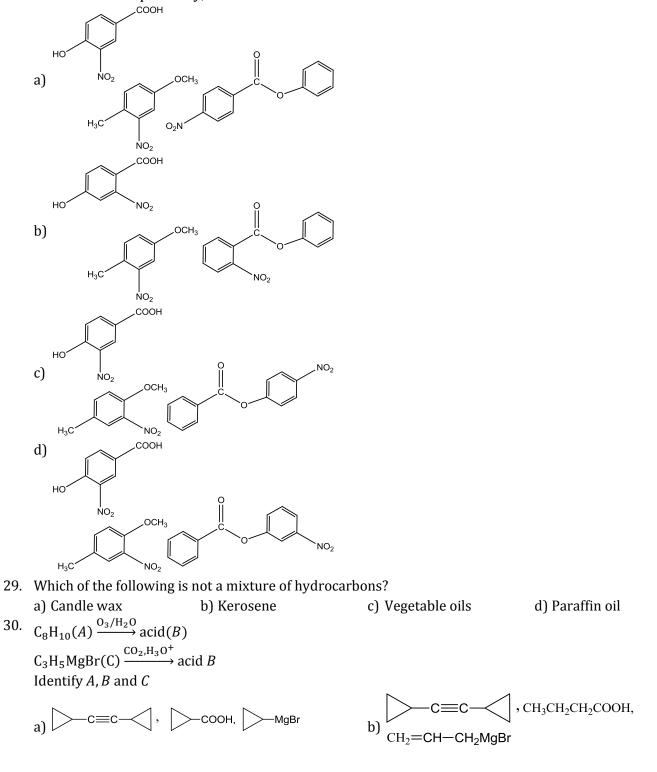
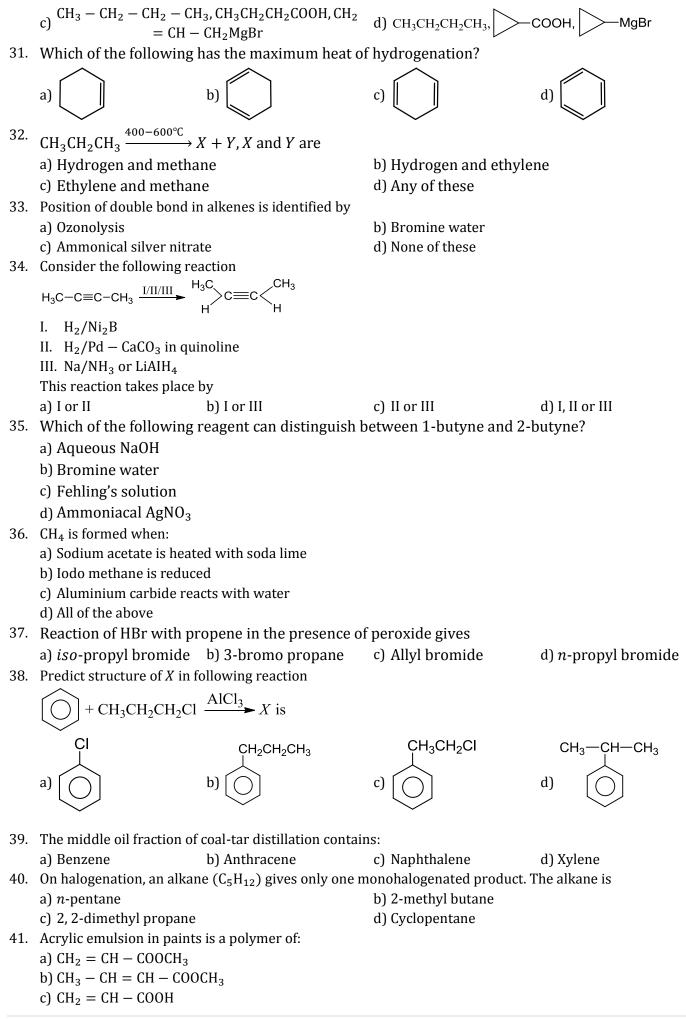


13.HYDROCARBONS


Single Correct Answer Type


1.	Thermal decomposition	n of		
	CH ₂ NMe ₃ O	H gives		
	a)	b)	с) СН2ОН	d)
2.	Which of the following is	not a petroleum product?		
	a) Petrol	b) Paraffin wax	c) Bees wax	d) Kerosene
3.	A knocking sound is prod		hen the fuel contains mainl	-
	a) <i>n</i> -alkanes	b) CO ₂	c) CO	d) Lubricating oil
4.	Reaction of HBr with prop	pene in presence of peroxic	les gives:	
	a) Isopropyl bromide	b) 3-bromopropane	c) Allyl bromide	d) <i>n</i> -propyl bromide
5.	The next higher homolog			
	a) C ₇ H ₁₄	b) C ₇ H ₁₆	c) C ₇ H ₁₀	d) C ₇ H ₁₂
6.		-	-dibromopropane to prop	
	a) KOH, alcohol∕∆	b) KOH, water/ Δ	c) Zn, alcohol/ Δ	d) Na, alcohol∕∆
7.	A gas formed by the act	ion of alcoholic KOH on e	ethyl iodide, decolourises	s alkaline KMnO ₄ . The gas
	is			
	a) C ₂ H ₆	b) CH ₄	c) C ₂ H ₂	d) C_2H_4
8.			ollowed by acidification wit	h HCl gives a mixture of
		I_2 COOH,The alkyne $C_7 H_{12}$ i		
0	a) 3-hexyne	b) 2-methyl-2-hexene		d) 3-methyl-2-hexyne
9.	-	en acetylene and benzen	e is comparable to the re	lationship between
	propyne and			
	a) Dimethyl benzene	b) Neoprene	c) Propyl benzene	d) Mesitylene
10.	-		3 moles of CO_2 . The alkane i	
11	a) CH_4	b) C_2H_6	c) C_3H_8	d) C ₆ H ₁₄
11.	a) HCHO, CHO— CHO and	e, acetylene and propylene	respectively gives:	
	b) CHO— CHO, HCHO and	5		
	c) HCHO + CH_3 CHO, CHO			
	d) CHO— CHO, CH ₃ CHO +			
12.		+ CH ₃ COCl $\xrightarrow{\text{AlCl}_3}$ gives the p	roduct	
	a) $CH_3COCH_2CH_2Cl$	$+$ cm ₃ coci \rightarrow gives the p	nouuci.	
	b) CH_3 . CH_2 . CH_2Cl			
	c) CH ₃ COCH ₂ . CH ₂ COCH ₃			
	d) ClCH ₂ CH ₂ Cl			
13.		dialkyl copper reagents	to give	
	a) Alkenyl halides		b) Alkanes	
	c) Alkyl copper halides		d) Alkenes	
14.	v x x	the artificial ripening of fru		
	a) C_2H_6	b) C ₂ H ₂	c) C ₂ H ₄	d) Marsh gas
15.	$CH_3 - C \equiv CH$ reacts with	n HCI to give:		
	a) 2,2-dichloropropane		c) 1,2-dichloropropane	d) 1-chloropropene

16.	$CH_3CH_3 + HNO_3 \xrightarrow{675 \text{ K}} ?$		
	a) CH ₃ CH ₂ NO ₂	b) $CH_3CH_2NO_2 + CH_3N$	02
	c) 2CH ₃ NO ₂	d) $CH_2 = CH_2$	
17.	Which of the following is produced when coal is sub	jected to destructive distill	ation?
	a) Methane b) Ethane	c) Acetylene	d) Coal gas
18.			
	$CH_3C \equiv C. CH_2CH_3 \xrightarrow{(i) O_3} ?$		
	a) $CH_3COOH + CH_3COCH_3$		
	b) $CH_3COOH + CH_3CH_2COOH$		
	c) $CH_3CHO + CH_3CH_2CHO$		
10	d) $CH_3COOH + CO_2$	1	
19.	Methyl bromide heated with zinc in closed tube pro		d) Mathanal
20	a) Methane b) Ethane Aqueous solution of an organic compound, 'A' of	c) Ethylene	d) Methanol
20.	node. $'A'$ is	ni electi olysis ilderates a	cetylelle allu CO ₂ at a
	a) Potassium acetate	b) Potassium succinate	
	c) Potassium citrate	d) Potassium maleate	
21	The reaction of alkanes with halogen is explosive in		
21.	a) F_2 b) Cl_2	c) I ₂	d) Br_2
22.	Which of the following is unsymmetrical alkene?		aj biz
	a) 1-butene b) 2-hexene	c) 1-pentene	d) All of these
23.	Which of the statement is wrong for alkanes?	, I	2
	a) Most of the alkanes are soluble in water		
	b) Their density is always less than water		
	c) At room temperature some alkanes are liquid	l, some solid and other a	re gases
	d) All alkanes burn		
24.	Propane cannot be prepared from which reaction	on?	
	a) $CH_3 - CH = CH_2 \xrightarrow{B_2H_6}_{OH^-}$	b) $CH_3CH_2CH_2I \xrightarrow{HI}_{P}$	
		d) None of the above	
	c) $CH_3CH_2CH_2COONa \xrightarrow{NaOH/CaO,\Delta}$	a) None of the above	
25.	0		
	a) Fuming nitric acid		
	b) Mixture of conc. H_2SO_4 and conc. HNO_3		
	c) Mixture of nitric acid and anhydrous zinc chl	oride	
	d) None of the above		
26.	Cyclohexene on reaction with OsO ₄ followed by		
_	a) <i>cis</i> – diol b) <i>trans</i> – diol	c) Epoxy	d) Alcohol
27.	Al ₄ C ₃ on hydrolysis yields		
	a) Nitrogen gas b) Methane gas	c) Hydrogen gas	d) Carbon dioxide
28.	The compounds P, Q and S		

where separately subjected to nitration using HNO_3/H_2SO_4 mixture. The major product formed in each case respectively, is

Page 4

d) $CH_2 = C(CH_3) - COOCH_3$

42. A hydrocarbon *X* adds on one mole of hydrogen to give another hydrocarbon and decolourised bromine water. *X* react with KMnO₄ in presence of acid to give two mole of the same carboxylic acid. The structure of *X* is:

a) $CH_3CH = CHCH_2CH_2CH_3$ b) $CH_3CH_2CH = CHCH_2CH_3$ c) $CH_3CH_2CH_2 - CH = CHCH_3$ d) $CH_2 = CH - CH_2CH_2CH_3$ 43. An anaesthetic narcylene is commercial name of: a) C_2H_4 b) C_2H_2 c) CHCI₃ d) ether 44. By which one of the following compounds both CH_4 and $CH_3 - CH_3$ can be prepared in one step? b) CH₃OH c) CH_3CH_2I d) C_2H_5OH a) CH₃I 45. What volume of methane (NTP) is formed from 8.2 g of sodium acetate by fusion with sodalime? b) 11.2 litre d) 2.24 litre a) 10 litre c) 5.6 litre 46. When methyl iodide is treated with sodium in ethereal solution, it gives a) Methane b) Ethane c) Methyl sodium iodide d) Sodium methoxide 47. 2-methylpentene 2 on ozonolysis will give: a) Only propanal b) Propanal and ethanal c) Propanone-2 and ethanal d) Propanone-2 and propanal 48. The reaction, $2RC \equiv CCu \frac{(CH_3COO)_2Cu}{Pvridine} R - C \equiv C - C \equiv C - R$ a) Eglinton's reaction b) Glaser reaction c) Gomberg-Beckmann's reaction d) Leuckart reaction 49. 2-Hexyne gives *trans*-2-hexene on treatment with: a) Li/NH₃ b) Pd/BaSO₄ c) LiAlH₄ d) Pt/H_2 50. Which of the following will give three mono-bromo derivatives? a) CH₃CH₂CH₂CH(CH₃)CH₃ b) $CH_3CH_2C(CH_3)_2CH_3$ c) CH₃CH₃(CH₃)CH (CH₃)CH₃ d) All the above can give 51. The reagent for the following conversion $Br \rightarrow H = H is/are$: b) $\frac{\text{Alc. KOH followed by}}{\text{NaNH}_2}$ c) Aqueous KOH followed by NaNH₂ d) Zn/CH₃OH a) Alc. KOH 52. In a reaction if half of the double bond is broken and two new bonds are formed, this is a case of: a) Elimination b) Addition c) Displacement d) Rearrangement 53. Which represents a cyclic alkane? a) C_3H_6 b) C_3H_8 c) C_8H_{10} d) $C_8 H_{12}$ 54. $CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{AlCl_3}_{HBr}$ Product Product in the above reaction is $CH_3 - CH - CH_2 - CH_3$ $CH_3 - CH - CH_3$ a) b) CH₃ c) $\begin{array}{c} CH_3 - CH_2 - CH_2 \\ || \end{array}$ d) All of these

BrBr 55. According to Huckel's rule an aromatic compound must possess a) $(4n + 1)\pi$ -electrons b) $(4n + 2)\pi$ -electrons c) $4n \pi$ -electrons d) $(4n + 3)\pi$ -electrons 56. Acetylene gives: a) White ppt. with $AgNO_3$ and red ppt. with Cu_2Cl_2 b) White ppt. with Cu_2Cl_2 and red ppt. with AgNO₃ c) White ppt. with both d) Red ppt. with both 57. 1,1,2,2-tetrabromoethane on heating with Zn powder in alcohol finally gives: d) Ethene a) Methane b) Ethane c) Ethyne 58. The carbide which reacts with water to form ethyne is a) CaC_2 b) SiC c) Mg_2C_3 d) Al_4C_3 59. What is the product when 2-butyne is treated with liquid NH₃ in presence of lithium? b) cis-2-butene c) *trans*-2-butene d) 1-butene a) *n*-butane $Ph-C \equiv C-CH_3 \xrightarrow{Hg^{2+}/H^+}$ 60. → *A*. *A* is: b) a) 61. 1-butyne on reaction with hot alkaline KMnO₄ gives: a) CH₃CH₂CH₂COOH b) $CH_3CH_2COOH + CO_2$ c) CH₃CH₂COOH d) $CH_3CH_2COOH + HCOOH$ 62. Which statement is not correct in case of ethane? a) It can be catalytically hydrogenated b) When burnt produces CO₂ and H₂O c) It is homologue of isobutane d) It can be chlorinated with chlorine 63. CH₃COCH₃ can be converted to CH₃CH₂CH₃ by the action of a) HNO3 b) HIO₃ c) H_3PO_3 d) HI 64. When ethyl chloride and alcoholic KOH are heated, the compound obtained is b) C_2H_2 d) C_2H_6 a) C_2H_4 c) C_6H_6 65. Which of the following will react with sodium metal? b) Propyne a) Ethene c) But-2-yne d) Ethane 66. When the boiling point of the first ten normal alkanes are plotted, the graph looks like: 400-400 പ്പ് 300ol: 300 m 200m 200m 200 c) 100a) d) No. of C atoms No. of C atoms No. of C atoms No. of C atoms 67. Which is generally used as reducing agent in organic chemistry? a) Zn+HCl b) $Zn + CH_3COOH$ c) Zn/Hg + HCld) Na + C_2H_5OH 68. Alkynes can be reduced to alkenes by hydrogenation in presence of: a) Ranev Ni b) Anhy. $AlCl_3$ c) Pd d) Lindlar's catalyst 69. Which reagent distinguishes ethylene from acetylene?

a) Aqueous alkaline permanganate

b) Chlorine dissolved in carbon tetrachloride

Page 6

	c) Ammoniacal cuprous chloride		
70	d) Concentrated sulphuric acid By heating tetraethyl ammonium hydro	vide the product formed are	
70.	a) C_2H_4	xide, the product for filed are:	
	b) $(C_2H_5)_3N$		
	c) H ₂ O		
	d) All of these		
71.	Addition of ICl on propene gives the pro	oduct:	
		I_2Cl c) $CH_3CHClCH_2I$	d) CH ₃ CHClCH ₂ Cl
72.	Which of the following alkenes gives	on acetaldehyde on ozonolysis?	
	a) Ethene b) Propene	c) 1-butene	d) 2-butene
73.	In the following sequence of reaction	ns, the alkene affords the compoun	d 'B'
	$CH_3CH = CHCH_3 \xrightarrow{O_3} A \xrightarrow{H_2O} B$		
	The compound B is		
	a) CH_3CH_2CHO b) CH_3COCH	c) CH ₃ CH ₂ COCH ₃	ብ ርዝ ርዝዐ
74	$CH_3CH = CH - CH_3 + CH_2N_2 \rightarrow A; A \text{ is}$		u) CH3CHO
/ 1.	s s = =	CH3-CH-CH-CH-C	H ₃
	a) $\begin{array}{c} CH_3CH-CH-CH_3\\ I\\ CH_3 N_2 \end{array}$	b) CH ₃ -CH-CH-CH-C	0
		y CH ₂	
	c) Both (a) and (b)	d) None of these	
75.	Direct fluorination of alkanes is not mad	le because:	
	a) Reaction does not occur		
	b) Alkane fluorides are not formed		
	c) Reaction occurs violently		
70	d) None of the above		
76.	On monochlorination of <i>n</i> -pentane, the a) 4 b) 3	c) 2	d) 1
77	Which of the following is the predon	-	
//.	a) 2-bromo-1-propanol	b) 3-bromo-1-propan	
	c) $2 - bromo - 2 - propanol$	d) 1-bromo-2-propan	
78	Acetylene is prepared industrially by pa		
701	atmosphere of:		
	a) Air b) N ₂	c) H ₂	d) CO_2
79.	The reaction of an aromatic halogen	compound with an alkyl halide in	presence of sodium in
	ether is called		-
	a) Sandmeyer's reaction	b) Wurtz reaction	
	c) Kolbe reaction	d) Wurtz-Fittig reaction	on
80.	How many isomeric forms of pentane e	xist?	
	a) 3 b) 2	c) 5	d) 6
81.	5	g:	
	a) Carbonium formation		
	b) Ionic elimination		
	c) Ionic formation		
02	d) Heat/photochemical substitution	4	d = h = . d =
ŏ۷.	Ozonolysis of an organic compound		uenyde in equimolar
	mixture. Identify <i>A</i> from the followir		
	a) 2-methyl-1-pentene	b) 1-pentene	
02	c) 2-pentene	d) 2-methyl-2-penten hich one of the following reactions	

	ethylbenzene(PhEt)?		
	a) $H_3C - CH_2OH + C_6H_6$	b) $CH_3 - CH = CH_2 + C$	L ₆ H ₆
	c) $H_2C = CH_2 + C_6H_6$	d) $H_3C - CH_3 + C_6H_6$	
84.	On vigorous oxidation by alkaline permanganate sol		CHO gives:
	ОН ОН		
	a) $		
	b) CO+CH ₃ CH ₂ COOH		
	b) CO+CH ₃ CH ₂ COOH		
	CH ₃		
	c) CHOH+CH ₃ CH ₂ CH ₂ OH		
	5		
	d) CH_3 CO+CH ₃ CH ₂ CHO		
	CH ₃		
85.	The compound that is most reactive towards electro	philic nitration is	
	a) toluene b) benzene	c) benzoic acid	d) nitrobenzene
86.	One mole of a symmetrical alkene on ozonolysis	s gives two moles of an al	dehyde having a
	molecular mass of 44 u. The alkene is		
	a) Propene b) 1-butene	c) 2-butene	d) Ethene
87.	The conversion of propene to propanol is type	e of reaction.	
	a) Hydrogenation b) Hydration	c) hydrolysis	d) Dehydrogenation
88.	When <i>n</i> -hexane/ <i>n</i> -heptane is passed through Cr_2O_3	supported over alumina a	t 600°C gives:
	a) Hexane b) Hexyne	c) Benzene, Toluene	d) None of these
89.	If $20cm^3$ of methane (CH ₄) is burnt using $50cm^3$ of cm^3	oxygen. The volume of the g	gases left after cooling to
	room temperature will be:		
	a) 60cm ³ b) 70cm ³	c) 30cm ³	d) 50cm ³
90.	An alkane of mol. weight 72 gives on monochlorinat		
	a) 2-methylbutane b) <i>n</i> -pentane	c) 2,2-dimethylpropane	d) None of these
91.	The number of disubstituted products of benzene is		
0.0	a) 2 b) 3	c) 4	d) 5
92.	The treatment of R' MgX with $RC \equiv$ CH produces	c) <i>R</i> – <i>R</i>	מ מ(ג
02	a) <i>R</i> H b) <i>R</i> 'H	,	d) <i>R</i> – <i>R</i> ′
93.	Electrolysis of an aqueous solution of sodium ac a) Ethane b) Ethene	-	d) Dronono
04		c) Ethyne	d) Propane
94.	Propyne on passing through red hot copper tub		d) None of these
05	a) benzene b) Toluene	c) Mesitylene	d) None of these
95.	Among the following, the compound that be most re a) Benzene b) Nitrobenzene	c) toluene	d) chlorobenzene
96	Propylene on hydrolysis with sulphuric acid for	2	uj chiorobenzene
<i>y</i> 0.	a) <i>n</i> -propyl alcohol b) Isopropyl alcohol	c) Ethyl alcohol	d) Butyl alcohol
07	What is the product formed when acetylene rea	•	-
57.			
00		c) Cl ₂ CHCHO	d) ClCH ₂ COOH
90.	When CaC ₂ was hydrolysed a gas was obtained. It has The gas was passed through ammoniacal solution of		
	a) Ethylene b) Propyne	c) Acetylene	d) Ethane
99	Alkenes undergo	cj Acetylelle	u) Ethane
,,,	a) Addition reactions		
	b) Substitution reactions		
	c) Both (a) and (b)		

d) None of these

d) None of these		
100. Aromatic compound among other things s	hould have a π -electron clo	ud containing $(4n + 2)\pi$
electrons where, <i>n</i> cannot be		
a) $\frac{1}{2}$ b) 3	c) 2	d) 1
101. Polymer of propyen is:		
a) Polyethylene b) Polythene	c) Benzene	d) Mesitylene
102. Which of the following has the least octane nu	-	u) Mesitylene
a) Octane b) Cetane	c) 2,2,4-trimethylpent	ane d) <i>n</i> -hentane
103. Name the reaction $C_3H_6 \rightarrow C_3H_8$:	c) 2,2,1 chineenyipen	and uj n neptane
a) Alkylation b) Cracking	c) Hydrogenation	d) Dehydrogenation
104. The tar which is used to make roads is a solid l		aj Donjar ogenation
a) Pitch b) Paraffin wax	c) Coal	d) None of these
105. Thermal decomposition of alkanes in the a	,	
a) Cracking b) Oxidation	c) Combustion	d) Hydrogenation
106. The conditions for aromaticity is		
a) Molecule must have clouds of delocalise	d π -electrons	
b) Molecule must contain $(4n + 2)\pi$ -electr		
	0115	
c) Both (a) and (b)		
d) None of the above		
107. $C_2 - C_3$ bond length in but-1,3-diene is:	2 9	N 9
a) 1.46Å b) 1.20Å	c) 1.39Å	d) 1.34Å
108. For synthesis of 1-butene, CH ₃ Mgl should l		
a) Propene b) 2-chloroproper	ne c) Allyl chloride	d) Ethyl chloride
109. The highest boiling point is expected for		
a) <i>n-</i> butane	b) <i>iso</i> -octane	
c) <i>n</i> -octane	d) 2,2,3,3-tetrameth	yl butane
110. When butane-1 is mixed with excess of bromin		
a) Hydrogen bromide b) Butylene gas	c) 1,2-dibromobutane	-
111. An alkene having molecular formula C_9H_{18}	3 on ozonolysis gives 2, 2-di	methyl propanal and 2-
butanone. The alkene is		
a) 2,2,2-trimethyl-3-hexene	b) 2,2,6-trimethyl-3-	hexane
c) 2,3,4-trimethyl-2-hexene	d) 2,2,4-trimethyl-3-	hexene
112. Propene on reaction with diazomethane in pre	esence of UV radiations gives:	
a) Cyclopropane b) Methyl cycloprop	pane c) Butane	d) Butene
113. Both methane and ethane may be obtained by	a suitable one-step reaction f	rom
a) CH_3I b) C_2H_5I	c) CH ₃ OH	d) C ₂ H ₂ OH
114. The product (s) obtained <i>via</i> oxymercuration		e would be
a) CH ₃ CH ₂ COCH ₃	b) CH ₃ CH ₂ CH ₂ CHO	
c) $CH_3CH_2CHO + HCHO$	d) $CH_3CH_2COOH + HC$	СООН
115. Alkene-1 on hydroboration followed with action	-	
a) Alkanol-2 b) Alkanol-1	c) Alkanal	d) Alkanone
116. CH ₃		
on ozonolysis gives		
CHO COCH ₃	<u> </u>	d) None of these
a) b)	c) + HCHO	

117. The compound 'C' in the following reaction is

$C_7H_7 \xrightarrow{3Cl_2/\Delta} A \xrightarrow{Br_2/Fe} B \xrightarrow{Zn/HCl} C$		
a) <i>o</i> -bromotoluene	b) <i>m</i> -bromotoluene	
c) <i>p</i> -bromotoluene	d) 3-bromo-2,4,6-trich	lorotoluene
118. Iodination of alkane is made in presence of:		
a) $KMnO_4$ b) HgO or HIO_3	c) K ₂ Cr ₂ O ₇	d) None of these
119. Pick out the wrong statement.		
a) Toluene shows resonance		
+		
b)		
is non-aromatic.		
c) The hybrid state of carbon in carbonyl group	p is sp^2 .	
d) The hyperconjugative effect is known as no	oond resonance.	
120. An alkene on vigorous oxidation with $KMnO_4$ g		
a) $CH_3CH_2CH = CH_2$ b) $CH_3CH = CHCH_3$	_	
121. A hydrocarbon reacts with hypochlorous acid to give	-	
a) Methane b) Ethylene	c) Acetylene	d) Ethane
122. The angle strain in cyclobutane is	> 100 22/	12 00 4 4
a) 24°44′ b) 29°16′	c) 19°22′	d) 9°44′
123. During chlorination of methane usually a mixture of methylene dichloride, chloroform and carbon tetra	-	-
excess of Cl_2 in this reaction?	cilioriue are obtailleu. Wila	it will happen, if we use
a) Only methyl chloride will be formed		
b) Only chloroform will be formed		
c) Only CCl ₄ will be formed		
d) Only methylene dichloride will be formed		
124. Aromatization of <i>n</i> -heptane and <i>n</i> -octane gives res	pectively:	
a) Toluene, ethyl benzene		
b) Ethyl benzene, toluene		
c) Toluene, benzene		
d) Benzene, ethyl benzene 125. Which of the following organic compounds exh	ibit acidic character?	
a) $H_3C - C \equiv CH$ b) $H_3C - C \equiv C - CH_3$		d) $H_3C - CH_3$
126. Sodium formate on heating with soda lime gives:	$0 11_2 0 - 011_2$	u) 1130 0113
a) CH_4 b) CO_2	c) H ₂	d) All of these
127. Which of the following can be used for preparation	· -	
a) $CH_3CH = CH_2 \xrightarrow[2.AgNO_3/NaOH]{1.B_2H_6}$	b) $CH_3CH_2CH_2Cl \frac{1.Mg/eth}{2.H_2O_2}$	ler →
	2.H ₂ O ₂	
c) $CH_3CH_2CH_2I \xrightarrow{HI/\Delta 150^{\circ}C}$	d) CH ₃ CH ₂ CH ₂ COONa —	$\xrightarrow{\Lambda}$
128. The marsh gas detector used by miners works on t		
a) Difference in the rates of diffusion of gases		
b) Avogadro's hypothesis		
c) Gay-Lussac's law of gaseous volumes		
d) Berzelius hypothesis		
129. The compound with highest boiling point.		
a) <i>n</i> -nexane	b) <i>n</i> -pentene	
c) 2,2-dimethyl propane	d) 2-methyl butane	
130. The most stable conformation of chlorocyclohexan	e at room temperature is:	

Cl Cl		
a) H b) H	c)	d)
		$V_{\rm H}^{\rm Cl}$
131. Acetylene is not used in making:		
a) Textile yarn b) PVC 132. An aromatic compound ' <i>X</i> ' with molecular form	c) Glucose	d) Drugs itration one mononitro
derivative and three dinitro derivatives. Compo		in a control of the monomer of
a) Ethyl benzene b) <i>m</i> -xylene	c) <i>o</i> -xylene	d) <i>p</i> -xylene
133. That acetylene is a linear molecule is shown by		<u>,</u>
a) Its C \equiv C bond distance being 1.21 Å	b) Its C – H bond distance	e being 1.08 Å
 c) ItsH – C – C bond angle being 180° 134. Benzene on treatment with a mixture of conc. H 	d) All of the above	
a) Nitrobenzene b) <i>m</i> -dinitrobenzene	c) <i>p</i> -dinitrobenzene	d) <i>o</i> -dintrobenzene
135. Which of the following differs with the other three?	· ·	aj o anti obenzene
a) Naphthalene b) Ethylene	c) Toluene	d) Xylene
136. A saturated hydrocarbon is shown by C_nH_{10} The va		
a) 2 b) 4	c) 5	d) 6
137. Which of the following reactions will yield, 2, 2-		D m \
a) $CH_3 - C \equiv CH + 2HBr \rightarrow$ c) $CH \equiv CH + 2HBr \rightarrow$	b) $CH_3CH = CHBr + HI$ d) $CH_3 - CH = CH_2 + HI$	
$138. \text{ CH}_2 = \text{CH}_2 \text{ reacts with HCl to form:}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
a) $CH_2CH_2Cl_2$ b) CH_2ClCH_3	c) CH ₂ ClCH ₂ Cl	d) CH ₃ CHCl ₂
139. Reduction of carbonyl compounds to alkanes with N	MH_2 — MH_2 and $NaOH$ is cal	led:
a) Clemmensen reduction		
b) Wolff-Kishner reduction		
c) Wurtz's reaction d) Pondrof Verley reduction		
140. The compound which cannot decolourise alkaline K	MnO ₄ :	
a) Acetylene b) Ethanol	c) Ethanal	d) Ethane
141. Which one of the following can distinguish propyne		
a) Br_2 water b) Ammoniacal AgNO ₃	c) Aq. KMnO ₄	d) Dil. H ₂ SO ₄
142. The reaction of ethene with oxygen in presence of aa) Ethylene glycolb) Ethylene epoxide	c) Glyoxal	d) Acetaldehyde
^{143.} 4-nitrotoluene $\xrightarrow{K_2Cr_2O_7}_{H_2SO_4}$ product. The product in	, ,	ajneetalaenyae
2 T		
a) Benzoic acid b) 4-nitrobenzene 144. Which of the following is Wurtz-Fittig reaction?	c) 4-nitrobenzoic acid	d) 2-nitrobenzoic acid
	~	CH2CH2
a) $Hrightarrow Hrightarrow H$	b) \bigcirc + BrCH ₂ CH3 $\frac{A}{an}$	$\frac{ C _3}{\text{hyd.}} + HBr$
c) O + H ₂ O $\frac{130-150^{\circ}C}{HCl}$ + H ₂ SO ₄	d) $MgBr \parallel CICCH_2CH$	COCH ₂ CH ₃
c) $H_2O - HCl + H_2SO_4$	d) $()$ + CICCH ₂ CH	3 -
145. Ozonolysis can be used to detect:		
a) 1-butene and 2-butene		
h) Branchod allong from unbranchod allong		

b) Branched alkene from unbranched alkene

c) Location of double bond/triple bond in carbon chain

d) All are correct
146. CH₂=CH=CH=CH₂ +
$$\bigcap_{H=COOH}^{CH=COOH} X$$

Product X is obtain by reaction R. X and R are
a) \bigcap_{OOOH}^{COOH} Dicls-Alder
b) \bigcap_{OOOH}^{COOH} Friedel-Crafts
c) \bigcap_{OOOH}^{COOH} Dicls-Alder
d) \bigcap_{OOOH}^{COOH} Friedel-Crafts
147.
Hydroxylation of $\bigcap_{OOOH}^{C=CH}$ b) $\bigcap_{OOOH}^{C=CH}^{COOH}$ Friedel-Crafts
a) $\bigcap_{OOOH}^{C=CH}^{C=CH}$ b) $\bigcap_{OO}^{CH}^{CH}_{COOH}$ c) $\bigcap_{OOOH}^{COOH}^{COOH}$ Friedel-Crafts
148. In which of the following will Kharasch effect operate?
a) CH₂CH₂CH = CH₂ + HCI
b) CH₃CH₂-CH = CH₂ + HBr
c) CH₃CH = CH - CH₃ + HBr
c) CH₃CH = CH - CH₃ + HBr
c) CH₃CH = CH - CH₃ + HBr
d) CH₃CH₂CH = CH₂ + HBr
c) CH₃CH = CH - CH₃ + HBr
c) CH₃CH = CH - CH₃ + HBr
d) CH₃CH₂CH = CH₂ + HBr
c) CH₃CH = CH - CH₃ + CH₃CH₃CH, aq, KOH/Δ c) CH₃OH, aq, KOH/Δ d) C₂H₅, PBr₃
150. Addition of HBr on:
CH = C - CH₂-CH = CH₂ and CH = C - CH = CH₂
Separately gives:
CH=C - CH₂-CH = CH₂ and CH = C - CH = CH₂
Separately gives:
CH=C - CH₂-CH = CH₂ and CH = C - CH = CH₂
Separately gives:
CH=C - CH₂-CH = CH₂ and CH = C - CH = CH₂
separately gives:
CH=C - CH₂-CH = CH₂ and CH = C - CH = CH₂
separately gives:
CH=C - CH₂-CH = CH₂ and CH = C - CH = CH₂
separately gives:
CH=C - CH₂-CH = CH₂ and CH = C - CH = CH₂
separately gives:
CH=C - CH₂-CH = CH₂ and CH = C - CH = CH₂
separately gives:
CH=C - CH₂-CH = CH₂ and CH = C - CH = CH₂
Separately gives:
CH=C - CH₂-CH = CH₂ and CH = C - CH = CH₂
separately gives:
CH=C - CH₂-CH = CH₂ and CH = C - CH = CH₂
d) None of the above
151. Compound C₆ H₁ is an:
a) Aliphatic saturated compound
b) Alicyclic compound
d) Heterocyclic compound
152. A lead compound known as....is used as anti-knock in petroleum industry to increase the efficiency of fuel
consumption
a) (C₁C₁H₂, P b
b) Ph(CH₂COO)₂ c) (C₁C₁H₂)₂Pb d) PbCO₃

a) $(C_2H_5)_4$ Pb b) Pb(CH₃CC 153. Which of the following form alkynide? b) $Pb(CH_3COO)_2$ c) $(C_2H_5)_2Pb$

a)		
H—C≡Ċ		
b)		
b)		
_{c)} ⟨c≡c–⟨⟩		
d) C≡C−CH ₃		
154. Which of the following reagents when heated w	vith ethyl chloride, forms	ethylene?
a) Aqueous KOH b) Zn/HCl	c) Alcoholic KOH	d) HI
155. Reduction of 2-methyl-1-bromopropane with metal	and acid gives:	
a) Butyl bromide b) <i>n</i> -butane	c) Isobutene	d) None of these
156. Dehydration of 2-butanol yield		
a) 1-butene b) 2-butene	c) 2-butyne	d) Both (a) and (b)
157. Which statement is correct?	1	
a) Knocking decreases the efficiency of an internal of	-	_
b) Knocking cannot be eliminated completely by ad-c) The higher the octane number, the better is the q		8
d) All of the above		
158. CH ₃ C=CHCH ₃		
The treatment of ${}^{c_{H_3}}$ with NaIO ₄ or boiling K	MnO ₄ produces	
KMnO ₄ produces		
a) $CH_3COCH_3 + CH_3COOH$	b) $CH_3COCH_3 + CH_3CHO$	
c) $CH_3CHO + CO_2$ 150 Which of the following reason to will be able to disti	d) CH ₃ COCH ₃ only	nd 2 hutma?
159. Which of the following reagents will be able to distia) NaNH₂b) HCl	c) 0_2	d) Br ₂
160. 2-chloro-3-methylbutane is treated with sodiur	, 1	-
a) 2,4-dimethylhexane	b) 3,5-dimethylhexane	
c) 2,3,4,5-tetramethylhexane	d) 2,6-dimethyloctane	
161. The hydrocarbon which can react with sodium	•	
a) $CH_3CH_2CH_2C \equiv CCH_2CH_2CH_3$	b) $CH_3CH_2C \equiv CH$	
c) $CH_3CH = CHCH_3$	d) $CH_3CH_2C \equiv CCH_2CH$	3
162. Which of the following is incorrect? The members o	f the homologous series of	alkanes?
a) Are all straight chain compounds		
b) Have the general formula $C_n H_{2n+2}$		
c) Show a regular gradation in physical properties		
d) Have similar chemical properties	anitata mithanki da a	f the fell
163. Ammoniacal cuprous chloride will give red pred	-	i the following?
a) $CH_3 - C \equiv C - CH_3$ c) $CH_3 - C \equiv CH_3$	b) $CH_3 - CH = CH_2$ d) $CH_3 - CH = CH_2 - CH_2$	I
c) $CH_3 - C \equiv CH$ 164 Mustard gas is:	d) $CH_3 - CH = CH - CH$	13

164. Mustard gas is:

a) CH₄ b) C_2H_4 c) CH₂Cl—CH₂—S—CH₂-d) None of the above 165. During pyrolysis of alkane, C—C bond rather than C—H bond break because: a) C—C bond is reactive site in alkane b) C—H bond is reactive site in alkane c) Bond energy of C—C is lower than C—H bond d) Energy of activation of C—C bond is very high 166. A mixture of CH₄ and steam on passing over nickel suspension on alumina at 800°C gives: a) CO only c) CO and H_2 d) None of these b) H_2 only 167. A compound $X(C_5H_8)$ reacts with ammoniacalAgNO₃ to give a white precipitate, and on oxidation with hot alkaline KMnO₄ gives the acid, $(CH_3)_2$ CHCOOH. Therefore, X is a) $CH_2 = CHCH = CHCH_3$ b) $CH_3(CH_2)_2C \equiv CH$ c) $(CH_3)_2CH - C \equiv CH$ d) $(CH_3)_2C = C = CH_2$ 168. What are the products obtained by the ozonolysisof $RCH = CR_1R_2$? d) None of these a) $R_1 CH_2 CH_2 R_2$ b) R_2CO c) $R_1 COR_2$ 169. Following compound is treated with NBS CH_2CH CH₂ + NBS $\rightarrow A$ Compound formed *A* is СНСН= a) Β̈́r c) Β̈́r 170. The structural formula of the compound which yields ethylene upon reaction with zinc: b) $CHBr_2 - CHBr_2$ a) CH₂Br—CH₂Br c) CHBr=CHBr d) None of these 171. An alkyne combines with a conjugated diene to give an unconjugated cycloalkadiene. The most likely title of this reaction is a) Schotten-Baumann reaction b) Hofmann-bromamide reaction c) Pinacol-Pinacolone rearrangement d) Deils-Alder reaction 172. The most important method of preparation of hydrocarbons of lower carbon number is: a) Pyrolysis of higher carbon number hydrocarbons b) Electrolysis of salts of fatty acids c) Sabatier-Senderen's reaction d) Direct synthesis 173. The number of carbon atoms in hydrocarbons of kerosene is in the range of: a) $C_5 - C_7$ b) $C_{12} - C_{16}$ c) $C_1 - C_4$ d) $C_{17} - C_{20}$ 174. A mixture of 1-chlorobutane and 2-chlorobutane when treated with alcoholic KOH gives a) 1-butene b) 2-butene c) iso-butylene d) Mixture of 1-butene+2-butene 175. Which of the following react with Cl₂ and Br₂ at room temperature and in the absence of diffused sunlight to produce dihalogen derivatives? a) Cyclobutane b) Cyclopentane c) Cyclohexane d) All of these 176. A compound (X) on ozonolysis followed by reduction gives an aldehyde C₂H₄O and 2-butanone, compound (X) is a) 3-methyl pentene-2 b) 3-methyl pentene-3 c) 3-methyl hexene-3 d) 3-ethyl pentene-3 177. An octane number 100 is given to: a) *n*-hexane b) Iso-octane c) Neopentane d) Neo-octane

178. When butene-1 is mixed with HBr, the major reaction product is: a) 1,2-dibromobutane b) 1-bromobutane c) 2-bromobutane d) None of these 179. Which cycloalkane has the lowest heat of combustion per CH₂ group? b) Cyclobutane a) Cyclopropane c) Cyclopentane d) Cyclohexane 180. The order of appearance of the following with rising temperature during the refining of crude oil is: a) Kerosene, gasoline, diesel b) Diesel, gasoline, kerosene c) Gasoline, diesel, kerosene d) Gasoline, kerosene, diesel ^{181.} CH₃— C \equiv C— CH₃ $\xrightarrow{\text{NaNH}_2}$ X; what is X? d) $CH_2 = C = CH - CH_3$ $C = CH_2$ a) $CH_3 - CH_2CH_2CH_3$ b) $CH_3CH_2C \equiv CH$ c) 182. H_3C —CH—CH= CH_4 +HBr—AĊH₃ A(Predominantly) is: Br a) CH₃-C-CH₂CH₃ CH₃ CH₃—CH—CH—CH₃ b) Br CH₃ CH₃—CH—CH—CH₃ c) CH₃ Br d) $CH_3 - CH - CH_2 - CH_2Br$ CH₃ 183. The reagent *X* in the reactions $(CH_3)_3CCH = CH_2 \xrightarrow{X} THF Y \xrightarrow{NaBH_4} (CH_3)_3C - CH - CH_3$ b) (CH₃COO)₂Hg c) OHa) H_30^+ d) HCOOH 184. Cetane number of diesel fuel increases with the addition of: a) Decane b) Hexadecane c) Pentane d) Methyl naphthalene 185. Distillation of acetone with concentrated sulphuric acid gives a) Diacetone alcohol b) Mesityl oxide c) Mesitylene d) Propene-2-ol 186. Ozonolysis of will give: a) b) c)

d) None of the above 187. Soda lime is used extensively in decarboxylation reaction to obtain alkanes. Soda lime is: a) NaOH b) NaOH and CaO c) CaO d) Na₂CO₃ 188. Incomplete combustion of petrol or diesel oil in automobile engines can be best detected by testing fuel gases for the presence of: a) Carbon dioxide and water vapour b) Carbon monoxide c) Nitrogen oxide d) Sulphur dioxide 189. A compound with molecular formula C_4H_6may contain: a) A double bond b) Two triple bonds c) All single bonds d) Two double bonds or a triple bond 190. Mustard gas is a a) Oil gas b) Poisonous gas c) Fuel gas d) Life gas 191. Which of the following is not true? a) Acetylene has a linear structure b) Alkynes undergo electrophilic addition, but not nucleophilic addition reactions c) Alkenes show geometrical isomerism d) There is sp^3 -hybridisation in propane 192. Pure CH₄ can be obtained by: b) HCOONa + NaOH c) $CH_3COONa + Sodalime d$ Electrolysis of HCOONa(*aq*.) a) CH₃COONa + BaO 193. Viscosity coefficients of some liquids are given below, Liquid η in millipoise at 30°C $CH_3(CH_2)_3CH_3$ 2.11 $CH_3(CH_2)_4CH_3$ 2.89 $CH_3(CH_2)_5CH_3$ 3.68 The order of viscosity coefficient of the liquids, $(A) \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_3$ CH₃ (B)CH₃-CH₂-CH-CH₂-CH₃ $(C) CH_{3} - CH_{-}CH - CH_{-}CH_{3}$ is: a) The same b) (A) > (B) > (C)c) (A)<(B)<(C) d) (A)>(B)=(C) 194. Action of *R*Mg *X* with vinyl chloride gives: a) Alkane b) Alkyne c) Alkene d) All of these 195. The following reaction is called b) Diels-alder reaction a) Michael addition reaction c) Wolff-Kishner reaction d) None of the above 196. Which branched chain isomer of the hydrocarbon with molecular mass 72u gives only one isomer of mono

substituted alkyl halide? a) Neopentane b) Isohexane c) Neohexane d) Tertiary-butyl chloride 197. A meta directing functional group is a) -COOH b) - 0H c) $-CH_3$ d) –Br 198. Which one of the following compounds is prepared in the laboratory from benzene by a substitution reaction? a) Glyoxal b) Cyclohexane d) Hexabromocyclohexane c) Acetophenone 199. Only two isomeric monochloro derivatives are possible for: b) 2,4-dimethylpentane a) *n*-pentane c) Benzene d) 2-methylpropane 200. Butene-1 may be converted to butane by reaction with a) Zn – HCl b) Sn – HCl c) Zn – Hg d) Pd/H_2 201. Identify '*B*' in the following reaction, $CH_2 = CH_2 + HCl \frac{Anhy.AlCl_3}{}$ $A + 2[H] \xrightarrow[C_2H_5OH]{Zn-Cu} B + HCl$ b) C_2H_6 a) CH₄ c) C_2H_5Cl d) C_2H_5OH 202. The reaction of toluene with chlorine in presence of ferric chloride gives predominantly a) benzoyl chloride b) m-chlorotoluene c) Benzyl chloride d) *o*-and *p*-chlorotoluene 203. Ph – C \equiv C – CH₃ $\xrightarrow{\text{Hg}^{2+}/\text{H}^+}$ A The product A is OH Ph Ph Ph Ph OH d) b) a) c) H_3C H₂C H₂C 204. During Wurtz reaction, which of the following is sometimes also obtained because of decomposition of free radicals? b) Alkenes a) Alkynes d) Alkyl halide c) CO_2 205. Which of the following reagents cannot be used to locate the position of triple bond in $CH_3 - C \equiv C - CH_3$? c) Cu⁺ a) Br_2 b) 0_3 d) KMnO₄ 206. Decarboxylation of malonic acid gives: c) C_3H_8 d) None of these a) CH_4 b) C_2H_6 Br 207. Br NaI/Acetone → Product · The product of reaction is: a) b) c) d) 208. Which compound will react with an aqueous solution of $Ag(NH_3)^+_2OH^-$? a) $CH_3 - C \equiv C - CH_3$ b) $CH_3CH_2C \equiv CH$ c) $CH_3 - CH_3$ d) $CH_2 = CH_2$

Page | 17

209. Reactivity of tertiary H, secondary H and primary H towards elimination is: a) Tert. > sec. > pri. b) Sec. > tert. > pri c) Sec. > pri. > tert. d) Pri. > sec. > tert. 210. 1-butyne on hydration gives a) Butyn-1, 2-diol d) Butan-2-one b) Butan-1-ol c) Butan-2-ol 211. The hydration of propyne in the presence of $HgSO_4/H_2SO_4$ produces a) HCHO b) CH_3CHO c) CH₃CH₂CHO d) CH_3COCH_3 212. The most reactive halogen in the halogenation of alkanes is: a) Cl_2 b) Br_2 d) All are equal c) I_2 213. A gas decolourised by KMnO₄ solution but gives no precipitate with ammoniacal cuprous chloride is b) Methane c) Ethene d) Acetylene a) Ethane 214. Indane is: a) Commercial propane b) Commercial isobutene and propane mixture c) Methane, propane mixture d) Butane, ethane mixture 215. Which reacts with ammoniacal AgNO₃? b) 2-butyne c) 1,3-butadiene d) Pentene a) Propyne 216. The conversion CH₂CH₂CH₃ CH₂CH₂CH₃ Can be effected using a) Br_2/CCl_4 b) Br_2/H_20 c) Br₂/Fe d) Br/ benzoyl peroxide 217. Which of the following cycloalkane gives open chain compound, when reacts with bromine? a) Cyclopropane b) Cyclopentane c) Cyclohexane d) Cyclooctane 218. The addition of HBr to an alkene in the presence of peroxide is the example of a) Electrophilic addition reaction b) nucleophilic addition reaction c) Free radical addition reaction d) The formation of carbocation as an intermediate 219. On mixing a certain alkane with chlorine and irradiating it with UV light, it form one monochloro alkane. The alkane could be a) Neopentane b) Propane c) Pentane d) Isopentane 220. Which of the following statements is true for ethane, ethene and acetylene? a) Acetylene is the weakest acid and has the longest C – H bond distance b) Acetylene is the strongest acid and has the shortest C - H bond distance c) Ethane is the strongest acid and has the longest C - H bond distance d) Ethene is the strongest acid and has the shortest C – H bond distance 221. On cracking petrol we get: a) CH_4 b) C_3H_6 c) Both of the above d) $CH_3 + CH_4 + C_2H_6 + alcohols$ 222. Methyl bromide is converted into ethane by heating it in ether medium with d) Cu a) Al b) Zn c) Na 223. The addition of oxygen gas to reaction mixture of chlorine and methane (photochemical chlorination): a) Accelerates the reaction b) Retards the reaction for sometime

c) Has no effect on the rate					
d) May accelerate or retard the reaction depending upon the amount of oxygen					
224. Order of reactivity of C_2	H_6, C_2H_4 and C_2H_2 is				
a) $C_2H_6 > C_2H_4 > C_2H_2$		b) $C_2H_2 > C_2H_6 > C_2H_4$			
c) $C_2H_4 > C_2H_2 > C_2H_6$		d) All are equally reactive	ve		
225. Bacterial decomposition of	-				
	b) CH ₄	c) 0 ₂	d) N ₂		
226. The reaction, $CH_3Br + Na$					
	b) Levit reaction	c) Wurtz reaction	d) Aldol condensation		
227. <i>Meso</i> -dibromobutane or	-				
,	b) <i>cis</i> -2-butene	c) 1-butene	d) 1-butyne		
228. CH \equiv CH + HBr \rightarrow X, pro	oduct Xis				
a) Ethylene bromide		b) Vinyl bromide			
c) Bromo ethane		d) Ethyledine bromide			
229. Kolbe's synthesis of sodiur	m salt of butanoic acid give	es:			
-	b) Isobutane	c) Butane-1	d) Ethylene		
230. The compound formed wh	en silver powder is heated	l with chloroform:			
	b) C_2H_2	c) C ₂ H ₄	d) C ₂ H ₆		
231. The reaction of toluene with	th chlorine in the presence		edominantly		
a) <i>m</i> -chlorotoluene		b) Benzyl chloride			
c) Benzoyl chloride		d) <i>o</i> and <i>p</i> -chlorotoluene			
232. Which of the following w		from butyne?			
a) LiAlH ₄	b) Na/Liq. NH ₃	c) NaBH ₄	d) Ni catalyst		
233. A hydrocarbon of molec	ular formula C ₆ H ₁₀ reac	ts with sodamide and the	e same on ozonolysis		
followed by hydrogen pe	eroxide oxidation gives t	wo molecules of carboxy	lic acids, one being		
optically active. Then, th	e hydrocarbon may be				
a) 1-hexyne		b) 3-hexyne			
c) 3-methyl-1-pentyne		d) 3,3-dimethyl-1-butyr	ne		
234. Which of the following is n	ot correct about the reacti	on,			
$CH_2 = CH_2 + Br_2 \xrightarrow{Nal(aq)} ?$					
a) The products formed ar	e CH_BrCH_Br and CH_Br	СН_I			
b) The reaction follows po		GIIZI			
c) The reaction occurs rea		lysed by inorganic halides			
d) CH_2ICH_2I is formed only	-	ij seu by morganie nandeb			
235. During ozonolysis of CH_2 =	-	e in absence of Zn dust the	products formed are:		
e ; _	b) HCOOH	c) CH ₃ OH	d) CH ₂ OHCH ₂ OH		
236. The formation of butane of	n heating C_2H_5I with Na in				
a) C ₂ H ₄	b) C ₃ H ₆	c) CH ₄	d) None of these		
237. When sodium propionat	te is heated with soda-lir	ne, the product formed i	S		
	b) Ethane	c) Ethene	d) Ethyne		
238. Isopropyl bromide on W	-	2	<i>y y</i>		
a) Hexane		b) Propane			
c) 2,3-dimethyl butane		d) <i>neo</i> -hexane			
239. Which one of the followi	ing has the minimum he	-			
	-	••	d) Ico hutono		
	b) 1-butyne	c) 1-butene	d) <i>Iso</i> -butene		
240. The substance that would	not at an be for med during	s me reaction of methane a	nu chiorme in the presence		
of sunlight is: a) CH ₃ Cl	b) CHCl ₃	c) CH ₃ CH ₃	d) CH ₃ CH ₂ CH ₃		
aj 011301	0) 011013	0) 01130113	aj 611301120113		

241. When isopropyl magnesium iodide is treated with a) Propane b) <i>n</i> -butane	c) Isobutene	d) Isobutyl alcohol
242. The monosodium salt of acetylene on treating with	,	uj isobutyi alconor
a) $CH \equiv CCOOH$ b) $CH \equiv CCOONa$	c) CH \equiv CCONa	d) None of these
243. Propyne on passing through red hot iron tube	,	
		d) None of these
$\downarrow \qquad \downarrow $	\downarrow /	,
a) (b) (c)	c)	
244. $(CH_3)_3$ CMgCl on reaction with D ₂ O produces	•	
a) $(CH_3)_3COD$ b) $(CD_3)_3CH$	c) (CH ₃) ₃ CD	d) (CD ₃) ₃ CD
245. <i>n</i> -hexadecane (cetane) has cetane number:	c) (0113)30D	
a) 100 b) Zero	c) 90	d) 110
246. Acetylene does not react with	,	,
a) Na b) ammoniacal AgNO ₃	c) HCl	d) NaOH
247. What volume of CH_4 at NTP is formed when 20.5 g		
a) 4.4 litre b) 2.2 litre	c) 3.2 litre	d) 5.6 litre
248. The hydrocarbon which decolourizes alkaline KMr	10 ₄ solution, but does not g	ive any precipitate with
ammoniacal silver nitrate is:		
a) Benzene b) Acetylene	c) Propyne	d) Butyne-2
249. What is the molecular formula of the product f		reacted with ethyl chloride
in presence of anhydrous aluminium chloride?		
a) C_8H_{10} b) C_6H_6	c) C ₈ H ₈	d) C ₆ H ₅ Cl
250. Which will give $CH_2 = C = CH_2$?		
a) $CH_2Br - CBr = CH_2 \xrightarrow{Zn/CH_3OH}$		
b) CH \equiv C— CH ₂ — COOH $\xrightarrow{K_2CO_3(aq)}$		
c) $2CH_2 = CH - CH_2I \xrightarrow{2Na}$		
d) None of the above		
251. A dibromo derivative of an alkane reacts with	sodium metal to form an	alicyclic hydrocarbon. The
derivative is		
a) 1,1-dibromopropane	b) 2,2-dibromopropan	e
c) 1,2-dibromoethane	d) 1,4-dibromobutane	
252. By coaltar distillation which is not obtained?	, _,	
-	c) Heavy oil	d) Mobil oil
253. In the following reaction:		
CH ₃		
$H_{3}C - C - CH = CH_{2} \xrightarrow{H_{2}O/H} A + B$ Major product Minor pro		
$H_3C - C - CH = CH_2 \longrightarrow A + B$ Maior product Minor pro	duct	
CU		
The major product ic.		
The major product is: CH ₃ CH ₃ CH ₃	CH_3	СН
a) $\overset{CH_3}{\underset{H_3C}{\overset{H}{\overset{H_3C}{\overset{H}{\overset{H_3C}{\overset{H}{\overset{H_3C}{\overset{H}}{\overset{H}{\overset{H}{\overset{H}}{\overset{H}}{\overset{H}{\overset{H}$		
a) $H_3C - C - CH = CH_3$ b) $H_3C - C - CH_2 - CH_3$	c) $H_3C - C - CH - CH_3$	d) $CH_2 - C - CH_2 - CH_3$
CH ₃ OH CH ₃ OH	OH CH ₃	OH CH ₃
254. The treatment of ethane with cold alkaline potassi		
a) Ethylene glycol	b) Formaldehyde	
c) Formic acid	d) Carbon dioxide and v	vater

255. As compared to melting points of even carbon chain isomers, the melting points of odd carbon chain alkanes are:

a) Lower

b) Higher

c) Same

d) Not depend upon branching

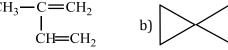
256. Ph - C = C - CH₃
$$\xrightarrow{Hg^{2+}/H^{+}} A$$
,
Ph - C = C - CH₃ $\xrightarrow{Hg^{2+}/H^{+}} A$,
Ph - C = C - CH₂ $\xrightarrow{Ph} H_2C$ $\xrightarrow{Ph} C=O$ $\xrightarrow{Ph} CH_2$ $\xrightarrow{H_3C} OH_1$ $\xrightarrow{H_3C} OH_1$ $\xrightarrow{H_3C} OH_1$ $\xrightarrow{H_3C} OH_2$ $\xrightarrow{H_3C} OH_1$ $\xrightarrow{H_3C} OH_1$ $\xrightarrow{H_3C} OH_1$ $\xrightarrow{H_3C} OH_2$ $\xrightarrow{H_3C} OH_1$ $\xrightarrow{H_3C} OH_2$ $\xrightarrow{H_3C} OH_1$ $\xrightarrow{H_3C} OH_2$ $\xrightarrow{H_3$

A and B are geometrical isomers. Then,

a) *A* is *cis* and *B* is *trans*

c) A and B are cis

258. Identify '*A*' in the reaction: CU Pr


$$Br-CH_2-C-CH_2Br-Zn/\Delta \rightarrow A$$

$$I$$

$$CH_2Br$$

a)
$$\begin{array}{c} CH_3 - C = CH_2 \\ | \\ CH = CH_2 \end{array}$$

b) *A* is *trans* and *B* is *cis* d) A and B are trans

 $CH_3C \equiv CH = CH_2$

259. Choose the correct statement

- a) Acetylene is more reactive than ethylene to an electrophilic attack
- b) Acetylene and ethylene show similar reactivities towards an electrophilic attack with different rates

c)

c) The reactivities of acetylene and ethylene towards an electrophilic attack depend on the electrophilic reagent

d) Acetylene is less reactive than ethylene to an electrophilic attack

^{260.} C₆H₅CH₃
$$\xrightarrow{\text{CrO}_2\text{Cl}_2}$$
 Z

In the given sequence, Z is

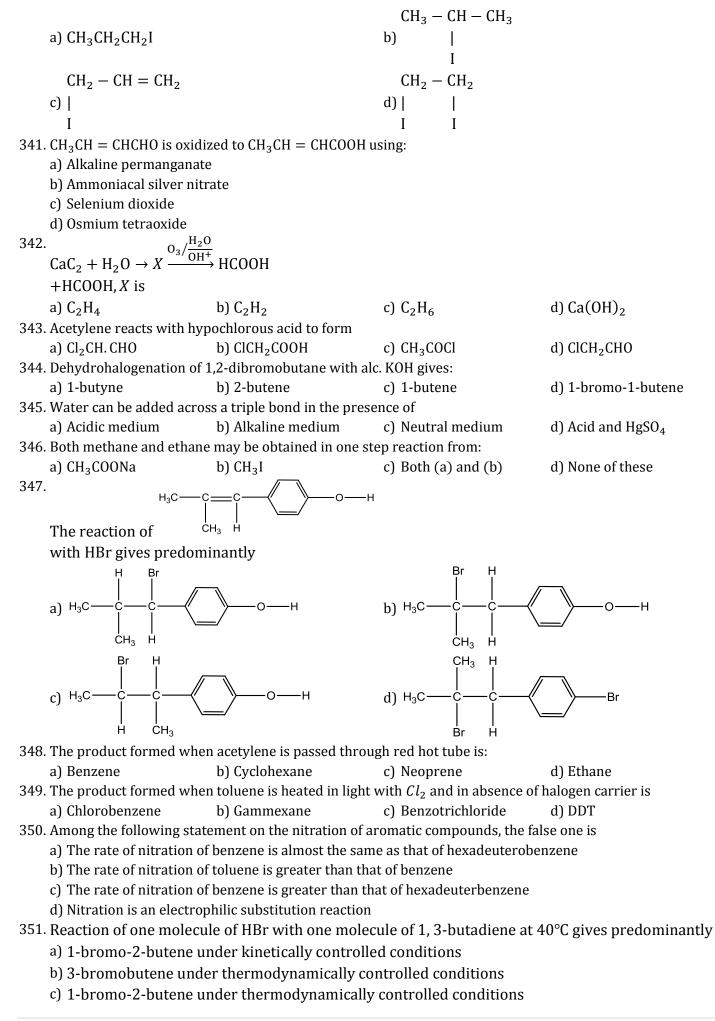
a) Benzaldehyde	b) Toluic acid	c) Phenyl acetic acid	d) Benzoic acid
261. 2-hexyne can be converted	d to <i>trans</i> -2-hexene by the	action of:	
a) H ₂ – Pd/BaSO ₄	b) Li/Liq. NH ₃	c) $H_2 - Pt O_2$	d) NaBH ₄
262. In the following reaction	n,		
$RCH_2CH = CH_2 + ICI \rightarrow$	[A]		
Markownikoff's product	t [<i>A</i>] is		
$RCH_2CH - CH_2I$		$RCH_2CH - CH_2CI$	
a)		b)	
Cl		Ι	
$RCH_2 - C = CH_2$			
c)		d) $RCH = CH - CH_2I$	
Ι			

263. Which of the following will not produce ethane?

a) Reduction of CH_3COOH with the second				
	b) Reduction of CH ₃ COCH ₃ with HI and red P			
c) Sodalime decarboxylation	=			
d) Hydrogenation of ethane i				
264. Which will not react with ace	-			
,) Na	c) HCl	d) Amm. AgNO ₃	
265. Ozonolysis of an organic c	ompounds gives form	aldehyde as one of the p	roducts. This confirms	
the presence of				
a) Two ethylenic double be	onds	b) A vinyl group		
c) An <i>iso-</i> propyl group		d) An acetylenic triple b	oond	
266. Among the paraffins it is gen	erally found that with a	n increase in the molecular	r weight:	
a) The freezing point decreas	ses			
b) The boiling point decrease	es			
c) The boiling point increase	es			
d) The vapour density decrea	ases			
267. Which of the following react	ions can be used to prep	are methane?		
a) Clemmensen reduction				
b) Wurtz reaction				
c) Reduction of $CH_2 = CH_2$ b	y LiAlH ₄			
d) Reduction of methyl iodin	e by using a zinc-coppe	r couple		
268. Ethylene reacts with dil. H_2S	0 ₄ in presence of HgSO ₄	to give:		
a) Ethanal b)) Ethanol	c) Ethane	d) Ethene	
269. Household gas or liquefied p	etroleum gas (L.P.G.) ma	ainly contains:		
a) Methane and ethane				
b) Liquefied butane and isob	utene			
c) Ethylene and CO				
d) C_2H_2 and H_2				
270. Which one of the following	g gives, on ozonolysis,	both aldehydes and keto	ones?	
a) $Me_2C = CHMe$		b) $Me_2C = CMe_2$		
c) $MeCH_2 - C(Me) = CMe$	2	d) $MeCH(Me) - CH = 0$	СНМе	
271. Which among the following a	- give alkanes on reductio	n?		
	Ketones	c) Carboxylic acids	d) All are correct	
272. Lewisite (a war gas) is an		, , , , , , , , , , , , , , , , , , ,	,	
) Organoarsenic	c) Organoantimony	d) Organophosphorus	
273. In the following reaction,		, , , , , , , , , , , , , , , , , , , ,		
$C_2 H_2 \xrightarrow{H_2 0} X \rightleftharpoons CH_3 C$.HU. What is X?			
a) CH ₃ CH ₂ OH b)	$CH_{3} - O - CH_{3}$	c) CH ₃ CH ₂ CHO	d) $CH_2 = CHOH$	
274. Compound (<i>A</i>) on oxidation	with $0sO_4/NaIO_4$ gives	Hexanedinal. Structure of	compound. (A) will be	
\sim	\sim		CH₃	
a) b)		c)		
	·		[∼] CH ₃	
275. Major product of the followin	ng reaction is:			
Br				
	• 9			
$CH_3 - C - CH_2 - CH_3 + Alc.KOH - H_3$				
Н			n -	
,) Butene-2	c) Butane	d) Butyne-1	
276. The compound formed as	a result of oxidation o	t ethyl benzene by KMn(J ₄ 1S	

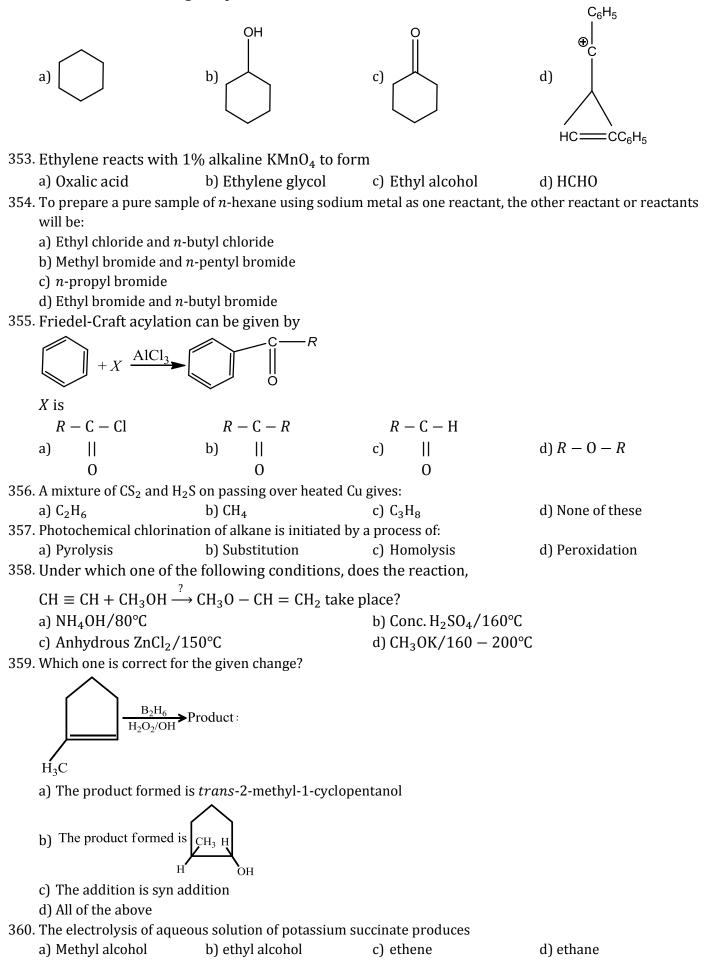
a) Benzophenone b) Acetophenone	c) Benzoic acid	d) Benzyl alcohol
277. Methane reacts with conc. HNO_3 at high temperatu		a) benzyi alconor
a) CO_2 and H_2O b) HCHO	c) HCOOH	d) CH ₃ NO ₂
278. Butyne-1 and butyne-2 can be distinguished by:	.,	-) - 3 - 2
a) Br_2 , CCl_4		
b) H ₂ , Lindler catalyst		
c) Dilute H ₂ SO ₄ , HgSO ₄		
d) Ammoniacal cuprous chloride		
279. An isolated alkadiene is:		
a) Penta-1,4-diene b) Penta-1,3-diene	c) Penta-1,2-diene	d) None of these
^{280.} $CH_3 - C \equiv C - CH_3 \xrightarrow{\text{Lindlar's catalyst}} A$, the compo	ound A is	
a) <i>cis</i> -2-butene b) <i>trans</i> -2-butene		d) 1-butene
281. If a halogen compound contains OH group, will it b	e possible to carry out the	Wurtz reaction?
a) Yes b) No	c) -	d) -
282. Reduction of 2-butyne with Na in liquid $\rm NH_3$ gives		
a) <i>n</i> -butane b) <i>Trans</i> -2-butene	c) No reaction	d) Cis-2-butene
283. Phenyl magnesium bromide reacts with metha	0	
a) A mixture of anisol and Mg(OH)Br	b) A mixture of benzer	-
c) A mixture of toluene and Mg(OH)Br	d) A mixture of pheno	l and Mg(Me)Br
284. Iso-octane is added to petrol:		
a) To precipitate inorganic material		
b) To prevent freezing of petrol		
c) To increase the boiling point of petrold) To increase octane number		
285. When cyclohexane is poured on water, it floats, be	Callse	
a) Cyclohexane is in 'boat' form	cause.	
b) Cyclohexane is in 'chair' form		
c) Cyclohexane is in 'crown' form		
d) Cyclohexane is less dense than water		
286. Ethylene reacts with 1% cold alkaline $\rm KMnO_4$ (Ba	eyer's reagent) to form:	
a) Oxalic acid b) Acetic acid	c) Glycerol	d) Glycol
287. The reagent that would effect the following transfo		
$C_6H_5 - CH = CH - NO_2 \rightarrow C_6H_5CH_2 - CH_2 - NO_2$		
a) NaBH ₄ in alcohol b) $[(C_6H_5)_3P]_3$ RhCl/H ₂		d) All of these
288. How many primary and tertiary carbon atoms are	present in	
$CH_3 \longrightarrow CH_3 CH_3 ?$		
CH ₃		
a) 3 <i>p</i> , 1 <i>t</i> b) 2 <i>p</i> , 2 <i>t</i>	c) 1 <i>p</i> , 3 <i>t</i>	d) None of these
289. Which of these will not react with acetylene?		
a) NaOH b) Amm. AgNO ₃	c) Na	d) HCl
290. The catalytic hydrogenation is more easier in case		
a) $C = CH_2$ b) $R = C = C$	R	R
a) $C = CH_2$ b) $C = C H_1$	C J C = C H	d) $C = C < R$
R^{\prime} Γ	ion Addition of halogon on	C = C is called:
291. Addition of hydrogen on C=C is called hydrogenata) Halogenation	ion. Addition of halogen on	
b) Dehalogenation		
a) Elimination of halagen		

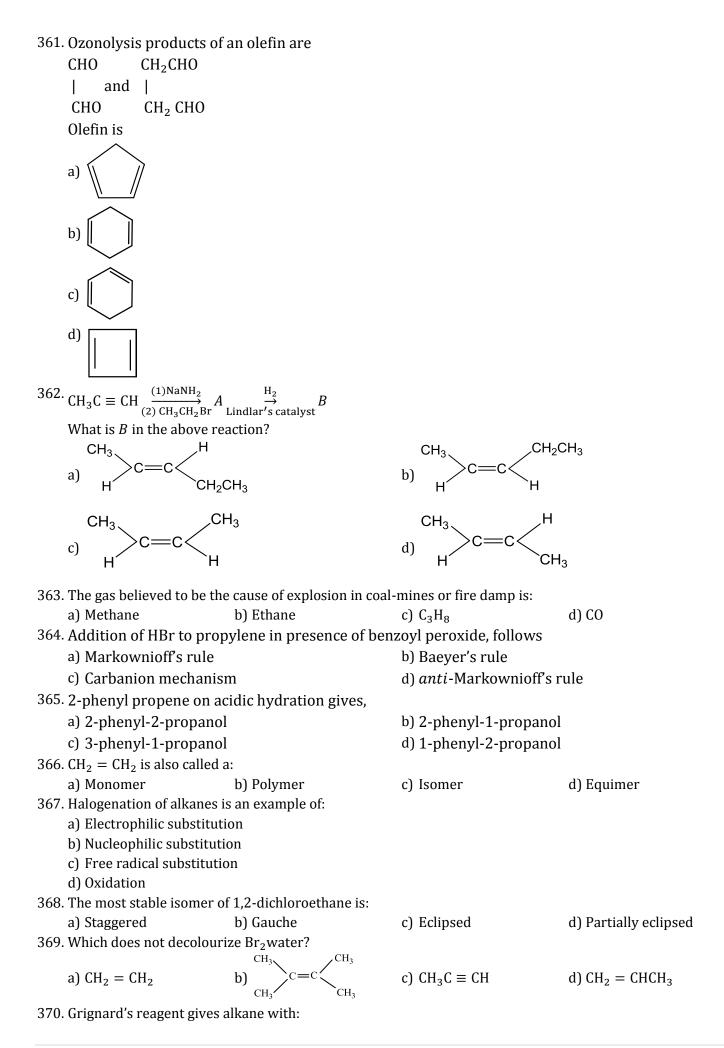
c) Elimination of halogen

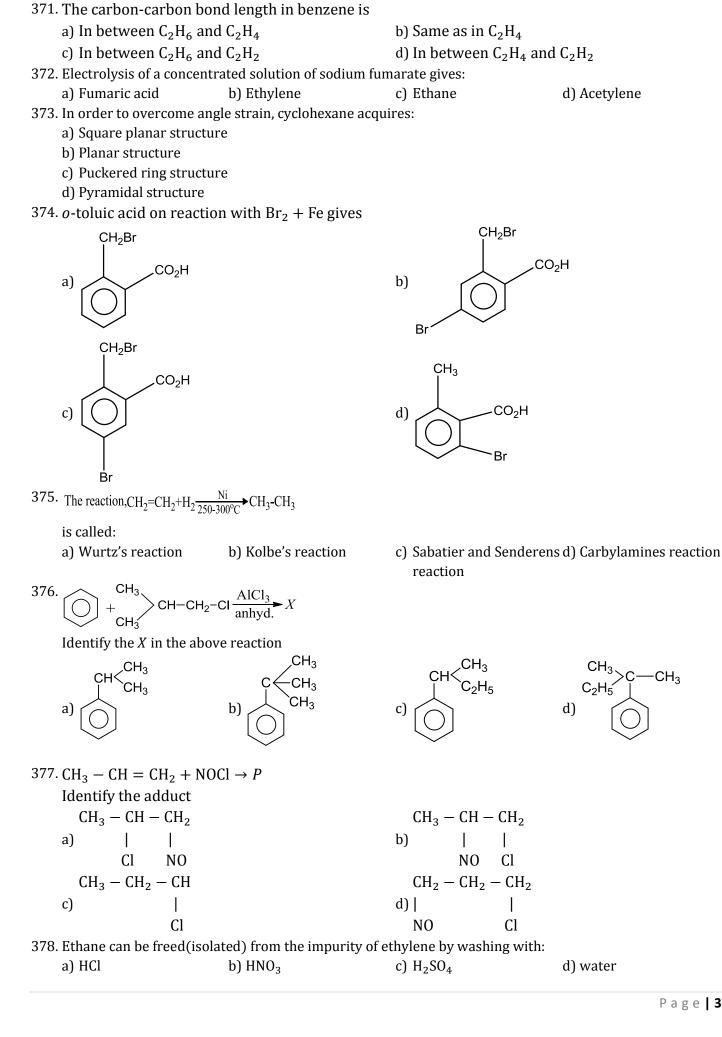

d) None of these

292. The synthetic gas is: a) CH4 b) C_2H_2 c) $CO + 3H_2$ d) NH_3 293. Toluene on treatment with CrO_3 and $(CH_3CO)_2O$ followed by hydrolysis with dil. HCl gives c) Phenol d) Phenylacetaldehyde a) Benzaldehyde b) Benzoic acid 294. Identify the product (*P*) in the reaction: $R_3C \longrightarrow H \xrightarrow{\text{Alk.KMnO}_4} P$ a) No reaction b) R_3 C—CR₃ c) $R_3C - OH$ d) $R_3 C - O - C R_3$ 295. Gem dihalides on treatment with alcoholic KOH give a) Alkyne b) Alkene c) Alkane d) All of these 296. The presence of Ag⁺ ion increases the solubility of alkenes due to the formation of a) $d\pi - d\sigma$ bonding b) $p\sigma - p\pi$ bonding c) $p\pi - d\pi$ bonding d) $p\pi - d\sigma$ bonding 297. Acetylene and HCHO react in presence of copper acetylide catalyst to form a) 1-butyne-1,4-diol b) 2-butyne-1,2-diol c) 2-butyne-1,4-diol d) None of these 298. Decarboxylation of isobutyric acid leads to: a) Isobutene b) Propane c) Butane d) None of these 299. In the addition of HBr to propene in the absence of peroxides the first step involves the addition of: a) H⁺ b) Br⁻ c) H° d) Br 300. The IUPAC name of $-C \equiv C - CH_3$ group is: a) Prop-2-ynyl b) Prop-2-enyl c) Prop-1-ynyl d) None of these 301. Pure methane can be produced by a) Wurtz reaction b) Kolbe's electrolytic method c) Soda lime decarboxylation d) reduction with H₂ 302. What are *X* and *Y* respectively, in the following reaction? $Z - \text{product} \xleftarrow{Y}{\longleftarrow} 2 - \text{butyne} \xrightarrow{X} E - \text{product}$ a) Na/NH₃(liq.) and Pd/BaSO₄ + H_2 b) Ni/140°C and Pd/BaSO₄ + H_2 c) Ni/140°C and Na/NH₃(liq.) d) $Pd/BaSO_4 + H_2$ and $Na/NH_3(liq.)$ 303. When a mixture of methane and oxygen is passed through heated molybdenum oxide, the main product formed is a) Methanoic acid b) Ethanal c) Methanol d) Methanal 304. Propyne and propene can be distinguished by d) AgNO₃ in NH₃ a) conc. H_2SO_4 b) Br_2 in CCl_4 c) alk. KMnO₄ 305. Conformation in molecules is due to: a) Rotation about a single bond b) Change in direction of light c) Structural changes d) Restricted rotation about a double bond 306. The non-aromatic compound among the following is a) b) c) 307. Kerosene is a mixture of: a) Alkenes b) Alkanes c) Alkynes d) Arenes 308. Which of the following alkenes is most stable? a) $R_2 C = C R_2$ b) R— CH = CH— Rc) $RCH = CH_2$ d) $CH_2 = CH_2$ 309. What is obtained when chlorine is passed in boiling toluene and product is hydrolysed? a) o-cresol b) p-cresol

c) 2,4-dihydroxytoluene	d) Benzyl alcohol	
310. It is necessary to usein the iodination of alkane.	, , , , , , , , , , , , , , , , , , ,	
a) Alcohol b) Oxidant	c) Benzene	d) Reductant
311. Ozonolysis of propyne gives:		
a) CH ₃ CHO b) CH ₃ COCHO	с) НСНО	d) CHOCHO-
312. Reactivity of alkenes towards HX decreases in the o	order:	
a) Butene>propene>ethene		
b) Butene>ethene>propene		
c) Ethene>propene>butene		
d) None of the above		
313. Propyne on oxidation with SeO_2 gives:		
a) CHOCHO b) CH ₃ CH ₂ CHO		
314. 2-methylbutane on reacting with bromine in th		-
a) 1-bromo 3-methylbutane	b) 2-bromo 3-methylb	outane
c) 2-bromo 2-methylbutane	d) 1-bromo 2-methylb	outane
315. The product of following reaction is,		
CH ₃		
$CH_{3}-C-CH=CH_{2} \xrightarrow{(i) Hg (CH_{3}COO)_{2};THF} ?$		
(ii) NaBH ₄ +NaOH		
CH ₃		CH
a) $\begin{array}{c} CH_3 \\ CH_3 \\ H_3 - C - CH - CH_3 \\ H_1 \\ CH_3 OH \end{array}$ b) $\begin{array}{c} CH_3 \\ H_3 - C - CH_2 - CH_2 OH \\ H_3 OH \\ CH_3 \end{array}$		
a) $CH_3 - C - CH - CH_3$ b) $CH_3 - C - CH_2 - CH_2OH$	c) $CH_3 - C - CH - CH_3$	d) $HOCH_2 - C - CH_2 - CH_3$
316. Which statement is correct?	Ch ₃	СП3
S10. Which statement is correct?		
a) Alkanes are called paraffins because of their little	a chemical affinity	
a) Alkanes are called paraffins because of their little	e chemical affinity	
b) Alkanes have only sigma bonds	e chemical affinity	
b) Alkanes have only sigma bonds c) Most abundant alkane is CH_4	e chemical affinity	
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 	e chemical affinity	
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group 		sition
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions 	b) Deactivates <i>meta</i> pos	
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions c) activates <i>ortho</i> and <i>para</i> more than <i>meta</i> 	b) Deactivates <i>meta</i> pos d) Deactivates <i>meta</i> mo	ore than ortho and para
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions 	b) Deactivates <i>meta</i> pos d) Deactivates <i>meta</i> mo	ore than ortho and para
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions c) activates <i>ortho</i> and <i>para</i> more than <i>meta</i> 318. An alkyl bromide, RBrof molecular weight 151 is the 	b) Deactivates <i>meta</i> pos d) Deactivates <i>meta</i> mo	ore than <i>ortho</i> and <i>para</i> nination of which
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions c) activates <i>ortho</i> and <i>para</i> more than <i>meta</i> 318. An alkyl bromide,<i>R</i>Brof molecular weight 151 is the hydrocarbon? 	b) Deactivates <i>meta</i> pos d) Deactivates <i>meta</i> mo e exclusive product of brom	ore than <i>ortho</i> and <i>para</i> nination of which e
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions c) activates <i>ortho</i> and <i>para</i> more than <i>meta</i> 318. An alkyl bromide,<i>R</i>Brof molecular weight 151 is the hydrocarbon? a) Dodecane 	 b) Deactivates <i>meta</i> pose d) Deactivates <i>meta</i> mode e exclusive product of brown b) 2, 2-dimethylpropane d) 2, 2, 3-trimethylhepta 	ore than <i>ortho</i> and <i>para</i> nination of which e ane
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions c) activates <i>ortho</i> and <i>para</i> more than <i>meta</i> 318. An alkyl bromide,<i>R</i>Brof molecular weight 151 is the hydrocarbon? a) Dodecane c) 2, 2-dimethylhexane 	 b) Deactivates <i>meta</i> pose d) Deactivates <i>meta</i> mode e exclusive product of brown b) 2, 2-dimethylpropane d) 2, 2, 3-trimethylhepta 	ore than <i>ortho</i> and <i>para</i> nination of which e ane
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions c) activates <i>ortho</i> and <i>para</i> more than <i>meta</i> 318. An alkyl bromide,<i>R</i>Brof molecular weight 151 is the hydrocarbon? a) Dodecane c) 2, 2-dimethylhexane 319. The conversion of liquid hydrocarbon into a mixture 	 b) Deactivates <i>meta</i> pose d) Deactivates <i>meta</i> mode e exclusive product of brown b) 2, 2-dimethylpropane d) 2, 2, 3-trimethylhepta bre of gaseous compounds b 	ore than <i>ortho</i> and <i>para</i> nination of which e ane ay heat alone is known as:
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions c) activates <i>ortho</i> and <i>para</i> more than <i>meta</i> 318. An alkyl bromide,<i>R</i>Brof molecular weight 151 is the hydrocarbon? a) Dodecane c) 2, 2-dimethylhexane 319. The conversion of liquid hydrocarbon into a mixtural Hydrolysis b) Reduction 	 b) Deactivates <i>meta</i> pose d) Deactivates <i>meta</i> mode e exclusive product of brown b) 2, 2-dimethylpropane d) 2, 2, 3-trimethylhepta bre of gaseous compounds b 	ore than <i>ortho</i> and <i>para</i> nination of which e ane by heat alone is known as: d) Cracking
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only ortho and para positions c) activates ortho and para more than meta 318. An alkyl bromide, RBrof molecular weight 151 is the hydrocarbon? a) Dodecane c) 2, 2-dimethylhexane 319. The conversion of liquid hydrocarbon into a mixtur a) Hydrolysis b) Reduction 320. Ethyl benzene cannot be prepared by 	 b) Deactivates <i>meta</i> pose d) Deactivates <i>meta</i> mode e exclusive product of bronce b) 2, 2-dimethylpropane d) 2, 2, 3-trimethylhepta re of gaseous compounds b c) Oxidation 	ore than <i>ortho</i> and <i>para</i> nination of which e ane by heat alone is known as: d) Cracking
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions c) activates <i>ortho</i> and <i>para</i> more than <i>meta</i> 318. An alkyl bromide,<i>R</i>Brof molecular weight 151 is the hydrocarbon? a) Dodecane c) 2, 2-dimethylhexane 319. The conversion of liquid hydrocarbon into a mixtur a) Hydrolysis b) Reduction 320. Ethyl benzene cannot be prepared by a) Wurtz reaction 	 b) Deactivates <i>meta</i> pose d) Deactivates <i>meta</i> mode e exclusive product of brond b) 2, 2-dimethylpropane d) 2, 2, 3-trimethylhepta re of gaseous compounds b c) Oxidation b) Wurtz-Fittig reaction 	ore than <i>ortho</i> and <i>para</i> nination of which e ane by heat alone is known as: d) Cracking
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions c) activates <i>ortho</i> and <i>para</i> more than <i>meta</i> 318. An alkyl bromide,<i>R</i>Brof molecular weight 151 is the hydrocarbon? a) Dodecane c) 2, 2-dimethylhexane 319. The conversion of liquid hydrocarbon into a mixtur a) Hydrolysis b) Reduction 320. Ethyl benzene cannot be prepared by a) Wurtz reaction c) Friedel-Craft's reaction 	 b) Deactivates <i>meta</i> pose d) Deactivates <i>meta</i> mode e exclusive product of brond b) 2, 2-dimethylpropane d) 2, 2, 3-trimethylhepta re of gaseous compounds b c) Oxidation b) Wurtz-Fittig reaction 	ore than <i>ortho</i> and <i>para</i> nination of which e ane by heat alone is known as: d) Cracking
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions c) activates <i>ortho</i> and <i>para</i> more than <i>meta</i> 318. An alkyl bromide, <i>R</i>Brof molecular weight 151 is the hydrocarbon? a) Dodecane c) 2, 2-dimethylhexane 319. The conversion of liquid hydrocarbon into a mixtur a) Hydrolysis b) Reduction 320. Ethyl benzene cannot be prepared by a) Wurtz reaction c) Friedel-Craft's reaction 321. Silver acetylide when heated with HCl gives: 	 b) Deactivates <i>meta</i> posed) Deactivates <i>meta</i> mode exclusive product of brond b) 2, 2-dimethylpropaned) 2, 2, 3-trimethylheptation b) Wurtz-Fittig reaction b) Wurtz-Fittig reaction c) C₂H₄ 	ore than <i>ortho</i> and <i>para</i> nination of which e ane by heat alone is known as: d) Cracking on tion
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions c) activates <i>ortho</i> and <i>para</i> more than <i>meta</i> 318. An alkyl bromide,<i>R</i>Brof molecular weight 151 is the hydrocarbon? a) Dodecane c) 2, 2-dimethylhexane 319. The conversion of liquid hydrocarbon into a mixtur a) Hydrolysis b) Reduction 320. Ethyl benzene cannot be prepared by a) Wurtz reaction c) Friedel-Craft's reaction 321. Silver acetylide when heated with HCl gives: a) C₂H₂ b) H₂ 322. The addition of HCl to 3, 3, 3-trichloropropene give a) Cl₃CCH₂CH₂Cl b) Cl₃CCH₂CHCl₂ 	 b) Deactivates <i>meta</i> posed) Deactivates <i>meta</i> mode exclusive product of brond b) 2, 2-dimethylpropaned) 2, 2, 3-trimethylhepta c) Oxidation b) Wurtz-Fittig reaction c) C₂H₄ 	ore than <i>ortho</i> and <i>para</i> nination of which e ane by heat alone is known as: d) Cracking on tion
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions c) activates <i>ortho</i> and <i>para</i> more than <i>meta</i> 318. An alkyl bromide,<i>R</i>Brof molecular weight 151 is the hydrocarbon? a) Dodecane c) 2, 2-dimethylhexane 319. The conversion of liquid hydrocarbon into a mixtur a) Hydrolysis b) Reduction 320. Ethyl benzene cannot be prepared by a) Wurtz reaction c) Friedel-Craft's reaction 321. Silver acetylide when heated with HCl gives: a) C₂H₂ b) H₂ 322. The addition of HCl to 3, 3, 3-trichloropropene give a) Cl₃CCH₂CH₂Cl b) Cl₃CCH₂CHCl₂ 	 b) Deactivates <i>meta</i> posed) Deactivates <i>meta</i> mode exclusive product of brond b) 2, 2-dimethylpropaned) 2, 2, 3-trimethylheptation b) Wurtz-Fittig reaction b) Wurtz-Fittig reaction c) C₂H₄ 	bre than ortho and para mination of which e ane by heat alone is known as: d) Cracking on tion d) C_6H_6
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions c) activates <i>ortho</i> and <i>para</i> more than <i>meta</i> 318. An alkyl bromide,<i>R</i>Brof molecular weight 151 is the hydrocarbon? a) Dodecane c) 2, 2-dimethylhexane 319. The conversion of liquid hydrocarbon into a mixtur a) Hydrolysis b) Reduction 320. Ethyl benzene cannot be prepared by a) Wurtz reaction c) Friedel-Craft's reaction 321. Silver acetylide when heated with HCl gives: a) C₂H₂ b) H₂ 322. The addition of HCl to 3, 3, 3-trichloropropene give a) Cl₃CCH₂CH₂Cl b) Cl₃CCH₂CHCl₂ 323. Sodium ethoxide is specific reagent for: a) Dehydration 	 b) Deactivates <i>meta</i> posed) Deactivates <i>meta</i> mode exclusive product of brond b) 2, 2-dimethylpropaned) 2, 2, 3-trimethylheptation b) Wurtz-Fittig reaction b) Wurtz-Fittig reaction c) C₂H₄ 	bre than ortho and para mination of which e ane by heat alone is known as: d) Cracking on tion d) C_6H_6
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions c) activates <i>ortho</i> and <i>para</i> more than <i>meta</i> 318. An alkyl bromide, <i>R</i>Brof molecular weight 151 is the hydrocarbon? a) Dodecane c) 2, 2-dimethylhexane 319. The conversion of liquid hydrocarbon into a mixtur a) Hydrolysis b) Reduction 320. Ethyl benzene cannot be prepared by a) Wurtz reaction c) Friedel-Craft's reaction 321. Silver acetylide when heated with HCl gives: a) C₂H₂ b) H₂ 322. The addition of HCl to 3, 3, 3-trichloropropene give a) Cl₃CCH₂CH₂Cl b) Cl₃CCH₂CHCl₂ 323. Sodium ethoxide is specific reagent for: a) Dehydration b) Dehydrohalogenation 	 b) Deactivates <i>meta</i> posed) Deactivates <i>meta</i> mode exclusive product of brond b) 2, 2-dimethylpropaned) 2, 2, 3-trimethylheptation b) Wurtz-Fittig reaction b) Wurtz-Fittig reaction c) C₂H₄ 	bre than ortho and para mination of which e ane by heat alone is known as: d) Cracking on tion d) C_6H_6
 b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only <i>ortho</i> and <i>para</i> positions c) activates <i>ortho</i> and <i>para</i> more than <i>meta</i> 318. An alkyl bromide,<i>R</i>Brof molecular weight 151 is the hydrocarbon? a) Dodecane c) 2, 2-dimethylhexane 319. The conversion of liquid hydrocarbon into a mixtur a) Hydrolysis b) Reduction 320. Ethyl benzene cannot be prepared by a) Wurtz reaction c) Friedel-Craft's reaction 321. Silver acetylide when heated with HCl gives: a) C₂H₂ b) H₂ 322. The addition of HCl to 3, 3, 3-trichloropropene give a) Cl₃CCH₂CH₂Cl b) Cl₃CCH₂CHCl₂ 323. Sodium ethoxide is specific reagent for: a) Dehydration 	 b) Deactivates <i>meta</i> posed) Deactivates <i>meta</i> mode exclusive product of brond b) 2, 2-dimethylpropaned) 2, 2, 3-trimethylheptation b) Wurtz-Fittig reaction b) Wurtz-Fittig reaction c) C₂H₄ 	bre than ortho and para mination of which e ane by heat alone is known as: d) Cracking on tion d) C_6H_6


324. A fuel contains 25% <i>n</i> -he a) 50	ptane and 75% iso-octane. b) 75	Its octane number is: c) 100	d) 25
325. The greatest strain is inv	olved in cycloalkane, when	the bond angle is:	-
a) 60°	b) 90°	c) 120°	d) 108°
326. Which of the following w \bigcirc CH_2CH_3	-	\sim CH–CH ₃	
a) Br	b) Br CH ₂ CH ₃	c) C Br	d) CH ₂ CH ₂ Br
327. On passing electric disch	arge through graphite in pi	resence of H ₂ the compoun	d formed is:
a) CH ₄	b) C ₂ H ₆	c) C ₂ H ₂	d) All of these
328. Propene reacts with Cl_2 a	-		
a) 1,2-dichloropropane	b) Allyl chloride	c) No reaction	d) Polyvinyl chloride
329. Methane reacts with oxy			
a) Acetaldehyde	b) Methyl alcohol	c) Acetic acid	d) Ethyl alcohol
330. Ethylene is used in makina) Anti-freeze	-	a) Eumigant	d) All of these
331. The main constituent of l	b) Solvent	c) Fumigant	d) All of these
a) Benzene	b) Toluene	c) Phenol	d) Naphthalene
332. The major product in the		,	uj Napitilalelle
a) 4-pentene	b) 3-pentene	c) 2-pentene	d) 1-pentene
333. Which gas is commonly u	, .	.) It is a	
a) C_2H_4	b) C_2H_2	c) CH ₄	d) C ₂ H ₆
334. The synthesis of 3-octy	ne is achieved by adding	a bromoalkane into a m	
	moalkane and alkyne res		
a) BrCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C	H_3 and $CH_3CH_2C \equiv CH$	b) BrCH ₂ CH ₂ CH ₃ and C	$CH_3CH_2CH_2C \equiv CH$
c) BrCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH		d) BrCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ a	
335. Which is most acidic of		, , , , , , , , , , , , , , , , , , , ,	5 2
a) Methane	b) Acetylene	c) 1-butene	d) <i>Neo-</i> pentane
336. Addition of HI on double	- 0		· ·
product, because additio		1 1 7 1	,
a) A more stable carboni			
b) A more stable carbani	on		
c) A more stable free rad	ical		
d) None of the above			
337. Correct statement about	ut 1,3-dibutene		
a) Conjugated double b	onds are present	b) Reacts with HBr	
c) Forms polymer		d) All of the above	
338. Preparation of ethane by	electrolysis of aqueous sol		is called
a) Wurtz reaction		b) Kolbe's synthesis	
c) Grignard reaction) /II 0 /7~	d) Sabatier-Sendersen's	reaction
339. $A(C_4H_6) \xrightarrow[1 \text{ mole}]{H_2,Ni} B(C_4H_8) \xrightarrow[2]{H_2,Ni} B(C_4H_8)$	$\xrightarrow{J_3/H_20/2n}$ CH ₃ CHO		
Thus, A and B are			
, , ,			
a) ′		b)	
c) $CH_3CH_2C \equiv CH, CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3$	-	d) $CH_2 = CH - CH = CH_2$	$_2$, CH ₃ CH = CH – CH ₃
340. The major product <i>P</i> in	-	5	
$CH_3 - CH = CH_2 - \frac{HI}{perox}$	P		


Page | 26



d) 3-bromobutene under kinetically controlled conditions

352. Which of the following compound is aromatic?

b) C_2H_5OH

c) $C_2H_5NH_2$

d) All of these

a) H_2O

379. Poisonous gases are: d) All of these a) Phosgene b) Lewisite c) Mustard gas 380. A chlorohydrocarbon, named chlorodane is used especially as: a) Insecticide b) Anti-worm c) Fungicide d) Anti-termite 381. The highest boiling point is expected for a) iso-octane b) *n*-octane c) 2, 2, 3, 3-tetramethyl butane d) n-butane 382. The addition of tetraethyl lead of petrol: a) Lowers its octane number b) Raises its octane number c) May raise or lower the octane number d) Has no effect on octane number 383. Which of the following reactions will give an alkyne? a) $CH_3CBr_2CHBr_2 \xrightarrow{Zn/alc.}$ b) $CH_3CH_2CHBr_2 \xrightarrow{alc.KOH}$ c) $CH_3CHBrCH_2Br \xrightarrow{NaNH_2}$ d) All of the above 384. Which one among the following is assigned an octane number of zero? a) Iso-octane b) *n*-heptane c) Isoheptane d) 2-methyloctane 385. The process where straight run gasoline is cracked in order to increase octane number is called: a) Aromatization b) Rearrangement c) Substitution d) Reforming 386. The treatment of aluminum carbide with water or dilute acid produces a) acetylene b) ethene c) methane d) ethane 387. When acetylene is passed through red hot iron tube, compound X is formed. Which one of the following reactions will yield *X* as the major product? a) $C_6H_5OH + Zn \xrightarrow{\text{Distillation}}$ b) $C_6H_5SO_3H + NaHCO_3 \rightarrow$ c) $C_6H_{12} + 3H_2 \xrightarrow{Ni}$ d) $C_6H_5Cl + H_2O \xrightarrow{\Delta}{\rightarrow}$ 388. In the reaction $C_6H_5CH_3 \xrightarrow{\text{Oxidation}} A \xrightarrow{\text{NaOH}} B \xrightarrow{\text{Sodalime}} C$ Identify *C* is d) C₆H₅ONa a) C_6H_5OH b) C_6H_6 c) C₆H₅COONa 389. The major product formed when a 3, 3-dimethyl butan-2-ol is heated with concentrated sulphuric acid. is a) 2,3-dimethyl-2-butene b) 2,3-dimethyl-1-butene c) 3,3-dimethyl-1-butene d) cis and trans isomers of 2,3-dimethyl-1-butene 390. Most of the hydrocarbons from petroleum are obtained by: a) Fractional distillation b) Fractional crystallization c) Vaporisation d) Polymerization 391. Cyclopentadienyl anion is a) Aromatic b) Non-aromatic c) Non-planar d) Aliphatic 392. Ozonolysis of buta-1,3-diene gives: a) HCHO and glyoxal b) CH₃CHO and glyoxal c) CO₂and glyoxal d) HCHO+glyoxal+CH₃CHO 393. Which is not true in the case of natural gas?

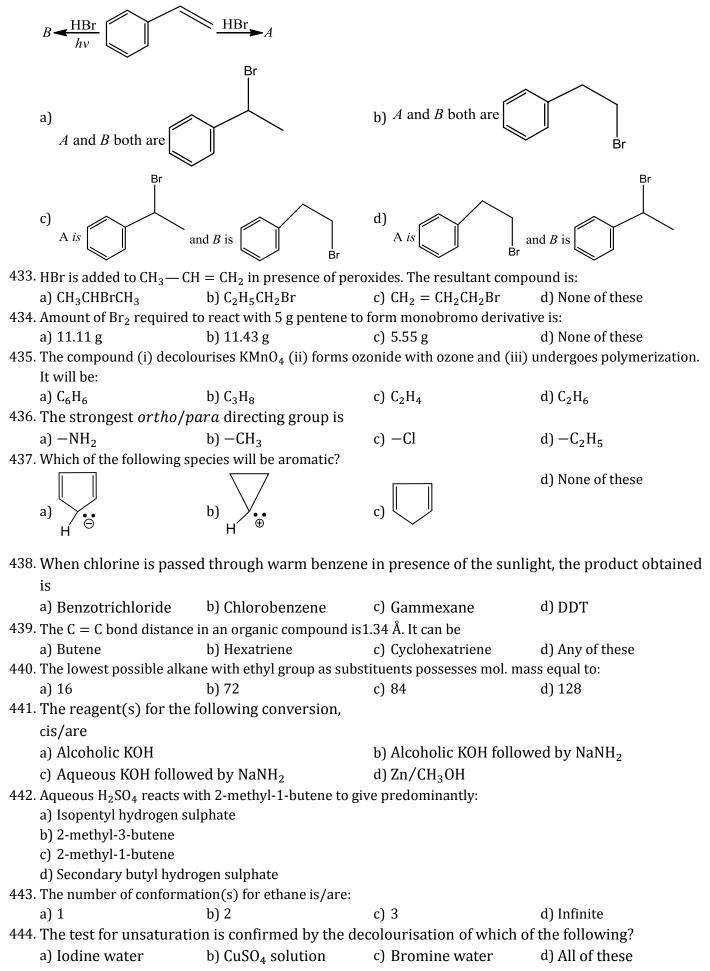
a) It is a fuel

b) It is used in the manufacture of fertilizer

c) It is a mixture of CO_2 and H_2

d) It is a mixture of gaseous hydrocarbons

394. Wurtz reaction using bromoethane yields: a) 2-bromobutane b) *n*-butane c) Isobutene d) Ethane 395. Which of the following compounds is not aromatic? b) | a) c) 396. Which products are formed during the addition of Br₂on ethylene in presence of aqueous NaNO₃solution? a) $CH_2Br. CH_2ONO_2$ b) CH₂Br. CH₂Br c) $CH_2(ONO_2)$. CH_2ONO_2 d) Both (a) and (b) 397. Alkanes containing.....carbon atoms are converted into an aromatic hydrocarbon, when heated in presence of Cr_2O_3 on Al_2O_3 a) 6 to 10 b) 4 to 8 c) 3 to 6 d) 5 to 6 398. Chlorination of toluene in the presence of light and heat followed by treatment with aqueous NaOH solution gives a) o-cresol b) *p*-cresol c) Benzoic acid d) 2,4-dihydroxytoluene 399. Toluene can be converted into benzaldehyde by oxidation with a) KMnO₄/alkali c) $K_2Cr_2O_7/H_2SO_4$ d) $0_2/V_20_5$ b) CrO_2Cl_2 ^{400.} CH₃ - CH₂ - C \equiv CH $\xrightarrow{\text{HgSO}_4}_{\text{H_2SO}_4}$ A The compound A is 0 b) $CH_3 - CH_2 - CH_2 - CHO$ a) $CH_3 - CH_2 - C - CH_3$ c) $CH_3 - CH_2 - CH_2 - COOH$ d) None of the above 401. When acetylene is passed through dil. H_2SO_4 in presence of $HgSO_4$, the compound formed is a) Ether b) Acetaldehyde c) Acetic acid d) Ketone 402. The reagent used for dehydration is: a) Conc. H_2SO_4 d) All of these b) $P_2 O_5$ c) Al_2O_3 403. A hydrocarbon has the formula C₃H₄. To find out whether it contains two double bonds or triple bonds, the following test is performed: a) Passed through ammoniacal AgNO₃ b) Treated with Baeyer's reagent c) Treated with Fehling's solution d) Treated with Br₂ water 404. The chemicals and the reaction conditions required for the preparation of ethane are a) C_2H_5I , Zn - Cu, C_2H_5OH b) CH_3Cl , Na, H_2O c) KOOC - CH = CH - COOK, electrolysis d) CH₃CO₂Na, NaOH, CaO, Δ 405. Formation of alkane by the action of zinc on alkyl halide is called a) Wurtz reaction b) Kolbe's reaction c) Ulmann's reaction d) Frankland reaction 406. The two carbon atoms marked by asterisk in $H_3C - \overset{*}{C} \equiv \overset{*}{C} - CH_3 \text{ possess}$


the following type of	of hybridisation:			
a) sp^{3}	b) sp^2	c) sp	d) <i>s</i>	
$^{407.}$ CH ₃ – C \equiv C – CH	$3 \xrightarrow{(1) x}$			
	^o (ii)Zn/H ₂ O			
a) sp^3 $407. CH_3 - C \equiv C - CH$ $CH_3 - C = C - CH$ $\ \ \ $ O O	3			
öö				
In the above react	ion <i>x</i> is.			
a) HNO ₃	b) 0 ₂	c) 0 ₃	d) KMnO ₄	
408. Temperature of oxy	acetylene flame is:	-		
a) 2549°C	b) 2400°C	c) 2700°C	d) 3000 to 3500°C	
409. Benzene can be ob	tained by heating either be	nzoic acid with X or p	ohenol with <i>Y</i> . <i>X</i> and <i>Y</i> are	
respectively	, ,	1		
a) Zinc dust and so	oda lime	b) Soda lime and z	zinc dust	
-	c) Zinc dust and sodium hydroxide		d) Soda lime and copper	
	with metal by displacing the l		copper	
a) CH_4	b) C_2H_6	c) C_2H_4	d) C_2H_2	
411. Petroleum is a mixt		0) 02114		
	arbons with small amounts of	alinhatic compounds		
	arbons with small amounts of	= =		
	amount of aliphatic and aroma	=		
d) Alcohols and fatt	=			
	alkyne to alkene using Lindla	r catalyst result into		
a) <i>cis</i> addition of hy		, , , , , , , , , , , , , , , , , , ,		
b) <i>trans</i> addition of hydrogen atoms				
A mixture obtain		of hydrogen atoms whi	ch are in equilibrium with each	
c) other	5	y 0		
, A mixture obtain	ed by <i>cis</i> and <i>trans</i> additions	of hydrogen atoms whi	ch are not in equilibrium with	
d) each other	-		-	
413. Which molecule wil	undergo radical formation هره	kidation reaction most i	readily?	
			\sim	
a) CH ₃ CH ₂ CH ₃	b) CH ₃ CH ₂ CH ₂ CH ₃	c) (CH ₃) ₃ CH	d)	
		6) (013)3011		
414 Which of the follows	ing is available to be aromatic)	\sim	
	ing is expected to be aromatic	1	~	
$\overset{+}{\frown}$		H		
a) 📔 📄	b)	c)	d) 👢 🚽 🕂	
415. Aniline is treated a	with a mixture of sodium ni	trite and hypophosph	orus acid, the product formed	
		tine and hypophosph	for us delu, the product for med	
is a) Anilina diazoniy	m himonhoonhoto	h) Pongona		
	im hypophosphate	b) Benzene		
c) Anilinium hypo		a) Aniline diazoni	um hypophosphite	

416. Hexachloroetha	ne is also called		
a) DDT	b) TNT	c) Artificial camphor	d) BHC
417. In presence of r	nickel cyanide, acetylene gives		
a) Benzene	b) Cyclooctatetraene	c) Cyclohexatriene	d) Cyclobutadiene
418. Conjugated dou	ble bonds are present in:		
a) Propylene	b) Isobutylene	c) Butylene	d) 1,3-butadiene
419. Normal alkanes can undergo sulphonation if they contain:			
a) 4 carbon ato	ms		

b) 5 carbon atoms c) At least 6 carbon atoms		
d) 3 carbon atoms		
420. $CH_3C \equiv C - CH_3 \xrightarrow{(I) X} CH_3 - C - CH_3 \xrightarrow{(I) H_2O/Zn} CH_3 - C - CH_3$		
In the above reaction, <i>X</i> is		
a) HNO_3 b) O_2	c) 0 ₃	d) KMnO4
421. The dehydrohalogenation of neopentyl bromide w	vith alcoholic KOH gives mo	
a) 2-methyl-1-butene b) 2,2-dimethyl-1-buter 422. What is obtained, when ammoniacal AgNO ₃ re	ne c) 2-methyl-2-butene eacts with acetylene?	d) 2-butene
a) Propanone b) Silver acetylide	c) Ethylene	d) None of these
423. Which of the following liberates methane on treat	ment with water?	
a) Silicon carbide b) Calcium carbide 424. Which statement is correct?	c) Beryllium carbide	d) Magnesium carbide
a) Chloroacetic acid is less acidic than acetic acid b	because chlorine atom has-	/ effect
b) The greater the branching in a paraffin the lowe	=	
c) Kjeldahl's method is used for the estimation of	chlorine	
d) All of the above		
425. The most stable conformational isomer of cyclohe		
a) Chair form b) Boat form	c) Half chair form	d) Twisted form
426. In the following reaction sequences, $Cl \rightarrow Cl \rightarrow Cl + Cl \qquad \dots (1)$		
$\dot{C}l - CH_4 \rightarrow \dot{C}H_3 + HCl \qquad \dots (2)$		
$\dot{C}H_3 + \dot{C}L_2 \longrightarrow \dot{C}H_3 + Cl + \dot{C}l \qquad \dots (3)$		
$CH_3+CI_2 \longrightarrow CH_3+CI+CI \qquad \dots (3)$		
$\dot{C}H_3 + \dot{C}H_3 \longrightarrow CH_3 - CI_3 \qquad \dots (4)$		
the termination step is:		
a) Reaction 1 b) Reaction 2	c) Reaction 3	d) Reaction 4
427. Which of the following is elimination reaction?		
a) $CH_3CH_2OH \rightarrow CH_2 = CH_2 + H_2O$ b) $CH_3CH_2Br \rightarrow CH_2 = CH_2 + HBr$		
c) Br— CH_2 — CH_2 — $Br \xrightarrow{Zn} CH_2 = CH_2 + ZnBr_2$		
d) All of the above are correct		
428. CH = CH $\xrightarrow{O_3/NaOH} X \xrightarrow{Zn/CH_3COOH} Y. Y$ is:		
a) $CH_2OH - CH_2OH$ b) CH_3CH_2OH	c) CH ₃ COOH	d) CH ₃ OH
429. Baeyer's reagent is used in the laboratory for:		
a) Detection of double b) Detection of glucose	c) Reduction	d) Oxidation
bonds	alt of fumoria and malaia	acidia
430. Product formed on electrolysis of potassium s		
a) Ethane b) Ethene	c) Ethyne	d) Methane
431. The product 'X' in the following reaction is \circ		
CH_3 — CH = CH_2 + H_2 -		
ll o		
	Br	
a) $CH_3Br - CH = CH_2$	b)	
	$CH_3 - C = CH_2$	

c) $CH_3CH = CHBr$

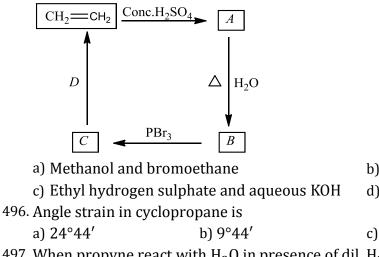
432. Observe the following reactions and predict the nature of *A* and *B*.

445. Which does not react with chlorine in dark? d) CH₃CHO a) CH_4 b) C_2H_2 c) C_2H_4 446. The ozonolysis of isobutene gives: a) CH_3CHO b) CH₃COCH₃ and HCHO c) CH₃CH₂OH d) CH₃OH 447. Which compound on reductive ozonolysis forms only glyoxal? b) Ethene d) 1,3-butadiene a) Ethyne c) Ethane 448. The reaction, $CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3}$ $CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{C} CH_{2}$ is the example of: a) Sulphonation b) Dehydration c) Alkylation d) Decomposition 449. The catalyst used in the manufacture of polythene by Ziegler method is: a) Titanium tetrachloride and triphenyl aluminium b) Titanium tetrachloride and trimethyl aluminium c) Titanium dioxide d) Titanium isopropoxide 450. CH_3 On reductive ozonolysis yields a) 6-oxoheptanal b) 6-oxoheptanoic acid c) 6-hydroxyheptanal d) 3-hydroxypentanal 451. The treatment of CH_3MgX with $CH_3C \equiv C - H$ produces Η Η a) $CH_3 - CH = CH_2$ b) $CH_3C \equiv C - CH_3$ c) | d) CH_4 $CH_3 - C = C - CH_3$ 452. 1,3-butadiene has: a) Only sp-hybridised C-atoms b) Only *sp*²-hybridised C-atoms c) sp, sp^2 and sp^3 -hybridised C-atoms d) Sp and sp²-hybridised C-atoms 453. Chloroform, on warming with Ag powder gives b) C_2H_6 a) C_2H_6 c) C_2H_4 d) C_2H_2 454. By Wurtz reaction, a mixture of methyl iodide and ethyl iodide gives a) Butane b) Ethane c) Propane d) A mixture of the above three 455. The following reaction is an example of, $C_3H_8 + 2Cl_2 \xrightarrow{\text{Light}} C_3H_6Cl_2 + 2HCl$ a) An addition reaction b) A substitution reaction c) An elimination reaction d) None of the above 456. Acetylene on passing into excess of HOCI solution forms: a) Ethylene chlorohydrin b) Acetaldehyde c) Dichloroacetaldehyde d) Methyl chloride

457. Ethylene forms ethylene chlorohydrin by the action of: a) Dry chlorine gas b) Dry hydrogen chloride gas c) Solution of chlorine gas in water d) Dilute hydrochloric acid 458. Which one of the following has the smallest heat of hydrogenation per mole? b) Trans-but-2-ene c) Cis-but-2-ene a) 1-butene d) Buta-1, 3-diene 459. $\xrightarrow[H_2O_2]{O_SO_4} A, A \text{ is}$ a) meso diol c) Both (a) and (b) d) None of these b) Racemic diol 460. Which of the following characteristic apply both to ethane and ethyne? a) Explode when mixed with chlorine b) Decolourise Baeyer's reagent giving brown precipitate c) Rapidly absorbed by cold conc. H_2SO_4 d) Form white precipitate with AgNO₃ solution 461. Conjugated double bond is present in: a) Propylene b) Isobutylene c) 1,3-butadiene d) Butylene 462. The reactivities of ethane, ethylene and acetylene are of the order a) Ethane<ethene<ethyne b) Ethane <ethyne<ethene c) Ethyne = ethene > ethane d) Any of the above 463. Which is not linked with methane? a) Marsh gas b) Natural gas d) Coal gas c) Producer gas 464. Acetylene can be obtained by the reaction? a) HCOOK Electrolysis b) $CHI_3 + Ag \xrightarrow{\Delta}$ c) $CH_3CH_2OH \xrightarrow{Conc.H_2SO_4}_{443 \text{ K}}$ d) Be₂C + H₂O \rightarrow 465. Wet ether is not used as a solvent in Wurtz reaction, because the water present in it a) Hydrolyses RX to ROH b) Reduces RX to RH c) Destroy the Na metal d) Reacts with R - R466. When excess of C₆H₆ reacts with CH₂Cl₂ in presence of anhydrous AlCl₃, the following compound is obtained $_{b)}\langle \bigcirc \rangle$ —CHCl₂ 467. The product formed during the reaction, $CH \equiv CH + NaOCl \xrightarrow{0^{\circ}C} \rightarrow is:$ a) 1.2-dichloroethane b) 1,2-dichloroethanal c) 1,2-dichloroethene d) 1,2-dichloroethyne 468. Out of the following fractions of petroleum the one having the lowest boiling point is: c) Gasoline a) Kerosene b) Diesel oil d) Heavy oil 469. $\xrightarrow{\text{POCl}_3} A \text{ (major), } A \text{ is}$

ÓН

ы сн₃-_{а)} СН₃—́ _{с)} СН₃—√ d) CH₂: 470. Acetylene on reacting with hypochlorous acid gives: a) CH₃COCl b) ClCH₂CHO c) Cl₂CH. CHO d) ClCH₂COOH 471. The reduction of 4-octyne with H_2 in the presence of Pd/CaCO₃ quinoline gives a) trans-4-octene b) cis-4-octene c) A mixture of *cis*-and *trans*-4-octene d) A completely reduced product C_8H_{18} 472. R—CH=CH₂ $\xrightarrow{\text{Na/NH}_3(l)}$ RCH₂CH₃ is called: a) Clemmensen reduction b) Fisher-Spier reduction c) Birch reduction d) Arndt-Eistert reduction 473. Which one of the following compounds will react with methyl magnesium iodide? a) $CH_3CH_2CH_2CH_2CH_3$ b) $CH_3CH = CH - CH = CH_2$ c) $CH_3 - C \equiv C - CH_2CH_3$ d) $CH_3CH_2CH_2C \equiv CH$ 474. Degree of unsaturation in the following compound is a) 1° b) 2° c) 3° d) 4° 475. Suitable reagents A and B for the following reactions are b) Br₂, NBS a) Br, Br_2 c) NBS, NBS d) NBS, Br_2 476. During ozonolysis of $CH_2 = CH_2$ if reduction is carried out by LiAlH₄ the products formed are: a) HCHO b) HCOOH c) CH₃OH d) CH₂OHCH₂OH 477. Ethyl hydrogen sulphate is obtained by reaction of H_2SO_4 on: b) Ethane a) Ethylene c) Ethyl chloride d) Ethanal 478. When HCI gas is passed through propene in the presence of benzoyl peroxide, it gives: a) *n*-propyl chloride b) 2-chloropropane c) Allyl chloride d) No reaction 479. Hydrocarbon which is liquid at room temperature is a) Pentane b) Butane c) Propane d) Ethane 480. Which of the following reactions are not expected to give $CH_3 - c - CH = CH_2$ $CH_3 - CH_3$ In yields of more than 50%? b) $CH_3 - CH_3 - CH_3 + CH_3 \xrightarrow{(CH_3)_3CO^-K^+} \Delta$


d) None of the above c) $CH_3 - CH_3 - CH_3 - CH_3 \xrightarrow{Zn}{acetone}$ 481. Incorrect name of an alkyne is: a) Propyne b) But-2-yne c) Pent-3-yne d) But-1-yne 482. The alkyne which gives pyruvic acid ($CH_3COCOOH$) on oxidation with alk. $KMnO_4$ is: a) $CH \equiv CH$ b) $CH_3C \equiv CH$ c) $CH_3C \equiv C - CH_3$ d) $CH_3 - CH_2 - C \equiv CH$ 483. A hydrocarbon of formula C₆H₁₀ absorbs only one molecule of H₂upon catalytic hydrogenation. Upon ozonolysis the hydrocarbon yields, The hydrocarbon is : a) Cyclohexane b) Benzene c) Cyclohexene d) Cyclobutane 484. Alkyl halides react with dialkyl copper reagents to give a) Alkenyl halides b) Alkanes c) Alkyl copper halides d) Alkenes 485. $A \xrightarrow{O_3/Zn, H_2O} (CH_3)_2CO + HCHO + |$ Thus, A is a) $(CH_3)_2CHCH = CHCH = CH_2$ b) $(CH_3)_2C = CH - CH = CH_2$ c) $CH_3CH = CH - CH = CH - CH = CH_2$ d) none of the above 486. In the series, $C_2H_5 \xrightarrow{\text{NaNH}_2} X \xrightarrow{\text{CH}_3I} Y \xrightarrow{\text{HgSo}_4} Z$ The compound *Z* is a) $CH_3CH_2CH = CH_2$ b) CH₃COCH₃ c) CH₃CHO d) CH₃CH₂CH₂CHO 487. Paraffin dissolves in: a) Distilled water b) Benzene c) Methanol d) Salt water 488. Which cannot be prepared by Kolbe's electrolytic reaction using single salt? c) C_4H_{10} d) H_2 a) CH₄ b) C_2H_6 489. Which will react with NaBH₄? a) Benzoic acid b) Benzamide c) Cyclohexanone d) Acetic acid 490. When methane is made to react with a halogen (X_2) , halides are formed, the order of reactivity is: a) $F_2 > Cl_2 > Br_2 > I_2$ b) $Cl_2 > F_2 > Br_2 > I_2$ c) $I_2 > Br_2 > Cl_2 > F_2$ d) $Cl_2 > F_2 > I_2 > Br_2$ 491. Which of these does not follow anti – Markownikoff's rule? a) 2-butene b) 1-butene c) 2-pentene d) 2-hexene 492. Acetylene reacts with HCN in the presence of $Ba(CN)_2$ to yield b) 1,2-dicyanoethane d) None of these a) 1,1-dicyanoethane c) Vinyl cyanide 493. An alkyl bromide (*X*) reacts with Na to form 4, 5-diethyl octane. Compound (*X*) is: a) CH₃(CH₂)₃Br b) $CH_3(CH_2)_5Br$ c) CH₃(CH₂)₃CHBr. CH₃ d) CH₃(CH₂)₂CHBrCH₂CH₃ 494. To avoid lead pollution, a new anti-knock compound is used. It is: a)

b) Cyclopentadienyl manganese carbonyl

c) AK-33-X

d) All of the above

495. Identify *B* and *D* in the following sequence of reactions.

b) Ethyl hydrogen sulphate and alcoholic KOHd) Ethanol and alcoholic KOH

c) 44' d) -5°16'

- 497. When propyne react with H2O in presence of dil. H2SO4 and HgSO4 product formed isa) Acetoneb) Acetaldehydec) Acetic acidd) Ethyl alcohol
- 498. Which of the following compounds cannot be prepared singly by the Wurtz reaction?
- a) C_2H_6 b) $(CH_3)_2CHCH_3$ c) $CH_3CH_2CH_2CH_3$ d) All can be prepared 499. The olefin which on ozonolysis gives CH_3CH_2CHO and CH_3CHO is:
 - a) 1-butene b) 2-butene c) 1-pentene d) 2-pentene
- 500. Which statement is false?
 - a) Peroxide effect is applicable only for HBr and not for the other halogen halides
 - b) Meta directing groups are deactivating groups
 - c) Chlorination of methane follows an ionic mechanism
 - d) In benzene the C atoms are sp^2 -hybridized
- 501. The presence of unsaturation (olefinic or acetylinic bond) in an organic compound can be tested with:a) Schiff's reagentb) Tollen's reagentc) Fehling's solutiond) Baeyer's reagent502. Ab) Hc) Fehling's solutionc) Hc) H<t
- 502. An alkene on reductive ozonolysis gives 2-molecules of CH₂(CHO)₂. The alkene is a) 2.4-hexadiene b) 1.3-cvclohexadiene
 - a) 2,4-hexadieneb) 1,3-cyclohexadienec) 1,4-cyclohexadiened) 1-methyl-1, 3-cyclopentadiene
- 503. A mixture of ethyl iodide and *n*-propyl iodide is subjected to Wurtz reaction. The hydrocarbon that will not be formed is:

a) *n*-butane b) *n*-propane c) *n*-pentane d) *n*-hexane 504. Which of the following reacts with benzene in presence of anhydrous aluminium chloride and

forms acetophenone?

- a) CH_3Cl b) CH_3COOH c) CH_3CHO d) CH_3COCl 505. Oxidation of 1-butene with hot $KMnO_4$ solution produces a) $CH_3CH_2COOH + HCOOH$ b) $CH_3CH_2COOH + CO_2$
 - c) $CH_3COOH + CO_2$

b) $CH_3CH_2COOH + CO_2$ d) $(CH_3)_2C = 0 + CO_2$

506. Action of Br_2 on cyclopentene gives:

a) 1,2-dibromo cyclopentane

b) Cyclopentyl bromide

c) Cyclopentyl dibromide

d) No reaction

507. Which of the following species is aromatic?

a) b)	c)	d)
	1 proposal by ovidation M	Unich oot of reagonts among
508. Propene, $CH_3 - CH = CH_2$ can be converted into the following is ideal to effect the conversion?	5 1-propanoi by oxidation. W	finch set of reagents among
a) Alkaline $KMnO_4$ b) B_2H_6 and alk. H_2O		d) OsO ₄ /CHCl ₃
509. Compound which gives acetone on ozonolys		
a) $CH_3 - CH = CH - CH_3$ c) $C_6H_5CH = CH_2$	b) $(CH_3)_2 C = C(CH_3)^2$ d) $CH_3 CH = CH_2$) ₂
510. Toluene, when treated with Br_2/Fe , gives p-brow	\$ 0 1	luct because the – CH ₃ group
a) Is <i>meta</i> directing	b) deactivates the ring	Ş
 c) activates the ring by hyperconjugation 511. Alkynes occur in nature in the: 	d) None of the above	
a) Free state b) Partially free state	c) Not in the free state	d) None of the above
512. Which of the following will have least hindered	-	
a) Ethane b) Ethylene	c) Acetylene	d) Hexachloroethane
513. Identify Z in the series, HBr ag.KOH NaCO ₂		
$CH_2 = CH_2 \xrightarrow{HBr} X \xrightarrow{aq.KOH} Y \xrightarrow{NaCO_3} Z$		
a) C_2H_5I b) C_2H_5OH	c) CHI ₃	d) CH ₃ CHO
514. Action of NH_3 over C_2H_2 at high temperature gives A_2 and A_3 and A_4 and $A_$		d) Dermale
a) Amine b) Furan 515. Wurtz reaction converts alkyl halide into alkane	c) Thiophene	d) Pyrrole th
a) Na in alcohol b) Na in dry ether	c) Zn in alcohol	d) Zn in dry ether
516. Polyethylene is a resin obtained by polymerizat		
a) Butadiene b) Ethylene	c) Isoprene	d) Styrene
517. Cyclohexane (C_6H_{12}) a hydrocarbon, floats on w	vater because:	
a) It is immiscible with water b) Its density is less than that of water		
c) It is a non-polar substance		
d) It is immiscible and lighter than water		
518. Which of the following are produced from coalta		
a) Synthetic dyes b) Drugs	c) Perfumes	d) All of these
519. The reduction of an alkyne to alkene using lithiu a) <i>cis</i> addition of hydrogen atoms	im metal in liquid ammonia	as solvent results into
b) <i>trans</i> addition of hydrogen atoms		
Both <i>cis</i> and <i>trans</i> additions of hydrogen ato	oms. The relative amounts of	the two depends on
c) temperature		
d) Both <i>cis</i> and <i>trans</i> additions of hydrogen ato		epend on the nature of alkyne
520. Propene on reaction with hypochlorous acid	Cl	
a) Ci	b)Он	
OH		
\wedge	он 	
c) / \	d)	

521. A mixture of nitrogen and acetylene, on passing electric spark through it gives:

d) $CH_2 = CH - C \equiv CH$

a) Hydrogen and carbon b) Hydrogen cyanide c) Nitromethane
522. In the sequence of reactions,
$$C_2H_4 \xrightarrow{\text{HBr}} X \xrightarrow{\text{AgCN}} Y \xrightarrow{(H)}_{H_2/\text{Ni}} Z$$
,

Compound Zis

a) N-methyl ethanamine

c) N. N-dimethylamine

523. Which one of these is not true for benzene?

a) It forms only one type of monosubstituted product.

b) There are three carbon-carbon single bonds and three carbon-carbon double bonds

c) The heat of hydrogenation of benzene is less than the theoretical value.

d) The bond angle between the carbon-carbon bonds is 120°.

524. Presence of a nitro group in a benzene ring

 CH_3

- a) Activates the ring towards electrophilic substitution
- b) Renders the ring basic

 H_3C

c) CH₃CH₂CH₂CH₃

a)

- c) Deactivates the ring towards nucleophilic substitution
- d) Deactivates the ring towards electrophilic substitution

525. The major product in the reaction of 2-butyne with Li/liq. NH_3 is

526. Hydrocarbon liquid at STP is: a) Ethane b) Propane c) Butane d) Pentane 527. Chlorination of benzene is not possible in the following reaction c) $C_6H_6 + I - Cl \xrightarrow{ZnCl_2} d$ d) $C_6H_6 + Cl_2 \xrightarrow{AlCl_3} d$ a) $C_6H_6 + Cl_2 \xrightarrow{FeCl_3}$ b) $C_6H_6 + HOCI \xrightarrow{H^+}$ 528. In the series, ethane, ethene and ethyne, the C-H bond energy is a) Same in all the three compounds b) Greatest in ethane c) Greatest in ethene d) Greatest in ethyne 529. The shape of 2-butene is: a) Linear d) Pyramidal b) Planar c) Tetrahedral 530. The substance used as an anti-knock compound is: a) Tetraethyl lead b) Lead tetrachloride c) Lead acetate d) Ethyl acetate 531. Petroleum refining is: a) Obtaining aromatic b) Cracking of petroleum c) Purification of d) Distillation of compounds from to get gaseous petroleum petroleum to get aliphatic compounds in hydrocarbons different fractions petroleum 532. Zinc-copper couple that can be used as a reducing agent is obtained by:

a) Mixing zinc dust and copper gauze

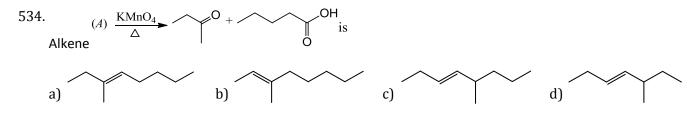
b) Zinc coated with copper

- c) Copper coated with zinc
- d) Zinc and copper wires welded together

533. Which of the following hydrocarbons has the lowest dipole moment? H₂C CH₃

a)
$$H$$
 $C = C$ H

b)
$$CH_3C \equiv CCH_3$$
 c) $CH_3CH_2C \equiv CH$


b)

d) $H_2C = CH - CH_2 - CH_3$

b) N-propylamine

d) Ethyl cyanide

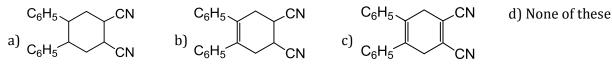
1 3 77

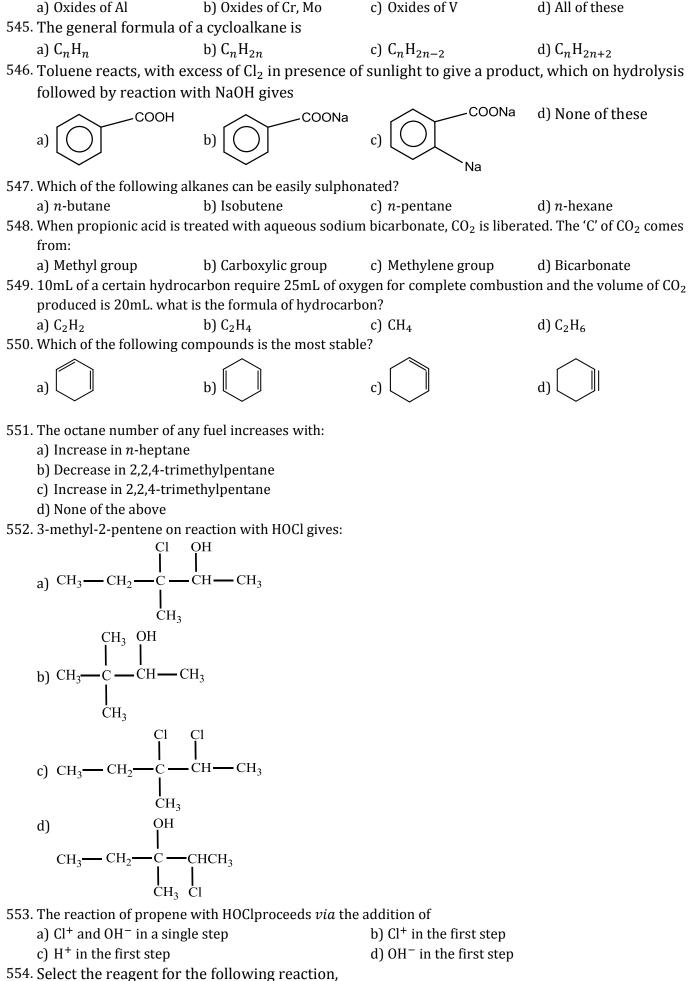
- 535. A solution of sodium salt of fatty acid was electrolysed during Kolbe's reaction. The solution left after electrolysis is:
- a) Richer in NaOH b) Richer in H_2SO_4 c) Richer in sodium salt d) All of these 536. Sample of 2,3-dibromo-3-methylpentane is heated with zinc dust. The resulting product is isolated and heated with HI in the presence of phosphorus. Indicate which is the structure that represents the final organic product in the reaction?

$$\begin{array}{c} CH_{2} = CH - CH - CH_{2} - CH_{3} \\ CH_{2} = CH - CH - CH_{2} - CH_{3} \\ CH_{3} = CH_{2} - CH - CH_{2} - CH_{3} \\ CH_{3} = CH - CH - CH_{2} - CH_{3} \\ CH_{3} = CH - CH - CH_{2} - CH_{3} \\ CH_{3} = CH - CH - CH_{2} - CH_{3} \\ CH_{3} = CH - CH - CH_{2} - CH_{3} \\ H_{1} - CH_{3} \\ CH_{3} = CH - CH - CH_{2} - CH_{3} \\ H_{2} - CH - CH_{3} - CH_{3} \\ H_{3} - CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} - CH_{3} \\ CH_{3} \\$$

537. Which compound does not give precipitate with ammoniacal silver nitrate solution?

b) $CH_3 - C \equiv C - CH_3$ a) $C_2H_5 - C \equiv CH$ CH3 d) $Ph - CH_2 - C \equiv CH$ c) $CH_3 - CH - C \equiv CH$ 538. Hydroxylation of propyne in the presence of $HgSO_4/H_2SO_4$ is initiated by the attack of: c) Electrophile a) Carbene b) Free radical d) Nucleophile 539. Benzene vapour mixed with air when passed over V_2O_5 catalyst at 775 K gives a) Glyoxal b) Oxalic acid c) Maleic anhydride d) Fumaric acid 540. Kolbe's synthesis on electrolysis of sodium salt of butanoic acid gives : a) *n*-hexane b) Isobutene c) Butane d) Ethene 541. Which among the following is aromatic?




542. The neutral wax called Ozokerite found near petroleum well is a mixture of: a) Solid halides b) Solid hydrocarbons c) Solid alcohols d) None of these 543. C_6H_5 C_6-CN $+ \parallel A$

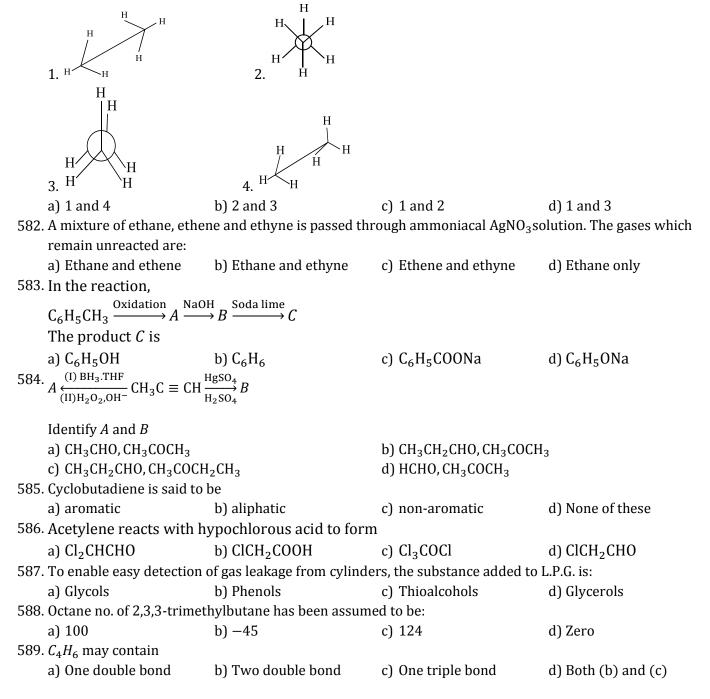
C₆H_[≠]

544. Which among the following are used as catalyst in cracking?

a) SeO₂ b) 0_3 , Zn/H₂O c) O_3 , $H_2O_2 - CH_3COOH$ d) PCC 555. The chemical reactivity of ethylene is due to: a) Short carbon to carbon bond distance b) High double bond energy c) Trigonal planar structure d) Presence of π -electrons 556. Which of the following species could be expected to exhibit aromatic character? III IV Π Select the correct answer from the following b) II and IV c) I and III d) II and III a) I and IV 557. Product formed when 1-butene is subjected to HBr in the presence of peroxide: a) 1-bromobutane b) 2-bromobutane c) 1,1-dibromobutane d) 1,2-dibromobutane 558. Nitrobenzene can be prepared from benzene by using a mixture of concentrated HNO₃ and concentratedH₂SO₄. In the nitrating mixture, HNO₃ acts as a) Base b) Acid c) Reducing agent d) Catalyst 559. In the reaction sequence, $CH_3CH = CH_2 \xrightarrow{(i)0_3} Products Products will be$ b) CH₃COCH₂OH a) CH₃COCH₃ c) $CH_3COOH + HCOOH$ d) $CH_3CHO + HCHO$ 560. Petrol or gasoline used as an automobile fuel is a mixture of: a) Hydrocarbons b) Alcohols c) Carbohydrates d) Hydrocarbons and alcohols 561. In which of the following electron delocalisation is possible? a) $CH_2 = CH - CH_2 - 0^$ **b)** CH₃CH₂C c) $CH_2 = CH - CH_2 - CH = CH_2$ d) None of the above 562. The major component of L.P.G. is: a) Methane b) Ethane c) Propane d) Iso-butane 563. Which of the following alkenes will yield 2-butanone on ozonolysis followed by the reaction withZn/H₂0? a) 2-methyl-2-hexene b) 2-methyl-1-hexene c) 3,4-dimethyl-3-hexene d) 2,3-dimethyl-3-hexene 564. Acetylene and ethylene reacts with alk. KMnO₄ to give: a) Oxalic acid and formic acid b) Acetic acid and ethylene glycol c) Ethyl alcohol and ethylene glycol

d) None of the above

565. According to Markownikoff's rule, what will be the major product of reaction


		the major product of rea	etton
$CH_2 = CH - CH_3 \xrightarrow{HBr}$?		
Br			
a)		b) Br $- CH_2 - CH_2 - C$	На
$CH_3 - CH - CH_3$			
6 6		d $CII = C = CII$	
c) $CH_2 = CH - CH_2Br$	1	d) $CH_2 = C = CH_2$	
566. Carbon black, used in m			
a) Acetylene	b) Benzene	c) Methane	d) CCl ₄
567. Ethylbenzene with bro	omine in presence of FeBi	•••	
Br		CH ₂ CH ₃	
a)		b)	
CH ₂ CH	3	Ť	
		ļ	
		Br	
с) 🖉 🔪 — Сн ₂ Сн	Br	d) Br	·CH ₂ CH ₃
	201		01120113
568. Which reaction produce	s acrylonitrile ($CH_2 = CHCI$	N)?	
			lioci
a) Ethyne $\xrightarrow{\text{HCN}}_{\text{Ba}^{2+}}$	b) Acrylic acid $\xrightarrow{\text{KCN}}$	c) Ethyne $\xrightarrow{\text{KCN}}$	d) Ethyne \xrightarrow{HOCI}
F(Q) Casalina is			
569. Gasoline is:	b) C II to C II		d) C U to C U
	b) C_7H_{16} to $C_{10}H_{22}$		d) C ₁₇ H ₃₆ to C ₂₁ H ₅₀
570. Which of the following			
a) Fe_3O_4	b) Al_2O_3	c) CaC ₂	d) Al_4C_3
571. The compound $(CH_3)_2C$	$H - CHCl - CH_3$ reacts with	alcoholic KOH to give the f	following alkene:
a) $(CH_3)_2CH - CH = CH_3$	H ₂		
b) $CH_3 - CH = C = CH_2$			
c) $CH_3 - CH_2 - CH = CH_3$	HCH ₃		
d) $(CH_3)_2C = CH - CH_3$			
572. A hydrocarbon reacts w	ith HI to give (X) which on r	eacting with aqueous KOH	forms (Y). Oxidation of (Y)
gives 3-methyl-2-butane	one. The hydrocarbon is:		
CH ₃	CH ₂ =CH-CH-CH ₃	$CH_3 - CH_2 - C = CH_2$	d) $CH \equiv C - CH - CH_3$
a) $ _{CH_3CH=C-CH_3}$	b) CH ₃	CH ₃ —CH ₂ —C=CH ₂ c) CH ₃	d) CH ₃
573. Pure acetylene has swee	5		presence of:
a) NH_3	b) PH ₃	c) AsH ₃	d) H ₂ S
	, ,		/ =
574. An alkyl halide by form	-	gent and heating with wa	ater yielus propane. What
is the original alkyl ha			
a) Methyl iodide	b) Ethyl iodide	c) Ethyl bromide	d) Propyl bromide
575. 1-propyne on treatment			
a) Hyperconjugation	b) Resonance	c) Tautomerism	d) None of these
576. O_2 required for complet			
a) 3.5 litre	b) 0.156 mole	c) 5.00 g	d) All of these
577. In the following sequen	ce the product <i>D</i> is,		
$CH \equiv CH \xrightarrow{HBr} A \xrightarrow{HBr} B \xrightarrow{KOI}$	I - I - NI-NII		
	$\xrightarrow{\text{H ale.}} C \xrightarrow{\text{NaNH}_2} D:$		
a) Ethanol	$\stackrel{\text{H ale.}}{\longrightarrow} C \xrightarrow{\text{NaNH}_2} D:$ b) Ethane	c) Ethyne	d) Ethanal
a) Ethanol 578. Which of the following	b) Ethane		

a)
$$CH_2 = CH_2$$

b) H_3C
c) H_3C
c)

579. Liquid hydrocarbon can be converted to a mixture of gaseous hydrocarbon by:

- a) Oxidation
- b) Cracking
- c) Hydrolysis
- d) Distillation under reduced pressure
- 580. Two jars A and B are filled with hydrocarbons. Br₂ in CCl₄ is added to these jars. A does not decolourise the Br₂ solution but *B* decolourises. What are *A* and *B*?

b) Alkene and alkane c) Alkene and alkyne d) None of these a) Alkane and alkene 581. In the following structures which two forms are staggered conformation of ethane?

590. Which of the following compounds can form metallic derivatives? a) Ethane b) Propyne c) 2-butyne d) 2-butene 591. Increasing order of volatility of C_2H_6 , C_2H_4 , C_2H_2 and C_6H_6 is: a) C₆H₆, C₂H₆, C₂H₄, C₂H₂ b) C₂H₂, C₂H₄, C₂H₆, C₆H₆ c) C₆H₆, C₂H₂, C₂H₄, C₂H₆ d) C₂H₂, C₂H₆, C₂H₄, C₆H₆ 592. Octane no. of a fuel can be increased by: a) Isomerism b) Alkylation c) Reforming d) All of these 593. 1-propanol on dehydration with H₂SO₄ produces: a) $CH_3 - CH = CH_2$ b) $CH_3 - CH = CH - CH_3$ c) CH₃CH₂CH₂OCH₂CH₂CH₃ d) $CH_3CH_2CH_2CH_2CH = CH_2$ 594. Propadiene, C₃H₄ molecule contains: a) Two *sp*² and one *sp*-hybrid carbon b) One sp^2 and two *sp*-hybrid carbons c) One sp^2 and three *sp*-hybrid carbons d) None of the above 595. Catalyst used in dimerization of acetylene to prepare chloroprene is: b) Cu_2Cl_2 a) $HgSO_4 + H_2SO_4$ c) $Cu_2Cl_2 + NH_4Cl$ d) $Cu_2Cl_2 + NH_4OH$ 596. Cyclopentene on treatment with alkaline KMnO₄ gives: a) Cyclopentanol b) *trans*-1,2-cyclopentanediol c) *cis*-1,2-cyclopentanediol d) 1 : 1 mixture of *cis*-and *trans*-1,2-cyclopentanediol 597. $C_7H_8 \xrightarrow{3Cl_2, Heat} A \xrightarrow{Fe/Br_2} B \xrightarrow{Zn/HCl} C$ Here, the compound *C* is a) 3-bromo 2,4,5,6-trichlorotoluene b) o-bromo toluene c) p-bromo toluene d) *m*-bromo toluene 598. Naphalene is an example of a) Polynuclear hydrocarbon b) alicyclic compound c) heterocyclic compound d) aliphatic compound 599. Which of the following will give trans-diols? $a) > c = c < \frac{1. \text{KMnO}_4}{2. \text{HeO}}$ b >C=C $<\frac{1. OsO_4}{2. Na_2SO_2}$ $\frac{35\% \text{ H}_2\text{O}_2}{\text{HCO}_2\text{H}, 25^{\circ}\text{C}}$ $\frac{1. \operatorname{OsO}_4, 25^{\circ}\mathrm{C}}{2. \operatorname{Na}_2 \mathrm{SO}_3} \blacktriangleright$ 600. Benzene can react with a) Bromine water b) HNO₃ c) H_20 d) CH₃OH 601. A mixture of methane and steam when passes over nickel supported on alumina catalyst at 725°C gives: b) CO_2 and H_2 d) None of these a) CH₃OH c) CO and H₂ 602. In which reaction addition takes place according to Markownikoff's rule? a) $CH_3CH = CH_2 + Br_2 \rightarrow$ b) $CH_3CH = CH_2 + HBr \rightarrow$ c) $CH_2 = CH_2 + HBr \rightarrow$ d) $CH_3CH = CHCH_3 + Br_2 \rightarrow$ 603. Paraffin wax is: a) Ester b) Alcohol c) Unsaturated d) Saturated hydrocarbon hydrocarbon

604. Pronyne when pass	sed through a hot iron tube	at 400°C produces			
a) Benzene	sea an oagn a not n'on tabe	b) Methyl benzene			
c) Dimethyl benzen	ρ	d) Trimethyl benzene			
605. Which of the follow		«) minetiyi benzene			
	b) C_2H_6	a) C H	4) CH		
a) C_2H_4		c) C ₂ H ₂	d) CH ₄		
606. Which can be easily o a) Alkene		a) Allrana	d) Ponzono		
,	b) 1-alkyne	c) Alkane	d) Benzene		
at different temperat	ne, which have same number	of flydrogen and carbon ad	onis in their molecules, boli		
a) <i>n</i> -butane is much h					
b) Their volumes are					
c) Isobutene is an alk					
	ot having the same carbon cha	in			
-	gents used in organic chemisti				
a) Fenton's reagent	b) Osmium tetraoxide	c) Acidified KMnO ₄	d) Alkaline KMnO ₄		
609. Acetylenic hydrocarb	,	•)	a)		
• •	nsity of C—H bond in acetyler	ie is nearer a carbon which	has 50% <i>s</i> -character		
	one hydrogen atom at each c				
	least number of hydrogen at				
	to the class of alkynes with fo				
	verted to butane by the react				
a) Zn–Hg	b) Pd-H ₂	c) Zn–HCI	d) Sn–HCI		
611. Number of acidic hyd	rogen atom in butyne-1 is:				
a) 2	b) 3	c) 1	d) 4		
612. Propene on reaction	with methylene iodide in pres	sence of Zn-Cu couple gives:	:		
a) Cyclopropane	b) Cyclopropene	c) Methyl cyclopropane	d) Cyclobutene		
613. Addition of O ₂ on ethy	vlene in presence of Ag at 200	°C forms:			
a) Epoxy ethane	b) Oxiranes	c) Cyclic ethers	d) All of these		
614. The carbon-carbon	bond distance in benzene	is			
a) Longer than a C -	- C single bond	b) Longer than a $C = C$	double bond		
c) Shorter than a C	= C double bond	d) Shorter than a C \equiv (C triple bond		
615. Method of converting	high boiling hydrocarbons ir	nto low boiling hydrocarbor	is is called:		
a) Polymerisation	b) Isomerisation	c) Cracking	d) Condensation		
616. The mechanism of W	urtz reaction involves:				
a) Free radical	b) Carbocation	c) Carbanion	d) None of these		
617. The most important e	energy yielding constituent in	biogas is:			
a) C ₂ H ₄	b) C ₂ H ₂	c) CH ₄	d) H ₂ S		
618. PVC is a polymer of:					
a) $CH_2 = CH_2$	b) $ClCH_2 - CH_2Cl$	c) CH_2 — CHCl	d) $Cl - C = C - Cl$		
619. Cyclohexene on ozo	nolysis followed by reaction	on with zinc dust and wat	er gives compound <i>E</i> .		
Compound <i>E</i> on fur	ther treatment with aqueor	us KOH yields compound	F. Compound Fis		
\frown	\frown	\frown			
а)	b) — СНО	с) СООН	d) СООН		
			СООН		
620. The flash point in Ind	ia is fixed at:				
a) 44°C	b) 35°C	c) 22.8°C	d) 30°C		
621. Lindlar's catalyst is:					
a) Pd- CaCO ₃ deactiva	ated by lead acetate				
b) Pd – BaSO ₄					

c) Pd d) None of the above 622. The energy of π -bond in kcal is about : a) 36 b) 50 c) 74 d) 140 623. Ozonolysis (O_3, H_2O) of, CH_3 —CH— $C\equiv C$ — CH_3 gives: CH₃ CH₃—CHCOOH + CH₃COOH a) CH₃ CH₃—CHCHO + CH₃CHO b) CH₃ CH_3 —CHCHO + CH_3COOH c) CH₃ d) None of the above 624. What is the end product of the following sequences of operations? $\operatorname{CaC}_2 \xrightarrow{\operatorname{H}_2\operatorname{O}} A \xrightarrow{\operatorname{Dil}.\operatorname{H}_2\operatorname{SO}_4} B \xrightarrow{\operatorname{Ni}} C$ a) Methyl alcohol b) Acetaldehyde c) C_2H_5OH d) C_2H_4 625. The order of relative acidic strengths of water, ethyne and propyne is: a) Water>propyne>ethyne b) Propyne>ethyne>water c) Water>ethyne>propyne d) Ethyne>water>propyne 626. Reaction of *trans*-2-phenyl-1-bromocyclopentane on reaction with alcoholic KOH produces: a) 4-phenylcyclopentene b) 2-phenylcyclopentene c) 1-phenylcyclopentene d) 3-phenylcyclopentene 627. Ethylene reacts with slphur monochloride to give: a) Phosgene b) Mustard gas c) Ethylene chloride d) None of these 628. The dihalogen derivative 'X' of a hydrocarbon with three carbon atoms reacts with alcoholic KOH and produces another hydrocarbon which forms a red precipitate with ammoniacal Cu_2Cl_2 . 'X' gives an aldehyde on reaction with aqueous KOH. The compound *'X'* is a) 1,3-dichloropropane b) 1,2-dichloropropane d) 1,1-dichloropropane c) 2,2-dichloropropane 629. Ethylene may be prepared by the dehydration of: a) Ethyl alcohol b) Methyl alcohol c) Acetic acid d) Oxalic acid 630. Petroleum is formed by the chemical changes in: a) Inorganic matter b) Vegetable matter c) Animal matter d) Both (b) and (c) 631. Common dehydrating agents for alkanes are: a) H_2SO_4 b) Al_2O_3 c) $ZnCl_2$ d) All of the above 632. The most stable conformation of butane is: a) Skew b) Staggered c) Gauche d) Eclipsed 633. A cyclic hydrocarbon molecule has all the carbon and hydrogen in a single plane. All the carbon-

carbon bonds are of same length, less than 1.54Å, but more than 1.34Å. The C-c bond angle will be

a) 109°28′	b) 100°	c) 180°	d) 120°
634. The product of acid cat	alysed hydration of 2-pheny	vl propene is:	
a) 3-phenyl-2-propano	b) 1-phenyl-2-propanol	c) 2-phenyl-2-propanol	d) 2-phenyl-1-propanol
635. When C_2H_5 , CH_4 and	C ₂ H ₄ passes through a tes	st tube which have ammo	oniacal Cu ₂ Cl ₂ , find out
which gas comes out	unaffected from test tube	?	
-	b) C_2H_2 and C_2H_4		d) C_2H_2
636. Benzene reacts with o	-) -22		
a) CCl ₄	b) $C_6 H_6 Cl_6$	c) C_6Cl_6	d) C ₆ H ₅ Cl
	000	2 0 0	0) 0611501
637. When 2-butyne is tre			
a) <i>cis</i> -2-butene	d) 2-hydroxy butane		
638. The overlapping of or			
a) <i>sp – sp</i>	b) <i>p</i> – <i>p</i>	· · ·	d) sp^3sp^3
639. The product obtained v			
a) Acetone	b) Alcohol	c) Methane	d) Ethane
640. The treatment of benze	•		
a) Benzaldehyde		c) Diphenyl	d) Cyclohexane
641. Which of the followin	g have delocalised electro	on?	
a) Benzene	b) Cyclohexane	c) CH ₄	d) C ₂ H ₆
642. The IUPAC name of CH ₂	$= CH - CH_2 - group$ is:		
a) Allyl	b) Propyl	c) Prop-2-enyl	d) Prop-1-enyl
643. Which statement is cor	rect?		
a) Low chemical reactiv	vity of alkanes is due to stro	ng C—C and C—H bonds	
	teristic substitution reactio		ted
c) Reaction of alkanes v	vith fluorine is explosive ev	en in dark	
d) All of the above			
644. Ease of sulphonation of	alkanes is:		
a) 3°>2°>1°	b) 1°>2°>3°	c) 2°>3°>1°	d) 3°>1°>2°
645. Arrange the following i	n order of decreasing boilin	g point	
\sim	CH ₃		
	\bigcirc		
-	CH ₃		
H ₃ C CH ₃	L ₂ CH ₃		
	Ĩ		
CH ₃	Ť		
CH ₃ III	CH ₃		
a) $I > II > III > IV$		c) I > <i>III</i> > <i>IV</i> > <i>II</i>	d) II > III > I > IV
646. The product <i>B</i> is:	0)10 2 111 2 11 2 1		
-	HI		
CH_3 . CH_2 . $C = CH + HC$	$\rightarrow B \rightarrow C$		
$\begin{array}{c} \text{CH}_3, \text{CH}_2, \text{C} = \text{CH} + \text{HC}_3\\ \\ \text{a)} \begin{array}{c} \text{CH}_3, \text{CH}_2, \text{CH}_2, \text{C} - \text{H} \\ \\ \text{Cl} \end{array}$	1		
а) СН _{3.} СН _{2.} СН _{2.} С—н	b) CH ₃ CH ₂ .CH. CH ₂	c) CH ₃ CH ₂ C≡CH	d) CH ₃ CH=CHCH ₃
		,	,
	Cl		
647. <i>n</i> -propyl bromide on	-	-	
a) Propane	b) Propene	c) Propyne	d) Propanol
648. An unsaturated hydroc			ehyde, acetaldehyde and
	HO). The structure of the hy		
a) $CH_2 = CH - CH_2 - CH_2$	$H = CH_2$	b) $CH_2 = CH - C(CH_3) =$	$= CH - CH_3$

c) $(CH_3)_2C = CH - CH_3$		d) $CH_3 - CH = C(CH_3) - CH_3$	CH ₃
649. Fischer-Tropsch process a) Synthetic petrol			d) Ethanoic acid
650. 2-methylpropene is ison	b) Ethanol peric with butane-1. They ca	c) Benzene	d) Ethanoic acid
	b) Ammoniacal AgNO ₃		d) 0_3 , Zn/H ₂ 0
651. Acetylene reacts with 42	, , , ,	, -	uj 03,211,1120
	b) CH ₃ CHO	c) HCHO	d) $CH_2 = CH_2$
652. The simplest alkyne is:	y 5	,	, , , , , , , , , , , , , , , , , , , ,
a) CH	b) CH ₂	c) C ₂ H ₂	d) C ₂ H ₄
653. A Friedel-Crafts reaction	of benzene with chloroform	n produces	
	ÇI	C ₆ H ₅	d) All of these
a) C ₆ H ₅ CHCl ₂	b) C ₆ H₅—C—C ₆ H₅ H	$\begin{array}{c} C_{6}H_{5} \\ C_{6}H_{5} - C_{6}H_{5} \\ C_{6}H_{5} - C_{6}H_{5} \\ H \\ H \end{array}$	
654. An alkene, obtained by t			wo molecules of
acetaldehyde for every n	nolecule of alkene. The alco	hol (<i>A</i>) is:	CH ₃ CH ₂ CHCH ₃
a) CH ₃ CH ₂ CH ₂ OH	b) CH ₃ CH ₂ OH	c) $CH_3CH = CHCH_2OH$	d) OH
655. Which of the following a			
a) Benzene	b) Cyclobutadiene	, , , , , , , , , , , , , , , , , , ,	d) Cyclooctatetraene
656. The number of possible			
a) 2	b) 3	c) 4	d) 5
657. Which statement is corre	ECT? C ₄ H ₁₀ are colourless odourl	055 03505	
	$C_{17}H_{36}$ are colourless buourless liquid		
c) All alkanes are lighter		us	
, ,	es increases with increase	in the number of carbon ato	oms
658. Which compound does n			
-	b) C ₃ H ₆		
659. The principal organic pr		n,	
$CH_2 = CH(CH_2)_8COOH -$	Peroxide ⊢ HBr ——→…is:		
a) $CH_3 - CHBr(CH_2)_8CC$			
b) $CH_2 = CH(CH_2)_8COB_2$			
c) CH ₂ BrCH ₂ (CH ₂) ₈ COO			
d) $CH_2 = CH(CH_2)_7 CHB$	rCOOH		
660. What would be the pro	oduct formed when 1-bro	mo-3-chlorocyclobutane	reacts with two
equivalents of metallic	sodium in ether?		
		,	
a) Br 661. Lindlar's	b)	c)	d)
$[A] \leftarrow CH_3 - C = CH_3 - C$	- 0		
[A] and [B] are respect	tively		
a) <i>cis, trans</i> -2-butene		b) Both <i>trans</i> -2-butene	9
c) <i>trans</i> , <i>cis</i> -2-butene		d) Both <i>cis</i> -2-butene	
662. Which of the following			
a) C ₂ H ₆	b) CH ₄	c) C ₂ H ₄	d) C_2H_2
663. Octane number 116 is gi	ven for:		

a) 2,2,2-trimethyl pentane b) 2,3,4-trimethyl pentane c) 2,2,3-trimethyl butane d) 2,2,4-trimethyl butane 664. Which of the following statements is incorrect? a) Acetylene is explosive above 2 atm b) It is transported by dissolving in acetone c) It has unpleasant garlic odour d) It is used in the manufacture of Lewisite 665. Formation of ethylene from ethyl bromide is a case of: a) Addition reaction b) Substitution reaction c) Elimination reaction d) Rearrangement reaction 666. The most stable alkene is, a) $R_2 C = C R_2$ b) RCH = CHRc) $CH_2 = CH_2$ d) $RCH = CR_2$ 667. Ethylene can be prepared by electrolysis of an aqueous solution of: a) Sodium acetate b) Sodium succinate c) Sodium fumarate d) Sodium propionate 668. HBr reacts with $CH_2 = CH - OCH_3$ under anhydrous conditions at room temperature to give b) BrCH₂CHO and CH₃OH a) CH₃CHO and CH₃Br d) $H_3C - CHBr - OCH_3$ c) $BrCH_2 - CH_2 - OCH_3$ 669. Identify *Z* in the following series? $\mathrm{CH}_2 = \mathrm{CH}_2 \xrightarrow{\mathrm{HBr}} X \xrightarrow{\mathrm{Hydrolysis}} Y \xrightarrow{\mathrm{Na}_2\mathrm{CO}_3} Z$ a) C_2H_5I b) CHI₃ c) CH₃CHO d) C_2H_5OH 670. Reactive species in halogenation of benzene in cold and dark b) Cl⁺ d) None of these a) Cl• c) Cl⁻ 671. An organic alkadiene on reductive ozonolysis produces (i)acetaldehyde (ii)acetone (iii)2-methylpropane-1, 3-dial The formula of alkadiene will be $CH_3C = CHCHCH = CHCH_3$ $CH_3CHCH = CCH = CHCH_3$ a) b) CH₃ CH₃ CH3 CH_3 $CH_3C = CHCHC = CHCH_3$ $CH_3CH_2CHCH = CHC = CH_2$ c) d) CH₃ CH₃ CH₃ CH₃ 672. Synthetic petrol and kerosene can be obtained by passing.....under heat and pressure over coal. a) 0_2 b) H_2 c) N_2 d) CO_2 673. A hydrocarbon containing 2 carbon atoms give Sabatier and Senderen's reaction but does not give precipitate with ammoniacal silver nitrate solution. The hydrocarbon in question is: b) Acetylene c) Ethylene a) Ethane d) None of these 674. Acetylene can be converted to higher alkyne using the following sequence of reactions: b) *R*Mg *X*, *R X* a) Na, RX c) Either of these two d) None of these 675. At low temperature, the slow addition of molecular bromine to $H_2C = CH - CH_2 - C \equiv CH$ gives: a) $CH_2 = CH - CH_2 - CBr = CHBr$ b) $BrCH_2 - CHBr - CH_2 - C \equiv CH$ c) $H_2C = CH - CH_2 - CH_2 - CBr_3$

d) $CH_3 - CBr_2 - CH_2 - C \equiv CH$

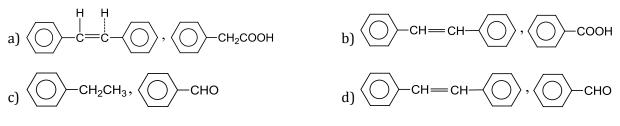
- 676. Which of the following statement is correct?
 - a) Benzene has a tetrahedral geometry like an alkane
 - b) Benzene is aromatic while naphthalene is not
 - c) Benzene and Cyclohexane are both aromatic
 - d) Benzene behaves more like and alkane than an alkene

$$^{677.} \operatorname{CaC}_2 + \operatorname{H}_2 \operatorname{O} \to A \xrightarrow{\operatorname{H}_2 \operatorname{SO}_4 / \operatorname{HgSO}_4} B$$

Identify A and B in the given reaction

a)
$$C_2H_2$$
 and CH_3CHO

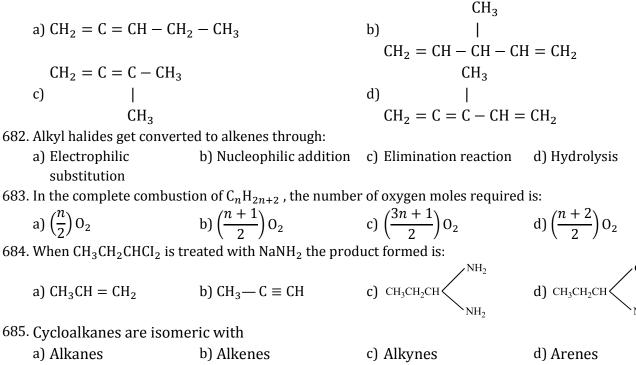
c)
$$C_2H_4$$
 and CH_3COOH d) C_2H_2 and CH_3COOH


678. The correct boiling point order for corresponding hydrocarbons is:

- a) Alkyne>alkane>alkene
- b) Alkane>alkene>alkyne
- c) Alkyne>alkene>alkane

d) Alkene>alkyne>alkane

679.
$$\bigcirc$$
 -c=c- \bigcirc $\frac{H_2}{pd/CaCO_3}$, $A \xrightarrow{KMnO_4} B$
quinoline


Identify A and B

b) CH₄ and HCOOH

680. Electrolysis of cold concentrated aqueous solution of potassium methyl succinate yields:
a) Ethane
b) Ethyne
c) Propene
d) Ethane-1,2-diol
681. An alkene gives two moles of HCHO, one mole of CO₂ and one mole of CH₃COCHO on ozonolysis.

What is its structure?

686. Which gives only one monosubstitution product on chlorination?

a) <i>n</i> -pentane	b) Ne su su teurs	-) I	d) a harten e								
687. The products obtained	b) Neopentane		d) <i>n</i> -butane								
a) $CH_3CH_2COCH_3$		$+ \Pi_2 30_4 J01 1$ -Dutylle wou	iu de.								
b) $CH_3CH_2CH_2CH_0$											
c) $CH_3CH_2CHO + HCHO$)										
d) $CH_3CH_2COOH + HCC$											
C = 0 is not conve	rted to R CH ₂ by:										
R	R										
a) Wolff-Kishner reaction	on b) Clemmensen reductio	on c) Red P+HI at 200°C	d) Wurtz reaction								
689. The presence of the cl	-		-								
position											
a) ortho	b) meta	c) para	d) ortho/para								
,	a) ortho b) meta c) para d) ortho/para 690. Two organic compounds (A) and (B) both containing only carbon and hydrogen, on qua										
• •	e percentage composition		iyurogen, on quantitative								
		i by weight									
$C = \left(\frac{12}{12}\right) \times 100\%$, H	$=\left(\frac{1}{13}\right) \times 100\%$										
A decolourises bromi	ne water but <i>B</i> does not. A	4 and <i>B</i> respectively are									
a) C_2H_2 and C_6H_6	b) C_6H_6 and C_2H_2	c) C_2H_4 and C_2H_6	d) C_2H_2 and C_2H_6								
691. Which of the following	compounds react with, an a	queous solution ofAg(NH ₂)	₂ 0H?								
a) ethane	b) Ethene	c) 1-butyne	d) 2-butyne								
692. Aromatisation of n -he	eptane by passing over (A	$l_2O_3 + Cr_2O_3$) catalyst at	: 773 K gives								
a) Benzene	b) Toluene	c) Mixture of both	d) Heptylene								
693. In a mixture of <i>n</i> -hexad	ecane and α -methylnaphtha	alene the percentage of the	latter is 10.The value of								
cetane number is:											
a) 110	b) 90	c) 10	d) Zero								
694. Addition of bromine to	1,3-butadiene gives:										
a) 1,2-addition product	-										
b) 1,4-addition product	only										
b) 1,4-addition product c) Both 1,2 and 1,4-add	only										
b) 1,4-addition productc) Both 1,2 and 1,4-addd) No reaction	only ition products										
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R \rightarrow COOH \rightarrow RCH_2OH.$	only ition products This mode of reduction can										
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R \rightarrow COOH \rightarrow RCH_2OH.$ a) NaBH ₄	only ition products This mode of reduction can b) Na + Alcohol	be effected only by: c) LiAlH ₄	d) All of these								
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R \rightarrow COOH \rightarrow RCH_2OH.$ a) NaBH ₄ 696. A Wittig reaction with	only ition products This mode of reduction can b) Na + Alcohol	c) LiAlH ₄									
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R \rightarrow COOH \rightarrow RCH_2OH.$ a) NaBH ₄ 696. A Wittig reaction with a) Ketone compound	only ition products This mode of reduction can b) Na + Alcohol	c) LiAlH ₄ b) A long chain fatty ac									
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R \rightarrow COOH \rightarrow RCH_2OH.$ a) NaBH ₄ 696. A Wittig reaction with a) Ketone compound c) Olefin compound	only ition products This mode of reduction can b) Na + Alcohol an aldehyde gives	c) LiAlH ₄ b) A long chain fatty ac d) Epoxide	zid								
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R \rightarrow COOH \rightarrow RCH_2OH.$ a) NaBH ₄ 696. A Wittig reaction with a) Ketone compound c) Olefin compound 697. Ethylene di bromide o	only ition products This mode of reduction can b) Na + Alcohol an aldehyde gives on heating with metallic s	 c) LiAlH₄ b) A long chain fatty ac d) Epoxide odium in ether solution y 	rields								
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R \rightarrow COOH \rightarrow RCH_2OH.$ a) NaBH ₄ 696. A Wittig reaction with a) Ketone compound c) Olefin compound 697. Ethylene di bromide o a) Ethene	only ition products This mode of reduction can b) Na + Alcohol an aldehyde gives on heating with metallic s b) Ethyene	 c) LiAlH₄ b) A long chain fatty ac d) Epoxide odium in ether solution y c) 2-butene 	cid vields d) 1-butene								
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R \rightarrow COOH \rightarrow RCH_2OH.$ a) NaBH ₄ 696. A Wittig reaction witha) Ketone compoundc) Olefin compound $697.$ Ethylene di bromide o a) Ethene 698. When alcoholic solution	only ition products This mode of reduction can b) Na + Alcohol an aldehyde gives on heating with metallic s b) Ethyene a of ethylene dibromide is he	 c) LiAlH₄ b) A long chain fatty ac d) Epoxide odium in ether solution y c) 2-butene eated with granulated zinc, 	rid vields d) 1-butene the compound formed is:								
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R \rightarrow COOH \rightarrow RCH_2OH.$ a) NaBH ₄ 696. A Wittig reaction with a) Ketone compound c) Olefin compound 697. Ethylene di bromide o a) Ethene 698. When alcoholic solution a) Ethane	only ition products This mode of reduction can b) Na + Alcohol an aldehyde gives on heating with metallic s b) Ethyene	 c) LiAlH₄ b) A long chain fatty ac d) Epoxide odium in ether solution y c) 2-butene 	cid vields d) 1-butene								
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R \rightarrow COOH \rightarrow RCH_2OH.$ a) NaBH ₄ 696. A Wittig reaction witha) Ketone compoundc) Olefin compound $697.$ Ethylene di bromide o a) Ethene 698. When alcoholic solution a) Ethane 699. Octane number is:	only ition products This mode of reduction can b) Na + Alcohol an aldehyde gives on heating with metallic s b) Ethyene a of ethylene dibromide is ha b) Ethylene	 c) LiAlH₄ b) A long chain fatty ac d) Epoxide odium in ether solution y c) 2-butene eated with granulated zinc, 	rid vields d) 1-butene the compound formed is:								
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R \rightarrow COOH \rightarrow RCH_2OH.$ a) NaBH ₄ 696. A Wittig reaction with a) Ketone compound c) Olefin compound 697. Ethylene di bromide o a) Ethene 698. When alcoholic solution a) Ethane 699. Octane number is: a) Number of carbon at	only ition products This mode of reduction can b) Na + Alcohol n an aldehyde gives on heating with metallic s b) Ethyene n of ethylene dibromide is ho b) Ethylene	 c) LiAlH₄ b) A long chain fatty ac d) Epoxide odium in ether solution y c) 2-butene eated with granulated zinc, c) Butane 	rid vields d) 1-butene the compound formed is:								
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R - COOH \rightarrow RCH_2OH.$ a) NaBH ₄ 696. A Wittig reaction witha) Ketone compoundc) Olefin compound $697. Ethylene di bromide ofa) Ethene698. When alcoholic solutiona) Ethane699. Octane number is:a) Number of carbon atb) Number of molecules$	only ition products This mode of reduction can b) Na + Alcohol an aldehyde gives on heating with metallic s b) Ethyene a of ethylene dibromide is ha b) Ethylene oms in octane s of octane formed in crackin	 c) LiAlH₄ b) A long chain fatty ac d) Epoxide odium in ether solution y c) 2-butene eated with granulated zinc, c) Butane 	rid vields d) 1-butene the compound formed is:								
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R \rightarrow COOH \rightarrow RCH_2OH.$ a) NaBH ₄ 696. A Wittig reaction witha) Ketone compoundc) Olefin compound $697. Ethylene di bromide ofa) Ethene698. When alcoholic solutiona) Ethane699. Octane number is:a) Number of carbon atb) Number of moleculesc) Number of hydrogen$	only ition products This mode of reduction can b) Na + Alcohol an aldehyde gives on heating with metallic s b) Ethyene a of ethylene dibromide is he b) Ethylene oms in octane s of octane formed in crackin atoms in octane	 c) LiAlH₄ b) A long chain fatty ac d) Epoxide odium in ether solution y c) 2-butene eated with granulated zinc, c) Butane 	rid vields d) 1-butene the compound formed is:								
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R - COOH \rightarrow RCH_2OH.$ a) NaBH ₄ 696. A Wittig reaction with a) Ketone compound c) Olefin compound 697. Ethylene di bromide of a) Ethene 698. When alcoholic solution a) Ethane 699. Octane number is: a) Number of carbon at b) Number of molecules c) Number of hydrogen d) Number for represen	only ition products This mode of reduction can b) Na + Alcohol an aldehyde gives on heating with metallic s b) Ethyene a of ethylene dibromide is he b) Ethylene oms in octane s of octane formed in crackin atoms in octane ating standard rating of fuel	 c) LiAlH₄ b) A long chain fatty ac d) Epoxide odium in ether solution y c) 2-butene eated with granulated zinc, c) Butane ng of 1.0g of gasoline 	cid vields d) 1-butene the compound formed is: d) Isobutene								
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R = COOH \rightarrow RCH_2OH.$ a) NaBH ₄ 696. A Wittig reaction witha) Ketone compoundc) Olefin compound $697. Ethylene di bromide ofa) Ethene698. When alcoholic solutiona) Ethane699. Octane number is:a) Number of carbon atb) Number of moleculesc) Number of hydrogend) Number for represen700. When an aqueous solut$	only ition products This mode of reduction can b) Na + Alcohol an aldehyde gives on heating with metallic s b) Ethyene a of ethylene dibromide is he b) Ethylene oms in octane s of octane formed in cracking atoms in octane atoms in o	 c) LiAlH₄ b) A long chain fatty ac d) Epoxide odium in ether solution y c) 2-butene eated with granulated zinc, c) Butane ng of 1.0g of gasoline 	rid vields d) 1-butene the compound formed is: d) Isobutene is electrolysed we get:								
 b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction 695. <i>R</i>— COOH → <i>R</i>CH₂OH. a) NaBH₄ 696. A Wittig reaction with a) Ketone compound c) Olefin compound c) Olefin compound 697. Ethylene di bromide of a) Ethene 698. When alcoholic solution a) Ethane 699. Octane number is: a) Number of carbon at b) Number of molecules c) Number of hydrogen d) Number for represer 700. When an aqueous solut a) Ethane 	only ition products This mode of reduction can b) Na + Alcohol an aldehyde gives on heating with metallic s b) Ethyene a of ethylene dibromide is he b) Ethylene oms in octane s of octane formed in crackin atoms in octane uting standard rating of fuel ion containing sodium aceta b) Propane	 c) LiAlH₄ b) A long chain fatty ac d) Epoxide odium in ether solution y c) 2-butene eated with granulated zinc, c) Butane ng of 1.0g of gasoline ate and sodium propionate c) Butane 	cid vields d) 1-butene the compound formed is: d) Isobutene is electrolysed we get: d) All of these								
b) 1,4-addition product c) Both 1,2 and 1,4-add d) No reaction $695. R = COOH \rightarrow RCH_2OH.$ a) NaBH ₄ 696. A Wittig reaction witha) Ketone compoundc) Olefin compound $697. Ethylene di bromide ofa) Ethene698. When alcoholic solutiona) Ethane699. Octane number is:a) Number of carbon atb) Number of moleculesc) Number of hydrogend) Number for represen700. When an aqueous solut$	only ition products This mode of reduction can b) Na + Alcohol an aldehyde gives on heating with metallic s b) Ethyene a of ethylene dibromide is he b) Ethylene oms in octane s of octane formed in crackin atoms in octane uting standard rating of fuel ion containing sodium aceta b) Propane	 c) LiAlH₄ b) A long chain fatty ac d) Epoxide odium in ether solution y c) 2-butene eated with granulated zinc, c) Butane ng of 1.0g of gasoline ate and sodium propionate c) Butane 	cid vields d) 1-butene the compound formed is: d) Isobutene is electrolysed we get: d) All of these								

a) Curtius reaction b) Wurtz reaction c) Hofmann method d) Hinsberg method 702. Vic-dihalide on treatment with zinc dust gives: a) Alkane b) Alkene c) Alkyne d) All of these 703. Identify the substitute group, that acts as ortho - para director, during electrophilic substitution in aromatic compounds. a) $-NH_2$ b) $-NO_2$ c) $-SO_3H$ d) N_2 704. Order of acidity of H₂O, NH₃ and acetylene is: a) $NH_3 > CH \equiv CH > H_2O$ b) $H_2O > NH_3 > CH \equiv CH$ c) $H_2O > CH \equiv CH > NH_3$ d) $NH_3 > H_2O > CH \equiv CH$ ^{705.} $C_2H_5I + C_5H_{11}I + 2Na \xrightarrow{\text{Ether}} C_2H_5 - C_5H_{11} + 2Nal$ The above equation represents: a) Hofmann's reaction b) Dow's reaction c) Wurtz synthesis d) Reimer-Tiemann's reaction 706. Identify Z in the sequence, $CH_{3} - CH_{2} - CH = CH_{2} \xrightarrow{HBr/H_{2}O_{2}} Y \xrightarrow{C_{2}H_{5}O^{-}-Na^{+}} Z:$ $CH_{3} - CH - CH_{2} - O - CH_{2} - CH_{3}$ a) CH₃ CH₃-CH₂-CH-O-CH₂-CH₃ | CH₃ b) c) $CH_3 - (CH_2)_3 - 0 - CH_2 - CH_3$ d) $CH_3 - (CH_2)_4 - 0 - CH_3$ 707. Which will give cyclooctyne when treated with base? a) 1,2-dibromocyclobutane b) 1,1-dibromocyclobutane c) 1,1-dibromocyclooctane d) 1,2-dibromocyclopropane 708. The final product in following sequence of reaction is $CH \equiv CH \xrightarrow{NaNH_2} A \xrightarrow{CH_3Br} B$ a) $CH_2 = CH - CH = CH_2$ b) HC \equiv C – CH₃ c) $CH_2 = CH - CH_3$ d) $CH_3 - CH_2 - CH_3$ 709. What are the products obtained upon the ozonolysis of pent-2-ene? a) CH₃CH₂CHO b) CH₃CHO c) CH₃COCH₃ d) Both (a) and (b) 710. Addition of halogen acid occurs at slowest rate in: a) $CH_2 = CHCl$ b) $CH_2 = CH_2$ c) $CH_3 - CH = CH_2$ d) $(CH_3)_2C = CH_2$ 711. Benzyl chloride ($C_6H_5CH_2Cl$) can be prepared from toluene by chlorination with b) SOCl₂ d) NaOCl a) SO_2Cl_2 c) Cl_2 712. The Markownikoff's rule is the best applicable to the reaction between a) $C_2H_4 + HCl$ b) $C_3H_6 + Br_2$ c) $C_3H_6 + HBr$ d) $C_3H_8 + Cl_2$ 713. Which of the following acid reacts to reverse the Markownioff's rule? a) HCl b) HBr c) HF d) HI 714. The addition of HOCl on alkenes in presence of strong acids to form halohydrins proceeds via formation of: b) Carbocation c) Chloro carbocation d) None of these a) Chloronium ion 715. On treatment with chlorine in presence of sunlight, toluene gives the product

- a) *o*-chloro toluene
- c) *p*-chloro toluene
- 716. The most oxidized form of hydrocarbon *R*CH₃ is: a) CO₂ b) *R*CHO
- b) 2,5-dichloro toluene
- d) Benzyl chloride

c) *R*COOH

d) RCOCOOH

- 717. Ethylene is used for:
 - a) Ripening of food
 - b) Preparing ethylene oxide
 - c) For preparing ethylene chloride
 - d) All are correct

13.HYDROCARBONS

					EY :	ER K	W	: ANS						
192)	b	191)	b	190)	d		d	4)	а	3)	С	2)	а	1)
196)	b	195)	С	194)	b	193)	С	8)	d	7)	С	6)	b	5)
200)	d	199)	с	198)	а	197)	а	12)	а	11)	С	10)	d	9)
204)	а	203)	d	202)	b	-	b	16)	а	15)	b	14)	b	13)
208)	b	207)	а	206)	С	-	d	20)	b	19)	b	18)	d	17)
212)	d	211)	d	210)	а		а	24)	а	23)	d	22)	а	21)
216)	а	215)	b	214)	С	213)	С	28)	b	27)	а	26)	b	25)
220)	а	219)	с	218)	а	217)	С	32)	с	31)	а	30)	с	29)
224)	b	223)	С	222)	С	-	d	36)	d	35)	а	34)	а	33)
228)	b	227)	с	226)	b	225)	с	40)	С	39)	d	38)	d	37)
232)	d	231)	b	230)	а		а	, 44)	b	43)	b	42)	а	, 41)
236)	b	235)	а	234)	С		а	48)	d	47)	b	46)	d	45)
240)	d	239)	с	238)	b	-	b	52)	b	51)	b	50)	с	49)
244)	a	243)	b	242)	a		а	56)	b	55)	b	54)	a	53)
248)	d	247)	d	, 246)	a		а	60)	С	59)	a	58)	С	57)
252)	d	251)	a	250)	a		a	64)	d	63)	a	62)	d	51)
256)	a	255)	a	254)	С	-	d	68)	f	67)	a	66)	b	55)
260)	d	259)	b	258)	b	-	d	72)	c	71)	d	70)	c	ie) i9)
<u> 264</u>)	b	263)	a	262)	b	-	b	76)	c	75)	b	74)	d	'3)
268)	d	267)	c	266)	b		a	80)	d	79)	c	78)	d	2) 7)
272)	d	271)	a	270)	b	-	b	84)	c	83)	d	82)	d	·) 31)
276)	b	275)	b	274)	d	273)	c	88)	b	87)	c	86)	a	85)
280)	a	279)	d	278)	d	-	b	92)	b	91)	c	90)	c	.e) 89)
284)	b	283)	b	282)	b	281)	b	96)	c	95)	c	94)	a) 3)
288)	b	287)	d	286)	d		a	100)	c	99)	c	98)	C)7)
292)	d	291)	b	290)	a	000	a	100)	c	103)	d	102)	d	
29 <u>6</u>)	a	295)	c	294)	a	-	c	101)	d	107)	c	102)	a	L05)
300)	a	299)	b	298)	c	-	b	112)	d	111)	c	110)	c	L09)
304)	d	303)	a	302)	c	301)		116)	b	115)	a	110) 114)	a	.13)
308)	b	303) 307)	a	306)	a	305)		120)	b	119)	b	118)	b	.17)
312)	b	311)	b	310)	d	309)		124)	c	123)	d	122)	b	21)
312) 316)	a	315)	c	314)	C C	313)		121)	c	123)	c c	126)	a	.25)
320)	d	319)	b	318)	c	317)		132)	c	131)	d	130)	a	.29)
324)	b	323)	a	322)	a	321)		136)	b	135)	b	134)	C L	.33)
328)	d	323) 327)	c	326)	a	325)		140)	b	139)	b	138)	a	.37)
332)	a	331)	d	330)	b	329)		144)	c	143)	b	130) 142)	b	.41)
336)	b	335)	d	334)	b	333)		148)	c	147)	a	146)	d	45)
340)	d	339)	b	338)	d	337)		152)	b	151)	a	150)	a	.49)
344)	a	343)	b	342)	b	341)		152)	c	151)	C C	150) 154)	b	.53)
348)	a	347)	c	346)	d	345)		160)	a	159)	a	151)	d	.57)
352)	c c	347) 351)	a	350)	c c	349)		164)	c c	163)	a	162)	b	.61)
352) 356)	с а	351) 355)	a C	354)	с b	353)		164) 168)	c	163) 167)	a C	166)	C	lo1)
330) 360)	a d	353) 359)	d	354) 358)	C	355) 357)		172)	d	107)	a	100) 170)	с b	.03) .69)
364)	u a	363)	u b	362)	C C	361)		172)	u a	171) 175)	a d	170)	b	109) 173)
364) 368)	a C	363) 367)	a	366)	a	365)		180)	a d	173) 179)	u C	174)	b	L73)
308) 372)	с а	307) 371)	a d	370)	a b	369)		184)	u b	179)	с а	178)	b b	177) 181)
5/4]	a	5/15	u	3703	U	2021	U	104J	U	1033	a	104	U	101)

377)	а	378)	С	379)	d	380) (d 58 1	l) (582)	а	583)	b	584)	b
381)	b	382)	b	383)	d	384) I	585	5) (:	586)	а	587)	С	588)	С
385)	d	386)	С	387)	а	388) l	589)) (ł	590)	b	591)	b	592)	d
389)	а	390)	а	391)	а	392) a	a 593	8) a	L	594)	а	595)	С	596)	С
393)	С	394)	b	395)	С	396) (1 592	7) (1	598)	а	599)	d	600)	b
397)	а	398)	С	399)	b	400) a	a 601	l) a	1	602)	b	603)	d	604)	d
401)	b	402)	d	403)	а	404) a	a 605	5) (1	606)	b	607)	d	608)	f
405)	d	406)	С	407)	С	408)	1 609) a	l I	610)	b	611)	С	612)	С
409)	b	410)	d	411)	b	412) a	a 613	3) a	1	614)	b	615)	С	616)	а
413)	С	414)	d	415)	b	416)	617	7) (:	618)	С	619)	а	620)	а
417)	b	418)	d	419)	С	420)	62 1	l) a	l I	622)	b	623)	а	624)	С
421)	С	422)	b	423)	С	424) I	625	5) d	:	626)	С	627)	b	628)	d
425)	а	426)	d	427)	d	428) a	a 629) a	1	630)	d	631)	d	632)	b
429)	а	430)	С	431)	а	432)	633	3) a	1	634)	С	635)	с	636)	b
433)	b	434)	b	435)	С	436) a	a 637	7) a	1	638)	С	639)	с	640)	b
437)	а	438)	С	439)	а	440)	d 641	L) a	1	642)	С	643)	d	644)	а
441)	С	442)	а	443)	d	444)	645	5) a	1	646)	С	647)	b	648)	b
445)	а	446)	b	447)	а	448) I	649) a	1	650)	d	651)	b	652)	С
449)	b	450)	а	451)	d	452) I	653	s) o		654)	d	655)	b	656)	d
453)	d	454)	d	455)	b	456)	657	7) f		658)	С	659)	С	660)	d
457)	С	458)	d	459)	а		661	-	1	662)	С	663)	С	664)	С
461)	С	462)	а	463)	С		665	5) o		666)	а	667)	b	668)	d
465)	С	466)	d	467)	d	468)	669) ł)	670)	b	671)	а	672)	b
469)	b	470)	С	471)	b	472)	673	s) o		674)	С	675)	b	676)	d
473)	d	474)	С	475)	d		677	-	1	678)	С	679)	b	680)	С
477)	а	478)	b	479)	а	400)	a 681	-	1	682)	С	683)	с	684)	b
481)	С	482)	b	483)	С		685	-		686)	b	687)	а	688)	d
485)	b	486)	b	487)	b	400)	a 689	-		690)	а	691)	с	692)	b
489)	С	490)	а	491)	а		693	-		694)	С	695)	d	696)	С
493)	d	494)	d	495)	d	-	a 697	/) (698)	b	699)	d	700)	d
497)	а	498)	b	499)	d		70 1	-)	702)	b	703)	а		с
501)	d	502)	с	503)	b	-	1 70	-		706)	С	707)	с	708)	b
505)	b	506)	а	507)	b	-	b 709	-		710)	d	711)	с	712)	С
509)	b	510)	С	511)	С	-	a 713	-		, 714)	а	715)	d	716)	С
513)	с	514)	d	515)	b	-	5 717	-		,		,		,	
517)	d	518)	d	519)	b		a	,							
521)	b	522)	а	523)	b	-	ł								
525)	b	526)	d	527)	b	-	ł								
529)	b	530)	а	531)	d	-	5								
533)	b	534)	а	535)	а	-	5								
537)	b	538)	С	539)	С		a								
541)	d	542)	b	543)	С	-	t								
545)	b	546)	b	547)	d	-	ł								
549)	а	550)	а	551)	С	-	đ								
553)	b	554)	b	555)	d	-	đ								
557)	а	558)	а	559)	d		4								
561)	b	562)	d	563)	С		a								
565)	а	566)	С	567)	d		a								
569)	b	570)	d	571)	d	-	5								
573)	b	574)	d	575)	С	-	đ								
577)	С	578)	d	579)	b		4								
-						,	l							_ •	

13.HYDROCARBONS

: HINTS AND SOLUTIONS :

The formation of the alkene in an elimination reaction is called Hofmann elimination (Thermal decomposition). Elimination of hydrogen occurs from the β-carbon. So,

$$CH_2N^{\dagger}Me_3OH^{-} \rightarrow CH_2$$

2 **(c)**

Bees wax is myricyl palmitate, *i. e.*, $C_{15}H_{31}COOC_{30}H_{61}$.

3 **(a)**

The knocking order is:

Straight > branched >olefins>arenes. chain alkane chain alkane

4 **(d)**

Follow peroxide effect.

5 **(b)**

Successive homologous differ by —CH₂ gp.

6 **(c)**

1, 2-dihalogen (*vicinal*) derivatives of the alkanes on reaction with zinc dust and methanol produces alkenes by loss of two halogen atoms (dehalogenation).

$$CH_3 - CH - CH_2 + Zn \xrightarrow{Alcohol/\Delta} CH_3CH = CH_2$$

$$| \qquad | \qquad propylene$$
Br Br
$$1.2 \text{ dilumentation}$$

1,2-dibromopropane

7 **(d)**

Ethylene is formed by dehydrohalogenation of alkyl halide in presence of alcoholic KOH. Ethylene decolourise alkaline KMnO₄ due to get oxidized by it.

$$CH_3 - CH_2I \xrightarrow{Alc.KOH} CH_2 = CH_2$$

ethylene

8 **(c)**

 $(CH_3)_2CH - C \equiv C - CH_2CH_3 \xrightarrow{[0]} (CH_3)_2CH_2COOH$ $+ CH_3CH_2COOH$

9 **(d)**

Benzene is obtained by the polymerisation of acetylene,. Similarly, mesitylene is obtained by the polymerisation of propyne.

$$3CH_{3} \longrightarrow C = CH \xrightarrow{Fe, \Delta} \xrightarrow{CH_{3}} \xrightarrow{CH_{3}} \xrightarrow{CH_{3}} \xrightarrow{CH_{3}} \xrightarrow{CH_{3}} \xrightarrow{CH_{3}} \xrightarrow{CH_{3}} \xrightarrow{CH_{3}} \xrightarrow{H_{3}C \to SCO_{2} + 4H_{2}O$$
11 (a)
Follow cleavage of two bonds at multiple bonding position during ozonolysis.
12 (a)
$$CH_{2} = CH_{2} + CH_{3}COCI \xrightarrow{AICI} CH_{3}COCH_{2}CH_{2}CI.$$
13 (b)
It is a Corey House synthesis of alkanes.
14 (b)
$$C_{2}H_{2}$$
 is used for artificial ripening of fruits. $C_{2}H_{4}$ for natural ripening.
15 (a)
Follow Markownikoff's rule for addition.
16 (b)
Ethane gives a mixture of nitroethane and nitromethane.
$$CH_{3} - CH_{3} + HNO_{3}$$
Ethane
$$\frac{673 K}{-H_{2}O} CH_{3} - CH_{2} - NO_{2} + CH_{3}NO_{2}$$
nitro ethane (minor)
(major)
During nitration chain fission of alkanes also takes place, so $CH_{3}NO_{2}$ is also obtained along with $CH_{3}CH_{2}NO_{2}$.
17 (d)
Coal gives coal gas.
19 (b)
Frankland reaction: $2CH_{3}Br \xrightarrow{Zn}{}C_{2}H_{6}.$
20 (d)
$$CHCOOK CH$$

$$|| \qquad \frac{Electrolysis}{CH} || + 2CO_{2} + 2KOH + H_{2}$$

cathode Potassium maleate

21 **(a)**

F₂ reacts violently even in dark.

acetylene anode

22 (d)

> *e*. g., $CH_3CH_2CH = CH_2$ is unsymmetrical. $CH_3CH = CHCH_3$ is symmetrical. Note the positions of carbon atoms on two sides of double bond.

23 (a)

Due to non-polar nature, alkanes are insoluble in water because water is a polar solvent.

24 (a)

 $(a)CH_3 - CH = CH_2 \xrightarrow{B_2H_6}$ $(CH_3 - CH_2 - CH_2)_3B \xrightarrow{OH^-} CH_3CH_2CH_2OH$

Hydroboration of alkenes followed by hydrolysis in basic medium yield alcohol.

$$(B)CH_3 - CH_2 - CH_2I \xrightarrow{HI/P} CH_3 - CH_2 - CH_3$$

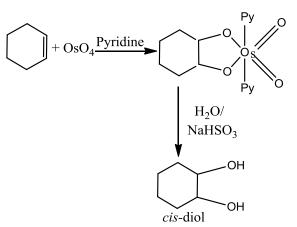
propane

Reduction of alkyl halides yield alkane.

 $\xrightarrow{\text{CaO}} \text{CH}_3\text{CH}_2\text{CH}_3 + \text{Na}_2\text{CO}_3$

Propane

Decarboxylation of sodium salt of fatty acid yield alkane having one carbon atom less than parent acid salt.


25 **(b)**

Nitrating, mixture is conc. HNO_3 + conc. H_2SO_4 .

It produces NO₂⁺ electrophile which carried out electrophilic substitution reaction.

26 (a)

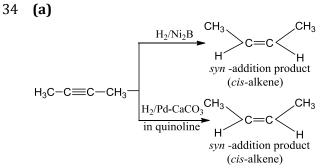
 OsO_4 is a valuable oxidising agent. It oxidises alkenes to give cis - diols.

27 **(b)**

 Al_4C_3 on hydrolysis gives methane gas. $Al_4C_3 + 12H_2O \rightarrow 4Al(OH)_3 + 3CH_4$

- (c) Vegetable oils are esters of glycerol or glycerides.
- 31 (c)

29


As the conjugation increases, heat of hydrogenation decreases. Thus, alkene (c) with two isolated double bonds has the highest heat of hydrogenation.

$$CH_3CH_2CH_3 \xrightarrow{400-600^{\circ}C} CH_2 = CH_2 + CH_4$$
(X)
(Y)

33 (a)

3

The position of the double bond in alkene is identified by ozonolysis. Bromine water is used to detect the presence of π -bond whereas ammoniacal silver nitrate AgNO₃ is used to detect the presence of terminal alkynes or - CHO group

While with Na/NH_3 or LiAlH₄, trans alkene is obtained, ie, anti-addition product (4)

35 (d)

$$H_3C - CH_2C \equiv CH \xrightarrow{AgNO_3} CH_3CH_2C \equiv CAg$$

(1-butyne) (silver-1 butynide)
 $H_3C - C \equiv C - CH_3 \xrightarrow{AgNO_3}_{NH_4OH}$ No reaction
2-butyne
36 (d)

 $\begin{array}{l} CH_{3}COONa \xrightarrow{Soda lime} CH_{4} \\ Al_{4}C_{3} + 12H_{2}O \longrightarrow 4Al(OH)_{3} + 3CH_{4} \\ CH_{3}I \xrightarrow{2H} CH_{4} + HI. \end{array}$

37 **(d)**

Reaction of HBr with propene in the presence of peroxide gives *n*-propyl bromide. This addition reaction is an example of *anti*-Markownikoff's addition reaction.

(*i.e.*, it is completed in form of tree radical addition.)

 $CH_3 - CH = CH_2 + HBr \xrightarrow{Peroxide} CH_3 - CH_2 - CH_2Br$

n-propyl

bromide

38 **(d)**

Friedel-Craft reaction proceeds *via* most stable carbocation

39 **(c)**

Follow text.

41 **(a)**

The polymer is $-(CH_2CH)_{\overline{n}}$.

42 **(b)**

Symmetrical alkenes on ozonolysis give same product during ozonolysis.

43 **(b)**

 C_2H_2 is commercially named narcylene.

$$CH_{3}I + 2H \xrightarrow[]{Or Zn-Cu/C_{2}H_{5}OH} CH_{4} + HI$$

methane
$$CH_{3}I + 2Na + ICH_{3} \xrightarrow[]{Dry ether} CH_{3} - CH_{3}$$

+ 2NaI
ethane

45 **(d)**

CH₃COONa + NaOH \xrightarrow{CaO} CH₄ + Na₂CO₃ 82 g CH₃COONa gives 22.4 litre CH₄.

46 **(b)**

 $2CH_3I + 2Na \xrightarrow{\text{Ether}} C_2H_6 + 2NaI$

48 **(a)**

It is the name of reaction.

49 **(c)**

Na/Liq. NH $_3$ or LiAlH $_4$ reduce hex-2-yne to transhex-2-ene.

50 **(b)**

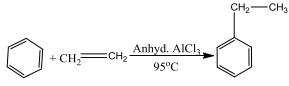
The number of di-and poly-halogenation products 61

depends upon (i) and the number of different types of hydrogens present in an alkane and (ii) the number of halogens introduced $CH_{3}-CH_{2}-CH_{3}-CH_{3} \xrightarrow[CH_{3}]{H_{2}} CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}Br$ $CH_{3}-CH_{2}-CH_{2}-CH_{2}Br$ $CH_{3}-CH_{2}-CH_{2}-CH_{2}Br$ $CH_{3}-CH_{2}-CH_{2}Br$ $+ \operatorname{BrCH}_2 - \operatorname{CH}_2 - \operatorname{CH}_3 + \operatorname{CH}_2 - \operatorname{CH}_3 + \operatorname{CH}_2 - \operatorname{CH}_3 + \operatorname{CH}_2 - \operatorname{CH}_3 + \operatorname{CH}_3 + \operatorname{CH}_3 - \operatorname{CH}_3 + \operatorname{CH}_3 +$ 51 (b) $CH_2 - CH_2 \xrightarrow{KOH \text{ alc.}} CH_2 = CHBr \xrightarrow{NaNH_2} CH \equiv CH$ Br Vinyl bromide loss HBr only by strong base. 53 (a) General formula of cycloalkane is $C_n H_{2n}$. 54 (b) When alkene is passed over AlCl₃, isomerisation takes palce $CH_3-CH_2-CH_2-CH_3 \xrightarrow[200^{\circ}C]{AlCl_3} \rightarrow CH_3-CH-CH_3$ *n*-butane 55 **(b)** According to Huckel's rule, the molecules which contain $(4n + 2)\pi$ -electrons are aromatic. 56 **(a)** AgC \equiv CAg is white and CuC \equiv CCu is red. 58 (a) $CaC_2 + 2H_2O \rightarrow C_2H_2 + Ca(OH)_2$ ethyne 59 (c) $CH_3 - C \equiv C - CH + 2(H) \xrightarrow{\text{Li}}_{\text{lig NH}_2}$ trans -2-butene 2-butyne But in presence of Lindlar's catalyst $(Pd - CaCO_3)$ 2-butyne reacts with hydrogen giving *cis*-2-butene. $CH_3 - C \equiv C - CH + H_2 \xrightarrow{Pd - CaCO_3}$ (2-butyne) H₃C CH_3

cis -2-butene

(d)

 $CH_3CH_2C \equiv CH \xrightarrow{[0]} CH_3CH_2COOH + HCOOH$ 62 (a) Ethane is already a saturated compound. 63 (d) HIO₃andHNO₃ both are oxidizing agent. HI is 75 (c) reducing agent which can reduce CH₃COCH₃ to propane, $CH_3 - COCH_3 + 4HI \rightarrow CH_3CH_2CH_3 + H_2O + 2I_2$ 76 **(b)** 64 **(a)** We know that $CH_3CH_2Cl + KOH \rightarrow CH_2 = CH_2 + KCl + H_2O$ 77 **(d)** Thus, in this reaction ethene (C_2H_4) is produced. 65 **(b)** This reaction is utilized for the preparation of higher alkynes $CH_3 - C \equiv C - H + Na \xrightarrow{Liq.NH_3} CH_3 - C \equiv C - Na$ Propyne 78 (c) $CH_3 - C \equiv C - Na + BrCH_3 \rightarrow CH_3 - C$ $\equiv C - CH_3 + NaBr$ 79 **(d)** But-2-yne 66 (a) B.P. increases with increase in mol. wt. 67 **(f)** These are common reductants. 68 (d) $CH \equiv CH \xrightarrow{\text{Lindlar's}} CH_2 = CH_2$ Lindlar's catalyst prevents further reduction of 81 (d) ethane to ethane. 69 (c) Am. Cu₂Cl₂gives red ppt.with alkyne. 70 (d) 82 (d) $(C_2H_5)_4NOH \xrightarrow{\Delta} (C_2H_5)_3N + C_2H_4 + H_2O$ 72 (d) Ozonolysis involves the breaking of double bond and insertion of O atoms in place of double bond. Therefore, the structure of alkene is as H_3C C C C C C C C C H_3 C C C H_3 C O_3/H_2O bond). acetaldehyde H_3C — CH — CH_3 2-butene


74 **(b)**

Alkenes on treatment with diazomethane (CH_2N_2) in the presence of UV light give cyclopropane and its derivatives. This addition

takes place across the double bond $CH_2N_2 \xrightarrow{UV \text{ light}} :CH_2 + N_2$ $CH_{3}CH=CH-CH_{3}+:CH_{2}\longrightarrow CH_{3}-CH-CH_{3}$ CH₂ Fluorination is highly explosive and occurs violently. CH₃CH₂CH₂CH₂CH₂Cl; CH₃CH₂CH₂CHClCH₃; CH₃CH₂CHClCH₂CH₃ CH_3CH \longrightarrow CH_2+HOBr \longrightarrow CH_3CH $-CH_2Br$ propene 1-bromo-2-propanol The addition takes place according to Markownikoff's rule. $C + H_2 \xrightarrow{Arc} C_2 H_2$ Wurtz-Fittig reaction + CH₃Cl + 2 Na -Ether + 2 NaCl The reaction is used to yield aromatic hydrocarbons. Alkanes are non-polar and have almost non-polar bonds C—H and non-polar bond C—C. They show only substitution reactions in presence of light. Alkene $\underbrace{O_3 / H_2 O / Zn}_{H_2 O} \sim C = O + CH_3 CH_2 CHC$ To identify alkene (from ozonolysis products)place these products with 0-atoms face to face. Replace 0-atoms by = (double

83 (c)

By the reaction of benzene with ethylene in presence of anhydrous AlCl₃, ethylbenzene is produced.

84 (b)

Double bond is broken to give ketone and acid.

85 (a)

Toluene has electron releasing group (CH₃) thus it most reactive towards electrophilic nitration

86 (c)

 $C_n H_{2n} O = 44$ $C_n H_{2n} = 44 - 16 = 28$ \therefore n = 2So, $CH_3 - CH = CH - CH_3$ is symmetrical alkene. Thus,

$$CH_3 - CH = CH - CH_3 \xrightarrow{I.O_3}{II.Zn/H_2O} 2CH_3 - CH = C$$

87 **(b)**

Conversion of propene to propanol is hydration.

$$CH_3 - CH = CH_2 + H_2O \xrightarrow{H_2SO_4} CH_3 - CH - CH_3$$

Propene propanol-2

88 (c)

The process is called aromatization.

89 (c)

 $CH_{420} + 2O_{250} \rightarrow CO_{20} + 2H_2O_{0}$ ₁₀ Liquid

90 (c)

$$CH_3$$

 $|$
 CH_3 — C — CH_3 is symmetrical alkane and will
 $|$
 CH_2

give only one monosubstituted product. Is symmetrical alkane and will give only one monosubstituted product.

Also
$$C_n H_{2n+2}$$
, *i.e.*, $12n + 2n + 2 = 72$
 $\therefore \qquad n=5$

91 (b)

> The number of disubstituted products of benzene is three

> > para-

orthoտ 92

$$R'MgX + HC \equiv CR \rightarrow R'H + RC \equiv CMgX$$

93 (a)

$$2CH_{3}COONa \xrightarrow{\text{Electrolysis}} 2CH_{3}COO^{-} + 2Na^{+}$$

At anode
$$2CH_{3}COO^{-} \xrightarrow{} 2CH_{3}COO^{+} + 2e^{-}$$

$$2CH_{3}^{-} \xrightarrow{} 2CO_{2}$$

$$2CH_{3}^{-} \xrightarrow{} CH_{3} - CH_{3} \text{ (ethane)}$$

95 (c)

Reactivity towards electrophilic substitution increases as the electron density in the benzene ring increases. Since CH_3 is a strong electron donating group thus can be most readily sulphonated

 $CH_2 = CH - CH_3 + H_2O \xrightarrow{H_2SO_4} CH_2 - CH CH_3$ Propylene isopropyl

alcohol

Thus, in this reaction isopropyl alcohol is formed.

98 (c)

> $CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$ $C_2H_2 + Cu_2Cl_2 \rightarrow CuC \equiv CCu$ (Red ppt.)

100 (a)

According to Huckel's rule, an aromatic compound should have $(4n + 2)\pi$ -electrons. Where, *n* is an integer, *i*. *e*., 0, 1, 3, 4, ... and

possesses unusual stability due to the delocalisation of π -electrons.

102 **(d)**

The octane no. for *n*-heptane is zero.

103 **(c)**

This is hydrogenation of alkane.

104 **(a)**

Tar, *i.e.*, pitch contains alkanes from C_{30} to C_{40} chain.

105 **(a)**

Thermal decomposition of alkanes in the absence of air is called cracking or pyrolysis *e*.*g*.,

 $CH_4 \xrightarrow{1000^{\circ}C} C + 2H_2$

106 **(c)**

The following are the necessary conditions for compound to be aromatic.

- 1. Molecule must be planar and cyclic.
- 2. Conjugated double bond must be present.
- 3. It must have $(4n + 2)\pi$ -electrons.

107 **(d)**

 $CH_2 = CH - CH = CH_2; sp^2 - sp^2 (C - C)bond$ length is 1.34 Å 1 2 3 4

108 **(c)**

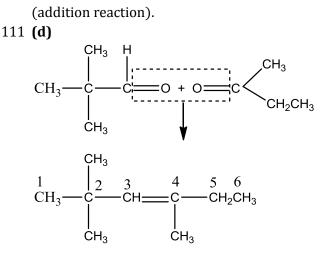
 $CH_2 = CH - CH_2Cl + CH_3MgI \rightarrow$

allyl chloride

$$CH_2 = CH_2 - CH_2 - CH_3 + Mg < CH_3 +$$

109 **(c)**

(i)Among alkanes boiling point increases with increase in molecular mass.


(ii)Among isomeric alkanes the boiling point decreases with branching due to decrease in surface area.

n-octane will have highest boiling point because it has highest number of carbon atoms and does not show branching.

110 **(c)**

$$CH_{3}CH_{2}CH = CH_{2} + Br_{2} \longrightarrow CH_{3}CH_{2}CH - CH_{2}Br$$

$$|$$
Br

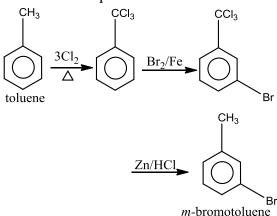
2, 2, 4 trimetyl-3-hexene

То

determine alkene, place these products with O-atoms face to face and replace O-atoms by =bond.

114 **(a)**

The presence of $dilH_2SO_4$ and mercury salts, alkynes add a molecule of H_2O to form aldehydes or ketones


CH₃CH₂CH=CH + H₂O
$$\xrightarrow{\text{Hg}^{2+}, \text{ dil H}_2\text{SO}_4}$$
 [CH₃-CH₂-C=CH₂]
 $\xrightarrow{\text{O}}$ [CH₃CH₂-CH₃ $\xrightarrow{\text{CH}_2-\text{C}}$ [CH₃-CH₂-CH₂]

115 **(b)**

 $6R - CH = CH_2 \xrightarrow{B_2H_6} 2(RCH_2CH_2)_3 B_2$ $2(RCH_2CH_2)_3B_2 \xrightarrow{6H_2O_2} RCH_2CH_2OH + 2H_3BO_3$ This process always gives alkanol-1 from alkane-1.

117 **(b)**

Side chain hydrogen atoms are substituted in presence of light or heat. Ring hydrogens are substituted in presence of Lewis acid.

118 **(b)**

Direct iodination of alkane is not possible because of reversible nature of HI. It is therefore carried out in presence of HgO or HIO_3 . $CH_4 + I_2 \rightarrow CH_3I + HI$ HgO + 2HI \rightarrow HgI₂ + H₂O

119 **(b)**

is aromatic

is aromatic.

It contains 3 double bonds (6π electrons). According to Huckel rule $(4n + 2)\pi = 6\pi$ electrons where, n = 1

120 **(b)**

Since, the alkene of oxidation gives only acetic acid, therefore, the alkene must be

symmetrical containing two carbon-atoms on either side of the double bond, *ie.*, 2-butene.

 $CH_{3}CH = CHCH_{3} \xrightarrow{KMnO_{4}} 2CH_{3}COOH$ (d)

122 **(d)**

When carbon is bonded to four other atoms, the angle between any pair of bonds

= 109°, 28′ (tetrahedral angle) but the ring of cyclobutane is square with four angles of 90°. So, deviation of the bond angle (angle strain) in cyclobutane

$$= 109°28' - 90°/2 = 19°28'/2 = 9°44'$$

123 **(c)**

Excess of Cl_2 finally converts all products to CCl_4 .

124 **(a)**

n-heptane gives toluene; *n*-octane gives ethyl benzene.

125 **(a)**

The H-atoms of terminal alkyne (*ie.*, $H_3C - C \equiv CH$) is weakly acidic. $CH_3 \equiv CH + NaNH_3 \xrightarrow{\text{Liq.NH}_3} H_3C - CH \equiv CNa + NH_3$

126 **(c)**

HCOONa $\xrightarrow{\text{NaOH}}$ H₂ + Na₂CO₃

127 **(c)**

Alkyl halides undergo reduction with red phosphorus and hydrogen iodine $CH_3CH_2CH_2I \xrightarrow{\text{Red P/HI}}_{150^{\circ}C} CH_3CH_2CH_3$

128 **(a)**

CH₄ diffuses rapidly because of low mol. wt.

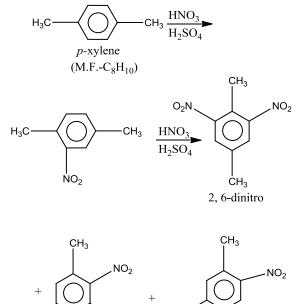
129 **(a)**

Boiling point \propto molecualr mass $\propto \frac{1}{\text{branching}}$

(\therefore surface area decreases)

 \therefore *n*-hexane has the highest boiling point among the given.

130 **(d)**


In this conformer Cl is at equatorial position and is least hindered.

131 **(c)**

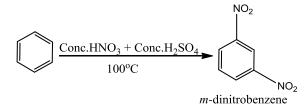
Rest all are industrial uses of C_2H_2 .

132 **(d)**

In *p*-xylene, the four nuclear H-atoms are equivalent and hence, only one on e mononitro derivative is formed. But it gives three dinitro derivatives (2,3;2,6 and 2,5) as shown below

CHa

2, 3-dinitro


 O_2N

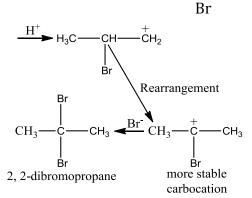
ĊH₃

2, 5-dinitro

134 **(b)**

At 60° (low temperature) mononitration occurs and nitrobenzene is obtained but at 100°C, nitrobenzene further undergoes electrophilic substitution and gives mdinitrobenzene (as – NO₂ is a *meta* – directing group).

135 **(b)**


Rest all are aromatic compounds.

136 **(b)**

General formula of alkane is $C_n H_{2n+2}$; 2n + 2 = 10.

137 (a)

 $CH_3 - C \equiv CH + HBr \rightarrow CH_3 - C = CH_2$

$$CH_{3} - CH = CHBr \xrightarrow{HBr} CH_{3} - CH_{2} - CHBr_{2}$$
$$CH \equiv CH \xrightarrow{2HBr} CH_{3}CHBr_{2}$$
$$CH_{3} - CH = CH_{2} \xrightarrow{HBr} CH_{3} - CHBr - CH_{3}$$

138 **(b)**

 $CH_2 = CH_2 + HCI \rightarrow CH_3CH_2Cl$ (addition reaction).

140 (d)

Primary alcohols are oxidized to aldehydes and then to acid to decolourise KMnO₄. Also ethylene oxidizes to formic acid.

141 **(b)**

Propyne gives white ppt. with ammoniacal $AgNO_3$.

144 (a)

Homologues of benzene may be prepared by warming an ethereal solution of an alkyl or aryl halide with sodium

150 (a)

The first addition will occur on double bond. Thus,

 $CH \equiv CH - CH_2 - CH = CH_2 \xrightarrow{HBr} CH \equiv C - CH_2 - CHBr - CH_3$ but in $CH \equiv C - CH = CH_2$, the addition will occur at $CH \equiv C$ because the product formed is conjugated alkadiene, which is more stable.

Br

$$CH \equiv C - CH = CH_2 \xrightarrow{HBr} CH_2 = C - CH = CH_2$$

151 **(b)**

It is alicyclic or aliphatic unsaturated.

152 (a)

 $(C_2H_5)_4$ Pb on addition to gasoline increases its octane no. by about 5 units.

153 **(b)**

On heating with

sodamide(NaNH2 in liq. NH3), alkynide is formed

 $\bigcirc Hr + BrCH_2CH_3 \xrightarrow{2Na} O + 2NaBr = (62-72\%)$

145 **(d)**

These are characteristics of ozonolysis.

146 **(a)**

When a conjugated diene (diene) is heated with an unsaturated compound (dienophile) in a sealed tube, an addition product (adduct) is obtain. This reaction is called Diel's Alder reaction

148 **(b)**

Unsymmetric alkene and HBr are primary conditions for Kharasch effect.

149 **(a)**

$$H_{2}C = CH_{2} \xrightarrow{HBr} CH_{3}CH_{2}Br$$

$$(A)$$

$$\xrightarrow{Alc.KOH} H_{2}C = CH_{2}$$

$$(A)$$

Hence, $A = C_2 H_4$; $B = alc. KOH/\Delta$

154 (c)

Only alcoholic KOH gives dehydrohalogenation reaction. Ethyl chloride

reacts with alcoholic KOH as н H —H—→CH₂==CH₂ + H₂O +KCI ĊI Κ OH 156 (d) $CH_3CH_2CH - CH_3$ OH $\stackrel{\mathrm{H}^{+}}{\longrightarrow} \mathrm{CH}_{3} - \mathrm{CH}_{2} - \mathrm{CH} - \mathrm{CH}_{3} \stackrel{-\mathrm{H}_{2}\mathrm{O}}{\longrightarrow}$ $H - O^{+} - H$ $(Major)CH_3CH = CHCH_3$ $(Minor)CH_3CH_2CH = CH_2$ 157 (d) It is fact. Follow octane number. 158 (a) $CH_3C = CH_3 \xrightarrow{KMnO_4} CH_3COCH_3 + CH_3COOH$ CH_3 159 (a) 1-Butyne reacts with NaNH₂ to give sodium salt while 2-butyne does not react. Only terminal alkynes are acidic. $CH_3 - CH_2 - C \equiv C - H \xrightarrow{NaNH_2} No reaction$ $NH_3 + CH_3 - CH_2 - C \equiv C^{\Theta}Na^{\oplus}$ 160 (c) When an alkyl halide reacts with sodium in presence of dry ether, an alkane with the double number of carbon atoms than the parent halide, is obtained and this reaction is known as Wurtz reaction. 4 3 2 $CH_3 - CH - CH - Cl$ CH₃ CH₃ 2-chloro-3-methyl butane 3 2 $+CH_3 - CH - CH - Cl \xrightarrow{Na}_{Dry ether}$ CH₃ CH₃ 5 4 3 6 2 1 $CH_3 - CH - CH - CH - CH - CH_3$

$$|$$
 $|$ $|$ $|$ $|$
CH₃ CH₃ CH₃ CH₃ CH₃
2,3,4,5-tetramethyl hexane

$$\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{C} \equiv \mathrm{CH} \xrightarrow{\mathrm{Na/Liq.NH}_{3}} \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{C} \equiv \mathrm{CNa}^{+}$$

Considering the options given it appears correct. Na/liq. NH₃ is known for metal dissolved reduction. Actually it is truth that Na/liq. NH₃ reduces internal triple bond and terminal double bond and do not reduce the terminal alkyne due to such alkylide formation.

162 **(a)**

Homologous may or may not be straight chain compounds.

163 **(c)**

Ammoniacal cuprous chloride will give red precipitate with 1-alkynes (terminal alkynes). $CH_3 - C \equiv CH + 2[Cu(NH_3)_2]Cl \rightarrow$ $CH_3 - C \equiv C - Cu + 2NH_4Cl + 2NH_3$

(red ppt.)
$$C = C + C + 2NH_4C + 2NH_5$$

165 **(c)**

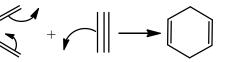
C—C bond involves $2sp^3 - 2sp^3(\sigma)$ whereas, C— H bond involves $2sp^3 - 1s(\sigma)$ in alkanes.

166 **(c)**

$$CH_4 + H_2O \xrightarrow{Ni/Al_2O_3} CO + 3H_2$$

167 **(c)**

Terminal alkyne reacts with ammoniacalAgNO₃ solution give a whilteppt, therefore *x* must be a terminal alkyne. Thus, *x* must be(CH₃)₂CHC \equiv CH (CH₃)₂CHC \equiv CH $\xrightarrow{\text{KMnO}_4}$ (CH₃)₂CHCOOH + [HCOOH]


168 (c)

$$RCH = CR_1R_2 + O_3 \xrightarrow{Zn} RCHO + R_1COR_2$$

170 **(a)**

$$CH_2Br - CH_2Br \xrightarrow{Zn} CH_2 = CH_2 + ZnBr_2$$

171 (d)

An alkyne combine with a conjugated diene to give an unconjugated cycloalkadiene. This reaction is known as **Diels-Alder reaction**.

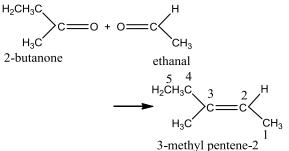
butadiene acetylene cyclohexadiene

172 **(a)**

Now-a-days used in refineries.

173 **(b)**

Kerosene contains alkanes from C_{12} to C_{16} .


174 (d)
On treatment with alcoholic KOH, 1chlorobutane gives 1-butene while 2chlorobutane gives 2-butene (major) +1butene (minor). Therefore, a mixture of 1butene +2-butene is formed.

176 **(a)**

$$X \xrightarrow{(i)0_3} C_2H_4O + CH_3CH_2 - C - CH_3$$

 $\label{eq:hyde} Aldehyde \ \ 2\mbox{-butanone}$ The aldehyde should be CH_3CHO because the molecular formula is C_2H_4O.

0

177 **(b)**

Octane no. for iso-octane has been arbitrarily assumed to be 100 and for n-heptane as zero.

178 **(c)**

$$CH_3CH_2CH = CH_2 \xrightarrow{HBr} CH_3CH_2CHBrCH_3$$
(d)

179 **(d)**

In cyclopropane the angle strain is maximum. Hence, it is highly strained molecule and consequently most unstable. The angle strain in cyclobutane is less than cyclopropane. Hence, cyclobutane is more stable. This stability increases up to 6 membered rings then decreases from 7 to 11 membered rings and from the 12 membered rings onwards attains the stability of 6 membered ring. Heat of combustion is a method of measuring chemical stability. Hence, cyclohexane has the lowest heat of combustion.

180 **(d)**

At 70–120°C gasoline, at 150–250°C kerosene; at 250–400°C diesel oil.

190 **(b)**

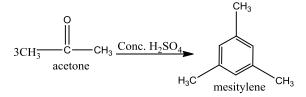
Mustard gas is β , β -dichlorodethylsulphide which is prepared by the action of sulphur monochloride on ethylene.

181 **(b)**

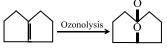
Triple bond is shifted from centre to corner.

183 **(b)**

Oxymercuration-demercuration is an example of hydration of alkene according to Markownikoff's rule


$$(CH_{3})_{3}CCH=CH_{2} \xrightarrow{(CH_{3}COO)_{2}Hg} (CH_{3})_{3}C-CH-CH_{2} \xrightarrow{(H_{3})_{3}C-CH-CH_{2}} OH HgOOC.CH_{3} \xrightarrow{(Y)} \xrightarrow{NaBH_{4}} (CH_{3})_{3}-C-CH-CH_{3} \xrightarrow{(Y)} OH 3,3-dimethyl-butan-2-ol$$

184 **(b)**


Cetane number of hexadecane is 100 and of methyl naphthalene is zero.

185 **(c)**

Distillation of acetone with concentrated conc. H_2SO_4 gives mesitylene.

186 **(b)**

See rupture of C=C to convert it to C=O.

187 **(b)**

Soda lime (NaOH + CaO) is used to slow down the decarboxylation otherwise the reaction will occur violently.

188 **(b)**

More is the amount of CO in exhaust fuel, more incomplete is combustion of fuel.

189 **(d)**

It may be $CH_3CH_2C \equiv CH$ or $CH_2 = CH - CH = CH_2$ or $CH_3HC = CH - CH_3$.

$$\begin{array}{c} CH_2 \\ \parallel \\ CH_2 \\ CH_2 \\ sulphur \\ monochloride \\ H_2 \\ monochloride \\ H_2 \\ H_2 \\ H_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ H_2 \\ CH_2 \\ CH_2 \\ H_2 \\ H_2 \\ CH_2 \\ H_2 \\$$

 $CH \equiv CH + CH_3OH \xrightarrow{CH_3ONa} CH_2 = CH. OCH_3$ is nucleophilic addition.

192 (a)

 CH_4 obtained in (c) is contaminated with C_2H_2 , C_2H_4 and H_2 .

193 **(b)**

Larger is surface area, more is viscosity. Surface area decreases with increase in branching.

196 (a)

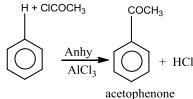
 $C_{5}H_{12}has molecular mass = 72$ CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CH_{3}

will give only one mono substituted product.

197 (a)

(i)Electron rich groups are o, p directing ., -OH, -Br, -CH₃ etc.

(ii)Electron deficient groups having multiple bonds are *m*-directing.


eg., –COOH, –NO₂

198 **(c)**

In the given compounds only acetophenone is prepared by substitution. Other compounds are prepared by addition reactions.

Acetophenone is prepared when benzene reacts with acetyl chloride in presence of

anhy. AlCl₃ as

200 (d)

 $CH_{2} = CH - CH_{2}CH_{3}$ Butene-1 $\xrightarrow{Pd/H_{2}} CH_{3} - CH_{2} - CH_{2} - CH_{3}$ butane
Other reagents are successful with p

Other reagents are successful with polar double bonds.

Ph − C ≡ C − CH₃
$$\xrightarrow{\text{Hg}^{2+}/\text{H}^{+}}$$
 Ph − C = CH − CH₃
|
OH
Ph − C = CH₂CH₃

Follow mechanism of Wurtz reaction.

205 (c)

It is a non-terminal alkyne.

0

(A)

207 **(b)**

1, 2-bromo cyclopentane on heating with 1^- in acetone gives cyclopentene.

208 **(b)**

Terminal alkynes react with am. $AgNO_3$ or $Ag(NH_3)^+_2OH^-$ to give white ppt.

209 **(a)**

The reactivity order of 1° , 2° and 3° H-atoms has been explained in terms of hyper conjugation.

210 **(d)**

212 (a)

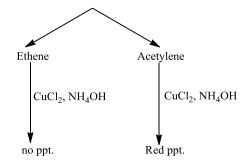
$$CH_{3}CH_{2}C \equiv CH + H_{2}O \xrightarrow{HgSO_{4}/H_{2}SO_{4}}$$
1-butyne

$$OH \qquad OH \qquad | \qquad |$$

$$CH_{3}CH_{2}C = CH_{2} \xrightarrow{H_{2}O} CH_{3}CH_{2} - C - CH_{3}$$

$$| \qquad | \qquad OH \qquad unstable$$

$$^{-H_{2}O}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}CH_{2}CH_{3}CH_{2}CH_{3}C$$


$$\xrightarrow{\text{M20}} \text{CH}_3\text{CH}_2 - \text{C} - \text{CH}_3$$

$$|| \\ 0$$
hutan-2-one

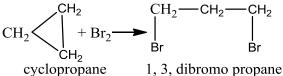
butan-2-one

The reactivity order is, $Cl_2 > Br_2 > I_2$.

213 (c) Decolourisation of KMnO₄ (unsaturation test)

214 **(b)**

Indane is commercial name of L.P.G.


215 **(a)**

Terminal alkynes react with ammoniacal $AgNO_3$ to give silver salt as they have acidic hydrogen.

$$CH_3 - C \equiv CH + AgNO_3 + NH_4OH \rightarrow$$

$$CH_3 - C \equiv C.Ag + NH_4NO_3 + H_2O$$

217 **(a)**

Cyclo propane is the most unstable cyclic compound. So, with bromine it gives an open chain compound 1, 3-dibromopropane.

218 **(c)**

Addition of HBr to an alkene in the presence of peroxide is the example of free radical addition reaction

$$R - O - O - R \longrightarrow 2R - O^{\bullet}$$

$$R - O^{\bullet} + HBr \longrightarrow R - OH + Br^{\bullet}$$

$$R - CH = CH_{2} + Br^{\bullet} \longrightarrow CH_{3} - CH_{2}Br$$

$$CH_{3} - CH_{2}Br \longrightarrow CH_{3}CH_{2}CH_{2}Br + Br$$

$$Br^{\bullet} + Br^{\bullet} \longrightarrow Br_{2}$$

219 **(a)**

All H-atoms in *neo*-pentane are equivalent thus, it will yield monochloro product

220 **(b)**

Acetylenichydrogens are acidic because sigma electron density of C - H bond in acetylene is nearer to carbon, which has 50% *s*-character

221 **(c)**

Follow text.

222 **(c)**

Wurtz reaction Alkyl halide reacts with sodium in presence of dry ether forms alkane is known as Wurtz reaction. $CH_3Br + 2Na + BrCH_3$ $\xrightarrow{\text{Ether}} \text{CH}_3 - \text{CH}_3 + 2\text{NaBr}$

223 **(b)**

It is an experimental fact.

224 **(c)**

(i)Unsaturated hydrocarbons are more reactive than saturated hydrocarbons. (ii)Among alkene and alkyne, alkene are more reactive because $C \equiv C$ is quite strong bond.

∴ Correct order of reactivity

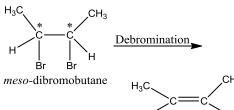
Alkene>alkyne>alkane

or
$$C_2H_4 > C_2H_2 > C_2H_6$$

ethene ethyne ethane

225 **(b)**

$$(C_6H_{10}O_5)_n + nH_2O \xrightarrow{\text{Bacteria}} 3nCH_4 + 3nCO_2$$


226 **(c)**

It is a common method to prepare alkanes. Methane cannot be prepared by Wurtz reaction.

$$CH_3Br + 2Na + BrCH_3 \rightarrow C_2H_6 + 2NaBr$$

ethane

227 **(b)**

Symmetrical optical isomers are called mesomers.

cis-2-butene
228 **(b)**
$$CH \equiv CH + HBr \rightarrow CH_2 = CHBr$$

229 **(a)**

$$CH_3CH_2COONa \xrightarrow{Electrolysis} CH_3(CH_2)_4CH_3 + NaOH + H_2$$

230 **(b)**

233 (c)

$$2\text{CHCl}_3 + 6\text{Ag} \rightarrow \text{C}_2\text{H}_2 + 6\text{AgCl}$$

231 (d)In the presence of ferric chloride, electrophilic substitution at *ortho* and *para* position take place

232 **(b)** Butyne reacts with Na/liq. NH₃ to give *trans*product.

$$CH_{3}-C \equiv C - CH_{3} \xrightarrow{Na / Liq.NH_{3}} \xrightarrow{H_{3}C} C = C + CH_{3}$$

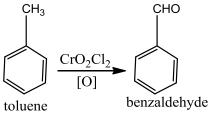
trans-product

CH₃
(H₃ – CH₂ – CH – C = CH
$$\frac{4 \times 4 \times 3 H_2}{4 \times 3}$$

3-methyl-1-pentyne
CH₃ – CH₂ – CH – C = CH $\frac{1}{12}$ ($\frac{1}{12}$ ($\frac{1}{2}$)
CH₃ – CH₂ – CH – C = CO + CO + HCO H
Optically active carboxylic acid.
236 (a)
The mechanism of Wurtz reaction is:
C₂H₃H₃H + Na – C₄H₄ + Na Hr
C₂H₃ + C₂H₅ – C₁H₄.
237 (b)
When sodium propionate is heated with
sodalime, ethane is formed.
238 (c)
246 (d)
CH₃ – CH₂ – C₄H₂ – C₄H₄.
237 (c)
238 (c)
238 (c)
238 (c)
239 (d)
H₂C₂C₄ + C₂H₅ – C₄H₄.
(CH₃ – CH₃ – CH₃ – CH₄.
(CH₃ – CH₃ – CH₄ – CH₄.
239 (c)
239 (c)
239 (c)
239 (c)
239 (c)
239 (c)
241 (c)
(CH₃)₃C – MgCl + D. OD
Grignard reagent
~ (CH₃)₃C – MgCl + D. OD
Grignard reagent
~ (CH₃)₃C – MgCl + D. OD
Grignard reagent
~ (CH₃)₃C – MgCl + D. OD
Grignard reagent
~ (CH₃)₄C – D + MgCl(OD)
(Grignard reagent
~ (CH₃)₄C – D + MgCl(OD)
(Grignard reagent
~ (CH₃)₄C – C₂H₄ – C₄H₄.
247 (d)
82 (CH₃)₄C – D + MgCl(OD)
(Grignard reagent
~ (CH₃)₄C – C₄H₄ – C

Page | 72

`СН₃


Due to more close packing, even carbon atom alkanes have higher value.

258 **(b)**

Product will be spiropentane.

260 (a)

Toluene is oxidised to benzaldehyde in presence of chromyl chloride. This reaction is called Etard's reaction.

262 (a)

Markownikoff's addition the negative part of the unsymmetrical reagents adds to a less hydrogenated (more substituted) carbon atom of the double bond. In ICl, Cl is more electronegative. So, it will take negative charge, . e., I⁺Cl⁻. So, the product is

$$RCH_2CH \longrightarrow CH_2 + \frac{+}{1CI} \longrightarrow R \longrightarrow CH_2 - CH_2 - CH_2H_2$$

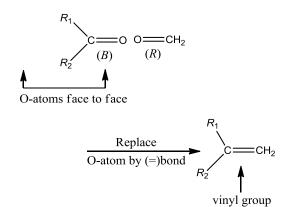
263 (b)

Reduction of CH₃COCH₃ with HI and red P will give propane

264 (a)

Acetylene is acidic and thus reacts with NaNH₂. Na. Amm. AgNO₃ reduces itself on reacting with acetylene with HCl it gives addition reactions. However, being weak it does not react with NaOH.

265 **(b)**


Alkenes give carbonyl compounds on ozonolysis

Alkene $\xrightarrow{O_3/Zn/H_2O}$ HCHO + other carbonyl compound

(A)

$$\begin{pmatrix} R_1 \\ CH_2 \\ B \end{pmatrix}$$

To determine alkene, place carbonyl compounds with their O-atom face to face. Replace O-atom by a double bond

266 (c)

An increase in molecular weight results in an increase in van der Waals' forces of attractions which results in an increase in b.p.

268 (b)

$$CH_2 = CH_2 \xrightarrow{H_2O} CH_3. CH_2OH$$
269 **(b)**

LPG is a mixture of lower alkanes mainly isobutene and butane.

271 (d)

Reducing agent P + HI gives alkane in every case. 272 **(b)**

```
Lewisite is
CH = CHAsCl_2 formed by the action of
Cl
                   Η
```

$$AsCl_3$$
 on $CH \equiv CI$

Follow Saytzeff's rule for elimination.

276 (c)

Any aliphatic carbon with hydrogen attached to it, in combination with benzene ring, will be oxidised to benzoic acid by $KMnO_4/H^+$.

277 (d)

 $CH_4 + HNO_3 \xrightarrow{\Delta} CH_3NO_2$; nitration reaction.

Terminal alkynes give red. Ppt. with amm. Cu₂Cl₂.

An isolated alkadiene has double bonds, one at each corner.

281 (b)

Na will react with —OH group

283 (b)

PhMgBr can be protonated by any of the protic solvent *e*. *g*. , *CH*₃*OH*.

$$PhMgBr + CH_{3}OH \longrightarrow Ph - H + Mg < OCH_{3}$$

284 (d)

Br

Addition of iso-octane to gasoline increases octane number of fuel or decreases knocking.

285 (d)

Because of less density cyclo hexane floats over water.

286 (d)

 $CH_2 = CH_2 + H_2O + [O]$ $\xrightarrow{Baeyer'sreagent} CH_2OH. CH_2OH$

287 **(b)**

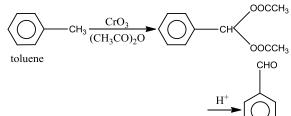
The reduction of >C=C< only to >CH—CH< is influenced by H_2 /catalyst.

289 (a)

Except NaOH rest all reacts with C_2H_2 .

290 **(b)**

Catalytic hydrogenation is free radical addition. Also more is heat of hydrogenation ($\Delta H = -ve$) more is reactivity for alkene for hydrogenation.


291 (d)

It is simply called addition of halogen.

292 (c)

 $CO + 3H_2$, is called synthetic gas.

293 **(a)**

benzaldehyde

294 **(c)**

Alkaline KMnO₄ converts an H-atom to —OH gp.

295 (a)

*Gem*dihalides on treatment with alcoholic KOH give alkyne.

$$CH_3 - CH < X \xrightarrow{\text{alc. KOH}} HC \equiv CH + 2HX$$

ethyne

296 **(c)**

Ag⁺ ion increases the solubility of alkenes due to the formation of $p\pi - d\pi$ bonding. 297 (c)

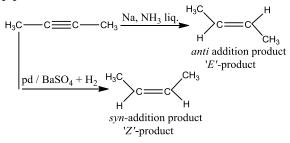
 $CH \equiv CH + 2HCHO \rightarrow HOH_2C - C \equiv C - CH_2OH$

Acetylene 2, butyne-1, 4-diol

298 **(b)**

 $(CH_3)_2$ CHCOONa $\xrightarrow{NaOH+CaO}$ $(CH_3)_2$ CH₂ + Na₂CO₃

Alkenes show electrophilic addition.


301 (c)

Methane cannot be produced by Wurtz reaction, Kolbe's electrolytic method and reduction with H₂because, it has one carbon atom.

Pure methane can be produced by the decarboxylation of sodium acetate.

$$CH_3COONa + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3$$

Soda lime methane

302 **(a)**

Hence, reagent X and Y are respectively Na, NH_3 and $Pd/BaSO_4 + H_2$.

303 **(d)**

When methane is oxidised in presence of molybdenum oxide (MoO), it gives methanal (formaldehyde).

$$CH_4 + 2[O] \xrightarrow{[MoO]} HCHO + H_2O$$

formaldehyde

304 **(d)**

Propyne reacts with $AgNO_3$ in NH_3 to give while ppt. of silver acetylide and propene does not react with it. (Only terminal alkynes react with $AgNO_3$ in NH_3).

 $CH_3 - C \equiv CH + AgNO_3 + NH_3$

Propyne

 $\rightarrow CH_3 - C \equiv C Ag$
silver acetylide

(white ppt.)

$$CH_3 - CH = CH_2 + AgNO_3 + NH_3 \rightarrow$$

no reaction

305 **(a)**

Rotation of groups or atoms round single bond produces conformation.

306 **(a)**

A compound is said to have aromatic character if ring system is planar (with *p*orbital) and there is complete delocalisation of π -electrons (lone pair may be taken for delocalisation as relay electrons). This is true is conjugated cyclic system.

This pair is used in delocalisation Huckel rule is followed by when electrons used in delocalisation= $(4\pi + 2)$

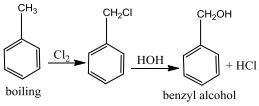
(including lone-pair) Where, n=0, 1, 2, 3,...

 $1 \underbrace{5}{2} \underbrace{4}{5} \underbrace{4}{1}$ (1, 3-cyclopentadiene)

- 4. ring is planar
- 5. ring is not conjugated
- 6. delocalisation of π -electrons is not possible after C₄.
- 7. $(4\pi + 2)\pi$ -electrons=4

Hence, it is not aromatic.

307 **(b)**


Kerosene contains C_{11} — C_{16} atoms alkanes.

308 (a)

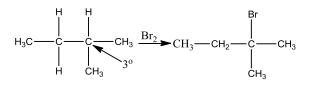
The stability of alkenes increases with increase in substitution of H attached on doubly bonded carbon by alkyl groups.

309 **(d)**

When chlorine is passed in boiling toluene, substitution in side-chain takes place and benzyl chloride is obtained which on hydrolysis give benzyl alcohol.

310 **(b)**

To oxidize HI formed during the reaction; otherwise the strong reducing nature of HI will reverse the iodination.


312 **(c)**

Reactivity of alkenes decreases with increase in no. of carbon atoms in alkene as well as substitution of H-atom attached to double bond.

313 **(c)**

 $CH_3C \equiv CH \xrightarrow{SeO_2} CH_3COCHO$ 314 (c)

> 3° (C – H) bond has minimum bond energy hence easily cleaved giving 2 bromo 2-methyl butane

315 **(a)**

$$(CH_3)_3CCH = CH_2 \xrightarrow{Hg(OOC.CH_3)_2} (CH_3)_3CCHCH_2HgOOCCH_3 \xrightarrow{NaBH_4} (CH_3)_3CCHOHCH_3 \\ | \\ OOCCH_2$$

316 **(d)**

These are facts about alkanes.

318 **(b)** CH₃

$$CH_{3} \xrightarrow[]{CH_{3}} CH_{3} \xrightarrow[]{CH_{3}} CH_{3} \xrightarrow[]{CH_{3}} CH_{3} \xrightarrow[]{CH_{3}} CH_{2}Br$$

$$\downarrow CH_{3} \xrightarrow[]{CH_{3}} CH_{3} \xrightarrow[]{CH_{3}} CH_{3}$$

Only primary hydrogen atoms are present here, thus only one product is formed

319 **(d)**

The phenomenon of decomposition of higher alkanes into lower hydrocarbons on heating in absence of air is called cracking.

320 **(a)**

Ethyl benzene cannot be prepared by Wurtz reaction. This method is suitable for the preparation of symmetrical alkanes.

321 **(a)**

$$AgC \equiv CAg \xrightarrow{HCI} CH \equiv CH$$

$$Cl_3 - C - CH = CH_2 \xrightarrow[anti-Markownikoff rule]{HCl} Cl_3$$

= $C = CH_2 - CH_2 Cl_3$

323 (b)

KOH alc., $NaNH_2$ and C_2H_5ONa are used for dehydrohalogenation.

324 **(b)**

Octane number represents percentage of isooctane.

325 **(a)**

Cyclopropane is most strained alkane; follow Baeyer's strain theory.

326 **(c)**

If the side chain is larger than a methyl group, the halogenation always at the benzylic carbon

$$\bigcirc^{\mathsf{CH}_3} \xrightarrow{\overset{\bullet}{\mathsf{CH}} \mathsf{H} - \mathsf{CH}_3} \bigoplus^{\mathsf{CHBr} - \mathsf{CH}_3} \xrightarrow{\mathsf{CHBr} - \mathsf{CH}_3} + \mathsf{F}$$

benzylic free 1-bromo-1-phenylethane (major product) radical

+ Br

327 (d)

 $C + H_2 \xrightarrow{Arc} C_2 H_2 + C_2 H_4 + C_2 H_6$ Main

328 **(b)**

Propene undergoes allylic substitution at this temperature instead of addition reaction.

330 (d)

 $C_2H_4(OH)_2$ is anti-freeze; C_2H_5Cl is solvent. C_2H_4O is fumigant.

331 (a)

 C_6H_6 is main product of light oil fraction.

333 **(b)**

C₂H₂ is commonly used in oxy-acetylene welding. 334 (d)

3-octyne is obtained by the reaction of 1bromobutane and but-1-yne in presence of sodamide.

 $CH_3CH_2C \equiv CH + NaNH_2$

$$\rightarrow$$
 CH₃CH₂ – C $\equiv \overline{C}$ Na⁺

 $CH_3CH_2C \equiv \overline{C}Na + BrCH_2CH_2CH_2CH_3$

$$\rightarrow \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{C} \equiv \mathrm{C} - \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}$$

3-octyne

335 (b)

In C₂H₅ each C-atom is *sp*-hybridised which contains 50% s-character. The greater the scharacter of an orbital, the bonding electron pair will be more inclinated towards the nucleus as a result carbon would acquire a negative charge and hydrogen a positive charge. Hence, it is acidic in nature.

$$H - C \equiv C: H$$

$$sp \quad sp$$

and removal of hydrogen as proton takes place.

336 (a)

Follow mechanism of addition reactions.

337 (d)

 $CH_2 = CH - CH = CH_2$ (1,3-dibutene) is a

conjugate diene because it has alternate carbon-carbon single and double bonds. It reacts with HBr. It also polymerises to form Buna-N rubber etc.

It also polymerises to form SBr.

340 (b)

The product of give reaction will be according to Markownikoff's rule, this is because peroxide effect is applicable only in case of HBr and not effective in case of HI.

$$CH_3 - CH = CH_2 \xrightarrow[peroxide]{H1} CH_3 - CH - CH_3$$

341 (b)

A characteristic reaction of aldehyde with Tollen's reagent. Rest all also attacks C=C.

342 (b)

When calcium carbide reacts with water, ethyne is formed.

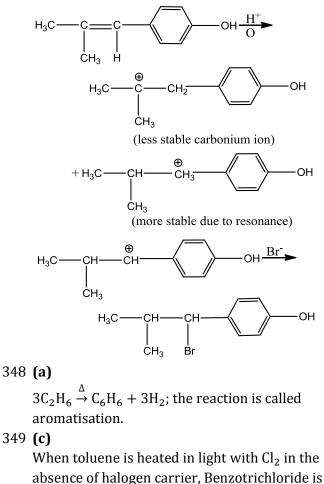
$$CaC_2 + 2H_2O \xrightarrow{-Ca(OH)_2} C_2H_2$$

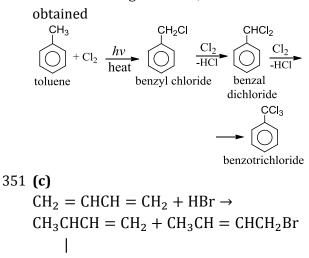
Calcium carbide ethyne

 $\xrightarrow[(ii)H_2O/H^+]{} HCOOH + HCOOH$ Formic Formic

acid acid

346 (c)


$$CH_{3}I \xrightarrow{Wurtz} C_{2}H_{6}; CH_{3}I \xrightarrow{Reduction} CH_{4}$$


$$CH_{3}COONa \xrightarrow{Electrolysis} C_{2}H_{6};$$

$$CH_3COONa \xrightarrow{NaOH} CH_4$$

347 (a)

The addition of HBr to an alkene is an example of electrophilic addition reactions. It takes place by following mechanism.

Br 1,2-addition product 1,4-addition product Addition is through the formation of allylic carbocation.

CH₂=CHCHCH₃ ← CH₃CH=CHCH₂ (2° allylic) (1° allylic) (more stable) (less stable) CH₂ = CHCHCH₃ ↔ CH₃CH = CHCH₂ Under mild conditions (temperature \approx -80°C) kinetic product is the 1, 2-addition product and under vigorous conditions (temp. \approx 40°C) thermodynamic product is the 1,4-addition product.

Thus, 1-bromo-2-butene is the major product under given condition.

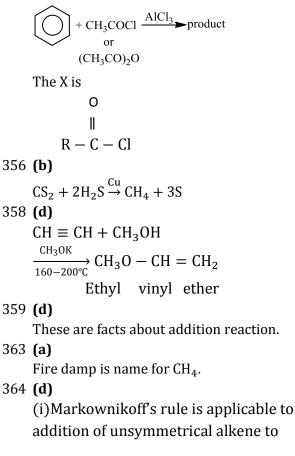
$$HC - CC_6H_5$$

 $\oplus C$

is aromatic because the compound is cyclic and number of π -electrons is 2, which is in accordance with the Huckel's rule, $(4\pi + 2)\pi$. When n=0, according to this rule, number of π -electrons is $4 \times 0 + 2 = 2$.

353 **(b)**

Ethylene reacts with 1% alkaline KMnO₄ gives ethylene glycol.

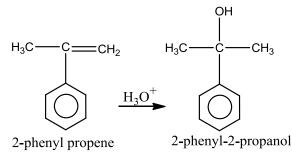

$$\begin{array}{ll} CH_2 & CH_2OH \\ || + H_2O + O \xrightarrow{1\% \text{ alkaline}}_{KMnO_4} | \\ CH_2 & CH_2OH \end{array}$$

354 (c)

Wurtz reaction.

355 **(a)**

Friedel-Craft's acylation in this reaction benzene reacts with acetyl chloride or acetic anhydride in presence of anhy. AlCl₃.


unsymmetrical reagent.

(ii)*Anti*-Markwonikoff's rule is applied to addition of HBr to unsymmetrical alkene in presence of peroxide. Free radical is the reaction intermediate during this reaction. According to this rule negative part of the reagent adds to carbon atom having more number of hydrogen atoms.

$$CH_{3} - CH = CH_{2} \xrightarrow[peroxide]{HBr}$$

$$CH_{3} - CH_{2} - CH_{2} - Br$$
365 (a)

Acidic hydration of 2-phenyl propene follows electrophilic reaction mechanism forming an intermediate 3° carbocation (more stable), thereby forming 2-phenyl-2-propanol.

366 **(a)**

 C_2H_4 is a monomer unit of polythene, *i. e.*, $(CH_2 - CH_2)_n$

367 **(c)**

Halogenation of alkanes is free radical substitution.

368 **(a)**

Staggered form is more stable.

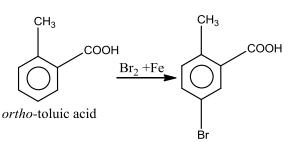
369 **(b)**

Alkene having all its H attached on double bond does not decolourise Br_2 water due to low reactivity.

370 (d)

R of RMg*X* reacts with acidic H to give alkane.

371 **(a)**


The carbon-carbon bond length in benzene (1.39 Å) in between that of C - C(1.54 Å) and C = C(1.34 Å) *i.e.*, in

between that of C_2H_6 and C_2H_4 .

373 **(c)**

Follow strainless ring theory.

374 **(c)**

(: In the product, -Br is *para* to $-CH_3$ and *meta* to -COOH.)

375 (c)

Hydrogenation of alkene or alkyne in presence of Ni is called Sabatier and Senderen's reaction.

~ . .

376 **(b)**

$$+ \frac{CH_3}{CH_3} CH - CH_2CI \xrightarrow{anhyd. AlCl_3} CH_3$$

This reaction is an example of Friedel-Craft's reaction.

Mechanism:

$$\begin{array}{c} CI \\ CI \\ H \\ CI \\ H \\ H \end{array}^{+} \xrightarrow{\text{Rearrangement}}_{\text{hydride ion shift}} \xrightarrow{\text{CH}_3}_{\text{CH}_3} \xrightarrow{+}_{\text{C}-\text{CH}_3}$$

377 (a)

$$CH_3$$
— CH = $CH_2 + NOCI$ — CH_3 — CH_3 — CH — CH_2
 $|$ $|$ $|$ $|$ CI

This reaction is an example of electrophilic addition reaction and in it addition takes place according to Markownikoff's rule.

378 **(c)**

H₂SO₄ absorbs ethene.

379 **(d)**

These all are poisonous gases.

380 **(d)**

It is an anti-termite.

381 **(b)**

The boiling points of straight chain or *n*-alkanes increases regularly with increasing number of carbon atoms

382 **(b)**

 $(C_2 H_5)_4$ is anti-knock agent and increase octane no. of gasoline.

384 **(b)**

It is a fact.

- 385 **(d)** It is definition.
- 387 **(a)**

When acetylene is passed through red hot iron tube, benzene is formed as

$$3C_2H_2 \xrightarrow{\text{Red not tube}} C_6H_6$$

(X)
Reaction (a) also gives
$$C_6H_6$$
 (or X) as
 $C_6H_5OH + Zn \xrightarrow{\text{Distillation}} C_6H_6 + ZnO$
389 (a)
 CH_3
 $(H_3 - CH - C - CH_3)$
 $| | |$
 $OH CH_3$
3,3-dimethyl butane-2-ol
 $CH_3 CH_3$
 $| | |$
 $\overrightarrow{ConcH_2SO_4} H_3C - C = C - CH_3$
 $2,3$ -dimethyl-2-butene
(major product)
390 (a)
Fractional distillation of petroleum gives a large
number of products aliphatic and aromatic.
391 (a)
 $(Cyclopenta dienyl anion)$
According to Huckel's rule
Total number of π -electrons inside the ring
 $(4n + 2)\pi$ electrons.
 $= (4 \times 1 + 2) = 6\pi$ electrons
So, it is aromatic.
392 (a)
Follow ozonolysis.
393 (c)
Natural gas is a mixture of 80% CH₄ and 10%
 $C_2H_6+10\%$ higher hydrocarbons.
394 (b)
 $C_2H_5Br + 2Na + BrC_2H_5 \rightarrow C_2H_5C_2H_5$ or *n*-
butane.
395 (c)
According to Huckel's rule an aromatic
compound has $(4n + 2)\pi$ -electrons, where,
 $n = 0, 1, 2, 3, \dots$ etc.
 $\stackrel{\bigoplus}{\longrightarrow}$; $4n + 2 = 2; n = 0;$ aromatic

$$interpretation in the second state of the se$$

397 (a)

Alkanes with six to 10 carbons are converted to aromatic hydrocarbons, *e*.g.,

$$C_{6}H_{14} \xrightarrow{Cr_{2}O_{3}} + 4H_{2}$$

$$C_{7}H_{16} \xrightarrow{Cr_{2}O_{3}} + 4H_{2}$$

399 **(b)**

With acidic manganese dioxide or chromyl chloride, in CCl₄ solution, toluene and all other homologues of benzene are oxidized to terminal carbon atom giving aldehydes

$$\bigcup_{i=1}^{CH_3} + 2[O] \xrightarrow{CrO_2Cl_2} \qquad \bigcup_{i=1}^{CHO} + H_2O$$

benzaldehyde

402 **(d)**

All are dehydrating agents.

403 **(a)**

Terminal alkynes give white ppt. with am. AgNO₃ 404 **(a)**

Alkyl halides can be reduced to hydrocarbons by means of Zn - Cu couple in presence of alcohol.

$$C_2H_5I \xrightarrow{Zn-Cu}_{C_2H_5OH} C_2H_6 + HI$$

ethane

405 **(d)**

(i) Wurtz reaction

 $2RX + 2Na \xrightarrow{\text{Ether}} R - R$

Alkane

(ii) Kolbe's reaction

 $R\text{COONa} + \text{H}_2\text{O} \xrightarrow{\text{Electrolysis}} R - R$

alkane

(iii) **Ulmann's reaction** $2C_6H_5I + 2Cu \rightarrow C_6H_5 - C_6H_5$

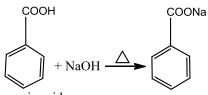
biphenyl

(iv) Frankland reaction

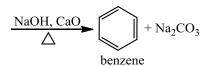
 $2RX + \mathrm{Zn} \to R - R$

- alkyl halide alkane
- 406 **(c)**
- Both carbon have two sigma bonds on each. 407 **(c)**

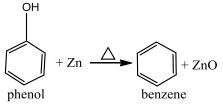
$$CH_3 - C \equiv C - CH_3 \xrightarrow{O_3} CH_3 - C \xrightarrow{O_4} CH_5$$


$$\xrightarrow{\text{Zn/H}_2\text{O}} \text{CH}_3 - \text{C} - \text{C} - \text{CH}_3$$
$$|| \qquad || \\0 \qquad 0$$

408 **(d)**


Note this temperature used in oxy-acetylene welding.

409 **(b)**


Benzene can be obtained by heating benzoic acid with sodalime.

benzoic acid

Benzene can also be obtained by heating phenol with zinc dust.

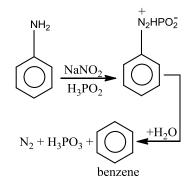
410 **(d)**

Due to acidic hydrogen.

411 **(b)**

Fractional distillation of petroleum gives a large number of products aliphatic and aromatic.

413 **(c)**


t. radicals are most readily formed.

414 **(d)**

According to the Huckel rule, a compound will be aromatic if compound should have $(4\pi + 2)\pi$ conjugated or delocalized electrons where *n* is a

whole number and it may be n = 0, 1, 2, 3, 4, 5, 6, ...

415 **(b)**

In this reaction H_3PO_2 serves both as an acid as well as a reducing agent.

- 416 **(c)**
 - C₂Cl₆ is artificial camphor.

418 **(d)**

1, 3-butadiene is $CH_2 = CH - CH = CH_2$; alternate single and double bonds.

419 **(c)**

Hexane and onwards alkanes are sulphonated. Isobutene is also sulphonated due to 3°H-atom.

422 **(b)**

Acetylene has some acidic character and its hydrogen gets replaced by silver to give silver acetylide.

$$CH \equiv CH + 2AgNO_3 + 2NH_4OH =$$

AgC = CAg \begin{array}{c} +2NH_4NO_3 + 2H_2O\\ white \end{array}

423 **(c)**

Beryllium carbide gives CH_4 , magnesium carbide (MgC_2) and calcium carbide (CaC_2) give acetylene while silicon carbide being covalent does not undergo hydrolysis

424 **(b)**

The greater the branching, smaller is surface area, lesser is attraction among molecules and so low b.p.

425 (a)

Chair form is more stable.

426 **(d)**

Both free radicals are used in terminating step.

427 **(d)**

It involves removal of a molecule from substrate.

428 **(a)**

$$CH \equiv CH \xrightarrow{Ozonolysis} CHO. CHO$$
$$\xrightarrow{Reduction} CH_2OH. CH_2OH$$

429 (a)

It is a test for unsaturation in molecule.

430 (c)

On electrolysis of potassium salt of fumaric and maleic acid, ethyne gas is obtained. CH

СНСООК

Electrolysis \rightarrow ||| + 2CO₂ + 2KOH + H₂ СНСООК CH

Potassium maleate ethyne

431 (a)

Column I	Column II		
Benzene	$(4n + 2)\pi$ -		
	electrons		
Ethylene	Mustard gas		
Acetaldehyde	Silver mirror		
Chloroform	Phosgene		

Benzene has 6π -electrons, *i. e.*, it follows Huckel rule $(4n + 2)\pi$ -electrons. Ethylene reacts with S_2Cl_2 to give mustard gas (war gas).

433 **(b)**

Follow peroxide effect.

434 **(b)**

 $CH_3CH_2CH_2CH = CH_2 + Br_2$ \rightarrow CH₂CH₂CH₂CH₂CHBrCH₂Br ::70 g C₅H₁₀ requires 160 g Br₂ :.5g C₅H₁₀ requires $\frac{160 \times 5}{70} = 11.43$ g Br₂

435 (c)

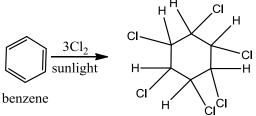
These are characteristics of C_2H_4 .

436 (a)

All those groups which contain at least one pair of non-bonding electrons on the atom adjacent to the benzene ring, are ortho and para directing. Among the given options, all are *ortho* and *para* directing but their capacity of *ortho* – *para* direction follows the order

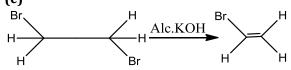
 $----CH_3 > ---C_2H_5 > ----CI$ Hence, $\stackrel{\bullet}{\longrightarrow} NH_2$ is the strongest *ortho* –

para directing groups.


437 (a)

 π electrons = 4 + 2 = 6 As it obeys Huckel rule, it is aromatic

438 (c)


An insecticide, gammexane, is formed. It is also called benzene hexa chloride (BHC), though it is wrong. The correct chemical name is *syn*:hexachloro cyclohexane.

440 (d)

Alkane is $(C_2H_5)_4C$.

441 (c)

Vinylic bromide is more stable stronger base $(-NH_2^-)$ is required for elimination.

443 (d)

An infinite conformers of ethane are possible including staggered, skew and eclipsed forms.

444 (c)

By adding bromine water to a solution, if the colour of bromine water decolourise then the compound is unsaturated. This is a confirmatory test for unsaturation.

445 (a)

Halogenation in alkane follow free radical mechanism. Formation of free radical occurs in presence of light.

448 (b)

Removal of H_2O from a substrate by a dehydrating agent is called dehydration.

449 **(b)**

The catalyst used is called Ziegler's catalyst.

451 (d)

Terminal alkyne has acidic hydrogen which is enough to protonate the Grignard reagent. $CH_3MgX + CH_3C \equiv CH$

$$\rightarrow$$
 CH₄ + CH₃C \equiv CMgX

452 (b)

 $CH_2 = CH - CH = CH_2;$ $sp^2 sp^2$ sp^2 sp^2 453 **(d)**

 $HCCl_3 + 6Ag + Cl_3CH \xrightarrow{Heat} HC \equiv CH + 6AgCl$ Chloroform choloroform acetylene Thus, in this reaction acetylene (HC \equiv CH) is produced.

454 **(d)**

Methyl iodide and ethyl iodide, on treatment with sodium in ethereal solution, give a mixture of propane, ethane and butane, as follows $CH_3I + 2Na + I - CH_2CH_3$ Ether CH_CH_CH_CH_CH_2Na + 2Na I

$$\longrightarrow CH_3CH_2CH_3 + 2NaI$$
Propane
$$CH_3I + 2Na + I - CH_3 \rightarrow CH_3 - CH_3 + 2NaI$$
ethane
$$C_2H_5I + 2Na + I - C_2H_5 \rightarrow C_2H_5C_2H_5 + 2NaI$$
butane

455 **(b)**

H is replaced by Cl.

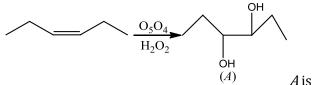
456 **(c)**

$$CH \equiv CH + HOCl$$

$$\rightarrow CH(OH)_2 - CHCl_2$$

$$\xrightarrow{-H_2O} CHOCHCl_2$$

457 (c)


$$CH_2 = CH_2 \xrightarrow{HOCl} CH_2OH. CH_2Cl$$

458 **(d)**

Heat of hydrogenation $\propto \frac{1}{\text{stability}}$

Among the given buta-1,3-diene is resonance stabilized, *ie*, more stable, thus it has lowest heat of hydrogenation

459 **(a)**

meso diol.

- 460 **(b)**
- Both are unsaturated and give Baeyer's test. 461 **(c)**

Conjugated alkadiene have alternate single and double bond,

 $e. g., CH_2 = CH - CH = CH_2.$

463 **(c)**

Natural gas is 80% CH₄, coal gas contains 40% CH₄; Marsh gas is another name for CH₄.

464 **(b)**

Iodoform and Ag undergo dehalogenation reaction to produce acetylene.

(A)HCOOK + H₂O
$$\xrightarrow{\Delta}$$
 H₂ + CO₂ + KOH
(B)2CHI₃ + 6Ag $\xrightarrow{\Delta}$ CH \equiv CH + 6AgI
Iodoform silver acetylene
(C)CH₃CH₂OH $\xrightarrow{\text{Conc.H}_2\text{SO}_4}_{443\text{K}}$ CH₂ = CH₂ + H₂O
Ethylene
(D)Be₂C + H₂O \rightarrow CH₄
methane

465 **(c)**

In Wurtz reaction alkyl halide reacts with sodium in presence of dry ether to give alkanes *e*.*g*.,

$$C_{2}H_{5}Cl + 2Na + ClC_{2}H_{5}$$

$$\xrightarrow{(dry ether)} C_{4}H_{10} + 2NaCl$$

butane

In Wurtz reaction wet ether is not used because wet ether destroy the sodium metal.

466 **(d)**

When excess of benzene reacts with CH_2Cl_2 in presence of anhy. AlCl₃, diphenylmethane is obtained

$$\bigcirc$$
 + CH₂Cl₂ + \bigcirc anhy. AlCl₃

$$\bigcirc$$
 -CH₂- \bigcirc + 2HCl diphenylmethane

This reaction is an example of Friedel-Crafts'

Gasoline among all has lowest b.bt.

469 **(b)**

POCl₃ is a dehydrating agent

$$CH_3 \longrightarrow POCl_3 \to CH_3 \longrightarrow CH_3$$

$$CH \equiv CH + HOCl \rightarrow CH(OH)$$

= CHCl \xrightarrow{HOCl} CH(OH)₂CHCl₂
 \rightarrow CHCl₂. CHO

471 **(b)**

Reaction of 4-octyne and H_2 can be arrested at the alkene stage only by using palladium partially inactivated with trace of quinoline

472 **(c)**

It is the name of reaction.

473 (d)
CH₃ - CH₂ - CH₂ - C ≡ CH + CH₃MgBr
Methyl magnesium
bromide

→ CH₄ + Mg
$$\sqrt{\sum_{C==CH_2CH_2CH_2CH_3}}$$

Due to the presence of acidic hydrogen
(hydrogen attached to triply bonded carbon
atom) terminal alkyne (*d*) will react with
methyl magnesium bromide.
474 (c)
Degree of instauration= $\frac{2n_1+2-n_2}{2}$; where, n_1 is the
number of carbon atoms and n_2 the number of
hydrogen atoms.
In compound
Number of carbon atoms =8
Number of hydrogen atoms=12
Degree of unsaturation= $\frac{2\times 8+2-12}{2} = 3$
477 (a)
C₂H₄ + H₂SO₄ → C₂H₅HSO₄; addition of H₂SO₄
on ethane.
478 (b)
Peroxide effect is noticed only in case of HBr. For
HCI follow Markownikoff's rule.
481 (c)
Pent-3-yne is not correct; it is pent-2-yne;
CH₃-C ≡ C--CH₂CH₃.
482 (b)
CH₃C ≡ CH $\stackrel{[0]}{\rightarrow}$ CH₃COCOOH
484 (b)
Like gets dissolved in like; alkane and benzene
both are non-polar.
488 (a)
CH₄ cannot be prepared by Kolbe's electrolysis;
HCOONa gives H₂and CH₃COONa gives CH₄.
490 (a)
F₂ reacts more violently.
491 (a)
Markownikoff's rules are valid for only

asymmetric alkenes. 2-butene is a symmetric

alkene. 492 (c) This is electrophilic addition of HCN molecular across $C \equiv C$ in presence of vinyl cyanide. СН $CH + HCN \xrightarrow{Ba(CN)_2} CH_2$ Ш CHCN Vinyl cyanide 494 (d) It is a new anti-knocking agent used in place of tetraethyl lead to control lead pollution by gasoline in developed countries. 496 (a) Angle strain in cyclopropane is 24°44' $\theta = \left[180 - \frac{360}{n}\right]$ $= \left[180 - \frac{360}{3}\right]$ $= 180 - 120 = 60^{\circ}$ Angle strain $\alpha = \frac{1}{2} [109^{\circ}28' - \theta]$ $=\frac{1}{2}[109^{\circ}28'-60^{\circ}]$ $= 24^{\circ}44'$ 497 (a) When propyne reacts with water in presence of HgSO₄ and H₂SO₄ acetone is formed.

$$CH_{3}C \equiv CH + H. OH \xrightarrow{Hg^{2+}}_{H_{2}SO_{4}}CH_{3} - C = CH_{2}$$

$$|$$

$$OH$$

$$\overrightarrow{Ketonisation}CH_{3} - C - CH_{2}$$

$$||$$

498 **(b)**

If two different alkyl halides $(R_1 - X \text{ and } R_2 - X)$ are used, a mixture of three alkanes is obtained which are difficult to separate

0

$$CH_{3}CH_{2}CH = CHCH_{3} \xrightarrow{Ozonolysis} CH_{3}CH_{2}CHO + CH_{3}CHO$$

500 **(c)**

Chlorination of CH_4 is free radical mechanism. 501 (d)

Unsaturated molecules decolourise Baeyer's reagent.

502 (c)

An alkene on reductive ozonolysis gives 2molecules of $CH_2(CHO)_2$. Hence, the alkene is 1, 4-cyclohexadiene.

$$\underbrace{(i) O_3}_{(ii) H_2O/Zn} 2 \text{ OHC} CH_2$$

503 **(b)**

 $C_{2}H_{5}I + C_{3}H_{7}I + 2Na$ $\xrightarrow{\text{Ether}} C_{2}H_{5}C_{3}H_{7}; C_{4}H_{10}; C_{6}H_{14}$

504 **(d)**

Friedel-Craft's acylation it involves the treatment of benzene with acetyl chloride or acetic anhydride in presence of anhydrous aluminium chloride.

$$\bigcirc$$
 + CH₃ - C - CI $\xrightarrow{\text{AlCl}_3}$ \bigcirc + HCl acetophenone

505 **(b)**

Oxidation of 1-butene first gives a mixture of propionic acid and formic acid. Formic acid, however, gets further oxidised to

 $\rm CO_2$ and $\rm H_2O.$ Therefore, option (b) is correct.

507 **(b)**

A compound is said to be aromatic if it meets of the following criteria.

- 8. The rings of the compound should be planer.
- 9. The cyclic system must contain $(4\pi + 2)\pi$ -electrons.

Only option (b) contains 6π -electron, so it is aromatic.

508 **(b)**

CH₃CH = CH₂ $\xrightarrow{B_2H_6}$ (CH₃CH₂CH₂)₃B $\xrightarrow{H_2O_2}$ CH₃CH₂CH₂OH + H₃BO₃; The process is called hydroboration

The process is called hydroboration.

509 **(b)**

(i)CH₃ - CH = CH - CH₃
$$\frac{O_3}{\frac{Zn}{H_2O}}$$

CH₃CHO + CH₃CHO + ZnO
2 molecules of ethanal

(ii)C₆H₅CH = CH₂
$$\xrightarrow[H_20]{Z_n}$$

C₆H₅CHO + HCHO + ZnO

(iii)CH₃CH = CH₂
$$\xrightarrow[H_20]{Zn}{\frac{Zn}{H_20}}$$
 CH₃CHO + HCHO
Ethanol

methanol

$$(iv)(CH_3)_2 C = C(CH_3)_2 \xrightarrow[H_20]{n} \xrightarrow{O_3}$$

 $CH_3COCH_3 + CH_3COCH_3 + ZnO$ 2 molecules of acetone

511 **(c)**

Alkynes are not found in free state due to their high reactivity.

512 **(a)**

Least hindered rotation means free rotation, *i.e.*, round a single bond.

513 **(c)**

$$H_{2}C = CH_{2} \xrightarrow{HBr} CH_{3} - CH_{2}Br$$
(X)
$$\xrightarrow{Aq.KOH} CH_{3} - CH_{2}OH \xrightarrow{I_{2}excess} CHI_{3}$$
(Y)
(Z)
iodoform

515 **(b)**

In Wurtz reaction, an ether solution of an alkyl halide is treated with sodium which removes the halogen of alkyl halide and the two alkyl radicals join together to form an alkane

517 **(d)**

An immiscible and lighter substance with water will float over it.

518 **(d)**

These all are obtained from coal-tar.

519 **(b)**

For *trans*product we take Na/liquid NH_3 or Li - NH_3/C_2H_5OH or LiAlH₄ as a reducing agnet (*anti*-addition)

$$R-C \equiv C-R + H_2 \xrightarrow{\text{Na/liq. NH}_3} H C \equiv C H$$

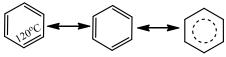
$$R - C = C - R + H_2 \xrightarrow{\text{Na/liq. NH}_3} H C = C H$$

$$R - C = C - R + H_2 \xrightarrow{\text{Na/liq. NH}_3} H$$

 521 **(b)** CH \equiv CH + N₂ \rightarrow 2HCN

522 (a)

The reaction is as follows

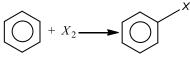

$$CH_{2} = CH_{2} \xrightarrow{HBr} CH_{3} \xrightarrow{-CH_{2}Br} \xrightarrow{AgCN} (X)$$

$$CH_{3}CH_{2}NHCH_{3} \xleftarrow{H_{2}/Ni}_{reduction} CH_{3}CH_{2}NC \checkmark$$

$$(Z) \qquad (Y)$$
N-methyl ethanamine

523 (b)

The structure of benzene is



Bond order

number of bonds number of resonating structures

$$=\frac{4}{2}=1.33$$

Since, the bond order is in between single and double bond, thus, it contains delocalised π -bonds. Hence, it is not possible to obtain number of single and double bonds in benzene.

(mono substituted product)

524 **(d)**

 $-NO_2$ group withdraw electron from the ring shows -M effect makes ring electron deficient, thus deactivates ring for electrophilic substitution.

525 **(b)**

Reaction of a non-terminal alkyne with a solution of an alkali metal (usually Na or Li or K) in liquid ammonia give a *trans*alkene.

$$CH_{3} - C \equiv C - CH_{3} + 2[H] \xrightarrow{\text{Li/liq.NH}_{3}}$$

526 **(d)**

B.p. increases with increase in mol. Wt.

527 **(b)**

10. Benzene undergoes electrophilic substitution in presence of

AlCl₃ or FeCl₃ or ZnCl₂.

11. Benzene does not undergo addition reactions like alkene.

 $\therefore C_6H_6 + HOCl \xrightarrow{H^+} no \text{ product and (b) is}$ correct answer.

528 **(d)**

C – H bond energy is greatest in ethyne due to the presence of triple bond.

529 **(b)**

 CH_3 — CH = CH— CH_3 is planer molecule due to $sp^2 - sp^2$ -hybridised carbon atoms.

- 530 **(a)** TEL increases the octane no. of gasoline.
- 531 **(d)**

The refining of petroleum is distillation process.

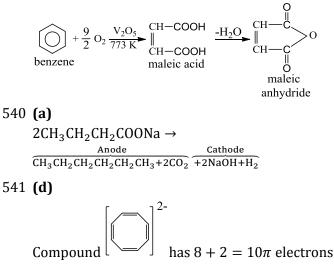
532 **(b)**

It is how Zn-Cu couple is used.

533 **(b)**

 $CH_3 - C \equiv C - CH_3$ is linear and symmetrical and thus, dipole moment is zero.

535 **(a)**


 $RCOONa \rightarrow R - R + 2CO_2 + 2NaOH + H_2$

537 **(b)**

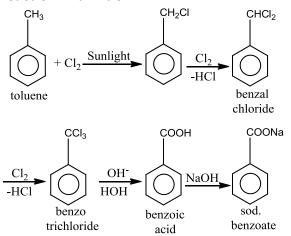
Only terminal alkynes give precipitate with ammoniacal silver nitrate solution. Among the given, $CH_3 - C \equiv CH - CH_3$ is not a terminal alkyne. Thus, it does not give precipitate with ammoniacal AgNO₃.

539 **(c)**

Benzene vapours mixed with air when passed over V_2O_5 catalyst at 775 K gives maleic anhydride

hence is aromatic. has $4\pi e^{-1}$, has $8\pi e^{-1}$, while has $8 + 1 = 9\pi e^{-1}$, hence all these species are not aromatic 542 (b) It is a mixture of solid hydrocarbons. 543 (c) $C_6H_5 + C_{-CN} - C_6H_5 + C_{-CN} +$

544 (d)


All of these can be used in cracking.

545 **(b)**

General formula of a cycloalkane is $C_n H_{2n}$.

546 **(b)**

Toluene reacts with excess of Cl_2 in presence of sunlight, the last product of this reaction is benzotrichloride which on hydrolysis gives benzoic acid, and it gives sodium benzoate on reaction with NaOH.

548 (d)

 $CH_{3}CH_{2}COOH + NaHCO_{3}$ $\rightarrow CH_{3}CH_{2}COONa + H_{2}O + CO_{2}$

549 **(a)**

 $C_2H_2 + \frac{5}{2}O_2 \rightarrow 2CO_2 + H_2O$; 1 mole or 1 vol. of C_2H_2 requires 2.5 mole or 2.5 vol. of O_2 .

550 **(a)**

Conjugate dienesare mores stable than the other dienes.

551 (c)

Branched chain alkanes give rise to increase on

octane no.

552 **(d)**

Follow Markownikoff's rule.

553 **(b)**

HOCI has Cl⁺ and OH⁻ ions Electrophilic $CH_3CH=CH_2 + Cl^+ \xrightarrow{\text{electrophilic}} CH_3 - CH_3 - CH_2 - Cl$

554 **(b)**

 $Zn - H_2O$ is the reagent for reductive work up of ozonide. $H_2O_2 - CH_3COOH$ would give $HOOC - (CH_2)_4 - COOH$.

555 (d)

The π -bond is unshared in electromeric effect to give +ve and –ve centres on molecule.

$$CH_2 \xrightarrow{\bullet} CH_2 \xrightarrow{A.R.} CH_4 \xrightarrow{+} CH_4$$

556 **(d)**

Tropylium cation is planar and have 6π -electron according to Huckel rule, hence it is aromatic.

Cyclopentadienyl anion is planar and have 6π -electron, hence it is also aromatic compound.

557 **(a)**

Follow peroxide effect.

558 **(a)**

In the laboratory, nitrobenzene is prepared by nitration of benzene with the mixture of nitric acid and sulphuric acid at temperature below60°C. In which HNO_3 acts as a base

559 **(d)**

The reaction is ozonolysis. During the reaction C = C breaks to give carbonyl compounds.

$$CH_3CH = CH_2 \xrightarrow[H_2O_2]{0_3} CH_3CHO + HCHO$$

Acetaldehyde formaldehyde

560 **(a)**

Petrol or gasoline contains mainly C_6 to C_{11} atoms 578 (d) liquid alkanes.

562 (d)

L.P.G. mainly contains butane and isobutane.

564 **(a)**

CH≡CH $\xrightarrow{[0]}$ COOH COOH; CH=CH2 $\xrightarrow{[0]}$ COOH; CH2 = CH2 $\xrightarrow{[0]}$ 2HCOOH

565 (a)

According to Markownikoff's rule, the negative part of the reagent gets attached to that double bonded carbon atom which has least number of H-atoms. Thus,

$$CH_3 = CH - CH_3 \xrightarrow{HBr} CH_3 - CH - CH_3$$

$$|$$
Br

569 **(b)**

Gasoline contains alkanes from $\rm C_6$ to $\rm C_{11}$ carbon atom.

570 **(d)**

We know that,

 $Al_4C_3 + 12H_2O \rightarrow 4Al(OH)_3 + 3CH_4$ Thus, in this reaction methane (CH₄) is produced.

571 **(d)**

Follow Saytzeff rule of elimination.

573 **(b)**

Impurities of PH_3 give garlic smell to C_2H_2 .

574 **(d)**

In the formation of an alkane from Grignard reagent, alkyl group always comes from Grignard reagent. Hence, the number of carbon atoms in the Grignard reagent and alkane formed Grignard reagent will be identical. So, the original alkyl halide is propyl bromide.

575 **(c)**

CH=C CH₃ $\xrightarrow{H_2O}_{Hg^{2+}/H_2SO_4}$ CH₂ = C(OH)CH₃ \Rightarrow CH₃COCH₃; The mechanism involves tautomerism. 576 (d) C₂H₆ + $\frac{7}{2}O_2 \rightarrow 2CO_2 + 3H_2O$ 577 (c) CH = CH \xrightarrow{HBr} CHBr = CH₂ \xrightarrow{HBr} CHBr₂— CH₃ $\xrightarrow{KOH(alc.)}$ CHBr = CH₂ $\xrightarrow{NaNH_2}$ CH = CH (d) According to Markownikoff's rule the

addition of a reagent (H*X*) to an unsymmetrical alkene takes place in such a way that the negative part of the reagent will be attached to that carbon atom which contains lesser number of H-atom.

Rr

$$CH_3 - C = CH_2 + HBr \rightarrow CH_3 - C - CH_3$$
$$| \qquad | \\CH_3 \qquad CH_3$$

2-methylpropene

579 **(b)**

Follow text.

580 **(a)**

Br₂solution is decolourized by alkene or alkyne or molecules having unsaturation.

581 **(c)**

Eqs. (i) and (ii) drawings are Sawhorse and Newman projections respectively for staggered forms.

582 **(a)**

C₂H₂gives white ppt. with amm. AgNO₃.

$$C_{6}H_{5}CH_{3} \xrightarrow{\text{Oxidation}} C_{6}H_{5}.COOH \xrightarrow{\text{NaOH}} (A)$$

$$(A)$$

$$C_{6}H_{5}COONa \xrightarrow{(\text{NaOH+CaO})} C_{6}H_{6} + CO_{2} \uparrow$$

$$(B)$$

585 (c)

Cyclobutadiene have (4π) conjugated or delocalized electrons, thus it is *anti*-aromatic

586 **(a)**

$$CH \equiv CH \xrightarrow{HOCl} Cl_2CHCHO$$
587 (c)

Thioalcohol (mercaptons) have unpleasant odour; C_2H_5SH is commonly used.

588 **(c)**

Octane no. of triptane or 2, 3, 3-trimethylbutane =124; octane no. of *n*-nonane=-45.

589 **(d)**

 $\rm C_4H_6$ may contains either two double bond or triple bond

 $CH_2 = CH - CH = CH_2 \text{ or} CH_3 - CH_2 - C \equiv CH$ 590 **(b)**

Due to acidic—H-atom propyne forms $CH_3 - C \equiv CNa$ with Na.

591	(b)		According to X-ray analysis all carbon-carbon
	More is b.p. lesser is volatile nature.		bond distance (1.397Å) are equal in benzene.
592	(d)		The bond order of carbon-carbon bond is 1.5
	These all are used to increase octane number of		in benzene.
	fuel.		Hence, carbon-carbon bond distance
594	(a)		
	$CH_2 = C = CH_2;$		(1.397\AA) is less than C – C single bond
	sp^2 sp sp^2		(1.54 Å) and more than $C = C$ double
600			bond(1.33Å).
	Benzene undergoes electrophilic substitution	615	
	reaction. It is nitrated by HNO_3 .		Cracking involves decomposition of higher
	H_2SO_4 NO_2	(1)	alkanes to lower one on heating.
	$+ HNO_3 + HNO_3 + O$	616	
	benzene nitro benzene	617	Follow mechanism of Wurtz reaction.
602		017	CH_4 is a constituent of bio-gas.
002	Markownikoff's rule is for addition of	620	
	unsymmetrical additive on unsymmetrical alkene.	0_0	The lowest temperature at which an oil gives
603			sufficient vapours to form an explosive mixture
	Paraffin wax are solid hydrocarbons from C_{20} to		with air is referred as flash point. It is 44°C, 35°C,
	C ₃₀ atoms.		22.8°C in India, France and England, respectively.
605		621	
	Methane is called marsh gas because it is		Lindlar's catalyst is $Pd - CaCO_3$ deactivated by
	found in swamps or marshy places and can be		lead acetate. Cram <i>et. al</i> gave a better catalyst for
	obtained by bacterial decomposition of fossils		this purpose as $Pd - BaSO_4$ poisoned by
	of plants and animals.		quinolene. This too is sometimes referred as
606			Lindlar's catalyst.
	Among hydrocarbons, alkynes are easily oxidised.	622	
607	(d)		Remember this value.
	B.P. change with branching.	623	
608	(f)		The aldehydes formed are oxidized by
	These are few oxidants.	(25	H_2O_2 formed during hydrolysis.
609		625	
	The acidic character of H is,		The acidic nature is $H_2O > C_2H_2 > NH_3$; thus, conjugate base order will be $OH^- > C_2H^- > NH_2^-$.
	$F-H > O-H \ge C_{sp}-H > N-H$; H-atom	628	
	attached on F, O, N and triply bonded carbon is	020	<i>'X'</i> is a three carbon compound with two
	acidic.		halogen atom, so its molecular formula is
610			$C_3H_6Cl_2$. Only terminal alkynes give red ppt.
	$CH_3CH_2CH = CH_2 \xrightarrow{H_2/Pd} CH_3CH_2CH_2CH_3.$		with ammoniacal Cu_2Cl_2 , so the hydrocarbon
611	(c)		produced by the reaction of ' <i>X</i> ' with alc. KOH,
	Except acetylene, all terminal alkynes have only		must be a terminal alkyne (<i>i.e.</i> , $CH_3C \equiv CH$).
	one acidic H-atom.		
613			$C_3H_6Cl_2 \xrightarrow{Alc.KOH} CH_3C \equiv CH \xrightarrow{Amm.Cu_2Cl_2} CH_3C \equiv$
	$CH_2 = CH_2 + \frac{1}{2}O_2 \xrightarrow{Ag} CH_2 - CH_2;$		CCu↓
	\sim		red
	0 Those compounds are known as anowy others are		ppt.
	These compounds are known as epoxy ethane or oxirane or cyclic ethers.		Compound (<i>X</i>) gives an aldehyde when reacts
614	-		with aqueous KOH. This suggests that both
014			the halogens are present on same terminal

carbon atom. Thus, the formula of compound 6. (*X*) is

(1, 1-dichloropropane) and the reactions are as follows

$$CH_3CH_2CH < CI \xrightarrow{CI Alc.KOH}$$

$$CH_{3}C \equiv CH \xrightarrow{Ammoniacal}_{Cu_{2}Cl_{2}} CH_{3}C \equiv CCu \downarrow$$

red ppt.

$$CH_{3}CH_{2}CH \underbrace{\leftarrow}_{OH} \xrightarrow{-H_{2}O} CH_{3}CH_{2}CHO$$
unstable propanal

629 **(a)**

$$CH_3CH_2OH \xrightarrow{H_2SO_4} CH_2 = CH_2$$

Removal of H_2O is called dehydration.

630 **(d)**

Both vegetable and animal matter are origin of petroleum.

631 **(d)**

All are used in drying alkanes.

632 **(b)**

The stability order is:

Staggered>skew>eclipsed

633 **(d)**

Cyclic hydrocarbon, with carbon-carbon bond length between 1.34Å and 1.54Å, is benzene in which due to resonance, C - C, bond length is 1.39Å (*ie.*,between 1.34Å - 1.54Å). Benzene is a hexagonal molecule with bond-angle equal to 120°.

634 **(c)**

The reaction proceeds via carbocation mechanism.

$$C_{6}H_{5} - C = CH_{2} \xrightarrow{+H^{+}} C_{6}H_{5} - \overset{+}{C} - CH_{3} \xrightarrow{H_{2}O} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}$$

635 **(c)**

Copper and silver alkylides are obtained by passing to alkynes in the ammoniacal solution of cuprous chloride and silver nitrate respectively. These reactions are used for detecting the presence of acetylenic hydrogen atom.

HC CH + Cu_2Cl_2 + 2NH₄OH acetylene ammoniacal cuprous chloride Cu.C CLCuV + 2NH₄Cl + 2H₂O copper acetylide (red ppt.)

So, alkanes and alkenes remain unaffected. 636 **(b)**

Benzene reacts with chlorine in presence of sunlight to give gammexane or benzene hexa chloride.

$$C_6H_6 + 3Cl_2 \xrightarrow{\text{Sunlight}} C_6H_6Cl_6$$

637 **(a)**

Hydrogenation in presence of Pd and $BaSO_4$ as *syn* addition and with Na and liquid NH₃ at 200 K is anti addition (*trans* compounds are formed.)

$$H_3C$$
 C CH_3 $Pd/BaSO_4$ H_3C CH_3
2-butyne CH_3 $Pd/BaSO_4$ H_3C C CH_3 H_4 C H_4 $H_$

638 **(c)**

In benzene all the six carbon atoms are sp^2 hybridised. Out of these three sp^2 hybrid orbitals of each C-atom, two orbitals overlap with sp^2 hybrid orbitals of adjacent C-atoms to form six C – C single bonds. The remaining sp^2 orbital of each C-atom overlaps with *s*orbitals of each H-atom to form six C – H single sigma bonds. Each C-atom is now left with one unhybridised *p*-orbital perpendicular to the plane of the ring.

640 **(b)**

Benzophenone (diphenyl ketone) can be prepared by the Friedel-Crafts' condensation between benzoyl chloride and benzene

 $C_6H_6 + C_6H_5COCI \xrightarrow{AlCl_3} C_6H_5COC_6H_5 + HCl(80\%)$ 641 (a)

Aromatic compounds have delocalised π -electrons.

Out of given choices cyclohexane, CH₄, C₂H₆

and benzene, only benzene is aromatic compound. Benzene has six delocalised π -electrons.

642 **(c)**

Trivial name is allyl.

643 **(d)**

These are all facts.

644 **(a)**

The reactivity order for sulphonation of H-atom in alkane :

3°>2°>1°.

645 **(a)**

As the – CH₃ group increases boiling point decrease

647 **(b)**

Alcoholic KOH is a dehydrohalogenating reagent, so when *n*-propyl bromide is treated with alcoholic KOH, propene is obtained. $CH_3CH_2CH_2Br + alc KOH$

n-propyl bromide \rightarrow CH₂ CH = CH₂ +

$$\rightarrow CH_3CH = CH_2 + HB_1$$

propene

648 **(b)**

654 **(d)**

Alkene is $CH_3CH = CHCH_3$, a symmetrical alkene and therefore alcohol is,

 $\rm CH_3CH_2CHCH_3\,$ which will give alkene-2 as major product.

- OH

655 **(b)**

Cyclodecapentaene and Cyclooctatetraene both are nonaromatic. Cyclobutadiene is antiaromatic while benzene having 6π -electrons is aromatic

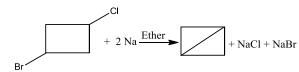
656 **(d)**

CH₃CH₂CH₂CH₂CH₂CH₂CH₃; (CH₃)₂CHCH₂CH₂CH₃; CH₃CH₂CH(CH₃)CH₂CH₃; (CH₃)₃CCH₂CH₃; (CH₃)₂CHCH(CH₃)₂

657 **(f)**

These are facts about alkanes.

658 **(c)**


Due to resonance, benzene is quite stable and inspite of three double bonds does not decolourise Br_2 water.

659 **(c)**

Follow peroxide effect.

660 **(d)**

The reaction is Wurtz's type reaction.

Knowing the number and arrangement of carbon atoms in aldehydes and ketones the structure of

the original alkene can be worked out.

 $CH_2=CH-C=CH-CH_3 \xrightarrow{O_3} Zn/CH_3COOH$

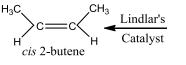
A method used during II world war.

Ozonolysis of these two produces different

For simplest alkyne n=2; thus, alkyne is

CH₂

661 **(a)**

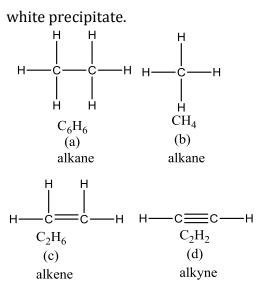

650 (d)

652 (c)

products.

 C_nH_{2n-2} or C_2H_2 .

Alkynes give different products with different reducing agents *e*. *g*., with Lindlar's catalyst (Pd/BaSO₄) or Ni *cis*-alkene is formed but with Na in liquid NH₃ (Birch reduction) *trans* alkene is formed.



CH₃—C
$$\equiv$$
C–CH₃ $\xrightarrow{\text{Na}}_{\text{liq.NH}_3}$ C \equiv C $\stackrel{\text{H}_3C}{\underset{\text{trans 2-butene}}{\overset{\text{CH}_3}{\overset{\text{CH}_3}}}$ C

662 **(c)**

(i)Alkene and alkynes both react with $KMnO_4$ and decolourise it.

(ii) Only alkynes react with ${\rm AgNO}_3$ to give

 \therefore C₂H₄ (an alkene) reacts with KMnO₄ and decolourises it and does not react with AgNO₃, C₂H₆ and CH₄ are alkane they do not react with KMnO₄ and NaOH.

663 **(c)**

It has maximum octane no.

664 **(c)**

Pure C₂H₂has ethereal odour.

666 **(a)**

Alkylated alkenes are more stable. More the alkylation of alkene, more will be its stability. ∴ Order of stability of alkenes is

$$R_2 C = CR_2 > R_2 C = CHR > R_2 C = CH_2$$
$$> RCH = CH_2 > CH_2 = CH_2$$

 \therefore Tetra alkylated alkene is most stable.

668 **(d)**

$$\begin{array}{c} \mathrm{CH}_2 = \mathrm{CH} - \mathrm{O} - \mathrm{CH}_3 \\ \xrightarrow{\mathrm{HBr}} \mathrm{CH}_3 - \mathrm{CH} - \mathrm{O} - \mathrm{CH}_3 \\ & | \end{array}$$

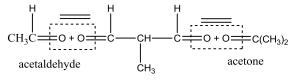
Br

First protonation occurs, two possible intermediates are

$$CH_{2} \longrightarrow CH \longrightarrow OCH_{3}$$

$$H (I)$$
(-*I* effect destabilizes carbocation)
and $H (H_{3} \longrightarrow CH (H_{3} \oplus CH_{3} \oplus C$

Br


670 **(b)**

Halogenation of benzene in cold and dark is carried by electrophilic substitution. In this reaction, Cl⁺ electrophile takes part in the reaction.

$$\bigcirc + \operatorname{Cl}_2 \xrightarrow{\operatorname{AlCl}_3} \bullet \bigcirc + \operatorname{HCl}$$
$$\operatorname{AlCl}_3 + \operatorname{Cl} - \operatorname{Cl} \to \operatorname{Cl}^+ + \operatorname{AlCl}_4^-$$
$$\operatorname{electrophile}$$

671 (a)

Since the alkadiene on reductive ozonolysis gives acetaldehyde (CH_3CHO), acetone (CH_3COCH_3) and 2-methylpropane-1, 3-dial [$OHCCH(CH_3)CHO$], the structure of alkadiene will be obtained as

$$\xrightarrow{7}_{CH_3CH} \xrightarrow{6}_{CH} \xrightarrow{5}_{CH} \xrightarrow{4}_{CH} \xrightarrow{3}_{CH} \xrightarrow{2}_{CH_3} \xrightarrow{1}_{CH_3} \xrightarrow{1}_{CH_3$$

672 **(b)**

These are Fischer-Tropsch and Berzius method for synthesis of petrol.

673 **(c)**

It is an unsaturated two carbon atom molecule (gives catalytic hydrogenation) but not acetylene (does not give white ppt. with amm. AgNO₃). Thus, it is ethylene.

674 **(c)**

$$CH \equiv CH + Na \rightarrow CH \equiv CNa \xrightarrow{RX} CH \equiv CR$$
$$CH = CH + RMgX \rightarrow CH = CMgX \xrightarrow{RX} CH = CR$$

675 **(b)**

Addition of HBr first takes place round double bond.

An alkyne has higher b.p. than corresponding alkene and an alkene has higher b.p. than corresponding alkane.

681 **(d)**

On ozonolysis,

 CH_3

CH₃

 $CH_2 = C = C - CH = CH_2$ gives two moles of HCHO, one mole of CO_2 one mole of CH_3COCHO .

$$|$$

$$CH_{2} = C = C - CH = CH_{2} \xrightarrow[Zn]{O_{3}/H_{2}O}{Zn}$$

$$2CH_{2}O + CO_{2} + CH_{3}COCHO$$
(HCHO)

682 **(c)**

$$CH_3CH_2Cl \xrightarrow{KOH alc.} CH_2 = CH_2$$

683 **(c)**

$$C_n H_{2n+2} + \left(\frac{3n+1}{2}\right) O_2 \to n C O_2 + (n+1) H_2 O$$

685 **(b)**

Cycloalkanes are isomeric with alkenes because they have same general formula C_nH_{2n} (*i. e.*, same molecular formula) but possessing different structures. They show ring chain isomerism.

686 **(b)**

CU

is symmetrical alkane and will give only one monochloro substitution.

688 **(d)**

Rest all are used to convert>CO gp. to CH_2 .

689 **(d)**

The presence of the chlorine atom on benzene ring makes the second substituent enter at *ortho* or *para* position because the chlorine atom is *ortho* - *para* directing.

690 **(a)**

Given,
$$C = \left(\frac{12}{13}\right) \times 100\%$$
, $H = \left(\frac{1}{13}\right) \times 100\%$
 $\therefore \quad C = 92.3\% \text{ H} = 7.69\%$
 $C = \frac{92.3}{12} = 7.69 = \frac{7.69}{7.69} = 1$
 $H = \frac{7.69}{1} = 7.69 = \frac{7.69}{7.69} = 1$

 \therefore Empirical formula of hydrocarbon is

 $C_1H_1 = CH$ $\therefore A$ has empirical formula CH and decolourises bromine water. \therefore It is alkyne which is C_2H_2 . $\therefore B$ has empirical formula CH and does not decolourise bromine water. \therefore It is benzene C_6H_6 .

691 **(c)**

Due to acidic nature of the hydrogen atoms attached to a triple bond, acetylenes and terminal alkynes from metal acetylides

$$CH_{3}CH_{2}C \equiv CH + AgNO_{3} + NH_{4}OH \rightarrow CH_{3}CH_{2}C$$
$$\equiv CAg + NH_{4}NO_{3} + H_{2}O$$
silver

butynide

693 **(b)**

Cetane no. represent percentage of *n*-hexadecane in mixture.

694 **(c)**

Conjugated alkadienes show 1 : 2 and 1 : 4 addition.

695 **(d)**

 Na/C_2H_5OH , LiAlH₄ or NaBH₄ are used for this purpose.

696 **(c)**

This is also a mean of preparing alkene where the position of the double bond is definite. In Wittig reaction, aldehyde (–CHO) and ketone (> C = O) react with methylene tryphenyl phosphine [$(C_6H_5)_3P = CH_2$] to give alkene. CH₃CHO + $(C_6H_5)_3P = CH_2$

oxide

$$\overset{H_3C}{\longrightarrow} C \longrightarrow O + (C_6H_5)_3P \longrightarrow CH_2 \longrightarrow CH_2$$

$$H_3C \longrightarrow C \longrightarrow CH_2 + (C_6H_5)_3P = O$$

697 (c)

$$CH_{3}CH \xrightarrow{Br}_{Br} + 4 Na + Br_{Br} \xrightarrow{CH}_{CH_{3}}CH \xrightarrow{CH_{3}}CH_{3}$$

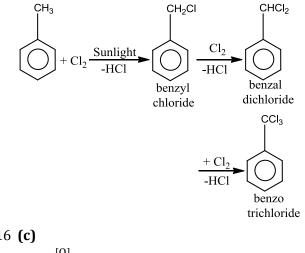
$$\xrightarrow{Ether}_{\Delta} CH_{3} - CH = CH - CH_{3} + 4NaBr_{3}$$
2-butene

699 **(d)**

Octane number is a measure of quality of fuel. 700 **(d)**

All possible products are obtained; C₂H₆ by CH_3COO^- ; C_4H_{10} by $CH_3CH_2COO^-$ and CH₃CH₂CH₃ by CH₃COO⁻ and CH₃CH₂COO⁻. 701 **(b)** Wurtz reaction is used to prepare alkanes from alkyl halides. $2R - X + 2\text{Na} \xrightarrow{\text{Dry ether}} R - R + 2\text{Na}X$ 702 **(b)** $CH_2Br \longrightarrow CH_2Br \xrightarrow{Zn dust} CH_2 = CH_2$ 703 (a) A group that causes attack to occur chiefly at positions ortho and para to it, is called an *ortho – para* director, *e.g.*, NH₂, OH, Cl etc. 704 (c) NH₃ is base, *i.e.*, least acidic. 705 (c) This is Wurtz reaction. 706 (c) $CH_{3}CH_{2}CH = CH_{2} \xrightarrow{HBr} CH_{3}CH_{2}CH_{2}CH_{2}Br$ $\xrightarrow{C_2H_5ONa} CH_3CH_2CH_2CH_2OCH_2CH_3$ 707 (c) 1,1-dibromocyclooctane possess lesser strain. 710 (d) ___do____ 712 (c) According to Markownikoff's rule, the addition of a unsymmetrical reagent (HX) to an unsymmetric alkene takes place in such a way that the negative part of the reagent will be attached to the carbon atom which containing lesser number of H-atom. Hence, it is best applicable to the reaction between C_3H_6 and HBr. $CH_3CH = CH_2 + HBr \rightarrow CH_3 - CH - CH_3$ Br

713 **(b)**


The addition of propene to HBr opposes the Markownikoff's rule in presence of organic peroxide.

$$CH_3CH = CH_2 + HBr \xrightarrow{Organic}_{peroxide} CH_3CH_2CH_2Br$$

n-propyl bromide

It is also called the Kharash effect or *anti-*Markownikoff's rule.

715 **(d)**

In presence of sunlight toluene undergoes aliphatic substitution with chlorine and give benzyl chloride, benzal chloride and benzo trichloride.

716 (c)

$$RCH_3 \xrightarrow{[0]} RCOOH$$

717 (d)
Uses of ethene.

DCAM classes Dynamic Classes for Academic Mastery