Single Correct Answer Type

1. Which may be added to one litre of water to act as a buffer?
a) One mole of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and one mole of HCl
b) One mole of $\mathrm{NH}_{4} \mathrm{OH}$ and one mole of NaOH
c) One mole of $\mathrm{NH}_{4} \mathrm{Cl}$ and one mole of HCl
d) One mole of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and 0.5 mole of NaOH
2. An aqueous solution of 1 M NaCl and 1 M HCl is
a) not a buffer but $\mathrm{pH}<7$
b) not a buffer but $\mathrm{pH}>7$
c) a buffer with $\mathrm{pH}<7$
d) a buffer with $\mathrm{pH}>7$
3. In the following reversible reaction,
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}+Q$ cal
Most suitable condition for the higher production of SO_{3} is
a) Low temperature and high pressure
b) Low temperature and low pressure
c) High temperature and high pressure
d) High temperature and low pressure
4. Select the $\mathrm{p} K_{a}$ value of the strongest acid from the following
a) 1.0
b) 3.0
c) 2.0
d) 4.5
5. The pH of a 0.1 M solution of $\mathrm{NH}_{4} \mathrm{OH}$ (having $K_{b}=1.0 \times 10^{-5}$) is equal to
a) 10
b) 6
c) 11
d) 12
6. In the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g})$
a) $K_{p} \neq K_{c}$
b) $K_{p}=K_{c}$
c) $K_{p}>K_{c}$
d) $K_{p}<K_{c}$
7. The total number of different kind of buffers obtained during the titration of $\mathrm{H}_{3} \mathrm{PO}_{4}$ with NaOH are:
a) 3
b) 1
c) 2
d) Zero
8. Which will not affect the degree of ionisation?
a) Temperature
b) Concentration
c) Type of solvent
d) Current
9. Which of the following has highest pH ?
a) $\frac{\mathrm{M}}{4} \mathrm{KOH}$
b) $\frac{\mathrm{M}}{4} \mathrm{NaOH}$
c) $\frac{\mathrm{M}}{4} \mathrm{NH}_{4} \mathrm{OH}$
d) $\frac{\mathrm{M}}{4} \mathrm{Ca}(\mathrm{OH})_{2}$
10. Solubility product constant [$K_{s p}$] of salts of types $M X, M X_{2}$ and $M_{3} X$ at temperature ' T ' are $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$ and 2.7×10^{-15} respectively. Solubilities $\left(\mathrm{mol}, \mathrm{dm}^{-3}\right)$ of the salts at temperature ' T ' are in the order
a) $M X>M X_{2}>M_{3} X$
b) $M_{3} X>M X_{2}>M X$
c) $M X_{2}>M_{3} X>M X$
d) $M X>M_{3} X>M X_{2}$
11. Which of the following base is weakest?
a) $\mathrm{NH}_{4} \mathrm{OH} ; \quad K_{b}=1.6 \times 10^{-6}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} ; \quad K_{b}=3.8 \times 10^{-10}$
c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} ; \quad K_{b}=5.6 \times 10^{-4}$
d) $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N} ; \quad K_{b}=6.3 \times 10^{-10}$
12. One litre of water contains 10^{-7} mole H^{+}ions. Degree of ionisation of water is:
a) $1.8 \times 10^{-7} \%$
b) $1.8 \times 10^{-9} \%$
c) $3.6 \times 10^{-7} \%$
d) $3.6 \times 10^{-9} \%$
13. A precipitate is formed when
a) The ionic product is nearly equal to the solubility product
b) A solution becomes saturated
c) The ionic product exceeds the solubility product
d) The ionic product is less than solubility product
14. The precipitation is noticed when an aqueous solution of HCl is added to an aqueous solution of:
a) NaNO_{2}
b) $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
c) ZnSO_{4}
d) HgNO_{3}
15. Which of the following is not a Lewis base?
a) NH_{3}
b) $\mathrm{H}_{2} \mathrm{O}$
c) AlCl_{3}
d) None of these
16. Solubility of BaF_{2} in a solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ will be represented by the concentration term
a) $\left[\mathrm{Ba}^{2+}\right]$
b) $\left[\mathrm{F}^{-}\right]$
c) $\frac{1}{2}\left[\mathrm{~F}^{-}\right]$
d) $2\left[\mathrm{NO}_{3}^{-}\right]$
17. Which of the following is a buffer?
a) $\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{NaOH}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
c) $\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}$
d) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NaOH}$
18. For the following three reactions I, II and III, equilibrium constants are given
I. $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; K_{1}$
II. $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) ; K_{2}$
III. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) ; K_{3}$

Which of the following relations is correct?
a) $K_{1} \sqrt{K_{2}}=K_{3}$
b) $K_{2} K_{3}=K_{1}$
c) $K_{3}=K_{1} K_{2}$
d) $K_{3} K_{2}^{3}=K_{1}^{2}$
19. 0.1 mole of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ was sealed in a tube under one atmospheric conditions at $25^{\circ} \mathrm{C}$. Calculate the number of moles of $\mathrm{NO}_{2}(\mathrm{~g})$ present, if the equilibrium $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})\left(K_{p}=0.14\right)$ is reached after some time
a) 0.036
b) 36.00
c) 360.0
d) 3.600
20. A buffer solution is prepared by mixing 0.1 M ammonia and 1.0 M ammonium chloride. At 298 K , the $\mathrm{p} K_{b}$ of $\mathrm{NH}_{4} \mathrm{OH}$ is 5.0.The pH of the buffer is
a) 10.0
b) 9.0
c) 6.0
d) 8.0
21. Which of the following molecules acts as a Lewis acid?
a) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~B}$
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$
d) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$
22. Which among the following is an electron deficient compound?
a) NF_{3}
b) PF_{3}
c) BF_{3}
d) AsF_{3}
23. Identify the correct order of acidic strength of $\mathrm{CO}_{2}, \mathrm{CuO}, \mathrm{CaO}, \mathrm{H}_{2} \mathrm{O}$:
a) $\mathrm{CaO}<\mathrm{CuO}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CO}_{2}$
b) $\mathrm{H}_{2} \mathrm{O}<\mathrm{CuO}<\mathrm{CaO}<\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{CaO}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CuO}<\mathrm{CO}_{2}$
d) $\mathrm{H}_{2} \mathrm{O}<\mathrm{CO}_{2}<\mathrm{CaO}<\mathrm{CuO}$
24. Which of the following is a strong acid?
a) HClO_{4}
b) HBrO_{4}
c) HIO_{4}
d) HNO_{3}
25. According to Arrhenius concept the, strength of an acid depends on:
a) Hydrolysis
b) Concentration of acid
c) H^{+}ions furnished by acid
d) Number of mole of base used for neutralization
26. $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$

In the above equilibrium system, if the concentration of the reactants at $25^{\circ} \mathrm{C}$ is increased, the value of K_{c} will
a) Increase
b) Decrease
c) Remains the same
d) Depends on the nature of the reactants
27. 0.04 g of pure NaOH is dissolved in 10 litre of distilled water. The pH of the solution is:
a) 9
b) 10
c) 11
d) 12
28. What is the equilibrium expression for the reaction, $\mathrm{P}_{4}(s)+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})$?
a) $K_{C}=\frac{1}{\left[\mathrm{O}_{2}\right]^{5}}$
b) $K_{c}=\left[\mathrm{O}_{2}\right]^{5}$
c) $K_{C}=\frac{\left[\mathrm{P}_{4} \mathrm{O}_{10}\right]}{5\left[\mathrm{P}_{4}\right]\left[\mathrm{O}_{2}\right]}$
d) $K_{c}=\frac{\left[\mathrm{P}_{4} \mathrm{O}_{10}\right]}{\left[\mathrm{P}_{4}\right]\left[\mathrm{O}_{2}\right]^{5}}$
29. When 10^{-8} mole of HCl is dissolved in one litre of water, the pH of the solution will be:
a) 8
b) 7
c) Above 8
d) Below 7
30. A physician wishes to prepare a buffer solution at $\mathrm{pH}=3.58$ that efficiently resists a change in pH yet contains only small conc. of the buffering agents. Which one of the following weak acid together with its sodium salt would be best to use?
a) m-chloro benzoic acid ($\mathrm{p} K_{a}=3.98$)
b) p-chlorocinnamic acid $\left(\mathrm{p} K_{a}=4.41\right)$
c) 2,5-dihydroxy benzoic acid $\left(\mathrm{p} K_{a}=2.97\right)$
d) Acetoacetic acid $\left(\mathrm{p} K_{a}=3.58\right)$
31. The pH of $10^{-8} \mathrm{M} \mathrm{HCl}$ solution is
a) 8
b) More than 8
c) Between 6 and 7
d) Slightly more than 7
32. A certain buffer solution contains equal concentration of X^{-}and $\mathrm{H} X$. The K_{a} for $\mathrm{H} X$ is 10 . The pH of the buffer is:
a) 7
b) 8
c) 11
d) 14
33. 100 mL of 0.01 M solution of NaOH is diluted to $1 \mathrm{dm}^{3}$. What is the pH of the diluted solution?
a) 12
b) 11
c) 2
d) 3
34. Which of the following salt does not get hydrolysed in water?
a) KClO_{4}
b) $\mathrm{NH}_{4} \mathrm{Cl}$
c) $\mathrm{CH}_{3} \mathrm{COONa}$
d) None of these
35. A higher value for equilibrium constant, K shows that:
a) The reaction has gone to near completion towards right
b) The reaction has not yet started
c) The reaction has gone to near completion towards left
d) None of the above
36. Which one is least basic?
a) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
b) NH_{3}
c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
37. The aqueous solution of disodium hydrogen phosphate is:
a) Acidic
b) Neutral
c) Basic
d) None of these
38. 3.2 moles of hydrogen iodide were heated in a sealed bulb at $444^{\circ} \mathrm{C}$ till the equilibrium state was reached.

Its degree of dissociation at this temperature was found to be 22%. The number of moles of hydrogen iodide present at equilibrium are
a) 1.876
b) 2.496
c) 3.235
d) 4.126
39. In the reactions, $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$, the amounts of $\mathrm{PCl}_{5}, \mathrm{PCl}_{3}$ and Cl_{2} at equilibrium are 2 mole each and the total pressure is 3 am . The equilibrium constant K_{p} is :
a) 1.0 atm
b) 2.0 atm
c) 3.0 atm
d) 6.0 atm
40. Which of the following is correct for the reaction?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

a) $K_{p}=K_{c}$
b) $K_{p}<K_{c}$
c) $K_{p}>K_{c}$
d) Pressure is required to predict the correlation
41. The graph relates $\ln K_{e q} v s \frac{1}{T}$ for a reaction. The reaction must be :

a) Exothermic
b) Endothermic
c) ΔH is negligible
d) Highly spontaneous at ordinary temperature
42. 0.1 millimole of CdSO_{4} are present in 10 mL acid solution of 0.08 N HCl . Now $\mathrm{H}_{2} \mathrm{~S}$ is passed to precipitate all the Cd^{2+} ions. The pH of the solution after filtering off precipitate, boiling of $\mathrm{H}_{2} \mathrm{~S}$ and making the
solution 100 mL by adding $\mathrm{H}_{2} \mathrm{O}$ is:
a) 2
b) 4
c) 6
d) 8
43. Calculate the pH of a solution in which hydrogen ion concentration is 0.005 g -equi/L?
a) 2.3
b) 2.8
c) 2.9
d) 2.6
44. In 1 L saturated solution of $\mathrm{AgCl}\left[K_{\text {sp }}(\mathrm{AgCl}) 1.610^{10}\right], 0.1$ mole of $\mathrm{CuCl}\left[K_{\mathrm{sp}}(\mathrm{CuCl}) 1.010^{6}\right]$ is added. The resultant concentration of Ag in the solution is 1.610^{x}. The value of ' x^{\prime} is
a) 3
b) 5
c) 7
d) 9
45. Eight mole of a gas $A B_{3}$ attain equilibrium in a closed container of volume $1 \mathrm{dm}^{3}$ as, $2 A B_{3} \rightleftharpoons A_{2}(\mathrm{~g})+$ $3 B_{2}(\mathrm{~g})$. If at equilibrium 2 mole of A_{2} are present then, equilibrium constant is :
a) $72 \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
b) $36 \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
c) $3 \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
d) $27 \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
46. Which of the following is most soluble in water?
a) $\mathrm{MnS}\left(K_{s p}=8 \times 10^{-37}\right)$
b) $\mathrm{ZnS}\left(K_{s p}=7 \times 10^{-16}\right)$
c) $\mathrm{Bi}_{2} \mathrm{~S}_{3}\left(K_{s p}=1 \times 10^{-70}\right)$
d) $\mathrm{Ag}_{2} \mathrm{~S}\left(K_{s p}=6 \times 10^{-51}\right)$
47. At a given temperature the K_{c} for the reaction, $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ is 2.4×10^{-3}. At the same temperature, the K_{c} for the reaction $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g})$ is :
a) 2.4×10^{-3}
b) -2.4×10^{-3}
c) 4.2×10^{-2}
d) 4.8×10^{-2}
48. If the solubility of lithium sodium hexafluoroaluminate, $\mathrm{Li}_{3} \mathrm{Na}_{3}\left(\mathrm{AlF}_{6}\right)_{2}$ is ${ }^{\prime} a^{\prime} \mathrm{mol} / \mathrm{litre}$, its solubility product is equal to:
a) a^{2}
b) $12 a^{2}$
c) $18 a^{3}$
d) $2916 a^{8}$
49. Approximate relationship between dissociation constant of water (K) and ionic product of water $\left(K_{w}\right)$ is
a) $K_{w}=K$
b) $K_{w}=55.6 \times K$
c) $K_{w}=18 \times K$
d) $K_{w}=14 \times K$
50. Degree of dissociation of $0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ is (dissociation constant $=1 \times 10^{-5}$)
a) 10^{-5}
b) 10^{-4}
c) 10^{-3}
d) 10^{-2}
51. If the solubility of $\mathrm{Ca}(\mathrm{OH})_{2}$ is $\sqrt{3}$. The solubility product of $\mathrm{Ca}(\mathrm{OH})_{2}$ is:
a) 3
b) 27
c) $\sqrt{3}$
d) $12 \sqrt{3}$
52. pH of $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ and $0.2 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ solutions are respectively. $\mathrm{p} K_{a}$ for $\mathrm{H}_{3} \mathrm{PO}_{4}$ are $2.12,7.21$ and 12.0 for respective dissociation to $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}^{2-}$ and PO_{4}^{3-}.
a) $4.67,9.61$
b) $9.61,4.67$
c) $4.67,5.61$
d) $5.61,4.67$
53. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

In the reaction given above, the addition of small amount of an inert gs at constant pressure will shift the equilibrium towards which side?
a) LHS (Left hand side)
b) RHS(Right hand side)
c) Neither side
d) Either side
54. Which one is hard base?
a) Ag^{+}
b) Cr^{3+}
c) I_{2}
d) F^{-}
55. Which species acts as an acid and also a conjugate base of another acid?
a) HSO_{4}^{-}
b) CO_{3}^{2-}
c) SO_{4}^{2-}
d) $\mathrm{H}_{3} \mathrm{O}^{+}$
56. Predict the conditions for forward reaction on the basis of Le-Chatelier's principle for : $2 \mathrm{SO}_{2}(\mathrm{~g})+$
$\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) ; \Delta H=-198 \mathrm{~kJ}$.
a) Lowering the temperature and increasing pressure
b) Any value of temperature and pressure
c) Lowering of temperature as well as pressure
d) Increasing temperature as well as pressure
57. The solubility of AgCl in water at $10^{\circ} \mathrm{C}$ is $6.2 \times 10^{-6} \mathrm{~mol} / \mathrm{litre}$. The $K_{s p}$ of AgCl is:
a) $\left[6.2 \times 10^{-6}\right]^{1 / 2}$
b) $6.2 \times\left(10^{-6}\right)^{2}$
c) $(6.2)^{2} \times 10^{-6}$
d) $\left[6.2 \times 10^{-6}\right]^{2}$
58. When pressure is applied to the equilibrium system ice r water. Which of the following phenomenon will happen?
a) More ice will be formed
b) Water will evaporate
c) More water will be formed
d) Equilibrium will not be formed
59. At constant temperature in one litre vessel, when the reaction, $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is at equilibrium, the SO_{2} concentration is 0.6 M , initial concentration of SO_{3} is $1 M$. The equilibrium constant is :
a) 2.7
b) 1.36
c) 0.34
d) 0.675
60. When 20 g of CaCO_{3} were put into 10 litre flask and heated to $800^{\circ} \mathrm{C}, 35 \%$ of CaCO_{3} remained unreacted at equilibrium. K_{p} for decomposition of CaCO_{3} is :
a) 1.145 atm
b) 0.145 atm
c) 2.145 atm
d) 3.145 atm
61. For the reaction equilibrium,
$2 \mathrm{NOBr}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g})$, if $P_{\mathrm{Br}_{2}}=\frac{P}{9}$ at equilibrium and P is total pressure. The ratio K_{p} / P is equal to:
a) $1 / 9$
b) $1 / 81$
c) $1 / 27$
d) $1 / 3$
62. $K_{s p}=1.2 \times 10^{-5}$ of $M_{2} \mathrm{SO}_{4}\left(M^{+}\right.$is monovalent metal ion $)$at 298 K . The maximum concentration of M^{+} ions that could be attained in a saturated solution of this solid at 298 K is:
a) $3.46 \times 10^{-3} \mathrm{M}$
b) $7.0 \times 10^{-3} \mathrm{M}$
c) $2.88 \times 10^{-2} \mathrm{M}$
d) $14.4 \times 10^{-3} \mathrm{M}$
63. Which of the following describes correct sequence for decreasing Lewis acid nature?
a) $\mathrm{BCl}_{3}>\mathrm{BF}_{3}>\mathrm{BBr}_{3}$
b) $\mathrm{BBr}_{3}>B C l_{3}>B \mathrm{~F}_{3}$
c) $\mathrm{BBr}_{3}>\mathrm{BF}_{3}>\mathrm{BCl}_{3}$
d) $\mathrm{BF}_{3}>\mathrm{BCl}_{3}>B B \mathrm{r}_{3}$
64. What should be the pH of solution to dissolve the $\mathrm{Cr}(\mathrm{OH})_{3}$ precipitate?
[Given, $\left[\mathrm{Cr}^{3+}\right]=1.0 \mathrm{~mol} / \mathrm{L}, K_{\mathrm{sp}}=6 \times 10^{-31}$)
a) 2.0
b) 3.0
c) 5.0
d) 4.0
65. Which one of the following salts on being dissolved in water gives $\mathrm{pH}>7$ at $25^{\circ} \mathrm{C}$?
a) KCN
b) KNO_{3}
c) $\mathrm{NH}_{4} \mathrm{Cl}$
d) $\mathrm{NH}_{4} \mathrm{CN}$
66. Aqueous solution of which salt has the lowest pH ?
a) NaOH
b) $\mathrm{NH}_{4} \mathrm{Cl}$
c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
d) NaCl
67. In a gaseous reversible reaction,

$$
\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}+\text { heat }
$$

If pressure is increased then the equilibrium constant would be
a) Unchanged
b) Increased
c) Decreased
d) Sometimes increased, sometimes decreased
68. Glycine is:
a) Arrhenius acid
b) Lewis base
c) Simplest amino acid
d) All of these
69. On a given condition, the equilibrium concentration of $\mathrm{HI}, \mathrm{H}_{2}$ and I_{2} are $0.80,0.10$ and $0.10 \mathrm{~mol} / \mathrm{L}$. The equilibrium constant for the reaction, $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$, will be
a) 8
b) 16
c) 32
d) 64
70. If pH of the solution is one, what weight of HCl present in one litre of solution?
a) 3.65 g
b) 36.5 g
c) 0.365 g
d) 0.0365 g
71. The concentration of hydroxyl ion in a solution left after mixing 100 mL of $0.1 \mathrm{M} \mathrm{MgCl}_{2}$ and 100 mL of
$0.2 \mathrm{M} \mathrm{NaOH}\left[K_{s p}\right.$ of $\left.\operatorname{Mg}\left(\mathrm{OH}_{2}\right)=1.2 \times 10^{-11}\right]$ is:
a) 2.8×10^{-3}
b) 2.8×10^{-2}
c) 2.8×10^{-4}
d) 2.8×10^{-5}
72. For a reaction and equilibrium which of the following is correct?
a) Concentration of reactant=concentration of product
b) Concentration of reactant is always greater than product
c) Rate of forward reaction=rate of backward reaction
d) $Q_{c}=k$
73. The correct order of increasing basic nature of the given conjugate bases is:
a) $\mathrm{RCO} \overline{\mathrm{O}}<H C \equiv \overline{\mathrm{C}}<\overline{\mathrm{N}} \mathrm{H}_{2}<\overline{\mathrm{R}}$
b) $\mathrm{RCO} \overline{\mathrm{O}}<H C \equiv \overline{\mathrm{C}}<\overline{\mathrm{R}}<\overline{\mathrm{N}} \mathrm{H}_{2}$
c) $\overline{\mathrm{R}}<H C \equiv \overline{\mathrm{C}}<R C O \overline{\mathrm{O}}<\overline{\mathrm{N}} \mathrm{H}_{2}$
d) $\mathrm{RCO} \overline{\mathrm{O}}<\overline{\mathrm{N}} \mathrm{H}_{2}<H C \equiv \overline{\mathrm{C}}<\overline{\mathrm{R}}$
74. What is the equilibrium expression for the reaction

$$
\mathrm{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s}) ?
$$

a) $K_{C}=\frac{\left[\mathrm{P}_{4} \mathrm{O}_{10}\right]}{\left[\mathrm{P}_{4}\right]\left[\mathrm{O}_{5}\right]^{5}}$
b) $K_{C}=\frac{\left[\mathrm{P}_{4} \mathrm{O}_{10}\right]}{5\left[\mathrm{P}_{4}\right]\left[\mathrm{O}_{2}\right]}$
c) $K_{c}=\left[\mathrm{O}_{2}\right]^{5}$
d) $K_{C}=\frac{1}{\left[\mathrm{O}_{2}\right]^{5}}$
75. A characteristic feature of reversible reaction is that :
a) They never proceed to completion
b) They proceed to completion
c) They are not complete unless the reactants are removed from the sphere of reaction mixture
d) None of the above
76. The concentration of CO_{2} be in equilibrium with 2.5×10^{-2} mol litre ${ }^{-1}$ of CO at $100^{\circ} \mathrm{C}$ for the reaction : $\mathrm{FeO}(s)+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{Fe}(s)+\mathrm{CO}_{2}(\mathrm{~g}) ; K_{c}=5.0$
a) 5 M
b) 1.25 M
c) 12.5 M
d) 0.125 M
77. In the reaction, $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$

In a 2 I flask 0.4 moles of each H_{2} and I_{2} are taken. At equilibrium 0.5 moles of HI are formed. What will be the value of equilibrium constant K_{c} ?
a) 20.2
b) 25.4
c) 0.284
d) 11.1
78. 0.005 M acid solution has 5 pH . The percentage ionisation of acid is
a) 0.8%
b) 0.6%
c) 0.4%
d) 0.2%
79. A solution of pH 8 is ... basic than a solution of pH 12.
a) Less
b) More
c) Equally
d) None of these
80. Which statement is/are correct?
a) All Arrhenius acids are Bronsted acids
b) All Arrhenius bases are not Bronsted base
c) H^{+}ion in solution exists as $\mathrm{H}_{9} \mathrm{O}_{4}^{+}$
d) All of the above
81. The concentration of fluroacetic acid (K_{a} of acid $=2.6 \times 10^{-3}$) which is required to get $\left[\mathrm{H}^{+}\right]=1.50 \times$ $10^{-3} \mathrm{M}$ is:
a) 0.865 M
b) $2.37 \times 10^{-3} \mathrm{M}$
c) $2.37 \times 10^{-4} \mathrm{M}$
d) $2.37 \times 10^{-2} \mathrm{M}$
82. Which among the following is the strongest acid?
a) $\mathrm{H}(\mathrm{ClO}) \mathrm{O}_{2}$
b) $\mathrm{H}(\mathrm{ClO}) \mathrm{O}_{3}$
c) $\mathrm{H}(\mathrm{ClO}) \mathrm{O}$
d) $\mathrm{H}(\mathrm{ClO})$
83. Which one of the following is not an amphoteric substance?
a) HNO_{3}
b) HCO_{3}^{-}
c) $\mathrm{H}_{2} \mathrm{O}$
d) NH_{3}
84. For the chemical reaction $3 X(\mathrm{~g})+Y(\mathrm{~g}) \rightleftharpoons X_{3} Y(\mathrm{~g})$, that amount of $\mathrm{X}_{3} \mathrm{Y}$ at equilibrium is affected
by
a) Temperature and pressure
b) Temperature only
c) Pressure only
d) Temperature, pressure and catalyst
85. K_{p} / K_{c} for the reaction,
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})$ is:
a) $R T$
b) $1 / \sqrt{R T}$
c) $\sqrt{R T}$
d) 1
86. Densities of diamond and graphite are 3.5 and $2.3 \mathrm{~g} / \mathrm{mL}$ respectively. Increase of pressure on the equilibrium $\mathrm{C}_{\text {diamond }} \rightleftharpoons \mathrm{C}_{\text {graphite }}$:
a) Favours backward reaction
b) Favours forward reaction
c) Have no effect
d) Increases the reaction rate
87. The solubility product of BaCl_{2} is 4×10^{-9}. Its solubility in $\mathrm{mol} / \mathrm{L}$ is
a) 4×10^{-3}
b) 4×10^{-9}
c) 1×10^{-3}
d) 1×10^{-9}
88. Addition of sodium acetate to 0.1 M acetic acid will cause
a) Increase in pH
b) Decrease in pH
c) No change in pH
d) Change in pH that cannot be predicted
89. The solubility in water of a sparingly soluble salt A_{2} Bis $1.0 \times 10^{-3} \mathrm{~mol}^{-1}$. Its solubility product will be
a) 4×10^{-9}
b) 4×10^{9}
c) 1×10^{9}
d) 1×10^{-9}
90. NaHCO_{3} and NaOH can not co-exist in a solution because of:
a) Common ion effect
b) Acid-base neutralisation
c) Le - Chatelier's principle
d) Redox change
91. Formation of SO_{3} from SO_{2} and O_{2} is favoured by
a) Increase in pressure
b) Decrease in pressure
c) Increase in temperature
d) Decrease in temperature
92. A definite amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a flask already containing NH_{3} gas at certain temperature and 0.50 atm pressure. $\mathrm{NH}_{4} \mathrm{HS}$ decomposes to give NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ and total equilibrium pressure in flask is 0.84 atm . The equilibrium constant for the reaction is :
a) 0.30
b) 0.18
c) 0.17
d) 0.11
93. Hydroxyl ion concentration of $10^{-2} \mathrm{M} \mathrm{HCl}$ is
a) $1 \times 10^{1} \mathrm{~mol} \mathrm{dm}^{-3}$
b) $1 \times 10^{-12} \mathrm{~mol} \mathrm{dm}^{-3}$
c) $1 \times 10^{-1} \mathrm{~mol} \mathrm{dm}^{-3}$
d) $1 \times 10^{-14} \mathrm{~mol} \mathrm{dm}^{-3}$
94. For a reaction in equilibrium :
a) There is no volume change
b) The reaction has stopped completely
c) The rate of forward reaction is equal to the rate of backward reaction
d) The forward reaction is faster than reverse reaction
95. A solution of CuSO_{4} in water will:
a) Turn red litmus blue
b) Turn blue litmus red
c) Show no effect on litmus
d) Decolourize litmus
96. At constant temperature, the equilibrium constant $\left(K_{p}\right)$ for the decomposition reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons$ $2 \mathrm{NO}_{2}(\mathrm{~g})$ is expressed by $K_{p}=\frac{\left(4 x^{2} p\right)}{\left(1-x^{2}\right)}$
Where, $p=$ pressure, $x=$ extent of decomposition. Which one of the following statements is true?
a) K_{p} increases with increase of p
b) K_{p} remains constant with change in p and x
c) K_{p} increases with increase of x
d) None of the above
97. The pH of a solution is 5.0. To this solution sufficient acid is added to decrease the pH to 2.0 . The increase in hydrogen ion concentration is:
a) 1000 times
b) $5 / 2$ times
c) 100 times
d) 5 times
98. Which of the following is a Lewis acid?
a) AlCl_{3}
b) Cl^{-}
c) CO
d) $\mathrm{C}_{2} \mathrm{H}_{2}$
99. The solubility of AgCl is $1 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$. Its solubility in 0.1 molar sodium chloride solution is
a) 1×10^{-10}
b) 1×10^{-5}
c) 1×10^{-9}
d) 1×10^{-4}
100. In which of the following reaction $K_{p}>K_{c}$?
a) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
b) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
c) $2 \mathrm{SO}_{3} \rightleftharpoons \mathrm{O}_{2}+2 \mathrm{SO}_{2}$
d) $\mathrm{PCl}_{3}+\mathrm{Cl}_{2} \rightleftharpoons \mathrm{PCl}_{5}$
101. $K_{s p}$ for sodium chloride is $36 \mathrm{~mol}^{2} /$ litre 2. The solubility of sodium chloride is:
a) $\frac{1}{36} M$
b) $\frac{1}{6} M$
c) 6 M
d) 3600 M
102. Degree of dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ in water is 1.8×10^{-5}, then hydrolysis constant of $\mathrm{NH}_{4} \mathrm{Cl}$ is
a) 1.8×10^{-5}
b) 1.8×10^{-10}
c) 5.55×10^{-5}
d) 5.55×10^{-10}
103. What volume of 1.0 M sodium formate solution should be added to 50 mL of 0.05 M formic acid to produce a buffer solution of $\mathrm{pH}=4.0\left(\mathrm{p} K_{a}\right.$ of formic acid= 3.80$)$?
a) 39.0 mL
b) 39.62 mL
c) 40 mL
d) 40.62 mL
104. An acid $\mathrm{H} A$ ionises as

$$
\mathrm{H} A \rightleftharpoons \mathrm{H}^{+}+A^{-}
$$

The pH of 1.0 M solution is 5 . Its dissociation constant would be
a) 1×10^{-10}
b) .5
c) 5×10^{-8}
d) 1×10^{-5}
105. Phosphorus pentachloride dissociates as follows, in a closed reaction vessel,

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

If total pressure at equilibrium of the reaction mixture is p and degree of dissociation of PCl_{5} is x, the partial pressure of PCl_{3} will be
a) $\left(\frac{x}{x+1}\right) p$
b) $\left(\frac{2 x}{1-x}\right) p$
c) $\left(\frac{x}{x-1}\right) p$
d) $\left(\frac{x}{1-x}\right) p$
106. For the gaseous phase reaction, $2 \mathrm{NO} \rightleftharpoons \mathrm{N}_{2}+\mathrm{O}_{2}, \Delta H^{\circ}=-43.5 \mathrm{kcal} \mathrm{mol}^{-1}$, which statement is correct for, $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g}) ?$
a) K is independent of temperature
b) K increases as temperature decreases
c) K decreases as temperature decreases
d) K varies with addition of NO
107. Which would decreases the pH of $25 \mathrm{~cm}^{3}$ of a 0.01 M solution of hydrochloric acid?
a) The addition of magnesium metal
b) The addition of $25 \mathrm{~cm}^{3} 0.02 \mathrm{M}$ hydrochloric acid
c) The addition of $25 \mathrm{~cm}^{3} 0.005 \mathrm{M}$ hydrochloric acid
d) None of the above
108. Which is not a Lewis acid?
a) CCl_{4}
b) SnCl_{2}
c) AlCl_{3}
d) BF_{3}
109. Which is Lewis base?
a) HCl
b) HNO_{3}
c) HF
d) NH_{3}
110. Ammonia under a pressure of 15 atm at $27^{\circ} \mathrm{C}$ is heated to $347^{\circ} \mathrm{C}$ in a closed vessel in the presence of catalyst. Under the conditions, NH_{3} is partially decomposed according to the equation, $2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{~N}_{2}+3 \mathrm{H}_{2}$. The vessel is such that the volume remains effectively constant whereas pressure increases to 50 atm . Calculate the percentage of NH_{3} actually decomposed
a) 61.3%
b) 63.5%
c) 65.3%
d) 66.6%
111. For the system; $3 A+2 B \rightleftharpoons C$, the expression for equilibrium constant is
a) $\frac{[A]^{3}[B]^{2}}{[C]}$
b) $\frac{[C]}{[A]^{3}[B]^{2}}$
c) $\frac{[3 A][2 B]}{[C]}$
d) $\frac{[C]}{[3 A][2 B]}$
112. A monoprotic acid in a 0.1 M solution ionisesto 0.001%. Its ionisation constant is
a) 1×10^{-11}
b) 1×10^{-3}
c) 1×10^{-6}
d) 1×10^{-8}
113. For the reaction, $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$, the principle pressure of CO_{2} and CO are 2.0 and 4.0 atm respectively at equilibrium. The K_{p} for the reaction is
a) 2.0
b) 4.0
c) 8.0
d) 1.6
114. The vapour density of completely dissociated $\mathrm{NH}_{4} \mathrm{Cl}$ would be:
a) Slightly less than half of that of ammonium chloride
b) Half of that of ammonium chloride
c) Double that of ammonium chloride
d) Determined by the amount of solid ammonium chloride used in the experiment
115. Mg^{2+} is ... than Al^{3+}.
a) Strong Lewis acid
b) Strong Lewis base
c) Weak Lewis acid
d) Weak Lewis base
116. The equilibrium constant for the reaction, $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$ is 4×10^{-4} at 2000 K . In presence of a catalyst the equilibrium is attained ten times faster. Therefore, the equilibrium constant, in present of the catalyst, at 2000 K is:
a) 40×10^{-4}
b) 4×10^{-4}
c) 4×10^{-3}
d) Difficult to compute without more data
117. The activation energies of forward and backward reaction: $A_{2}+B_{2} \rightleftharpoons 2 A B$ are $180 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ and 200 kJ mol^{-1} respectively. The presence of a catalyst lowers the activation energy of both (forward and backward) reactions by $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The enthalpy change of the reaction in the presence of catalyst will be (in $\mathrm{kJ} \mathrm{mol}^{-1}$):
a) -20
b) -300
c) +120
d) -280
118. How will increase of pressure affect the equation?

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

a) Shift in the forward direction
b) Shift in the reverse direction
c) Increase in the yield of hydrogen
d) No effect
119. If the pressure of $\mathrm{N}_{2} / \mathrm{H}_{2}$ mixture in a closed apparatus is 100 atm and 20% of the mixture then reacts, the pressure at the same temperature would be :
a) 100
b) 90
c) 85
d) 80
120. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$ acts as ... in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.
a) Strong acid
b) Weak acid
c) Strong base
d) Weak base
121. A solution of sodium borate has a pH of approximately:
a) >7
b) <7
c) $=7$
d) Between 4 and 5
122. A certain buffer solution contains equal concentration of X^{-}and $\mathrm{H} X$. The K_{a} for $\mathrm{H} X$ is 10^{-8}. The pH of the buffer is
a) 3
b) 8
c) 11
d) 14
123. Study the following table.

Buffer solutio n	Volume (in mL) of 1 M weak acid	Volume (in mL) of 0.1 M sodium salt of weak acid
I	4.0	4.0

II	4.0	40.0
III	40.0	4.0
IV	0.1	10.0

Which of the two sets of buffer solutions have least pH ?
a) I and II
b) I and III
c) II and III
d) II and IV
124. Which indicator works in the pH range 8-9.8?
a) Phenolphthalein
b) Methyl orange
c) Methyl red
d) Litmus
125. 100 mL of 0.015 M HCl solution is mixed with 100 mL of 0.005 M HCl . What is the pH of the resultant solution?
a) 2.5
b) 1.5
c) 2
d) 1
126. The solubility of $A_{2} X_{3}$ is $y \mathrm{~mol} \mathrm{dm}^{-3}$. Its solubility product is:
a) $6 y^{4}$
b) $64 y^{4}$
c) $36 y^{5}$
d) $108 y^{5}$
127. The volume of water needed to dissolve 1 g of $\mathrm{BaSO}_{4}\left(K_{s p}=1.1 \times 10^{-10}\right)$ at $25^{\circ} \mathrm{C}$ is:
a) 820 litre
b) 410 litre
c) 205 litre
d) None of these
128. In a vessel containing $\mathrm{SO}_{3}, \mathrm{SO}_{2}$, and O_{2} at equilibrium, some helium gas in introduced so that, the total pressure increase, while temperature and volume remain constant. According to Le-Chatelier's principle the dissociation of SO_{3} :
a) Increases
b) Decreases
c) Remains unaltered
d) Changes unpredictably
129. Given the equilibrium system
$\mathrm{NH}_{4} \mathrm{Cl}(s) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{Cl}^{-}(a q)$
($\Delta H=+3.5 \mathrm{kcal} / \mathrm{mol})$.
What change will shift the equilibrium to the right?
a) Decreasing the temperature
b) Increasing the temperature
c) Dissolving NaCl crystals in the equilibrium mixture
d) Dissolving $\mathrm{NH}_{4} \mathrm{NO}_{3}$ crystals in the equilibrium mixture
130. The solubility product of BaSO_{4} is 1.5×10^{-9}. The precipitation in a $0.01 \mathrm{M} \mathrm{Ba}^{2+}$ solution will start, on adding $\mathrm{H}_{2} \mathrm{SO}_{4}$ of concentration
a) $10^{-9} \mathrm{M}$
b) $10^{-8} \mathrm{M}$
c) $10^{-7} \mathrm{M}$
d) $10^{-6} \mathrm{M}$
131. The solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in water is $6.7 \times 10^{-6} \mathrm{M}$. Its solubility in a buffer solution of $\mathrm{pH}=8$ would be
a) 1.2×10^{-2}
b) 1.6×10^{-3}
c) 1.6×10^{-2}
d) 1.2×10^{-3}
132. In which of the following reactions is $K_{p}<K_{c}$?
a) $\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}(\mathrm{g})$
b) $2 \mathrm{BrCl}(\mathrm{g}) \rightleftharpoons \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})$
c) $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
d) All of the above
133. Any precipitate is formed when
a) Solution becomes saturated
b) The value of ionic product is less than the value of solubility product
c) The value of ionic product is equal to the value of solubility product
d) The value of ionic product is greater than the value of solubility product
134. At $25^{\circ} \mathrm{C}, K_{b}$ for a base BOH is 1.0×10^{-12}. The $\left[\mathrm{OH}^{-}\right]$in 0.01 M aqueous solution of base is:
a) $1.0 \times 10^{-6} \mathrm{M}$
b) $1.0 \times 10^{-7} \mathrm{M}$
c) $1.0 \times 10^{-5} \mathrm{M}$
d) $2.0 \times 10^{-6} \mathrm{M}$
135. The pH of a $10^{-9} \mathrm{M}$ solution of HCl in water is
a) 8
b) -8
c) Between 7 and 8
d) Between 6 and 7
136. If pH of a saturated solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 12 , the value of its $K_{s p}$ is:
a) $4.0 \times 10^{-6} \mathrm{M}^{3}$
b) $4.0 \times 10^{-7} \mathrm{M}^{3}$
c) $5.0 \times 10^{-6} \mathrm{M}^{3}$
d) $5.0 \times 10^{-7} \mathrm{M}^{3}$
137. Liquid ammonia ionises to a slight extent. At $-50^{\circ} \mathrm{C}$, its self ionisation constant, $K_{\mathrm{NH}_{3}}=\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NH}_{2}^{-}\right]=$ 10^{-30}. How many amide ions, are present per cm^{3} of pure liquid ammonia? (Assume $N=6.0 \times 10^{23}$)
a) 6×10^{6} ions
b) 6×10^{5} ions
c) 6×10^{-5} ions
d) 6×10^{-6} ions
138. The first and second dissociation constants of an acid $\mathrm{H}_{2} A$ are 1.0×10^{-5} and 5.0×10^{-10} respectively. The overall dissociation constant of the acid will be
a) 5.0×10^{-5}
b) 5.0×10^{15}
c) 5.0×10^{-15}
d) 0.2×10^{5}
139. Which is the strongest acid?
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{CH}_{2} \mathrm{ClCOOH}$
c) $\mathrm{CHCl}_{2} \mathrm{COOH}$
d) $\mathrm{CCl}_{3} \mathrm{COOH}$
140. A 0.01 M ammonia solution is 5% ionized. The concentration of $\left[\mathrm{OH}^{-}\right.$] ion is:
a) 0.005 M
b) 0.0001 M
c) 0.0005 M
d) 0.05 M
141. Nucleophiles are:
a) Lewis acids
b) Lewis bases
c) Bronsted acids
d) Bronsted bases
142. Theory of ionisation was given by
a) Rutherford
b) Graham
c) Faraday
d) Arrhenius
143. 0.01 mole of lime (CaO) was dissolved in $100 \mathrm{~cm}^{3}$ of water. Assuming the base is completely ionised in the solution, the pH of the solution will be
a) 13.3
b) 8.5
c) 6
d) 8
144. Consider the following solutions of equal concentrations
$A=\mathrm{NH}_{4} \mathrm{Cl}$
$B=\mathrm{CH}_{3} \mathrm{COONa}$
$C=\mathrm{NH}_{4} \mathrm{OH}$
$D=\mathrm{CH}_{3} \mathrm{COOH}$

A buffer solution can be obtained by mixing equal volumes of
a) C and D
b) A and B
c) A and C
d) C and D
145. At $600^{\circ} \mathrm{C}, K_{p}$ for the following reaction is 1 atm .

$$
X(\mathrm{~g}) \rightleftharpoons Y(\mathrm{~g})+Z(\mathrm{~g})
$$

At equilibrium, 50% of $X(\mathrm{~g})$ is dissociated. The total pressure of the equilibrium system is p atm. What is the partial pressure (in atm) of $X(\mathrm{~g})$ at equilibrium?
a) 1
b) 4
c) 2
d) 0.5
146. Equilibrium constants K_{1} and K_{2} for the following equilibria are related as :
$\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g}) ; K_{1}$

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) ; K_{2}
$$

a) $K_{2}=\frac{1}{K_{1}^{2}}$
b) $K_{2}=\frac{1}{K_{1}}$
c) $K_{2}=K_{1}^{2}$
d) $K_{2}=\frac{K_{1}}{2}$
147. If K_{1} and K_{2} are equilibrium constants for reactions (I) and (II) respectively for, $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} \quad$... (i)
$\frac{1}{2} \mathrm{~N}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{NO}$
Then:
a) $K_{2}=K_{1}$
b) $K_{2}=\sqrt{K_{1}}$
c) $K_{1}=2 K_{2}$
d) $K_{1}=\frac{1}{2} K_{2}$
148. All reactions which have chemical disintegration are
a) Exothermic
b) Reversible
c) Reversible and exothermic
d) Reversible of irreversible and endothermic or exothermic
149. For which of the following sparingly soluble salt, the solubility (s) and solubility product ($K_{\text {sp }}$) are related by the expression $s=\left(K_{\text {sp }} / 4\right)^{1 / 3}$?
a) BaSO_{4}
b) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
c) $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
d) $\mathrm{Ag}_{3} \mathrm{PO}_{4}$
150. For $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$, initial concentration of each reactant and product is 1 M . If $K_{\text {eq }}=0.41$ then
a) More PCl_{3} will form
b) More Cl_{2} will form
c) More PCl_{5} will form
d) No change
151. The exothermic formation of ClF_{3} is represented by the equation
$\mathrm{Cl}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{ClF}_{3}(\mathrm{~g}) ;$
$\Delta H=-329 \mathrm{~kJ}$
Which of the following will increase the quantity of ClF_{3} in an equilibrium mixture of $\mathrm{Cl}_{2}, \mathrm{~F}_{2}$ and ClF_{3} ?
a) Adding F_{2}
b) Increasing the volume of the container
c) Removing Cl_{2}
d) Increasing the temperature
152. For which of the following reactions, does the equilibrium constant depend on the units of concentration?
a) $\mathrm{NO}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
b) $\mathrm{Zn}(s)+\mathrm{Cu}^{2+}(a q) \rightleftharpoons \mathrm{Cu}(s)+\mathrm{Zn}^{2+}(a q)$
c) $\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+\mathrm{CH}_{3} \mathrm{COOH}(l) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l)$
153. If the solubility product of lead iodide $\left(\mathrm{PbI}_{2}\right)$ is 3.2×10^{-8}, its solubility will be:
a) $2 \times 10^{-3} \mathrm{M}$
b) $4 \times 10^{-4} \mathrm{M}$
c) $1.6 \times 10^{-5} \mathrm{M}$
d) $1.8 \times 10^{-5} \mathrm{M}$
154. At $30^{\circ} \mathrm{C}$ the solubility of $\mathrm{Ag}_{2} \mathrm{CO}_{3}\left(K_{\text {sp }}=8 \times 10^{-12}\right)$ would be greatest in 1 L of
a) $0.05 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$
b) $0.05 \mathrm{M} \mathrm{AgNO}_{3}$
c) Pure water
d) $0.05 \mathrm{M} \mathrm{NH}_{3}$
155. The interfering radicals interfere in the test of usual inorganic analysis after II group analysis due to:
a) Their solubility in acid medium
b) Their solubility in alkaline medium
c) Their insoluble nature in alkaline medium
d) None of the above
156. The $\mathrm{p} K_{b}$ value of NH_{3} is 5 . Calculate the pH of the buffer solution, 1 L of which contains 0.01 M $\mathrm{NH}_{4} \mathrm{Cl}$ and $0.10 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$
a) 4
b) 6
c) 8
d) 10
157. The equilibrium constant K for the reaction $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$ at room temperature 300 K is 2.85 and at $698 \mathrm{~K} 1.84 \times 10^{-2}$. Hence the reason that HI exists as a stable compound at room temperature is because:
a) It decomposes so slowly that equilibrium is not readily achieved
b) The HI bond has a large covalent contribution
c) The heat of reaction at room temperature is -5.31 kcal
d) It is uncatalytic reaction
158. A mixture of 0.3 mole of H_{2} and 0.3 mole of I_{2} is allowed to react in a 10 L evacuated flask at $500^{\circ} \mathrm{C}$. The reaction is $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$, the K is found to be 64 . The amount of unreacted I_{2} at equilibrium is
a) 0.03 mol
b) 0.06 mol
c) 0.09 mol
d) 3.6 mol
159. In a solution of a weak electrolyte at infinite dilution we have:
a) Only cations and electrolyte in 10% dissociated
b) Only anions and electrolyte is 10% dissociated
c) Both cations and anions and electrolyte is 100% dissociated
d) Cations, anions and unionised electrolyte
160. In the reaction, $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$, the equilibrium concentration of PCl_{5} and PCl_{3} are 0.4 and 0.2 $\mathrm{mol} / \mathrm{L}$ respectively. If the value of K_{C} is 0.5 what is the concentration ofCl ${ }_{2}$ in $\mathrm{mol} / \mathrm{L}$?
a) 0.5
b) 1.0
c) 1.5
d) 2.0
161. The reaction that proceeds in the forward direction is:
a) $\mathrm{SnCl}_{4}+\mathrm{Hg}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{SnCl}_{2}+2 \mathrm{HgCl}_{2}$
b) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3}+\mathrm{NaCl}$
c) $\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2} \rightarrow \mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{Cl}^{-}$
d) $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2}$
162. Which is a Lewis base

$$
\mathrm{I}_{2}+\mathrm{I}^{-} \rightarrow \mathrm{I}_{3}^{-} ?
$$

a) I_{2}
b) I_{3}^{-}
c) I^{-}
d) None of these
163. A solution contains 10 mL of 0.1 N NaOH and 10 mL of $0.05 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{pH}$ of this solution is
a) Less than 7
b) 7
c) Zero
d) Greater than 7
164. The solubility of PbCl_{2} in water is 0.01 M at $25^{\circ} \mathrm{C}$. Its maximum concentration in 0.1 M NaCl will be:
a) $2 \times 10^{-3} \mathrm{M}$
b) $1 \times 10^{-4} \mathrm{M}$
c) $1.6 \times 10^{-2} \mathrm{M}$
d) $4 \times 10^{-4} \mathrm{M}$
165. $\mathrm{H} X$ is a weak acid $\left(K_{a}=10^{-5}\right)$. It forms a salt NaX (0.1 M on reacting with caustic soda. The degree of hydrolysis of $\mathrm{Na} X$ is
a) 0.01%
b) 0.0001%
c) 0.1%
d) 0.5%
166. Which species acts as stronger acid than formic acid in aqueous solution?
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{H}_{2} \mathrm{SO}_{4}$
c) NH_{4}^{+}
d) HPO_{4}^{2-}
167. In a reaction at equilibrium ' X ' mole of the reactant A decompose to give 1 mole each of C and D. If the fraction of A decomposed at equilibrium is independent of initial concentration of A, then the value of ' X^{\prime} is :
a) 1
b) 3
c) 2
d) 4
168. Starting with 1 mole of $\mathrm{N}_{2} \mathrm{O}_{4}$, if α is the degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ for the reaction, $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$ then at equilibrium the total number of moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} present is
a) 2
b) $(1-\alpha)$
c) $(1-\alpha)^{2}$
d) $(1+\alpha)$
169. A saturated solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ in water at $25^{\circ} \mathrm{C}$ contains $0.11 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2}$ per litre of solution. The solubility product of $\mathrm{Mg}(\mathrm{OH})_{2}$ is:
a) $(0.11)^{2}$
b) $(0.11)^{3}$
c) $4 \times(0.11)^{3}$
d) $4 \times(0.11)^{3} /(58)^{3}$
170. For the reaction,

$$
\begin{aligned}
2 \mathrm{NO}_{3}(\mathrm{~g}) & \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \\
\left(K_{c}\right. & \left.=1.8 \times 10^{-6} \text { at } 184^{\circ} \mathrm{C}\right) \\
(R & =0.00831 \mathrm{~kJ} /(\mathrm{mol} \mathrm{~K})
\end{aligned}
$$

When K_{p} and K_{c} are compared at $184^{\circ} \mathrm{C}$, it is found that
Whether K_{p} is greater than less than or equal
a) to K_{c} depends upon the total gas pressure
b) $K_{p}=K_{c}$
c) K_{p} is less than K_{c}
d) K_{p} is greater than K_{c}
171. Which is the best choice for weak base-strong acid titration?
a) Methyl red
b) Litmus
c) Phenol red
d) Phenolphthalein
172. The value of the ionic product of water depends
a) On volume of water
b) On temperature
c) Changes by adding acid or alkali
d) Always remain constant
173. The formation of SO_{3} takes place according to the following reaction, $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}, \Delta H=-45.2$ kcal. The formation of SO_{3} is favoured by
a) Increase of volume
b) Increase in pressure
c) Increase in temperature
d) Removal of oxygen
174. Which one is strongest electrolyte in the following?
a) NaCl
b) $\mathrm{CH}_{3} \mathrm{COOH}$
c) $\mathrm{NH}_{4} \mathrm{OH}$
d) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
175. For which of the following reactions, $K_{p}=K_{c}$?
a) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
b) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
c) $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
d) $2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$
176. The solubility of AgI in NaI solution is less than that in pure water because
a) AgI forms complex with NaI
b) Of common ion effect
c) Solubility product of AgI is less
d) The temperature of the solution decreases
177. The partial pressure of $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}), \mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ in equilibrium mixture for the reaction, $\mathrm{CO}(\mathrm{g})+$ $2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ are $2.0,1.0$ and 0.1 atm respectively at $427^{\circ} \mathrm{C}$. The value of K_{p} for the decomposition of $\mathrm{CH}_{3} \mathrm{OH}$ to CO and H_{2} is :
a) $10^{2} \mathrm{~atm}$
b) $2 \times 10^{2} \mathrm{~atm}^{-1}$
c) $50 \mathrm{~atm}^{2}$
d) $5 \times 10^{-3} \mathrm{~atm}^{2}$
178. What happens to pH of a solution when $\mathrm{NH}_{4} \mathrm{Cl}$ crystal is added to a dilute solution of $\mathrm{NH}_{4} \mathrm{OH}$?
a) Decreases
b) Increases
c) Remains unaffected
d) All of these
179. What mole of $\mathrm{Ca}(\mathrm{OH})_{2}$ is dissolved in 250 mL aqueous solution to given a solution of pH 10.65 , assuming full dissociation?
a) 0.47×10^{-4}
b) 0.48×10^{-4}
c) 0.56×10^{-4}
d) 0.58×10^{-4}
180. The volume of the reaction vessel containing an equilibrium mixture in the reaction, $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+$ $\mathrm{Cl}_{2}(\mathrm{~g})$ is increased. When equilibrium is reestablished:
a) The amount of $\mathrm{SO}_{2}(\mathrm{~g})$ will decrease
b) The amount of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ will increase
c) The amount of $\mathrm{Cl}_{2}(\mathrm{~g})$ will increase
d) The amount of $\mathrm{Cl}_{2}(\mathrm{~g})$ will remain unchanged
181. The acidic nature of zinc oxide is shown from the formation of salt:
a) NaZnO_{2}
b) $\mathrm{Na}_{2} \mathrm{ZnO}_{2}$
c) $\mathrm{Na}_{2} \mathrm{Zn}_{2} \mathrm{O}_{2}$
d) None of these
182. Consider the following reaction equilibrium

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Initially, 1 mole of N_{2} and 3 moles of H_{2} are take in a 2 L flask. At equilibrium state if, the number of moles of N_{2} is 0.6 , what is the total number of moles of all gases present in the flask?
a) 0.8
b) 1.6
c) 3.2
d) 6.4
183. If 0.1 mole of I_{2} is introduced into 1.0 litre flask at 1000 K , at equilibrium $\left(K_{c}=10^{-6}\right)$, which one is correct?
a) $\left[\mathrm{I}_{2}(\mathrm{~g})\right]>[I(g)]$
b) $\left[\mathrm{I}_{2}(\mathrm{~g})\right]<[I(g)]$
c) $\left[\mathrm{I}_{2}(\mathrm{~g})\right]=[\mathrm{I}(\mathrm{g})]$
d) $\left[\mathrm{I}_{2}(\mathrm{~g})\right]=\frac{1}{2}[\mathrm{I}(\mathrm{g})]$
184. The equilibrium constant K_{c} for $A(\mathrm{~g}) \rightleftharpoons B(\mathrm{~g})$ is 1.1 , Gas B will have molar concentration greater than 1 if :
a) $(A)=0.91$
b) $(A)>0.91$
c) $(A)>1$
d) At all these
185. The equilibrium which remains unaffected by change in pressure of the reactants is
a) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
b) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
c) $2 \mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{O}_{2}(\mathrm{~g})$
d) $2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
186. The pH value of 0.001 M aqueous solution of NaCl is
a) 7
b) 4
c) 11
d) unpredictable
187. The solution of AgCl is unsaturated if:
a) $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]<K_{s p}$
b) $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]>K_{s p}$
c) $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=K_{s p}$
d) None of these
188. A decimolar solution of ammonium hydroxide is ionised to the extent of 1.3%. If $\log 1.3$. If $\log 1.3=0.11$, what is the pH of the solution?
a) 11.11
b) 9.11
c) 8.11
d) Unpredictable
189. The equivalent conductance of $\frac{M}{32}$ solution of a weak monobasic acid is $8.0 \mathrm{mhos}^{2}$ and at infinite dilution is 400 mhos cm^{2}. The dissociation constant of this acid is:
a) 1.25×10^{-4}
b) 1.25×10^{-5}
c) 1.25×10^{-6}
d) 6.25×10^{-4}
190. Hydrolysis of oxide ion in water produces:
a) H^{+}
b) OH^{-}
c) O_{2}
d) $\mathrm{H}_{2} \mathrm{O}$
191. A weak acid $\mathrm{H} X$ has the dissociation constant $1 \times 10^{-5} \mathrm{M}$. It forms a salt $\mathrm{Na} X$ on reaction with alkali. The degree of hydrolysis of 0.1 M solution of $\mathrm{Na} X$ is
a) 0.0001%
b) 0.01%
c) 0.1%
d) 0.15%
192. The species among the following which can act as an acid and a base is:
a) HSO_{4}^{-}
b) SO_{4}^{2-}
c) $\mathrm{H}_{3} \mathrm{O}^{+}$
d) Cl^{-}
193. For the reactions,
$A \rightleftharpoons B ; \quad K_{C}=2$
$B \rightleftharpoons C ; \quad K_{c}=4$
$C \rightleftharpoons D ; \quad K_{c}=6$
K_{c} for the reaction, $A \rightleftharpoons D$ is:
a) $(2+4+6)$
b) $(2 \times 4) / 6$
c) $(4 \times 6) / 2$
d) $2 \times 4 \times 6$
194. 0.365 g of HCl gas was passed through $100 \mathrm{~cm}^{3}$ of 0.2 M NaOH solution. The pH of the resulting solution would be
a) 1
b) 5
c) 8
d) 13
195. The pH of a 0.0001 N solution of KOH will be
a) 4
b) 6
c) 10
d) 12
196. The equilibrium constant for a reaction is 1×10^{20} at 300 K . The standard Gibbs energy change for this reaction is :
a) -115 kJ
b) +115 kJ
c) +166 kJ
d) -116 kJ
197. The equilibrium constant for the reaction; $\mathrm{P}_{4}(s)+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{P}_{4} \mathrm{O}_{10}(s)$ is :
a) $K_{c}=\frac{1}{\left[\mathrm{O}_{2}\right]^{5}}$
b) $K_{c}=\left[\mathrm{O}_{2}\right]^{5}$
c) $K_{c}=\frac{\left[\mathrm{P}_{4} \mathrm{O}_{10}\right]}{5\left[\mathrm{P}_{4}\right]\left[\mathrm{O}_{2}\right]}$
d) $K_{c}=\frac{\left[\mathrm{P}_{4} \mathrm{O}_{10}\right]}{\left[\mathrm{P}_{4}\right]\left[\mathrm{O}_{2}\right]^{5}}$
198. The correct relation for hydrolysis constant of $\mathrm{NH}_{4} \mathrm{CN}$ is:
a) $\sqrt{\frac{K_{w}}{K_{a}}}$
b) $\frac{K_{w}}{K_{a} \times K_{b}}$
c) $\frac{\sqrt{K_{H}}}{c}$
d) $\frac{K_{a}}{K_{b}}$
199. The gaseous reaction,
$A+B \rightleftharpoons 2 C+D+Q$ is most favoured at
a) Low temperature and high pressure
b) High temperature and low high pressure
c) High temperature and low pressure
d) Low temperature and low pressure
200. An aqueous solution of $0.1 \mathrm{M}_{4} \mathrm{Cl}$ will have a pH closer to:
a) 9.1
b) 8.1
c) 7.1
d) 5.1
201. If the concentration of OH^{-}ions is the reaction $\mathrm{Fe}(\mathrm{OH})_{3}(s) \rightleftharpoons \mathrm{Fe}^{3+}(a q)+3 \mathrm{OH}^{-}(a q)$, is decreased by $\frac{1}{4}$ times, then equilibrium concentration of Fe^{3+} will increase by :
a) 16 times
b) 64 times
c) 4 times
d) 8 times
202. $A(g)+3 B(g) \rightleftharpoons 4 C(g)$.

Initially concentration of A is equal to that of B. The equilibrium concentrations of A and C are equal. K_{c} is
a) 0.08
b) 0.08
c) 8
d) 80
203.18 mL of mixture of acetic acid and sodium acetate required 6 mL of 0.1 M NaOH for neutralization of the acid and 12 mL of 0.1 M HCl for reaction with salt, separately. If $\mathrm{p} K_{a}$ of the acid is 4.75 , what is the pH of the mixture?
a) 5.05
b) 4.75
c) 4.5
d) 4.6
204. 50 mL of 0.1 M HCl and 50 mL of 0.2 M NaOH are mixed. The pH of the resulting solution is
a) 1.30
b) 4.2
c) 12.70
d) 11.70
205. K_{c} for the reaction : $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-} \rightleftharpoons \mathrm{Ag}^{+}+2 \mathrm{CN}^{-}$, the equilibrium constant at $25^{\circ} \mathrm{C}$ is 4.0×10^{-19}, then the silver ion concentration in a solution which was originally 0.1 molar in KCN and 0.03 molar in AgNO_{3} is :
a) 7.5×10^{18}
b) 7.5×10^{-18}
c) 7.5×10^{19}
d) 7.5×10^{-19}
206. The $\mathrm{p} K_{a}$ for acid A is greater than $\mathrm{p} K_{a}$ for acid B. The strong acid is:
a) Acid A
b) Acid B
c) Are equally strong
d) None of these
207. When 100 mL of 1 M NaOH solution is mixed with 10 mL of $10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, the resulting mixture will be
a) Acidic
b) Alkaline
c) HClO_{3}
d) $\mathrm{H}_{3} \mathrm{PO}_{3}$
208. The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in the rain water of $\mathrm{pH}=4.35$ is:
a) $4.5 \times 10^{-5} \mathrm{M}$
b) $6.5 \times 10^{-5} \mathrm{M}$
c) $9.5 \times 10^{-5} \mathrm{M}$
d) $12.5 \times 10^{-5} \mathrm{M}$
209. For which salt the pH of its solution does not change with dilution?
a) $\mathrm{NH}_{4} \mathrm{Cl}$
b) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
c) $\mathrm{CH}_{3} \mathrm{COONa}$
d) None of these
210. When hydrogen molecules decomposed into it's atoms which conditions gives maximum yield of H atom?
a) High temperature and low pressure
b) Low temperature and high pressure
c) High temperature and high pressure
d) Low temperature and low pressure
211. Which is not and acid salt?
a) $\mathrm{NaH}_{2} \mathrm{PO}_{2}$
b) $\mathrm{NaH}_{2} \mathrm{PO}_{3}$
c) $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
d) NaHSO_{3}
212. Which is a Lewis base?
a) $\mathrm{B}_{2} \mathrm{H}_{6}$
b) LiAlH_{4}
c) AlH_{3}
d) NH_{3}
213. Final pressure is higher than initial pressure of a container filled with an ideal gas at constant temperature. What will be the value of equilibrium constant?
a) $K=1.0$
b) $K=10.0$
c) $K>1.0$
d) $K<1.0$
214. In which of the following cases, does not reaction go farthest to completion?
a) $K=10^{3}$
b) $K=10^{-2}$
c) $K=10$
d) $K=1$
215. For the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HI}(\mathrm{g})$, the equilibrium constant K_{p} changes with
a) Total pressure
b) Catalyst
c) The amount H_{2} and I_{2}
d) Temperature
216. The equilibrium constant for the reaction,

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})
$$

At temperature T is 4×10^{-4}. The value of K_{c} for the reaction

$$
\mathrm{NO}(\mathrm{~g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

at the same temperature is
a) 2.5×10^{2}
b) 50
c) 4×10^{-4}
d) 0.02
217. The reaction, $2 \mathrm{~A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightleftharpoons 3 \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})}$ is begun with the concentration of A and B both at an initial value of 1.00 M . When equilibrium is reached, the concentration of D is measured and found to be 0.25 M . The value for the equilibrium constant for this reaction is given by the expression :
a) $\left[(0.75)^{3}(0.25)\right] \div\left[(1.00)^{2}(1.00)\right]$
b) $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.75)\right]$
c) $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.25)\right]$
d) $\left[(0.75)^{3}(0.25)\right] \div\left[(0.75)^{2}(0.25)\right]$
218. In $\mathrm{HS}^{-}, \mathrm{I}^{-}, \mathrm{R}-\mathrm{NH}_{2}, \mathrm{NH}_{3}$ order of proton accepting tendency will be:
a) $\mathrm{I}^{-}>\mathrm{NH}_{3}>\mathrm{RNH}_{2}>\mathrm{HS}^{-}$
b) $\mathrm{NH}_{3}>\mathrm{RNH}_{2}>\mathrm{HS}^{-}>\mathrm{I}^{-}$
c) $\mathrm{RNH}_{2}>\mathrm{NH}_{3}>\mathrm{HS}^{-}>\mathrm{I}^{-}$
d) $\mathrm{HS}^{-}>\mathrm{RNH}_{2}>\mathrm{NH}_{3}>\mathrm{I}^{-}$
219. Strong electrolytes are those which:
a) Dissolve readily in non-polar solvent
b) Conduct electricity in aqueous solution
c) Dissociate into ions at high concentration
d) None of the above
220. The pH of 0.1 N HCl solution is:
a) 1.0
b) 7.0
c) 14.0
d) 4.0
221. A solution of FeCl_{3} in water acts as acidic due to:
a) Acidic impurities
b) Ionisation
c) Hydrolysis of Fe^{3+}
d) Dissociation
222. The concept that an acid is a proton donor and a base is a proton acceptor was introduced by:
a) Arrhenius
b) Bronsted-Lowry
c) Lewis
d) Faraday
223. Which is decreasing order of strength of bases?

$$
\overline{\mathrm{O}} \mathrm{H}, \overline{\mathrm{~N}} \mathrm{H}_{2}, \mathrm{HC} \equiv \mathrm{C}^{-} \text {and } \mathrm{CH}_{3} \mathrm{CH}_{2}^{-}
$$

a) $\mathrm{H}_{3} \mathrm{CCH}_{2}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{HC} \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}$
b) $\mathrm{HC} \equiv \mathrm{C}^{-}>\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{OH}^{-}$
c) $\mathrm{OH}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{CH} \equiv \mathrm{C}^{-}>\mathrm{H}_{3} \mathrm{CCH}_{2}^{-}$
d) $\mathrm{NH}_{2}^{-}>\mathrm{HC} \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}>\mathrm{H}_{3} \mathrm{CCH}_{2}^{-}$
224. The strength of an acid depends on its tendency to
a) Accept protons
b) Donate protons
c) Accept electrons
d) Donate electrons
225. The following reactions are known to occur in the body,
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$
If CO_{2} escapes from the system, then:
a) pH will decrease
b) Hydrogen ion concentration will diminish
c) $\mathrm{H}_{2} \mathrm{CO}_{3}$ concentration will be unaltered
d) The forward reaction will be promoted
226. The common ion effect is shown by which of the following sets of solutions?
a) $\mathrm{BaCl}_{2}+\mathrm{BaNO}_{3}$
b) $\mathrm{NaCl}+\mathrm{HCl}$
c) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$
d) None of these
227. In the reaction, $\mathrm{C}(s)+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$, the equilibrium pressure is 12 atm . If 50% of CO_{2} reacts, K_{p} for the change is :
a) 12 atm
b) 16 atm
c) 20 atm
d) 6 atm
228. For a given solution $\mathrm{pH}=6.9$ at $60^{\circ} \mathrm{C}$, where $K_{w}=10^{-12}$. The solution is:
a) Acidic
b) Basic
c) Neutral
d) Unpredictable
229. A quantity of PCl_{5} was heated in a 10 litre vessel at $250^{\circ} \mathrm{C}$ to show $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$. At equilibrium the vessel contains 0.1 mole of $\mathrm{PCl}_{5}, 0.20$ mole of PCl_{3} and 0.20 mole of Cl_{2}. The equilibrium constant of the reaction is :
a) 0.02
b) 0.05
c) 0.04
d) 0.025
230. One mole of ethyl alcohol was treated with one mole of acetic acid at $25^{\circ} \mathrm{C} .2 / 3$ of the acid changes into ester at equilibrium. The equilibrium constant for the reaction will be:
a) 1
b) 2
c) 3
d) 4
231. 9.2 g of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is taken in a closed 1 L vessel and heated till the following equilibrium is reached $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
At equilibrium, $50 \% \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is dissociated. What is the equilibrium constant (in molL ${ }^{-1}$)? (Molecular weight of $\mathrm{N}_{2} \mathrm{O}_{4}=92$)
a) 0.1
b) 0.2
c) 0.3
d) 0.4
232. Assuming complete dissociation which of the following aqueous solutions will have the same pH value?
(i) 100 mL of 0.01 M HCl
(ii) 100 mL of $0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}$
(iii) 50 mL of 0.01 M HCl
(iv)Mixture of 50 mL of $0.02 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 50 mL of 0.02 M NaOH
a) (i), (ii)
b) (i), (iii)
c) (ii), (iv)
d) (i), (iv)
233. At 3000 K , the equilibrium pressure of $\mathrm{CO}_{2}, \mathrm{CO}$ and O_{2} are $0.6,0.4$ and 0.2 atm respectively. K_{p} for the reaction $2 \mathrm{CO}_{2} \rightleftharpoons 2 \mathrm{CO}+\mathrm{O}_{2}$, is
a) 0.089
b) 0.098
c) 0.189
d) 0.198
234. The $\mathrm{p} K_{a}$ of weak acid H_{A} is 4.5 . The pOH of an aqueous buffer solution of $\mathrm{H} A$ in which 50% of the acid is ionised:
a) 7.0
b) 4.5
c) 2.5
d) 9.5
235. An amphoteric buffer solution in which conc. of H^{+}and $\mathrm{H} X$ is same. The value of K_{a} of $\mathrm{H} X$ is 10^{-8}, then pH of buffer solution is
a) 3
b) 8
c) 10
d) 14
236. In the reaction, $3 A+2 B \rightarrow 2 C$, the equilibrium constant K_{c} is given by
a) $\frac{[3 A] \times[2 B]}{[C]}$
b) $\frac{[A]^{3} \times[B]}{[C]}$
c) $\frac{[C]^{2}}{[A]^{3} \times[B]^{2}}$
d) $\frac{[C]}{[3 A][2 B]}$
237. Which reaction is not affected by change in pressure?
a) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
b) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
c) $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
d) $2 \mathrm{C}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{CO}$
238. Three reactions involving $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$are given below
(i) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
(ii) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(iii) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{O}^{2-}$

In which of the above does $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$act as an acid?
a) (ii) only
b) (i)and (ii)
c) (iii) only
d) (i) only
239. pH for the solution of salt undergoing anionic hydrolysis (say $\mathrm{CH}_{3} \mathrm{COONa}$) is given by:
a) $\mathrm{pH}=\frac{1}{2}\left[\mathrm{p} K_{w}+\mathrm{p} K_{a}+\log c\right]$
b) $\mathrm{pH}=\frac{1}{2}\left[\mathrm{p} K_{w}+\mathrm{p} K_{a}-\log c\right]$
c) $\mathrm{pH}=\frac{1}{2}\left[\mathrm{p} K_{w}+\mathrm{p} K_{b}-\log c\right]$
d) None of the above
240. For the reactions, $A+B+Q \rightleftharpoons C+D$, if the temperature is increased then concentration of the products will
a) Increase
b) Decrease
c) Remains the same
d) Become zero
241. Under what conditions of temperature and pressure, the formation of atomic hydrogen from molecular hydrogen will be favoured most?
a) High temperature and high pressure
b) High temperature and low pressure
c) Low temperature and low pressure
d) Low temperature and high pressure
242. Mohr's salt is a:
a) Normal salt
b) Acid salt
c) Basic salt
d) Double salt
243. pH of $0.05 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ is:
a) 13
b) 10
c) 1
d) Zero
244. In which of the following reactions, the concentration of product is higher than the concentration of reactant at equilibrium? ($K=$ equilibrium constant)
a) $A \rightleftharpoons B ; K=0.001$
b) $M \rightleftharpoons N ; K=10$
c) $X \rightleftharpoons Y ; K=0.005$
d) $R \rightleftharpoons P$; $K=0.01$
245. The values of dissociation constant of bases are given below. Which is the weakest base?
a) 1.8×10^{-5}
b) 4.8×10^{-10}
c) 7.2×10^{-11}
d) 7.07×10^{-7}
246. The dissociation equilibrium of a gas AB_{2} can be represented as :

$$
2 A B_{2}(\mathrm{~g}) \rightleftharpoons 2 A B(\mathrm{~g})+B_{2}(\mathrm{~g})
$$

The degree of dissociation is ' x ' and is small compared to 1 . The expression relating the degree of dissociation (x) with equilibrium constant K_{p} and total pressure p is :
a) $\left(2 K_{p} / P\right)^{1 / 3}$
b) $\left(2 K_{p} / P\right)^{1 / 2}$
c) $\left(K_{p} / P\right)$
d) $\left(2 K_{p} / P\right)$
247. In which one of the following gaseous equilibria, K_{p} is less than K_{c} ?
a) $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
b) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
c) $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$
d) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
248. $K_{\text {sp }}$ for $\mathrm{Cr}(\mathrm{OH})_{3}$ is 2.7×10^{-31}. What is its solubility in $\mathrm{mol} / \mathrm{L}$?
a) 1×10^{-8}
b) 8×10^{-8}
c) 1.1×10^{-8}
d) 0.18×10^{-8}
249. $\mathrm{N}_{2} \mathrm{O}_{4}$ is dissociated to 33% and 40% at total pressure P_{1} and P_{2} atm respectively. Then the ratio P_{1} / P_{2} is:
a) $7 / 4$
b) $7 / 3$
c) $8 / 3$
d) $8 / 5$
250. In the reactions, $A+2 B \rightleftharpoons 2 C$, if 2 moles of $A, 3.0$ moles of B and 2.0 moles of C are placed in a 2 L flask and the equilibrium concentration of C is $0.5 \mathrm{~mol} / \mathrm{L}$, the equilibrium constant (K_{c}) for the reactions is
a) 0.21
b) 0.50
c) 0.75
d) 0.025
251. The pH value of $1 / 1000 \mathrm{~N} \mathrm{KOH}$ solution is
a) 3
b) 10^{-11}
c) 2
d) 11
252. The pH of tears coming out of a person's eye is:
a) 7.4
b) 6.4
c) 7.0
d) 2.36
253. The solubility of CaF_{2} is $2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$. Its solubility product $\left(K_{\mathrm{sp}}\right)$ is
a) 2.0×10^{-4}
b) 4.0×10^{-3}
c) 8.0×10^{-12}
d) 3.2×10^{-11}
254. The solubility product of a salt having general formula $M X_{2}$ in water is 4×10^{-12}. The concentration of M^{2+} ions in the aqueous solution of the salt is
a) $2.0 \times 10^{-6} \mathrm{M}$
b) $1.0 \times 10^{-4} \mathrm{M}$
c) $1.6 \times 10^{-4} \mathrm{M}$
d) $4.0 \times 10^{-10} \mathrm{M}$
255. The solubility product of barium sulphate is 1.5×10^{-9} at $18^{\circ} \mathrm{C}$. Its solubility in water at $18^{\circ} \mathrm{C}$ is
a) 1.5×10^{-9}
b) 1.5×10^{-5}
c) 3.9×10^{-9}
d) 3.9×10^{-5}
256. The strongest Bronsted base is
a) ClO_{3}^{-}
b) ClO_{2}^{-}
c) ClO_{4}^{-}
d) ClO^{-}
257. The reaction quotient (Q) at equilibrium is:
a) $=1$
b) $=K$
c) $>K$
d) $<K$
258. The concentration of oxalic acid is ' $x^{\prime} \mathrm{mol} \mathrm{L}^{-1} .40 \mathrm{~mL}$. of this solution reacts with 16 mL of 0.05 M acidified KMnO_{4}. What is the pH of ' x ' M oxolic acid solution?
(Assume that oxalic acid dissociates completely)
a) 1.3
b) 1.699
c) 1
d) 2
259. Metal ions like $\mathrm{Ag}^{+}, \mathrm{Cu}^{2+}$ etc. act as
a) Bronsted acids
b) Bronsted bases
c) Lewis acids
d) Lewis bases
260. The $p K_{a}$ of acetylsalicylic acid (aspirin) is 3.5. The pH of gastric juice in human stomach is about $2-3$ and the pH in the small intestine is about 8 . Aspirin will be
a) Unionised in the small intestine and in the stomach
b) Completely ionised in the small intestine and in the stomach
c) Ionised in the stomach and almost unionised in the small intestine
d) Ionised in the small intestine and almost unionised in the stomach
261. A solution is called saturated if:
a) Ionic concentration product < solubility product
b) Ionic concentration product $>$ solubility product
c) Ionic concentration product \geq solubility product
d) None of the above
262. The auto protonation constant of $\mathrm{H}_{2} \mathrm{O}$ is:
a) 1×10^{-14}
b) 3.23×10^{-18}
c) 1.8×10^{-18}
d) 3.23×10^{-20}
263. K_{c} for $m_{1} A+m_{2} B=n_{1} C+n_{2} D$ is given by:
a) $K_{c}=\frac{[A]^{m_{1}}[B]^{m_{2}}}{[C] \times[D]}$
b) $K_{c}=\frac{[A]^{n_{1}}[B]^{n_{2}}}{[C]^{m_{1}}[D]^{m_{2}}}$
c) $K_{c}=\frac{[C]^{n_{1}}[D]^{n_{2}}}{[A]^{m_{1}}[B]^{m_{2}}}$
d) $K_{c}=\frac{[C]^{m_{1}} \times[D]^{m_{2}}}{[A]^{n_{1}} \times[B]^{n_{2}}}$
264. The pH of millimolar HCl is
a) 1
b) 3
c) 2
d) 4
265. Partial pressure of A, B, C and D on the basis of gaseous system, $A+2 B \rightleftharpoons C+3 D$, are $A=0.20, B=$ $0.10, C=0.30$ and $D=0.50 \mathrm{~atm}$. The numerical value of equilibrium constant is
a) 3.75
b) 18.75
c) 17.85
d) 15.87
266. Which equilibrium can be described as Lewis acid-base reaction but not Bronsted acid-base reaction?
a) $\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
b) $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons 2 \mathrm{NH}_{4}^{+}+\mathrm{SO}_{4}^{2-}$
c) $\mathrm{NH}_{3}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
d) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
267. SnCl_{2} and HgCl_{2} cannot co-exist in a solution because of:
a) Common ion effect
b) Le - Chatelier's principle
c) Conc. of Cl^{-}increases to precipitate both
d) Redox change
268. The species which acts as a Lewis but not a Bronsted acid is
a) NH_{2}^{-}
b) O^{2-}
c) BF_{3}
d) OH^{-}
269. What is the best description of the change that occurs when $\mathrm{Na}_{2} \mathrm{O}(s)$ is dissolved in water?
a) Oxidation number of sodium decreases
b) Oxide ion accepts sharing in a pair of electrons
c) Oxide ion donates a pair of electrons
d) Oxidation number of oxygen increases
270. pH of 0.005 M calcium acetate is
($\mathrm{p} K_{a}$ of $\mathrm{CH}_{3} \mathrm{COOH}=4.74$)
a) 7.04
b) 9.37
c) 9.26
d) 8.2195
271. Relation between hydrolysis constant and dissociation constant are given. Which is the correct formula for MgCl_{2} ?
a) $K_{h}=\frac{K_{w}}{K_{a}}$
b) $K_{h}=\frac{K_{w}}{K_{b}}$
c) $K_{h}=\frac{K_{w}}{K_{a} \times K_{b}}$
d) $K_{w}=\frac{K_{h}}{K_{b}}$
272. Theory's 'active mass' indicates that the rate of chemical reaction is directly proportional to the
a) Equilibrium constant
b) Volume of apparatus
c) Properties of reactants
d) Concentration of reactants
273. In which of the following reactions, the value of K_{p} will be equal to K_{c} ?
a) $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
b) $2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{~N}_{2}+3 \mathrm{H}_{2}$
c) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
d) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
274. In the hydrolysis of a salt of weak acid and weak base, the hydrolysis constant K_{h} is equal to
a) $\frac{K_{w}}{K_{b}}$
b) $\frac{K_{w}}{K_{a}}$
c) $\frac{K_{w}}{K_{a} \cdot K_{b}}$
d) $K_{a} \cdot K_{b}$
275. In which reaction ammonia acts as an acid?
a) $\mathrm{NH}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}$
b) $\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+}$
c) $\mathrm{NH}_{3}+\mathrm{Na} \rightarrow \mathrm{NaNH}_{2}+\frac{1}{2} \mathrm{H}_{2}$
d) NH_{3} cannot act as an acid
276. The compounds A and B are mixed in equimolar proportion to form the products, $A+B \rightleftharpoons C+D$. At equilibrium, one third of A and B are consumed. The equilibrium constant for the reaction is
a) 0.5
b) 4.0
c) 2.5
d) 0.25
277.40% of a mixture of 0.2 mole of N_{2} and 0.6 mole of H_{2} react to give NH_{3} according to the equation, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ at constant temperature and pressure. Then the ratio of the final volume to the initial volume of gases is :
a) $4: 5$
b) $5: 4$
c) $7: 10$
d) $8: 5$
278. An aqueous solution contains a substance which yields 4×10^{-3} mol litre ${ }^{-1}$ ion of $\mathrm{H}_{3} \mathrm{O}^{+}$. If $\log 2=0.3010$, the pH of the solution is:
a) 1.5
b) 2.398
c) 3.0
d) 3.4
279. For preparing a buffer solution of pH 6 by mixing sodium acetate and acetic acid, the ration of concentration of salt and acid ($K_{a}=10^{-5}$) should be:
a) $1: 10$
b) $10: 1$
c) $100: 1$
d) $1: 100$
280. The concentration of hydrogen ion $\left[\mathrm{H}^{+}\right]$and pH in 10 M HCl is:
a) 10^{1}, zero
b) $10^{1},-1$
c) $10^{2}, 1$
d) $10^{1}, 1$
281. Solubility product of $\mathrm{Mg}(\mathrm{OH})_{2}$ at ordinary temperature is $1.96 \times 10^{-11} . \mathrm{pH}$ of a saturated solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ will be
a) 10.53
b) 8.47
c) 6.94
d) 3.47
282. For the reaction $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}:$
a) $K_{c}=2 K_{p}$
b) $K_{c}>K_{p}$
c) $K_{c}=K_{p}$
d) $K_{c}<K_{p}$
283. When CaCO_{3} is heated at a constant temperature in a closed container, the pressure due to CO_{2} produced will:
a) Change with the amount of CaCO_{3} taken
b) Change with the size of the container
c) Remain constant so long as temperature is constant
d) Remain constant even if temperature is changed
284. Four species are listed below
IV. HCO_{3}^{-}
V. $\mathrm{H}_{3} \mathrm{O}^{+}$
VI. HSO_{4}^{-}
VII. $\mathrm{HSO}_{3} \mathrm{~F}$

Which one of the following is the correct sequence of their acid strength?
a) (iv) $<$ (ii) $<$ (iii) $<$ (i)
b) (ii) $<$ (iii) $<$ (i) $<$ (iv)
c) (i) $<$ (iii) $<$ (ii) $<$ (iv)
d) (iii) $<$ (i) $<$ (iv) $<$ (ii)
285. $1 \mathrm{dm}^{3}$ solution containing 10^{5} moles each of Cl ions and CrO_{4}^{2} ions is treated with 10^{4} moles of silver nitrate. Which one of the following observation is made?
$\left[K_{\mathrm{sp}} \mathrm{Ag}_{2} \mathrm{CrO}_{4}\right.$
4
a) Precipitation does not occur
b) Silver chromate gets precipitated first
c) Silver chloride gets precipitated first
d) Both silver chromate and silver chloride start precipitating simultaneously
286. Which is a basic salt?
a) PbS
b) PbCO_{3}
c) PbSO_{4}
d) $2 \mathrm{PbCO}_{3} \mathrm{~Pb}(\mathrm{OH})_{2}$
287. A reversible reaction, $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightleftharpoons 2 \mathrm{HCl}$ is carried out in one litre flask. If the same reaction is carried out in two litre flask, the equilibrium constant will be:
a) Doubled
b) Decreased
c) Halved
d) Same
288. In the system, $\mathrm{CaF}_{2}(s) \rightleftharpoons \mathrm{Ca}^{2+}(a q)+2 \mathrm{~F}^{-}(a q)$, increasing the concentration of Ca^{2+} ions 4 times will cause the equilibrium concentration of F^{-}ions to change to :
a) $1 / 4$ of the initial value
b) $1 / 2$ of the initial value
c) 2 times of the initial value
d) None of the above
289. Hydrogen ion concentration in $\mathrm{mol} / \mathrm{L}$ in a solution of $\mathrm{pH}=5.4$ will be
a) 3.98×10^{8}
b) 3.88×10^{6}
c) 3.68×10^{-6}
d) 3.98×10^{-6}
290. The strongest conjugate base is
a) NO_{3}^{-}
b) Cl^{-}
c) SO_{4}^{2-}
d) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
291. In the reaction $\mathrm{I}_{2}+\mathrm{I}^{-}=\mathrm{I}_{3}^{-}$, the Lewis base is:
a) I_{2}
b) I^{-}
c) I_{3}^{-}
d) None of these
292. HI was heated in a sealed tube at $440^{\circ} \mathrm{C}$ till the equilibrium was reached, HI was found to be 22% decomposed. The equilibrium constant for dissociation is :
a) 0.282
b) 0.0796
c) 0.0199
d) 1.99
293. Which one is amphoteric oxide?
a) SO_{2}
b) $\mathrm{B}_{2} \mathrm{O}_{3}$
c) ZnO
d) $\mathrm{Na}_{2} \mathrm{O}$
294. For which reaction K_{p} is less than K_{c} ?
a) $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
b) $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$
c) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
d) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
295. For the reactions, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ if the initial concentration of $\left[\mathrm{H}_{2}\right]=\left[\mathrm{CO}_{2}\right]$ and x $\mathrm{mol} / \mathrm{L}$ of hydrogen is consumed at equilibrium, the correct expression of K_{p} is
a) $\frac{x^{2}}{(1-x)^{2}}$
b) $\frac{x^{2}}{(2+x)^{2}}$
c) $\frac{x^{2}}{1-x^{3}}$
d) $\frac{(1+x)^{2}}{(1-x)^{2}}$
296. In the given reaction,

$$
2 X(\mathrm{~g})+Y(\mathrm{~g}) \rightleftharpoons 2 Z(\mathrm{~g})+80 \mathrm{kcal}
$$

Which combination of pressure and temperature will give the highest yield of Z at equilibrium?
a) 1000 atm and $200^{\circ} \mathrm{C}$
b) 500 atm and $500^{\circ} \mathrm{C}$
c) 1000 atm and $100^{\circ} \mathrm{C}$
d) 500 atm and $100^{\circ} \mathrm{C}$
297. Equimolar solutions of the following were prepared in water separately. Which one of the solutions will record the highest pH ?
a) BaCl_{2}
b) MgCl_{2}
c) CaCl_{2}
d) SrCl_{2}
298. Which is not correct for Lewis acids?
a) They contain at least one vacant orbital
b) They have a tendency to accept electrons
c) The smaller ion has greater acidic strength
d) In case of ions, the strength of acid is inversely proportional to its charge
299. The vapour density of $\mathrm{N}_{2} \mathrm{O}_{4}$ at a certain temperature is 30 . What is the percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at this temperature?
a) 46.5%
b) 36.2%
c) 53.3%
d) 64.2%
300. For which reaction $K_{p} \neq K_{c}$?
a) $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
b) $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
c) $\mathrm{I}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
d) 2 C (s) $+\mathrm{O}_{2}$ (g) $\rightarrow 2 \mathrm{CO}$ (g)
301. A buffer mixture of acetic acid and potassium acetate has $\mathrm{pH}=5.24$. The ratio of $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right] /\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ in this buffer is, $\left(\mathrm{p} K_{a}=4.74\right)$:
a) $3: 1$
b) $1: 3$
c) $1: 1$
d) $1: 2$
302. $\mathrm{p} K_{a}$ of acetic acid is 4.74 . The concentration of $\mathrm{CH}_{3} \mathrm{COONa}$ is 0.01 M . The pH of $\mathrm{CH}_{3} \mathrm{COONa}$ is
a) 3.37
b) 4.37
c) 4.74
d) 0.474
303. If $1 \mathrm{MCH} \mathrm{COONa}_{3}$ is added to $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$:
a) pH of the solution increases
b) pH decreases
c) pH does not change
d) None of the above
304. 2.5 mL of $\frac{2}{5} \mathrm{M}$ weak monoacidic base ($K_{b}=1 \times 10^{-12}$ at $25^{\circ} \mathrm{C}$) is titrated with $\frac{2}{15} \mathrm{M} \mathrm{HCl}$ in water at $25^{\circ} \mathrm{C}$. The concentration of H^{+}at equivalence point is
($K_{w}=1 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$)
a) $3.7 \times 10^{-13} \mathrm{M}$
b) $3.2 \times 10^{-7} \mathrm{M}$
c) $3.2 \times 10^{-2} \mathrm{M}$
d) $2.7 \times 10^{-2} \mathrm{M}$
305. Solubility product of a salt $A B$ is $1 \times 10^{-8} \mathrm{M}^{2}$ in a solution in which the concentration of A^{+}ions is $10^{-3} \mathrm{M}$. The salt will precipitate when the concentration of B^{-}ions is kept
a) Between 10^{-8} to $10^{-7} \mathrm{M}$
b) Between $10^{-7} \mathrm{M}$ to $10^{-8} \mathrm{M}$
c) $>10^{-5} \mathrm{M}$
d) $<10^{-8} \mathrm{M}$
306. For the gaseous reaction, $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}, \Delta H=-130 \mathrm{~kJ} \mathrm{~mol}^{-1}$ carried in a closed vessel, the equilibrium concentration of the $\mathrm{C}_{2} \mathrm{H}_{6}$ can definitely be increased by
a) Increasing temperature and decreasingb) Decreasing temperature and increasing pressure pressure
c) Increasing temperature and pressure both
d) Decreasing temperature and pressure only
307. Chemical equilibrium is dynamic in nature because:
a) The equilibrium is maintained rapidly
b) The concentration of reactants and products become same at equilibrium
c) The concentration of reactants and products decrease with time
d) Both forward and backward reactions occur at all times with same speed
308. What happens to the yield on application of high pressure in the Haber's synthesis of ammonia?
a) Increases
b) Decreases
c) Unaffected
d) Reaction stops
309. The buffering action of an acidic buffer is maximum when its pH is equal to
a) 5
b) 7
c) 1
d) $\mathrm{p} K_{a}$
310. $\mathrm{H} A$ is a weak acid. The pH of $0.1 \mathrm{M} \mathrm{H} A$ solution is 2 . What is the degree of dissociation (α) of $\mathrm{H} A$?
a) 0.5
b) 0.2
c) 0.1
d) 0.301
311. Which of the following is a wrong statement about equilibrium state?
a) Rate of forward reaction= Rate of backward reaction
b) Equilibrium is dynamic
c) Catalysts increase value of equilibrium constant
d) Free energy change is zero
312. In an experiment to determine the enthalpy of neutralization of sodium hydroxide with sulphuric acid, $50 \mathrm{~cm}^{3}$ of 0.4 M sodium hydroxide were titrated thermometrically with 0.25 M sulphuric acid. Which of the following plots gives the correct representation?
a)

b)

c)

d)

313. H^{+}ion produces common ion effect in the wet analysis of:
a) Group I metals
b) Group II metals
c) Group III metals
d) Group IV metals
314.15 moles of H_{2} and 5.2 moles of I_{2} are mixed and allowed to attain equilibrium at $500^{\circ} \mathrm{C}$. At
equilibrium, the concentration of HI is found to be 10 moles. The equilibrium constant for the formation of HI is
a) 50
b) 15
c) 100
d) 25
315. $10^{-6} \mathrm{M} \mathrm{HCl}$ is diluted to 100 times. Its pH is:
a) 6.0
b) 8.0
c) 6.95
d) 9.5
316. For the reaction, $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g})$, the position of equilibrium can be shifted to the right by
a) Doubling the volume
b) Increasing the temperature
c) Addition of Cl_{2} at constant volume
d) Addition of equimolar quantities ofPCl ${ }_{3}$ and PCl_{5}
317. The pH of an aqueous solution containing $\left[\mathrm{H}^{+}\right]$concentration $=3.0 \times 10^{-3} \mathrm{M}$. The pH of the solution is
a) 2.523
b) 3.0
c) 2.471
d) None of these
318. The addition of which salt will decrease the H^{+}concentration of HCN solution?
a) $\mathrm{NH}_{4} \mathrm{Cl}$
b) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
c) AgNO_{3}
d) NaCN
319. The pH of the solution obtained by mixing 10 mL of $10^{-1} \mathrm{~N} \mathrm{HCl}$ and 10 mL of $10^{-1} \mathrm{~N} \mathrm{NaOH}$ is:
a) 8
b) 2
c) 7
d) None of these
320. The solubility product of PbCl_{2} is 2.3×10^{-32}. Its solubility will be
a) $1.78 \times 10^{-11} \mathrm{~g} / \mathrm{L}$
b) $2.95 \times 10^{-9} \mathrm{~g} / \mathrm{L}$
c) $3.42 \times 10^{-9} \mathrm{~g} / \mathrm{L}$
d) $4.95 \times 10^{-9} \mathrm{~g} / \mathrm{L}$
321. A white salt is readily soluble in water and gives a colourless solution with a pH of about 9 . The salt would be:
a) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
b) $\mathrm{CH}_{3} \mathrm{COONa}$
c) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
d) CaCO_{3}
322. The dissociation constant of $\mathrm{NH}_{4} \mathrm{OH}$ is 1.8×10^{-5}. The hydrolysis constant of $\mathrm{NH}_{4} \mathrm{Cl}$ would be:
a) 1.8×10^{-19}
b) 1.8×10^{-5}
c) 5.55×10^{-5}
d) 5.55×10^{-10}
323.50 mL of $\mathrm{H}_{2} \mathrm{O}$ is added to 50 mL of $1 \times 10^{-3} \mathrm{M}$ barium hydroxide solution. What is the pH of the resulting solution?
a) 3.0
b) 3.3
c) 11.0
d) 11.7
324. The indicator used in titration of oxalic acid with caustic soda solution is
a) Methyl orange
b) Methyl red
c) Fluorescein
d) Phenolphthalein
325. For $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$, at equilibrium some I_{2} is added. What happens to the equilibrium?
a) It is shifted to the right
b) It gets shifted to the leftc) It remains unchanged
d) None of the above
326. Which of the following is a characteristic of a reversible reaction?
a) It can never proceed to completion
b) It can be influenced by a catalyst
c) Number of moles of reactants and products are equal
d) None of the above
327. An aqueous solution of hydrogen sulphide shows the equilibrium,

$$
\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}
$$

If dilute hydrochloric acid is added to an aqueous solution of hydrogen sulphide without any change in temperature, then:
a) The equilibrium constant will change
b) The concentration of HS^{-}will increase
c) The concentration of undissociated hydrogen sulphide will decrease
d) The concentration of HS^{-}will decreases
328. Le-Chatelier's principle is not applicable to:
a) Homogeneous reactions
b) Heterogeneous reactions
c) Homogeneous or heterogeneous systems in equilibrium
d) Systems not in equilibrium
329. If $\mathrm{p} K_{a}$ values of four acids are given below at $25^{\circ} \mathrm{C}$, the strongest acid is
a) 2.0
b) 2.5
c) 3.0
d) 4.0
330. Weakest base among the following is:
a) NaOH
b) $\mathrm{Ca}(\mathrm{OH})_{2}$
c) $\mathrm{Zn}(\mathrm{OH})_{2}$
d) KOH
331. A solution of pH 9.0 is one thousand times as basic as a solution of pH :
a) 6
b) 7
c) 4
d) 10
332. Aprotic solvent is:
a) CCl_{4}
b) $\mathrm{C}_{6} \mathrm{H}_{6}$
c) SO_{2}
d) All of these
333. The hydroxide with highest solubility product is:
a) $\mathrm{Al}(\mathrm{OH})_{3}$
b) $\mathrm{Co}(\mathrm{OH})_{2}$
c) $\mathrm{Cr}(\mathrm{OH})_{3}$
d) $\mathrm{Fe}(\mathrm{OH})_{3}$
334. In the absence of formation of complex ions by the addition of a common ion, the solubility of a given salt is:
a) Increased
b) Decreased
c) Unaffected
d) First increased and then decreased
335. The pH of 0.1 M NaHS is, $K_{a_{1}}$ and $K_{a_{2}}$ for $\mathrm{H}_{2} \mathrm{~S}$ are 1.3×10^{-7} and 7.1×10^{-15} respectively:
a) 10.52
b) 9.52
c) 12.52
d) 13.52
336. $A+B \rightleftharpoons C+D$

Initially moles of A and B are equal. At equilibrium, moles of C are three times that of A. the equilibrium constant of the reaction will be
a) 1
b) 3
c) 4
d) 9
337. The strongest acid among the following is:
a) $\mathrm{ClO}_{3}(\mathrm{OH})$
b) $\mathrm{ClO}_{2}(\mathrm{OH})$
c) $\mathrm{SO}\left(\mathrm{OH}_{2}\right)$
d) $\mathrm{SO}_{2}(\mathrm{OH})_{2}$
338. The equilibrium constant in a reversible reaction at a given temperature
a) Does not depend on the initial concentrations
b) Depends on the initial concentrations of the reactants
c) Depends on the concentration of the products at equilibrium
d) It is not characteristic of the reaction
339. For the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ at 720 K , the value of equilibrium constant is 50 , when equilibrium concentration of both H_{2} and I_{2} is $0.5 \mathrm{M} . \mathrm{K}_{p}$ under the same conditions will be :
a) 0.02
b) 0.2
c) 50
d) 50 RT
340. If 340 g of a mixture of N_{2} and H_{2} in the correct ratio gave a 20% yield of NH_{3}. The mass produced would be :
a) 16 g
b) 17 g
c) 20 g
d) 68 g
341. The conjugate acid of CO_{3}^{2-} is:
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{H}_{2} \mathrm{CO}_{3}$
c) OH^{-}
d) HCO_{3}^{-}
342. Calculate the partial pressure of carbon monoxide from the following datas
$\mathrm{CaCO}_{3} \mathrm{C} \xrightarrow{\Delta} \mathrm{CaO}(\mathrm{g})+\mathrm{CO}_{2} \uparrow K_{p}=8 \times 10^{-2}$
$\mathrm{O}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{CO}(\mathrm{g}), \quad K_{p}=2$
a) 0.2
b) 0.4
c) 1.6
d) 4
343. In aqueous solution, the ionisation constants for carbonic acid are, $K_{1}=4.2 \times 10^{-7}$ and $K_{2}=4.8 \times 10^{-11}$
Select the correct statement for a saturated 0.034 M solution of the carbonic acid.
a) The concentration of CO_{3}^{2-} is 0.034 M
b) The concentration of CO_{3}^{2-} is greater than that

$$
\text { of } \mathrm{HCO}_{3}^{-}
$$

c) The concentration of H^{+}and HCO_{3}^{-}are c) approximately equal
d) The concentration of H^{+}is double that of
d) CO_{3}^{2-}
344. The rapid change of pH near the stoichiometric point of an acid base titration is the basis of indicator detection. pH of the solution is related to the ratio of the concentration of the conjugate acid (HIn) and base (In^{-}) forms of the indicator given by the expression
a) $\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}=\mathrm{p} K_{\text {In }}-\mathrm{pH}$
b) $\log \frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]}=\mathrm{p} K_{\text {In }}-\mathrm{pH}$
c) $\log \frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]}=\mathrm{PH}-\mathrm{p} K_{\mathrm{In}}$
d) $\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}=\mathrm{pH}-\mathrm{p} K_{\text {In }}$
345. The number of mole of hydroxide $\left[\mathrm{OH}^{-}\right]$ion in 0.3 litre of 0.005 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is:
a) 0.0075
b) 0.0015
c) 0.0030
d) 0.0050
346. 4.5 moles each of hydrogen and iodine heated in a sealed 10 L vessel. At equilibrium 3 moles of HI were found. The equilibrium constant for $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is
a) 1
b) 5
c) 10
d) 0.5
347. The degree of hydrolysis in hydrolytic equilibrium $A^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H} A+\mathrm{OH}^{-}$at salt concentration of 0.001 M is $\left(K_{a}=1 \times 10^{-5}\right)$
a) 1×10^{-3}
b) 1×10^{-4}
c) 5×10^{-4}
d) 1×10^{-6}
348. For a hypothetical equilibrium:
$4 A+5 B \rightleftharpoons 4 x+6 y$; the equilibrium constant K_{c} has the unit:
a) mol^{2} litre ${ }^{-2}$
b) litre mol^{-1}
c) litre $^{2} \mathrm{~mol}^{-2}$
d) $\mathrm{mol}_{\text {litre }}{ }^{-1}$
349. Salting out action of soap is based on:
a) Complex ion formation
b) Common ion effect
c) Solubility product
d) Acid-base neutralization
350. The equilibrium constant for the reaction, $\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$ is 5×10^{-2} atm. The equilibrium constant of the reaction $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ would be
a) 100 atm
b) 200 atm
c) $4 \times 10^{2} \mathrm{~atm}$
d) $6.25 \times 10^{4} \mathrm{~atm}$
351. Which can be explained as applications of Le-Chatelier's principle?
a) Transport of oxygen by haemoglobin in blood
b) Removal of CO_{2} from tissues by blood
c) Tooth decay due to use of sweet substances
d) All of the above
352. Which equilibrium in gaseous phase would be unaffected by an increase in pressure?
a) $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
b) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
c) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
d) $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{CO}_{2}$
353. The aqueous solution of AlCl_{3} is acidic due to the hydrolysis of
a) Aluminum ion
b) Chloride ion
c) Both aluminium and chloride ion
d) None of the above
354. The percentage error in $\left[\mathrm{H}^{+}\right]$made by neglecting the ionisation of water in $1.0 \times 10^{-6} \mathrm{M} \mathrm{NaOH}$ is:
a) 1%
b) 2%
c) 3%
d) 4%
355. The colour of $\mathrm{CuCr}_{2} \mathrm{O}_{7}$ solution in water is green because:
a) Cu^{2+} ions is green
b) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ion is green
c) Both the ions are green
d) Cu^{2+} ion is blue and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ion is yellow
356. Ammonium carbonate decomposes as
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(s) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
For the reaction, $K_{p}=2.9 \times 10^{-5} \mathrm{~atm}^{-3}$. If we start with 1 mole of the compound, the total pressure at equilibrium would be
a) 0.0766 atm
b) 0.0582 atm
c) 0.388 atm
d) 0.0194 atm
357. Ionic product of water increases if
a) Pressure is reduced
b) H^{+}is added
c) OH^{-}is added
d) Temperature increase
358. In which of the following reactions, increases in the volume at constant temperature do not affect the number of moles at equilibrium?
a) $2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{~N}_{2}+3 \mathrm{H}_{2}$
b) $\mathrm{C}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$
c) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$
d) None of the above
359. Which one of the following is least likely to act as a Lewis base?
a) I^{+}
b) I
c) SCl_{2}
d) PCl_{3}
360. An aqueous solution of ammonium acetate is:
a) Faintly acidic
b) Fair acidic
c) Faintly alkaline
d) Almost neutral
361. The strongest Lewis base in the following is
a) CH_{3}^{-}
b) F^{-}
c) NH_{2}^{-}
d) OH^{-}
362. For anionic hydrolysis, pH is given by
a) $\mathrm{pH}=\frac{1}{2} \mathrm{p} K_{w}-\frac{1}{2} \mathrm{p} K_{b}-\frac{1}{2} \log C$
b) $\mathrm{pH}=\frac{1}{2} \mathrm{p} K_{w}+\frac{1}{2} \mathrm{p} K_{a}-\frac{1}{2} \mathrm{p} K_{b}$
c) $\mathrm{pH}=\frac{1}{2} \mathrm{p} K_{w}+\frac{1}{2} \mathrm{p} K_{a}+\frac{1}{2} \log C$
d) $\mathrm{pH}=-\frac{1}{2}\left(\mathrm{p} K_{w}-\mathrm{p} K_{a}-\mathrm{p} K_{b}\right)$
363. Which of the following is a conjugated acid-base pair?
a) $\mathrm{HCl}, \mathrm{NaOH}$
b) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NH}_{4} \mathrm{OH}$
c) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HSO}_{4}^{-}$
d) $\mathrm{KCN}, \mathrm{HCN}$
364. In the hydrolytic equilibrium,
$\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}+\mathrm{OH}^{-}$
$K_{a}=1.0 \times 10^{-5}$. The degree of hydrolysis of $0.001 M$ solution of the salt is:
a) 10^{-3}
b) 10^{-4}
c) 10^{-5}
d) 10^{-6}
365. The equilibrium constant $\left(K_{c}\right)$ for the reaction, $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$ at room temperature T is 4×10^{-4}. The value of K_{c} for $\mathrm{NO}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$ at the same T is :
a) 0.02
b) 50
c) 4×10^{-4}
d) 2.5×10^{-2}
366. For the reaction,
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(s) \rightleftharpoons \mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(s)+2 \mathrm{H}_{2} \mathrm{O}(v)$ which one is correct representation?
a) $K_{p}=\left(P_{\mathrm{H}_{2} \mathrm{O}}\right)^{2}$
b) $K_{c}=\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$
c) $K_{p}=K_{c}(R T)^{2}$
d) All of these
367. The correct order of increasing $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in the following aqueous solutions is:
a) $0.01 M \mathrm{H}_{2} \mathrm{~S}<0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}<0.01 \mathrm{M} \mathrm{NaCl}<0.01 M \mathrm{NaNO}_{2}$
b) $0.01 M \mathrm{NaCl}<0.01 M \mathrm{NaNO}_{2}<0.01 M \mathrm{H}_{2} \mathrm{~S}<0.01 M \mathrm{H}_{2} \mathrm{SO}_{4}$
c) $0.01 M \mathrm{NaNO}_{2}<0.01 M \mathrm{NaCl}<0.01 M \mathrm{H}_{2} \mathrm{~S}<0.01 M \mathrm{H}_{2} \mathrm{SO}_{4}$
d) $0.01 M \mathrm{H}_{2} \mathrm{~S}<0.01 M \mathrm{NaNO}_{2}<0.01 \mathrm{M} \mathrm{NaCl}<0.01 M \mathrm{H}_{2} \mathrm{SO}_{4}$
368. K_{C} for $A+B \rightleftharpoons C+D$ is 10 at $25^{\circ} \mathrm{C}$. If a container contains $1,2,3$ and 4 mole per litre of A, B, C and D respectively at $25^{\circ} \mathrm{C}$, the reaction shall:
a) Proceed from left to right
b) Proceed from right to left
c) Be at equilibrium
d) None of the above
369. The compound whose 0.1 M solution is basic is
a) Ammonium acetate
b) Ammonium chloride
c) Ammonium sulphate
d) Sodium acetate
370. Isoelectric point is defined as the pH at which:
a) An amino acid becomes acidic
b) An amino acid becomes basic
c) Zwitter ion has positive charge
d) Zwitter ion has zero charge
371. The equilibrium constant of a reaction is 300 . If the volume of reaction flask is tripled, the equilibrium constant is
a) 300
b) 600
c) 900
d) 100
372. The oxoacid of SO_{2} is:
a) $\mathrm{H}_{2} \mathrm{SO}_{3}$
b) $\mathrm{H}_{2} \mathrm{SO}_{4}$
c) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
d) None of these
373. The solubility of CaF_{2} in pure water is $2.3 \times 10^{-6} \mathrm{~mol} \mathrm{dm}{ }^{-3}$. Its solubility product will be
a) 4.8×10^{-18}
b) 48.66×10^{-18}
c) 4.9×10^{-11}
d) 48.66×10^{-15}
374. pH value of which one of the following is not equal to one?
a) $0.1 \mathrm{M} \mathrm{HNO}_{3}$
b) $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
c) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
d) $50 \mathrm{~cm}^{3}$ of $0.4 \mathrm{M} \mathrm{HCl}+50 \mathrm{~cm}^{3}$ of 0.2 M NaOH
375.50 mL of 2 N acetic mixed with 10 mL of 1 N sodium acetate solution will have an approximate pH of $\left(K_{a}=10^{-5}\right)$:
a) 4
b) 5
c) 6
d) 7
376. The solubility of AgCl in 0.2 M NaCl is
$\left(K_{s p}\right.$ of $\left.\mathrm{AgCl}=1.8 \times 10^{-10}\right)$
a) $1.8 \times 10^{-11} \mathrm{M}$
b) $9 \times 10^{-10} \mathrm{M}$
c) $6.5 \times 10^{-12} \mathrm{M}$
d) $5.6 \times 10^{-11} \mathrm{M}$
377. The dissociation of water at $25^{\circ} \mathrm{C}$ is 1.9×10^{-7} percent and the density of water is $1.0 \mathrm{~g} / \mathrm{cm}^{3}$. The ionisation constant of water is:
a) 3.42×10^{-6}
b) 3.42×10^{-8}
c) 1.00×10^{-14}
d) 2.00×10^{-16}
378. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}+$ heat. What is the effect of the increase of temperature on the equilibrium of the reaction?
a) Equilibrium is shifted to the left
b) Equilibrium is shifted to the right
c) Equilibrium is unaltered
d) Reaction rate does not change
379. The expression for the solubility product of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ will be
a) $K_{s p} \quad s^{2}$
b) $K_{s p} \quad 4 s^{3}$
c) $K_{s p} \quad 27 s^{4}$
d) $K_{s p} \quad S$
380. The solubility of AgCl in 0.2 M NaCl solution is
$\left[\begin{array}{lll}K_{s p} \text { of } \mathrm{AgCl} & 1.2 & 10^{10}\end{array}\right]$
a) $6.0 \quad 10^{10} \mathrm{M}$
b) 0.2 M
c) $1.2 \quad 10^{10} \mathrm{M}$
d) $0.2 \quad 100^{10} \mathrm{M}$
381. Which of the following will not function as a buffer solution?
(i) NaCl and NaOH
(ii) NaOH and $\mathrm{NH}_{4} \mathrm{OH}$
(iii) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ and HCl
(iv) Borax and boric acid
a) (i), (ii), (iii)
b) (ii), (iii), (iv)
c) (i), (iii), (iv)
d) (i), (ii), (iii), (iv)
382. $K_{S P}$ of salts $A B, A B_{2}$ and $A_{3} B$ are $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$ and 2.7×10^{-15} respectively at temperature T. The solubility order of these salts in water at temperature T (in mol litre ${ }^{-1}$) is:
a) $\mathrm{AB}>A \mathrm{~B}_{2}>\mathrm{A}_{3} \mathrm{~B}$
b) $\mathrm{A}_{3} \mathrm{~B}>A \mathrm{~B}_{2}>A B$
c) $\mathrm{AB}_{2}>\mathrm{A}_{3} \mathrm{~B}>A B$
d) $\mathrm{AB}>\mathrm{A}_{3} \mathrm{~B}>A \mathrm{~B}_{2}$
383. Which does not act as Bronsted acid?
a) NH_{4}^{+}
b) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
c) HCO_{3}^{-}
d) HSO_{3}^{-}
384. Which of the following solutions will have $\mathrm{pH}=9$ at 298 K ?
a) $1 \times 10^{-9} \mathrm{M} \mathrm{HCl}$ solution
b) $1 \times 10^{-5} \mathrm{M} \mathrm{NaOH}$ solution
c) $1 \times 10^{-9} \mathrm{M} \mathrm{KOH}$ solution
d) Both (a) and (b)
385. Acidosis is diagnosed when blood pH :
a) Falls below 7.35
b) Rises above 7.45
c) Both (a) and (b)
d) None of these
386. Which statement is false? (Assume complete dissociation in each case)
a) If 2.0 L of a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains 0.1 mole , then pH of the solution is 2
b) The concentration of OH^{-}in $0.005 \mathrm{M} \mathrm{HNO}_{3}$ is $2.0 \times 10^{-12} \mathrm{~mol} / \mathrm{L}$
c) The pH of 0.01 M KOH is 12
d) In a 0.001 M solution of NaOH the concentration of H^{+}is $10^{-3} \mathrm{~mol} / \mathrm{L}$
387.10 mL of a solution contains $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}+0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$. Which addition would not change the pH of the solution?
a) Adding 1 mL water
b) Adding 5 mL of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$
c) Adding 5 mL of $0.1 \mathrm{M} \mathrm{NNH}_{4} \mathrm{OH}$
d) Adding 10 mL of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$
388. Arrhenius theory of acid-base is not valid for:
a) Aqueous solution
b) In presence of water
c) Non-aqueous solution
d) None of these
389. The solubility in water of a sparingly soluble salt $A B_{2}$ is $1 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$. Its solubility product number will be
a) 4×10^{-15}
b) 4×10^{-10}
c) 1×10^{-15}
d) 1×10^{-10}
390. The equilibrium constant $\left(K_{p}\right)$ for the reaction, $\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ is 16 . If the volume of the container is reduced to one half its original volume, the value of K_{p} for the reaction at the same temperature will be
a) 8
b) 16
c) 32
d) 64
391. The indicators used in the titration of iodine against sodium thiosulphate is
a) Starch
b) $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$
c) $\mathrm{K}_{2} \mathrm{CrO}_{4}$
d) Potassium
392. For the reaction,
$2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})-\mathrm{Q} \mathrm{kJ}$, the equilibrium constant depends upon
a) Temperature
b) Pressure
c) Catalyst
d) Volume
393. In the dissociation of $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$, the degree of dissociation will be influenced by the:
a) Addition of inert gas at constant volume
b) Addition of inert gas at constant pressure
c) Increase of temperature
d) Increase of pressure
394. If pressure increases then its effect on given equilibrium $2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is shift in
a) Forward direction
b) Backward direction
c) No effect
d) None of these
395. Which one of the molecular hydride acts as Lewis acid?
a) NH_{3}
b) $\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{B}_{2} \mathrm{H}_{6}$
d) CH_{4}
396. For the reversible reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ at $500^{\circ} \mathrm{C}$, the value of K_{p} is 1.44×10^{-5} when partial pressure is measured in atmospheres. The corresponding value of K_{c} with concentration in mol L ${ }^{-1}$, is
а) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$
b) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{2}}$
c) $\frac{1.44 \times 10^{-5}}{(8.314 \times 773)^{-2}}$
d) $\frac{1.44 \times 10^{-5}}{(0.082 \times 500)^{-2}}$
397. The compound that does not act as Lewis acid, is:
a) AlCl_{3}
b) BF_{3}
c) NH_{3}
d) FeCl_{3}
398. For the following reaction in gaseous phase
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) K_{p} / K_{c}$ is
a) $(R T)^{1 / 2}$
b) $(R T)^{-1 / 2}$
c) $(R T)$
d) $(R T)^{-1}$
399. For the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$, the equilibrium constants expressed in terms of concentrations K_{c} and in terms of partial pressure K_{p}, are related as
a) $K_{p}=K_{c}(R T)^{2}$
b) $K_{p}=K_{c}(R T)^{-2}$
c) $K_{p}=K_{c}$
d) $K_{c}=K_{p}(R T)$
400. In the titration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and HCl , the indicator used is
a) Methyl orange
b) Methylene blue
c) Phenolphthalein
d) Litmus
401. $\mathrm{HSO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$

Which is correct about conjugate acid base pair?
a) HSO_{4}^{-}is conjugate acid of base SO_{4}^{2-}
b) HSO_{4}^{-}is conjugate base of base SO_{4}^{2-}
c) SO_{4}^{2-} is conjugate acid of acid HSO_{4}^{-}
d) None of the above
402. In the reaction, $A_{2}(\mathrm{~g})+4 B_{2}(\mathrm{~g}) \rightleftharpoons 2 A B_{4}(\mathrm{~g}), \Delta H<0$, the formation of $A B_{4}$ will be favoured at
a) Low temperature, high pressure
b) High temperature, low pressure
c) Low temperature, low pressure
d) High temperature, high pressure
403. On applying pressure to the equilibrium,

$$
\text { ice } \rightleftharpoons \text { water }
$$

Which phenomenon will happen?
a) More ice will be formed
b) More water will be formed
c) Equilibrium will not be disturbed
d) Water will evaporate
404. A saturated solution of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is $2.5 \times 10^{-2} \mathrm{M}$. The value of its solubility product is
a) 62.5×10^{-6}
b) 6.25×10^{-4}
c) 15.625×10^{-6}
d) 3.125×10^{-6}
405. Aqueous solutions of two acids having same concentrations of common ion $\left(\mathrm{H}^{+}\right)$are called:
a) Isohydric solutions
b) Isotonic solutions
c) Isomeric solutions
d) Hypotonic solutions
406. The hydrolysis constant of a salt of weak acid and weak base is inversely proportional to
a) Ionic product of water
b) Dissociation constant of both weak acid and weak base
c) Dissociation constant of weak acid
d) Dissociation constant of weak base
407. If in the reaction $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}, x$ is that part of $\mathrm{N}_{2} \mathrm{O}_{4}$ which dissociates, then the number of molecules at equilibrium will be
a) 1
b) 3
c) $1+x$
d) $(1+x)^{2}$
408. The $\mathrm{p} K_{a}$ of a weak acid $(\mathrm{H} A)$ is 4.5. The pOH of an aqueous buffered solution of $\mathrm{H} A$ in which 50% of the acid ionised is
a) 4.5
b) 2.5
c) 9.5
d) 7.0
409. Number of H^{+}ions present in 10 mL of a solution of $\mathrm{pH}=3$ is:
a) 10^{13}
b) 6.02×10^{18}
c) 6.02×10^{13}
d) 6.02×10^{10}
410. The pH of gastric juice is normally:
a) Greater than 1.5 and less than 1.2
b) Less than 1.5
c) Greater than 1 and less than 3
d) Less than 1 and greater than zero
411. With reference to protonic acids, the correct statement is:
a) PH_{3} is more basic than NH_{3}
b) PH_{3} is less basic than NH_{3}
c) PH_{3} is amphoteric while NH_{3} is basic
d) None of the above
412. In a 500 mL flask, the degree of dissociation of PCl_{5} at equilibrium is 40% and the initial amount
is 5 moles. The value of equilibrium constant in $\mathrm{mol} \mathrm{L}^{-1}$ for the decomposition of PCl_{5} is
a) 2.33
b) 2.66
c) 5.32
d) 4.66
413. The unit of ionic product of water $\left(K_{w}\right)$ is:
a) mol^{-1} litre $^{-1}$
b) mol^{-1} litre $^{-2}$
c) $\mathrm{mol}^{-2}{ }^{\text {litre }}{ }^{-1}$
d) $\mathrm{mol}^{2}{ }^{2}$ itre ${ }^{-2}$
414. In a reversible reaction two substance are in equilibrium. If the concentration each one is doubled, the equilibrium constant will be
a) Reduced to one fourth of its original value
b) Reduced to half of its original value
c) Constant
d) Doubled
415. Le-Chatelier principle is applicable only to a
a) System in equilibrium
b) System not in equilibrium
c) Homogeneous reaction
d) Heterogeneous reaction
416. The dissociation constant of a substituted benzoic acid at $25^{\circ} \mathrm{C}$ is 1.0×10^{-4}. The pH of 0.01 M solution of its sodium salt is
a) 3
b) 7
c) 8
d) 6
417. A mixture of sodium oxide and calcium oxide are dissolved in water and saturated with excess carbon dioxide gas. The resulting solution is It contains
a) Basic; NaOH and $\mathrm{Ca}(\mathrm{OH})_{2}$
b) Neutral; $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and CaCO_{3}
c) Basic; $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and CaCO_{3}
d) Acidic; NaOH and CaCO_{3}
418. Conjugate acid of HF_{2}^{-}is
a) H^{+}
b) HF
c) F_{2}^{-}
d) $\mathrm{H}_{2} \mathrm{~F}_{2}$
419. Consider the reaction, $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$. One mole each of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ are heated in the presence of little concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. On equilibrium:
a) 1 mole of ethyl acetate is formed
b) 2 mole of ethyl acetate are formed
c) $1 / 2$ mole of ethyl acetate is formed
d) $2 / 3$ mole of ethyl acetate is formed
420. K_{b} for the hydrolysis reaction,
$\mathrm{B}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BOH}+\mathrm{H}^{+}$is 1.0×10^{-6}, the hydrolysis constant of the salt is:
a) 10^{-6}
b) 10^{-7}
c) 10^{-8}
d) 10^{-9}
421. The pH of a 0.001 M NaOH will be
a) 3
b) 2
c) 11
d) 12
422. In lime kiln, the reversible reaction. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ proceeds to completion because :
a) Of high temperature
b) CO_{2} escapes out
c) CaO is removed
d) Of low temperature
423. Solid $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is gradually dissolved in a $1.0 \times 10^{-4} \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. At what concentration of Ba^{2+} will a precipitate begin to form?
$\left(K_{s p}\right.$ for $\mathrm{BaCO}_{3}=5.1 \times 10^{-9}$)
a) $4.1 \times 10^{-5} \mathrm{M}$
b) $5.1 \times 10^{-5} \mathrm{M}$
c) $8.1 \times 10^{-8} \mathrm{M}$
d) $8.1 \times 10^{-7} \mathrm{M}$
424. The solubility of AgCl is $0.0015 \mathrm{~g} /$ litre. The solubility product of AgCl will be:
a) 2×10^{-10}
b) 1.1×10^{-10}
c) 3.1×10^{-10}
d) 4.1×10^{-10}
425. Although CO is neutral but it shows acidic nature on reaction with high P and T :
a) $\mathrm{Ca}(\mathrm{OH})_{2}$
b) NaOH
c) $\mathrm{Mg}(\mathrm{OH})_{2}$
d) LiOH
426. The acidic character order for given oxy-acids of halogens is:
a) $\mathrm{HOCl}>\mathrm{HOBr}>\mathrm{HOI}$
b) $\mathrm{HOI}>\mathrm{HOBr}>\mathrm{HOCl}$
c) $\mathrm{HOBr}>\mathrm{HOCl}>\mathrm{HOI}$
d) $\mathrm{HOI}>\mathrm{HOCl}>\mathrm{HOBr}$
427. The stronger Bronsted base is:
a) ClO^{-}
b) ClO_{2}^{-}
c) ClO_{3}^{-}
d) ClO_{4}^{-}
428. The indicator used in the titration of sodium carbonate with sulphuric acid is
a) Potassium ferrocyanide
b) Potassium ferricyanide
c) Methyl orange
d) Phenolphthalein
429. A cylinder fitted with a movable piston contains liquid water in equilibrium with water vapour at $25^{\circ} \mathrm{C}$. Which operation result in a decrease in the equilibrium vapour pressure?
a) Moving the piston downward a short distance
b) Removing a small amount of vapour
c) Removing a small amount of the liquid water
d) Dissolving salt in the water
430. If acetic acid is mixed with sodium acetate then H^{+}ion concentration will
a) Increase
b) Decrease
c) Remain unchanged
d) pH decrease
431. The reverse process of neutralization is:
a) Hydrolysis
b) Decomposition
c) Dehydration
d) Synthesis
432. The hydrogen ion concentration of a $10^{-8} \mathrm{M} \mathrm{HCl}$ aqueous solution at $298 \mathrm{~K}\left(K_{w}=10^{-14}\right)$ is:
a) $9.525 \times 10^{-8} \mathrm{M}$
b) $1.0 \times 10^{-8} \mathrm{M}$
c) $1.0 \times 10^{-6} \mathrm{M}$
d) $1.0525 \times 10^{-7} \mathrm{M}$
433. The number of ions formed when cuprammonium sulphate dissolves in water is:
a) One
b) Two
c) Four
d) Zero
434. A reversible chemical reaction have two reactants in equilibrium. If the concentrations of the reactants are doubled then the equilibrium constant will
a) Be halved
b) Also be doubled
c) Remains the same
d) None of these
435. According to Arrhenius concept, base is a substance that:
a) Gives a pair of protons
b) Donates a proton
c) Accepts an electron pair
d) Gives OH^{-}ions in aqueous solution
436. What is the effect of increasing pressure on the dissociation of PCl_{5} according to the equation?

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

a) Dissociation decreases
b) Dissociation increases
c) Dissociation does not change
d) None of the above
437. Which is Lewis acid?
a) BF_{3}
b) NF_{3}
c) Cl^{-}
d) $\mathrm{H}_{2} \mathrm{O}$
438. Which one of the following substances has the highest proton affinity?
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{H}_{2} \mathrm{~S}$
c) NH_{3}
d) $\mathrm{CH}_{3} \mathrm{COOH}$
439. The solubility product of a salt $A B_{2}$ is 4×10^{-9} at 373 K . The solubility of $A B_{2}$ in boiling water will be:
a) $4 \times 10^{-3} \mathrm{M}$
b) $4 \times 10^{-4} M$
c) $1 \times 10^{-10} \mathrm{M}$
d) $1 \times 10^{-3} \mathrm{M}$
440. Which pair will show common ion effect?
a) $\mathrm{BaCl}_{2}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
b) $\mathrm{NaCl}+\mathrm{HCl}$
c) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$
d) $\mathrm{AgCN}+\mathrm{KCN}$
441. In the case of gaseous homogeneous reaction, the concentrations of the reactants may be given by:
a) $\frac{P V}{R T}$
b) $\frac{P}{R T}$
c) $\frac{n}{V} R T$
d) $\frac{R T}{P}$
442. 0.5 M ammonium benzoate is hydrolysed to 0.25 percent. Hence, its hydrolysis constant is
a) 2.5×10^{-5}
b) 1.25×10^{-5}
c) 3.125×10^{-6}
d) 6.25×10^{-6}
443. The $K_{s p}$ of PbCO_{3} and MgCO_{3} are 1.5×10^{-15} and 1×10^{-15} respectively at 298 K . The concentration of Pb^{2+} ions in a saturated solution containing MgCO_{3} and PbCO_{3} is:
a) $1.5 \times 10^{-4} \mathrm{M}$
b) $3 \times 10^{-8} \mathrm{M}$
c) $2 \times 10^{-8} \mathrm{M}$
d) $2.5 \times 10^{-8} \mathrm{M}$
444. The $\left[\mathrm{H}^{+}\right]$ion concentration in 0.001 M acetic acid is $1.34 \times 10^{-4} \mathrm{~g}$ ion/litre. The $\left[\mathrm{H}^{+}\right]$ion concentration of
0.164 g of $\mathrm{CH}_{3} \mathrm{COONa}$ is added to a litre of $0.001 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ will be:
a) 9×10^{-6}
b) 18×10^{-6}
c) 4.5×10^{-6}
d) 5×10^{-6}
445. pH scale was introduced by
a) Arrhenius
b) Sorensen
c) Lewis
d) Lowry
446. $28 \mathrm{~g} \mathrm{~N}_{2}$ and $6 \mathrm{~g} \mathrm{H}_{2}$ were mixed. At equilibrium $17 \mathrm{~g} \mathrm{NH}_{3}$ was formed. The weight of N_{2} and H_{2} of equilibrium are respectively:
a) 11 g , zero
b) $1 \mathrm{~g}, 3 \mathrm{~g}$
c) $14 \mathrm{~g}, 3 \mathrm{~g}$
d) $11 \mathrm{~g}, 3 \mathrm{~g}$
447. An equilibrium mixture of the reaction, $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$ has 0.5 mole $\mathrm{H}_{2} \mathrm{~S}, 0.10$ mole H_{2} and 0.4 mole S_{2} in 1 L vessel. The value of equilibrium constant (K) in $\mathrm{mol} \mathrm{L}^{-1}$, is
a) 0.004
b) 0.008
c) 0.016
d) 0.032
448. 1 mole of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ at 300 K is kept in a closed container under 1 atm. It is heated to 600 K when 20% by mass of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ decomposes to $\mathrm{NO}_{2}(\mathrm{~g})$. The resultant pressure is
a) 1.2 atm
b) 2.4 atm
c) 2.0 atm
d) 1.0 atm
449. Equivalent amounts of H_{2} and I_{2} are heated in a closed vessel till equilibrium is obtained. If 80% of the hydrogen can be converted to H , the K_{c} at this temperature is
a) 64
b) 16
c) 0.25
d) 4
450. A litre of solution is saturated with AgCl . To this solution if 1.0×10^{-4} mole of solid NaCl is added, what will be the $\left[\mathrm{Ag}^{+}\right]$, assuming no volume change?
a) More
b) Less
c) Equal
d) Zero
451. The vapour density of undecomposed $\mathrm{N}_{2} \mathrm{O}_{4}$ is 46 . When heated, vapour density decreases to 24.5 due to its dissociation to NO_{2}. The per cent dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at the final temperature is :
a) 87
b) 60
c) 40
d) 70
452. A precipitate of AgCl is formed when equal volumes of the following are mixed $\left[K_{\text {sp }}\right.$ for $\left.\mathrm{AgCl}=10^{-10}\right]$
a) $10^{-4} \mathrm{M} \mathrm{AgNO}_{3}$ and $10^{-7} \mathrm{M} \mathrm{HCl}$
b) $10^{-5} \mathrm{M} \mathrm{AgNO}_{3}$ and $10^{-6} \mathrm{M} \mathrm{HCl}$
c) $10^{-5} \mathrm{M} \mathrm{AgNO}_{3}$ and $10^{-4} \mathrm{M} \mathrm{HCl}$
d) $10^{-6} \mathrm{M} \mathrm{AgNO}_{3}$ and $10^{-6} \mathrm{M} \mathrm{HCl}$
453. For the reaction $\mathrm{CO}(\mathrm{g})+0.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) K_{p} / K_{c}$ is equal to
a) $\sqrt{R T}$
b) $\frac{1}{\sqrt{R T}}$
c) 1
d) $R T^{2}$
454. Central metal ion in a complex or a cation acts as:
a) Lewis base
b) Lewis acid
c) Bronsted acid
d) Arrhenius acid
455. The degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}$ is influenced by:
a) HCl
b) $\mathrm{CH}_{3} \mathrm{COONa}$
c) $\mathrm{NH}_{4} \mathrm{OH}$
d) Either of these
456. Solubility of $\mathrm{Ca}(\mathrm{OH})_{2}$ is a $s \mathrm{~mol} \mathrm{~L}^{-1}$. The solubility product $\left(K_{\mathrm{sp}}\right)$ under the same condition is
a) $4 s^{3}$
b) $3 s^{4}$
c) $4 s^{2}$
d) S^{3}
457. Which one of the following substances has the highest proton affinity?
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{H}_{2} \mathrm{~S}$
c) NH_{3}
d) PH_{3}
458. Which of the following is not a conjugate acid base pair?
a) $\mathrm{HPO}_{3}^{2-}, \mathrm{PO}_{3}^{3-}$
b) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}^{2-}$
c) $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
d) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{PO}_{3}^{3-}$
459. In an equilibrium reaction, if $\Delta G^{\circ}=0$ the equilibrium constant, K should be equal to:
a) 0
b) 1
c) 2
d) 10
460. The gastric juice in our stomach contains enough hydrochloride acid to make the hydrogen ion concentration about $0.01 \mathrm{~mol} / \mathrm{litre}$. The pH of the gastric juice is:
a) 0.01
b) 1
c) 2
d) 14
461. At 550 K , the K_{c} for the following reaction is $10^{4} \mathrm{~mol}^{-1} \mathrm{~L}$

$$
X(\mathrm{~g})+Y(\mathrm{~g}) \rightleftharpoons Z(\mathrm{~g})
$$

At equilibrium, it was observed that

$$
[X]=\frac{1}{2}[Y]=\frac{1}{2}[Z]
$$

What is the value of $[Z]\left(\right.$ in mol^{-1}) at equilibrium?
a) 2×10^{-4}
b) 10^{-4}
c) 2×10^{4}
d) 10^{4}
462. A vessel at 1000 K contains CO_{2} with a pressure of 0.5 atm . Some of the CO_{2} is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm , the value of K_{p} is
a) 1.8 atm
b) 3 atm
c) 0.3 atm
d) 0.18 atm
463. Ammonium carbonate decomposes as

$$
\mathrm{NH}_{2} \mathrm{COONH}_{4}(s) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

For the reaction, $K_{p}=2.9 \times 10^{-5} \mathrm{~atm}^{3}$. If we start with 1 mole of the compound, the total pressure at equilibrium would be
a) 0.766 atm
b) 0.0582 atm
c) 0.0388 atm
d) 0.0194 atm
464. The $\mathrm{p} K_{a}$ of a weak acid, $\mathrm{H} A$, is 4.80. The $\mathrm{p} K_{b}$ of a weak base, $B O H$ is 4.78. The pH of an aqueous solution of the corresponding salt, $B A$, will be
a) 9.58
b) 4.79
c) 7.01
d) 9.22
465. The species among the following, which can act as an acid and a base is
a) HSO_{4}^{-}
b) SO_{4}^{2-}
c) $\mathrm{H}_{3} \mathrm{O}^{+}$
d) Cl^{-}
466. A monoprotic weak acid $(\mathrm{H} A)$ is ionised 5% in 0.1 M aqueous solution. What is the equilibrium constant for its ionisation?
$\mathrm{H} A(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+A^{-}(a q)$
a) 2.63×10^{4}
b) 2.63×10^{3}
c) 2.63×10^{-4}
d) 2.63×10^{-3}
467. Strongest acid is
a) $\mathrm{C}_{2} \mathrm{H}_{6}$
b) $\mathrm{CH}_{3} \mathrm{OH}$
c) $\mathrm{HC} \equiv \mathrm{HC}$
d) $\mathrm{C}_{6} \mathrm{H}_{6}$
468. Which of the following will have maximum pH ?
a) $\frac{\mathrm{M}}{10} \mathrm{HCl}$
b) $\frac{\mathrm{M}}{100} \mathrm{HCl}$
c) $\frac{\mathrm{M}}{10} \mathrm{NaOH}$
d) $\frac{\mathrm{M}}{100} \mathrm{NaOH}$
469. The pH of 1.0 M aqueous solution of a weak acid HA is 6.0. Its dissociation constant is:
a) 10^{-6}
b) 10^{-12}
c) 1.0
d) 6.0
470. In which of the following, the reaction proceeds towards completion?
a) $K=1$
b) $K=10$
c) $K=10^{2}$
d) $K=10^{3}$
471. The mixed salt among the following is:
CHOHCOOK
b) NaKSO_{4}
c) CaOCl_{2}
a) CHOHCOONa
472. What volume of $\mathrm{M} / 10 \mathrm{NaOH}$ added in $50 \mathrm{~mL}, \mathrm{M} / 10$ acetic acid solution to get a buffer solution having highest buffer capacity?
a) 50 mL
b) 25 mL
c) 10 mL
d) 40 mL
473. The pH value of an acid is 5 and its concentration is 1 M . What is the value of K_{a} for the acid?
a) 10^{-7}
b) 10^{-5}
c) 10^{-10}
d) 10^{-8}
474. The pH of a neutral water sample is 6.5 . Then the temperature of water
a) is $25^{\circ} \mathrm{C}$
b) is more than $25^{\circ} \mathrm{C}$
c) is less than $25^{\circ} \mathrm{C}$
d) can be more or less than $25^{\circ} \mathrm{C}$
475. The formation of phosgene is represented as, $\mathrm{CO}+\mathrm{Cl}_{2} \rightleftharpoons \mathrm{COCl}_{2}$. The reaction is carried out in 500 mL flask. At equilibrium 0.3 mole of phosgene, 0.1 mole of CO and 0.1 mole of Cl_{2} are present. The equilibrium constant of the reaction is:
a) 30
b) 15
c) 5
d) 3
476. In qualitative analysis, in order to detect second group basic redical, $\mathrm{H}_{2} \mathrm{~S}$ gas is passed in the presence of dilute HCl to
a) Increase the dissociation of $\mathrm{H}_{2} \mathrm{~S}$
b) Decrease the dissociation of salt solution
c) Decrease the dissociation of $\mathrm{H}_{2} \mathrm{~S}$
d) Increase the dissociation of salt solution
477. For two acids Aand $p K_{a}=1.2$, and 2.8 respectively in value then which is true?
a) A and B both are equally acidic
b) A is stronger than B
c) B is stronger than A
d) Neither A nor B is strong
478. The weakest base among the following is:
a) H^{-}
b) CH_{3}^{-}
c) $\mathrm{CH}_{3} \mathrm{O}^{-}$
d) Cl^{-}
479. The hydrogen ion concentration in $\mathrm{mol} /$ litre of a solution of $\mathrm{pH}=0$ is:
a) Zero
b) 10^{-7}
c) 1 M
d) None of these
480. For which reaction is $K_{p}=K_{c}$?
a) $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
b) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
c) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g})$
d) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
481. For the reaction,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, if the initial concentration of
$\left[\mathrm{H}_{2}\right]=\left[\mathrm{CO}_{2}\right]$ and $x \mathrm{~mol} / \mathrm{L}$ of hydrogen is consumed at equilibrium, the correct expression of K_{p} is
a) $\frac{x^{2}}{(1-x)^{2}}$
b) $\frac{(1+x)^{2}}{(1-x)^{2}}$
c) $\frac{x^{2}}{(2+x)^{2}}$
d) $\frac{x^{2}}{1-x^{2}}$
482. $K_{s p}=[A]^{3}[B]^{2}$ for the salt where A and B are the cation and anion as the case may be stand true for:
a) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
b) $\mathrm{As}_{2} \mathrm{~S}_{3}$
c) $\mathrm{Bi}_{2} \mathrm{~S}_{3}$
d) All are correct
483. The dissociation constant for acetic acid and HCN at $25^{\circ} \mathrm{C}$ are 1.5×10^{-3} and 4.5×10^{-10} respectively. the equilibrium constant for the equilibrium,
$\mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{HCN}+\mathrm{CH}_{3} \mathrm{COO}^{-}$would be:
a) 3.0×10^{4}
b) 3.0×10^{5}
c) 3.0×10^{-5}
d) 3.0×10^{-4}
484. The pH of the solution $5 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{HCl}+10 \mathrm{~mL}$ of $\frac{\mathrm{M}}{10} \mathrm{NaOH}$ is
a) 5
b) 3
c) 7
d) 8
485. In the reaction, $\mathrm{AlCl}_{3}+\mathrm{Cl}^{-} \rightarrow\left[\mathrm{AlCl}_{4}\right]^{-}, \mathrm{AlCl}_{3}$ acts as:
a) Salt
b) Lewis base
c) Lewis acid
d) Bronsted acid
486. A weak acid $\mathrm{H} X$ has dissociation constant 10^{-5}. The pH of 0.1 M solution of this acid will be
a) 2
b) 3
c) 4
d) 5
487. The $p K_{a}$ of HCN is 9.30 . The pH of a solution prepared by mixing 2.5 moles of KCN and 2.5 moles of KCN and 2.5 moles of HCN in water and making up the total volume of 500 mL , is
a) 9.30
b) 7.30
c) 10.30
d) 8.30
488. 30 cc of $\frac{\mathrm{M}}{3} \mathrm{HCl}, 20 \mathrm{cc}$ of $\frac{\mathrm{M}}{2} \mathrm{HNO}_{3}$ and 40 cc of $\frac{\mathrm{M}}{4} \mathrm{NaOH}$ solutions are mixed and the volume was made up to $1 \mathrm{dm}^{3}$. The pH of the resulting solution is
a) 8
b) 2
c) 1
d) 3
489. A solution contains 10 mL 0.1 N NaOH and $10 \mathrm{~mL} 0.05 \mathrm{~N} \mathrm{NH}_{2} \mathrm{SO}_{4}, \mathrm{pH}$ of this solution is
a) Less than 7
b) 7
c) Zero
d) Greater than 7
490. A reversible chemical reaction is having two reactants, in equilibrium. If the concentration of the reactants are doubled then the equilibrium constant will
a) Bo doubled
b) Become one fourth
c) Be halved
d) Remain the same
491. Conjugate bade of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is
a) $\mathrm{H}_{3} \mathrm{PO}_{4}$
b) $\mathrm{P}_{2} \mathrm{O}_{5}$
c) PO_{4}^{3-}
d) HPO_{4}^{2-}
492. The equilibrium constant for the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ is K then the equilibrium constant for the equilibrium,
$\mathrm{NH}_{3} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2}$ is
a) $\frac{1}{K}$
b) \sqrt{K}
c) $\frac{1}{K^{2}}$
d) $\frac{1}{\sqrt{K}}$
493. An acid type indicator HIn differs in colour from its conjugate base (In^{-}). The human eye is sensitive to colour differences only when the ratio $\left[\mathrm{In}^{-}\right] /[\mathrm{HIn}]$ is greater than 10 or smaller than 0.1 . What should be the minimum change in the pH of the solution to observe a complete colour change $\left(K_{a}=1.0 \times 10^{-5}\right)$?
a) 4
b) 2
c) 6
d) 1
494. Which is an example of Lewis acid?
a) HCl
b) $\mathrm{H}_{2} \mathrm{SO}_{4}$
c) SO_{2}
d) HNO_{3}
495. A student wants to prepare a saturated solution of Ag^{+}ion. He has got three samples $\mathrm{AgCl}\left(K_{s p}=\right.$ $10-10, \operatorname{AgBr}(K s p=10-13)$ and Ag 2 CrO 4 Ksp $=10-12$. Which of the above compound will be used by him using minimum weight to prepare the saturated solution?
a) AgCl
b) AgBr
c) $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
d) All of these
496. Acetic acid and propionic acid have K_{a} values 1.75×10^{-5} and 1.3×10^{-5} respectively at a certain temperature. An equimolar solution of a mixture of the two acids is partially neutralized by NaOH . How is the ratio of the contents of acetate and propionate ions related to the K_{a} values and the molarity?
a) $\left(\frac{\alpha}{1-\alpha}\right)=\frac{1.75}{1.3} \times\left(\frac{\beta}{1-\beta}\right), 0$ where α and β are ionised fractions of the acids
b) The ratio is unrelated to the K_{a} values
c) The ratio is unrelated to the molarity
d) The ratio is unrelated to the pH of the solution
497. The equivalent conductance of 0.1 N acetic acid is $5 \mathrm{~cm}^{2} \mathrm{ohm}^{-1} \mathrm{eq}^{-1}$ at 298 K while λ_{∞} is $390 \mathrm{~cm}^{2} \mathrm{ohm}^{-1} \mathrm{eq} .^{-1}$. The degree of dissociation of 0.1 N acetic acid will be:
a) 0.0013
b) 0.013
c) 0.13
d) 0.5
498. Raising the temperature of a reversible chemical reaction :
a) Favours the forward rate only
b) Favours the backward rate only
c) Favours both the forward and backward rates as the case may be
d) Favours neither the forward nor backward rates
499. Zn salt is mixed with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$ of molarity 0.021 M . The amount of Zn^{2+} remains unprecipitated in 12 mL of this solution $\left(K_{s p}\right.$ of $\left.\mathrm{ZnS}=4.51 \times 10^{-24}\right)$ which is:
a) $1.677 \times 10^{-22} \mathrm{~g}$
b) $1.767 \times 10^{-22} \mathrm{~g}$
c) $2.01 \times 10^{-23} \mathrm{~g}$
d) None of these
500. Pure ammonia is placed in a vessel at temperature where its dissociation constant (α) is appreciable. At equilibrium,
a) K_{p} does not change significantly with pressure
b) α does not change with pressure
c) Concentration of NH_{3} does not change with pressure
d) Concentration of H_{2} is less than that of N_{2}
501. A chemical reaction $A \rightleftharpoons B$ is said to be at equilibrium when:
a) Complete conversion of A to B has taken place
b) Conversion of A to B is only 50% complete
c) Only 10% conversion of A to B has taken place
d) The rate of transformation of A and B is just equal to the rate of transformation of B to A in the system
502. As the temperature increases, the pH of a KOH solution
a) Will decrease
b) Will increase
c) Remains constant
d) Depends upon the concentration of KOH solution
503. Tribasic acid furnishes...type of anions.
a) 2
b) 1
c) 3
d) 4
504. Which of the following pairs constitutes buffer?
a) HNO_{3} and $\mathrm{NH}_{4} \mathrm{NO}_{3}$
b) HCl and KCl
c) HNO_{2} and NaNO_{2}
d) NaOH and NaCl
505. What will be the pH and $\% \alpha$ respectively for the salt $B A$ of 0.1 M concentration? Given, K_{a} for $\mathrm{H} A=10^{-6}$ and K_{b} for $\mathrm{BOH}=10^{-6}$
a) $7,10 \%$
b) $5,10 \%$
c) $5,0.1 \%$
d) $7,1 \%$
506. The indicator used in titrating oxalic acid with caustic soda solution is:
a) Methyl orange
b) Methyl red
c) Fluorescein
d) Phenolphthalein
507. The pH of a 0.02 M solution of hydrochloric acid is:
a) 2.0
b) 1.7
c) 0.3
d) 2.2
508. For the reaction, $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$, at a given temperature, the equilibrium amount of $\mathrm{CO}_{2}(\mathrm{~g})$ can be increased by
a) Increasing the amount of $\mathrm{CO}(\mathrm{g})$
b) Decreasing the volume of the container
c) Adding a suitable catalyst
d) Adding an inert gas
509. $\mathrm{Ag}^{+}+\mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+} ; K_{1}=3.5 \times 10^{-3}$
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}+\mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$;
$K_{2}=1.7 \times 10^{-3}$
Then the formation constant of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is
a) 6.08×10^{-6}
b) 6.08×10^{6}
c) 6.08×10^{-9}
d) None of these
510.1 mL of 0.1 N HCl is added to 999 mL solution of NaCl . The pH of the resulting solution will be:
a) 7
b) 4
c) 2
d) 1
511. The role of catalyst in reversible reaction is :
a) To increase the rate of forward reaction
b) Decrease the rate after equilibrium
c) Allow equilibrium to be achieved quickly
d) None of the above
512. Which one is correct representation for, $2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$?
a) $K_{p}=\frac{\left(p_{\mathrm{SO}_{2}}\right)^{2}\left(p_{\mathrm{O}_{2}}\right)}{\left(p_{\mathrm{SO}_{3}}\right)^{2}}$
b) $K_{c}=\frac{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{3}\right]^{2}}$
c) $K_{p}=\frac{\left(\text { mole of } \mathrm{SO}_{2}\right)^{2} \times\left(\text { mole of } \mathrm{O}_{2}\right)}{\left(\text { mole of } \mathrm{SO}_{3}\right)^{2}} \times\left[\frac{P}{\text { total mole at equilibrium }}\right]$
d) All of the above
513. The solubility of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ in water is y moles/litre. Its solubility product is
a) $6 y^{4}$
b) $36 y^{4}$
c) $64 y^{5}$
d) $108 y^{5}$
514. For the reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$, the equilibrium constant is K_{1}, the equilibrium constant is K_{2}, for the reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$. What is K. for the reaction $\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$?
a) $\frac{1}{\left(K_{1} K_{2}\right)}$
b) $\frac{1}{\left(2 K_{1} K_{2}\right)}$
c) $\frac{1}{\left(4 K_{1} K_{2}\right)}$
d) $\left(\frac{1}{\left(K_{1} K_{2}\right)}\right)^{1 / 2}$
515. The equilibrium constant for the reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$ at temperature T is 4×10^{-4}. The value of K_{c} for the reaction $\mathrm{NO}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$ at the same temperature is
a) 25
b) 50
c) 75
d) 100
516. If the value of K_{c} for an equilibrium reaction is 10^{-4}, then the reaction is in
a) Backward direction
b) Forward direction
c) Equilibrium
d) Reaction is not possible
517. 5 moles of X are mixed with 3 moles of Y. At equilibrium for the reaction, $X+Y \rightleftharpoons Z, 2$ moles of Z are formed. The equilibrium constant for the reaction will be
a) $\frac{2}{3}$
b) $\frac{1}{2}$
c) $\frac{3}{2}$
d) $\frac{1}{4}$
518. If in the reaction : $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}, \alpha$ is degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$, then the number of molecules at equilibrium will be:
a) 3
b) 1
c) $(1-\alpha)^{2}$
d) $(1+\alpha)$
519. The hydroxide having the lowest value of $K_{s p}$ at $25^{\circ} \mathrm{C}$ is:
a) $\mathrm{Mg}(\mathrm{OH})_{2}$
b) $\mathrm{Ca}(\mathrm{OH})_{2}$
c) $\mathrm{Ba}(\mathrm{OH})_{2}$
d) $\mathrm{Be}(\mathrm{OH})_{2}$
520. The effect of increasing the pressure on the equilibrium $2 A+3 B \rightleftharpoons 3 A+2 B$ is
a) Forward reaction is favoured
b) Backward reaction is favoured
c) No effect
d) None of the above
521. Conjugate base of hydrazoic acid is:
a) HN_{3}^{-}
b) N_{3}^{-}
c) N^{3-}
d) N_{2}^{-}
522. A reaction is, $A+B \rightarrow C+D$. Initially we start with equal concentrations of A and B. At equilibrium, we find the moles of C are two times of A. What is the equilibrium constant of the reaction?
a) 2
b) 4
c) $\frac{1}{2}$
d) $\frac{1}{4}$
523. Which of the following is the strongest conjugate base?
a) Cl^{-}
b) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
c) SO_{4}^{2-}
d) NO_{2}^{-}
524. Consider the following equilibrium in a closed container

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

At a fixed temperature, the volume of the reaction container is halved. For this change which of the following statement holds true regarding the equilibrium constant (K_{p}) and degree of dissociation (α) ?
a) Neither K_{p} nor α changes
b) Both K_{p} and α changes
c) K_{p} changes but α does not
d) K_{p} does not change but α changes
525. If K_{a} for a weak acid is 10^{-5}. $\mathrm{p} K_{b}$ value of its conjugate base is:
a) 5
b) 6
c) 7
d) 9
526. According to law of mass action, for the reaction
$2 A+B \rightarrow$ Products
a) Rate $=k[A][B]$
b) Rate $=k[A]^{2}[B]$
c) Rate $=k[A][B]^{2}$
d) Rate $=k[A]^{1 / 2}[B]$
527. The equilibrium constant for the reaction, $2 \mathrm{X}(\mathrm{g})+\mathrm{Y}(\mathrm{g}) \rightleftharpoons 2 \mathrm{Z}(\mathrm{g})$ is 2.25 litre mol^{-1}. What would be the concentration of Y at equilibrium with 2.0 mole of X and 3.0 mole of Z in one litre vessel?
a) 1.0 M
b) 2.25 M
c) 2.0 M
d) 4.0 M
528. $A(\mathrm{~g})+B(\mathrm{~g}) \rightleftharpoons A B(\mathrm{~g})$ is a reversible reaction. At equilibrium 0.4 mole of $A B$ is formed when each A and B are taken one mole. How much of A changes into $A B$?
a) 20%
b) 40%
c) 60%
d) 4%
529. A solute undergoes complex formation with ions of sparingly soluble salt, the solubility of salt:
a) Increases
b) Decreases
c) Is unaffected
d) Either of these
530. The pH of the solution containing 0.1 N NaOH and $0.1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$ is:
a) 1
b) 7
c) 2
d) 13
531. Which buffer solution comprising of the following has its pH value greater than 7 ?
a) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
b) $\mathrm{HCOOH}+\mathrm{HCOOK}$
c) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
d) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$
532. Which of the following behaves as both Lewis and Bronsted base?
a) BF_{3}
b) Cl^{-}
c) CO
d) None of these
533. If solubility of calcium hydroxide is $\sqrt{3}$, then its solubility product will be
a) 27
b) 3
c) 9
d) $12 \sqrt{3}$
534. Pure water is kept in a vessel and it remains exposed to atmospheric CO_{2} which is absorbed. Then the pH will be:
a) Greater than 7
b) Less than 7
c) 7
d) Depends on ionic product of water
535. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ to NO_{2} is carried out at 280 K in chloroform. When equilibrium has been established, 0.2 mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ and 2×10^{-3} mole of NO_{2} are present in 2 L solution. The equilibrium constant for reaction $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$ is
a) 1×10^{-2}
b) 1×10^{-3}
c) 1×10^{-4}
d) 1×10^{-5}
536. The most favourable condition for the manufacture of NH_{3} is
a) high temperature and high pressure
b) low temperature and low pressure
c) high temperature and low pressure
d) low temperature and high pressure
537. The value of K_{p} for the following reaction $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$, is 1.2×10^{-2} at $106.5^{\circ} \mathrm{C}$. The value of K_{c} for this reaction is
a) $=1.2 \times 10^{-2}$
b) $<1.2 \times 10^{-2}$
c) $>1.2 \times 10^{-2}$
d) None of these
538. In hydrolysis of a salt of weak acid and strong base $A^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H} A+\mathrm{OH}^{-}$, the hydrolysis constant $\left(K_{h}\right)$ is equal to...
a) $\frac{K_{w}}{K_{a}}$
b) $\frac{K_{w}}{K_{b}}$
c) $\sqrt{\frac{K_{a}}{C}}$
d) $\frac{K_{w}}{K_{a} \times K_{b}}$
539. The pH of $7 \times 10^{-8} \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is:
a) 8.1
b) 7.9
c) 7.1
d) 6.85
540. Water acts as an acid in presence of:
a) NH_{3}
b) $\mathrm{H}_{2} \mathrm{SO}_{4}$
c) $\mathrm{C}_{6} \mathrm{H}_{6}$
d) HCl
541. Which statement is/are correct?
a) All Bronsted bases are also Lewis bases
b) All Bronsted acids are not Lewis acids
c) All cations are acids and all anions are bases
d) All of the above
542. Three moles of PCl_{5}, three moles of PCl_{3} and two moles of Cl_{2} are taken in a closed vessel. If at equilibrium the vessel has 1.5 moles of PCl_{5}, the number of moles of PCl_{3} present in it is
a) 5
b) 3
c) 6
d) 4.5
543. Ice and water are in equilibrium at 273 K , which of the following statements is correct?
a) $G_{(\text {ice })}>G_{\left(\mathrm{H}_{2} \mathrm{O}\right)}$
b) $G_{(\text {ice })}<G_{\left(\mathrm{H}_{2} \mathrm{O}\right)}$
c) $G_{(\text {ice })}=G_{\left(\mathrm{H}_{2} \mathrm{O}\right)}=0$
d) $G_{(\text {ice })}=G_{\left(\mathrm{H}_{2} \mathrm{O}\right)} \neq 0$
544. For an equilibrium reaction involving gases, the forward reaction is 1 st order while the reverse reaction is 2nd order. The units of K_{P} for the forward equilibrium is:
a) atm
b) atm^{2}
c) atm^{-1}
d) atm^{-2}
545. A buffer solution has equal volumes of $0.2 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ and $0.02 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$. The $\mathrm{p} K_{b}$ of the base is 5 . The pH is
a) 10
b) 9
c) 4
d) 7
546. Which of the following will supress the ionisation of acetic acid is aqueous solution?
a) NaCl
b) HCl
c) KCl
d) Unpredictable
547. The Henderson's equation used to calculate the pOH of basic buffer is:
a) $\mathrm{pOH}=\mathrm{p} K_{b}+\log \frac{\text { [Conjugate acid }]}{[\text { Base }]}$
b) $\mathrm{pOH}=\mathrm{p} K_{b}-\log \frac{\text { [Conjugate acid }]}{[\text { Base }]}$
c) $\mathrm{pOH}=\mathrm{p} K_{b}+\log \frac{[\text { Base }]}{[\text { Conjugate acid }]}$
d) $\mathrm{pOH}=\mathrm{p} K_{b}-\log \frac{[\text { Base }]}{[\text { Conjugate acid }]}$
548. Which of the following is the weakest acid?
a) HCl
b) HF
c) $\mathrm{H}_{2} \mathrm{SO}_{4}$
d) HNO_{3}
549. How many gram of NaOH must be present in one litre of the solution to give it a $\mathrm{pH}=12$?
a) $0.20 \mathrm{~g} \mathrm{litre}^{-1}$
b) $0.4 \mathrm{~g} \mathrm{litre}^{-1}$
c) $4.0 \mathrm{~g} \mathrm{litr}^{-1}$
d) $0.10 \mathrm{~g} \mathrm{litre}^{-1}$
550. Approximate pH of 0.10 M aqueous $\mathrm{H}_{2} \mathrm{~S}$ solution having K_{1} and K_{2} for $\mathrm{H}_{2} \mathrm{~S}$ at $25^{\circ} \mathrm{C} 10^{-7}$ and 10^{-13} respectively, is:
a) 4
b) 5
c) 9
d) 8
551. An aqueous solution whose pH is zero will be called as
a) Acidic
b) Basic
c) Neutral
d) Amphoteric
552. The concentration of KI and KCl in a certain solution containing both is 0.001 M each. If 20 mL of this solution is added to 20 mL of a saturated solution of AgI in water. What will happen?
($K_{\text {sp }} \mathrm{AgCl}=10^{-10}, K_{\text {sp }} \mathrm{AgI}=10^{-16}$)
a) AgI will be precipitated
b) AgCl will be precipitated
c) There will be no precipitate
d) Both AgCl and AgI will be precipitated
553. The equilibrium reaction that is not influenced by volume change at constant temperature is
a) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
b) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
c) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
d) $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2}$ (g)
554. Group IA metals react violently with water to produce ... nature in solution.
a) Acidic
b) Basic
c) Amphoteric
d) Neutral
555. $A+B=C+D$. If initially the concentration of A and B are both equal but at equilibrium, concentration of D will be twice of that of A, then what will be the equilibrium constant of reaction?
a) $\frac{4}{9}$
b) $\frac{9}{4}$
c) $\frac{1}{9}$
d) 4
556. The phenomenon of interaction of anions and cations furnished by a electrolyte with the H^{+}and OH^{-}ions of water to produce acidic nature or alkalinity is known as hydrolysis. In hydrolysis:
a) The pH may either increase or decrease
b) All the salts (except those made up with strong acid and base) undergo hydrolysis
c) The variation of pH depends upon the nature of salts as well as on the temperature
d) All of the above
557. $A_{2}(\mathrm{~g})+B_{2}(\mathrm{~g}) \rightleftharpoons 2 A B(\mathrm{~g}), \Delta H=-\mathrm{ve}$

The reaction
a) Remains unaffected by pressure
b) Occurs at 1000 atm pressure
c) Occurs at high temperature
d) Occurs at high pressure and high temperature
558. 20 mL of 0.5 N HCl and 35 mL of 0.1 N NaOH are mixed. The resulting solution will
a) Be neutral
b) Be basic
c) Turn phenolphthalein solution pink
d) Turn methyl orange red
559. A solution which is $10^{-3} \mathrm{M}$ each in $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Zn}^{2+}$ and Hg^{2+} is treated with $10^{-16} \mathrm{M}$ sulphide ion. If K_{sp} of $\mathrm{MnS}, \mathrm{FeS}, \mathrm{ZnS}$ and HgS are 10^{-15}, $10^{-23}, 10^{-20}$ and 10^{-54} respectively, which one will precipitate first?
a) FeS
b) MgS
c) HgS
d) ZnS
560. Ostwald's dilution law is applicable for
a) Weak electrolyte
b) Strong electrolyte
c) Both weak and strong electrolyte
d) Non-electrolyte
561. The equilibrium $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ shows that K_{p} is 24.63 times the value of K_{c} at a particular temperature T. Then T (in K) is:
a) 200
b) 100
c) 300
d) 400
562. At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}^{+}\right]=10^{-6} \mathrm{M}$, if 100 mL of 0.2 M HCl is added to 200 mL of 0.1 M KOH at $90^{\circ} \mathrm{C}$ then pH of the resulting solution will be
a) 7
b) 8
c) 4
d) 6
563. In a reaction, the rate of reactions is proportional to its active mass. This statement is known as
a) Law of mass-action
b) Le-Chatelier principle
c) Faraday law of electrolysis
d) Law of constant proportion
564. The values of $K_{p_{1}}$ and $K_{p_{2}}$ for the reactions

$$
\begin{align*}
& X \rightleftharpoons Y+Z \tag{1}\\
& \text { and } A \rightleftharpoons 2 B \tag{2}
\end{align*}
$$

are in the ration $9: 1$. If degree of dissociation of X and A be equal, then total pressure at equilibrium (1) and (2) are in the ratio :
a) $1: 9$
b) $36: 1$
c) $1: 1$
d) $3: 1$
565. Which of the following is not a characteristic property of chemical equilibrium?
a) Rate of forward reaction is equal to rate of backward reaction at equilibrium
b) After reaching the chemical equilibrium, the concentrations of reactants and products remain unchanged with time
For $A(\mathrm{~g}) \rightleftharpoons B(\mathrm{~g}), K_{c}$ is 10^{-2}. If this reaction is carried out in the presence of catalyst, the value of K_{c} decreases
d) After reaching the equilibrium, both forward and backward reactions continue to take place
566. Which molecule is an electron donor?
a) NH_{3}
b) BF_{3}
c) PF_{5}
d) AsF_{5}
567. The correct expression for the solubility product of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ is
a) $108 s^{5}$
b) $27 s^{5}$
c) $16 \mathrm{~s}^{4}$
d) $81 \mathrm{~s}^{4}$
568. pH of solution can be expressed as
a) $-\log _{e}\left[\mathrm{H}^{+}\right]$
b) $-\log _{10}\left[\mathrm{H}^{+}\right]$
c) $\log _{e}\left[\mathrm{H}^{+}\right]$
d) $\log _{10}\left[\mathrm{H}^{+}\right]$
569. Which aqueous solution will have pH less than 7 ?
a) KNO_{3}
b) NaOH
c) NaCN
d) FeCl_{3}
570. If the salts $M_{2} X, Q Y_{2}$ and $P Z_{3}$ have the same solubilities, $K_{s p}$ values are related as:
a) $K_{s p}\left(M_{2} X\right)=K_{s p}\left(Q Y_{2}\right)<K_{s p}\left(P Z_{3}\right)$
b) $K_{s p}\left(M_{2} X\right)>K_{s p}\left(Q Y_{2}\right)=K_{s p}\left(P Z_{3}\right)$
c) $K_{s p}\left(M_{2} X\right)=K_{s p}\left(Q Y_{2}\right)=K_{s p}\left(P Z_{3}\right)$
d) $K_{s p}\left(M_{2} X\right)>K_{s p}\left(Q Y_{2}\right)>K_{s p}\left(P Z_{3}\right)$
571. The pH values of 0.1 M solution of $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ will have the order
a) $\mathrm{HCl}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{COONa}$
b) $\mathrm{CH}_{3} \mathrm{COONa}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HCl}$
c) $\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{COONa}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HCl}$
d) All will have same of pH value
572. When rain is accompanied by a thunderstorm the collected rain water will have a pH value:
a) Uninfluenced by occurrence of thunderstorm
b) Depending on the amount of dust in air
c) Slightly lower than that of rain water without thunderstorm
d) Slightly higher than that when the thunderstorm is not there
573. Ammonia gas dissolves in water to form $\mathrm{NH}_{4} \mathrm{OH}$. In this reaction water acts as
a) A conjugate base
b) A non-polar solvent
c) An acid
d) A base
574. pH scale was introduced by
a) Arrhenius
b) Sorensen
c) Lewis
d) Lowry
575. Given : $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{+}+\mathrm{NH}_{3} ; \quad K_{1}^{0}=1.4 \times 10^{-4}$

$$
\mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{+} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{NH}_{3} ; \quad \mathrm{K}_{2}^{0}=4.3 \times 10^{-4}
$$

The instability constant of the complex $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}$is equal to :
a) 7.14×10^{3}
b) 2.33×10^{3}
c) 6.02×10^{-8}
d) 1.66×10^{7}
576. An aqueous solution contains $\mathrm{Ni}^{2+}, \mathrm{Co}^{2+}$ and Pb^{2+} ions at equal concentrations. The solubility product of $\mathrm{NiS}, \mathrm{PbS}$ and CoS in water at $25^{\circ} \mathrm{C}$ are $1.4 \times 10^{-24}, 3.4 \times 10^{-28}$ and 3×10^{-26}, respectively. Indicate which of these ions will be precipitated first and last when sulphide concentration is progressively increased from zero?
a) NiS and PbS
b) NiS and CoS
c) CoS and NiS
d) PbS and NiS
$577.10^{-6} \mathrm{M} \mathrm{NaOH}$ is diluted 100 times. The pH of the diluted base is
a) Between 7 and 8
b) Between 5 and 6
c) Between 6 and 7
d) Between 10 and 11
578. An acid with molecular formula $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$ forms three types of sodium salts, i.e., $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{Na}^{2}, \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3} \mathrm{Na}_{2}$ and $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{Na}_{3}$. The basicity of the acid is:
a) One
b) Two
c) Three
d) Four
579. If the concentration of CrO_{4}^{2-} ion in a saturated solution of silver chromate be $2 \times 10^{-4} \mathrm{M}$, solubility product of silver chromate will be:
a) 4×10^{-8}
b) 8×10^{-12}
c) 32×10^{-12}
d) 6×10^{-12}
580. What would be the effect on addition of CaCO_{3} on the equilibrium of $\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(\mathrm{~g})$ in a closed container:
a) conc. of CO_{2} increases
b) conc. of CO_{2} decreases
c) Remains unaffected
d) Cannot be predicted
581. In a chemical equilibrium, the rate constant of the backward reaction is 7.5×10^{-4} and the equilibrium constant is 1.5 . So, the rate constant of the forward reaction is
a) 1.125×10^{-3}
b) 2.225×10^{-3}
c) 3.335×10^{-5}
d) 1.125×10^{-1}
582. 0.1 M acetic acid solution is titrated against 0.1 M NaOH solution. What would be the difference in pH between $1 / 4$ and $3 / 4$ stages of neutralization of acid?
a) $2 \log 3 / 4$
b) $2 \log 1 / 4$
c) $\log 1 / 3$
d) $2 \log 3$
583. For a concentrated solution of a weak electrolyte $A_{x} B_{y}$ of concentration ' C ', the degree of dissociation ' α ' is given as
a) $\alpha=\sqrt{K_{\text {eq }} / C(x+y)}$
b) $\alpha=\sqrt{K_{\mathrm{eq}} C /(x y)}$
c) $\alpha=\left(K_{\text {eq }} / C^{x+y-1} x^{x} y^{y}\right)^{1 /(x+y)}$
d) $\alpha=\left(K_{\text {eq }} / C x y\right)$
584. The values of dissociation constant of some acids (at $25^{\circ} \mathrm{C}$) are given below. The strongest acid in water is:
a) 1.4×10^{-2}
b) 1.6×10^{-4}
c) 4.4×10^{-10}
d) 4.3×10^{-7}
585. In a mixture of acetic acid and sodium acetate the ratio of concentration of the salt to the acid is increased ten times. Then, the pH of the solution
a) Increases by one
b) Decreases by one
c) Decreases ten fold
d) Increased ten fold
586. Which of the following salts is most soluble?
a) $\mathrm{Bi}_{2} \mathrm{~S}_{3}\left(K_{\text {sp }}=1 \times 10^{-17}\right)$
b) $\operatorname{MnS}\left(K_{\text {sp }}=7 \times 10^{-16}\right)$
c) $\operatorname{CuS}\left(K_{\text {sp }}=8 \times 10^{-37}\right)$
d) $\mathrm{Ag}_{2} \mathrm{~S}\left(K_{\text {sp }}=6 \times 10^{-51}\right)$
587. van't Hoff's equation giving the effect of temperature on chemical equilibrium is represented as:
a) $\frac{d \operatorname{In} F}{d T}=\frac{\Delta H}{R T^{2}}$
b) $\frac{d \operatorname{In} K_{p}}{d T}=\frac{\Delta H T^{2}}{R}$
c) $\frac{d \operatorname{In} K_{p}}{d T}=\frac{\Delta H}{R T^{2}}$
d) $\frac{d \operatorname{In} K_{p}}{d T}=\frac{R T^{2}}{\Delta H}$
588. Hydrogen and oxygen were heated together in a closed vessel. The equilibrium constant is found to decrease after $2000^{\circ} \mathrm{C}$. Which is responsible for this?
a) Backward reaction predominates
b) Forward reaction predominates
c) Both forward and backward reactions have same rate
d) It is a property of the system, hence no reason for lower value
589. The dissociation constant of HCN is 1.3×10^{-9}. The value of hydrolysis constant of KCN will be:
a) 1.3×10^{-9}
b) 10^{-14}
c) 7.7×10^{-5}
d) 0.77×10^{-5}
590. Solubility product of silver bromide is 5.010^{13}. The quantity of potassium bromide (molar mass taken as $120 \mathrm{~g} \mathrm{~mol}^{1}$) to be added to 1 L of 0.05 M solution of silver nitrate to start the precipitation of AgBr is
a) $1.210^{10} \mathrm{~g}$
b) $1.210^{9} \mathrm{~g}$
c) $6.2 \quad 10^{5} \mathrm{~g}$
d) $5.010^{8} \mathrm{~g}$
591. In the thermal decomposition of potassium chlorate given as $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$, law of mass action
a) Can be applied
b) Cannot be applied
c) Can be applied at low temperature
d) Can be applied at high temperature and pressure
592. The solubility product of a sparingly soluble salt $A B$ at room temperature is 1.21×10^{-6}. Its molar solubility is
a) 1.21×10^{-6}
b) 1.21×10^{-3}
c) 1.1×10^{-4}
d) 1.1×10^{-3}
593. What is the correct representation for the solubility product of SnS_{2} ?
a) $\left[\mathrm{Sn}^{2+}\right]\left[\mathrm{S}^{2-}\right]^{2}$
b) $\left[\mathrm{Sn}^{4+}\right]\left[\mathrm{S}^{2-}\right]^{2}$
c) $\left[\mathrm{Sn}^{2+}\right]\left[2 \mathrm{~S}^{2-}\right]$
d) $\left[\mathrm{Sn}^{4+}\right]\left[2 \mathrm{~S}^{2-}\right]^{2}$
594. Which of the following $\mathrm{p} K_{a}$ values, represent the strongest acid?
a) 10^{-4}
b) 10^{-8}
c) 10^{-5}
d) 10^{-2}
595. An electrolyte
a) Gives complex ions in solution
b) Dissolves in water to give ions
c) Is ionised in the solid state
d) Generates ions on passing electric current
596. The strongest base among the following is:
a) CH_{3}^{-}
b) F^{-}
c) NH_{2}^{-}
d) OH^{-}
597. Given the reaction between 2 gases represented by A_{2} and B_{2} to give the compound $A B_{(\mathrm{g})}$.

$$
A_{2(\mathrm{~g})}+B_{2(\mathrm{~g})} \rightleftharpoons 2 A B_{(\mathrm{g})}
$$

At equilibrium, the concentration
of $A_{2}=3.0 \times 10^{-3} \mathrm{M}$
of $B_{2}=4.2 \times 10^{-3} \mathrm{M}$
of $A B=2.8 \times 10^{-3} \mathrm{M}$
If the reaction takes place in a sealed vessel at $527^{\circ} \mathrm{C}$, then the value of K_{c} will be :
a) 2.0
b) 1.9
c) 0.62
d) 4.5
598. For the reaction, $A+B \rightleftharpoons C+D$, the initial concentration of A and B are equal, but the equilibrium concentration of C is twice that of equilibrium concentration of A. The equilibrium constant is :
a) 4
b) 9
c) $1 / 4$
d) $1 / 9$
599. For the reaction,
$\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g})$ the position of equilibrium can be shifted to the right by
a) Doubling the volume
b) Increasing the temperature
c) Addition of equimolar quantities of PCl_{3} and PCl_{5}
d) Addition of Cl_{2} at constant volume
600. The solubility of $\mathrm{AgCl}\left(K_{s p}=1.2 \times 10^{-10}\right)$ in a 0.10 M NaCl solution is:
a) 0.1 M
b) $1.2 \times 10^{-6} \mathrm{M}$
c) $1.2 \times 10^{-9} \mathrm{M}$
d) $1.2 \times 10^{-10} \mathrm{M}$
601. The following equilibrium exists in aqueous solution $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$. If dilute HCl is added to this solution:
a) The equilibrium constant will increase
b) The equilibrium constant will decrease
c) Acetate ion concentration will increase
d) Acetate ion concentration will decrease
602. What is the solubility product of CaF_{2}, if its saturated solution contains 0.017 g of CaF_{2} per litre?
a) 1.44×10^{-4}
b) 4.14×10^{-11}
c) 4.14×10^{-18}
d) 41.4×10^{-24}
603. Which of the following will occur if a 0.1 M solution of weak acid is diluted to 0.01 M at constant temperature?
a) pH will increase
b) K_{a} will decrease
c) $\left[\mathrm{H}^{+}\right]$will decrease to 0.01 M
d) $\%$ ionisation will increase
604. Passing $\mathrm{H}_{2} \mathrm{~S}$ gas into a mixture of $\mathrm{Mn}^{2}, \mathrm{Ni}^{2}, \mathrm{Cu}^{2}$ and Hg^{2} ions in an acidified aqueous solution precipitates
a) CuS and HgS
b) MnS and CuS
c) MnS and NiS
d) NiS and HgS
605. The pH of an aqueous solution of $\mathrm{CH}_{3} \mathrm{COONa}$ of concentration $C(\mathrm{M})$ is given by
a) $7-\frac{1}{2} p K_{a}-\frac{1}{2} \log C$
b) $\frac{1}{2} p K_{w}+\frac{1}{2} p K_{b}+\frac{1}{2} \log C$
c) $\frac{1}{2} p K_{w}-\frac{1}{2} p K_{b}-\frac{1}{2} \log C$
d) $\frac{1}{2} p K_{w}+\frac{1}{2} p K_{a}+\frac{1}{2} \log C$
606. The concentration of $\left[\mathrm{H}^{+}\right]$and concentration of $\left[\mathrm{OH}^{-}\right]$of a 0.1 M aqueous solution of 2% ionised weak acid is:
[ionic product of water $=1 \times 10^{-14}$]
a) $0.02 \times 10^{-3} \mathrm{M}$ and $5 \times 10^{-11} \mathrm{M}$
b) $1 \times 10^{-3} \mathrm{M}$ and $3 \times 10^{-11} \mathrm{M}$
c) $2 \times 10^{-3} \mathrm{M}$ and $5 \times 10^{-12} \mathrm{M}$
d) $3 \times 10^{-2} \mathrm{M}$ and $4 \times 10^{-13} \mathrm{M}$
607. For a weak acid $\mathrm{p} K_{a}$ is 4.8 . What will be the ratio of concentration of acid and salt in pH 5.8 solution?
a) 10
b) 3
c) 9
d) 0.1
608. Two system $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ and $\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$ are simultaneously in equilibrium in a vessel at constant volume. If some CO is introduced into the vessel then at the new equilibrium the concentration of :
a) PCl_{5} is greater
b) PCl_{3} remains unchanged
c) PCl_{5} is less
d) Cl_{2} is greater
609. The solubility product of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in water at 298 K is 3.2×10^{-11}. What will be the concentration of CrO_{4}^{2-} ions in the saturated solution of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$?
a) $2 \times 10^{-4} \mathrm{M}$
b) $5.7 \times 10^{-5} \mathrm{M}$
c) $5.7 \times 10^{-6} \mathrm{M}$
d) $3.2 \times 10^{-11} \mathrm{M}$
610. Sulphide ions in alkaline solution react with solid sulphur to form polyvalent sulphide ions. The equilibrium constant for the formation of S_{2}^{2-} and S_{3}^{2-} from S and S^{2-} ions are 1.7 and 5.3 respectively. Equilibrium constant for the formation of S_{3}^{2-} from S_{2}^{2-} and S is:
a) 1.33
b) 3.11
c) 4.21
d) 1.63

611 . The pH of water is 7 at $25^{\circ} \mathrm{C}$. If water is heated to $50^{\circ} \mathrm{C}$, which of the following should be true?
a) pH will decrease
b) pH will increase
c) pH will remain seven
d) $\left[\mathrm{H}^{+}\right]$will increase but $\left[\mathrm{OH}^{-}\right]$will decrease
612. The conjugate acid of NH_{2}^{-}is
a) $\mathrm{N}_{2} \mathrm{H}_{4}$
b) NH_{4}^{+}
c) $\mathrm{NH}_{2} \mathrm{OH}$
d) NH_{3}
613. pH of a solution of the mixture of 0.1 N HCl and $0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ is:
a) 1
b) 2
c) 1.7
d) None of these
614. A buffer solution is prepared by mixing 10 mL of 1.0 M acetic and 20 mL of 0.5 M sodium acetate and then diluted to 100 mL with distilled water. If the $\mathrm{p} K_{a}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ is 4.76 , what is the pH of the buffer solution prepared?
a) 5.21
b) 4.76
c) 4.34
d) 5.21
615. $\mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l)$

In the above reaction, one mole of each of acetic acid and alcohol are heated in the presence of little conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. On equilibrium being attained
a) 1 mole of ethyl acetate is formed
b) 2 mole of ethyl acetate is formed
c) $\frac{2}{3}$ mole of ethyl acetate is formed
d) $\frac{1}{2}$ mole of ethyl acetate is formed
616. When the pH of a solution is 2 , the hydrogen ion concentration is:
a) $1 \times 10^{-14} \mathrm{M}$
b) $1 \times 10^{-2} \mathrm{M}$
c) $1 \times 10^{-7} \mathrm{M}$
d) $1 \times 10^{-12} \mathrm{M}$
617. On adding A to the reaction at equilibrium, $A B(s) \rightleftharpoons A(\mathrm{~g})+B(\mathrm{~g})$, the new equilibrium concentration of A becomes double, the equilibrium concentration of B would become :
a) $1 / 2$ of its original value
b) $1 / 4$ of its original value
c) $1 / 8$ of its original value
d) Twice of its original value
618. The change in pressure will not affect the equilibrium constant for
a) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
b) $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
c) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
d) All of these
619. Equilibrium concentration of $\mathrm{HI}, \mathrm{I}_{2}$ and H_{2} is $0.7,0.1$ and 0.1 M respectively. The equilibrium constant for the reaction, $\mathrm{I}_{2}+\mathrm{H}_{2} \rightleftharpoons 2 \mathrm{HI}$ is :
a) 0.36
b) 36
c) 49
d) 0.49
620. The dissociation constant of acetic acid K_{a} is 1.74×10^{-5} at 298 K . The pH of a solution of 0.1 M acetic acid is
a) 2.88
b) 3.6
c) 4.0
d) 1.0
621. What is the effect of increasing pressure on the dissociation of PCl_{5} according to the equation $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})-x$ cal?
a) Dissociation decreases
b) Dissociation increases
c) Dissociation does not change
d) None of the above

622 . The ionic product of water at $60^{\circ} \mathrm{C}$ is 9.61×10^{-14}. The pH of water at $60^{\circ} \mathrm{C}$ is:
a) 6.51
b) 6.70
c) 9.61
d) 7.0
623. For the reaction equilibrium, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$, the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at equilibrium are 4.8×10^{-2} and $1.2 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$ respectively. The value of K_{c} for the reaction is
a) $3 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
b) $3.3 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
c) $3 \times 10^{-1} \mathrm{~mol} / \mathrm{L}$
d) $3.3 \times 10^{-1} \mathrm{~mol} / \mathrm{L}$
624. If first dissociation of $X(\mathrm{OH})_{3}$ is 100% where as second dissociation is 50% and third dissociation is negligible then the pH of $4 \times 10^{-3} \mathrm{M} X(\mathrm{OH})_{3}$ is
a) 7.5
b) 9.54
c) 11.78
d) 13.25
625. The equilibrium constant for the reaction, $3 \mathrm{C}_{2} \mathrm{H}_{2} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{6}$ is 4.0 at $T K$. If the equilibrium concentration of $\mathrm{C}_{2} \mathrm{H}_{2}$ is $0.5 \mathrm{~mol} /$ litre, the concentration of $\mathrm{C}_{6} \mathrm{H}_{6}$ is :
a) 0.5 M
b) 1.5 M
c) $5 \times 10^{-2} \mathrm{M}$
d) 0.25 M
626. For the reaction, $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, $\Delta_{\mathrm{r}} H=-170.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Which of the following statements is not true?
a) Addition of $\mathrm{CH}_{4}(\mathrm{~g})$ or $\mathrm{O}_{2}(\mathrm{~g})$ at equilibrium will cause a shift to the right
b) The reaction is exothermic
c) At equilibrium, the concentrations of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(l)$ are not equal
d) The equilibrium constant for the reaction is given by $K_{p}=\frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]}$
627. The law of mass action was enunciated by
a) Graham
b) Bodestein
c) Rutherford
d) Guldberg and Waage
628. The correct statement about buffer solution is:
a) It contains a weak acid and its conjugate base
b) It contains a weak base and its conjugate acid
c) It shows little change in pH on adding small amount of an acid or base
d) All of the above
629. Which reaction has $\Delta n=2$?
a) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(g)$
b) $3 \mathrm{Fe}(s)+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$
c) $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{g}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
d) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(s) \rightleftharpoons \mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(s)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
630. In the reaction, $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}, \alpha$ is that part of $\mathrm{N}_{2} \mathrm{O}_{4}$ which dissociates, then the number of moles at equilibrium will be
a) 1
b) 3
c) $(1+\alpha)$
d) $(1-\alpha)^{2}$
631. Decreasing acid strengths of $\mathrm{HI}, \mathrm{HBr}, \mathrm{HCl}$ and HF is:
a) $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$
b) $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$
c) $\mathrm{HI}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HF}$
d) $\mathrm{HI}>\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}$
632. A monoprotic acid in 0.1 M solution has $K_{a}=1.0 \times 10^{-5}$. The degree of dissociation acid is:
a) 1.0%
b) 99.9%
c) 0.1%
d) 99%
633. In what manner will increase of pressure affect the following equation?

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a) Shift in the reverse direction
b) Shift in the forward direction
c) Increase in the yield of hydrogen
d) No effect
634. Which one of the following pair shows buffer's solution?
a) $\mathrm{NaCl}+\mathrm{NaOH}$
b) $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{COOH}$
c) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONH}_{4}$
d) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{CuSO}_{4}$
635. A buffer solution is prepared in which the concentration of NH_{3} is 0.30 M and the concentration of NH_{4}^{+}is 0.20 M . If the equilibrium constant, K_{b} for NH_{3} equals 1.8×10^{-5} what is the pH of this solution? $(\log 2.7=0.43)$
a) 8.73
b) 9.08
c) 9.43
d) 11.72
636. The degree of ionisation of a compound depends
a) Size of solute molecules
b) Nature of solute molecules
c) Nature of vessel used
d) Quantity of electricity passed
637. Amongst the following, the total number of compounds whose aqueous solution turns red litmus paper blue is
KCN $\quad \mathrm{K}_{2} \mathrm{SO}_{4} \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \quad \mathrm{NaCl}$
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \quad \mathrm{FeCl}_{3} \quad \mathrm{~K}_{2} \mathrm{CO}_{3} \quad \mathrm{NH}_{4} \mathrm{NO}_{3}$
LiCN
a) 1
b) 2
c) 3
d) 4
638. The aqueous solution of a salt is alkaline. This shows that salt is made from:
a) A strong acid and strong base
b) A strong acid and weak base
c) A weak acid and weak base
d) A weak acid and strong base
639. Which of the following solutions cannot act as a buffer?
a) $\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{3} \mathrm{PO}_{4}$
b) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
c) $\mathrm{HCl}+\mathrm{NH}_{4} \mathrm{Cl}$
d) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Na}_{2} \mathrm{HPO}_{4}$
640. The relation for calculating pH of a solution containing weak acid and its salt is:
a) $\mathrm{pH}=\mathrm{p} K_{a}+\log \frac{\text { [Conjugate base] }}{[\text { Acid }]}$
b) $\mathrm{pH}=\mathrm{p} K_{a}-\log \frac{\text { [Conjugate base] }}{[\text { Acid }]}$
c) $\mathrm{pH}=\mathrm{p} K_{a}+\log \frac{\text { [Conjugate base }]}{[\text { Salt }]}$
d) $\mathrm{pOH}=\mathrm{p} K_{a}-\log \frac{\text { [Acid] }}{\text { [Conjugate base] }}$
641. The pH of a 0.01 M solution of acetic acid having degree of dissociation 12.5% is:
a) 4.509
b) 3.723
c) 2.903
d) 5.623
642. Which one is more acidic in aqueous solution?
a) NiCl_{2}
b) FeCl_{3}
c) AlCl_{3}
d) BeCl_{2}
643. In any chemical reaction, equilibrium is supposed to be establish when
a) Mutual opposite reactions undergo
b) Velocity of mutual reactions become equal
c) Concentration of reactants and resulting products are equal
d) The temperature of mutual opposite reactions become equal
644. Of the following which change will shift the reaction towards the product?
$\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}(\mathrm{g}), \Delta H^{\circ}{ }_{r}(298 \mathrm{~K})=+150 \mathrm{~kJ}$
a) Increase in temperature
b) Increase in total pressure
c) Increase in concentration of I
d) Decrease in concentration of I_{2}
645. Electrophiles are:
a) Lewis acids
b) Lewis bases
c) Bronsted acids
d) Bronsted bases
646. Buffer solutions have constant acidity and alkalinity because:
a) They have large excess of H^{+}or OH^{-}ions
b) They have fixed value of pH
c) These give unionised acid or base on reaction with added acid or alkali
d) Acids and alkalies in these solutions are shielded from attack by other ions
647. A precipitate of AgCl is formed when equal volumes of the following are mixed $\left[K_{\text {sp }}\right.$ for $\left.\mathrm{AgCl}=10^{-10}\right]$
a) $10^{-4} \mathrm{M} \mathrm{AgNO}_{3}$ and $10^{-7} \mathrm{M} \mathrm{HCl}$
b) $10^{-5} \mathrm{M} \mathrm{AgNO}_{3}$ and $10^{-6} \mathrm{M} \mathrm{HCl}$
c) $10^{-5} \mathrm{M} \mathrm{AgNO}_{3}$ and $10^{-4} \mathrm{M} \mathrm{HCl}$
d) $10^{-6} \mathrm{M} \mathrm{AgNO}_{3}$ and $10^{-6} \mathrm{M} \mathrm{HCl}$
648. When different types of salts have nearly same solubility product constant $K_{s p}$ but less than one the most soluble salt is that:
a) Which produces maximum number of ions
b) Which produces minimum number of ions
c) Which produces more charge on ion
d) None of the above
649. In a flask, colourless $\mathrm{N}_{2} \mathrm{O}_{4}$ is in equilibrium with brown coloured NO_{2}. At equilibrium, when the flask is heated at $100^{\circ} \mathrm{C}$ the brown colour deepens and on cooling it becomes less coloured. The change in enthalpy ΔH, for the system is :
a) Negative
b) Positive
c) Zero
d) Undefined
650.56 g of nitrogen and 8 g of hydrogen gas heated in a closed vessel. At equilibrium, 34 g of ammonia are present. The equilibrium number of moles of nitrogen, hydrogen and ammonia are, respectively
a) $1,1,2$
b) $1,2,2$
c) $2,1,1$
d) $2,2,1$
651. Calculate pOH of $0.001 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$, when it is 1% dissociated in the solution
a) 5
b) 2.96
c) 9.04
d) 11.4
652. On addition of an inert gas at constant volume to the reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ at equilibrium:
a) The reaction halts
b) Forward reaction is favoured
c) The reaction remains unaffected
d) Backward reaction is favoured
653. The reaction quotient (Q) for the reaction is given by:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3} ; \quad Q=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
The reaction will proceed from right to left if:
a) $Q=0$
b) $Q=K_{c}$
c) $Q<K_{c}$
d) $Q>K_{c}$
654. Sulphuric acid is a dibasic acid. Hence, it forms:
a) Acidic salt
b) Basic and acidic salt
c) Acidic and normal salt
d) Double salt
655. Solubility of AgCl at $20^{\circ} \mathrm{C}$ is $1.435 \times 10^{-3} \mathrm{~g} / \mathrm{L}$. The solubility product of AgCl is
a) 1×10^{-5}
b) 1×10^{-10}
c) 1.435×10^{-5}
d) 108×10^{-3}
656. Le-Chatelier's principle is not applicable to:
a) $\mathrm{Fe}(s)+\mathrm{S}(s) \rightleftharpoons \mathrm{FeS}(s)$
b) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
c) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
d) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
657.4 moles each of SO_{2} and O_{2} gases are allowed to react to form SO_{3} in a closed vessel. At equilibrium 25% of O_{2} is used up. The total number of moles of all the gases at equilibrium is
a) 6.5
b) 7.0
c) 8.0
d) 2.0
658. The pH of a 0.005 M aqueous solution of sulphuric acid is approximately:
a) 0.005
b) 2
c) 1
d) 0.01
659. When ammonium chloride is added to ammonia solution, the pH of the resulting solution will be
a) Increased
b) Seven
c) Decreased
d) Unchanged
660. The pH at which an acid indicator with $K_{a}=1 \times 10^{-5}$ changes colour when the indicator concentration is $1 \times 10^{-3} \mathrm{M}$, is:
a) 4
b) 5
c) 6
d) 3
661. The equilibrium, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ shifts forward if:
a) A catalyst is used
b) An absorbent is used to remove SO_{3} as soon as it is formed
c) Small amounts of reactants are used
d) None of the above
662.56 g of nitrogen and 8 g of hydrogen gas are heated in a closed vessel. At equilibrium 34 g of ammonia are present. The equilibrium number of moles of nitrogen, hydrogen and ammonia are respectively
a) $1,2,2$
b) $2,2,1$
c) $1,1,2$
d) $2,1,2$
663. A white substance having alkaline nature in solution is
a) NaNO_{3}
b) $\mathrm{NH}_{4} \mathrm{Cl}$
c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
d) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
664. Which of the following is not a buffer solution?
a) $100 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+50 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$
b) $100 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+50 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{NaOH}$
c) $50 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+100 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{NaOH}$
d) $100 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}+50 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{HCl}$
665. For the reaction, $\mathrm{C}(s)+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$, the partial pressure of CO_{2} and CO are 4 and 8 atm respectively, K_{p} for the reaction is :
a) 16 atm
b) 2 atm
c) 5 atm
d) 4 atm
666. For the reaction, $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$, the equilibrium concetratio of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI are $8.0,3.0$ and $28.0 \mathrm{~mol} / \mathrm{L}$ respectively. The equilibrium constant of the reaction is
a) 32.66
b) 34.33
c) 22.44
d) 11.22
667. The solubility product of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is 32×10^{-12}. What is the concentration of CrO_{4}^{-}ions in that solution?
a) $2 \times 10^{-4} \mathrm{M}$
b) $16 \times 10^{-4} \mathrm{M}$
c) $8 \times 10^{-4} \mathrm{M}$
d) $8 \times 10^{-8} \mathrm{M}$
668. The equilibrium constant for the reaction,

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \text { is } 2 \times 10^{-6} \text { at } 185^{\circ} \mathrm{C} .
$$

Then the equilibrium constant for the reaction, $4 \mathrm{NO}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g})$ at the same temperature would be
a) 2.5×10^{-5}
b) 4×10^{-12}
c) 2.5×10^{11}
d) 2×10^{6}

669 . At $25^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1.010^{11}. At which pH , will Mg^{2} ions start precipitating in the form of $\mathrm{Mg}(\mathrm{OH})_{2}$ from a solution of $0.001 \mathrm{M} \mathrm{Mg}^{2}$ ions?
a) 9
b) 10
c) 11
d) 8
670. Precipitation just takes place when the product of concentration of ions:
a) Equals their solubility product
b) Exceeds their solubility product
c) Is less than their solubility product
d) Is negligible
671. The suitable indicator for the titration of strong acid and weak base is
a) Methyl orange
b) Methyl red
c) Phenol red
d) Phenolphthalein
672. Tetramine copper (II) sulphate is an example of:
a) Simple salt
b) Double salt
c) Complex salt
d) Normal salt
673. The self ionisation constant for pure formic acid, $K=\left[\mathrm{HCOOH}_{2}^{+}\right]\left[\mathrm{HCOO}^{-}\right]$has been estimated as 10^{-6} at $1.22 \mathrm{~g} / \mathrm{cm}^{3}$. The percentage of formic acid molecules in pure formic acid converted to formate ion is:
a) 0.002%
b) 0.004%
c) 0.006%
d) 0.008%
674. The pH of blood is maintained by CO_{2} and $\mathrm{H}_{2} \mathrm{CO}_{3}$ in the body and chemical constituents of blood. This phenomenon is called:
a) Colloidal
b) Buffer action
c) Acidity
d) Salt balance
675. Weak electrolytes are only partly dissociated in solutions. The extent to which they are dissociated in a given solution is known as the 'Degree of dissociation'. Which of the following statements for this degree of dissociation in aqueous solution is true?
a) It is inversely proportional to the square root of initial concentration of the electrolyte
b) It is directly proportional to the initial concentration of the electrolyte
c) It is independent of the initial concentration of the electrolyte
d) It depends on the equilibrium concentration of the electrolyte
676. At a certain temperature, the dissociation constants of formic acid and acetic acid are
1.8×10^{-4} and 1.8×10^{-5} respectively. The concentration of acetic acid solution in which the hydrogen ion has the same concentration as in 0.001 M formic acid solution is equal to
a) 0.01 M
b) 0.001 M
c) 0.1 M
d) 0.0001 M
677. Partial pressure of O_{2} in the reaction

$$
2 \mathrm{Ag}_{2} \mathrm{O}(s) \rightleftharpoons 4 \mathrm{Ag}(s)+\mathrm{O}_{2}(\mathrm{~g}) \text { is }
$$

a) K_{p}
b) $\sqrt{K_{p}}$
c) $3 \sqrt{K_{p}}$
d) $2 K_{p}$
678. The solubility product of a salt having general formula $M X_{2}$, in water is 4×10^{-12}. The concentration of M^{2+} ions in the aqueous solution of the salt is
a) $4.0 \times 10^{-10} \mathrm{M}$
b) $1.6 \times 10^{-4} \mathrm{M}$
c) $1.0 \times 10^{-4} \mathrm{M}$
d) $2.0 \times 10^{-6} \mathrm{M}$
679. In a lime kiln, to get higher yield of CO_{2}, the measure that can be taken is
a) To remove CaO
b) To add more CaCO_{3}
c) To maintain high temperature
d) To pump out CO_{2}
680. Which of the following is a Bronsted acid as well as Bronsted base:
a) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
b) $\mathrm{H}_{2} \mathrm{O}$
c) NH_{3}
d) BF_{3}
681. The rate constant for forward reaction and backward reaction of hydrolysis of ester are 1.1×10^{-2} and 1.5×10^{-3} per minute respectively. Equilibrium constant for the reaction is $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
a) 33.7
b) 7.33
c) 5.33
d) 33.3
682. Which acid is involved in digestion process?
a) HF
b) HCl
c) HBr
d) HI
683. For $\mathrm{NH}_{4} \mathrm{HS}(s) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, the observed pressure for reaction mixture in equilibrium is 1.12 atm at $106^{\circ} \mathrm{C}$. The value of K_{p} for the reaction is :
a) $3.136 \mathrm{~atm}^{2}$
b) $0.3136 \mathrm{~atm}^{2}$
c) $31.36 \mathrm{~atm}^{2}$
d) $6.98 \mathrm{~atm}^{2}$
684. A solution of NaCl in contact with atmosphere has a pH of about:
a) 3.2
b) 5.4
c) 7.0
d) 14
685. Amines behave as
a) Lewis acid
b) Lewis base
c) Aprotic acid
d) Neutral compound
686. The two Bronsted bases in the reaction are
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{PO}_{4}^{3-} \rightarrow \mathrm{HPO}_{4}^{2-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}:$
a) $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$and PO_{4}^{2-}
b) HPO_{4}^{3-} and $\mathrm{C}_{2} \mathrm{O}_{4}^{3-}$
c) PO_{4}^{3-} and $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
d) $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$and HPO_{4}^{2-}
687. 1 M NaCl and 1 M HCl are present in an aqueous solution. The solution is
a) Not a buffer solution with $\mathrm{pH}<7$
b) Not a buffer solution with $\mathrm{pH}>7$
c) A buffer solution with $\mathrm{pH}<7$
d) A buffer solution with $\mathrm{pH}>7$
688. The use of methyl orange as an indicator in the volumetric determination of the equivalent weight of a weak acid would lead to:
a) A low value for the equivalent weight
b) A high value for the equivalent weight
c) No error in the value
d) Improved accuracy
689. Arrange $\mathrm{NH}_{4}^{+}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{3} \mathrm{O}^{+}$, HF and OH^{-}in increasing order of acidic nature
a) $\mathrm{H}_{3} \mathrm{O}^{+}<\mathrm{NH}_{4}^{+}<\mathrm{HF}<\mathrm{OH}^{-}<\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{NH}_{4}^{+}<H F<\mathrm{H}_{3} \mathrm{O}^{+}<\mathrm{H}_{2} \mathrm{O}<\mathrm{OH}^{-}$
c) $\mathrm{OH}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{4}^{+}<H F<\mathrm{H}_{3} \mathrm{O}^{+}$
d) $\mathrm{H}_{3} \mathrm{O}^{+}>H F>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{4}^{+}>\mathrm{OH}^{-}$
690. Which of the following is a Lewis base?
a) CH_{4}
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c) Acetone
d) Secondary
691. An aqueous solution of sodium carbonate is alkaline because sodium carbonate is a salt of
a) Weak acid and weak base
b) Strong acid and weak base
c) Weak acid and strong base
d) Strong acid and strong base
692. Which of the following is least likely to behave as Lewis acid?
a) OH^{-}
b) $\mathrm{H}_{2} \mathrm{O}$
c) NH_{3}
d) BF_{3}
693. Which statement is false in case of equilibrium state?
a) There is no apparent change in properties with time
b) It is dynamic in nature
c) It can be attained from either side of the reaction
d) It can be attained from the side of the reactants only
694. The active mass of 45 g of KCl in a 3 L flask would be
a) 0.20
b) 2.0
c) 3
d) 4
695. A litre of solution is saturated with AgCl .To this solution if 1.0×10^{-4} mole of solid NaCl is added, what will be the $\left[\mathrm{Ag}^{+}\right]$assuming no volume change?
a) More
b) Less
c) Equal
d) Zero
696. 9.2 $\mathrm{g} \mathrm{N}_{2} \mathrm{O}_{4}$ is heated in a 1 L vessel till equilibrium state is established

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

In equilibrium state $50 \% \mathrm{~N}_{2} \mathrm{O}_{4}$ was dissociated, Equilibrium constant will be (mol. wt. of $\mathrm{N}_{2} \mathrm{O}_{4}=92$)
a) 0.1
b) 0.4
c) 0.3
d) 0.2
697. At 3000 K , the equilibrium partial pressure of $\mathrm{CO}_{2}, \mathrm{CO}$ and O_{2} are $0.6,0.4$ and 0.2 atm respectively. K_{p} for the reaction, $2 \mathrm{CO}_{2} \rightleftharpoons 2 \mathrm{CO}+\mathrm{O}_{2}$ is
a) 0.088
b) 0.0533
c) 0.133
d) 0.177
698. Aqueous solution of sodium cyanide is
a) Acidic
b) Amphoteric
c) Basic
d) Neutral
699. A mixture of N_{2} and H_{2} in the mole ratio $1: 3$ is allowed to attain equilibrium when 50% of mixture has reacted. If P is the equilibrium pressure, then partial pressure of NH_{3} formed is:
a) $P / 6$
b) $P / 2$
c) $P / 3$
d) $P / 4$
700. $\mathrm{CH}_{3} \mathrm{COOH}$ is weaker acid than $\mathrm{H}_{2} \mathrm{SO}_{4}$. It is due to
a) More ionisation
b) Less ionisation
c) Covalent bond
d) Electrovalent bond
701. Equal volume of three acid solutions of $\mathrm{pH} 3,4$ and 5 are mixed in a vessel. What will be the H^{+}ion concentration in the mixture?
a) $3.7 \times 10^{-4} \mathrm{M}$
b) $3.7 \times 10^{-3} \mathrm{M}$
c) $1.11 \times 10^{-3} \mathrm{M}$
d) $1.11 \times 10^{-4} \mathrm{M}$
702. The ionisation of strong electrolytes in acetic acid, compared to in water, is
a) Weak, low
b) Strong, more
c) Medium, the same
d) No ionisation, 100%
703. A saturated solution of CaF_{2} is $2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$. Its solubility product constant is
a) 2.6×10^{-9}
b) 4×10^{-8}
c) 4×10^{-12}
d) 3.2×10^{-11}
704. The vapour density of PCl_{5} is 104.16 , but when heated at $230^{\circ} \mathrm{C}$. Its vapour density is reduced to 62 . The percentage of dissociation of PCl_{5} at this temperature will be
a) 6.8%
b) 68%
c) 46%
d) 64%
705. Which is not amphoteric?
a) HSO_{4}^{-}
b) HCO_{3}^{-}
c) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
d) HCOO^{-}
706. An amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm pressure. Ammonium hydrogen sulphide decomposes to yield NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ gases in the flask. When the decomposition reaction reaches equilibrium the total pressure in the flask rises to 0.84 atm? The equilibrium constant for $\mathrm{NH}_{4} \mathrm{HS}$ decomposition at this temperature is
a) 0.11
b) 0.17
c) 0.18
d) 0.30
707. The correct order of acetic strength is:
a) $\mathrm{Cl}_{2} \mathrm{O}_{7}>\mathrm{SO}_{2}>\mathrm{P}_{4} \mathrm{O}_{10}$
b) $\mathrm{CO}_{2}>\mathrm{N}_{2} \mathrm{O}_{5}>\mathrm{SO}_{3}$
c) $\mathrm{Na}_{2} \mathrm{O}>M g O>\mathrm{Al}_{2} \mathrm{O}_{3}$
d) $\mathrm{K}_{2} \mathrm{O}>\mathrm{CaO}>\mathrm{MgO}$
708. The equilibrium constant K_{p} for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is
a) More than one
b) Less than one
c) Equal to K_{C}
d) Zero
709. Which of the following is least soluble?
a) $\operatorname{MnS}\left(K_{s p}=7 \times 10^{-16}\right)$
b) $\mathrm{FeS}\left(K_{s p}=7 \times 10^{-19}\right)$
c) $\operatorname{PtS}\left(K_{s p}=8 \times 10^{-73}\right)$
d) $\operatorname{NiS}\left(K_{s p}=3 \times 10^{-12}\right)$
710. The best explanation for the solubility of MnS in dil. HCl is that:
a) Solubility product of MnCl_{2} is less than that of MnS
b) Concentration of Mn^{2+} is lowered by the formation of complex ions with chloride ions
c) Concentration of sulphide ions is lowered by oxidation to free sulphur
d) Concentration of sulphide ions is lowered by formation of the weak acid $\mathrm{H}_{2} \mathrm{~S}$
711. If the pOH of a solution is 6.0 , then pH is:
a) 6
b) 8
c) 10
d) 14
712. If the pH of a solution is 2 , its normality will be:
a) 2 N
b) 0.5 N
c) 0.01 N
d) None of these
713. The pH of solution, whose hydrogen ion concentration is one mole per litre, will be:
a) 1.0
b) 0.1
c) Zero
d) 1.5
714. Consider the reaction equilibrium
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}), \Delta H^{\circ}=-198 \mathrm{~kJ}$
On the basis of Le-Chatelier's principle, the condition favourable for the forward reaction is
a) Lowering of temperature as well as pressure
b) Lowering the temperature and increasing the pressure
c) Increasing the temperature and pressure
d) Any value of temperature and pressure
715. $\mathrm{NH}_{4} \mathrm{Cl}$ is acidic because
a) On hydrolysis $\mathrm{NH}_{4} \mathrm{Cl}$ gives weak base $\mathrm{NH}_{4} \mathrm{OH}$ and strong acid HCl
b) Nitrogen donates a pair of electrons
c) It is a salt of weak acid and strong base
d) On hydrolysis $\mathrm{NH}_{4} \mathrm{Cl}$ gives strong base and weak acid
716. In a buffer solution consisting of a weak acid and its conjugate base, the ratio of concentration of conjugate base to acid is increased tenfold; then the pH of the solution will:
a) Increase by one
b) Increase tenfold
c) Decrease by one
d) Decrease tenfold
717. The solubility in water of a sparingly soluble salt $A B_{2}$ is $1.0 \times 10^{-5} \mathrm{~mol} /$ litre. Its solubility product is:
a) 1×10^{-15}
b) 1×10^{-10}
c) 4×10^{-15}
d) 4×10^{-10}
718. If ClO_{3}^{-}is chlorate ion, then HClO_{3} is:
a) Hydrochloride acid
b) Chlorous acid
c) Chloric acid
d) Chlorate acid
719. Which of the following is not a Lewis base?
a) $\mathrm{H}_{2} \mathrm{O}$
b) Ag^{+}
c) NH_{3}
d) OH^{-}
720. For a system in equilibrium, $\Delta G=0$, under conditions of constant
a) Temperature and pressure
b) Energy and volume
c) Temperature and volume
d) Pressure and volume
721. In 100 mL of an aqueous HCl of $\mathrm{pH} 1.0,900 \mathrm{~mL}$ of distilled water is added, the pH of the resultant solution becomes:
a) 1.0
b) 2.0
c) 4.0
d) 7.0
722. 20 mL of a 0.1 N HCl is mixed with 20 mL of a 0.1 N KOH solution. The pH of the solution would be:
a) Zero
b) 7
c) 2
d) 9
723. In a system : $A(s) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})+3 \mathrm{C}(\mathrm{g})$. If the concentration of C at equilibrium is increased by a factor 2 , it will cause the equilibrium concentration of B to change to:
a) Two times of its original value
b) One half of its original value
c) $2 \sqrt{2}$ times of its original value
d) $\frac{1}{2 \sqrt{2}}$ times of its original value
724. The Bronsted acid which gives the weakest conjugate base is:
a) HF
b) $\mathrm{H}_{2} \mathrm{~S}$
c) $\mathrm{H}_{2} \mathrm{O}$
d) HCl
725. How much sodium acetate should be added to 0.1 M solution of $\mathrm{CH}_{3} \mathrm{COOH}$ to give a solution of pH $=5.5\left(\mathrm{p} K_{a}\right.$ of $\left.\mathrm{CH}_{3} \mathrm{COOH}=4.5\right)$?
a) 0.1 M
b) 0.01 M
c) 1.0 M
d) 10.0 M
726. Which solution has pH equal to 10 ?
a) $10^{-4} \mathrm{M} \mathrm{KOH}$
b) $10^{-10} \mathrm{M} \mathrm{KOH}$
c) $10^{-10} \mathrm{M} \mathrm{HCl}$
d) $10^{-4} \mathrm{M} \mathrm{HCl}$
727. A saturated solution prepared by dissolved $\mathrm{CaF}_{2}(s)$ in water, has $\left[\mathrm{Ca}^{2+}\right]=3.3 \times 10^{-4} \mathrm{M}$. What is the $K_{\text {sp }}$ of CaF_{2} ?
a) 1.44×10^{-10}
b) 2.24×10^{-8}
c) 1.58×10^{-8}
d) 1.67×10^{-8}
728. When 1.0 mL of dil. HCl acid is added to 100 mL of a buffer solution of pH 4.0 , the pH of the solution:
a) Becomes 7
b) Does not change
c) Becomes 2
d) Becomes 10
729. The pH of blood is:
a) Less than 6
b) Greater than 7 and less than 8
c) Greater than 8 and less than 9
d) Greater than 10
730. The unit of equilibrium constant, K for the reaction, $A+B \rightleftharpoons C$, would be
a) $\mathrm{mol} \mathrm{L}^{-1}$
b) mol L
c) $\mathrm{L} \mathrm{mol}^{-1}$
d) Dimensionless
731. Which statement is correct?
a) An acid and its conjugate base react to form salt and water
b) The acid $\mathrm{H}_{2} \mathrm{O}$ is its own conjugate base
c) The conjugate base of a weak acid is a strong base
d) The conjugate base of a strong acid is strong base
732. From separate solutions of four sodium salts $\mathrm{Na} W, \mathrm{Na} X, \mathrm{Na} Y$ and NaZ had $\mathrm{pH} 7.0,9.0,10.0$ and 11.0 respectively. When each solution was $0.1 M$, the strongest acid is:
a) $H W$
b) $H X$
c) $H Y$
d) $H Z$
733. Which information can be obtained from Le-Chatelier's principle?
a) Shift in equilibrium position on changing P, T and concentration
b) Dissociation constant of a weak acid
c) Energy change in a reaction
d) Equilibrium constant of a chemical reaction
734. The solubility product of $\mathrm{Hg}_{2} \mathrm{I}_{2}$ is equal to:
a) $\left[\mathrm{Hg}_{2}^{2+}\right]\left[\mathrm{I}^{-}\right]$
b) $\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{I}^{-}\right]$
c) $\left[\mathrm{Hg}_{2}^{2+}\right]\left[\mathrm{I}^{-}\right]^{2}$
d) $\left[\mathrm{Hg}^{2+}\right]^{2}\left[\mathrm{I}^{-}\right]^{2}$
735. The pH of a solution formed by mixing 40 mL of 0.10 M HCl and 10 mL of 0.45 M NaOH is:
a) 5
b) 8
c) 12
d) 10
736. The correct relationship between K_{c} and K_{p} in gaseous equilibrium is :
a) $K_{\mathrm{c}}=K_{\mathrm{p}}(\mathrm{RT})^{\Delta n}$
b) $K_{\mathrm{p}}=K_{\mathrm{c}}(\mathrm{RT})^{\Delta n}$
c) $\frac{K_{c}}{R T}=\left(K_{\mathrm{p}}\right)^{\Delta n}$
d) $\frac{K_{P}}{R T}=\left(K_{\mathrm{c}}\right)^{\Delta n}$
737. In a mixture of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$, the ratio of salt to acid concentration is increased by ten folds. The pH of the solution will increase by:
a) Zero
b) 1
c) 2
d) 3
738. $\mathrm{NaOH}(a q), \mathrm{HCl}(a q)$ andNaCl $(a q)$ concentration of each is $10^{-3} \mathrm{M}$. Their pH will be respectively
a) $10,6,2$
b) $11,3,7$
c) $10,2,6$
d) $3,4,7$
739. At $25^{\circ} \mathrm{C}$, the equilibrium K_{1}, K_{2} and K_{3} of three reactions are :
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} ; K_{1}$
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} ; \mathrm{K}_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}_{2} \mathrm{O} ; \mathrm{K}_{3}$
The equilibrium constants for the oxidation of NH_{3} by oxygen to give NO is :
a) K_{3}^{2} / K_{1}
b) $K_{2}^{2} K_{3} / K_{1}$
c) $K_{1} K_{2} / K_{3}$
d) $K_{2} K_{3}^{3} / K_{1}$
740. Which of the following is the strongest base?
a) $\mathrm{C}_{2} \mathrm{H}_{5}^{-}$
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$
c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$
d) $\mathrm{H}_{2} \mathrm{PO}_{4}$
741. The equilibrium constant, K for the reaction $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
At room temperature is 2.85 and that at 698 K , it is 1.4×10^{-2}. This implies that
a) HI is resonance stabilised
b) HI is exothermic compound
c) HI is stable at room temperature
d) HI is less stable than H_{2} and I_{2}
742. If the solubility product of BaSO_{4} is 1.5×10^{-10} in water. Its solubility, in moles per litre, is
a) 1.5×10^{-9}
b) 3.9×10^{-5}
c) 7.5×10^{-5}
d) 1.5×10^{-5}
743. Soda water has a pH value:
a) Less than 7
b) More than 7
c) 7
d) Greater than 14
744. According to Le-Chatelier's principle, if heat is given to solid-liquid system, then
a) Quantity of solid will reduce
b) Quantity of liquid will reduce
c) Temperature will increase
d) Temperature will decrease
745. The salt that does not hydrolyse, is:
a) SnCl_{2}
b) FeCl_{3}
c) SnCl_{4}
d) CaCl_{2}
746. An acid-base indicator has $K_{a}=3.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. The $\left[\mathrm{H}^{+}\right]$required to change the indicator from 75% red to 75% blue is:
a) $8 \times 10^{-5} \mathrm{M}$
b) $9 \times 10^{-5} \mathrm{M}$
c) $1 \times 10^{-5} \mathrm{M}$
d) $3 \times 10^{-4} M$
747. When ammonium chloride is added to a solution of ammonium hydroxide,
a) Dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ increases
b) Concentration of OH^{-}increases
c) Concentration of NH_{4}^{+}and OH^{-}increases
d) Concentration of NH_{4}^{+}decreases
748. The pH of an aqueous solution having hydroxide ion concentration as 1×10^{-5} is
a) 5
b) 9
c) 4.5
d) 11
749. In the manufacture of NH_{3} by Haber's process, the condition which would give maximum yield is $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}+Q$ kcal
a) Low temperature and high pressure
b) Low temperature, low pressure and low concentration of H_{2}
c) High temperature, low pressure and low concentration
d) High temperature, high pressure and high concentration
750. In water, the acid $\mathrm{HClO}_{4}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3} exhibit the same strength as they are completely ionised in water (a base). This is called ... of the solvent water.
a) Strength
b) Capacity
c) Buffer effect
d) Levelling effect
751. Which of the following solutions will have pH close to 1.0 ?
a) 100 mL of $\frac{\mathrm{M}}{10} \mathrm{HCl}+100 \mathrm{~mL}$ of $\frac{\mathrm{M}}{10} \mathrm{NaOH}$
b) 55 mL of $\frac{\mathrm{M}}{10} \mathrm{HCl}+45 \mathrm{~mL}$ of $\frac{\mathrm{M}}{10} \mathrm{NaOH}$
c) 10 mL of $\frac{\mathrm{M}}{10} \mathrm{HCl}+90 \mathrm{~mL}$ of $\frac{\mathrm{M}}{10} \mathrm{NaOH}$
d) 75 mL of $\frac{\mathrm{M}}{5} \mathrm{HCl}+25 \mathrm{~mL}$ of $\frac{\mathrm{M}}{5} \mathrm{NaOH}$
752. For the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \quad \Delta H=-93.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the concentration of NH_{3} at equilibrium can be increased by
(I) lowering the temperature
(II)low pressure
(III) excess of N_{2}
(IV) excess of H_{2}
a) (II) and (IV) are correct
b) (II) only is correct
c) (I), (II) and (III) are correct
d) (III) and (IV) are correct
753. Some salts although containing two different metallic elements give test for only one of them in solution. Such salts are:
a) Double salts
b) Normal salts
c) Complex salts
d) None of these
754. Which statement is correct?
a) $\mathrm{NH}_{4} \mathrm{OH}$ is a strong base
b) $\mathrm{CH}_{3} \mathrm{COONa}$ given acidic solution in water
c) $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid
d) $\mathrm{NH}_{4} \mathrm{Cl}$ gives alkaline solution in water
755. Which one of the following species acts as both Bronsted acid and base?
a) $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
b) HPO_{3}^{2-}
c) HPO_{4}^{2-}
d) All of these
756. Which one is the strongest base?
a) OH^{-}
b) RO^{-}
c) NH_{2}^{-}
d) R^{-}
757. To a mixture of acetic acid and sodium acetate a further amount of sodium acetate is added. The pH of the mixture:
a) Increases
b) Decreases
c) Remains unchanged
d) Not predictable
758. Ionisation constant of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.7×10^{-5} and $\left[\mathrm{H}^{+}\right]$ions is 3.4×10^{-4}. Then, initial concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ molecules is
a) 6.8×10^{-3}
b) 2.5×10^{-4}
c) 3.5×10^{-3}
d) 4.5×10^{-3}
759. 0.023 g of sodium metal is reached with $100 \mathrm{~cm}^{3}$ of water. The pH of the resulting solution is
a) 10
b) 11
c) 9
d) 12
760. For the reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ in a vessel, after the addition of equal number of mole of N_{2} and H_{2}, equilibrium state is formed. Which of the following is correct?
a) $\left[\mathrm{H}_{2}\right]=\left[\mathrm{N}_{2}\right]$
b) $\left[\mathrm{H}_{2}\right]<\left[\mathrm{N}_{2}\right]$
c) $\left[\mathrm{H}_{2}\right]>\left[\mathrm{N}_{2}\right]$
d) $\left[\mathrm{H}_{2}\right]>\left[\mathrm{NH}_{3}\right]$
761.1.1 mole of A are mixed with 2.2 mole of B and the mixture is then kept in one litre flask till the equilibrium is attained $A+2 B \rightleftharpoons 2 C+D$. At the equilibrium 0.2 mole of C are formed. The equilibrium constant of the reaction is :
a) 0.001
b) 0.002
c) 0.003
d) 0.004
762.50% neutralization of a solution of formic acid ($K_{a}=2 \times 10^{-4}$) with NaOH would result in a solution having a hydrogen ion concentration of:
a) 2×10^{-4}
b) 3.7
c) 2.7
d) 1.85
763. pH of $\mathrm{K}_{2} \mathrm{~S}$ solution is:
a) >7
b) <7
c) 7
d) Zero
764. If pressure is applied to the following equilibrium, Liquid \rightleftharpoons Vapour. The boiling point of the liquid:
a) Will decrease
b) Will increase
c) May not change
d) Will not change
765. The extent of ionisation increases
a) With the increase in concentration
b) On addition of excess water to the solution
c) On decreasing the temperature of solution
d) On stirring the solution vigorously
766. Which one of the following salts will produce an alkaline solution while dissolving in water?
a) $\mathrm{NH}_{4} \mathrm{Cl}$
b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
c) NaNO_{3}
d) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
767. Which addition would not change the pH of 10 mL of dilute hydrochloric acid?
a) 20 mL of the same dilute hydrochloric acid
b) 5 mL of pure water
c) 20 mL of pure water
d) 10 mL of concentrated hydrochloric acid
768. Which does not contribute significantly to acid rains?
a) SO_{3}
b) NO_{2}
c) CO_{2}
d) CO
769. Given that the equilibrium constant for the reaction

$$
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}
$$

has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?

$$
\mathrm{SO}_{3(\mathrm{~g})} \rightleftharpoons \mathrm{SO}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}
$$

a) 1.8×10^{-3}
b) 3.6×10^{-3}
c) 6.0×10^{-2}
d) 1.3×10^{-5}
770. The equilibrium constant for the reaction, $\mathrm{HONO}+\mathrm{CN}^{-} \rightarrow \mathrm{HCN}+\mathrm{ONO}^{-}$is 1×10^{-14}. The magnitude of the equilibrium constant suggests that:
a) CN^{-}is stronger base than ONO^{-}
b) HCN is stronger acid than HONO
c) ONO^{-}is the conjugate base of HONO
d) The conjugate acid of CN^{-}is HCN
771. A buffer solution contains 0.1 mole of sodium acetate dissolved in $1000 \mathrm{~cm}^{3}$ of 0.1 M acetic acid. To the above buffer solution, 0.1 mole of sodium acetate is further added and dissolved. The pH of
the resulting buffer is
a) $\mathrm{p} K_{\mathrm{a}}$
b) $\mathrm{p} K_{\mathrm{a}}+2$
c) $\mathrm{p} K_{\mathrm{a}}-\log 2$
d) $\mathrm{p} K_{\mathrm{a}}+\log 2$
772. Some chemists at ISRO wished to prepare a saturated solution of a silver compound and they wanted it to have the highest concentration of silver ion possible. Which of the following compounds, would they use?
$K_{\text {sp }}(\mathrm{AgCl})=1.8 \times 10^{-10}$
$K_{\text {sp }}(\mathrm{AgBr})=5.0 \times 10^{-13}$
$K_{\text {sp }}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)=2.4 \times 10^{-12}$
a) AgCl
b) AgBr
c) $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
d) None of these
773. Ostwald's dilution law is applicable in the case of the solution of:
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) NaCl
c) NaOH
d) $\mathrm{H}_{2} \mathrm{SO}_{4}$
774. $\mathrm{H}_{2} \mathrm{~S}$ is passed into one dm^{3} of a solution containing 0.1 mole of Zn^{3} and 0.01 mole of Cu^{2} till the sulphide ion concentration reaches 8.110^{10} moles. Which one of the following statements is true?
[$K_{\text {sp }}$ of Zn and CuS are 310^{22} and 810^{36} respectively]
a) Only ZnS precipitates b)
Both
c) Only CuS precipitates
d) No precipitation
occurs
775. The degree of dissociation of 0.1 M HCN solution is 0.01% its ionisation constant would be
a) 10^{-3}
b) 10^{-5}
c) 10^{-7}
d) 10^{-9}
776. Solubility of a gas in liquid increases on:
a) Addition of a catalyst
b) Increasing the pressure
c) Decreasing the pressure
d) Increasing the temperature
777. In chemical reaction, $A \rightleftharpoons B$, the system will be known in equilibrium when
a) 50% of A changes to B
b) A completely changes to B
c) Only 10% of A changes to B
d) The rate of change of A to B and B to A on both the sides are same
778. For a polyprotic acid say $\mathrm{H}_{3} \mathrm{PO}_{4}$, its three dissociation constant K_{1}, K_{2} and K_{3} are in the order:
a) $K_{1}<K_{2}<K_{3}$
b) $K_{1}>K_{2}>K_{3}$
c) $K_{1}=K_{2}=K_{3}$
d) $K_{1}=K_{2}>K_{3}$
779. The reaction, $A+2 B \rightleftharpoons 2 C+D$ was studied using an initial concentration of B which was 1.5 times that of A. But the equilibrium concentration of A and C were found to be equal. Then the K_{c} for the equilibrium is :
a) 4
b) 8
c) 6
d) 0.32
780. The expression for the solubility product of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is
a) $K_{\text {sp }}=\left[\mathrm{Al}^{3+}\right]\left[\mathrm{SO}_{4}^{2-}\right]$
b) $K_{\text {sp }}=\left[\mathrm{Al}^{3+}\right]^{2}\left[\mathrm{SO}_{4}^{2-}\right]^{3}$
c) $K_{\mathrm{sp}}=\left[\mathrm{Al}^{3+}\right]^{3}\left[\mathrm{SO}_{4}^{2-}\right]^{2}$
d) $K_{\text {sp }}=\left[\mathrm{Al}^{3+}\right]^{2}\left[\mathrm{SO}_{4}^{2-}\right]^{2}$
781. If the dissociation constant of an acid $\mathrm{H} A$ is 1×10^{-5}, the pH of a 0.1 M solution of the acid $\mathrm{H} A$ will be approximately:
a) 3
b) 5
c) 1
d) 6
782. Calculate the pOH of a solution at $25^{\circ} \mathrm{C}$ that contains $1 \times 10^{-10} \mathrm{M}$ of hydronium ions i.e., $\mathrm{H}_{3}^{+} \mathrm{O}$:
a) 4
b) 9
c) 1
d) 7
783. When a strong acid-strong base or their salt are dissolved in water, they are completely ionised. If a strong acid is added to a strong base, H^{+}ions from the former combines with OH^{-}ions of the latter forming water. The formation of each water molecule liberates a certain quantity of energy and the reaction is exothermic. The heat liberated when one mole of water is formed by combining hydrochloric acid and sodium hydroxide is 13.7 kcal . The heat liberated when one mole of water is formed by combining sulphuric acid and sodium hydroxide is:
a) 34 kcal
b) 13.7 kcal
c) 8.5 kcal
d) 25.5 kcal
784. K_{a} forHCN is 5×10^{-10} at $25^{\circ} \mathrm{C}$. For maintaining a constant $\mathrm{pH}=9$, the volume of 5 M KCN solution required to be added to 10 mL of 2 M HCN solution is
a) 2 mL
b) 4 mL
c) 8.2 mL
d) 6.4 mL
785. The equilibrium constants for the reactions are:

$\mathrm{HPO}_{4}^{2-} \stackrel{K_{3}}{\rightleftharpoons} \mathrm{H}^{+}+\mathrm{PO}_{4}^{3-} ; \quad \mathrm{K}_{3}$
The equilibrium constant for
$\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons 3 \mathrm{H}^{+}+\mathrm{PO}_{4}^{3-}$ will be:
a) $K_{1} / K_{2} K_{3}$
b) $K_{1} \times K_{2} \times K_{3}$
c) $K_{2} / K_{1} K_{3}$
d) $K_{1}+K_{2}+K_{3}$
786. Four moles of PCl_{5} are heated in a closed $4 \mathrm{dm}^{3}$ container to reach equilibrium at 400 K . at equilibrium 50% of PCl_{5} is dissociated. What is the value of K_{c} for the dissociation of PCl_{5} into PCl_{3} and Cl_{2} at 400 K ?
a) 0.50
b) 1.00
c) 1.15
d) 0.05
787. Favourable conditions for manufacture of ammonia by the reaction.
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} ; \Delta H=-21.9 \mathrm{kcal}$ are:
a) Low temperature, low pressure and catalyst
b) Low temperature, high pressure and catalyst
c) High temperature, low pressure and catalyst
d) High temperature, high pressure and catalyst
788. If $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{~S}$ is 10^{-17}, the solubility of $\mathrm{Ag}_{2} \mathrm{~S}$ in 0.1 M solution of $\mathrm{Na}_{2} \mathrm{~S}$ will be
a) 10^{-8}
b) 5×10^{-9}
c) 10^{-15}
d) 10^{-16}
789.5 moles of SO_{2} and 5 moles of O_{2} are allowed to react to forms SO_{3} in a closed vessel. At the equilibrium stage 60% of SO_{2} is used up. The total number of moles of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and SO_{3} in the vessel now is
a) 8.5
b) 9.5
c) 10
d) 10.5
790. How many gram of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ will dissolve in one litre of saturated solution? $K_{s p}$ of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ is $2.5 \times 10^{-9} \mathrm{M}^{-2}$ and its molecular weight is 128 :
a) 0.0064 g
b) 0.0128 g
c) 0.0032 g
d) 0.0640 g
791. In the iodometric estimation in laboratory which process is involved?
a) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}^{+}+\mathrm{I}^{-} \rightarrow 2 \mathrm{Cr}^{5+}+\mathrm{I}_{2}$
b) $\begin{array}{r}\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{I}_{2} \\ \mathrm{I}_{2}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+\mathrm{I}_{2}\end{array}$
c) $\begin{aligned} \mathrm{MnO}_{4}^{-}+\mathrm{OH}^{-}+\mathrm{I}^{-} & \rightarrow \mathrm{MnO}_{2}+\mathrm{I}_{2} \\ \mathrm{I}_{2}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} & \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+\mathrm{I}^{-}\end{aligned}$
d) $\begin{array}{r}\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{OH}^{-}+\mathrm{I}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+\mathrm{I}_{2} \\ \mathrm{I}_{2}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+\mathrm{I}^{-}\end{array}$
792. Equilibrium constant K_{1} and K_{2} for the following equilibria
$\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2} \stackrel{K_{1}}{\rightleftharpoons} \mathrm{NO}_{2}(\mathrm{~g})$
and, $2 \mathrm{NO}_{2}(\mathrm{~g}) \stackrel{K_{2}}{\rightleftharpoons} 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ are related as
a) $K_{1}=\frac{1}{K_{2}}$
b) $K_{2}=\frac{1}{K_{1}}$
c) $K_{2}=\frac{1}{K_{1}^{2}}$
d) $K_{1}=\frac{1}{K_{2}^{2}}$
793. A sample of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ weighing 0.62 g is added to 100 mL of $0.1 \mathrm{~N}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ solution. What will be the resulting solution?
a) Acidic
b) Neutral
c) Basic
d) None of these
794. For which one of the following reactions $K_{p}=K_{c}$?
a) $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
b) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
c) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
d) $2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$
795. $K_{s p}$ of AgCl at $18^{\circ} \mathrm{C}$ is 1.8×10^{-10}. If Ag^{+}of sodium is $4 \times 10^{-3} \mathrm{~mol} /$ litre the Cl^{-}that must exceed before AgCl is precipitated would be:
a) $4.5 \times 10^{-8} \mathrm{~mol} /$ litre
b) $7.2 \times 10^{-13} \mathrm{~mol} / \mathrm{litre}$
c) $4.0 \times 10^{-3} \mathrm{~mol} /$ litre
d) $4.5 \times 10^{-7} \mathrm{~mol} /$ litre
796. The equilibrium constant $\left(K_{p}\right)$ for the decomposition of gaseous $\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

is related to degree of dissociation (α) at a total pressure p is given by
a) $K_{p}=\frac{\alpha^{3} p^{1 / 2}}{(1+\alpha)(2+\alpha)^{1 / 2}}$
b) $K_{p}=\frac{\alpha^{3} p^{3 / 2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$
c) $K_{p}=\frac{\alpha^{3 / 2} p^{2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$
d) $K_{p}=\frac{\alpha^{3 / 2} p^{1 / 2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$
797. A monoprotic acid in 1.00 M solution is 0.01% ionised. The dissociation constant of this acid is
a) 1×10^{-8}
b) 1×10^{-4}
c) 1×10^{-6}
d) 1×10^{-5}
798. pH of $1 \mathrm{M} \mathrm{NH}_{3}$ aqueous solution is
$\left(K_{b}=1.8 \times 10^{-5}\right)$
a) 11.13
b) 12.5
c) 13.42
d) 11.55
799. K_{a} for formic acid and acetic acid are 2.1×10^{-4} and 1.1×10^{-5} respectively. The relative strength of acids is:
a) $2: 1$
b) $2.3: 1$
c) $1: 2.1$
d) $4.36: 1$
800. Would gaseous HCl be considered as an Arrhenius acid?
a) Yes
b) Nor
c) Not known
d) Gaseous HCl does not exist
801. According to Le-Chatelier's principle, the addition of temperature to the following reaction

$$
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})
$$

will cause it to the right. This reaction is, therefore
a) Exothermic
b) Unimolecular
c) Endothermic
d) Spontaneous
802. The degree of dissociation of $\mathrm{PCl}_{5}(\alpha)$ obeying the equilibrium, $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$, is approximately related to the pressure at equilibrium by:
a) $\alpha \propto P$
b) $\alpha \propto \frac{1}{\sqrt{P}}$
c) $\alpha \propto \frac{1}{P^{2}}$
d) $\alpha \propto \frac{1}{P^{4}}$
803. Solubility product of $\mathrm{M} X_{2}$ at 298 K is 4×10^{-12}. At this temperature concentration of M^{2+} ion in mol per litre is:
a) $2 \times 10^{-6} \mathrm{M}$
b) $1 \times 10^{-4} \mathrm{M}$
c) $1.6 \times 10^{-4} \mathrm{M}$
d) $4 \times 10^{-6} \mathrm{M}$
804. A reaction attains equilibrium when the Gibbs energy change accompanying the reaction is:
a) Positive and large
b) Zero
c) Negative and large
d) Negative and small
805. $\mathrm{NH}_{4} \mathrm{HS}(s) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$

In the above reaction, if the pressure at equilibrium and at 300 K is 100 atm then what will be the equilibrium constant K_{p} ?
a) $2500 \mathrm{~atm}^{2}$
b) $50 \mathrm{~atm}^{2}$
c) $100 \mathrm{~atm}^{2}$
d) $200 \mathrm{~atm}^{2}$
806. The solubility product of a sparingly salt $A X_{2}$ is 3.2×10^{-11}. Its solubility (in mol/L) is
a) 5.6×10^{-6}
b) 3.1×10^{-4}
c) 2×10^{-4}
d) 4×10^{-4}
807. If the solubility product of AgBrO_{3} and $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ are 2×10^{-5} and 5.5×10^{-5} respectively, the relationship between the solubilities of these can be correctly represented as:
a) $s \mathrm{AgBrO}_{3}>s \mathrm{Ag}_{2} \mathrm{SO}_{4}$
b) $s \mathrm{AgBrO}_{3}<s \mathrm{Ag}_{2} \mathrm{SO}_{4}$
c) $s \mathrm{AgBrO}_{3}=s \mathrm{Ag}_{2} \mathrm{SO}_{4}$
d) $s \mathrm{AgBrO}_{3} \equiv s \mathrm{Ag}_{2} \mathrm{SO}_{4}$
808. The conjugate acid of HPO_{4}^{2-} is:
a) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
b) PO_{4}^{3-}
c) $\mathrm{H}_{3} \mathrm{PO}_{4}$
d) $\mathrm{H}_{3} \mathrm{PO}_{3}$
809. The colour of an electrolyte solution depends on:
a) The nature of the anion
b) The nature of the cation
c) The nature of both the ions
d) The nature of the solvent
810. The resultant pH of a solution on mixing 200 mL of an aqueous solution $\mathrm{of} \mathrm{HCl}(\mathrm{pH}=2.0)$ is mixed with 300 mL of an aqueous solution of $\mathrm{NaOH}(\mathrm{pH}=12.0)$ is:
a) 11.0310
b) 11.3010
c) 10.000
d) None of these
811. If ΔG^{0} for the reaction given below is 1.7 kJ ; the equilibrium constant of the reaction, $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+$ $\mathrm{I}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ is :
a) 24.0
b) 3.9
c) 2.0
d) 0.5
812. In a reaction, $A+B \rightleftharpoons C+D$, the concentrations of A, B, C and D (in mol/L) are $0.5,0.8,0.4$ and 1.0 respectively. The equilibrium constant is
a) 0.1
b) 1.0
c) 0.5
d) 5.0
813. The solvent which is neither proton donor nor proton acceptor is called:
a) Amphoteric
b) Neutral
c) Aprotic
d) Protonic
814. The equilibrium constant of a reaction is 20.0. At equilibrium, the rate constant of forward reaction is 10.0 . The rate constant for backward reaction is :
a) 0.5
b) 2.0
c) 10.0
d) 200.0
815. For the reversible reaction,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ at $500^{\circ} \mathrm{C}$, the value of K_{p} is 1.44×10^{-5}. When partial pressure is measured in atmospheres. The corresponding value of K_{c} with concentration in mol L^{-1} is
a) $1.44 \times 10^{-5} /(0.082 \times 773)^{-3}$
b) $1.44 \times 10^{-5} /(0.082 \times 500)^{-2}$
c) $1.44 \times 10^{-5} /(8.314 \times 773)^{2}$
d) $1.44 \times 10^{-5} /(0.082 \times 773)^{-2}$
816. The pH of the solution produced when an aqueous solution of strong acid pH 5 is mixed with equal volume of an aqueous solution of strong acid of pH 3 is:
a) 3.3
b) 3.5
c) 4.5
d) 4.0
817. Given, $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{Ka}_{\mathrm{a}}} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$,

$$
\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{~K}_{\mathrm{b}}} \mathrm{HF}+\mathrm{OH}^{-}
$$

Which relation is correct?
a) $K_{b}=K_{w}$
b) $K_{b}=\frac{1}{K_{w}}$
c) $K_{a} \times K_{b}=K_{w}$
d) $\frac{K_{a}}{K_{b}}=K_{w}$
818. The pH of a solution is 4 . The hydrogen ion concentration of the solution in mol/L is
a) 9.5
b) 10^{-4}
c) 10^{4}
d) 10^{-2}
819. Which one of the following statements is not true?
a) The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is HPO_{4}^{2-}
b) $\mathrm{pH}+\mathrm{pOH}=14$ for all aqueous solutions
c) The pH of $1 \times 10^{-8} \mathrm{M} \mathrm{HCl}$ is 8
d) $\begin{aligned} & 96,500 \mathrm{C} \text { of electricity when passed through a } \mathrm{CuSO}_{4} \text { solution deposits } 1 \mathrm{~g} \text { equivalent of copper at the } \\ & \text { cathode }\end{aligned}$
820. The correct representation for the solubility product constant of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is:
a) $\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]$
b) $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CrO}_{4}^{2-}\right]$
c) $\left[2 \mathrm{Ag}^{+}\right]\left[\mathrm{CrO}_{4}^{2-}\right]$
d) $\left[2 \mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]$
821. For a reversible reaction, the rate constant for the forward reaction is 2.38×10^{-4} and for the backward reaction is 8.15×10^{-5}. The K_{c} for the reaction is :
a) 0.342
b) 2.92
c) 0.292
d) 3.42
822. The pH of a soft drink is 3.82 . Its H^{+}ion concentration will be:
a) $1.96 \times 10^{-2} \mathrm{~mol} /$ litre
b) $1.96 \times 10^{-3} \mathrm{~mol} /$ litre
c) $1.5 \times 10^{-4} \mathrm{~mol} /$ litre
d) $1.96 \times 10^{-1} \mathrm{~mol} /$ litre
823. The decreasing order of strength of the bases,
$\mathrm{OH}^{-}, \mathrm{NH}_{2}^{-}, \mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}$and $\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}$, is:
a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}$
b) $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}>\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{OH}^{-}$
c) $\mathrm{OH}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}>\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}$
d) $\mathrm{NH}_{2}^{-}>\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}>\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}$
824. The metallic sulphide not precipitated if $\mathrm{H}_{2} \mathrm{~S}$ gas is passed through an aqueous solution containing cuprous chloride, bismuth chloride, mercuric chloride and sodium chloride is:
a) CuS
b) $\mathrm{Bi}_{2} \mathrm{SO}_{3}$
c) HgS
d) $\mathrm{Na}_{2} \mathrm{~S}$
825. pH of $1 \times 10^{-8} \mathrm{M}$ nitric acid solution will be
a) 6
b) 6.96
c) 7.96
d) 8
826. Indicate the correct answer out of the following for the reaction,
$\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl}$
a) The reaction is retarded by the addition of KOH
b) The reaction is favoured by the addition of $\mathrm{NH}_{4} \mathrm{OH}$
c) The reaction is retarded by the addition of hydrogen ion
d) None of the above
827. The salt of strong acid and weak base $\left(\mathrm{FeCl}_{2}\right)$ is
a) Acidic
b) Basic
c) Neutral
d) None of these
828. For the following reaction in gaseous phase
$\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
K_{c} / K_{p} is
a) $(R T)^{1 / 2}$
b) $(R T)^{-1 / 2}$
c) $(R T)$
d) $(R T)^{-1}$
829. For a reaction if $K_{p}>K_{c}$ the forward reaction is favoured by
a) Low pressure
b) High pressure
c) High temperature
d) Low temperature
830. What will be the pH value of $0.05 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution?
a) 12
b) 13
c) 1
d) 12.96
831. pH of a saturated solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 12 . The value of solubility product $\left(K_{\text {sp }}\right)$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ is:
a) 4.0×10^{-6}
b) 5.0×10^{-6}
c) 3.3×10^{-7}
d) 5.0×10^{-7}
832. The conjugate base of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is
a) SO_{4}^{2-}
b) HSO_{4}^{-}
c) HSO_{4}^{+}
d) $\mathrm{H}_{3} \mathrm{SO}_{4}$
833. For the reaction, $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g})$, the value of K_{c} at $250^{\circ} \mathrm{C}$ is 26 . The value of K_{p} at this temperature will be
a) 0.41
b) 0.51
c) 0.61
d) 0.71
834. The pH of a $10^{-10} \mathrm{M} \mathrm{NaOH}$ solution is nearest to
a) 10
b) 7
c) 4
d) -10
835. Which can act as buffer?
a) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}$
b) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
c) 40 mL of $0.1 \mathrm{M} \mathrm{NaCN}+20 \mathrm{~mL}$ of 0.1 M HCl
d) All of the above
836. The pH indicators are
a) Salts of strong acids and strong bases
b) Salts of weak acid and weak bases
c) Either weak acids or weak bases
d) Either strong acid or strong bases
837. Phenolphthalein is a:
a) Weak acid
b) Weak base
c) Strong acid
d) Strong base
838. The solubility product of $\mathrm{Hg}_{2} \mathrm{I}_{2}$ is equal to
a) $\left[\mathrm{Hg}_{2}^{2}\right][\mathrm{I}]$
b) $\left[\mathrm{Hg}^{2}\right][\mathrm{I}]$
c) $\left[\mathrm{Hg}_{2}^{2}\right][\mathrm{I}]^{2}$
d) $\left[\mathrm{Hg}^{2}\right][\mathrm{I}]^{2}$
839. The rate at which a substance reacts depends on its
a) Atomic weight
b) Atomic number
c) Molecular weight
d) Active mass
840. The compound HCl behaves as ... in the reaction, $\mathrm{HCl}+\mathrm{HF} \rightarrow \mathrm{H}_{2}^{+} \mathrm{Cl}+\mathrm{F}^{-}$
a) Strong acid
b) Strong base
c) Weak acid
d) Weak base
841. At temperature T, a compound $A B_{2}(\mathrm{~g})$ dissociated according to the reaction $2 A B_{2}(\mathrm{~g}) \rightleftharpoons 2 A B(\mathrm{~g})+B_{2}(\mathrm{~g})$ with a degree of dissociation x, which is small compared with unity. The expression for K_{p}, in terms of x and the total pressure P, is:
a) $\frac{P x^{3}}{2}$
b) $\frac{P x^{2}}{3}$
c) $\frac{P x^{3}}{3}$
d) $\frac{P x^{2}}{2}$
842. Which of the following is not a Lewis acid?
a) BF_{3}
b) AlCl_{3}
c) SO_{2}
d) $\mathrm{H}_{2} \mathrm{O}$
843. The pH of a 0.1 molar solution of the acid HQ is 3 . The value of the ionization constant, K_{a} of this aid is:
a) 1×10^{-3}
b) 1×10^{-5}
c) 1×10^{-7}
d) 3×10^{-1}
844. For the precipitation of IInd group cations only the solution is made acidic so that:
a) The sulphide ion concentration may increase
b) The sulphide ion concentration may decrease
c) The H^{+}ion concentration may increase
d) The cations concentration may increase
845. Let the solubility of an aqueous solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ be X then its $K_{\text {sp }}$ is
a) $4 x^{3}$
b) $108 x^{5}$
c) $27 x^{4}$
d) $9 x$
846. In the equilibrium, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$, the partial pressure of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and SO_{3} are $0.662,0.101$ and 0.331 atm respectively. What should be the partial pressure of oxygen so that the equilibrium concentration of SO_{2} and SO_{3} are equal?
a) 0.4 atm
b) 1.0 atm
c) 0.8 atm
d) 0.25 atm
847. In the following reaction,
$\mathrm{AgCl}+\mathrm{KI} \rightleftharpoons \mathrm{KCl}+\mathrm{AgI}$
as KI is added, the equilibrium is shifted towards right giving more AgI precipitate. because
a) Both AgCl and AgI are sparingly soluble
b) The $K_{\text {sp }}$ of AgI is lower than $K_{\text {sp }}$ of AgCl
c) The $K_{\text {sp }}$ of AgI is higher than $K_{\text {sp }}$ of AgCl
d) Both AgCl and AgI have same solubility product
848. Which of the following is a Lewis base?
a) NaOH
b) NH_{3}
c) BCl_{3}
d) All of these
849. The ionisation constant of NH_{4}^{+}in water is 5.6×10^{-10} at $25^{\circ} \mathrm{C}$. The rate constant for the reaction of NH_{4}^{+} and OH^{-}to form NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ is $3.4 \times 10^{10} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. The rate constant for proton transfer from water to NH_{3} is:
a) $6.07 \times 10^{5} \mathrm{~s}^{-1}$
b) $6.07 \times 10^{-10} \mathrm{~s}^{-1}$
c) $6.07 \times 10^{-5} \mathrm{~s}^{-1}$
d) $6.07 \times 10^{10} \mathrm{~s}^{-1}$
850. $K_{s p}$ for AgCl in water at $25^{\circ} \mathrm{C}$ is 1.8×10^{-10}. If $10^{-5} \mathrm{~mol}$ of Ag^{+}ions are added to this solution. $K_{s p}$ will be:
a) 1.8×10^{-16}
b) 1.8×10^{-10}
c) 1.8×10^{-5}
d) None of these
851. The reaction which proceeds in the forward direction is :
a) $\mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{HCl}=2 \mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{SnCl}_{4}+\mathrm{Hg}_{2} \mathrm{Cl}_{2}=\mathrm{SnCl}_{2}+2 \mathrm{HgCl}_{2}$
c) $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}=\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaOH}$
d) $2 \mathrm{CuI}+\mathrm{I}_{2}+4 \mathrm{~K}^{+}=2 \mathrm{Cu}^{2+}+3 \mathrm{KI}$
852. The chemical equilibrium of a reversible reaction is not influenced by
a) Pressure
b) Catalyst
c) Concentration of the reactants
d) Temperature
853. A 0.01 M ammonia solution is 5% ionised, its pH will be
a) 11.80
b) 10.69
c) 7.22
d) 12.24
854. For the decomposition reaction
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
The $K_{p}=2.9 \times 10^{-5} \mathrm{~atm}^{3}$. The total pressure of gases at equilibrium when 1 mole of $\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~g})$ was taken to start with would be
a) 0.0766 atm
b) 0.0582 atm
c) 0.0388 atm
d) 0.0194 atm
855. 3 moles of A and 4 moles of B are mixed together and allowed to come into equilibrium according to the following reaction.

$$
3 A(\mathrm{~g})+4 B(\mathrm{~g}) \rightleftharpoons 2 C(\mathrm{~g})+3 D(\mathrm{~g})
$$

When equilibrium is reached, there is 1 mole of C.
The equilibrium extent of the reaction is
a) $\frac{1}{4}$
b) $\frac{1}{3}$
c) $\frac{1}{2}$
d) 1
856. For the reaction, $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}$

The correct relation is
a) $K_{p}=K_{c}$
b) $K_{p}=K_{c}[R T]$
c) $K_{p}=K_{c}[R T]^{-2}$
d) $K_{p}=K_{c}[R T]^{-1}$
857. Which solution will have pH closer to 1.0 ?
a) 100 mL of $(M / 10) \mathrm{HCl}+100 \mathrm{~mL}$ of $(M / 10) \mathrm{NaOH}$
b) 55 mL of $(M / 10) \mathrm{HCl}+45 \mathrm{~mL}$ of $(M / 10) \mathrm{NaOH}$
c) 10 mL of $(M / 10) \mathrm{HCl}+90 \mathrm{~mL}$ of $(M / 10) \mathrm{NaOH}$
d) 75 mL of $(M / 5) \mathrm{HCl}+25 \mathrm{~mL}$ of $(M / 5) \mathrm{NaOH}$
858. Which of the following is a Lewis acid?
a) Cl^{-}
b) $\mathrm{H}_{3} \mathrm{O}^{+}$
c) PF_{3}
d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
859. A buffer solution can be prepared from a mixture of
(i) sodium acetate and acetic acid in water
(ii) sodium acetate and hydrochloric acid in water
(iii) ammonia and ammonium chloride in water
(iv) ammonia and sodium hydroxide in water
a) (i), (ii)
b) (ii), (iii)
c) (iii), (iv)
d) (i), (iii)
860. An equilibrium mixture of the reaction, $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ contains 0.120 mole of $\mathrm{NO}_{2}, 0.080$ mole of NO and 0.640 mole of O_{2} in a 4 litre flask at constant temperature. The value of K_{c} for the reaction at this temperature is:
a) 14
b) 24
c) 7
d) 28
861. For the reaction, $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$, the value of K_{c} at $800^{\circ} \mathrm{C}$ is 0.1 . When the equilibrium concentration of both the reactants is 0.5 mole, what is the value of K_{p} at the same temperature?
a) 0.5
b) 0.1
c) 0.01
d) 0.025
862. The equilibrium, $\mathrm{P}_{4}(s)+6 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{PCl}_{3}(\mathrm{~g})$ attained by mixing equal moles of P_{4} and Cl_{2} in a evacuated vessel. Then, at equilibrium,
a) $\left[\mathrm{Cl}_{2}\right]>\left[\mathrm{PCl}_{3}\right]$
b) $\left[\mathrm{Cl}_{2}\right]>\left[\mathrm{P}_{4}\right]$
c) $\left[\mathrm{P}_{4}\right]>\left[\mathrm{Cl}_{2}\right]$
d) $\left[\mathrm{PCl}_{3}\right]>\left[\mathrm{P}_{4}\right]$
863. The yield of product in the reaction $A_{2}(\mathrm{~g})+2 B(\mathrm{~g}) \rightleftharpoons C(\mathrm{~g})+Q \mathrm{~kJ}$ would be high at
a) High temperature and high pressure
b) High temperature and low pressure
c) Low temperature and high pressure
d) Low temperature and low pressure
864. According to law of mass action, rate of a chemical reaction is proportional to
a) Molar concentration of reactants
b) Concentration of reactants
c) Concentration of products
d) Molar concentration of products
865. If NaOH is added to a solution of acetic acid:
a) H^{+}ions increases
b) pH decreases
c) $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]^{-}$increases
d) $\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$ increases
866. What is the effect of having the pressure by doubling the volume on the following system at $500^{\circ} \mathrm{C}$?

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

a) Shift to reactant side
b) Shift to product formation
c) Liquefaction of HI
d) No effect
867. The solubility product ($K_{\text {sp }}$) of the following compounds are given at $25^{\circ} \mathrm{C}$

Compound	$\boldsymbol{K}_{\text {sp }}$
AgCl	$1.1 \quad 10^{10}$
AgI	$1.0 \quad 10^{16}$
PbCrO_{4}	$4.0 \quad 10^{14}$
$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	$8.0 \quad 10^{12}$

The most soluble and least soluble compounds are
a) AgCl and PbCrO_{4}
b) AgI and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$
c) AgCl and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$
d) $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ and AgI
868. The pH of $10^{-10} \mathrm{M} \mathrm{NaOH}$ solution is nearest to
a) -4
b) -10
c) 4
d) 7
869. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is
a) $\mathrm{H}_{3} \mathrm{PO}_{4}$
b) $\mathrm{P}_{2} \mathrm{O}_{5}$
c) PO_{4}^{3-}
d) HPO_{4}^{2-}
870. The ionization constant of ammonium hydroxide is 1.77×10^{-5} at 298 K . Hydrolysis constant of ammonium chloride is:
a) 5.65×10^{-12}
b) 5.65×10^{-10}
c) 6.50×10^{-12}
d) 5.65×10^{-13}
871. 1 M solution of an acid has a pH of 5 . Which of the following is the most reasonable explanation for this acid?
a) The acid is too dilute
b) It is a strong acid
c) It reacts with water to produce a high concentration of hydronium ions
d) It is a weak acid
872. The solubility product $K_{s p}$, of a sparingly soluble salt AgIO_{3} is 1.0×10^{-8} at a given temperature. What is the mass of $\mathrm{AgIO}_{3}(\mathrm{~mol}$. Mass $=283)$ contained in 100 mL solution at this temperature is:
a) $1.0 \times 10^{-4} \mathrm{~g}$
b) $28.3 \times 10^{-2} \mathrm{~g}$
c) $2.83 \times 10^{-3} \mathrm{~g}$
d) $1.0 \times 10^{-7} \mathrm{~g}$
873. The pH of a buffer solution containing equal molal concentration of a weak base and its chloride (K_{b} for weak base $=2 \times 10^{-5}$) is
a) 5
b) 9
c) 4.7
d) 9.3
874. In qualitative analysis, in III group $\mathrm{NH}_{4} \mathrm{Cl}$ is added before $\mathrm{NH}_{4} \mathrm{OH}$ because
a) To increase the concentration of NH_{4}^{+}ions
b) To increase the concentration of Cl^{-}ions
c) To reduce the concentration of OH^{-}ions
d) To increase the concentration of OH^{-}ions
875. The $K_{\text {sp }}$ for $\mathrm{Cr}(\mathrm{OH})_{3}$ is 1.610^{30}. The molar solubility of this compound in water is
a) $\sqrt[2]{1.610^{30}}$
b) $\sqrt[4]{1.610^{30}}$
c) $\sqrt[4]{1.610^{30} / 27}$
d) $1.6 \quad 10^{30} / 27$
876. ΔG^{0} for the reaction $X+Y \rightleftharpoons Z$ is -4.606 kcal. The equilibrium constant for the reaction at $227^{\circ} \mathrm{C}$ is :
a) 100
b) 10
c) 2
d) 0.01
877. For the reaction, $2 A(g) \rightleftharpoons 3 C(g)+D(s)$, the value of K_{c} will be equal to
a) $K_{p}(R T)$
b) $K_{p} / R T$
c) $=K_{p}$
d) None of these
878. Reaction between barium chloride and sodium sulphate goes to completion because:
a) Barium sulphate is almost insoluble
b) The reaction is reversible
c) The solubility of barium chloride decreases
d) None of the above
879. Which of the following cannot act as a Lewis of Bronsted acid?
a) BF_{3}
b) AlCl_{3}
c) SnCl_{4}
d) CCl_{4}
880. Consider the reaction,

$$
\mathrm{NO}_{2} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}+\mathrm{O}_{2}, K_{1} ; \mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}, K_{2}
$$

Give the equilibrium constant for the formation of $\mathrm{N}_{2} \mathrm{O}_{4}$ from N_{2} and O_{2}.
a) $\frac{1}{K_{1}^{2}}+\frac{1}{K_{2}}$
b) $\frac{1}{K_{1} K_{2}}$
c) $\sqrt{\frac{1}{K_{1} K_{2}}}$
d) $\frac{K_{2}}{K_{1}}$
881. A weak monobasic acid is 1% ionised in 0.1 M solution at $25^{\circ} \mathrm{C}$. The percentage of ionisation in its 0.025 M solution is
a) 1
b) 2
c) 3
d) 4
882. In $K_{p}=K_{c}[R T]^{\Delta n}, \Delta n$ may have:
a) + ve values
b) -ve values
c) Integer of fractional values
d) Either of the above
883. The conjugate acid of H^{-}ion is:
a) $\mathrm{H}_{3} \mathrm{O}^{+}$
b) H_{2}
c) OH^{-}
d) $\mathrm{H}_{2} \mathrm{O}$
884. The addition of HCl does not suppresses the ionisation of:
a) Acetic acid
b) Benzoic acid
c) $\mathrm{H}_{2} \mathrm{~S}$
d) $\mathrm{H}_{2} \mathrm{SO}_{4}$
885. A colourless solution liberates CO_{2} gas when added to a metal bicarbonate. The solution is:
a) Basic
b) Acidic
c) Amphoteric
d) Neutral
886. Which one of the following statement is not true?
a) The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is HPO_{4}^{2-}
b) $\mathrm{pH}+\mathrm{pOH}=14$ for all aqueous solutions
c) The pH of $1 \times 10^{-8} \mathrm{M} \mathrm{HCl}$ is 8
d) 96500 C of electricity when passed through a CuSO_{4} solution deposit 1 g equivalent of copper
d) at the cathode
887. Two moles of PCl_{5} is heated in a closed vessel of 2 L capacity. When the equilibrium is attained 40% of it has been found to be dissociated. What is the K_{c} in $\mathrm{mol} / \mathrm{dm}^{3}$?
a) 0.532
b) 0.266
c) 0.133
d) 0.174
888. A liquid is in equilibrium with its vapour at it's boiling point. On the average, the molecules in two phases have equal
a) Inter-molecular forces
b) Potential energy
c) Kinetic energy
d) Total energy
889. At equilibrium, the amount of HI in a 3 litre vessel was 12.8 g . Its equilibrium concentration is :
a) 4.267 M
b) 0.033 M
c) 0.1 M
d) 0.2 M
890. Which one of the following salts give an acidic solution in water?
a) $\mathrm{CH}_{3} \mathrm{COONa}$
b) $\mathrm{NH}_{4} \mathrm{Cl}$
c) NaCl
d) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
891. For which reaction does the equilibrium constant depend on the units of concentration?
a) $\mathrm{NO}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
b) $\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(a q) \rightleftharpoons \mathrm{Cu}(s)+\mathrm{Zn}^{2+}(a q)$
c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+\mathrm{CH}_{3} \mathrm{COOH}(l) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l)$
d) $\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
892. The solubility product of $\mathrm{As}_{2} \mathrm{~S}_{3}$ is 2.8×10^{-72}. What is the solubility of $\mathrm{As}_{2} \mathrm{~S}_{3}$?
a) $1.92 \times 10^{-15} \mathrm{~mol} / \mathrm{L}$
b) $1.72 \times 10^{-15} \mathrm{~mol} / \mathrm{L}$
c) $2.3 \times 10^{-16} \mathrm{~mol} / \mathrm{L}$
d) $1.65 \times 10^{-36} \mathrm{~mol} / \mathrm{L}$
893. When CO_{2} dissolves in water, the following equilibrium is established, $\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{3}^{-}$, for which the equilibrium constant is 3.8×10^{-7} and $\mathrm{pH}=6.0$. The ratio of $\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}\right]$ is :
a) 3.8×10^{-18}
b) 3.8
c) 0.38
d) 13.8
894. The blood buffers are most often involved in stabilizing the pH in presence of metabolically produced:
a) Acids
b) Bases
c) Salts
d) None of these
895. If concentration of $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} are 1,2 and 3 respectively, their concentrations at equilibrium will be: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
a) $(1-x) \quad(2-3 x)$
2b) $(1-x / 3)$
$(2-x) \quad 2 x c)(1-x) \quad(2-x)$
(3d) $(1-x) \quad(2-3 x) \quad($
896. For the reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ at $500^{\circ} \mathrm{C}$, the value of K_{p} is 1.44×10^{-5}. What will be the value of K_{p} at low pressure where the gases are behaving almost ideally?
b) $\begin{aligned}(0.082 \times 773)^{2} & \\ & \times 1.44 \mathrm{c}) \\ & \times 10^{-5}\end{aligned}$
a) 1.44×10^{-5}
1.44×10^{-5}
$\times(0.082 \times 500)^{2}$
d) $\begin{aligned} & 1.44 \times 10^{-5} \\ & \times(0.082 \times 773)^{3}\end{aligned}$
897. The range of pH in which methyl orange works as indicator:
a) 3-4
b) $10-12$
c) $8-10$
d) $6-8$
898. For the reaction: $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g}), K_{p} / K_{c}$ is:
a) $R T$
b) $(R T)^{-1}$
c) $(R T)^{-1 / 2}$
d) $(R T)^{1 / 2}$
899. $K_{s p}$ of $\mathrm{CuS}, \mathrm{Ag}_{2} \mathrm{~S}$ and HgS are $10^{-31}, 10^{-44}$ and 10^{-54} respectively. Select the correct order for their solubility in water:
a) $\mathrm{Ag}_{2} \mathrm{~S}>\mathrm{HgS}>\mathrm{CuS}$
b) $\mathrm{HgS}>\mathrm{CuS}>\mathrm{Ag}_{2} \mathrm{~S}$
c) $\mathrm{HgS}>\mathrm{Ag}_{2} \mathrm{~S}>\mathrm{CuS}$
d) $\mathrm{Ag}_{2} \mathrm{~S}>\mathrm{CuS}>\mathrm{HgS}$
900. pH of a 0.0001 M HCl solution is
a) 4.0
b) 2.0
c) 6.0
d) 7.0
901. The pH of 0.1 M HCl is approximately 1 . The approximate pH of $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is:
a) 0.05
b) 0.5
c) 1
d) 2
902. Phenolphthalein shows ... in acid medium.
a) Red colour
b) Yellow colour
c) Pink colour
d) No colour
903. The $\left[\mathrm{OH}^{-}\right]$in 100 mL of 0.015 M HCl (aq.) is:
a) $5 \times 10^{-12} \mathrm{M}$
b) $3 \times 10^{-10} \mathrm{M}$
c) $6.7 \times 10^{-13} \mathrm{M}$
d) $2.0 \times 10^{-9} \mathrm{M}$
904. For an equilibrium reaction if the value of $K_{c} \gg 1$, then the reaction favoured more towards
a) Backward
b) Forward
c) Equilibrium will be obtained
d) Reaction will stop
905. K_{c} for $A+B \rightleftharpoons 3 C$ is 20 at $25^{\circ} \mathrm{C}$. If a 2 litre vessel contains 1,2 and 4 mole of A, B and C respectively, the reaction at $25^{\circ} \mathrm{C}$ shall :
a) Proceed from left to right
b) Proceed from right to left
c) Be at equilibrium
d) Not occur
906. Solution prepared by dissolving equal number of mole of $\mathrm{HOCl}\left(K_{a}=3.2 \times 10^{-8}\right)$ and NaOCl is a buffer of pH :
a) 8.0
b) 3.2
c) 7.5
d) 4.8
907. An increase in the temperature of an equilibrium system:
a) Favours the exothermic reaction
b) Favours the endothermic reaction
c) Favours both the exothermic and endothermic reactions
d) Favours neither the exothermic nor endothermic reactions
908. Which of these is a Lewis acid?
a) AlCl_{3}
b) NCl_{3}
c) HCl
d) $R O R$
909. The pH of a solution is 4 . The hydrogen ion concentration of the solution if pH is to be increased to 5 is:
a) Halved
b) Doubled
c) Decreased by 10 times
d) Decreased to half of its original value of concentration
910. The oxo-acid of anhydride $\mathrm{P}_{2} \mathrm{O}_{5}$ is:
a) $\mathrm{H}_{3} \mathrm{PO}_{4}$
b) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
c) HPO_{3}
d) All of these
911. In a saturated solution of the sparingly soluble strong electrolyte AgIO_{3} (molecular mass=283) the equilibrium which sets in is

$$
\mathrm{AgIO}_{3}(s) \rightleftharpoons \mathrm{Ag}^{+}(a q)+\mathrm{IO}_{3}^{-}(a q)
$$

If the solubility product constant $K_{s p}$ of AgIO_{3} at a given temprature is 1.0×10^{-8}, what is the mass of AgIO_{3} contained in 100 mL of its saturated solution?
a) $28.3 \times 10^{-2} \mathrm{~g}$
b) $2.83 \times 10^{-3} \mathrm{~g}$
c) $1.0 \times 10^{-7} \mathrm{~g}$
d) $1.0 \times 10^{-4} \mathrm{~g}$
912. $\mathrm{H}_{3} \mathrm{BO}_{3}$ is:
a) Monobasic and weak
b) Monobasic and weak
c) Monobasic and strong
d) Tribasic and weak Lewis acid Bronsted acid
913. All Lewis acids are not necessarily:
a) Proton donor
b) Bronsted acids
c) Arrhenius acids
d) All of these
914. In the reaction,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$. Which of the following is correct?
a) $K_{p}=K_{c}$
b) $K_{p}>K_{c}$
c) $K_{p}<K_{c}$
d) $K_{p} \geq K_{c}$
915. Which of the following is most soluble in water?
a) $\mathrm{Bi}_{2} \mathrm{~S}_{3}\left(K_{s p}=10^{-70}\right)$
b) $\operatorname{MnS}\left(K_{s p}=7 \times 10^{-16}\right)$
c) $\operatorname{CuS}\left(K_{s p}=8 \times 10^{-37}\right)$
d) $\mathrm{Ag}_{2} \mathrm{~S}\left(K_{s p}=6 \times 10^{-51}\right)$.
916. The equilibrium constant for the reaction

$$
\mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

is $K_{c}=4.9 \times 10^{-2}$. The value of K_{c} for the reaction
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ will be
a) 416
b) 2.40×10^{-3}
c) 9.8×10^{-2}
d) 4.9×10^{-2}
917. $p K_{a}$ or a weak acid is defined as
a) $\log K_{a}$
b) $\frac{1}{\log K_{a}}$
c) $\log \frac{1}{K_{a}}$
d) $-\log \frac{1}{K_{a}}$
918. In the equilibrium, $A B \rightleftharpoons A+B$, if the equilibrium concentration of A is doubled, the equilibrium concentration of B would become
a) Half
b) Twice
c) $\frac{1}{4}$ th
d) $\frac{1}{8}$ th
919. Two moles of PCl_{5} were heated in a closed vessel of 2 L . At equilibrium 40% of PCl_{5} is dissociated into PCl_{3} and Cl_{2}. The value of equilibrium constant is
a) 0.53
b) 0.267
c) 2.63
d) 5.3
920. When NaOH is dissolved in water, heat is evolved. If the temperature is raised, the solubility of NaOH :
a) Increases
b) Decreases
c) Remains the same
d) Cannot be predicted
921. In which of the following equilibrium, change in volume of the system does not alter the number of moles?
a) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
b) $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
c) N_{2} (g) $+3 \mathrm{H}_{2}$ (g) $\rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
d) $\mathrm{SOCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
922. Conjugate base of HSO_{4}^{-}is
a) SO_{4}^{2-}
b) $\mathrm{H}_{2} \mathrm{SO}_{4}$
c) $\mathrm{H}_{3} \mathrm{SO}_{4}^{+}$
d) None of these
923. Which favours the backward reaction in a chemical equilibrium?
a) Increasing the concentration of one of the reactants
b) Removal of at least one of the products at regular intervals
c) Increasing the concentration of one or more of the products
d) None of the above
924. A weak acid $\mathrm{H} X\left(K_{a}=1 \times 10^{-5}\right)$ on reaction with NaOH gives $\mathrm{Na} X$. For 0.1 M aqueous solution of $\mathrm{Na} X$, the $\%$ hydrolysis is:
a) 0.001%
b) 0.01%
c) 0.15%
d) 1%
925. For the reaction: $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) ; K_{c}=1.8 \times 10^{-6}$ at $184^{\circ} \mathrm{C}$ and $R=0.083$ litre atm K${ }^{-1} \mathrm{~mol}^{-1}$. When K_{p} and K_{c} are compared at $184^{\circ} \mathrm{C}$, it is found that :
a) $K_{p}>K_{c}$
b) $K_{p}<K_{c}$
c) $K_{p}=K_{c}$
d) $K_{p} \gtrless K_{c}$
926. $\mathrm{Mg}(\mathrm{OH}) \mathrm{Cl}$ is an example of:
a) Acidic salt
b) Basic salt
c) Neutral salt
d) Amphoteric salt
927. The degree of dissociation of a weak acid is 1.34% at 0.1 M concentration. Its dissociation constant is:
a) 8×10^{-6}
b) 1.79×10^{-5}
c) 0.182×10^{-5}
d) 8×10^{-5}
928. In the reaction $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
a) $\mathrm{H}_{2} \mathrm{O}$ is the conjugate base of HCl acid
b) Cl^{-}is the conjugate base of HCl acid
c) Cl^{-}is the conjugate acid of $\mathrm{H}_{2} \mathrm{Ob}$ base
d) $\mathrm{H}_{3} \mathrm{O}^{+}$is the conjugate base of HCl
929. Slope and intercepts of the plots $\log { }_{10} \mathrm{Kvs} \frac{1}{T}$ are given respectively by :
a) $-\frac{\Delta H^{\circ}}{R}, \frac{\Delta S^{\circ}}{R}$
b) $\frac{-\Delta H^{\circ}}{2.303 R}, \frac{\Delta S^{\circ}}{2.303}$
c) $\frac{-\Delta H^{\circ}}{2.303 R}, \frac{\Delta S^{\circ}}{2.303 R}$
d) $\frac{\Delta H^{\circ}}{2.303}, \frac{-\Delta S^{\circ}}{2.303 R}$
930. On adding 0.1 M solution each of $\left[\mathrm{Ag}^{+}\right],\left[\mathrm{Ba}^{2+}\right],\left[\mathrm{Ca}^{2+}\right]$ in a $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution, species first precipitated is
$\left[K_{\text {sp }} \mathrm{BaSO}_{4}=10^{-11}, K_{\text {sp }} \mathrm{CaSO}_{4}=10^{-6}, K_{\text {sp }} \mathrm{AgSO}_{4}=10^{-5}\right]$
a) $\mathrm{Ag}_{2} \mathrm{SO}_{4}$
b) BaSO_{4}
c) CaSO_{4}
d) All of these
931. K for the synthesis of HI is $50 . K$ for the dissociation of HI is
a) 0.2
b) 0.02
c) 0.4
d) 0.04
932. Which of the following factors will favour the reverse reaction in a chemical equilibrium?
a) Increase in the concentration of one of the reactants
b) Increase in the concentration of one or more products
c) Removal of at least one of the product at regular time intervals
d) None of the above
933. The anhydride of HNO_{3} is:
a) $\mathrm{P}_{2} \mathrm{O}_{5}$
b) $\mathrm{N}_{2} \mathrm{O}_{3}$
c) NO
d) $\mathrm{N}_{2} \mathrm{O}_{5}$
934. According to Le-Chatelier principle, adding heat a solid and liquid in equilibrium will cause the
a) Amount of solid to decrease
b) Amount of liquid to decrease
c) Temperature to rise
d) Temperature to fall
935. What is the conjugate base of OH^{-}?
a) O^{2-}
b) O^{-}
c) $\mathrm{H}_{2} \mathrm{O}$
d) O_{2}
936. The solubility of $\mathrm{Al}(\mathrm{OH})_{3}$ is ' s^{\prime} ' mol per litre, the solubility product of $\mathrm{Al}(\mathrm{OH})_{3}$ is:
a) s^{3}
b) $27 s^{4}$
c) s^{2}
d) $4 s^{2}$
937. The pH of 0.1 M solution of the following salts increases in the order
a) $\mathrm{NaCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCN}<\mathrm{HCl}$
b) $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{NaCN}$
c) $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{HCl}$
d) $\mathrm{HCl}<\mathrm{NaCl}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}$
938. For the Haber's process for the formation of NH_{3} at 298 K is :

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} ; \Delta H=-460 \mathrm{~kJ}
$$

Which of the following is correct?
The condition for equilibrium is $\mathrm{G}_{\mathrm{N}_{2}}+3 \mathrm{G}_{\mathrm{H}_{2}}=2 \mathrm{G}_{\mathrm{NH}_{3}}$, where G is Gibbs energy per mole of gaseous a) species measured at that partial pressure
b) On addition N_{2}, the equilibrium will shift to forward direction because according to II law of thermodynamics the entropy must decrease in the direction of spontaneous reaction.
c) The catalyst will increase the rate of forward reaction by 2 times and that of backward reaction by 1.5 times
d) Name of the above
939. Consider the reversible reaction,
$\mathrm{HCN}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{CN}^{-}(a q)$
At equilibrium, the addition of $\mathrm{CN}^{-}(a q)$ would:
a) Reduce $\mathrm{HCN}(a q)$ concentration
b) Decrease the $\mathrm{H}^{+}(a q)$ ion concentration
c) Increase the equilibrium constant
d) Decrease the equilibrium constant
940. The solubility product of iron (III) hydroxide is 1.6×10^{-39}. If X is the solubility of iron (III) hydroxide, which one of the following expression can be used to calculate X ?
a) $K_{s p}=X^{4}$
b) $K_{s p}=9 X^{4}$
c) $K_{s p}=27 X^{3}$
d) $K_{s p}=27 X^{4}$
941. Baking soda is a/an:
a) Basic salt
b) Double salt
c) Complex salt
d) Acidic salt
942. An aqueous solution of sodium carbonate has a pH greater than 7 because
a) It contains more carbonate ions than $\mathrm{H}_{2} \mathrm{O}$ molecules
b) Contains more hydroxide ions than carbonate ions
c) Na^{+}ions react with water
d) Carbonate ions react with $\mathrm{H}_{2} \mathrm{O}$
943. The pH of a solution obtained by mixing 10 mL of 0.1 M HCl and 40 mL of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is:
a) 1.4865
b) 0.4865
c) 0.4685
d) 3
944. Just before a reversible reaction attains equilibrium it is found that:
a) The velocity of both forward reaction and backward reaction is also increasing
b) The velocity of the forward reaction is decreasing and that of backward reaction in increasing
c) The velocity of both forward and backward reactions is decreasing
d) All of the above
945. How many mole of HCl are required to prepare one litre of buffer solution (containing $\mathrm{NaCN}+\mathrm{HCl}$) of pH 8.5 using 0.01 g formula weight of $\mathrm{NaCN}\left(K_{\mathrm{HCN}}=4.1 \times 10^{-10}\right)$?
a) 8.85×10^{-3}
b) 8.75×10^{-2}
c) 8.85×10^{-4}
d) 8.85×10^{-2}
946. For the reaction $A+B \rightleftharpoons 3 C$ at $25^{\circ} \mathrm{C}$, a 3 litre vessel contains $1,2,4$ mole of A, B and C respectively. If K_{c} for the reaction is 10 , the reaction will proceed in :
a) Forward direction
b) Backward direction
c) In either direction
d) In equilibrium
947. What is the pH of a $1 M \mathrm{CH}_{3} \mathrm{COONa}$ solution? K_{a} of acetic acid $=1.8 \times 10^{-5}, K_{w}=10^{-14} \mathrm{~mol}^{2} \mathrm{litre}^{-2}$:
a) 2.4
b) 3.6
c) 4.8
d) 9.4
948. Formaldehyde polymerizes to form glucose according to the reaction,

$$
6 \mathrm{HCHO} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

The theoretically computed equilibrium constant for this reaction is found to be 6×10^{22}. If 1 M solution of glucose dissociates according to the above equilibrium, the concentration of formaldehyde in the solution will be
a) $1.6 \times 10^{-2} \mathrm{M}$
b) $1.6 \times 10^{-4} \mathrm{M}$
c) $1.6 \times 10^{-6} \mathrm{M}$
d) $1.6 \times 10^{-8} \mathrm{M}$
949. The polyprotic acid is:
a) HCl
b) HClO_{4}
c) $\mathrm{H}_{3} \mathrm{PO}_{4}$
d) HNO_{3}
950. The solubility of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ in water is $1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$ at 298 K . What will be its solubility product?
a) 108×10^{-25}
b) 1.0×10^{-25}
c) 144×10^{-25}
d) 126×10^{-24}
951. The pH of $1 / 1000 \mathrm{~N} \mathrm{KOH}$ solution is:
a) 10^{-11}
b) 3
c) 2
d) 11
952. Which acts both as Lowry Bronsted acid and base?
a) OH^{-}
b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
c) NH_{3}
d) HSO_{4}^{-}
953. By applying law of mass action, the equilibrium constant, K for the reaction

$$
\mathrm{H} A+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+A^{-}, \text {is given as }
$$

a) $K=\frac{[\mathrm{H} A]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}$
b) $K=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{H} A]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
c) $K=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[A^{-}\right][\mathrm{HA}]}$
d) $K=\frac{\left[\mathrm{HA} A\left[\mathrm{~A}^{-}\right]\right.}{\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}$
954. The Haber's process for the manufacture of ammonia is usually carried out at about $500^{\circ} \mathrm{C}$. If a temperature of about $250^{\circ} \mathrm{C}$ was used instead of $500^{\circ} \mathrm{C}$:
a) Ammonia would not be formed at all
b) The percentage of ammonia in the equilibrium mixture would be too low
c) A catalyst would be of no use at all at this temperature
d) The rate of formation of ammonia would be too slow
955. The equilibrium constant for, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$ is 1.80 at $1000^{\circ} \mathrm{C}$. If 1.0 mole of H_{2} and 1.0 mole of CO_{2} are placed in one litre flask, the final equilibrium concentration of CO at $1000^{\circ} \mathrm{C}$ will be:
a) 0.573 M
b) 0.385 M
c) 5.73 M
d) 0.295 M
956. For a reaction $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$ at 721 K , the value of equilibrium constant is 50 . If 0.5 moles each of H_{2} and I_{2} is added to the system the value of equilibrium constant will be
a) 40
b) 60
c) 50
d) 30
957. Among $\mathrm{BMe}_{3}, \mathrm{BF}_{3}, \mathrm{BCl}_{3}$ and $\mathrm{B}_{2} \mathrm{H}_{6}$ which one will be the best Lewis acid?
a) BCl_{3}
b) BMe_{3}
c) $\mathrm{B}_{2} \mathrm{H}_{6}$
d) BF_{3}
958. Potassium ferrocyanide is a
a) Mixed salt
b) Normal salt
c) Complex salt
d) Double salt
959. The pH of pure water at $25^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ are 7 and 6 respectively. The heat of formation of water from H^{+} and OH^{-}is:
a) $84.55 \mathrm{kcal} \mathrm{mol}^{-1}$
b) $-84.55 \mathrm{kcal} \mathrm{mol}^{-1}$
c) $74.55 \mathrm{kcal} \mathrm{mol}^{-1}$
d) $-74.55 \mathrm{kcal} \mathrm{mol}^{-1}$
960. The pH of solution A, B, C, D are $9.5,2.5,3.5$ and 5.5 respectively. The most acidic solution is:
a) A
b) B
c) C
d) D
961. According to Debye-Hückel theory of strong electrolytes, increase in conductivity on dilution is due to:
a) Increase in number of ions
b) Increase in the mobility of ions
c) Decrease in the number of ions
d) Decrease in the mobility of ions
962. If K_{1} and K_{2} are the respective equilibrium constants for the two reactions,
$\mathrm{XeF}_{6}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{XeOF}_{4}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{g})$
$\mathrm{XeO}_{4}(\mathrm{~g})+\mathrm{XeF}_{6}(\mathrm{~g}) \rightleftharpoons \mathrm{XeOF}_{4}(\mathrm{~g})+\mathrm{XeO}_{3} \mathrm{~F}_{2}(\mathrm{~g})$
The equilibrium constant for the reaction,
$\mathrm{XeO}_{4}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{g}) \rightleftharpoons \mathrm{XeO}_{3} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is:
a) $K_{1} K_{2}$
b) K_{1} / K_{2}^{2}
c) K_{2} / K_{1}
d) K_{1} / K_{2}
963. The solubility of a saturated solution of calcium fluoride is 2×10^{-4} moles per litre. Its solubility product is:
a) 32×10^{-10}
b) 32×10^{-8}
c) 32×10^{-14}
d) 32×10^{-12}
964. The equilibrium constant $\mathrm{Br}_{2} \rightleftharpoons 2 \mathrm{Br}$ at 500 K and 700 K are 10^{-10} and 10^{-5} respectively. The reaction is:
a) Endothermic
b) Exothermic
c) Fast
d) Slow
965. For the homogenous reaction,

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightleftharpoons 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

the equilibrium constant K_{c} has the units
a) conc. ${ }^{+10}$
b) conc. ${ }^{+1}$
c) conc. $^{-1}$
d) It is dimensionless
966.1 mole of H_{2} and 2 moles of I_{2} are taken initially in a 2 L vessel. The number of moles of H_{2} at equilibrium is 0.2 . Then, the number of moles of I_{2} and HI at equilibrium are
a) $1.2,1.6$
b) $1.8,1.0$
c) $0.4,2.4$
d) $0.8,2.0$
967. If the ionic product of water $\left(K_{w}\right)$ is 1.96×10^{-14} at $35^{\circ} \mathrm{C}$, what is its value at $10^{\circ} \mathrm{C}$?
a) 1.96×10^{-14}
b) 3.92×10^{-14}
c) 2.95×10^{-15}
d) 1.96×10^{-13}
968. 0.1 mole of $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(K_{b}=5 \times 10^{-4}\right)$ is mixed with 0.08 mole of HCl diluted to 1 L . What will be the H^{+}concentration in the solution?
a) $8 \times 10^{-2} \mathrm{M}$
b) $8 \times 10^{-11} \mathrm{M}$
c) $1.6 \times 10^{-11} \mathrm{M}$
d) $8 \times 10^{-5} \mathrm{M}$
969. The conjugate base of $\mathrm{H}_{3} \mathrm{BO}_{3}$ is:
a) $\mathrm{B}(\mathrm{OH})_{4}^{-}$
b) $\mathrm{H}_{2} \mathrm{BO}_{3}^{-}$
c) HBO_{3}^{2-}
d) $\mathrm{H}_{4} \mathrm{BO}_{3}^{+}$
970. For the reaction, $\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g})$ the value of K_{p} / K_{c} is equal to :
a) 1.0
b) $R T$
c) $\sqrt{R T}$
d) $\frac{1}{R T}$
971. One mole of nitrogen is mixed with 3 mole of hydrogen in a closed 3 litre vessel. 20% of nitrogen is converted into NH_{3}. Then K_{c} for the $\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \rightleftharpoons \mathrm{NH}_{3}$ is:
a) 0.36 litre mol^{-1}
b) 0.46 litre mol^{-1}
c) 0.5 litre mol^{-1}
d) 0.2 litre mol^{-1}
972. Which is a reversible reaction?
a) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$
b) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{BaSO}_{4} \downarrow+2 \mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl} \downarrow$
d) $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2} \uparrow$
973. $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

The equilibrium constant of the above reaction is 6.4 at 300 K . If 0.25 mole each of H_{2} and I_{2} are added to the system, the equilibrium constant will be
a) 6.4
b) 0.8
c) 3.2
d) 1.6
974. Would gaseous HCl be considered as an Arrhenius acid?
a) Yes
b) No
c) Not known
d) Gaseous HCl does not exsit
975. Buffer solution is prepared by mixing
a) Strong acid + its salt of strong base
b) Weak acid + its salt of weak base
c) Strong acid +its salt of weak base
d) Weak acid + its salt of strong base
976. Which of the following acids will have lowest value of $\mathrm{p} K_{a}$?

$$
\mathrm{CH}_{3} \mathrm{CHCOOH}
$$

a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
b)
Br

$\mathrm{CH}_{3} \mathrm{CHCOOH}$

c) $\quad 1$
d) $\mathrm{FCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$

F

977. 2 moles of PCl_{5} were heated in a closed vessel of 2 L capacity. At equilibrium 40% of PCl_{5} is dissociated into PCl_{3} and Cl_{2}. The value of equilibrium constant is
a) 0.266
b) 0.366
c) 2.66
d) 3.66
978. $\mathrm{p} K_{a}$ of a weak acid is defined as
a) $\log _{10} K_{a}$
b) $\frac{1}{\log _{10} K_{a}}$
c) $\log _{10} \frac{1}{K_{a}}$
d) $-\log _{10} \frac{1}{K_{a}}$
979. For a reaction equilibrium, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$, the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at equilibrium are 4.8×10^{-2} and $1.2 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$ respectively. The value of K_{c} for the reaction is
a) $3 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
b) $3.3 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
c) $3 \times 10^{-1} \mathrm{~mol} / \mathrm{L}$
d) $3.3 \times 10^{-1} \mathrm{~mol} / \mathrm{L}$
980. If α is the degree of ionisation, C the concentration of a weak electrolyte and K_{a} the acid ionisation constant then the correct relationship between α, C and K_{a} is
a) $\alpha^{2}=\sqrt{\frac{K_{a}}{C}}$
b) $\alpha^{2}=\sqrt{\frac{C}{K_{a}}}$
c) $\alpha=\sqrt{\frac{K_{a}}{C}}$
d) $\alpha=\sqrt{\frac{C}{K_{a}}}$
981. Which of the following behaves as Lewis acid and not as Bronsted acid?
a) HCl
b) $\mathrm{H}_{2} \mathrm{SO}_{4}$
c) HSO_{3}^{-}
d) SO_{3}
982. If little heat is added to ice \rightleftharpoons liquid equilibrium in a sealed container, then:
a) Pressure will rise
b) Temperature will rise
c) Temperature will fall
d) No change in P and T
983. An aqueous solution in which the H^{+}ion concentration is greater than $10^{-7} \mathrm{M}$ is said to be
a) Acidic
b) Alkaline
c) Neutral
d) None of these
984. The conjugate base of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the following reaction is:
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-}$
a) $\mathrm{H}_{2} \mathrm{O}$
b) HSO_{4}^{-}
c) $\mathrm{H}_{3} \mathrm{O}^{+}$
d) SO_{4}^{2-}
985. For the reaction, $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$, the equilibrium concentration of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI are 8.0, 3.0 and $28.0 \mathrm{~mol} / \mathrm{L}$ respectively. The equilibrium constant is
a) 28.34
b) 32.66
c) 34.78
d) 38.88
986. HClO is a weak acid. The concentrations of $\left[\mathrm{H}^{+}\right]$ions in 0.1 M solution of $\mathrm{HClO}\left(K_{a}=5 \times 10^{-8}\right)$ will be equal to:
a) $7.07 \times 10^{-5} \mathrm{M}$
b) $5 \times 10^{-7} \mathrm{M}$
c) $6 \times 10^{-7} \mathrm{M}$
d) $7 \times 10^{-4} \mathrm{M}$
987. At a certain temperature, $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$ only $50 \% \mathrm{HI}$ is dissociated at equilibrium. The equilibrium constant is :
a) 1.0
b) 3.0
c) 0.5
d) 0.25
988. Aqueous solution of $\mathrm{CH}_{3} \mathrm{COOH}$ contains:
a) $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{H}^{+}$
b) $\left.\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{CH}_{3} \mathrm{COc}\right) \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{H}^{+}$
d) $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{H}^{+}$
989. In the manufacture of ammonia by Haber's process,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+92.3 \mathrm{~kJ}$
Which of the following condition is unfavourable?
a) Increasing the temperature
b) Increasing the pressure
c) Reducing the temperature
d) Removing ammonia as it is formed
990. If $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(s) \rightleftharpoons \mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(s)+2 \mathrm{H}_{2} \mathrm{O}(v) K_{p}=1.086 \times 10^{-4} \mathrm{~atm}^{2}$ at $25^{\circ} \mathrm{C}$. The efflorescent nature of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ can be noticed when vapour pressure of $\mathrm{H}_{2} \mathrm{O}$ in atmosphere is :
a) $>7.92 \mathrm{~mm}$
b) $<7.92 \mathrm{~mm}$
c) $\gtrless 7.92 \mathrm{~mm}$
d) None of these
991. Conjugate acid-base pair differs by a/an:
a) Electron
b) Electron pair
c) Proton
d) Neutron
992. The hydrogen ion concentration in a solution of weak acid of dissociation constant K_{a} and concentration c is nearly equal to:
a) $\sqrt{\frac{K_{a}}{c}}$
b) $\frac{c}{K_{a}}$
c) $K_{a} c$
d) $\sqrt{K_{a} c}$
993. For the liquefaction of gas, the favourable conditions are:
a) Low T and high P
b) Low T and low P
c) Low T and high P and a catalyst
d) Low T and catalyst
994. 0.5 M ammonium benzoate is hydrolysed to 0.25 percent, hence, its hydrolysis constant is
a) 2.5×10^{-5}
b) 1.5×10^{-4}
c) 3.125×10^{-6}
d) 6.25×10^{-6}
995. For the equilibrium, $\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(\mathrm{~g})$, which of the following expression is correct?
a) $\begin{aligned} & K_{p} \\ & =[\mathrm{CaO}]\left[\mathrm{CO}_{2}\right] /\left[\mathrm{CaCO}_{3}\right]\end{aligned}$
b) $\begin{aligned} & K_{p}=\left(p_{\mathrm{CaO}}+p_{\mathrm{CO}_{2}}\right) \\ & / P_{\mathrm{CaCO}_{3}}\end{aligned}$
c) $K_{p}=p_{\mathrm{CO}_{2}}$
K_{p}
996. When NaNO_{3} is heated in a closed vessel, O_{2} is liberated and NaNO_{2} is left behind. At equilibrium,
(i) Addition of NaNO_{3} favours forward reaction
(ii) Addition of NaNO_{2} favours backward reaction
(iii) Increasing pressure favours reverse reaction
(iv) Increasing temperature favours forward reaction

Correct option is
a) (i), (ii), (iii)
b) (ii), (iii), (iv)
c) (i), (iii), (iv)
d) (i), (ii) (iii), (iv)
997. Given pH of a solution A is 3 and it is mixed with another solution B having pH 2 . After mixing are resultant pH of the solution will be
a) 3.2
b) 1.9
c) 3.4
d) 3.5
998. To neutralise completely 20 mL of 0.1 M aqueous solution of phosphorus acid $\mathrm{H}_{3} \mathrm{PO}_{3}$, the volume of 0.1 M KOH solution required is:
a) 60 mL
b) 20 mL
c) 40 mL
d) 10 mL
999. The relation between equilibrium constant K_{p} and K_{c} is
a) $K_{p}=K_{c}(R T)^{\Delta n_{g}}$
b) $K_{c}=K_{p}(R T)^{\Delta n_{\mathrm{g}}}$
c) $K_{p}=\left(\frac{K_{c}}{R T}\right)^{\Delta n_{g}}$
d) $K_{p}-K_{c}=(R T)^{\Delta n_{g}}$

100 On mixing equal volumes of two buffer solutions of pH value 3 and 5 , the pH of the resultant
0 . solution will be
a) 3.3
b) 4.0
c) 4.7
d) 5.3

: ANSWER KEY :

1)	d	2)	a	3)	a	4)	a	189)	b	190)	b	191)	b	192)
5)	c	6)	b	7)	a	8)	d	193)	d	194)	d	195)	c	196)
9)	d	10)	d	11)	b	12)	a	197)	a	198)	b	199)	d	200)
13)	c	14)	d	15)	c	16)	c	201)	b	202)	c	203)	a	204)
17)	a	18)	c	19)	a	20)	d	205)	b	206)	b	207)	a	208)
21)	b	22)	c	23)	a	24)	a	209)	b	210)	a	211)	a	212)
25)	c	26)	c	27)	b	28)	a	213)	d	214)	b	215)	d	216)
29)	d	30)	d	31)	c	32)	b	217)	b	218)	c	219)	b	220)
33)	b	34)	a	35)	a	36)	d	221)	c	222)	b	223)	a	224)
37)	c	38)	b	39)	a	40)	b	225)	b	226)	c	227)	b	228)
41)	a	42)	a	43)	a	44)	c	229)	c	230)	d	231)	b	232)
45)	d	46)	b	47)	c	48)	d	233)	a	234)	d	235)	b	236)
49)	b	50)	d	51)	d	52)	a	237)	a	238)	a	239)	a	240)
53)	a	54)	d	55)	a	56)	a	241)	b	242)	d	243)	a	244)
57)	d	58)	c	59)	d	60)	a	245)	c	246)	a	247)	b	248)
61)	b	62)	c	63)	b	64)	c	249)	d	250)	a	251)	d	252)
65)	a	66)	b	67)	a	68)	d	253)	d	254)	b	255)	d	256)
69)	d	70)	a	71)	d	72)	c	257)	b	258)	a	259)	c	260)
73)	a	74)	d	75)	a	76)	d	261)	c	262)	b	263)	c	264)
77)	d	78)	d	79)	a	80)	d	265)	b	266)	d	267)	d	268)
81)	b	82)	b	83)	a	84)	a	269)	c	270)	d	271)	b	272)
85)	b	86)	c	87)	c	88)	a	273)	c	274)	c	275)	c	276)
89)	a	90)	b	91)	a	92)	d	277)	a	278)	b	279)	b	280)
93)	b	94)	c	95)	b	96)	b	281)	a	282)	c	283)	c	284)
97)	a	98)	a	99)	c	100)	c	285)	c	286)	d	287)	d	288)
101)	c	102)	d	103)	b	104)	a	289)	d	290)	d	291)	b	292)
105)	a	106)	c	107)	b	108)	a	293)	c	294)	c	295)	a	296)
109)	d	110)	a	111)	b	112)	a	297)	a	298)	d	299)	c	300)
113)	c	114)	b	115)	c	116)	b	301)	a	302)	a	303)	a	304)
117)	a	118)	b	119)	b	120)	c	305)	c	306)	b	307)	d	308)
121)	a	122)	b	123)	b	124)	a	309)	d	310)	c	311)	c	312)
125)	c	126)	d	127)	b	128)	c	313)	b	314)	a	315)	c	316)
129)	b	130)	c	131)	d	132)	c	317)	a	318)	d	319)	c	320)
133)	d	134)	a	135)	d	136)	d	321)	b	322)	d	323)	c	324)
137)	b	138)	c	139)	d	140)	c	325)	a	326)	a	327)	d	328)
141)	b	142)	d	143)	a	144)	c	329)	a	330)	c	331)	a	332)
145)	a	146)	a	147)	b	148)	d	333)	b	334)	b	335)	a	336)
149)	c	150)	c	151)	a	152)	c	337)	a	338)	a	339)	c	340)
153)	a	154)	d	155)	c	156)	d	341)	d	342)	b	343)	c	344)
157)	c	158)	b	159)	c	160)	b	345)	c	346)	a	347)	a	348)
161)	b	162)	c	163)	d	164)	d	349)	c	350)	c	351)	d	352)
165)	a	166)	b	167)	c	168)	d	353)	a	354)	a	355)	d	356)
169)	d	170)	d	171)	a	172)	b	357)	d	358)	d	359)	a	360)
173)	b	174)	a	175)	b	176)	b	361)	a	362)	c	363)	c	364)
177)	d	178)	a	179)	c	180)	c	365)	b	366)	d	367)	c	368)
181)	b	182)	c	183)	a	184)	d	369)	d	370)	d	371)	a	372)
185)	a	186)	a	187)	a	188)	a	373)	b	374)	c	375)	a	376)

377)	d	378)	a	379)	b	380)	a	581)	a	582)	d	583)	c	584)
381)	a	382)	d	383)	b	384)	b	585)	a	586)	a	587)	c	588)
385)	a	386)	d	387)	a	388)	c	589)	d	590)	b	591)	b	592)
389)	a	390)	b	391)	a	392)	a	593)	b	594)	b	595)	b	596)
393)	c	394)	c	395)	c	396)	a	597)	c	598)	a	599)	d	600)
397)	c	398)	b	399)	c	400)	a	601)	d	602)	b	603)	d	604)
401)	a	402)	a	403)	b	404)	a	605)	d	606)	c	607)	d	608)
405)	a	406)	b	407)	c	408)	c	609)	a	610)	b	611)	a	612)
409)	b	410)	c	411)	b	412)	b	613)	a	614)	b	615)	c	616)
413)	d	414)	c	415)	a	416)	c	617)	a	618)	d	619)	c	620)
417)	c	418)	d	419)	d	420)	c	621)	a	622)	a	623)	a	624)
421)	c	422)	b	423)	b	424)	b	625)	a	626)	d	627)	d	628)
425)	b	426)	a	427)	a	428)	c	629)	d	630)	c	631)	b	632)
429)	d	430)	b	431)	a	432)	d	633)	a	634)	b	635)	c	636)
433)	b	434)	c	435)	d	436)	a	637)	c	638)	d	639)	c	640)
437)	a	438)	c	439)	d	440)	c	641)	c	642)	c	643)	b	644)
441)	b	442)	c	443)	b	444)	a	645)	a	646)	c	647)	c	648)
445)	b	446)	c	447)	c	448)	b	649)	b	650)	a	651)	a	652)
449)	a	450)	b	451)	a	452)	c	653)	d	654)	c	655)	b	656)
453)	b	454)	b	455)	d	456)	a	657)	a	658)	b	659)	c	660)
457)	c	458)	d	459)	b	460)	c	661)	b	662)	c	663)	c	664)
461)	a	462)	a	463)	b	464)	c	665)	a	666)	a	667)	a	668)
465)	a	466)	c	467)	b	468)	c	669)	b	670)	a	671)	a	672)
469)	b	470)	d	471)	d	472)	b	673)	b	674)	b	675)	a	676)
473)	c	474)	b	475)	b	476)	c	677)	a	678)	c	679)	d	680)
477)	b	478)	d	479)	c	480)	c	681)	b	682)	b	683)	b	684)
481)	a	482)	d	483)	a	484)	c	685)	b	686)	c	687)	a	688)
485)	c	486)	b	487)	a	488)	b	689)	c	690)	b	691)	c	692)
489)	b	490)	d	491)	d	492)	d	693)	d	694)	a	695)	b	696)
493)	b	494)	c	495)	b	496)	a	697)	a	698)	c	699)	c	700)
497)	b	498)	c	499)	a	500)	d	701)	a	702)	a	703)	d	704)
501)	d	502)	b	503)	c	504)	c	705)	d	706)	a	707)	a	708)
505)	a	506)	d	507)	b	508)	a	709)	c	710)	d	711)	b	712)
509)	a	510)	b	511)	c	512)	d	713)	c	714)	b	715)	a	716)
513)	d	514)	d	515)	b	516)	a	717)	c	718)	c	719)	b	720)
517)	a	518)	d	519)	d	520)	c	721)	b	722)	b	723)	d	724)
521)	b	522)	b	523)	b	524)	d	725)	c	726)	a	727)	a	728)
525)	d	526)	b	527)	a	528)	b	729)	b	730)	c	731)	c	732)
529)	a	530)	d	531)	d	532)	b	733)	a	734)	c	735)	c	736)
533)	d	534)	b	535)	d	536)	d	737)	b	738)	b	739)	d	740)
537)	b	538)	a	539)	d	540)	a	741)	d	742)	b	743)	a	744)
541)	d	542)	d	543)	d	544)	a	745)	d	746)	c	747)	b	748)
545)	a	546)	b	547)	a	548)	b	749)	a	750)	d	751)	d	752)
549)	b	550)	a	551)	a	552)	a	753)	c	754)	c	755)	c	756)
553)	a	554)	b	555)	d	556)	d	757)	a	758)	a	759)	d	760)
557)	a	558)	c	559)	c	560)	a	761)	a	762)	a	763)	a	764)
561)	c	562)	d	563)	a	564)	b	765)	b	766)	b	767)	a	768)
565)	c	566)	a	567)	a	568)	b	769)	c	770)	b	771)	d	772)
569)	d	570)	a	571)	a	572)	c	773)	a	774)	b	775)	d	776)
573)	c	574)	b	575)	c	576)	d	777)	d	778)	b	779)	d	780)
577)	b	578)	c	579)	c	580)	c	781)	a	782)	a	783)	b	784)

785)	b	786)	a	787)	b	788)	b	897)	a	898)	c	899)	d	900)
789)	a	790)	a	791)	b	792)	c	901)	c	902)	d	903)	c	904)
793)	a	794)	b	795)	a	796)	d	905)	a	906)	b	907)	b	908)
797)	a	798)	a	799)	d	800)	b	909)	c	910)	d	911)	b	912)
801)	c	802)	b	803)	b	804)	b	913)	d	914)	a	915)	b	916)
805)	a	806)	c	807)	b	808)	a	917)	c	918)	a	919)	b	920)
809)	c	810)	b	811)	d	812)	b	921)	a	922)	a	923)	c	924)
813)	c	814)	a	815)	d	816)	a	925)	a	926)	b	927)	b	928)
817)	c	818)	b	819)	c	820)	a	929)	c	930)	b	931)	b	932)
821)	b	822)	c	823)	a	824)	d	933)	d	934)	a	935)	a	936)
825)	b	826)	c	827)	a	828)	a	937)	b	938)	a	939)	b	940)
829)	a	830)	b	831)	d	832)	b	941)	d	942)	b	943)	c	944)
833)	c	834)	a	835)	d	836)	c	945)	a	946)	b	947)	d	948)
837)	a	838)	c	839)	d	840)	d	949)	c	950)	a	951)	d	952)
841)	a	842)	d	843)	b	844)	b	953)	b	954)	d	955)	a	956)
845)	a	846)	a	847)	b	848)	b	957)	a	958)	c	959)	b	960)
849)	a	850)	b	851)	a	852)	b	961)	b	962)	c	963)	d	964)
853)	b	854)	b	855)	c	856)	d	965)	b	966)	a	967)	c	968)
857)	d	858)	b	859)	d	860)	a	969)	a	970)	d	971)	a	972)
861)	b	862)	c	863)	c	864)	a	973)	a	974)	b	975)	d	976)
865)	c	866)	d	867)	d	868)	d	977)	a	978)	c	979)	a	980)
869)	d	870)	b	871)	d	872)	b	981)	d	982)	d	983)	a	984)
873)	d	874)	c	875)	c	876)	a	985)	b	986)	a	987)	d	988)
877)	b	878)	a	879)	d	880)	a	989)	a	990)	b	991)	c	992)
881)	b	882)	d	883)	b	884)	d	993)	a	994)	c	995)	c	996)
885)	b	886)	c	887)	b	888)	c	997)	b	998)	c	999)	a	1000)
889)	b	890)	b	891)	d	892)	a							
893)	c	894)	a	895)	d	896)	a							

: HINTS AND SOLUTIONS :

1 (d)

$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$			
1	NaOH	$\rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{Na}+\mathrm{H}_{2} \mathrm{O}$	
0.5	0	0	0
0.5	0.5	0.5	

The solution contains weak acid + its conjugate base

$$
0.5 \mathrm{Mol} \quad 0.5 \mathrm{Mol}
$$

and thus, acts as buffer.
2 (a)
Aqueous solution of 1 M NaCl and 1 M HCl is not a buffer but $\mathrm{pH}<7$.
3 (a)
Reaction is exothermic and volume is decreasing from left to right, so for higher production of SO_{3}, there should be low temperature and high pressure
4 (a)
The acid is called strong acid when it ionise up to great extent

> i.e.,
if its K_{a} value is large.
We know that $\quad \mathrm{p} K_{a}=\log \frac{1}{K_{a}}$
5 (c)

$$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right] } & =\sqrt{K_{b} \times \mathrm{C}} \\
& =\sqrt{1 \times 10^{-5} \times 10^{-1}} \\
& =\sqrt{10^{-6}}=10^{-3}
\end{aligned}
$$

$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$10^{-14}=\left[\mathrm{H}^{+}\right]\left[10^{-3}\right]$
$\left[\mathrm{H}^{+}\right]=10^{-11}$
Hence, $\mathrm{pH}=-\log \mathrm{H}^{+}$

$$
=-\log \left(1 \times 10^{-11}\right)=11
$$

6 (b)
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g})$
We know that,

$$
K_{p}=K_{c} \cdot(R T)^{\Delta n_{g}}
$$

$\Delta n_{g}=$ no. of moles of gaseous products - no.
of moles of gaseous reactants

$$
\begin{gathered}
=2-2=0 \\
K_{p}=K_{c} .(R T)^{0} \\
K_{p}=K_{c}
\end{gathered}
$$

7 (a)
$\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{3} \mathrm{PO}_{4} ; \mathrm{NaH}_{2} \mathrm{PO}_{4}+$ $\mathrm{Na}_{2} \mathrm{HPO}_{4} ; \mathrm{Na}_{2} \mathrm{HPO}_{4}+\mathrm{Na}_{3} \mathrm{PO}_{4}$.
pH of a solution $\propto\left[\mathrm{OH}^{-}\right] \frac{\mathrm{M}}{4} \mathrm{Ca}(\mathrm{OH})_{2}$ solution will give highest concentration of $\left[\mathrm{OH}^{-}\right]$.
Hence, it has highest pH .
10
(d)

Salt	Solubility product	Solubility
$M X$	$S_{1}^{2}=4.0 \times$ 10^{-8}	$S_{1}=2 \times$ 10^{-4}
$M X_{2}$	$4 S_{2}^{3}=3.2 \times$ 10^{-14}	$S_{2}=2 \times$ 10^{-5}
$M_{3} X$	$27 S_{3}^{4}=2.7 \times$	$S_{3}=1 \times$ 10^{-4}

Thus, solubility order $=M X>M_{3} X>M X_{2}$
11 (b)
Basic strength \propto dissociation constant of base $\left(K_{b}\right)$.
So, smaller the value of K_{b} weaker will be the base.
The weakest base will have smallest value of K_{b}.
$\because \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ (aniline) has smallest value of K_{b}
\therefore It is weakest base.
12 (a)

$$
\begin{aligned}
\alpha= & \frac{\text { number of mole dissociated }}{\text { total mole present }} \\
& =\frac{10^{-7}}{1000 / 18}=1.8 \times 10^{-9}=1.8 \times 10^{-7} \%
\end{aligned}
$$

Total mole of $\mathrm{H}_{2} \mathrm{O}$ in 1 litre $=\frac{1000}{18}$
13 (c)
A precipitate is formed when the ionic product exceeds the solubility product.
i.e.,

$$
\left[A^{+}\right]\left[B^{-}\right]>K_{\mathrm{sp}}
$$

(d)
$2 \mathrm{HgNO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{Hg}_{2} \mathrm{Cl}_{2}+2 \mathrm{HNO}_{3} ;$
$\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ in insoluble in water.
(c)

Lewis bases are electrons rich compounds.
(i) $\ddot{\mathrm{NH}}_{3}$ and $\mathrm{H}_{2} \ddot{\mathrm{O}}$ are Lewis bases because they have lone pair of electron.
(ii) AlCl_{3} is Lewis acid because it can accept electrons.

16 (c)
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ givesNO- $\mathrm{Ca}^{-}, \mathrm{Ba}^{2+}$ ions, hence Ba^{2+} ion increases. To keep $K_{\text {sp }}$ constant, [F^{-}] decreases. Thus, it is represented as $\frac{1}{2}\left[\mathrm{~F}^{-}\right]$
18 (c)
As equation 'III' is obtained on adding equation 'I' and equation 'II', so $K_{3}=K_{1} \cdot K_{2}$.
19 (a)
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
$0.1 \quad 0 \quad$ initialy
$(0.1-\alpha) \quad 2 \alpha$ at equilibrium
$\frac{0.1-\alpha}{0.1+\alpha} p \frac{2 \alpha}{0.1+\alpha} p$ at p_{i}
$K_{p}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}$
$0.14=\left(\frac{2 \alpha \times p}{0.1+\alpha}\right)^{2} \times\left(\frac{0.1+\alpha}{0.1-\alpha}\right) p$
$=\frac{4 \alpha^{2}}{(0.1+\alpha)(0.1-\alpha)} p$
$=\frac{4 \alpha}{0.01-\alpha^{2}} \times 1$
or $\alpha=0.018$
Thus, $\left[\mathrm{NO}_{2}\right]=2 \times 0.018=0.036 \mathrm{~mol}$
20 (d)
From Henderson equation

$$
\mathrm{pOH}=\mathrm{p} K_{b}+\log \frac{[\text { salt }]}{[\text { base }]}
$$

$\mathrm{pH}+\mathrm{pOH}=14$

$$
\begin{aligned}
& \mathrm{pOH}=5.0+\log \frac{[1.0]}{[0.1]}=5+\log 10=5+1 \\
& \mathrm{pOH}=6 \\
& \mathrm{pH}+\mathrm{pOH}=14 \\
& \mathrm{pH}+6=14 \\
& \mathrm{pH}=14-6=8
\end{aligned}
$$

21 (b)
It has sextet of electron and can accept lone pair of electron.
22 (c)
BF_{3} is electron deficient compound because B has six electrons in outermost orbit. It has incomplete octet. So, it is an electron deficient molecule.
23 (a)
Metal oxides are basic, non-metal oxides are acidic. CaO is more basic than CuO. Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is amphoteric.
24 (a)
The acidic character of oxy-acids decreases down the group and increases along the period. Also higher ox.no. of non-metal in oxy-acid shows
more acidic nature.
25 (c)
Follow Arrhenius concept.
(b)
$N_{\mathrm{NaOH}}=\frac{0.04}{40 \times 10}=10^{-4} \mathrm{~N}$
$\therefore \mathrm{pOH}=4$
$\therefore \mathrm{pH}=10$
28 (a)
$\mathrm{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})$
$K_{c}=\frac{\left[\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})\right]}{\left[\mathrm{P}_{4}(\mathrm{~s})\right]\left[\mathrm{O}_{2}(\mathrm{~g})\right]^{5}}$
We know that concentration of a solid component is always taken as unity
$K_{c}=\frac{1}{\left[\mathrm{O}_{2}\right]^{5}}$
(d)
$[\mathrm{HCl}]=10^{-8} \mathrm{M}$, Being very dilute $\mathrm{pH}<7$.
New concentration of,

$$
\begin{aligned}
\mathrm{HCl} & =\frac{10^{-6}}{100}=10^{-8} \mathrm{M} \\
\therefore\left[\mathrm{H}^{+}\right] & =10^{-18}+10^{-7} \\
& =1.1 \times 10^{-7} \mathrm{M}
\end{aligned}
$$

$$
\therefore \quad \mathrm{pH} \approx 7
$$

30 (d)
A buffer solution is more effective in the pH range of $\mathrm{p} K_{a} \pm 1$.
31 (c)
From $\mathrm{H}_{2} \mathrm{O},\left[\mathrm{H}^{+}\right]=1 \times 10^{-7} \mathrm{M}$
From $\mathrm{HCl}\left[\mathrm{H}^{+}\right]=1 \times 10^{-8} \mathrm{M}$
Total $\quad\left[\mathrm{H}^{+}\right]=\left(1 \times 10^{-7}+1 \times 10^{-8}\right) \mathrm{M}$

$$
=\left(1 \times 10^{-7}+0.1 \times 10^{-7}\right) \mathrm{M}
$$

$$
=1.1 \times 10^{-7} \mathrm{M}
$$

$\mathrm{pH}=-\log \left(1.1 \times 10^{-7}\right)=6.9586$
32 (b)
$\mathrm{pH}=-\log K_{a}+\log \frac{[\text { Conjugate base }]}{[\text { Acid }]}$

(b)

100 mL of 0.01 M NaOH solution is diluted to $1 \mathrm{dm}^{3}$ (i.e., 10 times diluted hence, the resultant solution will be 0.001 M)

$$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right] } & =0.001=10^{-3} \\
{\left[\mathrm{H}^{+}\right] } & =\frac{10^{-14}}{\left[\mathrm{OH}^{-}\right]}=\frac{10^{-14}}{10^{-3}}=10^{-11} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left[10^{-11}\right] \\
\mathrm{pH} & =11
\end{aligned}
$$

(a)

Only salts of (weak acid+ strong base) and (strong acid + weak base) get hydrolysed
(i.e., show alkalinity or acidity in water). KClO_{4} a salt of strong acid and strong base, therefore, it does not get hydrolysed in water.

35 (a)
Higher is the value of K_{c} or K_{p} more is feasibility for reaction to show forward reaction.
36 (d)
A +ve inductive effect of $\mathrm{C}_{6} \mathrm{H}_{5}$ intensifies +ve charge on N atom and thus, availability of coordination for electron pair decreases; The basic character order is
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\mathrm{NH}_{3}>\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NH}_{2}$
37 (c)
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$ on hydrolysis of HPO_{4}^{2-} ion produces free OH^{-}ion in solution.
38
(b)
$2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$
$3.2 \quad 0 \quad 0$ initially
$3.2-x \quad x \quad x$ at equilibrium
$x=22 \%$ of 3.2
$=\frac{22 \times 3.2}{100}$
$=0.704$
Hence, number of moles of HI present at equilibrium
$=3.2-x$
$=3.2-0.704$
$=2.496$
39 (a)
$K_{p}=\frac{{ }^{n} \mathrm{Cl}_{2} \times{ }^{n} \mathrm{PCl}_{3}}{{ }^{n} \mathrm{PCl}_{5}} \times\left[\frac{p}{\sum n}\right]^{1}$
$=2 \times \frac{2}{2} \times\left[\frac{3}{6}\right]^{1}$
$=1 \mathrm{~atm}$
40
(b)

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$$
\begin{array}{ll}
& \Delta n \\
& =n_{p}-n_{r} \\
& =2-4 \\
& =-2 \\
\therefore \quad & \\
\text { or } & K_{p}=K_{c}(R T)^{-2} \\
& K_{p}=\frac{K_{c}}{(R T)^{2}}
\end{array}
$$

$$
K_{p}<K_{c}
$$

41 (a)
In $\frac{K_{2}}{K_{1}}=\frac{\Delta H}{R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$
K increase with $\frac{1}{T}$ or decreases with T it is decided by ΔH.
Here, K decrease with T. Thus, $\Delta H=-$ ve.
(a)

\therefore Millimole of H^{+}
left $\left.=0.8_{(\text {from HCl) }}+0.1 \times 2_{(\text {from H}}^{2} \mathrm{SO}_{4}\right)=1.0$
Total volume $=100 \mathrm{~mL}$

$$
\begin{array}{ll}
\therefore & {\left[\mathrm{H}^{+}\right]}
\end{array} \begin{array}{ll}
& =\frac{1}{100}=10^{-2} M \\
\therefore & \mathrm{pH}
\end{array}
$$

43 (a)

$$
\begin{aligned}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] & =-\log [0.005] \\
& =-\log \left[5 \times 10^{-3}\right]=2.3
\end{aligned}
$$

(c)

It is a case of simultaneous solubility of salts with a common ion. Here solubility product of CuCl is much greater than that of AgCl , it can be assumed that Cl^{-}in solution comes mainly from CuCl .
$\Rightarrow \quad\left[\mathrm{Cl}^{-}\right]=\sqrt{K_{\text {sp }}(\mathrm{CuCl})}=10^{-3} \mathrm{M}$
Now for $\mathrm{AgCl}: K_{\text {sp }}=1.6 \times 10^{-10}$

$$
\begin{aligned}
& =\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right] \\
& =\left[\mathrm{Ag}^{+}\right] \times 10^{-3}
\end{aligned}
$$

$$
\Rightarrow \quad\left[\mathrm{Ag}^{+}\right]=1.6 \times 10^{-7}
$$

(d)

	$2 A B_{3}(\mathrm{~g}) \rightleftharpoons A_{2}(\mathrm{~g})+3 B_{2}(\mathrm{~g})$		
$\mathrm{t}=0$	8	0	0
At.eqiibrium:	$(8-a)$	$a / 2$	$\frac{3 a}{2}$

Thus, $K_{c}=\frac{\left[A_{2}\right]\left[B_{2}\right]^{3}}{\left[A B_{3}\right]^{2}}$; Also, $\frac{a}{2}=2 \therefore a=4$
$\therefore\left[A B_{3}\right]=\frac{4}{1} ;\left[A_{2}\right]=\frac{2}{1} ;\left[B_{2}\right]=\frac{6}{1}$
Thus, $\quad K_{c}=\frac{2 \times 6^{3}}{4^{2}}=27 \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
Find solubility for each separately by $s^{2}=K_{s p}$ for MnS and $\mathrm{ZnS}, 108 s^{5}=K_{s p}$ for $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ and $4 s^{3}=K_{s p}$ for $\mathrm{Ag}_{2} \mathrm{~S}$.
(c)
$K_{c_{1}}=\frac{1}{K_{c_{2}}}=\frac{1}{2.4 \times 10^{-3}}=4.2 \times 10^{2}$
(d)
$\mathrm{Li}_{3} \mathrm{Na}_{3}\left(\mathrm{AlF}_{6}\right)_{2}=3 \mathrm{Li}^{+}+3 \mathrm{Na}^{+}+2 \mathrm{AlF}_{6}^{3-}$
$\therefore \quad K_{s p}=(3 a)^{3}(3 a)^{3}\left(2 a^{2}\right)=2916 a^{8}$.
49 (b)
Dissociation constant

$$
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}:\left[\mathrm{H}^{+}\right]=\mathrm{OH}^{-}=1 \times
$$

$$
10^{-7} \mathrm{M}
$$

And $\left[\mathrm{H}_{2} \mathrm{O}\right]=1 \mathrm{~g} / \mathrm{mL}=1000 \mathrm{gL}^{-1}$

$$
\begin{gathered}
=\frac{1000}{18} \mathrm{~mol} \mathrm{~L}^{-1}=55.56 \mathrm{M} \\
K=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\mathrm{H}_{2} \mathrm{O}}=\frac{10^{-14}}{55.6} \\
K_{w}=1 \times 10^{-14}
\end{gathered}
$$

So, $K_{w}=55.6 \times K$
50 (d)
$K_{a}=C \alpha^{2}$ and $\alpha=\sqrt{\frac{K_{a}}{C}}$
$\alpha=\sqrt{\frac{10^{-5}}{10^{-1}}}=10^{-2}$
51 (d)
$K_{s p}=4 s^{3}=4 \times(\sqrt{3})^{3}=12 \sqrt{3}$.
52 (a)
$\mathrm{pH}=\frac{1}{2}\left[\mathrm{p} K_{a_{1}}+\mathrm{p} K_{a_{2}}\right]$ and $\mathrm{pH}=\frac{1}{2}\left[\mathrm{p} K_{a_{2}}+\mathrm{p} K_{a_{3}}\right]$.
53 (a)
In the given equilibrium reaction, if inert gas is added at constant pressure, it will result in increased volume. Due to which, the equilibrium will shift towards the left hand side (LHS) i.e., reaction goes in back direction.
54 (d)
Hard base is that anion which is small and difficult to polarise.
55 (a)
HSO_{4}^{-}is an acid and conjugate base of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
56 (a)
An increase in temperature favours endothermic reaction whereas an increase in pressure favours the reaction showing decrease in mole or volume.
57 (d)
$K_{s p}$ for $\mathrm{AgCl}=s^{2}$.
58 (c)
According to Le-Chatelier's principle when a system at equilibrium is subjected to change in pressure, temperature or concentration then the equilibrium is disturbed and shifts in a direction where the effect of change is annuled.

$$
\text { Ice } \rightleftharpoons \text { water }
$$

When pressure is increased in this system,
the melting point of ice is decreased i.e., more ice melts and more water is formed.
(a)

$$
\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(\mathrm{~g})
$$

Mole before 20

\therefore Mole of CO_{2} formed $=\frac{20 \times 65}{10^{4}}=1.3 \times 10^{-1}$
$\because \quad P V=n R T$

$$
\begin{gathered}
p_{\mathrm{CO}_{2}}=\frac{1.3 \times 10^{-1}}{10} \times 0.0821 \times 1073 \\
=1.145 \mathrm{~atm}
\end{gathered}
$$

Now, $K_{p}=p_{\mathrm{CO}_{2}}=1.145 \mathrm{~atm}$
61 (b)

Total pressure $=\frac{6 P}{9}+\frac{2 P}{9}+\frac{P}{9}=\mathrm{P}$

62 (c)

$$
\begin{aligned}
& \quad K_{s p}=4 s^{3} \\
& \text { or } \quad s=\left[\frac{1.2 \times 10^{-5}}{4}\right]^{1 / 3}=1.44 \times 10^{-2} \\
& \therefore \quad\left[M^{+}\right]
\end{aligned}=1.44 \times 10^{-2} \times 2 .
$$

63 (b)
Due to back bonding $\left(\mathrm{BF}_{3}\right.$ shows maximum tendency due to small size of F).
(c)
$\mathrm{Cr}(\mathrm{OH})_{3} \rightleftharpoons \mathrm{Cr}^{3+}+3 \mathrm{OH}^{-}$
For precipitate to be dissolved,

$$
K_{\mathrm{sp}} \leq\left[\mathrm{Cr}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}
$$

or $6 \times 10^{-31} \leq[0.1]\left[\mathrm{OH}^{-}\right]^{3}$
$\therefore \quad\left[\mathrm{OH}^{-}\right] \geq 1.79 \times 10^{-10}$
So, $\quad\left[\mathrm{H}^{+}\right] \leq \frac{10^{-14}}{1.79 \times 10^{-10}} \leq 5.59 \times 10^{-5}$
(d)
$\because 2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$
$K_{c}=\frac{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{3}\right]^{2}}=\frac{0.6 \times 0.6 \times 0.3}{0.4 \times 0.4}=0.675$

- $\quad P V=n R T$

[^0]$(1-0.6) \quad 0.6 \quad 0.3$

$\because 2 \mathrm{SO}_{3}$
$(1-0.6)$
---:
0.6

b)
f

$$
K_{P}=\frac{\left(P_{\mathrm{NO}}\right)^{2}\left(P_{\mathrm{Br}_{2}}\right)}{\left(P_{\mathrm{NOBr}}\right)^{2}}=\frac{(2 P / 9)^{2}(P / 9)}{\left(\frac{6 P}{9}\right)^{2}}=\frac{P}{81}
$$

$$
\therefore \quad\left[\mathrm{OH}^{-}\right] \geq 1.79 \times 10^{-10}
$$

$$
\mathrm{pH} \geq-\log \left(5.59 \times 10^{-5}\right) \text { or } \mathrm{pH} \geq
$$

$$
4.253
$$

(a)

$$
\begin{aligned}
& 2 \mathrm{NOBr}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}+\mathrm{Br}_{2} \\
& \frac{6 P}{9} \quad \frac{2 P}{9} \quad \frac{P}{9} \\
& \underset{\frac{6 P}{9}}{2 \mathrm{NOBr}}(\mathrm{~g}) \stackrel{2 P}{9} \quad \underset{9}{2 \mathrm{NO}}+\mathrm{Br}_{2}
\end{aligned}
$$

KCN is a salt of weak acid and strong base hence, on being dissolved in water gives basic solution i.e., $\mathrm{pH}>7$ at $25^{\circ} \mathrm{C}$.

66 (b)
$\mathrm{NH}_{4} \mathrm{Cl}$ is acidic due to hydrolysis of NH_{4}^{+}; $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} ; \mathrm{pH}<7$.
67 (a)
When the number of moles of gaseous reactants and products is same, then equilibrium is not affected by pressure and hence, the equilibrium constant is unaffected.
68 (d) Glycine, the simplest amino acid $\left(\mathrm{CH}_{2} \mathrm{NH}_{2} \mathrm{COOH}\right)$ has the tendency to donate H^{+}by -COOH gp. and the tendency to donate lone pair by N -atom of $-\mathrm{NH}_{2}$ gp. and also exists as Zwitter ion.
$\mathrm{H}_{2} \mathrm{NCH}_{2} \cdot \mathrm{COOH} \rightleftharpoons \mathrm{H}_{3} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-}$
69 (d)
$\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
$[\mathrm{HI}]=0.80,\left[\mathrm{H}_{2}\right]=0.10,\left[\mathrm{I}_{2}\right]=0.10$
$K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{0.80 \times 0.80}{0.10 \times 0.10}=64$
70 (a)

$$
\left[\mathrm{H}^{+}\right]=10^{-1} \mathrm{M}
$$

$\therefore \quad \frac{w}{36.5}=10^{-1}$
or $\quad w=36.5 \times 10^{-1}=3.65 \mathrm{~g}$
71 (d)
$\underset{\text { mM before reaction }}{\text { m a reaction }} \underset{\substack{10 \\ \mathrm{MgCl}_{2}}}{\mathrm{MgCl}_{2}}+\underset{\substack{20 \\ 0}}{2 \mathrm{NaOH}} \rightarrow \underset{0}{\mathrm{Mg}(\mathrm{OH})_{2}}+$
Thus, 10 m mole of $\mathrm{Mg}(\mathrm{OH})_{2}$ are formed. The product of $\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$ is therefore $\left[\frac{10}{200}\right] \times\left[\frac{20}{200}\right]^{2}=5 \times 10^{-4}$ which is more than $K_{s p}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$. Now, solubility (s) of $\mathrm{Mg}(\mathrm{OH})_{2}$ can be derived by $K_{s p}=4 s^{3}$
72 (c)
At chemical equilibrium, rate of forward reaction is equal to the rate of backward reaction.

73 (a)
Acidic nature is
$\mathrm{RCOOH}>\mathrm{CH} \equiv \mathrm{CH}>\mathrm{NH}_{3}>\mathrm{RH}$
Stronger is acid, weaker is its conjugate base.
74 (d)
In the expression for equilibrium constant (K_{p} or K_{c}) species in solid state are not written (i.e., their molar concentrations are taken as 1)

$$
\mathrm{P}_{4}(s)+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{P}_{4} \mathrm{O}_{10}(s)
$$

Thus, $\quad K_{c}=\frac{1}{\left[\mathrm{O}_{2}\right]^{5}}$

75 (a)
Reversible reaction always attains equilibrium and never go for completion.
$K_{c}=\frac{\left[\mathrm{CO}_{2}\right]}{[\mathrm{CO}]}$
$\therefore 5=\frac{\left[\mathrm{CO}_{2}\right]}{2.5 \times 10^{2}}$
$\therefore\left[\mathrm{CO}_{2}\right]=0.125 \mathrm{M}$
(d)

(d)

We know that,

$$
\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-5}
$$

$$
\begin{aligned}
\alpha & =\frac{\text { actual concentration }}{\text { molar concentration }} \\
& =\frac{10^{-5}}{0.005}=0.2 \times 10^{-2}
\end{aligned}
$$

\therefore Percentage ionisation $=0.2 \times 10^{-2} \times 100$

$$
=0.2 \%
$$

79 (a)
More is pH , more basic is solution.
(d)

Both Arrhenius and Bronsted bases are source of H^{+}Arrhenius base (OH^{-}furnish) may not be capable of accepting proton (i.e., Bronsted based). H^{+}exists as $\mathrm{H}_{9}^{+} \mathrm{O}_{4}$.

81 (b)

Mole before dissociation
Mole after dissociation

$$
\underset{\substack{1 \\ \mathrm{CH}_{2} \mathrm{FCOOH}}}{\substack{1-\alpha)} \underset{\alpha}{\mathrm{CH}_{2}} \mathrm{FCOO}^{-}}+\underset{\alpha}{\mathrm{H}^{+}}{ }_{0}^{+}
$$

Given, $\left[\mathrm{H}^{+}\right]=c \alpha=1.5 \times 10^{-3} \mathrm{~mol}$ litre ${ }^{-1}$
$\because \quad K_{a}=\frac{(c \alpha)(c \alpha)}{c(1-\alpha)}=\frac{c \alpha^{2}}{(1-\alpha)}$
$2.6 \times 10^{-3}=\frac{1.5 \times 10^{-3} \times \alpha}{(1-\alpha)}$
$\therefore \quad \alpha=0.634$
Now, $c \alpha=1.50 \times 10^{-3}$
$\therefore \quad c=\frac{1.50 \times 10^{-3}}{0.634}=2.37 \times 10^{-3} \mathrm{M}$
Note: Since K_{a} is of the order of $10^{-3} M$ and thus, it is not advisable to use $K_{a}=c \alpha^{2}$. Because $(1-\alpha)$ is not equal to 1 since α is not small.

82 (b)
For oxoacids of the same element, the acidic strength increases with increase in the oxidation number of the element
$\stackrel{+1}{\mathrm{HClO}}<\stackrel{+3}{\mathrm{HClO}_{2}}<\stackrel{+5}{\mathrm{HClO}_{3}}<\stackrel{+7}{\mathrm{HClO}_{4}}$

83 (a)
HNO_{3} (nitric acid) is generally not an amphoteric substance. It is a strong acid (proton-donating) though sometimes, in presence of stronger acid, it also acts as a base (e.g., in nitration of atomic compounds, it acts as a base and accept proton from $\mathrm{H}_{2} \mathrm{SO}_{4}$). However $\mathrm{HCO}_{3}^{-}, \mathrm{H}_{2} \mathrm{O}$ and NH_{3} frequently act both as an acid as well as a base (i.e., amphoteric in nature).
85 (b)
$K_{p}=K_{c}(R T)^{-1 / 2}$
$\because \Delta n=-1 / 2$
86 (c)
Le-Chatelier's principle is not valid for solid-solid equilibrium.
87 (c)
$\mathrm{BaCl}_{2} \rightarrow \mathrm{Ba}^{2+}+2 \mathrm{Cl}^{-}$
Let the solubility of BaCl_{2} is $x \mathrm{~mol} / \mathrm{L}$

$$
\begin{aligned}
\therefore \quad K_{\mathrm{sp}} & =\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2} \\
& =(x) \times(2 x)^{2} \\
& =x \times 4 x^{2}=4 x^{3}
\end{aligned}
$$

or solubility of
$\mathrm{BaCl}_{2}=\frac{\left.\text { (solubility product of } \mathrm{BaCl}_{2}\right)^{1 / 3}}{4}$

$$
\begin{aligned}
& =\frac{\left(4 \times 10^{-9}\right)^{1 / 3}}{4} \\
& =10^{-3} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

[^1]Addition of sodium acetate in acetic acid solution, due to common ion NH_{4}^{+}the ionisation of acetic acid is supressed so concentration of $\left[\mathrm{H}^{+}\right]$decreases. Hence, pH of solution increases.
89 (a)
$\mathrm{AB}_{2} \rightleftharpoons \mathrm{~A}^{+}+2 \mathrm{~B}^{-}$
$1 \times 10^{-3} 2 \times 10^{-3}$
$\mathrm{K}_{\text {sp }}=\left[1 \times 10^{-3}\right]\left[2 \times 10^{-3}\right]^{2}=4 \times 10^{-9}$
90 (b)
$\underset{\text { Acid salt }}{\mathrm{NaHCO}_{3}}+\underset{\text { Base }}{\mathrm{NaOH}} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$.
91 (a)

Formation of
SO_{3} (sulphur trioxide)from SO_{2} and O_{2} is accompanied by decrease in volume. So, increase in pressure favours SO_{3} formation (also due to Le-Chatelier's principle).
(d)

$$
\begin{array}{cccc}
& \mathrm{NH}_{4} \mathrm{HS}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \\
\text { at } & \mathrm{t}=0 & 0.5 & 0 \\
\text { at } & t=e q . & 0.5+P & { }_{P}
\end{array}
$$

$\mathrm{P}_{\mathrm{T}}=0.5+P+P=0.84$
$\therefore P=0.17 \mathrm{~atm}$
$K_{p}=P_{\mathrm{NH}_{3}} \times P_{\mathrm{H}_{2} \mathrm{~S}}=(0.5+0.17) \times 0.17$
$=0.11 \mathrm{~atm}$
93 (b)
$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$

$$
\begin{aligned}
{\left[10^{-2}\right]\left[\mathrm{OH}^{-}\right] } & =10^{-14} \\
{\left[\mathrm{OH}^{-}\right] } & =\frac{10^{-14}}{10^{-2}} \\
& =10^{-12} \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

It is condition for chemical equilibrium.

95 (b)
Solution of CuSO_{4} is acidic due to hydrolysis of Cu^{2+} ion.
97 (a)
$\left[\mathrm{H}^{+}\right]_{\mathrm{I}}=10^{-5}$
$\left[\mathrm{H}^{+}\right]_{\text {II }}=10^{-2}$
Thus, increase in $\left[\mathrm{H}^{+}\right]=\frac{10^{-2}}{10^{-5}}=1000$ times.
98 (a)
According to Lewis acid is any species (molecule, radial or ion) that can accept an electron pair to form a coordinate covalent bond. Thus, acid is an electron deficient species e.g., $\mathrm{BF}_{3}, \mathrm{AlCl}_{3}, \mathrm{SO}_{3}$ and all cations etc.

99 (c)

$$
\begin{aligned}
K_{\mathrm{sp}} \text { of } \mathrm{AgCl} & =(\text { solubility of } \mathrm{AgCl})^{2} \\
& =\left(1 \times 10^{-5}\right)^{2}=1 \times 10^{-10}
\end{aligned}
$$

Suppose its solubility in 0.1 M
NaCl is $x \mathrm{~mol} / \mathrm{L}$
$\mathrm{AgCl} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Cl}^{-}$
$\mathrm{NaCl} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{Cl}^{-}$ $0.1 \mathrm{M} \quad 0.1 \mathrm{M}$
$\left[\mathrm{Cl}^{-}\right]=(x+0.1) \mathrm{M}$
$K_{\text {sp }}$ of $\mathrm{AgCl}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]$

$$
=x \times(x+0.1)
$$

$$
1 \times 10^{-10}=x^{2}+0.1 x
$$

Higher power of x are neglecated

$$
\begin{aligned}
1 \times 10^{-10} & =0.1 x \\
x & =1 \times 10^{-9} \mathrm{M}
\end{aligned}
$$

100 (c)
For reaction, $2 \mathrm{SO}_{3} \rightleftharpoons \mathrm{O}_{2}+2 \mathrm{SO}_{2}$
Here, $\Delta n_{\mathrm{g}}=3-2=1$, ie, +ve , thus, K_{p} is more
than $K_{c} \quad\left[\because K_{p}=K_{c}(R T)^{\Delta n_{g}}\right]$
101 (c)
$s=\sqrt{K_{s p}}=\sqrt{36}=6 M$.
102 (d)
$K_{h}=\frac{K_{w}}{K_{b}}$
where $K_{w}=$ ionic product of water
$=1 \times 10^{-14}$
$K_{b}=$ degree of dissociation of $\mathrm{NH}_{4} \mathrm{OH}=$
1.8×10^{-5}

$$
\begin{aligned}
K_{h} & =\frac{1 \times 10^{-14}}{1.8 \times 10^{-5}} \\
& =0.555 \times 10^{-9}
\end{aligned}
$$

$$
=5.55 \times 10^{-10}
$$

103 (b)
Let $V \mathrm{~mL}$ of 0.1 M HCOONa be mixed to 50 mL of 0.05 M HCOOH .
$\left[\because[]=\frac{\text { Total millimole }}{\text { Total volume }}\right]$
\therefore In mixture $[\mathrm{HCOONa}]=\frac{0.1 \times V}{(V+50)}$
$\therefore[\mathrm{HCOOH}]=\frac{50 \times 0.05}{V+50}$
$\because \mathrm{pH}=-\log K_{a}+\log \frac{\text { [Conjugate base] }}{[\text { Acid }]}$
$\therefore 4.0=3.80+\log \frac{(0.1 \times V)(V+50)}{2.5 /(V+50)}$
$\therefore V=39.62 \mathrm{~mL}$.
104 (a)
$\mathrm{H} A$ (a weak acid) ionises as

$$
\begin{aligned}
& \begin{array}{ccc}
\mathrm{H} A & \rightleftharpoons \mathrm{H}^{+} & +A^{-} \\
1 & 0 & 0
\end{array} \\
& \left(1-10^{-5}\right) \quad 10^{-5} \quad 10^{-5} \\
& {\left[A^{-}\right]=\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-5} \mathrm{M}} \\
& K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}=\frac{10^{-5} \times 10^{-5}}{\left(1-10^{-5}\right)}=\frac{10^{-10}}{1} \\
& \text { (} \therefore 1 \ggg 10^{-5} \text {) } \\
& =1 \times 10^{-10} \mathrm{M}
\end{aligned}
$$

105 (a)
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
$(1-x) \quad x \quad x$
Total number of moles at equilibrium

$$
\begin{aligned}
& =(1-x)+x+x \\
& =1+x \\
p_{\mathrm{PCl}_{3}} & =\left(\frac{x}{1+x}\right) \times p
\end{aligned}
$$

(c)
$2.303 \log \frac{K_{2}}{K_{1}}=\frac{\Delta H}{R} \frac{\left[T_{2}-T_{1}\right]}{T_{1} T_{2}}$,
$\Delta H=+$ ve for the reaction,
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$.
107 (b)
Now $\left[\mathrm{H}^{+}\right]=\frac{25 \times 0.01+25 \times 0.02}{50}$

$$
=\frac{0.75}{50}=0.015 \mathrm{M}
$$

and thus, pH will decrease, as $\left[\mathrm{H}^{+}\right]$increases.
108 (a)
Carbon cannot expand its octet.
109 (d)
N of NH_{3} possesses lone pair of electron available for donation.
110 (a)

$$
2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{~N}_{2}+3 \mathrm{H}_{2}
$$

Initial moles $\quad a \quad 0 \quad 0$
At equilibrium $(a-2 x) x 3 x$
Initial pressure of NH_{3} of
' a 'mole $=15 \mathrm{~atm}$ at $27^{\circ} \mathrm{C}$. The pressure of ' a '
mole of $\mathrm{NH}_{3}=p$ atm at $347^{\circ} \mathrm{C}$
$\therefore \frac{15}{300}=\frac{p}{620}$
$\therefore p=31$ atm
At constant volume and at $347^{\circ} \mathrm{C}$,
mole \propto pressure
$a \propto 31$ (before equilibrium)
$\therefore(a-2 x) \propto 50$ (after equilibrium)
$\therefore \frac{(a-2 x)}{a}=\frac{50}{31}$
$\therefore x=\frac{19}{62} a$
$\therefore \%$ of NH_{3} decomposed $=\frac{2 x}{a} \times 100$
$=\frac{2 \times 19 a}{62 \times a} \times 100$
$=61.33 \%$
111 (b)
Equilibrium constant for the reaction,
$3 A+2 B \rightleftharpoons C$, is
$K=\frac{[C]}{[A]^{3}[B]^{2}}$
112 (a)
$\mathrm{H} A \rightleftharpoons \mathrm{H}^{+}+A^{-}$
$K=C \alpha^{2}$
$=0.1 \times\left(10^{-5}\right)^{2}$
$=0.1 \times 10^{-10}$ or 1×10^{-11}
113 (c)
$K_{p}=\frac{p_{\mathrm{CO}}^{2}}{p_{\mathrm{CO}_{2}}}=\frac{4 \times 4}{2}=8$
114 (b)
$\frac{\text { normal.mol.wt. }}{\text { exp.mol.wt. }}=1+\alpha$
For, $\mathrm{NH}_{4} \mathrm{Cl} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{HCl}$;
$\because \alpha=1$
\therefore Exp. Mol.wt. $=\frac{\text { normal.mol.wt } .}{2}$
115 (c)
$\mathrm{Al}(\mathrm{OH})_{3}$ is weak base than $\mathrm{Mg}(\mathrm{OH})_{2}$. Hydroxides of I and II group metals are strong base, stronger is base, weaker is its conjugate acid.
116 (b)
K_{p} and K_{c} values do not change with catalyst.
117 (a)
$\Delta H=E_{a_{(f)}}-E_{a_{(b)}}=180-200$
$=-20 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(in absence of
catalyst)
$\therefore \Delta H=E_{a_{(f)}}-E_{a_{(b)}}$
$=[180-100]-[200-100]$
$=-20 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(in presence
of catalyst)
Catalyst's have no influence on ΔH
118 (b)
$\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) ;$ Here, $\Delta n>$ 1

Hence, decrease of pressure shifts the equilibrium in forward direction and increase of pressure shift the equilibrium in backward (reverse) direction.
119 (b)
20% mixture reacts to form $10 \% \mathrm{NH}_{3}$;
Thus, 80% mixture and $10 \% \mathrm{NH}_{3}$ left or total pressure left $=90 \mathrm{~atm}$, since 100% mixture has 100 atm.
120 (c)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$is conjugate strong base of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.
121 (a)
Borate ions are hydrolysed to develop alkaline nature in solution.
123 (b)
For a buffer solution, pH is given by
Henderson equation.

$$
\mathrm{pH}=\mathrm{p} K_{a}+\log \frac{[\text { salt }]}{[\text { acid }]}
$$

hence, pH is least when concentration of acid is higher than that of salt.
124 (a)
Phenolphthalein is good indicator in the range of pH 8 to 9.8.
125 (c)
$N=\frac{N_{1} V_{1}+N_{2} V_{2}}{V_{1}+V_{2}}$
(\because for $\operatorname{HCl} N=M$)

$$
\begin{aligned}
& =\frac{0.015 \times 100+0.005 \times 100}{100+100} \\
& =\frac{1.5+1.5}{200}=\frac{1}{100}=10^{-2}
\end{aligned}
$$

Resulting solution is acidic in nature.
Then, $\left[\mathrm{H}^{+}\right]=10^{-2}$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

$$
=\log \frac{1}{\left[\mathrm{H}^{+}\right]}=\log \frac{1}{10^{-2}}
$$

$$
=2 \log 10
$$

$$
=2
$$

126 (d)
$K_{s p}=\left[A^{3+}\right]^{2}\left[X^{2-}\right]^{3}=(2 y)^{2}(3 y)^{3}=108 y^{5}$

127 (b)
Solubility of $\mathrm{BaSO}_{4}=\sqrt{K_{S p}}$

$$
\begin{aligned}
& =\sqrt{1.1 \times 10^{-10}} \\
& =1.05 \times 10^{-5} \mathrm{M}
\end{aligned}
$$

\therefore wt. of $\mathrm{BaSO}_{4}=1.05 \times 10^{-5} \times 233$
or $\quad w_{\mathrm{BaSO}_{4}}=244.37 \times 10^{-5} \mathrm{~g} /$ litre
\therefore Volume of water needed to dissolve 1 g .
BaSO_{4} is equal to $\frac{1}{244.37 \times 10^{-5}}=410$ litre.
128 (c)
Addition of inert gas at constant volume does not influence the equilibrium concentration.
129 (b)
$\mathrm{H}_{4} \mathrm{Cl}(s) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{Cl}^{-}(a q) ; \quad \Delta H=$
$+3.5 \mathrm{kcal} / \mathrm{mol}$
This is the endothermic reaction hence, increasing the temperature will shift the equilibrium to the right.
130 (c)
$K_{\text {sp }}$ of $\mathrm{BaSO}_{4}=1.5 \times 10^{-9}:\left[\mathrm{Ba}^{2+}\right]=0.01 \mathrm{M}$
$\left[\mathrm{SO}_{4}^{2-}\right]=\frac{1.5 \times 10^{-9}}{0.01}=1.5 \times 10^{-7}$
131 (d)

$$
\mathrm{Pb}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{~Pb}^{2+}+2 \mathrm{OH}^{-}
$$

$$
\begin{aligned}
K_{\mathrm{sp}} & =\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=S \times(2 S)^{2} \\
K_{\mathrm{sp}} & =4 s^{3}=4 \times\left(6.7 \times 10^{-6}\right)^{3} \\
& =1.20 \times 10^{-15}
\end{aligned}
$$

In a solution with $\mathrm{pH}=8$
$\left[\mathrm{H}^{+}\right]=10^{-8}$
and

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=10^{-6}} \\
& 1.20 \times 10^{-15}=\left[\mathrm{Pb}^{2+}\right]\left[10^{-6}\right]^{2} \\
& {\left[\mathrm{~Pb}^{2+}\right]=\frac{1.2 \times 10^{-15}}{\left[10^{-6}\right]^{2}}} \\
& =1.2 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

132 (c)

$$
\begin{gathered}
\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}(\mathrm{~g}) \\
\Delta n=n_{p}-n_{r} \\
=2-1=1 \\
K_{p}=K_{c}(R T) \\
2 \mathrm{BrCl}(\mathrm{~g}) \rightleftharpoons \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \\
\Delta n=0 \\
K_{p}=K_{c}(R T)^{0} \\
K_{p}=K_{c} \\
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
\Delta n=2-4=-2 \\
K_{p}=K_{c}(R T)^{-2} \\
K_{p}<K_{c}
\end{gathered}
$$

133 (d)
When the value of ionic product is greater than the solubility product, precipitation takes place
134 (a)
$\underset{(1-\alpha)}{\mathrm{BOH}} \rightleftharpoons \underset{c \alpha}{B_{\alpha}^{+}}+\underset{c \alpha}{\mathrm{OH}^{-}}$

$$
K_{b}=\frac{\left[\mathrm{B}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\mathrm{BOH}}=\left[\mathrm{OH}^{-}\right]^{2}
$$

$\therefore \quad\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-6} \mathrm{M}$.
135 (d)
As the solution is acidic $\mathrm{pH}<7$. This is because $\left[\mathrm{H}^{+}\right]$from $\mathrm{H}_{2} \mathrm{O}\left[10^{-7}\right] \mathrm{M}$ cannot be neglected in comparison to $10^{-9} \mathrm{M}$
136 (d)

$$
\mathrm{pH}=12
$$

$\therefore \mathrm{pOH}=2$
or $\left[\mathrm{OH}^{-}\right]=10^{-2} ; \therefore\left[\mathrm{Ba}^{2+}\right]=\frac{10^{-2}}{2}$
$K_{s p} \mathrm{Ba}(\mathrm{OH})_{2}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\frac{10^{-2}}{2} \times\left(10^{-2}\right)^{2}$

$$
=5 \times 10^{-7} M^{3} .
$$

137 (b)
$2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{NH}_{2}^{-} \quad$ (self ionisation)
and $K=\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NH}_{2}^{-}\right]$
$\therefore\left[\mathrm{NH}_{4}^{+}\right]=\left[\mathrm{NH}_{2}^{-}\right]$
$\therefore\left[\mathrm{NH}_{2}^{-}\right]=\sqrt{K}=\sqrt{10^{-30}}=10^{-15} \mathrm{M}$
Number of amide ions in $10^{3} \mathrm{~cm}^{3}=10^{-15} \times 6 \times$ 10^{23}
\therefore Number of amide ions in one $\mathrm{cm}^{3}=\frac{10^{-15} \times 6 \times 10^{23}}{10^{3}}$

$$
=6 \times 10^{5} \text { ions }
$$

138 (c)
$K=k_{1} \times k_{2}$

$$
\begin{aligned}
& =1.8 \times 10^{-5} \times 5.0 \times 10^{-10} \\
& =5 \times 10^{-15}
\end{aligned}
$$

139 (d)
Trichloroacetic acid is almost of same strength as HCl due to inductive effect of Cl -atoms.
140 (c)
$\left[\mathrm{OH}^{-}\right]=c \cdot \alpha=0.01 \times \frac{5}{100} \times 5 \times 10^{-5}$.
141 (b)
Nucleophiles are electron rich species and donate electron pair.
143 (a)
$\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=0.01 \mathrm{~mol} / 100 \mathrm{cc}=0.1 \mathrm{~mol} \mathrm{~L}^{-1}$
Assuming complete ionisation,
$\left[\mathrm{OH}^{-}\right]=0.2 \mathrm{M},\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{0.2}=5 \times 10^{-14}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\log \left(5 \times 10^{-14}\right)$
$=14-0.669=13.3$
144 (c)
A solution with reverse acidity or basically is known as buffer solution. It is of two types :
(I)Acidic buffer solution : A mixture of weak acid and its salt with strong base
e.g., $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
(II)Basic buffer solution : A mixture of a weak base and its salt with strong acid.
e.g., $\quad \mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$

145 (a)
$X(\mathrm{~g}) \quad \rightleftharpoons \quad Y(\mathrm{~g}) \quad Z(\mathrm{~g})$
Initial 1
0
At equilibrium $0.5 \quad 0.5$
0.5

Partial pressure $\quad \frac{0.5}{1.5} p \quad \frac{0.5}{1.5} p$
$\frac{0.5}{1.5} p$
$\begin{array}{cc}\because \quad & K_{p} \\ & \frac{p_{Y} \cdot p_{Z}}{p_{x}} \\ 1 & \frac{\frac{p}{3} \frac{p}{3}}{\frac{p}{3}} \\ & p=3 \mathrm{~atm}\end{array}$
Partial pressure of $X \quad \frac{p}{3} \quad \frac{3}{3} \quad 1 \mathrm{~atm}$.
146 (a)
$K_{1}=\frac{\left[\mathrm{NO}_{2}\right]}{[\mathrm{NO}]\left[\mathrm{O}_{2}\right]}$ and $K_{2}=\frac{\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.}{\left[\mathrm{NO}_{2}\right]^{2}}$
$\therefore \quad K_{2}=\frac{1}{K_{1}^{2}}$
147 (b)
$K_{1}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]} ;$
$K_{2}=\frac{[\mathrm{NO}]}{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{O}_{2}\right]^{1 / 2}} ;$
$\therefore K_{1}=K_{2}^{2}$.
149 (c)
$\mathrm{Hg}_{2} \mathrm{Cl}_{2} \rightleftharpoons \mathrm{Hg}_{2}^{2+}+2 \mathrm{Cl}^{-}$

$$
\begin{aligned}
s & \begin{array}{c}
2 s \\
K_{\mathrm{sp}}
\end{array}=\left[\mathrm{Hg}_{2}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2} \\
K_{\mathrm{sp}} & =(s)(2 s)^{2} \\
K_{\mathrm{sp}} & =4 s^{3} \\
s & =\left(\frac{K_{\mathrm{sp}}}{4}\right)^{1 / 3}
\end{aligned}
$$

150 (c)
$K_{c}=\frac{[\text { product }]}{[\text { reactant }]}$
$0.41=\frac{\text { [product] }}{\text { [reactant] }}$
$\Rightarrow \quad[$ product $]=0.41 \times[$ reactant $]$
$\Rightarrow \quad[$ product $]<$ [reactant $]$
Therefore, reaction proceeds in backward direction, i.e., more PCl_{5} will be formed.
151 (a)
Reaction is exothermic. By Le-Chatelier's principle, a reaction is spontaneous in forward side (in the direction of formation of more ClF_{3}) if F_{2} is added, temperature is lowered and ClF_{3} is removed.
152 (c)
$\Delta n g=1$ for this change, so the equilibrium constant depends on the units of concentration
153 (a)

$$
\begin{array}{rlrl}
& K_{s p}=4 s^{3} \\
& \therefore & 4 s^{3}=3.2 \times 10^{-8} \\
\therefore & & s=2 \times 10^{-3} M
\end{array}
$$

154 (d)
$\mathrm{Ag}_{2} \mathrm{CO}_{3} \rightleftharpoons 2 \mathrm{Ag}^{+}+\mathrm{CO}_{3}^{2-}$
Due to the common ion effect, the solubility decreases, so the solubility of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ would be greatest 1 L of $0.05 \mathrm{M} \mathrm{NH}_{3}$ due to the absence of common ion either Ag^{+}or CO_{3}^{2-}. Ag^{+}form complex with NH_{3}.

$$
\mathrm{Ag}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}
$$

155 (c)
The interferring radicals are $\mathrm{PO}_{4}^{3-}, \mathrm{BO}_{3}^{3-}, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ and F^{-}give insoluble matter in alkaline medium.
156 (d)
$\mathrm{pOH}=K_{b}+\log \frac{[\text { salt }]}{[\text { base }]}$
given, $\mathrm{p} K_{b}=5$, [Base $]=0.10 \mathrm{M}$,

$$
[\text { salt }]=0.01 \mathrm{M}
$$

$\therefore \quad \mathrm{pOH}=5+\log \frac{0.01}{0.10}=4$

$$
\mathrm{pH}+\mathrm{pOH}=14
$$

$\therefore \quad \mathrm{pH}=14-4=10$
157 (c)
$2.303 \log \frac{K_{2}}{K_{1}}=\frac{\Delta H}{R} \frac{\left[T_{2}-T_{1}\right]}{T_{1} T_{2}} ;$ find ΔH.
158 (b)
$K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$
$\therefore 64=\frac{x^{2}}{0.03 \times 0.03}$
$\therefore x^{2}=64 \times 9 \times 10^{-4}$
or, $x=8 \times 3 \times 10^{-2}$
x is the amount of HI
At equilibrium, amount of I_{2} will be
$0.30-0.24=0.06$
159 (c)

Weak electrolytes are completely ionised at infinite dilution.
160 (b)
$K_{c}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Pl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{0.2 \times x}{0.4}=0.5$
$\therefore x=1$
161 (b)
Rest all occur in backward direction.
162 (c)
Electron donors are Lewis base.
In the reaction $\mathrm{I}_{2}+\mathrm{I}^{-} \rightarrow \mathrm{I}_{3}^{-}, \mathrm{I}^{-}$donates a pair of electron and I_{2} accepts it to form I_{3}^{-}.
$\therefore \quad 1^{-}$is Lewis base.
163 (d)
Number of milliequivalents of

$$
\mathrm{NaOH}=10 \times 0.1=1
$$

Number of milliequivalents of

$$
\mathrm{H}_{2} \mathrm{SO}_{4}=10 \times 0.05=0.5
$$

Milliequivalent of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will neutralise NaOH so, that (1-0.5) $=0.5$ millieq. Of NaOH is left unneutralised.
Hence, pH of the resulting solution will be greater than seven ($\mathrm{pH}>7$).
164 (d)
$K_{\text {sp }} \mathrm{PbCl}_{2}=4 s^{3}=4 \times(0.01)^{3}=4 \times 10^{-6}$
In NaCl solution for PbCl_{2};

$$
K_{s p}=\left[\mathrm{pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}
$$

or $4 \times 10^{-6}=\left[\mathrm{pb}^{2+}\right][0.1]^{2}$
$\therefore \quad\left[\mathrm{Pb}^{2+}\right]=4 \times 10^{-4} \mathrm{M}$.
165 (a)
$a X+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NaOH}+\mathrm{HX}$
In it $\mathrm{H} X$ is weak acid, so $\mathrm{Na} X$ is a salt of weak acid and strong base.
$\therefore \quad$ Hydrolysis constant of $\mathrm{Na} X$

$$
K_{h}=\frac{K_{w}}{K_{a}}=\frac{1 \times 10^{-14}}{10^{-5}}=1 \times 10^{-9}
$$

For this type of salt

$$
\begin{array}{lll}
& K_{h}=\frac{h^{2}}{V}=C h^{2} \\
& h=\text { degree of hydrolysis } \\
\therefore & 1 \times 10^{-9}=0.1 \times h^{2} \\
\text { or } & h^{2}=\frac{1 \times 10^{-9}}{0.1}=1 \times 10^{-8} \\
& h=1 \times 10^{-4}
\end{array}
$$

$\therefore \%$ of degree of hydrolysis on $\mathrm{Na} X$ salt

$$
=1 \times 10^{-4} \times 100=1 \times 10^{-2}=0.01 \%
$$

166 (b)
$\mathrm{H}_{2} \mathrm{SO}_{4}$ is almost completely ionised in aqueous solution.

167 (c)

$$
\begin{aligned}
& X A \rightleftharpoons C+D \\
& 00 \\
& a(1-\alpha) \quad \frac{0}{0 \alpha} \quad \frac{0}{x}
\end{aligned}
$$

$\because \mathrm{K}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}]^{X}}=\left[\frac{a^{2} \alpha^{2}}{x^{2} V^{2}}\right] /\left[\frac{a(1-\alpha)}{V}\right]^{X}$ $=\frac{\alpha^{2} \cdot a^{2-x}}{x^{2}(1-\alpha)^{X} \cdot V^{2-X}}$
If α is independent of a, then $2-X=0$
Or $X=2$
168 (d)
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
$(1-\alpha) \quad 2 \alpha$
Total number of moles $=1-\alpha+2 \alpha=1+\alpha$

$$
\begin{aligned}
K_{s p} & =4 s^{3} \\
\text { Also, } \quad s & =\frac{0.11}{58} \mathrm{~mol} \mathrm{litre}^{-1} \\
\therefore \quad K_{s p} & =4 \times\left(\frac{0.11}{58}\right)^{3}
\end{aligned}
$$

$2 \mathrm{NO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$K_{C}=1.8 \times 10^{-6}$ at $184^{\circ} \mathrm{C}(=457 \mathrm{~K})$
$R=0.00831 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$K_{p}=K_{c}(R T)^{\Delta n_{g}}$
Where,
$\Delta n_{\mathrm{g}}=$ (gaseous products - gaseous reactants)

$$
\begin{aligned}
& \quad=3-2=1 \\
& \therefore K_{p}=1.8 \times 10^{-6} \times 0.00831 \times 457 \\
& \quad=6.836 \times 10^{-6}>1.8 \times 10^{-6}
\end{aligned}
$$

Thus, $K_{p}>K_{c}$
171 (a)
pH curve of strong acid with weak base is vertical over the pH range of 4 to 7 .

The indicator that shows colour change within this range is suitable. Methyl red (pH
range 4.4 to 6.5) is suitable indicator for titration of weak base $v s$ strong acid.
172 (b)
The value of the ionic product of water depends on temperature.
173 (b)
In this reaction, ΔH is negative, so reaction moves forward by decrease in temperature while value of $\Delta n_{\mathrm{g}}=2-3=-1$, $i e$, negative, so the reaction moves in forward direction by increase in pressure
175 (b)
$K_{p}=K_{c}(R T)^{\Delta n}$
For the reaction,

$$
\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}
$$

$\Delta n=2-2=0$
$\therefore \quad K_{p}=K_{c}(R T)^{0}$

$$
K_{p}=K_{c}
$$

176 (b)
Solubility is decreased due to common ion effect

177 (d)
$K_{p}=\frac{p_{\mathrm{CH}_{3} \mathrm{OH}}}{P_{\mathrm{CO}} \times p_{\mathrm{H}_{2}}^{2}}=\frac{2}{1 \times(0.1)^{2}}=200$
K_{p} for reverse reaction is

$$
=\frac{1}{K_{p}}=\frac{1}{200}=5 \times 10^{-3} \mathrm{~atm}^{2}
$$

178 (a)
Due to common ion effect, dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ decreases and thus, pOH increases or pH decreases.
179 (c)
$\mathrm{pOH}=14-\mathrm{pH}=14-10.65=3.35$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$-3.35=\log \left[\mathrm{OH}^{-}\right]$
$\therefore\left[\mathrm{OH}^{-}\right]=4.447 \times 10^{-4} \mathrm{M}$
$\mathrm{Ca}(\mathrm{OH})_{2}=\mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}$
$4.447 \times 10^{-4} \mathrm{M}$
$\frac{\left[\mathrm{OH}^{-}\right]}{2}=\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=2.2235 \times 10^{-4} \mathrm{M}$
Hence, in 250 mL , moles of
$\mathrm{Ca}(\mathrm{OH})_{2}=\frac{2.2235 \times 10^{-4} \times 250}{1000}$
$=0.56 \times 10^{-4}$
180 (c)
An increase in volume for the equilibrium having,
$K_{c}=\frac{\left[\mathrm{SO}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]}=\frac{\left[\text { mole of } \mathrm{SO}_{2}\right]\left[\text { mole of } \mathrm{Cl}_{2}\right]}{\left[\text { mole of } \mathrm{SO}_{2} \mathrm{Cl}_{2}\right] \times \text { volume }}$

Will increase the mole of Cl_{2} or SO_{2} to maintain K_{c} values constant.
181 (b)
$\underset{\text { Acid }}{\mathrm{ZnO}}+\underset{\text { Base }}{2 \mathrm{NaOH}} \rightarrow \underset{\text { Salt }}{\mathrm{Na}_{2} \mathrm{ZnO2}_{2}}+\mathrm{H}_{2}$.
182 (c)
$\mathrm{N}_{2}(\mathrm{~g}) \quad+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
(Initially) 1 mole 3 mole
0 moles(2L)
(At equilibrium) 0.6 or $(3-3 x)$
$2 x$ moles
($1-x$) moles moles
Number of moles of $\mathrm{N}_{2}=0.6=1-x$
$\therefore \quad x=1-0.6=0.4$
So, $\quad 3-3 x=3-3 \times 0.4=1.8$,
and $\quad 2 x=2 \times 0.4=0.8$
Therefore, the total number of moles at equilibrium.

$$
\begin{aligned}
& =(1-x)+(3-3 x)+2 x \\
& =0.6+1.8+0.8 \\
& =3.2 \mathrm{~mol}
\end{aligned}
$$

183 (a)
$\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{I}^{-}$;
Find x, using $K_{c}=10^{-6}=\frac{4 x^{2}}{(1-x)}$, find x and notice $2 x<(1-x)$.
184 (d)
$K_{c}=\frac{[B]}{[A]}=1.1$
185 (a)
In the reaction, $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$, the number of moles of reactants and products are equal, thus it remain unaffected by change in pressure
186 (a)
Aqueous solution of NaCl is neutral. So, its pH value is 7 .
187 (a)
If saturated solution $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=K_{s p}$ if the product of ionic concentration is lower than $K_{s p}$, solution is unsaturated.

188 (a)
$\mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
At $t=00.1 \quad M \quad 0 \quad 0$
At equilibrium
$\left(0.1-\frac{1.3 \times 0.1}{100} \mathrm{M}\right) 0.0013 \mathrm{M}(0.0013 \mathrm{M})$
$=0.1 \mathrm{M}$
$=\left[\mathrm{OH}^{-}\right]=0.0013 \mathrm{M}=13 \times 10^{-4} \mathrm{M}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(13 \times 10^{-4}\right)=2.89$
$\mathrm{pH}=14-2.89=11.11$
189 (b)

$$
\alpha=\frac{\Lambda_{v}}{\Lambda_{\infty}}=\frac{8}{400}=0.02
$$

Now $K_{a}=c \alpha^{2}=\frac{1}{32} \times(0.02)^{2}$

$$
=1.25 \times 10^{-5}
$$

190 (b)
$\mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-}$.
191
(b)
$X^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HX}+\mathrm{OH}^{-}$
$K_{h}=\frac{10^{-14}}{10^{-5}}$ so, $h=\sqrt{\frac{K_{h}}{C}}=\sqrt{\frac{10^{-9}}{10^{-1}}}=10^{-4}$
$=100 \times 10^{-4}=10^{-2}$
So, degree of hydrolysis is 0.01%
192 (a)
The species which can accept as well as donate H^{+} can act both as an acid and a base
$\mathrm{HSO}_{4}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{4}$
base
$\mathrm{HSO}_{4}^{-} \rightleftharpoons \mathrm{SO}_{4}^{2-}+\mathrm{H}^{+}$
acid
193 (d)
$2=\frac{[B]}{[A]} ; 4=\frac{[C]}{[B]}$ and $6=\frac{[D]}{[C]}$
Thus, on multiplying
$2 \times 4 \times 6=\frac{[D]}{[A]}$, i.e., K_{c} for the reaction.
194 (d)
Moles of $\mathrm{HCl}=\frac{0.365}{36.5}=0.01$
Moles of NaOH in $100 \mathrm{~cm}^{3}$ of 0.2 M NaOH

$$
0.2=\frac{n \times 1000}{100}=0.02
$$

Moles of NaOH left $=0.02-0.01=0.01$
Moles of NaOH per litre

$$
\begin{aligned}
& \quad \frac{0.01 \times 1000}{100}=0.1 \\
& {\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{0.1}=10^{-13} ; \quad\left(K_{w}=\left[\mathrm{H}^{+}\right] \cdot\left[\mathrm{OH}^{-}\right]\right)} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left[10^{-13}\right] \\
& \mathrm{pH}=13
\end{aligned}
$$

195 (c)
$\left[\mathrm{OH}^{-}\right]=0.0001 \mathrm{~N}, \mathrm{pOH}=4$
$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{pH}=14-\mathrm{pOH}=14-4=10$
196 (a)

$$
\begin{aligned}
\Delta G^{0} & =-2.303 R T \log K_{p} \\
& =-2.303 \times 8.314 \times 300 \log 10^{20} \\
& =-114.88 \mathrm{~kJ}
\end{aligned}
$$

197 (a)
$K_{c}=\frac{1}{\left[\mathrm{O}_{2}\right]^{5}}$; note that the expression does not involve the concentration terms of solid species.
198 (b)
$\mathrm{NH}_{4} \mathrm{CN}$ Is a salt of weak acid and weak base and thus, for it,
$K_{H}=\frac{K_{w}}{K_{a} \times K_{b}}$
199 (d)
The forward reaction is exothermic and an increase in volume is taking place, Hence, according to Le-Chatelier's principle, forward reaction will be favoured by low temperature and low pressure.
200 (d)
$\mathrm{NH}_{4} \mathrm{Cl}$ on hydrolysis gives acidic nature.
201 (b)
$K_{c}=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}$
If $\left[\mathrm{OH}^{-}\right]=\frac{1}{4} \times\left[\mathrm{OH}^{-}\right]_{\text {initial }}$ than $\left[\mathrm{Fe}^{3+}\right]=$
$64\left[\mathrm{Fe}^{3+}\right]_{\text {initial }}$ to have K_{c} constant
202 (c)
$A(g) \quad+3 B(g) \rightleftharpoons 4 C(g)$
$1 \begin{array}{llll}1 & 0 & \text { Initial }\end{array}$
concentration
$(1-x) \quad(1-3 x) \quad 4 x \quad$ Final
concentration
(at equilibrium)
According to question, $1-x=4 x$
\therefore

$$
x=\frac{1}{5}
$$

For above reaction,

$$
\begin{aligned}
& K_{C}=\frac{[C]^{4}}{[A][B]^{3}}=\frac{(4 x)^{4}}{(1-x)(1-3 x)^{3}} \\
& K_{C}=\frac{\left(4 \times \frac{1}{5}\right)^{4}}{\left(1-\frac{1}{5}\right)\left(1-3 \times \frac{1}{5}\right)^{3}}=8.0
\end{aligned}
$$

203 (a)
m Mole of acid $=6 \times 0.1=0.6$
m Mole of salt $=12 \times 0.1=1.2$
$\therefore \mathrm{pH}=4.75+\log \frac{1.2}{0.6}=4.75+0.3010=5.05$.
204 (c)
50 mL of $0.1 \mathrm{M} \mathrm{HCl}=\frac{0.1 \times 50}{1000}=5 \times 10^{-3}$

50 mL of $0.2 \mathrm{M} \mathrm{NaOH}=\frac{0.2 \times 50}{1000}=10 \times 10^{-3}$
Hence, after neutralisation NaOH is left

$$
\begin{aligned}
& =10 \times 10^{-3}-5 \times 10^{-3} \\
& =5 \times 10^{-3}
\end{aligned}
$$

Total volume $=100 \mathrm{cc}$
The concentration of NaOH

$$
\begin{aligned}
& =\frac{5 \times 10^{-3} \times 1000}{100}=0.05 \mathrm{M} \\
{\left[\mathrm{OH}^{-}\right] } & =0.05 \mathrm{M}=5 \times 10^{-2} \mathrm{M} \\
\mathrm{pOH} & =-\log \left[\mathrm{OH}^{-}\right] \\
& =-\log \left[5 \times 10^{-2}\right] \\
& =1.3010
\end{aligned}
$$

$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{pH}=14-1.3010=12.699$
205 (b)
$\begin{array}{ccccc}2 \mathrm{KCN} & \mathrm{AgNO}_{3} & \rightarrow & \mathrm{Ag}(\mathrm{CN})_{2}^{-} & \mathrm{KNO}_{3}+\mathrm{K}^{+} \\ 0.1 & 0.03 & 0 & 0 & 0 \\ (0.1-0.06) & 0 & 0.03 & 0.03 & 0.03\end{array}$
$\therefore \quad\left[\mathrm{Ag}(\mathrm{CN})_{2}^{-}\right]=0.03$
Now, $\quad \mathrm{Ag}(\mathrm{CN})_{2}^{-} \rightleftharpoons \mathrm{Ag}^{+}+2 \mathrm{CN}^{-}$
$\begin{array}{ccc}0.03 & { }_{a}^{0} & \begin{array}{c}0.04 \\ (0.03-a)\end{array}\end{array}$ (left from KCN)
K_{c} is small $\therefore 0.03-a \approx 0.03$ and $0.04+a \approx 0.04$
$\therefore K_{c}=4 \times 10^{-19}=\frac{(0.04)^{2} \times a}{0.03} ; \therefore a=7.5 \times 10^{-18}$
Higher $\mathrm{p} K_{a}\left(-\log K_{a}\right)$ means lower K_{a} for acid.
207 (a)
$N_{\mathrm{NaOH}}=1 \times 1=1 \mathrm{~N}$
$N_{\mathrm{H}_{2} \mathrm{SO}_{4}}=2 \times 10=20 \mathrm{~N}$
Millieq. of $\mathrm{NaOH}=1 \times 100=100$
Millieq. of $\mathrm{H}_{2} \mathrm{SO}_{4}=20 \times 10=200$
Thus, Millieq. of acid are left and therefore $\mathrm{pH}<$
7. So, the resulting mixture will be acidic

208 (a)
$\mathrm{pH}=4.35$
$\therefore \quad 4.35=-\log \left[\mathrm{H}^{+}\right]$
or $\left[\mathrm{H}^{+}\right]=$antilog of (-4.35)

$$
=4.5 \times 10^{-5} \mathrm{M}
$$

209 (b)
pH of salts of weak acid and weak base is derived by the relation : $\left[\mathrm{H}^{+}\right]=\sqrt{K_{H}}=\sqrt{\frac{K_{w}}{K_{a} \cdot K_{b}}}$
210 (a)
$\mathrm{H}_{2} \xrightarrow[2000^{\circ} \mathrm{C}]{\text { Electric arc }} 2 \mathrm{H}-104.5 \mathrm{kcal}$
hydrogen atomic
molecule hydrogen
The reaction is endothermic. For endothermic reaction increase in temperature shift the
equilibrium in forward direction. To proceed forward the pressure must be low because for the above reaction, increase of pressure will favoured backward reaction. So, for maximum yield the conditions are high temperature and low pressure.
211 (a)
$\mathrm{H}_{3} \mathrm{PO}_{2}$ is monobasic acid and thus, it forms only one normal salt.
212 (d)
According to Lewis, "A base is a species which can donate an electron pair." In NH_{3}, N has one lone pair. Thus, $\mathrm{N̈}_{3}$ is a Lewis base.
213 (d)
$K<1.0$
214 (b)
Higher is the value of K, more is the probability for a reaction to go for completion.
215 (d)
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
The equilibrium constant (K_{p}) changes with the change in temperature.
Note : Variation of equilibrium constant with temperature can be express as:

$$
\log \frac{K_{2}}{K_{1}}=\frac{\Delta H}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} \cdot T_{2}}\right]
$$

216 (b)

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g}) \\
& K_{c}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}=4 \times 10^{-4} \\
& \mathrm{NO} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \\
& K_{c}^{\prime}=\frac{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{O}_{2}\right]^{1 / 2}}{[\mathrm{NO}]} \\
&=\sqrt{\frac{1}{K_{c}}}=\sqrt{\frac{1}{4 \times 10^{-4}}}=50
\end{aligned}
$$

217 (b)

$$
\begin{array}{lccc}
& 2 A_{(\mathrm{g})}+B_{(\mathrm{g})} \rightleftharpoons 3 C_{(\mathrm{g})}+D_{(\mathrm{g})} \\
\text { Initial } & 1.0 & 1.0 & 0 \\
\text { At.Eq. } & 0.5 & 0.75 & 0.75 \\
& & 0.05 \\
& K_{c} & =\frac{(0.25) \times(0.75)^{3}}{(0.5)^{2} \times 0.75}
\end{array}
$$

218 (c)
$R \mathrm{NH}_{2}$ is stronger base than NH_{3}. Also HI is strong acid and thus, I^{-}is weak base.
219 (b)
Due to ionisation in water.
220 (a)
$\left[\mathrm{H}^{+}\right]=10^{-1}$
$\therefore \mathrm{pH}=1$

221 (c)
$\mathrm{Fe}^{3+}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{H}^{+}$.
222 (b)
This is Bronsted-Lowry concept of acid base.
223 (a)
The conjugate acids of $\overline{\mathrm{O}} \mathrm{H}, \overline{\mathrm{N}} \mathrm{H}_{2}, \mathrm{HC} \equiv$
C^{-}and $\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}$are
$\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{HC}=\mathrm{CH}$ and $\mathrm{CH}_{3}-$
CH_{3} respectively. Their acidic strength is as
$\mathrm{HOH}>\mathrm{HC} \equiv \mathrm{CH}>\mathrm{NH}_{3}>\mathrm{CH}_{3} \mathrm{CH}_{3}$
A strong acid has a weak conjugate base,
hence the decreasing order of basic strength is

$$
\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{HC} \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}
$$

(b)

On removal of CO_{2} (one of the reaction), reaction will proceed in backward direction.
226 (c)
Common ion effect includes two necessary points; one presence of common ion and the other a weak electrolyte.
227 (b)

$$
\mathrm{C}(s)+\mathrm{CO}_{2} \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})
$$

Gaseous mole before - 100
dissociation
Gaseous mole after - $\left(1-\frac{50}{100}\right)\left(\frac{2 \times 50}{100}\right)$
dissociation
$1 . \quad 0.5 \quad 1$
\therefore Total mole $=1.5$ and $\Delta n=1$
Total pressure given at equilibrium $=12 \mathrm{~atm}$
$K_{p}=\frac{\left(n_{\mathrm{CO}}\right)^{2}}{\left(n_{\mathrm{CO}_{2}}\right)} \times\left[\frac{P}{\sum n}\right]^{\Delta n}=\frac{(1)^{2}}{0.5} \times\left(\frac{12}{1.5}\right)^{1}$
$K_{p}=\frac{12}{1.5 \times 0.5}=16 \mathrm{~atm}$
228 (b)
If $K_{w}=10^{-12}$, then $\left[\mathrm{H}^{+}\right]$for neutral scale $=10^{-6}$ or $\mathrm{pH}=6$; thus, pH 6.9 refers for alkaline nature.
229 (c)
$K_{c}=\frac{\left[\mathrm{Cl}_{2}\right]\left[\mathrm{PCl}_{3}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{\frac{0.2}{10} \times \frac{0.2}{10}}{\frac{0.1}{10}}=0.04$
230

(d)

$\therefore K_{C}=\frac{\frac{2}{3} \times \frac{2}{3}}{\frac{1}{3} \times \frac{1}{3}}=4$
231 (b)
$K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{4 \times(0.05)^{2}}{0.05}=4 \times 0.05=\mathbf{0 . 2}$
232 (d)
Millieq. of $0.01 \mathrm{M} \mathrm{HCl}=\frac{0.01 \times 100}{1000}=1 \times 10^{-3}$
$\therefore \mathrm{pH}=3$
Millieq. of $0.02 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}=\frac{0.04 \times 50}{1000}=2 \times 10^{-3}$
Millieq. of $0.02 \mathrm{M} \mathrm{NaOH}=\frac{0.02 \times 50}{1000}=1 \times 10^{-3}$
Left $\left[\mathrm{H}^{+}\right]=2 \times 10^{-3}-1 \times 10^{-3} ; \therefore \mathrm{pH}=3$
233 (a)
$K_{p}=\frac{p_{\mathrm{CO}}^{2} p_{\mathrm{O}_{2}}}{p_{\mathrm{CO}_{2}}^{2}}=\frac{[0.4]^{2} \times[0.2]}{(0.6)^{2}}=0.0888$
234 (d)

$$
\begin{aligned}
\mathrm{pH} & =4.5+\log \frac{\text { [Conjugate base }]}{[\text { Acid }]} \\
\because[\text { Salt }] & =[\text { Acid }], \text { since }\left[A^{-}\right]=\left[\mathrm{H}_{A}\right] \\
\therefore \quad \mathrm{pH} & =4.5 \quad \therefore \text { pOH }=9.5
\end{aligned}
$$

235 (b)
We know that,
$\mathrm{pH}=\mathrm{p} K_{a}+\log \frac{[\text { salt }]}{[\text { acid] }}$
or $\mathrm{pH}=-\log 10^{-8}+\log \frac{1}{1}$
$(\because[$ salt $]=[$ acid $])$
or $\mathrm{pH}=8$
236 (c)
$3 A+2 B \rightarrow 2 C$

$$
\begin{aligned}
K_{c} & =\frac{\text { concentration of products }}{\text { concnetration of reactants }} \\
& =\frac{[C]^{2}}{[A]^{3} \times[B]^{2}}
\end{aligned}
$$

238 (a)
Only in reaction (ii) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, gives H^{+}to $\mathrm{H}_{2} \mathrm{O}$, thus behaves as an acid.
239 (a)
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$
$\therefore \quad\left[\mathrm{OH}^{-}\right]=c \cdot h=c \sqrt{\frac{K_{H}}{c}}=\sqrt{K_{H} \cdot c}=\sqrt{\frac{K_{w}}{K_{a}} \cdot c}$
or $\quad-\log \mathrm{OH}=-\frac{1}{2}\left[\log K_{w}+\log c-\log K_{a}\right]$
or $\mathrm{pOH}=\frac{1}{2}\left[\mathrm{p} K_{w}-\log c-\mathrm{p} K_{a}\right]$
Now, $\mathrm{pH}+\mathrm{pOH}=\mathrm{p} K_{w}$
$\therefore \quad \mathrm{pH}=\frac{1}{2}\left[\mathrm{p} K_{w}+\log c+\mathrm{p} K_{a}\right]$.
240 (a)
$\underbrace{A+B}_{2}+Q \rightleftharpoons \underbrace{C+D}_{2}$

The reaction is endothermic so, on increase temperature concentration of product will increase
242 (d)
It is $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$.
243 (a)
$\left[\mathrm{OH}^{-}\right]=2 \times 0.05=0.1$
$\therefore \mathrm{pOH}=1$ and $\mathrm{pH}=13$.
244 (b)
For a reaction, $K_{c}=\frac{[\text { product }]}{[\text { reactant }]}$
Hence,
if $K_{c}>1$, then [Product] $>$ [Reactant]
245 (c)
For base BOH

$$
\mathrm{BOH} \rightleftharpoons \mathrm{~B}^{+}+\mathrm{OH}^{-}
$$

Dissociation constant $K_{b}=\frac{\left[B^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{BOH}]}$
\therefore Higher the value of K_{b}, more will be dissociation of base and stronger will be base and vice-versa.
\therefore Weakest base among given choices is having $K_{b}=7.2 \times 10^{-11}$.
246 (a)
$\begin{array}{ccr}2 A B_{2}(\mathrm{~g}) & \rightleftharpoons & 2 A B(\mathrm{~g}) \\ 1 & \mathrm{o}_{2}(\mathrm{~g}) \\ 1-x & x & 0 \\ x / 2\end{array}$
$\therefore \quad K_{p}=\frac{x^{2} \cdot x}{2(1-x)^{2}} \cdot\left[\frac{P}{1+\frac{x}{2}}\right]^{1}=\frac{x^{3} \cdot P}{2}$
$\left(1-x \approx 1\right.$ and $1+\frac{x}{2} \approx 1$, since $\left.x \ll 1\right)$
Or $\quad P=\frac{3 \sqrt{2 K_{p}}}{P}$
247 (b)
$K_{p}=K_{c}(R T)^{\Delta n g}$
$\Delta n \mathrm{~g}=-1$ (For the reaction, $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$).
Thus, for this reaction, K_{p} is less than K_{c}
248 (a)
$\mathrm{Cr}(\mathrm{OH})_{3} \rightleftharpoons \mathrm{Cr}^{3+}+3 \mathrm{OH}^{-}$

$$
\begin{aligned}
& \text { (s) (3s) } \\
& K_{\text {sp }}=s \times(3 s)^{3} \\
& =27 \mathrm{~s}^{4} \\
& 2.7 \times 10^{-31}=27 s^{4} \\
& \therefore \quad s=\sqrt[4]{\frac{K_{\mathrm{sp}}}{27}}=\sqrt[4]{\frac{2.7 \times 10^{-31}}{27}} \\
& =\sqrt[4]{10^{-32}} \\
& =10^{-8} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

249 (d)
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
${ }_{1-\alpha}^{1} \quad \begin{gathered}0 \alpha \\ K_{p}= \\ \left(_{\mathrm{NO}_{2}}\right)^{2} \\ n_{\mathrm{N}_{2} \mathrm{O}_{4}}\end{gathered} \times\left[\frac{P}{\Sigma n}\right]^{1}$
For 33% dissociation: $K_{p}=\frac{(2 \times 0.33)^{2}}{0.67} \times\left[\frac{P}{1.33}\right]$
For 40% dissociation: $K_{p}=\frac{(2 \times 0.40)^{2}}{0.60} \times\left[\frac{P}{1.40}\right]$
$\therefore \frac{P_{1}}{P_{2}}=1.56 \approx 1.60=\frac{8}{5}$
250 (a)
$A+2 B \rightleftharpoons 2 C$
$23 \quad 2 \quad$ initial moles
$(2-0.5)(3-0.5)(2 \times 0.5)$ at equilibrium
Molar concentration of $A=\frac{1.5}{2}$
Molar concentration of $B=\frac{2.5}{2}$
Molar concentration of $C=\frac{1}{2}$
$K=\frac{[C]^{2}}{[A][B]^{2}}=\frac{1 \times 1 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 1.5 \times 2.5 \times 2.5}$
$=\frac{2}{1.5 \times 2.5 \times 2.5}=0.21$
251 (d)
$\operatorname{In} \frac{\mathrm{N}}{1000} \mathrm{KOH}$ solution, $\left[\mathrm{OH}^{-}\right]=10^{-3} \mathrm{M}$

$$
\begin{aligned}
\mathrm{pOH} & =-\log \left[\mathrm{OH}^{-}\right]=-\log \left[10^{-3}\right] \\
& =+3 \log 10=3 \\
\mathrm{pH}+\mathrm{pOH} & =14 \\
\mathrm{pH} & =14-\mathrm{pOH} \\
& =14-3 \\
& =11
\end{aligned}
$$

252 (a)
Tears are alkaline in nature.
254 (b)
$M X_{2}=M^{2+}+2 X^{-}$
$s \quad 2 s$
$K_{\text {sp }}=(2 s)^{2}(s)=4 s^{3}$
$\Rightarrow s=\sqrt[3]{\frac{K_{\text {sp }}}{4}}=\sqrt[3]{\frac{4 \times 10^{-12}}{4}}=1.0 \times 10^{-4} \mathrm{M}$
255 (d)
Let solubility of $\mathrm{BaSO}_{4}=\mathrm{mol} \mathrm{L}{ }^{-1}$

$$
\begin{gathered}
\mathrm{BaSO}_{4} \\
x
\end{gathered} \underset{\mathrm{Ba}^{2+}}{ }+\mathrm{SO}_{4}^{2-}
$$

\therefore Ions at equilibrium

$$
\begin{aligned}
K_{\mathrm{sp}} & =\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right] \\
& =x \times x \\
& x^{2}
\end{aligned}
$$

Given, $K_{\text {sp }}=1.5 \times 10^{-9}$

$$
\left(1.5 \times 10^{-9}\right)=x^{2}
$$

or $\quad \sqrt{1.5 \times 10^{-9}}=x$

$$
x=3.9 \times 10^{-5} \mathrm{~mol} / \mathrm{L}
$$

256 (d)
Strongest Bronsted base is that which has weakest conjugate acid.

Base	Conjugate acid (base $\left.+\mathrm{H}^{+}\right)$
ClO^{-}	HClO
ClO_{2}^{-}	HClO_{2}
ClO_{3}^{-}	HClO_{3}
ClO_{4}^{-}	HClO_{4}

$\because \mathrm{HClO}$ is weak conjugate acid.
$\because \mathrm{ClO}^{-}$is strongest Bronsted base.
257 (b)
At equilibrium $Q=K_{c}$ (or $Q=K_{p}$)
258 (a)
Oxalic acid $=x \mathrm{~mol} / \mathrm{L}$
Oxalic acid KMnO_{4}

$$
\begin{aligned}
M_{1} V_{1} & =M_{2} V_{2} \\
40 \mathrm{~mL} \times x & =16 \mathrm{~mL} \times 0.05 \\
x & =\frac{16 \times 0.05}{40}=\frac{1}{50} \\
x & =\frac{1}{50} \mathrm{M}
\end{aligned}
$$

Now, convert molarity into normality $N \times$ eq. wt $=\mathrm{M} \times$ mol. wt. of oxalic acid

$$
\begin{gathered}
N \times 45=\frac{1}{50} \times 90 \\
N=\frac{1}{25}
\end{gathered}
$$

This normality represents the hydrogen ion concentration.
So, $\quad\left[\mathrm{H}^{+}\right]=\frac{1}{25}$

$$
\mathrm{pH}=\log \frac{1}{\left[\mathrm{H}^{+}\right]}
$$

$$
=\log 25=1.3
$$

259 (c)
Simple cations such as $\mathrm{Ag}^{+}, \mathrm{Cu}^{2+}, \mathrm{Fe}^{3+}$ etc. can accept pairs of electrons and hence are Lewis acids.

260
(d)

Aspirin is a weak acid. Due to common ion effect, it is unionised in acid medium but completely ionised in alkaline medium

261 (c)
For a saturated solution product of ionic concentrations $\geq K_{s p}$.
262 (b)
$\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
$K_{\text {S.I }}=\frac{K_{w}}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}=\frac{10^{-14}}{(55.6)^{2}}=3.23 \times 10^{-18}$
263 (c)
Follow the method to write K_{c} or K_{p} values. It is the ratio of concentrations of products with suitable powers to concentration of reactants e.g.,
$3 A(\mathrm{~g})+2 B(\mathrm{~g}) \rightleftharpoons 4 C(\mathrm{~g})+5 D(\mathrm{~g})$
$K_{c}=\frac{[C]^{4}[D]^{5}}{[A]^{3}[B]^{2}}$
$K_{p}=\frac{\left[P_{C}\right]^{4} \cdot\left[P_{D}\right]^{5}}{\left[P_{A}\right]^{3} \cdot\left[P_{B}\right]^{2}}$
264 (b)
(i) Millimolar $=10^{-3} \mathrm{M}$
(ii) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log \left(10^{-3}\right)=3$.
265 (b)
$A+2 B \rightleftharpoons C+3 D$
$K_{c}=\frac{p_{C} p_{D}{ }^{3}}{p_{A} p_{B}{ }^{2}}=\frac{0.30 \times(0.50)^{3}}{0.20 \times(0.10)^{2}}$
$=18.75$
266
(d)

It involves gain and loss of electron pair (Lewis concept).
267 (d)
$\mathrm{SnCl}_{2}+2 \mathrm{HgCl}_{2} \rightarrow \mathrm{SnCl}_{4}+\underset{\text { (white ppt.) }}{\mathrm{Hg}_{2} \mathrm{Cl}_{2}}$
$\mathrm{SnCl}_{2}+\mathrm{Hg}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{SnCl}_{4}+\underset{\text { (Grey ppt.) }}{\mathrm{Hg}_{2}}$
268 (c)
BF_{3} can accept a pair of electrons, but it cannot give H^{+}ions in the aqueous solution, hence BF_{3} acts as Lewis acid but not as a Bronsted acid
$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$
$\uparrow \uparrow$
Oxidation number of $\mathrm{Na} \quad+1$
+1
0xygen $\quad-2 \quad-2$
-2
No change in oxidation number, so (a) and
(d) are not true.
(b) is also not true.

Oxide ion donates a pair of electrons, thus changes to OH^{-}
270 (d)

$$
\begin{aligned}
\mathrm{pH} & =\frac{1}{2} \mathrm{p} K_{w}+\frac{1}{2} \log C+\frac{1}{2} \mathrm{p} K_{a} \\
& =\frac{14}{2}+\frac{1}{2} \log \left(5 \times 10^{-3}\right)+\frac{1}{2} \times 4.74 \\
& =7+\frac{1}{2}[0.6990-3]+2.3 \\
\mathrm{pH} & =8.2195
\end{aligned}
$$

271 (b)
For a salt of weak base and strong acid like MgCl_{2} the relation is as

$$
K_{h}=\frac{K_{w}}{K_{b}}
$$

272 (d)
Theory of active mass indicates that the rate of chemical reaction is directly proportional to the concentration of reactants
273 (c)
If $n_{P}=n_{R}$, then $K_{p}=K_{c}$
where, $n_{p}=$ number of moles of products
$n_{R}=$ number of moles of reactants
274 (c)
$K_{h}=\frac{K_{w}}{K_{a} \times K_{b}}$
275 (c)
$\mathrm{N}-\mathrm{H}$ bond behaves as an acid.
276 (c)

$$
A \quad+B \rightleftharpoons C+
$$

D
Initial $\quad x$ mol $\quad x$ mol
At equilibrium $x-\frac{x}{3}=\frac{2 x}{3} \quad \frac{2 x}{3} \quad \frac{x}{3}$
$\frac{x}{3}$
Hence,

$$
K_{c}=\frac{[C][D]}{[A][B]}=\frac{\left(\frac{x}{3 V}\right)\left(\frac{x}{3 V}\right)}{\left(\frac{2 x}{3 V}\right)\left(\frac{2 x}{3 V}\right)}=\frac{1}{4}=0.25
$$

277 (a)
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
Initially at eq.

$$
\left.\begin{array}{cc}
0.2 \\
(0.2-a)
\end{array}\right) \begin{array}{cc}
0.6 \\
(0.6-3 a) & 0 \\
2 a
\end{array}
$$

Total mixture is $0.8 ; 40 \%$ of it reacts, i.e., $\frac{0.8 \times 40}{100}$ reacts to give $\frac{0.8 \times 40}{100} \times \frac{1}{2}$ mole of NH_{3} or NH_{3} formed is 0.16 mole
Or

$$
2 \mathrm{a}=0.16
$$

$$
\therefore \quad a=0.08
$$

\therefore initial mole $=0.8$
Final mole $=(0.2-0.08)+(0.6-0.24)+0.16$

$$
=0.12+0.36+0.16=0.64
$$

\therefore Ratio of final to initial mole $=\frac{0.64}{0.8}=0.8=\frac{4}{5}$
278 (b)
$\left[\mathrm{H}^{+}\right]=4 \times 10^{-3} \mathrm{M}$
$\therefore \mathrm{pH}=-\log 4 \times 10^{-3}=2.398$.
279 (b)
$\mathrm{pH}=\mathrm{p} K_{a}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$
$=5+\log \frac{10}{1}$ if $\frac{[\text { Salt }]}{[\text { Acid }]}=10: 1$, Then,
$\mathrm{pH}=6$.
280 (a)
10 M HCl will give $\left[\mathrm{H}^{+}\right]=10^{1} ; \mathrm{pH}$ of such solution $=0$.
281 (a)
or

$$
S=\left[\frac{1.96 \times 10^{-11}}{4}\right]^{1 / 3}
$$

or $\quad S=\left(4.9 \times 10^{-12}\right)^{1 / 3}$
$\therefore \quad S=1.96 \times 10^{-4}$
So, concentration of $\left[\mathrm{OH}^{-}\right]=2 S$

$$
\begin{array}{ll}
\therefore & {\left[\mathrm{OH}^{-}\right]=3.38 \times 10^{-4}} \\
\Rightarrow & \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& =-\log [3.38 \times
\end{array}
$$

10-4

$$
\begin{aligned}
& \mathrm{pOH}=3.471 \\
& \mathrm{pH}=14-\mathrm{pOH} \\
& =14-3.471
\end{aligned}
$$

$$
\therefore \quad \mathrm{pH}=10.529
$$

282 (c)
$K_{p}=K_{c}(R T)^{\Delta n} ;$
283 (c)
K_{c} is characteristic constant for a given reaction at a temperature ; $K_{p}=P_{\mathrm{CO}_{2}}$.
284 (c)
Acidity order

(Conjugate anion decreases acidity)

285 (c

$$
\begin{aligned}
& \mathrm{Mg}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Mg}^{2+}+2 \mathrm{OH}^{-} \\
& K_{\text {sp }} \mathrm{Mg}(\mathrm{OH})_{2}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2} \\
& \Rightarrow \quad K_{\text {sp }} \mathrm{Mg}(\mathrm{OH})_{2}=4 S^{3} \\
& 1.96 \times 10^{-11}=4 S^{3}
\end{aligned}
$$

For precipitation,
ionic product > solubility product ($K_{\text {sp }}$)
For, $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
ionic product $=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{-}\right]$

$$
=\left(10^{-4}\right)^{2}\left(10^{-5}\right)=10^{-13}
$$

$K_{\text {sp }}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}=4 \times 10^{-12}$
Here, $K_{\text {sp }}>$ IP
This, no precipitate is obtained.
For AgCl , ionic product $=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=$ $\left[10^{-4}\right]\left[10^{-5}\right]$

$$
=10^{-9}
$$

$$
\begin{array}{r}
K_{\mathrm{sp}}(\mathrm{AgCl})=1 \times 10^{-10} \\
\mathrm{IP}>K_{\mathrm{sp}}
\end{array}
$$

So, precipitate will form.
Thus, silver chloride gets precipitated first.
286 (d)
It is basic lead carbonate.
287 (d)
K_{p} or K_{c} are characteristic constants for a given reaction.
288 (b)
$K_{c}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2} ;$
If $\left[\mathrm{Ca}^{2+}\right]=4 \times\left[\mathrm{Ca}^{2+}\right]$;
To have K_{c} constant [F^{-}] should be $\frac{\left[\mathrm{F}^{-}\right]}{2}$.
290 (d)
Strong conjugate base has a weak conjugate acid. Weakest conjugate acid is $\mathrm{CH}_{3} \mathrm{COOH}$.
291 (b)
I^{-}is electron pair donor.
292 (c)
$2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2} ;$
$K_{c}=\frac{\alpha^{2}}{4(1-\alpha)^{2}}$
Where α is degree of dissociation,
Also, $\alpha=\frac{22}{100}$
$\therefore K_{c}=0.0199$
293 (c)
ZnO reacts with acid and alkalies both.
294 (c)
$\Delta n=-1$ and $K_{p}=K_{c} \times(R T)^{\Delta n}$
295 (a)
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Initial conc. $1 \begin{array}{lllll}0 & 1 & 0 & 0\end{array}$
At equilibrium $(1-x)(1-x) \quad x \quad x$
$K_{p}=\frac{p_{\mathrm{CO}} \cdot p_{\mathrm{H}_{2} \mathrm{O}}}{p_{\mathrm{H}_{2}} \cdot p_{\mathrm{CO}_{2}}}=\frac{x \cdot x}{(1-x)(1-x)}=\frac{x^{2}}{(1-x)^{2}}$

In this equation, volume is decreasing and the reaction is exothermic. So, for the highest yield of Z, pressure should be high and temperature should be low.
297 (a)
The pH of salt $\mathrm{BaCl}_{2}=7$ whereas SrCl_{2} and $\mathrm{CaCl}_{2} \simeq 7$ and $\mathrm{MgCl}_{2}<7$.
(d)

Lewis definition suggests that an acid must be capable of accepting lone pair in its vacant orbital. Smaller ion shows more attraction towards lone pair of electron.
299 (c)
Degree of dissociation, $\alpha=\frac{D-d}{d}$
$=\frac{46-30}{30}$
$=0.533$ or 53.3%
300 (d)
$\Delta n=0$ then, $K_{p}=K_{c}$
For (d) $\Delta n=1$
301 (a)

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{p} K_{a}+\log \frac{\text { [Conjugate base }]}{[\text { Acid }]} \\
& \text { or } 5.24=4.74+\log \frac{\text { [Conjugate base] }]}{[\text { Acid }]} \\
& \therefore \frac{[\text { Conjugate base }]}{[\text { base }]}=3 .
\end{aligned}
$$

302 (a)

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right]=C \alpha=} & \sqrt{K_{a} \cdot C} \\
\mathrm{pH} & =-\log \left(K_{a} \cdot C\right)^{1 / 2} \\
& =\frac{1}{2}\left[-\log K_{a}-\log C\right] \\
& =\frac{1}{2}\left[4.74-\log 10^{-2}\right] \\
& =\frac{1}{2}[4.74+2]=3.37
\end{aligned}
$$

303 (a)
$1 M$ solution of $\mathrm{CH}_{3} \mathrm{COONa}$ on addition to acid shows a decrease in dissociation of acid due to common ion effect.
304 (d)
Weak monoacidic base e.g., $B \mathrm{OH}$ is neutralised as follows

$$
\mathrm{BOH}+\mathrm{HCl} \rightarrow \mathrm{BCl}+\mathrm{H}_{2} \mathrm{O}
$$

At equivalence point all $B O H$ gets converted into salt and remember! The concentration of H^{+}(or pH of solution) is due to hydrolysis of resultant salt (BCl , cationic, hydrolysis here)

$$
\begin{gathered}
\mathrm{B}^{+} \\
C(1-h)
\end{gathered}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BOH}+\mathrm{H}^{+}
$$

Volume of HCl used up

$$
V_{a}=\frac{N_{b} V_{b}}{N_{a}}=\frac{2.5 \times 2 \times 15}{2 \times 5}=7.5 \mathrm{~mL}
$$

Concentration of salt

$$
\begin{aligned}
{[\mathrm{BCl}] } & =\frac{\text { conc.of base }}{\text { total volume }}=\frac{2 \times 2.5}{5(7.5+2.5)}=\frac{1}{10}=0.1 \\
K_{h} & =\frac{C h^{2}}{1-h}=\frac{K_{w}}{K_{b}}
\end{aligned}
$$

(h should be estimated whether that can be neglected or not)
on calculating $h=0.27$ (significant, not negligible)
$\left[\mathrm{H}^{+}\right]=\mathrm{Ch}=0.1 \times 0.27=2.7 \times 10^{-2} \mathrm{M}$
305 (c)
A salt is precipitated only when the product of ionic concentration is more than its solubility product.

$$
\begin{aligned}
& K_{\mathrm{sp}}=1 \times 10^{-8} \\
& {\left[A^{+}\right]=10^{-3} \mathrm{M}} \\
& {\left[B^{-}\right]=\frac{1 \times 10^{-8}}{10^{-3}}=10^{-5} \mathrm{M}}
\end{aligned}
$$

So, $A B$ will be more precipitated only when the concentration of $\left[B^{-}\right]$is more than 10^{-5} M.

306 (b)
According to Le-Chatelier's principle exothermic reactions are favourable at low pressure. The reaction in which number of moles decreases are favourable at high pressure or low volume.
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}, \Delta H=-130 \mathrm{~kJ} \mathrm{~mol}^{-1}$
\because The reaction is exothermic and number of moles of reactants are decreasing.
\because The reaction rate is increased by decreasing temperature and increasing pressure.
307 (d)
The reaction does not cease up but goes in both directions with same speed.
308 (a)
Haber's process of synthesis of ammonia

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}
$$

Since, the number of molecules of gaseous products are less than the number of molecules of gaseous reactants, thus according to Le-Chatelier's principle, high pressure favours the forward reaction i.e.,
more ammonia will be obtained.
(d)

Buffer capacity of an acidic buffer is maximum when the ratio of $\mathrm{H} A$ to A^{-}is unity.
Since, pH of acidic buffer $=\mathrm{p} K_{a}+\log \frac{\left[A^{-}\right]}{[\mathrm{H} A]}$
For maximum buffer capacity, $\left[A^{-}\right]=[\mathrm{H} A]$

$$
\therefore \quad \mathrm{pH}=\mathrm{p} K_{a}
$$

310 (c)
$\therefore \quad \mathrm{pH}=2$

$$
\begin{array}{ll}
\therefore & {\left[\mathrm{H}^{+}\right]=10^{-2}} \\
& {\left[\mathrm{H}^{+}\right]=N . \alpha} \\
& 10^{-2}=0.1 \times \alpha \\
& \alpha=\frac{10^{-2}}{0.1} \\
& \alpha=0.1
\end{array}
$$

311 (c)
Since, catalyst increases the rate of forward reaction as well as the rate of backward reaction, it does not affect the equilibrium constant.
312 (d)
Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needed for 20 Meq . of $\mathrm{NaOH}=20$
Thus, volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needed $=V_{\mathrm{mL}}$
or $V \times 0.25 \times 2=20$
$\therefore \quad V=40 \mathrm{~mL}$
Also, temperature increases during neutralization and then decreases after neutralization on further addition of acid.
313 (b)
The dissociation of $\mathrm{H}_{2} \mathrm{~S}$ decreases in presence of acid (or H^{+}a common ion furnished by an acid).
314 (a)

H_{2}
15
:---:
5.2
:---:
0

(15-5) (5.2-5) 10
Equilibrium constant

$$
\left(K_{c}\right)=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{10 \times 10}{10 \times 0.2}=
$$

50
315 (c)
New concentration of,

$$
\begin{aligned}
\mathrm{HCl} & =\frac{10^{-6}}{100}=10^{-8} \mathrm{M} \\
\therefore \quad\left[\mathrm{H}^{+}\right] & =10^{-18}+10^{-7} \\
& =1.1 \times 10^{-7} \mathrm{M} \\
\therefore \quad \mathrm{pH} & \approx 7
\end{aligned}
$$

317 (a)
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\log \left(3 \times 10^{-3}\right)$

$$
\begin{aligned}
& =3-\log 3 \\
& =3-0.4771 \\
& =2.5229
\end{aligned}
$$

318 (d)
The dissociation of HCN will decrease in presence of NaCN due to common ion effect.
319 (c)
Meq. of $\mathrm{HCl}=10 \times 10^{-1}=1$
Meq. of $\mathrm{NaOH}=10 \times 10^{-1}=1$
Thus, both are neutralized and 1 Meq . Of NaCl (a salt of strong acid and strong base) which does not hydrolyse and thus, $\mathrm{pH}=7$.
320 (d)
$\mathrm{PbCl}_{2} \rightleftharpoons \mathrm{~Pb}^{2+}+2 \mathrm{I}^{-}$
$s \mathrm{~mol} / \mathrm{L} \quad s \quad 2 s$
Hence, $K_{\mathrm{sp}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{I}^{-}\right]^{2}$
$=(s)(2 s)^{2}$
$=4 s^{3}$
$\therefore \quad S=\sqrt[3]{\frac{K_{\text {sp }}}{4}}=\sqrt[3]{\frac{2.3 \times 10^{-32}}{10}}$
$=1.78 \times 10^{-11} \mathrm{~mol} / \mathrm{L}$
$=1.78 \times 10^{-11} \times 278 \mathrm{~g} / \mathrm{L}$
$=4.95 \times 10^{-9} \mathrm{~g} / \mathrm{L}$
321 (b)
Hydrolysis of $\mathrm{CH}_{3} \mathrm{COO}^{-}$give alkaline solution.
322 (d)
For hydrolysis of NH_{4}^{+};
$K_{H}=\frac{K_{w}}{K_{p}}=\frac{10^{-14}}{1.8 \times 10^{-5}}=5.5 \times 10^{-10}$
323 (c)
In water, barium hydroxide is hydrolysed as followers
$\mathrm{Ba}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-}$
Conc. Of $\mathrm{Ba}^{2+}=1 \times 10^{-3} \mathrm{M}$
Conc. of $\left[\mathrm{OH}^{-}\right]=2 \times 1 \times 10^{-3} \mathrm{M}$

$$
=2 \times 10^{-3} \mathrm{M}
$$

$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$=-\log \left(2 \times 10^{-3}\right)$
$=2.69$

$$
\begin{aligned}
\mathrm{pH}+\mathrm{pOH} & =14 \\
\mathrm{pH} & =14-\mathrm{pOH} \\
& =14-2.69 \\
& =11.3 \\
& \approx 11.0
\end{aligned}
$$

324 (d)
In the titrationof weak acid with strong base, phenolphthalein is used

In a reversible reaction some amount of the reactants remains unconverted into products and it never go for completion

327 (d)
K_{a} for $\mathrm{H}_{2} \mathrm{~S}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HS}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}$;
An increase in $\left[\mathrm{H}^{+}\right]$will show a decrease in $\left[\mathrm{HS}^{-}\right]$ to maintain constant K_{a} value.
328 (d)
Le-Chatelier proposed a principle to explain the effect of P, T and C on systems in equilibrium.
329 (a)
$\mathrm{p} K_{a}=-\log K_{a}$
Higher the value of $\mathrm{p} K_{a}$, weaker is the acid.
Among given choices 2.0, 2.5, 3.0 and 4.0 the value 2.0 is lowest so this acid is strongest.
330 (c)
Alkali and alkaline earth metal hydroxides are strong base.
331 (a)
$\mathrm{pH}=9 \therefore\left[\mathrm{H}^{+}\right]=10^{-9}$
$\mathrm{pH}=6 \therefore\left[\mathrm{H}^{+}\right]=10^{-6}$
332 (d)
Aprotic solvents are those from which hydrogen ion or OH^{-}cannot be derived.
333 (b)
$\mathrm{Co}(\mathrm{OH})_{2}$ is not precipitated in III gp. or it more soluble and thus, has high $K_{s p}$.
334 (b)
$\left[A^{+}\right]\left[B^{-}\right]>K_{\text {sp }}$.
335 (a)
$\mathrm{pH}=\frac{1}{2}\left[\mathrm{p} K_{a_{1}}+\mathrm{p} K_{a_{2}}\right]=\frac{1}{2}[14.15+6.89]=10.52$
336 (d)
$\begin{aligned} & A \\ & 1\end{aligned}+B \begin{aligned} & C \\ & 1\end{aligned} \quad+\quad D \begin{aligned} & \\ & 0\end{aligned} \quad \begin{aligned} & \text { Initially }\end{aligned}$
$(1-3 x)(1-3 x) \quad 3 x \quad 3 x$ At
equilibrium (given)
At equilibrium, the remaining moles of A is x, because $3 x$ moles of C are produced.

$$
\begin{array}{cc}
\Rightarrow & 1-3 x=x \\
\therefore & x=\frac{1}{4}
\end{array}
$$

Equilibrium constant,

$$
K_{C}=\frac{[C][D]}{[A][B]}=\frac{3 x .3 x}{(1-3 x)^{2}}
$$

On putting the value of x, we get,

$$
K_{c}=\frac{9 \times \frac{1}{16}}{1+\frac{9}{16}-\frac{6}{4}}=\frac{9}{1}=9
$$

337 (a)

The acidic character of HClO_{4} is maximum. The order is
$\mathrm{HClO}_{4}>\mathrm{HClO}_{3}>\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{H}_{2} \mathrm{SO}_{3}$.
339 (c)
K_{p} is independent of initial concentration.
340 (d)
20% yield of NH_{3} and thus, 20% of 340 g is

$$
=\frac{20 \times 340}{100}=68 \mathrm{~g}
$$

341
(d)
$\mathrm{CO}_{3}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{HCO}_{3}^{-}$(acid).
(b)
2. $\mathrm{CaCO}_{3}(s) \xrightarrow{\Delta} \mathrm{CaO}(\mathrm{g})(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \uparrow$

$$
K_{p}=8 \times 10^{-2}
$$

$$
K_{p}=\frac{p_{\mathrm{CaO}(\mathrm{~s})} \times p_{\mathrm{CO}_{2}(\mathrm{~g})}}{p_{\mathrm{CaCO}_{3}(\mathrm{~s})}}
$$

(Heterogenous
equilibrium)

$$
\begin{aligned}
& K_{p}=p_{\mathrm{CO}_{2}} \\
& p_{\mathrm{CO}_{2}}=8 \times 10^{-2}
\end{aligned}
$$

3. $\quad \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{CO}(\mathrm{g}), \quad K_{p}=2$

$$
K_{p}=\frac{p_{\mathrm{Co}(\mathrm{~g})}^{2}}{p_{\mathrm{CO}_{2} \times p_{\mathrm{C}(\mathrm{~s})}}}
$$

(Heterogenous
equilibrium)

$$
\begin{aligned}
& K_{p}=\frac{p_{\mathrm{CO}}^{2}}{p_{\mathrm{Co}}^{2}} \\
& 2=\frac{p_{\mathrm{CO}}^{2}}{8 \times 10^{-2}} \\
& p_{\mathrm{CO}}^{2}=2 \times 8 \times 10^{-2} \\
& p_{\mathrm{CO}}=0.4 \mathrm{~atm}
\end{aligned}
$$

343 (c)

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} ; & K_{1}=4.2 \times 10^{-7} \\
\mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} ; & K_{2}=4.8 \times 10^{-11}
\end{array}
$$

$$
K_{1} \gg K_{2}
$$

$\therefore \quad\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]$

$$
K_{2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}
$$

So, $\left[\mathrm{CO}_{3}^{2-}\right]=K_{2}=4.8 \times 10^{-1}$
(d)

Acid indicators are generally weak acid. The dissociation of indicator HIn takes place as follows
or

$$
\mathrm{r}
$$

$$
\begin{aligned}
& \mathrm{HIn} \rightleftharpoons \mathrm{H}^{+}+\mathrm{In}^{-} \\
& K_{\mathrm{In}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]} \\
& {\left[\mathrm{H}^{+}\right]=K_{\mathrm{In}} \frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]}}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left(K_{\mathrm{In}} \frac{[\mathrm{HIn}]}{[\mathrm{In}-]}\right) \\
& =-\log K_{\mathrm{In}}+\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]} \\
& =\mathrm{p} K_{\mathrm{In}}+\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}
\end{aligned}
$$

or $\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}=\mathrm{pH}-\mathrm{p} K_{\text {In }}$
345 (c)
Mole $\mathrm{OH}^{-}=M \times V_{\text {in litre }}$
\therefore No of $\mathrm{OH}^{-}=0.3 \times 0.005 \times 2=0.0030$.
346 (a)

$$
\mathrm{H}_{2}+\quad \mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}
$$

Initial concentration $4.5 \quad 4.5 \quad 0$
$(4.5-x)(4.5-x) 2 x$
From equation, $2 x=3$
$\therefore x=\frac{3}{2}=1.5$
So, concentration at equilibrium
$\left[\mathrm{H}_{2}\right]=4.5-1.5=3$
$\left[\mathrm{I}_{2}\right]=4.5-1.5=3$
$[\mathrm{HI}]=3$
$\therefore K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{3 \times 3}{3 \times 3}=1$
347 (a)
Given, $K_{w}=10^{-14}, K_{a}=10^{-5}$
Concentration of salt $=0.001 \mathrm{M}$
$\therefore \quad K_{h}=\frac{K_{w}}{K_{a}}=\frac{10^{-14}}{10^{-5}}=10^{-9}$
According to equation

$$
A^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H} A+\mathrm{OH}^{-}
$$

Let degree of hydrolysis $=h$
$\therefore \quad 0.001(1-h)(0.001 \times h)(0.001 \times h)$
$\therefore \quad K_{h}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[A^{-}\right]}=\frac{(0.001 \times h)(0.001 \times h)}{0.001(1-h)}$
or $\quad 10^{-9}=(0.001 h)^{2} \quad[\because 0.001(1-h)=$
1]
or $\quad 10^{-6}=h^{2}$
$\therefore \quad 10^{-3}=h$
348 (d)
Unit of $K_{c}=[]^{\Delta n} \cdot \Delta n=+1$.
349 (c)
To precipitate soap from its saturated solution on addition of salt is called salting out action of soap.
$R \mathrm{COONa} \rightleftharpoons R \mathrm{COO}^{-}+\mathrm{Na}^{+}$
$K_{s p}=\left[R \mathrm{COO}^{-}\right]\left[\mathrm{Na}^{+}\right]$
In presence of $\mathrm{NaCl},\left[\mathrm{Na}^{+}\right]$increases and thus, the product of $\left[\mathrm{Na}^{+}\right]\left[R \mathrm{COO}^{-}\right]$exceeds in $K_{s p}$ to show precipitation of soap.
350 (c)
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{SO}_{3}$

$$
\begin{equation*}
K_{1}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}} \tag{i}
\end{equation*}
$$

$2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$

$$
\begin{equation*}
K_{2}=\frac{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{3}\right]^{2}} \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii)

$$
\begin{aligned}
K_{2} & =\frac{1}{K_{1}^{2}} \\
& =\frac{1}{\left(5 \times 10^{-2}\right)^{2}}=\frac{1}{25 \times 10^{-4}} \\
& =\frac{100 \times 10^{2}}{25} \\
& =4 \times 10^{2} \mathrm{~atm}
\end{aligned}
$$

351 (d)
(i) The haemoglobin of RBC combines with oxygen in lungs following the equilibrium,

$$
\mathrm{H}_{b}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{b} \mathrm{O}_{2}(s)
$$

When these are at lungs, the partial pressure of O_{2} being appreciable to show forward reaction, however, when they pass to tissues, the partial pressure of O_{2} decreases to favour backward reaction releasing O_{2}.
(ii) Removal of CO_{2} from blood is based on the equilibrium,

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{HCO}_{3}^{-}(a q)
$$

In tissues CO_{2} gets dissolved in $\mathrm{H}_{2} \mathrm{O}$ due to high pressure whereas in lungs, the CO_{2} is released out because of low pressure of CO_{2}.
(iii) Tooth enamel substance (hydroxyapatite) $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}$ shows the following equilibrium,
$\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH} \xlongequal[\text { Remineralization }]{\text { Demineralization }} 5 \mathrm{Ca}^{2+}(\mathrm{aq})+3 \mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

The use of sweet material or fermentation produces H^{+}, which combines with OH^{-}to favour demineralization of enamel causing tooth decay.

352 (b)
Pressure has no effect on equilibrium if $\Delta n=0$
353 (a)
Aqueous solution of AlCl_{3} is acidic due to the hydrolysis of aluminium ion
$\mathrm{AlCl}_{3} \xrightarrow{\text { Hydrolysis }} \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{H}^{+}$

354 (a)
$\mathrm{H}^{+}=1.0 \times 10^{-8}=10 \times 10^{-9}$
Also, if ionisation is not neglected

$$
\begin{array}{rlrl}
& & \mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \underset{10^{-8}+a}{\mathrm{H}^{+}}+\mathrm{OH}_{a}^{-} \\
& a \times\left(10^{-8}+a\right) & =10^{-14} \\
\therefore & & a & =9.9 \times 10^{-9} \\
& & \% \mathrm{emr} & =\frac{10 \times 10^{-9}-9.9 \times 10^{-9}}{10 \times 10^{-9}} \\
& & =1 \% .
\end{array}
$$

355 (d)
Thus, a solution of blue and yellow ions appears green.
356 (b)
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$

At eq. if partial pressure of $\mathrm{CO}_{2}=p$
Then that of $\mathrm{NH}_{3}=2 p$
$K_{p}=p_{\mathrm{NH}_{3}}^{2} \times p_{\mathrm{CO}_{2}}=(2 p)^{2} \times p=4 p^{3}$
$=2.9 \times 10^{-5}$ or $p^{3}=0.725 \times 10^{-5}$
or $p=1.935 \times 10^{-2}$
Hence, total pressure $=p=5.81 \times 10^{-2}=$ 0.0581 atm

357 (d)
K_{w} increases with increase in temperature
358 (d)
In all the given reactions, equilibrium is affected by the increase in volume at constant temperature
359 (a)
Lewis bases are electron pair donor. I^{+}is electron deficient, hence do not act as Lewis base.
360 (d)
$\mathrm{CH}_{3} \mathrm{COONH}_{4}$ is a salt of weak acid and weak base and

$$
\begin{aligned}
& K_{\text {acid }} \approx K_{\text {base }} \\
& \mathrm{CH}_{3} \mathrm{COOH} \\
& \mathrm{NH}_{4} \mathrm{OH}
\end{aligned}
$$

361 (a)
CH_{4} has almost no acidic nature and thus, CH_{3}^{-}is the strongest base
363 (c)
$\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}$
364 (a)
$h=\sqrt{\left[\frac{K_{h}}{c}\right]}=\sqrt{\left[\frac{K_{w}}{K_{a} \cdot c}\right]}$
$=\sqrt{\left[\frac{10^{-14}}{10^{-5} \times 0.001}\right]}=10^{-3}$
365 (b)
$K_{c_{1}}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}=4 \times 10^{-4}$
$K_{c_{2}}=\frac{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{O}_{2}\right]^{1 / 2}}{[\mathrm{NO}]}$
$\therefore K_{C_{2}}=\sqrt{\frac{1}{K_{c_{1}}}}=\sqrt{\frac{1}{4 \times 10^{-4}}}=50$
366 (d)
$K_{p}=\left(P_{\mathrm{H}_{2} \mathrm{O}}\right)^{2}$ and $K_{c}=\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$; the solid species are not used in writing K_{c} or K_{p}
367 (c)
$\mathrm{H}_{2} \mathrm{SO}_{4}$ is strong acid having $\mathrm{pH}<7 . \mathrm{NaNO}_{2}$ on hydrolysis gives alkaline solution of $\mathrm{pH}>7 . \mathrm{NaCl}$ is neutral and $\mathrm{H}_{2} \mathrm{~S}$ is weak acid.
368 (a)
$A+B \rightleftharpoons C+D ;$
$Q=\frac{[C][D]}{[A][B]}=\frac{3 \times 4}{1 \times 2}=6$
But $K_{c}=10$;
Thus, to increase the value of Q to K_{c}, forward reaction should occur.
369 (d)
(A) $\mathrm{CH}_{3} \mathrm{COONH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+$ $\mathrm{NH}_{4} \mathrm{OH}$
Ammonium acetate
Although both $\left(\mathrm{CH}_{3} \mathrm{COOH}\right.$ and $\left.\mathrm{NH}_{4} \mathrm{OH}\right)$ of them are weak still $\mathrm{CH}_{3} \mathrm{COOH}$ is slightly more acidic.
\therefore Solution is acidic in nature.
(B) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl}$ ammonium chloride weak base strong acid
\therefore Solution is acidic in nature.
(C) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{4} \mathrm{OH}+$ $\mathrm{H}_{2} \mathrm{SO}_{4}$
ammonium sulphate weak base
strong base
\therefore Solution is acidic in nature.
(D) $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+$ NaOH
sodium acetate weak acid strong base
\therefore Solution is basic in nature.
370 (d)
Isoelectric point is the condition when Zwitter ions or sol particles do not move under the influence of electric field, i.e., they lose their charge.
371 (a)
The value of equilibrium constant is independent of volume of container.
\therefore Value of equilibrium constant will remain same (300) if volume of reaction flask is tripled.
372 (a)
S has +4 ox.no. in $\mathrm{H}_{2} \mathrm{SO}_{3}$ and SO_{2} both.
373 (b)

$$
\begin{array}{rl}
\mathrm{CaF}_{2} \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-} \\
s & 2 s \\
K_{\text {sp }} & =s(2 s)^{2}=4 s^{3} \\
K_{\text {sp }} & =4\left(2.3 \times 10^{-6}\right)^{3} \\
& =48.668 \times 10^{-18}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{3}
\end{array}
$$

Among the given, pH of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is not equal to one as $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid, thus
does not ionise completely.
375 (a)
Meq. of acetic acid $=50 \times 2=100$
Meq. of $\mathrm{CH}_{3} \mathrm{COONa}=10 \times 1=10$

$$
\mathrm{pH}=-\log K_{a}+\log \frac{[\text { Conjugate base }]}{[\text { Acid }]}
$$

or $\mathrm{pH}=-\log 10^{-5}+\log \frac{10}{100}=4$
376 (b)
Let the solubility of AgCl is S

$$
\mathrm{AgCl}=\mathrm{Ag}^{+}+\mathrm{Cl}^{-}
$$

$$
S \quad S
$$

$\left[\mathrm{Cl}^{-}\right]$from $\mathrm{NaCl}=0.2$
Concentration of $\mathrm{Cl}^{-}=S+0.2$

$$
K_{\mathrm{sp}}=S(S+0.2)
$$

$$
1.8 \times 10^{-10}=S^{2}+0.2 S
$$

(S is very small as AgCl is sparingly soluble in water, thus $S^{2} \lll 1$)

$$
\begin{aligned}
& 1.8 \times 10^{-10}=0.2 S \\
& S=\frac{1.8 \times 10^{-10}}{0.2} \\
& =9.0 \times 10^{-10} \mathrm{M}
\end{aligned}
$$

377 (d)
$\alpha=1.9 \times 10^{-9} ; c=\frac{1000}{18}$

$$
\begin{aligned}
K & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}=c \alpha^{2} \\
& =1.9 \times 10^{-9} \times 1.9 \times 10^{-9} \times \frac{1000}{18} \\
& =2.0 \times 10^{-16}
\end{aligned}
$$

378 (a)
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}+$ heat
It is an exothermic reaction, so high
temperature favours backward reaction.
Hence, equilibrium is shifted towards the left. 379
(b)

380 (a)
Given, concentration of $\mathrm{NaCl}=0.2 \mathrm{M}$

$$
\begin{aligned}
& \underset{s}{\mathrm{Ag}_{2} \mathrm{CO}_{3}(s)} \underset{2 s}{2 \mathrm{Ag}^{+}}+\underset{s}{\mathrm{CO}_{3}^{2-}} \\
& K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}^{2-}\right]=(2 s)^{2} . s \\
& \therefore \quad K_{\text {sp }}=4 s^{3}
\end{aligned}
$$

$$
K_{\mathrm{sp}}(\mathrm{AgCl})=1.20 \times 10^{-10}
$$

Let the solubility of AgCl in $\mathrm{NaCl}=x$

$$
\begin{array}{lrl}
& & \mathrm{AgCl}
\end{array} \rightarrow \mathrm{Ag}^{+}+\mathrm{Cl}^{-}
$$

381 (a)
Because buffer solutions are mixture of weak acid or weak base and their salt
(d)

Let solubility be S_{1}, S_{2}, S_{3} for $A B, A B_{2}$ and $A_{3} B$ respectively.

$$
\begin{aligned}
\therefore & S_{1}=\sqrt{K_{\mathrm{Sp}}}=\sqrt{4 \times 10^{-8}}=2 \times 10^{-4} \mathrm{M} \\
& S_{2}=\sqrt[3]{\frac{K_{\mathrm{Sp}}}{4}}=\sqrt[3]{\frac{3.2 \times 10^{-14}}{4}}=2 \times 10^{-5} \mathrm{M} \\
& S_{3}=\sqrt[4]{\frac{K_{\mathrm{Sp}}}{27}}=\sqrt[4]{\frac{2.7 \times 10^{-15}}{27}}=1 \times 10^{-4} \mathrm{M}
\end{aligned}
$$

It is Bronsted base and can accept H^{+}only.
(b)
(a) pH of $10^{-9} \mathrm{M} \mathrm{HCl}$ will be <7
(b) pOH of $10^{-5} \mathrm{M} \mathrm{NaOH}$
$=-\log \left[\mathrm{OH}^{-}\right]$
$=-\log \left[1 \times 10^{-5}\right]=5$
$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{pH}=14-5=9$
(c) pH of $10^{-9} \mathrm{M} \mathrm{KOH}$ will be slightly greater than 7.

385 (a)
The loss in pH of blood is called acidosis.
386 (d)
In 0.001 M NaOH ,
$\left[\mathrm{OH}^{-}\right]=0.001=10^{-3}$
$\therefore \quad\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{\left[\mathrm{OH}^{-}\right]}=\frac{10^{-14}}{10^{-3}}=10^{-11}$
387 (a)
Both $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ are diluted to same extent;
$\mathrm{pOH}=-\log K_{b}+\log \frac{\text { [Conjugate base] }}{[\text { Base }]}$
388 (c)
According to Arrhenius concept-Acids are the substances which furnish H^{+}ions in water and a base is a substance which furnishes OH^{-}ions in water.
389 (a)

$$
\begin{array}{rl}
A B_{2} \rightleftharpoons A^{2+}+2 B^{-} & \\
s & 2 s \\
K_{s p} & =\left[A^{2+}\right]\left[B^{-}\right]^{2} \\
& =(S)(2 S)^{2}=4 S^{3} \\
& =4\left(1 \times 10^{-5}\right)^{3} \\
& =4 \times 10^{-15}
\end{array}
$$

390 (b)
$p V=n R T$
Volume become $\frac{1}{2} V$ then pressure become $2 p$,
So, $2 p \times \frac{1}{2} V=p V=n R T$
Hence, there is no effect on K_{p}
391 (a)
Starch is used as an indicator in the titration of iodine against sodium thiosulphate
392 (a)
$2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) ;-Q \mathrm{~kJ}$
n_{g} No. of moles of gaseous products - No. of moles of gaseous reactants

$$
2-2 \quad 0
$$

As the number of moles of products and reactants are equal, so equilibrium constant is not affected by any change in pressure and volume. Catalyst also does not affect the equilibrium constant. It is an endothermic reaction, hence equilibrium constant depends only upon the temperature.

393 (c)
An increase in temperature will change K_{c}. Addition of inert gas has no effect in $\Delta n=0$. Also increase in pressure has no effect if $\Delta n=0$.
394 (c)
According to Le-Chatelier principle the
reactions in which number of moles of reactants is equal to number of moles of products, is not effected by change in pressure.

$$
\begin{aligned}
2 \mathrm{NO}(\mathrm{~g}) \rightleftharpoons & \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \\
& \text { Moles of reactants }=2 \\
& \text { Moles of products }=
\end{aligned}
$$

2
\because There is no change in number of moles of reactants and products.
\because The reaction is not effected by change in pressure.
395 (c)
$\mathrm{B}_{2} \mathrm{H}_{6}$ is electron deficient and thus electron pair acceptor or Lewis acid.
396
(a)
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
$\underbrace{1 \quad 3}_{4}$
$\Delta n_{\mathrm{g}}=2-4=-2$
$K_{p}=K_{c}(R T)^{\Delta n_{\mathrm{g}}}$
$\therefore K_{p}=K_{c}(R T)^{-2}$
$\therefore K_{c}=\frac{K_{p}}{(R T)^{-2}}=\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$
NH_{3} is Lewis base.
398
(b)
$K_{p} \quad K_{c}(R T)^{n_{g}}$
Where, n_{g} No. of moles of gaseous products -
No. of moles of gaseous reactants

$$
\begin{array}{ll}
& \mathrm{CO}(\mathrm{~g}) \quad \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{CO}_{2}(\mathrm{~g}) \\
& n_{g} \quad 1-1.5 \quad-\frac{1}{2} \\
\because & K_{p} \quad K_{c}(R T)^{n_{g}} \\
& K_{p} \\
& K_{c}(R T)^{-1 / 2} \\
& \frac{K_{p}}{K_{c}} \\
& (R T)^{-1 / 2}
\end{array}
$$

399 (c)
For the reaction.

$$
\begin{aligned}
& \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \\
& K_{p}=K_{c}(R T)^{\Delta n} \\
& \Delta n=2-2=0
\end{aligned}
$$

so, $\quad K_{p}=K_{c}$
(where, K_{p} and K_{c} are equilibrium constants in terms of partial pressures and concentrations.)
400 (a)
pH of the solution at the equivalence point is
on the acidic side due to dissolution of CO_{2} formed. A slight excess of strong acid lowers pH to 3.5 when methyl orange produces red colour.
401 (a)
The residual part of the acid after removal of a proton from the molecule of an acid, is called its conjugate base. Thus, conjugate base $=$ Acid $-\mathrm{H}^{+}$and a base after accepting a proton gets converted into its conjugate acid. Thus, HSO_{4}^{-}is conjugate acid of base SO_{4}^{2-}.
403 (b)
Volume of ice $>$ volume of water and thus, increase in pressure favours forward reaction showing decrease in volume.
404 (a)
$\mathrm{Ag}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Ag}^{+}+\mathrm{SO}_{4}^{2-}$
$\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is a 2: 1 type electrolyte i.e., it gives two Ag^{+}ions and one SO_{4}^{2-} ion on ionisation.
Given, $s=2.5 \times 10^{-2} \mathrm{M}$
Hence, its $K_{\text {sp }}=4 s^{3}$
(where, $\quad s=$ molar solubility)

$$
\begin{aligned}
K_{\text {sp }} & =4\left(2.5 \times 10^{-2}\right)^{3} \\
& =4 \times 15.63 \times 10^{-6} \\
& =62.5 \times 10^{-6}
\end{aligned}
$$

405 (a)
Isohydric solutions of two acids contains same $\left[\mathrm{H}^{+}\right]$ion in them.
406 (b)
$K_{h}=\frac{K_{w}}{K_{a} \times K_{b}}$
From this, it is clear that hydrolysis constant of a salt of weak and weak base is inversely proportional to dissociation constant of both weak acid and weak base.
407 (c)
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
$\begin{array}{lll}1 & 0 & \text { Before dissociation } \\ 1-x & 2 x & \text { After dissociation }\end{array}$
Total number of moles at equilibrium

$$
=1-x+2 x=1+x
$$

408 (c)
From the aqueous buffered solution of $\mathrm{H} A$, $50 \% \mathrm{HA}$ is ionised

$$
[\mathrm{H} A]=\left[A^{-}\right]
$$

Buffer solution of weak acid $\mathrm{H} A \rightarrow$ acidic buffer

$$
\begin{aligned}
\mathrm{pH} & =\mathrm{p} K_{a}+\log \frac{\left[\mathrm{A}^{+}\right]}{[\mathrm{HA}]} \\
\mathrm{pH} & =\mathrm{p} K_{a}=4.5 \\
\mathrm{pOH} & =\mathrm{p} K_{w}-\mathrm{pH} \\
\mathrm{pOH} & =14-4.5=9.5
\end{aligned}
$$

or

409 (b)
Meq. of $\mathrm{H}^{+}=10^{-3} \times 10=10^{-2}$
\therefore No. of $\mathrm{H}^{+}=\frac{10^{-2} \times 6.02 \times 10^{23}}{1000}=6.02 \times 10^{18}$
410 (c)
pH of gastric juice is in between 1 and 3 .
411 (b)
The basic character of hydrides decreases down the group.
412 (b)
$\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2} \quad$ Initial moles

5	0	0	
$5(1-)$	5	5	Moles at
equilibrium			
$\frac{5(1-)}{0.5}$	$\frac{5}{0.5}$	$\frac{5}{0.5}$	Conc. At

equilibrium

$$
\begin{aligned}
& \text { 40\% } \\
& 0.4 \\
& K_{c} \frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]} \\
& \begin{array}{ll}
\frac{50.4}{0.5} \quad \frac{50.4}{0.5} \\
\frac{50.5}{0.5} & \frac{16}{6}
\end{array} \\
& 2.66 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

413 (d)
$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$.
414 (c)
The equilibrium constant does not depend on concentration, when reversible reaction at equilibrium hence, equilibrium constant will be constant.
416 (c)
The hydrolysis reaction of conjugate base of acid is

$$
\begin{aligned}
& A^{-}(a q)+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HO}^{-}+\mathrm{H} A \\
& \quad K_{h}=\frac{K_{w}}{K_{a}}=\frac{10^{-14}}{10^{-4}}=10^{-10}
\end{aligned}
$$

Since, degree of hydrolysis is negligible;

$$
\left[\mathrm{OH}^{-}\right]=\sqrt{K_{h} C}=10^{-6} \cdot p[\mathrm{OH}]=6
$$

and

$$
\mathrm{pH}=14-6=8
$$

417 (c)
$\mathrm{Na}_{2} \mathrm{O}+\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CaCO}_{3}$

Solution is basic. It can be proved as

$$
\mathrm{CO}_{3}^{2-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+2 \mathrm{OH}^{-}
$$

418 (d)
When a base accepts a proton, then an acid is formed. This acid is known as conjugated acid of that base. For example :

$$
\underset{\text { base }}{\mathrm{NH}_{3}}+\underset{\text { conjugated acid }}{\mathrm{H}^{+}} \rightleftharpoons \mathrm{NH}_{4}^{+}
$$

The conjugated acid of HF_{2}^{-}is $\mathrm{H}_{2} \mathrm{~F}_{2}$.

$$
\underset{\text { base }}{\mathrm{HF}_{2}^{-}}+\underset{\text { conjugated acid }}{\mathrm{H}^{+}} \underset{2}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{~F}_{2}
$$

419 (d)
$2 / 3 \mathrm{rd}$ of alcohol and acid react to form ester at equilibrium.
420 (c)
For hydrolysis of
$B^{+} ; K_{H}=\frac{K_{w}}{K_{b}}=\frac{10^{-14}}{10^{-6}}=10^{-8}$
421 (c)
0.001 M of NaOH means $\left[\mathrm{OH}^{-}\right]=0.001$
$=10^{-3} \mathrm{M} \Rightarrow \mathrm{pOH}=3$
$\mathrm{pH}+\mathrm{pOH}=14 \Rightarrow \mathrm{pH}=14-3=11$
422
(b)

Removal of product always favours forward reaction.
423 (b)
$K_{\text {sp }}\left[\mathrm{BaCO}_{3}\right]=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{CO}_{3}^{2-}\right]$
$\left[\mathrm{Ba}^{2+}\right]=\frac{K_{\mathrm{sp}}}{\left[\mathrm{CO}_{3}^{2-}\right]}=\frac{5.1 \times 10^{-9}}{1 \times 10^{-4}}$

$$
\left[\mathrm{Ba}^{2+}\right]=5.1 \times 10^{-5} \mathrm{M}
$$

424 (b)
$K_{s p}=s^{2}=\left(\frac{0.0015}{143.5}\right)^{2}=1.1 \times 10^{-10}$.
$\underset{\text { Acid }}{\mathrm{CO}}+\underset{\text { Base }}{\mathrm{NaOH}} \xrightarrow{P, T} \underset{\text { Salt }}{\mathrm{COONa} .}$
426 (a)
The acidic character has been explained in term of electronegativity of halogens.
427 (a)
Higher is the ox. no. of central atom in oxy-acid, e. g., acid $\left(\mathrm{HClO}_{4}\right)$, more is its acidic nature and weaker is its conjugate base, (e.g. , ClO_{4}^{-}).
428 (c)
Methyl orange is used for strong acid titration; Alkali may be weak or strong.
(d)

Addition of salt always lowers the vapour pressure. Also, vapour pressure of a liquid is its characteristic pressure and depends only on
temperature.
430 (b)
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
On adding $\mathrm{CH}_{3} \mathrm{COONa}$, $\left[\mathrm{H}^{+}\right]$decreases
431 (a)
Neutralization is exothermic whereas hydrolysis is endothermic.
432 (d)
$\mathrm{HCl} \rightarrow \underset{10^{-8}}{\mathrm{H}^{+}}+\mathrm{Cl}^{-}$
The dissociation of $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underset{10^{-8}+a}{\mathrm{H}^{+}}+\underset{a}{\mathrm{OH}^{-}} \quad \begin{gathered}\text { is suppressed due to } \\ \text { common ion effect }\end{gathered}$
$\therefore \quad K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
or $10^{-14}=\left(10^{-8}+a\right) \times a$
$\therefore \quad a=0.95 \times 10^{-7}$
$\therefore \quad\left[\mathrm{H}^{+}\right]=10^{-8}+0.95 \times 10^{-7}=1.05 \times 10^{-7} \mathrm{M}$.
433 (b)
$\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4} \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}+\mathrm{SO}_{4}^{2-}$.
434 (c)
K_{c} is a characteristic constant for the given reaction
435 (d)
According to Arrhenius concept-Acids are the substances which furnish H^{+}ions in water and a base is a substance which furnishes OH^{-}ions in water.
436 (a)
According to Le-chatelier principle the reactions in which number of moles are increasing in forward reaction are favoured at low pressure or high volume.

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

\because Number of moles are increasing in the forward reaction in above reaction.
\because Reaction is favoured at low pressure.
\because At high pressure, rate of dissociation of PCl_{5} decreases.
437 (a)
Electron acceptors are Lewis acids. They are electron deficient compounds. BF_{3} is Lewis acid because B has only 6 electrons in its valence shell and it can accept electrons. $\mathrm{NF}_{3}, \mathrm{Cl}^{-}$and $\mathrm{H}_{2} \mathrm{O}$ have lone pair of electrons. Thus, they are electron donors and Lewis bases.
438 (c)
Stronger the base, higher the tendency to accept protons. Among the given, $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{H}_{2} \mathrm{~S}$ both are acids, thus have very low tendency to
accept a proton. Between NH_{3} and $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ is a stronger base (due to less electronegativity of N as compared to 0) and hence, it has the highest tendency to accept a proton among the given. Moreover, the conjugate base formed by it also stable one
$\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+}$
(stable)
439 (d)
$K_{s p}=4 s^{3}$
$\therefore \quad s^{3}=\frac{4 \times 10^{-9}}{4}=10^{-9}$
$\therefore \quad s=10^{-3} M$
441 (b)
$P V=n R T \quad \therefore \frac{n}{V}=\frac{P}{R T}$
442 (c)
$K_{h}=C h^{2}$
$=0.5 \times\left(\frac{0.25}{100}\right)^{2}$
$=3.125 \times 10^{-6}$
443 (b)
$\mathrm{PbCO}_{3} \rightleftharpoons \underset{s}{\rightleftharpoons \mathrm{~Pb}^{2+}}+\underset{x+y}{\mathrm{CO}_{3}^{2-}}$
$\mathrm{MgCO}_{3} \rightleftharpoons \mathrm{Mg}_{y}^{2+}+\mathrm{CO}_{x+y}^{2-}$
(Since both are present in same solutes)
$\therefore \quad \frac{K_{s p} \mathrm{PbCO}_{3}}{K_{s p} \mathrm{MgCO}_{3}}=\frac{x}{y}$
$\therefore \quad \frac{x}{y}=\frac{1.5 \times 10^{-15}}{1 \times 10^{-15}}$
or $\quad x=1.5 y$
Now, $\quad x(x+y)=1.5 \times 10^{-15}$
or $1.5 y(1.5 y+y)=1.5 \times 10^{-15}$
or $\quad y=\left[\frac{1.5 \times 10^{-15}}{3.75}\right]^{1 / 2}$
$=2 \times 10^{-8}$
$\therefore \quad x=1.5 \times 2 \times 10^{-8}$

$$
=3.0 \times 10^{-8} \mathrm{M}
$$

444 (a)
$\left[\mathrm{H}^{+}\right]=c \alpha=1.34 \times 10^{-4}$
$\therefore \quad \alpha=1.34 \times 10^{-1}$
$\therefore \quad K_{c}=c \alpha^{2}=1.8 \times 10^{-5}$

$$
\begin{aligned}
\mathrm{pH} & =-\log 1.8 \times 10^{-5}+\log \frac{0.164 / 82}{0.001} \\
& =+4.7447+0.3010=5.0457
\end{aligned}
$$

$\therefore \quad\left[\mathrm{H}^{+}\right]=9 \times 10^{-6}$.
445 (b)
Sorensen in 1909 gave pH scale to indicate the strength of the hydrogen ion
concentration expressed in g/L. Here p stands
for potenz meaning strength.

446 (c)
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
$\frac{28}{28}=1 \quad \frac{6}{2}=3 \quad 0 \quad$ mole before reaction
$1-\frac{1}{2} \quad 3-\frac{3}{2} \quad \frac{17}{17}=1$ mole after reaction
\therefore Mole of $\mathrm{N}_{2}=\frac{1}{2}$
\therefore wt. of $\mathrm{N}_{2}=14 \mathrm{~g}$
Mole of $\mathrm{H}_{2}=\frac{3}{2}$
\therefore wt. of $\mathrm{H}_{2}=\frac{3}{2} \times 2=3 \mathrm{~g}$
447 (c)
$K_{c}=\frac{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}}=\frac{[0.10]^{2}[0.4]}{[0.5]^{2}}=0.016$
448 (b)

$$
\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}
$$

Initial $\quad 1 \mathrm{~mol} 0$
At eqm $\quad 1-0.20 \quad 0.40 \mathrm{~mol}$

$$
p V=n R T
$$

$1 \times V=1 \times R \times 300$

$$
\begin{equation*}
p \times V=1.2 \times R \times 600 \tag{i}
\end{equation*}
$$

On dividing (ii) by (i)

$$
p=2.4 \mathrm{~atm}
$$

449 (a)

H_{2}	$+\mathrm{I}_{2}$	\rightleftharpoons
1	1	2 HI
$(1-0.8)$	$(1-0.8)$	0
$=0.2$	$=0.2$	$=1.6$

$$
\begin{aligned}
K_{C} & =\frac{[\mathrm{H}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]} \\
& =\frac{1.6 \times 1.6}{0.2 \times 0.2} \\
K_{c} & =64
\end{aligned}
$$

450 (b)
According to common ion effect, dissociation of weak electrolyte is further suppressed in presence of strong electrolyte having common ion.
$\therefore \mathrm{AgCl}$ is weak electrolyte and NaCl is strong electrolyte having common anion.
\therefore Solubility as well as concentration of Ag^{+}and Cl^{-}will decrease.
451 (a)
$\frac{\text { normal mol.wt. }}{\text { exp.mol.wt. }}=1+\alpha$; (Mol. wt $\left.=2 \times \mathrm{VD}\right)$

$$
\begin{array}{ll}
& \frac{92}{49}=1+\alpha \\
\therefore & \alpha=0.87
\end{array}
$$

452 (c)
A precipitation of AgCl is formed when equal volumes of $10^{-5} \mathrm{M} \mathrm{AgNO}_{3}$ and $10^{-4} \mathrm{M} \mathrm{HCl}$ are mixed, because ionic product will be 10^{-9} which is greater than $K_{\mathrm{sp}}\left(10^{-10}\right)$. For the precipitation of an electrolyte, it is necessary that the ionic product must exceed its solubility product.
$\mathrm{CO}(\mathrm{g})+0.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

$$
\begin{gathered}
\Delta n_{g}=n_{p}-n_{r}=1-1.5=-0.5 \\
K_{p}=K_{c}(R T)^{\Delta n}=K_{c}(R T)^{-0.5} \\
\frac{K_{p}}{K_{c}}=\frac{1}{\sqrt{R T}}
\end{gathered}
$$

454 (b)
Metal cation possesses the tendency to accept electron pair from ligands.
455 (d)
Any acid or salt having an ion common (due to common ion effect) or any base (due to acid-base reaction) will influence degree of dissociation of weak acid.
456 (a)
$\mathrm{Ca}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}$

$$
\begin{aligned}
K_{\text {sp }} & =\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2} \\
& =(s)(2 s)^{2}=4 s^{3}
\end{aligned}
$$

457 (c)
Proton affinity means affinity for proton i.e., basicity. In NH_{3} nitrogen has pair of electron to donate as well as higher tendency to donate due to lower electronegativity. In PH_{3}, P is not suitable as that has large size.
458 (d)
$\mathrm{Acid}_{1}+\mathrm{Base}_{2} \rightleftharpoons \mathrm{Acid}_{2}+\mathrm{Base}_{1}$
$\mathrm{HPO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{PO}_{3}^{3-}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{4}^{2-}$
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
459 (b)
$\Delta G^{0}=-R T \operatorname{In} K_{p}$ if $\Delta G^{\circ}=0 ; \operatorname{In} K_{p}=0$ or $K_{p}=1$
460 (c)
$\left[\mathrm{H}^{+}\right]=10^{-2} \mathrm{M}$
$\therefore \mathrm{pH}=2$.
461 (a)
$X(\mathrm{~g})+Y(\mathrm{~g}) \rightleftharpoons Z(\mathrm{~g})$

$$
K_{c}=\frac{[Z]}{[X][Y]} \quad \text { or } \quad 10^{4}=\frac{[Z]}{[X][Y]}
$$

$\therefore \quad[Z]=10^{4}[X][Y]$

$$
=10^{4} \times \frac{1}{2}[Z][Z]
$$

(Given, $[X]=\frac{1}{2}[Y]=\frac{1}{2}[Z]$)
$\therefore \quad[Z]=2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
462 (a)
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$
Initial $: 0.5 \mathrm{~atm}$
At equili : $(0.5-p) \quad 2 p$ atm
This is a case of heterogeneous equilibrium.
$\mathrm{C}(s)$ being solid is not considered
Total pressure of CO_{2} and CO gases.

$$
\begin{gathered}
p_{\mathrm{CO}_{2}}+p_{\mathrm{CO}}=p_{\text {total }} \\
0.5-p+2 p=0.8 \\
p=0.3 \mathrm{~atm} \\
\therefore \quad p_{\mathrm{CO}_{2}}=0.5-0.3=0.2 \mathrm{~atm} \\
p_{\mathrm{CO}}=2 p=0.6 \mathrm{~atm} \\
K_{p}=\frac{p_{\mathrm{CO}}^{2}}{p_{\mathrm{CO}_{2}}}=\frac{0.6 \times 0.6}{0.2} \\
=1.8 \mathrm{~atm}
\end{gathered}
$$

(b)
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(s) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
At equilibrium if partial pressure of $\mathrm{CO}_{2} \quad p$ then that of $\mathrm{NH}_{3} 2 p$

$$
\begin{array}{llllll}
K_{p} & p_{\mathrm{NH}_{3}}^{2} & p_{\mathrm{CO}_{2}} & (2 p)^{2} & p & 4 p^{3}
\end{array}
$$

$2.9 \quad 10^{-5} \quad 4 p^{3}$

$$
\begin{array}{lll}
p^{3} & 0.725 & 10^{-5}
\end{array}
$$

or $p^{3} 7.2510^{-6}$ or $p 1.93510^{-2}$
hence, total pressure $p 3 p$
$\begin{array}{lll}5.81 & 10^{-2} \quad 0.0581 & \mathrm{~atm} .\end{array}$
464 (c)
For salt of weak acid and weak base

$$
\begin{aligned}
\mathrm{pH} & =\frac{1}{2}\left[\log K_{a}+\log K_{w}-\log K_{b}\right] \\
& =\frac{1}{2} \mathrm{p} K_{a}+\frac{1}{2} \mathrm{p} K_{w}-\frac{1}{2} \mathrm{p} K_{b} \\
& =\frac{1}{2} \times 4.80+7-\frac{1}{2} \times 4.78 \\
& =7.01
\end{aligned}
$$

465 (a)
The species which can accept as well as donate H^{+}can act both as an acid and a base.

$$
\mathrm{HSO}_{4}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{4}
$$

base

$$
\underset{\text { acid }}{\mathrm{HSO}_{4}^{-}} \rightleftharpoons \mathrm{SO}_{4}^{2-}+\mathrm{H}^{+}
$$

466 (c)

$$
\mathrm{H} A(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+
$$

$A^{-}(a q)$
$\begin{array}{llcc}\text { Initial } & 0.1 \mathrm{M} & 0 & 0 \\ \text { Change } & -\frac{0.1 \times 5}{100} & +\frac{0.1 \times 5}{100} & +\frac{0.1 \times 5}{100}\end{array}$
$\begin{array}{llll}\text { Equi conc. } 0.095 & 0.005 & 0.005\end{array}$

$$
\begin{aligned}
K_{c} & =\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[A^{-}\right]}{[H A]}=\frac{0.005 \times 0.005}{0.095} \\
& =2.63 \times 10^{-4}
\end{aligned}
$$

467 (b)
Acetylene is more acidic than both ethane and benzene but methyl alcohol is slightly more acidic ($\mathrm{p} K_{a}<25$) than acetylene.
468 (c)
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=14-\mathrm{pOH}$
Calculate pH of all the solution to find which will have maximum pH .
(A) M/10 HCl

$$
\begin{aligned}
\therefore \quad\left[\mathrm{H}^{+}\right] & =10^{-1} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left[10^{-1}\right] \\
& =1
\end{aligned}
$$

(B) $\mathrm{M} / 100 \mathrm{HCl}$

$$
\begin{aligned}
\therefore \quad\left[\mathrm{H}^{+}\right] & =10^{-2} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left[10^{-2}\right] \\
& =2
\end{aligned}
$$

(C) M/10 NaOH

$$
\begin{aligned}
& \therefore \quad\left[\mathrm{OH}^{-}\right]=10^{-1} \\
& \mathrm{pH}=14-\mathrm{pOH} \\
& =14\left[-\log 10^{-1}\right] \\
& \text { = } 14-1 \\
& =13
\end{aligned}
$$

(D)M/100 NaOH

$$
\begin{aligned}
\therefore \quad\left[\mathrm{OH}^{-}\right] & =10^{-2} \\
\mathrm{pH} & =14-\mathrm{pOH} \\
& =14-\left[\log 10^{-2}\right] \\
& =14-2=12
\end{aligned}
$$

$\therefore \mathrm{M} / 100 \mathrm{NaOH}$ solution has highest pH .
$\left[\mathrm{H}^{+}\right]=10^{-6}$ or $c \alpha=10^{-6}$; also, $c=1.0 \mathrm{M} \therefore \alpha=$ 10^{-6}
$K_{a}=c \alpha^{2}=10^{-6} \times 10^{-6}=10^{-12}$
470 (d)
Those reactions which have high value of K, proceeds towards completion
471 (d)
A mixed salt is one which furnishes two types of cations or anions.

472 (b)
Buffer capacity of a buffer solution is maximum when the concentration of the weak acid and its salt or weak base and its salt are equal, i.e., for highest buffer capacity $\mathrm{pH}=\mathrm{p} K_{a}$

For this [salt] $=[$ acid $]$
Thus, 25 mL .
473 (c)
By using $\mathrm{pH}=-\log \sqrt{K_{a} \cdot C}$

$$
\begin{aligned}
& 5=-\log \sqrt{K_{a} \times 1}=-\frac{1}{2} \log K_{a} \\
& \log K_{a}=-10 \\
& K_{a}=10^{-10}
\end{aligned}
$$

Hence, dissociation constant $\left(K_{a}\right)=10^{-10}$.
474 (b)
pH varies inversely with temperature. Thus, if the pH of neutral water is 6.5 , the temperature of water is more than $25^{\circ} \mathrm{C}$.
$[\mathrm{CO}]=\frac{0.1}{0.5}$
$\left[\mathrm{Cl}_{2}\right]=\frac{0.1}{0.5}$
$\left[\mathrm{COCl}_{2}\right]=\frac{0.3}{0.5}$
$\therefore \quad K_{c}=\frac{0.3 / 0.5}{\frac{0.1}{0.5} \times \frac{0.1}{0.5}}=15$
476 (c)
In qualitative analysis, in order to detect IInd group radicals, $\mathrm{H}_{2} \mathrm{~S}$ gas is passed in the presence of dilute HCl to decrease the dissociation of $\mathrm{H}_{2} \mathrm{~S}$ by common-ion effect so that less S^{2-} ions are obtained and only IInd group radical could precipitate.

The value of $\mathrm{p} K_{a}$ for strong acid is less
478 (d)
HCl a mineral acid is strong acid and thus, Cl^{-}is weak base.
479 (c)

$$
\left[\mathrm{H}^{+}\right]=10^{0}=1 \mathrm{M}
$$

480 (c)
$\Delta n=0$ and thus, $K_{p}=K_{c}$.
481 (a)

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$\begin{array}{lllll}\text { Initial conc. } & 1 & 1 & 0 & 0\end{array}$

At equilibrium $(1-x)(1-x) \quad x \quad x$
$\therefore \quad K_{p}=\frac{p_{\mathrm{Co}} \cdot p_{\mathrm{H}_{2} \mathrm{O}}}{p \mathrm{H}_{2} \cdot p_{\mathrm{CO}_{2}}}$

$$
=\frac{x \cdot x}{(1-x)(1-x)}=\frac{x^{2}}{(1-x)^{2}}
$$

482 (d)
For each case $K_{s p}=\left[A^{2+}\right]^{3}\left[B^{3-}\right]^{2}$.
483

(a)

$$
\begin{align*}
\mathrm{CH}_{3} \mathrm{COOH} & \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \\
K_{a_{1}}= & 1.5 \times 10^{-5} \\
& =\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \tag{i}
\end{align*}
$$

$\mathrm{HCN} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CN}^{-}$

$$
\begin{align*}
& K_{a_{2}}=4.5 \times 10^{-10} \\
&=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CN}^{-}\right]}{[\mathrm{HCN}]} \tag{ii}
\end{align*}
$$

By (i)/(ii)

$$
\begin{aligned}
K & =\frac{K_{a_{1}}}{K_{a_{2}}}=\frac{[\mathrm{HCN}]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CN}^{-}\right]\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{1.5 \times 10^{-5}}{4.5 \times 10^{-10}} \\
& =3 \times 10^{4}
\end{aligned}
$$

484 (c)
Given, vol. of $\mathrm{HCl}=5 \mathrm{~mL}$, molarity $=\mathrm{M} / 5$
Vol. of $\mathrm{NaOH}=10 \mathrm{~mL}$, molarity $=\mathrm{M} / 10$
Mulliequivalents of $\mathrm{HCl}=5 \times \frac{1}{5}=1$
Mulliequivalents of $\mathrm{NaOH}=10 \times \frac{1}{10}=1$
$\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
\because Mulliequivalents of $\mathrm{HCl}=$ Mulliequivalents
of NaOH
\therefore Solution is neutral and $\mathrm{pH}=7$.
485 (c)
AlCl_{3} accepts electron pair.
486 (b)

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\sqrt{K_{a} \times C} \\
& =\sqrt{10^{-5} \times 0.1} \\
& =\sqrt{10^{-6}}=10^{-3}
\end{aligned}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 10^{-3}=3
$$

487 (a)
$\mathrm{pH}=\mathrm{p} K_{a}+\log \frac{[\mathrm{KCN}]}{[\mathrm{HCN}]}=9.3+\log \frac{2.5}{2.5}=9.30$
488 (b)
Total milliequivalent of H^{+}

$$
=30 \times \frac{1}{3}+20 \times \frac{1}{2}=20
$$

Total milliequivalent of OH^{-}

$$
=40 \times \frac{1}{4}=10
$$

Milliequivalent of H^{+}left

$$
=20-10=10
$$

$\therefore \quad\left[\mathrm{H}^{+}\right]=\frac{10}{1000} \mathrm{~g}$ ions $/ \mathrm{dm}^{3}=10^{-2}$
$\therefore \quad \mathrm{pH}=2$
489 (b)
Given, for $\mathrm{NaOH}, V=10 \mathrm{~mL}, N=0.1 \mathrm{~N}$
For $\mathrm{H}_{2} \mathrm{SO}_{4}, V=10 \mathrm{~mL}, N=0.05 \mathrm{~N}$
Miliequivalents of $\mathrm{NaOH}=10 \times 0.1=1$
Miliequivalents of $\mathrm{H}_{2} \mathrm{SO}_{4}=10 \times 0.05=0.5$
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+$ $\mathrm{H}_{2} \mathrm{O}$
1 equivalent 2 equivalent
$\because 0.5$ equivalent of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will react with 1 equivalent of NaOH
\therefore The pH of solution $=7$ (neutral)
491 (d)
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$
HPO_{4}^{2-}
acid
conjugated base
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$gives HPO_{4}^{2-} (conjugated base) in aqueous solution. It acts as proton donor.

492 (d)
K_{1} for, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
K_{2} for, $\mathrm{NH}_{3} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2}$
$\therefore K_{1} \times K_{2}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} \times \frac{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{H}_{2}\right]^{3 / 2}}{\left[\mathrm{NH}_{3}\right]}$
or, $K_{1} \times K_{2}=\frac{1}{K_{2}}$
$\therefore K_{2}=\frac{1}{\sqrt{K_{1}}}$
493 (b)
The two conditions when colour of indicator will be visible are derived by
$\mathrm{pH}=\mathrm{pK}_{a}+\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}$
(i) $\mathrm{pH}=5+\log 10=6$
(ii) $\mathrm{pH}=5+\log 0.1=4$

Thus, minimum change in $\mathrm{pH}=2$.
495 (b)
(s) or mole of AgCl needed $=\sqrt{K_{s p}}=10^{-5}$
(s) or mole of AgBr needed $=\sqrt{K_{s p}}=3.16 \times 10^{-7}$
(s) or mole of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ needed $=\sqrt[3]{\frac{K_{s p}}{4}}=0.62 \times$ 10^{-4}
\therefore Weight of $\mathrm{AgCl}=10^{-5} \times 143.5=1.435 \times$ $10^{-3} \mathrm{~g}$
\therefore Weight of $\mathrm{AgBr}=3.16 \times 10^{-7} \times 188=5.94 \times$ $10^{-5} \mathrm{~g}$
\therefore Weight of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}=6.2 \times 10^{-5} \times 332=$
$2.058 \times 10^{-2} g$
496 (a)
In a given mixture, the ionisation of two acids can be written as: Let α, β be degree of ionisation at same concentration.
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}_{\alpha}^{-}+\mathrm{H}^{+}+\beta$
$\underset{1-\beta}{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+\underset{\alpha+\beta}{\mathrm{H}^{+}}$
$\therefore \quad K_{A A}=\frac{[\alpha][\alpha+\beta] \cdot c}{[1-\alpha]}$

$$
K_{P A}=\frac{[\beta][\alpha+\beta] \cdot c}{[1-\beta]}
$$

$\therefore \quad \frac{K_{A A}}{K_{P A}}=\frac{\alpha}{1-\alpha} \times \frac{(1-\beta)}{\beta}$
or $\frac{\alpha}{1-\alpha}=\frac{1.75}{1.3} \times\left[\frac{\beta}{1-\beta}\right]$
497 (b)
$\alpha=\frac{\lambda_{u}}{\lambda_{\infty}}=\frac{5}{390}=0.013$
498 (c)
Follow Le-Chatelier's principle.
499 (a)
$\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}\right]=0.021 \mathrm{M}$
$\therefore \quad\left[\mathrm{S}^{2-}\right]=0.021 \mathrm{M}$
\because At equilibrium $\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{S}^{2-}\right]=K_{s p}$ of ZnS
$\therefore \quad\left[\mathrm{Zn}^{2+}\right]=\frac{4.51 \times 10^{-24}}{0.021}=2.15 \times 10^{-22} \mathrm{M}$
$\therefore\left[\mathrm{Zn}^{2+}\right]$ left in solution $=2.15 \times 10^{-22} \times$
$65 \mathrm{~g} /$ litre

$$
\begin{aligned}
& =\frac{2.15 \times 10^{-22} \times 65 \times 12}{1000} \mathrm{~g} / 12 \mathrm{~mL} \\
& =1.677 \times 10^{-22} \mathrm{~g} / 12 \mathrm{~mL}
\end{aligned}
$$

500 (d)
K_{p} is a constant and does not change with pressure
501 (d)
A chemical equilibrium is the state when concentration of reactants and products do not change with time. It is attained when rate of forward reaction becomes equal to rate of backward reaction.
503 (c)
$\mathrm{H}_{3} \mathrm{PO}_{4}$ furnishes $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}^{2-}$ and PO_{4}^{3-} anions.
504 (c)
The mixture containing a weak acid $\left(\mathrm{HNO}_{2}\right)$ and its conjugate base $\left(\mathrm{NO}_{2}^{-}\right)$acts as acidic buffer.
505 (a)
$\because \mathrm{pH}=\frac{1}{2} \mathrm{p} K_{w}+\frac{1}{2} \mathrm{p} K_{a}-\frac{1}{2} \mathrm{p} K_{b}$
$=\frac{1}{2} \times 14+\frac{1}{2} \times 6-\frac{1}{2} \times 6$
$\mathrm{pH}=7$
$\alpha=\sqrt{\frac{K_{w}}{K_{a} \times K_{b}}}=\sqrt{\frac{10^{-14}}{10^{-6} \times 10^{-6}}}=\sqrt{10^{-2}}$
$=10^{-1}=0.1$ or 10%
506 (d)
Phenolphthalein is used for strong alkali titrations; Acid may be weak or strong.
507 (b)

$$
\left[\mathrm{H}^{+}\right]=2 \times 10^{-2}
$$

$\therefore \mathrm{pH}=-\log 2 \times 10^{-2}$
i.e., in between 1 and 2 .

509 (a)
(i) $\mathrm{Ag}^{+}+\mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}$;
$K_{1}=3.5 \times 10^{-3}$
(ii) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}+\mathrm{NH}_{3} \rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$;
$K_{2}=1.7 \times 10^{-3}$
On the basis of above reaction,

$$
\begin{align*}
& K_{1}=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]} \tag{i}\\
& K_{2}=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}}{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}\left[\mathrm{NH}_{3}\right]} \tag{ii}
\end{align*}
$$

For the formation of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$

$$
\mathrm{Ag}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}
$$

Formation constant (K)

$$
\begin{equation*}
=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}} \tag{iii}
\end{equation*}
$$

From Eqs. (i) and (ii)

$$
\begin{aligned}
K & =K_{1} \times K_{2} \\
& =3.5 \times 10^{-3} \times 1.7 \times 10^{-3} \\
& =5.95 \times 10^{-6} \approx 6.08 \times 10^{-6}
\end{aligned}
$$

510 (b)
$0.1 \times 1=N \times 1000$
$\therefore N$ dilute acid $=10^{-4}$
or $\left[\mathrm{H}^{+}\right]=10^{-4}$ and so $\mathrm{ph}=4$.
511 (c)
Catalyst provides a new pathway to attain equilibrium earlier.
512 (d)
Follow law of mass action equations.
513 (d)

$$
\begin{aligned}
\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s) & \rightleftharpoons 3 \mathrm{Ca}^{2+}(a q)+2 \mathrm{PO}_{4}^{3-}(a q) \\
K_{\mathrm{sp}} & =\left[\mathrm{Ca}^{2+}\right]^{3} \cdot\left[\mathrm{PO}_{4}^{3-}\right]^{2} \\
& =(3 y)^{3} \cdot(2 y)^{2} \\
& =27 y^{3} \times 4 y^{2} \\
& =108 y^{5}
\end{aligned}
$$

514 (d)
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} ; \quad K_{1}$
$=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}$
$2 \mathrm{NO}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2} ; \quad K_{2}$
$=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]}$
$\mathrm{NO}_{2} \rightarrow \frac{1}{2} \mathrm{~N}_{2}+\mathrm{O}_{2} ; \rightleftharpoons \quad K_{3}$
$=\frac{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{NO}_{2}\right]}$
By observation $\quad K_{3}=\frac{\sqrt{1}}{K_{1} K_{2}}$
515 (b)
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
$K_{c}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}=4 \times 10^{-4}$
$\mathrm{NO}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
$K_{c}^{\prime}=\frac{\left[\mathrm{N}_{2}\right]^{\frac{1}{2}}\left[\mathrm{O}_{2}\right]^{\frac{1}{2}}}{[\mathrm{NO}]}$
$=\frac{1}{\sqrt{K_{c}}}=\frac{1}{\sqrt{4 \times 10^{-4}}}$
$=\frac{1}{2 \times 10^{-2}}=\frac{100}{2}=50$
516 (a)
From the value of K_{c}, the direction of the reaction may be predicated as follows :

Since, for given reaction $K_{c}=10^{-4}$ therefore, the reaction proceeds in backward direction.
517 (a)
$X+Y \rightleftharpoons Z$
Initial conc., $\quad 5 \quad 3 \quad 0$
At equilibrium $(5-2)(3-2) 2$
Equilibrium constant $\left(K_{c}\right)=\frac{[Z]}{[X][Y]}$
$=\frac{2}{3 \times 1}=\frac{2}{3}$
518 (d)

$\mathrm{N}_{2} \mathrm{O}_{4}$	$\rightleftharpoons 2 \mathrm{NO}_{2}$
1	0
$1-\alpha$	2α

\therefore Total mole at equilibrium

$$
=1-\alpha+2 \alpha=1+\alpha
$$

519 (d)
The solubility order of alkaline earth metal
hydroxides is

$$
\mathrm{Ba}(\mathrm{OH})_{2}>\mathrm{Ca}(\mathrm{OH})_{2}>\mathrm{Mg}(\mathrm{OH})_{2}>\mathrm{Be}(\mathrm{OH})_{2}
$$

521 (b)
$\mathrm{N}_{3} \mathrm{H} \xrightarrow{-\mathrm{H}^{+}} \mathrm{N}_{3}^{-}$.
522 (b)
$A+B \rightleftharpoons \mathrm{C}+\mathrm{D}$
$a \quad a \quad 2 a \quad 2 a$ at equilibrium
$\therefore \quad K_{c}=\frac{[C][D]}{[A][B]}$
$=\frac{2 a \times 2 a}{a \times a}=4$
523 (b)
$\mathrm{CH}_{3} \mathrm{COO}^{-}$, because it is the conjugate base of weak acid
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
524 (d)
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
Given, volume is halved
\therefore Pressure is doubled
\therefore Equilibrium will shift backeard and degree
of dissociation (α) will decreases.
K_{p} is constant at constant temperature.
525 (d)
$\mathrm{p} K_{a}=5$; Also, $\mathrm{p} K_{a}+\mathrm{p} K_{b}=14$
$\therefore \mathrm{p} K_{b}=9$.
527 (a)
$K_{c}=\frac{[Z]^{2}}{[X]^{2}[Y]}=\frac{(3)^{2}}{(2)^{2}(Y)}=2.25, \therefore[Y]=1 M$
528 (b)
$A+B \rightleftharpoons A B ;$
$\begin{array}{ccc}1 & { }_{(1-x)} & \begin{array}{c}1 \\ (1-x)\end{array} \\ x\end{array}$
Given, $x=0.4$
\therefore Percentage of A changing to $A B=\frac{0.4 \times 100}{1}$

$$
=40 \%
$$

529 (a)
I^{-}ion $+\underset{\text { solute }}{\mathrm{I}_{2}} \rightarrow \mathrm{I}_{3}^{-}$; It is therefore I_{2} is more soluble in KI.
530 (d)
If strong base is present in a solution, then pH is calculated from its concentration.

$$
\begin{aligned}
& \therefore & {\left[\mathrm{OH}^{-}\right] } & =10^{-1} \text { or } \mathrm{pOH}=1 \\
& \therefore & \mathrm{pH} & =13 .
\end{aligned}
$$

531 (d)
$\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$ is an example of basic buffer. Its pH value is greater than 7.
533 (d)
$\mathrm{Ca}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}$

$$
K_{\mathrm{sp}}=[S][2 S]^{2} \quad(\text { where }
$$

$S=$ solubility)

$$
\begin{aligned}
K_{\mathrm{sp}} & =4 S^{3} \\
K_{\mathrm{sp}} & =4 \cdot(\sqrt{3})^{3} \\
& =12 \sqrt{3}
\end{aligned}
$$

534 (b)
CO_{2} is acidic oxide which on dissolution in water develops acidic nature.
535 (d)
$K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{\left[2 \times \frac{10^{-3}}{2}\right]^{2}}{\left[\frac{0.2}{2}\right]}$
$=\frac{10^{-6}}{10^{-1}}=10^{-5}$
536 (d)
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3} ; \Delta H=$
$-92.38 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Forward reaction, the volume decreases and it is exothermic reaction. According to Le-
Chatelier principle, such reactions are favoured at low temperature and high pressure.
537 (b)
$K_{p}=K_{c}(R T)^{\Delta n_{\mathrm{g}}}$
Here, $\Delta n \mathrm{~g}=1$
Thus, K_{c} will be less than K_{p}
Acetic acid is weak acid and only pH in given range is 6.85 for acids.
540 (a)
NH_{3} is proton acceptor and thus, $\mathrm{H}_{2} \mathrm{O}$ behaves as proton donor.
541 (d)
Bronsted bases are proton acceptor and each Lewis base contains one or more electron pair and thus, accept proton. On the other hand, Bronsted acids are proton donor and may or may not be capable of accepting lone pair of electron, e.g., $\mathrm{H}_{2} \mathrm{SO}_{4}$ is Bronsted acid not Lewis acid; BF_{3} is Lewis acid but not Bronsted acid. Also each cation is acid and each anion is base.
542 (d)
$\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
$3 \mathrm{~mol} 3 \mathrm{~mol} \quad 2 \mathrm{~mol}$ initially
$(3-x) \mathrm{mol}(3 x) \mathrm{mol}(2 x) \mathrm{mol}$ at equilibrium

```
\because 3-x 1.5
    x 1.5
```

Number of moles of $\mathrm{PCl}_{3} 3 x$

$$
\begin{array}{lll}
3 & 1.5 & 4.5
\end{array}
$$

543 (d)
At equilibrium, $\Delta G=0$,
$i e, G_{\text {ice }}=G_{\mathrm{H}_{2} \mathrm{O}} \neq 0$
544 (a)
$\mathrm{K}=\frac{K_{f}}{K_{b}}=\frac{\left[P_{\text {product }}\right]^{2}}{\left[P_{\text {reaction }}\right]^{1}}$
$K=\mathrm{atm}$.
545 (a)
$\mathrm{pOH}=\mathrm{p} K_{b}+\log \frac{[\text { salt }]}{[\text { base }]}$
(Henderson's equation)

$$
\begin{aligned}
\quad & =5+\log \frac{0.02}{0.2}=5+\log \frac{1}{10} \\
& =5+(-1)=4 \\
\mathrm{pH}= & 14-\mathrm{pOH}=14-4=10
\end{aligned}
$$

546 (b)
HCl provides common H^{+}ions to $\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
547 (a)
This is Henderson equation for basic buffer mixtures.
548 (b)
Higher the tendency to give H^{+}ion (i.e., to undergo ionisation), stronger will be the acid or vice-versa.
HF has poor tendency to give H^{+}ion, hence it is the weakest acid among the given.
The order of acidity of given acids is

$$
\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{HNO}_{3}>\mathrm{HCl}>\mathrm{HF} .
$$

549 (b)

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =10^{-12} \\
{\left[\mathrm{OH}^{-}\right] } & =10^{-2} \\
\frac{w}{40} & =10^{-2} \\
\text { or } \quad w & =0.4 \mathrm{~g} \mathrm{litre}^{-1}
\end{aligned}
$$

550 (a)
pH of $0.1 \mathrm{M}_{2} \mathrm{~S}$ solution can be derived as:

$$
\begin{array}{rlrl}
& & \mathrm{H}_{2} \mathrm{~S} & =\mathrm{H}^{+}+\mathrm{HS}^{-} ; K_{a}=10^{-7} \\
\therefore & & {\left[\mathrm{H}^{+}\right]} & =c \cdot \alpha=\sqrt{K . c}=\sqrt{10^{-7} \times 0.1}=10^{-4} \\
\therefore & \mathrm{pH} & =4
\end{array}
$$

551 (a)
$\mathrm{pH}=0$ means $\left[\mathrm{H}^{+}\right]=10^{\circ}=1 \mathrm{M}$. hence,
solution is strongly acidic.
552 (a)
The saturated solution of AgI means that

$$
\left[\mathrm{Ag}^{+}\right]\left[\mathrm{I}^{-}\right]=\mathrm{K}_{\mathrm{sp}} \mathrm{AgI}
$$

Hence, in this solution, if a mixture of $\mathrm{KI}+\mathrm{KCl}$ is added, then the concentration of $\left[\mathrm{I}^{-}\right]$ions
will increase quite a bit in the solution. Hence, now the ionic product of AgI will be more than its solubility product and therefore, AgI will precipitate out.
553 (a)
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
Here, $\quad \Delta n=2-2=0$
Hence, this equilibrium reaction is not influenced by volume change at constant temperature.
554 (b)
$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$.
555
$A+B=C+D$
$\begin{array}{lllll}x & x & 0 & 0 & \text { At initial }\end{array}$ $2 x \quad 2 x \quad$ At equilibrium $K_{c}=\frac{[C][D]}{[A][B]}=\frac{2 x \times 2 x}{x \times x}=4$
556 (d)
These are characteristics of salt hydrolysis.
558 (c)
(i) 20 mL of 0.5 N HCl
$0.5 \mathrm{~N} \Rightarrow 1000 \mathrm{~mL}$ of 0.5 mol of HCl
HCl present in $20 \mathrm{~mL}=\frac{20 \times 0.5}{1000}=1.0 \times 10^{-2}$
(ii) 35 mL of 0.1 N NaOH
$0.1 \mathrm{~N} \Rightarrow 1000 \mathrm{~mL}$ of 0.1 mol of NaOH
$\Rightarrow \mathrm{NaOH}$ present in $35 \mathrm{~mol}=\frac{3.5 \times 0.1}{1000}$

$$
=0.35 \times 10^{-2}
$$

Total volume $=20+35=55 \mathrm{~mL}$
\Rightarrow Resulting mole in solution,

$$
(1.0-0.35) 10^{-2}=0.65 \times
$$

$10^{-2} \mathrm{~mol} \mathrm{HCl}$

$$
\begin{aligned}
& \mathrm{HCl}=\mathrm{H}^{+}+\mathrm{Cl}^{-} \\
& {[\mathrm{HCl}]=\left[\mathrm{H}^{+}\right]+\left[\mathrm{Cl}^{-}\right]}
\end{aligned}
$$

55 mL contains 0.65×10^{-2} mole of H^{+}ions

$$
\begin{aligned}
& 1000 \mathrm{~mL}=\frac{0.65 \times 10^{-2} \times 10^{3}}{55}=\frac{6.5}{55} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (6.5 / 55) \\
& =\log 55-\log 6.5=0.92
\end{aligned}
$$

Due to acidic nature of solution the colour of phenolphthalein becomes pink.
559 (c)
On the basis of precipitation concept an electrolyte will be precipitated firstly whose ionic product is exceeded to its solubility product. In similar ionic conc. of cations, an electrolyte is precipitated firstly for which K_{sp}
is lower. In these electrolytes
$\mathrm{MnS}, \mathrm{FeS}, \mathrm{ZnS}$ and $\mathrm{HgS}, \mathrm{HgS}$ is precipitated firstly.
560 (a)
Ostwald's dilution law is applicable for weak electrolyte
561 (c)
$\frac{K_{p}}{K_{c}}=(R T)^{\Delta n}$
$24.63=(0.0821 \times \text { T })^{1}$
$\therefore T=300 \mathrm{~K}$
562 (d)
20 M eq. of HCl reacts completely with 20 Meq . Of KOH . Hence, the final solution is neutral. Thus, at $90^{\circ} \mathrm{C}, \mathrm{pH}=6$
564 (b)
$K_{P_{1}}=\frac{n_{Y} \cdot n_{Z}}{n_{X}}\left[\frac{P_{1}}{\sum_{n_{1}}}\right]^{1} K_{P_{2}}-\frac{\left(n_{B}\right)^{2}}{n_{A}} \times\left[\frac{P_{2}}{\sum_{n_{2}}}\right]^{1}$
For $X \rightleftharpoons Y+Z$ for $A \rightleftharpoons 2 B$
$\begin{array}{ccccc}1-\alpha & { }_{\alpha}^{0} & { }_{\alpha}^{0} & & 1 \\ 1-\alpha & 0 \\ 2 \alpha\end{array}$
$\therefore \frac{K_{P_{1}}}{K_{P_{2}}}=\frac{P_{1}}{P_{2}} \times \frac{n_{Y} \cdot n_{Z}}{n_{X}} \times \frac{\left(n_{A}\right)}{\left(n_{B}\right)^{2}} \times\left[\frac{\sum_{n_{2}}}{\sum_{n_{1}}}\right]$
$9=\frac{P_{1}}{P_{2}} \times \frac{\alpha \cdot \alpha}{1-\alpha} \times \frac{(1-\alpha)}{(2 \alpha)^{2}} \times \frac{(1+\alpha)}{(1+\alpha)}$
$\therefore \frac{P_{1}}{P_{2}}=4 \times 9=36$
565 (c)
There will be no effect on equilibrium constant $\left(K_{c}\right)$ in presence of catalyst. So, statement (c) is wrong.
566 (a)
NH_{3} (ammonia) possess an unshared electron pair on N -atom hence, it can donate electron pair. Such species are called Lewis bases. BF_{3} acts as Lewis acid.
567 (a)

$$
\begin{aligned}
& \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}=3 \mathrm{Ca}^{2+}+2 \mathrm{PO}_{4}^{3-} \\
& 5 \mathrm{~mol} / \mathrm{L} \quad 3 s \quad 2 s \\
& \therefore \quad K_{\text {sp }}=\left[\mathrm{Ca}^{2+}\right]^{3}\left[\mathrm{PO}_{4}^{3-}\right]^{2} \\
& =(3 s)^{3}(2 s)^{2} \\
& K_{\text {sp }}=108 s^{5}
\end{aligned}
$$

569 (d)
Fe^{3+} ions are hydrolysed to develop acidic nature in solution.
570 (a)
$K_{s p}$ of $M_{2} X=4 s^{3}$
$K_{s p}$ of $Q Y_{2}=4 s^{3}$
$K_{s p}$ of $P Z_{3}=27 s^{4}$
571 (a)
Strong acids have low pH value while strong bases have high pH value. Hence, the order of pH is
$\mathrm{HCl}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{NH}_{4} \mathrm{Cl}<$ $\mathrm{CH}_{3} \mathrm{COONa}$

strong (salt of weak acid	weak	(salt of weak base
Acid and strong base)	acid	and strong acid)

572 (c)
Thunderstorm produces acidic oxides of N, S which produce acidic rain on dissolution in water.
573 (c)
$\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
In this reaction, $\mathrm{H}_{2} \mathrm{O}$ acts as an acid because it donates a proton
575 (c)
K° for
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \rightleftharpoons \mathrm{Ag}^{+}+2 \mathrm{NH}_{3}$
$K^{\circ}=\frac{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}}{\left[\operatorname{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}}$
Also, $K_{1}^{0}=1.4 \times 10^{-4}=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{+}\left[\mathrm{NH}_{3}\right]\right.}{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+2}}$
and $K_{2}^{0}=4.3 \times 10^{-4}=\frac{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{+}\right.}$
$\therefore \quad K^{0}=K_{1}^{0} \times K_{2}^{0}=1.4 \times 10^{-4} \times 4.3 \times 10^{-4}$ $=6.02 \times 10^{-8}$
576 (d)
For precipitation, ionic product $>$ solubility product
\therefore The metal sulphide with lowest $K_{\text {sp }}(\mathrm{PbS})$ will precipitate out first because its inonic product will exceed its $K_{\text {sp }}$ first and the metal sulphide with highest $K_{\text {sp }}(\mathrm{NiS})$ will precipitate out at last.
$\left[\mathrm{OH}^{-}\right]$in the diluted base $=\frac{10^{-6}}{10^{2}}=10^{-8}$
Total $\left[\mathrm{OH}^{-}\right]=10^{-8}+\left[\mathrm{OH}^{-}\right]$of water
$=\left(10^{-8}+10^{-7}\right) \mathrm{M}$
$=10^{-8}(1+10) \mathrm{M}$
$=11 \times 10^{-8} \mathrm{M}$
$\mathrm{pOH}=-\log 11 \times 10^{-8}$
$=-\log 11+8 \log 10$
$=6.9586$
$\mathrm{pH}=14-6.9586$
$=7.0414$

578 (c)
The molecule shows three H -atoms are replaceable, i.e., basicity of acid.
(c)
$K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]$
Also, if $\mathrm{CrO}_{4}^{2-}=2 \times 10^{-4}$
Then $\quad \mathrm{Ag}^{+}=2 \times 2 \times 10^{-4}$
$\therefore \quad K_{s p}=\left(4 \times 10^{-4}\right)^{2}\left(2 \times 10^{-4}\right)$
$=32 \times 10^{-12}$.
(c)
$K_{p}=P_{\mathrm{CO}_{2}}$
581 (a)
$K_{c}=\frac{k_{f}}{k_{b}}$
$\therefore k_{f}=K_{c} \times k_{b}=1.5 \times 7.5 \times 10^{-4}$

$$
=1.125 \times 10^{-3}
$$

582 (d)
$\underset{\frac{0.3}{4}}{\mathrm{CH}_{3} \mathrm{COOH}}+\underset{-}{\mathrm{NaOH}} \rightarrow \underset{\frac{0.1}{4}(14 \text { neutralization })}{\mathrm{CH}_{3} \mathrm{COONH}_{4}}+\mathrm{H}_{2} \mathrm{O}$
$\therefore \mathrm{pH}_{1}=\mathrm{p} K_{a}+\log \frac{1}{3}$
$\underset{\substack{\frac{0.1}{4}}}{\mathrm{CH}_{3} \mathrm{COOH}}+\mathrm{NaOH} \rightarrow \underset{\frac{0.3}{4}}{\mathrm{CH}_{3} \mathrm{COONH}_{4}}+\mathrm{H}_{2} \mathrm{O}$
$\therefore \mathrm{pH}_{2}=\mathrm{p} K_{a}+\log 3$
$\therefore \mathrm{pH}_{1} \sim \mathrm{pH}_{2}=\log \frac{1}{3} \sim \log 3=2 \log 3$
583 (c)
The weak electrolyte $A_{x} B_{y}$ dissociates as follows

\[

\]

Where, $\alpha=$ degree of dissociation

$$
C=\text { concentration }
$$

$$
\begin{aligned}
K_{\mathrm{eq}} & =\frac{\left[A^{y+}\right]^{x}\left[B^{x-}\right]^{y}}{\left[A_{x} B_{y}\right]} \\
& =\frac{\left[x C \alpha \alpha^{x}[y C \alpha]^{y}\right.}{C(1-\alpha)} \\
& =\frac{x^{x} \cdot C^{x} \alpha^{x} \cdot y^{y} \cdot C^{y} \cdot a^{y}}{C}
\end{aligned}
$$

$$
\begin{aligned}
{[\because 1-\alpha \approx 1] } & \\
& =x^{x} \cdot y^{y} \cdot \alpha^{x+y} \cdot C^{x+y-1} \\
a^{x+y} & =\frac{K_{\mathrm{eq}}}{x^{x} \cdot y^{y} \cdot C^{x+y-1}} \\
\alpha & =\left(\frac{K_{\mathrm{eq}}}{x^{x} \cdot y^{y} \cdot C^{x+y-1}}\right)^{\left(\frac{1}{x+y}\right)}
\end{aligned}
$$

584 (a)
-do -
585 (a)
Mixture of acetic and sodium acetate is an acidic buffer. Hence, from Henderson
equation,

$$
\mathrm{pH}=\mathrm{p} K_{a}+\log \frac{[\text { salt }]}{[\text { acid }]}
$$

On increasing [salt] ten times of that of [acid], the pH will increase by one.
586 (a)
$\mathrm{Bi}_{2} \mathrm{~S}_{3} \rightleftharpoons 2 \mathrm{Bi}^{3+}+3 \mathrm{~S}^{2-}$

$$
K_{\mathrm{sp}}=(2 s)^{2}(3 s)^{3}=108 s^{5}
$$

$$
108 s^{5}=1 \times 10^{-17}
$$

$$
s=\left(\frac{1 \times 10^{-17}}{108}\right)^{1 / 5}=1.56 \times 10^{-4}
$$

$\mathrm{MnS} \rightleftharpoons \mathrm{Mn}^{2+}+\mathrm{S}^{2-}$
$K_{\mathrm{sp}}=s^{2}$
$s=\sqrt{K_{\mathrm{sp}}}=\sqrt{7 \times 10^{-16}}$
$=2.64 \times 10^{-8}$
$\mathrm{CuS} \rightleftharpoons \mathrm{Cu}^{2+}+\mathrm{S}^{2-}$
$K_{\mathrm{sp}}=s^{2}$
$8 \times 10^{-37}=s^{2}$

$$
s=\sqrt{8 \times 10^{-37}}=0.89 \times 10^{-18}
$$

$\mathrm{Ag}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{Ag}^{+}+\mathrm{S}^{2-}$
$K_{\text {sp }}=4 s^{3}$ or $4 s^{3}=6 \times 10^{-51}$
$s=\sqrt[3]{\frac{6 \times 10^{-51}}{4}}$
$=\sqrt[3]{1.5 \times 10^{-51}}=1.14 \times 10^{-17}$
The solubility of $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ is maximum. Hence, it is the most soluble.
587 (c)
The variation of equilibrium constant with temperature is given by van't Hoff isochore as:
$\frac{d}{d t} \operatorname{In} \mathrm{~K}_{\mathrm{c}}=\frac{\Delta H}{R T^{2}}$
588 (d)
It is the characteristic of reaction.
589 (d)
$K_{h}=\frac{K_{w}}{K_{a}}=\frac{10^{-14}}{1.3 \times 10^{-9}}=7.7 \times 10^{-6}$
590
(\mathbf{b})
$K_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right]=5.0 \times 10^{-13}$
$\left[\mathrm{Ag}^{+}\right]=0.05 \mathrm{M}$
$\left[\mathrm{Br}^{-}\right]=\frac{5.0 \times 10^{-13}}{0.05}=1 \times 10^{-11} \mathrm{M}$

Moles of $\mathrm{KBr}=1 \times 10^{-11} \times 1=1 \times 10^{-11}$
Weight of $\mathrm{KBr}=1 \times 10^{-11} \times 120=1.2 \times$ $10^{-9} \mathrm{~g}$

Thermal decomposition of potassium chlorate is irreversible. So, law of mass action cannot be applied on this reaction
592 (d)
$A B$ is binary electrolyte,
$s=\sqrt{K_{\mathrm{sp}}}=\sqrt{1.21 \times 10^{-6}}=1.1 \times 10^{-3} \mathrm{M}$
593
(b)
$\mathrm{SnS}_{2}=\mathrm{Sn}^{4+}+2 \mathrm{~S}^{2-}$.
594 (b)
$\mathrm{p} K_{a}=-\log K_{a}$
Where, $K_{a}=$ ionisation constant of weak acid.
Smaller the value of $\mathrm{p} K_{a}$, stronger will be the acid. So, $\mathrm{p} K_{a}=10^{-8}$ is strongest acid.
CH_{4} has almost no acidic nature and thus, CH_{3}^{-}is strongest base.
597 (c)
$K_{c}=\frac{[A B]^{2}}{\left[A_{2}\right]\left[B_{2}\right]}$
$K_{c}=\frac{\left(2.8 \times 10^{-3}\right)^{2}}{3 \times 10^{-3} \times 4.2 \times 10^{-3}}=0.62$
598 (a)

Given , $x=2(a-x)$ or $x=\frac{2 a}{3}$
$K_{c}=\frac{x^{2}}{(a-x)^{2}}=\frac{(2 a / 3)^{2}}{(a-2 a / 3)^{2}}=4$
599 (d)
$\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g})$
According to Le-Chatelier's principle, on increasing volume of a reactant, the reaction proceeds in forward direction. Hence, on addition of Cl_{2} to above reaction, the equilibrium will shift to the right.
600 (c)
$K_{s p} \mathrm{AgCl}=1.2 \times 10^{-10}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=[s][s+$
0.1] where, s is solubility of AgCl
$\therefore \quad K_{s p}=s \times 0.1=1.2 \times 10^{-10}$
$\therefore \quad s=1.2 \times 10^{-9} M$
601 (d)
Dissociation weak acid decreases in presence of common ion.
602 (b)
$K_{s p}=4 s^{3}$
Also, $s=\frac{0.017}{78} M$
$\therefore K_{s p}=4 \times\left(\frac{0.017}{78}\right)^{3}=4.14 \times 10^{-11}$

603 (d)
For weak acid,
$\alpha=\sqrt{\frac{K_{a}}{C}}$
As ' C^{\prime} decreases, α increases therefore, percentage ionisation will increase
604 (a)
In acidic medium, $\mathrm{H}_{2} \mathrm{~S}$ is very feebly ionised giving very small concentration of sulphide ion for precipitation. Therefore, the most insoluble salts CuS and HgS are precipitated only.
605 (d)
In case of hydrolysis of salt of weak acid and strong base, the pH is given by

$$
\frac{1}{2} \mathrm{p} K_{w}+\frac{1}{2} \mathrm{p} K_{a}+\frac{1}{2} \log C
$$

606 (c)
$\left[\mathrm{H}^{+}\right]=c \alpha=0.1 \times \frac{2}{100}=2 \times 10^{-3} \mathrm{M}$
Also, $\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=10^{-14}$.
607 (d)
$\because \quad \mathrm{pH}=\mathrm{p} K_{a}+\log \frac{[\text { salt }]}{[\text { acid }]}$
or $5.8=4.8+\log \frac{[\text { salt }]}{[\text { acid }]}$
or $\log \frac{[\text { salt }]}{[\text { acid }]}=1.0$
$\frac{[\text { salt }]}{[\text { acid }]}=$ anti $-\log 1.0=10$
$\therefore \quad \frac{[\text { acid }]}{[\text { salt }]}=\frac{1}{10}=0.1$
608 (c)
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) ; K_{p}=\frac{p_{\mathrm{PCl}_{3}} \mathrm{x} p_{\mathrm{Cl}_{2}}}{p_{\mathrm{PCl}_{5}}}$
$\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) ; K_{p}=\frac{p_{\mathrm{CO}} \times p_{\mathrm{Cl}_{2}}}{p_{\mathrm{COCl}_{2}}}$
If CO is introduced, the dissociation of COCl_{2} will decrease and $p_{\mathrm{Cl}_{2}}$ will decrease. This will favour dissociation of $p_{\mathrm{Cl}_{5}}$, because both reactions are attained in same vessel.
609 (a)
For saturated solution of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$, if solubility is ' s ' mol L L^{-1}. Then

$$
\begin{aligned}
& \mathrm{Ag}_{2} \mathrm{CrO}_{4} \rightleftharpoons 2 \mathrm{Ag}^{+}(a q)+\mathrm{CrO}_{4}^{2-}(a q) \\
& s{ }_{s} \\
& K_{\text {sp }}=(2 s)^{2}(s)=4 s^{3} \\
& K_{\text {sp }}=3.2 \times 10^{-11}(\text { given }) \\
& \therefore \quad 3.2 \times 10^{-11}=4 s^{3} \\
& s^{3}=\frac{3.2 \times 10^{-11}}{4}=8 \times 10^{-12}
\end{aligned}
$$

$\therefore \quad s=\sqrt{8 \times 10^{-12}}=2 \times 10^{-4} \mathrm{M}$
610 (b)
Given, $\mathrm{S}(\mathrm{s})+\mathrm{S}^{2-} \rightleftharpoons \mathrm{S}_{2}^{2-}$
$\mathrm{K}_{\mathrm{C}_{1}}=1.7$

$$
2 \mathrm{~S}(\mathrm{~s})+\mathrm{S}^{2-} \rightleftharpoons \mathrm{S}_{3}^{2-}
$$

$$
\mathrm{K}_{\mathrm{c}_{2}}=5.3
$$

$\therefore \mathrm{K}_{\mathrm{c}_{1}}=\frac{\left[\mathrm{S}_{2}^{2-}\right]}{\left[\mathrm{S}^{2}-\right]}=1.7$

$$
\begin{equation*}
\mathrm{K}_{\mathrm{C}_{2}}=\frac{\left[\mathrm{S}_{3}^{2-}\right]}{\left[\mathrm{S}^{2-}\right]}=5.3 \tag{i}
\end{equation*}
$$

Now for, $\mathrm{S}_{2}^{2-}(\mathrm{s})+\mathrm{S}(\mathrm{s}) \rightleftharpoons \mathrm{S}_{3}^{2-}$

$$
\mathrm{K}_{c}=\frac{\left[\mathrm{S}_{3}^{2-}\right]}{\left[\mathrm{S}_{2}^{2-}\right]}
$$

\therefore By Eqs. (ii) and (i), $\frac{K_{c_{2}}}{K_{c_{1}}}=\frac{\left[\mathrm{s}_{3}^{2-}\right]}{\left[s_{2}^{2-}\right]}=K_{c}$
$\therefore K_{c}=3.11$
611 (a)
pH will decrease as K_{w} will increase and $\left[\mathrm{H}^{+}\right]$will increase but $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$and thus, solution will be neutral or we can say scale of pH will change.
612 (d)
The conjugate acid of NH_{2}^{-}is NH_{3}.

$$
\mathrm{NH}_{2}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{NH}_{3}
$$

base conjugate acid
613 (a)
If strong acid is present in a solution, then pH is calculated from its concentration,
$\therefore\left[\mathrm{OH}^{-}\right]=10^{-1}$ or $\mathrm{pH}=1$.
614 (b)
$\mathrm{pH}=\mathrm{pK}_{a}+\log \frac{\text { [Conjugate base] }}{\text { [Acid] }}$
[Conjugate base] $=\frac{20 \times 0.5}{30} ;[$ Acid $]=\frac{10 \times 1}{30}$
$\therefore \mathrm{pH}=4.76+\log \frac{1}{1}=4.76$
615 (c)
In the presence of little $\mathrm{H}_{2} \mathrm{SO}_{4}$ (as catalyst) about $2 / 3$ mole of each of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ to form $\frac{2}{3}$ mole of the product at equilibrium
616 (b)
$\mathrm{pH}=2$
$\therefore\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-2} \mathrm{M}$
617 (a)
$K_{c}=\frac{[A][B]}{[A B]} ;$
If $[A]=2 \times[A]$;
To have K_{c} constant $[B]$ should be $[B] \times \frac{1}{2}$
618 (d)
The change in pressure will not affect the equilibrium constant. Equilibrium constant changes with change in temperature.
$K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{0.7 \times 0.7}{0.1 \times 0.1}=49$
620 (a)
For 0.1 M acetic acid, or $C=0.1 \mathrm{~mol} \mathrm{~L}^{-1}$

$$
\begin{aligned}
& K_{a}=1.74 \times 10^{-5} \\
& \mathrm{pH}=?
\end{aligned}
$$

According to Ostwald dilution formula,

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\sqrt{K_{a} \times C} \\
& =\sqrt{1.7 \times 10^{-5} \times 0.1} \\
& =\sqrt{0.017 \times 10^{-4}} \\
\mathrm{pH} & =-\log _{10}\left[\mathrm{H}^{+}\right] \\
& =-\log _{10} \sqrt{0.017 \times 10^{-4}} \\
\mathrm{pH} & =2.88
\end{aligned}
$$

621 (a)
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
For this reaction, $\Delta n_{\mathrm{g}}=2-1=1$
Value of Δn_{g} is positive, so the dissociation of PCl_{5} increases by decrease in pressure and by increase in pressure, the dissociation of PCl_{5} decreases
622 (a)
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$and $\left[\mathrm{H}^{+}\right]=\sqrt{9.61 \times 10^{-14}}$
$\therefore \mathrm{pH}=6.51$
624 (c)
First dissociation
$X(\mathrm{OH})_{3} \rightarrow X(\mathrm{OH})_{2}^{+}+\mathrm{OH}^{-}$
Second dissociation
$X(\mathrm{OH})_{2}^{+} \rightarrow X(\mathrm{OH})^{2+}+\mathrm{OH}^{-}$
Total $\left[\mathrm{OH}^{-}\right]=4 \times 10^{-3}+2 \times 10^{-3}$
$=6 \times 10^{-3}$
$\mathrm{pOH}=3-\log 6$
$=3-0.78=2.22$
$\mathrm{pH}=14-2.22=11.78$
625 (a)
$K_{c}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]}$
Or $4=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]}{(0.5)^{3}}$;
$\therefore\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]=0.5 \mathrm{M}$
626 (d)
K_{p} of the reaction is: $K_{p}=\frac{P_{\mathrm{CO}_{2}}^{\prime}}{\left(P_{\mathrm{CH}_{4}}^{\prime}\right)\left(P_{\mathrm{O}_{2}}^{\prime}\right)}$.
628 (d)
Buffer is $\mathrm{CH}_{3} \mathrm{COOH}_{\text {Acid }}+\underset{\text { Conjugate base }}{\mathrm{CHCOO}^{-}}$and has pH fixed.
629 (d)
$\Delta n=$ Mole of product - Mole of reactant; count only gaseous phase reactants.
630 (c)
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$

10 initially $(1-\alpha) 2 \alpha$ at equilibrium
Total moles at equilibrium $=(1-\alpha)+2 \alpha$
$=1+\alpha$
631 (b)
Larger is bond length, more is acidic nature.
632 (a)
$K_{a}=c \alpha^{2}$ or $1.0 \times 10^{-5}=0.1 \times \alpha^{2}$
$\therefore \alpha=10^{-2}$ or 1%
633 (a)
By Le-Chatelier principle
$n_{p}>n_{r}$ (gaseous)
So, reaction shift in the backward direction
634 (b)
The buffer solutions are those solutions which resists the change in its pH value on addition of small amount of a base or an acid. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ solution is buffer solution because it is a solution of weak acid and its salt with strong base.

635 (c)

$$
\begin{aligned}
\mathrm{pOH} & =\mathrm{p} K_{b}+\log \frac{\text { [Conjugate acid] }}{[\text { base }]} \\
& =-\log 1.8 \times 10^{-5}+\log \frac{0.2}{0.3} \\
& =-\log 1.8 \times 10^{-5}+\log 0.66 \\
& =4.744-0.176=4.567
\end{aligned}
$$

$\therefore \mathrm{pH}=14-4.567=9.423$.
637 (c)
The aqueous solution of $\mathrm{KCN}, \mathrm{K}_{2} \mathrm{CO}_{3}$ and LiCN turn red litmus blue because of alkaline nature.
The anionic hydrolysis turns the solution alkaline.
638 (d)
e. g. , $\mathrm{CH}_{3} \mathrm{COONa}$;
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$.
640 (a)
This is Henderson equation for acidic buffer mixtures.
641 (c)
$\left[\mathrm{H}^{+}\right]=$c. $\alpha=0.01 \times \frac{12.5}{100}$

$$
=1.25 \times 10^{-3}
$$

\therefore Thus, $\mathrm{pH}=-\log 1.25 \times 10^{-3}$
i.e., in between 2 and 3 .

642 (c)
AlCl_{3} on hydrolysis gives weak base and strong acid.

643 (b)
When rate of forward reaction is equal to the rate of backward reaction then equilibrium is supposed to be established
644 (a)
646 (c)
Consider a buffer of $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
Addition of Acid : $\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}_{\text {Weak acid }}$
Addition of alkali :
$\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \underset{\text { (Weak electrolyte) }}{\mathrm{H}_{2} \mathrm{O}}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
Thus addition of acid or alkali does not cause any change in pH .

647 (c)
For the precipitation of an electrolyte, it is necessary that the ionic product must exceed its solubility product
648 (a)
For different salts such as $A B, A B_{2}, A B_{3} \ldots$ etc. $K_{s p}=s^{2}, 4 s^{3}, 27 s^{4} \ldots$ respectively. If $K_{s p}$ is same for different salts, then s is more for the salt in which is more number of ions.
649 (b)
An increase in temperature favours forward reaction, if $\Delta H=+v e$,
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2} ; \Delta H=+\mathrm{ve}$
650 (a)
$\mathrm{N}_{2}+\quad 3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
$56 \mathrm{~g} \quad 8 \mathrm{~g} \quad 0 \mathrm{~g}$
($=2 \mathrm{~mol}$) $(=4 \mathrm{~mol})(0 \mathrm{~mol})$ initially
$(2-1)(4-3) 34 \mathrm{~g}$ at equilibrium
$=1 \quad=1 \quad(=2 \mathrm{~mol})$
According to Eq.(1) 2 moles of ammonia are present a produce 2 moles of NH_{3}, we need 1 mole of N_{2} and 3 of H_{2}, hence $2-1=1$ mole of N_{2} and $4-3=1$ mole are present at equilibrium in vessel
651 (a)
$\left[\mathrm{OH}^{-}\right]$in $\mathrm{NH}_{4} \mathrm{OH}$ solution $=\mathrm{C} \alpha$

$$
\begin{aligned}
& =0.001 \times \frac{1}{100}=1 \times 10^{-5} \\
& \text { pOH }=-\log \left[\mathrm{OH}^{-}\right] \\
& \text {pOH }=-\log \left[1 \times 10^{-5}\right] \\
& \text { pOH }=5
\end{aligned}
$$

652 (c)
Addition of inert gas at constant volume condition to an equilibrium has no effect.
653 (d)
$Q>K_{c}$ thus, Q must decrease so that $\left[\mathrm{NH}_{3}\right]$ may decrease to have backward reaction.
654 (c)
NaHSO_{4} (acidic salt) and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ normal salt.
ΔH is positive, so it will shift toward the product by increasing temperature
645 (a)
Electrophiles are electron deficient compounds and accept pair of electron.

655 (b)
$\mathrm{AgCl} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Cl}^{-}$
$K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]$
$K_{\text {sp }}=S^{2}$
($S=$ solubility in mol/L)

$$
S=\frac{1.435 \times 10^{-3} \mathrm{~g} / \mathrm{L}}{143.5}=1 \times 10^{-10} \mathrm{~mol} / \mathrm{L}
$$

656 (a)
Le-Chatelier's principle is not applicable to solidsolid heterogeneous equilibrium.
657 (a)
$\underset{\text { Initially }}{2 \mathrm{SO}_{2}}+\underset{4}{ } \mathrm{O}_{2} \rightleftharpoons \underset{0}{2 \mathrm{SO}_{3}}$

At equili. 4(1-0.25) 4(1-0.25)
0.25×2
Total number of moles at equilibrium

$$
\begin{array}{llll}
4(1-0.25) & 4(1-0.25) & 0.5 \\
4-1 & 4-1 & 0.5 & 6.5
\end{array}
$$

658 (b)
$0.005 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}=2 \times 0.005 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ $=0.01 \mathrm{NH}_{2} \mathrm{SO}_{4}$;
Thus, $\quad\left[\mathrm{H}^{+}\right]=10^{-2} \mathrm{M}$
$\therefore \quad \mathrm{pH}=2$.
659 (c)
Due to common ion effect, rate of ionisation of $\mathrm{NH}_{4} \mathrm{OH}$ decreases, so power
$\left[\mathrm{OH}^{-}\right]$is obtained. Hence, pH value decrease.
660 (b)
For indicator dissociation equilibrium; being an acid

$$
\begin{aligned}
\substack{\operatorname{HIn}_{C o l o u r}^{A}} & \rightleftharpoons \mathrm{H}_{\mathrm{Cololour}^{+}}^{+\mathrm{In}^{-}} \\
K_{\mathrm{In}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}
\end{aligned}
$$

The mid point of the colour range of an indicator HIn is the point at which $\left[\mathrm{In}^{-}\right]=[\mathrm{HIn}]$.

$$
\begin{array}{rlrl}
\therefore & K_{\text {In }} & =\left[\mathrm{H}^{+}\right]=1 \times 10^{-5} \\
& \therefore & {\left[\mathrm{H}^{+}\right]} & =1 \times 10^{-5}
\end{array}
$$

or $\quad \mathrm{pH}=5$.
661 (b)
Follow Le-Chatelier's principle
662 (c)

$$
\mathrm{N}_{2} \quad+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}
$$

Initial

$$
\frac{56}{28}=2 \quad \frac{8}{2}=4
$$

At $\quad(2-x) \quad(4-3 x) \quad 2 x=\frac{34}{17}=2$
moles
equilibrium mole mole
Hence, $x=1$ mole
Hence, number of moles of N_{2} at equilibrium

$$
=2-1=1 \mathrm{~mole}
$$

Number of moles of H_{2} at equilibrium

$$
=4-3=1 \mathrm{~mole}
$$

Number of moles of NH_{3} at equilibrium $=2$ moles
663 (c)
$\mathrm{Na}_{2} \mathrm{CO}_{3}$, on hydrolysis gives alkaline solution as the solution contains strong base and weak acid.

$$
\begin{array}{lll}
\mathrm{H}_{2} \mathrm{CO}_{3} & \\
\quad \mathrm{Na}_{2} \mathrm{CO}_{3} \xrightarrow{2 \mathrm{H}_{2} \mathrm{O}} & 2 \mathrm{NaOH} & + \\
\text { white } & \text { strong base } \quad \text { weak }
\end{array}
$$

acid
664 (c)
Acidic buffer is a mixture of weak acid and its salt with strong base. Similarly, basic buffer is a mixture of weak base and its salt with strong acid. Hence, $50 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+$ 100 mL 0.1 M NaOH does not constitute a buffer solution because in this case millimoles of acid are less than that of strong base, which after reaction with strong base gives salt.
Now, the solution contains only strong base and salt but no weak acid. Hence, no buffer is formed.
665 (a)
$K_{p}=\frac{\left(p_{\mathrm{CO}}\right)^{2}}{\left(p_{\mathrm{CO}_{2}}\right)}=\frac{8 \times 8}{4}=16 \mathrm{~atm}$.
667 (a)
$\mathrm{Ag}_{2} \mathrm{CrO}_{4} \rightarrow 2 \mathrm{Ag}^{+}+\mathrm{CrO}_{4}^{2-}$
$s \quad 2 s \quad s$
$K_{s p}=(2 s)^{2} s=4 s^{3}$
$s=\left(\frac{K_{\text {sp }}}{4}\right)^{1 / 3}=\left(\frac{32 \times 10^{-12}}{4}\right)^{1 / 3}=2 \times 10^{-4} \mathrm{M}$

$$
\begin{gathered}
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \\
K=\frac{\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.}{\left[\mathrm{NO}_{2}\right]^{2}}=2 \times 10^{-6} \\
4 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g}) \\
K^{\prime}=\frac{\left[\mathrm{NO}_{2}\right]^{4}}{\left[\mathrm{NO}^{4}\left[\mathrm{O}_{2}\right]^{2}\right.} \\
\quad=\frac{1}{(K)^{2}}=\frac{1}{\left(2 \times 10^{-6}\right)^{2}}
\end{gathered}
$$

Equilibrium constant $K^{\prime}=0.25 \times 10^{12}$

$$
=2.5 \times 10^{11}
$$

669 (b)

$$
\begin{gathered}
\mathrm{Mg}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Mg}^{2+}+2 \mathrm{OH}^{-} \\
K_{\mathrm{sp}}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2} \\
{\left[\mathrm{OH}^{-}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{Mg}^{2+}\right]}}} \\
{\left[\mathrm{OH}^{-}\right]=\sqrt{\frac{1.0 \times 10^{-11}}{0.001}}=10^{-4}} \\
\mathrm{pOH}=4 \text { and } \mathrm{pH}=10
\end{gathered}
$$

670 (a)
Precipitation just starts when the product of ionic concentration is equal to $K_{s p}$.
$\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=K_{s p \mathrm{AgCl}}$. This is the limiting case at which precipitation just starts or no precipitation up to this limit.
671 (a)
Such solutions are acidic and methyl orange act on acidic pH
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+\mathrm{SO}_{4}^{2-} ;$ The complex ion is not ionised.
673 (b)
Given density of formic acid $=1.22 \mathrm{~g} / \mathrm{cm}^{3}$
\therefore Weight of formic acid in 1 litre solution
$=1.22 \times 10^{3} \mathrm{~g}$
Thus, $[\mathrm{HCOOH}]=\frac{1.22 \times 10^{3}}{46}=26.5 \mathrm{M}$
Since in case of auto ionisation $\left[\mathrm{HCOOH}_{2}^{+}\right]=$
[HCOO^{-}]
and $\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{HCOOH}_{2}^{+}\right]=10^{-6}$
$\therefore \quad\left[\mathrm{HCOO}^{-}\right]=10^{-3}$
Now \% dissociation of HCOOH

$$
=\frac{\left[\mathrm{HCOO}^{-}\right] \times 100}{[\mathrm{HCOOH}]}=\frac{10^{-3}}{26.5} \times 100=0.004 \%
$$

674 (b)
A buffer of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and HCO_{3}^{-}is formed.
675 (a)
$c \alpha^{2}=K_{a} \quad \therefore \alpha=\sqrt{\left[\frac{K_{a}}{c}\right]}$ or $\alpha=\frac{1}{\sqrt{c}}$.
676 (a)
$\left[\mathrm{H}^{+}\right]=K_{a} . C$

Given, $\left[\mathrm{H}^{+}\right]_{\mathrm{HCOOH}}=\left[\mathrm{H}^{+}\right]_{\mathrm{CH}_{3} \mathrm{COOH}}$

$$
K_{a} \cdot C=K_{a}^{\prime} C^{\prime}
$$

$\Rightarrow 1.8 \times 10^{-4} \times 0.001=1.8 \times 10^{-5} \times C^{\prime}$
$\therefore \quad C^{\prime}=0.01 \mathrm{M}$
677 (a)
$2 \mathrm{Ag}_{2} \mathrm{O}(s) \rightleftharpoons 4 \mathrm{Ag}(s)+\mathrm{O}_{2}(\mathrm{~g})$
$K_{p}=p_{\mathrm{O}_{2}}$
($\because \mathrm{Ag}$ and $\mathrm{Ag}_{2} \mathrm{O}$ are solids)
678 (c)
$M X_{2} \rightleftharpoons M^{2+}+2 X^{-}$
$s \quad 2 s$

$$
K_{\mathrm{sp}}=\left[M^{2+}\right]\left[X^{-}\right]^{2}
$$

If solubility be s then

$$
\begin{array}{lll}
& & K_{\text {sp }}=(s)(2 s)^{2}=4 s^{3} \\
& 4 s^{3}=4 \times 10^{-12} \\
\therefore & s=1 \times 10^{-4} \mathrm{M} \\
\therefore & M^{2+}=s=1 \times 10^{-4} \mathrm{M}
\end{array}
$$

679 (d)
$\mathrm{CaCO}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(\mathrm{~g})$
The equilibrium constant for this reaction is given by $K=\left[\mathrm{CO}_{2}\right]$ (as CaCO_{3} and CaO are solid).
Hence, to get more CO_{2}, we need to pump out continuously the CO_{2} gas.
680 (b)
$\mathrm{H}_{2} \mathrm{O}$ can accept H^{+}or donate H^{-}.
681 (b)
$k_{f}=1.1 \times 10^{-2}, k_{b}=1.5 \times 10^{-3}$
$K_{c}=\frac{k_{f}}{k_{b}}=\frac{1.1 \times 10^{-2}}{1.5 \times 10^{-3}}=7.33$
682 (b)
HCl is metabolically produced in human body.
683 (b)

$$
\underset{\text { Pressure at equilibrium }}{\mathrm{NH}_{4} \mathrm{HS}(s)} \rightleftharpoons \underset{\mathrm{P}}{\mathrm{NH}_{3}(\mathrm{~g})}+\underset{\mathrm{P}}{\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})}
$$

\therefore Total pressure at equilibrium $=2 P=1.12 \mathrm{~atm}$

$$
P=1.12 / 2 \mathrm{~atm}
$$

$\because K_{p}=P_{{ }_{N H}^{3}}^{\prime} \times P_{\mathrm{H}_{2} \mathrm{~S}}^{\prime}$
$\therefore K_{p}=\frac{1.12}{2} \times \frac{1.12}{2}=0.3136 \mathrm{~atm}^{2}$
684 (c)
NaCl does not hydrolyse.
685 (b)
The substance which can donate a pair of electrons is called Lewis base.
Amines contain lone pair of electron on nitrogen atom, so behave as Lewis base.
686 (c)

Both possess the tendency to accept proton.
687 (a)
It is an acidic solution with $\mathrm{pH}<7$ as NaCl solution is neutral but HCl is a strong acid
688 (a)
Methyl orange will give colour only when more of weak acid is used, i.e., more milli equivalents are added. Thus, $\frac{w}{E} \times 1000=$ Meq. Thus, E will be lower if Meq. are more.
689 (c)
Among the given species, correct order of increasing acidic, strength is

$$
\mathrm{OH}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{4}^{+}<H F<\mathrm{H}_{3} \mathrm{O}^{+}
$$

OH^{-}is a basic (i.e., it tends to gain a proton) and hence is least acidic. $\mathrm{H}_{2} \mathrm{O}$ is neutral species. $\mathrm{H}_{3} \mathrm{O}^{+}$is most acidic as it readily lose proton.
690 (b)
Presence of lone pair of electron and they donate two electron pairs
691 (c)
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{CO}_{3}$. It is a salt of strong base and weak acid, so it is basic
692 (d)
BF_{3} has incomplete octet and will act as Lewis acid NH_{3} has lone pair of electron available for donation and thus Lewis base.
693 (d)
These are the characteristics of a reaction in equilibrium.
695 (b)
$\mathrm{AgCl} \rightarrow \mathrm{Ag}^{+}+\mathrm{Cl}^{-}$
$X \quad X$
After NaCl is added $\quad X \quad X+1 \times 10^{-4}$
That is why Ag^{+}will be less
696 (d)
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
Molar concentration of
$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=\frac{9.2}{92}=0.1 \mathrm{~mol} / \mathrm{L}$
In equilibrium state,
(When it 50\% dissociates)

$$
\begin{gathered}
{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.05 \mathrm{M}} \\
{\left[\mathrm{NO}_{2}\right]=0.1 \mathrm{M}}
\end{gathered}
$$

$$
\begin{aligned}
\because & K_{c} & =\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]} \\
\therefore & K_{c} & =\frac{0.1 \times 0.1}{0.05} \\
& & =0.2
\end{aligned}
$$

697 (a)

$$
2 \mathrm{CO}_{2} \rightleftharpoons 2 \mathrm{CO}+\mathrm{O}_{2}
$$

At equili. $0.6 \mathrm{~atm} \quad 0.4 \mathrm{~atm} \quad 0.2 \mathrm{~atm}$

$$
\begin{aligned}
\therefore \quad K_{p} & =\frac{p_{C O}^{2} \times p_{O_{2}}}{p_{C O_{2}}^{2}} \\
& =\frac{(0.4)^{2}(0.2)}{(0.6)^{2}}=0.088
\end{aligned}
$$

698 (c)
Aqueous solution of NaCN is basic because it is a salt of strong base and weak acid
699 (c)
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
$\begin{array}{ccc}1-x & 3 & 0 \\ 3-3 x & \\ 2 x\end{array}$
$\therefore 50 \%$ mixture reacts
$\therefore 1-x+3-3 x=\frac{4}{2}=2$

$$
x=0.5
$$

$\therefore P_{N H_{3}}^{1}=P_{T} \times m f$ of NH_{3}

$$
=\frac{P \times 2 \times 0.5}{(4-0.5 \times 2)}=\frac{P}{3}
$$

700 (b)
The $\mathrm{CH}_{3} \mathrm{COOH}$ is weaker acid than $\mathrm{H}_{2} \mathrm{SO}_{4}$. The reason is that $\mathrm{CH}_{3} \mathrm{COOH}$ is weakly ionised in comparison with $\mathrm{H}_{2} \mathrm{SO}_{4}$.
701 (a)
The problem is valid only if strong acids are mixed. After mixing equal volumes of three acids, total volume $=3 \mathrm{~V}$
$\therefore\left[\mathrm{H}^{+}\right]$after mixing

$$
\begin{aligned}
& =\frac{10^{-3} \times V}{3 V}+\frac{10^{-4} \times V}{3 V} \\
& +\frac{10^{-5} \times V}{3 V} \\
& \quad=\frac{1.11 \times 10^{-3}}{3}=3.7 \times 10^{-4}
\end{aligned}
$$

702 (a)
The ionisation of strong electrolytes in acetic acid, compared to water, is weak and low because acetic acid is a non-polar solvent.
703 (d)
Solubility of $\mathrm{CaF}_{2}=2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
Each mole of CaF_{2} dissolving in $\mathrm{H}_{2} \mathrm{O}$ gives one mole of Ca^{2+} and two moles of F^{-}ions.

$$
\begin{aligned}
& \mathrm{CaF}_{2} \underset{2 \times 10^{-4} \mathrm{M}}{\rightleftharpoons}+\underset{2 \times 2 \times 10^{-4} \mathrm{M}}{2+} \\
& K_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2} \\
&=\left[2 \times 10^{-4}\right]\left[2 \times 2 \times 10^{-4}\right]^{2} \\
& K_{\mathrm{sp}}=3.2 \times 10^{11}
\end{aligned}
$$

704 (b)
$\alpha=\frac{D-d}{d}=\frac{104.16-62}{62}$
$=0.68=68 \%$
705 (d)
HCOO^{-}is base having conjugate acid HCOOH (a monobasic acid).
706 (a)

	$\mathrm{NH}_{4} \mathrm{HS}(s)$	$\rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2}$	
Initially	1	0.5	0
At equilibrium	$(1-x)$	$(0.5+x)$	x

Total pressure at equilibrium

$$
\begin{array}{cc}
& =p_{\mathrm{NH}_{3}}+p_{\mathrm{H}_{2} \mathrm{~S}} \\
& =0.5+x+x=0.84 \\
& x=0.17 \mathrm{~atm} \\
\therefore & p_{\mathrm{NH}_{3}}=0.50+0.17=0.67 \mathrm{~atm} \\
& p_{\mathrm{H}_{2} \mathrm{~S}}=0.17 \mathrm{~atm} \\
\therefore & K_{p}=p_{\mathrm{NH}_{3}} \cdot p_{\mathrm{H}_{2} \mathrm{~S}} \\
& =0.67 \times 0.17=0.114 \mathrm{~atm}
\end{array}
$$

707 (a)
The acidic character of non-metallic oxides increases along the period.
708 (c)
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
We know that, $K_{p}=K_{c}(R T)^{\Delta n_{\mathrm{g}}}$
Here, $\Delta n_{\mathrm{g}}=2-2=0$

$$
\therefore \quad K_{p}=K_{c}(R T)^{0}=K_{c}
$$

709 (c)
Lower is $K_{s p}$, lower is solubility of salt.
710 (d)
$\mathrm{MnS}+2 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{H}_{2} \mathrm{~S}$;
The dissociation of $\mathrm{H}_{2} \mathrm{~S}$ (formed) is suppressed due to the presence of HCl .
711 (b)
$\mathrm{pH}+\mathrm{pOH}=14$
712 (d)
The problem does not have suggests about the nature of acid, i.e., weak or strong. The normality will be 10^{-2} for strong acid. If weak acid, normality can be obtained only if K_{a} is known.
713 (c)
$\left[\mathrm{H}^{+}\right]=1$
$\therefore \mathrm{pH}=-\log 1=0$.
714 (b)
It is an exothermic reaction, hence low temperature and increasing pressure will favour forward reaction
715 (a)
$\mathrm{NH}_{4} \mathrm{Cl}$ is acidic because it is a salt of weak base $\mathrm{NH}_{4} \mathrm{OH}$ and a strong acid HCl . Thus, on hydrolysis, it gives strong acid HCl and weak base $\mathrm{NH}_{4} \mathrm{OH}$.

$$
\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl}
$$

716 (a)

$$
\begin{aligned}
\mathrm{pH}=-\log K_{a} & +\log \frac{[\mathrm{C} . \mathrm{B}]}{[\text { Acid }]} ; \therefore \mathrm{pH} \\
& =\mathrm{p} K_{a}\left[\frac{[\mathrm{C} . \mathrm{B}]}{[\text { Acid }]}=1\right]
\end{aligned}
$$

Find pH by $\frac{[\mathrm{C} . \mathrm{B}]}{[\text { Acid }]}=10$, i.e., $\mathrm{pH}=\mathrm{p} K_{a}+1$
717 (c)
For $A B_{2}: K_{s p}=4 s^{3}=4 \times\left(1.0 \times 10^{-5}\right)^{3}=4 \times$ 10^{-15}.
718 (c)
HClO_{3} is called chloride acid.
719 (b)
Ag^{+}is not a Lewis base as it has no lone pair of electron.
721 (b)
$100 \times 10^{-1}=1000 \times N$
$\therefore \quad N_{\mathrm{HCl}}=10^{-2} \therefore \mathrm{pH}=2$.
722 (b)
Meq. of $\mathrm{HCl}=20 \times 0.1=2$
Meq. of $\mathrm{KOH}=20 \times 0.1=2$
Both are neutralized to give 2 Meq. of KCl (a salt of strong acid + strong base) and thus, does not hydrolyse and shows $\mathrm{pH}=7$.
723 (d)
For $A(s) \rightleftharpoons 2 B(\mathrm{~g})+3 C(\mathrm{~g})$
$\therefore K_{C}=[C]^{3}[B]^{2}$; if $[C]$ becomes twice,
Then let conc. of B becomes B^{\prime}, then

$$
K_{c}=[2 C]^{3}\left[B^{\prime}\right]^{2}
$$

Or $\quad[C]^{3} \cdot[B]^{2}=[2 C]^{3} \cdot\left[B^{\prime}\right]^{2}$
$\therefore \quad \frac{\left[B^{\prime}\right]}{[B]}=\frac{1}{8}=\frac{1}{2 \sqrt{2}}$
724 (d)
The acidic character is $\mathrm{HCl}>\mathrm{HF}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}$ and thus, basic character of conjugate base will be $\mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{HS}^{-}<\mathrm{OH}^{-}$.
725 (c)
We know that,
$\mathrm{pH}=\mathrm{p} K_{a}+\log \frac{[\text { salt }]}{[\text { acid }]}$
$5.5=4.5+\log \frac{[\mathrm{salt}]}{[0.1]}$
[salt] $=1.0 \mathrm{M}$
727 (a)
$\mathrm{CaF}_{2}(s) \rightleftharpoons \mathrm{Ca}^{2+}(a q)+2 \mathrm{~F}^{-}(a q)$
$\left[\mathrm{F}^{-}\right]=2\left[\mathrm{Ca}^{2+}\right]$
$=2 \times 3.3 \times 10^{-4}$
$=6.6 \times 10^{-4} \mathrm{M}$
$K_{\text {sp }}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}$
$=\left(3.3 \times 10^{-4}\right)\left(6.6 \times 10^{-4}\right)^{2}$
$=1.44 \times 10^{-10}$
728 (b)
Buffer solutions do not change their pH on
addition of small amount of acid or base.
(b)

Blood is alkaline having pH between 7.0 to 7.4.
730 (c)
$A+B \rightleftharpoons C$
$K=\frac{[C]}{[A][B]}$
$=\frac{\mathrm{mol} \mathrm{L}^{-1}}{\mathrm{~mol} \mathrm{~L}^{-1} \times \mathrm{mol} \mathrm{L}^{-1}}=\left(\mathrm{mol} \mathrm{L}^{-1}\right)^{-1}=\mathrm{mol}^{-1} \mathrm{~L}$
731 (c)
Stronger is acid, weaker is its conjugate base and vice-versa.
732 (a)
The salt hydrolysis in each case occurs except
$\mathrm{Na} W$ because its $\mathrm{pH}=7$. Thus, $\mathrm{H} W$ is strongest
acid. More is the pH of salt solution, weaker is its acid part.
733 (a)
Follow Le-Chatelier's principle.
734
Hg exist as Hg_{2}^{2+} and not as Hg^{+}. Thus
$K_{\mathrm{sp}}=\left[\mathrm{Hg}_{2}^{2+}\right]\left[\mathrm{I}^{-}\right]^{2}$.
735 (c)
Meq. of $\mathrm{HCl}=40 \times 0.1=4$
Meq. of $\mathrm{NaOH}=10 \times 0.45=4.5$
\therefore Meq. of NaOH left $=0.5$

$$
\begin{array}{lrl}
& \text { Now, }\left[\mathrm{OH}^{+}\right]=\frac{0.5}{50}=10^{-2} \\
\therefore & \mathrm{pOH}=2 \text { and } \mathrm{pH}=12
\end{array}
$$

736 (b)
$K_{p}=K_{c} \mathrm{x}(R T)^{\Delta n}$.
Where $\Delta \mathrm{n}=$ mole of products - mole of reactants.
$\mathrm{pH}=\mathrm{pK}_{a}+\log \frac{[\text { Salt }]}{[\text { Acid }]}\left[\frac{[\text { Salt }]}{[\text { Acid }]}\right.$ increases by 10
times $\mathrm{pH}=\mathrm{pK}_{a}+1$.
738 (b)
$\mathrm{NaOH}=\left[\mathrm{OH}^{-}\right]=10^{-3}$
$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$
$\left[\mathrm{H}^{+}\right]=10^{-11}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\log \left[10^{-11}\right]=11$
$\mathrm{HCl}(a q)=\left[\mathrm{H}^{+}\right]=10^{-3}$
$\mathrm{pH}=-\log \left[10^{-3}\right]=3$
$\mathrm{NaCl}(a q)=$ Neutral; $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7}$ ie, $\mathrm{pH}=7$
739 (d)

$$
\begin{aligned}
K_{1} & =\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} \\
K_{2} & =\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]} \\
K_{3} & =\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{H}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}}
\end{aligned}
$$

$$
\therefore \text { For } \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}
$$

$$
K=\frac{[\mathrm{NO}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{3}}{\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{5 / 2}}=\frac{K_{2} K_{3}^{3}}{K_{1}}
$$

741 (d)
Decrease of K with rise of temperature means that the forward reaction is exothermic. As the given reaction is exothermic, energy of HI is greater or stability is less than H_{2} and I_{2}
742 (b)
$\mathrm{BaSO}_{4} \rightleftharpoons \mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2-}$
Solubility product $=s \times s$
$15 \times 10^{-10}=s^{2}: s=\sqrt{15 \times 10^{-10}}: s$

$$
=3.9 \times 10^{-5}
$$

743 (a)
CO_{2} is present in soda water bottle which increases H^{+}in solution,
$\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$.
744 (a)
On increasing temperature, equilibrium will shift in forward direction due to decrease in intermolecular forces of solid

745
(d)
CaCl_{2} is a salt of strong acid and strong base.
746 (c)
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}$
or $3 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right] \times 75}{25}$
$\therefore \quad\left[\mathrm{H}^{+}\right]=1 \times 10^{-5} M$
748 (b)
$\left[\mathrm{OH}^{-}\right]=1 \times 10^{-5}$

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& \quad=-\log \left[1 \times 10^{-5}\right] \\
& \mathrm{pOH}=5 \\
& \mathrm{pH}+\mathrm{pOH}=14 \\
& \mathrm{pH}=14-\mathrm{pOH} \\
& \quad=14-5 \\
& \mathrm{pH}=9
\end{aligned}
$$

It is definition of Levelling effect.
751 (d)
$N=\frac{75 \times \frac{1}{5}-25 \times \frac{1}{5}}{100}=15-5=\frac{10}{100}=0.1$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log [0.1]=1$
752 (c)
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ;$
$\Delta H=-93.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
This reaction is exothermic therefore the concentration of NH_{3} can be increased by lowering the temperature, high pressure $(\Delta n<0)$ excess N_{2} and H_{2}.
(c)
e. g. , $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ does not give test for Fe^{3+} ions.

754 (c)
$\mathrm{CH}_{3} \mathrm{COONa}$ in water gives alkaline solution due to hydrolysis of acetate ions. $\mathrm{NH}_{4} \mathrm{Cl}$ gives acidic solution due to hydrolysis of NH_{4}^{+}ions. Also $\mathrm{NH}_{4} \mathrm{OH}$ is a weak base due to less dissociation.
755 (c)
$\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{2-}+\mathrm{OH}^{-}$
$\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{3-}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$is a conjugate base of $\mathrm{H}_{3} \mathrm{PO}_{2}$ (a monobasic acid) and does not give $\mathrm{H}^{+}, \mathrm{HPO}_{3}^{2-}$ is a conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{3}^{-}$and does not ionise further, since $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a dibasic acid.
756 (d)
Alkanes are not acidic and thus, R^{-}is strongest base.
757 (a)
$\mathrm{pH}=-\log K_{a}+\log \frac{\text { [Conjugate base] }}{[\text { Acid }]}$
758 (a)
$\left[\mathrm{H}^{+}\right]=\sqrt{K_{a} \cdot C}$
Where, $C=$ initial concentration of the weak acid
$C=\frac{\left[\mathrm{H}^{+}\right]^{2}}{K_{a}}$
$=\frac{\left(3.4 \times 10^{-4}\right)^{2}}{1.7 \times 10^{-5}}$
$C=6.8 \times 10^{-3} \mathrm{M}$
759 (d)
$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
$2 \mathrm{~mol} \quad 2 \mathrm{~mol} \quad 2 \mathrm{~mol}$
Given, $\frac{0.023}{23} \mathrm{~mol} \frac{100}{22400} \mathrm{~mol}$

$$
=1 \times 10^{-3} \mathrm{~mol}=4.46 \times 10^{-3} \mathrm{~mol}
$$

Thus, Na is the limiting reagent and decide the amount of NaOH formed.
$\because 1$ mole Na give $\mathrm{NaOH}=1 \mathrm{~mol}$
$\therefore 1 \times 10^{-3}$ mole Na will give NaOH

$$
=1 \times 10^{-3} \mathrm{~mol}
$$

Concentration of

$$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right] } & =\frac{1 \times 10^{-3} \times 1000}{100}=1 \times 10^{-2} \\
\mathrm{pOH} & =-\log \left[\mathrm{OH}^{-}\right] \\
& =-\log \left(1 \times 10^{-2}\right) \\
& =2 \\
\mathrm{pH} & =14-2=12
\end{aligned}
$$

760 (b)
1 mole of N_{2} reacts with 3 mole of H_{2} thus, for
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} ;(a-x)>(a-3 x)$
$\underset{(a-x)}{\mathrm{a}} \underset{(a-3 x)}{\mathrm{a}} \quad 2 x$
761 (a)

$$
\begin{aligned}
& A+2 B \rightleftharpoons 2 C+D \\
& \begin{array}{cccc}
\mathrm{a} & \mathrm{~b} & \mathrm{o} & \mathrm{o} \\
(a-x) & (b-2 x) & 2 x & x
\end{array}
\end{aligned}
$$

Given, $2 x=0.2$, Also, $\mathrm{a}=1.1$

$$
x=0.1 b=2.2
$$

$\therefore K_{c}=\frac{2 x^{2}}{(a-x)(b-2 x)}$

$$
=\frac{(2 \times 0.1)^{2} \times 0.1}{(1.1-0.1)(2.2-0.2)^{2}}=0.001
$$

762 (a)
$\mathrm{pH}=\mathrm{p} K_{a}+\log \frac{\text { [Conjugate base] }}{[\text { Acid }]}$
$\mathrm{pH}=\mathrm{p} K_{a}+\log 1(\because 50 \%$ neutralization $)$
$\therefore \quad \log \mathrm{H}^{+}=-\log 2 \times 10^{-4}$
or $\quad \mathrm{H}^{+}=2 \times 10^{-4}$
763 (a)
$\mathrm{K}_{2} \mathrm{~S}$ shows alakaline nature due to hydrolysis of
S^{2-} ions,
$\mathrm{S}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HS}^{-}+\mathrm{OH}^{-}$.
764 (b)
B.pt. increases with increase in pressure.

766 (b)
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ salt gives strong base and weak acid on dissolving in water. Hence, it produces an alkaline solution.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \underset{\text { Strong base }}{\mathrm{NaOH}}+\underset{\text { Weak acid }}{\mathrm{H}_{2} \mathrm{CO}_{3}}
$$

767 (a)
Addition of some concentration HCl does not change pH .
768 (d)
CO is neutral.
769 (c)
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3} ; K=278$
$\mathrm{SO}_{3} \rightleftharpoons \mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} ; \quad K^{\prime}=\frac{1}{\sqrt{K}}$
$K^{\prime}=\frac{1}{\sqrt{K}}=\frac{1}{\sqrt{278}}=6 \times 10^{-2}$
770 (b
The reaction shows lower $K_{e q .}$.value in forward direction, i.e., more $K_{e q \text {. }}$ in backward direction or HCN decomposes salt of HNO_{2}.
(d)

Initially $\left[\mathrm{CH}_{3} \mathrm{COONa}\right]=0.1 \mathrm{~mol}$

$$
\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.1 \mathrm{~mol}
$$

when $0.1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COONa}$ is added.

$$
\begin{aligned}
& {\left[\mathrm{CH}_{3} \mathrm{COONa}\right]=0.1+0.1=0.2 \mathrm{~mol}} \\
& \qquad \begin{aligned}
\mathrm{pH} & =\mathrm{p} K_{a}+\log \frac{[\text { salt }]}{[\text { acid }]} \\
& =\mathrm{p} K_{a}+\log \frac{0.2}{0.1} \\
& =\mathrm{p} K_{a}+\log 2
\end{aligned}
\end{aligned}
$$

(c)

For binary salts (like $\mathrm{AgCl}, \mathrm{AgBr}$).

$$
s=\sqrt{K_{\mathrm{sp}}}
$$

\therefore Solubility of $\mathrm{AgCl}=\sqrt{1.8 \times 10^{-10}}$

$$
=1.35 \times 10^{-7} \mathrm{~mol} / \mathrm{L}
$$

Solubility of $\mathrm{AgBr}=\sqrt{5.0 \times 10^{-13}}$

$$
=7.1 \times 10^{-7} \mathrm{~mol} / \mathrm{L}
$$

For, $\mathrm{Ag}_{2} \mathrm{CrO}_{4}, K_{\mathrm{sp}}=4 s^{3}$
\therefore Solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$

$$
\begin{gathered}
=\sqrt[3]{\frac{\mathrm{K}_{\mathrm{sp}}}{4}} \\
=\sqrt[3]{\frac{2.4 \times 10^{-12}}{4}} \\
=\sqrt[3]{600 \times 10^{-15}} \\
=8.44 \times 10^{-5} \mathrm{~mol} / \mathrm{L}
\end{gathered}
$$

As $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ has maximum solubility, it will give maximum Ag^{+}ions in solution. Hence, it will be used.
773 (a)
Ostwald's dilution law is valid only for weak electrolytes.
774 (b)
$\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{S}^{2-}\right]=10^{-1} \times 8.1 \times 10^{-19}=8.1 \times$
$10^{-20}>K_{\text {sp }}$ of $\mathrm{ZnS}\left(3 \times 10^{-22}\right)$
$\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{S}^{2-}\right]=10^{-2} \times 8.1 \times 10^{-19}=8.1 \times$
$10^{-21}>K_{\text {sp }}$ of $\mathrm{CuS}\left(8 \times 10^{-36}\right)$

Gas + Liquid \rightleftharpoons Solution. An increase in P will favour forward reaction.
(b)
$K_{a_{1}}>K_{a_{2}}$.
779 (d)

$$
\begin{array}{llll}
A & 2 B & 2 C+D \\
\mathrm{a} & \frac{3}{2} a & { }_{x} & 0 \\
& & \\
& (a-x) & \left(\frac{3}{2} a-2 x\right) &
\end{array}
$$

Given, $a-x=2 x$
$\therefore x=a / 3$
Now, $K_{C}=\frac{[C]^{2}[D]}{[A][B]^{2}}=\frac{\left(\frac{2 a}{3}\right)^{2} \times \frac{a}{3}}{\left(a-\frac{a}{3}\right)\left(\frac{3 a}{2}-\frac{2 a}{3}\right)^{2}}=0.32$
780 (b)
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \rightleftharpoons 2 \mathrm{Al}^{3+}+3 \mathrm{SO}_{4}^{2-}$
$K_{\text {sp }}=\left[\mathrm{Al}^{3+}\right]^{2}\left[\mathrm{SO}_{4}^{2-}\right]^{3}$
781 (a)
$\left[\mathrm{H}^{+}\right]$from weak acid,

$$
\begin{aligned}
& =c \cdot \alpha=c \sqrt{\frac{K_{a}}{c}}=\sqrt{K_{a} c}=\sqrt{10^{-5} \times 0.1} \\
& =10^{-3}
\end{aligned}
$$

$\therefore \quad \mathrm{pH}=3$
782 (a)

$$
\left[\mathrm{H}^{+}\right]=10^{-10} M
$$

$\therefore \quad \mathrm{pH}=10$
$\therefore \quad \mathrm{pOH}=4$
783 (b)
$\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}$
$\Delta \mathrm{H}=-13.7 \mathrm{kcal}$.
784 (a)
$\mathrm{pH}=-\log \left(5 \times 10^{-10}\right)+\log \left[\frac{5 \times V}{V+10} / \frac{10 \times 2}{V+10}\right]$
$9=-\log \left(5 \times 10^{-10}\right)+\log \frac{V}{4}$
On solving, $V=2 \mathrm{~mL}$
785 (b)
$K_{1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]} ; K_{2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}$
$K_{3}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{PO}_{4}^{3-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]}$ Multiplying these three
$\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{K}_{3}=\frac{\left[\mathrm{H}^{+}\right]^{3}\left[\mathrm{PO}_{4}^{3-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}$
786 (a)

$$
\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}
$$

Initial conc. $\begin{array}{llll}\frac{4}{4} & 0 & 0\end{array}$
Equili. conc. $\frac{2}{4} \quad \frac{2}{4} \quad \frac{2}{4}$

$$
\begin{aligned}
K & =\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]} \\
& =\frac{2 \times 2 \times 4}{4 \times 4 \times 2}=\frac{1}{2}=0.5
\end{aligned}
$$

787
(b)

Follow Le-Chatelier's principle.
788 (b)
Let the solubility of $\mathrm{Ag}_{2} \mathrm{~S}$ is s.

$$
\underset{s}{\mathrm{Ag}_{2} \mathrm{~S}} \rightleftharpoons \underset{2 s}{2 \mathrm{Ag}^{+}}+\underset{s}{\mathrm{~S}^{2-}}
$$

$\mathrm{Na}_{2} \mathrm{~S}$, being a strong electrolyte, dissociates completely and provides
$\left[\mathrm{S}^{2-}\right]=0.1 \mathrm{M}$

$$
\begin{aligned}
\therefore \quad\left[\mathrm{Ag}^{+}\right] & =s \\
{\left[\mathrm{~S}^{2-}\right] } & =(s+0.1) \mathrm{M} \\
K_{\mathrm{sp}} & =\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right] \\
& \\
& =(2 s)^{2}(s+0.1) \\
& =4 s^{3}+0.4 s^{2}
\end{aligned}
$$

$$
\Rightarrow \quad 10^{-17}=0.4 s^{2}
$$

[\because Higher powers are neglected.]
$\therefore \quad s=5 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}$
789 (a)
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{SO}_{3}$
$5 \mathrm{~mol} 5 \mathrm{~mol} \quad 0 \quad$ initially
$(5-x)\left(5-\frac{1}{2} x\right) x \quad$ at equilibrium
$x=\frac{60}{100} \times 5=3$
Total number of moles $=(5-x)+\left(5-\frac{1}{2} x\right)+x$
$=(5-3)+\left(5-\frac{1}{2} \times 3\right)+3$
$=8.5$
790 (a)
$s=\sqrt{K_{s p}}=\left(2.5 \times 10^{-9}\right)^{1 / 2}$
$=5 \times 10^{-5} \mathrm{~mol}_{\mathrm{litre}}{ }^{-1}$
$\therefore \frac{w}{128}=5 \times 10^{-5}$
$\therefore w=6.4 \times 10^{-3} \mathrm{~g}$.
791 (b)
In the iodometric estimation in laboratory, this process is involved

$$
\begin{aligned}
& \mathrm{MnO}_{4}^{-}+\mathrm{H}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{I}_{2} \\
& \mathrm{I}_{2}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+\mathrm{I}^{-}
\end{aligned}
$$

792 (c)
$K_{1}=\frac{\left[\mathrm{NO}_{2}\right]}{[\mathrm{NO}]\left[\mathrm{O}_{2}\right]^{1 / 2}}$
$K_{2}=\frac{\left[\mathrm{NO}^{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}$
$\therefore \frac{1}{K_{2}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]}$
or, $\frac{1}{\sqrt{K_{2}}}=\frac{\left[\mathrm{NO}_{2}\right]}{[\mathrm{NO}]\left[\mathrm{O}_{2}\right]^{1 / 2}}$
From Eqs.(i) and (iii),
$K_{1}=\frac{1}{\sqrt{K_{2}}}$
$\therefore K_{2}=\frac{1}{K_{1}^{2}}$
793 (a)
g equivalent of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=\frac{100}{1000} \times \frac{1}{10} \times 66=$ 0.66
g equivalent ofNa $\mathrm{CO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}=\frac{0.62}{62}=0.01$
left $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is $0.66-0.01=0.65$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is a salt of strong acid and weak base
794 (b)
$K_{p}=K_{c}(R T)^{\Delta n}$
$K_{p}=K_{c}$ only when $(R T)^{\Delta n}=0$
(a) $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$

$$
\begin{aligned}
\Delta n & =n_{p}-n_{R} \\
& =2-1 \\
& =1
\end{aligned}
$$

$\therefore \quad \Delta K_{p} \neq K_{c}$
(b) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$

$$
\begin{aligned}
\Delta n & =2-2 \\
& =0 \\
\therefore \quad K_{p} & =K_{c}
\end{aligned}
$$

(c) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$

$$
\begin{aligned}
\Delta n & =2-4 \\
& =-2
\end{aligned}
$$

$\therefore \quad \Delta K_{p} \neq K_{c}$
(d) $2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$

$$
\begin{array}{rlrl}
& & \Delta n & =3-2=1 \\
\therefore & \Delta K_{p} & \neq K_{c}
\end{array}
$$

795 (a)
$K_{s p}=1.8 \times 10^{-10}=4 \times 10^{-3} \times\left[\mathrm{Cl}^{-}\right]$
$\left[\mathrm{Cl}^{-}\right]=4.5 \times 10^{-8} \mathrm{~mol} \mathrm{litre}{ }^{-1}$.
796 (d)
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$

1	0	0	Initial
$(1-\alpha)$	α	$\alpha / 2$	At

equilibrium
Total moles $=(1-\alpha)+\alpha+\frac{\alpha}{2}=1+\frac{\alpha}{2}$
Partial pressure of $\mathrm{H}_{2} \mathrm{O}=p\left(\frac{1-\alpha}{1+\frac{\alpha}{2}}\right)$
Partial pressure of $\mathrm{H}_{2}=p\left(\frac{\alpha}{1+\frac{\alpha}{2}}\right)$
Partial pressure of $\mathrm{O}_{2}=p\left(\frac{\alpha}{2+\alpha}\right)$

$$
\begin{aligned}
& K_{p}=\frac{p \mathrm{H}_{2} \cdot p \mathrm{O}_{2}^{1 / 2}}{p \mathrm{H}_{2} \mathrm{O}} \\
& K_{p}=\frac{\alpha^{3 / 2} p^{1 / 2}}{(1-\alpha)(2+\alpha)^{1 / 2}}
\end{aligned}
$$

797 (a)

For weak electrolytes, according to Ostwald's dilution law
$\alpha=\sqrt{K V}$
Here,

$$
\alpha=0.01 \%=0.0001=1 \times 10^{-4}
$$

$$
V=\frac{1}{C}=\frac{1}{1.0}=1 \mathrm{~L}
$$

$\therefore \quad K_{a}=\frac{\alpha^{2}}{V}=\frac{\left(1 \times 10^{-4}\right)^{2}}{1}=1 \times 10^{-8}$
798 (a)
Given, $K_{b}=1.8 \times 10^{-5},\left[\mathrm{NH}_{3}\right]=0.1 \mathrm{M}$

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

Let concentration of $\left[\mathrm{NH}_{4}^{+}\right]=\left[\mathrm{OH}^{-}\right]=x$

$$
\begin{aligned}
K_{b} & =\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]} \\
& =\frac{x \times x}{0.1}
\end{aligned}
$$

or $\quad 1.8 \times 10^{-5}=\frac{x^{2}}{0.1}$
or $\quad x^{2}=1.8 \times 10^{-6}$
$\therefore \quad x=1.35 \times 10^{-3}$
$\therefore \quad\left[\mathrm{OH}^{-}\right]=1.35 \times 10^{-3}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$=-\log \left(1.35 \times 10^{-3}\right)$
$=2.87$
$\mathrm{pH}=14-\mathrm{pOH}=14-2.87=11.13$
\because Relative strength of weak acids $=\sqrt{\left(\frac{K_{a_{1}}}{K_{a_{2}}} \times \frac{c_{1}}{c_{2}}\right)}$
Assume c_{1} and c_{2} are same (Although not given)
\therefore Relative strength $=\sqrt{\left(\frac{K_{a_{1}}}{K_{a_{2}}}\right)}=\sqrt{\left(\frac{2.1 \times 10^{-4}}{1.1 \times 10^{-5}}\right)}$
Relative strength for HCOOH to $\mathrm{CH}_{3} \mathrm{COOH}=$ 4.36: 1 .

800 (b)
According to Arrhenius concepts acids are those substances which give proton in aqueous solution.
\therefore Gaseous HCl is not an Arrhenius acid.
801 (c)
$\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$
According to Le-Chatelier's principle, addition of temperature shifts a endothermic reaction towards right. The addition of temperature to the above reaction will cause it to right, hence it is an endothermic reaction. $(\Delta H=+v e)$.
802 (b)
$\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
$\begin{array}{cc}1-\alpha & { }_{\alpha}^{0}\end{array}$
$\therefore K_{p}=\frac{\alpha^{2}}{(1-\alpha)}\left[\frac{P}{1+\alpha}\right]=\frac{\alpha^{2} P}{1-\alpha^{2}}$

Or $\alpha=\sqrt{\frac{K_{p}}{P}}$ if $1-\alpha^{2}=1$
803 (b)
$K_{s p}=4 s^{3}$ or $s=\sqrt[3]{\frac{K_{s p}}{4}}=\sqrt[3]{\frac{4 \times 10^{-12}}{4}}=10^{-4}$
804 (b)
$\Delta G=0$ at equilibrium
805 (a)
$\mathrm{NH}_{4} \mathrm{HS}(s) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$

1	0	0	
	p	p	At

equilibrium
Given,

$$
\begin{aligned}
p+p & =100 \mathrm{~atm} \\
2 p & =100 \mathrm{~atm} \\
p & =50 \mathrm{~atm} \\
K_{p} & =p_{\mathrm{NH}_{3}} \cdot p_{\mathrm{H}_{2} \mathrm{~S}} \\
& =50 \times 50=2500 \mathrm{~atm}^{2}
\end{aligned}
$$

806 (c)
$A X_{2}$ is ionised as follows

$$
\begin{aligned}
& A X_{2} \\
& S \mathrm{~mol} \mathrm{~L}^{-1}
\end{aligned} \rightleftharpoons A^{2+}+\quad 2 X^{-}
$$

Solubility product of $A X_{2}$

$$
\left(K_{\mathrm{sp}}\right)=\left[A^{2+}\right]\left[X^{-}\right]^{2}=S \times(2 S)^{2}=4 S^{3}
$$

$\therefore K_{\mathrm{sp}}$ of $A X_{2}=3.2 \times 10^{-11}$
$\therefore 3.2 \times 10^{-11}=4 S^{3}$
$S^{3}=0.8 \times 10^{-11}=8 \times 10^{-11}$
Solubility $=2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
807 (b)

$$
\begin{aligned}
s \text { of } \mathrm{Ag}_{2} \mathrm{SO}_{4} & =\left[\frac{K_{s p}}{4}\right]^{1 / 3} \\
& =\left[\frac{5.5 \times 10^{-5}}{4}\right]^{1 / 3} \\
& =2.39 \times 10^{-2} M
\end{aligned}
$$

s of $\mathrm{AgBrO}_{3}=\sqrt{K_{s p}}=\left(2 \times 10^{-5}\right)^{1 / 2}$

$$
=4.4 \times 10^{-3} \mathrm{M}
$$

808 (a)
Base $+\mathrm{H}^{+} \rightarrow$ Conjugate acid.
809 (c)
e.g., CuSO_{4} is blue because Cu^{2+} ions are blue;
$\mathrm{CuCr}_{2} \mathrm{O}_{7}$ is green because Cu^{2+} is blue and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ is orange yellow.
810 (b)
pH of $\mathrm{HCl}=2 \therefore[\mathrm{HCl}]=10^{-2} \mathrm{M}$
pH of $\mathrm{NaOH}=12 \therefore[\mathrm{NaOH}]=10^{-2} M$

$\therefore\left[\mathrm{OH}^{-}\right]$left from $\mathrm{NaOH}=\frac{1}{500}=2 \times 10^{-3} \mathrm{M}$
$\therefore \quad \mathrm{pOH}=-\log \mathrm{OH}^{-}=-\log 2 \times 10^{-3}$
$\therefore \quad \mathrm{pOH}=2.6989$
$\therefore \quad \mathrm{pH}=11.3010$
811 (d)
$\Delta G^{0}=-2.303 R T \log K_{p} ;$
$1.7=-2.303 \times 8.314 \times 10^{-3} \times 298 \log K_{p}$
$\therefore K_{p}=0.5$
813 (c)
Aprotic solvents are those from which hydrogen ion or OH^{-}cannot be derived.

814 (a)
$K_{c}=\frac{k_{f}}{k_{b}}$
$\therefore \quad 20=\frac{10}{K_{b}}$
$\therefore \quad k_{b}=\frac{1}{2}=0.5$
815 (d)
For the reversible reaction,

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& \Delta n_{g}=2-(1+3) \\
& =2-4=-2 \\
& R=0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& T=500+273=773 \mathrm{~K} \\
& K_{p}=K_{c}(R T)^{\Delta n_{g}} \\
& K_{p}=K_{c} \times(R T)^{-2} \\
& \text { or } \\
& K_{c}=\frac{K_{p}}{(R T)^{-2}} \\
& =\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}
\end{aligned}
$$

or $\quad 1.44 \times 10^{-5} /(0.082 \times 773)^{-2}$
816 (a)

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\frac{10^{-5} \times V+10^{-3} \times V}{2 V} \\
& =\frac{1.01 \times 10^{-3}}{2}
\end{aligned}
$$

$\therefore \mathrm{pH}=3.2967$
817 (c)

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

and $K_{b}=\frac{[\mathrm{HF}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{F}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
$\therefore K_{a} \times K_{b}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{w}$.
818 (b)
$\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-4} \mathrm{M}$

819 (c)
Because $\mathrm{pH}=8$ shows basic nature but HCl is a strong acid
820 (a)
$\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2}\right]=K_{\text {sp }}$ or $K_{\text {sp }}=(2 S)^{2} \times S=4 S^{3}$.
821 (b)
$K_{c}=\frac{K_{f}}{K_{b}}=\frac{2.38 \times 10^{-4}}{8.15 \times 10^{-5}}=2.92$
822 (c)
$\mathrm{pH}=3.82=-\log \left[\mathrm{H}^{+}\right]$
$\therefore \quad\left[\mathrm{H}^{+}\right]=1.5 \times 10^{-4} \mathrm{M}$.
823 (a)
$\mathrm{CH}_{3}-\mathrm{CH}_{3}$ is neutral or least acidic and thus, its conjugate base should be strongest.
824 (d)
$K_{s p}$ of $\mathrm{Na}_{2} \mathrm{~S}$ is very high.
826 (c)
An increase H^{+}favours the backward reaction.
828 (a)
$K_{p}=K_{c}(R T)^{\Delta n_{g}}$
$\Delta n_{\mathrm{g}}=1-1.5=-0.5$
$K_{p}=K_{c}(R T)^{-1 / 2}=\frac{K_{c}}{(R T)^{1 / 2}}$
$\therefore \quad \frac{K_{c}}{K_{p}}=(R T)^{1 / 2}$
829 (a)
For the reaction, we know that

$$
K_{p}=K_{c}(R T)^{\Delta n_{g}}
$$

where, $\Delta n_{\mathrm{g}}=$ Number of gaseous moles of product - Number of gaseous moles of reactant
Hence, if $K_{p}>K_{c}$, then Δn must be positive. It means that there is a decrease in volume of reaction, hence low pressure will favour the forward reaction.
830 (b)
$0.05 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution

$$
\begin{aligned}
& \cong 2 \times 0.05 \mathrm{~N} \mathrm{Ba}(\mathrm{OH})_{2} \\
& \cong 0.10 \mathrm{NBa}(\mathrm{OH})_{2} \\
\therefore \quad \mathrm{pOH} & =-\log \left[\mathrm{OH}^{-}\right] \\
& =-\log (0.10)=1 \\
\mathrm{pH} & =14-\mathrm{pOH} \\
& =14-1=13
\end{aligned}
$$

831 (d)
$\mathrm{pH}=12 \therefore \mathrm{pOH}=2$
$\therefore \quad\left[\mathrm{OH}^{-}\right]=10^{-2}$
Now $\quad \mathrm{Ba}(\mathrm{OH})_{2}=\mathrm{Ba}^{2+}+2 \mathrm{OH}^{-}$
$\therefore \quad K_{s p}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$

$$
\begin{aligned}
& =\left[\frac{10^{-2}}{2}\right]\left[10^{-2}\right]^{2} \because\left[\mathrm{Ba}^{2+}\right] \\
= & \frac{1}{2} \times\left[\mathrm{OH}^{-}\right] \\
= & 5 \times 10^{-7} .
\end{aligned}
$$

832 (b)
HSO_{4}^{-}is the conjugate base of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

(c)
$K_{p}=K_{c}(R T)^{\Delta n g}$
Here, $\Delta n_{\mathrm{g}}=-1$ and $K_{c}=26$
$R=0.0812, T=250+273=523 \mathrm{~K}$
$K_{p}=26 \times(0.0812 \times 523)^{-1}=0.605=0.61$
835 (d)
NaCN (4 millimole) and $\mathrm{HCl}(2$ millimole) on reaction give 2 millimole of HCN and 2 millimole of NaCN are left which acts as buffer.
837 (a)
Phenolphthalein furnishes H^{+}and phenolphthalein anion is solution.
(c)
$\mathrm{Hg}_{2} \mathrm{I}_{2} \rightleftharpoons \mathrm{Hg}_{2}^{2+}+2 \mathrm{I}^{-}$

$$
K_{\mathrm{sp}}=\left[\mathrm{Hg}_{2}^{2+}\right]\left[\mathrm{I}^{-}\right]^{2}
$$

839 (d)
According to law of mass action, at a given temperature the rate of reaction at a particular instant is proportional to the product of active masses of the reactants at that instant raised to powers which are numerically equal to the numbers of their respective molecules.
840 (d)
HCl is accepting proton in HF medium and acts as weak base .
841 (a)
$2 A B_{2}(\mathrm{~g}) \rightleftharpoons 2 A B(\mathrm{~g})+B_{2}(\mathrm{~g})$
${ }_{1-x}^{1} \quad{ }_{x}^{0} \quad \frac{0}{2}$
$\therefore \quad K_{p}=\frac{x^{2} \cdot x}{2(1-x)^{2}}\left[\frac{P}{1+\frac{x}{2}}\right]^{1}$
x being small $\therefore 1-x \approx 1$ and $1+\frac{x}{2} \approx 1$
$\therefore \quad K_{p}=\frac{x^{3} . P}{2}$
842 (d)
According to Lewis, electron deficient species are called acids while bases are the substances which have unshared pair of electron and can donate the electron pair to
the formation of coordinate bond. Hence,
$\mathrm{H}_{2} \mathrm{O}$: is a Lewis base while
$\mathrm{BF}_{3}, \mathrm{AlCl}_{3}$ and SO_{2} are Lewis acids.
843
(b)
0.1 M weak acid (HQ) has $\mathrm{pH}=3$
$\therefore\left[\mathrm{H}^{+}\right]=C \alpha=10^{-3}$
$\therefore \quad \alpha=10^{-2} \quad\left(\because C=10^{-1}\right)$
Now for weak acid,
$K_{a}=C \alpha^{2}=C \alpha \cdot \alpha=10^{-3} \times 10^{-2}=10^{-5}$
844 (b)
So that only II group radicals are precipitated, otherwise III group also get precipitated.
845 (a)
$\mathrm{Mg}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Mg}^{2+}+2 \mathrm{OH}^{-}$
$(x)(2 x)^{2}$
$K_{\text {sp }}=4 x^{3}$
846 (a)
$K_{p}=\frac{\left(p_{\mathrm{SO}_{3}}\right)^{2}}{\left(p_{\mathrm{SO}_{2}}\right)^{2}\left(p_{\mathrm{O}_{2}}\right)}=\frac{(0.331)^{2}}{(0.662)^{2}(0.101)}=2.5$
Now, $\quad K_{p}=\frac{\left(p_{\mathrm{SO}_{3}}\right) 2}{\left(p_{\mathrm{SO}_{2}}\right)^{2} \mathrm{PO}_{2}}$;
If $\quad p_{\mathrm{SO}_{3}=}=p_{\mathrm{SO}_{2}}$
Then, $\quad p_{\mathrm{O}_{2}}=\frac{1}{K_{p}}=\frac{1}{2.5}=0.4 \mathrm{~atm}$
847 (b)
The salt with lower solubility product (AgI) will precipitate first from the solution by adding KI.
848 (b)
The species which can donate a lone pair of electron, are called Lewis base e.g., $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Cl}^{-}$etc.
849 (a)

$K_{\text {base } \mathrm{NH}_{3}}=\frac{K_{f}}{K_{b}}=\frac{K_{w}}{K_{\text {acid } \mathrm{NH}_{4}^{+}}}\left(\because K_{\text {acid }} \times K_{\text {base }}\right.$ $\left.=K_{w}\right)$
or $\quad \frac{K_{f}}{3.4 \times 10^{10}}=\frac{10^{-14}}{5.6 \times 10^{-10}}$
or $\quad K_{f}=6.07 \times 10^{5} \mathrm{~s}^{-1}$.
850 (b)
$K_{S p}$ is characteristic constant for given electrolyte. 851

It is an acid-base reaction;
Rest all occurs in reverse direction.

Catalyst affect both the forward and backward reactions upto same extent, hence it, overall does not affect the equilibrium state. However, it brings equilibrium state quickly.
853 (b)
Given, aqueous solution of
NH_{3} (weak base) $\mathrm{C}=0.01 \mathrm{M}$

$$
\begin{aligned}
\alpha & =5 \%=\frac{5}{100} \\
{\left[\mathrm{OH}^{-}\right] } & =C \alpha=0.01 \times \frac{5}{100}=5 \times 10^{-4} \\
\mathrm{pOH} & =-\log \left[\mathrm{OH}^{-}\right] \\
& =\log \left(5 \times 10^{-4}\right) \\
& =4 \log 10-\log 5 \\
& =4-0.6989 \\
& =3.3010
\end{aligned}
$$

$\therefore \mathrm{pH}=14-\mathrm{pOH}=14-3.3010=10.6990$

```
\(\begin{gathered}\mathrm{NH}_{2} \mathrm{COONH}_{4}(s) \\ 1\end{gathered} \underset{2}{2} \mathrm{NH}_{3}(\mathrm{~g})+\underset{2}{\mathrm{CO}_{2}(\mathrm{~g})}\)
```

If p is the total pressure at equilibrium
$K_{p}=\frac{\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{NH}_{2} \mathrm{COONH}_{4}\right]}$
$2.9 \times 10^{-5}=\frac{\left(\frac{2 p}{3}\right)^{2} \times \frac{p}{3}}{1}$
$2.9 \times 10^{-5}=\frac{4 \times p^{3}}{27}$
$\Rightarrow p^{3}=\frac{27 \times 2.9 \times 10^{-5}}{4}$
$=1.9575$
$p=\sqrt[3]{1.9575}=0.058$
855 (c)

$$
\begin{array}{ll}
3 A+4 B \rightleftharpoons 2 C+3 D \\
\Rightarrow & K_{1}=\frac{[C]^{2}[D]^{3}}{[A]^{3}[B]^{4}} \tag{i}
\end{array}
$$

When moles of $C=1$, the equation becomes

$$
\begin{align*}
& \frac{3}{2} A+2 B \rightleftharpoons C+\frac{3}{2} D \\
\Rightarrow & K_{2}=\frac{[C][D]^{3 / 2}}{[A]^{3 / 2}[B]^{2}} \tag{ii}
\end{align*}
$$

On comparing Eq.(i) with Eq.(ii), we get
$K_{2}^{2}=K_{1} \quad$ or $\quad K_{2}=\left(K_{1}\right)^{1 / 2}$
Hence, equilibrium extent $=\frac{1}{2}$
856 (d)

$$
\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}
$$

$$
\begin{aligned}
& K_{p}=K_{c}(R T)^{\Delta n} \\
& \Delta n=1-2=-1 \\
& K_{p}=K_{c}(R T)^{-1}
\end{aligned}
$$

857
(d)

$$
\begin{array}{rlrl}
\text { Meq. of } \mathrm{HCl} & =75 \times \frac{1}{5}=15 \\
\quad \text { Meq. of } \mathrm{NaOH} & =25 \times \frac{1}{5}=5 \\
\therefore \text { Meq. of } \mathrm{HCl} \text { left } & =15-5=10 \\
& \text { Now }[\mathrm{HCl}] \mathrm{left} & =\frac{10}{100}=10^{-1} \\
\therefore \quad \mathrm{pH} & =1
\end{array}
$$

858 (b)
A Lewis acid is a substance, which can accept a pair of electrons, e.g., $\mathrm{H}_{3} \mathrm{O}^{+}$.
860 (a)
$K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]}=\frac{[0.120 / 4]^{2}}{\left(\frac{0.080}{4}\right)^{2}\left(\frac{0.64}{4}\right)}=14.06$
861 (b)

$$
\begin{gathered}
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g}) \\
K_{c}=0.1, K_{p}=K_{c}(R T)^{\Delta n}
\end{gathered}
$$

$\Delta n=$ Number of gaseous product - Number of gaseous reactants

$$
\Delta n=2-2=0
$$

$$
\Delta n=0
$$

$\therefore K_{p}=K_{c}=0.1$
862 (c)
For the reaction,

At $t=0$

$$
\mathrm{P}_{4}(s)+6 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{PCl}_{3}(\mathrm{~g})
$$

At eq.
$\begin{array}{lll}1 & 1 & 0\end{array}$

As $\quad(1-x)>(1-6 x)$
Hence, at equilibrium $\quad\left[\mathrm{P}_{4}\right]>\left[\mathrm{Cl}_{2}\right]$
865 (c)
Dissociation of acetic acid increases as,
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
866 (d)
The reaction in which number of moles of reactants= number of moles of products are not effected by change in pressure or volume.
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
\therefore Number of moles of reactant $=$ number of moles of products

$$
2=2
$$

\therefore This reaction is not effected by change in pressure or volume.
867 (d)
$\mathrm{AgCl} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Cl}^{-}$

$$
K_{s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=s^{2}
$$

$$
s=\sqrt{K_{s p}}=1.1 \times 10^{-10}=10^{-5}
$$

Similarly s for AgI is 10^{-8},
s for PbCrO_{4} is 2

$$
\begin{aligned}
& \times 10^{-7} \text { and } s \text { for } \mathrm{Ag}_{2} \mathrm{CO}_{3} \text { is } 1.26 \\
& \times 10^{-4}
\end{aligned}
$$

Most soluble $-\mathrm{Ag}_{2} \mathrm{CO}_{3}$, least soluble AgI
Given, concentration of $\mathrm{NaOH}=10^{-10} \mathrm{M}$

$$
\begin{gathered}
\mathrm{NaOH} \\
10^{-10}
\end{gathered} \underset{10^{-10}}{\mathrm{Na}^{+}}+\underset{10^{-10}}{\mathrm{OH}^{-}}
$$

$\therefore\left[\mathrm{OH}^{-}\right]$from $\mathrm{NaOH}=10^{-10}$
$\therefore \quad$ Total $\left[\mathrm{OH}^{-}\right]=10^{-7}+10^{-10}$
$=10^{-7}(1+0.001)$
$=10^{-7}\left(\frac{1001}{1000}\right)$
$=10^{-10} \times 1001$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$=-\log \left(1001 \times 10^{-10}\right)$
$=-3.004+10$
$=6.9996$
$\because \quad \mathrm{pH}+\mathrm{pOH}=14$
$\therefore \quad \mathrm{pH}=14-6.9996$

$$
=7.0004=7
$$

870 (b)
$K_{H}=\frac{K_{w}}{K_{b}}=\frac{10^{-14}}{1.77 \times 10^{-5}}=5.65 \times 10^{-10}$
871 (d)
$1 M$ solution of strong acid must have $\mathrm{pH}=1$.
Since, $\mathrm{pH}=5$ which is possible only when acid is weak $\left[\mathrm{H}^{+}\right]=c \cdot \alpha$.
872 (b)
$K_{s p}=s^{2}$
$\therefore s=1.0 \times 10^{-4} \mathrm{~m} / \mathrm{l}$

$$
=1.0 \times 10^{-4} \times 283 \times \frac{100}{1000} \mathrm{~mL}
$$

$$
=28.3 \times 10^{-2} \mathrm{~g} / 100 \mathrm{~mL}
$$

873 (d)
For basic buffer,

$$
\mathrm{pOH}=\mathrm{p} K_{b}+\log \frac{[\text { salt }]}{[\text { base }]}
$$

Given, $\quad[$ salt $]=[$ base $]=1$

$$
\begin{aligned}
& \quad \begin{array}{l}
K_{b}= \\
\mathrm{pOH}
\end{array} \quad=\mathrm{p} K_{b}=-\log \left(2 \times 10^{-5}\right) \\
& \quad=5-\log 2 \\
& \quad=5-0.30=4.70 \\
& \\
& \\
& \mathrm{pH}= \\
& \\
& \\
& \\
& =
\end{aligned}
$$

874 (c)
$\mathrm{NH}_{4} \mathrm{Cl}$ being a strong electrolyte, dissociates as

$$
\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}
$$

and $\mathrm{NH}_{4} \mathrm{OH}$ as,

$$
\mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

weak electrolyte common ion
Due to the presence of common ion, the degree of dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ decreases. Thus, less OH^{-}ions are produced which are sufficient only for the precipitation of hydroxides if III group radicals and not of higher group radicals.
875 (c)
Let molar solubility of $\mathrm{Cr}(\mathrm{OH})_{3}=s \mathrm{~mol} \mathrm{~L}^{-1}$

$$
\begin{aligned}
& \mathrm{Cr}(\mathrm{OH})_{3}(s) \rightleftharpoons \mathrm{Cr}^{3+}(a q)+3 \mathrm{OH}^{-}(a q) \\
& K_{s p}=1.6 \times 10^{-30}=\left[\begin{array}{c}
3 s \\
{\left[\mathrm{Cr}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}}
\end{array}\right. \\
& =(s)(3 s)^{3}=27 s^{4} \\
& \begin{array}{ll}
\therefore & s^{4}=\frac{1.6 \times 10^{-30}}{27} \\
\therefore & s=\sqrt[4]{\frac{1.6 \times 10^{-30}}{27}}
\end{array}
\end{aligned}
$$

876 (a)
$\Delta G^{0}=-2.303 R T \log K$
$-4.606 \times 10^{3}=-2.303 \times 2 \times 500 \log K$
$\therefore K=100$
877 (b)
$2 A(\mathrm{~g}) \rightleftharpoons 3 C(\mathrm{~g})+D(s)$
For this reaction, $\Delta n_{\mathrm{g}}=3-2=1$
$\therefore \quad K_{p}=K_{c}(R T)^{1}$
or $\quad K_{c}=\frac{K_{p}}{R T}$
878 (a)
$\mathrm{BaCl}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4} \downarrow+2 \mathrm{NaCl}$
879 (d)
CCl_{4} is not a Lewis or Bronsted acid as it does not contain H^{+}and has complete ocetet
880 (a)
Given, $\mathrm{NO}_{2} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}+\mathrm{O}_{2}, \quad K_{1}$
...(i)

$$
\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}, \quad K_{2}
$$

...(ii)
Required reaction

$$
\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}, \quad K
$$

...(iii)
By squaring Eq. (i) we get,

$$
2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2}+2 \mathrm{O}_{2}, \quad K_{1}^{2}
$$

...(iv)
Now, Eq (iii) is obtained by inverting Eq. (ii) and Eq. (iv) and by adding them as.

$$
\begin{aligned}
\mathrm{N}_{2}+2 \mathrm{O}_{2} & \rightleftharpoons 2 \mathrm{NO}_{2}, & & \frac{1}{K_{1}^{2}} \\
2 \mathrm{NO}_{2} & \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}, & & \frac{1}{K_{2}}
\end{aligned}
$$

$$
\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}, \quad \frac{1}{K_{1}^{2}}+\frac{1}{\mathrm{~K}_{2}}
$$

881 (b)

$$
\begin{aligned}
C_{1} \alpha_{1}^{2}=C_{2} & \alpha_{2}^{2} \\
0.1 \times 1^{2} & =0.025 \times \alpha_{2}^{2} \\
\alpha_{2}^{2} & =4 \\
\alpha & =2
\end{aligned}
$$

882 (d)
Δn may be zero, positive or negative integers or fractional depending upon nature of reaction.
$\Delta n=$ No. of mole of products - No. of mole of reactants.
883 (b)
$\underset{\text { Base }}{\mathrm{H}^{-}}+\mathrm{H}^{+} \rightarrow \underset{\text { Conjugate acid }}{\mathrm{H}_{2}}$
884 (d)
Common ion effect is noticed only for weak electrolyte dissociation $\mathrm{H}_{2} \mathrm{SO}_{4}$ is strong electrolyte.
885 (b)
Acids liberate CO_{2} from bicarbonates.
886 (c)
$1 \times 10^{-8} \mathrm{M} \mathrm{HCl}$ solution $\mathrm{H}_{2} \mathrm{O}$ is also present there which also undergoes self ionisation.

$$
\begin{array}{r}
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \\
10^{-7} \mathrm{M} \text { at } 25^{\circ} \mathrm{C}
\end{array}
$$

If it is taken simply even without common ion effect, higher concentration must be considered which is $10^{-7} \mathrm{M}$ but H^{+}from HCl decreases self ionisation which further decreases self ionisation, hence
[H^{+}]from $\mathrm{H}_{2} \mathrm{O}$.
Hence, net concentration must be smaller than $10^{-7} \mathrm{M}$.
887 (b)
Number of moles of PCl_{5} dissociated at equilibrium

$$
=2 \times 40 / 100=0.8
$$

$$
\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}
$$

(Initial)2 $0 \quad 0$
(At equilibrium) (2-0.8) mol $0.8 \mathrm{~mol} \quad 0.8$
mol

$$
\begin{aligned}
& {\left[\mathrm{PCl}_{5}\right]=\frac{1.2}{2}=0.6 \mathrm{ML}^{-1} } \\
& {\left[\mathrm{PCl}_{3}\right]=\left[\mathrm{Cl}_{2}\right]=\frac{0.8}{2}=0.4 \mathrm{ML}^{-1} } \\
\therefore \quad & K_{C}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{0.4 \times 0.4}{0.6} \\
& =0.267 \mathrm{~mol} / \mathrm{dm}^{3}
\end{aligned}
$$

888 (c)
In liquid \rightleftharpoons vapour, equilibrium the rate at which molecules escape from the liquid surface to gaseous phase equals to rate at which molecules in the gas phase strike the surface and becomes the part of liquid. Hence, the molecules in the two phases have equal kinetic energy.
889 (b)
$[\mathrm{HI}]=\frac{12.8}{128 \times 3}=0.033 \mathrm{M}$
890 (b)
$\mathrm{NH}_{4} \mathrm{Cl}$ salt gives an acidic solution in water

891 (d)
$\Delta \mathrm{n}=1$ for this change; Unit of $K_{p}=(\mathrm{atm})^{\Delta n}$; Unit of $K_{c}=\left(\mathrm{mol} \mathrm{litr}^{-1}\right)^{\Delta n}$
892 (a)
$\mathrm{As}_{2} \mathrm{~S}_{3} \rightleftharpoons 2 \mathrm{As}^{3+}+3 \mathrm{~S}^{2-}$
$5 \mathrm{~mol} / \mathrm{L} \quad 2 \mathrm{~s} \quad 3 \mathrm{~s}$

$$
K_{\mathrm{sp}}=\left[\mathrm{As}^{3+}\right]^{2}\left[\mathrm{~S}^{2-}\right]^{3}
$$

$$
=(2 s)^{2}(3 s)^{3}
$$

$$
=108 s^{5}
$$

$\therefore \quad s=\sqrt[5]{\frac{K_{\mathrm{sp}}}{108}}$ or $\left(\frac{K_{\mathrm{sp}}}{108}\right)^{\frac{1}{5}}$
$=\sqrt[5]{\frac{2.8 \times 10^{-72}}{108}}$
$=\sqrt[5]{25.93 \times 10^{-75}}$
$=1.92 \times 10^{-15} \mathrm{~mol} / \mathrm{L}$
893 (c)
$K_{p}=\frac{\left[\mathrm{HCO}_{3}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CO}_{2}\right]} ;$
Given, $\quad K_{p}=3.8 \times 10^{-7}$
and $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-6}$
$\therefore \quad \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2}\right]}=\frac{3.8 \times 10^{-7}}{10^{-6}}=3.8 \times 10^{-1}$

894 (a)
Blood buffer controls the pH change by acidic components present metabolically.
895 (d)
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
$\begin{array}{lll}1 & 2 & 3\end{array}$: Before reaction
$(1-x)(2-3 x)(3+2 x)$: After reaction
x mole of N_{2} will react with $3 x$ mole of H_{2} to give $2 x$ mole of NH_{3}. Notice the stoichiometry of change.
896 (a)
K_{p} is independent of pressure.
897 (a)
Methyl orange is good indicator in the range of pH 3 to 4. Actually working range of good indicator can be derived as,
$\mathrm{MeOH} \rightleftharpoons \mathrm{Me}^{+}+\mathrm{OH}^{-}$
$K_{b}=\frac{\left[\mathrm{Me}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{MeOH}]}$; Taking logarithm
$\log K_{b}=\log \frac{\left[\mathrm{Me}^{+}\right]}{[\mathrm{MeOH}]}+\log \mathrm{OH}^{-}$
or $\mathrm{p} K_{b}=\log \frac{[\mathrm{MeOH}]}{\left[\mathrm{Me}^{+}\right]}+\log \mathrm{pOH}$
The indicator is more effective when
$\frac{[\mathrm{MeOH}]}{\left[\mathrm{Me}^{+}\right]}$or $\frac{\left[\mathrm{Me}^{+}\right]}{[\mathrm{MeOH}]}=1$
Thus, $\mathrm{pOH}=\mathrm{p} K_{b}$; Thus, working range is $\mathrm{pOH} \pm 1$.
898 (c)
$\Delta n=1-1-\frac{1}{2}=-\frac{1}{2}$
$\therefore K_{p}=K_{c}(R T)^{-1 / 2}$
899 (d)
Find solubility by $4 s^{3}=K_{s p}$ for $\mathrm{Ag}_{2} \mathrm{~S}$ and $s^{2}=K_{s p}$ for CuS and HgS.
900 (a)
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]=0.0001=1 \times 10^{-4}$
$\mathrm{pH}=-\log \left[1 \times 10^{-4}\right]=4$
901 (c)
$N \mathrm{H}_{2} \mathrm{SO}_{4}=0.05 \times 2=0.1$
$\therefore \quad\left[\mathrm{H}^{+}\right]=0.1$ and $\mathrm{pH}=1$.
902 (d)
Phenolphthalein exists as HPh, i.e., undissociated molecule in acid medium and thus, shown no colour.
903 (c)
$\left[\mathrm{H}^{+}\right]=1.5 \times 10^{-2}$
$\therefore\left[\mathrm{OH}^{-}\right]=\frac{10^{-14}}{1.5 \times 10^{-2}}=6.7 \times 10^{-13} \mathrm{M}$.

904 (b)
$K_{c}=\frac{[\text { product }]}{\text { [reactant] }}$
if $\quad K_{c} \gg 1$
\Rightarrow [product] \gg [reactant]
\Rightarrow Reaction favoured more towards forward.
905 (a)
$Q=\frac{[C]^{3}}{[A][B]}=\frac{(4 / 2)^{3}}{(1 / 2)(2 / 2)}=16 ;$
Given, $K_{c}=20$;
Thus, to have $Q=K_{c}$;
The concentration of C must increase, i.e., reaction should proceed from left to right
906 (b)
$\mathrm{pH}=\mathrm{pK}_{a}$ if [Conjugate base] $=[$ Acid $]$.
907 (b)
An increase in temperature favours endothermic reaction.
908 (a)
Lewis acids are those species which can accept a lone pair of electron.
$\mathrm{BF}_{3}, \mathrm{AlCl}_{3}, \mathrm{SnCl}_{4}, \mathrm{FeCl}_{3}$ etc. are Lewis acids.
NCl_{3} and $R O R$ are Lewis bases. HCl is acid according to the concept of Arrhenius and Bronsted-Lowry.
909 (c)
$\mathrm{pH}=4 \therefore\left[\mathrm{H}^{+}\right]_{\mathrm{I}}=10^{-4}$
$\mathrm{pH}=5 \therefore\left[\mathrm{H}^{+}\right]_{\text {II }}=10^{-5} \quad \therefore\left[\mathrm{H}^{+}\right]_{\text {II }}=\left[\mathrm{H}^{+}\right]_{\mathrm{I}} \times 10^{-1}$.
910 (d)
Each acid has P of +5 oxidation state as in $\mathrm{P}_{2} \mathrm{O}_{5}$.
911 (b)
$\mathrm{AgIO}_{3}(s) \rightleftharpoons \mathrm{Ag}^{+}(a q)+\mathrm{IO}_{3}^{-}(a q)$
Let solubility of AgIO_{3} be S

$$
K_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{IO}_{3}^{-}\right]
$$

$1.0 \times 10^{-8}=S^{2} \quad$ or $\quad S=1 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
In 1000 mL of mol of AgIO_{3} dissolved $=$
$1 \times 10^{-4} \mathrm{~mol}$
In 100 mL of mol of AgIO_{3} dissolved $=$
$1 \times 10^{-5} \mathrm{~mol}$
Mass of AgIO_{3} in $100 \mathrm{~mL}=1 \times 10^{-5} \times 283$

$$
=2.83 \times 10^{-3}
$$

912 (a)
$\mathrm{H}_{3} \mathrm{BO}_{3}$ accepts OH^{-}ions to act as weak monobasic Lewis acid.
$\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+} ; K_{a}=10^{-9}$
913 (d)
e. g. , BCl_{3} is a Lewis acid as it accepts lone pair of electron but not Lowry-Bronsted acid as it cannot furnish $\mathrm{H}_{3} \mathrm{O}^{+}$in solution.

914 (a)
For equation $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$, the value of

$$
\Delta n=2-(1+1)=0
$$

Hence, by using formulae $\quad K_{p}=K_{c}(R T)^{\Delta n}$

$$
\begin{aligned}
& K_{p}=K_{c}(R T)^{0} \\
& K_{p}=K_{c}
\end{aligned}
$$

915 (b)

$$
\begin{aligned}
\text { Solubility } & =\sqrt[5]{\frac{K_{s p}}{108}}=\sqrt[5]{\frac{10^{-70}}{108}}=9.8 \times 10^{-13} \\
& =\sqrt{7 \times 10^{-16}}=2.64 \times 10^{-8} \\
& =\sqrt{K_{s p}}=\sqrt{8 \times 10^{-37}}=8.94 \times 10^{-19} \\
& =\sqrt[3]{\frac{K_{s p}}{4}}=\sqrt[3]{\frac{6 \times 10^{-51}}{4}}=1.1 \times 10^{-17}
\end{aligned}
$$

916 (a)
Equilibrium constant for the reaction,

$$
\begin{aligned}
& \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g}) \\
& K_{c}=\frac{1}{4.9 \times 10^{-2}}
\end{aligned}
$$

and for $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

$$
\begin{aligned}
K_{C} & =\left(\frac{1}{4.9 \times 10^{-2}}\right)^{2} \\
& =\frac{10^{4}}{(4.9)^{2}}=416.49
\end{aligned}
$$

917 (c)
$\mathrm{p} K_{a}=-\log K_{a}=\log \frac{1}{K_{a}}$
918 (a)
$A B \rightleftharpoons A+B$
$K=\frac{[A][B]}{[A B]}$
If concentration of A is doubled, the equilibrium concentration of B becomes half
919 (b)
Degree of dissociation $=0.4$
$\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
$a(1-x) \quad a x \quad a x$

$$
a=2, x=0.4, V=2
$$

$$
\left[\mathrm{PCl}_{5}\right]=\frac{2(1-0.4)}{2}=0.6 \mathrm{~mol} / \mathrm{L}
$$

$$
\left[\mathrm{PCl}_{3}\right]=\frac{2 \times 0.4}{2}=0.4 \mathrm{~mol} / \mathrm{L}
$$

$$
\left[\mathrm{Cl}_{2}\right]=\frac{2 \times 0.4}{2}=0.4 \mathrm{~mol} / \mathrm{L}
$$

$\therefore \quad K_{c}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}$

$$
=\frac{0.4 \times 0.4}{0.6}=0.267
$$

920 (a)
An increase in temperature favours endothermic
reaction, however, in case of NaOH it is an exception and solubility of NaOH increase in temperature.
921 (a)
$\Delta n=0$
922 (a)
$\mathrm{HSO}_{4}^{-} \rightarrow \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}$
923 (c)
An increase in the concentration of products always brings in backward reaction.
924 (b)
For $\mathrm{Na} X$
$\underset{1-h}{X^{-}}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underset{h}{\mathrm{H} X}+\underset{h}{\mathrm{OH}^{-}}$
$\therefore h=\sqrt{\frac{K_{H}}{c}}=\sqrt{\frac{K_{w}}{K_{a} \cdot c}}=\sqrt{\frac{10^{-14}}{10^{-5} \times 0.1}}$
$=\sqrt{10^{-8}}=10^{-4}$
$\therefore \% h=10^{-4} \times 100=10^{-2}=0.01$
925 (a)
$\Delta n=2+1-2=+1 \quad \therefore K_{p}=K_{c}(R T)^{1}$
$\therefore K_{p}>K_{c}$
926 (b)
A basic salt has one or more replaceable 0 H in it.
927 (b)
$K_{a}=C \alpha^{2}=0.1 \times\left(1.34 \times 10^{-2}\right)^{2}=1.79 \times 10^{-5}$.
928 (b)
HCl is a strong acid and its conjugate base is a very weak base Cl^{-}
929 (c)
$2.303 \log _{10} K=-\frac{\Delta G^{\circ}}{R T}$
$2.303 \log _{10} K=\frac{-\Delta H^{\circ}}{R T}+\frac{\Delta S^{\circ}}{R}$
930 (b)
The compound which is having least
solubility will be precipitated first.
BaSO_{4} : Given, $K_{\text {sp }}=10^{-11}$
Let the solubility $=x \mathrm{~mol} / \mathrm{L}$
$\mathrm{BaSO}_{4} \rightarrow \mathrm{Ba}^{2}+\mathrm{SO}_{4}^{2-}$
$\therefore \quad K_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]$
or $\quad K_{\text {sp }}=x \times x$
$\therefore \quad K_{\text {sp }}=x^{2}$
or $\quad x=\sqrt{K_{\text {sp }}}$
$=\sqrt{10^{-11}}$
$=3.16 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$
CaSO_{3} : Given, $K_{\text {sp }}=10^{-6}$
Let the solubility $=x \mathrm{~mol} / \mathrm{L}$
$\mathrm{CaSO}_{4} \rightarrow\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]$
$\therefore \quad K_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{So}_{4}^{2-}\right]$
or $\quad K_{\text {sp }}=x \times x$
$\therefore \quad K_{\text {sp }}=x^{2}$
or $\quad x=\sqrt{K_{s p}}$
$=\sqrt{10^{-6}}$
$=1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
AgSO_{4} : Given, $K_{\text {sp }}=10^{-5}$
Let the solubility $=x \mathrm{~mol} / \mathrm{L}$

$$
\begin{aligned}
& \mathrm{Ag}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Ag}^{+}+\mathrm{SO}_{4}^{2-} \\
& 2 x \quad x \\
& \therefore \quad K_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO}_{4}^{2-}\right] \\
& \text { or } \quad=(2 x)^{2}(x) \\
& \text { or } \quad K_{\text {sp }}=4 x^{3} \\
& \text { or } \quad x=\frac{\sqrt[3]{K_{\text {sp }}}}{4} \\
& =\frac{\sqrt{10^{-5}}}{4} \\
& =10^{-2} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

$\because \mathrm{BaSO}_{4}$ has least solubility.
\therefore It will precipitated first.
931 (b)
$K_{C_{1}}$ for $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$ is 50
$K_{C_{2}}$ for $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$
$K_{C_{1}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$
$K_{C_{2}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}$
On reversing Eq.(i)
$\frac{1}{K_{c_{1}}}=\frac{\left[\mathrm{H}_{2}\left[\left[\mathrm{I}_{2}\right]\right.\right.}{[\mathrm{H}]^{2}}$
From Eqs. (ii) and (iii)
$K_{c_{2}}+\frac{1}{K_{c_{1}}}=\frac{1}{50}=0.02$
932 (b)
A reaction which is in equilibrium, will shift in reverse or backward direction when we increase the concentration of one or more products (from Le-Chatelier'sprinciple)
$\mathrm{N}_{2} \mathrm{O}_{5}$ and HNO_{3} both have ox.no. of $\mathrm{N}=+5$.
934 (a)
Fusion of solid is an endothermic process, so addition of heat is favoured for the forward reaction (solid to melt), the amount of solid become decrease.
935 (a)
Conjugate base is formed by loss of H^{+}.

$$
\mathrm{OH}^{-} \rightarrow \mathrm{O}^{2-}+\mathrm{H}^{+}
$$

O^{2-} is the conjugate base of OH^{-}.
936 (b)
$\mathrm{Al}(\mathrm{OH})_{3} \rightleftharpoons \mathrm{Al}_{s}^{3+}+\underset{3 \mathrm{~S}}{3 \mathrm{OH}^{-}}$
$\therefore K_{s p}=\left[\mathrm{Al}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}=s \times(3 s)^{3}=27 s^{4}$
937 (b)
HCl is strong acid. In its 0.1 M solution, $\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M}$ and hence, $\mathrm{pH}=1 \mathrm{NH}_{4} \mathrm{Cl}(a q)$ hydrolysis in solution and give acidic solution which is less than $0.1 \mathrm{M} \mathrm{HCl} . \mathrm{NaCl}$ is not hydrolysed in aqueous solutions. Its $\mathrm{pH}=7$. NaCN undergoes hydrolysis in solution to give alkaline solution. So, the pH increases in the order

$$
\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{NaCN}
$$

938 (a)
$\Delta G=0$; at equilibrium
939 (b)
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CN}^{-}\right]}{[\mathrm{HCN}]}$;
An increase in $\left[\mathrm{CN}^{-}\right]$will decrease $\left[\mathrm{H}^{+}\right]$to maintain K_{a} constant.

940 (d)
The solubility product ($K_{\text {sp }}$) of a sparingly soluble salt at a given temperature may be defined as the product of the molar concentrations of its ions each raised to the power equal to its number of ions present in the equation representing the dissociation of one molecule of the salt.

$$
\begin{array}{ll}
& \mathrm{Fe}(\mathrm{OH})_{3} \rightleftharpoons \mathrm{Fe}^{3+}+3 \mathrm{OH}^{-} \\
& X \\
& K_{\text {sp }}=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3} \\
\therefore \quad & K_{\text {sp }}=X(3 X)^{3}=27 X^{4}
\end{array}
$$

941 (d)
Baking soda $\left(\mathrm{NaHCO}_{3}\right)$ has one replaceable H .
942 (b)
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{CO}_{3}$
$\because \quad \mathrm{NaOH}$ is strong base.
\therefore It will be more ionised and number of
Na^{+}and OH^{-}ions will be more.
$\because \mathrm{H}_{2} \mathrm{CO}_{3}$ is weak acid.
\therefore It will be less ionised and number of
H^{+}and CO_{3}^{2-} will be less.
\therefore The solution will have more hydroxide ions than carbonate ions.
943 (c)

Milli equivalent of H^{+}from $\mathrm{HCl}=10 \times 0.1=1$
Milli equivalent of H^{+}from $\mathrm{H}_{2} \mathrm{SO}_{4}=40 \times 0.2 \times$
$2=16$
Total Meq. of H^{+}in solution $=1+16=17$
$\therefore\left[\mathrm{H}^{+}\right]=\frac{17}{50}=3.4 \times 10^{-1} \quad\left(\because\left[\mathrm{H}^{+}\right]=\frac{\text { Meq. }}{V_{\text {in mL }}}\right)$
$\therefore \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 0.34$

$$
\mathrm{pH}=0.4685 \text {. }
$$

944 (b)
Before attaining the equilibrium, the rate of forward reaction decreases due to decrease in concentration of reactant with time and the rate of backward reaction increases due to increase in concentration of products with time.
945 (a)
$\mathrm{NaCN}+\mathrm{HCl}$ is not a buffer but if HCl is in less amount then, it gives a buffer as it produces HCN.

This is buffer of $\mathrm{HCN}+\mathrm{NaCN}$.
Let a mole of HCl be used for this purpose
$\therefore \mathrm{pH}=-\log K_{a}+\log \frac{0.01-a}{a}$
$8.5=-\log 4.1 \times 10^{-10}+\log \frac{0.01-a}{a}$
$\therefore \quad a=8.85 \times 10^{-3}$ mole of HCl .
946 (b)
Quotient $Q=\frac{[C]^{3}}{[A][B]}=\frac{4^{3} \times 3 \times 3}{3^{3} \times 1 \times 2}=10.66$
$\left[[C]=\frac{4}{3} ;[A]=\frac{1}{3} ;[B]=\frac{2}{3}\right]$
Since, $K_{c}=10$, Thus, Q must decrease to attain value of K_{c} and therefore, [$\left.C\right]$ must decrease or $[A]$ or $[B]$ must increase, i.e., backward direction.

(d)

$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$
$\therefore\left[\mathrm{OH}^{-}\right]=c \cdot h=c \sqrt{\left[\frac{K_{h}}{c}\right]}$
$=\sqrt{\left[\frac{K_{w}}{K_{a}} \cdot c\right]}$
$=\sqrt{\frac{10^{-14} \times 1}{1.8 \times 10^{-5}}}=2.35 \times 10^{-5}$
$\therefore \mathrm{pOH}=4.6289$
$\therefore \quad \mathrm{pH}=9.3710$
948 (b)
A very high value of K for the given equilibrium shows that dissociation of glucose to form HCHO is very-very small.

Hence, at equilibrium, we can take,
$\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]=1 \mathrm{M}$
$K=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]}{[\mathrm{HCHO}]^{6}}, \quad$ i.e., $6 \times 10^{22}=\frac{1}{[\mathrm{HCHO}]^{6}}$
or $[\mathrm{HCHO}]=\left(\frac{1}{6 \times 10^{22}}\right)^{1 / 6}=1.6 \times 10^{-4} \mathrm{M}$
949 (c)
Polyprotic acids furnishes more than one H^{+}ion in solution.
950 (a)
$\mathrm{Sb}_{2} \mathrm{~S}_{3} \rightleftharpoons 2 \mathrm{Sb}^{3+}+3 \mathrm{~S}^{2-}$
$s \mathrm{~mol} / \mathrm{L} \quad 2 s \quad 3 s$
Solubility product $\left(K_{\mathrm{sp}}\right)=\left[\mathrm{Sb}^{3+}\right]^{2}\left[\mathrm{~S}^{2-}\right]^{3}$

$$
=(2 s)^{2}(3 s)^{3}=
$$

$108 s^{5}$

$$
=108 \times
$$

$\left(1.0 \times 10^{-5}\right)^{5}=108 \times 10^{-25}$
951 (d)
$10^{-3} \mathrm{~N} \mathrm{KOH}$ will give $\left[\mathrm{OH}^{-}\right]=10^{-3}$
$\therefore \quad \mathrm{pOH}=3$
Also, $\mathrm{pH}+\mathrm{pOH}=14$
$\therefore \quad \mathrm{pH}=11$.
952 (d)
HSO_{4}^{-}can accept a proton (forms $\mathrm{H}_{2} \mathrm{SO}_{4}$) or can donate a proton (forms SO_{4}^{2-}).
953 (b)
$\mathrm{H} A+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+A^{-}$

$$
K=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[A^{-}\right]}{[\mathrm{H} A]\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

954 (d)
The minimum temperature at which the combination of N_{2} and H_{2} occurs at measurable rate is $500^{\circ} \mathrm{C}$ in Haber's process. No doubt if temperature is raised up, above $500^{\circ} \mathrm{C}$, it will favour backward reaction, because the reaction is exothermic.
955 (a)
$\mathrm{CO}_{2}+\mathrm{H}_{2} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}$
${ }_{(1-x)}^{1} \quad{ }_{(1-x)}^{1} \quad{ }_{x}^{0} \quad{ }_{x}^{0}$
$\therefore K_{c}=\frac{x^{2}}{(1-x)^{2}}$
Or $\frac{x}{1-x}=\sqrt{K}_{c}=\sqrt{1.8}$;
$\therefore \frac{x}{1-x}=1.34$,
$\therefore x=0.573 \mathrm{M}$.
956 (c)
The equilibrium constant does not change when concentration of reactant is changed as the concentration of product also get changed accordingly.

957 (a)
(i) BF_{3} and BCl_{3} are better Lewis acid than
BMe_{3} and $\mathrm{B}_{2} \mathrm{H}_{6}$ due to $-I$-effect of Cl and F .
(ii)Between BCl_{3} and $\mathrm{BF}_{3}, \mathrm{BCl}_{3}$ is better Lewis acid due to lesser extent of $p \pi-p \pi$ back bonding in it.
958 (c)
Potassium ferrocyanide is a complex salt because in it ferrocyanide $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ is the complex ion. It does not give test for ferric and cyanide ions.
959 (b)
At $25^{\circ} \mathrm{C} ;\left[\mathrm{H}^{+}\right]=10^{-7} \quad \therefore K_{w_{1}}=10^{-14}$
At $35^{\circ} \mathrm{C} ;\left[\mathrm{H}^{+}\right]=10^{-6} \quad \therefore K_{w_{2}}=10^{-12}$
$\because \quad 2.303 \log \frac{K_{w_{2}}}{K_{w_{1}}}=\frac{\Delta H}{R}\left[\frac{T_{2}-T_{1}}{T_{1} \times T_{2}}\right]$

$$
2.303 \log \frac{10^{-12}}{10^{-14}}=\frac{\Delta H}{2}\left[\frac{10}{298 \times 308}\right]
$$

$\therefore \quad \Delta H=84551.4 \mathrm{cal} / \mathrm{mol}$

$$
=84.551 \mathrm{kcal} / \mathrm{mol}
$$

Thus, $\quad \mathrm{H}_{2} \mathrm{O}=\mathrm{H}^{+}+\mathrm{OH}^{-} ; \Delta H=$ $84.551 \mathrm{kcal} / \mathrm{mol}$
$\therefore \quad \mathrm{H}^{+}+\mathrm{OH}^{-}=\mathrm{H}_{2} \mathrm{O} ; \Delta H=$ $-84.551 \mathrm{kcal} / \mathrm{mol}$.
960 (b)
Lesser is the pH , more is acidic nature.
(b)

Strong electrolyte are 100% ionised in solution state and thus number of ions present in solution becomes constant at normal dilution. On further increasing dilution, the mobility of ion increase due to relaxation and electrophoretic effect.
962 (c)
$K_{1}=\frac{\left[\mathrm{XeOF}_{4}\right][\mathrm{HF}]^{2}}{\left[\mathrm{XeF}_{6}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
(i)
$K_{2}=\frac{\left[\mathrm{XeOF}_{4}\right]\left[\mathrm{XeO}_{3} \mathrm{~F}_{2}\right]}{\left[\mathrm{XeO}_{4}\right]\left[\mathrm{XeF}_{6}\right]}$
(ii)

By Eq.(ii)/(i) we have $\frac{K_{2}}{K_{1}}=\frac{\left[\mathrm{XeO}_{3} \mathrm{~F}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{XeO}_{4}\right][\mathrm{HF}]^{2}}=K_{c}$
963 (d)
$K_{s p} \quad$ of $\quad \mathrm{CaF}_{2}=4 s^{3}=4 \times\left(2 \times 10^{-4}\right)^{3}=32 \times$ 10^{-12}.
964 (a)
$2.303 \log \frac{K_{p 2}}{K_{p 1}}=\frac{\Delta H}{R} \frac{\left[T_{2}-T_{1}\right]}{T_{1} T_{2}}$
Thus, if $K_{P 2}>K_{P 1} ; T_{2}>T_{1}$, then $\Delta \mathrm{H}=+\mathrm{ve}$
965 (b)
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightleftharpoons 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$

$$
K_{c}=\frac{\left[\mathrm{NO}^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}\right.}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}
$$

Hence, units of $K_{c}=\mathrm{Conc}^{+1}$.
966 (a)

	H_{2}	I_{2}	\rightleftharpoons
Initially	1 mol	2 HI	
At equili	0.2 mol	$2-0.8$	2 mol
		1.2 mol	0.8
		1.6 mol	

Amount of H_{2} (and hence I_{2}) consumed

$$
1-0.2 \quad 0.8
$$

967 (c)
Ionic product \propto temperature
So, if the temperature is decreased, the value of ionic product will definitely be less than before.

(b)

$\mathrm{CH}_{3} \mathrm{NH}_{2}$ (base) on reaction with HCl (acid) to give a salt of weak base and strong acid as $\mathrm{CH}_{3} \mathrm{NH}_{3}^{+} \mathrm{Cl}^{-}$

At $=0$
After reaction (0.1-0.08)

$$
=0.02 \mathrm{~mol}
$$

So, it acts as basic buffer solution due to presence of base and salt in solution of 1 L .

$$
\begin{aligned}
\text { pOH } & =-\log _{10} K_{b}+\log _{10} \frac{[\text { salt }]}{[\text { base }]} \\
\text { pOH } & =-\log _{10} K_{b}+\log _{10} \frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+} \mathrm{Cl}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]} \\
& =-\log _{10} 5 \times 10^{-4}+\log _{10} \frac{[0.08]}{[0.02]} \\
& =-\log _{10} 5+4 \log _{10} 10+
\end{aligned}
$$

$$
\log _{10} \frac{[0.08]}{[0.02]}
$$

$$
=-0.699+4+0.602=3.903
$$

$$
\mathrm{pH}=14-\mathrm{pOH}
$$

$$
=14-3.903
$$

$$
=10.097=-\log _{10}\left[\mathrm{H}^{+}\right]
$$

$$
\therefore \quad\left[\mathrm{H}^{+}\right]=8.0 \times 10^{-11}
$$

969 (a)
$\mathrm{H}_{3} \mathrm{BO}_{3}$ accepts OH^{-}to form its conjugate base $\mathrm{B}(\mathrm{OH})_{4}^{-}$,
$\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+}$
970 (d)
$\Delta n=1-2=-1$
$\therefore K_{p}=K_{c}(R T)^{\Delta n}$
$K_{p}=K_{c}(R T)^{-1}$
971 (a)
$\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \rightleftharpoons \mathrm{NH}_{3}$
$\left(1-\frac{20}{100}\right)\left(3-\frac{3 \times 20}{100}\right)\left(\frac{20 \times 2}{100}\right)$ mole at eq.

$$
\begin{gathered}
K_{c}=\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{H}_{2}\right]^{3 / 2}}=\frac{[20 \times 2 /(100 \times 3)]}{\left[\frac{80}{100 \times 3}\right]^{1 / 2}\left[\frac{240}{100 \times 3}\right]^{3 / 2}} \\
=0.36 \mathrm{~L} \mathrm{~mol}^{-1}
\end{gathered}
$$

972 (a)
An irreversible reaction is one in which either of the product is separated out as solid or escapes out as gas.
973 (a)
The value of equilibrium constant remains constant for a given reaction of constant temperature.
974 (b)
Gaseous HCl does not give H^{+}but liquid HCl givesH ${ }^{+}$in aqueous solution, therefore gaseous HClis not an Arrhenius acid due to covalent bonding in gaseous condition
975 (d)
Buffer solution consists of weak acid and its salt with strong base. And a basic buffer solution is a mixture of weak base and its salt with strong acid.
976 (a)
$\mathrm{p} K_{a} \propto \frac{1}{K_{a}}$
Stronger the acid, higher the K_{a} value and lower the $\mathrm{p} K_{a}$ value.
The order of acidity of given acids is as

Since, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ is the weakest acid among the given, its $\mathrm{p} K_{a}$ value will be highest.
$\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
$0 \quad 0 \quad 0 \quad$ initially
$\frac{2 \times 60}{100} \frac{2 \times 40}{100} \frac{2 \times 40}{100}$ at equilibrium
Volume of container $=2 \mathrm{~L}$
$K_{c}=\frac{\frac{2 \times 40}{100 \times 2} \times \frac{2 \times 40}{100 \times 2}}{\frac{2 \times 60}{100 \times 2}}=0.266$
979 (a)
According to law of mass action

$$
K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{\left[1.2 \times 10^{-2}\right]^{2}}{4.8 \times 10^{-2}}=0.3 \times
$$

$10^{-2}=3 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
981 (d)

Lewis acid have a tendency to accept electrons while Bronsted acids have a tendency to donate proton.
(A) HCl
$\rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$

Bronsted acid
(B) $\mathrm{H}_{2} \mathrm{SO}_{4} \quad \rightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}$

Bronsted acid
$(\mathrm{C}) \mathrm{HSO}_{3}^{-} \quad \rightarrow \mathrm{H}^{+}+\mathrm{SO}_{3}^{2-}$
Bronsted acid
(D)

$$
\mathrm{SO}_{3}+: \ddot{\mathrm{O}}:^{2-} \longrightarrow \mathrm{SO}_{4}{ }^{2-}
$$

Lewis acid
982 (d)
Heat will be used to melt ice.
983 (a)
In an acidic solution $\left[\mathrm{H}^{+}\right]>10^{-7}$
pH is less than 7.
In an alkaline solution $\left[\mathrm{H}^{+}\right]<10^{-7}, \mathrm{pH}$ is greater than 7.
(b)
$\mathrm{H}_{2} \mathrm{SO}_{4}$ (acid) $\xrightarrow{-\mathrm{H}^{+}} \mathrm{HSO}_{4}^{-}$(Conjugate base).
985
(b)

Given, $\left[\mathrm{H}_{2}\right]=8.0 \mathrm{~mol} / \mathrm{L}$
$\left[\mathrm{I}_{2}\right]=3.0 \mathrm{~mol} / \mathrm{L}$ $[\mathrm{HI}]=28 \mathrm{~mol} / \mathrm{L}$
$K=$?

$$
\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}
$$

$\therefore \quad K=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{(28)^{2}}{(8) \times(3)}$
$=\frac{28 \times 28}{24}$
$=32.66$
986 (a)
$\left[\mathrm{H}^{+}\right]=c \alpha=\sqrt[c]{\left[\frac{K_{a}}{c}\right]}=\sqrt{K_{a} c}=\sqrt{5 \times 10^{-8} \times 0.1}$

$$
=7.07 \times 10^{-5} \mathrm{M}
$$

987 (d)
$K_{c}=\frac{x^{2}}{4(1-x)^{2}} ;$
If, $\quad x=0.5$;
$K_{c}=\frac{0.5 \times 0.5}{4 \times(0.5)^{2}}=\frac{1}{4}=0.25$
988 (b)
$\mathrm{CH}_{3} \mathrm{COOH}$ is weak acid and thus, partially ionised, $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{NH}_{3}(\mathrm{~g})+92.3 \mathrm{~kJ}$
According to Le-Chatelier's principle, the
favourable conditions for the reaction are
1.Low temperature (as the reaction is exothermic)
2.High pressure (volume is decreasing)
3.Constant removal of ammonia gas as it is formed.

990 (b)
An efflorescent salt is one that loses $\mathrm{H}_{2} \mathrm{O}$ to atmosphere. For the reaction,
$\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(s) \rightleftharpoons \mathrm{CuSO}_{4} .3 \mathrm{H}_{2} \mathrm{O}(s)+2 \mathrm{H}_{2} \mathrm{O}(v)$
$K_{p}=\left(P_{\mathrm{H}_{2} \mathrm{O}}^{\prime}\right)^{2}=1.086 \times 10^{-4}$
$P_{\mathrm{H}_{2} \mathrm{O}}^{\prime}=1.042 \times 10^{-2} \mathrm{~atm}=7.92 \mathrm{~mm}$
\because If $P_{\mathrm{H}_{2} \mathrm{O}}^{\prime}$ AT $25^{\circ} \mathrm{C}<7.92 \mathrm{~mm}$ only then, reaction will proceed in forward direction.
991 (c)
Acid $\xrightarrow{-\mathrm{H}^{+}}$conjugate base;
Base $\xrightarrow{+\mathrm{H}^{+}}$conjugate acid.
992 (d)
$\left[\mathrm{H}^{+}\right]=c \cdot \alpha=\sqrt[c]{\left[\frac{K_{a}}{c}\right]}=\sqrt{K_{a} c}$
993 (a)
Gas \rightleftharpoons Liquid; $\Delta H=-$ ve;
Apply Le-Chatelier's principle
$h=\sqrt{\frac{K_{h}}{C}}$
where, $K_{h}=$ hydrolysis constant $=$?

$$
h=\text { degree of hydrolysis }=0.25 \%=
$$

0.25/100

$$
\begin{array}{lrl}
& C=\text { concentration }=0.5 \mathrm{M} \\
\therefore & \frac{0.25}{100}=\sqrt{\frac{K_{h}}{0.5}} \\
\text { or } & \left(\frac{0.25}{100}\right)^{2} & =\frac{K_{h}}{0.5} \\
\therefore & & K_{h}=\frac{0.25 \times 0.25 \times 0.5}{100 \times 100} \\
& & =3.125 \times 10^{-6}
\end{array}
$$

995 (c)
Only CO_{2} is gas at equilibrium and K_{p}, K_{c} formula does not involve solid state.
(d)
$2 \mathrm{NaNO}_{3} \rightleftharpoons 2 \mathrm{NaNO}_{2}+\mathrm{O}_{2}$
According to Le-Chatelier principle, low pressure,
high temperature and addition of NaNO_{3} favour forward reaction
997 (b)
pH of the solution $A=3$
$\left[\mathrm{H}^{+}\right]_{A}=10^{-3} \mathrm{M}$
pH of the solution $B=2$
$\left[\mathrm{H}^{+}\right]_{B}=10^{-2} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=10^{-3}+10^{-2}=11 \times 10^{-3}$
$\mathrm{pH}=-\log \left(11 \times 10^{-3}\right)=3-\log 11$
$=3-1.04=1.9$
998 (c)
Meq. of $\mathrm{KOH}=$ Meq. of $\mathrm{H}_{3} \mathrm{PO}_{3}$
$0.1 \times v=20 \times 0.1 \times 2\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right.$ is dibasic $)$
$\therefore \quad v=40 \mathrm{~mL}$
100 (a)
$0 \quad\left[\mathrm{H}^{+}\right]$for the solution of $\mathrm{pH} 3=1 \times 10^{-3}$ $\left[\mathrm{H}^{+}\right]$for the solution of $\mathrm{pH} 5=1 \times 10^{-5}$ Let V volumes of both the solutions are added, then concentration of H^{+}in final mixture

$$
\begin{aligned}
& =\frac{1 \times 10^{-3} \times V+1 \times 10^{-5} \times V}{V+V} \\
& =\frac{V\left(1 \times 10^{-3}+1 \times 10^{-5}\right)}{2 V} \\
& =\frac{1.01 \times 10^{-3}}{2} \\
& =5.05 \times 10^{-4}
\end{aligned}
$$

pH of resultant solution $=-\log \left[\mathrm{H}^{+}\right]$

$$
\begin{aligned}
& =-\log \left(5.05 \times 10^{-4}\right) \\
& =3.29 \\
& \approx 3.3
\end{aligned}
$$

[^0]: \qquad

[^1]: (a)

