

6.GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

Single Correct Answer Type

1.	van-Arker method of pur	rification of metals involves	converting the metal to a		
	a) Volatile stable compou	ınd	b) Non-volatile stable con	mpound	
	c) Volatile unstable comp	oound	d) None of the above		
2.	In the electrolysis of alun	nina, cryolite is added to:			
	a) Lower the melting poi	nt of alumina and to increa	se the electrical conductivi	ty	
	b) Minimise the anode ef				
	c) Remove impurities fro				
	d) None of the above				
3.	The pyrolusite ore contain	ins:			
	a) Fe	b) Al	c) Mn	d) Cu	
4.	Purest form of iron is	,		,	
	a) Pig iron	b) Wrought iron	c) Cast iron	d) Steel	
5.	Pig iron is manufactured			,	
	a) An electric furnace	b) A blast furnace	c) An open hearth furnac	ce d) None of these	
6.		ctrolytic refining of copper	•	•	
	mud'. These are	, , , , , , , , , , , , , , , , , , , ,	-		
	a) Fe and Ni	b) Ag and Au	c) Pb and Zn	d) Se and Ag	
7.		Sn are extracted respective		,	
	a) Carbon reduction—se				
	b) Self reduction—carbo				
	c) Electrolytic reduction-				
	d) Cyanide process—elec	ctrolytic reduction			
8.	CO on passing over heate	=			
	a) NiCO ₃	b) Ni(CO) ₄	c) $CO_2 + H_2$	d) $CO + H_2$	
9.	Cassiterite is concentrate	ed by	,	· -	
	a) Liquation		b) Floatation		
	c) Electromagnetic separ	ation	d) Levigation		
10.	In the extraction of copper from its sulphide ore, the metal is finally obtained by the reduction of cuprous				
	oxide with:				
	a) Iron sulphide (FeS)				
	b) Carbon monoxide (CO)			
	c) Copper(I) sulphide (C	u ₂ S)			
	d) Sulphur dioxide (SO ₂)				
11.	Which of the following m	etal is thrown as anode mu	ıd during electrolytic refini	ng of copper?	
	a) Zn	b) Fe	c) Ag	d) Ni	
12.	Which metal is a liquid at	t room temperature?			
	a) Mercury	b) Potassium	c) Sodium	d) Titanium	
13.	'Lapis-Lazuli' is a blue co	loured precious stone. It is	mineral of the class		
	a) Sodium alumino silica	te	b) Basic copper carbonat	e	
	c) Zinc cobalt		d) Prussian blue		
14.	Which of the following fa	ctors is of no significance fo	or roasting sulphide ores to	the oxides and not	
	subjecting the sulphide o	res to carbon reduction dir	rectly?		
	a) Metal sulphides are th	ermodynamically more sta	ble than CS ₂		
	b) CO ₂ is bthermodynam	ically more stable than CS ₂			
	c) Metal sulphides are les	ss stable than the correspon	nding oxides		
	d) CO ₂ is more volatile than CS ₂				

15.	The inner lining of a blast	furnace is made up of:			
	a) Graphite bricks	b) Silica bricks	c) Fire clay bricks	d) Basic bricks	
16.	Which one is an ore of sod	lium?			
	a) Sylvine	b) Siderite	c) Spodumene	d) Soda ash	
17.	Titanium containing mine		, I	,	
	a) Bauxite	b) Chalcopyrites	c) Elmanite	d) dolomite	
18	Argentite is a mineral of	b) dialeopyrices	c) Innumice	a) abioinite	
10.	a) Gold	b) Silver	c) Copper	d) Platinum	
10	In blast furnace, iron oxide		c) copper	u) i iadiliulli	
19.		-	a) Limastana	4) CO	
20	a) Silica	b) Carbon	c) Limestone	d) CO	
20.	Heating of ores with flux t			D 0 H	
0.4	a) Smelting	b) Calcination	c) Roasting	d) Cupellation	
21.	Gold is extracted using:				
	a) Amalgamation process				
	b) Carbon reduction proce	ess			
	c) Oxidation process				
	d) Electrolytic process				
22.	Which of the following me	tals cannot be extracted by	carbon reduction process?	?	
	a) Zn	b) Al	c) Hg	d) Pb	
23.	The most malleable metal	is:			
	a) Silver	b) sodium	c) Gold	d) Platinum	
24.	Granulated zinc is obtaine	d by:			
	a) Suddenly cooling molten zinc				
	b) Adding molten zinc to v	vater			
	c) Heating zinc to 100-150	O°C			
	d) Dropping molten zinc d	rop by drop			
25.	Most of the plants contain				
	a) Fe	b) Zn	c) Na	d) K	
26.	Which of the following or	,	-	,	
	a) Cassiterite	b) Limonite	c) Haematite	d) Magnetite	
27.	The metal obtained by self	•	o) macmatic	a) i iagnotice	
	a) Cu	b) Hg	c) Pb	d) All of these	
28	The cryolite is:	S)B		a) Thi of these	
20.	a) Al_2O_3	b) Na ₃ AlF ₆	c) KAlSi ₃ O ₈	d) Al ₃ O ₂ OH ₂ O	
20	Blanc fixe is:	b) Na3Aii 6	c) Khisi308	u) A130201120	
۷۶.	a) BaSO ₄	b) BaCl ₂	c) BaCO ₃	d) None of these	
30	Sulphide ores are generall	,	c) baco ₃	u) None of these	
50.	a) Hand picking	ly concentrated by	b) Forth floatation process	7	
			=	5	
21	c) Gravity separation	fa all and	d) Magnetic separation		
31.	Which pair of elements ca	<u>-</u>	a) Fa and C	J) C J D4	
22	a) Zn and Pb	b) Fe and Hg	c) Fe and C	d) C and Pt	
32.	Which ore can be best con		-	D.M	
	a) Malachite	b) Cassiterite	c) Galena	d) Magnetite	
33.		,= = -	rbon dioxide) in the produc	ction of 270 kg of	
	aluminium metal from bat	uxite by the hall process is			
	(Atomic mass of $Al=27$)				
	a) 180kg	b) 270 kg	c) 540 kg	d) 90 kg	
34.	Carbon monoxide reduction	=			
	a) Cu	b) Ag	c) Na	d) K	
35.	Load stone is one ore of				

26	a) Iron One of the following met	b) Lead	c) Silicon	d) Tin	
30.	=	ais forms a voiathe compou	nd and this property is take	en auvantage for its	
	extraction. This metals is		S	15 1	
	a) Cobalt	b) Iron	c) Tungsten	d) Nickel	
37.	Carbon reduction is used	for the extraction of:			
	a) Fe	b) K	c) Al	d) None of these	
38.	The phenomenon in which	ch white transparent crysta	l changes into white powde	er is known as:	
	a) Sublimation	b) Allotropy	c) Efflorescence	d) deliquescence	
39.	Which is used for the ext	raction of cadmium from ca	dmium sulphide?		
	a) Roasting	b) Reduction	c) Oxidation	d) Electrolysis	
40.	Formula of magnetite is		-		
	a) Fe ₃ O ₄	b) Fe ₂ O ₃	c) FeS ₂	d) FeCO ₃	
41.	· · ·	- · ·	d is formed, the compound	, ,	
	a) K ₂ MnO ₄ , purple green				
	b) KMnO ₄ , purple				
	c) Mn ₂ O ₃ , brown				
	d) Mn ₃ O ₄ , black				
12	Which is not a basic flux?				
TZ.			c) SiO ₂	d) MgO	
12	a) CaCO ₃	b) CaO	c) 310 ₂	u) MgO	
43.		'eCrO ₄ is concentrated by:	a) Elegtus static method	d) Cravity conquetion	
4.4	a) Magnetic separation	b) Froth floatation	c) Electrostatic method	d) Gravity separation	
44.	Orford process is used in		A.E.	I) M:	
4-	a) Pt	b) Co	c) Fe	d) Ni	
45.		ely to be found in minerals		D G 1 1 1 1	
	a) Sulphate	b) Acetate	c) Chloride	d) Sulphide	
46.	The second most commo			13.0	
	a) Silicon	b) Hydrogen	c) Nitrogen	d) Oxygen	
47.	An ore of tin containing F				
	a) Electrostatic method		c) Magnetic separation	d) Forth floatation	
48.		not found free in nature be	ecause of:		
	a) Their high b. p.				
	b) Their low b. p.				
	c) Thermal instability				
	d) Their great chemical a	ctivity			
49.	Alloy is an example of:				
	a) Gel	b) Aerosol	c) Solid sol	d) Emulsion	
50.	Cinnabar is an ore of				
	a) Pb	b) Hg	c) Cu	d) Zn	
51.	Which element occurs in	free state in nature?			
	a) Fe	b) Co	c) Pt	d) Ni	
52.	Aluminothermic process	is used for the extraction of	f metals, whose oxides are:		
	a) Fusible				
	b) Not easily reduced by carbon				
	c) Not easily reduced by	hydrogen			
	d) Strongly basic				
53.	Bauxite ore is concentrat	ed by			
	a) Froth floatation		b) Electromagnetic separa	ation	
	c) Chemical separation		d) Hydraulic separation		
54.	Which process is used for	r benefication of ores?	- *		
	a) Process of removal of				
	b) Process of heating ore	-			

	c) Extraction of metal fro	m ore				
	d) None of the above					
55.	5. Extraction for zinc from zinc blende is achived by					
	a) Electrolytic reduction					
	b) Roasting following by					
	, .	eduction with another met	al			
	d) Roasting followed by s					
56.	Auto-reduction process is	s used in the extraction of				
	a) Cu and Hg	b) Zn and Hg	c) Cu and Al	d) Fe and Pb		
57.	Thomas slag is					
	a) $Ca_3(PO_4)_2$. $2H_2O$	b) $Ca_3(PO_4)_2$. $CaSiO_3$	c) MgSiO ₃	d) CaSiO ₃		
58.	Metals are good conducto	ors of electricity because th	iey contain			
	a) Ionic bonds		b) A network structure			
	c) Very few valence elect	rons	d) Free electrons			
59.	Liquation is used to purif	y:				
	a) Hg	b) Sn	c) Bi	d) All of these		
60.	The most abundant meta	l in the earth crust is:				
	a) Na	b) Ca	c) Al	d) Fe		
61.	Which of the elements lis	ted below shows allotropic	c forms?			
	a) Iodine	b) Copper	c) Sulphur	d) Silver		
62.	Following method is not		•			
	a) Van Arkel	b) Serpeck	c) Baeyer	d) Hall-Heroult		
63.	Indian saltpetre is:	•				
	a) KNO ₂	b) KNO ₃	c) NaCl	d) Na ₂ CO ₃		
64.	Poling process is used:	, ,	•	, <u> </u>		
	a) For the removal of Cu ₂	O from Cu				
	b) For the removal of Al ₂					
	c) For the removal of Fe ₂					
	d) In all of the above	5				
65.	Sperrylite is:					
	a) AgCl	b) PtAs ₂	c) Fe_2O_3	d) SnO ₂		
66.	, ,	vater in the forth floatation		, 2		
	a) Pine oil	b) Coconut oil	c) Soap powder	d) None of these		
67.	•	ls are found in earth is call				
	a) Atomophil	b) Lithophil	c) Calcophil	d) Sidrophil		
68.		n from haematite, lime sto	= = = = = = = = = = = = = = = = = = =	, 1		
	a) Flux	b) Slag	c) A reducing agent	d) An oxidising agent		
69.	On heating a mixture of C	, ,	, 0 0	, 0 0		
	a) $Cu + SO_2$	b) Cu + SO ₃	c) CuO + CuS	d) Cu ₂ SO ₃		
70.	Cassiterite is an ore of	, 3	,	, 2 3		
	a) Sb	b) Mn	c) Sn	d) Ni		
71.	•	ction of zinc fromZnO, the		,		
	a) Nitric oxide	b) Sulphur dioxide	c) Carbon monoxide	d) Carbon dioxide		
72.	Zinc blende (an ore) is:	-)	•, ••••	.,		
	a) ZnO	b) ZnCO ₃	c) ZnS	d) Zn ₂ OCl ₂		
73.	From gold amalgam, gold	•	- <i>,</i>	· , = <u>/</u> - /		
٥.	a) Addition of Zn metal	J = 222.22 24.23.				
	b) Electrolytic refining					
	c) Distillation					
	d) Dissolving Hg in HNO ₃					
74.	The lightest metal is:					
	_					

	a) Li	b) Mg	c) Ca	d) Na
75.	Calamine is			
	a) CaCO ₃		b) MgCO ₃	
	c) ZnCO ₃		d) $CaCO_3 + CaO$	
76.	In the metallurgy of iron,	when lime stone is added t	o the blast furnace, the calc	rium ions are removed as:
	a) Slag	b) Gangue	c) Metallic Ca	d) CaCO ₃
77.	Mond's process is used for	r the purification of		,
	a) Ni	b) Ti	c) Zr	d) Hg
78.	Which contains both Ca an	nd Mg?		, ,
	a) Lime stone	b) Dolomite	c) Chalk	d) Felspar
79.	Calcination and roasting a		,	•
	a) Different names of the			
	b) Used for the purificatio	•		
	c) Usually carried out in r			
	d) Employed for the conce			
80.		the formation of thin film o	ofon its surface.	
	a) Oxide	b) Carbonate	c) Nitride	d) Hydroxide
81.	Which of the following sta	•	,	, ,
	a) Silver glance mainly co		b) Zinc blende mainly con	tains zinc chloride
	c) Gold is found in native	=	d) Copper pyrites also con	
82.	•		olysis of the aqueous soluti	
	a) Cu	b) Ag	c) Mg and Al	d) Cr
83.	The sand stone in some ir	on ores is removed by:	-	
	a) Carbon filters	b) Compressed air	c) Lime stone	d) Sulphuric acid
84.	Copper pyrites is concent	rated by		•
	a) Gravity method	•	b) Forth floatation proces	S
	c) Electromagnetic metho	od	d) All of these	
85.	The chief impurity presen			
	a) SiO ₂	b) Fe ₂ O ₃	c) K ₂ SO ₄	d) NaF
86.	Which does not contain al	uminium?		
	a) Bauxite	b) Emery	c) Rutile	d) Corundum
87.	Naturally occurring subst	ances from which a metal c	an be profitably (or econor	mically) extracted are
	called			
	a) Ores	b) Mineral	c) Salts	d) Gangue
88.	Ferric oxide in blast furna	ce is reduced by:		
	a) C	b) H ₂	c) CO	d) CO ₂
89.	Cupellation process is use	d in the metallurgy of:		
	a) Copper	b) Silver	c) Lead	d) Iron
90.	Which metal can be purifi	ed by distillation?		
	a) Cu	b) Ag	c) Fe	d) Hg
91.	Lepidolite is an ore of:			
	a) K	b) Na	c) Li	d) All of these
92.	Chalcogens are:			
	a) Hydrocarbons			
	b) Ore forming elements			
	c) Oxide forming element	S		
	d) Those having ability to	catenate		
93.	In the Hall's process for ex	xtraction of Al, the ore is fu	sed with:	
	a) NaHCO ₃	b) Na ₂ CO ₃	c) NaF	d) Na ₃ AlF ₆
~ .				
94.	Antimony occurs mainly i a) Sulphide	n form of: b) Stibnite	c) Realgar	d) Fluoropatite

95.	An important ore of iron i	S		
	a) Pyrites	b) Malachite	c) haematite	d) Siderite
96.	Barytes, an ore is:			
	a) BeSO ₄	b) BeCl ₂	c) BaSO ₄	d) BaCl ₂
97.	Thermite is a mixture of			
	a) Fe powder and Al ₂ O ₃		b) Al powder and Fe ₂ O ₃	
	c) Cu powder and Fe ₂ O ₃		d) Zn powder and Cr_2O_3	
98.	When lime stone is heated	l, carbon dioxide is given of	ff. This operation in metallu	ırgy is known as:
	a) Smelting	b) Ore-dressing	c) Calcination	d) Roasting
99.	Heating mixture of Cu ₂ O a	and Cu ₂ S will give		
	a) Cu ₂ SO ₃	b) CuO + CuS	c) $Cu + SO_3$	d) $Cu + SO_2$
100.	A and B are two allotrope	s of an element. One gram o	of A will differ from one gra	nm of B in:
	a) Oxidation number	· ·	· ·	
	b) Chemical composition			
	c) Total number of atoms			
	d) Atomic arrangement			
101.	Which represents calcinat	tion?		
	a) $2Ag + 2HCl + [0] \rightarrow 2$	$AgCl + H_2O$		
	b) $2Zn + O_2 \rightarrow 2ZnO$			
	c) $2ZnS + 3O_2 \rightarrow 2ZnO +$	- 2SO ₂		
	d) $MgCO_3 \rightarrow MgO + CO_2$			
102.	The matte is impure subst	cance obtained during extra	action of:	
	a) Cu	b) Fe	c) Pb	d) Al
103.	The following equation re	presents a method of purif	ication of nickel by,	-
	Ni + 2CO $\xrightarrow{320\text{K}}$ Ni(CO) ₄ $\xrightarrow{42}$			
	Impure $100 \rightarrow NI(CO)_4 - 100$	Pure		
	This method is:	i ui e		
	a) Cupellation	b) Mond's process	c) Van Arkel method	d) Zone refining
104	Softening of lead means:	b) Moliu's process	c) van Arkei methou	u) Zone remning
104.	a) Conversion of lead into	DhO		
	b) Conversion of lead into			
	c) Removal of metallic im			
	-	on ides from lead O ₃ followed by dilute alkali	colution	
105	Which is not a mineral of		Solution	
105.	a) Corundum	b) Anhydrite	c) Diaspore	d) Bauxite
106	•	reductant for the extraction	•	=
100.	a) Cr	b) Al	c) Co	d) Fe
107	•	mercial lead is possible by		u) re
107.	a) Parke's process	b) Clarke's process	c) Pattinson's process	d) Electrolytic process
108	Which set of elements is c	, .	c) Tattilison's process	u) Electrolytic process
100.	a) Cl, Br, I	b) 0, S, Se	c) N, P, As	d) C, Si, Ge
100	Apatite is an ore of	b) 0,3,3 c	C) N, I, AS	u) 6, 31, de
109.	a) Fluorine	b) Chlorine	c) Bromine	d) iodine
110	Pentalandite is an ore of:	b) Gillornie	c) bromme	u) louine
110.	a) Fe	b) Co	c) Cu	d) Ni
111	Which element is present		c) cu	u) Ni
111.	a) U	b) Ce	c) Ba	d) Mg
112	In alumino-thermite proce	•	C) Da	uj ^m 8
114.	a) Reducing agent	b) Oxidizing agent	c) Solder	d) Flux
113	The existence of two or m	, , ,		a) I lun

a) Polymorphism	b) Isomerism	c) Homologues	d) Isomorphism
114. Forth floatation process f		=	= = = = = = = = = = = = = = = = = = =
a) Adsorption	b) Sedimentation	c) Coagulation	d) Absorption
115. In blast furnace, the cup a		, ,	a) hosoi ption
a) To escape the gases du	-	ou.	
b) Not to allow the escape			
c) To heat the charge wit	•		
d) None of the above	O		
116. Stainless steel has iron ar	nd		
a) Cr	b) Cu	c) Co	d) Zn
117. Blood haemoglobin conta	nins:		
a) Al	b) Mg	c) Cu	d) Fe
118. Cyanide process is used i	n the extraction of		
a) Au	b) Cu	c) Ag	d) Both (a) and (c)
119. Alloy formation gives rise	e to:		
a) Decrease in corrosion			
b) Increase in hardness			
c) Decrease in conductivi	ity		
d) All are correct	_		
120. Which metal occurs in fre			
a) Ag	b) Au	c) Pt	d) All of these
121. Platinum, palladium, indi		etals because:	
a) Alfred nobel discovere			
	s many common reagents		
d) They are found in nati	ous and pleasing to look at		
122. Match the extraction pro-		matale listed in column II	
	Column II	inctais fisted in column ii.	
A. Self reduction	(P) Lead		
B. Carbon reduction	(Q) Silver		
C. Complex formation and			
displacement by metal	` '		
D. Decomposition of iodic			
a) A – P, R; B – R, Q; C –	` '		
b) $A - P, R; B - P, R; C -$	Q; $D - S$		
c) $A - P, R; B - S; C - P;$	D - P, Q		
d) $A - P, Q; B - R, P; C -$	Q; D - S		
123. Mercury is transported in	n mental containers made u	p of:	
a) Fe	b) Pb	c) Zn	d) Sn
124. Which is not a mineral?			
a) Mica	b) Peat	c) Quartz	d) Felspar
125. Slag coming out at the bo		=	=
a) Roads	b) Fertilizers	c) Plastics	d) Glass moulds
126. The process in which ore		= =	N =
a) Roasting	b) Calcination	c) Reduction	d) Distillation
127. When pyrolusite is fused			la pl
a) Pink	b) Green	c) Red	d) Black
128. Which process is used for	=		d) Uall'a process
a) Hoop's process129. Which is incorrect as the	b) Baeyer's process	c) Serpek's process	d) Hall's process
a) For making cement	uses of fifthe stolle III IIIuusi	ries are concerneu!	

(c) In the extraction of Fe	from its ore				
(d) In the manufacture of g	glass				
130.	The method of zone refini	ing of metals is based on th	e principle of			
;	a) Greater noble character of the solid metal than that of the impurity					
1	b) Greater solubility of the impurity in the molten state then in the solid					
(c) Greater mobility of the	pure metal than that of im	purity			
		f the impurity that of the pu	=			
	Main ore of aluminium is:					
;	a) Cryolite	b) Kaolin	c) Bauxite	d) Felspar		
	Which of the following is		,	, ,		
	a) Pyrolusite	b) Diaspore	c) Cassiterite	d) Malachite		
	· •	ineral does not contain Al?	-,	,		
	a) Fluorspar	b) Cryolite	c) Mica	d) Feldspar		
	An essential constituent o		c) Mica	a) i ciaspai		
	a) Au	b) Ag	c) Al	d) Hg		
	Mispickel is the ore of:	b) ng	c) m	u) ¹¹ g		
	a) Sb	b) Bi	c) P	d) As		
				•		
		s successful in separating ir	-			
	= =	in water containing addition	=			
	-	than water containing addi	=			
		ible in water containing add	-	c acid, etc		
		ily wetted by water as by p	<u>-</u>			
	-	ng has highest electrical cor	_			
	a) Zn	b) Fe	c) Ag	d) Cu		
		atements regarding the met	tallurgy of magnesium usir	ng electrolytic method is not		
	correct?					
;	a) Electrolyte is magnesiu	ım chloride containing a lit	tle of NaCl and NaF			
]	b) Air tight iron pot acts a	is a cathode				
(c) Electrolysis is done in t	the atmosphere of coal gas				
(d) Molten magnesium is h	neavier than the electrolyte				
139.	The process of heating the	e ore strongly in excess of a	ir so that the volatile impu	rities are removed and the		
(ore is changed to oxide is	known as				
;	a) Leaching	b) Roasting	c) Calcinations	d) Froth floatation		
140.	During bessemerisation o	of copper, the reaction takin	g place in the bessemer co	nvertor is:		
	a) $Cu_2S + 2Cu_2O \rightarrow 6Cu$	= =				
	b) $Cu_2O + FeS \rightarrow Cu_2S +$	-				
	c) $FeO + SiO_2 \rightarrow FeSiO_3$					
	d) None of the above					
		the extraction of metals fro	om their sulphide ores?			
	a) Electrolysis	b) Metal displacement	c) Smelting	d) Roasting		
	•	pasted in excess if air, a mix	, ,	,		
	= = = = =	moved as slag during reduc		=		
	a) SiO_2 which is an acid fl	-	b) Lime stone, which is a	-		
	c) SiO_2 , which is basic flux		d) CaO, which is basic flux			
	CaO act as flux	•	u) Gao, willen is basic nuz			
		h) Acidia	a) Pagia	d) Poth (a) and (b)		
	a) Neutral	b) Acidic	c) Basic	d) Both (a) and (b)		
	Electrolysis of fused carna	=	a) K and CO	d) V Ma cod Cl		
	a) Mg	b) K	c) K and CO ₂	d) K, Mg and Cl ₂		
	-	ted from tin stone ore by the	=	D.C le'		
	a) Calcination	b) Electromagnetic	c) Roasting	d) Smelting		
				Page 8		

b) In the extraction of Sn from its ore

146.	. Iron ores are dressed by:			
	a) Froth floatation proces	SS		
	b) Magnetic separation			
	c) Hand picking			
	d) All of the above			
147	The electrolytic reduction	n technique is used in the	extraction of:	
	a) Highly electronegative			
	b) Highly electropositive			
	c) Metalloids	Cicincines		
	d) Transition metals			
140		agala fram Ea O hyv		
148.	Iron is obtained on large			D. D H
1.40	a) Reduction with CO	b) Reduction with Al	c) Calcination	d) Passing H ₂
149.	The lining in blast furnac	-		N = ==
	a) Graphite	b) Silica	c) Fireclay bricks	d) CaCO ₃
150.	. The cyanide process is us	=		
	a) Cu	b) Na	c) Zn	d) Ag
151.	Refractory materials are	used for the construction	of furnaces because they:	
	a) Are light in weight			
	b) Can stand with high te	mperature		
	c) Are leak proof			
	d) Do not require to be re	placed		
152.			pper pyrite in Bessemer con	verter involves the reaction
	a) $Cu_2S + 2Cu_2O \rightarrow 6Cu$		b) $4Cu_2O + FeS \rightarrow 8Cu +$	
	c) $2Cu_2O + FeS \rightarrow 4Cu +$		d) $Cu_2S + 2FeO \rightarrow 2Cu +$	=
153	Beryl is an important ore	=	a, au ₂ a : 1100	21000 1 002
100.	a) Boron	b) Beryllium	c) Lead	d) Lithium
154	. Smelting is done in:	b) berymum	c) Lead	a) Litinum
134.	a) Blast furnace	b) Muffle furnace	a) Open hearth furnace	d) Flootric furnace
1		,	c) Open hearth furnace	d) Electric furnace
155.	Silver obtained by argent	=		d) December 2014 I/CNI
456	a) Distillation	b) Froth floatation	c) Cupellation	d) Reacting with KCN
156.			ontaining oxides that cannot	t be reduced by carbon to
	give the respective metal			
	a) Cu ₂ O, K ₂ O	b) PbO, Fe ₃ O ₄	c) Fe_2O_3 , ZnO	d) $Ca0, K_20$
157.	. Which metal can be found	d in native state?		
	a) Na	b) Al	c) Ca	d) Fe
158	. Which of the following pa	irs of metals is purified by	y van Arkel method?	
	a) Ni and Fe	b) Ga and In	c) Zr and Ti	d) Ag and Au
159	Which of the following is	the heaviest metal?		
	a) U	b) Ra	c) Pb	d) Hg
160	. Iron is made inactive or p	passive by:		, ,
	a) H ₃ PO ₄	b) Conc. HNO ₃	c) Conc. H ₂ SO ₄	d) Dil. HNO ₃
161.	. Kiesserite is an ore of:	, 3	2 4	3
	a) Cu	b) Al	c) Mg	d) Fe
162	. Smelting is the reduction	,	c) ing	u) i c
102	a) C	b) Al	c) H	d) Electric current
162	. Which of the following is	•	C) II	d) Electric current
103.	=		a) D:	4) Cl-
1/4	a) P	b) As	c) Bi	d) Sb
164.	-	=	= =	Which one of the following
	=	ception and is concentrat	_	15. 4
	a) Galena	b) Copper pyrite	c) Sphalerite	d) Argentite
165.	. Which consists of only on	e element?		

a) Marble	b) Sand	c) Diamond	d) Glass
	y associated with minerals are:		
a) Slag	b) Flux	c) Alloy	d) Matrix
167. One of the fertilizer			
a) CaC ₂	b) CaCO ₃	c) CaCN ₂	d) CaSO ₄
	lectrochemical process for alun	ninium extraction, electr	olyte used is:
a) Al(OH) ₃ in NaOH			
b) An aqueous solut	_ : - : -		
	e of Al ₂ O ₃ and Na ₃ AlF ₆		
	e of Al_2O_3 and $Al(OH)_3$		
169. Which element is fo			
a) Pb	b) Fe	c) Cd	d) Al
170. Flux is used to remo			
a) Acidic impurities		b) Basic impurities	
c) All impurities fro		d) From ores	
171. Which statement is			
	choosen to combine with the s	lag present in the ore to	produce easily fusible gangue
to carry away the	=		
	fully choosen to combine with	the slag present in the o	re to produce easily fusible flux
to carry away the	=		
	fully choosen to combine with	flux present in the ore to	produce easily fusible slag to
carry away the in	=		
	lly choosen to combine with the	e gangue present in the o	ore to produce easily fusible
slag to carry awa	-		
172. Thermite process is			D 0 0
a) Crl_2O_3	b) Al_2O_3	c) pbo ₂	d) CuO
	cess for the concentration of or		
a) Adsorption	b) Absorption	c) Coagulation	d) Sedimentation
174. The main constituer) Al 177	D.M. J.C.
a) Ni and Mg	b) V and Co	c) Al and Zn	d) Mn and Cr
175. Which is not employ	· ·	a) Elastoralesta	d) I impaking
a) Poling	b) Leaching	c) Electrolysis	d) Liquation
	opper, some gold is deposited a		d) An ada mud
a) Cathode	b) Electrode	c) Cathode mud	d) Anode mud
	e lined with magnesia because:		
a) It is not affected lb) It liberates oxyge	_		
c) It melts at very h	•		
d) It has no effect of	-		
		urified by electrolygic th	a appropriate electrodes are:
=	FCu with Zn impurity is to be punode	if filed by electrolysis, th	e appropriate electrodes are:
a) Pure Zn	Pure Cu		
b) Impure sample			
c) Impure Zn	Impure sample		
d) Pure Cu	Impure sample		
•	entrating silver ore is based on	ite colubility in	
a) HCl	b) HNO ₃	c) KCN	d) NaOH
180. Correct statement is		C) IXCIN	uj Naori
	d is used for extraction of Zr	b) Limestone is acidio	rflux
c) Dolomite is an or		d) Willemite is carbon	
	e of Ai llowing ores is best concentrate	•	
TOT. WILLIAM OUR OF THE IO	nowing ores is best concerniate	a by ioi iii-iioatatioii liit	anou.

100	a) Magnetite	b) Cassiterite	c) Galena	d) Malachite
182.	Boron is found in form of: a) Borax	b) Colemanite	c) Both (a) and (b)	d) None of these
102	. Extraction of silver from it		. , , , , , , , , , , , , , , , , , , ,	=
105	a) Pattinson's method	is one one involving Macin,	an and an active metal is k	nown as.
	b) Amalgamation method			
	c) Mc Arthur-Forest method	nd		
	d) Parke's method	ou		
184	. Heating of ore in presence	of air to remove impurity	of sulphur is called:	
101	a) Calcination	b) Roasting	c) Smelting	d) None of these
185	. The ore concentrated by e	, ,		a) None of these
100	a) Wolframite	b) Haematite	c) Casseterite	d) All of these
186.	. Which process represents		c) dussecerite	a) In or these
100	$Ti + 2I_2 \rightarrow TiI_4 \rightarrow Ti + 2I_2$	=		
		b) Van Arkel	c) Poling	d) Zone refining
187.	. Liquid crystals are best us	•	-)	.,
	a) Colour TV	b) Crystallization	c) Extraction	d) e/m determination
188.	•		•	n of zinc sulphide contains
	some ZnO. It is removed by		3 · · · · · · · · · · · · · · · · · · ·	r
	a) Absorbance of ultraviol		white light	
	b) Shock cooling by contac	=	=	
	c) X-ray method			
	d) Smelting			
189	. High purity copper metal i	s obtained by:		
	a) Carbon reduction	b) Hydrogen reduction	c) Electrolytic reduction	d) Thermite process
190	. In metallurgy, flux is a sub	stance used to convert		
	a) Soluble impurities to in	soluble impurities	b) Infusible impurities to	fusible material
	c) Fusible impurities to in	fusible impurities	d) Mineral into silicate	
191	. Gold is found usually near	mineral.		
	a) Mica	b) Felspar	c) Quartz	d) Galena
192	. The smelting of iron in a b	last furnace involves all th	e steps except:	
	a) Reduction	b) Fusion	c) Decomposition	d) Sublimation
193	The metal that is extracted			
	a) Na	b) Ca	c) Mg	d) Sn
194.	. Wulfenite (a yellow-red m			=
	a) Sulphur	b) Molybdenum	c) Helium	d) Lead
195.	The forth-floatation proce	=		
	a) The difference in the sp	=	ngue particles	
	b) The magnetic propertie			
	c) Preferential wetting of			
100	d) The solubility of ore par	-		
196.	. Pig iron is converted into s			
107	a) Blast furnace	b) Pyrite burner	c) Bessemer converter	d) None of these
197.	Plumbo-solvency refers to			
	a) Oxidation of lead to lead			
	b) Oxidation of lead to red			
	c) Dissolution of lead in w	-	h a dio	
100	d) Making lead wires by fo	=	ii a uie	
170	. Zinc is obtained on large s		c) Precipitation with Ag	d) All are correct
100	 a) Electrolysis of ZnCl₂ Which of the following sub 	_		uj Ali ale Collect
エノノ	. Transii or the ronowing sut	ostanices can be used for al	y 1115 gases .	

a) CaO	b) NaHCO ₃	c) CaCO ₃	d) Na ₂ CO ₃
200. Refractory materials an	e generally used in furnac	es because	
a) They can withstand	high temperature	b) They are chemically	inert
c) They do not require	-	d) They possess great :	-
201. Presence of small impu	rity usually makes a metal	quite hard because the im	purities:
a) Change the lattice st			
b) Reduce the number	_		
c) Reduce the number			
d) Reduce the crystal sy	ymmetry		
202. Willemite is			
a) Zn ₂ SiO ₄	b) H ₂ ptCl ₆	c) ZnO	d) ZnOFe ₂ O ₃
203. The least stable oxide a	=		
a) ZnO	b) CuO	c) Sb_2O_3	d) Ag_2O
204. The process of removal			
a) Concentration	b) Refining	c) Smelting	d) None of these
205. The process of calcinat	ion and roasting are carrie	d out in:	
a) Blast furnace			
b) Muffle furnace			
c) Reverberatory furna			
d) Open hearth furnace			
206. Which is not essential f	=		
a) Oxygen	b) Water	c) Carbon dioxide	d) Iron
207. Which of the following			
a) Kaoline	b) Agate	c) Ruby	d) Quartz
208. The salt which is least l			
a) Chloride	b) Sulphate	c) Sulphide	d) Nitrate
209. Heating of pyrite ores i	•		
a) Calcination	b) Fluxing	c) Smelting	d) Roasting
210. Leaching is a process o	f:		
a) Reduction	b) Concentration	c) Refining	d) Oxidation
211. Colemanite is			
a) $Ca[B_3O_4(OH)_2]$. $2H_2$	0	b) $Ca_2B_6O_{11}$. $5H_2O$	
c) Ca(OH) ₂		d) $Na_2B_4O_7$. $2H_2O$	
212. The ore that is concent	-		
a) Zincite	b) Cinnabar	c) Bauxite	d) malachite
213. Which one of the follow	-		
a) Bauxite	b) Horn silver	c) Zincite	d) Felspar
214. An example of an oxide			
a) Zinc blende	b) Bauxite	c) Feldspar	d) Malachite
215. The chemical composit			-
a) $KCl \cdot MgCl_2 \cdot 6H_2O$		c) $MgCO_3 \cdot 7H_2O$	d) MgCO ₃
216. Which is not a silver or			
a) Argentite	b) Siderite	c) Horn silver	d) Ruby silver
217. Blast furnace is used in			
a) Al	b) Fe	c) Gold	d) Ag
218. Corundum is			
a) Cu ₂ Cl ₂	b) CaCl ₂	c) SrO ₂	d) Al_2O_3
219. An alloy is:			
a) Intermetallic compo			
-	ntaining two or more elem	ents	
c) A solid which contain	ns one non-metal		

	d) A solid which contains			
220.	Which of the following is r	not ore?		
	a) Zinc blende	b) Malachite	c) Bauxite	d) Pig iron
221.	Cryolite is			
	a) Sodium borofluride		b) Magnesium silicate	
	c) Aluminium		d) Sodium aluminium fluo	oride
222.	In the thermite process th	e reducing agent is:		
	a) C	b) Al	c) Na	d) Mg
223.	Which is not an ore of lead	d?		
	a) Galena	b) Cassiterite	c) Anglesite	d) Cerussite
224.	Which is not an ore of nicl	kel?		
	a) Nickel glance	b) Garnerite	c) Haematite	d) Pentlandite
225.	The ore magnesite is:			
	a) MgCO ₃ · CaCO ₃	b) $MgCl_2 \cdot KCl \cdot 6H_2O$	c) $MgSO_4 \cdot 7H_2O$	d) $MgCO_3$
226.	In blast furnace, the highe	st temperature is in		
	a) Fusion zone	b) Reduction zone	c) Combustion zone	d) Slag zone
227.	Which one of the following	g is correct?		
	a) All minerals are ores		b) All ores cannot be a mi	neral
	c) A mineral cannot be an	ore	d) All ores are minerals	
228.	Furnaces are lined with ca	alcium oxide because:		
	a) It gives off oxygen on h	eating		
	b) It gives light on heating	_ 		
	c) It is refractory and basi			
	d) It is not affected by acid			
	Lepidolite, a lithium ore, a			
	a) Ru	b) MgSO ₄	c) Na	d) Cs
	Gold when dissolved in aq	jua-regia gives:		
	a) Auric chloride	b) Aurous chloride	c) Chloroauric acid	d) Tempering
	Specific gravity of slag is:			, ,
	a) Always higher than mo	lten metal		
	b) Always less than molte			
	c) Same as that of molten			
	d) None of the above			
232.	The correct statement is:			
	a) Dolomite is the ore of z	inc		
	b) Galena is the ore of me			
	c) Pyrolusite is the ore of	=		
	d) Cassiterite is the ore of			
	Which is known as blister			
	a) Pure copper	b) 98% copper	c) Ore of copper	d) Alloy of copper
	,	e is not concentrated by for		, , , , , , , , , , , , , , , , , , , ,
	a) Pyrolusite	b) Pentlandite	c) Zinc blende	d) Copper pyrites
	The metal extracted by lea	•	.,	· y - · FF - Fy - · · ·
	a) Mg	b) Ag	c) Cu	d) Na
	Dollucite is an ore of:	~)8	·, ·	,
	a) Li	b) Rb	c) K	d) Cs
	Which is statement is inco		,)
	a) Galena is an ore of Pb			
	b) Electrostatic separation	n is used for lead sulphide		
	b) Electrostatic separationc) Ore is heated strongly.	n is used for lead sulphide above its melting point in 1	oasting	

238. Anglesite is an ore of:			
a) Cd	b) Ni	c) Sb	d) Pb
239. Froth floatation proce	ss is based on:		
a) Wetting properties	of ore particles		
b) Specific gravity of o	ore particles		
c) Magnetic propertie	s or ore particles		
d) Electrical propertie	es of ore particles		
240. In froth floatation pro	cess many chemicals (frothe	r, collector, activator and	depressant) are used. Which is
called a frother?			-
a) CuSO ₄	b) NaCN + alkali	c) Pine oil	d) Potassium xanthate
= = =	s a reducing agent in smeltin	•	,
a) C	b) Al	c) Zn	d) None of these
242. Calamine is an ore of:	-,	o,	,
a) Hg	b) Zn	c) Cd	d) Ca
	ovides the highest temperatu	•	a) da
a) Blast furnace	ovides the ingliest temperate	11 C 15.	
b) Reverberatory furn	220		
c) Electrical furnace	lace		
d) Muffle furnace	the culmbide of common is not	luga d have	
-	the sulphide of copper is red	rucea by:	
a) Cyanide process			
b) Electrolysis			
c) Reduction with carl	bon		
d) Self reduction			
245. Roasting is used in the			
a) Galena	b) Iron pyrite	c) Copper glance	d) All of these
246. An ore of potassium is			
a) Cryolite	b) Bauxite	c) Carnallite	d) Dolomite
247. Metals occur in the na	tive form because of their:		
a) High electronegative	vity		
b) High reactivity			
c) Low reactivity			
d) Low density			
248. Purpose of smelting of	f an ore is		
a) To oxidize it		b) To remove vaporis	ation impurities
c) To reduce it		d) To obtain an alloy	
249. Oxidation method is u	sed for refining of:		
a) Pb	b) Cu	c) Hg	d) All of these
250. From which form of ir	on, other forms of iron can b	e produced?	-
a) Cast iron	b) Wrought iron	c) Pig iron	d) Steel
251. Aluminium is extracte	, ,	, 0	,
a) Bauxite	J J		
b) Alumina			
c) Molten cryolite			
d) Alumina mixed with	h cryolite		
252. The most abundant ele			
a) 0	b) Si	c) H	d) C
,	statements, the incorrect one		u, 0
a) Calamine and sider		b) Malachite and azur	rite are ores of conner
		=	
c) Argentite and cupri		d) Zinc blende and py	rices are surpinues
254. Roasting is generally of	ai i icu uut iii case ui.		

	a) Oxide ores	b) Sulphide ores	c) Silicate ores	d) Carbonate ores
255	. Chile saltpetre is the ore o	of:		
	a) Mg	b) K	c) Na	d) Ca
256	. Nickel is purified by thern	nal decomposition of its:		
	a) Hydride	b) Chloride	c) Azide	d) Carbonyl
257	. Which element occurs fre	ely in nature?		
	a) Iodine	b) Sulphur	c) Phosphorus	d) Magnesium
258	. To dissolve argentite ore	which of the following is us	sed?	
	a) Na[Ag(CN) ₂	b) NaCN	c) NaCl	d) HCl
259	. The metal used in storage	batteries is:		
	a) Cu	b) Sn	c) Pb	d) Ni
260	. The process of Zinc –plati	ng on iron sheet is known a	as	
	a) Annealing	b) Roasting	c) Galvanization	d) smelting
261	. Bronze is a mixture of			
	a) Pb+ Sn	b) Cu+ Sn	c) Cu+Zn	d) Pb+ Zn
262	. Electrolytic reduction of a	lumina to aluminium by Ha	all-Heroult process is carri	ed out
	a) In the presence of NaCl			
	b) In the presence of fluor	rite		
	c) In the presence of cryo	lite which forms a melt wit	h lower melting point	
	d) In the presence of cryo	lite which forms a melt wit	h high melting point	
263	. Bauxite ore is made up of	$Al_2O_3 + SiO_2 + Tio_2 + Fe_2$	O ₃ This ore is treated with	conc NaOH solution at 500
			en hot. In the filtrate, the sp	
	a) NaAl(OH) ₄ only		b) Na ₂ Ti(OH) ₆ only	
	c) NaAl(OH) ₄ snd Na ₂ SiO	3both	d) Na ₂ SiO ₃ only	
264		are found mainly in the for	ms of:	
	a) Lignite	b) Rutile	c) Monazite	d) None
265	. The luster of a metal is du	e to		
	a) Its high polishing		b) Its high density	
	c) Its chemical inertness		d) Presence of free electro	ons
266	. Which is the salt of an org	anic acid?		
	a) Rochelle salt	b) Microcosmic salt	c) Mohr's salt	d) Glauber's salt
267	. An element A dissolves bo	oth in acid and alkali. It is a	n example of:	
	a) Allotropic nature of A			
	b) Dimorphic nature of A			
	c) Amorphous nature of A			
	d) Amphoteric nature of A	1		
268	. Which of the following sta	atements about the advanta	ages of roasting of sulphide	ore before reduction is not
	true?			
	a) ΔG_f of the sulphide is g	reater than CS ₂ and H ₂ S		
	1	sting of sulphide ore to oxid	le	
	•	e to oxide is thermodynam		
		=		
260		are suitable reducing agent at is more abundant in Indi	=	
209				d) Dadon
270	a) Thorium	b) Uranium	c) Radium	d) Radon
4/0	. Which ore contain both ir	= =	a) Chalacawita	d) malaabita
274	a) Cuprite	b) Chalococite	c) Chalcopyrite	d) malachite
2/1	. Galena is an ore of:	h) Dh	a) Cm	4) Ca
	a) Zn	b) Pb	c) Sn	d) Ca
270	The server of the state of the	_C J!	al anala kanala alamata da	of fused sodium chloride is

	_	, , ,	c) Nelson process	d) Castner process				
273.	-	blast furnace, it is converte	ed to Fe_2O_3 by roasting so	that:				
	a) It may not be removed as slag with silica							
	b) It may not evaporate in	the furnace						
	c) Presence of it may incre	ease the m. p. of charge						
	d) None of the above							
274.	Which method of purificat	tion is represented by the f	ollowing equation?					
	$Ti(s) + 2I_2(g) \xrightarrow{523K} TiI_4(g)$	1700K Ti(s) $\pm 2L(g)$						
	a) Cupellation	b) Poling	c) Van Arkel	d) Zono rofining				
275	Diaspore is:	o) Polling	c) vali Aikei	d) Zone refining				
2/3.	•	b) Al O 2H O	a) Al O	4) VI O 3II O				
276	a) Al_2O_3 . H_2O	b) Al ₂ O ₃ . 2H ₂ O	c) Al_2O_3	d) Al_2O_3 . $3H_2O$				
2/6.	Formula for agate is	1) 1/ 0 0:0 11 0) (())	D.C. D				
	a) Na_2SiO_3	b) $K_2O. SiO_2. Al_2O_2$	c) SiO ₂	d) CaF ₂				
277.	Spelter is:							
	a) Impure zinc	b) Impure iron	c) Pure zinc	d) Impure Al				
278.	Chloride ore among the fo	=						
	a) Malachite	b) Magnesite	c) Magnetite	d) Rock salt				
279.	Magnetic separation is use	ed for increasing concentra	tion of the following					
	a) Calcite	b) Horn silver	c) Magnesite	d) Haematite				
280.	Ore pitch blende is main s	ource of						
	a) Ra	b) Th	c) Mg	d) Ce				
281.	Which one of the following	g is a mineral of iron?						
	a) Pyrolusite	b) Magnetite	c) Malachite	d) Cassiterite				
282.	Metal which can be extrac	ted from all the three dolor	nite, magnesite and carnal	lite is				
	a) Na	b) K	c) Mg	d) Ca				
283.	A metal which is refined \		, 0	,				
	a) Silver	b) Sodium	c) Blister copper	d) Zinc				
284.		hydrated alumina into anh	= = =					
	a) Roasting	b) Smelting	c) Dressing	d) Calcination				
285	Sulphide ore is:	<i>5)</i> 56	0) 21000	<i>a, caromavion</i>				
200.	a) Copper pyrites	b) Malachite	c) Carnallite	d) Magnetite				
286	Which metal is sometimes		c) darmanice	a) Magnetite				
200.	a) Al	b) Cu	c) Fe	d) Mg				
287	=	he flux used for removing a	•	u) Mg				
207.	a) Silica	b) Sodium chloride	-	d) Sadium carbonata				
200	=		c) Lime stone	d) Sodium carbonate				
200.	Which of the following is a		a) Catallita	d) Comunito				
200	a) Malachite	b) Calamine	c) Satellite	d) Cerussite				
289.	Thomas slag is:							
	a) Calcium silicate							
	b) Calcium phosphate							
	c) Tricalcium phosphate a							
	d) Calcium ammonium ph	-						
290.	Leaching process is used t							
	a) Ag	b) Au	c) Both (a) and (b)	d) None of these				
291.	The mineral of copper is:							
	a) Azurite	b) Malachite	c) Copper pyrites	d) All of these				
292.	In Goldschmidt aluminoth	ermic process, thermite m	ixture contains:					
	a) 3 parts Fe ₂ O ₃ and 2 par	rts Al						
	b) 3 parts Al ₂ O ₃ and 4 par	rts Al						
	c) 1 part Fe ₂ O ₃ and 3 part	ts Al						

	J) 2							
202	d) 3 parts Fe_2O_3 and 1 part Al 293. Two compounds having the same crystal structures and analogous formulae, are called:							
293.		=	ving	<u>=</u>	-			
204	-	omorphous		b) Isotopes	c) Isomers	d) Isobars		
294.				tracted from its ore, if the g	=			
	-	basic flux is ne			b) An acidic flux is need			
205	-			flux are needed	d) Neither of them is nee	eaea		
295.		er copper is ob			.) D.P	D. D. C. J.		
206	-	essemerisation		b) Roasting	c) Poling	d) Refining		
296.		ch is not an ore	of m	=		10.34		
205	-	arnallite		b) Dolomite	c) Gypsum	d) Magnesite		
297.			ıng r	netal is sometimes found na		D. F.		
200	a) M	_		b) Cu	c) Al	d) Fe		
298.	Mate		t II a	and select the correct answer	r using the codes given be	low the lists		
		List I (Types of ore)		List II (example)				
	1.	Oxide ore	A.	Feldspar				
	2.	Sulphide ore	В.	Barytes				
	3.	Sulphate ore	C.	Fluorspar				
	4.	Halide ore	D.	Galena				
			E.	Corundum				
	a) 1	-A, 2-E, 3-B,4-C		b) 1-B,2-D,3-C,4-A	c) 1-B,2-D,3-E,4-A	d) 1-E, 2-D, 3-B,4-C		
299.	Тоо	btain chromiun	n fro	m chromic oxide (Cr_2O_3) , th	ne method used is:			
	a) C	arbon reduction	1					
	b) C	arbon monoxid	e rec	luction				
	c) A	lumino thermic	pro	cess				
	d) E	lectrolytic redu	ctior	า				
300.	In o	rder to refine bl	isteı	copper, it is melted in a fur	nace and is stirred with gr	een logs of wood. The		
	purp	oose is						
	a) T	o expel the diss	olve	d gases in blister copper				
	b) T	o bring the imp	uriti	es to surface and oxidize the	em			
	c) T	o increase the c	arbo	on content of copper				
	d) T	o reduce the me	etalli	c oxide impurities with hyd	rocarbon gases liberated f	rom the wood		
301.	Hyd	rometallurgy is	usei	ful in the extraction of:	· ·			
	a) Si	0.		b) Al	c) Hg	d) Ag		
302.	-	ch is not an iror	ı ore	•	, .	, 0		
	a) H	aematite		b) Limonite	c) Cassiterite	d) Magnetite		
303.	In th	ne modern blast	furr	naces, the charge consists of	•	, 0		
		on pyrites + bi		-	b) Hydrated iron oxides	+dolomite + coke		
	-	= =		+ limestone + coke	d) Calcined iron oxides -			
304	-			ts with gangue to form fusib	-	, mile , antimatice cour		
0011	a) F		cac	b) Slag	c) Catalyst	d) Ore		
305	-		nt 119	ed in purification of bauxite?	•	a) ore		
505.		all's method	i us	b) Baeyer's method	c) Serpek's method	d) Frankland's method		
306	-	ium arsenide is	nuri		c) serpeks method	uj Franklanu s methou		
300.			_	neu by	h) Zono rofining mothod	1		
	a) van-Arkel method b) Zone-refining method							
207	-	lectrolytic meth		. 1.42	d) Liquation			
<i>3</i> U/.		ch metal is not :	siive		.). NI .	D.C.		
200	a) N		c	b) Cu	c) Na	d) Sn		
<i>3</i> 08.		ne reverberator						
	-			me in contact with the charg	e			
	b) The flames come in contact with the charge							

	c) Only hot gases come in	contact with the charge		
	d) The flames are not there	e at all		
309.	Silicon is the main constitu	ient of:		
	a) Rocks	b) Alloys	c) Animals	d) Plants
310.	The grey cast iron contains	S:		
	a) Iron carbide	b) Silicon carbide	c) Silicon dioxide	d) Graphite
311.	Carnallite is a mineral of			
	a) Na	b) Zn	c) Cd	d) Mg
312.	In the extraction of lead from	om its ore galena, an impoi	rtant element recovered is:	
	a) Au	b) Ag	c) Cr	d) C
313.	Chile salt petre is an ore of	f		
	a) Magnesium	b) Bromine	c) Sodium	d) Iodine
314.	Native silver metal forms a	a water soluble complex wi	ith a dilute aqueous solutio	n of NaCN in the presence
	of			
	a) Nitrogen	b) Oxygen	c) Carbon dioxide	d) argon
315.	All ores are minerals, while	e all minerals are not ores	because	
	a) Minerals are complex co	ompounds		
	b) The minerals are obtain	ed from mines		
	c) The metal cannot be ext	cracted economically from	all the minerals	
	d) All of the above are corn	rect		
316.	The non-fusible impurities	s of ores are removed by ac	lding:	
	a) Flux	b) Slag	c) Gangue	d) None of these
317.	Tin is extracted from tin st	one by heating it in a furna	ace with:	
	a) CaCO ₃	b) CaO	c) Steam	d) Coal
318.	Wolframite ore contains:			
	a) Zn	b) W	c) Hf	d) Au
319.	In Serpek's process, by pro	oduct obtained in the purifi	ication of bauxite is:	
	a) Al_2O_3	b) N ₂	c) NH ₃	d) None
320.	Copper can be extracted fr	om		
	a) Dolomite	b) Malachite	c) Galena	d) Kupfer nickel
321.	Which element is purified	by Zone refining?		
	a) Ge	b) Ge and Si	c) Si	d) None of these
322.	An important characterist	ic property of metals is:		
	a) Their hardness			
	b) Their ability to conduct	electricity		
	c) To form oxides			
	d) The stability of their con	-		
323.	Crystalline metal can be tr	ansformed into metallic gla	ass by:	
	a) Alloying			
	b) Pressing into thin plates			
	c) Slow cooling of molten			
	d) Very rapid cooling of a s	= =		
324.	Metallurgy is the process of			
	a) Concentrating the ore	b) Roasting the ore	c) Extracting the metal from the ore	d) Adding carbon to the ore in blast furnace
325.	The substance not likely to			
	,	b) Dolomite	c) Marble statue	d) Calcined gypsum
326.	In the formation of Al ₂ O ₃ l			
		b) Confectionary	c) Indoor photography	d) Thermite welding
327.	CO is used in the metallurg			
	a) Cu	b) Ni	c) Cr	d) Pt

328.	The electrolytic method o	f reduction is employed for	r the preparation of metals	that					
	a) Are strongly electropos	sitive	b) Are weakly electropositive						
	c) Are moderately electro	positive	d) From oxides						
329.	Which substance can be u	sed for drying gases?							
	a) CaCO ₃	b) Na ₂ CO ₃	c) CaHCO ₃	d) CaO					
330.	The slag obtained during	the extraction of copper fro	om copper pyrites is compo	osed of					
	a) Cu ₂ S	b) SiO ₂	c) CuSiO ₃	d) FeSiO ₃					
331.	Matte contains mainly	, <u>-</u>	, ,	, ,					
	a) Cu ₂ S and FeS	b) Cu ₂ S	c) CuS and Fe ₂ S ₃	d) Fe					
332.	Which statement is correct	, <u>-</u>	2 3	,					
	a) All minerals are ores								
	b) A mineral cannot be an	ore							
	c) An ore cannot be a min								
	d) All ores are minerals								
333.	=	oving lavers of basic oxides	from metals before electro	pplating is called:					
	a) Galvanising	b) Anodising	c) Pickling	d) Poling					
334	Radium is obtained from:	<i>c)</i>	v) 1 1011111B	,g					
0011	a) Pitch blende	b) Haematite	c) Monazite	d) None of these					
335	Main function of roasting	,	c) Monazice	a) None of these					
555.	a) Oxidation	15	b) Reduction						
	c) Slag formation		d) To remove volatile sub	ostance					
336	Zinc metal is refined by:		a) To Temove volutile sub	stance					
330.	a) Crystallisation	b) Sublimation	c) Heating	d) Distillation					
227	Rutile is an ore of:	b) Subililiation	c) ficating	u) Distillation					
337.	a) Ti	b) Zr	c) Mn	d) V					
220	The incorrect statement is	•	C) MIII	u) v					
330.	a) Calamine and siderite a								
	b) Argentite and and cupr								
	c) Zinc blende and iron p								
		·							
220	d) Malachite and azurite a		alt) is amortared to autocat.						
339.		ess (electrolysis of fused sa		d) Cilvon					
240	a) Iron	b) Lead	c) Sodium	d) Silver					
340.	Which of the following is		h) Walframita is non mas	rnotic in noture					
	a) Tin stone is magnetic in	n nature	b) Wolframite is non-mag						
2/1	c) Wolframeite is FeWO ₄	na hagia nafnagtany matanja	d) Cassiterite and rutile a	re suipilides ore					
341.		as basic refractory material		d) E. O					
242	a) Al_2O_3	b) SiO ₂	c) CaO	d) Fe ₂ O ₃					
342.	Cinnabar is:	h) A ~ C	a) 7nC	4) II~C					
242	a) CuS	b) Ag ₂ S	c) ZnS	d) HgS					
343.	Metal occur in the native	from because of their	h) High was stirriter						
	a) High electronegativity		b) High reactivity						
244	c) Low reactivity		d) Low density	: h					
344.		ting the ore which makes u	se of the difference in dens	ity between ore and					
	impurities is called	1571		12.34					
245	a) Leaching	b) Liquation	c) Levigation	d) Magnetic separation					
345.			callurgical process of zinc is						
246	a) Roasting	b) Smelting	c) Cupellation	d) Calcinations					
346.	-	-	-	of pure metal, the cathode,					
	=	r an aqueous solution of a	complex metal salt. This	method cannot be used for					
	refining of:	1.) (> A1	D.C. II					
	a) Silver	b) Copper	c) Aluminium	d) Sodium					

Which metal is extracted by	by electrolytic reduction me	ethod?			
a) Cu	b) Al	c) Ag	d) Fe		
The cheap and high meltin	g point compound used in	furnace lining is:			
a) PbO	b) CaO	c) HgO	d) ZnO		
In the metallurgy of iron, v	when $CaCO_3$ is added to bla	ast furnace, calcium ion app	ears as		
a) Slag	b) Gangue	c) CaO	d) Metallic Ca		
Alloys of which metal are	light and strong and are us	ed in the manufacture of ae	roplanes?		
a) Cr	b) Sn	c) Fe	d) Mg		
Which of the following pro	ocesses involves the roasting	ng process?			
a) $ZnCO_3 \rightarrow ZnO + CO_2$					
b) $Fe_2O_3 + 3C \rightarrow 2Fe + 3$	CO				
c) $2PbS + 3O_2 \rightarrow 2PbO +$	2SO ₂				
d) Al_2O_3 . $2H_2O \rightarrow Al_2O_3$	+ 2H ₂ O				
Which of the following ore	e is used for industrial extra	action of aluminium in India	a?		
a) Corundum	b) Cryolite	c) Bauxite	d) Kaolin		
Pb and Sn are extracted fr	om their chief ore by				
a) Electrolysis and self red	luction	b) Self reduction and electrolysis			
c) Carbon reduction and s	elf reduction	d) Self reduction and carbon reduction			
Heating of carbonate ores	to remove carbon is called	as:			
a) Roasting	b) Calcination	c) Smelting	d) Fluxing		
Coating of zinc on iron obj	ects is commonly known a	S:			
a) Electroplating	b) Surface coating	c) Galvanising	d) Sheardising		
The temperature of the sla	ng zone in the metallurgy o	f iron using blast furnace is			
a) 1200 – 1500°C	b) 1500 – 1600°C	c) 400 - 700°C	d) 800 - 1000°C		
Sapphire is a mineral of:					
a) Zn	b) Cu	c) Hg	d) Al		
	a) Cu The cheap and high meltin a) PbO In the metallurgy of iron, v a) Slag Alloys of which metal are l a) Cr Which of the following pro a) ZnCO₃ → ZnO + CO₂ b) Fe₂O₃ + 3C → 2Fe + 3 c) 2PbS + 3O₂ → 2PbO + d) Al₂O₃. 2H₂O → Al₂O₃ → Which of the following ore a) Corundum Pb and Sn are extracted fro a) Electrolysis and self rec c) Carbon reduction and s Heating of carbonate ores a) Roasting Coating of zinc on iron obj a) Electroplating The temperature of the sla a) 1200 − 1500°C Sapphire is a mineral of:	a) Cu b) Al The cheap and high melting point compound used in a) PbO b) CaO In the metallurgy of iron, when $CaCO_3$ is added to bla a) Slag b) Gangue Alloys of which metal are light and strong and are us a) Cr b) Sn Which of the following processes involves the roastin a) $ZnCO_3 \rightarrow ZnO + CO_2$ b) $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ c) $2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$ d) $Al_2O_3 \cdot 2H_2O \rightarrow Al_2O_3 + 2H_2O$ Which of the following ore is used for industrial extra a) Corundum b) Cryolite Pb and Sn are extracted from their chief ore by a) Electrolysis and self reduction c) Carbon reduction and self reduction Heating of carbonate ores to remove carbon is called a) Roasting b) Calcination Coating of zinc on iron objects is commonly known a a) Electroplating b) Surface coating The temperature of the slag zone in the metallurgy o a) $1200 - 1500^{\circ}C$ b) $1500 - 1600^{\circ}C$	The cheap and high melting point compound used in furnace lining is: a) PbO		

						: ANSV	VE	ER K	EY	:					
1)	a	2)	a	3)	С	4)	b	189)	С	190)	b	191)	С	192)	С
5)	b	6)	b	7)	b			193)	c	194)	b	195)	d	196)	c
9)	С	10)	c	11)	c	4.00		197)	С	198)	b	199)	a	200)	a
13)	a	14)	c	15)	c		d	201)	b	202)	a	203)	d	204)	a
17)	c	18)	b	19)	d	20)	a	205)	c	206)	c	207)	c	208)	d
21)	a	22)	b	23)	c	24)	b	209)	d	210)	b	211)	b	212)	b
25)	d	26)	a	27)	d	28)	b	213)	b	214)	b	215)	a	216)	b
29)	a	30)	b	31)	c	32)	c	217)	b	218)	c	219)	b	220)	d
33)	d	34)	a	35)	a	36)	d	221)	d	222)	b	223)	b	224)	c
37)	a	38)	c	39)	b	40)	a	225)	d	226)	c	227)	d	228)	c
41)	a	42)	C	43)	a	44)	d	229)	C	230)	c	231)	b	232)	d
45)	b	46)	a	47)	c	48)	d	233)	b	234)	a	235)	b	236)	d
49)	c	50)	b	51)	c	52)	b	237)	C	238)	d	239)	a	240)	C
53)	c	54)	a	55)	b	56)	a	241)	a	242)	b	243)	c	244)	d
57)	b	58)	d	59)	d	60)	c	245)	d	246)	c	247)	C	248)	C
61)	c	62)	a	63)	b	64)	a	249)	d	250)	c	251)	d	252)	a
65)	b	66)	a	67)	b	68)	a	253)	c	254)	b	255)	c	256)	d
69)	a	70)	c	71)	c	72)	c	257)	b	258)	b	259)	c	260)	c
73)	c	74)	a	75)	C	76)	a	261)	b	262)	c	263)	a	264)	C
77)	a	78)	b	79)	C	80)	a	265)	d	266)	a	267)	d	268)	d
81)	b	82)	C	83)	C	84)	b	269)	a	270)	c	271)	b	272)	a
85)	b	86)	C	87)	a	88)	C	273)	a	274)	c	275)	a	276)	C
89)	b	90)	d	91)	d	,	b	277)	a	278)	d	279)	d	280)	a
93)	b	94)	b	95)	c	96)	C	281)	b	282)	c	283)	C	284)	d
97)	b	98)	C	99)	d	,		285)	a	286)	c	287)	c	288)	C
101)	d	102)	a	103)	b	•		289)	C	290)	c	291)	d	292)	d
105)	b	106)	b	107)	a	,		293)	a	294)	a	295)	a	296)	C
109)	a	110)	d	111)	a	_		297)	b	298)	d	299)	C	300)	d
113)	a	114)	a	115)	C	-		301)	d	302)	c	303)	C	304)	a
117)	d	118)	d	119)	d	-		305)	d	306)	b	307)	b	308)	C
121)	b	122)	b	123)	a	-		309)	a	310)	d	311)	d	312)	b
125)	a	126)	a	127)	a	•		313)	C	314)	b	315)	C	316)	a
129)	b	130)	b	131)	C			317)	d	318)	b	319)	C	320)	b
133)	a	134)	d	135)	d	-		321)	b	322)	b	323)	d	324)	С
137)	c	138)	d	139)	b	-		325)	d	326)	d	327)	b	328)	a
141)	d	142)	a	143)	C	-		329)	d	330)	d	331)	a	332)	d
145)	b	146)	b	147)	b	-		333)	C	334)	a	335)	d	336)	d
149)	c	150)	d	151)	b	-		337)	a	338)	b	339)	С	340)	С
153)	b	154)	a	155)	C	-		341)	С	342)	d	343)	C	344)	C
157)	d	158)	C	159)	a	-		345)	a	346)	d	347)	b	348)	b
161)	С	162)	a	163)	С	-		349)	a	350)	d	351)	С	352)	C
165)	C	166)	d	167)	C	-		353)	d	354)	b	355)	С	356)	d
169)	b	170)	d	171)	d	-		357)	d						
173)	a	174)	d	175)	b	•	d								
177)	c	178)	d	179)	c	•	a								
181)	C	182)	C	183)	C	•	b								
185)	d	186)	b	187)	a	188)	b								

: HINTS AND SOLUTIONS :

1 (a)

2 **(a)**

Cryolite has these two functions during electrolysis of alumina.

3 **(c)**

Pyrolusite is an ore of Mn containing MnO₂.

4 **(b**)

Wrought or malleable iron is the purest form of iron

5 **(b)**

6 **(b)**

During electrolysis, noble metals (inert metals) like Ag, Au and Pt are not affected band separate as anode mud from the impure anode

7 **(b)**

PbS + 2PbO
$$\rightarrow$$
 3Pb + SO₂ (Self reduction)
SnO + C \rightarrow Sn + CO (Carbon reduction)

8 **(b)**

At about 330 K nickel is attacked by carbon monoxide with the formation of a volatile nickel carbonyl $Ni(CO)_4$.

10 **(c)**

It involves auto-reduction.

$$2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$$

11 (c)

In electrolytic refining of Cu, impurities of Fe, Ni, and Zn pass into solution and others like Au and Ag fall down, as anode mud.

12 **(a**)

Mercury is the only metal which is liquid at room temperature.

13 **(a**)

Lapis lazuli is the sodium alumino silicate present in earth rocks as blue stone

14 (c

$$2MS + C \rightarrow 2M + CS_2$$
 ΔG_1 =positive $2MO + C \rightarrow 2M + CO_2$ ΔG_2 =negative The value of ΔG for the 9 formation of CO_2 is negative, ie , it is thermodynamically more than CS_2 . Also metal sulphides are thermodynamically more stable than CS_2 . Metal sulphides are more stable than the corresponding oxides, so they are

roasted to convert into less stable oxides

15 **(c)**

It is a fact.

16 **(d)**

Soda ash (Na₂CO₃) is an ore of sodium

17 (c

Titanium is quite abundant in nature and mainly occurs as elmanite, $FeO. TiO_2$

20 **(a)**

It is a fact.

21 **(a)**

It is a fact.

22 **(b)**

Al is highly electropositive. It can be obtained only by electrolytic reduction

23 **(c)**

Malleable nature (*i.e.*, can be pressed out into sheets) is maximum in gold.

24 **(b)**

It is a fact.

25 **(d)**

It is a fact.

26 **(a)**

Cassiterite is an ore of tin

27 **(d**)

$$2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$$

 $PbS + 2PbO \rightarrow 3Pb + SO_2$

28 **(b**)

Cryolite is an ore of Al containing Na₃AlF₆.

29 **(a)**

Blanc fixe is BaSO₄.

30 **(b)**

Forth floatation method is based on the fact that the surface of sulphide ores is preferentially wetted by oil while that of gangue is wetted by water

31 (c)

Fe-C form alloy.

32 **(c)**

Galena is PbS; Sulphide ores are concentrated by froth floatation process.

33 **(d)**

In Hall and Heroult process,

$$2Al_2O_3 \rightarrow 4Al + 3O_2$$

 $4C + 3O_2 \rightarrow 2CO_2 + 2CO \uparrow$
 $2Al_2O_3 + 4C \rightarrow 4Al + 2CO_2 + 2CO$

Only for removal of CO₂, following equation is

possible

$$2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2$$

 $3 \times 12 = 36$ $4 \times 27 = 108$

∴ For 108 g of Al, required amount of C = 36g∴ For 270 g of required amount of $C = \frac{36}{108} \times 270 = 90g$

34 **(a)**

$$CuO + CO \xrightarrow{\Delta} Cu + CO_2 \uparrow$$

35 **(a)**

Load stone (magnetite, Fe_3O_4) is an ore of iron

36 **(d**)

Mond's process for refining of Ni is an example of vapour phase refining

37 **(a)**

Carbon reduction process is used for extraction of less electropositive metals like Pb, Fe, Zn, Sb, Cu, etc., from their ores.

38 **(c)**

The phenomenon of efflorescence involves spontaneous loss of water molecules from a crystal.

39 **(b)**

Cd is found as traces in most Zn ores, and is extracted from these.

$$Zn_{(solid)} + Cd_{(solution)}^{2+} \rightarrow Zn_{(solution)}^{2+} + Cd_{(solid)}; E^{c}$$

= 0.36 V

41 **(a)**

$$2 \text{MnO}_2 + 4 \text{KOH} + \text{O}_2 \longrightarrow 2 \text{K}_2 \text{MnO}_4 + 2 \text{H}_2 \text{O}$$
 Purple green

42 **(c)**

SiO₂ is an acidic flux.

43 **(a**)

FeCrO₄ is magnetic impurity.

44 (d)

Extraction of Ni involves Electrolytic Process, Oxford Process, Mond's Process and German Process.4

45 **(b)**

Acetate of all metals are soluble in water.

46 **(a)**

___do___

47 **(c)**

Electromagnetic separation is used when either the ore or the impurities associated with it, are magnetic in nature

48 **(d)**

Alkaline earth metals are very reactive and are found in combined state only in nature.

49 **(c**)

Dispersion of solid in solid is called solid sol.

51 **(c)**

Pt is noble metal, other noble metals are Au, Ag.

52 **(b)**

Alumino-thermic process is commonly used for those metals which have very high m.pt. and are to be extracted from their oxides and their reduction with carbon is not satisfactory.

53 **(c)**

Bauxite ore is concentrated by chemical separation or leaching. In this, powdered ore is treated with a suitable reagent which can dissolve the ore but not the impurities

54 **(a)**

Dressing or benefication of ore involves removal of impurities from ore.

55 **(b)**

Zinc blende is roasted and then treated with coke for the reduction

$$3\text{ZnS} + 30_0 \xrightarrow{\Delta} 2\text{ZnO} + 2\text{SO}_2 \uparrow$$

 $\text{ZnO} + C \xrightarrow{\Delta} \text{Zn} + \text{CO} \uparrow$

56 **(a)**

2HgS + 3O₂ → 2HgO + 3SO₂
2HgO
$$\stackrel{\Delta}{\to}$$
 2Hg + O₂
2Cu₂S + 3O₂ → 2Cu₂O + 2SO₂
2Cu₂O + Cu₂S → 6Cu + SO₂

57 **(b**)

Mixture of calcium phosphate and calcium silicate is known as Thomas slag

58 **(d**)

Metals are good conductor of electricity because they contain free electrons

59 (d

Purification of Hg, Sn and Bi involves liquation.

60 **(c)**

The abundance of elements in earth crust follow the order 0 > Si > Al > Fe.

61 **(c)**

Sulphur exists in various allotropic forms such as rhombic, monoclinic, plastic forms.

62 **(a)**

Van-Arkel method is not used for extraction of Al. it is used in the purification of Ti

63 **(b)**

Indian saltpetre is a nitrate ore of K containing KNO_3 .

64 **(a)**

It is a fact.

65 **(b)**

It is an ore of Pt.

66 **(a)**

Pine oil is foaming agent. An another substance called collector such as potassium ethyl xanthate or amyl xanthate is also added

67 **(b)**

It is a fact.

68 **(a)**

Lime stone is used as basic flux to fuse acidic impurities of Silica.

$$CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2 \uparrow$$

Flux Gangue Slag

69 (a)

Auto reduction occurs

$$Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$$

Cassiterite is an ore of tin

71 **(c)**

$$ZnO + CO \rightarrow CO_2 + Zn$$

72 **(c)**

Zinc blende is an ore of Zn containing ZnS.

Hg having low b.pt. is easily distilled off.

74 **(a)**

Density increases with increasing atomic number.

Calamine is the carbonate ore zinc (ZnCO₃)

$$CaCO_3 + SiO_2 \rightarrow CaSiO_3$$

(a)

Mond's process is used for the purification of Ni $Ni + 4CO \xrightarrow{Heat} [Ni(CO)_4] \xrightarrow{Decompose} Ni + 4CO$

Dolomite is an ore containing, $CaCO_3 \cdot MgCO_3$.

79 **(c)**

do

80 **(a)**

It is a fact.

81 **(b)**

Zinc blende is ZnS not ZnCl₂

82 **(c)**

Mg and Al cannot be obtained by the electrolysis of aqueous solution of their salts because instead of metal, H₂ gas is liberated at cathode

83

Lime stone acts as basic flux for sandstone (SiO_2). 106 **(b)**

85 **(b)**

The main impurity in red bauxite is ferrite (Fe₂O₃) and the main impurity in white bauxite is silica (SiO₂)

86 **(c)**

Rutile is TiO₂.

88

$$FeO + CO \xrightarrow{1000^{\circ}C} Fe + CO_2$$

89 (b)

> Silver is recovered from the alloy (lead-silver alloy) by cupellation.

90 (d)

Hg has low b. pt. and is purified by distillation.

91

Lepidolite is (Li, Na, K)₂; $Al_2(SiO_3)_3$, (F, OH)₂.

92 **(b)**

VIA group member or oxygen family is known as chalcogens.

93 **(b)**

$$Al_2O_3 + Na_2CO_3 \rightarrow 2NaAlO_2 + CO_2$$

94 **(b)**

Stibnite is an ore of Sb containing Sb₂S₃.

96

Baryte is an ore of Barium having formula BaSO₄.

97

Thermite is a mixture of Al and F_2O_3 in 1:3 ratio

98 (c)

It is definiton of calcination.

99 (d)

> Following reaction takes place during bessemerisation

$$2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$$

101 (d)

Calcination involves decomposition of ore to remove volatile impurities.

102 (a)

$$\text{FeO} + \text{SiO}_2 \longrightarrow \text{FeSiO}_3$$
 (Fusible slag)

$$Cu_2O + FeS \rightarrow Cu_2S + FeO$$

Slag is removed from the slag hole while a molten mass containing mostly cuprous sulphide with a little ferrous sulphide called matte.

103 **(b)**

Mond's process is used for the purification of Ni.

104 **(c)**

It is a fact.

105 **(b)**

Bauxite (Al_2O_3 . $2H_2O$)

Corundum (Al₂O₃)

Diaspore (Al_2O_3 . H_2O)

Extraction of less electropositive metals say Cr, Mn, Cu, Ca, Ni, etc., can be done by heating their oxides with strong reducing agents, e.g., CO, CO + H + Na, Al, Mg, etc.

107 (a)

Lead extracted from argentiferrous galena contains small quantities of silver. Recovery of 126 (a) silver from argentiferrous lead is an economical proposition and is carried out by Parke's process.

108 **(b)**

Oxygen family is known as chalcogens.

109 (a)

Apatite is CaF_2 . $3Ca_3(pO_4)_2$

∴ It is ore of fluorine with calcium

110 (d)

A bronze sulphide mineral (Fe, Ni) $_9$ S₈, a chief ore o 130 **(b)**

Pitch blende is an ore of uranium containing U_3O_8 .

112 **(a)**

In alumino-thermic process, aluminium is used as reducing agent

113 (a)

___do___

114 (a)

The adsorption phenomenon is involved in the forth floatation process

115 (c)

It is a fact.

116 (a)

Stainless steel is an alloy of iron with chromium and nicl Its composition is 82% Fe and 18% (Cr+Ni). It res corrosion and used for making automobile parts and utensils

117 **(d)**

It is a fact.

118 **(d)**

Cyanide process is used in the extraction of both silver and gold because these form complex salts with CN⁻ ion due to presence of lone pair of electron on nitrogen atom

119 **(d)**

All are characteristic features of alloy.

120 **(d)**

All are noble metals.

121 **(b)**

Metals which are inert towards many common reagents are called noble metals.

122 **(b)**

Follow text.

123 (a)

Fe does not form amalgam with Hg.

124 **(b)**

Peat is an early stage in the formation of coal from vegetable matter.

125 **(a)**

It is a fact.

It is definition of roasting.

127 (a)

Due to the formation of K_2MnO_4 .

128 (a)

Other methods are used for extraction of Al from its ores.

129 **(b)**

It is a fact.

The method of zone refining of metals is based on the principle of greater solubility of the impurity in the molten state than in the solid. Elements which are used as semiconductors like Si, Ge, Ga etc are refined by this method

131 **(c)**

Bauxite is $Al_2O_3 \cdot 2H_2O$.

132 **(d)**

Pyrolusite – MnO₂

Malachite $-CuCO_3.Cu(OH)_2$

Diaspore $-Al_2O_3$. H_2O

Cassiterite -SnO₂

133 (a)

Fluorspar (CaF₂),

Cryolite (na₃AlF₆)

Feldspar (KAlSi₃O₃),

 $Mica (K_2O. 3Al_2O_3. 6SiO_2. 2H_2O)$

134 (d)

Alloys of metals with Hg are called amalgams.

135 **(d)**

A natural sulphide of iron and arsenic, FeAsS.

136 (d)

In froth floatation method, the pure ore is not easily wetted by water but wetted by pine oil, so it is successfully separated from impurities

137 **(c)**

Metallic character increases down the group.

138 (d)

Molten magnesium is lighter than ore.

140 (a)

This is auto reduction of copper sulphide.

141 (d)

Sulphide ores on roasting forms oxide and give SO_2 .

142 (a)

The compounds which combine with impurities preseore (at high temperature) and remove them as a fls substance (slag) are known as flux. When basic impurities are present, an acidic flux is used and vice - versa

Fe₀ + SiO_2 FeSiO₃

Basic impurity acidic flux slag

144 (d)

It is a fact.

145 **(b)**

Wolframite ore [FeWO₄] is present in tin stone as impurities and it has same mass per unit volume as that of tin stone. So, it is separated by electromagnetic separator because wolframite is magnetic in nature, hence it gets attached by magnet while tin stone does not

146 **(b)**

Fe ores are magnetic in nature.

147 **(b)**

Because reduction of highly electropositive 163 (c) elements, (e.g., alkali metals, alkaline earth metals and Al) cannot be made by other metals.

148 (a)

In blast furnace, at the top is the zone of 165 (c) reduction. Here Fe_2O_3 is reduced to spongy iron by CO rising up.

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

149 **(c)**

It is a fact.

150 **(d)**

Cyanide process is used for obtaining silver. This process is also called as Mac Arthur and Forest process

151 **(b)**

It is a fact.

152 (a)

In Bessemer converter, copper sulphide is partially oxidised to cuprous oxide which further reacts with remaining copper sulphide to form copper and sulphur dioxide.

 $Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$

153 **(b)**

Beryl is $3Be0 \cdot Al_2O_3 \cdot 6SiO_2$.

154 (a)

It is a fact.

155 (c)

Lead present as impurity in the silver obtained by argentiferous lead is purified by cupellation.

156 **(d)**

CaO, K₂O cannot reduced by carbon reduction method

158 **(c)**

The method is used for purification of Zr and Ti in which these metals on heating with I2 forms vapours of metal iodide which on decomposition gives pure metals.

159 **(a)**

Mass number of uranium is highest, i.e., U²³⁸.

Iron is made inactive or passive by oxidizing agents like conc. Nitric acid, chromic acid, acidified KMnO₄, etc., the cause of this is the formation of a thin film of oxide on the surface of the metal.

161 (c)

Kiesserite is an ore of Mg containing, MgSO₄ · H₂O

162 (a)

In smelting carbon is used for the reduction of oxide to metal.

Metallic character increases down the gp.

164 **(d)**

Ag, Au are obtained by complex formation.

Diamond consists of carbon atoms only.

166 (d)

Impurities are known as matrix or gangue.

167 **(c)**

CaCN₂ is used as a fertilizer.

168 **(c)**

It is a fact.

169 **(b)**

It is found in human body as haemoglobin.

170 **(d)**

Flux is used to fuse non-fusible impurities (both acidic and basic) present in the ore

171 **(d)**

Flux is a substance with combine with gangue that present in the roasted or calcined ore to form fusible product, called slag

172 (a)

Oxides of less electropositive metals such as Cr₂O₃,Mn etc are reduced by using Al. This process is called them process $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr + Head$

Gangue particles are wetted up by water and adsorbed.

174 (d)

Composition of various alloy of steels are as-Nickel steel -3.5% Ni, Chrome steel-1.5-2% Cr, Chrome-vanadium -0.15% V, I % Cr, Manganese steel-1.2-15% Mn, Tungsten steel 14-20% W, 3-8% Cr, Invar 36% Ni, Stainless steel 11.5% Cr.

175 **(b)**

Leaching is used to make insoluble ore in soluble 194 **(b)** form.

176 **(d)**

In electroefining of copper, some gold is deposited as anode mud

177 (c)

Thus, furnace material can withstand high temperature.

178 **(d)**

Anode: $Cu \rightarrow Cu^{2+} + 2e$

(Impure sample)

Cathode : $Cu^{2+} + 2e \rightarrow Cu$

(Pure Cu)

179 (c)

Ag₂S forms soluble complex with KCN.

180 (a)

Van-Arkel method is used to purify metals such asZr, Ti, V, Th, etc, limestone is basic flux. Dolomite (CaCO₃) is an ore of Ca. Willemite (Zn₂SiO₄) is a silicate ore

181 **(c)**

Forth-floatation is used to concentrated sulphide ores [Galena pbS)]

182 (c)

Borax and Colemanite both are the ores of Boron containing $Na_2B_4O_7 \cdot 10H_2O$ and $Ca_2B_6O_{11} \cdot 5H_2O$ respectively.

183 **(c)**

Follow Mc Arthur-Forest process for Ag.

S is oxidised to SO_2 (g).

185 **(d)**

All are magnetic ores.

A method for purification of titanium metal.

187 (a)

It is fact.

188 **(b)**

Follow extraction of Zn.

189 **(c)**

It is a fact.

190 **(b)**

Flux is mixed with concentrated ore which is not soluble in molten metal

191 (c)

It is a fact.

192 (c)

It is a fact.

193 (c)

Magnesium chloride is present in sea water.

Wulfenite is a molybdate containing Pb, Mo, O₄.

195 (d)

The fourth -floatation process is based upon the preferential wetting of ore particle by oil

196 (c)

It is a fact.

197 (c)

Lead dissolves in water containing dissolved air, due to the formation of lead hydroxide. This solvent action of water on lead is called plumbo solvency.

198 **(b)**

 $ZnO \xrightarrow{Reduction} Zn$

200 (a)

Refractory materials are the substances which can withstand very high temperature without melting or becoming salt

201 **(b)**

It is a fact.

202 **(a)**

Willemite, a rare zinc silicate mineral, isZn₂SiO₄. It has trigonal symmetry and is strongly fluorescent green

203 **(d)**

Ag₂O is decomposed on simple heating.

204 (a)

It is a fact.

205 **(c)**

___do___

206 (c)

Although presence of CO₂ enhances rusting due to formation of more H_3^+0 ions.

207 (c)

Ruby in mineral of aluminium, ie, Al₂O₃. It does not contain silicon

208 (d)

Because all nitrates are water soluble.

Roasting is a process in which ore is heated in air to remove Sulphur impurities.

210 **(b)**

Leaching is a chemical method for the concentration of an ore.

212 **(b)**

Cinnabar (HgS) is a sulphide ore, hence it is concentrated by forth floatation process

Bauxite (Al_2O_3 . $2H_2O$) is an oxide ore of

aluminium

215 (a)

Carnallite is an ore of magnesium containing 235 (b) $KCl \cdot MgCl_2 \cdot 6H_2O$.

216 **(b)**

Siderite is FeCO₃.

217 **(b)**

It is a fact.

218 **(c)**

Corundum (Al₂O₃) is the combined state of aluminium

219 **(b)**

_do___

220 **(d)**

Pig iron is the most impure from of iron and contains highest proportion of carbon (2.5-4%) Malachite \rightarrow Cu(OH)₂. CuCO₃ (Cu ore) Zinc blende \rightarrow ZnS (Zn ore) Bauxite \rightarrow Al₂O₃. 2H₂O (Al ore)

222 **(b)**

Al acts as strong reducing agent and converts 242 (b) many metal oxides (excepts I and II gp) to metals.

223 **(b)**

Cassiterite is an ore of tin.

224 (c)

Haematite is an ore of Fe.

225 (d)

It is an ore of Mg containing MgCO₃.

226 **(c)**

Combustion zone 1800 K 1600 K Fusion zone Slag zone 1300 K Reduction zone 800 K

227 **(d)**

All minerals are not suitable for the extraction for the extraction of metals commercially. Thus, all ores are minerals, but all minerals are not ores

228 **(c)**

It is a fact.

229 (c)

Lepidolite is (Li, K, Na)₂ Al₂(SiO₃)₃ · (F · OH)₂.

 $Au + 3HNO_3 + 4HCl \rightarrow HAuCl_4 + 3NO_2 + 3H_2O$

231 **(b)**

The slag float over molten mass.

232 **(d)**

Cassiterite is a principal ore of tin containing SnO_2 .

233 **(b)**

It is a fact.

234 (a)

Pyrolusite (MnO₂) is not a sulphide ore, so it is not concentrated by forth floatation process

Follow text.

236 (d)

Dollucite is caesium aluminium silicate containing about 30% of caesium.

237 (c)

Roasting is the process in which the ore is heated strongly below its melting point is presence of air

238 (d)

Anglesite is PbSO₄.

239 **(a)**

It is a fact.

240 (c)

Pine oil reduces the surface tension of water and the solution forms froths.

241 (a)

In smelting, powerful reducing agents like C, H₂, CO etc are used

Calamine is an ore of Zn containing ZnCO₃.

243 (c)

On striking the electric are between the electrodes, high temperature is produced due to which the charge melts.

244 (d)

$$2CuO + CuS \rightarrow 3Cu + SO_2 \uparrow$$

245 (d)

Roasting is mainly used in the extraction of sulphide ores. Galena—PbS, Iron pyrite-FeS, Copper glance-Cu₂S.

247 **(c)**

It is a fact.

248 **(c)**

Smelting is a process of reducing metal oxide to metal by means of coke or CO

 $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

249 (d)

Pb, Cu, and Hg all are refined by Oxidation method.

250 (c)

Cast iron, wrought iron and steel may be produced from pig iron.

251 (d)

Follow text.

252 **(a)**

The abundance ratio : 0 > Si > Al > Fe.

253 (c)

Cuprite (Cu_2O) is oxide but argentite (Ag_2S) is not

oxide

254 **(b)**

To convert ores into oxides and remove Sulphur 269 (a) as volatile SO_2 .

255 (c)

Chile saltpetre is NaNO₃.

256 (d)

$$Ni(CO)_4 \xrightarrow{\Delta} Ni + 4CO$$

257 **(b)**

Sulphur occurs in native state while iodine, 271 (b) phosphorus and magnesium are found in combined state.

258 **(b)**

Argentite is an ore of Ag having composition Ag₂S.It dissolves in NaCN due to formation of soluble complex

 $Ag_2S + 4NaCN \rightarrow 2Na[Ag(CN)_2] + NaCl$ ∴NaCN is used to dissolve argentite

259 (c)

It is one use of lead.

260 (c)

The process of zinc -plating on iron-sheet is known is known as galvanisation

261 **(b)**

Bronze is mixture of Cu and Sn

262 **(c)**

In the extraction of Al, Al_2O_3 is melted with cryolite[Na₃(AlF₆)]. Cryolite improves the electrical conductivity of the alumina and lowers the m.p. of the mixture to about 950°C

263 (a)

In bauxite ore, only Al₂O₃ reacts with conc NaNO and fo sodium meta aluminate. This, further dissolves in water

$$Al_2O_3 + 2H_2O + 2NaOH \xrightarrow[35 \text{ bar}]{500 \text{ K}} 2NaAlO_2 + 3H_2O$$

 $NaAlO_2 + 2H_2O \rightarrow 2NaAl(OH))4$

264 **(c)**

A mineral containing phosphates oscerium, thorium and other rare earths, with some occluded helium.

265 (d)

Luster of metals is due to the presence of mobile electrons

266 (a)

Rochelle salt is potassium, sodium tartarate.

267 **(d)**

Amphoteric compounds are soluble in both alkali and acid.

268 (d)

 ΔG_f for sulphides $> \Delta G_f$ of CS_2 and H_2S and thus, C and H₂ cannot reduce metal sulphide.

It is a fact.

270 (c)

Among cuprite $[Cu_2O]$, chalcocite $[Cu_2S]$, chalcopyrite [CuFeS₂] and malachite [Cu(OH)₂. CuCO₃]; only chalcopyrite is an ore which contains both Fe and Cu

Galena is an ore of Pb containing SnO₂.

272 **(a)**

It is a fact.

273 (a)

FeO can form slag with SiO₂, $SiO_2 + FeO \rightarrow FeSiO_3$.

274 **(c)**

This is Van-Arkel method for purification of Ti.

275 (a)

Diaspore is an ore of aluminium containing $Al_2O_3 \cdot H_2O$.

276 **(c)**

Quartz is found in many varieties which have different colour due to impurities, eg, amelthyst (purple), opel (white) carnelian and agate ∴Agate is SiO₂

277 (a)

In the metallurgy of zinc, reduction of roasted ore (ZnO) gives impure zinc (in fire-clay retort) called spelter.

278 (d)

Rock salt is NaCl.

280 (a)

Ore pitch blende is main source of radium

Magnetite is Fe₃O₄.

282 (c)

Dolomite MgCO₃. CaCO₃ Magnesite $MgCO_3$ KCl. MgCl₂. 6H₂O Carnallite

283 (c)

Poling is used for purification of metal which contain their own oxide as impurity, eg, Cu2O in Cu; SnO₂ in Sn

284 (d)

$$Al_2O_3 \cdot 2H_2O \xrightarrow{\Delta} Al_2O_3$$

The process is known as calcination, i.e., to heat a mineral below its m.pt. in absence of air in order to remove moisture, organic impurities and volatile impurities.

285 (a)

Copper pyrite is CuFeS₂.

286 **(c)**

Small quantity of iron occur in native state while Al, Cu and Mg are found in combined state.

287 **(c)**

$$SiO_2 + CaCO_3 \rightarrow CaSiO_3 + CO_2$$

Impurity (acidic) Flux (basic) Slag

289 **(c)**

Thomas slag is tricalcium phosphate and calcium silicate.

290 **(c)**

Leaching process involves the treatment of the ore with a suitable reagent so as to make it soluble while impurities remain insoluble. It is used to get Ag and Au both.

291 **(d)**

All are the mineral of copper.

$$\label{eq:cuondiscrete} \begin{split} & \text{Azurite-Cu(OH)}_2 \cdot 2\text{CuCO}_3 \ , & \text{Malachite-Cu(OH)}_2 \cdot \text{CuCO}_3 \ , \\ & \text{Copper pyrites-CuFeS}_2. \end{split}$$

292 **(d)**

It is a fact.

293 (a)

294 (a)

$$SiO_2 + CaO \rightarrow CaSiO_3$$

acidic impurity basic flux slag

295 (a)

In Bessemerisation, the molten mass is run into sand moulds and allowed to solidify, when it gives out dissolved SO_2 leaving blister type appearance on copper which is popularly known as blister copper.

296 (c)

Gypsum is $CaSO_4 \cdot 2H_2O$.

297 **(b)**

Copper is found in native as well as in combined state

298 (d)

(4)	
List I	List II
(Types of ore)	(Example)
Oxide ore	Corundum (Al ₂ O ₃
Sulphide ore	Galena (pbS)
Sulphate ore	Barytes (BaSO ₄)
Halide ore	Fluorsper (CaF ₂)
	Feldsnar

299 **(c)**

$$Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr;$$

 $\Delta H = -ve$

300 (d)

$$2Cu2S + 3O2 \rightarrow 2Cu2O + 2SO2$$

$$3Cu2O + CH4 \rightarrow 6Cu + 2H2O + CO$$
(from green
$$logs of wood)$$

301 (d)

Extraction of silver and gold is done by hydrometallurgical process or complex salt formation method.

302 (c)

Cassiterite is SnO₂.

306 **(b)**

Gallium arsenide is purified by zone refining method

307 **(b)**

Copper metal is reddish brown in colour.

308 **(c)**

309 **(a)**

All the rocks contains silicates.

310 (d)

It is a fact.

312 **(b)**

Lead extracted from galena contains little Ag. Recovery of Ag from argentiferous lead is made by Parke's process.

313 **(c)**

Chile salt petre (NaNO₃) is the nitrate ore of sodium

314 **(b)**

A water soluble complex of silver with a dilute aqueous solution of NaCN is sodium argentocyanide, in the cyanide process, the native from is crushed and treated with 0.1-0.2% solution of NaCN and aerated

$$4Ag + 8NaCN + 2H_2O + O_2$$

$$\rightarrow$$
 4Na[Ag(CN)₂] + 4NaOH

Argentocyanide is soluble metal is recovered from the complex by reduction with zinc

315 (c)

Metals can not be extracted from all the minerals that is why all minerals are not ores

316 (a)

Flux is used to fuse non-fusible impurities present in ore.

317 (d)

$$SnO_2 + 2C \rightarrow Sn + 2CO$$

318 **(b)**

Wolframite is FeWO₄.

319 **(c)**

$$SiO_2 + 2C \rightarrow Si + 2CO \uparrow$$

 $Al_2O_3 + 3C + N_2 \rightarrow 2AlN + 3CO$ $AIN + 3H_2O \rightarrow AI(OH)_3 + NH_3$

321 **(b)**

Ge and Si both the elements are purified by Zone refining.

322 **(b)**

It is a fact.

323 (d)

It is a fact.

324 (c)

It is a fact.

325 (d)

Gypsum is $CaSO_4 \cdot 2H_2O$.

326 **(d)**

It is a fact.

327 **(b)**

For purification of Ni in Mond's process.

328 **(a)**

In electrolytic reduction, the oxides of highly electropositive metals are reduced at very high temperature

329 **(d)**

CaO is hygroscopic agent.

330 **(d)**

The slag obtained during the extraction of copper from copper pyrites is of FeSiO₃. It is carried out in smelting.

$$FeO + SiO_2 \rightarrow FeSiO_3$$
 (slag)

331 (a)

Matte is a mixture of Cu₂S containing little FeS

332 (d)

An ore is a mineral or aggregate of mineral from 350 (d) which a valuable constituent, especially a metal, can be profitably mined or extracted. All ores are 351 (c) minerals but all minerals are not ore.

333 (c)

It is a fact.

334 (a)

Pitch blende contains traces of radium.

335 **(d)**

Roasting is mainly employed to remove volatile substances

$$S_8 + 8O_2 \rightarrow 8SO_2 \uparrow$$

 $P_4 + 5O_2 \rightarrow P_4O_{10} \uparrow$
 $4As + 3O_2 \rightarrow 2As_2O_3 \uparrow$

336 **(d)**

Zn, Cd, Hg have low b.pt.

337 (a)

Rutile is TiO₂.

338 **(b)**

Argentite is Ag₂S.

339 **(c)**

Alkali metals, alkaline earth metals and Al are extracted by electrolytic reduction.

340 (c)

Wolframite is ferrous tungstate (FeWO₄) which is magnetic in nature

341 (c)

CaO is a basic flux.

342 (d)

Cinnabar is an ore of Hg(HgS).

343 (c)

Less reactive metals are found in native state (free state)

344 **(c)**

Levigation (gravity separation) in based on the difference in the specific gravities of the gangue particles and the ore particles.

346 (d)

Sodium has high reactivity towards water.

347 **(b)**

Metals like, Na, K, Mg, Ca, Al etc are reduced by electrolytic reduction

348 **(b)**

It is a fact.

349 (a)

In the metallurgy of iron, when CaCO₃ is added to balst furnace, it removes impurities from ore and forms slag.

$$CaCO_3 \rightarrow CaO + CO_2$$
 (1070-1170 K)
 $CaO + SiO_2 \rightarrow CaSiO_3$ (1470 K)
 $3CaO + P_2O_5 \rightarrow Ca_3(PO_4)_2$

Mg alloys are lighter.

It is definition of roasting.

352 **(c)**

Aluminium is mainly isolated from bauxite (Al₂O₃. 2H₂O) ore which is generally contaminated with ferric oxide and silica

353 (d)

PbO and PbSO₄ get reduced by PbS itself which is already present in mixture, because the reduction takes place by mixture itself, hence is known as self reduction

2PbO + PbS
$$\xrightarrow{\Delta}$$
 3Pb + SO₂ ↑
PbSO₄ + PbS $\xrightarrow{\Delta}$ 2Pb + 2SO₂ ↑

354 **(b)**

Calcination is a process in which the ore is heated strongly in the absence of air.

(i) It removes the volatile impurities like CO_2 , SO_2 , organic matter, moisture from the ore.

(ii) It removes water from the hydrated ore.

(iii)It removes carbon as CO_2 from a carbonate ore.

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$

Lime stone

355 **(c)**

It is a fact.

356 **(d)**

The temperature of the slag zone in the

metallurgy of iron using blast furnace is $800\text{-}1000^{\circ}\text{C}$

357 **(d)**

A natural crystalline form of blue, transparent corundum (Al_2O_3). The colour being due to traces of cobalt and other metals.

