

3.ELECTROCHEMISTRY

Single Correct Answer Type

1.	The desired amount of ch	arge for obtaining one mol	e of Al from Al ³⁺ is	
	a) 96500 C	b) 2 × 96500 C	c) 3 × 96500 C	d) $\frac{96500}{2}$ C
2.	A certain current liberate same current flowing for	es 0.504 g of hydrogen in 2 the same time in CuSO4sol	hr. How many gram of copution?	pper can be liberated by the
	a) 12.7	b) 16	c) 31.8	d) 63.5
3.	If the E_{cell}° for a given	reaction has a negative v	value, then which of the	following gives the correct
	relationships for the valu	e of ΔG° and K_{eq} ?		
	a) $\Delta G^{\circ} > 0$; $K_{eq} < 1$	b) $\Delta G^{\circ} > 0$; $K_{eq} > 1$	c) $\Delta G^{\circ} < 0; K_{eq} > 1$	d) $\Delta G^{\circ} < 0$; $K_{eq} < 1$
4.	The Edison storage cell is	represented as :	-	
	Fe(s) + FeO(s) KOH(aq)) $Ni_2O_3(s)$ $Ni_2O_3(s)$ $Ni(s)$	·)	
	The half reactions are Niz	$H_2(0_3(s) + H_2(l) + 2e^- \rightarrow 2)$	$2NiO(s) + 2OH^{-}; E^{\circ} = +0$.40 V
	$FeO(s) + H_2O(l) + 2e^$	→ $Fe(s) + 20H^{-}; E^{\circ} = -0.$	87 V	
	Choose the incorrect stat	ement		
	a) E_{anode} increases with i	ncrease in concentration o	f OH-	
	b) E_{cathode} decreases with	h increase in concentration	of OH ⁻	
	c) $E_{cell}^{\circ} = 1.27 \text{ V}$			
	d) E_{cell} increases with inc	crease in concentration of F	'e0	
5.	Standard reduction poter	ntials of the half reactions a	re given below :	
	$F_2(g) + 2e^- \rightarrow 2F^-(aq)$	$E^{\circ} = +2.85 \text{ V}$		
	$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$); $E^{\circ} = +1.36 \text{ V}$		
	$Br_2(l) + 2e^- \rightarrow 2Br^-(ac)$	$(I); E^{\circ} = +1.06 V$		
	$I_2(s) + 2e^- \rightarrow 2I^-(aq);$	$E^{\circ} = +0.53 V$		
	The strongest oxidising a	nd reducing agents respect	ively are :	
	a) F_2 and I^-	b) Br_2 and Cl^-	c) Cl_2 and Br^-	d) Cl_2 and l_2
6.	The standard reduction	potential for Fe^{2+} Fe a	and $Sn^{2+} Sn $ electrodes a	are -0.44 V and -0.14 V
	respectively. For the cell	reaction, Fe ²⁺ + Sn \rightarrow Fe	+ Sn ² , the standard e.m.f.	. IS:
7	a) $+ 0.30$ V	b) 0.58 V	$c_{\rm J}$ + 0.58 V	d) – 0.30 V
/.	Electrolytes when dissolv	red in water dissociates int	o ions because	
	a) They are unstable b) The water discolves it			
	c) The force of repulsion	increases		
	d) The force of electrosta	tic attraction are broken do	wn hy water	
8	Which ion has excention:	and a second are broken at all λ^{∞} values?	will by water	
0.	a) H ⁺	b) K ⁺	c) NH ₂	d) OH
9.	Limiting molar ionic co	nductivities of a uni-univ	alent electrolyte are 57 a	and 73. The limiting molar
	conductivity of the solution	on will be :		
	a) 130 S cm ² mol ⁻¹	b) 65 <i>S</i> cm ² mol ⁻¹	c) 260 S cm ² mol ⁻¹	d) 187 <i>S</i> cm ² mol ⁻¹
10.	Molten NaCl conducts ele	ctricity due to the presence	e of :	,
	a) Free electrons	b) Free molecules	c) Free ions	d) Atoms of Na and Cl
11.	The emf of the cell, (E_{Zn^2})	$V_{/Zn} = -0.76 V$		
	$Zn / Zn^{2+} (1 M) Cu^{2+} (1 M)$	1 M) Cu		
	$(E_{Cu^{2+}/Cu} = +0.34 V)$ w	rill be		
	a) +1.10 V	b) -1.10 V	c) +0.42 V	d) -0.42 V
12.	Which represents a conce	entration cell?	··· ·	, - ·
	a) PtH ₂ HCl HCl PtH ₂	b) PtH ₂ HCl Cl ₂ Pt	c) Zn Zn ²⁺ Cu ²⁺ Cu	d) Fe Fe ²⁺ Cu ²⁺ Cu

	$C_1 \qquad C_2 \qquad \qquad C_1$		
13.	In electrolysis of aqueous copper sulphate, the gas a	at anode and cathode are	
	a) O_2 and H_2 b) H_2 and O_2	c) SO ₂ and H ₂	d) SO ₃ and O ₂
14.	Consider the reaction, $M^{n+}(aq) + ne \rightarrow M^0(s)$.	The standard reduction po	tential values of the metals
	M_1, M_2 and M_3 are -0.34 V, -3.05 V and -1.66 V re	spectively. The order of the	ir reducing power will be :
	a) $M_1 > M_2 > M_3$ b) $M_3 > M_2 > M_1$	c) $M_1 > M_3 > M_2$	d) $M_2 > M_3 > M_1$
15.	The charge required to liberate one gram equivalent	t of an element is	
	a) 96500 F b) 1 F	c) 1 C	d) None of these
16.	What will be nH of aqueous solution of electrolyte i	n electrolytic cell during ele	ectrolysis of $CuSO_4(aa)$
10.	hetween graphite electrodes?		
	a) $pH = 14.0$ b) $pH > 7.0$	c) $pH < 7.0$	d) $pH = 7.0$
17.	In an electrolytic cell, the anode and cathode are re-	spectively represented as :	
17.	a) Positive electrode negative electrode	spectively represented us .	
	h) Negative electrode, positive electrode		
	c) Both positive and negative electrode		
	d) None of the above		
18	The cell reaction is spontaneous when		
10.	a) F° is negative b) F° is nositive	c) ΛC° is positive	d) ΛG° is positive
10	The emf of the cell Mgl $Mg^{2+}(0.01 \text{ M})$) $Sn^{2+}(0.1 \text{ M})$ Sn^{-1}	208 K is (Civen
19.	$\Gamma^{\circ} = 224 \text{ M} \Gamma^{\circ} = 0.14 \text{ M}$	/// 511 (0.1 M)/511 at	
	$E_{\text{Mg}^{2+},\text{Mg}} = -2.34 \text{ V}, -2.34 \text{ V}, E_{\text{Sn}^{2+},\text{Sn}} = -0.14 \text{ V})$		
	a) 2.23 V b) 1.86 V	c) 1.56 V	d) 3.26 V
20.	When an aqueous solution of lithium chloride is ele	ctrolysed using graphite ele	ectrodes :
	a) pH of the resulting solution increases		
	b) pH of the resulting solution decreases		
	c) As the current flows, pH of the solution around the	he cathode increases	
	d) None of the above		
21.	In electrolytic purification, which of the following is	made of impure metal?	
	a) Anode b) Cathode	c) Both (a) and (b)	d) None of these
22.	The specific conductivity of 0.1 N KCl solution is 0.0	129 Ω^{-1} cm ⁻¹ . The resistant	ce of the solution in the cell
	100 Ω . The cell constant of the cell will be		
	a) 1.10 b) 1.29	c) 0.56	d) 2.80
23.	Which graph correctly correlates E_{Cell} as a function	of concentrations for the c	ell (for different values of M
	and <i>M</i>)?		
	$\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(M) \longrightarrow \operatorname{Zn}^{2+}(M') + \operatorname{Cu}(s);$		
	$E^{\circ}_{\text{Cell}} = 1.10 V$		
	$X - \operatorname{axis} : \log_{10} \frac{[\operatorname{Zn}^{2+}]}{[\operatorname{Cu}^{2+}]}, Y - \operatorname{axis} : E_{\operatorname{Cell}}$		
	▲ ▲	▲	
		1 10 V	
	a) 1.10V b) 1.10V	c)	d) $1.10V$
		$\cdot 10 0 \pm 10$	
.		-1.0 0 11.0	-1.0 0 +1.0
24.	In acidic medium MnO_4^- is converted to Mn^{2+} . The o	quantity of electricity in fara	aday required to reduce 0.5
	mole of MnO_4^- to Mn^{2+} would be		
a -:	a) 2.5 b) 5	c) 1	d) 0.5
25.	In electrolysis, oxidation takes place at:		

- a) Anode
- b) Cathode
- c) The anode as well as cathode
- d) The surface of electrolyte solution

26.	A depolariser used in dry cell batteries is :		
	a) Ammonium chloride b) Manganese dioxide	c) Potassium hydroxide	d) Sodium phosphate
27.	The $E^{\circ}_{M^{3+}/M^{2+}}$ values for Cr, Mn, Fe and Co are -0.4	41, +1.57, +0.77 and +1.97	V respectively. For which
	one of these metals, the change in oxidation state fr	rom +2 to +3 is easiest?	
	a) Fe b) Mn	c) Co	d) Cr
28.	The standard reduction electrode potential values	of the elements A, B and C	are + 0.68, –2.50 and – 0.50
	V respectively. The order of their reducing power is	5:	
•	a) $A > B > C$ b) $A > C > B$	c) $C > B > A$	d) $B > C > A$
29.	The number of electrons involved in the reaction	n when a faraday of elect	ricity is passed through an
	electrolyte in solution is :	a) 0×10^{16}	$d) < 0.2 \times 10^{23}$
20	a) 12×10^{10} D) 96500	$CJ \otimes X = 10^{10}$	$(1) 6.02 \times 10^{23}$
30.	The electrolysis of a solution resulted in the format	Ion of H_2 at the cathode and	$1 Cl_2$ at the anode. The liquid
	a) Pure water		
	b) H_2SQ_4 solution		
	c) NaCl solution in water		
	d) $CuCl_2$ solution in water		
31.	The passage of electricity in the Daniell cell when Z	n and Cu electrodes are con	nected:
	a) From Cu to Zn inside the cell		
	b) From Cu to Zn outside the cell		
	c) From Zn to Cu outside the cell		
	d) None of the above		
32.	Ni / Ni ²⁺ [1.0 M] Au ³⁺ [1.0 M] / Au where E°		
	for Ni ²⁺ /Ni is -0.250 V; and E° for		
	Au^{3+} / Au is 0.150 V. The emf of the cell is		
00	a) +1.25 V b) -1.75 V	c) +1.75 V	d) +0.4 V
33.	The product obtained at anode when 50% H ₂ SO ₄ at	queous solution is electroly	sed using platinum
	2) + SO $b) + SO$	c) ()	4) H
34	The approximate e m f of a dry cell is \cdot	$c_{j} c_{2}$	u) 11 ₂
51.	a) 2.0 V b) 1.2 V	c) 6 V	d) 1.5 V
35.	E_1, E_2 , and E_2 are the emfs of the following three ga	lvanic cells respectively	
	I. $Zn(s) Zn^{2+} (0.1 \text{ M}) Cu^{2+} (1 \text{ M}) Cu(s)$, , , , , , , , , , , , , , , , , , ,	
	II. $Zn(s) Zn^{2+} (1 M) Cu^{2+} (1 M) Cu(s)$		
	III. Zn (s) $ Zn^{2+}(1 \text{ M}) $ Cu ²⁺ (0.1 M) Cu (s)		
	Which one of the following is true?		
	a) $E_2 > E_1 > E_3$ b) $E_1 > E_2 > E_3$	c) $E_3 > E_1 > E_2$	d) $E_3 > E_2 > E_1$
36.	The fraction of the total current carried by an ion is	known as:	
	a) Transport number of that ion		
	b) Conductance of that ion		
	c) Both(a) and (b)		
27	d) None of the above		
3/.	In a galvanic cell, which is wrong?		
	a) Anoue has negative polarity		
	c) Reduction takes place at anode		
	d) Reduction takes place at cathode		
	a) neuron tanes place at cathoue		

38.	The rusting of iron takes	place as follows		
	$2H^+ + 2e^- + \frac{1}{2}O_2 \rightarrow$	H ₂ 0 (<i>l</i>);		
	$E^{\circ} = +1.23 V$			
	$Fe^{2+} + 2e^- \rightarrow Fe(s);$	$E^{\circ} = -0.44 V$		
	Calculate ΔG° for the net	process.		
	a) -322 kI mol ^{-1}	b) -161 kI mol ^{-1}	c) -152 kI mol ⁻¹	d) -76 kI mol ⁻¹
39.	What weight of copper v	vill be deposited by passin	g 2 faraday of electricity	through a solution of Cu(II)
	salt?	1 71	0 , ,	5
	a) 35.6 g	b) 63.5 g	c) 6.35 g	d) 3.56 g
40.	Chlorine cannot displace	:		
	a) Fluorine from NaF	b) Iodine from Nal	c) Bromine from NaBr	d) None of these
41.	For Acell reaction involvi	ng Atwo-electron change, t	he standard emf of the cell	is found to be 0.295 V at
	25°C. The equilibrium con	nstant of the reaction at 25	°C will be	
	a) 1 × 10 ⁻¹⁰	b) 29.5 × 10 ⁻²	c) 10	d) 1 × 10 ¹⁰
42.	The resistance of a decin	normal solution of a salt o	ccupying a volume betwe	en two platinum electrodes
	1.80 cm apart and 5.4 cm	m ² in area was formed to	be 32 ohm. The specific a	and equivalent conductivity
	respectively in their prop	er units are :		
	a) 104.1 and 0.0104	b) 208.2 and 0.0208	c) 0.0104 and 104.0	d) None of these
43.	The value of equilibrium	constant for a feasible cell r	reaction is :	
	a) < 1	b) Zero	c) = 1	d) > 1
44.	At 25°C, the standard e.n	n.f. of cell having reactions i	nvolving a two electron ch	ange is found to be 0.295 V.
	The equilibrium constant	of the reaction is :		
	a) 29.5×10^{-2}	b) 10	c) 10 ¹⁰	d) 29.5 $\times 10^{10}$
45.	E° for Fe ²⁺ + 2e ⁻ \rightarrow Fe	is -0.44 V and E° for		
	$\operatorname{Zn}^{2+} + 2e^- \to \operatorname{Zn}$ is -0.	76 V thus		
	a) Zn is more electroposi	tive than Fe	b) Zn is more electronega	itive than Fe
	c) Fe is more electroposi	tive than Zn	d) None of the above	
46.	A certain quantity of ele	ectricity is passed through	aqueous solution of AgN	D_3 and $CuSO_4$ connected in
	series. If Ag (at.wt.108) d	leposited at the cathode is 1	1.08 g then Cu deposited at	the cathode is (at. wt. of Cu
	is 63.53):	1.0.045		1) 0 4 5 5
. –	a) 6.354 g	b) 0.317 g	c) 0.6354 g	d) 3.177 g
47.	$I_2(s) I (0.1 \text{ M}) \text{ half-cell}$	is connected to a H (aq) H	$I_2(1 \text{ bar})$ Pt half-cell and e	emf is found to be 0.7714 V.
	If $E_{I_2/I^-} = 0.535$ V, find the	he pH of H^+/H_2 half-cell		
	a) 1	b) 2	c) 3	d) 5
48.	The $E_{M^{3+}/M^{2+}}^{\circ}$ values for	Cr, Mn, Fe and Co are -0.41	V, +1.57 V, +0.77 V and +	1.97 V respectively. For
	which one of these metal	s the change in oxidation st	ate from $+2$ to $+3$ is easies	st?
	a) Cr	b) Mn	c) Fe	d) Co
49.	In which cell, liquid funct	ion potential need to be elin	minated?	
	a) $Pt/H_{2(P_1)} HCl Pt/H_2(H_2) HCl Pt/H_2(H_2) HCl Pt/H_2) HCl Pt/H_2(H_2) HCl Pt/H_2) HCl Pt/H_2(H_2) HCl Pt/H_2) HCl Pt/$	$P_2)$		
	h) Pt/H ₂ HCl HCl Pt/H ₂			
	c) Nicod coll			
	d) Load storage battory			
50	Which one of the following	a nitratas will laava babing	Ametal on strong heating	2
50.	a) Forric nitrato	b) Coppor pitrato	c) Manganoso nitrato	d) Silver pitrate
51	$F^{\circ} = 0.34 V F^{\circ} = 0.7$	76 V ADanial call containe (1 M 7nSO solution and 0	101 M (uso colution at its
51.	$L_{Cu} = 0.34 v$, $L_{Zn} = 0.34 v$	ll ie	ייי בווסט ₄ גטוענטוו מווע ט	to 1 m Guod ₄ Solution at its
	a) 1 10 V	b) 1 04 V	c) 116V	d) 1 07 V
52	The F° of E^{2+} / E° and C	n^{2+} (Spare 0.14 Mand 0.1	14 V respectively. If call re-	uj 1.07 v
54.	THE LOTTE / FE allu S	/ JII alt -0.44 V allu -0.	IT VIESPECTIVELY. II CEILLE	

 $Fe + Sn^{2+} \rightarrow Fe^{2+} + Sn$ then emf of the cell is a) +0.30 V b) -0.58 V c) +0.58 V d) -0.30 V 53. Electrolysis rules of Faraday's states that mass deposited on electrode is proportional to b) 0^2 c) I^{2} a) 0 d) None of these 54. A silver cup is plated with silver by passing 965 C of electricity. The amount of Ag deposited is a) 107.89 g b) 9.89 g c) 1.0002 g d) 1.08 g 55. The molecular conductivity and equivalent conductivity are same for the solution of : b) 1 *M* Ba(NO_3)₂ a) 1 *M* NaCl c) 1 *M* La(NO_3)₃ d) 1 *M* Th(NO_3)₄ 56. Dipping iron article into a strongly alkaline solution of sodium phosphate a) Does not affect the article b) Forms Fe_2O_3 . xH_2O on the surface d) Forms ferric hydroxide c) Forms iron phosphate film 57. When an electric current is passed through an aqueous solution of sodium chloride : a) H₂ is evolved at the anode b) Oxygen is evolved at the cathode c) Its pH progressively decreases d) Its pH progressively increases 58. The cell reaction of the galvanic cell $Cu(s) | Cu^{2+}(aq) || Hg^{2+}(aq) | Hg(l) is$ a) Hg + Cu²⁺ \rightarrow Hg²⁺ + Cu b) Hg + $Cu^{2+} \rightarrow Cu^{+} + Hg^{+}$ d) Cu + Hg²⁺ \rightarrow Cu²⁺ + Hg c) Cu + Hg \rightarrow CuHg 59. Calculate the volume of hydrogen at NTP obtained by passing a current of 0.4 ampere through acidified water for 30 minute : a) 0.0836 litre b) 0.1672 litre c) 0.0432 litre d) 0.836 litre 60. The standard emf of a cell involving one electron change is found to be 0.591 V and 25 °C. The equilibrium constant of the reaction is $(F = 96500 \text{ C mol}^{-1})$ a) 1.0×10^{1} b) 1.0×10^5 c) 1.0×10^{10} d) 1.0 \times 10³⁰ 61. The relationship between Gibbs' free energy change (ΔG) and emf (*E*) of a reversible electrochemical cell is given by b) $\Delta G = nF/E$ c) $\Delta G = -nFE$ d) $\Delta G = E/nF$ a) $\Delta G = nFE$ 62. The reduction electrode potential, E of 0.1 M solution of M^+ ions $(E_{RP} = -2.36 V)$ is a) -4.82 V b) -2.41 V d) None of these c) +2.41 V 63. Passage of 1 faraday of electricity through a solution of CuSO₄, deposits : a) 1 mole of Cu b) 1 g-atom of Cu c) 1 molecule of Cu d) 1 g equivalent of Cu 64. The conductivity of N/50 solution of KCl in a cell at 25°C is 0.002765 mho cm⁻¹. If the resistance of a cell containing this solution is 400 ohm, the cell constant is : d) 1 cm^{-1} a) 1.106 cm b) 1.106 cm^{-1} c) 1 cm 65. The equilibrium constant for the reaction given below at 298 K is : $\operatorname{Zn}(s) + \operatorname{Fe}^{2+}(aq) \longrightarrow \operatorname{Zn}^{2+}(aq) + \operatorname{Fe}(s);$ $E_{\rm cell}^{\circ} = 2905 \, \text{V} \, \text{at} \, 298 \, \text{K}$ a) $e^{0.32/0.0295}$ b) 10^{0.595/0.76} c) 10^{0.0250/0.32} d) 10^{0.32/0.295} 66. When the sample of copper with zinc impurity is to be purified by electrolysis, the appropriate electrodes are Cathode Anode a) Pure zinc pure copper b) Impure sample pure copper c) Impure zinc impure sample

d) Pure copper impure sample

67. A current of 12 A is passed through an electrolytic cell containing aqueous NiSO₄ solution. Both Ni and H₂

	gas are formed at the cat cathode per hour?	hode. The current efficiency	y is 60%. What is the mass	of nickel deposited on the
	a) 7.883 g	b) 3.941 g	c) 5.91 g	d) 2.645 g
68.	10^{-2} g atom of Ag can be	e oxidised to Ag ⁺ during th	e electrolysis of AgNO ₂ sc	lution using silver electrode
	hv:			
	a) 965 coulomb	b) 96500 coulomb	c) 9650 coulomb	d) 96.500 coulomb
69	A gas X at 1 atm is hubble	ed through a solution conta	ining a mixture of 1 M v^- :	and 1 M z^- at 25°C. If the
07.	order of reduction poten	tial is $z > v > r$ then		
	a) v will oxidize r and no	ratio 2 = y = x then $ratio z$	b) v will oxidize r and z	
	c) y will oxidize z and no	nt r	d) y will reduce both r as	nd z
70	Which one of the followi	ng solutions will have highe	est conductivity?	
70.	a) 0.1 M CH_{2} COOH	h) 0.1 M NaCl	c) 0.1 M KNO ₂	d) 0.1 M HCl
71	A current of strength 2 5	A was passed through CuS(C 0.1 M KNO3	The amount of conner
/ 1.	denosited is (At Wt of C	$\mu = 63.5$ 1F = 96500 C)	54 301000 101 0 mm 20 3.	The amount of copper
	a) 0 3175 g	h) 3175σ	c) 0.635 g	d) 6 35 g
72	A student made the follow	wing observations in the lat	cj 0.055 g	u) 0.55 g
12.	i) Clean conner metal dic	l not react with 1 molar Ph	(NO) solution	
	ii) Clean lead metal disso	lued in a 1 molar AgNO. so	1003/2 solution.	atal anneared
	iii) Clean silver metal did	nveu in a 1 molar Agivo3 30 I not react with 1 molar Cu((NO) solution	ictal appeared.
	The order of decreasing	roducing character of the th	$100_3)_2$ solution.	
	a) Cu Ph $\Lambda \sigma$	b) Cu Ag Ph	c) Ph Cu Ag	d) Ph Ag Cu
73	The e m f of the cell 7	$D_{1} Cu, Rg, ID$ $Tn 7n^{2+} (1 M) Cu^{2+} Cu(1)$	M is 1.1 yolt. If the star	dard reduction notential of
75.	$7n^{2-1}$ 7 n is - 0.78 volt w	what is the evidation notential	(M) is 1.1 volt. If the star	luaru reduction potentiai or
	211 211 15 - 0.70 VOIL, W	h) 0 22 V	a = 0.22 V	d) $1.96 V$
74	$dJ \pm 1.00 v$	UJ U.32 V rodo notontials of three me	$C_J = 0.52$ V tale A R and C are respect	$u_J = 1.80 v$
74.	1.2 V The reducing new	ors of those motals are	tais A, D and C are respect	1000 ± 0.3 V, -3.0 V and $-$
	1.2 V. The reducing pow	b) $C > R > A$	c) $\Lambda > C > B$	d B > C > A
75	$a_{J} = D = C$	DJCZDZA	C) A > C > D	u) b > c > A
75.	a) ampere-sec	h) ampere	c) ampere sec $^{-1}$	d) $amphara^{-1}$ sec
76	Which of the following w	ill form a cell with the high	est voltage?	u) ampliere see.
70.	a) $0.1 \text{ M Ag}^+ 2 \text{ M Co}^{2+}$	b) 2 M $\Delta \sigma^+$ 2 M Co^{2+}	c) 1 M Ag ⁺ 1 M Co ²⁺	d) 2 M Ag ⁺ 0 1 M Co ²⁺
77	When electric current is	nassed through acidified w	$c_{\rm J}$ I m $n_{\rm g}$, I m $c_{\rm J}$	H ₂ gas is collected (at STP)
<i>,,</i> .	at the cathode What is th	passed through defunited wa	acer 101 1950 3, 11201112 01	
	a) 0.05	b) 0 50	c) 50	d) 50
78	In which of the following	nairs the constants / quant	tities are not mathematical	ly related to each other?
70.	a) Gibbs free energy and	standard cell notential	titles are not mathematical	
	h) Equilibrium constant	and standard cell notential		
	c) Rate constant and acti	vation energy		
	d) Rate constant and star	idard cell notential		
79	The charge required for u	reduction of 1 mole of $Cr_{0}O$	$\frac{2}{2}$ ions to Cr^{3+} is	
, ,,	a) 96500 C	b) 2×96500 C	(-) 3 × 96500 C	d) 6 x 96500 C
80	Cell constant has the unit			
001	a) cm	b) cm^{-1}	c) cm ²	d) cm sec ^{-1}
81.	The resistance of 0.01 N	solution of an electrolyte w	vas found to be 210 ohm a	t 298 K. using a conductivity
01.	cell of cell constant 0.66	cm ⁻¹ . The equivalent condu	activity of solution is :	
	a) 314 28 mho cm ² eq $^{-1}$	(h) 3.14 mho cm ² eq $^{-1}$	c) 314 28 mho ^{-1} cm ² ea	$^{-1}$ d) 3 14 mbo ⁻¹ cm ² eq ⁻¹
82	IV. $Cu + 2HCl \rightarrow CuCl_2$	$_{2} + H_{2}(g)$	-,	
<u> </u>	$[F^{\circ}]_{a}$	= +0.34 V		
	$\frac{L^{2}Cu^{2+}}{2}$	Cu = [0.51]		
	v. $\angle III + \angle H \cup I \rightarrow \angle II \cup I_2$	$+ \pi_2(g)$		
	$[E_{Zn^{2+}}]$	$_{/Zn} = -0.76 V$]		

	VI. Ag + 2HCl \rightarrow AgCl + $\frac{1}{2}$ H ₂ (g)		
	$[E_{Aa^{+}(Aa^{-})}^{\circ} = +0.80 V]$		
	Which of the following reaction is feasible?		
	a) (ii) b) (i)	c) (iii)	d) All of these
83	The standard notential at 25° C for the following has	alf-reactions are given aga	inst them $7n^{2+} + 2e^- \rightarrow 7n$
05.	$F^{\circ} = -0.762 \text{ V}$	in reactions are given aga	
	$M\sigma^{2+} + 2e^- \rightarrow M\sigma F^\circ = -2.37 V$		
	When zinc dust is added to the solution of $MgCl_{a}$		
	a) ZnCl ₂ is formed	h) Mg is precipitated	
	c) Zn dissolves in the solution	d) No reaction takes place	26
84	1 coulomb of charge passes through solution	of $AgNO_2$ and $CuSO_4$ co	nnected in series and the
011	concentration of two solution being in the ratio 1 :	2. The ratio of amount of $\frac{1}{2}$	f Ag and Cu deposited on Pt
	electrode is :		
	a) 107.9 : 63.54 b) 54 : 31.77	c) 107.9: 31.77	d) 54 : 63.54
85.	When lead accumulator is charged, it is :	-)	
	a) An electrolytic cell b) A galvanic cell	c) A daniell cell	d) None of these
86.	If the ΔG of a cell reaction AgCl + $e^- \rightarrow$ Ag + Cl ⁻ is -	-21.20 kJ, the standard em	f of cell is
	a) 0.239 V b) 0.220 V	c) -0.320 V	d) -0.110 V
87.	$\Lambda_{\text{CICH}_2\text{COONa}}^{\infty} = 224\Omega^{-1} \text{ cm}^2 \text{ g equiv}^{-1}$		-
	$\Lambda_{\text{Nacl}}^{\infty} = 38.5\Omega^{-1} \text{ cm}^2 \text{ g equiv}^{-1}$		
	$\Lambda_{\rm Hcl}^{\infty} = 203\Omega^{-1} \rm cm^2 g equiv^{-1}$		
	What is the value of $\lambda_{CICH_{-}COOH} = ?$		
	a) $288.5\Omega^{-1}$ cm ² g equiv ⁻¹	b) 289.5 Ω^{-1} cm ² g equiv	-1
	c) $388.5\Omega^{-1}$ cm ² g equiv ⁻¹	d) 59.5 Ω^{-1} cm ² g equiv	1
88.	When a copper wire is immersed in a solution of As	gNO_3 , the colour of the sol	ution becomes blue because
	copper :		
	a) Forms a soluble complex with AgNO ₃		
	b) Is oxidised to Cu ²⁺		
	c) Is reduced to Cu ^{2–}		
	d) Splits up into atomic form and dissolves		
89.	The electrode potential of a glass electrode depends	upon :	
	a) Concentration of chloride ions		
	b) Concentration of hydrogen ions		
	c) Concentration of KCl solution		
	d) None of the above		
90.	0.04 <i>N</i> solution of a weak acid has conductivity 4.1	23×10^{-4} mho cm ⁻¹ . If t	the degree of dissociation of
	acid at this dilution is 0.0612, then equivalent condu	ictivity at infinite dilution i	ismho cm ² eq. ^{-1} :
0.4	a) 172.8 b) 180	c) 190	d) 160
91.	The highest electrical conductivity of the following a	iqueous solutions is of	,
	a) 0.1 M difluoroacetic acid	b) 0.1 M fluoroacetic acid	1
02	c) U.1 M Chloroacetic acid	d) 0.1 M acetic acid	
92.	a) Ni displação zine from ite colution		
	h) 7n displaces iron from its solution		
	c) Ag displaces conner from its solution		
	d) Cu displaces nickel from its solution		
93	In an electrolytic cell of $Ag \mid Ag NO_2 \mid Ag$, when curre	nt is passed, the concentra	ition of AgNO ₂ :
201	a) Increases b) Decreases	c) Remains same	d) None of these
94.	The resistance of 1N solution of acetic is 250Ω ,when	n measured in a cell having	g a cell constant of

	1.15cm ⁻¹ .The equivalent	conduction (in ohm ⁻¹ cm ²	equiv ⁻¹) of 1N acetic acid	is
	a) 2.3	b) 4.6	c) 9.2	d) 18.4
95.	The standard reduction p	ootential E° for the half reac	tions are as	
	$Zn \rightarrow Zn^{2+} + 2e^{-}$, E	$E^{\circ} = 0.76 V$		
	$Cu \rightarrow Cu^{2+} + 2e^{-}$, B	$E^{\circ} = 0.34 V$		
	The emf for the cell react	ion,		
	$Zn + Cu^{2+} \rightarrow Zn^{2+} + C$	u		
	a) 0.42 V	b) -0.42 V	c) -1.1 V	d) 1.1 V
96.	Ionic mobility is equal to:		-	-
	a) Speed of ions			
	b) Speed of ion under pot	ential difference of 1 volt		
	c) Speed of ions under ur	nit potential gradient		
	d) None of the above			
97.	At pH = 2, $E^{\circ}_{\text{Quinhydrone}}$	$= 1.30 V, E_{\text{Quinhydrone}}$ will b	be :	
	OH O			
		$2H^{+} + 2e^{-}$		
	\mathbf{Y}			
	I I OH O			
	a) 1.36 V	b) 1.30 V	c) 1.42 V	d) 1.20 V
98.	The equilibrium constant	for the reaction : $Cu + 2Ag$	$^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag$; $E^{\circ} = 0.46$ V at 298 K is :
	a) 2.0 $\times 10^{10}$	b) 4.0 $\times 10^{10}$	c) 4.0 $\times 10^{15}$	d) 2.4 $\times 10^{10}$
99.	For a given cell reaction;	$Cr + 3H_2O + OCl^- \rightarrow Cr^{3+}$	$3Cl^- + 6OH^-$, the species	undergoing reduction is :
	a) Cr	b) Cr ⁶⁺	c) OCl [_]	d) Cl ⁻
100.	If the H ⁺ concentration is	s decreased from 1 M to 10^{-10}	⁻⁴ M at 25 °C for the couple	MnO_4^-/Mn^{2+} , then the
	oxidising power of the M	nO_4^-/Mn^{2+} couple decrease	es by	
	a) -0.18 V	b) 0.18 V	c) 0.38 V	d) -0.38 V
101.	The standard e.m.f. of a g	alvanic cell involving the co	ell reaction with $n = 2$ is for	ound to be 0.295 V at 25° C.
	The equilibrium constant	of the reaction is :		
	a) 2.0 $\times 10^{11}$	b) 4.0 $\times 10^{12}$	c) 1.0×10^2	d) 1.0 $\times 10^{10}$
102.	If an iron rod is dipped in	CuSO ₄ solution, then :		
	a) Blue colour of the solu	tion turns red		
	b) Brown layer is deposit	ed on iron rod		
	c) No change occurs in th	e colour of the solution		
	d) None of the above			
103.	Which of the following lik	perates hydrogen on reactio	n with dilute H_2SO_4 ?	
	a) Al	b) Fe	c) Cu	d) Hg
104.	Agalvanic cell with electr	ode potential of ' $A' = +2.23$	V and $B' = -1.43$ V. The va	llue of E_{cell} is
	a) 3.66 V	b) 0.80 V	c) -0.80 V	d) -3.66 V
105.	A galvanic cell is compos	sed of two hydrogen electr	odes, one of which is a sta	indard one. In which of the
	following solutions shoul	d the other electrode be im	mersed to get maximum e.	m. f.?
100	a) 0.1 <i>M</i> HCl	b) $0.1 M CH_3 COOH$	c) 0.1 <i>M</i> H ₃ PO ₄	d) 0.1 <i>M</i> H ₂ SO ₄
106.	Which metal does not giv	e the following reaction?		
	M + water or steam –	\rightarrow 0x1de + H ₂	a) Managara	d) Maanaatinna
107	aj iron	UJ SOUIUM	cj Mercury	u) Magnesium
10/.	The volume of U meduce	annu) is deposited at cathoo $u \to x = 0$	alution by the same quest	ter taill qualitity of charge.
	The volume of H_2 produce	EU AL STE IFOIII Π ' IONS IN S	$c_{1} = c_{1} = c_{1}$	d) 22 4 I
100	aj 11.2 L In the electrolycic of acid	UJ 44.0 L Water it is desired to	UJ J.UL A obtain 1 12 cc of budroges	uj 22.4 L 2 por second under CTD
100	in the ciccu biysis of actu	unated water, it is desired to	, obtain 1.12 to of figur oger	i per second under STF

condition. The current to be passed is		
a) 1.93 A b) 9.65 A	c) 19.3 A d) 0.965 A	
109. The speed of ions during passage of curre	nt depends upon :	
a) Nature of ion b) Potential gr	dient c) Dilution of solution d) All of these	
110. The best way to prevent rusting of iron is		
a) Making it cathode	b) Putting in saline water	
c) Both (a) and (b)	d) None of these	
111. The hydrogen electrode is dipped in a sol	ution of $pH = 3$ at 25°C. The reduction potential of the cell	would
be :		
a) 0.177 V b) – 0.177 V	c) 0.087 V d) 0.059 V	
112. Conductivity (unit Siemen) is directly pro	portional to area of the vessel and the concentration of the	
solution in it and is inversely proportiona	to the length of the vessel. Then, the units of the constant	of
proportionality is		
a) $S^2 m^2 mol$ b) $S^2 m^2 mol^{-2}$	c) $S m^2 mol^{-1}$ d) $S m mol^{-1}$	
113. The metal that cannot be produced on red	uction of its oxide by aluminium is :	
a) K b) Mn	c) Cr d) Fe	
114. In the concentration cells, the electrical en	ergy is produced due to :	
a) Oxidation of fuel		
b) Heat energy		
c) Chemical reaction		
d) Transfer of a substance from one conce	ntration to other	
115. How many faraday are needed to reduce	mole of MnO_{-}^{-} of Mn^{2+} ?	
a) 4 b) 5	c) 3 d) 2	
116 For the cell		
T1 T1 ⁺ (0 001 M) Cu^{2+} (0 1 M) Cu		
$F_{\rm m}$ at 25°C is 0.83 V $F_{\rm m}$ can be increas.	d	
a) By decreasing $[Cu^{2+}]$	h) By increasing $[Cu^{2+}]$	
a) By uccreasing [Cu]	d) None of these	
117 In an aqueous solution bydrogen (H) wi	l not reduce :	
a) Eo^{3+} b) Cu^{2+}	$a) 7n^{2+} d) Aa^+$	
a) Fe D) Cu	CJ ZII UJ Ag	no
110. How many far adays of electricity are requ	fied to electrolyse 1 mole cuci ₂ to copper metal and chorn	ne
gas:		
a) Γ D) 2Γ	CJ 3 F UJ 4 F	
119. Which statement is not correct?	in more southly diluctions	
a) Conductance of an electrolytic solution	increases with dilution	
b) Conductance of an electrolytic solution	decreases with dilution	
c) Specific conductance of an electrolytic	Solution decreases with dilution	
d) Equivalent conductance of an electroly	tic solution increase with dilution	
120. The correct value of e.m.f. of cell is given l	y :	
i) $E_{cell} = E_{OP}$ anode $-E_{RP}$ cathode		
ii) $E_{\text{cell}} = E_{\text{OP}}$ anode + E_{RP} cathode		
iii) $E_{cell} = E_{RP}$ anode + E_{RP} cathode		
iv) $E_{cell} = E_{OP}$ anode $- E_{OP}$ cathode		
a) (iii) and (i) b) (i) and (ii)	c) (iii) and (iv) d) (ii) and (iv)	
121. $Zn^{2+} \rightarrow Zn(s); E^{\circ} = -0.76 V$		
$Cu^{2+} \rightarrow Cu(s); E^{\circ} = -0.34 V$		
Which of the following is spontaneous?		
a) $Zn^{2+} + Cu \rightarrow Zn + Cu^{2+}$	b) $Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$	
c) $Zn^{2+} + Cu^{2+} \rightarrow Zn + Cu$	d) None of the above	
	a) None of the above	

	displaces all the other the	nree elements?		
	a) <i>B</i>	b) <i>A</i>	c) <i>D</i>	d) <i>C</i>
123	. Given,			
	$E^{\circ}_{Cr^{3+}/Cr} = 0.72 V$, E	$G^{\circ}_{Fe^{2+}/Fe} = 0.42 V.$		
	The potential for the cel	1		
	Cr/Cr ³⁺ (0.1 M) Fe ²⁺	(0.01 M) Fe is		
	a) 0.26 V	b) 0.399 V	c) -0.339 V	d) -0.26 V
124	. The electroplating with	chromium is undertaken b	ecause :	
	a) Electrolysis of chrom	ium is easier		
	b) Chromium can form	alloys with other metals		
	c) Chromium gives a pr	otective and decorative coa	ting to the base metal	
405	d) Of high reactivity of c	hromium metal		
125	. Which of the following i	s not correct?		
	a) Aqueous solution of l	Naul is an electrolyte.	ulamh	
	c) In the Nernst equation	n <i>n</i> represents the number	uioiiid. c of electrons transferred in	the electrode reaction
	d) Standard reduction r	otential of hydrogen electr	ode is zero volt	the electrone reaction.
126	$H_{\rm a}$ cannot be displaced	hv		
120	a) Li ⁺	b) Sr^{2+}	c) Al ³⁺	d) Ag+
127	. The standard reduction	potential of Zn and Ag in w	ater at 298 K are.	~)8
	$Zn^{2+} + 2e^- \rightleftharpoons Zn; E'$	r = -0.76 V and	·····,	
	$Ag^+ + e^- \rightleftharpoons Ag; E$	$r^{\circ} = +0.80 V$. Which of the	following reactions take pl	lace?
	a) Zn^{2+} (aq) + 2Ag (s)	$\rightarrow 2Ag^{+}(aq) + Zn(s)$	b) $Zn(s) + 2Ag^{+}(aq)$	\rightarrow Zn ²⁺ (aq) + 2Ag (s)
	c) Zn^{2+} (aq) + Ag ⁺ (ac	$a_{\rm l}$ \rightarrow Zn (s) + Ag (s)	d) $Zn(s) + Ag(s) \rightarrow Z$	$n^{2+}(aq) + Ag^{+}(aq)$
128	. The amount of an ion di	scharged during electrolys	is is not dependent of :	
	a) Resistance of solution	1		
	b) Time			
	c) Current strength			
	d) Electrochemical equi	valent of the element		
129	. The conductivity of a 0.	1 <i>N</i> KCl solution at 23°C is	$0.012 \text{ ohm}^{-1} \text{ cm}^{-1}$. The res	sistance of the cell containing
	the solution at the same $-2 0.010 \text{ mm}^{-1}$	temperature was found to $b = 0.0000000000000000000000000000000000$	be 55 ohm. The cell constant -2 1 1 1 2 -1	nt will be : d = 1
120	a) 0.918 cm ⁻¹	DJ U.66 CM $^{-1}$	$C_{J} = 1.142 \text{ cm}^{-1}$	a) 1.12 cm ⁻¹
150	the order	our elements P, Q, K, S is –	2.90, ±0.34, ±1.20 and ±0.7	6. Reactivity decreases in
	a) $P > 0 > R > S$	h) $S > R > O > P$	c) $P > S > O > R$	d) $0 > S > R > P$
131	. Which of the following s	statements are correct conc	erning redox properties?	
101	I Ametal <i>M</i> for which	E° for the half reaction		
	$M^{n+} + ne^- = M$, is very negative will be Ag	good reducing agent.	
	II The oxidizing pov	ver of the halogens decreas	es from chlorine to iodine.	
	III The reducing por	wer of hydrogen halides in	creases from hydrogen chlo	oride to hydrogen
	iodide.			
	a) I , II and III	b) I and II	c) I only	d) II and III only
132	. A cell with two electrod	es, one of grey tin and the	other white tin, both dippir	ng in solution of $(NH_4)_2SnCl_6$
	showed zero e.m.f. at 18	8°C. What conclusion may b	e drawn from this?	
	a) The e.m.f. developed	at the electrode-solution pl	hase boundary cancels the i	normal e.m.f.
	b) Grey tin being non-m	etallic ceases to provide a r	eversible electrode reaction	n
	c) Electrode surface dev	velops a protective layer an	d the cell develops a very la	arge internal resistance
122	Aluminium displaces by	drogen from dilute UCI wh	culles zel 0 arazs silvar daas not Tha a	mf of Acell propared by
100	combining Al/ Al ³⁺ and	Ag / Ag ⁺ is 2.46 V The red	uction notential of silver el	ectrode is ± 0.80 V The
	comonning my mi anu	152.10 v. Hiereu	action potential of shver er	

reduction potential of aluminium electrode is

a) +1.66 V b) -3.26 V c) 3.26 V d) -1.66 V 134. For $l_2 + 2e \rightarrow 2l^-$, standard reduction potential = + 0.54 volt. For $2Br^- \rightarrow Br_2 + 2e^-$, standard oxidation potential = - 1.09 volt. For $Fe \rightarrow Fe^{2+} + 2e^-$, stabdard oxidation potential = + 0.44 volt. Which of the following reactions is non-spontaneous? a) $Br_2 + 2l^- \rightarrow Br^{2+} + 2Er^-$ c) $Fe + l_2 \rightarrow Fe^{2+} + 2Er^-$ c) $Fe + l_2 \rightarrow Fe^{2+} + 2Er^-$ c) $Fe + l_2 \rightarrow Fe^{2+} + 2Er^-$ d) $l_2 + 2Br^- \rightarrow 2l^- + Br_2$ 135. When KMo1 ₂ acts as an oxidizing agent and ultimately forms Mn0 ² ₄ ⁻ , Mn0 ₂ , Mn ₂ 0 ₃ and Mn ²⁺ then the number of electrons transferred in each case respectively, are a) 4, 3, 1, 5 b) 1, 5, 3, 7 c) 1, 3, 4, 5 d) 3, 5, 7, 1 136. For a cell reaction involving a two electron change, the standard emf of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction, at 25°C, will be a) 10 b) 1 × 10 ¹⁰ c) 1 × 10 ⁻¹⁰ d) 10 × 10 ⁻² 137. Which one of the following has the highest molar conductivity? a) Diaminedichloroplatinum (III) b) Tetraaminedichlorocobalt (III) chloride c) Potassium hexacyanoferrate (II) d) Hexaaquochromium (III) bromide 138. Electrode potential of $2n^{2+}/2n$ is - 0.76 V and that of $C2^+/Cu$ is + 0.34 V. The emf of the cell constructed between these two electrodes is a) 1.10 V b) - 1.10 V c) 2.20 V d) - 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given $2n^{2+}(aq) + 2e^- = 2n(s); -0.76 V$ $Cr^{3+}(aq) + 2e^- = En(s); +0.77 V$ $2H^+(aq) + 2e^- = En(s); -0.76 V$ $2H^+(aq) + 2e^- = En(s); +0.77 V$ $2H^+(aq) + 2e^- = En(s); -0.76 V$ $2R^{3+}(aq) + e^- = En(s); +0.77 V$ $2H^+(aq) + 2e^- = En(s); +0.77 V$		reduction	i potei	itiai ui	aiuiiiii		cuoue i	5			
134. For $l_2 + 2e \rightarrow 2l^-$, standard reduction potential = + 0.54 volt. For $2Br^- \rightarrow Br_2 + 2e^-$, standard oxidation potential = + 0.44 volt. Which of the following reactions is non-spontaneous? a) $Br_2 + 2l^- \rightarrow 2Br^- + l_2$ b) $Fe + Br_2 \rightarrow Fe^{2+} + 2lr^-$ c) $Fe + l_2 \Rightarrow Fe^{2+} + 2lr^-$ d) $l_2 + 2Br^- \rightarrow 2l^- + Br_2$ 135. When KMnO ₄ acts as an oxidizing agent and ultimately forms MnO ₄ ²⁻ , MnO ₂ , Mn ₂ O ₃ and Mn ²⁺ then the number of electrons transferred in each case respectively, are a) 4, 3, 1, 5 b) 1, 5, 3, 7 c) 1, 3, 4, 5 d) 3, 5, 7, 1 136. For a cell reaction involving a two electron change, the standard emf of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction, at 25°C, will be a) 10 b) 1 × 10 ⁻¹⁰ c) 1 × 10 ⁻¹⁰ d) 10 × 10 ⁻² 137. Which one of the following has the highest molar conductivity? a) Diaminedichloroplatinum (III) b) Tetraaminedichlorocobalt (III) chloride c) Potassium hexacyanoferrate (II) d) Hexaequochromium (III) bornide 138. Electrode potential of $2n^{2+}/Zn$ is - 0.76 V and that of Cu^{2+}/Cu is + 0.34 V. The emf of the cell constructed between these two electrodes is a) 1.10 b) - 1.10 V c) 2.20 V d) - 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given $2n^{2+}(aq) + 2e^- \Rightarrow Lr(s); -0.762 V$ $Cr^{3+}(aq) + 2e^- \Rightarrow Fe^{2+}(aq); +0.07 V$ Which one of the following is the strongest reducing agent? a) $Zn(s) b) Cr(s) c) L + 0$ (11 h d) 16 h 141. Use of electrolysis is a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) $2Na(s) + CuSO_4(aq) \rightarrow CuSO_4(aq) + Zn(s)$ d) $2Na(s) + CuSO_4(aq) \rightarrow NaSO_4(aq) + Ca(s)$ 143. Electrorefining b) $Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic ce$		a) +1.66	V		b)	-3.26 V			c) 3.26 V		d) -1.66 V
oxidation potential = -1.09 volt. For Fe \rightarrow Fe ²⁺ + 2e ⁻ , stabdard oxidation potential = $+0.44$ volt. Which of the following reactions is non-spontaneous? a) Br ₂ + 2I ⁻ \rightarrow 2Pr ⁻ + 42Br ⁻ c) Fe + 1 ₂ \rightarrow Fe ²⁺ + 2Br ⁻ d) $1_2 + 2Br^- \rightarrow 2I^- + Br_2$ 135. When KMO ₄ acts as an oxidizing agent and ultimately forms MnO ₄ ²⁻ , MnO ₂ , Mn ₂ O ₃ and Mn ²⁺ then the number of electrons transferred in each case respectively, are a) 4, 3, 1, 5 b) 1, 5, 3, 7 c) 1, 3, 4, 5 d) 3, 5, 7, 1 136. For a cell reaction involving a two electron change, the standard emf of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction, at 25°C, will be a) 10 b) 1 × 10 ¹⁰ c) 1 × 10 ⁻¹⁰ d) 10 × 10 ⁻² 137. Which one of the following has the highest molar conductivity? a) Diaminedichlorophatium (II) b) Tetraaminedichlorocobalt (III) chloride c) Potassium hexacyanoferrate (II) d) Hexaaquochromium (III) bromide 138. Electrode potential of Zn ²⁺ /Zn is - 0.76 V and that of Cu ²⁺ /Cu is + 0.34 V. The emf of the cell constructed between these two electrodes is a) 1.10 V b) - 1.10 V c) 2.20 V d) - 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given Zn ²⁺ (aq) + 2e ⁻ \Rightarrow Zn (s); -0.76 V Cr ³⁺ (aq) + 2e ⁻ \Rightarrow Zn (s); -0.774 V 2H ⁺ (aq) + 2e ⁻ \Rightarrow En (s); -0.774 V 2H ⁺ (aq) + 2e ⁻ \Rightarrow En (s); -0.774 V Which one of the following is the strongest reducing agent? a) 2Tn b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZuSO ₄ (aq) \rightarrow CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) \rightarrow Cu(s) + ZnSO ₄ (aq) c) N(s) + ZnSO ₄ (aq) \rightarrow CuSO ₄ (aq) + Zn(s) d) ZN(s) + CuSO ₄ (aq) \rightarrow CuSO ₄ (aq) + Zn(s) 143. Electromerical KCl KNO HCl NaO NaC NaC NaC NaC NaC NaC NaC NaC NaC NaC NaC NaC NaC NaC NaC NaC NaC NaC	134.	For I_2 +	$2e \rightarrow$	2I ⁻ , s	standar	rd redu	ction p	otential	= + 0.54 volt.	For 2Br	$^- \rightarrow \mathrm{Br}_2 + 2\mathrm{e}^-$, standard
Which of the following reactions is non-spontaneous? a) Br ₂ + 21 ⁻ → 28r ⁺ + 1 ₂ b) Fe + 1 ₂ → Fe ²⁺ + 21 ⁻ c) Fe + 1 ₂ → Fe ²⁺ + 21 ⁻ d) 1 ₂ + 28r ⁻ → 21 ⁻ + Br ₂ 135. When KM0 ₄ acts as an oxidizing agent and ultimately forms Mn0 ² ₄ ⁻ , Mn0 ₂ , Mn ₂ 0 ₃ and Mn ²⁺ then the number of electrons transferred in each case respectively, are a) 4, 3, 1, 5 b) 1, 5, 3, 7 c) 1, 3, 4, 5 d) 3, 5, 7, 1 136. For a cell reaction involving a two electron change, the standard emf of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction, at 25°C, will be a) 10 b) 1 × 10 ¹⁰ c) 1 × 10 ⁻¹⁰ d) 10 × 10 ⁻² 137. Which one of the following has the highest molar conductivity? a) Diaminedichloroplatinum (III) b) Tetraaminedichlorocobalt (III) chloride c) Potassium hexacyanoferrate (II) d) Hexaaquochromium (III) bromide 138. Electrode potential of Zn ²⁺ /Zn is - 0.76 V and that of Cu ²⁺ /Cu is + 0.34 V. The emf of the cell constructed between these two electrodes is a) 1.10 b) -1.10 V c) 2.20 V d) - 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given Zn ²⁺ (aq) + 2e ⁻ \Rightarrow Zn (s); -0.762 V Cr ³⁺ (aq) + 2e ⁻ \Rightarrow Fe ² (aq); +0.77 V Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten CaCl ₂ ? a) 27 b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + CuSO ₄ (aq) → NuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) → NuSO ₄ (aq) + Zn(s) d) Zn(s) + CuSO ₄ (aq) → NuSO ₄ (aq) + Zn(s) d) Zn(s) + CuSO ₄ (aq) → NuSO ₄ (aq) + Zn(s) d) Zn(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) + Cd (s) 143. Electronefining b) Electroplating c) Both (a) and (b) d) None of these 144. What is the cell reaction occurring in Daniel ce		oxidation	n potei	ntial =	- 1.0	9 volt.	For Fe	$\rightarrow \mathrm{Fe}^{2+}$	+ 2e ⁻ , stabdard	oxidatior	n potential = $+$ 0.44 volt.
a) $Br_2 + 2l^- \rightarrow 2Br^- + l_2$ b) $Fe + Br_2 \rightarrow Fe^{2+} + 2B^-$ c) $Fe + l_2 \rightarrow Fe^{2+} + 2l^-$ d) $l_2 + 2Br^- \rightarrow 2l^- + Br_2$ 135. When KMn0 ₄ acts as an oxidizing agent and ultimately forms $Mn0_4^{2-}$, $Mn0_2$, Mn_20_3 and Mn^{2+} then the number of electrons transferred in each case respectively, are a) 4, 3, 1, 5 b) 1, 5, 3, 7 c) 1, 3, 4, 5 d) 3, 5, 7, 1 136. For a cell reaction involving a two electron change, the standard emf of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction, at 25°C, will be a) 10 b) 1 × 10 ¹⁰ c) 1 × 10 ⁻¹⁰ d) 10 × 10 ⁻² 137. Which one of the following has the highest molar conductivity? a) Diaminedichloroplatinum (III) b) Tetraaminedichlorocobalt (III) chloride c) Potassium hexacyanoferrate (II) d) Hexaaquochromium (III) bromide 138. Electrode potential of $2n^{2+}/Zn$ is -0.76 V and that of Cu^{2+}/Cu is +0.34 V. The emf of the cell constructed between these two electrodes is a) 1.10 V b) - 1.10 V c) 2.20 V d) - 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given $Zn^{2+}(aq) + 2e^- \rightleftharpoons Tc(s); -0.762 V$ $Cr^{3+}(aq) + 2e^- \rightleftharpoons H_2(g); +0.00 V$ $Fe^{3+}(aq) + 2e^- \rightleftharpoons H_2(g); +0.00 V$ $Fe^{3+}(aq) + 2e^- \rightleftharpoons Fe^{2+}(aq); +0.77 V$ Which one of the following is the strongest reducing agent? a) $Zn(s)$ b) $Cr(s)$ c) $H_2(s)$ d) $Fe^{2+}(aq)$ 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten $CaCl_2?$ a) $27 h$ b) $8.3 h$ c) 11 h d) 16 h 141. Use of electrolysis is a) Electroderolysis is a) Electroderolysis is a) Electroderolysis is a) Electroderolysis is a) Electroderolysis (a) $\rightarrow CuSO_4(aq) + Zn(s)$ b) $Zn(s) + CuSO_4(aq) \rightarrow CuSO_4(aq) + Zn(s)b) Zn(s) + CuSO_4(aq) \rightarrow CuSO_4(aq) + Zn(s)b) Zn(s) + CuSO_4(aq) \rightarrow NaZO_4(aq) + Cd(s)143. \frac{Bickrimeter}{RCI} KNO4 HCI Ac\frac{Ac}{RC} (149, 145, 1426, 91.0, 126, 166)143. \frac{Bickrimeter}{RCI} KNO4 HCI Ac\frac{Ac}{RC} (149, 145, 145, 426, 91.0, 126, 167)(200)$		Which of	the fol	lowing	; reacti	ons is n	on-spon	taneous	?		
b) Fe + Br ₂ \rightarrow Fe ²⁺ + 2Br ⁻ c) Fe + I ₂ \rightarrow Fe ²⁺ + 2I ⁻ d) I ₂ + 2Br ⁻ \rightarrow 2I ⁻ + Br ₂ 135. When Kn0 ₄ acts as an oxidizing agent and ultimately forms Mn0 ²⁺ ₄ , Mn0 ₂ , Mn ₂ 0 ₃ and Mn ²⁺ then the number of electrons transferred in each case respectively, are a) 4, 3, 1, 5 b) 1, 5, 3, 7 c) 1, 3, 4, 5 d) 3, 5, 7, 1 136. For a cell reaction involving a two electron change, the standard emf of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction, at 25°C, will be a) 10 b) 1 × 10 ¹⁰ c) 1 × 10 ⁻¹⁰ d) 10 × 10 ⁻² 137. Which one of the following has the highest molar conductivity? a) Diaminedichloroplatinum (III) b) Tetraaminedichlorocobalt (III) chloride c) Potassium bexazyanoferrate (II) d) Hexaaquochromium (III) bnomide 138. Electrode potential of Zn ²⁺ /Zn is - 0.76 V and that of Cu ²⁺ /Cu is + 0.34 V. The emf of the cell constructed between these two electrodes is a) 1.10 V b) - 1.10 V c) 2.20 V d) - 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given Zn ²⁺ (aq) + 2e ⁻ \Rightarrow Cr (s); -0.74 V 2H ⁺ (aq) + 2e ⁻ \Rightarrow Fc ²⁺ (aq); +0.00 V Fe ³⁺ (aq) + e ⁻ \Rightarrow Fe ²⁺ (aq); +0.00 V Fe ³⁺ (aq) + e ⁻ \Rightarrow Fe ²⁺ (aq); +0.77 V Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten CaCl ₂ ? a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) \rightarrow Cu(s) + ZnSO ₄ (aq) c) N(s) + ZnSO ₄ (aq) \rightarrow NuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) \rightarrow NuSO ₄ (aq) + Zn(s) d) 2Na(s) + CuSO ₄ (aq) \rightarrow NuSO ₄ (aq) + Zn(s) d) ZNa(s) + CuSO ₄ (aq) \rightarrow NuSO ₄ (aq) + Zn(s) d) ZNa(s) + CuSO ₄ (aq) \rightarrow NuSO ₄ (aq) + Zn(s) d) ZNa(s) + CuSO ₄ (aq) \rightarrow NuSO ₄ (aq) + Zn(s) d) ZNa(s) +		a) Br ₂ +	2I ⁻ —	→ 2Br ⁻	$+ I_{2}$						
c) $Fe + I_2 \rightarrow Fe^{2+} + 2I^-$ d) $I_2 + 2Br^- \rightarrow 2I^- + Br_2$ 135. When KMnO ₄ acts as an oxidizing agent and ultimately forms MnO ₄ ²⁻ , MnO ₂ , Mn ₂ O ₃ and Mn ²⁺ then the number of electrons transferred in each case respectively, are a) 4, 3, 1, 5 b) 1, 5, 3, 7 c) 1, 3, 4, 5 d) 3, 5, 7, 1 136. For a cell reaction involving a two electron change, the standard emf of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction, at 25°C, will be a) 10 b) 1 × 10 ¹⁰ c) 1 × 10 ⁻¹⁰ d) 10 × 10 ⁻² 137. Which one of the following has the highest molar conductivity? a) Diaminedichloroplatinum (III) b) Tetraaminedichlorocobalt (III) chloride c) Potassium hexacyanoferrate (II) d) Hexaaquochromium (III) bromide 138. Electrode potential of $2n^{2+}/2n$ is -0.76 V and that of Cu^{2+}/Cu is $+0.34$ V. The emf of the cell constructed between these two electrodes is a) 1.10 V b) -1.10 V c) 2.20 V d) -2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given $Zn^{2+}(aq) + 2e^- \Rightarrow Zn(s); -0.762$ V $Cr^{3+}(aq) + 2e^- \Rightarrow Cr(s); -0.74$ V $2H^+(aq) + 2e^- \Rightarrow R_2(g); +0.00$ V $Fe^{3+}(aq) + e^- \Rightarrow Fe^{2+}(aq); +0.77$ V Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten $CaCl_2?$ a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electroneling b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) $\rightarrow Cu(s) + ZnSO4(aq) + Zn(s)$ b) Zn(s) + CuSO ₄ (aq) $\rightarrow NaCO4(aq) + Zn(s)$ b) Zn(s) + CuSO ₄ (aq) $\rightarrow NaCO4(aq) + Zn(s)$ b) Zn(s) + CuSO ₄ (aq) $\rightarrow NaCO4(aq) + Zn(s)$ b) Zn(s) + CuSO ₄ (aq) $\rightarrow NaCO4(aq) + Zn(s)$ b) Zn(s) + CuSO ₄ (aq) $\rightarrow NaCO4(aq) + Zn(s)$ b) Zn(s) + CuSO ₄ (aq) $\rightarrow NaCO4(aq) + Zn(s)$ b) Zn(s) + CuSO ₄ (aq) $\rightarrow NaCO4(aq) + Cd (s)$ 143		b) Fe + B	$r_2 \rightarrow$	$Fe^{2+} +$	- 2Br-						
d) $I_2 + 2Br^- → 2I^- + Br_2$ 135. When KMnO ₂ acts as an oxidizing agent and ultimately forms MnO ₄ ²⁻ , MnO ₂ , Mn ₂ O ₃ and Mn ²⁺ then the number of electrons transferred in each case respectively, are a) 4, 3, 1, 5 b) 1, 5, 3, 7 c) 1, 3, 4, 5 d) 3, 5, 7, 1 136. For a cell reaction involving a two electron change, the standard emf of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction, at 25°C, will be a) 10 b) 1 × 10 ¹⁰ c) 1 × 10 ⁻¹⁰ d) 10 × 10 ⁻² 137. Which one of the following has the highest molar conductivit? a) Diaminedichloroplatinum (III) b) Tetraaminedichlorocobalt (III) chloride c) Potassium hexacyanoferrate (II) d) Hexaaquochromium (III) bromide 138. Electrode potential of Zn ²⁺ /Zn is - 0.76 V and that of Cu ²⁺ /Cu is + 0.34 V. The emf of the cell constructed between these two electrodes is a) 1.10 V b) - 1.10 V c) 2.20 V d) - 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given Zn ²⁺ (aq) + 2e ⁻ \Rightarrow Zn (s); -0.762 V Cr ³⁺ (aq) + 2e ⁻ \Rightarrow Cr (s); -0.762 V Cr ³⁺ (aq) + 2e ⁻ \Rightarrow Cr (s); -0.762 V Cr ³⁺ (aq) + 2e ⁻ \Rightarrow Eq ₂ (g); +0.00 V Fe ³⁺ (aq) + e ⁻ \Rightarrow Fe ²⁺ (aq); +0.77 V Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten CaCl ₂ ? a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electroefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) → CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) c) Ni(s) + ZnSO ₄ (aq) → NiSO ₄ (aq) + Zn(s) d) ZNa(s) + ZnSO ₄ (aq) → NiSO ₄ (aq) + Zn(s) d) ZNa(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) + Cd (s) 143. Electrodex KCL KON HC NaO NaC NaC NaC NaC NaC NaC NaC NaC NaC NaC NaC		c) Fe + I_2	$_{2} \rightarrow Fe$	$e^{2+} + 2$	2I-						
135. When KMnO ₄ acts as an oxidizing agent and ultimately forms MnO ₄ ^{4−} , MnO ₂ , Mn ₂ O ₃ and Mn ²⁺ then the number of electrons transferred in each case respectively, are a) 4, 3, 1, 5 b) 1, 5, 3, 7 c) 1, 3, 4, 5 d) 3, 5, 7, 1 136. For a cell reaction involving a two electron change, the standard emf of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction, at 25°C, will be a) 10 b) 1 × 10 ¹⁰ c) 1 × 10 ⁻¹⁰ d) 10 × 10 ⁻² 137. Which one of the following has the highest molar conductivity? a) Diaminedichloroplatinum (III) b) Tetraaminedichlorocobalt (III) chloride c) Potassium hexacyanoferrate (I) d) Hexaaquochromium (III) bbromide 138. Electrode potential of Zn ²⁺ /Zn is - 0.76 V and that of Cu ²⁺ /Cu is + 0.34 V. The emf of the cell constructed between these two electrodes is a) 1.10 V b) - 1.10 V c) 2.20 V d) - 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given Zn ²⁺ (aq) + 2e ⁻ \rightleftharpoons Zn (s); -0.762 V Cr ³⁺ (aq) + 2e ⁻ \rightleftharpoons Fc ²⁺ (aq); +0.07 V Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten CaCl ₂ ? a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electroefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) → CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) c) Ni(s) + ZnSO ₄ (aq) → NiSO ₄ (aq) + Zn(s) d) ZNa(s) + CuSO ₄ (aq) → NiSO ₄ (aq) + Zn(s) d) ZNa(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) + Cd (s) 143. Electr KCL KNO HC NaO NaC NaO NaC NaO Na NaO Na NaO Na Na NaO Na Na Na NaO Na NaO Na NaO Na		d) $I_2 + 2I_2$	- Br ⁻ —	→ 2I ⁻ +	$-Br_2$						
number of electrons transferred in each case respectively, are a) 4, 3, 1, 5 b) 1, 5, 3, 7 c) 1, 3, 4, 5 d) 3, 5, 7, 1 136. For a cell reaction involving a two electron change, the standard emf of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction, at 25°C, will be a) 10 b) 1 × 10 ¹⁰ c) 1 × 10 ⁻¹⁰ d) 10 × 10 ⁻² 137. Which one of the following has the highest molar conductivity? a) Diaminedichloroplatinum (III) b) Tetraaminedichlorocobalt (III) chloride c) Potassium hexacyanoferrate (II) d) Hexaaquochromium (III) bromide 138. Electrode potential of Zn ²⁺ /Zn is - 0.76 V and that of Cu ²⁺ /Cu is + 0.34 V. The emf of the cell constructed between these two electrodes is a) 1.10 V b) - 1.10 V c) 2.20 V d) - 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given Zn ²⁺ (aq) + 2e ⁻ \Rightarrow Zn (s); -0.762 V Cr ³⁺ (aq) + 2e ⁻ \Rightarrow Er (s); -0.74 V 2H ⁺ (aq) + 2e ⁻ \Rightarrow H ₂ (g); +0.00 V Fe ³⁺ (aq) + e ⁻ \Rightarrow Fe ²⁺ (aq); +0.77 V Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten CaCl ₂ ? a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) → CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) c) Ni(s) + ZnSO ₄ (aq) → Na ₂ SO ₄ (aq) c) Ni(s) + ZnSO ₄ (aq) → Na ₂ SO ₄ (aq) + Zn(s) d) ZNa(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) + Zn(s) d) ZNa(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) + Zn(s) d) ZNa(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) + Zn(s) d) ZNa(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) + Zn(s) d) ZNa(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) + Zn(s) d) ZNa(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) + Zn(s) d) ZNa(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) + Zn(s) d) ZNa(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) + Zn(s)	135.	When KM	InO₄ a	cts as a	n oxid	izing ag	ent and	ultimate	elv forms MnO_4^{2-} ,	MnO ₂ , Mn	$_{2}O_{3}$ and Mn ²⁺ then the
a) 4, 3, 1, 5 b) 1, 5, 3, 7 c) 1, 3, 4, 5 d) 3, 5, 7, 1 136. For a cell reaction involving a two electron change, the standard emf of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction, at 25°C, will be a) 10 b) 1 × 10 ¹⁰ c) 1 × 10 ⁻¹⁰ d) 10 × 10 ⁻² 137. Which one of the following has the highest molar conductivity? a) Diaminedichloroplatinum (III) b) Tetraaminedichlorocobalt (III) chloride c) Potassium hexacyanoferrate (II) d) Hexaaquochromium (III) bromide 138. Electrode potential of Zn^{2+}/Zn is – 0.76 V and that of Cu^{2+}/Cu is + 0.34 V. The emf of the cell constructed between these two electrodes is a) 1.10 V b) – 1.10 V c) 2.20 V d) – 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given $Zn^{2+}(aq) + 2e^- \rightleftharpoons Zn(s); -0.762 V$ $Cr^{3+}(aq) + 3e^- \rightleftharpoons Cr(s); -0.74 V$ $2H^+(aq) + 2e^- \rightleftharpoons H_2(g); +0.00 V$ $Fe^{3+}(aq) + e^- \rightleftharpoons Fe^{2+}(aq); +0.77 V$ Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten $CaCl_2?$ a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) $Cu(s) + ZnSO_4(aq) \rightarrow CuSO_4(aq) + Zn(s)$ b) $Zn(s) + CuSO_4(aq) \rightarrow CuSO_4(aq) + Zn(s)$ b) $Zn(s) + CuSO_4(aq) \rightarrow Na_2SO_4(aq) + Cd (s)$ 143. $\frac{Electr}{NC} \frac{KCl}{KO} \frac{KNO_3 HCl}{NaO} \frac{NaCl}{NaCl} \frac{NaO_3 NaCl}{NaO} \frac{NaO_4}{NaCl} \frac{NaO_4}{NaCl} \frac{NaO_4}{NaCl} \frac{NaO_4}{NaCl} \frac{NaO_4}{NaCl} \frac{NaO_4}{NaCl} \frac{NaO_4}{NaCl} \frac{NaO_4}{NaO} \frac{NaO_4}{NaCl} \frac{NaO_4}{NaO} \frac{NaO_4}{NaCl} \frac{NaO_4}{NaO} \frac{NaO_4}{NaO} \frac{NaO_4}{NaCl} \frac{NaO_4}{NaO} Na$		number o	of elect	rons tr	ansfer	red in e	ach case	respect	ively, are	2,	2 3
136. For a cell reaction involving a two electron change, the standard emf of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction, at 25°C, will be a) 10 b) 1 × 10 ¹⁰ c) 1 × 10 ⁻¹⁰ d) 10 × 10 ⁻² 137. Which one of the following has the highest molar conductivit? a) Diaminedichloroplatinum (III) b) Tetraaminedichlorocobalt (III) chloride c) Potassium hexacyanoferrate (II) d) Hexaaquochromium (III) bromide 138. Electrode potential of 2n ²⁺ /Zn is - 0.76 V and that of Cu ²⁺ /Cu is + 0.34 V. The emf of the cell constructed between these two electrodes is a) 1.10 V b) - 1.10 V c) 2.20 V d) - 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given Zn ²⁺ (aq) + 2e ⁻ ≠ Zn (s); -0.762 V Cr ³⁺ (aq) + 2e ⁻ ≠ R ₂ (g); +0.00 V Fe ³⁺ (aq) + 2e ⁻ ≠ F ₂ (g); +0.00 V Fe ³⁺ (aq) + e ⁻ ≠ Fe ²⁺ (aq); +0.77 V Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten CaCl ₂ ? a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) → CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) → CuSO ₄ (aq) + Zn(s) d) ZN(s) + CuSO ₄ (aq) → NiSO ₄ (aq) + Zn(s) d) ZN(s) + ZnSO ₄ (aq) → NiSO ₄ (aq) + Cd (s) 143. Electr KCL KNO ₄ HCL NaO NaCL No(5) (149, 145, 426, 91.0, 126, mol ⁻¹ 9 0 2 5		a) 4.3.1.	5		b)	1.5.3.	7	1	c) 1. 3. 4. 5		d) 3. 5. 7. 1
25°C. The equilibrium constant of the reaction, at 25°C, will be a) 10 b) 1 × 10 ¹⁰ c) 1 × 10 ⁻¹⁰ d) 10 × 10 ⁻² 137. Which one of the following has the highest molar conductivity? a) Diaminedichloroplatinum (III) b) Tetraaminedichlorocobalt (III) chloride c) Potassium hexacyanoferrate (II) d) Hexaaquochromium (III) bromide 138. Electrode potential of Zn^{2+}/Zn is - 0.76 V and that of Cu^{2+}/Cu is + 0.34 V. The emf of the cell constructed between these two electrodes is a) 1.10 V b) - 1.10 V c) 2.20 V d) - 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given $Zn^{2+}(aq) + 2e^- \neq Zn(s); -0.762 V$ $Cr^{3+}(aq) + 3e^- \neq Cr(s); -0.762 V$ $Cr^{3+}(aq) + 2e^- \neq H_2(g); +0.00 V$ Fe ³⁺ $(aq) + 2e^- \neq Fe^{2+}(aq); +0.77 V$ Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten $Cacl_2?$ a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnS0 ₄ (aq) $\rightarrow CuS0_4(aq) + Zn(s)$ b) Zn(s) + CdS0 ₄ (aq) $\rightarrow NuS0_4(aq) + Zn(s)$ d) $ZNa(s) + CdS0_4(aq) \rightarrow NuS0_4(aq) + Cd(s)143. Electric KCL KNO4 HCL NaO NaCLNi(s) + ZnS0_4(aq) \rightarrow NuS0_4(aq) + Cd(s)143. Electric KCL KNO4 HCL NaO NaCLNi(s) = T_1 + 145. + 426. + 91.0, + 126.$	136.	For a cell	reacti	on invo	olving a	a two ele	ectron c	hange, tł	ne standard emf o	of the cell	is found to be 0.295 V at
a) 10 b) 1×10^{10} c) 1×10^{-10} d) 10×10^{-2} 137. Which one of the following has the highest molar conductivity? a) Diaminedichloroplatinum (III) b) Tetraaminedichlorocobalt (III) chloride c) Potassium hexacyanoferrate (II) d) Hexaaquochromium (III) bromide 138. Electrode potential of Zn^{2+}/Zn is -0.76 V and that of Cu^{2+}/Cu is $+0.34$ V. The emf of the cell constructed between these two electrodes is a) 1.10 b) -1.10 v c) 2.20 V d) -2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given $Zn^{2+}(aq) + 2e^- \neq Zn(s); -0.762$ V $Cr^{3+}(aq) + 3e^- \neq Cr(s); -0.74$ V $2H^+(aq) + 2e^- \neq H_2(g); +0.00$ V $Fe^{3+}(aq) + e^- \neq Fe^{2+}(aq); +0.77$ V Which one of the following is the strongest reducing agent? a) $Zn(s)$ b) $Cr(s)$ c) $H_2(s)$ d) $Fe^{2+}(aq)$ 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten $Cacl_2?$ a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) $Cu(s) + ZnSO_4(aq) \rightarrow CuSO_4(aq) + Zn(s)$ b) $Zn(s) + CuSO_4(aq) \rightarrow CuSO_4(aq) + Zn(s)$ c) $Ni(s) + ZnSO_4(aq) \rightarrow NiSO_4(aq) + Zn(s)$ d) $2Na(s) + CdSO_4(aq) \rightarrow NaSO_4(aq) + Cd (s)$ 143. $\boxed{Electr} KCl KNO_2 HCl NaO NaCl Oyte KCl KNO_2 HCl NaO NaCl Oyte KCl 149. 145. 426. 91.0 126. mol-1 9 0 2 2 5 5$		25°C. Th	e eauil	ibrium	consta	ant of th	e reactio	on. at 25	°C. will be		
137. Which one of the following has the highest molar conductivity? a) Diaminedichloroplatinum (III) b) Tetraaminedichlorocobalt (III) chloride c) Potassium hexacyanoferrate (II) d) Hexaaquochromium (III) bromide 138. Electrode potential of $2n^{2+}/2n$ is - 0.76 V and that of Cu^{2+}/Cu is + 0.34 V. The emf of the cell constructed between these two electrodes is a) 1.10 V b) - 1.10 V c) 2.20 V d) - 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given $Zn^{2+}(aq) + 2e^- \neq Zn(s); -0.762 V$ $Cr^{3+}(aq) + 3e^- \neq Cr(s); -0.74 V$ $2H^+(aq) + 2e^- \neq H_2(g); +0.00 V$ $Fe^{3+}(aq) + e^- \neq Fe^{2+}(aq); +0.77 V$ Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten $CaCl_2?$ a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electropefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) → Cu(s) + ZnSO ₄ (aq) c) Ni(s) + ZnSO ₄ (aq) → NiSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) → NiSO ₄ (aq) + Cd (s) 143. $\frac{Electr}{Oyte}$ $\frac{KCl}{KNO_2}$ $\frac{KO}{Ac}$ $\frac{Ac}{Ac}$ $\frac{N^{\circ}(s c)}{149}$ $\frac{145.}{426.}$ $\frac{91.0}{126.}$		a) 10			b)	1×10^{1}	LO	,	c) 1×10^{-10}		d) 10×10^{-2}
a) Diaminedichloroplatinum (III) b) Tetraaminedichlorocobalt (III) chloride c) Potassium hexacyanoferrate (II) d) Hexaaquochromium (III) bromide 138. Electrode potential of Zn^{2+}/Zn is -0.76 V and that of Cu^{2+}/Cu is $+0.34$ V. The emf of the cell constructed between these two electrodes is a) 1.10 V b) -1.10 V c) 2.20 V d) -2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given $Zn^{2+}(aq) + 2e^- \Rightarrow Zn(s); -0.762$ V $Cr^{3+}(aq) + 2e^- \Rightarrow Fe^{2+}(aq); +0.00$ V $Fe^{3+}(aq) + 2e^- \Rightarrow Fe^{2+}(aq); +0.07$ V Which one of the following is the strongest reducing agent? a) $Zn(s)$ b) $Cr(s)$ c) $H_2(s)$ d) $Fe^{2+}(aq)$ 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten $CaCl_2$? a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) $Cu(s) + ZnSO_4(aq) \rightarrow CuSO_4(aq) + Zn(s)$ b) $Zn(s) + CuSO_4(aq) \rightarrow CuSO_4(aq) + Zn(s)$ d) $2Na(s) + CdSO_4(aq) \rightarrow Na_2SO_4(aq)$ c) $Ni(s) + ZnSO_4(aq) \rightarrow Na_2SO_4(aq) + Cd (s)$ 143. $\frac{Electr}{A^{cv}(Sc)} \frac{KCl}{KNQ} \frac{KCl}{AQ} \frac{AQ}{AQ} + Cd}{SQ}$	137.	Which on	e of th	e follov	wing h	as the h	ighest m	olar con	ductivity?		a) _0 · · · _0
b Diminiculation production (III) (III) (III) (III) brownide c) Potassium hexacyanoferrate (II) d) Hexaanquochromium (III) brownide 138. Electrode potential of Zn ²⁺ /Zn is – 0.76 V and that of Cu ²⁺ /Cu is + 0.34 V. The emf of the cell constructed between these two electrodes is a) 1.10 V b) – 1.10 V c) 2.20 V d) – 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given Zn ²⁺ (aq) + 2e ⁻ \Rightarrow Zn (s); -0.762 V Cr ³⁺ (aq) + 3e ⁻ \Rightarrow Cr (s); -0.74 V 2H ⁺ (aq) + 2e ⁻ \Rightarrow H ₂ (g); +0.00 V Fe ³⁺ (aq) + e ⁻ \Rightarrow Fe ²⁺ (aq); +0.77 V Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten CaCl ₂ ? a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) → CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) → CuSO ₄ (aq) + Cn(s) d) 2Na(s) + CdSO ₄ (aq) → Na ₂ SO ₄ (aq) + Cd (s) 143. Electric KCl KNO ₄ HCl NAO NACL Oyte KCl 149. 145. 426. 91.0 126. mol ⁻¹ 9 0 2 2 5 5	1071	a) Diamii	nedich	loronla	tinum		-9-1-0-0 t II		b) Tetraamined	ichlorocoł	alt (III) chloride
138. Electrode potential of Zn ²⁺ /Zn is - 0.76 V and that of Cu ²⁺ /Cu is + 0.34 V. The emf of the cell constructed between these two electrodes is a) 1.10 V b) - 1.10 V c) 2.20 V d) - 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given Zn ²⁺ (aq) + 2e ⁻ \Rightarrow Zn (s); -0.762 V Cr ³⁺ (aq) + 3e ⁻ \Rightarrow Cr (s); -0.74 V 2H ⁺ (aq) + 2e ⁻ \Rightarrow H ₂ (g); +0.00 V Fe ³⁺ (aq) + e ⁻ \Rightarrow Fe ²⁺ (aq); +0.77 V Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten CaCl ₂ ? a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) → CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) + Cd (s) 143. Electr KCl KKO HCl NAO NACL A [∞] (S cl 149, 145, 426, 91.0, 126, mol ⁻¹) 9 0 2 2 5 5		c) Potass	ium he		oferra	(III)			d) Hexaaquochr	omium (II	II) bromide
between these two electrodes is a) 1.10 V b) − 1.10 V c) 2.20 V d) − 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given $Zn^{2+}(aq) + 2e^{-} \Rightarrow Zn(s); -0.762 V$ $Cr^{3+}(aq) + 3e^{-} \Rightarrow Cr(s); -0.74 V$ $2H^{+}(aq) + 2e^{-} \Rightarrow H_{2}(g); +0.00 V$ $Fe^{3+}(aq) + e^{-} \Rightarrow Fe^{2+}(aq); +0.77 V$ Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten $CaCl_{2}?$ a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) → CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) → Na ₂ SO ₄ (aq) + Cd (s) 143. $\boxed{Electr} KCl KOd HCl NaO NaCl av^{c}(Sc) 149, 145, 426, 91.0, 126, mol^{-1}) 9 0 2 5 5$	138	Electrode	noter	itial of '	$2n^{2+}/7$	2n is -0	76 V an	d that of	Cu^{2+}/Cu is $+0$	34 V The	e emf of the cell constructed
a) 1.10 V b) - 1.10 V c) 2.20 V d) - 2.20 V 139. The standard reduction potentials at 298 K for the following half-cell reactions are given $Zn^{2+}(aq) + 2e^{-} \Rightarrow Zn(s); -0.762 V$ $Cr^{3+}(aq) + 3e^{-} \Rightarrow Cr(s); -0.74 V$ $2H^{+}(aq) + 2e^{-} \Rightarrow H_2(g); +0.00 V$ $Fe^{3+}(aq) + e^{-} \Rightarrow Fe^{2+}(aq); +0.77 V$ Which one of the following is the strongest reducing agent? a) Zn(s) b) Cr(s) c) H_2(s) d) Fe^{2+}(aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten $CaCl_2?$ a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO_4(aq) $\rightarrow Cu(S) + ZnSO_4(aq)$ c) Ni(s) + ZnSO_4(aq) $\rightarrow NaSO_4(aq) + Zn(s)$ b) Zn(s) + CdSO_4(aq) $\rightarrow NaSO_4(aq) + Cd(s)$ 143. $\boxed{Electr} KCl KNO_4 HCl NaO NaCl \boxed{Oyte} Kcl I49. 145. 426. 91.0 126.mol-1 9 0 2 2 5$	100.	hetween	these t	wo ele	ctrode	s is	., o i un	a that of	0u /0u 15 / 0		
139. The standard reduction potentials at 298 K for the following half-cell reactions are given $Zn^{2+}(aq) + 2e^{-} \neq Zn (s); -0.762 V$ $Cr^{3+}(aq) + 3e^{-} \neq Cr (s); -0.74 V$ $2H^{+}(aq) + 2e^{-} \neq H_{2}(g); +0.00 V$ Fe ³⁺ (aq) + e ⁻ \Rightarrow Fe ²⁺ (aq); +0.77 V Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H_{2} (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten CaCl ₂ ? a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) → CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) → NiSO ₄ (aq) + Zn(s) d) 2Na(s) + CdSO ₄ (aq) → Ni ₂ SO ₄ (aq) + Cd (s) 143. Electr KCl KNO HCl NaO Ac A [∞] (S ct 149, 145, 426, 91.0 126, mol ⁻¹) 9 0 2 2 5 5		a) 1 10 V	enese (h)	-110	V		c) 2 20 V		d) – 2 20 V
$\begin{aligned} & \operatorname{Zn}^{2+}(aq) + 2e^- \neq \operatorname{Zn}(s); -0.762 \ V \\ & \operatorname{Cr}^{3+}(aq) + 3e^- \neq \operatorname{Cr}(s); -0.74 \ V \\ & 2\operatorname{H}^+(aq) + 2e^- \neq \operatorname{H}_2(g); +0.00 \ V \\ & \operatorname{Fe}^{3+}(aq) + e^- \neq \operatorname{Fe}^{2+}(aq); +0.77 \ V \\ & \text{Which one of the following is the strongest reducing agent?} \\ & a) \operatorname{Zn}(s) \qquad b) \operatorname{Cr}(s) \qquad c) \ \operatorname{H}_2(s) \qquad d) \ \operatorname{Fe}^{2+}(aq) \\ & 140. \ \operatorname{How \ long}(in \ hours) \ \operatorname{must} a \ \operatorname{current} of 5.0 \ A \ be \ maintained to \ electroplate \ 60 \ g \ of \ calcium \ from \ molten \ CaCl_2?} \\ & a) \ 27 \ h \qquad b) \ 8.3 \ h \qquad c) \ 11 \ h \qquad d) \ 16 \ h \\ & 141. \ \operatorname{Use \ of \ electrolysis \ is} \\ & a) \ \operatorname{Electrorefining} \qquad b) \ \operatorname{Electroplating} c) \ \operatorname{Both}(a) \ and \ (b) \qquad d) \ \operatorname{None \ of \ these} \\ & 142. \ What \ is \ the \ cell \ reaction \ occurring \ in \ Daniel \ cell \ (Galvanic \ cell)?} \\ & a) \ \operatorname{Cu}(s) \ + \ \operatorname{ZnSO}_4(aq) \ \rightarrow \ \operatorname{CuSO}_4(aq) \ + \ \operatorname{Zn}(s) \\ & b) \ Zn(s) \ + \ \operatorname{CuSO}_4(aq) \ \rightarrow \ \operatorname{NaO}_4(aq) \ + \ Zn(s) \\ & b) \ Zn(s) \ + \ \operatorname{CuSO}_4(aq) \ \rightarrow \ \operatorname{NaO}_4(aq) \ + \ Cd(s) \\ & 143. \ \boxed{ \begin{array}{c} \operatorname{Electrop}(x) \ KCl \ KCl \ KOl \ HCl \ NaO} \ MaCl \ Ac \ mol \$	139	The stand	dard re	ductio	n notei	ntials at	298 K f	or the fo	llowing half-cell	reactions	are given
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	107.	$7n^{2+}$ (aa)) + 24	$p^- \Rightarrow$	7n (s)	· _(0 762 V	or the lo	nowing num cen	reactions	
$2H^{+}(aq) + 3c^{-} \neq H_{2}(g); +0.00 V$ $Fe^{3+}(aq) + e^{-} \neq Fe^{2+}(aq); +0.77 V$ Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H_{2}(s) d) Fe^{2+}(aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten CaCl ₂ ? a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) \rightarrow CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Zn(s) d) 2Na(s) + CdSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Cd (s) 143. Electr KCl KNO HCl NaO NaCl A ^{\alpha} (s) (149, 145, 426, 91.0, 126, mol^{-1}) 9 0 2 5		Cr^{3+} (a)) + 34	$p^- \rightarrow$	$\operatorname{Cr}(s)$,, · _() 74 V				
Find (aq) + 2c \leftarrow H ₂ (q), $+0.77 V$ Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten CaCl ₂ ? a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) \rightarrow CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Zn(s) d) 2Na(s) + CdSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Cd (s) 143. Electr KCl KNO3 HCl NaO NaCl Ac		$2H^{+}(aa)$	$1 \pm 2\rho^{-1}$	- → ŀ	$\operatorname{H}_{2}(a)$, t +0	00 V				
Which one of the following is the strongest reducing agent? a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten CaCl ₂ ? a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) \rightarrow CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Zn(s) d) 2Na(s) + CdSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Cd (s) 143. Electr KCl KNO ₄ HCl NaO NaCl Λ^{∞} (S ct 149. 145. 426. 91.0 126. mol ⁻¹) 9 0 2 2 5		$Ee^{3+}(aa)$	$) \pm \rho^{-}$	\rightarrow Fe	$^{12}(g),$ $^{2+}(a)$	n)· +0,	77 V				
a) Zn (s) b) Cr(s) c) H ₂ (s) d) Fe ²⁺ (aq) 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten CaCl ₂ ? a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) \rightarrow CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Zn(s) d) 2Na(s) + CdSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Cd (s) 143. Electr KCl KNO ₃ HCl NaO NaCl Λ^{∞} (S cl 149. 145. 426. 91.0 126. mol ⁻¹) 9 0 2 5		Which on	o of th	o follo	wing is	the stru	ngest r	oducing	agant?		
140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten CaCl ₂ ? a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) \rightarrow CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) \rightarrow Cu(s) + ZnSO ₄ (aq) c) Ni(s) + ZnSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Zn(s) d) 2Na(s) + CdSO ₄ (aq) \rightarrow Na ₂ SO ₄ (aq) + Cd (s) 143. Electr KCl KNO ₃ HCl NaO NaCl Olyte Ac Ac A [∞] (S c) 149. 145. 426. 91.0 126. mol ⁻¹) 9 0 2 5		a) $Zn(s)$			h)	Cr(s)	Singest i	cuucing	dgent		d) Fe^{2+} (ag)
$\begin{array}{c} \text{CaCl}_2?\\ \text{a) } 27 \text{ h} & \text{b) } 8.3 \text{ h} & \text{c) } 11 \text{ h} & \text{d) } 16 \text{ h} \\ \hline 141. \text{ Use of electrolysis is}\\ \text{a) Electrorefining} & \text{b) Electroplating} & \text{c) Both (a) and (b)} & \text{d) None of these} \\ \hline 142. \text{ What is the cell reaction occurring in Daniel cell (Galvanic cell)?}\\ \text{a) } \text{Cu(s)} + \text{ZnSO}_4(\text{aq}) \rightarrow \text{CuSO}_4(\text{aq}) + \text{Zn(s)}\\ \text{b) } \text{Zn(s)} + \text{CuSO}_4(\text{aq}) \rightarrow \text{Cu(s)} + \text{ZnSO}_4(\text{aq})\\ \text{c) } \text{Ni(s)} + \text{ZnSO}_4(\text{aq}) \rightarrow \text{NiSO}_4(\text{aq}) + \text{Zn(s)}\\ \text{d) } 2\text{Na(s)} + \text{CdSO}_4(\text{aq}) \rightarrow \text{Na}_2\text{SO}_4(\text{aq}) + \text{Cd (s)} \\ \hline 143. \hline \begin{array}{c} \text{Electr} & \text{KCl} & \text{KNO}_3 & \text{HCl} & \text{NaO} & \text{NaCl} \\ \hline \text{olyte} & & & & \\ \hline \text{A}^{\infty}(\text{S cl} & 149. & 145. & 426. & 91.0 & 126. \\ \hline \text{mol}^{-1} & 9 & & & 0 & 2 & & 5 \end{array} \end{array}$	140	How long	t (in ho	ure) m	ust a c	urront (f = 0 A	ho maint	c) 112 (3)	olate 60 σ.	of calcium from molten
a) 27 h b) 8.3 h c) 11 h d) 16 h 141. Use of electrolysis is a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) \rightarrow CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) \rightarrow Cu(s) + ZnSO ₄ (aq) c) Ni(s) + ZnSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Zn(s) d) 2Na(s) + CdSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Cd (s) 143. Electr KCl KNO ₃ HCl NaO NaCl $A^{\infty}(S cl 149, 145, 426, 91.0 126, mol^{-1}) 9 0 2 5$	140.		s (m nc	uisj II	iust a t	uniciit	51 5.0 A				
141. Use of electrolysis is a) Electrorefiningb) Electroplatingc) Both (a) and (b)d) None of these142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) \rightarrow CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) \rightarrow Cu(s) + ZnSO ₄ (aq) c) Ni(s) + ZnSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Zn(s) d) 2Na(s) + CdSO ₄ (aq) \rightarrow Na ₂ SO ₄ (aq) + Cd (s)143.Electr NCL NCL NCL NCL NCL NCL Ac143.Electr NCL NCL NCL NCL NCL NCL Ac		a) $27 h$			b)	83h			c) 11 h		d) 16 h
a) Electrorefining b) Electroplating c) Both (a) and (b) d) None of these 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) \rightarrow CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) \rightarrow Cu(s) + ZnSO ₄ (aq) c) Ni(s) + ZnSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Zn(s) d) 2Na(s) + CdSO ₄ (aq) \rightarrow Na ₂ SO ₄ (aq) + Cd (s) 143. Electr KCl KNO ₃ HCl NaO NaCl olyte Ac Λ^{∞} (S cl 149. 145. 426. 91.0 126. mol ⁻¹) 9 0 2 5	141	Ilse of ele	octroly	cic ic	UJ	0.5 11			C) 11 II		u) 10 ll
142. What is the cell reaction occurring in Daniel cell (Galvanic cell)? a) Cu(s) + ZnSO ₄ (aq) \rightarrow CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) \rightarrow Cu(s) + ZnSO ₄ (aq) c) Ni(s) + ZnSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Zn(s) d) 2Na(s) + CdSO ₄ (aq) \rightarrow Na ₂ SO ₄ (aq) + Cd (s) 143. Electr KCl KNO ₃ HCl NaO NaCl olyte Ac Λ^{∞} (S cr 149. 145. 426. 91.0 126. mol ⁻¹) 9 0 2 5	111.	a) Floctro	orofini	515 15 nσ	b)	Flectro	nlating		c) Both (a) and	(\mathbf{h})	d) None of these
a) Cu(s) + ZnSO ₄ (aq) \rightarrow CuSO ₄ (aq) + Zn(s) b) Zn(s) + CuSO ₄ (aq) \rightarrow Cu(s) + ZnSO ₄ (aq) c) Ni(s) + ZnSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Zn(s) d) 2Na(s) + CdSO ₄ (aq) \rightarrow Na ₂ SO ₄ (aq) + Cd (s) 143. Electr KCl KNO ₃ HCl NaO NaCl olyte Ac $\Lambda^{\infty}(S cr 149. 145. 426. 91.0 126. mol-1) 9 0 2 5$	142	What is t	ho coll	reactic		rring in	Daniel	coll (Cal	vanic cell)?	(0)	a) None of these
b) $Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$ c) $Ni(s) + ZnSO_4(aq) \rightarrow NiSO_4(aq) + Zn(s)$ d) $2Na(s) + CdSO_4(aq) \rightarrow Na_2SO_4(aq) + Cd (s)$ 143. Electr KCl KNO ₃ HCl NaO NaCl olyte Ac $\Lambda^{\infty}(S cr 149, 145, 426, 91.0 126, 5$	112.	2 1 1 1 1 1 1 1 1 1 1	$\pm 7n$	$\Omega_{\rm c}(an)$	$) \rightarrow ($	1111 <u>6</u> 11 1150.(a	$a) \pm 7r$	(a)	vanie cenj.		
c) $\operatorname{Ni}(s) + \operatorname{CuSO}_4(\operatorname{aq}) \rightarrow \operatorname{NiSO}_4(\operatorname{aq}) + \operatorname{Zn}(s)$ d) $2\operatorname{Na}(s) + \operatorname{CdSO}_4(\operatorname{aq}) \rightarrow \operatorname{Na}_2\operatorname{SO}_4(\operatorname{aq}) + \operatorname{Cd}(s)$ 143. Electr KCl KNO ₃ HCl NaO NaCl olyte Ac $\Lambda^{\infty}(\operatorname{Scr} 149, 145, 426, 91.0 126, 5$ $\operatorname{Mol}^{-1}) 9 0 2 5$		b) $7n(s)$		(104(aq))	$\rightarrow C_1$	$u_{1}(s) \perp$	$q_{j} = 21$ $7nSO_{i}(z)$	1(3)			
$\begin{array}{c} \text{d) } 2\text{Na(s)} + 2\text{Hs}\text{SO}_4(\text{aq}) \rightarrow \text{Na}_2\text{SO}_4(\text{aq}) + 2\text{Hs}\text{SO}_4(\text{aq}) + \text{Cd}(\text{s}) \\ 143. \hline \begin{array}{c c c c c c c c c c c c c c c c c c c $		c) $Ni(s)$	$\perp 7nS$	$0_4(aq)$	$\rightarrow N$	(3)	$21130_4(a)$	(s)			
143. Electr KCl KNO ₃ HCl NaO NaCl $dyte$ Ac Ac Ac Ac $\Lambda^{\infty}(S cr 149.$ 145. 426. 91.0 126. mol^{-1} 9 0 2 5		d) $2N_2(s)$	$+ L_{113}$	04(ay) 150.(a	$() \rightarrow ()$	$Na_{-}SO$	(20) +	(3)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	143	Floctr				Na0		Cu (3)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 fJ.	olvte	ICI	ININO3		Ac	nau				
$ \mathbf{mol}^{-1} 9 0 2 5$		$\Lambda^{\infty}(S c)$	149.	145.	426.	91.0	126.				
		mol ⁻¹)	9	0	2		5				

Calculate Λ_{HOAc}^{∞} using appropriate molar conductances of the electrolytes listed above at infinite dilution in H₂O at 25°C.

a) 217.5 b) 390.7 c) 552.7 d) 517.2

144. Is the reaction, $2Al + 3Fe^{2+} \rightarrow 2Al^{3+} + 3Fe$ possible?

a) No, because standard oxidation potential of Al < Fe

b) Yes, because standard oxidation potential of Al > Fe

c) Neither (a) nor (b)

d) Data are unpredictable

145. What will be the elec	trode potential of that hydrog	gen electrode is filled with l	HCl solution of pH value 1.0?
a) -59.15 V	b) +59.15	c) +59.15 mV	d) -59.15 mV
146. The conductivity of a equivalent conductiv	0.01 N solution is found to be vity of the solution will be	$0.005 \text{ ohm}^{-1} \text{ cm}^{-1}$. The	
a) 5×10^{-2} ohm ⁻¹ c	m^2 equiv ⁻¹	b) $5.00 \times 10^{-3} \text{ ohm}^{-1} \text{ ohm}^{-1}$	cm ²
c) 500 ohm^{-1} cm ⁻² e	1 - 0	d) $0.5 \text{ ohm}^{-1} \text{ cm}^2$ equiv	, ⁻¹
147 A correct electroche	mical series can be obtained	from K Ca Na Al Mg Zn	Γ ΓΕΡΗ Η Ου Ησ Ασ Αυ Ην
interchanging ·	linear series can be obtained	110111 IV, 60, IV0, 111, 116, 211	. i e, i b, ii, eu, iig, iig, iig, iiu by
a) Al and Mg	h) 7n and Fe	c) 7n and Ph	d) Ph and H
148 The emf of the cell 7	$n \mid 7n^{2+}(0.01 \text{ M}) \mid \text{Fe}^{2+}(0.00 \text{ M}) \mid 1$	1 M) Fe at 298 K is 0 2905	The value of equilibrium
constant for the cell r	reaction is	1 M) 1 C at 290 K is 0.290	
a) $10^{10^{0.32}}$	b) $e^{\frac{0.32}{0.0295}}$	c) $10^{\frac{0.32}{0.0591}}$	d) $10^{\frac{0.26}{0.0295}}$
149. When Alead storage	battery is discharged		
a) Lead sulphate is co	onsumed	b) SO ₂ is evolved	
c) Lead is formed		d) Sulphuric acid is con	sumed
150. EMF of hydrogen elec	ctrode in term of pH is (at 1 a	tm pressure)	
RT	r	RT 1	
a) $E_{H_2} = \frac{1}{F} \times pH$		b) $E_{H_2} = \overline{F} \cdot \overline{pH}$	
c) $E_{H_2} = \frac{2.505 RT}{F}$.	рН	d) $E_{H_2} = -0.0591 \text{ pH}$	
151. If $E_{\text{Fe}^{2+}/\text{Fe}}^{\circ} = -0.441$	V and $E_{Fe^{3+}/Fe^{2+}}^{\circ} = 0.771$ V,	the standard e.m.f. of the r	reaction $Fe + 2Fe^{3+} \rightarrow 3Fe^{2+}$
will be: (1,2)		-) 0 220 V	1 (5) 1
aj 1.212 v 152 Wilson Znacionalista	b) 0.111 V		u) 1.653 v
152. When Zh piece is kep	it in $CuSO_4$ solution, copper g	ets precipitated because:	
a) Standard reduction	n potential of zinc is more that	in copper	
b) Standard reduction	n potential of zinc is less than	copper	
c) Atomic number of	zinc is larger than copper		
d) Atomic number of	zinc is lower than copper		
153. lonic mobility of of el	ectricity is 1 <i>M</i> solution of :		
a) CH ₃ COOH	b) H_2SO_4	c) H_3PO_4	d) Boric acid
154. The equivalent conduction of dissociation of wea	uctivity of 0.1 <i>M</i> weak acid is ak electrolyte at 0.1 <i>M</i> is :	: 100 times less than that a	it infinite dilution. The degree
a) 100	b) 10	c) 0.01	d) 0.001
155. Standard electrode p	otential of cell H ₂ H ⁺ Ag ⁺ A	Ag is (Given, $E^{\circ}_{Ag^+/Ag} = 0.8$	30 V)
a) 0.4 V	b) 0.8 V	c) 1.4 V	d) 1.8 V
156. If the current is passe	ed into the solution of an elect	trolyte:	2
a) Anions move towa	rds anode, cations towards c	athode	
b) Anions and cations	s both move towards anode		
c) Anions move towa	rds cathode. cations towards	anode	
d) No movement of i	ons takes place		
157. The element that is e	asiest to be reduced is :		
a) Fe	b) Cu	c) Ag	d) Sn
158 Standard reduction	notential for $Li^+ Li Zn^{2+} $	$7n H^+ H_a$ and $A\sigma^+ A\sigma$	is $-3.05 - 0.762 + 0.00$ and $+$
80 V Which has high	est reducing canacity?		15 5.05, 0.702, 0.00 and 1
a) Ag	b) H _a	c) Zn	d) Li
159 What is the quantity	of electricity (in Coulombs) r	equired to deposit all the si	liver from 250mL of 1
$M\Delta\sigma N\Omega_{-}$ colution?		equined to deposit all tile si	
$_{2}$ $2/12$ 50100011	h) 24125	c) 4825 0	d) 48250
aj 2712.J 160 When 1 foraday of al	UJ 2712J actricity is presed through Cu	SO, solution number of at	as formed is .
$_{2}$ $_{100}$, when I larauay of ele	b) 2.01 \times 10 ²³		d) 6.02×10^{23}
aj 0.02 × 10	DJ 2.01 X 10	UJ Z	UJ 0.02 X 10

101. Hyurogen gas is not i	iberated when the follow:	ing metal is added to dil. Ho	
a) Ag	b) Zn	c) Mg	d) Sn
162. In Ahydrogen-oxyger	n fuel cell, combustion of l	hydrogen occurs to	
a) Generate heat			
b) Create potential di	fference between the two	electrodes	
c) Produce high puri	ty water		
d) Remove adsorbed	oxygen from electrode su	irfaces.	
163. The sum of the two th	ransport number of ions f	or an electrolyte is always	equal to :
a) 1	b) 2	c) 1/2	d) None of these
164. On passing 0.5 F elec	tricity through molten soo	dium chloride, sodium depo	osited at cathode will be
a) 29.25 g	b) 11.50 g	c) 58.50 g	d) 0.00 g
165. A solution of CuSO ₄ is	s electrolysed for 10 min	with a current of 1.5 A. Wha	at is the mass of copper deposited
at the cathode?			
a) 2.096 g	b) 0.296 g	c) 3.029 g	d) 2.906 g
166. The correct order of	molar conductivity at infi	nite dilution of LiCl, NaCl ar	nd KCl is
a) LiCl $> KCl > Nac$	Cl b) KCl > $NaCl > Li$	Cl c) LiCl > $NaCl$ > K	d) NaCl $> KCl > LiCl$
167. Salts of A (atomic w	eight 7), B (atomic weig	ght 27) and C (atomic wei	ght 48) were electrolyzed under
identical conditions ι	ising the same quantity of	f electricity. It was found th	hat when 2.1 g of A was deposited,
the weights of <i>B</i> and	C deposited were 2.7 g ar	nd 7.2 g. The valencies of A,	B and C are respectively :
a) 3,1 and 2	b) 1, 3 and 2	c) 3,1 and 3	d) 2,3 and 2
168. Indicator electrode is	::		
a) SHE			
b) Calomel electrode			
c) Ag/AgCl electrode			
d) Quinhydrone elect	rode		
169. Molar conductance o	f electrolytic solution Λ_m	is	
			$1)$ \sqrt{a}
a) $\propto l$	b) $\propto (1/A)$	c) \propto (1/C)	$d \propto (\sqrt{L})$
a) $\propto l$ 170. Which metal is most	b) $\propto (1/A)$ readily corroded in moist	c) \propto (1/C) cair?	$dJ \propto (\sqrt{L})$
a) ∝ <i>l</i> 170. Which metal is most a) Copper	b) ∝ (1/A) readily corroded in moist b) Iron	c) ∝ (1/C) air? c) Silver	d) $\propto (\sqrt{L})$ d) Nickel
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute 	b) ∝ (1/A) readily corroded in moist b) Iron aqueous NaCl solution wa	c) ∝ (1/C) air? c) Silver as carried out by passing 10	d) $\propto (\sqrt{L})$ d) Nickel OmA current. The time required
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole 	b) ∝ (1/A) readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i	c) $\propto (1/C)$ air? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹)	d) $\propto (\sqrt{C})$ d) Nickel OmA current. The time required
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$	c) $\propto (1/C)$ c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$	d) $\propto (\sqrt{L})$ d) Nickel DmA current. The time required d) 38.6 $\times 10^4 s$
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3	c) $\propto (1/C)$ air? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respective	d) $\propto (\sqrt{c})$ d) Nickel DmA current. The time required d) 38.6 $\times 10^4 s$ rely. The Mg in chemical reactions
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent : 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3	c) $\propto (1/C)$ tair? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respective	d) $\propto (\sqrt{c})$ d) Nickel DmA current. The time required d) 38.6 $\times 10^4 s$ vely. The Mg in chemical reactions
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent a) Will be replaced by 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3 y Al	c) $\propto (1/C)$ air? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respective	d) $\propto (\sqrt{c})$ d) Nickel DmA current. The time required d) 38.6 $\times 10^4 s$ rely. The Mg in chemical reactions
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent : a) Will be replaced by b) Will replace Al 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3 y Al	c) $\propto (1/C)$ tair? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respectiv	d) $\propto (\sqrt{c})$ d) Nickel DmA current. The time required d) 38.6 $\times 10^4 s$ vely. The Mg in chemical reactions
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent a) Will be replaced by b) Will replace Al c) Will not be able to 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3 y Al replace Al	c) $\propto (1/C)$ air? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respectiv	d) $\propto (\sqrt{c})$ d) Nickel DmA current. The time required d) 38.6 $\times 10^4 s$ rely. The Mg in chemical reactions
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent : a) Will be replaced by b) Will replace Al c) Will not be able to d) None of the above 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3 y Al replace Al	c) $\propto (1/C)$ air? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respectiv	d) $\propto (\sqrt{c})$ d) Nickel DmA current. The time required d) 38.6 $\times 10^4 s$ vely. The Mg in chemical reactions
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent a) Will be replaced by b) Will replace Al c) Will not be able to d) None of the above 173. The weight of silver 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3 y Al replace Al (eq. wt. = 108) displace	c) $\propto (1/C)$ cair? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respective ed by that quantity of curr	d) $\propto (\sqrt{c})$ d) Nickel DmA current. The time required d) 38.6 $\times 10^4 s$ rely. The Mg in chemical reactions
 a) ∝ l 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent : a) Will be replaced by b) Will replace Al c) Will not be able to d) None of the above 173. The weight of silver hydrogen at STP is : 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3 y Al replace Al (eq. wt. = 108) displace	c) $\propto (1/C)$ cair? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respective ed by that quantity of curr	d) $\propto (\sqrt{L})$ d) Nickel OmA current. The time required d) 38.6 $\times 10^4 s$ vely. The Mg in chemical reactions
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent a) Will be replaced by b) Will replace Al c) Will not be able to d) None of the above 173. The weight of silver hydrogen at STP is : a) 54 g 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3 y Al replace Al (eq. wt. = 108) displace b) 108 g	c) $\propto (1/C)$ cair? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respectiv ed by that quantity of curr c) 5.4 g	d) $\propto (\sqrt{c})$ d) Nickel DmA current. The time required d) 38.6 $\times 10^4 s$ rely. The Mg in chemical reactions rent which displaced 5600 mL of d) None of these
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent a) Will be replaced by b) Will replace Al c) Will not be able to d) None of the above 173. The weight of silver hydrogen at STP is : a) 54 g 174. When during electrol 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3 y Al replace Al (eq. wt. = 108) displace b) 108 g ysis of a solution of a AgM	c) $\propto (1/C)$ air? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respectiv ed by that quantity of curr c) 5.4 g NO ₃ , 9650 C of charge pass t	d) $\propto (\sqrt{c})$ d) Nickel OmA current. The time required d) 38.6 $\times 10^4 s$ vely. The Mg in chemical reactions rent which displaced 5600 mL of d) None of these through the electroplating bath,
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent a) Will be replaced by b) Will replace Al c) Will not be able to d) None of the above 173. The weight of silver hydrogen at STP is : a) 54 g 174. When during electrol the mass of silver dependent of silver 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3 y Al replace Al (eq. wt. = 108) displace b) 108 g ysis of a solution of a AgN posited on the cathode wi	c) $\propto (1/C)$ air? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respectiv ed by that quantity of curr c) 5.4 g NO ₃ , 9650 C of charge pass t ll be	d) $\propto (\sqrt{c})$ d) Nickel DmA current. The time required d) 38.6 $\times 10^4 s$ rely. The Mg in chemical reactions rent which displaced 5600 mL of d) None of these through the electroplating bath,
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent a) Will be replaced by b) Will replace Al c) Will not be able to d) None of the above 173. The weight of silver hydrogen at STP is: a) 54 g 174. When during electrol the mass of silver deg a) 1.08 g 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3 y Al replace Al (eq. wt. = 108) displace b) 108 g lysis of a solution of a AgN posited on the cathode wi b) 10.8 g	c) $\propto (1/C)$ air? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respectiv ed by that quantity of curr c) 5.4 g NO ₃ , 9650 C of charge pass t ll be c) 21.6 g	d) $\propto (\sqrt{c})$ d) Nickel OmA current. The time required d) 38.6 $\times 10^4 s$ vely. The Mg in chemical reactions rent which displaced 5600 mL of d) None of these through the electroplating bath, d) 108 g
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent a) Will be replaced by b) Will replace Al c) Will not be able to d) None of the above 173. The weight of silver hydrogen at STP is : a) 54 g 174. When during electrol the mass of silver deg a) 1.08 g 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3 y Al replace Al (eq. wt. = 108) displace b) 108 g ysis of a solution of a AgN posited on the cathode wi b) 10.8 g on potentials of the electr	c) $\propto (1/C)$ cair? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respectiv ed by that quantity of curr c) 5.4 g NO ₃ , 9650 C of charge pass t ll be c) 21.6 g rodes Ag Ag ⁺ , Sn Sn ²⁺ , Ca	d) $\propto (\sqrt{c})$ d) Nickel OmA current. The time required d) 38.6 $\times 10^4 s$ vely. The Mg in chemical reactions rent which displaced 5600 mL of d) None of these through the electroplating bath, d) 108 g a Ca ²⁺ , Pb Pb ²⁺ are - 0.8, 0.136,
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent a) Will be replaced by b) Will replace Al c) Will not be able to d) None of the above 173. The weight of silver hydrogen at STP is: a) 54 g 174. When during electrol the mass of silver deg a) 1.08 g 175. The standard oxidati 2.866 and 0.126 V restances of silver deges and the second secon	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3 y Al replace Al (eq. wt. = 108) displace b) 108 g lysis of a solution of a AgN posited on the cathode wi b) 10.8 g on potentials of the electro spectively. The most powe	c) $\propto (1/C)$ tair? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respective ed by that quantity of curr c) 5.4 g NO ₃ , 9650 C of charge pass to ll be c) 21.6 g rodes Ag Ag ⁺ , Sn Sn ²⁺ , Ca erful oxidising agent among	d) $\propto (\sqrt{c})$ d) Nickel DmA current. The time required d) 38.6 $\times 10^4 s$ vely. The Mg in chemical reactions rent which displaced 5600 mL of d) None of these through the electroplating bath, d) 108 g a Ca ²⁺ , Pb Pb ²⁺ are - 0.8, 0.136, g these metal ions is :
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent a) Will be replaced by b) Will replace Al c) Will not be able to d) None of the above 173. The weight of silver hydrogen at STP is : a) 54 g 174. When during electrol the mass of silver deg a) 1.08 g 175. The standard oxidati 2.866 and 0.126 V res a) Pb²⁺ 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3 y Al replace Al (eq. wt. = 108) displace b) 108 g lysis of a solution of a AgN posited on the cathode wi b) 10.8 g on potentials of the electror spectively. The most powe b) Ca ²⁺	c) $\propto (1/C)$ tair? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respective ed by that quantity of curr c) 5.4 g NO ₃ , 9650 C of charge pass to ll be c) 21.6 g rodes Ag Ag ⁺ , Sn Sn ²⁺ , Ca erful oxidising agent among c) Sn ²⁺	d) $\propto (\sqrt{c})$ d) Nickel DmA current. The time required d) 38.6 × 10 ⁴ s vely. The Mg in chemical reactions rent which displaced 5600 mL of d) None of these through the electroplating bath, d) 108 g a Ca ²⁺ , Pb Pb ²⁺ are - 0.8, 0.136, g these metal ions is : d) Ag ⁺
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent a) Will be replaced by b) Will replace Al c) Will not be able to d) None of the above 173. The weight of silver hydrogen at STP is: a) 54 g 174. When during electrol the mass of silver deg a) 1.08 g 175. The standard oxidati 2.866 and 0.126 V res a) Pb²⁺ 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3 y Al replace Al (eq. wt. = 108) displace b) 108 g ysis of a solution of a AgN posited on the cathode wi b) 10.8 g on potentials of the electri spectively. The most powe b) Ca ²⁺ conduct electricity because	c) $\propto (1/C)$ tair? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respective ed by that quantity of curr c) 5.4 g NO ₃ , 9650 C of charge pass to ll be c) 21.6 g rodes Ag Ag ⁺ , Sn Sn ²⁺ , Ca erful oxidising agent among c) Sn ²⁺ se it	d) $\propto (\sqrt{c})$ d) Nickel DmA current. The time required d) 38.6 $\times 10^4 s$ vely. The Mg in chemical reactions rent which displaced 5600 mL of d) None of these through the electroplating bath, d) 108 g a Ca ²⁺ , Pb Pb ²⁺ are - 0.8, 0.136, g these metal ions is : d) Ag ⁺
 a) ∝ <i>l</i> 170. Which metal is most a) Copper 171. Electrolysis of dilute to liberate 0.01 mole a) 9.65 × 10⁴ s 172. The oxidation potent a) Will be replaced by b) Will replace Al c) Will not be able to d) None of the above 173. The weight of silver hydrogen at STP is : a) 54 g 174. When during electrol the mass of silver deg a) 1.08 g 175. The standard oxidati 2.866 and 0.126 V res a) Pb²⁺ 176. Pure water does not a) Is neutral b) Is neutral 	b) $\propto (1/A)$ readily corroded in moist b) Iron aqueous NaCl solution wa of H ₂ gas at the cathode i b) 19.3 $\times 10^4 s$ ial of Mg and Al are + 2.3 y Al replace Al (eq. wt. = 108) displace b) 108 g ysis of a solution of a AgN posited on the cathode wi b) 10.8 g on potentials of the electr spectively. The most powe b) Ca ²⁺ conduct electricity because	c) $\propto (1/C)$ arair? c) Silver as carried out by passing 10 s (1F = 96500 C mol ⁻¹) c) 28.95 $\times 10^4 s$ 7 and + 1.66 volt respective ed by that quantity of curr c) 5.4 g NO ₃ , 9650 C of charge pass to ll be c) 21.6 g rodes Ag Ag ⁺ , Sn Sn ²⁺ , Ca erful oxidising agent among c) Sn ²⁺ se it b) Is readily decomp	d) $\propto (\sqrt{c})$ d) Nickel DmA current. The time required d) 38.6 $\times 10^4 s$ vely. The Mg in chemical reactions rent which displaced 5600 mL of d) None of these through the electroplating bath, d) 108 g a Ca ²⁺ , Pb Pb ²⁺ are - 0.8, 0.136, g these metal ions is : d) Ag ⁺ posed

177. The minimum equivalent conductance in fused state is shown by : a) MgCl₂ b) $BeCl_2$ c) CaCl₂ d) $SrCl_2$ 178. A cell necessarily does not contain : a) An anode b) A cathode c) An electrolyte or a fuel d) A porous diaphragm 179. The standard redox potentials for the reactions $Mn^{2+} + 2e^- \rightarrow and Mn^{3+} + e^- \rightarrow M^{2+}$ are -1.18 V and 1.51 V respectively. What is the redox potential for the reaction $Mn^{3+} + 3e^- \rightarrow Mn?$ d) - 0.85 a) 0.33 V b) 1.69 V c) -0.28 V 180. During electrolysis of fused CaH₂, H₂ is liberated at : a) Anode b) Cathode c) Either electrode d) Not at all 181. Total charge on 1 mole of a monovalent metal ion is equal to : a) 6.28×10^{18} coulomb b) 1.6×10^{-19} coulomb c) 9.65×10^{4} coulomb d) None of these 182. For which case Λ values $vs\sqrt{c}$ show a straight line? b) HCOOH d) CH₃COOH a) KCl c) CH_3NH_2 183. Which is not true for a standard hydrogen electrode? a) The hydrogen ion concentration is 1*M* b) Temperature is 25°C c) Pressure of hydrogen is 1 atmosphere d) It contains a metallic conductor which does not adsorb hydrogen 184. The laws of electrolysis were proposed by a) Kohlrausch b) Faraday c) Haber d) Bergius 185. The metal that cannot be obtained by electrolysis of the aqueous solution of its salts is : b) Cr a) Ag c) Cu d) Al 186. A certain current liberated 0.504 g of hydrogen in 2 h. How many grams of copper can be liberated by the same current flowing for the same time in a copper sulphate solution? a) 12.9 g b) 15.9 g c) 31.7 g d) 36.9 g 187. If mercury is used as cathode in the electrolysis of aqueous NaCl solution, the ions discharged at cathode are : a) H+ b) Na⁺ c) OH⁻ d) Cl⁻ 188. Specific conductivity of a solution a) Increases with dilition b) Decreases with dilution c) Remains unchanged with dilution d) Depends on mass of electrolyte 189. When an electrolytic solution conducts electricity, current is carried out by : d) None of these a) Electrons b) Cations and anions c) Neutral atoms 190. e.m.f. of a cell in terms of reduction potential of its left and right electrode is : d) $E = -[E_R + E_L]$ a) $E = E_L + E_R$ b) $E = E_L - E_R$ c) $E = E_R - E_L$ 191. Which defines the standard reduction electrode potential of Zn^{2+} ions? a) $\operatorname{Zn}^{2+}(aq) + 2e \longrightarrow \operatorname{Zn}(s); \ [\operatorname{Zn}^{2+}] = 1M$ b) $Zn(g) \rightarrow Zn^{2+} + 2e;$ $[Zn^{2+}] = 1M$ c) $\operatorname{Zn}^{2+}(aq) \rightarrow \operatorname{Zn}(s) + 2e; \quad [\operatorname{Zn}^{2+}] = 1M$ d) $\operatorname{Zn}^{2+}(g) \longrightarrow \operatorname{Zn}(s) - 2e; \quad [\operatorname{Zn}^{2+}] = 1M$ 192. Given, the data at 25 °C, Ag + I⁻ \rightarrow AgI + e⁻; $E^{\circ} = 0.152 V$ $Ag \rightarrow Ag^+ + e^-; \qquad E^\circ = -0.800V$ What is the value of $\log K_{sp}$ for AgI?

$\left(2.303 \ \frac{RT}{E} = 0.059 \ V\right)$					
a) $- 8.12$ b) $+ 8.612$	c) -37.83	d) -16.13			
193. The molar conductivity of HCl NaCl and CH_2COON	Ja are 425, 188, 96 S cm ²	mol^{-1} at 298 K. The molar			
conductivity of CH ₃ COOH at the same temperature is S cm ² mol ⁻¹ .					
a) 333 b) 451	c) 325	d) 550			
194. In the electrolysis of CuCl ₂ solution using Cu elect	trodes the mass of cathod	e increases by 3.18 g. What			
happened at the other electrode?					
a) 0.05 mole of Cu^{2+} ions passed into solution					
b) 0.112 litre of Cl_2 was liberated					
c) 0.56 litre O_2 was liberated					
d) 0.1 mole of Cu^{2+} ions passed into the solution					
195. When a quantity of electricity is passed through Cu	50 ₄ solution, 0.16 g of copp	er gets deposited. If the			
same quantity of electricity is passed through acidu	lated water, then the volun	ne of H_2 liberated at STP will			
be [Given , atomic weight of $Cu = 64$]					
a) 4.0 cm^3 b) 56 cm^3	c) 604 cm ³	d) 8.0 cm ³			
196. Faraday's laws hold good at :					
a) All pressures b) Only at 298 K	c) In different solvents	d) All of these			
197. The standard reduction potentials at 25°C	of Li + Li, Ba ²⁺ Ba, Na	⁺ Na and Mg ²⁺ Mg are			
-3.05, -2.73, -2.71 and -2.37 V respectively. While	ch is strongest reducing ag	gent?			
a) Li b) Ba	c) Na	d) Mg			
198. In which cell, electrical energy is converted into che	mical energy?				
a) Water voltameter b) Silver voltameter	c) Coulometer	d) Either of these			
199. Passage of 96500 coulomb of electricity liberates	litre of O ₂ at NTP during el	ectrolysis.			
a) 5.6 b) 6.5	c) 22.2	d) 11.2			
200. The number of coulombs required for the depositio	n of 107.870 g silver is				
a) 96500 b) 48250	c) 1	d) 10000			
201. The units of equivalent conductance, are					
a) Ω cm ² equiv ⁻¹ b) Ω cm ² equiv	c) Ω^{-1} cm ² equiv ⁻¹	d) Ω cm²equiv			
202. For strong electrolytes the plot of molar conductand	the $vs\sqrt{C}$ is				
a) Parabolic b) Linear	c) Sinusoidal	d) Circular			
203. The value of Λ_{eq}^{∞} for NH ₄ Cl, NaOH and NaCl are resp	ectively,149.74,248.1 and 1	$126.4\Omega^{-1}$ cm ² equiv ⁻¹ . The			
value of Λ_{eq}^{∞} of NH ₄ OH is					
a) 371.44	b) 271.44				
c) 71.44	d) Cannot be predicted fi	rom given data			
204. The standard electrode potentials of Ag^+ / Ag is +0	.80 V and Cu ⁺ /Cu is +0.34	V. These electrodes are			
connected through Asalt bridge and if					
a) Copper electrode acts as Acathode then E_{cell} is +	0.46 V				
b) Silver electrode acts as anode then E_{cell}° is -0.34 V	7				
c) Copper electrode acts as anode then E_{cell}° is +0.4	6 V				
d) Silver electrode acts as Acathode then E_{cell}° is -0.3	4 V				
205. e.m.f. of cell Ni Ni ²⁺ (0.1 <i>M</i>) Au ³⁺ (1.0 <i>M</i>) Au <i>is</i>	, if E° for Ni ²⁺ Ni is -0.25	V, <i>E</i> ° for Au ³⁺ Au is 1.50 V.			
a) + 1.25 V b) -1.75 V	c) + 1.75 V	d) + 4.0 V			
206. The position of some metals in the electrochemical	series in decreasing electr	ropositive character is given			
as $Mg > Al > Zn > Cu > Ag$. What will happen, if	a copper spoon is used to	stir a solution of aluminium			
nitrate?					
a) The spoon will get coated with aluminium					
b) An alloy of copper and aluminium is formed					
c) The solution becomes blue					
d) There is no reaction					

207. Which of the following stat	tements is correct? Galva	nic cell converts	
a) Chemical energy into el	ectrical energy		
b) Electrical energy into ch	nemical energy		
c) Metal from its elementa	I state to the combined sta	ate	
d) Electrolyte into individu	ual ions		
208. For cell reaction,			
$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu^{2+}$	u		
Cell representation is			
a) Zn Zn ²⁺ Cu ²⁺ Cu		b) Cu Cu ²⁺ Zn ²⁺ Zn	
c) Cu Zn^{2+} Zn Cu ²⁺		d) Cu ²⁺ Zn Zn ²⁺ Cu	
209. By passing 9.65 A current	for 16 min 40 s , the volun	ne of O_2 liberated at STP wi	ll be
a) 280 mL	b) 560 mL	c) 1120 mL	d) 2240 mL
210. Consider the following dis	proportionation	,	,
$2ClO_{2}^{-} \rightleftharpoons ClO_{2}^{-} + ClO_{4}^{-}$	r · r · · · · · ·		
If the initial concentration	of perchlorate ion is 0.1 M	I what it would be at equili	prium at 298 K?
$(E_{c10^{-}}^{\circ}) = 0.36$ V and	$E_{c10^{-}}^{\circ}$ (c10^{-} = 0.33 V)	· · · · · · · · · · · · · · · · · · ·	
$(-CIO_4 / CIO_3)$ $(-CIO_4 / CIO_3)$	$-10_3 / 10_2$ $-100_3 / 10_2$	c) $0.07 M$	d) 0 10 M
a) 0.1 M	DJ 0.05 M	CJ 0.07 M	u) 0.19 M
211. When Cureacts with Agive	J_3 solution, the reaction to	a) Ovidation of Ag	d) Doduction of NO-
a) Oxidation of Cu	DJ REDUCTION OF LU		a) Reduction of NO_3
$212. E^{-1} \log F_{2+} + 2e = 2F^{-1} \log 2$	$.8 \text{ V}, E^{-1} \text{ IOF } 1/2 \text{ F}_2 + e = \text{F}_2$	· 1S:	d) 1 $A W$
$a_{J} 2.8 V$	DJ 1.4 V	$C_{\rm J} = 2.8 \text{ V}$	a) - 1.4 v
213. Which one of the following	g solutions has highest cor	auctance power?	
a) 0.1 M CH ₃ COOH	b) 0.1 M NaCl	c) $0.1 M \text{ KNO}_3$	d) 0.1 <i>M</i> HCI
214. Standard electrode poter	ntials of $Fe^{2+} + 2e \rightarrow F$	e and $Fe^+ + 3e \rightarrow Fe$ ar	e – 440 V and –0.036 V
respectively. The standard	l electrode potential (E°) f	for $Fe^{3+} + e \rightarrow Fe^{2+}$ is:	
a) – 0.476 V	b) – 0.404 V	c) + 0.404 V	d) + 0.772 V
215. Stainless steel does not rust	tbecause		
a) Chromium and nickel co	ombine with iron		
b) Chromium forms an oxi	de layer and protects iror	n from rusting	
c) Nickel present in it, doe	s not rust		
d) Iron forms Ahard chemi	ical compound with chron	nium present in it	
216. Cu(II) sulphate solution is	treated separately with K	Cl and KI. In which case, Cu	²⁺ be reduced to Cu ⁺ ?
a) With KCl	b) With KI	c) With both (a) and (b)	d) None of these
217. The main function of the sa	alt bridge is :		
a) To allow ions to go from	n one cell to another		
b) To provide link between	n two half cells		
c) To keep the e.m.f. of the	e cell positive		
d) To maintain electrical n	eutrality of the solution in	two half cells	
218. When 9.65 C of electricity	is passed through a solution	on of silver nitrate (atomic	weight of Ag = 107.87
taking as 108), the amount	t of silver deposited is		
a) 5.8 mg	b) 10.8 mg	c) 15.8 mg	d) 20.8 mg
219. The oxidation number of S	S in Na ₂ S ₄ O ₆ is		
a) 2.5 for each S atom			
b) $+2$ and $+3$ (two S have	+2 and other two have $+3$	3)	
c) $+2$ and $+3$ (three S have	e + 2 and one S has $+ 3$)		
d) $+5$ and 0 (two S have +	5 and other two have zero))	
220. E° values of Mg ²⁺ / Mg is -	2.37 V, of Zn ²⁺ / Zn is -0.7	76 V and Fe ²⁺ / Fe is -0.44 V	Ι.
Which of the statements is	correct?	,	
a) Zn will reduce Fe ²⁺		b) Zn will reduce Mg ²⁺	
c) Mg oxidises Fe		d) Zn oxidises Fe	

221. Kohlrausch's law states that at :

- a) Infinite dilution each ion makes definite contribution to equivalent conductance of an electrolyte depending on the nature of the other ion of the electrolyte
- b) Infinite dilution, each ion makes definite contribution to conductance of an electrolyte whatever be the nature of the other ion of the electrolyte
- c) Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte
- d) Finite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte
- 222. What is the potential of platinum wire dipped into Asolution of 0.1 M in Sn^{2+} and 0.01 M in Sn^{4+} ?

a)
$$E^{\circ}$$
 b) $E^{\circ} + 0.059$ c) $E^{\circ} + \frac{0.059}{2}$ d) $E^{\circ} - 0.059$

- 223. Electrolysis involves oxidation and reduction respectively at
 - a) Anode and cathode b) Cathode and anode
 - c) At both the electrodes d) None of these
- 224. The equivalent conductivity of two strong electrolytes at infinite dilution are :
 - $\Lambda_{CH_3COONa(aq.)} = 91.0 \text{ S cm}^2 \text{ eq.}^{-1}$

 $\Lambda_{\rm HCl(aq.)} = 426.2 \, {\rm S \, cm^2 \, eq.^{-1}}$

What additional information one needs to calculate Λ of an aqueous CH₃COOH?

- c) Å of NaCl a) Λ of ClCH₂COOH b) Å of CH₃COOK d) Λ of H⁺
- 225. In the electrolysis of CuSO₄, the reaction $Cu^{2+} + 2e^- \rightarrow Cu$, takes place at : a) Anode b) Cathode c) In solution d) None of these
- 226. The standard emf of a galvanic cell involving 2 moles of electrons in its redox reaction is 0.59 V. The equilibrium constant for the redox reaction of the cell is a) 10²⁰ b) 10⁵ d) 10¹⁰ c) 10
- 227. The amount of silver deposited by passing 241.25C of current through silver nitrate solution is a) 2.7 g b) 2.7 mg c) 0.27 g d) 0.54 g
- 228. The conductivity of saturated solution of CaF_2 is 3.86 \times 10⁻⁵ mho cm⁻¹ and that of water used for solution is 0.15 \times 10⁻⁵. The conductivity of CaF₂ alone is : a) 3.71×10^{-5} d) 3.86×10^{-4} b) 4.01 \times 10⁻⁵

c) 3.7×10^{-4} 229. Four alkali metals A, B, C and D are having respectively standard electrode potential as -3.05, -1.66, -0.40 and 0.80. Which one will be the most reactive?

a) A b) *B* c) C

230. An increase in equivalent conductivity of strong electrolyte with dilution is mainly due to:

- a) Increase in ionic molility ions
- b) 100% ionisation of electrolyte at normal dilution
- c) Increase in both i.e., no. of ions and ionic mobility
- d) Increase in no. of ions

231. The number of coulombs required to reduce 12.3 g of nitrobenzene to aniline is

a) 115800 C	b) 5790 C	c) 28950 C	d) 57900 C
32. The cell constant is			
$l = \frac{l}{l}$	a	$c) a \times l$	d) $\frac{\kappa}{-}$
u) a	5,	ejuxi	α_{J}_{R}

2

a)
$$\frac{1}{a}$$

233. The factors which influence the conductance of solution.

a) Solute-solute interaction

- b) Solute-solvent interaction
- c) Temperature
- d) All of the above

234. In a cell containing zinc electrode and standard hydrogen electrode(SHE), the zinc electrode acts as :

- a) Anode
- b) Cathode

d) D

C) Neither cathode nor an	ode		
d	l) Both anode and cathod	e		
235. T	he best conductor of elec	ctricity is a 0.1 <i>M</i> solution	of:	
a) Boric acid	b) Sulphuric acid	c) Acetic acid	d) Propionic acid
236. E	Electrode potential of hyd	rogen electrode is vo	lt.	
а) 0	b) +1	c) -1	d) None of these
237. V	Which aqueous solution w	vill conduct an electric cur	rent quite well?	.,
a) Glycerol	b) Sugar	c) Hydrochloric acid	d) Pure water
238 U	lse of electrolysis is not d	one in	e) 11j al e ellio 11e a ella	
2001 0 a) Production of Na		h) Production of water	
c c) Purification of metals		d) Production of KOH	
220 B	Perullium is placed abov	e magnesium in the II gr	oun Bervllium dust there	fore when added to MgCL
237. D	olution will :	e magnesium in the n gi	oup. Derymum aust, there	fore, when added to Mger2
3) Have no offect			
a b) Draginitata Mamatal			
U) Precipitate Mg Illetai			
C_) Precipitate MgO			
d	I) Lead to dissolution of E	se metal	1 • 1 • 1 • • •	
240. V	Vhen electric current is p	assed through an ionic hy	dride in molten state	
a) Hydrogen is liberated a	t anode	b) Hydrogen is liberated a	at cathode
C) No change takes place		d) Hydride ions migrates	towards cathode
241. V	Which of the following ele	ctrolytic solutions has the	least specific conductance	?
a	.) 0.02 N	b) 0.2 N	c) 2 N	d) 0.002 N
242. D	Ouring the electrolysis of	an electrolyte, the number	r of ions produced, is direct	ly proportional to the
а) Time consumed		b) Mass of electrons	
c) Quantity of electricity p	bassed	d) Electrochemical equiva	alent of electrolytes
243.1	.8 g of metal were depos	ited by a current of 3 amp	eres for 50 minute. The equ	ivalent wt. of metal is :
а) 20.5	b) 25.8	c) 19.3	d) 30.7
244. V	Vhich substance is obtain	ed in the solution on elect	rolysis of aqueous CuSO ₄ s	olution using graphite
e	lectrodes?			
а) H ₂ 0	b) H ₂ SO ₄	c) Na ₂ SO ₄	d) Cu(OH) ₂
245. D	During the electrolysis of	fused NaCl, which reaction	n occurs at anode?	
а) Chloride ions are oxidiz	zed	b) Sodium ions are oxidiz	ed
c) Chloride ions are reduc	ed	d) Sodium ions are reduc	ed
246. V	Which one of the following	g condition will increase t	he voltage of the cell repres	ented by the equation?
С	$\operatorname{Cu}(s) + 2\operatorname{Ag}^+(aq) \rightleftharpoons \operatorname{Cu}^+$	$u^{2+}(aq) + 2 \operatorname{Ag}(s)$		
а) Increase in the dimensi	on of Cu electrode	b) Increase in the dimens	ion of Ag electrode
c) Increase in the concent	ration of Cu ²⁺ ions	d) Increase in the concent	tration of Ag ⁺ ions
247. V	Which will reduce zinc oxi	ide to zinc?		0
21/11 a) Mg	h) Ph	c) (.u	d) Fe
248 T	'he unit of electrochemic:	al equivalent is ·		ajre
210.1) gram	h) Gram/ampere	c) Ka/coulomb	d) Coulomb/gram
240 c	$1^{4+1} 2^{-1} \times 2^{-1}$	$E^{\circ} = 0.12 V$	cj kg/coulomb	u) coulomb/gram
277.3 П	$\frac{1}{2} + \frac{1}{2} = \frac{1}$	E = 0.13 V $E^{\circ} = 1.00 V$		
B	$Sr_2 + 2e \rightarrow 2Br$,	E = 1.08 V]]	
Ĺ	alculate K_{eq} for the cell r	eaction for the cell formed	i by two electrodes.	···· 12
а	1) 10^{41}	b) 10 ³²	c) 10^{-32}	d) 10 ⁻⁴²
250. S	I unit of conductivity is :		_	
а) ohm ⁻¹ cm ⁻¹	b) ohm ⁻¹ cm ⁻¹ or Sm ⁻¹	c) ohm m ⁻¹	d) ohm cm ⁻¹
251. Io	onic mobility of Ag ⁺ is			
($\lambda_{\mathrm{Ag}^+} = 5 \times 10^{-1} \Omega^{-1} \mathrm{cm}$	$n^2 equiv^{-1}$)		
а) 5.2×10^{-9}	b) 2.4×10^{-9}	c) 1.52×10^{-9}	d) 8.25×10^{-9}

252.	$E^{\circ}_{Fe^{3+}/Fe} = -0.036 \text{ V}$, E°_{F}	$r_{e^{2+}/Fe} = -0.439$ V. The va	lue of standard electrode p	otential for the charge,			
	$Fe^{3+}(aq) + e^- \rightarrow Fe^2$	$^{2+}$ (aq) will be					
	a) -0.072 V	b) 0.385 V	c) 0.770 V	d) -0.270 V			
253.	Whether tin can displace	lead from aqueous lead bro	omide solution?				
	a) No	I) No					
	b) Yes, because standard	reduction potential of Sn $<$	Pb				
	c) Yes, because standard	reduction potential of Sn >	Pb				
	d) None of the above	-					
254.	Given the standard reduct	tion potentials					
	$Zn^{2+}/Zn = -0.74 V$, Cl ₂	$_{2}/\text{Cl}^{-} = 1.36 V$					
	$H^+/\frac{1}{2}H_2 = 0V$ and Fe	e^{2+} / Fe ³⁺ = 0.77 V					
	The order of increasing st	rength as reducing agent is	5				
	a) Cl^{-} , Zn , H ₂ , Fe ²⁺	b) H_2 , Zn, Fe ²⁺ , Cl ⁻	c) Cl ⁻ , Fe ²⁺ , Zn , H ₂	d) Cl^{-} , Fe^{2+} , H_2 , Zn			
255.	Molar conductivities (Λ_n)) at infinite dilution of]	NaCl. HCl and CH ₂ COONa	are 126.4. 425.9 and 91.0			
	$S \text{ cm}^2 \text{ mol}^{-1}$ respectively.	Å for CH ₂ COOH will be :	, ,				
	a) $425.5 \text{ S cm}^2 \text{ mol}^{-1}$	b) 180 5 S cm ² mol ^{-1}	c) 290.8 S cm ² mol ⁻¹	d) 390 5 S cm ² mol ⁻¹			
256	KCl(aa) cannot be used as	s a salt bridge for the cell C	$u(s) CuSO_a(aa) AgNO_a(aa) AgNO_A(aa) $	$a_{j} = b_{j} = b_{j$			
250.	a) (u(), is precipitated	h) Cl. gas is given out	c) AgCl is precipitated	d) All of these			
257	The ionic conductance of	B_2^{2+} and C_2^{-} are respective	vely 127 and 76 0^{-1} cm ² at	infinite dilution The			
237.	Aquivalent conductance (in Ω^{-1} cm ²) of BaCl, at infi	nite dilution will be	minine unution. The			
	\sim 120 5	$\frac{1132}{1132} = \frac{111}{202} = \frac{1111}{1010} = \frac{1111}{1000} = \frac{1111}{1000} = \frac{1111}{1000} = \frac{11110}{1000} = \frac{11100}{1000} = \frac{11100}{1000} = \frac{11100}{1000} = \frac{11100}{1000} = \frac{11100}{1000} = \frac{111000}{1000} = \frac{11100}{1000} = \frac{1100}{1000} = \frac{1100}{100} = \frac{1100}{100} = 110$		d) 101 5			
250	a) 139.5 The Cibbs operation the	UJ 203	500° is as follows:	u) 101.5			
250.	2 4	1000000000000000000000000000000000000	SUU C IS as IUIIUWS :				
	$\frac{2}{3}\operatorname{Al}_2\operatorname{O}_3 \longrightarrow \frac{1}{3}\operatorname{Al} + \operatorname{O}_2, \Delta_{\mathrm{r}}\operatorname{G}$	$G = +966 \text{ kJ mol}^{-1}.$					
	The potential difference n	needed for electrolytic redu	ction of Al ₂ O ₃ at 500°C is a	tleast :			
	a) 5.0 V	b) 4.5 V	c) 3.0 V	d) 2.5 V			
259.	Which of the following sta	atements (or equation) is c	orrect?				
	a) The units of cell emf ar	$e V. cm^{-1}$					
	b) $\Delta G = -\frac{nF}{m}$						
	E_{cell}						
	c) In galvanic cell, chemic	al energy is transformed in	to electrical energy.				
	d) Oxidation state of Mn in	n potassium permanganate	e is +6				
260.	Faraday's law of electroly	sis fails when :					
	a) Temperature is increase	sed					
	b) Inert electrodes are us	b) Inert electrodes are used					
	c) A mixture of electrolytes is used						
	d) In none of the above ca	Ises					
261.	Conductance 'C' (in S) in	directly proportional to the	e area of the electrode and	concentration and inversely			
	proportional to length of	separation of electrode, the	e unit of constant of propor	tionality is:			
	a) S m mol ^{-1}	b) S m ² mol ^{-1}	c) $S^{-2} m^2 mol$	d) $S^2 m^2 mol^2$			
262.	A certain metal fails to lib	erate H ₂ gas from a moder	ately conc. HCl solution. Ho	owever, it displaces Ag from			
	AgNO ₃ solution. Which an	nong the followings may it	be?				
	a) Mg	b) Fe	c) Cu	d) Cd			
263.	For the cell reaction Fe +	$2Fe^{3+} = 3Fe^{2+}$, which is no	ot possible?				
	a) One cell can be constru	icted					
	b) Three different cells with	ith different $E_{ m cell}^{ m \circ}$ are possib	ble				
	c) Three different cells with	ith different number of elec	ctrons used in redox reaction	on are possible			
	d) Three different cells with	ith same ΔG° value are poss	sible				

264. Copper sulphate solution does not react with

a) Zinc	b) Iron	c) Silver	d) All of these	
265. Rust is				
a) FeO + Fe(OH) ₂		b) Fe_2O_3		
c) $Fe_2 O_3 + Fe(OH)_2$	1 . 1 .	d) $Fe_2 O_3$ and $Fe(OH)_3$		
266. The conductivity of stro	ng electrolyte			
a) Increases on dilution	slightly	b) Decreases on dilution		
c) Does not change with	dilution	d) Depends upon density	of electrolyte itself	
267. An electric current of <i>c</i>	ampere was passed through	a solution of an electrolyt	e for t second depositing P	
g of the metal M on the C	cathode. The equivalent weight P	gnt <i>E</i> of the metal will be : $06E00 \times P$	a x t x 0650	
a) $E = \frac{c \wedge t}{P \times 96500}$	b) $E = \frac{c \times F}{t \times 0.6500}$	c) $E = \frac{90300 \times P}{2}$	d) $E = \frac{c \times c \times 9030}{p}$	
$r \times 90000$ 268 Cu ⁺ ion is not stable	in aqueous solution be	$\mathcal{L} \times \mathcal{L}$	on reaction F° value for	
	$+ \ln \left(a + b \right)^{\circ}$	$r = r^{\circ}$		
disproportionation of Ci	L^{+} is (given, $E_{Cu^{2+}/Cu^{+}} = 0$.)	15, $E_{Cu^{2+}/Cu} = 0.34 \text{ V}$		
a) + 0.38 V	b) – 0.38 V	c) + 0.49 V	d) – 0.49 V	
269. The molar conductivitie	s Λ°_{NaOAc} and Λ°_{HCl} at infini	te dilution in water at 25°C	are 91.0 and 426.2 S	
cm ² /mol respectively. T	'o calculate Λ° _{HOAc} , the addi	tional value required is		
a) Λ° _{H2O}	b) Λ° _{KCl}	c) Λ° _{NaOH}	d) Λ° _{NaCl}	
270. The molar conductivity	y of NaCl, HCl and CH_3CO	ONa at infinite dilution a	are 126.45, 426.16 and 91	
ohm ⁻¹ cm ² mol ⁻¹ respe	ctively. The molar conductiv	vity of CH ₃ COOH at infinite	dilution is :	
a) 201.28 ohm ⁻¹ cm ² m	ol ⁻¹			
b) 698.28 ohm ⁻¹ cm ² m	ol ⁻¹			
c) 390.71 ohm ⁻¹ cm ² m	ol ⁻¹			
d) 540.48 ohm ⁻¹ cm ² m	ol ⁻¹			
271. If the electrolyte used in	problem 4 is $Ba(NO_3)_2$, the	n molecular conductivity o	f solution is :	
a) 628.56 mho ⁻¹ cm ² molb) 628.56 mho cm ² mol ⁻¹ c) 6.28 mho cm ² mol ⁻¹ d) 6.28 mho ⁻¹ cm ² mol ⁻¹				
	,	-,		
272. The equivalent conduct	ivity of KCl at infinite diluti	on is 130 mho $\text{cm}^2 \text{ eq}^{-1}$. T	'he transport number of Cl ⁻	
272. The equivalent conduct ion in KCl at the same te	ivity of KCl at infinite diluti mperature is 0.505. The trai	on is 130 mho $\text{cm}^2 \text{ eq}^{-1}$. T nsport number of K ⁺ ion is	'he transport number of Cl ⁻	
272. The equivalent conduct ion in KCl at the same te a) 0.495	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505	on is 130 mho cm ² eq ⁻¹ . T nsport number of K ⁺ ion is c) 0.0495	 'he transport number of Cl⁻ d) Cannot be predicted 	
272. The equivalent conduct ion in KCl at the same te a) 0.495273. A cell in which electric c	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or	on is 130 mho cm ² eq ⁻¹ . T nsport number of K ⁺ ion is c) 0.0495 xidation and reduction pro-	 'he transport number of Cl⁻ d) Cannot be predicted cess is called : 	
 272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell	on is 130 mho cm ² eq ⁻¹ . T nsport number of K ⁺ ion is c) 0.0495 xidation and reduction pro- c) Concentration cell	 c) one number of number of Cl⁻ c) Cannot be predicted cess is called : d) None of these 	
 272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 274. Electrolysis of aq. Soluti 	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows :	on is 130 mho cm ² eq ⁻¹ . T nsport number of K ⁺ ion is c) 0.0495 xidation and reduction pro- c) Concentration cell	 a) onlo nine common b) transport number of Cl⁻ c) Cannot be predicted cess is called : d) None of these 	
 272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7	on is 130 mho cm ² eq ⁻¹ . T nsport number of K ⁺ ion is c) 0.0495 xidation and reduction pro- c) Concentration cell c) pH > 7	 d) Gannot be predicted d) Cannot be predicted cess is called : d) None of these d) No change 	
 272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric ca a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow 	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges	on is 130 mho cm ² eq ⁻¹ . T nsport number of K ⁺ ion is c) 0.0495 xidation and reduction pro- c) Concentration cell c) pH > 7 t oxidizing agent is :	 d) Gannot be predicted d) Cannot be predicted cess is called : d) None of these d) No change 	
272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-}$	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges ${}_{5}$] ³⁻ + e^{-} ; $E^{\circ} = -0.35$ V	on is 130 mho cm ² eq ⁻¹ . T nsport number of K ⁺ ion is c) 0.0495 xidation and reduction pro- c) Concentration cell c) pH > 7 t oxidizing agent is :	 d) Gannot be predicted cannot be predicted cess is called : d) None of these d) No change 	
272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow Fe^{3+} + e^{-}$;	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges ${}_{5}]^{3-} + e^{-}$; $E^{\circ} = -0.35$ V $E^{\circ} = 0.77$ V	on is 130 mho cm ² eq ⁻¹ . T nsport number of K ⁺ ion is c) 0.0495 xidation and reduction pro- c) Concentration cell c) pH > 7 t oxidizing agent is :	 c) on one of the transport number of Cl⁻: d) Cannot be predicted cess is called : d) None of these d) No change 	
272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow Fe^{3+} + e^{-}$; a) Fe^{2+}	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges ${}_{5}$] ³⁻ + e^{-} ; $E^{\circ} = -0.35$ V $E^{\circ} = 0.77$ V b) Fe ³⁺	<pre>on is 130 mho cm² eq⁻¹. T nsport number of K⁺ ion is c) 0.0495 xidation and reduction pro- c) Concentration cell c) pH > 7 t oxidizing agent is : c) [Fe(CN)₆]³⁻</pre>	 d) Gannot be predicted d) Cannot be predicted cess is called : d) None of these d) No change d) [Fe(CN)₆]⁴⁻ 	
272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow Fe^{3+} + e^{-}$; a) Fe^{2+} 276. The specific conductance	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges $f_{5}]^{3-} + e^{-}$; $E^{\circ} = -0.35$ V $E^{\circ} = 0.77$ V b) Fe ³⁺ e of 0.1 N KCl solution at 23°	on is 130 mho cm ² eq ⁻¹ . The sport number of K ⁺ ion is c) 0.0495 stidation and reduction pro- c) Concentration cell c) pH > 7 t oxidizing agent is : c) [Fe(CN) ₆] ³⁻ PC is 0.012 ohm ⁻¹ cm ⁻¹ . The second second	 d) Cannot be predicted d) Cannot be predicted cess is called : d) None of these d) No change d) [Fe(CN)₆]⁴⁻ he resistance of cell 	
272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow Fe^{2+} \rightarrow Fe^{3+} + e^{-}$; a) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$; a) Fe^{2+} 276. The specific conductance containing the solution a	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges $f_{3}^{3-} + e^{-}$; $E^{\circ} = -0.35$ V $E^{\circ} = 0.77$ V b) Fe ³⁺ e of 0.1 N KCl solution at 23 ⁴ at the same temperature wa	on is 130 mho cm ² eq ⁻¹ . The sport number of K ⁺ ion is c) 0.0495 sidation and reduction pro- c) Concentration cell c) pH > 7 t oxidizing agent is : c) [Fe(CN) ₆] ³⁻ C is 0.012 ohm ⁻¹ cm ⁻¹ . The s found to be 55 ohm. The	 d) Galo finite common common che transport number of Cl⁻: d) Cannot be predicted cess is called : d) None of these d) No change d) [Fe(CN)₆]⁴⁻ he resistance of cell cell constant will be b) 1 (61) 	
272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow Fe^{2+} \rightarrow Fe^{3+} + e^{-}$; a) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$; a) Fe^{2+} 276. The specific conductance containing the solution a a) 0.66 cm ⁻¹	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges $f_{0}^{3^{-}} + e^{-}$; $E^{\circ} = -0.35$ V $E^{\circ} = 0.77$ V b) Fe ³⁺ e of 0.1 N KCl solution at 23° at the same temperature wa b) 1.12 cm ⁻¹	on is 130 mho cm ² eq ⁻¹ . The sport number of K ⁺ ion is c) 0.0495 stidation and reduction pro- c) Concentration cell c) pH > 7 t oxidizing agent is : c) $[Fe(CN)_6]^{3-}$ PC is 0.012 ohm ⁻¹ cm ⁻¹ . The s found to be 55 ohm. The c) 0.918 cm ⁻¹	 d) Galo finite common for the transport number of Cl⁻: d) Cannot be predicted cess is called : d) None of these d) No change d) [Fe(CN)₆]⁴⁻ he resistance of cell cell constant will be d) 1.66 cm⁻¹ 	
272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow Fe^{2+} \rightarrow Fe^{3+} + e^{-}$; a) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$; a) Fe^{2+} 276. The specific conductance containing the solution a a) 0.66 cm ⁻¹ 277. 20 g of chlorine are evol	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges $f_{3}^{3-} + e^{-}$; $E^{\circ} = -0.35$ V $E^{\circ} = 0.77$ V b) Fe ³⁺ e of 0.1 N KCl solution at 23 ⁶ at the same temperature wa b) 1.12 cm ⁻¹ ved in 6 hour from sodium of	on is 130 mho cm ² eq ⁻¹ . The sport number of K ⁺ ion is c) 0.0495 sidation and reduction pro- c) Concentration cell c) pH > 7 t oxidizing agent is : c) [Fe(CN) ₆] ³⁻ C is 0.012 ohm ⁻¹ cm ⁻¹ . The s found to be 55 ohm. The c) 0.918 cm ⁻¹ chloride solution by the cur	 d) Galo finite common common che transport number of Cl⁻: d) Cannot be predicted cess is called : d) None of these d) No change d) [Fe(CN)₆]⁴⁻ the resistance of cell cell constant will be d) 1.66 cm⁻¹ trent of : d) 5.0 symmetry 	
 272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric ca a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow [Fe(CN)₆]⁴⁻ → [Fe(CN)₆ Fe²⁺ → Fe³⁺ + e⁻; a) Fe²⁺ 276. The specific conductance containing the solution a a) 0.66 cm⁻¹ 277. 20 g of chlorine are evol a) 5 ampere 	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges $f_{0}^{3^{-}} + e^{-}$; $E^{\circ} = -0.35$ V $E^{\circ} = 0.77$ V b) Fe ³⁺ e of 0.1 N KCl solution at 23° at the same temperature wa b) 1.12 cm ⁻¹ ved in 6 hour from sodium of b) 10 ampere	on is 130 mho cm ² eq ⁻¹ . The sport number of K ⁺ ion is c) 0.0495 sidation and reduction pro- c) Concentration cell c) pH > 7 t oxidizing agent is : c) $[Fe(CN)_6]^{3-}$ PC is 0.012 ohm ⁻¹ cm ⁻¹ . The s found to be 55 ohm. The c) 0.918 cm ⁻¹ chloride solution by the cur c) 2.5 ampere	 d) GEC hills - chi mor che transport number of Cl⁻: d) Cannot be predicted cess is called : d) None of these d) No change d) [Fe(CN)₆]⁴⁻ he resistance of cell cell constant will be d) 1.66 cm⁻¹ rrent of : d) 50 ampere 	
272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow Fe^{3+} + e^{-}$; a) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$; a) Fe^{2+} 276. The specific conductance containing the solution a a) 0.66 cm ⁻¹ 277. 20 g of chlorine are evol a) 5 ampere 278. For the electrochemical	ivity of KCl at infinite diluti mperature is 0.505. The tran- b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges $f_{3}^{3-} + e^{-}$; $E^{\circ} = -0.35$ V $E^{\circ} = 0.77$ V b) Fe ³⁺ e of 0.1 N KCl solution at 23° at the same temperature wa b) 1.12 cm ⁻¹ ved in 6 hour from sodium of b) 10 ampere cell, $M M^{+} X^{-} X$, $f_{3}^{\circ} = (X X^{-}) = 0.22$ V. Fr	on is 130 mho cm ² eq ⁻¹ . The sport number of K ⁺ ion is c) 0.0495 sidation and reduction protection collection cell c) pH > 7 t oxidizing agent is : c) $[Fe(CN)_6]^{3-}$ c is 0.012 ohm ⁻¹ cm ⁻¹ . The structure for the solution by the current collection colle	ch etransport number of Cl ⁻ : d) Cannot be predicted cess is called : d) None of these d) No change d) $[Fe(CN)_6]^{4-}$ the resistance of cell cell constant will be d) 1.66 cm ⁻¹ rrent of : d) 50 ampere	
272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow Fe^{3+} + e^{-};$ a) $Fe^{2+} \rightarrow Fe^{3+} + e^{-};$ a) Fe^{2+} 276. The specific conductance containing the solution at a) 0.66 cm ⁻¹ 277. 20 g of chlorine are evolual 3 5 ampere 278. For the electrochemical $E^{\circ}(M^+ M) = 0.44V, E$	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges f_{5}] ³⁻ + e^{-} ; $E^{\circ} = -0.35$ V $E^{\circ} = 0.77$ V b) Fe ³⁺ e of 0.1 N KCl solution at 23° at the same temperature wa b) 1.12 cm ⁻¹ ved in 6 hour from sodium of b) 10 ampere cell, $M M^{+} X^{-} X$, $E^{\circ} = (X X^{-}) = 0.33$ V. Fr	on is 130 mho cm ² eq ⁻¹ . The sport number of K ⁺ ion is c) 0.0495 sidation and reduction pro- c) Concentration cell c) pH > 7 t oxidizing agent is : c) [Fe(CN) ₆] ³⁻ PC is 0.012 ohm ⁻¹ cm ⁻¹ . The c) 0.918 cm ⁻¹ chloride solution by the cur c) 2.5 ampere	 d) Gannot be predicted d) Cannot be predicted cess is called : d) None of these d) No change d) [Fe(CN)₆]⁴⁻ he resistance of cell cell constant will be d) 1.66 cm⁻¹ rrent of : d) 50 ampere 	
272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow Fe^{2+} \rightarrow Fe^{3+} + e^{-};$ a) $Fe^{2+} \rightarrow Fe^{3+} + e^{-};$ a) Fe^{2+} 276. The specific conductance containing the solution a a) 0.66 cm ⁻¹ 277. 20 g of chlorine are evol a) 5 ampere 278. For the electrochemical $E^{\circ} (M^+ M) = 0.44 V, E$ a) $E^{\circ}_{cell} = -0.77 V$	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges $f_{5}^{3-} + e^{-}$; $E^{\circ} = -0.35$ V $E^{\circ} = 0.77$ V b) Fe ³⁺ e of 0.1 N KCl solution at 23° at the same temperature wa b) 1.12 cm ⁻¹ ved in 6 hour from sodium of b) 10 ampere cell, $M M^{+} X^{-} X$, $E^{\circ} = (X X^{-}) = 0.33$ V. Fr	on is 130 mho cm ² eq ⁻¹ . The sport number of K ⁺ ion is c) 0.0495 sidation and reduction protection cell c) Concentration cell c) pH > 7 t oxidizing agent is : c) $[Fe(CN)_6]^{3-}$ c is 0.012 ohm ⁻¹ cm ⁻¹ . The solution be 55 ohm. The c) 0.918 cm ⁻¹ chloride solution by the currection control of the solution of the currection of the solution of the currection of the solution of the	 d) OLO IMIC COM MOT The transport number of Cl⁻: d) Cannot be predicted cess is called : d) None of these d) No change d) [Fe(CN)₆]⁴⁻ the resistance of cell cell constant will be d) 1.66 cm⁻¹ trent of : d) 50 ampere the that 	
272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow Fe^{3+} + e^{-};$ a) $Fe^{2+} \rightarrow Fe^{3+} + e^{-};$ a) Fe^{2+} 276. The specific conductance containing the solution a a) 0.66 cm ⁻¹ 277. 20 g of chlorine are evol a) 5 ampere 278. For the electrochemical $E^{\circ} (M^+ M) = 0.44 V, E$ a) $E^{\circ}_{cell} = -0.77 V$ b) $M^+ + X^- \rightarrow M + X$	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges $f_{0}^{3^{-}} + e^{-}$; $E^{\circ} = -0.35$ V $E^{\circ} = 0.77$ V b) Fe ³⁺ e of 0.1 N KCl solution at 23° at the same temperature wa b) 1.12 cm ⁻¹ ved in 6 hour from sodium of b) 10 ampere cell, $M M^{+} X^{-} X$, $E^{\circ} = (X X^{-}) = 0.33$ V. Fr	on is 130 mho cm ² eq ⁻¹ . The sport number of K ⁺ ion is c) 0.0495 sidation and reduction pro- c) Concentration cell c) pH > 7 t oxidizing agent is : c) [Fe(CN) ₆] ³⁻ PC is 0.012 ohm ⁻¹ cm ⁻¹ . The c) 0.918 cm ⁻¹ chloride solution by the cur c) 2.5 ampere	 d) Gannot be predicted d) Cannot be predicted cess is called : d) None of these d) No change d) [Fe(CN)₆]⁴⁻ he resistance of cell cell constant will be d) 1.66 cm⁻¹ rrent of : d) 50 ampere 	
272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow Fe^{2+} \rightarrow Fe^{3+} + e^{-};$ a) $Fe^{2+} \rightarrow Fe^{3+} + e^{-};$ a) Fe^{2+} 276. The specific conductance containing the solution a a) 0.66 cm ⁻¹ 277. 20 g of chlorine are evol a) 5 ampere 278. For the electrochemical $E^{\circ} (M^+ M) = 0.44 V, E$ a) $E^{\circ}_{cell} = -0.77 V$ b) $M^+ + X^- \rightarrow M + X$ c) $M + X \rightarrow M^+ + X$	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges $f_{5}^{3-} + e^{-}$; $E^{\circ} = -0.35$ V $E^{\circ} = 0.77$ V b) Fe ³⁺ e of 0.1 N KCl solution at 23° at the same temperature wa b) 1.12 cm ⁻¹ ved in 6 hour from sodium of b) 10 ampere cell, $M M^{+} X^{-} X$, $f^{\circ} = (X X^{-}) = 0.33$ V. Fr	on is 130 mho cm ² eq ⁻¹ . The sport number of K ⁺ ion is c) 0.0495 stidation and reduction protection cell c) Concentration cell c) pH > 7 t oxidizing agent is : c) $[Fe(CN)_6]^{3-}$ PC is 0.012 ohm ⁻¹ cm ⁻¹ . The s found to be 55 ohm. The c) 0.918 cm ⁻¹ chloride solution by the curr c) 2.5 ampere from this datAone can deduce on	 d) OLO IMIC COM MOT The transport number of Cl⁻: d) Cannot be predicted cess is called : d) None of these d) No change d) [Fe(CN)₆]⁴⁻ the resistance of cell cell constant will be d) 1.66 cm⁻¹ trent of : d) 50 ampere the that 	
272. The equivalent conduct ion in KCl at the same te a) 0.495 273. A cell in which electric c a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} \rightarrow [Fe(C$	ivity of KCl at infinite diluti mperature is 0.505. The tran- b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges $f_{0}^{5}]^{3-} + e^{-}$; $E^{\circ} = -0.35$ V $E^{\circ} = 0.77$ V b) Fe ³⁺ e of 0.1 N KCl solution at 23° at the same temperature wa b) 1.12 cm ⁻¹ ved in 6 hour from sodium of b) 10 ampere cell, $M M^{+} X^{-} X$, $E^{\circ} = (X X^{-}) = 0.33$ V. Fr X is the spontaneous reaction T^{-} is the spontaneous reaction	on is 130 mho cm ² eq ⁻¹ . The sport number of K ⁺ ion is c) 0.0495 stidation and reduction pro- c) Concentration cell c) pH > 7 t oxidizing agent is : c) $[Fe(CN)_6]^{3-}$ C is 0.012 ohm ⁻¹ cm ⁻¹ . The c) 0.918 cm ⁻¹ chloride solution by the cur c) 2.5 ampere from this datAone can deduce on	 d) OLO IMIC COM MOT the transport number of Cl⁻: d) Cannot be predicted cess is called : d) None of these d) No change d) [Fe(CN)₆]⁴⁻ the resistance of cell cell constant will be d) 1.66 cm⁻¹ trent of : d) 50 ampere the that 	
 272. The equivalent conduct ion in KCl at the same ter a) 0.495 273. A cell in which electric can a) Voltaic cell 274. Electrolysis of aq. Soluti a) pH < 7 275. On the basis of the follow [Fe(CN)₆]⁴⁻ → [Fe(CN)₆]⁴⁻ → [Fe(CN)₆]⁴⁻ → Fe²⁺ → Fe³⁺ + e⁻; a) Fe²⁺ 276. The specific conductance containing the solution a 0.66 cm⁻¹ 277. 20 g of chlorine are evola 3) 5 ampere 278. For the electrochemical $E^{\circ}(M^+ M) = 0.44 V, E$ a) $E^{\circ}_{cell} = -0.77 V$ b) $M^+ + X^- → M + X$ c) $M + X → M^+ + X$ d) $E^{\circ}_{cell} = 0.77 V$ 279. The standard reduction 	ivity of KCl at infinite diluti mperature is 0.505. The tran b) 0.505 urrent is produced by net or b) Electrolytic cell on of LiCl shows : b) pH = 7 wing E° values, the stronges $f_{0}^{3^{-}} + e^{-}$; $E^{\circ} = -0.35$ V $E^{\circ} = 0.77$ V b) Fe ³⁺ e of 0.1 N KCl solution at 23° at the same temperature wa b) 1.12 cm ⁻¹ ved in 6 hour from sodium of b) 10 ampere cell, $M M^{+} X^{-} X$, $E^{\circ} = (X X^{-}) = 0.33$ V. Fr	on is 130 mho cm ² eq ⁻¹ . The sport number of K ⁺ ion is c) 0.0495 sidation and reduction protection cell c) pH > 7 t oxidizing agent is : c) $[Fe(CN)_6]^{3-}$ PC is 0.012 ohm ⁻¹ cm ⁻¹ . The c) 0.918 cm ⁻¹ chloride solution by the currection cell compared to be 55 ohm. The chloride solution by the currection compared to the co	 d) Gannot be predicted d) Cannot be predicted cess is called : d) None of these d) No change d) [Fe(CN)₆]⁴⁻ he resistance of cell cell constant will be d) 1.66 cm⁻¹ rrent of : d) 50 ampere 	

a)
$$E^{\circ} = \frac{RT}{F} \ln K_{w}$$

b) $E^{\circ} = -\frac{RT}{F} \ln [P_{H_{2}}]^{1/2} [OH^{-}]$
c) $E^{\circ} = -\frac{RT}{F} \ln \frac{[p_{H_{2}}]^{1/2}}{[H^{+}]}$
d) $E^{\circ} = -\frac{RT}{F} \ln K_{w}$

280. The correct order $E_{M^{2+}/M}^{\circ}$ values with negative sign for the four successive elements Cr, Mn, Fe and Co is :

c) Cr > Fe > Mn > Coa) Cr > Mn > Fe > Cob) Mn > Cr > Fe > Cod) Fe > Mn > Cr > Co 281. The increase in equivalent conductivity of a weak electrolyte solution with dilution is attributed to :

a) Increase in degree of dissociation

- b) Increase in ionic mobility
- c) Both (a) and (b)
- d) None of the above

282. Resistance of 0.2 M solution of an electrolyte is 50 Ω . The specific conductance of the solution is 1.3 S m⁻¹. If resistance of the 0.4M solution of the same electrolyte is 260Ω , its molar conductivity is

c) $625 \times 10^{-4} \text{ Sm}^2 \text{ mol}^{-1}$

b)
$$6.25 \times 10^{-4} \text{ Sm}^2 \text{ mol}^-$$

d) $62.5 \text{ Sm}^2 \text{ mol}^{-1}$

283. When electric current is passed through a cell having an electrolyte, the positive ions move towards the cathode and the negative ions towards the anode. If the cathode is pulled out of the solution :

a) The positive and the negative ions both will move towards the anode

b) The positive ions will start moving towards the anode; the negative ions will stop moving

c) The negative ions will continue to move towards the anode; the positive ions will stop moving

- d) The positive ions and the negative ions will start moving randomly
- 284. $Cu^+(aq)$ is unstable in solution and undergoes simultaneous oxidation and reduction, according to the reaction

 $2Cu^+(aq) \rightleftharpoons Cu^{2+}(aq) + Cu(s)$

choose correct E° for the above reaction if

 $E^{\circ}_{Cu^{2+}/Cu} = 0.34 \text{ V}$, $E^{\circ}_{Cu^{2+}/Cu^{+}} = 0.15 \text{ V}$ a) -0.38 V b) +0.49 V c) +0.38 V d) -0.19 V 285. Standard electrode potential of NHE at 298 K is c) 0.50 V d) 0.00 V a) 0.05 V b) 0.10 V

286. Agalvanic cell is constructed using the redox reaction,

 $\frac{1}{2}H_2(g) + \operatorname{AgCl}(s) \rightleftharpoons H^+(aq) + \operatorname{Cl}^-(aq) + \operatorname{Ag}(s)$

It is represented as

- a) $\frac{Pt | H_2(g) | HCl solution || AgNO_3 solution |}{Ag}$

b) Ag | AgCl(s)|KCl solution | |HCl solution|| H₂(g) | Pt

c) Pt | H₂(g) | KCl solution || AgCl(s) | Ag

d) Pt | H₂(g), HCl solution || AgCl(s) | Ag

287. Zn | Zn^{2+} (A = 0.1 M) || Fe²⁺ (A = 0.01 M) | Fe.

The emf of the above cell is 0.2905 V. Equilibrium constant for the cell reaction is

b) 10^{0.32/0.0295} c) $10^{0.26/0.0295}$ d) $e^{0.32/0.0295}$ a) $10^{0.32/0.0591}$

288. The conductance of a solution of an electrolyte is same as that of its conductivity. The cell used can be said to have cell constant equal to :

c) 100 a) 1 b) Zero d) 10

289. A conductivity cell has two platinum electrodes of 1.2 cm²area, separated by a distance of 0.8 cm. The cell constant is :

a) 0.66 cm⁻¹ b) 1.5 cm⁻¹ c) 0.96 cm^{-1} d) 0.66 cm

290. A current of *i* ampere was passed for *t* second through three cells *P*, *Q* and *R* connected in series. These contain respectively silver nitrate, mercuric nitrate and mercurous nitrate. At the cathode of the cell P,

	0.216 g of Ag was deposite	ed. The weights of mercury	deposited in the cathode o	of <i>Q</i> and <i>R</i> respectively are :
	a) 0.4012 and 0.8024 g	b) 0.4012 and 0.2006 g	c) 0.2006 and 0.4012 g	d) 0.1003 and 0.2006 g
291.	Out of Cu, Al , Fe and Zn, n	netal which can displace all	others from their salt solu	tion is
	a) Al	b) Cu	c) Zn	d) Fe
292.	The equivalent conductan	ices of two strong electroly	tes at infinite dilution in H ₂	² 0 (where ions move freely
	through a solution) at 25°	C are given below		
	$\Lambda^{\circ}_{CH_{2}COONa} = 91.0 \text{ S cm}^{2}$	/equiv		
	$\Lambda^{\circ}_{\rm ucl} = 426.2 {\rm S} {\rm cm}^2 / {\rm equi}$	iv.		
	What additional informat	ion/quantity one needs to q	calculate Λ° of an aqueous s	solution of acetic acid?
	a) Λ° of NaCl	ion, quantity one needs to t	carcalate if of all aqueous i	
	b) Λ° of CH ₂ COOK			
	c) The limiting equivalent	t conductance of $H^+(\lambda^{\circ}_{n+1})$		
	d) Λ° of chloroacetic acid	$(C CH_2 COOH)$		
293	The emf of the cell			
_,	Ni Ni ²⁺ (1.0 M) Au^{3+} (1.0 M) Au		
	$is [E^{\circ} (Ni^{2+}/Ni) = -0.25 V$	and		
	$F^{\circ}(Au^{3+}/Au) = +15 V$	unu		
	a) 2 00 V	h) 1 25 V	c) -1 25 V	d) 1 75 V
294	The standard reduction n	otential for Fe ²⁺ /Fe and Sn	$^{2+}$ /Sn electrodes are – 0.44	4 and -0.14 V
_ > 11	respectively. For the give	n cell reaction. $Fe^{2+} + Sn =$	\rightarrow Fe + Sn ²⁺ , the standard e	mfis
	a) 0.42 V	h) $- 0.42$ V	() -0.30 V	d) $- 1.10 V$
295.	In Acell that utilises the re	eaction.		() 1.10 (
_,	$Zn(s) + 2H^+(aa) \rightarrow Zr$	$n^{2+}(aa) + H_2(a)$		
	addition of H_2SO_4 to cathe	ode compartment. will		
	a) Lower the E and shift the the the the the the the the the th	he equilibrium to the left		
	b) Lower the <i>E</i> and shift the	he equilibrium to the right		
	c) Increase the <i>E</i> and shift	t the equilibrium to the righ	nt	
	d) Increase the <i>E</i> and shift	t the equilibrium to the left		
296.	Which will increase the vo	oltage of the cell $Sn(s) + 2$	$\operatorname{Ag}^+(aq) \to \operatorname{Sn}^{2+}(aq) + 2$	Ag(s)?
	a) Increase in size of the s	silver rod		
	b) Increase in the concent	tration of Sn ²⁺ ions		
	c) Increase in the concent	cration of Ag ⁺ ions		
	d) None of the above			
297.	Given standard electrode	potentials		
	$Fe^{2+} + 2e^- \rightarrow Fe$	$E^{\circ} = -0.440 \text{ V}$		
	$Fe^{3+} + 3e^- \rightarrow Fe$	$E^{\circ} = -0.036 \text{ V}$		
	The standard electrode po	otential (E°) for		
	$Fe^{3+} + e^- \rightarrow Fe^{2+}$ is			
	a) +0.772 V	b) -0.772 V	c) +0.417 V	d) -0.414 V
298.	Normal Al – AlCl ₃ couple	ed with normal hydrogen	n electrode gives an e.m.	f. of 1.66 V. The standard
	oxidation electrode poten	tial of aluminium is :		
	a) — 1.66 V	b) + 1.66 V	c) – 0.83 V	d) + 0.83 V
299.	Which of the following sta	tements is true for fuel cel	ls?	
	a) They are more efficient	t	b) They are free from poll	ution
	c) They run till reactants	are active	d) All of the above	
300.	The $\Lambda^\infty of$ NH_4OH at in	finite dilution is S cm	$\lambda^2 \text{ eq.}^{-1}$.Given $\lambda^{\infty}_{\text{OH}^-} = 1$	74, $\lambda_{\text{Cl}^{-}}^{\infty} = 66$ and $\lambda_{\text{NH}_4\text{Cl}}^{\infty} =$
	130 S cm ² eq ⁻¹ :			-
	a) 238	b) 218	c) 198	d) 160
301.	The metal that forms a sel	If protecting film of oxide to	o prevent corrosion is	
	a) Na	b) Al	c) Cu	d) Au

302. The number of Faraday's needed to reduce 4 g-equivalents of Cu^{2+} to Cu metal will be

303. The atomic weight of Al is 27. When a current of 5 faraday is passed through a solution of Al³⁺ ions, the wt.of Al deposited is :

d) 9 g a) 27 g b) 36 g c) 45 g

304. Which is correct representation for a cell at equilibrium?

a)
$$\Delta G^{\circ} = -2.303 RT \log K_{eq.}$$

b) $E^{\circ} = \frac{2.303 RT}{nF} \log K_{eq.}$

c) $-\Delta G^{\circ} = RT \ln K_{eq}$

a)

d) All of the above.

305. Consider the following E° values

 $E^{\circ}_{Fe^{3+}/Fe^{2+}} = +0.77 \text{ V}$

 $E^{\circ}_{\text{Sn}^{2+}/\text{Sn}} = -0.14 \text{ V}$

Under standard conditions, the potential for the reaction

 $Sn(s) + 2Fe^{3+}(aq) \rightarrow 2Fe^{2+}(aq) + Sn^{2+}(aq)$ is

306. According to Kohlrausch's law the limiting value of equivalent conductivity of an electrolyte A₂B is given by:

a)
$$\lambda_{A^+}^{\infty} + \lambda_{B^{-2}}^{\infty}$$
 b) $\frac{1}{2}\lambda_{A^+}^{\infty} + \lambda_{B^{-2}}^{\infty}$ c) $\lambda_{A^+}^{\infty} + \frac{1}{2}\lambda_{B^{-2}}^{\infty}$ d) $2\lambda_{A^+}^{\infty} + \lambda_{B^{-2}}^{\infty}$

307. Standard reduction potential of an element is equal to :

a) + 1 \times its reduction potential

b) $-1 \times$ its standard oxidation potential

c) 0.00 V

a) Fe

d) + 1 \times its standard oxidation potential

308. Rusting of iron is catalysed by which of the following?

b) Zn

c) 0_2

d) H⁺

309. The equivalent conductivity of monobasic acid at infinite dilution is 348 ohm⁻¹ cm² eq⁻¹. If the resistivity of the solution containing 15 g acid (mol. wt. 49) in 1 litre is 18.5 ohm cm, what is the degree of dissociation of acid?

a) 45.9% b) 40.2% c) 60.4% d) 50.7%

310. The standard reduction potential E° for half reactions are

 $Zn = Zn^{2+} + Ze$ $E^{\circ} = +0.76 V$ $Fe = Fe^{2+} + Ze$ $E^{\circ} = + 0.41 V$ The emf of the cell reaction $Fe^{2+} + Zn = Zn^{2+} + Fe$ is

b) +0.35d) -1.`17 V a) - 0.35 V c) +1.17 V

311. If a salt bridge is removed from the two half cells, the voltage

	a) Drops to zero	b) Does not change	c) Increase gradually	d) Increase rapidly
312.	The standard oxidation po	otentials of Zn, Cu, Ag and N	li electrodes are + 0.76, -0	.34,

-0.80 and +0.25 V respectively. Which of the following reaction will provide maximum voltage?
a) Cu + 2 Ag⁺ (aq)
$$\rightarrow$$
 Cu²⁺ (aq) + 2 Ag b) Zn + 2 Ag⁺ (aq) \rightarrow Zn²⁺ (aq) + 2 Ag

$$\operatorname{Cu} + 2\operatorname{Ag}^+(aq) \to \operatorname{Cu}^{2+}(aq) + 2\operatorname{Ag} \qquad b)\operatorname{Zn} + 2\operatorname{Ag}^+(aq) \to \operatorname{Zn}^{2+}(aq) + 2\operatorname{Ag}^{2+}(aq) + 2\operatorname{Ag}^{2$$

c) $H_2 + Ni^{2+}(aq) \rightarrow 2H^+(aq) + Ni$ d) $\operatorname{Zn} + \operatorname{Cu}^{2+}(aq) \rightarrow \operatorname{Zn}^{2+}(aq) + \operatorname{Cu}$

313. An apparatus used for the measurement of quantity of electricity is known as a :

a) Calorimeter b) Cathetometer c) Coulometer d) colorimeter

314. For the cell prepared from electrode A and B; Electrode A : $Cr_2O_7^{2-}|Cr^{3+}, E_{red}^{\circ} = +1.33$ V and Electrode B

- : Fe³⁺|Fe²⁺, $E_{red}^{\circ} = 0.77$ V. Which of the following statement is correct?
- a) The electrons will flow from *B* to *A* when connection is made
- b) The e.m.f. of the cell will be 0.56 V

c) A will be positive electrode

d) All of the above

315	. Which colourless gas evo	olves when NH ₄ Cl reacts wit	th zinc in Adry cell battery?	2
	a) NH3	b) N ₂	c) H ₂	d) Cl ₂
316	. The standard E_{red}° value	s of A , B and C are +0.68 V,	- 2.54 V, - 0.50 V respective	ely. The order of their
	reducing power is			
	a) $A > B > C$	b) $A > C > B$	c) $C > B > A$	d) $B > C > A$
317	. Based on the data given	below, the correct order of i	reducing power is :	
	$Fe^{3+}(aq) + e \rightarrow Fe^{2+}(aq)$	$(q); E^{\circ} = +0.77 \text{ V}$		
	$Al^{3+}(aq) + 3e \rightarrow Al(s);$	$E^{\circ} = -1.66 \text{ V}$		
	$Br_2(aq) + 2e \rightarrow 2Br^-($	aq); $E^{\circ} = +1.08$ V		
	a) $Br^- < Fe^{2+} < Al$	b) $Fe^{2+} < Al < Br^{-}$	c) Al $<$ Br ⁻ $<$ Fe ²⁺	d) Al $<$ Fe ²⁺ $<$ Br ⁻
318	. Small quantities of soluti	ons of compounds TX, TY a	nd TZ are put into separate	e test tubes containing <i>X, Y</i>
	and Z solutions. TX does	not react with any of these.	TY reacts with both X and	Z. TZ reacts with X. The
	decreasing order of ease	of oxidation of the anions X	ζ−, <i>Υ</i> −, <i>Ζ</i> − is	
	a) <i>Y⁻, Z⁻, X⁻</i>	b) <i>Z⁻, X⁻, Y⁻</i>	c) <i>Y</i> ⁻ , <i>X</i> ⁻ , <i>Z</i> ⁻	d) <i>X⁻, Z⁻, Y⁻</i>
319	. What flows in the interna	al circuit of Agalvanic cell?		
	a) Ions	b) Electrons	c) Electricity	d) Atoms
320	. The standard electrode	potential of Zn ²⁺ /Zn and	Ag^+/Ag are -0.763 V and	+0.799 V respectively. The
	standard potential of the	cell is		
	a) 1.56 V	b) — 1.56 V	c) 0.036 V	d) – 0.036 V
321	Consider the following E	°values		
	$E^{\circ}_{\rm Fe^{3+}/Fe^{2+}} = +0.77 V$			
	$E^{\circ}c_{r}^{2+}/c_{r} = -0.14V$			
	Under standard conditio	ns the notential for the read	tion	
	Sn (s) + $2Fe^{3+}(aa) \rightarrow$	$2\text{Fe}^{2+}(aa) + \text{Sn}^{2+}(aa)$ is		
	a) $1.68 V$	h) $1 40 V$	c) 0.91 V	d) 0 63 V
322	The standard electrode r	otential for the half – cell r	eactions are	u) 0.05 V
522	$7n^{2+} \pm 2e^{-} \longrightarrow 7n^{2+} F^{\circ} =$	0.76 V		
	$En^{2+} + 2a^{-} \longrightarrow En; E^{\circ} - En; E^{\circ}$	0.70 V		
	The emf of the cell reaction $E = E$	0.77 V		
	$F_{0}^{2+} \pm 7n \longrightarrow 7n^{2+} \pm F_{0}^{2+}$	on, e is		
	10^{-1} 201 10^{-1} 201	h -1 20 V	c) ±1 20 V	d) ± 0.32 V
272	The reduction notential	of hydrogen half-cell will ne	cj 1.20 v	uj 10.52 v
525	a) $n(H_{a}) = 1$ at m and [H	+1 – 2 0 M	b) $n(H_{\rm a}) = 1$ atm and [H ⁴]	⁺ 1 – 1 0 M
	c) $p(H_2) = 1$ at m and [H	-] — 2.0 M +] — 1.0 M	d) $p(H_2) = 1$ atm and [H ⁴]] = 1.0 M ⁺1 = 2.0 M
324	$f(m_2) = 2$ utili and $f(m_2)$	J = 1.0 M	$p(n_2) = 2$ adm and $p(n_2)$	j = 2.0 M
521	aqueous solution of MgS	Ω_{ℓ} between inert electrodes	s	ne clecti orysis or an
	a) $H_{\alpha}(\sigma)$ and $\Omega_{\alpha}(\sigma)$	h) $\Omega_{a}(\sigma)$ and $H_{a}(\sigma)$	c) $\Omega_{a}(\sigma)$ and $M\sigma(s)$	d) $\Omega_{\alpha}(\sigma)$ and $\Omega_{\alpha}(\sigma)$
325	Which of the following st	atements is not applicable t	to electrolytic conductors?	u) 02(g) and 302(g)
525	a) A single stream of elec	strons flows from cathode to	o anode	
	h) Show a positive tempe	erature coefficient for condu	ictance	
	c) New products show u	n at the electrodes		
	d) Ions are responsible f	or carrying the current		
326	Which of the following e	xpressions correctly repres	sents the equivalent condu	ctance at infinite dilution of
	Al ₂ (SO ₄) ₂ . Given that Λ^{∞}	Λ_{3+}^{∞} and Λ_{3+2-}^{∞} are the equiva	alent conductances at infin	ite dilution of the respective
	iona?	1^{51} and 1^{50} 1^{2-} are the equive	and the construction of a cons	the analism of the respective
	ions?			

a)
$$2\Lambda_{Al^{3+}}^{\infty} + 3\Lambda_{SO_4^{2-}}^{\infty}$$
 b) $2\Lambda_{Al^{3+}}^{\infty} + \Lambda_{SO_4^{2-}}^{\infty}$ c) $(\Lambda_{Al^{3+}}^{\infty} + \Lambda_{SO_4^{2-}}^{\infty}) \times 6$ d) $\frac{1}{3}\Lambda_{Al^{3+}}^{\infty} + \frac{1}{2}\Lambda_{SO_4^{2-}}^{\infty}$
327. Conductivity of a strong electrolyte

a) Decreases on dilution b) Increases on dilution c) Does not change considerably on dilution d) Depends on density 328. Which of the following compounds will not undergo decomposition on passing electricity through aqueous solution? b) Sodium acetate c) Sodium chloride d) Sodium bromide a) Sugar 329. Which loses charge at cathode? a) Ions b) Cations c) Anions d) Both anions and cations 330. An electrochemical cell is set up as follows $Pt(H_2, 1 \text{ atm}) | 0.1 \text{ M HCl} | | 0.1 \text{ M acetic acid} |$ $(H_2, 1 \text{ atm})$ Pt Emf of this cell will not be zero because The pH of 0.1 M HCl and 0.1 M acetic acid is b) Acids used in two compartments are different not the same c) Emf of a cell depends on the molarities d) The temperature is constant of acids used 331. Which of the following reactions cannot be Abase for electrochemical cell? a) $H_2 + O_2 \rightarrow H_2O$ b) $AgNO_3 + Zn \rightarrow Zn (NO_3)_2 + Ag$ c) $AgNO_3 + NaCl \rightarrow AgCl \downarrow + NaNO_2$ d) $\begin{array}{l} \text{KMnO}_4 + \text{FeSO}_4 + \text{H}_2\text{SO}_4 \rightarrow \\ \text{K}_2\text{SO}_4 + \text{Fe}_2(\text{SO}_4)_3 + \text{MnSO}_4 + \text{H}_2\text{O} \end{array}$ 332. The emf of a galvanic cell, with electrode potentials of silver = +0.80 V and that of copper = +0.34 V, is a) + 0.46 Vb) + 0.66 Vc) + 0.86 Vd) - 0.66 V333. The standard oxidation potentials of Zn and Ag in water at 25°C are, $\operatorname{Zn}(s) \longrightarrow \operatorname{Zn}^{2+} + 2e; E^{\circ} = 0.76 \text{ V}$ $Ag(s) \rightarrow Ag^+ + e; E^\circ = -0.80 V$ Which reaction actually takes place? a) $Zn(s) + 2Ag^{+}(aq) \rightarrow Zn^{2+}Ag(s)$ b) $\operatorname{Zn}^{2+} + 2\operatorname{Ag}^+(s) \rightarrow 2\operatorname{Ag}^+(aq) + \operatorname{Zn}(s)$ c) $\operatorname{Zn}(s) + 2\operatorname{Ag}(s) \longrightarrow \operatorname{Zn}^{2+}(aq) + \operatorname{Ag}^{+}(aq)$ d) $\operatorname{Zn}^{2+}(aq) + \operatorname{Ag}^{+}(aq) \longrightarrow \operatorname{Zn}(s) + \operatorname{Ag}(s)$ 334. Amount of electricity that can deposit 108 g of silver from AgNO₃ solution is a) 1 F b) 1 A c) 1 C d) None of these 335. Also the [H⁺] for problem 9 using the same data is : a) 0.00133 M b) 0.133 M c) 0.0133 M d) None of these 336. A hydrogen electrode placed in a buffer solution of CH_3COONa and acetic acid in the ratio's x : y and y : xhas electrode potential values E_1 volt and E_2 volt respectively at 25°C. The pKa values of acetic acid is $(E_1 \text{ and } E_2 \text{ are oxidation potential})$: a) $\frac{E_1 + E_2}{0.118}$ b) $\frac{E_2 - E_1}{0.118}$ c) $\frac{E_1 + E_2}{0.118}$

- d) $\frac{E_1 E_2}{0.118}$
- 337. When an electric current is passed through acidulated water, 112 mL of hydrogen gas at STP collects at the cathode in 965 second. The current passed, in ampere is :

a) 1.0	b) 0.5	c) 0.1	d) 2.0			
338. The hydrogen electro	38. The hydrogen electrode is dipped in Asolution of pH 3 at 25°C. The potential would be (the value of 2.303					
RT /F is 0.059 V)	RT /F is 0.059 V)					
a) 0.177 V	b) 0.087 V	c) 0.059 V	d) -0.177 V			
339. The potential of the fo	ollowing cell is 0.34 V at 2	5°C. Calculate the standard	reduction potential of the			
copper half-cell.						
$Pt H_2(1 atm) H^+ (1$. M) Cu ²⁺ (1 M) Cu					
a) -3.4 V	b) +3.4 V	c) -0.34 V	d) +0.34 V			
340. The hydrogen electro	de is dipped in a solution	of $pH = 3$ at 25°C. The potential	ential of the cell would be			
(the value of $\frac{2.303RT}{T}$	is 0.059 V)					
a) 0.059 V	b) 0.088 V	c) 0.178 V	d) –0.177 V			
341. The apparatus in whi	ch electrical energy is con	verted into chemical energ	gy is known as :			
a) Voltameter	b) Coulometer	c) Both (a) and (b)	d) None of these			
342. When 1 F of electricit	y is passed through acidu	lated water, O ₂ evolved is				
a) 1.0 dm ³	b) 5.6 dm ³	c) 11.2 dm ³	d) 22.4 dm ³			
343. A current of strength	2.5 A was passed throu	igh CuSO ₄ solution for 6 n	nin 26 s. The amount of copper			
deposited is:						
(Atomic weight of Cu	= 63.5) (1 F = 96500 C)					
a) 0.3175 g	b) 3.0175 g	c) 7.0135 g	d) 6.0275 g			
344. The potential of the co	ell for the reaction,					
$M(s) + 2H^{+}(1M) -$	\rightarrow H ₂ (g) (1 atm) + M^{24}	+ (0.1 M)'				
is 1.500 V. The standa	rd reduction potential for	$r M^+ / M (s)$ couple is				
a) 0.1470 V	b) 1.470 V	c) 14.70 V	d) None of these			
345. For the cell $2n 2n^{2+} $	Cu^{2+} Cu, if the concentra	ition of Zn^{2+} and Cu^{2+} ions	is doubled, the e.m.f. of the cell :			
a) Doubles	b) Reduces to half T = a + 2(C) Remains same	a) Becomes zero $\frac{1}{2}$			
346. The fonic conductivity	y of H and OH at 25	98 K are 349.8 and 198.5	mno cm-eq - respectively. The			
a) 548.2	b) 151 2	الاتا الح : م) 600 6	d) 54 83			
347 The equivalent cond	0 131.3	cj 099.0 ontaining 254 g of CuSO	u_{J} 54.05			
conductivity would be		Sintaining 2.54 g of Cu30	4 per L 13 91.0 32 cm eq . 113			
a) 2.9 $\times 10^{-3} \Omega^{-1}$ cm	h^2 b) 1.8 x 10 ⁻² Ω^{-1} c	m^2 c) 2.4 x 10 ⁻⁴ 0 ⁻¹ c	m^2 d) 3.6 × 10 ⁻³ Ω ⁻¹ cm ²			
348. Standard electrode p	otential data are useful	for understanding the sui	tability of an oxidant in a redox			
titration. Some half ce	ell reactions and their star	ndard potentials are given l	pelow :			
$MnO_4^-(aq) + 8H^+(aq)$	$) + 5e^- \rightarrow$,			
$Mn^{2+}(aq)$	$+ 4H_20; E^\circ = 1.51 V$					
$Cr_2 O_7^{2-}(aq) + 14H^+(aq)$	$aq) + 6e^- \rightarrow$					
$2 Cr^{3+}(aq) -$	$+ 7H_20; E^\circ = 1.38 V$					
$Fe^{3+}(aq) + e^- \rightarrow Fe$	$e^{2+}(aq); E^{\circ} = 0.77 V$					
$Cl_2(g) + 2e^- \rightarrow 2Cl_2(g)$	$(aq); E^{\circ} = 1.40 V$					
Identify the only inco	rrect statement regarding	g the quantitative estimatio	n of aqueous $Fe(NO_3)_2$:			
a) MnO_4^- can be used	l in aqueous HCl					
b) $Cr_2O_7^{2-}$ can be used	l in aqueous HCl					
c) MnO_4^- can be used	l in aqueous H ₂ SO ₄					
d) $Cr_2 O_7^{2-}$ can be used	l in aqueous H ₂ SO ₄					
349. The standard H electr	ode is written as :					
a) Pt, H_2 , $H^+(a = 1)$						
b) $PtH_2/H^+(a = 1)$						
c) $PtH_2(g)(1 atm)/H^2$	(a = 1)					
d) None of the above						

350. Standard electrode potential of cell $H_2 \mid H^+ \mid \mid Ag^+ \mid Ag$ is

	a) 0.8 V	b) -0.8 V	c) -1.2 V	d) 1.2 V		
351.	S51. A dilute solution of Li ₂ SO ₄ is electrolyzed. The products formed at the anode and cathode, respectively are					
	:					
	a) S and Li	b) O ₂ and Li	c) SO_2 and O_2	d) O_2 and H_2		
352.	3 F electricity was passed	l through an aqueous soluti	on of iron (II) bromide. Th	ne weight of iron metal (at.		
	Wt. $= 56$) deposited at the	e cathode (in g) is				
	a) 65	b) 84	c) 112	d) 168		
353.	5 A is passed through a se	olution of zinc sulphate for	40 min. Find the amount o	of zinc deposited at the		
	cathode					
	a) 4.065 g	b) 8.065 g	c) 16.065 g	d) 32.065 g		
354.	Saturated solution of KNO	O_3 is used to make 'salt-bric	lge' because			
	a) Velocities of both K ⁺ a	and NO_3^- are nearly the same	e			
	b) Velocity of K ⁺ is greate	er than that of NO_3^-				
	c) Velocity of NO_3^- is greated	ater than that of K ⁺				
	d) KNO ₃ is highly soluble	in water				
355.	The calomel electrode is a	a :				
	a) Standard hydrogen ele	ectrode				
	b) Reference electrode					
	c) Platinum electrode					
	d) Mercury electrode					
356.	Calculate the emf of the c	ell				
	$Cu(s) Cu^{2+}(aq) Ag^{+}$	$(aq) \mid \operatorname{Ag}(s)$				
	Given,					
	$E_{Cu^{2+}/Cu}^{\circ} = +0.34 V, E$	$\hat{\Delta}_{\alpha^+/\Delta\alpha} = 0.80 V$,				
	(10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	h) +1 14 V	c) +0.57 V	d) -0.46 V		
357.	The electrolytic conducta	ince is a direct measure of				
	a) Resistance	b) Potential	c) Dissociation	d) Concentration		
358.	On the basis of electroche	emical theory of aqueous co	rrosion, the reaction occur	ring at the cathode is		
000	a) $O_2(g) + 4H^+(ag) + 4e^{-2g}$	$e^- \rightarrow 2H_2O(l)$	b) $H_2(g) + 20H^-(ag) \rightarrow 100$	$2H_2O(l) + 2e^{-l}$		
	c) $Fe(s) \rightarrow Fe^{2+}(aa) + 2a$	e ⁻	d) $Fe^{2+}(aa) \rightarrow Fe^{3+}(aa)$	+ e ⁻		
359.	The resistance of $\frac{N}{N}$ solu	ition is found to be 25×10^{10}	3 0 The equivalent condu	ctance of the solution is		
				ctance of the solution is		
	(cell constant = 1.25 cm)	')				
	a) $2.5\Omega^{-1}$ cm ² equiv ⁻¹		b) $5.0\Omega^{-1} \text{ cm}^2 \text{ equiv}^{-1}$			
	c) $2.5\Omega^{-1}$ cm ⁻² equiv ⁻¹		d) $5.0\Omega^{-1} \text{ cm}^{-2} \text{ equiv}^{-1}$			
360.	In a concentration cell :					
	a) Two electrodes are of	different elements				
	b) Two electrolytic soluti	ons of the same electrolyte	but having different conce	ntrations are used		
	c) Electrolyte of one stre	ngth but electrodes of two c	lifferent concentrations ar	e used		
0.44	d) Both (b) and (c)					
361.	Using the following data,	for the electrode potentials	calculate ΔG° , in kJ, for the	e indicated reaction		
	$5Ce^{++}(aq) + Mn^{2+}(aq) +$	$+ 4H_2O(l) \rightarrow 5Ce^{3+}(aq) + f$	$MNO_4^-(aq) + 8H^+(aq)$			
	$MnO_{4}^{-}(aq) + 8H^{+}(aq) +$	$5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(aq)$	E = +1.51 V			
	$\operatorname{Ce}^{4+}(aq) + e^{-} \to \operatorname{Ce}^{3+}(aq)$	$E(q) E^{\circ} = +1.61 V$				
	a) –36.24	b) -48.25	c) -31.54	d) –19.65		
362.	During electrolysis of an	aqueous solution of Cu ²⁺	sulphate, 0.635 g of coppe	r was deposited at cathode.		
	The amount of electricity	consumed in coulomb is :		1. 4005		
0	a) 1930	b) 3860	c) 9650	d) 4825		
363.	Each of the three metals	X, Y and Z were put in turn	into aqueous solution of th	ie other two.		
	x + Salt of Y (or Z) = Y (or Z) + Salt of X. Which obs	servation is probably incor	rect?		
	a) Y + Salt of X = No acti	on observed				

b) Y + Salt of Z = Nothing can be decided c) Z + Salt of X = X + Salt of Zd) Z + Salt of X = No action observed 364. During the charging of lead storage battery, the reaction at anode is represented by : a) $Pb^{2+} + SO_4^{2-} \rightarrow PbSO_4$ b) $PbSO_4 + H_2O \rightarrow PbO_2 + SO_4^{2-} + 2H^+$ c) Pb \rightarrow Pb²⁺ + 2e d) $Pb^{2+} + 2e \rightarrow Pb$ 365. Which of the formula given below is correct? a) $\kappa = \frac{1}{R} \times \frac{1}{a}$ b) $\kappa = C \times \frac{1}{a}$ c) $\Lambda_{eq} = \kappa \times V_{in \, mL}$ d) All of these 366. The number of faraday required to generate 1 g-atom of Mg from MgCl₂ is : b) 2 d) 4 a) 1 c) 3 367. During the electrolysis of molten NaCl solution, 230 g of sodium metal is deposited on the cathode, then how many moles of chlorine will be obtained at anode? a) 10.0 b) 5.0 c) 35.5 d) 17.0 368. 1.05 g of lead ore containing impurity of Ag was dissolved in HNO₃ and the volume was made 350 mL. An Ag electrode was dipped in the solution. $Pt(H_2)|H^+(1M)||Ag^+|Ag$ The E_{cell} is 0.503 V at 298 K. The percent of lead in the ore is $\left(E_{\text{Ag}^+|\text{Ag}}^\circ = 0.80 \text{ V}\right)$ a) 0.033% b) 0.050% c) 0.066% d) 0.13% 369. The equivalent conductivity of 0.05 N solution of a monobasic acid is 15.8 mho cm² eq⁻¹. If equivalent conductivity of the acid at infinite dilution is 350 mho cm² eq⁻¹ at the same temperature. What is its degree of dissociation? c) 4.514 d) 0.004514 a) 0.04514 b) 0.4514 370. What is the potential of the cell containing two hydrogen electrodes as represented ahead, Pt; $\frac{1}{2}$ H₂(g)|H⁺(10⁻⁸ M)||H⁺(0.001 M)|1/2H₂(g)Pt? a) – 0.295 V b) - 0.0591 V d) 0.0591 V c) 0.295 V 371. The standard emf for the given cell reaction, $Zn + Cu^{2+} \rightarrow Cu + Zn^{2+}$ is 1.10 V at 25°C. The emf for the cell reaction, when 0.1 M Cu²⁺ and 0.1 M Zn²⁺ solutions are used, at 25°C, is a) 1.10 V b) -1.10 V c) 2.20 V d) -2.20 V 372. Four colourless salt solutions are placed in separate test tubes and a strip of copper is placed in each. Which solution finally turns blue? a) $Pb(NO_3)_2$ b) $Zn(NO_3)_2$ c) $AgNO_3$ d) Cd(NO₃)₂ 373. The same amount of electricity was passed through two separate electrolytic cells containing solutions of nickel nitrate and chromium nitrate respectively. If 0.3 g of nickel was deposited in the first cell, the amount of chromium deposited is : (at. wt. Ni = 59, Cr = 52)a) 0.1 g b) 0.17 g c) 0.3 g d) 0.6 g 374. The molar conductivities of KCl, NaCl and KNO₃ are 152, 128 and 111 S cm²mol⁻¹ respectively. What is the molar conductivity of NaNO₃? c) $-101 \text{ S cm}^2 \text{mol}^{-1}$ d) $-391 \text{ S cm}^2 \text{mol}^{-1}$ a) $101 \,\mathrm{S} \,\mathrm{cm}^2 \mathrm{mol}^{-1}$ b) 87 S cm² mol⁻¹ 375. The degree of ionisation of weak electrolytes is influenced by : a) Temperature b) Concentration of electrolyte c) Nature of solvent d) All of the above 376. At 25°C temperature, the cell potential of a given electrochemical cell is 1.92 V. Find the value of *x*. $Mg(s) | Mg^{2+}(aq) x M || Fe^{2+}(aq) 0.01 M | Fe(s)$ E° Mg /Mg²⁺ (aq) = 2.37 V E° Fe/ Fe²⁺(aq) = 0.45 V

a) x = 0.01 Mb) x < 0.01 Mc) x > 0.01 Md) *x* cannot be predicted 377. The corrosion of iron object is favoured by : a) Presence of H⁺ ion b) Presence of moisture in air c) Presence of impurities in iron object d) All of the above 378. The cathodic reaction of a dry cell is represented by $2MnO_2(s) + Zn^2 + 2e^- \rightarrow ZnMn_2O_4(s)$ If, there are 8 g of MnO₂ in the cathodic compartment then the time for which the dry cell will continue to give a current of 2 mA is c) 12.8 day d) 6.423 day a) 25.675 day b) 51.35 day 379. The standard emf of the cell, $Cd(s) | CdCl_2(aq)(0.1 M) || AgCl(s) | Ag(s)$ In which the cell reaction is Cd(s) + 2AgCl(s) $\rightarrow 2 \operatorname{Ag}(s) + \operatorname{Cd}^{2+}(aq) + 2\operatorname{Cl}^{-}(aq)$ is 0.6915 V at 0°C and 0.6753 V at 25 °C. The enthalpy change of the reaction at 25°C is a) -176 kJ b) -234.7 kJ c) +123.5 kJ d) -167.26kJ 380. The factor which is not affecting the conductivity of any solution is b) Dilution c) Nature of electrolyte d) None of these a) Temperature 381. The standard reduction potential for the half-cell having reaction $NO_3^-(aq) + 2H^+(aq) + e^- \rightarrow NO_2(g) + H_2O$ Is 0.78 V. What will be the reduction potential of the half-cell is a neutral solution? a) 0.78 V b) 0.89 V c) 0.36 V d) 0.59 V 382. Two different electrolytic cells filled with molten Cu(NO₃)₂ and molten Al(NO₃)₃ respectively are connected in series. When electricity is passed 2.7 g Al is deposited on electrode. Calculate the weight of Cu deposited on cathode. $[Cu = 63.5; Al = 27.0 \text{ g mol}^{-1}]$ b) 9.525 g a) 190.5 g c) 63.5 g d) 31.75 g 383. 1 volt coulomb is : a) Equal to 1 joule b) Equal to 10⁷ erg c) An unit of energy d) All of these 384. $Cu^{2+} + 2e \rightarrow Cu$; $log[Cu^{2+}] vs. E_{red}$ graph is of the type as shown in figure where OA = 0.34 V, then electrode potential of the half cell of Cu $|Cu^{2+}(0.1 M)|$ will be : log [Cu²⁺] a) $-0.34 + \frac{0.0591}{2}$ V b) 0.34 + 0.0591 V c) 0.34 V d) None of these 385. If φ denotes standard reduction potential, which is true: a) $\vec{E}_{cell} = \phi_R - \phi_L$ b) $\vec{E}_{cell} = \phi_L + \phi_R$ c) $\vec{E}_{cell} = \phi_L - \phi_R$ d) $\vec{E}_{cell} = (\phi_L + \phi_R)$ 386. A substance that will reduce Ag⁺ to Ag but will not reduce Ni²⁺ to Ni is : b) Pb a) Zn c) Mg d) Al 387. The correct order of the mobility of the alkali metal ions in aqueous solution is : a) $K^+ > Rb^+ > Na^+ > Li^+$

	b) $Rb^+ > K^+ > Na^+ > L$,i ⁺		
	c) $Li^+ > Na^+ > K^+ > R$	2b ⁺		
	d) $Na^+ > K^+ > Rb^+ > L$	Li ⁺		
388.	Calculate the volume of H $_{2}$ 0.0836 L	ا ₂ gas at NTP obtained by pa م 0 0432 I	assing 4 A through acidified	H_2O for 30 min is
380	Resistance of a conductiv	ity cell filled with a solution	of an electrolyte of concer	ut 0.050 L
507.	conductivity of this soluti	ion is 1.29 Sm^{-1} Resistance	e of the same cell when fille	ad with 0.2 M of the same
	solution is 5200 The mol	lar conductivity of 0.02 M so	olution of the electrolyte w	ill he
	a) $124 \times 10^{-4} \text{ Sm}^2 \text{ mol}^{-2}$	1	b) 1240 $\times 10^{-4}$ S m ² mol ⁻	-1
	c) 1.24×10^{-4} S m ² mol ⁻¹	-1	d) 12.4×10^{-4} S m ² mol ⁻¹	1
390	Ionic mobility of Ag^+ at ir	nfinite dilution is :		
0,00	$(\lambda^0) = 5 \times 10^{-3} \text{Sm}^2 \text{cm}^2$	en ⁻¹)		
	$(\Lambda_{Ag^+} = 0.000 \text{ Jm})$	$h) 24 \times 10^{-8}$	a) $1 = 2 \times 10^{-8}$	$d) 0.25 \times 10^{-8}$
201	a) 5.2×10^{-5}	0 2.4×10^{-5}	$C_{j} 1.52 \times 10^{-5}$	$U = 0.25 \times 10^{-6}$
391.	The number of electrons	passing per second unrough	a cross-section of copper	wire carrying 10 ° ampere
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	$h) < 2 \times 10^{12}$	a) 6.2×10^{10}	d) None of these
202	a) 0.2×10	$0, 0.2 \times 10$	$f_1 \wedge of current for 1 c is on$	u) None of these
392.	a) Equivalent mass	uepositeu by the passage o	h) Molecular mass	ual to
	c) Electrochemical equiva	alent	d) Specific equivalent	
393	965 C electric current is i	nassed through fused anhvo	trous MgCl _o . The magnesiu	m metal thus obtained is
575.	completely converted into	o a Grignard reagent. The n	umber of moles of Grignard	reagent obtained is
	a) 5×10^{-4}	b) 1×10^{-4}	c) 5×10^{-5}	d) 1 × 10 ⁻⁵
394.	Which one is correct relat	tion :	0,01120	() _ · · _ ·
	(∂E)			
	a) $\Delta S = \left(\frac{\partial T}{\partial T}\right)_P \times nF$			
	$(\frac{\partial E}{\partial E}) = \frac{\Delta G - \Delta H}{\Delta G - \Delta H}$			
	$\left(\frac{\partial T}{\partial T}\right)_{P} = \frac{T}{T}$			
	c) $\left(\frac{\partial E}{\partial E}\right) = \frac{\partial(\Delta S)}{\partial \Delta S}$			
	$(\partial T)_P = \partial T$			
	d) $-\Delta S = \left(\frac{\partial E}{\partial E}\right) \times nF$			
	$(\partial T)_P$			
395.	A current is passed throu	igh two voltameters connec	cted in series. The first volt	cameter contains $XSO_4(aq)$
	while the second voltame	eter contains Y_2 SO ₄ (aq). The	ie relative atomic masses o	x X and Y are in the ratio of
	2:1. The ratio of the mas	s of X liberated to the mass	of Y liberated is :	
200	a) I : I	b) 1 : Z	c) 2 : 1	d) None of these
396.	Given, standard electrode			
	$Fe^{-1} + 2e^{-1} \rightarrow Fe, E^{-1} = -0$	0.440 V		
	$re^{-} + se^{-} \rightarrow re, c^{-} = -0$	0.030 V		
	The standard electrode p	otential (E) for		
	$Fe^{\circ} + e \rightarrow Fe^{\circ}$ is	h = 0.771 M	-) + 0.417 M	
207	a) $+ 0.7/1$ V The standard call notantic	D = 0.771 V	CJ + 0.41/V	$a_{\rm J} = 0.417$ V
397.	The standard cell potentia $[E^{\circ} for 7r^{2+}/7r = -0.76]$	al for the cell is : $\Sigma h \mid \Sigma h^{-1}$ (IM) $Cu^{-1}(IM)$ Cu	
	$\begin{bmatrix} E & 10I & \Sigma II^{-1} / \Sigma II &= -0.76 \\ 2 & 0.76 + 0.24 &= -0.47 \end{bmatrix}$	$5; E = 101 \ Cu^{-1} / Cu = \pm 0.54$		
	a) $-0.70 \pm 0.54 = -0.47$ b) $-0.34 = (-0.76) = -1$	2 V L0 12 V		
	(-0.76) = -1.76	10.42 V		
	d) $-0.76 - (+0.34) = -7$	10 V 1 10 V		
398	The speed of migration (of Ag^+ ion and NO_{-}^{-} ion ar	$e 0.00057 \text{ cm sec}^{-1}$ and 0	.00063 cm sec ^{-1} at infinite
270.	dilution. The equivalent of	conductivity of AgNO ₂ at inf	inite dilution is:	
	a) 140.2	b) 130.1	c) 120.8	d) 115.8

399. In electrochemical corrosion of metals, the metal undergoing corrosion : c) Undergoes reduction d) None of these a) Acts as anode b) Acts as cathode 400. Which does not get oxidised by bromine water? a) Fe²⁺to Fe³⁺ d) Sn²⁺to Sn⁴⁺ b) Cu^+ to Cu^{2+} c) Mn^{2+} to MnO_{4}^{-} 401. 3 faraday of electricity is passed through molten Al_2O_3 , aqueous solution of $CuSO_4$ and molten NaCl taken in three different electrolytic cells. The amount of Al, Cu and Na deposited at the cathodes will be in the ratio of : a) 1 mole : 2 mole : 3 mole b) 3 mole : 2 mole : 1 mole c) 1 mole : 1.5 mole : 3 mole d) 1.5 mole : 2 mole : 3 mole 402. In Agalvanic cell, the electrons flow from a) Anode to cathode through the solution b) Cathode to anode through the solution c) Anode to cathode through the external circuit d) Cathode to anode through the external circuit 403. Which of the following reactions is correct for a given electrochemical cell at 25 °C? $Pt | Br_2(g) | Br^-(g) || Cl^-(aq) | Cl_2(g) | Pt$ a) $2Br^{-}(aq) + Cl_2(g) \rightarrow 2Cl^{-}(aq) + Br_2(g)$ b) $Br_2(g) + 2Cl^-(aq) \rightarrow 2Br^-(aq) + Cl_2(g)$ c) $Br_2(g) + Cl_2(g) \rightarrow 2Br^-(aq) + 2Cl^-(aq)$ d) $2Br^{-}(aq) + 2Cl^{-}(aq) \rightarrow Br_{2}(g) + Cl_{2}(g)$ 404. Which gains electrons more easily? a) H+ b) Na⁺ c) K⁺ d) Mg^{2+} 405. Two electrolytic cells, one containing acidified ferrous chloride and another acidified ferric chloride are connected in series. The ratio of iron deposited at cathodes in the two cells when electricity is passed through the cells will be : a) 3:1 b) 2 : 1 c) 1:1 d) 3 : 2 406. Limiting molar conductivity of NH₄OH, i.e., Λ_{m} (NH₄OH) is equal to : a) $\Lambda_{\rm m}(\rm NH_4OH) + \Lambda_{\rm m}(\rm NH_4Cl) - \Lambda_{\rm m}(\rm HCl)$ b) $\Lambda_{\rm m}(\rm NH_4Cl) + \Lambda_{\rm m}(\rm NaOH) - \Lambda_{\rm m}(\rm NaCl)$ c) $\Lambda_{m}(NH_{4}Cl) + \Lambda_{m}(NaCl) - \Lambda_{m}(NaOH)$ d) $\Lambda_{\rm m}$ (NaOH) + $\Lambda_{\rm m}$ (NaCl) - $\Lambda_{\rm m}$ (NH₄Cl) 407. Given : i) $Cu^{2+} + 2e^- \rightarrow Cu$, $E^\circ = 0.337 \text{ V}$ ii) $Cu^{2+} + e^- \rightarrow Cu^+$, $E^\circ = 0.153 \text{ V}$ Electrode potential, E° for the reaction, $Cu^+ + e^- \rightarrow Cu$, will be : c) 0.90 V d) 0.30 V a) 0.38 V b) 0.52 V 408. The reaction taking place at anode when an aqueous solution of $CuSO_4$ is electrolysed using inert Pt electrode : a) $2SO_4^{2-} \rightarrow S_2O_3^{2-} + 2e$ b) $Cu^{2+} + 2e \rightarrow Cu$ c) $2H_2O \rightarrow O_2 + 4H^+ + 4e$ d) $2H^+ + 2e \rightarrow H_2$ 409. Deduce from the following E° values of half cells, what combination of two half cells would result in a cell with the largest potential? i) $A^{3-} \rightarrow A^{2-} + e$; $E^{\circ} = 1.5 \, V$ ii) $B^{2+} + e \rightarrow B^+$; $E^{\circ} = -2.1 \text{ V}$ iii) $C^{2+} + e \rightarrow C^+$; $E^{\circ} = +0.5 \text{ V}$ iv) $D \rightarrow D^{2+} + 2e;$ $E^{\circ} = -1.5 \text{ V}$ a) (i) and (ii) b) (i) and (iv) c) (ii) and (iv) d) (iii) and (iv)

410. An ion is reduced to the element when it absorbs 6 $\times 10^{20}$ electrons. The number of equivalents of the ion is :

a) 0.10 b) 0.01 c) 0.001 d) 0.0001 411. The standard e.m.f. of a galvanic cell can be calculated from : a) The size of the electrode b) The pH of the solution c) The amount of metal in the anode d) The E° values of the two half cells 412. The charge in coulomb on Cu^{2+} ion is : a) 3.2 $\times 10^{-19}$ b) 2.3 $\times 10^{-12}$ c) 0.23×10^{-19} d) 0.32 $\times 10^{-19}$ 413. $\operatorname{Zn}^{2+} + 2e^- \rightarrow \operatorname{Zn}(s), E^\circ = -0.76$ $Fe^{3+} + e^- \rightarrow Fe^{2+}, E^\circ = -0.77$ $Cr^{3+} + 3e^- \rightarrow Cr_{e}E^{\circ} = -0.79$ $H^+ + e^- \rightarrow \frac{1}{2} H_2, E^\circ = 0.00$ Strongest reducing agent is c) Fe²⁺ b) Zn d) Cr a) H_2 414. The standard reduction potentials at 298 K for the following half reactions are given against each $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s); \quad E^{\circ} = -0.762 V$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s); \quad E^{\circ} = -0.740 V$ $2H^+$ (aq) + $2e^- \rightarrow H_2(q); E^{\circ} = 0.00 V$ $Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq); \quad E^{\circ} = +0.762 V$ The strongest reducing agent is d) $Fe^{2+}(aq)$ a) Zn (s) c) $H_2(g)$ b) Cr (s) 415. Strong electrolytes are those which a) Conduct electricity b) Dissolve readily in water c) Dissociate into ions at high dilution d) Completely dissociate into ions at all dilutions 416. The cell reaction of Acell is $Mg(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Mg^{2+}(aq)$. If the standard reduction potentials of Mg and Cu are -2.37 and +0.34 V respectively. The emf of the cell is a) 2.03 V b) -2.03 V c) +2.71 V d) -2.71 V 417. Consider the following reaction : $2Ag^{+}C_{6}H_{12}O_{6} + H_{2}O \rightarrow 2Ag(s) + C_{6}H_{12}O_{7} + 2H^{+}$ When ammonia is added to the solution, pH is raised to 11. Which half-cell reaction is affected by pH and by how much? $Ag^+ + e^- \rightarrow Ag; E_{red}^\circ = 0.8 V$ $C_6H_{12}O_6 + H_2O \rightarrow C_6H_{12}O_7 + 2H^+ + 2e^-; E_{red}^{\circ} = -0.05 V$ $Ag(NH_3)_2^+ + e^- \rightarrow Ag(s) + NH_3; E_{red}^{\circ} = 0.337 V$ a) $E_{\text{oxid.}}^{\circ}$ will increase by a factor of 0.65 from $E_{\text{oxid.}}^{\circ}$ b) $E_{\text{oxid.}}^{\circ}$ will decrease by a factor of 0.65 from $E_{\text{oxid.}}^{\circ}$ c) \vec{E}_{red} will increase by a factor of 0.65 from \vec{E}_{red} d) \vec{E}_{red} will decrease by a factor of 0.65 from \vec{E}_{red} 418. Which process occurs in the electrolysis of aqueous solution of nickel chloride at nickel anode? a) Ni²⁺ + 2 $e \rightarrow$ Ni b) $2H^+ + 2e \rightarrow H_2$ c) $2Cl^- \rightarrow Cl_2 + 2e$ d) Ni \rightarrow Ni²⁺ + 2e 419. A solution containing one mole per litre of each $Cu(NO_3)_2$, $AgNO_3$, $Hg_2(NO_3)_2$ and $Mg(NO_3)_2$ is being electrolysed by using inert electrodes. The values of standard electrode potentials in volts (reducing potentials) are $Ag/Ag^+ = +0.80, 2Hg/Hg^{2+} = +0.79, Cu/Cu^{2+} = +0.34, Mg/Mg^{2+} = -2$ With increasing voltage, the sequence of deposition of metals on the cathode will be a) Ag, Hg, Cu b) Cu, Hg, Ag c) Ag, Hg, Cu, Mg d) Mg, Cu, Hg, Ag 420. The metal that does not displace hydrogen from an acid is a) Ca b) Al d) Hg c) Zn 421. For an electrolyte *AxBy*, the molar conductivity at infinite dilution can be given by : a) $\Lambda_{M}^{\circ} = x\lambda^{\circ}A^{Y+} + y\lambda^{\circ}B^{X-}$

b) $\Lambda_{\rm M}^{\circ} = \frac{1}{x} \lambda^{\circ} A^{Y+} + \frac{1}{y} \lambda^{\circ} B^{X-}$					
c) $\Lambda_{\rm M}^{\circ} = \frac{1}{2} \lambda^{\circ} A^{Y+} + \frac{1}{2} \lambda^{\circ} B^{X-}$					
$y \qquad x$					
$a_{\rm J} \Lambda_{\rm M} = \lambda A^{-1} + \lambda B^{-1}$	C_{2}^{3+}/C_{2}				
422. for Sn ⁻⁺ /Sn ⁻⁺ couple is + 0.15 V and that for the	Lr^{s+}/Lr couple is -0.74	v. These two couples in their			
standard state are connected to make a cell. The cell $-2 + 1.02$ k -2	i potential will be :				
dJ + 1.03 V $DJ + 1.19 V$	$C_J + 0.89 V$ N^{2+}_{1}/N^{2+}_{1} and $\Gamma^{2+}_{2}/\Gamma^{2+}_{2}$	(1) + 0.18 V			
425. The standard reduction potentials for $\Sigma n^{-1}/\Sigma n$,	N /NI and Fe /Fe are	- 0.76, -0.23 and -0.44 v			
respectively. The reaction $X + Y^{-1} \rightarrow X^{-1} + Y$ will c) $X = N; X = 7;$ b) $X = 5; X = 7;$	be spontaneous when : $X = Zr \ X = N;$	d) $V = N; V = E_2$			
$AJA = NI, I = ZII \qquad DJA = Fe, I = ZII$	$C_J \Lambda = \Delta \Pi, I = \Pi$	$u_{J}x = N_{I}, I = re$			
424. Given that $E_{\text{Fe}^{3+} \text{Fe}}$ and $E_{\text{Fe}^{3+} \text{Fe}}$ are -0.36 v and -	- 0.439 v, respectively. The	$E_{\rm Fe^{3+},Fe^{2+} Pt}$ would			
be :					
a) (-36 - 0.439)V					
b) $[3(-0.36) + 2(-0.439)]V$					
c) $(-0.36 + 0.439)$ V					
d) [3(-0.36) - 2(-0.439)]V					
425. The standard emf for the cell reaction,					
$2Cu^+(aq) \rightarrow 2Cu(s) + Cu^+(aq)$					
is $+0.36$ V at 298 K. The equilibrium constant of the	e reaction is				
a) 5×10^6 b) 1.4×10^{12}	c) 7.4 \times 10 ¹²	d) 1.2×10^{6}			
426. Electrolytic conduction is due to migration of :					
a) Protons b) Electrons	c) Ions	d) All of these			
427. the amount of sodium deposited by 5 ampere curre	nt for 10 minute from fuse	d NaCl is :			
a) 0.715 g b) 71.5 g	c) 5.17 g	d) 0.517 g			
428. Which of the following reactions is used to make a f	uel cell?				
a) $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$					
b) $2Fe(s) + O_2(g) + 4H^+(aq) \rightarrow 2Fe^{2+}(aq) + 2H_2(g)$	$\mathcal{D}(l)$				
c) $Pb(s) + PbO_2(s) + 2H_2SO_4(aq) \rightarrow 2PbSO_4(s) +$	$H_2O(l)$				
d) $Cd(s) + 2Ni(OH)_3(s) \rightarrow CdO(s) + 2Ni(OH)_2 + 2$	$H_2O(l)$				
429. When 1 F of electricity is passed through acidulated	water, O_2 evolved is				
a) 11.2 dm ³ b) 5.6 dm ³	c) 22.4 dm ³	d) 1.0 dm ³			
430. The Gibbs energy for the decomposition of Al_2O_3 at	500°C is as follows :				
$\frac{2}{3}$ Al ₂ O ₃ $\rightarrow \frac{4}{3}$ Al + O ₂ ;					
$\Delta_r G = +960 \text{ kJ mol}^{-1}.$					
The potential difference needed for the electrolyti	c reduction of aluminium	oxide (Al_2O_3) at 500°C is at			
least :					
a) 4.5 V b) 3.0 V	c) 2.5 V	d) 5.0 V			
431. Which one will liberate Br ₂ from KBr?					
a) HI b) I ₂	c) Cl ₂	d) SO ₂			
432. In a galvanic cell, the electrons flow from					
a) Anode to cathode through the external circuit b) Anode to cathode through the solution					
c) Cathode to anode through the external circuit d) Cathode to anode through the solution					
433. The value of molar conductance of HCl is greater than that of NaCl at a particular temperature and dilution					
because :					
a) mol. wt. of HCl < mol. wt. of NaCl					
b) $u_{\rm H^+} > u_{\rm Na^+}$ (<i>u</i> is speed of ion)					
c) HCl is acid					
d) Ionisation of HCl is more than NaCl					
434. Maximum number of mole of oxygen gas that can be obtained by the electrolytic decomposition of 90 g of					

Page | 33

	water will be:					
	a) 1	b) 2.5	c) 5	d) 9		
435.	More electropositive elem	nents have :				
	a) Positive reduction pote	ential				
	b) Tendency to gain elect	rons				
	c) Negative reduction pot	tential				
	d) Negative oxidation pot	ential				
436.	Al_2O_3 is reduced by elec	trolysis at low potentials a	nd high currents. If 4.0 $$ $$	$< 10^4$ amperes of current is		
	passed through molten A	M_2O_3 for 6 hours, what ma	ss of aluminium is produce	ed? (Assume 100% current		
	efficiency. At mass of Al =	$= 27 \text{ g mol}^{-1}$)				
	a) $1.3 \times 10^4 \text{ g}$	b) 9.0 × 10 ³ g	c) 8.05 $\times 10^4$ g	d) 2.4 $\times 10^5$ g		
437.	The reaction,					
	$\frac{1}{-} H_2(g) + AgCl(s) \rightarrow H^+$	ag) + Cl ⁻ (ag) + Ag(s)				
	2					
	Occurs in the galvanic cel	 				
	a) $Pt/H_2(g)$ KCI (SOI) Ag	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
120	U Pt/ $\Pi_2(g)$ $\Pi Cl(SOI) Ag$	U(S) Ag	a) Ag/AgCI(S)KCI(SOI) A	$g_{\rm NO_3}$ Ag		
430.	containing these ions?	Its call be replaced by n III	os wileli n ₂ gas is bubbleu	the solutions		
	a) Li ⁺	b) Ba^{2+}	c) Cu^{2+}	d) Be ²⁺		
439	The cell reaction $7n + Cr$	$^{2+} \rightarrow 7n^{2+} + Cu$ is best re	nresented by ·	uj be		
157.	a) $(u/(u^{2+}) / (2n^{2+}) /$	b) $7n/7n^{2+} Cu^{2+}/Cu$	c) $Cu^{2+}/Cu \parallel Zn/Zn^{2+}$	d) $Pt/7n^{2+} Pt/Cu^{2+} P$		
440	Ionic mobility (u^{∞}) of an	ion at infinite dilution is rel	ated to its ionic conductan	$ce(\lambda_m)$ by:		
110.	a) $\lambda_{\infty} = u_{\infty} \times Faradav$	b) $u_{\infty} = \lambda_{\infty} \times Faradav$	c) Faraday = $u_{\infty} \times \lambda_{\infty}$	d) None of these		
441.	Coulomb is the quantity of	of current defined as :		.)		
	a) One ampere of current	passing for 1 sec				
	b) One which deposits 0.0	001118 g of Ag on cathode				
	c) One which deposits ele	ectrochemical equivalence of	of metal			
	d) All of the above	-				
442.	The standard electrode p	otential is measured by				
	a) Electrometer	b) Voltmeter	c) Pyrometer	d) Galvanometer		
443.	Chlorine gas is passed in	to a solution containing KF	, KI, and KBr and $CHCl_3$ is	added. The initial colour in		
	CHCl ₃ layer is :					
	a) Violet due to formation of I ₂					
	b) Orange due to formation	on of Br ₂				
	c) Colourless due to form	ation of F ₂				
	d) No colour change due	to no reaction				
444.	On passing 3 A of electric	ity for 50 min, 1.8 g metal d	eposits. The equivalent ma	ass of metal is		
	a) 9.3	b) 19.3	c) 38.3	d) 39.9		
445.	How many atoms of calci	um will be deposited from a	a solution of CaCl ₂ by a cur	rent 0.25 mA flowing for 60		
	S'_{-}	1224×10^{18}	$-1.1.24 \times 10^{18}$	$1) 0 4 C \times 10^{18}$		
110	a) 4.68×10^{10}	b) 2.34×10^{10}	c) 1.24×10^{10}	a) 0.46×10^{10}		
446.	If <i>F</i> is faraday and <i>N</i> is	Avogadro number, then cha	rge of electron can be expr	essed as		
	a) $F \times N$	b) $\frac{T}{N}$	c) $\frac{N}{F}$	d) <i>F</i> ² <i>N</i>		
447.	By how much is the oxidi	zing power of $Cr_2O_7^{2-}/Cr^{3+}$	couple decreased if the H	⁺ concentration is		
	decreased from 1 M to 10	0^{-3} M at 25°C?	·····			
	a) 0.207 V	b) 0.414 V	c) 0.001 V	d) 0.287 V		
448.	Which process involves c	orrosion?	-	,		
	a) Brown deposits on iron articles					
	b) Green deposits on battery terminals					

c) Black deposits on silver coin d) All of the above 449. The electric conduction of a salt solution in water depends on the a) Size of its molecules b) Shape of its molecules c) Size of solvent molecules d) Extent of its ionization 450. The electrode potentials for $\operatorname{Cu}^{2+}(aq) + e^{-} \rightarrow \operatorname{Cu}^{+}(aq)$ and $Cu^+(aq) + e^- \rightarrow Cu(s)$ are + 0.15 V and + 0.50 V respectively. The value of $\tilde{E_{Cu^{2+}/Cu}}$ will be : a) 0.150 V b) 0.500 V c) 0.325 V d) 0.650 V 451. By diluting a weak electrolyte, specific conductivity (K_c) and equivalent conductivity (λ_c) change as a) Both increase b) K_c increases , λ_c decreases c) K_c decreases , λ_c increases d) Both decrease 452. The cell reaction for the given cell is : $\Pr(H_{2}) | pH = 2 | | pH = 3 | Pt(H_{2})$ $P_{1=1 \text{ atm}} | pH = 2 | | pH = 3 | Pt(H_{2})$ b) Non-spontaneous c) In equilibrium d) Either of these a) Spontaneous 453. If the molar conductance value of Ca²⁺ and Cl⁻ at infinite dilution are respectively $118.88 \times 10^{-4} \text{ m}^2 \text{ mho mol}^{-1}$ and $77.33 \times 10^{-4} \text{ m}^2 \text{ mho mol}^{-1}$ then that of CaCl₂ is (in m² mho mol⁻¹) a) 118.88×10^{-4} b) 154.66×10^{-4} c) 273.54×10^{-4} d) 196.21×10^{-4} 454. During electrolysis, the species discharged at cathode are a) Anion b) Cation c) Ions d) All of these 455. In the electrolysis of which solution, OH⁻ ions are discharged in preference to Cl⁻ ions? a) Dilute NaCl b) Very dilute NaCl c) Fused NaCl d) Solid NaCl 456. A cell constructed by coupling a standard copper electrode and a standard magnesium electrode has emf of 2.7 V. If the standard reduction potential of copper electrode is +0.34 V then that of the magnesium electrode is a) + 2.36 V b) - 2.36 V c) + 3.26 V d) - 3.26 V 457. Variation of equivalent conductivity with concentration of strong electrolyte is given by Hückel-Onsager equation expressed as : b) $\Lambda_{\infty} = \Lambda M - b\sqrt{c}$ c) $\Lambda_{\rm M} = b\sqrt{c} - \Lambda^{\infty}$ a) $\Lambda_M = \Lambda^\infty - b\sqrt{c}$ d) None of these 458. An electric current is passed through silver nitrate solution using silver electrodes. 10.79 g of silver was found to be deposited on the cathode. If the same amount of electricity is passed through copper sulphate solution using copper electrodes, the weight of copper deposited on the cathode is a) 1.6 g b) 2.3 g c) 3.2 g d) 6.4 g 459. The amount of energy expanded during the passage of one ampere current for 100 second under a potential of 115 V is : d) 0.115 kJ a) 20 kJ b) 11.5 kJ c) 115 kJ 460. If a strip of copper metal is placed in a solution of ferrous sulphate : a) Copper will precipitate out b) Iron will precipitate out c) Both copper and iron will be dissolved d) No reaction will take place 461. The process of zinc-plating on iron sheet is known as a) Annealing b) Roasting c) Galvanisation d) Smelting 462. For the following cell with hydrogen electrodes at two different pressures p_1 and p_2 $Pt(H_2) | H^+(aq) | Pt(H_2)$ 1 M p_1 p_2 emf is given by

a) $\frac{RT}{F} \log_e \frac{p_1}{p_2}$	b) $\frac{RT}{2F} \log_e \frac{p_1}{p_2}$	c) $\frac{RT}{F} \log_e \frac{p_2}{p_1}$	d) $\frac{RT}{2F} \log_e \frac{p_2}{p_1}$					
463. During the electrolysis o	463. During the electrolysis of a solution of AgNO ₂ , 9650 C of charge is passed through the electroplating bath.							
The mass of silver deposited at the cathode will be								
a) 108 g	b) 10.8 g	c) 1.08 g	d) 18.10 g					
464. What is the time (in sec)	required for depositing all	the silver present in 125m	L of 1 M AgNO ₃ solution by					
passing a current of 241.	25 A? (1F = 96500 C)							
a) 10	b) 50	c) 1000	d) 100					
465. For the redox reaction,								
$Zn(s) + Cu^{2+}(0.1 M) -$	→							
Zn^{2+} (1 M) + Cu (s)								
taking place in a cell, E_{cel}°	_{ll} is 1.10 V. E_{cell}° for the cell v	will be						
$(2.303 \frac{RT}{R} = 0.0591)$								
$\left(\begin{array}{c} F \\ F \end{array}\right)$	b) 1 80 V	c) 107V	d) 0.82 V					
$a_{1} 2.14 v$	UJ 1.00 V	$C_{\rm J} = 1.07$ V	10.02 v $1 \text{ s} \text{ cm}^2 \text{ mol}^{-1} \text{ respectively}$					
The A ^o for NaBr is	icuvities A Tor Naci, KDI ar	iu KCI ale 120, 152 aliu 150	5 s chi moi respectively.					
$\frac{110}{128} \text{ for Nabl 15}$	b) 249 S cm ² mol ⁻¹	a) 220 S cm^2 mol -1	d) 249 S cm^2 mol ⁻¹					
467 The emf of the coll	b) 240 5 cm moi	cj 5265 cm moi						
$A_{\alpha} = A_{\alpha}^{+} (0.1 \text{ M}) \parallel A_{\alpha}^{+} (0.1 \text{ M}$	1 M) Ag at 208 K is							
ng ng (0.1 M) ng ($h) \cap 150 V$	c) 5 9 V	d) 0 59 V					
468 A solution of sodium sult	bj 0.055 v hate in water is electrolyse	d using inert electrodes. T	The products at the cathode					
and anode are respective	shy	tu using mert electroues. I	ne products at the cathode					
a) H_2 Ω_2	b) $\Omega_{\rm e}$ H _e	c) O_{z} Na	d) 0- 50-					
469 The standard electrode r	otential for the change ·	cj 0 ₂ , na	uj 0 ₂ , 30 ₂					
$Sn(s) + 2Fe^{3+}(aa) \rightarrow 2$	$Fe^{2+}(aa) + Sn^{2+}(aa)$ is:							
$(\text{Given } F^\circ \text{ or } \text{ or } -0.77$	V and $F^{\circ} \rightarrow -0.14 V$							
$(\text{Given } L_{\text{Fe}^{3+}/\text{Fe}^{2+}} = 0.77$	$V and L_{Sn^{2+}/Sn} = 0.14V$	-) 0.01 V						
a) 0.63 v	DJ 1.40 V	CJ 0.91 V	d) 1.68 v					
470. Hydrogen-oxygen fuel ce	his are used in spacecraft to	supply :						
a) Power for heat and lig	nt							
a) Owner for pressure								
d) None of the above								
471 The resistance of 0.01 N	colution of an alactrolyte w	as found to be 210 ohm at	208 K. Its conductance is :					
471. The resistance of 0.01 M	b) 4.76 mbo	as 100000 to be 210 00000 at at c) 210 mbo	d) None of these					
472 The amount of silver der	osited on passing 2 F of ele	cj 210 milo	$\Delta g N O = 0$					
472. The amount of silver dep a) 54 σ	h) 108 σ	c) 216 g	d) 324 g					
473 Cell constant of a conduc	tivity cell is usually derived	by using a solution of \cdot	u) 52 i g					
a) KCl	h) NaCl	c) NH Cl	d) LiCl					
474 Four successive member	rs of the first series of the	transition metals are list	ed below. For which one of					
them the standard noten	tial (F°) value has a no	sitive sign?	eu below. For which one of					
	$L = \frac{L_{M^{2+}/M}}{M}$							
a) Lo $(Z = 27)$	D) NI ($Z = 28$)	c) $\operatorname{Cu}(Z = 29)$	d) Fe ($Z = 26$)					
4/5. When same quantity of electricity is passed through aqueous $AgNO_3$ and H_2SO_4 solutions connected in								
series, 5.04×10^{-1} g of l	H_2 is indefated. What is the i	mass of sliver (in grams) de	eposited? (Eq. wts.of					
nydrogen = 1.008, sliver	= 108)	a) Г 4	d) 10.0					
dj 34 476 The term infinite dilution	UJ U.34 Profore when t	CJ 3.4	uj 10.0					
4/6. I ne term infinite allution refers when :								
a) $\mu \rightarrow 1$, for weak elect	dissociated							
b) All interiories offected								
cj All interionic effects d	isappears							
d) All of the above

477. In the problem 15, the limiting mobility of K^+ ion is	:				
a) 6.1×10^{-4} b) 6.67×10^{-4}	c) 7.1 \times 10 ⁻⁴	d) 7.67 \times 10 ⁻⁴			
478. The standard reduction potential at 290 K for the fol	lowing half reactions are,				
(i) $Zn^{2+} + 2e \rightarrow Zn(s); \qquad E^{\circ} = -0.762 V$					
(ii) $Cr^{3+} + 3e \rightarrow Cr(s); \qquad E^{\circ} = -0.740 V$					
(iii)2H ⁺ + 2 $e \rightarrow$ H ₂ (g); $E^{\circ} = -0.000 V$					
(iv) $Fe^{3+} + e \rightarrow Fe^{2+}$; $E^{\circ} = +0.77 V$					
Which is the strongest reducing agent?					
a) Zn b) Cr	c) Fe ²⁺	d) H ₂			
479. Daniel cell, anode and cathode are respectively					
a) Zn Zn ²⁺ and Cu ²⁺ Cu b) Cu Cu ²⁺ and Zn ²⁺ Zn	(c) Fe Fe ²⁺ and Cu ²⁺ Cu	1 d) Cu Cu ²⁺ and Fe ²⁺ Fe			
480. Iron sheets are galvanized to :					
a) Prevent action of O ₂ and H ⁺ on Fe					
b) Prevent oxidation of Fe					
c) Prevent rusting					
d) All of the above					
481. The conductance of all the ions present in a solution	containing 1 g equivalent i	in it is known as :			
a) Conductivity					
b) Equivalent conductivity					
c) Molecular conductivity					
d) None of the above					
482. For the reduction of silver ions with copper metal, t	he standard cell potential	is 0.46 V at 25°C. The value			
of standard Gibbs energy ΔG° will be :					
a) – 89.0 kJ b) – 89.0 J	c) – 44.5 kJ	d) – 98.0 kJ			
483. E^0 of an electrode is :					
a) Extensive property b) Constitutive property	c) Colligative property	d) Intensive property			
484. The one which decreases with dilution is					
a) Molar conductance	b) Conductance				
c) Specific Conductance	d) Equivalent conductance	ce			
485. Which of the following metal can replace zinc from Z	nSO ₄ solution?				
a) Cu b) Hg	c) Fe	d) Al			
486. Several blocks of magnesium are fixed to the bottom	of Aship to				
a) Keep away the sharks	b) Make the ship lighter				
c) Prevent action of water and salt	d) Prevent puncturing by	under- seArocks			
$487. \text{ MnO}_{4}^{-} + 8\text{H}^{+} + 5e^{-} \rightarrow \text{Mn}^{2+} + 4\text{H}_{2}\text{O}; \ E^{\circ} = 1.51 \text{ V}$					
$MnO_4 + 4H^+ + 2e^- \rightarrow Mn^{2++} 2H_2O; E^\circ = 1.23 V$					
$E_{MnO_4}^{\circ} _{MnO_2}$ is					
a) 1.70 V b) 0.91 V	c) 1.37 V	d) 0.548 V			
488. In a salt bridge, KCl is used because :					
a) It is an electrolyte					
b) It is good conductor of electricity					
c) The transport number of K ⁺ and Cl ⁻ ions are near	ly same or both have same	e ionic mobility.			
d) It is ionic compound.					
489. AgNO ₃ (aq) was added to an aqueous KCl solution gr	radually and the conductiv	ity of the solution was			
measured. The plot of conductance (Λ) <i>versus</i> the ve	olume of AgNO ₃ is				

$$\int_{V_{0}} \int_{V_{0}} \int_{V$$

d) Increase the *E* and shift equilibrium to the left 499. On passing electricity through dilute H₂SO₄ solution the amount of substance liberated at the cathode and anode are in the ratio : a) 1:8 b) 8:1 c) 16:1 d) 1 : 16 500. The increase in equivalent conductivity of an strong electrolytic solution with dilution is attributed to : a) Increase in number of ions per unit volume b) Increase in molecular attraction c) Increase in degree of dissociation d) Increase in ionic mobility 501. The cell, Zn | Zn²⁺ (1 M) || Cu²⁺ (1 M) | Cu $(E_{cell}^{\circ} = 1.10 \text{ V})$, was allowed to be completely discharged at 298 K. The relative concentration of Zn^{2+} to $\operatorname{Cu}^{2+}\left(\frac{[\operatorname{Zn}^{2+}]}{[\operatorname{Cu}^{2+}]}\right)$ is c) 10^{37.3} a) Antilog (24.08) b) Antilog (37.3) d) 9.65 \times 10⁴ 502. The algebraic sum of potentials of two electrodes of a galvanic cell is called : a) Potential difference b) Ionic difference c) e.m.f. d) Electrode difference 503. The standard oxidation potentials, E° for the half reactions are ; $Zn \rightarrow Zn^{2+} + 2e; E^{\circ} = +0.76 V$ Ag \rightarrow Ag⁺ + e; $E^{\circ} = -0.77 \text{ V}$ The standard e.m. f. of the cell, $Ag^+ + Zn \rightarrow Zn^{2+} + Ag$ is : a) + 1.53 V b) - 1.53 V c) -0.01 V d) + 0.01 V504. Rust is a mixture of : a) FeO and $Fe(OH)_2$ b) FeO and $Fe(OH)_3$ c) Fe_2O_3 and $Fe(OH)_3$ d) Fe_3O_4 and $Fe(OH)_3$ 505. A metal having negative reduction potential when dipped in the solution of its own ions, has a tendency : a) To pass into the solution b) To be deposited from the solution c) To become electrically positive d) To remain neutral 506. The resistance of 0.5 N solution of an electrolyte in a conductivity cell was found to be 45 ohms. The equivalent conductivity of the same solution isif the electrodes in the cell are 2.2 cm apart and have an area of 3.8 cm^2 . a) 25.73 b) 30.75 c) 35.75 d) 15.75 507. The SI unit for ionic mobility is: b) cm²volt⁻¹sec⁻¹ c) cm volt⁻¹sec⁻¹ a) m^2 volt⁻¹sec⁻¹ d) $cm^{-2}volt^{-1}sec^{-1}$ 508. Which modifications are necessary to determine resistance of solution by usual method of measurements on Wheatstone bridge principle? a) A.C. should be used b) A conductivity cell is used c) Galvanometer is replaced by magic eye or head phone arrangement d) All of above 509. The number of electrons passing per second through a cross-section of Cu wire carrying 10 ampere is : a) 6 $\times 10^{19}$ b) 8 $\times 10^{19}$ c) 1×10^{19} d) 1.6 $\times 10^{19}$ 510. Electrolytic reduction of alumina to aluminium by Hall-Heroult process is carried out : a) In the presence of NaCl b) In the presence of fluoride c) In the presence of cryolite, which forms a melt with lower melting temperature d) In the presence of cryolite, which forms a melt with higher melting temperature 511. Electrolytes, when dissolved in water, dissociate into their constituent ions. The degree of dissociation of a weak electrolyte increases with

a) The presence of a substance yielding common ion

b) Decreasing temperature								
c) Decreasing concentration of the electrolyte								
d) Increasing concentration of the electrolyte								
512. The electrolytic bath used in gold plating of copper a	irticles contains :							
a) Molten gold b) $CusO_4$	c) AuCl ₃	d) $AuCl_3 + NaCN$						
513. Pure water does not conduct electricity because it is								
a) Basic	b) Almost not ionised							
c) Decomposed easily	a) Aciaic							
514. Galvanic cell IS Adevice in which								
a) Chemical energy is converted into electrical energy	gy.							
b) Electrical energy is converted into chemical energy	gy.							
d) Thermal energy is seen in the form of heat.	drive the call reaction							
a) Thermal energy from an outside source is used to	tontial bacause							
s15. Astanuar u fiyul ogen electi oue has zero electi oue po	b) This electrode notenti	alic accumed to be zero						
a) Hydrogen stem has only one electron	d) Hudrogen is the lighter	al is assumed to be zero						
C) Hydrogen atom has only one electron	NO NaCl and NaNO a	st element r_0 116 E 110.2 and 10E.2						
516. The motal conductivity at minine dilution of Ag	100_3 , Naci alla Nan 0_3 a	re 116.5, 110.5 and 105.2						
a) 121.6 b) 111.4	a) 120 6	d) 150.2						
a) 121.0 D) 111.4	CJ 130.0	u) 150.2						
a) Colls continuously run as long as fuels are supplie	d							
a) Cells continuously full as long as fuels are supplied	u							
b) These are used to provide neuror and drinking wa	tor to actronaute in chace	programma						
d) All of the above	iter to astronauts in space	programme						
519. The value of electronic charge is equal to :								
Faraday								
a) $\frac{1}{\Delta y}$ number								
b) Faraday \times Av. number								
Av. number								
c) — Faraday								
d) None of these								
519. The formula $\alpha = \frac{\Lambda_v}{1}$ is valid for :								
Λ_{∞}								
a) Weak electrolytes b) Strong electrolytes	c) Salts	d) None of these						
520. A hypothetical electrochemical cell is shown below;								
$\breve{A} A^+(xM) B^+(yM) \breve{B} $								
The e.m.f. measured is + 0.20 V. The cell reaction is :								
a) The cell reaction cannot be predicted								
b) $A + B^+ \longrightarrow A^+ + B$								
c) $A^+ + B \rightarrow A + B^+$								
d) $A^+ + e^- \rightarrow A$; $B^+ + e^- \rightarrow B$								
521. The laws of electrolysis ware proposed by								
a) Kohlraush b) Faraday	c) Nernst	d) Berthelot						
522. When X amperes of current is passed through molte	n AlCl ₃ for 96.5 s. 0.09 g of	aluminium is deposited.						
What is the value of <i>X</i> ?								
a) 10 A b) 20 A	c) 30 A	d) 40 A						
523. It is impossible to measure the actual voltage of any	half cell by itself because:							
a) Both half cell reactions takes place simultaneously	y							
b) Of resistance of wire								
c) A reaction does not take place on its own								
d) None of the above								

524. The art of electroplating was given by : a) Faraday b) Edison c) Graham d) Brugan 525. If 1 faraday of charge is passed through a solution of CuSO₄, the amount of copper deposited will be equal to its : a) Gram equivalent weight b) Gram molecular weight c) Atomic weight d) Electrochemical equivalent 526. The oxidation potential values of A, B, C and D are -0.03, +0.108 V,-0.07 V and +0.1 V respectively. The non-spontaneous cell reaction takes place between a) Aand B b) *B* and *D* c) D and A d) B and C 527. The conductivity of N/10 KCl solution at 20°C is 0.0212 ohm⁻¹ cm⁻¹ and the resistance of cell containing this solution at 20^o C is 55 ohm. The cell constant is: c) 4.616 cm^{-1} d) 3.324 cm⁻¹ a) 2.173 cm^{-1} b) 1.166 cm⁻¹ 528. What is the value of E_{cell} ? Cr | Cr³⁺ (0.1 M) || Fe²⁺ (0.01 M) | Fe Given, $E^{\circ}_{Cr^{3+}/Cr} = -0.74 V$ and $E^{\circ}_{Fe^{2+}/Fe} = -0.44 V$ a) +0.2941 V b) +0.5212 V c) +0.1308 V d) -0.2606 V 529. The *E*° for OCl⁻/Cl⁻ and Cl⁻/ $\frac{1}{2}$ Cl₂ are 0.94 V and -1.36 V; *E*° for OCl⁻/ $\frac{1}{2}$ Cl₂ is : b) - 2.20 V c) 0.52 V a) – 0.42 V d) 1.04 V 530. The cell reaction for the given cell is spontaneous if : $\Pr_{P_1}(H_2)|H^+(1M)||H^+(1M)|\Pr_{P_2}(H_2)$ c) $P_1 = P_2$ a) $P_1 > P_2$ b) $P_1 < P_2$ d) $P_1 = 1$ atm 531. When an acid cell is charged, then a) Voltage of cell increases b) Resistance of cell increases c) Electrolyte of cell dilutes d) None of the above 532. An electrolytic cell contains a solution of Ag₂SO₄ and platinum electrodes. A current is passed until 1.6 g of O_2 has been liberated at anode. The amount of Ag deposited at cathode would be: b) 0.8 g d) 107.88 g a) 1.6 g c) 21.6 g 533. For Acell given below, Ag | Ag⁺ || Cu²⁺ | Cu - + Ag⁺ + e⁻ \rightarrow Ag, $E^{\circ} = x$ $Cu^{2+} + 2e^- \rightarrow Cu, \quad E^\circ = v$ E_{cell}° is a) x + 2yb) 2x + yd) y - 2xc) y - x534. EMF of a cell in terms of reduction potential of its left and right electrodes is a) $E = E_{\text{left}} - E_{\text{right}}$ b) $E = E_{\text{right}} - E_{\text{left}}$ c) $E = E_{\text{left}} + E_{\text{right}}$ d) None of these 535. At 18° C the conductance of H⁺ and CH₃COO⁻ at infinite dilution are 315 and 35 mho cm² eq⁻¹ respectively. The equivalent conductivity of CH₃COOH at infinite dilution ismho $cm^2 eq.^{-1}$: a) 350 b) 280 c) 30 d) 315 536. An alloy of Pb-Ag weighing 1.08 g was dissolved in dilute HNO₃ and the volume made to 100 mL. A silver electrode was dipped in the solution and the emf of the cell set up $Pt(s), H_2(g) | H^+(1 M) || Ag^+(aq) | Ag(s)$ Was 0.62 V. If $E_{cell}^{\circ} = 0.80$ V, what is the percentage of Ag in the alloy? $[At 25^{\circ}C, RT / F = 0.06]$ a) 25 d) 50 b) 2.50 c) 10

537. A lamp draws a current	of 1.0 A. Find the charge	in coulomb used by the la	amp in 60 s.
a) 0.6 C	b) 60 C	c) 600 C	d) 0.006 C
538. During electrolysis of wa under same conditions v	ater the volume of O ₂ libe vill be	erated is 2.24dm ³ . The vo	olume of hydrogen liberated,
a) 2.24 dm ³	b) 1.12 dm ³	c) 4.48 dm ³	d) $0.56 \mathrm{dm^3}$
539. The amount of electricit	y required to liberate 1 g	-equiv of Cu is	, ,
a) 96500 F	b) 1 F	c) 1 C	d) 96500 A
540. Which of the following is	s correct?	-	
a) Zinc acts as cathode in	n Daniell cell		
b) In a Li — Zn couple, zi	nc acts as anode		
c) Copper will displace i	ron in solution		
d) Zinc displaces tin from	n its solution		
541. The number of electron	s involved in redox read	ctions when a faraday of	f electricity is passed through an
electrolyte in solution is	:		
a) 6 $\times 10^{23}$	b) 8 $\times 10^{19}$	c) 69500	d) 6 $\times 10^{-23}$
542. During electrolysis of fu	sed sodium chloride, the	reaction of the electrode	es are:
Anode Catho	de		
a) Na ⁺ + $e \rightarrow$ Na	$Cl^- \rightarrow \frac{1}{2}Cl + e$		
b) Na \rightarrow Na ⁺ + e	$\frac{1}{2}$ Cl ₂ + $e \rightarrow$ Cl ⁻		
c) $\operatorname{Cl}^- \to \frac{1}{2}\operatorname{Cl}_2 + e$	$Na^+ + e \rightarrow Na$		
d) $\frac{1}{2}$ Cl ₂ + $e \rightarrow$ Cl ⁻	$Na \rightarrow Na^+ + e$		
543. Which one is correct abo	out conductivity water?		
a) The water whose own	n conductance is very sm	all	
b) The water obtained a	fter 7-8 times distillation		
c) Kohlrausch prepared	the conductivity water for	or the first time	
d) All of the above			
544. Blocks of magnesium me	etal are often strapped to	the steel hulls of ocean g	going ships in order to:
a) Provide cathodic prot	tection		
b) Protect oxidation of s	teel		
c) Both (a) and (b) are (d) Neither (c) non (b) is	correct		
a) Neither (a) hor (b) is	correct		
Λ^{0} (HCl) = 425 90 ⁻¹ g	$r^2 mol^{-1}$		
$\Lambda_{\rm m}$ (HCl) = 423.92 Cl $\Lambda_{\rm m}^{0}$ (NaCl) = 126.40 ⁻¹	$m^2 m o l^{-1}$		
$\Lambda_{\rm m}^{0}$ (CH COON ₂) - 910	$-1 \text{ cm}^2 \text{ mol}^{-1}$		
$\Lambda_{\rm m}$ (Cli3COONa) = 9122	at infinite dilution of ac	etic acid (in 0^{-1} cm ² mol	-1) will be
a) 481 5	h) 390 5	c) 299 5	d) 516 9
546 If the standard electrode	e notential of Cu^{2+} / Cu e	lectrode is 0.34 V what i	s the electrode notential at 0.01
M concentration of Cu^{2+}	?		s the electrone potential at 0.01
(T = 298 K)			
a) 0.399 V	b) 0.281 V	c) 0.222 V	d) 0.176 V
547. If the ΔG° of Acell reaction	on.	-)	
$AgCl + e^- \rightarrow Ag^+ + C$	Cl^{-} is - 21.20 kJ;		
The standard emf of the	cell is		
a) 0.220 V	b) -0.220 V	c) 0.229 V	d) -0.110 V
548. For the cell reaction, Cu	$u_{c_2}^{2+}(aq) + \operatorname{Zn}(s) \longrightarrow \operatorname{Zn}_{c_1}^{2+}$	(aq) + Cu(s), the change	ge in free energy (ΔG) at a given
temperature is a functio	n of :		· · · -
a) $\ln c_1$	b) In (c_2/c_1)	c) In $(c_1 + c_2)$	d) In <i>c</i> ₂
549. Consider the following c	ell reaction	/	_

	$2Fe(s) + O_2(g) + 4H^+(a)$	$aq) \rightarrow$		
	$2Fe^{2+}(aq) + 2H_2O(l), E^{\circ}$	= 1.67 V		
	$At[Fe^{2+}] = 10^{-3} M$, P (0	$_{2}) = 0.1$ atm and pH = 3, t	he cell potential at 25°C is	
	a) 1.47 V	b) 1.77 V	c) 1.87 V	d) 1.57 V
550.	Aluminium oxide may be	electrolysed at 1000°C to fu	urnish aluminium metal (a	tomic mass = 27 u; $1 \text{ F} =$
	96500 C). The cathode re	action is	× ×	,
	$Al^{3+} + 3e^{-} \rightarrow Al^{0}$			
	To prepare 5.12 kg of alu	minium metal by this meth	od would require	
	a) 5.49 \times 10 ¹ C of electric	icity	b) 5 49 \times 10 ⁴ C of electr	icity
	a) 1.49×10^7 C of electric	icity	d) 5.49 \times 10 ⁷ C of electric	icity
551	The standard notantials a	icity at 25°C for the following hal	10^{-10}	i city
551.	The standard potentials a $7n^{2+}$ + $2n^{-}$, $7n^{-}$	1125 C for the following has	ii reactions are given alleat	1,
	$Zn^{-1} + Ze \rightarrow Zn; E^{-1}$	= -0.762 V		
	$Mg^{-1} + 2e \rightarrow Mg; E^{-1}$	= -2.37 V		
	when zinc dust is added t	to the solution of MgCl ₂ :		
	a) $2nCl_2$ is formed	1		
	b) Zinc dissolves in the sc	olution		
	c) No reaction takes place	e		
	d) Mg is precipitated			
552.	The cell reaction for the g	given cell is spontaneous if :		
	$Pt_{Cl_2} Cl(1M) Cl(1M) $	Pt _{Cl₂}		
	a) $P_1 > P_2$	h) $P_1 < P_2$	c) $P_4 = P_2$	d) $P_{\rm r} = 1$ atm
553	Passage of three faraday	of charge through aqueo	us solution of $AgNO_2$, CuS	$(0_4, Al(NO_2)_2)$ and NaCl will
0001	denosit metals at the cath	ode in the molar ratio of:		04,(
	a) $1 \cdot 2 \cdot 3 \cdot 1$	h) $6 \cdot 3 \cdot 2 \cdot 6$	c) $6 \cdot 3 \cdot 0 \cdot 0$	d) $3 \cdot 2 \cdot 1 \cdot 0$
554	In the problem 15 ionic c	K^+ ion is :	0.0.0.0	uj 5.2.1.0
554.	a) 64.35	b) 60 20	c) 262.26	d) 26 22
555	In the electrochemical re-	b) 00.20	c) 202.20	u) 20.22
555.	$2E_0^{3+} \perp 7n \rightarrow 7n^{2+} \perp$	$2 E_0^{2+}$		
	$21C + 211 \rightarrow 211 +$	2 Fe		
	a) Increasing the concentra		b) Increases the current f	low
	a) Increases cell enil		d) Alter the pH of the colu	lion
EE6	Low many electrons and	thoro in one coulomb?	uj Alter tile pri or tile solt	ition
550.	now many electrons are $(2) (02) \times 10^{21}$	$h = 24 \times 10^{18}$	~ 1015	$d > (02 \times 10^{16})$
FF7	a) 0.02×10^{-2}	$U = 0.24 \times 10^{-5}$	$C_{\rm J}$ 0.24 × 10 ⁻²	0.02×10^{-3}
557.	The element which can di	isplace three other halogen	s from their compound is	1 (6
FFO	a) r The constant of a constant of		C) Br	a) I
558.	The units of equivalent cc	inductivity is	h) alam and 2 (a second second	
	a) S cm ²		b) onm cm ² (g – equivale)	nt)
	c) ohm cm		d) ohm $1 \text{ cm}^2(g - \text{equiva})$	llent)
559.	Calculate the equilibrium	constant for the reaction, a	at 25°C	
	$\operatorname{Cu}(s) + 2\operatorname{Ag}^+(aq) \to 0$	$Lu^{2+}(aq) + 2Ag(s)$		
	at 25 °C , $E_{cell} = 0.47$ V , R	$R = 8.314 \text{JK}^{-1}$		
	F = 96500 C is			
	a) 1.8 \times 10 ¹⁵	b) 8.5 $\times 10^{15}$	c) 1.8×10^{10}	d) 85 \times 10 ¹⁵
560.	The ratio of weights of hy	drogen and magnesium de	eposited by the same amou	nt of electricity from H_2SO_4
	and MgSO ₄ in aqueous so	lution are :		
	a) 1:8	b) 1 : 12	c) 1:16	d) None of these
561.	The Λ^{∞} of NH ₄ Cl, NaOH a	and NaCl are 129.8, 217.4	and 108.9 $ohm^{-1} cm^2 eq$.	⁻¹ respectively. The λ_{∞} of
	NH_4OH is ohm ⁻¹ cm	$n^2 eq.^{-1}$.		
	a) 238.3	b) 218	c) 240	d) 260

562. The reaction at cathode during the electrolysis of aqueous solution of NaCl in Nelson cell is :

a) $2Cl^- \rightarrow Cl_2 + 2e$ b) $2H^+ + 2e \rightarrow H_2$ c) $20H^- \rightarrow H_2 + O_2 + 2e$ d) Na⁺ + $e \rightarrow$ Na 563. Which of the following is an additive property? a) Conductance b) Viscosity c) Surface tension d) None of these 564. The limiting molar conductivities of NaCl. KBr and 126. 152 KCl and 150 are S cm² mol⁻¹ respectively. The Å for NaBr is : a) $302 \text{ S cm}^2 \text{ mol}^{-1}$ b) 176 S cm² mol⁻¹ c) $278 \text{ S cm}^2 \text{ mol}^{-1}$ d) 128 S cm² mol⁻¹ 565. The calomel electrode is reversible with respect to : a) Hg_{2}^{2+} c) Hg²⁺ b) H⁺ d) Cl⁻ 566. Reaction taking place at anode in dry cell is : c) $Mn^{2+} + 2e \rightarrow Mn(s)$ d) $Mn(s) \rightarrow Mn^{2+} + 2e$ a) $\operatorname{Zn}^{2+} + 2e \longrightarrow \operatorname{Zn}(s)$ b) $Zn(s) \rightarrow Zn^{2+} + 2e$ 567. Number of faraday required to liberate 8 g of H_2 is : a) 8 b) 16 c) 4 d) 2 568. The number of coulombs required to reduce 12.3 g of nitrobenzene to aniline, is a) 96500 C b) 5790 C c) 95700 C d) 57900 C 569. On passing 0.1 F of electricity through aluminium metal deposited at cathode is (AI = 27)b) 0.6 g a) 0.3 g c) 0.9 g d) 1.2 g 570. During electrolysis of $\rm H_2O$, the molar ratio of $\rm H_2$ and $\rm O_2$ formed is : a) 2 : 1 b) 1 : 2 d) 1:1 c) 1:3 571. At infinite dilution stage, the solution of CH₃COOH in water does not contain : b) CH₃COO⁻ion a) H⁺ion c) CH₃COOH molecule d) All of these 572. 1 faraday of electricity will liberate 1 g-atom of the metal from the solution of : a) NaCl b) $BaCl_2$ c) CuSO₄ d) AlCl₃ 573. The standard electrode potential of hydrogen electrode at 1 M concentration and hydrogen gas at 1atm pressure is a) 1 V b) 6 V c) 8 V d) 0 V 574. The emf of a Daniell cell at 298 K is E_1 , Zn| ZnSO₄ || CuSO₄ | Cu. When the concentration of (0.01 M) (1.0 M) $ZnSO_4$ is 1.0 M and that of $CuSO_4$ is 0.01 M, the emf changed to E_2 . What is the relationship between E_1 and E_2 ? a) $E_1 = E_2$ b) $E_1 > E_2$ c) $E_1 < E_2$ d) $E_2 = 0 \neq E_1$ 575. The acid used in lead storage battery is a) H_2SO_4 b) H_3PO_4 c) HCl d) HNO₃ 576. The conductance of 1 cm³ of a solution is known as its : a) Resistance b) Conductivity c) Equivalent conductivity d) Molecular conductivity 577. The limiting molar conductivities Λ° for NaCl,KBr and KCl are 126,152 and 150 S cm²mol⁻¹ respectively. The Λ° for NaBr is c) 278 S cm²mol⁻¹ b) 176 S cm²mol⁻¹ d) 302 S cm²mol⁻¹ a) $128 \text{ S cm}^2 \text{mol}^{-1}$ 578. The variation of equivalent conductivity of weak electrolyte with $\sqrt{\text{concentration}}$ is correctly shown in figure : c) 1 b) ¹

579.	The electrode potential m	easures the :									
	a) Tendency of the electrode to gain or lose electrons										
	b) Tendency of the cell reaction to occur										
	c) Difference in the ionisation potential of electrode and metal ion										
	d) Current carried by an ϵ	electrode									
580.	Metals can be prevented f	rom rusting by :									
	a) Connecting iron to mor	re electropositive metal, <i>i. e</i>	e., cathodic protection								
	b) Connecting iron to more electropositive metal, <i>i. e.</i> , anodic protection										
	c) Connecting from to less	electropositive metal, <i>i.e.</i> ,	anotic protection								
F01	a) Connecting iron to less electropositive metal, <i>i. e.</i> , cathodic protection										
501.	a) Weight of element	quired to liberate 1 mole o	rany element indicates :								
	a) Weight of electro	lyto									
	c) Charge on the ion of th	at element									
	d) None of the above										
582.	Lithium is generally used	as an electrode in high ene	rgy density batteries. This	is because:							
001	a) Lithium is the lightest of	element									
	b) Lithium has quite high	negative reduction potenti	al								
	c) Lithium is quite reactiv	re									
	d) Lithium does not corro	de easily									
583.	Corrosion of iron is essen	tially an electrochemical pl	henomenon where the cell	reactions are							
	$_{\rm o}$ Fe is oxidised to Fe ²⁺ a	nd dissolved oxugen in	b) Equip ovidicad to Ea^{3+}	and \mathbb{H} . Ω is reduced to Ω^{2-}							
	water is reduced to OH	[-	b) re is oxidised to re a	$\Pi_2 O$ is reduced to O_2							
	c) Fe is oxidised to Fe ²⁺ a	nd H_2O is reduced	$\begin{array}{c} \text{Fe is oxidised to Fe}^{2+} a \\ \text{d)} \\ \begin{array}{c} \text{to } \Omega \end{array}$	and H_2O is reduced							
584	In the electrodenosition c	f Ag the silver ions are:	100_{2}								
504.	a) Reduced at anode	h) Reduced at cathode	c) Ovidised at anode	d) Ovidised at cathode							
585	Standard F° of the half ce	II FelFe ²⁺ is ± 0.44 V and st	tandard F° of half cell (1)	Cu^{2+} is -0.32 V then \cdot							
505.	a) Cu oxidises Fe^{2+} ion	b) Cu^{2+} oxidises Fe	c) Cu reduces Fe^{2+} ion	d) Cu ²⁺ reduces Fe							
586.	Which of the following is	displaced by Fe?									
	a) Ag	b) Zn	c) Na	d) All of these							
587.	The electrochemical cell	stops working after someti	mes because	, , , , , , , , , , , , , , , , , , , ,							
	a) Electrode potential of l	ooth the electrodes become	es zero								
	b) Electrode potential of h	ooth the electrodes become	es equal								
	c) One of the electrodes is	s eaten away									
	d) The cell reaction gets r	eversed									
588.	The resistance of 0.01 N s	solution of an electrolyte w	as found to be 210 ohm at	298 K, using a conductivity							
	cell of cell constant 0.66	cm ⁻¹ . The conductivity of s	olution is :								
	a) 3.14×10^{-3} mho cm ⁻	1									
	b) $3.14 \times 10^{-3} \text{ mho}^{-1} \text{ cm}$	n									
	c) 3.14 mho cm ^{-1}										
	d) $3.14 \text{ mho}^{-1} \text{ cm}^{-1}$										
589.	The molar conductivity o	f acetic acid at infinite dil	ution is 390.7 and for 0.1	M acetic acid solution is 5.2							
	mho cm 2 mol $^{-1}$. The degr	ree of dissociation of 0.1 <i>M</i>	CH ₃ COOH solution is :	N (000)							
	a) 13.3%	b) 0.0133%	c) 1.33%	d) 133%							
590.	When a lead storage batte	ery is charged, it acts as									
E01	a) A primary cell	DJ A galvanic cell	c) A concentration cell	a) An electrolytic cell							
391.	ror goid plating, the elect	b) HAUCI	c) $K[\Lambda_{11}(CN)]$	d) None of these							
502	How many coulomb of a	lectricity are consumed w	then $100 \text{ mA current is } \mathbf{n}$	us notic of diese							
572.	now many coulomb of c	iccurrency are consumed w	nen 100 mir current is pa	assed unough a solution of							

AgNO ₃ for 30 minute during an	electrolysis experime	ent?									
a) 108 b) 15	8000	c) 180	d) 3000								
593. How many kJ of energy is evolv	red, when a current of	2.00 A passes for 200	s under the potential of 230 V?								
a) 56 kJ b) 8	a) 56 kJ b) 86 kJ c) 36 kJ d) 92 kJ										
594. What will be the emf for the given cell Pt $H_2(p_1)$ $H^+(aq)$ $H_2(p_2)$ Pt?											
RT, p_1	T, p_1	RT , p_2	d) None of these								
a) $\frac{1}{2F}\log \frac{1}{p_2}$ b) $\frac{1}{F}$	$\frac{1}{p_2} \log \frac{1}{p_2}$	c) $\overline{F} \log \frac{1}{p_1}$,								
595. The time required to coat a me	tal surface of 80 cm ²	with 5 \times 10 ⁻³ cm thi	ck layer of silver (density 1.05 g								
cm ⁻³ with the passage of 3A current through a silver nitrate solution is :											
a) 115 sec b) 12	25 sec	c) 135 sec	d) 145 sec								
596. On electrolysing a solution of d	ilute H_2SO_4 between	platinum electrodes, t	the gas evolved at the anode and								
cathode are respectively :	2 1		6								
a) SO ₂ and O ₂ b) SO	O ₃ and H ₂	c) O_2 and H_2	d) H_2 and O_2								
597. The electrochemical equivalent	t of silver is 0.001118	0 g. When an electric	current of 0.5 ampere is passed								
through an aqueous silver nitra	ate solution of 200 sec	. the amount of silver	deposited is:								
a) 1.1180 g b) 0.	.11180 g	c) 5.590 g	d) 0.5590 g								
598. Galvanised iron sheets have co	ating of :	.)									
a) Cu b) Si	n	c) Zn	d) Carbon								
599. Jonisation depends upon	-	•) =									
a) Pressure b) V	olume	c) Dilution	d) None of these								
600 Standard free energies of form	ation (in kI/mol) at 29	98 K are - 237 2 - 39	$44 \text{ and } - 82 \text{ for } H_2O(l) CO_2(g)$								
and pentane (g) respectively 7	The value of F° , for	the nentane-oxygen fi									
a) 2 0968 V b) 1	0968 V	c) 0.0968 V	d) 1 968 V								
601 In the electrolysis of water 1 F	of electrical energy w	ould evolve	uj 1.900 V								
a) 1 mole of ovvgen b) 1	g atom of oxygen	c) 8 g of oxygen	d) 22.4 L of oxygen								
$602 \text{ Given } l/a = 0.5 \text{ cm}^{-1} R = 50.0000000000000000000000000000000000$	hm N - 10 The e	uivalent conductance	of the electrolytic cell is								
a) 100^{-1} cm ² g equiv ⁻¹	5 1.0. The ev	b) 200^{-1} cm ² g equiv	,-1								
c) 3000^{-1} cm ² g equiv ⁻¹		d) 1000^{-1} cm ² g equiv ⁻¹									
602 If 2 E of electricity is passed the	ough the colutions of	AgNO CuSO and Au	Clutha malar ratio of the								
cations denosited at the cathod	or will be	$AgnO_3$, CuSO ₄ and Au									
a $1.1.1$ b 1	.2.2	a) 2.2.1	d) 6.2.2								
$a_{j} = 1.1.1$ $b_{j} = 1.1.1$	- 227 W	() 5:2:1	u) 0:5:2								
$004. \text{ If Mg} + 2e \rightarrow \text{Mg(S)}; E$	= -2.37 V,										
$Cu^{-1} + 2e \rightarrow Cu(s); E =$	= + 0.34 V?										
The e.m.f. of the cell $Mg Mg^2$		2001									
a) 2.71 V b) 2.72	.30 V	CJ 2.80 V	d) 1.46 V								
605. The standard reduction potent	als of										
Zn^{2+} Zn , Cu^{2+} Cu and Ag^{+} L	Ag are respectively – (0.76, 0.34 and 0.8 V. TI	he following cells were								
constructed											
$I Zn Zn^{2+} Cu^{2+} Cu$											
II $Zn \mid Zn^{2+} \mid Ag^{+} \mid Ag$											
III Cu Cu ²⁺ Ag ⁺ Ag											
What is the correct order of E_{c}°	_{ell} of these cells?										
a) $II > III > I$ b) II	> I > III	c) I > II > III	d) $II < I > II$								
606. What is the effect of dilution on	the equivalent condu	ctance of strong elect	rolyte?								
a) Decreases on dilution b) Remains unchanged											
c) Increases on dilution		d) None of these									
607. For which electrolyte th	ne evaluation of	A^{∞} is not positive	ssible by extrapolation of								
$\Lambda { m vs} \sqrt{c}$ curves to zero concent	ration?										
a) KCl b) N	H ₄ OH	c) NaCl	d) K ₂ SO ₄								
608. The standard reduction potential, E° for the half-reactions are as											

 $\operatorname{Zn} \rightleftharpoons \operatorname{Zn}^{2+} + 2e^{-}, E^{\circ} = \bigoplus 0.76 \,\mathrm{V}$ Fe \Rightarrow Fe²⁺ + 2e⁻, E° = +0.41 V The E°_{cell} for the cell formed by these two electrodes is a) -0.35 V b) -1.17 V c) +0.35 V d) +1.17 V 609. In the electrochemical cell, $H_2(g)1 \text{ atm} | H^+(1 \text{ M}) || Cu^{2+}(1 \text{ M}) || Cu(s)$ Which one of the following statements is true? a) H₂ is anode, Cu is cathode b) Cu is anode, H₂ is cathode c) Oxidation occurs at Cu electrode d) Reduction occurs at H₂ electrode 610. Which of the following does not conduct electricity? b) Solid NaCl a) Fused NaCl c) Brine solution d) Copper 611. The ionic mobility of alkali metal ions in aqueous solution is maximum for : b) Rb⁺ a) K+ c) Li⁺ d) Na⁺ 612. The e.m.f. of the cell involving following changes, $\operatorname{Zn}(s) + \operatorname{Ni}^{2+}(1M) \rightarrow \operatorname{Zn}^{2+}(1M) + \operatorname{Ni}(s)$ is 0.5105 V. The standard e.m.f. of the cell is : b) 0.4810 V c) 0.5696 V a) 0.540 V d) 0.5105 V 613. The factor temperature coefficient of e.m.f. is : c) $(\partial E/\partial V)_T$ d) None of these a) $(\partial E/\partial T)_P$ b) $(\partial E/\partial T)_T$ 614. On passing 1 F of electricity through the electrolytic cells containing Ag⁺, Ni²⁺ and Cr³⁺ ions solution, the deposited Ag (at. wt. = 108), Ni (at. wt. = 59) and Cr (at. wt. = 52) is Ag Ni Cr a) 108 g 29.5 g 17.3 g b) 108 g 59.5 g 52.0 g c) 108 g 108 g d) 108 g 117.5 g 166 g 108 g 615. Which of the following expression is correct? a) $\Delta G^{\circ} = -nFE_{\text{cell}}^{\circ}$ b) $\Delta G^{\circ} = + n F E_{cell}^{\circ}$ c) $\Delta G^{\circ} = -2.303 RT nFE_{cell}^{\circ}$ d) $\Delta G^{\circ} = -nF \log K_c$ 616. For which cell e.m.f. is independent of the concentration of electrolytes used? a) Fe | FeO(s)|KOH(aq)| Nb) Pt(H₂)| HCl |Pt(Cl₂) c) $Zn|Zn(NO_3)_2||$ CuSO₄ |Cd) Hg, HgCl₂| KCl ||AgNO₃|. 617. In the problem 13, the dissociation constant of acid is : a) 2.067×10^{-4} b) 1.02 $\times 10^{-4}$ c) 1.02×10^{-3} d) 1.02×10^{-5} 618. Which are used as secondary reference electrodes? a) Calomel electrode b) Ag/AgCl electrode c) $Hg/Hg_2Cl_2 - KCl$ electrode d) All of the above 619. The amount of electricity required to produce one mole of copper from copper sulphate solution will be d) 1.33 F a) 1 F b) 2.33 F c) 2 F 620. The weight ratio of Al and Ag deposited using the same quantity of current is : c) 108:9 a) 9:108 b) 2 : 12 d) 3:8 621. When same electric current is passed through the solution of different electrolytes in series the amounts of the element deposited on the electrode are in the ratio of their: d) Eq. wt. a) At.no. b) At. wt. c) Sp. gravity 622. The metal used to recover copper from Asolution of CuSO₄ is a) Fe b) He c) Na d) Ag 623. If the half-cell reaction $A + e \rightarrow A^-$ has a large negative reduction potential, it follows that : b) *A* is readily oxidized c) A^- is readily reduced d) A^- is readily oxidized a) A is readily reduced 624. Same amount of electric current is passed through solutions of AgNO₃ and HCl. If 1.08 g of silver is obtained in the first case, the amount of hydrogen liberated at STP in the second case is a) 224 cm^3 b) 1.008 g c) 112 cm^3 d) 22400 cm³ 625. The standard emf of Agalvanic cell involving cell reaction with n = 2 is found to be 0.295 V at 25 °C. The equilibrium constant of the reaction would be

(Given, $F = 96500 \text{ Cmol}^{-1}$, $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$) a) 2.0×10^{11} b) 4.0×10^{12} c) 1.0×10^2 d) 1.0×10^{10} 626. The correct order of chemical reactivity with water according to electrochemical series is:

a) K > Mg > Zn > Cu
b) Mg > Zn > Cu > K
c) K > Zn > Mg > Cu
d) Cu > Zn > Mg > K
627. Calculate using appropriate molar conductance of the CH₃COOH from the molar conductances of electrolytes listed below at infinite dilution in H₂O at 25°C :

	2							
Electr	KCl	NaCl	HCl	NaOAc	OAc KNO ₃			
ode								
S Cm ² 149.9		126.5	426.2	91.0	145.0			
mol ⁻ 1								
a) 51.2			h)552.7				

- a) 51.2
 b) 552.7
 c) 390.7
 d) 217.5
 628. The *E*° for half-cell Fe/Fe²⁺ and Cu/Cu²⁺ are -0.44 V and +0.32 V respectively, then
 a) Cu²⁺ oxidises Fe
 b) Cu oxidises FeFe²⁺
 c) Cu reduces Fe²⁺
 d) Cu²⁺ oxidises Fe²⁺
 c) Cu reduces Fe²⁺
 d) Cu²⁺ oxidises Fe²⁺
- 629. The same amount of electricity was passed through two cells containing molten Al₂O₃ and molten NaCl. If
 1.8 g of Al were liberated in one cell, the amount of Na liberated in the other cell is :
 a) 4.6 g
 b) 2.3 g
 c) 6.4 g
 d) 3.2 g
- 630. 1 mole of Al is deposited by *X* coulomb of electricity passing through aluminium nitrate solution. The number of mole of silver deposited by *X* coulomb of electricity from silver nitrate solution is :
 a) 3 b) 4 c) 2 d) 1
- 631. The platinum electrodes were immersed in a solution of cupric sulphate and electric current was passed through the solution. After some time, it was found that colour of copper sulphate disappeared with evolution of gas at the electrode. The colourless solution contain
 - a) Copper sulphate b) Copper hydroxide c) Platinum sulphate d) Sulphuric acid

3.ELECTROCHEMISTRY

						: ANS	W	ER K	EY						
1)	С	2)	b	3)	а	4)	d	189)	b	190)	С	191)	а	192)	d
5)	а	6)	d	7)	d	8)	а	193)	а	194)	а	195)	d	196)	а
9)	а	10)	С	11)	а	12)	а	197)	а	198)	d	199)	а	200)	а
13)	а	14)	d	15)	b	16)	С	201)	С	202)	b	203)	b	204)	С
17)	а	18)	С	19)	а	20)	а	205)	С	206)	d	207)	а	208)	а
21)	а	22)	b	23)	b	24)	а	209)	С	210)	d	211)	а	212)	а
25)	а	26)	b	27)	d	28)	d	213)	d	214)	d	215)	b	216)	b
29)	d	30)	С	31)	b	32)	d	217)	d	218)	b	219)	d	220)	а
33)	b	34)	d	35)	d	36)	а	221)	С	222)	С	223)	а	224)	С
37)	С	38)	а	39)	b	40)	а	225)	b	226)	а	227)	С	228)	а
41)	d	42)	С	43)	d	44)	С	229)	а	230)	а	231)	d	232)	а
45)	а	46)	b	47)	С	48)	а	233)	d	234)	а	235)	b	236)	а
49)	b	50)	d	51)	а	52)	а	237)	С	238)	b	239)	а	240)	а
53)	а	54)	d	55)	а	56)	а	241)	d	242)	С	243)	С	244)	а
57)	d	58)	d	59)	а	60)	С	245)	а	246)	d	247)	а	248)	С
61)	С	62)	b	63)	d	64)	b	249)	b	250)	b	251)	а	252)	С
65)	d	66)	d	67)	а	68)	а	253)	b	254)	d	255)	d	256)	С
69)	а	70)	d	71)	а	72)	С	257)	а	258)	d	259)	С	260)	d
73)	С	74)	d	75)	а	76)	d	261)	b	262)	С	263)	а	264)	С
77)	С	78)	d	79)	b	80)	b	265)	С	266)	а	267)	С	268)	а
81)	а	82)	а	83)	d	84)	С	269)	d	270)	С	271)	b	272)	а
85)	а	86)	b	87)	С	88)	b	273)	а	274)	С	275)	b	276)	а
89)	b	90)	а	91)	а	92)	b	277)	С	278)	b	279)	а	280)	b
93)	С	94)	b	95)	а	96)	С	281)	С	282)	b	283)	d	284)	С
97)	С	98)	С	99)	С	100)	С	285)	d	286)	d	287)	b	288)	а
101)	d	102)	b	103)	а	104)	а	289)	а	290)	С	291)	а	292)	а
105)	d	106)	С	107)	С	108)	b	293)	d	294)	С	295)	С	296)	С
109)	d	110)	а	111)	b	112)	С	297)	а	298)	b	299)	d	300)	а
113)	а	114)	d	115)	b	116)	b	301)	b	302)	С	303)	С	304)	d
117)	С	118)	b	119)	b	120)	d	305)	b	306)	С	307)	b	308)	d
121)	b	122)	С	123)	а	124)	С	309)	d	310)	b	311)	а	312)	b
125)	b	126)	d	127)	b	128)	а	313)	С	314)	d	315)	С	316)	d
129)	b	130)	С	131)	а	132)	d	317)	а	318)	a	319)	а	320)	а
133)	d	134)	d	135)	С	136)	b	321)	С	322)	d	323)	С	324)	а
137)	С	138)	a	139)	a	140)	d	325)	a	326)	d	327)	C	328)	а
141)	C	142)	b	143)	b	144)	b	329)	b	330)	а	331)	d	332)	а
145)	d	146)	C	147)	а	148)	a	333)	а	334)	a	335)	a	336)	a
149)	d	150)	d	151)	a	152)	b	337)	а	338)	d	339)	d	340)	d
153)	D	154)	C	155)	b	156)	a	341)	С	342)	b	343)	а	344)	b
157)	C	158)	a h	159)	D	160)	D h	345)	C	346J	a	347)	a	348)	a h
101J	a L	102)	D L	103	a L	104J	0 ג	349J	C	35U) 254)	a	351)	ն ւ	352)	D
105J	D	100J	D L	107J	D L	108J	a r	353J	a	354) 250	a	355J	D L	350J	a A
109J 179)	ť	17U) 174)	0 ⊾	1/1) 175)	U K	1/4J 176)	D	33/J 261)	C h	330J 2421	a	337) 262)	U C	30UJ 264)	u L
177)	d h	1/4J 170)	Մ Խ	1/5J 170)	u	1/0J 100)	C	301J	U K	304J	d L	303J	U L	304J 220)	U C
1//J	U	1/0J 102)	U A	1/9J 102)	С Л	10UJ 104)	d h	303J 3601	u	300J 270)	U C	30/J 271)	U A	308J 272)	d
101J	с d	104J	a h	103J 107)	u h	104J 100)	U h	3025	d h	370J 2741	ι h	3/1J 275)	d d	374J 276)	ι n
1021	u	100)	U	10/J	D	100	IJ	3/3J	U	3/4J	U	3/3]	u	3/0]	d

0	-	~	-	a -	-		. L.				-			- - · ·	-
377)	d	378)	b	379)	d	380) d	1	581)	C	582)	b	583)) a	584)	b
381)	С	382)	b	383)	d	384) a	a	585)	b	586)	а	587)) b	588)	а
385)	а	386)	b	387)	b	388) d	1	589)	d	590)	d	591)) C	592)	С
389)	d	390)	а	391)	b	392) o	2	593)	d	594)	а	595)) b	596)	С
393)	С	394)	а	395)	а	396) a	a	597)	b	598)	С	599)) C	600)	b
397)	С	398)	d	399)	а	400) o	2	601)	С	602)	a	603)) d	604)	а
401)	С	402)	С	403)	а	404) a	a	605)	b	606)	С	607)) b	608)	С
405)	d	406)	b	407)	b	408) o	2	609)	a	610)	b	611)) b	612)	d
409)	С	410)	С	411)	d	412) a	a	613)	а	614)	а	615)	a	616)	а
413)	d	414)	а	415)	d	416) o	2	617)	b	618)	d	619)) C	620)	а
417)	а	418)	d	419)	а	420) d	d	621)	d	622)	а	623)) d	624)	С
421)	а	422)	С	423)	С	424) d	d l	625)	d	626)	а	627)) C	628)	а
425)	d	426)	С	427)	а	428) a	a	629)	а	630)	а	631)) d		
429)	b	430)	С	431)	С	432) a	a								
433)	b	434)	b	435)	С	436) o	2								
437)	С	438)	С	439)	b	440) a	a								
441)	d	442)	b	443)	а	444) k)								
445)	а	446)	b	447)	b	448) d	ł								
449)	d	450)	С	451)	С	452) k)								
453)	С	454)	b	455)	b	456) k)								
457)	а	458)	С	459)	b	460) d	ł								
461)	С	462)	b	463)	b	464) k)								
465)	С	466)	а	467)	b	468) a	a								
469)	С	470)	а	471)	а	472) 0	2								
473)	а	474)	С	475)	С	476) 0	ł								
477)	b	478)	а	479)	а	480) d	đ								
481)	b	482)	а	483)	d	484) c	2								
485)	d	486)	С	487)	а	488) (2								
489)	d	490)	С	491)	d	492) d	d								
493)	С	494)	d	495)	С	496) a	a								
497)	С	498)	С	499)	а	500) d	đ								
501)	b	502)	С	503)	a	504) o	2								
505)	а	506)	а	507)	а	508) d	đ								
509)	a	510)	С	511)	С	512) d	d								
513)	b	514)	а	515)	b	516) a	3								
517)	d	518)	а	519)	a	520) k)								
521)	b	522)	а	523)	а	524) a	9								
525)	a	526)	a	527)	b	528) a	7								
529)	c	530)	a	531)	a	532)									
533)	c	534)	h	535)	a	536) 0	1								
537)	h	538)	c	539)	h	540) d	1								
541)	a	542)	c	543)	d	544)	-								
545)	h	546)	с h	547)	a	548) ł									
549)	d	550)	d	551)	c	510) t	5								
553)	u C	554)	u a	555)	c	556) k	5								
5555	с а	559)	d	55555	h	560) 2	-								
561)	a	5505	u h	5595	2	564) d	4								
565)	a d	566)	h	567)	a	568)	4								
560)	u	5005	U A	507J 571)	a c	500j l 572) a									
509J 5721	с d	570)	a h	5/1J 575)	L n	576) V									
573J 577)	u	574J 570)	u A	5/35	a	570J L EQN) ~	וי								
5775	d	570J	u	5/9]	d	500J a	1								

: HINTS AND SOLUTIONS :

1	(c)		Anode : $H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e^-$
	$AI \rightarrow AI^{3+} + 3e^{-}$	14	(d)
	The charge required = 3×96500 C		More is E_{OP}° , more is reducing power of metal.
	The charge required to X yob or a	15	(b)
2	(b)		The charge required to liberate one gram
	Eq. of $H_2 = Eq.$ of Cu		equivalent of an element is always equal to 1
	$\therefore \frac{0.504}{1} = \frac{W}{63.5/2}$		faraday ($i.e.$, = 96500 C).
	$\therefore W_{C\mu} = 16 \text{ g}$	16	(c)
3	(a)		pH < 7 ; Aqueous solution of CuSO ₄ is acidic in
	$E^{\circ} = \frac{0.059}{m} \log K_{eq}$ and $\Delta G^{\circ} = -nE^{\circ}F$		nature. Furthermore some drops of H_2SO_4 is also
	$\therefore \Delta G^{\circ} = + \text{ve, } E^{\circ} \text{ will be } - \text{ ve and } K_{eq} < 1; \text{ one}$	17	(a)
	should not write $\Delta G^{\circ} > 0$.	17	Anode is positive electrode and cathode is -ve
4	(d)		electrode in electrolytic cell whereas anode is
	$\tilde{E}_{cell}^{\circ} = 0.87 + 0.40 = 1.27 \text{ V}$		- ve electrode and cathode is $+$ ve electrode in
			electrochemical cells.
	Cell reaction : Fe + $Ni_2O_3 \rightarrow FeO + 2NiO$	18	(c)
5			$\Delta G = \Delta H - T \Delta S$
-	The given values are E_{RP}° . More is E_{RP}° more is the		For a spontaneous cell reaction, $\triangle H$ should be
	tendency to gain electron or to show reduction or		negative and $\triangle S$ should be positive. Hence, $\triangle G$
	to show strong oxidant nature.		should be negative.
6	(d)	19	(a)
	$E_{\text{cell}}^{\circ} = E_{OP_{\text{Sn}}}^{\circ} + E_{RP_{\text{Fe}}}^{\circ} = 0.14 + (-0.44)$		Cell reaction is $Mg + Sn^{2+} \rightarrow Mg^{2+} + Sn$
	= -0.30 V		$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \log \frac{[\text{Mg}^{2+}]}{[c_{1}-c_{2+1}]}$
8	(a)		$2 - [Sn^{2+}]$
_	Smallest ion possesses maximum mobility.		$= (2.34 - 0.14) - \frac{0.0391}{2} \log \frac{10}{10^{-1}} = 2.23 \text{ V}$
9	(a)	20	(a)
10	$\Lambda_{\rm M}^{\rm o} = \Lambda_a^{\rm o} + \Lambda_c^{\rm o}$		pH of solution increases due to formation of LiOH
10	(C) Molton NaCl nessassas Na ⁺ and Cl ⁻ ions		or due to increase in [OH ⁻] because H ⁺ ions are
11	(a)		discharged at cathode in preference to Li ⁺ .
11	Given, that	21	(a)
	$Zn / Zn^{2+} Cu^{2+} / Cu$		In the process of electro decomposition for
	\therefore Zn is anode and Cu is cathode.	22	purification of metal, impure metal acts as anode.
	Given,	22	(D) Specific conductivity (c)
	$Zn^{2+}/Zn = -0.76 V$		1
	$Cu^{2+} / Cu = + 0.34 V$		$=\frac{1}{R}$ × cell constant
	$E_{\text{cell}} = E_{\text{cathode}} - E_{\text{anode}}$		Cell constant = $\kappa \times R$
	= 0.34 - (-0.76)		$= 0.0129 \times 100 = 1.29$
	= 0.34 + 0.76	23	(b)
12	= 1.10 v		According to Nernst equation.
14	(°) Net redox change is zero		$E_{\text{cell}} = E_{\text{cell}}^{\circ} + \frac{0.0591}{100} \log \frac{[\text{Cu}^{2+}]}{100}$
13	(a)		$2^{-cen} [Zn^{2+}]$
	Cathode $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$		$E_{\rm even} = E_{\rm o}^{\circ} n - \frac{0.0591}{0.0591} \log \frac{[\text{Zn}^{2+}]}{100}$
			$2 \text{ [Cu}^{2+}]$

1. $E_1 = E_{\text{cell}}^\circ - \frac{0.0591}{2} \log \frac{1}{0.1}$ 0r y = c + (-m)xThus, the slope is negative. $= E_{\text{cell}}^{\circ} - \frac{0.0591}{2}$ 24 (a) In MnO_4^- the oxidation number of Mn is + 7. +7+22. $E_2 = E_{\text{cell}}^\circ - \frac{0.0591}{2} \log \frac{1}{1}$ \therefore Mn + 5 $e^- \rightarrow$ Mn In the reaction, 5 electrons are involved hence 5 $= E_{cell}^{\circ} - \frac{0.0591}{2} \times 0$ Faraday will be needed for the reduction of 1 mole of MnO_4^- . Therefore, for 0.5 mole of MnO_4^- , number of $= E_{cell}^{\circ}$ Faradays required = 2.5 F3. $E_2 = E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \log \frac{0.1}{1}$ 25 (a) Anode is electrode at which oxidation occurs. 26 **(b)** $= E_{\text{cell}}^{\circ} + \frac{0.0591}{2}$ MnO₂ in Lechlanche cell. 27 (d) $\therefore E_3 > E_2 > E_1$ As Cr has maximum oxidation potential value, 36 (a) therefore its oxidation should be easiest Transport number of an ion 28 (d) current carried by that ion = $\frac{1}{\text{total current carried by both the ions}}$ More is reduction potential, more is the power to get itself reduced or greater is oxidising power. 37 (c) 29 (d) Reduction is always carried out at cathode. $F = N \times e$ 38 (a) 30 (c) Reactions (i) $Fe(s) \rightarrow Fe^{2+} + 2e^{-}, \quad E^{\circ} = +0.44 V$ NaCl gives Na⁺ and Cl⁻ ions; At anode : $Cl^- \rightarrow (1/2)Cl_2 + e$ and $\Delta G_1^{\circ} = -nE^{\circ}F = -2 \times 0.44 \times F$ At cathode : $H^+ \rightarrow (1/2)H_2 + e$ 31 **(b)** (ii) $2H^+ + 2e^- + \frac{1}{2}O_2 \longrightarrow H_2O(l); \quad E^\circ = +1.23 V$ Electrons flow from Zn to Cu in outside circuit and current from Cu to Zn. and $\Delta G_2^{\circ} = -2 \times (+1.23) \times F$ 32 (d) $E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$ Net reaction, Ni / Ni²⁺ [1.0 M] || Au³⁺ [1.0 M] | Au $E_{\text{cell}} (\text{Au}^{3+} / \text{Au}) = 0.150 \text{ V}$ Fe $(s) + 2H^{+} + \frac{1}{2}O_{2} \rightarrow Fe^{2+} + H_{2}O(l)$ $E_{\text{cell}} (\text{Ni}^{2+} / \text{Ni}) = -0.25 \text{ V}$ $\Delta G_3^{\circ} = \Delta G_1^{\circ} + \Delta G_2^{\circ}$ $E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$ = 0.150 - (-0.25) $= -2 \times (+0.44) F + (-2 \times 1.23 \times F)$ = 0.15 + 0.25= + 0.4 V $= -0.88 \text{ F} \times -2.46 \text{ F} = -3.34 \text{ F}$ 33 **(b)** $= -3.34 \times 96500$ J 50 % H₂SO₄aqueous solution can be electrolysed by using Pt electrodes as = -322.31 kJ = -322 kJ $2H_2 SO_4 \rightarrow 2HSO_4^- + 2H^+$ $2HSO_4^- \rightarrow H_2S_2O_8 + 2e^-$ (at anode) 39 **(b)** 34 (d) 2 faraday will deposit 2 eq. or 1 mole of Cu. It is fact. 40 (a) 35 (d) Cl₂ is placed above F₂ in electrochemical series, For the given cell, halogen placed below replaces the other from its $E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \log \frac{[Zn^{2+1}]}{[Cn^{2+1}]}$ solution. 41 (d)

$$D_{cell} = \frac{nF}{n} + \log \log q$$

$$0.295 = \frac{0.0591}{2} \log K_{eq}$$
∴ $\log K_{eq} = 10$
∴ $K_{eq} = 10^{10}$
(c)
$$k = \frac{1}{R} \times \frac{1}{a} = \frac{1}{32} \times \frac{1.8}{5.4} = 0.0104$$
And $\lambda = k \times V = 0.0104 \times 10,000 = 104$
(d)
$$E^{\circ} = \frac{0.059}{n} \log K;$$
(c)
$$E^{\circ} = \frac{0.059}{n} \log K_{c}$$
∴ $0.295 = \frac{0.059}{2} \log K_{c}$
∴ $K_{c} = 10^{10}$
(a)
High value for E°_{red} . Shows more electronegativity *i.e.*, Zn is more electropositive than Fe.
$$(E^{\circ}_{2n^{2+}/2n} < E^{\circ}_{Fe^{2+}/Fe})$$
(b)
Eq. of Cu = Eq. of Ag
∴ $\frac{W}{63.5/2} = \frac{1.08}{108}$
∴ $W_{Cu} = 0.3175$ g
(c)
The cell reaction is
$$H_{2}(g) + I_{2}(s) \rightleftharpoons 2H^{+}(aq) + 2I^{-}(aq)$$
0.7714 = $0.535 - \frac{0.0591}{2} \log \frac{[H^{+}]^{2}[I^{-}]^{2}}{PH_{2}}$
∴ pH = 3
(a)
$$E^{\circ}_{Co^{3+}/Cc^{2+}} = + 0.77 V$$

$$E^{\circ}_{Co^{3+}/Cc^{2+}} = + 1.97 V$$
More negative value of E°_{red} indicates better reducing agent thus easily oxidized. Thus, oxidation of Cr²⁺ to Cr³⁺ is the easiest.
(d)
AgNO₃ $\stackrel{\Delta}{\rightarrow} Ag_{2}O \stackrel{\Delta}{\rightarrow} Ag + O_{2}$
(a)
$$Cu^{2+} + 2e^{-} \rightarrow Cu, \quad E^{\circ} = 0.34$$

 $E^{\circ} = \frac{2.303RT}{\log K}$

42

43

44

45

46

47

48

49

50

51

 $Zn^{2+} + 2e^- \rightarrow Zn$, $E^{\circ} = 0.76$

In the cell, Cu | Cu²⁺ || Zn²⁺ | Zn anode cathode In the cell. $E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$ = 0.76 - (-0.34)= 1.10 V52 (a) Here Fe acts as anode while Sn act as cathode. We know that, $E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$ = (-0.14) - (-0.44)= -0.14 + 0.44= 0.30 V54 **(d)** $Ag^+ + e^- \rightarrow Ag$ \therefore 96500 C are required to deposite Ag = 108 g ∴ 965 C are required to deposite Ag $=\frac{108}{96500}$ × 965 = 1.08 g 55 (a) $\Lambda_{\rm m} = \Lambda_{eq} \times \text{valency factor;}$ For NaCl, valency factor = 1; Molecular conductivity Λ_m is defined as the conductance of all the ions present in a solution containing 1g molecule in it; Λ_{eq} is defined as the conductance of all the ions present in a solution containing 1g equivalent in it. 56 **(a)** In electrochemical series, iron is placed below sodium, so it cannot displace sodium from its salt solution. Hence, no reaction takes place. $Fe + Na_3PO_4 \rightarrow No reaction$ 57 (d) During electrolysis of NaCl(aq), H⁺ ions are discharged at cathode and the pH of solution increases due to decrease in[H⁺]. 58 (d) Galvanic cell is $Cu(s) | Cu^{2+}(aq) || Hg^{2+}(aq) | Hg(l)$ In the above cell, oxidation of copper and reduction of mercury takes place. Its cell reaction is written as $\operatorname{Cu}(s) + \operatorname{Hg}^{2+}(aq) \rightarrow \operatorname{Cu}^{2+}(aq) + \operatorname{Hg}(l)$ 59 (a) $W = \frac{E.i.t}{96500} = \frac{1 \times 0.4 \times 30 \times 60}{96500}$ = 7.46 × 10⁻³ g and volume = $\frac{7.46 \times 10^3 \times 22.4}{2}$

$$E_{cell}^{*} = \frac{2.303RT}{nF} \log K_{eq} \quad [At 298 K]$$

$$E_{cell}^{*} = \frac{0.0591}{n} \log K_{eq} \quad [At 298 K]$$

$$0.591 = \frac{0.0591}{1} \log K_{eq} \quad [At 298 K]$$

$$0.591 = \frac{0.0591}{1} \log K_{eq}$$

$$\therefore \log K_{eq} = 10$$

$$\therefore K_{eq} = 1 \times 10^{10}$$
61 (c)
The Gibb's free energy change ΔG and emf (E°) of
a reversible electrochemical cell are related by the
following expression.

$$\Delta G = -nFE_{cell}^{\circ}$$
or $= -nFE$
62 (b)
$$E = E_{RP}^{\circ} + \frac{0.0591}{n} \log[M^{+}]$$
Given,

$$E_{RP}^{*} = -2.36 V, [M^{+}] = 0.1 M$$

$$n = 1 (for M^{+} \rightarrow M)$$

$$E = E_{RP}^{\circ} + \frac{0.0591}{n} \log[M^{+}]$$

$$= -2.36 + 0.0591 \times (-1)$$

$$= -2.36 + 0.0591 \times (-1)$$

$$= -2.419 V$$
63 (d)
1 faraday deposits 1 g equivalent of any
substance.
64 (b)
$$\frac{1}{a} = k \times R = 0.002765 \times 400$$

$$= 1.106 \text{ cm}^{-1}.$$
65 (d)
$$E_{cell} = E_{cell}^{\circ} + \frac{0.059}{2} \log \frac{0.01}{0.10}$$

$$\therefore E_{cell}^{\circ} = 0.32$$
No, $E_{cell}^{\circ} = \frac{0.059}{2} \log_{10} K$

$$\therefore 0.32 = \frac{0.059}{2} \log_{10} K$$

$$K = 10^{0.32/0.0295}$$
67 (a)
Ni⁻ + 2e⁻ \rightarrow Ni (at cathode)
Equivalent weight of Ni = $\frac{\text{mol.wt.}}{\text{gain electron}}$

$$= \frac{58.7}{2}$$

$$= 29.35 t = 12A, t = 1h = 60 \times 60s, t = 2 - 410$$

Weight of deposit Ni = $\frac{Zit \times efficiency}{100}$ $=\frac{29.35 \times 12 \times 60 \times 60 \times 60}{96500 \times 100}$ 96500 × 100 = 7.883 g68 **(a)** $\frac{W}{E} = \frac{i \times t}{96500}$ $\therefore \frac{W}{E} = 10^{-2} (\text{Ag is monovalent})$ $\therefore Q = i \times t = 96500 \times 10^{-2} = 965 \text{ C}$ 69 **(a)** The tendency to gain electron is in the order z > y > xThus, $y + e^- \rightarrow y^$ $x \rightarrow x^- + e^-$ 70 (d) NaCl, KNO₃, HCl are strong electrolytes but the size of H⁺ is smallest. Smaller the size of the ions, greater is the conductance and hence greater is the conductivity $(\kappa = C \times \text{cell constant}).$ 71 (a) Given, i = 2.5A $t = 6 \min 26 s = 6 \times 60 + 26 = 386s$ Number of coulomb passed = $i \times t$ $= 2.5 \times 386$ = 965 C $Cu^{2+} + 2e^- \rightarrow Cu$ \therefore 2 × 96500 C charge deposits Cu = 63.5 g ∴ 965 C charge deposits $Cu = \frac{63.5}{2 \times 96500} \times 965$ $= 0.3175 \, g$ 72 **(c)** Metal placed above in electrochemical series replaces the other from its salt solutions. 73 **(c)** $E_{\text{cell}} = E_{OP_{\text{Zn}}}^{\circ} + E_{RP_{\text{Cu}}}^{\circ} + \frac{0.059}{2} \log \frac{[\text{Cu}^{2+}]}{[\text{Zn}^{2+}]}$ $\therefore 1.1 = 0.78 + E_{RPc...}^{\circ} + \frac{0.059}{1}$

$$\therefore E_{RP_{Cu^{2+}/Cu}}^{\circ} = 0.32$$

$$\therefore E_{RP_{Cu^{2+}/Cu}}^{\circ} = -0.32V$$

74 (d)

More the reduction potential, more is the power to get itself reduced or lesser is reducing power or greater is oxidizing power

75 **(a)**

Quantity of current is charge, *i.e.*, coulomb or ampere sec.

76 (d)

77

Cobalt is anode, *ie*, oxidation takes place on cobalt electrode *ie*, cell reaction is

Co +
$$2Ag^+ \rightarrow Co^{2+} + 2Ag$$

 $E_{cell} = E_{cell}^{\circ} - \frac{RT}{nF} ln \frac{[Co^{2+}]}{[Ag^+]^2}$
Thus, less is the factor $\frac{[Co^{2+}]}{[Ag^+]^2}$, greater is the E_{cell}°
(c)
Electrolysis of water takes place as follows
 $H_2O \Rightarrow H^+ + OH^-$
Cathode anode
At anod
 $OH^- \xrightarrow{\text{oxidation}} OH + e^-$
 $4OH \rightarrow 2H_2O + O_2$
At cathode
 $2H^+ + 2e^- \xrightarrow{\text{Reduction}} H_2$
Given, time, $t = 1930s$
Number of moles of hydrogen collected
 $= \frac{1120 \times 10^{-3}}{22.4}$ moles
 $= 0.05$ moles
 $\because 1$ mole of hydrogen is deposited by $= 2$ moles
of electrons
 $\because 0.05$ moles of hydrogen will be deposited by
 $= 2 \times 0.05$
 $= 0.10$ mole of electrons
Charge, $Q = nF$
 $= 0.1 \times 96500$
Charge, $Q = it$
 $0.1 \times 96500 = i \times 1930$
 $i = \frac{0.1 \times 96500}{1930}$
 $= 5.0 \text{ A}$
(d)
4. $\Delta G^{\circ} = -nFE_{cell}^{\circ}$
5. $E_{cell}^{\circ} = \frac{2.303 RT}{nF} \log K_c$

Cell constant = $\frac{1}{a} = \frac{\text{length}}{\text{area}}$ \therefore unit is cm⁻¹. 81 (a) $\lambda = k \times V = \frac{1}{R} \times \frac{1}{a} \times V$ $=\frac{1}{210} \times 0.66 \times 100000$ $= 314.28 \text{ mho cm}^2 \text{ eq.}^{-1}$ 82 (a) For a reaction to be feasible, the value of $\vec{E_{cell}}$ must be positive. $Cu + 2HCl \rightarrow CuCl_2 + H_2(g)$ $E_{\text{cell}}^{\circ} = E_{\text{H}^{+}/\text{H}_{2}}^{\circ} - E_{\text{Cu}^{2+}/\text{Cu}}^{\circ}$ = 0.00 - (+0.34) = -0.34 V $Zn + 2HCl \rightarrow ZnCl_2 + H_2(g)$ $E_{\text{cell}}^{\circ} = E_{\text{H}^{+}/\text{H}_{2}}^{\circ} - E_{\text{Zn}^{2+}/\text{Zn}}^{\circ}$ = 0.00 - (-0.76) = +0.76 V Ag + 2HCl \rightarrow AgCl + $\frac{1}{2}$ H₂(g) $E_{\text{cell}}^{\circ} = E_{\text{H}^+/\text{H}_2}^{\circ} - E_{\text{Ag}^{2+}/\text{Ag}}^{\circ}$ = 0.00 - (0.80) = -0.80 V Hence, only reaction (ii) is feasible.

83 (d)

 $Zn + MgCl_2 \rightarrow no reaction$

This type of reaction does not occur because

$$Mg^{2+}E^{\circ} = -2.37$$
 V, while $Zn^{2+}E^{\circ} = -0.76$ V

84 (c)

The ratio of amount deposited during the same charge takes place in the ratio of their equivalent weights and is independent of solution concentration.

85 **(a)**

Electrical energy is provided during charging of battery.

86 **(b)**

 $\Delta G^{\circ} = -nFE^{\circ}$

$$-21.2 = -1 \times 96500 \times E$$

$$E = \frac{21.2}{96500} = 0.220 \,\mathrm{V}$$

87 (c)

According to Kohlrausch's law $\Lambda_{CICH_2COOH}^{\infty} = \Lambda_{CICH_2COO^-}^{\infty} + \Lambda_{H^+}^{\infty}$ Given from Kohlrausch law, $\Lambda_{CICH_2COONa}^{\infty} = 224\Omega^{-1} \text{ cm}^2 \text{ g eq}^{-1}$ $\Lambda_{CICH_2COONa}^{\infty} = \Lambda_{CICH_2COO^-}^{\infty} + \Lambda_{Na^+}^{\infty} \dots (i)$

80 **(b)**

96500 C

6.

79 **(b)**

 $k = Ae^{-E_a/RT}$

 $\mathrm{Cr}_2\mathrm{O}_7^{2-} + 6e^- \rightarrow 2\mathrm{Cr}^{3+}$

Reduction of 1 mol of $Cr_2O_7^{2-}$ to Cr^{3+} required 6

moles of electrons. Hence, charge required = $2 \times$

78

$$\Lambda_{\rm HCl}^{\infty} = 203\Omega^{-1} \, \rm cm^2 \, g \, eq^{-1}$$

$$\Lambda_{\rm HCl}^{\infty} = \Lambda_{\rm H}^{\infty} + \Lambda_{\rm Cl}^{\infty} \qquad ...(ii)$$

$$\Lambda_{\rm NaCl}^{\infty} = 38.5 \, \Omega^{-1} \, \rm cm^2 \, g \, eq^{-1}$$

$$\Lambda_{\rm NaCl}^{\infty} = \Lambda_{\rm Na^+}^{\infty} + \Lambda_{\rm Cl} \qquad(iii)$$
Adding Eqs. (i) and (ii) and subtracting Eq. (iii)

$$\Lambda_{\rm ClCH_2COO^-}^{\infty} + \Lambda_{\rm H^+}^{\infty} = \Lambda_{\rm ClCH_2COONa}^{\infty} + \Lambda_{\rm HCl}^{\infty} - \Lambda_{\rm NaCl}^{\infty}$$

$$= 224 + 203 - 38.5$$

$$= 427 - 38.5$$

$$= 388.5\Omega^{-1} \, \rm cm^2 \, g \, eq^{-1}$$
(b)

Cu is above Ag in electrochemical series and thus, $Cu + 2Ag^+ \rightarrow Cu^{2+} + 2Ag$ reaction occurs.

89 **(b)**

The electrode potential of glass electrode depends only on $[H^+]$.

90 **(a)**

$$\Lambda_{\nu} = \frac{K \times 1000}{c} = \frac{4.23 \times 10^{-4}}{0.04} \times 1000$$

Also, $\alpha = \frac{\Lambda_{\nu}}{\Lambda^{\infty}}$
 $\therefore \Lambda^{\infty} = \frac{\Lambda_{\nu}}{\alpha} = \frac{4.23 \times 10^{-4} \times 1000}{0.04 \times 0.0612}$
= 172.8

91 **(a)**

Fluoro group causes negative inductive effect increasing ionization, thus 0.1 M difluoroacetic acid has highest electrical conductivity.

92 **(b)**

Zn is above iron in electrochemical series.

93 **(c)**

In case of attacked electrodes, metal dissolves at anode and deposits at cathode.

$$[\operatorname{Ag} \to \operatorname{Ag}^+ + e \text{ (anode)}; \operatorname{Ag}^+ + e \\ \to \operatorname{Ag(cathode)}]$$

Thus, concentration of salt does not change.

94 **(b)**

Equivalent conductivity $(\Lambda_{eq}) = \frac{\kappa \times 1000}{C}$

Conductivity (
$$\kappa$$
) = $\frac{\text{cell costant}}{\text{resistance}}$
= $\frac{1.15}{250}$ S cm⁻¹

$$\therefore \Lambda_{eq} = \frac{1.15 \times 1000}{250 \times 1}$$
$$\Lambda_{eq} = 4.6 \ \Omega^{-1} \ cm^2 \ equiv^{-1}$$

95 (a) Given, $E_{Zn/Zn^{2+}}^{\circ} = 0.76 V$ $E^{\circ}_{Cu/Cu^{2+}} = 0.34 \text{ V}$ ∴ Zn is anode (∵ It has higher oxidation potential) $E_{\rm Zn^{2+}/Zn}^{\circ} = -0.76 V$... and $E_{Cu^{2+}/Cu}^{\circ} = -0.34 V$ $E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$ = -0.34 V - (-0.76 V)= 0.34 V + 0.76 V= 0.42 V96 **(c)** Ionic mobility = $\frac{\text{speed of ions}}{\text{pot.gradient}}$ 97 (c) $E = E^{\circ} - \frac{0.059}{2} \log[\mathrm{H}^+]^2$ $= 1.30 - \frac{0.059}{2} \log(10^{-2})^2$ $= 1.30 + \frac{0.236}{2} = 1.418$ V 98 **(c)** $E^{\circ} = \frac{0.059}{2} \log K_c$ $0.46 = \frac{0.059}{2} \log K_c$ $\log K_c = 15.59$ $\therefore K_c = 3.9 \times 10^{15}$ 99 (c) Cl in OCl⁻has oxidation number as +1. Thus, $Cl^+ + 2e \rightarrow Cl^-(i.e., reduction of OCl^-)$ 100 (c) The oxidizing power of MnO_4^-/Mn^{2+} couple decreases by 0.38 V. 101 (d) $E_{\text{cell}}^{\circ} = \frac{0.059}{n} \log K_c$ 0.295 = $\frac{0.059}{2} \log K_c$; $\therefore K_c = 10^{10}$

102 **(b)**

Fe being above Cu in electrochemical series and

thus, liberates Cu from CuSO₄.

103 **(a)**

 $2\text{Al} + \text{dil} \, . \, \text{H}_2\text{SO}_4 \rightarrow \text{Al}_2\text{SO}_4 + \text{H}_2 \uparrow$

104 **(a)**

As 'A' has more E_{red}° value than B, A will act as cathode in the galvanic cell. Hence,

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$

= (2.23) - (-1.43)
= 2.23 + 1.43 = 3.66 V

105 **(d)**

H₂SO₄ will furnish maximum H⁺.

106 **(c)**

Hg is placed below H in electrochemical series.

107 (c)

Eq. of
$$H_2 = Eq. of Al = \frac{4.5}{27/3} = 0.5$$

 $\therefore 1 eq. H_2 = 11.2 L$
 $\therefore 0.5 eq. H_2 = 5.6 L$

108 **(b)**

No. of moles of H₂ = $\frac{11.2}{22400}$ No .of equivalence of hydrogen = $\frac{1.12 \times 2}{22400}$ = 10^{-4} No. of Faradays required = 10^{-4} \therefore Current to be passed in one second = 96500 × 10^{-4} = 9.65 A

109 (d)

Nature of ion also includes size, charge on ion. 110 **(a)**

During rusting, oxidation of iron takes place, *i.e.*, it acts as anode. Hence, coating/connecting iron with metal of lower reduction potential (in comparison to iron) is the best way to prevent its rusting. In this process, the metal with low reduction potential undergoes oxidation (*i.e.* acts as anode) while iron acts as cathode. (Cathodic protection)

Use of saline water accelerates the process of rusting thereby increasing the electric conduction of electrolyte solution formed on the metal surface.

111 **(b)**

$$E_{RP} = E_{RP}^{\circ} + \frac{0.059}{1} \log[H^+]$$

= 0 + 0.059× (-3) = -0.177 V.

113 **(a)**

 E_{op}° of K > E_{Op}° of Al.

114 **(d)**

In concentration cell net redox change is zero and

the decrease in free energy during transfer of matter is responsible for electrical work.

115 **(b)** $Mn^{7+} + 5e \rightarrow Mn^{2+};$

Thus, 5 mole electron = 5 faraday.

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} + \frac{0.0592}{n} \log \frac{[\text{Cu}^{2+}]}{[\text{T1}^{+}]^2}$$

$$n = 2$$

∴ According to above equation E_{cell} can be increased by increasing [Cu²⁺].

117 **(c)**

Only Zn and Fe are above H;

Also Fe^{3+} can be reduced to Fe^{2+} by H.

118 **(b)**

The cathode and anode reactions respectively are

$$Cu^{2+} + 2e^- \rightarrow Cu$$

 $2\text{Cl}^- \rightarrow \text{Cl}_2 + 2e^-$

The two moles of electrons have been transferred from anode to cathode to produce Cu and Cl_2 in a mole ratio of 1:1. Thus, 2F electricity is required

119 **(b)**

On dilution, ionic mobility increases but number of ions present in 1 mL decreases; Thus, only conductivity decreases and rest all increases.

120 **(d)**

$$E_{\text{cell}} = E_{\text{OP}_{\text{anode}}} + E_{\text{RP}_{\text{cathode}}}$$
$$= E_{\text{OP}_{\text{anode}}} - E_{\text{OP}_{\text{cathode}}}$$

121 **(b)**

Electrode potential of cell must be positive for spontaneous reaction.

$$\operatorname{Zn}^{2+} \longrightarrow \operatorname{Zn}$$
; $E^{\circ} = -0.76 V$

 $Cu^{2+} \rightarrow Cu$; $E^{\circ} = -0.34 V$

Redox reaction is

$$Zn \rightarrow Zn^{2+} + 2e^{-} \quad (\text{oxidation})$$

$$\frac{Cu^{2+} + 2e^{-} \rightarrow Cu}{Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu} \quad (\text{reduction})$$

$$\frac{Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu}{E_{\text{cell}} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}}$$

$$= -0.34 - (-0.76)$$

$$= + 0.42 \text{ V}$$

 E_{cell} is positive , so above reaction is feasible. 122 **(c)**

Among given elements, *D* has the minimum reduction potential (- 2.37 V) hence, it can displace all other from their salts.

 Cr/Cr^{3+} (0.1 M) || Fe²⁺ (0.01 M) | Fe Oxidation half-cell; $Cr \rightarrow Cr^{3+} + 3e^- \times 2$

Reduction half-cell; $Fe^{2+} + 2e^- \rightarrow Fe \times 3$ Net cell reaction; $2Cr + 2Fe^{2+} \rightarrow 2Cr^{3+} + 3Fe (n = 6)$ $E_{\text{cell}}^{\circ} = E_{\text{oxidation}}^{\circ} - E_{\text{reduction}}^{\circ}$ = 0.72 - 0.42= 0.30 V $E_{\text{cell}}^{\circ} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log \frac{[\text{Cr}^{3+}]^2}{[\text{Fe}^{2+}]^3}$ $= 0.30 - \frac{0.0591}{6} \log \frac{(0.1)^2}{(0.01)^3}$ $= 0.30 - \frac{0.0591}{6} \log \frac{10^{-2}}{10^{-6}}$ $= 0.30 - \frac{0.0591}{6} \log 10^4$ $E_{\rm cell} = 0.2606 V$ 124 (c) A thin film of Cr_2O_3 is formed on Cr Surface. 125 (b) The unit of electrochemical equivalent (Z) is g/C. w = Z.i.t $\therefore \quad Z = \frac{W}{i_{\star}t} \, \mathrm{g}/C$ 126 (d) The elements which are below H_2 in electrochemical series, cannot displaceH₂. : Out of Li^+ , Sr^{2+} , Al^{3+} and Ag^+ , Ag^+ is below H_2 in electrochemical series, so Ag⁺ cannot displaceH₂. 127 (b) As the reduction potential of Zn is less than that of Ag, hence Zn will act as anode when Acell is made using them. Hence, the correct reaction will be $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$ (oxidation)

 $\frac{2\operatorname{Ag}^{+}(aq) + 2e^{-} \rightarrow 2\operatorname{Ag}(s)}{\operatorname{Zn}(s) + 2\operatorname{Ag}^{+}(aq) \rightarrow \operatorname{Zn}^{2+}(aq) + 2\operatorname{Ag}(s)}$

128 **(a)**

 $W \propto i \times t$ and $W = Z \times i \times t$.

129 **(b)**

Cell constant =
$$\frac{k}{C} = 0.0212 \times 55$$

= 1.166 cm⁻¹

130 **(c)**

Reducing power, *ie*, the tendency to lose electrons increases as the reduction potential decreases

131 **(a)**

7.

Reducing character $\propto \frac{1}{\text{reduction potentials}}$

8. Oxidizing power of halogen decreases from F_2 to I_2 because their reduction

potentials decreases from fluorine to iodine.

9. The reducing power of hydrogen halides increases from hydrogen chloride to hydrogen iodide since, the stability of the *H* – *X* bond decreases in the same order. Hence, all statements are correct.

133 **(d)**

 $E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$ $\therefore 2.46 = (+0.80) - E_{\text{Al}^{3+}/\text{Al}}^{\circ}$ Or $E_{\text{Al}^{3+}/\text{Al}}^{\circ} = 0.80 - 2.46 = -1.66 \text{ V}$

= 0, then $\Delta G^{\circ} = -nE^{\circ}F = 0$.

134 **(d)**

 E° for reaction in (d) = $E^{\circ}_{OP_{Br}} + E^{\circ}_{RP_1} = -1.09 + (-0.54)$

$$= -1.63 \text{ V}$$

Since, E° is negative and thus, reaction is non-spontaneous.

136 **(b)**

 $\Delta G^{\circ} = -nFE^{\circ}$ $\Delta G^{\circ} = -2.303 \ RT \ \log K_c$ $\therefore nFE^{\circ} = 2.303 \ RT \ \log K_c$ $\log K_c = \frac{nFE^{\circ}}{2.303 \ RT}$ $= \frac{2 \times 96500 \times 0.295}{2.303 \times 8.314 \times 298}$ $\log K_c = 9.97$ $\therefore K_c = 1 \times 10^{10}$

137 **(c)**

The molar conductivity of potassium hexacyanoferrate (II) *i.e.*, K₄[Fe(CN)₆] is highest because it gives

t.e., $K_4[Fe(CN)_6]$ is nignest because it gives maximum number of ions on ionization. $K_4[Fe(CN)_6] \rightarrow 4K^+ + [Fe(CN)_6]^{4-}$

139 **(a)**

The metals having higher negative value of standard reduction potential are placed above hydrogen in electrochemical series. The metals places above hydrogen has a great tendency to donate electrons or oxidising power. The metals having great oxidizing power are strongest reducing agent. Zn has higher negative value of standard reduction potential. Therefore, it is the strongest reducing agent.

w = 60 gi = 5A

Equivalent weight of Ca = $\frac{\text{atomic weight}}{\text{valency}}$ $=\frac{40}{2}=20$ According to first law of Faraday electrolysis $w = Zit = \frac{\text{equivalent weight}}{96500} \times i \times t$ $\therefore 60 = \frac{20}{96500} \times 5 \times t$ $t = \frac{96500 \times 60}{20 \times 5} s$ $=\frac{96500\times60}{20\times5\times60\times60}h$ = 16.08 h142 **(b)** In Galvanic cell (Daniel cell) the electrical energy is produced from chemical reactions. $Zn \rightarrow Zn^{2+} + 2e^-$ (oxidation) At anode At cathode $Cu^{2+} + 2e^- \rightarrow Cu$ (reduction) **Cell reaction** $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$ $Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$ 0r 143 **(b)** $\Lambda_{\rm AcOH}^{\infty} = \Lambda_{\rm AcONa}^{\infty} + \Lambda_{\rm HCl}^{\infty} - \Lambda_{\rm NaCl}^{\infty}$ = 91.0 + 426.2 - 126.5= 390.7144 **(b)** The metal with more E_{OP}° is oxidised. 145 (d) $E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.05915}{n} \log Q$ For standard hydrogen electrode, $E_{\rm cell}^{\circ} = 0.00V$ $\therefore E_{\text{cell}} = -\frac{0.05915}{n}\log Q$ Given, pH = 1.0 \therefore [H⁺] = 1 × 10⁻¹ $E_{\text{cell}} = -\frac{0.05915}{n}\log\frac{1}{[\text{H}^+]}$ [: The reaction occurring is $2H^+ + 2e^- \rightarrow H_2$] $= + \frac{0.05915}{1} \log(\mathrm{H^+})$ $= 0.05915 \log(10^{-1})$ = -0.05915 V= -59.15 mV146 (c) $\Lambda_{eq}^{\circ} = \kappa \times \frac{1000}{normality}$ $=\frac{0.005 \times 1000}{0.01} = 500 \text{ ohm}^{-1} \text{ cm}^2 \text{ equiv}^{-1}$ 147 (a) E_{OP}° of Mg > E_{OP}° of Al.

148 **(a)** For the given cell, reaction is

 $Zn + Fe^{2+} \rightarrow Zn^{2+} + Fe$ $E = E^{\circ} - \frac{0.0591}{n} \log \frac{C_1}{C_2}$ or, $E^{\circ} = E + \frac{0.0591}{n} \log \frac{C_1}{C_2}$ $= 0.2905 + \frac{0.0591}{2} \log \frac{10^{-2}}{10^{-3}} = 0.32 \text{ V}$ $E^{\circ} = \frac{0.0591}{2} \log K_{\rm c}$ $\therefore \log K_c = \frac{0.32 \times 2}{0.0591} = \frac{0.32}{0.0295}$ $K_c = 10^{\frac{0.32}{0.295}}$ 149 (d) When Alead storage battery is discharged, the following cell reactions take place. At anode $Pb + H_2SO_4 \rightarrow PbSO_4 + 2H^+ + 2e^-$ At cathode $PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$ 150 (d) $2\mathrm{H}^+ + 2e^- \rightarrow \mathrm{H}_2$ According to Nernst equation, $E = E^{\circ} + \frac{0.0591}{n} \log \frac{1}{[\mathrm{H}^+]^2}$ $E = 0 - \frac{0.0591}{2} \log[\mathrm{H}^+]^2$ = - 0.0591 pH 151 (a) $E_{\rm Fe^{2+}/Fe}^{\circ} = -0.441 \, \rm V$ $E_{\rm Fe^{3+}/Fe}^{\circ} = -0.771 \, \rm V$ $E_{\text{cell}}^{\circ} = E_{OP_{\text{Fe}/\text{Fe}^{2+}}}^{\circ} + E_{RP_{\text{Fe}^{3+}/\text{Fe}^{2+}}}^{\circ}$ (See redox change) = + 0.441 + 0.771 = 1.212 V 152 (b) $E_{OP_{Z_n}}^{\circ} > E_{OP_{C_n}}^{\circ}$ or $E_{RP_{Z_n}}^{\circ} < E_{RP_{C_n}}^{\circ}$ 153 (b) H₂SO₄ is strong electrolyte. 154 (c) $\Lambda_v = \frac{\Lambda^0}{100}$

 $\therefore \ \alpha = \frac{\Lambda_{\nu}}{\Lambda^0} = \frac{\Lambda^0}{100\Lambda^0} = 0.01$

155 **(b)**

$$\frac{1}{2} H_2 | H^* | | Ag^* | Ag$$

$$E_{cut}^* | Ag^* | Ag$$

$$E_{cut}^* | E_{cuthod} - E_{ande}^*$$

$$= E_{Ag^*/Ag}^* - E_{H^*/\frac{1}{2}H_2}^*$$

$$= (0.80) - (0.0) = 0.80 V$$
155 (a)
10ns move towards opposite electrodes due to codombit forces of attraction.
157 (c)
158 (d)
159 (b)
250mL of 1 M AgN0_s contain = $\frac{250}{1000}$

$$= 0.25 \text{ mole AgN0_3}$$

$$= 24125 \text{ C}$$
160 (b)
16 faratay = 1 eq. of $\Omega = 1/2 \text{ mole } \Omega_2$

$$= 9/2 \text{ for the latter at the section is the reaction in the electrochemical series, cannot liberate 0.25 g equivalent of metal any Ag is present below hydrogen in the electrochemical series, cannot liberate hydrogen from the dilute acids.
Among the given metal only Ag is present below hydrogen in the electrochemical series, so it does not evolve hydrogen withdil H(1).
Ag + dt. H(1) \rightarrow No reaction
162 (b)
Any cell (like fuel cell), works when potential difference is developed.
163 (a)
$$t_c = \frac{L_c}{u_a + u_c}, t_a = \frac{u_a}{u_a + u_c}, t_a = \frac{u_a}{u_a + u_c}, t_a = \frac{u_a}{u_a + u_c}, t_a = 1 \frac{u_a}{u_a + u_c$$$$

ends upon the charge to size nic size in case of hydrated $) < Li^+(aq)$ = Eq. of C = $\frac{2.7}{27/n_2} = \frac{7.2}{48/n_3}$ $= 0.1n_2 = 0.15 n_3$ $= 0.1n_2 = 0.15 n_3$ $= \frac{n_2}{3} = \frac{n_3}{2}$ $= 3, \qquad n_3 = 2$ ich shows colour change during illed indicator electrode. or molar conductance r concentration (mol L^{-1}) $\operatorname{hce}\left(\Lambda_{m}\right) \propto \left(\frac{1}{c}\right)$ atalyzed by moist air. $I_2 + 20H^-$ 0.02 mole of electrons are required $C = i \times t$ Page | 60 Time required = $\frac{0.02 \times 96500}{10 \times 10^{-3}} = 19.3 \times 10^4 s$

172 (b)

Metal having higher E_{OP}° replaces the other from its solution.

173 (a)

Eq. of Ag = Eq. of H₂;

$$\frac{W}{108} = \frac{5600 \times 2}{22400 \times 1}$$

$$\therefore W_{Ag} = 54 \text{ g}$$

174 **(b)**

...

 $Ag^+ + e^- \rightarrow Ag$ 9650 C = 0.1 F = 0.1 equivalent Ag= 0.1 mol Ag= 10.8 g Ag

175 (d)

More or +ve is E_{Op}° for an electrode more is its reducing power and *vice – versa*.

177 (b)

BeCl₂ is predominantly more covalent among halides of alkaline earth metals.

178 **(b)**

In CuSO₄, change is $Cu^{2+} + 2e \rightarrow Cu$; In CuCN, change is $Cu^+ + e \rightarrow Cu$; Thus, $W \propto E_{Cu}$, which is more in CuCN.

179 (c)

 E° nE° $Mn^{2+} + 2e^- \rightarrow Mn$ -1.18 V -2.36 $Mn^{3+} + e^- \rightarrow Mn^{2+}$ 1.51 V 1.51 V $Mn^{3+} + 3e^- \rightarrow Mn$ -0.28-0.85180 (a) $2H^- \rightarrow H_2 + 2e$; Hydrogen in CaH₂ is – ve.

181 (c)

1 mole of monovalent metal ion means charge of N electrons

i.e., 96500 C or 1 faraday.

182 (a)

For strong electrolytes $\Lambda vs \sqrt{c}$ plots are straight line.

183 (d)

The metal should be capable of adsorbing H (e.g., Pt).

184 **(b)**

Laws of electrolysis were proposed by Michael Faraday in 1833.

10. Faraday's first law "The mass of any substance deposited or liberated at any electrode is directly proportional to the quantity of electricity passed".

i.e.,
$$w \propto Q$$

where, w = mass of ions liberated in gram

Q = quantity of electricity passed in coulombs.

11. Faraday's second law "When the same quantity of electricity is passed through different electrolytes, the masses of different ions liberated at the electrodes are directly proportional to their chemical equivalents."

i.e.,
$$\frac{w_1}{w_2} = \frac{E_1}{E_2}$$
 or $\frac{Z_1 i t}{Z_2 i t} = \frac{E_1}{E_2}$

185 (d)

Strong electropositive metals (I group, II group and Al) cannot be obtained at cathode by electrolysing their aqueous salt solutions.

186 **(b)**

Weight of Cu Eq. wt. of Cu Weight of $H_2 = Eq.$ wt. of H_2 $\frac{\text{Weight of Cu}}{0.504} = \frac{63.6/2}{1}$ \therefore Weight of Cu = 15.9 g

187 (b)

In presence of Hg electrode preferential discharge of Na⁺ (in comparison to H⁺) occurs.

188 (b)

Specific conductivity of a solution decreases with dilution.

189 (b)

Passage of current in electrolytic solution is due to migration of ions towards opposite electrodes.

$$E_{\text{cell}} = E_{OP_L} + E_{RP_R} = -E_{RP_L} + E_{RP_R}.$$

191 **(a)**
 $E^\circ = E$, when $[\text{Zn}^{2+}] = 1M$;

Also process is
$$\operatorname{Zn}^{2+}(aq) + 2e \rightarrow \operatorname{Zn}(s)$$
.

AgI (s) +
$$e^- \rightleftharpoons Ag (s) + I^-$$
; $E^\circ = 0.152 \text{ V}$
Ag (s) $\rightarrow Ag^+ + e^ E^\circ = -0.8 \text{ V}$
AgI (s) $\rightarrow Ag^+ + I^ E^\circ = -0.952$
 $E_{\text{cell}}^\circ = \frac{0.059}{n} \log K_{sp}$
 $-0.952 = \frac{0.059}{1} \log K_{sp}$

$$\log K_{sp} = \frac{-0.952}{0.059} = -16.135$$

193 (a)

$$\Lambda_{\rm CH_3COOH}^{\infty} = \Lambda_{\rm CH_3COONa}^{\infty} + \Lambda_{\rm HCl}^{\infty} - \Lambda_{\rm NaCl}^{\infty}$$

194 (a) At cathode : $Cu^{2+} + 2e \rightarrow Cu$; $Cu \rightarrow Cu^{2+} + 2e$ At anode : 195 (d) Wt. of Cu deposited eq. wt. of Cu $\frac{1}{\text{Wt. of H}_2 \text{ produced}} = \frac{1}{\text{eq. wt. of H}}$ $\frac{0.16}{\text{wt. of H}_2} = \frac{64/2}{1} = \frac{32}{1}$ Wt. of $H_2 = \frac{0.16}{32} = 5 \times 10^{-3} \text{ g}$ Volume of H₂ liberated at STP $=\frac{22400}{2}\times 5 \times 10^{-3}cc$ = 56 cc196 (a) Faraday's laws are independent of external factors. 197 (a) E_{OP}° for Li is more, $Li \rightarrow Li^+ + e$ Thus, Li is strong oxidant. 198 (d) All are electrolytic cells. 199 (a) 96500 C or 1F will liberate 1 eq. of O_2 or 1/4 mole O_2 or 5.6 litre O_2 at NTP. 200 (a) 96500C or 1 Faraday charge is required for the deposition of 1 g-equivalent of a substance. 201 (c) Equivalent conductance = 1000 × conductance × cell constant normality So, units are, Ω^{-1} cm²equiv⁻¹ or S cm²equiv⁻¹. 202 **(b)** For strong electrolytes the plot of molar conductance (Λ_m) *vs*. \sqrt{C} is linear. \sqrt{C} Variation of molar conductance $(\Lambda_{\rm m})$ with \sqrt{C} for strong electrolyte. 203 (b) $\Lambda_{eq}^{\infty}(NH_4 OH) = \Lambda_{eq}^{\infty}(NH_4Cl) + \Lambda_{eq}^{\infty}(NaOH) \Lambda_{eq}^{\infty}$ (NaCl) = (149.74 + 248.1 - 126.4) $= 271.44 \ \Omega^{-1} \ \mathrm{cm}^2 \mathrm{eg}^{-1}$

204 (c) $E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$ $E^{\circ}_{Ag^+/Ag} - E^{\circ}_{Cu^+/Cu}$ = -0.80 - 0.34= + 0.46205 (c) $E_{\text{cell}} = E_{\text{OP}_{\text{Ni/Ni}_2^{2+}}} + E_{\text{RP}_{\text{Au}^{3+}/\text{Au}}}$ $E_{OP_{Ni}}^{\circ} - \frac{0.059}{2} \log[Ni^{2+}] + E_{RP_{Au}}^{\circ} + \frac{0.059}{3} \log[Au^{3+}]$ $= 0.25 - \frac{0.059}{2}\log(1.0) + 1.50 + \frac{0.059}{3}\log 1.0 =$ 1.75V 206 (d) The metal placed below in electrochemical series does not react with that metal salt solution which metal is placed above in series. 208 (a) Cell representation is done as follows Anode | Anodic electrolyte || cathodic electrolyte | cathode (i) Oxidation is loss of electron and it takes place at anode. Reduction is gain of electron and it takes place at cathode. \therefore For cell reaction, $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$ Zn is anode and Cu is cathode. : Cell representation is Zn | Zn²⁺ || Cu²⁺ | Cu 209 (c) 2×96500 C electricity is used to liberate = 22400 mL O₂ at STP \therefore 9.65 \times 1000 C electricity will liberate $=\frac{22400 \times 9.65 \times 1000}{2 \times 96500}$ = 1120 mL

210 (d)

Oxidation half-cell

Oxidation half-cell

$$ClO_3^- \rightarrow ClO_2^- + 2e^-; E^\circ_{cell} = -0.36 V$$

Reduction half-cell
 $ClO_3^- + 2e^- \rightarrow ClO_2^-; E^\circ_{cell} = 0.33 V$
 $E^\circ_{cell} = 0.33 - 0.36 = -0.03 = \frac{RT}{2F} \ln K$
 $or -0.03 = \frac{0.059}{2} \log K \text{ or } K = 0.1$
 $2ClO_3^- \Rightarrow ClO_4^- + ClO_2^-$
 $0.1 - 2x \quad x \quad x$
 $\frac{x^2}{(0.1 - 2x)^2} = 0.1$
 $or \quad x = 1.9 \times 10^{-2}$
211 (a)
214 (d)
 $Fe^{2+} + 2e \rightarrow Fe; \qquad -\Delta G_1 = 2 \times (-0.44) \times F$
 $Fe^{3+} + 3e \rightarrow Fe; \qquad -\Delta G_2 = 3 \times (-0.036) \times F$
 $\overline{Fe^{2+}} \rightarrow Fe^{3+} + e; \Delta G_3 = -0.88 + 0.108 = 0.772 \text{ or } 0.772 = 1 \times E^\circ \times F$
 $\therefore Fe^{3+} + e \rightarrow Fe^{2+}; E^\circ = +0.772 V$
Above procedure should be used only when two half reactions on algebraic sum give a third half reaction.
215 (b)

Chromium is more electropositive metal than iron. In stainless steel, chromium forms an oxide layer and thus it protects steel from corrosion.

216 **(b)**

 $Cu^{2+} + 2KI \rightarrow CuI_2 + 2K^+;$ $2CuI_2 \rightarrow Cu_2I_2 + I_2$

217 (d)

Salt bridge is used to remove or eliminate liquid junction potential arised due to different relative speed of ions of electrolytes at the junction of two electrolytes in an electrochemical cell. Thus, a salt bridge such as KCl is placed in between two electrolytes. A salt used for this purpose should have almost same speeds of its cation and anion.

218 **(b)**

$$w_{\text{Ag}} = \frac{E_{\text{Ag}} \times Q}{96500} = \frac{108 \times 9.65}{96500} = 1.08 \times 10^{-2} \text{ g}$$

= 10.8 mg

219 (d)

 $Na_2S_4O_6$ is

∪—s—S—S—Š—O⁻Na⁺ ∥ ∥ O O

The two S atoms which are linked to each other have 0 oxidation number. The oxidation number of other two S-atoms can be calculated as $2x + 2 \times 0 + 6 \times -2 = -2$

Cu is placed above Ag in electrochemical series,

$$2x + 2 \times 0 + 6 \times -2 =$$

 $2x = 12 - 2 = 10$
 $x = +5$

220 **(a)**

Higher the negative value of E° , more is the reducing power.

The order of E° values (negative value) is -2.37 > -0.76 > -0.44 $\langle n r \rangle$ $(\pi \rightarrow)$

(Mg) (Zn) (Fe)

$$\therefore$$
 Mg can reduce both Zn²⁺ and Fe²⁺. Zn can
reduce Fe²⁺, but not Mg²⁺. Fe cannot reduce Mg
and Zn but can oxidize them.

221 (c)

:.

It is definition of Kohlrausch's law.

$$\operatorname{Sn}^{2+} \rightarrow \operatorname{Sn}^{4+} + 2e^{-}$$

$$\begin{aligned} & \mathcal{E}_{cull} = \mathcal{E}' \cdot \frac{6.05}{2} \log \left[\frac{100.1}{0.1} \right] \\ &= \mathcal{E}' + \frac{0.057}{2} \log \left[\frac{100.1}{0.1} \right] \\ &= \mathcal{E}' + \frac{0.057}{2} \log \left[\frac{100.1}{0.1} \right] \\ &= \mathcal{E}' + \frac{0.057}{2} \log \left[\frac{100.1}{0.1} \right] \\ &= \mathcal{E}' + \frac{0.057}{2} \log \left[\frac{100.1}{0.1} \right] \\ &= \mathcal{E}' + \frac{0.057}{2} \log \left[\frac{100.1}{0.1} \right] \\ &= \mathcal{E}' + \frac{0.057}{2} \log \left[\mathcal{K}_c \right] \\ &= \frac{0.0591}{2} \log \left[\mathcal{K}_c \right] \\ &= \frac{0.01}{2} \log \left[\mathcal{K}_c \right] \\ &= \frac{0.01}$$

244	(a)		E_3° , we can not obtain that way because electrode
	At anode $2H_{0}(t) = 0$ () + $4H_{0}^{+}(t) + 4F_{0}^{-}$		potential is intensive property. That's when we
	$2H_2O(l) \rightarrow O_2(g) + 4H^2(aq) + 4e$		determine E_3 calculating
	At cathode $2Cu^{2+}(aa) \pm 4a^{-} \rightarrow 2Cu(a)$		$\Delta G_3 = \Delta G_1 - \Delta G_2$
	$2Cu (uq) + 4e \rightarrow 2Cu(s)$		$(\Delta G \text{ is an extensise property})$
	Net electrolysis reaction is $2(u^{2+}(aa) + 2H_0(l) \rightarrow 2(u(a) + 4H^+(aa) + 1)$		$\Delta G_3 = 3 \times 0.036 F - 2 \times 0.439 F$
	$2cu (uq) + 2n_2 O(i) \rightarrow 2cu(s) + 4n (uq) + O_1(q)$		$\Delta G_3 = 0.108 F - 0.878 F$
	$O_2(g)$ So H_2O is obtained		$-1 \times F \times E_3 = -0.770 F$
245	(a)		$E_3 = 0.770 F$
210	During the electrolysis of fused NaCl, chloride ions	253	(b)
	are oxidized at anode and this process is called		$E_{\text{Cell}} = E_{OP_{\text{Sn}}} + E_{RP_{\text{Pb}}}$
	oxidation		or $E_{Rp_{Sn}} < E_{RP_{Pb}}$, then Sn will oxidise to reduce
			Pb^{2+} .
246	(d)	254	(d)
	Since, reduction occurs at Ag electrode hence,		The substances which have lower reduction
	increase in the concentration of Ag ⁺ or decrease		potentials are stronger reducing agents. Hence,
	in concentration of Cu^{2+} will increase the voltage.		the order of strength of reducing agent is
247	(a)		increases in the following order
	Magnesium is more electropositive than zinc,		$Cl^- < Fe^{2+} < H_2 < Zn$
	hence it can reduce Zn^{2+} (magnesium is placed		strength of reducing agent increases
	above zinc in electrochemical series). $M_{\pi} = \frac{1}{2} \frac{1}{$	255	(d)
240	$Mg + ZHO \rightarrow MgO + ZH$		Λ_m (CH ₃ COOH)
240	(c) It is better to write unit as $\log \cosh^{-1}$ in place		$= \Lambda_m(CH_3COONa) + \Lambda_m(HCl)$
	of a coulomb $^{-1}$		$-\Lambda_m(\text{NaCl})$
249	(h)		= 91.0 + 425.9 - 126.4
21)	Cell reaction will be		= 516.9 - 126.4
	$Br_{2} + Sn^{2+} \rightarrow 2Br^{-} + Sn^{4+}, E^{\circ} = 0.95 V$	256	$= 390.5 \text{ S cm}^2 \text{ mol}^2$
	$F^{\circ}_{\mu} = \frac{0.059}{\log K}$	250	$AgNO_{1} + KC_{1} \rightarrow AgC_{1} + KNO_{2}$
	$2_{\text{cell}} = \frac{100 \text{ meq}}{2}$	257	(a)
	$0.95 = \frac{1}{2} \log K_{eq}$	_0.	$\Lambda_{\rm m}^{\infty}$ for BaCl ₂ = $\Lambda_{\rm m}^{\infty}$ Ba ²⁺ + $2\Lambda_{\rm m}^{\infty}$ Cl ⁻
	$\frac{0.95 \times 2}{1000} = \log K_{eq}$		$\therefore \Lambda_{eq}^{\infty} \text{ for } BaCl_2 = 1/2\Lambda_m^{\infty} Ba^{2+} + \Lambda_m^{\infty} Cl^{-}$
	0.059 0.059 $V \sim 10^{32}$		= 127 / 2 + 76
250	$R_{eq} \sim 10^{\circ}$		$= 139.5 \ \Omega^{-1} \ \mathrm{cm}^2$
250	(D) It is either $chm^{-1}m^{-1}$ or Sigmons m^{-1} i.e. Cm^{-1}	258	(d)
251	It is either offin in of Stemens in $, t.e., 5$ in .		$-\Delta G = nEF$
231	(a) Jonic mobility		$-966 \times 10^3 = 4 \times E \times 96500$
	ionic conductance		$\therefore E = -2.5 \text{ V}$
	$\mu_{Ag}^{+} =$		Thus, an e.m.f. of $+$ 2.5 is needed to carryout the
	$=\frac{5 \times 10^{-4}}{10^{-4}}$		electrolytic reduction of Al_2O_3 .
	$96500 = 5.2 \times 10^{-9} \text{ cm} / c$	259	(c)
252	$= 5.2 \times 10^{-1} \text{ cm/s}$		In Galvanic cell the electrical energy is produced
232	Given		from chemical reaction. <i>i. e.</i> , chemical energy is
	$Fe^{3+} + 3e^- \rightarrow Fe^{-} = -0.036 V$ (i)	260	transformed into electrical energy.
	$E_1 = 0.030 V \dots (1)$ $E_2^2 + 2e^- \rightarrow E_2 = E_2^2 - 0.030 V \dots (1)$	260	(a)
	We need to calculate		ratation rate independent of all other over the store and $W \propto 0$
	$Fe^{3^+} + e^- \rightarrow Fe^{2^+} F_o^\circ = ?$ (iii)	261	$external factors and W \propto Q.$
	We can obtain the (III) by subtracting II from I but	201	1000
			$\Lambda = k \times \frac{1}{M}$

$$= C \times \frac{1}{a} \times \frac{1000}{M}$$

$$\therefore C = \frac{\Lambda \times a \times M}{l \times 1000}$$
i.e., $C \propto \text{conc.}$

$$\propto a$$

$$\propto \frac{1}{l}$$

$$\therefore \text{ unit of constant } (\Lambda) = \frac{C \times l \times 1000}{a \times M}$$

$$= \frac{S \times m}{m^2 \times \text{mole m}^{-3}}$$

$$= s m^2 \text{ mol}^{-1}$$
262 (c)
Cu can displace Ag from AgNO₃ but it cannot
liberate H₂ from
HCl because $E_{OPCu}^\circ > E_{OPAg}^\circ$ and $E_{OPCu}^\circ = -\text{ve.}$
263 (a)
Cell I: Fe \rightarrow Fe²⁺ + 2e

$$\frac{2Fe^{3+} + 2e \rightarrow 2Fe^{2+}}{Fe+2Fe^{3+} \rightarrow n=2}; \qquad \Delta G^\circ =$$

$$-nE^\circ F$$
Cell II: Fe \rightarrow Fe³⁺ + 3e

$$\frac{3Fe^{3+} + 3e \rightarrow 3Fe^{2+}}{Fe+2Fe^{3+} \rightarrow Fe^{2+}; n=3;} \qquad \Delta G^\circ =$$

$$-nE^\circ F$$
Cell III: 2Fe³⁺ \rightarrow 6e + 2Fe

$$\frac{3Fe \rightarrow 3Fe^{2+} + 6e}{Fe+2Fe^{3+} \rightarrow 3Fe^{2+}; n=3;} \qquad \Delta G^\circ =$$

$$-nE^\circ F$$

n and E° are different for each cell.

264 (c)

CuSO₄ will react with elements placed above it in electrochemical series and it would not react with elements places below it in electrochemical series.

- \therefore CuSO₄ reacts with Zn and Fe placed above it. $CuSO_4 + Fe \rightarrow FeSO_4 + Cu$ $CuSO_4 + Zn \rightarrow ZnSO_4 + Cu$ \therefore CuSO₄ does not react with Ag, placed below it.
- $CuSO_4 + Ag \rightarrow no reaction.$

265 (c)

Rust is Fe_2O_3 and $Fe(OH)_3$.

267 (c)

$$W = \frac{E \times i \times t}{96500}$$
$$P = \frac{E \times c \times t}{96500}$$

268 (a)

:.

The required reaction $(Cu^{2+} + Cu \rightarrow 2Cu^{+})$ can be obtained by using the following reactions

27

27

27

$$Cu^{2+} + e^- \rightarrow Cu^+, E^{\circ}_{Cu^{2+}/Cu^+} = 0.15 V ...(i)$$

$$Cu^{2+} + 2e^{-} \rightarrow Cu, E^{\circ}_{Cu^{2+}/Cu} = 0.34 \text{ V ...(ii)}$$
Multiplying Eq. (i) by 2, we get
$$2Cu^{2+} + 2e^{-} \rightarrow 2Cu^{+},$$

$$\Delta G_{1} = -nFE = -2 \times F \times 0.15 ...(iii)$$

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

$$\Delta G_{2} = -nFE = -2 \times F \times 0.34 ...(iv)$$
Subtract the Eq. (iv) from Eq. (iii)
$$Cu^{2+} + Cu \rightarrow 2Cu^{+}$$

$$\Delta G_{3} = -nFE = -1 \times F \times E^{\circ}$$
Also $\Delta G_{3} = \Delta G_{1} - \Delta G_{2}$

$$\therefore -1FE^{\circ} = (-2F \times 0.15) - (-2F \times 0.34)$$

$$E^{\circ} = -0.38$$
This is the value for the reaction
$$Cu^{2+} + Cu \rightarrow 2Cu^{+}$$
But the given reaction is just reverse of it
$$\therefore E_{cell} \text{ for given reaction } = + 0.38 \text{ V}$$
269 (d)
$$According to Kohlrausch's law
$$0$$

$$\|$$

$$\|$$

$$[NaOAc = CH_{3} C - 0^{-}Na^{+}]$$

$$\Lambda^{\circ}_{CH_{3}COOH} = \Lambda^{\circ}_{CH_{3}COO} + \Lambda^{\circ}_{H^{+}} ...(i)$$

$$\Lambda^{\circ}_{CH_{3}COOH} = \Lambda^{\circ}_{CH_{3}COO} + \Lambda^{\circ}_{Ma^{+}} ...(iii)$$
Thus, on adding (ii) and (iii), if $\Lambda^{\circ}_{Na^{-}} and \Lambda^{\circ}_{Cl^{-}} are$
subtracted we can obtained the value of Λ°_{hOAc} .
Thus, additional value required is Λ°_{NaCl}
270 (c)
$$\Lambda^{\circ}_{CH_{3}COOH} = \Lambda^{\circ}_{CH_{3}COONa} + \Lambda^{\circ}_{HCl} - \Lambda^{\circ}_{NaCl}$$
271 (b)
$$\Lambda_{m} = \Lambda_{eq} \times \text{ valency factor} = 314.28 \times 2 = 628.56 \text{ mho cm}^{2} \text{ mol}^{-1}$$
272 (a)
$$t_{K^{+}} + t_{Cl^{-}} = 1$$

$$\therefore t_{K^{+}} = 1 - 0.505 = 0.495$$
273 [a]
In voltaic cells net redox change brings in passage
of current. In concentration cells transfer of$$

matter brings in passage of current.

of

274 (c) constant H⁺ gets discharged at cathode and thus, [OH⁻] increases in solution. 275 **(b)** Fe^{3+} and Fe (CN) $_6^{3-}$ are oxidants. Higher is E_{RP}° stronger is oxidant. $\mathrm{Fe}^{3+} + e \rightarrow \mathrm{Fe}^{2+}; \ E_{RP}^{\circ} = 0.77 \mathrm{V}$ $[Fe(CN)_6]^{3-} + e \rightarrow [Fe(CN)_6]^{4-}; E_{RP}^\circ = 0.35 V$ 276 (a) $\kappa = \frac{1}{R} \times \text{cell constant}$:: Cell constant= $\kappa \times R = 0.012 \times 55 = 0.66 \text{ cm}^{-1}$ [283 (d) 277 (c) $W = \frac{E \times i \times t}{96500}$ $\therefore 20 = \frac{36.5 \times i \times 360 \times 60}{96500}$ 284 (c) 12. = 2.45 ampere 278 (b) E_{cell}° for the reaction $M^+ + X^- \rightarrow M^- + X^-$ is given 13. as follows $= E_{\text{cathode}}^{\circ} + E_{\text{anode}}^{\circ}$ = 0.44 V + 0.33 V= + 0.11 VSince, E_{cell}° is positive for the above reaction . Hence, this reaction is spontaneous. 279 (a) At anode; $\frac{1}{2}$ H₂ + OH⁻ \rightarrow H₂O + e^- At cathode; $H^+ + e^- \rightleftharpoons \frac{1}{2}H_2$ Redox change; $H^+ + OH^- \rightleftharpoons H_2O$ $K = \frac{[H_2O]}{[H^+][OH^-]}$ $E^{\circ} = \frac{RT}{E} \ln K_w$ Reaction, 280 (b) $E^{\circ}_{M^{2+}/M}$ values follow the order with negative sign Mn < Cr < Fe < Co E_{RP}° -1.18 -0.74 -0.44 -0.27 V 281 (c) - 0.15 V The number of ions present in solution as well as ionic mobility increase on dilution in case of weak electrolytes and thus, equivalent conductivity increases. Also in case of strong electrolytes only 286 (d) ionic mobility increases with dilution and thus, equivalent conductivity increases. For weak electrolytes, dilution causes increase in number of ions as well as increase in ionic mobility.

282 **(b)**

Specific conductance = conductance × cell

 $1.3 \text{ Sm}^{-1} = \frac{1}{50} \text{ S} \times \text{cell constant}$ ∴ Cell constant $= 1.3 \times 50 \text{ m}^{-1} = 65 \text{ m}^{-1} = (65/100) \text{ cm}^{-1}$ Molar conductivity = $\frac{1000 \times \text{conductance} \times \text{cell constant}}{1000 \times \text{conductance} \times \text{cell constant}}$ $=\frac{1000}{0.4} \times \frac{1}{260} \times \frac{65}{100} = 6.25 \text{ Scm}^2 \text{ mol}^{-1}$ $= 6.25 \times 10^{-4} \, \text{Sm}^2 \, \text{mol}^{-1}$ There will be no passage of current and ions will show simply diffusion. From given data (from $\Delta G^{\circ} = -nE^{\circ}F$) $Cu(s) \rightarrow Cu^{2+}(ag) + 2e^{-}$ $\Delta G_1^{\circ} = -2 \times (-0.34) \times F$ $Cu^{2+}(ag) + e^- \rightarrow Cu^{2+}(ag)$ $\Delta G_2^{\circ} = -1 \times (0.15) F$ On addition, $\operatorname{Cu}(s) \rightarrow \operatorname{Cu}^{2+}(aq) + e^{-} \Delta G_{1}^{\circ} = -1 \times E^{\circ} \times F$ $\Delta G_3^{\circ} = \Delta G_1^{\circ} + \Delta G_2^{\circ}$ $= (-2 \times -0.34 \times F) + (-1 \times 0.15 \times F)$ =+0.68 F - 0.15 F = 0.53 F0r $E^{\circ} = -0.53 V$ $2Cu^+(ag) \rightleftharpoons Cu^{2+}(ag) + Cu(s), E^\circ = ?$ So, $Cu^+(ag) + e^- \rightleftharpoons Cu(s)$, $E^\circ = +0.53 V$ $Cu^+(aq) \rightleftharpoons Cu^{2+}(aq) + e^-; \quad E^\circ =$ $2Cu^{+}(aq) \rightleftharpoons Cu^{2+}(aq) + Cu(s); E^{0} = +0.38V$

The cell reaction is,

 $\frac{1}{2} H_2(g) + AgCl(s) \rightarrow H^+(aq) + Cl^-(aq) + Ag(s)$ Obviously, here hydrogen is being oxidized and AgCl is getting reduced. Hence, the correct cell representation will be

Pt $| H_2(g)$, HCl solution || AgCl(s) | Ag287 (b) For all Zn | Zn^{2+} (A = 0.1 M) || Fe^{2+} (A = 0.01 M) | Fe. The cell reaction, $\operatorname{Zn}(s) \to \operatorname{Zn}^{2+}(aq) + 2e^{-1}$ $\operatorname{Fe}^{2+}(ag) + 2e^{-} \rightarrow \operatorname{Fe}(s)$ $\operatorname{Zn}(s) + \operatorname{Fe}^{2+}(aq) \rightarrow \operatorname{Zn}^{2+}(aq) + \operatorname{Fe}(s)$ On applying Nernst equation, $E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log_{10} \frac{[\text{Zn}^{2+}]}{[\text{Fe}^{2+}]}$ $0.2905 = E_{\text{cell}}^{\circ} - -\frac{0.0591}{2}\log_{10}\frac{0.1}{0.01}$ $0.2905 = E_{cell}^{\circ} - 0.0295 \times \log_{10} 10$ $0.2905 = E_{cell}^{\circ} - 0.0295 \times 1$ $\therefore E_{cell}^{\circ} = 0.2905 + 0.0295 = 0.32 \text{ V}$ At equilibrium ($E_{cell} = 0$) $E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log_{10} K_c$ $\therefore 0 = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log_{10} K_c$ or $E_{\text{cell}}^{\circ} = \frac{0.0591}{2} \log_{10} K_c$ $0.32 = \frac{0.0591}{2} \log_{10} K_c$ or $K_c = 10^{0.32/0.0295}$ 288 (a) Cell constant = $\frac{\text{sp. conductance}}{\text{conductance}}$ 289 (a) Cell constant = $\frac{1}{a} = \frac{0.8}{1.2} = 0.66 \text{ cm}^{-1}$. 290 (c) Eq. of Ag = Eq. of $Hg^{2+} = Eq.$ of Hg_2^{2+} or $\frac{0.216}{108} = \frac{W_{\text{Hg}^{2+}}}{a/2} = \frac{W_{\text{Hg}^{2+}}}{a/1}$; (and a = 200.6) 291 (a) Among Cu, Al, Fe and Zn, Al occupies highest position in electrochemical series. Al displaces Cu, Fe and Zn from their salts. 292 (a) We know from Kohlrausch's law $\Lambda^{\circ}_{CH_{3}COOH} = \Lambda^{\circ}_{CH_{3}COONa} + \Lambda^{\circ}_{HCl} - \Lambda^{\circ}_{NaCl}$

293 (d) For the cell, Ni | Ni²⁺ || Au³⁺ | Au Given, $E_{Ni^{2+}/Ni}^{\circ} = -0.25V$ $E_{Au^{3+}/Au}^{\circ} = +1.5 V$ Here, Ni is anode and Au is cathode. $\therefore \quad E_{cell} = E_C - E_A$ = 1.5 - (-0.25) = 1.5 + 0.25= 1.75 V

294 (c)

For the cell reaction, Fe acts as cathode and Sn as anode

Hence,

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$

= -0.44 - (-0.14) = -0.30 V

The negative emf suggests that the reaction goes spontaneously in reversed direction

295 (c)

 $Zn (s) + 2H^{+} (aq) \rightarrow Zn^{2+} (aq) + H_{2} (g)$ Reaction quotient $Q = \frac{[Zn^{2+}]}{[H^{+}]^{2}}$ Corresponding cell is $Zn | Zn^{2+} (C_{1}) || H^{+} (aq) | Pt (H_{2})$ -anode + cathodeand $E_{cell} = E_{cell}^{\circ} - \frac{0.0591}{2} \log K$ $= E_{cell}^{\circ} - \frac{0.0591}{2} \log \frac{[Zn^{2+}]}{[H^{+}]^{2}}$ $= E_{cell}^{\circ} + \frac{0.0591}{2} \log \frac{[H^{+}]^{2}}{[Zn^{2+}]}$

If H_2SO_4 is added to cathodic compartment, (towards reactant side), then Q decreases (due to increase in H⁺).

Hence, equilibrium is displaced towards right and E_{cell} increases.

296 **(c)**

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} + \frac{0.059}{2} \log \frac{[\text{Ag}^+]^2}{[\text{Sn}^{2+}]}$$
297 (a)

$$\Delta G^{\circ} = -nFE^{\circ}$$

$$Fe^{2+} + 2e^- \rightarrow Fe$$

$$\Delta G^{\circ} = -2 \times F \times (-0.440 \text{ V})$$

$$= 0.880 \text{ F} \qquad ...(i)$$

$$Fe^{3+} + 3e^- \rightarrow Fe$$

 $\Delta G^{\circ} = -3 \times F \times (-0.036 \text{ V})$ = 0.108 F ...(ii) On subtracting Eqs. (i) from (ii) $Fe^{3+} + e^- \rightarrow Fe^{2+}$ $\Delta G^{\circ} = 0.108 \text{ F} - 0.880 \text{ F} = -0.772 \text{ F}$ $E^{\circ} = -\frac{\Delta G^{\circ}}{nF} = -\frac{-0.772 F}{1 \times F} = +0.772 V$ 298 (b) $E_{\text{cell}}^{\circ} = E_{OP_{Al}} + E_{RP_{H}}^{\circ}$ $\therefore 1.66 = E_{OP_{A1}}^{\circ} + 0$ 300 (a) $\Lambda_{\rm NH_4OH}^{\infty} = \Lambda_{\rm NH_4Cl}^{\infty} + \lambda_{\rm OH^-}^{\infty} - \lambda_{\rm Cl^-}^{\infty}$ 302 (c) Number of g-equivalent = number of faraday pass 4 g = 4 F303 (c) Eq. of Al deposited = 5 $\therefore \quad \text{wt. of Al} = 5 \times \frac{27}{3} = 45 \text{ g}$ 304 (d) At equilibrium $E_{cell} = 0$. 305 (b) For, $\operatorname{Sn}(s) + 2\operatorname{Fe}^{3+}(aq) \rightarrow 2\operatorname{Fe}^{2+}(aq) + \operatorname{Sn}^{2+}(aq)$ $E_{cell}^{\circ} = E_{Sn/Sn^{2+}}^{\circ} + E_{Fe^{3+}/Fe^{2+}}^{\circ}$ = (0.14) + (0.77) = 0.91 V306 (c) This is Kohlrausch law for a_2b type of electrolytes. 307 (b) $E_{OP}^{\circ} = -E_{RP}^{\circ}$ for any element. 308 (d) Rusting of iron is catalysed by [H⁺] 309 (d) Resistivity $=\frac{1}{k}$ Or $k = \frac{1}{15.8}$ ohm⁻¹ cm⁻¹ Also, $\Lambda_v = \frac{k \times 1000}{M} = \frac{1 \times 49 \times 1000}{18.5 \times 15}$ Now, $\alpha = \frac{\Lambda_v}{\Lambda_M} = \frac{1 \times 49 \times 1000}{18.5 \times 15 \times 348} = 0.507$ 0r = 50.7%310 **(b)** $E_{\text{cell}} = E_{\text{anode(op)}}^{\circ} - E_{\text{cathode(op)}}^{\circ}$ = 0.76 - 0.41= +0.35 V312 **(b)** Standard oxidation potentials of Zn, Cu, Ag and Ni

electrode are + 0.76, - 0.34, - 0.80 and + 0.25 V respectively. (Given) $Zn^{2+} + 2e^- \rightarrow Zn;$ $E_{cell} = -0.76 \text{ V}$ $Cu^{2+} + 2e^- \rightarrow Cu; \quad E_{cell} = +0.34 V$ $Ag^+ + e^- \rightarrow Ag;$ $E_{cell} = + 0.80 V$ $Ni^{2+} + 2e^- \rightarrow Ni;$ $E_{cell} = - 0.25 V$ 14. $\operatorname{Cu} + 2\operatorname{Ag}(\operatorname{aq}) \rightarrow \operatorname{Cu}^{2+}(\operatorname{aq}) + 2\operatorname{Ag}$ $E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$ $E_{\text{cell}} = 0.80 - 0.34 = 0.46$ $Zn + 2 Ag^+ (aq) \rightarrow Zn^{2+} (aq) + 2 Ag$ 15. $E_{\text{cell}} = 0.80 - (-0.76) = 1.56 V$ (maximum voltage) $H_2 + Ni^{2+} (aq) \rightarrow 2H^+ (aq) + Ni$ 16. $E_{\rm cell} = -0.25 V$ 17. $Zn + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu$ $E_{\text{cell}} = 0.34 - (-0.76) = 1.00 V$ $Zn + 2 H^+ (aq) \rightarrow Zn^{2+} (aq) + H_2$ 18. $E_{\text{cell}} = 0 - (0.76 V) = 0.76 V$ 313 (c) Cu voltameter or Cu or Ag coulometer are used to detect the amount deposited on an electrode during passage of known charge through solution. 314 (d) $E_{RP_{\text{Cr}_202^{-}/\text{Cr}^{3+}}}^{\circ} = 1.33 \text{ V} \text{ and } E_{RP_{\text{Fe}^{3+}/\text{Fe}^{2+}}}^{\circ} = 0.77 \text{ V}$ $\therefore E_{OP_{\text{Fe}^{2+}/\text{Fe}^{3+}}}^{\circ}$ is more thus it will oxidise or electron will flow from Fe electrode to Cr electrode. Also Fe electrode will be negative. Also. $E_{\text{cell}}^{\circ} = E_{OP_{\text{Fe}}}^{\circ} + E_{RP_{\text{Cr}}}^{\circ} = -0.77 + 1.33$ 315 (c) H₂ gas is evolved, when Zn reacts with NH₄Cl in dry cell battery. $\text{Zn} + 2\text{NH}_4\text{Cl} \rightarrow \text{Zn} (\text{NH}_3)_2\text{Cl}_2 + \text{H}_2 \uparrow$ Colourless gas 316 (d) Reducing character is based upon higher negative value of reduction electrode potential. Thus, order of reducing character is B > C > A317 (a) More is E_{OP}° , more is the tendency to get itself

oxidised and more is reducing power. Given

values are of E_{OP}° .

318 (a) Oxidizing tensdncy $\propto \frac{1}{\text{electrode potential}}$ $TX \rightarrow \text{No reaction}$ $TY \rightarrow X, Z$ $TZ \rightarrow X$ \Rightarrow Order of electrode potential is TY < TZ < TX \Rightarrow Order of oxidation of the anion is $Y^- > Z^- > X^-$

319 (a)

In the internal circuit of Agalvanic cell ions flow while in the external circuit, there is Aflow of electrons from zinc rod to copper rod.

321 (c)

 $\operatorname{Sn}(aq) + 2\operatorname{Fe}^{3+}(aq) \rightarrow 2\operatorname{Fe}^{2+}(aq) + \operatorname{Sn}^{2+}(aq)$ $E_{\text{cell}}^{\circ} = E_{\text{oxi}}^{\circ} + E_{\text{red}}^{\circ}$ $= E_{\text{Sn}/\text{Sn}^{2+}}^{\circ} + E_{\text{Fe}^{3}/\text{Fe}^{2+}}^{\circ}$ Given, $E^{\circ}_{Sn^{2+}/Sn} = -0.14 V$ $\therefore E_{\text{Sn}/\text{Sn}^{2+}}^{\circ} = +0.14 \text{ V}$ $E_{\rm Fe^{3+}/Fe^{2+}}^{\circ} = 0.77 \,\rm V$ $E_{cell}^{\circ} = 0.14 + 0.77 = 0.91 \text{ V}$ 322 (d) $Zn^{2+} + 2e^- \rightarrow Zn; E^{\circ} = -0.76 V$ $Fe^{2+} + 2e^- \rightarrow Fe$; $E^{\circ} = -0.44 V$ Cell reaction is $Fe^{2+} + Zn \rightarrow Zn^{2+} + Fe$ $E_{\text{cell}}^{\circ} = E_{\text{cathode}} - E_{\text{anode}}$ = -0.44 - (0.76)= -0.44 + 0.76= 0.32 V323 (c) Reduction hydrogen half-cell is $H^{+}|(xM)|Pt(H_{2})$ +Pressure pH₂ Half – cell reaction is $2H^+(aq) + 2e^- \rightarrow H_2(g)$ **Reaction quotient** $= Q = P_{H_2} / [\mathrm{H}^+]^2, n = 2$ $E_{\rm red} = E_{\rm red}^{\circ} - \frac{0.0591}{n} \log Q = 0 - \frac{0.0591}{2} \log Q$ P_{H_2} [H⁺] Q Ered

2.0 M 0.25 (a) 1atm +ve (b) 1atm 1.0 M 1.0 0 (c) 2atm 1.0 M 2.0 -ve 0.50 (d) 2atm 2.0 M +ve $E_{\rm red}^{\circ} = 0.00$ V for standard hydrogen electrode If Q > 1, then $E_{red} = -ve$.

Thus, correct answer is (c).

324 (a)

During the electrolysis of an aqueous solution of $MgSO_4$ between inert electrodes, the products available on the cathode and the anode are $H_2(g)$ and $O_2(g)$ respectively.

326 **(d)**

Follow Kohlrausch's law.

328 **(a)**

Because in it covalent bonding is present

329 **(b)**

Cations carrying positive charge move towards cathode where they get discharged.

330 **(a)**

The PH of 0.1 M HCl and 0.1 M acetic acid is

not the same, because HCl is a strong acid,

so its pH is more and CH₃COOH is a weak acid,

so its pH is less

331 **(d)**

Electrochemical cell are based upon the reaction between various electrolytes. The reaction given in option (d) does not involve electrolytes, so it cannot be Abase for electrochemical cell.

333 **(a)**

The element having more E_{OP}° is oxidised and other is to be reduced.

334 **(a)**

$$Ag^+ + e^- \rightarrow Ag, E_{Ag} = \frac{\text{atomic mass}}{1} = 108$$

Number of faraday
$$=$$
 $\frac{w_{Ag}}{E_{Ag}} = \frac{108}{108} = 1$

335 **(a)**

$$[H^+] = c. \alpha = 0.0133 \times 0.1$$

= 0.00133 M.

$$E_{1} = E^{\circ} - \frac{0.059}{1} \log[\mathrm{H}^{+}]_{1}$$

$$E_{2} = E^{\circ} - \frac{0.059}{1} \log[\mathrm{H}^{+}]_{2}$$
on adding (also $E_{\mathrm{H}}^{\circ} = 0$)
$$E_{1} + E_{2} = -\frac{0.059}{1} [\log(\mathrm{H}^{+})_{1} + \log(\mathrm{H}^{+})_{2}]$$
Now for CH₃COOH = CH3COO⁻ + H⁺
[H⁺] = \frac{K_{a}[\mathrm{CH}_{3}\mathrm{COOH}]}{[\mathrm{CH}_{3}\mathrm{COO}^{-}]}
 $\therefore [\mathrm{H}^{+}]_{1} = K_{a}.\frac{y}{x}$

$$[H^+]_2 = K_a \cdot \frac{x}{y}$$

$$\therefore E_1 + E_2 = -\frac{0.059}{1} \left[\log \frac{K_a.y}{x} + \log \frac{K_a.x}{y} \right]$$

$$= -0.059[2 \log K_a]$$

$$\log K_a = \frac{E_1 + E_2}{2 \times (-0.059)}$$

$$\log K_a = \frac{E_1 + E_2}{0.118}$$

or $pK_a = \frac{E_1 + E_2}{0.118}$
337 (a)

$$W = \frac{E \times i \times t}{96500}$$

$$\therefore \frac{112 \times 2}{22400} = \frac{1 \times i \times 965}{96500}$$

$$\therefore i = 1 \text{ ampere}$$

338 (d)

$$pH = 3, [H^+] = 10^{-3}$$

$$E = E_{red}^\circ + 0.059 \log (10^{-3})$$

$$E = + 0.059 (-3) = -0.177 V$$

339 (d)
Given, $E_{cell}^\circ = 0.34 V$

$$E_{cell}^\circ = E_{(Cu^{2+}/Cu)}^\circ - E_{(H_2/H^+)}^\circ$$

$$0.34 = E_{(Cu^{2+}/Cu)}^\circ - 0.00$$

$$\therefore E_{(Cu^{2+}/Cu)}^\circ = + 0.34$$

340 (d)

Reduction potential of hydrogen electrode,

$$E_{\rm H} = -\frac{2.303RT}{F} \log \frac{1}{[{\rm H}^+]}$$
$$= -0.059 \text{ pH} = -0.059 \times 3 = -0.177 \text{ V}$$

341 (c)

Ag or Cu voltameters or coulometers are used to measure the total charge passed through solution in terms of weight of Ag or Cu deposited there on voltameter or coulometer cathode.

342 (b)

Reaction for electrolysis of water is $2H_2O \Rightarrow 4H^+ + 2O^{2-}$ $2O^{2-} \rightarrow O_2 + 4e^ 4e^- + 4H^+ \rightarrow 2H_2$ $\therefore n = 4$, So, 4 F charge liberates = 1 mol = 22.4 dm³ oxygen $\therefore 1$ F charge will liberate = $\frac{22.4}{4}$ = 5.6 dm³ oxygen 343 (a) $Q = 2.5 \times 386 = 965$ C $2F(2 \times 96500$ C) deposited, Cu = 63.5 g Hence, 965 C will deposit, Cu = 0.3175 g

344 (b) Given, product = 0.1 M and reactant = 1 M $E_{cell}^{\circ} = E_{cell}^{\circ} - \frac{0.0591}{2} \log \frac{[\text{products}]}{[\text{reactants}]}$ $1.50 = E_{\text{cell}}^{\circ} - 0.02955 \log \left[\frac{0.1}{1} \right]$ $E_{\text{cell}}^{\circ} = 1.470 V$ $E_{\text{cell}}^{\circ} = E_{\text{H}^{+}/\text{H}_{2}}^{\circ} - E_{M/M^{2+}}^{\circ}$ $E^{\circ}_{M/M^{2+}} = -1.470$ So, $E_{M^{2+}/M}^{\circ} = 1.470 V$ 345 (c) $E_{\text{cell}} = E_{\text{cell}}^{\circ} + \frac{0.059}{2} \log \frac{[\text{Cu}^{2+}]}{[\text{Zn}^{2+}]};$ Thus, on doubling concentration of both Cu^{2+} and Zn^{2+} , there will be no effect no E_{cell} . 346 (a) $\Lambda_{\rm H_2O}^{\infty} = \lambda_{\rm H^+}^{\infty} + \Lambda_{\rm OH^-}^{\infty}$ 347 (a) $\kappa = \Lambda_{eq} \cdot C$ = $(91 \ \Omega^{-1} \ \mathrm{cm}^2 \ \mathrm{eq}^{-1}) \left(\frac{2.54}{159/2 \times 1000} \ \mathrm{eq} \cdot \mathrm{cm}^{-3}\right)$ $= 2.9 \times 10^{-3} \Omega^{-1} \mathrm{cm}^{-1}$ 348 (a) MnO_4^- will oxidise Cl⁻ ion according to equation

Mn⁷⁺ + 5e → Mn²⁺
2Cl⁻ → Cl₂ + 2e
Thus,
$$E_{cell}^{\circ} = E_{OP_{Cl^-/Cl_2}}^{\circ} + E_{RP_{MnO_4^-/Mn^{2+}}}^{\circ}$$

= -1.40 + 1.51 = 0.11 V or reaction
is feasible MnO₄ will oxidise Fe²⁺ to Fe³⁺
Mn⁷⁺ + 5e → Mn²⁺
Fe²⁺ → Fe³⁺ + e
 $\therefore E_{cell}^{\circ} = E_{OP_{Fe^{2+}/Fe^{3+}}}^{\circ} + E_{MnO_4^-/Mn^{2+}}$
= -0.77 + 1.51
= 0.74 V or reaction is feasible
Thus, MnO₄⁻ will not oxidise Fe²⁺ to Fe³⁺ in
aqueous HCl medium but it will also oxidise Cl⁻ to Cl₂.

aqueous HCl medium but it will also oxidise Cl^- to Cl_2 .Suitable oxidant should not oxidise Cl^- to Cl_2 and should only oxidise Fe^{2+} to Fe^{3+} in redox titrations.

This is representation of standard hydrogen electrode.

350 **(a)** $E_{cell} = E_C - E_A$ Given, $E_{Ag^+/Ag}^{\circ} = 0.80 \text{ V}$ H₂ | H⁺ || Ag⁺ | Ag ∴ Hydrogen is anode and silver is cathode.

$$E_{cell} = E_C - E_A$$

= 0.80 - 0 (: $E_{H^+/H}^\circ = 0$)
= 0.80 V
351 (d)
2H⁺ + 2e \rightarrow H₂; 20H⁻ \rightarrow H₂0 + $\frac{1}{2}$ O₂ + 2e
352 (b)
Fe²⁺ + 2e⁻ \rightarrow Fe
 $E_{Fe} = \frac{56}{2} = 28$
 $w_{Fe} = E_{Fe} \times$ number of faraday
= 28 × 3 = 84 g
353 (a)
 $w = Zit$
 $\therefore w = \frac{32.69 \times 5 \times 60 \times 40}{96500} = 4.065 g$
354 (a)
Velocities of both K⁺ and NO₃⁻ are nearly the
same in KNO₃, so it is used to make salt-bridge
355 (b)
It is secondary reference electrode.
356 (a)
 $E_{cell}^\circ = E_{red}^\circ (cathode) - E_{oxi}^\circ (anode)$
 $= E_{Ag}^\circ + Ag - E_{Cu+/Cu^{2+}}^\circ = 0.80 - (+ 0.34) = + 0.46 V$
357 (c)
Because conductance increases when the
dissociation is more
358 (a)
At cathode 2H⁺(aq) + 2e⁻ \rightarrow 2H
2H + $\frac{1}{2}$ O₂ \rightarrow H₂O

359 (b)
Resistance of $\frac{N}{10}$ solution = 2.5 × 10³ Ω
 $\kappa = \frac{1}{resistance} \times cell constant$
 $= \frac{1}{2.5 \times 10^{-3}} = 5 \times 10^{-4} \Omega^{-1} cm^{-1}$

Equivalent conductance $= \frac{\kappa \times 100}{M}$ $= \frac{5 \times 10^{-4} \times 1000}{1/10}$ $= 5\Omega^{-1} \text{ cm}^2 \text{ equiv}^{-1}$

360 **(d)**

In concentration cell, two electrolytic solutions of same electrolyte but having different concentrations (*e*.g., Pt H₂ $|H_{C_1}||$ $|H_{C_2}||$ Pt H₂) are used. Moreover electrolyte of one strength but electrodes of two different concentrations are used.

361 **(b)**

$$E_{cell}^{\circ} = E_{(RHS)}^{\circ} - E_{(LHS)}^{\circ} = 1.61 - 1.51 = 0.10 V$$
$$\Delta G^{\circ} = -nFE^{\circ}$$
$$= -5 \times 96500 \times 0.10 J$$
$$\Delta G^{\circ} = -48.25 kJ$$

362 (a)

$$W = \frac{E \times i \times t}{96500}$$

or $0.635 = \frac{63.5 \times i \times t}{2 \times 96500}$
 $\therefore \quad i \times t = 1930 \text{ C}$

363 (c)

Given fact is : *X* is above *Z* and *Y* in electrochemical series and thus, *Z* cannot displace *X* from its salt.

364 **(b)**

The charging of lead storage battery involves the reverse reactions shown in answer 5.

365 (d)

$$\therefore R \propto l \text{ and}, R \propto \frac{1}{a} \therefore R \propto \frac{1}{a} \text{ or } R = \rho \cdot \frac{1}{a}$$

Where *R* is resistance, ρ is specific resistance and *l*, *a* are length and area of cross-section of wire.

$$\therefore \quad \kappa = \frac{1}{\rho} \text{ where } \kappa \text{ is conductivity}$$

Then
$$\kappa = \frac{1}{R} \times \frac{1}{a} = C \times \frac{1}{a}$$
;
Where *C* is conductance $= \frac{1}{R}$

Also, Equivalent conductivity = Conductivity × $V_{\text{in mL}}$ where *V* is solution containing 1 equivalent in it or

Eq. conductivity = $\kappa \times \frac{1000}{N}$

366 **(b)**

1 g atom of Mg = 2g eq. Mg = 2 faraday.

 $NaCl \rightarrow Na^+ + Cl^-$
molten $Na^+ + e^- \rightarrow Na$ At cathode $2Cl^- - 2e^- \rightarrow Cl_2$ At anode When one mole of NaCl is electrolysed, 1 mole Na and $\frac{1}{2}$ mole Cl₂ is obtained. Thus, when 230 g $\left(\frac{230}{23} = 10 \text{ mol}\right)$ Na is formed, the moles of Cl_2 obtained will be = $\frac{\text{moles of Na}}{2}$ $=\frac{10}{2}$ = 5.0 mol368 (a) Cell reaction : $\frac{1}{2}$ H₂(g) + Ag⁺(x) \rightleftharpoons Ag(x) + $H^{+}(1 M)$ $E = E^{\circ} = -\frac{0.0591}{n} \log \frac{[\text{H}^+]}{[\text{A}\sigma^+]}$ $0.503 = 0.80 - \frac{0.0591}{1} \log \frac{1}{2}$ $x = 9.43 \times 10^{-6} \text{ M}$ Number of moles of Ag⁺ in 350 mL $=\frac{9.43\times10^{-6}\times350}{1000}=3.3\times10^{-6}$ Mass of Ag = $3.3 \times 10^{-6} \times 108 = 3.56 \times 10^{-4}$ g % of Ag in the ore = $\frac{3.56 \times 10^{-4}}{1.05} \times 100$ = 0.0339%369 (a) $\alpha = \frac{\Lambda_v}{\Lambda^\infty} = \frac{15.8}{350} = = 0.04514$ 370 (c) $E_{\text{cell}} = \frac{0.059}{1} \log \frac{[\text{H}^+]_{\text{RHE}}}{[\text{H}^+]_{\text{LHE}}}$ $= 0.059 \log \frac{10^{-3}}{10^{-8}} = 0.059 \times 5 = 0.295 \text{ V}$ 371 (a) $E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.059}{n} \log \frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]}$ $= 1.10 - \frac{0.059}{2} \log \frac{0.1}{0.1}$ = 1.10 V372 (c) Ag is below Cu in electrochemical series. Metal

placed above replaces other placed below in

series. 373 (b) Eq. of Ni = Eq. of Cr $\therefore \quad \frac{0.3}{59/2} = \frac{W}{52/3}$: $W_{Cr} = 0.176 \, \mathrm{g}$ 374 **(b)** $NaCl + KNO_3 \rightarrow NaNO_3 + KCl$ KCl – NaCl Molar conductivities 152 128 Difference = $24 \text{ S cm}^2 \text{ mol}^{-1}$ Molar conductivities of $KNO_3 = 111$ Molar conductivities of $NaNO_3 = 111 - 24$ $= 87 \text{ S cm}^2 \text{ mol}^{-1}$ 375 (d) The degree of ionisation of an electrolyte increases with dilution and temperature as well as in presence of polar solvent. 376 (a) $E_{\text{cell}}^{\circ} = E_C - E_A$ = -0.45 - (-2.37)= -1.92 VMg (s) | Mg²⁺(aq) x M || Fe²⁺(aq) 0.01 M | Fe (s) The cell reaction is $Mg + Fe^{2+} \rightarrow Mg^{2+} + Fe$ $E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.059}{n} \log \frac{[\text{Mg}^{2+}]}{[\text{Fe}^{2+}]}$ $1.92 = 1.92 - \frac{0.059}{n} \log \frac{x}{0.01}$ $0 = \frac{-0.059}{2} \log \frac{x}{0.01}$ x = 0.01 M:. 377 (d) Follow theory of corrosion. 378 (b) $2\mathrm{MnO}_{2}(s) + \mathrm{Zn}^{2+} + 2e^{-} \rightarrow \mathrm{Zn}\mathrm{Mn}_{2}\mathrm{O}_{4}(s)$ $2 \times 87 \text{ g MnO}_2$ required $2 \times 96500 \text{ F charge}$ $8 \text{ g MnO}_2 = \frac{2 \times 96500 \times 8}{2 \times 87}$ = 8873.56 FQ = it $8873.56 = 2 \times 10^{-3} \times t$ $t = \frac{8873.56 \times 10^3}{2}$ = 4436781.5 s $=\frac{4436781.5}{24 \times 60 \times 60}$

379 **(d)**

The cell reaction is $Cd(s) + 2AgCl(s) \rightarrow 2Ag(s) + Cd^{2+}(aq) + 2Cl^{-}$ (aq) $E_1 = 0.6915 \text{ V}$ at 0°C 388 (d) $E_2 = 0.6753 \text{ V}$ at 25°C Now, $\frac{\partial E_{cell}}{\partial T} = \frac{E_2 - E_1}{T_2 - T_1}$ $=\frac{0.6753-0.6915}{298-273}$ $= -6.48 \times 10^{-4}$ $\Delta S = nF \left[\frac{\partial E_{cell}}{\partial T} \right]$ Now, we put the value $\Delta S = 2 \times 96500 (-6.48 \times 10^{-4}) = -125.064$ We know that. $\Delta G = -nFE_{cell}$ $= -2 \times 96500 \times 0.6753$ $= -1.303 \times 10^{5}$ As, $\Delta G = \Delta H - T \Delta S$ For calculating $\Delta H = \Delta G + T \Delta S$ $= -1.303 \times 10^5 + 298 (-125.064 \text{ kJ})$ 389 (d) $\Delta H = -1.6726 \times 10^5 \text{ J}$ = -167.26 kJ381 (c) $E_{\rm red} = 0.78 + \frac{0.0591}{1}\log(10^{-7})^2$ $= 0.78 - 0.059 \times 7 = 0.367 \text{ V}$ 382 (b) wt. of Al deposited eq. wt. of Al $\frac{1}{\text{wt. of Cu deposited}} = \frac{1}{\text{eq. wt. of Cu}}$ $\frac{2.7}{\text{wt.of Cu}} = \frac{27/3}{63.5/2}$ wt. of Cu = 9.525 g383 (d) 390 (a) $E = Q.V = 1C \times 1V = 1J.$ It is unit of energy. Also $1J = 10^7$ erg. 384 (a) 391 (b) $E_{\text{Cu/Cu}^{2+}} = E_{\text{Cu/Cu}^{2+}}^{\circ} - \frac{0.059}{2} \log [\text{Cu}^{2+}]$ if $\log[Cu^{2+}] = 0$, *i. e.*, $[Cu^{2+}] = 1$, then $E_{Cu/Cu^{2+}} =$ 392 (c) $E^{\circ}_{Cu/Cu^{2+}}$ or $OA = E_{Cu/Cu^{2+}}^{\circ} = -E_{Cu/Cu^{2+}}^{\circ} = -0.34$ Now, $E_{Cu/Cu^{2+}} = -0.34 - \frac{0.059}{2} \log 0.1$ $= -0.34 + \frac{0.059}{2}$ V 385 (a) $\vec{E_{\text{cell}}} = \vec{E_{OP_L}} + \vec{E_{RP_R}} = -\phi_L + \phi_R.$ 386 (b) Pb is above Ag and below Ni in electrochemical $|^{393}$ (c)

series.

387 **(b)**

Smaller is the size of ion, more is hydration, lesser is mobility, i.e., mobility of ion in aqueous solution decreases with decreases with decrease in size of hydrated ion.

 $\mathrm{H}_2\mathrm{O} \ \longrightarrow \ \mathrm{H}_2 + \frac{1}{2} \ \mathrm{O}_2.$ $2H^+ + 2e^- \rightarrow H_2$ \therefore 1 mole of H₂ is liberated from 2 moles of electrons. 2 moles electrons = 2 F charge $= 2 \times 96500$ C charge Given, i = 4 A, $t = 30 \min$ \therefore 2 × 96500 C charge liberates = 22400mL H₂ at NTP $\therefore 4 \times 30 \times 60$ C charge liberates $= \frac{22400}{2 \times 96500} \times 4 \times 30 \times 60 \text{ mL H}_2$ = 835.6 mL $= 0.836 \text{ L of H}_2$ $R = 100\Omega$ $\kappa = \frac{1}{R} \left(\frac{l}{a} \right)$ $\frac{l}{a}$ (cell constant) = 1.29 × 100m⁻¹ Given, $R = 520\Omega$; C = 0.2 M μ (molar conductivity) =? $\mu = \kappa \times V$ (κ can be calculated as $\kappa = \frac{1}{R} \left(\frac{l}{a} \right)$ now cell constant is known) Hence, $\mu = \frac{1}{520} \times 129 \times \frac{1000}{0.2} \times 10^{-6} \text{ m}^3$ $= 12.4 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$ $u^{0} = \frac{\lambda^{0}}{96500} = \frac{5 \times 10^{-3}}{96500} = 5.18 \times 10^{-8}$ $Q = 10^{-6} \times 1C$; Also, 96500 C = 6.023×10^{23} electrons. According to Faraday Ist law w = ZitWhere, w = amount of substance Z = Faraday constant or electrochemical equivalent i = current in amperet = time in secondIf i = 1, t = 1, w = Z

96500 C current produces 12 g Mg 9.65 C current produces $= \frac{12 \times 9.65}{96500} = 1.2 \times 10^{-3} \mathrm{g \, Mg}$ $=\frac{1.2 \times 10^{-3}}{24} = 5 \times 10^{-5} \text{ mol Mg}$ $R - X + Mg \rightarrow RMg X$ Grignard reagent 5×10^{-5} 5×10^{-5} Mol mol Hence, number of moles of *RMgX* produced $= 5 \times 10^{-5}$. 394 (a) $\Delta G = \Delta H - T \Delta S, \Delta G = -n EF$ and $\Delta G = \Delta H + T \left[\frac{\partial (\Delta G)}{\partial T} \right]_{-}$ $\Delta H = -nF \left[E - T \left(\frac{\partial E}{\partial T} \right)_{\rm P} \right]$:. $\Delta S = nF\left(\frac{\partial E}{\partial T}\right)_{\rm P}$ *:*. 395 (a) Equal equivalent of each are liberated. Eq. of X = Eq. of Y $\frac{W_1}{2M/2} = \frac{W_2}{M/1}$ $\therefore W_1 = W_2$ 396 (a) $\Delta G^{\circ} = -nFE^{\circ}$ $Fe^{2+} + 2e^- \rightarrow Fe$...(i) $\Delta G^{\circ} = -2 \times F \times (-0.440 \text{ V}) = 0.880 \text{ F}$ $Fe^{3+} + 3e^- \rightarrow Fe$...(ii) $\Delta G^{\circ} = -3 \times F \times (-0.036) = 0.108 \text{ F}$ On subtracting Eqs. (i) from (ii), we get $Fe^{3+} + e^- \rightarrow Fe^{2+}$ $\Delta G^{\circ} = 0.108 \text{ F} - 0.880 \text{ F} = -0.772 \text{ F}$ E° for the reaction $= -\frac{\Delta G^{\circ}}{nF} = -\frac{(-0.772 \text{ F})}{1 \times \text{F}}$ = +0.772 V 397 (c) $E_{\text{cell}}^{\circ} = E_{OP_{\text{ZN}}}^{\circ} + E_{RP_{\text{CU}}}^{\circ} E^{\circ}_{\text{RP}_{\text{CU}}}$ = 0.76 + 0.34 = +1.10 V. 398 (d) $\lambda_c^{\infty} = \mu_c^{\infty} \times \text{Faraday};$ $\lambda_a^{\infty} = \mu_a^{\infty} \times \text{Faraday};$ Also, $\lambda_{\text{electrolyte}}^{\infty} = \lambda_a^{\infty} \times \lambda_c^{\infty}$. 399 (a) Metal undergoes oxidation during corrosion and thus, act as anode. 400 (c) MnO_4^- is itself a strong oxidant. 401 (c) Eq. of Al = Eq. of Cu = Eq. of Na or $\frac{1}{2}$ mole Al = $\frac{1}{2}$ mole Cu = 1 mole Na

or 2:3:6 or 1:1.5:3 mole ratio. 402 (c) In Agalvanic cell, oxidation (*i. e.*, removal of e^{-}) occurs at anode. These electrons flow through external circuit from anode to cathode. Therefore, the direction of current in external circuit is from cathode (- ve) to anode (+ ve). 403 (a) $2Br^{-}(aq) + Cl_2 \rightarrow 2Cl^{-}(aq) + Br_2$ Bromine is relased by chlorine as more reactive halogen displaces less reactive halogen from their salt solutions. 404 (a) E_{RP}° for H is maximum in these. 405 (d) Eq. of $Fe^{2+} = Eq.$ of Fe^{3+} $\frac{W_1}{A/2} = \frac{W_2}{A/3}$ or or $\frac{W_{\text{Fe}^{2+}}}{W_{\text{Fe}^{2+}}} = \frac{3}{2}$ 406 (b) $\mathring{\Lambda}_{m}(\mathrm{NH}_{4}\mathrm{Cl}) = \mathring{\Lambda}_{m}(\mathrm{NH}_{4}^{+}) + \mathring{\Lambda}_{m}(\mathrm{Cl}^{-})$(i) $\mathring{\Lambda}_m(\text{NaOH}) = \mathring{\Lambda}_m(\text{Na}^+) + \mathring{\Lambda}_m(\text{OH}^-)$(ii) $\mathring{\Lambda}_{m}(\text{NaCl}) = \mathring{\Lambda}_{m}(\text{NH}^{+}) + \mathring{\Lambda}_{m}(\text{Cl}^{-})$(iii) By(i) + (ii) + (iii) $4 \mathring{\Lambda}_m (\mathrm{NH}_4\mathrm{OH}) = \mathring{\Lambda}_m (\mathrm{NH}_4^+) + \mathring{\Lambda}_m (\mathrm{OH}^-)$ $= \Lambda_m(NH_4Cl) + \Lambda_m(NaOH)$ $- \Lambda_m$ (NaCl) 407 (b) $Cu^{2+} + 2e \rightarrow Cu; \quad \Delta G_1^{\circ} = -2 \times 0.337 \times F$ $\operatorname{Cu}_{-}^{2+} + \underline{e} \rightarrow \operatorname{Cu}_{+}^{+}; \quad \Delta G_{2}^{\circ} = 1 \times 0.513 \times F$ $\overline{\mathrm{Cu}^{+} + e} \longrightarrow \mathrm{Cu}; \ \Delta G_{3}^{\circ} = \ \Delta G_{1}^{\circ} - \ \Delta G_{2}^{\circ} = -0.52 \ F$ $\therefore -1 \times E^{\circ} \times F = 0.52 F \implies E^{\circ} = 0.52 V$ 408 (c) Only oxidation occurs at anode. Also discharge potential of H₂O is less than discharge potential of SO_4^{2-} . 409 (c) Calculate $\vec{E_{cell}}$ for each. For (C) $\vec{E_{cell}} = 3.6$ V. 410 (c) 6×10^{23} electron = 1 eq. 411 (d) $E_{\text{cell}}^{\circ} = E_{OP_{\text{I}}}^{\circ} + E_{RP_{\text{II}}}^{\circ}$; I is oxidised, II is reduced.

412 **(a)**

Charge = 2 × charge of electron = 2 × 1.602 × 10^{-19} C.

414 (a) Mercury cannot displace hydrogen from acid. The The substances which have lower reduction reason can be explained on the basis of potentials are stronger reducing agent. The electrochemical series. The metal, which is placed reduction potential of zinc is lowest among these above hydrogen in this series, can displace hence, it is the strongest reducing agent. hydrogen from an acid. Mercury is placed below 416 (c) hydrogen in ECS, hence, it cannot displace $Mg \rightarrow Mg^{2+} + 2e^{-}$ (at anode) hydrogen from an acid. $Cu^{2+} + 2e^- \rightarrow Cu$ (at cathode) 421 (a) $E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$ This is Kohlrausch law for *AxBy*. 422 (c) = +0.34 - (-2.37) $\operatorname{Sn}^{4+} + 2e \longrightarrow \operatorname{Sn}^{2+}$; $E_{Rn}^{\circ} = 0.15 \text{ V}$ = + 2.71 V $Cr^{3+} + 3e \rightarrow Cr; \qquad E_{RP}^{\circ} = -0.74$ 417 (a) (Higher As ammonia is added the concentration of H⁺ E_{OP}) Redox change $2Cr + 2Sn^{4+} \rightarrow 2Cr^{3+} + 3Sn^{2+}$ decreases, thus oxidation potential increases by 0.65 $\therefore E_{\text{cell}} = E_{OPcr}^{\circ} + E_{RPsn}^{\circ} = 0.74 + 0.15 = +0.89 \text{ V}$ 418 (d) 423 (c) In presence of attacked electrodes (Ni electrodes E_{cell}° for Zn|Zn²⁺||Ni²⁺|Ni is positive with Ni salt), the metal gets dissolved at anode $E^{\circ} = E^{\circ}_{OP_{Z_n}} + E^{\circ}_{RP_{N_i}} = 0.76 - 0.23 = 0.53 \text{ V}$ and metal ions get discharged at cathode. 419 (a) A cation having highest reduction potential will be reduced first and so on. However, Mg²⁺ in aqueous solution will not be reduced $\left(E_{Mg^{2+}/Mg}^{\circ} < E_{H_2O/\frac{1}{2}H_2+OH^-}\right)$. Instead water would be reduced in preference 420 (d) 424 (d) $Fe^{3+} + 3e \rightarrow Fe; -\Delta G_1^{\circ} = -0.36 \times F \times 3$ $\frac{\operatorname{Fe}^{2+} + 2e \longrightarrow \operatorname{Fe}; \quad -\Delta G_2^{\circ} = -0.439 \times F \times 2}{\operatorname{Fe}^{3+} + e \longrightarrow \operatorname{Fe}^{2+}; \quad -\Delta G^{\circ} = [3 \times (-0.36F) + 2 \times (0.439F)]}$ $\therefore +1 \times F \times E^{\circ} = [3 \times (-0.36F) + 2 \times (0.439F)]$ or $E^{\circ} = [3 \times (-0.36) + 2 \times 0.439]V$ 425 (d) = 0.715 g $\mathbf{E} = E^{\circ} - \frac{0.059}{n} \log \left[\frac{M}{M^{n+1}} \right]$ 429 (b) $2H_20 \rightleftharpoons 4H^+ + 20^{2-}$ $= E^{\circ} - \frac{0.059}{n} \log \left[\frac{\text{products}}{\text{reactants}} \right]$ At cathode, $4H^+ + 4e^- \rightarrow 2H_2$ E = 0 at equilibrium At anode, $20^{2-} - 4e^- \rightarrow 0_2$ $0 = E^{\circ} - \frac{0.059}{n} \log K_{eq}$ \therefore 4 Faraday of charge liberates = 1 mol Or $\log K_{eq} = \frac{nE^{\circ}}{0.059}$ $= 22.4 \, \mathrm{dm^3} \mathrm{O}_2$ ∴ 1 Faraday of charge liberates Or $\log K_{eq} = \frac{1 \times 0.36}{0.059} = 6.09$ $=\frac{22.4}{4} \times 1$ $K_{ea} = 1.2 \times 10^{6}$ $= 5.6 \, dm^3 O_2$ 430 (c) 426 (c) $\frac{2}{3}(\mathrm{Al}^{3+})_2 + 4e^- \rightarrow \frac{2}{3}\mathrm{Al}$ Electrolytes on dissolution in water furnish ions and these ions carry charge towards opposite or $\frac{2}{3}(0^{2-})_3 \rightarrow 4e^- + 0_2$ electrodes. $-\Delta G = nFE \quad (E \text{ is potential required})$ $E = -\frac{960 \times 1000}{4 \times 96500} = -2.5 \text{ V}$ 427 (a) $W_{\rm Na} = \frac{E \times i \times t}{96500} = \frac{23 \times 5 \times 10 \times 69}{96500}$

431 (c) Cl is placed below Br in electrochemical series; the non-metal placed below in series, replaces other from its solution. 432 (a) In a galvanic cell, the electrons flow from anode to cathode through the external circuit. At anode (-ve pole) oxidation and at cathode (+ pole) reduction takes place 433 **(b)** H⁺ is lightest ion and thus, possesses maximum velocity among monovalent ions. 434 (b) $H_20 \rightarrow H_2 + 1/20_2$: Mole ratio of $H_20: O_2 :: 1: 1/2$ 435 (c) $E_{OP}^{\circ} = +$ Ve thus, $E_{RP}^{\circ} = -$ ve. 436 (c) Eq. of Al formed $\frac{W}{E} = \frac{it}{96500}$ $\therefore W_{\text{Al}} = \frac{4 \times 10^4 \times 6 \times 60 \times 60 \times 27}{96500} \left(E = \frac{27}{3}\right)$ $\therefore W_{\rm Al} = 8.05 \times 10^4$ 437 (c) H_2 undergoes oxidation and AgCl(Ag⁺) undergoes reduction 438 (c) The ions which lies below H⁺ in electrochemical series, displace H⁺ from solution. Cu^{2+} lies below H⁺ in electrochemical series. 448 (d) ÷ ÷ Cu²⁺ ions displace H⁺ when H₂ gas is bubbled in solution containing these ions. 439 (b) Anode at which oxidation occurs is represented at left hand side. 440 (a) Ionic conductance is ionic mobility × Faraday. 441 (d) $1F = N \times e = E g = 96500 C$ 442 (b) Standard electrode potential is measured by voltmeter. 443 (a) $Cl_2 + 2Kl \rightarrow 2KCl + I_2$; iodine will be liberated first to impart violet colour to CHCl₃ layer. 444 (b) $w_{\text{metal}} = \frac{E \times i \times t}{96500} = \frac{E \times 3 \times 50 \times 60}{96500}$

 $\therefore E = \frac{96500 \times w}{3 \times 50 \times 60} = \frac{96500 \times 1.8}{3 \times 50 \times 60} = 19.3$ 445 (a) Given, current (i) = 0.25 mA = 0.025 A Time (t) = 60 s $Q = i \times t = 60 \times 0.025 = 1.5 \text{ C}$ No. of electrons = $\frac{1.5 \times 6.023 \times 10^{23}}{96500}$ $e^- = 9.36 \times 10^{18}$ $Ca \rightarrow Ca^{2+} + 2e^{-}$ $2e^{-}$ are required to deposite one Ca atom $9.36 \times 10^{18} e^{-1}$ will be used to deposite $=\frac{9.36\times10^{18}}{2}=4.68\times10^{18}$ 446 **(b)** If F is Faraday and N is Avogadro number, charge electron = $\frac{F}{N}$ 447 (b) Half-cell reaction is $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O_7^{3-}$ $E_{\rm Cr_2O_2^{2-}/Cr^{3+}} - E_{\rm Cr_2O_2^{2-}/Cr^{3+}}^{\circ}$ $= -\frac{0.0591}{n} \log \frac{[Cr^{3+}]^2}{[Cr_2 O_2^{2-}][H^+]^{14}}$ $=\frac{0.0591}{6}\log[10^{-3}]^{14} = -0.414 \text{ V}$ $2Fe + \frac{3}{2}O_2 \longrightarrow \frac{Fe_2O_3}{Brown}$ $Cu + CO_2 + H_2O \rightarrow CuCO_3$. Cu $_{Green}$ (OH)₂ $Ag + H_2S \rightarrow Ag_2S_{Black}$ 450 (c) $\operatorname{Cu}_{\operatorname{ag}}^{2+} + e \longrightarrow \operatorname{Cu}_{\operatorname{ag}}^{+}; \qquad \Delta G_{1}^{\circ} = -[1 \times 0.15 \times F]$ $\frac{Cu_{aq}^{2+} + e \rightarrow Cu;}{On adding} \qquad \Delta G_2^\circ = -[1 \times 0.50 \times F]$ $\therefore \operatorname{Cu}_{\operatorname{aq}}^{2+} + 2e \longrightarrow \operatorname{Cu}; \qquad \Delta G_3^{\circ} = -[2 \times E_3^{\circ} \times F]$ $\therefore 2E_3^{\circ} = 0.65 \text{ V} \quad \text{or} \quad E_3^{\circ} = 0.325 \text{ V}$ 451 (c) When the solution of a weak electrolyte is diluted, the volume of the solution increases, hence equivalent conductivity (λ_c) increases. However, during this process, the number of current carrying particles per cm² decreases, hence specific conductivity (K_c) decreases.

$$E_{cell} = E_{0,PH}^{\circ} + E_{RPH}^{\circ} + \frac{0.059}{2} \log \frac{|H^+|_{RHE}^2 P_1}{|H^+|_{LHE}^2}$$

$$= \frac{0.059}{2} \log \frac{(10^{-3})^2}{(10^{-2})^2} (E_{0P}^{\circ} = E_{RP}^{\circ})$$

$$= -0.059 V$$
Thus, cell reaction is non-spontaneous.
$$453 \ (c)$$
From Kohlrausch's law
$$A_{m}^{\infty} = v_{+} \lambda_{+}^{\infty} + v_{-} \lambda_{-}^{\infty}$$
For CaCl₂

$$A_{m}^{\infty}(CaCl_{2}) = A_{Ca}^{\infty} + 2A_{C1}^{\infty} -$$

$$= 118.88 \times 10^{-4} + 2 \times 77.33 \times 10^{-4}$$

$$= 118.88 \times 10^{-4} + 154.66 \times 10^{-4}$$

$$= 273.54 \times 10^{-4} \text{ m}^2 \text{ mho mol}^{-1}$$

$$455 \ (b)$$
In case of very dilute solution of NaCl, electrolysis
brings in the following changes :
Anode : 20H⁻ \rightarrow H₂O + $\frac{1}{2}$ O₂ + 2e
Cathode : 2H⁺ + 2e \rightarrow H₂

$$456 \ (b)$$
Mg lie above Cu in electrochemical series and
hence, Cu electrode acts as cathode
 $E_{cell}^{\circ} = E_{cu^{2+}/Cu}^{\circ} = E_{Mg^{2+}/Mg}^{\circ}$
 $\therefore 2.70 V = 0.34 - E_{Mg^{2+}/Mg}^{\circ}$
 $\therefore 2.70 V = 0.34 - E_{Mg^{2+}/Mg}^{\circ}$
 $\therefore E_{Mg^{2+}/Mg}^{\circ} = -2.36 V$

$$457 \ (a)$$
This, is Hückel-Onsager equation.
$$458 \ (c)$$
Number of equivalents of silver formed
= number of equivalents of copper formed
In AgNO₃, Ag is in +1 oxidation state
In CuSO₄, Cu is in +2 oxidation state
Equivalent weight of $Ag = \frac{108}{1} = 108$
Equivalent weight of $Cu = \frac{63}{2} = 31.8$
 $\frac{w_1}{w_2} = \frac{E_1}{E_2}$
 $\therefore \frac{10.79}{w_{Cu}} = \frac{108}{1.8}$
Or $w_{Cu} = \frac{10.79\times31.8}{108} = 3.2 \text{ g}$

$$459 \ (b)$$
Energy = charge × potential
 $= 1 \times 100 \times 115 \text{ J}$
 $= 11.5 \text{ kJ}$

$$466 \ (d)$$
Cu is below Fe in electrochemical series.
$$466$$

known as galvanization.

(b) LHS half cell $H_2(g) \rightarrow 2H^+ (1 M) + 2e^-$ RHS half cell $\frac{2\mathrm{H}^{+}(1\,\mathrm{M}) + 2e^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})}{P_{2}}$ $\frac{\mathrm{H}_{2}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{g})}{P_{1}} \xrightarrow{P_{2}} \mathrm{H}_{2}(\mathrm{g})$ $E_{\text{cell}}^{\circ} = 0.00 \text{ V}, K = \frac{p_2}{p_1}, n = 2$ $E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{RT}{nF} \log_e K$ $= 0 - \frac{RT}{2F} \log_e \frac{P_2}{P_1}$ $E_{cell} = \frac{RT}{2F} \log_e \frac{p_1}{p_2}$ (b) $Ag^+ + e^- \rightarrow Ag$ 96500 C charge liberates silver = 108 g \therefore 96500 C will liberate silver = 10.8 g (b) Given 125mL of 1 M AgNO₃ solution. It means that : 1000mL of AgNO₃ solution contains $= 108 \, \text{g Ag}$: 125mL of AgNO₃ solution contains $=\frac{108 \times 125}{1000}$ gAg = 13.5 g Ag: 108 g of Ag is deposited by 96500 C ∴ 13.5 g of Ag is deposited by $=\frac{96500}{108} \times 13.5$ = 12062.5 C Q = itOr $t = \frac{Q}{i} = \frac{12062.5}{241.25} = 50$ (c) $E_{\text{cell}}^{\circ} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log Q$ $Cu^{2+} + Zn \rightarrow Zn^{2+} + Cu$ 0.1 M 1 M $Q = \frac{[Zn^{2+}]}{[Cu^{2+}]} = \frac{1}{0.1} = 10$ $E_{\text{cell}} = 1.10 - \frac{0.0591}{2} \log 10$ = 1.10 - 0.0295= 1.0705 V(a) $(126 \text{ Scm}^2 \text{ mol}^{-1})\Lambda_{\text{NaCl}}^{\infty} = \Lambda_{\text{Na}^+}^{\infty} + \Lambda_{\text{Cl}^-}^{\infty} \dots (i)$ $(152 \text{ Scm}^2 \text{ mol}^{-1})\Lambda^{\infty}_{\text{KBr}} = \Lambda^{\infty}_{\text{K}^+} + \Lambda^{\infty}_{\text{Br}^-}$...(ii)

$$(150 \text{ Scm}^{2} \text{ mol}^{-1})\Lambda_{\text{KCl}}^{\infty} = \Lambda_{\text{K}^{+}}^{\infty} + \Lambda_{\text{Cl}^{-}}^{\infty} \dots (\text{iii})$$

By Eqs. (i) + (ii) - (iii)
$$\therefore \Lambda_{\text{NaBr}}^{\infty} = \Lambda_{\text{Na}^{+}}^{\infty} + \Lambda_{\text{Br}^{-}}^{\infty}$$
$$= 126 + 152 - 150$$

 $= 128 \text{ Scm}^2 \text{ mol}^{-1}$

467 **(b)**

 $\begin{array}{c} \text{Ag / Ag^+ (0.1 \text{ M}) || Ag^+ (1 \text{ M}) / Ag} \\ & \text{anode} \\ & \text{cathode} \end{array}$

$$E_{cell} = \frac{2.303RT}{nF} \log \frac{C_1}{C_2}$$

Here, n = number of electrons in cell reaction = 1 $C_1 =$ concentration of cathodic electrolyte = 1 M $C_2 =$ concentration of anodic electrolyte = 0.1 M $\therefore \qquad E_{cell} = \frac{0.059}{1} \log \frac{1}{0.1}$

$$E_{cell} = 0.$$

468 (a)

At cathode $2H^+ + 2e^- \rightarrow H_2$ At anode $2OH^- \rightarrow H_2O + \frac{1}{2}O_2 + 2e^-$

469 **(c)**

$$E_{\text{cell}}^{\circ} = E_{OP_{\text{Sn}}}^{\circ} + E_{RP_{\text{Fe}}}^{\circ} = 0.14 + 0.77 = 0.91 \text{ V}$$

470 **(a)**

An important application of fuel cell used in space programmes to provide power for heat and light as well as drinking water to astronauts.

471 (a)

Conductance $= \frac{1}{R} = \frac{1}{210}$ = 4.76 × 10⁻³ mho.

472 (c)

According to Faraday law's

$$m = Z \times Q = \frac{E \times Q}{96500}$$
$$m = \frac{108}{96500} \times 2 \times 96500 = 216 g$$

473 (a)

Kohlraush gave the standard value of conductivity for different concentration of KCl solution. Thus, since,

$$\kappa = C \times \frac{l}{a};$$

By finding conductance of same concentration KCl solution, one finds l/a.

474 **(c)**

$$E^{\circ}_{Cu^{2+}/Cu} = +0.34 \text{ V} = E^{\circ}_{RP}$$

(Above H if arranged in decreasing E°_{RP})

Given, weight of hydrogen liberated $= 5.04 \times 10^{-2} g$ Eq. wt. of hydrogen = 1.008Eq. wt. of silver = 108Weight of silver deposited, w = ?According to Faraday's second law of electrolysis, = eq.wt.of silver weight of silver deposited weight of hydrogen liberated eq.wt.of hydrogen $\frac{w}{5.04 \times 10^{-2}} = \frac{100}{1.008}$ $w = \frac{108 \times 5.04 \times 10^{-2}}{1.008} = 5.4 \text{ g}$ 108 476 (d) At infinite dilution an electrolyte is 100% ionised or $\alpha = 1$ for weak electrolytes. At this point all interionic effect disappears. 477 (b) $\lambda_{\mathrm{K}^+}^\infty = \mu_{\mathrm{K}^+}^\infty \times \mathrm{F}$ or $\mu_{\rm K^+}^{\infty} = \frac{64.35}{96500}$ $= 6.67 \times 10^{-4} \text{ cm}^2 \text{sec}^{-1} \text{volt}^{-1}$ 478 (a) Zn has more +ve E_{OP}° and thus possesses more tendency to get oxidise and act as reducing agent. 479 (a) In Danial cell, oxidation occurs at anode and reduction occurs at cathode. Thus, the element, which has higher negative value of reduction potential, is used as anode and that with lower negative value of reduction potential is used as cathode. : Reduction potential of Zn is more negative than Cu. \therefore Zn | Zn²⁺ is anode and Cu²⁺ | Cu is cathode. 480 (d) To prevent rusting or oxidation of Fe by the action of O_2 in presence of H⁺, galvanization of iron object is made. 481 (b) It is definition of equivalent conductivity. 482 (a) $\Delta G^{\circ} = -nE^{\circ}F$ (for Cu + 2Ag⁺ \rightarrow Cu²⁺ + 2Ag) n = 2 $= -2 \times 0.46 \times 96500$ = -88788 J = -89.0 kJ 483 (d)

It does not depend upon mass.

484 **(c)**

475 (c)

The number of ions per cc decreases with dilution and therefore, specific conductance decreases with dilution.

 $E^{\circ}_{MnO_{4}^{-}|MnO_{2}} = \frac{\Delta G_{3}^{\circ}}{-nE} = \frac{-5.09 F}{-3E} = 1.70 V$ 488 (c) Salt bridge is used to remove or eliminate liquid junction potential arised due to different relative speed of ions of electrolytes at the junction of two electrolytes in an electrochemical cell. Thus, a salt bridge such as KCl is placed in between two electrolytes. A salt used for this purpose should 497 (c) have almost same speeds of its cation and anion. 489 (d) As AgnO₃ is added to solution , KCl will be displaced according to following reaction $\operatorname{AgNO}_3(aq) + \operatorname{KCl}(aq) \rightarrow \operatorname{AgCl}_{(s)} + \operatorname{KNO}_3(aq)$ For every mole of KCl displaced from solution, one mole of KNO₃ comes in solution resulting in almost constant conductivity. As the end point is reached, added AgNO₃ remain in solution increasing ionic concentration, hence conductivity increases. 490 (c) For the given cell, $M|M^+||X^-|X$, the cell reaction is derived as follows : RHS : Reduction: $X + e^- \rightarrow X^-$...(i) LHS : Oxidation: $M \rightarrow M^+ + e^-$...(ii) Add Eqs. (i) an (ii) $M + X \rightarrow M^+ + X^-$ The cell potential = -0.11 V Since, $E_{cell} = -ve$, the cell reaction derived above is non-spontaneous. In fact, the reverse reaction will occur spontaneously 491 (d)

485 (d)

486 (c)

487 (a)

Al replace it from its salt solution.

 $\Delta G_1^{\circ} = -5(1.51)F = -7.55F$

 $\Delta G_2^{\circ} = -2(1.23)F = -2.46 V$

On substrating

Blocks of magnesium metal provide cathodic

protection and protect oxidation of steel.

 $\mathrm{MnO_4^-} + 4\mathrm{H^+} + 3e^- \rightarrow \mathrm{MnO_2} + 2\mathrm{H_2O}\,\Delta G_3^\circ$

 $= -5.09 \, \text{F}$

Equivalent conductance (Λ) = specific Aluminium is more electropositive than Zn, hence conductance $(\kappa) \times \phi$ where, $\phi = \text{volume in } \text{cm}^3 \text{ containing 1 g}$ equivalent of electrolyte g equivalent is dissolve in 1. $= 1000 \text{ cm}^3$ 1 g equivalent is dissolve in = $\frac{1000}{0.1}$ cm³ $MnO_{4}^{-} + 8H^{+} + 5e^{-} \rightarrow Mn^{2+} + 4H_{2}O E^{\circ} = 1.51 V$ $= 10000 \text{ cm}^3$ $MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O_E^{\circ} = 1.23 V$ So, $\Lambda = 10000 \,\kappa$ 492 (d) All are same. 493 (c) 1 g atom of Al = 3 eq. of Al = 3 faraday charge 3 mole electrons = 3N electron. 494 (d) E_{RP}° Cu²⁺/Cu is more; Thus, Cu²⁺ gets reduced easily to oxidise others. 495 (c) In electrolytic cell, flow of electron is possible from cathode to anode through internal supply. 496 **(a)** Eq. of Mg = Eq. of Al or $\frac{W_{Mg}}{12} = \frac{W_{Al}}{9}$ For the change, $2Fe^{3+} + 3I^- \rightleftharpoons 2Fe^{2+} + I_3^ E_{\rm cell}^{\circ} = 0.77 - 0.54 = 0.23 \, \rm V$ $E^{\circ} = \frac{0.059}{2} \log K_c$ $0.23 = \frac{0.0591}{2} \log K_c$ $K_c = 6.26 \times 10^7$ 498 (c) $\operatorname{Zn}(s) + 2\operatorname{H}^+(aq) \rightleftharpoons \operatorname{Zn}^{2+}(aq) + \operatorname{H}_2(g)$ $E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.059}{2} \log \frac{[\text{Zn}^{2+}]}{[\text{H}^{+}]^2}$ When H_2SO_4 is added then $[H^+]$ will increase therefore E_{cell} will also increase and equilibrium will shift towards right

499 (a)

 $2H + 2e \rightarrow H_2;$ $20H^- \rightarrow H_20 + 1/20_2 + 2e$: Wt. ratio of $H_2: O_2 = 2: 16 \text{ or } 1: 8$ 500 (d) Ionic mobilities increase on dilution. 501 (b)

Cell is completely discharged, it means equilibrium gets established, $E_{\text{cell}} = 0$ Zn | Zn²⁺ (1 M) || Cu²⁺ (1 M) | Cu 515 (b) Cell reaction : $Zn + Cu^{2+} \rightleftharpoons Zn^{2+} + Cu$ $K_{\rm eq} = \frac{[{\rm Zn}^{2+}]}{[{\rm Cu}^{2+}]}$ We know. $E_{\text{cell}}^{\circ} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log K_{\text{eq}}$ $E_{\rm cell}^{\circ} = \frac{0.0591}{n} \log K_{\rm eq}$ 516 (a) Or $1.10 = \frac{0.0591}{2} \log K_{eq}$ $K_{eq} = \frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]} = \text{ antilog } \frac{2.20}{0.0591}$ 517 (d) 518 (a) = antilog 37.3 502 (c) Q $E_{\text{cell}} = E_{\text{OP}} + E_{\text{RP}}$ 519 (a) 503 (a) $E_{\text{cell}}^{\circ} = E_{OP_{\text{Zn}}}^{\circ} + E_{RP_{\text{Ag}}}^{\circ} = 0.76 + 0.77 = +1.53 \text{ V}.$ 504 (c) Rust is $Fe_2O_3.xH_2O$ or mixture of $Fe_2O_3 +$ $Fe(OH)_3$. 505 (a) Metal with – ve. E_{Rp}° or + ve E_{OP}° possesses the tendency to get itself oxidised. 506 (a) $\Lambda = k \times \frac{1000}{M} = \frac{1}{R} \times \frac{1}{R} \times \frac{1000}{M}$ 522 (a) $=\frac{1}{45} \times \frac{2.2}{3.8} \times \frac{1000}{0.5} = 25.73$ 507 (a) Ionic mobility = $\frac{\text{speed of ions}}{\text{potential gradient}} = \frac{\text{m sec}^{-1}}{\text{volt m}^{-1}}$ 523 (a) 509 (a) Charge = $10 \times 1 = 10$ C Also, 96500 C = 6×10^{23} electrons. 524 (a) 510 (c) Cryolite is used to lower the m. p. of alumina as 525 (a) well as to make it good conductor of current. 511 (c) The degree of dissociation of all electrolyte 526 (a) increases with increase in dilution (or decrease in concentration). 512 (d) Complex formation enhances the electrolytic deposition of Au. 513 **(b)** Pure water is almost unionised so, it does not conduct electricity. 514 (a)

Galvanic cell is Aelectrochemical cell that converts the chemical energy of Aspontaneous reaction into electrical energy.

Standard hydrogen electrode (SHE) is reference electrode. It is used to determine the electrode potential of any half cell. The electrode potential of any standard hydrogen electrode is arbitrarily taken as zero.

$$\Lambda_{\text{AgCl}}^{\infty} = \lambda_{Ag^{+}}^{\infty} + \Lambda_{\text{Cl}}^{\infty} - \lambda_{\text{AgNO}_{3}}^{\infty} + \lambda_{\text{NaCl}}^{\infty} - \lambda_{\text{NaNO}_{3}}^{\infty}$$

These are characteristics of fuel cells.

$$Q = N.e \text{ or } e = \frac{Q}{N} = \frac{\text{faraday}}{\text{Av. no.}}$$

For strong electrolytes, $\alpha = 1$ at normal dilution, but $\Lambda_v \neq \Lambda_\infty$.

520 (b)

 $E_{\text{cell}} = +\text{ve thus redox changes are}$ $A \rightarrow A^+ + e$ LHS shows oxidation. $B^+ + e \longrightarrow B$ RHS shows reduction. $A + B^+ \rightarrow A^+ + B$

521 (b)

The laws of electrolysis were given by Faraday.

Current i = ?Equivalent weight of Al $=\frac{27}{3}=9$ w = Z.i.t or $i = \frac{w}{Z.t} = \frac{0.09 \times 96500}{0 \times 965}$ = 10 A

Half cell reaction occurs only when it is coupled with other electrode.

Faraday discovered electrolysis.

1 faraday charge = E g deposition.

(i) The electrode with higher oxidation potential acts as anode and electrode with lower oxidation potential acts as cathode.

(ii) Cell reaction is spontaneous when E_{cell} is positive. In case of Aand B; oxidation potential of A = -0.03 oxidation potential of B = +0.108

Because oxidation potential of *B* is more than *A* so oxidation of A is not possible. The cell having A as

anode and *B* as cathode is not possible.

Therefore, non-spontaneous cell reaction takes place between *A* and *B*.

527 (b) Cell constant = $\frac{k}{c}$ = 0.0212 × 55 $= 1.166 \text{ cm}^{-1}$ 528 (a) $E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.059}{n} \log \left[\frac{\text{product}}{\text{reactant}} \right]$ Given, $E_{Cr^{3+}/Cr}^{\circ} = -0.74 \text{ V}$ $E_{\rm Fe^{2+}/Fe}^{\circ} = -0.44 \, \rm V$ $Cr | Cr^{2+} (0.1 \text{ M}) | Fe^{2+} | (0.01 \text{ M}) / Fe$ \therefore Cr³⁺ /Cr is anode and Fe²⁺ / Fe is cathode. $E_{\text{cell}}^{\circ} = E_C^{\circ} - E_A^{\circ}$ = (-0.44) - (0.74)= -0.44 + 0.74= + 0.30 VCell reaction is $2Cr + 3Fe^{2+} \rightarrow 2Cr^{3+} + 3Fe$ number of electrons in cell reaction = 6 $E_{cell}^{\circ} = E_{cell}^{\circ} - \frac{0.059}{n} \log \left[\frac{\text{product}}{\text{reactant}} \right]$ $= + 0.30 \text{ V} - \frac{0.059}{6} \log \left[\frac{(\text{Cr}^{3+})^2}{(\text{Fe}^{2+})^3} \right]$ $= 0.30 - \frac{0.059}{6} \log \left[\frac{(0.1)^2}{(0.01)^3} \right]$ $= 0.30 - \frac{0.059}{6} \log 10^4$ $= 0.30 - \frac{0.059}{6} \times 0.60$ $= 0.30 - 5.9 \times 10^{-3}$ = 0.2941 V529 (c) $2e + Cl^+ \rightarrow Cl^-; \Delta G_1^\circ$(i) $2\text{Cl}^- \rightarrow 2\text{Cl}_2 + 2e; \Delta G_2^\circ$(ii) $2e + 2Cl^+ \rightarrow Cl_2; \Delta G_3^\circ$ $\therefore \ \Delta G_3^{\circ} = 2 \times \Delta G_1^{\circ} + \ \Delta G_2^{\circ}$ $-2 \times E_3^{\circ} \times F = -2 \times 2 \times 0.94 F - 2 \times (-1.36)$ $\times F$ $\therefore E_3^{\circ} = 0.52 \text{ V}$ 530 (a) $E_{\text{cell}} = E_{OP_{\text{H}}}^{\circ} + E_{RP_{\text{H}}}^{\circ} + \frac{0.059}{2} \log \frac{[\text{H}^+]^2 P_1}{[\text{H}^+]^2 P_1}$ $=\frac{0.059}{+2}\log\frac{P_1}{P_2}$ E_{cell} is +ve when $P_1 > P_2$. 532 (c) Eq. of $O_2 = Eq.$ of Ag or $\frac{1.6}{8} = \frac{W}{108}$; $\therefore W_{Ag} = 21.6 \text{ g}$ 533 (c)

At LHS (oxidation) 2 × (Ag \rightarrow Ag⁺ + e^-), $E_{\text{oxi}}^{\circ} = -x$ At RHS (reduction) $\frac{\operatorname{Cu}^{2+} + 2e^{-} \rightarrow \operatorname{Cu}}{2\operatorname{Ag} + \operatorname{Cu}^{2+} \rightarrow \operatorname{Cu} + 2\operatorname{Ag}^{+}, E_{\operatorname{cell}}^{\circ} = (y - x)}$ **Note** E° values remain constant when half – cell equation is multiplied / divided. 535 (a) $\Lambda_{eq}^{\infty} = \lambda_{a}^{\infty} + \lambda_{c}^{\infty} = 315 + 35 = 350.$ 536 (d) $Pt(s), H_2(g) | H^+(1M) || Ag^+(aq) | Ag(s)$ EMF of cell = 0.62 V, $E_{cell}^{\circ} = 0.80 V$ $H_2 \rightarrow 2H^+ + 2e^-$ (at anode) $\frac{2Ag^{+} + 2e^{-} \rightarrow 2Ag \text{ (at cathode)}}{H_{2} + 2Ag^{+} \rightarrow 2Ag + 2H^{+} \text{ (overall reaction)}}$ $E_{\text{cell}} = E^{\circ} - \frac{2.303RT}{2F} \log \frac{[\text{H}^+]^2}{[\text{Ag}^+]^2 [\text{H}_2]}$ $E_{\text{cell}} = E^{\circ} - \frac{2.303RT}{2F} \log \frac{1}{[\text{Ag}^+]^2}$ $0.62 = 0.80 + \frac{2.303 \times 0.06}{2} \log \frac{1}{[Ag^+]^2}$ $0.62 = 0.80 + \frac{2 \times 2.303 \times 0.06}{2} \log[\text{Ag}^+]$ $-0.18 = 0.1382 \log [Ag^{-1}]$ $[Ag^+] = 0.05 \text{ m}$: Mole of Ag⁺ in 100 mL = 0.05 × $\frac{100}{1000}$ Wt. of Ag⁺ in 100 mL = $0.05 \times \frac{100}{1000} \times 108$ % of Ag in 1.08 g alloy $= \frac{0.05 \times 100 \times 108}{1000 \times 108} \times 100$ = 50 %537 **(b)** Q = it $= 1 \times 60$ = 60 C538 (c) During electrolysis, volumes of O₂ and H₂ liberated are in the ratio of 1 : 2 Hence, volume of H_2 liberated will be 4.48dm³. 539 (b) When 1 F electricity is passed through the solution. 1 g-equivalent of Cu is liberated. 540 (d) Zn is placed above Sn in electrochemical series. 541 (a) 1 faraday involves charge of 1 mole electrons. 542 (c) Oxidation of Cl⁻ at anode and reduction of Na⁺ at cathode.

543 (d)

These are characteristic of conductivity water.

544 (c)

These are the facts about use of Mg in protecting iron against corrosion.

545 **(b)**

Sum of molar conductivity of reactants = sum of molar conductivity of products Therefore, for the reaction $CH_3COOH + NaOH \rightarrow CH_3COONa + HCl$ $\Lambda_m^0 CH_3COOH = \Lambda_m^0 CH_3COONa + \Lambda_m^0 HCl - \Lambda_m^0 NaCl$ = 91 + 425.9 - 126.4 = 390.5 Ω^{-1} cm² mol⁻¹

546 **(b)**

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} + \frac{0.059}{n} \log[M^{n+}]$$
$$E_{\text{cell}} = 0.34 + \frac{0.059}{2} \log 10^{-2}$$
$$= 0.34 + \frac{0.059}{2} \times -2$$
$$= + 0.281 \text{ V}$$

547 (a)

We know that, $\Delta G^{\circ} = -nF \cdot E^{\circ}$ Where, n = 1 (number of transferred electron in the cell reaction) F =96500 C (Faraday's constant) $E^{\circ} = ?$ (the standard electrode potential of cell) $\Delta G^{\circ} = -21.20$ kJ (standard free energy) $\therefore -21.20 \times 1000$ J = $-1 \times 96500 \times E^{\circ}$ Or $E^{\circ} = \frac{21200}{96500} = 0.220$ V

548 **(b)**

 $-\Delta G = nEF = nE^{\circ}F + RT \ln \frac{[Cu^{2+}]}{[Zn^{2+}]}$ $\therefore \Delta G \text{ is function of } \ln(c_2/c_1).$

549 (d)

The half reactions are
Fe(s)
$$\rightarrow$$
 Fe²⁺(*aq*) + 2e⁻ × 2
O₂(g) + 4H⁺ + 4e⁻ \rightarrow 2H₂O
2Fe(s) + O₂(g) + 4H⁺
 \rightarrow 2Fe²⁺(*aq*) + 2H₂O (*l*)
 $E = E^{\circ} - \frac{0.059}{4} \log \frac{(10^{-3})^2}{(10^{-3})^4(0.1)} = 1.57 \text{ V}$

550 (d)

 $Al^{3+} + 3e^- \rightarrow Al$ w = ZQWhere, w = amount of metal w = 5.12 kg $= 5.12 \times 10^3 \text{ g}$ Z = electrochemical equivalent

$$Z = \frac{\text{equivalent weight}}{96500} = \frac{\text{atomic mass}}{\text{electrons } \times 96500}$$

$$Z = \frac{27}{3 \times 96500}$$

$$S.12 \times 10^3 = \frac{27}{3 \times 96500} \times Q$$

$$Q = \frac{5.12 \times 10^3 \times 33 \times 96500}{27} C$$

$$= 5.49 \times 10^7 C$$
551 (c)
$$E_{oP} \text{ of } Mg > E_{OP}^{\circ} \text{ of } Zn$$
552 (b)
$$E_{cell} = E_{oPcl}^{\circ} + E_{RPcl}^{\circ} + \frac{0.059}{2} \log \frac{[Cl^{-1}]_{LHE}^2 P_2}{[Cl^{-1}]_{RHE}^2 P_1}$$

$$= \frac{0.059}{2} \log \frac{P_2}{P_1}$$

$$E_{cell} \text{ is +ve when } P_2 > P_1.$$
553 (c)
3 eq. of Ag and 3 eq. of Cu will be deposited. Na and Al will not deposit during electrolysis of their aqueous salt solution. Because both have higher E_{OP}° than E_{OP}° of H. These metals can be extracted by electrolysis of their fused salts.
554 (a)
$$t_{K^+}^{\infty} = t_{KCl}^{\infty} \times t_{K^+}$$
130 × 0.495 = 64.35
555 (c)
$$2Fe^{3+} + 2n \rightarrow 2R^{2+} + 2Fe^{2+}$$

$$2Fe^{3+} + 2e^{-} \rightarrow 2Fe^{2+}$$
According to Nernst's equation,
$$E_{cell}^{\circ} = E_{cell}^{\circ} - \frac{RT}{nF} \ln \frac{[Fe^{2+}]^2}{[Fe^{3+}]^2}$$

$$E_{cell} is depend on concentration of Fe^{2+}.$$
Therefore on increasing the concentration of [Fe^{2+}]E_{cell} decreases.
556 (b)
96500 C = 6 × 10^{23} electrons.
557 (a)
Because fluorine is most powerful oxidizing agent than other halogens
558 (d)
$$E_{cell} = \frac{0.059}{2} \log K_c$$

$$\log K_c = \frac{E_{cell}^{*} \times 2}{0.059} \log K_c$$

$$\log K_c = \frac{E_{cell}^{*} \times 2}{0.059}$$

 $K_c = 8.5 \times 10^{15}$

560 (d)

Mg will not deposit on cathode during atom for Na. electrolysis. 574 (b) $E_1 = E_0 - \frac{0.0591}{2} \log \frac{0.01}{1} = E_0 + \frac{0.0591}{2} \times 2$ 561 (a) $\Lambda_{\rm NH_4OH}^{\infty} = \Lambda_{\rm NH_4Cl}^{\infty} + \Lambda_{\rm NaOH}^{\infty} - \lambda_{\rm NaCl}^{\infty}$ $E_2 = E_0 - \frac{0.0591}{2} \log \frac{1}{0.01} = E_0 - \frac{0.0591}{2} \times 2$ 562 (b) At cathode, cations are reduced. Also discharge $\therefore E_1 > E_2$ potential of H⁺ is less than Na⁺. 575 (a) 563 (a) Sulphuric acid (H₂SO₄) used in lead storage Conductance of a solution = conductance of ions battery. present in solution = $\sum C_i + C_{water}$. 576 (b) 564 (d) It is the definition of conductivity. $\mathring{\Lambda}_{NaBr} = \mathring{\Lambda}_{NaCl} + \mathring{\Lambda}_{KBr} - \mathring{\Lambda}_{KCl}$ 577 (a) 565 (d) By Kohlrausch's law $\operatorname{Hg}_2\operatorname{Cl}_2(s) + 2e \rightarrow 2\operatorname{Hg}(l) + 2\operatorname{Cl}^2(aq).$ $\Lambda_{\text{NaBr}}^{\circ} = \Lambda_{\text{NaCl}}^{\circ} + \Lambda_{\text{KBr}}^{\circ} - \Lambda_{\text{KCl}}^{\circ}$ 566 **(b)** = 126 + 152 - 150Zn acts as anode and gets oxidised. At graphite $= 128 \, \mathrm{S} \, \mathrm{cm}^2 \mathrm{mol}^{-1}$ cathode the reaction is, 578 (d) $MnO_2 + NH_4^+ + e \rightarrow Mn(OH)O + NH_3$ $\Lambda vs \sqrt{c}$ curves are hyperbolic for weak 567 (a) electrolytes because on dilution their no. of ions Eq. of $H_2 = 8/1 = 8$ as well as ionic mobility both increase. ∴ 8 faraday are needed. 579 (a) 568 (d) A characteristic of electrode. $C_6H_5NO_2 + 6H^+ + 6e^- \rightarrow C_6H_5NH_2 + 2H_2O_2$ 580 (a) The process is called cathode protection where 1 mol = 123 g nitrobenzene requires 6 mol iron acts as cathode and thus, not oxidised. electrons 581 (c) $= 6 \times 96500$ C charge 1 faraday deposits *E* g of species. 582 (b) \therefore 12.3 g nitrobenzene will require = $\frac{6 \times 96500 \times 12.3}{123}$ E_{OP}° of Li is high enough. 583 (a) $= 6 \times 9650 = 57900$ C $Fe \rightarrow Fe^{2+} + 2e^{-}$ (anode reaction) $0_2 + 2H_20 + 4e^- \rightarrow 40H^-$ (cathode reaction) 569 (c) The overall reaction is At cathode, $2Fe + O_2 + 2H_2O \rightarrow 2Fe(OH)_2$ $Al^{3+} + 3e^- \rightarrow Al$ Fe(OH)₂ may be dehydrated to iron oxide FeO, or further oxidized to $Fe(OH)_3$ and then dehydrated $E_{\rm Al} = \frac{27}{3} = 9$ to iron rust, Fe₂O₃. 584 **(b)** $w_{\rm Al} = E_{\rm Al} \times \text{no.of faradays}$ $Ag^+ + e \rightarrow Ag$ 585 (b) $= 9 \times 0.1 = 0.9 \text{ g}$ E_{OP}° of Fe > E_{OP}° of Cu; Thus, Fe gets oxidised or Fe \rightarrow Fe²⁺ + 2e; 570 (a) $Cu^{2+} + 2e \rightarrow Cu$ $2H^+ + 2e \rightarrow H_2;$ 586 (a) $20H^- \rightarrow H_20 + 1/20_2 + 2e$ Because, barring Ag, other come after the Fe in 571 (c) electrochemical series Weak electrolytes are 100% ionized at infinite dilution. 587 (b) 572 (a) The electrochemical cell stops working after 1 faraday deposits 1 equivalent which is also 1 g sometime because electrode potential of both the

electrodes become equal. 588 (a) $k = \frac{1}{R} \times \frac{1}{a} = \frac{1}{210} \times 0.66$ $= 3.14 \times 10^{-3} \text{ mho cm}^{-1}$ 589 (d) $\alpha = \frac{\Lambda_v}{\Lambda^{\infty}} = \frac{5.2}{390.7} = 0.0133$ Or 1.33 %. 591 (c) For gold plating the electrolyte K $[Au(CN)_2]$ is used. 592 (c) $Q = i \times t = 100 \times 10^{-3} \times 30 \times 60 = 180 \text{ C}$ 594 (a) Anode reaction $H_2(p_1) \rightarrow 2H^+$ Cathode reaction $2H^+ \rightarrow H_2(p_2)$ $E_{\text{cathode}} = -\frac{RT}{2F} \ln \frac{p_2}{[\text{H}^+]^2}$ $E_{\text{anode}} = -\frac{RT}{2F} \ln \frac{[\text{H}^+]^2}{n_1}$ $E_{\text{cell}} = E_{\text{anode}} + E_{\text{cathode}}$ $=-\frac{RT}{2F}\ln\frac{[\mathrm{H}^{+}]^{2}}{n_{1}}-\frac{RT}{2F}\ln\frac{p_{2}}{[\mathrm{H}^{+}]^{2}}$ $= -\frac{RT}{2F}\ln\frac{p_2}{p_1} = \frac{RT}{2F}\ln\frac{p_1}{p_2}$ 595 (b) Weight of Ag required = $80 \times 5 \times 10^{-3} \times$ $1.05(wt) = v \times d$ = 0.42 g $W = \frac{E \, i \, t}{96500}$ 0.42 = $\frac{108 \times 3 \times t}{96500}$ \vdots :. :. $t = 125 \, \text{sec}$ 596 (c) $2H^+ + 2e \rightarrow H_2$ (cathode) $20H^- \rightarrow H_20 + (1/2)O_2 + 2e$ (Anode) 597 **(b)** $W = Z \times i \times t$ $\therefore W = 0.0011180 \times 0.5 \times 200 = 0.11180 \text{ g}$ 598 (c) Zn is coated to protect iron from rusting. 599 (c) Ionisation depends upon concentration, temperature, nature of solute and on nature of solvent. Ionisation increases on increasing

dilution. 600 **(b)** $C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$ $\Delta G^{\circ} = 5 \times G^{\circ} \text{CO}_2 + 6 \times G^{\circ} \text{H}_2 \text{O} - G^{\circ}_{\text{C}_{\text{c}}\text{H}_{12}} - 8 \times G^{\circ}_{\text{O}_2}$ $= 5 \times (-394.4) + 6 \times (-237.2) + 8.2$ = -3387 kJ $\Delta G^{\circ} = n E^{\circ} F$ $3387 \times 10^3 = 32 \times E^{\circ} \times 96500 \, [(C^{-2.4})_5 \rightarrow$ *5*C*4++32e* $:: E^{\circ} = 1.0968 \text{ V}$ n = 32601 (c) Hydrolysis of water can be represented by the following equations $2H_20 \rightleftharpoons 0_2 + 4H^+ + 4e^-$:: 4 Faraday of charge liberate $O_2 = 32$ g \therefore 1 Faraday of charge liberate $O_2 = \frac{32}{4} g$ =8 g602 (a) Given, $\frac{l}{a} = 0.5 \text{ cm}^{-1}$ $R = 50\Omega$ N = 1.0Specific conductance $(\kappa) = \frac{1}{\rho} = \frac{l}{R_{,a}} = \frac{0.5}{50}$ $\Lambda = \kappa \times \frac{1000}{N}$ $=\frac{0.5}{50} \times \frac{1000}{0.1}$ $= 10 \Omega^{-1} \text{ cm}^2 \text{ g eg}^{-1}$ 603 (d) The increasing order of deposition of cations at the cathode is $Cu^{2+} < Ag^+ < Au^{3+}$ $E \propto Z$ $Ag^+ + e^- \rightarrow Ag$ $Cu^{2+} + 2e^- \rightarrow Cu$ $Au^{3+} + 3e^- \rightarrow Au$ 3 Faradays liberate 1 mole of Au, 3 moles of Ag and 3/2 moles of Cu. Thus, molar ratio of Ag:Cu: Au is 3:3/ 2:1 or 6:3:2. 604 (a) $E_{\text{cell}}^{\circ} = E_{OP_{Mg}}^{\circ} + E_{RP_{Cu}}^{\circ}$ = 2.37 + 0.34 = 2.71 V. 605 (b) Given, $\operatorname{Zn}^{2+} \rightarrow \operatorname{Zn}$, $E^{\circ} = -0.76 V$ $Cu^{2+} \rightarrow Cu$, $E^{\circ} = 0.34 V$ $Ag^+ \rightarrow Ag$, $E^\circ = 0.8 V$ Cell reaction of (I) is $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$ $E_{\text{cell}}^{\circ} = E_{\text{oxidation}} + E_{\text{reduction}}$

$$= + 0.76 + 0.34$$

$$= + 1.10 V$$

Cell reaction of (II) is
Zn + Ag⁺ \rightarrow Zn²⁺ + Ag
 $E_{cell}^{\circ} = 0.76 + 0.8$

$$= + 1.56 V$$

Cell reaction of (III) is
Cu + Ag⁺ \rightarrow Cu²⁺ + Ag
 $E_{cell}^{\circ} = -0.34 + 0.8$

$$= + 0.46$$

So, the correct order of E_{cell}° of these cell is
II > I > III.

606 **(c)**

The equivalent conductance of strong electrolyte is increased by dilution, because its value is equal to the multiple of K_v and the volume of solution. By making dilution the volume of solution increases which also increase the value of equivalent conductivity.

607 **(b)**

 $\Lambda vs \sqrt{c}$ curves on extrapolating to zero concentration gives Λ^{∞} for strong electrolytes. NH₄OH is weak electrolyte its $\Lambda vs \sqrt{c}$ curves are shown in fig. (d) of problem 41.

608 **(c)**

In this reaction,

$$\begin{array}{c|c} Fe^{2+} + Zn \longrightarrow Zn^{2+} + Fe \\ \hline Oxidation \\ Reduction \end{array}$$

 $EMF = E_{cathod} - E_{anode}$

= -0.41 - (-0.76)

= + 0.35 V

609 **(a)**

 $\rm H_2$ is anode because oxidation takes place. Cu is cathode because reduction takes place

610 **(b)**

Solid NaCl does not conduct electricity due to absence of free ions.

611 **(b)**

The hydrated ion size is $\text{Li}_{aq}^+ > Na_{aq}^+ > K_{aq}^+ > Rb_{aq}^+$. Larger is ion, lesser is its mobility.

612 **(d)**

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} + \frac{0.059}{2} \log \frac{[\text{Ni}^{2+}]}{[\text{Zn}^{2+}]}$$

$$\therefore \quad 0.5105 = E_{\text{cell}}^{\circ} + \frac{0.059}{2} \log \frac{1}{1} \text{ or } E_{\text{cell}}^{\circ} = 0.5105 \text{ V}$$

613 **(a)**

The variation of e.m.f. of cell with temperature at constant pressure $(\partial E/\partial T)_P$ is referred as temperature coefficient of cell.

614 **(a)**

Wt. of Ag deposited = eq. wt. of Ag = 108 g Wt. of Ni deposited = eQ. wt. of Ni = 29.5 g Wt. of Cr deposited = eq. wt. of Cr = 17.3 g

615 **(a)**

The correct relation of E_{cell}° with free energy of cell reaction and equilibrium constant are as follows

$$\Delta G^{\circ} = nFE_{\text{cell}}^{\circ}$$

and $\Delta G^{\circ} = -2.303 RT \log K_{\text{eq}}$

616 **(a)**

Anode : $Fe(s) + 2OH^- \rightarrow FeO(s) + H_2O(l) + 2e$ Cathode : $Ni_2O_3 + H_2O(l) + 2e \rightarrow 2NiO(s) + 2OH^-$

$$E_{\text{cell}} = E_{OP_{\text{Fe}}/\text{FeO}}^{\circ} - \frac{0.059}{2} \log_{10} \frac{[\text{H}_2\text{O}]}{[\text{OH}^-]^2} + E_{RP_{\text{Ni}_2\text{O}_3/\text{NiO}}}^{\circ} + \frac{0.059}{2} \log_{10} \frac{[H_2O]}{[OH^-]^2}$$

$$E_{\rm cell} = E_{OP_{\rm Fe}/{\rm FeO}}^{\circ} + E_{RP_{\rm Ni_2O_3/NiO}}^{\circ}$$

617 **(b)**

 $K_a = c\alpha^2$ for weak acid; HA \rightleftharpoons H⁺ + A⁻

618 **(d)**

C is also calomel electrode.

619 **(c)**

CuSO₄ \rightleftharpoons Cu²⁺ + SO₄²⁻ At cathode Cu²⁺(*aq*) + 2*e*⁻ \rightarrow Cu(*s*) At anode 2H₂O(*l*) \rightarrow O₂(g) + 4H⁺(*aq*) + 4*e*⁻ Thus, for the production of one mole of copper from copper sulphate 2F of electricity is required.

620 **(a)**

Eq. of Al = Eq. of Ag

$$\therefore \frac{W_{Al}}{9} = \frac{W_{Ag}}{108} \text{ or } \frac{W_{Al}}{W_{Ag}} = \frac{9}{108}$$

621 **(d)**

 $W \propto E$; if Q = constant.

622 **(a)**

From Asolution of $CuSO_4$, Cu can be recovered by Fe metal. Because Fe is more reactive than Cu, it replace Cu easily.

623 **(d)**

Large negative RP or more positive oxidation potential and thus, more is the tendency to get oxidized.

According to Faraday's second law of electrolysis, 628 we have

- $\frac{W_1}{W_2} = \frac{E_1}{E_2}$ $\therefore \quad \frac{1.08}{x} = \frac{108}{1}$
- ... Weight of hydrogen (x) = 0.01 g Hence, the volume of hydrogen at STP = $\frac{22400 \times 0.01}{2}$ = 112 cm³

625 **(d)**

By Nernst equation, $E_{cell} = E_{cell}^{\circ} - \frac{2.303 RT}{nF} \log_{10} K$ At equilibrium $E_{cell} = 0$ Given that, $\therefore R = 8.315 \text{ JK}^{-1} \text{ mol}^{-1}$ $T = 25 \,^{\circ}\text{C} + 273 = 298K$ F = 96500 C and n = 2 $\therefore E_{cell}^{\circ} = \frac{2.303 \times 8.314 \times 298}{2 \times 96500} \log_{10} K$ $= \frac{0.0591}{2} \log_{10} K$ $\therefore Given that E_{cell}^{\circ} = 0.295 \text{ V}$ $\therefore 0.295 = \frac{0.0591}{2} \log_{10} K$ $\log_{10} K = \frac{0.295 \times 2}{0.0591} = 10$ $\log_{10} K = antilog 10$ $K = 1 \times 10^{10}$ 626 (a)

Follow E_{OP}° values in electrochemical series.

627 **(c)**

$$\begin{split} \mathring{\Lambda}_{CH_{3}COOH} &= \ \mathring{\Lambda}_{CH_{3}COONa} + \ \mathring{\Lambda}_{HCl} - \ \mathring{\Lambda}_{NaCl} \\ &= 91.0 + 426.2 - 126.5 \\ &= 390.7 \ S \ cm^{2} \ mol^{-1} \end{split}$$

628 **(a)**

Fe is more electropositive than copper

Hence, Cu²⁺ can oxidize Fe

629 **(a)**

Eq. of Al = Eq. of Na; $\therefore \frac{1.8}{27/3} = \frac{W}{23}$ $\therefore W_{Na} = 4.6 \text{ g}$

630 **(a)**

X coulomb deposits 1 mole Al or 3 eq. of Al and thus, it will deposit 3 mole or 3 eq. of Ag is monovalent,

$$\left[\therefore \frac{W}{E} \text{ (for Ag)} = \frac{W}{E} \text{ (for Al)} \right]$$

631 **(d)**

During electrolysis of CuSO₄, Cu²⁺ gets discharged at cathode and OH⁻ at anode. Thus, solution becomes acidic due to excess of H⁺ and SO₄²⁻ or H₂SO₄

DCAM classes Dynamic Classes for Academic Mastery