

9.DIFFERENTIAL EQUATIONS

Single Correct Answer Type

1. Let *F* denotes the family of ellipses whose centre is at the origin and major axis is the *y*-axis. Then, equation of the family *F* is

a)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} \left(x \frac{dy}{dx} - y \right) = 0$$

b) $xy \frac{d^2y}{dx^2} - \frac{dy}{dx} \left(x \frac{dy}{dx} - y \right) = 0$
c) $xy \frac{d^2y}{dx^2} + \frac{dy}{dx} \left(x \frac{dy}{dx} - y \right) = 0$
d) $\frac{d^2y}{dx^2} - \frac{dy}{dx} \left(x \frac{dy}{dx} - y \right) = 0$
 $\left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{3/2}$

2.

The order and degree of the differential equation $\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]}{\frac{d^2y}{dx^2}}$ are respectively

a) 2, 2 b) 2, 3 c) 2, 1 d) None of these 3. The differential equation of the family of curves $y = e^{2x}(a \cos x + b \sin x)$, where *a* and *b* are arbitrary constants, is given by

a)
$$y_2 - 4y_1 + 5y = 0$$
 b) $2y_2 - y_1 + 5y = 0$ c) $y_2 + 4y_1 - 5y = 0$ d) $y_2 - 2y_1 + 5y = 0$
4. The solution of $\frac{dy}{dx} = \frac{ax+g}{by+f}$ represents a circle when

a)
$$a = b$$
 b) $a = -b$ c) $a = -2b$ d) $a = 2b$

- 5. Solution of the differential equation $\frac{dy}{dx} + \frac{y}{x} = x^2$ is a) $y = \frac{x^2}{4} + cx^{-2}$ b) $y = x^{-1} + cx^{-3}$ c) $y = \frac{x^3}{4} + cx^{-1}$ d) $xy = x^2 + cx^{-1}$
- The differential equation satisfied by the family of curves $y = ax \cos(\frac{1}{x} + b)$, where *a* and *b* are 6. parameters, is d) $x^4 y_2 - y = 0$ a) $x^2y_2 + y = 0$ b) $x^4y_2 + y = 0$ c) $xy_2 - y = 0$ The solution of the differential equation $y dx + (x + x^2y)dy = 0$ is 7. b) $-\frac{1}{ry} + \log y = c$ c) $\frac{1}{ry} + \log y = c$ a) $-\frac{1}{xy} = c$ d) $\log y = cx$ The degree of the differential equation $2\left(\frac{d^2y}{dx^2}\right) + 3\left(\frac{dy}{dx}\right)^2 + 4y^{3} = x$, is 8. a) 0 b) 1 c) 2 d) 3 9. The differential equation $\cot y \, dx = x \, dy$ has a solution of the form a) $y = \cos x$ b) $x = c \sec y$ c) $x = \sin y$ d) $y = \sin x$ 10. The solution of the differential equation $(3xy + y^2)dx + (x^2 + xy)dy = 0$ is a) $x^{2}(2xy + y^{2}) = c^{2}$ b) $x^{2}(2xy - y^{2}) = c^{2}$ c) $x^{2}(y^{2} - 2xy) = c^{2}$ d) None of these 11. The order and degree of the differential equation $\sqrt{\frac{dy}{dx}} - 4\frac{dy}{dx} - 7x = 0$ are a) 1 and 1/2 b) 2 and 1 c) 1 and 1 d) 1 and 2 12. Solution of the differential equation $\cos x \, dy = y(\sin x - y)dx$, $0 < x < \frac{\pi}{2}$, is a) sec $x = (\tan x + c)y$ b) $y \sec x = \tan x + c$ c) $y \tan x = \sec x + c$ d) $\tan x = (\sec x + x)y$ ^{13.} If $x = A \cos 4t + B \sin 4t$, then $\frac{d^2x}{dt^2}$ is equal to a) -16 xb) 16 x c) x d) −*x* ^{14.} If $\frac{dy}{dx} + y = 2e^{2x}$, then *y* is equal to b) $(1+x)e^{-x} + \frac{2}{3}e^{2x} + c$ a) $ce^{x} + \frac{2}{2}e^{2x}$ c) $ce^{-x} + \frac{2}{2}e^{2x}$ d) $e^{-x} + \frac{2}{2}e^{2x} + c$

15.	The solution of differential equation $\frac{dt}{dx}$ =	$t\left(\frac{d}{dx}(\mathbf{g}(x))\right) - t^2$.		
		8(**)		
	a) $t = \frac{g(x) + c}{x}$ b) $t = \frac{g(x)}{x} + \frac{g(x)}{x}$	c c) t	$t = \frac{g(x)}{x+c}$	d) $t = g(x) + x + c$
16.	The differential equation of all circles of			
17.	a) 2 b) 3 The solution of the differential equation	c) 4 on xy ² dy – (x		d) None of these
	a) $y^3 = 3x^3 + c$ b) $y^3 = 3x^3$			d) $y^3 + 3x^3 = \log(cx)$
18.	The solution of the differential equation	on $x \frac{dy}{dx} + y = x$	$x \cos x + \sin x$, given	that $y = 1$ when $x = \frac{\pi}{2}$,
	is	ux		2
10	a) $y = \sin x - \cos x$ b) $y = \cos x$	c) y		d) $y = \sin x + \cos x$
19.	The differential equation obtained by $xy = ae^{x} + be^{-x}$ is	eliminating the	e arbitrary constants	a and b from
	a) $x \frac{d^2y}{dx^2} + 2\frac{dy}{dx} - xy = 0$	b) ($\frac{d^2y}{dx^2} + 2y \frac{dy}{dx} - xy = 0$	
	ux ux	l	ux ux	
20	c) $x \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} + xy = 0$	i	$\frac{d^2y}{dx^2} + \frac{dy}{dx} - xy = 0$	
20.	The general solution of the differentia	l equation $\frac{d^2y}{dx^2}$	$+2\frac{dy}{dx} + y = 2e^{3x}$ is	given by
	a) $y = (c_1 + c_2 x) e^x + \frac{e^{3x}}{8}$		$v = (c_1 + c_2 x)e^{-x} + c_2 x$	0
	c) $y = (c_1 + c_2 x)e^{-x} + \frac{e^{3x}}{8}$	d) y	$y = (c_1 + c_2 x)e^x + \frac{e^x}{2}$	-3x
21.	The solution of the differential equation	(2y-1)dx - (2)	(x + 3)dy = 0, is	0
	a) $\frac{2x-1}{2y+3} = C$ b) $\frac{2x+3}{2y-1} = C$	c) -	$\frac{2x-1}{2x-1} = C$	d) $\frac{2y+1}{2x-3} = C$
22.	A curve passes through the point (0, 1) a		5	
	curve is a) $y(x - 1) = 1$ b) $y(x + 1) =$	1 a) a	x(x + 1) = 1	d) $x(y - 1) = 1$
23.	Solution of the differential equation x			(y - 1) = 1
			Hyperbola	d) Straight line
24.	If $\frac{dy}{dx} = 1 + x + y + xy$ and $y(-1) =$), then the func	ction y is	
	a) $e^{(1-x)^2/2}$ b) $e^{(1+x)^2/2}$			
25.	An integrating factor of the differenti	al equation $x \frac{d}{d}$	$\frac{dy}{dx} + y \log x = x e^x x^{-\frac{1}{2}}$	$\frac{1}{2}\log x$, (x > 0), is
		c) (d) e^{x^2}
26.	The differential equation $y \frac{dy}{dx} + x =$	c represents		
	a) A family of hyperbolas			
	b) A family of circles whose centres a	re on the y-axi	S	
	c) A family of parabolasd) A family of circles whose centres as	e on the <i>x</i> -axis	3	
27.	If $y' = \frac{x-y}{x+y}$, then its solution is		,	
	a) $y^2 + 2xy - x^2 = c$ b) $y^2 + 2xy + c$			
28.	The order of differential equation whose	general solution	this given by $y = c_1 e^{2x}$	$+c_2 + c_3 e^x + c_4 \sin(x + c_5)$
	is a) 5 b) 4	c) 3	3	d) 2
29.	The solution of the differential equation	$\frac{x}{x^2 + y^2} dy = \left(\frac{y}{x^2 + y^2}\right)$	$\frac{1}{\sqrt{2}}-1$ dx, is	,
	-	(-+ <i>y</i> - (<i>X</i> +)	y-)	

	a) $y = x \cot(\mathcal{C} - x)$	b) $\cos^{-1}\frac{y}{x} = (-x + C)$	c) $y = x \tan(C - x)$	d) $\frac{y^2}{x^2} = x \tan(C - x)$				
30.	If $dx + dy = (x + y)(x + y)$	$dx - dy$), then $\log(x + y)$) is equal to	x				
	a) <i>x</i> + <i>y</i> + <i>c</i>	, ,	•	d) $2x + y + c$				
31.	The solution of the equ	hation $y - x \frac{dy}{dx} = a \left(y^2 \right)$	$+\frac{dy}{dx}$) is					
	a) $y = c(x + a)(1 - ay)$	/)	b) $y = c(x + a)(1 + ay)$	/)				
		,	d) None of these					
32.	The order and degree	of the differential equation	$\operatorname{on}\left(1+3\frac{dy}{dx}\right)^{2/3} = 4\frac{d^3y}{dx^3}$	are				
	a) $(1, \frac{2}{3})$	$\begin{aligned} x + y)(dx - dy), \text{ then } \log(x + y) \text{ is equal to} \\ b)x + 2y + c & c) x - y + c & d) 2x + y + c \\ \text{of the equation } y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx}\right) \text{ is} \\ a)(1 - ay) & b) y = c(x + a)(1 + ay) \\ a)(1 + ay) & d) \text{ Non of these} \\ \text{d degree of the differential equation } \left(1 + 3 \frac{dy}{dx}\right)^{2/3} = 4 \frac{d^3y}{dx^3} \text{ are} \\ b)(3,1) & c)(3,3) & d)(1,2) \\ \text{no of one of the curves whose slope at any point is equal to y + 2x is +x - 1) b) y = 2(e^x - x - 1) c) y = 2(e^x - x + 1) d) y = 2(e^x + x + 1) \\ \text{the differential equation of all curves having normal of constate length c, is b) 3 & c) 4 & d None of these of \frac{dy}{dx} + 1 = \csc (x + y) is b) - 2(e^x - x - 1) b) \cos(c + y) = c \\ + x = c & d) \sin(x + y) + \sin(x + y) = c \\ \text{of the differential equation } \frac{dy}{dx} = e^{3x - 2y} + x^2 e^{-2y}, \text{ is} \\ + x^3 + c & b) \frac{1}{2}e^{2y} = \frac{1}{3}(e^{3x} + x^3) + c \\ (e^{3x} + x^3) + c & d) e^{2y} = e^{3x} + x^3 + c \\ \text{al equation whose solution is } (x - h)^2 + (y - k)^2 = a^2 \text{ is } (a \text{ is a constant}) \\ \end{bmatrix}^3 = a^2 \left(\frac{d^2y}{dx^2}\right)^2 \\ \text{ise} \\ \text{ind order of the differential equation } \frac{dy}{dx} = \frac{x + y + 1}{x + y - 1} \text{ is given by} \\ \text{g} x + y + c & d) y = x \log x + y + c \\ \text{statisfying } y' = \frac{x^2 + y^2}{x^2 + y^2}, y(1) = 2 \text{ has the slope at the point (1, 0) of the curve is equal to \\ \text{b) } - 1 & c) 1 & d) 5/3 \\ \text{any point of a curve } y = f(x) \text{ is given by} \\ \frac{dy}{dx} = 3x^2 \text{ and it passes through (-1, 1). The he curve is \\ 2 & b) y = -x^3 - 2 & c) y = 3x^3 + 4 & d) y = -x^3 + 2 \\ \text{of the differential equation (x + y)^2 \frac{dy}{dx} = a^2 \text{ is } c^2 \text{ is } c^2 x + c \\ \end{bmatrix}$						
33.	-	-	• • • •					
24								
34.	0	•	0					
35.		,	<i>c</i>) -					
	uл		b) $\cos(c + v) = c$					
	c) $\sin(x + y) + x = c$			-y) = c				
36.	The solution of the diff	The equation $\frac{dy}{dx} = e$	$e^{3x-2y} + x^2 e^{-2y}$, is					
	a) $e^{2y} = e^{3x} + x^3 + c$		b) $\frac{1}{2}e^{2y} = \frac{1}{3}(e^{3x} + x^3) + c$					
	c) $\frac{1}{2}e^{2y} = \frac{1}{2}(e^{3x} + x^3)$	+c	d) $e^{2y} = e^{3x} + x^3 + c$					
37.	The differential equation	whose solution is $(x - h)^2$	$(x^{2} + (y - k)^{2}) = a^{2}$ is (a is a)	constant)				
	a) $x + y + c$ b) $x + 2y + c$ c) $x - y + c$ d) $2x + y + c$ The solution of the equation $y - x \frac{dy}{dx} = a \left(y^2 + \frac{dx}{dx}\right)$ is a) $y = c(x + a)(1 - ay)$ b) $y = c(x + a)(1 + ay)$ c) $y = c(x - a)(1 + ay)$ d) None of these The order and degree of the differential equation $\left(1 + 3 \frac{dy}{dx}\right)^{2/3} = 4 \frac{d^3y}{dx^3}$ are a) $\left(1, \frac{2}{3}\right)$ b) $(3,1)$ c) $(3,3)$ d) $(1,2)$ The equation of one of the curves whose slope at any point is equal to $y + 2x$ is a) $y = 2(e^x + x - 1)$ b) $y = 2(e^x - x - 1)$ c) $y = 2(e^x - x + 1)$ d) $y = 2(e^x + x + 1)$ The degree of the differential equation of all curves having normal of constant length c, is a) $1 b)^3 c + 4 d$ None of these The solution of $\frac{dy}{dx} + 1 = \cos(x + y)$ is a) $\cos(x + y) + x = c$ b) $\cos(c + y) = c$ c) $\sin(x + y) + x = c$ d) $\sin(x + y) + \sin(x + y) = c$ The solution of the differential equation $\frac{dy}{dx} = e^{3x - 2y} + x^2e^{-2y}$, is a) $e^{2y} = e^{3x} + x^3 + c$ b) $\frac{1}{2}e^{2y} = \frac{1}{3}(e^{3x} + x^3) + c$ c) $\frac{1}{2}e^{2y} = \frac{1}{3}(e^{3x} + x^3) + c$ d) $e^{2y} = e^{3x} + x^3 + c$ The differential equation whose solution is $(x - h)^2 + (y - k)^2 = a^2$ is (a is a constant) a) $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = a^2 \left(\frac{d^2y}{dx^2}\right)^2$ d) None of these The degree and order of the differential equation $\frac{dx}{dx} = \frac{x + y + 1}{x + y + 1}$ is given by a) $x + y = \log x + y + c$ b) $x - y = \log x + y + c$ c) $y = x + \log x + y + c$ d) $y = x \log x + y + c$ c) $y = x + \log x + y + c$ d) $y = x \log x + y + c$ The solution of the differential equation $\frac{dy}{dx} = \frac{3x^2}{x + y^2}$ is given by a) $x - y = \log x + y + c$ d) $y = x \log x + y + c$ The solution of the differential equation $\frac{dy}{dx} = \frac{2x + y + 1}{dx + y^2}$ is given by a) $x + y = \log x + y + c$ d) $y = x \log x + y + c$ The solution of the differential equation $\frac{dy}{dx} = \frac{2x + y + 1}{dx + y^2}$ is given by $\frac{dy}{dx} = 3x^2$ and it passes through (-1,1). The equation differential equation $(x + y)^2 \frac{dy}{dx} = a^2$ is a) $(x + y)^2 = \frac{a^2x}{x} + c$ b) $($							
	1. If $dx + dy = (x + y)(dx - dy)$, then $\log(x + y)$ is equal to a) $x + y + c$ b) $x + 2y + c$ c) $x - y + c$ d) $2x + y + c$ 4. The solution of the equation $y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx}\right)$ is a) $y = c(x + a)(1 - ay)$ b) $y = c(x + a)(1 + ay)$ c) $y = c(x - a)(1 + ay)$ d) None of these 2. The order and degree of the differential equation $\left(1 + 3 \frac{dy}{dx}\right)^{2/3} = 4 \frac{d^3y}{dx^3}$ are a) $\left(1, \frac{2}{3}\right)$ b) $(3, 1)$ c) $(3, 3)$ d) $(1, 2)$ 3. The equation of one of the curves whose slope at any point is equal to $y + 2x$ is a) $y = 2(e^x + x - 1)$ b) $y = 2(e^x - x - 1)$ c) $y = 2(e^x - x + 1)$ d) $y = 2(e^x + x + 1)$ 4. The degree of the differential equation of all curves having normal of constant length c, is a) $1 = 2(e^x + x - 1)$ b) $y = 2(e^x - x - 1)$ c) $y = 2(e^x - x + 1)$ d) None of these 5. The solution of $\frac{dy}{dx} + 1 = \csc(x + y)$ is a) $\cos(x + y) + x = c$ b) $\cos(c + y) = c$ c) $\sin(x + y) + x = c$ b) $\cos(c + y) = c$ c) $\sin(x + y) + x = c$ b) $\frac{1}{2}e^{2y} - \frac{1}{3}(e^{3x} + x^3) + c$ c) $\sin(x + y) + x = c$ b) $\frac{1}{2}e^{2y} - \frac{1}{3}(e^{3x} + x^3) + c$ c) $\frac{1}{2}e^{2y} = \frac{1}{3}(e^{2x} + x^3) + c$ d) $\frac{1}{2}e^{2y} - \frac{1}{3}(e^{3x} + x^3) + c$ c) $\frac{1}{2}e^{2y} = \frac{1}{3}(e^{2x} + x^3) + c$ d) $\frac{1}{2}e^{2y} - \frac{1}{3}(e^{3x} + x^3) + c$ c) $\frac{1}{2}e^{2y} = \frac{1}{3}(e^{2x} + x^3) + c$ d) $\frac{1}{2}e^{2y} = \frac{1}{3}(e^{3x} + x^3 + c$ 7. The differential equation whose solution is $(x - h)^2 + (y - k)^2 = a^2$ is (a is a constant) a) $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = a^2 \left(\frac{d^2y}{dx^2}\right)^2$ d) None of these 3. The degree and order of the differential equation whose solution is a parabola whose axis is x- axis, are a) $1,1$ b) $1,2$ c) $1,0$ d) $2,1$ 4. General solution of the differential equation $\frac{dy}{dx} = \frac{x_{1}x_{1}}{x_{1}x_{1}}$ is given by a) $x + y = \log x + y + c$ d) $y = x \log x + y + c$ b) $1 - (y - 1) \frac{1}{2} - x^2$. Divers is equal to a) $-5/3$ b) -1 c) $1 \frac{1}{2} - x^2$ and it passes through (-1,1). The equation of the curve is a) $y = x^3 + 2$ b) $y = -$							
	If $dx + dy = (x + y)(dx - dy)$, then $\log(x + y)$ is equal to a) $x + y + c$ b) $x + 2y + c$ c) $x - y + c$ d) $2x + y + c$ The solution of the equation $y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx}\right)$ is a) $y = c(x + a)(1 - ay)$ b) $y = c(x + a)(1 + ay)$ c) $y = c(x - a)(1 + ay)$ d) None of these The order and degree of the differential equation $\left(1 + 3 \frac{dy}{dx}\right)^{2/3} = 4 \frac{d^3y}{dx^2}$ are a) $\left(1, \frac{2}{3}\right)$ b) $(3, 1)$ c) $(3, 3)$ d) $(1, 2)$ The equation of one of the curves whose slope at any point is equal to $y + 2x$ is a) $y = 2(e^x + x - 1)$ b) $y = 2(e^x - x - 1)$ c) $y = 2(e^x - x + 1)$ d) $y = 2(e^x + x + 1)$ The degree of the differential equation of all curves having normal of constant length c, is a) $1 = 0$ b) 3 c) 4 d) None of these The solution of $\frac{dy}{dx} + 1 = \csc (x + y)$ is a) $\cos(x + y) + x = c$ b) $\cos(c + y) = c$ c) $\sin(x + y) + x = c$ d) $\sin(x + y) + \sin(x + y) = c$ The solution of the differential equation $\frac{dy}{dx} = e^{3x - 2y} + x^2e^{-2y}$, is a) $e^{2y} = e^{3x} + x^3 + c$ b) $\frac{1}{2}e^{2y} = \frac{1}{3}(e^{3x} + x^3) + c$ c) $\left[\frac{1}{2}e^{3y} = \frac{1}{3}(e^{3x} + x^3) + c$ d) $e^{2y} = e^{2x} + x^3 + c$ The differential equation whose solution is $(x - h)^2 + (y - k)^2 = a^2$ is (a is a constant) a) $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = a^2 \left(\frac{d^3y}{dx^2}\right)^2$ d) None of these The degree and order of the differential equation $\frac{dy}{dx} = \frac{x + y + 1}{x + y - 1}$ is given by a) $x + y = \log x + y + c$ d) $y = x \log x + y + c$ The globe and order of the differential equation $\frac{dy}{dx} = \frac{x^2 + y + 1}{x + y - 1}$ is given by a) $x + y = \log x + y + c$ d) $y = x \log x + y + c$ Integral curve satisfying $y' = \frac{x^2 + y^2}{x^2 + y^2}$, (y) 1 = 2 has the slope at the point (1, 0) of the curve is equal to a) $-5/3$ b) -1 c) 1 d) $5/3$ The slope at any point of a curve $y = f(x)$ is given by $\frac{dy}{dx} = 3x^2$ and it passes through (-1,1). The equation of the differential equation $(x + y)^2 \frac{dy}{dx} = a^2$ is a) $(x + y)^2 = \frac{a^2x}{x} + c$ b) $(x + y)^2 = a^2x + c$							
20	2	of the differential equation	n whose solution is a na	rahala whaca avia ia <i>w</i>				
50.	-	of the unferential equation	fil whose solution is a pa	adula whose axis is x-				
		b) 1,2	c) 1,0	d) 2,1				
39.	General solution of the	differential equation $\frac{dy}{dx}$	$=\frac{x+y+1}{x+y-1}$ is given by					
	c) $y = x + \log x + y $	+ <i>c</i>	d) $y = x \log x + y + c$					
40.	Integral curve satisfying	$y' = \frac{x^2 + y^2}{x^2 - y^2}$, $y(1) = 2$ has the	ne slope at the point (1, 0)	of the curve is equal to				
	<i>) </i>	,	,	, ,				
41.	The slope at any point	of a curve $y = f(x)$ is given by	ven by $\frac{dy}{dx} = 3x^2$ and it pa	sses through (-1,1). The				
				2				
10				d) $y = -x^3 + 2$				
42.		erential equation $(x + y)$	$\int \frac{dx}{dx} = a^2$ is					
	a) $(x + y)^2 = \frac{a^2 x}{2} + c$	$ y''_{x} + y''_{x}(dx - dy), \text{ then } \log(x + y) \text{ is equal to} $ $ b) x + 2y + c () x - y + c d) 2x $ $ b) x + 2y + c () x - y + c d) 2x $ $ b) x + 2y + c () x - y + c d) 2x $ $ b) x + 2y + c () x - y + c d) 2x $ $ b) x + 2y + c () x - y + c d) 2x $ $ b) x + 2y + c () x - y + c d) 1 + ay $ $ b) y = c(x + a)(1 + ay) $ $ d) \text{ None of these} $ $ egree of the differential equation \left(1 + 3 \frac{dy}{dx}\right)^{2/3} = 4 \frac{d^3y}{dx^3} areb) (3,1) () (3,3) d) (1 $ $ one of the curves whose slope at any point is equal to y + 2x is -1) b) y = 2(e^x - x - 1) c) y = 2(e^x - x + 1) d) y = 2(e^x - x + 1) d) y = 2(e^x - x - 1) c) y = 2(e^x - x + 1) d) y = 2(e^x - x - 1) c) y = 2(e^x - x + 1) d) y = 2(e^x - x - 1) c) y = 2(e^x - x + 1) d) y = 2(e^x - x - 1) c) y = 2(e^x - x + 1) d) y = 2(e^x - x + 1) d) y = 2(e^x - x - 1) c) y = 2(e^x - x + 1) d) y = 2(e^$						
	c) $(x + y)^2 = 2a^2x + a^2$		d) None of these					

43.		eral solution of the differe	-	
	a) $(y')^2 - xy' + y = 0$ c) $y' = c$		b) $y'' = 0$ d) $(y')^2 + xy' + y = 0$	
44.	The solution of $\frac{dv}{dt} + \frac{k}{m}v = \frac{k}{m}v$	a is	u(y) + xy + y = 0	
	ui m		k, ma	k, ma
	n	b) $v = c - \frac{mg}{k} e^{-\frac{k}{m}t}$	c) $ve^{-mt} = c - \frac{ms}{k}$	d) $v e^{\overline{m}t} = c - \frac{mg}{k}$
45.	The solution of $\frac{dy}{dx} + y \tan y$	$x = \sec x$ is		
16	a) $y \sec x = \tan x + c$		c) $\tan x = y \tan x + c$	d) $x \sec x = \tan y + c$
46.	If $\frac{dy}{dx} = \frac{y + x \tan \frac{y}{x}}{x}$, then si	$n\frac{y}{r}$ is equal to		
	a) cx^2	b) <i>cx</i>	c) <i>cx</i> ³	d) <i>cx</i> ⁴
47.	The differential equation	of the family of curve $y^2 =$	4a(x+1), is	
	a) $y^2 = 4 \frac{dy}{dx} \left(x + \frac{dy}{dx} \right)$			
	b) $2y = \frac{dy}{dx} + 4a$			
	c) $y^2 \left(\frac{dy}{dx}\right)^2 + 2xy \frac{dy}{dx} - 2xy$	$y^2 = 0$		
	d) $y^2 \frac{dy}{dx} + 4y = 0$			
48.	The solution of the diffe	erential equation $\frac{dy}{dx} = e^{\frac{1}{2}}$	^{x+y} is	
		b) $e^{x} - e^{y} = c$		d) $e^x - e^{-y} = c$
49.	The solution of differentiation	al equation $t = 1 + (ty) \frac{dy}{dt}$	$+\frac{(ty)^2}{2!}\left(\frac{dy}{dx}\right)^2+\ldots\infty$ is	
	a) $y = \pm \sqrt{(\log t)^2 + c}$	b) $ty = t^y + c$	c) $y = \log t + c$	d) $y = (\log t)^2 + c$
50.	The solution of $x dy - $	$ydx + x^2 e^xdx = 0$ is		
	λ	y y	c) $x + e^y = c$	d) $y + e^x = c$
51.	The solution of $\frac{dy}{dx} + 2y$ ta	$\ln x = \sin x, \text{ is}$		
		b) $y \sec^2 x = \sec x + C$	c) $y \sin x = \tan x + C$	d) None of these
52.	The equation of the curve	e passing through the origin	and satisfying the differer	tial equation $(1 + x^2) \frac{dy}{dx} +$
	$2xy = 4x^2$ is			
F 0		b) $2(1 + x^2)y = 3x^3$		d) None of these
53.		erential equation $\frac{dy}{dx} = e^x$		
	a) $y = e^{x-y} - x^2 e^{-y} + c^2 e^{-y} +$	b) $e^y - e^x = \frac{1}{3}x^3 + c$	c) $e^x + e^y = \frac{1}{3}x^3 + c$	d) $e^x - e^y = \frac{1}{3}x^3 + c$
54.	The solution of the equ	ation $x^2 \frac{d^2 y}{dx^2} = \log x$ when	$x = 1, y = 0$ and $\frac{dy}{dx} = -$	-1 is
	a) $\frac{1}{2}(\log x)^2 + \log x$	b) $\frac{1}{2}(\log x)^2 - \log x$	c) $-\frac{1}{2}(\log x)^2 + \log x$	d) $-\frac{1}{2}(\log x)^2 - \log x$
55.	Observe the following s	statements		
	A:Interating factor of $\frac{dy}{dx}$	$\frac{y}{x} + y = x^2$ is e^x		
	R: Integrating factor of	$\frac{dy}{dx} + P(x)y = Q(x)$ is $e^{\int \frac{dy}{dx}}$	P(x)dx	
		nt among the following is		
	a) A is true, R is false	_ 0	b) A is false, R is true	
	c) A is true, R is true, R	$\Rightarrow A$	d) A is false, R is false	
56.		of the family of ellipse havi s is equal to half of the majo		espectively along the x and

a)
$$xy' - 4y = 0$$
 b) $4xy' + y = 0$ c) $4yy' + x = 0$ d) $yy' + 4x = 0$
57. The differential equation of system of concentric circles with centre (1,2) is
a) $(x - 2) + (y - 1)\frac{dy}{dx} = 0$ b) $(x - 1) + (y - 2)\frac{dy}{dx} = 0$
c) $(x + 1)\frac{dy}{dx} + (y - 2) = 0$ d) $(x + 2)\frac{dy}{dy} + (y - 1) = 0$
58. The equation of family of a curve is $y^2 = 4a(x + a)$ then differential equation of the family is
a) $y = y' + x$ b) $y = y'' + x$ c) $y = 2y'x + yy'^2$ d) $y'' + y' + y^2 = 0$
59. $y = 4ax' + 4b^{2x} + (c^{2x})x$ satisfies the differential equation
a) $y''' - 6y' + 11y' - 6y = 0$ b) $y''' + 6y'' - 11y' + 6y = 0$
c) $y''' + 6y'' - 11y' + 6y = 0$ d) $y''' - 6y'' - 11y' + 6y = 0$
c) $y''' + 6y'' - 11y' + 6y = 0$ d) $y''' - 6y' - 11y' + 6y = 0$
c) $y''' + 6y'' - 11y' + 6y = 0$ d) $y''' - 6y' - 11y' + 6y = 0$
c) The differential equation of all circles which passes through the origin and whose curve lies on y-
axis, is
a) $\frac{dx}{dx^2} = 0$ b) $\frac{dx}{dx^2} = c$ c) $\frac{d^4y}{dx^4} + \frac{dx}{dx^2} = 0$ d) $\frac{d^4x}{dx^2} + 2\frac{dy}{dx} = 2$
62. The equation of the curve whose tangent at any point (x, y) makes an angle $\tan^{-1}(2x + 3y)$ with
 x -axis and which passes through (1,2) is
a) $(x^2 - y^2)\frac{dy}{dx} - xy = 0$ d) $(x^2 - y^2)\frac{dy}{dx} + xy = 0$
63. The solution of the differential equation
 $\frac{dy}{dx^2} - \frac{dx}{dx^2} - \frac{dx}{dx} - \frac{dx}{dx^2} - \frac{dx}{dx} - \frac{dx}{dx^2} - \frac{dx}{dx} - \frac{dx}{dx} + \frac{dx}{dx}$
(5 $(4xy)^3 + 2 = 26e^{3(x-1)}$ d) $(6x - 9y + 2 = 26e^{3(x-1)})$
c) $6x + 9y - 2 = 26e^{3(x-1)}$ d) $(6x - 9y - 2 = 26e^{3(x-1)})$
c) $6x + 9y - 2 = 26e^{3(x-1)}$ d) $(6x - 9y - 2 = 26e^{3(x-1)})$
c) $6x + 9y - 2 = 26e^{3(x-1)}$ d) $(6x - 9y - 2 = 26e^{3(x-1)})$
c) $6x + 9y - 2 = 26e^{3(x-1)}$ d) $(3x - 9x + x = c)$ d) $\log x + y = c$
64. The solution of the differential equation $\frac{dy}{dx} - \frac{dy}{dx} - \frac{dx}{dx} - \frac{dx}{dx} - \frac{dx}{dx} + \frac{dx}{dx} = 0$
(5) $\frac{d^2x}{dx^2} + 1x = 0$ b) $\frac{d^2x}{dx^2} + 2x = 0$ c) $\frac{d^2x}{dx} - \sqrt{a^2} \left(\frac{dx}{dx} + \frac{dx}{dx} + \frac{dx}{dx} = 0$
(67. Solution of

- 71. The solution of the differential equation $y' = 1 + x + y^2 + xy^2$, y(0) = 0 is
- a) $y^2 = \exp\left(x + \frac{x^2}{2}\right) 1$ b) $y^2 = 1 + C \exp\left(x + \frac{x^2}{2}\right)$ c) $y = \tan(C + x + x^2)$ d) $y = \tan\left(x + \frac{x^2}{2}\right)$ ^{72.} Solution of the differential equation $\frac{dy}{dx} + \frac{y}{x} = \sin x$ is a) $x(y + \cos x) = \sin x + c$ b) $x(v - \cos x) = \sin x + c$ c) $x(y\cos x) = \sin x + c$ d) $x(y - \cos x) = \cos x + c$ 73. The integrating factor of the differential equation $(y \log y)dx = (\log y - x)dy$ is a) $\frac{1}{\log y}$ b) $\log(\log y)$ c) $1 + \log y$ d) $\log y$ 74. The family of curves $y = e^{a \sin x}$, where *a* is an arbitrary constant, is represented by the differential equation a) $\log y = \tan x \frac{dy}{dx}$ b) $y \log y = \tan x \frac{dy}{dx}$ c) $y \log y = \sin x \frac{dy}{dx}$ d) $\log y = \cos x \frac{dy}{dx}$ 75. The order of differential equation of all parabolas having directrix parallel to *x*-axis is a) 3 b) 1 c) 4 d) 2 76. The solution of the differential equation $x \, dy - y \, dx = \sqrt{x^3 + y^2} \, dx$, is a) $x + \sqrt{x^2 + y^2} = Cx^2$ b) $y - \sqrt{x^2 + y^2} = Cx$ c) $x - \sqrt{x^2 + y^2} = Cx$ d) $y + \sqrt{x^2 + y^2} = Cx^2$ 77. The integral factor of equation $(x^2 + 1)\frac{dy}{dx} + 2xy = x^2 - 1$ is b) $\frac{2x}{x^2 + 1}$ d) None of these c) $\frac{x^2 - 1}{x^2 + 1}$ a) $x^2 + 1$ 78. The difference equation of the family of circles with fixed radius *r* and with centre on *y*-axis is a) $y^2(1+y_1^2) = r^2y_1^2$ b) $y^2 = r^2y_1 + y_1^2$ c) $x^2(1+y_1^2) = r^2y_1^2$ d) $x^2 = r^2y_1 + y_1^2$ 79. The differential equation of the family $y = ae^x + bx e^x + cx^2 e^x$ of curves, where *a*, *b*, *c* are arbitrary constants, is a) y''' + 3y'' + 3y' + y = 0b) y''' + 3y'' - 3y' - y = 0d) y''' - 3y' + 3y' - y = 0c) y''' - 3y'' - 3y' + y = 080. $y = ae^{mx} + be^{-mx}$ satisfies which of the following differential equations a) $\frac{dy}{dx} - my = 0$ b) $\frac{dy}{dx} + my = 0$ c) $\frac{d^2y}{dx^2} - m^2y = 0$ d) None of these ^{81.} The order and degree of the differential equation $\sqrt{\sin x} (dx + dy) = \sqrt{\cos x} (dx - dy)$ are a) (1,2) b) (2,2) c) (1,1) d) (2,1) 82. The order of the differential equation of all circles of radius r, having centre on y –axis and passing through the origin, is b) 2 a) 1 c) 3 83. An integrating factor of the differential equation $(1 + y + x^2y)dx + (x + x^3)dy = 0$ is c) e^x d) 1 a) $\log x$ b) x ^{84.} The solution of $\frac{dy}{dx} = \left(\frac{y}{x}\right)^{1/3}$ is b) $x^{1/3} + y^{1/3} = c$ c) $y^{2/3} - x^{2/3} = c$ a) $x^{2/3} + y^{2/3} = c$ d) $v^{1/3} - x^{1/3} = c$ 85. The differential equation of the curve for which the initial ordinate of any tangent is equal to the corresponding subnormal, is a) Non-linear b) Homogeneous c) In variable separable form d) None of the above

86.	The solution of differenti	al equation $y - x \frac{dy}{dx} = a \left(\frac{y}{dx} \right)$	$v^2 + \frac{dy}{dx}$) is			
	a) $(x + a)(x + ay) = cy$	$\frac{dx}{dx} = u(x)$	b) $(x + a)(1 - ay) = cy$			
	a) $(x + a)(x + ay) = cy$ c) $(x + a)(1 - ay) = -c$	17	d) None of these			
87.		curves for which the lengt	-	the radius vector, is		
071	a) $y^2 \mp x^2 = k^2$	b) $y \pm x = k$	c) $y^2 = kx$	d) None of these		
88.	,,,	e in which the portion of y-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		
	as the cube of the absciss	a of the point of contact is				
	a) $y = \frac{k x^3}{2} + c x$		b) $y = -\frac{k x^2}{2} + c$			
	3 3 10^{10}		4			
	$k \sim^3$		$y = \frac{k x^{3}}{3} + \frac{c x^{2}}{2}$ d) (k is constant of propo			
	c) $y = -\frac{k x^3}{2} + c x$		d) $\binom{3}{(k \text{ is constant of prop})}$	ortionality)		
	L		(where <i>c</i> is arbitrary c			
89.	The solution of differen	tial equation (sin $x + co$	$(\sin x)dy + (\cos x - \sin x)dy$	lx = 0 is		
	a) $e^x(\sin x + \cos x) + c$	c = 0	b) $e^{y}(\sin x + \cos x) = e^{y}$	C		
	c) $e^{y}(\cos x - \sin x) = e^{x}$	C	d) $e^x(\sin x - \cos x) = e^x(\sin x - \cos x)$	C		
90.	A particles moves in a str	aight line with a velocity gi	iven by $\frac{dx}{dt} = x + 1$ (x is the	distance described). The		
		o traverse a distance of 99		4		
	a) log ₁₀ <i>e</i>	b) 2 log _e 10	c) 2 log ₁₀ <i>e</i>	d) $\frac{1}{2} \log_{10} e$		
91.	The differential equation	of all parabolas having the	ir axis of symmetry coincid	ling with the axis of <i>X</i> , is		
	$d^2y (dy)^2$	b) $x \frac{d^2x}{dy^2} + \left(\frac{dx}{dy}\right)^2 = 0$	$d^2y dy$	d) None of these		
	u x (u x)	uy (uy)	ur ur			
92.		erential equation $\frac{dy}{dx} = \frac{xy}{xy}$				
	a) $x + y = \log\left(\frac{cy}{x}\right)$	b) $x + y = \log(cxy)$	c) $x - y = \log\left(\frac{cx}{y}\right)$	d) $y - x = \log\left(\frac{cx}{y}\right)$		
93.	Observe the following s					
	I. IF $dy + 2xy dx = 2e^{-x}$	$-x^2 dx$, then $ye^{x^2} = 2x - 2x$	+ <i>c</i>			
	II.IF $ye^{x^2} - 2x = c$, the	$en dx = (2e^{-x^2} - 2xy)d$	ly			
	Which is/are correct st	atements?				
	a) Both I and II are true	<u>)</u>	b) Neither I nor II is tru	r II is true		
	c) I is true, II is false		d) I is false, II is true			
94.		ntial equation corresponding	ng to the family of curves y	$= a(x+a)^2$, where a is an		
	arbitrary constant is					
95.	a) 1	b) 2	c) 3	d) None of these		
93.	The order and degree of	of the differential equatio	$\ln \frac{d^2 y}{dx^2} = \sqrt[3]{1 - \left(\frac{dy}{dx}\right)^4} \text{ are } 1$	respectively		
	a) 2,3	b) 3,2	c) 2,4	d) 2,2		
96.	Solution of differential	equation $\sec x dy - \cos \theta$				
	a) $\cos x + \sin y = c$	-	c) $\sin y - \cos x = c$	d) $\cos y - \sin x = c$		
97.	The solution of the diffe	erential equation $\frac{dy}{dx} = \frac{x}{2}$	$\frac{-2y+1}{2x-4y}$ is			
		b) $(x - 2y)^2 + x = c$		d) $(x - 2y) + x^2 = c$		
98.		of all circles in the first qua				
	a) 1	b) 2	c) 3	d) None of these		
99.	The solution of the diff	erential equation $\frac{dy}{dx} = \frac{x+y}{x+y}$	satisfying the condition	y(1) = 1 is		
		b) $y = \log x + x$	-			
	_	_	-	-		

100. The slope of the tangent at (x, y) to a curve passing through a point (2, 1) is $\frac{x^2 + y^2}{2xy}$, then the equation of the curve is a) $2(x^2 - y^2) = 3x$ b) $2(x^2 - y^2) = 6y$ c) $x(x^2 - y^2) = 6$ d) $x(x^2 + y^2) = 10$ 101. The order and degree of the differential equation $\sqrt{y + \frac{d^2y}{dx^2}} = x + \left(\frac{dy}{dx}\right)^{3/2}$ are c) 1.2 a) 2,2 b) 2,1 d) 2.3 ^{102.} The solution of $\frac{dy}{dx} + y = e^x$ is b) $2ye^x = e^2 + c$ a) $2v = e^{2x} + c$ c) $2ve^x = e^{2x} + c$ d) $2ve^{2x} = 2e^x + c$ 103. If $\phi(x) = \phi'(x)$ and $\phi(1) = 2$, then $\phi(3)$ equals b) 2 e² a) e^2 c) $3 e^2$ d) 2 e³ 104. The general solution of the differential equation $\frac{dy}{dx} + \sin\left(\frac{x+y}{2}\right) = \sin\left(\frac{x-y}{2}\right)$ is a) $\log \tan \left(\frac{y}{2}\right) = c - 2 \sin x$ b) $\log \tan \left(\frac{y}{4}\right) = c - 2 \sin \left(\frac{x}{2}\right)$ d) $\log \tan \left(\frac{y}{4} + \frac{\pi}{4}\right) = c - 2 \sin \left(\frac{x}{2}\right)$ c) $\log \tan \left(\frac{y}{2} + \frac{\pi}{4}\right) = c - 2 \sin x$ 105. The differential equation of family of curves $x^2 + y^2 - 2ax = 0$, is a) $x^2 - y^2 - 2xy y' = 0$ b) $y^2 - x^2 = 2xy y'$ c) $x^2 + y^2 + 2y'' = 0$ d) None of these 106. The order of the differential equation whose general solution is given by $y = (c_1 + c_2)\cos(x + c_3) - c_4e^{x+c_5}$ where c_1, c_2, c_3, c_4, c_5 are arbitrary constants, is a) 4 b) 3 c) 2 d) 5 ^{107.} The degree of the equation $e^x + \sin\left(\frac{dy}{dx}\right) = 3$ is a) 2 b) 0 c) Degree is not defined d) 1 108. If $x = \sin t$, $y = \cos pt$, then a) $(1 - x^2)y_2 + xy_1 + p^2y = 0$ b) $(1 - x^2)y_2 + xy_1 - p^2y = 0$ d) $(1 - x^2)y_2 - xy_1 + p^2y = 0$ c) $(1 + x^2)y_2 - xy_1 + p^2y = 0$ 109. The differential equation representing the family of curves $y = xe^{cx}$ (*c* is a constant) is a) $\frac{dy}{dx} = \frac{y}{x} \left(1 - \log \frac{y}{x}\right)$ b) $\frac{dy}{dx} = \frac{y}{x} \log \left(\frac{y}{x}\right) + 1$ c) $\frac{dy}{dx} = \frac{y}{x} \left(1 + \log \frac{y}{x}\right)$ d) $\frac{dy}{dx} + 1 = \frac{y}{x} \log \left(\frac{y}{x}\right)$ ^{110.} The degree and order of the differential equation $y = px + \sqrt[3]{a^2 p^2 + b^2}$, where $p = \frac{dy}{dx}$, are respectively a) 3,1 b) 1,3 d) 3,3 c) 1.1 111. The degree of the differential equation $y_3^{2/3} + 2 + 3y_2 + y_1 = 0$, is d) None of these a) 1 112. If $x^2 + y^2 = 1$, then $\left(y' = \frac{dy}{dx}, y'' = \frac{d^2y}{dx^2}\right)$ a) $yy'' - (2y')^2 + 1 = 0$ b) $yy'' + (y')^2 + 1 = 0$ c) $y'' - (y')^2 - 1 = 0$ d) $y'' + 2(y')^2 + 1 = 0$ 113. The solution of the differential equation $\frac{dy}{dx} = \frac{x \log x^2 + x}{\sin y + y \cos y}$, is a) $y \sin y = x^2 \log x + C$ b) $y \sin y = x^2 + C$ c) $y \sin y = x^2 + \log x + C$ d) $y \sin y = x \log x + C$ ^{114.} To reduce the differential equation $\frac{dy}{dx} + P(x)$. y = Q(x). y^n to the linear form, the substitution is a) $v = \frac{1}{v^n}$ b) $v = \frac{1}{v^{n-1}}$ c) $v = y^n$ d) $v = v^{n-1}$ 115. The equation of the curve whose subnormal is equal to a constant *a* is b) $y^2 = 2ax + 2b$ c) $ay^2 - x^3 = a$ a) y = ax + bd) None of these

116. A particle starts at the origin and moves along the *x*-axis in such a way that its velocity at the point (x, 0) is given by the formula $\frac{dx}{dt} = \cos^2 \pi x$. Then, the particle never reaches the point on

	uı			11
ä	a) $x = \frac{1}{4}$	b) $x = \frac{3}{4}$	c) $x = \frac{1}{2}$	d) <i>x</i> = 1
117. [,]	The solution of the equ	ation $\frac{dy}{dx} = \frac{x+y}{x-y}$ is		
ä	a) $c(x^2 + y^2)^{1/2} + e^{\tan^2}$	$^{-1}(y/x) = 0$	b) $c(x^2 + y^2)^{1/2} = e^{\tan x}$	$n^{-1}(y/x)$
(c) $c(x^2 - y^2) = e^{\tan^{-1}(x^2 - y^2)}$	y/x)	d) None of the above	
118.,	The solution of the equ	ation $\frac{d^2y}{dx^2} = e^{-2x}$ is		
		uл	1 -2r + 2 + 1	1^{-2r}
	—	b) $\frac{1}{4} + cx + d$	c) $\frac{1}{4}e^{-2x} + cx^2 + d$	a) $\frac{1}{4}e^{-2x} + c + d$
	If $x^2 + y^2 = 1$, then	0	b) $\frac{1}{100}$ + $\frac{1}{100}$ + $\frac{1}{100}$ + $\frac{1}{100}$	
	a) $yy'' - (2y')^2 + 1 = 0$ c) $yy'' - (y')^2 - 1 = 0$	0	b) $yy'' + (y')^2 + 1 = 0$ d) $yy'' + 2(y')^2 + 1 =$	
		whose slope is $\frac{y-1}{y-1}$ and w	which passes through the po	
			c) $(y-1)(x+1) = 2x$	
			$2y + x^3 e^x$, where $y = 0$	
		un	c) $y = x^2(e^x - e)$	
122. -	The solution of $(1 + x^2)$	$\frac{dy}{dx} + 2xy - 4x^2 = 0$ is		
ä	a) $3x(1+y^2) = 4y^3 +$	C	b) $3y(1+x^2) = 4x^3 +$	С
	c) $3x(1-y^2) = 4y^3 + $			
			ets the x-axis at Q. if PQ is	s of constant length <i>k</i> ,
		uation describing such a		dy $\sqrt{2}$
	ux	uл	c) $y \frac{dy}{dx} = \pm \sqrt{y^2 - k^2}$	d) $x \frac{dy}{dx} = \pm \sqrt{x^2 - k^2}$
		ential equation $y_1y_3 = 3y_2^2$ b) $x = A_1y + A_2$		d) None of these
	If $x = A \cos 4t + B \sin 4t$,	_	$C J x - A_1 y + A_2 y$	uj None of these
	a) $-16x$		c) <i>x</i>	d) – <i>x</i>
	·)	···)	th the primitive $y = c_1 + c_2$,
	c_1, c_2, c_3, c_4 are arbitrary			
	a) 3 The differential equation	b) 4	c) 2 e axes are parallel to axis	d) None of these
	-		-	_
	ux -	uy	c) $\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$	u y
128. '	The solution of the diffe	erential equation $(x^2 - y)$	$(x^2) \frac{dy}{dx} + y^2 + xy^2 = 0$ i	S
ä	a) $\log\left(\frac{x}{y}\right) = \frac{1}{x} + \frac{1}{y} + c$		b) $\log\left(\frac{y}{x}\right) = \frac{1}{x} + \frac{1}{y} + c$	
(c) $\log(xy) = \frac{1}{x} + \frac{1}{y} + c$		d) $\log(xy) + \frac{1}{x} + \frac{1}{y} = c$	
129. [,]	The solution of the diffe	erential equation $x dy -$	$ydx - \sqrt{x^2 - y^2}dx = 0$	is
ä	a) $y - \sqrt{x^2 + y^2} = cx^2$		b) $y + \sqrt{x^2 + y^2} = cx^2$	
	c) $y + \sqrt{x^2 + y^2} = cy^2$		d) $x - \sqrt{x^2 + y^2} = cy^2$	
130.	Solution of $\frac{dy}{dx} = \frac{x \log x^2}{\sin y + y}$	$\frac{x^2+x}{\cos y}$ is		
ä	a) $y \sin y = x^2 \log x + c$		b) $y \sin y = x^2 + c$	
(c) $y \sin y = x^2 + \log x$		d) $y \sin y = x \log x + c$	

131. If integrating factor of $x(1-x^2)dy + (2x^2y - y - ax^3)dx = 0$ is $e^{\int Pdx}$, then *P* is equal to b) $2x^2 - 1$ c) $\frac{2x^2 - 1}{ax^3}$ a) $\frac{2x^2 - ax^3}{x(1 - x^2)}$ d) $\frac{2x^2-1}{r(1-r^2)}$ 132. The solution of the differential equation $\frac{dy}{dx} + \frac{y}{x} = x^2$, is a) $y = \frac{x^2}{4} + C x^{-2}$ b) $y = x^{-1} + C x^{-3}$ c) $y = \frac{x^3}{4} + C x^{-1}$ d) $xy = x^2 + C$ 133. The differential equation of all circles passing through the origin and having their centres on the x-axis is a) $x^2 = y^2 + xy \frac{dy}{dx}$ b) $x^2 = y^2 + 3xy \frac{dy}{dx}$ c) $y^2 = x^2 + 2xy \frac{dy}{dx}$ d) $y^2 = x^2 - 2xy \frac{dy}{dx}$ 134. If y'' - 3y' + 2y = 0 where y(0) = 1, y'(0) = 0, then the value of y at $x = \log 2$ is b) -1 c) 2 135. The differential equation of all straight lines touching the circle $x^2 + y^2 = a^2$ is b) $\left(y - x \frac{dy}{dx}\right)^2 = a^2 \left[1 + \left(\frac{dy}{dx}\right)^2\right]$ a) $\left(y - \frac{dy}{dx}\right)^2 = a^2 \left[1 + \left(\frac{dy}{dx}\right)^2\right]$ c) $\left(y - x \frac{dy}{dx}\right) = a^2 \left[1 + \frac{dy}{dx}\right]$ d) $\left(y - \frac{dy}{dx}\right) = a^2 \left[1 - \frac{dy}{dx}\right]$ ^{136.} The solution of the differential equation $(x^2 - yx^2)\frac{dy}{dx} + y^2 + xy^2 = 0$ is a) $\log\left(\frac{x}{y}\right) = \frac{1}{x} + \frac{1}{y} + c$ b) $\log\left(\frac{y}{x}\right) = \frac{1}{x} + \frac{1}{y} + c$ c) $\log(xy) = \frac{1}{x} + \frac{1}{y} + c$ d) $\log(xy) + \frac{1}{x} + \frac{1}{y} = c$ ^{137.} The equation of the curve satisfying the equation $(xy - x^2)\frac{dy}{dx} = y^2$ and passing through the point (-1,1) is b) $y = (\log y + 1)x$ c) $x = (\log x - 1)y$ d) $x = (\log x + 1)y$ a) $y = (\log y - 1)x$ 138. $v = 2e^{2x} - e^{-x}$ is a solution of the differential equation a) $y_2 + y_1 + 2y = 0$ b) $y_2 - y_1 + 2y = 0$ c) $y_2 + y_1 = 0$ d) $y_2 - y_1 - 2y = 0$ 139. The solution of y' - y = 1, y(0) = -1 is given by y(x), which is equal to b) $-\exp(-x)$ d) $\exp(x) - 2$ a) $-\exp(x)$ c) −1 140. The differential equation of the family of circles with fixed radius 5 unit and centre on the line v = 2, is a) $(x-2)^2 y'^2 = 25 - (y-2)^2$ b) $(x-2)y'^2 = 25 - (y-2)^2$ c) $(y-2)y'^2 = 25 - (v-2)^2$ d) $(y-2)^2 y'^2 = 25 - (y-2)^2$ 141. Solution of the differential equation $\frac{dy}{dx} + y \sec^2 x = \tan x \sec^2 x$ is b) $y^2 = \tan x - 1 + ce^{\tan x}$ a) $y = \tan x - 1 + ce^{-\tan x}$ c) $ye^{\tan x} = \tan x - 1 + c$ d) $ve^{-\tan x} = \tan x - 1 + c$ 142. The differential equation $y \frac{dy}{dx} + x = a$ (*a* is any constant) represents a) A set of circles having centre on the y –axis b) A set of circles on the x –axis c) A set of ellipses d) None of these 143. The equation of the curve for which the square of the ordinate is twice the rectangle contained by the abscissa and the intercept of the normal on *x*-axis and passing through (2, 1) is b) $4x^2 + 2y^2 - 9y = 0$ c) $2x^2 + 4y^2 - 9x = 0$ d) $4x^2 + 2y^2 - 9x = 0$ a) $x^2 + y^2 - x = 0$ 144. The general solution of $ydx - xdy - 3x^2 y^2 e^{x^3} dx = 0$, is equal to d) $xy = e^x + C$ a) $\frac{x}{y} = e^{x^3} + C$ b) $\frac{y}{x} = e^{x^3} + C$ c) $xy = e^{x^3} + C$

145. The solution of $\frac{dy}{dx} = \frac{ax+h}{hy+k}$ represents a parabola, when

a) a = 0, b = 0 b) a = 1, b = 2 c) $a = 0, b \neq 0$ d) a = 2, b = 1146. The differential equation of all ellipses centred at the origin is

a) $y_2 + x y_1^2 - y y_1 = 0$ b) $xy y_2 + x y_1^2 - y y_1 = 0$ c) $y y_2 + x y_1^2 - x y_1 = 0$ d) None of these ^{147.} If $y = ax^{n+1}$, then $x^2 \frac{d^2y}{dx^2}$ is equal to a) n(n-1)b) n(n + 1)yd) $n^2 y$ c) ny148. The differential equation of the family of curves $y = a \cos(x + b)$ is b) $\frac{d^2y}{dx^2} + y = 0$ c) $\frac{d^2y}{dx^2} + 2y = 0$ a) $\frac{d^2 y}{dx^2} - y = 0$ d) None of these 149. If y(t) is a solution of $(1 + t)\frac{dy}{dt} - ty = 1$ and y(0) = -1, then y(1) is equal to c) $e - \frac{1}{2}$ a) $-\frac{1}{2}$ b) $e + (\frac{1}{2})$ d) $\frac{1}{2}$ ^{150.} The integrating factor of the differential equation $\frac{dy}{dx} + \frac{y}{(1-x)\sqrt{x}} = 1 - \sqrt{x}$ is a) $\frac{1-\sqrt{x}}{1+\sqrt{x}}$ b) $\frac{1+\sqrt{x}}{1-\sqrt{x}}$ d) $\frac{\sqrt{x}}{1-\sqrt{x}}$ c) $\frac{1-x}{1+x}$ 151. The solution of the differential equation $(x^2 + y^2)dx = 2xy dy$ is (here *c* is an arbitrary constant) b) $c(x^2 - y^2) = x$ c) $x^2 - y^2 = cy$ a) $x^2 + y^2 = cy$ d) $x^2 + v^2 = cx$ 152. The real value of *n* for which the substitution $y = u^n$ will transform the differential equation $2x^4y \frac{dy}{dx} + \frac$ $y^4 = 4x^6$ into a homogenous equation is b) 1 c) 3/2 a) 1/2 d) 2 153. The differential equation satisfied by the family of curves $y = ax \cos(\frac{1}{x} + b)$ where *a*, *b* are parameters is b) $x^4y_2 + y = 0$ a) $x^2 y_2 + y = 0$ c) $xy_2 - y = 0$ d) $x^4y_2 - y = 0$ ^{154.} The solution of the differential equation $\frac{dy}{dx} = x \log x$ is a) $y = x^2 \log x - \frac{x^2}{2} + c$ b) $y = \frac{x^2}{2} \log x - \frac{x^2}{4} + c$ c) $y = \frac{x^2}{2} + \frac{x^2}{2} \log x + c$ d) None of these 155. Differential equation of $y = \sec(\tan^{-1} x)$ is a) $(1+x^2)\frac{dy}{dx} = y + x$ b) $(1+x^2)\frac{dy}{dx} = y - x$ c) $(1+x^2)\frac{dy}{dx} = xy$ d) $(1+x^2)\frac{dy}{dx} = \frac{x}{y}$ 156. Solution of the differential equation $\frac{dy}{dx} \tan y = \sin(x + y) + \sin(x - y)$ is b) $\sec y - 2\cos x = c$ a) $\sec y + 2\cos x = c$ c) $\cos y - 2 \sin x = c$ d) $\tan y - 2 \sec x = c$ 157. The differential equation of the family of parabolas with focus at the origin and the *x*-axis as axis, is a) $y \left(\frac{dy}{dx}\right)^2 + 4x \frac{dy}{dx} = 4y$ b) $-y\left(\frac{dy}{dx}\right)^2 = 2x\frac{dy}{dx} - y$ c) $y \left(\frac{dy}{dx}\right)^2 + y = 2xy\frac{dy}{dx}$ d) $y \left(\frac{dy}{dx}\right)^2 + 2xy\frac{dy}{dx} + y = 0$ 158. The integrating factor of the differential equation $\frac{dy}{dx} + y = \frac{1+y}{x}$, is a) $\frac{x}{a^{r}}$ b) $\frac{e^x}{x}$ c) *x e*^{*x*} d) *e*^{*x*} 159. The differential equation of all coaxial parabola $y^2 = 4a(x - b)$, where *a* and *b* are arbitrary constants, is a) $y \frac{d^2 y}{dx^2} + \frac{dy}{dx} = 1$ b) $y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 1$ c) $y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$ d) $y \frac{d^2 y}{dx^2} + \frac{dy}{dx} = 0$

^{160.} If $\frac{d^2y}{dx^2} \sin x = 0$, then the solution of differential equation is

a)
$$y = \sin x + cx + d$$
 b) $y = \cos x + cx^2 + d$ c) $y = \tan x + c$ d) $y = \log \sin x + cx$

161. The solution of
$$\frac{dy}{dx} + y = e^{-x}$$
, $y(0) = 0$ is
a) $y = e^{-x}(x-1)$ b) $y = xe^{x}$ c) $y = xe^{-x} + 1$ d) $y = xe^{-x}$
162. A curve having the condition that the slope of tangent at some point is two times the slope of the straight line joining the same point to the origin of coordinates, is a/an
a) Circle b) Ellipse c) Parabola d) Hyperbola
163. The solution of the differential equation $x \frac{dy}{dx} + 2y = x^2$ is
a) $y = \frac{x^4 + e}{4xz^2}$ b) $y = \frac{x^2}{4} + c$ c) $y = \frac{x^4 + e}{x^{2z}}$ d) $y = \frac{x^4 + e}{4xz^2}$
164. The solution of the differential equation $y \frac{dy}{dx} = x - 1$ satisfying $y(1) = 1$ is
a) $y^2 = x^2 - 2x + 2$ b) $y^2 = 2x^2 - x - 1$ c) $y = x^2 - 2x + 2$ d) None of these
165. The differential equation of the family of lines whose slope is equal to y-intercept, is
a) $(x + 1) \frac{dy}{dx} - y = 0$ b) $(x + 1) \frac{dy}{dx} + y = 0$
c) $\frac{dy}{dx} = \frac{x-1}{y-1}$ d) $\frac{dy}{dx} = \frac{y^4}{y+11}$
166. Solution of the equation $x^2y - x^3 \frac{dy}{dx} = y^4 \cos x$, when $y(0) = 1$ is
a) $y^2 = 3x^3 \sin x$ b) $x^3 = 3y^3 \sin x$ c) $x^3 = y^3 \sin x$ d) $x^3 = y^3 \cos x$
167. A curve $y = f(x)$ passes through the point $P(1, 1)$. The normal to the curve at point P is $a(y - 1) + (x - 1) = 0$. If the slope of the tangent at any point on the curve is proportional to the ordinate at that
point, then the equation of the curve is
a) $y = e^{ax} - 1$ b) $y = e^{ax} + 1$ c) $y = e^{ax} - a$ d) $y = e^{a(x-1)}$
168. The solution of $\frac{dy}{dx} + 1 = e^{x+y}$ is
a) $e^{-(x+y)} + x + c = 0$ b) $e^{-(x+y)} - x + c = 0$ c) $e^{x+y} + x + c = 0$ d) $e^{x+y} - x + c = 0$
169. The solution of the differential equation $\left[\frac{1}{x} - \frac{x^y}{(x-y)}\right] dx + \left[\frac{\frac{dx}{(x-y)^2} - \frac{1}{y}\right] dy = 0$ is
a) 1 b) 2 c) 3 c) (6A) d) (6.9)
172. tan '1 $x + 1 = e^{x}$ is the general solution of the differential equation
a) $\left[\frac{dx}{dx} - \frac{1 + x^2}{1 + x^2}$
b) $\frac{dy}{dx} = \frac{1 + x^2}{1 + x^2}$

c) $\frac{e^6 + 9}{2}$ b) $e^{6} + 1$ a) e⁵ d) $\log_{e} 6$ 175. The solution of differential equation $(\sin x + \cos x)dy + (\cos x - \sin x)dx = 0$ is a) $e^{x}(\sin x + \cos x) + c = 0$ b) $e^{y}(\sin x + \cos x) = c$ c) $e^{y}(\cos x - \sin x) = c$ d) $e^x(\sin x - \cos x + x) = c$ 176. If $x \, dy = y(dx + y \, dy), y(1) = 1$ and y(x) > 0, then y(-3) is equal to a) 3 b) 2 c) 1 d) 0 177. The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{\Phi(\frac{y}{x})}{\Phi'(\frac{y}{x})}$ is a) $\phi\left(\frac{y}{x}\right) = kx$ b) $x \phi \left(\frac{y}{x}\right) = k$ c) $\phi\left(\frac{y}{x}\right) = ky$ d) $y\phi\left(\frac{y}{x}\right) = k$ ^{178.} The solution of $(x + y + 1)\frac{dy}{dx} = 1$ is b) $y = -(x + 2) + ce^x$ a) $y = (x + 2) + ce^x$ c) $x = -(y + 2) + ce^{y}$ d) $x = (y + 2)^2 + ce^y$ 179. The differential equation of the family of the curves $x^2 + y^2 - 2ax = 0$ is b) $v^2 - x^2 = 2xvv'$ a) $x^2 - y^2 - 2xy'' = 0$ c) $x^2 + v^2 + 2v'' = 0$ d) None of these 180. If c_1, c_2, c_3, c_4, c_5 and c_6 are constants, then the order of the differential equation whose general solution is given by $y = c_1 \cos(x + c_2) + c_3 \sin(x + c_4) + c_5 e^x + c_6$ is a) 6 d) 3 h) 5 181. The solution of the differential equation $\frac{x+y\frac{dy}{dx}}{y-x\frac{dy}{dx}} = x^2 + 2y^2 + \frac{y^4}{x^2}$ is a) $\frac{y}{4} + \frac{1}{x^2 + y^2} = c$ b) $\frac{y}{x} - \frac{1}{x^2 + y^2} = c$ c) $\frac{x}{y} - \frac{1}{x^2 + y^2} = c$ d) None of these 182. The solution of differential equation (1 + x)y dx + (1 - y)x dy = 0 is b) $\log_e\left(\frac{x}{y}\right) + x + y = c$ a) $\log_e(xy) + x - y = c$ c) $\log_e\left(\frac{x}{y}\right) - x + y = c$ d) $\log_{e}(xy) - x + y = c$ 183. The differential equation representing the family of curves $y^2 = 2c(x + \sqrt{c})$, where c > 0 is a parameter is of order and degree as follows a) Order 2, degree 2 b) Order 1, degree 3 c) Order 1, degree 1 d) Order 1, degree 2 ^{184.} The solution of the differential equation $\frac{dy}{dx} = \frac{1}{x^2 + y^2}$ is b) $y = x^2 + 2x + 2 - ce^x$ a) $y = -x^2 - 2x - 2 + ce^x$ d) $x = -v^2 - 2v - 2 + ce^y$ c) $x = -v^2 - 2v + 2 - ce^y$ 185. Integrating factor of $(x + 2y^3) \frac{dy}{dx} = y^2$ is b) $e^{-\left(\frac{1}{y}\right)}$ a) $\rho\left(\frac{1}{\nu}\right)$ d) $\frac{-1}{v}$ c) v 186. The curve in which the slope of the tangent at any point equals the ratio of the abscissa to the ordinate of the point is a) An ellipse b) A parabola c) A rectangular hyperbola d) A circle ^{187.} The solution of the differential equation $(1 + y^2) + (x - e^{\tan^{-1}y})\frac{dy}{dx} = 0$ is

a) $2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + c$ b) $xe^{\tan^{-1}y} = \tan^{-1}y + c$

c) $xe^{2 \tan^{-1} y} = e^{\tan^{-1} x}$	У L с	d) $(x - 2) = ce^{-\tan^{-1}y}$,
188. The differential equation	1.0		
a) $(y-1)(e^x-1) = c$		b) $(y-1)(e^x+1) = c$	
c) $(y+1)(e^x-1) = c$	ce ^y	d) $(y+1)(e^x+1) = c$	$e^{\mathcal{Y}}$
189. The differential equati	on of all straight lines pa	ssing through origin is	
a) $y = \sqrt{x} \frac{dy}{dx}$	b) $\frac{dy}{dx} = y + x$	c) $\frac{dy}{dx} = y - x$	d) None of these
^{190.} The solution of the dif	ferential equation $\frac{dy}{dx} = si$	in $(x + y) \tan(x + y) - 1$	is
a) cosec $(x + y) + \tan x$	(x+y) = x + c	b) $x + \operatorname{cosec} (x + y) =$	С
c) $x + \tan(x + y) = c$		d) $x + \sec(x + y) = c$	
191. The differential equati			
a) $\sqrt{1 - x^2} dy + \sqrt{1 - y^2} dy$		b) $\sqrt{1-x^2} dx + \sqrt{1-x^2} dx$	
c) $\sqrt{1-x^2} dx - \sqrt{1-x^2} dx$		d) $\sqrt{1-x^2} dy - \sqrt{1-x^2} dy$	$\overline{y^2} dx = 0$
^{192.} The integrating factor	of $x \frac{dy}{dx} + (1+x)y = x$ is	3	
a) <i>x</i>	b) 2 <i>x</i>	c) $e^{x \log x}$	d) <i>xe^x</i>
193. The solution of the different	rential equation $(x + 2y^3) \frac{d}{dx}$	$\frac{dy}{dx} = y$, is	
		, , ,	d) $y = x(x^2 + C)$
194. The order of the differer	ntial equation $\frac{d^2y}{dx^2} = \sqrt{1 + (\frac{d^2y}{dx^2})}$	$\left(\frac{dy}{dx}\right)^3$, is	
a) 2	b) 1	c) 3	d) 4
195. The number of solutions	s of $y' = \frac{y+1}{x-1}$, $y(1) = 2$ is		
a) Zero	b) One	c) Two	d) Infinite
^{196.} The solution of the dif	ferential equation $x(x - \frac{1}{2})$	$(y)\frac{dy}{dx} = y(x+y)$, is	
a) $\frac{x}{y} + \log(xy) = c$	b) $\frac{y}{x} + \log(xy) = c$	c) $\frac{x}{y} + y \log x = c$	d) $\frac{x}{y} + x \log y = c$
^{197.} The general solution of o	differential equation $\frac{dy}{dx} = \frac{x}{y}$	$\frac{2}{2}$, is	
		c) $x^2 + y^2 = C$	
^{198.} The solution of the dif	ferential equation $\frac{d^2y}{dx^2} =$	e^{-2x} is $y = c_1 e^{-2x} + c_2 x$	$x + x_3$, where c_1 is
a) 1	b) $\frac{1}{4}$	c) $\frac{1}{2}$	d) 2
^{199.} Solution of the equation	4	L	
a) $x + y = a$	(ux) · ux	c) $x^2 + y^2 = a^2$	d) $\sqrt{x} + \sqrt{y} = c$
200. Form of the differentia	•	-	•
constant <i>m</i> is		Times $y = mx + \frac{1}{m}$ by em	initiating the albitialy
-2		$(dy)^2$ dy	0
a) $\frac{d^2 y}{dx^2} = 0$		b) $x \left(\frac{dy}{dx}\right)^2 - y \frac{dy}{dx} + 4 =$: 0
c) $x \left(\frac{dy}{dx}\right)^2 + y \frac{dy}{dx} + 4 =$	= 0	d) $\frac{dy}{dx} = 0$	
201. The general solution e^x			
a) $e^x(\sin y + \cos y) = C$ 202. $y = ae^{mx} + be^{-mx}$ satis	<u>,</u>	c) $e^x = C \cos y$	d) $e^x \cos y = C$
		-	d^2y
U.A.	b) $\frac{dy}{dx} + my = 0$	$cJ \frac{1}{dx^2} + m^2 y = 0$	$a)\frac{1}{dx^2} - m^2 y = 0$
203. The solution of $\frac{dy}{dx} + y =$			
a) $y = e^{-x}(x-1)$	b) $y = xe^{-x}$	c) $y = xe^{-x} + 10$	d) $y = (x+1)e^{-x}$

Page | 14

204. The general solution of the differential equation $(1 + y^2)dx + (1 + x^2)dy = 0$ is a) x - y = c(1 - xy)b) x - y = c(1 + xy)c) x + y = c(1 - xy) d) x + y = c(1 + xy)^{205.} If the integrating factor of the differential equation $\frac{dy}{dx} + P(x)y = Q(x)$ is *x*, then P(x) is b) $x^2/2$ d) $1/x^2$ a) x c) 1/x206. The order of the differential equation $\frac{d^2y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ is b) 2 a) 3 d) 4 c) 1 207. The solution of $\frac{dy}{dx} + \sqrt{\left(\frac{1-y^2}{1-x^2}\right)} = 0$ is a) $\tan^{-1} x + \cot^{-1} x = c$ b) $\sin^{-1} x + \sin^{-1} v = c$ c) $\sec^{-1} x + \csc^{-1} x = c$ d) None of these 208. Solution of the differential equation $x \, dy - y \, dx = 0$ represents a) A parabola whose vertex is at the origin b) A circle whose centre is at the origin c) A rectangular hyperbola d) Straight lines passing through the origin 209. The differential equation of the family of circles passing through the fixed points (a, 0) and (-a, 0) is a) $y_1(y^2 - x^2) + 2xy + a^2 = 0$ b) $v_1 v^2 + xv + a^2 x^2 = 0$ c) $y_1(y^2 - x^2 + a^2) + 2xy = 0$ d) $y_1(y^2 + x^2) - 2xy + a^2 = 0$ 210. The solution of differential equation (x + y)(dx - dy) = dx + dy is b) $x + y = ke^{x+y}$ a) $x - y = ke^{x - y}$ c) $x + y = ke^{x-y}$ d) $(x - y) = ke^{x+y}$ 211. The general solution of $y^2 dx + (x^2 - xy + y^2) dy = 0$ is b) $2 \tan^{-1}\left(\frac{x}{y}\right) + \log x + c = 0$ a) $\tan^{-1}\left(\frac{x}{y}\right) + \log y + c = 0$ d) $\sin h^{-1}\left(\frac{x}{y}\right) + \log y + c = 0$ c) $\log(y + \sqrt{x^2 + y^2}) + \log y + c = 0$ The order and degree of the following differential equation $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{5/2} = \frac{d^3y}{dx^3}$ are respectively 212. a) 3.2 b) 3.10 c) 2,3 d) 3.5 213. The solution of $x dy - y dx + x^2 e^x dx = 0$ is a) $\frac{y}{x} + e^{x} = c$ b) $\frac{x}{v} + e^{x} = c$ c) $x + e^y = c$ d) $v + e^x = c$ ^{214.} The solution of the differential equation $\frac{dy}{dx} = \frac{x-y+3}{2(x-y)+5}$ is b) $2(x - y) - \log(x - y + 2) = x + c$ a) $2(x - y) + \log(x - y) = x + c$ c) $2(x - y) + \log(x - y + 2) = x + c$ d) None of the above 215. The differential equation whose solution is $Ax^2 + By^2 = 1$, where A and B are arbitrary constants, is of a) First order and second degree b) First order and first degree c) Second order and first degree d) Second order and second degree 216. If y = f(x) is the equation of the curve an its differential equation is given by $\frac{dy}{dx} = \frac{x+2}{y+3}$, then the equation of the curve, if it passes through (2, 2), is a) $x^2 - y^2 + 4x - 6y + 4 = 0$ b) $x^2 - v^2 + 4x + 6v = 0$ c) $x^2 - y^2 - 4x - 6y = 0$ d) $x^2 - y^2 - 4x - 6y - 4 = 0$ 217. The differential equation of the family of curves $y^2 = 4 a (x + a)$, is a) $y^2 = 4 \frac{dy}{dx} \left(x + \frac{dy}{dx} \right)$

b)
$$y^2 \left(\frac{dy}{dx}\right)^2 + 2xy \frac{dy}{dx} - y^2 = 0$$

c) $2y \frac{dy}{dx} = 4a$
d) $y^2 \frac{dy}{dx} + 4y = 0$
218. The integrating factor of the differential equation $x \log x \frac{dy}{dx} + y = 2 \log x$ is given by
a) e^x b) $\log x$ c) $\log(\log x)$ d) x
219. The differential equation which represents the family of plane curves $y = \exp(cx)$ is
a) $y' = cy$ b) $xy' - \log y = 0$ c) $x \log y = yy'$ d) $y \log y = xy'$
220. The solution of $\frac{dy}{dx} + y \tan x = \sec x$ is
a) $y \sec x = \tan x + c$ b) $y \tan x = \sec x + c$ c) $\tan x = y \tan x + c$ d) $x \sec x = y \tan y + c$
221. The function $f(\theta) = \frac{d}{dt} \int_{0}^{\frac{dx}{1 - \cos(\cos x)}} \operatorname{satisfies the differential equation
a) $\frac{df}{dt} + 2f(\theta) = 0$ b) $\frac{df}{dt} - 2f(\theta) = 0$ c) $\frac{df}{dt} - 2f(\theta) = \tan \theta$ d) $\frac{df}{dt} + 2f(\theta) \cot \theta = 0$
222. The solution of $\frac{dy}{dx} = (\frac{x}{2})^{1/3}$. is
a) $x^{1/3} + y^{2/3} = C$ b) $x^{1/3} + y^{1/3} = C$ c) $y^{2/3} - x^{2/3} = C$ d) $y^{1/3} - x^{1/3} = C$
223. If $x \sin(\frac{x}{2}) dy = \left[y \sin(\frac{x}{2}) - y\right] dx$ and $y(1) = \frac{\pi}{2}$, then the value of $\cos(\frac{y}{2})$ is equal to
a) x b) $\frac{1}{x}$ c) $\log x$ c) $y \phi(\frac{x}{2}) = k$ d) $\phi(\frac{x}{2}) = ky$
224. The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{b(\frac{x}{2})}{b(\frac{x}{2})}$ is
a) $x^{0/3} - \frac{x^{1/3}}{2} = C$ b) $\frac{b}{\sqrt{3}} = kx$ c) $y \phi(\frac{x}{2}) = k$ d) $\phi(\frac{x}{2}) = ky$
225. If $\frac{dy}{dx} = \frac{x^{2}}{x^{2}+y^{2}}$, $y(1) = 1$, then one of the values of x_{0} satisfying $y(x_{0}) = e$ is given by
a) $e\sqrt{2}$ b) $e\sqrt{3}$ c) $e\sqrt{5}$ d) $e/\sqrt{2}$
2266. Solution of $\frac{dy}{dx} = 3^{x+y}$ is
a) $3^{x+y} = c$ b) $3^{x} + 3^{y} = c$ c) $3^{x-y} = c$ d) $3^{x} + 3^{-y} = c$
227. Order of the differential equation of the family of all concentric circles centred at (h, k) is
a) 1 b) 2 c/3 d) h + 22$
228. The general solution of the differential equation $\frac{dx}{dx} = \frac{(4y^{2})}{x(1)^{(x)}}$ is
a) $(1 + x^{2})(1 + y^{2}) = c$ d) None of these
229. The general solution of $\frac{dy}{dx} = \frac{x + x}{x + y}$ is
a) $(1 + x^{2})(1 + y^{2}) = c$ d) $(1 + x^{2})(1 + y^{2}) = cx^{2}$
c) $(1 - x^{2})(1 -$

222 $($ $($ $)^n$	$d^2 y d^2 y$		
^{233.} If $y = (x + \sqrt{1+x})^n$, t	un un		
a) $n^2 y$ 224. The order of the differen	b) $-n^2 y$	c) $-y$	d) $2x^2y$
234. The order of the differen <i>c4ex+c5</i> where <i>c1.c2.c3</i>	<i>cta</i> re equation whose generation <i>c5</i> are arbitrary con		$(c_1 + c_2)\cos(x + c_3) -$
a) 5	b) 6	c) 3	d) 2
235. The differential equation	on obtained by eliminatin	ng arbitrary constants fro	om $y = ae^{bx}$ is
a) $y \frac{d^2 y}{dx^2} + \frac{dy}{dx} = 0$	b) $y \frac{d^2 y}{dx^2} - \frac{dy}{dx} = 0$	c) $y \frac{d^2 y}{dx^2} - \left(\frac{dy}{dx}\right)^2 = 0$	d) $y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$
236. The differential equation			-2
a) $\frac{d^2y}{dx^2} = 0$	uy	c) $\frac{dy}{dx} = 0$	$d)\frac{d^2x}{dy^2} = 0$
^{237.} The degree of the diffe	rential equation satisfyin	$\log \sqrt{1 - x^2} + \sqrt{1 - y^2} =$	a(x-y) is
a) 1	b) 2	c) 3	d) None of these
^{238.} The solution of the diff	ferential equation $\frac{dy}{dx} = e$	$e^{y+x} + e^{y-x}$ is	
	b) $e^{-y} = e^{-x} - e^x + c$	-	d) $e^{-y} + e^x + e^{-x} = c$
^{239.} The integrating factor	of the differential equation	$\operatorname{on}\frac{dy}{dx} + \frac{1}{x}. y = 3x \text{ is}$	
a) <i>x</i>	b) ln <i>x</i>	c) 0	d) ∞
240. The solution of the diff			
a) $\tan y \tan x = c$	b) $\frac{\tan y}{\tan x} = c$	c) $\frac{\tan^2 x}{\tan y} = c$	d) None of these
241. The equation of the curv proportionality)	e in which subnormal varie	es as the square of the ordin	hate is (λ is constant of
a) $y = C e^{2\lambda x}$	b) $y = C e^{\lambda x}$	c) $\frac{y^2}{2} + \lambda x = C$	d) $y^2 + \lambda x^2 = C$
^{242.} The general solution of	f the differential equation	$n\frac{dy}{dx} + \frac{1 + \cos 2y}{1 - \cos 2x} = 0$ is give	en by
a) $\tan y + \cot x = c$	b) $\tan y - \cot x = c$	c) $\tan x - \cot y = c$	d) $\tan x + \cot y = c$
^{243.} The solution of the diff	ferential equation $\left(e^{-2\sqrt{x}} ight)$	$\left(-\frac{y}{\sqrt{x}}\right)\frac{dy}{dx} = 1$ is given by	
a) $ye^{2\sqrt{x}} = x + c$	b) $ye^{-2\sqrt{x}} = \sqrt{x} + c$	c) $y = \sqrt{x}$	d) $y = 3\sqrt{x}$
244. The solution of the diff		$+1)dy + (\cos^2 x - \sin 2)$	(x)y dx = 0 subjected to
the condition that $y = x^2$			
a) $y + \log y + e^x \cos^2 y$ c) $y + \log y = e^x \cos^2 x$		b) $\log(y + 1) + e^x \cos^2 t$ d) $(y + 1) + e^x \cos^2 x$	
245. The solution of the diff)() !) ! ! ! ! ! !	— Z
a) $(4x + y + 1) = \tan(x + y)$	uл	$(4x + y + 1)^{2}$, is b) $(4x + y + 1)^{2} = 2 \text{ ta}$	(2n+a)
a) $(4x + y + 1) = tall(c) (4x + y + 1)^3 = 3 ta$		d) $(4x + y + 1) = 2 \tan (4x + y + 1) = 2 \tan (4x + y + 1) = 2 \tan (4x + y + 1)$	
246. An integrating factor of t			
$x + \frac{dy}{dx} + y \log x = x e^x x^2$	-		
a) $x^{\log x}$	b) $\left(\sqrt{x}\right)^{\log x}$	c) $\left(\sqrt{e}\right)^{(\log x)^2}$	d) e^{x^2}
247. The order of differential			, -
a) 2	b) 3	c) 1	d) None of these
248. The differential equation			
a) $y_2 = -\omega^2 y$		c) $y_2 + y_1 = 0$	
^{249.} The solution of the diff			
a) $\sec y + 2\cos x = c$	b) $\sec y - 2\cos x = c$	c) $\cos y - 2\sin x = c$	d) $\tan y - 2 \sec y = c$

250. The degree of the difference $u_1 + u_2$ is	ential equation satisfying th	the relation $\sqrt{1+x^2} + \sqrt{1+x^2}$	$\overline{y^2} = \lambda \Big(x \sqrt{1 + y^2} - $
<i>y1+x2</i> , is a) 1	b) 2	c) 3	d) None of these
^{251.} The solution of the dif		,	uj none or these
	b) $y \cos x = e^x + c$		d) $y \sin x = e^x + c$
^{252.} The degree of the diffe		-	
a) 3	b) 2	c) 1	d) Not defined
^{253.} If $y = y(x)$ and $\frac{2+\sin x}{y+1}$	$\frac{dy}{dx} = -\cos x$, $y(0) =$	1, then $y\left(\frac{\pi}{2}\right)$ equals	
a) $\frac{1}{3}$	b) $\frac{2}{3}$	c) $-\frac{1}{3}$	d) 1
$^{254.}$ The solution of cos y	$\frac{dy}{dx} = e^{x + \sin y} + x^2 e^{\sin y}$ is	-	
a) $e^x - e^{\sin y} + \frac{x^3}{3} = c$		b) $e^{-x} - e^{-\sin y} + \frac{x^3}{3} =$	C
c) $e^x + e^{-\sin y} + \frac{x^3}{3} =$	С	d) $e^{x} - e^{\sin y} - \frac{x^{3}}{3} = c$	
255. The solution of $y dx - x$	$dx dy + 3x^2 y^2 e^{x^3} dx = 0$ is	5	
a) $\frac{x}{y} + e^{x^3} = C$	b) $\frac{x}{y} - e^{x^3} = 0$	c) $-\frac{x}{y} + e^{x^3} = C$	d) None of these
256. The general solution of	$\frac{dy}{dx} = \frac{2x-y}{x+2y}$ is		
	b) $x^2 - xy - y^2 = c$	c) $x^2 + xy - y^2 = c$	d) $x^2 + xy^2 = c$
257. $y + x^2 = \frac{dy}{dx}$ has the solution			
a) $y + x^2 + 2x + 2 = ce$		b) $y + x + x^2 + 2 = ce^{2x}$	
c) $y + x + 2x^2 + 2 = ce$		d) $y^2 + x + x^2 + 2 = ce^{-x}$	
^{258.} The equation of curve		It $\left(1, \frac{1}{4}\right)$ and having slope	of tangent at any point
(x, y) as $\frac{y}{x} - \cos^2\left(\frac{y}{x}\right)$,	is		
a) $x = e^{1 + \tan\left(\frac{y}{x}\right)}$	b) $x = e^{1 - \tan\left(\frac{y}{x}\right)}$	c) $x = e^{1 + \tan\left(\frac{x}{y}\right)}$	d) $x = e^{1 - \tan\left(\frac{x}{y}\right)}$
^{259.} The solution of $\frac{dy}{dx} = 1$	$x + y + y^2 + x + xy + xy$	² is	
a) $\tan^{-1}\left(\frac{2y+1}{\sqrt{3}}\right) = x + \frac{1}{\sqrt{3}}$		b) $4 \tan^{-1} \left(\frac{4y+1}{\sqrt{3}} \right) = \sqrt{3}$	$(2x + x^2) + c$
c) $\sqrt{3} \tan^{-1} \left(\frac{3y+1}{3} \right) = 4$	$4(1 + x + x^2) + c$	d) $4 \tan^{-1} \left(\frac{2y+1}{\sqrt{3}} \right) = \sqrt{3}$	$(2x + x^2) + c$
260. The solution of $\frac{dy}{dx} = 2^y$			
ux		1 1	, 1 1
-	b) $2^x - 2^y = c$	c) $\frac{1}{2^x} - \frac{1}{2^y} = c$	
261. A function $y = f(x)$ h			
a) $(x - 1)^2$	the tangent to the grap b) $(x-1)^3$	c) $(x+1)^3$	d) $(x + 1)^2$
^{262.} The solution of $\log\left(\frac{dy}{dx}\right)$		C_{j} $(\lambda + 1)$	u) (x + 1)
(((,)	,	$e^{-by}e^{ax}$	d) None of these
a) $\frac{b}{b} = \frac{b}{a} + c$	b) $\frac{e^{-by}}{-b} = \frac{e^{ax}}{a} + c$	c) $\frac{a}{a} = \frac{b}{b} + c$	
263. For solving $\frac{dy}{dx} = 4x + y$	+ 1, suitable substitution is	S	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		c) $y = 4x$	d) $y + 4x + 1 = v$
^{264.} The differential equat	ion $\frac{dy}{dx} = \frac{x(1+y^2)}{y(1+x^2)}$ represen	ts a family of	
a) Parabola	b) Hyperbola	c) Circle	d) Ellipse

265. The differential equation of the system of all circles of radius *r* in the *xy*-plane, is

a)
$$\left[1 + \left(\frac{dy}{dx}\right)^3\right]^2 = r^2 \left(\frac{d^2y}{dx^2}\right)^2$$

b) $\left[1 + \left(\frac{dy}{dx}\right)^3\right]^2 = r^2 \left(\frac{d^2y}{dx^2}\right)^3$
c) $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = r^2 \left(\frac{d^2y}{dx^2}\right)^2$
d) $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = r^2 \left(\frac{d^2y}{dx^2}\right)^3$

266. The differential equation of the family of parabola with focus as the origin and the axis as x-axis, is

a)
$$y \left(\frac{dy}{dx}\right)^2 + 4x \frac{dy}{dx} = 4y$$

b) $-y \left(\frac{dy}{dx}\right)^2 = 2x \frac{dy}{dx} - y$
c) $y \left(\frac{dy}{dx}\right)^2 + y = 2xy \frac{dy}{dx}$
d) $y \left(\frac{dy}{dx}\right)^2 + 2xy \frac{dy}{dx} + y = 0$

267. The equation of curve through point (1,0) which satisfies the differential equation $(1 + y^2)dx - xy dy = 0$ is

a)
$$x^2 + y^2 = 4$$
 b) $x^2 - y^2 = 1$ c) $2x^2 + y^2 = 2$ d) None of these

^{268.} The equation of the curve through the point (3, 2) and whose slope is $\frac{x^2}{y+1}$, is

a)
$$\frac{y^2}{2} + y = \frac{x^3}{3} + 5$$
 b) $y + y^2 - x^3 - 21$ c) $y^2 + 2y = \frac{2x^3}{3} - 10$ d) $\frac{y^2}{2} + y = \frac{x^3}{3} - 5$

^{269.} The equation of the curve through the point (1,0) and whose slope is $\frac{y-1}{x^2+x'}$ is

- a) 2x + (y 1)(x + 1) = 0b) 2x - (y - 1)(x + 1) = 0
 - c) 2x + (y 1)(x 1) = 0 d) None of these

^{270.} If y(t) is a solution of $(1 + t)\frac{dy}{dt} - ty = 1$ and y(0) = -1, then y(1) is equal to a) $-\frac{1}{2}$ b) $e + \frac{1}{2}$ c) $e - \frac{1}{2}$ d) $\frac{1}{2}$

a) $-\frac{1}{2}$ b) $e + \frac{1}{2}$ c) $e - \frac{1}{2}$ d) $\frac{1}{2}$ 271. The order of the differential equation of all tangent lines to the parabola $y = x^2$ is a) 1 b) 2 c) 3 d) 4

272. The differential equation for the family of curves $x^2 + y^2 - 2ay = 0$, where *a* is an arbitrary constant, is

a) $2(x^2 - y^2)y' = xy$ b) $2(x^2 + y^2)y' = xy$ c) $(x^2 - y^2)y' = 2xy$ d) $(x^2 + y^2)y' = 2xy$ 273. The solution of $\frac{dy}{dx} + 1 = \operatorname{cosec} (x + y)$ is

- a) $\cos(x + y) + x = c$ b) $\cos(x + y) = c$
- c) $\sin(x + y) + x = c$ d) $\sin(x + y) + \sin(x + y) = c$

^{274.} The solution of the differential equation $9y \frac{dy}{dx} + 4x = 0$ is

a)
$$\frac{y^2}{9} + \frac{x^2}{4} = c$$
 b) $\frac{y^2}{4} + \frac{x^2}{9} = c$ c) $\frac{y^2}{9} - \frac{x^2}{4} = c$ d) $y^2 - \frac{x^2}{9} = c$

275. The differential equation of the rectangular hyperbola whose axes are the asymptotes of the hyperbola, is

a)
$$y\frac{dy}{dx} = x$$

b) $x\frac{dy}{dx} = -y$
c) $x\frac{dy}{dx} = y$
d) $x dy + y dx = c$

^{276.} A particular solution of $\log \left(\frac{dy}{dx}\right) = 3x + 4y$, y(0) = 0 is a) $e^{3x} + 3e^{-4y} = 4$ b) $4e^{3x} - 3e^{-4y} = 3$ c) $3e^{3x} + 4e^{-4y} = 7$ d) $4e^{3x} + 3e^{-4y} = 7$

a) $e^{3x} + 3e^{-4y} = 4$ b) $4e^{3x} - 3e^{-4y} = 3$ c) $3e^{3x} + 4e^{-4y} = 7$ d) $4e^{3x} + 3e^{-4y} = 7$ 277. The differential equation $\frac{d^2y}{dx^2} = 2$ represents

a) A parabola whose axis is parallel to *x*-axisb) A parabola whose axis is parallel to *y*-axisc) A circled) None of the above

^{278.} If
$$x \frac{dy}{dx} = y(\log y - \log x + 1)$$
, then the solution of the equation is

a)
$$\log\left(\frac{x}{y}\right) = cy$$
 b) $\log\left(\frac{y}{x}\right) = cx$ c) $x \log\left(\frac{y}{x}\right) = cy$ d) $y \log\left(\frac{x}{y}\right) = cx$

279. The general solution of $y^2 dx + (x^2 - xy + y^2) dy = 0$ is

a) $\tan^{-1}\left(\frac{y}{x}\right) = \log y + c$ b) $2\tan^{-1}\left(\frac{x}{y}\right) + \log x + c = 0$

c)
$$\log(y + \sqrt{x^2 + y^2}) + \log y + c = 0$$

d) $\sinh^{-1}\left(\frac{x}{y}\right) + \log y + c = 0$
280. The equation of the curve satisfying the differential equation $y_2(x^2 + 1) = 2xy_1$ passing through the point (0,1) and having slope of tangent at $x = 0$ as 3 is
a) $y = x^3 + 3x + 1$ b) $y = x^3 - 3x + 1$ c) $y = x^2 + 3x + 1$ d) $y = x^2 - 3x + 1$
281. The solution of differential equation $(1 + y^2) + (x - e^{\tan^2 y}) \frac{dx}{dx} = 0$ is
a) $2xe^{\tan^2 y} = e^{2\tan^2 1}y + k$ b) $2xe^{\tan^2 1}y = e^{\tan^2 y} + k$
282. The solution of $e^{dy/dx} = (x + 1), y(0) = 3$ is
a) $y = x \log x - x + 2$ b) $y = (x + 1) \log |x + 1| - x + 3$
c) $y = (x + 1) \log |x + 1| + x + 3$ d) $y = x \log x + x + 3$
283. The solution of the equation $x^2 \frac{dx^2}{dx^2} = \log x$ when $x = 1, y = 0$ and $\frac{dx}{dx} = -1$ is
a) $y = \frac{1}{2} (\log x)^2 + \log x$ b) $y = \frac{1}{2} (\log x)^2 - \log x$
c) $y = -\frac{1}{2} (\log x)^2 + \log x$ d) $y = -\frac{1}{2} (\log x)^2 - \log x$
c) $y = -\frac{1}{2} (\log x)^2 + \log x$ d) $y = -\frac{1}{2} (\log x)^2 - \log x$
c) $y = -\frac{1}{2} (\log x)^2 + \log x$ d) $y = -\frac{1}{2} (\log x)^2 - \log x$
284. The order of the differential equation whose solution is $y = a \cos x + b \sin x + ce^{-x}$, is
a) 3 b) 1 c) 2
c) 2 d) 4
285. The differential equation for which $\sin^{-1} x + \sin^{-1} y = c$, is given by
a) $\sqrt{1 - x^2} dx + \sqrt{1 - y^2} dx = 0$ d) $\sqrt{1 - x^2} dx + \sqrt{1 - y^2} dx = 0$
c) $\sqrt{1 - x^2} dx + \sqrt{1 - y^2} dx = 0$ d) $\sqrt{1 - x^2} dx + \sqrt{1 - y^2} dx = 0$
c) $\sqrt{1 - x^2} dy - \sqrt{1 - y^2} dx = 0$ d) $\sqrt{1 - x^2} dx + \sqrt{1 - y^2} dx = 0$
286. A continuously differential function $\phi(x)$ in $(0, x)$ satisfying $y' = 1 + y^3$, $y(0) = 0 = y(\pi)$, is
a) $\tan x$ b) $x(x - \pi)$ c) $(x - \pi)(1 - e^x)$ d) $y = 2x^2 - 4$
288. If $y = a \sin(5x + c)$, then
a) $\frac{dx}{dx} = 5y$ b) $\frac{dx}{dx} = -5y$ c) $\frac{d^2y}{dx^2} = -25y$ d) $\frac{d^2y}{dx^2} = 25y$
289. An integrating factor of the differential equation $(1 - x^2) \frac{dx}{dx} - y = 1$ is
a) $-x$ b) $-\frac{x}{(1 - x^2)}}$ c) $\sqrt{(1 - x^2)}$ d) $\frac{1}{2} \log(1 - x^2)$
290. The solution of the differential equation $\frac{dy}{dx} + \frac{2x}{dx} + y = 0$ d) $y = 2x^2 - 4$

d) Fixed radius 1 and variable centres along the y-axis ^{295.} If $\frac{dy}{dx} + y = 2e^{2x}$, then y is equal to b) $(1-x)e^{-x} + \frac{2}{3}e^{2x} + c$ a) $ce^{x} + \frac{2}{2}e^{2x}$ c) $ce^{-x} + \frac{2}{2}e^{2x}$ d) $e^{-x} + \frac{2}{2}e^{2x} + c$ ^{296.} If the function $y = \sin^{-1} x$, then $(1 - x^2) \frac{d^2 y}{dx^2}$ is equal to c) $x \frac{dy}{dx}$ d) $\chi \left(\frac{dy}{dy}\right)^2$ a) $-x \frac{dy}{dy}$ b) 0 ^{297.} The solution of $dy = \cos x (2 - y \operatorname{cosec} x) dx$, where $y = \sqrt{2}$, when $x = \pi/4$ is a) $y = \sin x + \frac{1}{2} \operatorname{cosec} x$ b) $y = \tan(x/2) + \cot(x/2)$ c) $y = (1/\sqrt{2}) \sec(x/2) + \sqrt{2} \cos(x/2)$ d) None of the above 298. The solution of the differential equation $(1 + y^2) \tan^{-1} x \, dx + y(1 + x^2) dy = 0$ is a) $\log\left(\frac{\tan^{-1}x}{x}\right) + y(1+x^2) = c$ b) $\log(1 + v^2) + (\tan^{-1} x)^2 = c$ c) $\log(1 + x^2) + \log(\tan^{-1} y) + c$ d) $(\tan^{-1} x)(1 + v^2) + c = 0$ ^{299.} The solution of the differential equation $\frac{dy}{dx} = y \tan x - 2 \sin x$, is b) $y \cos x = c + \frac{1}{2} \sin 2x$ a) $y \sin x = c + \sin 2x$ d) $y \cos x = c + \frac{1}{2} \cos 2x$ c) $y \cos x = c - \sin 2x$ ^{300.} If y(t) is a solution of $(1 + t)\frac{dy}{dt} - ty = 1$ and y(0) = -1 then y(1) is equal to c) $e - \frac{1}{2}$ a) $-\frac{1}{2}$ b) $e + \frac{1}{2}$ d) $\frac{1}{2}$ 301. The differential equation of all straight lines passing through origin is d) None of these a) $y = \sqrt{x} \frac{dy}{dx}$ b) $\frac{dy}{dx} = y + x$ c) $\frac{dy}{dx} = y - x$ 302. The solution of $\frac{dy}{dx} = \frac{x \log x^2 + x}{\sin x + x \cos x}$ is a) $y \sin y = x^2 \log x + c$ b) $y \sin y = x^2 + c$ c) $y \sin y = x^2 + \log x + c$ d) $y \sin y = x \log x + c$ 303. If *c* is an arbitrary constant, then the general solution of the differential equation y dx - x dy =xy dx is given by b) $y = cye^{-x}$ d) $ve^x = cx$ a) $y = cxe^{-x}$ c) $y + e^x = cx$ 304. Solution of $x \frac{dy}{dx} + y = x e^x$, is a) $xy = e^{x}(x+1) + C$ b) $xy = e^{x}(x-1) + C$ c) $xy = e^{x}(1-x) + C$ d) $xy = e^{y}(y-1) + C$ ^{305.} The general solution of the differential equation 100 $\frac{d^2y}{dx^2} - 20 \frac{dy}{dx} + y = 0$ is a) $y = (c_1 + c_2 x)e^x$ b) $y = (c_1 + c_2 x)e^{-x}$ c) $y = (c_1 + c_2 x)e^{\frac{x}{10}}$ d) $y = c_1 e^x + c_2 e^{-x}$ 306. The equation of the curve whose subnormal is twice the abscissa, is a) A circle b) A parabola c) An ellipse d) A hyperbola 307. The solution of $2(y + 3) - xy \frac{dy}{dx} = 0$ with y = -2, where x = 1, is a) $y + 3 = x^2$ b) $x^2(y + 3) = 1$ c) $x^4(y + 3)$ c) $x^4(y+3) = 1$ d) $x^2(y+3)^3 = e^{y+2}$ 308. The solution of $\frac{dy}{dx} - y = 1$, y(0) = 1 is given by y(x) =b) $-\exp(-x)$ a) $-\exp(x)$ c) -1 d) $2 \exp(x) - 1$ 309. The solution of the differential equation $2x \frac{dy}{dx} - y = 3$ represents a) Straight lines b) Circles c) Parabola d) Ellipse

9.DIFFERENTIAL EQUATIONS

						: ANS	Ŵ	ED K	FV						
1)		2)		2)							ե	101)		102)	
1) 5)	C	2)	a h	3) 7)	a h	4) 9)	b b	,	d	190) 104)	b	191) 105)	a	192) 106)	d
5) 0)	C h	6) 10)	b	7) 11)	b d	8) 12)	b	,	c	194) 108)	a h	195) 100)	a d	196) 200)	a h
9) 12)	b	10) 14)	a	11) 15)	d	12)	a	197) 201)	a d	198) 202)	b d	199) 202)	d h	200) 204)	b
13) 17)	a h	14) 19)	C	15) 10)	C C	16) 20)	a	201) 205)	d	202) 206)	d h	203) 207)	b h	204) 208)	C d
17) 21)	b b	18) 22)	C h	19) 22)	a d	20) 24)	C h	-	c	208) 210)	b	207)	b	208) 212)	d
21) 25)	b	22) 26)	b d	23) 27)	d	24) 28)	b b	209J 213)	C 2	210) 214)	C C	211) 215)	a c	212) 216)	a
23) 29)	C C	20) 30)		27) 31)	a	28) 32)		213)	a h	214) 218)	с b	213) 219)	c d	210) 220)	a
29) 33)	с b	30) 34)	c d	31) 35)	a a	32) 36)	с b		b d	210) 222)	C	219)	u C	220) 224)	a b
33) 37)	b	34) 38)	u b	33) 39)	a c	30) 40)		221)	u b	222)	d	223)	a	224)	b
37) 41)	a	30) 42)	d	43)	a	40) 44)	с а		b	220)	u b	231)	a C	220)	a
45)	a	46)	u b	43) 47)	a C	49)	a C	233)	a	230)	c	231)	c	232)	d
49)	a	40) 50)	a	51)	b	52)	c c	235)	a	234) 238)	b	233)	a	230) 240)	a
53)	a b	50) 54)	d	55)	c	52) 56)	c c	241)	a b	230)	b	237) 243)	a	240) 244)	a
53) 57)	b	54) 58)	u C	59)	a	50) 60)	a	241)	d	242) 246)	c	243) 247)	a	244) 248)	a
61)	a	62)	a	63)	a	64)	b	-	a	250)	a	251)	b	240) 252)	c c
65)	b	66)	b	67)	a	68)	a		a	250) 254)	c c	251)	a	252)	a
69)	b	70)	c	07) 71)	d	72)	a		a	251)	b	259) 259)	d	260)	c
73)	d	70) 74)	b	75)	a	72) 76)	d	-	b	262)	b	263)	d	260) 264)	b
77)	a	78)	c	79)	d	80)	c c	265)	c	266)	b	263)	b	261)	d
81)	C L	82)	a	83)	b	84)	c c	269)	a	270)	a	207)	a	200) 272)	c
85)	b	86)	b	87)	a	88)	c	273)	a	274)	b	275)	b	276)	c
89)	b	90)	b	91)	a	92)	d	-	b	278)	b	279)	a	280)	a
93)	c	94)	c	95)	a	96)	b		a	282)	b	283)	d	284)	a
97)	а	98)	а	99)	а	100)	а		b	286)	d	287)	С	288)	С
101)	а	102)	С	103)	b	104)	b	-	С	290)	С	291)	a	292)	b
105)	а	106)	b	107)	С	108)	d	-	b	294)	с	295)	С	296)	С
109)	С	110)	а	111)	b	112)		297)	а	298)	b	299)	d	300)	а
113)	а	114)	b	115)	b	116)		301)	d	302)	а	303)	d	304)	b
117)	b	118)	b	119)	b	120)		305)	с	306)	d	307)	d	308)	d
121)	С	122)	b	123)	а	124)		309)	С						
125)	а	126)	а	127)	b	128)	а								
129)	b	130)	а	131)	d	132)	С								
133)	С	134)	d	135)	b	136)	а								
137)	а	138)	d	139)	С	140)	d								
141)	а	142)	b	143)	d	144)	а								
145)	С	146)	b	147)	b	148)	b								
149)	а	150)	b	151)	b	152)	С								
153)	b	154)	b	155)	С	156)	а								
157)	b	158)	b	159)	С	160)	а								
161)	d	162)	С	163)	d	164)	а								
165)	а	166)	b	167)	d	168)	а								
169)	а	170)	а	171)	а	172)	С								
173)	d	174)	С	175)	b	176)	а								
177)	а	178)	С	179)	b	180)	С								
181)	b	182)	а	183)	b	184)	d								
185)	а	186)	С	187)	а	188)	d								

: HINTS AND SOLUTIONS :

5

6

7

8

9

1 (c)
Equation of family of ellipse is
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

 $\Rightarrow \frac{2x}{a^2} + \frac{2y}{b^2} \cdot \frac{dy}{dx} = 0$
 $\Rightarrow \frac{x}{a^2} + \frac{y}{b^2} \cdot \frac{d^2y}{dx^2} = 0$
 $\Rightarrow \frac{1}{a^2} + \frac{y}{b^2} \cdot \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 1$
 $\Rightarrow \frac{b^2}{a^2} + y \left(\frac{d^2y}{dx^2}\right) + \left(\frac{dy}{dx}\right)^2 = 0$
 $\Rightarrow -\frac{y}{x} \cdot \frac{dy}{dx^2} + \frac{dy}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$
 $[from Eq. (i), \frac{b^2}{a^2} = -\frac{y}{x} \cdot \frac{dy}{dx^2}]$
 $\Rightarrow xy \frac{d^2y}{dx^2} + \frac{dy}{dx} \left(x \frac{dy}{dx} - y\right) = 0$
2 (a)
The given equation can be rewritten as
 $\rho \cdot \frac{d^2y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}$
On squaring both sides, we get
 $\left(\rho \cdot \frac{d^2y}{dx^2}\right) = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^3$
 $\Rightarrow order = 2, degree = 2.$
3 (a)
Since,
 $y = e^{2x}(a \cos x + b \sin x)$
...(i)
 $\Rightarrow y_1 = e^{2x}(-a \sin x + b \cos x) + (a \cos x + b \sin x) 2e^{2x}$
 $\Rightarrow y_1 = e^{2x}(-a \sin x + b \cos x) + 2y$
...(ii)
 $\Rightarrow y_2 = e^{2x}(-a \cos x - b \sin x) + (-a \sin x + b \cos x) + 2y$
...(iii)
 $\Rightarrow y_2 = -y + 2(y_1 - 2y) + 2y_1$
(using eq.(ii))
 $\Rightarrow y_2 = -y + 4y_1 - 4y$
 $\Rightarrow y_2 = -y + 4y_1 - 4y$
 $\Rightarrow y_2 = -y + 4y_1 - 4y$
 $\Rightarrow y_2 - 4y_1 + 5y = 0$
4 (b)
We have, $\frac{dy}{dx} = \frac{ax+g}{by+f}$

On integrating, we get $\frac{by^2}{2} + fy = \frac{ax^2}{2} + gx + c$ $\Rightarrow ax^2 - by^2 + 2gx - 2fy + c = 0$ This represents a circle, if a = -b(c) Given, $\frac{dy}{dx} + \frac{y}{x} = x^2$ $\therefore \qquad \text{IF} = e^{\int_x^1 dx} = e^{\log x} = x$ ∴ Complete solution is $y.x = \int x.x^2 \, dx + c$ $y \cdot x = \int x \cdot x \, dx + c$ $\Rightarrow \qquad y \cdot x = \frac{1}{4} x^4 + c$ $\Rightarrow \qquad y = \frac{1}{4} x^3 + cx^{-1}$ (b) Given, $y = ax \cos\left(\frac{1}{x} + b\right)$ $\Rightarrow y_1 = -ax \sin\left(\frac{1}{x} + b\right) \times \left(-\frac{1}{x^2}\right) +$ $a\cos(\frac{1}{a}+b)$ $\Rightarrow y_1 = \frac{a}{r} \sin\left(\frac{1}{r} + b\right) + \cos\left(\frac{1}{r} + b\right)$ $\Rightarrow xy_1 = asin\left(\frac{1}{r} + b\right) + y$ $\Rightarrow y_1 + xy_2 = a\cos\left(\frac{1}{x} + b\right)\left(-\frac{1}{x^2}\right) + y_1$ $\Rightarrow x^3y_2 = -a\cos\left(\frac{1}{x} + b\right)$ $\Rightarrow x^4y_2 + y = 0$ (b) Given, $\frac{y \, dx + x \, dy}{x^2 y^2} = -\frac{1}{y} \, dy$ $\Rightarrow \qquad d\left(-\frac{1}{xy}\right) = -\frac{1}{y} \, dy$ $\Rightarrow \qquad -\frac{1}{xy} = -\log y + c$ [integrating] $-\frac{1}{ry} + \log y = c$ ⇒ (b) The given differential equation is $2\left(\frac{d^2y}{dx^2}\right) + 3\left(\frac{dy}{dx}\right)^2 + 4y^3 = x$ Here, highest order is 2 and degree is 1. (b) Given, $\cot y \, dx = x \, dy$ $\Rightarrow \frac{dx}{x} = \frac{dy}{\cot y} \Rightarrow \frac{dx}{x} = \tan y \, dy$

On integrating both sides, we get

$$\int \frac{1}{x} dx = \int \tan y \, dy$$

$$\Rightarrow \log x = \log \sec y + \log c$$

$$\Rightarrow \log x = \log c \sec y$$

$$\Rightarrow x = c \sec y$$
10 (a)
Given, $\frac{dy}{dx} = -\frac{3xy+y^2}{x^2+xy}$
Put $y = vx$

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$\Rightarrow v + x \frac{dv}{dx} = -\frac{3x+v^2}{1+v}$$

$$\Rightarrow x \frac{dv}{dx} = v + x \frac{dv}{dx}$$

$$\Rightarrow v + x \frac{dv}{dx} = -\frac{2v(v+2)}{v+1}$$

$$\Rightarrow \frac{1}{x} dx = -\left[\frac{1}{2(v+2)} + \frac{1}{2v}\right] dv$$

$$\Rightarrow -\frac{2}{x} dx = -\left[\frac{1}{2(v+2)} + \frac{1}{2v}\right] dv$$

$$\Rightarrow -2 \log_e x = \frac{1}{2}\log(v+2) + \frac{1}{2}\log v - \log c$$

$$\Rightarrow v(v+2)x^4 = c^2$$

$$\Rightarrow (y^2 + 2xy)x^2 = c^3$$
11 (d)
Given equation is $\sqrt{\frac{dy}{dx}} - 4\frac{dy}{dx} - 7x = 0$

$$\Rightarrow \frac{dy}{dx} = 16 \left(\frac{dy}{dx}\right)^2 + 49x^2 + 56x\frac{dy}{dx}$$
Obviously, it is first order and second degree differential equation.
12 (a)
Since, $\cos x \, dy = y \sin x \, dx - y^2 \, dx$

$$\Rightarrow \frac{1}{y^2} \frac{dy}{dx} - \frac{1}{y} \tan x = -\sec x$$
Put, $-\frac{1}{y} = z \Rightarrow \frac{1}{y^2} \frac{dy}{dx} = \frac{dz}{dx}$

$$\Rightarrow \frac{dx}{dx} + (\tan x)z = -\sec x$$
This is a linear differential equation.
Therefore,
IF $= e^{\int \tan x \, dx} = e^{\int \log \sec x} = \sec x$
Hence, the solution is
 $z (\sec x) = \int -\sec x \cdot \sec x \, dx + c_1$

$$\Rightarrow \sec x = y(\tan x + c)$$
13 (a)
Given, $x = A \cos 4t + B \sin 4t$
...(i)
$$\Rightarrow \frac{dx}{dt} = -4A \sin 4t + 4B \cos 4t$$

 $\Rightarrow \qquad \frac{d^2x}{dt^2} - 16A\cos 4t - 16B\sin 4t$ $\Rightarrow \qquad \frac{d^2x}{dt^2} = -16x$ [from Eq. (i)] 14 **(c)** Given, $\frac{dy}{dx} + y = 2e^{2x}$ $\therefore \qquad IF = e^{\int 1 \, dx} = e^x$ $\therefore \text{ Required solution is}$ $ye^x = 2\int e^{2x} e^x dx = \frac{2}{3}e^{3x} + c$ $\Rightarrow \qquad y = \frac{2}{3} e^{2x} + c e^{-x}$ 15 **(c)** $\frac{dt}{dx} - t\frac{g'(x)}{g(x)} = -\frac{t^2}{g(x)}$ $\Rightarrow -\frac{1}{t^2}\frac{dt}{dx} + \frac{1}{t}\frac{g'(x)}{g(x)} = \frac{1}{g(x)} \quad \dots(i)$ Let $z = \frac{1}{t} \Rightarrow -\frac{1}{t^2}\frac{dt}{dx} = \frac{dz}{dx}$ ∴ From Eq. (i) $\frac{dz}{dx} + \frac{g'(x)}{g(x)}z = \frac{1}{g(x)}$ On comparing with $\frac{dz}{dx} + Pz = Q$, we get $P = \frac{g'(x)}{g(x)}, Q = \frac{1}{g(x)}$ $\therefore IF = e^{\int \frac{g'(x)}{g(x)} dx}$ $=e^{\log[g(x)]}=g(x)$ Thus, complete solution is $z \cdot g(x) = \int g(x) \cdot \frac{1}{g(x)} dx + c$ $\Rightarrow \frac{1}{t} g(x) = x + c \Rightarrow \frac{g(x)}{x + c} = t$ 16 (a) The equation of the family of circles of radius *a* is $(x-h)^2 + (y-k^2) = a^2$, which is a two parameter family of curves. So, its differential equation is of order two 17 **(b)** Given, $\frac{dy}{dx} = \frac{x^3 + y^3}{xy^2}$ Fut y = vx $\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\Rightarrow x \frac{dv}{dx} + v = \frac{1+v^3}{v^2}$ $\Rightarrow v^2 dv = \frac{dx}{x}$ $\Rightarrow \frac{v^3}{3} = \log x + \log c$ $\Rightarrow \frac{1}{3} \left(\frac{y}{x}\right)^3 = \log x + \log c$ $\Rightarrow y^3 = 3x^2 \log c^{2}$

18 (c) Given, $\frac{dy}{dx} + \frac{y}{x} = \cos x + \frac{\sin x}{x}$ $IF = e^{\int \frac{1}{x} dx} = e^{\log x} = x$... ∴ Complete solution is $xy = \int (x \cos x + \sin x) dx$ $xy = x \sin x + c$ ⇒ At $y = 1, x = \frac{\pi}{2}, c = 0$ $y = \sin x$... 19 (a) Given, $xy = ae^x + be^{-x}$ $x \frac{dy}{dx} + y = ae^x - be^{-x}$ $x \frac{d^2 y}{dx^2} + \frac{dy}{dx} + \frac{dy}{dx} = ae^x + be^{-x}$ $x \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} - xy = 0$ [from \Rightarrow eq. (I)] 20 (c) The given equation can be written as $(D^2 + 2D + 1)y = 2e^{3x}$, where $\frac{d}{dx} = D$ Here, $F(D) = D^2 + 2D + 1$ and $Q = 2e^{3x}$ The auxiliary equation is $m^2 + 2m + 1 = 0$ $(m+1)^2 = 0$ \Rightarrow m = -1, -1⇒ $\therefore \quad \text{The CF} = (c_1 + c_2 x)e^{-1}$ and $PI = \frac{1}{F(D)} 2e^{3x} = 2\frac{1}{D^2 + 2D + 1} e^{3x}$ $=2\frac{e^{3x}}{9+6+1}=\frac{e^{3x}}{8}$ \therefore The complete solution is $y = (c_1 + c_2 x)e^{-x} + \frac{e^{3x}}{2}$ 21 **(b)** We have. (2y-1)dx = (2x+3)dy $\Rightarrow \frac{1}{2y+3} dx = \frac{1}{2y-1} dy$ $\Rightarrow \int \frac{2}{2x+3} dx = \int \frac{2}{2x-1} dy$ $\Rightarrow \log(2x+3) = \log(2y-1) + \log C \Rightarrow \frac{2x+3}{2y-1}$ = C22 (b) We have, $\frac{dy}{dx} = y(xy - 1)$ $\Rightarrow dy = xy^2 dx - y dx$ $\Rightarrow y \, dx + dy = xy^2 \, dx \Rightarrow \frac{y \, dx + dy}{v^2} = x \, dx$

 $\Rightarrow \frac{y e^{-x} dx + e^{-x} dy}{y^2} = x e^{-x} dx \Rightarrow -d\left(\frac{e^{-x}}{y}\right)$ $= xe^{-x}dx$ On integrating, we get $-\frac{e^{-x}}{v} = -xe^{-x} - e^{-x} + C \Rightarrow \frac{1}{v} = x + 1 + Ce^{-x}$...(i) It passes through (0, 1). Therefore, $1 = 1 + C \Rightarrow$ C = 0Putting C = 0 in (i), we get $\frac{1}{y} = x + 1 \Rightarrow$ y(x+1) = 1ALTER We have, $\frac{dy}{dx} = y(xy - 1)$ $\Rightarrow \frac{dy}{dx} + y = xy^2$ $\Rightarrow \frac{1}{v^2} \frac{dy}{dx} + \frac{1}{v} = x$ $\Rightarrow -\frac{dv}{dx} + v = x$, where $v = \frac{1}{v}$ $\Rightarrow \frac{dv}{dx} - v = -x$ (ii) I. F. = $e^{-\int 1.dx} = e^{-x}$ Multiplying (i) by e^{-x} and integrating, we get $v e^{-x} = xe^{-x} + e^{-x} + C \Rightarrow \frac{1}{v} = x + 1 + C e^{x}$ It passes through (0, 1) Hence, the equation of the curve is $\frac{1}{y} = (x+1) \Rightarrow (x+1)y = 1$ (d) Given differential equation is x dy = y dx $\Rightarrow \qquad \frac{dy}{y} = \frac{dx}{x} \Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x}$ $\log_e y = \log_e x + \log_e c$ y = cxWhich is a straight line. 24 (b) Given, $\frac{dy}{dx} = (1+x)(1+y)$ $\Rightarrow \qquad \frac{1}{1+y}dy = (1+x)dx$ $\Rightarrow \log(1+y) = x + \frac{x^2}{2} + c$ [integrating] At y(-1) = 0 $\Rightarrow \qquad c = \frac{1}{2}$ $\therefore \qquad \log(1+y) = \frac{x^2 + 2x + 1}{2}$ $y = e^{\frac{(1+x)^2}{2}} - 1$ ⇒ (c)

23

25

Given,
$$\frac{dy}{dx} + y \cdot \frac{1}{x} \log x = e^x x^{-(1/2)\log x}$$

 \therefore $IF = e^{\int \frac{1}{x} \log x \, dx} = e^{\int \frac{(\log x)^2}{2}} = (\sqrt{e})^{(\log x)^2}$
26 (d)
Given differential equation is
 $y dy = (c - x) dx$
 $\Rightarrow \quad \frac{y^2}{2} = cx - \frac{x^2}{2} + d$
 $\Rightarrow \quad y^2 + x^2 - 2cx - 2d = 0$
Hence, it represents a family of circles whose
centres are on the x-axis.
27 (a)
Given, $\frac{dy}{dx} = \frac{x - y}{x + y}$
This is a homogeneous equation
Put $y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$
Given equation becomes
 $v + x \frac{dv}{dx} = \frac{1 - v}{1 + v} - v$
 $\Rightarrow \frac{1 + v}{2 - (1 + v)^2} dv = \frac{dx}{x}$
On integrating both sides, we get
 $\int \frac{1 + v}{2 - (1 + v)^2} dv = \int \frac{dx}{x}$
Put $(1 + v)^2 = t \Rightarrow 2(1 + v) dv = dt$
 $\Rightarrow \frac{1}{2} \int \frac{dt}{2 - t} = \int \frac{dx}{x}$
 $\Rightarrow -\frac{1}{2} \log[2 - (1 + v)^2] = \log xc$
 $\Rightarrow -\frac{1}{2} \log[2 - (1 + v)^2] = \log xc$
 $\Rightarrow \frac{1}{2} \log[-v^2 - 2v + 1] = \log xc$
 $\Rightarrow \frac{1}{2} \log[-v^2 - 2v + 1] = \log xc$
 $\Rightarrow \frac{1}{2} \log[-v^2 - 2v + 1] = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^2 - 2v + 1) = \log xc$
 $\Rightarrow \frac{1}{2} \log(-v^$

We have, $\frac{x}{x^2+y^2}dy = \left(\frac{y}{x^2+y^2} - 1\right)dx$ $\Rightarrow \frac{x \, dy - y \, dx}{x^2 + y^2} = -dx$ $\Rightarrow d\left\{\tan^{-1}\left(\frac{y}{x}\right)\right\} = -dx$ $\Rightarrow \tan^{-1}\frac{y}{x} = -x + C \Rightarrow y = x \tan(C - x)$ 30 (c) Given differential equation can be rewritten as $\frac{dy}{dx} = \frac{x+y-1}{x+y+1}$ Put x + y = t $\Rightarrow \frac{dy}{dx} = \frac{dt}{dx} - 1$ $\Rightarrow \frac{dt}{dx} - 1 = \frac{t-1}{t+1}$ $\Rightarrow \frac{1}{2} (t + \log t) = x + \frac{c}{2}$ $\Rightarrow \frac{1}{2} (t + \log t) = x - y + c$ $\Rightarrow \quad \log(x+y) = x - y + c$ 31 **(a)** Given, $y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx} \right)$ $\Rightarrow \qquad \frac{dy}{dx}(a+x) = y - ay^2$ $\Rightarrow \qquad \int \left(\frac{1}{y} + \frac{a}{1 - ay}\right) dy = \int \frac{dx}{a + x}$ $\Rightarrow \qquad \log y - \log(1 - ay) = \log(a + x) +$ log c $\Rightarrow \qquad \log y = \log(1 - ay)(a + x)c$ $\Rightarrow \qquad y = c(1 - ay)(a + x)$ 32 (c) Given differential equation can be rewritten as $\left(1+3\ \frac{dy}{dx}\right)^2 = 64\left(\frac{d^3y}{dx^3}\right)^3$ 33 (b) $\frac{dy}{dx} = y + 2x$ $\Rightarrow \frac{dy}{dx} - y = 2x$ $IF = e^{\int -1 \, dx} = e^{-x}$: Solution of the differential equation is $y.e^{-x} = 2 \int x e^{-x} dx$ $= 2(-xe^{-x} - e^{-x}) + c$ $\Rightarrow \qquad y = 2e^{x}(-xe^{-x} - e^{-x}) + ce^{x}$ $\Rightarrow \qquad y = -2x - 2 + ce^{x}$ For c = 2We get $\qquad y = 2(e^{x} - x - 1)$

We have,

$$y\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = c$$

$$\Rightarrow y^2 \left\{1 + \left(\frac{dy}{dx}\right)^2\right\} = c^2 \Rightarrow y^2 \left(\frac{dy}{dx}\right)^2 + y^2 = c^2$$

Clearly, it is a differential equation of degree 2 (a)

Given, $\frac{dy}{dx} + 1 = \operatorname{cosec} (x + y)$ Put x + y = t $\Rightarrow \quad 1 + \frac{dy}{dx} = \frac{dt}{dx}$ $\therefore \quad \frac{dt}{\operatorname{cosec} t} = dx$ $\Rightarrow \quad \int \sin t \, dt = \int dx$ $\Rightarrow \quad -\cos t = x - c$ $\Rightarrow \quad \cos(x + y) + x = c$

36 **(b)**

Given differential equation can be rewritten as

 $e^{2y}dy = (e^{3x} + x^2)dx$

On integrating, we get

$$\Rightarrow \qquad \frac{e^{2y}}{2} = \frac{e^{3x}}{3} + \frac{x^3}{3} + c$$

37 **(b)**

We have, $(x - h)^2 + (y - k)^2 = a^2$...(i) Differentiating w.r.t. *x*, we get

$$2(x - h) + 2(y - k)\frac{dy}{dx} = 0$$

$$\Rightarrow (x - h) + (y - k)\frac{dy}{dx} = 0 \quad ...(ii)$$

Differentiating w.r.t. *x*, we get

$$1 + \left(\frac{dy}{dx}\right)^2 + (y - k)\frac{d^2y}{dx^2} = 0 \quad ...(iii)$$

From (iii), we get

$$y - k = -\frac{1+p^2}{q}, \text{ where } p = \frac{dy}{dx}, q = \frac{d^2y}{dx^2}$$

Putting the value of $y - k$ in (ii), we get

$$x-h = \frac{(1+p^2)p}{q}$$

Substituting the values of x - h and y - k in (i), we get

$$\left(\frac{1+p^2}{q}\right)^2 (1+p^2) = a^2$$
$$\Rightarrow \left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^3 = a^2 \left(\frac{d^2y}{dx^2}\right)^2,$$

which is the required differential equation 38 **(b)**

The general equation of parabola whose axis is *x*-axis, is

$$y^{2} = 4a(x - h)$$

$$\Rightarrow 2y \frac{dy}{dx} = 4a$$

$$\Rightarrow y \frac{dy}{dx} = 2a$$

$$\Rightarrow \left(\frac{dy}{dx}\right)^{2} + y \frac{d^{2}y}{dx^{2}} = 0$$

$$\therefore \text{ Degree=1, order=2}$$
(c)
$$\frac{dy}{dx} = \frac{x + y + 1}{x + y - 1}$$
Put $x + y = t$

$$\Rightarrow 1 + \frac{dy}{dx} = \frac{dt}{dx}$$

$$\Rightarrow \frac{dy}{dx} = \frac{dt}{dx} - 1$$

$$\therefore \frac{dt}{dx} - 1 = \frac{t + 1}{t - 1}$$

$$\Rightarrow \frac{dt}{dx} = \frac{t + 1 + t - 1}{t - 1}$$

$$\Rightarrow \frac{dt}{dx} = \frac{2t}{t - 1}$$

$$\Rightarrow \left(\frac{t - 1}{2t}\right) dt = dx$$

$$\Rightarrow \left(\frac{1}{2} - \frac{1}{2t}\right) dt = dx$$
On integrating, we get
$$\frac{1}{2}t - \frac{1}{2}\log t = x + c_{1}$$

39

 $\Rightarrow \qquad t - \log t = 2x + 2c_1$

$$\Rightarrow \qquad x + y - \log(x + y) = 2x + 2c_1$$

$$\Rightarrow \qquad y = x + \log(x + y) + c$$

40 (c)

$$\frac{dy}{dx} = \frac{x^2 + y^2}{x^2 - y^2}, \text{ where, } \frac{dy}{dx} \text{ is the slope of the curve.}$$

$$\therefore \left(\frac{dy}{dx}\right)_{(1,0)} = \frac{1+0}{1-0} = 1$$
41 (a)

Given, $\frac{dy}{dx} = 3x^3$

 $\Rightarrow \qquad dy = 3x^3 \ dx$

On integrating, we get

$$y = \frac{3x^3}{3} + c$$

$$\Rightarrow \qquad y = x^{3} + c$$
It passes through (-1, 1).

$$\therefore \qquad 1 = (-1)^{3} + c$$

$$\Rightarrow \qquad c = 2$$

$$\therefore \qquad y = x^{3} + 2$$
42 (d)
Given, $(x + y)^{2} \frac{dy}{dx} = a^{2}$
Put $x + y = v$

$$\Rightarrow \qquad \frac{dy}{dx} = \frac{dx}{dx} - 1$$

$$\therefore \qquad v^{2} \left(\frac{dx}{dx} - 1\right) = a^{2}$$

$$\Rightarrow \qquad \frac{dy}{dx} = \frac{a^{2} + v^{2}}{v^{2}}$$

$$\Rightarrow \qquad \left(1 - \frac{a^{2}}{a^{2} + v^{2}}\right) dv = dx$$

$$\Rightarrow \qquad v - a \tan^{-1} \left(\frac{x}{a}\right) = x + c$$
[integrating]

$$\Rightarrow \qquad (x + y) - a \tan^{-1} \left(\frac{x + y}{a}\right) = x + c$$
[integrating]

$$\Rightarrow \qquad (x + y) - a \tan^{-1} \left(\frac{x + y}{a}\right) = x + c$$
[on differentiating w.r.t'x', we get
 $y' = c$
On putting this value in Eq. (i), we get
 $y' = c$
On putting this value in Eq. (i), we get
 $y = x(y') - (y')^{2}$

$$\Rightarrow \qquad (y')^{2} - xy' + y = 0$$
44 (a)
We have,
 $\frac{dv}{dt} + \frac{k}{m}v = -g$

$$\Rightarrow \frac{dv}{dt} = -\frac{k}{m}(v + \frac{mg}{k})$$

$$\Rightarrow \frac{dv}{v + mg/k} = -\frac{k}{m}dt$$

$$\Rightarrow \log\left(v + \frac{mg}{k}\right) = -\frac{k}{m}t + \log C$$

$$\Rightarrow v + \frac{mg}{k} = Ce^{-k/m t} \Rightarrow v = Ce^{-k/m t} - \frac{mg}{k}$$
45 (a)
Given equation is $\frac{dy}{dx} + y \tan x = \sec x$
Here, $P = \tan x$ and $Q = \sec x$

$$\therefore |IF = e^{\int p dx} = e^{\int \tan x dx}$$

$$= e^{\log \sec x} = \sec x$$

Hence, required solution

 $y \sec x = \int \sec^2 x \, dx + c$ $\Rightarrow y \sec x = \tan x + c$ 46 **(b)** Given, $\frac{dy}{dx} = \frac{y + x \tan \frac{y}{x}}{x}$ Put y = vx $\Rightarrow \qquad \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\therefore \qquad v + x \frac{dv}{dx} = \frac{vx + x \tan(\frac{vx}{x})}{x}$ $\Rightarrow \qquad x \frac{dv}{dx} = v + \tan v - v$ $\Rightarrow \qquad \int \cot v \ dv = \int \frac{dx}{x}$ $\Rightarrow \qquad \log \sin v = \log x + \log c \quad \Rightarrow \sin \frac{y}{x} = xc$ 47 **(c)** We have, $y^2 = 4a(x+a)$...(i) $\Rightarrow 2y \frac{dy}{dx} = 4a \Rightarrow a = \frac{1}{2}y \frac{dy}{dx}$ Substituting the value of *a* in (i), we get $y^2 = 2y \frac{dy}{dx} \left(x + \frac{1}{2} y \frac{dy}{dx} \right) \Rightarrow y^2$ $= y \frac{dy}{dx} \left(2x + y \frac{dy}{dx} \right)$ $\Rightarrow y^2 \left(\frac{dy}{dx}\right)^2 + 2xy\frac{dy}{dx} - y^2 = 0$ 48 **(c)** Given, $\frac{dy}{dx} = e^x e^y$ $\Rightarrow \qquad \int e^{-y} dy = \int e^x dx$ $\Rightarrow \qquad -e^{-y} = e^x - c$ $\Rightarrow \qquad e^x + e^{-y} = c$ 49 (a) The given equation is $t = 1 + (ty)\left(\frac{dy}{dt}\right) + \frac{(ty)^2}{2!}\left(\frac{dy}{dt}\right)^2 + \dots \infty$ $\Rightarrow t = e^{ty\left(\frac{dy}{dt}\right)}$ $\Rightarrow \log t = ty \frac{dy}{dt}$ $\Rightarrow y \, dy = \frac{\log t}{t} dt$ $\frac{y^2}{2} = \frac{(\log t)^2}{2} + k$ $\Rightarrow v = 1$ On integrating both sides, we get $\Rightarrow y = \pm \sqrt{(\log t)^2 + 2k}$ $\Rightarrow y = \pm \sqrt{(\log t)^2 + c}$ 50 (a) Given, $\frac{x\,dy - y\,dx}{x^2} + e^x dx = 0$ $\Rightarrow \qquad d\left(\frac{y}{x}\right) + d(e^x) = 0$

is

$$\Rightarrow \qquad \frac{y}{x} + e^{x} = c$$
[integrating]
51 **(b)**
We have,

$$\frac{dy}{dx} + 2y \tan x = \sin x \quad ...(i)$$
It is a linear differential equation with integrating
factor
I.F. = $e^{\int 2 \tan x \, dx} = e^{2 \log \sec x} = \sec^{2} x$
Multiplying (i) by $\sec^{2} x$ and integrating, we get
 $y \sec^{2} x = \int \sin x \sec^{2} x \, dx$
 $\Rightarrow y \sec^{2} x = \int \sec x \tan x \, dx \Rightarrow y \sec^{2} x$
 $= \sec x + C$
53 **(b)**
Given, $\frac{dy}{dx} = e^{-y}(e^{x} + x^{2})$
 $\Rightarrow \qquad \int e^{y} dy = \int e^{x} dx + \int x^{2} dx$
 $\Rightarrow \qquad e^{y} = e^{x} + \frac{x^{3}}{3} + c$
54 **(d)**
Given, $\frac{d^{2}y}{dx^{2}} = \frac{\log x}{x^{2}}$
 $\Rightarrow \qquad \frac{dy}{dx} = \frac{-(\log x + 1)}{x} + c$
[integrating]
Since, $\left(\frac{dy}{dx}\right)_{(1,0)} = -1$
 $\Rightarrow \qquad \frac{-1}{1} + c = -1 \Rightarrow c = 0$
 $\Rightarrow \qquad \frac{dy}{dx} = -\frac{(\log x + 1)}{x} + 0$
 $\Rightarrow \qquad y = -\frac{1}{2}(\log x)^{2} - \log x + c_{1}$
[integrating]
At $x = 1, y = 0 \Rightarrow c_{1} = 0$
 $\therefore \qquad y = -\frac{1}{2}(\log x)^{2} - \log x$
55 **(c)**
Given, $\frac{dy}{dx} + y = x^{2}$
 $\therefore \qquad \text{IF} = e^{\int 1 \, dx} = e^{x}$
 $\frac{dy}{dx} + P(x)y = Q(x)$
 $\therefore \qquad \text{IF} = e^{\int P(x) dx}$
 $\therefore \qquad \text{Both statements A and B are true and R $\Rightarrow A$
56 **(c)**
The equation of the given family of ellipses is $\frac{x^{2}}{4x^{2}} + \frac{y^{2}}{a^{2}} = 1 \text{ or } x^{2} + 4y^{2} = 4a^{2} \dots(1)$$

Differentiating with respect to *x*, we get

This is the required differential equation 57 **(b)** Given that centre of circle is (1, 2). Let radius of circle isa. $(x-1)^2 + (y-2)^2 = a^2$.. $\Rightarrow \quad 2(x-1) + 2(y-2)\frac{dy}{dx} = 0$ $\Rightarrow \quad (x-1) + (y-2)\frac{dy}{dx} = 0$ 58 (c) Given, $y^2 = 4ax + 4a^2$...(i) 2yy' = 4a⇒ On putting the value of 4a in eq(i), we get $y^2 = 2yy'x + 4.\frac{y^2y'^2}{4}$ $\Rightarrow \qquad y = 2y'x + yy'^2$ 59 **(a)** Given, $y = Ae^x + Be^{2x} + Ce^{3x}$...(i) $y'Ae^x + 2Be^{2x} + 3Ce^{3x}$ ⇒ From Eq. (i), $Ae^x = y - Be^{2x} - Ce^{3x}$ $y' = y + Be^{2x} - Ce^{3x}$ \Rightarrow $y'' = y' + Be^{2x} + 6Ce^{3x}$:. ...(ii) From Eq. (ii), $Be^{2x} = y' - y - 2Ce^{3x}$ $y'' = y' + 2y' - 2y - 4Ce^{3x} + 6Ce^{3x}$ *:*. $y^{\prime\prime} = 3y^{\prime} - 2y + 2Ce^{3x}$ \Rightarrow ...(iii) Again, differentiating w.r.t. x, we get $y''' = 3y'' - 2y' + 6Ce^{3x}$ From Eq. (iii), $2Ce^{3x} = y'' - 3y' + 2y$ $\therefore \qquad y''' = 3y'' - 2y' + 3(y'' - 3y' + 2y)$ y''' - 6y'' + 11y' - 6y = 0⇒ 60 (a) The equation of a member of the family of parabolas having axis parallel to y-axis is $y = Ax^2 + Bx + C$ $\frac{dy}{dx} = 2Ax + B$ ⇒ $\Rightarrow \qquad \frac{d^2 y}{dx^2} = 2A \Rightarrow \frac{d^3 y}{dx^3} = 0$ 61 (a) Let $x^2 + y^2 - 2ky = 0$ $\Rightarrow \quad 2x + 2y \frac{dy}{dx} - 2k \frac{dy}{dx} = 0$

 $2x + 8y \frac{dy}{dx} = 0 \Rightarrow x + 4yy' = 0$

 $\Rightarrow \qquad k = \frac{\kappa}{\left(\frac{dy}{dy}\right)} + y$ From Eq. (i) $x^2 + y^2 - 2\left(\frac{x}{(dy/dx)} + y\right)y = 0$ $\Rightarrow (x^2 - y^2)\frac{dy}{dx} - 2xy = 0$ 62 (a) Given, $\frac{dy}{dx} = \tan \theta = 2x + 3y$ Put $2x + 3y = z \implies 2 + 3$ $\frac{dy}{dx} = \frac{dz}{dx}$ $\Rightarrow \qquad \frac{dy}{dx} = \left(\frac{dz}{dx} - 2\right)\frac{1}{3}$ $\therefore \quad \frac{dz}{dx} - 2 = 3z \Rightarrow \frac{dz}{3z+2} = dx$ On integrating, we ge $\frac{\log(3z+2)}{3} = x + C$ $\frac{\log(6x+9y+2)}{2} = x + C$ \Rightarrow Since, it passes through (1,2). $\frac{\log(6+18+2)}{3} = 1 + C$:. $C = \frac{\log 26}{3} - 1$ \Rightarrow $\frac{\log(6x+9y+2)}{3} = x + \frac{\log 26}{3} - 1$... $\log\left(\frac{6x+9y+2}{26}\right) = 3(x-1)$ ⇒ $6x + 9y + 2 = 26e^{3(x-1)}$ \Rightarrow 63 (a) Given, $\frac{dy}{dx} - \frac{\tan y}{x} = \frac{\tan y \sin y}{x^2}$ $\cot y \ cosec \ y \ \frac{dy}{dx} - \frac{\csc y}{x} = \frac{1}{x^2}$ Put $-\operatorname{cosec} y = t$ $\cot y \operatorname{cosec} y \frac{dy}{dx} = \frac{dt}{dx}$ \Rightarrow $\frac{dt}{dx} + \frac{t}{x} = \frac{1}{x^2}$:. $IF = e^{\int P \, dx} = e^{\int \frac{1}{x} dx} = x$:. \therefore Solution is $tx = \int x \cdot \frac{1}{x^2} dx - c$ $-\operatorname{cosec} y \cdot x = \log x - c$ \Rightarrow $\frac{x}{\sin x} + \log x = c$ ⇒ **(b)** 64 Given differential equation is $5\left(\frac{d^2y}{dx^2}\right)^5 + 4\left(\frac{d^3y}{dx^3}\right)^2 + \left(\frac{dy}{dx}\right)^3 + 2y + x^3 = 0$ Here, highest order derivative is 3 whose degree is 2.

65 **(b)**

Given differential equation can be rewritten as

 $y - x \frac{dy}{dx} = \sqrt{a^2 \left(\frac{dy}{dx}\right)^2 + b^2}$ $\Rightarrow \qquad y^2 + \left(x \frac{dy}{dx}\right)^2 - 2yx \frac{dy}{dx} = a^2 \left(\frac{dy}{dx}\right)^2 + \frac{dy$ h^2 Here, order is 1 and degree is 2. 66 (b) The displacement *x* for all SHM is given by $x = a\cos(nt + b)$ $\Rightarrow \frac{dx}{dt} = -na\sin(nt+b)$ $\Rightarrow \frac{d^2x}{dt^2} = -n^2a\cos(nt+b)$ $\Rightarrow \frac{d^2x}{dt^2} = -n^2x \Rightarrow \frac{d^2x}{dt^2} = +n^2x = 0$ 67 (a) We have, $\frac{dx}{x} + \frac{dy}{y} = 0 \Rightarrow \log x + \log y = \log c \Rightarrow xy = c$ 68 (a) The general equation of all non-vertical lines in a plane is ax + by = 1, where $b \neq 0$ $a+b \frac{dy}{dx}=0$... $\Rightarrow b \frac{d^2y}{dx^2} = 0$ $\Rightarrow \qquad \frac{d^2 y}{dx^2} = 0$ 69 **(b)** Given, $\frac{dy}{dx} = \frac{y^2}{xy - x^2}$ Put y = vx $\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\therefore \quad v + x \ \frac{dv}{dx} = \frac{v^2 x^2}{v x^2 - x^2}$ $\Rightarrow \qquad x \frac{dv}{dx} = \frac{v}{v-1}$ $\Rightarrow \left(1-\frac{1}{v}\right)dv = \frac{dx}{r}$ $\Rightarrow v - \log v = \log x + \log k$ [integrating] $\Rightarrow \frac{y}{x} = \log x \ k \ \frac{y}{x}$ $\Rightarrow \frac{y}{x} = \log ky$

$$\Rightarrow ky = e^{\nu/x}$$

70 **(c)**

Given differentiating equation is $\left(1+4\frac{dy}{dx}\right)^{2/3} = 4\frac{d^2y}{dx^2}$ $\left(1+4\frac{dy}{dx}\right)^2 = 4^3 \left(\frac{d^2y}{dx^2}\right)^3$ Here, highest order is 2 and degree is 3. 71 (d) We have, $\frac{dy}{dx} = 1 + x + y^2 + xy^2$ $\Rightarrow \frac{dy}{dx} = (1+x)(1+y^2)$ $\Rightarrow \frac{1}{1+y^2} dy = (1+x)dx$ $\Rightarrow \tan^{-1} y = \left(x + \frac{x^2}{2}\right) + C$... (i) It is given that y(0) = 0 *i.e.* y = 0 when x = 0 $\therefore \tan^{-1} 0 = 0 + C \Rightarrow c = 0$ Hence, $\tan^{-1} y = x + \frac{x^2}{2} \Rightarrow y = \tan \left(x + \frac{x^2}{2} \right)$ 72 (a) $\frac{dy}{dx} + \frac{y}{x} = \sin x$ Given, $IF = e^{\int \frac{1}{x} dx} = x$:. ∴ Solution is $y \cdot x = \int x \sin x \, dx + c$ $xy = -x\cos x + \sin x + c$ ⇒ ⇒ $x(y + \cos x) = \sin x + c$ 73 (d) Given differential equation can be rewritten as $\frac{dx}{dy} = \frac{(\log y - x)}{v \log y}$ $\Rightarrow \qquad \frac{dx}{dy} + \frac{x}{y \log y} = \frac{1}{y}$ $\mathrm{IF} = e^{\int \frac{1}{y \log y} dy}$:. $= e^{\log \log y} = \log y$ 74 **(b)** Curve is $y = e^{a \sin x} \Rightarrow \sin x = \frac{\log y}{a}$ $\therefore \quad \frac{dy}{dx} = e^{a \sin x} a \cos x$ $\Rightarrow \qquad \frac{dy}{dx} = y \cos x \cdot \frac{\log y}{\sin x}$ $y \log y = \tan x \frac{dx}{dx}$ ⇒ 75 (a) Let the equation of parabola having the directrix parallel to *x*-axis is $x^2 = 4a(y+k)$(i)

 $x^2 = 4a(y + k)$ (1) and equation of directrix is y = p(ii) Here, 3 unknowns are in Eqs. (i) and (ii). \therefore Order of DE such parabolas having directrix parallel to *x*-axis is 3. 76 **(d)** We have,

 $x \, dy - y \, dx = \sqrt{x^2 + y^2} dx \Rightarrow \frac{dy}{dx} - \frac{y}{x} = \frac{\sqrt{x^2 + y^2}}{x}$ Putting y = vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$, we get $v + x \frac{dv}{dx} - v = \sqrt{1 + v^2} \Rightarrow \frac{1}{\sqrt{1 + v^2}} dv = \frac{dx}{x}$ Integrating, we get $\log \left| v + \sqrt{v^2 + 1} \right| = \log x + \log C$ $\Rightarrow v + \sqrt{v^2 + 1} = Cx \Rightarrow y + \sqrt{x^2 + y^2} = Cx^2$ 77 (a) Given, $(x^2 + 1)\frac{dy}{dx} + 2xy = x^2 - 1$ or $\frac{dy}{dx} + \frac{2x}{1+x^2}y = \frac{x^2-1}{x^2+1}$ It is a linear differential equation. On comparing with the standard equation $\frac{dy}{dx} + Py = Q$, we get $P = \frac{2x}{1+x^2}, Q = \frac{x^2-1}{x^2+1}$ $\therefore \text{ IF} = e^{\int P \, dx} = e^{\int \frac{2x}{1+x^2} dx}$ $=e^{\log(1+x^2)}=1+x^2$ 78 (c) The equation of the family of circles is $x^2 + (y - k)^2 = r^2$...(i) Where *k* is a parameter Differentiating w.r.t. *x*, we get $2x + 2(y - k)y_1 = 0 \Rightarrow y - k = -\frac{x}{y_1}$...(ii) Eliminating *k* from (i) and (ii), we obtain $x^{2} + \frac{x^{2}}{y_{*}^{2}} = r^{2} \Rightarrow x^{2} = \frac{r^{2}y_{1}^{2}}{1 + y_{*}^{2}} \Rightarrow x^{2}(y_{1}^{2} + 1)$ $= r^2 v_1^2$ 79 (d) Given, $y = ae^x + bx e^x + cx^2e^x$...(i) On differentiating w.r.t. x, we get $y' = ae^{x} + b(xe^{x} + e^{x}) + c(x^{2}e^{x} + e^{x})$ $2xe^{x}$ $\Rightarrow \quad y' = ae^x + bxe^x + cx^2e^x + be^x + b$ $2cxe^{x}$ \Rightarrow $y' = y + be^x + 2cxe^x$...(ii) Again, differentiating w.r.t.x, we get $y'' = y' + be^{x} + 2c(xe^{x} + e^{x})$ \Rightarrow $y'' = y' + be^x + 2cxe^x + 2ce^x$ $y'' = 2y' - y + 2ce^x$ ⇒ ...(iii) [from]

Eq. (ii)]
Again, differentiating w. r. t. x, we get

$$y''' = 2y'' - y' + 2ce^x$$

 $\Rightarrow y''' = 2y'' - y' + (y'' - 2y' + y)$
[from eq. (iii)]
 $\Rightarrow y''' - 3y'' + 3y' - y = 0$
80 (c)
Given, $y = ae^{mx} + be^{-mx}$
 $\Rightarrow \frac{d^2y}{dx^2} = m^2ae^{mx} + m^2be^{-mx} = m^2y$
 $\Rightarrow \frac{d^2y}{dx^2} - m^2y = 0$
81 (c)
Given, $\sqrt{\sin x} \left(1 + \frac{dy}{dx}\right) = \sqrt{\cos x} \left(1 - \frac{dy}{dx}\right)$
 $\Rightarrow \frac{dy}{dx} = \frac{\sqrt{\cos x} - \sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}$
 \therefore Order=1, degree=1
82 (a)
The equation of a family of circles of radius r
passing through the origin and having centre on
 y -axis is
 $(x - 0)^2 + (y - r)^2 = r^2 \Rightarrow x^2 + y^2 - 2ry = 0$
This is one parameter family of circles so its
differential equation is of order one
83 (b)
Given, $\frac{dy}{dx} = -\frac{1+y+x^2y}{x+x^3}$
 $\Rightarrow \frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x(1+x^2)}$
 $\therefore IF = e^{\int \frac{1}{x} dx} = x$
84 (c)
Given, $\frac{dy}{dx} = \frac{y^{1/3}}{x^{1/3}} \Rightarrow \frac{dy}{y^{1/3}} = \frac{dx}{x^{1/3}}$
On integrating both sides, we get
 $\int dy = \int dy$

$$\int \frac{dy}{y^{1/3}} = \int \frac{dy}{x^{1/3}}$$

$$\Rightarrow \frac{y^{2/3}}{\frac{2}{3}} = \frac{x^{2/3}}{\frac{2}{3}} + c_1$$

$$\Rightarrow \frac{3}{2}y^{2/3} = \frac{3}{2}x^{2/3} + c_1$$

$$\Rightarrow y^{2/3} - x^{2/3} = c \text{ (where } c = \frac{2}{3}c_1\text{)}$$

85 **(b)**

....(i)

Let y = f(x) be the curve. The equation of tangent at (x, y) to this curve is

$$Y - y = f'(x)(X - x)$$

Put X = 0 in Eq. (i), we get Y = y - x f'(x)This ordinate is called the initial ordinate of the tangent. It is given that, Initial ordinate of the tangent = Subnormal $\Rightarrow \quad y - x f'(x) = y \frac{dy}{dx}$ $\Rightarrow \qquad \frac{dy}{dx} = \frac{y}{x+y}$ [put $f'(x) = \frac{dy}{dx}$] Hence, it is a homogenous differential equation. 86 **(b)** $y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx} \right)$

$$y - x\frac{dy}{dx} = a\left(y^{2} + \frac{dy}{dx}\right)$$

$$\Rightarrow y - ay^{2} = a\frac{dy}{dx} + x\frac{dy}{dx}$$

$$\Rightarrow y(1 - ay) = (a + x)\frac{dy}{dx}$$

$$\Rightarrow \frac{dx}{(a + x)} = \frac{dy}{y(1 - ay)}$$
On integrating both sides, we get
$$\int \frac{dx}{(a + x)} = \int \frac{dy}{y(1 - ay)}$$

$$\Rightarrow \log(a + x) = \int \left[\frac{1}{y} + \frac{a}{(1 - ay)}\right] dx$$

$$\Rightarrow \log(a + x) = \log y + \frac{a\log(1 - ay)}{-a} + \log c$$

$$\Rightarrow \log(a + x) = \log y - \log(1 - ay) + \log c$$

$$\Rightarrow \log(a + a)(1 - ay) = \log cy$$

$$\Rightarrow (x + a)(1 - ay) = cy$$
87 (a)
We have,
Length of the normal = $y\sqrt{1 + \left(\frac{dy}{dx}\right)^{2}}$
It is given that
$$y\sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} = \sqrt{x^{2} + y^{2}} \quad [\because \text{ Radius vector } = R$$

$$= \sqrt{x^{2} + y^{2}}]$$

$$\Rightarrow y^{2} + y^{2}\left(\frac{dy}{dx}\right)^{2} = x^{2} \Rightarrow y \, dy \pm x \, dx = 0 \Rightarrow y^{2} \pm x^{2}$$

88 **(c)** Equation of tangent at (x, y) is $Y - y = \frac{dy}{dx}(X - x)$ For y-axis X = 0. Then, $Y = y - x\frac{dy}{dx}$

Given,
$$\left(y - x\frac{dy}{dx}\right) \propto x^{3}$$

 $\Rightarrow y - x\frac{dy}{dx} = kx^{3}$
 $\Rightarrow \frac{dy}{dx} - \frac{y}{x} = -kx^{2}$
IF = $e^{\int 1/x \, dx} = e^{-\ln x} = e^{\ln(1/x)} = \frac{1}{x}$
Then, solution is
 $y\left(\frac{1}{x}\right) = \int \frac{-kx^{2}}{x} \, dx$
 $\Rightarrow \frac{y}{x} = -\frac{kx^{2}}{2} + c$
or $y = -\frac{kx^{3}}{2} + cx$
89 (b)
Given, $dy = -\left(\frac{\cos x - \sin x}{\sin x + \cos x}\right) + \log c$
[integrating]
 $\Rightarrow y = -\log(\sin x + \cos x) + \log c$
[integrating]
 $\Rightarrow y = \log\left(\frac{c}{\sin x + \cos x}\right)$
 $\Rightarrow e^{y}(\sin x + \cos x) = c$
90 (b)
We have,
 $\frac{dx}{dt} = x + 1$
 $\Rightarrow \frac{1}{x+1} \, dx = dt \Rightarrow \log(x+1) = t + C$
Putting $t = 0, x = 0$, we get
 $\log 1 = C \Rightarrow C = 0$
 $\therefore t = \log(x+1)$
Putting $x = 99$, we get
 $t = \log_{e} 100 = 2\log_{e} 10$
91 (a)
The equation to all given parabolas is
 $y^{2} = 4 \, a(x - b)$
 $\Rightarrow 2y \frac{dy}{dx} = 4 \, a \Rightarrow y \frac{dy}{dx} = 2 \, a \Rightarrow y \frac{d^{2}y}{dx^{2}} + 0$
92 (d)
Given differential equation is
 $\Rightarrow \frac{(1+y)}{y} \, dy = \frac{(1+x)}{x} \, dx$
 $\Rightarrow \int \left(\frac{1}{y} + 1\right) \, dy = \int \left(\frac{1}{x} + 1\right) \, dx$
 $\Rightarrow \log y + y = \log x + x + \log c$
 $\Rightarrow y - x = \log\left(\frac{cx}{y}\right)$
93 (c)
I. $\frac{dy}{dx} + 2xy = 2e^{-x^{2}}$
 \therefore IF $= e^{\int 2x \, dx} = e^{x^{2}}$
 \therefore Complete solution is

 $ye^{x^2} = 2\int e^{-x^2} e^{x^2} dx + c$ $\Rightarrow ye^{x^2} = 2x + c$ II. $ye^{x^2} - 2x = c$ $\Rightarrow ye^{x^2} \cdot 2x + e^{x^2} \cdot \frac{dy}{dx} - 2 = 0$ $\Rightarrow e^{x^2} \cdot \frac{dy}{dx} = 2 - 2xy e^{x^2}$ $\Rightarrow \qquad \frac{dy}{dx} = 2e^{-x^2} - 2xy$ \therefore I is true and II is false. 94 (c) We have, $y = a(x + a)^2$...(i) $\Rightarrow \frac{dy}{dx} = 2a(x+a) \quad \dots (ii)$ Dividing (i) by (ii), we get $\frac{y}{\underline{dy}} = \frac{x+a}{2} \Rightarrow x+a = \frac{2y}{y_1}$, where $y_1 = \frac{dy}{dx}$ Substituting $a = \frac{2y}{y_1} - x$ in (i), we get $y = \left(\frac{2y}{y_1} - x\right) \left(\frac{2y}{y_1}\right)^2 \Rightarrow y_1^3 y = 4(2y - x y_1)y^2$ Clearly, it is a differential equation of degree 3 95 (a) Given differential equation is $\frac{d^2 y}{dx^2} = \sqrt[3]{1 - \left(\frac{dy}{dx}\right)^4}$ $\Rightarrow \qquad \left(\frac{d^2y}{dx^2}\right)^3 = 1 - \left(\frac{dy}{dx}\right)^4$ \therefore Order=2, degree=3 96 **(b)** Given, $\sin y \, dy = \cos x \, dx$ $-\cos y + c = \sin x$ [integrating] $\sin x + \cos y = c$ (a) 97 Given, $\frac{dy}{dx} = \frac{x-2y+1}{2x-4y}$ Put $x - 2y = z \Rightarrow 1 - 2 \frac{dy}{dx} = \frac{dz}{dx}$ $\therefore \quad \frac{1}{2} \left[-\frac{dz}{dx} + 1 \right] = \frac{z+1}{2z}$ $\Rightarrow \quad zdz = -dx$ $\Rightarrow \quad \frac{z^2}{2} = -x + c_1 \qquad \text{[integrating]}$ $\Rightarrow \quad (x - 2y)^2 + 2x = c$ 98 **(a)** The equation of the family of circles which touch both the axes is $(x-a)^2 + (y-a)^2 = a^2$, where *a* is a parameter This is one parameter family of curves So its differential equation is of order one

99 (a)

 $\left(\frac{dy}{dx}\right)$

Given equation can be rewritten as $\frac{dy}{dx} - \frac{1}{x}$. y = 1 $\therefore \quad IF = e^{-\int \frac{1}{x} dx} = e^{-\log x} = \frac{1}{x}$ ∴ Required solution is $y\left(\frac{1}{x}\right) = \int \frac{1}{x} dx = \log x + c$ Since, y(1) = 1c = 1⇒ :. $y = x \log x + x$ 100 (a) Given, $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$ Put y = vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$ $\therefore v + x \frac{dv}{dx} = \frac{x^2 + v^2 x^2}{2mx^2}$ $\Rightarrow x \frac{dv}{dx} = \left(\frac{1+v^2}{2v} - v\right)$ $\Rightarrow \frac{2v}{1-v^2}dv = \frac{dx}{v}$ On integrating both sides, we get $\int \frac{2v}{1-v^2} dv = \int \frac{1}{v} dx$ $\Rightarrow -\log(1-v^2) = \log x + \log c$ $\Rightarrow -\log\left(1 - \frac{y^2}{x^2}\right) = \log x + \log c \quad \dots(i)$ This curve passes through (2, 1). $\therefore -\log\left(1-\frac{1}{4}\right) = \log 2 + \log c$ $\Rightarrow -\log\left(\frac{3}{4}\right) = \log 2c$ $\Rightarrow \log\left(\frac{4}{3}\right) = \log 2c$ $\Rightarrow c = \frac{2}{2}$ On putting $c = \frac{2}{3}$ in Eq. (i), we get $\log\left(\frac{x^2}{x^2 - y^2}\right) = \log\frac{2}{3}x$ $\Rightarrow 2(x^2 - y^2) = 3x$ 101 (a) The given differential equation can be rewritten as $y + \frac{d^2 y}{dx^2} = \left[a + \left(\frac{dy}{dx}\right)^{3/2}\right]^2$ $y + \frac{d^2 y}{dx^2} = x^2 + \left(\frac{dy}{dx}\right)^3 + 2x \left(\frac{dy}{dx}\right)^{3/2}$ \Rightarrow $\left[y + \frac{d^2 y}{dx^2} - x^2 - \left(\frac{dy}{dx}\right)^3\right]^2 =$

$\left[2x\left(\frac{dy}{dx}\right)^{3/2}\right]^2$

∴ Order and degree of the given differential equation is 2 and 2 respectively.

102 **(c)**

Given differential equation is $\frac{dy}{dx} + y = e^x$ $IF = e^{\int P \, dx} = e^{\int 1 \, dx} = e^x$ Now, solution is $ye^x = \int e^{2x} dx$ $ye^x = \frac{e^{2x}}{2} + \frac{c}{2}$ ⇒ $2ye^x = e^{2x} + c$ ⇒ 103 **(b)** We have, $\phi(x) = \phi'(x)$ $\Rightarrow \frac{\Phi'(x)}{\Phi(x)} = 1$ $\Rightarrow \log \phi(x) = x + \log C \Rightarrow \phi(x) = C e^x$ Putting x = 1, $\phi(1) = 2$, we get $C = \frac{2}{e}$ $\therefore \Phi(x) = 2e^{x-1} \Rightarrow \Phi(3) = 2e^2$ 104 **(b)** Given equation $\frac{dy}{dx} + \sin\left(\frac{x+y}{2}\right) = \sin\left(\frac{x-y}{2}\right)$ $\Rightarrow \frac{dy}{dx} = \sin\left(\frac{x-y}{2}\right) - \sin\left(\frac{x+y}{2}\right)$ $\Rightarrow \frac{dy}{dx} = -2\sin\left(\frac{y}{2}\right)\cos\left(\frac{x}{2}\right)$ \Rightarrow cosec $\left(\frac{y}{2}\right) dy = -2\cos\left(\frac{x}{2}\right) dx$ On integrating both sides, we get $\int \operatorname{cosec} \left(\frac{y}{2}\right) dy = -\int 2\cos\left(\frac{x}{2}\right) dx + c$ $\Rightarrow \frac{\log(\tan\frac{y}{4})}{\frac{1}{2}} = -\frac{2\sin\left(\frac{x}{2}\right)}{\frac{1}{2}} + c$ $\Rightarrow \log(\tan\frac{y}{4}) = c - 2\sin\left(\frac{x}{2}\right)$ 105 (a) The family of curves is $x^2 + y^2 - 2ax = 0$...(i) Differentiating w.r.t. to *x*, we get $2x + 2y \frac{dy}{dx} - 2a = 0 \Rightarrow a = x + y \frac{dy}{dx}$ Substituting the value of *a* in (i), we obtain $x^{2} + y^{2} - 2x\left(x + y\frac{dy}{dx}\right) = 0$ or, $y^{2} - x^{2} - x^{2}$ $2xy\frac{dy}{dx} = 0$ 106 **(b)**

Given, $y = (c_1 + c_2) \cos(x + c_3) - c_4 e^{x + c_5}$ $y = (c_1 \cos c_3 + c_2 \cos c_3) \cos x$ ⇒ $-(c_1 \sin c_3 + c_2 \sin c_3) \sin x - c_4 e^{c_5} e^x$ $v = A \cos x - B \sin x + C e^x$ ⇒ $A = c_1 \cos c_3 + c_2 \cos c_3$ Where, $B = c_1 \sin c_3 + c_2 \sin c_3$ And $C = -c_4 e^{c_5}$ Which is an equation containing three arbitrary constant. Hence, the order of the differential equation is 3. 107 (c) Given equation is $e^x + \sin\left(\frac{dy}{dx}\right) = 3$ Since, the given differential equation cannot be written as a polynomial in all the differential coefficients, the degree of the equation is not defined. 108 (d) Given, $x = \sin t$, $y = \cos pt$ $\frac{dx}{dt} = \cos t$, $\frac{dy}{dt} = -p\sin pt$ $\frac{dy}{dx} = -\frac{p\sin pt}{\cos t}$ $\Rightarrow \qquad y_1 = \frac{\cos t}{\sqrt{1 - y^2}}$ $\Rightarrow \qquad y_{-1}\sqrt{1}$ $y_1\sqrt{1-x^2} = -p_1\sqrt{1-y^2}$ \Rightarrow $y_1^2(1-x^2) = p^2(1-y^2)$ $2y_1y_2(1-x^2) - 2xy_1^2 = -2yy_1p^2$ ⇒ [differentiating] $(1 - x^2)y_2 - xy_1 + p^2y = 0$ ⇒ 109 (c) Given, $y = xe^{cx}$...(i) $\Rightarrow \quad \frac{dy}{dx} = e^{cx} + xe^{cx} \cdot c = \frac{y}{x} + y \cdot c$...(ii) From Eq. (ii), $\log y = \log x + cx$ $\Rightarrow c \frac{1}{r} \log \frac{y}{r}$ $\frac{dy}{dx} = \frac{y}{x} + \frac{y}{x}\log\frac{y}{x}$ $=\frac{y}{x}\left(1+\log\frac{y}{x}\right)$ 110 (a) Given differential equation is

 $y = x \frac{dy}{dx} + \left(a^2 \left(\frac{dy}{dx}\right)^2 + b^2\right)^{\overline{3}}$ $\Rightarrow \qquad \left(y - x \frac{dy}{dx}\right)^3 = a^2 \left(\frac{dy}{dx}\right)^2 + b^2$ $\therefore \text{ Order and degree of the above differential}$ equations are 1 and 3 respectively.

111 **(b)**

We have, $y_3^{2/3} + 2 + 3y_2 + y_1 = 0$ $\Rightarrow y_3^{2/3} = -(3y_2 + y_1 + 2)$ $\Rightarrow y_3^2 = -(3y_2 + y_1 + 2)^3$

Clearly, it is differential equation of third order and second degree

112 **(b)**

Given, $x^2 + y^2 = 1$ (i) On differentiating w. r. t. *x*, we get $2x + 2yy' = 0 \Rightarrow x + yy' = 0$ Again, on differentiating w. r. t. *x*, we get $1 + (y')^2 + yy'' = 0$

113 **(a)**

We have,

$$\frac{dy}{dx} = \frac{x \log x^2 + x}{\sin y + y \cos y}$$

$$\Rightarrow \int (\sin y + y \cos y) dy = 2 \int x \log x \, dx + \int x \, dx$$

$$\Rightarrow y \sin y = x^2 \log x + C$$

114 **(b)**

The given differential equation is

$$\frac{dy}{dx} + P(x)y = Q(x) \cdot y^{n}$$

$$\Rightarrow \quad \frac{1}{y^{n}} \cdot \frac{dy}{dx} + y^{-n+1}P(x) = Q(x)$$
Put
$$\frac{1}{y^{n-1}} = v$$

$$\Rightarrow \quad (-n+1)y^{-n} \frac{dy}{dx} = \frac{dv}{dx}$$

$$\therefore \quad \frac{1}{(-n+1)} \cdot \frac{dv}{dx} + P(x) \cdot v = Q(x)$$

$$\Rightarrow \quad \frac{dv}{dx} + (1-n)P(x)v = (1-n)Q(x)$$
Hence, required substitution is $v = \frac{1}{y^{n-1}}$

115 **(b)**

Since, length of subnormal = a $\Rightarrow y \frac{dy}{dx} = a \Rightarrow y dy = a dx$ On integrating both sides, we get $\frac{y^2}{2} = ax + b$ Where b is a constant of integration $\Rightarrow y^2 = 2ax + 2b$ 116 (c) Given, $\frac{dx}{dt} = \cos^2 \pi x$ On differentiating w.r.t.x, we get $\frac{d^2x}{dt^2} = -2\pi \sin 2\pi x = \text{negative}$ The particle never reaches the point, it means $\frac{d^2x}{dt^2} = 0 \implies -2\pi \sin 2\pi x = 0$ $\Rightarrow \sin 2\pi x = \sin \pi$ $\Rightarrow 2\pi x = \pi \Rightarrow x = \frac{1}{2}$ The particle never reaches at $x = \frac{1}{2}$ 117 (b) Given, $\frac{dy}{dx} = \frac{x+y}{x-y}$ $y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$ Put $\therefore \qquad v + x \, \frac{dv}{dx} = \frac{1+v}{1-v}$ $x \frac{dv}{dx} = \frac{1+v^2}{1-x}$ ⇒ $\Rightarrow \qquad \frac{1}{x} dx = \left(\frac{1}{1+v^2} - \frac{v}{1+v^2}\right) dv$ $\Rightarrow \qquad \log_e x = \tan^{-1} v - \frac{1}{2} \log_e (1 + v^2) + \frac{1}{2} \log_e (1 + v^2) - \frac{1}{2} \log_e (1 + v^2) + \frac{1}{$ log_e c [integrating] $\log_e x = \tan^{-1}\left(\frac{y}{x}\right) - \frac{1}{2}\log_e \left[1 + \frac{y}{x}\right]$ vx2-logec $c(x^2 + y^2)^{1/2} = e^{\tan^{-1}(y/x)}$ ⇒ 118 **(b)** Given, $\frac{d^2y}{dx^2} = e^{-2x}$ $\frac{dy}{dx} = \frac{e^{-2x}}{-2} + C$ ⇒ [integrating] $y = \frac{e^{-2x}}{4} + cx + d$ [integrating] 119 **(b)** Given, $x^2 + y^2 = 1$ On differentiating w.r.t.x, we get 2x + 2yy' = 0x + yy' = 0⇒ Again, differentiating, we get $1 + yy'' + (y')^2 = 0$ 120 (a) We have, $\frac{dy}{dx} = \frac{y-1}{x^2+x}$ $\Rightarrow \frac{1}{x^2 + x} dx = \frac{1}{y - 1} dy$

 $\Rightarrow \int \frac{1}{x(x+1)} dx = \int \frac{1}{y-1} dy$ $\Rightarrow \int \frac{1}{x(x+1)} dx = \int \frac{1}{y-1} dy$ $\Rightarrow \int \left(\frac{1}{x} - \frac{1}{x+1}\right) dx = \int \frac{1}{y-1} dy$ $\Rightarrow \log x - \log(x+1) = \log(y-1) + \log C$ $\Rightarrow \frac{x}{x+1} = C(y-1)$...(i) This passes through (1, 0) $\therefore \frac{1}{2} = -C$ Substituting the value of *C* in (i), we get $\frac{x}{x+1} = -\frac{1}{2}(y-1)$ $\Rightarrow (x+1)(y-1) = -2x \Rightarrow xy + x + y - 1 = 0$ This is the required curve 121 (c) Given, $\frac{dy}{dx} - \frac{2}{x}y = x^2 e^x$:. IF = $e^{-\int_{x}^{2} dx} = e^{-\log x^{2}} = \frac{1}{x^{2}}$: Complete solution is $\frac{y}{x^2} = \int \frac{x^2 e^x}{x^2} dx + c$ $\frac{y}{x^2} = e^x + c$ \Rightarrow $y = x^2(e^x + c)$ ⇒ When y = 0, x = 1, then c = -e $v = x^2(e^x - e)$:. 122 **(b)** Given, $\frac{dy}{dx} + \frac{2x}{1+x^2}$. $y = \frac{4x^2}{1+x^2}$:. IF = $e^{\int \frac{2x}{1+x^2} dx} = e^{\log(1+x^2) = (1+x^2)}$: Complete solution is $y.(1+x^2) = \int (1+x^2) \cdot \frac{4x^2}{1+x^2} dx$ $\Rightarrow \qquad y(1+x^2) = \frac{4x^3}{3} + c_1$ $3y(1+x^2) = 4x^3 + c$ ⇒ 123 (a) Given, k = PQ =length of normal $\Rightarrow \quad k = y \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ $\Rightarrow \frac{k^2}{v^2} = 1 + \left(\frac{dy}{dx}\right)^2$ \therefore $y \frac{dy}{dx} = \pm \sqrt{k^2 - y^2}$ 124 (a) We have. $y_1y_3 = 3 y_2^2 \Rightarrow \frac{y_3}{y_2} = 3 \frac{y_2}{y_2}$ Integrating both sides, we get

 $\log y_2 = 3\log y_1 + \log c_1$

$$\Rightarrow y_2 = c_1 y_1^3 \Rightarrow \frac{y_2}{y_1^3} = c_1 \Rightarrow \frac{d y_1}{y_1^3} = c_1$$

Integrating both sides w.r.t. *x*, we get

$$-\frac{1}{2y_1^2} = c_1 x + c_2$$

$$\Rightarrow y_1^2 = \frac{1}{(-2 c_1)x + (-2 c_2)}$$

$$\Rightarrow y_1^2 = \frac{1}{ax+b'} \text{ where } a = -2c_1, b = -2 c_2$$

$$\Rightarrow y_1 = \frac{1}{\sqrt{ax+b}}$$

Integrating both sides w.r.t. *x*, we get

$$y = \frac{2}{a} \sqrt{ax+b} + c_3$$

$$\Rightarrow \frac{ay - c_3}{2} = \sqrt{ax+b}$$

$$\Rightarrow ax + b = \left(\frac{ax - c_3}{2}\right)^2$$

$$\Rightarrow x = \frac{a}{4}y^2 - \frac{c^3}{2}y + \frac{1}{a}\left(\frac{c_3^2}{4} - b\right) \Rightarrow x = A_1y^2 + A_2y + A_3,$$

where $= A_1 = \frac{a}{4}, A_2 = -\frac{c_3}{2} \text{ and } A_3 = \frac{1}{a}\left(\frac{c_3^2}{4} - b\right)$
125 (a)
Here, *x* = *A* cos 4*t* + *B* sin 4*t*
On differentiating w.r.t. *t*, we get

$$\frac{d^2x}{dt^2} = -16A \cos 4t - 16B \sin 4t$$

$$= -16(A \cos 4t + B \sin 4t)$$

$$\Rightarrow \frac{d^2x}{dt^2} = -16x$$

126 (a)
We have,

$$y = c_1 + c_2e^x + c_3e^{-2x+c_4}$$

$$\Rightarrow y = c_1 + c_2e^x + c_3e^{-2x} \cdot e^{c_4}$$

$$\Rightarrow y = c_1 + c_2e^x + c_3e^{-2x}, \text{ where } c_3' = c_3e^{c_4}$$

It is an equation containing three arbitrary
constants. So, the associated differential equation
is of order 3
127 (b)
Equation of parabolas family can be taken as

$$x = ay^2 + by + c$$

Differentiating *w.r.t.*, *y* we get

$$\frac{dx}{dy} = 2ay + b$$

$$\Rightarrow \frac{d^2x}{dy^2} = 2a \Rightarrow \frac{d^3x}{dy^3} = 0$$

128 (a)
Given $\frac{1-y}{y^2} dy + \frac{1+x}{x^2} dx = 0$

1

1

$$\Rightarrow \qquad \int \left(\frac{1}{y^2} - \frac{1}{y}\right) dy + \int \left(\frac{1}{x^2} + \frac{1}{x}\right) dx = 0$$
$$\Rightarrow \qquad \log\left(\frac{x}{y}\right) = \frac{1}{x} + \frac{1}{y} + c$$
(b)

129 **(b)** Given, $\frac{dy}{dx} = \frac{\sqrt{x^2 + y^2} + y}{x}$ Put y = vx $\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\therefore v + x \frac{dv}{dx} = \frac{\sqrt{x^2 + v^2 x^2} + vx}{x}$ $\Rightarrow \frac{dv}{\sqrt{1 + v^2}} = \frac{dx}{x}$ $\Rightarrow \log(v + \sqrt{1 + v^2}) = \log x + \log c$ $\Rightarrow \log\left(\frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}}\right) = \log cx$ $\Rightarrow v + \sqrt{x^2 + v^2} = \frac{2}{x}$ $y + \sqrt{x^2 + y^2} = cx^2$ ⇒

130 (a)

Given,
$$\frac{dy}{dx} = \frac{x \log x^2 + x}{\sin y + y \cos y}$$

 $\Rightarrow \quad (\sin y + y \cos y) dy = (x \log x^2 + x dx)$

$$\left(\frac{d}{dy}y\sin y\right)dy = \left(\frac{d}{dx}x^2\log x\right)dx$$
$$y\sin y = x^2\log x + c$$

131 (d) Given, $x(1-x^2)dy + (2x^2y - y - ax^3)dx =$ 0

$$\Rightarrow \quad \frac{dy}{dx} + \frac{(2x^2 - 1)}{x(1 - x)}y = \frac{ax^3}{(1 - x^2)}$$

Here, $P = \frac{2x^2 - 1}{x(1 - x^2)}$

132 (c)

⇒

We have,

$$\frac{dy}{dx} + \frac{y}{x} = x^{2} \Rightarrow x \frac{dy}{dx} + y = x^{3} \Rightarrow \frac{d}{dx}(xy) = x^{3}$$
Integrating, we get

$$xy = \frac{x^{4}}{4} + C \Rightarrow y = \frac{x^{3}}{4} + C x^{-1}$$
133 (c)
Let $x^{2} + y^{2} - 2gx = 0$ (i)
 $\Rightarrow 2x + 2y \frac{dy}{dx} - 2g = 0$
 $\Rightarrow 2g = \left(2x + 2y \frac{dy}{dx}\right)$
On putting the value of 2g in eq. (i) we get

On putting the value of 2g in eq. (1), we get

$$x^{2} + y^{2} - \left(2x + 2y \frac{dy}{dx}\right)x = 0$$
$$y^{2} = x^{2} + 2xy \frac{dy}{dx}$$

134 (d)

⇒

Given differential equation can be written as

$$\frac{d^2y}{dx^2} - 3 \frac{dy}{dx} + 2y = 0$$

$$\Rightarrow \qquad (m^2 - 3m + 2)y = 0$$

$$\Rightarrow \qquad (m - 1)(m - 2)y = 0$$

$$\Rightarrow \qquad m = 1,2$$

$$\therefore \text{ Solution is } y = c_1e^x + c_2e^{2x}$$

$$y' = c_1e^x + 2c_2e^{2x}$$
From given condition
$$y(0) = 1$$

$$\Rightarrow c_1 + c_2 = 1 \dots (i)$$
And
$$y'(0) = 0$$

$$\Rightarrow c_1 + c_2 = 1 \dots (ii)$$
On solving Eqs. (i) and (ii) we get
$$-c_2 = 1$$

$$\Rightarrow c_2 = -1$$
And
$$c_1 = 2$$

$$\therefore y = 2e^{x} - e^{2x}$$

$$\therefore at x = \log_e 2$$

$$y = 2e^{\log^2} - e^{2\log^2}$$

$$= 2 \times 2 - 2^2 = 0$$

135 **(b)**

The equation of straight line touching the given circle is

 $x\cos\theta + y\sin\theta = a$

...(i)

On differentiating w. r. t. x, regarding θ as a constant

$$\Rightarrow \qquad \cos\theta + \frac{dy}{dx}\sin\theta = 0$$

...(ii)

From eqs. (i) and (ii), we get $a^{\frac{dy}{dy}}$

$$\cos \theta = \frac{u \, dx}{x \frac{dy}{dx} - y} \text{ and } \sin \theta = -\frac{a}{x \frac{dy}{dx} - y}$$

$$\therefore \qquad \cos^2 \theta + \sin^2 \theta = 1$$

$$\therefore \qquad \frac{a^2 \left(\frac{dy}{dx}\right)^2 + a^2}{\left(x \frac{dy}{dx} - y\right)^2} = 1$$

$$\Rightarrow \qquad \left(y - x \, \frac{dy}{dx}\right)^2 = a^2 \left[1 + \left(\frac{dy}{dx}\right)^2\right]$$

136 (a)

The given differential equation can be rewritten as

$$\Rightarrow \qquad \left(\frac{1}{y^2} - \frac{1}{y}\right) dy = -\left(\frac{1}{x^2} + \frac{1}{x}\right) dx$$
$$\Rightarrow \qquad -\frac{1}{y} - \log y = -\left(-\frac{1}{x} + \log x\right) + c$$
[integrating]

 $\Rightarrow \qquad \log\left(\frac{x}{y}\right) = \frac{1}{x} + \frac{1}{y} + c$

137 (a) We have, $(xy - x^2) = y^2$ $\Rightarrow y^2 \frac{dx}{dy} = xy - x^2$ $\Rightarrow \frac{1}{x^2} \frac{dx}{dy} - \frac{1}{x} \cdot \frac{1}{y} = -\frac{1}{y^2}$ Put $\frac{1}{x} = v \Rightarrow -\frac{1}{x^2} \frac{dx}{dy} = \frac{dv}{dy}$ $\therefore \frac{dv}{dy} + \frac{v}{y} = \frac{1}{y^2}$, which is linear $\therefore IF = e^{\int \frac{1}{y} dy} = e^{\log y} = y$ \therefore The solution is $vy = \int \frac{1}{y^2} y dy + c$ $\Rightarrow \frac{y}{x} = \log y + c$ $\Rightarrow y = x (\log y + c)$ This passes through the point (-1,1) $\therefore 1 = -1(\log 1 + c)$ ie., c = -1

thus, the equation of the curve is

$$y = x(\log y - 1)$$

138 **(d)**

Given,
$$y = 2e^{2x} - e^{-x}$$

 $\Rightarrow \qquad y_1 = 4e^{2x} + e^{-x}$
 $\Rightarrow \qquad y_2 = 8e^{2x} - e^{-x}$
 $\Rightarrow \qquad y_2 = 4e^{2x} + e^{-x} + 4e^{2x} - 2e^{-x}$
 $\Rightarrow \qquad y_2 = y_1 + 2(2e^{2x} - e^{-x})$
 $\Rightarrow \qquad y_2 = y_1 + 2y$
 $\Rightarrow \qquad y_2 = y_1 + 2y$
 $\Rightarrow \qquad y_2 = y_1 - 2y = 0$
139 (c)
Given equation is $\frac{dy}{dx} - y = 1 \Rightarrow \frac{dy}{1+y} = dx$
On integrating both sides, we get

$$\int \frac{1}{1+y} dy = \int dx$$

$$\Rightarrow \log(1+y) = x + c$$

$$\Rightarrow 1+y = e^x \cdot e^c \quad ...(i)$$

At $x = 0, y = -1$
Then $1 - 1 = e^0 \cdot e^c \Rightarrow e^c = 0$
On putting the value of e^c in Eq. (i).
Therefore, solution becomes

 $1 + y = e^x \times 0 \Rightarrow y(x) = -1$ 140 (d) Let family of circles be $(x - \alpha)^2 + (y - 2)^2 = 5^2$ $x^{2} + \alpha^{2} - 2\alpha x + v^{2} - 21 - 4v = 0$ ⇒ ...(i) $2x - 2\alpha + 2y \frac{dy}{dx} - 4\frac{dy}{dx} = 0$ ⇒ $\alpha = x + \frac{dy}{dx}(y-2)$ ⇒ On putting the value of α in Eq. (i), we get $\left(x - x - \frac{dy}{dx}(y - 2)\right)^2 + (y - 2)^2 =$ 5^{2} $\left(\frac{dy}{dx}\right)^2 (y-2)^2 = 25 - (y-2)^2$ ⇒ 141 (a) It is a linear differential equation of the form of $\frac{dy}{dx} + Py = Q$ $\Rightarrow P = \sec^2 x, Q = \tan x \sec^2 x$ $\therefore \mathrm{IF} = e^{\int P \, dx} = e^{\int \sec^2 x \, dx} = e^{\tan x}$ Solution is $ye^{\tan x} = \int \tan x e^{\tan x} \sec^2 x \, dx + c$ $\Rightarrow ye^{\tan x} = \tan x e^{\tan x} - e^{\tan x} + c$ $\Rightarrow y = \tan x - 1 + ce^{-\tan x}$ 142 **(b)** We have. $y \frac{dy}{dx} + x = a \Rightarrow y \, dy + x \, dx = a \, dx$ Integrating, we get $\frac{y^2}{2} + \frac{x^2}{2} = ax + C \Rightarrow x^2 + y^2 - 2ax + 2C = 0,$ which represents a set of circles having centre on x-axis 143 (d) \therefore Equation of normal at (x, y) is $Y - y = \frac{dx}{dy}(X - x)$ Put, y = 0Then, $X = x + y \frac{dy}{dx}$ Given, $v^2 = 2x X$ $\Rightarrow y^2 = 2x\left(x + y\frac{dy}{dx}\right)$ $\Rightarrow \frac{dy}{dx} = \frac{y^2 - 2x^2}{2xy} = \frac{\left(\frac{y}{x}\right)^2 - 2}{2\left(\frac{y}{x}\right)}$

Put y = vx, we get $\frac{dy}{dx} = v + x \frac{dv}{dx}$ Then, $v + x \frac{dv}{dx} = \frac{v^2 - 2}{2v}$ $\Rightarrow x \frac{dv}{dx} = -\frac{(2 + v^2)}{2v}$

 $\Rightarrow \frac{2v \, dv}{(2+v^2)} + \frac{dv}{x} = 0$ On integrating both sides, we get $\ln\left(2+\nu^2\right) + \ln|x| = \ln c$ $\Rightarrow \ln(|x|(2+v^2)) = \ln c$ $\Rightarrow |x|\left(2+\frac{y^2}{x^2}\right)=c$: It passes through (2, 1), then $2\left(2+\frac{1}{4}\right)=c$ $\Rightarrow c = \frac{9}{2}$ Then, $|x| \left(2 + \frac{y^2}{x^2}\right) = \frac{9}{2}$ $\Rightarrow 2x^2 + y^2 = \frac{9}{2}|x|$ $\Rightarrow 4x^2 + 2y^2 = 9|x|$ 144 (a) We have, $y\,dx - x\,dy - 3x^2y^2\,e^{x^3}dx = 0$ $\Rightarrow v dx - x dv = 3x^2 v^2 e^{x^3} dx$ $\Rightarrow \frac{y\,dx - x\,dy}{x^2} = 3x^2 e^{x^3} dx$ $\Rightarrow d\left(\frac{x}{v}\right) = d(e^{x^3}) \Rightarrow \frac{x}{v} = e^{x^3} + C$ 145 (c) Given, $\frac{dy}{dx} = \frac{ax+h}{hy+k}$ $\int (by+k) \, dy = - \int (ax+h) \, dx$ ⇒ $\frac{by^2}{2} + ky = \frac{ax^2}{2} + hx + c$ ⇒ Thus, above equation represents a parabola, if a = 0 and $b \neq o$ b = 0 and $a \neq 0$ 0r 146 **(b)** The equations of the ellipses centred at the origin are given by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where *a*, *b* are arbitrary constants Differentiating both sides w.r.t. to *x*, we get $\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0$ $\Rightarrow \frac{x}{a^2} + \frac{y y_1}{b^2} = 0 \quad \dots(i)$ Differentiating (i) w.r.t. *x*, we get $\frac{1}{r^2} + \frac{y_1^2}{h^2} + \frac{y_2y_2}{h^2} = 0 \quad \dots (ii)$ Multiplying (ii) by *x* and subtracting it from (i), we get $\frac{1}{h^2} \{ y \, y_1 - x \, y_1^2 - x \, y \, y_2 \} = 0 \Rightarrow xy \, y_2 + xy_1^2 - x \, y_2 \} = 0$ $y y_1 = 0$ 147 **(b)** Given equation is $y = ax^{n+1} + bx^{-n}$

On differentiating with respect to x, we get

$$\frac{dy}{dx} = a(n+1)x^n - bnx^{-n-1}$$
Again, on differentiating, we get

$$\frac{d^2y}{dx^2} = an(n+1)x^{n-1} + bn(n+1)x^{-n-2}$$

$$\Rightarrow x^2 \frac{d^2y}{dx^2} = an(n+1)x^{n+1} + bn(n+1)x^{-n}$$

$$\Rightarrow x^2 \frac{d^2y}{dx^2} = n(n+1)(ax^{n+1} + bx^{-n})$$

$$\Rightarrow \frac{x^2 d^2y}{dx^2} = n(n+1)y$$
148 (b)
Given, $y = a\cos(x+b)$

$$\Rightarrow \frac{d^2y}{dx^2} = -a\sin(x+b)$$

$$\Rightarrow \frac{d^2y}{dx^2} = -a\cos(x+b) = -y$$

$$\Rightarrow \frac{d^2y}{dx^2} + y = 0$$
149 (a)
Here, $\frac{dy}{dt} - \left(\frac{1}{1+t}\right)y = \frac{1}{(1+t)}$ and $y(0) = -1$
Which represents linear differential equation of
first order.
IF $= e^{\int -\left(\frac{t}{1+t}\right)dt} = e^{-t+\log|1+t|} = e^{-t}(1+t)$
 \therefore Required solution is
 $y(IF) = [\int Q(IF)dt] + c$
 $\Rightarrow ye^{-t}(1+t) = \int \frac{1}{1+t} \cdot e^{-t}(1+t)dt + c$
 $= \int e^{-t}dt + c$
 $\Rightarrow ye^{-t}(1+t) = -e^{-t} + c$
Since, $y(0) = -1 \Rightarrow -1 \cdot e^0(1+0) = -e^0 + c$
 $\Rightarrow c = 0$
 $\therefore y = -\frac{1}{(1+t)}$ and $y(1) = -\frac{1}{2}$
150 (b)
Given, $\frac{dy}{dx} + \frac{y}{(1-x)\sqrt{x}} = 1 - \sqrt{x}$
 \therefore IF $= e^{\int \frac{1}{(1-x)\sqrt{x}}dx}$
Put $\sqrt{x} = t$
 $\Rightarrow \frac{1}{2\sqrt{x}} dx = dt$
 \therefore IF $= e^{\int \frac{2}{1-t^2}dt}$
 $= e^{\frac{2}{2}\log(\frac{1+t}{1-t})} = \frac{1+t}{1-t} = \frac{1+\sqrt{x}}{1-\sqrt{x}}$

151 **(b)**

Given,
$$\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$$

Put $y = vx$
 $\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$

$$\therefore v + x \frac{dv}{dx} = \frac{x^2 + v^2 x^2}{2xvx}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{1 - v^2}{2v}$$

$$\Rightarrow \frac{2v}{1 - v^2} dv = \frac{dx}{x}$$

$$\Rightarrow -\log(1 - v^2) = \log x + \log c$$

$$\Rightarrow \log(1 - v^2)^{-1} = \log xc$$

$$\Rightarrow (\frac{x^2 - y^2}{x^2})^{-1} = xc$$

$$\Rightarrow \frac{x^2}{x^2 - y^2} = xc$$

$$\Rightarrow x = c(x^2 - y^2)$$
152 (c)

$$\because y = u^n$$

$$\therefore \frac{dy}{dx} = nu^{n-1} \frac{du}{dx}$$
On substituting the values of y and $\frac{dy}{dx}$ in the given equation, then

$$2x^4 \cdot u^n \cdot nu^{n-1} \frac{du}{dx} + u^{4n} = 4x^6$$

$$\Rightarrow \frac{du}{dx} = \frac{4x^6 - u^{4n}}{2nx^4 u^{2n-1}}$$
Since, it is homogeneous. Then, the degree of

$$4x^6 - u^{4n} \text{ and } 2nx^4 u^{2n-1} \text{ must be same.}$$

$$\therefore 4n = 6 \text{ and } 4 + 2n - 1 = 6$$
Then, we get $n = \frac{3}{2}$
153 (b)
Given equation is $y = ax \cos(\frac{1}{x} + b)$ (i)
On differentiating Eq. (i), we get

$$y_1 = a \left[\cos(\frac{1}{x} + b) - x\sin(\frac{1}{x} + b)(\frac{-1}{x^2})\right]$$

$$\Rightarrow y_1 = a \left[\cos(\frac{1}{x} + b) + \frac{1}{x}\sin(\frac{1}{x} + b)\right] \dots (ii)$$
Again, on differentiating Eq. (ii), we get

$$y_2 = a \left[-\sin(\frac{1}{x} + b)(-\frac{1}{x^2}) + \frac{1}{x}\cos(\frac{1}{x} + b)(-\frac{1}{x^2}) - \frac{1}{x^2}\sin(\frac{1}{x} + b)\right]$$

$$\Rightarrow y_2 = \frac{-a}{x^3}\cos(\frac{1}{x} + b) = \frac{-ax}{x^4}\cos(\frac{1}{x} + b) = \frac{-y}{x^4}$$

$$\Rightarrow x^4y_2 + y = 0$$

15

 $y = \frac{x^2}{2}\log x - \frac{x^2}{4} + c$ \Rightarrow 155 (c) Given equation is $y = \sec(\tan^{-1} x)$

Given, $dy = x \log x \, dx$ $\Rightarrow \qquad y = \frac{x^2}{2} \log x - \int \frac{x}{2} dx$

[integrating]

154 **(b)**

On differentiating w.r.t.x, we get

$$\frac{dy}{dx} = \sec(\tan^{-1} x) \tan(\tan^{-1} x) \cdot \frac{1}{1+x^2}$$

$$= \frac{xy}{1+x^2} [\because \tan(\tan^{-1} x) = x]$$

$$\Rightarrow (1+x^2) \frac{dy}{dx} = xy$$
156 (a)

$$\frac{dy}{dx} \tan y = \sin(x+y) + \sin(x-y)$$

$$\Rightarrow \frac{dy}{dx} \tan y = 2 \sin x \cos y$$

$$\Rightarrow \int \tan y \sec y \, dy = 2 \int \sin x \, dx$$

$$\Rightarrow \sec y + 2 \cos x = c$$
157 (b)
Equation of family of parabolas with focus at (0,
0) and x-axis as axis is
 $y^2 = 4a(x+a) \quad ...(i)$
On differentiating Eq. (i), we get
 $2yy_1 = 4a$, putting the value of a in Eq. (i)

$$\Rightarrow y^2 = 2yy_1 \left(x + \frac{yy_1}{2}\right)$$

$$\Rightarrow y \left(\frac{dy}{dx}\right)^2 + 2x \frac{dy}{dx} = y$$
158 (b)
We have,
 $\frac{dy}{dx} + y = \frac{1+y}{x} \Rightarrow \frac{dy}{dx} + \left(1 - \frac{1}{x}\right)y = \frac{1}{x}$
 $\therefore 1.F. = e^{\int (1-\frac{1}{x})dx} = e^{x-\log x} = \frac{1}{x}e^x$
159 (c)
Given, $y^2 = 4a(x-b)$
 $\Rightarrow 2y \frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 = 0$
160 (a)
The given equation can be rewritten as,
 $\frac{d^2y}{dx^2} = -\sin x$.
On integrating the given equation
 $\int \frac{d^2y}{dx^2} dx = \int -\sin x \, dx + c$
 $\Rightarrow \frac{dy}{dx} dx = \int \cos x \, dx + \int c \, dx + d$
 $y = \sin x + cx + d$
161 (d)

Given that, $\frac{dy}{dx} + y = e^{-x}$ It is a linear differential equation, comparing with the standard equation $\frac{dy}{dx} + Py = Q$ $\Rightarrow P = 1, Q = e^{-x}$ \therefore IF = $e^{\int P \, dx} = e^x$ ∴ Required solution is $ye^{x} = \int e^{-x} e^{x} dx + c = \int 1 dx + c$ $\Rightarrow ye^x = x + c$ At x = 0, y = 0 : c = 0Hence, the required solution is $ye^x = x \Rightarrow y = xe^{-x}$ 162 **(c)** Given, $\frac{dy}{dx} = 2 \frac{y}{x}$ $(\therefore y = mx)$ $\Rightarrow \qquad \int \frac{dy}{y} = 2 \int \frac{dx}{x}$ $\Rightarrow \qquad \log y = 2\log x + \log c$ $\Rightarrow \qquad y = cx^2$ Which represent a parabola of the form $x^2 = 4ay$ 163 (d) Given, $\frac{dy}{dx} + \frac{2}{x}y = x$:. Integrating factor $=e^{\int_x^2 dx} = x^2$ ∴ Required solution is $y. x^2 = \int x^3 dx = \frac{x^4}{4} + \frac{c}{4}$ \therefore $y = \frac{x^4 + c}{4x^2}$ 164 (a) We have, $y \frac{dy}{dx} = x - 1 \Rightarrow y \, dy = (x - 1)dx \Rightarrow \frac{y^2}{2}$ $=\frac{x^2}{2}-x+C$ For x = 1, we have y = 1 $\therefore \frac{1}{2} = \frac{1}{2} - 1 + C \Rightarrow C = 1$ Hence, $\frac{y^2}{2} = \frac{x^2}{2} - x + 1 \Rightarrow y^2 = x^2 - 2x + 2$ 165 (a) Equation of line whose slope is equal to y intercept, is y = cx + c = c(x + 1) $\Rightarrow \qquad \frac{dy}{dx} = c$ $\therefore \qquad \frac{dy}{dx} = \frac{y}{x+1}$ $\Rightarrow \qquad (x+1)\frac{dy}{dx} - y = 0$

166 **(b)** Given that, $x^2y - x^3 \frac{dy}{dx} = y^4 \cos x$ i.e., $x^3 \frac{dy}{dx} - x^2y = -y^4 \cos x$ on dividing by $-y^4x^3$, we get $-\frac{1}{y^4} \frac{dy}{dx} + \frac{1}{y^3} \cdot \frac{1}{x} = \frac{1}{x^3} \cos x$ Put $\frac{1}{y^3} = V$ $\Rightarrow -\frac{1}{y^4} \frac{dy}{dx} = \frac{1}{3} \frac{dV}{dx}$ $\therefore \frac{1}{3} \frac{dV}{dx} + \frac{1}{x}V = \frac{1}{x^3} \cos x$ $\Rightarrow \frac{dV}{dx} + \frac{3}{x}V = \frac{3}{x^3} \cos x$ Which is linear in V.

$$\therefore \qquad IF = e^{\int_x^3 dx} = e^{3\log x} = x^3$$

So, the solution is

$$x^{3}V = \int x^{3} \cdot \frac{3}{x^{3}} \cos x \, dx + c$$
$$= 3 \sin x + c$$

 $\Rightarrow \qquad \frac{x^3}{y^3} = 3\sin x + c$

Putting x = 0, y = 1, we get c = 0

Hence, the solution is $x^3 = 3y^3 \sin x$

167 **(d)**

 $\Rightarrow |y| = e^{a(x-1)}$ 168 (a) Given, $\frac{dy}{dx} + 1 = e^{x+y}$ Put x + y = z $\Rightarrow \qquad 1 + \frac{dy}{dx} = \frac{dz}{dx}$ $\therefore \qquad \frac{dz}{dx} = e^z$ $\Rightarrow \qquad \int e^{-z} dz = \int dx \\ \Rightarrow \qquad -e^{-z} = x + c$ $x + e^{-(x+y)} + c = 0$ ⇒ 169 (a) The given equation can be written as $\left(\frac{dx}{x} - \frac{dy}{y}\right) + \frac{(x^2dy - y^2dx)}{(x-y)^2} = 0$ $\Rightarrow \left(\frac{dx}{x} - \frac{dy}{y}\right) + \frac{\left(\frac{dy}{y^2} - \frac{dx}{x^2}\right)}{\left(\frac{1}{y} - \frac{1}{y}\right)^2} = 0$ $\Rightarrow \left(\frac{dx}{x} - \frac{dy}{y}\right) + \frac{\frac{dy}{y^2} - \frac{dx}{x^2}}{\left(\frac{1}{2} - \frac{1}{2}\right)^2} = 0$ On integrating both sides, we get $\ln |x| - \ln |y| - \frac{1}{\left(\frac{1}{x} - \frac{1}{x}\right)} = c$ $\Rightarrow \ln \left| \frac{x}{y} \right| - \frac{xy}{(y-x)} = c$ $\Rightarrow \ln \left| \frac{x}{y} \right| + \frac{xy}{(x-y)} = c$ 170 (a) We have, $e^{dy/dx} = x$ $\Rightarrow \frac{dy}{dx} = \log x$ \therefore Degree is 1. 171 (a) Given differential equation can be rewritten as

$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{4} \times 12} = \left(\frac{d^2y}{dx^2}\right)^{\frac{1}{3} \times 12}$$
$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^9 = \left(\frac{d^2y}{dx^2}\right)^4$$

Here, we see that order of highest derivative is 2 and degree is 4.

172 (c) We have, $\tan^{-1} x + \tan^{-1} y = C$ Differentiating w.r.t. to *x*, we get $\frac{1}{1+x^2} + \frac{1}{1+y^2} \frac{dy}{dx} = 0$

 \Rightarrow

 $\Rightarrow (1+x^2)dy + (1+y^2)dx = 0,$ which is the required differential equation 173 (d) Given that, $\frac{dy}{dx} = 1 + x + y^2 + xy^2$ This can be rewritten as, we get $\frac{dy}{1+y^2} = (1+x)dx$ On integrating both sides, we get $\int \frac{dy}{1+y^2} = \int (1+x)dx$ $\Rightarrow \tan^{-1} y = x + \frac{x^2}{2} + c$ At x = 0, y = 0 $\Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$ $\therefore \tan^{-1} y = x + \frac{x^2}{2} \Rightarrow y = \tan\left(x + \frac{x^2}{2}\right)$ 175 (b) $\frac{dy}{dx} = -\left(\frac{\cos x - \sin x}{\sin x + \cos x}\right)$ $\Rightarrow dy = -\left(\frac{\cos x - \sin x}{\sin x + \cos x}\right)dx$ On integrating both sides, we get $y = -\log(\sin x + \cos x) + \log c$ $\Rightarrow y = \log\left(\frac{c}{\sin x + \cos x}\right)$ $\Rightarrow e^{y} = \frac{c}{\sin x + \cos x}$ $\Rightarrow e^{y}(\sin x + \cos x) = c$ 176 (a) Given, $\frac{x \, dy - y \, dx}{y^2} = dy$ $d\left(\frac{x}{y}\right) = -dy$ $\frac{x}{y} = -y + c$ ⇒ [integrating] $y(1) = 1 \Rightarrow c = 2$ As $\frac{x}{y} + y = 2$:. Again, for x = -3 $-3 + v^2 = 2v$ (y+1)(y-3) = 0 \Rightarrow Also, v > 0⇒ v = 3[neglecting y = -1]

177 (a) Given equation is, $\frac{dy}{dx} = \frac{y}{x} + \frac{\Phi\left(\frac{y}{x}\right)}{\Phi'\left(\frac{y}{x}\right)}$...(i) Put $y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$ Now, Eq. (i) becom $v + x \frac{dv}{dx} = v + \frac{\Phi(v)}{\Phi'(v)}$ $\Rightarrow \frac{\Phi'(v)}{\Phi(v)} dv = \frac{dx}{x}$ On integrating both sides, we get $\int \frac{\Phi'(v)}{\Phi(v)} dv = \int \frac{1}{r} dx$ $\Rightarrow \log \phi(v) = \log x + \log k$ $\Rightarrow \log \phi(v) = \log xk$ $\Rightarrow \phi(v) = kx \Rightarrow \phi\left(\frac{y}{r}\right) = kx \quad \left(\because v = \frac{x}{v}\right)$ 178 (c) Given, $\frac{dx}{dy} = x + y + 1 \Rightarrow \frac{dx}{dy} - x = y + 1$ $\therefore \quad \text{IF} = e^{\int -1 \, dy} = e^{-y}$ \therefore Solution is $x \cdot e^{-y} = \int (y+1) e^{-y} dy$ $xe^{-y} = -(y+1)e^{-y} +$ \Rightarrow $\int e^{-y} dy$ $\Rightarrow \qquad xe^{-y} = -(y+1)e^{-y} - e^{-y} + c$ $x = -(y + 2) + ce^{y}$ ⇒ 179 **(b)** Given, $x^2 + y^2 - 2ax = 0$...(i) ⇒ 2x + 2yy' - 2a = 0a = x + yy'⇒ On putting the value of a in Eq. (i), we get $x^2 + y^2 - 2x(x + yy') = 0$ $v^2 - x^2 = 2xvv'$ ⇒ 180 (c) Given, $y = c_1 \cos(x + c_2) + c_3 \sin(x + c_4) + c_4 \sin(x + c_4)$ $c_5 e^x + c_6$ $y = c_1[\cos x \cos c_2 - \sin x \sin c_2]$ $+c_{3}[\sin x \cos c_{4} + \cos x \sin c_{4}] + c_{5}e^{x} + c_{6}$ $= \cos x (c_1 \cos c_2 + c_3 \sin c_4) +$ $\sin x \left(-c_1 \sin c_2 + c_3 \cos c_4 \right) + c_5 e^x + c_6$ $= A\cos x + B\sin x + Ce^x + D$ Where $A = c_1 \cos c_2 + c_3 \sin c_4$ $B = -c_1 \sin c_2 + c_3 \cos c_4$, C = $c_5, D = c_6$ Hence, order is 4. 182 (a) Given, (1 + x)y dx + (1 - y)x dy = 0

$$\Rightarrow \frac{(1-y)}{y} dy + \frac{(1+x)}{x} dx = 0$$

$$\Rightarrow \int \left(\frac{1}{y} - 1\right) dy + \int \left(\frac{1}{x} + 1\right) dx =$$

$$\Rightarrow \log_e y - y + \log_e x + x = c$$

$$\Rightarrow \log_e(xy) + x - y = c$$

183 (b)
Given, $y^2 = 2c(x + \sqrt{c})$

$$\Rightarrow 2yy_1 = 2c$$

$$\Rightarrow c = yy_1$$

$$\therefore y^2 = 2yy_1(x + \sqrt{yy_1})$$

 $y^2 - 2yy_1x = \sqrt{yy_1} \cdot 2yy_1$

 $(y^2 - 2yy_1x)^2 = 4(yy_1)^3$

: The degree of above equation is 3 and

Given differential equation is

 $IF = e^{\int -1 \, dy} = e^{-y}$

 $xe^{-y} = \int e^{-y} y^2 dy$

 $= -e^{-y} y^2 + \int 2e^{-y} y \, dy$

 $= -e^{-y}y^2 + 2[-e^{-y}y +$

 $xe^{-y} = e^{-y}(-y^2 - 2y - 2) + c$

 $x = -v^2 - 2v - 2 + ce^y$

Given differential equation can be rewritten

 $= -e^{-y} y^2 + 2[-e^{-y} y - e^{-y}] +$

 $\frac{dy}{dx} = \frac{1}{x+y^2}$

 $\frac{dx}{dy} - x = y^2$

Here, P = -1, $Q = y^2$

0

186 (c)

 \Rightarrow

⇒

184 (d)

 \Rightarrow

order is 1.

∴ Solution is

e - y dy + c

С

⇒

⇒

as

⇒

:.

185 (a)

It is given that $\frac{dy}{dx} = \frac{x}{y}$ On integration, we get $y^2 - x^2 = C$, which is a rectangular hyperbola

187 (a)

Given differential equation is

 $\frac{dx}{dy} - \frac{x}{y^2} = 2y$

 $IF = e^{-\int \frac{1}{y^2} dy} = e^{1/y}$

$$(1+y^2) + (x - e^{\tan^{-1}y})\frac{dy}{dx} = 0$$

 $\Rightarrow \qquad (1+y^2)\frac{dx}{dy} = -x + e^{\tan^{-1}y}$ $\Rightarrow \qquad \frac{dx}{dy} + \frac{x}{1+y^2} = \frac{e^{\tan^{-1}y}}{1+y^2}$

Which is a linear differential equation,

Here,
$$P = \frac{1}{1+y^2}$$
, $Q = \frac{e^{\tan^{-1}y}}{1+y^2}$
IF = $e^{\int P \, dy} = e^{\int \frac{1}{1+y^2} dy} = e^{\tan^{-1}y}$
 \therefore Solution is
 x . IF = $\int Q$. IF $dy + c$
 $xe^{\tan^{-1}y} = \int \frac{e^{\tan^{-1}y}}{1+y^2} \cdot e^{\tan^{-1}y} + \frac{c}{2}$
 $\Rightarrow xe^{\tan^{-1}y} = \frac{e^{2\tan^{-1}y}}{2} + \frac{c}{2}$
 $\therefore 2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + c$
188 (d)
Given differential equation can be rewritten
as
 $\frac{ydy}{y+1} = \frac{e^x dx}{e^x+1}$
 $\Rightarrow (1 - \frac{1}{y+1}) dy = \frac{e^x}{e^x+1} dx$
 $\Rightarrow y - \log(y+1) = \log(e^x + 1) - \log c$
[integrating]
 $\Rightarrow y = \log \frac{(e^x+1)(y+1)}{c}$
 $\Rightarrow (e^x + 1)(y + 1) = ce^y$

189 (d)

The equation of all the straight lines passing through origin is

$$y = mx$$

$$\Rightarrow \qquad \frac{dy}{dx} = m$$
...(i)
$$\therefore \text{ From Eq. (i), } y = \frac{dy}{dx} x$$
190 (b)
Given, $\frac{dy}{dx} = \sin(x+y) \tan(x+y) - 1$
Put
$$x + y = z \Rightarrow 1 + \frac{dy}{dx} = \frac{dz}{dx}$$

$$\therefore \qquad \frac{dz}{dx} - 1 = \sin z \tan z - 1$$

$$\Rightarrow \qquad \int \frac{\cos z}{\sin^2 z} dz = \int dx$$
Put
$$\sin z = t$$

$$\therefore \qquad \int \frac{1}{t^2} dt = x - c \Rightarrow -\frac{1}{t} = x - c$$

$$\Rightarrow \qquad -\cosec \ z = x - c$$

$$\Rightarrow \qquad x + \csc(x+y) = c$$
191 (a)
Given, $\sin^{-1} x + \sin^{-1} y = c$

$$\Rightarrow \qquad \frac{dx}{\sqrt{1-x^2}} + \frac{dy}{\sqrt{1-y^2}} = 0$$

$$\Rightarrow \sqrt{1 - y^2} \, dx + \sqrt{1 - x^2} \, dy = 0$$

192 (d)

$$x \frac{dy}{dx} + (1 + x)y = x$$

$$\Rightarrow \frac{dy}{dx} + \frac{1 + x}{x}y = 1$$

IF = $e^{\int \frac{1 + x}{x} \, dx}$

$$= e^{\int \frac{dx}{x} + \int dx}$$

$$= e^{\log x + x}$$

$$= xe^{x}$$

193 (c)

We have,

$$(x + 2y^{3})\frac{dy}{dx} = y$$

$$\Rightarrow y\frac{dy}{dx} = x + 2y^{3} \Rightarrow \frac{dx}{dy} - \frac{x}{y} = 2y^{2} \quad ...(i)$$

This is linear differential equation with

$$I.F. = e^{\int -\frac{1}{y}dy} = e^{-\log y} = \frac{1}{2}$$

y Multiplying (i) by I.F. and integrating, we get $\frac{x}{y} = \int 2y \, dy \Rightarrow \frac{x}{y} = y^2 + C \Rightarrow x = y(y^2 + C)$

194 **(a)**

We have,

$$\frac{d^2y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^3} \Rightarrow \left(\frac{d^2y}{dx^2}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^3$$

Clearly, it is a second order second degree differential equation

195 (a)

Given equation is $\frac{dy}{dx} = \frac{y+1}{x-1} \Rightarrow \frac{dy}{y+1} = \frac{dx}{x-1}$ On integrating both sides

$$\int \frac{dy}{y+1} = \int \frac{dx}{x-1}$$

$$\Rightarrow \log(y+1) = \log(x-1) + \log c$$

$$\Rightarrow \log(y+1) = \log(x-1)c$$

$$\Rightarrow y+1 = (x-1)c$$

At $x = 1 \Rightarrow y = -1$
Whereas $y(1) = 2$.

Hence, the above solution is not possible.

196 (a) Given, $\frac{dy}{dx} = \frac{y(x+y)}{x(x-y)}$ Put y = vx $\Rightarrow \quad \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\therefore \quad v + x \frac{dv}{dx} = \frac{vx(x+vx)}{x(x-vx)}$

$$x \frac{dv}{dx} = \frac{2v^2}{1-v}$$

$$\Rightarrow \frac{1}{2} \left[\frac{1}{v^2} - \frac{1}{v} \right] dv = \frac{dx}{x}$$

$$\Rightarrow \frac{1}{2} \left[-\frac{1}{v} - \log v \right] = \log x + c_1$$

$$\Rightarrow \frac{x}{v} + \log \left(\frac{y}{x} \right) + 2\log x = -2c$$

$$\Rightarrow \frac{x}{v} + \log(xy) = c$$
[let $c = -2c_1$]
197 (a)
We have,
 $y^2 dy = x^2 dx$
Integrating we get $y^3 - x^3 = C$
198 (b)
Given, $\frac{d^2y}{dx^2} = e^{-2x}$
 $\Rightarrow \frac{dy}{dx} = -\frac{e^{-2x}}{2} + c_2$
[integrating]
 $\Rightarrow y = \frac{e^{-2x}}{4} + c_2x + c_3$
[integrating]
But $y = c_1e^{-2x} + c_2x + c_3$
[given]
 $\therefore c_1 = \frac{1}{4}$
199 (d)
Given, $x \left(\frac{dy}{dx}\right)^2 + 2\sqrt{xy}\frac{dy}{dx} + y = 0$
 $\Rightarrow (\sqrt{x} \frac{dy}{dx} + \sqrt{y})^2 = 0$
 $\Rightarrow \frac{1}{\sqrt{y}} dy + \frac{1}{\sqrt{x}} dx = 0$
 $\Rightarrow 2\sqrt{y} + 2\sqrt{x} = c_1$
 $\Rightarrow \sqrt{x} + \sqrt{y} = c$
200 (b)
 $y = mx + \frac{4}{m}$...(i)
 $\therefore \frac{dy}{dx} = m$
From Eq. (i), we get
 $y = x \left(\frac{dy}{dx}\right)^2 + 4$

 $\Rightarrow \qquad x \left(\frac{dy}{dx}\right)^2 - y \frac{dy}{dx} + 4 = 0$ Which is required differential equations. 201 (d)

We have, $e^x \cos y \, dx - e^x \sin y \, dy = 0$ $\Rightarrow \cos y d(e^x) + e^x d(\cos y) = 0$ $\Rightarrow d(e^x \cos y) = 0 \Rightarrow e^x \cos y = C$ [0n integrating] 202 (d) $y = ae^{mx} + be^{-mx}$ On differentiating w.r.t. x, we get $\frac{dy}{dx} = mae^{mx} - mbe^{-mx}$ Again, on differentiating, we get $\frac{d^2y}{dx^2} = m^2 a e^{mx} + m^2 b e^{-mx}$ $= m^2(ae^{mx} + be^{-mx}) = m^2y$ $\Rightarrow \frac{d^2 y}{dx^2} - m^2 y = 0$ 203 (b) We have, $\frac{dy}{dx} + y = e^{-x} \quad \dots(i)$ This is a linear differential equation with I. F. = $e^{\int 1 \cdot dx} = e^x$ Multiplying both sides of (i) by I.F. = e^x and integrating, we get $y e^x = \int e^x e^{-x} dx + C \Rightarrow y e^x = x + C$ It is given that y = 0 when x = 0 $\therefore 0 = 0 + C \Rightarrow C = 0$ Hence, $y e^x = x \Rightarrow y = xe^{-x}$ 204 (c) Given, $\frac{dx}{1+x^2} + \frac{dy}{1+y^2} = 0$ $\tan^{-1} x + \tan^{-1} y = \tan^{-1} c$ ⇒ [integrating] $\Rightarrow \frac{x+y}{1-xy} = c$ x + y = c(1 - xy) \Rightarrow 205 (c) Given, IF = x $\therefore e^{\int P \, dx} = x$ $\Rightarrow \int P \, dx = \log x$ $P = \frac{d}{dx} \log x = \frac{1}{x}$ \Rightarrow 206 (b) Given differential equation is

$$\frac{d^2 y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$
$$\Rightarrow \qquad \left(\frac{d^2 y}{dx^2}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$$

Hence, order is 2. 207 (b) Given, $\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$ $\Rightarrow \int \frac{dy}{\sqrt{1-y^2}} + \int \frac{dx}{\sqrt{1-x^2}} = 0$ $\sin^{-1} x + \sin^{-1} y = c$ \Rightarrow 208 (d) We have, x dy - y dx = 0 $\Rightarrow \frac{dy}{y} - \frac{dx}{x} = 0$ $\Rightarrow \log y - \log x = \log C$ [On integrating] $\Rightarrow \frac{y}{x} = C \Rightarrow y = C x$ Clearly, it represents a family of straight lines passing through the origin 209 (c) Let the equation of circle passing through given points is $x^{2} + y^{2} - 2fy = a^{2}$ $2x + 2yy_1 - 2fy_1 = 0$ ⇒ ...(i) $\Rightarrow \qquad x = y_1(f - y)$ $\Rightarrow \qquad x = y_1 \left(\frac{x^2 + y^2 - a^2}{2y} - y \right)$ [from Eq. (i)] $y_1(y^2 - x^2 + a^2) + 2xy = 0$ \Rightarrow 211 (a) Given, $\frac{dy}{dx} + \left(\frac{x}{v}\right)^2 - \left(\frac{x}{v}\right) + 1 = 0$ Put $v = \frac{x}{v} \Rightarrow x = vy$ $\Rightarrow \qquad \frac{dx}{dy} = v + y \frac{dv}{dy}$ $\therefore \qquad v + y \, \frac{dv}{dy} + v^2 - v + 1 = 0$ $\Rightarrow \qquad \frac{dv}{v^2+1} + \frac{dy}{v} = 0$ \Rightarrow $\tan^{-1} v + \log v + c = 0$ [integrating] $\Rightarrow \qquad \tan^{-1}\frac{x}{y} + \log y + c = 0$ 212 (a) Given, $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{5/2} = \frac{d^3y}{dx^3}$ $\left(\frac{d^3y}{dx^3}\right)^2 = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^5$ Here, order=3, degree=2 213 (a) Given equation is

$$x \, dy - y \, dx + x^2 e^x dx = 0$$

$$\Rightarrow \frac{x \, dy - y \, dx}{x^2} + e^x dx = 0$$

$$\Rightarrow d \left(\frac{y}{x}\right) + d(e^x) = 0$$

$$\Rightarrow \frac{y}{x} + e^x = c$$

214 (c)

Given differential equation is

$$\frac{dy}{dx} = \frac{x - y + 3}{2(x - y) + 5}$$
Put $x - y = v \Rightarrow \frac{dy}{dx} = 1 - \frac{dv}{dx}$
 $\therefore \qquad 1 - \frac{dv}{dx} = \frac{v + 3}{2v + 5} \Rightarrow \frac{dv}{dx} = \frac{v + 2}{2v + 5}$
 $\Rightarrow \qquad \int \left(2 + \frac{1}{v + 2}\right) dv = \int dx$
 $\Rightarrow \qquad 2v + \log(v + 2) = x + c$
 $\Rightarrow \qquad 2(x - y) + \log(x - y + 2) = x + c$
 $\Rightarrow \qquad 5$ (c)

215 (c)

The given equation is $Ax^2 + By^2 = 1$

$$\Rightarrow 2Ax + 2By \frac{dy}{dx} = 0$$

...(i)
$$\Rightarrow 2A + 2B\left\{\left(\frac{dy}{dx}\right)^2 + y \frac{d^2y}{dx^2}\right\} = 0$$

...(ii)

Eliminating A and B from Eqs. (i) and (ii), we get

$$y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 - \frac{y}{x} \cdot \frac{dy}{dx} = 0$$

Here, order =2, degree =1

216 (a)

The given equation is

$$(y + 3)dy = (x + 2)dx$$

 $\Rightarrow \frac{y^2}{2} + 3y = \frac{x^2}{2} + 2x + c$
Since, it passes through (2, 2).
 $\therefore 2 + 6 = 2 + 4 + c \Rightarrow c = 2$
 $\therefore \frac{y^2}{2} + 3y = \frac{x^2}{2} + 2x + 2$
 $\Rightarrow y^2 + 6y = x^2 + 4x + 4$
 $\Rightarrow x^2 + 4x - y^2 - 6y + 4 = 0$
217 **(b)**

We have,

 $y^2 = 4a(x + a)$...(i) Clearly, it is a one parameter family of parabolas Differentiating (i) w.r.t. to *x*, we get $2y\frac{dy}{dx} = 4a \Rightarrow a = \frac{1}{2}y\frac{dy}{dx}$

Substituting this value of a in (i), we get

 $y^2 = 2y\frac{dy}{dx}\left(x + \frac{1}{2}y\frac{dy}{dx}\right)$ $\Rightarrow y^2 \left(\frac{dy}{dx}\right) + 2xy \frac{dy}{dx} - y^2 = 0$ 218 (b) Given differential equation can be rewritten ลร $\frac{dy}{dx} + \frac{1}{x \log x} \cdot y = \frac{2}{x}$ $\therefore \qquad \text{IF} = e^{\int \frac{1}{x \log x} dx} = e^{\int \frac{1/x}{\log x} dx} = e^{\log \log x} =$ $\log x$ 220 (a) Given, $\frac{dy}{dx} + y \tan x = \sec x$ $\therefore \qquad IFe^{\int P\,dx} = e^{\int \tan x\,dx} = \sec x$ \therefore Solution is $y \sec x = \int \sec^2 x \, dx + c$ \Rightarrow y sec x = tan x + c 222 (c) We have, $\frac{dy}{dx} = \left(\frac{y}{x}\right)^{1/3}$ $\Rightarrow y^{-1/3}dy = x^{-1/3}dx$ $\Rightarrow \int y^{-1/3} dy = \int x^{-1/3} dx$ $\Rightarrow \frac{3}{2}y^{2/3} = \frac{3}{2}x^{2/3} + C$ $\Rightarrow y^{2/3} = x^{2/3} + C', \text{ where } C' = 2C$ $\Rightarrow y^{2/3} - x^{2/3} + C'$ 223 (c) Given, $\frac{dy}{dx} = \frac{y \sin(\frac{y}{x}) - x}{x \sin(\frac{y}{x})} = \frac{\frac{y}{x} \sin(\frac{y}{x}) - 1}{\sin(\frac{y}{x})}$ Put $\frac{y}{x} = u$ $\Rightarrow \qquad \frac{dy}{dx} = x \ \frac{du}{dx} + u$ $\therefore \qquad x \frac{du}{dx} + u = \frac{u \sin u - 1}{\sin u}$ $\Rightarrow \qquad -\sin u \ du = \frac{1}{x} \ dx$ $\cos u = \log x + c$ ⇒ [integrating] $\Rightarrow \cos\left(\frac{y}{x}\right) = \log x + c$ $\therefore \qquad y(1) = \frac{\pi}{2}$ $\therefore \qquad \cos\frac{\pi}{2} = \log 1 + c$ c = 0 \Rightarrow Thus, $\cos\left(\frac{y}{x}\right) = \log x$ 224 (b) Given, $\frac{dy}{dx} - \frac{y}{x} = \frac{\Phi(\frac{y}{x})}{\Phi'(\frac{y}{x})}$

$$\Rightarrow \frac{\Phi'\binom{y}{x}\binom{x}{x}dx}{\Phi\binom{y}{x}} = \frac{1}{x} dx$$

$$\Rightarrow \int \frac{\Phi'\binom{x}{x}d\binom{y}{x}}{\Phi\binom{x}{x}} = \int \frac{1}{x} dx + \log k$$

$$\Rightarrow \log \Phi\left(\frac{y}{x}\right) = \log x + \log k$$

$$\Rightarrow \Phi\left(\frac{y}{x}\right) = \log x + \log k$$

$$\Rightarrow \Phi\left(\frac{y}{x}\right) = kx$$
225 (b)
Given, $\frac{dy}{dx} = \frac{xy}{x^2+y^2}$
Put $y = vx$

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$\therefore v + x \frac{dv}{dx} = \frac{x^2v}{x^2(1+v^2)}$$

$$\Rightarrow \int \frac{1+v^2}{v^3} dv = -\int \frac{dx}{x}$$

$$\Rightarrow -\frac{1}{2v^2} + \log v = -\log x + \log c$$

$$\Rightarrow -\frac{1}{2} \cdot \frac{x^2}{y^2} + \log |y| = \log c$$

$$\therefore y(1) = 1, -\frac{1}{2} = \log c$$

$$\therefore y(1) = 1, -\frac{1}{2} = \log c$$

$$\therefore -\frac{1}{2} \cdot \frac{x^2}{y^2} + \log |y| = -\frac{1}{2}$$

$$\Rightarrow \log_e |y| + \frac{1}{2} = \frac{x^2}{2y^2}$$
Again, when $x = x_0, y = e$

$$1 + \frac{1}{2} = \frac{x^2}{2e^2} \Rightarrow x_0 = \sqrt{3}e$$
226 (d)
Given, $3^{-y}dy = 3^x dx$

$$\Rightarrow \int 3^{-y}dy = \int 3^x dx$$

$$\Rightarrow \frac{-3^{-y}}{3^3} = \frac{3^x}{\log 3} + k$$

$$\Rightarrow 3^x + 3^{-y} = c$$
, where $c = -k \log 3$
227 (a)
$$(x - h)^2 + (y - k)^2 = r^2$$
, here only one arbitrary constant r. So, order of differential equation = 1.
229 (b)
Given differential equation can be rewritten as
$$\frac{y}{(1+y^2)}dy = \frac{1}{2}\int \frac{2x}{x^2(1+x^2)}dx$$

$$\Rightarrow \frac{1}{2}\int \frac{2y}{(1+y^2)}dy = \frac{1}{2}\int \frac{2x}{x^2(1+x^2)}dx$$

$$\Rightarrow \frac{1}{2}\int \frac{2y}{(1+y^2)}dy = \frac{1}{2}\int \frac{1}{t(1+t)}$$

$$[put x^2 = t in RHS integral]$$

$$\Rightarrow \frac{1}{2}\int \frac{2y}{y}\frac{dy}{1+y^2} = \frac{1}{2}\int (\frac{1}{t} - \frac{1}{1+t}) dt$$

$$\Rightarrow \qquad \frac{1}{2}\log(1+y^2) = \frac{1}{2}[\log t - \log(1+y^2)] = \frac{1}{2}\log t - \log(1+y^2) = \frac{1}$$

*t+12*log*c*

$$\Rightarrow \log(1 + y^{2}) = \log x^{2} - \log(1 + x^{2}) + \log c$$

$$\Rightarrow \log(1 + y^{2})(1 + x^{2}) = \log cx^{2}$$

$$\Rightarrow (1 + y^{2})(1 + x^{2}) = \cos^{2}$$
230 (b)
Given, $\frac{dy}{dx} = \frac{2x - y}{x + 2y}$
Put $y = vx$

$$\Rightarrow \frac{dy}{dx} = v + \frac{xdv}{dx}$$

$$\therefore v + x \frac{dv}{dx} = \frac{2 - v}{1 + 2v}$$

$$\Rightarrow \int \frac{1 + 2v}{2(1 - v - v^{2})} dv = \int \frac{1}{x} dx$$

$$\Rightarrow \log k - \frac{1}{2}\log(1 - v - v^{2}) = \log x$$

$$\Rightarrow \log c - \log[x^{2}(1 - v - v^{2})]$$
[put $k^{2} = c$]

$$\Rightarrow x^{2} - xy - y^{2} = c$$
[put $v = \frac{y}{x}$]
231 (c)
 $y^{2} = 2c(x + c^{2/3})$

$$\Rightarrow (y^{2} - 2x) \frac{dy}{dx} (x + (y \frac{dy}{dx})^{2/3})$$

$$\Rightarrow (y - 2x \frac{dy}{dx})^{3} = (2 \frac{dy}{dx})^{3} (y \frac{dy}{dx})^{2}$$

$$\Rightarrow (y - 2x \frac{dy}{dx})^{3} = 8y^{2} (\frac{dy}{dx})^{5}$$
Here, order=1, degree=5
232 (a)
Given, $y = (x + \sqrt{1 + x^{2}})^{n}$

$$\Rightarrow \frac{dy}{dx} + \log y = \log c$$

$$\Rightarrow \log(xy) + \log c \Rightarrow xy = c$$
233 (a)
Given, $y = (x + \sqrt{1 + x^{2}})^{n-1} (1 + \frac{x}{\sqrt{x^{2} + 1}})$

$$= \frac{n[x + \sqrt{1 + x^{2}}]^{n-1}}{\sqrt{1 + x^{2}}}$$

$$\Rightarrow (\frac{dy}{dx})^{2} (1 + x^{2}) = n^{2}y^{2}$$
Again, differentiating, we get

 $2 \frac{dy}{dx} \cdot \frac{d^2y}{dx^2} (1+x^2) + 2x \left(\frac{dy}{dx}\right)^2 =$ $2n^2y \frac{dy}{dx}$ $\Rightarrow \qquad \frac{d^2y}{dx^2}(1+x^2) + x\frac{dy}{dx} = n^2y$ [divide by $2\frac{dy}{dx}$] 234 (c) $y = (c_1 + c_2)\cos(x + c_3) - c_4 e^{x + c_5}$ $y_1 = -(c_1 + c_2)\sin(x + c_3) - c_4 e^{x + c_5}$ $y_2 = -(c_1 + c_2)\cos(x + c_3) - c_4 e^{x + c_5}$ $= -y - 2c_4 e^{x+c_5}$ $y_3 = -y_1 - 2c_4 e^{x+c_5}$ $y_3 = -y_1 + y_2 - y$: Differential equation is $y_3 - y_2 + y_1 - y = 0$ Which is order 3 235 (c) The given equation is $y = ae^{bx}$ $\frac{dy}{dx} = abe^{bx}$ ⇒ ...(i) $\frac{d^2y}{dx^2} = ab^2e^{bx}$ ⇒ ...(ii) $\Rightarrow ae^{bx} \frac{d^2y}{dx^2} = a^2b^2e^{2bx}$ $y \frac{d^2 y}{dx^2} = \left(\frac{dy}{dx}\right)^2$ ⇒ [from eq. (ii)] 236 (d) Let ax + by = 1, where $a \neq 0$ $\Rightarrow \quad a \ \frac{dx}{dv} + b = 0$ $\Rightarrow a \frac{d^2x}{dy^2} = 0$ $\Rightarrow \qquad \frac{d^2x}{dx^2} = 0$ 237 (a) We have, $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$ Putting $x = \sin A$, $y = \sin B$, we get $\cos A + \cos B = a(\sin A - \sin B)$ $\cot \frac{A-B}{2} = a$ \Rightarrow $A - B = 2 \cot^{-1} a$ ⇒ $\sin^{-1} x - \sin^{-1} y = 2 \cot^{-1} a$ ⇒ On differentiating w.r.t. x, we get $\frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-y^2}} \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$ \Rightarrow Clearly, it is differential equation of the first

order and first degree. 238 (b) Given differential equation is $\frac{dy}{dx} = e^{y+x} + e^{y-x}$ $\int e^{-y} dy = \int (e^x - e^{-x}) dx$ ⇒ $-e^{-y} = e^x - e^{-x} - c$ ⇒ $e^{-y} = e^{-x} - e^{-x} + c$ ⇒ 239 **(a)** Given, $\frac{dy}{dx} + \frac{1}{x} \cdot y = 3x$ $IF = e^{\int \frac{1}{x} dx} = e^{\log x} = x$ *:*. 240 (a) Given, $\frac{\sec^2 x}{\tan x} dx = -\frac{\sec^2 y}{\tan y} dy$ $\int \frac{\sec^2 x}{\tan x} dx = -\int \frac{\sec^2 y}{\tan y} dy$ ⇒ Put $\tan x = u$ $\sec^2 x \, dx = du$ \Rightarrow $\tan y = v$ And $\sec^2 y \, dy = dv$ ⇒ $\int \frac{du}{u} = -\int \frac{dv}{u}$.. $\log u = -\log v + \log c \Rightarrow uv = c$ ⇒ ... $\tan x \cdot \tan y = c$ 241 **(b)** We have, $y \frac{dy}{dx} = \lambda y^2 \Rightarrow \frac{dy}{dx} = \lambda y$ $\Rightarrow \frac{1}{y} dy = \lambda \, dx \Rightarrow \log y = \lambda \, x + \log C \Rightarrow y = C e^{\lambda x}$ 242 **(b)** We have. $\frac{dy}{dx} + \frac{1 + \cos 2y}{1 - \cos 2x} = 0$ Given, $\frac{dy}{dx} = -\frac{1+\cos 2y}{1-\cos 2x} = -\frac{2\cos^2 y}{2\sin^2 x}$ $\int \sec^2 y \, dy = -\int \csc^2 x \, dx$ ⇒ $\Rightarrow \tan y = \cot x + c.$ 243 (a) Given differential equation can be rewritten as $\frac{dy}{dx} + \frac{y}{\sqrt{x}} = e^{-2\sqrt{x}}$ Here, $P = \frac{1}{\sqrt{x}}, Q = e^{-2\sqrt{x}}$ $IF = e^{\int \frac{1}{\sqrt{x}} dx} = e^{2\sqrt{x}}$:. \therefore Solution is

$$ye^{2x} = \int e^{2\sqrt{x}} e^{-2\sqrt{x}} dx = \int 1 dx$$
$$ye^{2\sqrt{x}} = x + c$$

⇒

244 (a) Given, $\left(1+\frac{1}{y}\right)dy = -e^x\left(\cos^2 x - \sin 2x\right)dx$ On integrating both sides, we get $v + \log v = -e^x \cos^2 x + \int e^x \sin 2x \, dx \int e^x \sin 2x \, dx + c$ $y + \log y = -e^x \cos^2 x + c$ ⇒ At x=0, y=1 $1 + 0 = -e^0 \cos 0 + c \Rightarrow c = 2$ ∴ Required solution is $y + \log y = -e^x \cos^2 x + 2$ 245 (d) Given, $\frac{dy}{dx} = (4x + y + 1)^2$ Put 4x + v + 1 = v $\frac{dy}{dx} = \frac{dv}{dx} - 4$ $\frac{dv}{dx} - 4 = v^2$ ⇒ .. $\frac{dv}{v^2+4} = dx$ ⇒ $\frac{1}{2}\tan^{-1}\left(\frac{v}{2}\right) = x + c$ ⇒ [integrating] $\tan^{-1}\left(\frac{4x+y+1}{2}\right) = 2x + c$ ⇒ $4x + y + 1 = 2\tan(2x + c)$ ⇒ 246 (c) Given differential equation is $x\frac{dy}{dx} + y\log x = xe^x x^{-\frac{1}{2}\log x}$ $\Rightarrow \frac{dy}{dx} + \frac{y}{x}\log x = e^x x^{-\frac{1}{2}\log x}$ Here, $P = \frac{1}{x} \log x$ and $Q = e^x x^{-\frac{1}{2} \log x}$: IF = $e^{\int \frac{\log x}{x} dx} = e^{\frac{(\log x)^2}{2}} = (\sqrt{e})^{(\log x)^2}$ 247 (a) Let us assume the equation of parabola whose axis is parallel to y-axis and touch x-axis. $y = ax^2 + bx + c$...(i) and $b^2 = 4ac$ (: curve touches x-axis) : There are two arbitrary constant. \therefore Order of this equation is 2. 248 (a) Here, $y = A \cos \omega t + B \sin \omega t$ (i) On differentiating w.r.t.t, we get $\frac{dy}{dt} = -\omega A \sin \omega t + \omega B \cos \omega t$

Again, on differentiating w.r.t.t, we get $\frac{d^2y}{dt^2} = -\omega^2 A \cos \omega t - \omega^2 B \sin \omega t$ $\Rightarrow \frac{d^2 y}{dt^2} = -\omega^2 (A \cos \omega t - B \sin \omega t)$ $\therefore y_2 = -\omega^2 y$ [from Eq. (i)] 249 (a) Given, $\frac{dy}{dx} \tan y = \sin(x+y) + \sin(x-y)$ $\frac{dy}{dx}$ tan y = 2 sin x cos y ⇒ $\tan y \sec y \, dy = 2 \sin x \, dx$ ⇒ $\sec y = -2\cos x + c$ ⇒ [integrating] $\sec y + 2\cos x = c$ \Rightarrow 250 (a) Putting $x = \tan A$, and $y = \tan B$ in the given relation, we get $\cos A + \cos B = \lambda(\sin A - \sin B)$ $\Rightarrow \tan\left(\frac{A-B}{2}\right) = \frac{1}{1}$ $\Rightarrow \tan^{-1} x - \tan^{-1} y = 2 \tan^{-1} \left(\frac{1}{\lambda}\right)$ Differentiating w.r.t. to *x*, we ge $\frac{1}{1+x^2} - \frac{1}{1+y^2}\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ Clearly, it is a differential equation of degree 1 251 **(b)** Given, $\frac{dy}{dx} - y \tan x = e^x \sec x$ $IF = e^{-\int \tan x \, dx} = e^{-\log \sec x} = \frac{1}{\sec x}$: Complete solution is $y \cdot \frac{1}{\sec x} = \int e^x \sec x \cdot \frac{1}{\sec x} dx$ $\Rightarrow \qquad \frac{y}{\sec x} = e^x + c$ $v\cos x = e^x + c$ ⇒ 252 (c) $x = 1 + \frac{dy}{dx} + \frac{1}{2!} \left(\frac{dy}{dx}\right)^2 + \frac{1}{2!} \left(\frac{dy}{dx}\right)^3 + \cdots$ $\Rightarrow x = e^{\frac{dy}{dx}} \Rightarrow \frac{dy}{dx} = \log_e x$ \Rightarrow Degree of differential equation is 1. 253 (a) Given, $\frac{dy}{y+1} = \frac{-\cos x}{2+\sin x} dx$ $\Rightarrow \qquad \int \frac{dy}{y+1} = -\frac{\int \cos x}{2+\sin x} dx$ $\log(y+1) = -\log(2+\sin x) + \log c$ \Rightarrow x = 0, y = 1When \Rightarrow c = 4 $\therefore \qquad y+1 = \frac{4}{2+\sin x}$

At
$$x = \frac{\pi}{2}$$
, $y + 1 = \frac{4}{2+1}$
 $\Rightarrow \qquad y = \frac{1}{3}$

254 (c)

Given,
$$\cos y \frac{dy}{dx} = e^{x + \sin y} + x^2 e^{\sin y}$$

 $\Rightarrow \quad \cos y \frac{dy}{dx} = e^{\sin y} (e^x + x^2) dx$
 $\Rightarrow \quad \int \frac{\cos y}{e^{\sin y}} dy = \int (e^x + x^2) dx$
Put $\sin y = t$ in LHS $\Rightarrow \cos y dy = dt$
 $\therefore \quad \int \frac{dt}{e^t} = \int (e^x + x^2) dx$
 $\Rightarrow \quad -e^{-t} = e^x + \frac{x^3}{3} - c$
 $\Rightarrow \quad e^x + e^{\sin y} + \frac{x^3}{3} = c$

255 **(a)**

The given differential equation can be written as $\frac{y \, dx - x \, dy}{y^2} + 3x^2 e^{x^3} dx = 0 \Rightarrow d\left(\frac{x}{y}\right) + d\left(e^{x^3}\right)$ $= 0 \Rightarrow \frac{x}{y} + e^{x^3} = C$

256 (a)

Given that,
$$\frac{dy}{dx} = \frac{2x-y}{x+2y}$$
(i)
Let $y = vx \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}$
 $\therefore v + x\frac{dv}{dx} = \frac{2-v}{1+2v}$
 $\Rightarrow x\frac{dv}{dx} = \frac{2-v-v(1+2v)}{1+2v}$
 $\Rightarrow \int \frac{1+2v}{2(1-v-v^2)} dv = \int \frac{1}{x} dx$
 $\Rightarrow \log k - \frac{1}{2}\log(1-v-v^2) = \log x$
 $\Rightarrow 2\log k - \log(1-v-v^2) = 2\log x$
 $\Rightarrow \log c = \log[x^2(1-v-v^2)]$
 $\Rightarrow c = x^2 \left(1 - \frac{y}{x} - \frac{y^2}{x^2}\right)$
 $\Rightarrow x^2 - xy - y^2 = c$
7 (a)
Given $y + x^2 = \frac{dy}{dx} \Rightarrow \frac{dy}{dx} - y = x^2$

This is the linear differential equation of the form $\frac{dy}{dx} + Py = Q$ $\Rightarrow P = -1, Q = x^{2}$ $\therefore IF = e^{\int P \, dx} = e^{\int -1 \, dx} = e^{-x}$ Hence, required solution is $ye^{-x} = \int x^{2}e^{-x} \, dx$ $y \cdot e^{-x} = -x^{2}e^{-x} - 2xe^{-x} - 2e^{-x} + c$ $\Rightarrow y + x^{2} + 2x + 2 = ce^{x}$

258 **(b)**

25

Given, $\frac{x\,dy - y\,dx}{x} = -\left(\cos^2\frac{y}{x}\right)dx$ $\Rightarrow \qquad \sec^2\left(\frac{y}{x}\right)\left(\frac{x\,dy-y\,dx}{x^2}\right) = -\frac{dx}{x}$ $\Rightarrow \qquad \sec^2\left(\frac{y}{r}\right)d\left(\frac{y}{r}\right) = -\frac{dx}{r}$ $\tan \frac{y}{x} = -\log x + c$ ⇒ [integrating] When x = 1, $y = \frac{\pi}{4} \Rightarrow c = 1$ $\therefore \tan\left(\frac{y}{x}\right) = 1 - \log x \quad \Rightarrow x = e^{1 - \tan\left(\frac{y}{x}\right)}$ 259 (d) $\frac{dy}{1+y+y^2} = (1+x)dx$ Given, $\int \frac{dy}{(y+\frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2} = \int (1+x) \, dx$ $\frac{1}{\frac{\sqrt{3}}{\sqrt{3}}} \tan^{-1}\left(\frac{y + \frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) = x + \frac{x^2}{2} + \frac{c}{2}$ $4\tan^{-1}\left(\frac{2y+1}{\sqrt{3}}\right) = \sqrt{3}(2x+x^2) + c$ \Rightarrow 260 (c) Given equation is $\frac{dy}{dx} = 2^y \cdot 2^{-x} \Rightarrow 2^{-y} dy = 2^{-x} dx$ On integrating both sides, we get $\frac{2^{-y}}{\log 2}(-1) = \frac{2^{-x}}{\log 2}(-1) + c_1$ $\Rightarrow -\frac{2^{-y}}{\log 2} = -\frac{2^{-x}}{\log 2} + c_1$ $\Rightarrow -2^{-y} = -2^{-x} + c_1 \log 2$ $\therefore \frac{1}{2^x} - \frac{1}{2^y} = c_1 \log 2 = c$ 261 (b) $f^{\prime\prime}(x) = 6(x-1)$ Since. $f'(x) = 3(x-1)^2 + c$ ⇒ [integrating] ...(i) Also, at the point (2,1) the tangent to graph is y = 3x - 5Slope of tangent=3 f'(2) = 3⇒ $3(2-1)^2 + c = 3$ [from eq. (i)]

3 + c = 3

 $f'(x) = 3(x-1)^2$

...(ii)

Since, it passes through (2,1)

c = 0

 $f(x) = (x-1)^2 + k$

 $1 = (2-1)^2 + k \quad \Rightarrow k = 0$

⇒

⇒

...

From Eq. (i),

[integrating]

Hence, equation of function is

$$f(x) = (x - 1)^{2}$$
262 (b)

$$: \log\left(\frac{dy}{dx}\right) = ax + by$$

$$\Rightarrow \frac{dy}{dx} = e^{ax+by} = e^{ax}e^{by}$$

$$\Rightarrow e^{-by}dy = e^{ax}dx$$
On integrating both sides, we get

$$\int e^{-by}dy = \int e^{ax}dx$$

$$\Rightarrow \frac{e^{-by}}{-b} = \frac{e^{ax}}{a} + c$$
263 (d)

$$y + 4x + 1 = V \text{ is the suitable substitution}$$

$$: \frac{dy}{dx} = f(ax + by + c) \text{ is}$$
Solvable for substituting

$$ax + by + c = V$$
264 (b)
Given,
$$\frac{dy}{dx} = \frac{(1+y^{2})x}{y(1+x^{2})}$$

$$\Rightarrow \int \frac{2y}{1+y^{2}}dy = \int \frac{2x}{1+x^{2}}dx$$

$$\Rightarrow \log(1 + y^{2}) = \log(1 + x^{2}) + \log k$$

$$\Rightarrow (1 + y^{2}) = \log(1 + x^{2}) + \log k$$
This equation represents a family of
hyperbola.
265 (c)
The equation of the family of circles of radius

$$r \text{ is} \qquad (x - a)^{2} + (y - b)^{2} = r^{2}....(i)$$
Where a and b are arbitrary constants

$$\Rightarrow 2(x - a) + 2(y - b)\frac{dy}{dx} = 0 \qquad ...(ii)$$

$$\Rightarrow 1 + (y - b)\frac{d^{2}y}{dx^{2}} + \left(\frac{dy}{dx}\right)^{2} = 0$$

$$\Rightarrow (y - b) = -\frac{1 + \left(\frac{dx}{dx}\right)^{2}}{\frac{d^{2}y}{dx^{2}}}$$
...(iii)
From eq. (ii),

$$(x - a) = \frac{\left[1 + \left(\frac{dy}{dx}\right)^{2}\right]\frac{dy}{dx}}{\frac{d^{2}y}{dx^{2}}}$$
...(iv)
On putting the value of $(y - b)$ and $(x - a)$, in
eq. (i), we get

 $\frac{\left\lfloor 1 + \left(\frac{dy}{dx}\right)^2 \right\rfloor \left(\frac{dy}{dx}\right)^2}{\left(\frac{d^2y}{dx^2}\right)^2} + \frac{\left\lfloor 1 + \left(\frac{dy}{dx}\right)^2 \right\rfloor^2}{\left(\frac{d^2y}{dx^2}\right)^2} = r^2$ $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = r^2 \left[\frac{d^2y}{dx^2}\right]^2$ ⇒ 266 **(b)** Given, Focus S = (0,0) let P(x, y) be any point on the parabola, Since, $SP^2 = PM^2$ $(x-0)^2 + (y-0)^2 = (x+a)^2$ ⇒ $y^2 = 2ax + a^2$ ⇒ ...(i) $2y \frac{dy}{dx} = 2a$ ⇒ ...(ii) From Eqs. (i) and (ii), we get $y^2 = 2y \frac{dy}{dx} \cdot x + \left(y \frac{dy}{dx}\right)^2$ $\Rightarrow \qquad y^2 \left(\frac{dy}{dx}\right)^2 + 2xy \ \frac{dy}{dx} = y^2$ $\Rightarrow \qquad -y\left(\frac{dy}{dx}\right)^2 = 2x \ \frac{dy}{dx} - y$ 267 **(b)** Given, $\frac{dx}{x} = \frac{ydy}{1+y^2}$ $\Rightarrow \qquad \log x = \frac{1}{2}\log(1+y^2) + \log c$ $\Rightarrow \qquad x = c\sqrt{1+y^2}$ But it passes through (1,0), so we get c = 1 \therefore Solution is $x^2 - y^2 = 1$ 268 (d) Given that, $\frac{dy}{dx} = \frac{x^2}{y+1}$ $\Rightarrow (y+1)dy = x^2 dx$ $\Rightarrow \frac{y^2}{2} + y = \frac{x^2}{3} + c$ This curve passes through the point (3, 2). 2 + 2 = 9 + c $\Rightarrow c = -5$ \therefore Required curve is $\frac{y^2}{2} + y = \frac{x^3}{3} - 5$ 269 (a) Given, $\frac{dy}{dx} = \frac{y-1}{x^2+x}$ $\Rightarrow \qquad \int \left(\frac{1}{x} - \frac{1}{x+1}\right) dx = \int \frac{1}{y-1} dy$ $\Rightarrow \qquad \log x - \log(x+1) = \log(y-1) + \log c$ $\Rightarrow \qquad \frac{x}{x+1} = (y-1)c$...(i) Since, this curve passes through $(1,0)c = -\frac{1}{2}$

: From Eq. (i) 2x + (y - 1)(x + !) = 0270 (a) Given, $\frac{dy}{dt} - \left(\frac{1}{1+t}\right)y = \frac{1}{(1+t)}$ and y(0) = -1 $\therefore \qquad IF = e^{\int -\left(\frac{t}{1+t}\right)dt} = e^{-\int \left(1-\frac{1}{1+t}\right)dt}$ $e^{-t + \log(1+t)} = e^{-t}(1+t)$ ∴ Required solution is, $ye^{-t}(1+t) = \int \frac{1}{1+t} e^{-t} (1+t)dt + c$ $=\int e^{-t} dt + c$ $\Rightarrow ye^{-1}(1+t) = -e^{-1} + c$ Since, y(0) = -1⇒ c = 0 $y = -\frac{1}{(1+t)}$:. $y(1) = -\frac{1}{2}$ ⇒ 271 (a) Given curve is $y = x^2$ For this curve there is only one tangent line ie, x-axis (y = 0) $\frac{dy}{dx} = 0$:. Hence, order is 1. 272 (c) Given, $x^2 + y^2 - 2ay = 0$(i) 2x + 2yy' - 2ay' = 0⇒ $\frac{2x+2yy'}{y'} = 2a$ ⇒ ...(ii) ∴ From Eq. (i) $2a = \frac{x^2 + y^2}{y}$ $\frac{2x+2yy'}{y'} = \frac{x^2+y^2}{y}$ \Rightarrow [from Eq. (ii)] $(x^2 - y^2)y' = 2xy$ ⇒ 273 (a) $\therefore \frac{dy}{dx} + 1 = \operatorname{cosec} (x + y)$ Let x + y = tand $1 + \frac{dy}{dx} = \frac{dt}{dx}$ $\Rightarrow \frac{dt}{\csc t} = dx$ $\therefore \int \sin t \, dt = \int dx$ $\Rightarrow -\cos t = x - c$ $\Rightarrow \cos(x + y) + x = c$ 274 **(b)**

Given, $\frac{y}{4} dy = -\frac{x}{9} dx$ $\Rightarrow \qquad \frac{y^2}{4.2} = -\frac{x^2}{9.2} + \frac{c}{2}$ $\Rightarrow \frac{y^2}{4} + \frac{x^2}{2} = c$ 275 (b) The differential equation of the rectangular hyperbola $xy = c^2$ is $y + x \frac{dy}{dx} = 0 \Rightarrow x \frac{dy}{dx} = -y$ 276 (c) Given, $\log\left(\frac{dy}{dx}\right) = 3x + 4y$ $\Rightarrow \qquad \frac{dy}{dx} = e^{3x} e^{4y}$ $\Rightarrow \qquad e^{-4y} dy = e^{3x} dx$ On integrating both sides, we get $\frac{e^{-4y}}{-4} = \frac{e^{3x}}{-4} + C$ At x = 0, y = 0 $-\frac{1}{4} = \frac{1}{3} + c$ $c = -\frac{7}{12}$ ⇒ ∴ Solution is $\frac{e^{-4y}}{-4} = \frac{e^{3x}}{3} - \frac{7}{12}$ $4e^{3x} + 3e^{-4y} = 7$ ⇒ 277 (b) Given differential equation is $\frac{d^2y}{dx^2} = 2 \implies \frac{dy}{dx} = 2x + a$ $\Rightarrow v = x^2 + ax + b$: It represents a parabola whose axis is parallel to y-axis. 278 (b) Given, $\frac{dy}{dx} = \left(\frac{y}{x}\right) \left[\log\left(\frac{y}{y}\right) + 1\right]$ Put $\frac{y}{x} = t$ y = xt $\Rightarrow \qquad \frac{dy}{dx} = t + x \frac{dt}{dx}$ $\therefore \qquad t + x \, \frac{dt}{dx} = t(\log t + 1)$ $\Rightarrow \frac{1}{t \log t} dt = \frac{dx}{r}$ $\log(\log t) = \log x + \log c$ ⇒ [integrating] $\Rightarrow \log\left(\frac{y}{x}\right) = cx$ 279 (a) Given, $\frac{dy}{dx} = \frac{-y^2}{x^2 - xv + v^2}$ Put y = vx

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$\therefore v + x \frac{dv}{dx} = \frac{-v^2}{v^2 - v + 1}$$

$$x \frac{dv}{dx} = \frac{-v^3 - v}{v^2 - v + 1}$$

$$\Rightarrow \frac{(v^2 - v + 1)}{-v^3 - v} dv = \frac{1}{x} dx$$

$$\Rightarrow \frac{-(v^2 + 1) + v}{v(v^2 + 1)} dv = \frac{1}{x} dx$$

$$\Rightarrow \int -\frac{1}{v} dv + \int \frac{1}{v^2 + 1} dv = \int \frac{1}{x} dx$$

$$\Rightarrow -\log v + \tan^{-1} v = \log x + c$$

$$\Rightarrow \tan^{-1} v = \log xv + c$$

$$\Rightarrow \tan^{-1} \left(\frac{y}{x}\right) = \log y + c$$

280 (a)

Given,
$$\frac{d^2 y}{dx^2}(x^2 + 1) = 2x \frac{dy}{dx}$$

 $\Rightarrow \qquad \frac{\frac{d^2 y}{dx^2}}{\frac{dy}{dx}} = \frac{2x}{x^2 + 1}$
On integrating both sides, we get

 $\log \frac{dy}{dx} = \log(x^2 + 1) + \log c$ $\Rightarrow \qquad \frac{dy}{dx} = c(x^2 + 1)$ As at x = 0, $\frac{dy}{dx} = 3$

...(i)

$$\therefore \qquad 3 = c(0+1)$$

$$\Rightarrow \qquad c = 3$$

∴ From Eq. (i),

$$\frac{dy}{dx} = 3(x^2 + 1)$$

$$\Rightarrow \quad dy = 3(x^2 + 1)dx$$
Again, integrating both sides, we get

Again, integrating both sites, $y = 3\left(\frac{x^3}{3} + x\right) + c_1$

At point (0,1)

$$1 = 3(0+0) + c_1 \Rightarrow c_1 = 1$$

 $\therefore \quad y = 3\left(\frac{x^3}{3} + x\right) + 1$
 $\Rightarrow \quad y = x^3 + 3x + 1$

281 (a)

Given equation can be rewritten as

$$\frac{dx}{dy} + \frac{1}{(1+y^2)}x = \frac{e^{\tan^{-1}y}}{(1+y^2)}$$

$$\therefore IF = e^{\int \frac{1}{1+y^2}dy} = e^{\tan^1 y}$$

$$\therefore \text{ Required solution is}$$

$$xe^{\tan^1 y} = \int \frac{e^{\tan^{-1}y}e^{\tan^{-1}y}}{1+y^2} dy$$

Put $e^{\tan^{-1}y} = t \Rightarrow e^{\tan^{-1}y} \frac{1}{1+y^2} dy = dt$

$$\therefore \qquad xe^{\tan^{-1}y} = \int t \ dt = \frac{t^2}{2} + c$$

 $2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + k$ ⇒ 282 (b) Given, $\frac{dy}{dx} = \log(x+1)$ $\Rightarrow dy = \log(x+1) dx$ $\Rightarrow \int dy = \int \log(x+1) dx$ $\Rightarrow y = (x+1) \log|x+1| - x + c$ $\begin{array}{ll} \therefore & x = 0, \ y = 3 \\ \therefore & c = 3 \end{array}$ $y = (x + 1)\log|x + 1| - x + 3$:. 283 (d) Given equation is $\frac{d^2y}{dx^2} = \frac{\log x}{x^2}$ On integrating, both sides we get $\int \frac{d^2 y}{dx^2} dx = \int \frac{\log x}{x^2} dx$ $\Rightarrow \frac{dy}{dx} = -\frac{\log x}{x} + \int \frac{1}{x^2} dx + c$ $\Rightarrow \frac{dy}{dx} = -\frac{\log x}{x} - \frac{1}{x} + c$ At x = 1, y = 0 and $\frac{dy}{dx} = -1 \Rightarrow c = 0$ $\therefore \frac{dy}{dx} = -\frac{(\log x + 1)}{x}$ Again on integrating, both sides we get $\int \frac{dy}{dx} dx = -\int \frac{\log x + 1}{x} dx + c_1$ $y = -\frac{1}{2}(\log x)^2 - \log x + c_1$ At x = 1, y = 0 $\Rightarrow c_1 = 0$ $\therefore y = -\frac{1}{2}(\log x)^2 - \log x$ 285 (b) Given equation is $\sin^{-1} x + \sin^{-1} y = c$ (i) On differentiating Eq. (i) w. r. t. x, we get $\frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1-y^2}} \frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = -\frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$ $\Rightarrow \sqrt{1-x^2} \, dy + \sqrt{1-y^2} \, dx = 0$ This is the required differential equation. 286 (d) Given that, $\frac{dy}{dx} = 1 + y^2$ $\Rightarrow \frac{dy}{1+y^2} = dx$ On integrating both sides, we get $\int \frac{dy}{1+y^2} = \int dx$

 $\Rightarrow \tan^{-1} y = x + c$ At x = 0, y = 0, then c = 0At $x = \pi$, y = 0, then $\tan^{-1} 0 = \pi + c \Rightarrow c = -\pi$ $\therefore \tan^{-1} y = x \Rightarrow y = \tan x = \phi(x)$ Therefore, solution becomes $y = \tan x$ But tan x is not continuous function in $(0, \pi)$ So, $\phi(x)$ is not possible in $(0, \pi)$. 287 (c) Let $p = \frac{dy}{dx}$: Given differential equation reduces to $p^2 - xp + y = 0$ Differentiating both sides w.r.t.*x*, we get $2p\frac{dp}{dx} - x\frac{dp}{dx} - p + p = 0$ $\Rightarrow \frac{dp}{dx}(2p-x) = 0$ \Rightarrow Either $\frac{d^2y}{dx^2} = 0$ or $\frac{dy}{dx} = \frac{x}{2}$ $\Rightarrow y = 2x - 4$ will satisfy. 288 (c) Given, y = asin(5x + c) $\Rightarrow \frac{dy}{dx} = 5 \arccos(5x + c)$ $\Rightarrow \quad \frac{d^2y}{dx^2} = -25a\sin(5x+c) = -25y$ 289 (c) Given, $(1 - x^2)\frac{dy}{dx} - xy = 1$ $\Rightarrow \frac{dy}{dx} - \frac{x}{1 - x^2}y = \frac{1}{1 - x^2}$ This is a linear equation, comparing with the equation $\frac{dy}{dx} + Py = Q$ $\Rightarrow P = -\frac{x}{1-x^2}, Q = \frac{1}{1-x^2}$ $\therefore IF = e^{\int P \, dx} = e^{\int \frac{-x}{1-x^2} dx}$ $\Rightarrow \mathrm{IF} = e^{\frac{1}{2}\mathrm{log}(1-x^2)} = \sqrt{1-x^2}$ 290 (c) We have, Slope $= \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{1}{2y} \Rightarrow 2y \, dy = dx$ Integrating both sides, we get $y^2 = x + C$ This passes through (4, 3) $\therefore 9 = 4 + C \Rightarrow C = 5$ So, the equation of the curve is $y^2 = x + 5$ 291 (a) The given differential equation is $\frac{dy}{dx} + y\frac{\sin x}{\cos x} = \frac{1}{\cos x}$ $\therefore IF = e^{\int \frac{\sin x}{\cos x} dx} = e^{\log \sec x} = \sec x$ 292 (b)

Given, $\frac{dy}{dx} + \frac{2x}{1+x^2}$. $y = \frac{1}{(1+x^2)^2}$ $IF = e^{\int \frac{2x}{1+x^2} dx} = e^{\log(1+x^2)} = 1 + x^2$ The complete solution is $y(1+x^2) = \int (1+x^2) \cdot \frac{1}{(1+x^2)^2} \, dx + c$ $v(1 + x^2) = \tan^{-1} x + c$ ⇒ 293 (b) : The order of the differential equation is the order of highest derivative in the differential equation. : The second order differential equation is in option (b) ie, $y'y'' + y = \sin x$ 294 (c) Given, $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{y}$ $\Rightarrow \int \frac{y}{\sqrt{1-y^2}} \, dy = \int dx$ $\Rightarrow -\sqrt{1-y^2} = x + c$ $\Rightarrow (x+c)^2 + y^2 = 1$ \therefore Centre (-*c*,0), radius=1 295 (c) Given, $\frac{dy}{dx} + y = 2e^{2x}$ \therefore IF = $e^{\int 1 dx} = e^x$ ∴ Required solution is $ye^{x} = 2\int e^{2x} e^{x} dx = \frac{2}{3}e^{3x} + c$ $\Rightarrow \qquad y = \frac{2}{2}e^{2x} + ce^{-x}$ 296 (c) Given, $y = \sin^{-1} x$ $\Rightarrow \qquad \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$...(i) $\Rightarrow \qquad \frac{d^2 y}{dx^2} = \frac{0 - \frac{1}{2} \cdot \frac{(-2x)}{\sqrt{1 - x^2}}}{(\sqrt{1 - x^2})^2}$ $(1-x^2) \frac{d^2y}{dx^2} = x \frac{dy}{dx}$[from Eq.(i)] ⇒ 297 (a) Given, $\frac{dy}{dx} = 2\cos x - y\cos x \operatorname{cosec} x$ $\Rightarrow \qquad \frac{dy}{dx} + y \cot x = 2 \cos x$ $\therefore \quad \text{IF} = e^{\int \cot x \, dx} = e^{\log(\sin x)} = \sin x$ \therefore Solution is $y \sin x = \int 2 \cos x \sin x \, dx + c$ $y \sin x = \int \sin 2x \, dx + c$ \Rightarrow $\Rightarrow y \sin x = \frac{-\cos 2x}{2} + c$ At $x = \frac{\pi}{4}$, $y = \sqrt{2}$

$$\sqrt{2} \sin \frac{\pi}{4} = \frac{-\cos 2(\pi/4)}{2} + c$$

$$\Rightarrow c = 1$$

$$\therefore y \sin x = -\frac{1}{2} \cos 2x + 1$$

$$\Rightarrow y = -\frac{1}{2} \cdot \frac{\cos 2x}{\sin x} + \csc x$$

$$\Rightarrow y = -\frac{1}{2} \cdot \csc x + \sin x$$

$$298 (b)$$

$$Given, \frac{\tan^{-1}x}{1+x^2} dx + \frac{y}{1+y^2} dy = 0$$

$$\Rightarrow \frac{(\tan^{-1}y)^2}{2} + \frac{1}{2} \log(1+y^2) = \frac{c}{2}$$

$$[integrating]$$

$$\Rightarrow (\tan^{-1}x)^2 + \log(1+y^2) = c$$

$$299 (d)$$

$$Given, \frac{dy}{dx} - y \tan x = -2 \sin x$$

$$\therefore IF = e^{-\int \tan x \, dx} = \cos x$$

$$\therefore Solution is$$

$$y(\cos x) = \int -2 \sin x \cos x \, dx + c =$$

$$-\int \sin 2x \, dx + c$$

$$\Rightarrow y \cos x = \frac{\cos 2x}{2} + c$$

$$300 (a)$$

$$Given, \frac{dy}{dt} - \left(\frac{1}{1+t}\right)y = \frac{1}{(1+t)} \text{ and } y(0) = -1$$

$$\therefore IF = e^{\int -(\frac{t}{1+t})dt} = e^{-\int(1-\frac{1}{1+t})dt}$$

$$= e^{-t\log(1+t)} = e^{-t} (1+t)$$

$$\therefore \text{ Required solution is }$$

$$ye^{-t} (1+t) = \int \frac{1}{1+t} e^{-t} (1+t) dt + c$$

$$= \int e^{-t} dt + c$$

$$\Rightarrow ye^{-t} (1+t) = -e^{-t} + c$$

$$\text{Since, } y(0) = -1$$

$$\Rightarrow c = 0$$

$$\therefore y = -\frac{1}{(1+t)}$$

$$\Rightarrow y(1) = -\frac{1}{2}$$

$$301 (d)$$

$$\text{ The equation of all the straight lines passing through origin (0, 0) is$$

$$y = (\frac{dy}{dx})x \quad (\because m = \frac{dy}{dx})$$

$$302 (a)$$

$$Given equation is $\frac{dy}{dx} = \frac{x \log x^2 + x}{\sin y + \cos y}$$$

 $\Rightarrow (\sin y + y \cos y) dy = (x \log x^2 + x) dx$

On integrating both sides, we get $\int (\sin y + y \cos y) dy = \int (x \log x^2 + x) dx$ $\Rightarrow -\cos y + y\sin y$ $+\cos y$ $=\frac{x^2}{2}\log x^2$ $-\int \frac{x^2}{2x^2} \frac{1}{x^2} 2x \, dx + \int x \, dx + c$ $\Rightarrow y \sin y = \frac{x^2}{2} 2 \log x - \int x \, dx + \int x \, dx + c$ $\Rightarrow y \sin y = x^2 \log x + c$ 303 (d) Given, y(1-x)dx = xdy $\Rightarrow \qquad \left(\frac{1}{x} - 1\right) dx = \frac{1}{v} dy$ $\Rightarrow \qquad \log x - x = \log y - \log c$ [integrating] $\Rightarrow \qquad x = \log \frac{xc}{y}$ $\Rightarrow ye^x = xc$ 304 **(b)** We have, $x\frac{dy}{dx} + y = x e^x$ $\Rightarrow x \, dy + y \, dx = x \, e^x dx$ $\Rightarrow d(xy) = x e^{x} dx$ $\Rightarrow \int 1 \cdot d(xy) = \int x \ e^x \ dx \Rightarrow xy = e^x(x-1) + C$ 305 (c) Differential equation is $100 \ \frac{d^2 y}{dx^2} - 20 \ \frac{dy}{dx} + y = 0$ Here Auxiliary equation is $(100m^2 - 20m + 1)y = 0$ $(10m - 1)^2 y = 0$ \Rightarrow $m = \frac{1}{10}, \frac{1}{10}$ ⇒ Hence the required solution is $y = (c_1 + c_2 x)e^{\frac{1}{10}}$ 306 (d) We have, $y\frac{dy}{dx} = 2x \Rightarrow y \, dy = 2x \, dx$ On integrating, we obtain $\frac{y^2}{2} = x^2 + C \Rightarrow y^2 - 2x^2 = 2C$ Clearly, it represents a hyperbola 307 (d) $\therefore 2(y+3) - xy \frac{dy}{dx} = 0$

$$\Rightarrow 2(y+3) = xy \frac{dy}{dx}$$

$$\Rightarrow \int \frac{2}{x} dx = \int \frac{y}{y+3} dx$$

$$\Rightarrow 2 \log x = y - 3 \log(y+0) + c$$

Put $x = 1$ and $y = -2$

$$\Rightarrow 2 = c$$

$$\therefore x^2(y+3)^3 = e^{y+2}$$

308 (d)

We have, $\frac{dy}{dx} - y = 1$ $\Rightarrow \frac{dy}{dx} = y + 1$ $\Rightarrow \frac{1}{y+1}dy = dx$ $\Rightarrow \int \frac{1}{y+1} dy = \int dx$ $\Rightarrow \log(y+1) = x + C$... (i) It is given that y(0) = 1 i.e. y = 1 when x = 0 $\therefore \log 2 = C$ Substituting the value of C in (i), we get $\log(y+1) = x + \log 2$ $\Rightarrow y + 1 = 2e^x \Rightarrow y = 2e^x - 1$ 309 **(c)**

Given differential equation is

$$2x \frac{dy}{dx} - y = 3$$

$$\Rightarrow 2x \frac{dy}{dx} = 3 + y$$

$$\Rightarrow \int \frac{dy}{3 + y} = \int \frac{dx}{2x}$$

$$\Rightarrow \log(3 + y) = \frac{1}{2}\log x + \log c$$

$$\Rightarrow \log(3 + y) = \log c \cdot \sqrt{x}$$

$$\Rightarrow 3 + y = c \cdot \sqrt{x}$$

$$\Rightarrow (3 + y)^2 = c^2 x$$

Which is an equation of a parabola.

DCAM classes