}$$

383 (a)
For 1 g gas
$$PV = rT = \left(\frac{R}{M}\right)T$$

Since P and V are constant $\Rightarrow T \propto M \Rightarrow \frac{T_{N_2}}{T_{O_2}} = \frac{M_{N_2}}{M_{O_2}}$

$$\Rightarrow \frac{T_{N_2}}{(273+15)} = \frac{28}{32} \Rightarrow T_{N_2} = 252 K = -21 \,^{\circ}C$$

384 (a)

$$(\Delta Q)_V = C_V \Delta T = \frac{f}{2} R \Delta T$$

$$\Rightarrow \Delta T \propto \frac{1}{f}$$
Also $f_{Mono} < f_{Dia} \Rightarrow (\Delta T)_{Mono} > (\Delta T)_{Dia}$
385 **(b)**

$$v_{rms} = \sqrt{\frac{3 RT}{M}} = \sqrt{3} \sqrt{\frac{RT}{M}} = 1.73 \sqrt{\frac{RT}{M}}$$

386 (d)

$$PV = kT \Rightarrow P\left(\frac{m}{\rho}\right) = kT \Rightarrow \rho = \frac{Pm}{kT}$$

387 **(c)**

Below 100 K only translational degree of freedom is considered. Hence

$$\gamma_{mixture} = \frac{\frac{\mu_1 \gamma_1}{\gamma_1 - 1} + \frac{\mu_2 \gamma_2}{\gamma_2 - 1}}{\frac{\mu_1}{\gamma_1 - 1} + \frac{\mu_2}{\gamma_2 - 1}} \text{ according}$$

to question, $\mu_1 = \mu_2$ and $\gamma_1 = \gamma_2 = 1 + \frac{2}{3} = \frac{5}{3}$
 $\Rightarrow \gamma_{mix} = \gamma_1 = \frac{5}{3}$

