

7.EQUILIBRIUM

Single Correct Answer Type

1.	Which may be added to a a) One mole of $HC_2H_3O_2$	ne litre of water to act as a and one mole of HCl	buffer?	
	b) One mole of NH ₄ OH ar			
	c) One mole of NH_4Cl and			
2.	d) One mole of $HC_2H_3O_2$	and 0.5 mole of NaOH		
2.	a) not a buffer but pH <		b) not a buffer but pH >	< 7
	c) a buffer with pH < 7		d) a buffer with pH > 7	
3.	In the following reversible		a) a buller with pir > 7	
0.	$2SO_2 + O_2 \rightleftharpoons 2SO_3 + Q c$			
		or the higher production of	f SO ₃ is	
	a) Low temperature and	high pressure	b) Low temperature and	low pressure
	c) High temperature and		d) High temperature and	low pressure
4.		the strongest acid from t		
_	a) 1.0	b) 3.0	c) 2.0	d) 4.5
5.			$h_{0} = 1.0 \times 10^{-5}$) is equal t	
	a) 10	b) 6	c) 11	d) 12
6.	In the reaction, $H_2(g)$. 17 . 17	· · · · ·
_	a) $K_p \neq K_c$	b) $K_p = K_c$	c) $K_p > K_c$	d) $K_p < K_c$
7.			ed during the titration of H	
8.	a) 3 Which will not affect the	b) 1	c) 2	d) Zero
0.	a) Temperature	b) Concentration	c) Type of solvent	d) Current
9.	Which of the following	=	cj rype or solvene	aj durrent
	a) $\frac{M}{4}$ KOH	b) $\frac{M}{4}$ NaOH	c) $\frac{M}{4}$ NH ₄ OH	$d \frac{M}{2}$ Ca(OH).
10	4	4	4	4
10.		-	es MX , MX_2 and M_3X at te	
			ively. Solubilities (mol, di	m ^o) of the salts at
	temperature 'T' are in t		c) $MX_2 > M_3X > MX$	d) MY > M Y > MY
11	Which of the following		$C M X_2 > M_3 X > M X$	$M_{1}M_{1} > M_{3}\Lambda > M_{1}_{2}$
11.	a) NH ₄ OH; $K_b = 1.6$		b) $C_6H_5NH_2$; $K_b = 3$.	8×10^{-10}
	c) $C_2H_5NH_2$; $K_b = 5$.		d) $C_9H_7N;$ $K_b = 6.3$	
12.			ee of ionisation of water is:	
	a) 1.8×10^{-7} %	b) 1.8×10^{-9} %	_	d) 3.6 × 10 ⁻⁹ %
13.	A precipitate is formed	when	2	2
	a) The ionic product is	nearly equal to the solub	ility product	
	b) A solution becomes a	saturated		
	c) The ionic product ex	ceeds the solubility prod	luct	
	d) The ionic product is	less than solubility prod	uct	
14.		-	on of HCl is added to an aq	
1 5	a) NaNO ₂	b) $Ba(NO_3)_2$	c) ZnSO ₄	d) HgNO ₃
15.	Which of the following			d) Norro - Cult
	a) NH ₃	b) H ₂ O	c) AlCl ₃	d) None of these

16.	Solubility of BaF ₂ in a sol	lution of $Ba(NO_3)_2$ will be r	epresented by the concent	ration term
	a) [Ba ²⁺]	b) [F ⁻]	c) $\frac{1}{2}[F^{-}]$	d) 2[NO ₃]
17.	Which of the following is	a buffer?	2	
	•	b) NaOH + Na ₂ SO ₄	c) $K_2SO_4 + H_2SO_4$	d) NH ₄ OH + NaOH
18.	For the following three	e reactions I, II and III, equ	uilibrium constants are g	given
	I. $CO(g) + H_2O(g) \rightleftharpoons$	$CO_2(g) + H_2(g); K_1$		
	II. $CH_4(g) + H_2O(g) =$	h^{2} CO(g) + 3H ₂ (g); K ₂		
	III. $CH_4(g) + 2H_2O(g)$	$\rightleftharpoons \mathrm{CO}_2(\mathrm{g}) + 4\mathrm{H}_2(\mathrm{g}); \ K_3$		
	Which of the following			
	a) $K_1 \sqrt{K_2} = K_3$	b) $K_2 K_3 = K_1$	c) $K_3 = K_1 K_2$	d) $K_3 K_2^3 = K_1^2$
19.				25°C. Calculate the number
				is reached after some time
20	a) 0.036	b) 36.00	c) 360.0	d) 3.600
20.		pared by mixing 0.1 M ar	nmonia and 1.0 M ammo	onium chloride. At 298 K,
		0.The pH of the buffer is b) 9.0	a) (()	4) 0 0
21	a) 10.0 Which of the following m	olecules acts as a Lewis aci	c) 6.0	d) 8.0
21.	a) $(CH_3)_3N$	b) $(CH_3)_3B$	c) $(CH_3)_2 O$	d) $(CH_3)_3 P$
22.	5 . 5.5	wing is an electron defici	, <u>.</u>	
	a) NF ₃	b) PF ₃	c) BF ₃	d) AsF ₃
23.	Identify the correct order	r of acidic strength of CO ₂ , (CuO, CaO, H_2O :	-
	a) Ca $0 < Cu0 < H_20 < H_2$	-		
	b) $H_20 < Cu0 < Ca0 <$	-		
	c) $CaO < H_2O < CuO < GaO < H_2O < Coordinate Coordin$	-		
24	Which of the following is			
21.	a) HClO ₄	b) HBrO₄	c) HIO ₄	d) HNO ₃
25.		oncept the, strength of an a		<i>y</i> 5
	a) Hydrolysis			
	b) Concentration of acid			
	c) H ⁺ ions furnished by a	se used for neutralization		
26	$H_2 + I_2 \rightleftharpoons 2HI$	se useu ior neutralization		
201		system, if the concentration	n of the reactants at 25°C is	s increased, the value of K_c
	will			
	a) Increase		b) Decrease	
27	c) Remains the same		d) Depends on the nature	
27.	a) 9	<pre>ssolved in 10 litre of distill b) 10</pre>	c) 11	d) 12
28.	-	expression for the reaction,	-	
		b) $K_c = [O_2]^5$		
	L 23			C 13C 23
29.		s dissolved in one litre of w		
20	a) 8 A physician wishes to p	b) 7	c) Above 8 $r_{\rm H} = 2.59$ that officiently	d) Below 7
30.		-		y resists a change in pH yet weak acid together with its
	sodium salt would be bes		one of the following	
	a) <i>m</i> -chloro benzoic acid			

b) *p*-chlorocinnamic acid ($pK_a = 4.41$) c) 2,5-dihydroxy benzoic acid (p $K_a = 2.97$) d) Acetoacetic acid (p $K_a = 3.58$) 31. The pH of 10^{-8} M HCl solution is a) 8 b) More than 8 c) Between 6 and 7 d) Slightly more than 7 32. A certain buffer solution contains equal concentration of X^- and HX. The K_a for HX is 10. The pH of the buffer is: a) 7 b) 8 c) 11 d) 14 33. 100 mL of 0.01 M solution of NaOH is diluted to 1 dm³. What is the pH of the diluted solution? a) 12 b) 11 c) 2 d) 3 34. Which of the following salt does not get hydrolysed in water? d) None of these a) KClO4 b) NH₄Cl c) CH₃COONa 35. A higher value for equilibrium constant, *K* shows that: a) The reaction has gone to near completion towards right b) The reaction has not yet started c) The reaction has gone to near completion towards left d) None of the above 36. Which one is least basic? a) CH_3NH_2 c) $C_2H_5NH_2$ d) $C_6H_5NH_2$ b) NH_3 37. The aqueous solution of disodium hydrogen phosphate is: a) Acidic b) Neutral d) None of these c) Basic 38. 3.2 moles of hydrogen iodide were heated in a sealed bulb at 444°C till the equilibrium state was reached. Its degree of dissociation at this temperature was found to be 22%. The number of moles of hydrogen iodide present at equilibrium are a) 1.876 b) 2.496 c) 3.235 d) 4.126 39. In the reactions, $PCl_5 \rightleftharpoons PCl_3 + Cl_2$, the amounts of PCl_5 , PCl_3 and Cl_2 at equilibrium are 2 mole each and the total pressure is 3 am. The equilibrium constant K_p is : a) 1.0 atm d) 6.0 atm b) 2.0 atm c) 3.0 atm 40. Which of the following is correct for the reaction? $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ a) $K_p = K_c$ b) $K_p < K_c$ c) $K_p > K_c$ d) Pressure is required to predict the correlation 41. The graph relates $\ln K_{eq} vs \frac{1}{T}$ for a reaction. The reaction must be : In K_{eq} a) Exothermic b) Endothermic c) ΔH is negligible d) Highly spontaneous at ordinary temperature

42. 0.1 millimole of $CdSO_4$ are present in 10 mL acid solution of 0.08 *N* HCl. Now H_2S is passed to precipitate all the Cd^{2+} ions. The pH of the solution after filtering off precipitate, boiling of H_2S and making the

	solution 100 mL by adding H. O.ic.	
	solution 100 mL by adding H ₂ O is: a) 2 b) 4 c) 6	d) 8
43	43. Calculate the pH of a solution in which hydrogen ion concentration is 0.00	2
10.		d) 2.6
44	44. In 1L saturated solution of AgCl $[K_{sp}(AgCl)1.6\ 10^{10}]$, 0.1 mole of CuCl $[K_{sp}(MgCl)1.6\ 10^{10}]$,
11.		
	The resultant concentration of Ag in the solution is 1.6 10^x . The value of 'x	
4 5		d) 9
45.	45. Eight mole of a gas AB_3 attain equilibrium in a closed container of volume 1 dm ³ 2B (c) If at equilibrium 2 mole of 4, are present then equilibrium constant is	as, $ZAB_3 \rightleftharpoons A_2(g) +$
	$3B_2(g)$. If at equilibrium 2 mole of A_2 are present then, equilibrium constant is : a) 72 mol ² L ⁻² b) 36 mol ² L ⁻² c) 3 mol ² L ⁻²	d) 27 mol ² L ⁻²
46	46. Which of the following is most soluble in water?	
10.	a) $MnS(K_{sp} = 8 \times 10^{-37})$	
	b) $\text{ZnS}(K_{sp} = 7 \times 10^{-16})$	
	c) $Bi_2S_3(K_{sp} = 1 \times 10^{-70})$	
	d) $Ag_2S(K_{sp} = 6 \times 10^{-51})$	
47	47. At a given temperature the K_c for the reaction, $PCl_5(g) \Rightarrow PCl_3(g) + Cl_2(g)$ is 2.4	10^{-3} At the same
т/.	temperature, the K_c for the reaction	r × 10 . At the same
	$PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$ is :	
	a) 2.4×10^{-3} b) -2.4×10^{-3} c) 4.2×10^{-2}	d) 4.8 $\times 10^{-2}$
48.	48. If the solubility of lithium sodium hexafluoroaluminate, $Li_3Na_3(AlF_6)_2$ is ' <i>a</i> 'mol/	litre, its solubility product
	is equal to:	
	a) a^2	
	b) 12 <i>a</i> ²	
	c) $18a^3$	
	d) 2916 <i>a</i> ⁸	
49.	49. Approximate relationship between dissociation constant of water (<i>K</i>) and	l ionic product of water
	(K_w) is	
	a) $K_w = K$ b) $K_w = 55.6 \times K$ c) $K_w = 18 \times K$	d) $K_w = 14 \times K$
50.	50. Degree of dissociation of 0.1 N CH ₃ COOH is (dissociation constant = 1×10^{-5})	1) + 0 = 2
۲1		d) 10 ⁻²
51.	51. If the solubility of Ca(OH) ₂ is $\sqrt{3}$. The solubility product of Ca(OH) ₂ is:	
	a) 3	
	b) 27 c) $\sqrt{3}$	
ГO	d) $12\sqrt{3}$	II DO are 212721 and
52.	52. pH of $0.1 M \text{ Na}_2\text{HPO}_4$ and $0.2 M \text{ NaH}_2\text{PO}_4$ solutions are respectively. p K_a for 12.0 for respective dissociation to H ₂ PO ₄ ⁻ , HPO ₄ ²⁻ and PO ₄ ³⁻ .	$\Pi_3 \Gamma U_4$ are 2.12, 7.21 and
		d) 5.61, 4.67
53.	53. N ₂ (g) + 3H ₂ (g) \rightleftharpoons 2NH ₃ (g)	a) 5.01, 1.07
	In the reaction given above, the addition of small amount of an inert gs at o	constant pressure will
	shift the equilibrium towards which side?	constant pressure win
	a) LHS (Left hand side) b) RHS(Right hand side)	
	c) Neither side d) Either side	
54.	54. Which one is hard base?	
5 11		d) F ⁻
55.	55. Which species acts as an acid and also a conjugate base of another acid?	,
		d) H ₃ O ⁺
56.	56. Predict the conditions for forward reaction on the basis of Le-Chatelier's j	principle for : $2SO_2(g) +$

 $O_2(g) \rightleftharpoons 2SO_3(g); \Delta H = -198 \text{ kJ}.$ a) Lowering the temperature and increasing pressure b) Any value of temperature and pressure c) Lowering of temperature as well as pressure d) Increasing temperature as well as pressure 57. The solubility of AgCl in water at 10°C is 6.2×10^{-6} mol/litre. The K_{sp} of AgCl is: a) $[6.2 \times 10^{-6}]^{1/2}$ b) $6.2 \times (10^{-6})^2$ c) $(6.2)^2 \times 10^{-6}$ d) $[6.2 \times 10^{-6}]^2$ 58. When pressure is applied to the equilibrium system ice r water. Which of the following phenomenon will happen? a) More ice will be formed b) Water will evaporate c) More water will be formed d) Equilibrium will not be formed 59. At constant temperature in one litre vessel, when the reaction, $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$ is at equilibrium, the SO_2 concentration is 0.6 *M*, initial concentration of SO_3 is 1*M*. The equilibrium constant is : c) 0.34 a) 2.7 b) 1.36 d) 0.675 60. When 20g of CaCO₃ were put into 10 litre flask and heated to 800°C, 35% of CaCO₃ remained unreacted at equilibrium. K_p for decomposition of CaCO₃ is : a) 1.145 atm b) 0.145 atm c) 2.145 atm d) 3.145 atm 61. For the reaction equilibrium, $2\text{NOBr}(g) \rightleftharpoons 2\text{NO}(g) + \text{Br}_2(g)$, if $P_{\text{Br}_2} = \frac{P}{9}$ at equilibrium and *P* is total pressure. The ratio K_p/P is equal to: a) 1/9 d) 1/3 b) 1/81 c) 1/27 62. $K_{sp} = 1.2 \times 10^{-5}$ of $M_2 SO_4(M^+ \text{ is monovalent metal ion})$ at 298 K. The maximum concentration of M^+ ions that could be attained in a saturated solution of this solid at 298 K is: a) $3.46 \times 10^{-3}M$ b) $7.0 \times 10^{-3}M$ c) $2.88 \times 10^{-2} M$ d) $14.4 \times 10^{-3}M$ 63. Which of the following describes correct sequence for decreasing Lewis acid nature? a) $BCl_3 > BF_3 > BBr_3$ b) $BBr_3 > BCl_3 > BF_3$ c) $BBr_3 > BF_3 > BCl_3$ d) $BF_3 > BCl_3 > BBr_3$ 64. What should be the pH of solution to dissolve the $Cr(OH)_3$ precipitate? [Given, $[Cr^{3+}] = 1.0 \text{ mol/L}$, $K_{sp} = 6 \times 10^{-31}$) b) 3.0 a) 2.0 c) 5.0 d) 4.0 65. Which one of the following salts on being dissolved in water gives pH>7 at 25°C? c) NH₄Cl a) KCN b) KNO_3 d) NH₄CN 66. Aqueous solution of which salt has the lowest pH? a) NaOH c) Na_2CO_3 d) NaCl b) NH₄Cl 67. In a gaseous reversible reaction, $N_2 + O_2 \rightleftharpoons 2NO + heat$ If pressure is increased then the equilibrium constant would be a) Unchanged b) Increased c) Decreased d) Sometimes increased, sometimes decreased 68. Glycine is: a) Arrhenius acid b) Lewis base c) Simplest amino acid d) All of these 69. On a given condition, the equilibrium concentration of HI, H_2 and I_2 are 0.80, 0.10 and 0.10 mol/L. The equilibrium constant for the reaction, $H_2 + I_2 \rightleftharpoons 2HI$, will be d) 64 a) 8 b) 16 c) 32 70. If pH of the solution is one, what weight of HCl present in one litre of solution? a) 3.65 g b) 36.5 g c) 0.365 g d) 0.0365 g 71. The concentration of hydroxyl ion in a solution left after mixing 100 mL of 0.1 *M* MgCl₂ and 100 mL of

	0.2 <i>M</i> NaOH $[K_{sp} \text{ of Mg}(OH_2) = 1.2 \times 10^{-11}]$ is:		
	a) 2.8×10^{-3} b) 2.8×10^{-2}	c) 2.8×10^{-4}	d) 2.8×10^{-5}
72.	For a reaction and equilibrium which of the follow	-	
	a) Concentration of reactant=concentration of pro-	-	
	b) Concentration of reactant is always greater tha		
	c) Rate of forward reaction=rate of backward rea	-	
70	d) $Q_c = k$		
73.	The correct order of increasing basic nature of the giv	en conjugate bases is:	
	a) $\operatorname{RCOO} < HC \equiv \overline{C} < \overline{NH}_2 < \overline{R}$		
	b) $\text{RCO}\overline{\text{O}} < HC \equiv \overline{\text{C}} < \overline{\text{R}} < \overline{\text{NH}}_2$		
	c) $\overline{R} < HC \equiv \overline{C} < RCO\overline{O} < \overline{N}H_2$		
	d) $\text{RCO}\overline{\text{O}} < \overline{\text{N}}\text{H}_2 < HC \equiv \overline{\text{C}} < \overline{\text{R}}$		
74.	What is the equilibrium expression for the reaction	on	
	$P_4(s) + 5O_2(g) \rightleftharpoons P_4O_{10}(s)$?		
	a) $K_c = \frac{[P_4 O_{10}]}{[P_4][O_c]^5}$ b) $K_c = \frac{[P_4 O_{10}]}{5[P_4][O_2]}$	c) $K_{2} = [0_{2}]^{5}$	d) $K_c = \frac{1}{1 - 1}$
			$[0_2]^5$
75.	A characteristic feature of reversible reaction is that :		
	a) They never proceed to completion		
	b) They proceed to completionc) They are not complete unless the reactants are rem	oved from the sphere of r	eaction mixture
	d) None of the above	loved if one the sphere of r	
76	The concentration of CO_2 be in equilibrium with 2.5	$\times 10^{-2}$ mol litre ⁻¹ of CO) at 100° C for the reaction :
70.	FeO(s) + CO(g) \rightleftharpoons Fe(s) + CO ₂ (g); $K_c = 5.0$		at 100 c for the reaction.
		c) 12.5 <i>M</i>	d) 0.125 <i>M</i>
77.	In the reaction, $H_2 + I_2 \rightleftharpoons 2HI$	-)	.,
	In a 2 I flask 0.4 moles of each H_2 and I_2 are taken	. At equilibrium 0.5 mol	les of HI are formed.
	What will be the value of equilibrium constant K_c		
	a) 20.2 b) 25.4		d) 11.1
78	0.005 M acid solution has 5 pH. The percentage io		~) I I I
701		c) 0.4 %	d) 0.2 %
79	A solution of pH 8 is basic than a solution of pH 12.		a) 0.2 /0
,).		c) Equally	d) None of these
80.	Which statement is/are correct?	c) Equally	a) None of these
	a) All Arrhenius acids are Bronsted acids		
	b) All Arrhenius bases are not Bronsted base		
	c) H^+ ion in solution exists as $H_90_4^+$		
	d) All of the above		
81.	The concentration of fluroacetic acid (K_a of acid =	2.6×10^{-3}) which is req	uired to get $[H^+] = 1.50 \times$
	$10^{-3}M$ is:		
	a) 0.865 <i>M</i>		
	b) $2.37 \times 10^{-3} M$		
	c) $2.37 \times 10^{-4} M$		
	d) $2.37 \times 10^{-2} M$		
82.	Which among the following is the strongest acid?		
		c) H(Cl0)0	d) H(ClO)
83.	Which one of the following is not an amphoteric s		
		c) H_2O	d) NH ₃
84.	For the chemical reaction $3X(g) + Y(g) \rightleftharpoons X_3Y(g)$), that amount of $X_3 Y$ at	equilibrium is affected

	by		
	a) Temperature and pressure	b) Temperature only	
	c) Pressure only	d) Temperature, pressu	re and catalyst
85.	K_p/K_c for the reaction,		
	$CO(g) + \frac{1}{2}O_2(g) \rightleftharpoons CO_2(g)$ is:		
	a) <i>RT</i> b) 1/√ <i>RT</i>	c) \sqrt{RT}	d) 1
86.	Densities of diamond and graphite are 3.5 and	2.3 g/mL respectively. In	crease of pressure on the
	equilibrium $C_{diamond} \rightleftharpoons C_{graphite}$:		
	a) Favours backward reaction		
	b) Favours forward reaction		
	c) Have no effectd) Increases the reaction rate		
87.	The solubility product of $BaCl_2$ is 4×10^{-9} . Its so	olubility in mol/L is	
0/1	a) 4×10^{-3} b) 4×10^{-9}	c) 1×10^{-3}	d) 1×10^{-9}
88.	Addition of sodium acetate to 0.1 M acetic acid w	-	
	a) Increase in pH	b) Decrease in pH	
	c) No change in pH	d) Change in pH that car	nnot be predicted
89.			-
	a) 4×10^{-9} b) 4×10^{9}	c) 1 × 10 ⁹	d) 1×10^{-9}
90.	$\rm NaHCO_3$ and NaOH can not co-exist in a solution beca	ause of:	
	a) Common ion effect		
	b) Acid-base neutralisation		
	c) Le – Chatelier's principle		
91	d) Redox change Formation of SO ₃ from SO ₂ and O ₂ is favoured by		
, 1,	a) Increase in pressure	b) Decrease in pressure	
	c) Increase in temperature	d) Decrease in temperat	
92.	A definite amount of solid NH_4HS is placed in a flask	-	
	and 0.50 atm pressure. NH ₄ HS decomposes to give N		
	0.84 atm. The equilibrium constant for the reaction \pm	is :	
	a) 0.30 b) 0.18	c) 0.17	d) 0.11
93.	Hydroxyl ion concentration of 10^{-2} M HCl is		N () () () () () () () () () (
~ .	a) 1×10^{1} mol dm ⁻³ b) 1×10^{-12} mol dm ⁻³	c) $1 \times 10^{-1} \text{ mol dm}^{-3}$	d) 1×10^{-14} mol dm ⁻³
94.	For a reaction in equilibrium : a) There is no volume change		
	b) The reaction has stopped completely		
	c) The rate of forward reaction is equal to the rate of	f backward reaction	
	d) The forward reaction is faster than reverse reaction		
95.	A solution of CuSO ₄ in water will:		
	a) Turn red litmus blue		
	b) Turn blue litmus red		
	c) Show no effect on litmus		
96	d) Decolourize litmus At constant temperature, the equilibrium constant (<i>l</i>	K) for the decomposition	reaction $N_{\alpha}O_{\alpha}(\sigma) \Rightarrow$
<i>.</i>	2NO ₂ (g) is expressed by $K_p = \frac{(4x^2p)}{(1-x^2)}$		
	Where, $p =$ pressure, $x =$ extent of decomposition. W	hich one of the following st	atements is true?
	a) K_p increases with increase of p	b) K_p remains constant w	

c) K_p increases with increase of x d) None of the above 97. The pH of a solution is 5.0. To this solution sufficient acid is added to decrease the pH to 2.0. The increase in hydrogen ion concentration is: a) 1000 times b) 5/2 times c) 100 times d) 5 times 98. Which of the following is a Lewis acid? b) Cl⁻ c) CO a) AlCl₃ d) C_2H_2 99. The solubility of AgCl is 1×10^{-5} mol/L. Its solubility in 0.1 molar sodium chloride solution is b) 1×10^{-5} d) 1×10^{-4} a) 1×10^{-10} c) 1×10^{-9} 100. In which of the following reaction $K_p > K_c$? c) $2SO_3 \rightleftharpoons O_2 + 2SO_2$ a) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ b) $H_2 + I_2 \rightleftharpoons 2HI$ d) $PCl_3 + Cl_2 \rightleftharpoons PCl_5$ 101. K_{sp} for sodium chloride is 36 mol²/litre². The solubility of sodium chloride is: a) $\frac{1}{36}M$ b) $\frac{1}{6}M$ c) 6 M d) 3600 M 102. Degree of dissociation of NH₄OH in water is 1.8×10^{-5} , then hydrolysis constant of NH₄Cl is b) 1.8×10^{-10} d) 5.55×10^{-10} a) 1.8×10^{-5} c) 5.55×10^{-5} 103. What volume of 1.0 *M* sodium formate solution should be added to 50 mL of 0.05 M formic acid to produce a buffer solution of pH = 4.0 (p K_a of formic acid= 3.80)? a) 39.0 mL b) 39.62 mL c) 40 mL d) 40.62 mL 104. An acid HA ionises as $HA \rightleftharpoons H^+ + A^-$ The pH of 1.0 M solution is 5. Its dissociation constant would be a) 1×10^{-10} b).5 c) 5×10^{-8} d) 1×10^{-5} 105. Phosphorus pentachloride dissociates as follows, in a closed reaction vessel, $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ If total pressure at equilibrium of the reaction mixture is p and degree of dissociation of PCl₅ is x, the partial pressure of PCl₃ will be a) $\left(\frac{x}{x+1}\right)p$ b) $\left(\frac{2x}{1-x}\right)p$ c) $\left(\frac{x}{x-1}\right)p$ d) $\left(\frac{x}{1-x}\right) p$ 106. For the gaseous phase reaction, $2NO \Rightarrow N_2 + O_2$, $\Delta H^{\circ} = -43.5$ kcal mol⁻¹, which statement is correct for, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)?$ a) *K* is independent of temperature b) *K* increases as temperature decreases c) K decreases as temperature decreases d) K varies with addition of NO 107. Which would decreases the pH of 25 cm³ of a 0.01 *M* solution of hydrochloric acid? a) The addition of magnesium metal b) The addition of 25cm³0.02 *M* hydrochloric acid c) The addition of 25 cm³0.005 *M* hydrochloric acid d) None of the above 108. Which is not a Lewis acid? a) CCl₄ b) $SnCl_2$ c) AlCl₃ d) BF_3 109. Which is Lewis base? a) HCl b) HNO_3 c) HF d) NH₃ 110. Ammonia under a pressure of 15 atm at 27°C is heated to 347°C in a closed vessel in the presence of catalyst. Under the conditions, NH₃ is partially decomposed according to the equation, $2NH_3 \rightleftharpoons N_2 + 3H_2$. The vessel is such that the volume remains effectively constant whereas pressure increases to 50 atm. Calculate the percentage of NH₃actually decomposed a) 61.3% b) 63.5% d) 66.6% c) 65.3% 111. For the system; $3A + 2B \rightleftharpoons C$, the expression for equilibrium constant is

a)
$$\frac{[A]^3[B]^2}{[C]}$$
 b) $\frac{[C]}{[A]^3[B]^2}$ c) $\frac{[3A][2B]}{[C]}$ d) $\frac{[C]}{[3A][2B]}$

- 112. A monoprotic acid in a 0.1 M solution ionisesto 0.001%. Its ionisation constant isa) 1×10^{-11} b) 1×10^{-3} c) 1×10^{-6} d) 1×10^{-8}
- 113. For the reaction, $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$, the principle pressure of CO_2 and CO are 2.0 and 4.0 atm respectively at equilibrium. The K_p for the reaction is
 - a) 2.0 b) 4.0 c) 8.0 d) 1.6

114. The vapour density of completely dissociated $\rm NH_4Cl$ would be:

a) Slightly less than half of that of ammonium chloride

b) Half of that of ammonium chloride

c) Double that of ammonium chloride

d) Determined by the amount of solid ammonium chloride used in the experiment

115. Mg²⁺ is ... than Al³⁺.

a) Strong Lewis acid b) Strong Lewis base c) Weak Lewis acid d) Weak Lewis base 116. The equilibrium constant for the reaction, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ is 4×10^{-4} at 2000 K. In presence of a catalyst the equilibrium is attained ten times faster. Therefore, the equilibrium constant, in present of the catalyst, at 2000 K is:

a) 40 \times 10⁻⁴

- b) 4 \times 10⁻⁴
- c) 4 × 10⁻³

d) Difficult to compute without more data

117. The activation energies of forward and backward reaction: $A_2 + B_2 \rightleftharpoons 2AB$ are 180kJ mol⁻¹ and 200 kJ mol⁻¹ respectively. The presence of a catalyst lowers the activation energy of both (forward and backward) reactions by 100 kJ mol⁻¹. The enthalpy change of the reaction in the presence of catalyst will be (in kJ mol⁻¹):

- a) –20
- b) -300
- c) + 120
- d) 280

118. How will increase of pressure affect the equation?

 $C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$

c) Increase in the yield of hydrogen

a) Shift in the forward direction

d) No effect

b) Shift in the reverse direction

119. If the pressure of N_2/H_2 mixture in a closed apparatus is 100 atm and 20% of the mixture then reacts, the pressure at the same temperature would be :

a) 100b) 90c) 85d) 80120. C_2H_5ONa acts as ... in C_2H_5OH .a) Strong acidb) Weak acidc) Strong based) Weak base121. A solution of sodium borate has a pH of approximately:to the second sec

a) > 7 b) < 7 c) = 7 d) Between 4 and 5 122. A certain buffer solution contains equal concentration of X^- and HX. The K_a for HX is 10^{-8} . The pH of the buffer is

a) 3	b) 8	c) 11	d) 14

123. Study the following table.

Buffer	Volume (in	Volume (in
solutio	mL) of 1 M	mL) of 0.1
n	weak acid	M sodium
		salt of
		weak acid
Ι	4.0	4.0

	II	4.0	40.0				
	III	40.0	4.0				
	IV	0.1	10.0				
			L				
	Which of t	he two sets o	f buffer soluti	ons have le	ast pH?		
	a) I and II		b) I and III		c) II and III		d) II and IV
124.	Which indi	cator works in	the pH range 8	3-9.8?			
	a) Phenolp	hthalein	b) Methyl ora	inge	c) Methyl red		d) Litmus
125.	100 mL of	0.015 M HCl	solution is mi	xed with 1	00 mL of 0.005	M HCl. W	hat is the pH of the
	resultant s	solution?					
	a) 2.5		b) 1.5		c) 2		d) 1
126.	The solubil	ity of A_2X_3 is y	∨ mol dm ⁻³ . Its	solubility p	roduct is:		
	a) 6 y ⁴		b) 64 y ⁴		c) 36 y ⁵		d) 108 y ⁵
127.	The volum	e of water need	led to dissolve	1 g of BaSO	$_{4} (K_{sp} = 1.1 \times 10)$	0^{-10}) at 25	5°C is:
	a) 820 litre	!					
	b) 410 litre						
	c) 205 litre						
	d) None of						
							duced so that, the total
			emperature ar	id volume re	emain constant. A	According	to Le-Chatelier's principle
		ation of SO ₃ :					
	a) Increaseb) Decrease						
	c) Remains						
	-	unpredictably	7				
129.		equilibrium s					
		\rightleftharpoons NH ₄ ⁺ (aq) +					
	-	.5 kcal/mol).	-				
	-		he equilibriu	m to the rig	ht?		
		ing the temp	-	L L	,		
		ing the tempe					
		U	als in the equ	uilibrium m	ixture		
			rystals in the				
130.	-	0 1 0		•		.01 M Ba ²	⁺ solution will start, on
		0_4 of concentr		1	1		
	a) 10 ⁻⁹ M		b) 10 ⁻⁸ M		c) 10 ⁻⁷ M		d) 10 ⁻⁶ M
131.	The solub	ility of Pb(OH	$)_2$ in water is	6.7×10^{-6}	M. Its solubility	in a buff	er solution of pH=8
	would be						•
	a) 1.2 × 10) ⁻²	b) 1.6 × 10 ⁻	3	c) 1.6×10^{-2}		d) 1.2×10^{-3}
132.	-		ig reactions is	$K_n < K_c$?			2
	a) I ₂ (g) ≓		0	ρυ	b) 2BrCl(g) ≓	$Cl_2(g) +$	$Br_2(g)$
	(-)		$H_4(g) + H_2O($	σ	d) All of the ab	0.	512(8)
	_	itate is formed	-	5)	a) fin of the ut		
1001		becomes satu					
	-			the value o	f solubility produ	ıct	
	-	-			solubility produc		
	-	-	-		ie of solubility pr		
134.	At 25°C, <i>K</i> _b	for a base BOI	$1 \text{ is } 1.0 \times 10^{-12}$	² . The [OH ⁻]	in 0.01 <i>M</i> aqueo	us solutio	n of base is:

a) $1.0 \times 10^{-6} M$ 135. The pH of a 10^{-9} M so	b) $1.0 \times 10^{-7} M$ b) b) b	c) $1.0 \times 10^{-5} M$	d) $2.0 \times 10^{-6} M$
a) 8	b) -8	c) Between 7 and 8	d) Between 6 and 7
•	b) of $Ba(OH)_2$ is 12, the		
	b) $4.0 \times 10^{-7} M^3$	•	d) 5.0 × 10 ⁻⁷ M^3
=		=	ant, $K_{\rm NH_3} = [\rm NH_4^+][\rm NH_2^-] =$
	ide ions, are present per cm		-
a) 6×10^6 ions			(Assume $N = 0.0 \times 10^{-6}$) d) 6×10^{-6} ions
,	d dissociation constants of	-	
			ation constant of the acid
will be	and 5.0 × 10 Tespecti	ively. The overall dissocia	ation constant of the actu
	1) 5 0 1015) = 0 10-15	N 0 2 · · 105
-	b) 5.0×10^{15}	c) 5.0×10^{-15}	d) 0.2×10^5
139. Which is the stronges			
a) CH_3COOH	b) CH ₂ ClCOOH	c) CHCl ₂ COOH	d) CCl ₃ COOH
	b) 0 0001 M		
a) $0.005 M$	b) 0.0001 <i>M</i>	c) 0.0005 <i>M</i>	d) 0.05 <i>M</i>
141. Nucleophiles are: a) Lewis acids	b) Lewis bases	c) Bronsted acids	d) Bronsted bases
142. Theory of ionisation v	-	cj biolisteu acius	u) bi olisteu bases
a) Rutherford	b) Graham	c) Faraday	d) Arrhenius
-	-	•	ase is completely ionised in the
solution, the pH of the		of water. Assuming the b	use is completely fornsed in the
a) 13.3	b) 8.5	c) 6	d) 8
	ing solutions of equal cor	,	
$A = \mathrm{NH}_{4}\mathrm{Cl}$	$B = CH_3COONa$		
$C = NH_4OH$	$D = CH_3COOH$	L	
•	n be obtained by mixing	equal volumes of	
a) <i>C</i> and <i>D</i>	b) A and B	c) A and C	d) C and D
,	following reaction is 1 at	,	
•		,111,	
	$\rightleftharpoons Y(g) + Z(g)$		
-		-	quilibrium system is <i>p</i> atm.
	pressure (in atm) of $X(g)$	-	
a) 1	b) 4	c) 2	d) 0.5
	s K_1 and K_2 for the followin	g equilibria are related as :	
$NO(g) + \frac{1}{2} O_2(g) \rightleftharpoons N$	$0_2(g); K_1$		
	$2NO(g) + O_2(g); K_2$		
a) $K_{1} = \frac{1}{1}$	b) $K_2 = \frac{1}{K_1}$	c) $K - K^2$	d) $K_2 = \frac{K_1}{2}$
$K_{1}^{2} = K_{1}^{2}$	$K_2 = \frac{1}{K_1}$	$C_{1} K_{2} = K_{1}$	$K_2 \equiv \frac{1}{2}$
147. If K_1 and K_2 are equili	ibrium constants for reaction	ons (I) and (II) respectively	r for,
$N_2 + O_2 \rightleftharpoons 2NO$			
$\frac{1}{2}N_2 + \frac{1}{2}O_2 \rightleftharpoons NO \dots$. (ii)		
2 2 2 2 Then:			
			1
a) $K_2 = K_1$	b) $K_2 = \sqrt{K_1}$	c) $K_1 = 2K_2$	d) $K_1 = \frac{1}{2}K_2$
148. All reactions which ha	ave chemical disintegration	are	-
a) Exothermic	-		
b) Reversible			
c) Reversible and exc	thermic		

P a g e **| 11**

d) Reversible of irreversible and endothermic or exothermic

149. For which of the following sparingly soluble salt, the solubility (s) and solubility product (K_{sp})

are related by the expression $s = (K_{sp}/4)^{1/3}$? b) $Ca_3(PO_4)_2$ a) BaSO₄ c) Hg_2Cl_2 d) Ag_3PO_4 150. For $PCl_5 \Rightarrow PCl_3 + Cl_2$, initial concentration of each reactant and product is 1 M. If $K_{eq} = 0.41$ then a) More PCl₃ will form b) More Cl₂ will form c) More PCl₅ will form d) No change 151. The exothermic formation of ClF_3 is represented by the equation $Cl_2(g) + 3F_2(g) \rightleftharpoons 2ClF_3(g);$ $\Delta H = -329 \text{ kJ}$ Which of the following will increase the quantity of ClF_3 in an equilibrium mixture of Cl₂, F₂ and ClF₃? a) Adding F₂

b) Increasing the volume of the container

d) 10

c) Removing Cl₂ d) Increasing the temperature

152. For which of the following reactions, does the equilibrium constant depend on the units of concentration?

a) NO(g)
$$\Rightarrow \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$$

- b) $\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(aq) \rightleftharpoons \operatorname{Cu}(s) + \operatorname{Zn}^{2+}(aq)$
- c) $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$
- d) $C_2H_5OH(l) + CH_3COOH(l) \rightleftharpoons CH_3COOC_2H_5(l) + H_2O(l)$
- 153. If the solubility product of lead iodide (PbI₂) is 3.2×10^{-8} , its solubility will be:

a) $2 \times 10^{-3} M$ b) $4 \times 10^{-4} M$ c) $1.6 \times 10^{-5} M$ d) $1.8 \times 10^{-5} M$

154. At 30°C the solubility of Ag_2CO_3 ($K_{sp} = 8 \times 10^{-12}$) would be greatest in 1 L of

a) $0.05 \text{ M} \text{Na}_2 \text{CO}_3$ b) 0.05 M AgNO₃ c) Pure water d) 0.05 M NH₃

- 155. The interfering radicals interfere in the test of usual inorganic analysis after II group analysis due to: a) Their solubility in acid medium
 - b) Their solubility in alkaline medium
 - c) Their insoluble nature in alkaline medium
 - d) None of the above
- 156. The p K_b value of NH₃ is 5. Calculate the pH of the buffer solution, 1 L of which contains 0.01 M NH₄Cl and 0.10 M NH₄OH
 - a) 4 b) 6
- 157. The equilibrium constant *K* for the reaction $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$ at room temperature 300 K is 2.85 and at 698 K 1.84×10^{-2} . Hence the reason that HI exists as a stable compound at room temperature is because:

c) 8

- a) It decomposes so slowly that equilibrium is not readily achieved
- b) The HI bond has a large covalent contribution
- c) The heat of reaction at room temperature is -5.31 kcal
- d) It is uncatalytic reaction
- 158. A mixture of 0.3 mole of H_2 and 0.3 mole of I_2 is allowed to react in a 10 L evacuated flask at 500°C. The reaction is $H_2 + I_2 \rightleftharpoons 2HI$, the *K* is found to be 64. The amount of unreacted I_2 at equilibrium is b) 0.06 mol d) 3.6 mol a) 0.03 mol c) 0.09 mol
- 159. In a solution of a weak electrolyte at infinite dilution we have:
 - a) Only cations and electrolyte in 10% dissociated
 - b) Only anions and electrolyte is 10% dissociated
 - c) Both cations and anions and electrolyte is 100% dissociated
 - d) Cations, anions and unionised electrolyte
- 160. In the reaction, $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, the equilibrium concentration of PCl_5 and PCl_3 are 0.4 and 0.2 mol/L respectively. If the value of K_c is 0.5 what is the concentration of Cl₂ in mol/L?

a) $SnCl_4 + Hg_2Cl_2 \rightarrow S$ b) $NH_4Cl + NaOH \rightarrow H$ c) $Mn^{2+} + 2H_2O + Cl_2$ d) $S_4O_6^{2-} + 2I^- \rightarrow 2S_2$ 162. Which is a Lewis bas	$H_2O + NH_3 + NaCl$ $\rightarrow MnO_2 + 4H^+ + 2Cl^-$ $O_3^{2^-} + I_2$ we	c) 1.5 is :	d) 2.0
$I_2 + I^- \rightarrow I_3^-$?		
a) I ₂	b) I ₃	c) I ⁻	d) None of these
163. A solution contains 1	0 mL of 0.1 N NaOH and 1	0 mL of 0.05 N H ₂ SO ₄ , pH	I of this solution is
a) Less than 7	b) 7	c) Zero	d) Greater than 7
	in water is 0.01 <i>M</i> at 25°C. It		
a) $2 \times 10^{-3} M$	b) $1 \times 10^{-4} M$	•) =•• =• ••	-
165. HX is a weak acid (K	$T_a = 10^{-5}$). It forms a salt N	aX (0.1 M on reacting wi	ith caustic soda. The
degree of hydrolysis	of NaX is		
a) 0.01%	b) 0.0001 %	c) 0.1 %	d) 0.5 %
-	stronger acid than formic acid	•	
a) CH ₃ COOH	b) H_2SO_4	c) NH ₄ ⁺	d) HPO_4^{2-}
_	brium $'X'$ mole of the reacta		
	sed at equilibrium is indepen	ndent of initial concentration	on of A , then the value of $'X'$
is :			
a) 1	b) 3	c) 2	d) 4 $(2 \times 2 \times$
	f N ₂ O ₄ , if α is the degree of di		eaction, $N_2 O_4 \rightleftharpoons 2 N O_2$ then
a) 2	l number of moles of N_2O_4 ar b) $(1 - \alpha)$	c) $(1 - \alpha)^2$	d) $(1 + \alpha)$
-			D_2 per litre of solution. The
solubility product of M			
a) $(0.11)^2$	b) $(0.11)^3$	c) $4 \times (0.11)^3$	d) $4 \times (0.11)^3 / (58)^3$
170. For the reaction,			
$2NO_3(g) \rightleftharpoons 2NO(g)$	$+0_{2}(g)$		
$(K_c = 1.8 \times 1)$	_ (0)		
(R = 0.0083)			
,	compared at 184°C, it is for	und that	
•	ater than less than or equa	1	
al	n the total gas pressure	b) $K_p = K_c$	
c) K_p is less than K_c	n the total gas pressure	d) K_p is greater than K_0	
•	i a far wal have strong a	- 1	2
	bice for weak base-strong a		
a) Methyl red	b) Litmus	c) Phenol red	d) Phenolphthalein
	c product of water depends		
a) On volume of wate		b) On temperature	
c) Changes by adding	-	d) Always remain cons	
	akes place according to the fo	blowing reaction, $2SO_2 + C$	$D_2 \rightleftharpoons 2SO_3, \Delta H = -45.2$ kcal.
The formation of SO_3 i a) Increase of volume	s favoured by	h) Increace in processre	
c) Increase in tempera	ituro	b) Increase in pressured) Removal of oxygen	
	t electrolyte in the following?	aj Kenioval di Oxygell	
a) NaCl	b) CH ₃ COOH	c) NH ₄ OH	d) $C_6 H_{12} O_6$
-	owing reactions, $K_p = K_c$?	, ₁ ,	J -0 12 - 0
	c c c		

a) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ 176. The solubility of AgI in NaI a) AgI forms complex with	solution is less than that i	, , , ,	d) $2SO_3 \rightleftharpoons 2SO_2 + O_2$
c) Solubility product of Ag 177. The partial pressure of CH		d) The temperature of the equilibrium mixture for t	
$2H_2(g) \rightleftharpoons CH_3OH(g)$ are 2.			
of CH_3OH to CO and H_2 is : a) 10^2 atm	b) 2 × 10 ² atm ⁻¹	c) 50 atm ²	d) $5 \times 10^{-3} \text{ atm}^2$
178. What happens to pH of a se	,	,	,
	b) Increases	c) Remains unaffected	d) All of these
179. What mole of $Ca(OH)_2$ is d full dissociation?	issolved in 250 mL aqueou	is solution to given a soluti	on of pH 10.65, assuming
a) 0.47×10^{-4}	b) 0.48×10^{-4}	c) 0.56×10^{-4}	d) 0.58×10^{-4}
 180. The volume of the reaction Cl₂(g) is increased. When e a) The amount of SO₂(g) w b) The amount of SO₂Cl₂(g) c) The amount of Cl₂(g) wi d) The amount of Cl₂ (g) w 	equilibrium is reestablishe ill decrease) will increase ll increase		ction, $SO_2Cl_2(g) \rightleftharpoons SO_2(g) +$
181. The acidic nature of zinc or	_	mation of salt:	
a) NaZnO ₂	b) Na ₂ ZnO ₂	c) Na ₂ Zn ₂ O ₂	d) None of these
182. Consider the following r	eaction equilibrium		
$N_2(g) + 3H_2(g) \rightleftharpoons 2N$	5(6)		
Initially, 1 mole of N_2 an			
of moles of N ₂ is 0.6, what			
,	b) 1.6	c) 3.2	d) 6.4
183. If 0.1 mole of I_2 is introd correct?			
a) $[I_2(g)] > [I(g)]$	b) $[I_2(g)] < [I(g)]$	c) $[I_2(g)] = [I(g)]$	d) $[I_2(g)] = \frac{1}{2}[I(g)]$
184. The equilibrium constant <i>l</i>			
	, , ,	c) $(A) > 1$	d) At all these
185. The equilibrium which ren a) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$		b) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_2(g)$	
c) $20_3(g) \neq 30_2(g) \leftarrow 200(g)$	5)	d) $2NO_2 \rightleftharpoons N_2O_4(g) \leftarrow 2SO_2(g) \lor N_2O_4(g)$	J ₃ (g)
, , , , , , , , , , , , , , , , , , , ,			
	aqueous solution of Na(,,	
-	aqueous solution of Na(b) 4	Cl is	d) unpredictable
a) 7	b) 4	,,	d) unpredictable
a) 7 187. The solution of AgCl is uns	b) 4 aturated if:	Cl is c) 11	- *
a) 7	b) 4 aturated if: b) $[Ag^+][Cl^-] > K_{sp}$	Cl is c) 11 c) $[Ag^+][Cl^-] = K_{sp}$	d) None of these
a) 7 187. The solution of AgCl is uns a) $[Ag^+][Cl^-] < K_{sp}$	b) 4 aturated if: b) [Ag ⁺][Cl ⁻] > K _{sp} imonium hydroxide is ioni	Cl is c) 11 c) $[Ag^+][Cl^-] = K_{sp}$	d) None of these
a) 7 187. The solution of AgCl is uns a) $[Ag^+][Cl^-] < K_{sp}$ 188. A decimolar solution of am what is the pH of the soluti a) 11.11	 b) 4 aturated if: b) [Ag⁺][Cl⁻] > K_{sp} monium hydroxide is ioni ion? b) 9.11 	Cl is c) 11 c) [Ag ⁺][Cl ⁻] = <i>K</i> _{sp} sed to the extent of 1.3%. I c) 8.11	 d) None of these f log 1.3. If log 1.3 = 0.11, d) Unpredictable
a) 7 187. The solution of AgCl is uns a) $[Ag^+][Cl^-] < K_{sp}$ 188. A decimolar solution of am what is the pH of the solution	 b) 4 aturated if: b) [Ag⁺][Cl⁻] > K_{sp} monium hydroxide is ioni ion? b) 9.11 	Cl is c) 11 c) [Ag ⁺][Cl ⁻] = <i>K</i> _{sp} sed to the extent of 1.3%. I c) 8.11	 d) None of these f log 1.3. If log 1.3 = 0.11, d) Unpredictable
a) 7 187. The solution of AgCl is uns a) $[Ag^+][Cl^-] < K_{sp}$ 188. A decimolar solution of am what is the pH of the soluti a) 11.11	b) 4 aturated if: b) $[Ag^+][Cl^-] > K_{sp}$ monium hydroxide is ioni ion? b) 9.11 ce of $\frac{M}{32}$ solution of a weak i	Cl is c) 11 c) $[Ag^+][Cl^-] = K_{sp}$ sed to the extent of 1.3%. I c) 8.11 monobasic acid is 8.0 mhos	 d) None of these f log 1.3. If log 1.3 = 0.11, d) Unpredictable
 a) 7 187. The solution of AgCl is uns a) [Ag⁺][Cl⁻] < K_{sp} 188. A decimolar solution of am what is the pH of the solution of an what is the pH of the solution a) 11.11 189. The equivalent conductance dilution is 400 mhos cm². 	b) 4 aturated if: b) $[Ag^+][Cl^-] > K_{sp}$ monium hydroxide is ioni ion? b) 9.11 ce of $\frac{M}{32}$ solution of a weak i	Cl is c) 11 c) $[Ag^+][Cl^-] = K_{sp}$ sed to the extent of 1.3%. I c) 8.11 monobasic acid is 8.0 mhos	 d) None of these f log 1.3. If log 1.3 = 0.11, d) Unpredictable
 a) 7 187. The solution of AgCl is uns a) [Ag⁺][Cl⁻] < K_{sp} 188. A decimolar solution of am what is the pH of the solution of an what is the pH of the solution a) 11.11 189. The equivalent conductant dilution is 400 mhos cm². (a) 1.25 × 10⁻⁴ 190. Hydrolysis of oxide ion in the solution of a solution is 400 mhos the solution of a s	b) 4 aturated if: b) $[Ag^+][Cl^-] > K_{sp}$ monium hydroxide is ioni ion? b) 9.11 ce of $\frac{M}{32}$ solution of a weak is The dissociation constant of b) 1.25 × 10 ⁻⁵ water produces:	Cl is c) $[Ag^+][Cl^-] = K_{sp}$ sed to the extent of 1.3%. I c) 8.11 monobasic acid is 8.0 mhose of this acid is: c) 1.25 × 10 ⁻⁶	d) None of these f log 1.3. If log 1.3 = 0.11, d) Unpredictable s cm ² and at infinite d) 6.25×10^{-4}
 a) 7 187. The solution of AgCl is uns a) [Ag⁺][Cl⁻] < K_{sp} 188. A decimolar solution of am what is the pH of the solutian a) 11.11 189. The equivalent conductant dilution is 400 mhos cm². Ta a) 1.25 × 10⁻⁴ 190. Hydrolysis of oxide ion in ma a) H⁺ 	b) 4 aturated if: b) $[Ag^+][Cl^-] > K_{sp}$ monium hydroxide is ioni ion? b) 9.11 ce of $\frac{M}{32}$ solution of a weak in The dissociation constant of b) 1.25 × 10 ⁻⁵ water produces: b) OH ⁻	Cl is c) $[Ag^+][Cl^-] = K_{sp}$ sed to the extent of 1.3%. I c) 8.11 monobasic acid is 8.0 mhose of this acid is: c) 1.25 × 10 ⁻⁶ c) 0 ₂	d) None of these f log 1.3. If log 1.3 = 0.11, d) Unpredictable c cm ² and at infinite d) 6.25×10^{-4} d) H ₂ O
 a) 7 187. The solution of AgCl is uns a) [Ag⁺][Cl⁻] < K_{sp} 188. A decimolar solution of am what is the pH of the solution of an what is the pH of the solution a) 11.11 189. The equivalent conductant dilution is 400 mhos cm². (a) 1.25 × 10⁻⁴ 190. Hydrolysis of oxide ion in the solution of a solution is 400 mhos the solution of a s	b) 4 aturated if: b) $[Ag^+][Cl^-] > K_{sp}$ monium hydroxide is ioni ion? b) 9.11 ce of $\frac{M}{32}$ solution of a weak is The dissociation constant of b) 1.25 × 10 ⁻⁵ water produces: b) OH ⁻ ssociation constant 1 × 10 ⁻⁵	Cl is c) $[Ag^+][Cl^-] = K_{sp}$ sed to the extent of 1.3%. I c) 8.11 monobasic acid is 8.0 mhose of this acid is: c) 1.25 × 10 ⁻⁶ c) 0 ₂	d) None of these f log 1.3. If log 1.3 = 0.11, d) Unpredictable c cm ² and at infinite d) 6.25×10^{-4} d) H ₂ O

a) 0.0001%			
	b) 0.01%	c) 0.1%	d) 0.15%
192. The species	among the following which can act as	an acid and a base is:	
a) HSO ₄	b) SO ₄ ^{2–}	c) H ₃ 0 ⁺	d) Cl ⁻
193. For the rea	ctions,		
$A \rightleftharpoons B; K_{a}$			
$B \rightleftharpoons C; K_{C}$			
$C \rightleftharpoons D; K_{c}$	-		
	eaction, $A \rightleftharpoons D$ is:		
, .			d) $2 \times 4 \times 6$
194. 0.365 g of solution w	HCl gas was passed through 100 cm ould be	³ of 0.2 M NaOH solution	. The pH of the resulting
a) 1	b) 5	c) 8	d) 13
-	0.0001 N solution of KOH will be		- ,
a) 4	b) 6	c) 10	d) 12
-	rium constant for a reaction is 1×10^{-1}		
reaction is			and be energy enange for energy
a) – 115 kJ		c) + 166 kl	d) — 116 kJ
, ,	rium constant for the reaction ; $P_4(s)$ +	2	a, <u> </u>
			$[P_4O_{10}]$
a) $K_c = \frac{1}{[0_2]}$	b) $K_c = [0_2]^5$	c) $K_c = \frac{1}{5[P_4][O_2]}$	d) $K_c = \frac{[P_4 O_{10}]}{[P_4][O_2]^5}$
198. The correct	relation for hydrolysis constant of NH	CN is:	L 1 JL - 2J
·			V
a) $\sqrt{\frac{K_w}{K_a}}$	b) $\frac{K_w}{K_a \times K_b}$	c) $\frac{\sqrt{K_H}}{c}$	d) $\frac{K_a}{K_b}$
$\sqrt{K_a}$	$K_a \times K_b$	C	K _b
199. The gaseo	us reaction,		
$A + B \rightleftharpoons 2$	C + D + Q is most favoured at		
a) Low ten	perature and high pressure	b) High temperature a	nd low high pressure
	nperature and low pressure	d) Low temperature a	
0	solution of 0.1 <i>M</i> NH ₄ Cl will have a pH		r
	b) 8.1		d) 5.1
,	entration of OH^- ions is the reaction	2	$-30H^{-}(aq)$, is decreased by
times the	n equilibrium concentration of Fe ³⁺ wi		
1	n equilibrium concentration of Fe ³⁺ wi	ll increase by :	
a) 16 times	b) 64 times		d) 8 times
a) 16 times 202. $A(g) + 3B$	b) 64 times $(g) \rightleftharpoons 4\mathcal{C}(g).$	ll increase by : c) 4 times	d) 8 times
a) 16 times 202. $A(g) + 3B$ Initially co	b) 64 times $(g) \rightleftharpoons 4C(g).$ ncentration of <i>A</i> is equal to that of <i>B</i>	ll increase by : c) 4 times	d) 8 times
a) 16 times 202. $A(g) + 3B$ Initially co equal. K_c i	b) 64 times $f(g) \rightleftharpoons 4C(g)$. ncentration of <i>A</i> is equal to that of <i>B</i> s	ll increase by : c) 4 times 3. The equilibrium concer	d) 8 times atrations of <i>A</i> and <i>C</i> are
a) 16 times 202. $A(g) + 3B$ Initially co equal. K_c i a) 0.08	b) 64 times $(g) \rightleftharpoons 4C(g).$ ncentration of <i>A</i> is equal to that of <i>B</i> s b) 0.08	ll increase by : c) 4 times 3. The equilibrium concer c) 8	d) 8 times atrations of <i>A</i> and <i>C</i> are d) 80
a) 16 times 202. $A(g) + 3B$ Initially co equal. K_c i a) 0.08 203. 18 mL of m	b) 64 times $f(g) \rightleftharpoons 4C(g)$. ncentration of <i>A</i> is equal to that of <i>B</i> s b) 0.08 ixture of acetic acid and sodium acetate	ll increase by : c) 4 times 3. The equilibrium concer c) 8 e required 6 mL of 0.1 <i>M</i> Na	d) 8 times atrations of <i>A</i> and <i>C</i> are d) 80 OH for neutralization of the
a) 16 times 202. $A(g) + 3B$ Initially co equal. K_c i a) 0.08 203. 18 mL of m	b) 64 times $(g) \rightleftharpoons 4C(g).$ ncentration of <i>A</i> is equal to that of <i>B</i> s b) 0.08	ll increase by : c) 4 times 3. The equilibrium concer c) 8 e required 6 mL of 0.1 <i>M</i> Na	d) 8 times atrations of <i>A</i> and <i>C</i> are d) 80 OH for neutralization of the
a) 16 times 202. $A(g) + 3B$ Initially co equal. K_c i a) 0.08 203. 18 mL of m	b) 64 times $f(g) \rightleftharpoons 4C(g)$. ncentration of <i>A</i> is equal to that of <i>B</i> s b) 0.08 ixture of acetic acid and sodium acetate mL of 0.1 <i>M</i> HCl for reaction with salt, s?	ll increase by : c) 4 times 3. The equilibrium concer c) 8 e required 6 mL of 0.1 <i>M</i> Na separately. If p <i>K_a</i> of the aci	d) 8 times atrations of <i>A</i> and <i>C</i> are d) 80 OH for neutralization of the
a) 16 times 202. $A(g) + 3B$ Initially co equal. K_c in a) 0.08 203. 18 mL of m acid and 12	b) 64 times $(g) \rightleftharpoons 4C(g)$. ncentration of A is equal to that of E s b) 0.08 ixture of acetic acid and sodium acetate mL of 0.1 M HCl for reaction with salt,	ll increase by : c) 4 times 3. The equilibrium concer c) 8 e required 6 mL of 0.1 <i>M</i> Na	d) 8 times atrations of <i>A</i> and <i>C</i> are d) 80 OH for neutralization of the
a) 16 times 202. $A(g) + 3B$ Initially co equal. K_c in a) 0.08 203. 18 mL of m acid and 12 the mixture a) 5.05	b) 64 times $f(g) \rightleftharpoons 4C(g)$. ncentration of <i>A</i> is equal to that of <i>B</i> s b) 0.08 ixture of acetic acid and sodium acetate mL of 0.1 <i>M</i> HCl for reaction with salt, s?	ll increase by : c) 4 times 3. The equilibrium concer c) 8 e required 6 mL of 0.1 <i>M</i> Na separately. If p <i>K_a</i> of the aci c) 4.5	d) 8 times atrations of <i>A</i> and <i>C</i> are d) 80 OH for neutralization of the d is 4.75, what is the pH of d) 4.6
a) 16 times 202. $A(g) + 3B$ Initially co equal. K_c in a) 0.08 203. 18 mL of m acid and 12 the mixture a) 5.05	b) 64 times $f(g) \rightleftharpoons 4C(g)$. ncentration of <i>A</i> is equal to that of <i>B</i> s b) 0.08 ixture of acetic acid and sodium acetate mL of 0.1 <i>M</i> HCl for reaction with salt, ? b) 4.75	ll increase by : c) 4 times 3. The equilibrium concer c) 8 e required 6 mL of 0.1 <i>M</i> Na separately. If p <i>K_a</i> of the aci c) 4.5	d) 8 times atrations of <i>A</i> and <i>C</i> are d) 80 OH for neutralization of the d is 4.75, what is the pH of d) 4.6
a) 16 times 202. $A(g) + 3B$ Initially co equal. K_c i a) 0.08 203. 18 mL of m acid and 12 the mixture a) 5.05 204. 50 mL of 0 a) 1.30	b) 64 times $f(g) \rightleftharpoons 4C(g)$. ncentration of <i>A</i> is equal to that of <i>B</i> s b) 0.08 ixture of acetic acid and sodium acetate mL of 0.1 <i>M</i> HCl for reaction with salt, ? b) 4.75 .1 M HCl and 50 mL of 0.2 M NaOH a b) 4.2	ll increase by : c) 4 times 3. The equilibrium concer c) 8 e required 6 mL of 0.1 <i>M</i> Na separately. If p <i>K</i> _a of the aci c) 4.5 are mixed. The pH of the r c) 12.70	d) 8 times atrations of <i>A</i> and <i>C</i> are d) 80 OH for neutralization of the d is 4.75, what is the pH of d) 4.6 resulting solution is d) 11.70
a) 16 times 202. $A(g) + 3B$ Initially co equal. K_c is a) 0.08 203. 18 mL of m acid and 12 the mixture a) 5.05 204. 50 mL of 0 a) 1.30 205. K_c for the n	b) 64 times $f(g) \rightleftharpoons 4C(g)$. ncentration of <i>A</i> is equal to that of <i>B</i> s b) 0.08 ixture of acetic acid and sodium acetate mL of 0.1 <i>M</i> HCl for reaction with salt, e? b) 4.75 .1 M HCl and 50 mL of 0.2 M NaOH a	ll increase by : c) 4 times 3. The equilibrium concer c) 8 e required 6 mL of 0.1 <i>M</i> Na separately. If p <i>K</i> _a of the aci c) 4.5 are mixed. The pH of the r c) 12.70 the equilibrium constant at	d) 8 times atrations of <i>A</i> and <i>C</i> are d) 80 OH for neutralization of the d is 4.75, what is the pH of d) 4.6 resulting solution is d) 11.70 ± 25°C is 4.0 × 10 ⁻¹⁹ , then the
a) 16 times 202. $A(g) + 3B$ Initially co equal. K_c is a) 0.08 203. 18 mL of m acid and 12 the mixture a) 5.05 204. 50 mL of 0 a) 1.30 205. K_c for the n	b) 64 times $f(g) \rightleftharpoons 4C(g)$. ncentration of <i>A</i> is equal to that of <i>B</i> s b) 0.08 ixture of acetic acid and sodium acetate mL of 0.1 <i>M</i> HCl for reaction with salt, e? b) 4.75 1 M HCl and 50 mL of 0.2 M NaOH a b) 4.2 reaction : $[Ag(CN)_2]^- \rightleftharpoons Ag^+ + 2CN^-$, b) concentration in a solution which was on	ll increase by : c) 4 times 3. The equilibrium concer c) 8 e required 6 mL of 0.1 <i>M</i> Na separately. If pK_a of the aci c) 4.5 are mixed. The pH of the r c) 12.70 the equilibrium constant at riginally 0.1 molar in KCN ar	d) 8 times atrations of <i>A</i> and <i>C</i> are d) 80 OH for neutralization of the d is 4.75, what is the pH of d) 4.6 resulting solution is d) 11.70 ± 25°C is 4.0 × 10 ⁻¹⁹ , then the
a) 16 times 202. $A(g) + 3B$ Initially co equal. K_c i a) 0.08 203. 18 mL of m acid and 12 the mixture a) 5.05 204. 50 mL of 0 a) 1.30 205. K_c for the n silver ion co a) 7.5 × 10	b) 64 times $f(g) \rightleftharpoons 4C(g)$. ncentration of <i>A</i> is equal to that of <i>B</i> s b) 0.08 ixture of acetic acid and sodium acetate mL of 0.1 <i>M</i> HCl for reaction with salt, e? b) 4.75 1 M HCl and 50 mL of 0.2 M NaOH a b) 4.2 reaction : $[Ag(CN)_2]^- \rightleftharpoons Ag^+ + 2CN^-$, oncentration in a solution which was on D^{18} b) 7.5 × 10^{-18}	ll increase by : c) 4 times 3. The equilibrium concer c) 8 e required 6 mL of 0.1 <i>M</i> Na separately. If pK_a of the aci c) 4.5 are mixed. The pH of the n c) 12.70 the equilibrium constant at riginally 0.1 molar in KCN an c) 7.5 \times 10 ¹⁹	d) 8 times atrations of <i>A</i> and <i>C</i> are d) 80 OH for neutralization of the d is 4.75, what is the pH of d) 4.6 resulting solution is d) 11.70 z 25°C is 4.0 × 10 ⁻¹⁹ , then the ad 0.03 molar in AgNO ₃ is :
a) 16 times 202. $A(g) + 3B$ Initially co equal. K_c i a) 0.08 203. 18 mL of m acid and 12 the mixture a) 5.05 204. 50 mL of 0 a) 1.30 205. K_c for the n silver ion co a) 7.5 × 10	b) 64 times $f(g) \rightleftharpoons 4C(g)$. ncentration of <i>A</i> is equal to that of <i>B</i> s b) 0.08 ixture of acetic acid and sodium acetate mL of 0.1 <i>M</i> HCl for reaction with salt, e? b) 4.75 1 M HCl and 50 mL of 0.2 M NaOH a b) 4.2 reaction : $[Ag(CN)_2]^- \rightleftharpoons Ag^+ + 2CN^-$, b) concentration in a solution which was on	ll increase by : c) 4 times 3. The equilibrium concer c) 8 e required 6 mL of 0.1 <i>M</i> Na separately. If pK_a of the aci c) 4.5 are mixed. The pH of the n c) 12.70 the equilibrium constant at riginally 0.1 molar in KCN an c) 7.5 \times 10 ¹⁹	d) 8 times atrations of <i>A</i> and <i>C</i> are d) 80 OH for neutralization of the d is 4.75, what is the pH of d) 4.6 resulting solution is d) 11.70 25° C is 4.0 × 10 ⁻¹⁹ , then the ad 0.03 molar in AgNO ₃ is : d) 7.5 × 10 ⁻¹⁹
a) 16 times a) 16 times 202. $A(g) + 3B$ Initially co equal. K_c is a) 0.08 203. 18 mL of m acid and 12 the mixture a) 5.05 204. 50 mL of 0 a) 1.30 205. K_c for the n silver ion co a) 7.5 × 10 206. The p K_a for a) Acid A	b) 64 times $f(g) \rightleftharpoons 4C(g)$. ncentration of <i>A</i> is equal to that of <i>B</i> b) 0.08 ixture of acetic acid and sodium acetate mL of 0.1 <i>M</i> HCl for reaction with salt, b) 4.75 1 M HCl and 50 mL of 0.2 M NaOH a b) 4.2 reaction : $[Ag(CN)_2]^- \rightleftharpoons Ag^+ + 2CN^-$, oncentration in a solution which was on D^{18} b) 7.5 × 10^{-18} r acid <i>A</i> is greater than pK_a for acid <i>B</i> . T	ll increase by : c) 4 times 3. The equilibrium concer c) 8 e required 6 mL of 0.1 <i>M</i> Na separately. If pK_a of the aci c) 4.5 are mixed. The pH of the n c) 12.70 the equilibrium constant at riginally 0.1 molar in KCN an c) 7.5 × 10 ¹⁹ The strong acid is: c) Are equally strong	d) 8 times atrations of <i>A</i> and <i>C</i> are d) 80 OH for neutralization of the d is 4.75, what is the pH of d) 4.6 resulting solution is d) 11.70 $(25^{\circ}C)$ is 4.0×10^{-19} , then the ad 0.03 molar in AgNO ₃ is : d) 7.5 $\times 10^{-19}$ d) None of these

a) Acidic b) Alkaline	c) HClO ₃	d) H ₃ PO ₃
208. The $[H_30^+]$ in the rain water of pH = 4.35 i		
a) $4.5 \times 10^{-5} M$ b) $6.5 \times 10^{-5} M$	-	d) $12.5 \times 10^{-5} M$
209. For which salt the pH of its solution does no	_	
a) NH_4Cl b) CH_3COONH_4		d) None of these
210. When hydrogen molecules decomposed	into it's atoms which conditior	ns gives maximum yield of
H atom?		
a) High temperature and low pressure	b) Low temperature a	nd high pressure
c) High temperature and high pressure	d) Low temperature a	nd low pressure
211. Which is not and acid salt?		
a) NaH ₂ PO ₂ b) NaH ₂ PO ₃	c) NaH ₂ PO ₄	d) NaHSO ₃
212. Which is a Lewis base?		
a) B_2H_6 b) LiAl H_4	c) AlH ₃	d) NH ₃
213. Final pressure is higher than initial pres	sure of a container filled with a	in ideal gas at constant
temperature. What will be the value of e		5
a) $K = 1.0$ b) $K = 10.0$	-	d) <i>K</i> < 1.0
214. In which of the following cases, does not rea	,	
	c) $K = 10$	d) $K = 1$
215. For the reaction, $H_2(g) + I_2(g) \rightarrow 2HI_2$,	,
a) Total pressure	b) Catalyst	
_	d) Temperature	
c) The amount H_2 and I_2	*	
216. The equilibrium constant for the reaction $N_{1}(z) + Q_{2}(z) \rightarrow 2NQ(z)$	11,	
$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$		
At temperature T is 4×10^{-4} . The value	of K_c for the reaction	
$NO(g) \rightleftharpoons \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$		
at the same temperature is		
a) 2.5×10^2 b) 50	c) 4×10^{-4}	d) 0.02
217. The reaction, $2A_{(g)} + B_{(g)} \rightleftharpoons 3C_{(g)} + D_{(g)}$ i	begun with the concentration	of A and B both at an initial
value of 1.00 <i>M</i> . When equilibrium is reach	d, the concentration of D is meas	sured and found to be 0.25 <i>M</i> .
The value for the equilibrium constant for t	is reaction is given by the expres	sion :
a) $[(0.75)^3 (0.25)] \div [(1.00)^2 (1.00)]$		
b) $[(0.75)^3 (0.25)] \div [(0.50)^2 (0.75)]$		
c) $[(0.75)^3 (0.25)] \div [(0.50)^2 (0.25)]$		
d) $[(0.75)^3 (0.25)] \div [(0.75)^2 (0.25)]$		
218. In HS^- , I^- , $R - NH_2$, NH_3 order of proton ac	epting tendency will be:	
a) $I^- > NH_3 > RNH_2 > HS^-$		
b) $NH_3 > RNH_2 > HS^- > I^-$		
c) $RNH_2 > NH_3 > HS^- > I^-$		
d) $HS^- > RNH_2 > NH_3 > I^-$		
219. Strong electrolytes are those which:		
a) Dissolve readily in non-polar solvent		
b) Conduct electricity in aqueous solution		
c) Dissociate into ions at high concentration		
d) None of the above		
220. The pH of 0.1 N HCl solution is:		1) 4 0
a) 1.0 b) 7.0	c) 14.0	d) 4.0
221. A solution of FeCl ₃ in water acts as acidic du		
a) Agidia improvition (b) I		d) Dissociation
a) Acidic impurities b) Ionisation	e to: c) Hydrolysis of Fe ³⁺	d) Dissociation

222. The concept that an acid is a proton donor and a ba	= =	-
a) Arrhenius b) Bronsted-Lowry 223. Which is decreasing order of strength of bases	c) Lewis	d) Faraday
\overline{O} H, \overline{N} H ₂ , HC \equiv C ⁻ and CH ₃ CH ₂		
a) $H_3CCH_2^- > NH_2^- > HC \equiv C^- > OH^-$	b) HC \equiv C ⁻ > CH ₃ CH ₂	$- \times NH^{-} \times OH^{-}$
c) $OH^- > NH_2^- > CH \equiv C^- > H_3CCH_2^-$	d) $\operatorname{NH}_2^- > HC \equiv C^- >$	
224. The strength of an acid depends on its tendency to	$u_1 N \Pi_2 > \Pi C = C >$	$011 > 11_3 CC11_2$
a) Accept protons b) Donate protons	c) Accept electrons	d) Donate electrons
225. The following reactions are known to occur in the l		
$CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$		
If CO ₂ escapes from the system, then:		
a) pH will decrease		
b) Hydrogen ion concentration will diminish		
c) H_2CO_3 concentration will be unaltered		
d) The forward reaction will be promoted226. The common ion effect is shown by which of the fo	llowing sots of solutions?	
a) $BaCl_2 + BaNO_3$ b) $NaCl + HCl$	c) $NH_4OH + NH_4Cl$	d) None of these
227. In the reaction, $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$, the equil		-
the change is :	1	
a) 12 atm b) 16 atm	c) 20 atm	d) 6 atm
228. For a given solution pH = 6.9 at 60°C, where K_w =	10^{-12} . The solution is:	
a) Acidic b) Basic	c) Neutral	d) Unpredictable
229. A quantity of PCl_5 was heated in a 10 litre vessel a		
equilibrium the vessel contains 0.1 mole of PCl_5 , 0.	20 mole of PCl ₃ and 0.20 m	ole of Cl ₂ . The equilibrium
constant of the reaction is :	a) 0.04	d) 0.025
a) 0.02 b) 0.05 230. One mole of ethyl alcohol was treated with one m	c) 0.04	,
ester at equilibrium. The equilibrium constant for t		2/5 of the actu changes into
a) 1 b) 2	c) 3	d) 4
231. 9.2 g of $N_2O_4(g)$ is taken in a closed 1 L vessel and	-	-
$N_2O_4(g) \rightleftharpoons 2NO_2(g)$		
At equilibrium, 50% $N_2O_4(g)$ is dissociated. What i	s the equilibrium constant	(in molL ⁻¹)? (Molecular
weight of $N_2O_4 = 92$)		
a) 0.1 b) 0.2	c) 0.3	d) 0.4
232. Assuming complete dissociation which of the follow (i)100 mL of 0.01 M HCl	ving aqueous solutions will	I have the same pH value?
(ii)100 mL of 0.01 MH ₂ SO ₄		
(iii)50 mL of 0.01 M HCl		
(iv)Mixture of 50 mL of 0.02 M H_2SO_4 and 50 mL o	f 0.02 M NaOH	
a) (i), (ii) b) (i), (iii)	c) (ii), (iv)	d) (i), (iv)
233. At 3000 K, the equilibrium pressure of $\rm CO_2$, CO and	O_2 are 0.6, 0.4 and 0.2 atm	respectively. K_p for the
reaction $2CO_2 \rightleftharpoons 2CO + O_2$, is		
a) 0.089 b) 0.098	c) 0.189	d) 0.198
234. The p K_a of weak acid H_A is 4.5. The pOH of an aque	ous buffer solution of HA is	n which 50% of the acid is
ionised:	a) 2 F	4) 0 5
a) 7.0 b) 4.5 235. An amphoteric buffer solution in which conc. o	c) 2.5 f H^+ and HX is same The	d) 9.5 a value of <i>K</i> of HX is 10^{-8}
then pH of buffer solution is		a of n_a of n_a 15 10 ,
a) 3 b) 8	c) 10	d) 14
	~) IU	~, 11

236. In the reaction, $3A + 2B \rightarrow 2C$, the equilibrium constant K_c is given by a) $\frac{[3A] \times [2B]}{[C]}$ b) $\frac{[A]^3 \times [B]}{[C]}$ c) $\frac{[C]^2}{[A]^3 \times [B]^2}$ d) $\frac{[C]}{[3A][2B]}$ 237. Which reaction is not affected by change in pressure? b) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ a) $H_2 + I_2 \rightleftharpoons 2HI$ c) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ d) $2C + O_2 \rightleftharpoons 2CO$ 238. Three reactions involving $H_2PO_4^-$ are given below $(i)H_3PO_4 + H_2O \rightarrow H_3O^+ + H_2PO_4^-$ (ii) $H_2PO_4^- + H_2O \rightarrow HPO_4^{2-} + H_3O^+$ (iii) $H_2PO_4^- + OH^- \rightarrow H_3PO_4 + O^{2-}$ In which of the above does $H_2PO_4^-$ act as an acid? b) (i)and (ii) a) (ii) only c) (iii) only d) (i) only 239. pH for the solution of salt undergoing anionic hydrolysis (say CH₃COONa) is given by: a) pH = $\frac{1}{2} [pK_w + pK_a + \log c]$ b) pH = $\frac{1}{2} [pK_w + pK_a - \log c]$ c) pH = $\frac{1}{2} [pK_w + pK_b - \log c]$ d) None of the above 240. For the reactions, $A + B + Q \rightleftharpoons C + D$, if the temperature is increased then concentration of the products will d) Become zero a) Increase b) Decrease c) Remains the same 241. Under what conditions of temperature and pressure, the formation of atomic hydrogen from molecular hydrogen will be favoured most? a) High temperature and high pressure b) High temperature and low pressure c) Low temperature and low pressure d) Low temperature and high pressure 242. Mohr's salt is a: a) Normal salt b) Acid salt c) Basic salt d) Double salt 243. pH of 0.05 *M* Mg(OH)₂ is: a) 13 b) 10 c) 1 d) Zero 244. In which of the following reactions, the concentration of product is higher than the concentration of reactant at equilibrium? (K = equilibrium constant) a) $A \rightleftharpoons B$; K = 0.001b) $M \rightleftharpoons N$; K = 10c) $X \rightleftharpoons Y$; K = 0.005d) $R \rightleftharpoons P$; K = 0.01245. The values of dissociation constant of bases are given below. Which is the weakest base? b) 4.8×10^{-10} a) 1.8×10^{-5} c) 7.2×10^{-11} d) 7.07×10^{-7} 246. The dissociation equilibrium of a gas AB₂ can be represented as : $2AB_2(g) \rightleftharpoons 2AB(g) + B_2(g)$ The degree of dissociation is 'x' and is small compared to 1. The expression relating the degree of dissociation (x) with equilibrium constant K_p and total pressure p is : a) $(2K_p/P)^{1/3}$ b) $(2K_p/P)^{1/2}$ d) $(2K_n/P)$ c) (K_p/P) 247. In which one of the following gaseous equilibria, K_p is less than K_c ? d) $N_2 + O_2 \rightleftharpoons 2NO$ a) $N_2O_4 \rightleftharpoons 2NO_2$ b) $2SO_2 + O_2 \rightleftharpoons 2SO_3$ c) $2HI \rightleftharpoons H_2 + I_2$ 248. K_{sp} for Cr(OH)₃ is 2.7 × 10⁻³¹. What is its solubility in mol/L? a) 1×10^{-8} b) 8×10^{-8} c) 1.1×10^{-8} d) 0.18×10^{-8} 249. N₂O₄ is dissociated to 33% and 40% at total pressure P_1 and P_2 atm respectively. Then the ratio P_1/P_2 is: a) 7/4 b) 7/3 c) 8/3 d) 8/5 250. In the reactions, $A + 2B \rightleftharpoons 2C$, if 2 moles of A, 3.0 moles of B and 2.0 moles of C are placed in a 2 L flask and the equilibrium concentration of C is 0.5 mol/L, the equilibrium constant (K_c) for the reactions is a) 0.21 b) 0.50 c) 0.75 d) 0.025

251 The structure of $(1,000)$ N U_{011} and $(1,000)$		
251. The pH value of $1/1000$ N KOH solution is		
a) 3 b) 10^{-11}	c) 2	d) 11
252. The pH of tears coming out of a person's eye is:		
a) 7.4 b) 6.4	c) 7.0	d) 2.36
253. The solubility of CaF ₂ is 2×10^{-4} mol/L. Its solubi		
a) 2.0×10^{-4} b) 4.0×10^{-3}	c) 8.0×10^{-12}	d) 3.2×10^{-11}
254. The solubility product of a salt having general form	nula MX_2 in water is 4×10^{10}	$)^{-12}$. The concentration of
M ²⁺ ions in the aqueous solution of the salt is		
a) 2.0×10^{-6} M b) 1.0×10^{-4} M	c) 1.6×10^{-4} M	d) 4.0×10^{-10} M
255. The solubility product of barium sulphate is 1		-
a) 1.5×10^{-9} b) 1.5×10^{-5}	c) 3.9×10^{-9}	d) 3.9×10^{-5}
	c) 5.7 × 10	u) 5.7 × 10
256. The strongest Bronsted base is		
a) ClO_3^- b) ClO_2^-	c) ClO ₄	d) ClO-
257. The reaction quotient (Q) at equilibrium is:	、	
a) = 1 b) = K	c) > K	d) < <i>K</i>
258. The concentration of oxalic acid is $'x'$ mol L ⁻¹ .		acts with 16 mL of 0.05 M
acidified KMnO ₄ . What is the pH of $'x'$ M oxoli	c acid solution?	
(Assume that oxalic acid dissociates complete	ly)	
a) 1.3 b) 1.699	c) 1	d) 2
259. Metal ions like Ag ⁺ , Cu ²⁺ etc. act as		
a) Bronsted acids b) Bronsted bases	c) Lewis acids	d) Lewis bases
260. The pK_a of acetylsalicylic acid (aspirin) is 3.5. The		
the pH in the small intestine is about 8. Aspirin wi		
a) Unionised in the small intestine and in the stom		
b) Completely ionised in the small intestine and in		
c) Ionised in the stomach and almost unionised in		
-		
d) Ionised in the small intestine and almost unioni		
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if:	sed in the stomach	
 d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product 	sed in the stomach ct	
 d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product 	sed in the stomach ct ct	
 d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product ≥ solubility product 	sed in the stomach ct ct	
 d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product ≥ solubility product d) None of the above 	sed in the stomach ct ct	
 d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product ≥ solubility product d) None of the above 262. The auto protonation constant of H₂O is: 	sed in the stomach ct ct ct	$d_{1} = 22 \times 10^{-20}$
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product \geq solubility product d) None of the above 262. The auto protonation constant of H ₂ O is: a) 1×10^{-14} b) 3.23×10^{-18}	sed in the stomach ct ct	d) 3.23×10^{-20}
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product \geq solubility product d) None of the above 262. The auto protonation constant of H ₂ O is: a) 1 × 10 ⁻¹⁴ b) 3.23 × 10 ⁻¹⁸ 263. K_c for $m_1A + m_2B = n_1C + n_2D$ is given by:	sed in the stomach ct ct ct c) 1.8×10^{-18}	2
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product \geq solubility product d) None of the above 262. The auto protonation constant of H ₂ O is: a) 1 × 10 ⁻¹⁴ b) 3.23 × 10 ⁻¹⁸ 263. K_c for $m_1A + m_2B = n_1C + n_2D$ is given by:	sed in the stomach ct ct ct c) 1.8×10^{-18}	
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product ≥ solubility product d) None of the above 262. The auto protonation constant of H ₂ O is: a) 1×10^{-14} b) 3.23×10^{-18} 263. K_c for $m_1A + m_2B = n_1C + n_2D$ is given by: a) $K_c = \frac{[A]^{m_1}[B]^{m_2}}{[C] \times [D]}$ b) $K_c = \frac{[A]^{n_1}[B]^{n_2}}{[C]^{m_1}[D]^{m_2}}$	sed in the stomach ct ct ct c) 1.8×10^{-18}	
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product > solubility product d) None of the above 262. The auto protonation constant of H ₂ O is: a) 1×10^{-14} b) 3.23×10^{-18} 263. K_c for $m_1A + m_2B = n_1C + n_2D$ is given by: a) $K_c = \frac{[A]^{m_1}[B]^{m_2}}{[C] \times [D]}$ b) $K_c = \frac{[A]^{n_1}[B]^{n_2}}{[C]^{m_1}[D]^{m_2}}$ 264. The pH of millimolar HCl is	sed in the stomach ct ct c) 1.8×10^{-18} c) $K_c = \frac{[C]^{n_1} [D]^{n_2}}{[A]^{m_1} [B]^{m_2}}$	d) $K_c = \frac{[C]^{m_1} \times [D]^{m_2}}{[A]^{n_1} \times [B]^{n_2}}$
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product ≥ solubility product d) None of the above 262. The auto protonation constant of H ₂ O is: a) 1×10^{-14} b) 3.23×10^{-18} 263. K_c for $m_1A + m_2B = n_1C + n_2D$ is given by: a) $K_c = \frac{[A]^{m_1}[B]^{m_2}}{[C] \times [D]}$ b) $K_c = \frac{[A]^{n_1}[B]^{n_2}}{[C]^{m_1}[D]^{m_2}}$ 264. The pH of millimolar HCl is a) 1 b) 3	sed in the stomach ct ct c) 1.8×10^{-18} c) $K_c = \frac{[C]^{n_1} [D]^{n_2}}{[A]^{m_1} [B]^{m_2}}$ c) 2	d) $K_c = \frac{[C]^{m_1} \times [D]^{m_2}}{[A]^{n_1} \times [B]^{n_2}}$ d) 4
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product > solubility product d) None of the above 262. The auto protonation constant of H ₂ O is: a) 1×10^{-14} b) 3.23×10^{-18} 263. K_c for $m_1A + m_2B = n_1C + n_2D$ is given by: a) $K_c = \frac{[A]^{m_1}[B]^{m_2}}{[C] \times [D]}$ b) $K_c = \frac{[A]^{n_1}[B]^{n_2}}{[C]^{m_1}[D]^{m_2}}$ 264. The pH of millimolar HCl is a) 1 b) 3 265. Partial pressure of <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> on the basis of gas	sed in the stomach ct ct c) 1.8×10^{-18} c) $K_c = \frac{[C]^{n_1} [D]^{n_2}}{[A]^{m_1} [B]^{m_2}}$ c) 2 seous system, $A + 2B \rightleftharpoons C$	d) $K_c = \frac{[C]^{m_1} \times [D]^{m_2}}{[A]^{n_1} \times [B]^{n_2}}$ d) 4 + 3D, are $A = 0.20, B =$
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product > solubility product d) None of the above 262. The auto protonation constant of H ₂ O is: a) 1×10^{-14} b) 3.23×10^{-18} 263. K_c for $m_1A + m_2B = n_1C + n_2D$ is given by: a) $K_c = \frac{[A]^{m_1}[B]^{m_2}}{[C] \times [D]}$ b) $K_c = \frac{[A]^{n_1}[B]^{n_2}}{[C]^{m_1}[D]^{m_2}}$ 264. The pH of millimolar HCl is a) 1 b) 3 265. Partial pressure of <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> on the basis of gas 0.10, <i>C</i> = 0.30 and <i>D</i> = 0.50 atm. The numerical variables	sed in the stomach ct ct c) 1.8×10^{-18} c) $K_c = \frac{[C]^{n_1} [D]^{n_2}}{[A]^{m_1} [B]^{m_2}}$ c) 2 seous system, $A + 2B \rightleftharpoons C$ alue of equilibrium constant	d) $K_c = \frac{[C]^{m_1} \times [D]^{m_2}}{[A]^{n_1} \times [B]^{n_2}}$ d) 4 + 3D, are $A = 0.20, B =$ t is
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product > solubility product d) None of the above 262. The auto protonation constant of H ₂ O is: a) 1×10^{-14} b) 3.23×10^{-18} 263. K_c for $m_1A + m_2B = n_1C + n_2D$ is given by: a) $K_c = \frac{[A]^{m_1}[B]^{m_2}}{[C] \times [D]}$ b) $K_c = \frac{[A]^{n_1}[B]^{n_2}}{[C]^{m_1}[D]^{m_2}}$ 264. The pH of millimolar HCl is a) 1 b) 3 265. Partial pressure of <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> on the basis of gas 0.10, <i>C</i> = 0.30 and <i>D</i> = 0.50 atm. The numerical variation of a solution of the sol	sed in the stomach ct ct ct c) 1.8×10^{-18} c) $K_c = \frac{[C]^{n_1} [D]^{n_2}}{[A]^{m_1} [B]^{m_2}}$ c) 2 seous system, $A + 2B \rightleftharpoons C$ alue of equilibrium constant c) 17.85	d) $K_c = \frac{[C]^{m_1} \times [D]^{m_2}}{[A]^{n_1} \times [B]^{n_2}}$ d) 4 + 3D, are $A = 0.20, B =$ t is d) 15.87
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product > solubility product d) None of the above 262. The auto protonation constant of H ₂ O is: a) 1×10^{-14} b) 3.23×10^{-18} 263. K_c for $m_1A + m_2B = n_1C + n_2D$ is given by: a) $K_c = \frac{[A]^{m_1}[B]^{m_2}}{[C] \times [D]}$ b) $K_c = \frac{[A]^{n_1}[B]^{n_2}}{[C]^{m_1}[D]^{m_2}}$ 264. The pH of millimolar HCl is a) 1 b) 3 265. Partial pressure of <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> on the basis of gas 0.10, <i>C</i> = 0.30 and <i>D</i> = 0.50 atm. The numerical var a) 3.75 b) 18.75 266. Which equilibrium can be described as Lewis acid	sed in the stomach ct ct ct c) 1.8×10^{-18} c) $K_c = \frac{[C]^{n_1} [D]^{n_2}}{[A]^{m_1} [B]^{m_2}}$ c) 2 seous system, $A + 2B \rightleftharpoons C$ alue of equilibrium constant c) 17.85	d) $K_c = \frac{[C]^{m_1} \times [D]^{m_2}}{[A]^{n_1} \times [B]^{n_2}}$ d) 4 + 3D, are $A = 0.20, B =$ t is d) 15.87
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product > solubility product d) None of the above 262. The auto protonation constant of H ₂ O is: a) 1×10^{-14} b) 3.23×10^{-18} 263. K_c for $m_1A + m_2B = n_1C + n_2D$ is given by: a) $K_c = \frac{[A]^{m_1}[B]^{m_2}}{[C] \times [D]}$ b) $K_c = \frac{[A]^{n_1}[B]^{n_2}}{[C]^{m_1}[D]^{m_2}}$ 264. The pH of millimolar HCl is a) 1 b) 3 265. Partial pressure of A, B, C and D on the basis of ga 0.10, $C = 0.30$ and $D = 0.50$ atm. The numerical va a) 3.75 b) 18.75 266. Which equilibrium can be described as Lewis acid a) $H_2O + CH_3COOH \rightleftharpoons H_3O^+ + CH_3COO^-$	sed in the stomach ct ct ct c) 1.8×10^{-18} c) $K_c = \frac{[C]^{n_1} [D]^{n_2}}{[A]^{m_1} [B]^{m_2}}$ c) 2 seous system, $A + 2B \rightleftharpoons C$ alue of equilibrium constant c) 17.85	d) $K_c = \frac{[C]^{m_1} \times [D]^{m_2}}{[A]^{n_1} \times [B]^{n_2}}$ d) 4 + 3D, are $A = 0.20, B =$ t is d) 15.87
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product \geq solubility product d) None of the above 262. The auto protonation constant of H ₂ O is: a) 1×10^{-14} b) 3.23×10^{-18} 263. K_c for $m_1A + m_2B = n_1C + n_2D$ is given by: a) $K_c = \frac{[A]^{m_1}[B]^{m_2}}{[C] \times [D]}$ b) $K_c = \frac{[A]^{n_1}[B]^{n_2}}{[C]^{m_1}[D]^{m_2}}$ 264. The pH of millimolar HCl is a) 1 b) 3 265. Partial pressure of A, B, C and D on the basis of gas 0.10, $C = 0.30$ and $D = 0.50$ atm. The numerical variation is and the solution of the solution of the solution of the solution is and the solution of the solution is and the solution of	sed in the stomach ct ct ct c) 1.8×10^{-18} c) $K_c = \frac{[C]^{n_1} [D]^{n_2}}{[A]^{m_1} [B]^{m_2}}$ c) 2 seous system, $A + 2B \rightleftharpoons C$ alue of equilibrium constant c) 17.85	d) $K_c = \frac{[C]^{m_1} \times [D]^{m_2}}{[A]^{n_1} \times [B]^{n_2}}$ d) 4 + 3D, are $A = 0.20, B =$ t is d) 15.87
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product \geq solubility product d) None of the above 262. The auto protonation constant of H ₂ O is: a) 1×10^{-14} b) 3.23×10^{-18} 263. K_c for $m_1A + m_2B = n_1C + n_2D$ is given by: a) $K_c = \frac{[A]^{m_1}[B]^{m_2}}{[C] \times [D]}$ b) $K_c = \frac{[A]^{n_1}[B]^{n_2}}{[C]^{m_1}[D]^{m_2}}$ 264. The pH of millimolar HCl is a) 1 b) 3 265. Partial pressure of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of B, C and A, B, C and D on the basis of B, C and A, B, C and D on the basis of B, C and A, B, C and D on the basis of B, C and A, B, C and B, C	sed in the stomach ct ct c) 1.8×10^{-18} c) $K_c = \frac{[C]^{n_1} [D]^{n_2}}{[A]^{m_1} [B]^{m_2}}$ c) 2 seous system, $A + 2B \rightleftharpoons C$ alue of equilibrium constant c) 17.85 -base reaction but not Brom	d) $K_c = \frac{[C]^{m_1} \times [D]^{m_2}}{[A]^{n_1} \times [B]^{n_2}}$ d) 4 + 3D, are $A = 0.20, B =$ t is d) 15.87
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product ≥ solubility product c) Ionic concentration product ≥ solubility product d) None of the above 262. The auto protonation constant of H ₂ O is: a) 1×10^{-14} b) 3.23×10^{-18} 263. K_c for $m_1A + m_2B = n_1C + n_2D$ is given by: a) $K_c = \frac{[A]^{m_1}[B]^{m_2}}{[C] \times [D]}$ b) $K_c = \frac{[A]^{n_1}[B]^{n_2}}{[C]^{m_1}[D]^{m_2}}$ 264. The pH of millimolar HCl is a) 1 b) 3 265. Partial pressure of <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> on the basis of ga 0.10, <i>C</i> = 0.30 and <i>D</i> = 0.50 atm. The numerical va a) 3.75 b) 18.75 266. Which equilibrium can be described as Lewis acid a) $H_2O + CH_3COOH \rightleftharpoons H_3O^+ + CH_3COO^-$ b) $2NH_3 + H_2SO_4 \rightleftharpoons 2NH_4^+ + SO_4^{2^-}$ c) $NH_3 + CH_3COOH \rightleftharpoons NH_4^+ + CH_3COO^-$ d) $[Cu(H_2O)_4]^{2^+} + 4NH_3 \rightleftharpoons [Cu(NH_3)_4]^{2^+} + 4H_2O$	sed in the stomach ct ct ct c) 1.8×10^{-18} c) $K_c = \frac{[C]^{n_1} [D]^{n_2}}{[A]^{m_1} [B]^{m_2}}$ c) 2 seous system, $A + 2B \rightleftharpoons C$ alue of equilibrium constant c) 17.85 -base reaction but not Brom	d) $K_c = \frac{[C]^{m_1} \times [D]^{m_2}}{[A]^{n_1} \times [B]^{n_2}}$ d) 4 + 3D, are $A = 0.20, B =$ t is d) 15.87
d) Ionised in the small intestine and almost unioni 261. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product \geq solubility product d) None of the above 262. The auto protonation constant of H ₂ O is: a) 1×10^{-14} b) 3.23×10^{-18} 263. K_c for $m_1A + m_2B = n_1C + n_2D$ is given by: a) $K_c = \frac{[A]^{m_1}[B]^{m_2}}{[C] \times [D]}$ b) $K_c = \frac{[A]^{n_1}[B]^{n_2}}{[C]^{m_1}[D]^{m_2}}$ 264. The pH of millimolar HCl is a) 1 b) 3 265. Partial pressure of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of gators of A, B, C and D on the basis of B, C and A, B, C and D on the basis of B, C and A, B, C and D on the basis of B, C and A, B, C and D on the basis of B, C and A, B, C and B, C	sed in the stomach ct ct ct c) 1.8×10^{-18} c) $K_c = \frac{[C]^{n_1} [D]^{n_2}}{[A]^{m_1} [B]^{m_2}}$ c) 2 seous system, $A + 2B \rightleftharpoons C$ alue of equilibrium constant c) 17.85 -base reaction but not Brom	d) $K_c = \frac{[C]^{m_1} \times [D]^{m_2}}{[A]^{n_1} \times [B]^{n_2}}$ d) 4 + 3D, are $A = 0.20, B =$ t is d) 15.87

a) Common ion effect

c) Conc. of Cl⁻ increases to precipitate both

d) Redox change

- 268. The species which acts as a Lewis but not a Bronsted acid is
 - b) 0^{2-} d) 0H⁻ a) NH_{2}^{-} c) BF_3

269. What is the best description of the change that occurs when $Na_2O(s)$ is dissolved in water?

- a) Oxidation number of sodium decreases
- b) Oxide ion accepts sharing in a pair of electrons
- c) Oxide ion donates a pair of electrons
- d) Oxidation number of oxygen increases
- 270. pH of 0.005 M calcium acetate is

 $(pK_a of CH_3 COOH = 4.74)$

b) 9.37 c) 9.26 d) 8.2195 271. Relation between hydrolysis constant and dissociation constant are given. Which is the correct

a)
$$K_h = \frac{K_w}{K_a}$$
 b) $K_h = \frac{K_w}{K_b}$ c) $K_h = \frac{K_w}{K_a \times K_b}$ d) $K_w = \frac{K_h}{K_b}$

272. Theory's 'active mass' indicates that the rate of chemical reaction is directly proportional to the

- a) Equilibrium constant
- c) Properties of reactants
- b) Volume of apparatus d) Concentration of reactants
- 273. In which of the following reactions, the value of K_p will be equal to K_c ?
- a) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ b) $2NH_3 \rightleftharpoons N_2 + 3H_2$ c) $H_2 + I_2 \rightleftharpoons 2HI$ d) $2SO_2 + O_2 \rightleftharpoons 2SO_3$ 274. In the hydrolysis of a salt of weak acid and weak base, the hydrolysis constant K_h is equal to

a)
$$\frac{K_w}{K_b}$$
 b) $\frac{K_w}{K_a}$ c) $\frac{K_w}{K_a.K_b}$ d) $K_a.K_b$

275. In which reaction ammonia acts as an acid?

a) $NH_3 + HCl \rightarrow NH_4Cl$

- b) $NH_3 + H^+ \rightarrow NH_4^+$
- c) $NH_3 + Na \rightarrow NaNH_2 + \frac{1}{2}H_2$
- d) NH₃ cannot act as an acid
- 276. The compounds *A* and *B* are mixed in equimolar proportion to form the products, $A + B \rightleftharpoons C + D$. At equilibrium, one third of A and B are consumed. The equilibrium constant for the reaction is b) 4.0 a) 0.5 c) 2.5 d) 0.25

277. 40% of a mixture of 0.2 mole of N₂ and 0.6 mole of H₂ react to give NH₃ according to the equation, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ at constant temperature and pressure. Then the ratio of the final volume to the initial volume of gases is :

b) 5:4 c) 7:10 a) 4 : 5 d) 8 : 5 278. An aqueous solution contains a substance which yields 4×10^{-3} mol litre⁻¹ ion of H₃O⁺. If log 2 = 0.3010, the pH of the solution is:

a) 1.5 b) 2.398 c) 3.0 d) 3.4 279. For preparing a buffer solution of pH 6 by mixing sodium acetate and acetic acid, the ration of concentration of salt and acid ($K_a = 10^{-5}$) should be:

a) 1:10	b) 10 : 1	c) 100 : 1	d) 1 : 100
280. The concentration	n of hydrogen ion [H+] and J	oH in 10 <i>M</i> HCl is:	

a) 10¹, zero b) 10¹,−1 c) 10^2 , 1 d) 10¹, 1 281. Solubility product of Mg(OH)₂ at ordinary temperature is 1.96×10^{-11} . pH of a saturated solution

of $Mg(OH)_2$ will be

c) 6.94 a) 10.53 b) 8.47 d) 3.47 282. For the reaction $H_2 + I_2 \rightleftharpoons 2HI$: a) $K_c = 2K_p$ b) $K_c > K_p$ c) $K_c = K_p$ d) $K_c < K_p$ 283. When CaCO₃ is heated at a constant temperature in a closed container, the pressure due to CO₂ produced will: a) Change with the amount of CaCO₃ taken b) Change with the size of the container c) Remain constant so long as temperature is constant d) Remain constant even if temperature is changed 284. Four species are listed below IV. HCO₃ V. H₃0⁺ VI. HSO₄ VII.HSO₃F Which one of the following is the correct sequence of their acid strength? b) (ii) < (iii) < (i) < (iv) a) (iv) < (ii) < (iii) < (i)c) (i) < (iii) < (ii) < (iv) d) (iii) < (i) < (iv) < (ii) 285. 1 dm³ solution containing 10⁵ moles each of Cl ions and CrO₄² ions is treated with 10⁴ moles of silver nitrate. Which one of the following observation is made? $\begin{bmatrix} K_{\rm sp} A g_2 Cr O_4 & 4 & 10^{12} \end{bmatrix} \\ \begin{bmatrix} K_{\rm sp} A g Cl & 1 & 10^{10} \end{bmatrix}$ a) Precipitation does not occur b) Silver chromate gets precipitated first c) Silver chloride gets precipitated first d) Both silver chromate and silver chloride start precipitating simultaneously 286. Which is a basic salt? a) PbS b) $PbCO_3$ c) PbSO₄ d) $2PbCO_3Pb(OH)_2$ 287. A reversible reaction, $H_2 + Cl_2 \rightleftharpoons 2HCl$ is carried out in one litre flask. If the same reaction is carried out in two litre flask, the equilibrium constant will be: b) Decreased a) Doubled c) Halved d) Same 288. In the system, $CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$, increasing the concentration of Ca^{2+} ions 4 times will cause the equilibrium concentration of F⁻ ions to change to : a) ¹/₄ of the initial value b) ½ of the initial value c) 2 times of the initial value d) None of the above 289. Hydrogen ion concentration in mol/L in a solution of pH = 5.4 will be b) 3.88 × 10⁶ a) 3.98×10^8 c) 3.68×10^{-6} d) 3.98×10^{-6} 290. The strongest conjugate base is a) NO_{3}^{-} c) SO_4^{2-} d) CH₃COO⁻ b) Cl⁻ 291. In the reaction $I_2 + I^- = I_3^-$, the Lewis base is: a) I₂ b) I⁻ c) $I_3^$ d) None of these 292. HI was heated in a sealed tube at 440°C till the equilibrium was reached, HI was found to be 22% decomposed. The equilibrium constant for dissociation is : a) 0.282 b) 0.0796 c) 0.0199 d) 1.99 293. Which one is amphoteric oxide? d) Na_20 a) SO_2 b) $B_2 O_3$ c) ZnO 294. For which reaction K_p is less than K_c ? a) $N_2O_4 \rightleftharpoons 2NO_2$ b) $2HI \rightleftharpoons H_2 + I_2$ c) $2SO_2 + O_2 \rightleftharpoons 2SO_3$ d) $N_2 + O_2 \rightleftharpoons 2NO$

	$H_2(g) + CO_2(g) \rightleftharpoons CO(g) + H_1$ is consumed at equilibrium		
a) $\frac{x^2}{(1-x)^2}$	b) $\frac{x^2}{(2+x)^2}$	c) $\frac{x^2}{1-x^3}$	d) $\frac{(1+x)^2}{(1-x)^2}$
296. In the given react	tion,		
2X(g) + Y(g)	$(g) \rightleftharpoons 2Z(g) + 80$ kcal,		
Which combinati	on of pressure and temper	rature will give the highe	st yield of Z at equilibrium?
a) 1000 atm and		b) 500 atm and 500	
c) 1000 atm and		d) 500 atm and 100	
			. Which one of the solutions will
record the highest		epureu in water separatery.	which one of the solutions whi
a) BaCl ₂	b) MgCl ₂	c) CaCl ₂	d) SrCl ₂
298. Which is not corre	, , ,		
	least one vacant orbital		
	dency to accept electrons		
	has greater acidic strength		
-	he strength of acid is inverse	ely proportional to its charg	e
	_		centage dissociation of N_2O_4 at
this temperature?			
a) 46.5%	b) 36.2%	c) 53.3%	d) 64.2%
300. For which reaction	$K_p \neq K_c$?		
a) $2NO_2(g) \rightleftharpoons N_2(g)$	$) + 0_2(g)$		
b) $SO_2(g) + NO_2(g)$	$\Rightarrow SO_3(g) + NO(g)$		
c) $I_2(g) + H_2(g) \rightleftharpoons$	2HI(g)		
d) $2C(s) + O_2(g) - O_2(g) -$	→2CO(g)		
301. A buffer mixture o	f acetic acid and potassium	acetate has $pH = 5.24$. The	ratio of [CH ₃ COO ⁻]/[CH ₃ COOH]
in this buffer is, (p			
a) 3 : 1	b) 1 : 3	,	d) 1 : 2
	l is 4.74. The concentration		
a) 3.37	b) 4.37	c) 4.74	d) 0.474
303. If 1 <i>M</i> CH ₃ COONa i	s added to 1 M CH ₃ COOH:		
a) pH of the solution	on increases		
b) pH decreases			
c) pH does not cha	•		
d) None of the abo			2
$\frac{304}{5}$ 2.5 mL of $\frac{2}{5}$ M we	ak monoacidic base (K_b =	$= 1 \times 10^{-12}$ at 25°C) is tit	rated with $\frac{2}{15}$ M HCl in water
	entration of H ⁺ at equival		15
$(K_w = 1 \times 10^{-14})$			
	b) 3.2×10^{-7} M	c) 3.2×10^{-2} M	d) 2.7×10^{-2} M
		-	the concentration of A^+ ions
• •	It will precipitate when the		
		b) Between 10^{-7} M	-
a) Between 10^{-8}		-	10 10 ° M
c) > 10^{-5} M		d) < 10^{-8} M	
			arried in a closed vessel, the
	entration of the C_2H_6 can		
a) Increasing to	emperature and decre	easingb) Decreasing temp	perature and increasing
pressure		pressure	
c) Increasing tem	perature and pressure bo	th d) Decreasing temp	perature and pressure only

- 307. Chemical equilibrium is dynamic in nature because:
 - a) The equilibrium is maintained rapidly
 - b) The concentration of reactants and products become same at equilibrium
 - c) The concentration of reactants and products decrease with time
 - d) Both forward and backward reactions occur at all times with same speed
- 308. What happens to the yield on application of high pressure in the Haber's synthesis of ammonia?

a) Increases b) Decreases c) Unaffected d) Reaction stops

- 309. The buffering action of an acidic buffer is maximum when its pH is equal to
 - a) 5 b) 7 c) 1 d) pK_a
- 310. HA is a weak acid. The pH of 0.1 M HA solution is 2. What is the degree of dissociation (α) of HA?a) 0.5b) 0.2c) 0.1d) 0.301
- 311. Which of the following is a wrong statement about equilibrium state?
 - a) Rate of forward reaction= Rate of backward reaction
 - b) Equilibrium is dynamic
 - c) Catalysts increase value of equilibrium constant
 - d) Free energy change is zero
- 312. In an experiment to determine the enthalpy of neutralization of sodium hydroxide with sulphuric acid, 50 cm³ of 0.4 *M* sodium hydroxide were titrated thermometrically with 0.25 *M* sulphuric acid. Which of the following plots gives the correct representation?

313. H^+ ion produces common ion effect in the wet analysis of:

a) Group I metals b) Group II metals c) Group III metals d) Group IV metals 314. 15 moles of H_2 and 5.2 moles of I_2 are mixed and allowed to attain equilibrium at 500°C. At

equilibrium, the co	ncentration of HI is found t	to be 10 moles. The equili	brium constant for the
formation of HI is			
a) 50	b) 15	c) 100	d) 25
315. $10^{-6}M$ HCl is diluted	to 100 times. Its pH is:		
a) 6.0	b) 8.0	c) 6.95	d) 9.5
316. For the reaction, PCl	$_{3}(g) + Cl_{2}(g) \rightleftharpoons PCl_{5}(g)$, the p	oosition of equilibrium can	pe shifted to the right by
a) Doubling the volu	me		
b) Increasing the ten	iperature		
c) Addition of Cl ₂ at	constant volume		
d) Addition of equim	olar quantities of PCl ₃ and PC	l ₅	
317. The pH of an aqueo	ous solution containing [H ⁺] concentration $= 3.0 \times 1$	0^{-3} M. The pH of the
solution is		-	-
a) 2.523	b) 3.0	c) 2.471	d) None of these
	h salt will decrease the H ⁺ co		
a) NH ₄ Cl	b) $Al_2(SO_4)_3$	c) AgNO ₃	d) NaCN
	n obtained by mixing 10 mL of	,	-
a) 8	b) 2	c) 7	d) None of these
	uct of PbCl ₂ is 2.3×10^{-32} .	,	uj None of these
	b) 2.95×10^{-9} g/L	-	d) $4.05 \times 10^{-9} \sigma/I$
•		•,	
	y soluble in water and gives a	a colourless solution with a	pH of about 9. The salt would
be:	b) CU COON-		d) C=CO
	b) CH ₃ COONa		
	stant of NH ₄ OH is 1.8×10^{-5} .		
a) 1.8×10^{-19}	2	c) 5.55×10^{-5}	d) 5.55×10^{-10}
—	ded to 50 mL of 1×10^{-3} l	M barium hydroxide solu	tion. What is the pH of the
resulting solution?			
a) 3.0	b) 3.3	c) 11.0	d) 11.7
324. The indicator used in	n titration of oxalic acid with o	caustic soda solution is	
, , ,	b) Methyl red		d) Phenolphthalein
	t equilibrium some I ₂ is addee		
	right b) It gets shifted to the	, , , , , , , , , , , , , , , , , , , ,	d d) None of the above
	ng is a characteristic of a reve	rsible reaction?	
a) It can never proce	-		
b) It can be influence			
-	of reactants and products are	equal	
d) None of the above			
-	of hydrogen sulphide shows	the equilibrium,	
	$S \rightleftharpoons H^+ + HS^-$		
=	c acid is added to an aqueou	is solution of hydrogen sul	phide without any change in
temperature, then:			
a) The equilibrium c	_		
	of HS ⁻ will increase		
	of undissociated hydrogen s	ulphide will decrease	
	of HS ⁻ will decreases		
328. Le-Chatelier's princip			
a) Homogeneous rea			
b) Heterogeneous re			
c) Homogeneous or	heterogeneous systems in equ	liiidrium	

- c) Homogeneous or heterogeneous systems in equilibrium
- d) Systems not in equilibrium

329. If p K_a values of four	acids are given below at	25°C, the strongest ac	cid is
a) 2.0	b) 2.5	c) 3.0	d) 4.0
330. Weakest base among	-		
a) NaOH	b) Ca(OH) ₂	c) Zn(0H) ₂	d) KOH
331. A solution of pH 9.0 is	one thousand times as bas	sic as a solution of pH:	
a) 6	b) 7	c) 4	d) 10
332. Aprotic solvent is:			
a) CCl ₄	b) C ₆ H ₆	c) SO ₂	d) All of these
333. The hydroxide with h	• • •		
a) Al(OH) ₃	b) Co(OH) ₂	c) Cr(OH) ₃	d) $Fe(OH)_3$
	nation of complex ions by t	the addition of a commo	n ion, the solubility of a given salt
is:			
a) Increased			
b) Decreased			
c) Unaffectedd) First increased and	then decreased		
335. The pH of 0.1 <i>M</i> NaHS		1.3×10^{-7} and 7.1×10^{-7}) ⁻¹⁵ respectively.
a) 10.52	b) 9.52	c) 12.52	d) 13.52
$336. A + B \rightleftharpoons C + D$	0) 9.32	CJ 12.52	uj 13.32
	and P are equal At equili	hrium moloc of Caro	three times that of <i>A</i> . the
	it of the reaction will be		three times that of A. the
-	b) 3	c) 4	d) 9
a) 1 227 The strongest acid am		04	u) 9
337. The strongest acid am a) $ClO_3(OH)$	long the following is:		
b) $ClO_2(OH)$			
c) SO(OH ₂)			
d) $SO_2(OH)_2$			
338. The equilibrium const	ant in a reversible reaction	n at a given temperature	
=	n the initial concentrations	0 1	
	tial concentrations of the re	eactants	
c) Depends on the cor	ncentration of the products	at equilibrium	
d) It is not characteris	stic of the reaction		
339. For the reaction, H_2	$I_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ at 7	720 K, the value of ed	quilibrium constant is 50, when
equilibrium concentra	ation of both H_2 and I_2 is 0.	5 $M. K_p$ under the same	conditions will be :
a) 0.02	b) 0.2	c) 50	d) 50 <i>RT</i>
340. If 340 g of a mixture of	of N_2 and H_2 in the correct	ratio gave a 20% yield	of NH ₃ . The mass produced would
be :			
a) 16 g	b) 17 g	c) 20 g	d) 68 g
341. The conjugate acid of	0	, ,	
	-		
a) H ₂ O	b) H ₂ CO ₃	c) OH ⁻	d) HCO_3^-
342. Calculate the partial	b) H ₂ CO ₃ pressure of carbon mon	c) OH ⁻	, ,
342. Calculate the partial	b) H ₂ CO ₃ pressure of carbon mon	c) OH ⁻	, ,
342. Calculate the partial CaCO ₃ C $\xrightarrow{\Delta}$ CaO(g) +	b) H_2CO_3 pressure of carbon mon - $CO_2 \uparrow K_p = 8 \times 10^{-2}$	c) OH ⁻	, ,
342. Calculate the partial $CaCO_3C \xrightarrow{\Delta} CaO(g) + O_2(g) + C(s) \rightarrow 2CC$	b) H_2CO_3 pressure of carbon mon - $CO_2 \uparrow K_p = 8 \times 10^{-2}$ O(g), $K_p = 2$	c) OH [–] oxide from the followi	ng datas
342. Calculate the partial $CaCO_{3}C \xrightarrow{\Delta} CaO(g) + O_{2}(g) + C(s) \rightarrow 2CC$ a) 0.2	b) H_2CO_3 pressure of carbon mon - $CO_2 \uparrow K_p = 8 \times 10^{-2}$ O(g), $K_p = 2$ b) 0.4	c) OH [–] oxide from the followi c) 1.6	ng datas d) 4
342. Calculate the partial $CaCO_3C \xrightarrow{\Delta} CaO(g) + O_2(g) + C(s) \rightarrow 2CC$ a) 0.2 343. In aqueous solution,	b) H_2CO_3 pressure of carbon mon $-CO_2 \uparrow K_p = 8 \times 10^{-2}$ (g), $K_p = 2$ b) 0.4 , the ionisation constants	c) OH [–] oxide from the followi c) 1.6	ng datas d) 4
342. Calculate the partial $CaCO_3C \xrightarrow{\Delta} CaO(g) + O_2(g) + C(s) \rightarrow 2CO$ a) 0.2 343. In aqueous solution $K_1 = 4.2 \times 10^{-7}$	b) H_2CO_3 pressure of carbon mon - $CO_2 \uparrow K_p = 8 \times 10^{-2}$ O(g), $K_p = 2$ b) 0.4 , the ionisation constants and $K_2 = 4.8 \times 10^{-11}$	c) OH [–] oxide from the followi c) 1.6 for carbonic acid are,	ng datas d) 4
342. Calculate the partial $CaCO_3C \xrightarrow{\Delta} CaO(g) + O_2(g) + C(s) \rightarrow 2CC$ a) 0.2 343. In aqueous solution $K_1 = 4.2 \times 10^{-7}$ a Select the correct st	b) H_2CO_3 pressure of carbon mon $-CO_2 \uparrow K_p = 8 \times 10^{-2}$ (g), $K_p = 2$ b) 0.4 , the ionisation constants	c) OH [−] oxide from the followi c) 1.6 for carbonic acid are,).034 M solution of the	ng datas d) 4

of HCO₃

c) The concentration of H^+ and HCO_3^- are approximately equal

356. Ammonium carbonate decomposes as

The concentration of H^+ is double that of d) CO_3^{2-}

344. The rapid change of pH near the stoichiometric point of an acid base titration is the basis of indicator detection. pH of the solution is related to the ratio of the concentration of the conjugate acid (HIn) and base (In⁻) forms of the indicator given by the expression

a)
$$\log \frac{[\ln^{-1}]}{[\ln n]} = pK_{1n} - pH$$

c) $\log \frac{[Hn]}{[Hn]} = pH_{-}pK_{1n}$
d) $\log \frac{[In^{-1}]}{[Inn]} = pH - pK_{1n}$
d) $\log \frac{[Inn]}{[Inn]} = pH - pK_{1n}$
d) $\log \log \frac{[Inn]}{[Inn]} = pH - pK_{1n}$
d) $\log \log \log \log \frac{[Inn]}{[Inn]} = pH - pK_{1n}$
d) $\log \log \log \log \log \frac{[Inn]}{[Inn]} = pH - pK_{1n}$
d) $\log \frac{[Inn]}{Inn} = pH - pK_{1n}$
d) $\log \frac{[Inn]}{Inn}$
d) $\log \frac{[Inn]}{Inn}$

 $NH_2COONH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$ For the reaction, $K_p = 2.9 \times 10^{-5}$ atm⁻³. If we start with 1 mole of the compound, the total pressure at equilibrium would be a) 0.0766 atm b) 0.0582 atm d) 0.0194 atm c) 0.388 atm 357. Ionic product of water increases if b) H⁺ is added a) Pressure is reduced c) OH⁻ is added d) Temperature increase 358. In which of the following reactions, increases in the volume at constant temperature do not affect the number of moles at equilibrium? b) $C(s) + \frac{1}{2}O_2(g) \to CO(g)$ a) $2NH_3 \rightleftharpoons N_2 + 3H_2$ c) $H_2(g) + O_2(g) \rightarrow H_2O_2(g)$ d) None of the above 359. Which one of the following is least likely to act as a Lewis base? a) I+ d) PCl₃ b) I c) SCl_2 360. An aqueous solution of ammonium acetate is: a) Faintly acidic b) Fair acidic c) Faintly alkaline d) Almost neutral 361. The strongest Lewis base in the following is c) $NH_2^$ d) 0H⁻ a) CH₃ b) F⁻ 362. For anionic hydrolysis, pH is given by a) pH = $\frac{1}{2}$ pK_w - $\frac{1}{2}$ pK_b - $\frac{1}{2}$ log C b) pH = $\frac{1}{2}$ pK_w + $\frac{1}{2}$ pK_a - $\frac{1}{2}$ pK_b d) pH = $-\frac{1}{2}(pK_w - pK_a - pK_b)$ c) pH = $\frac{1}{2}$ pK_w + $\frac{1}{2}$ pK_a + $\frac{1}{2}$ log C 363. Which of the following is a conjugated acid-base pair? c) H_2SO_4 , $HSO_4^$ b) NH₄Cl, NH₄OH d) KCN, HCN a) HCl, NaOH 364. In the hydrolytic equilibrium, $A^- + H_2 0 \rightleftharpoons HA + OH^ K_a = 1.0 \times 10^{-5}$. The degree of hydrolysis of 0.001 *M* solution of the salt is: b) 10⁻⁴ a) 10^{-3} c) 10⁻⁵ d) 10⁻⁶ 365. The equilibrium constant (K_c) for the reaction, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ at room temperature *T* is 4 × 10⁻⁴. The value of K_c for NO(g) $\Rightarrow \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ at the same T is : a) 0.02 b) 50 c) 4×10^{-4} d) 2.5×10^{-2} 366. For the reaction. $CuSO_4 \cdot 5H_2O(s) \rightleftharpoons CuSO_4 \cdot 3H_2O(s) + 2H_2O(v)$ which one is correct representation? a) $K_n = (P_{H_2O})^2$ b) $K_c = [H_2 0]^2$ d) All of these c) $K_p = K_c (RT)^2$ 367. The correct order of increasing $[H_3O^+]$ in the following aqueous solutions is: a) $0.01 M H_2 S < 0.01 M H_2 SO_4 < 0.01 M NaCl < 0.01 M NaNO_2$ b) 0.01 *M* NaCl < 0.01 *M* NaNO₂ < 0.01 *M* H₂S < 0.01 *M* H₂SO₄ c) $0.01 M \text{ NaNO}_2 < 0.01 M \text{ NaCl} < 0.01 M \text{ H}_2\text{S} < 0.01 M \text{ H}_2\text{SO}_4$ d) 0.01 *M* $H_2S < 0.01 M NaNO_2 < 0.01 M NaCl < 0.01 M H_2SO_4$ 368. K_C for $A + B \rightleftharpoons C + D$ is 10 at 25°C. If a container contains 1, 2, 3 and 4 mole per litre of A, B, C and D respectively at 25°C, the reaction shall: a) Proceed from left to right b) Proceed from right to left c) Be at equilibrium d) None of the above 369. The compound whose 0.1 M solution is basic is a) Ammonium acetate b) Ammonium chloride d) Sodium acetate c) Ammonium sulphate 370. Isoelectric point is defined as the pH at which:

a) An amino acid becomes acidicb) An amino acid becomes basic		
c) Zwitter ion has positive charge		
d) Zwitter ion has zero charge		
371. The equilibrium constant of a reaction is 300). If the volume of reaction	flask is tripled, the
equilibrium constant is		
a) 300 b) 600	c) 900	d) 100
372. The oxoacid of SO_2 is:		
_	c) $H_2S_2O_8$	d) None of these
373. The solubility of CaF ₂ in pure water is 2.3 \times		-
a) 4.8×10^{-18} b) 48.66×10^{-18}		
374. pH value of which one of the following is not	-	,
a) 0.1 M HNO ₃	b) 0.05 M H ₂ SO ₄	
c) 0.1 M CH ₃ COOH		l + 50 cm ³ of 0.2 M NaOH
375. 50 mL of 2 N acetic mixed with 10 mL of $1N$ s		
$(K_a = 10^{-5})$:	Southin accure solution wi	in have an approximate pri of
a) 4 b) 5	c) 6	d) 7
376. The solubility of AgCl in 0.2 M NaCl is	-) -	
$(K_{sp} \text{ of AgCl} = 1.8 \times 10^{-10})$		
a) 1.8×10^{-11} M b) 9×10^{-10} M	c) $6.5 \times 10^{-12} \text{ M}$	d) 5.6 \times 10 ⁻¹¹ M
377. The dissociation of water at 25°C is 1.9×10^{-10}	-	•
ionisation constant of water is:	percent and the densit	y of water is 1.0 g/cm . The
	c) 1.00×10^{-14}	d) 2.00×10^{-16}
$378. N_2 + 3H_2 \rightleftharpoons 2NH_3 + heat. What is the effect$,	,
the reaction?	of the mercase of tempere	ture on the equilibrium of
a) Equilibrium is shifted to the left	b) Equilibrium is shif	ted to the right
c) Equilibrium is unaltered	d) Reaction rate does	-
•	u) Reaction rate uses	not change
270 The overcesion for the colubility product of	Ag CO will be	
379. The expression for the solubility product of A		W = 2
a) $K_{sp} s^2$ b) $K_{sp} 4s^3$	c) K_{sp} 27 s^4	d) <i>K_{sp} s</i>
a) K_{sp} s ² b) K_{sp} 4s ³ 380. The solubility of AgCl in 0.2 M NaCl solution	c) K_{sp} 27 s^4	d) <i>K_{sp} s</i>
a) K_{sp} s ² b) K_{sp} 4s ³ 380. The solubility of AgCl in 0.2 M NaCl solution [K_{sp} of AgCl 1.2 10 ¹⁰]	c) <i>K_{sp}</i> 27 <i>s</i> ⁴ is	
a) K_{sp} s ² b) K_{sp} 4s ³ 380. The solubility of AgCl in 0.2 M NaCl solution	c) K_{sp} 27 s^4	d) <i>K_{sp} s</i> d) 0.2 10 ¹⁰ M
a) K_{sp} s ² b) K_{sp} 4s ³ 380. The solubility of AgCl in 0.2 M NaCl solution $[K_{sp} \text{ of AgCl} 1.2 10^{10}]$ a) 6.0 10 ¹⁰ M b) 0.2 M 381. Which of the following will not function as a buff	c) K_{sp} 27 s^4 is c) 1.2 10 ¹⁰ M	
a) K_{sp} s ² b) K_{sp} 4s ³ 380. The solubility of AgCl in 0.2 M NaCl solution $[K_{sp} \text{ of AgCl } 1.2 10^{10}]$ a) 6.0 10 ¹⁰ M b) 0.2 M 381. Which of the following will not function as a buff (i) NaCl and NaOH	c) K_{sp} 27 s^4 is c) 1.2 10 ¹⁰ M	
a) $K_{sp} s^2$ b) $K_{sp} 4s^3$ 380. The solubility of AgCl in 0.2 M NaCl solution $[K_{sp} \text{ of AgCl} 1.2 10^{10}]$ a) 6.0 10 ¹⁰ M b) 0.2 M 381. Which of the following will not function as a buff (i) NaCl and NaOH (ii) NaOH and NH ₄ OH	c) K_{sp} 27 s^4 is c) 1.2 10 ¹⁰ M	
a) $K_{sp} s^2$ b) $K_{sp} 4s^3$ 380. The solubility of AgCl in 0.2 M NaCl solution $[K_{sp} \text{ of AgCl } 1.2 10^{10}]$ a) 6.0 10 ¹⁰ M b) 0.2 M 381. Which of the following will not function as a buff (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl	c) K_{sp} 27 s^4 is c) 1.2 10 ¹⁰ M	
a) $K_{sp} s^2$ b) $K_{sp} 4s^3$ 380. The solubility of AgCl in 0.2 M NaCl solution $[K_{sp} \text{ of AgCl} 1.2 10^{10}]$ a) 6.0 10 ¹⁰ M b) 0.2 M 381. Which of the following will not function as a buff (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid	c) $K_{sp} = 27s^4$ is c) 1.2 = 10 ⁻¹⁰ M Fer solution?	d) 0.2 10 ¹⁰ M
a) $K_{sp} s^2$ b) $K_{sp} 4s^3$ 380. The solubility of AgCl in 0.2 M NaCl solution $[K_{sp} \text{ of AgCl } 1.2 10^{10}]$ a) 6.0 10 ¹⁰ M b) 0.2 M 381. Which of the following will not function as a buff (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) b) (ii), (iv)	 c) K_{sp} 27s⁴ is c) 1.2 10¹⁰ M Fer solution? c) (i), (iii), (iv) 	d) 0.2 10 ¹⁰ M d) (i), (ii), (iii), (iv)
a) $K_{sp} s^2$ b) $K_{sp} 4s^3$ 380. The solubility of AgCl in 0.2 M NaCl solution $[K_{sp} \text{ of AgCl } 1.2 10^{10}]$ a) 6.0 10 ¹⁰ M b) 0.2 M 381. Which of the following will not function as a buff (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) b) (ii), (iii), (iv) 382. K_{SP} of salts AB , AB_2 and A_3B are 4.0×10^{-8} , 3.2	c) $K_{sp} = 27s^4$ is c) 1.2 = 10 ⁻¹⁰ M for solution? c) (i), (iii), (iv) × 10 ⁻¹⁴ and 2.7 × 10 ⁻¹⁵ res	d) 0.2 10 ¹⁰ M d) (i), (ii), (iii), (iv) pectively at temperature <i>T</i> .
a) $K_{sp} s^2$ b) $K_{sp} 4s^3$ 380. The solubility of AgCl in 0.2 M NaCl solution $[K_{sp} \text{ of AgCl } 1.2 10^{10}]$ a) 6.0 10 ¹⁰ M b) 0.2 M 381. Which of the following will not function as a buff (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) b) (ii), (iii), (iv) 382. K_{SP} of salts AB , AB_2 and A_3B are 4.0×10^{-8} , 3.2 The solubility order of these salts in water at ten	c) $K_{sp} = 27s^4$ is c) 1.2 = 10 ⁻¹⁰ M for solution? c) (i), (iii), (iv) $\times 10^{-14}$ and 2.7 $\times 10^{-15}$ results reperature <i>T</i> (in mol litre ⁻¹) i	 d) 0.2 10¹⁰ M d) (i), (ii), (iii), (iv) pectively at temperature <i>T</i>. s:
a) $K_{sp} s^2$ b) $K_{sp} 4s^3$ 380. The solubility of AgCl in 0.2 M NaCl solution $[K_{sp} \text{ of AgCl} 1.2 10^{10}]$ a) 6.0 10 ¹⁰ M b) 0.2 M 381. Which of the following will not function as a buff (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) b) (ii), (iii), (iv) 382. K_{SP} of salts AB, AB_2 and A_3B are 4.0×10^{-8} , 3.2 The solubility order of these salts in water at ten a) $AB > AB_2 > A_3B$ b) $A_3B > AB_2 > AB$	c) $K_{sp} = 27s^4$ is c) 1.2 = 10 ⁻¹⁰ M for solution? c) (i), (iii), (iv) × 10 ⁻¹⁴ and 2.7 × 10 ⁻¹⁵ res	 d) 0.2 10¹⁰ M d) (i), (ii), (iii), (iv) pectively at temperature <i>T</i>. s:
a) $K_{sp} s^2$ b) $K_{sp} 4s^3$ 380. The solubility of AgCl in 0.2 M NaCl solution $[K_{sp} \text{ of AgCl} 1.2 10^{10}]$ a) 6.0 10 ¹⁰ M b) 0.2 M 381. Which of the following will not function as a buff (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) b) (ii), (iii), (iv) 382. K_{SP} of salts AB, AB_2 and A_3B are $4.0 \times 10^{-8}, 3.2$ The solubility order of these salts in water at ten a) AB > AB ₂ > A ₃ B b) A ₃ B > AB ₂ > AB 383. Which does not act as Bronsted acid?	c) $K_{sp} = 27s^4$ is c) 1.2 10^{10} M For solution? c) (i), (iii), (iv) × 10^{-14} and 2.7 × 10^{-15} response to the second s	d) 0.2 10^{10} M d) (i), (ii), (iii), (iv) pectively at temperature <i>T</i> . s: d) AB > A ₃ B > AB ₂
a) $K_{sp} s^2$ b) $K_{sp} 4s^3$ 380. The solubility of AgCl in 0.2 M NaCl solution $[K_{sp} \text{ of AgCl } 1.2 10^{10}]$ a) 6.0 10 ¹⁰ M b) 0.2 M 381. Which of the following will not function as a buff (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) b) (ii), (iii), (iv) 382. K_{SP} of salts AB, AB_2 and A_3B are 4.0×10^{-8} , 3.2 The solubility order of these salts in water at ten a) $AB > AB_2 > A_3B$ b) $A_3B > AB_2 > AB$ 383. Which does not act as Bronsted acid? a) NH ₄ ⁺ b) CH ₃ COO ⁻	c) $K_{sp} = 27s^4$ is c) 1.2 10^{10} M for solution? c) (i), (iii), (iv) × 10^{-14} and 2.7×10^{-15} resonance nperature T (in mol litre ⁻¹) in c) $AB_2 > A_3B > AB$ c) HCO ₃	 d) 0.2 10¹⁰ M d) (i), (ii), (iii), (iv) pectively at temperature <i>T</i>. s:
a) $K_{sp} s^2$ b) $K_{sp} 4s^3$ 380. The solubility of AgCl in 0.2 M NaCl solution $[K_{sp} \text{ of AgCl} 1.2 10^{10}]$ a) 6.0 10 ¹⁰ M b) 0.2 M 381. Which of the following will not function as a buff (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) b) (ii), (iii), (iv) 382. K_{SP} of salts AB, AB_2 and A_3B are $4.0 \times 10^{-8}, 3.2$ The solubility order of these salts in water at ten a) $AB > AB_2 > A_3B$ b) $A_3B > AB_2 > AB$ 383. Which does not act as Bronsted acid? a) NH ₄ ⁺ b) CH ₃ COO ⁻ 384. Which of the following solutions will have pH	c) $K_{sp} = 27s^4$ is c) 1.2 10^{10} M For solution? c) (i), (iii), (iv) $\times 10^{-14}$ and 2.7 $\times 10^{-15}$ response nperature T (in mol litre ⁻¹) in c) AB ₂ > A ₃ B > AB c) HCO ₃ H=9 at 298 K?	d) 0.2 10^{10} M d) (i), (ii), (iii), (iv) pectively at temperature <i>T</i> . s: d) AB > A ₃ B > AB ₂ d) HSO ₃
a) $K_{sp} s^2$ b) $K_{sp} 4s^3$ 380. The solubility of AgCl in 0.2 M NaCl solution $[K_{sp} \text{ of AgCl} 1.2 10^{10}]$ a) 6.0 10 ¹⁰ M b) 0.2 M 381. Which of the following will not function as a buff (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) b) (ii), (iii), (iv) 382. K_{SP} of salts AB , AB_2 and A_3B are 4.0×10^{-8} , 3.2 The solubility order of these salts in water at ten a) $AB > AB_2 > A_3B$ b) $A_3B > AB_2 > AB$ 383. Which does not act as Bronsted acid? a) NH ₄ ⁺ b) CH ₃ COO ⁻ 384. Which of the following solutions will have pf a) 1×10^{-9} M HCl solution	c) $K_{sp} = 27s^4$ is c) 1.2 10^{10} M for solution? c) (i), (iii), (iv) $\times 10^{-14}$ and 2.7 $\times 10^{-15}$ resonance nperature T (in mol litre ⁻¹) in c) AB ₂ > A ₃ B > AB c) HCO ₃ H=9 at 298 K? b) 1 $\times 10^{-5}$ M NaOH	d) 0.2 10^{10} M d) (i), (ii), (iii), (iv) pectively at temperature <i>T</i> . s: d) AB > A ₃ B > AB ₂ d) HSO ₃
a) $K_{sp} s^2$ b) $K_{sp} 4s^3$ 380. The solubility of AgCl in 0.2 M NaCl solution $[K_{sp} \text{ of AgCl} 1.2 10^{10}]$ a) 6.0 10 ¹⁰ M b) 0.2 M 381. Which of the following will not function as a buff (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) b) (ii), (iii), (iv) 382. K_{sp} of salts AB, AB_2 and A_3B are $4.0 \times 10^{-8}, 3.2$ The solubility order of these salts in water at ten a) AB > AB ₂ > A ₃ B b) A ₃ B > AB ₂ > AB 383. Which does not act as Bronsted acid? a) NH ₄ ⁺ b) CH ₃ COO ⁻ 384. Which of the following solutions will have pF a) 1×10^{-9} M HCl solution c) 1×10^{-9} M KOH solution	c) $K_{sp} = 27s^4$ is c) 1.2 10^{10} M For solution? c) (i), (iii), (iv) $\times 10^{-14}$ and 2.7 $\times 10^{-15}$ response nperature T (in mol litre ⁻¹) in c) AB ₂ > A ₃ B > AB c) HCO ₃ H=9 at 298 K?	d) 0.2 10^{10} M d) (i), (ii), (iii), (iv) pectively at temperature <i>T</i> . s: d) AB > A ₃ B > AB ₂ d) HSO ₃
a) $K_{sp} s^2$ b) $K_{sp} 4s^3$ 380. The solubility of AgCl in 0.2 M NaCl solution $[K_{sp} \text{ of AgCl} 1.2 10^{10}]$ a) 6.0 10 ¹⁰ M b) 0.2 M 381. Which of the following will not function as a buff (i) NaCl and NaOH (ii) NaOH and NH ₄ OH (iii) CH ₃ COONH ₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) b) (ii), (iii), (iv) 382. K_{SP} of salts AB , AB_2 and A_3B are 4.0×10^{-8} , 3.2 The solubility order of these salts in water at ten a) $AB > AB_2 > A_3B$ b) $A_3B > AB_2 > AB$ 383. Which does not act as Bronsted acid? a) NH ₄ ⁺ b) CH ₃ COO ⁻ 384. Which of the following solutions will have pf a) 1×10^{-9} M HCl solution	c) $K_{sp} = 27s^4$ is c) 1.2 10^{10} M for solution? c) (i), (iii), (iv) $\times 10^{-14}$ and 2.7 $\times 10^{-15}$ resonance nperature T (in mol litre ⁻¹) in c) AB ₂ > A ₃ B > AB c) HCO ₃ H=9 at 298 K? b) 1 $\times 10^{-5}$ M NaOH	d) 0.2 10^{10} M d) (i), (ii), (iii), (iv) pectively at temperature <i>T</i> . s: d) AB > A ₃ B > AB ₂ d) HSO ₃

386. Which statement is false? (Assume complete dissociation in each case)			
a) If 2.0 L of a solution of H_2SO_4 contains 0.1 mole, then pH of the solution is 2			
b) The concentration of OH ⁻ in 0.005 M HNO ₃ is 2.0×10^{-12} mol/L			
c) The pH of 0.01 M KOH is 12			
d) In a 0.001 M solution of NaOH the concentrat			
387. 10 mL of a solution contains $0.1 M \text{ NH}_4 \text{Cl} + 0.01 M$	1 NH ₄ OH. Which addition w	vould not change the pH of	
the solution?			
a) Adding 1 mL water			
b) Adding 5 mL of 0.1 <i>M</i> NH ₄ Cl			
c) Adding 5 mL of 0.1 M NH ₄ OH			
d) Adding10 mL of 0.1 M NH ₄ Cl			
388. Arrhenius theory of acid-base is not valid for:			
a) Aqueous solution			
b) In presence of water			
c) Non-aqueous solution			
d) None of these			
389. The solubility in water of a sparingly soluble sal	$+ 4R$ is 1×10^{-5} mol 1^{-1}	Its solubility product	
	LAD_2 IS 1×10 IIIOI L	. its solubility product	
number will be	N 4 4 9 15		
a) 4×10^{-15} b) 4×10^{-10}	-	-	
390. The equilibrium constant (K_p) for the reaction, PCl ₅	$(g) \rightarrow PCl_3(g) + Cl_2(g)$ is 1	6. If the volume of the	
container is reduced to one half its original volume,	the value of K_p for the react	tion at the same	
temperature will be			
a) 8 b) 16	c) 32	d) 64	
391. The indicators used in the titration of iodine against	sodium thiosulphate is	-	
a) Starch b) K_3 Fe(CN) ₆	c) K_2CrO_4	d) Potassium	
392. For the reaction,	<i>y 2</i> 1	,	
$2HI(g) \rightleftharpoons H_2(g) + I_2(g) - Q kJ$, the equilibrium	constant depends upon		
a) Temperature b) Pressure		d) Volume	
-	c) Catalyst	,	
393. In the dissociation of $2HI \rightleftharpoons H_2 + I_2$, the degree of d	issociation will be influence	ed by the:	
a) Addition of inert gas at constant volume			
b) Addition of inert gas at constant pressure			
c) Increase of temperature			
d) Increase of pressure			
394. If pressure increases then its effect on given equ	uilibrium		
$2NO(g) \rightleftharpoons N_2(g) + O_2(g)$ is shift in			
a) Forward direction	b) Backward direction		
c) No effect	d) None of these		
395. Which one of the molecular hydride acts as Lewis ad	cid?		
a) NH ₃ b) H_2O	c) B ₂ H ₆	d) CH₄	
396. For the reversible reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3$, I	
partial pressure is measured in atmospheres. The co			
mol L^{-1} , is	M_{c} with M_{c} with M_{c} with M_{c}		
	1.44×10^{-5}	1.44×10^{-5}	
a) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$ b) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^2}$	c) $\frac{1.44 \times 10^{-5}}{(0.214 \times 772)^{-2}}$	d) $\frac{1.44 \times 10^{-3}}{(0.002 \times 500)^{-2}}$	
	$(8.314 \times //3)^{-2}$	$(0.082 \times 500)^{-2}$	
397. The compound that does not act as Lewis acid, is:	-) NH		
a) $AlCl_3$ b) BF_3	c) NH ₃	d) FeCl ₃	
398. For the following reaction in gaseous phase			
$CO(x) + \frac{1}{2}O(x) + CO(x) + U(x)$			

$$\operatorname{CO}(\mathbf{g}) + \frac{1}{2}\operatorname{O}_2(\mathbf{g}) \longrightarrow \operatorname{CO}_2(\mathbf{g}) K_p / K_c \text{ is }$$

a) $(RT)^{1/2}$	b) $(RT)^{-1/2}$	c) (<i>RT</i>)	d) $(RT)^{-1}$
399. For the reaction H	$_2(g) + I_2(g) \rightleftharpoons 2HI(g)$, the	e equilibrium constants e	xpressed in terms of
concentrations K_c	and in terms of partial pr	essure K_p , are related as	
a) $K_p = K_c (RT)^2$	b) $K_p = K_c (RT)^{-2}$	c) $K_p = K_c$	d) $K_c = K_p(RT)$
400. In the titration of N	Na_2CO_3 and HCl, the indic	ator used is	·
a) Methyl orange	b) Methylene blue	c) Phenolphthalein	d) Litmus
$401. \text{ HSO}_4^- + \text{OH}^- \rightarrow \text{SC}_4^-$	•) F	,
	oout conjugate acid base j	nair?	
	te acid of base SO_4^{2-}	b) HSO_4^- is conjugat	e^{hase} of hase SO^{2-}
	te acid of acid HSO_4^-	d) None of the abov	
	$(g) + 4B_2(g) \rightleftharpoons 2AB_4(g), \Delta H$		
a) Low temperature		b) High temperature,	
c) Low temperature	• ·	d) High temperature,	-
403. On applying pressur		uj mgn temperature,	lingli pressure
ice ≓ water	-		
Which phenomenon			
a) More ice will be f			
b) More water will b			
c) Equilibrium will r	ot be disturbed		
d) Water will evapor	rate		
404. A saturated solution	on of Ag_2SO_4 is 2.5×10^{-2}	² M. The value of its solub	oility product is
a) 62.5 × 10 ⁻⁶	b) 6.25×10^{-4}	c) 15.625 × 10 ⁻⁶	d) 3.125×10^{-6}
405. Aqueous solutions o	f two acids having same cor	ncentrations of common ior	(H ⁺) are called:
a) Isohydric solution	s b) Isotonic solutions	c) Isomeric solutions	d) Hypotonic solutions
406. The hydrolysis cor	nstant of a salt of weak aci	id and weak base is inver	sely proportional to
a) Ionic product of	water		
b) Dissociation cor	istant of both weak acid a	nd weak base	
c) Dissociation cor	istant of weak acid		
d) Dissociation cor	istant of weak base		
407. If in the reaction N	$f_2 0_4 \rightleftharpoons 2NO_2$, x is that par	rt of N ₂ O ₄ which dissocia	tes, then the number of
molecules at equili	brium will be		
a) 1	b) 3	c) 1 + <i>x</i>	d) $(1 + x)^2$
408. The p K_a of a weak	acid (HA) is 4.5. The pOF	I of an aqueous buffered	solution of HA in which 50%
of the acid ionised		•	
a) 4.5	b) 2.5	c) 9.5	d) 7.0
409. Number of H ⁺ ions	present in 10 mL of a solution	-	-
a) 10 ¹³	b) 6.02 × 10 ¹⁸	c) 6.02×10^{13}	d) 6.02×10^{10}
410. The pH of gastric jui	ce is normally:	,	
a) Greater than 1.5 a	and less than 1.2		
b) Less than 1.5			
c) Greater than 1 an	d less than 3		
d) Less than 1 and g			
411. With reference to pr	otonic acids, the correct sta	tement is:	
411. With reference to pr a) PH_3 is more basic	rotonic acids, the correct sta than NH ₃	tement is:	
411. With reference to pr a) PH_3 is more basic b) PH_3 is less basic t	otonic acids, the correct sta than NH ₃ han NH ₃	tement is:	
411. With reference to pr a) PH_3 is more basic b) PH_3 is less basic t c) PH_3 is amphoteri	otonic acids, the correct sta than NH ₃ han NH ₃ c while NH ₃ is basic	tement is:	
411. With reference to pr a) PH_3 is more basic b) PH_3 is less basic t c) PH_3 is amphoteri d) None of the above	otonic acids, the correct sta than NH ₃ han NH ₃ c while NH ₃ is basic		40% and the initial amount

is 5 moles. The value of equilibrium constant in	mol L^{-1} for the decompo	osition of PCl ₅ is
a) 2.33 b) 2.66	c) 5.32	d) 4.66
413. The unit of ionic product of water (K_w) is:	·) ·····	
a) $mol^{-1}litre^{-1}$ b) $mol^{-1}litre^{-2}$	c) mol ⁻² litre ⁻¹	d) mol ² litre ⁻²
414. In a reversible reaction two substance are in eq		2
doubled, the equilibrium constant will be		
a) Reduced to one fourth of its original value	b) Reduced to half of it	s original value
c) Constant	d) Doubled	
415. Le-Chatelier principle is applicable only to a	d) Doubled	
a) System in equilibrium	b) System not in equilibit	rium
c) Homogeneous reaction	d) Heterogeneous reaction	
416. The dissociation constant of a substituted benz		
solution of its sodium salt is		
a) 3 b) 7	c) 8	d) 6
417. A mixture of sodium oxide and calcium oxide a	-	
		saturateu with excess
carbon dioxide gas. The resulting solution is		16-60
a) Basic; NaOH and $Ca(OH)_2$	b) Neutral; Na_2CO_3 and	-
c) Basic; Na_2CO_3 and $CaCO_3$	d) Acidic; NaOH and Ca	
418. Conjugate acid of HF_2^- is		
a) H ⁺ b) HF	c) F ₂	d) H_2F_2
419. Consider the reaction, $CH_3COOH + C_2H_5OH \rightleftharpoons CH_3C$		ach of CH_3COOH and C_2H_5OH
are heated in the presence of little concentrated H_2	SO ₄ . On equilibrium:	
a) 1 mole of ethyl acetate is formed		
b) 2 mole of ethyl acetate are formed		
c) $1/2$ mole of ethyl acetate is formed		
 d) 2/3 mole of ethyl acetate is formed 420. <i>K_b</i> for the hydrolysis reaction, 		
$B^+ + H_2 0 \rightleftharpoons BOH + H^+ \text{ is } 1.0 \times 10^{-6}$, the hydrolysis	s constant of the salt is:	
a) 10^{-6} b) 10^{-7}	c) 10^{-8}	d) 10 ⁻⁹
421. The pH of a 0.001 M NaOH will be	c) 10	u) 10
a) 3 b) 2	c) 11	d) 12
422. In lime kiln, the reversible reaction. $CaCO_3$ (s) \rightleftharpoons Ca	,	,
a) Of high temperature	- (-) · · · · 2 (8) F · · · · · · · ·	F
b) CO_2 escapes out		
c) CaO is removed		
d) Of low temperature		
423. Solid Ba(NO ₃) ₂ is gradually dissolved in a 1.0 ×	$\times 10^{-4}$ M Na ₂ CO ₃ solution	n. At what concentration
of Ba ²⁺ will a precipitate begin to form?		
$(K_{sp} \text{ for BaCO}_3 = 5.1 \times 10^{-9})$		
a) 4.1×10^{-5} M b) 5.1×10^{-5} M	c) 8.1×10^{-8} M	d) 8.1×10^{-7} M
424. The solubility of AgCl is 0.0015 g/litre. The solubilit		
a) 2×10^{-10} b) 1.1×10^{-10}	c) 3.1×10^{-10}	d) 4.1×10^{-10}
425. Although CO is neutral but it shows acidic nature or	•	
a) $Ca(OH)_2$ b) NaOH	c) Mg(OH) ₂	d) LiOH
426. The acidic character order for given oxy-acids of ha		· ,
a) $HOCl > HOBr > HOI$ b) $HOI > HOBr > HOCl$	-	d) HOI > <i>HOCl</i> > <i>HOBr</i>
427. The stronger Bronsted base is:	,	,
a) ClO^- b) ClO_2^-	c) ClO ₃	d) ClO ₄
428. The indicator used in the titration of sodium carbor	nate with sulphuric acid is	

a) Potassium ferrocyanide b) Potassium ferricyanide c) Methyl orange d) Phenolphthalein 429. A cylinder fitted with a movable piston contains liquid water in equilibrium with water vapour at 25° C. Which operation result in a decrease in the equilibrium vapour pressure? a) Moving the piston downward a short distance b) Removing a small amount of vapour c) Removing a small amount of the liquid water d) Dissolving salt in the water 430. If acetic acid is mixed with sodium acetate then H⁺ ion concentration will a) Increase b) Decrease c) Remain unchanged d) pH decrease 431. The reverse process of neutralization is: b) Decomposition a) Hydrolysis c) Dehydration d) Synthesis 432. The hydrogen ion concentration of a 10^{-8} *M* HCl aqueous solution at 298 K ($K_w = 10^{-14}$) is: a) $9.525 \times 10^{-8} M$ b) $1.0 \times 10^{-8} M$ c) $1.0 \times 10^{-6} M$ d) $1.0525 \times 10^{-7} M$ 433. The number of ions formed when cuprammonium sulphate dissolves in water is: a) One b) Two c) Four d) Zero 434. A reversible chemical reaction have two reactants in equilibrium. If the concentrations of the reactants are doubled then the equilibrium constant will a) Be halved b) Also be doubled c) Remains the same d) None of these 435. According to Arrhenius concept, base is a substance that: a) Gives a pair of protons b) Donates a proton c) Accepts an electron pair d) Gives OH⁻ ions in aqueous solution 436. What is the effect of increasing pressure on the dissociation of PCl₅ according to the equation? $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a) Dissociation decreases b) Dissociation increases c) Dissociation does not change d) None of the above 437. Which is Lewis acid? d) H_2O a) BF_3 b) NF_3 c) Cl⁻ 438. Which one of the following substances has the highest proton affinity? b) H_2S a) H_2O c) NH₃ d) CH₃COOH 439. The solubility product of a salt AB_2 is 4×10^{-9} at 373 K. The solubility of AB_2 in boiling water will be: a) $4 \times 10^{-3} M$ b) $4 \times 10^{-4} M$ c) $1 \times 10^{-10} M$ d) $1 \times 10^{-3} M$ 440. Which pair will show common ion effect? a) $BaCl_2 + Ba(NO_3)_2$ b) NaCl + HCl c) $NH_4OH + NH_4Cl$ d) AgCN + KCN 441. In the case of gaseous homogeneous reaction, the concentrations of the reactants may be given by: b) $\frac{P}{RT}$ c) $\frac{n}{V}RT$ d) $\frac{RT}{P}$ a) $\frac{PV}{RT}$ 442. 0.5 M ammonium benzoate is hydrolysed to 0.25 percent. Hence, its hydrolysis constant is c) 3.125×10^{-6} b) 1.25×10^{-5} a) 2.5×10^{-5} d) 6.25×10^{-6} 443. The K_{sp} of PbCO₃ and MgCO₃ are 1.5×10^{-15} and 1×10^{-15} respectively at 298 K. The concentration of Pb^{2+} ions in a saturated solution containing MgCO₃ and PbCO₃ is: a) $1.5 \times 10^{-4} M$ b) $3 \times 10^{-8} M$ d) $2.5 \times 10^{-8} M$ c) $2 \times 10^{-8} M$ 444. The [H⁺] ion concentration in 0.001 *M* acetic acid is 1.34×10^{-4} g ion/litre. The [H⁺] ion concentration of

0.164 a of CUL COON	i_{0} added to a litra of 0.001 I_{0}	1 CU COOU will be	
a) 9×10^{-6}	a is added to a litre of 0.001 M b) 18×10^{-6}	c) 4.5×10^{-6}	d) F x 10-6
,	,	CJ 4.5 X 10	d) 5×10^{-6}
445. pH scale was intro	•		
a) Arrhenius	b) Sorensen	c) Lewis	d) Lowry
		um $1/g$ NH ₃ was formed.	The weight of N_2 and H_2 of
equilibrium are resp	•	-) 14 - 2 -	J) 11 - 2 -
a) 11 g, zero	b) 1 g, 3 g	c) 14 g, 3 g	d) 11 g, 3 g
			ble H_2 S, 0.10 mole H_2 and 0.4
	The value of equilibrium co		
a) 0.004	b) 0.008	c) 0.016	d) 0.032
	at 300 K is kept in a closed		
	$O_4(g)$ decomposes to NO_2		
a) 1.2 atm	b) 2.4 atm	c) 2.0 atm	d) 1.0 atm
	ts of H_2 and I_2 are heated in	=	brium is obtained. If 80%
of the hydrogen ca	n be converted to H, the K _c	, at this temperature is	
a) 64	b) 16	c) 0.25	d) 4
450. A litre of solution is	s saturated with AgCl. To t	his solution if $1.0 imes 10^{-4}$	mole of solid NaCl is added,
what will be the [A	g ⁺], assuming no volume o	change?	
a) More	b) Less	c) Equal	d) Zero
-	-		nsity decreases to 24.5 due to
	D_2 . The per cent dissociation		
a) 87	b) 60	c) 40	d) 70
452. A precipitate of Ag	Cl is formed when equal vo	olumes of the following ar	e mixed
$[K_{\rm sp} \text{ for AgCl} = 10^{-1}$	-	0	
a) 10^{-4} M AgNO ₃ a		b) 10^{-5} M AgNO ₃ and	10 ⁻⁶ M HCl
c) 10^{-5} M AgNO ₃ at	na 10 [°] M HCI	d) 10^{-6} M AgNO ₃ and	10°M HCI
453. For the reaction			
$CO(g) + 0.5O_2(g) -$	$\rightarrow CO_2(g) K_p/K_c$ is equal t	to	
a) \sqrt{RT}	b) $\frac{1}{\sqrt{RT}}$	c) 1	d) <i>RT</i> ²
	$0 \int \sqrt{DT}$	e) 1	u) R I -
454 Central metal ion in	VIII	-	u) KI -
	a complex or a cation acts as:	:	
a) Lewis base	a complex or a cation acts as: b) Lewis acid	c) Bronsted acid	d) Arrhenius acid
a) Lewis base 455. The degree of dissoc	a complex or a cation acts as: b) Lewis acid iation of CH ₃ COOH is influen	c) Bronsted acid ced by:	d) Arrhenius acid
a) Lewis base 455. The degree of dissoc a) HCl	a complex or a cation acts as: b) Lewis acid iation of CH_3COOH is influen b) CH_3COONa	c) Bronsted acid ced by: c) NH ₄ OH	d) Arrhenius acid d) Either of these
a) Lewis base 455. The degree of dissoc a) HCl 456. Solubility of Ca(OH	a complex or a cation acts as: b) Lewis acid iation of CH_3COOH is influen b) CH_3COONa I) ₂ is a <i>s</i> mol L ⁻¹ . The solul	c) Bronsted acid ced by: c) NH ₄ OH bility product (K _{sp}) under	d) Arrhenius acid d) Either of these the same condition is
a) Lewis base 455. The degree of dissoc a) HCl 456. Solubility of Ca(OH a) 4s ³	a complex or a cation acts as: b) Lewis acid iation of CH_3COOH is influen b) CH_3COONa I) ₂ is a <i>s</i> mol L ⁻¹ . The solul b) 3 <i>s</i> ⁴	c) Bronsted acid ced by: c) NH₄OH bility product (K _{sp}) under c) 4s ²	d) Arrhenius acid d) Either of these
 a) Lewis base 455. The degree of dissoca a) HCl 456. Solubility of Ca(OHa) a) 4s³ 457. Which one of the formula 	a complex or a cation acts as: b) Lewis acid iation of CH ₃ COOH is influen b) CH ₃ COONa I) ₂ is a <i>s</i> mol L ⁻¹ . The solul b) $3s^4$ ollowing substances has th	c) Bronsted acid ced by: c) NH ₄ OH bility product (K_{sp}) under c) $4s^2$ te highest proton affinity?	 d) Arrhenius acid d) Either of these the same condition is d) s³
 a) Lewis base 455. The degree of dissocial HCl 456. Solubility of Ca(OHa) 4s³ 457. Which one of the formal H₂O 	a complex or a cation acts as: b) Lewis acid iation of CH_3COOH is influen b) CH_3COONa I) ₂ is a <i>s</i> mol L ⁻¹ . The solul b) $3s^4$ ollowing substances has th b) H_2S	c) Bronsted acid ced by: c) NH ₄ OH bility product (K _{sp}) under c) 4s ² te highest proton affinity? c) NH ₃	d) Arrhenius acid d) Either of these the same condition is
a) Lewis base 455. The degree of dissoc a) HCl 456. Solubility of Ca(OH a) $4s^3$ 457. Which one of the for a) H ₂ O 458. Which of the follow	a complex or a cation acts as: b) Lewis acid iation of CH_3COOH is influen b) CH_3COONa I) ₂ is a <i>s</i> mol L ⁻¹ . The solul b) $3s^4$ ollowing substances has th b) H_2S ving is not a conjugate acid	c) Bronsted acid ced by: c) NH ₄ OH bility product (K_{sp}) under c) $4s^2$ te highest proton affinity? c) NH ₃ l base pair?	 d) Arrhenius acid d) Either of these the same condition is d) s³ d) PH₃
a) Lewis base 455. The degree of dissoc a) HCl 456. Solubility of Ca(OH a) $4s^3$ 457. Which one of the for a) H ₂ O 458. Which of the follow a) HPO ₃ ²⁻ , PO ₃ ³⁻	a complex or a cation acts as: b) Lewis acid iation of CH_3COOH is influen b) CH_3COONa I) ₂ is a <i>s</i> mol L ⁻¹ . The solul b) $3s^4$ ollowing substances has th b) H_2S ving is not a conjugate acid b) $H_2PO_4^-$, HPO_4^{2-}	c) Bronsted acid ced by: c) NH ₄ OH bility product (K_{sp}) under c) $4s^2$ te highest proton affinity? c) NH ₃ l base pair? c) H ₃ PO ₄ , H ₂ PO ₄	d) Arrhenius acid d) Either of these the same condition is d) s^3 d) PH ₃ d) H ₂ PO ₄ ⁻ , PO ₃ ³⁻
a) Lewis base 455. The degree of dissoc a) HCl 456. Solubility of Ca(OH a) $4s^3$ 457. Which one of the for a) H ₂ O 458. Which of the follow a) HPO ₃ ²⁻ , PO ₃ ³⁻ 459. In an equilibrium real	a complex or a cation acts as: b) Lewis acid iation of CH ₃ COOH is influen b) CH ₃ COONa I) ₂ is a <i>s</i> mol L ⁻¹ . The solul b) 3 <i>s</i> ⁴ ollowing substances has th b) H ₂ S ving is not a conjugate acid b) H ₂ PO ₄ ⁻ , HPO ₄ ²⁻ action, if $\Delta G^{\circ} = 0$ the equilibr	c) Bronsted acid ced by: c) NH ₄ OH bility product (K_{sp}) under c) $4s^2$ the highest proton affinity? c) NH ₃ l base pair? c) H ₃ PO ₄ , H ₂ PO ₄ rium constant, <i>K</i> should be e	d) Arrhenius acid d) Either of these the same condition is d) s^3 d) PH ₃ d) H ₂ PO ₄ ⁻ , PO ₃ ³⁻
a) Lewis base 455. The degree of dissoc a) HCl 456. Solubility of Ca(OH a) $4s^3$ 457. Which one of the for a) H ₂ O 458. Which of the follow a) HPO ₃ ²⁻ , PO ₃ ³⁻ 459. In an equilibrium real a) 0	a complex or a cation acts as: b) Lewis acid iation of CH_3COOH is influen b) CH_3COONa I) ₂ is a <i>s</i> mol L ⁻¹ . The solul b) $3s^4$ blowing substances has th b) H_2S ving is not a conjugate acid b) $H_2PO_4^-$, HPO_4^{2-} action, if $\Delta G^\circ = 0$ the equilibr b) 1	c) Bronsted acid ced by: c) NH ₄ OH bility product (K_{sp}) under c) $4s^2$ the highest proton affinity? c) NH ₃ l base pair? c) H ₃ PO ₄ , H ₂ PO ₄ rium constant, <i>K</i> should be ender c) 2	 d) Arrhenius acid d) Either of these the same condition is d) s³ d) PH₃ d) H₂PO₄⁻, PO₃³⁻ equal to: d) 10
a) Lewis base 455. The degree of dissoc a) HCl 456. Solubility of Ca(OH a) $4s^3$ 457. Which one of the for a) H ₂ O 458. Which of the follow a) HPO ₃ ²⁻ , PO ₃ ³⁻ 459. In an equilibrium real a) 0 460. The gastric juice in	a complex or a cation acts as: b) Lewis acid iation of CH_3COOH is influen b) CH_3COONa I) ₂ is a <i>s</i> mol L ⁻¹ . The solul b) $3s^4$ bllowing substances has th b) H_2S ving is not a conjugate acid b) $H_2PO_4^-$, HPO_4^{2-} action, if $\Delta G^\circ = 0$ the equilibr b) 1 n our stomach contains estimation	c) Bronsted acid ced by: c) NH ₄ OH bility product (K_{sp}) under c) $4s^2$ the highest proton affinity? c) NH ₃ l base pair? c) H ₃ PO ₄ , H ₂ PO ₄ rium constant, <i>K</i> should be end c) 2 nough hydrochloride acid	 d) Arrhenius acid d) Either of these the same condition is d) s³ d) PH₃ d) H₂PO₄⁻, PO₃³⁻ equal to:
a) Lewis base 455. The degree of dissoc a) HCl 456. Solubility of Ca(OH a) $4s^3$ 457. Which one of the for a) H ₂ O 458. Which of the follow a) HPO ₃ ²⁻ , PO ₃ ³⁻ 459. In an equilibrium real a) 0 460. The gastric juice in concentration about	a complex or a cation acts as: b) Lewis acid iation of CH_3COOH is influen b) CH_3COONa I) ₂ is a <i>s</i> mol L ⁻¹ . The solul b) $3s^4$ blowing substances has th b) H_2S ving is not a conjugate acid b) $H_2PO_4^-$, HPO_4^{2-} action, if $\Delta G^\circ = 0$ the equilibr b) 1 n our stomach contains en 0.01 mol/litre. The pH of the	c) Bronsted acid ced by: c) NH ₄ OH bility product (K_{sp}) under c) $4s^2$ the highest proton affinity? c) NH ₃ d base pair? c) H ₃ PO ₄ , H ₂ PO ₄ rium constant, <i>K</i> should be e c) 2 nough hydrochloride acid e gastric juice is:	 d) Arrhenius acid d) Either of these the same condition is d) s³ d) PH₃ d) H₂PO₄⁻, PO₃³⁻ equal to: d) 10 to make the hydrogen ion
 a) Lewis base 455. The degree of dissocial HCl 456. Solubility of Ca(OHa) 4s³ 457. Which one of the formal H2O 458. Which of the followa) HPO₃²⁻, PO₃³⁻ 459. In an equilibrium real a) 0 460. The gastric juice in concentration about a) 0.01 	a complex or a cation acts as: b) Lewis acid iation of CH_3COOH is influen b) CH_3COONa I) ₂ is a <i>s</i> mol L ⁻¹ . The solul b) $3s^4$ ollowing substances has th b) H_2S ving is not a conjugate acid b) $H_2PO_4^-$, HPO_4^{2-} action, if $\Delta G^\circ = 0$ the equilibr b) 1 n our stomach contains ex 0.01 mol/litre. The pH of the b) 1	 c) Bronsted acid c) Bronsted acid c) NH₄OH bility product (K_{sp}) under c) 4s² e highest proton affinity? c) NH₃ l base pair? c) H₃PO₄, H₂PO₄ rium constant, <i>K</i> should be e c) 2 nough hydrochloride acid e gastric juice is: c) 2 	 d) Arrhenius acid d) Either of these the same condition is d) s³ d) PH₃ d) H₂PO₄⁻, PO₃³⁻ equal to: d) 10
a) Lewis base 455. The degree of dissoc a) HCl 456. Solubility of Ca(OH a) $4s^3$ 457. Which one of the for a) H_2O 458. Which of the follow a) HPO_3^{2-} , PO_3^{3-} 459. In an equilibrium real a) 0 460. The gastric juice in concentration about a) 0.01 461. At 550 K, the K_c for	a complex or a cation acts as: b) Lewis acid iation of CH_3COOH is influen b) CH_3COONa I) ₂ is a <i>s</i> mol L ⁻¹ . The solul b) $3s^4$ blowing substances has th b) H_2S ving is not a conjugate acid b) $H_2PO_4^-$, HPO_4^{2-} action, if $\Delta G^\circ = 0$ the equilibr b) 1 n our stomach contains end 0.01 mol/litre. The pH of the b) 1 r the following reaction is 2	 c) Bronsted acid c) Bronsted acid c) NH₄OH bility product (K_{sp}) under c) 4s² e highest proton affinity? c) NH₃ l base pair? c) H₃PO₄, H₂PO₄ rium constant, <i>K</i> should be e c) 2 nough hydrochloride acid e gastric juice is: c) 2 	 d) Arrhenius acid d) Either of these the same condition is d) s³ d) PH₃ d) H₂PO₄⁻, PO₃³⁻ equal to: d) 10 to make the hydrogen ion
 a) Lewis base 455. The degree of dissocial HCl 456. Solubility of Ca(OHa) 4s³ 457. Which one of the formal H2O 458. Which of the followa) HPO₃²⁻, PO₃³⁻ 459. In an equilibrium real a) 0 460. The gastric juice in concentration about a) 0.01 	a complex or a cation acts as: b) Lewis acid iation of CH_3COOH is influen b) CH_3COONa I) ₂ is a <i>s</i> mol L ⁻¹ . The solul b) $3s^4$ blowing substances has th b) H_2S ving is not a conjugate acid b) $H_2PO_4^-$, HPO_4^{2-} action, if $\Delta G^\circ = 0$ the equilibr b) 1 n our stomach contains end 0.01 mol/litre. The pH of the b) 1 r the following reaction is 2	 c) Bronsted acid c) Bronsted acid c) NH₄OH bility product (K_{sp}) under c) 4s² e highest proton affinity? c) NH₃ l base pair? c) H₃PO₄, H₂PO₄ rium constant, <i>K</i> should be e c) 2 nough hydrochloride acid e gastric juice is: c) 2 	 d) Arrhenius acid d) Either of these the same condition is d) s³ d) PH₃ d) H₂PO₄⁻, PO₃³⁻ equal to: d) 10 to make the hydrogen ion
a) Lewis base 455. The degree of dissoc a) HCl 456. Solubility of Ca(OH a) $4s^3$ 457. Which one of the for a) H_2O 458. Which of the follow a) HPO_3^{2-} , PO_3^{3-} 459. In an equilibrium real a) 0 460. The gastric juice in concentration about a) 0.01 461. At 550 K, the K_c for	a complex or a cation acts as: b) Lewis acid iation of CH_3COOH is influen b) CH_3COONa I) ₂ is a <i>s</i> mol L ⁻¹ . The solul b) $3s^4$ ollowing substances has th b) H_2S ving is not a conjugate acid b) $H_2PO_4^-$, HPO_4^{2-} action, if $\Delta G^\circ = 0$ the equilibr b) 1 n our stomach contains end 0.01 mol/litre. The pH of the b) 1 r the following reaction is T_3	 c) Bronsted acid c) Bronsted acid c) NH₄OH bility product (K_{sp}) under c) 4s² e highest proton affinity? c) NH₃ l base pair? c) H₃PO₄, H₂PO₄ rium constant, <i>K</i> should be e c) 2 nough hydrochloride acid e gastric juice is: c) 2 	 d) Arrhenius acid d) Either of these the same condition is d) s³ d) PH₃ d) H₂PO₄⁻, PO₃³⁻ equal to: d) 10 to make the hydrogen ion

$[X] = \frac{1}{2}[Y] =$	$=\frac{1}{2}[Z]$				
What is the value of $[Z]$ (in mol L ⁻¹) at equilibrium?					
a) 2×10^{-4}	b) 10 ⁻⁴	c) 2 × 10 ⁴	d) 10 ⁴		
462. A vessel at 1000 K o	contains CO ₂ with a press	sure of 0.5 atm. Some of	the CO ₂ is converted into CO		
on the addition of g	raphite. If the total press	ure at equilibrium is 0.8	atm, the value of K_p is		
a) 1.8 atm	b) 3 atm	c) 0.3 atm	d) 0.18 atm		
463. Ammonium carbon	ate decomposes as				
NH ₂ COONH ₄	$(s) \rightleftharpoons 2\mathrm{NH}_3(\mathrm{g}) + \mathrm{CO}_2(\mathrm{g})$)			
For the reaction, K_p	$= 2.9 \times 10^{-5}$ atm ³ . If w	e start with 1 mole of the	e compound, the total		
pressure at equilibr	ium would be				
a) 0.766 atm	b) 0.0582 atm	c) 0.0388 atm	d) 0.0194 atm		
464. The p K_a of a weak a	acid, H <i>A</i> , is 4.80. The p <i>K_b</i>	of a weak base, BOH is 4	4.78. The pH of an aqueous		
solution of the corre	esponding salt, <i>BA</i> , will b)e			
a) 9.58	b) 4.79	c) 7.01	d) 9.22		
	the following , which car				
a) HSO ₄	b) SO_4^{2-}	c) H ₃ O ⁺	d) Cl ⁻		
		in 0.1 M aqueous solution	on. What is the equilibrium		
constant for its ioni					
	= H ₃ 0 ⁺ (aq) + A ⁻ (aq)		$12.2 \le 2.2 \le 1.2 = 3^{-3}$		
a) 2.63×10^4	b) 2.63 × 10 ³	c) 2.63×10^{-4}	d) 2.63×10^{-3}		
467. Strongest acid is		\rightarrow UC – UC			
a) C_2H_6	b) CH ₃ OH	c) HC \equiv HC	d) C_6H_6		
	ing will have maximum p		M N ON		
a) $\frac{M}{10}$ HCl	b) $\frac{M}{100}$ HCl	c) $\frac{M}{10}$ NaOH	d) $\frac{M}{100}$ NaOH		
	ous solution of a weak acid				
a) 10^{-6}	b) 10 ⁻¹²	c) 1.0	d) 6.0		
a) $K = 1$	(ving, the reaction proceeds b) $K = 10$	c) $K = 10^2$	d) $K = 10^3$		
471. The mixed salt among	-	C K = 10	d J K = 10		
СНОНСООК	S the following is:		d) All of these		
a)	b) NaKSO ₄	c) CaOCl ₂			
CHOHCOONa	10 NoOH added in E0 m	I = M/10 protic prid colut	tion to get a buffer solution		
having highest buff		L, M/ 10 acelic aciu solui	tion to get a burier solution		
a) 50 mL	b) 25 mL	c) 10 mL	d) 40 mL		
-	,	-	value of K_a for the acid?		
a) 10^{-7}	b) 10^{-5}	c) 10^{-10}	d) 10^{-8}		
,	water sample is 6.5. The	,	,		
a) is 25°C		b) is more than 25°			
c) is less than 25°C		d) can be more or le			
	osgene is represented as,	-	action is carried out in 500 mL		
			Cl ₂ are present. The equilibrium		
constant of the reacti					
a) 30	b) 15	c) 5	d) 3		
476. In qualitative analysis, in order to detect second group basic redical, H ₂ S gas is passed in the presence of dilute HCl to					
a) Increase the diss	ociation of H ₂ S	b) Decrease the dis	sociation of salt solution		

c) Decrease the diss	ociation of H ₂ S	d) Increase the dise	sociation of salt solution	
477. For two acids A and $pK_a = 1.2$, and 2.8 respectively in value then which is true?				
a) A and B both are equally acidic			b) A is stronger than B	
c) <i>B</i> is stronger than <i>A</i>		d) Neither A nor B is strong		
478. The weakest base am		·) · · · · ·		
a) H ⁻	b) CH_3^-	c) CH ₃ 0 ⁻	d) Cl ⁻	
479. The hydrogen ion con	, ,	, ,	,	
a) Zero	b) 10 ⁻⁷	c) 1 <i>M</i>	d) None of these	
480. For which reaction is	$K_p = K_c$?			
a) $2NOCl(g) \rightleftharpoons 2NO(g)$				
b) $N_2(g) + 3H_2(g) \rightleftharpoons$	2NH ₃ (g)			
c) $H_2(g) + Cl_2(g) \rightleftharpoons Cl_2(g)$	2HCl(g)			
d) $2SO_2(g) + O_2(g) \neq$: 2SO ₃ (g)			
481. For the reaction,				
$H_2(g) + CO_2(g) \rightleftharpoons C$	$CO(g) + H_2O(g)$, if the in	itial concentration of		
$[H_2] = [CO_2] and x r$	nol/L of hydrogen is cor	nsumed at equilibrium, t	he correct expression of K_p is	
x ²	$(1+x)^2$	x^2	x^2	
a) $\frac{1}{(1-x)^2}$	b) $\frac{1}{(1-x)^2}$	c) $\frac{x^2}{(2+x)^2}$	d) $\frac{1-x^2}{1-x^2}$	
482. $K_{sp} = [A]^3 [B]^2$ for the				
a) $Ca_3(PO_4)_2$	b) As_2S_3	c) Bi ₂ S ₃	d) All are correct	
, , , , ,	, 10		and 4.5×10^{-10} respectively. the	
equilibrium constant			1 5	
=	ICN + CH_3COO^- would be	:		
a) 3.0×10^4		c) 3.0×10^{-5}	d) 3.0×10^{-4}	
484. The pH of the soluti	on			
$5 \text{ mL } \frac{M}{5} \text{ HCl} + 10 \text{ n}$	$hL \text{ of } \frac{M}{10} \text{ NaOH is}$			
a) 5	b) 3	c) 7	d) 8	
485. In the reaction, $AlCl_3$				
a) Salt	b) Lewis base	c) Lewis acid	d) Bronsted acid	
486. A weak acid HX has	dissociation constant 1	0^{-5} . The pH of 0.1 M solu	ition of this acid will be	
a) 2	b) 3	c) 4	d) 5	
		epared by mixing 2.5 moles he total volume of 500 mL,	s of KCN and 2.5 moles of KCN is	
a) 9.30	b) 7.30	c) 10.30	d) 8.30	
5	4	1	mixed and the volume was	
-	The pH of the resulting s			
a) 8	b) 2	c) 1	d) 3	
489. A solution contains	10 mL 0.1 N NaOH and 1	10 mL 0.05 N NH ₂ SO ₄ , pl	H of this solution is	
a) Less than 7		b) 7		
c) Zero		d) Greater than 7		
490. A reversible chemic	al reaction is having two	o reactants, in equilibriu	m. If the concentration of the	
reactants are double	ed then the equilibrium	constant will		
a) Bo doubled	b) Become one four	rth c) Be halved	d) Remain the same	
491. Conjugate bade of H	$_2PO_4^-$ is			
a) H ₃ PO ₄	b) P ₂ O ₅	c) PO ₄ ³⁻	d) HPO_4^{2-}	
492. The equilibrium cons	tant for the reaction N_2 +	$3H_2 \rightleftharpoons 2NH_3$ is <i>K</i> then the	equilibrium constant for the	
equilibrium,				

$\mathrm{NH}_3 \rightleftharpoons \frac{1}{2}\mathrm{N}_2 + \frac{3}{2}\mathrm{H}_2\mathrm{i}$	s				
a) $\frac{1}{K}$	b) \sqrt{K}	c) $\frac{1}{K^2}$	d) $\frac{1}{\sqrt{K}}$		
493. An acid type indicator HIn differs in colour from its conjugate base (In ⁻). The human eye is sensitive to colour differences only when the ratio [In ⁻]/[HIn] is greater than 10 or smaller than 0.1. What should be the minimum change in the pH of the solution to observe a complete colour change ($K_a = 1.0 \times 10^{-5}$)?					
a) 4	b) 2	c) 6	d) 1		
494. Which is an exampl	e of Lewis acid?				
a) HCl	b) H ₂ SO ₄	c) SO ₂	d) HNO ₃		
<i>10–10,</i> AgBr(<i>Ksp=</i>	prepare a saturated solutior <i>10–13</i>) and Ag2CrO4 <i>Ksp=</i> ight to prepare the saturated	<i>10–12.</i> Which of the above	ee samples $AgCl(K_{sp} =$ e compound will be used by him		
a) AgCl	b) AgBr	c) Ag_2CrO_4	d) All of these		
496. Acetic acid and pr temperature. An eq the ratio of the cont	ropionic acid have K_a valu	ties 1.75×10^{-5} and $1.3 \times$ re of the two acids is partia ate ions related to the K_a va	10^{-5} respectively at a certain ally neutralized by NaOH. How is alues and the molarity?		
b) The ratio is unrel	lated to the K_a values				
c) The ratio is unrel	lated to the molarity				
d) The ratio is unrel	lated to the pH of the solution	on			
497. The equivalent cond	ductance of 0.1 N acetic acid	l is 5 cm²ohm ⁻¹ eq. ⁻¹ at 29	8 K while λ_∞ is		
390 cm ² ohm ⁻¹ eq. ⁻	¹ . The degree of dissociation	n of 0.1 <i>N</i> acetic acid will be	:		
a) 0.0013	b) 0.013	c) 0.13	d) 0.5		
498. Raising the tempera	ature of a reversible chemica	al reaction :			
a) Favours the forw	ard rate only				
b) Favours the back	=				
	forward and backward rate	•			
-	the forward nor backward r				
	h $(NH_4)_2 S$ of molarity 0.021 , of ZnS = 4.51×10^{-24}) wh		mains unprecipitated in 12 mL		
a) 1.677 × 10 ⁻²² g	b) 1.767 × 10 ⁻²² g	c) 2.01×10^{-23} g	d) None of these		
equilibrium,			constant (α) is appreciable. At		
	ge significantly with pressu	re			
b) α does not change with pressure					
c) Concentration of NH ₃ does not change with pressure					
d) Concentration of H_2 is less than that of N_2					
501. A chemical reaction $A \rightleftharpoons B$ is said to be at equilibrium when:					
a) Complete conversion of A to B has taken place					
b) Conversion of A to B is only 50% complete					
	rsion of A to B has taken pla				
			rmation of <i>B</i> to <i>A</i> in the system		
=	increases, the pH of a KOH	solution			
a) Will decrease					
b) Will increase					
c) Remains constan					
d) Depends upon the concentration of KOH solution					
503. Tribasic acid furnis	nestype of anions.				

- 503. Tribasic acid furnishes...type of anions.
 - a) 2 b) 1 c) 3 d) 4

504. Which of the following pairs constitutes buffer? a) HNO_3 and NH_4NO_3 b) HCl and KCl c) HNO₂ and NaNO₂ d) NaOH and NaCl 505. What will be the pH and % α respectively for the salt *BA* of 0.1 M concentration? Given, K_a for HA = 10⁻⁶ and K_b for $BOH = 10^{-6}$ a) 7,10% b) 5,10% c) 5, 0.1% d) 7, 1% 506. The indicator used in titrating oxalic acid with caustic soda solution is: a) Methyl orange b) Methyl red c) Fluorescein d) Phenolphthalein 507. The pH of a 0.02 *M* solution of hydrochloric acid is: a) 2.0 b) 1.7 c) 0.3 d) 2.2 508. For the reaction, $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$, at a given temperature, the equilibrium amount of $CO_2(g)$ can be increased by b) Decreasing the volume of the container a) Increasing the amount of CO(g)c) Adding a suitable catalyst d) Adding an inert gas 509. Ag⁺ + NH₃ \rightleftharpoons [Ag(NH₃)]⁺; $K_1 = 3.5 \times 10^{-3}$ $[Ag(NH_3)]^+ + NH_3 \rightleftharpoons [Ag(NH_3)_2]^+;$ $K_2 = 1.7 \times 10^{-3}$ Then the formation constant of $[Ag(NH_3)_2]^+$ is a) 6.08×10^{-6} b) 6.08×10^{6} c) 6.08×10^{-9} d) None of these 510. 1 mL of 0.1 *N* HCl is added to 999 mL solution of NaCl. The pH of the resulting solution will be: b) 4 a) 7 c) 2 d) 1 511. The role of catalyst in reversible reaction is : a) To increase the rate of forward reaction b) Decrease the rate after equilibrium c) Allow equilibrium to be achieved quickly d) None of the above 512. Which one is correct representation for, $2SO_3 \rightleftharpoons 2SO_2 + O_2?$ a) $K_p = \frac{(p_{SO_2})^2(p_{O_2})}{(p_{SO_2})^2}$ b) $K_c = \frac{[SO_2]^2[O_2]}{[SO_3]^2}$ c) $K_p = \frac{(\text{mole of } SO_2)^2 \times (\text{mole of } O_2)}{(\text{mole of } SO_3)^2} \times \left[\frac{P}{\text{total mole at equilibrium}}\right]$ d) All of the above 513. The solubility of $Ca_3(PO_4)_2$ in water is y moles/litre. Its solubility product is a) $6 v^4$ b) 36 v^4 c) $64 v^5$ d) 108 v^5 514. For the reaction $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$, the equilibrium constant is K_1 , the equilibrium constant is K_2 , for the reaction $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$. What is *K*. for the reaction $NO_2(g) \rightleftharpoons 1/2N_2(g) + O_2(g)$? d) $\left(\frac{1}{(K_1K_2)}\right)^{1/2}$ b) $\frac{1}{(2K_1K_2)}$ c) $\frac{1}{(4K_1K_2)}$ a) $\frac{1}{(K_1K_2)}$ 515. The equilibrium constant for the reaction $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ at temperature *T* is 4×10^{-4} . The value of K_c for the reaction NO(g) $\Rightarrow \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ at the same temperature is b) 50 c) 75 d) 100 516. If the value of K_c for an equilibrium reaction is 10^{-4} , then the reaction is in a) Backward direction b) Forward direction c) Equilibrium d) Reaction is not possible 517. 5 moles of X are mixed with 3 moles of Y. At equilibrium for the reaction, $X + Y \rightleftharpoons Z$, 2 moles of Z are formed. The equilibrium constant for the reaction will be

a) $\frac{2}{2}$	b) $\frac{1}{2}$	c) $\frac{3}{2}$	d) $\frac{1}{4}$
518. If in the reaction : N	$V_2 O_4 \rightleftharpoons 2NO_2, \alpha$ is degree of di	2	4
equilibrium will be a) 3	: b) 1	c) $(1 - \alpha)^2$	d) $(1 + \alpha)$
	ing the lowest value of K_{sp} at 2		u) (1 + u)
a) $Mg(OH)_2$	b) Ca(OH) ₂	c) Ba(OH) ₂	d) $Be(OH)_2$
520. The effect of increa	sing the pressure on the equili	brium $2A + 3B \rightleftharpoons 3A + 2B$	B is
a) Forward reactio	n is favoured	b) Backward reaction	is favoured
c) No effect		d) None of the above	
521. Conjugate base of h		c) N ³⁻	-N (L
a) HN_3^- 522 A reaction is $A \pm B$	b) N_3^- $P \to C + D$. Initially we start with	,	d) N_2^-
	are two times of A . What is the	-	_
a) 2	b) 4	c) $\frac{1}{2}$	4
-		2	d) $\frac{1}{4}$
	ving is the strongest conjugate		N NO-
a) Cl ⁻	b) CH ₃ COO ⁻	c) SO_4^{2-}	d) NO_2^-
$N_2O_4(g) \rightleftharpoons 2N_2O_4(g)$	wing equilibrium in a closec NO ₂ (g)	i container	
At a fixed temper	ature, the volume of the read	ction container is halved	. For this change which of
the following stat	ement holds true regarding	the equilibrium constan	t (K_p) and degree of
dissociation (α)?			
a) Neither <i>K_p</i> nor	α changes	b) Both K_p and α cha	inges
c) K_p changes but	α does not	d) K_p does not changed	ge but α changes
	d is 10^{-5} . p K_b value of its conju	igate base is:	
a) 5	b) 6	c) 7	d) 9
526. According to law of $2A + B \rightarrow \text{Products}$			
a) Rate = $k[A][B]$		c) Rate = $k[A][B]^2$	
			litre mol ⁻¹ . What would be the
a) 1.0 M	at equilibrium with 2.0 mole of b) 2.25 M	c) 2.0 M	d) 4.0 M
•	,	,	B is formed when each A and B
	. How much of A changes into A		
a) 20%	b) 40%	c) 60%	d) 4%
-	complex formation with ions of		-
a) Increases	b) Decreases	c) Is unaffected	d) Either of these
	ion containing 0.1 N NaOH and		4) 10
a) 1 531 Which buffer solu	b) 7 tion comprising of the follow	c) 2 wing has its nH value gra	d) 13 Pater than 72
a) $CH_3COOH + CH_3COOH + CH_3CO$		b) HCOOH + HCOOK	
c) CH ₃ COONH ₄	13000114	d) $NH_4OH + NH_4Cl$	
	ring behaves as both Lewis and		
a) BF ₃	b) Cl ⁻	c) CO	d) None of these
	cium hydroxide is $\sqrt{3}$, then i	ts solubility product will	l be
a) 27	b) 3	c) 9	d) 12√3
534. Pure water is kept	in a vessel and it remains exp	osed to atmospheric CO_2 v	which is absorbed. Then the pH
will be:			

a) Greater than 7

b) Less than 7

c) 7

d) Depends on ionic product of water

535. The decomposition of N₂O₄ to NO₂ is carried out at 280 K in chloroform. When equilibrium has been established, 0.2 mole of N₂O₄ and 2×10^{-3} mole of NO₂ are present in 2 L solution. The equilibrium constant for reaction N₂O₄ \rightleftharpoons 2NO₂ is

a)
$$1 \times 10^{-2}$$
 b) 1×10^{-3} c) 1×10^{-4} d) 1×10^{-5}

536. The most favourable condition for the manufacture of NH_3 is

a) high temperature and high pressure

b) low temperature and low pressure

c) high temperature and low pressure d) low temperature and high pressure

537. The value of K_p for the following reaction $2H_2S(g) \rightleftharpoons 2H_2(g) + S_2(g)$, is 1.2×10^{-2} at 106.5°C. The value of K_c for this reaction is

a) =
$$1.2 \times 10^{-2}$$
 b) < 1.2×10^{-2} c) > 1.2×10^{-2} d) None of these
538. In hydrolysis of a salt of weak acid and strong base $A^- + H_2 0 \rightleftharpoons HA + 0H^-$, the hydrolysis constant (K_h) is equal to...

a) $\frac{K_w}{K_a}$	b) $\frac{K_w}{K_b}$	c) $\sqrt{\frac{K_a}{C}}$	d) $\frac{K_w}{K_a \times K_b}$
539. The pH of 7×10^{10}	$0^{-8}M$ CH ₃ COOH is:		
a) 8.1	b) 7.9	c) 7.1	d) 6.85
540. Water acts as an	acid in presence of:		
a) NH ₃	b) H ₂ SO ₄	c) C ₆ H ₆	d) HCl

541. Which statement is/are correct?

a) All Bronsted bases are also Lewis bases

b) All Bronsted acids are not Lewis acids

c) All cations are acids and all anions are bases

d) All of the above

542. Three moles of PCl₅, three moles of PCl₃ and two moles of Cl₂ are taken in a closed vessel. If at equilibrium the vessel has 1.5 moles of PCl₅, the number of moles of PCl₃ present in it is a) 5 b) 3 c) 6 d) 4.5

543. Ice and water are in equilibrium at 273 K, which of the following statements is correct?

a) $G_{(ice)} > G_{(H_2O)}$ b) $G_{(ice)} < G_{(H_2O)}$ c) $G_{(ice)} = G_{(H_2O)} = 0$ d) $G_{(ice)} = G_{(H_2O)} \neq 0$ 544. For an equilibrium reaction involving gases, the forward reaction is 1st order while the reverse reaction is 2nd order. The units of K_P for the forward equilibrium is:

a) atm b) atm^2 c) atm^{-1}

545. A buffer solution has equal volumes of 0.2 M NH_4OH and 0.02 M NH_4Cl . The p K_b of the base is 5. The pH is

546. Which of the following will supress the ionisation of acetic acid is aqueous solution?a) NaClb) HClc) KCld) Unpredictable

547. The Henderson's equation used to calculate the pOH of basic buffer is:

a)
$$pOH = pK_b + \log \frac{[Conjugate acid]}{[Base]}$$

b) $pOH = pK_b - \log \frac{[Conjugate acid]}{[Base]}$
c) $pOH = pK_b + \log \frac{[Base]}{[Conjugate acid]}$
d) $pOH = pK_b - \log \frac{[Base]}{[Conjugate acid]}$

d) atm⁻²

d) 7

548. Which of the following is the weakest acid?		
a) HCl b) HF	c) H_2SO_4	d) HNO ₃
549. How many gram of NaOH must be present in one		
a) $0.20 \text{ g litre}^{-1}$ b) 0.4 g litre^{-1}	c) 4.0 g litre ⁻¹	d) 0.10 g litre ⁻¹
550. Approximate pH of 0.10 M aqueous H ₂ S solution	having K_1 and K_2 for H	H_2 S at 25°C 10 ⁻⁷ and 10 ⁻¹³
respectively, is:		
a) 4 b) 5	c) 9	d) 8
551. An aqueous solution whose pH is zero will be	e called as	
a) Acidic b) Basic	c) Neutral	d) Amphoteric
552. The concentration of KI and KCl in a certain s	solution containing b	oth is 0.001 M each. If 20 mL of
this solution is added to 20 mL of a saturated	l solution of AgI in w	ater. What will happen?
$(K_{\rm sp} {\rm AgCl} = 10^{-10}, K_{\rm sp} {\rm AgI} = 10^{-16})$		
a) AgI will be precipitated	b) AgCl will be p	recipitated
c) There will be no precipitate	d) Both AgCl and	l AgI will be precipitated
553. The equilibrium reaction that is not influence	ed by volume change	at constant temperature is
a) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	b) $N_2(g) + 3H_2(g)$	$g) \rightleftharpoons 2NH_3(g)$
c) $N_2O_4(g) \rightleftharpoons 2NO_2(g)$	d) $2NO(g) + O_2$	$\Rightarrow 2NO_2(g)$
554. Group IA metals react violently with water to pro	oduce nature in solu	tion.
a) Acidic b) Basic	c) Amphoteric	d) Neutral
555. $A + B = C + D$. If initially the concentration	of A and B are both	equal but at equilibrium,
concentration of <i>D</i> will be twice of that of <i>A</i> ,	then what will be the	e equilibrium constant of
reaction?		
a) $\frac{4}{9}$ b) $\frac{9}{4}$	c) $\frac{1}{2}$	d) 4
556. The phenomenon of interaction of anions and ca	tions furnished by a el	ectrolyte with the H ⁺ and OH ⁻ ions
of water to produce acidic nature or alkalinity is		
	5 5	5 5
a) The pH may either increase or decrease	5 5	5
a) The pH may either increase or decrease b) All the salts (except those made up with stron		
b) All the salts (except those made up with stronc) The variation of pH depends upon the nature	g acid and base) under	go hydrolysis
b) All the salts (except those made up with stronc) The variation of pH depends upon the nature d) All of the above	g acid and base) under	go hydrolysis
b) All the salts (except those made up with stron c) The variation of pH depends upon the nature d) All of the above $557. A_2(g) + B_2(g) \rightleftharpoons 2AB(g), \Delta H = -ve$	g acid and base) under	go hydrolysis
 b) All the salts (except those made up with stron c) The variation of pH depends upon the nature d) All of the above 557. A₂(g) + B₂(g) ≈ 2AB(g), ΔH = -ve The reaction 	g acid and base) under of salts as well as on th	go hydrolysis e temperature
 b) All the salts (except those made up with stron c) The variation of pH depends upon the nature d) All of the above 557. A₂(g) + B₂(g) ≈ 2AB(g), ΔH = -ve The reaction a) Remains unaffected by pressure 	g acid and base) under of salts as well as on th b) Occurs at 1000	go hydrolysis e temperature atm pressure
 b) All the salts (except those made up with stron c) The variation of pH depends upon the nature of d) All of the above 557. A₂(g) + B₂(g) ≓ 2AB(g), ΔH = -ve The reaction a) Remains unaffected by pressure c) Occurs at high temperature 	g acid and base) under of salts as well as on th b) Occurs at 1000 d) Occurs at high	go hydrolysis e temperature atm pressure pressure and high temperature
 b) All the salts (except those made up with stron c) The variation of pH depends upon the nature d) All of the above 557. A₂(g) + B₂(g) ≈ 2AB(g), ΔH = -ve The reaction a) Remains unaffected by pressure c) Occurs at high temperature 558. 20 mL of 0.5 N HCl and 35 mL of 0.1 N NaOH 	g acid and base) under of salts as well as on th b) Occurs at 1000 d) Occurs at high are mixed. The resul	go hydrolysis e temperature atm pressure pressure and high temperature
 b) All the salts (except those made up with stron c) The variation of pH depends upon the nature of d) All of the above 557. A₂(g) + B₂(g) ≈ 2AB(g), ΔH = -ve The reaction a) Remains unaffected by pressure c) Occurs at high temperature 558. 20 mL of 0.5 N HCl and 35 mL of 0.1 N NaOH a) Be neutral 	g acid and base) under of salts as well as on th b) Occurs at 1000 d) Occurs at high are mixed. The resul b) Be basic	go hydrolysis e temperature atm pressure pressure and high temperature lting solution will
 b) All the salts (except those made up with stron c) The variation of pH depends upon the nature of d) All of the above 557. A₂(g) + B₂(g) ≈ 2AB(g), ΔH = -ve The reaction a) Remains unaffected by pressure c) Occurs at high temperature 558. 20 mL of 0.5 N HCl and 35 mL of 0.1 N NaOH a) Be neutral c) Turn phenolphthalein solution pink 	g acid and base) under of salts as well as on th b) Occurs at 1000 d) Occurs at high are mixed. The resul b) Be basic d) Turn methyl o	rgo hydrolysis e temperature) atm pressure pressure and high temperature lting solution will prange red
 b) All the salts (except those made up with stron c) The variation of pH depends upon the nature d) All of the above 557. A₂(g) + B₂(g) ≈ 2AB(g), ΔH = -ve The reaction a) Remains unaffected by pressure c) Occurs at high temperature 558. 20 mL of 0.5 N HCl and 35 mL of 0.1 N NaOH a) Be neutral c) Turn phenolphthalein solution pink 559. A solution which is 10⁻³M each in Mn²⁺, Fe²⁺ 	g acid and base) under of salts as well as on th b) Occurs at 1000 d) Occurs at high are mixed. The resul b) Be basic d) Turn methyl o ⁺ , Zn ²⁺ and Hg ²⁺ is tr	rgo hydrolysis e temperature) atm pressure pressure and high temperature lting solution will prange red
 b) All the salts (except those made up with stron c) The variation of pH depends upon the nature of d) All of the above 557. A₂(g) + B₂(g) ≈ 2AB(g), ΔH = -ve The reaction a) Remains unaffected by pressure c) Occurs at high temperature 558. 20 mL of 0.5 N HCl and 35 mL of 0.1 N NaOH a) Be neutral c) Turn phenolphthalein solution pink 559. A solution which is 10⁻³M each in Mn²⁺, Fe²⁺ ion. If K_{sp} of MnS, FeS, ZnS and HgS are 10⁻¹ 	g acid and base) under of salts as well as on th b) Occurs at 1000 d) Occurs at high are mixed. The resul b) Be basic d) Turn methyl o ⁺ , Zn ²⁺ and Hg ²⁺ is th	rgo hydrolysis e temperature) atm pressure pressure and high temperature lting solution will prange red
b) All the salts (except those made up with stron c) The variation of pH depends upon the nature of d) All of the above $557. A_2(g) + B_2(g) \rightleftharpoons 2AB(g), \Delta H = -ve$ The reaction a) Remains unaffected by pressure c) Occurs at high temperature 558. 20 mL of 0.5 N HCl and 35 mL of 0.1 N NaOH a) Be neutral c) Turn phenolphthalein solution pink $559. \text{ A solution which is } 10^{-3}\text{M}$ each in Mn^{2+} , Fe ²⁺ ion. If K_{sp} of MnS, FeS, ZnS and HgS are 10^{-1} $10^{-23}, 10^{-20}$ and 10^{-54} respectively, which of	g acid and base) under of salts as well as on th b) Occurs at 1000 d) Occurs at high are mixed. The resul b) Be basic d) Turn methyl o ⁺ , Zn ²⁺ and Hg ²⁺ is th	rgo hydrolysis e temperature) atm pressure pressure and high temperature lting solution will prange red
b) All the salts (except those made up with stron c) The variation of pH depends upon the nature of d) All of the above $557. A_2(g) + B_2(g) \rightleftharpoons 2AB(g), \Delta H = -ve$ The reaction a) Remains unaffected by pressure c) Occurs at high temperature 558. 20 mL of 0.5 N HCl and 35 mL of 0.1 N NaOH a) Be neutral c) Turn phenolphthalein solution pink $559. \text{ A solution which is } 10^{-3}\text{ M each in } \text{Mn}^{2+}, \text{ Fe}^{2+}$ ion. If K_{sp} of MnS, FeS, ZnS and HgS are 10^{-1} . $10^{-23}, 10^{-20}$ and 10^{-54} respectively, which of precipitate first?	g acid and base) under of salts as well as on th b) Occurs at 1000 d) Occurs at high are mixed. The resul b) Be basic d) Turn methyl o ⁺ , Zn ²⁺ and Hg ²⁺ is tr ⁵ ,	rgo hydrolysis e temperature atm pressure pressure and high temperature tring solution will prange red reated with 10^{-16} M sulphide
b) All the salts (except those made up with stron c) The variation of pH depends upon the nature of d) All of the above $557. A_2(g) + B_2(g) \rightleftharpoons 2AB(g), \Delta H = -ve$ The reaction a) Remains unaffected by pressure c) Occurs at high temperature 558. 20 mL of 0.5 N HCl and 35 mL of 0.1 N NaOH a) Be neutral c) Turn phenolphthalein solution pink $559. \text{ A solution which is } 10^{-3}\text{M}$ each in Mn^{2+} , Fe ²⁻¹ ion. If K_{sp} of MnS, FeS, ZnS and HgS are $10^{-1.1}$ $10^{-2.3}, 10^{-2.0}$ and $10^{-5.4}$ respectively, which of precipitate first? a) FeS b) MgS	g acid and base) under of salts as well as on th b) Occurs at 1000 d) Occurs at high are mixed. The resul b) Be basic d) Turn methyl o ⁺ , Zn ²⁺ and Hg ²⁺ is th	rgo hydrolysis e temperature) atm pressure pressure and high temperature lting solution will prange red
b) All the salts (except those made up with stron c) The variation of pH depends upon the nature of d) All of the above $557. A_2(g) + B_2(g) \rightleftharpoons 2AB(g), \Delta H = -ve$ The reaction a) Remains unaffected by pressure c) Occurs at high temperature 558. 20 mL of 0.5 N HCl and 35 mL of 0.1 N NaOH a) Be neutral c) Turn phenolphthalein solution pink $559. \text{ A solution which is } 10^{-3}\text{ M each in } \text{Mn}^{2+}, \text{ Fe}^{2+}$ ion. If K_{sp} of MnS, FeS, ZnS and HgS are $10^{-1.4}$ $10^{-23}, 10^{-20}$ and 10^{-54} respectively, which of precipitate first? a) FeS b) MgS 560. Ostwald's dilution law is applicable for	g acid and base) under of salts as well as on th b) Occurs at 1000 d) Occurs at high are mixed. The resul b) Be basic d) Turn methyl o ⁺ , Zn ²⁺ and Hg ²⁺ is tr ⁵ , one will c) HgS	rgo hydrolysis e temperature 0 atm pressure pressure and high temperature brange red reated with 10^{-16} M sulphide d) ZnS
b) All the salts (except those made up with stron c) The variation of pH depends upon the nature of d) All of the above $557. A_2(g) + B_2(g) \rightleftharpoons 2AB(g), \Delta H = -ve$ The reaction a) Remains unaffected by pressure c) Occurs at high temperature 558. 20 mL of 0.5 N HCl and 35 mL of 0.1 N NaOH a) Be neutral c) Turn phenolphthalein solution pink $559. \text{ A solution which is } 10^{-3}\text{ M} \text{ each in } \text{Mn}^{2+}, \text{Fe}^{2-1}$ ion. If K_{sp} of MnS, FeS, ZnS and HgS are 10^{-1} . $10^{-23}, 10^{-20}$ and 10^{-54} respectively, which of precipitate first? a) FeS b) MgS 560. Ostwald's dilution law is applicable for a) Weak electrolyte	g acid and base) under of salts as well as on th b) Occurs at 1000 d) Occurs at high are mixed. The resul b) Be basic d) Turn methyl o ⁺ , Zn ²⁺ and Hg ²⁺ is th ⁵ , one will c) HgS b) Strong electro	rgo hydrolysis e temperature 0 atm pressure pressure and high temperature lting solution will 0 range red reated with 10 ⁻¹⁶ M sulphide d) ZnS
b) All the salts (except those made up with stron c) The variation of pH depends upon the nature of d) All of the above 557. $A_2(g) + B_2(g) \rightleftharpoons 2AB(g), \Delta H = -ve$ The reaction a) Remains unaffected by pressure c) Occurs at high temperature 558. 20 mL of 0.5 N HCl and 35 mL of 0.1 N NaOH a) Be neutral c) Turn phenolphthalein solution pink 559. A solution which is 10^{-3} M each in Mn ²⁺ , Fe ²⁺ ion. If K_{sp} of MnS, FeS, ZnS and HgS are 10^{-1} . $10^{-23}, 10^{-20}$ and 10^{-54} respectively, which of precipitate first? a) FeS b) MgS 560. Ostwald's dilution law is applicable for a) Weak electrolyte c) Both weak and strong electrolyte	g acid and base) under of salts as well as on th b) Occurs at 1000 d) Occurs at high are mixed. The resul b) Be basic d) Turn methyl o ⁺ , Zn ²⁺ and Hg ²⁺ is tr ⁵ , one will c) HgS b) Strong electro d) Non-electroly	rgo hydrolysis e temperature 9 atm pressure pressure and high temperature bring solution will orange red reated with 10 ⁻¹⁶ M sulphide d) ZnS
b) All the salts (except those made up with stron c) The variation of pH depends upon the nature of d) All of the above 557. $A_2(g) + B_2(g) \rightleftharpoons 2AB(g), \Delta H = -ve$ The reaction a) Remains unaffected by pressure c) Occurs at high temperature 558. 20 mL of 0.5 N HCl and 35 mL of 0.1 N NaOH a) Be neutral c) Turn phenolphthalein solution pink 559. A solution which is 10^{-3} M each in Mn ²⁺ , Fe ²⁺ ion. If K_{sp} of MnS, FeS, ZnS and HgS are 10^{-1} . $10^{-23}, 10^{-20}$ and 10^{-54} respectively, which of precipitate first? a) FeS b) MgS 560. Ostwald's dilution law is applicable for a) Weak electrolyte c) Both weak and strong electrolyte 561. The equilibrium PCl ₅ (g) \rightleftharpoons PCl ₃ (g) + Cl ₂ (g) show	g acid and base) under of salts as well as on th b) Occurs at 1000 d) Occurs at high are mixed. The resul b) Be basic d) Turn methyl o ⁺ , Zn ²⁺ and Hg ²⁺ is tr ⁵ , one will c) HgS b) Strong electro d) Non-electroly	rgo hydrolysis e temperature 9 atm pressure pressure and high temperature bring solution will orange red reated with 10 ⁻¹⁶ M sulphide d) ZnS
b) All the salts (except those made up with stron c) The variation of pH depends upon the nature of d) All of the above 557. $A_2(g) + B_2(g) \rightleftharpoons 2AB(g), \Delta H = -ve$ The reaction a) Remains unaffected by pressure c) Occurs at high temperature 558. 20 mL of 0.5 N HCl and 35 mL of 0.1 N NaOH a) Be neutral c) Turn phenolphthalein solution pink 559. A solution which is 10^{-3} M each in Mn ²⁺ , Fe ²⁺ ion. If K_{sp} of MnS, FeS, ZnS and HgS are 10^{-1} . $10^{-23}, 10^{-20}$ and 10^{-54} respectively, which of precipitate first? a) FeS b) MgS 560. Ostwald's dilution law is applicable for a) Weak electrolyte c) Both weak and strong electrolyte	g acid and base) under of salts as well as on th b) Occurs at 1000 d) Occurs at high are mixed. The resul b) Be basic d) Turn methyl o ⁺ , Zn ²⁺ and Hg ²⁺ is tr ⁵ , one will c) HgS b) Strong electro d) Non-electroly	rgo hydrolysis e temperature 9 atm pressure pressure and high temperature bring solution will orange red reated with 10 ⁻¹⁶ M sulphide d) ZnS

$F(2, A + 0.0\%)$ means the [11+] 10^{-6} M (6100 m).		~ 1.501 M KOU - $t.00\%$
562. At 90°C, pure water has $[H^+] = 10^{-6}$ M, if 100 mL of the negative resulting solution will be	DI U.Z M HUI IS added to 200	mL of 0.1 M KOH at 90°C
then pH of the resulting solution will be	a) 1	d) (
a) 7 b) 8 563. In a reaction, the rate of reactions is proportional to	c) 4	d) 6 mont is known as
a) Law of mass-action	b) Le-Chatelier principle	
c) Faraday law of electrolysis	d) Law of constant prop	
	uj Law of constant prop	
564. The values of K_{p_1} and K_{p_2} for the reactions		
$X \rightleftharpoons Y + Z \qquad \dots (1)$		
and $A \rightleftharpoons 2B$ (2)		
are in the ration 9 : 1. If degree of dissociation of 2	r and A be equal, then tota	i pressure at equilibrium (1)
and (2) are in the ratio :		
a) 1:9 b) 36:1	c) 1:1	d) 3 : 1
565. Which of the following is not a characteristic p		
a) Rate of forward reaction is equal to rate of b	ackward reaction at equi	librium
b) After reaching the chemical equilibrium, the	concentrations of reacta	nts and products remain
unchanged with time		
For $A(g) \rightleftharpoons B(g), K_c$ is 10^{-2} . If this reaction i	s carried out in the prese	ence of catalyst, the value
c) of K_c decreases	Ĩ	5
d) After reaching the equilibrium, both forward	l and hackward reactions	continue to take place
566. Which molecule is an electron donor?		continue to take place
a) NH_3 b) BF_3	c) PF_5	d) AsF ₅
567. The correct expression for the solubility produ		
a) 108 s ⁵ b) 27 s ⁵	c) 16 <i>s</i> ⁴	d) 81 s ⁴
568. pH of solution can be expressed as		
a) $-\log_e[H^+]$ b) $-\log_{10}[H^+]$	c) $\log_e[H^+]$	d) log ₁₀ [H ⁺]
569. Which aqueous solution will have pH less than 7?		
a) KNO ₃ b) NaOH	c) NaCN	d) FeCl ₃
570. If the salts M_2X , QY_2 and PZ_3 have the same solubil	ities, <i>K_{sp}</i> values are related	as:
a) $K_{sp}(M_2X) = K_{sp}(QY_2) < K_{sp}(PZ_3)$	-	
b) $K_{sp}(M_2X) > K_{sp}(QY_2) = K_{sp}(PZ_3)$		
c) $K_{sp}(M_2X) = K_{sp}(QY_2) = K_{sp}(PZ_3)$		
d) $K_{sp}(M_2X) > K_{sp}(QY_2) > K_{sp}(PZ_3)$		
571. The pH values of 0.1 M solution of HCl, CH_3COC		
	b) CH ₃ COONa < NH ₄ C	-
, i 5 5	d) All will have same o	•
572. When rain is accompanied by a thunderstorm the o	collected rain water will have	<i>r</i> e a pH value:
a) Uninfluenced by occurrence of thunderstorm		
b) Depending on the amount of dust in air		
c) Slightly lower than that of rain water without th	understorm	
d) Slightly higher than that when the thunderstorm	is not there	
573. Ammonia gas dissolves in water to form NH ₄ OH. In	this reaction water acts as	
a) A conjugate base b) A non-polar solvent	c) An acid	d) A base
574. pH scale was introduced by		
a) Arrhenius b) Sorensen	c) Lewis	d) Lowry
575. Given : $[Ag(NH_3)_2]^+ \rightleftharpoons Ag(NH_3)^+ + NH_3; K_1^0 =$	1.4×10^{-4}	
$Ag(NH_3)^+ \rightleftharpoons Ag^+ + NH_3;$ $K_2^0 =$		
The instability constant of the complex Ag $(NH_3)_2^+$		
a) 7.14×10^3 b) 2.33×10^3	c) 6.02×10^{-8}	d) 1.66×10^7
, <u> </u>	,	,

576. An aqueous solution contains Ni^{2+} , Co^{2+} and Pb	o ²⁺ ions at equal concent	rations. The solubility
product of NiS, PbS and CoS in water at 25°C are	e $1.4 imes 10^{-24}$, $3.4 imes 10^{-2}$	28 and 3 $ imes$ 10 ⁻²⁶ ,
respectively. Indicate which of these ions will b	e precipitated first and l	ast when sulphide
concentration is progressively increased from z	zero?	
a) NiS and PbS b) NiS and CoS		d) PbS and NiS
$577.\ 10^{-6}$ M NaOH is diluted 100 times. The pH of th	•	
a) Between 7 and 8 b) Between 5 and 6		d) Between 10 and 11
578. An acid with molecular formula $C_7H_6O_3$ forms three $C_7H_3O_3Na_3$. The basicity of the acid is:	e types of souruin saits, <i>i.e</i>	$., C_7 \Pi_5 O_3 \Lambda a, C_7 \Pi_4 O_3 \Lambda a_2 and$
a) One b) Two	c) Three	d) Four
579. If the concentration of CrO_4^{2-} ion in a saturated solu	-	2
product of silver chromate will be:	ation of silver childhate be	2×10^{-10} M, solubling
-	c) 32 × 10 ⁻¹²	d) 6×10^{-12}
580. What would be the effect on addition of $CaCO_3$ or		
closed container:		$_3(3) \leftarrow cao(3) + co_2(g) \ \text{in a}$
a) conc. of CO_2 increases		
b) conc. of CO_2 decreases		
c) Remains unaffected		
d) Cannot be predicted		
581. In a chemical equilibrium, the rate constant of the b	ackward reaction is 7.5 x	10^{-4} and the equilibrium
constant is 1.5. So, the rate constant of the forward		
	c) 3.335×10^{-5}	d) 1 125 x 10^{-1}
582. 0.1 <i>M</i> acetic acid solution is titrated against 0.1 <i>M</i>		
between 1/4 and 3/4 stages of neutralization of aci		suid be the unterence in pri
	c) log 1/3	d) 2 log 3
583. For a concentrated solution of a weak electroly	, .	, .
dissociation $'\alpha'$ is given as		
a) $\alpha = \sqrt{K_{eq}/C(x+y)}$	b) $\alpha = \sqrt{K_{eq}C/(xy)}$	
c) $\alpha = (K_{eq}/C^{x+y-1}x^xy^y)^{1/(x+y)}$	d) $\alpha = (K_{eq}/Cxy)$	
584. The values of dissociation constant of some acids (a		
a) 1.4×10^{-2} b) 1.6×10^{-4}	c) 4.4×10^{-10}	d) 4.3×10^{-7}
585. In a mixture of acetic acid and sodium acetate t		i of the salt to the acid is
increased ten times. Then, the pH of the solutio		
a) Increases by one b) Decreases by one	c) Decreases ten fold	d) Increased ten fold
586. Which of the following salts is most soluble?		
a) $Bi_2S_3(K_{sp} = 1 \times 10^{-17})$	b) MnS($K_{sp} = 7 \times 10^{-10}$	¹⁶)
c) $CuS(K_{sp} = 8 \times 10^{-37})$	d) $Ag_2S(K_{sp} = 6 \times 10^{-1}$	⁻⁵¹)
587. van't Hoff's equation giving the effect of temperatur	1	
	-	-
a) $\frac{d \ln F}{dT} = \frac{\Delta H}{RT^2}$ b) $\frac{d \ln K_p}{dT} = \frac{\Delta HT^2}{R}$	c) $\frac{1}{dT} = \frac{1}{RT^2}$	d) $\frac{dT}{dT} = \frac{\Delta H}{\Delta H}$
588. Hydrogen and oxygen were heated together in a	closed vessel. The equil	ibrium constant is found to
decrease after 2000°C. Which is responsible for this	?	
a) Backward reaction predominates		
b) Forward reaction predominates		
c) Both forward and backward reactions have same	e rate	
d) It is a property of the system, hence no reason for	r lower value	

d) It is a property of the system, hence no reason for lower value 589. The dissociation constant of HCN is 1.3×10^{-9} . The value of hydrolysis constant of KCN will be:

-) 1 2 10-9	L) 10-14	-) 7710-5	J) 0 77 · · 10-5
a) 1.3×10^{-9}	b) 10^{-14}		d) 0.77×10^{-5}
••			sium bromide (molar mass
		05 M solution of silver nit	trate to start the
precipitation of AgB		.) (2, 105	
a) 1.2 10 ¹⁰ g		c) 6.2 10 ⁵ g	
	osition of potassium chlor	tate given as $2KCIO_3 \rightarrow 2KC$	$cl + 30_2$, law of mass action
a) Can be applied b) Cannot be applied			
c) Can be applied at lo	w temperature		
	igh temperature and press	ure	
592. The solubility product			1.21×10^{-6} . Its molar
solubility is		•	
a) 1.21 × 10 ⁻⁶	b) 1.21 × 10 ⁻³	c) 1.1×10^{-4}	d) 1.1×10^{-3}
593. What is the correct rep	presentation for the solubi	lity product of SnS ₂ ?	
a) [Sn ²⁺][S ^{2–}] ²	b) [Sn ⁴⁺][S ^{2–}] ²	c) [Sn ²⁺][2S ²⁻]	d) $[Sn^{4+}][2S^{2-}]^2$
594. Which of the followi			
a) 10 ⁻⁴	b) 10 ⁻⁸	c) 10 ⁻⁵	d) 10 ⁻²
595. An electrolyte			
a) Gives complex ions		b) Dissolves in water	
c) Is ionised in the sol		d) Generates ions on p	bassing electric current
596. The strongest base am		-) NH=	1) OII-
a) CH_3^- 597. Given the reaction be	b) F ⁻	c) NH_2^-	d) OH^-
		by A_2 and D_2 to give the eq	mpound AD _(g) .
$A_{2(g)} + B_{2(g)}$ At equilibrium, the co			
of $A_2 = 3.0 \times 10^{-3}$ M			
of $R_2 = 3.0 \times 10^{-3} \text{ M}$ of $B_2 = 4.2 \times 10^{-3} \text{ M}$			
of $AB = 2.8 \times 10^{-3}$ M			
If the reaction takes p	ace in a sealed vessel at 52	27° C, then the value of K_c w	rill be :
a) 2.0	b) 1.9	c) 0.62	d) 4.5
598. For the reaction, $A +$	$B \rightleftharpoons C + D$, the initial co	oncentration of A and B a	are equal, but the equilibrium
concentration of C is t	wice that of equilibrium co	oncentration of A. The equili	brium constant is :
a) 4	b) 9	c) 1/4	d) 1/9
599. For the reaction,			
		quilibrium can be shifted	to the right by
a) Doubling the volu			
b) Increasing the ten	•		
-	olar quantities of PCl_3 and	nd PCl ₅	
d) Addition of Cl ₂ at			
600. The solubility of AgCl			
a) 0.1 <i>M</i>	b) $1.2 \times 10^{-6} M$	c) $1.2 \times 10^{-9} M$	-
	ium exists in aqueous solu	tion $CH_3COOH \rightleftharpoons H^+ + CH$	$_{3}$ COO ⁻ . If dilute HCl is added to
this solution:	a stant will in sussa		
a) The equilibrium co b) The equilibrium co			
c) Acetate ion concent			
d) Acetate ion concent			
602. What is the solubility		ated solution contains 0.01	7 g of CaF ₂ per litre?
a) 1.44×10^{-4}	b) 4.14×10^{-11}	c) 4.14×10^{-18}	d) 41.4×10^{-24}

603. Which of the following will occur if a 0.1 M s	olution of weak acid is dilute	d to 0.01 M at constant
temperature?		
a) pH will increase	b) <i>K</i> _a will decrease	
c) [H ⁺] will decrease to 0.01 M	d) % ionisation will	increase
604. Passing H_2S gas into a mixture of Mn^2 , N	ⁱ² , Cu ² and Hg ² ions in an a	cidified aqueous solution
precipitates		
a) CuS and HgS b) MnS and CuS		ş 0
605. The pH of an aqueous solution of CH_3CO		
a) $7 - \frac{1}{2}pK_a - \frac{1}{2}\log C$	b) $\frac{1}{2}pK_w + \frac{1}{2}pK_b +$	Z
c) $\frac{1}{2}pK_w - \frac{1}{2}pK_b - \frac{1}{2}\log C$	d) $\frac{1}{2}pK_w + \frac{1}{2}pK_a +$	$-\frac{1}{2}\log C$
606. The concentration of [H ⁺] and concentration	n of [OH ⁻] of a 0.1 <i>M</i> aqueous	solution of 2% ionised weak acid
is:		
[ionic product of water = 1×10^{-14}]		
a) $0.02 \times 10^{-3} M$ and $5 \times 10^{-11} M$		
b) $1 \times 10^{-3} M$ and $3 \times 10^{-11} M$		
c) $2 \times 10^{-3} M$ and $5 \times 10^{-12} M$		
d) $3 \times 10^{-2} M$ and $4 \times 10^{-13} M$		
607. For a weak acid pK_a is 4.8. What will be t	the ratio of concentration of	of acid and salt in pH 5.8
solution?		
a) 10 b) 3	c) 9	d) 0.1
608. Two system $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ and		
in a vessel at constant volume. If some CO	is introduced into the vessel	then at the new equilibrium the
concentration of :		
a) PCl ₅ is greater		
b) PCl_3 remains unchanged		
c) PCl_5 is less		
d) Cl_2 is greater	$x = 100 V = 2.0 \times 10^{-11}$	
609. The solubility product of Ag_2CrO_4 in wat		what will be the concentration
of CrO_4^{2-} ions in the saturated solution of		
a) 2×10^{-4} M b) 5.7×10^{-5} M		,
610. Sulphide ions in alkaline solution react equilibrium constant for the formation of S Equilibrium constant for the formation of S_3^2	S_2^{2-} and S_3^{2-} from S and S^{2-}	
a) 1.33 b) 3.11	c) 4.21	d) 1.63
611. The pH of water is 7 at 25°C. If water is heat	,	-
a) pH will decrease	,	0
b) pH will increase		
c) pH will remain seven		
d) [H ⁺] will increase but [OH ⁻] will decrease		
612. The conjugate acid of NH_2^- is		
a) N_2H_4 b) NH_4^+	c) NH ₂ OH	d) NH ₃
613. pH of a solution of the mixture of 0.1 <i>N</i> HCl a		5 5
a) 1 b) 2	c) 1.7	d) None of these
614. A buffer solution is prepared by mixing 10 m	,	-
diluted to 100 mL with distilled water. If the		
diluted to 100 mL with distilled water. If the prepared?		
	pK_a of CH ₃ COOH is 4.76, wh c) 4.34	

	n of acetic acid and alcohol are heated in the presence of little	
conc. H_2SO_4 . On equilibrium being atta		
a) 1 mole of ethyl acetate is formed	b) 2 mole of ethyl acetate is formed	
c) $\frac{2}{3}$ mole of ethyl acetate is formed	d) $\frac{1}{2}$ mole of ethyl acetate is formed	
616. When the pH of a solution is 2, the hydrogeneous is a solution of the solution is 2.	-	
a) $1 \times 10^{-14} M$ b) $1 \times 10^{-14} M$		
	rium, $AB(s) \rightleftharpoons A(g) + B(g)$, the new equilibrium concentration	on of A
becomes double, the equilibrium cone a) 1/2 of its original value		
b) 1/4 of its original value		
c) 1/8 of its original value		
d) Twice of its original value		
618. The change in pressure will not aff	ect the equilibrium constant for	
a) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ b) $PCl_5 \rightleftharpoons$	-	
	d H ₂ is 0.7, 0.1 and 0.1 <i>M</i> respectively. The equilibrium constant	ant for
the reaction, $I_2 + H_2 \rightleftharpoons 2HI$ is :		
a) 0.36 b) 36	c) 49 d) 0.49	
620. The dissociation constant of acetic	acid K_a is 1.74 $ imes$ 10 ⁻⁵ at 298 K. The pH of a solution of 0.1	1 M
acetic acid is		
a) 2.88 b) 3.6	c) 4.0 d) 1.0	
621. What is the effect of increasing pressu	re on the dissociation of PCl ₅ according to the equation	
$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g) - x \text{ cal}?$		
a) Dissociation decreases	b) Dissociation increases	
c) Dissociation does not change	d) None of the above	
622. The ionic product of water at 60°C is 9		
a) 6.51 b) 6.70	c) 9.61 d) 7.0	
	\Rightarrow 2NO ₂ (g), the concentration of N ₂ O ₄ and NO ₂ at equilibrium ectively. The value of K_c for the reaction is	1 are
a) 3×10^{-3} mol/L b) 3.3×10^{-3}		
	where as second dissociation is 50% and third dissociation is	
negligible then the pH of 4×10^{-3} M $_{\odot}$		
a) 7.5 b) 9.54	c) 11.78 d) 13.25	
625. The equilibrium constant for the read	tion, $3C_2H_2 \rightleftharpoons C_6H_6$ is 4.0 at T K. If the equilibrium concentra	tion of
C_2H_2 is 0.5 mol/litre, the concentration		
a) 0.5 <i>M</i> b) 1.5 <i>M</i>	c) $5 \ge 10^{-2} M$ d) $0.25 M$	
626. For the reaction, $CH_4(g) + 2O_2(g) \rightleftharpoons C$		
$\Delta_{\rm r} H = -170.8 \rm kJ$		
Which of the following statements is i		
a) Addition of $CH_4(g)$ or $O_2(g)$ at equ	ibrium will cause a shift to the right	
b) The reaction is exothermic	$f(0, \alpha)$ and $H(0, \alpha)$ are not equal	
c) At equilibrium, the concentrations		
d) The equilibrium constant for the re	action is given by $K_p = \frac{1}{[CH_4][O_2]}$	
627. The law of mass action was enunciate	l by	
a) Graham b) Bodeste	, , , ,	lage
628. The correct statement about buffer so		
a) It contains a weak acid and its conj	-	
b) It contains a weak base and its conc) It shows little change in pH on add	-	
d) All of the above	ig sman amount of an actu of dase	
aj mi or the above		

629. Which reaction has $\Delta n = 2$? a) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ b) $3Fe(s) + 4H_2O(g) \rightleftharpoons Fe_3O_4(s) + 4H_2(g)$ c) $NH_4Cl(g) \rightleftharpoons NH_3(g) + HCl(g)$ d) $CuSO_4 \cdot 5H_2O(s) \rightleftharpoons CuSO_4 \cdot 3H_2O(s) + 2H_2O(g)$ 630. In the reaction, $N_2O_4 \rightleftharpoons 2NO_2$, α is that part of N_2O_4 which dissociates, then the number of moles at equilibrium will be d) $(1 - \alpha)^2$ c) $(1 + \alpha)$ a) 1 b) 3 631. Decreasing acid strengths of HI, HBr, HCl and HF is: a) HF > HCl > HBr > HIb) HI > HBr > HCl > HFc) HI > HCl > HBr > HFd) HI > HF > HCl > HBr632. A monoprotic acid in 0.1 *M* solution has $K_a = 1.0 \times 10^{-5}$. The degree of dissociation acid is: a) 1.0% b) 99.9% c) 0.1% d) 99% 633. In what manner will increase of pressure affect the following equation? $C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2O(g)$ a) Shift in the reverse direction b) Shift in the forward direction c) Increase in the yield of hydrogen d) No effect 634. Which one of the following pair shows buffer's solution? a) NaCl + NaOH b) $CH_3COONa + CH_3COOH$ c) $CH_3COOH + CH_3COONH_4$ d) $H_2SO_4 + CuSO_4$ 635. A buffer solution is prepared in which the concentration of NH_3 is 0.30 M and the concentration of NH_4^+ is 0.20 *M*. If the equilibrium constant, K_b for NH₃ equals 1.8×10^{-5} what is the pH of this solution? $(\log 2.7 = 0.43)$ a) 8.73 b) 9.08 c) 9.43 d) 11.72 636. The degree of ionisation of a compound depends a) Size of solute molecules b) Nature of solute molecules c) Nature of vessel used d) Quantity of electricity passed 637. Amongst the following, the total number of compounds whose aqueous solution turns red litmus paper blue is K_2SO_4 (NH₄)₂C₂O₄ NaCl KCN Zn(NO₃)₂ FeCl₃ K₂CO₃ NH₄NO₃ LiCN b) 2 a) 1 c) 3 d) 4 638. The aqueous solution of a salt is alkaline. This shows that salt is made from: a) A strong acid and strong base b) A strong acid and weak base c) A weak acid and weak base d) A weak acid and strong base 639. Which of the following solutions cannot act as a buffer? a) $NaH_2PO_4 + H_3PO_4$ b) $CH_3COOH + CH_3COONa$ c) $HCl + NH_4Cl$ d) $H_3PO_4 + Na_2HPO_4$ 640. The relation for calculating pH of a solution containing weak acid and its salt is: a) pH = p K_a + log $\frac{[Conjugate base]}{[Acid]}$ b) pH = p K_a - log $\frac{[Conjugate base]}{[Acid]}$ c) pH = p K_a + log $\frac{[Conjugate base]}{[Salt]}$

	[Acid]		
d) pOH = $pK_a - \log a$	[Conjugate base]		
	solution of acetic acid havin	g degree of dissociation 12	2.5% is:
a) 4.509	b) 3.723	c) 2.903	d) 5.623
-	acidic in aqueous solution?	•) =:> • •	
a) NiCl ₂	b) FeCl ₃	c) AlCl ₃	d) BeCl ₂
, -	ction, equilibrium is suppos	5 6	
a) Mutual opposite			
,	al reactions become equal		
•	Freactants and resulting pro	ducts are equal	
	e of mutual opposite reaction		
	ich change will shift the rea	=	?
$I_2(g) \rightleftharpoons 2I(g), \Delta H^\circ_r$	-	r i i i i i i i i i i i i i i i i i i i	
a) Increase in temp		b) Increase in total	pressure
c) Increase in conce		d) Decrease in conc	-
645. Electrophiles are:		,	2
a) Lewis acids	b) Lewis bases	c) Bronsted acids	d) Bronsted bases
	ve constant acidity and alkal	,	, ,
	excess of H ⁺ or OH ⁻ ions	,	
b) They have fixed			
	ised acid or base on reaction	n with added acid or alkali	
	s in these solutions are shie		
			nixed [$K_{\rm sp}$ for AgCl = 10^{-10}]
a) 10^{-4} M AgNO ₃ a		_	-
c) 10^{-5} M AgNO ₃ a		d) 10^{-6} M AgNO ₃ at	
, , ,			nt K_{sp} but less than one the most
soluble salt is that:	, , , , , , , , , , , , , , , , , , ,	J F	sp
	maximum number of ions		
	minimum number of ions		
	more charge on ion		
d) None of the abov	-		
-		h brown coloured NO ₂ . At	equilibrium, when the flask is
	e brown colour deepens and		
enthalpy ΔH , for th	-		
a) Negative	b) Positive	c) Zero	d) Undefined
, ,	•	,	librium, 34 g of ammonia are
	prium number of moles of ni		_
a) 1, 1, 2	b) 1, 2, 2	c) 2, 1, 1	d) 2, 2, 1
,	0.001 M NH ₄ OH, when it is	-	
a) 5	b) 2.96	c) 9.04	d) 11.4
-	iert gas at constant volume t	,	-
a) The reaction half			
b) Forward reaction			
c) The reaction ren			
d) Backward reacti			
-	ent (Q) for the reaction is given by the re	zen by:	
$N_2(g) + 3H_2(g) \rightleftharpoons 1$	2NH ₃ ; $Q = \frac{[NH_3]^2}{[N_2][H_2]^3}$		
	roceed from right to left if:		
a) $Q = 0$	b) $Q = K_c$	c) $Q < K_c$	d) $Q > K_c$
u, y — 0	$b_{J} q = h_{C}$	$c_{j} q \leq n_{c}$	$u_{j} q > n_{c}$

654 Sulphuric acid is a c	libasic acid. Hence, it forms:		
a) Acidic salt			
b) Basic and acidic	salt		
c) Acidic and norm			
d) Double salt			
,	at 20°C is 1.435×10^{-3} g/	L. The solubility product (of AgCl is
a) 1×10^{-5}	b) 1×10^{-10}	c) 1.435×10^{-5}	
656. Le-Chatelier's princ	,	CJ 1.455 × 10	u) 100 × 10
a) $Fe(s) + S(s) \rightleftharpoons F$			
b) $H_2(g) + I_2(g) \rightleftharpoons$			
c) $N_2(g) + 3H_2(g)$			
d) $N_2(g) + O_2(g) \rightleftharpoons$	• • • •		
, 1.0, 1.0,	O_2 and O_2 gases are allowed	d to react to form SO ₃ in a	closed vessel. At
	of O_2 is used up. The total r		
a) 6.5	b) 7.0	c) 8.0	d) 2.0
	aqueous solution of sulphur	,	<i>y</i>
a) 0.005	b) 2	c) 1	d) 0.01
-	chloride is added to ammo		,
a) Increased	b) Seven	c) Decreased	d) Unchanged
-	_		the indicator concentration is
$1 \times 10^{-3} M$, is:			
a) 4	b) 5	c) 6	d) 3
661. The equilibrium, 2S	$0_2(g) + 0_2(g) \rightleftharpoons 2SO_3(g)$ shi	ifts forward if:	-
a) A catalyst is used			
b) An absorbent is u	used to remove SO ₃ as soon a	s it is formed	
c) Small amounts o	f reactants are used		
d) None of the abov	e		
662. 56 g of nitrogen a	nd 8 g of hydrogen gas are	heated in a closed vessel.	At equilibrium 34 g of
ammonia are pres	ent. The equilibrium numb	per of moles of nitrogen, h	ydrogen and ammonia are
respectively			
a) 1, 2, 2	b) 2, 2, 1	c) 1, 1, 2	d) 2, 1, 2
663. A white substance	having alkaline nature in s	solution is	
a) NaNO ₃	b) NH ₄ Cl	c) Na ₂ CO ₃	d) Fe ₂ O ₃
664. Which of the follo	wing is not a buffer solutio	n?	
a) 100 mL 0.1 M C	$H_3COOH + 50 mL 0.1 M CH$	H ₃ COONa	
b) 100 mL 0.1 M C	$H_3COOH + 50 \text{ mL } 0.1 \text{ M Na}$	aOH	
c) 50 mL 0.1 M CH	$I_3COOH + 100 \text{ mL } 0.1 \text{ M Na}$	aOH	
	$H_4OH + 50 \text{ mL } 0.1 \text{ M HCl}$		
	•	artial pressure of CO_2 and CO_2	0 are 4 and 8 atm respectively,
K_p for the reaction		· -	
a) 16 atm	b) 2 atm	c) 5 atm	d) 4 atm
666. For the reaction, H_2	$+ I_2 \rightleftharpoons 2HI$, the equilibrium	concetratio of H ₂ , I ₂ and HI	-
respectively. The ec	quilibrium constant of the rea	iction is	
a) 32.66	b) 34.33	c) 22.44	d) 11.22
667. The solubility prod	uct of Ag_2CrO_4 is 32×10^{-12} .	What is the concentration of	f CrO_4^- ions in that solution?
a) 2×10^{-4} M		c) $8 \times 10^{-4} M$	d) $8 \times 10^{-8} M$
-	onstant for the reaction,		
$2NO_2(g) \rightleftharpoons$	$2NO(g) + O_2(g)$ is 2×10^{-1}	⁻⁶ at 185°C.	

Then the equilibrium constant for	the reaction	
Then the equilibrium constant for $4NO(g) + 2O_2(g) \rightleftharpoons 4NO_2(g)$ at the function of the functi		
a) 2.5×10^{-5} b) 4×10^{-5}		d) 2×10^{6}
	,	,
669. At 25°C, the solubility product of 1		_
precipitating in the form of $Mg(0)$	_	
a) 9 b) 10	c) 11	d) 8
670. Precipitation just takes place when t a) Equals their solubility product	ine product of concentration of ions:	
b) Exceeds their solubility product		
c) Is less than their solubility product	t	
d) Is negligible		
671. The suitable indicator for the titratio	on of strong acid and weak base is	
a) Methyl orange b) Methyl	red c) Phenol red	d) Phenolphthalein
672. Tetramine copper (II) sulphate is an	example of:	
a) Simple salt b) Double	, , , , , , , , , , , , , , , , , , ,	d) Normal salt
673. The self ionisation constant for pure		-
1.22 g/cm ³ . The percentage of formi	_	
a) 0.002% b) 0.004%	2	d) 0.008%
674. The pH of blood is maintained by CO phenomenon is called:	$_2$ and $\pi_2 CO_3$ in the body and chemica	al constituents of blood. This
a) Colloidal b) Buffer	action c) Acidity	d) Salt balance
675. Weak electrolytes are only partly d	, <u>,</u>	-
given solution is known as the 'Degre		-
dissociation in aqueous solution is tr	rue?	
a) It is inversely proportional to the	-	f the electrolyte
b) It is directly proportional to the in	-	
c) It is independent of the initial con	-	
d) It depends on the equilibrium con 676. At a certain temperature, the diss	-	and agotic agid are
1.8×10^{-4} and 1.8×10^{-5} respec		
hydrogen ion has the same concer	-	
a) 0.01 M b) 0.001		d) 0.0001 M
677 . Partial pressure of O_2 in the react		u) 0.0001 M
$2Ag_2O(s) \rightleftharpoons 4Ag(s) + O_2(g)$		
a) K_p b) $\sqrt{K_p}$	c) $3\sqrt{K_p}$	d) $2K_p$
	•••	- 1
678. The solubility product of a salt ha		$er 1s 4 \times 10^{-12}$. The
concentration of M^{2+} ions in the a	-	
a) 4.0×10^{-10} M b) 1.6×10^{-10} M	-	d) 2.0×10^{-6} M
679. In a lime kiln, to get higher yield o		
a) To remove CaO	b) To add more Ca	5
c) To maintain high temperature	d) To pump out CO	J_2
680. Which of the following is a Bronsted a) Na ₂ CO ₃ b) H ₂ O	c) NH ₃	d) BF ₃
681. The rate constant for forward reaction	5 0	
1.5×10^{-3} per minute respectively.		
$CH_3COOC_2H_5 + H_2O \rightleftharpoons CH_3COOH +$		
a) 33.7 b) 7.33	c) 5.33	d) 33.3
682. Which acid is involved in digestion p	process?	

a) HF b) HCl	c) HBr d) HI
683. For $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$, the ol	oserved pressure for reaction mixture in equilibrium is 1.12 atm
at 106°C. The value of K_p for the reaction	is :
a) 3.136 atm ² b) 0.3136 atm ²	c) 31.36 atm ² d) 6.98 atm ²
684. A solution of NaCl in contact with atmosp	
a) 3.2 b) 5.4	c) 7.0 d) 14
685. Amines behave as	, , ,
a) Lewis acid b) Lewis base	c) Aprotic acid d) Neutral compound
686. The two Bronsted bases in the reaction ar	
HC ₂ O_4^- + PO ₄ ³⁻ \rightarrow HPO ₄ ²⁻ + C ₂ O ₄ ²⁻ :	e
a) $HC_2O_4^-$ and PO_4^{2-} b) HPO_4^{3-} and (10^{3} = 10^{3} = and 10^{2} = 10^{3} = 10^{2}
687. 1 M NaCl and 1 M HCl are present in an ac	
a) Not a buffer solution with $pH < 7$	b) Not a buffer solution with $pH > 7$
c) A buffer solution with $pH < 7$	d) A buffer solution with $pH > 7$
	r in the volumetric determination of the equivalent weight of a
weak acid would lead to:	
a) A low value for the equivalent weight	
b) A high value for the equivalent weight	
c) No error in the value	
d) Improved accuracy	
689. Arrange NH_4^+ , H_2O , H_3O^+ , HF and OH^-	
a) $H_3O^+ < NH_4^+ < HF < OH^- < H_2O$	b) $NH_4^+ < HF < H_3O^+ < H_2O < OH^-$
c) $OH^- < H_2O < NH_4^+ < HF < H_3O^+$	d) $H_3O^+ > HF > H_2O > NH_4^+ > OH^-$
690. Which of the following is a Lewis base?	
a) CH_4 b) C_2H_5OH	c) Acetone d) Secondary
691. An aqueous solution of sodium carbonate	is alkaline because sodium carbonate is a salt of
a) Weak acid and weak base	b) Strong acid and weak base
c) Weak acid and strong base	d) Strong acid and strong base
692. Which of the following is least likely to be	have as Lewis acid?
a) OH^{-} b) $H_{2}O$	c) NH_3 d) BF_3
693. Which statement is false in case of equilib	rium state?
a) There is no apparent change in proper	ies with time
b) It is dynamic in nature	
c) It can be attained from either side of th	e reaction
d) It can be attained from the side of the r	eactants only
694. The active mass of 45 g of KCl in a 3 L flas	s would be
a) 0.20 b) 2.0	c) 3 d) 4
695. A litre of solution is saturated with AgCl.T	o this solution if $1.0 imes 10^{-4}$ mole of solid NaCl is added, what
will be the [Ag ⁺] assuming no volume cha	nge?
a) More b) Less	c) Equal d) Zero
696. 9.2g N_2O_4 is heated in a 1L vessel till e	quilibrium state is established
$N_2O_4(g) \rightleftharpoons 2NO_2(g)$	
In equilibrium state 50% N_2O_4 was dis	ssociated, Equilibrium constant will be (mol. wt. of
$N_2O_4 = 92)$	
a) 0.1 b) 0.4	c) 0.3 d) 0.2
	ssure of CO_2 , CO and O_2 are 0.6, 0.4 and 0.2 atm $\Rightarrow 2CO_1 + O_2$ is
respectively. K_p for the reaction, 2CO ₂	
a) 0.088 b) 0.0533	c) 0.133 d) 0.177
698. Aqueous solution of sodium cyanide is	

a) Acidic b) Amphote	eric c) Basic	d) Neutral		
699. A mixture of N_2 and H_2 in the mole r	atio 1:3 is allowed to attain equilib	brium when 50% of mixture has		
reacted. If <i>P</i> is the equilibrium pressur	e, then partial pressure of NH ₃ form	ned is:		
a) <i>P</i> /6 b) <i>P</i> /2	c) <i>P</i> /3	d) <i>P</i> /4		
700. CH_3COOH is weaker acid than H_2SO	O_4 . It is due to			
a) More ionisation b) Less ion	isation c) Covalent bond	d) Electrovalent bond		
701. Equal volume of three acid solutions o	f pH 3,4 and 5 are mixed in a vessel	. What will be the H ⁺ ion		
concentration in the mixture?				
a) 3.7×10^{-4} M b) 3.7×10^{-10}	$^{-3}$ M c) 1.11×10^{-3} M	d) 1.11×10^{-4} M		
702. The ionisation of strong electrolyte	s in acetic acid, compared to in w	vater, is		
a) Weak, low	b) Strong, more			
c) Medium, the same	d) No ionisation, 10	00%		
703. A saturated solution of CaF ₂ is 2 \times				
a) 2.6×10^{-9} b) 4×10^{-9}		d) 3.2×10^{-11}		
704. The vapour density of PCl_5 is 104.16, b	,	,		
percentage of dissociation of PCl ₅ at th	-	r density is reduced to 02. The		
a) 6.8% b) 68%	c) 46%	d) 64%		
705. Which is not amphoteric?	-)			
a) HSO_4^- b) HCO_3^-	c) $H_2PO_4^-$	d) HCOO ⁻		
706. An amount of solid NH_4HS is placed	· - ·	,		
temperature and 0.50 atm pressure				
$\rm NH_3$ and $\rm H_2S$ gases in the flask. Wh				
pressure in the flask rises to 0.84 a	_	_		
-	the equilibrium constant for	MI4115 decomposition at this		
temperature is	.) 0.10	10.0.20		
a) 0.11 b) 0.17	c) 0.18	d) 0.30		
707. The correct order of acetic strength is:				
a) $Cl_2O_7 > SO_2 > P_4O_{10}$				
b) $CO_2 > N_2O_5 > SO_3$				
c) $Na_2 O > MgO > Al_2 O_3$ d) $K_2 O > CaO > MgO$				
	a vacation			
708. The equilibrium constant K_p for the	e reaction,			
$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ is				
a) More than one b) Less that	, I C	d) Zero		
709. Which of the following is least soluble	?			
a) $MnS(K_{sp} = 7 \times 10^{-16})$				
b) $FeS(K_{sp} = 7 \times 10^{-19})$				
c) $PtS(K_{sp} = 8 \times 10^{-73})$				
d) NiS($K_{sp} = 3 \times 10^{-12}$)				
710. The best explanation for the solubility	of MnS in dil. HCl is that:			
a) Solubility product of MnCl ₂ is less t	han that of MnS			
b) Concentration of Mn ²⁺ is lowered b	y the formation of complex ions wit	h chloride ions		
c) Concentration of sulphide ions is lo	wered by oxidation to free sulphur			
d) Concentration of sulphide ions is lowered by formation of the weak acid H_2S				
711. If the pOH of a solution is 6.0, then pH	is:			
a) 6 b) 8	c) 10	d) 14		
712. If the pH of a solution is 2, its normalit	y will be:			
a) 2 <i>N</i> b) 0.5 <i>N</i>	c) 0.01 <i>N</i>	d) None of these		
713. The pH of solution, whose hydrogen ic	on concentration is one mole per litr	e, will be:		

a) 1.0 714 Consider the reaction (b) 0.1	c) Zero	d) 1.5	
714. Consider the reaction e^{-260}				
$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_2(g)$	•		1	
	elier's principle, the conditi	on favourable for the forwa	ard reaction is	
	ature as well as pressure			
	rature and increasing the p	ressure		
c) Increasing the temp	=			
d) Any value of temper	-			
715. NH ₄ Cl is acidic becau				
	Cl gives weak base NH ₄ O	H and strong acid HCl		
b) Nitrogen donates a	pair of electrons			
c) It is a salt of weak a	acid and strong base			
d) On hydrolysis NH ₄	Cl gives strong base and v	weak acid		
716. In a buffer solution con	sisting of a weak acid and i	ts conjugate base, the ratio	of concentration of conjugate	
base to acid is increase	d tenfold; then the pH of the	e solution will:		
a) Increase by one	b) Increase tenfold	c) Decrease by one	d) Decrease tenfold	
717. The solubility in water				
a) 1×10^{-15}	b) 1 × 10 ⁻¹⁰	c) 4×10^{-15}	d) 4×10^{-10}	
718. If ClO_3^- is chlorate ion, t	-			
a) Hydrochloride acid	b) Chlorous acid	c) Chloric acid	d) Chlorate acid	
719. Which of the followin	-			
a) H ₂ O	b) Ag ⁺	c) NH ₃	d) OH-	
720. For a system in equilib	rium, $\Delta G = 0$, under conditi	ons of constant		
a) Temperature and pr	essure	b) Energy and volume		
c) Temperature and vo		d) Pressure and volume		
-	is HCl of pH 1.0, 900 mL of o	listilled water is added, the	pH of the resultant solution	
becomes:				
a) 1.0	b) 2.0	c) 4.0	d) 7.0	
722. 20 mL of a 0.1 <i>N</i> HCl is				
a) Zero	b) 7	c) 2	d) 9	
723. In a system : $A(s) \rightleftharpoons 2B(g) + 3C(g)$. If the concentration of <i>C</i> at equilibrium is increased by a factor 2, it will cause the equilibrium concentration of <i>B</i> to change to:				
-		ange to:		
a) Two times of its origb) One half of its origin				
c) $2\sqrt{2}$ times of its orig				
d) $\frac{1}{2\sqrt{2}}$ times of its origin	nal value			
724. The Bronsted acid whic	h gives the weakest conjug	ate base is:		
a) HF	b) H ₂ S	c) H ₂ 0	d) HCl	
725. How much sodium acet		M solution of CH ₃ COOH to g	give a solution of pH	
$= 5.5 (pK_a of CH_3 COOH)$				
a) 0.1 M	b) 0.01 M	c) 1.0 M	d) 10.0 M	
726. Which solution has p		40		
-	b) 10 ⁻¹⁰ M KOH	-	-	
727. A saturated solution pr	epared by dissolved CaF ₂ (s) in water, has $[Ca^{2+}] = 3.3$	3×10^{-4} M. What is the $K_{\rm sp}$ of	
CaF ₂ ?				
	b) 2.24 × 10 ⁻⁸		d) 1.67×10^{-8}	
728. When 1.0 mL of dil. HC			=	
a) Becomes 7	b) Does not change	c) Becomes 2	d) Becomes 10	
729. The pH of blood is:				

a) Less than 6 b) Greater than 7 and less than 8 c) Greater than 8 and less than 9 d) Greater than 10 730. The unit of equilibrium constant, *K* for the reaction, $A + B \rightleftharpoons C$, would be a) mol L^{-1} b) mol L c) $L \text{ mol}^{-1}$ d) Dimensionless 731. Which statement is correct? a) An acid and its conjugate base react to form salt and water b) The acid H₂O is its own conjugate base c) The conjugate base of a weak acid is a strong base d) The conjugate base of a strong acid is strong base 732. From separate solutions of four sodium salts NaW, NaX, NaY and NaZ had pH 7.0, 9.0, 10.0 and 11.0 respectively. When each solution was 0.1 *M*, the strongest acid is: a) HW b) *HX* c) HY d) *HZ* 733. Which information can be obtained from Le-Chatelier's principle? a) Shift in equilibrium position on changing *P*, *T* and concentration b) Dissociation constant of a weak acid c) Energy change in a reaction d) Equilibrium constant of a chemical reaction 734. The solubility product of Hg_2I_2 is equal to: a) $[Hg_2^{2+}][I^-]$ b) [Hg²⁺][I⁻] c) $[Hg_2^{2+}][I^{-}]^2$ d) $[Hg^{2+}]^2[I^{-}]^2$ 735. The pH of a solution formed by mixing 40 mL of 0.10 M HCl and 10 mL of 0.45 M NaOH is: a) 5 b) 8 c) 12 d) 10 736. The correct relationship between K_c and K_p in gaseous equilibrium is : a) $K_{\rm c} = K_{\rm p} \, ({\rm RT})^{\Delta n}$ b) $K_{\rm p} = K_{\rm c} \, ({\rm RT})^{\Delta n}$ c) $\frac{K_c}{RT} = (K_p)^{\Delta n}$ d) $\frac{K_P}{RT} = (K_c) \Delta n$ 737. In a mixture of CH₃COOH and CH₃COONa, the ratio of salt to acid concentration is increased by ten folds. The pH of the solution will increase by: a) Zero b) 1 c) 2 d) 3 738. NaOH(aq), HCl(aq) and NaCl(aq) concentration of each is 10^{-3} M. Their pH will be respectively b) 11, 3, 7 d) 3.4.7 a) 10, 6, 2 c) 10, 2, 6 739. At 25°C, the equilibrium K_1 , K_2 and K_3 of three reactions are : $N_2 + 3H_2 \rightleftharpoons 2NH_3; K_1$ $N_2 + O_2 \rightleftharpoons 2NO; K_2$ $H_2 + \frac{1}{2}O_2 \rightleftharpoons H_2O; K_3$ The equilibrium constants for the oxidation of NH₃ by oxygen to give NO is : b) $K_2^2 K_3 / K_1$ d) $K_2 K_3^3 / K_1$ a) K_3^2/K_1 c) $K_1 K_2 / K_3$ 740. Which of the following is the strongest base? c) $C_2H_5O^$ a) $C_2H_5^$ b) $C_2H_5C00^$ d) H_2PO_4 741. The equilibrium constant, *K* for the reaction $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$ At room temperature is 2.85 and that at 698 K, it is 1.4×10^{-2} . This implies that a) HI is resonance stabilised b) HI is exothermic compound d) HI is less stable than H_2 and I_2 c) HI is stable at room temperature

	⁰ in water. Its solubility, in m	ioles per litre, is
a) 1.5×10^{-9} b) 3.9×10^{-5}	c) 7.5×10^{-5}	d) 1.5×10^{-5}
743. Soda water has a pH value:		
a) Less than 7 b) More than 7	c) 7	d) Greater than 14
744. According to Le-Chatelier's principle, if heat is	given to solid-liquid system,	then
a) Quantity of solid will reduce	b) Quantity of liquid	
c) Temperature will increase	d) Temperature will o	lecrease
745. The salt that does not hydrolyse, is:		
a) SnCl ₂ b) FeCl ₃	c) SnCl ₄	d) CaCl ₂
746. An acid-base indicator has $K_a = 3.0 \times 10^{-5}$. The blue. The [H ⁺] required to change the indicator		
a) $8 \times 10^{-5} M$ b) $9 \times 10^{-5} M$	c) $1 \times 10^{-5} M$	d) $3 \times 10^{-4} M$
747. When ammonium chloride is added to a solution	on of ammonium hydroxide,	
a) Dissociation of NH ₄ OH increases	b) Concentration of O	H [–] increases
c) Concentration of NH_4^+ and OH^- increases		
748. The pH of an aqueous solution having hydr	oxide ion concentration a	s $1 imes 10^{-5}$ is
a) 5 b) 9	c) 4.5	d) 11
749. In the manufacture of NH ₃ by Haber's process, N ₂ + 3H ₂ \rightleftharpoons 2NH ₃ + Q kcal	the condition which would §	give maximum yield is
a) Low temperature and high pressure		
b) Low temperature, low pressure and low con	centration of H ₂	
c) High temperature, low pressure and low con	_	
d) High temperature, high pressure and high co		
750. In water, the acid $HClO_4$, HCl , H_2SO_4 and HNO_3		s they are completely ionised in
water (a base). This is called of the solvent w		5 1 5
a) Strength b) Capacity		d) Levelling effect
751. Which of the following solutions will have pH of		ý C
a) 100 mL of $\frac{M}{10}$ HCl + 100 mL of $\frac{M}{10}$ NaOH	b) 55 mL of $\frac{M}{10}$ HCl +	45 mL of $\frac{M}{10}$ NaOH
c) 10 mL of $\frac{M}{10}$ HCl + 90 mL of $\frac{M}{10}$ NaOH	d) 75 mL of $\frac{M}{5}$ HCl +	25 mL of <mark>M</mark> NaOH
752. For the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	g); $\Delta H = -93.6 \text{ kJ mol}^{-1}$	¹ , the concentration of NH_3 at
equilibrium can be increased by		-
(I) lowering the temperature		
(II)low pressure		
(III)excess of N _e		
(III)excess of N ₂ (IV)excess of H ₂		
(IV) excess of H ₂	h) (II) only is correc	\
(IV) excess of H ₂ a) (II) and (IV) are correct	b) (II) only is correct	
 (IV) excess of H₂ a) (II) and (IV) are correct c) (I), (II) and (III) are correct 	d) (III) and (IV) are	correct
 (IV) excess of H₂ a) (II) and (IV) are correct c) (I), (II) and (III) are correct 753. Some salts although containing two different in the second second	d) (III) and (IV) are	correct
 (IV) excess of H₂ a) (II) and (IV) are correct c) (I), (II) and (III) are correct 753. Some salts although containing two different such salts are: 	d) (III) and (IV) are metallic elements give test f	correct for only one of them in solution.
 (IV) excess of H₂ a) (II) and (IV) are correct c) (I), (II) and (III) are correct 753. Some salts although containing two different is Such salts are: a) Double salts b) Normal salts 	d) (III) and (IV) are	correct
 (IV) excess of H₂ a) (II) and (IV) are correct c) (I), (II) and (III) are correct 753. Some salts although containing two different is Such salts are: a) Double salts b) Normal salts 754. Which statement is correct? 	d) (III) and (IV) are metallic elements give test f	correct for only one of them in solution.
 (IV) excess of H₂ a) (II) and (IV) are correct c) (I), (II) and (III) are correct 753. Some salts although containing two different is Such salts are: a) Double salts b) Normal salts 754. Which statement is correct? a) NH₄OH is a strong base 	d) (III) and (IV) are metallic elements give test f	correct for only one of them in solution.
 (IV) excess of H₂ a) (II) and (IV) are correct c) (I), (II) and (III) are correct 753. Some salts although containing two different is Such salts are: a) Double salts b) Normal salts 754. Which statement is correct? a) NH₄OH is a strong base b) CH₃COONa given acidic solution in water 	d) (III) and (IV) are metallic elements give test f	correct for only one of them in solution.
 (IV) excess of H₂ a) (II) and (IV) are correct c) (I), (II) and (III) are correct 753. Some salts although containing two different is Such salts are: a) Double salts b) Normal salts 754. Which statement is correct? a) NH₄OH is a strong base b) CH₃COONa given acidic solution in water c) CH₃COOH is a weak acid 	d) (III) and (IV) are metallic elements give test f	correct for only one of them in solution.
 (IV) excess of H₂ a) (II) and (IV) are correct c) (I), (II) and (III) are correct 753. Some salts although containing two different is Such salts are: a) Double salts b) Normal salts 754. Which statement is correct? a) NH₄OH is a strong base b) CH₃COONa given acidic solution in water c) CH₃COOH is a weak acid d) NH₄Cl gives alkaline solution in water 	d) (III) and (IV) are metallic elements give test f c) Complex salts	correct for only one of them in solution. d) None of these
 (IV) excess of H₂ a) (II) and (IV) are correct c) (I), (II) and (III) are correct 753. Some salts although containing two different is such salts are: a) Double salts b) Normal salts 754. Which statement is correct? a) NH₄OH is a strong base b) CH₃COONa given acidic solution in water c) CH₃COOH is a weak acid d) NH₄Cl gives alkaline solution in water 755. Which one of the following species acts as a species acts acts acts as a species acts acts acts acts acts	d) (III) and (IV) are metallic elements give test f c) Complex salts both Bronsted acid and ba	correct for only one of them in solution. d) None of these se?
 (IV) excess of H₂ a) (II) and (IV) are correct c) (I), (II) and (III) are correct 753. Some salts although containing two different is Such salts are: a) Double salts b) Normal salts 754. Which statement is correct? a) NH₄OH is a strong base b) CH₃COONa given acidic solution in water c) CH₃COOH is a weak acid d) NH₄Cl gives alkaline solution in water 	d) (III) and (IV) are metallic elements give test f c) Complex salts	correct for only one of them in solution. d) None of these

a) OH ⁻ b) <i>RO</i> ⁻	c) NH_2^- d) R^-
757. To a mixture of acetic acid and sodium ac	etate a further amount of sodium acetate is added. The pH of the
mixture:	
a) Increases b) Decreases	c) Remains unchanged d) Not predictable
758. Ionisation constant of CH ₃ COOH is 1.7 \times	0^{-5} and [H ⁺] ions is 3.4×10^{-4} . Then, initial concentration of
CH ₃ COOH molecules is	
a) 6.8×10^{-3} b) 2.5×10^{-4}	c) 3.5×10^{-3} d) 4.5×10^{-3}
759. 0.023 g of sodium metal is reached wi	h 100 cm ³ of water. The pH of the resulting solution is
a) 10 b) 11	c) 9 d) 12
	vessel, after the addition of equal number of mole of N_2 and H_2 ,
equilibrium state is formed. Which of the	
-	c) $[H_2] > [N_2]$ d) $[H_2] > [NH_3]$
	e of <i>B</i> and the mixture is then kept in one litre flask till the
). At the equilibrium 0.2 mole of C are formed. The equilibrium
constant of the reaction is :	
a) 0.001 b) 0.002	c) 0.003 d) 0.004
762. 50% neutralization of a solution of formi	acid ($K_a = 2 \times 10^{-4}$) with NaOH would result in a solution
having a hydrogen ion concentration of:	
a) 2×10^{-4} b) 3.7	c) 2.7 d) 1.85
763. pH of K ₂ S solution is:	
a) > 7 b) < 7	c) 7 d) Zero
764. If pressure is applied to the following equ	ilibrium, Liquid \rightleftharpoons Vapour. The boiling point of the liquid:
a) Will decrease b) Will increas	e c) May not change d) Will not change
765. The extent of ionisation increases	
a) With the increase in concentration	b) On addition of excess water to the solution
c) On decreasing the temperature of solu	ion d) On stirring the solution vigorously
766. Which one of the following salts will p	roduce an alkaline solution while dissolving in water?
a) NH ₄ Cl b) Na ₂ CO ₃	c) NaNO ₃ d) Na ₂ SO ₄
767. Which addition would not change the pH	of 10 mL of dilute hydrochloric acid?
a) 20 mL of the same dilute hydrochloric	acid
b) 5 mL of pure water	
c) 20 mL of pure water	
d) 10 mL of concentrated hydrochloric ad	d
768. Which does not contribute significantly t	acid rains?
a) SO_3 b) NO_2	c) CO_2 d) CO
769. Given that the equilibrium constant for the	e reaction
$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$	
has a value of 278 at a particular temp	erature. What is the value of the equilibrium constant for the
following reaction at the same temperatu	·e?
$SO_{3(g)} \rightleftharpoons SO_{2(g)} + \frac{1}{2}O_{2(g)}$	
a) 1.8×10^{-3} b) 3.6×10^{-3}	c) 6.0×10^{-2} d) 1.3×10^{-5}
	HONO + CN ⁻ \rightarrow HCN + ONO ⁻ is 1 × 10 ⁻¹⁴ . The magnitude of
the equilibrium constant suggests that:	
a) CN ⁻ is stronger base than ONO ⁻	
b) HCN is stronger acid than HONO	
c) ONO ⁻ is the conjugate base of HONO	
 c) ONO⁻ is the conjugate base of HONO d) The conjugate acid of CN⁻ is HCN 	
d) The conjugate acid of CN^- is HCN	sodium acetate dissolved in 1000 cm ³ of 0.1 M acetic acid.

To the above buffer solution, 0.1 mole of sodium acetate is further added and dissolved. The pH of

the resulting buffer is

b) p*K*_a + 2 c) $pK_a - \log 2$ a) p*K*_a d) $pK_a + \log 2$ 772. Some chemists at ISRO wished to prepare a saturated solution of a silver compound and they wanted it to have the highest concentration of silver ion possible. Which of the following compounds, would they use? $K_{\rm sp}({\rm AgCl}) = 1.8 \times 10^{-10}$ $K_{\rm sp}({\rm AgBr}) = 5.0 \times 10^{-13}$ $K_{\rm sp}({\rm Ag_2CrO_4}) = 2.4 \times 10^{-12}$ a) AgCl b) AgBr c) Ag_2CrO_4 d) None of these 773. Ostwald's dilution law is applicable in the case of the solution of: b) NaCl a) CH_3COOH c) NaOH d) H_2SO_4 774. H_2S is passed into one dm³ of a solution containing 0.1 mole of Zn³ and 0.01 mole of Cu² till the sulphide ion concentration reaches 8.1 10¹⁰ moles. Which one of the following statements is true? $[K_{sp} \text{ of Zn and CuS are 3 } 10^{22} \text{ and 8 } 10^{36}$ respectively] a) Only ZnS precipitates b) Both c) Only CuS precipitates d) No precipitation occurs 775. The degree of dissociation of 0.1 M HCN solution is 0.01% its ionisation constant would be a) 10⁻³ b) 10⁻⁵ c) 10⁻⁷ d) 10⁻⁹ 776. Solubility of a gas in liquid increases on: a) Addition of a catalyst b) Increasing the pressure c) Decreasing the pressure d) Increasing the temperature 777. In chemical reaction, $A \rightleftharpoons B$, the system will be known in equilibrium when a) 50% of A changes to B b) A completely changes to B c) Only 10% of A changes to B d) The rate of change of A to B and B to A on both the sides are same 778. For a polyprotic acid say H_3PO_4 , its three dissociation constant K_1 , K_2 and K_3 are in the order: a) $K_1 < K_2 < K_3$ b) $K_1 > K_2 > K_3$ c) $K_1 = K_2 = K_3$ d) $K_1 = K_2 > K_3$ 779. The reaction, $A + 2B \rightleftharpoons 2C + D$ was studied using an initial concentration of B which was 1.5 times that of A. But the equilibrium concentration of A and C were found to be equal. Then the K_c for the equilibrium is : a) 4 b) 8 d) 0.32 c) 6 780. The expression for the solubility product of $Al_2(SO_4)_3$ is a) $K_{sp} = [Al^{3+}] [SO_4^{2-}]$ b) $K_{sp} = [Al^{3+}]^2 [SO_4^{2-}]^3$ c) $K_{sp} = [Al^{3+}]^3 [SO_4^{2-}]^2$ d) $K_{sp} = [Al^{3+}]^2 [SO_4^{2-}]^2$ 781. If the dissociation constant of an acid HA is 1×10^{-5} , the pH of a 0.1 M solution of the acid HA will be approximately: b) 5 d) 6 a) 3 c) 1 782. Calculate the pOH of a solution at 25°C that contains 1×10^{-10} M of hydronium ions *i.e.*, H₃⁺0: a) 4 b) 9 c) 1 d) 7 783. When a strong acid-strong base or their salt are dissolved in water, they are completely ionised. If a strong acid is added to a strong base, H⁺ ions from the former combines with OH⁻ ions of the latter forming water. The formation of each water molecule liberates a certain quantity of energy and the reaction is

exothermic. The heat liberated when one mole of water is formed by combining hydrochloric acid and sodium hydroxide is 13.7 kcal. The heat liberated when one mole of water is formed by combining sulphuric acid and sodium hydroxide is:

a) 34 kcal	b) 13.7 kcal	c) 8.5 kcal	d) 25.5 kcal
784. K_a for HCN is 5 × 10 ⁻¹⁰ at 2	-	-	2
required to be added to 10			
a) 2 mL	b) 4 mL	c) 8.2 mL	d) 6.4 mL
785. The equilibrium constants			
$H_3PO_4 \xrightarrow{K_1} H^+ + H$			
$H_2PO_4^- \longleftarrow H^+ + H_1^-$	$L_2PO_4^{2-}; K_2$		
$HPO_4^{2-} \stackrel{K_3}{\longleftarrow} H^+ + Pe$	$C_4^{3-}; K_3$		
The equilibrium constant fe	or		
$H_3PO_4 \rightleftharpoons 3H^+ + PO_4^{3-}$ will	be:		
a) K_1/K_2K_3	b) $K_1 \times K_2 \times K_3$	c) K_2/K_1K_3	d) $K_1 + K_2 + K_3$
786. Four moles of PCl ₅ are he	eated in a closed 4 dm ³	container to reach equili	brium at 400 K. at
equilibrium 50% of PCl ₅	is dissociated. What is t	the value of K_c for the dis	sociation of PCl ₅ into
PCl ₃ and Cl ₂ at 400 K?			
a) 0.50	b) 1.00	c) 1.15	d) 0.05
787. Favourable conditions for r	nanufacture of ammonia	by the reaction.	
$N_2 + 3H_2 \rightleftharpoons 2NH_3; \Delta H = -$		-	
a) Low temperature, low p			
b) Low temperature, high p	pressure and catalyst		
c) High temperature, low p	ressure and catalyst		
d) High temperature, high j	pressure and catalyst		
788. If K_{sp} of Ag_2S is 10^{-17} , th	e solubility of Ag ₂ S in 0	0.1 M solution of Na ₂ S will	ll be
a) 10^{-8}	b) 5 × 10 ⁻⁹	c) 10 ⁻¹⁵	d) 10 ⁻¹⁶
789. 5 moles of SO ₂ and 5 moles	of O_2 are allowed to react	t to forms SO_3 in a closed v	essel. At the equilibrium
stage 60% of \overline{SO}_2 is used up			
	b) 9.5	c) 10	d) 10.5
790. How many gram of CaC_2O_4		-	of CaC_2O_4 is $2.5 \times 10^{-9} M^{-2}$
and its molecular weight is		- r	
a) 0.0064 g	b) 0.0128 g	c) 0.0032 g	d) 0.0640 g
791. In the iodometric estimation	tion in laboratory which	n process is involved?	
			$Mn^{2+} + I_2$
a) $\frac{\text{Cr}_2\text{O}_7^{2-} + \text{H}^+ + \text{I}^- \rightarrow 1}{\text{I}_2 + \text{S}_2\text{O}_3^{2-} \rightarrow 1}$	$S_{4}\Omega_{c}^{2-} + I^{-}$	b) $\frac{MnO_4^- + H^+ + I^- \rightarrow}{I_2 + S_2O_3^{2-} - I_2}$	$\rightarrow S_4 O_c^{2-} + I_2$
		$(r_{a}O_{a}^{2}^{-} + OH_{a}^{-} + I_{a}^{-})$	$\rightarrow 2Cr^{3+} + I_{a}$
c) $\frac{\text{MnO}_{4}^{-} + \text{OH}^{-} + \text{I}^{-} \rightarrow}{\text{I}_{2} + \text{S}_{2}\text{O}_{3}^{2^{-}} \rightarrow}$	$S_{-}0^{2-} + I^{-}$	d) $\frac{Cr_2O_7^{2-} + OH^- + I^ I_2}{I_2 + S_2O_3^{2-} - I_2}$	$201^{-1} + 1^{-1}$
792. Equilibrium constant K_1 an	1 0		⁷ 5 ₄ 0 ₆ 11
	a R_2 for the following equ	illibria	
$NO(g) + \frac{1}{2}O_2 \stackrel{K_1}{\longrightarrow} NO_2(g)$			
and, $2NO_2(g) \stackrel{K_2}{\longleftrightarrow} 2NO(g)$	$+ 0_2(g)$ are related as	1	1
a) $K_1 = \frac{1}{K_2}$	b) $K_2 = \frac{1}{K_1}$	c) $K_2 = \frac{1}{K_1^2}$	d) $K_1 = \frac{1}{K_2^2}$
793. A sample of $Na_2CO_3 \cdot H_2O_3$ the resulting solution?	weighing 0.62 g is added t	to 100 mL of 0.1 N (NH ₄) ₂ S	O_4 solution. What will be
-	b) Neutral	c) Basic	d) None of these
794. For which one of the follo		,	-
a) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$			d) $2SO_3 \rightleftharpoons 2SO_2 + O_2$

795. K_{sp} of AgCl at 18°C is 1.8×10^{-10} . If Ag⁺ of sodium is 4×10^{-3} mol/litre the Cl⁻ that must exceed before AgCl is precipitated would be:

a) 4.5×10^{-8} mol/litre

b) 7.2×10^{-13} mol/litre

c) 4.0×10^{-3} mol/litre

d) 4.5×10^{-7} mol/litre

796. The equilibrium constant (K_p) for the decomposition of gaseous H₂O

$$H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2}O_2(g)$$

is related to degree of dissociation (α) at a total pressure *p* is given by

a) $K_p = \frac{\alpha^3 p^{1/2}}{(1+\alpha)(2+\alpha)^{1/2}}$ b) $K_p = \frac{\alpha^3 p^{3/2}}{(1-\alpha)(2+\alpha)^{1/2}}$ c) $K_p = \frac{\alpha^{3/2} p^2}{(1-\alpha)(2+\alpha)^{1/2}}$ d) $K_p = \frac{\alpha^{3/2} p^{1/2}}{(1-\alpha)(2+\alpha)^{1/2}}$ 797. A monoprotic acid in 1.00 M solution is 0.01 % ionised. The dissociation constant of this acid is a) 1×10^{-8} b) 1×10^{-4} c) 1×10^{-6} d) 1×10^{-5} 798. pH of 1 M NH₃ aqueous solution is $(K_h = 1.8 \times 10^{-5})$ a) 11.13 b) 12.5 c) 13.42 d) 11.55 799. K_a for formic acid and acetic acid are 2.1×10^{-4} and 1.1×10^{-5} respectively. The relative strength of acids is: a) 2 : 1 b) 2.3 : 1 d) 4.36 : 1 c) 1 : 2.1 800. Would gaseous HCl be considered as an Arrhenius acid? a) Yes b) Nor c) Not known d) Gaseous HCl does not exist 801. According to Le-Chatelier's principle, the addition of temperature to the following reaction $CO_2(g) + 2H_2O(g) \rightarrow CH_4(g) + 2O_2(g)$ will cause it to the right. This reaction is, therefore a) Exothermic b) Unimolecular d) Spontaneous c) Endothermic 802. The degree of dissociation of $PCl_5(\alpha)$ obeying the equilibrium, $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, is approximately related to the pressure at equilibrium by: b) $\alpha \propto \frac{1}{\sqrt{P}}$ c) $\alpha \propto \frac{1}{p^2}$ d) $\alpha \propto \frac{1}{P^4}$ a) $\alpha \propto P$ 803. Solubility product of MX₂ at 298 K is 4×10^{-12} . At this temperature concentration of M²⁺ ion in mol per litre is: a) $2 \times 10^{-6} M$ b) $1 \times 10^{-4} M$ c) $1.6 \times 10^{-4} M$ d) $4 \times 10^{-6} M$ 804. A reaction attains equilibrium when the Gibbs energy change accompanying the reaction is: a) Positive and large b) Zero c) Negative and large d) Negative and small 805. $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ In the above reaction, if the pressure at equilibrium and at 300 K is 100 atm then what will be the equilibrium constant K_p ? a) 2500 atm^2 b) 50 atm^2 c) 100 atm^2 d) 200 atm^2 806. The solubility product of a sparingly salt AX_2 is 3.2×10^{-11} . Its solubility (in mol/L) is b) 3.1×10^{-4} c) 2×10^{-4} a) 5.6×10^{-6} d) 4×10^{-4} 807. If the solubility product of AgBrO₃ and Ag₂SO₄ are 2×10^{-5} and 5.5×10^{-5} respectively, the relationship between the solubilities of these can be correctly represented as: b) $sAgBrO_3 < sAg_2SO_4$ c) $sAgBrO_3 = sAg_2SO_4$ d) $sAgBrO_3 \equiv sAg_2SO_4$ a) $sAgBrO_3 > sAg_2SO_4$ 808. The conjugate acid of HPO_4^{2-} is: b) PO_4^{3-} c) H₃PO₄ a) $H_2PO_4^$ d) H_3PO_3 809. The colour of an electrolyte solution depends on: a) The nature of the anion

b) The nature of the cation c) The nature of both the ions d) The nature of the solvent 810. The resultant pH of a solution on mixing 200 mL of an aqueous solution of HCl (pH = 2.0) is mixed with 300 mL of an aqueous solution of NaOH (pH = 12.0) is: a) 11.0310 b) 11.3010 c) 10.000 d) None of these 811. If ΔG^0 for the reaction given below is 1.7 kJ; the equilibrium constant of the reaction, $2HI(g) \rightleftharpoons H_2(g) +$ $I_2(g)$ at 25°C is : a) 24.0 b) 3.9 c) 2.0 d) 0.5 812. In a reaction, $A + B \rightleftharpoons C + D$, the concentrations of A, B, C and D (in mol/L) are 0.5, 0.8, 0.4 and 1.0 respectively. The equilibrium constant is a) 0.1 b) 1.0 c) 0.5 d) 5.0 813. The solvent which is neither proton donor nor proton acceptor is called: a) Amphoteric b) Neutral c) Aprotic d) Protonic 814. The equilibrium constant of a reaction is 20.0. At equilibrium, the rate constant of forward reaction is 10.0. The rate constant for backward reaction is : a) 0.5 b) 2.0 c) 10.0 d) 200.0 815. For the reversible reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ at 500°C, the value of K_p is 1.44×10^{-5} . When partial pressure is measured in atmospheres. The corresponding value of K_c with concentration in mol L⁻¹ is b) $1.44 \times 10^{-5} / (0.082 \times 500)^{-2}$ a) $1.44 \times 10^{-5} / (0.082 \times 773)^{-3}$ c) $1.44 \times 10^{-5} / (8.314 \times 773)^2$ d) $1.44 \times 10^{-5} / (0.082 \times 773)^{-2}$ 816. The pH of the solution produced when an aqueous solution of strong acid pH 5 is mixed with equal volume of an aqueous solution of strong acid of pH 3 is: a) 3.3 b) 3.5 c) 4.5 d) 4.0 ^{817.} Given, HF + $H_2O \xrightarrow{K_a} H_3O^+ + F^-$, $F^- + H_2 O \xrightarrow{K_b} HF + OH^-$ Which relation is correct? c) $K_a \times K_b = K_w$ d) $\frac{K_a}{K_b} = K_w$ b) $K_b = \frac{1}{K_{m}}$ a) $K_h = K_w$ 818. The pH of a solution is 4. The hydrogen ion concentration of the solution in mol/L is d) 10^{-2} b) 10⁻⁴ a) 9.5 c) 10⁴ 819. Which one of the following statements is not true? a) The conjugate base of $H_2PO_4^-$ is HPO_4^{2-} b) pH + pOH = 14 for all aqueous solutions c) The pH of 1×10^{-8} M HCl is 8 d) ${}^{96,500}_{cathode}$ C of electricity when passed through a CuSO₄ solution deposits 1 g equivalent of copper at the 820. The correct representation for the solubility product constant of Ag_2CrO_4 is: a) $[Ag^+]^2 [CrO_4^{2-}]$ b) $[Ag^+][CrO_4^{2-}]$ c) $[2Ag^+][CrO_4^{2-}]$ d) $[2Ag^+]^2[CrO_4^{2-}]$ 821. For a reversible reaction, the rate constant for the forward reaction is 2.38×10^{-4} and for the backward reaction is 8.15×10^{-5} . The K_c for the reaction is : a) 0.342 b) 2.92 c) 0.292 d) 3.42 822. The pH of a soft drink is 3.82. Its H⁺ ion concentration will be: a) 1.96×10^{-2} mol/litre b) 1.96×10^{-3} mol/litre c) 1.5×10^{-4} mol/litre d) 1.96×10^{-1} mol/litre 823. The decreasing order of strength of the bases, OH^- , NH_2^- , $H-C \equiv C^-$ and $CH_3-CH_2^-$, is: a) $CH_3 - CH_2^- > NH_2^- > H - C \equiv C^- > OH^-$

b) $H-C \equiv C^- > CH_3 - CH_2^- > NH_2^- > OH^-$

Page | 59

c) $OH^- > NH_2^- > H - C \equiv C^- > CH_3 - CH_2^-$ d) $NH_2^- > H - C \equiv C^- > OH^- > CH_3 - CH_2^-$		
824. The metallic sulphide not precipitated if H ₂ S ga cuprous chloride, bismuth chloride, mercuric chlori		
a) CuS b) Bi_2SO_3 825. pH of 1×10^{-8} M nitric acid solution will be	c) HgS	d) Na ₂ S
a) 6 b) 6.96 826. Indicate the correct answer out of the following for	c) 7.96 the reaction	d) 8
$NH_4Cl + H_2O \rightleftharpoons NH_4OH + HCl$		
 a) The reaction is retarded by the addition of KOH b) The reaction is favoured by the addition of NH₄O 	ЭН	
c) The reaction is retarded by the addition of hydrod) None of the above	gen ion	
827. The salt of strong acid and weak base (FeCl ₂) is		
a) Acidic b) Basic 828. For the following reaction in gaseous phase	c) Neutral	d) None of these
$CO + \frac{1}{2}O_2 \rightarrow CO_2$		
K_c/K_p is		
a) $(RT)^{1/2}$		
b) $(RT)^{-1/2}$ c) (RT)		
d) $(RT)^{-1}$		
829. For a reaction if $K_p > K_c$ the forward reaction is		
a) Low pressure b) High pressure 830 . What will be the pH value of 0.05M Ba(OH) ₂ so	c) High temperature lution?	d) Low temperature
a) 12 b) 13	c) 1	d) 12.96
831. pH of a saturated solution of $Ba(OH)_2$ is 12. The val		
a) 4.0×10^{-6} b) 5.0×10^{-6}		d) 5.0×10^{-7}
832. The conjugate base of H_2SO_4 is		
a) SO_4^{2-} b) HSO_4^{-}	c) HSO ₄ ⁺	d) H_3SO_4
833. For the reaction, $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$, the va	lue of K_c at 250°C is 26. Th	e value of K_p at this
temperature will be		
a) 0.41 b) 0.51	c) 0.61	d) 0.71
834. The pH of a 10^{-10} M NaOH solution is nearest to		
a) 10 b) 7	c) 4	d) -10
835. Which can act as buffer?		
a) $NH_4Cl + NH_4OH$		
b) $CH_3COOH + CH_3COONa$		
c) 40 mL of 0.1 <i>M</i> NaCN + 20 mL of 0.1 <i>M</i> HCl d) All of the above		
836. The pH indicators are		
a) Salts of strong acids and strong bases	b) Salts of weak acid and	l weak hases
c) Either weak acids or weak bases	d) Either strong acid or s	
837. Phenolphthalein is a:		
a) Weak acid b) Weak base	c) Strong acid	d) Strong base
838. The solubility product of Hg_2I_2 is equal to	-	-
a) [Hg ₂ ²][I] b) [Hg ²][I]	c) [Hg ₂ ²][I] ²	d) $[Hg^2][I]^2$
839. The rate at which a substance reacts depends o	n its	

- 0	b) Atomic number	c) Molecular weight	d) Active mass
840. The compound HCl beha	ives as in the reaction,		
HCl + HF → H_2^+ Cl + F ⁻ a) Strong acid	b) Strong base	c) Weak acid	d) Weak base
a) Strong acid 841 At temperature T a con		,	$2AB_2$ (g) $\rightleftharpoons 2AB(g) + B_2(g)$
			pression for K_p , in terms of x
and the total pressure <i>P</i>		inpared with unity. The exp	x_p , in terms of x
-		$P x^3$	$P \chi^2$
a) $\frac{Px^3}{2}$	b) $\frac{Px^2}{3}$	c) $\frac{Px^{3}}{3}$	d) $\frac{Px^2}{2}$
842. Which of the following	is not a Lewis acid?	5	2
a) BF ₃	b) AlCl ₃	c) SO_2	d) H_2O
843. The pH of a 0.1 molar so	\$ 0		
a) 1×10^{-3}	b) 1×10^{-5}	_	d) 3×10^{-1}
844. For the precipitation of	Ind group cations only the	e solution is made acidic so t	that:
a) The sulphide ion cond	entration may increase		
b) The sulphide ion cond	entration may decrease		
c) The H ⁺ ion concentra	tion may increase		
d) The cations concentra	=		
845. Let the solubility of an a		-	
a) $4x^3$	b) 108x ⁵	c) 27 <i>x</i> ⁴	d) 9 <i>x</i>
			O_2 and SO_3 are 0.662, 0.101
		e partial pressure of oxy	gen so that the equilibrium
concentration of SO_2 and			N 0 05
a) 0.4 atm	b) 1.0 atm	c) 0.8 atm	d) 0.25 atm
847. In the following reacti			
$AgCl + KI \rightleftharpoons KCl + Agl$		1 • 1. • • • • • •	
-		rds right giving more AgI	precipitate. because
a) Both AgCl and AgI a	1 01		
b) The <i>K</i> _{sp} of AgI is lov	ver than K _{sp} of AgCl		
c) The K _{sp} of AgI is hig	her than K _{sp} of AgCl		
d) Both AgCl and AgI h	ave same solubility proc	duct	
848. Which of the following	; is a Lewis base?		
a) NaOH	b) NH ₃	c) BCl ₃	d) All of these
849. The ionisation constant	of NH ₄ ⁺ in water is 5.6×10^{-10}	10^{-10} at 25°C. The rate cons	stant for the reaction of NH_4^+
and OH^- to form NH_3 ar	nd H ₂ O at 25°C is 3.4×10^{2}	¹⁰ L mol ⁻¹ s ⁻¹ . The rate cons	tant for proton transfer from
water to NH_3 is:			
-		c) $6.07 \times 10^{-5} \text{ s}^{-1}$	-
850. K_{sp} for AgCl in water at			to this solution. K_{sp} will be:
a) 1.8×10^{-16}	b) 1.8 × 10 ⁻¹⁰	c) 1.8×10^{-5}	d) None of these
851. The reaction which proc	eeds in the forward direct	ion is :	
a) $Fe_2O_3 + 6HCl = 2FeC$			
b) $\operatorname{SnCl}_4 + \operatorname{Hg}_2\operatorname{Cl}_2 = \operatorname{SnC}_4$			
c) $NH_3 + H_2O + NaCl =$			
d) $2CuI + I_2 + 4K^+ = 2$			
852. The chemical equilibri	um of a reversible react	-	
a) Pressure		b) Catalyst	
c) Concentration of the		d) Temperature	
853. A 0.01 M ammonia sol	ution is 5 % ionised, its	pH will be	

a) 11.80	b) 10.69	c) 7.22	d) 12.24	
854. For the decomposition		0) 7.22	() 12.2 I	
$\text{NH}_2\text{COONH}_4(s) \rightleftharpoons 2$				
		gases at equilibrium when 1	1 mole of NH ₂ COONH ₄ (g) was	
taken to start with w		0 1	2 +(0)	
a) 0.0766 atm	b) 0.0582 atm	c) 0.0388 atm	d) 0.0194 atm	
-			e into equilibrium according	
to the following rea	-			
0	$(z) \rightleftharpoons 2C(g) + 3D(g)$			
	is reached, there is 1 mole	e of C		
-	tent of the reaction is			
-		1		
a) $\frac{1}{4}$	b) $\frac{1}{3}$	c) $\frac{1}{2}$	d) 1	
856. For the reaction, ($C_{2}H_{4} + H_{2} \rightleftharpoons C_{2}H_{4}$			
The correct relatio				
	b) $K_p = K_c [RT]$	c) $K_p = K_c [RT]^{-2}$	d) $K_p = K_c [RT]^{-1}$	
$R_p = R_c$ 857. Which solution will l		$c_j n_p = n_c [n_j]$	$u_j n_p = n_c [n_j]$	
) HCl + 100 mL of $(M/10)$ N	ГаОН		
	HCl + 45 mL of $(M/10)$ NaO			
	HCl + 90 mL of $(M/10)$ NaO			
	Cl + 25 mL of (M/5) NaOH			
858. Which of the follow				
a) Cl ⁻	b) H ₃ O ⁺	c) PF ₃	d) C ₂ H ₅ OH	
859. A buffer solution can	be prepared from a mixtur		2 2 0	
	d acetic acid in water			
(ii) sodium acetate a	nd hydrochloric acid in wat	er		
(iii) ammonia and ar	nmonium chloride in water			
	dium hydroxide in water			
	b) (ii), (iii)	c) (iii), (iv)	d) (i), (iii)	
860. An equilibrium mixture of the reaction, $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ contains 0.120 mole of NO_2 , 0.080				
		k at constant temperature. '	The value of K_c for the reaction	
at this temperature i			N 20	
a) 14	b) 24	c) 7	d) 28	
861. For the reaction,		0.000 ~ 0.1 Where the second		
			uilibrium concentration of	
	is 0.5 mole, what is the va	1		
a) 0.5	b) 0.1	c) 0.01	d) 0.025	
862. The equilibrium,				
$P_4(s) + 6Cl_2(g) \rightleftharpoons$	4PCl ₃ (g) attained by mixi	ng equal moles of P ₄ and	Cl ₂ in a evacuated vessel.	
Then, at equilibriu				
	b) $[Cl_2] > [P_4]$			
	in the reaction $A_2(g) + 2B($			
a) High temperature		b) High temperature a	-	
c) Low temperature		d) Low temperature a		
	nass action, rate of a chemic			
a) Molar concentration of a		b) Concentration of re		
c) Concentration of 865. If NaOH is added to a		d) Molar concentratio	ii oi pi ouucis	
a) H ⁺ ions increases		c) $[C_2H_2O_2]^-$ increase	es d) $[HC_2H_3O_2]$ increases	
		of [ozingoz] meredat		

866. What is the effect of having the pressure by doubling the volume on the following system at 500°C?

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

a) Shift to reactant side

b) Shift to product formation

d) 7

d) 9.3

c) Liquefaction of HI

d) No effect

867. The solubility product (K_{sp}) of the following compounds are given at 25°C

Compound	K _{sp}
AgCl	1.1 10 ¹⁰
AgI	1.0 10 ¹⁶
PbCrO ₄	4.0 10 ¹⁴
Ag ₂ CO ₃	8.0 10 ¹²

The most soluble and least soluble compounds are

a) AgCl and PbCrO ₄	b) AgI and Ag_2CO_3	c) AgCl and Ag_2CO_3	d) Ag_2CO_3 and AgI
868. The pH of 10^{-10} M NaO	H solution is nearest to		

a) -4 b) -10 c) 4

- 869. The conjugate base of $H_2PO_4^-$ is
 - a) H_3PO_4 b) P_2O_5 c) PO_4^{3-} d) HPO_4^{2-}

870. The ionization constant of ammonium hydroxide is 1.77×10^{-5} at 298 K. Hydrolysis constant of ammonium chloride is:

a) 5.65×10^{-12} b) 5.65×10^{-10} c) 6.50×10^{-12} d) 5.65×10^{-13}

871. 1 *M* solution of an acid has a pH of 5. Which of the following is the most reasonable explanation for this acid?

- a) The acid is too dilute
- b) It is a strong acid
- c) It reacts with water to produce a high concentration of hydronium ions
- d) It is a weak acid

872. The solubility product K_{sp} , of a sparingly soluble salt AgIO₃ is 1.0×10^{-8} at a given temperature. What is the mass of AgIO₃ (mol. Mass = 283) contained in 100 mL solution at this temperature is:

- a) 1.0×10^{-4} g b) 28.3×10^{-2} g c) 2.83×10^{-3} g d) 1.0×10^{-7} g 873. The pH of a buffer solution containing equal molal concentration of a weak base and its chloride
 - (K_b for weak base = 2 × 10⁻⁵) is a) 5 b) 9
- c) 4.7

874. In qualitative analysis, in III group NH₄Cl is added before NH₄OH because

- a) To increase the concentration of NH₄⁺ ions b) To increase the concentration of Cl⁻ ions
- c) To reduce the concentration of OH⁻ ions d) To increase the concentration of OH⁻ ions
- 875. The K_{sp} for Cr(OH)₃ is 1.6 10³⁰. The molar solubility of this compound in water is

a) $\sqrt[2]{1.6 \ 10^{30}}$ b) $\sqrt[4]{1.6 \ 10^{30}}$ c) $\sqrt[4]{1.6 \ 10^{30}/27}$ d) 1.6 $10^{30}/27$ 876. ΔG^0 for the reaction $X + Y \rightleftharpoons Z$ is -4.606 kcal. The equilibrium constant for the reaction at 227°C is : a) 100 b) 10 c) 2 d) 0.01 877. For the reaction, $2A(g) \rightleftharpoons 3C(g) + D(s)$, the value of K_c will be equal to a) $K_p(RT)$ b) K_p/RT c) $= K_p$ d) None of these

878. Reaction between barium chloride and sodium sulphate goes to completion because:

- a) Barium sulphate is almost insoluble
- b) The reaction is reversible
- c) The solubility of barium chloride decreases
- d) None of the above
- 879. Which of the following cannot act as a Lewis of Bronsted acid?

a) BF_3 880. Consider the reaction,	b) AlCl ₃	c) SnCl ₄	d) CCl ₄
	$_2, K_1; N_2O_4 \rightleftharpoons 2NO_2, K_2$		
Δ		$1 \text{ of } N_2O_4 \text{ from } N_2 \text{ and } O_2.$	
-			
a) $\frac{1}{K_1^2} + \frac{1}{K_2}$	b) $\frac{1}{K_1 K_2}$	c) $\sqrt{\frac{1}{K_1K_2}}$	d) $\frac{K_2}{K_1}$
881. A weak monobasic aci	d is 1% ionised in 0.1 M s	olution at 25°C. The perc	entage of ionisation in its
0.025 M solution is			
a) 1	b) 2	c) 3	d) 4
882. In $K_p = K_c [RT]^{\Delta n}$, Δn matrix	ay have:		
a) +ve values			
b) –ve values	1		
c) Integer of fractional vd) Either of the above	alues		
883. The conjugate acid of H ⁻	ion is:		
a) H_30^+	b) H ₂	c) OH-	d) H ₂ 0
884. The addition of HCl does	, 1	,	, <u>,</u>
a) Acetic acid	b) Benzoic acid	c) H ₂ S	d) H_2SO_4
885. A colourless solution lib			
a) Basic	b) Acidic	c) Amphoteric	d) Neutral
886. Which one of the follo	-	e?	
a) The conjugate base			
b) $pH + pOH = 14$ for c) The pU of 1 × 10 ⁻⁸			
c) The pH of 1×10^{-8}		CuSO colution donosit	1 a aquivalent of conner
d) at the cathode	ty when passed through a	a CuSO ₄ solution deposit	i g equivalent of copper
887. Two moles of PCl_5 is l	neated in a closed vessel (of 2 L canacity. When the	equilibrium is attained
-	nd to be dissociated. What	• •	equilibrium is actumed
a) 0.532	b) 0.266	c) 0.133	d) 0.174
888. A liquid is in equilibriu	-	-	
phases have equal	ľ	01	
a) Inter-molecular for	ces	b) Potential energy	
c) Kinetic energy		d) Total energy	
889. At equilibrium, the amo	unt of HI in a 3 litre vessel v	vas 12.8 g. Its equilibrium c	oncentration is :
a) 4.267 <i>M</i>	b) 0.033 <i>M</i>	c) 0.1 <i>M</i>	d) 0.2 <i>M</i>
890. Which one of the follo	0 0		
a) CH ₃ COONa	b) NH ₄ Cl	c) NaCl	d) CH ₃ COONH ₄
891. For which reaction does	=	epend on the units of conce	ntration?
a) NO(g) $\rightleftharpoons \frac{1}{2}$ N ₂ (g) + $\frac{1}{2}$	0 ₂ (g)		
b) $Zn(s) + Cu^{2+}(aq) \rightleftharpoons$	$Cu(s) + Zn^{2+}(aq)$		
c) $C_2H_5OH(l) + CH_3COO$	$OH(l) \rightleftharpoons CH_3COOC_2H_5(l) +$	$H_2O(l)$	
d) $\operatorname{COCl}_2(g) \rightleftharpoons \operatorname{CO}(g) + \operatorname{CO}(g)$			
892. The solubility product			s ₂ S ₃ ?
a) $1.92 \times 10^{-15} \text{ mol/L}$		b) 1.72×10^{-15} mol/L	
c) $2.3 \times 10^{-16} \text{ mol/L}$		d) 1.65×10^{-36} mol/L	
893. When CO_2 dissolves in which the equilibrium of			
which the equilibrium co	Different is 3.8 \times 10 $^{\prime}$ and p	$H = 6.0$. The ratio of $[HCO_3^-]$	$J/[UU_2]$ is :

a) 3.8×10^{-18}	h) 2.0	a) 0.29	d) 12.0
,	b) 3.8	c) 0.38	d) 13.8
894. The blood buffers are m a) Acids	b) Bases	c) Salts	d) None of these
895. If concentration of N ₂ , H	-	-	2
$N_2 + 3H_2 \rightleftharpoons 2NH_3$	¹ 2 and N113 are 1, 2 and 5 re	spectively, then concentra	
	(h) $(1 - r/3)$ $(2 - r)$	(2r)(1-r)(2-r)	(3d)(1-x) $(2-3x)$ (
			What will be the value of K_p at
	gases are behaving almost	-	
low pressure where the	0 0	5	
a) 1.44 \times 10 ⁻⁵	b) × 1.4	4 c 1.44 × 10 ⁻⁵	d) 1.44×10^{-5}
	5) × 1.1 × 10 ⁻	$ \begin{array}{c} 4 \\ -5 \end{array} \stackrel{1.44 \times 10^{-5}}{\times (0.082 \times 500)^2} \end{array} $	$(0.082 \times 773)^3$
897. The range of pH in whic			
a) 3-4	b) 10-12	c) 8-10	d) 6-8
898. For the reaction : CO(g)		,	u) e e
	4		$12 (200) \frac{1}{2}$
a) <i>RT</i>	b) $(RT)^{-1}$		d) $(RT)^{1/2}$
solubility in water:	$1gS are 10^{-31}, 10^{-44}$ and	10^{-34} respectively. Selec	t the correct order for their
-	b) HgS > CuS > Ag_2S	c) HgS > Ag_2S > CuS	d) $Ag_2S > CuS > HgS$
900. pH of a 0.0001 M HCl			
a) 4.0	b) 2.0	c) 6.0	d) 7.0
901. The pH of 0.1 <i>M</i> HCl is a	pproximately 1. The approx	ximate pH of 0.05 M H ₂ SO ₂	1 is:
a) 0.05	b) 0.5	c) 1	d) 2
902. Phenolphthalein shows	in acid medium.	2	
a) Red colour	b) Yellow colour	c) Pink colour	d) No colour
903. The [OH [–]] in 100 mL of	0.015 <i>M</i> HCl (<i>aq</i> .) is:		
a) $5 \times 10^{-12} M$	b) $3 \times 10^{-10} M$	c) $6.7 \times 10^{-13} M$	d) $2.0 \times 10^{-9} M$
904. For an equilibrium rea	action if the value of $K_c >$	>1, then the reaction fav	oured more towards
a) Backward		b) Forward	
c) Equilibrium will be	obtained	d) Reaction will stop	
905. K _c for $A + B \rightleftharpoons 3C$ is 2	0 at 25°C. If a 2 litre vessel	contains 1,2 and 4 mole of	of A, B and C respectively, the
reaction at 25°C shall :		·	, 1 5,
a) Proceed from left to r	right		
b) Proceed from right to	•		
c) Be at equilibrium			
d) Not occur			
906. Solution prepared by di	ssolving equal number of m	nole of HOCl($K_a = 3.2 \times 10^{\circ}$) ^{–8}) and NaOCl is a buffer of
pH:			
a) 8.0	b) 3.2	c) 7.5	d) 4.8
907. An increase in the temp	erature of an equilibrium s	ystem:	
a) Favours the exothern	nic reaction		
b) Favours the endother	mic reaction		
-	thermic and endothermic r		
-	xothermic nor endothermi	c reactions	
908. Which of these is a Le			
a) AlCl ₃	b) NCl ₃	c) HCl	d) ROR
909. The pH of a solution is 4	. The hydrogen ion concent	tration of the solution if pH	I is to be increased to 5 is:
a) Halved			
b) Doubled			
c) Decreased by 10 time	es		

d) Decreased to half of its original value of concentration

- 910. The oxo-acid of anhydride P_2O_5 is:
- a) H₃PO₄
 b) H₄P₂O₇
 c) HPO₃
 d) All of these
 911. In a saturated solution of the sparingly soluble strong electrolyte AgIO₃ (molecular mass=283) the equilibrium which sets in is

$$\operatorname{AgIO}_3(s) \rightleftharpoons \operatorname{Ag}^+(aq) + \operatorname{IO}_3^-(aq)$$

If the solubility product constant K_{sp} of AgIO₃ at a given temprature is 1.0×10^{-8} , what is the mass of AgIO₃ contained in 100 mL of its saturated solution?

b) 2.83×10^{-3} g a) 28.3×10^{-2} g c) 1.0×10^{-7} g d) 1.0×10^{-4} g 912. H₃BO₃ is: a) Monobasic and weak b) Monobasic and weak c) Monobasic and strong d) Tribasic and weak Lewis acid Bronsted acid Lewis acid Bronsted acid 913. All Lewis acids are not necessarily: a) Proton donor b) Bronsted acids c) Arrhenius acids d) All of these 914. In the reaction, $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$. Which of the following is correct? d) $K_p \ge K_c$ a) $K_p = K_c$ b) $K_p > K_c$ c) $K_p < K_c$ 915. Which of the following is most soluble in water? a) Bi_2S_3 ($K_{sp} = 10^{-70}$) b) $\text{MnS}(K_{sp} = 7 \times 10^{-16})$ c) $\text{CuS}(K_{sp} = 8 \times 10^{-37})$ d) $\text{Ag}_2\text{S}(K_{sp} = 6 \times 10^{-51})$. 916. The equilibrium constant for the reaction $SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$ is $K_c = 4.9 \times 10^{-2}$. The value of K_c for the reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ will be c) 9.8×10^{-2} b) 2.40×10^{-3} d) 4.9×10^{-2} a) 416 917. pK_a or a weak acid is defined as c) $\log \frac{1}{K_a}$ d) $-\log \frac{1}{K_a}$ b) $\frac{1}{\log K_a}$ a) log K_a 918. In the equilibrium, $AB \rightleftharpoons A + B$, if the equilibrium concentration of A is doubled, the equilibrium concentration of B would become a) Half b) Twice c) $\frac{1}{4}$ th d) $\frac{1}{8}$ th 919. Two moles of PCl_5 were heated in a closed vessel of 2 L. At equilibrium 40% of PCl_5 is dissociated into PCl₃ and Cl₂. The value of equilibrium constant is a) 0.53 b) 0.267 d) 5.3 c) 2.63 920. When NaOH is dissolved in water, heat is evolved. If the temperature is raised, the solubility of NaOH: a) Increases b) Decreases c) Remains the same d) Cannot be predicted 921. In which of the following equilibrium, change in volume of the system does not alter the number of moles? a) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ b) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ c) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ d) $SOCl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$ 922. Conjugate base of HSO₄⁻ is a) SO_4^{2-} c) $H_3SO_4^+$ d) None of these b) H_2SO_4 923. Which favours the backward reaction in a chemical equilibrium? a) Increasing the concentration of one of the reactants b) Removal of at least one of the products at regular intervals

c) Increasing the conce	entration of one or more of	the products			
d) None of the above		Ĩ			
924. A weak acid HX($K_a = 1 \times 10^{-5}$) on reaction with NaOH gives NaX. For 0.1 <i>M</i> aqueous solution of NaX, the					
% hydrolysis is:					
a) 0.001%	b) 0.01%	,	d) 1%		
925. For the reaction: $2NO_2$	(g) $\rightleftharpoons 2NO(g) + O_2(g); K_c$	$= 1.8 \times 10^{-6}$ at 184°C at	nd		
R = 0.083 litre atm K ⁻	¹ mol ⁻¹ . When K_p and K_c ar	e compared at 184°C, it is f	ound that :		
a) $K_p > K_c$	b) $K_p < K_c$	c) $K_p = K_c$	d) $K_p \geq K_c$		
926. Mg(OH)Cl is an examp	e of:				
a) Acidic salt	b) Basic salt	c) Neutral salt	d) Amphoteric salt		
927. The degree of dissociat					
a) 8×10^{-6}	,	c) 0.182×10^{-5}	d) 8×10^{-5}		
928. In the reaction $HCl + H$					
a) H_2O is the conjugate		b) Cl ⁻ is the conjugate b			
c) Cl ⁻ is the conjugate a		d) H_30^+ is the conjugate	e base of HCl		
929. Slope and intercepts of					
$\Delta H^{\circ} \Delta S^{\circ}$	b) $\frac{-\Delta H^{\circ}}{2.303R}$, $\frac{\Delta S^{\circ}}{2.303}$	$\Delta H^{\circ} \Delta S^{\circ}$	$\Delta H^{\circ} - \Delta S^{\circ}$		
930. On adding 0.1 M solu	tion each of [Ag ⁺], [Ba ²⁺]	, [Ca ²⁺]in a Na ₂ SO ₄ solut	tion, species first		
precipitated is					
$[K_{\rm sp} \text{ BaSO}_4 = 10^{-11},$	$K_{\rm sp}$ CaSO ₄ = 10 ⁻⁶ , $K_{\rm sp}$ Ag	$[SO_4 = 10^{-5}]$			
a) Ag ₂ SO ₄	b) BaSO ₄	c) CaSO ₄	d) All of these		
931. <i>K</i> for the synthesis of H	II is 50. <i>K</i> for the dissociation	on of HI is			
a) 0.2	b) 0.02	c) 0.4	d) 0.04		
932. Which of the following	factors will favour the reve	rse reaction in a chemical e	equilibrium?		
a) Increase in the conc	entration of one of the reac	tants			
	entration of one or more pr				
-	one of the product at regula	r time intervals			
d) None of the above					
933. The anhydride of HNO ₃					
a) P_2O_5	b) N_2O_3	c) NO	d) N_2O_5		
934. According to Le-Chat			-		
a) Amount of solid to decrease		b) Amount of liquid to decrease			
c) Temperature to ris		d) Temperature to fal	1		
935. What is the conjugate					
a) 0 ^{2–}	b) 0 ⁻	c) H ₂ O	d) 0 ₂		
936. The solubility of Al(OH					
a) s^3	b) $27s^4$	c) s^2	d) 4 <i>s</i> ²		
937. The pH of 0.1 M solut	-				
a) NaCl $<$ NH ₄ Cl $< N$		b) HCl $< NH_4$ Cl $< Na$			
c) NaCN $<$ NH ₄ Cl $<$ I		d) HCl $< NaCl < NaCl$	$2N < NH_4Cl$		
938. For the Haber's process for the formation of NH_3 at 298 K is :					
	\Rightarrow 2NH ₃ ; $\Delta H = -460$ kJ				
Which of the following is correct?					
The condition for equilibrium is $G_{N_2} + 3G_{H_2} = 2G_{NH_3}$, where <i>G</i> is Gibbs energy per mole of gaseous species measured at that partial pressure					
		wand divertion have	anding to H loss of		
On addition N_2 , the equilibrium will shift to forward direction because according to II law of b) thermodynamics the entropy must decrease in the direction of spontaneous reaction					

b) thermodynamics the entropy must decrease in the direction of spontaneous reaction.

c) The catalyst will increase the rate of forward reaction by 2 times and that of backward reaction by 1.5 times

d) Name of the above

939. Consider the reversible reaction,

 $HCN(aq) \rightleftharpoons H^+(aq) + CN^-(aq)$

At equilibrium, the addition of $CN^{-}(aq)$ would:

a) Reduce HCN(aq) concentration

b) Decrease the $H^+(aq)$ ion concentration

c) Increase the equilibrium constant

d) Decrease the equilibrium constant

940. The solubility product of iron (III) hydroxide is 1.6×10^{-39} . If X is the solubility of iron (III) hydroxide, which one of the following expression can be used to calculate X?

a)
$$K_{sp} = X^4$$
 b) $K_{sp} = 9X^4$ c) $K_{sp} = 27X^3$ d) $K_{sp} = 27X^4$

941. Baking soda is a/an:

a) Basic salt b) Double salt c) Complex salt d) Acidic salt

942. An aqueous solution of sodium carbonate has a pH greater than 7 because

- a) It contains more carbonate ions than H₂O molecules
- b) Contains more hydroxide ions than carbonate ions

c) Na⁺ ions react with water

d) Carbonate ions react with H_2O

943. The pH of a solution obtained by mixing 10 mL of 0.1 M HCl and 40 mL of 0.2 M H₂SO₄ is:

c) 0.4685

d) 3

b) 0.4865 944. Just before a reversible reaction attains equilibrium it is found that:

a) The velocity of both forward reaction and backward reaction is also increasing

- b) The velocity of the forward reaction is decreasing and that of backward reaction in increasing
- c) The velocity of both forward and backward reactions is decreasing

d) All of the above

a) 1.4865

945. How many mole of HCl are required to prepare one litre of buffer solution (containing NaCN + HCl) of pH 8.5 using 0.01 g formula weight of NaCN ($K_{\text{HCN}} = 4.1 \times 10^{-10}$)?

a) 8.85×10^{-3} b) 8.75×10^{-2} c) 8.85×10^{-4} d) 8.85×10^{-2}

946. For the reaction $A + B \rightleftharpoons 3C$ at 25°C, a 3 litre vessel contains 1, 2, 4 mole of A, B and C respectively. If K_c for the reaction is 10, the reaction will proceed in :

a) Forward direction b) Backward direction c) In either direction d) In equilibrium 947. What is the pH of a 1*M*CH₃COONa solution? K_a of acetic acid = 1.8×10^{-5} , $K_w = 10^{-14}$ mol²litre⁻²:

c) 4.8 d) 9.4

a) 2.4 b) 3.6 948. Formaldehyde polymerizes to form glucose according to the reaction,

$$6 \text{ HCHO} \rightleftharpoons \text{C}_6 \text{H}_{12} \text{O}_6$$

The theoretically computed equilibrium constant for this reaction is found to be 6×10^{22} . If 1 M solution of glucose dissociates according to the above equilibrium, the concentration of formaldehyde in the solution will be

a) 1.6×10^{-2} M b) 1.6×10^{-4} M c) 1.6×10^{-6} M d) 1.6×10^{-8} M 949. The polyprotic acid is: a) HCl b) HClO₄ c) H_3PO_4 d) HNO_3 950. The solubility of Sb₂S₃ in water is 1.0×10^{-5} mol/L at 298 K. What will be its solubility product? a) 108×10^{-25} b) 1.0×10^{-25} c) 144×10^{-25} d) 126×10^{-24} 951. The pH of 1/1000 N KOH solution is:

2 4 0 - 11			1) 44			
a) 10^{-11}	b) 3	c) 2	d) 11			
a) OH ⁻	vry Bronsted acid and base? b) Na ₂ CO ₃	c) NH ₃	d) HSO4			
•			, .			
953. By applying law of mass action, the equilibrium constant, <i>K</i> for the reaction $HA + H_20 \rightleftharpoons H_30^+ + A^-$, is given as						
			[11 4][4-]			
a) $K = \frac{[\Pi A][\Pi_2 0]}{[\Pi_2 0][\Lambda_2 0]}$	b) $K = \frac{[H_3O^+][A^-]}{[HA][H_2O]}$	c) $K = \frac{[\Pi_3 \cup][\Pi_2 \cup]}{[\Lambda_2 \cup][\Pi_2 \cup]}$	d) $K = \frac{[\Pi A][A]}{[\Pi A][H]}$			
-	954. The Haber's process for the manufacture of ammonia is usually carried out at about 500°C. If a					
temperature of about 250°C was used instead of 500°C: a) Ammonia would not be formed at all						
	mmonia in the equilibrium n	ixture would be too low				
	of no use at all at this tempe					
•	on of ammonia would be too					
,			000° C. If 1.0 mole of H ₂ and			
-	iced in one litre flask, the fina		-			
a) 0.573 <i>M</i>	b) 0.385 <i>M</i>	c) 5.73 <i>M</i>	d) 0.295 <i>M</i>			
	,	e of equilibrium constan	t is 50. If 0.5 moles each of			
	the system the value of ec					
a) 40	b) 60	c) 50	d) 30			
-	Cl_3 and B_2H_6 which one wi	ill be the best Lewis acid	-			
a) BCl ₃	b) BMe ₃	c) B ₂ H ₆	d) BF ₃			
958. Potassium ferrocyan	5	-) -20	.) 21 3			
a) Mixed salt		c) Complex salt	d) Double salt			
-		•				
959. The pH of pure water at 25°C and 35°C are 7 and 6 respectively. The heat of formation of water from H ⁺ and OH ⁻ is:						
a) 84.55 kcal mol ^{-1}						
b) -84.55 kcal mol ⁻¹						
c) 74.55 kcal mol ^{-1}						
d) –74.55 kcal mol ^{–1}						
960. The pH of solution A, E	<i>C, D</i> are 9.5, 2.5, 3.5 and 5.5	respectively. The most aci	dic solution is:			
a) <i>A</i>	b) <i>B</i>	c) <i>C</i>	d) <i>D</i>			
	ickel theory of strong electro	olytes, increase in conductiv	vity on dilution is due to:			
a) Increase in number						
b) Increase in the mob						
c) Decrease in the num						
d) Decrease in the mobility of ions						
962. If K_1 and K_2 are the respective equilibrium constants for the two reactions, $X_2 E_1(r) + U_1O(r) \rightarrow X_2OE_1(r) + 2UE(r)$						
$XeF_6(g) + H_2O(g) \rightleftharpoons XeOF_4(g) + 2HF(g)$ $XeO_4(g) + XeF_6(g) \rightleftharpoons XeOF_4(g) + XeO_3F_2(g)$						
The equilibrium constant for the reaction,						
$XeO_4(g) + 2HF(g) \rightleftharpoons XeO_4(g)$						
a) $K_1 K_2$	b) K_1/K_2^2	c) K_2/K_1	d) K_1/K_2			
	rated solution of calcium flue					
is:		1	5 1			
a) 32 × 10 ⁻¹⁰	b) 32 × 10 ⁻⁸	c) 32×10^{-14}	d) 32×10^{-12}			
964. The equilibrium const	ant $Br_2 \rightleftharpoons 2Br$ at 500 K and 7	700 K are 10^{-10} and 10^{-5} r	espectively. The reaction is:			
a) Endothermic b) Exothermic c) Fast d) Slow						
965. For the homogenous	reaction,					
$4NH_3 + 50$	$D_2 \rightleftharpoons 4NO + 6H_2O$					

the equilibrium constant <i>K_c</i> has the unit	-c			
a) conc. ⁺¹⁰ b) conc. ⁺¹	c) conc. ⁻¹	d) It is dimensionless		
	,			
966. 1 mole of H ₂ and 2 moles of I ₂ are taken initially in a 2 L vessel. The number of moles of H ₂ at equilibrium is 0.2. Then, the number of moles of I ₂ and HI at equilibrium are				
a) 1.2, 1.6 b) 1.8, 1.0	c) 0.4, 2.4	d) 0.8, 2.0		
967. If the ionic product of water (K_w) is 1.96	$5 imes 10^{-14}$ at 35°C, what is its v	alue at 10°C ?		
a) 1.96×10^{-14} b) 3.92×10^{-14}				
968. 0.1 mole of CH_3NH_2 ($K_b = 5 \times 10^{-4}$) is	-	-		
the H ⁺ concentration in the solution?				
a) 8×10^{-2} M b) 8×10^{-11} M	$\sim 1.6 \times 10^{-11} M$	$d) 0 \times 10^{-5} M$		
	C) 1.6 × 10 M	UJOXIO M		
969. The conjugate base of H_3BO_3 is:	$\rightarrow \mu p o^2 -$			
a) $B(OH)_4^-$ b) $H_2BO_3^-$	c) HBO_3^{2-}	d) $H_4BO_3^+$		
970. For the reaction, $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$	g) the value of K_p/K_c is equal to			
a) 1.0 b) <i>RT</i>	c) \sqrt{RT}	d) $\frac{1}{RT}$		
971. One mole of nitrogen is mixed with 3 mo	ole of hydrogen in a closed 3 l	itre vessel. 20% of nitrogen is		
converted into NH ₃ . Then K_c for the $\frac{1}{2}$ N ₂ +				
=	-			
	⁻¹ c) 0.5 litre mol ⁻¹	d) 0.2 litre mol ^{-1}		
972. Which is a reversible reaction?				
a) $H_2 + I_2 \rightarrow 2HI$ b) $H_2 CO \rightarrow P_2(OH) = P_2(OH) + 2H_2(OH)$				
b) $H_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 \downarrow + 2H_2O$				
c) NaCl + AgNO ₃ \rightarrow NaNO ₃ + AgCl \downarrow				
d) $2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2 \uparrow$				
973. 2HI(g) \rightleftharpoons H ₂ (g) + I ₂ (g)				
The equilibrium constant of the above re		mole each of H_2 and I_2 are		
added to the system, the equilibrium co	nstant will be			
added to the system, the equilibrium con a) 6.4 b) 0.8	nstant will be c) 3.2	d) 1.6		
	c) 3.2	d) 1.6		
a) 6.4 b) 0.8	c) 3.2	d) 1.6		
a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arr	c) 3.2 henius acid?			
a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arr a) Yes	c) 3.2 henius acid? b) No			
a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arr a) Yes c) Not known	c) 3.2 henius acid? b) No	not exsit		
 a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arra) Yes c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base 	c) 3.2 henius acid? b) No d) Gaseous HCl does r b) Weak acid + its sa	not exsit alt of weak base		
 a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arra) Yes c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base c) Strong acid + its salt of weak base 	c) 3.2 henius acid? b) No d) Gaseous HCl does r b) Weak acid + its sa d) Weak acid + its sa	not exsit alt of weak base		
 a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arra) Yes c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base 	c) 3.2 Thenius acid? b) No d) Gaseous HCl does r b) Weak acid + its sa d) Weak acid + its sa owest value of p <i>K</i> _a ?	not exsit alt of weak base		
 a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arra) Yes c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base c) Strong acid + its salt of weak base 976. Which of the following acids will have logonal 	c) 3.2 Thenius acid? b) No d) Gaseous HCl does r b) Weak acid + its sa d) Weak acid + its sa cwest value of pK_a ? CH ₃ CHCOOH	not exsit alt of weak base		
 a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arra) Yes c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base c) Strong acid + its salt of weak base 	c) 3.2 henius acid? b) No d) Gaseous HCl does r b) Weak acid + its sa d) Weak acid + its sa b) Weak acid + its sa cH ₃ CHCOOH b)	not exsit alt of weak base		
 a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arra) Yes c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base c) Strong acid + its salt of weak base 976. Which of the following acids will have local a) CH₃CH₂COOH 	c) 3.2 Thenius acid? b) No d) Gaseous HCl does r b) Weak acid + its sa d) Weak acid + its sa cwest value of pK_a ? CH ₃ CHCOOH	not exsit alt of weak base		
 a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arra) Yes c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base c) Strong acid + its salt of weak base 976. Which of the following acids will have locational of the following acids will have locational CH₃CH₂COOH 	c) 3.2 Phenius acid? b) No d) Gaseous HCl does r b) Weak acid + its sa d) Weak acid + its sa owest value of pK_a ? CH ₃ CHCOOH b) Br	not exsit alt of weak base		
 a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arra) Yes c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base c) Strong acid + its salt of weak base 976. Which of the following acids will have locational constraints of the following acids will have locating acids will have locational constraints of the f	c) 3.2 henius acid? b) No d) Gaseous HCl does r b) Weak acid + its sa d) Weak acid + its sa b) Weak acid + its sa cH ₃ CHCOOH b)	not exsit alt of weak base		
 a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arra) Yes c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base c) Strong acid + its salt of weak base 976. Which of the following acids will have location a) CH₃CH₂COOH c) F 	c) 3.2 Phenius acid? b) No d) Gaseous HCl does r b) Weak acid + its sa d) Weak acid + its sa d) Weak acid + its sa cH ₃ CHCOOH b) $ $ Br d) FCH ₂ CH ₂ COOH	not exsit alt of weak base alt of strong base		
 a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arra) Yes c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base c) Strong acid + its salt of weak base 976. Which of the following acids will have locational constraints of the following acids will have locating acids will have locational constraints of the f	c) 3.2 c) 3.2 b) No d) Gaseous HCl does r b) Weak acid + its sa d) Weak acid + its sa d) Weak acid + its sa cH ₃ CHCOOH b) $ $ Br d) FCH ₂ CH ₂ COOH sel of 2 L capacity. At equilibrium	not exsit alt of weak base alt of strong base		
a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arr a) Yes c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base c) Strong acid + its salt of weak base 976. Which of the following acids will have loc a) CH ₃ CH ₂ COOH CH ₃ CHCOOH c) $ _{F}$ 977. 2 moles of PCl ₅ were heated in a closed vess	c) 3.2 c) 3.2 b) No d) Gaseous HCl does r b) Weak acid + its sa d) Weak acid + its sa d) Weak acid + its sa cH ₃ CHCOOH b) $ $ Br d) FCH ₂ CH ₂ COOH sel of 2 L capacity. At equilibrium	not exsit alt of weak base alt of strong base		
 a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arra) Yes c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base c) Strong acid + its salt of weak base 976. Which of the following acids will have location and the following acids will have locatin a cide will have location and the following acids w	c) 3.2 c) 3.2 c) No d) Gaseous HCl does r b) Weak acid + its sa d) Weak acid + its sa d) Weak acid + its sa cH ₃ CHCOOH b) $ $ Br d) FCH ₂ CH ₂ COOH sel of 2 L capacity. At equilibrium	not exsit alt of weak base alt of strong base n 40% of PCl ₅ is dissociated		
a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arr a) Yes c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base c) Strong acid + its salt of weak base 976. Which of the following acids will have loc a) CH_3CH_2COOH CH ₃ CH ₂ COOH c) F 977. 2 moles of PCl ₅ were heated in a closed vess into PCl ₃ and Cl ₂ . The value of equilibrium c a) 0.266 b) 0.366 978. pK _a of a weak acid is defined as	c) 3.2 c) 3.2 b) No d) Gaseous HCl does r b) Weak acid + its sa d) Weak acid + its sa d) Weak acid + its sa b) Weak acid + its sa c) Weak acid + its sa d) Weak acid + its sa d) Weak acid + its sa c) CH ₃ CHCOOH b) $ $ Br d) FCH ₂ CH ₂ COOH sel of 2 L capacity. At equilibrium onstant is c) 2.66	hot exsit alt of weak base alt of strong base n 40% of PCl ₅ is dissociated d) 3.66		
a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arr a) Yes c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base c) Strong acid + its salt of weak base 976. Which of the following acids will have loc a) CH ₃ CH ₂ COOH CH ₃ CH ₂ COOH CH ₃ CHCOOH c) F 977. 2 moles of PCl ₅ were heated in a closed vess into PCl ₃ and Cl ₂ . The value of equilibrium c a) 0.266 b) 0.366 978. pK _a of a weak acid is defined as a) $\log_{10} K_a$ b) $\frac{1}{\log_{10} K_a}$	c) 3.2 c) 3.2 b) No d) Gaseous HCl does r b) Weak acid + its sa d) Weak acid + its sa d) Weak acid + its sa owest value of pK_a ? CH ₃ CHCOOH b) Br d) FCH ₂ CH ₂ COOH sel of 2 L capacity. At equilibrium onstant is c) 2.66 c) $\log_{10} \frac{1}{K_a}$	hot exsit alt of weak base alt of strong base an 40% of PCl ₅ is dissociated d) 3.66 d) $-\log_{10}\frac{1}{K_a}$		
a) 6.4 b) 0.8 974. Would gaseous HCl be considered as an Arr a) Yes c) Not known 975. Buffer solution is prepared by mixing a) Strong acid + its salt of strong base c) Strong acid + its salt of weak base 976. Which of the following acids will have loc a) CH_3CH_2COOH CH ₃ CH ₂ COOH c) F 977. 2 moles of PCl ₅ were heated in a closed vess into PCl ₃ and Cl ₂ . The value of equilibrium c a) 0.266 b) 0.366 978. pK _a of a weak acid is defined as	c) 3.2 c) 3.2 c) No d) Gaseous HCl does r b) Weak acid + its sa d) Weak acid + its sa d) Weak acid + its sa owest value of pK_a ? CH ₃ CHCOOH b) Br d) FCH ₂ CH ₂ COOH sel of 2 L capacity. At equilibrium onstant is c) 2.66 c) $\log_{10} \frac{1}{K_a}$ 2NO ₂ (g), the concentrations o	not exsit alt of weak base alt of strong base n 40% of PCl ₅ is dissociated d) 3.66 d) $-\log_{10} \frac{1}{K_a}$ f N ₂ O ₄ and NO ₂ at		

a) 3×10^{-3} mol/L b) 3.3×10^{-3} mol/L c) 3×10^{-1} mol/L d) 3.3×10^{-1} mol/L 980. If α is the degree of ionisation, C the concentration of a weak electrolyte and K_a the acid ionisation constant then the correct relationship between α , *C* and *K*_{*a*} is b) $\alpha^2 = \sqrt{\frac{C}{K_a}}$ c) $\alpha = \sqrt{\frac{K_a}{C}}$ a) $\alpha^2 = \sqrt{\frac{K_a}{C}}$ d) $\alpha = \sqrt{\frac{C}{K_a}}$ 981. Which of the following behaves as Lewis acid and not as Bronsted acid? c) $HSO_3^$ d) SO_3 a) HCl b) H_2SO_4 982. If little heat is added to ice \Rightarrow liquid equilibrium in a sealed container, then: a) Pressure will rise b) Temperature will rise c) Temperature will fall d) No change in *P* and *T* 983. An aqueous solution in which the H⁺ ion concentration is greater than 10^{-7} M is said to be a) Acidic b) Alkaline c) Neutral d) None of these 984. The conjugate base of H_2SO_4 in the following reaction is: $H_2SO_4 + H_2O \rightleftharpoons H_3O^+ + HSO_4^$ b) HSO₄ a) H_2O c) H_30^+ d) SO_4^{2-} 985. For the reaction, $H_2 + I_2 \rightleftharpoons 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 mol/L respectively. The equilibrium constant is a) 28.34 b) 32.66 c) 34.78 d) 38.88 986. HClO is a weak acid. The concentrations of [H⁺] ions in 0.1 *M* solution of HClO ($K_a = 5 \times 10^{-8}$) will be equal to: a) $7.07 \times 10^{-5} M$ b) $5 \times 10^{-7} M$ c) $6 \times 10^{-7} M$ d) $7 \times 10^{-4} M$ 987. At a certain temperature, 2HI \Rightarrow H₂ + I₂ only 50% HI is dissociated at equilibrium. The equilibrium constant is : c) 0.5 d) 0.25 a) 1.0 b) 3.0 988. Aqueous solution of CH₃COOH contains: b) CH₃COO⁻, H₃O⁺, CH₃COc) CH₃COO⁻, H₃O⁺, H⁺ d) CH₃COOH, CH₃COO⁻, H⁺ a) CH₃COOH, H⁺ 989. In the manufacture of ammonia by Haber's process, $N_2(g) + 3H_2 \rightleftharpoons 2NH_3(g) + 92.3 \text{ kJ}$ Which of the following condition is unfavourable? a) Increasing the temperature b) Increasing the pressure c) Reducing the temperature d) Removing ammonia as it is formed 990. If $CuSO_4$. $5H_2O(s) \rightleftharpoons CuSO_4$. $3H_2O(s) + 2H_2O(v) K_p = 1.086 \ge 10^{-4} \text{ atm}^2 \text{ at } 25^{\circ}\text{C}$. The efflorescent nature of $CuSO_4$. $5H_2O$ can be noticed when vapour pressure of H_2O in atmosphere is : a) > 7.92 mm b) < 7.92 mm c) ≥ 7.92 mm d) None of these 991. Conjugate acid-base pair differs by a/an: a) Electron b) Electron pair c) Proton d) Neutron 992. The hydrogen ion concentration in a solution of weak acid of dissociation constant K_a and concentration c is nearly equal to: b) $\frac{c}{K}$ a) $\left|\frac{K_a}{K_a}\right|$ c) *K_ac* d) $\sqrt{K_a c}$ 993. For the liquefaction of gas, the favourable conditions are: a) Low T and high P b) Low T and low P c) Low *T* and high *P* and a catalyst d) Low T and catalyst

994. 0.5 M ammonium benzoate is hydrolysed to 0.25 percent, hence, its hydrolysis constant is

_	_	_	_			
a) 2.5×10^{-5}	b) 1.5×10^{-4}	c) 3.125 × 10 ⁻⁶	d) 6.25×10^{-6}			
995. For the equilibrium, $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$, which of the following expression is correct?						
K_n						
a) K_p	$K_p = (p_{CaO} + p_{CO_2})$	c) $K_n = p_{CO_n}$	d) = (p_{CaO})			
$C^{(1)} = [CaO][CO_2]/[CaO]$	$(O_3]$ / P_{Cal}	CO_3	$+ p_{CO_2}/p_{CaCO_3})$			
$\sim PCO_2/PCaCO_3/$						
996. When $NaNO_3$ is heated in a closed vessel, O_2 is liberated and $NaNO_2$ is left behind. At equilibrium,						
(i)Addition of NaNO ₃ favours forward reaction						
(ii) Addition of NaNO ₂ favours backward reaction						
(iii) Increasing pressure favours reverse reaction						
	rature favours forward reac	tion				
Correct option is						
a) (i), (ii), (iii)	b) (ii), (iii), (iv)	c) (i), (iii), (iv)	d) (i), (ii) (iii), (iv)			
997. Given pH of a solution A is 3 and it is mixed with another solution B having pH 2. After mixing are						
resultant pH of the so	lution will be					
a) 3.2	b) 1.9	c) 3.4	d) 3.5			
998. To neutralise completely 20 mL of 0.1 <i>M</i> aqueous solution of phosphorus acid H ₃ PO ₃ , the volume of						
0.1 <i>M</i> KOH solution required is:						
a) 60 mL	b) 20 mL	c) 40 mL	d) 10 mL			
999. The relation between equilibrium constant K_p and K_c is						
	F					
a) $K_p = K_c (RT)^{\Delta n_g}$	b) $K_c = K_p (RT)^{\Delta n_g}$	C) $K_p = \left(\frac{R_c}{PT}\right)$	d) $K_p - K_c = (RT)^{\Delta h_g}$			
a) $K_p = K_c (RT)^{\Delta n_g}$ b) $K_c = K_p (RT)^{\Delta n_g}$ c) $K_p = \left(\frac{K_c}{RT}\right)^{\Delta n_g}$ d) $K_p - K_c = (RT)^{\Delta n_g}$ 100 On mixing equal volumes of two buffer solutions of pH value 3 and 5, the pH of the resultant						
0. solution will be						
solution will be						

a) 3.3 b) 4.0 c) 4.7 d) 5.3

7.EQUILIBRIUM

: ANSWER KEY :															
а	192)	b	191)	b	190)	b	189)		4)	а	3)	а	2)	d	1)
ä	192) 196)	c	191) 195)	d	190)	d	193)		4) 8)	a a	3) 7)	a b	2) 6)	u C	5)
(200)	d	199)	u b	198)	a		u a	12)	a b	11)	d	10)	d	9)
Ċ	200) 204)	a	203)	c	202)	a b	201)	a C	16)	C	15)	d	10) 14)	u C) 13)
	204) 208)		203) 207)	b	202)	b	-	c d	20)	a	13) 19)	u C	18)	a	13) 17)
6 (200)	a	207)		200)	b			20) 24)		23)		22)	a b	21)
ł	212) 216)	a d	211) 215)	a b	210) 214)	d	0.4.0	a a	24) 28)	a b	23) 27)	C C	22) 26)	C	21) 25)
	210)	u b	213) 219)		214)	u b	-	a b	32)		31)	c d	20) 30)	d	23) 29)
i I	220) 224)		219) 223)	с b	210)		-	d	32) 36)	C 2	31) 35)		30) 34)	u b	29) 33)
	224) 228)	a h	223) 227)		226)	C b	221)		30) 40)	a	33) 39)	a b	34) 38)		33) 37)
ł	228)	b h	227)	C d	220)	b	000		-	a	39J 43)		-	C 2	-
	-	b h	-	d d	-	C C	-	C d	44) 49)	a	-	a h	42) 46)	a d	41) 45)
(236) 240)	b	235) 220)	d	234)	a	233)		48) 52)	C	47) 51)	b d	46) 50)	d h	45) 40)
í 1	240) 244)	a	239) 242)	a d	238) 242)	a L	,	a	52) 5()	d	51) 55)	d d	50) 54)	b	49) 52)
ł	244) 249)	a L	243) 247)	d	242) 24()	b		a	56)	a	55) 50)	d	54) 50)	a J	53)
ä	248) 252)	b	247) 251)	a	246) 250)	C	,	a	60) (1)	d h	59) (2)	C	58) (2)	d L	57)
ć	252) 25()	d J	251) 255)	a L	250) 254)	d d		С Ч	64)	b	63) (7)	C h	62)	b	61)
(256)	d	255)	b	254)	d L		d	68) 72)	a	67) 71)	b	66) 70)	a	65)
(260) 264)	C	259) 262)	a L	258)	b		ر ار	72) 7()	d	71) 75)	a J	70) 74)	d	69) 72)
1	264)	C	263)	b	262)	C L	-	d	76)	а	75) 70)	d	74) 70)	a	73)
0	268)	d	267)	d	266)	b		d	80)	а	79) 02)	d L	78) 02)	d L	77)
(272)	b	271)	d	270)	С	-	а	84)	а	83)	b	82)	b	81)
0	276)	C L	275)	C	274)	С	,	a	88)	С	87) 01)	C L	86)	b	85)
ć	280)	b	279)	b	278)	a	-	d	92) 9()	a	91) 95)	b	90) 04)	a	89) 02)
(284)	C	283)	C	282)	а		b	96)	b	95) 20)	С	94)	b	93)
ł	288)	d	287)	d	286)	C	285)	С	100)	C	99) 100)	a	98)	а	97)
(292)	b	291)	d	290)	d	,	а	104)	b	103)	d	102)	С	101)
(296)	а	295)	c	294)	С	-	а	108)	b	107)	С	106)	a	105)
(300)	С	299)	d	298)	а	297)		112)	b	111)	a	110)	d	109)
0	304)	a	303)	a	302)	а	301)		116)	C	115)	b	114)	С	113)
â	308)	d	307)	b	306)	C	305)		120)	b	119)	b	118)	а	117)
(312)	С	311)	С	310)	d	309)		124)	b	123)	b	122)	а	121)
(316)	С	315)	a	314)	b	313)		128)	b	127)	d	126)	C	125)
(320)	С	319)	d	318)	a	317)		132)	d	131)	С	130)	b	129)
(324)	C	323)	d	322)	b	321)		136)	d	135)	а	134)	d	133)
(328)	d	327)	а	326)	а	325)		140)	d	139)	C	138)	b	137)
(332)	а	331)	c	330)	a	329)		144)	a	143)	d	142)	b	141)
(336)	а	335)	b	334)	b	333)		148)	b	147)	а	146)	а	145)
(340)	С	339)	a	338)	a	337)		152)	а	151)	C	150)	С	149)
(344)	С	343)	b	342)	d	341)		156)	С	155)	d	154)	а	153)
(348)	a	347)	а	346)	С	345)		160)	С	159)	b	158)	С	157)
ł	352)	d	351)	С	350)	С	349)		164)	d	163)	C	162)	b	161)
ł	356)	d	355)	a	354)	a	353)		168)	С	167)	b	166)	a	165)
(360)	а	359)	d	358)	d	357)		172)	a	171)	d	170)	d	169)
ä	364)	С	363)	С	362)	а	361)		176)	b	175)	а	174)	b	173)
â	368)	С	367)	d	366)	b	365)		180)	С	179)	а	178)	d	177)
ä	372)	а	371)	d	370)	d	369)		184)	а	183)	С	182)	b	181)
ł	376)	а	375)	С	374)	b	373)	а	188)	а	187)	а	186)	а	185)

377)	d	378)	а	379)	b	380) a	a	581)	а	582)	d	583)	С	584)	а
381)	а	382)	d	383)	b	384) I	b	585)	а	586)	а	587)	С	588)	d
385)	а	386)	d	387)	а	388)	c !	589)	d	590)	b	591)	b	592)	d
389)	а	390)	b	391)	а	392) a	a	593)	b	594)	b	595)	b	596)	а
393)	С	394)	С	395)	С	396) a	a	597)	С	598)	а	599)	d	600)	С
397)	С	398)	b	399)	С	400) a	a	601)	d	602)	b	603)	d	604)	а
401)	а	402)	а	403)	b	404) a	a e	605)	d	606)	С	607)	d	608)	С
405)	а	406)	b	407)	С	408)	c e	609)	а	610)	b	611)	а	612)	d
409)	b	410)	С	411)	b	412)	b	613)	а	614)	b	615)	С	616)	b
413)	d	414)	С	415)	а	416)	c e	617)	а	618)	d	619)	С	620)	а
417)	С	418)	d	419)	d	420)	c e	621)	а	622)	а	623)	а	624)	С
421)	С	422)	b	423)	b	424)	b	625)	а	626)	d	627)	d	628)	d
425)	b	426)	а	427)	а	428)	c	629)	d	630)	С	631)	b	632)	а
429)	d	430)	b	431)	а	432)	d	633)	а	634)	b	635)	С	636)	b
433)	b	434)	С	435)	d	40.0		637)	С	638)	d	639)	С	640)	а
437)	а	438)	С	439)	d			, 641)	С	642)	С	643)	b	644)	а
441)	b	442)	С	443)	b			645)	а	646)	С	647)	С	648)	а
445)	b	446)	c	447)	c			649)	b	650)	a	651)	a	652)	c
449)	a	450)	b	451)	a	(T O)		653)	d	654)	c	655)	b	656)	a
453)	b	454)	b	455)	d			657)	a	658)	b	659)	c	660)	b
457)	c	458)	d	459)	b			661)	b	662)	c	663)	c	664)	c
461)	a	462)	a	463)	b			665)	a	666)	a	667)	a	668)	c
465)	a	466)	c	467)	b			669)	b	670)	a	671)	a	672)	c
469)	b	470)	d	471)	d	(- 0)		673)	b	674)	b	675)	a	676)	a
473)	C	474)	b	475)	b			677)	a	67 8)	c	679)	d	680)	b
477)	b	478)	d	479)	c	400		681)	b	682)	b	683)	u b	684)	c
481)	a	482)	u d	483)	a			685)	b	686)	C	687)		688)	
485)		486)	u b	487)				689)		690)	b	691)	a c	692)	a d
489)	с b	490)	d	407)	a d	,		693)	c d	690) 694)		695)	с b	696)	u d
	b	490) 494)	u C	1	u b	,		697)		2	a c		D C	700)	u b
493) 497)	b	494) 498)	-	495) 499)				701)	a	698) 702)	-	699) 703)	-	700) 704)	b
501)	d	498) 502)	с b	503)	a	-		705)	a d	702)	a	703) 707)	d	704) 708)	
		-		1	C h	-		-		-	a d	-	a h	-	C d
505)	a	506) 510)	d h	507) 511)	b	-		709)	C	710) 714)	d h	711) 715)	b	712) 716)	d
509)	a d	510) 514)	b d	511)	C h	-		713)	C	714) 719)	b	715) 710)	a L	716) 720)	a
513)	d	514) 519)	d d	515) 510)	b			717)	C h	718) 722)	C h	719) 722)	b d	720) 724)	a d
517)	a h	518) 522)	d h	519) 522)	d h	-		721)	b	722)	b	723)	d	724)	d h
521)	b	522) 52()	b	523) 527)	b	-		725)	C h	726)	a	727)	a	728)	b
525)	d	526) 520)	b	527) 521)	a			729)	b	730) 724)	С	731)	С	732)	a L
529)	a	530) 524)	d	531)	d	-		733)	a	734)	C	735)	C	736)	b
533)	d L	534) 520)	b	535)	d			737)	b	738)	b	739)	d	740) 744)	а
537)	b	538) 542)	a	539)	d	-		741)	d	742)	b	743)	a L	744)	a L
541)	d	542)	d	543)	d	-		745)	d	746)	C	747)	b	748)	b
545)	a	546)	b	547)	а			749)	а	750)	d	751)	d	752)	C
549)	b	550)	a	551)	a	-		753)	С	754)	С	755)	С	756)	d
553)	а	554)	b	555)	d	-		757)	а	758)	а	759)	d	760)	b
557)	а	558)	С	559)	С	-		761)	a	762)	a	763)	а	764)	b
561)	С	562)	d	563)	а			765)	b	766)	b	767)	a	768)	d
565)	C	566)	а	567)	а	-		769)	С	770)	b	771)	d	772)	C
569)	d	570)	a	571)	а	,		773)	a	774)	b	775)	d	776)	b
573)	C	574)	b	575)	С			777)	d	778)	b	779)	d	780)	b
577)	b	578)	С	579)	С	580)	с 7	781)	а	782)	а	783)	b	784)	а
														Dago	74

785)	b	786)	а	787)	b	788) b	897)	а	898)	С	899)	d	900)	а
789)	а	790)	а	791)	b	792) c	901)	С	902)	d	903)	С	904)	b
793)	а	794)	b	795)	a	796) d	905)	а	906)	b	907)	b	908)	а
797)	а	798)	а	799)	d	800) b	909)	С	910)	d	911)	b	912)	а
801)	С	802)	b	803)	b	804) b	913)	d	914)	а	915)	b	916)	а
805)	а	806)	С	807)	b	808) a	917)	С	918)	а	919)	b	920)	а
809)	С	810)	b	811)	d	812) b	921)	а	922)	а	923)	С	924)	b
813)	С	814)	а	815)	d	816) a	925)	а	926)	b	927)	b	928)	b
817)	С	818)	b	819)	С	820) a	929)	С	930)	b	931)	b	932)	b
821)	b	822)	С	823)	а	824) d	933)	d	934)	а	935)	а	936)	b
825)	b	826)	С	827)	а	828) a	937)	b	938)	а	939)	b	940)	d
829)	а	830)	b	831)	d	832) b	941)	d	942)	b	943)	С	944)	b
833)	С	834)	а	835)	d	836) c	945)	а	946)	b	947)	d	948)	b
837)	а	838)	С	839)	d	840) d	949)	С	950)	а	951)	d	952)	d
841)	а	842)	d	843)	b	844) b	953)	b	954)	d	955)	а	956)	С
845)	а	846)	а	847)	b	848) b	957)	а	958)	С	959)	b	960)	b
849)	а	850)	b	851)	а	852) b	961)	b	962)	С	963)	d	964)	а
853)	b	854)	b	855)	С	856) d	965)	b	966)	а	967)	С	968)	b
857)	d	858)	b	859)	d	860) a	969)	а	970)	d	971)	а	972)	а
861)	b	862)	С	863)	С	864) a	973)	а	974)	b	975)	d	976)	а
865)	С	866)	d	867)	d	868) d	977)	а	978)	С	979)	а	980)	С
869)	d	870)	b	871)	d	872) b	981)	d	982)	d	983)	а	984)	b
873)	d	874)	С	875)	С	876) a	985)	b	986)	а	987)	d	988)	b
877)	b	878)	а	879)	d	880) a	989)	а	990)	b	991)	С	992)	d
881)	b	882)	d	883)	b	884) d	993)	а	994)	С	995)	С	996)	d
885)	b	886)	С	887)	b	888) c	997)	b	998)	С	999)	а	1000)	а
889)	b	890)	b	891)	d	892) a								
893)	С	894)	а	895)	d	896) a								
							I							

7.EQUILIBRIUM

: HINTS AND SOLUTIONS :

	: IIIN I S AND
1	(d)
	$HC_2H_3O_2 + NaOH \rightarrow C_2H_3O_2Na + H_2O$
	1 0.5 0 0
	0.5 0 0.5 0.5
	The solution contains weak acid + its conjugate
	base
	0.5 Mol 0.5 Mol
2	and thus, acts as buffer.
2	(a)
	Aqueous solution of 1M NaCl and 1M HCl is
	not a buffer but pH<7.
3	(a)
	Reaction is exothermic and volume is decreasing
	from left to right, so for higher production of SO_3 ,
	there should be low temperature and high
	pressure
4	(a)
	The acid is called strong acid when it ionise
	up to great extent
	<i>i.e.</i> , if its <i>K</i> _a value is large.
	We know that $pK_a = \log \frac{1}{K_a}$
F	u
5	(c) $\sqrt{W_{max}^2}$
	$[OH^{-}] = \sqrt{K_b \times C}$
	$=\sqrt{1\times10^{-5}\times10^{-1}}$
	$=\sqrt{10^{-6}}=10^{-3}$
	$K_w = [\mathrm{H}^+][\mathrm{OH}^-]$
	$10^{-14} = [\text{H}^+][10^{-3}]$
	$[H^+] = 10^{-11}$
	Hence, $pH = -\log H^+$
	$= -\log(1 \times 10^{-11}) = 11$
6	(b) $- \log(1 \times 10^{-1}) - 11$
0	$H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$
	We know that,
	$K_p = K_c. (RT)^{\Delta n_g}$
	$\Delta n_g = \text{no. of moles of gaseous products – no.}$
	of moles of gaseous reactants
	=2-2=0
	$K_p = K_c. (RT)^0$
	$K_p = K_c$
7	(a)
	$NaH_2PO_4 + H_3PO_4$; $NaH_2PO_4 +$
	Na_2HPO_4 ; $Na_2HPO_4 + Na_3PO_4$.
9	(d)

pH of a solution $\propto [OH^-] \frac{M}{4} Ca(OH)_2$ solution will give highest concentration of $[OH^-]$. Hence, it has highest pH.

10 **(d)**

Salt	Solubility	Solubility
	product	5
MX	$S_1^2 = 4.0 \times$	$S_1 = 2 \times$
	10^{-8}	10^{-4}
MX_2	$4S_2^3 = 3.2 \times$	$S_2 = 2 \times$
	10^{-14}	10^{-5}
M_3X	$27S_3^4 = 2.7 \times$	$S_3 = 1 \times 10^{-4}$
5	10^{-15}	10^{-4}

Thus, solubility order = $MX > M_3X > MX_2$

11 **(b)**

Basic strength \propto dissociation constant of base (K_b) .

So, smaller the value of K_b weaker will be the base.

The weakest base will have smallest value of K_b .

 $: C_6H_5NH_2$ (aniline) has smallest value of K_b

 \therefore It is weakest base.

$$\alpha = \frac{\text{number of mole dissociated}}{\text{total mole present}}$$
$$= \frac{10^{-7}}{1000/18} = 1.8 \times 10^{-9} = 1.8 \times 10^{-7}\%$$
Total mole of H₂O in 1 litre = $\frac{1000}{18}$

13 **(c)**

A precipitate is formed when the ionic product exceeds the solubility product.

i.e.,
$$[A^+][B^-] > K_{\rm sp}$$

14 (d) $2HgNO_3 + 2HCl \rightarrow Hg_2Cl_2 + 2HNO_3;$ Hg_2Cl_2 in insoluble in water.

15 **(c)**

Lewis bases are electrons rich compounds.

(i) $\overset{\bullet}{NH_3}$ and $H_2 \overset{\bullet}{O}$ are Lewis bases because they have lone pair of electron.

(ii)AlCl₃ is Lewis acid because it can accept electrons.

16 (c) $Ba(NO_3)_2$ gives NO_3^- , Ba^{2+} ions, hence Ba^{2+} ion increases. To keep K_{sp} constant, [F⁻] decreases. Thus, it is represented as $\frac{1}{2}$ [F⁻] 18 (c) As equation 'III' is obtained on adding equation 'I' and equation 'II', so $K_3 = K_1$. K_2 . 19 (a) $N_2O_4 \rightleftharpoons 2NO_2$ initialy 0.1 0 $(0.1 - \alpha)$ 2 α at equilibrium $\frac{0.1-\alpha}{0.1+\alpha}p \ \frac{2\alpha}{0.1+\alpha}p \ \mathrm{at}p_i$ $K_p = \frac{[NO_2]^2}{[N_2O_4]}$ $0.14 = \left(\frac{2\alpha \times p}{0.1 + \alpha}\right)^2 \times \left(\frac{0.1 + \alpha}{0.1 - \alpha}\right)p$ $=\frac{4\alpha^2}{(0.1+\alpha)(0.1-\alpha)}p$ $=\frac{4\alpha}{0.01-\alpha^2}\times 1$ or $\alpha = 0.018$ Thus, $[NO_2] = 2 \times 0.018 = 0.036$ mol 20 (d) From Henderson equation $pOH = pK_b + \log \frac{[salt]}{[base]}$ pH + pOH = 14 $pOH = 5.0 + \log \frac{[1.0]}{[0.1]} = 5 + \log 10 = 5 + 1$ pOH = 6pH + pOH = 14pH + 6 = 14pH = 14 - 6 = 821 **(b)** It has sextet of electron and can accept lone pair of electron. 22 (c) BF₃ is electron deficient compound because B has six electrons in outermost orbit. It has incomplete octet. So, it is an electron deficient molecule. 23 (a) Metal oxides are basic, non-metal oxides are acidic. CaO is more basic than CuO. Water (H_2O) is amphoteric. 24 (a) The acidic character of oxy-acids decreases down the group and increases along the period. Also

higher ox.no. of non-metal in oxy-acid shows

more acidic nature. 25 (c) Follow Arrhenius concept. 27 (b) $N_{\rm NaOH} = \frac{0.04}{40 \times 10} = 10^{-4} N$ $\therefore pOH = 4$ \therefore pH = 10 28 (a) $P_4(s) + 5O_2(g) \rightleftharpoons P_4O_{10}(s)$ $K_c = \frac{[P_4 O_{10}(s)]}{[P_4(s)][O_2(g)]^5}$ We know that concentration of a solid component is always taken as unity $K_c = \frac{1}{[0_2]^5}$ 29 (d) [HCl] = 10^{-8} *M*, Being very dilute pH < 7. New concentration of, $HCl = \frac{10^{-6}}{100} = 10^{-8} M$ $\therefore [\mathrm{H^+}] = 10^{-18} + 10^{-7}$ $= 1.1 \times 10^{-7} M$ \therefore pH \approx 7 30 (d) A buffer solution is more effective in the pH range of $pK_a \pm 1$. 31 (c) From H_2O , $[H^+] = 1 \times 10^{-7}M$ From HCl[H⁺] = 1×10^{-8} M Total $[H^+] = (1 \times 10^{-7} + 1 \times 10^{-8})M$ $= (1 \times 10^{-7} + 0.1 \times 10^{-7})$ M $= 1.1 \times 10^{-7} M$ $pH = -\log(1.1 \times 10^{-7}) = 6.9586$ 32 (b) $pH = -\log K_a + \log \frac{[Conjugate base]}{[Acid]}$ 33 (b) 100 mL of 0.01 M NaOH solution is diluted to 1 dm³ (*i.e.*, 10 times diluted hence, the resultant solution will be 0.001 M) $[OH^{-}] = 0.001 = 10^{-3}$ $[\mathrm{H}^+] = \frac{10^{-14}}{[\mathrm{OH}^-]} = \frac{10^{-14}}{10^{-3}} = 10^{-11}$ $pH = -\log[H^+]$ $= -\log[10^{-11}]$ pH=11

34 (a)

Only salts of (weak acid+ strong base) and (strong acid + weak base) get hydrolysed

 $K_p < K_c$ 41 (a) $In\frac{K_2}{K_1} = \frac{\Delta H}{R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$ K increase with $\frac{1}{T}$ or decreases with T it is decided by ΔH . Here, *K* decrease with *T*. Thus, $\Delta H = -ve$. (a) $\underset{\text{Millimole}}{\text{CdSO}_{4}} + \underset{10 \times 0.08}{\text{HCl}} + \text{H}_{2}\text{S} \rightarrow \text{CdS} + \text{H}_{2}\text{SO}_{4}$ added Millimole after reaction ∴ Millimole of H⁺ left = $0.8_{(\text{from HCl})} + 0.1 \times 2_{(\text{from H}_2\text{SO}_4)} = 1.0$ Total volume = 100 mL $[\mathrm{H}^+] = \frac{1}{100} = 10^{-2}M$ ÷ pH = 2:. (a) $pH = -\log[H^+] = -\log[0.005]$ $= -\log[5 \times 10^{-3}] = 2.3$ 44 (c) It is a case of simultaneous solubility of salts with a common ion. Here solubility product of CuCl is much greater than that of AgCl, it can be assumed that Cl⁻ in solution comes mainly from CuCl. \Rightarrow $[Cl^{-}] = \sqrt{K_{sp}(CuCl)} = 10^{-3} M$ Now for AgCl : $K_{sp} = 1.6 \times 10^{-10}$ $= [Ag^+][Cl^-]$ $= [Ag^+] \times 10^{-3}$ $[Ag^+] = 1.6 \times 10^{-7}$ ⇒ (d) $2AB_3(g) \rightleftharpoons A_2(g) + 3B_2(g)$ 8 0 (8-a) a/2 t = 0At.eqilibrium: Thus, $K_c = \frac{[A_2][B_2]^3}{[AB_3]^2}$; Also, $\frac{a}{2} = 2 \therefore a = 4$ $\therefore [AB_3] = \frac{4}{1}; [A_2] = \frac{2}{1}; [B_2] = \frac{6}{1}$ Thus, $K_c = \frac{2 \times 6^3}{4^2} = 27 \text{ mol}^2 \text{L}^{-2}$ 46 **(b)** Find solubility for each separately by $s^2 = K_{sp}$ for MnS and ZnS, $108s^5 = K_{sp}$ for Bi₂S₃ and $4 s^3 = K_{sp}$ for Ag₂S. 47 (c) $K_{c_1} = \frac{1}{K_{c_2}} = \frac{1}{2.4 \times 10^{-3}} = 4.2 \times 10^2$

48 (d)

42

43

45

 $Li_3Na_3(AlF_6)_2 = 3Li^+ + 3Na^+ + 2AlF_6^{3-}$ $K_{sp} = (3a)^3 (3a)^3 (2a^2) = 2916a^8.$ ÷ 49 **(b) Dissociation constant** $H_20 \rightleftharpoons H^+ + 0H^-: [H^+] = 0H^- = 1 \times$ 10⁻⁷ M And $[H_2 0] = 1 \text{ g/mL} = 1000 \text{ gL}^{-1}$ $=\frac{1000}{18}$ mol L⁻¹ = 55.56 M $K = \frac{[\mathrm{H}^+][\mathrm{OH}^-]}{\mathrm{H}_2\mathrm{O}} = \frac{10^{-14}}{55.6}$ $K_w = 1 \times 10^{-14}$ So, $K_w = 55.6 \times K$ 50 (d) $K_a = C\alpha^2$ and $\alpha = \sqrt{\frac{K_a}{C}}$ $\alpha = \sqrt{\frac{10^{-5}}{10^{-1}}} = 10^{-2}$ 51 (d) $K_{sp} = 4s^3 = 4 \times (\sqrt{3})^3 = 12\sqrt{3}.$ 52 (a) $pH = \frac{1}{2} [pK_{a_1} + pK_{a_2}] \text{ and } pH = \frac{1}{2} [pK_{a_2} + pK_{a_3}].$ 53 (a) In the given equilibrium reaction, if inert gas is added at constant pressure, it will result in increased volume. Due to which, the equilibrium will shift towards the left hand side (LHS) *i.e.*, reaction goes in back direction. 54 (d) Hard base is that anion which is small and difficult to polarise. 55 (a) HSO_4^- is an acid and conjugate base of H_2SO_4 . 56 (a) An increase in temperature favours endothermic reaction whereas an increase in pressure favours the reaction showing decrease in mole or volume. 57 (d) K_{sp} for AgCl = s^2 . 58 (c)

(c) According to Le-Chatelier's principle when a system at equilibrium is subjected to change in pressure, temperature or concentration then the equilibrium is disturbed and shifts in a direction where the effect of change is annuled.

Ice \rightleftharpoons water When pressure is increased in this system, the melting point of ice is decreased *i.e.*, more ice melts and more water is formed.

59 (d)
∴ 2SO₃ ⇒ 2SO₂ + O₂
(1 - 0.6) 0.6 0.3

$$K_c = \frac{[SO_2]^2[O_2]}{[SO_3]^2} = \frac{0.6 \times 0.6 \times 0.3}{0.4 \times 0.4} = 0.675$$

60 (a)
CaCO₃(s) ⇒ CaO(s) + CO₂(g)
Mole before $\frac{20}{100}$ 0 $\frac{0}{100 \times \frac{15}{100}}$
 $\frac{1200 \times \frac{15}{100}}{\frac{1200 \times \frac{15}{100}}{\frac{1200 \times \frac{15}{100}}{\frac{1200 \times \frac{15}{100}}}} = 1.3 \times 10^{-1}$
∴ Mole of CO₂ formed $= \frac{20 \times 65}{10^4} = 1.3 \times 10^{-1}$
∴ PV = nRT
 $p_{CO_2} = \frac{1.3 \times 10^{-1}}{10} \times 0.0821 \times 1073$
 $= 1.145$ atm
Now, $K_p = p_{CO_2} = 1.145$ atm
61 (b)
2NOBr(g) $\Rightarrow 2NO + Br_2$
 $\frac{6P}{9} = \frac{2P}{9} + \frac{P}{9} = P$
 $K_P = \frac{(P_{NO})^2(P_{Br_2})}{(P_{NOBr})^2} = \frac{(2P/9)^2(P/9)}{(\frac{6P}{9})^2} = \frac{P}{81}$
62 (c)
 $K_{Sp} = 4s^3$
or $s = \left[\frac{1.2 \times 10^{-5}}{4}\right]^{1/3} = 1.44 \times 10^{-2}$
 $\therefore [M^+] = 1.44 \times 10^{-2} \times 2$
 $= 2.88 \times 10^{-2}M.$
63 (b)
Due to back bonding (BF₃ shows maximum
tendency due to small size of F).
64 (c)
Cr(OH)₃ \Rightarrow Cr³⁺ + 30H⁻
For precipitate to be dissolved,
 $K_{Sp} \le [Cr^{3+}][OH^-]^3$
 $\therefore [OH^-] \ge 1.79 \times 10^{-10}$
So, $[H^+] \le \frac{10^{-14}}{1.79 \times 10^{-10}} \le 5.59 \times 10^{-5}$
 $pH \ge -\log(5.59 \times 10^{-5})$ or pH ≥
4.253

65 **(a)**

KCN is a salt of weak acid and strong base hence, on being dissolved in water gives basic solution *i. e.*, pH > 7 at 25° C. 66 **(b)** NH₄Cl is acidic due to hydrolysis of NH⁺₄; $NH_4^+ + H_2O \rightleftharpoons NH_4OH + H^+; pH < 7.$ 67 (a) When the number of moles of gaseous reactants and products is same, then equilibrium is not affected by pressure and hence, the equilibrium constant is unaffected. 68 (d) Glycine, the simplest amino acid (CH₂NH₂COOH) has the tendency to donate H^+ by -COOH gp. and the tendency to donate lone pair by N-atom of $-NH_2$ gp. and also exists as **Zwitter ion**. $H_2NCH_2 \cdot COOH \rightleftharpoons H_3N^+CH_2COO^-$ 69 (d) $H_2 + I_2 \rightleftharpoons 2HI$ $[HI] = 0.80, [H_2] = 0.10, [I_2] = 0.10$ $K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = \frac{0.80 \times 0.80}{0.10 \times 0.10} = 64$ 70 (a) $[\rm{H^+}] = 10^{-1} \, M$ $\frac{w}{36.5} = 10^{-1}$:. $w = 36.5 \times 10^{-1} = 3.65 \text{ g}$ or 71 (d) $\begin{array}{c} \underset{mM \text{ before reaction}}{\text{mM after reaction}} & \underset{10}{\text{MgCl}_2} + 2\text{NaOH} \longrightarrow \text{Mg(OH)}_2 + 2 \\ \underset{10}{\text{MgCl}_2} & \underset{20}{\text{MgCH}_2} \longrightarrow 0 \\ \underset{10}{\text{MgCl}_2} & \underset{10}{\text{MgCH}_2} \longrightarrow 0 \\ \underset{10}{\text{MgCH}_2} \underset{10}$ Thus, 10 m mole of $Mg(OH)_2$ are formed. The product of [Mg²⁺][OH⁻]² is therefore $\left[\frac{10}{200}\right] \times \left[\frac{20}{200}\right]^2 = 5 \times 10^{-4}$ which is more than K_{sp} of $Mg(OH)_2$. Now, solubility (s) of $Mg(OH)_2$ can be derived by $K_{sp} = 4s^3$ 72 (c) At chemical equilibrium, rate of forward reaction is equal to the rate of backward reaction. 73 (a) Acidic nature is $RCOOH > CH \equiv CH > NH_3 > RH$ Stronger is acid, weaker is its conjugate base. 74 (d) In the expression for equilibrium constant $(K_p \text{ or } K_c)$ species in solid state are not written (i.e., their molar concentrations are

taken as 1)

$$P_4(s) + 5O_2(g) \rightleftharpoons P_4O_{10}(s)$$
Thus, $K_c = \frac{1}{[O_2]^5}$

(a) Reversible reaction

75

76

77

Reversible reaction always attains equilibrium and never go for completion.

(d)

$$K_{c} = \frac{[CO_{2}]}{[CO]}$$

$$\therefore 5 = \frac{[CO_{2}]}{2.5 \times 10^{2}}$$

$$\therefore [CO_{2}] = 0.125 M$$
(d)

$$H_{2} + I_{2} \rightleftharpoons 2HI$$
Initial 0.4 0.4 0
At equilibrium 0.4-0.25 0.4-0.25 0.05

$$=0.15 = 0.15$$

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$

$$= \frac{\left(\frac{0.50}{2}\right)^{2}}{\left(\frac{0.15}{2}\right)\left(\frac{0.15}{2}\right)} = \frac{0.5 \times 0.5}{0.15 \times 0.15} = 11.11$$
(d)

78 **(d)**

We know that,

$$[\mathrm{H^+}] = 10^{-\mathrm{pH}} = 10^{-5}$$

$$\alpha = \frac{actual \ concentration}{molar \ concentration}$$

$$= \frac{10^{-5}}{0.005} = 0.2 \times 10^{-2}$$

 \therefore Percentage ionisation = $0.2 \times 10^{-2} \times 100$

= 0.2%

79 **(a)**

More is pH, more basic is solution.

80 **(d)**

Both Arrhenius and Bronsted bases are source of H^+ Arrhenius base (OH⁻ furnish) may not be capable of accepting proton (*i.e.*, Bronsted based). H^+ exists as $H_9^+O_4$.

81 **(b)**

 $\begin{array}{ll} \text{Mole before dissociation} & \text{CH}_2\text{FCOOH} = \text{CH}_2\text{FCOO}^- + \text{H}_{\alpha}^+\\ & 1\\ 1\\ (1-\alpha) & \alpha \end{array} \\ \text{Given, [H^+]} = c\alpha = 1.5 \times 10^{-3} \text{ mol litre}^{-1}\\ \hline & K_a = \frac{(c\alpha)(c\alpha)}{c(1-\alpha)} = \frac{c\alpha^2}{(1-\alpha)}\\ 2.6 \times 10^{-3} = \frac{1.5 \times 10^{-3} \times \alpha}{(1-\alpha)}\\ \hline & \alpha = 0.634\\ \text{Now, } c\alpha = 1.50 \times 10^{-3}\\ \hline & c = \frac{1.50 \times 10^{-3}}{0.634} = 2.37 \times 10^{-3}M \end{array}$

Note: Since K_a is of the order of $10^{-3}M$ and thus, it is not advisable to use $K_a = c\alpha^2$. Because $(1 - \alpha)$ is not equal to 1 since α is not small.

82 **(b)**

For oxoacids of the same element, the acidic strength increases with increase in the oxidation number of the element

 $\overset{+1}{\operatorname{HClO}} \underset{<}{\overset{+3}{\leftarrow}} \overset{+5}{\operatorname{HClO}} \underset{<}{\overset{+7}{\leftarrow}} \overset{+7}{\operatorname{HClO}} \underset{4}{\overset{+7}{\leftarrow}} \overset{+7}{\operatorname{HClO}} \underset{4}{\overset{+7}{\leftarrow}} \overset{+7}{\operatorname{HClO}} \underset{4}{\overset{+7}{\leftarrow}} \overset{+7}{\operatorname{HClO}} \overset{+7}{\leftarrow} \overset{+7}{\operatorname{HClO}} \overset{+7}{\operatorname{HCLO}} \overset{+7}{\operatorname{HCLO}} \overset{+7}{\operatorname{HCLO}} \overset{+7}{\operatorname{HCLO}} \overset{+7}{\operatorname{HCLO}} \overset{+$

83 **(a)**

 HNO_3 (nitric acid) is generally not an amphoteric substance. It is a strong acid (proton-donating) though sometimes, in presence of stronger acid, it also acts as a base (*e.g.*, in nitration of atomic compounds, it acts as a base and accept proton from H_2SO_4). However HCO_3^- , H_2O and NH_3 frequently act both as an acid as well as a base (*i.e.*, amphoteric in nature).

85 **(b)**

 $K_p = K_c (RT)^{-1/2}$ $\therefore \Delta n = -1/2$

86 **(c)**

Le-Chatelier's principle is not valid for solid-solid 92 equilibrium.

87 **(c)**

BaCl₂ → Ba²⁺ + 2Cl⁻ Let the solubility of BaCl₂ is x mol/L ∴ $K_{sp} = [Ba^{2+}][Cl^{-}]^{2}$ $= (x) \times (2x)^{2}$ $= x \times 4x^{2} = 4x^{3}$ or solubility of BaCl₂ = $\frac{(\text{solubility product of BaCl_2})^{1/3}}{4}$

$${}^{4} = \frac{(4 \times 10^{-9})^{1/3}}{4} = 10^{-3} \text{ mol/L}$$

Addition of sodium acetate in acetic acid solution, due to common ion NH_4^+ the ionisation of acetic acid is supressed so concentration of [H⁺] decreases. Hence, pH of solution increases.

89 **(a)**

91

$$AB_{2} \rightleftharpoons A^{+} + 2B^{-}$$

$$1 \times 10^{-3} \ 2 \times 10^{-3}$$

$$K_{sp} = [1 \times 10^{-3}][2 \times 10^{-3}]^{2} = 4 \times 10^{-9}$$

90 **(b)**
NaHCO₃ + NaOH
$$\rightarrow$$
 Na₂CO₃ + H₂O.
Acid salt

(a)

$$\underbrace{2SO_2(g) + O_2(g)}_{3 \text{ mol}} \underbrace{2SO_3(g)}_{2 \text{ mol}}$$

Formation of

 SO_3 (sulphur trioxide) from SO_2 and O_2 is accompanied by decrease in volume. So, increase in pressure favours SO_3 formation (also due to Le-Chatelier's principle).

2 **(d)**

$$NH_{4}HS(s) \rightleftharpoons NH_{3}(g) + H_{2}S(g)$$

at $t = 0$ 0.5 0
 $P_{T} = 0.5 + P + P = 0.84$
 $\therefore P = 0.17 \text{ atm}$
 $K_{p} = P_{NH_{3}} \times P_{H_{2}S} = (0.5 + 0.17) \times 0.17$
 $= 0.11 \text{ atm}$
93 (b)
 $[H^{+}][OH^{-}] = 10^{-14}$
 $[10^{-2}][OH^{-}] = 10^{-14}$
 $[OH^{-}] = \frac{10^{-14}}{10^{-2}}$
 $= 10^{-12} \text{ mol dm}^{-3}$
94 (c)

It is condition for chemical equilibrium.

95 **(b)** $= 5.55 \times 10^{-10}$ Solution of $CuSO_4$ is acidic due to hydrolysis of |103 (b) Cu²⁺ ion. Let V mL of 0.1 M HCOONa be mixed to 50 mL of 97 (a) 0.05 M HCOOH. $[{\rm H^+}]_{\rm I} = 10^{-5}$ $\left[\because [] = \frac{\text{Total millimole}}{\text{Total volume}} \right]$ $[H^+]_{II} = 10^{-2}$ \therefore In mixture [HCOONa] = $\frac{0.1 \times V}{(V+50)}$ Thus, increase in $[H^+] = \frac{10^{-2}}{10^{-5}} = 1000$ times. 98 (a) $\therefore [\text{HCOOH}] = \frac{50 \times 0.05}{V + 50}$ According to Lewis acid is any species $: \text{pH} = -\log K_a + \log \frac{[\text{Conjugate base}]}{[\text{Acid}]}$ (molecule, radial or ion) that can accept an electron pair to form a coordinate covalent $\therefore 4.0 = 3.80 + \log \frac{(0.1 \times V)(V + 50)}{2.5/(V + 50)}$ bond. Thus, acid is an electron deficient species *e.g.*, BF₃, AlCl₃, SO₃ and all cations etc. : V = 39.62 mL. $AlCl_3 + Cl \rightarrow Cl_3Al \leftarrow Cl$ Lewis acid Lewis base Adduct 104 (a) HA (a weak acid) ionises as Or AlCl₄ \rightleftharpoons H⁺ + A⁻ HA 99 (c) 1 0 0 $K_{\rm sp}$ of AgCl = (solubility of AgCl)² $(1-10^{-5})$ 10^{-5} 10^{-5} $=(1 \times 10^{-5})^2 = 1 \times 10^{-10}$ $[A^{-}] = [H^{+}] = 10^{-pH} = 10^{-5}M$ Suppose its solubility in 0.1 M $K_a = \frac{[H^+][A^-]}{[HA]} = \frac{10^{-5} \times 10^{-5}}{(1-10^{-5})} = \frac{10^{-10}}{1}$ NaCl is $x \mod L$ $(: 1 >>> 10^{-5})$ $AgCl \rightleftharpoons Ag^+ + Cl^ =1 \times 10^{-10} \text{ M}$ x x $NaCl \rightleftharpoons Na^+ + Cl^-$ 105 (a) 0.1 M 0.1 M $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ $[Cl^{-}] = (x + 0.1) M$ (1 - x)x х $K_{\rm sp}$ of AgCl = [Ag⁺][Cl⁻] Total number of moles at equilibrium $= x \times (x + 0.1)$ = (1 - x) + x + x $1 \times 10^{-10} = x^2 + 0.1x$ = 1 + xHigher power of *x* are neglecated $p_{\text{PCl}_3} = \left(\frac{x}{1+x}\right) \times p$ $1 \times 10^{-10} = 0.1x$ 106 (c) $x = 1 \times 10^{-9} \,\mathrm{M}$ 2.303 $\log \frac{K_2}{K_1} = \frac{\Delta H}{R} \frac{[T_2 - T_1]}{T_1 T_2}$, 100 (c) For reaction, $2SO_3 \rightleftharpoons O_2 + 2SO_2$ $\Delta H = +$ ve for the reaction, Here, $\Delta n_g = 3 - 2 = 1$, *ie*, +ve, thus, K_p is more $N_2 + O_2 \rightleftharpoons 2NO.$ than K_c [:: $K_p = K_c (RT)^{\Delta n_g}$] 107 (b) Now [H⁺] = $\frac{25 \times 0.01 + 25 \times 0.02}{50}$ 101 (c) $s = \sqrt{K_{sp}} = \sqrt{36} = 6M.$ $=\frac{0.75}{50}=0.015 M$ 102 (d) $K_h = \frac{K_w}{K_h}$ and thus, pH will decrease, as [H⁺] increases. 108 (a) where K_w =ionic product of water Carbon cannot expand its octet. $= 1 \times 10^{-14}$ 109 (d) K_b =degree of dissociation of NH₄OH = N of NH₃ possesses lone pair of electron available 1.8×10^{-5} for donation. $K_h = \frac{1 \times 10^{-14}}{1.8 \times 10^{-5}}$ 110 (a) $2NH_3 \rightleftharpoons N_2 + 3H_2$ $= 0.555 \times 10^{-9}$

Initial moles а 0 0 At equilibrium(a - 2x) x 3xInitial pressure of NH₃ of 'a'mole = 15 atm at 27°C. The pressure of 'a' mole of $NH_3 = p$ atm at 347°C $\therefore \frac{15}{300} = \frac{p}{620}$ $\therefore p = 31 \text{ atm}$ At constant volume and at 347°C, mole \propto pressure $a \propto 31$ (before equilibrium) \therefore $(a - 2x) \propto 50$ (after equilibrium) $\therefore \frac{(a-2x)}{a} = \frac{50}{31}$ $\therefore x = \frac{19}{62}a$ \therefore % of NH₃ decomposed = $\frac{2x}{a} \times 100$ $=\frac{2\times19a}{62\times a}\times100$ = 61.33%111 **(b)** Equilibrium constant for the reaction, $3A + 2B \rightleftharpoons C$, is $K = \frac{[C]}{[A]^3 [B]^2}$ 112 (a) $HA \rightleftharpoons H^+ + A^ K = C \alpha^2$ $= 0.1 \times (10^{-5})^2$ $= 0.1 \times 10^{-10} \text{ or } 1 \times 10^{-11}$ 113 (c) $K_p = \frac{p_{CO}^2}{p_{CO_2}} = \frac{4 \times 4}{2} = 8$ 114 **(b)** $\frac{\text{normal.mol.wt.}}{\text{exp.mol.wt.}} = 1 + \alpha$ For, $NH_4Cl \rightleftharpoons NH_3 + HCl$; $:: \alpha = 1$ \therefore Exp. Mol.wt. = $\frac{\text{normal.mol.wt.}}{2}$ 115 (c) $Al(OH)_3$ is weak base than $Mg(OH)_2$. Hydroxides of I and II group metals are strong base, stronger is base, weaker is its conjugate acid. 116 **(b)** K_p and K_c values do not change with catalyst. 117 (a) $\Delta H = E_{a_{(f)}} - E_{a_{(b)}} = 180 - 200$ $= -20 \text{ kJ mol}^{-1}$ (in absence of catalyst) $\therefore \Delta H = E_{a_{(f)}} - E_{a_{(h)}}$

= [180 - 100] - [200 - 100] $= -20 \text{ kJ mol}^{-1}$ (in presence of catalyst) Catalyst's have no influence on ΔH 118 (b) $C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$; Here, $\Delta n >$ Hence, decrease of pressure shifts the equilibrium in forward direction and increase of pressure shift the equilibrium in backward (reverse) direction. 119 (b) 20% mixture reacts to form 10% NH₃; Thus, 80% mixture and 10% NH₃ left or total pressure left = 90 atm, since 100% mixture has 100 atm. 120 (c) $C_2H_5O^-$ is conjugate strong base of C_2H_5OH . 121 (a) Borate ions are hydrolysed to develop alkaline nature in solution. 123 (b) For a buffer solution, pH is given by Henderson equation. $pH = pK_a + \log \frac{[salt]}{[acid]}$ hence, pH is least when concentration of acid is higher than that of salt. 124 (a) Phenolphthalein is good indicator in the range of pH 8 to 9.8. 125 (c) $N = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$ (:: for HCl N = M) $= \frac{0.015 \times 100 + 0.005 \times 100}{100 + 100}$ $= \frac{1.5 + 1.5}{200} = \frac{1}{100} = 10^{-2}$ Resulting solution is acidic in nature. Then. $[H^+] = 10^{-2}$ $pH = -\log[H^+]$ $= \log \frac{1}{[H^+]} = \log \frac{1}{10^{-2}}$ $= 2 \log 10$ = 2126 (d) $K_{sp} = [A^{3+}]^2 [X^{2-}]^3 = (2y)^2 (3y)^3 = 108 y^5$

127 (b) Solubility of BaSO₄ = $\sqrt{K_{sp}}$ $=\sqrt{1.1 \times 10^{-10}}$ $= 1.05 \times 10^{-5} M$ \therefore wt. of BaSO₄ = 1.05 × 10⁻⁵ × 233 $w_{\text{BaSO}_4} = 244.37 \times 10^{-5} \text{ g/litre}$ or : Volume of water needed to dissolve 1 g. BaSO₄ is equal to $\frac{1}{244.37 \times 10^{-5}} = 410$ litre. 128 (c) Addition of inert gas at constant volume does not influence the equilibrium concentration. 129 (b) $H_4Cl(s) \rightleftharpoons NH_4^+(aq) + Cl^-(aq);$ $\Delta H =$ +3.5 kcal/mol This is the endothermic reaction hence, increasing the temperature will shift the equilibrium to the right. 130 (c) $K_{\rm sp}$ of BaSO₄ = 1.5×10^{-9} : [Ba²⁺] = 0.01 M $[\mathrm{SO}_4^{2-}] = \frac{1.5 \times 10^{-9}}{0.01} = 1.5 \times 10^{-7}$ 131 (d) $Pb(OH)_2 \rightleftharpoons Pb^{2+} + 2OH^ K_{\rm sp} = [{\rm Pb}^{2+}][{\rm OH}^{-}]^2 = S \times (2S)^2$ $K_{\rm sp} = 4s^3 = 4 \times (6.7 \times 10^{-6})^3$ $= 1.20 \times 10^{-15}$ In a solution with pH=8 $[H^+] = 10^{-8}$ $[OH^{-}] = 10^{-6}$ and $1.20 \times 10^{-15} = [Pb^{2+}][10^{-6}]^2$ $[Pb^{2+}] = \frac{1.2 \times 10^{-15}}{[10^{-6}]^2}$ $= 1.2 \times 10^{-3} M$ 132 (c) $I_2(g) \rightleftharpoons 2I(g)$ $\Delta n = n_n - n_r$ = 2 - 1 = 1 $K_p = K_c(RT)$ $2BrCl(g) \rightleftharpoons Cl_2(g) + Br_2(g)$ $\Delta n = 0$ $K_n = K_c (RT)^0$ $K_p = K_c$ $CO(g) + 3H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$ $\Delta n = 2 - 4 = -2$ $K_n = K_c (RT)^{-2}$

 $K_n < K_c$

133 **(d)**

When the value of ionic product is greater than the solubility product, precipitation takes place 134 (a)

$$\begin{array}{l} \text{BOH}_{(1-\alpha)} \rightleftharpoons B_{c \alpha}^{+} + \underset{c \alpha}{\text{OH}^{-}} \\ K_{b} = \frac{[\text{B}^{+}][\text{OH}^{-}]}{\text{BOH}} = [\text{OH}^{-}]^{2} \\ \therefore \quad [\text{OH}^{-}] = 1.0 \times 10^{-6} M. \end{array}$$

135 **(d)**

As the solution is acidic pH < 7. This is because $[H^+]$ from $H_2O[10^{-7}]M$ cannot be neglected in comparison to 10^{-9} M

pH = 12 ∴ pOH = 2 or [OH⁻] = 10⁻²; ∴ [Ba²⁺] = $\frac{10^{-2}}{2}$ $K_{sp}Ba(OH)_2 = [Ba^{2+}][OH^{-}]^2 = \frac{10^{-2}}{2} \times (10^{-2})^2$ = 5 × 10⁻⁷M³.

137 **(b)**

2NH₃ \rightleftharpoons NH⁺₄ + NH⁻₂ (self ionisation) and K = [NH⁺₄][NH⁻₂] ∴ [NH⁺₄] = [NH⁻₂] ∴ [NH⁻₂] = $\sqrt{K} = \sqrt{10^{-30}} = 10^{-15}M$ Number of amide ions in 10^3 cm³ = $10^{-15} \times 6 \times 10^{23}$ ∴ Number of amide ions in one cm³ = $\frac{10^{-15} \times 6 \times 10^{23}}{10^3}$

$$= 6 \times 10^5$$
 ions

138 **(c)**

$$\begin{split} K &= k_1 \times k_2 \\ &= 1.8 \times 10^{-5} \times 5.0 \times 10^{-10} \\ &= 5 \times 10^{-15} \end{split}$$

139 **(d)**

Trichloroacetic acid is almost of same strength as HCl due to inductive effect of Cl-atoms.

$$[OH^{-}] = c \cdot \alpha = 0.01 \times \frac{5}{100} \times 5 \times 10^{-5}.$$

141 **(b)**

Nucleophiles are electron rich species and donate electron pair.

143 **(a)**

 $[Ca(OH)_2] = 0.01 \text{ mol}/100 \text{ cc} = 0.1 \text{ mol } L^{-1}$ Assuming complete ionisation,

$$[OH^{-}] = 0.2 \text{ M}, [H^{+}] = \frac{10^{-14}}{0.2} = 5 \times 10^{-14}$$
$$pH = -\log[H^{+}]$$
$$= -\log(5 \times 10^{-14})$$

= 14 - 0.669 = 13.3144 (c) A solution with reverse acidity or basically is known as buffer solution. It is of two types : (I)Acidic buffer solution : A mixture of weak acid and its salt with strong base e.g., $CH_3COOH + CH_3COONa$ (II)Basic buffer solution : A mixture of a weak base and its salt with strong acid. *e.g.*, $NH_4OH + NH_4Cl$ 145 (a) X(g) \rightleftharpoons Y(g)Z(g)Initial 1 0 0 At equilibrium 0.5 0.5 0.5 Partial pressure $\frac{0.5}{1.5} p$ $\frac{0.5}{1.5} p$ $\frac{0.5}{1.5} p$ ÷ $\begin{array}{ccc} R_p & \hline p_x \\ p & p \\ 1 & \frac{p & p}{3 & 3} \\ \end{array}$ 3 atm pPartial pressure of $X = \frac{p}{3} = \frac{3}{3}$ 1 atm. 146 (a) $K_1 = \frac{[NO_2]}{[NO][O_2]}$ and $K_2 = \frac{[NO]^2[O_2]}{[NO_2]^2}$ \therefore $K_2 = \frac{1}{K_1^2}$ 147 **(b)** $K_1 = \frac{[NO]^2}{[N_2][O_2]};$ $K_2 = \frac{[\text{NO}]}{[\text{N}_2]^{1/2} [\text{O}_2]^{1/2}};$ $\therefore K_1 = K_2^2.$ 149 (c) $Hg_2Cl_2 \rightleftharpoons Hg_2^{2+} + 2Cl^{-}$ $K_{sp}^{s} = [Hg_2^{2+}][Cl^{-}]^2$ $K_{\rm sn} = (s)(2s)^2$ $K_{\rm sn} = 4s^3$ $s = \left(\frac{K_{\rm sp}}{4}\right)^{1/3}$ 150 (c) $K_c = \frac{[\text{product}]}{[\text{reactant}]}$ $0.41 = \frac{[\text{product}]}{[\text{reactant}]}$ $[product] = 0.41 \times [reactant]$ ⇒

[product] < [reactant] \Rightarrow Therefore, reaction proceeds in backward direction, *i.e.*, more PCl₅ will be formed. 151 (a) Reaction is exothermic. By Le-Chatelier's principle, a reaction is spontaneous in forward side (in the direction of formation of more ClF_3) if F_2 is added, temperature is lowered and ClF₃ is removed. 152 (c) $\Delta ng = 1$ for this change, so the equilibrium constant depends on the units of concentration 153 (a) $K_{sp} = 4s^{3}$ $\therefore 4s^3 = 3.2 \times 10^{-8}$ $s = 2 \times 10^{-3} M$ ÷ 154 (d) $Ag_2CO_3 \rightleftharpoons 2Ag^+ + CO_3^{2-}$ Due to the common ion effect, the solubility decreases, so the solubility of Ag₂CO₃ would be greatest 1 L of 0.05 M NH₃ due to the absence of common ion either Ag^+ or CO_3^{2-} . Ag⁺ form complex with NH₃. $Ag^+ + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^+$ 155 (c) The interferring radicals are PO_4^{3-} , BO_3^{3-} , $C_2O_4^{2-}$ and F⁻ give insoluble matter in alkaline medium. 156 (d) $pOH = K_b + \log \frac{[salt]}{[base]}$ given, $pK_b = 5$, [Base] = 0.10 M, $[salt] = 0.01 \, M$ $pOH = 5 + \log \frac{0.01}{0.10} = 4$:. pH + pOH = 14pH = 14 - 4 = 10:. 157 (c) $2.303 \log \frac{K_2}{K_1} = \frac{\Delta H}{R} \frac{[T_2 - T_1]}{T_1 T_2}$; find ΔH . 158 (b) $K_c = \frac{[\mathrm{HI}]^2}{[\mathrm{H}_2][\mathrm{I}_2]}$ $\therefore 64 = \frac{x^2}{0.03 \times 0.03}$ $\therefore x^2 = 64 \times 9 \times 10^{-4}$ or, $x = 8 \times 3 \times 10^{-2}$ x is the amount of HI At equilibrium, amount of I₂ will be 0.30 - 0.24 = 0.06

159 **(c)**

Weak electrolytes are completely ionised at infinite dilution.

160 **(b)**

$$K_c = \frac{[PCl_3][Cl_2]}{[PCl_5]} = \frac{0.2 \times x}{0.4} = 0.5$$

 $\therefore x = 1$
161 **(b)**

Rest all occur in backward direction.

162 (c)

Electron donors are Lewis base. In the reaction $I_2 + I^- \rightarrow I_3^-$, I^- donates a pair of electron and I_2 accepts it to form I_3^- . $\therefore \quad 1^-$ is Lewis base. 163 (d)

Number of milliequivalents of

$$NaOH = 10 \times 0.1 = 1$$

Number of milliequivalents of $H_2SO_4 = 10 \times 0.05 = 0.5$ Milliequivalent of H_2SO_4 will neutralise NaOH so, that (1-0.5)=0.5 millieq. Of NaOH is left unneutralised.

Hence, pH of the resulting solution will be greater than seven (pH>7).

164 **(d)**

 $K_{sp} PbCl_{2} = 4s^{3} = 4 \times (0.01)^{3} = 4 \times 10^{-6}$ In NaCl solution for PbCl₂; $K_{sp} = [pb^{2+}][Cl^{-}]^{2}$ or $4 \times 10^{-6} = [pb^{2+}][0.1]^{2}$ $\therefore [Pb^{2+}] = 4 \times 10^{-4} M.$

165 **(a)**

 $aX + H_20 \rightleftharpoons NaOH + HX$

In it HX is weak acid, so NaX is a salt of weak acid and strong base.

 $\therefore \quad \text{Hydrolysis constant of NaX}$

$$K_h = \frac{K_W}{K_a} = \frac{1 \times 10^{-5}}{10^{-5}} = 1 \times 10^{-9}$$

For this type of salt

$$K_h = \frac{h^2}{v} = Ch^2$$

$$h = \text{degree of hydrolysis}$$

$$1 \times 10^{-9} = 0.1 \times h^2$$

$$h^2 = \frac{1 \times 10^{-9}}{0.1} = 1 \times 10^{-8}$$

or

:.

166 **(b)**

 $\rm H_2SO_4$ is almost completely ionised in aqueous solution.

167 (c) $XA \rightleftharpoons C + D$ $\begin{array}{c} 0 \\ a(1-\alpha) \end{array} \quad \begin{array}{c} 0 \\ \frac{a\alpha}{x} \end{array} \quad \begin{array}{c} 0 \\ \frac{a\alpha}{x} \end{array}$ $\therefore K = \frac{[C][D]}{[A]^X} = \left[\frac{a^2 \alpha^2}{x^2 V^2}\right] / \left[\frac{a(1-\alpha)}{V}\right]^X$ $=\frac{1}{x^2(1-\alpha)^X \cdot V^{2-X}}$ If α is independent of a, then 2 - X = 0Or X=2168 (d) $N_2O_4 \rightleftharpoons 2NO_2$ $(1-\alpha)$ 2α Total number of moles = $1 - \alpha + 2\alpha = 1 + \alpha$ 169 (d) $K_{sp} = 4s^{3}$ Also, $s = \frac{0.11}{58}$ mol litre⁻¹ $\therefore \qquad K_{sp} = 4 \times \left(\frac{0.11}{5\Omega}\right)^3$ 170 (d) $2NO_3(g) \rightleftharpoons 2NO(g) + O_2(g)$ $K_c = 1.8 \times 10^{-6}$ at 184°C(= 457K) $R = 0.00831 \text{ kJ mol}^{-1} \text{K}^{-1}$ $K_p = K_c (RT)^{\Delta n_g}$ Where. $\Delta n_{\rm g} = (\text{gaseous products} - \text{gaseous})$ reactants) =3-2=1 $\therefore K_p = 1.8 \times 10^{-6} \times 0.00831 \times 457$ $= 6.836 \times 10^{-6} > 1.8 \times 10^{-6}$ Thus, $K_p > K_c$ 171 (a)

pH curve of strong acid with weak base is vertical over the pH range of 4 to 7.

The indicator that shows colour change within this range is suitable. Methyl red (pH

range 4.4 to 6.5) is suitable indicator for titration of weak base *vs* strong acid.

172 **(b)** The value of the ionic product of water depends on temperature.

173 **(b)**

In this reaction, ΔH is negative, so reaction moves forward by decrease in temperature while value of $\Delta n_{\rm g} = 2 - 3 = -1$, *ie*, negative, so the reaction moves in forward direction by increase in pressure

175 **(b)**

 $K_p = K_c (RT)^{\Delta n}$ For the reaction, $N_2 + O_2 \rightleftharpoons 2NO$ $\Delta n = 2 - 2 = 0$ $\therefore \quad K_p = K_c (RT)^0$ $K_p = K_c$

176 **(b)**

Solubility is decreased due to common ion effect

AgI
$$\rightleftharpoons$$
 Ag⁺ + I⁺
NaI \rightleftharpoons Na⁺ + I⁺

177 (d)

$$K_p = \frac{p_{\text{CH}_3\text{OH}}}{P_{\text{CO}} \times p_{\text{H}_2}^2} = \frac{2}{1 \times (0.1)^2} = 200$$

K_p for reverse reaction is

$$=\frac{1}{K_p}=\frac{1}{200}=5 \times 10^{-3} \,\mathrm{atm}^2$$

178 (a)

Due to common ion effect, dissociation of NH_4OH decreases and thus, pOH increases or pH decreases.

179 (c)

```
pOH = 14 − pH = 14 − 10.65 = 3.35

pOH = −log[OH<sup>−</sup>]

−3.35 = log[OH<sup>−</sup>]

∴ [OH<sup>−</sup>] = 4.447 × 10<sup>−4</sup> M

Ca(OH)<sub>2</sub> = Ca<sup>2+</sup> + 2OH<sup>−</sup>

4.447 × 10<sup>−4</sup> M

\frac{[OH<sup>−</sup>]}{2} = [Ca(OH)<sub>2</sub>] = 2.2235 × 10<sup>−4</sup> M

Hence, in 250 mL, moles of

Ca(OH)<sub>2</sub> = \frac{2.2235 × 10<sup>−4</sup> × 250}{1000}

= 0.56 × 10<sup>−4</sup>

180 (c)
```

An increase in volume for the equilibrium having, $K_c = \frac{[SO_2][Cl_2]}{[SO_2Cl_2]} = \frac{[mole \text{ of } SO_2][mole \text{ of } Cl_2]}{[mole \text{ of } SO_2Cl_2] \times \text{volume}}$ Will increase the mole of Cl_2 or SO_2 to maintain K_c values constant.

181 **(b)**

$$\begin{array}{c} ZnO + 2NaOH \longrightarrow Na_2ZnO2_2 + H_2. \\ Acid & Base & Salt \end{array}$$

182 **(c)**

 $N_2(g)$ $+ 3H_2(g)$ \neq 2NH₃(g) 1 mole 3 mole (Initially) 0 moles(2L)(At equilibrium) 0.6 or (3 - 3x)2x moles (1-x) moles moles Number of moles of $N_2 = 0.6 = 1 - x$ x = 1 - 0.6 = 0.4:. $3 - 3x = 3 - 3 \times 0.4 = 1.8$, So, $2x = 2 \times 0.4 = 0.8$ and Therefore, the total number of moles at equilibrium. = (1 - x) + (3 - 3x) + 2x= 0.6 + 1.8 + 0.8= 3.2 mol183 (a) $I_2 \rightleftharpoons 2I^-;$ Find *x*, using $K_c = 10^{-6} = \frac{4x^2}{(1-x)}$, find *x* and notice 2x < (1 - x).184 (d) $K_c = \frac{[B]}{[A]} = 1.1$ 185 (a) In the reaction, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$, the number of moles of reactants and products are equal, thus it remain unaffected by change in pressure 186 (a) Aqueous solution of NaCl is neutral. So, its pH value is 7. 187 (a) If saturated solution $[Ag^+][Cl^-] = K_{sp}$ if the product of ionic concentration is lower than K_{sp} , solution is unsaturated.

188 (a) $NH_4OH \rightleftharpoons NH_4^+ + OH^-$ At t = 00.10 М 0 At equilibrium $\left(0.1 - \frac{1.3 \times 0.1}{100} \text{ M}\right) \ 0.0013 \text{ M}(0.0013 \text{ M})$ = 0.1 M $= [OH^{-}] = 0.0013 \text{ M} = 13 \times 10^{-4} \text{ M}$ $pOH = -\log[OH^{-}] = -\log(13 \times 10^{-4}) = 2.89$ pH = 14 - 2.89 = 11.11189 (b) $\alpha = \frac{\Lambda_v}{\Lambda_{\infty}} = \frac{8}{400} = 0.02$ Now $K_a = c\alpha^2 = \frac{1}{32} \times (0.02)^2$ $= 1.25 \times 10^{-5}$. 190 **(b)** $0^{2-} + H_2 0 \rightarrow 20 H^-$. 191 (b) $X^- + H_2 0 \rightleftharpoons HX + 0H^ K_h = \frac{10^{-14}}{10^{-5}}$ so, $h = \sqrt{\frac{K_h}{C}} = \sqrt{\frac{10^{-9}}{10^{-1}}} = 10^{-4}$ $= 100 \times 10^{-4} = 10^{-2}$ So, degree of hydrolysis is 0.01% 192 (a) The species which can accept as well as donate H⁺ can act both as an acid and a base $HSO_4^- + H^+ \rightleftharpoons H_2SO_4$ base $HSO_4^- \rightleftharpoons SO_4^{2-} + H^+$ acid 193 (d) $2 = \frac{[B]}{[A]}$; $4 = \frac{[C]}{[B]}$ and $6 = \frac{[D]}{[C]}$ Thus, on multiplying $2 \times 4 \times 6 = \frac{[D]}{[A]}$, i.e., K_c for the reaction. 194 **(d)** Moles of HCl = $\frac{0.365}{36.5} = 0.01$ Moles of NaOH in 100 cm³ of 0.2 M NaOH $0.2 = \frac{n \times 1000}{100} = 0.02$ Moles of NaOH left=0.02-0.01=0.01 Moles of NaOH per litre $\frac{0.01 \times 1000}{100} = 0.1$ $[\mathrm{H}^+] = \frac{10^{-14}}{0.1} = 10^{-13}; \ (K_w = [\mathrm{H}^+].[\mathrm{OH}^-])$ $pH = -\log[H^+] = -\log[10^{-13}]$ pH = 13195 (c)

 $[OH^{-}] = 0.0001N, pOH = 4$ pH + pOH = 14pH = 14 - pOH = 14 - 4 = 10196 (a) $\Delta G^0 = -2.303RT \log K_p$ $= -2.303 \times 8.314 \times 300 \log 10^{20}$ $= -114.88 \, \text{kJ}$ 197 (a) $K_c = \frac{1}{[0_2]^5}$; note that the expression does not involve the concentration terms of solid species. 198 (b) NH₄CN Is a salt of weak acid and weak base and thus, for it, $K_H = \frac{K_W}{K_a \times K_b}$ 199 (d) The forward reaction is exothermic and an increase in volume is taking place, Hence, according to Le-Chatelier's principle, forward reaction will be favoured by low temperature and low pressure. 200 (d) NH₄Cl on hydrolysis gives acidic nature. 201 (b) $K_c = [Fe^{3+}][OH^-]^3$ If $[OH^-] = \frac{1}{4} \times [OH^-]_{initial}$, than $[Fe^{3+}] =$ 64 $[Fe^{3+}]_{initial}$ to have K_c constant 202 (c) $A(g) + 3B(g) \rightleftharpoons 4C(g)$ 1 0 Initial concentration (1 - 3x)(1 - x)4xFinal concentration (at equilibrium) According to question, 1 - x = 4x $x = \frac{1}{5}$:. For above reaction, $K_c = \frac{[C]^4}{[A][B]^3} = \frac{(4x)^4}{(1-x)(1-3x)^3}$ $K_{c} = \frac{\left(4 \times \frac{1}{5}\right)^{4}}{\left(1 - \frac{1}{2}\right)\left(1 - 3 \times \frac{1}{2}\right)^{3}} = 8.0$ 203 (a) *m* Mole of acid = $6 \times 0.1 = 0.6$ *m* Mole of salt = $12 \times 0.1 = 1.2$ $\therefore \, \mathrm{pH} = 4.75 + \log \frac{1.2}{0.6} = 4.75 + 0.3010 = 5.05.$ 204 (c) 50 mL of 0.1 M HCl = $\frac{0.1 \times 50}{1000} = 5 \times 10^{-3}$

50 mL of 0.2 M NaOH = $\frac{0.2 \times 50}{1000}$ = 10 × 10⁻³ Hence, after neutralisation NaOH is left $= 10 \times 10^{-3} - 5 \times 10^{-3}$ $= 5 \times 10^{-3}$ Total volume = 100 ccThe concentration of NaOH $=\frac{5\times10^{-3}\times1000}{100}=0.05\ \mathrm{M}$ $[OH^{-}] = 0.05 \text{ M} = 5 \times 10^{-2} \text{ M}$ $pOH = -\log [OH^{-}]$ $= -\log [5 \times 10^{-2}]$ = 1.3010pH + pOH = 14pH = 14 - 1.3010 = 12.699205 (b) $2\text{KCN} + \text{AgNO}_3 \rightarrow \text{Ag}(\text{CN})_2^- + \text{KNO}_3 + \text{K}^+$ 0.1 (0.1-0.06) :. $[Ag(CN)_{2}^{-}] = 0.03$ Now, $Ag(CN)_2^- \rightleftharpoons Ag^+ + 2CN^ \begin{array}{ccc} 0.03 \\ (0.03-a) \end{array} & \begin{array}{c} 0 & 0.04 \\ a & (0.04+a) \end{array} \text{ (left from KCN)} \end{array}$ K_c is small $\therefore 0.03 - a \approx 0.03$ and $0.04 + a \approx 0.04$ $\therefore K_c = 4 \times 10^{-19} = \frac{(0.04)^2 \times a}{0.03}; \therefore a = 7.5 \times 10^{-18}$ 206 **(b)** Higher $pK_a(-\log K_a)$ means lower K_a for acid. 207 (a) $N_{\rm NaOH} = 1 \times 1 = 1 \,\rm N$ $N_{\rm H_2SO_4} = 2 \times 10 = 20 \,\rm N$ Millieq. of NaOH = $1 \times 100 = 100$ Millieq. of $H_2SO_4 = 20 \times 10 = 200$ Thus, Millieq. of acid are left and therefore pH <7. So, the resulting mixture will be acidic 208 (a) pH = 4.35 $\therefore 4.35 = -\log[H^+]$ or $[H^+]$ = antilog of (-4.35) $= 4.5 \times 10^{-5} M$ 209 (b) pH of salts of weak acid and weak base is derived by the relation : $[\mathrm{H}^+] = \sqrt{K_H} = \sqrt{\frac{K_W}{K_G \cdot K_h}}$ 210 (a) $H_2 \xrightarrow{\text{Electric arc}} 2H - 104.5 \text{ kcal}$ hydrogen atomic 220 hydrogen molecule The reaction is endothermic. For endothermic reaction increase in temperature shift the

equilibrium in forward direction. To proceed forward the pressure must be low because for the above reaction, increase of pressure will favoured backward reaction. So, for maximum yield the conditions are high temperature and low pressure.

211 **(a)**

 H_3PO_2 is monobasic acid and thus, it forms only one normal salt.

212 (d)

According to Lewis, "A base is a species which can donate an electron pair." In NH_3 , \ddot{N} has one lone pair. Thus, $\ddot{N}H_3$ is a Lewis base.

213 **(d)**

K < 1.0

214 **(b)**

Higher is the value of *K*, more is the probability for a reaction to go for completion.

215 **(d)**

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

The equilibrium constant (K_p) changes with the change in temperature.

Note : Variation of equilibrium constant with temperature can be express as:

$$\log \frac{K_2}{K_1} = \frac{\Delta H}{2.303R} \left[\frac{T_2 - T_1}{T_1 \cdot T_2} \right]$$

$$N_{2}(g) + O_{2}(g) \rightleftharpoons 2NO(g)$$

$$K_{c} = \frac{[NO]^{2}}{[N_{2}][O_{2}]} = 4 \times 10^{-4}$$

$$NO \rightleftharpoons \frac{1}{2}N_{2}(g) + \frac{1}{2}O_{2}(g)$$

$$K_{c}' = \frac{[N_{2}]^{1/2}[O_{2}]^{1/2}}{[NO]}$$

$$= \sqrt{\frac{1}{K_{c}}} = \sqrt{\frac{1}{4 \times 10^{-4}}} = 50$$

217 **(b)**

$$2A_{(g)} + B_{(g)} \rightleftharpoons 3C_{(g)} + D_{(g)}$$

Initial 1.0 1.0 0 0.75 0.25
$$K_c = \frac{(0.25) \times (0.75)^3}{(0.5)^2 \times 0.75}$$

218 **(c)**

 RNH_2 is stronger base than NH_3 . Also HI is strong acid and thus, I⁻ is weak base.

219 **(b)**

Due to ionisation in water.

(a)
[H⁺] =
$$10^{-1}$$

∴ pH = 1

221 (c) $Fe^{3+} + 3H_2O \rightarrow Fe(OH)_3 + 3H^+$. 222 **(b)** This is Bronsted-Lowry concept of acid base. 223 (a) The conjugate acids of $\overline{O}H$, $\overline{N}H_2$, HC \equiv C^{-} and $CH_{3}CH_{2}^{-}$ are H_2O , NH_3 , HC = CH and $CH_3 -$ CH₃respectively. Their acidic strength is as $HOH > HC \equiv CH > NH_3 > CH_3CH_3$ A strong acid has a weak conjugate base, hence the decreasing order of basic strength is $CH_3CH_2^- > NH_2^- > HC \equiv C^- > OH^-$ 225 (b) On removal of CO_2 (one of the reaction), reaction will proceed in backward direction. 226 (c) Common ion effect includes two necessary points; one presence of common ion and the other a weak electrolyte. 227 (b) $C(s) + CO_2 \rightleftharpoons 2CO(g)$ Gaseous mole before -1 0 dissociation Gaseous mole after - $\left(1 - \frac{50}{100}\right) \left(\frac{2 \times 50}{100}\right)$ dissociation

1. 0.5

 \therefore Total mole = 1.5 and $\Delta n = 1$

Total pressure given at equilibrium = 12 atm

1

1

$$K_p = \frac{(n_{\rm CO})^2}{(n_{\rm CO_2})} \times \left[\frac{P}{\sum n}\right]^{\Delta n} = \frac{(1)^2}{0.5} \times \left(\frac{12}{1.5}\right)^{\Delta n}$$
$$K_p = \frac{12}{1.5 \times 0.5} = 16 \text{ atm}$$

228 **(b)**

If $K_w = 10^{-12}$, then [H⁺] for neutral scale = 10^{-6} or pH = 6; thus, pH 6.9 refers for alkaline nature. 229 (c)

$$K_c = \frac{[\text{Cl}_2][\text{PCl}_3]}{[\text{PCl}_5]} = \frac{\frac{0.2}{10} \times \frac{0.2}{10}}{\frac{0.1}{10}} = 0.04$$

230 (d)

$$CH_{3}COOH + C_{2}H_{5}OH \rightleftharpoons CH_{3}COOC_{2}H_{5} + H_{2}O$$

$$\begin{array}{ccc} 1 \\ (1-2/3) \\ (1-2/3) \\ \end{array} \begin{pmatrix} 0 \\ 2/3 \\ 2/3 \\ 2/3 \\ \end{array}$$

 $\therefore K_c = \frac{\frac{2}{3} \times \frac{2}{3}}{\frac{1}{3} \times \frac{1}{2}} = 4$ 231 **(b)** $K_c = \frac{[NO_2]^2}{[N_2O_4]} = \frac{4 \times (0.05)^2}{0.05} = 4 \times 0.05 = 0.2$ 232 (d) Millieq. of 0.01 M HCl = $\frac{0.01 \times 100}{1000} = 1 \times 10^{-3}$ $\therefore pH = 3$ Millieq. of 0.02 M $H_2SO_4 = \frac{0.04 \times 50}{1000} = 2 \times 10^{-3}$ Millieq. of 0.02 M NaOH = $\frac{0.02 \times 50}{1000} = 1 \times 10^{-3}$ Left $[H^+] = 2 \times 10^{-3} - 1 \times 10^{-3}$; $\therefore pH = 3$ 233 (a) $K_p = \frac{p_{C0}^2 p_{O_2}}{p_{C0}^2} = \frac{[0.4]^2 \times [0.2]}{(0.6)^2} = 0.0888$ 234 (d) $pH = 4.5 + log \frac{[Conjugate base]}{[Acid]}$ \therefore [Salt] = [Acid], since $[A^-] = [H_A]$ \therefore pH = 4.5 \therefore pOH = 9.5 235 (b) We know that, $pH = pK_a + \log \frac{[salt]}{[acid]}$ or $pH = -\log 10^{-8} + \log \frac{1}{4}$ (:: [salt] = [acid])or pH = 8236 (c) $3A + 2B \rightarrow 2C$ $K_{c} = \frac{\text{concentration of products}}{\text{concnetration of reactants}}$ $= \frac{[C]^{2}}{[A]^{3} \times [B]^{2}}$ 238 (a)

Only in reaction (ii) $H_2PO_4^-$, gives H^+ to H_2O , thus behaves as an acid.

239 (a)

$$CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$$

 $\therefore [OH^-] = c \cdot h = c \sqrt{\frac{K_H}{c}} = \sqrt{K_H \cdot c} = \sqrt{\frac{K_w}{K_a} \cdot c}$
or $-\log OH = -\frac{1}{2} [\log K_w + \log c - \log K_a]$
or $pOH = \frac{1}{2} [pK_w - \log c - pK_a]$
Now, $pH + pOH = pK_w$
 $\therefore pH = \frac{1}{2} [pK_w + \log c + pK_a]$.
240 (a)
 $\underbrace{A + B}_2 + Q \rightleftharpoons \underbrace{C + D}_2$

The reaction is endothermic so, on increase temperature concentration of product will increase

increase 242 (d) It is $FeSO_4 \cdot (NH_4)_2 SO_4 \cdot 10H_2 O_4$. 243 (a) $[OH^{-}] = 2 \times 0.05 = 0.1$ \therefore pOH = 1 and pH = 13. 244 (b) For a reaction, $K_c = \frac{[\text{product}]}{[\text{reactant}]}$ Hence, if $K_c > 1$, then [Product]>[Reactant] 245 (c) For base BOH $BOH \rightleftharpoons B^+ + OH^-$ Dissociation constant $K_b = \frac{[B^+][OH^-]}{[BOH]}$: Higher the value of K_b , more will be dissociation of base and stronger will be base and vice-versa. : Weakest base among given choices is having $K_b = 7.2 \times 10^{-11}$. 246 (a) $2AB_2(g) \rightleftharpoons 2AB(g) + B_2(g)$ $K_p = \frac{x^2 \cdot x}{2(1-x)^2} \cdot \left[\frac{P}{1+\frac{x}{2}}\right]^1 = \frac{x^3 \cdot P}{2}$:. $\left(1-x \approx 1 \text{ and } 1+\frac{x}{2} \approx 1, \text{ since } x \ll 1\right)$ $P = \frac{3\sqrt{2K_p}}{p}$ 0r 247 **(b)** $K_p = K_c (RT)^{\Delta ng}$ $\Delta ng = -1$ (For the reaction, $2SO_2 + O_2 \rightleftharpoons 2SO_3$). Thus, for this reaction, K_p is less than K_c 248 (a) $Cr(OH)_3 \rightleftharpoons Cr^{3+} + 3OH^-$ (s) (3s) $K_{\rm sp} = s \times (3s)^3$ $= 27s^4$ $2.7 \times 10^{-31} = 27s^4$ $s = \sqrt[4]{\frac{K_{\rm sp}}{27}} = \sqrt[4]{\frac{2.7 \times 10^{-31}}{27}}$:. $=\sqrt[4]{10^{-32}}$ $= 10^{-8} \text{ mol/L}$ 249 (d) $N_2O_4 \rightleftharpoons 2NO_2$

 $\frac{1}{1-\alpha} \qquad \begin{array}{c} 0\\ 2\alpha\\ K_p = \frac{\left(n_{\rm NO_2}\right)^2}{n_{\rm NO_2}} \times \left[\frac{P}{\Sigma n}\right]^1 \end{array}$ For 33% dissociation: $K_p = \frac{(2 \times 0.33)^2}{0.67} \times \left[\frac{P}{1.33}\right]$ For 40% dissociation: $K_p = \frac{(2 \times 0.40)^2}{0.60} \times \left[\frac{P}{1.40}\right]$ $\therefore \frac{P_1}{P_2} = 1.56 \approx 1.60 = \frac{8}{5}$ 250 (a) $A + 2B \rightleftharpoons 2C$ 2 2 3 initial moles $(2 - 0.5)(3 - 0.5)(2 \times 0.5)$ at equilibrium Molar concentration of $A = \frac{1.5}{2}$ Molar concentration of $B = \frac{2.5}{2}$ Molar concentration of $C = \frac{1}{2}$ $K = \frac{[C]^2}{[A][B]^2} = \frac{1 \times 1 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 1.5 \times 2.5 \times 2.5}$ $=\frac{2}{15 \times 25 \times 25} = 0.21$ 251 (d) $\ln \frac{N}{1000}$ KOH solution, $[OH^{-}] = 10^{-3}$ M $pOH = -\log[OH^{-}] = -\log[10^{-3}]$ $= +3 \log 10 = 3$ pH + pOH = 14pH = 14 - pOH= 14 - 3= 11252 (a) Tears are alkaline in nature. 254 **(b)** $MX_2 = M^{2+} + 2X^{-}$ $K_{\rm sp} = (2s)^2(s) = 4s^3$ $\Rightarrow s = \frac{3}{4} \frac{K_{sp}}{4} = \frac{3}{4} \frac{4 \times 10^{-12}}{4} = 1.0 \times 10^{-4} M$ 255 (d) Let solubility of $BaSO_4 = mol L^{-1}$ $BaSO_4 \rightleftharpoons Ba^{2+} + SO_4^{2-}$ r x ∴ Ions at equilibrium

$$K_{sp} = [Ba^{2+}][SO_4^{2-}]$$

= $x \times x$
 x^2
Given, $K_{sp} = 1.5 \times 10^{-9}$
 $(1.5 \times 10^{-9}) = x^2$
or $\sqrt{1.5 \times 10^{-9}} = x$
 $x = 3.9 \times 10^{-5} \text{ mol/L}$

256 **(d)**

Strongest Bronsted base is that which has weakest conjugate acid.

Base	Conjugate
	acid (base
	+ H+)
ClO ⁻	HClO
ClO_2^-	HClO ₂
ClO_3^-	HClO ₃
ClO_4^-	HClO ₄

• HClO is weak conjugate acid.

 \div ClO⁻ is strongest Bronsted base.

257 **(b)**

At equilibrium $Q = K_c$ (or $Q = K_p$)

258 **(a)**

Oxalic acid = $x \mod/L$ Oxalic acid KMnO₄

$$M_1V_1 = M_2V_2$$

40 mL × x = 16 mL × 0.05
$$x = \frac{16 \times 0.05}{40} = \frac{1}{50}$$
$$x = \frac{1}{50}$$
M

Now, convert molarity into normality $N \times eq. wt = M \times mol. wt. of oxalic acid$

$$N \times 45 = \frac{1}{50} \times 90$$
$$N = \frac{1}{25}$$

This normality represents the hydrogen ion concentration.

So,

$$pH = \log \frac{1}{[H^+]}$$

= log 25 = 1.3

 $[H^+] = \frac{1}{1}$

259 **(c)**

Simple cations such as Ag⁺, Cu²⁺, Fe³⁺ etc. can accept pairs of electrons and hence are Lewis acids.

260 **(d)**

Aspirin is a weak acid. Due to common ion effect, it is unionised in acid medium but completely ionised in alkaline medium 261 **(c)**

For a saturated solution product of ionic concentrations $\geq K_{sp}$.

262 **(b)**

$$H_20 + H_20 = H_30^+ + 0H^-$$

 $K_{S.I} = \frac{K_w}{[H_20]^2} = \frac{10^{-14}}{(55.6)^2} = 3.23 \times 10^{-18}$

263 **(c)**

Follow the method to write K_c or K_p values. It is the ratio of concentrations of products with suitable powers to concentration of reactants e.g., $3A(g) + 2B(g) \rightleftharpoons 4C(g) + 5D(g)$

$$K_{c} = \frac{[C]^{4}[D]^{5}}{[A]^{3}[B]^{2}}$$
$$K_{p} = \frac{[P_{C}]^{4} \cdot [P_{D}]^{5}}{[P_{A}]^{3} \cdot [P_{B}]^{2}}$$

264 **(b)**

(i)Millimolar=
$$10^{-3}$$
M
(ii)pH = $-\log[H^+]$
pH = $-\log(10^{-3}) = 3$

265 **(b)**

$$A + 2B \rightleftharpoons C + 3D$$

$$K_c = \frac{p_C p_D^3}{p_A p_B^2} = \frac{0.30 \times (0.50)^3}{0.20 \times (0.10)^2}$$

= 18.75

266 **(d)**

It involves gain and loss of electron pair (Lewis concept).

267 (d)

$$SnCl_{2} + 2HgCl_{2} \rightarrow SnCl_{4} + Hg_{2}Cl_{2}$$

$$(white ppt.)$$

$$SnCl_{2} + Hg_{2}Cl_{2} \rightarrow SnCl_{4} + Hg_{2}$$

$$(Grey ppt.)$$

268 **(c)**

 BF_3 can accept a pair of electrons, but it cannot give H^+ ions in the aqueous solution, hence BF_3 acts as Lewis acid but not as a Bronsted acid

269 (c)

$$Na_2O + H_2O \rightarrow 2NaOH$$

 $\uparrow \qquad \uparrow$
Oxidation number of Na $+1$
 $+1$
Oxygen -2 -2

-2

No change in oxidation number, so (a) and (d) are not true.

(b) is also not true.

Oxide ion donates a pair of electrons, thus changes to OH^-

270 (d)

$$pH = \frac{1}{2}pK_w + \frac{1}{2}\log C + \frac{1}{2}pK_a$$

$$= \frac{14}{2} + \frac{1}{2}\log(5 \times 10^{-3}) + \frac{1}{2} \times 4.74$$

$$= 7 + \frac{1}{2}[0.6990 - 3] + 2.3$$

$$pH = 8.2195$$

271 **(b)**

For a salt of weak base and strong acid like MgCl₂ the relation is as

$$K_h = \frac{K_w}{K_b}$$

272 (d)

Theory of active mass indicates that the rate of chemical reaction is directly proportional to the concentration of reactants

273 (c)

If $n_P = n_R$, then $K_p = K_c$ where, n_p = number of moles of products n_R = number of moles of reactants

274 **(c)**

 $K_h = \frac{K_w}{K_a \times K_b}$

275 **(c)**

N— H bond behaves as an acid.

Α

276 **(c)**

D

Initial $x \mod x \mod$ At equilibrium $x - \frac{x}{3} = \frac{2x}{3} = \frac{2x}{3}$ $\frac{x}{3}$ Hence,

$$K_{c} = \frac{[C][D]}{[A][B]} = \frac{\binom{x}{3V}\binom{x}{3V}}{\binom{2x}{3V}\binom{2x}{3V}} = \frac{1}{4} = 0.25$$

+ B

 \neq C +

 $\frac{x}{3}$

277 (a)

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$ Initially at eq. 0.2 (0.2-a) 0.6 (0.6-3a) 2a Total mixture is 0.8; 40% of it reacts, i.e., $\frac{0.8 \times 40}{100}$ reacts to give $\frac{0.8 \times 40}{100} \times \frac{1}{2}$ mole of NH₃ or NH₃ formed is 0.16 mole Or 2a = 0.16 ∴ a = 0.08 ∴ initial mole = 0.8 Final mole = (0.2 - 0.08) + (0.6 - 0.24) + 0.16 = 0.12 + 0.36 + 0.16 = 0.64

 \therefore Ratio of final to initial mole $=\frac{0.64}{0.8}=0.8=\frac{4}{5}$ 278 (b) $[H^+] = 4 \times 10^{-3} M$ \therefore pH = $-\log 4 \times 10^{-3} = 2.398$. 279 (b) $pH = pK_a + \log \frac{[Salt]}{[Acid]}$ $= 5 + \log \frac{10}{1}$ if $\frac{[Salt]}{[Acid]} = 10 : 1$, Then, pH = 6.280 (a) 10 *M* HCl will give $[H^+] = 10^1$; pH of such solution = 0.281 (a) $Mg(OH)_2 \rightleftharpoons Mg^{2+} + 2OH^{-}$ $K_{\rm sp} Mg(OH)_2 = [Mg^{2+}][OH^{-}]^2$ $K_{\rm sp}\,{\rm Mg(OH)}_2=4S^3$ ⇒ $1.96 \times 10^{-11} = 4S^3$ $S = \left[\frac{1.96 \times 10^{-11}}{4}\right]^{1/3}$ or $S = (4.9 \times 10^{-12})^{1/3}$ or $S = 1.96 \times 10^{-4}$:. So, concentration of $[OH^{-}] = 2S$ $[OH^{-}] = 3.38 \times 10^{-4}$:. $pOH = -\log[OH^{-}]$ \Rightarrow $= -\log[3.38 \times$ 10 - 4pOH = 3.471pH = 14 - pOH= 14 - 3.471pH=10.529 :. 282 (c) $K_p = K_c (RT)^{\Delta n}$; 283 (c) K_c is characteristic constant for a given reaction at a temperature ; $K_p = P_{CO_2}$. 284 (c) Acidity order —F > H—_O___H > H—_O___S__O (Conjugate anion decreases acidity) н---- Т 285 (c)

For precipitation, ionic product > solubility product (K_{sp}) For, Ag_2CrO_4 ionic product = $[Ag^+]^2 [CrO_4^-]$ $= (10^{-4})^2 (10^{-5}) = 10^{-13}$ $K_{\rm sp} \text{ of } Ag_2 CrO_4 = 4 \times 10^{-12}$ Here, $K_{sp} > IP$ This, no precipitate is obtained. For AgCl, ionic product = $[Ag^+][Cl^-] =$ $[10^{-4}][10^{-5}]$ $= 10^{-9}$ $K_{\rm sp}({\rm AgCl}) = 1 \times 10^{-10}$ $IP > K_{sp}$ Here, So, precipitate will form. Thus, silver chloride gets precipitated first. 286 (d) It is basic lead carbonate. 287 (d) K_p or K_c are characteristic constants for a given reaction. 288 (b) $K_c = [Ca^{2+}][F^{-}]^2;$ If $[Ca^{2+}] = 4 \times [Ca^{2+}];$ To have K_c constant [F⁻] should be $\frac{|F^-|}{2}$. 290 (d) Strong conjugate base has a weak conjugate acid. Weakest conjugate acid is CH₃COOH. 291 (b) I[–] is electron pair donor. 292 (c) $2HI \rightleftharpoons H_2 + I_2;$ $K_c = \frac{\alpha^2}{4(1-\alpha)^2}$ Where α is degree of dissociation, Also, $\alpha = \frac{22}{100}$ $\therefore K_c = 0.0199$ 293 (c) ZnO reacts with acid and alkalies both. 294 (c) $\Delta n = -1$ and $K_p = K_c \ge (RT)^{\Delta n}$ 295 (a) $H_2(g) + CO_2(g) \rightleftharpoons CO(g) + H_2O(l)$ Initial conc. 1 1 0 0 At equilibrium (1 - x)(1 - x)х $K_p = \frac{p_{\text{CO}} \cdot p_{\text{H}_2\text{O}}}{p_{\text{H}_2} \cdot p_{\text{CO}_2}} = \frac{x \cdot x}{(1-x)(1-x)} = \frac{x^2}{(1-x)^2}$ 296 (c)

In this equation, volume is decreasing and the reaction is exothermic. So, for the highest yield of Z, pressure should be high and temperature should be low. 297 (a) The pH of salt $BaCl_2 = 7$ whereas $SrCl_2$ and $CaCl_2 \simeq 7$ and $MgCl_2 < 7$. 298 (d) Lewis definition suggests that an acid must be capable of accepting lone pair in its vacant orbital. Smaller ion shows more attraction towards lone pair of electron. 299 (c) Degree of dissociation, $\alpha = \frac{D-d}{d}$ $=\frac{46-30}{30}$ = 0.533 or 53.3% 300 (d) $\Delta n = 0$ then, $K_p = K_c$ For $(d)\Delta n = 1$ 301 (a) $pH = pK_a + \log \frac{[Conjugate base]}{[Acid]}$ or 5.24 = 4.74 + log $\frac{[Conjugate base]}{[Acid]}$ $\therefore \frac{[\text{Conjugate base}]}{[\text{base}]} = 3.$ 302 (a) $[\mathrm{H}^+] = C\alpha = \sqrt{K_a.C}$ $\mathrm{pH} = -\log(K_a, C)^{1/2}$ $=\frac{1}{2}\left[-\log K_a - \log C\right]$ $=\frac{1}{2}[4.74 - \log 10^{-2}]$ $=\frac{1}{2}[4.74+2]=3.37$ 303 (a) 1M solution of CH₃COONa on addition to acid shows a decrease in dissociation of acid due to common ion effect. 304 (d) Weak monoacidic base e.g., BOH is neutralised as follows $BOH + HCl \rightarrow BCl + H_2O$ At equivalence point all BOH gets converted into salt and remember! The concentration of H⁺ (or pH of solution) is due to hydrolysis of resultant salt (BCl, cationic, hydrolysis here) $+ H_2 0 \rightleftharpoons BOH$ $+ H^{+}$ B^+

C(1-h)

Page | 94

Ch

Ch

Volume of HCl used up

$$V_a = \frac{N_b V_b}{N_a} = \frac{2.5 \times 2 \times 15}{2 \times 5} = 7.5 \text{ mL}$$

Concentration of salt

$$[BCl] = \frac{\text{conc.of base}}{\text{total volume}} = \frac{2 \times 2.5}{5(7.5 + 2.5)} = \frac{1}{10} = 0.1$$
$$K_h = \frac{Ch^2}{1 - h} = \frac{K_w}{K_h}$$

(*h* should be estimated whether that can be neglected or not)

on calculating h=0.27 (significant, not negligible)

 $[H^+] = Ch = 0.1 \times 0.27 = 2.7 \times 10^{-2} M$ 305 (c)

A salt is precipitated only when the product of ionic concentration is more than its solubility product.

$$K_{\rm sp} = 1 \times 10^{-8}$$

 $[A^+] = 10^{-3} \text{ M}$
 $[B^-] = \frac{1 \times 10^{-8}}{10^{-3}} = 10^{-5} \text{ M}$

So, *AB* will be more precipitated only when the concentration of $[B^-]$ is more than 10^{-5} Μ.

306 (b)

According to Le-Chatelier's principle exothermic reactions are favourable at low pressure. The reaction in which number of moles decreases are favourable at high pressure or low volume.

 $C_2H_4 + H_2 \rightleftharpoons C_2H_6, \Delta H = -130 \text{ kJ mol}^{-1}$: The reaction is exothermic and number of moles of reactants are decreasing.

: The reaction rate is increased by decreasing temperature and increasing pressure.

307 (d)

The reaction does not cease up but goes in both directions with same speed.

308 (a)

Haber's process of synthesis of ammonia

$$N_{2} + 3H_{2} \rightleftharpoons 2NH_{3}$$

$$N_{2} + 3H_{2} \oiint 2NH_{3}$$

$$N_{2} + 3H_{2} \oiint 2NH_{3}$$

$$2000 \text{ atm}$$

Since, the number of molecules of gaseous products are less than the number of molecules of gaseous reactants, thus according to Le-Chatelier's principle, high pressure favours the forward reaction *i.e.*,

more ammonia will be obtained.

309 (d)

Buffer capacity of an acidic buffer is maximum when the ratio of HA to A^- is unity. Since, pH of acidic buffer = $pK_a + \log \frac{[A^-]}{[HA]}$ For maximum buffer capacity, $[A^-] = [HA]$ $H = pK_a$

310 (c) :.

$$\therefore \quad pH = 2$$

$$\therefore \qquad [H^+] = 10^{-2}$$

$$[H^+] = N. \alpha$$

$$10^{-2} = 0.1 \times \alpha$$

$$\alpha = \frac{10^{-2}}{0.1}$$

$$\alpha = 0.1$$

311 (c)

Since, catalyst increases the rate of forward reaction as well as the rate of backward reaction, it does not affect the equilibrium constant.

312 (d)

Meq. of H_2SO_4 needed for 20 Meq. of NaOH = 20 Thus, volume of H_2SO_4 needed = V_{mL} or $V \times 0.25 \times 2 = 20$ •

$$V = 40 \text{ mL}$$

Also, temperature increases during neutralization and then decreases after neutralization on further addition of acid.

313 (b)

The dissociation of H₂S decreases in presence of acid (or H⁺ a common ion furnished by an acid).

 H_2 2HI + I_2 \Rightarrow 15 5.2 0 10 (15-5)(5.2-5)Equilibrium constant

$$(K_c) = \frac{[\mathrm{HI}]^2}{[\mathrm{H}_2][\mathrm{I}_2]} = \frac{10 \times 10}{10 \times 0.2} =$$

50 315 (c)

New concentration of,

HCl =
$$\frac{10^{-6}}{100}$$
 = $10^{-8} M$
∴ [H⁺] = $10^{-18} + 10^{-7}$
= $1.1 \times 10^{-7} M$
∴ pH ≈ 7
317 (a)
pH = $-\log[H^+]$
= $-\log(3 \times 10^{-3})$

phenolphthalein is used

326 (a)

337 (a)

2.5, 3.0 and 4.0 the acid is strongest.

in III gp. or it more

D

0

3*x* At

Initially

+

we get,

The acidic character of HClO₄ is maximum. The order is $HClO_4 > HClO_3 > H_2SO_4 > H_2SO_3.$ 339 (c) K_p is independent of initial concentration. 340 (d) 20% yield of NH_3 and thus, 20% of 340 g is $=\frac{20\times 340}{100}=68$ g 341 (d) $CO_3^{2-} + H^+ \rightarrow HCO_3^-$ (acid). 342 **(b)** $CaCO_3(s) \xrightarrow{\Delta} CaO(g)(s) + CO_2(g) \uparrow$ 2. $K_n = 8 \times 10^{-2}$ $K_p = \frac{p_{\text{CaO}(s)} \times p_{\text{CO}_2(g)}}{p_{\text{CaCO}_3(s)}}$ (Heterogenous equilibrium) $K_p = p_{\rm CO_2}$ $p_{\rm CO_2} = 8 \times 10^{-2}$ $CO_2(g) + C(s) \rightarrow 2CO(g), K_p = 2$ 3. $K_p = \frac{p_{\rm CO(g)}^2}{p_{\rm CO_2} \times p_{\rm C(s)}}$ (Heterogenous equilibrium) $K_p = \frac{p_{\rm CO}^2}{p_{\rm CO_2}}$ $2 = \frac{p_{\rm CO}^2}{8 \times 10^{-2}}$ $p_{CO}^2 = 2 \times 8 \times 10^{-2}$ $p_{CO} = 0.4 \text{ atm}$ 343 (c) $H_2CO_3 \rightleftharpoons H^+ + HCO_3^-; \quad K_1 = 4.2 \times 10^{-7} HCO_3^- \rightleftharpoons H^+ + CO_3^{-2}; \quad K_2 = 4.8 \times 10^{-11}$ $K_1 >> K_2$ \therefore [H⁺] = [HCO₃] $K_2 = \frac{[\mathrm{H}^+][\mathrm{CO}_3^{2-}]}{[\mathrm{H}\mathrm{CO}_3^{-}]}$ So, $[CO_3^{2-}] = K_2 = 4.8 \times 10^{-1}$ 344 (d) Acid indicators are generally weak acid. The dissociation of indicator HIn takes place as follows $HIn \rightleftharpoons H^+ + In^ K_{\rm In} = \frac{[\rm H^+][\rm In^-]}{[\rm HIn]}$ $[\mathrm{H}^+] = K_{\mathrm{In}} \frac{[\mathrm{HIn}]}{[\mathrm{In}^-]}$

or

 $pH = -\log[H^+]$ $= -\log\left(K_{\ln \frac{[\text{HIn}]}{[\text{In}^{-1}]}}\right)$ $= -\log K_{\text{In}} + \log \frac{[\text{In}^-]}{[\text{HIn}]}$ $= pK_{In} + \log \frac{[In^-]}{[HIn]}$ or $\log \frac{[In^-]}{[HIn]} = pH - pK_{In}$ 345 (c) Mole $OH^- = M \times V_{\text{in litre}}$: No of $OH^- = 0.3 \times 0.005 \times 2 = 0.0030$. 346 (a) $\begin{array}{ll} H_2 + & I_2 \rightleftharpoons 2HI \\ 4.5 & 4.5 & 0 \end{array}$ Initial concentration (4.5-x)(4.5-x) 2xFrom equation, 2x = 3 $\therefore x = \frac{3}{2} = 1.5$ So, concentration at equilibrium $[H_2] = 4.5 - 1.5 = 3$ $[I_2] = 4.5 - 1.5 = 3$ [HI] = 3 $\therefore K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = \frac{3 \times 3}{3 \times 3} = 1$ 347 (a) Given, $K_w = 10^{-14}$, $K_a = 10^{-5}$ Concentration of salt = 0.001 M $K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{10^{-5}} = 10^{-9}$ According to equation $A^- + H_2 0 \rightleftharpoons HA + 0H^-$ Let degree of hydrolysis=h $0.001(1-h)(0.001 \times h)(0.001 \times h)$:. $K_h = \frac{[\text{HA}][\text{OH}^-]}{[A^-]} = \frac{(0.001 \times h)(0.001 \times h)}{0.001(1-h)}$:. $10^{-9} = (0.001h)^2$ [:: 0.001(1 - h) = or 1] $10^{-6} = h^2$ or :. $10^{-3} = h$ 348 (d) Unit of $K_c = \begin{bmatrix} 1 & \Delta n \\ - & \Delta n \end{bmatrix}^{\Delta n} \Delta n = +1.$ 349 (c) To precipitate soap from its saturated solution on addition of salt is called salting out action of soap. $RCOONa \rightleftharpoons RCOO^- + Na^+$ $K_{sp} = [RC00^{-}][Na^{+}]$ In presence of NaCl, [Na⁺] increases and thus, the product of $[Na^+][RCOO^-]$ exceeds in K_{sp} to show precipitation of soap.

$$SO_{2} + \frac{1}{2}O_{2} \rightleftharpoons SO_{3}$$

$$K_{1} = \frac{[SO_{3}]}{[SO_{2}][O_{2}]^{1/2}}$$
...(i)
$$2SO_{3} \rightleftharpoons 2SO_{2} + O_{2}$$

$$K_{2} = \frac{[SO_{2}]^{2}[O_{2}]}{[SO_{3}]^{2}}$$
...(ii)
From Eqs. (i) and (ii)
$$K_{2} = \frac{1}{K_{1}^{2}}$$

$$= \frac{1}{(5 \times 10^{-2})^{2}} = \frac{1}{25 \times 10^{-4}}$$

$$= \frac{100 \times 10^{2}}{25}$$

$$= 4 \times 10^{2} \text{ atm}$$

351 (d)

(i) The haemoglobin of RBC combines with oxygen in lungs following the equilibrium,

 $H_b(s) + O_2(g) \rightleftharpoons H_bO_2(s)$

When these are at lungs, the partial pressure of O_2 being appreciable to show forward reaction, however, when they pass to tissues, the partial pressure of O_2 decreases to favour backward reaction releasing O_2 .

(ii) Removal of CO₂ from blood is based on the equilibrium,

 $CO_2(g) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$

In tissues CO_2 gets dissolved in H_2O due to high pressure whereas in lungs, the CO_2 is released out because of low pressure of CO_2 .

(iii) Tooth enamel substance (hydroxyapatite) Ca₅(PO₄)₃OH shows the following equilibrium,

$$Ca_5(PO_4)_3OH \xrightarrow{\text{Demineralization}} 5Ca^{2+}(aq) + 3PO_4^{3-}(aq) + OH^{-}(aq)$$

The use of sweet material or fermentation produces H⁺, which combines with OH⁻ to favour demineralization of enamel causing tooth decay.

352 **(b)** 354 (a) $H^+ = 1.0 \times 10^{-8} = 10 \times 10^{-9}$ Pressure has no effect on equilibrium if $\Delta n = 0$ Also, if ionisation is not neglected 353 (a) $H_2 0 \rightleftharpoons H_{10^{-8}+a}^+ + 0H_a^ a \times (10^{-8} + a) = 10^{-14}$ Aqueous solution of AlCl₃ is acidic due to the hydrolysis of aluminium ion $AlCl_3 \xrightarrow{Hydrolysis} Al(OH)_3 + H^+$ $a = 9.9 \times 10^{-9}$... % emr = $\frac{10 \times 10^{-9} - 9.9 \times 10^{-9}}{10 \times 10^{-9}}$ - 1% 355 (d) Thus, a solution of blue and yellow ions appears green. 356 **(b)** $NH_2COONH_4(g) \rightleftharpoons 2NH_3(g) + CO_2(g)$

At eq. if partial pressure of $CO_2 = p$ Then that of $NH_3 = 2p$ $K_p = p_{\mathrm{NH}_3}^2 \times p_{\mathrm{CO}_2} = (2p)^2 \times p = 4p^3$ $= 2.9 \times 10^{-5}$ or $p^3 = 0.725 \times 10^{-5}$ or $p = 1.935 \times 10^{-2}$ Hence, total pressure = $p = 5.81 \times 10^{-2} =$ 0.0581 atm 357 (d) K_w increases with increase in temperature 358 (d) In all the given reactions, equilibrium is affected by the increase in volume at constant temperature 359 (a) Lewis bases are electron pair donor. I⁺ is electron deficient, hence do not act as Lewis base. 360 (d) CH₃COONH₄ is a salt of weak acid and weak base and $K_{\text{acid}} \approx K_{\text{base}}$ CH₃COOH NH₄OH 361 (a) CH_4 has almost no acidic nature and thus, CH_3^- is the strongest base 363 (c) $H_2SO_4 \rightleftharpoons H^+ + HSO_4^-$ 364 (a) $h = \sqrt{\left[\frac{K_h}{c}\right]} = \sqrt{\left[\frac{K_w}{K_a \cdot c}\right]}$ $=\sqrt{\left[\frac{10^{-14}}{10^{-5} \times 0.001}\right]} = 10^{-3}$ 365 (b) $K_{c_1} = \frac{[\text{NO}]^2}{[\text{N}_2][\text{O}_2]} = 4 \times 10^{-4}$ $K_{c_2} = \frac{[N_2]^{1/2} [O_2]^{1/2}}{[NO]}$ $\therefore K_{C_2} = \sqrt{\frac{1}{K_{C_1}}} = \sqrt{\frac{1}{4 \times 10^{-4}}} = 50$ 366 (d) $K_p = (P_{H_2O})^2$ and $K_c = [H_2O]^2$; the solid species are not used in writing K_c or K_p 367 (c) H_2SO_4 is strong acid having pH < 7. NaNO₂ on hydrolysis gives alkaline solution of pH > 7. NaCl is neutral and H₂S is weak acid. 368 (a) $A + B \rightleftharpoons C + D$:

 $Q = \frac{[C][D]}{[A][B]} = \frac{3 \times 4}{1 \times 2} = 6$ But $K_c = 10$; Thus, to increase the value of Q to K_c , forward reaction should occur. 369 (d) $(A)CH_3COONH_4 + H_2O \rightarrow CH_3COOH +$ NH₄OH Ammonium acetate Although both (CH₃COOH and NH₄OH) of them are weak still CH₃COOH is slightly more acidic. ∴ Solution is acidic in nature. $(B)NH_4Cl$ $+ H_2O \rightarrow NH_4OH + HCl$ ammonium chloride weak base strong acid ∴ Solution is acidic in nature. (C) $(NH_4)_2SO_4 + H_2O \rightarrow 2NH_4OH +$ H_2SO_4 ammonium sulphate weak base strong base ∴ Solution is acidic in nature. (D)CH₃COONa + H₂O \rightarrow CH₃COOH + NaOH sodium acetate weak acid strong base ∴ Solution is basic in nature. 370 (d) Isoelectric point is the condition when Zwitter ions or sol particles do not move under the influence of electric field, *i.e.*, they lose their charge. 371 (a) The value of equilibrium constant is independent of volume of container. : Value of equilibrium constant will remain same (300) if volume of reaction flask is tripled. 372 (a) S has +4 ox.no. in H₂SO₃ and SO₂ both. 373 (b) $CaF_2 \rightleftharpoons Ca^{2+} + 2F^ K_{\rm sp} = s(2s)^2 = 4s^3$ $K_{\rm sn} = 4(2.3 \times 10^{-6})^3$ $= 48.668 \times 10^{-18} \,(\text{mol dm}^{-3})^3$ 374 (c) Among the given, pH of $0.1M CH_3COOH$ is not

equal to one as CH₃COOH is a weak acid, thus

does not ionise completely.

375 (a)

Meq. of acetic acid = $50 \times 2 = 100$ Meq. of CH₃COONa = $10 \times 1 = 10$ pH = $-\log K_a + \log \frac{[\text{Conjugate base}]}{[\text{Acid}]}$ or pH = $-\log 10^{-5} + \log \frac{10}{100} = 4$

376 **(b)**

Let the solubility of AgCl is S

$$AgCl = Ag^{+} + Cl^{-}$$
$$s \quad s$$

[Cl⁻] from NaCl=0.2

Concentration of $Cl^- = S + 0.2$

$$K_{\rm sp} = S(S + 0.2)$$

 $1.8 \times 10^{-10} = S^2 + 0.2S$

(*S* is very small as AgCl is sparingly soluble in water, thus $S^2 \ll 1$)

$$1.8 \times 10^{-10} = 0.2S$$

 $S = \frac{1.8 \times 10^{-10}}{0.2}$
 $= 9.0 \times 10^{-10} \text{ M}$

377 (d)

$$\alpha = 1.9 \times 10^{-9}; c = \frac{1000}{18}$$
$$K = \frac{[H^+][OH^-]}{[H_2O]} = c\alpha^2$$
$$= 1.9 \times 10^{-9} \times 1.9 \times 10^{-9} \times \frac{1000}{18}$$
$$= 2.0 \times 10^{-16}$$

378 (a)

 $N_2 + 3H_2 \rightleftharpoons 2NH_3 + heat$ It is an exothermic reaction, so high temperature favours backward reaction. Hence, equilibrium is shifted towards the left. 379 **(b)**

Ag₂CO₃(s)
$$\rightleftharpoons$$
 2Ag⁺ + CO₃²⁻
s 2s s
K_{sp} = [Ag⁺]²[CO₃²⁻] = (2s)².s
∴ K_{sp} = 4s³
380 (a)

Given, concentration of NaCl = 0.2 M

 $K_{\rm sp}({\rm AgCl}) = 1.20 \times 10^{-10}$ Let the solubility of AgCl in NaCl = x

$$\begin{array}{ccc} \operatorname{AgCl} \to \operatorname{Ag^{+}} + \operatorname{Cl^{-}} \\ x & x & x \\ \operatorname{Solubility} \operatorname{NaCl} \to \operatorname{Na^{+}} + \operatorname{Cl^{-}} \\ 0.2 & 0.2 & 0.2 \\ \vdots & [\operatorname{Ag^{+}}] = x \text{ and } [\operatorname{Cl^{-}}] = (x + 0.2) \\ \vdots & K_{\operatorname{sp}}(\operatorname{AgCl}) = [\operatorname{Ag^{+}}][\operatorname{Cl^{-}}] \\ & = x(x + 0.2) \\ & = x^{2} + 0.2x \\ \vdots & K_{\operatorname{sp}} = 0.2x(x^{2} \ll 1) \\ \operatorname{or} & 1.2 \times 10^{-10} = 0.2x \\ \vdots & x = 6 \times 10^{-10} \end{array}$$

381 **(a)**

Because buffer solutions are mixture of weak acid or weak base and their salt

382 (d)

Let solubility be S_1, S_2, S_3 for AB, AB_2 and A_3B respectively.

$$S_{1} = \sqrt{K_{\text{Sp}}} = \sqrt{4 \times 10^{-8}} = 2 \times 10^{-4} M$$

$$S_{2} = \sqrt[3]{\frac{K_{\text{Sp}}}{4}} = \sqrt[3]{\frac{3.2 \times 10^{-14}}{4}} = 2 \times 10^{-5} M$$

$$S_{3} = \sqrt[4]{\frac{K_{\text{Sp}}}{27}} = \sqrt[4]{\frac{2.7 \times 10^{-15}}{27}} = 1 \times 10^{-4} M$$

383 **(b)**

It is Bronsted base and can accept H⁺ only.

384 **(b)**

(a)pH of 10^{-9} M HCl will be < 7

(b)pOH of 10⁻⁵M NaOH

 $= -\log[OH^{-}]$

 $= -\log[1 \times 10^{-5}] = 5$

pH + pOH = 14

pH = 14 - 5 = 9

(c)pH of 10^{-9} M KOH will be slightly greater than 7.

385 (a) The loss in pH of blood is called acidosis.
386 (d) In 0.001 M NaOH.

$$[OH^{-}] = 0.001 = 10^{-3}$$

$$\therefore \quad [\mathrm{H}^+] = \frac{10^{-14}}{[\mathrm{OH}^-]} = \frac{10^{-14}}{10^{-3}} = 10^{-11}$$

387 (a)

Both NH₄Cl and NH₄OH are diluted to same extent;

 $pOH = -\log K_b + \log \frac{[Conjugate base]}{[Base]}$

388 (c)

According to Arrhenius concept-Acids are the substances which furnish H⁺ ions in water and a base is a substance which furnishes OH⁻ ions in water.

389 (a)

$$AB_{2} \rightleftharpoons A^{2+} + 2B^{-}$$

$$S^{2s}$$

$$K_{sp} = [A^{2+}][B^{-}]^{2}$$

$$= (S)(2S)^{2} = 4S^{3}$$

$$= 4(1 \times 10^{-5})^{3}$$

$$= 4 \times 10^{-15}$$

390 (b)

pV = nRT

Volume become $\frac{1}{2}V$ then pressure become 2p, So, $2p \times \frac{1}{2}V = pV = nRT$ Hence, there is no effect on K_p

391 (a)

Starch is used as an indicator in the titration of iodine against sodium thiosulphate

392 (a)

 $2HI(g) \rightleftharpoons H_2(g) + I_2(g); -QkJ$

 n_g No. of moles of gaseous products – No. of moles of gaseous reactants

 $2 - 2 \quad 0$

As the number of moles of products and reactants are equal, so equilibrium constant is not affected by any change in pressure and volume. Catalyst also does not affect the equilibrium constant. It is an endothermic reaction, hence equilibrium constant depends only upon the temperature.

393 (c)

An increase in temperature will change K_c . Addition of inert gas has no effect in $\Delta n = 0$. Also increase in pressure has no effect if $\Delta n = 0$.

394 (c)

According to Le-Chatelier principle the

reactions in which number of moles of reactants is equal to number of moles of products, is not effected by change in pressure.

$$2NO(g) \rightleftharpoons N_2(g) + O_2(g)$$

Moles of reactants =2
Moles of products =

2

: There is no change in number of moles of reactants and products.

:The reaction is not effected by change in pressure.

395 (c)

B₂H₆ is electron deficient and thus electron pair acceptor or Lewis acid.

396 (a)

N₂ + 3H₂ ≈ 2NH₃
1 3 2
Δn_g = 2 - 4 = -2
K_p = K_c(RT)^{Δn_g}
∴ K_p = K_c(RT)⁻²
∴ K_c =
$$\frac{K_p}{(RT)^{-2}} = \frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$$

397 (c)

NH₃ is Lewis base.

398 (b)

$$K_p \quad K_c(RT)^{n_g}$$

Where, n_q No. of moles of gaseous products – No. of moles of gaseous reactants

$$CO(g) \quad \frac{1}{2}O_{2}(g) \quad CO_{2}(g)$$

$$n_{g} \quad 1 - 1.5 \quad -\frac{1}{2}$$

$$K_{p} \quad K_{c}(RT)^{n_{g}}$$

$$K_{p} \quad K_{c}(RT)^{-1/2}$$

$$\frac{K_{p}}{K_{c}} \quad (RT)^{-1/2}$$

399 (c)

For the reaction. $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ $K_p = K_c (RT)^{\Delta n}$ $\Delta n = 2 - 2 = 0$ $K_p = K_c$

(where, K_p and K_c are equilibrium constants in terms of partial pressures and concentrations.)

400 (a)

pH of the solution at the equivalence point is

on the acidic side due to dissolution of CO_2 formed. A slight excess of strong acid lowers pH to 3.5 when methyl orange produces red colour.

401 **(a)**

The residual part of the acid after removal of a proton from the molecule of an acid, is called its conjugate base. Thus, conjugate base=Acid-H⁺ and a base after accepting a proton gets converted into its conjugate acid. Thus, HSO_4^- is conjugate acid of base SO_4^{2-} .

403 **(b)**

Volume of ice>volume of water and thus, increase in pressure favours forward reaction showing 42 decrease in volume.

404 (a)

 $Ag_2SO_4 \rightarrow 2Ag^+ + SO_4^{2-}$ $Ag_2SO_4 \text{ is a } 2:1 \text{ type electrolyte } i. e., \text{ it gives}$ two Ag^+ ions and one SO_4^{2-} ion on ionisation. Given, $s = 2.5 \times 10^{-2} \text{ M}$ Hence, its $K_{sp} = 4s^3$ (where, s = molar solubility) $K_{sp} = 4(2.5 \times 10^{-2})^3$ $= 4 \times 15.63 \times 10^{-6}$

405 **(a)**

Isohydric solutions of two acids contains same [H⁺] ion in them.

 $= 62.5 \times 10^{-6}$

406 **(b)**

 $K_h = \frac{K_w}{K_a \times K_b}$

From this, it is clear that hydrolysis constant of a salt of weak and weak base is inversely proportional to dissociation constant of both weak acid and weak base.

407 **(c)**

$N_2O_4 \equiv$	≥ 2NO ₂						
1	0	Before dissociation					
1-x	2 <i>x</i>	After dissociation					
Total number of moles at equilibrium							

= 1 - x + 2x = 1 + x

408 **(c)**

From the aqueous buffered solution of H*A*, 50% HA is ionised

 $[HA] = [A^{-}]$ Buffer solution of weak acid HA \rightarrow acidic buffer

or

$$pH = pK_a + \log \frac{[A^+]}{[HA]}$$

$$pH = pK_a = 4.5$$

$$pOH = pK_m - pH$$

$$pOH = 14 - 4.5 = 9.5$$

409 **(b)**

Meq. of H⁺ =
$$10^{-3} \times 10 = 10^{-2}$$

 \therefore No. of H⁺ = $\frac{10^{-2} \times 6.02 \times 10^{23}}{1000} = 6.02 \times 10^{18}$

410 (c)

pH of gastric juice is in between 1 and 3.

411 (b)

The basic character of hydrides decreases down the group.

PCl ₅	⇒	PCl ₃	+	Cl_2	Initial
moles					
5		0		0	
5(1-)		5		5	Moles at
equilit	orium				
5(1-)		5		5	Conc. At
0.5		0.5		0.5	
equilit	orium				

$$\begin{array}{c}
40\% \\
0.4 \\
\underline{[PCl_3][Cl_2]} \\
[PCl_5]
\end{array}$$

$$\frac{\frac{5 \quad 0.4}{0.5}}{\frac{5 \quad 0.6}{0.5}} = \frac{16}{6}$$
2.66 mol/L

100/

413 **(d)**

$$K_w = [\mathrm{H}^+][\mathrm{OH}^-].$$

 K_{c}

414 **(c)**

The equilibrium constant does not depend on concentration, when reversible reaction at equilibrium hence, equilibrium constant will be constant.

416 **(c)**

The hydrolysis reaction of conjugate base of acid is

$$A^{-}(aq) + H_2 O \rightarrow HO^{-} + HA$$

 $K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{10^{-4}} = 10^{-10}$

Since, degree of hydrolysis is negligible;

$$[OH^{-}] = \sqrt{K_h C} = 10^{-6} \cdot p[OH] = 6$$

and $pH=14-6=8$

417 **(c)**

 $\mathrm{Na_2O} + \mathrm{CaO} + \mathrm{H_2O} + \mathrm{CO_2} \rightarrow \mathrm{Na_2CO_3} + \mathrm{CaCO_3}$

Solution is basic. It can be proved as 430 **(b)** $CO_3^{2-} + 2H_2O \rightarrow H_2CO_3 + 2OH^{-}$ 418 (d) When a base accepts a proton, then an acid is formed. This acid is known as conjugated acid of that base. For example : $NH_3 + H^+ \rightleftharpoons NH_4^+$ conjugated acid base The conjugated acid of HF_2^- is H_2F_2 . $HF_2^- + H^+ \rightleftharpoons H_2F_2$ base conjugated acid 419 (d) 2/3 rd of alcohol and acid react to form ester at equilibrium. 420 (c) For hydrolysis of $B^+; K_H = \frac{K_w}{K_h} = \frac{10^{-14}}{10^{-6}} = 10^{-8}$ 421 (c) $0.001 \text{ M} \text{ of NaOH means } [OH^{-}] = 0.001$ $= 10^{-3} M \Rightarrow pOH = 3$ $pH + pOH = 14 \Rightarrow pH = 14 - 3 = 11$ 422 (b) Removal of product always favours forward reaction. 423 **(b)** $K_{\rm sp}[BaCO_3] = [Ba^{2+}][CO_3^{2-}]$ $[\mathrm{Ba}^{2+}] = \frac{K_{\mathrm{sp}}}{[\mathrm{CO}_3^{2-}]} = \frac{5.1 \times 10^{-9}}{1 \times 10^{-4}}$ $[Ba^{2+}] = 5.1 \times 10^{-5} M$ 424 (b) $K_{sp} = s^2 = \left(\frac{0.0015}{143.5}\right)^2 = 1.1 \times 10^{-10}.$ 425 (b $\underset{\text{Acid}}{\text{CO}} + \underset{\text{Base}}{\text{NaOH}} \xrightarrow{P,T} \text{HCOONA}.$ 426 (a) The acidic character has been explained in term of electronegativity of halogens. 427 (a) Higher is the ox. no. of central atom in oxy-acid, $e.g., acid (HClO_4), more is its acidic nature and$ weaker is its conjugate base, $(e.g., ClO_4^-)$. 428 (c) Methyl orange is used for strong acid titration; Alkali may be weak or strong. 429 (d)

Addition of salt always lowers the vapour pressure. Also, vapour pressure of a liquid is its characteristic pressure and depends only on temperature.

 $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$ On adding CH₃COONa, [H⁺] decreases 431 (a) Neutralization is exothermic whereas hydrolysis is endothermic. 432 (d) $HCl \rightarrow H^+_{10^{-8}} + Cl^-$ The dissociation of H₂O H₂O \rightleftharpoons $\underset{10^{-8}+a}{\text{H}^+} + \underset{a}{\text{OH}^-}$ is suppressed due to common ion effect $K_w = [\mathrm{H}^+][\mathrm{OH}^-]$ or $10^{-14} = (10^{-8} + a) \times a$ $a = 0.95 \times 10^{-7}$ ÷ $\therefore \quad [\mathrm{H^+}] = 10^{-8} + 0.95 \times 10^{-7} = 1.05 \times 10^{-7} M.$ 433 (b) $Cu(NH_3)_4SO_4 \rightleftharpoons Cu(NH_3)_4^{2+} + SO_4^{2-}$. 434 (c) K_c is a characteristic constant for the given reaction 435 (d) According to Arrhenius concept-Acids are the substances which furnish H⁺ ions in water and a base is a substance which furnishes OH⁻ ions in water. 436 (a) According to Le-chatelier principle the reactions in which number of moles are increasing in forward reaction are favoured at low pressure or high volume. $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$: Number of moles are increasing in the forward reaction in above reaction. : Reaction is favoured at low pressure. : At high pressure, rate of dissociation of PCl₅ decreases. 437 (a) Electron acceptors are Lewis acids. They are electron deficient compounds. BF₃ is Lewis acid because B has only 6 electrons in its valence shell and it can accept electrons. NF_3 , Cl^- and H_2O have lone pair of electrons. Thus, they are electron donors and Lewis bases. 438 (c) Stronger the base, higher the tendency to accept

protons. Among the given, CH₃COOH and H₂S

both are acids, thus have very low tendency to

accept a proton. Between NH₃ and H₂O, NH₃ is a stronger base (due to less electronegativity of N as compared to 0) and hence, it has the highest tendency to accept a proton among the given. Moreover, the conjugate base formed by it also stable one $NH_3 + H^+ \rightarrow NH_4^+$ (stable) 439 (d) $K_{sp} = 4s^{3}$ $\therefore \quad s^3 = \frac{4 \times 10^{-9}}{4} = 10^{-9}$ \therefore $s = 10^{-3}M$ 441 **(b)** $PV = nRT \quad \therefore \frac{n}{V} = \frac{P}{PT}$ 442 (c) $K_h = Ch^2$ $= 0.5 \times \left(\frac{0.25}{100}\right)^2$ $= 3.125 \times 10^{-6}$ 443 (b) $PbCO_{3} \rightleftharpoons Pb^{2+}_{s} + CO_{3}^{2-}_{x+y}$ $MgCO_{3} \rightleftharpoons Mg^{2+}_{y} + CO_{3}^{2-}_{x+y}$ (Since both are present in same solutes) $\frac{K_{sp} \text{ PbCO}_3}{K_{sp} \text{ MgCO}_3} = \frac{x}{y}$:. $\frac{x}{v} = \frac{1.5 \times 10^{-15}}{1 \times 10^{-15}}$:. x = 1.5 yor $x(x + y) = 1.5 \times 10^{-15}$ Now. or $1.5 y(1.5 y + y) = 1.5 \times 10^{-15}$ $y = \left[\frac{1.5 \times 10^{-15}}{3.75}\right]^{1/2}$ or $= 2 \times 10^{-8}$ $x = 1.5 \times 2 \times 10^{-8}$:. $= 3.0 \times 10^{-8} M.$ 444 (a) $[H^+] = c\alpha = 1.34 \times 10^{-4}$ $\alpha = 1.34 \times 10^{-1}$ ÷ $K_c = c\alpha^2 = 1.8 \times 10^{-5}$:. $pH = -\log 1.8 \times 10^{-5} + \log \frac{0.164/82}{0.001}$ = +4.7447 + 0.3010 = 5.0457 $[H^+] = 9 \times 10^{-6}.$:. 445 (b) Sorensen in 1909 gave pH scale to indicate the strength of the hydrogen ion

concentration expressed in g/L. Here p stands

for potenz meaning strength. 446 (c) $\begin{array}{rrr} N_2 &+ 3H_2 &\rightleftharpoons 2NH_3 \\ \frac{28}{28} = 1 & \frac{6}{2} = 3 & 0 & \text{mole before reaction} \end{array}$ $1 - \frac{1}{2}$ $3 - \frac{3}{2}$ $\frac{17}{17} = 1$ mole after reaction \therefore Mole of N₂ = $\frac{1}{2}$ \therefore wt. of N₂ = 14g Mole of H₂ = $\frac{3}{2}$ \therefore wt. of H₂ = $\frac{3}{2} \times 2 = 3$ g 447 (c) $K_c = \frac{[\mathrm{H}_2]^2[\mathrm{S}_2]}{[\mathrm{H}_2\mathrm{S}]^2} = \frac{[0.10]^2[0.4]}{[0.5]^2} = 0.016$ 448 (b) $N_2O_4 \rightleftharpoons 2NO_2$ Initial 1 mol Λ 1-0.20 0.40 mol At eqm pV = nRT $1 \times V = 1 \times R \times 300$...(i) $p \times V = 1.2 \times R \times 600$...(ii) On dividing (ii) by (i) $p = 2.4 \, \text{atm}$ 449 (a) 2HI H_2 $+ I_2 \rightleftharpoons$ 1 0 1 (1-0.8) 2×0.8 (1-0.8)=0.2=0.2=1.6 $K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]}$ $=\frac{1.6 \times 1.6}{0.2 \times 0.2}$ $K_{c} = 64$ 450 (b) According to common ion effect, dissociation of weak electrolyte is further suppressed in presence of strong electrolyte having common ion.

∴ AgCl is weak electrolyte and NaCl is strong electrolyte having common anion.

∴ Solubility as well as concentration of Ag⁺ and Cl⁻ will decrease.

 $\frac{\text{normal mol.wt.}}{\text{exp.mol.wt.}} = 1 + \alpha; (\text{Mol. wt} = 2 \times \text{VD})$

$$\frac{92}{49} = 1 + \alpha$$
$$\alpha = 0.87$$

A precipitation of AgCl is formed when equal volumes of 10^{-5} M AgNO₃ and 10^{-4} M HCl are mixed, because ionic product will be 10^{-9} which is greater than $K_{\rm sp}(10^{-10})$. For the precipitation of an electrolyte, it is necessary that the ionic product must exceed its solubility product.

453 **(b)**

 $CO(g) + 0.5O_{2}(g) \rightarrow CO_{2}(g)$ $\Delta n_{g} = n_{p} - n_{r} = 1 - 1.5 = -0.5$ $K_{p} = K_{c}(RT)^{\Delta n} = K_{c}(RT)^{-0.5}$ $\frac{K_{p}}{K_{c}} = \frac{1}{\sqrt{RT}}$

454 **(b)**

Metal cation possesses the tendency to accept electron pair from ligands.

455 **(d)**

Any acid or salt having an ion common (due to common ion effect) or any base (due to acid-base reaction) will influence degree of dissociation of weak acid.

456 **(a)**

$$Ca(OH)_2 \rightleftharpoons Ca^{2+} + 2OH^-$$
$$K_{sp} = [Ca^{2+}][OH^-]^2$$
$$= (s)(2s)^2 = 4s^3$$

457 **(c)**

Proton affinity means affinity for proton *i. e.*, basicity. In NH_3 nitrogen has pair of electron to donate as well as higher tendency to donate due to lower electronegativity. In PH_3 , P is not suitable as that has large size.

458 **(d)**

Acid₁ + Base₂ \rightleftharpoons Acid₂ + Base₁ HPO₃²⁻ + H₂O \rightleftharpoons H₃O⁺ + PO₃³⁻ H₂PO₄⁻ + H₂O \rightleftharpoons H₃O⁺ + HPO₄²⁻ H₃PO₄ + H₂O \rightleftharpoons H₃O⁺ + H₂PO₄⁻ 459 (b) $\Delta G^{0} = -RT \ln K_{p} \text{ if } \Delta G^{\circ} = 0; \ln K_{p} = 0 \text{ or } K_{p} = 1$ 460 (c) [H⁺] = 10⁻² M \therefore pH = 2. 461 (a) $X(g) + Y(g) \rightleftharpoons Z(g)$ $K_{c} = \frac{[Z]}{[X][Y]}$ or $10^{4} = \frac{[Z]}{[X][Y]}$

 \therefore [Z] = 10⁴[X][Y] $= 10^4 \times \frac{1}{2} [Z] [Z]$ (Given, $[X] = \frac{1}{2}[Y] = \frac{1}{2}[Z]$) : $[Z] = 2 \times 10^{-4} \text{ mol } L^{-1}$ 462 (a) $CO_2(g) + C(s) \rightleftharpoons 2CO(g)$ Initial : 0.5 atm :(0.5-p)At equili 2p atm This is a case of heterogeneous equilibrium. C(s) being solid is not considered Total pressure of CO₂ and CO gases. $p_{\rm CO_2} + p_{\rm CO} = p_{\rm total}$ 0.5 - p + 2p = 0.8 $p = 0.3 \, \text{atm}$ $\therefore p_{\rm CO_2} = 0.5 - 0.3 = 0.2$ atm $p_{\rm CO} = 2p = 0.6$ atm $K_p = \frac{p_{\rm CO}^2}{p_{\rm CO_2}} = \frac{0.6 \times 0.6}{0.2}$ $= 1.8 \, \text{atm}$ 463 (b) $NH_2COONH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$ At equilibrium if partial pressure of CO_2 p then that of $NH_3 2p$

 $K_p \quad p_{\text{NH}_3}^2 \quad p_{\text{CO}_2} \quad (2p)^2 \quad p \quad 4p^3$ $2.9 \quad 10^{-5} \quad 4p^3$ $p^3 \quad 0.725 \quad 10^{-5}$ or $p^3 \quad 7.25 \quad 10^{-6} \text{ or } p \quad 1.935 \quad 10^{-2}$ hence, total pressure $p \quad 3p$ $5.81 \quad 10^{-2} \quad 0.0581 \text{ atm.}$

464 **(c)**

For salt of weak acid and weak base

$$pH = \frac{1}{2} [\log K_a + \log K_w - \log K_b]$$

= $\frac{1}{2} pK_a + \frac{1}{2} pK_w - \frac{1}{2} pK_b$
= $\frac{1}{2} \times 4.80 + 7 - \frac{1}{2} \times 4.78$
= 7.01

465 **(a)**

The species which can accept as well as donate H⁺ can act both as an acid and a base.

$$HSO_{4}^{-} + H^{+} \rightleftharpoons H_{2}SO_{4}$$

base
$$HSO_{4}^{-} \rightleftharpoons SO_{4}^{2-} + H^{+}$$

acid

466 **(c)**

 $A^{-}(aq)$

$$\mathrm{H}A(aq) + \mathrm{H}_2\mathrm{O}(l) \rightleftharpoons \mathrm{H}_3\mathrm{O}^+(aq) +$$

Initial 0.1 M 0 0
Change
$$-\frac{0.1 \times 5}{100} + \frac{0.1 \times 5}{100} + \frac{0.1 \times 5}{100}$$

Equi conc. 0.095 0.005 0.005
 $K_c = \frac{[H_3 O^+][A^-]}{[HA]} = \frac{0.005 \times 0.005}{0.095}$
 $= 2.63 \times 10^{-4}$

467 **(b)**

Acetylene is more acidic than both ethane and benzene but methyl alcohol is slightly more acidic ($pK_a < 25$) than acetylene.

468 **(c)**

```
pH = -\log[H^+]
    pH=14-pOH
    Calculate pH of all the solution to find which
    will have maximum pH.
     (A)M/10 HCl
                  [H^+] = 10^{-1}
    :.
                    pH = -log [H^+]
                       = -\log[10^{-1}]
                       = 1
     (B)M/100 HCl
                  [H^+] = 10^{-2}
     ...
                    pH = -\log[H^+]
                       = -\log[10^{-2}]
                        = 2
     (C)M/10 NaOH
                 [OH^{-}] = 10^{-1}
     :.
                    pH = 14 - pOH
                        = 14[-\log 10^{-1}]
                        = 14 - 1
                         = 13
     (D)M/100 NaOH
                 [OH^{-}] = 10^{-2}
     :.
                    pH = 14 - pOH
                        = 14 - [\log 10^{-2}]
                        = 14 - 2 = 12
     \therefore M/100 NaOH solution has highest pH.
469 (b)
    [{\rm H^+}] = 10^{-6} \text{ or } c\alpha = 10^{-6}; also, c = 1.0~M~\div \alpha =
    K_a = c\alpha^2 = 10^{-6} \times 10^{-6} = 10^{-12}
470 (d)
    Those reactions which have high value of K,
    proceeds towards completion
471 (d)
    A mixed salt is one which furnishes two types of
     cations or anions.
```

472 **(b)**

Buffer capacity of a buffer solution is maximum when the concentration of the weak acid and its salt or weak base and its salt are equal, *i. e.*, for highest buffer capacity $pH = pK_a$

For this [salt] = [acid]

Thus, 25 mL.

473 **(c)**

By using pH=
$$-\log \sqrt{K_a \cdot C}$$

 $5 = -\log \sqrt{K_a \times 1} = -\frac{1}{2}\log K_a$
 $\log K_a = -10$
 $K_a = 10^{-10}$

Hence, dissociation constant $(K_a) = 10^{-10}$.

474 **(b)**

pH varies inversely with temperature. Thus, if the pH of neutral water is 6.5, the temperature of water is more than 25°C.

475 **(b)**

$$[CO] = \frac{0.1}{0.5}$$
$$[Cl_2] = \frac{0.1}{0.5}$$
$$[COCl_2] = \frac{0.3}{0.5}$$
$$\therefore K_c = \frac{0.3/0.5}{\frac{0.1}{0.5} \times \frac{0.1}{0.5}} = 15$$

476 **(c)**

In qualitative analysis, in order to detect IInd group radicals, H_2S gas is passed in the presence of dilute HCl to decrease the dissociation of H_2S by common-ion effect so that less S^{2-} ions are obtained and only IInd group radical could precipitate.

477 **(b)**

The value of pK_a for strong acid is less

478 **(d)**

 $\rm HCl$ a mineral acid is strong acid and thus, $\rm Cl^-$ is weak base.

479 (c)
[H⁺] =
$$10^0 = 1 M$$

480 (c)

 $\Delta n = 0$ and thus, $K_p = K_c$.

 $H_2(g) + CO_2(g) \rightleftharpoons CO(g) + H_2O(g)$ Initial conc. 1 1 0 0

At equilibrium (1 - x) (1 - x) x $K_p = \frac{p_{\rm CO}.p_{\rm H_2O}}{p_{\rm H_2}.p_{\rm CO}}$:. $=\frac{x \cdot x}{(1-x)(1-x)}=\frac{x^2}{(1-x)^2}$ 482 (d) For each case $K_{sp} = [A^{2+}]^3 [B^{3-}]^2$. 483 (a) $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$ $K_{a_1} = 1.5 \times 10^{-5}$ $=\frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]} \quad ... (i)$ $HCN \rightleftharpoons H^+ + CN^ K_{a_2} = 4.5 \times 10^{-10}$ $=\frac{[H^+][CN^-]}{[HCN]}$... (ii) By(i)/(ii) $K = \frac{K_{a_1}}{K_{a_2}} = \frac{[\text{HCN}][\text{CH}_3\text{COO}^-]}{[\text{CN}^-][\text{CH}_3\text{COOH}]} = \frac{1.5 \times 10^{-5}}{4.5 \times 10^{-10}}$ $= 3 \times 10^4$ 484 (c) Given, vol. of HCl = 5 mL, molarity = M/5Vol. of NaOH = 10 mL, molarity =M/10 Mulliequivalents of HCl = $5 \times \frac{1}{5} = 1$ Mulliequivalents of NaOH = $10 \times \frac{1}{10} = 1$ $HCl + NaOH \rightarrow NaCl + H_2O$: Mulliequivalents of HCl = Mulliequivalents of NaOH \therefore Solution is neutral and pH=7. 485 (c) AlCl₃ accepts electron pair. 486 **(b)** $[\mathrm{H}^+] = \sqrt{K_a \times C}$ $=\sqrt{10^{-5} \times 0.1}$ $=\sqrt{10^{-6}}=10^{-3}$ $pH = -\log[H^+] = -\log 10^{-3} = 3$ 487 (a) $pH = pK_a + \log \frac{[KCN]}{[HCN]} = 9.3 + \log \frac{2.5}{2.5} = 9.30$ 488 (b) Total milliequivalent of H⁺ $= 30 \times \frac{1}{3} + 20 \times \frac{1}{2} = 20$ Total milliequivalent of OH⁻ $=40 \times \frac{1}{4} = 10$ Milliequivalent of H⁺ left = 20 - 10 = 10

:. $[H^+] = \frac{10}{1000} \text{ g} \text{ ions/dm}^3 = 10^{-2}$ pH=2489 (b) Given, for NaOH, V = 10 mL, N = 0.1 N For H_2SO_4 , V = 10 mL, N = 0.05 NMiliequivalents of NaOH = $10 \times 0.1 = 1$ Miliequivalents of $H_2SO_4 = 10 \times 0.05 = 0.5$ + 2NaOH \rightarrow Na₂SO₄ H_2SO_4 + H_2O 1 equivalent 2 equivalent : 0.5 equivalent of H₂SO₄ will react with 1 equivalent of NaOH \therefore The pH of solution = 7 (neutral) 491 (d) $H_2PO_4^- + H_2O \rightarrow H_3O^+$ HPO_4^{2-} acid conjugated base $H_2PO_4^-$ gives HPO_4^{2-} (conjugated base) in aqueous solution. It acts as proton donor. 492 (d) K_1 for, $N_2 + 3H_2 \rightleftharpoons 2NH_3$ K_2 for, $NH_3 \rightleftharpoons \frac{1}{2}N_2 + \frac{3}{2}H_2$ $\therefore K_1 \times K_2 = \frac{[\mathrm{NH}_3]^2}{[\mathrm{N}_2][\mathrm{H}_2]^3} \times \frac{[\mathrm{N}_2]^{1/2} [\mathrm{H}_2]^{3/2}}{[\mathrm{NH}_3]}$ or, $K_1 \times K_2 = \frac{1}{\nu}$ $\therefore K_2 = \frac{1}{\sqrt{K_1}}$ 493 (b) The two conditions when colour of indicator will be visible are derived by $pH = pK_a + \log \frac{[In^-]}{[HIn]}$ (i) $pH = 5 + \log 10 = 6$ (ii) $pH = 5 + \log 0.1 = 4$ Thus, minimum change in pH = 2. 495 (b) (s) or mole of AgCl needed = $\sqrt{K_{sp}} = 10^{-5}$ (s) or mole of AgBr needed = $\sqrt{K_{sp}} = 3.16 \times 10^{-7}$ (s) or mole of Ag₂CrO₄ needed = $\sqrt[3]{\frac{K_{sp}}{4}} = 0.62 \times$ 10^{-4} \therefore Weight of AgCl = $10^{-5} \times 143.5 = 1.435 \times$ 10⁻³ g \therefore Weight of AgBr = $3.16 \times 10^{-7} \times 188 = 5.94 \times$ 10^{-5} g \therefore Weight of Ag₂CrO₄ = 6.2 × 10⁻⁵ × 332 = 2.058×10^{-2} g

496 **(a)**

In a given mixture, the ionisation of two acids can be written as: Let α , β be degree of ionisation at same concentration.

$$CH_{3}COOH \rightleftharpoons CH_{3}COO^{-} + H^{+}_{\alpha+\beta}$$

$$C_{2}H_{5}COOH \rightleftharpoons C_{2}H_{5}COO^{-} + H^{+}_{\alpha+\beta}$$

$$K_{AA} = \frac{[\alpha][\alpha + \beta] \cdot c}{[1 - \alpha]}$$

$$K_{PA} = \frac{[\beta][\alpha + \beta] \cdot c}{[1 - \beta]}$$

$$K_{PA} = \frac{\alpha}{1 - \alpha} \times \frac{(1 - \beta)}{\beta}$$
or
$$\frac{\alpha}{1 - \alpha} = \frac{1.75}{1.3} \times \left[\frac{\beta}{1 - \beta}\right]$$

$$\alpha = \frac{\lambda_u}{\lambda_\infty} = \frac{5}{390} = 0.013$$

498 **(c)**

Follow Le-Chatelier's principle.

499 **(a**)

(a)

$$[(NH_4)_2S] = 0.021 M$$

$$\therefore [S^{2-}] = 0.021 M$$

$$\therefore At equilibrium [Zn^{2+}][S^{2-}] = K_{sp} \text{ of } ZnS$$

$$\therefore [Zn^{2+}] = \frac{4.51 \times 10^{-24}}{0.021} = 2.15 \times 10^{-22} M$$

$$\therefore [Zn^{2+}] \text{ left in solution} = 2.15 \times 10^{-22} \times 10^{$$

500 **(d)**

 K_p is a constant and does not change with pressure

501 **(d)**

A chemical equilibrium is the state when concentration of reactants and products do not change with time. It is attained when rate of forward reaction becomes equal to rate of backward reaction.

503 **(c)**

 H_3PO_4 furnishes $H_2PO_4^-$, HPO_4^{2-} and PO_4^{3-} anions. 504 **(c)**

The mixture containing a weak acid (HNO_2) and its conjugate base (NO_2^-) acts as acidic buffer.

505 **(a)**

$$: pH = \frac{1}{2}pK_w + \frac{1}{2}pK_a - \frac{1}{2}pK_b$$
$$= \frac{1}{2} \times 14 + \frac{1}{2} \times 6 - \frac{1}{2} \times 6$$

pH = 7

$$\alpha = \sqrt{\frac{K_w}{K_a \times K_b}} = \sqrt{\frac{10^{-14}}{10^{-6} \times 10^{-6}}} = \sqrt{10^{-2}}$$
= 10⁻¹ = 0.1or 10%
506 (d)
Phenolphthalein is used for strong alkali
titrations; Acid may be weak or strong.
507 (b)

$$[H^+] = 2 \times 10^{-2}$$
: pH = -log2 × 10⁻²
i. e, in between 1 and 2.
509 (a)
(i)Ag⁺ + NH₃ \rightleftharpoons [Ag(NH₃)]⁺;
 $K_1 = 3.5 \times 10^{-3}$
(ii)[Ag(NH₃)]⁺ + NH₃ \rightarrow [Ag(NH₃)₂]⁺;
 $K_2 = 1.7 \times 10^{-3}$
On the basis of above reaction,
 $K_1 = \frac{[Ag(NH_3)]^+}{[Ag^+||NH_3|]}$...(i)
 $K_2 = \frac{[Ag(NH_3)2]^+}{[Ag(NH_3)2]^+|NH_3|}$...(ii)
For the formation of [Ag(NH₃)₂]⁺
Ag⁺ + 2NH₃ \rightleftharpoons [Ag(NH₃)₂]⁺
Formation constant (K)
 $= \frac{[Ag(NH_3)2]^+}{[Ag^+||NH_3|^2}$...(iii)
From Eqs. (i) and (ii)
 $K = K_1 \times K_2$
 $= 3.5 \times 10^{-3} \times 1.7 \times 10^{-3}$
 $= 5.95 \times 10^{-6} \approx 6.08 \times 10^{-6}$
510 (b)
0.1 × 1 = N × 1000
 \therefore N dilute acid = 10⁻⁴
or [H⁺] = 10⁻⁴ and so ph = 4.
511 (c)
Catalyst provides a new pathway to attain
equilibrium earlier.
512 (d)
Follow law of mass action equations.
513 (d)
Ca₃(PO₄)₂(s) \rightleftharpoons 3Ca²⁺(aq) + 2PO₄³⁻(aq)
 $3y = 2y$
 $K_{sp} = [Ca2+1]^3.[PO43-]^2$
 $= (3y)^3.(2y)^2$
 $= 27y^3 \times 4y^2$
 $= 108y^5$
514 (d)

$$N_{2} + O_{2} \rightleftharpoons 2NO; \qquad K_{1}$$

$$= \frac{[NO]^{2}}{[N_{2}][O_{2}]} \qquad \dots (1)$$

$$2NO + O_{2} \rightleftharpoons 2NO_{2}; \qquad K_{2}$$

$$= \frac{[NO_{2}]^{2}}{[NO]^{2}[O_{2}]} \qquad \dots (2)$$

$$NO_{2} \rightarrow \frac{1}{2}N_{2} + O_{2}; \rightleftharpoons K_{3}$$

$$= \frac{[N_{2}]^{1/2}[O_{2}]}{[NO_{2}]} \qquad \dots (3)$$
By observation
$$K_{3} = \frac{\sqrt{1}}{K_{1}K_{2}}$$

515 **(b)**

$$N_{2}(g) + O_{2}(g) \rightleftharpoons 2NO(g)$$

$$K_{c} = \frac{[N0]^{2}}{[N_{2}][O_{2}]} = 4 \times 10^{-4}$$

$$NO(g) \rightleftharpoons \frac{1}{2}N_{2}(g) + \frac{1}{2}O_{2}(g)$$

$$K_{c}' = \frac{[N_{2}]^{\frac{1}{2}}[O_{2}]^{\frac{1}{2}}}{[NO]}$$

$$= \frac{1}{\sqrt{K_{c}}} = \frac{1}{\sqrt{4 \times 10^{-4}}}$$

$$= \frac{1}{2 \times 10^{-2}} = \frac{100}{2} = 50$$

516 (a)

From the value of K_c , the direction of the reaction may be predicated as follows :

Backward	K_C forwar	
10-3	10 ³	
Reaction	Both reactants	Reaction
proceeds	and products	proceeds to
hardly at all	are at equilibrium	completion

Since, for given reaction $K_c = 10^{-4}$ therefore, the reaction proceeds in backward direction. 517 (a)

 $X + Y \rightleftharpoons Z$ Initial conc., 5 3 0 At equilibrium (5-2)(3-2) 2 Equilibrium constant $(K_c) = \frac{[Z]}{[X][Y]}$ $= \frac{2}{3 \times 1} = \frac{2}{3}$ 518 (d) N₂O₄ \rightleftharpoons 2NO₂ $\frac{1}{1-\alpha}$ $\frac{0}{2\alpha}$ \therefore Total mole at equilibrium $= 1 - \alpha + 2\alpha = 1 + \alpha$ 519 (d)

The solubility order of alkaline earth metal

hydroxides is $Ba(OH)_2 > Ca(OH)_2 > Mg(OH)_2 > Be(OH)_2.$ 521 (b) $N_3H \xrightarrow{-H^+} N_3^-.$ 522 (b) $A + B \rightleftharpoons C + D$ *a a* 2*a* 2*a* at equilibrium $\therefore \quad K_c = \frac{[C][D]}{[A][B]}$ $=\frac{2a \times 2a}{a \times a} = 4$ 523 (b) CH_3COO^- , because it is the conjugate base of weak acid $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$ 524 (d) $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ Given, volume is halved ∴ Pressure is doubled : Equilibrium will shift backeard and degree of dissociation (α) will decreases. K_p is constant at constant temperature. 525 (d) $pK_a = 5$; Also, $pK_a + pK_b = 14$ $\therefore pK_b = 9.$ 527 (a) $K_c = \frac{[Z]^2}{[X]^2[Y]} = \frac{(3)^2}{(2)^2(Y)} = 2.25, \therefore [Y] = 1M$ 528 **(b)** $A + B \rightleftharpoons AB;$ $\begin{array}{cccc} 1 & 1 & 0 \\ (1-x) & (1-x) & x \end{array}$ Given, x = 0.4 $\therefore \text{ Percentage of } A \text{ changing to } AB = \frac{0.4 \times 100}{1}$ 529 (a) $I_{ion}^- + I_2 \longrightarrow I_3^-$; It is therefore I_2 is more soluble in KI. 530 (d) If strong base is present in a solution, then pH is calculated from its concentration. \therefore [OH⁻] = 10⁻¹ or pOH = 1 pH = 13.:. 531 (d) $NH_4OH + NH_4Cl$ is an example of basic buffer. Its pH value is greater than 7. 533 (d)

$$Ca(OH)_2 \rightleftharpoons Ca^{2+} + 2OH^-$$

 $K_{\rm sp} = [S][2S]^2 \qquad (\text{where}$

S=solubility)

$$K_{\rm sp} = 4S^3$$

 $K_{\rm sp} = 4. (\sqrt{3})^3$
 $= 12\sqrt{3}$

534 **(b)**

 CO_2 is acidic oxide which on dissolution in water develops acidic nature.

535 **(d)**

$$K_{c} = \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]} = \frac{\left[2 \times \frac{10^{-3}}{2}\right]^{2}}{\left[\frac{0.2}{2}\right]}$$
$$= \frac{10^{-6}}{10^{-1}} = 10^{-5}$$

536 **(d)**

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3; \Delta H =$$

−92.38 kJ mol⁻¹

Forward reaction, the volume decreases and it is exothermic reaction. According to Le-Chatelier principle, such reactions are favoured at low temperature and high pressure.

537 **(b)**

 $K_p = K_c (RT)^{\Delta n_g}$ Here, $\Delta ng = 1$ Thus, K_c will be less than K_p

539 **(d)**

Acetic acid is weak acid and only pH in given range is 6.85 for acids.

540 **(a)**

 $\rm NH_3$ is proton acceptor and thus, $\rm H_2O$ behaves as proton donor.

541 **(d)**

Bronsted bases are proton acceptor and each Lewis base contains one or more electron pair and thus, accept proton. On the other hand, Bronsted acids are proton donor and may or may not be capable of accepting lone pair of electron, $e. g., H_2SO_4$ is Bronsted acid not Lewis acid; BF₃ is Lewis acid but not Bronsted acid. Also each cation is acid and each anion is base.

542 **(d)**

PCl₅ \rightleftharpoons PCl₃ + Cl₂ 3 mol 3 mol 2 mol initially (3-x) mol (3 x)mol (2 x)mol at equilibrium ∵ 3 - x 1.5 x 1.5

Number of moles of PCl_3 3 x 3 1.5 4.5 543 (d) At equilibrium, $\Delta G = 0$, *ie*, $G_{ice} = G_{H_2O} \neq 0$ 544 (a) $\mathbf{K} = \frac{K_f}{K_b} = \frac{\left[P_{\text{product}}\right]^2}{\left[P_{\text{reaction}}\right]^1}$ K = atm545 (a) $pOH = pK_b + \log \frac{[salt]}{[base]}$ (Henderson's equation) $= 5 + \log \frac{0.02}{0.2} = 5 + \log \frac{1}{10}$ = 5 + (-1) = 4pH=14 - pOH = 14 - 4 = 10546 (b) HCl provides common H⁺ ions to CH₃COOH $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$ 547 (a) This is Henderson equation for basic buffer mixtures. 548 (b) Higher the tendency to give H^+ ion (*i.e.*, to undergo ionisation), stronger will be the acid or vice-versa. HF has poor tendency to give H⁺ ion, hence it is the weakest acid among the given. The order of acidity of given acids is $H_2SO_4 > HNO_3 > HCl > HF$. 549 (b) $[H^+] = 10^{-12}$ $[OH^{-}] = 10^{-2}$ $\frac{w}{40} = 10^{-2}$ or $w = 0.4 \text{ g litre}^{-1}$ 550 (a) pH of $0.1 M H_2$ S solution can be derived as: $H_2S = H^+ + HS^-; K_a = 10^{-7}$ $[H^+] = c \cdot \alpha = \sqrt{K \cdot c} = \sqrt{10^{-7} \times 0.1} = 10^{-4}$ pH = 4:. 551 (a) pH=0 means $[H^+] = 10^\circ = 1$ M. hence, solution is strongly acidic. 552 (a) The saturated solution of AgI means that $[Ag^+][I^-] = K_{sp} AgI$ Hence, in this solution, if a mixture of KI + KCl is added, then the concentration of $[I^-]$ ions

will increase quite a bit in the solution. Hence, now the ionic product of AgI will be more than its solubility product and therefore, AgI will precipitate out.

553 **(a)**

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ Here, $\Delta n = 2 - 2 = 0$ Hence, this equilibrium reaction is not influenced by volume change at constant temperature.

554 **(b)**

 $2Na + 2H_2O \rightarrow 2NaOH + H_2.$ $555 \quad \textbf{(d)}$ A + B = C + D $x \quad x \quad 0 \quad 0 \qquad \text{At initial}$ $2x \quad 2x \qquad \text{At equilibrium}$ $K_c = \frac{[C][D]}{[A][B]} = \frac{2x \times 2x}{x \times x} = 4$

556 (d)

These are characteristics of salt hydrolysis. 558 **(c)**

(i)20 mL of 0.5 N HCl $0.5N \Rightarrow 1000 \text{ mL of } 0.5 \text{ mol of HCl}$ HCl present in 20 mL= $\frac{20 \times 0.5}{1000} = 1.0 \times 10^{-2}$ (ii)35mL of 0.1 N NaOH $0.1 \text{ N} \Rightarrow 1000 \text{ mL of } 0.1 \text{ mol of NaOH}$ \Rightarrow NaOH present in 35 mol = $\frac{3.5 \times 0.1}{1000}$ $= 0.35 \times 10^{-2}$ Total volume = 20+35=55 mL \Rightarrow Resulting mole in solution, $(1.0 - 0.35)10^{-2} = 0.65 \times$ 10^{-2} mol HCl $HCl = H^+ + Cl^ [HCl] = [H^+] + [Cl^-]$ 55 mL contains 0.65×10^{-2} mole of H⁺ ions $1000 \text{ mL} = \frac{0.65 \times 10^{-2} \times 10^{3}}{55} = \frac{6.5}{55}$ $pH = -\log[H^+] = -\log(6.5/55)$ $= \log 55 - \log 6.5 = 0.92$

Due to acidic nature of solution the colour of phenolphthalein becomes pink.

559 **(c)**

On the basis of precipitation concept an electrolyte will be precipitated firstly whose ionic product is exceeded to its solubility product. In similar ionic conc. of cations, an electrolyte is precipitated firstly for which K_{sp}

is lower. In these electrolytes MnS, FeS, ZnS and HgS, HgS is precipitated firstly.

560 **(a)**

Ostwald's dilution law is applicable for weak electrolyte

561 **(c)**

$$\frac{K_p}{K_c} = (RT)^{\Delta n}$$

$$24.63 = (0.0821 \text{ x T})^1$$

$$\therefore T = 300K$$

562 (d)

20 M eq. of HCl reacts completely with 20 Meq. Of KOH. Hence, the final solution is neutral. Thus, at 90° C, pH = 6

$$K_{P_1} = \frac{n_Y \cdot n_Z}{n_X} \left[\frac{P_1}{\sum n_1} \right]^1 K_{P_2} - \frac{(n_B)^2}{n_A} \times \left[\frac{P_2}{\sum n_2} \right]^1$$

For $X \rightleftharpoons Y + Z$ for $A \rightleftharpoons 2B$
$$\frac{1}{1-\alpha} \quad \stackrel{0}{\alpha} \quad \stackrel{0}{\alpha} \quad \frac{1}{1-\alpha} \quad \stackrel{0}{2\alpha}$$
$$\therefore \frac{K_{P_1}}{K_{P_2}} = \frac{P_1}{P_2} \times \frac{n_Y \cdot n_Z}{n_X} \times \frac{(n_A)}{(n_B)^2} \times \left[\frac{\sum n_2}{\sum n_1} \right]$$
$$9 = \frac{P_1}{P_2} \times \frac{\alpha \cdot \alpha}{1-\alpha} \times \frac{(1-\alpha)}{(2\alpha)^2} \times \frac{(1+\alpha)}{(1+\alpha)}$$

$$\therefore \frac{P_1}{P_2} = 4 \times 9 = 36$$

565 **(c)**

There will be no effect on equilibrium constant (K_c) in presence of catalyst. So, statement (c) is wrong.

566 **(a)**

 $\rm NH_3$ (ammonia) possess an unshared electron pair on N-atom hence, it can donate electron pair. Such species are called Lewis bases. $\rm BF_3$ acts as Lewis acid.

567 **(a)**

569 **(d)**

Fe³⁺ ions are hydrolysed to develop acidic nature in solution.

$$K_{sp}$$
 of $M_2 X = 4s^3$

 K_{sp} of $QY_2 = 4s^3$ 578 (c) K_{sp} of $PZ_3 = 27s^4$ The molecule shows three H-atoms are replaceable, *i.e.*, basicity of acid. 571 (a) 579 (c) Strong acids have low pH value while strong K_{sp} of Ag₂CrO₄ = [Ag⁺]²[CrO₄²⁻] bases have high pH value. Hence, the order of Also, if $CrO_4^{2-} = 2 \times 10^{-4}$ pH is $Ag^+ = 2 \times 2 \times 10^{-4}$ Then HCl $< CH_3COOH < NH_4Cl$ < $K_{sp} = (4 \times 10^{-4})^2 (2 \times 10^{-4})$ *:*.. CH₃COONa $= 32 \times 10^{-12}$. strong weak (salt of weak base 580 (c) (salt of weak acid Acid acid and strong acid) $K_p = P_{CO_2}$ and strong base) 581 (a) 572 (c) $K_c = \frac{k_f}{k_h}$ Thunderstorm produces acidic oxides of N, S which produce acidic rain on dissolution in water. $\therefore k_f = K_c \times k_b = 1.5 \times 7.5 \times 10^{-4}$ 573 (c) $= 1.125 \times 10^{-3}$ $H_2O + NH_3 \rightleftharpoons NH_4^+ + OH^-$ 582 (d) In this reaction, H_2O acts as an acid because it $CH_{3}COOH + NaOH \rightarrow CH_{3}COONH_{4} + H_{2}O$ $\xrightarrow{0.3}{\frac{0.3}{4}} - \xrightarrow{0.1}{\frac{0.1}{4}}(14 \text{ neutralization})$ donates a proton 575 (c) $\therefore \mathrm{pH}_1 = \mathrm{p}K_a + \mathrm{log}\frac{1}{3}$ K°for $[Ag(NH_3)_2]^+ \rightleftharpoons Ag^+ + 2NH_3$ $CH_{3}COOH + NaOH \longrightarrow CH_{3}COONH_{4} + H_{2}O$ $\frac{0.1}{4}$ $K^{\circ} = \frac{[\text{Ag}^+][\text{NH}_3]^2}{[\text{Ag}(\text{NH}_3)_2]^+}$ $\therefore \mathrm{pH}_2 = \mathrm{p}K_a + \log 3$ Also, $K_1^0 = 1.4 \times 10^{-4} = \frac{[\text{Ag}(\text{NH}_3)]^+[\text{NH}_3]}{[\text{Ag}(\text{NH}_3)_2]^{+2}}$ $\therefore \mathrm{pH}_1 \sim \mathrm{pH}_2 = \log \frac{1}{3} \sim \log 3 = 2\log 3$ and $K_2^0 = 4.3 \times 10^{-4} = \frac{[\text{Ag}^+][\text{NH}_3]}{[\text{Ag}(\text{NH}_3)]^+}$ 583 (c) The weak electrolyte $A_x B_y$ dissociates as $\therefore \quad K^0 = K_1^0 \times K_2^0 = 1.4 \times 10^{-4} \times 4.3 \times 10^{-4}$ $= 6.02 \times 10^{-8}$ follows $A_x B_y \rightleftharpoons x A^{y+} + y B^{x-}$ 576 (d) C 0 For precipitation, ionic product > solubility 0 $C(1-\alpha) \quad xC_{\alpha}$ vC_{α} product Where, α = degree of dissociation \therefore The metal sulphide with lowest K_{sp} (PbS) C =concentration will precipitate out first because its inonic $K_{\text{eq}} = \frac{[A^{y+}]^{x}[B^{x-}]^{y}}{[A_{x}B_{y}]}$ product will exceed its K_{sp} first and the metal sulphide with highest K_{sp} (NiS) will $= \frac{[xC\alpha]^{x}[yC\alpha]^{y}}{C(1-\alpha)}$ $= \frac{x^{x}.C^{x}\alpha^{x}.y^{y}.C^{y}.a^{y}}{C}$ precipitate out at last. 577 (b) $[OH^-]$ in the diluted base $=\frac{10^{-6}}{10^2}=10^{-8}$ $[\because 1 - \alpha \approx 1]$ $= x^{x} \cdot y^{y} \cdot \alpha^{x+y} \cdot C^{x+y-1}$ Total $[OH^{-}] = 10^{-8} + [OH^{-}]$ of water $a^{x+y} = \frac{K_{\text{eq}}}{x^{x} \cdot y^{y} \cdot C^{x+y-1}}$ $= (10^{-8} + 10^{-7})M$ $= 10^{-8}(1+10)M$ $\alpha = \left(\frac{K_{\text{eq}}}{x^{x} y^{y} C^{x+y-1}}\right)^{\left(\frac{1}{x+y}\right)}$ $= 11 \times 10^{-8} \text{ M}$ $pOH = -\log 11 \times 10^{-8}$ 584 (a) $= -\log 11 + 8\log 10$ -do -= 6.9586585 (a) pH = 14 - 6.9586Mixture of acetic and sodium acetate is an = 7.0414acidic buffer. Hence, from Henderson

equation, $pH = pK_a + \log \frac{[salt]}{[acid]}$ On increasing [salt] ten times of that of [acid], the pH will increase by one. 586 (a) $Bi_2S_3 \rightleftharpoons 2Bi^{3+} + 3S^{2-}$ 20 $K_{\rm sp} = (2s)^2 (3s)^3 = 108s^5$ $108s^5 = 1 \times 10^{-17}$ $s = \left(\frac{1 \times 10^{-17}}{108}\right)^{1/5} = 1.56 \times 10^{-4}$ $MnS \rightleftharpoons Mn^{2+} + S$ $K_{\rm sp} = s^2$ s $s = \sqrt{K_{\rm sp}} = \sqrt{7 \times 10^{-16}}$ $= 2.64 \times 10^{-8}$ $CuS \rightleftharpoons Cu^{2+} + S^{2-}$ $K_{\rm sp} = s^2$ $8 \times 10^{-37} = s^2$ $s = \sqrt{8 \times 10^{-37}} = 0.89 \times 10^{-18}$ $Ag_2S \rightleftharpoons 2Ag^+ + S^{2-}$ $K_{\rm sp} = 4s^3 \text{ or } 4s^3 = 6 \times 10^{-51}$ $s = \sqrt[3]{\frac{6 \times 10^{-51}}{4}}$ $= \sqrt[3]{1.5 \times 10^{-51}} = 1.14 \times 10^{-17}$ The solubility of Bi_2S_3 is maximum. Hence, it is the most soluble. 587 (c) The variation of equilibrium constant with temperature is given by van't Hoff isochore as: $\frac{d}{dt} \ln K_{\rm c} = \frac{\Delta H}{RT^2}$ 588 (d) It is the characteristic of reaction. 589 (d) $K_h = \frac{K_w}{K_c} = \frac{10^{-14}}{1.3 \times 10^{-9}} = 7.7 \times 10^{-6}$ 590 (b) $K_{\rm sp} = [\rm Ag^+][\rm Br^-] = 5.0 \times 10^{-13}$ $[Ag^+] = 0.05 \text{ M}$ $[Br^{-}] = \frac{5.0 \times 10^{-13}}{0.05} = 1 \times 10^{-11} \text{ M}$ Moles of KBr = $1 \times 10^{-11} \times 1 = 1 \times 10^{-11}$ Weight of KBr = $1 \times 10^{-11} \times 120 = 1.2 \times$ 10^{-9} g 591 (b)

Thermal decomposition of potassium chlorate is irreversible. So, law of mass action cannot be applied on this reaction 592 (d) AB is binary electrolyte, $s = \sqrt{K_{\rm sp}} = \sqrt{1.21 \times 10^{-6}} = 1.1 \times 10^{-3} \,\mathrm{M}$ 593 (b) $SnS_2 = Sn^{4+} + 2S^{2-}$. 594 (b) $pK_a = -\log K_a$ Where, K_a = ionisation constant of weak acid. Smaller the value of pK_a , stronger will be the acid. So, $pK_a = 10^{-8}$ is strongest acid. 596 (a) CH_4 has almost no acidic nature and thus, CH_3^- is strongest base. 597 (c) $K_c = \frac{[AB]^2}{[A_2][B_2]}$ $K_c = \frac{(2.8 \times 10^{-3})^2}{3 \times 10^{-3} \times 4.2 \times 10^{-3}} = 0.62$ 598 (a) $A + B \rightleftharpoons C + D$ $\begin{array}{cccc} a & a & 0 & 0 \\ (a-x) & (a-x) & x & x \end{array}$ Given, x = 2(a - x) or $x = \frac{2a}{2}$ $K_c = \frac{x^2}{(a-x)^2} = \frac{(2a/3)^2}{(a-2a/3)^2} = 4$ 599 (d) $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$ According to Le-Chatelier's principle, on increasing volume of a reactant, the reaction proceeds in forward direction. Hence, on addition of Cl₂ to above reaction, the equilibrium will shift to the right. 600 (c) K_{sp} AgCl = $1.2 \times 10^{-10} = [Ag^+][Cl^-] = [s][s + 10^{-10}]$ 0.1] where, *s* is solubility of AgCl \therefore $K_{sp} = s \times 0.1 = 1.2 \times 10^{-10}$ $s = 1.2 \times 10^{-9} M$ **:**. 601 (d) Dissociation weak acid decreases in presence of common ion. 602 (b) $K_{sp} = 4s^3$ Also, $s = \frac{0.017}{78}M$ $\therefore K_{sp} = 4 \times \left(\frac{0.017}{78}\right)^3 = 4.14 \times 10^{-11}$

603 (d)

For weak acid,

$$\alpha = \sqrt{\frac{K_a}{C}}$$

As 'C' decreases, α increases therefore, percentage ionisation will increase

604 **(a)**

In acidic medium, H₂S is very feebly ionised giving very small concentration of sulphide ion for precipitation. Therefore, the most insoluble salts CuS and HgS are precipitated only.

605 **(d)**

In case of hydrolysis of salt of weak acid and strong base, the pH is given by

$$\frac{1}{2}\mathbf{p}K_w + \frac{1}{2}\mathbf{p}K_a + \frac{1}{2}\log C$$

606 **(c)**

$$[H^+] = c\alpha = 0.1 \times \frac{2}{100} = 2 \times 10^{-3}M$$

Also, $[H^+] \times [OH^-] = 10^{-14}$.

607 **(d)**

$$\therefore \quad pH = pK_a + \log \frac{[salt]}{[acid]}$$
or
$$5.8 = 4.8 + \log \frac{[salt]}{[acid]}$$
or
$$\log \frac{[salt]}{[acid]} = 1.0$$

$$\frac{[salt]}{[acid]} = anti - \log 1.0 = 10$$

$$\therefore \quad \frac{[acid]}{[salt]} = \frac{1}{10} = 0.1$$

608 **(c)**

 $PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g); K_{p} = \frac{p_{PCl_{3}} \times p_{Cl_{2}}}{p_{PCl_{5}}}$ $COCl_{2}(g) \rightleftharpoons CO(g) + Cl_{2}(g); K_{p} = \frac{p_{CO} \times p_{Cl_{2}}}{p_{COCl_{2}}}$

If CO is introduced, the dissociation of COCl_2 will decrease and p_{Cl_2} will decrease. This will favour dissociation of p_{Cl_5} , because both reactions are attained in same vessel.

609 **(a)**

...

For saturated solution of Ag_2CrO_4 , if solubility is 's' mol L⁻¹. Then

Ag₂CrO₄ ≈ 2Ag⁺(aq) + CrO₄²⁻(aq)
^s 2s s
K_{sp} = (2s)²(s) = 4s³
K_{sp} = 3.2 × 10⁻¹¹ (given)
3.2 × 10⁻¹¹ = 4s³
s³ =
$$\frac{3.2 \times 10^{-11}}{4}$$
 = 8 × 10⁻¹²

 $s = \sqrt{8 \times 10^{-12}} = 2 \times 10^{-4} \text{ M}$ 610 **(b)** Given , $S(s) + S^{2-} \rightleftharpoons S_2^{2-}$ $K_{c_1} = 1.7$ $2S(s) + S^{2-} \rightleftharpoons S_3^{2-}$ $K_{c_2} = 5.3$ $\therefore K_{c_1} = \frac{[S_2^{2^-}]}{[S_2^{2^-}]} = 1.7$..(i) $K_{c_2} = \frac{[S_3^{2^-}]}{[S^{2^-}]} = 5.3$..(ii) Now for, $S_2^{2-}(s) + S(s) \rightleftharpoons S_3^{2-}$ $K_c = \frac{[S_3^{2^-}]}{[S_2^{2^-}]}$: By Eqs. (ii) and (i), $\frac{K_{c_2}}{K_{c_3}} = \frac{[S_3^{2-}]}{[S_2^{2-}]} = K_c$ $\therefore K_c = 3.11$ 611 (a) pH will decrease as K_w will increase and [H⁺] will increase but $[H^+] = [OH^-]$ and thus, solution will be neutral or we can say scale of pH will change. 612 (d) The conjugate acid of NH_2^- is NH_3 . $NH_2^- + H^+ \rightleftharpoons NH_3$ conjugate acid hase 613 (a) If strong acid is present in a solution, then pH is calculated from its concentration, $\therefore [OH^{-}] = 10^{-1} \text{ or } pH = 1.$ 614 (b) $pH = pK_a + \log \frac{[Conjugate base]}{[Acid]}$ [Conjugate base] = $\frac{20 \times 0.5}{30}$; [Acid] = $\frac{10 \times 1}{30}$ $\therefore \text{ pH} = 4.76 + \log \frac{1}{1} = 4.76$ 615 (c) In the presence of little H_2SO_4 (as catalyst) about 2/3 mole of each of CH₃COOH and C₂H₅OH to form $\frac{2}{3}$ mole of the product at equilibrium 616 **(b)** pH = 2 \therefore [H⁺] = 10^{-pH} = 10⁻²M 617 (a) $K_c = \frac{[A][B]}{[AB]};$ If $[A] = 2 \times [A];$ To have K_c constant [B] should be $[B] \times \frac{1}{2}$ 618 (d) The change in pressure will not affect the equilibrium constant. Equilibrium constant changes with change in temperature. 619 (c) Page | 114

 $K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = \frac{0.7 \times 0.7}{0.1 \times 0.1} = 49$ 620 (a) For 0.1 M acetic acid, or $C = 0.1 \text{ mol } L^{-1}$ $K_a = 1.74 \times 10^{-5}$ pH=?According to Ostwald dilution formula, $[\mathrm{H}^+] = \sqrt{K_a \times C}$ $=\sqrt{1.7\times10^{-5}\times0.1}$ $=\sqrt{0.017 \times 10^{-4}}$ $pH = -\log_{10}[H^+]$ $= -\log_{10}\sqrt{0.017 \times 10^{-4}}$ pH=2.88 621 (a) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ For this reaction, $\Delta n_{\rm g} = 2 - 1 = 1$ Value of $\Delta n_{\rm g}$ is positive, so the dissociation of PCl₅ increases by decrease in pressure and by increase in pressure, the dissociation of PCl₅ decreases 622 (a) $pH = -\log[H^+]$ and $[H^+] = \sqrt{9.61 \times 10^{-14}}$: pH = 6.51624 (c) First dissociation $X(OH)_3 \rightarrow X(OH)_2^+ + OH^-$ Second dissociation $X(OH)_2^+ \rightarrow X(OH)^{2+} + OH^-$ Total $[OH^{-}] = 4 \times 10^{-3} + 2 \times 10^{-3}$ $= 6 \times 10^{-3}$ $pOH = 3 - \log 6$ = 3 - 0.78 = 2.22pH = 14 - 2.22 = 11.78625 (a) $K_c = \frac{[C_6H_6]}{[C_2H_2]}$ $\operatorname{Or} 4 = \frac{[C_6 H_6]}{(0.5)^3};$ $\therefore [C_6 H_6] = 0.5 M$ 626 (d) K_p of the reaction is : $K_p = \frac{P'_{CO_2}}{(P'_{CH_1})(P'_{O_2})}$ 628 (d) Buffer is $CH_3COOH_{Acid} + CHCOO^-_{Conjugate base}$ and has pH fixed. 629 (d) Δn = Mole of product – Mole of reactant; count only gaseous phase reactants. 630 (c) $N_2O_4 \rightleftharpoons 2NO_2$

1 0 initially $(1 - \alpha)$ 2 α at equilibrium Total moles at equilibrium = $(1 - \alpha) + 2\alpha$ $= 1 + \alpha$ 631 (b) Larger is bond length, more is acidic nature. 632 (a) $K_a = c\alpha^2$ or $1.0 \times 10^{-5} = 0.1 \times \alpha^2$ $\therefore \alpha = 10^{-2} \text{ or } 1\%$ 633 (a) By Le-Chatelier principle $n_p > n_r$ (gaseous) So, reaction shift in the backward direction 634 (b) The buffer solutions are those solutions which resists the change in its pH value on addition of small amount of a base or an acid. CH₃COOH and CH₃COONa solution is buffer solution because it is a solution of weak acid and its salt with strong base. 635 (c) $pOH = pK_b + \log \frac{[Conjugate acid]}{[base]}$ $= -\log 1.8 \times 10^{-5} + \log \frac{0.2}{0.3}$ $= -\log 1.8 \times 10^{-5} + \log 0.66$ = 4.744 - 0.176 = 4.567 \therefore pH = 14 - 4.567 = 9.423. 637 (c) The aqueous solution of KCN, K₂CO₃ and LiCN turn red litmus blue because of alkaline nature. The anionic hydrolysis turns the solution alkaline. 638 (d) e.g., CH₃COONa; $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-.$ 640 (a) This is Henderson equation for acidic buffer mixtures. 641 (c) $[\mathrm{H}^+] = c.\,\alpha = 0.01 \times \frac{12.5}{100}$ $= 1.25 \times 10^{-3}$ \therefore Thus, pH = $-\log 1.25 \times 10^{-3}$ *i.e.*, in between 2 and 3. 642 (c) AlCl₃ on hydrolysis gives weak base and strong

acid.

643 (b) ΔH is positive, so it will shift toward the product When rate of forward reaction is equal to the rate by increasing temperature 645 (a) of backward reaction then equilibrium is supposed to be established Electrophiles are electron deficient compounds 644 (a) and accept pair of electron. 646 (c) Consider a buffer of $CH_3COOH + CH_3COONa$ Addition of Acid : $H^+ + CH_3COO^- \rightarrow CH_3COOH_{Weak acid}$ Addition of alkali: $OH^- + CH_3COOH \rightarrow H_2O + CH_3COO^-$ (Weak electrolyte) Thus addition of acid or alkali does not cause any change in pH. 647 (c) 655 (b) For the precipitation of an electrolyte, it is $AgCl \rightleftharpoons Ag^{+} + Cl^{-}$ $K_{\rm sp} = [\rm Ag^+][\rm Cl^-]$ necessary that the ionic product must exceed its solubility product $K_{\rm sp} = S^2$ 648 (a) (S=solubility in mol/L) For different salts such as AB_1, AB_2, AB_3 ... etc. $S = \frac{1.435 \times 10^{-3} \text{ g/L}}{1435} = 1 \times 10^{-10} \text{ mol/L}$ $K_{sp} = s^2$, $4s^3$, $27s^4$... respectively. If K_{sp} is same for different salts, then *s* is more for the salt in 656 (a) which is more number of ions. Le-Chatelier's principle is not applicable to solid-649 **(b)** solid heterogeneous equilibrium. An increase in temperature favours forward 657 (a) reaction, if $\Delta H = +ve$, $2SO_2 + O_2$ \rightleftharpoons 2SO₃ $N_2O_4 \rightleftharpoons 2NO_2$; $\Delta H = +ve$ Initially 4 0 4 650 (a) At equili. 4(1-0.25) 4(1-0.25) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ 0.25×2 56 g 8g 0g Total number of moles at equilibrium (= 2 mol)(= 4 mol) (0 mol) initially 4(1 - 0.25)4(1-0.25) 0.5 (2-1)(4-3) 34 g at equilibrium 4 - 14 - 10.5 6.5 (= 2 mol) = 1= 1 658 **(b)** According to Eq.(1) 2 moles of ammonia are $0.005 M H_2 SO_4 = 2 \times 0.005 N H_2 SO_4$ present a produce 2 moles of NH₃, we need 1 $= 0.01 N H_2 SO_4;$ mole of N₂ and 3 of H₂, hence 2 - 1 = 1 mole of $[H^+] = 10^{-2}M$ Thus. N_2 and 4 - 3 = 1 mole are present at equilibrium :. pH = 2.in vessel 659 (c) 651 (a) Due to common ion effect, rate of ionisation of $[OH^{-}]$ in NH₄OH solution = $C\alpha$ NH₄OH decreases, so power $= 0.001 \times \frac{1}{100} = 1 \times 10^{-5}$ [OH⁻] is obtained. Hence, pH value decrease. $pOH = -\log[OH^{-}]$ 660 **(b)** $pOH = -\log[1 \times 10^{-5}]$ For indicator dissociation equilibrium; being an pOH = 5acid $HIn_{Colour A} \rightleftharpoons H^+ + In^-_{Colour B}$ $K_{In} = \frac{[H^+][In^-]}{[HIn]}$ 652 (c) Addition of inert gas at constant volume condition to an equilibrium has no effect. 653 (d) The mid point of the colour range of an indicator $Q > K_c$ thus, Q must decrease so that [NH₃] may HIn is the point at which $[In^{-}] = [HIn]$. decrease to have backward reaction. $K_{\rm In} = [{\rm H}^+] = 1 \times 10^{-5}$:. 654 (c) $[H^+] = 1 \times 10^{-5}$ *:*.. NaHSO₄ (acidic salt) and Na₂SO₄ normal salt.

pH = 5.or

661 (b)

Follow Le-Chatelier's principle

662 (c)

 N_2 $+ 3H_2 \rightleftharpoons 2NH_3$ $\frac{\frac{56}{28}}{28} = 2 \qquad \frac{8}{2} = 4$ $(2-x) \qquad (4-3x) \qquad 2x = \frac{34}{17} = 2$ Initial At moles equilibrium mole mole Hence, x = 1 mole Hence, number of moles of N₂ at equilibrium =2-1=1 mole Number of moles of H₂ at equilibrium =4-3=1 mole Number of moles of NH₃ at equilibrium=2 moles 663 (c) Na₂CO₃, on hydrolysis gives alkaline solution as the solution contains strong base and weak acid. $Na_2CO_3 \xrightarrow{2H_2O} 2NaOH$ H_2CO_3 White strong base weak acid Acidic buffer is a mixture of weak acid and its

664 (c)

salt with strong base. Similarly, basic buffer is a mixture of weak base and its salt with strong acid. Hence, 50 mL 0.1 M CH₃COOH + 100 mL 0.1 M NaOH does not constitute a buffer solution because in this case millimoles of acid are less than that of strong base, which after reaction with strong base gives salt. Now, the solution contains only strong base and salt but no weak acid. Hence, no buffer is formed.

665 (a)

$$K_{p} = \frac{(p_{CO})^{2}}{(p_{CO_{2}})} = \frac{8 \times 8}{4} = 16 \text{ atm.}$$

667 (a)

$$Ag_{2}CrO_{4} \rightarrow 2Ag^{+} + CrO_{4}^{2-}$$

$$s \qquad 2s \qquad s$$

$$K_{sp} = (2s)^{2}s = 4s^{3}$$

$$s = \left(\frac{K_{sp}}{4}\right)^{1/3} = \left(\frac{32 \times 10^{-12}}{4}\right)^{1/3} = 2 \times 10^{-4} \text{ M}$$

668 (c)

$$2NO_{2}(g) \rightleftharpoons 2NO(g) + O_{2}(g)$$

$$K = \frac{[NO]^{2}[O_{2}]}{[NO_{2}]^{2}} = 2 \times 10^{-6}$$

$$4NO(g) + O_{2}(g) \rightleftharpoons 4NO_{2}(g)$$

$$K' = \frac{[NO_{2}]^{4}}{[NO]^{4}[O_{2}]^{2}}$$

$$= \frac{1}{(K)^{2}} = \frac{1}{(2 \times 10^{-6})^{2}}$$
Equilibrium constant $K' = 0.25 \times 10^{12}$

$$= 2.5 \times 10^{11}$$

669 **(b)**

$$Mg(OH)_{2} \rightleftharpoons Mg^{2+} + 2OH^{-}$$

$$K_{sp} = [Mg^{2+}][OH^{-}]^{2}$$

$$[OH^{-}] = \sqrt{\frac{K_{sp}}{[Mg^{2+}]}}$$

$$[OH^{-}] = \sqrt{\frac{1.0 \times 10^{-11}}{0.001}} = 10^{-4}$$

$$pOH=4 \text{ and } pH=10$$

670 (a)

Precipitation just starts when the product of ionic concentration is equal to K_{sp} .

 $[Ag^+][Cl^-] = K_{spAgCl}$. This is the limiting case at which precipitation just starts or no precipitation up to this limit.

671 (a)

Such solutions are acidic and methyl orange act on acidic pH

672 (c)

 $[Cu(NH_3)_4]SO_4 \rightarrow [Cu(NH_3)_4]^{2+} + SO_4^{2-}; The$ complex ion is not ionised.

673 (b)

Given density of formic acid = 1.22 g/cm^3 : Weight of formic acid in 1 litre solution $= 1.22 \times 10^3 \text{ g}$ Thus, [HCOOH] = $\frac{1.22 \times 10^3}{46}$ = 26.5 M Since in case of auto ionisation $[HCOOH_2^+] =$ [HCOO⁻] and $[HCOO^{-}][HCOOH_{2}^{+}] = 10^{-6}$ $[HC00^{-}] = 10^{-3}$... Now % dissociation of HCOOH $=\frac{[\text{HCOO}^-]\times100}{[\text{HCOOH}]}=\frac{10^{-3}}{26.5}\times100=0.004\%$

674 (b)

A buffer of H_2CO_3 and HCO_3^- is formed. 675 (a)

$$c\alpha^2 = K_a$$
 $\therefore \alpha = \sqrt{\left[\frac{K_a}{c}\right]}$ or $\alpha = \frac{1}{\sqrt{c}}$
676 **(a)**
 $[\mathrm{H}^+] = K_a.C$

Given, $[H^+]_{HCOOH} = [H^+]_{CH_3COOH}$ $K_a. C = K'_a C'$ \Rightarrow 1.8 × 10⁻⁴ × 0.001 = 1.8 × 10⁻⁵ × C' $\therefore C' = 0.01 M$ 677 (a) $2Ag_2O(s) \rightleftharpoons 4Ag(s) + O_2(g)$ $K_{p} = p_{0_{2}}$ (: Ag and Ag_2O are solids) 678 (c) If solubility be s then $K_{\rm sp} = (s)(2s)^2 = 4s^3$ $4s^3 = 4 \times 10^{-12}$ $s = 1 \times 10^{-4} \text{ M}$:. $M^{2+} = s = 1 \times 10^{-4} M$:. 679 (d) $CaCO(s) \rightleftharpoons CaO(s) + CO_2(g)$ The equilibrium constant for this reaction is given by $K = [CO_2]$ (as CaCO₃ and CaO are solid). Hence, to get more CO_2 , we need to pump out continuously the CO₂ gas. 680 **(b)** H_2O can accept H^+ or donate H^- . 681 **(b)** $k_f = 1.1 \times 10^{-2}, k_b = 1.5 \times 10^{-3}$ $K_c = \frac{k_f}{k_h} = \frac{1.1 \times 10^{-2}}{1.5 \times 10^{-3}} = 7.33$ 682 **(b)** HCl is metabolically produced in human body. 683 (b) $\underset{\text{Pressure at equilibrium}}{\text{NH}_{4}\text{HS}(s)} \approx \underset{P}{\text{NH}_{3}(g)} + \underset{P}{\text{H}_{2}S(g)}$: Total pressure at equilibrium = 2P = 1.12 atm P = 1.12/2 atm $:: K_p = P'_{\rm NH_3} \ge P'_{\rm H_2S}$ $\therefore K_p = \frac{1.12}{2} \times \frac{1.12}{2} = 0.3136 \text{ atm}^2$ 684 (c) NaCl does not hydrolyse. 685 **(b)** The substance which can donate a pair of electrons is called Lewis base. Amines contain lone pair of electron on nitrogen atom, so behave as Lewis base. 686 (c)

Both possess the tendency to accept proton.

687 **(a)**

It is an acidic solution with pH < 7 as NaCl solution is neutral but HCl is a strong acid

688 **(a)**

Methyl orange will give colour only when more of weak acid is used, *i. e.*, more milli equivalents are added. Thus, $\frac{w}{E} \times 1000 =$ Meq. Thus, *E* will be lower if Meq. are more.

689 **(c)**

Among the given species, correct order of increasing acidic, strength is

 $0H^- < H_2 0 < NH_4^+ < HF < H_3 0^+$

 OH^- is a basic (i.e., it tends to gain a proton) and hence is least acidic. H_2O is neutral species. H_3O^+ is most acidic as it readily lose proton.

690 **(b)**

Presence of lone pair of electron and they donate two electron pairs

691 **(c)**

 $Na_2CO_3 + 2H_2O \rightleftharpoons 2NaOH + H_2CO_3$. It is a salt of strong base and weak acid, so it is basic

692 **(d)**

 BF_3 has incomplete octet and will act as Lewis acid NH_3 has lone pair of electron available for donation and thus Lewis base.

693 **(d)**

These are the characteristics of a reaction in equilibrium.

695 **(b)**

AgCl \rightarrow Ag⁺ + Cl⁻ X X After NaCl is added X X + 1 × 10⁻⁴ That is why Ag⁺ will be less

696 **(d)**

N₂O₄(g) $\rightleftharpoons 2NO_2(g)$ Molar concentration of $[N_2O_4] = \frac{9.2}{92} = 0.1 \text{ mol/L}$ In equilibrium state, (When it 50% dissociates) $[N_2O_4] = 0.05 \text{ M}$ $[NO_2] = 0.1 \text{ M}$ $\therefore \qquad K_c = \frac{[NO_2]^2}{[N_2O_4]}$ $\therefore \qquad K_c = \frac{0.1 \times 0.1}{0.05}$ = 0.2697 (a)

$$2CO_2 \rightleftharpoons 2CO + O_2$$

At equili. 0.6 atm 0.4 atm 0.2 atm

704 (b)

$$K_p = \frac{p_{CO}^2 \times p_{O_2}}{p_{CO_2}^2}$$
$$= \frac{(0.4)^2 (0.2)}{(0.6)^2} = 0.088$$

698 **(c)**

Aqueous solution of NaCN is basic because it is a salt of strong base and weak acid

699 **(c)**

N₂ + 3H₂ ⇒ 2NH₃ ¹/_{1-x} ³/_{3-3x} ⁰/_{2x} ∴ 50% mixture reacts ∴ 1 - x + 3 - 3x = $\frac{4}{2}$ = 2 x = 0.5 ∴ P¹_{NH₃} = P_T × mf of NH₃ = $\frac{P \times 2 \times 0.5}{(4 - 0.5 \times 2)} = \frac{P}{3}$

700 **(b)**

The CH_3COOH is weaker acid than H_2SO_4 . The reason is that CH_3COOH is weakly ionised in comparison with H_2SO_4 .

701 (a)

The problem is valid only if strong acids are mixed. After mixing equal volumes of three acids, total volume = 3 V

 \therefore [H⁺] after mixing

$$= \frac{10^{-3} \times V}{3V} + \frac{10^{-4} \times V}{3V} + \frac{10^{-5} \times V}{3V} = \frac{1.11 \times 10^{-3}}{3} = 3.7 \times 10^{-4}$$

702 **(a)**

The ionisation of strong electrolytes in acetic acid, compared to water, is weak and low because acetic acid is a non-polar solvent.

703 **(d)**

Solubility of $CaF_2 = 2 \times 10^{-4} \text{ mol/L}$ Each mole of CaF_2 dissolving in H₂O gives one mole of Ca^{2+} and two moles of F⁻ions.

$$CaF_{2} \rightleftharpoons Ca^{2+} + 2F^{-}$$

$$^{2 \times 10^{-4} M} \qquad ^{2 \times 2 \times 10^{-4} M}$$

$$K_{sp} = [Ca^{2+}][F^{-}]^{2}$$

$$= [2 \times 10^{-4}][2 \times 2 \times 10^{-4}]^{2}$$

$$K_{sp} = 3.2 \times 10^{11}$$

 $\alpha = \frac{D-d}{d} = \frac{104.16 - 62}{62}$ = 0.68 = 68%705 (d) HCOO⁻ is base having conjugate acid HCOOH (a monobasic acid). 706 (a) $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ 1 0.5 0 Initially At equilibrium (1 - x)(0.5 + x)x Total pressure at equilibrium $= p_{\rm NH_3} + p_{\rm H_2S}$ = 0.5 + x + x = 0.84x = 0.17 atm ... $\therefore p_{\rm NH_3} = 0.50 + 0.17 = 0.67$ atm $p_{\rm H_2S} = 0.17$ atm $\therefore \quad K_p = p_{\rm NH_3} \cdot p_{\rm H_2S}$ $= 0.67 \times 0.17 = 0.114$ atm The acidic character of non-metallic oxides increases along the period. 708 (c) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ We know that, $K_p = K_c (RT)^{\Delta n_g}$ Here, $\Delta n_{\rm g} = 2 - 2 = 0$ $K_p = K_c (RT)^0 = K_c$:. 709 (c) Lower is K_{sp} , lower is solubility of salt. 710 (d) $MnS + 2HCl \rightarrow MnCl_2 + H_2S;$ The dissociation of H₂S (formed) is suppressed due to the presence of HCl. 711 (b) pH + pOH = 14712 (d) The problem does not have suggests about the nature of acid, i.e., weak or strong. The normality will be 10^{-2} for strong acid. If weak acid, normality can be obtained only if K_a is known. 713 (c) $[H^+] = 1$ $\therefore pH = -\log 1 = 0.$ 714 (b) It is an exothermic reaction, hence low temperature and increasing pressure will favour forward reaction 715 (a)

NH₄Cl is acidic because it is a salt of weak base NH₄OH and a strong acid HCl. Thus, on hydrolysis, it gives strong acid HCl and weak base NH₄OH. $NH_4Cl + H_2O \rightarrow NH_4OH + HCl$ 716 (a) $pH = -\log K_a + \log \frac{[C.B]}{[Acid]}; \therefore pH$ $= pK_a \left[\frac{[C. B]}{[Acid]} = 1 \right]$ Find pH by $\frac{[C. B]}{[Acid]} = 10, i. e., pH = pK_a + 1$ 717 (c) For AB_2 : $K_{sp} = 4s^3 = 4 \times (1.0 \times 10^{-5})^3 = 4 \times$ 10^{-15} 718 (c) HClO₃ is called chloride acid. 719 **(b)** Ag⁺ is not a Lewis base as it has no lone pair of electron. 721 (b) $100 \times 10^{-1} = 1000 \times N$ $N_{\rm HCl} = 10^{-2} \therefore \rm{pH} = 2.$.. 722 (b) Meq. of $HCl = 20 \times 0.1 = 2$ Meq. of KOH = $20 \times 0.1 = 2$ Both are neutralized to give 2 Meq. of KCl (a salt of strong acid + strong base) and thus, does not hydrolyse and shows pH = 7. 723 (d) For $A(s) \rightleftharpoons 2B(g) + 3C(g)$ $\therefore K_c = [C]^3 [B]^2$; if [C] becomes twice, Then let conc. of B becomes B', then $K_c = [2C]^3 [B']^2$ $[C]^3$. $[B]^2 = [2C]^3$. $[B']^2$ 0r $\frac{[B']}{[B]} = \frac{1}{8} = \frac{1}{2\sqrt{2}}$:. 724 (d) The acidic character is $HCl > HF > H_2S > H_2O$ and thus, basic character of conjugate base will be $Cl^- < F^- < HS^- < OH^-.$ 725 (c) We know that, $pH = pK_a + \log \frac{[salt]}{[acid]}$ $5.5 = 4.5 + \log \frac{[\text{salt}]}{[0 \ 1]}$ [salt] = 1.0 M727 (a) $CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$

 $[F^{-}] = 2[Ca^{2+}]$ $= 2 \times 3.3 \times 10^{-4}$ $= 6.6 \times 10^{-4} \text{ M}$ $K_{\rm sp} = [{\rm Ca}^{2+}][{\rm F}^{-}]^2$ $= (3.3 \times 10^{-4})(6.6 \times 10^{-4})^2$ $= 1.44 \times 10^{-10}$ 728 (b) Buffer solutions do not change their pH on addition of small amount of acid or base. 729 (b) Blood is alkaline having pH between 7.0 to 7.4. 730 (c) $A + B \rightleftharpoons C$ $K = \frac{[C]}{[A][B]}$ $=\frac{\text{mol } L^{-1}}{\text{mol } L^{-1} \times \text{mol } L^{-1}} = (\text{mol } L^{-1})^{-1} = \text{mol}^{-1}L$ 731 (c) Stronger is acid, weaker is its conjugate base and vice-versa. 732 (a) The salt hydrolysis in each case occurs except NaW because its pH = 7. Thus, HW is strongest acid. More is the pH of salt solution, weaker is its acid part. 733 (a) Follow Le-Chatelier's principle. 734 (c) Hg exist as Hg_2^{2+} and not as Hg^+ . Thus $K_{\rm sp} = [{\rm Hg}_2^{2+}][{\rm I}^-]^2.$ 735 (c) Meq. of HCl = $40 \times 0.1 = 4$ Meq. of NaOH = $10 \times 0.45 = 4.5$ \therefore Meq. of NaOH left = 0.5 Now, $[OH^+] = \frac{0.5}{50} = 10^{-2}$ pOH = 2 and pH = 12:. 736 (b) $K_p = K_c \ge (RT)^{\Delta n}.$ Where $\Delta n =$ mole of products – mole of reactants. 737 (b) $pH = pK_a + \log \frac{[Salt]}{[Acid]}$ if $\frac{[Salt]}{[Acid]}$ increases by 10 times $pH = pK_a + 1$. 738 (b) $NaOH = [OH^{-}] = 10^{-3}$ $[H^+][OH^-] = 10^{-14}$ $[H^+] = 10^{-11}$ $pH = -\log[H^+]$ $= -\log[10^{-11}] = 11$

 $HCl(aq) = [H^+] = 10^{-3}$

 $pH = -\log[10^{-3}] = 3$ NaCl(*aq*) =Neutral; $[H^+] = [OH^-] = 10^{-7}$ *ie*, pH = 7

739 **(d)**

$$K_{1} = \frac{[\mathrm{NH}_{3}]^{2}}{[\mathrm{N}_{2}][\mathrm{H}_{2}]^{3}}$$

$$K_{2} = \frac{[\mathrm{NO}]^{2}}{[\mathrm{N}_{2}][\mathrm{O}_{2}]}$$

$$K_{3} = \frac{[\mathrm{H}_{2}\mathrm{O}]}{[\mathrm{H}_{2}][\mathrm{O}_{2}]^{1/2}}$$

$$\therefore \text{ For } \mathrm{NH}_{3} + \frac{5}{2}\mathrm{O}_{2} \rightarrow 2\mathrm{NO} + 3\mathrm{H}_{2}\mathrm{O}$$

$$K = \frac{[\mathrm{NO}]^{2}[\mathrm{H}_{2}\mathrm{O}]^{3}}{[\mathrm{NH}_{3}]^{2}[\mathrm{O}_{2}]^{5/2}} = \frac{K_{2}K_{3}^{3}}{K_{1}}$$

741 **(d)**

Decrease of *K* with rise of temperature means that the forward reaction is exothermic. As the given reaction is exothermic, energy of HI is greater or stability is less than H_2 and I_2

742 **(b)**

BaSO₄ \rightleftharpoons Ba²⁺ + SO₄²⁻ Solubility product = s × s 15 × 10⁻¹⁰ = s²: s = √15 × 10⁻¹⁰: s = 3.9 × 10⁻⁵

743 **(a)**

 CO_2 is present in soda water bottle which increases H^+ in solution,

$$H_2O + CO_2 \rightarrow H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$$

744 **(a)**

On increasing temperature, equilibrium will shift in forward direction due to decrease in intermolecular forces of solid

745 **(d)**

 $CaCl_2$ is a salt of strong acid and strong base.

746 **(c)**

$$K_{a} = \frac{[H^{+}][In^{-}]}{[HIn]}$$

or $3 \times 10^{-5} = \frac{[H^{+}] \times 75}{25}$
 $\therefore [H^{+}] = 1 \times 10^{-5}M$
748 (b)
 $[OH^{-}] = 1 \times 10^{-5}$
 $pOH = -\log[OH^{-}]$
 $= -\log[1 \times 10^{-5}]$
 $pOH = 5$
 $pH + pOH = 14$
 $pH = 14 - pOH$
 $= 14 - 5$
 $pH = 9$
750 (d)

It is definition of Levelling effect. **751 (d)**

$$N = \frac{75 \times \frac{1}{5} - 25 \times \frac{1}{5}}{100} = 15 - 5 = \frac{10}{100} = 0.1$$

pH = -log[H⁺] = -log[0.1] = 1

752 **(c)**

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g);$ $ΔH = -93.6 \text{ kJ mol}^{-1}$

This reaction is exothermic therefore the concentration of NH_3 can be increased by lowering the temperature, high pressure ($\Delta n < 0$) excess N_2 and H_2 .

753 **(c)**

e.g., K_4 Fe(CN)₆ does not give test for Fe³⁺ ions. 754 **(c)**

 CH_3COONa in water gives alkaline solution due to hydrolysis of acetate ions. NH_4Cl gives acidic solution due to hydrolysis of NH_4^+ ions. Also NH_4OH is a weak base due to less dissociation.

755 **(c)**

 $HPO_4^{2-} + H_2O \rightleftharpoons H_2PO_4^{2-} + OH^ HPO_4^{2-} + H_2O \rightleftharpoons PO_4^{3-} + H_3O^+$

 $H_2PO_2^-$ is a conjugate base of H_3PO_2 (a monobasic acid) and does not give H^+ , HPO_3^{2-} is a conjugate base of $H_2PO_3^-$ and does not ionise further, since H_3PO_3 is a dibasic acid.

756 **(d)**

Alkanes are not acidic and thus, R^- is strongest base.

$$pH = -\log K_a + \log \frac{[Conjugate base]}{[Acid]}$$

 $[H^+] = \sqrt{K_a \cdot C}$ Where, *C* =initial concentration of the weak acid $C = \frac{[H^+]^2}{K_a}$ $= \frac{(3.4 \times 10^{-4})^2}{1.7 \times 10^{-5}}$ *C* = 6.8 × 10⁻³ M 759 (d) 2Na + 2H₂O → 2NaOH + H₂ 2 mol 2 mol 2 mol Given, $\frac{0.023}{23}$ mol $\frac{100}{22400}$ mol = 1 × 10⁻³mol = 4.46 × 10⁻³ mol Thus, Na is the limiting reagent and decide the amount of NaOH formed. :: 1 mole Na give NaOH = 1 mol

 $\therefore 1 \times 10^{-3}$ mole Na will give NaOH $= 1 \times 10^{-3}$ mol Concentration of $[OH^{-}] = \frac{1 \times 10^{-3} \times 1000}{100} = 1 \times 10^{-2}$ $pOH = -\log[OH^{-}]$ $= -\log(1 \times 10^{-2})$ = 2pH = 14 - 2 = 12760 (b) 1 mole of N_2 reacts with 3 mole of H_2 thus, for $N_2 + 3H_2 \rightleftharpoons 2NH_3; (a - x) > (a - 3x)$ $\begin{array}{ccc} a & a \\ (a-x) & (a-3x) & 2x \end{array}$ 761 (a) $A + 2B \rightleftharpoons 2C + D$ $\begin{array}{cccc} a & b & 0 & 0\\ (a-x) & (b-2x) & 2x & x \end{array}$ Given, 2x = 0.2, Also, a=1.1 x = 0.1 b = 2.2 $\therefore K_c = \frac{2 x^2}{(a-x)(b-2x)}$ $=\frac{(2 \times 0.1)^2 \times 0.1}{(1.1 - 0.1)(2.2 - 0.2)^2} = 0.001$ 762 (a) $pH = pK_a + \log \frac{[Conjugate base]}{[Acid]}$ $pH = pK_a + \log 1$ (: 50% neutralization) $\therefore \quad \log \mathrm{H^{+}} = -\log 2 \times 10^{-4}$ $H^+ = 2 \times 10^{-4}$ or 763 (a) K₂S shows alakaline nature due to hydrolysis of S²⁻ ions, $S^{2-} + H_2 0 \rightleftharpoons HS^- + OH^-.$ 764 **(b)** B.pt. increases with increase in pressure. 766 **(b)** Na₂CO₃ salt gives strong base and weak acid on dissolving in water. Hence, it produces an alkaline solution. $Na_2CO_3 + H_2O \rightarrow NaOH$ + H₂CO₃ Weak acid Strong base 767 (a) Addition of some concentration HCl does not change pH. 768 (d) CO is neutral. 769 (c)

 $2SO_2 + O_2 \rightleftharpoons 2SO_3; K = 278$

 $SO_3 \rightleftharpoons SO_2 + \frac{1}{2}O_2; \quad K' = \frac{1}{\sqrt{K'}}$ $K' = \frac{1}{\sqrt{K}} = \frac{1}{\sqrt{278}} = 6 \times 10^{-2}$ 770 (b) The reaction shows lower K_{eq} value in forward direction, *i.e.*, more $K_{eq.}$ in backward direction or HCN decomposes salt of HNO₂. 771 (d) Initially $[CH_3COONa] = 0.1 \text{ mol}$ $[CH_{3}COOH] = 0.1 \text{ mol}$ when 0.1 mol CH₃COONa is added. $[CH_3COONa] = 0.1 + 0.1 = 0.2 \text{ mol}$ $pH = pK_a + \log\frac{[salt]}{[acid]}$ $= pK_a + \log \frac{0.2}{0.1}$ $= pK_a + \log 2$ 772 (c) For binary salts (like AgCl, AgBr). $s = \sqrt{K_{\rm sn}}$ \therefore Solubility of AgCl = $\sqrt{1.8 \times 10^{-10}}$ $= 1.35 \times 10^{-7} \text{ mol/L}$ Solubility of AgBr = $\sqrt{5.0 \times 10^{-13}}$ $= 7.1 \times 10^{-7} \text{ mol/L}$ For, Ag_2CrO_4 , $K_{sp} = 4s^3$ \therefore Solubility of Ag₂CrO₄ $= \sqrt[3]{\frac{K_{sp}}{4}}$ $= \sqrt[3]{\frac{2.4 \times 10^{-12}}{4}}$ $=\sqrt[3]{600 \times 10^{-15}}$ $= 8.44 \times 10^{-5} \text{ mol/L}$ As Ag₂CrO₄ has maximum solubility, it will give maximum Ag⁺ ions in solution. Hence, it will be used. 773 (a) Ostwald's dilution law is valid only for weak electrolytes. 774 (b) $[Zn^{2+}][S^{2-}] = 10^{-1} \times 8.1 \times 10^{-19} = 8.1 \times$ $10^{-20} > K_{\rm sp}$ of ZnS (3 × 10⁻²²) $[Cu^{2+}][S^{2-}] = 10^{-2} \times 8.1 \times 10^{-19} = 8.1 \times 10^{-19}$ $10^{-21} > K_{\rm sp}$ of CuS (8 × 10⁻³⁶)

776 (b)

Gas + Liquid \rightleftharpoons Solution. An increase in *P* will favour forward reaction.

778 (b) $K_{a_1} > K_{a_2}$. 779 (d) $A + 2B \rightleftharpoons 2C + D$ a $\frac{3}{2}a$ $0 \\ x \\ x$ (a-x) $\left(\frac{3}{2}a-2x\right)$ Given, a - x = 2x $\therefore x = a/3$ Now, $K_c = \frac{[C]^2[D]}{[A][B]^2} = \frac{\left(\frac{2a}{3}\right)^2 \times \frac{a}{3}}{\left(a - \frac{a}{3}\right)\left(\frac{3a}{2a} - \frac{2a}{3}\right)^2} = 0.32$ 780 (b) $Al_2(SO_4)_3 \rightleftharpoons 2Al^{3+} + 3SO_4^{2-}$ $K_{\rm sp} = [{\rm Al}^{3+}]^2 [{\rm SO}_4^{2-}]^3$ 781 (a) [H⁺] from weak acid, $= c \cdot \alpha = c \sqrt{\frac{K_a}{c}} = \sqrt{K_a c} = \sqrt{10^{-5} \times 0.1}$ $= 10^{-3}$ pH = 3:. 782 (a) $[H^+] = 10^{-10}M$ pH = 10:. :. pOH = 4783 (b) $H^+ + 0H^- \rightarrow H_2 0$ $\Delta H = -13.7$ kcal. 784 (a) $pH = -\log(5 \times 10^{-10}) + \log\left[\frac{5 \times V}{V + 10} / \frac{10 \times 2}{V + 10}\right]$ $9 = -\log(5 \times 10^{-10}) + \log\frac{V}{4}$ On solving, V = 2 mL785 (b) $K_1 = \frac{[\mathrm{H}^+][\mathrm{H}_2\mathrm{PO}_4^-]}{[\mathrm{H}_3\mathrm{PO}_4]}; K_2 = \frac{[\mathrm{H}^+][\mathrm{H}\mathrm{PO}_4^{2-}]}{[\mathrm{H}_2\mathrm{PO}_4^-]}$ $K_3 = \frac{[\mathrm{H}^+][\mathrm{PO}_4^{3-}]}{[\mathrm{HPO}_2^{2-}]}$ Multiplying these three $K_1 \times K_2 \times K_3 = \frac{[H^+]^3 [PO_4^{3-}]}{[H_2 PO_4]}$ 786 (a) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ c. $\frac{4}{4}$ 0 0 hc. $\frac{2}{4}$ $\frac{2}{4}$ $\frac{2}{4}$ $K = \frac{[PCl_3][Cl_2]}{[PCl_5]}$ Initial conc. Equili. conc. $=\frac{2 \times 2 \times 4}{4 \times 4 \times 2} = \frac{1}{2} = 0.5$ 787 (b)

Follow Le-Chatelier's principle. 788 (b) Let the solubility of Ag_2S is s. $Ag_2S \rightleftharpoons 2Ag^+ + S^{2-}$ 25 Na₂S, being a strong electrolyte, dissociates completely and provides $[S^{2-}]=0.1 \text{ M}$:. $[Ag^{+}] = s$ $[S^{2-}] = (s + 0.1) M$ $K_{\rm sp} = [{\rm Ag}^+]^2 [{\rm S}^{2-}]$ $= (2s)^2(s + 0.1)$ $= 4s^3 + 0.4s^2$ $10^{-17} = 0.4s^2$ ⇒ [: Higher powers are neglected.] $s = 5 \times 10^{-9} \text{ mol } \text{L}^{-1}$ 789 (a) $SO_2 + \frac{1}{2}O_2 \rightleftharpoons SO_3$ 5 mol 5 mol 0 initially $(5-x)\left(5-\frac{1}{2}x\right)x$ at equilibrium $x = \frac{60}{100} \times 5 = 3$ Total number of moles = $(5 - x) + (5 - \frac{1}{2}x) + x$ $= (5-3) + \left(5 - \frac{1}{2} \times 3\right) + 3$ = 8.5790 (a) $s = \sqrt{K_{sp}} = (2.5 \times 10^{-9})^{1/2}$ $= 5 \times 10^{-5}$ mol litre⁻¹ $\therefore \frac{w}{128} = 5 \times 10^{-5}$ $\therefore w = 6.4 \times 10^{-3} \text{g}.$ 791 (b) In the iodometric estimation in laboratory, this process is involved $MnO_4^- + H^+ + I^- \rightarrow Mn^{2+} + I_2$ $I_2 + S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + I^-$ 792 (c) $K_1 = \frac{[NO_2]}{[NO][O_2]^{1/2}}$...(i) $K_2 = \frac{[\text{NO}]^2[\text{O}_2]}{[\text{NO}_2]^2}$...(ii) $\therefore \frac{1}{K_2} = \frac{[NO_2]^2}{[NO]^2[O_2]}$ or, $\frac{1}{\sqrt{K_2}} = \frac{[NO_2]}{[NO][O_2]^{1/2}}$...(iii) From Eqs.(i) and (iii), $K_1 = \frac{1}{\sqrt{K_2}}$

$$\therefore K_2 = \frac{1}{K_1^2}$$

793 (a) g equivalent of $(NH_4)_2 SO_4 = \frac{100}{1000} \times \frac{1}{10} \times 66 =$ 0.66 g equivalent of Na₂CO₃ · H₂O = $\frac{0.62}{62}$ = 0.01 left $(NH_4)_2SO_4$ is 0.66 - 0.01 = 0.65 $(NH_4)_2SO_4$ is a salt of strong acid and weak base 794 (b) $K_p = K_c (RT)^{\Delta n}$ $K_n = K_c$ only when $(RT)^{\Delta n} = 0$ (a) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ $\Delta n = n_p - n_R$ = 2 - 1= 1 $\Delta K_p \neq K_c$:. $(b)N_2 + O_2 \rightleftharpoons 2NO$ $\Delta n = 2 - 2$ = 0 $K_p = K_c$:. $(c)N_2 + 3H_2 \rightleftharpoons 2NH_3$ $\Delta n = 2 - 4$ = -2:. $\Delta K_n \neq K_c$ $(d)2SO_3 \rightleftharpoons 2SO_2 + O_2$ $\Delta n = 3 - 2 = 1$ $\Delta K_p \neq K_c$... 795 (a) $K_{sp} = 1.8 \times 10^{-10} = 4 \times 10^{-3} \times [\text{Cl}^-]$ $[Cl^{-}] = 4.5 \times 10^{-8} \text{ mol litre}^{-1}$. 796 (d) $H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2}O_2(g)$ 1 0 0 Initial $(1-\alpha)$ α $\alpha/2$ At equilibrium Total moles = $(1 - \alpha) + \alpha + \frac{\alpha}{2} = 1 + \frac{\alpha}{2}$ Partial pressure of $H_2 O = p\left(\frac{1-\alpha}{1+\alpha}\right)$ Partial pressure of $H_2 = p\left(\frac{\alpha}{1+\frac{\alpha}{2}}\right)$ Partial pressure of $O_2 = p\left(\frac{\alpha}{2+\alpha}\right)$ $K_p = \frac{p H_2 \cdot p O_2^{1/2}}{p H_2 O}$ $K_p = \frac{\alpha^{3/2} p^{1/2}}{(1-\alpha)(2+\alpha)^{1/2}}$ 797 (a)

For weak electrolytes, according to Ostwald's dilution law $\alpha = \sqrt{KV}$ Here. $\alpha = 0.01\% = 0.0001 = 1 \times 10^{-4}$ $V = \frac{1}{C} = \frac{1}{1.0} = 1L$:. $K_a = \frac{\alpha^2}{V} = \frac{(1 \times 10^{-4})^2}{1} = 1 \times 10^{-8}$ 798 (a) Given, $K_b = 1.8 \times 10^{-5}$, [NH₃] = 0.1 M $NH_3 + H_20 \rightleftharpoons NH_4^+ + OH^-$ Let concentration of $[NH_4^+] = [OH^-] = x$ $K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$ $=\frac{x \times x}{0.1}$ $1.8 \times 10^{-5} = \frac{x^2}{0.1}$ or $x^2 = 1.8 \times 10^{-6}$ or $x = 1.35 \times 10^{-3}$:. $[OH^{-}] = 1.35 \times 10^{-3}$:. $pOH = -\log[OH^{-}]$ $= -\log(1.35 \times 10^{-3})$ = 2.87pH = 14 - pOH = 14 - 2.87 = 11.13799 (d) : Relative strength of weak acids = $\sqrt{\left(\frac{K_{a_1}}{K_{a_2}} \times \frac{c_1}{c_2}\right)}$ Assume c_1 and c_2 are same (Although not given) $\therefore \text{ Relative strength} = \sqrt{\left(\frac{K_{a_1}}{K_{a_2}}\right)} = \sqrt{\left(\frac{2.1 \times 10^{-4}}{1.1 \times 10^{-5}}\right)}$ Relative strength for HCOOH to $CH_3COOH =$ 4.36:1.800 (b) According to Arrhenius concepts acids are those substances which give proton in aqueous solution. : Gaseous HCl is not an Arrhenius acid. 801 (c) $CO_2(g) + 2H_2O(g) \rightarrow CH_4(g) + 2O_2(g)$ According to Le-Chatelier's principle, addition of temperature shifts a endothermic reaction towards right. The addition of temperature to the above reaction will cause it to right, hence it is an endothermic reaction. ($\Delta H = +ve$). 802 (b) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$

 $1_{1-\alpha}$

 \int_{α}^{α}

 $\frac{0}{\alpha}$

$$\therefore K_{p} = \frac{a^{2}}{(1-a)} \left[\frac{p}{1+a} \right] = \frac{a^{2}p}{1-a^{2}}$$
Or $\alpha = \sqrt{\frac{K_{p}}{p}}$ if $1 - \alpha^{2} = 1$
803 (b)
 $K_{sp} = 4s^{3}$ or $s = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{4 \times 10^{-12}}{4}} = 10^{-4}$
804 (b)
 $\Delta G = 0$ at equilibrium
805 (a)
NH₄HS(s) \Rightarrow NH₃(g) + H₂S(g)
1 0 0 0
 p p At
equilibrium
Given,
 $p + p = 100$ atm
 $2p = 100$ atm
 $p = 50$ atm
 $K_{p} = p_{\text{NH}_{3}}.p_{\text{H}_{2}S}$
 $= 50 \times 50 = 2500 \text{atm}^{2}$
806 (c)
 AX_{2} is ionised as follows
 $AX_{2} \Rightarrow A^{2+} + 2X^{-}$
Solubility product of AX_{2}
 $(K_{sp}) = [A^{2+}][X^{-}]^{2} = S \times (2S)^{2} = 4S^{3}$
 $\therefore K_{sp}$ of $AX_{2} = 3.2 \times 10^{-11}$
 $\therefore 3.2 \times 10^{-11} = 4S^{3}$
 $S^{3} = 0.8 \times 10^{-11} = 8 \times 10^{-11}$
Solubility 2×10^{-4} mol/L
807 (b)
 s of Ag₂SO₄ = $\left[\frac{K_{sp}}{4}\right]^{1/3}$
 $= \left[\frac{5.5 \times 10^{-5}}{4}\right]^{1/3}$
 $= 2.39 \times 10^{-2} M$
 s of AgBrO₃ = $\sqrt{K_{sp}} = (2 \times 10^{-5})^{1/2}$
 $= 4.4 \times 10^{-3} M$.
808 (a)
Base + H⁺ \rightarrow Conjugate acid.
809 (c)
 e .g., CuSO₄ is blue because Cu²⁺ ions are blue;
CuCr₂O₇ is green because Cu²⁺ is blue and Cr₂O²/₇-
is orange yellow.
810 (b)

pH of HCl = $2 \therefore$ [HCl] = $10^{-2}M$ pH of NaOH = 12 \therefore [NaOH] = $10^{-2}M$ $\begin{array}{c} \text{HCl} & + \text{NaOH} \\ \text{Meq.before} & 200 \times 10^{-2} \\ \text{reaction} & = 2 \\ \text{reaction} & 0 \\ \text{Meq.before reaction} & 0 \\ \text{Meq$ Meq.after reaction 0 $\therefore \text{ [OH^-] left from NaOH} = \frac{1}{500} = 2 \times 10^{-3} M$ $pOH = -\log OH^{-} = -\log 2 \times 10^{-3}$... :. pOH = 2.6989*:*.. pH = 11.3010811 (d) $\Delta G^0 = -2.303 RT \log K_p;$ $1.7 = -2.303 \times 8.314 \times 10^{-3} \times 298 \log K_p$ $\therefore K_p = 0.5$ 813 (c) Aprotic solvents are those from which hydrogen ion or OH⁻ cannot be derived. 814 (a) $K_c = \frac{k_f}{k_b}$ $\therefore \quad 20 = \frac{10}{K_b}$: $k_b = \frac{1}{2} = 0.5$ 815 (d) For the reversible reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ $\Delta n_a = 2 - (1 + 3)$ = 2 - 4 = -2 $R = 0.0821 \text{ L} \text{ atm } \text{K}^{-1} \text{mol}^{-1}$ T = 500 + 273 = 773 K $K_p = K_c (RT)^{\Delta n_g}$ $K_p = K_c \times (RT)^{-2}$ $K_c = \frac{K_p}{(RT)^{-2}}$ or $=\frac{1.44\times10^{-5}}{(0.082\times773)^{-2}}$ $1.44 \times 10^{-5}/(0.082 \times 773)^{-2}$ or 816 (a) $[\mathrm{H}^+] = \frac{10^{-5} \times V + 10^{-3} \times V}{2V}$ $=\frac{1.01 \times 10^{-3}}{2}$ ∴ pH = 3.2967 817 (c) $K_a = \frac{[\mathrm{H}_3\mathrm{O}^+][\mathrm{F}^-]}{[\mathrm{HF}][\mathrm{H}_2\mathrm{O}]}$ and $K_b = \frac{[\text{HF}][\text{OH}^-]}{[\text{F}^-][\text{H}_2\text{O}]}$ $\therefore K_a \times K_b = [\mathrm{H}_3\mathrm{O}^+][\mathrm{OH}^-] = K_w.$ 818 (b) $[H^+] = 10^{-pH} = 10^{-4} M$

819 (c) Because pH = 8 shows basic nature but HCl is a strong acid 820 (a) $[Ag^+]^2[CrO_4^2] = K_{sp} \text{ or } K_{sp} = (2S)^2 \times S = 4S^3.$ 821 (b) $K_c = \frac{K_f}{K_h} = \frac{2.38 \times 10^{-4}}{8.15 \times 10^{-5}} = 2.92$ 822 (c) $pH = 3.82 = -\log[H^+]$ $[H^+] = 1.5 \times 10^{-4} M.$:. 823 (a) CH₃— CH₃ is neutral or least acidic and thus, its conjugate base should be strongest. 824 (d) K_{sp} of Na₂S is very high. 826 (c) An increase H^+ favours the backward reaction. 828 (a) $K_n = K_c (RT)^{\Delta n_g}$ $\Delta n_{\rm g} = 1 - 1.5 = -0.5$ $K_p = K_c (RT)^{-1/2} = \frac{K_c}{(RT)^{1/2}}$ $\frac{K_c}{K_n} = (RT)^{1/2}$ **:**. 829 (a) For the reaction, we know that $K_p = K_c (RT)^{\Delta n_g}$ where, $\Delta n_{\rm g}$ = Number of gaseous moles of product - Number of gaseous moles of reactant Hence, if $K_n > K_c$, then Δn must be positive. It means that there is a decrease in volume of reaction, hence low pressure will favour the forward reaction. 830 (b) 0.05 M Ba(OH)₂ solution $\approx 2 \times 0.05 \text{ N Ba(OH)}_2$ $\approx 0.10 \text{ N Ba}(\text{OH})_2$ $pOH = -\log[OH^{-}]$... $= -\log(0.10) = 1$ pH = 14 - pOH= 14 - 1 = 13831 (d) $pH = 12 \therefore pOH = 2$

 $[OH^{-}] = 10^{-2}$

 $Ba(OH)_2 = Ba^{2+} + 2OH^{-}$

 $K_{sp} = [Ba^{2+}][OH^{-}]^2$

...

:.

Now

 $= \left[\frac{10^{-2}}{2}\right] [10^{-2}]^2 : : [Ba^{2+}]$ $=\frac{1}{2} \times [0H^{-}]$ $= 5 \times 10^{-7}$. HSO_4^- is the conjugate base of H_2SO_4 . $HSO_4^- \rightleftharpoons HSO_4^- + H^+$ acid conjugate base $K_p = K_c (RT)^{\Delta ng}$ Here, $\Delta n_{\rm g} = -1$ and $K_c = 26$ R = 0.0812, T = 250 + 273 = 523 K $K_p = 26 \times (0.0812 \times 523)^{-1} = 0.605 = 0.61$ NaCN (4 millimole) and HCl (2 millimole) on reaction give 2 millimole of HCN and 2 millimole of NaCN are left which acts as buffer. Phenolphthalein furnishes H⁺ and phenolphthalein anion is solution. $Hg_2I_2 \rightleftharpoons Hg_2^{2+} + 2I^ K_{\rm sp} = [{\rm Hg}_2^{2+}][{\rm I}^-]^2$

839 **(d)**

832 (b)

833 (c)

835 (d)

837 (a)

838 (c)

According to law of mass action, at a given temperature the rate of reaction at a particular instant is proportional to the product of active masses of the reactants at that instant raised to powers which are numerically equal to the numbers of their respective molecules.

840 **(d)**

HCl is accepting proton in HF medium and acts as weak base .

$$2AB_{2}(g) \rightleftharpoons 2AB(g) + B_{2}(g)$$

$$1 \qquad 0 \qquad x \qquad \frac{0}{x}$$

$$\therefore \qquad K_{p} = \frac{x^{2} \cdot x}{2(1-x)^{2}} \left[\frac{P}{1+\frac{x}{2}}\right]^{1}$$

$$x \text{ being small} \therefore 1 - x \approx 1 \text{ and } 1 + \frac{x}{2}$$

$$\therefore \qquad K_{p} = \frac{x^{3} \cdot P}{2}$$

842 (d)

According to Lewis, electron deficient species are called acids while bases are the substances which have unshared pair of electron and can donate the electron pair to

≈ 1

the formation of coordinate bond. Hence,

 $H_2\ddot{O}$: is a Lewis base while

BF₃, AlCl₃ and SO₂ are Lewis acids. 843 **(b)**

0.1 M weak acid (HQ) has pH = 3

$$\therefore [\mathrm{H^+}] = C\alpha = 10^{-3}$$

$$\therefore \quad \alpha = 10^{-2} \quad (\because C = 10^{-1})$$

Now for weak acid,

 $K_{\alpha} = C\alpha^2 = C\alpha \cdot \alpha = 10^{-3} \times 10^{-2} = 10^{-5}$

844 (b)

So that only II group radicals are precipitated, otherwise III group also get precipitated.

845 (a)

$$Mg(OH)_2 \rightleftharpoons Mg^{2+} + 2OH^{-1}$$
$$(x)(2x)^2$$
$$K_{sp} = 4x^3$$

846 (a)

$$K_{p} = \frac{(p_{SO_{3}})^{2}}{(p_{SO_{2}})^{2}(p_{O_{2}})} = \frac{(0.331)^{2}}{(0.662)^{2}(0.101)} = 2.5$$

Now, $K_{p} = \frac{(p_{SO_{3}})^{2}}{(p_{SO_{2}})^{2}P_{O_{2}}};$
If $p_{SO_{3}} = p_{SO_{2}}$
Then, $p_{O_{2}} = \frac{1}{K_{p}} = \frac{1}{2.5} = 0.4$ atm

847 (b)

The salt with lower solubility product (AgI) will precipitate first from the solution by adding KI.

848 (b)

The species which can donate a lone pair of electron, are called Lewis base e.g., NH_3 , H_2O , Cl^- etc.

849 (a)

$$NH_{3} + H_{2}O \underbrace{K_{f}}_{K_{b}} NH_{4}^{+} + OH^{-}; K_{b} = 3.4 \times 10^{10}$$

$$NH_{4}^{+} + H_{2}O \underbrace{K_{b}}_{K_{b}} NH_{4}OH^{+} H^{+}; K_{a} = 5.6 \times 10^{10}$$

$$K_{base NH_{3}} = \frac{K_{f}}{K_{b}} = \frac{K_{w}}{K_{acid NH_{4}^{+}}} (\because K_{acid} \times K_{base}$$

$$= K_{w})$$
or
$$\frac{K_{f}}{3.4 \times 10^{10}} = \frac{10^{-14}}{5.6 \times 10^{-10}}$$
or
$$K_{f} = 6.07 \times 10^{5} \text{ s}^{-1}.$$

850 (b)

 K_{Sp} is characteristic constant for given electrolyte. 851 (a)

It is an acid-base reaction; Rest all occurs in reverse direction.

852 (b)

Catalyst affect both the forward and backward reactions upto same extent, hence it, overall does not affect the equilibrium state. However, it brings equilibrium state quickly.

853 (b)

Given, aqueous solution of NH_3 (weak base)C = 0.01 M $\alpha = 5\% = \frac{5}{100}$ $[OH^{-}] = C\alpha = 0.01 \times \frac{5}{100} = 5 \times 10^{-4}$ $pOH = -\log[OH^{-}]$ $= \log(5 \times 10^{-4})$ $= 4 \log 10 - \log 5$ = 4 - 0.6989= 3.3010 \therefore pH = 14 - pOH = 14 - 3.3010 = 10.6990 854 (b) $NH_2COONH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$ If *p* is the total pressure at equilibrium $K_p = \frac{[\mathrm{NH}_3]^2[\mathrm{CO}_2]}{[\mathrm{NH}_2\mathrm{COONH}_4]}$ $2.9 \times 10^{-5} = \frac{\left(\frac{2p}{3}\right)^2 \times \frac{p}{3}}{1}$ $2.9 \times 10^{-5} = \frac{4 \times p^3}{27}$ $\Rightarrow p^3 = \frac{27 \times 2.9 \times 10^{-5}}{4}$ = 1.9575 $p = \sqrt[3]{1.9575} = 0.058$ 855 (c) $3A + 4B \rightleftharpoons 2C + 3D$ $\Rightarrow \qquad K_1 = \frac{[C]^2 [D]^3}{[A]^3 [B]^4}$...(i) When moles of C = 1, the equation becomes $\frac{3}{2}A + 2B \rightleftharpoons C + \frac{3}{2}D$ $K_2 = \frac{[C][D]^{3/2}}{[A]^{3/2}[B]^2}$...(ii) On comparing Eq.(i) with Eq.(ii), we get $K_2^2 = K_1$ or $K_2 = (K_1)^{1/2}$ Hence, equilibrium extent = $\frac{1}{2}$ 856 (d) $C_2H_2 + H_2 \rightleftharpoons C_2H_6$

$$K_{p} = K_{c}(RT)^{\Delta n}$$

$$\Delta n = 1 - 2 = -1$$

$$K_{p} = K_{c}(RT)^{-1}$$
857 (d)
Meq. of HCl = 75 × $\frac{1}{5}$ = 15
Meq. of NaOH = 25 × $\frac{1}{5}$ = 5
 \therefore Meq. of HCl left = 15 - 5 = 10
Now [HCl]left = $\frac{10}{100}$ = 10⁻¹
 \therefore pH = 1
858 (b)
A Lewis acid is a substance, which can accept
a pair of electrons, *e.g.*, H₃O⁺.
860 (a)
 $K_{c} = \frac{[NO_{2}]^{2}}{[NO]^{2}[O_{2}]} = \frac{[0.120/4]^{2}}{(\frac{0.064}{4})} = 14.06$
861 (b)
 $N_{2}(g) + O_{2}(g) \rightleftharpoons 2NO(g)$
 $K_{c} = 0.1, K_{p} = K_{c}(RT)^{\Delta n}$
 Δn = Number of gaseous product - Number
of gaseous reactants
 $\Delta n = 2 - 2 = 0$
 $\Delta n = 0$
 \therefore $K_{p} = K_{c} = 0.1$
862 (c)
For the reaction,
 $P_{4}(s) + 6Cl_{2}(g) \rightleftharpoons 4PCl_{3}(g)$
At $t=0$ 1 1 0
At eq. $(1 - x) (1 - 6x)$ 4*x*
As $(1 - x) > (1 - 6x)$
Hence, at equilibrium $[P_{4}] > [Cl_{2}]$
865 (c)
Dissociation of acetic acid increases as,
 $CH_{3}COOH + NaOH \rightarrow CH_{3}COONa + H_{2}O$
866 (d)
The reaction in which number of moles of
reactants= number of moles of products are
not effected by change in pressure or volume.
 $H_{2}(g) + I_{2}(g) \rightleftharpoons 2HI(g)$
 \therefore Number of moles of reactant = number of
moles of products
 $2=2$
 \therefore This reaction is not effected by change in
pressure or volume.
867 (d)
AgCl $\rightleftharpoons Ag^{+} + Cl^{-}$

 $K_{sp} = [\mathrm{Ag}^+][\mathrm{Cl}^-] = s^2$ $s = \sqrt{K_{sp}} = 1.1 \times 10^{-10} = 10^{-5}$ Similarly *s* for AgI is 10^{-8} , s for PbCrO₄ is 2 $\times 10^{-7}$ and s for Ag₂CO₃ is 1.26 $\times 10^{-4}$. Most soluble $-Ag_2CO_3$, least soluble AgI 868 (d) Given, concentration of NaOH = 10^{-10} M NaOH $\rightarrow Na^+$ $+ 0H^{-}$ 10⁻¹⁰ 10⁻¹⁰ 10⁻¹⁰ \therefore [OH⁻]from NaOH = 10⁻¹⁰ Total $[OH^{-}] = 10^{-7} + 10^{-10}$ *.*. $= 10^{-7}(1 + 0.001)$ $= 10^{-7} \left(\frac{1001}{1000} \right)$ $= 10^{-10} \times 1001$ $pOH = -\log[OH^{-}]$ $= -\log(1001 \times 10^{-10})$ = -3.004 + 10= 6.9996pH + pOH = 14 $\cdot \cdot$ pH = 14 - 6.9996:. =7.0004=7870 (b) $K_H = \frac{K_w}{K_h} = \frac{10^{-14}}{1.77 \times 10^{-5}} = 5.65 \times 10^{-10}$ 871 (d) 1M solution of strong acid must have pH = 1. Since, pH = 5 which is possible only when acid is weak $[H^+] = c \cdot \alpha$. 872 (b) $K_{sp} = s^2$ $\therefore s = 1.0 \times 10^{-4} m/l$ $= 1.0 \times 10^{-4} \times 283 \times \frac{100}{1000} \text{mL}$ $= 28.3 \times 10^{-2} \text{ g}/100 \text{mL}$ 873 (d) For basic buffer, $pOH = pK_b + \log \frac{[salt]}{[base]}$ Given, [salt]=[base]=1 $K_b = 2 \times 10^{-5}$ $pOH = pK_b = -\log(2 \times 10^{-5})$:. $= 5 - \log 2$ = 5 - 0.30 = 4.70pH = 14 - pOH= 14 - 4.70 = 9.30

874 (c) NH₄Cl being a strong electrolyte, dissociates as $NH_4Cl \rightarrow NH_4^+ + Cl^$ and NH₄OH as, $NH_4OH \rightleftharpoons NH_4^+ + OH^$ weak electrolyte common ion Due to the presence of common ion, the degree of dissociation of NH₄OH decreases. Thus, less OH⁻ ions are produced which are sufficient only for the precipitation of hydroxides if III group radicals and not of higher group radicals. 875 (c) Let molar solubility of $Cr(OH)_3 = s \mod L^{-1}$ $Cr(OH)_3(s) \rightleftharpoons Cr^{3+}(aq) + 3OH^{-}(aq)$ $K_{sp} = 1.6 \times 10^{-30} = [Cr^{3+}][OH^{-}]^{3}$ $= (s)(3s)^3 = 27s^4$ $\therefore \qquad s^4 = \frac{1.6 \times 10^{-30}}{27}$ $\therefore \qquad s = \sqrt[4]{\frac{1.6 \times 10^{-30}}{27}}$ 876 (a) $\Delta G^0 = -2.303 RT \log K$ $-4.606 \times 10^3 = -2.303 \times 2 \times 500 \log K$ $\therefore K = 100$ 877 (b) $2A(g) \rightleftharpoons 3C(g) + D(s)$ For this reaction, $\Delta n_{
m g}=3-2=1$ \therefore $K_p = K_c (RT)^1$ $K_c = \frac{K_p}{RT}$ or 878 (a) $BaCl_2 + Na_2SO_4 \rightarrow BaSO_4 \downarrow + 2NaCl$ 879 (d) CCl₄ is not a Lewis or Bronsted acid as it does not contain H⁺ and has complete ocetet 880 (a) Given, $NO_2 \rightleftharpoons \frac{1}{2}N_2 + O_2$, K_1 ...(i) $N_2O_4 \rightleftharpoons 2NO_2$, K_2 ...(ii) **Required reaction** $N_2 + 2O_2 \rightleftharpoons N_2O_4$, Κ ...(iii) By squaring Eq. (i) we get, K_1^2 $2NO_2 \rightleftharpoons N_2 + 2O_2$

...(iv)

Now, Eq (iii) is obtained by inverting Eq. (ii) and Eq. (iv) and by adding them as.

$$N_{2} + 2O_{2} \rightleftharpoons 2NO_{2}, \qquad \frac{1}{K_{1}^{2}}$$
$$2NO_{2} \rightleftharpoons N_{2}O_{4}, \qquad \frac{1}{K_{2}}$$
$$N_{2} + 2O_{2} \rightleftharpoons N_{2}O_{4}, \qquad \frac{1}{K_{1}^{2}} + \frac{1}{K_{2}}$$

881 **(b)**

$$C_1 \alpha_1^2 = C_2 \alpha_2^2$$

$$0.1 \times 1^2 = 0.025 \times \alpha_2^2$$

$$\alpha_2^2 = 4$$

$$\alpha = 2$$

882 (d)

 Δn may be zero, positive or negative integers or fractional depending upon nature of reaction. Δn = No. of mole of products – No. of mole of reactants.

883 **(b)**

$$H^- + H^+ \rightarrow H_2$$

Base Conjugate acid

884 **(d)**

Common ion effect is noticed only for weak electrolyte dissociation H_2SO_4 is strong electrolyte.

885 **(b)**

Acids liberate CO₂ from bicarbonates.

886 **(c)**

 1×10^{-8} M HCl solution $\rm H_2O$ is also present there which also undergoes self ionisation.

$$H_2 0 \rightleftharpoons H^+ + 0H^-$$
$$10^{-7} \text{ M at } 25^{\circ}\text{C}$$

If it is taken simply even without common ion effect, higher concentration must be considered which is 10^{-7} M but H⁺ from HCl decreases self ionisation which further decreases self ionisation, hence

 $[H^+]$ from H₂O.

Hence, net concentration must be smaller than 10^{-7} M.

887 **(b)**

Number of moles of PCl_5 dissociated at equilibrium = $2 \times 40/100 = 0.8$

$$PCl_{5} \rightleftharpoons PCl_{3} + Cl_{2}$$
(Initial)2 0 0
(At equilibrium) (2-0.8) mol 0.8 mol 0.8

mol

$$[PCl_{5}] = \frac{1.2}{2} = 0.6 \text{ ML}^{-1}$$

$$[PCl_{3}] = [Cl_{2}] = \frac{0.8}{2} = 0.4 \text{ ML}^{-1}$$

$$\therefore \quad K_{c} = \frac{[PCl_{3}][Cl_{2}]}{[PCl_{5}]} = \frac{0.4 \times 0.4}{0.6}$$

$$= 0.267 \text{ mol/dm}^{3}$$

888 (c)

In liquid \Rightarrow vapour, equilibrium the rate at which molecules escape from the liquid surface to gaseous phase equals to rate at which molecules in the gas phase strike the surface and becomes the part of liquid. Hence, the molecules in the two phases have equal kinetic energy.

889 (b)

$$[\mathrm{HI}] = \frac{12.8}{128 \times 3} = 0.033M$$

890 (b)

NH₄Cl salt gives an acidic solution in water $NH_4Cl \rightleftharpoons NH_4^+$ $+ Cl^{-}$ $H_2O + H_2O = OH^- + H_2O^ HCl + H_2O$ NH₄OH weakly ionised strongly ionised

891 (d)

 $\Delta n = 1$ for this change; Unit of $K_p = (atm)^{\Delta n}$; Unit of $K_c = (\text{mol litre}^{-1})^{\Delta n}$

892 (a)

As₂S₃ ≈ 2As³⁺ + 3S²⁻
^{5 mol/L} ^{2s} ^{3s}

$$K_{sp} = [As^{3+}]^2[S^{2-}]^3$$

 $= (2s)^2(3s)^3$
 $= 108s^5$
 \therefore $s = \sqrt[5]{\frac{K_{sp}}{108}}$ or $\left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}}$
 $= \sqrt[5]{\frac{2.8 \times 10^{-72}}{108}}$
 $= \sqrt[5]{25.93 \times 10^{-75}}$
 $= 1.92 \times 10^{-15} \text{ mol/L}$
B (c)

893

$K_{\rm H} = \frac{[\mathrm{H}]}{2}$	$\frac{[CO_3][H_3O^+]}{[CO_2]};$
$n_p =$	[CO ₂] '
Given,	$K_p = 3.8 \times 10^{-7}$
and	$[H_3O^+] = 10^{-6}$
	$\frac{[\text{HCO}_3^-]}{[\text{CO}_2]} = \frac{3.8 \times 10^{-7}}{10^{-6}} = 3.8 \times 10^{-1}$
	$[CO_2]$ 10^{-6} -5.0×10

894 (a)

Blood buffer controls the pH change by acidic components present metabolically.

895 (d) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ 2 3 : Before reaction (1-x)(2-3x)(3+2x) : After reaction x mole of N₂will react with 3x mole of H₂ to give 2x mole of NH₃. Notice the stoichiometry of change. 896 (a) K_p is independent of pressure. 897 (a) Methyl orange is good indicator in the range of pH 3 to 4. Actually working range of good indicator can be derived as, $MeOH \rightleftharpoons Me^+ + OH^ K_b = \frac{[Me^+][OH^-]}{[MeOH]}$; Taking logarithm $\log K_b = \log \frac{[\text{Me}^+]}{[\text{MeOH}]} + \log \text{OH}^$ or $pK_b = \log \frac{[MeOH]}{[Me^+]} + \log pOH$ The indicator is more effective when $\frac{[\text{MeOH}]}{[\text{Me}^+]} \text{ or } \frac{[\text{Me}^+]}{[\text{MeOH}]} = 1$ Thus, $pOH = pK_b$; Thus, working range is $pOH \pm 1.$ 898 (c) $\Delta n = 1 - 1 - \frac{1}{2} = -\frac{1}{2}$ $\therefore K_p = K_c (RT)^{-1/2}$ 899 (d) Find solubility by $4s^3 = K_{sp}$ for Ag₂S and $s^2 = K_{sp}$ for CuS and HgS. 900 (a) $pH = -\log[H^+]$ $[\mathrm{H^+}] = 0.0001 = 1 \times 10^{-4}$ $pH = -\log [1 \times 10^{-4}] = 4$ 901 (c) $N H_2 SO_4 = 0.05 \times 2 = 0.1$: $[H^+] = 0.1$ and pH = 1. 902 (d) Phenolphthalein exists as HPh, *i. e.*, undissociated molecule in acid medium and thus, shown no colour. 903 (c) $[H^+] = 1.5 \times 10^{-2}$ $\therefore [OH^{-}] = \frac{10^{-14}}{15 \times 10^{-2}} = 6.7 \times 10^{-13} M.$

914 (a) 904 (b) $K_c = \frac{[\text{product}]}{[\text{reactant}]}$ For equation $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$, the value of $K_c >> 1$ if $\Delta n = 2 - (1 + 1) = 0$ \Rightarrow [product]>>[reactant] Hence, by using formulae $K_n = K_c (RT)^{\Delta n}$ \Rightarrow Reaction favoured more towards forward. $K_p = K_c (RT)^0$ 905 (a) $K_n = K_c$ $Q = \frac{[C]^3}{[A][B]} = \frac{(4/2)^3}{(1/2)(2/2)} = 16;$ 915 (b) Solubility = $\sqrt[5]{\frac{K_{sp}}{108}} = \sqrt[5]{\frac{10^{-70}}{108}} = 9.8 \times 10^{-13}$ Given, $K_c = 20$; Thus, to have $Q = K_c$; The concentration of *C* must increase, i.e., $=\sqrt{7 \times 10^{-16}} = 2.64 \times 10^{-8}$ reaction should proceed from left to right $=\sqrt{K_{sp}} = \sqrt{8 \times 10^{-37}} = 8.94 \times 10^{-19}$ 906 (b) $= \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{6 \times 10^{-51}}{4}} = 1.1 \times 10^{-17}$ $pH = pK_a$ if [Conjugate base] = [Acid]. 907 (b) An increase in temperature favours endothermic 916 (a) reaction. 908 (a) Equilibrium constant for the reaction, Lewis acids are those species which can $SO_2(g) + \frac{1}{2}O_2 \rightleftharpoons SO_3(g)$ accept a lone pair of electron. $K_c = \frac{1}{4.9 \times 10^{-2}}$ BF₃, AlCl₃, SnCl₄, FeCl₃ etc. are Lewis acids. and for $2SO_2 + O_2 \rightleftharpoons 2SO_3(g)$ NCl₃ and ROR are Lewis bases. HCl is acid $K_{c} = \left(\frac{1}{4.9 \times 10^{-2}}\right)^{2}$ according to the concept of Arrhenius and Bronsted-Lowry. $=\frac{10^4}{(4.9)^2}=416.49$ 909 (c) $pH = 4 \therefore [H^+]_I = 10^{-4}$ 917 (c) $pH = 5 \therefore [H^+]_{II} = 10^{-5} \therefore [H^+]_{II} = [H^+]_I \times 10^{-1}.$ $pK_a = -\log K_a = \log \frac{1}{K_a}$ 910 (d) 918 (a) Each acid has P of +5 oxidation state as in P₂O₅. $AB \rightleftharpoons A + B$ 911 (b) $K = \frac{[A][B]}{[AB]}$ $AgIO_3(s) \rightleftharpoons Ag^+(aq) + IO_3^-(aq)$ Let solubility of $AgIO_3$ be S If concentration of A is doubled, the equilibrium $K_{\rm sp} = [\rm Ag^+][\rm IO_3^-]$ concentration of B becomes half $1.0 \times 10^{-8} = S^2$ or $S = 1 \times 10^{-4} \text{ mol/L}$ 919 **(b)** In 1000 mL of mol of $AgIO_3$ dissolved = Degree of dissociation=0.4 1×10^{-4} mol \Rightarrow PCl₃ + Cl₂ PCl₅ In 100 mL of mol of $AgIO_3$ dissolved = a(1-x)ax ax 1×10^{-5} mol a = 2, x = 0.4, V = 2Mass of AgIO₃ in 100 mL = $1 \times 10^{-5} \times 283$ $[PCl_5] = \frac{2(1-0.4)}{2} = 0.6 \text{ mol/L}$ $= 2.83 \times 10^{-3}$ $[PCl_3] = \frac{2 \times 0.4}{2} = 0.4 \text{ mol/L}$ 912 (a) $[Cl_2] = \frac{2 \times 0.4}{2} = 0.4 \text{ mol/L}$ H₃BO₃ accepts OH⁻ ions to act as weak monobasic Lewis acid. $K_c = \frac{[\mathrm{PCl}_3][\mathrm{Cl}_2]}{[\mathrm{PCl}_5]}$:. $H_3BO_3 + H_2O \rightarrow B(OH)_4^- + H^+; K_a = 10^{-9}$ 913 (d) $=\frac{0.4\times0.4}{0.6}=0.267$ e.g., BCl₃ is a Lewis acid as it accepts lone pair of 920 (a) electron but not Lowry-Bronsted acid as it cannot An increase in temperature favours endothermic furnish H_3O^+ in solution.

reaction, however, in case of NaOH it is an exception and solubility of NaOH increase in temperature.

921 (a)

 $\Delta n = 0$

922 (a)

 $\mathrm{HSO}_4^- \rightarrow \mathrm{H}^+ + \mathrm{SO}_4^{2-}$

923 (c)

An increase in the concentration of products always brings in backward reaction.

924 **(b)**

For Na X

$$X_{1-h}^{-} + H_2 0 \rightleftharpoons H_{h}^{-} + O_{h}^{-}$$

 $\therefore h = \sqrt{\frac{K_H}{c}} = \sqrt{\frac{K_w}{K_a \cdot c}} = \sqrt{\frac{10^{-14}}{10^{-5} \times 0.1}}$
 $= \sqrt{10^{-8}} = 10^{-4}$
 $\therefore \% h = 10^{-4} \times 100 = 10^{-2} = 0.01$

925 (a)

$$\Delta n = 2 + 1 - 2 = +1 \quad \therefore K_p = K_c (RT)^1$$

$$\therefore K_p > K_c$$

926 **(b)**

A basic salt has one or more replaceable OH in it. 927 **(b)**

$$K_a = C\alpha^2 = 0.1 \times (1.34 \times 10^{-2})^2 = 1.79 \times 10^{-5}$$

928 **(b)**

HCl is a strong acid and its conjugate base is a very weak base Cl⁻

929 **(c)**

2.303 log₁₀ K = $-\frac{\Delta G^{\circ}}{RT}$ 2.303 log₁₀ K = $\frac{-\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$

 $CaSO_4 \rightarrow [Ca^{2+}][SO_4^{2-}]$

930 **(b)**

The compound which is having least solubility will be precipitated first. BaSO₄ : Given, $K_{sp} = 10^{-11}$ Let the solubility = $x \mod L$ $BaSO_4 \rightarrow Ba^2 + SO_4^{2-}$ $K_{\rm sn} = [{\rm Ba}^{2+}][{\rm SO}_4^{2-}]$... $K_{\rm sp} = x \times x$ or $K_{\rm sp} = x^2$... $x = \sqrt{K_{\rm sp}}$ or $=\sqrt{10^{-11}}$ $= 3.16 \times 10^{-6} \text{ mol/L}$ $CaSO_3$: Given, $K_{sp} = 10^{-6}$ Let the solubility = $x \mod L$

 $K_{\rm sp} = [{\rm Ca}^{2+}][{\rm So}_4^{2-}]$... $K_{\rm sn} = x \times x$ or $K_{\rm sn} = x^2$:. $x = \sqrt{K_{sp}}$ or $=\sqrt{10^{-6}}$ $= 1 \times 10^{-3} \text{ mol/L}$ AgSO₄ : Given, $K_{\rm sp} = 10^{-5}$ Let the solubility = $x \mod L$ $Ag_2SO_4 \rightarrow 2Ag^+ + SO_4^{2-}$ 2*x* $K_{\rm sp} = [{\rm Ag}^+]^2 [{\rm SO}_4^{2-}]$:. $= (2x)^2(x)$ or $K_{\rm sp} = 4x^3$ or $x = \frac{\sqrt[3]{K_{\rm sp}}}{4}$ or $=\frac{\sqrt{10^{-5}}}{4}$ $= 10^{-2} \text{ mol/L}$: BaSO₄ has least solubility. ∴ It will precipitated first. 931 (b) K_{C_1} for $H_2 + I_2 \rightleftharpoons 2HI$ is 50 K_{C_2} for 2HI \rightleftharpoons H₂ + I₂ $K_{C_1} = \frac{[\mathrm{HI}]^2}{[\mathrm{H}_2][\mathrm{I}_2]}$...(i) $K_{C_2} = \frac{[H_2][I_2]}{[HI]^2}$...(ii) On reversing Eq.(i) $\frac{1}{K_{c_1}} = \frac{[H_2][I_2]}{[HI]^2} \qquad ...(iii)$ From Eqs. (ii) and (iii) $K_{c_2} + \frac{1}{K_{c_2}} = \frac{1}{50} = 0.02$ 932 (b) A reaction which is in equilibrium, will shift in reverse or backward direction when we increase the concentration of one or more products (from Le-Chatelier'sprinciple)

933 **(d)**

 N_2O_5 and HNO_3 both have ox.no. of N = +5.

934 **(a)**

Fusion of solid is an endothermic process, so addition of heat is favoured for the forward reaction (solid to melt), the amount of solid become decrease.

935 **(a)**

```
Conjugate base is formed by loss of H<sup>+</sup>.

OH^- \rightarrow O^{2-} + H^+

Conjugate base
```

 0^{2-} is the conjugate base of OH⁻.

936 (b) $Al(OH)_3 \rightleftharpoons Al_s^{3+} + 3OH_{3s}^{3+}$ $\therefore K_{sp} = [Al^{3^+}][OH^-]^3 = s \times (3s)^3 = 27s^4$

937 (b)

HCl is strong acid. In its 0.1 M solution, $[H^+] = 0.1$ M and hence, pH = 1 NH₄Cl(aq) hydrolysis in solution and give acidic solution 944 (b) which is less than 0.1 M HCl. NaCl is not hydrolysed in aqueous solutions. Its pH=7. NaCN undergoes hydrolysis in solution to give alkaline solution. So, the pH increases in the order

 $HCl < NH_4Cl < NaCl < NaCN$

938 (a)

 $\Delta G = 0$; at equilibrium

939 (b)

 $K_a = \frac{[\mathrm{H}^+] [\mathrm{CN}^-]}{[\mathrm{HCN}]};$

An increase in $[CN^{-}]$ will decrease $[H^{+}]$ to maintain K_a constant.

940 (d)

The solubility product (*K*_{sp}) of a sparingly soluble salt at a given temperature may be defined as the product of the molar concentrations of its ions each raised to the power equal to its number of ions present in the equation representing the dissociation of one molecule of the salt.

 $Fe(OH)_3 \rightleftharpoons Fe^{3+} + 3OH^ K_{\rm sp} = [Fe^{3+}][OH^-]^3$ $K_{\rm sp} = X(3X)^3 = 27X^4$

941 (d)

...

Baking soda (NaHCO₃) has one replaceable H. 942 **(b)**

 $Na_2CO_3 + H_2O \rightarrow 2NaOH + H_2CO_3$

∵ NaOH is strong base.

$$\therefore$$
 It will be more ionised and number of

Na⁺ and OH⁻ ions will be more.

 $:: H_2CO_3$ is weak acid.

: It will be less ionised and number of

 H^+ and CO_3^{2-} will be less.

: The solution will have more hydroxide ions than carbonate ions.

Milli equivalent of H^+ from $HCl = 10 \times 0.1 = 1$ Milli equivalent of H⁺ from $H_2SO_4 = 40 \times 0.2 \times$ 2 = 16Total Meq. of H^+ in solution = 1 + 16 = 17 $\therefore [\mathrm{H}^+] = \frac{17}{50} = 3.4 \times 10^{-1} \quad \left(: [\mathrm{H}^+] = \frac{\mathrm{Meq.}}{V_{\mathrm{in mI}}}\right)$: $pH = -\log[H^+] = -\log 0.34$ pH = 0.4685.

Before attaining the equilibrium, the rate of forward reaction decreases due to decrease in concentration of reactant with time and the rate of backward reaction increases due to increase in concentration of products with time.

945 (a)

NaCN + HCl is not a buffer but if HCl is in less amount then, it gives a buffer as it produces HCN.

Mole added Mole after reactio

$$\underset{\substack{0.01\\(0.01-\alpha)}}{\text{NaCl}} + \underset{\alpha}{\text{HCl}} \rightarrow \underset{\alpha}{\text{NaCl}} + \underset{\alpha}{\text{HCN}}$$

This is buffer of HCN + NaCN. Let *a* mole of HCl be used for this purpose

∴ pH =
$$-\log K_a + \log \frac{0.01 - a}{a}$$

 $8.5 = -\log 4.1 \times 10^{-10} + \log \frac{0.01 - a}{a}$
∴ $a = 8.85 \times 10^{-3}$ mole of HCl.

946 (b)

Quotient $Q = \frac{[C]^3}{[A][B]} = \frac{4^3 \times 3 \times 3}{3^3 \times 1 \times 2} = 10.66$ $\left[[C] = \frac{4}{3}; [A] = \frac{1}{3}; [B] = \frac{2}{3} \right]$

Since, $K_c = 10$, Thus, Q must decrease to attain value of K_c and therefore, [C] must decrease or [*A*] or [*B*] must increase, i.e., backward direction.

CH₃COO⁻ + H₂O ≈ CH₃COOH + OH⁻
∴ [OH⁻] =
$$c \cdot h = c \sqrt{\left[\frac{K_h}{c}\right]}$$

$$= \sqrt{\left[\frac{K_w}{K_a} \cdot c\right]}$$

$$= \sqrt{\frac{10^{-14} \times 1}{1.8 \times 10^{-5}}} = 2.35 \times 10^{-5}$$
∴ pOH = 4.6289
∴ pH = 9.3710

A very high value of *K* for the given equilibrium shows that dissociation of glucose to form HCHO is very-very small.

Hence, at equilibrium, we can take, $[C_6H_{12}O_6] = 1 M$ $K = \frac{[C_6H_{12}O_6]}{[HCHO]^6}$, $i.e., 6 \times 10^{22} = \frac{1}{[HCHO]^6}$ or [HCHO] = $\left(\frac{1}{6 \times 10^{22}}\right)^{1/6} = 1.6 \times 10^{-4} \text{ M}$ 949 (c) Polyprotic acids furnishes more than one H⁺ ion in solution. 950 (a) $Sb_2S_3 \rightleftharpoons 2Sb^{3+} + 3S^{2-}$ s mol/L 2s Solubility product $(K_{sp}) = [Sb^{3+}]^2 [S^{2-}]^3$ $= (2s)^2(3s)^3 =$ $108s^{5}$ $= 108 \times$ $(1.0 \times 10^{-5})^5 = 108 \times 10^{-25}$ 951 (d) $10^{-3}N$ KOH will give $[OH^{-}] = 10^{-3}$ pOH = 3*.*.. pH + pOH = 14Also, pH = 11.:. 952 (d) HSO_4^- can accept a proton (forms H_2SO_4) or can donate a proton (forms SO_4^{2-}). 953 (b) $HA + H_20 \rightleftharpoons H_30^+ + A^ K = \frac{[H_3O^+][A^-]}{[H_A][H_aO]}$ 954 (d) The minimum temperature at which the combination of N_2 and H_2 occurs at measurable rate is 500°C in Haber's process. No doubt if temperature is raised up, above 500°C, it will favour backward reaction, because the reaction is exothermic. 955 (a)

$$CO_{2} + H_{2} \rightleftharpoons H_{2}O + CO$$

$$(1-x) \quad (1-x) \quad 0 \quad 0$$

$$\therefore K_{c} = \frac{x^{2}}{(1-x)^{2}}$$

$$Or \frac{x}{1-x} = \sqrt{K_{c}} = \sqrt{1.8};$$

$$\therefore \frac{x}{1-x} = 1.34,$$

$$\therefore x = 0.573 M.$$

956 (c)

The equilibrium constant does not change when concentration of reactant is changed as the concentration of product also get changed accordingly.

957 (a)

(i)BF₃ and BCl₃ are better Lewis acid than BMe₃ and B₂H₆ due to -I-effect of Cl and F. (ii)Between BCl₃ and BF₃, BCl₃ is better Lewis acid due to lesser extent of $p\pi - p\pi$ back bonding in it.

958 **(c)**

Potassium ferrocyanide is a complex salt because in it ferrocyanide $[Fe(CN)_6]^{4-}$ is the complex ion. It does not give test for ferric and cyanide ions.

959 **(b)**

At 25°C;
$$[H^+] = 10^{-7} \therefore K_{w_1} = 10^{-14}$$

At 35°C; $[H^+] = 10^{-6} \therefore K_{w_2} = 10^{-12}$
 $\therefore 2.303 \log \frac{K_{w_2}}{K_{w_1}} = \frac{\Delta H}{R} \left[\frac{T_2 - T_1}{T_1 \times T_2} \right]$
 $2.303 \log \frac{10^{-12}}{10^{-14}} = \frac{\Delta H}{2} \left[\frac{10}{298 \times 308} \right]$
 $\therefore \Delta H = 84551.4 \text{ cal/mol}$
Thus, $H_2O = H^+ + OH^-; \Delta H =$
 84.551 kcal/mol
 $\therefore H^+ + OH^- = H_2O; \Delta H =$
 -84.551 kcal/mol .

960 **(b)**

Lesser is the pH, more is acidic nature.

961 **(b)**

Strong electrolyte are 100% ionised in solution state and thus number of ions present in solution becomes constant at normal dilution. On further increasing dilution, the mobility of ion increase due to relaxation and electrophoretic effect.

962 (c)

$$K_{1} = \frac{|XeOF_{4}|[HF]^{2}}{|XeF_{6}][H_{2}O]} \qquad ..$$
(i)

$$K_{2} = \frac{|XeOF_{4}|[XeO_{3}F_{2}]}{|XeO_{4}|[XeF_{6}]} \qquad ..$$
(ii)
By Eq.(ii)/(i) we have $\frac{K_{2}}{K_{1}} = \frac{|XeO_{3}F_{2}][H_{2}O]}{|XeO_{4}|[HF]^{2}} = K_{c}$
963 (d)

$$K_{sp} \quad \text{of} \quad CaF_{2} = 4s^{3} = 4 \times (2 \times 10^{-4})^{3} = 32 \times 10^{-12}.$$
964 (a)

$$2.303 \log \frac{K_{p2}}{K_{p1}} = \frac{\Delta H}{R} \frac{[T_{2} - T_{1}]}{T_{1}T_{2}}$$
Thus, if $K_{P2} > K_{P1}$; $T_{2} > T_{1}$, then $\Delta H = +ve$
965 (b)

$$4NH_{3} + 5O_{2} \rightleftharpoons 4NO + 6H_{2}O$$

 $K_{c} = \frac{[\text{NO}]^{2}[\text{H}_{2}\text{O}]^{6}}{[\text{NH}_{3}]^{4}[\text{O}_{2}]^{5}}$ Hence, units of $K_c = \text{Conc}^{+1}$. 966 (a) H_2 I_2 2HI \rightleftharpoons 2 mol Initially 1 mol 2 mol At equili 0.2 mol 2-0.8 2 0.8 1.2 mol 1.6 mol Amount of H_2 (and hence I_2) consumed 1 - 0.20.8 967 (c) Ionic product \propto temperature So, if the temperature is decreased, the value of ionic product will definitely be less than before. 968 (b) CH_3NH_2 (base) on reaction with HCl (acid) to give a salt of weak base and strong acid as CH₃NH₃⁺Cl⁻ $CH_3NH_2 + HCl \rightarrow CH_3NH_3^+Cl^-$ At=00.1 mol 0.8 mol 0.08 mol After reaction (0.1 - 0.08)=0.02 mol So, it acts as basic buffer solution due to presence of base and salt in solution of 1 L. $pOH = -\log_{10} K_b + \log_{10} \frac{[salt]}{[base]}$ $pOH = -\log_{10} K_b + \log_{10} \frac{[CH_3NH_3^+CI^-]}{[CH_3NH_2]}$ $= -\log_{10} 5 \times 10^{-4} + \log_{10} \frac{[0.08]}{[0.02]}$ $= -\log_{10} 5 + 4\log_{10} 10 +$ $\log_{10} \frac{[0.08]}{[0.02]}$ = -0.699 + 4 + 0.602 = 3.903pH = 14 - pOH= 14 - 3.903 $= 10.097 = -\log_{10}[H^+]$ $[H^+] = 8.0 \times 10^{-11}$:. 969 (a) H₃BO₃ accepts OH⁻ to form its conjugate base $B(OH)_{4}^{-}$, $H_3BO_3 + H_2O \rightleftharpoons B(OH)_4^- + H^+$ 970 (d) $\Delta n = 1 - 2 = -1$ \therefore $K_p = K_c (RT)^{\Delta n}$ $K_p = K_c (RT)^{-1}$ 971 (a) $\frac{1}{2}$ N₂ + $\frac{3}{2}$ H₂ \rightleftharpoons NH₃

$$\left(1 - \frac{20}{100}\right) \left(3 - \frac{3 \times 20}{100}\right) \left(\frac{20 \times 2}{100}\right) \text{ mole at eq.}$$

$$K_c = \frac{[\text{NH}_3]}{[\text{N}_2]^{1/2}[\text{H}_2]^{3/2}} = \frac{[20 \times 2/(100 \times 3)]}{\left[\frac{80}{100 \times 3}\right]^{1/2} \left[\frac{240}{100 \times 3}\right]^{3/2}}$$

$$= 0.36 \text{ L mol}^{-1}$$

972 (a)

An irreversible reaction is one in which either of the product is separated out as solid or escapes out as gas.

973 **(a)**

The value of equilibrium constant remains constant for a given reaction of constant temperature.

974 **(b)**

Gaseous HCl does not give H⁺ but liquid HCl givesH⁺ in aqueous solution, therefore gaseous HClis not an Arrhenius acid due to covalent bonding in gaseous condition

975 **(d)**

Buffer solution consists of weak acid and its salt with strong base. And a basic buffer solution is a mixture of weak base and its salt with strong acid.

976 **(a)**

 $pK_a \propto \frac{1}{K_a}$

F

Stronger the acid, higher the K_a value and lower the p K_a value.

The order of acidity of given acids is as $CH_3CHCOOH > CH_3CHCOOH$ $>FCH_2CH_2COOH > CH_3CH_2COOH$

Since, CH₃CH₂COOH is the weakest acid

among the given, its pK_a value will be highest. 977 (a)

Br

PCl₅ \Rightarrow PCl₃ + Cl₂ 0 0 0 initially $\frac{2 \times 60}{100} \frac{2 \times 40}{100} \frac{2 \times 40}{100}$ at equilibrium Volume of container = 2L $K_c = \frac{\frac{2 \times 40}{100 \times 2} \times \frac{2 \times 40}{100 \times 2}}{\frac{2 \times 60}{100 \times 2}} = 0.266$ 979 (a)

According to law of mass action

$$K_c = \frac{[\text{NO}_2]^2}{[\text{N}_2\text{O}_4]} = \frac{[1.2 \times 10^{-2}]^2}{4.8 \times 10^{-2}} = 0.3 \times 10^{-2} = 3 \times 10^{-3} \text{ mol/L}$$

981 (d)

Lewis acid have a tendency to accept electrons while Bronsted acids have a tendency to donate proton. \rightarrow H⁺ + Cl⁻ (A)HCl Bronsted acid \rightarrow H⁺ + HSO₄⁻ $(B)H_2SO_4$ Bronsted acid \rightarrow H⁺ + SO₃²⁻ $(C)HSO_{3}^{-}$ Bronsted acid (D) $SO_3 + O^2 - SO_4^2 - SO_4^2$ Lewis acid 982 (d) Heat will be used to melt ice. 983 (a) In an acidic solution $[H^+] > 10^{-7}$ pH is less than 7. In an alkaline solution $[H^+] < 10^{-7}$, pH is greater than 7. 984 (b) $H_2SO_4(acid) \xrightarrow{-H^+} HSO_4^-(Conjugate base).$ 985 (b) Given, $[H_2] = 8.0 \text{ mol/L}$ $[I_2] = 3.0 \text{ mol/L}$ [HI] = 28 mol/LK = ? $H_2 + I_2 \rightleftharpoons 2HI$ $\therefore \qquad K = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = \frac{(28)^2}{(8) \times (3)}$ $=\frac{\frac{28\times28}{24}}{24}$ = 32.66986 (a) $[\mathrm{H}^+] = c\alpha = \sqrt[c]{\left[\frac{K_a}{c}\right]} = \sqrt{K_a c} = \sqrt{5 \times 10^{-8} \times 0.1}$ $= 7.07 \times 10^{-5} M$ 987 (d) $K_c = \frac{x^2}{4(1-x)^2};$ If, x = 0.5 $K_c = \frac{0.5 \times 0.5}{4 \times (0.5)^2} = \frac{1}{4} = 0.25$ 988 (b) CH₃COOH is weak acid and thus, partially ionised, $CH_3COOH + H_2O \rightleftharpoons H_3O^+ + CH_3COO^-.$ 989 (a)

 $N_2(g) + 3H_2(g) \rightleftharpoons 3NH_3(g) + 92.3 \text{ kJ}$ According to Le-Chatelier's principle, the favourable conditions for the reaction are 1.Low temperature (as the reaction is exothermic) 2. High pressure (volume is decreasing) 3.Constant removal of ammonia gas as it is formed. 990 (b) An efflorescent salt is one that loses H_2O to atmosphere. For the reaction, $CuSO_4.5H_2O(s) \rightleftharpoons CuSO_4.3H_2O(s) + 2H_2O(v)$ $K_p = (P'_{H_2O})^2 = 1.086 \times 10^{-4}$ $P'_{\rm H_2O} = 1.042 \times 10^{-2} \, \rm{atm} = 7.92 \, \rm{mm}$: If $P'_{\rm H_2O}$ AT 25°C < 7.92 mm only then, reaction will proceed in forward direction. 991 (c) Acid $\xrightarrow{-H^+}$ conjugate base; Base $\xrightarrow{+H^+}$ conjugate acid. 992 (d) $[\mathrm{H}^+] = c \cdot \alpha = \sqrt[c]{\left[\frac{K_a}{c}\right]} = \sqrt{K_a c}$ 993 (a) Gas \rightleftharpoons Liquid; $\Delta H = -ve$; Apply Le-Chatelier's principle 994 (c) $h = \sqrt{\frac{K_h}{c}}$ where, K_h = hydrolysis constant =? h = degree of hydrolysis = 0.25% =0.25/100C = concentration = 0.5 M $\therefore \quad \frac{0.25}{100} = \sqrt{\frac{K_h}{0.5}}$ $\left(\frac{0.25}{100}\right)^2 = \frac{K_h}{0.5}$ $K_h = \frac{0.25 \times 0.25 \times 0.5}{100 \times 100}$ or :. $= 3.125 \times 10^{-6}$ 995 (c) Only CO_2 is gas at equilibrium and K_p , K_c formula does not involve solid state. 996 (d)

 $2NaNO_3 \rightleftharpoons 2NaNO_2 + O_2$

According to Le-Chatelier principle, low pressure,

high temperature and addition of $\ensuremath{\mathsf{NaNO}_3}\xspace{\mathsf{favour}}$ forward reaction

997 (b) pH of the solution A = 3 $[H^+]_A = 10^{-3} M$ pH of the solution B = 2 $[{\rm H}^+]_B = 10^{-2} {\rm M}$ $[\mathrm{H^{+}}] = 10^{-3} + 10^{-2} = 11 \times 10^{-3}$ $pH = -\log(11 \times 10^{-3}) = 3 - \log 11$ = 3 - 1.04 = 1.9998 (c) Meq. of KOH = Meq. of H_3PO_3 $0.1 \times v = 20 \times 0.1 \times 2$ (H₃PO₃ is dibasic) v = 40 mL:. 100 (a) $[H^+]$ for the solution of pH 3= 1 × 10⁻³ 0 $[H^+]$ for the solution of pH 5= 1 × 10⁻⁵ Let *V* volumes of both the solutions are added, then concentration of H⁺ in final

mixture

 $= \frac{1 \times 10^{-3} \times V + 1 \times 10^{-5} \times V}{V + V}$ = $\frac{V(1 \times 10^{-3} + 1 \times 10^{-5})}{2V}$ = $\frac{1.01 \times 10^{-3}}{2}$ = 5.05×10^{-4} pH of resultant solution = $-\log[H^+]$ = $-\log (5.05 \times 10^{-4})$ = 3.29 ≈ 3.3

