

11.DUAL NATURE OF RADIATION AND MATTER

Single Correct Answer Type

- 1. The ratio of the energy of an *X*-ray photon of wavelength 1 Å to that of visible light of wavelength 5000 Å is
 - a) 1:5000 b) 5000:1 c) 1:25 \times 10⁶ d) 25 \times 10⁶
- 2. If light of wavelength λ_1 is allowed to fall on a metal, then kinetic energy of photoelectrons emitted is E_1 . If wavelength of light changes to λ_2 then kinetic energy of electrons changes to E_2 . Then work function of the metal is

a)
$$\frac{E_1 E_2 (\lambda_1 - \lambda_2)}{\lambda_1 \lambda_2}$$
 b) $\frac{E_1 \lambda_1 - E_2 \lambda_2}{(\lambda_1 - \lambda_2)}$ c) $\frac{E_1 \lambda_1 - E_2 \lambda_2}{(\lambda_2 - \lambda_1)}$ d) $\frac{\lambda_1 \lambda_2 E_1 E_2}{(\lambda_2 - \lambda_1)}$

3. When two different materials *A* and *B* having atomic number Z_1 and Z_2 are used as the target in Coolidge γ -ray tube at different operating voltage V_1 and V_2 respectively their spectrums are found as below.

The correct relation is

a) $V_1 > V_2$ and $Z_1 > Z_2$ b) $V_1 < V_2$ and $Z_1 < Z_2$ c) $V_1 < V_2$ and $Z_1 > Z_2$ d) $V_1 > V_2$ and $Z_1 < Z_2$ 4. If the linear momentum of a particle is 2.2×10^4 kg-ms⁻¹, then what will be its de-Broglie wavelength? (Take $h = 6.6 \times 10^{-34}$ Js)

	a) 3 × 10 ⁻²⁹ m	b) 3 × 10 ⁻²⁹ nm	c) 6 × 10 ⁻²⁹ m	d) 6 × 10 ⁻²⁹ nm
5.	The rest mass of the	photon is		
	a) 0		b) ∞	
	c) Between 0 and ∞		d) Equal to that of ar	n electron
6.	The value of Plank en	iergy is		
	a) $\frac{nhc}{\lambda}$	b) $nh\lambda$	c) nhcλ	d) $\frac{nh\lambda}{c}$

- 7. The ratio of specific charge of an α -particle to that of a proton is a) 2 :1 b) 1 :1 c) 1 :2
- 8. The correct graph between the maximum energy of a photoelectron and the inverse of wavelength of the incident radiation is given by the curve

(A) = (A) = (A)

a) *A* b) *B* c) *C* d) None of the above 9. Two identical metal plates shown photoelectric effect by a light of wavelength λA falls on plate A and λ_B on plate $B(\lambda_A = 2\lambda_B)$. The maximum kinetic energy is

a)
$$2 K_A = K_B$$
 b) $K_A < K_B/2$ c) $K_A = 2K_B$ d) $K_A = K_B/2$
Ouantum nature of light is explained by which of the following phenomenon

- 10. Quantum nature of light is explained by which of the following phenomenona) Huygen wave theoryb) Photoelectric effect
 - c) Maxwell electromagnetic theory d) De-Broglie theory
- 11. Energy from the sun is received on earth at the rate of 2 cal per cm² per min. if average wavelength of solar light be taken at 5500 A then how many photons are received on the earth per cm² per min?

d) 1:3

(Take $h = 6.6 \times 10^{-34}$ Js, 1cal=4.2 J). a) 1.5×10^{13} b) 2.9×10^{13} c) 2.3×10^{19} d) 1.75×10^{19}

- 12. Which phenomenon best supports the theory that matter has a wave nature a) Electron momentum b) Electron diffraction c) Photon momentum d) Photon diffraction
- 13. The figure represents the observed intensity of *X*-rays emitted by an *X*-ray tube as a function of wavelength. The sharp peaks *A* and *B* denote

	trate length			
	a) Band spectrum		b) Continuous spectrum	
	c) Characteristic radiation	ns	d) White radiations	
14.	The frequency of a photon	n, having energy 100 eV is	$(h = 6.6 \times 10^{-34} J - s)$	
	a) 2.42 × 10 ²⁶ Hz	b) $2.42 \times 10^{16} Hz$	c) $2.42 \times 10^{12} Hz$	d) 2.42 × 10 ⁹ <i>Hz</i>
15.	Which of the following ha	we highest specific charge		
	a) Positron	b) Proton	c) <i>He</i>	d) None of these
16.	Planck's constant has the	dimensions of		
	a) Energy	b) Mass	c) Frequency	d) Angular momentum
17.	The de-Broglie wavelengt	th is proportional to		
	a) $\lambda \propto \frac{1}{v}$	b) $\lambda \propto \frac{1}{m}$	c) $\lambda \propto \frac{1}{p}$	d) $\lambda \propto p$

p18. A parallel beam of light is incident normally on a plane surface absorbing 40% of the light and reflecting the rest. If the incident beam carries 60 W of power, the force exerted by it on the surface is a) 3.2×10^{-8} N b) 3.2×10^{-7} N c) 5.12×10^{-7} N d) 5.12×10^{-8} N

- 19. Given below is a list of electromagnetic spectrum and its mode of production. Which one does not match a) Gamma rays - Radioactive of the nucleus
 - b) Ultraviolet Magnetron valve
 - c) Infrared Vibration of atoms and molecules
 - d) Radiowave Rapid acceleration and decelaration of electrons in conducting wires
- 20. A proton of mass 1.67×10^{-27} kg enters a uniform magnetic field of 1 T at point *A* as shown in figure, with a speed of 10⁷ ms⁻¹. The magnetic field is directed normal to the plane of paper downwards. The proton emerges out of the magnetic field at point C, then the distance AC and the value of angle θ will respectively be

a) 0.7 m, 45°

c) 0.14 m, 90°

d) 0.14 m, 45°

21. The uncertainty in the position of a particle is equal to the de-Broglie wavelength. The uncertainty in its momentum will be a) h/λ

```
b) 2h/3\lambda
                                           c) \lambda/h
                                                                                       d) 3\lambda/2h
```

22. The work functions for sodium and copper are 2eV and 4eV. Which of them is suitable for a photocell with 4000 Å light

```
a) Copper
                         b) Sodium
                                                   c) Both
                                                                             d) Neither of them
```

23. The curve between current (*i*) and potential difference (*V*) for a photo cell will be

b) 0.7 m, 90°

	a) <i>i</i> b) <i>i</i> f	c) <i>i</i>	d) i f
24.	What will be the number of photons emitted per sec 90% of the consumed energy is converted into light 10^{-34} J-s.	ond by a 10 W sodium vapo? Wavelength of sodium ligi?	bur lamp assuming that ht is 590 nm, $h = 6.63 \times$
25.	a) 0.267×10^{18} b) 0.267×10^{19} For the Bohr's second orbit of circumference $2\pi r$, the	c) 0.267×10^{20} the de-Broglie wavelength of	d) 0.267×10^{17} Frevolving electron will be
	a) $2\pi r$ b) πr	c) $\frac{1}{2-n}$	d) $\frac{1}{4\pi m}$
26.	The work function of a metal is	2111	411
	a) The energy for the electron to enter into the meta	al	
	b) The energy for producing X-ray		
	c) The energy is required for an electron to come ou d) None of these	t from metal surface	
27.	If the uncertainty in the position of proton is 6×10^{10}	⁸ m, then the minimum unce	ertainty in its speed will be
	a) 1 cms ⁻¹ b) 1 ms ⁻¹	c) 1 mms ⁻¹	d) 100 ms^{-1}
28.	The work function for metals <i>A</i> , <i>B</i> and <i>C</i> are respect	ively 1.92 eV, 2.0 eV and 5 e	eV. According to Einstein's
	equation, the metals which will emit photo electrons	s for a radiation of wavelen	gth 4100 Å is/are
	a) None of these b) A only	c) A and B only	d) All the three metals
29.	Among the following four spectral regions, the photo	ons has the highest energy	in
	a) Infrared b) Violet	c) Red	d) Blue
30.	Kinetic energy of emitted cathode rays is dependent	z on	
	a) Only voltage	b) Only work function	
	c) Both (a) and (b)	d) It does not depend upo	on any physical quantity
31.	An electron is accelerated under a potential differen	ce of 182 V. The maximum	velocity of electron will be
	(Charge of an electron is 1.6×10^{-19} C and its mass	is 9.1×10^{-31} kg)	<i>,</i>
	a) 5.65×10^6 m/s b) 4×10^6 m/s	c) $8 \times 10^{6} \text{ m/s}$	d) $16 \times 10^{6} \text{ m/s}$
32.	If the voltage of <i>X</i> -rays tube is doubled, the intensity	v of X-rays will become	
	a) Half b) Unchanged	c) Double	d) Four times
33.	Bragg's law for X-rays is		
~ .	a) $d \sin \theta = 2n\lambda$ b) $2d \sin \theta = n\lambda$	c) $n\sin\theta = 2\lambda d$	d) None of these
34.	An electron of charge 'e' coulomb passes through a p	potential difference of V vo	lts. Its energy in 'joules'
25	a) V/e b) eV	C) e/V	d) V
35.	when cathode-rays strike a metal target of high mei	ting point with a very high	velocity, then which of the
	a) a rays	a) Illtraviolat rava	d) w wawac
26	a) U -rays D) Λ -rays	cj Ultiaviolet lays	$u_J \gamma$ -waves
50.	a photon of energy of the incluent of a metal surface	is $(h - 6.6 \times 10^{-34} I_c)$	$.0 \times 10^{-1} HZ$, then the
	a) 4.8 eV b) 2.4 eV	$(n = 0.0 \times 10 \text{ JS})$	d) 0.8 aV
37	The kinetic energy of an electron is $5 eV$ Calculate t	be de-Broglie wavelength a	sociated with it
57.	$(h - 6.6 \times 10^{-34} \text{ Js } m - 9.1 \times 10^{-31} \text{ kg})$	ne ue-bi ogne wavelengen a	ssociated with it
	$(n = 0.0 \times 10^{-3}), n_e = 5.1 \times 10^{-3}$ kg/	c) 2 7 Å	d) None of these
38	Order of a/m ratio of proton α -particle and electron	oj 2.7 m	aj none or these
50.	a) $e > n > \alpha$ b) $n > \alpha > \rho$	$c) \rho > \alpha > n$	d) None of these
39	In the following diagrams if $V_{a} > V_{c}$ then	c, c > u > p	aj none or enese
57.			

51. The maximum wavelength of radiation that can produce photoelectric effect in certain metal is 200 nm. The maximum kinetic energy acquired by electron due to radiation of wavelength 100 nm will be

Page | 5

	d) Decrease or increase in photo-electric cu	urrent does not depend upon t	he gas filled		
77.	Momentum of a photon of wavelength λ is				
	a) h/λ b) $h\lambda/c^2$	c) $h \lambda/c$	d) Zero		
78.	Molybdenum is used as a target element for	r production of X-rays because	e it is		
	a) A heavy element and can easily absorb h	high velocity electrons			
	b) A heavy element with a high melting poi	nt			
	c) An element having high thermal conduct	tivity			
	d) Heavy and can easily deflect electrons				
79.	In Millikan's oil drop experiment, an oil dro	pp of mass $16 imes 10^{-6}$ kg is bala	nced by an electric field of		
	10 ⁶ Vm ⁻¹ . The charge in coulomb on the dr	rop is			
	$(assuming g = 10 ms^{-2})$				
	a) 6.2×10^{-11} b) 16×10^{-9}	c) 16×10^{-11}	d) 16×10^{-13}		
80.	The X-ray beam coming from an X-ray tube	e will be			
	a) Monochromatic				
	b) Having all wavelengths smaller than a ce	ertain maximum wavelength			
	c) Having all wavelengths larger than a cer	tain minimum wavelength			
	d) Having all wavelengths lying between a	minimum and a maximum way	velength		
81.	In photoelectric effect, the threshold wavel	ength of sodium is 5000 Å. Fin	d its work function($h = 6.6 \times$		
	10^{-34} Js, $c = 3 \times 10^8$ ms ⁻¹ , $1 \text{ eV} = 1.6 \times 1$	$0^{-19}J$			
	a) 7.5 eV b) 2.5 eV	c) 10 eV	d) 5.0 eV		
82.	An X-ray has a wavelength of 0.010 Å. Its m	nomentum is			
	a) $2.126 \times 10^{-23} kg \cdot m/s$	b) $6.626 \times 10^{-22} kg$	-m/s		
	c) $3.456 \times 20^{-25} kg \cdot m/s$	d) $3.313 \times 10^{-22} kg$	-m/s		
83.	In the Davission and Germer experiment, the	he velocity of electrons emitted	d from the electron gun can be		
	increased by				
	a) Decreasing the potential difference betw	veen the anode and filament			
	b) Increasing the potential difference between	een the anode and filament			
	c) Increasing the filament current				
	d) Decreasing the filament current				
84.	If an electron and a photon propagate in the	e form of waves having the sam	ne wavelength, it implies that		
	they have the same				
	a) Energy b) Momentum	c) Velocity	d) Angular momentum		
85.	When a high energy UV photon beam enter	rs an electric field, it will be			
	a) Accelerated b) Retarded	c) Undeflected	d) None of these		
86.	A metal surface of work function 1.07 eV is	irradiated with light of wavele	ength 332 nm. The retarding		
	potential required to stop the escape of pho	otoelectrons is			
~-	a) 1.07 eV b) 2.66 eV	c) 3.7 eV	d) 4.81 eV		
87.	When light falls on a metal surface, the max	kimum kinetic energy of the en	nitted photo-electrons depends		
	upon				
	a) The time for which light falls on the meta	al			
	b) Frequency of the incident light				
	c) Intensity of the incident light				
00	a) velocity of the incident light		-		
88.	An x-ray tube is operated at 50 kV . The min	nimum wavelength produced i	IS ID 4 Å		
00	a) 0.5 A b) 0.75 A	c) 0.25 A	d) 1 A		
89.	I ne $K_a X$ -ray emission line of tungsten occu	urs at $\lambda = 0.021 nm$. The energ	gy difference between K and L		
	ieveis in this atom is about		d) 10 (-W		
00	aj U.51 MeV DJ 1.2 MeV	CJ 59 KeV	$u_{J} 13.0 eV$		
90.	photoelectrons is equal to	netal naving work function 2 e	v. The maximum KE OF		

	a) 1.4 eV	b) 1.7 eV	c) 5.4 eV	d) 6.8 eV
91.	A beam of 35.0 keV electr	ons strikes a molybdenum	target, generating the X-ra	ys. What is the cut-off
	wavelength?			
	a) 35.5 pm	b) 40.0 pm	c) 15.95 pm	d) 18.2 pm
92.	The energy that should be	e added to an electron to re	duce its de-Broglie wavele	ngth from 1 nm to 0.5 nm is
	a) Four times the initial e	nergy	b) Equal to the initial energy	rgy
	c) Twice the initial energy	3y	d) Thrice the initial energ	у
93.	A charged oil drop of mas	as $2.5 \times 10^{-7} kg$ is in space l	between the two plates, eac	ch of area $2 \times 10^{-2} m^2$ of a
	parallel plate capacitor. W	When the upper plate has a o	charge of $5 \times 10^{-7}C$ and th	e lower plate has an equal
	negative charge, the oil re	emains stationary. The char	ge of the oil drop is [Take g	$g = 10 \ m/s^2]$
	a) 9 × 10 ⁻¹ C	b) 9 × 10 ⁻⁶ C	c) $8.85 \times 10^{-13} C$	d) $1.8 \times 10^{-14} C$
94.	The photoelectric effect c	an be understood on the ba	asis of	
	a) The principle of superp	position	b) The electromagnetic th	eory of light
	c) The special theory of r	elativity	d) Line spectrum of the at	tom
95.	The ratio of the de Broglie	e wavelengths of an electro	n of energy 10 eV to that of	f person of mass 66 <i>kg</i>
	travelling at a speed of 10	00 <i>km/hr</i> is of the order of		
	a) 10 ³⁴	b) 10 ²⁷	c) 10 ¹⁷	d) 10 ⁻¹⁰
96.	By photoelectric effect, Ei	instein, proved		
	a) $E = hv$	b) K. E. = $\frac{1}{-}mv^2$	c) $E = mc^2$	d) $E = \frac{Rhc^2}{m}$
07	A (1.1.1.1.)	2		n^2
97.	A particle with rest mass will be	m_0 is moving with speed of	f light <i>c</i> . The de-Broglie wa	ivelength associated with it
	a) Infinite	b) Zero	c) <i>m</i> ₀ <i>c</i> / <i>h</i>	d) hv/m_0c
98.	In the graph given below.	If the slope is 4.12×10^{-15}	⁵ <i>V-s</i> , then value of ' <i>h</i> ' shoul	d be
	V_0			
	ping			
	Stop pote			
	Frequency			
	a) 6.6×10^{-31} J-s	b) 6.6×10^{-34} J-s	c) 9.1×10^{-31} J-s	d) None of these
99.	The wavelength of <i>X</i> -rays	sis		
	a) 2000 Å	b) 2 Å	c) 1 <i>mm</i>	d) 1 <i>cm</i>
100.	If a cathode ray tube has a	a potential difference V vol	t between the cathode and	anode, then the speed v of
	cathode rays is given by	_	_	
	a) $v \propto V^2$	b) $v \propto \sqrt{V}$	c) $v \propto V^{-1}$	d) $v \propto V$
101.	The ratio of the energy of	a photon with $\lambda = 150$ nm	to that with $\lambda = 300$ nm is	
	a) 2	b) $\frac{1}{4}$	c) 4	d) $\frac{1}{2}$
102	Photooloctric omission is	4 observed from a motallic si	urface for frequencies 12 a	$\frac{1}{2}$
102.	$r_{10} = 1000000000000000000000000000000000$	imum values of kinetic ene	v_1 and v_1 and v_1 and v_2 of the photoelectrops of the	v_2 of the incluent light
	in the ratio of $1 \cdot k$ then t	the threshold frequency of t	the metallic surface is	initieu in the two cases are
	$v_1 - v_2$	$kv_1 - v_2$	$kv_2 - v_1$	$v_2 - v_1$
	a) $\frac{1}{k-1}$	b) $\frac{k + 1}{k - 1}$	c) $\frac{k^2 - 1}{k - 1}$	d) $\frac{k}{k}$
103.	The cathode rays have pa	rticle nature because of the	e fact that	
	a) They can propagate in	vacuum		
	b) They are deflected by e	electric and magnetic fields		
	c) They produced fluores	cence		
	d) They cast shadows			
104.	The light rays having pho	tons of energy 1.8 <i>eV</i> are fa	alling on a metal surface ha	ving a work function 1.2 eV.
	What is the stopping pote	ential to be applied to stop t	the emitting electrons	
	a) 3 <i>eV</i>	b) 1.2 <i>eV</i>	c) 0.6 <i>eV</i>	d) 1.4 <i>eV</i>

105. The cathode of a pho $W_2(W_2 > W_1)$. If the unchanged, then (as	15. The cathode of a photoelectric cell is changed such that the work function changes from W_1 to $W_2(W_2 > W_1)$. If the current before and after change are I_1 and I_2 , all other conditions remaining unchanged, then (assuming $hv > W_2$)				
a) $I_1 = I_2$	b) $I_1 < I_2$	() $l_1 > l_2$	d) $l_1 < l_2 < 2l_1$		
106. The magnitude of sat	turation photoelectric cur	rent depends upon			
a) Frequency	h) Intensity	c) Work function	d) Stopping potential		
107. In Thomson mass sp to magnetic fields of	ectrograph, singly and dou 0.8 T and 1.2 T for a const	ubly ionised particles from si cant electric field. The ratio of	milar parabola corresponding f masses f ionised particles will		
$a) 3 \cdot 8$	h) 2 · 9	c) 8 · 3	d) 9 · 2		
108 The energy of a phot	on of light with wavelengt	c) 0.5	5 aV This way the energy of an		
V ray photon with w	on of light with wavelengt	III JOOD A IS approximately 2	.5 ev. This way the energy of an		
x-ray proton with w	avereingun IA would be		d 2 $\Gamma \times (\Gamma 0 0 0)^2 dV$		
a) $2.3/3000 eV$	$UJ 2.5/(5000)^{-}eV$	$C_{J} 2.5 \times 5000 eV$	u) 2.5 × (5000)-ev		
a) Diffraction	h) Polarization	a) Interference	d) Photoplastric offect		
a) Diffaction		c) interference	a) Photoelectric effect		
110. For photoelectric em	lission, tungsten requires	light of 2300 A. If light of 180	10 A wavelength is incident then		
emission					
a) Takes place	11	b) Doesn't take place			
c) May or may not ta	ke place	a) Depends on freque	ency		
111. The ratio of de-Brog	he wavelength of a α -parti	icle to that of a proton being	subjected to the same magnetic $$		
field so that the radii	of their path are equal to	each other assuming the field	d induction vector <i>B</i> is		
perpendicular to the	velocity vectors of the α -p	particle and the proton is			
a) 1	b) 1/4	c) 1/2	d) 2		
112. Light of wavelength	4000 Å incident on a sodiu	im surface for which the thre	eshold wavelength of		
photoelectrons is 54	20 Å. The work function o	f sodium is			
a) 0.57 eV	b) 1.14 eV	c) 2.29 eV	d) 4.58 eV		
113. What is the difference	:e between soft and hard λ	K-rays			
a) Velocity	b) Intensity	c) Frequency	d) Polarization		
114. An electron of mass	<i>m</i> when accelerated throu	gh a potential difference V h	as de-Broglie wavelength λ . The		
de-Broglie waveleng	th associated with a proto	n of mass M accelerated thro	ough the same potential		
difference will be					
m	m	М	M		
a) $\lambda \frac{m}{M}$	b) $\lambda \sqrt{\frac{m}{M}}$	c) $\lambda \frac{m}{m}$	d) $\lambda \left(\frac{m}{m}\right)$		
1/1	N 171	110	\sqrt{m}		
115. When a beam of acce target. Which of the 40,000 <i>volts</i>	lerated electrons hits a ta following wavelength is at	rget, a continuous X-ray spec osent in the X-ray spectrum, i	ctrum is emitted from the If the X-ray tube is operating at		
a) 0.25 Å	b) 0.5 Å	c) 1.5 Å	d) 1.0 Å		
116. The mass of a photo	electron is				
a) $9.1 \times 10^{-27} kg$	b) $9.1 \times 10^{-29} kg$	c) $9.1 \times 10^{-31} kg$	d) $9.1 \times 10^{-34} kg$		
117. In a region, steady an	nd uniform electric magne	tic fields are present. These t	two fields are parallel to each		
other. A charged par	ticle is released from rest	in this region. The path of the	e particle will be a		
a) Helix	b) Straight line	c) Ellipse	d) Circle		
118. The photoelectric eff	fect represents that	, , , , , , , , , , , , , , , , , , ,	,		
a) Light has a particl	e nature	b) Electron has a wav	e nature		
c) Proton has a wave	e nature	d) None of the above			
119. Consider the following	ng two statements A and E	and identify the correct cho	pice in the given answer		
A: The characteristic	X-ray spectrum depends	on the nature of the material	l of the target		
B: The short waveler	igth limit of continuous X .	ray spectrum varies inverse	ly with the potential difference		
applied to the X-rays	stube	, , , , , , , , , , , , , , , , , , ,	, <u>,</u>		

a) A is true and B is false	b) A is false and B is true	
c) Both A and B are true	d) Both A and B are false	
120. During <i>X</i> -ray production from coolidge tube if the cu	rrent in increased, then	
a) The penetration power increases	b) The penetration power	r decreases
c) The intensity of <i>X</i> -rays increases	d) The intensity of X-rays	s decreases
121. De-Broglie wavelength of a body of mass 1 kg movin	g with velocity of 2000 m/	<i>s</i> is
a) 3.32×10^{-27} Å b) 1.5×10^{7} Å	c) 0.55×10^{-22} Å	d) None of these
122. If threshold wavelength for a certain metal is 2000Å	, then the work function o	f metal is
a) 6.2 MeV b) 6.2 keV	c) 6.2 J	d) 6.2 eV
123. Four particles have same momentum. Which has ma	ximum kinetic energy?	
a) Proton b) Electron	c) Deuteron	d) α - particle
124. Cathode rays are		
a) Positive rays b) Neutral rays	c) He rays	d) Electron waves
125. A photon collides with a stationary hydrogen atom in	n ground state inelastically	. Energy of the colliding
photon is 10.2 eV. After a time interval of the order of	of micro second another ph	oton collides with same
hydrogen atom inelastically with an energy of 15 eV.	. What will be observed by	the detector?
a) 2 photons of energy 10.2 <i>eV</i>		
b) 2 photons of energy of 1.4 <i>eV</i>		
c) One photon of energy 10.2 <i>eV</i> and an electron of e	energy 1.4 <i>eV</i>	
d) One photon of energy 10.2 <i>eV</i> and another photor	n of 1.4 <i>eV</i>	
126. Which of the following statement about photon is inc	correct?	
a) Photons exert no pressure	b) Momentum of photon	is hv/c
c) Photon's rest mass is zero	d) Photon's energy is <i>hv</i>	
127. A metal surface is illuminated by a light of given inte	nsity and frequency to cau	se photoemission. If the
intensity of illumination is reduced to one-fourth of i	ts original value, then the	maximum kinetic energy of
the emitted photoelectrons would become		
a) Four times the original value	b) Twice the original valu	ie
c) 1/6th of the original value	d) unchanged	
128. K_{α} and K_{β} X-rays are emitted when there is a transit	ion of electron between the	e levels
a) <i>n</i> =2 to <i>n</i> =1 and <i>n</i> =3 to <i>n</i> =1 respectively	b) <i>n</i> =2 to <i>n</i> =1 and <i>n</i> =3 to	o <i>n</i> =2 respectively
c) <i>n</i> =3 to <i>n</i> =2 and <i>n</i> =4 to <i>n</i> =2 respectively	d) <i>n</i> =3 to <i>n</i> =2 and <i>n</i> =4 to	o <i>n</i> =3 respectively
129. Dual nature of radiation is shown by		
a) Diffraction and reflection	b) Refraction and diffract	ion
c) Photoelectric effect alone	d) Photoelectric effect an	d diffraction
130. The momentum of a photon is 2×10^{-16} gm-cm/sec	c. Its energy is	
a) $0.61 \times 10^{-26} erg$ b) $2.0 \times 10^{-26} erg$	c) $6 \times 10^{-6} erg$	d) $6 \times 10^{-8} erg$
131. A photon of wavelength 6630 Å is incident on a total	ly reflecting surface. The m	nomentum delivered by the
photon is equal to		
a) $6.63 \times 10^{-27} kg \cdot m/s$ b) $2 \times 10^{-27} kg \cdot m/s$	c) 10 ⁻²⁷ kg-m/s	d) None of these
132. A beam of light of wavelength λ and with illuminatio	n L falls on a clean surface	of sodium. If N
photoelectrons are emitted each with kinetic energy	<i>E</i> , then	
a) $N \propto L$ and $E \propto L$ b) $N \propto L$ and $E \propto \frac{1}{2}$	c) $N \propto \lambda$ and $E \propto L$	d) $N \propto \frac{1}{2}$ and $E \propto \frac{1}{2}$
133 An electron and a neutron can have same (1) kinetic	energy (2) momentum of	r(3) speed
Which particle has a shorter de-Broglie wavelength?	energy, (2) momentum, of	(5) speed.
a) Neutron, same, neutron	b) Neutron, electron, sam	e
c) Electron, same, neutron	d) Electron, neutron, elec	tron
134. A proton and an α -particle are accelerated through the second se	he same potential differen	ce. The ratio of their de-
Broglie wavelength $(\lambda_p/\lambda_\alpha)$ is		
a) $1/2\sqrt{2}$ b) 1		
a) 1/2 v 2 ~ ~) 1	c) 2	d) 2√2

 6.28×10^5 Vm⁻¹. The surrounding medium in air with coefficient of viscosity $\eta = 1.6 \times 10^{-15}$ Nsm⁻². If this particle moves with a uniform horizontal speed of 0.01 ms⁻¹, the number of electrons on it will be a) 20 b) 15 c) 25 d) 30

136. Two large parallel plates are connected with the terminal of 100 *v* power supply. These plates have a fine hole at the centre. An electron having energy 200 *eV* is so directed that it passes through the holes. When if comes out it's de-Broglie wavelength is

	100 V			
	a) 1.22 Å	b) 1.75 Å	c) 2 Å	d) None of these
137	What will be the ratio of	de-Broglie wavelengths of J	proton and α -particle of sar	ne energy
	a) 2 :1	b) 1 :2	c) 4:1	d) 1 :4
138	Rest mass energy of an e	lectron is 0.51 <i>MeV</i> . If this e	electron is moving with a ve	elocity 0.8 c (where c is
	velocity of light in vacuu	m), then kinetic energy of tl	he electron should be	
	a) 0.28 <i>MeV</i>	b) 0.34 <i>MeV</i>	c) 0.39 <i>MeV</i>	d) 0.46 <i>MeV</i>
139	A photoelectric cell is illu	iminated by a point source	of light 1 m away. When the	e source is shifted to 2 m
	then			
	a) Each emitted electron	carries half the initial energy	gy	
	b) Number of electrons e	mitted is a quarter of the in	iitial number	
	c) Each emitted electron	carries one quarter of the i	nitial energy	
	d) Number of electrons e	mitted is half the initial nur	nber	
140	An electromagnetic radia	ition has an energy of 13.2	keV. Then the radiation bel	ongs to the region of
	a) Visible light	b) Ultraviolet	c) Infrared	d) X-ray
141.	Positive rays are very ide	entical to		
	a) α -particle rays	b) β-rays	c) γ-rays	d) None of above
142.	When a piece of metal is	illuminated by a monochro	matic light of wavelength λ	, then stopping potential is
	$3V_s$. When same surface 1	s illuminated by light of wa	velength 2λ , then stopping	potential becomes V_s . The
	value of threshold wavel	ength for photoelectric emi	ssion will be	
	a) 4λ	b) 8λ	c) $\frac{1}{3}\lambda$	d) 6λ
143	In photoelectric effect if t	the intensity of light is doub	oled, then maximum kinetio	c energy of photoelectrons
_	will become		,	of the second seco
	a) Double	b) Half	c) Four times	d) No change
144	The energy of a photon is	s equal to the kinetic energy	of a photon. The energy of	f a the photon is <i>E</i> . Let λ_1 be
	the de-Broglie wavelengt	th of the photon and λ_2 be t	the wavelength of the photo	on. The ratio $\frac{\lambda_1}{\lambda_1}$
				λ_2
	r^{0}	h) r1/2	a) F =1	d) r=2
1 4 5	a) E° Liebt of for an one of the in	$DJ E^{-1/2}$		$u_j E_j$
145	Light of frequency <i>v</i> is in	cident on a certain photoel	ectric substance with thresh	nota frequency v_0 . The
	a) ha	b) hm	a $b(n n)$	d) $h(n + n)$
146	a) <i>IIV</i>	$UJ \pi v_0$	c) $n(v - v_0)$	$u j n (v + v_0)$
140	a) by	b) hn/c	(c) h w c	d) h/n
147	a) nv Consider the following st	atements concerning electr	cj n vc	
11/	I Flectrons are universal	constituents of mater	0113 .	
	II. I I Thomson received t	he very first Nobel nrize in	Physics for discovering the	electron
	III. The mass of the electric	con is about $1/2000$ of a new	utron.	

IV. According to Bohr the linear momentum of the electron is quantised in the hydrogen atom. Which of the above statements are not correct?

- a) I b) II c) III d) IV
- 148. In a photoemissive cell with exciting wavelength λ , the fastest electron has speed v. If the exciting wavelength is changed to $3\lambda/4$, the speed of the fastest emitted electron will be
 - a) $v(3/4)^{1/2}$
 - b) $v(4/3)^{1/2}$ c) Less than $v(4/3)^{1/2}$ d) Greater than $v(4/3)^{1/2}$
- 149. The curve drawn between velocity and frequency of photon in vacuum will be a
 - a) Straight line parallel to frequency axis
 - b) Straight line parallel to velocity axis
 - c) Straight line passing through origin and making an angle of 45° with frequency axis
 - d) Hyperbola
- 150. If a voltage applied to an *X*-ray tube is increased to 1.5 times the minimum wavelength (λ_{\min}) of an *X*-ray continuous spectrum shifts by $\Delta \lambda = 26 \ pm$. The initial voltage applied to the tube is

a)
$$\approx 10 \ kV$$
 b) $\approx 16 \ kV$ c) $\approx 50 \ kV$ d) $\approx 75 \ kV$

- 151. The characteristic X-rays radiation is emitted, when
 - a) The electrons are accelerated to a fixed energy
 - b) The source of electrons emits a monoenergetic beam
 - c) The bombarding electrons knock out electrons from the inner shell of the target atoms and one of the outer electrons falls into this vacancy
 - d) The valence electrons in the target atoms are removed as a result of the collision
- 152. The minimum wavelength of X-rays produced in a coolidge tube operated at potential difference of 40 kV

153. If *m* is the mass of an electron and *c* is the speed of light, the ratio of the wavelength of a photon of energy *E* to that of the electron of the same energy is

a)
$$c \sqrt{\frac{2m}{E}}$$
 b) $\sqrt{\frac{2m}{E}}$ c) $\sqrt{\frac{2m}{cE}}$ d) $\sqrt{\frac{m}{E}}$

- 154. A photon of 1.7×10^{-13} Joules is absorbed by a material under special circumference. The correct statement is
 - a) Electrons of the atom of absorbed material will go the higher energy states
 - b) Electron and positron pair will be created
 - c) Only positron will be produced
 - d) Photoelectric effect will occur and electron will be produced
- 155. The velocity of photon is proportional to (where *v* is frequency)

a)
$$\frac{v^2}{2}$$

is

b)
$$\frac{1}{\sqrt{v}}$$

 \sqrt{v}

d) v

156. For a photoelectric cell the graph showing the variation of cut off voltage (V_0) with frequency (v) of incident light is best represented by

- 157. Hydrogen atom does not emit X-rays because
 - a) Its energy levels are too close to each other
 - c) It is too small in size
- b) Its energy levels are too apart
- d) It has a single electron
- 158. A particle of charge -16×10^{-18} C moving with velocity 10 ms⁻¹ along the *x*-axis enters a region where a magnetic field of induction B is along the y-axis and an electric field of magnitude 10^4 Vm⁻¹ is along the

	negative z-axis. If the char	ged particle continues mo	ving along the <i>x</i> -axis, the m	agnitude of <i>B</i> is
	a) 10 ³ Wbm ⁻²	b) 10 ⁵ Wbm ⁻²	c) 10 ¹⁶ Wbm ⁻²	d) 10 ⁻³ Wbm ⁻²
159	An important spectral em ($h = 6.62 \times 10^{-34}$ Is and	ission line has a wavelengt $c = 3 \times 10^8 \text{ ms}^{-1}$	h of 21cm. The correspond	ing photon energy is
	a) $5.9 \times 10^{-8} \text{ eV}$	b) 5.9 \times 10 ⁻⁴ eV	c) $5.9 \times 10^{-6} \text{ eV}$	d) 11.8 × 10 ⁻⁶ eV
160	A charge of magnitude3 <i>e</i>	and mass $2m$ is moving in	an electric field E . The acc	eleration imparted to the
100	charge is			
	a) 2 $Ee/3m$	h) 3 $Ee/2m$	c) $2 m/3Ee$	d) 3 m/2Ee
161	X-ray will travel minimun	n distance in	0) 1 110/020	a) o my 220
101	a) Air	b) Iron	c) Wood	d) Water
162	When cathode rays strike	a metal target of high melt	ing point with very high ve	locity, then
	a) X-rays are produced		b) Alpha-rays are produce	ed
	c) UV waves are produced	1	d) Ultrasonic waves are p	roduced
163	X-ray of wavelength $\lambda = 2$	A is emitted from the met	al target. The potential diffe	erence applied across the
	cathode and the metal tar	get is		
	a) 5525 V	b) 320 V	c) 6200 V	d) 3250 V
164	X-ravs are produced in lab	poratory by	-)	.,
-	a) Radiation		b) Decomposition of the a	itom
	c) Bombardment of high e	energy electron on heavy	d) None of these	
165	The current conduction in	a discharged tube is due t	0	
	a) Electrons only		b) + ve ions and electrons	
	c) $-ve$ ions and electrons		d) +ve ions, $-ve$ ions and	l electrons
166	Light of wavelength λ stri	kes a photo-sensitive surfa	ce and electrons are ejecte	d with kinetic energy <i>E</i> . If
	the kinetic energy is to be	increased to $2E$, the wave	length must be changed to	λ' where
	a) $\lambda' = \frac{\pi}{2}$	b) $\lambda' = 2\lambda$	c) $\frac{\pi}{2} < \lambda' < \lambda$	d) $\lambda' > \lambda$
167	An oil drop with charge q	is held stationary between	two plates with an externa	al potential difference of
	400 V. If the size of the dr	op is doubled without any	change of charge, the poten	itial difference required to
	keep the drop stationary v	will be		
	a) 400 V	b) 1600 V	c) 3200 V	d) 4000 V
168	A beam of cathode rays is	subjected to crossed Elect	ric (E) and Magnetic field (B). The fields are adjusted
	such that the beam is not	deflected. The specific chai	rge of the cathode rays is gi	ven by
	a) $\frac{E^2}{2}$	b) $\frac{B^2}{2}$	c) $\frac{2VB^2}{2}$	d) $\frac{2VE^2}{2VE^2}$
1.60	$\int 2VB^2$	$2VE^2$	E^2	B^2
169	A charged oil drop falls w	ith terminal velocity v_0 in t	the absence of electric field	An electric field <i>E</i> keeps it
	stationary. The drop acqu	ires charge 3q, it starts mo	oving upwards with velocity	v_0 . The initial charge on
	the drop is	1.2		1) 0
170	a) q/2		c) 3q/2	a) 2q
1/0	Light of wavelength 4000.	A is incident on a metal sui	face. The maximum kinetic	c energy of emitted
	photoelectron is 2 eV. Wh	at is the work function of t	he metal surface ?	
	a) 4 eV	b) 1 eV	c) 2 eV	d) 6 eV
171	A charged particle is mov	ring in a uniform magnetic	c field in a circular path. T	he energy of the particle is
	tripled. If the initial radius	s of the circular path was <i>h</i>	, the radius of the new circ	ular path after the energy is
	a) $\frac{R}{3}$	b) √3 <i>R</i>	c) 3 <i>R</i>	d) <i>R</i> / √ 3
172	Cathode rays enter a mag	netic field making oblique	angle with the lines of mag	netic induction. What will
	be the nature of the path f	followed?		
	a) Parabola	b) Helix	c) Circle	d) Straight line
173	The graph that correctly r	epresents the relation of fr	requency v of a particular c	haracteristic X-ray with the

- b) Mean kinetic energy of the emitted electrons
- c) Maximum kinetic energy of the emitted electrons
- d) Minimum kinetic energy of the emitted electrons
- 175. Let λ_{α} , λ_{β} and λ'_{α} denote the wavelengths of the X-rays of the K_{α} , K_{β} and L_{α} lines in the characteristic X-rays for a metal. Then

a)
$$\lambda_{\alpha} > \lambda'_{\alpha} > \lambda_{\beta}$$
 b) $\lambda'_{\alpha} > \lambda_{\beta} > \lambda_{\alpha}$ c) $\frac{1}{\lambda_{\beta}} = \frac{1}{\lambda_{\alpha}} + \frac{1}{\lambda'_{\alpha}}$ d) $\frac{1}{\lambda_{\alpha}} + \frac{1}{\lambda_{\beta}} = \frac{1}{\lambda'_{\alpha}}$

176. Monochromatic radiation emitted when electron on hydrogen atom jumps from first excited to the ground state irradiates a photosensitive material. The stopping potential is measured to be 3.57 *V*. the threshold frequency of the material is

- a) $4 \times 10^{15} Hz$ b) $5 \times 10^{15} Hz$ c) $1.6 \times 10^{15} Hz$ d) $2.5 \times 10^{15} Hz$
- 177. Who discovered the charge on an electron for the first time?
 a) Millikan
 b) Thomson
 c) Kelvin
 d) Coulomb
 178. An electron microscope is used to probe the stomic encounter to a recolution of 5 Å. What should be the
- 178. An electron microscope is used to probe the atomic arrangement to a resolution of 5 Å. What should be the electric potential to which the electrons need to be accelerated
 a) 2.5 V
 b) 6 V
 c) 2.5 kV
 d) 5 kV

179. A light of wavelength 4000 Å is allowed to fall on a metal surface having work function 2 eV. The maximum velocity of the emitted electrons is ($R = 6.6 \times 10^{-34}$ Js) a) 1.35×10^5 ms⁻¹ b) 2.7×10^5 ms⁻¹ c) 6.2×10^5 ms⁻¹ d) 8.1×10^5 ms⁻¹

180. The wavelength λ of the K_{α} line of characteristic X-rays spectra varies with atomic number approximately

a)
$$\lambda \propto Z$$
 b) $\lambda \propto \sqrt{Z}$ c) $\lambda \propto \frac{1}{Z^2}$ d) $\lambda \propto \frac{1}{\sqrt{Z}}$

181. There are n_1 photons of frequency v_1 in a beam of light. In an equally energetic beam there are n_2 photons of frequency v_2 . Then the correct relation

a)
$$\frac{n_1}{n_2} = \frac{v_1}{v_2}$$
 b) $\frac{n_1}{n_2} = 1$ c) $\frac{n_1}{n_2} = \frac{v_2}{v_1}$ d) $\frac{n_1}{n_2} = \frac{v_2^2}{v_1^2}$

182. The photosensitive surface is receiving light of wavelength Å at the rate of 10⁻⁸ Js⁻¹. The number of photons received per second is

a) 2.5×10^{10} b) 2.5×10^{11} c) 2.5×10^{12} d) 2.5×10^{9}

183. When radiation is incident on a photoelectron emitter, the stopping potential is found to be 9 V. I *e/m* for the electron is 1.8 × 10¹¹ C Kg⁻¹, the maximum velocity the ejected electron is
a) 6 × 10⁵ ms⁻¹
b) 8 × 10⁵ ms⁻¹
c) 1.8 × 10⁶ ms⁻¹
d) 1.8 × 10⁵ ms⁻¹

184. In Millikans oil drop experiment, a charged drop of mass $1.8 \times 10^{-14} kg$ is stationary between its plates. The distance between its plates is 0.90 *cm* and potential difference is 2.0 *kilo volts*. The number of electrons on the drop is a) 500 b) 50 c) 5 d) 0

a) 500b) 50c) 5d) 0185. X-rays beam can be deflected by
a) Magnetic fieldb) Electric fieldc) Both (a) and (b)d) None of these186. The minimum wavelength of X-ray emitted by X-rays tube is 0.4125 Å. The accelerating voltage is
a) 30 kVb) 50 kVc) 80 kVd) 60 kV

187. If the wavelength of incident light changes from 400 nm to 300 nm, the stopping potential for photoelectrons emitted from a surface becomes approximately

	a) 1 0 V greater	h) 1 0 V smaller	c) 05V greater	d) 0 5 V smaller
188	If n_{-} and n_{-} denote the nu	mber of photons emitted h	y a red hulb and violet hull	h of equal nower in a given
100.	time then		y a rea baib and violet bai	borequarpower ma given
	a) = n	h n n		d $n > n$
100	a) $n_R - n_V$ Moder measured the free	$U \int n_R > n_V$	$C_{J} n_{R} < n_{V}$	u) $n_R \ge n_V$
189.	Mosley measured the freq	uency ()) of the characteri	Isuc A -rays from many met	
	number (Z) and represent	ted his results by a relation	Known as Mosley's law. If	lis law is (a, b are
	constants)			
	a) $f = a(Z - b)^2$	b) $Z = a(f - b)^2$	c) $f^2 = a(Z - b)$	d) $f = a(Z - b)^{1/2}$
190.	The minimum energy req	uired to remove an electro	n is called	
	a) Stopping potential	b) Kinetic energy	c) Work function	d) None of these
191.	In Millikan's oil drop expe	riment, a charged drop fall	s with terminal velocity V.	if an electric field <i>E</i> is
	applied in vertically upwa	rd direction then it starts r	noving in upward direction	with terminal velocity 2V.
	if magnitude of electric fie	ld is decreased to $E/2$, the	n terminal velocity will bec	omes
	a) V/2	b) <i>V</i>	c) 3V/2	d) 2 <i>V</i>
192.	X-rays are			
	a) Stream of electrons		b) Stream of positively cha	arged particles
	c) Electromagnetic radian	tions of high frequency	d) Stream of uncharged pa	articles
193.	X-rays are used in determ	ining the molecular structu	re of crystalline because it	S
	a) Energy is high			
	b) It can penetrate the ma	terial		
	c) Its wavelength is compa	arable to interatomic dista	nce	
	d) Its freqency is low			
194.	For an electron in the seco	ond orbit of Bohr's hydroge	en atom, the moment of line	ear momentum is
	<pre></pre>		, h	h 2h
	a) πh	b) $2\pi h$	c) $\frac{-}{\pi}$	d) $\frac{\pi}{\pi}$
195.	The potential difference a	pplied to an X-ray tube is 5	kV and the current throug	h it is 3.2 mA. The number
195.	The potential difference a of electrons striking the ta	pplied to an X-ray tube is 5 arget per second is (Take a	kV and the current throug $e = 1.6 \times 10^{-19}$ C)	h it is 3.2 mA. The number
195.	The potential difference a of electrons striking the ta a) 1.6×10^6	pplied to an X-ray tube is 5 arget per second is (Take 6 b) 2×10^{-6}	kV and the current through $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16}	h it is 3.2 mA. The number d) 2 $\times 10^{16}$
195. 196.	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa	pplied to an X-ray tube is 5 arget per second is (Take α b) 2 × 10 ⁻⁶ velength of the α -particle a	kV and the current through $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a poter	h it is 3.2 mA. The number d) 2 × 10^{16} ntial difference V
195. 196.	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa 0.287	pplied to an X-ray tube is 5 arget per second is (Take α b) 2 × 10 ⁻⁶ velength of the α -particle a 12.27	kV and the current through $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a potential 0.101 g	h it is 3.2 mA. The number d) 2×10^{16} ntial difference <i>V</i> 0.202
195. 196.	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å	kV and the current through $e = 1.6 \times 10^{-19} \text{ C}$ c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å	h it is 3.2 mA. The number d) 2×10^{16} ntial difference <i>V</i> d) $\frac{0.202}{\sqrt{V}}$ Å
195. 196. 197.	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electron	pplied to an X-ray tube is 5 arget per second is (Take α b) 2 × 10 ⁻⁶ velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga	kV and the current through $e = 1.6 \times 10^{-19} \text{ C}$ c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å sets at low pressure, the col	h it is 3.2 mA. The number d) 2×10^{16} ntial difference <i>V</i> d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube
195. 196. 197.	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electron appears as a result of	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga	kV and the current through $e = 1.6 \times 10^{-19} \text{ C}$ c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the column	h it is 3.2 mA. The number d) 2×10^{16} ntial difference <i>V</i> d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube
195. 196. 197.	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electron appears as a result of a) Collisions between the	pplied to an X-ray tube is 5 arget per second is (Take α b) 2 × 10 ⁻⁶ velength of the α -particle a b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga	kV and the current through $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the column from the cathode and the at	h it is 3.2 mA. The number d) 2×10^{16} ntial difference <i>V</i> d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube
195. 196. 197.	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electron appears as a result of a) Collisions between the b) Collision between different	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted f	kV and the current through $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the column from the cathode and the attempt of the gas	h it is 3.2 mA. The number d) 2×10^{16} ntial difference <i>V</i> d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube coms of the gas
195. 196. 197.	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electrons a) Collisions between the b) Collision between difference c) Excitation of electrons	pplied to an X-ray tube is 5 arget per second is (Take α b) 2 × 10 ⁻⁶ velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted f rent electrons of the atoms in the atoms	kV and the current through $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the coll from the cathode and the attempt of the gas	h it is 3.2 mA. The number d) 2×10^{16} ntial difference <i>V</i> d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube
195. 196. 197.	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of elec appears as a result of a) Collisions between the b) Collision between differ c) Excitation of electrons d) Collision between the a	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted f rent electrons of the atoms in the atoms toms of the gas	kV and the current through $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the coll from the cathode and the attempt of the gas	h it is 3.2 mA. The number d) 2×10^{16} ntial difference <i>V</i> d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube coms of the gas
195. 196. 197.	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electrons a) Collisions between the b) Collision between differ c) Excitation of electrons d) Collision between the a An electron is moving with	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted f rent electrons of the atoms in the atoms toms of the gas h constant velocity along x	kV and the current through $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the coll from the cathode and the attempt of the gas -axis. If a uniform electric f	h it is 3.2 mA. The number d) 2×10^{16} ntial difference <i>V</i> d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube coms of the gas
195. 196. 197. 198.	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electrons a) Collisions between the b) Collision between differ c) Excitation of electrons d) Collision between the a An electron is moving with axis, then its path in the x	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted f rent electrons of the atoms in the atoms toms of the gas h constant velocity along x - y plane will be	kV and the current through $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the coll from the cathode and the attempt of the gas -axis. If a uniform electric form	h it is 3.2 mA. The number d) 2×10^{16} ntial difference <i>V</i> d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube coms of the gas
195. 196. 197. 198.	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electrons a) Collisions between the b) Collision between the b) Collision between the a An electron is moving with axis, then its path in the <i>x</i> a) A straight line	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted f rent electrons of the atoms in the atoms toms of the gas h constant velocity along x - y plane will be b) A circle	kV and the current through $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the coll from the cathode and the att of the gas -axis. If a uniform electric forming the collection of the gas	h it is 3.2 mA. The number d) 2×10^{16} htial difference <i>V</i> d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube coms of the gas ield is applied along <i>y</i> –
 195. 196. 197. 198. 198. 199 	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electrons a) Collisions between the b) Collision between differ c) Excitation of electrons d) Collision between the a An electron is moving with axis, then its path in the x a) A straight line Choose the correct answe	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted f rent electrons of the atoms in the atoms toms of the gas h constant velocity along x - y plane will be b) A circle	kV and the current throug $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the coll from the cathode and the att of the gas -axis. If a uniform electric forming c) A parabola	h it is 3.2 mA. The number d) 2×10^{16} ntial difference <i>V</i> d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube coms of the gas ield is applied along <i>y</i> – d) An ellipse
 195. 196. 197. 198. 198. 199. 	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electrons a) Collisions between the b) Collision between difference c) Excitation of electrons d) Collision between the a An electron is moving with axis, then its path in the <i>x</i> a) A straight line Choose the correct answerence a) Photoelectric effect can	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted f rent electrons of the atoms in the atoms toms of the gas h constant velocity along x - y plane will be b) A circle r	kV and the current through $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the coll from the cathode and the att of the gas -axis. If a uniform electric form c) A parabola	h it is 3.2 mA. The number d) 2×10^{16} ntial difference V d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube coms of the gas ield is applied along y – d) An ellipse
 195. 196. 197. 198. 198. 199. 	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electrons a) Collisions between the b) Collision between the b) Collision between the d) Collision between the a An electron is moving with axis, then its path in the <i>x</i> a) A straight line Choose the correct answer a) Photoelectric effect can b) Photoelectric effect can	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted f rent electrons of the atoms in the atoms toms of the gas h constant velocity along x - y plane will be b) A circle r take place from bound ele	kV and the current through $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the column from the cathode and the attempt of the gas -axis. If a uniform electric for c) A parabola ctron	h it is 3.2 mA. The number d) 2×10^{16} ntial difference <i>V</i> d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube coms of the gas ield is applied along <i>y</i> – d) An ellipse
 195. 196. 197. 198. 199. 	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electrons a) Collisions between the b) Collision between difference c) Excitation of electrons d) Collision between the a An electron is moving with axis, then its path in the <i>x</i> a) A straight line Choose the correct answer a) Photoelectric effect can b) Photoelectric effect can c) Photoelectric effect can	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted f rent electrons of the atoms in the atoms toms of the gas h constant velocity along x - y plane will be b) A circle r take place from bound ele	kV and the current through $e = 1.6 \times 10^{-19} \text{ C}$ c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the coll from the cathode and the attraction of the gas -axis. If a uniform electric form c) A parabola ctron from the electron	h it is 3.2 mA. The number d) 2×10^{16} ntial difference V d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube coms of the gas ield is applied along y – d) An ellipse
 195. 196. 197. 198. 198. 199. 	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electrons a) Collisions between the b) Collision between the b) Collision between the d) Collision between the a An electron is moving with axis, then its path in the <i>x</i> a) A straight line Choose the correct answer a) Photoelectric effect can b) Photoelectric effect can d) Nothing can be said	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted f rent electrons of the atoms in the atoms toms of the gas h constant velocity along x - y plane will be b) A circle r take place from bound ele take place from free electron take place from bounded of	kV and the current through $e = 1.6 \times 10^{-19} \text{ C}$ c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the coll from the cathode and the att of the gas -axis. If a uniform electric for c) A parabola ctron for free electron	h it is 3.2 mA. The number d) 2×10^{16} ntial difference V d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube coms of the gas ield is applied along y – d) An ellipse
 195. 196. 197. 198. 198. 199. 200. 	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electrons a) Collisions between the b) Collision between differ c) Excitation of electrons d) Collision between the a An electron is moving with axis, then its path in the <i>x</i> a) A straight line Choose the correct answer a) Photoelectric effect can b) Photoelectric effect can d) Nothing can be said	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted for rent electrons of the atoms in the atoms toms of the gas h constant velocity along x - y plane will be b) A circle r take place from bound elected take place from free elected take place from bound elected	kV and the current through $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the column from the cathode and the attribute of the gas -axis. If a uniform electric form c) A parabola ctron on prime electron	h it is 3.2 mA. The number d) 2×10^{16} htial difference V d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube coms of the gas ield is applied along y – d) An ellipse
 195. 196. 197. 198. 198. 199. 200. 	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electrons a) Collisions between the b) Collision between differ c) Excitation of electrons d) Collision between the a An electron is moving with axis, then its path in the <i>x</i> a) A straight line Choose the correct answer a) Photoelectric effect can b) Photoelectric effect can c) Photoelectric effect can d) Nothing can be said An electron with (rest mata	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted f rent electrons of the atoms in the atoms toms of the gas h constant velocity along x – y plane will be b) A circle r take place from bound ele take place from free electron take place from bounded of ss m_0) moves with a speed	kV and the current through $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the column from the cathode and the attraction of the gas -axis. If a uniform electric formula c) A parabola ctron from the electron of 0.8 <i>c</i> . Its mass when it multiple c) Em (2)	h it is 3.2 mA. The number d) 2×10^{16} htial difference V d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube coms of the gas ield is applied along y – d) An ellipse
 195. 196. 197. 198. 198. 199. 200. 201. 	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electrons a) Collisions between the b) Collision between differ c) Excitation of electrons d) Collision between the a An electron is moving with axis, then its path in the <i>x</i> a) A straight line Choose the correct answer a) Photoelectric effect can b) Photoelectric effect can c) Photoelectric effect can d) Nothing can be said An electron with (rest mata a) m_0	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted f rent electrons of the atoms in the atoms toms of the gas h constant velocity along x - y plane will be b) A circle r take place from bound ele take place from free electron take place from bounded of ss m_0) moves with a speed b) $m_0/6$	kV and the current throug $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a poter c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the col from the cathode and the at of the gas -axis. If a uniform electric f c) A parabola ctron or free electron of 0.8 <i>c</i> . Its mass when it m c) $5m_0/3$	h it is 3.2 mA. The number d) 2×10^{16} htial difference V d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube coms of the gas ield is applied along $y -$ d) An ellipse hoves with this speed is d) $3m_0/5$
 195. 196. 197. 198. 198. 199. 200. 201. 	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electrons a) Collisions between the b) Collision between difference c) Excitation of electrons d) Collision between the a An electron is moving with axis, then its path in the <i>x</i> a) A straight line Choose the correct answer a) Photoelectric effect can b) Photoelectric effect can c) Photoelectric effect can d) Nothing can be said An electron with (rest mata a) m_0 Two metallic plates <i>A</i> and	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted f rent electrons of the atoms in the atoms toms of the gas h constant velocity along x - y plane will be b) A circle r take place from bound ele take place from free electric take place from bounded α ss m_0) moves with a speed b) $m_0/6$ <i>B</i> , each of area $5 \times 10^{-4}m$	kV and the current throug $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the column from the cathode and the attraction of the gas -axis. If a uniform electric form c) A parabola ctron free electron of 0.8 <i>c</i> . Its mass when it minimized c) $5m_0/3$ ² are placed parallel to each	h it is 3.2 mA. The number d) 2×10^{16} htial difference V d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube coms of the gas ield is applied along $y -$ d) An ellipse hoves with this speed is d) $3m_0/5$ h other at a separation of
 195. 196. 197. 198. 198. 199. 200. 201. 	The potential difference a of electrons striking the ta a) 1.6×10^6 What is the de-Broglie wa a) $\frac{0.287}{\sqrt{V}}$ Å In the phenomenon of electrons a) Collisions between the b) Collision between differ c) Excitation of electrons d) Collision between the a An electron is moving with axis, then its path in the <i>x</i> a) A straight line Choose the correct answer a) Photoelectric effect can b) Photoelectric effect can c) Photoelectric effect can d) Nothing can be said An electron with (rest mata a) m_0 Two metallic plates <i>A</i> and 1 <i>cm</i> . plate <i>B</i> carries a pose	pplied to an X-ray tube is 5 arget per second is (Take α b) 2×10^{-6} velength of the α -particle α b) $\frac{12.27}{\sqrt{V}}$ Å ctron discharge through ga charged particles emitted f rent electrons of the atoms in the atoms toms of the gas h constant velocity along x - y plane will be b) A circle r take place from bound ele take place from free electron take place from bounded of ss m_0) moves with a speed b) $m_0/6$ B , each of area $5 \times 10^{-4}m$ sitive charge of 33.7 pc. A m	kV and the current through $e = 1.6 \times 10^{-19}$ C) c) 4×10^{16} accelerated through a potential c) $\frac{0.101}{\sqrt{V}}$ Å ses at low pressure, the coll from the cathode and the attraction of the gas -axis. If a uniform electric form c) A parabola ctron free electron of 0.8 <i>c</i> . Its mass when it mm c) $5m_0/3$ ² are placed parallel to each homochromatic beam of light	h it is 3.2 mA. The number d) 2×10^{16} htial difference V d) $\frac{0.202}{\sqrt{V}}$ Å oured glow in the tube coms of the gas ield is applied along y – d) An ellipse hoves with this speed is d) $3m_0/5$ h other at a separation of ht. With photons of energy

Assume that one photoelectron is emitted for energy 10^6 incident photons. Also assume that all the

emitted photoelectrons are collected by plate *B* and the work function of plate *A* remains constant at the value 2 *eV*. Electric field between the plates at the end of 10 seconds is

- a) $2 \times 10^3 N/C$ b) $10^3 N/C$ c) $5 \times 10^3 N/C$ d) Zero 202. If the operating potential of an *X*-ray tube is 50 *kV*, the velocity of X-rays coming out of it is a) $4 \times 10^4 m/s$ b) $3 \times 10^8 m/s$ c) $10^8 m/s$ d) 3m/s
- 203. An electron is moving through a field. It is moving (i) opposite an electric field (ii) perpendicular to a magnetic field as shown. For each situation the de-Broglie wave length of electron

$$\xrightarrow{v}_{E} e^{\overline{v}} \xrightarrow{v}_{B}$$

a) Increasing, increasing

c) Decreasing, same

b) Increasing, decreasing d) Same, Same

- 204. Sodium and copper have work functions 2.3 *eV* and 4.5 *eV* respectively. Then the ratio of their threshold wavelengths is nearest to
- a) 1:2
 b) 4:1
 c) 2:1
 d) 1:4
 205. Ultraviolet light of wavelength 300 nm and intensity 1.0 Wm⁻² falls on the surface on photoelectric metal. If one percent of incident photons produce photoelectrons, then the number of photoelectrons emitted from an area of 1.0 cm² of the surface is nearly

a) $2.13 \times 10^{11} \text{ s}^{-1}$ b) $1.5 \times 10^{12} \text{ s}^{-1}$ c) $3.02 \times 10^{12} \text{ s}^{-1}$ d) None of these 206. According to Mosely's law, the frequency of a spectral line in *X*-ray spectrum varies as

- a) Atomic number of the element
- b) Square of the atomic number of the element
- c) Square ropot of the atomic number of the element
- d) Fourth power of the atomic number of the element

207. In a photoelectric experiment for 4000 Å incident radiation, the potential difference to stop the ejection is2V. If the incident light is changed to 3000 Å, then the potential required to stop the ejection of electrons will be

a) 2 *V* b) Less than 2*V* c) Zero d) Greater than 2 *V* 208. An α -particle of mass 6.4 × 10⁻²⁷kg and charge 3.2 × 10⁻¹⁹ C is situated in a uniform electric field of 1.6 × 10⁵ Vm⁻¹. The velocity of the particle at the end of 2 × 10⁻² m path when it starts from rest is a) 2 $\sqrt{3}$ × 10⁵ms⁻¹ b) 8 × 10⁵ ms⁻¹ c) 16 × 10⁵ ms⁻¹ d) 4 $\sqrt{2}$ × 10⁵ ms⁻¹

209. The wavelength of de-Broglie wave is 2μ m, then its momentum is

 $(h = 6.63 \times 10^{-34} \, Js)$

a) $3.315 \times 10^{-28} \text{ kg} - \text{ms}^{-1}$	b) $1.66 \times 10^{-28} \text{ kg} - \text{ms}^{-1}$
c) $4.97 \times 10^{-28} \text{ kg} - \text{ms}^{-1}$	d) $9.9 \times 10^{-28} \text{ kg} - \text{ms}^{-1}$

210. In a Thomson set-up for the determination of e/m, electrons accelerated by 2.5 kV enter the region of crossed electric and magnetic fields of strengths $3.6 \times 10^4 Vm^{-1}$ and $1.2 \times 10^{-3}T$ respectively and go through undeflected. The measured value of e/m of the electron is equal to

- a) 1.0 × 10¹¹C-kg⁻¹
 b) 1.76 × 10¹¹C-kg⁻¹
 c) 1.80 × 10¹¹C-kg⁻¹
 d) 1.85 × 10¹¹C-kg⁻¹
 211. A 5 W source emits monochromatic light of wavelength 5000Å. When placed 0.5 m away, it liberates photoelectrons from a photosensitive metallic surface. When the source is moved to a distance of 1.0m, the number of photoelectrons liberated will be reduced by a factor of

 a) 4
 b) 8
 c) 16
 d) 2
- 212. Figure represents a graph of photo current *I* versus applied voltage (*V*). The maximum energy of the emitted photoelectrons is

- a) Do not get deflected at all
- b) Get deflected in the direction of the field
- c) Get deflected in the direction opposite to the field
- d) Get deflected in the direction perpendicular to the field
- 225. The photoelectric threshold wavelength for potassium (work function being 2 *eV*) is
 - a) 310 nm b) 620 nm c) 1200 nm d) 2100 nm
- 226. In an ionisation experiment it is found that a doubly ionised particle enters a magnetic field of 1 T and moves in a circular path of radius 1 m with a speed of 1.6×10^7 ms⁻¹. The particle must be a) C⁺⁺ b) Be⁺⁺ c) Li⁺⁺ d) He⁺⁺
- 227. Consider the two following statements I and II, and identify the correct choice given in the answers
 - I. In photovoltaic cells the photoelectric current produced is not proportional to the intensity of incident light.
 - II. In gas filled photoemissive cells, the velocity of photoelectrons depends on the wavelength of the incident radiation.
 - a) Both I and II are true b) Both I and II are false c) I is true but II is false d) I is false but II is true
- 228. A proton and an α -particle are accelerated through a potential difference of 100 *V*. The ratio of the wavelength associated with the proton to that associated with an α -particle is

c)
$$2\sqrt{2}:1$$
 d) $\frac{1}{2\sqrt{2}}:1$

d) 1.2 keV

d) *kT*

229. The energy of an X-ray photon of wavelength 1Å is

 $(h = 6.6 \times 10^{-34} \text{J} - \text{s})$

a) $\sqrt{2}$: 1

a) *hv*

c) 12.3 keV

c) $\frac{hv}{(e^{hv/kT}+1)}$

- 230. If the energy of a photon corresponding to a wavelength of 6000 Å is 3.32×10^{-19} *J*, the photon energy for a wavelength of 4000 Å will be
 - a) 1.4 *eV* b) 4.9 *eV* c) 3.1 *eV* d) 1.6 *eV*
- 231. The average energy of the Planck oscillator is

b)
$$\frac{hv}{(e^{hv/kT}-1)}$$

b) 6.1 keV

b) 2 :1

- 232. In a discharge tube ionization of enclosed gas is produced due to collisions between
 - a) Photons and neutral atoms/molecules
 - b) Neutral gas atoms/molecules
 - c) Positive ions and neutral atoms/molecules
 - d) Negative electrons and neutral atoms/molecules
- 233. Which of the following statements is not correct
 - a) Photographic plates are sensitive to infrared rays
 - b) Photographic plates are sensitive to ultraviolet rays
 - c) Infra-red rays are invisible but can cast shadows like visible light
 - d) Infrared photons have more energy than photons of visible light

234. Electrons ejected from the surface of a metal, when light of certain frequency is incident on it, are stopped fully by a retarding potential of 3 V. Photoelectric effect in this metallic surface begins at a frequency $6 \times 10^{14} \text{ s}^{-1}$. The frequency of the incident light in s^{-1} is [Planck's constant = 6.4×10^{-34} Js, charge on the electron = 1.6×10^{-19} C]

a) 7.5×10^{13} b) 13.5×10^{13} c) 13.5×10^{14} d) 7.5×10^{15}

235. The momentum of a photon is $3.3 \times 10^{-29} kg$ -m/sec. Its frequency will be a) $3 \times 10^{3} Hz$ b) $6 \times 10^{3} Hz$ c) $7.5 \times 10^{12} Hz$ d) $1.5 \times 10^{13} Hz$

236. For the photoelectric effect, the maximum kinetic energy E_k of the emitted photoelectrons is plotted against the frequency v of the incident photons as shown in the figure. The slope of the curve gives

a) Charge of the electron b) Work function of the metal c) Plank's constant d) Ratio of the Plank's constant to electronic charge 237. The frequency and intensity of a light source are doubled. Consider the following statements III. Saturation photocurrent remains almost the same. IV. Maximum kinetic energy of the photoelectrons is doubled. a) Both I and II are true b) I is true but II is false. c) I is false but II is true. d) Both I and II are false. 238. The frequency of a photon having energy 100eV is (Take $h = 6.67 \times 10^{-34}$ Js, 1 eV = 1.6×10^{-19} J) b) 2.4×10^{16} c) 2.4×10^{17} a) 2.4×10^{-16} d) 10.54× 10¹⁶ 239. A photon, an electron and a uranium nucleus all have the same wavelength. The one with the most energy a) Is the photon b) Is the electron c) Is the uranium nucleus d) Depends upon the wavelength and the properties of the particle 240. The wavelength of the photoelectric threshold for silver is λ_0 . The energy of the electron ejected from the surface of silver by an incident light of wavelength $\lambda(\lambda < \lambda_0)$ will be c) $\frac{h}{c} \left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)$ d) $hc \left(\frac{\lambda_0 - \lambda}{\lambda_0 \lambda}\right)$ b) $\frac{hc}{\lambda_0 - \lambda}$ a) $hc(\lambda_0 - \lambda)$ 241. Penetrating power of *X*-rays can be increased by a) Increasing the potential difference between anode and cathode b) Decreasing the potential difference between anode and cathode c) Increasing the cathode filament current d) Decreasing the cathode filament current 242. The minimum wavelength of X-ray emitted from X-ray machine operating at an accelerating potential of V volts is a) $\frac{hc}{eV}$ a) $\frac{hc}{eV}$ b) $\frac{Vc}{eh}$ c) $\frac{eh}{Vc}$ d) $\frac{eV}{hc}$ 243. The correctness of velocity of an electron moving with velocity 50 ms⁻¹ is 0.005%. The accuracy with which its position can be measured will be c) 4634×10^{-6} m d) 4634×10^{-8} m a) 4634×10^{-3} m b) 4634×10^{-5} m 244. If an electron and a proton have the same de-Broglie wavelength, then the kinetic energy of the electron is b) Less than that of a proton a) Zero c) More than that of a proton d) Equal to that of a proton 245. A electron moving with a variable linear velocity v in a variable magnetic field B will remain rotating in a circle of constant radius r only when a) B is held constant b) v is held constant c) Both v and B are constant d) None of the above 246. When a point source of light is 1m away from a photoelectric cell, the photoelectric current is found to be I mA. If the same source is placed at 4 m from the same photoelectric cells, the photoelectric current (in mA) will be a) I/16 b) *I*/4 c) 4*I* d) 16 I 247. The work function of a substance is 4.0 eV. The longest wavelength of light that can cause photoelectron emission from this substance is approximately a) 540 nm b) 400 nm c) 310 nm d) 220 nm 248. A particle of mass M at rest decays into two masses m_1 and m_2 with non-zero velocities. The ratio of de-Broglie wavelengths of the particles $\frac{\lambda_1}{\lambda_2}$ is

a)
$$\frac{m_2}{m_1}$$
 b) $\frac{m_3}{m_2}$ c) $\sqrt{\frac{m_1}{\sqrt{m_2}}}$ d) 1:1
249. In Thomsons experiment of finding e^{m} for electron, beam of electron is replaced by that of muons (particles with same charge as of electrons but mass 200 times that of electrons). No deflection condition in this case is satisfied if
a) *B* is increased 208 times b) *E* is increased 208 times
c) *B* is increased 14.4 times d) None of these
250. The temperature at which protons in proton gas would have enough energy to overcome Coulomb barrier of 4.14 × 10⁻⁴¹ J is (Boltzmann constant
=1.38x 10⁻²³ J(x⁻¹)
a) 2×10^{-24} b) 10^{9} K c) 6×10^{9} K d) 3×10^{9} K
251. In an experiment on photoelectric emission from a metallic surface, wavelength of incident light is
 2×10^{-7m} and stopping potential is 2.5 V. The threshold frequency of the metal (in Hz) approximately
(charge on electron $e = 1.6 \times 10^{-19}$ C. Planck's constant $h = 6.6 \times 10^{-24}$ s)
a) 12×10^{15} b) 9×10^{15} c) 9×10^{12} d) 12×10^{13}
252. The de-Broglie wavelength of the electron in the ground state of the hydrogen atom is
(Radius of the first orbit of hydrogen atom = 0.53Å)
a) 1.67 Å b) 3.33 Å c) 1.06 Å d) 0.53 Å
253. Figure represents a graph of kinetic energy of most energic bptotelectrons. K_{max} (he W), and frequency
(v) for a metal used as cathode in photoelectric experiment. The threshold frequency of light for the
photoelectric emission from the metal is
 $\frac{1}{V} \frac{1}{10^{-1} V}$ b) $\frac{1}{10^{-1} V}$ c) $\frac{1}{10^{-1} V}$ d) $\frac{6 \times 10^{-24}}{10^{-24}}$ d) $\frac{6 \times 10^{-24}}{10^{-24}}$ d) $\frac{6 \times 10^{-24}}{10^{-24}}$
255. If the uncertainty in the position of an electron is 10^{-10} m, then the value of uncertainty in its momentum
(in kg ms⁻¹) will be
a) $\frac{3}{10^{-24}} \frac{1}{h^{-2}}$ c) $\frac{6 \times 10^{-24}}{h^{-2}}$ d) $\frac{1}{h_0} = \lambda$
257. Electrons with de-Broglie wavelength A fall on the target in an X-ray tube. The cut-off wavelength of the
enitted X-rays is
a) $L_0 = \frac{2m_1^2 e^2 \lambda^2$

260. *X*-ray beam of intensity I_0 passes through an absorption plate of thickness *d*. If absorption coefficient of material of plate is μ , the correct statement regarding the transmitted intensity *I* of *X*-ray is

a)
$$I = I_0(1 - e^{-\mu d})$$
 b) $I = I_0 e^{-\mu d}$ c) $I = I_0(1 - e^{-\mu/d})$ d) $I = I_0 e^{-\mu/d}$

261. A direct X-ray photograph of the intestines is not generally taken by the radiologists because a) Intestines would burst on exposure to X-rays

- b) The X-rays would not pass through the intensities
- c) The X-rays will pass though the intestines without causing a good shadow for any useful diagnosis
- d) A very small exposure of X-rays causes cancer in the intestines
- 262. When intensity of incident light increases
 - a) Photo-current increases
 - b) Photo-current decreases
 - c) Kinetic energy of emitted photoelectrons increases
 - d) Kinetic energy of emitted photoelectrons decreases

263. If the potential difference between the anode and cathode of the *X*-ray tube is increase

a) The peaks at *R* and *S* would move to shorter wavelength

- b) The peaks at *R* and *S* would remain at the same wavelength
- c) The cut off wavelength at *P* would increase
- d) (b) and (c) both are correct

264. From the figure describing photoelectric effect we may infer correctly that

a) Na and Al both have the same threshold frequency

- b) Maximum kinetic energy for both the metals depend linearly on the frequency
- c) The stopping potentials are different for Na and Al for the same change in frequency
- d) Al is a better photo sensitive material than Na

a) 7.25 $\times 10^6 m/s$

- 265. The material used for making thermionic cathode must have
 - a) Low work function and low melting point b) Low work function and high melting point
 - c) High work function and high melting point d) High work function and low melting point
- 266. Mosley's law relates the frequencies of line *X*-rays with the following characteristics of the target element
 - a) Its density b) Its atomic weight

b) $6.26 \times 10^6 m/s$

- c) Its atomic number d) Interplaner spacing of the atomic planes
- 267. The speed of an electron having a wavelength of $10^{-10}m$ is
- d) $4.24 \times 10^6 m/s$
- 268. The stopping potential (V_0) versus frequency (v) plot of a substance is shown in figure the threshold wave length is

c) $5.25 \times 10^6 m/s$

V_0 2 1 4 5 6 7 8 $V \times 10^{14}$ Hz			
a) $5 \times 10^{14} m$		b) 6000 Å	
c) 5000 Å		d) Cannot be esti	mated from given data
269. For harder <i>X</i> -rays			2
a) The wavelength is h	igher	b) The intensity i	s higher
c) The frequency is hig	her	d) The frequency	is higher
270. Momentum of a photon	n is <i>p</i> . The correspon	nding wavelength is	
a) h/\sqrt{p}	b) <i>p/h</i>	c) ph	d) <i>h/p</i>
271. Which one of the follow	ving statements reg	arding photo-emission of ele	ectrons is correct?
a) Kinetic energy of ele	ctrons increases wi	ith the intensity of incident li	ght.
b) Electrons are emitte wavelength.	d when the waveler	ngth of the incident light is al	oove a certain threshold
c) Photoelectric emiss	ion is instantaneous	s with the incidence of light.	
d) Photoelectrons are o	emitted whenever a	gas is irradiated with ultrav	iolet light.
272. A photon and an electr	on have an equal en	nergy <i>E</i> .	
a)		b) 1/√ <i>E</i>	
c) 1/ <i>E</i>	<u>^</u>	d) Does not depe	nd upon <i>E</i>
273. If the wavelength of lig	ht is 4000 Å, then th	he number of waves in 1 mm	length will be
a) 25	b) 0.25	c) 0.25×10^4	d) 25×10^4
274. A photosensitive metal electrons come out wit then maximum velocit	llic surface has work h a maximum veloc y of photo electron y	k function hv_0 . If photons of v_0 ity of $4 imes 10^6 m/s$. When the will be	energy $2hv_0$ fall on this surface the photon energy is increases to $5hv$
a) $2 \times 10^6 m/s$	b) $2 \times 10^7 m/s$	c) $8 \times 10^5 m/s$	d) $8 \times 10^6 m/s$
275. An electron of mass m_e	and a proton of ma	ass m_p are moving with the same	ame speed. The ratio of their de-
Brolie wavelength λ_{e}	λ_n is	r C	-
a) 918	^r 1	c) 1836	d) 1
,	1836	,	2
276. If the work function of	a photometal is 6.82	25 eV. Its threshold wavelen	gth will be ($c = 3 \times 10^8 m/s$)
a) 1200 Å	b) 1800 Å	c) 2400 Å	d) 3600 Å
277. An atom of mass <i>M</i> wh	ich is in the state of	rest emits a photon of wavel	ength λ . As a result, the atom will
deflect with the kinetic	energy equal to (h	is Planck's constant)	
a) $\frac{h^2}{2}$	b) $\frac{1}{h^2}$	c) $\frac{h}{h}$	d) $\frac{1}{h}$
$M\lambda^2$	$^{\circ}2 M\lambda^{2}$	Μλ	$^{\circ} 2 M \lambda$
278. A photon will have less	s energy, if its	h) []	tale au
a) Amplitude is nigher		d) Wevelength is	ligner
270 In the diagram a graph	hotwoon the interes	uj wavelength is	Siluiter
wavelength is shown, v line and the other peak	when electrons of 30 c is of K_{β} line	0 <i>keV</i> are incident on the tar	get. In the graph one peak is of K_{α}

a) First peak is of K_{α} line at 0.6 Å

b) Highest peak is of K_{α} line at 0.7 Å c) If the energy of incident particles is increased, then the peaks will shift towards left d) If the energy of incident particles is increased, then the peaks will shift towards right 280. X-rays of wavelength 0.140 nm are scattered from a block of carbon. What will be the wavelenghts of Xrays scattered at 90°? a) 0.140 nm b) 0.142 nm c) 0.144 nm d) 0.146 nm 281. Ultraviolet radiation of 6.2eV falls on an aluminium surface (work function 4.2eV). The kinetic energy in joule of the fastest electron emitted is approximately a) 3×10^{-21} b) 3.2×10^{-19} c) 3×10^{-17} d) 3×10^{-15} 282. Which of the following is not the property of the photons? a) Momentum b) Energy c) Charge d) Velocity 283. For the structural analysis of crystals, X-rays are used because a) X-rays have wavelength of the order of interatomic spacing b) X-rays are highly penetrating radiations c) Wavelength of X-rays is of the order of nuclear size d) X-rays are coherent radiations 284. The wavelength of most energetic X-rays emitted when a metal target is bombarded by 40KeV electrons, is approximately $(h = 6.62 \times 10^{-34} J\text{-sec}, 1 \ eV = 1.6 \times 10^{-19} J; c = 3 \times 10^8 m/s)$ d) 0.31 Å a) 300 Å b) 10 Å c) 4 Å 285. When a cathode ray tube is operated at 2912 V, the velocity of electrons is 3.2×10^7 m/s. Find the velocity of cathode ray if the tube is operated at 5824 V d) 2.4×10^6 m/s a) 2.4×10^7 m/s b) 5.2×10^7 m/s c) 4.525×10^7 m/s 286. Work function of a metal is 2.51 *eV*. Its threshold frequency c) $9.4 \times 10^{14} cycles/s$ d) $6.08 \times 10^{14} cycles/s$ a) $5.9 \times 10^{14} cycles/s$ b) $6.5 \times 10^{14} cycles/s$ 287. The energy of a photon is E = hv and the momentum of photon $p = \frac{h}{\lambda}$, then the velocity of photon will be c) $\left(\frac{E}{n}\right)^2$ d) 3 × 10⁸m/s b) *Ep* a) E/p288. If the mass of neutral = 1.7×10^{-27} kg, then the de-Broglie wavelength of neutral of energy 3eV is $(h = 6.6 \times 10^{-34} [-s])$ b) 1.6×10^{-11} m c) 1.4×10^{-10} m a) 1.6×10^{-16} m d) 1.4×10^{-11} m 289. Electric field and magnetic field in Thomson mass spectrograph are applied a) Simultaneously, perpendicular b) Perpendicular but not simultaneously c) Parallel but not simultaneously d) Parallel simultaneously 290. The retarding potential for having zero photo-electron current a) Is proportional to the wavelength of incident light b) Increases uniformly with the increase in the wavelength of incident light c) Is proportional to the frequency of incident light d) Increases uniformly with the increase in the frequency of incident light waves 291. If the potential difference applied across X-ray tube is V volts, then approximately minimum wavelength of the emitted X-rays will be a) $\frac{1227}{\sqrt{V}}$ Å c) $\frac{2400}{V}$ Å b) $\frac{1240}{V}$ Å d) $\frac{12400}{V}$ Å 292. X-rays when incident on a metal a) Exert a force on it b) Transfer energy to it d) All of the above c) Transfer pressure to it 293. Electron volt is a unit of a) Potential b) Charge c) Power d) Energy 294. In Millikan's oil drop experiment a drop of charge Q and radius r is kept constant between two plates of potential difference of 800 V. Then charge on other drop of radius 2 r which is kept constant with a

potential difference of 3200 V is		
a) <i>Q</i> /2 b) 2 <i>Q</i>	c) 4 <i>Q</i>	d) <i>Q</i> /4
295. When the photons of energy hv fall on a photosens	itive metallic surface (wor	k function hv_0), electrons are
emitted from the metallic surface. The electrons co	ming out of the surface hav	ve some kinetic energy. The
most energetic ones have the kinetic energy equal	to	
a) hv_0 b) hv	c) $hv - hv_0$	d) $hv + hv_0$
296. Penetrating power of X-rays depends on	y 0	
a) Current flowing in the filament	b) Applied potential diff	ference
c) Nature of the target	d) All the above	
297. In Millikan's oil drop experiment, a charged drop o	f mass 1.8×10^{-14} kg is sta	ationary between the plates.
The distance between the plates 0.9 cm and potent	ial difference between the	plates is 2000 V. The number
of electrons on the oil dron is		France 10 2000 11 110 110100
a) 10 b) 5	c) 50	d) 20
298. An oil drop of mass 50 mg and of charge -5μ C is ju	st balanced in air against th	he force of gravity. Calculate
the strength of the electric field required to balance	$e is. (g = 9.8 ms^{-2})$	
a) 98 NC ^{-1} unwards	h) 98 NC ^{-1} downwards	
c) 9.8 NC^{-1} towards north	d) 9.8 NC ^{-1} towards so	ıth
299 An α -particle moves in a circular path of radius 0.8	3 cm in the presence of a p	nagnetic field of 0.25 Wh/m^2
The de Broglie wavelength associated with the par	ticle will be	
a = b = b = b = b = b = b = b = b = b =	c) 10 Å	d) 0 01 Å
200 If source of power 4 kW produces 10^{20} photon / so	c) IUA	to a part of the spectrum
called	cond, the radiation belong	to a part of the spectrum
a) X-rays b) Illtraviolat rays	c) Microwayos	d) v-rave
301 The wavelength of Y-rays decreases when	c) merowaves	uj ș-lays
a) Tomporature of target is increased		
a) Intensity of electron beam is increased		
a) KE of electrons striking the target is increased		
d) K.E. of electrons striking the target is degreesed		
202 If wavelength of photon and electron is same then	ratio of total opproved alog	trop to total operat of
soz. If wavelength of photon and electron is same them	ratio of total ellergy of elec	ti oli to total ellergy ol
Velocity of electron Light's speed	Light's speed	Flectron's speed
a) $\frac{1}{1}$ Light's speed b) $\frac{1}{1}$ Electron's speed	c) $\frac{1}{V_{\text{olocity of oloctron}}}$	d) $\frac{1}{1}$ light's speed
202 Light of wavelength $E000$ Å falls on a consistive plat	velocity of electron	functional of 1.0 eV. The
Sos. Light of wavelength Sobo A fails of a selisitive plat	e with photoelectric work	functional of 1.9 ev. The
c) 0.50 cV	a) 1 24 aV	d) 1 1 (a V)
a) 0.58 eV D) 2.48 eV	CJ 1.24 eV	uj 1.10 ev
304. On increasing the number of electrons striking the	anoue of an X-ray tube, wr	lich one of the following
a) Departmetics of the resulting X-rays would increase	(a) Waxalan ath	d) Intensity
a) Penetration b) Frequency	c) wavelength	d) Intensity
sos. Work function of futurum and copper are respective	$h_{10} = 10^{-34} I_{10} = 10^{-34} I_{10}$	If one of the metal will be $a = 2 \times 10^8 m (s)$
a) Lithium	$Ie Iight (n = 0.0 \times 10^{-5} \text{ J-S})$	d) Norm of these
a) Litnium b) Copper	c) Both	d) None of these
306. The value of stopping potential in the following dia i^{\uparrow} (shottoplas	igram	
(photoelec		
-4V - 3V - 2V - 1V 0 V		
a) $-4V$ b) $-3V$	c) -2V	d) −1 <i>V</i>
307. A ratio transmitter operates at a frequency 880 kH	z and a power of 10 kW. Th	ne number of photons
emitted per second is	-	*

a) 1.72×10^{31} b) 1.227×10^{25}	a) 1.227×10^{37}	d) 1.227×10^{45}
$a_{J} = \frac{1}{2} \sum_{i=1}^{J} \frac{1}{2} \sum_{i=1}^$	$C_{\rm J} = 1.327 \times 10^{-3}$	$u_{1.327 \times 10^{-5}}$
308. According to photon theory of light which of the foll	owing physical quantities	associated with a photon do
not/does not change as it collides with an electron i	n vacuum	
a) Energy and momentum	b) Speed and momentun	n
c) Speed only	d) Energy only	
309. Five elements <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> and <i>E</i> have work functions	1.2 eV, 2.4 eV, 3.6 eV, 4.8 e	V and 6 eV respectively. If
light of wavelength 4000 Å is allowed to fall on thes	e elements, then photoeled	ctrons are emitted by
a) <i>A</i> , <i>B</i> and <i>C</i> b) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> and <i>E</i>	c) A and B	d) Only <i>E</i>
310. The ratio transmitter operates on a wavelength of 1	500 m at a power of 400 k	W. The energy of radio
photon (in joule) is	-	
a) 1.32×10^{-24} J b) 1.32×10^{-28} J	c) 1.32×10^{-26} J	d) 1.32 × 10 ⁻³² I
311. In an X-rays tube, the intensity of the emitted X-ray	s beam is increased by	, ,
a) Increasing the filament current	b) Decreasing the filame	nt current
c) Increasing the target notential	d) Decreasing the target	notential
312 Radiations of two photon's energy twice and ten tir	as the work function of m	potential
motal surface successively. The ratio of maximum w	alogitics of photoslostrong	amittad in two gagagia
-2.1.2	-> 1 4	
aj 1:2 Dj 1:3	CJ 1:4	a) 1 : 1
313. The charge on electron was discovered by		
a) J.J. Thomson b) Neil Bohr	c) Millikan	d) Chadwick
314. A beam of electrons is moving with constant velocit	y in a region having electri	c and magnetic fields of
strength 20 Vm^{-1} and 0.5 T at right angles to the di	rection of motion of the ele	ectrons. What is the velocity
of the electrons?		
a) 20 ms ⁻¹ b) 40 ms ⁻¹	c) 8 ms ⁻¹	d) 5.5 <i>ms</i> ⁻¹
315. The mean free path of the electrons in a discharge to	ube is 20 cm. The length of	the tube is 15 cm only. Then
length of Crooke's dark space is		
a) 5 cm b) 20 cm	c) 15 cm	d) 25 cm
316. What should be the velocity of an electron so that its	s momentum becomes equ	al to that of a photon of
wavelength 5200 Å?	1	Ĩ
a) 700 ms^{-1} b) 1000 ms^{-1}	c) 1400 ms^{-1}	d) 2800 ms ^{-1}
217 When the light source is kent 20 cm away from a ph	oto coll stopping potentia	106 V is obtained When
source is kept 40 cm away the stopping potential w	ill bo	10.07 is obtained. when
source is kept 40 cm away, the stopping potential w		
$a_{\rm J} 0.3 V$ $b_{\rm J} 0.0 V$	C J 1.2 V	
318. The wavelength of a 1 keV photon is 1.24×10^{-5} m.	What is the frequency of 1	Mev photon?
a) 2.4×10^{15} Hz b) 2.4×10^{20} Hz	c) 1.24×10^{13} Hz	d) 1.24×10^{20} Hz
319. A charged oil drop of mass 9.75×10^{-15} kg and char	ge 30×10^{-16} C is suspend	ded in a uniform electric
field existing between two parallel plates. The field	between the plates, taking	$(g = ms^{-2})$ is
a) 3.25 Vm ⁻¹ b) 300 Vm ⁻¹	c) 325 Vm ⁻¹	d) 32.5 Vm ⁻¹
320. Intensity of <i>X</i> -rays depends upon the number of		
a) Electrons b) Protons	c) Neutrons	d) Positrons
321. The curves (a), (b) (c) and (d) show the variation b	etween the applied potent	ial difference (V) and the
photoelectric current (<i>i</i>), at two different intensities	s of light $(I_1 > I_2)$. In which	n figure is the correct
variation shown		C
a) i^{\uparrow} b) i^{\uparrow}	c) i Î	d) i 1
intensity I_1 intensity I_1	intensity I ₁	intensity I ₁
intensity l_2 intensity l_2		
	\mathbf{L}	intensity I ₂
	intensity I ₂	intensity I ₂
	/intensity /2	intensity I ₂
	$-V_0$ V	$-V_0$ V
$ \begin{array}{c c} & & & \\ & & & &$	$-V_0$ V e rays is that they	$-V_0$ V

- c) Get deflected by electric and magnetic fields
- b) Travel through vacuum
- d) Cast shadow

323. A proton accelerated through a potential V has de-Broglie wavelength λ . Then the de-Broglie wavelength				
of an α -particle, when accelerated through the same potential V is				
a) $\frac{\lambda}{2}$	b) $\frac{\lambda}{\sqrt{2}}$	c) $\frac{\lambda}{2\sqrt{2}}$	d) $\frac{\lambda}{8}$	
324. An α -particle and a proto	on are accelerated from res	t by a potential difference o	f 100 V. After this, their de-	
Broglie wavelengths are	λ_{lpha} and λ_p respectively. The	e ratio $\frac{\lambda_p}{\lambda_{\alpha}}$, to the nearest inte	eger, is	
a) 3	b) 4	c) 2	d) 4.5	
325. de-Broglie hypothesis tre	eated electrons as	a) Dath / a/ and ///	d) Norra of these	
a) Particles	D) waves	c) Both a and b	uj None of these	
$^{220.}$ Threshold wavelength to	b) $16 \times 10^{-14} I$	alulii is 5000 A. Its work iu c) $4 \times 10^{-19}I$	d) 4×10^{-81}	
327 When ultraviolet rays are	e incident on metal plate th	en nhotoelectric effect doe	s not occur. It occurs by the	
incidence of	e melacite on metal place, ti		s not occur, it occurs by the	
a) X-rays	b) Radio wave	c) Infrared rays	d) Green house effect	
328. When a proton is acceler	ated with 1 <i>volt</i> potential d	lifference, then its kinetic e	nergy is	
$\frac{1}{aV}$	h) 1840 øV	c) $1 \rho V$	d) 1840 $c^2 aV$	
⁽¹⁾ 1840				
329. The momentum of a char	ged particle moving in a pe	erpendicular magnetic field	depends on	
a) Its charge		b) The strength of magne	tic field	
c) Radius of its path	affactures in honos shoul	d) All of the above	ath of $10^{-11}m$ The	
accelerating voltage for e	olectrons in X-ray machine	should be	igui oi 10 <i>m</i> . The	
accelerating voltage for e	siecti olis ili x -i ay macimie	h) > 124.2 kV		
c) Between 60 kV and 7() kV	d) = 100 kV		
331. e/m ratio of anode rays i	produced in a discharge tub	be, depends on the		
a) Nature of the gas filled	l in the tube	b) Nature of the material	of anode	
c) Nature of the material	of cathode	d) All of the above		
332. Photoelectric effect expe	riments are performed usir	ng three different metal plat	tes <i>p,q</i> and <i>r</i> having work	
functions $\phi_p = 2.0 \text{ eV}, \phi_r$	$_{\rm q}$ = 2.5 eV and ϕ_r 3.0 eV, re	spectively		
A light beam containing w	wavelengths of 550 nm, 450	0 nm and 350 nm with equa	al intensities illuminates	
each of the plates. The co	orrect <i>I-V</i> graph for the expe	eriment is		
1	1	1		
	M	r	XTT .	
a) ^r	b) ///	c) <i>p</i>	d) ///	
	pq		r/901	
333. In a discharge tube at 0.0	2 <i>mm</i> , there is a formation	of	v	
a) FDS	b) CDS	c) Both space	d) None of these	
334. In photoelectric effect, th	e KE of electrons emitted fi	rom the metal surface depe	nds upon	
a) Intensity of light		b) Frequency of incident	light	
c) Velocity of incident lig	ht	d) Both intensity and velo	ocity of light	
335. In an electron gun, the el	ectrons are accelerated by	the potential V. If <i>e</i> is the ch	harge and m is the mass of	
an electron, then maximu	um velocity of these electro	n will be		
2eV	$\frac{2eV}{2}$	2m	V^2	
$a_{j} - \frac{m}{m}$	m	$c_{j} = \frac{1}{eV}$	$a_{j}\frac{1}{2em}$	
336. Energy conversion in a n	۷ hotoelectric cell takes place	۷ e form		
a) Chemical to electrical	netoereetiite een takes place	b) Magnetic to electrical		

a) Chemical to electricalb) Magnetic to electricalc) Optical to electricald) Mechanical to electrical

337. If alpha, beta and gamma rays carry same momentum, which has the longest wavelength?

a) Alpha rays		b) Beta rays	
c) Gamma rays		d) None, all have same length	
338. K_{α} characteristic X-ray	refers to the transition		
a) $n = 2$ to $n = 1$	b) $n = 3$ to $n = 2$	c) $n = 3$ to $n = 1$	d) $n = 4$ to $n = 2$
339. Photoelectric effect is a	an example of		
a) Elastic collision		b) Inelastic collision	
c) Two dimensional co	llision	d) Oblique collision	
340. Which of the following	devices makes use of the el	lectrons to strike certain s	ubstances to produce
fluorescence			
a) Thermionic valve		b) Photoelectric cell	
c) Cathode ray oscillos	cope	d) Electron gun	
341. When light of wavelen	gth 300 nm falls on a photo	electric emitter, photoelec	trons are liberated. For
another emitter, light o	of wavelength 600 nm is suf	ficient for liberating	
photoelectrons. The ra	tio of the work function of t	he two emitter is	
a) 1:2	b) 2:1	c) 4:1	d) 1:4
342. An electron is accelera	ted through a potential diffe	erence of <i>V</i> volt. The speed	l of electrons will be
eV	$\frac{2eV}{2}$	eV	m
a) $\frac{1}{m}$	b) $\frac{1}{m}$	c) $\frac{1}{2m}$	d) $\sqrt{\frac{2eV}{2eV}}$
$\sqrt{242}$ Dhotoplastria offact and	he eveloped by	$\sqrt{-1}$	
a) Corpugular theory of	f be explained by	h) Wayo naturo of ligh	F
a) Colpusular theory (Ingin	d) Quantum theory of	l light
244 Dhotooloctric offect we	e first successfully eveloins	u) Quantum meory of	ngnt
a) Dlanck	b) Hallwach	c) Hortz	d) Finstein
a) Flatick	D) Hallwach	CJ HEILZ	a) Ellistelli eteologithic coll, the estimation
s45. When a monochroniat	tage are 12.0 mA and 0.5 V	If the same source is place	otoelectric cell, the saturation
photooloctric coll then	the saturation current and	the stopping potential res	noctively are
a) 4 mA and $1V$	h) 12 mA and 1V	c) $3 \text{ mA and } 1\text{V}$	d) $3 \text{ mA and } 0.5 \text{ V}$
346 Solid targets of differen	of 12 mA and 17	by highly energetic electr	on beams. The frequency (f)
of the characteristic X-	rays emitted from different	targets varies with atomic	number 7 as
a) $f \propto \sqrt{7}$	h) $f \propto 7^2$	c) $f \propto 7$	d) $f \propto 7^{3/2}$
347 Photons of energy of 6	eV are incident on a metal.	$c_{j} = c_{j} = c_{j}$	$a_{1} = a_{2} = a_{2}$
kinetic energy of the e	mitted photoelectrons will k		on is 4 ev. The minimum
a) Zero	h) 1 eV	c) 2 eV	d) 10 eV
348 If narticles are moving	with same velocity then m	aximum de-Bronglie wave	length will be for
a) Neutron	h) Proton	c) <i>B</i> -narticle	d) α -particle
349. In order to coincide th	e parabolas formed by singl	v ionised ions in one spect	trograph and doubly ionized
ions in the other Thom	son's mass spectrograph. th	ne electric field and magne	tic fields are kept in the ratios
1:2 and 3:2 respective	v. Then the ratio of masses	of the ions is	
a) 3:4	b) 1 :3	c) 9:4	d) None of these
350. If an electron moves fr	om rest from a point at whi	ch potential is 50 V to ano	ther point at which potential is
70 V, then its kinetic e	nergy in the final state will h	be	
a) 3.2×10^{-20} [b) 3.2×10^{-18}	c) 3.2×10^{-19}	d) Zero
351. Cathode rays are prod	uced when the pressure is o	of the order of	,
a) 2 cm of Hg	b) 0.1 <i>cm</i> of <i>Hg</i>	c) 0.01 <i>mm</i> of <i>Hg</i>	d) 1 μ <i>m</i> of <i>Hg</i>
352. Photoelectric effect su	pports quantum nature of li	ght because	
V. There is minimum	frequency of light below wi	hich no photoelectrons are	e emitted.
VI. Electric charge of p	hotoelectrons is quantized.		
VII. Maximum kinetic e	energy of photoelectrons de	pends only on the frequen	cy of light and not on its
intensity.		-	

VIII. Even when metal surface is faintly illuminated the photoelectrons leave the surface immediately.

252	a) 1,2,3 The minimum userslangth	b) 1,2,4	c) 2,3,4	d) 1,3,4	
333.	53. The minimum wavelength of X-rays produced by electrons accelerated by a potential difference of <i>volts</i> is				
		ah	hc	cV	
	a) $\frac{ev}{hc}$	b) $\frac{e\pi}{eV}$	c) $\frac{nc}{eV}$	d) $\frac{cv}{ch}$	
354	The structure of solid cry	CV stale is investigated by usir		en	
554	a) Cosmic rays	h) X-rays	c) Infrared radiations	d) v-rays	
255	The de-Broglie wavelengt	b) A-lays	\sim 2 velocity 2 25 x 10 ⁸ m/s	is equal to the wavelength	
555	of photon The ratio of kir	notic energy of the particle	to the energy of the photor	is (velocity of light is	
	$3 \times 10^8 m/s$	ietie energy of the particle	to the energy of the photor	is (velocity of light is	
	$3 \times 10^{-11} (10)$	h) 3/8	c) 5/8	d) 7/8	
356	For the production of X-r	uj 570 ave the target should be m	cj 5/0	u) 770	
550	a) Steel	h) Conner	c) Aluminimum	d) Tungsten	
357	The threshold wavelength	b) copper	$c_{\rm J}$ And c	ck function of the metal is	
557	approvimatoly		a filetal is 0500 A. The wor	R function of the metal is	
	approximately	b) $1 \mathrm{eV}$	c) 0.1 aV	d) 2 aV	
250	A particle of mass 1 mg h	UJIEV	cj 0.1 ev	$u_{J} = 0$ $u_{J} = 0$ u_{J	
550	The velocity of the particl	as the same wavelength as	all electron moving with a	velocity of 5 × 10 ms .	
	The velocity of the particle $2 \times 10^{-31} \text{ms}^{-1}$	(15) b) 2.7 × 10 ⁻²¹ m s ⁻¹	a) $2.7 \times 10^{-18} m a^{-1}$	d) $0 \times 10^{-2} m c^{-1}$	
250	$a_{J} = 5 \times 10^{-5} \text{ ms}$	UJ 2.7 × 10 Mis	$C_{J} 2.7 \times 10^{-7} Ms$	u)9×10 ms	
339	a) Only if the frequency of	f the ingident rediction is a	house a contain threshold w		
	a) Only if the temperature	a of the curface is high		alue	
	c) At a rate that is independent	e of the surface is high	notal		
	d) With a maximum voloc	vity proportional to the free	netal	ation	
260	The frequency of the incid	dont light falling on a photo	quency of the incluent ratio	wheel the kinetic energy of	
300	the amitted photoelectron	a is	sensitive metal plate is uo	ubleu, the kinetic energy of	
	a) Double the earlier value	11 15	h) Unchanged		
	a) Double the earlier value	le	d) Loss than doublod		
261	The stepping potential <i>V</i>	for photooloctric omission	for a motal surface is plotte	ad along V avis and	
501	frequency <i>u</i> of incident liv	abt along V avis A straight	ling is obtained as shown	Planck's constant is given	
	by	gilt along A -axis. A straight	line is obtained as shown.	Fiance S constant is given	
	a) Slope of the line				
	a) Slope of the line b) Droduct of clope of the	line and charge on the elec	rtron		
	c) Intercent along V avia	divided by charge on the elec	lastron		
	d) Product of intercent al	and V axis and mass of the	alactron		
262	An V revenules of weight	$\operatorname{Olig} A$ - $\operatorname{dxls} \operatorname{dilu} \operatorname{IIIdss} \operatorname{Ol} \operatorname{Ule}$	election of Wilson aloud ab	amhar containing a cun ar	
302.	An X-ray pulse of waveled	ngth 4.9 A is sent through a	i section of wilson cloud ch	amper containing a super	
	saturated gas, and tracks	or photoelectron ejected if	be range energy relation for	observed. Two groups of	
	tracks of lengths 1.40 cm	and 2.02 cm are noted. If t	ne range-energy relation it	or cloud chamber is given by	
	$R = \alpha E$ with $\alpha = 1 cm/ke$	$(10^{-34}I)$ $(10^{-34}I)$ $(10^{-34}I)$	gies of the two levels from	which electrons are	
	emitted. Given $h = 6.63 \times$	$(10^{\circ})^{f} - s, e = 1.6 \times 10^{\circ}$	-) 0 52 -14		
202	a) 0.52 KeV	DJ U. / 5 <i>eV</i>	CJ U.52 eV	a) 0.75 KeV	
303.	non actively given as 1	α - participant of an electron, α - participant of the set	e and proton all having the	same kinetic energy is	
	Tespectively given as λ_e , λ_e	α_{α} and λ_{p} . Then which of u	le following is not true?		
	a) $\lambda_e < \lambda_p$	b) $\Lambda_p > \Lambda_{\alpha}$	c) $\lambda_e > \lambda_{\alpha}$	d) $\lambda_{\alpha} < \lambda_{p} < \lambda_{e}$	
364	The specific charge of a p	roton is 9.6×10^7 C Kg ⁻¹ .	The specific charge of an all	pha particle will be	
	a) 9.6×10^7 C Kg ⁻¹	b) $19.2 \times 10^{7} \text{ C Kg}^{-1}$	c) 4.8×10^7 C Kg ⁻¹	d) 2.4×10^7 C Kg ⁻¹	
365	A oil drop having a mass 4	4.8×10^{-10} g and charge 2.	4×10^{-10} C stands still bet	ween two charged	
	horizontal plates separated by a distance of 1 cm. If now the polarity of the plates is changed,				
	instantaneous acceleratio	on of the drop is $(g=10 \text{ ms}^3)$	⁻ 2)		
	a) 5 ms ⁻²	b) 10 ms ⁻²	c) 15 ms ⁻²	d) 20 ms^{-2}	

- 366. Light of wavelength 1824 Å, incident on the surface of a metal, produces photo-electrons with maximum energy 5.3 *eV*. When light of wavelength 1216 Å is used, the maximum energy of photoelectrons is 8.7 *eV*. The work function of the metal surface is

 a) 3.5 *eV*b) 13.6 *eV*c) 6.8 *eV*d) 1.5 *eV*
- 367. Monochromatic light of frequency 6.0×10^4 Hz is produced by a laser. The power emitted is 2×10^{-3} W. The number of photons emitted, on the average, by the source per second is
- a) 5 × 10¹⁵
 b) 5 × 10¹⁶
 c) 5 × 10¹⁷
 d) 5 × 10¹⁴
 368. In an experiment on photoelectric effect the frequency *f* of the incident light is plotted against the stopping potential *V*₀. The work function of the photoelectric surface is given by (*e* is electronic charge)

$$\begin{array}{c} v_{0} \uparrow^{Y} \\ o \\ B \end{array} \xrightarrow{A} \\ v_{0} \\ v \xrightarrow{V} \\ \end{array} X$$

- a) $OB \times e$ in eV
- c) *OA* in *eV*

b) *OB* in *volt*

d) The slope of the line *AB*

- 369. An X-ray tube with a copper target emits K_{α} line of wavelength 1.50 Å. What should be the minimum voltage through which electrons are to be accelerated to produce this wavelength of X rays
 - $(h = 6.63 \times 10^{-34} J \text{-} s, c = 3 \times 10^8 m/s)$ a) 8280 V b) 828 V c) 82800 V
- a) 8280 V
 b) 828 V
 c) 82800 V
 d) 8.28 V
 370. Mixed He⁺ and O²⁺ ions (mass of He⁺ = 4 amu and that of O²⁺ = 16 amu) beam passes a region of constant perpendicular magnetic field. If kinetic energy of all the ions is same then
 - a) He⁺ ions will be deflected more than those of O^{2+}
 - b) He⁺ ions will be deflected less than that of O^{2+}
 - c) All the ions will be deflected equally
 - d) No ions will be deflected
- 371. The mass of a proton is 1836 times that of an electron. An electron and a proton are projected into a uniform electric field in a direction perpendicular to the field with equal initial kinetic energies. Then
 - a) The electron trajectory is less curved than the proton trajectory
 - b) The proton trajectory is less curved than the electron trajectory
 - c) Both trajectories are equally curved
 - d) Both trajectories will be straight
- 372. A 1 μ A beam of protons with a cross-sectional area of 0.5 *sq.mm* is moving with a velocity of 3 × 10⁴*ms*⁻¹. Then charge density of beam is
- a) $6.6 \times 10^{-4}C/m^3$ b) $6.6 \times 10^{-5}C/m^3$ c) $6.6 \times 10^{-6}C/m^3$ d) None of these 373. The figure shows variation of photocurrent with anode potential for a photo-sensitive surface for three different radiations. Let I_a , I_b and I_c be the intensities and v_a , v_b and v_c be the frequencies for the curves a, b and c respectively. Then

a) $v_a = v_b and I_a \neq I_b$ b) $v_a = v_c$ and $I_a = I_c$ c) $v_a = v_b$ and $I_a = I_b$ d) $v_b = v_c$ and $I_b = I_c$ 374. A proton, a deuteron and an α -particle having the same momentum, enters a region of uniform electric field between the parallel plates of a capacitor. The electric field is perpendicular to the initial path of the particles. Then the ratio of deflections suffered by them is

c) 1:1:2 d) None of these 375. The K_{α} X-rays arising from a cobalt (z = 27) target have a wavelength of 179 pm. The K_{α} X-rays arising from a nickel target (z = 28) is

a) > 179 *pm* b) < 179 *pm* c) = $179 \, pm$ d) None of these 376. A photon of energy *E* ejects a photoelectrons from a metal surface whose work function is W_0 . If this electron enters into a uniform magnetic field of induction *B* in a direction perpendicular to the field and describes a circular path of radius *r*, then the radius *r*, is given by, (in the usual notation)

a)
$$\sqrt{\frac{2m(E-W_0)}{eB}}$$
 b) $\sqrt{2m(E-W_0)eB}$ c) $\frac{\sqrt{2e(E-W_0)}}{mB}$ d) $\frac{\sqrt{2m(E-W_0)}}{eB}$

377. Cathode rays of velocity 10^6 ms⁻¹ describe an approximate circular path of radius 1 m in an electric field 300 Vcm⁻¹. If velocity of cathode rays are doubled. The value of electric field so that the rays describe the same circular path, will be

a) 2400 Vcm⁻¹ b) 600 Vcm⁻¹ c) 1200 Vcm⁻¹ d) 12000 Vcm⁻¹ 378. The energy of an *X*-ray photon of wavelength 1.65 Å is $(h = 6.6 \times 10^{-34} J\text{-sec}, c = 3 \times 10^8 m s^{-1}, 1 eV = 10^{-34} J\text{-sec}, c = 3 \times 10^{-3$ $1.6 \times 10^{-19} J$)

379. The threshold wavelength for photoelectric emission from a material is 4800 Å. Photoelectrons will be emitted from the material, when it is illuminated with light from a

a) 40 W blue lamp b) 40 W green lamp c) 100 W red lamp

d) 100 w yellow lamp

380. What is the momentum of a photon having frequency $1.5 \times 10^{13} Hz$ a) $3.3 \times 10^{-29} kg m/s$ b) $3.3 \times 10^{-34} kg m/s$ c) $6.6 \times 10^{-34} kg m/s$ d) $6.6 \times 10^{-30} kg m/s$

- 381. Positive rays were discovered by
 - a) Thomson b) Goldstein
- c) W. Crookes

d) Rutherford

d) 2.5 eV

d) 9.5 keV

- 382. X-rays are produced in X-ray tube operating at a given accelerating voltage. The wavelength of the continuous X-rays has values from a) 0 to ∞

b) λ_{\min} to ∞ , where $\lambda_{\min} > 0$

c) 0 to $\lambda_{\rm max}$, where $\lambda_{\rm max} < \infty$

- d) λ_{\min} to λ_{\max} , where $0 < \lambda_{\min} < \lambda_{\max} < \infty$
- 383. The figure shows the path of a positively charged particle 1 through a rectangular region of uniform electric field as shown in the figure. What is the direction of electric field and the direction of deflection of particles 2,3 and 4?

a) Top; down, top, down

b) Top; down, down, top

c) Down; top, top, down

- d) Down; top, down, down
- 384. A particle which has zero rest mass and non-zero energy and momentum, must travel with a speed
 - a) Equal to *c*, the speed of light in vacuum c) Less than *c*

b) Greater than *c* d) Tending of infinity

385. The kinetic energy of an electron with de-Broglie wavelength of 3 nm is

386. Which of the following is dependent on the intensity of incident radiation in a photoelectric experiment a) Work function of the surface

- b) Amount of photoelectric current
- c) Stopping potential will be reduced
- d) Maximum kinetic energy of photoelectrons
- 387. Stopping potential for photoelectrons
 - a) Does not depend on the frequency of the incident light
 - b) Does not depend upon the nature of the cathode material
 - c) Depends on both the frequency of the incident light and nature of the cathode material
 - d) Depends upon the intensity of the incident light
- 388. A proton and an α -particle are accelerated through same potential difference. The ratio of their de-Broglie wavelengths $\lambda_p / \lambda_\alpha$ will be

a) $\frac{1}{\sqrt{8}}$ b) $\sqrt{8}$ c) 2 d) 1

389. Cathode rays are similar to visible light rays as

- a) They both can be deflected by electric and magnetic fields
- b) They both have a definite magnitude of wavelength
- c) They both can ionize a gas through which they pass
- d) They both can expose a photographic plate
- 390. Irreducible area *a b c d*, in figure is

 $M_{\text{O Displacement}}^{\text{future}} \overset{a \qquad b}{\underset{c}{\overset{b \\ c \\ \text{D Displacement}}}} \overset{b \\ b \\ c \\ \end{array}$

	a) Work	b) Plank's constant	c) Joule	d) Charge			
391.	A photon in motion has a n	nass					
	a) c/hv	b) <i>h/v</i>	c) <i>hv</i>	d) hv/c^2			
392.	392. The de-Broglie wavelength associated with a particle moving with momentum (p) and mass (m) is						

a)
$$\frac{h}{p}$$
 b) $\frac{h}{mp}$ c) $\frac{h}{p^2}$ d) $\frac{h^2}{p^2}$

393. An electron of mass m and charge q is accelerated from rest in a uniform electric field of strength E. The velocity acquired by it as it travels a distance l is

a)
$$\sqrt{2Eql/m}$$
 b) $\sqrt{2Eq/ml}$ c) $\sqrt{2Em/ql}$

394. If the frequency of light incident on metal surface is doubled, then kinetic energy of emitted electron wii become

a) Doubledb) Less than doublec) More than doubled) Nothing can be said395. Which of the following is accompanied by the characteristic X-ray emission

- a) *α*-particle emission b) Electron emission c) Positron emission d) *K*-electron capture 396. An X-ray machine is operated at 40 kV. The short wavelength limit of continuous X-rays will be
 - $(h = 6.63 \times 10^{-34} Js, c = 3 \times 10^8 ms^{-1}, e = 1.6 \times 10^{-19} C)$
 - a) 0.31\AA b) 0.62\AA c) 0.155\AA d) 0.62\AA

397. A photo-sensitive material would emit electrons, if excited by photons beyond a threshold. To overcome the threshold, one would increase the

a) Voltage applied to the light source
b) Intensity of light
c) Wavelength of light
d) Frequency of light
398. Davisson and Germer experiment proved
a) Wave nature of light
b) Particle nature of light
c) Both (a) and (b)
b) Particle nature of light
d) Neither (a) nor (b)

a) $h\lambda$ b) $ch\lambda$ c) λ/hc d) hc/λ 400. The threshold frequency for a metallic surface corresponds to an energy of 6.2 eV and the stopping

d) $\sqrt{Eq/ml}$

- potential for a radiation incident on this surface is 5V. The incident radiation lies in b) Infra-red region a) Ultra-violet region c) Visible region d) X-ray region 401. When the momentum of a proton is changed by an amount P_0 , the corresponding change in the de-Broglie wavelength is found to be 0.25%. Then, the original momentum of the proton was b) 100 p_0 c) 400 p_0 d) $4 p_0$ a) p_0 402. Energy of a quanta of frequency 10^{15} Hz and $h = 6.6 \times 10^{-34}$ J-s will be b) $6.6 \times 10^{-12} J$ c) $6.6 \times 10^{-49} I$ a) 6.6×10^{-19} d) 6.6×10^{-41} 403. The maximum value of stopping potential in the following diagram is (Photoelectric current) -2V Potential difference b) −1V d) −2*V* a) -4Vc) −3V 404. The wavelength of K_{α} line in copper is 1.54 Å. The ionization energy of *K* electron in copper in *Joule* is b) 12.9×10^{-16} c) 1.7×10^{-15} d) 10×10^{-16} a) 11.2×10^{-27} 405. The minimum light intensity that can be perceived by the eye is about 10^{10} Wm⁻². The number of photons of wavelength 5.6 \times 10⁻⁷m that must enter the pupil of area 10⁻⁴m³s⁻¹, for vision is approximately equal to $(h = 6.6 \times 10^{-34}$ J-s) a) 3×10^2 photons b) 3×10^3 photons c) 3×10^4 photons d) 3×10^5 photons 406. X-rays are known to be electromagnetic radiations. Therefore the X-ray photon has a) Electric charge b) Magnetic moment c) Both electric charge and magnetic moment d) Neither electric charge nor magnetic moment 407. A charged particle is at rest in the region where magnetic field and electric field are parallel. The particle will move in a a) Straight line b) Circle c) Ellipse d) None of these 408. Nuclear radii may be measured by scattering high energy electrons from nuclei. What is the de-Broglie wavelength for 200 MeV electrons? d) 6.20 fm a) 8.28 fm b) 7.98 fm c) 6.45 fm 409. The longest wavelength that can be analysed by a sodium chloride crystal of spacing $d = 2.82 A^{\circ}$ in the second order is a) 2.82 *A*° b) 5.64 *A*° c) 8.46 A° d) 11.28 A° 410. The minimum wavelength of photon is 5000 Å, its energy will be b) 50 V a) 2.5 eV c) 5.48 eV d) 7.48 eV 411. A positively charged particle enters a magnetic field of value $B\hat{j}$ with a velocity $v\hat{k}$. The particle will move along a) + X axis b) -X axis c) + Z axis d) -Z axis 412. In vacuum an electron of energy 10 keV hits tungsten target, then emitted radiation will be c) Infrared rays d) Visible spectrum a) Cathode rays b) X-rays 413. K_{α} wavelength emitted by an atom of atomic number Z =11 is λ . Find the atomic number for an atom that emits K_{α} radiation with wavelength 4λ a) Z = 6b) Z = 4c) Z = 11 d) Z = 44414. *O*⁺⁺, *C*⁺, *He*⁺⁺ and *H*⁺ ions are projected on the photographic plate with same velocity in a mass spectrograph. Which one will strike farthest c) *He*⁺⁺ a) 0++ b) C⁺ d) H_2^+ 415. In radio therapy, X-rays are used to
 - a) Detect bone facturesb) Treat cancer by controlled exposurec) Detect heart diseasesd) Detect fault in radio receiing circuits

416. Light of wavelength 2475 Å is incident on barium. Photoelectrons emitted describe a circle of radius

	100 <i>cm</i> by a magnetic fie	ld of flux density $\frac{1}{\sqrt{17}} \times 10^{-1}$	⁵ <i>Tesla</i> . Work function of th	ne barium is (Given
	$\frac{e}{m} = 1.7 \times 10^{11}$)	¥17		
	m $$			
	e ⁻ & b			
	Bari	b) 2.1 aV		d) 2.2 aV
417	aj 1.0 ev In Bainbridge mass spect	UJ 2.1 ev rograph a notential differe	cj 4.5 ev nce of 1000 V is applied be	uj 5.5 ev two nlatos distant
11/	1 <i>cm</i> apart and magnetic	field $B = 1T$. The velocity	of undeflected positive ions	s in m/s from the velocity
	selector is			
	a) 10 ⁷ m/s	b) 10 ⁴ <i>m/s</i>	c) 10 ⁵ <i>m/s</i>	d) 10 ² <i>m/s</i>
418	. Work function of a metal	is 2.1 eV. Which of the way	ves of the following waveler	ngths will be able to emit
	photoelectrons from its s	surface		
	a) 4000 Å, 7500 Å	b) 5500 Å, 6000 Å	c) 4000 Å, 6000 Å	d) None of these
419	. The working principle of	the mass spectrograph is t	hat for a given combinatior	n of accelerating potential
	and magnetic field, the io	on beam (with charge q and	l mass <i>M</i>) to be collected at	different positions of ion
	collectors will depend up	on the value of		
	a) $\sqrt{q/M}$	b) $(q/M)^2$	c) <i>q/M</i>	d) <i>qM</i>
420	. A charged particle of mas	ss m and charge q is release	ed from rest in an uniform e	electric field <i>E</i> neglecting
	the effect of gravity,the k	inetic energy of the charge	d particle after <i>t</i> second is	
	a) $\frac{2E^2t^2}{2}$	b) $\frac{Eq^2m}{m}$	c) <i>Eqm</i>	d) $\frac{E^2q^2t^2}{dt^2}$
404	³ mq	$\int 2t^2$		2 <i>m</i>
421	. The photoelectric thresh	old frequency of a metal is	<i>v</i> . When light of frequency	4 <i>v</i> is incident on the metal.
	a) 4 hu	b) 2 hr	a) E by	5
	aj 4 <i>IIV</i>	UJ S <i>IIV</i>	$C_{J} = M_{V}$	d) $\frac{3}{2}hv$
422	. A and B are two metals v	vith threshold frequencies	$1.8 imes 10^{14}$ Hz and $2.2 imes 10^{1}$	⁴ Hz. Two idential photons
	of energy 0.825 eV each a	are incident on them. Then	photoelectrons are emitted	l by (<i>Take</i> $h = 6.6 \times$
	$10^{-34} J - s$)			
	a) <i>B</i> alone	b) A alone	c) Neither A nor B	d) both A and B
423	. The mass of a particle is	400 times than that of an e	lectron and charge is doubl	e. The particle is accelerated
	by 5V. Initially the partic	le remained in rest, then its	s final kinetic energy will be	2
	a) 5 eV	b) 10 eV	c) 100 eV	d) 200 eV
424	The energy of incident pl	notons corresponding to m	aximum wavelength of visi	ble light is
125	a) 3.2 eV	DJ / eV × 10 ¹¹ C kg ⁻¹ and stonnin	CJ 1.55 eV	a) I ev ha mavimum valacity of the
423	nhotoelectron is	x to c kg and stoppin	ig potential is 0.71 v, then t	he maximum velocity of the
	a) 150 km/s	h) 200 km/s	c) 500 km/s	d) 250 km/s
426	. Assuming photoemission	to take place, the factor by	which the maximum veloc	city of the emitted
	photoelectrons changes v	when the wavelength of the	e incident radiation is incre	ased four times, is
	a) 4	b) 1/4	c) 2	d) 1/2
427	. Photon and electron are	given energy (10 ^{–2} J). Wav	elengths associated with pł	noton and electron are
	$\lambda_{ m ph}$ and $\lambda_{ m el}$ then, correct s	statement will be		
	a b	b λ $< \lambda$	$a_1 a_2 = b_1$	$d \frac{\lambda_{el}}{\lambda_{el}} = c$
	a) $n_{\rm ph} > n_{\rm el}$	$DJ n_{\rm ph} < n_{\rm el}$	$c_{\rm J} n_{\rm ph} - n_{\rm el}$	$d \int \frac{\lambda_{\rm ph}}{\lambda_{\rm ph}} = c$
428	. A uniform electric field a	nd a uniform magnetic field	d exist in a region in the sar	ne direction. An electron is
	projected with a velocity	pointed in the same direct	ion. Then the electron will	be
	a) Be deflected to the left	without increase in speed	,	

b) Be deflected to the right without increase in speedc) Not be deflected but its speed will decrease

d) Not be deflected but its speed will increase

- 429. The minimum intensity of light to be detected by human eye is $10^{-10}W/m^2$. The number of photons of wavelength $5.6 \times 10^{-7}m$ entering the eye, with pupil area $10^{-6}m^2$, per second for vision will be nearly a) 100 b) 200 c) 300 d) 400
- 430. In a photoelectric effect experiment, the slope of the graph between the stopping potential and the incident frequency will be
 - a) 1 b) 0.5 c) 10^{-15} d) 10^{-34}

431. An oil drop carrying a charge *q* has a mass *m* kg. It is falling freely in air with terminal speed *v*. The electric field required to make the drop move upwards with the same speed is

a)
$$\frac{mg}{q}$$
 b) $\frac{2mg}{q}$ c) $\frac{mgv}{q^2}$ d) $\frac{2mgv}{q}$

432. The stopping potential as a function of the frequency of the incident radiation is plotted for two different photoelectric surfaces *A* and *B*. The graphs show that work function of *A* is

a) Grater than that of B

b) Smaller than that of B

c) Equal to that of B

d) No inference can be drawn about their work functions from the given graphs

- 433. What is the strength of transverse magnetic field required to bend all the photoelectrons within a circle of a radius 50 cm. When light of wavelength 3800 Å is incident on a barium emitter? (Given that work function of barium is 2.5 eV; $h = 6.63 \times 10^{-34}$ J-s; $e = 1.6 \times 10^{-19}$ C; $m = 9.1 \times 10^{-31}$ kg) a) 6.32×10^{-4} T b) 6.32×10^{-5} T c) 6.32×10^{-6} T d) 6.32×10^{-8} T
- 434. X-rays are produced due to
 - a) Break up of molecules

- b) Changing in atomic energy leveld) Radioactive disintegration
- c) Changing in nuclear elergy level d) Radioactive disintegration 435. The dependence of the short wavelength limit λ_{\min} on the accelerating potential *V* is represented by the curve of figure

c) C

d) None of these

436. The values $+\frac{1}{2}$ and $-\frac{1}{2}$ of spin quantum number show

b) *B*

a) Rotation of e^- clockwise and anticlockwise direction respectively

- b) Rotation of e^- anticlockwise and clockwise directions respectively
- c) Rotation in any direction according to convention
- d) None of the above

437. The colour of the positive column in a gas discharge tube depends on

- a) The type of glass used to construct the tube b) The gas in the tube
- c) The applied voltage d) The material of the cathode
- 438. X-rays of which of the following wavelengths are hardest

439. In Thomson spectrograph experiment, four positive ions *P*, *Q*, *R* and *S* are situated on *Y*-*X* curve a shown in the figure

	$\begin{array}{c} Y \\ Q \\ R \\ R \\ R \\ X \end{array}$			
	a) The specific charge of <i>I</i>	and <i>S</i> are same	b) The masses of <i>P</i> and <i>S</i>	are same
110	c) The specific charges of	<i>Q</i> and <i>R</i> are same	d) The velocities of <i>R</i> and	<i>S</i> are same
440.	radiation of wavelength λ	$_{\circ}$ is used. If radiation of way	velength $2\lambda_0$ is used with t	The same metal then the
	stopping potential (in vol	t) will be	verengen 270 is used with t	
	V_0	b) 21/	c) $V + \frac{hc}{hc}$	d) $V_{c} = \frac{hc}{hc}$
	$\frac{1}{2}$	0,270	$2e\lambda_0$	$2e\lambda_0$
441.	The resistance of a discha	rge tube is	a) Namaharata	d) I., C., :
440	a) Zero	b) Unmic	c) Non-onmic	d) infinity
442.	A photosensitive metallic	surface has work function	ϕ . If photon of energy 3ϕ fa	all on this surface, the
	electron comes out with a	maximum velocity of 6×1	10° m/s. when the photon	energy is increased to 9φ,
	a) 12×10^6 m/s	b) 6×10^6 m/s	c) $3 \times 10^6 \text{m/s}$	d) 24×10^6 m/s
443	A cathode emits 1.8×10^{11}	⁴ electrons per second wh	on heated When 400 V is	$u_{1}^{24} \times 10^{10}$ m/s
тт <u></u> .	\wedge catholic clinics 1.0 \times 10	a anode. The charge on ele	etron is 1.6×10^{-19} C The	maximum anode current is
	$2) 27 \mu A$	b) 20 μ	c) $72\mu A$	d) 20 m /
1.1.1.	a) 2.7 μπ A motal block is exposed t	o beams of X-ray of differe	- CJ 7 2μA nt wavelengths Y-rays of y	which wavelength penetrate
.	most			
	a) 2 A	b) 4 A	C) 6 A	d) 8 A
445.	In the photoelectric effect	the velocity of ejected elec	trons depends upon the na	ature of the target and
	a) The frequency of the in	cident light	b) The polarisation of the	incident light
	c) The time for which the	light has been incident	d) The intensity of the inc	cident light
446.	c) The time for which the An ionisation chamber, wit	light has been incident h parallel conducting plates	d) The intensity of the inc as anode and cathodes has	tident light s 5×10^7 cm ⁻³ electrons and
446.	c) The time for which the An ionisation chamber, with the same number of singl	light has been incident h parallel conducting plates y charged positive ions per	d) The intensity of the inc as anode and cathodes has cm ³ . The electrons are mo	tident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with
446.	c) The time for which the An ionisation chamber, wit the same number of singl velocity 0.4ms ⁻¹ . The curr	light has been incident h parallel conducting plates y charged positive ions per ent density from anode to c	d) The intensity of the inc as anode and cathodes has cm^3 . The electrons are mo cathode is 4µAm ⁻² . The vel	tident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving
446.	c) The time for which the An ionisation chamber, with the same number of singl velocity 0.4ms ⁻¹ . The curr towards cathode is	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to c	d) The intensity of the inc as anode and cathodes has cm^3 . The electrons are mo cathode is $4\mu Am^{-2}$. The vel	cident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving
446.	c) The time for which the An ionisation chamber, with the same number of single velocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1}	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to c b) 0.4 ms ⁻¹	 d) The intensity of the incomposition of	cident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹
446. 447.	c) The time for which the An ionisation chamber, with the same number of single velocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1} An electron initially at res	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to c b) 0.4 ms ⁻¹ tt is accelerated through a p	 d) The intensity of the incomposition of t	cident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹ The energy acquired by
446. 447.	c) The time for which the An ionisation chamber, with the same number of single velocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1} An electron initially at rese electron is	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to c b) 0.4 ms ⁻¹ tt is accelerated through a p	 d) The intensity of the inclusion of the inclus	cident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹ The energy acquired by
446. 447.	c) The time for which the An ionisation chamber, with the same number of single velocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1} An electron initially at rese electron is a) 10^{-19} J	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to c b) 0.4 ms^{-1} th is accelerated through a p b) $1.6 \times 10^{-19} \text{ erg}$	d) The intensity of the inc as anode and cathodes has cm^3 . The electrons are mo cathode is $4\mu Am^{-2}$. The vel c) Zero obtential difference of 1V. T	cident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹ The energy acquired by d) 1 J
446. 447. 448.	c) The time for which the An ionisation chamber, with the same number of single velocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1} An electron initially at res- electron is a) 10^{-19} J Maximum velocity of pho-	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to c b) 0.4 ms^{-1} it is accelerated through a p b) $1.6 \times 10^{-19} \text{ erg}$	d) The intensity of the inc as anode and cathodes has cm^3 . The electrons are mo cathode is $4\mu Am^{-2}$. The vel c) Zero obtential difference of 1V. T c) 1.6×10^{-19} J s ⁻¹ . The <i>e/m</i> ratio of electron	cident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹ The energy acquired by d) 1 J ron is 1.76 × 10 ¹¹ Ckg ⁻¹ ,
446. 447. 448.	c) The time for which the An ionisation chamber, with the same number of single velocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1} An electron initially at rese electron is a) 10^{-19} J Maximum velocity of photo then stopping potential is	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to c b) 0.4 ms^{-1} th is accelerated through a p b) $1.6 \times 10^{-19} \text{ erg}$ toelectron emitted is 4.8 ms given by	d) The intensity of the inc as anode and cathodes has cm ³ . The electrons are mo cathode is 4μ Am ⁻² . The vel c) Zero obtential difference of 1V. T c) 1.6 × 10 ⁻¹⁹ J s ⁻¹ . The <i>e/m</i> ratio of electr	cident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹ The energy acquired by d) 1 J ron is 1.76×10^{11} Ckg ⁻¹ ,
446.447.448.	c) The time for which the An ionisation chamber, with the same number of single velocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1} An electron initially at res- electron is a) 10^{-19} J Maximum velocity of photon then stopping potential is a) 5×10^{-10} JC ⁻¹	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to o b) 0.4 ms^{-1} tt is accelerated through a p b) $1.6 \times 10^{-19} \text{ erg}$ toelectron emitted is 4.8 ms given by b) $3 \times 10^{-7} \text{ JC}^{-1}$	d) The intensity of the inc as anode and cathodes has cm ³ . The electrons are mo cathode is 4μ Am ⁻² . The vel c) Zero obtential difference of 1V. T c) 1.6×10^{-19} J s ⁻¹ . The <i>e/m</i> ratio of electr	cident light s 5×10^{7} cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹ The energy acquired by d) 1 J ron is 1.76×10^{11} Ckg ⁻¹ , d) 2.5×10^{-2} JC ⁻¹
446.447.448.449.	c) The time for which the An ionisation chamber, with the same number of singlivelocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1} An electron initially at rese electron is a) 10^{-19} J Maximum velocity of photon then stopping potential is a) 5×10^{-10} JC ⁻¹ If a proton and electron h	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to o b) 0.4 ms^{-1} th is accelerated through a p b) $1.6 \times 10^{-19} \text{ erg}$ toelectron emitted is 4.8 ms given by b) $3 \times 10^{-7} \text{ JC}^{-1}$ ave the same de Broglie wa	d) The intensity of the inc as anode and cathodes has cm ³ . The electrons are mo cathode is 4μ Am ⁻² . The vel c) Zero obtential difference of 1V. T c) 1.6×10^{-19} J s ⁻¹ . The <i>e/m</i> ratio of electr c) 7×10^{-11} JC ⁻¹ velength, then	cident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹ The energy acquired by d) 1 J ron is 1.76×10^{11} Ckg ⁻¹ , d) 2.5×10^{-2} JC ⁻¹
446.447.448.449.	c) The time for which the An ionisation chamber, with the same number of singlivelocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1} An electron initially at rese electron is a) 10^{-19} J Maximum velocity of phot then stopping potential is a) 5×10^{-10} JC ⁻¹ If a proton and electron h a) Kinetic energy of electron proton	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to o b) 0.4 ms^{-1} at is accelerated through a p b) 1.6×10^{-19} erg toelectron emitted is 4.8 ms given by b) 3×10^{-7} JC ⁻¹ ave the same de Broglie wa ron < kinetic energy of	d) The intensity of the inc as anode and cathodes has cm ³ . The electrons are mo cathode is 4μ Am ⁻² . The vel c) Zero obtential difference of 1V. T c) 1.6×10^{-19} J s ⁻¹ . The <i>e/m</i> ratio of electron c) 7×10^{-11} JC ⁻¹ velength, then b) Kinetic energy of electron proton	cident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹ The energy acquired by d) 1 J ron is 1.76×10^{11} Ckg ⁻¹ , d) 2.5×10^{-2} JC ⁻¹ ron = kinetic energy of
446. 447. 448. 449.	c) The time for which the An ionisation chamber, with the same number of singlivelocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1} An electron initially at rese electron is a) 10^{-19} J Maximum velocity of photon then stopping potential is a) 5×10^{-10} JC ⁻¹ If a proton and electron h a) Kinetic energy of electron proton c) Momentum of electron	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to o b) 0.4 ms^{-1} th is accelerated through a p b) 1.6×10^{-19} erg toelectron emitted is 4.8 ms given by b) 3×10^{-7} JC ⁻¹ ave the same de Broglie wa ron < kinetic energy of > momentum of proton	d) The intensity of the inc as anode and cathodes has cm ³ . The electrons are mo cathode is 4μ Am ⁻² . The vel c) Zero obtential difference of 1V. T c) 1.6 × 10 ⁻¹⁹ J s ⁻¹ . The <i>e/m</i> ratio of electron c) 7 × 10 ⁻¹¹ JC ⁻¹ velength, then b) Kinetic energy of electron d) Momentum of electron	cident light s 5×10^{7} cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹ The energy acquired by d) 1 J ron is 1.76×10^{11} Ckg ⁻¹ , d) 2.5×10^{-2} JC ⁻¹ ron = kinetic energy of a = momentum of proton
446.447.448.449.450.	c) The time for which the An ionisation chamber, with the same number of single velocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1} An electron initially at res- electron is a) 10^{-19} J Maximum velocity of phot then stopping potential is a) 5×10^{-10} JC ⁻¹ If a proton and electron h a) Kinetic energy of electron proton c) Momentum of electron	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to o b) 0.4 ms^{-1} tt is accelerated through a p b) 1.6×10^{-19} erg toelectron emitted is 4.8 ms given by b) 3×10^{-7} JC ⁻¹ ave the same de Broglie wa ron < kinetic energy of > momentum of proton incident light and stopping	d) The intensity of the inc as anode and cathodes has cm^3 . The electrons are mo cathode is $4\mu Am^{-2}$. The vel c) Zero potential difference of 1V. T c) 1.6×10^{-19} J s ⁻¹ . The e/m ratio of electron c) 7×10^{-11} JC ⁻¹ velength, then b) Kinetic energy of electron d) Momentum of electron potential graph for a given	cident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹ The energy acquired by d) 1 J ron is 1.76×10^{11} Ckg ⁻¹ , d) 2.5×10^{-2} JC ⁻¹ ron = kinetic energy of a = momentum of proton a surface will be
446.447.448.449.450.	c) The time for which the An ionisation chamber, with the same number of singlivelocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1} An electron initially at rese electron is a) 10^{-19} J Maximum velocity of photon then stopping potential is a) 5×10^{-10} JC ⁻¹ If a proton and electron h a) Kinetic energy of electron proton c) Momentum of electron The slope of frequency of a) h	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to o b) 0.4 ms^{-1} th is accelerated through a p b) 1.6×10^{-19} erg toelectron emitted is 4.8 ms given by b) 3×10^{-7} JC ⁻¹ ave the same de Broglie wa fon < kinetic energy of > momentum of proton incident light and stopping b) h/e	 d) The intensity of the inclust as anode and cathodes has cm³. The electrons are more cathode is 4μAm⁻². The velocities of the constraint of the electron of the constraint of the electron of t	cident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹ The energy acquired by d) 1 J ron is 1.76×10^{11} Ckg ⁻¹ , d) 2.5×10^{-2} JC ⁻¹ ron = kinetic energy of a = momentum of proton a surface will be d) <i>e</i>
 446. 447. 448. 449. 450. 451. 	c) The time for which the An ionisation chamber, with the same number of singlivelocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1} An electron initially at rese electron is a) 10^{-19} J Maximum velocity of photon then stopping potential is a) 5×10^{-10} JC ⁻¹ If a proton and electron h a) Kinetic energy of electron proton c) Momentum of electron The slope of frequency of a) h The variation of photoelectron which is a straight line with	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to o b) 0.4 ms^{-1} at is accelerated through a p b) 1.6×10^{-19} erg toelectron emitted is 4.8 ms given by b) 3×10^{-7} JC ⁻¹ ave the same de Broglie wa ron < kinetic energy of > momentum of proton incident light and stopping b) h/e ctric current given by the plath	d) The intensity of the inc as anode and cathodes has cm^3 . The electrons are mo cathode is $4\mu Am^{-2}$. The vel c) Zero potential difference of 1V. The c) 1.6×10^{-19} J s ⁻¹ . The e/m ratio of electron c) 7×10^{-11} JC ⁻¹ velength, then b) Kinetic energy of electron proton d) Momentum of electron potential graph for a given c) eh hotocell, with the intensity	cident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹ The energy acquired by d) 1 J ron is 1.76×10^{11} Ckg ⁻¹ , d) 2.5×10^{-2} JC ⁻¹ ron = kinetic energy of a = momentum of proton a surface will be d) <i>e</i> of light, is give by a graph,
 446. 447. 448. 449. 450. 451. 	c) The time for which the An ionisation chamber, with the same number of singlivelocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1} An electron initially at rese electron is a) 10^{-19} J Maximum velocity of photo then stopping potential is a) 5×10^{-10} JC ⁻¹ If a proton and electron h a) Kinetic energy of electron proton c) Momentum of electron The slope of frequency of a) h The variation of photoelectron which is a straight line with a) +ve slope with interces	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to o b) 0.4 ms^{-1} th is accelerated through a p b) 1.6×10^{-19} erg toelectron emitted is 4.8 ms given by b) 3×10^{-7} JC ⁻¹ ave the same de Broglie wa ron < kinetic energy of > momentum of proton incident light and stopping b) h/e ctric current given by the pl th pt on current axis	 d) The intensity of the inclust as anode and cathodes has cm³. The electrons are more cathode is 4µAm⁻². The velocities of a second sec	cident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹ The energy acquired by d) 1 J ron is 1.76×10^{11} Ckg ⁻¹ , d) 2.5×10^{-2} JC ⁻¹ ron = kinetic energy of a = momentum of proton a surface will be d) <i>e</i> of light, is give by a graph, pt of current axis
 446. 447. 448. 449. 450. 451. 	c) The time for which the An ionisation chamber, with the same number of singlivelocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1} An electron initially at rese electron is a) 10^{-19} J Maximum velocity of photo then stopping potential is a) 5×10^{-10} JC ⁻¹ If a proton and electron h a) Kinetic energy of electron the slope of frequency of a) h The variation of photoelectron the slope with interces c) +ve slope passing throw	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to o b) 0.4 ms^{-1} th is accelerated through a p b) 1.6×10^{-19} erg toelectron emitted is 4.8 ms given by b) 3×10^{-7} JC ⁻¹ ave the same de Broglie wa ron < kinetic energy of > momentum of proton incident light and stopping b) h/e ctric current given by the pl th pt on current axis ugh origin	 d) The intensity of the inclust as anode and cathodes has cm³. The electrons are more cathode is 4µAm⁻². The velocities are more cathode is 4µAm⁻². The velocities difference of 1V. The c) Zero potential difference of 1V. The c) 1.6 × 10⁻¹⁹ J s⁻¹. The <i>e/m</i> ratio of electrons c) 7 × 10⁻¹¹ JC⁻¹ velength, then b) Kinetic energy of electrons proton d) Momentum of electrons c) <i>eh</i> hotocell, with the intensity b) -ve slope with interce d) -ve slope passing throm 	cident light s 5×10^7 cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹ The energy acquired by d) 1 J ron is 1.76×10^{11} Ckg ⁻¹ , d) 2.5×10^{-2} JC ⁻¹ ron = kinetic energy of a = momentum of proton a surface will be d) <i>e</i> of light, is give by a graph, pt of current axis ough origin
 446. 447. 448. 449. 450. 451. 452. 	c) The time for which the An ionisation chamber, with the same number of single velocity 0.4ms^{-1} . The curre towards cathode is a) 0.1 ms^{-1} An electron initially at rese electron is a) 10^{-19} J Maximum velocity of photo then stopping potential is a) 5×10^{-10} JC ⁻¹ If a proton and electron h a) Kinetic energy of electron the slope of frequency of a) h The variation of photoelee which is a straight line wi a) +ve slope with intercee c) +ve slope passing thro The continuous X-rays sp	light has been incident th parallel conducting plates y charged positive ions per ent density from anode to o b) 0.4 ms^{-1} th is accelerated through a p b) 1.6×10^{-19} erg toelectron emitted is 4.8 ms given by b) 3×10^{-7} JC ⁻¹ ave the same de Broglie wa ron < kinetic energy of > momentum of proton incident light and stopping b) h/e ctric current given by the pl th pt on current axis ugh origin ectrum produced by an X-ra	 d) The intensity of the inclust as anode and cathodes has cm³. The electrons are more cathode is 4µAm⁻². The velocities the electron of the elec	cident light s 5×10^{7} cm ⁻³ electrons and oving toward the anode with ocity of positive ions moving d) 1.6 ms ⁻¹ The energy acquired by d) 1 J ron is 1.76×10^{11} Ckg ⁻¹ , d) 2.5×10^{-2} JC ⁻¹ ron = kinetic energy of a = momentum of proton a surface will be d) <i>e</i> of light, is give by a graph, pt of current axis ough origin tage has

	c) A single wavelength d) A minimum frequency			
453.	Γhe de-Broglie wavelength of an electron in the ground state of the hydrogen atom is		tom is	
	a) πr^2	b) 2 <i>πr</i>	c) <i>πr</i>	d) $\sqrt{2\pi r}$
454.	4 eV is the energy of the i	ncident photon and the wor	rk function is 2 <i>eV</i> . What is	the stopping potential
	a) 2 <i>V</i>	b) 4 <i>V</i>	c) 6V	d) 2√2 <i>V</i>
455.	The photoelectric thresho	old of Tungsten is 2300Å. Tl	he energy of the electrons	ejected from the surface by
	ultraviolet light of wavele	ength 1800 Å is		,
	$(h = 6.6 \times 10^{-34} \text{ [-s]})$	0		
	a) 0.15 eV	b) 1.5 eV	c) 15 eV	d) 150 eV
456.	In a photoelectric experim	nent, if both the intensity ar	nd frequency of the incider	nt light are doubled, then
	the saturation photoelect	ric current	1 5	0
	a) Remains constant	b) Is halved	c) Is doubled	d) Becomes four times
457.	The difference between k	inetic energies of photoelec	ctrons emitted from a surfa	ace by light of wavelength
	2500Å and 5000Å will be	0 1		
	a) 1.61 eV	b) 2.47 eV	c) 3.96 eV	d) 3.96 × 10 ⁻¹⁹ eV
458.	Gases begin to conduct el	ectricity at low pressure be	cause	
	a) At low pressure, gases	turn to plasma		
	b) Colliding electrons can	acquire higher kinetic ener	gy due to increased mean	free path leading to
	ionization of atoms		0,	5 F 1 5 5 5
	c) Atoms break up into el	ectrons and protons		
	d) The electrons in atom of	can move freely at low pres	sure	
459.	If a proton and an electro	n are confined to the same	region, then uncertainty in	momentum
	a) For proton is more, as	compared to the electron	b) For electron is more, a	s compared to the proton
	c) Same for both the part	icles	d) Directly proportional t	to their masses
460.	Monochromatic light of fr	equency <i>f</i> incident on emit	ter having threshold frequ	lency f_0 . The kinetic energy
	of ejected electron will be)		
	a) <i>hf</i>	b) $h(f - f_0)$	c) <i>hf</i> ₀	d) $h(f + f_0)$
461.	The essential distinction l	between X-rays and γ -rays	it that	
	a) γ –rays have smaller wavelength than X-rays			
	b) γ –rays emanate from	nucleus while X-rays eman	ate from outer part of the	atom
	c) γ –rays have greater in	onizing power than X-rays		
	d) γ –rays are more pene	trating than X-rays		
462.	Light of energy 2.0 eV fall	s on a metal of work function	on 1.4 eV. The stopping pot	tential is
	a) 0.6 V	b) 2.0 V	c) 3.4 V	d) 1.4 V
463.	A caesium photocell, with	a steady potential differen	ce of 60V across, is illumin	ated by a bright point
	source of light 50 cm awa	y. When the same light is p	laced 1 <i>m</i> away the photoe	lectrons emitted from the
	cell			
	a) Are one quarter as num	nerous		
	b) Are half as numerous			
	c) Each carry one quarter	of their previous momentu	ım	
	d) Each carry one quarter	of their previous energy		
464.	Which of the following su	pports the wave nature of λ	K-rays?	
	a) Photoelectric effect	b) Photosynthesis	c) Compton scattering	d) Diffraction
465.	If maximum velocity with	which an electron can be e	mitted from a photo cell is	$4 \times 10^8 cm/s$, the stopping
	potential is	24		
	(mass of electron = 9×1	$0^{-31}kg)$		
	a) 30 volt		b) 45 <i>volt</i>	
	c) 59 <i>volt</i>		d) Information is insuffici	ient
466.	The shortest wavelength	of X-rays emitted from an X	(-ray tube depends on the	
	a) Current in the tube		b) Voltage applied to the	tube
c) Nature of gas in the tu	ıbe	d) Atomic number of targ	get material	
---	--	--	----------------------------------	
467. The radius of the orbital	of electron in the hydrogen	atom is 0.5 Å. The speed o	f the electron is	
$2 \times 10^6 m/s$. Then the c	urrent in the loop due to the	e motion of the electron is		
a) 1 <i>mA</i>	b) 1.5 <i>mA</i>	c) 2.5 <i>mA</i>	d) $1.5 \times 10^{-2} mA$	
468. Which of the following is	s incorrect statement regard	ling photon		
a) Photon exerts no pres	ssure	b) Photon energy is <i>hv</i>		
c) Photon rest mass is ze	ero	d) None of these		
469. A photon in motion has a	a mass equal to			
a) <i>c/hv</i>	b) h/λ	c) <i>hv</i>	d) hv/c^2	
470. A photocell is illuminate	d by a small bright source p	laced $1 m$ away. When the	same source of light is	
placed $1/2 m$ away, the	number of electrons emitted	d by photo cathode would		
a) Decrease by a factor o	of 2	b) Increase by a factor of	2	
c) Decrease by a factor o	of 4	d) Increase by a factor of	4	
471. The de-Broglie waveleng	gth of a neutron at 927°C is .	λ. What will be its waveleng	gth at 27°C ?	
a) λ/2	b) λ/4	c) 4λ	d) 2λ	
472. The velocity, <i>v</i> , at which	the mass of a particle is dou	ıble its rest mass is		
	3	3		
a) $v = c$	b) $v = \left \frac{3}{4} c \right $	c) $v = \left \frac{3}{2} c \right $	d) $v = 2c$	
	γ	$\sqrt{2}$		
4/3. The wavelength of de-Bi	roglie wave associated with	a thermal neutron of mass	<i>m</i> at absolute temperature	
T is given by (Here, k is $\frac{1}{k}$	the Boltzmann constant)	h	h	
a) $\frac{n}{\sqrt{2}}$	b) $\frac{n}{\sqrt{1-1}}$	c) $\frac{n}{\sqrt{2\lambda}}$	d) $\frac{n}{\sqrt{1-1}}$	
$\sqrt{2mkT}$	\sqrt{mkT}	$\sqrt{3kmT}$	$2\sqrt{mkT}$	
4/4. The wavelength of chara	icteristic X-rays K_{α} line emi	tted by hydrogen like atom	is 0.32 A. The wavelength	
of K_{β} line emitted by the	same element is	. 0	0	
a) 0.21 Å	b) 0.27 Å	c) 0.33 Å	d) 0.40 Å	
475. A charged oil drop is sus	pended in uniform field of 3	3×10^4 Vm ⁻¹ so that it neit	her falls nor rises. The	
charge on the drop will l	ре 15	2		
(Take the mass of the ch	arge = 9.9×10^{-15} Kg and	$g = 10 \text{ ms}^{-2}$		
a) 3.3×10^{-18} C	b) 3.2 × 10 ⁻¹⁸ C	c) 1.6×10^{-18} C	d) 4.8×10^{-18} C	
476. Positive rays consists of				
a) Electrons		b) Neutrons		
c) Positive ions		d) Electro magnetic wave	es	
477. The photons in a radiow	ave of wavelength 3×10^4 G	cm have energy		
a) 6.62 × 10 ⁻¹⁰ J	b) 19.86 × 10^{-24} J	c) 6.62×10^{-28} J	d) 2.2×10^{-35} J	
478. In the experiment for the	e determination of $\frac{e}{m}$ of elec	trons by the Thomson metl	nod, electric and magnetic	
fields are				
a) Parallel and both are	perpendicular to the motior	n of the electron		
b) Both mutually perper	dicular and parallel to the n	notion of electron		
c) Both mutually perper	dicular and also perpendicu	ular to the motion of electro	on	
d) Both mutually perper	dicular and have no relation	n with motion of the electro	on	
479. The largest distance bet	ween the interatomic places	s of a crystal is $10^7 cm$. The	upper limit for the	
wavelength of X-rays wh	nich can be usefully studied	with this crystal is		
a) 1 Å	b) 2 Å	c) 10 Å	d) 20 Å	
480. What is de-Broglie wave	length of electron having er	nergy 10 ke V?		
a) 0.12Å	b) 1.2Å	c) 12.2Å	d) None of these	
481. The surface of a metal is	illuminated with the light o	f 400 nm. The kinetic energ	gy of the ejected	
photoelectrons was four	nd to be 1.68 eV. The work f	unction of the metal is (<i>hc</i>	$= 1240 \ eV - nm$	
a) 3.09 eV	b) 1.42 eV	c) 151 eV	d) 1.68 eV	
482. The incident photon inv	olved in the photoelectric ef	fect experiment	2	
1	1			

a) Completely disappears

b) Comes out with an increased frequency

c) Comes out with a decreased frequency

d) Comes out without change in frequency 483. The variation of wavelength λ of the K_{α} line with atomic number Z of the target is shown by the following curve of

b) B c) C d) None of these a) A 484. The kinetic energy of an electron, which is accelerated in the potential difference of 100 V, is b) 1.6×10^{-14} J c) 1.6×10^{-10} J a) 1.6×10^{-17} J d) 1.6×10^{-8} [485. In a parabola spectrograph, the velocities of four positive ions P, Q, R and S are v_1 , v_2 , v_3 and v_4

respectively. Then

- a) $v_1 > v_2 > v_3 > v_4$ b) $v_1 < v_2 < v_3 < v_4$ c) $v_1 = v_2 = v_3 = v_4$ d) $v_1 < < v_2 > v_3 < v_4$ 486. Cathode rays of velocity 10⁶ ms⁻¹ describe an approximate circular path of radius 1 m in an electric field of 500 V cm⁻¹. If the velocity of cathode rays is doubled, the value of electric field needed so that the rays describe the same circular path is
- b) 1500 V cm⁻¹ a) 1000 V cm⁻¹ c) 2000 V cm⁻¹ d) 500 V cm⁻¹ 487. A uniform electric field and a uniform magnetic field are acting along the same direction in a certain

region. If an electron is projected along the direction of the fields with a certain velocity, then

- a) Its velocity will decrease
- b) Its velocity will increase
- c) It will turn towards right of direction of motion
- d) It will turns towards left of direction of motion
- 488. The intensity of X-rays from a coolidge tube is plotted against wavelength λ as shown in figure. The minimum wavelength found is λ_c and the wavelength of K_{α} like is λ_K . As the accelerating voltage is increased

a) $\lambda_K - \lambda_c$ increases b) $\lambda_K - \lambda_c$ decreases c) λ_K increases d) λ_K decreases 489. *X*-rays are produced by accelerating electrons by voltage *V* and let they strike a metal of atomic number *Z*. The highest frequency of X-rays produced is proportional to

c) (Z - 1)

a) V b) Z

c) Proportional to the work function of the metal

d) $(Z - 1)^2$

490. In photoelectric effect, the number of electrons ejected per second is

- a) Proportional to the wavelength of light
- b) Proportional to the intensity of light
- d) Proportional to the frequency of light
- 491. Which is the incorrect statement of the following
 - a) Photon is a particle with zero rest mass
 - b) Photon is a particle with zero momentum
 - c) Photons travel with velocity of light in vacuum
 - d) Photon even feel the pull of gravity

492. The maximum kinetic energy of emitted electrons i	n a photoelectric effect doe	es not depend upon
a) Wavelength b) Frequency	c) Intensity	d) Work function
493. Light of wavelength 4000 Å falls on a photosensitiv	e metal and a negative 2V	potential stops the emitted
electrons. The work function of the material (in <i>eV</i>)) is approximately	
$(h = 6.6 \times 10^{-34} Js, e = 1.6 \times 10^{-19} C, c = 3 \times 10^{8} n$	ns^{-1})	
a) 1.1 b) 2.0	c) 2.2	d) 3.1
494. In X-ray spectrum wavelength λ of line K_{α} depends	on atomic number Z as	
$(7, 1)^2$	1	1
a) $\lambda \propto 2^{-1}$ b) $\lambda \propto (2-1)^{-1}$	$CJ \lambda \propto \frac{1}{(Z-1)}$	$(J) \land \propto \frac{1}{(Z-1)^2}$
495. The linear momentum of an electron, initially at res a) 9.1×10^{-24} b) 6.5×10^{-24}	st, accelerated through a pc c) 5.4×10^{-24}	otential difference of 100 V is d) 1.6×10^{-24}
496. Electron of mass <i>m</i> and charge <i>e</i> in external field <i>E</i>	experiences acceleration	
a) $\frac{e}{mE}$, in the opposite direction to the field	b) $\frac{eE}{m}$, in the direction of	the field
c) $\frac{em}{E}$, in the direction of the field	d) $\frac{eE}{m}$, in the opposite direction	ection of the field
497. If the energy of photons corresponding to the wave	length of 6000Å is 3.2×10^{10}) ^{–19} J, the photon energy for
a wavelength of 4000Å will be	0	
a) 1.11×10^{-19} J b) 2.22×10^{-19} J	c) 4.40×10^{-19} [d) 4.80×10^{-19} J
498. A source S_1 is producing 10^{15} photons per second of	of wavelength 5000Å. Anot	her source S_2 is producing
1.02×10^{15} photons per second of wavelength 510	$0^{\text{Å}}$ Then (nower of S_{a})/(n	ower of S_{2} is equal to
a) 0.98 b) 1.00	c) 1.02	d) 1.04
499 Threshold wavelength for photoelectric emission fi	com a metal surface is 520	0Å Photoelectrons will
emitted when this surface is illuminated with mon	chromatic radiation from	
a) 1 W IB Jamp b) 50 W IIV Jamp	c) 50 W IR Jamp	d) 10 W IR Jamp
500 The number of photons of wavelength 540 nm emi	tted ner second by an elect	ric hulb of nower 100 W is
(taking $h = 6 \times 10^{-34} L_{c}$)	tteu per second by an elect	The build of power 100 W is
$(taking n = 0 \times 10 j-s)$	c) 2×10^{20}	d) 2×10^{18}
501 When groon light is incident on the surface of meta	l it amits photo alactrons l	$u_{1} = 0$
with vellow colour light Which one of the colours of	an produce omission of ph	oto electrons
a) Orange b) Red	c) Indigo	d) None of the above
502 When a metal surface is illuminated by light of way	elengths 400 nm and 250 a	m the maximum velocities
of the photoelectrons ejected are <i>y</i> and 2 <i>y</i> respecti	vely. The work function of	the metal is $(h - \text{Plank's})$
constant $c = velocity of light in air)$	very. The work function of	the filetal is $(n - flank s)$
$2) 2 hc \times 10^{6} I$	c) $hc \times 10^{6}I$	d) $0.5 hc \times 10^{6} I$
503 A photo cell is receiving light from a source placed	$\int \frac{1}{10} \sqrt{10} \int \frac{1}{10} \sqrt{10} \int \frac{1}{10} \sqrt{10} \int \frac{1}{10} \sqrt{10} \frac{1}{10} \sqrt{10} \int \frac{1}{10} \sqrt{10} \frac{1}{10} \sqrt{10} \frac{1}{10} \sqrt{10} \frac{1}{10} \sqrt{10} \frac{1}{10} \sqrt{10} \frac{1}{10} \sqrt{10} \sqrt{10} \frac{1}{10} \sqrt{10} $	$u_j 0.5 \pi c \times 10^{-3}$
a distance of $2m$ then the electron	at a distance of 1 m. If the s	same source is to be placed at
a distance of $2 m$, then the ejected electron	alonargy	
a) Moves with one fourth of momentum as that of the	di ellergy	
c) Will be half in number		
d) Will be one fourth in number		
504 In Thomson's method of determining a/m of electr	026	
304. In Thomson's method of determining e/m of electric	ons heam	
a) Electric and magnetic fields are parallel to each	other and perpendicular to	electrons beam
c) Magnetic field is parallel to the electrons beam	filler allu perpenulcular to	elections beam
d) Electric field is parallel to the electrons beam		
505 If in a Thomson's mass spectrograph the ratio of th	e electric fields and magne	tic fields in order to obtain
coincident narabola of singly ionised and doubly io	nised nositive ions are 1 - 2	and 3.2 respectively then
the ratio of masses of narticles will be		. and 5 . 2 respectively, thell
a) $3 \cdot 1$ b) $2 \cdot 1$	c) 9·4	d) 9 · 2
506 In a photocell hichromatic light of wavelength 247	5° and 6000 Å are incident	t on cathode whose work
222. In a photocen bien officie nght of wavelength 247.		

	function is 4.8 <i>eV</i> . If a unit	iform magnetic field of $3 \times$	10^{-5} tesla exists parallel to	the plate, the radius of the
	path described by the ph	otoelectron will be (mass o	$f electron = 9 \times 10^{-51} kg$	N 05
	a) 1 <i>cm</i>	b) 5 <i>cm</i>	c) 10 cm	d) 25 cm
507	necessary condition for t	function of an incident pho he emission of photo electr	ton are v and ϕ_0 . If v_0 is the on is	e threshold frequency then
	a) $v < v_0$	b) $v = \frac{v_0}{2}$	c) $v \ge v_0$	d) None of these
508	. Which of the following is	not the property of a catho	de ray	
	a) It casts shadow		b) It produces heating eff	ect
	c) It produces flurosence	<u>;</u>	d) It does not deflect in el	ectric field
509	Light of frequency $4v_0$ is	incident on the metal of the	e threshold frequency v_0 . T	he maximum kinetic energy
	of the emitted photoelect	LIONS IS	3	1
	a) 3 <i>hv</i> 0	b) 2 <i>hv</i> ₀	c) $\frac{3}{2}hv_0$	d) $\frac{1}{2}hv_0$
510	. Electrons used in an electrons used in an electron to 100 <i>kV</i> then the de-Br	tron microscope are accele oglie wavelength associate	rated by a voltage of 25 <i>kV</i> . d with the electrons would	If the voltage is increased
	a) Increase by 4 times	b) Increase by 2 times	c) Decrease by 2 times	d) Decrease by 4 times
511	. For a certain metal $v = 2$	v_0 and the electrons come	out with a maximum veloc	ity of 4×10^6 ms ⁻¹ . If the
	value of $v = 5 v_0$, then m	aximum velocity of photoe	lectrons will be	
	a) $2 \times 10^7 \text{ ms}^{-1}$	b) $8 \times 10^{6} \text{ ms}^{-1}$	c) $2 \times 10^6 \text{ ms}^{-1}$	d) $8 \times 10^5 \text{ ms}^{-1}$
512	. The work function of a m	etal is 1eV. Light of wavele	ngth 3000 Å is incident on t	this metal surface. The
	velocity of emitted photo	electrons will be		
	a) 10 ms ⁻¹	b) 10 ³ ms ⁻¹	c) 10^4 ms^{-1}	d) 10 ⁶ ms ⁻¹
513	. When monochromatic ra	diation of intensity I falls o	n a metal surface, the numb	per of photoelectron and
	their maximum kinetic en	nergy are N and T respectiv	vely. If the intensity of radia	tion is 2 <i>I</i> , the number of
	emitted electrons and the	eir maximum kinetic energ	y are respectively	
	a) <i>N</i> and 2 <i>T</i>	b) 2 <i>N</i> and <i>T</i>	c) 2 <i>N</i> and 2 <i>T</i>	d) N and T
514	. G. P. Thomson experimer	ntally confirmed the exister	ice of matter waves by the p	ohenomenon
	a) Diffraction	b) Refraction	c) Polarisation	d) Scattering
515	. Given that a photon of lig	ht of wavelength 10,000 Å	has an energy equal to 1.23	eV. When light of
	wavelength 5000 Å and i	ntensity I_0 falls on a photoe	electric cell, the surface curi	rent is 0.40×10^{-6} A and
	the stopping potential is	1.36 V, then the work funct	ion is	
	a) 0.43 eV	b) 0.55 eV	c) 1.10 eV	d) 1.53 eV
516	. Maximum velocity of the	photoelectrons emitted by	a metal surface is	
	1.2×10^6 ms ⁻¹ . Assumir	ng the specific charge of the	electron to be	
	$1.8 \times 10^{11} \text{ C kg}^{-1}$, the val	lue of the stopping potentia	l in volt will be	
	a) 2	b) 3	c) 4	d) 6
517	. Characteristic X-rays are	produced due to	,	,
	a) Transfer of momentur	n in collision of electrons w	ith target atoms	
	b) Transition of electrons	s from higher to lower elect	ronic orbits in an atom	
	c) Heating of the target	0		
	d) Transfer of energy in c	collision of electrons with a	toms in the target	
518	. Energy required to remo	ve an electron from an alur	ninium surface is 4.2 eV. If I	ight of wavelength 2000 Å
	falls on the surface, the v	elocity of fastest electrons (ejected from the surface is	-888
	a) $2.5 \times 10^{18} \text{ms}^{-1}$	b) $2.5 \times 10^{13} \text{ms}^{-1}$	c) $6.7 \times 10^{18} \text{ms}^{-1}$	d) None of these
519	. In cathode ray oscillogra	ph. the focusing of beam on	the screen is achieved by	.,
017	a) Convex lenses	b) Magnetic field	c) Electric potential	d) All of these
520	. Compton effect shows th	at	., potentia	. ,
510	a) X-rays are waves		b) X-rays have high energ	V
	c) X-rays can nenetrate n	natter	d) Photons have moment	um
521	. In an experiment of phot	oelectric effect the stonning	potential was measured to	r_{1} be V_{1} and V_{2} volts with
	· ··· ··· ··· ··· ···· ···· ··· ··· ··			

incident	light of waveleng	gth λ and $\lambda/2$ respectively.	The relation between V_1 an	d V_2 may be		
a) <i>V</i> ₂ < 1	/ 1	b) $V_1 < V_2 < 2V_1$	c) $V_2 = 2V_1$	d) $V_2 > 2V_1$		
522. If an ele	tron and a photo	on propagate in the form of	waves having the same wa	velength, it implies that		
they hav	e the same					
a) Energ	У	b) Momentum	c) Velocity	d) Angular momentum		
523. The wor	x function of a me	etal is 4.2 eV, its threshold	wavelength will be			
a) 4000	Å	b) 3500 Å	c) 2955 Å	d) 2500 Å		
524. From th	following, what	charges can be present on	oil drops in Millikan's expe	eriment		
(Here e	s the electronic c	harge)				
a) $\frac{\text{Zero,}}{\alpha - pa}$	equal to the mag rticle	nitude of charge on	b) 2 <i>e</i> , 1.6 × 10^{-18} <i>C</i>			
c) 1.6 ×	10 ⁻¹⁹ C, 2.5e		d) 1.5 <i>e, e</i>			
525. The pho	oelectric thresh	old wavelength for a metal	surface is 6600Å. The work	function for this metal is		
a) 0.87 e	V	b) 1.87 eV	c) 18.7 eV	d) 0.18 eV		
526. In <i>X</i> -rav	experiment K _a , F	Ce denotes	-)	.,		
a) Chara	cteristic	p · · · · · · ·	h) Continuous wavelengt	h		
c) $\alpha \beta - e$	missions respect	ivelv	d) None of these			
527 One elec	tron and one pro	ton is accelerated by equal	notential Ratio in their de	-Broglie wavelength is		
a) 1	i on and one pro	m				
<i>a</i>) 1		b) $\frac{m_e}{m_e}$	c) $\left \frac{m_p}{m_p}\right $	d) $\frac{m_e}{m_e}$		
		m_p	$\sqrt{m_e}$	$\sqrt{m_p}$		
528. An elect electron	ic field of intensi A magnetic field	ty 6×10^4 Vm ⁻¹ is applied of induction 8×10^{-2} Wm	l perpendicular to the direc 1 ⁻² is applied perpendicular	tion of motion of the r to both the electric field		
	10^{5} ms^{-1}	b) 7 E $\times 10^{-5}$ ms ⁻¹	(c) $49 \times 10^{-2} \text{ ms}^{-1}$	d) It is nover possible		
$a_{\rm J}$ 7.5 X	10 IIIS	0 J 7.3 × 10 IIIS		uj it is lievel possible		
529. If all electric	ti on oscinates at	b) Mirowayos	(es) Infrarad rays	d) None of these		
$a_{J} = a_{J}$, roglio wavelengt	b) Milowaves	cj minareu rays	uj none or these		
330. The de-	nortional to mas		h) Is proportional to imp	ileo		
c) Inver	portional to mass	to impulse	d) Does not depend on im	unden		
521 Figure r	or proportional	of kinetic energy (K) of n	botoelectrons (in aV) and f	requercy (12) for a metal		
used as	presents a grapi	loctric experiment. The we	ork function of metal is	requeitly (<i>v</i>) for a metal		
$3 \uparrow^{K}$	attione in photoe	electric experiment. The wo	or k function of metal is			
2 - 1 -	/					
0	\longrightarrow_{V}					
-1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2						
-3 -						
a) 1 <i>eV</i>		b) 1.5 <i>eV</i>	c) 2 <i>eV</i>	d) 3 <i>eV</i>		
532. A photo-	cell employs pho	toelectric effect to convert				
a) Chang	e in the intensity	of illumination into a char	nge in the work function of	the photo cathode		
b) Chang	e in the frequenc	cy of light into a change in t	he electric current			
c) Chang	e in the frequenc	cy of light into a change in e	electric voltage			
d) Chang	e in the intensity	of illumination into a char	nge in photoelectric current	t		
533. The X-ra	y wavelength of	L_{α} line of platinum ($Z = 78$	3) is 1.30Å. The X-ray wave	elength of L_{α} line of		
Molybde	num ($Z = 42$) is					
a) 5.41 Å		b) 4.20 Å	c) 2.70 Å	d) 1.35 Å		
534. The wor	x functions of me	tals A and B are in the rati	o 1:2. If light of frequencies	f and 2f are incident on		
the surfa	ces of A and B re	espectively, the ratio of the	maximum kinetic energies	of photoelectrons emitted		
is (f is g	reater than thres	hold frequency of A, 2f is a	greater than threshold of <i>B</i> `)		
a) 1 :1		b) 1 :2	c) 1:3	d) 1 :4		

549. In photoelectric effect, the electrons are ejected from metals if the incident light has a certain minimum

a) Wavelength b) Frequency c) Amplitude d) Angle of incidence 550. In an electron gun the control grid is given a negative potential relative to cathode in order to a) Decelerate electrons b) Repel electrons and thus to control the number of electrons passing through it c) To select electrons of same velocity and to converge them along the axis d) To decrease the kinetic energy of electrons 551. Electron with energy 80 keV are incident on the tungsten target of a X-rays tube. K shell electrons of tungsten have -72.5 keV energy. X-rays emitted by the tube contain only a) A continuous X-rays spectrum (Bremsstrahlung) with a minimum wavelength of ~ 0.155 Å b) A continuous X-ray spectrum (Bremsstrahlung) with all wavelengths c) The characteristic *X*-rays spectrum of tungsten d) A continuous X-rays spectrum (Bremsstrahlung) with a minimum wavelength of ~ 0.155 Å and the characteristic X-rays spectrum of tungsten 552. What is the de-Broglie wavelength (in Å) of the α -particle accelerated through a potential difference *V*? b) $\frac{12.27}{\sqrt{V}}$ a) $\frac{0.287}{\sqrt{V}}$ c) $\frac{0.101}{\sqrt{V}}$ d) $\frac{0.22}{\sqrt{V}}$ 553. When subjected to a transverse electric field, cathode rays move a) Down the potential gradient b) Up the potential gradient c) Along a hyperbolic path d) Along a circular path 554. The wavelength of X-rays is of the order of c) Angstrom $(10^{-10}m)$ a) *Centimetre* b) *Micron* (10⁶*m*) d) Metre 555. If the kinetic energy of a free electron doubles, its de-Broglie wavelength changes by the factor c) $\frac{1}{\sqrt{2}}$ a) $\frac{1}{2}$ b) 2 d) $\sqrt{2}$ 556. The graph between intensity of light falling on a metallic plate (*I*) with the current (*i*) generated is b) a) i **C**) *i* d) i 557. The kinetic energy of electron and proton is 10^{-32} *J*. Then the relation between their de-Broglie wavelength is b) $\lambda_p > \lambda_e$ a) $\lambda_p < \lambda_e$ c) $\lambda_p = \lambda_e$ d) $\lambda_p = 2\lambda_e$ 558. In Thomson's mass spectrographs, when an electric field of 2×10^4 Vm⁻¹ is applied then the deflection produced on the screen is 20 mm. If the length of the plates is 5 cm and the distance of the screen from plates is 21cm and the velocity of positive ions is 10⁶ms⁻¹, then their specific charge will be d) $9.52 \times 10^7 \text{ Ckg}^{-1}$ a) 10^7 Ckg^{-1} b) $2.59 \times 10^7 \text{ Ckg}^{-1}$ c) $5.9 \times 10^7 \text{ Ckg}^{-1}$ 559. The work function of a substance is 4.0 eV. The longest wavelength of light that can cause photoelectron emission from this substance is approximately a) 540 nm b) 400 nm c) 310 nm d) 220 nm 560. A beam of electrons of velocity 3×10^7 ms⁻¹ is deflected 1.5 mm is passing 10 cm through an electric field of 1800 Vm^{-1} perpendicular to their path. The value of e/m for electron is a) $1.78 \times 10^{11} \text{ Ckg}^{-1}$ d) 3.5×10^{11} Ckg⁻¹ b) 2×10^{11} Ckg⁻¹ c) $1.5 \times 10^{11} \, \text{Ckg}^{-1}$ 561. A photon and an electron have equal energy E. $\lambda_{photon}/\lambda_{electron}$ is proportional to a) \sqrt{E} b) $1/\sqrt{E}$ c) 1/E d) Does not depend upon E 562. When wavelength of incident photon is decreased then a) Velocity of emitted photoelectron decreases b) Velocity of emitted photoelectron increases c) Velocity of photoelectron do not change

d) Photo electric current increases							
563. Vidicon works on the principle of							
a) Electrical conductivity	b) Photoconductivity						
c) Thermal conductivity	d) SONAR						
564. The photoelectric threshold wavelength for silver is	λ_0 . The energy of the elect	ron ejected from the surface					
of silver by an incident wavelength λ ($\lambda < \lambda_0$)will be	2						
a) $hc(\frac{\lambda_0 - \lambda}{\lambda \lambda_0})$ b) $\frac{h}{c}(\frac{\lambda_0 - \lambda}{\lambda \lambda_0})$	c) $\frac{hc}{\lambda_0 - \lambda}$	d) $hc(\lambda_0 - \lambda)$					
565. X-rays and γ -rays of the same energies may be distin	iguished by						
a) Their velocity	b) Their ionizing power						
c) Their intensity	d) Method of production						
566. In an X-ray tube electrons bombarding the target pro-	oduce X-rays of minimum	wavelength 1 Å. What must					
be the energy of bombarding electrons							
a) 13375 <i>eV</i> b) 12375 <i>eV</i>	c) 14375 <i>eV</i>	d) 15375 <i>eV</i>					
567. The continuous <i>x</i> -ray spectrum obtained from a Coo	lidge tube is of the form						
a) / ↑	c) / ↑	d) /↑ 、					
$V \longrightarrow V$ V V V V V V V V V	V_{min} V_{max} V	$ \rightarrow \nu $					
568. Ultraviolet radiation of 6.2 eV falls on an aluminium	surface (work function 4.2	2 eV). The kinetic energy of					
the faster electron emitted is approximately							
a) 3.2×10^{-15} J b) 3.2×10^{-17} J	c) 3.2×10^{-19} J	d) 3.2×10^{-21} J					
569. The momentum of a photon in an <i>X</i> -ray beam 10^{-10}	metre wavelength is						
a) $1.5 \times 10^{-23} kg - m/s$ b) $6.6 \times 10^{-24} kg - m/s$	c) $6.6 \times 10^{-44} kg - m/s$	d) $2.2 \times 10^{-52} kg - m/s$					
570. Absorption of X-ray is maximum in which of the follo	owing different sheets						
a) Copper b) Gold	c) Beryllium	d) Lead					
571. X-rays region lies between							
a) Short radiowave and visible region	b) Visible and ultraviolet	region					
c) Gamma rays and ultraviolet region	d) Short radiowave and le	ong radiowave					
572. An X-ray tube produces a continuous spectrum of ra-	diation with its shortest wa	avelength of 45×10^{-2} A.					
The maximum energy of a photon in the radiation in	eV is $(h = 6.62 \times 10^{-34} \text{ Js})$,					
$c = 3 \times 10^8 \mathrm{ms}^{-1}$)							
a) 27500 b) 22500	c) 17500	d) 12500					
573. The photo-electrons emitted from a surface of sodium	m metal are such that						
a) They all are of the same frequency							
b) They have the same kinetic energy							
c) They have the same de Broglie wavelength							
d) They have their speeds varying from zero to a cer	tain maximum						
574. A charged particle is moving in the presence of electronic e	ric field $ec{\mathbf{E}}$ and magnetic fie	ld $\vec{\mathbf{B}}$. The directions of $\vec{\mathbf{E}}$ and					
$\vec{\mathbf{B}}$ are such that the charged particle moves in a straig	ght line and its speed incre	eases. The relations amongst					
$\vec{\mathbf{E}}$, $\vec{\mathbf{B}}$ and velocity $\vec{\mathbf{v}}$ must be such that		_					
a) $\vec{\mathbf{F}} \cdot \vec{\mathbf{B}} = 0 \vec{\mathbf{v}}$ is arbitrary	b) $\vec{\mathbf{F}} = \vec{\mathbf{B}}$ and $\vec{\mathbf{v}}$ are all nara	llel to each other					
c) $\vec{\mathbf{F}} \cdot \vec{\mathbf{y}} = 0$; $\vec{\mathbf{V}}$ is arbitrary	d) $\vec{\mathbf{r}}$ is parallel to $\vec{\mathbf{F}}$ and p	$\vec{\mathbf{P}}$					
575 Energy of electrons can be increased by allowing the	\mathbf{v} is parametric to \mathbf{E} and \mathbf{p}						
a) To fall through electric potential	h) To move in high magn	etic field					
c) To fall from great beights	d) To nass through load h	locks					
576 The time taken by a nhotoelectron to come out after	the nhoton strikes is appre	nvimately					
a) 10^{-4} b) 10^{-10} c	c) 10^{-16} e	d) 10^{-1} s					
577 An oxide coated filament is useful in vacuum tubes h	ecause essentially	uj 10 5					
a) It has high melting point	course essentially						

b) It can withstand high t	temperatures								
c) It has good mechanical strength									
d) It can emit electrons a	t relatively lower temperat	cures							
578. If the threshold waveleng	gth for sodium is 5420 Å, th	en the work function of so	dium is						
a) 4.58 <i>eV</i>	b) 2.28 <i>eV</i>	c) 1.14 <i>eV</i>	d) 0.23 <i>eV</i>						
579. If the work function for a	certain metal is 3.2×10^{-2}	¹⁹ I and it is illuminated wit	h light of frequency						
$v = 8 \times 10^{14}$ Hz, the max	imum kinetic energy of the	photoelectron would be	0 1 9						
a) 2.1×10^{-19} I	b) 3.2×10^{-19} J	c) 5.3×10^{-19}	d) 8.5×10^{-19} J						
580. Which of the following la	w is used in the Millikan's i	method for the determinati	on of charge						
a) Ampere's law		b) Stoke's law							
c) Fleming's left hand ru	le	d) Fleming's right hand r	ule						
581. When photons of energy	<i>hv</i> fall on an aluminium pla	ate (of work function = E_0)), photoelectrons of						
maximum kinetic energy	K are elected. If the freque	ency of the radiation is doul	bled, the maximum kinetic						
energy of the ejected nho	toelectrons will be	they of the rudiation is dou							
a) K	b) $K + hv$	c) $K + E_{o}$	d) 2 <i>K</i>						
582 The energy of a photon of	f green light of wavelength	50000 Å is	u) 2N						
$_{2}$ 3 459 × 10 ⁻¹⁹ I	b) 2.072×10^{-19} I	$A 132 \times 10^{-19}$ I	d) 8453×10^{-19} J						
a) 3.459×10^{-5} j b) 3.973×10^{-5} j c) 4.132×10^{-5} j d) 8453×10^{-5} j									
a) Electric field	b) Magnetic field	c) Both of those	d) None of these						
Eq. When the speed of electric	b) Magnetic field	o of its specific shares	uj none or these						
solution and the speed of electric	ons increase, then the valu	e of its specific charge							
a) Increases									
b) Decreases									
c) Remains unchanged		J							
a) Increases upto some v	elocity and then begins to (decrease							
585. In a mass spectrograph, a	an ion X of mass number 24	f and charge +e and anothe	The metic of the modified the						
and charge + 2e enter in	a perpendicular magnetic	field with the same velocity	7. The ratio of the radii of the						
circular path in the field	will be	200/11							
a) 11/22	b) 11/2	c) 22/11	d) 24/11						
586. The fact that electric cha	rges are integral multiples	of the fundamental electron	hic charge was proved						
experimentally by									
a) Planck	b) J. J. Thomson	c) Einstein	d) Millikan						
587. Which of one is correct									
a) $E^2 = p^2 c^2$	b) $E^2 = p^2 c$	c) $E^2 = pc^2$	d) $E^2 = p^2/c^2$						
588. In above question the en	ergy of the characteristic X	-rays given out is							
a) Less than 40 <i>keV</i>	b) More than 40 <i>keV</i>	c) Equal to 40 <i>keV</i>	d) $\geq 40 \ keV$						
589. The intensity distribution	n of X-rays from two coolid	ge tubes operated on differ	rent voltages V_1 and V_2 and						
using different target ma	terials of atomic numbers 2	Z_1 and Z_2 is shown in the fig	gure. Which one of the						
following inequalities is	true								
1 K									
	$$ λ								
<i>n</i> ₁ <i>n</i> ₂									

a) $V_1 > V_2, Z_1 < Z_2$ b) $V_1 > V_2, Z_1 > Z_2$ c) $V_1 < V_2, Z_1 > Z_2$ d) $V_1 = V_2, Z_1 < Z_2$ 590. Two identical, photocathodes receive light of frequencies f_1 and f_2 . If the velocities of the photoelectrons (of mass *m*) coming out are respectively v_1 and v_2 , then

a)
$$v_1^2 - v_2^2 = \frac{2h}{m} (f_1 - f_2)$$

b) $v_1 + v_2 = \left[\frac{2h}{m} (f_1 + f_2)\right]^{1/2}$

2 $2h$ z	г2 <i>h</i>	1 ^{1/2}
c) $v_1^2 + v_2^2 = \frac{2\pi}{m} (f_1 + f_2)$	d) $v_1 - v_2 = \left \frac{2\pi}{m} (f_1 - f_2) \right $)
591. A light whose frequency is equal to 6×10^{14} Hz is in	cident on a metal whose w	ork function is 2eV.
$[h = 6.63 \times 10^{-34} \text{ /s}, 1eV = 1.6 \times 10^{-19} \text{ /}].$ The max	kimum energy of the electro	ons emitted will be
a) 2.49 eV b) 4.49 eV	c) 0.49 eV	d) 5.49 eV
592. Bragg's equation will have no solution is	,	,
a) $\lambda > 2d$ b) $\lambda < 2d$	c) $\lambda < d$	d) $\lambda = d$
593. The threshold wavelength for a metal having work f	Function W_0 is λ_0 . What is the	e threshold wavelength for
a metal whose work function is $W_{0}/2$		
a) $4\lambda_0$ b) $2\lambda_0$	c) $\lambda_0/2$	d) $\lambda_{a}/4$
594 The momentum of a photon of energy 1 MeV in kg n	1 s^{-1} will be	
a) 0.33×10^6 b) 7×10^{-24}	c) 10^{-22}	d) 5 x 10^{-22}
595 The nature of X-ray's spectrum is	0,10	
a) Continuous b) Line	c) Continuous and line	d) None of above
596 An electron in the hydrogen atom jumps excited sta	to n to the ground state Th	e wavelength so emitted
illuminates a photosensitive material having work f	unction 2.75 <i>eV</i> If the story	ning notential of the
nhuminates a photosensitive material naving work r nhotoelectron is 10 eV then the value of <i>n</i> is	unction 2.75 ev. If the stop	pillg potential of the
photoelectron is 10 eV, then the value of n is	a) 2	d) (
$d_{J}S$ $D_{J}Z$ EQ7 Dependence of E E eV energy falls on the surface of the s	CJ J notal amitting photoalacter	uj 4
operate 4.0 eV. The stopping voltage required for the	netal enfitting photoelectro	
$c_{1} \in V$		d) 4 0 V
$a_{\rm J}$ 5.5 V $D_{\rm J}$ 1.5 V	CJ 9.5 V	(U) 4.0 V
system of the standard of the substance of the	resulting frequency $v_0(v_0 < $	<i>v</i>). The energy of the
emitted photoelectron will be $b = b + b = b$	a) ha(u, u)	d) h /m
a) $n(v - v_0)$ b) n/v	c) $ne(v - v_0)$	$d \int n/v_0$
599. A metal plate gets heated when cathode rays strike	against it due to	L - d
a) Lincorrupt of eathode rays	d) Angular value ity of cat	hode rays
(00) If the momentum of an electron is changed by An th	u) Aliguial velocity of cat	noue rays
600. If the momentum of an electron is changed by Δp , if	ien the de-Broglie waveleng	gin associated with it
Δn Δn Δn	ctron will be	
a) $\frac{\Delta p}{200}$ b) $\frac{\Delta p}{100}$	c) 199 Δ <i>p</i>	d) 400 Δ <i>p</i>
601 The de-Broglie wavelength of a neutron at 27°C is λ	What will be its wavelengt	h at 927°C ?
a) $\lambda/4$ b) $\lambda/3$	c) $\lambda/2$	d) $3 \lambda/2$
602 The threshold frequency for certain metal is 3.3×1	0^{14} Hz If light of frequency	8.2×10^{14} Hz is incident
on the metal, the cut-off voltage of the photoelectric	current will be	
a) $49V$ b) $30V$		d) 1 V
603 According to de-Broglie the de-Broglie wavelength	for electron in an orbit of (radius 5.3 x $10^{-11}m$
hydrogen atom is $10^{-10}m$ The principle quantum n	umber for this electron is	
a) 1 b) 2		d) 4
604. The collector plate in an experiment on photoelectr	cj J ic effect is kent vertically ak	uj 1 vove the emitter plate Light
source is put on and a saturation photo current is re	corded An electric field is	switched on which has a
vertically downward direction	corucu. An ciccuric neru is a	switched on which has a
a) The photo current will increase		
b) The kinetic energy of the electrons will increase		
c) The stopping potential will decrease		
d) The threshold wavelength will increase		
605 Dhoto cell is a device to		
a) Store photons		
a) Store protons b) Moacura light intensity		
b) Medsule light lifelisity		
d) Store electrical energy for variaging store - hatt	rioc	
a) store electrical energy for replacing storage batte	eries	

606. What determines the hardness of the *X*-rays obtained from the Coolige tube

- a) Current in the filament
- c) Nature of target

- b) Pressure of air in the tube
- d) Potential difference between cathode and target
- 607. The graph between the square root of the frequency of a specific line of characteristic spectrum of *X*-rays and the atomic number of the target will be

608. A light having wavelength 300 nm falls on a metal surface. Work function of metal is 2.54 eV. What is stopping potential?

a) 2.3 V b) 2.59 V c) 1.60 V d) 1.29 V

609. The number of photo-electrons emitted per second from a metal surface increases when

- a) The energy of incident photons increases
- b) The frequency of incident light increases
- c) The wavelength of the incident light increases
- d) The intensity of the incident light increases
- 610. The figure shows a plot of photo current versus anode potential for a photo sensitive for three different radiations. Which one of the following is a correct statement

Retarding potential Anode potential

- a) Curves (*a*) and (*b*) represent incident radiations of different frequencies and different intensities
- b) Curves (*a*) and (*b*) represents incident radiations of same frequency but of different intensities
- c) Curves (b) and (c) represent incident radiations of different frequencies and different intensities
- d) Curves (b) and (c) represent incident radiations of same frequency having same intensity
- 611. The work function of aluminium is 4.2 *eV*. If two photons, each of energy 3.5 *eV* strike an electron of aluminium, then emission of electrons will be
 - a) Possible

c) Data is incomplete

- b) Not possible
- d) Depends upon the density of the surface

612. Stopping potential required to reduce the photoelectric current to zero

- a) Is directly proportional to the wavelength of the incident radiation
- b) Increases uniformly with wavelength of the incident radiation
- c) Is directly proportional to the frequency of the incident radiation
- d) Decreases uniformly with the frequency of the incident radiation
- 613. If 10000 *V* is applied across an *X*-ray tube, what will be the ratio of de-Broglie wavelength of the incident electrons to the shortest wavelength of *X*-ray produced $\left(\frac{e}{m}\right)$ for electron is $1.8 \times 10^{11} ckg^{-1}$

		m	
a) 1	b) 0.1	c) 0.2	d) 0.3
614. The wavelength	of the matter wave is indep	pendent of	

- a) Mass b) Velocity c) Momentum d) Charge
- 615. Monochromatic light of wavelength 3000Å is incident on a surface area 4 cm². If intensity of light is 150mWm^{-2} , then rate at which photones strike the target is
 - a) $3 \times 10^{10} \text{ s}^{-1}$ b) $9 \times 10^{13} \text{ s}^{-1}$ c) $7 \times 10^{15} \text{ s}^{-1}$ d) $6 \times 10^{19} \text{ s}^{-1}$

616. If the momentum of a photon is *p*, then its frequency is Where *m* is the rest mass of the photon

a) $\frac{ph}{c}$ b) $\frac{pc}{h}$ c) $\frac{mh}{c}$ d) $\frac{mc}{h}$

617. Ai	n electron of K_{α} spectral	line of an atom is 59 keV,	then the wavelength of K_{α} l	ine will be
a)) 0.20 Å	b) 0.42 Å	c) 0.31 Å	d) 0.62 Å
618. Ai	n electron and a proton l	nave the same de-Broglie v	vavelength. Then the kineti	c energy of the electron is
a)) Zero		b) Infinity	
c)) Equal to kinetic energy	of the proton	d) Greater than the kinetic	c energy of proton
619. A	photocell stops emission	n if it is maintained at 2V n	egative potential. The energ	gy of most energetic
pł	hotoelectron is			
a)) 2 <i>eV</i>	b) 2 <i>J</i>	c) 2 <i>kJ</i>	d) 2 <i>keV</i>
620. Tl	he ratio of the de-Broglie	e wavelength of an α -partic	cle and a proton of same kir	netic energy is
a)) 1:2	b) 1:1	c) 1:√2	d) 4:1
621. A	potential difference of 4	2,000 <i>volts</i> is used in an X	-ray tube to accelerate elec	trons. The maximum
fr	equency of the X-raditio	ns produced is		
a)) 10 ¹⁹ Hz	b) 10 ¹⁸ Hz	c) 10 ¹⁶ Hz	d) 10 ²⁰ <i>Hz</i>
622. A	$n\alpha$ - particle of energy 5	MeV is scattered through 1	180 ⁰ by a fixed uranium nue	cleus. The distance of the
cl	osest approach is of the	order of		
a)) 1 Å	b) 10 ⁻¹⁰ cm	c) 10 ⁻¹² cm	d) 10 ⁻¹⁵ cm
623. If	the energy of photon is i	increased by a factor of 4, t	hen its momentum	
a)) does not change		b) decreases by a factor of	f 4
c)) increases by a factor of	4	d) decreases by a factor of	f 2
624. X-	-rays of $\lambda = 1$ Å have free	luency		
a)) 3 × 10 ⁸ Hz	b) 3 × 10 ¹⁸ Hz	c) $3 \times 10^{10} Hz$	d) $3 \times 10^{15} Hz$
625. Tl	he sun radiates energy a	t the rate of 3.77 \times 10 ²⁶ J/s	s. The loss of mass it suffers	per seconds is
a)) $41.9 imes 10^{18} g$	b) 41.9 × 10 ⁸ kg	c) $1.29 \times 10^{16} kg$	d) $1.29 \times 10^{10} kg$
626. Fo	or the production of char	cacteristic K_{γ} X-ray, the ele	ectron transition is	
a)	n = 2 to n = 1	b) $n = 3$ to $n = 2$	c) $n = 3$ to $n = 1$	d) $n = 4$ to $n = 1$
			1 6611 1 1 1	1 .1
627. If	a photon has velocity <i>c</i> a	and frequency <i>v</i> , then whic	h of following represents it	s wavelength
627. If	a photon has velocity <i>c</i> a <i>hc</i>	and frequency v , then which $\frac{hv}{v}$	h of following represents it $\frac{hv}{h}$	s wavelength
627. If a)	a photon has velocity c a $\frac{hc}{E}$	and frequency v , then which b) $\frac{hv}{c}$	c) $\frac{hv}{c^2}$	d) <i>hv</i>
627. If a) 628. W	a photon has velocity <i>c</i> a $\frac{hc}{E}$ /hen the photons of ener	and frequency v , then which b) $\frac{hv}{c}$ gy hv fall on a photosensit	c) $\frac{hv}{c^2}$ ive metallic surface (work f	d) hv function hv_0) electrons are
627. If a) 628. W er	a photon has velocity c a $\frac{hc}{E}$ /hen the photons of ener mitted from the metallic	and frequency v , then which b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons com	th of following represents it c) $\frac{hv}{c^2}$ ive metallic surface (work f ing out of the surface have	is wavelength d) hv function hv_0) electrons are some kinetic energy. The
627. If a) 628. W er m	a photon has velocity c a $\frac{hc}{E}$ /hen the photons of ener mitted from the metallic nost energetic ones have	and frequency v , then which b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons com the kinetic energy equal to	(h of following represents it c) $\frac{hv}{c^2}$ ive metallic surface (work fing out of the surface have	d) hv function hv_0) electrons are some kinetic energy. The
627. If a) 628. W er m ν _s	a photon has velocity <i>c</i> a $\frac{hc}{E}$ /hen the photons of ener mitted from the metallic nost energetic ones have	and frequency v , then which b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons com the kinetic energy equal to	th of following represents it c) $\frac{hv}{c^2}$ ive metallic surface (work fing out of the surface have	is wavelength d) hv function hv_0) electrons are some kinetic energy. The
627. If a) 628. W er m ν _s	The photon has velocity <i>c</i> and $\frac{hc}{E}$ when the photons of energetic ones have $\frac{A - B}{A - A}$	and frequency v , then which b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons com the kinetic energy equal to	h of following represents it c) $\frac{hv}{c^2}$ ive metallic surface (work f ing out of the surface have	d) hv function hv_0) electrons are some kinetic energy. The
627. If a) 628. W er m ν _s	a photon has velocity <i>c</i> a $\frac{hc}{E}$ <i>h</i> then the photons of ener mitted from the metallic nost energetic ones have <i>A B</i>	and frequency v , then which b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons com the kinetic energy equal to	th of following represents it c) $\frac{hv}{c^2}$ ive metallic surface (work fing out of the surface have	is wavelength d) hv function hv_0) electrons are some kinetic energy. The
627. If a) 628. W er m ν _s	The photon has velocity c and $\frac{hc}{E}$ when the photons of energy in the metallic most energetic ones have $A = B$	and frequency v , then which b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons com the kinetic energy equal to	th of following represents it c) $\frac{hv}{c^2}$ ive metallic surface (work f ing out of the surface have	s wavelength d) hv Function hv_0) electrons are some kinetic energy. The
627. If a) 628. W er m ν _s	a photon has velocity <i>c</i> a $\frac{hc}{E}$ <i>h</i> when the photons of ener mitted from the metallic most energetic ones have <i>A B</i> <i>V</i> hen the photons of ener mitted from the metallic the photons of energies of the photons of energies of the photons of the p	and frequency v , then which b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons com the kinetic energy equal to b) More	c) Equal	d) hv function hv_0) electrons are some kinetic energy. The d) Nothing can be said
627. If a) 628. W er m ν _s a) 629. Χ	a photon has velocity <i>c</i> a $\frac{hc}{E}$ <i>i</i> when the photons of ener mitted from the metallic nost energetic ones have $\frac{A}{E}$ <i>i</i> where $\frac{A}{E}$ <i>i</i> where $\frac{A}{E}$	b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons com the kinetic energy equal to b) More d by means of an ordinary a	c) Equal grating due to	d) hv function hv_0) electrons are some kinetic energy. The d) Nothing can be said
627. If a) 628. W er m ν _s (29. <i>X</i>) a)	a photon has velocity <i>c</i> a $\frac{hc}{E}$ <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i>hc</i> <i></i>	b) $\frac{hv}{c}$ b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons com the kinetic energy equal to b) More d by means of an ordinary (b) High speed	c) Equal grating due to c) Short wavelength	d) <i>hv</i> function <i>hv</i> ₀) electrons are some kinetic energy. The d) Nothing can be said d) None of these
627. If a) 628. W er m ν _s (29. <i>X</i> a) 630. Fo	a photon has velocity <i>c</i> a $\frac{hc}{E}$ <i>I</i> hen the photons of ener mitted from the metallic toost energetic ones have A = B <i>A</i> = <i>V</i>) Less <i>i</i> -rays cannot be deflected) Large wavelength or characteristic <i>X</i> -ray of	b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons com the kinetic energy equal to b) More d by means of an ordinary s b) High speed f some material	c) Equal grating due to c) Short wavelength	d) <i>hv</i> function <i>hv</i> ₀) electrons are some kinetic energy. The d) Nothing can be said d) None of these
627. If a) 628. W er m ν _s (29. <i>X</i>) 629. <i>X</i> a) 630. Fc a)	a photon has velocity <i>c</i> a $\frac{hc}{E}$ <i>i</i> when the photons of ener mitted from the metallic nost energetic ones have <i>A B</i> <i>i</i> w <i>i</i> Less <i>i</i> -rays cannot be deflected <i>i</i> Large wavelength or characteristic <i>X</i> -ray of <i>i</i> $E(K_{\gamma}) < E(K_{\beta}) < E(K_{\alpha})$	b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons com the kinetic energy equal to b) More d by means of an ordinary f b) High speed f some material	b) $E(K_{\alpha}) < E(L_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha})$	d) <i>hv</i> function <i>hv</i> ₀) electrons are some kinetic energy. The d) Nothing can be said d) None of these
627. If a) 628. W er m v_s 629. X a) 630. Fo a) c)	a photon has velocity <i>c</i> a hc $\frac{hc}{E}$ /hen the photons of ener mitted from the metallic toost energetic ones have A = B //	b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons com the kinetic energy equal to b) More d by means of an ordinary f b) High speed f some material	c) Equal grating due to c) $E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha})$	d) <i>hv</i> function <i>hv</i> ₀) electrons are some kinetic energy. The d) Nothing can be said d) None of these α)
627. If a) 628. W er m ν _s (δ29. X a) 630. Fc a) c) 631. In	a photon has velocity <i>c</i> a $\frac{hc}{E}$ When the photons of ener mitted from the metallic nost energetic ones have A = B A = B	b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons com the kinetic energy equal to b) More d by means of an ordinary f b) High speed f some material α)	c) Equal grating due to c) $E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha})$ b) $E(K_{\alpha}) < \lambda(L_{\alpha}) < \lambda(K_{\alpha})$ c) short wavelength	d) <i>hv</i> Function <i>hv</i> ₀) electrons are some kinetic energy. The d) Nothing can be said d) None of these α)
627. If a) 628. W er m v_s 629. X a) 630. Fo a) c) 631. In a)	a photon has velocity <i>c</i> a hc $\frac{hc}{E}$ /hen the photons of ener mitted from the metallic toost energetic ones have A = B A =	b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons com the kinetic energy equal to b) More d by means of an ordinary f b) High speed f some material x) periment maximum intensity b) 54 ^o and 50 V	c) Equal grating due to c) $E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha})$ b) $E(K_{\alpha}) < \lambda(L_{\alpha}) < \lambda(K_{\alpha})$ c) Short wavelength	 d) hv function hv₀) electrons are some kinetic energy. The d) Nothing can be said d) None of these α) d) 65⁰ and 50 V
627. If a) 628. W er w_s 629. X a) 630. Fc a) c) 631. In a) 632. Tl	a photon has velocity <i>c</i> a hc $\frac{hc}{E}$ /hen the photons of ener mitted from the metallic nost energetic ones have A = B A = B A = B V) Less -rays cannot be deflected) Large wavelength or characteristic <i>X</i> -ray of) $E(K_{\gamma}) < E(K_{\beta}) < E(K_{\alpha})$ $\Delta(K_{\gamma}) < \lambda(K_{\beta}) < \lambda(K_{\alpha})$ in Davisson - Germer expense) 50° and 54 V he specific charge for positive	b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons com the kinetic energy equal to b) More d by means of an ordinary (b) High speed f some material x) periment maximum intensit b) 54 ⁰ and 50 V sitive rays is much less tha	c) Equal grating due to c) $E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha})$ b) $E(K_{\alpha}) < E(L_{\alpha}) < \lambda(K_{\alpha})$ c) Short wavelength	 d) hv function hv₀) electrons are some kinetic energy. The d) Nothing can be said d) None of these α) d) 65⁰ and 50 V s is because
627. If a) 628. W er m v_s 629. X a) 630. Fo a) 630. Fo a) 631. In a) 632. Tl a)	a photon has velocity <i>c</i> a hc $\frac{hc}{E}$ /hen the photons of ener mitted from the metallic toost energetic ones have A = B A =	and frequency <i>v</i> , then which b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons come the kinetic energy equal to b) More d by means of an ordinary for b) High speed f some material x) periment maximum intensity b) 54 ⁰ and 50 V sitive rays is much less that are much larger	c) Equal grating due to c) $E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha})$ b) $E(K_{\alpha}) < \lambda(L_{\alpha}) < \lambda(K_{\alpha})$ c) Short wavelength c) Short wavelength c) Short wavelength c) $E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha})$ c) $L(K_{\alpha}) < \lambda(K_{\alpha}) < \lambda(K_{\alpha})$ c) Short wavelength c) $E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha})$ c) $L(K_{\alpha}) < L(K_{\alpha}) < L(K_{\alpha})$ c) $L(K_{\alpha}) < L(K_{\alpha}) < L(K_{\alpha})$ c) $L(K_{\alpha}) < L(K_{\alpha}) < L(K_{\alpha})$ c) $L(K_{\alpha}) < L(K_{\alpha}) < L(K_{\alpha}) < L(K_{\alpha})$ c) $L(K_{\alpha}) < L(K_{\alpha}) < L(K_{\alpha}) < L(K_{\alpha})$ c) $L(K_{\alpha}) < L(K_{\alpha}) <$	s wavelength d) <i>hv</i> function <i>hv</i> ₀) electrons are some kinetic energy. The d) Nothing can be said d) None of these α)) d) 65 ⁰ and 50 V s is because is less
627. If a) 628. W er w_s 629. X a) 629. X a) 630. Fc a) c) 631. In a) 632. Tl a) c)	a photon has velocity <i>c</i> a hc $\frac{hc}{E}$ /hen the photons of ener mitted from the metallic nost energetic ones have A = B A = B V) Less -rays cannot be deflected) Large wavelength or characteristic <i>X</i> -ray of) $E(K_{\gamma}) < E(K_{\beta}) < E(K_{\alpha})$ $\Delta(K_{\gamma}) < \lambda(K_{\beta}) < \lambda(K_{\alpha})$ in Davisson - Germer expense) 50° and 54 V he specific charge for positive rays) Positive rays are positive	and frequency <i>v</i> , then which b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons come the kinetic energy equal to b) More d by means of an ordinary for b) High speed f some material x) ceriment maximum intensity b) 54 ⁰ and 50 V sitive rays is much less that are much larger vely charged	c) Equal ive metallic surface (work f ing out of the surface have c) Equal grating due to c) Short wavelength b) $E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha})$ d) $\lambda(M_{\alpha}) < \lambda(L_{\alpha}) < \lambda(K_{\alpha})$ y is observed at c) 50 ^o and 50 V n that for cathode rays. This b) Charge on positive ray is d) Experimental method is	s wavelength d) <i>hv</i> Function <i>hv</i> ₀) electrons are some kinetic energy. The d) Nothing can be said d) None of these α) d) 65 ⁰ and 50 V s is because is less s wrong
627. If a) 628. W er m v_s 629. X a) 630. Fc a) 630. Fc a) c) 631. In a) 632. Tl a) c) 633. X-	a photon has velocity <i>c</i> a hc $\frac{hc}{E}$ /hen the photons of ener mitted from the metallic toost energetic ones have A = B A =	and frequency <i>v</i> , then which b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons come the kinetic energy equal to b) More d by means of an ordinary for b) High speed f some material x_{2}) eriment maximum intensity b) 54 ⁰ and 50 V sitive rays is much less that are much larger vely charged V	c) Equal grating due to c) $E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha})$ b) $E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha})$ c) Short wavelength b) $E(K_{\alpha}) < K(L_{\alpha}) < K(K_{\alpha})$ c) Short wavelength c) Short wavelength c) $L(K_{\alpha}) < L(L_{\alpha}) < L(K_{\alpha})$ c) Short wavelength c) $L(K_{\alpha}) < L(L_{\alpha}) < L(K_{\alpha})$ c) Subserved at c) $L(K_{\alpha}) < L(K_{\alpha}) < L(K_{\alpha})$ c) Subserved at c) $L(K_{\alpha}) < L(K_{\alpha}) < L(K_{\alpha})$ c) Subserved at c) Subserv	s wavelength d) <i>hv</i> function <i>hv</i> ₀) electrons are some kinetic energy. The d) Nothing can be said d) None of these α)) d) 65 ⁰ and 50 V s is because is less s wrong
627. If a) 628. W er m v_s 629. X a) 630. Fc a) 631. In a) 632. Tl a) 632. Tl a) 633. X- a)	a photon has velocity <i>c</i> a hc $\frac{hc}{E}$ /hen the photons of ener mitted from the metallic nost energetic ones have A = B ////////////////////////////////////	and frequency <i>v</i> , then which b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons come the kinetic energy equal to b) More d by means of an ordinary for b) High speed f some material x)) eriment maximum intensity b) 54 ⁰ and 50 V sitive rays is much less that are much larger vely charged <i>v</i> b) Roentgen	c) Equal grating due to c) Short wavelength b) $E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha})$ d) $\lambda(M_{\alpha}) < \lambda(L_{\alpha}) < \lambda(K_{\alpha})$ y is observed at c) 50 ⁰ and 50 V n that for cathode rays. This b) Charge on positive ray is d) Experimental method is c) Marie Curie	 a) <i>hv</i> cunction <i>hv</i>₀) electrons are some kinetic energy. The d) Nothing can be said d) None of these α) d) 65⁰ and 50 V s is because is less s wrong d) Von Laue
627. If a) 628. W er m v_s 629. X a) 630. Fc a) 631. In a) 632. Tl a) 632. Tl a) 633. X- a) 633. X- a) 633. X-	a photon has velocity <i>c</i> a $\frac{hc}{E}$ <i>I</i> hen the photons of ener mitted from the metallic toost energetic ones have A = B <i>A</i> = <i>B</i> <i>A</i> = <i>B</i>	and frequency <i>v</i> , then which b) $\frac{hv}{c}$ gy hv fall on a photosensit surface. The electrons come the kinetic energy equal to b) More d by means of an ordinary for b) High speed f some material x) ceriment maximum intensity b) 54 ⁰ and 50 V sitive rays is much less that are much larger vely charged y b) Roentgen h λ associated with an elect	c) Equal grating due to c) $E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha})$ b) $E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha})$ c) Short wavelength b) $E(K_{\alpha}) < K(L_{\alpha}) < K(K_{\alpha})$ c) Short wavelength b) $E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha})$ c) Short wavelength c) Short wavelength c) E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha}) c) Short wavelength c) E(K_{\alpha}) < E(L_{\alpha}) < E(M_{\alpha}) c) Short wavelength c) Short wavelength c) Short wavelength c) Short wavelength c) Short wavelength c) Marie Curie tron having kinetic energy	 a) hv b) hv cunction hv₀) electrons are some kinetic energy. The d) Nothing can be said d) None of these α) d) 65⁰ and 50 V s is because is less s wrong d) Von Laue <i>E</i> is given by the

a) $\frac{h}{\sqrt{2mE}}$	b) $\frac{2h}{mE}$	c) 2 <i>mhE</i>	d) $\frac{2\sqrt{2mE}}{h}$
v = v =			10

635. The de-Broglie wavelength of a ball of mass 120 g moving at a speed of 20 m/s is a) 3.5×10^{-34} m b) 2.8×10^{-34} m c) 1.2×10^{-34} m d) 2.1×10^{-34} m

636. The filament current in the electron gun of a coolidge tube is increased while the potential difference used to accelerate the electrons is decreased. As a result, in the emitted radiation

a) The intensity increases while the minimum wavelength decreases

b) The intensity decreases while the minimum wavelength increases

- c) The intensity as well as the minimum wavelength increases
- d) The intensity as well as the minimum wavelength decreases
- 637. The kinetic energy of an electron gets tripled, then the de-Broglie wavelength associated with it changes by a factor

a)
$$\frac{1}{3}$$
 b) $\sqrt{3}$ c) $\frac{1}{\sqrt{3}}$ d) 3

- 638. When radiation of the wavelength λ is incident on a metallic surface, the stopping potential is 4.8 V. If the same surface is illuminated with radiation of double the wavelength, then the stopping potential becomes 1.6 V. Then the threshold wavelength for the surface is
 - a) 2λ b) 4λ c) 6λ d) 8λ
- 639. According to Einstein's photoelectric equation, the plot of the kinetic energy of the emitted photoelectrons from a metal *V_s* the frequency, of the incident radiation gives a straight line whose slope
 - a) Depends on the nature of the metal used
 - b) Depends on the intensity of the radiation
 - c) Depends both on the intensity of the radiation and the metal used
 - d) Is the same for all metals and independent of the intensity of the radiation
- 640. An electron initially at rest, is accelerated through a potential difference of 200 *volt*, so that it acquires a velocity $8.4 \times 10^6 m/s$. The value of e/m of electron will be

a) $2.76 \times 10^{12} C/kg$ b) $1.76 \times 10^{11} C/kg$ c) $0.76 \times 10^{12} C/kg$ d) None of these 641. The binding energy of the innermost electron in tungsten is 40 *keV*. To produce characteristic *X*-rays using a tungsten target in an *X*-rays tube the potential difference *V* between the cathode and the anti-cathode should be

a)
$$V < 40 \, kV$$
 b) $V \le 40 \, kV$ c) $V > 40 \, kV$ d) $V > / < 40 \, kV$

642. Which of the following figures represents the variation of particle momentum and associated de-Broglie wavelength?

643. The maximum velocity of an electron emitted by light of wavelength λ incident on the surface of a metal of work function ϕ , is

Where h = Planck's constant, m = mass of electron and c = speed of light

a)
$$\left[\frac{2(hc + \lambda\phi)}{m\lambda}\right]^{1/2}$$
 b) $\frac{2(hc - \lambda\phi)}{m}$ c) $\left[\frac{2(hc - \lambda\phi)}{m\lambda}\right]^{1/2}$ d) $\left[\frac{2(h\lambda - \phi)}{m}\right]^{1/2}$

644. When yellow light is incident on a surface, no electrons are emitted while green light can emit. If red light is incident on the surface, then

a) No electrons are emitted

- b) Photons are emitted
- c) Electrons of higher energy are emitted d) Electrons of lower energy are emitted
- 645. An α -particle of mass 6.65 $\times 10^{-27}$ kg travels at right angles to a magnetic field of 0.2 T with a speed of

 6×10^5 ms⁻¹. The acceleration of α -particle will be

- a) $5.77 \times 10^{11} \text{ ms}^{-2}$ b) $7.55 \times 10^{11} \text{ ms}^{-2}$ c) $5.77 \times 10^{12} \text{ ms}^{-2}$ d) $7.55 \times 10^{12} \text{ ms}^{-2}$ 646. When a monochromatic point source of light is at a distance of 0.2 m from a photocell, the cut-off voltage and the saturation current are respectively $V_0 = 0.6V$ and $I_s = 18.0$ mA. If the same source is placed 0.6 m away from the photocell, then
 - a) Stopping potential $V_0 = 0.2$ V and saturation current $I_s = 18.0$ mA
 - b) Stopping potential is $0V_0 = 0.6V$ and saturation current $I_s = 18.0$ mA
 - c) Stopping potential $V_0 = 0.6$ V and saturation current $I_S = 2.0$ mA
 - d) Stopping potential $V_0 = 2.0$ V and saturation current $I_S = 2.0$ mA
- 647. Light of wavelength λ falls on a metal having work function $\frac{hc}{\lambda_0}$. Photoelectric effect will take place only if a) $\lambda \ge \lambda_0$ b) $\lambda \ge 2\lambda_0$ c) $\lambda \le \lambda_0$ d) $\lambda = 4\lambda_0$
- a) λ ≥ λ₀
 b) λ ≥ 2λ₀
 c) λ ≤ λ₀
 d) λ = 4λ₀
 648. An electron of mass *m* and charge *e* initially at rest gets accelerated by a constant electric field *E*. The rate of change of de-Broglie wavelength of this electron at time *t* ignoring relativistic effects is

a)
$$\frac{-h}{eEt^2}$$
 b) $\frac{-eEt}{E}$ c) $\frac{-mh}{eEt^2}$ d) $\frac{-h}{eE}$

649. The figure shows different graphs between stopping potential (V_0) and frequency (v) for photosensitive surface of cesium, potassium, sodium and lithium. The plots are parallel. Correct ranking of the targets according to their work function greatest first will be

- a) (i) > (ii) > (iii) > (iv)b) (i) > (iii) > (ii) > (iv)c) (iv) > (iii) > (ii) < (i)</td>d) (i) = (iii) > (ii) = (iv)
- 650. When radiation is incident on a photoelectron emitter, the stopping potential is found to be 9 V. If e/m for the electron is 1.8×10^{11} Ckg⁻¹, the maximum velocity of ejected electrons is

a) $6 \times 10^5 \text{ms}^{-1}$ b) $8 \times 10^5 \text{ms}^{-1}$ c) 10^6ms^{-1} d) $1.8 \times 10^6 \text{ms}^{-1}$ 651. The linear momentum of photon is *p*. The wavelength of photon is λ , then (*h* is Planck constant)

a)
$$\lambda = hp$$
 b) $\lambda = \frac{h}{p}$ c) $\lambda = \frac{p}{h}$ d) $\lambda = \frac{p^2}{h}$

652. Calculate the energy of a photon with momentum 3.3×10^{-13} kg-ms⁻¹, given Planck's constant to be 6.6×10^{-34} Js

a)
$$7.3 \times 10^4$$
 J b) 9.9×10^{-5} J c) 1.3×10^5 J d) 8.1×10^3 J

653. The de-Broglie wavelength L associated with an elementary particle of linear momentum p is best represented by the graph

- 655. Particle nature and wave nature of electromagnetic waves and electrons can be shown by
 - a) Electron has small mass, deflected by the metal sheet

b)

- b) X-ray is diffracted, reflected by thick metal sheet
- c) Light is reflected and defracted
- d) Photoelectricity and electron microscopy

656. Sharp peak point A represents

c) 1.76 × 10 ¹¹ coulon	ıb/kg	d) $1.76 \times 10^{-11} coulomb/kg$			
667. X-ray are diffracted fr	om a crystal of lattice plane s	pacing 2Å. The maximum w	vavelength that can be		
diffracted is					
a) 1Å	b) 2 Å	c) 2.5Å	d) 4Å		
668. Penetrating power of	X-rays does not depend on				
a) Wavelength		b) Energy			
c) Potential differenc	e	d) Current in the filamen	it		
669. The energy of a photo	on of light of wavelength 450 <i>r</i>	nm is			
a) $4.4 \times 10^{-19} J$	b) $2.5 \times 10^{-19} J$	c) $1.25 \times 10^{-17} J$	d) $2.5 \times 10^{-17} J$		
670. If the kinetic energy of	of the particle is increased by 2	16 times, the percentage ch	ange in the de Broglie		
wavelength of the par	rticle is				
a) 25%	b) 75%	c) 60%	d) 50%		
671. Ultraviolet light of w	avelength 300 nm and inten	sity 1.0 Wm^{-2} falls on the	e surface of a photosensitive		
material. If one pe	rcent of the incident pho	tons produce photoelectr	ons, then the number of		
photoelectrons emitt	ed from an area of 1.0 cm^2 of t	the surface is nearly			
a) $9.61 \times 10^{14} \text{s}^{-1}$	b) $4.12 \times 10^{13} \text{s}^{-1}$	c) $1.51 \times 10^{12} \text{ s}^{-1}$	d) $2.13 \times 10^{11} \text{s}^{-1}$		
672. Cathode rays and can	al rays produced in a certain o	discharge tube are deflected	l in the same direction if		
a) A magnetic field is	applied normally	b) An electric field is applied normally			
c) An electric field is	applied tangentially	d) A magnetic field is applied tangentially			
673. Which one of the follo	owing graph represents the va	riation of maximum kinetic	c energy (E_k) of the emitted		
electrons with freque	ncy <i>v</i> in photoelectric effect c	orrectly?			
$\mathbf{A} E_k$			d) None of these		
a)	ы	C)			
	►►	<u> </u>			
I	<u>'</u>	1			

11.DUAL NATURE OF RADIATION AND MATTER

1) b 2) c 3) d 4) b 189) a 190) c 191) c 192) c 5) a 6) a 7) c 8) a 193) c 194) c 191) c 192) c 194) c 191) c 191) 191 121 c 121 b 191 b 200 d 205 b 206 b 2010 c 2111 a 2121 b 251 b 261 c 2731 d 213 d 244 c 209 a 2100 c 2111 a 2212 c 2233 d 2241 a 2201 c 2130 d 2243 d 2243 d 2230 c 2331 d 2331 d 2331 d 2241 a 2243 d 2243 d 2243 d 2243 d 2243 d 2243 d 223		: ANSWER KEY :														
5) a 6) a 7) c 8) a 193) c 194) c 195) d 196) c 9) b 100 b 111 c 122 b 199) c 190 c 190 c 190 c 201 b 2020 c 211 a 2120 b 203 c 211 a 211 a 211 b 211 c 211 a 2120 c 211 a 2120 c 211 a 2120 c 2131 d 2141 a 2217 c 2231 b 2231 d 2241 a 2231 d 2241 d 2241 d 2241 d 2331 d 2340 <td< th=""><th>1)</th><th>b</th><th>2)</th><th>С</th><th>3)</th><th>d</th><th>4)</th><th>b</th><th>189)</th><th>а</th><th>190)</th><th>С</th><th>191)</th><th>С</th><th>192)</th><th>С</th></td<>	1)	b	2)	С	3)	d	4)	b	189)	а	190)	С	191)	С	192)	С
9) b 10) b 11) c 12) b 197) c 198) c 199) b 2000 c 13) c 14) b 15) a 16) d 2011 b 2030 b 2061 b 2020 b 2030 d 211 a 211 a 211 a 2121 b 2001 c 2111 a 2121 b 2001 c 2111 a 2121 b 2210 c 2111 a 2120 c 2131 b 2101 c 2230 c 2231 d 2240 c 2331 d 2241 a 2331 d 2331 d 2331 d 2341 c 2351 d 2361 c 2333 d 2431 a 2440 d 2451 c 2351 d 2440 d 2451 <td>5)</td> <td>а</td> <td>6)</td> <td>а</td> <td>7)</td> <td>С</td> <td>8)</td> <td>а</td> <td>193)</td> <td>С</td> <td>194)</td> <td>С</td> <td>195)</td> <td>d</td> <td>196)</td> <td>С</td>	5)	а	6)	а	7)	С	8)	а	193)	С	194)	С	195)	d	196)	С
13) c 14) b 15) a 16) d 201) b 202) b 203) c 204) c 17) c 18) b 19) b 200) d 205) b 220) c 204) c 207) a 210) c 2111 a 2121 b 2111 a 2121 b 2111 c 2111 a 2121 b 2111 c 2121 b 2111 a 2121 b 2111 c 2111 a 2121 b 2111 a 2121 b 2121 c 2131 b 2131 b 2121 c 2131 b 2121 a 2221 c 2131 b 2121 a 2221 c 2131 b 2121 a 2221 c 2131 b 2121 a 2231 c 2141 a 2242 a 2231 b 2231 b 2331 d 2331	9)	b	10)	b	, 11)	С	12)	b	197)	С	198)	С	199)	b	200)	С
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13)	С	14)	b	15)	a	16)	d	201)	b	202)	b	203)	С	204)	С
211a221b231d241c200a210c2111a2121b25)b260c277b280c2133d2141b2151c2161c29)b300c311c320b2171d2181b2191b2200c331b341b351b360c2211a2222c2233d2241a371a380a391d440b2251b2260a2277d2280c411a422b433c440d2291c2303c2341b2323d451c460477c481d2291c2303d2344c2357d2360c571c581a591a601a2451c2551b2661b671c681c2491c2501a2551b2661c673b663a2477c2481d2551b2660c673b701c711a726b2651b2661c2673a2680b673b741a751 <td>17)</td> <td>с</td> <td>18)</td> <td>b</td> <td>19)</td> <td>b</td> <td>20)</td> <td>d</td> <td>205)</td> <td>b</td> <td>206)</td> <td>b</td> <td>207)</td> <td>d</td> <td>208)</td> <td>d</td>	17)	с	18)	b	19)	b	20)	d	205)	b	206)	b	207)	d	208)	d
25)b26)c27)b28)c213)d214)b215)c216)c29)b30)c31)c32)b217)d218)b219)b220)c33)b34)b35)b36)c211)a222)c233)d2241a37)a38)a39)d40)b225)b226a2271d2281c41)a42)b43)c440d229)c2301c2311b2322d45)c60a511b52c2371c2381b2391a2400d57)c581a551c566b2411a2422a2433b2440c57)c581a591a640a2451c2550a2511c2521b651b661b671c688c2533d2541c2551b2561c691c700c711a727a2571a2581d2633d2644b771a780b791c800c2737c2740d2757 <td>21)</td> <td>a</td> <td>22)</td> <td>b</td> <td>23)</td> <td>d</td> <td>24)</td> <td>С</td> <td>209)</td> <td>a</td> <td>210)</td> <td>С</td> <td>211)</td> <td>a</td> <td>212)</td> <td>b</td>	21)	a	22)	b	23)	d	24)	С	209)	a	210)	С	211)	a	212)	b
29) b 30) c 31) c 32) b 217) d 216) b 219) b 220) c 33) b 34) b 35) b 36) c 221) a 2223) d 2243) a 37) a 38) a 39) d 40) b 225) b 226) a 227) d 228) c 445) c 460 d 477) c 480 c 233) d 2341, c 2351, d 2361, c 2361, c 2361, c 2481, d 2461, c 2481, d 2461, c 2481, d 2461, c 2481, d 2451, c 2461, a 2471, c 2481, d 661, 667, c 681, c 253, d 254, c 255, b 2661, c 2677, a 2683, 264, d <td>25)</td> <td>b</td> <td>26)</td> <td>С</td> <td>27)</td> <td>b</td> <td>28)</td> <td>С</td> <td>213)</td> <td>d</td> <td>214)</td> <td>b</td> <td>215)</td> <td>С</td> <td>216)</td> <td>С</td>	25)	b	26)	С	27)	b	28)	С	213)	d	214)	b	215)	С	216)	С
33) b 34) b 35) b 36) c 221) a 222) c 223) d 224) a 37) a 38) a 39) d 40) b 225) b 226) a 227) d 228) c 41) a 42) b 43) c 44) d 229) c 230) c 231) b 232) d 45) c 46) d 47) c 440 d 229) c 230) c 233) d 234) c 235) d 236) c 230) a 240) d 235) d 235) d 235) d 236) a 240) d 243) c 248) d 243) c 248) d 244) c 246) c 255) b 256) c 256) a 256) a 263) d 244) b 266)	29)	b	30)	С	31)	С	32)	b	217)	d	218)	b	219)	b	220)	с
37) a 38) a 39) d 40) b 225) b 226) a 227) d 228) c 41) a 42) b 43) c 44) d 229) c 230) c 231) b 232) d 45) c 40) d 50) a 511 b 521 c 233) d 234) c 235) d 244) c 255) b 244) c 255) b 246) b 241, c 255) b 266) b 267, c 256, c 267, a 268, b 267, a 268, b 267, a 268, b 267, a 268, b	33)	b	34)	b	35)	b	36)	С	, 221)	а	222)	С	223)	d	224)	а
41) a 42) b 43) c 44) d 229) c 230) c 231) b 232) d 45) c 46) d 47) c 48) c 233) d 234) c 235) d 236) c 49) c 50) a 51) b 52) c 237) c 238) b 234) c 236) c 236) c 236) c 236) c 237) c 238) b 239) a 240) d 245) c 246) a 247) c 248) d 247) c 248) d 247) c 248) d 247) c 248) d 257) a 258) d 266) b 267) a 268) d 277) a 267) a 268) d 277) d 277) c 277) b 278) d 260) b	37)	а	38)	а	39)	d	40)	b	225)	b	226)	а	227)	d	228)	С
45) c 46) d 47) c 48) c 233) d 234) c 235) d 236) c 49) c 50) a 51) b 52) c 237) c 238) b 239) a 240) d 57) c 58) a 59) a 60) a 245) c 246) a 247) c 258) d 244) c 250) a 251) c 256) c 256) c 256) c 257) a 258) d 256) c 256) c 266) c 267) a 268) b 260) b 266) c 267) a 268) b 260 c 270) d 271) c 272) b 288) b 260) b 270) d 277) c 273) c 274) d 277) c 276) b 280) b	41)	а	42)	b	43)	С	44)	d	229)	С	230)	С	231)	b	232)	d
49) c 50) a 51) b 52) c 237) c 238) b 239) a 240) d 53) d 54) b 55) c 56) b 241) a 242) a 243) b 244) c 57) c 58) a 59) a 600 a 245) c 246) a 241, c 248) d	45)	С	46)	d	47)	с	48)	С	233)	d	234)	С	235)	d	236)	С
53)d54)b55)c56)b241)a242)a243)b244)c57)c58)a59)a60)a245)c246)a247)c248)d61)c62)b63)a64)c249)c250)a251)c252)b65)b66)b67)c68)c253)d253)d256)b260)b73)b74)a75)d76)b261)c262)a263)d264)b77)a78)b79)c80)c265)b2660c267)a268)b81)b82)b83)b84)b269c2700d2711c2725)b85)c86)b877b88c2731c2741d2757c2760)b89)c90)a911a922d2771b2780c2791b2800b99)c901a913)b1001b2851c286)d2871a2881b1011a1102b1031b1041c2971b2800d <td< td=""><td>49)</td><td>С</td><td>50)</td><td>а</td><td>51)</td><td>b</td><td>52)</td><td>с</td><td>237)</td><td>С</td><td>238)</td><td>b</td><td>239)</td><td>а</td><td>240)</td><td>d</td></td<>	49)	С	50)	а	51)	b	52)	с	237)	С	238)	b	239)	а	240)	d
57)c58)a59)a60)a245)c246)a247)c248)d61)c62)b63)a64)c249)c250)a251)c252)b65)b66)b67)c68)c253)d254)c255)b256)c69)c70)c711a72)a256)b266)c263)d264)b73)b74)a75)d76b261)c262a263)d264)b77)a78)b79)c80)c265)b2660c267)a268)b81)b822b83)b84)b269c270)d2711c272b85)c86)b87)b88)c273c2744d275)c2760b89)c90)a911a921d2771b2780c2793b2801b93)c944d959b96a2811b2821c2833a2844d911a1021b1031b1041c2891d2901d2911 <td>53)</td> <td>d</td> <td>54)</td> <td>b</td> <td>55)</td> <td>с</td> <td>56)</td> <td>b</td> <td>, 241)</td> <td>а</td> <td>242)</td> <td>а</td> <td>243)</td> <td>b</td> <td>244)</td> <td>С</td>	53)	d	54)	b	55)	с	56)	b	, 241)	а	242)	а	243)	b	244)	С
61)c62)b63)a64)c249)c250)a251)c252)b65)b66)b67)c68)c253)d254)c255)b256)c69)c70)c711a721a257)a258)d259)b260)b73)b74)a75)d76)b261)c262)a263)d2644)b77)a78)b79)c80)c265)b2660c267)a268)b81)b82)b83)b841b269)c270)d2711c2721b85)c86)b87)b88)c273)c2741d275)c2760b89)c90)a911a92)d2771b2781c2783a2881b901a911a920d2771b2780c2791b2801b910a1003b1044c2893d2900d2911d2922d105)a1060b1077b1080c2933d2941b2955c2960b	57)	С	58)	а	59)	а	60)	а	245)	С	246)	а	247)	С	248)	d
65b 66 b 67 c 68 c 253 d 254 c 255 b 256 c 69 c 70 c 71 a 72 a 257 a 258 d 259 b 260 b 73 b 74 a 75 d 76 b 261 c 262 a 263 d 264 b 77 a 78 b 79 c 80 c 265 b 266 c 267 a 263 d 264 b 81 b 82 b 83 b 84 b 269 c 270 d 271 c 272 b 85 c 86 b 87 b 88 c 273 c 274 d 275 c 276 b 89 c 90 a 91 a 92 d 277 b 278 c 273 a 288 b 93 c 94 d 95 b 96 a 281 b 282 c 283 a 2844 d 97 b 88 b 99 b 100 b 285 c 286 d 287 a 288 b 101 a 111 c 112 c 293 d 294 b 299 d 300 a 113 c 114 b 115	61)	С	62)	b	63)	а	64)	С	249)	С	250)	а	251)	С	252)	b
69) c 70) c 71) a 72) a 257) a 258) d 259) b 260) b 73) b 74) a 75) d 76) b 261) c 262) a 263) d 264) b 77) a 78) b 79) c 80) c 265) b 2660) c 267) a 268) b 81) b 82) b 83) b 84) b 260) c 270) d 271) c 272) b 85) c 86) b 877) b 88 c 273) c 274) d 275) c 276) b 280) b 290) d 277) b 283) a 283) a 283) a 283) a 284) d 292) d 292) d 292) d 292) d 292) d <	65)	b	66)	b	67)	с	68)	С	253)	d	254)	С	255)	b	256)	С
73)b74)a75)d76)b261)c262)a263)d264)b77)a78)b79)c80)c265)b266)c267)a268)b81)b82)b83)b84)b269)c270)d271,c272,b85)c86)b87)b88)c273,c274,d275,c276,b89)c90)a91,a92,d277,b278,c279,b280,b93)c94,d95,b96,a281,b282,c283,a284,d97)b98,b99,b100,b285,c286,d287,a288,b101)a102,b103,b104,c289,d290,d291,d292,d105)a106,b107,b108,c293,d294,b295,c296,b109,d110,a111,c112,c297,b298,b299,d300,a117,b118,a119,c120,d305,a306, <t< td=""><td>69)</td><td>С</td><td>70)</td><td>С</td><td>71)</td><td>а</td><td>72)</td><td>а</td><td>257)</td><td>а</td><td>258)</td><td>d</td><td>259)</td><td>b</td><td>260)</td><td>b</td></t<>	69)	С	70)	С	71)	а	72)	а	257)	а	258)	d	259)	b	260)	b
77) a 78) b 79) c 80) c 265) b 266) c 267) a 268) b 81) b 82) b 83) b 84) b 269) c 270) d 271) c 2721 b 85) c 86) b 877) b 888) c 273) c 274) d 275) c 276) b 89) c 90) a 91) a 92) d 277) b 278) c 279) b 280) b 97) b 98) b 99) b 100) b 285) c 286) d 287) a 288) b 101) a 1111) c 1120 c 297) b 298) b 299) d 300) a 109) d 100 a 1112) c 297) b 298) b	73)	b	74)	а	75)	d	76)	b	261)	С	262)	а	263)	d	264)	b
81) b 82) b 83) b 84) b 269) c 270) d 271) c 272) b 85) c 86) b 87) b 880 c 273) c 274) d 275) c 276) b 89) c 900 a 911 a 920 d 277) b 278) c 279) b 280) b 93) c 94) d 95) b 96) a 281) b 282) c 283) a 284) d 97) b 98) b 99) b 1000 b 285) c 286) d 297) d 292) d 290) d <	77)	а	78)	b	79)	с	80)	С	265)	b	266)	С	267)	а	268)	b
85) c 86) b 87) b 88) c 273) c 274) d 275) c 276) b 89) c 90) a 91) a 92) d 277) b 278) c 279) b 280) b 93) c 94) d 95) b 96) a 281) b 282) c 283) a 284) d 97) b 98) b 99) b 1000 b 285) c 286) d 287) a 288) b 101) a 102) b 103) b 104 c 289) d 290) d 292) d 300) a 3114 292) d 300) a 3114 4 292) d 300) a 3114 310) a 302) a 303) a 304) d 117) b 318) 3111 a 312) <td>81)</td> <td>b</td> <td>82)</td> <td>b</td> <td>83)</td> <td>b</td> <td>84)</td> <td>b</td> <td>269)</td> <td>С</td> <td>270)</td> <td>d</td> <td>271)</td> <td>С</td> <td>272)</td> <td>b</td>	81)	b	82)	b	83)	b	84)	b	269)	С	270)	d	271)	С	272)	b
89) c 90) a 91) a 92) d 277) b 278) c 279) b 280) b 93) c 94) d 95) b 96) a 281) b 282) c 283) a 284) d 97) b 98) b 99) b 100) b 285) c 286) d 287) a 288) b 101) a 102) b 103) b 104 c 289) d 290) d 291) d 292) d 105) a 106) b 107) b 108) c 293) d 294) b 292) d 300) a 310) a 300) a 301) a 304) d 1113) a 112) c 120) c 305) a 306) a 307) a 308) c 1111 a 312) b	85)	С	86)	b	87)	b	88)	С	273)	С	274)	d	275)	С	276)	b
93) c 94) d 95) b 96) a 281) b 282) c 283) a 284) d 97) b 98) b 99) b 100) b 285) c 286) d 287) a 288) b 101) a 102) b 103) b 104) c 289) d 290) d 291) d 292) d 105) a 106) b 107) b 108) c 293) d 294) b 295) c 296) b 109) d 110) a 111) c 112) c 297) b 298) b 299) d 300) a 113) c 114) b 115) a 116) c 301) c 310) b 311) a 302) a 303) a 304) d 121) a 122) d	89)	С	90)	а	91)	а	92)	d	277)	b	278)	С	279)	b	280)	b
97) b 98) b 99) b 100) b 285) c 286) d 287) a 288) b 101) a 102) b 103) b 104) c 289) d 290) d 291) d 292) d 105) a 106) b 107) b 108) c 293) d 294) b 295) c 296) b 109) d 110) a 111) c 112) c 297) b 298) b 299) d 300) a 113) c 114) b 115) a 116) c 301) c 303) a 304) d 117) b 118) a 119) c 120) c 305) a 306) a 307) a 308) c 111 a 312) b 311) a 312) b 311) a	93)	С	94)	d	95)	b	96)	а	281)	b	282)	С	283)	а	284)	d
101) a 102) b 103) b 104) c 289) d 290) d 291) d 292) d 105) a 106) b 107) b 108) c 293) d 294) b 295) c 296) b 109) d 110) a 111) c 112) c 297) b 298) b 299) d 300) a 113) c 114) b 115) a 116) c 301) c 302) a 303) a 304) d 117) b 118) a 119) c 120) c 305) a 306) a 307) a 308) c 121) a 122) d 123) b 124) d 309) c 310) b 311) a 312) b 312) a 316) c 316) c 316) c 316)	97)	b	98)	b	99)	b	100)	b	285)	С	286)	d	287)	а	288)	b
105) a 106) b 107) b 108) c 293) d 294) b 295) c 296) b 109) d 110) a 111) c 112) c 297) b 298) b 299) d 300) a 113) c 114) b 115) a 116) c 301) c 302) a 303) a 304) d 117) b 118) a 119) c 120) c 305) a 306) a 307) a 308) c 121) a 122) d 123) b 124) d 309) c 310) b 311) a 312) b 122) c 123) b 132) b 317) b 318) b 319) d 320) a 133) a 134) d 135) b 320) a 331)	101)	а	102)	b	103)	b	104)	С	289)	d	290)	d	291)	d	292)	d
109) d 110) a 111) c 112) c 297) b 298) b 299) d 300) a 113) c 114) b 115) a 116) c 301) c 302) a 303) a 304) d 117) b 118) a 119) c 120) c 305) a 306) a 307) a 308) c 121) a 122) d 123) b 124) d 309) c 310) b 311) a 312) b 125) c 126) a 127) d 128) a 313) c 314) b 315) c 316) c 129) d 130) c 131) b 132) b 317) b 318) b 319) d 320) a 133) a 134) d 144) d 325)	105)	а	106)	b	107)	b	108)	с	293)	d	294)	b	295)	С	296)	b
113) c 114) b 115) a 116) c 301) c 302) a 303) a 304) d 117) b 118) a 119) c 120) c 305) a 303) a 304) d 117) b 118) a 119) c 120) c 305) a 306) a 307) a 308) c 121) a 122) d 123) b 124) d 309) c 310) b 311) a 312) b 314) b 315) c 316) c 316) c 316) c 316) c 312) b 317) b 318) b 319) d 320) a 323) c 324) a 133) a 134) d 135) b 136) a 321) b 322) c 323) c 324) a 322)	109)	d	110)	а	111)	с	112)	С	297)	b	298)	b	299)	d	300)	а
117) b 118) a 119) c 120) c 305) a 306) a 307) a 308) c 121) a 122) d 123) b 124) d 309) c 310) b 311) a 312) b 125) c 126) a 127) d 128) a 313) c 314) b 315) c 316) c 129) d 130) c 131) b 132) b 317) b 318) b 319) d 320) a 133) a 134) d 135) b 136) a 321) b 322) c 323) c 324) a 137) a 138) b 139) b 140) d 325) c 326) c 327) a 328) c 141) a 142) a 143) d 144)	113)	С	114)	b	115)	а	116)	С	301)	С	302)	а	303)	а	304)	d
121) a 122) d 123) b 124) d 309) c 310) b 311) a 312) b 125) c 126) a 127) d 128) a 313) c 314) b 315) c 316) c 129) d 130) c 131) b 132) b 317) b 318) b 319) d 320) a 133) a 134) d 135) b 136) a 321) b 322) c 323) c 324) a 137) a 138) b 139) b 140) d 325) c 323) c 324) a 137) a 138) b 139) b 140) d 325) c 323) c 324) a 323) c 324) a 331) a 322) a 311) a 322) a	117)	b	118)	а	119)	С	120)	С	305)	а	306)	а	307)	а	308)	С
125) c 126) a 127) d 128) a 313) c 314) b 315) c 316) c 129) d 130) c 131) b 132) b 317) b 318) b 319) d 320) a 133) a 134) d 135) b 136) a 321) b 322) c 323) c 324) a 137) a 138) b 139) b 140) d 325) c 326) c 323) c 324) a 137) a 138) b 139) b 140) d 325) c 326) c 327) a 328) c 141) a 142) a 143) d 144) b 329) d 330) a 331) a 332) a 144) b 157) d 156) d 341	121)	а	122)	d	123)	b	124)	d	309)	С	310)	b	311)	а	312)	b
129) d 130) c 131) b 132) b 317) b 318) b 319) d 320) a 133) a 134) d 135) b 136) a 321) b 322) c 323) c 324) a 137) a 138) b 139) b 140) d 325) c 326) c 324) a 137) a 138) b 139) b 140) d 325) c 326) c 324) a 141) a 142) a 143) d 144) b 329) d 330) a 331) a 332) a 1445) b 146) b 147) d 148) d 333) b 334) b 335) b 336) c 149) a 150) b 151) c 152) a 337) d 338)	125)	С	126)	а	127)	d	128)	а	313)	С	314)	b	315)	С	316)	С
133) a 134) d 135) b 136) a 321) b 322) c 323) c 324) a 137) a 138) b 139) b 140) d 325) c 326) c 327) a 328) c 141) a 142) a 143) d 144) b 329) d 330) a 331) a 332) a 145) b 146) b 147) d 148) d 333) b 334) b 335) b 336) c 149) a 150) b 151) c 152) a 337) d 338) a 339) b 340) c 153) a 154) b 155) d 156) d 341) b 342) b 343) d 344) d 157) a 158) a 159) c 160) b 345) d 346) b 347) a 348) c 161) b 162) a 163) c 164) c 349) c 350) b 351) c 352) d 165) d 166) c 167) c 168a a 353) c 354) b 355) b 356) d 165) d 166) c 167) c 168a a 353) c 354) b 355) b 356) d 169) c 170) b 171) b <td< td=""><td>129)</td><td>d</td><td>130)</td><td>С</td><td>131)</td><td>b</td><td>132)</td><td>b</td><td>317)</td><td>b</td><td>318)</td><td>b</td><td>319)</td><td>d</td><td>320)</td><td>а</td></td<>	129)	d	130)	С	131)	b	132)	b	317)	b	318)	b	319)	d	320)	а
137) a 138) b 139) b 140) d 325) c 326) c 327) a 328) c 141) a 142) a 143) d 144) b 329) d 330) a 331) a 332) a 145) b 146) b 147) d 148) d 333) b 334) b 335) b 336) c 145) b 146) b 147) d 148) d 333) b 334) b 335) b 336) c 149) a 150) b 151) c 152) a 337) d 338) a 339) b 340) c 153) a 154) b 155) d 156) d 341) b 342) b 343) d 344) d 157) a 158) a 156) d 346)	133)	а	134)	d	135)	b	136)	а	321)	b	322)	С	323)	С	324)	а
141) a 142) a 143) d 144) b 329) d 330) a 331) a 332) a 145) b 146) b 147) d 148) d 333) b 334) b 335) b 336) c 145) b 150) b 151) c 152) a 337) d 338) a 339) b 340) c 153) a 154) b 155) d 156) d 341) b 342) b 343) d 344) d 157) a 158) a 159) c 160) b 345) d 346) b 347) a 348) c 161) b 162) a 163) c 164) c 349) c 350) b 351) c 352) d 165) d 166) c 167) c 168)	137)	а	138)	b	139)	b	140)	d	325)	С	326)	С	327)	а	328)	С
145) b 146) b 147) d 148) d 333) b 334) b 335) b 336) c 149) a 150) b 151) c 152) a 337) d 338) a 339) b 340) c 153) a 154) b 155) d 156) d 341) b 342) b 343) d 344) d 157) a 158) a 159) c 160) b 345) d 346) b 347) a 348) c 161) b 162) a 163) c 164) c 349) c 350) b 351) c 352) d 165) d 166) c 167) c 168) a 353) c 354) b 355) b 356) d 165) d 166) c 167) c 168)	141)	а	142)	а	143)	d	144)	b	329)	d	330)	а	331)	а	332)	а
149) a 150) b 151) c 152) a 337) d 338) a 339) b 340) c 153) a 154) b 155) d 156) d 341) b 342) b 343) d 344) d 157) a 158) a 159) c 160) b 345) d 346) b 347) a 348) c 161) b 162) a 163) c 164) c 349) c 350) b 351) c 352) d 165) d 166) c 167) c 168) a 353) c 354) b 355) b 356) d 169) c 170) b 171) b 172) b 357) a 358) c 359) a 360) c 173) c 174) c 175) c 176) c 361) b 362) a 363) a 364) c 177) a 178) b 179) c 180) c 365) b 366) d 367) a 368) a	145)	b	146)	b	147)	d	148)	d	333)	b	334)	b	335)	b	336)	С
153) a 154) b 155) d 156) d 341) b 342) b 343) d 344) d 157) a 158) a 159) c 160) b 345) d 346) b 347) a 348) c 161) b 162) a 163) c 164) c 349) c 350) b 351) c 352) d 165) d 166) c 167) c 168) a 353) c 354) b 355) b 356) d 169) c 170) b 171) b 172) b 357) a 358) c 359) a 360) c 173) c 174) c 175) c 176) c 361) b 362) a 363) a 364) c 177) a 178) b 179) c 180) c 365) b 366) d 367) a 368) a	149)	а	150)	b	151)	С	152)	а	337)	d	338)	а	339)	b	340)	С
157) a 158) a 159) c 160) b 345) d 346) b 347) a 348) c 161) b 162) a 163) c 164) c 349) c 350) b 351) c 352) d 165) d 166) c 167) c 168) a 353) c 354) b 355) b 356) d 169) c 170) b 171) b 172) b 357) a 358) c 359) a 360) c 173) c 174) c 175) c 176) c 361) b 362) a 363) a 364) c 177) a 178) b 179) c 180) c 365) b 366) d 367) a 368) a	153)	а	154)	b	155)	d	156)	d	341)	b	342)	b	343)	d	344)	d
161) b 162) a 163) c 164) c 349) c 350) b 351) c 352) d 165) d 166) c 167) c 168) a 353) c 354) b 355) b 356) d 169) c 170) b 171) b 172) b 357) a 358) c 359) a 360) c 173) c 174) c 175) c 176) c 361) b 362) a 363) a 364) c 177) a 178) b 179) c 180) c 365) b 366) d 367) a 368) a	157)	а	158)	а	159)	С	160)	b	345)	d	346)	b	347)	а	348)	С
165)d166)c167)c168)a353)c354)b355)b356)d169)c170)b171)b172)b357)a358)c359)a360)c173)c174)c175)c176)c361)b362)a363)a364)c177)a178)b179)c180)c365)b366)d367)a368)a	161)	b	162)	а	163)	С	164)	С	349)	С	350)	b	351)	С	352)	d
169) c170) b171) b172) b357) a358) c359) a360) c173) c174) c175) c176) c361) b362) a363) a364) c177) a178) b179) c180) c365) b366) d367) a368) a	165)	d	166)	С	167)	с	168)	а	353)	С	354)	b	355)	b	356)	d
173) c 174) c 175) c 176) c 361) b 362) a 363) a 364) c 177) a 178) b 179) c 180) c 365) b 366) d 367) a 368) a	169)	С	170)	b	171)	b	172)	b	357)	а	358)	С	359)	а	360)	С
177) a 178) b 179) c 180) c 365) b 366) d 367) a 368) a	173)	С	174)	С	175)	С	176)	с	361)	b	362)	а	363)	а	364)	С
	177)	а	178)	b	179)	с	180)	с	365)	b	366)	d	367)	а	368)	a
181) c 182) a 183) c 184) c 369) a 370) c 371) c 372) b	181)	С	182)	а	183)	С	184)	С	369)	а	370)	С	371)	С	372)	b
185) d 186) a 187) a 188) b 373) a 374) a 375) b 376) d	185)	d	186)	а	187)	a	188)	b	373)	а	374)	а	375)	b	376)	d

	_		_	0.50		2022	FRON		FOOL		FOAD		FOOL	
377)	C	378)	C	379)	а	380) a	529)	d	530)	C	531)	C	532)	d
381)	b	382)	b	383)	а	384) a	533)	а	534)	b	535)	d	536)	C
385)	b	386)	b	387)	C	388) b	537)	a	538)	d	539)	a	540)	d
389)	d	390)	b	391)	d	392) a	541)	d	542)	С	543)	d	544)	d
393)	a	394)	С	395)	d	396) a	545)	С	546)	С	547)	b	548)	С
397)	d	398)	а	399)	d	400) a	549)	b	550)	b	551)	d	552)	С
401)	С	402)	а	403)	а	404) b	553)	b	554)	С	555)	С	556)	b
405)	С	406)	d	407)	а	408) d	557)	а	558)	d	559)	С	560)	С
409)	а	410)	а	411)	b	412) b	561)	b	562)	b	563)	b	564)	а
413)	а	414)	b	415)	b	416) c	565)	d	566)	b	567)	а	568)	С
417)	С	418)	d	419)	С	420) d	569)	b	570)	d	571)	С	572)	а
421)	b	422)	b	423)	b	424) c	573)	d	574)	b	575)	а	576)	b
425)	С	426)	d	427)	а	428) c	577)	d	578)	b	579)	а	580)	b
429)	С	430)	С	431)	b	432) b	581)	b	582)	b	583)	а	584)	b
433)	С	434)	b	435)	а	436) c	585)	d	586)	d	587)	а	588)	а
437)	b	438)	С	439)	а	440) d	589)	а	590)	а	591)	С	592)	а
441)	с	442)	b	443)	b	444) a	593)	b	594)	d	595)	С	596)	d
445)	а	446)	а	447)	С	448) c	597)	d	598)	а	599)	а	600)	С
449)	d	450)	b	451)	С	452) b	601)	С	602)	С	603)	С	604)	b
453)	b	454)	а	455)	b	456) c	605)	b	606)	d	607)	b	608)	С
457)	b	458)	b	459)	С	460) b	609)	d	610)	b	611)	b	612)	С
461)	b	462)	а	463)	а	464) d	613)	b	614)	d	615)	b	616)	b
465)	b	466)	b	467)	а	468) a	617)	а	618)	d	619)	а	620)	a
469)	d	470)	d	471)	d	472) b	621)	а	622)	С	623)	С	624)	b
473)	С	474)	b	475)	а	476) c	625)	b	626)	d	627)	а	628)	a
477)	с	478)	С	479)	d	480) a	629)	С	630)	С	631)	b	632)	a
481)	b	482)	а	483)	С	484) a	633)	b	634)	а	635)	b	636)	С
485)	а	486)	С	487)	а	488) a	637)	С	638)	b	639)	d	640)	b
489)	d	490)	b	491)	b	492) c	641)	С	642)	d	643)	С	644)	a
493)	а	494)	d	495)	с	496) a	645)	С	646)	С	647)	С	648)	а
497)	d	498)	b	499)	b	500) c	649)	с	650)	d	651)	b	652)	b
501)	с	502)	а	503)	d	504) b	653)	d	654)	а	655)	d	656)	а
505)	С	506)	b	507)	С	508) d	657)	b	658)	а	659)	b	660)	d
509)	a	510)	C	511)	b	512) d	661)	c	662)	b	663)	a	664)	а
513)	h	514)	h	515)	c	516) c	665)	a	666)	c	667)	d	668)	d
517)	b	518)	d	519)	c	520) d	669)	a	670)	h	671)	c	672)	a
521)	ď	522)	h	523)	c	520) u 524) h	673)	h	5705	2	5715	-	5, _ j	4
525)	h	526)	2	525)	c	528) 2	0,01	u						
5255	U	5205	u	5275	C	520j a								

: HINTS AND SOLUTIONS :

11

1 (b)

(c)

2

Energy $E = hv = h\frac{c}{\lambda} \therefore \frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1} = \frac{5000}{1}$

$$E = W_0 + K_{\max} \Rightarrow \frac{hc}{\lambda_1} = W_0 + E_1 \text{ and } \frac{hc}{\lambda_2}$$
$$= W_0 + E_2$$
$$\Rightarrow hc = W_0\lambda_1 + E_1\lambda_1 \text{ and } hc = W_0\lambda_2 + E_2\lambda_2$$
$$\Rightarrow W_0\lambda_1 + E_1\lambda_1 = W_0\lambda_2 + E_2\lambda_2 \Rightarrow W_0$$
$$= \frac{E_1\lambda_1 - E_2\lambda_2}{(\lambda_2 - \lambda_1)}$$

 $\lambda_{\min} = \frac{hc}{eV}$ $\Rightarrow \lambda \propto \frac{1}{\nu}$ $\lambda_2 > \lambda_1$ (see graph) $\Rightarrow V_1 > V_2$ $\sqrt{v} = a(Z - b)$ Moseley's law $v \propto (Z-1)^2$ $\Rightarrow \lambda \propto \frac{1}{(7-1)^2} \qquad (:: v \propto \frac{1}{2})$ $\lambda_1 > \lambda_2$ (see graph for characteristic lines) \Rightarrow $Z_2 > Z_1$ **(b)**

4

Given, the linear momentum of particle (*p*) $= 2.2 \times 10^4 kg - ms^{-1}$ $h = 6.6 \times 10^{-34}$ JS The de-Broglie wavelength of particle $\lambda = \frac{n}{n}$ $\lambda = \frac{6.6 \times 10^{-34}}{2.2 \times 10^4}$ $\lambda = 3 \times 10^{-38} \text{ m}$ 0r $\lambda = 3 \times 10^{-29} \text{ mm}$ 0r (c) Specific charge $= \frac{q}{m}$; Ratio $= \frac{\left(\frac{q}{m}\right)_{\alpha}}{\left(\frac{q}{m}\right)} = \frac{q_{\alpha}}{q_p} \times \frac{m_p}{m_{\alpha}} = \frac{1}{2}$ (a) $K_{\max} = hv - hv_0 = \frac{hc}{\lambda} - \frac{hc}{\lambda_0}$, *i. e.*, graph between K_{\max} and $\frac{1}{\lambda}$ will be straight line having slope (*hc*) and intercept $\frac{hc}{\lambda_0}$ on -KE axis

9 (b)

7

8

$$K_A = \frac{hc}{\lambda_A} - \phi_0$$
 and $K_B = \frac{hc}{\lambda_B} - \phi_0$

$$\frac{K_A}{K_B} = \frac{\frac{\pi}{2\lambda_B}}{\frac{hc}{\lambda_B}} < \frac{1}{2} \text{ or } K_A < K_B/2$$
(c)
Energy received from the sun
= 2 cal cm⁻²(min)⁻¹
=8.4 | cm⁻² (min)⁻¹

Energy of 1 photon received from the sun

$$E = \frac{hc}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{5500 \times 10^{-10}} = 3.6 \times 10^{-19} \text{ J}$$

 $cm^{-2}(min)^{-1}$

 $n = \frac{8.4}{3.6 \times 10^{-19}} = 2.3 \times$

: Number of photons reaching the earth per cm²per minute will be

 $n = \frac{\text{energy received from sun}}{\text{energy of one photon}}$

10¹⁹

12 (b)

Wave nature of matter of de Broglie was proved when accelerated electrons showed diffraction by metal foil in the same manner as X-ray diffraction

13 (c)

In X-ray spectra, depending on the accelerating voltage and the target element, we may find sharp peaks super imposed on continuous spectrum. These are at different wavelengths for different elements. They form characteristic X-ray spectrum

14 **(b)**

 $E = hv \Rightarrow 100 \times 1.6 \times 10^{-19} = 6.6 \times 10^{-34} \times v$ $\Rightarrow v = 2.42 \times 10^{16} Hz$

16 (d)

Planck's constant,

 $h = E/v = [ML^2T^{-2}/T^{-1}] = [ML^2T^{-1}]$ Angular momentum, $L = I\omega = [ML^2T^{-1}]$

17 (c) $\lambda = \frac{h}{n} \Rightarrow \lambda \propto \frac{1}{n}$

18 **(b)** Momentum of incident light per second $p_1 = \frac{E}{c} = \frac{60}{3 \times 10^8} = 2 \times 10^{-7}$ Momentum of reflected light per second $p_2 = \frac{60}{100} \times \frac{E}{c} = \frac{60}{3 \times 10^8} = 1.2 \times 10^{-7}$

Force on the surface = change in momentum per second

$$= p_2 - (-p_1) = p_2 + p_1 = (2 + 1.2) \times 10^{-7} = 3.2 \times 10^{-7} N$$

20 **(d)**

From the symmetry of figure, the angle $\theta = 45^{\circ}$. The path of moving proton in a normal magnetic field is circular. If *r* is the radius of the circular path, then from the figure,

$$AC = 2 r \cos 45^{\circ} = 2r \times \frac{1}{\sqrt{2}} = \sqrt{2}r \quad ...(i)$$

As $B q V = \frac{mv^2}{r}$ or $r = \frac{mv}{Bq}$
$$AC = \frac{\sqrt{2} mv}{B q} = \frac{\sqrt{2} \times 1.67 \times 10^{-27} \times 10^7}{1 \times 1.6 \times 10^{-19}}$$

= 0.14 m

21 (a)

$$\delta p = \frac{\hbar}{\Delta x} = \frac{\hbar}{\lambda}$$

22 **(b)**

Threshold wavelength for Na, $\lambda_{Na} = \frac{12375}{2} = 6187.5 \text{\AA}$

Also $\lambda_{Cu} = \frac{12375}{4} = 3093.75$ Since $\lambda_{Na} > 4000$ Å; So *Na* is suitable

23 **(d)**

In photocell, at a particular negative potential (stopping potential V_0) of anode, photoelectric current is zero, as the potential difference between cathode and anode increases current through the circuit increases but after some time constant current (saturation current) flows through the circuit even if potential difference still increases

24 **(c)**

Energy of photon

$$E = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{590 \times 10^{-9}} = \frac{6.63 \times 3}{59} \times 10^{-18}$$

Light energy produced per second $=\frac{90}{100} \times 10 =$ 9W

 \therefore Number of photons emitted per sec $-\frac{9 \times 59}{18 - 2.67 \times 10^{19}}$

$$-\frac{10}{6.63 \times 3 \times 10} - \frac{10}{10} - \frac{2.07 \times 10}{10}$$
(b)

$$mvr = \frac{nh}{2\pi}$$
, according to Bohr's theory
 $\Rightarrow \qquad 2\pi r = n\left(\frac{h}{mv}\right) = n\lambda$ for n=2, $\lambda = \pi r$

27 **(b)**

25

$$\Delta p = m\Delta v = \frac{\hbar}{\Delta x}$$

or $\Delta v = \frac{\hbar}{m\Delta x} = \frac{1.034 \times 10^{-34}}{1.67 \times 10^{-27} \times 6 \times 10^{-8}}$

Momentum $p = \frac{E}{c} \Rightarrow E^2 = p^2 c^2$ = $\frac{12375}{4100} = 3.01 \ eV$

Work functions of metal *A* and *B* are less than 3.01*eV*, so *A* and *B* will emit photo electrons

29 **(b)**

Energy of a photon, $E = \frac{hc}{\lambda}$ $\lambda_{infrared} > \lambda_{red} > \lambda_{Blue} > \lambda_{Violet}$ Therefore, violet has the highest energy

30 (c)

Higher the voltage, higher is the *KE*. Higher the work function, smaller is the *KE*

31 **(c)**

$$\frac{1}{2}mv^{2} = eV$$

$$\frac{1}{2} \times 9 \times 10^{-31} \times v^{2} = 1.6 \times 10^{-19} \times 182$$

$$v^{2} = \frac{1.6 \times 10^{-19} \times 182 \times 2}{9.1 \times 10^{-31}}$$

$$v^{2} = 64 \times 10^{2} \text{ m/s}$$

$$v = 8 \times 10^{6} \text{ m/s}$$

$$K = QV = e \times V = eV$$

36 (c) Work function $W_0 = hv_0 = 6.6 \times 10^{-34} \times 1.6 \times 10^{-34}$ 10^{15} $= 1.056 \times 10^{-18} I = 6.6 \ eV$ From $E = W_0 + K_{\text{max}} \Rightarrow K_{\text{max}} = E - W_0 = 1.4 \text{ eV}$ 37 (a) $\lambda = \frac{h}{\sqrt{2mE}} = \frac{6.6 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 5 \times 1.6 \times 10^{-19}}}$ $= 5.469 \times 10^{-10} m = 5.47 \text{\AA}$ 38 (a) $:: m_e < m_p < m_\alpha \Rightarrow \left(\frac{q}{m}\right)_e > \left(\frac{q}{m}\right)_n > \left(\frac{q}{m}\right)_\alpha$ 39 (d) $: V_0 = \left(\frac{h}{e}\right) v - \left(\frac{W_0}{e}\right)$. From the graph $V_2 > V_1$ $\Rightarrow \frac{hv_2}{\rho} - \frac{W_0}{\rho} > \frac{hv_1}{\rho} - \frac{W_0}{\rho} \Rightarrow v_2 > v_1$ $\Rightarrow \lambda_1 > \lambda_2 (as \lambda \propto \frac{1}{n})$ 40 **(b)** KE of fastest electron $= E = \phi_0 = 6.2 - 4.2 = 2.0 \text{ eV}$

$$= 2 \times 1.6 \times 10^{-19} = 3.2 \times 10^{-19} \text{ J}$$

42 **(b)**

With the increase in intensity of light

photoelectric current increases, but kinetic energy of ejected electron, stopping potential and work function remains unchanged

43 (c)

The wavelength of *X*-ray lines is given by Rydberg

Formula
$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

For K_{α} line, $n_1 = 1$ and $n_2 = 2$
 $\therefore \frac{1}{\lambda} = RZ^2 \left(\frac{3}{4}\right) \Rightarrow Z = \left(\frac{4}{3R\lambda}\right)^{1/2}$
 $= \left[\frac{4}{3(1.097 \times 10^7 m^{-1})(0.76 \times 10^{-10}m)}\right]^{1/2}$
 $= 39.99 \approx 40$

44 (d)

 $\Delta \lambda = \lambda_{K_{\alpha}} - \lambda_{\min}$ When *V* is halved λ_{\min} becomes two time but $\lambda_{K_{\alpha}}$ remains the same.

$$\therefore \Delta \lambda' = \lambda_{K_{\alpha}} - 2\lambda_{\min} = 2(\Delta \lambda) - \lambda_{K_{\alpha}}$$
$$\therefore \Delta \lambda' < 2(\Delta \lambda)$$

45 **(c)**

X-rays are electromagnetic waves of wavelength ranging from 0.1 to 100Å

46 (d)

$$qE = mg \qquad \dots (i)$$

$$6\pi\eta \, rv = mg$$

$$\frac{4}{3}\pi r^3 \, \rho g = mg \ \dots (ii)$$

$$\therefore \qquad r = \left(\frac{3mg}{4\pi\rho g}\right)^{1/3} \ \dots (iii)$$

Substituting the value of r in Eq. (ii), we

value of r in Eq. (ii), we get $6\pi\eta v \left(\frac{3mg}{4\pi pg}\right)^{1/3} = mg$

or

$$(6\pi\eta v)^3 \left(\frac{3mg}{4\pi\rho g}\right) = (mg)^3$$

Again substituting mg = qE, we get $(qE)^2 = \left(\frac{3}{4\pi\rho g}\right)(6\pi\eta v)^3$ Or $qE = \left(\frac{3}{4\pi\rho g}\right)^{1/2} (6\pi\eta g)^{3/2}$

47

:.
$$q = \frac{1}{E} \left(\frac{3}{4\pi\rho g}\right)^{\frac{1}{2}} (6\pi\eta v)^{3/2}$$

Substituting the values, we get

$$q = \frac{7}{81\pi \times 10^5} \sqrt{\frac{3}{4\pi \times 900 \times 9.8} \times 216\pi^3} \times \sqrt{(1.8 \times 10^{-5} \times 2 \times 10^{-3})^3} = 8.0 \times 10^{-19} \text{ C}$$
(c)

$$K.E. = 2 E_0 - E_0 = E_0 \text{ (for } 0 \le x \le 1) \Rightarrow \lambda_1$$
$$= \frac{h}{\sqrt{2mE_0}}$$

$$K.E. = 2E_0 (\text{for } x > 1) \Rightarrow \lambda_2 = \frac{h}{\sqrt{4mE_0}} \Rightarrow \frac{\lambda_1}{\lambda_2} = \sqrt{2}$$

48 (c)

Among the given metals, aluminium thermionically emits an electron at a relatively lowest temperature

49 (c)

50

51

Speed obtained by the particle after falling through a potential difference of V volt is

$$v_A = \sqrt{\frac{2Vq}{m}} \dots (i)$$
And $v_B = \sqrt{\frac{2V \times 4q}{m}} \dots (ii)$
Now dividing Eq. (i) by Eq. (ii), we get
$$\frac{v_A}{v_B} = \sqrt{\frac{1}{4} = \frac{1}{2}}$$
So, $v_A: v_B = 1:2$
(a)
$$\frac{u_1}{u_2} = \frac{1}{2}$$
Accelerations of cathode rays in electric field,
 $\vec{a} = \frac{eE}{m}$
It is same for both the cathode rays
As displacement, $s = ut + \frac{1}{2}at^2$
So for a given value of a and $t, s \times u$
So, $\frac{s_1}{s_2} = \frac{u_1}{u_2} = \frac{1}{2}$
(b)
Here, $\lambda_0 = 200$ nm; $\lambda = 100$ nm;
 $hc/e = 1240$ eV nm
maximum KE $= \frac{hc}{\lambda_e} - \frac{hc}{\lambda_0 e}$ (in eV)
 $= \frac{hc}{e} (\frac{1}{\lambda} - \frac{1}{\lambda_0})$
 $= 1240 (\frac{1}{100} - \frac{1}{200})$
 $= 6.2 \text{ eV}$
(c)
According to J. J. Thomson's cathode ray tube

52

ıbe experiment the e/m of electrons is much greater than the e/m of protons.

54 (b)

55

Maximum KE =
$$\frac{hc}{\lambda} - \phi_0$$

= $\frac{6.6 \times 10^{-34} \times 3 \times 10^8}{400 \times 10^{-10}} \times \frac{1}{1.6 \times 10^{-19}} - 2$
= 1.1 eV

(c)

$$\lambda = \frac{h}{\sqrt{2mE}} = \frac{h}{\sqrt{2m}} \cdot \frac{1}{\sqrt{E}}$$
. Taking log of both sides

$$\log \lambda = \log \frac{h}{\sqrt{2m}} + \log \frac{1}{\sqrt{E}}$$

$$\Rightarrow \log \lambda = \log \frac{h}{\sqrt{2m}} - \frac{1}{2} \log E$$

$$\Rightarrow \log \lambda = -\frac{1}{2} \log E + \log \frac{h}{\sqrt{2m}}$$
This is the euation of straight line having slope (-1/2) and positive intercept on log λ axis
56 **(b)**
Cut-off wavelength depends on the applied voltage not on the atomic number of the target.
Characteristic wavelengths depends on the atomic number of target.
57 **(c)**
For k_{α} emission transition L shell to k - shell
For L_{α} emission transition M shell to L - shell
For L_{α} emission transition M shell to L - shell
 $E_M - E_K = (E_M - E_L) + (E_L - E_K)$
 $\Rightarrow hf_2 = hf_3 + hf_1 \Rightarrow f_2 = f_1 + f_3$
58 **(a)**
Number of photons emitted per second
 $n = \frac{p}{hv} = \frac{10 \times 10^3}{6.6 \times 10^{-34} \times 880 \times 10^3} = 1.72 \times 10^{31}$
59 **(a)**
 $p = \frac{h}{\lambda} = \frac{6.6 \times 10^{-34}}{4400 \times 10^{-10}} = 1.5 \times 10^{-27} kg. m/s$
and mass $m = \frac{p}{c} = \frac{1.5 \times 10^{-27}}{3 \times 10^8} = 5 \times 10^{-36} kg$
60 **(a)**
 $\lambda = \frac{h}{p} = \frac{h}{mv}$
61 **(c)**
Slope of $V_0 - v$ curve for all metals be same
 $(\frac{h}{c})$, *i. e.*, curves should be parallel
62 **(b)**
According to de-Broglie hypothesis
 $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mR}} = \frac{h}{\sqrt{2mqV}}$
 $\therefore \qquad \lambda$
 $= \frac{6.6 \times 10^{-34}}{\sqrt{2 \times (1.6 \times 10^{-27})(1.6 \times 10^{-19}) \times 1000}}{= \frac{6.6 \times 10^{-34}}{7.16 \times 10^{-22}}} = 0.9 \times 10^{-12} m$
63 **(a)**

$$i = \frac{Ne}{t} \Rightarrow \frac{N}{t} = \frac{i}{e} = \frac{3.2 \times 10^{-3}}{1.6 \times 10^{-19}} = 2 \times 10^{16}/s$$
 (c)

Speed of the cathode rays is $10^7 m/sec - 3 \times$ $10^{7} m/s$

64

Stopping potential $V_0 = \frac{hc}{e} \left[\frac{1}{\lambda} - \frac{1}{\lambda_0} \right]$. As λ decreases so V_0 increases

66 **(b)**

The momentum of the photon

$$p = \frac{h}{\lambda} = \frac{h}{c}$$

67 (c)

When pressure in a tube is reduced in the range 1 cm and 10^{-3} cm; the mean free path of moving electron in the discharge tube increases. As a result of which the electron gets higher KE while moving towards anode and then cause ionisation of the atoms with which it will collide on its ways causing excitation phenomenon.

68 (c)

Specific charge on proton $= \left(\frac{e}{m}\right)_p$ =9.6 × 10⁷C - kg⁻¹ specific charge on α - particle, $\left(\frac{q}{m}\right)_{\alpha} = \frac{2e}{4m} = \frac{1}{2}\left(\frac{e}{m}\right)_{p} = \frac{1}{2} \times 9.6 \times 10^{7}$ $= 4.8 \times 10^7 \ C - kg^{-1}$ 69 (c) $mv = \frac{h}{\lambda}$

or
$$v = \frac{h}{m\lambda} = \frac{6.6 \times 10^{-34}}{9.1 \times 10^{-31} \times 5200 \times 10^{-10}}$$

= 1.4 × 10³ ms⁻¹

70 (c)

For photoelectric effect,

$$eV_0 = hv \Rightarrow v = \frac{eV_0}{h}$$
$$v = \frac{1.6 \times 10^{-19} \times 3.2}{6.6 \times 10^{-34}}$$
$$= 0.775 \times 10^{15} \text{Hz}$$

71 (a)

On increasing wavelength of light of the photoelectric current decreases and at a certain wavelength (cut off) above which photoelectric current stops

72 (a)

:.

If an electron and a proton propagating in the form of waves and their wavelength are same, then according to the relation

$$E = \frac{hc}{\lambda}$$
Also, $\lambda_{\text{electron}} = \lambda_{proton}$

$$\therefore \qquad E_e = E_p$$

Hence, their energies are same.

73 **(b)**

Stopping potential does not depend upon intensity of incident light (*I*)

74 **(a)**

Any charge in the universe is given by $q = ne \Rightarrow e = \frac{q}{n}$ (where *n* is an integer) $q_1: q_2: q_3: q_4: q_5: q_6 :: n_1: n_2: n_3: n_4: n_5: n_6$ 6.563: 8.204: 11.5: 13.13: 16.48: 18.09 $:: n_1: n_2: n_3: n_4: n_5: n_6$ Divide by 6.563 1: 1.25: 1.75: 2.0: 2.5: 2.75 $:: n_1: n_2: n_3: n_4: n_5: n_6$ Multiplied by 4

$$4:5:7:8:10:11::n_1:n_2:n_3:n_4:n_5:n_6$$

$$e = \frac{q_1 + q_2 + q_3 + q_4 + q_5 + q_6}{n_1 + n_2 + n_3 + n_4 + n_5 + n_6}$$

$$= \frac{73.967 \times 10^{-19}}{45}$$

 $= 1.641 \times 10^{-19}C$

[Note : If you take 45.0743 in place of 45, you will get the exact value]

76 **(b)**

In the presence of inert gas photoelectrons emitted by cathode ionize the gas by collision and hence the current increases

77 **(a)**

Energy of photon $E = \frac{hc}{\lambda} = mc^2$; momentum of photon $= mc = h/\lambda$

78 **(b)**

In *X*-ray tube, target must be heavy element with high melting point

79 **(c)**

Robert Millikan performed the experiment to determine the charge on an electron.

When a drop is suspended, its weight mg is exactly equal to the electric force applied qE, where E is electric field, q the charge, m the mass of drop and g the acceleration due to gravity.

Given, $m = 16 \times 10^{-6}$ kg, $g = 10 \text{ms}^{-2}$, $E = 10^{6} \text{V-m}^{-1}$ $\therefore \qquad q = \frac{16 \times 10^{6} \times 10}{10^{6}} = 16 \times 10^{-11} \text{ C}$

The work function of sodium

$$W = \frac{hc}{\lambda}$$

$$W = \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{5 \times 10^{-7}}$$
or
$$W = 3.96 \times 10^{-19} \text{J}$$
or
$$W = 2.47 \text{eV} \quad (\because 1 \text{eV} = 1.6 \times 10^{-19} \text{J})$$
or
$$W = 2.5 \text{eV}(\text{approximately})$$
82 **(b)**

$$p = \frac{h}{\lambda} = \frac{6.6 \times 10^{-34}}{0.01 \times 10^{-10}} = 6.6 \times 10^{-22} kg - m/s$$

84 **(b)**

If an electron and a photon propagates in the form of waves having the same wavelength, it implies that they have same momentum. This is according to de-Broglie equation

$$p \propto \frac{1}{\lambda}$$

86 **(b)**

Retarding potential,

$$V_s = \frac{hc}{\lambda e} - \frac{\Phi_0}{e} = \frac{1240 \times 10^{-9}}{330 \times 10^{-9}} - 1.07$$
$$= 3.73 - 1.07 = 2.66 \text{ V}$$

$$K_{\text{max}} = (hv - W_0); v = \text{frequency of incident light}$$

88 **(c)**

$$\lambda_{\min} = \frac{12375}{50 \times 10^3} \text{\AA} = 0.247 = 0.25 \text{\AA}$$

$$E_K - E_L = \frac{hc}{\lambda} = \frac{(6.6 \times 10^{-34})(3 \times 10^8)}{(0.021 \times 10^{-9})(1.6 \times 10^{-19})} eV$$

= 59KeV

Maximum KE = $E - \phi_0 = 3.4 - 2 = 1.4 \text{ eV}$ 91 (a)

The cut-off wavelength λ_{min} corresponds to an electron transferring (approximately) all of its energy to an X-ray photon, thus producing a photon with the greatest possible frequency and least possible wavelengh.

$$\lambda_{\min} = \frac{hc}{\kappa_o} = \frac{(4.14 \times 10^{-15})(3 \times 10^8)}{35.0 \times 10^3} = 3.55 \times 10^{-11} \text{ m} = 35.5 \text{pm}$$

92 **(d)**

de-Broglie wavelength

$$\lambda = \frac{n}{\sqrt{2mE}}$$

$$\therefore \qquad \frac{\lambda_1}{\lambda_2} = \sqrt{\frac{E_2}{E_1}} \Rightarrow \frac{1 \times 10^{-9}}{0.5 \times 10^{-9}} = \sqrt{\frac{E_2}{E_1}}$$

$$\Rightarrow \qquad 2 = \sqrt{\frac{E_2}{E_1}} \Rightarrow \frac{E_2}{E_1} = 4$$

$$\therefore \qquad E_2 = 4E_1$$

$$\therefore \qquad E_1 = 3E_1$$

We know that qE = mg $\frac{qQ}{\varepsilon_0 A} = mg \text{ or } q = \frac{\varepsilon_0 Amg}{Q}$ $= \frac{8.85 \times 10^{-12} \times 2 \times 10^{-2} \times 2.5 \times 10^{-7} \times 10}{5 \times 10^{-7}} C$ $= 8.85 \times 10^{-13} C$

95 **(b)**

For an electron Mass, $m_e = 9.11 \times 10^{-31} kg$ Kinetic energy, $K = 10eV = 10 \times 1.6 \times 10^{-19} J$ de Broglie wavelength, $\lambda_e = \frac{h}{\sqrt{2m_eK}}$...(i) For the person Mass, m = 66kgSpeed, $v = 100kmhr^{-1} = 100 \times \frac{5}{18}ms^{-1}$ de Broglie wavelength, $\lambda = \frac{h}{mv}$...(ii) Diving (i) by (ii), we get $\frac{\lambda_e}{\lambda} = \frac{h}{\sqrt{2m_eK}} \times \frac{mv}{h} = \frac{mv}{\sqrt{2m_eK}}$ $= \frac{66 \times 100 \times \frac{5}{18}}{\sqrt{2 \times 9.11 \times 10^{-31} \times 10 \times 1.6 \times 10^{-19}}}$ $= 1.07 \times 10^{27}$

97 **(b)**

$$\lambda = \frac{h}{mv} = \frac{h\sqrt{1 - v^2/c^2}}{m_0 v} = 0 \quad (\because v = c)$$

98 **(b)**

Slope of $V_0 - v$ curve $= \frac{h}{e}$ $\Rightarrow h =$ Slope $\times e = 1.6 \times 10^{-19} \times 4.12 \times 10^{-15}$ $= 6.6 \times 10^{-34} J$ -s

99 **(b)**

The wavelength range of *X*-ray is 0.1 Å - 100 Å100 **(b)**

$$q V = \frac{1}{2}mv^2$$
 or $v = \sqrt{2qV/m}$ ie, $v \propto \sqrt{V}$

101 **(a)**

According to Einstein, the energy of photon is given by

$$E = hv = \frac{hc}{\lambda}$$

Where *h* is Planck's constant, *c* the speed of light and λ the wavelength.

$$\therefore \qquad \frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1}$$

Given, $\lambda_1 = 150 \text{ nm}$, $\lambda = 300 \text{ nm}$
$$\therefore \qquad \frac{E_1}{E_2} = \frac{300}{150} = \frac{2}{1}$$

102 **(b)**

By using $hv - hv_0 = K_{\max}$ $\Rightarrow h(v_1 - v_0) = K_1$...(i) And $h(v_2 - v_0) = K_2$...(ii) $\Rightarrow \frac{v_1 - v_0}{v_2 - v_0} = \frac{K_1}{K_2} = \frac{1}{K}$, Hence $v_0 = \frac{Kv_1 - v_2}{K - 1}$

104 **(c)**

Stopping potential = 1.8eV - 1.2eV = 0.6 eV105 (a)

The work function has no effect on current so long as $hv > W_0$. The photoelectric current is proportional to the intensity of light. Since there is no change in the intensity of light, therefore $I_1 = I_2$

106 **(b)**

The value of saturation current depends on intensity. It is independent of stopping potential

107 **(b)**

For similar parabola; $y^2 = \frac{B^2 lD}{E} \frac{q}{m} x$, will be same for two particles. It means $\frac{B^2 q}{m} =$ a constant for these two particles.

$$\therefore \ \frac{m_1}{m_2} = \frac{B_1^2 q_1}{B_2^2 q_2} = \left(\frac{0.8}{1.2}\right)^2 \times \frac{e}{2e} = \frac{2}{9}$$

108 **(c)**

$$E \propto \frac{1}{\lambda} \Rightarrow \frac{2.5}{E'} = \frac{1}{5000} \Rightarrow E' = (2.5) \times 5000 \ eV$$

109 **(d)**

According to Planck, energy emitted or absorbed from the objects is not continous while it is in small packets of energy which are called photons or quanta. Einstein explained photoelectric effect on the basic of Planck's hypothesis.

110 **(a)**

In tungsten, photoemission take place with a light of wavelength 2300 Å. As emission of electron is inversely proportional to wavelength, all the wavelengths smaller then 2300 Å will cause emission of electrons

111 **(c)**

r

When a charged particle (charge q, mass m) enters perpendicularly in a magnetic field (B) then, radius of the path described by it

$$=\frac{mv}{aB}$$
 \Rightarrow $mv = qBr$

Also de-Broglie wavelength $\lambda = \frac{h}{mv}$ $h = \lambda_{\alpha} - q_p r_p - 1$

$$\Rightarrow \lambda = \frac{n}{qBr} \Rightarrow \frac{\lambda_{\alpha}}{\lambda_p} = \frac{q_p r_p}{q_{\alpha} r_{\alpha}} = \frac{1}{2}$$

112 **(c)**

$$\phi_0 = hc/\lambda_0 \text{ (in eV)}$$

= $\frac{6.62 \times 10^{-34} \times 3 \times 10^8}{5420 \times 10^{-10} \times 1.6 \times 10^{-19}} = 2.29 \text{ eV}$

113 (c)

Frequency of hard *X*-rays is greater than that of soft *X*-rays

114 **(b)**

$$\lambda = \frac{h}{\sqrt{2mE}} \Rightarrow \lambda \propto \frac{1}{\sqrt{m}} \quad [E = \text{same}]$$

115 **(a)**

 $\lambda_{\min} = \frac{12375}{40,000} = 0.30$ Å Hence wavelength less than 0.30 Å is not possible

117 **(b)**

Let **E** and **B** be along X-axis. When a charged particle is released from rest, it will experience an electric force along the direction of electric field or opposite to the direction of electric field depending on the nature of charge. Due to this force, it acquires some velocity along X-axis. Due to this motion of charge, magnetic force can not have non-zero value because angle between **v** and **B** would be either 0^0 or 180^0 . So, only electric force is acting on particle and hence, it will move along a straight line.

118 **(a)**

According to Einstein's quantum theory, light propagates in the form of bundles (packet or quanta) of energy, each bundle is called a photon. The photoelectric effect represents that light has a particle nature.

120 **(c)**

When current in *X*-ray tube is increased, then the number of electrons striking the anticathode increases which in turn increases the intensity of *X*-rays

121 **(a)**

$$\lambda = \frac{h}{mv} = \frac{6.6 \times 10^{-34}}{1 \times 2000} = 3.3 \times 10^{-37} m$$
$$= 3.3 \times 10^{-27} \text{\AA}$$

123 **(b)**
$$KE = \frac{p^2}{2m}$$

Momentum is same, so $KE \propto \frac{1}{m}$

Out of the given choices, mass of electron is minimum, so its KE will be maximum.

124 **(d)**

Cathode rays are beam of electrons

125 **(c)**

Due to 10.2 *eV* photon one photon of energy 10.2 *eV* will be detected.

Due to 15 *eV* photon the electron will come out of the atom with energy (15 - 13.6) = 1.4 eV

126 **(a)**

Photos move with velocity of light and have energy hv. Therefore, they also exert pressure

127 **(d)**

The maximum KE of the emitted photoelectrons is independent of the intensity of the incident light but depends upon the frequency of the incident light

128 **(a)**

When the colliding electron remove an electron from innermost k-shell (corresponding to n=1) of atom and electron from some higher shell jumps to k-shell to fill up this vacancy, characteristic Xray of k- series are obtained

K- Series

∴ K_{α} and K_{β} X-rays are emitted when there is transition of electron between the levels n=2 to n=1 and n=3 to n=1 respectively.

129 **(d)**

 $\begin{cases} Photoelectric effect \rightarrow Particle nature \\ Diffraction \rightarrow Wave nature \\ nature \end{cases} Dual$

$$p = \frac{E}{c} \Rightarrow E = p \times c = 2 \times 10^{-16} \times (3 \times 10^{10})$$
$$= 6 \times 10^{-6} erg$$

131 **(b)**

The momentum of the incident radiation is given as $p = \frac{h}{\lambda}$. When the light is totally reflected normal to the surface the direction of the ray is reversed. That means it reverses the direction of it's momentum without changing it's magnitude

$$\therefore \Delta p = 2p = \frac{2h}{\lambda} = \frac{2 \times 6.6 \times 10^{-34}}{6630 \times 10^{-10}}$$
$$= 2 \times 10^{-27} kg - m/sec$$

132 (b)

Number of photons emitted is proportional to the intensity. Also $\frac{hc}{\lambda} = W_0 + E$

133 (a)

Since, de-Broglie wavelength is related to momentum by the relation

λ

$$=\frac{h}{p}$$
 (where *h*=plack's

constant)

 $\lambda_e = \frac{h}{P_e}$ For electron $\lambda_n = \frac{h}{p_n}$ For neutron $\frac{\lambda_e}{\lambda_n} = \frac{P_n}{P_e} \quad \dots (i)$:. **Case I** since, $(KE)_{electron} = (KE)_{neutron}$ $\frac{p_e^2}{2m_e} = \frac{p_n^2}{2m_n}$ ⇒ $\frac{p_n}{p_e} = \sqrt{\frac{m_n}{m_e}} \dots (ii)$ ⇒ From Eqs. (i) and (ii), we get

 $\frac{\lambda_e}{\lambda_n} = \sqrt{\frac{m_n}{m_e}}$

But $m_n > m_e$

 $\frac{m_n}{m_e} > 1$:.

⇒

 $\frac{\lambda_e}{\lambda_n} \gg 1$

 $\lambda_e \gg \lambda_n$

case II If momenta are equal, then

$$p_e = p_n$$

From Eq.(i)

$$\frac{\lambda_e}{\lambda_n} = 1$$

Case III If speeds are same

$$v_e = v_n$$

 $\frac{\lambda_e}{\lambda_n} = \frac{p_n}{p_e} = \frac{m_n v_n}{m_e v_e} = \frac{m_n}{m_e}$ then

Now,
$$m_n \gg m_e$$

 $\therefore \qquad \frac{m_n}{m_e} \gg 1$

$$rac{\lambda_e}{\lambda_n} \gg 1$$
 $\lambda_e \gg \lambda_n$

134 (d)

.

:.

$$\frac{\lambda_p}{\lambda_{\alpha}} = \frac{\frac{\hbar}{\sqrt{2em_p V}}}{\sqrt{2 \times 2e4 m_p V}} = 2\sqrt{2}$$

135 **(b)**
$$n e E = 6\pi^{-1}$$

$$n e E = 6\pi \eta r v \text{ or } n = \frac{6\pi \eta r v}{eE}$$
$$= \frac{6 \times 3.14 \times 1.6 \times 10^{-5} \times 5 \times 10^{-7} \times 0.01}{1.6 \times 10^{-19} \times 6.28 \times 10^{5}} = 15$$

136 (a)

Energy of the electron, when it comes out from the second plate = 200 eV - 100 eV = 100 eVHence accelerating potential difference = 100 V

$$\lambda_{Electron} = \frac{12.27}{\sqrt{V}} = \frac{12.27}{\sqrt{100}} = 1.23\text{\AA}$$

137 (a)

$$\lambda = \frac{h}{\sqrt{2mE}} \Rightarrow \lambda \propto \frac{1}{\sqrt{m}} \Rightarrow \frac{\lambda_p}{\lambda_\alpha} = \sqrt{\frac{m_a}{m_p}} = \frac{2}{1}$$

138 (b)

Given
$$m_0 c^2 = 0.51 \ MeV$$
 and $v = 0.8 \ c$
 $K. E.$ of the electron $= mc^2 - m_0 c^2$
But $m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{m_0}{\sqrt{1 - \left(\frac{0.8c}{c}\right)^2}} = \frac{m_0}{\sqrt{0.36}} = \frac{m_0}{0.6}$
Now, $mc^2 = \frac{0.51}{0.6} MeV = 0.85 \ MeV$
 $\therefore K. E. = (0.85 - 0.51) MeV = 0.34 \ MeV$
139 **(b)**

Intensity of light source is

$$I \propto \frac{1}{d^2}$$

When distance is doubled, intensity becomes onefourth.

As number of photoelectrons \propto intensity, so number of photoelectrons is quarter of the initial number.

Given :
$$E = 13.2 keV$$

 $\lambda(in \text{ Å}) = \frac{hc}{E(eV)} = \frac{12400}{13.2 \times 10^3} = 0.939 \text{ Å} = 1 \text{ Å}$

X-rays covers wavelengths ranging from about $10^{-8}m(10nm)$ to $10^{-3}m(10^{-4}nm)$.

An electromagnetic radiation of energy 13.2 *keV* belongs to *X*-ray region of electromagnetic spectrum

142 (a)

According to Einstein's photoelectric equation

 $eV = hc \left[\frac{1}{\lambda} - \frac{1}{\lambda_0}\right]$ Ist case $3eV_s = hc \left[\frac{1}{\lambda} - \frac{1}{\lambda_0}\right]$...(i) IInd case $eV_s = hc \left[\frac{1}{2\lambda} - \frac{1}{\lambda_0}\right]$...(ii)

Dividing Eq. (i)by Eq. (ii), we get

$$\lambda_0 = 4\lambda$$

143 **(d)**

 K_{\max} of photoelectrons does not depend upon intensity of incident light.

144 **(b)**

$$\frac{\lambda_1}{\lambda_2} = \frac{h}{\frac{\sqrt{2mE}}{\frac{hc}{E}}} \qquad \text{or} \quad \frac{\lambda_1}{\lambda_2} \propto E^{1/2}$$

146 **(b)**

$$p = \frac{E}{c} = \frac{hv}{c}$$

147 (d)

The mass of electron is about $\frac{1}{1836}$ times that of a neutron and angular momentum of electron is quantised in the hydrogen atoms but not the linear momentum of electron

148 (d)

$$hv - W_0 = \frac{1}{2}mv_{\max}^2 \Rightarrow \frac{hc}{\lambda} - \frac{hc}{\lambda_0} = \frac{1}{2}mv_{\max}^2$$
$$\Rightarrow hc\left(\frac{\lambda_0 - \lambda}{\lambda\lambda_0}\right) = \frac{1}{2}mv_{\max}^2 \Rightarrow v_{\max}$$
$$= \sqrt{\frac{2hc}{m}\left(\frac{\lambda_0 - \lambda}{\lambda\lambda_0}\right)}$$

When wavelength is λ and velocity is v, then

$$v = \sqrt{\frac{2hc}{m} \left(\frac{\lambda_0 - \lambda}{\lambda \lambda_0}\right)} \quad \dots (i)$$

When wavelength is $\frac{3\lambda}{4}$ and velocity is v' then

$$v' = \sqrt{\frac{2hc}{m} \left[\frac{\lambda_0 - (3\lambda/4)}{(3\lambda/4) \times \lambda_0} \right]} \quad \dots \text{(ii)}$$

Divide equation (ii) by (i), we get

$$\frac{v'}{v} = \sqrt{\frac{[\lambda_0 - (3\lambda/4)]}{\frac{3}{4}\lambda\lambda_0} \times \frac{\lambda\lambda_0}{\lambda_0 - \lambda}}$$
$$v' = v\left(\frac{4}{3}\right)^{1/2} \sqrt{\frac{[\lambda_0 - (3\lambda/4)]}{\lambda_0 - \lambda}}$$

$$i. e. v' > v \left(\frac{4}{3}\right)^{1/2}$$

149 (a)

Velocity of photon (*i. e.* light) does not depend upon frequency. Hence the graph between velocity of photon and frequency will be as follows

Velocity of photon (c)

150 **(b)**

$$\lambda_{\min} = \frac{hc}{eV} \Rightarrow \lambda_1 = \frac{hc}{eV_1} \text{ and } \lambda_2 = \frac{hc}{eV_2}$$

$$\therefore \Delta \lambda = \lambda_2 - \lambda_1 = \frac{hc}{e} \left[\frac{1}{V_2} - \frac{1}{V_1}\right]. \text{ Given } V_2 = 1.5 V_1$$

on solving we get $V_1 = 16000 \text{ volt} = 16 \text{ kV}$

$$\lambda_{\min} = \frac{12375}{40 \times 10^3} = 0.309 \text{ Å} \approx 0.31 \text{ Å}$$

153 **(a)**

Energy of photon, $E = hv = \frac{hc}{\lambda_{Ph}}$

where λ_{Ph} is the wavelength of a photon $\lambda_{ph} = \frac{hc}{E}$ Wavelength of the electron, $\lambda_e = \frac{h}{\sqrt{2mE}}$

$$\therefore \frac{\lambda_{Ph}}{\lambda_e} = \frac{hc}{E} \times \frac{\sqrt{2mE}}{h} = c \sqrt{\frac{2m}{E}}$$

154 **(b)**

For electron and positron pair production, minimum energy is 1.02 *MeV*

Energy of photon is given $1.7 \times 10^{-3} J = \frac{1.7 \times 10^{-13}}{1.6 \times 10^{-19}}$ = 1.06 *MeV*

Since energy of photon is greater than 1.02 *MeV* So electron positron pair will be created

155 **(d)**

Velocity of photon $c = v\lambda$

156 **(d)**

According to Einstein's equation

$$hv = W_o + K_{max} \Rightarrow V_o = \left(\frac{h}{e}\right)v - \frac{W_o}{e}$$

This is the equation of straight line having positive slope (h/e) and intercept on $-V_o$ axis, equal to $\frac{W_o}{e}$

158 (a)

The force on a particle is

$$Y \land B \land V \land X$$

So, or

 $F = q(E + v \times B)$ $\mathbf{F} = \mathbf{F}_{e} + \mathbf{F}_{m}$ $\mathbf{F}_{e} = q\mathbf{E}$ $= -16 \times 10^{-18} \times 10^{4} (-\hat{k})$ **F**_m

and

$$=16 \times 10^{-14} k$$

=-16 × 10⁻¹⁸(10î × Bĵ)
=-16 × 10⁻¹⁷ × B(+k̂)
=-16 × 10⁻¹⁷ B × k̂

Since, particle will continue to move along + xaxis, so resultant force is equal to 0.

$$F_{e} + F_{m} = 0$$

∴ $16 \times 10^{-14} = 16 \times 10^{-17}B$
⇒ $B = \frac{16 \times 10^{-14}}{16 \times 10^{-17}} = 10^{3}$
 $B = 10^{3}$ Wb-m⁻²

159 (c)

$$E = hv/\lambda = \frac{hc}{e\lambda} \text{ (in eV)}$$
$$= \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19} \times 0.21} = 5.9 \times 10^{-6} \text{ eV}$$

160 **(b)**

Electric force *(F)* is straight forwarded, given by

$$F = qE$$

$$F = qE$$

$$F = qE$$

Where, *q* is charge and *E* is electric field. Given, q = 3e:. F=3eE...(i) From Newton's law, force experienced by a particle of mass 2*m* with acceleration *a* is F = 2ma (ii)Equating Eqs. (i) and (ii) we get 3eE = 2ma $a = \frac{3eE}{2m}$ ⇒

163 (c)

Potential difference $V = \frac{hc}{e\lambda}$ $=\frac{6.6\times10^{-34}\times3\times10^8}{1.6\times10^{-19}\times2\times10^{-10}}$

166 (c)

$$E = \frac{hc}{\lambda} - W_0 \text{ and } 2E = \frac{hc}{\lambda'} - W_0$$

$$\Rightarrow \frac{\lambda'}{\lambda} = \frac{E + W_0}{2E + W_0} \Rightarrow \lambda' = \lambda \left(\frac{1 + W_0/E}{2 + W_0/E}\right)$$
Since $\frac{(1+W_0/E)}{(2+W_0/E)} > \frac{1}{2} \text{ so } \lambda' > \frac{\lambda}{2}$
167 (c)

$$mg = q E \text{ or } \frac{4}{3}\pi r^3 \text{ } \rho g = \frac{qV}{d} \text{ or } V \propto r^3$$

$$\therefore V_2 = V_1 \left(\frac{r_2}{r_1}\right)^3 = 400 \times \left(\frac{2}{1}\right)^3 = 3200V$$
168 (a)

$$qvB = qE \Rightarrow v = \frac{E}{B}$$
But $\frac{1}{2}mv^2 = qV \text{ so } \frac{q}{m} = \frac{v^2}{2V} = \frac{E^2}{2VB^2}$
169 (c)
When drop is stationary, then

$$q_1E = 6\pi \eta r v_0 \text{ or } q_1 = 6\pi \eta r v_0/E$$
When drop moves upwards, then

$$3q = \frac{6\pi \eta r (v_0 + v_0)}{E} = 2 \times \left(\frac{6\pi \eta r v_0}{E}\right) = 2q_1$$

$$\therefore q_1 = \frac{3}{2}q$$

= 6200 V

170 (b)

According to Einstein's photoelectric equation the work function of metal is given by $\therefore \phi = hc/\lambda$ -KE

$$\psi = \pi c / \pi^{-} K L_{m}^{-}$$

6.6×10⁻³⁴×3×10⁸

$$= \frac{-2}{4000 \times 10^{-10}} - 2eV$$

= 4.95 × 10⁻¹⁹ - 2 eV
= $\frac{4.95 \times 10^{-19}}{1.6 \times 10^{-19}} - 2 eV$
= 3 eV-2 eV = 1 eV

$$E_{k} = \frac{1}{2} \frac{q^{2}B^{2}r^{2}}{m} ie, r \propto \sqrt{E_{k}}$$

So, $r_{2} = r_{1}\sqrt{E_{k_{2}}/E_{k_{1}}} = R\sqrt{3} = \sqrt{3} R$

172 **(b)**

When the charged particle enters the magnetic field making angle other than 90° with it, the path is helix.

173 (c)

By Moseley's law, $\sqrt{v} = a(Z - b)$ or, v = $a^{2}(Z-b)^{2}$ Comparing with the equation of a parabola,

 $y^2 = 4ax$ it conforms to graph *c*

174 (c)

According to Einstein's photoelectric equation 175 (c)

According to the energy diagram of X-ray spectra

 $\therefore \Delta E = \frac{hc}{\lambda} \Rightarrow \lambda \propto \frac{1}{\Lambda E}$ $(\Delta E = \text{Energy radiated when } e^{-} \text{ jumps from,}$ higher energy orbit to lower energy orbit) $:: (\Delta E)_{k_{\beta}} > (\Delta E)_{k_{\alpha}} > (\Delta E)_{L_{\alpha}} :: \lambda_{\alpha}' > \lambda_{\alpha} > \lambda_{\beta}$ Also $(\Delta E)_{k_{\beta}} = (\Delta E)_{k_{\alpha}} + (\Delta E)_{L_{\alpha}}$ $\Rightarrow \frac{hc}{\lambda_{e}} = \frac{hc}{\lambda_{e}} + \frac{hc}{\lambda_{e}'} \Rightarrow \frac{1}{\lambda_{e}} = \frac{1}{\lambda_{e}} + \frac{1}{\lambda_{e}'}$ 176 (c) $n \rightarrow 2 - 1$ $E = 10.2 \ eV$ $kE = E - \phi$ Q = 10.20 - 3.57 $hv_0 = 6.63 \ eV$ $v_0 = \frac{6.63 \times 1.6 \times 10^{-19}}{6.67 \times 10^{-34}} = 1.6 \times 10^{15}$ 178 (b) Minimum wavelength = 5\AA $\lambda = \frac{12.2 \text{ Å}}{\sqrt{V}} = 5 \text{\AA}$ Acceleration potential = 6.25 V179 (c) $\frac{1}{2}mv^2 = \frac{hc}{\lambda} - \phi \text{ (in eV)}$ $=\frac{6.6\times10^{-34}\times3\times10^8}{4000\times10^{-10}\times1.6\times10^{-19}}-2$ $= 3.1 - 2 = 1.1 \text{ eV} = 1.1 \times 1.6 \times 10^{-19} \text{ J}$ $= 1.76 \times 10^{-19} \text{ J}$ $v = \frac{1.76 \times 10^{-19} \times 2}{9 \times 10^{-13}}$ $= 6.2 \times 10^5 \text{ ms}^{-1}$ 180 (c) According to Mosley's law $v = a(Z - b)^2$ and $v \propto \frac{1}{1}$ 181 (c) Here, $E_1 = E_2$ $n_1 h v_1 = n_2 h v_2$ $\frac{n_1}{n_2} = \frac{v_2}{v_1}$ So, 182 (a) Energy of photon $E = \frac{hc}{r}$ $\lambda = 5000 \text{ Å} = 5 \times 10^{-7} m$ Given, $E = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{5 \times 10^{-7}}$:. $= 3.96 \times 10^{-19} J$ Energy received per second = 10^{-8} Js⁻¹ : Number of photon's received per second $=\frac{\text{Energy received per second}}{\text{Energy of one photon}}$

183 (c)

⇒

$$=\frac{10^{-8}}{3.96\times10^{-19}}=2.5\times10^{10}$$

$$\frac{1}{2}mv_{\text{max}}^2 = eV_0$$

$$v_{\text{max}} = \sqrt{2\left(\frac{e}{m}\right)V_0}$$

$$= \sqrt{2 \times 1.8 \times 10^{11} \times 9}$$

$$= 18 \times 10^5 \text{ ms}^{-1}$$

$$= 1.8 \times 10^6 \text{ ms}^{-1}$$

184 **(c)**

$$QE = mg \Rightarrow Q = \frac{mg}{E} \Rightarrow n = \frac{mgd}{Ve}$$
$$\Rightarrow n = \frac{1.8 \times 10^{-14} \times 10 \times 0.9 \times 10^{-2}}{2 \times 10^3 \times 1.6 \times 10^{-19}} = 5$$

1

185 (d)

X-rays are electromagnetic in nature so they remains unaffected in electric and magnetic field 186 **(a)**

$$\lambda_{\min} = \frac{12375}{V} \text{ Å} \Rightarrow V = \frac{12375}{0.4125} = 30 \ kV$$

187 **(a)**

⇒

$$E = \frac{hc}{\lambda} \Rightarrow E \propto \frac{1}{\lambda}$$
$$\frac{E'}{E} = \frac{400}{300} = 1.33$$

But $E = eV_s$, V_s being stopping potential. Thus, stopping potential for photoelectrons from a surface becomes approximately 1.0 V greater.

188 **(b)**

ma

Energy possessed by a photon is given by

$$E = hv = \frac{hc}{\lambda}$$

If power of each photon is *P* then energy given out in *t* second is equal to *Pt*. Let the number of photons be *n*, then

 $n = \frac{Pt}{E} = \frac{Pt}{(hc/\lambda)} = \frac{Pt\lambda}{hc}$ $n_R = \frac{Pt\lambda_R}{hc}$ For red light, $n_V = \frac{Pt\lambda_V}{hc}$ For violet light, $\frac{n_R}{n_V} = \frac{\lambda_R}{\lambda_V}$:. $\lambda_R > \lambda_V$ As $n_R > n_V$ So, 189 (a) Mosley's law is $f = a(Z - b)^2$ 191 (c) In the absence of electric field (*i.e.* E = 0) $mg = 6\pi\eta rv$ $D_1 = 6\pi\eta rv$ **)** (

...(i) In the presence of Electric field $mg + QE = 6\pi\eta r(2v)$ $D_2 = 6\pi\eta r(2v)$ $D_2 = 6\pi\eta r(2v)$ $D_2 = 0$ $D_2 = 0$ QE mg...(ii) When electric field to reduced to E/2 $mg + Q(E/2) = 6\pi\eta r(v')$ $D_3 = 6\pi\eta r(v')$ $\int_{QE/2} eE/2$ mg...(iii) After solving (i), (ii) and (iii) We get $v' = \frac{3}{2}v$

193 **(c)**

Crystal structure is explored through the diffraction of waves having a wavelength comparable with the interatomatic spacing (10^{-10}m) in crystals. Radiation of larger wavelength cannot resolve the details of structure, while radiation of much shorter wavelength is diffracted through inconveniently small angles. Usually diffraction of X-rays is employed in the study of crystal structure as X-rays have wavelength comparable to interatomic spacing.

194 (c)

Linear momntum of an electron in *n* th orbit $L = \frac{nh}{2\pi'}$

for n = 2 then $L = \frac{h}{2}$

195 (d)

Current
$$i = \frac{ne}{t}$$

 $\Rightarrow \qquad \frac{n}{t} = \frac{i}{e} = \frac{3.2 \times 10^{-3}}{1.6 \times 10^{-19}} = 2 \times 10^6/s$

196 **(c)**

$$\lambda = \frac{h}{\sqrt{2mE}} = \frac{h}{\sqrt{2m_{\alpha}Q_{\alpha}V}}$$

On putting $Q_{\alpha} = 2 \times 1.6 \times 10^{-19}C$
 $m_{\alpha} = 4m_{p} = 4 \times 1.67 \times 10^{-27} kg \Rightarrow \lambda = \frac{0.101}{\sqrt{V}} \text{\AA}$

200 (c)

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}} = \frac{m_0}{\sqrt{1 - (0.8c)^2/c^2}} = \frac{5m_0}{3}$$

201 **(b)**

Number of photoelectrons emitted up to

t = 10 sec are n $= \frac{(\text{Number of photons/unit area/unit time) \times (Ar)}{10^{6}}$ $= \frac{1}{10^{6}} [(10)^{16} \times (5 \times 10^{-4}) \times (10)] = 5 \times 10^{7}$ At time t = 10 sChange on plate $A; q_{A} = +ne = 5 \times 10^{7} \times 1.6 \times 10^{-19}$ $= 8 \times 10^{-12}C = 8 pC$ and charge on plate, $B; q_{B} = 33.7 - 8 = 25.7 pc$ Electric field between the plates $E = \frac{(q_{B} - q_{A})}{(25.7 - 8) \times 10^{-12}}$

$$E = \frac{(q_B - q_A)}{2 \varepsilon_0 A} = \frac{(25.7 - 8) \times 10^{-12}}{2 \times 8.85 \times 10^{-12} \times 5 \times 10^{-4}}$$
$$= 2 \times 10^3 \frac{N}{C}$$

202 **(b)**

The velocity of *X*-rays is always equal to that of light

203 **(c)**

 $\lambda = \frac{h}{mv}$. Since v is increasing in case (i), but it is not changing in case (ii) hence, in the first case de-Broglie wavelength will change, but it second case, it remain the same

204 (c)

$$W_0 \propto \frac{1}{\lambda} \Rightarrow \frac{\lambda_1}{\lambda_2} = \frac{(W_0)_2}{(W_0)_1} = \frac{4.5}{2.3} = \frac{2}{1}$$

205 **(b)**

Energy of each photon =
$$\frac{hc}{\lambda}$$

= $\frac{6.6 \times 10^{-34} \times 3 \times 10^8}{300 \times 10^{-9}}$
= $6.6 \times 10^{-19} J$

Power of source is given by

$$p = \text{intensity} \times \text{area}$$
$$= 1.0 \times 1.0 \times 10^{-4} W$$
$$= 10^{-4} W$$

No. of photons per second

$$= \frac{p}{e} = \frac{10^{-4}}{6.6 \times 10^{-19}}$$

Now number of electron emitted

$$= \frac{1}{100} \times \frac{10^{-4}}{6.6 \times 10^{-19}}$$
$$= 1.5 \times 10^{12} \text{ s}^{-1}$$

207 **(d)**

According to Einstein's photoelectric equation $E = W_0 + K_{\max} \Rightarrow V_0 = \frac{hc}{e} \left[\frac{1}{\lambda} - \frac{1}{\lambda_0} \right]$ Hence if λ decreases V_0 increases 208 (d) Given, $m_{\alpha} = 6.4 \times 10^{-27} \text{kg}$ $q_{\alpha} = 3.2 \times 10^{-19} \text{ C}, E = 1.6 \times 10^5 \text{ Vm}^{-1}$

Force on α -particle $F = q_{\alpha}F = 3.2 \times 10^{-19} \times 1.6 \times 10^{5}$ $= 51.2 \times 10^{-15} N$ Now, acceleration of the particle $\alpha = \frac{F}{m_{\alpha}} = \frac{51.2 \times 10^{-15}}{6.4 \times 10^{-27}} = 0.8 \times 10^{13} \text{ ms}^{-2}$: Initial velocity, u = 0 :. $v^2 = 2\alpha s$ $= 2 \times 8 \times 10^{12} \times 2 \times 10^{-2}$ $= 32 \times 10^{10}$ $v = 4\sqrt{2} \times 10^5 \text{ms}^{-1}$ or 209 (a) According to de-Broglie hypothesis $\lambda = \frac{h}{p}$ Where, *h* is Planck's constant. $p = \frac{h}{r}$ ⇒ Given, $h = 6.63 \times 10^{-34}$ J-s $\lambda = 2\mu m = 2 \times 10^{-6} m$ $p = \frac{6.63 \times 10^{-34}}{2 \times 10^{-6}}$ *.*.. $=3.315 \times 10^{-28} \text{ kg-ms}^{-1}$ 210 (c) $\frac{e}{m} = \frac{E^2}{2VB^2} = \frac{(3.6 \times 10^4)^2}{2 \times 2.5 \times 10^3 \times (1.2 \times 10^{-3})^2}$ $= 1.8 \times 10^{11} C/kg$ 211 (a) Intensity of light is inversely proportional to square of distance, $I \propto \frac{1}{r^2}$ ie, $\frac{l_2}{l_4} = \frac{(r_1)^2}{(r_2)^2}$ or Given, $r_1 = 0.5$ m, $r_2 = 1.0$ m Therefore, $\frac{I_1}{I_2} = \frac{(0.5)^2}{(1)^2} = \frac{1}{4}$ Now, since number of photoelectrons emitted per second is directly proportional to intensity, so number of electrons emitted would decrease by factor of 4. 212 (b) From the graph stopping potential $|V_s| = -V$ Also $k_{max} = (|V_0|)eV = 4eV$ 213 (d) Millikan performed the pioneering oil-drop experiment for the precise measurement of the charge on the electron. He found that the charge on an oil-droplet was always an integral multiple of an elementary charge 1.602×10^{-19} C. This

proved that charge is quantized. 214 (b)

$$\lambda = \frac{h}{\sqrt{2mE}} \Rightarrow \lambda \propto \frac{1}{\sqrt{E}} \Rightarrow \frac{\lambda_1}{\lambda_2} = \sqrt{\frac{E_2}{E_1}}$$
$$\Rightarrow \frac{10^{-10}}{0.5 \times 10^{-10}} = \sqrt{\frac{E_2}{E_1}} \Rightarrow E_2 = 4E_1$$

Hence added energy = $E_2 - E_1 = 3E_1$

215 (c)

In general X-rays have larger wavelength than that of gamma rays

216 (c)

When applied voltage is greater then enrgy of Kelectron, continuous and all characteristic X-rays are emitted

217 (d)

The energy of X-ray photon is obtained from a coolidge tube by an electronic transition of target atom such as K_{α} line is obtained from transition from *L* orbit in *K* orbit

218 (b)

From Einstein's photoelectric effect concept the energy of these photons, for light of frequency vis E = hv

 $= \frac{hc}{hc}$

```
where h is Planck's constant.
```

$$\frac{\text{velocity}}{\text{wavelength}} = \frac{c}{\lambda}$$

:.

Energy of *n* photons is
$$E = \frac{nhc}{\lambda}$$

Given, $E = 10^{-7}J$, $\lambda = 5000$ Å
 $= 5000 \times 10^{-10} m$
 $\Rightarrow \qquad n = \frac{E\lambda}{hc}$
 $= \frac{10^{-7} \times 5000 \times 10^{-10}}{6.6 \times 10^{-34} \times 3 \times 10^8}$
 $= 2.5 \times 10^{11}$

$$f = \frac{c}{\lambda} = \frac{c}{hc/E} = \frac{E}{h}$$

$$\therefore \qquad f = \frac{1 \times 1.6 \times 10^{-13}}{6.6 \times 10^{-34}} = 2.4 \times 10^{20} \text{Hz}$$

220 (c)

de-Broglie wavelength Here

$$\lambda_e = \frac{n_c}{\sqrt{2m_e E}} \text{ and } \lambda_p = \frac{n_c}{\sqrt{2m_p E}}$$
$$\frac{\lambda_e}{\lambda_p} = \sqrt{\frac{m_p}{m_e}}$$

221 (a)

(a) Work function, $\phi = \frac{hc}{\lambda}$ $= \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{3300 \times 10^{-10}} = 6.0 \times$

 10^{-19} J

$$=\frac{6.0 \times 10^{-19}}{1.6 \times 10^{-19}} \text{ eV} = 3.75 \text{ eV}$$
222 (c)
KE = $hv - hv_0$
= 8 eV - $\left(\frac{6 \times 10^{-34} \times 1.6 \times 10^{15}}{1.6 \times 10^{-19}} \text{ eV}\right)$

$$= 8-6= 2 \text{ eV}$$
 (1.6×10⁻¹⁹

223 **(d)**

Stopping potential depends upon the energy of photon

224 (a)

Because *X*-rays are electromagnetic (Neutral) in nature

225 **(b)**

$$\lambda_0 = \frac{12375}{W_{0(eV)}} = \frac{12375}{2} = 6187.5\text{\AA} \simeq 620 \ nm$$

226 (a)

As
$$q v B = mv^2/r$$

or $m = \frac{qBr}{v} = \frac{(2 \times 1.6 \times 10^{-19}) \times 1 \times 1}{1.6 \times 10^7}$
 $= 2 \times 10^{-26} \text{kg} = \frac{2 \times 10^{26}}{1.66 \times 10^{-27}} = 12$
Therefore, particle must be c⁺⁺

227 (d)

In photovoltaic cells photoelectric current produced is proportional to the intensity of incident light, so statement *A* is false. The velocity of photoelectrons depends upon the maximum kinetic energy of photoelectrons, which depends on the frequency and hence on the wavelength of incident radiation, so statement *B* is true.

228 (c)

$$\begin{split} \lambda &= \frac{h}{\sqrt{2mQV}} \Rightarrow \lambda \propto \frac{1}{\sqrt{mQ}} \Rightarrow \frac{\lambda_p}{\lambda_\alpha} = \sqrt{\frac{m_\alpha Q_\alpha}{m_p Q_p}} \\ &= \sqrt{\frac{4m_p \times 2Q_p}{m_p \times Q_p}} = 2\sqrt{2} \end{split}$$

229 (c)

The energy of X-ray photon, $E = \frac{hc}{\lambda}$ = $\frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1 \times 10^{-10}}$ J = $\frac{1.98 \times 10^{-15}}{1.6 \times 110^{-19}}$

= 12.3 keV

230 (c)

$$E = \frac{hc}{\lambda} \Rightarrow \frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1} \Rightarrow \frac{3.32 \times 10^{-19}}{E_2} = \frac{4000}{6000}$$
$$\Rightarrow E_2 = 4.98 \times 10^{-19} J = 3.1 \ eV$$

231 **(b)**

The average energy of Planck oscillator is

 $\frac{hv}{(e^{hc/kT}-1)}$

232 **(d)**

In a discharge tube ionization of enclosed gas is produced due to collisions between negative electrons and neutral atoms/molecules

$$E \propto \frac{1}{\lambda}$$
; also $\lambda_{\text{infrared}} > \lambda_{\text{visible}}$ so $E_{\text{infrared}} < E_{\text{visible}}$

234 (c)

 \Rightarrow

Einstein's photoelectric equation is given by $hy_{-} + hy_{-} + \phi = hy_{-} + eV$

$$v = v_0 + \frac{eV_0}{h}$$
$$= (6 \times 10^{14}) + \frac{(1.6 \times 10^{14})}{(6.4 \times 10^{14})}$$
$$= 13.5 \times 10^{14} \text{ s}^{-1}$$

235 **(d)**

$$p = \frac{hv}{c} \Rightarrow v = \frac{pc}{h} = \frac{3.3 \times 10^{-29} \times 3 \times 10^8}{6.6 \times 10^{-34}}$$
$$= 1.5 \times 10^{13} Hz$$

236 (c)

Comparing Einstein's equation $K_{\text{max}} = hv - hv_0$, with y = mx + c, we get slope, m = h

237 **(c)**

The saturation photocurrent (*i*) depends on intensity (*I*) of light *ie*,

i∝I.

So, when intensity changes, the saturation current also changes. Hence the statement I false. The maximum kinetic energy depends upon the frequency of light. So, the kinetic energy is doubled when frequency is doubled. So, statement II is true.

238 **(b)**

Given, $E = 100 \ eV = 100 \times 1.6 \times 10^{-19}$ J and $h = 6.662 \times 10^{-34}$ J E = hv $v = \frac{E}{h} = \frac{100 \times 1.6 \times 10^{-19}}{6.662 \times 10^{-34}}$ $= 0.24 \times 10^{17} = 2.4 \times 10^{16} \ Hz$

239 **(a)**

$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mE}} \therefore E = \frac{h^2}{2m\lambda^2}$$

 λ is same for all, so $E \propto \frac{1}{m}$. Hence energy will be maximum for particle with lesser mass

240 **(d)**
$$E_{k} = \frac{hc}{\lambda} - \frac{hc}{\lambda_{0}} = hc \left[\frac{\lambda_{0} - \lambda}{\lambda_{0} \lambda} \right]$$

241 **(a)**

With the increase in potential difference between

anode and cathode energy of striking electrons increases which in turn increses the energy (penetration power) of X-rays

242 (a)

If all of the kinetic energy carried by an electron is converted into radiation, the energy of the X-rays photon would be given by

 $E_{\max} = hv_{\max} = eV$

Where *h* is Planck's constant, v_{max} the largest frequency, *e* charge of an electron and *V* the applied voltage.

This maximum energy or minimum wavelength is called the Duane-Hunt limit.

$$hv_{\max} = \frac{hc}{\lambda_{\min}} = eV$$

$$\lambda_{\min} = \frac{hc}{eV}$$

243 (b)

Here, $\Delta v = \frac{0.005 \times 50}{100} = 0.0025 \text{ms}^{-1}$ $\Delta x = \frac{h}{m\Delta v}$ $=\frac{1.034\times10^{-34}}{9.1\times10^{-31}\times0.0025}=4634\times10^{-5}\text{m}$

244 (c)

Given,

⇒

$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mKE}}$$
$$KE = \frac{1}{2m^{1/2}}$$

As λ is same for both electron and photon $KE \propto \frac{1}{m}$ So,

Hence, kinetic energy will be maximum for particle with lesser mass, ie, electron.

245 (c)

For a charged particle in magnetic field B, r = m v/qB. The radius can be fixed for a charged particle if v and B both are fixed

246 (a)

Photoelectric current (*I*) \propto Intensity of incident light and intensity $\propto \frac{1}{(\text{distance})^2}$

So,
$$I \propto \frac{1}{(\text{distance})^2}$$
. Hence $I' = I\left(\frac{1}{4}\right)^2 = \frac{I}{16}$

$$\lambda_0 = \frac{hc}{W_0} = \frac{12400}{4} = 3100\text{\AA} = 310 \ nm$$

248 (d)

By law of conservation of linear momentum

 \overline{mv}

$$m_1v_1 = m_2v_2$$
So,
$$m_1v_1 = m_2v_2$$
Now, de-Broglie wavelength $\lambda =$

$$rac{\lambda_1}{\lambda_2}=rac{m_2v_2}{m_1v_1} \ \lambda_1:\lambda_2=1:1$$

249 (c)

:.

In the condition of no deflection $\frac{e}{m} = \frac{E^2}{2VB^2} \Rightarrow \text{If } m$ is increased by 208 times than B should be increased $\sqrt{208} = 14.4$ times

Given $k = 1.38 \times 10^{-23} \, \text{JK}^{-1}$ The energy of proton gas $=4.14 \times 10^{-14}$ J $E = \frac{3}{2}kT$ $4.14 \times 10^{-14} = \frac{3}{2} \times 1.38 \times 10^{-23} \times T$ $T = 2 \times 10^9 \text{ K}.$ 251 (c) $eV_0 = hv - hv_0$ \therefore Threshold frequency,

$$v_0 = v - \frac{eV_0}{h}$$

= $\frac{c}{\lambda} - \frac{eV_0}{h}$
 $v_0 = \frac{3 \times 10^8}{2 \times 10^{-7}} - \frac{1.6 \times 10^{-19} \times 2.5}{6.6 \times 10^{-34}}$
= 9.0 × 10¹⁴ Hz

252 **(b)**

0r

...

According to Bohr's quantisation of angular momentum

 $mvr = \frac{nh}{2\pi}$ $\frac{h}{mv} = \frac{2\pi r}{n} \dots (i)$ de-Broglie wavelength

$$\lambda = \frac{h}{mn} \dots (ii)$$

From Eqs. (i) and (ii), we get Wavelength $\lambda = \frac{2\pi r}{n}$ $=\frac{2 \times \pi \times 0.53 \text{ Å}}{1} = 3.33 \text{\AA}$

Given, $K_{\text{max}} = 3 \text{ eV}$ $h = 4.125 \times 10^{-15} \text{eV}$ $hv = K_{max} + W$ $4.125 \times 10^{-15} \times 10^{15} = 3 + W$ 4.125 = 3 + Wor W = 1.125or The threshold frequency

$$v_0 = \frac{W}{h}$$

$$v_0 = \frac{1.125}{4.125 \times 10^{-15}}$$

$$v_0 = \frac{1.125 \times 10^{15}}{4.125}$$

$$v_0 = 2.72 \times 10^{14}$$

$$E = eV = hv_{\max} \Rightarrow v_{\max} = \frac{ev}{h}$$
255 **(b)**

$$\Delta p = \frac{\hbar}{\Delta x} = \frac{1.034 \times 10^{-34}}{10^{-10}}$$

= 1.034 × 10⁻²⁴ kg - ms⁻¹

It was found that when voltage applied to X-ray tube is changed, positions of spectral lines remain unchanged. However, when a different material is used as a target in X-ray tube, an entirely different set of spectral lines is obtained. Thus, the energy of characteristic X-ray is a consequence of transition in target atoms.

257 (a)

Momentum of striking electrons $p = \frac{h}{\lambda}$

∴ Kinetic energy of striking electrons

$$K = \frac{p^2}{2m} = \frac{h^2}{2m\lambda^2}$$

This is also, maximum energy of X-ray photons.

Therefore, Or

efore,
$$\frac{hc}{\lambda_0} = \frac{h^2}{2m\lambda^2}$$
$$\lambda_0 = \frac{2m\lambda^2 c}{h}$$

258 (d)

$$E = W_0 + K_{\max}; E = \frac{12375}{3000} = 4.125 \ eV$$

$$\Rightarrow K_{\max} = E - W_0 = 4.125 \ eV - 1 \ eV = 3.125 \ eV$$

$$\Rightarrow \frac{1}{2} m v_{\max}^2 = 3.125 \times 1.6 \times 10^{-19} J$$

$$\Rightarrow v_{\max} = \sqrt{\frac{2 \times 3.125 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}}}$$

$$= 1 \times 10^6 m/s$$

260 **(b)**

If intensity of X-ray is decreased by dl, when it passes through a length dx of absorbing material then, the amount of observed intensity is $\mu l dx$

Thus, $-dI = \mu I \, dx$ or $\frac{dI}{dx} + \mu I = 0$ On solving this equation $I = I_0 e^{-\mu x} = I_0 e^{-\mu d}$ [x = d]

262 (a)

According to Einstein's theory of photoelectric effect a single incident photon ejects a single electrons. Therefore, when intensity increases, the number of incident photons increases, so number of ejected electrons increases, hence, photocurrent increases.

263 (d)

Peaks on the graph represent characteristic *X*-ray spectrum. Every peak has a certain wavelength,

which depends upon the transition of electron inside the atom of the targe. While λ_{\min} depends upon the accelerating voltage [As $\lambda_{\min} \propto 1/V$]

264 **(b)**

The graph between stopping potential and frequency is a straight line, so stopping potential and hence, maximum kinetic energy of photoelectrons depends linearly on the frequency. (b)

265 **(b)**

A cathode should have following properties

- 1. **Low work function** The substance selected as cathode should have low work function, so that electron emission takes place by applying small amount of heat energy, *ie*, at low temperature.
- 2. **High melting point** As electron emission takes place at very high

temperatures (> 1500^oC) therefore the substance used as a cathode should have high melting point.

266 **(c)**

 $v \propto (Z-b)^2 \Rightarrow v = a(Z-b)^2$

Z = atomic number of element (*a*, *b* are constant) 267 (a)

By using
$$\lambda_{electron} = \frac{h}{m_e v} \Rightarrow v = \frac{h}{m_e \lambda_e}$$

= $\frac{6.6 \times 10^{-34}}{9.1 \times 10^{-31} \times 10^{-10}} = 7.25 \times 10^6 m/s$

268 **(b)**

$$\lambda_0 = \frac{c}{v_0} = \frac{3 \times 10^8}{5 \times 10^{14}} = 6 \times 10^{-7} m = 6000 \text{ Å}$$

270 **(d)**

$$E = hv = hc/\lambda = mc^2$$
, hence $\lambda = h/mc = h/p$
271 (c)

KE of photoelectrons increases with increase in frequency of the incident light and is independent of the intensity of incident light.

Photoelectrons are emitted if the wavelength of the incident light is less than threshold

wavelength, as
$$\phi_0 = \frac{hc}{\lambda_0}$$

Photoelectric emission is an instantaneous process photoelectrons may not be emitted from a gas with ultraviolet light if the work function of that gas is large than the energy UV light

 $\lambda_{\text{photon}} = \frac{hc}{E}$ $\lambda_{\text{electron}} = \frac{h}{\sqrt{2\text{mE}}}$

and

$$\Rightarrow \qquad \qquad \frac{\lambda_{\text{photon}}}{\lambda_{\text{electron}}} = c \sqrt{\frac{2m}{E}}$$
$$\Rightarrow \qquad \qquad \frac{\lambda_{\text{photon}}}{\lambda_{\text{electron}}} \propto \frac{1}{\sqrt{E}}$$

Number of waves $=\frac{10^{-3}}{4000 \times 10^{-10}} = 0.25 \times 10^{4}$

274 (d)

From $E = W_0 + \frac{1}{2}mv_{\text{max}}^2$ $\Rightarrow 2hv_0 = hv_0 + \frac{1}{2}mv_1^2 \Rightarrow hv_0 = \frac{1}{2}mv_1^2$... (i) and $5hv_0 = hv_0 + \frac{1}{2}mv_2^2 \Rightarrow 4hv_0 = \frac{1}{2}mv_2^2$...(ii) Dividing equation (ii) by (i) $\left(\frac{v_2}{v_1}\right)^2 = \frac{4}{1}$ $\Rightarrow v_2 = 2v_1 = 2 \times 4 \times 10^6 = 8 \times 10^6 m/s$ 275 **(c)**

$$\frac{\lambda_e}{\lambda_p} - \frac{\frac{n}{m_e V}}{\frac{h}{m_p V}} = \frac{m_p}{m_e}$$
$$= \frac{1.67 \times 10^{-27}}{9.1 \times 10^{-31}}$$
$$= 0.18 \times 10^4 = 1836$$
6 **(b)**

276 **(b)** $\lambda_0 = \frac{12375}{6.825} = 1813 \text{ Å} = 1800 \text{ Å}$

Momentum of photon, $p = \frac{h}{\lambda}$ Kinetic energy of photon of mass M,

or

278 (c) Energy of a photon $E = \frac{hv}{\lambda}$; *E* is less if λ is longer 279 (b) Peak of K_{α} in greater than peak of K_{β} line

 $K = \frac{p^2}{2M}$ $K = \frac{h^2}{2M\lambda^2}$

280 (b)

For $\phi = 90^{\circ}$, $\cos \phi = 0$ So, $\lambda' = \lambda + \frac{h}{m_e c}$ $= 0.140 \times 10^{-9} + \frac{_{6.63 \times 10^{-34}}}{_{(9.1 \times 10^{-31})(3 \times 10^8)}}$ $= (0.140 \times 10^{-9} + 2.4 \times 10^{-12}) \text{ m} =$ 0.142 nm

 $E_k = E - \phi_0 = 6.2 - 4.2 = 2.0 \text{eV}$ = 2.0 × 1.6 × 10⁻¹⁹ = 3.2 × 10⁻¹⁹ J

282 (c)

A photon is a particle which has zero charge and zero mass and is denoted by γ . The energy of photon is

$$E = hv$$

Here, v = frequency and h = Planck's constant. The momentum of photon is h/v and its velocity is the velocity of light (*c*).

So, the charge is not the property of photons.

283 (a) Interatomic spacing in a crystal acts as a diffraction grating

284 (d)

$$\lambda = \frac{12375}{(40 \times 10^3)} = 0.309 \text{\AA} \approx 0.31 \text{\AA}$$

285 (c)

$$v = \sqrt{\frac{2eV}{m}}$$

Since *e*, and *m* are constant, $\frac{v_1}{v_2} = \sqrt{\frac{V_1}{V_2}}$
or $v_2 = v_1 \sqrt{\frac{V_1}{V_2}} = 3.2 \times 10^7 \sqrt{\frac{5824}{2912}}$

$$=4.525 \times 10^{7} \text{m/s}$$

286 (d)

$$W_{0} = hv_{0} \Rightarrow v_{0} = \frac{W_{0}}{h} = \frac{2.51 \times 1.6 \times 10^{-19}}{6.6 \times 10^{-34}}$$

= 6.08 × 10¹⁴ Cycles/s
287 (a)
Momentum of photon $p = \frac{E}{2}$

 \Rightarrow Velocity of photon $c = \frac{E}{p}$

$$E = 3eV = 3 \times 1.6 \times 10^{-19} \text{ J}$$
$$\lambda = \frac{h}{\sqrt{2mE}}$$
$$= \frac{6.6 \times 10^{-34}}{\sqrt{2 \times 1.7 \times 10^{-27} \times 3 \times 1.6 \times 10^{-19}}}$$
$$= 1.65 \times 10^{-11} \text{ m}$$

289 (d)

In Thomson's mass spectrograph $\vec{E} || \vec{B}$ 290 (d) Retarding potential $V_0 = \frac{h}{e}(v - v_0)$

291 (d)

$$\lambda_{\min} = \frac{hc}{eV} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19}V} = \frac{12375}{V}$$

$$\approx \frac{12400}{V} \mathring{A}$$
294 (b)

$$\frac{QV}{l} - \frac{4}{3}\pi r^3 \rho g$$
and

$$\frac{Q'V'}{l} = \frac{4}{3}\pi (2r)^3 \rho g$$
So, $\frac{Q'V'}{QV} = 8$
or $Q' = \frac{8QV}{V'} = 8Q \times \frac{800}{3200} = 2Q$

Maximum KE of the emitted photoelectrons = $hv - hv_0$

296 (b)

The potential difference across the filament and target determines the energy and hence the penetrating power of *X*-rays

297 **(b)**

In equilibrium,

qE = mgAlso, $E = \frac{V}{d} \text{ and } q = ne$ $\therefore \qquad ne \times \frac{V}{d} = mg$ $\Rightarrow \qquad n = \frac{mgd}{eV}$ Given, $m = 1.8 \times 10^{-14} \text{ kg, } g = 10 \text{ ms}^{-2},$ $d = 0.9 \text{ cm} = 0.9 \times 10^{-2} \text{ m,}$ $e = 1.6 \times 10^{-19} \text{ C,}$ V = 2000 V $\therefore \qquad n = \frac{1.8 \times 10^{-14} \times 10 \times 0.9 \times 10^{-2}}{1.6 \times 10^{-19} \times 2000}$ $n = \frac{81}{16} \approx 5 \text{ electrons}$

298 **(b)**

$$qE = mg$$

or $E = \frac{mg}{q} = \frac{(50 \times 10^{-6}) \times 9.8}{5 \times 10^{-6}} = 98 \text{ NC}^{-1}$

Since the force due to electric field on charged particle should be opposite to the gravity pull and charge on the drop is negative, hence the electric field must act vertically downwards

299 (d)

$$\lambda = \frac{h}{p} \Rightarrow \lambda = \frac{h}{mv}$$

$$r = \frac{mv}{qB} \Rightarrow mv = qrB \Rightarrow (2e)(0.83 \times 10^{-2}) \left(\frac{1}{4}\right)$$

$$\lambda = \frac{6.6 \times 10^{-34} \times 4}{2 \times 1.6 \times 10^{-19} \times 0.83 \times 10^{-12}} \Rightarrow \lambda = 0.01 \text{ Å}$$

 $4 \times 10^3 = 10^{20} \times hf$ $f = \frac{4 \times 10^3}{10^{20} \times 6.023 \times 10^{-34}}$ $f = 6.64 \times 10^{16} \text{ Hz}$ The obtained frequency lies in the band of X-rays. 301 (c) $\lambda_{\min} = \frac{hc}{eV(\text{energy})}$; when *KE* (or *eV*) increases, λ decreases 302 (a) $E = hv = h \cdot \frac{v}{\lambda} \Rightarrow E \propto v \ [h \text{ and } \lambda \text{ are constant}]$ $\frac{E_{ele.}}{E_{photon}} = \frac{v_{ele.}}{C(\text{velocity of light})}$ 303 (a) $E_k = \frac{hc}{\lambda} - \phi_0(\text{in eV})$ $=\frac{6.6\times10^{-34}\times3\times10^8}{5000\times10^{-10}\times1.6\times10^{-19}}-1.9$ = 2.48 - 1.9 = 0.58 e304 (d) Greater the number of electrons striking the anode, larger is the number of X-ray photons emitted 305 (a) From $\lambda_0 = \frac{12375}{W_0}$ The maximum wavelength of light required for the photoelectron emission, $(\lambda_0)_{Li} = \frac{12375}{23} =$ 5380Å Similarly $(\lambda_0)_{Cu} = \frac{12375}{4} = 3094 \text{ Å}$ Since the wavelength 3094 Å does not in the visible region, but it is in the ultraviolet region. Hence to work with visible light, lithium metal will be used for photoelectric cell 306 (a) Stopping potential is that negative potential for which photo electric current is zero 307 (a) Number of photons emitted per sec, $n = \frac{Power}{Energy of photon} = \frac{P}{hv}$ $= \frac{10000}{6.6 \times 10^{-34} \times 880 \times 10^3} = 1.72 \times 10^{31}$ 308 (c) Speed of photon is $3 \times 10^8 m/s$ in vacuum 309 (c)

$$E = \frac{12375}{4000} = 3.09 \ eV$$
 Photoelectrons emit if energy of incident light > work function

310 **(b)**

300 (a)

The energy of photon is
$$E = hv = \frac{hc}{\lambda}$$

Hence, energy of radio photon is

 $E = 6.6 \times 10^{-34} \times 2 \times 10^{5}$ J

$$\left(:: v = \frac{c}{\lambda} = \frac{3 \times 10^8}{1500} = 2 \times \right)$$

105 Hz

÷ $E = 1.32 \times 10^{-28}$ [

311 (a)

By changing the filament current with the help of rheostat, thermionic emission intensity of *X*-rays can be changed

312 (b)

 $\frac{1}{2}mv_1^2 = 2\phi_0 - \phi_0 = \phi_0$ and $\frac{1}{2}mv_2^2 = 10\phi_0 - \phi_0$ $\phi_0 = 9\phi_0$ $\therefore \frac{v_1}{v_2} = \sqrt{\frac{\phi_0}{9\phi_0}} = \frac{1}{3}$

314 (b)

$$v = \frac{E}{B} = \frac{20}{0.5} = 40 \ m/sec$$

315 (c)

The length of Crooke's dark space will be equal to the length of tube *ie*,15cm

316 (c)

Momentum,
$$p = mv = h/\lambda$$

or $v = \frac{h}{m\lambda} = \frac{6.62 \times 10^{-34}}{9.1 \times 10^{-31} \times 5.2 \times 10^{-7}}$
= 1.4 × 10³ ms⁻¹ = 1400 ms⁻¹

317 (b)

Stopping potential does not depend on the relative distance between the source and the cell

318 (b)

 $hc/\lambda = 10^3 \, \text{eV}$...(i) $hv = 10^6 \text{eV}$...(ii) Dividing Eq.(ii) by Eq. (i) we get, $v = 10^3 c/\lambda$ $= 10^3 \times 3 \times 10^8 / 1.24 \times 10^{-9} = 2.4 \times 10^{20} \text{Hz}$

319 (d)

In equilibrium

$$eE = mg$$

 $E = \frac{mg}{e} = \frac{9.75 \times 10^{-15} \times 10}{30 \times 10^{-16}}$
 $= 32.5 \text{ Vm}^{-1}$

320 (a)

Intensity of X-rays depends upon the number of electron striking the target

321 (b)

 $I_1 > I_2$ (given) $\Rightarrow i_1 > i_2 [:: i \propto I]$ and stopping potential does not depend upon intensity. So its value will be same (V_0)

A charged particle is deflected by electric and magnetic fields. If the cathode rays is deflected by electric and magnetic fields then this is the strong argument for the particle nature of cathode rays.

323 (c) Using $\lambda = \frac{h}{\sqrt{2mE}} = \frac{h}{\sqrt{2mqV}} \Rightarrow \lambda \propto \frac{1}{\sqrt{mq}}$ $\Rightarrow \frac{\lambda_{\alpha}}{\lambda_{p}} = \sqrt{\frac{m_{p}q_{p}}{m_{\alpha}q_{\alpha}}} \because q_{\alpha} = 2q_{p}, m_{\alpha} = 4m_{p}, \lambda_{p} = \lambda$ [Given] $\Rightarrow \lambda_{\alpha} = \frac{\lambda}{2\sqrt{2}}$ 324 (a) $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2qVm}} \text{ or } \lambda \propto \frac{1}{\sqrt{qm}}$ $\frac{\lambda_p}{\lambda_{\alpha}} = \sqrt{\frac{q_{\alpha}}{q_p} \cdot \frac{m_{\alpha}}{m_p}} = \sqrt{\frac{(2)(4)}{(1)(1)}} = 2.828$ The nearest integer is 3. 326 (c) $W_0 = \frac{hc}{\lambda_0} = \frac{6.625 \times 10^{-34} \times 3 \times 10^8}{5000 \times 10^{-10}} J$ 327 (a) $\lambda_{X-ray} < \lambda_{UV-ray}$ 328 (c) $K = Q.V = 1e \times 1 Volt = 1eV$ 329 (d) $q v B = mv^2/r$ or mv = q r B. 33

$$V_{\text{max}} = \frac{12400 \times 10^{-10}}{10^{-11}} = 124kV \Rightarrow v < 124kV$$

331 (a)

e/m of the anode rays depend on the nature of the gas filled in the discharge tube

332 (a)

$$K_p = E_p - \phi_p = \frac{1240}{550} - 2.0 = 0.2545 \text{ eV}$$

$$K_q = E_q - \phi_q = \frac{1240}{450} - 2.5 = 0.255 \text{ eV}$$

$$K_r = E_r - \phi_r = \frac{1240}{350} - 3.0 = 0.543 \text{ eV}$$

In the above equation K represents maximum kinetic energy of photoelectrons and *E*, the energy of incident right.

From the above values we can see that stopping potential,

$$|V_r| > |V_q| > |V_p|$$

Further, their intensities are equal, but energy of individual photon r is maximum. Hence, number of photons incident (per unit area per unit time) of *r* can be assumed to be least. Hence, saturation current of *r* should be minimum.

Keeping these points in mind no option seems to be correct. The correct graph is shown below

 \therefore No choice is correct.

334 **(b)**

From Einstein's photoelectric equation the maximum kinetic energy of photoelectrons emitted from metal surface is E_K and W is work function, then

$$E_{K} = hv - W$$

If v_{0} is threshold frequency, then
 $W = hv_{0}$
 \therefore
 $hv_{0} = h(v - v_{0})$

From the above equation, it is clear that maximum kinetic energy of electron will increases almost linearly with increase in the frequency of the incident light.

335 **(b)**

$$eV = \frac{1}{2}mv^2 \Rightarrow v^2 = \frac{2eV}{m} \Rightarrow v = \sqrt{\frac{2eV}{m}}$$

337 (d)

On the basis of dual nature of light, Lious de-Broglie suggested that the dual nature is not only of light, but each moving material particle has the dual nature. He assumed a wave to be associated with each moving material particle which is called the matter wave. The wavelength of this wave is determined by the momentum of the particle. If *p* is the momentum of the particle, the wavelength of the wave associated with it is

$$\lambda = \frac{h}{p}$$

Where *h* is Planck's constant. Since, it is given that , alpha, beta and gamma rays carry same momentum, so they will have same wavelength.

341 **(b)**

or

Work function is given by

$$\Phi = \frac{hc}{\lambda}$$
$$\Phi \propto \frac{1}{\lambda}$$

$$\frac{\Phi_1}{\Phi_2} = \frac{\lambda_2}{\lambda_1} = \frac{600}{300} = \frac{2}{1}$$

÷

If v is the velocity attained by electron, then

$$\frac{1}{2}mv^2 = eV$$
$$v = \sqrt{\frac{2eV}{m}}$$

343 **(d)**

In 1905, Einstein explained the phenomenon of photoelectric effect on the basis of Planck's quantum theory. According to which light travels in the form of small bundles or packets of energy called quanta or photons. Newton's corpuscular theory explained, the rectilinear propagation of light. Wave nature of light was used to explain the interference effect of light. Bohr's gave a detailed theory explaining the structure of atom.

345 **(d)**

 $E_K = hv -$

The cut-off voltage or stopping potential measure maximum kinetic energy of the electron. It depends on the frequency of incident light whereas the current depends on the number of photons incident. Hence, cut-off voltage will be 0.5 V. Now by inverse square law,

$$12 \propto \frac{1}{(0.2)^2}$$
 or I

 $\frac{l}{12} = \frac{(0.2)^2}{(0.4)^2} = \frac{1}{4}$

 $I = \frac{12}{4} = 3$ mA

or 346 **(b)**

$$\lambda \propto \frac{1}{Z^2} \Rightarrow \frac{c}{v} \propto \frac{1}{Z^2} \Rightarrow v \propto Z^2$$
347 (a)

$$\frac{1}{2}mv^2 = hv - \phi_0 = hv - hv_0$$

For minimum kinetic energy of emitted photoelectron,

 $\propto \frac{1}{(0.4)^2}$

$$v = v_0$$

$$\therefore \frac{1}{2}mv^2 = 0$$

348 **(c)**

$$\lambda = \frac{h}{m\nu} \Rightarrow \lambda \propto \frac{1}{m}$$
349 (c)

Using
$$Z^2 = k\left(\frac{q}{m}\right)y$$
; where $k = \frac{B^2 LD}{E}$

For parabolas to coincide in the two photographs,

the $\frac{kq}{m}$ should be same for the two cases Thus, $\frac{B_1^2 LDe}{E_1 m_1} = \frac{B_2^2 LD(2e)}{E_2 m_2}$ $\Rightarrow \frac{m_1}{m_2} = \left(\frac{B_1}{B_2}\right)^2 \times \left(\frac{E_2}{E_1}\right) \times \frac{1}{2} = \frac{9}{4} \times \frac{2}{1} \times \frac{1}{2} = \frac{9}{4}$

350 **(b)**

The kinetic energy acquired by the particle is $KE = q\Delta V$

Where *q* is charged and ΔV the change is potential difference. Given, $q = e = 1.6 \times 10^{-19} \text{ C}$

 $\Delta V = V_2 - V_1 = 70 - 50 = 20 \text{ V}$

 $KE = 1.6 \times 10^{-19} \times 20 = 3.2 \times 10^{-19}$

Given,

...

 10^{-18} J

352 (d)

Photoelectric effect supports quantum nature of light because

- There is minimum frequency of light below which no photoelectrons are emitted.
- Maximum kinetic energy of photoelectrons depends only on the frequency of light and not on its intensity.
- 3. Even when metal surface is fainthy illuminated the photoelectrons leave the surface immediately.

353 (c)

$$E = ev = hv_{\max} = \frac{hc}{\lambda_{\min}} \Rightarrow \lambda_{\min} = \frac{hc}{eV}$$

354 **(b)**

X-rays have high energy. They penetrate into the solid crystal and are used to find out the internal structure

355 **(b)**

$$K_{\text{particle}} = \frac{1}{2}mv^2 \text{ also } \lambda = \frac{h}{mv}$$

$$\Rightarrow K_{\text{particle}} = \frac{1}{2}\left(\frac{h}{\lambda v}\right) \cdot v^2 = \frac{vh}{2\lambda} \quad \dots \text{ (i)}$$

$$K_{\text{photon}} = \frac{hc}{\lambda} \quad \dots \text{ (ii)}$$

$$\therefore \frac{K_{\text{particle}}}{K_{\text{photon}}} = \frac{v}{2c} = \frac{2.25 \times 10^8}{2 \times 3 \times 10^8} = \frac{3}{8}$$

356 (d)

Target should be of high atomic number and high melting point

357 (a)

$$W_{0(eV)} = \frac{12375}{6500\text{\AA}} = 1.9eV = 2eV$$

358 **(c)**

De broglie wave length $\lambda = \frac{h}{mv}$

As both particle and electron having same wave length therefore their momentum will be equal

$$\begin{split} m_p \, v_p &= m_e v_e \Rightarrow v_p = \frac{m_e v_e}{m_p} \\ &= \frac{9.1 \times 10^{-31} \times 3 \times 10^6}{10^{-6}} \\ \Rightarrow v_p &= 2.7 \times 10^{-18} \, m/s \end{split}$$

359 **(a)**

Refer to threshold frequency

360 **(c)**

Let E_1 and E_2 be the KE of photoelectrons for incident light of frequency v and 2v respectively. Then $hv = E_1 + \phi$ and $h2v = E_2 + \phi_0$ So, $2(E_1 + \phi_0) = E_2 + \phi_0$ or $E_2 = 2E_1 + \phi_0$ It means the KE of photoelectron becomes more than double

361 **(b)**

$$E_k = eV = hv - \phi_0$$

or $V = \frac{h}{e} v - \frac{\phi_0}{e}$
Slope of straight line between *V* and *v* is
 $\frac{h}{e} h = e \times$ slope of straight line.

362 **(a)**

Binding energy, $W = \frac{hc}{\lambda} - E$; Where $E = R/\alpha$; Here, $\lambda = 4.9 \times 10^{-10} m$ $R_1 = 1.4cm, R_2 = 2.02cm; \ \alpha = 1cm/keV$ For cloud chamber, the range-energy relation is $R = \alpha E$ or $E = R/\alpha$ $\therefore E_1 = \frac{R_1}{\alpha} = \frac{1.40}{1} = 1.40 keV$ and $E_2 = \frac{R_2}{\alpha} = \frac{2.02}{1} = 2.02 keV$ Energy of the incident photon $hv = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{4.9 \times 10^{-10}} J = 2.54 \ keV$ From Einstein's Photoelectric equation hv = W + E \therefore Binding energy, W = hv - E $\Rightarrow W_1 = 2.54 - 1.40 = 1.14 \ keV$ and $W_2 = 2.54 - 2.02 = 0.52 \ keV$ 363 (a) de-Broglie wavelength $\lambda = \frac{h}{m\nu}$ or $\lambda \propto \frac{1}{m}$ $\therefore \quad \lambda_e \propto \frac{1}{m}, \ \lambda_\alpha \propto \frac{1}{m_\alpha} \ and \ \lambda_p \propto \frac{1}{m_\alpha}$ As we know that $m_e < m_p < m_{\alpha}$ $\lambda_e > \lambda_p > \lambda_{\alpha}$ So, Or $\lambda_e > \lambda_\alpha$ or $\lambda_p > \lambda_\alpha$ or $\lambda_e > \lambda_p$

364 (c) Specific charge on proton $= \left(\frac{e}{m}\right)_n$ $= 9.6 \times 10^7$ Ckg⁻¹ specific charge on ∝-particle, $\left(\frac{q}{m}\right)_{\propto} = \frac{2e}{4m} = \frac{1}{2}\left(\frac{e}{m}\right)_p = \frac{1}{2} \times 9.6 \times$ 10^{7} $= 4.8 \times 10^7 \text{ Ckg}^{-1}$ 365 (b) $a = \frac{F}{m}$ $=\frac{qE}{m}$ $=\frac{mg}{m}$ =10 $g = 10 \text{ ms}^{-2}$ qEтg 366 (d) $E = W_0 + K_{\text{max}}$. From the given data *E* is 6.78 *eV* (for $\lambda = 1824$ Å) or 10.17 *eV* [for $\lambda = 1216$ Å] $\therefore W_0 = E - K_{\max} = 6.78 - 5.3 = 1.48 \, eV$ or $W_0 = 10.17 - 8.7 = 1.47 \ eV$ 367 (a) $P = 2 \times 10^{-3} \text{ W}$ Energy of photon, E = hv $= 6.6 \times 10^{-34} \times 6 \times$ 10^{14} I Where *h* being Planck's constant. Number of photons emitted per second $n = \frac{p}{E}$ $=\frac{2\times10^{-3}}{6.6\times10^{-34}\times6\times10^{14}}=$ 5×10^{15} 368 (a) Using Einstein's equation, $V_0 = \left(\frac{h}{e}\right)v - \frac{W_0}{e}$ Comparing this equation with y = mx + cWe get intercept on $-V_0$ axis $=\frac{W_0}{e}$ $\Rightarrow OB = \frac{W_0}{e} \Rightarrow W_0 = OB \times e$ 369 (a)

$$eV = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{1.5 \times 10^{-10}}$$

$$\Rightarrow V = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{1.6 \times 10^{-19} \times 1.5 \times 10^{-10}} = 8280 \text{ Volt}$$
370 (c)
$$E = \frac{1}{2}mv^{2}$$
or $v = \sqrt{\frac{2E}{m}}$
 $q v B = \frac{mv^{2}}{r}$
or $r = \frac{mv}{qB} = \frac{m}{qB} \times \sqrt{\frac{2E}{m}} = \frac{\sqrt{2Em}}{qB}$
or $r \propto \sqrt{\frac{m}{q}}$
 $r = \left(\frac{m_{He}}{m_{0}}\right)^{1/2} \times \left(\frac{q_{0}}{q_{He}}\right)$
 $= \left(\frac{4}{16}\right)^{1/2} \times \left(\frac{2e}{e}\right) = 1$
 $= r_{1} = r_{2}$
371 (c)
$$E = \frac{1}{2}mv^{2} \text{ or } v^{2} = 2E/m;$$
If E' is the intensity of electric field applied then
 $E'q = mv^{2}/r$
or $r = mv^{2}/E'q$
or $r = \frac{m(2E/m)}{e} = \frac{2}{e} E'$
 $ie, r \propto 1/q$
so $\frac{r_{e}}{r_{p}} = \frac{e}{e} = 1$ $ie, r_{e} = r_{p}$
372 (b)
For one second, distance = Velocity = 3 × 10^{4}m/sec \text{ and } Q = i \times 1 = 10^{-6}C. Charge density
 $= \frac{Charge}{Volume}$
 $= \frac{10^{-6}}{3 \times 10^{4} \times 0.5 \times 10^{-6}} = 6.6 \times 10^{-5}C/m^{3}$
373 (a)
Saturation current is proportional to intensity while stopping potential increases with increase in frequency. Hence,
 $v_{a} = v_{b}$ while $I_{a} < I_{b}$
374 (a)
The deflection suffered by charged particle in an electric field is
 $y = \frac{qELD}{p^{2}/m} = \frac{qELD}{p^{2}/m} [p = mu]$
 $\Rightarrow y \propto \frac{qm}{p^{2}} \Rightarrow y_{p}: y_{d}: y_{a} = \frac{q_{p}m_{p}}{p_{p}^{2}}: \frac{q_{a}m_{a}}{p_{a}^{2}}$

Since $p_{\alpha} = p_d = p_p$ [Given] $m_p: m_d: m_{\alpha} = 1:2:4$ and $q_p: q_d: q_{\alpha} = 1:1:2$ $\Rightarrow y_p: y_d: y_{\alpha} = 1 \times 1:1 \times 2:2 \times 4 = 1:2:8$ 375 **(b)**

$$\lambda_{k\alpha} \propto \frac{1}{(Z-1)^2} \Rightarrow \frac{\lambda_{Ni}}{\lambda_{Co}} = \left(\frac{Z_{Co}-1}{Z_{Ni}-1}\right)^2 = \left(\frac{27-1}{28-1}\right)^2$$
$$\Rightarrow \lambda_{Ni} = \left(\frac{26}{27}\right)^2 \times \lambda_{Co} = \left(\frac{26}{27}\right)^2 \times 179 = 165.9 \ pm$$
$$< 179 pm$$

376 **(d)**

From Einstein equation $E = W_0 + \frac{1}{2}mv^2$

$$\sqrt{\frac{2(E-W_0)}{m}} = \imath$$

and a charged particle placed in uniform magnetic field experience a force

$$F = \frac{mv^2}{r} \Rightarrow evB = \frac{mv^2}{r} \Rightarrow r = \frac{mv}{eB}$$
$$\Rightarrow r = \frac{\sqrt{2m(E - W_0)}}{eB}$$

377 (c)

Cathode rays are composed of electrons, when they move in electric field a force

$$F = eE$$
 ...(i)

Acts on them, this provides the necessary centripetal force to the particles

$$F = \frac{mv^2}{r} \dots (ii)$$

From Eqs. (i) and (ii), we get

$$eE = \frac{mv^2}{r}$$

$$\Rightarrow \qquad r = \frac{mv^2}{eE} = \frac{m(10^6)^2}{e(300)} \quad \dots (iii)$$

When velocity is doubled same circular path is followed, hence radius is same

$$r = \frac{m(2 \times 10^6)^2}{eE} \quad ...(iv)$$
s. (iii) and (iv), we get

Equating Eqs. (iii) and (iv), we get $m \times \frac{(10^6)^2}{300e} = \frac{m \times (2 \times 10^6)^2}{eE}$ $\Rightarrow \qquad E = 300 \times 4 = 1200 \text{ V-cm}^{-1}$

⇒ 378 (c)

$$E(eV) = \frac{12375}{1.65} = 7500eV = 7.5 \, keV$$

379 **(a)**

The wavelength of blue light is 4800Å, so material will emit photoelectrons when it is illuminated with light from a 40 W blue lamp. 380 **(a)**

$$p = \frac{hv}{c} = \frac{6.6 \times 10^{-34} \times 1.5 \times 10^{13}}{3 \times 10^8}$$
$$= 3.3 \times 10^{-29} kg - m/s$$

381 **(b)**

Positive rays were discovered by Goldstein 383 **(a)**

The figure shows the path of a +ve charged particle (1) through a rectangular region of uniform electric field.

Since, +ve charged particle moves as a parabolic path in electric field. It means the direction of electric field is upward. The direction of deflection of particle (2) which is -ve is downward. The direction of deflection of particle (3) which is +ve is upward and direction of deflection of particle (4) is downward.

384 **(a)**

Particle is photon and it travels with the velocity equal to light in vacuum

385 **(b)**

Kinetic energy is given by

$$K = \frac{1}{2}mv^2 = \frac{p^2}{2m} \qquad (::$$

p = mv)

 $\Rightarrow \qquad p = \sqrt{2mK}...(i)$

Again de-Broglie wavelength is given by

$$\lambda = \frac{h}{n}$$
...(ii)

Substituting for *p* from Eq. (i) into Eq. (ii), we have

$$\lambda = \frac{h}{\sqrt{2mK}}$$

$$\Rightarrow \qquad K = \frac{h^2}{2m\lambda^2}$$
Given, $h = 6.6 \times 10^{-34}$ J-s, $m = 9.1 \times 10^{-3}$ kg
 $\lambda = 0.3$ nm= 0.3×10^{-9} m

$$\therefore \qquad K = \frac{(6.6 \times 10^{-34})^2}{2 \times 9.1 \times 10^{-31} \times (0.3 \times 10^{-9})^2}$$

$$= \frac{26.6 \times 10^{-19}}{1.6 \times 10^{-19}} eV = 16.6 eV$$

388 **(b)**

From relation
$$\lambda = \frac{h}{\sqrt{2mqV}}$$
 or $\lambda \propto \frac{1}{\sqrt{mq}}$
Hence, $\frac{\lambda_p}{\lambda_\alpha} = \sqrt{\frac{m_\alpha}{m_p} \times \frac{q_\alpha}{q_p}}$
 $= \sqrt{\frac{4m_p \times 2e}{m_p \times e}} = \sqrt{8}$

389 **(d)**

Light consists of photons and cathode rays consists of electrons. However both effect the photographic plate

$$E = hv = mc^2 \Rightarrow m = \frac{hv}{c^2}$$

392 **(a)**

de-Broglie wavelength associated with a moving particle

$$\lambda = \frac{h}{mv}$$

Or
$$\lambda = \frac{h}{p}$$

Where *p* is momentum of the particle.

393 (a)

Here,
$$u = 0$$
, $a = qE/m$; $s = l$ and $v =$?
As $v^2 = u^2 + 2as$; so $v^2 = 0 + 2\frac{qEl}{m}$
or $v = \frac{\sqrt{2qEl}}{m}$

394 (c)

From Einstein's photoelectric equation, we have $E_k = hv - W$ Where E_k is maximum kinetic energy of photoelectrons and W the work function

 $(=hv_0).$ $\therefore \qquad E_k =$ h(v - v0

Where v_0 is threshold frequency.

For hv' = 2hv $\therefore \qquad 2E_k = 2h(v - v_0)$

From Eqs. (i) and (ii), we observe that kinetic energy of emitted electron will become more than doubled.

395 **(d)**

Nucleus of heavy atom captures electron of Korbit. This is a radioactive process, so vacancy of this electron is filled by an outer electron and xrays are produce

396 **(a)**

For an accelerating voltage *V*, the maximum X-ray photon energy is given by

$$hv_{\text{max}} = eV$$
Also, $\gamma = \frac{c}{\lambda} = \frac{\text{velocity of light}}{\text{wavelength}}$

$$\therefore \quad \lambda_{\min} = \frac{\text{ch}}{\text{eV}} = \frac{3 \times 10^8 \times 6.63 \times 10^{-34}}{1.6 \times 10^{-19} \times 40 \times 10^3}$$

$$= 0.31 \times 10^{-10} \text{ m} \approx 0.31 \text{ A}$$

397 **(d)**

The emission of photoelectron takes place only, when the frequency of the incident light is above a certain critical value, characteristic of that metal. The critical value of frequency is known as the threshold frequency for the metal of the emitting electrode.

Suppose that when light of certain frequency is incident over a metal surface, the photo-electrons are emitted. To take photoelectric current zero, a particular value of stopping potential will be needed. If we go on reducing the frequency of incident light, the value of stopping potential will also go on decreasing. At certain value of frequency v_0 , the photoelectric current will become zero, even when no retarding potential is applied. This frequency v_0 corresponds to the threshold for the metal surface. The emission of photo-electrons does not take place, till frequency of incident light is below this value.

398 **(a)**

...(i)

In 1927 at Bell Labs, Clinton Davisson and Lester Germer fined slow moving electrons at a crystalline nickel target. The angular dependence of the reflected electron intensity was measured and was determined to have the same difffraction pattern as those predicted by Bragg for X-rays. This experiment, proved the wave like nature of matter and completed the wave particle duality hypothesis, which was a fundamental step in quantum theory.

While Compton scattaering or Compton effect observed by Arthur Holly Compton in 1927, proved the particle nature of light.

400 **(a)**

⇒

:.

 $hv_0 = 6.2 \ eV$, $eV_0 = 5 \ eV$ from Einstein's photoelectric equation

$$hv = hv_0 + eV_0 = 6.2 +$$

$$= 11.2 eV$$

$$\frac{hc}{\lambda} = 11.2$$

$$\lambda = \frac{hc}{\lambda} = 1108.9\text{\AA}$$

Which belongs to ultra-violet region.

$$\lambda \propto \frac{1}{p} \Rightarrow \frac{\Delta p}{p} = -\frac{\Delta \lambda}{\lambda} \Rightarrow \left|\frac{\Delta p}{p}\right| = \left|\frac{\Delta \lambda}{\lambda}\right|$$

5

 $\Rightarrow \frac{p_0}{p} = \frac{0.25}{100} = \frac{1}{400} \Rightarrow p = 400 p_0$ 402 (a) $E = hv = 6.6 \times 10^{-34} \times 10^{15} = 6.6 \times 10^{-19} J$ 4 403 (a) |-4V| > |-2V|404 **(b)** Required ionisation energy $=\frac{hc}{\lambda}=\frac{6.6\times10^{-34}\times3\times10^8}{1.54\times10^{-10}}J=12.9\times10^{-16}J$ 405 (c) 4 Light intensity = 10^{-10} W m⁻². So energy falling on area of point to be perceived $= 10^{-10} \times 10^{-4} = nhc/\lambda$ 4 or $n = \frac{10^{-14} \times 5.6 \times 10^{-7}}{6.6 \times 10^{-34} \times 3 \times 10^8} = 3 \times 10^4$ 4 406 (d) Because they are electromagnetic waves 407 (a) Lorentz force is the force exerted on a charged particle in a electromagnetic field. The particle will experience force due to electric field qE, and due to magnetic field (B) is $qv \times B$. $F = qE + q\mathbf{v} \times \mathbf{B} = qE + qE + q\mathbf{v} \times \mathbf{B}$ $qv B \sin \theta$ Where θ is angle between electric and magnetic field. Since, the fields the parallel $\theta = 0$. \therefore F_m =force due to magnetic field is zero. Hence, only electric force $(F_e = qE)$ is exerted on 4 the particle, so the particle move in a straight line with motion parallel to *B*. 408 (d) The de-Broglie wavelength $\lambda = \frac{hc}{E} = \frac{1240}{200 \times 10^6}$ 4 $=6.20 \times 10^{-6}$ nm = 6.20 fm 409 (a) 4 Use Bragg's X-ray diffraction Law $n\lambda = 2d\sin\theta$ $\therefore \lambda = \frac{2d\sin\theta}{n}$ For longest wavelength take $\sin \theta = 1$ $\therefore \lambda = \frac{2 \times 2.82 [\text{Å}]}{2} [\because n = 2 \text{ for second order}]$ 4 = 2.82 Å 410 (a) $E = \frac{12375}{\lambda} = \frac{12375}{5000} = 2.47 \ eV = 2.5 \ eV$

411 **(b)**

Force on the charged particle in magnetic field is $\vec{\mathbf{F}} = q(v\hat{\mathbf{k}} \times B\hat{\mathbf{j}}) = qvB(\hat{\mathbf{k}} \times \hat{\mathbf{j}}) = qvB(-\hat{\mathbf{i}})$ 412 **(b)**

When a high energy electron is incident on heavy metal, it produces *X*-rays

metal, it produces X-rays
13 (a)

$$\frac{1}{\lambda} \propto (Z-1)^{2}$$

$$\therefore \quad \frac{\lambda_{1}}{\lambda_{2}} = \left(\frac{Z_{2}-1}{(Z_{1}-1)}\right)^{2}$$
or

$$\frac{1}{4} = \left(\frac{Z_{2}-1}{(Z_{1}-1)}\right)^{2}$$
Solving this we get, $Z_{2} = 6$
14 (b)
 $2r = \frac{2mv}{qB} \Rightarrow 2r \propto \frac{m}{q} \Rightarrow \frac{m}{q}$ is maximum for C+
15 (b)
Refer to the application of X-rays
16 (c)
Radius of circular path described by a charged
particle in a magnetic field is given by
 $r = \frac{\sqrt{2mK}}{qB}$; where $K = \text{Kinetic energy of}$
electron $\Rightarrow K = \frac{q^{2}B^{2}r^{2}}{2m} = \left(\frac{e}{m}\right)\frac{eB^{2}r^{2}}{2}$
 $= \frac{1}{2} \times 1.7 \times 10^{11} \times 1.6 \times 10^{-19} \times \left[\frac{1}{\sqrt{17}} \times 10^{-5}\right]^{2}$
 $\times (1)^{2}$
 $= 8 \times 10^{-20}J = 0.5 eV$
By using $E = W_{0} + K_{max}$
 $\Rightarrow W_{0} = E - K_{max} = \left(\frac{12375}{2475}\right)eV - 0.5 eV$
 $= 4.5 eV$
17 (c)
 $v = \frac{E}{B}$; where $E = \frac{V}{d} = \frac{1000}{1 \times 10^{-2}} = 10^{5}V/m$
 $\Rightarrow v = \frac{10^{5}}{1} = 10^{5}m/s$
18 (d)
Threshold wavelength $\lambda_{0} = \frac{12375}{2.1} = 5892.8 \text{ Å}$
19 (c)
In mass spectrograph, $\frac{Mv^{2}}{r} = qv B'$
and $qE = Bqv$ or $v = \frac{E}{B}$
or $r = \frac{Mv}{B'q} = \frac{M}{B'q} \left(\frac{E}{B}\right) = \frac{ME}{qBB'}$
so r is related with (q/M)
20 (d)
Electrostatic force on charged particle
 $F = qE$
So, by Newton's law of motion
 $F = ma = qE$ or $a = \frac{qE}{m}$
Velocity attained by particle $v = 0 + \frac{qE}{m} t$

So, kinetic energy $K = \frac{1}{2}mv^2$ $K = \frac{1}{2} \frac{mq^2 E^2}{m^2} t^2 = \frac{E^2 q^2 t^2}{2m}$

421 (b)

From Einstein's photoelectric equation the maximum kinetic energy of photoelectrons emitted from metal surface is given by

$$E_k = hv_1 - W$$

Where *W* is work function of metal.

Given, W = hv and $v_1 = 4v$

$$\therefore \qquad E_k = 4hv - hv = 3hv$$

422 (b)

Threshold energy of *A* is

1014

$$E_A = hv_A$$

= 6.6 × 10⁻³⁴ × 1.8 ×

$$= 11.88 \times 10^{-20} J$$

= $\frac{11.88 \times 10^{-20}}{1.6 \times 10^{-19}} eV$
= 0.74 eV

 $E_B = 0.91 \, eV$ Similarly, Since, the incident photons have energy greater than E_A but less than E_B .

So, photoelectrons will be emitted from metal A only.

423 **(b)**

Gained in KE = $qV = 2 \times 5 = 10 \text{ eV}$

424 (c)

From Planck's hypothesis, the energy of a photon of frequency v is

$$E = hv = \frac{hc}{\lambda}$$

Where *c* is speed of light and λ the wavelength. In the visible part, red colour has maximum wavelength

$$\lambda = 8000 \text{ Å}$$

$$\therefore \qquad E = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{8000 \times 10^{-10}}$$

Also, $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$

$$\therefore \qquad E = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{8000 \times 10^{-10} \times 1.6 \times 10^{-19}}$$

$$= 1.547 \text{ eV}$$

425 (c)

$$\frac{1}{2}mv^2 = eV$$
$$v = \sqrt{\frac{2eV}{m}} = \sqrt{2V \times \frac{e}{m}}$$

$$v = \sqrt{2 \times 0.91 \times 1.76 \times 10^{11}}$$

= 5 × 10⁵m/s
= 500Km/s
426 (d)

$$\frac{hc}{\lambda} = W_0 + \frac{1}{2}mv_{\max}^2$$

Assuming W_0 to be negligible in comparison to $\frac{hc}{\lambda}$

i.e.
$$v_{\max}^2 \propto \frac{1}{\lambda} \Rightarrow v_{\max} \propto \frac{1}{\sqrt{\lambda}}$$

[On increasing wavelength λ to 4λ , v_{max} becomes half]

427 (a)

Wavelength of photon will be greater than that of electron because mass of photon is less than that of electron

 $\lambda_{\rm ph} > \lambda_{\rm el}$

428 (c)

⇒

As electron is moving parallel to both the fields, so magnetic force does not affect the electron's motion. But electric force (qE) acts opposite to motion of electron. Hence, electron will not be deflected but its speed decreases.

429 (c)

By using
$$I = \frac{P}{A}$$
; where P = radiation power
 $\Rightarrow P = I \times A \Rightarrow \frac{nhc}{t\lambda} = IA \Rightarrow \frac{n}{t} = \frac{IA\lambda}{hc}$
Hence number of photons entering per sec the end

eye $10^{-10} \times 10^{-6} \times \Gamma (\times 10^{-7})$

$$\binom{n}{t} = \frac{10^{\circ} \times 10^{\circ} \times 3.0 \times 10^{\circ}}{6.6 \times 10^{-34} \times 3 \times 10^{8}} = 300$$
(c)

430 (c)

When light waves of differing frequencies are made incident on the same surface, the stopping potential (V_s) differ as is evidenced from Einstein's photoelectric equation given by h

$$v - hv_0 = eV_s$$

where h is Planck's constant, v, v_0 the frequencies and e the charge.

...(i)

Comparing Eq. (i) with straight line equation

 $V_s = \frac{hv}{e} - \frac{hv}{e}$

$$y = mx + c$$

Slope $m = \frac{h}{e}$
Where $h = 6.6 \times 10^{-34}$ Js, $e = 1.6 \times 10^{-19}$ C.
 $\therefore \qquad m = \frac{6.6 \times 10^{-34}}{1.6 \times 10^{-19}} = 4.125 \times 10^{-15}$

431 (b)

Hence,

When the oil drop is falling freely under the effect

of gravity is a viscous medium with terminal speed *v*, then

 $mg = 6\pi \eta r v$...(i) To move the oil drop upward with terminal velocity v if E is the electric field intensity applied, the $Eq = mg + 6\pi\eta rv = mg + mg = 2mg$ So E = 2 mg/q

432 **(b)**

From the given graph it is clear that if we extend the given graph for A and B, intercept of the line Aon V axis will be smaller as compared to line Bmeans work function of A is smaller than that of B

433 **(c)**

$$\frac{1}{2}mv_{\text{max}}^2 = \left[\frac{hc}{\lambda} - \phi_0\right] \text{ or } v_{\text{max}}^2 = \frac{2}{m} \left[\frac{hc}{\lambda} - \phi_0\right]$$
$$= \frac{2}{9.1 \times 10^{-31}} \times \left[\frac{6.63 \times 10^{-34} \times 3 \times 10^8}{3.8 \times 10^{-7}} - 2.5 \times 1.6 \times 10^{-19}\right]$$
$$= 27.12 \times 10^{10} \text{ m}^2 \text{ s}^{-2}$$

$$= 27.12 \times 10^{-5} \text{ m}^{-5} \text{ s}^{-2}$$

Now, $B = \frac{mv_{\text{max}}}{eR_{\text{max}}} = \frac{9.1 \times 10^{-31} \times 5.21 \times 10^{5}}{1.6 \times 10^{-19} \times 0.5}$
$$= 6.32 \times 10^{-6} \text{ T}$$

$$\lambda_{\min} = \frac{hc}{eV} \Rightarrow \log \lambda_{\min} = \log \frac{hc}{e} - \log V$$
$$\Rightarrow \log \lambda_{\min} = -\log V + \log \frac{hc}{e}$$

This is the equation of straight line having slope (-1) and intercept $\log \frac{hc}{e}$ on $+ \log_e \lambda_{\min}$ axis

437 **(b)**

The colour of the positive column in a discharge tube depends on the type of gas e.g., for air, colour is purple red, for H_2 colour is Blue etc

438 **(c)**

 $v_{\max} \propto \frac{1}{\lambda_{\min}}$ Hard *X*-rays have high frequency and low wavelength

439 **(a)**

All the positive ions of same specific charge moving with different velocity lie on the same parabola

440 (d)

From Einstein's photoelectric equation

$$eV_0 = \frac{hc}{\lambda_0} - W_0$$
$$eV' = \frac{hc}{2\lambda_0} - W_0$$
Subtracting $e(V_0 - V') = \frac{hc}{\lambda_0} \left[1 - \frac{1}{2}\right] = \frac{hc}{2\lambda_0}$ or
$$V' = V_0 - \frac{hc}{2e\lambda_0}$$

441 (c)

In discharge tube, the current is due to flow of positions ions and electrons. Moreover secondary emission of electrons is also possible. So, V - I curve is non-linear, hence its resistance is non-ohmic.

443 **(b)**

$$i = \frac{Q}{t} = \frac{ne}{t} = 1.8 \times 10^{14} \times 1.6 \times 10^{-19}$$
$$= 28.8 \times 10^{-6} A$$

= 29 μA

444 **(a)**

Penetrating power is greater for lower wavelength

445 **(a)**

The velocity of photoelectrons depends upon the frequency of the incident light

446 **(a)**

Here, No. of electrons $n_e = 5 \times 10^7 \text{ cm}^{-3} = 5 \times 10^7 \times 10^6 \text{m}^{-3}$ No. of positive ions, $n_p = 5 \times 10^7 \times 10^6$ $= 5 \times 10^{13} \text{m}^{-3}$ $v = 0.4 \text{ms}^{-1}$; $J = 4 \times 10^{-6} \text{ Am}^{-2}$; $v_p =$? Use the relation $J = n_e e v_e + n_p e v_p$ and solve it for v_p $4 \times 10^{-6} = (5 \times 10^{13} \times 1.6 \times 10^{-19} \times 0.4) + (5 \times 10^{13} \times 1.6 \times 10^{-19} \times v_p)$ $v_p = \frac{4 \times 10^{-6} - 3.2 \times 10^{-6}}{8.0 \times 10^{-6}} = \frac{0.8 \times 10^{-6}}{8 \times 10^{-6}}$

 $= 0.1 \text{ms}^{-1}$

447 **(c)**

Work required to move one electron (e) through a potential difference of 1 V, gives the unit of energy abbreviate as eV. That is, Energy= eVGiven, $e = 1.6 \times 10^{-19}$ C, V = 1 volt \therefore Energy = $1.6 \times 10^{-19} \times 1 = 1.6 \times 10^{-19}$ J 448 (c) $eV_s = \frac{1}{2}mv_m^2$ or $V_s = \frac{mv_m^2}{2e} = \frac{v_m^2}{2(e/m)}$

$$=\frac{(4.8)^2}{2\times17.6\times10^{11}}=7\times10^{11}\,\mathrm{JC}^{-1}$$

449 (d) De Broglie wavelength, $\lambda = \frac{h}{p}$ Where *p* is the momentum of the particle For electron $\lambda_e = \frac{h}{n_e}$ For proton $\lambda_p = \frac{h}{n_r}$ As $\lambda_e = \lambda_p$ [Given] $\Rightarrow p_e = p_p$ Or Momentum of electron = Momentum of proton 450 (b) The equation of curve between V_0 and v is $\frac{hv}{e} - \frac{hv_0}{e} = V_0$ This is equation of a straight line with slope $=\frac{h}{a}$ 451 (c) Photoelectric current \propto intensity of incident light. Therefore, the graph is a straight line having positive slope passing through origin 452 **(b)** Continuous spectrum of X-rays consists of radiations of all possible wavelength range having a definite short wavelength limit 453 (b) According to Bohr's theroy $mvr = \frac{nh}{2\pi}$ $2\pi r = \frac{nh}{mr}$ $2\pi r - n\lambda$ $n=1, \lambda = 2\pi r$ For 454 (a) $E = W_0 + eV_0 \Rightarrow 4eV = 2eV + eV_0 \Rightarrow V_0 = 2 \text{ volt}$ 455 **(b**) $E_k = \frac{hc}{\rho} \left(\frac{1}{\lambda} - \frac{1}{\lambda_c} \right)$ (in eV) $=\frac{6.6\times10^{-34}\times3\times10^8}{1.6\times10^{-19}}\left(\frac{10^{10}}{1800}-\frac{10^{10}}{2300}\right)$ $= 1.5 \, \text{eV}$ 456 (c) The saturation photoelectric current is directly proportional to the intensity of incident radiation but it is independent of its frequency. Therefore, the saturation photoelectric current becomes double, when both intensity and frequency of the incident light are doubled 457 (b) $\Delta E = \frac{hc}{\lambda_1} - \frac{hc}{\lambda_2} = \frac{hc(\lambda_2 - \lambda_1)}{\lambda_1 \lambda_2} \text{ (in eV)}$ $=\frac{6.62\times10^{-34}\times3\times10^8\times(5000-2500)\times10^{-10}}{2500\times5000\times10^{-20}\times1.6\times10^{-19}}$ = 2.47 eV

458 (b) For ionisation, high energy electrons are required 460 **(b)** According to Einstein's photo electric equation, Incident energy = work function + kinetic energy of emitted electron $hf = hf_0 + K$ $K = h(f - f_o)$ or 461 **(b)** The wavelength of the γ -rays is shorter. However the main distinguishing feature is the nature of emission 462 (a) From Planck's quantum theory, the maximum kinetic energy (E_k) of photoelectron emitted from the metal is $E_k = hv - W$ Where *W* is work function of metal and *hv* is the energy of the photon absorbed by the metal. Given, hv = 2 eV, W = 1.4 eV $E_k = 2 - 1.4 = 0.6 \text{eV}$ Hence, stopping potential is , $V_s = \frac{E}{\rho} = \frac{0.6 \text{ eV}}{\rho} =$ 0.6 V. 463 (a) Number of photo electrons $(N) \propto \text{Intensity} \propto \frac{1}{d^2} \Rightarrow \frac{N_1}{N_2} = \left(\frac{d_2}{d_1}\right)^2$ $\Rightarrow \frac{N_1}{N_2} = \left(\frac{100}{50}\right)^2 = \frac{4}{1} \Rightarrow N_2 = \frac{N_1}{4}$ 465 (b) $v_{\rm max} = 4 \times 10^8 \ cm/s = 4 \times 10^6 \ m/sec$ $\therefore K_{\max} = \frac{1}{2}mv_{\max}^2 = \frac{1}{2} \times 9 \times 10^{-31} \times (4 \times 10^6)^2$ $= 7.2 \times 10^{-18} I = 45 \ eV$ Hence, stopping potential $|V_0| = \frac{K_{\text{max}}}{\rho} = \frac{45eV}{\rho} =$ 45volt 466 **(b)** $\lambda_{\min} = \frac{hc}{eV}$ where *h*, *c* and *e* are constants. Hence $\lambda_{\min} \propto \frac{1}{v}$ 467 (a) Time period of revolution of electron $T = \frac{2\pi}{\omega} = \frac{2\pi r}{v}$ Hence corresponding electric current $i = \frac{e}{T} = \frac{ev}{2\pi r}$ $\Rightarrow i = \frac{1.6 \times 10^{-19} \times 2 \times 10^{6}}{2 \times 3.14 \times 0.5 \times 10^{-10}} = 1mA$ 469 **(d)** $E = hv = mc^2$ or $m = hv/c^2$ 470 (d) Number of photoelectrons $\propto \frac{1}{(\text{Distance})^2}$

471 (d)

We know that,
$$\lambda = \frac{h}{\sqrt{2mkT}}$$
;
So, $\lambda \propto \frac{1}{\sqrt{T}}$
 $\therefore \frac{\lambda_{27}}{\lambda_{927}} = \sqrt{\frac{927 + 273}{27 + 273}} = 2$
or $\lambda_{27} = 2\lambda_{927} = 2\lambda$

472 **(b)**

Using Einstein's realtion for relativistic mass

$$m = \frac{m_0}{\sqrt{1 - V^2/C^2}} [m_0 = \text{rest mass}]$$

$$\Rightarrow \frac{m}{m_0} = \frac{1}{\sqrt{1 - V^2/C^2}}$$
Given $\frac{m}{m_0} = 2 = \frac{1}{\sqrt{1 - V^2/C^2}}$

$$\Rightarrow 1 - \frac{V^2}{C^2} = \frac{1}{4} \Rightarrow \frac{V^2}{C^2} = \frac{3}{4}$$

$$\Rightarrow \frac{V}{C} = \frac{\sqrt{3}}{2} \Rightarrow V = \frac{\sqrt{3}}{2}C$$
(c)

473 (c)

KE of thermal neutron, $\frac{1}{2}mv^2 = \frac{3}{2}kT$ or $mv = \sqrt{3kmT}$; So, $\lambda = \frac{h}{p} = \frac{h}{\sqrt{3kmT}}$

474 **(b)**

$$\frac{1}{\lambda_{K\alpha}} = R(Z-b)^2 \left[\frac{1}{1^2} - \frac{1}{2^2}\right]$$
$$\frac{1}{\lambda_{K\beta}} = R(Z-b)^2 \left(\frac{1}{1^2} - \frac{1}{3^2}\right)$$
$$\frac{\lambda_{K\beta}}{\lambda_{K\alpha}} = \frac{(3/4)}{(8/9)} = \frac{3}{4} \times \frac{9}{8} = \frac{27}{32}$$
or $\lambda_{K\beta} = \frac{27}{32} \times \lambda_{K\alpha} = \frac{27}{32} \times 0.32 = 0.27$ Å.

475 **(a)**

In steady state,

F = qE

⇒

electric force on drop =weight of drop \therefore qE = mg

 $q = \frac{mg}{E} = \frac{9.9 \times 10^{-15} \times 10}{3 \times 10^{4}} = 3.3 \times 10^{-18} \text{ C}$

476 (c)Positive rays consist of positive ions477 (c)

Energy of photon,
$$E = \frac{hc}{\lambda}$$

= $\frac{6.6 \times 10^{-34} \times 3 \times 10^8}{3 \times 10^2}$
= 6.6×10^{-28} J

478 (c)

In Thomson's experiment to determine the charge to mass ratio of an electron, his apparatus was as follows

A uniform magnetic field is created between *X* and *Y*, by applying a potential difference between them. In the same region and outside the tube is placed an electromagnet which produces a magnetic field perpendicular to the plane of paper. Thus, two fields are produced in the same region perpendicular to each other, also the two fields are perpendicular to the motion of electron.

479 **(d)**

Bragg's law, $2d \sin \theta = n\lambda$ or $\lambda = \frac{2d \sin \theta}{n}$ For maximum wavelength, $n_{\min} = 1$, $(\sin \theta)_{\max} = 1$

$$\therefore \lambda_{\max} = 2d \text{ or } \lambda_{\max} = 2 \times 10^{-7} cm = 20 \text{ Å}$$

480 **(a)**

⇒

48

De-Broglie wavelength of a particle is given by $\lambda = \frac{h}{mv} \dots (i)$

Where *h* is Planck's constant.

If kinetic energy of particle of mass m is v, then

$$K = \frac{1}{2}mv^2$$
$$v = \sqrt{\frac{2K}{m}}...(ii)$$

Combining Eqs. (i) and (ii), we get

$$\lambda = \frac{h}{m\sqrt{\frac{2K}{m}}} = \frac{h}{\sqrt{2mK}} \quad \dots (\text{iii})$$

Given

 $m = 9.1 \times 10^{-31} \text{ kg}$ $K = 10 \text{keV} = 10 \times 10^3 \times 10^{-31} \text{ kg}$

 $1.6 \times 10^{-19} \text{ J}$

 $h = 6.6 \times 10^{-34} \text{ J-s}$ Substituting the above values in Eq. (iii), we get

$$\lambda = \frac{6.6 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 10 \times 10^3 \times 1.6 \times 10^{-19}}} = 1.22 \times 10^{-11} \approx 0.12\text{\AA}$$
1 (b)

 $\frac{1}{2}mv^2 = eV_0 = 1.68 \text{ eV}$ $hv = \frac{hc}{\lambda} = \frac{1240 \text{ eV} - \text{nm}}{400 \text{ nm}}$ ⇒ = 3.1 = eV

 $3.1 \text{ eV} = W_0 + 1.6 \text{eV}$ $W_0 = 1.42 \text{eV}$

483 (c)

For K_{α} line $\nu \propto (Z-1)^2 \Rightarrow \lambda \propto \frac{1}{(Z-1)^2}$ *i.e.* the graph between λ and z will be (c)

484 (a)

 $KE = eV = 1.6 \times 10^{-19} \times 100 = 1.6 \times 10^{-17}$ J 485 (a)

 $\therefore x \propto \frac{1}{x^2}$. The ion whose deflection is less, its velocity will be more. From the curve

 $x_1 < x_2 < x_3 < x_4$, therefore $v_1 > v_2 > v_3 > v_4$ 486 (c)

$$eV = mv^2/r; \text{ so } V \propto v^2;$$

 $\therefore V_2 = V_1 \left(\frac{v_2}{v_1}\right)^2 = 500 \left(\frac{2v}{v}\right)^2 = 2000 \text{ cm}^{-1}$

487 (a)

When **E**, **v** and **B** are all along same direction, then magnetic force experienced by electron is zero while electric force is acting opposite to velocity of electron, so velocity of electron will decrease.

488 (a)

As accelerating voltage V across X-rays tube increase, the value of minimum wavelength of Xrays, $\lambda_c = \frac{hc}{eV}$; decreases ; so the separation between λ_K and λ_c increases.

489 (d)

According to Mosley's law $v \propto (Z - b)^2$ For k_{α} line, b = 1, and it has maximum frequency so $v_{\rm max} \propto (Z-1)^2$

491 **(b)**

The momentum of the photon is energy/speed of light. In black holes the gravity pull is so high that even photons can't escape

492 (c)

If the intensity of light incident on photosensitive metal surface is changed it does not affect the maximum kinetic energy of the emitted electrons.

493 (a)

Energy of incident light $E(eV) = \frac{12375}{4000} = 3.09 \ eV$ Stopping potential is -2V so $K_{max} = 2 eV$ Hence by using $E = W_0 + K_{\text{max}}$; $W_0 = 1.09 \ eV =$ 1.1 eV

de-Broglie wavelength of electron is given by

 $\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mE}}$ Substituting the value of *E*, we get $\lambda = \frac{h}{\sqrt{2meV}}$

Here $m=9.1 \times 10^{-31}$ kg; $e = 1.6 \times 10^{-19}$ C $h = 6.6 \times 10^{-34}$ Js and $\lambda = \frac{12.27}{\sqrt{V}} \times 10^{-10} = \frac{12.27}{\sqrt{V}} \text{\AA}$ we get

The de-Broglie wavelength of electrons, when accelerated through a potential difference of 100 V will be

$$\lambda = \frac{12.27}{\sqrt{100}} = 1.227 \text{\AA}$$

Moreover, $\lambda = \frac{h}{p}$
 $\Rightarrow P = \frac{6.6 \times 10^{-34}}{1.227 \times 10^{-10}} = 5.5 \times 10^{-24} \text{ kg-ms}^{-1}$
5 (a)

496

F = qEma = eEor $a = \frac{qE}{dE}$ ⇒ $a = \frac{eE}{m}$ in the opposite direction of or the field.

$$E = hc/\lambda \text{ or } E \propto l/\lambda; \text{ so } E_2 = E_1 \times \lambda_1/\lambda_2$$

= 3.2 × 10⁻¹⁹ × 6000/4000 = 4.8 × 10⁻¹⁹ J

498 (b)

$$\frac{Power \ of \ S_2}{Power \ of \ S_1} = \frac{n_2\left(\frac{hc}{\lambda_2}\right)}{n_1\left(\frac{hc}{\lambda_1}\right)} = \frac{n_2\lambda_1}{n_1\lambda_2} = 1$$

499 (b)

For photoelectronic emission to take place wavelength of incident light must be less that the threshold value which is given as 5200Å. The wavelength of infra-red light = 7800Å. The wavelength of ultra-violet light = 4000Å. Thus, it is obvious that wavelength of UV radiation is less than the threshold value. Hence, it can emit photoelectrons from the surface of metal.

$$p = \frac{nhc}{\lambda t} \Rightarrow 100 = \frac{n \times 6 \times 10^{-34} \times 3 \times 10^8}{540 \times 10^{-9} \times 1} \Rightarrow n$$
$$= 3 \times 10^{20}$$

501 (c)

Wave length of green light is threshold wave length. Hence for emission of electron, wave length of Indigo light < wavelength of green light 502 (a)

495 (c)

By using
$$\frac{hc}{\lambda} = W_0 + \frac{1}{2}mv^2$$

 $\Rightarrow \frac{hc}{400 \times 10^{-9}} = W_0 + \frac{1}{2}mv^2$... (i)
and $\frac{hc}{250 \times 10^{-9}} = W_0 + \frac{1}{2}m(2v)^2$... (ii)
On solving (i) and (ii)
 $\frac{1}{2}mv^2 = \frac{hc}{3} \left[\frac{1}{250 \times 10^{-9}} - \frac{1}{400 \times 10^{-9}}\right]$... (iii)
From equation (i) and (iii) $W_0 = 2hc \times 10^6 J$
(d)

503 (d)

Number of ejected electrons \propto (Intensity) $\propto \frac{1}{(\text{Distance})^2}$

Therefore an increment of distance two times will reduce the number of ejected electrons to $\frac{1}{4}th$ of the initial value

505 (c)

For similar parabola, $\frac{B^2 l Dq}{E m}$ must be same for both the ions.

So,
$$\frac{m_1}{m_2} = \left(\frac{B_1}{B_2}\right)^2 \times \left(\frac{q_1}{q_2}\right) \times \frac{E_2}{E_1} = \left(\frac{3}{2}\right)^2 \times \left(\frac{1}{2}\right) \times \left(\frac{2}{1}\right) = \frac{9}{4}$$

(b)

506 **(b)**

Energy of photons corresponding to light of wavelength $\lambda_1 = 2475$ Å is $E_1 = \frac{12375}{2475} = 5 \ eV$ and that corresponding to $\lambda_2 = 6000$ Å is $E_2 = \frac{12375}{6000} = 2.06 \ eV$ As $E_2 < W_0$ and $E_1 > W_0$. Photoelectric emission is possible with λ_1 only. Maximum kinetic energy

of emitted photoelectrons $K = E - W_0 = 5 - 4.8 = 0.2 eV$.

Photo electrons experience magnetic force and move along a circular path of radius

$$r = \frac{\sqrt{2mk}}{QB} = \frac{\sqrt{2 \times 9 \times 10^{-31} \times 0.2 \times 1.6 \times 10^{-19}}}{1.6 \times 10^{-19} \times 3 \times 10^{-5}}$$
$$= 0.05 \ m = 5 \ cm$$

508 (d)

Cathode rays are steam of negatively charged particles, so they deflect in electric field

509 **(a)**

$$E = hv_0 + K_{\max} \Rightarrow h(4v_0) = hv_0 + K_{\max} \Rightarrow K_{\max}$$
$$= 3hv_0$$

 $\lambda \propto \frac{1}{\sqrt{volt}}$

511 **(b)**

$$\frac{1}{2}mv_{1}^{2} = 2hv_{0} - hv_{0} = hv_{0} \text{ and}$$

$$\frac{1}{2}mv_{2}^{2} = 5hv_{0} - hv_{0} = 4 hv_{0}$$
So, $\frac{1}{2}mv_{2}^{2} = 4 \times \frac{1}{2}mv_{1}^{2}$

or
$$v_2 = 2v_1 = 2 \times 4 \times 10^6 = 8 \times 10^6 \text{ ms}^{-1}$$

512 (d)

$$\frac{1}{2}mv^2 = \frac{hc}{\lambda} - \phi_0$$

$$= \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{(3 \times 10^{-7}) \times 1.6 \times 10^{-19}} - 1$$

$$= 4.14 - 1 = 3.14\text{eV}$$
or $v = \sqrt{\frac{2 \times 3.14 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}}} = 10^6 \text{ms}^{-1}$
512 (b)

513 **(b)**

Number of photoelectrons ∝ Intensity Maximum kinetic energy is independent of intensity

514 **(b)**

G.P. Thomson experimentally confirmed the existence of matter waves (de-Broglie hypothesis)by demonstrating that electron beams are diffracted when they are scattered by the regular atomic arrays of crystals.

515 (c)

 $E = \frac{hc}{\lambda} \text{ or } E \propto \frac{1}{\lambda} \therefore \frac{E_2}{E_1} = \frac{\lambda_1}{\lambda_2}$ or $E_2 = E_1 \times \frac{\lambda_1}{\lambda_2} = 1.23 \times \frac{10,000}{5,000} = 2.46 \text{ eV}$ Now, $hv - \phi_0 = \frac{1}{2}mv_{\text{max}}^2 = eV_s$ or $\phi_0 = hv_2 - eV_s = E_2 - eV_s$ = 2.46 - 1.36 = 1.10 eV

516 **(c)**

Specific charge on electron,

$$\frac{e}{m} = 1.8 \times 10^{11} \text{ C Kg}^{-1}$$

Maximum kinetic energy of photoelectron

$$\frac{1}{2}mv_{\text{max}}^2 = eV_s$$

Where V_s is the stopping potential.

$$\Rightarrow \qquad V_{s} = \frac{mv_{\text{max}}^{2}}{2e} = \frac{v_{\text{max}}^{2}}{2(e/m)}$$
$$= \frac{(1.2 \times 10^{6})^{2}}{2 \times 1.8 \times 10^{11}}$$
$$= 0.4 \times 10 = 4V$$

518 **(d)**

$$\frac{1}{2}mv^{2} = \frac{hc}{\lambda} - \phi(\text{in eV})$$

$$= \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{2000 \times 10^{-10} \times 1.6 \times 10^{-19}} - 4.2$$

$$= 2\text{eV} = 2 \times 1.6 \times 10^{-19}\text{J}$$

$$v = \sqrt{2 \times 2 \times 1.6 \times 10^{-19}/9.1 \times 10^{-31}}$$

$$= \sqrt{6.4/9.1} = 10^{6}\text{ms}^{-1}$$

519 (c)

In a cathode ray oscillograph the focusing of beam on the screen is achieved by electric potential. There are two plates *X* and *Y*. *X* plates consists two plates X_1 and X_2 in vertical plane while Yplates also consist two plates Y_1 and Y_2 in a horizontal plane. An electric is applied between the X and Y plates by an external source.

521 (d)

According to Einstein's photoelectric equation

K_{max} =
$$hv - \phi_0$$

 $eV_s = \frac{hc}{\lambda} - \phi_0 \Rightarrow V_s = \frac{hc}{\lambda e} - \frac{\phi_0}{e}$
Where, λ = Wavelength of incident light
 ϕ_0 = Work function
 V_s = Stopping potential
According to given problem
 $V_1 = \frac{hc}{\lambda e} - \frac{\phi_0}{e}$
 $V_2 = \frac{hc}{\left(\frac{\lambda}{2}\right)e} - \frac{\phi_0}{e}$
 $V_2 = \frac{2hc}{\lambda e} - \frac{\phi_0}{e} = \frac{2hc}{\lambda e} - \frac{2\phi_0}{e} + \frac{2\phi_0}{e} - \frac{\phi_0}{e}$

$$v_{2} = \frac{1}{\lambda e} - \frac{1}{e} - \frac{1}{\lambda e} - \frac{1}{e} - \frac{1}{e} + \frac{1}{e}$$
$$= 2\left(\frac{hc}{\lambda e} - \frac{\phi_{0}}{e}\right) + \frac{\phi_{0}}{e}$$
$$V_{2} = 2V_{1} + \frac{\phi_{0}}{e} \qquad [Using (i)]$$
$$\therefore V_{2} > 2V_{1}$$

522 (b)

If an electron and a photon propagates in the from of waves having the same wavelength, it implies that they have same momentum. This is according to de-Broglie equation, $p \propto \frac{1}{4}$

523 (c)

$$W_0(eV) = \frac{12375}{\lambda_0} \Rightarrow \lambda_0 = \frac{12375}{4.2} = 2945 \text{ Å}$$

524 (b)

In Milikan's experiment, the charges present on the oil drops are the integral multiples of electronic charge, so 2e and $10e(1.6 \times 10^{-18}C)$ charges are present

525 **(b)**

$$\phi_0 = \frac{hc}{e\lambda_0} \text{ (in eV)} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{6600 \times 10^{-10} \times 1.6 \times 10^{-19}}$$
$$= 1.87 \text{ eV}$$

527 (c)

0r

If a charge particle of mass *m* and charge *q* is accelerated through a potential difference V and E is the energy acquired by the particle, then

E = qVIf *v* is velocity of particle, then

> $E = \frac{1}{2}mv^2$ $v = \sqrt{\left(\frac{2E}{m}\right)}$

Now, de-Broglie wavelength of particle is

$$\lambda = \frac{h}{mv} = \frac{h}{m\sqrt{(2E/m)}}$$

Substituting the value of *E*, we get $\lambda = \frac{h}{\sqrt{2mqV}}$ $\lambda_e = \frac{h}{\sqrt{2m_e eV}}$

For proton,

$$v = E/B = 6 \times 10^4/8 \times 10^{-2} = 7.5 \times 10^5 \text{ms}^{-1}$$

529 (d)

 $\lambda_p = \frac{h}{\sqrt{2m_p eV}}$

 $\frac{\lambda_e}{\lambda_p} = \sqrt{\left(\frac{m_p}{m_e}\right)}$

If electron oscillates with a frequency of 1 *GHz*, it does not radiate any energy which corresponds a definite wavelength. It only radiates when it jumps from one orbit to another orbit

530 (c)

The De-Broglie wavelength is

$$\lambda = \frac{h}{|p|} = \frac{h}{|I|} \Rightarrow \lambda \propto \frac{1}{|I|}$$

531 (c)

Work function is the intercept on *K*.*E*. axis i.e.2eV

532 (d)

The photoelectric current is directly proportional to the intensity of illumination. Therefore a change in the intensity of the incident radiation will change the photocurrent also

533 (a)

The wave length of L_{α} line is given by

$$\frac{1}{\lambda} = R(z - 7.4)^2 \left(\frac{1}{2^2} - \frac{1}{3^2}\right)$$

$$\Rightarrow \lambda \propto \frac{1}{(Z - 7.4)^2}$$

$$\Rightarrow \frac{\lambda_1}{\lambda_2} = \frac{(z_2 - 7.4)^2}{(z_1 - 7.4)^2} \Rightarrow \frac{1.30}{\lambda_2} = \frac{(42 - 7.4)^2}{(78 - 7.4)^2}$$

$$\Rightarrow \lambda_2 = 5.41 \text{ Å}$$

534 **(b)**

$$E = W_0 + K_{\max}$$

$$\Rightarrow hf = W_A + K_A \qquad \dots(i)$$

and $2hf = W_B + K_B = 2W_A + K_B \left[\because \frac{W_A}{W_B} = 12 \dots(ii) \right]$

Dividing equation (i) by (ii) $\frac{1}{2} = \frac{W_A + K_A}{2W_A + K_B} \Rightarrow \frac{K_A}{K_B} = \frac{1}{2}$

535 (d)

According to Moseley's law, when \sqrt{v} is plotted against Z, one gets a straight line. v is the frequency of the *X*-ray lines. $v \propto Z^2$ or $\sqrt{v} \propto Z$

536 (c)

When electron is accelerated through a potential difference of *V* volts, then

Kinetic energy –*eV*

ie.

⇒

:.

 $\frac{1}{2}mv^2 = eV$ $v = \sqrt{\left(\frac{2eV}{m}\right)}$

 $v = \sqrt{\left(\frac{2 \times 1.6 \times 10^{-19} \times 45.5}{9.1 \times 10^{-31}}\right)}$ $= 4 \times 10^{6} \,\mathrm{ms}^{-1}$

537 (a)

$$qV = \frac{1}{2}mv^{2} \text{ or } v = \frac{\sqrt{2qV}}{m}$$

ie, $v = \frac{\sqrt{2qV}}{m} \therefore \frac{v_{He}}{v_{H}} = \sqrt{\frac{q_{He}}{q_{H}} \times \frac{m_{H}}{m_{He}}} = \sqrt{\frac{2e}{e} \times \frac{m}{4m}}$
$$= \frac{1}{\sqrt{2}}$$

538 **(d)**

 $\lambda_{\min} = \frac{hc}{eV}$ or $\lambda_{\min} \propto \frac{1}{V}$ On increasing potential, λ_{\min} decreases

539 **(a)**

From conservation of energy the electron kinetic energy equals the maximum photon energy (we neglect the work function ϕ because it is normally so small compared to eV_0).

$$eV_0 = hv_{\text{max}}$$

or
$$eV_0 = \frac{hc}{\lambda_{\min}}$$

$$\therefore \qquad V_0 = \frac{hc}{e\lambda_{\min}}$$

or
$$V_0 = \frac{12400 \times 10^{-10}}{10^{-11}} = 124 \text{ km}$$

Hence, accelerating voltage for electrons in X–ray machine should be less than 124 kv.

540 **(d)**

From the formula

 $V = \frac{12375}{\lambda_{\min}} = \frac{12375}{0.3094} = 39.99 \ kV = 40 \ kV$

541 **(d)**

According to Einstein's equation

 $hv = hv_0 + K_{\max} \Rightarrow K_{\max} = hv - hv_0$ on comparing it with y = mx + c, it is clear that, this is the equation of straight line having positive slope (*h*) and negative intercept (hv_0) on *KE* axis 542 (c)

543 **(d)**

Penetration is directly proportional to the energy of radiations

544 **(d)**

de Broglie wavelength

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}} \Rightarrow \lambda \propto \frac{1}{\sqrt{Em}}$$

Now kinetic energy *E* gained by a charged particle under potential *V* is E = qV given *V* is same for the given three paticles

$$\therefore E_e = eV; E_p = eV$$

$$E_{\alpha} = 2eV \Rightarrow E_{e} = E_{p} < E_{\alpha} \text{ and } m_{e} < m_{p} < m_{\alpha}$$
$$\Rightarrow \lambda = \frac{h}{\sqrt{2m_{e}E_{e}}} > \frac{h}{\sqrt{2m_{p}E_{p}}} > \frac{h}{\sqrt{2m_{\alpha}E_{\alpha}}}$$
$$\lambda_{e} > \lambda_{p} > \lambda_{\alpha}$$

545 (c)

Energy of photon $E = \frac{hc}{\lambda}$ (Joules) $= \frac{hc}{e\lambda}(eV)$ $\Rightarrow \frac{E}{(eV)} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19} \times \lambda_{(m)} \text{\AA}} = \frac{12375}{\lambda(\text{\AA})}$ $\Rightarrow E(keV) = \frac{12.37}{\lambda(\text{\AA})} = \frac{12.4}{\lambda}$

546 **(c)**

By using
$$E = W_0 + K_{\text{max}}$$

 $E = \frac{12375}{5000} = 2.475 \text{ eV} \text{ and } K_{\text{max}} = eV_0 = 1.36 \text{ eV}$
So $2.475 = W_0 + 1.36 \Rightarrow W_0 = 1.1 \text{ eV}$

547 **(b)**

Light falling per second on the surface of sphere $E = \frac{66}{100} \times 100 = 66 \text{ W}$

Momentum of the light falling per second on the surface of sphere $=\frac{E}{c}$

Momentum of the reflected light = 0; as the light is completely absorbed.

Force exerted by light,
$$F = \frac{E}{c} - 0 = \frac{E}{c}$$

Pressure on surface, $P = \frac{F}{4\pi r^2} = \frac{E/c}{4\pi r^2}$

$$=\frac{66/(3\times10^8)}{4\times(22/7)\times(0.10)^2}=1.75\times10^{-6}$$
Pa

548 (c)

According to Einstein's photoelectric equation

 $KE_{\max} = hv - \phi_0$ Comparing with the equation of straight line y = mx + cWe get, slope of graph = h(b)

549 **(b)**

In photoelectric effect for a given photosensitive material, there exists a certain minimum cut-off frequency, called the thershold frequency, below which no emission of photoelectrons takes place no matter how intense the light is.

551 **(d)**

Since the energy of incident electron, E = 80 keV. The minimum wavelength of *X*-rays produced is

$$\lambda = \frac{hc}{E} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{80 \times 1000 \times 1.6 \times 10^{-19}}$$
$$= 1.55 \times 10^{-10} \text{ m} = 0.155 \text{ Å}$$

Since the energy of K-shell electron is -72.5 keV, so the incident electron of energy 80 keV will not only produce continuous spectrum of minimum wavelength 0.155Å but shell also knock electron of K shell out of atom, resulting emission of characteristics X-rays

552 **(c)**

$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2meV}}$$

= $\frac{6.6 \times 10^{-34}}{\sqrt{2 \times (4 \times 1.66 \times 10^{-27}) \times (2 \times 1.6 \times 10^{-19}) \times V}}$
= $\frac{0.101}{\sqrt{V}}$

553 **(b)**

In an electric field, a force opposite to the direction of electric field acts on negatively charged particles (*i. e.* from lower potential to higher potential)

554 **(c)**

Range of X-rays is 0.1Å to 100 Å

555 **(c)**

We know

$$\lambda = \frac{h}{mv}$$

and $K = \frac{1}{2}mv^2 = \frac{(mv)^2}{2m}$
 $mv = \sqrt{2mK}$
Thus, $\lambda = \frac{h}{\sqrt{2mK}}$

$$\Rightarrow \qquad \lambda \propto \frac{1}{\sqrt{K}}$$

$$\therefore \qquad \frac{\lambda_2}{\lambda_1} = \frac{\sqrt{K_1}}{\sqrt{K_2}} = \frac{\sqrt{K_1}}{\sqrt{2K_1}} \qquad (\because K_2 = 2K_1)$$

$$\Rightarrow \qquad \frac{\lambda_2}{\lambda_1} = \frac{1}{\sqrt{2}}$$

$$\therefore \qquad \lambda_2 = \frac{\lambda_1}{\sqrt{2}}$$

556 **(b)**

Photo current (i) is directly proportional to light intensity (*I*) falling on a photosensitive plate, *i.e.*, $i \propto I$

557 **(a)**

By using $\lambda = \frac{h}{\sqrt{2mE}} E = 10^{-32}J = \text{Constant for}$ both particles. Hence $\lambda \propto \frac{1}{\sqrt{m}}$ Since $m_p > m_e$ so $\lambda_p < \lambda_e$

558 (d)

Here,
$$x = \frac{DEql}{mv^2}$$

or $\frac{q}{m} = \frac{xv^2}{DEl} = \frac{0.02 \times (10^6)^2}{0.21 \times (2 \times 10^4) \times (5 \times 10^{-2})}$
= 9.52 × 10⁷ Ckg⁻¹

559 (c)

$$\lambda_0 = \frac{nc}{W_0} = \frac{12400}{4}$$

= 3100Å = 310 nm

560 **(c)**

$$y = \frac{1}{2}at^{2} = \frac{1}{2}\frac{eE}{m}\frac{x^{2}}{v^{2}} \text{ or } \frac{e}{m} = \frac{2yv^{2}}{Ex^{2}}$$
$$= \frac{2 \times 1.5 \times 10^{-3} \times (3 \times 10^{7})^{2}}{1800 \times (0.1)^{2}}$$
$$= 1.5 \times 10^{11} \text{ Ckg}^{-1}$$

561 **(b)**

$$\lambda_{\text{photon}} = \frac{hc}{E} \text{ and } \lambda_{\text{electron}} = \frac{h}{\sqrt{2mE}}$$

 $\Rightarrow \frac{\lambda_{\text{photon}}}{\lambda_{\text{electron}}} = c \sqrt{\frac{2m}{E}} \Rightarrow \frac{\lambda_{\text{photon}}}{\lambda_{\text{electron}}} \propto \frac{1}{\sqrt{E}}$

562 **(b)**

With decrease in wavelength of incident photons, energy of photoelectrons increases

563 **(b)**

Vidicon is basically *VID* (*eo*) + *ICON* (oscope). It is a small televison camera tube that forms a charge density image on a photoconductive surface for subsequent electron-beam scanning

564 (a)

$$E = W + KE$$
$$KE = E - W$$
$$= \frac{hc}{\lambda} - \frac{hc}{\lambda_0}$$

The production of *X*-rays is an atomic property whereas the production of γ -rays is a nuclear property

 $=hc\left[\frac{1}{\lambda}-\frac{1}{\lambda_{0}}\right]=hc\left[\frac{\lambda_{0}-\lambda}{\lambda\lambda_{0}}\right]$

566 **(b)**

$$E(eV) = \frac{hc}{e\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19} \times 1 \times 10^{-10}}$$

= 12375 eV

567 (a)

v varies from 0 to $v_{\rm max}$

568 (c)

KE of emitted electron is $E_{K} = hv - W$ $= 6.2 \ eV - 4.2 \ eV = 2.0 \ eV$ $= 2 \times 1.6 \times 10^{-19}$ / $= 3.2 \times 10^{-19} I$

569 (b)

Momentum of photon

$$p = \frac{h}{\lambda} = \frac{6.6 \times 10^{-34}}{10^{-10}} = 6.6 \times 10^{-24} kg - m/s$$

572 (a)
 $E = \frac{hc}{\lambda}$

$$\lambda = \frac{\lambda}{\frac{6.62 \times 10^{-34} \times 3 \times 10^8}{45 \times 10^{-12}}} = \frac{0.44 \times 10^{-14}}{1.6 \times 10^{-19}} = 0.275 \times 10^5 \text{ eV} = 27500 \text{ eV}$$

574 (b)

A charged particle moves along a straight line with acceleration, hence electric field should be parallel to the direction of motion of charged particle and no force should act on charged particle due to magnetic field. It will be so if charged particle is moving parallel to the direction of magnetic field

575 (a)

Kinetic energy \propto Potential difference

576 **(b)**

The photoelectric effect is an instantaneous phenomenon (experimentally proved). It takes approx time of the order of 10^{-10} s.

578 (b)

$$W_0 = \frac{12375}{\lambda_0} = \frac{12375}{5420} = 2.28eV$$

579 (a)

Maximum $KE = hv - \phi_0$ $= 6.63 \times 10^{-34} \times 8 \times 10^{14} - 3.2 \times 10^{-19}$ $= 2.1 \times 10^{-19}$ J

Let *K* and *K*' be the maximum kinetic energy of

photoelectrons for incident light of frequency v

and
$$2v$$
 respectively.
According to Einstein's photoelectric equation,
 $K = hv - E_0$...(i)
and $K' = h(2v) - E_0$...(ii)
 $= 2hv - E_0 = hv + hv - E_0$
 $K' = hv + K$ [using (i)]
582 (b)
 $E = hc/\lambda = 6.6 \times 10^{-34} \times 3 \times 10^8/5000 \times 10^{-19}$
 $= 3.973 \times 10^{-19}$]
584 (b)
Here the velocity of electron increases, so as per
Einstein's equation mass of the electron increases,
hence the specific charge $\frac{e}{m}$ decreases
585 (d)
 $r = \frac{mv}{qB}ie, r \propto m/q$
So, $\frac{r_1}{r_2} = \frac{m_1}{m_2} \times \frac{q_2}{q_1} = \frac{24 \times 2e}{22 \times e} = \frac{24}{11}$
587 (a)
Momentum $p = \frac{E}{c} \Rightarrow E^2 = p^2 c^2$
589 (a)
 $\lambda_{\min} = \frac{hc}{eV} \Rightarrow \lambda \propto \frac{1}{V}$
 $\because \lambda_2 > \lambda_1$ (see graph) $\Rightarrow V_1 > V_2$
 $\sqrt{v} = a(Z - b)$ Moseley's law
 $v \propto (Z - 1)^2 \Rightarrow \lambda \propto \frac{1}{(Z - 1)^2}$ [$\because v \propto \frac{1}{\lambda}$]
 $\lambda_1 > \lambda_2$ [see graph for characteristic lines]
 $\Rightarrow Z_2 > Z_1$
590 (a)
 $hf = hf_0 + \frac{1}{2}mv^2$
Hence, $v_1^2 = \frac{2hf_2}{m} - \frac{2hf_0}{m}$
 $v_2^2 = \frac{2hf_2}{m} - \frac{2hf_0}{m}$
 $\therefore v_1^2 - v_2^2 = \frac{2h}{m} (f_1 - f_2)$

:.

 $KE_{max} = hv - \phi$

 ϕ = work function

591 (c)

592 (a)

Bragg's law states that $2d \sin \theta = n\lambda$ where = 1, 2, 3 If $\lambda > 2d$, then sin θ will be greater than 1 for n = 1, which is not possible 593 (b)

 $KE_{max} = 6.6 \times 10^{-34} \times 6 \times 10^{14} - 2 \times 1.6 \times 10^{-19}$

Where hv = energy of incident photon,

 $= 3.96 \times 10^{-19} - 3.2 \times 10^{-19}$

 $=\frac{0.76\times10^{-19}}{1.6\times10^{-19}}$ eV=0.475 eV

Work function $W_0 = \frac{hc}{\lambda_0}$ where λ_0 is the threshold wavelength or $W_0 \propto \frac{1}{\lambda}$ $\therefore \frac{W_0}{W_0'} = \frac{\lambda_0'}{\lambda_0} \text{ or } \frac{W_0}{W_0/2} = \frac{\lambda_0'}{\lambda_0} \text{ or } \lambda'_0 = 2\lambda_0$ 594 (d) Energy of photon is given by $E = \frac{hc}{\lambda}$...(i) 60 Where *h* is the Planck's constant, *c* the velocity of light and λ its wavelength. de-Broglie wavelength is given by $\lambda = \frac{h}{p}$ Where *p* is being momentum of photon. From Eqs. (i) and (ii), we get $E = \frac{hc}{h/n} = pc$ 60 0r p = E/cGiven, $E = 1 \text{ MeV} = 1 \times 10^6 \times 1.6 \times 10^{-19} \text{ J}.$ $c = 3 \times 10^8 \text{ ms}^{-1}$ 60 Hence, after putting numerical values, we obtain $p = \frac{1 \times 10^{6} \times 1.6 \times 10^{-19}}{3 \times 10^{8}}$ = 5 × 10⁻²² kg-ms⁻¹ 596 (d) $KE_{\rm max} = 10 eV$ $\phi = 2.75 eV$ $E = \phi + KE_{\text{max}} = 12.75 eV$ = Energy difference between n = 4 and n = 1 \Rightarrow value of n = 4597 (d) $K_{\text{max}} = eV_0 \Rightarrow eV_0 = 4eV \Rightarrow V_0 = 4V$ 599 (a) When cathode rays strike the metal plate, they transfer their energy to plate 600 (c) $\lambda = \frac{h}{p} \Rightarrow \lambda - \frac{0.5}{100}\lambda = \frac{h}{p + \Delta p} \Rightarrow \frac{199\lambda}{200} = \frac{h}{p + \Delta p}$ 6 $=\frac{199}{200}\frac{h}{p}$ $\Rightarrow p + \Delta p = \frac{200}{199} p \Rightarrow p = 199 \Delta p$ 601 (c) Kinetic energy of a particle at temperature TK is $E = \frac{3}{2}kT$. The de-Broglie wavelength associated with it is $\lambda = \frac{h}{\sqrt{2mE}} = \frac{h}{\sqrt{2m \times \frac{3}{2}kT}}$ $ie, \lambda \propto \frac{1}{\sqrt{T}}$

$$\therefore \frac{\lambda_{927}}{\lambda_{27}} = \sqrt{\frac{27 + 373}{927 + 273}}$$

$$= \sqrt{\frac{300}{1200}} = \frac{1}{2}$$
or $\lambda_{927} = \frac{\lambda_{27}}{2} = \frac{\lambda}{2}$

D2 (c)
From relation
$$eV_{S} = h(v - v_{0})$$
or $V_{S} =$ threshold or cut off voltage
$$= \frac{h}{e}(v - v_{0})$$

$$= \frac{6.6 \times 10^{-34}}{1.6 \times 10^{-19}} (8.2 - 3.3) \times 10^{14}$$

$$= \frac{6.6 \times 4.9 \times 10^{-1}}{1.6} = 2V$$

D3 (c)
$$2\pi r = n\lambda \Rightarrow n = \frac{2\pi r}{\lambda} = \frac{2 \times 3.14 \times 5.3 \times 10^{-11}}{10^{-10}}$$

$$= 3$$

In electric field photoelectron will experience force and accelerate opposite to the field so it's K.E. increases (*i.e.*, stopping potential will increase), no change in photoelectric current, and threshold wavelength

605 (b)

Number of electrons can be measured which are directly proportional to the intensity of radiation

606 (d)

Hard X-rays are of higher energy and the energy of X-rays depends on the potential difference between the cathode and the target

$$\sqrt{v} \propto (Z-b)$$

KE of photoelectron = $hv - W_0$

$$= \frac{hc}{\lambda} - W_0$$

= $\frac{6.63 \times 10^{-34} \times 3 \times 10^8}{300 \times 10^{-9}} - 4 \times 1.6 \times 10^{-19}$

 2.5^{4}

$$= 6.63 \times 10^{-19}$$
 -

 4.064×10^{-19}

 $= 2.566 \times 10^{-19} eV$ If V_0 is the stopping potential, then KE of photoelectron = eV_0

or

$$V_0 = \frac{\text{KE of photo electron}}{e}$$
$$= \frac{2.566 \times 10^{-19}}{1.6 \times 10^{-19}} = 1.60 \text{V}$$

609 (d)

Intensity \propto (No. of photons) \propto (No. of photoelectrons)

610 **(b)**

Stopping potential is same for *a* & *b*, hence their frequencies are same. Also maximum current values are different for *a* & *b* so they will have different intensities

611 **(b)**

For emission of electrons incident energy of each photon must be greater than work function (threshold energy)

612 **(c)**

The negative potential at which photoelectric current becomes zero is called stopping potential. If at the stopping potential light of frequency higher than before be made to fall on plate, then photoelectric current is re-established. On increasing the negative potential of other plate, the current again stops. Hence, higher the frequency of the incident light, higher will be the maximum kinetic energy of the emitted photoelectrons or higher will be the stopping potential.

613 **(b)**

For incident electron $\frac{1}{2}mv^2 = eV$ or $p^2 = 2meV$ \therefore de-Broglie wavelength $\lambda_1 = \frac{h}{p} = \frac{h}{\sqrt{2meV}}$ Shortest X-ray wavelength $\lambda_2 = \frac{hc}{eV}$

$$\therefore \frac{\lambda_1}{\lambda_2} = \frac{1}{c} \sqrt{\left(\frac{V}{2}\right) \left(\frac{e}{m}\right)} = \frac{\sqrt{\frac{10^4}{2} \times 1.8 \times 10^{11}}}{3 \times 10^8} = 0.1$$

615 **(b)**

$$\frac{n}{t} = \frac{IA\lambda}{hc}$$

$$= \frac{150 \times 10^{-3} \times 4 \times 10^{-4} \times 3 \times 10^{-7}}{6.6 \times 10^{-34} \times 3 \times 10^{8}} = 9 \times 10^{13} \text{ s}$$
616 **(b)**

$$p = \frac{E}{c} = \frac{hv}{c} \Rightarrow v = \frac{pc}{h}$$

617 (a)

$$\lambda = \frac{hc}{eV} = \frac{12375}{59000} = 0.20 \text{ Å} \quad \left[\because \frac{hc}{e} = 12375 \right]$$
618 (d)

As
$$E_K = \frac{1}{2}mv^2$$
 or $mv = \sqrt{2m E_K}$
As per question;
or $m_pv_p = m_ev_e$
or $\sqrt{2m_p E_{K_p}} = \sqrt{2m_e E_{K_e}}$
or $\frac{E_{K_e}}{E_{K_p}} = \frac{m_p}{m_e} > 1$
or $E_{K_e} > E_{K_p}$

619 **(a)**

$$K_{\max} = (|V_0|)eV = 2eV$$

620 (a)

de-Broglie wavelength, $\lambda = \frac{h}{\sqrt{2mE_k}}$ $\frac{\lambda_{\alpha}}{\lambda} = \sqrt{\frac{m_p}{m}}$

$$\begin{array}{c} \mathbf{a}_p & \sqrt{m_\alpha} \\ = \sqrt{\frac{1}{4}} = \frac{1}{2} \end{array}$$

621 **(a)**

$$hv_{\text{max}} = eV :: v_{\text{max}} = \frac{eV}{h} = \frac{1.6 \times 10^{-19} \times 42000}{6.63 \times 10^{-34}}$$
$$= 10^{19} Hz$$

622 **(c)**

According to law of conservation of energy, kinetic energy of α - particle =potential energy of α -particle at distance of closest approach

ie,

$$\frac{1}{2}mv^{2} = \frac{1}{4\pi\epsilon_{0}}\frac{q_{1}q_{2}}{r}$$

$$\therefore 5MeV$$

$$= \frac{9 \times 10^{9} \times (2e) \times (92e)}{r} \qquad \left(\because \frac{1}{2}mv^{2}\right)$$

$$= 5MeV$$

$$\Rightarrow r = \frac{9 \times 10^{9} \times 2 \times 92 \times (1.6 \times 10^{-19})^{2}}{5 \times 10^{6} \times 1.6 \times 10^{-19}}$$

$$\therefore r = 5.3 \times 10^{-14} \text{ m} = 10^{-12} \text{ cm}$$

623 **(c)**

Energy of photon,

$$E = hv = \frac{hc}{\lambda}$$
 ...(i)

Where *h* is Planck's constant and *c* the speed of light.

Multiplying and dividing the RHS of above expression by m where m is mass, we have

$$E = \frac{hmc}{m\lambda}$$

Now, *mc*=*p*= momentum

$$\therefore \qquad E = \frac{hp}{m\lambda}$$

Given, $E_1 = E$, $E_2 = 4E$, $p_1 = p$
$$\frac{E_1}{E_2} = \frac{p_1}{p_2}$$
$$\Rightarrow \qquad p_2 = p_1 \frac{E_2}{E_1} = p \frac{4E}{E} = 4p$$

Hence, momentum increases by a factor of 4. 624 **(b)**

$$v = \frac{c}{\lambda} = \frac{3 \times 10^8}{1 \times 10^{-10}} = 3 \times 10^{18} Hz$$

625 **(b)**

According to Einstein's mass energy equivalence $E = mc^2$

: Loss of mass per second =
$$\frac{(3.77 \times 10^{26})}{c^2} kg$$

= $\frac{(3.77 \times 10^{26})}{(3 \times 10^8)^2} kg = 0.419 \times 10^{10} kg$
= $41.9 \times 10^8 kg$

627 **(a)**

$$E = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{hc}{E}$$

628 **(a)**

The value of threshold frequency v_0 for A is less than that for B, hence $\phi_A < \phi_B$

630 **(c)**

 \cdot

$$E(K_{\gamma}) > E(K_{\beta}) > E(K_{\alpha}) \Rightarrow \lambda(K_{\gamma}) < \lambda(K_{\beta})$$

< $\lambda(K_{\alpha})$

631 **(b)**

We know that in Davisson-Germer experiment maximum intensity is observed at 54⁰ and 50 V.

632 **(a)**

Specific charge=charge/mass. The positive rays are stream of positive ions. The mass of positive ion is much more than that of electrons, hence specific charge of positive ions is less

634 **(a)**

$$\frac{1}{2}mv^2 = E \Rightarrow mv = \sqrt{2mE} \quad \therefore \ \lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mE}}$$

635 **(b)**

de-Broglie wavelength, $\lambda = \frac{h}{mv}$

$$= \frac{6.6 \times 10^{-34}}{120 \times 10^{-3} \times 20}$$
$$= 2.75 \times 10^{-34} \text{ m}$$

636 **(c)**

When filament current is increased, more electrons are emitted from electron gun. Due to which the intensity of electrons increases.

As
$$\lambda_{\min} = \frac{hc}{eV}$$
, so as *V* decreases, λ_{\min} increases.
637 (c)

de-Broglie wavelength of an electron is given by

$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mK}}$$
Or
$$\lambda \propto \frac{1}{\sqrt{K}}$$

$$\therefore \qquad \qquad \frac{\lambda'}{\lambda} = \frac{1}{\sqrt{3K}} \frac{\sqrt{K}}{1} = \frac{1}{\sqrt{3}}$$
Or
$$\lambda' = \frac{\lambda}{\sqrt{2}}$$

Hence, de-Broglie wavelength will change by factor $\frac{1}{\sqrt{3}}$.

638 **(b)**

Stopping potential

$$v_0 = \frac{hc}{e} \left(\frac{1}{\lambda} - \frac{1}{\lambda_0} \right)$$

Where λ_0 = stopping potential Ist case,

$$4.8 = \frac{hc}{e} \left(\frac{1}{\lambda} - \frac{1}{\lambda_0} \right) \qquad \dots (i)$$

$$1.6 = \frac{hc}{e} \left(\frac{1}{2\lambda} - \frac{1}{\lambda_0}\right) \qquad \dots (ii)$$

Dividing Eq. (i) by Eq. (ii)

$$3 = \frac{\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)}{\left(\frac{1}{2\lambda} - \frac{1}{\lambda_0}\right)}$$
$$\frac{3}{2\lambda} - \frac{3}{\lambda_0} = \frac{1}{\lambda} - \frac{1}{\lambda_0}$$
$$\frac{1}{\lambda_0} - \frac{3}{\lambda_0} = \frac{1}{\lambda} - \frac{3}{2\lambda}$$
$$\frac{-2}{\lambda_0} = \frac{2-3}{2\lambda}$$
$$\frac{2}{\lambda_0} = \frac{1}{2\lambda}$$
$$\lambda_0 = 4\lambda$$

639 **(d)**

Einstein's photoelectric equation is

$$KE_{max} = hv - \phi$$

...(ii)

Comparing above two equations

$$m = h, c = -\phi$$

Hence, slope of graph is equal to Planck's constant (non-variable) and does not depend on intensity of radiation.

$$\frac{1}{2}mv^{2} = eV \Rightarrow \frac{e}{m} = \frac{v^{2}}{2V} = \frac{(8.4 \times 10^{6})^{2}}{2 \times 200}$$
$$= 1.76 \times 10^{11} \frac{C}{kg}$$

641 (c)

Applied voltage must be greater than binding enegy

642 **(d)**

 $\therefore \qquad \qquad \lambda = \frac{h}{p} \Rightarrow \lambda \propto \frac{1}{p}$

ie, when λ increases, p decreases.

643 **(c)**

According to Einstein's photoelectric equation

$$\frac{hc}{\lambda} = \phi + \frac{1}{2}mv^2 \Rightarrow v = \left[\frac{2(hc - \lambda\phi)}{m\lambda}\right]^{1/2}$$

644 **(a)**

 $\lambda_r > \lambda_y > \lambda_g$. Here threshold wavelength $< \lambda_y$ 645 **(c)**

Acceleration,
$$a = \frac{F}{m} = \frac{qvB}{m}$$

= $\frac{2 \times 1.6 \times 10^{-19} \times 6 \times 10^5 \times 0.2}{6.65 \times 10^{-27}}$
= 5.77 × 10¹²ms⁻²

647 **(c)**

The energy of photon

$$E = \frac{hc}{\lambda}$$

and work function of metal

$$W = \frac{hc}{\lambda_0}$$

E > W

 $\frac{hc}{\lambda} > \frac{hc}{\lambda_0}$

 $\lambda \leq \lambda_0$

For photoelectric effect

648 **(a)**

649

Here,
$$u = 0$$
; $a = \frac{eE}{m}$; $v = ?$; $t = t$
 $\therefore v = u + at = 0 + \frac{eE}{m}t$

de-Broglie wavelength,

$$\lambda = \frac{h}{mv} = \frac{h}{m(eEt/m)} = \frac{h}{eEt}$$

Rate of change of de-Broglie wavelength
$$\frac{d\lambda}{dt} = \frac{h}{eE} \left(-\frac{1}{t^2}\right) = \frac{-h}{eEt^2}$$

(c)

The graph between V_0 and v cuts the v-axis at v_0 For the given graphs $(v_0)_{(iv)} > (v_0)_{(iii)} >$

$$(v_0)_{(ii)} > (v_0)_{(i)}$$

 $\therefore (W_0)_{(iv)} > (W_0)_{(iii)} > (W_0)_{(ii)} > (W_0)_{(i)}$
650 (d)

$$eV = \frac{1}{2}mv^2$$

or $v = \sqrt{\frac{2eV}{m}} = \sqrt{2 \times (1.8 \times 10^{11}) \times 9} = 1.8 \times 10^6 \text{ms}^{-1}$

651 **(b)**

Momentum of photon, $p = \frac{h}{\lambda}$

Therefore, wavelength of photon, $\lambda = \frac{h}{n}$

652 **(b)**

Given $E/c = 3.3 \times 10^{-13} \text{kg ms}^{-1}$; So, $E = 3.3 \times 10^{-13} \times c = 3.3 \times 10^{-13} \times 3 \times 10^{8}$ $= 9.9 \times 10^{-5} \text{ J}$

653 **(d)**

$$\lambda = \frac{h}{p}$$
 or $L = \frac{h}{p}ie, L \propto \frac{1}{p}$. The curve (d) is correct.

655 **(d)**

In photoelectric effect particle nature of electron is shown. While in electron microscope, beam of electron is considered as electron wave

658 **(a)**

When light falls on a metallic surface, ejection of photoelectron results. In this process, conservation of energy holds.

Thus, from law of conservation of energy, the

energy imparted by the photon

=maximum kinetic energy of the emitted electron +work function of the metal.

Or
$$hv = (KE)_{max} + \phi$$

but
$$\phi = hv_0$$
, v_0 being threshold frequency.

$$c: (KE)_{\max} = hv - hv_0$$

or (KE)max $\propto v - v_0$

Foe electro,
$$p = \frac{h}{\lambda}$$
; and for photon, $E = \frac{hc}{\lambda}$
 $\therefore \frac{E}{p} = \frac{hc/\lambda}{h/\lambda} = c = 3 \times 10^8 \text{ ms}^{-1}$

660 **(d)**

$$QE = mg \Rightarrow mg = \frac{QV}{d}$$

661 **(c)**

de-Broglie wavelength $\lambda = \frac{h}{mv_{rms}}$ *rms* velocity of a gas particle at the given temperature (*T*) is given as

$$\frac{1}{2}mv_{rms}^2 = \frac{3}{2}kT \Rightarrow v_{rms} = \sqrt{\frac{3kT}{m}} \Rightarrow mv_{rms}$$
$$= \sqrt{3mkT}$$
$$\therefore \lambda = \frac{h}{mv_{rms}} = \frac{h}{\sqrt{3mkT}}$$

$$\Rightarrow \frac{\lambda_H}{\lambda_{He}} = \sqrt{\frac{m_{He}T_{He}}{m_H T_H}} = \sqrt{\frac{4(273+127)}{2(273+27)}} = \sqrt{\frac{8}{3}}$$

662 **(b)**

de-Broglie wavelength, $\lambda = \frac{h}{\sqrt{2meV}}$ X-ray wavelength, $\lambda_2 = \frac{hc}{eV}$ $\therefore \frac{\lambda_1}{\lambda_2} = \frac{eV}{c\sqrt{2meV}} = \frac{1}{c} \sqrt{\frac{1}{2} \left(\frac{e}{v}\right) V}$ $=\frac{1}{3\times 10^8}\sqrt{\frac{1}{2}\times 1.8\times 10^{11}\times 10^4}=\frac{1}{10}$

663 (a)

The de-Broglie wavelength (λ) is given by

 $\lambda = \frac{h}{p}$...(i) Where *h* is Planck's constant, *p* the momentum. $p = mv = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$...(ii) Also,

Where m_0 is rest mass, v the velocity and c the speed of light.

From Eqs. (i) and (ii), we get

$$\lambda = \frac{h\sqrt{1-\frac{v^2}{c^2}}}{m_0 v}$$

Given, $v = c$ $\therefore \lambda = 0$

664 (a)

$$E_e = \frac{1}{2}mv^2 = \frac{1}{2}(mv)v = \frac{1}{2}\left(\frac{h}{\lambda}\right)v$$

and $E_p = \frac{hc}{\lambda}$;
 $\therefore \frac{E_e}{E_p} = \frac{v}{2c}$
 $p_e = mv = h/\lambda$ and $p_h = \frac{h}{\lambda}$
 $\therefore \frac{p_e}{p_h} = 1$

665 (a)

According to Millikan's oil drop experiment, electronic charge is given by

$$q = \frac{6\pi\eta r(v_1 + v_2)}{E}$$

Which is independent of g.

 $\frac{\text{electronic charge on the moon}}{\text{moon}} = 1$ So, electronic charge on the earth

666 (c)

$$\frac{e}{m} = \frac{1.6 \times 10^{-19}}{9.1 \times 10^{-31}} = 1.76 \times 10^{11} C/kg$$

667 **(d)**

Using Bragg's formula,

d = 2AGiven. For maximum wavelength

 $\lambda_{max} = 2d = 2 \times 2A = 4A$

668 (d)

When current through the filament increases, number of emitted electrons also increases. Hence intensity of X-ray increases but no effect on penetration power

 $2d\sin\theta = \lambda$

669 **(a)**

$$E = \frac{hc}{\lambda} = \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{450 \times 10^{-9}} = 4.4 \times 10^{-19} J$$

670 (b)

$$\lambda = \frac{h}{\sqrt{2mK}} \Rightarrow \frac{\lambda_1}{\lambda_2} = \sqrt{\frac{K_2}{K_1}} = \sqrt{\frac{16K}{K}} = 4$$
$$\frac{\lambda_1}{\lambda_2} = 4 \Rightarrow \lambda_2 = \frac{\lambda_1}{4} = \frac{100}{4} = 25$$
$$4\lambda = 100 - 25 = 75\%$$

671 (c)

Energy incident over $1 \text{ cm}^2 = 1.0 \times 10^{-4}$ J; Energy required to produce photoelectrons $= 1.0 \times 10^{-4} \times 10^{-2} = 10^{-6}$ J.

Number of photoelectrons ejected = number of photons which can produce photoelectrons = energy required for producing electron/energy of photon.

$$=\frac{10^{-6}}{hc/\lambda} = \frac{10^{-6} \times 300 \times 10^{-9}}{6.6 \times 10^{-34} \times 3 \times 10^{8}}$$
$$= 1.51 \times 10^{12} \text{ s}^{-1}$$

672 (a)

In discharge tube cathode rays (a beam of nregative particles) and canal rays (positive rays) move opposite to each other. They will experience a magnetic force in the same direction, if a normal magnetic field is applied

