Single Correct Answer Type

1. Let F denotes the family of ellipses whose centre is at the origin and major axis is the y-axis. Then, equation of the family F is
a) $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}\left(x \frac{d y}{d x}-y\right)=0$
b) $x y \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}\left(x \frac{d y}{d x}-y\right)=0$
c) $x y \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}\left(x \frac{d y}{d x}-y\right)=0$
d) $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}\left(x \frac{d y}{d x}-y\right)=0$
2. The order and degree of the differential equation $\rho=\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}{\frac{d^{2} y}{d x^{2}}}$ are respectively
a) 2,2
b) 2,3
c) 2,1
d) None of these
3. The differential equation of the family of curves $y=e^{2 x}(a \cos x+b \sin x)$, where a and b are arbitrary constants, is given by
a) $y_{2}-4 y_{1}+5 y=0$
b) $2 y_{2}-y_{1}+5 y=0$
c) $y_{2}+4 y_{1}-5 y=0$
d) $y_{2}-2 y_{1}+5 y=0$
4. The solution of $\frac{d y}{d x}=\frac{a x+g}{b y+f}$ represents a circle when
a) $a=b$
b) $a=-b$
c) $a=-2 b$
d) $a=2 b$
5. Solution of the differential equation $\frac{d y}{d x}+\frac{y}{x}=x^{2}$ is
a) $y=\frac{x^{2}}{4}+c x^{-2}$
b) $y=x^{-1}+c x^{-3}$
c) $y=\frac{x^{3}}{4}+c x^{-1}$
d) $x y=x^{2}+c$
6. The differential equation satisfied by the family of curves $y=a x \cos \left(\frac{1}{x}+b\right)$, where a and b are parameters, is
a) $x^{2} y_{2}+y=0$
b) $x^{4} y_{2}+y=0$
c) $x y_{2}-y=0$
d) $x^{4} y_{2}-y=0$
7. The solution of the differential equation $y d x+\left(x+x^{2} y\right) d y=0$ is
a) $-\frac{1}{x y}=c$
b) $-\frac{1}{x y}+\log y=c$
c) $\frac{1}{x y}+\log y=c$
d) $\log y=c x$
8. The degree of the differential equation $2\left(\frac{d^{2} y}{d x^{2}}\right)+3\left(\frac{d y}{d x}\right)^{2}+4 y^{3 .}=x$, is
a) 0
b) 1
c) 2
d) 3
9. The differential equation cot $y d x=x d y$ has a solution of the form
a) $y=\cos x$
b) $x=c \sec y$
c) $x=\sin y$
d) $y=\sin x$
10. The solution of the differential equation $\left(3 x y+y^{2}\right) d x+\left(x^{2}+x y\right) d y=0$ is
a) $x^{2}\left(2 x y+y^{2}\right)=c^{2}$
b) $x^{2}\left(2 x y-y^{2}\right)=c^{2}$
c) $x^{2}\left(y^{2}-2 x y\right)=c^{2}$
d) None of these
11. The order and degree of the differential equation $\sqrt{\frac{d y}{d x}}-4 \frac{d y}{d x}-7 x=0$ are
a) 1 and $1 / 2$
b) 2 and 1
c) 1 and 1
d) 1 and 2
12. Solution of the differential equation $\cos x d y=y(\sin x-y) d x, 0<x<\frac{\pi}{2}$, is
a) $\sec x=(\tan x+c) y$
b) $y \sec x=\tan x+c$
c) $y \tan x=\sec x+c$
d) $\tan x=(\sec x+x) y$
13. If $x=A \cos 4 t+B \sin 4 t$, then $\frac{d^{2} x}{d t^{2}}$ is equal to
a) $-16 x$
b) $16 x$
c) x
d) $-x$
14. If $\frac{d y}{d x}+y=2 e^{2 x}$, then y is equal to
a) $c e^{x}+\frac{2}{3} e^{2 x}$
b) $(1+x) e^{-x}+\frac{2}{3} e^{2 x}+c$
c) $c e^{-x}+\frac{2}{3} e^{2 x}$
d) $e^{-x}+\frac{2}{3} e^{2 x}+c$
15. The solution of differential equation $\frac{d t}{d x}=\frac{t\left(\frac{d}{d x}(\mathrm{~g}(x))\right)-t^{2}}{\mathrm{~g}(x)}$ is
a) $t=\frac{\mathrm{g}(x)+c}{x}$
b) $t=\frac{g(x)}{x}+c$
c) $t=\frac{\mathrm{g}(x)}{x+c}$
d) $t=\mathrm{g}(x)+x+c$
16. The differential equation of all circles of radius a is of order
a) 2
b) 3
c) 4
d) None of these
17. The solution of the differential equation $x y^{2} d y-\left(x^{3}+y^{3}\right) d x=0$ is
a) $y^{3}=3 x^{3}+c$
b) $y^{3}=3 x^{3} \log (c x)$
c) $y^{3}=3 x^{3}+\log (c x)$
d) $y^{3}+3 x^{3}=\log (c x)$
18. The solution of the differential equation $x \frac{d y}{d x}+y=x \cos x+\sin x$, given that $y=1$ when $x=\frac{\pi}{2}$, is
a) $y=\sin x-\cos x$
b) $y=\cos x$
c) $y=\sin x$
d) $y=\sin x+\cos x$
19. The differential equation obtained by eliminating the arbitrary constants a and b from $x y=a e^{x}+b e^{-x}$ is
a) $x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-x y=0$
b) $\frac{d^{2} y}{d x^{2}}+2 y \frac{d y}{d x}-x y=0$
c) $x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+x y=0$
d) $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-x y=0$
20. The general solution of the differential equation $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=2 e^{3 x}$ is given by
a) $y=\left(c_{1}+c_{2} x\right) e^{x}+\frac{e^{3 x}}{8}$
b) $y=\left(c_{1}+c_{2} x\right) e^{-x}+\frac{e^{-3 x}}{8}$
c) $y=\left(c_{1}+c_{2} x\right) e^{-x}+\frac{e^{3 x}}{8}$
d) $y=\left(c_{1}+c_{2} x\right) e^{x}+\frac{e^{-3 x}}{8}$
21. The solution of the differential equation $(2 y-1) d x-(2 x+3) d y=0$, is
a) $\frac{2 x-1}{2 y+3}=C$
b) $\frac{2 x+3}{2 y-1}=C$
c) $\frac{2 x-1}{2 y-1}=C$
d) $\frac{2 y+1}{2 x-3}=C$
22. A curve passes through the point $(0,1)$ and the gradient at (x, y) on it is $y(x y-1)$. The equation of the curve is
a) $y(x-1)=1$
b) $y(x+1)=1$
c) $x(y+1)=1$
d) $x(y-1)=1$
23. Solution of the differential equation $x d y-y d x=0$ represents a
a) Parabola
b) Circle
c) Hyperbola
d) Straight line
24. If $\frac{d y}{d x}=1+x+y+x y$ and $y(-1)=0$, then the function y is
a) $e^{(1-x)^{2} / 2}$
b) $e^{(1+x)^{2} / 2}-1$
c) $\log _{e}(1+x)-1$
d) $(1+x)$
25. An integrating factor of the differential equation $x \frac{d y}{d x}+y \log x=x e^{x} x^{-\frac{1}{2} \log x},(x>0)$, is
a) $x^{\log x}$
b) $(\sqrt{x})^{\log x}$
c) $(\sqrt{e})^{(\log x)^{2}}$
d) $e^{x^{2}}$
26. The differential equation $y \frac{d y}{d x}+x=c$ represents
a) A family of hyperbolas
b) A family of circles whose centres are on the y-axis
c) A family of parabolas
d) A family of circles whose centres are on the x-axis
27. If $y^{\prime}=\frac{x-y}{x+y}$, then its solution is
a) $y^{2}+2 x y-x^{2}=c$
b) $y^{2}+2 x y+x^{2}=c$
c) $y^{2}-2 x y-x^{2}=c$
d) $y^{2}-2 x y+x^{2}=c$
28. The order of differential equation whose general solution is given by $y=c_{1} e^{2 x+c_{2}}+c_{3} e^{x}+c_{4} \sin \left(x+c_{5}\right)$ is
a) 5
b) 4
c) 3
d) 2
29. The solution of the differential equation $\frac{x}{x^{2}+y^{2}} d y=\left(\frac{y}{x^{2}+y^{2}}-1\right) d x$, is
a) $y=x \cot (C-x)$
b) $\cos ^{-1} \frac{y}{x}=(-x+C)$
c) $y=x \tan (C-x)$
d) $\frac{y^{2}}{x^{2}}=x \tan (C-x)$
30. If $d x+d y=(x+y)(d x-d y)$, then $\log (x+y)$ is equal to
a) $x+y+c$
b) $x+2 y+c$
c) $x-y+c$
d) $2 x+y+c$
31. The solution of the equation $y-x \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)$ is
a) $y=c(x+a)(1-a y)$
b) $y=c(x+a)(1+a y)$
c) $y=c(x-a)(1+a y)$
d) None of these
32. The order and degree of the differential equation $\left(1+3 \frac{d y}{d x}\right)^{2 / 3}=4 \frac{d^{3} y}{d x^{3}}$ are
a) $\left(1, \frac{2}{3}\right)$
b) $(3,1)$
c) $(3,3)$
d) $(1,2)$
33. The equation of one of the curves whose slope at any point is equal to $y+2 x$ is
a) $y=2\left(e^{x}+x-1\right)$
b) $y=2\left(e^{x}-x-1\right)$
c) $y=2\left(e^{x}-x+1\right)$
d) $y=2\left(e^{x}+x+1\right)$
34. The degree of the differential equation of all curves having normal of constant length c, is
a) 1
b) 3
c) 4
d) None of these
35. The solution of $\frac{d y}{d x}+1=\operatorname{cosec}(x+y)$ is
a) $\cos (x+y)+x=c$
b) $\cos (c+y)=c$
c) $\sin (x+y)+x=c$
d) $\sin (x+y)+\sin (x+y)=c$
36. The solution of the differential equation $\frac{d y}{d x}=e^{3 x-2 y}+x^{2} e^{-2 y}$, is
a) $e^{2 y}=e^{3 x}+x^{3}+c$
b) $\frac{1}{2} e^{2 y}=\frac{1}{3}\left(e^{3 x}+x^{3}\right)+c$
c) $\frac{1}{2} e^{2 y}=\frac{1}{3}\left(e^{3 x}+x^{3}\right)+c$
d) $e^{2 y}=e^{3 x}+x^{3}+c$
37. The differential equation whose solution is $(x-h)^{2}+(y-k)^{2}=a^{2}$ is (a is a constant)
a) $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=a^{2} \frac{d^{2} y}{d x^{2}}$
b) $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=a^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
c) $\left[1+\left(\frac{d y}{d x}\right)\right]^{3}=a^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
d) None of these
38. The degree and order of the differential equation whose solution is a parabola whose axis is x axis, are
a) 1,1
b) 1,2
c) 1,0
d) 2,1
39. General solution of the differential equation $\frac{d y}{d x}=\frac{x+y+1}{x+y-1}$ is given by
a) $x+y=\log |x+y|+c$
b) $x-y=\log |x+y|+c$
c) $y=x+\log |x+y|+c$
d) $y=x \log |x+y|+c$
40. Integral curve satisfying $y^{\prime}=\frac{x^{2}+y^{2}}{x^{2}-y^{2}}, y(1)=2$ has the slope at the point $(1,0)$ of the curve is equal to
a) $-5 / 3$
b) -1
c) 1
d) $5 / 3$
41. The slope at any point of a curve $y=f(x)$ is given by $\frac{d y}{d x}=3 x^{2}$ and it passes through ($-1,1$). The equation of the curve is
a) $y=x^{3}+2$
b) $y=-x^{3}-2$
c) $y=3 x^{3}+4$
d) $y=-x^{3}+2$
42. The solution of the differential equation $(x+y)^{2} \frac{d y}{d x}=a^{2}$ is
a) $(x+y)^{2}=\frac{a^{2} x}{2}+c$
b) $(x+y)^{2}=a^{2} x+c$
c) $(x+y)^{2}=2 a^{2} x+c$
d) None of these
43. $y=c x-c^{2}$, is the general solution of the differential equation
a) $\left(y^{\prime}\right)^{2}-x y^{\prime}+y=0$
b) $y^{\prime \prime}=0$
c) $y^{\prime}=c$
d) $\left(y^{\prime}\right)^{2}+x y^{\prime}+y=0$
44. The solution of $\frac{d v}{d t}+\frac{k}{m} v=-g$ is
a) $v=c e^{-\frac{k}{m} t}-\frac{m g}{k}$
b) $v=c-\frac{m g}{k} e^{-\frac{k}{m} t}$
c) $v e^{-\frac{k}{m} t}=c-\frac{m g}{k}$
d) $v e^{\frac{k}{m} t}=c-\frac{m g}{k}$
45. The solution of $\frac{d y}{d x}+y \tan x=\sec x$ is
a) $y \sec x=\tan x+c$
b) $y \tan x=\sec x+c$
c) $\tan x=y \tan x+c$
d) $x \sec x=\tan y+c$
46.

If $\frac{d y}{d x}=\frac{y+x \tan \frac{y}{x}}{x}$, then $\sin \frac{y}{x}$ is equal to
a) $c x^{2}$
b) $c x$
c) $c x^{3}$
d) $c x^{4}$
47. The differential equation of the family of curve $y^{2}=4 a(x+1)$, is
a) $y^{2}=4 \frac{d y}{d x}\left(x+\frac{d y}{d x}\right)$
b) $2 y=\frac{d y}{d x}+4 a$
c) $y^{2}\left(\frac{d y}{d x}\right)^{2}+2 x y \frac{d y}{d x}-y^{2}=0$
d) $y^{2} \frac{d y}{d x}+4 y=0$
48. The solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is
a) $e^{x}+e^{y}=c$
b) $e^{x}-e^{y}=c$
c) $e^{x}+e^{-y}=c$
d) $e^{x}-e^{-y}=c$
49. The solution of differential equation $t=1+(t y) \frac{d y}{d t}+\frac{(t y)^{2}}{2!}\left(\frac{d y}{d x}\right)^{2}+\ldots \infty$ is
a) $y= \pm \sqrt{(\log t)^{2}+c}$
b) $t y=t^{y}+c$
c) $y=\log t+c$
d) $y=(\log t)^{2}+c$
50. The solution of $x d y-y d x+x^{2} e^{x} d x=0$ is
a) $\frac{y}{x}+e^{x}=c$
b) $\frac{x}{y}+e^{x}=c$
c) $x+e^{y}=c$
d) $y+e^{x}=c$
51. The solution of $\frac{d y}{d x}+2 y \tan x=\sin x$, is
a) $y \sec ^{3} x=\sec ^{2} x+C$
b) $y \sec ^{2} x=\sec x+C$
c) $y \sin x=\tan x+C$
d) None of these
52. The equation of the curve passing through the origin and satisfying the differential equation (1+ x^{2}) $\frac{d y}{d x}+$ $2 x y=4 x^{2}$ is
a) $\left(1+x^{2}\right) y=x^{3}$
b) $2\left(1+x^{2}\right) y=3 x^{3}$
c) $3\left(1+x^{2}\right) y=4 x^{3}$
d) None of these
53. The solution of the differential equation $\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}$ is
а) $\begin{aligned} & y=e^{x-y}-x^{2} e^{-y}+ \\ & c\end{aligned}$
b) $e^{y}-e^{x}=\frac{1}{3} x^{3}+c$
c) $e^{x}+e^{y}=\frac{1}{3} x^{3}+c$
d) $e^{x}-e^{y}=\frac{1}{3} x^{3}+c$
54. The solution of the equation $x^{2} \frac{d^{2} y}{d x^{2}}=\log x$ when $x=1, y=0$ and $\frac{d y}{d x}=-1$ is
a) $\frac{1}{2}(\log x)^{2}+\log x$
b) $\frac{1}{2}(\log x)^{2}-\log x$
c) $-\frac{1}{2}(\log x)^{2}+\log x$
d) $-\frac{1}{2}(\log x)^{2}-\log x$
55. Observe the following statements

A: Interating factor of $\frac{d y}{d x}+y=x^{2}$ is e^{x}
R : Integrating factor of $\frac{d y}{d x}+P(x) y=Q(x)$ is $e^{\int P(x) d x}$
Then, the true statement among the following is
a) A is true, R is false
b) A is false, R is true
c) A is true, R is true, $R \Rightarrow A$
d) A is false, R is false
56. The differential equation of the family of ellipse having major and minor axes respectively along the x and y-axes and the minor axis is equal to half of the major axis, is
a) $x y^{\prime}-4 y=0$
b) $4 x y^{\prime}+y=0$
c) $4 y y^{\prime}+x=0$
d) $y y^{\prime}+4 x=0$
57. The differential equation of system of concentric circles with centre $(1,2)$ is
a) $(x-2)+(y-1) \frac{d y}{d x}=0$
b) $(x-1)+(y-2) \frac{d y}{d x}=0$
c) $(x+1) \frac{d y}{d x}+(y-2)=0$
d) $(x+2) \frac{d y}{d x}+(y-1)=0$
58. The equation of family of a curve is $y^{2}=4 a(x+a)$ then differential equation of the family is
a) $y=y^{\prime}+x$
b) $y=y^{\prime \prime}+x$
c) $y=2 y^{\prime} x+y y^{\prime 2}$
d) $y^{\prime \prime}+y^{\prime}+y^{2}=0$
59. $y=A e^{x}+B e^{2 x}+C e^{3 x}$ satisfies the differential equation
a) $y^{\prime \prime \prime}-6 y^{\prime}+11 y^{\prime}-6 y=0$
b) $y^{\prime \prime \prime}+6 y^{\prime \prime}+11 y^{\prime}+6 y=0$
c) $y^{\prime \prime \prime}+6 y^{\prime \prime}-11 y^{\prime}+6 y=0$
d) $y^{\prime \prime \prime}-6 y^{\prime \prime}-11 y^{\prime}+6 y=0$
60. The differential equation of all parabolas whose axes are parallel to y -axis, is
a) $\frac{d^{3} y}{d x^{3}}=0$
b) $\frac{d^{2} x}{d y^{2}}=c$
c) $\frac{d^{3} y}{d x^{3}}+\frac{d^{2} x}{d y^{2}}=0$
d) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=c$
61. The differential equation of all circles which passes through the origin and whose centre lies on y axis, is
a) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}-2 x y=0$
b) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}+2 x y=0$
c) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}-x y=0$
d) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}+x y=0$
62. The equation of the curve whose tangent at any point (x, y) makes an angle $\tan ^{-1}(2 x+3 y)$ with x-axis and which passes through $(1,2)$ is
a) $6 x+9 y+2=26 e^{3(x-1)}$
b) $6 x-9 y+2=26 e^{3(x-1)}$
c) $6 x+9 y-2=26 e^{3(x-1)}$
d) $6 x-9 y-2=26 e^{3(x-1)}$
63. The solution of the differential equation $\frac{d y}{d x}-\frac{\tan y}{x}=\frac{\tan y \sin y}{x^{2}}$ is
a) $\frac{x}{\sin y}+\log x=c$
b) $\frac{y}{\sin x}+\log x=c$
c) $\log x+x=c$
d) $\log x+y=c$
64. The order and degree of the differential equation $5\left(\frac{d^{2} y}{d x^{2}}\right)^{5}+4\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+\left(\frac{d y}{d x}\right)^{3}+2 y+x^{3}=0$ are respectively
a) $(2,5)$
b) $(3,2)$
c) $(1,3)$
d) $(2,3)$
65. The order and degree of the differential equation $y=\frac{d y}{d x}+\sqrt{a^{2}\left(\frac{d y}{d x}\right)^{2}+b^{2}}$ is
a) 3,1
b) 1,2
c) 2,1
d) 1,3
66. The differential equation of all 'Simple Harmonic Motions' of given period $\frac{2 \pi}{n}$, is
a) $\frac{d^{2} x}{d t^{2}}+n x=0$
b) $\frac{d^{2} x}{d t^{2}}+n^{2} x=0$
c) $\frac{d^{2} x}{d t^{2}}-n^{2} x=0$
d) $\frac{d^{2} x}{d t^{2}}+\frac{1}{n^{2}} x=0$
67. Solution of the differential equation $\frac{d y}{x}+\frac{d y}{y}=0$, is
a) $\log x=\log y$
b) $\frac{1}{x}+\frac{1}{y}=c$
c) $x+y=c$
d) $x y=c$
68. The differential equation of all non-vertical lines in a plane is
a) $\frac{d^{2} y}{d x^{2}}=0$
b) $\frac{d^{2} x}{d y^{2}}=0$
c) $\frac{d y}{d x}=0$
d) $\frac{d x}{d y}=0$
69. The solution of $\frac{d y}{d x}=\frac{y^{2}}{x y-x^{2}}$ is
a) $e^{y / x}=k x$
b) $e^{y / x}=k y$
c) $e^{x / y}=k x$
d) $e^{-y / x}=k y$
70. The order and degree of the differential equation $\left(1+4 \frac{d y}{d x}\right)^{2 / 3}=4 \frac{d^{2} y}{d x^{2}}$ are respectively
a) $1, \frac{2}{3}$
b) 3,2
c) 2,3
d) $2, \frac{2}{3}$
71. The solution of the differential equation $y^{\prime}=1+x+y^{2}+x y^{2}, y(0)=0$ is
a) $y^{2}=\exp \left(x+\frac{x^{2}}{2}\right)-1$
b) $y^{2}=1+C \exp \left(x+\frac{x^{2}}{2}\right)$
c) $y=\tan \left(C+x+x^{2}\right)$
d) $y=\tan \left(x+\frac{x^{2}}{2}\right)$
72. Solution of the differential equation $\frac{d y}{d x}+\frac{y}{x}=\sin x$ is
a) $x(y+\cos x)=\sin x+c$
b) $x(y-\cos x)=\sin x+c$
c) $x(y \cos x)=\sin x+c$
d) $x(y-\cos x)=\cos x+c$
73. The integrating factor of the differential equation $(y \log y) d x=(\log y-x) d y$ is
a) $\frac{1}{\log y}$
b) $\log (\log y)$
c) $1+\log y$
d) $\log y$
74. The family of curves $y=e^{a \sin x}$, where a is an arbitrary constant, is represented by the differential equation
a) $\log y=\tan x \frac{d y}{d x}$
b) $y \log y=\tan x \frac{d y}{d x}$
c) $y \log y=\sin x \frac{d y}{d x}$
d) $\log y=\cos x \frac{d y}{d x}$
75. The order of differential equation of all parabolas having directrix parallel to x-axis is
a) 3
b) 1
c) 4
d) 2
76. The solution of the differential equation $x d y-y d x=\sqrt{x^{3}+y^{2}} d x$, is
a) $x+\sqrt{x^{2}+y^{2}}=C x^{2}$
b) $y-\sqrt{x^{2}+y^{2}}=C x$
c) $x-\sqrt{x^{2}+y^{2}}=C x$
d) $y+\sqrt{x^{2}+y^{2}}=C x^{2}$
77. The integral factor of equation $\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=x^{2}-1$ is
a) $x^{2}+1$
b) $\frac{2 x}{x^{2}+1}$
c) $\frac{x^{2}-1}{x^{2}+1}$
d) None of these
78. The difference equation of the family of circles with fixed radius r and with centre on y-axis is
a) $y^{2}\left(1+y_{1}^{2}\right)=r^{2} y_{1}^{2}$
b) $y^{2}=r^{2} y_{1}+y_{1}^{2}$
c) $x^{2}\left(1+y_{1}^{2}\right)=r^{2} y_{1}^{2}$
d) $x^{2}=r^{2} y_{1}+y_{1}^{2}$
79. The differential equation of the family $y=a e^{x}+b x e^{x}+c x^{2} e^{x}$ of curves, where a, b, c are arbitrary constants, is
a) $y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0$
b) $y^{\prime \prime \prime}+3 y^{\prime \prime}-3 y^{\prime}-y=0$
c) $y^{\prime \prime \prime}-3 y^{\prime \prime}-3 y^{\prime}+y=0$
d) $y^{\prime \prime \prime}-3 y^{\prime}+3 y^{\prime}-y=0$
80. $y=a e^{m x}+b e^{-m x}$ satisfies which of the following differential equations
a) $\frac{d y}{d x}-m y=0$
b) $\frac{d y}{d x}+m y=0$
c) $\frac{d^{2} y}{d x^{2}}-m^{2} y=0$
d) None of these
81. The order and degree of the differential equation $\sqrt{\sin x}(d x+d y)=\sqrt{\cos x}(d x-d y)$ are
a) $(1,2)$
b) $(2,2)$
c) $(1,1)$
d) $(2,1)$
82. The order of the differential equation of all circles of radius r, having centre on y-axis and passing through the origin, is
a) 1
b) 2
c) 3
d) 4
83. An integrating factor of the differential equation $\left(1+y+x^{2} y\right) d x+\left(x+x^{3}\right) d y=0$ is
a) $\log x$
b) x
c) e^{x}
d) $\frac{1}{x}$
84. The solution of $\frac{d y}{d x}=\left(\frac{y}{x}\right)^{1 / 3}$ is
a) $x^{2 / 3}+y^{2 / 3}=c$
b) $x^{1 / 3}+y^{1 / 3}=c$
c) $y^{2 / 3}-x^{2 / 3}=c$
d) $y^{1 / 3}-x^{1 / 3}=c$
85. The differential equation of the curve for which the initial ordinate of any tangent is equal to the corresponding subnormal, is
a) Non-linear
b) Homogeneous
c) In variable separable form
d) None of the above
86. The solution of differential equation $y-x \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)$ is
a) $(x+a)(x+a y)=c y$
b) $(x+a)(1-a y)=c y$
c) $(x+a)(1-a y)=-c y$
d) None of these
87. The equation of family of curves for which the length of the normal is equal to the radius vector, is
a) $y^{2} \mp x^{2}=k^{2}$
b) $y \pm x=k$
c) $y^{2}=k x$
d) None of these
88. The equation of the curve in which the portion of y-axis cut off between the origin and the tangent varies as the cube of the abscissa of the point of contact is
a) $y=\frac{k x^{3}}{3}+c x$
b) $y=-\frac{k x^{2}}{2}+c$
c) $y=-\frac{k x^{3}}{2}+c x$
$y=\frac{k x^{3}}{3}+\frac{c x^{2}}{2}$
d) (k is constant of proportionality)
(where c is arbitrary constant)
89. The solution of differential equation $(\sin x+\cos x) d y+(\cos x-\sin x) d x=0$ is
a) $e^{x}(\sin x+\cos x)+c=0$
b) $e^{y}(\sin x+\cos x)=c$
c) $e^{y}(\cos x-\sin x)=c$
d) $e^{x}(\sin x-\cos x)=c$
90. A particles moves in a straight line with a velocity given by $\frac{d x}{d t}=x+1$ (x is the distance described). The time taken by a particle to traverse a distance of 99 metres is
a) $\log _{10} e$
b) $2 \log _{e} 10$
c) $2 \log _{10} e$
d) $\frac{1}{2} \log _{10} e$
91. The differential equation of all parabolas having their axis of symmetry coinciding with the axis of X, is
a) $y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0$
b) $x \frac{d^{2} x}{d y^{2}}+\left(\frac{d x}{d y}\right)^{2}=0$
c) $y \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$
d) None of these
92. The solution of the differential equation $\frac{d y}{d x}=\frac{x y+y}{x y+x}$ is
a) $x+y=\log \left(\frac{c y}{x}\right)$
b) $x+y=\log (c x y)$
c) $x-y=\log \left(\frac{c x}{y}\right)$
d) $y-x=\log \left(\frac{c x}{y}\right)$
93. Observe the following statements.
I. IF $d y+2 x y d x=2 e^{-x^{2}} d x$, then $y e^{x^{2}}=2 x+c$
II.IF $y e^{x^{2}}-2 x=c$, then $d x=\left(2 e^{-x^{2}}-2 x y\right) d y$

Which is/are correct statements?
a) Both I and II are true
b) Neither I nor II is true
c) I is true, II is false
d) I is false, II is true
94. The degree of the differential equation corresponding to the family of curves $y=a(x+a)^{2}$, where a is an arbitrary constant is
a) 1
b) 2
c) 3
d) None of these
95. The order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}=\sqrt[3]{1-\left(\frac{d y}{d x}\right)^{4}}$ are respectively
a) 2,3
b) 3,2
c) 2,4
d) 2,2
96. Solution of differential equation $\sec x d y-\operatorname{cosec} y d x=0$ is
a) $\cos x+\sin y=c$
b) $\sin x+\cos y=c$
c) $\sin y-\cos x=c$
d) $\cos y-\sin x=c$
97. The solution of the differential equation $\frac{d y}{d x}=\frac{x-2 y+1}{2 x-4 y}$ is
a) $(x-2 y)^{2}+2 x=c$
b) $(x-2 y)^{2}+x=c$
c) $(x-2 y)+2 x^{2}=c$
d) $(x-2 y)+x^{2}=c$
98. The differential equation of all circles in the first quadrant which touch the coordinate axes is of order
a) 1
b) 2
c) 3
d) None of these
99. The solution of the differential equation $\frac{d y}{d x}=\frac{x+y}{x}$ satisfying the condition $y(1)=1$ is
a) $y=x \log x+x$
b) $y=\log x+x$
c) $y=x \log x+x^{2}$
d) $y=x e^{(x-1)}$
100. The slope of the tangent at (x, y) to a curve passing through a point $(2,1)$ is $\frac{x^{2}+y^{2}}{2 x y}$, then the equation of the curve is
a) $2\left(x^{2}-y^{2}\right)=3 x$
b) $2\left(x^{2}-y^{2}\right)=6 y$
c) $x\left(x^{2}-y^{2}\right)=6$
d) $x\left(x^{2}+y^{2}\right)=10$
${ }^{101 .}$ The order and degree of the differential equation $\sqrt{y+\frac{d^{2} y}{d x^{2}}}=x+\left(\frac{d y}{d x}\right)^{3 / 2}$ are
a) 2,2
b) 2,1
c) 1,2
d) 2,3
102. The solution of $\frac{d y}{d x}+y=e^{x}$ is
a) $2 y=e^{2 x}+c$
b) $2 y e^{x}=e^{2}+c$
c) $2 y e^{x}=e^{2 x}+c$
d) $2 y e^{2 x}=2 e^{x}+c$
103. If $\phi(x)=\phi^{\prime}(x)$ and $\phi(1)=2$, then $\phi(3)$ equals
a) e^{2}
b) $2 e^{2}$
c) $3 e^{2}$
d) $2 e^{3}$
104. The general solution of the differential equation $\frac{d y}{d x}+\sin \left(\frac{x+y}{2}\right)=\sin \left(\frac{x-y}{2}\right)$ is
a) $\log \tan \left(\frac{y}{2}\right)=c-2 \sin x$
b) $\log \tan \left(\frac{y}{4}\right)=c-2 \sin \left(\frac{x}{2}\right)$
c) $\log \tan \left(\frac{y}{2}+\frac{\pi}{4}\right)=c-2 \sin x$
d) $\log \tan \left(\frac{y}{4}+\frac{\pi}{4}\right)=c-2 \sin \left(\frac{x}{2}\right)$
105. The differential equation of family of curves $x^{2}+y^{2}-2 a x=0$, is
a) $x^{2}-y^{2}-2 x y y^{\prime}=0$
b) $y^{2}-x^{2}=2 x y y^{\prime}$
c) $x^{2}+y^{2}+2 y^{\prime \prime}=0$
d) None of these
106. The order of the differential equation whose general solution is given by $y=\left(c_{1}+c_{2}\right) \cos \left(x+c_{3}\right)-c_{4} e^{x+c_{5}}$ where $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ are arbitrary constants, is
a) 4
b) 3
c) 2
d) 5
107. The degree of the equation $e^{x}+\sin \left(\frac{d y}{d x}\right)=3$ is
a) 2
b) 0
c) Degree is not defined
d) 1
108. If $x=\sin t, y=\cos p t$, then
a) $\left(1-x^{2}\right) y_{2}+x y_{1}+p^{2} y=0$
b) $\left(1-x^{2}\right) y_{2}+x y_{1}-p^{2} y=0$
c) $\left(1+x^{2}\right) y_{2}-x y_{1}+p^{2} y=0$
d) $\left(1-x^{2}\right) y_{2}-x y_{1}+p^{2} y=0$
109. The differential equation representing the family of curves $y=x e^{c x}$ (c is a constant) is
a) $\frac{d y}{d x}=\frac{y}{x}\left(1-\log \frac{y}{x}\right)$
b) $\frac{d y}{d x}=\frac{y}{x} \log \left(\frac{y}{x}\right)+1$
c) $\frac{d y}{d x}=\frac{y}{x}\left(1+\log \frac{y}{x}\right)$
d) $\frac{d y}{d x}+1=\frac{y}{x} \log \left(\frac{y}{x}\right)$
110. The degree and order of the differential equation $y=p x+\sqrt[3]{a^{2} p^{2}+b^{2}}$, where $p=\frac{d y}{d x^{\prime}}$ are respectively
a) 3,1
b) 1,3
c) 1,1
d) 3,3
111. The degree of the differential equation $y_{3}^{2 / 3}+2+3 y_{2}+y_{1}=0$, is
a) 1
b) 2
c) 3
d) None of these
112. If $x^{2}+y^{2}=1$, then $\left(y^{\prime}=\frac{d y}{d x}, y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}\right)$
a) $y y^{\prime \prime}-\left(2 y^{\prime}\right)^{2}+1=0$
b) $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}+1=0$
c) $y^{\prime \prime}-\left(y^{\prime}\right)^{2}-1=0$
d) $y^{\prime \prime}+2\left(y^{\prime}\right)^{2}+1=0$
113. The solution of the differential equation $\frac{d y}{d x}=\frac{x \log x^{2}+x}{\sin y+y \cos y^{\prime}}$, is
a) $y \sin y=x^{2} \log x+C$
b) $y \sin y=x^{2}+C$
c) $y \sin y=x^{2}+\log x+C$
d) $y \sin y=x \log x+C$
114. To reduce the differential equation $\frac{d y}{d x}+P(x) \cdot y=Q(x) \cdot y^{n}$ to the linear form, the substitution is
a) $v=\frac{1}{y^{n}}$
b) $v=\frac{1}{y^{n-1}}$
c) $v=y^{n}$
d) $v=y^{n-1}$
115. The equation of the curve whose subnormal is equal to a constant a is
a) $y=a x+b$
b) $y^{2}=2 a x+2 b$
c) $a y^{2}-x^{3}=a$
d) None of these
116. A particle starts at the origin and moves along the x-axis in such a way that its velocity at the point $(x, 0)$ is given by the formula $\frac{d x}{d t}=\cos ^{2} \pi x$. Then, the particle never reaches the point on
a) $x=\frac{1}{4}$
b) $x=\frac{3}{4}$
c) $x=\frac{1}{2}$
d) $x=1$
117. The solution of the equation $\frac{d y}{d x}=\frac{x+y}{x-y}$ is
a) $c\left(x^{2}+y^{2}\right)^{1 / 2}+e^{\tan ^{-1}(y / x)}=0$
b) $c\left(x^{2}+y^{2}\right)^{1 / 2}=e^{\tan ^{-1}(y / x)}$
c) $c\left(x^{2}-y^{2}\right)=e^{\tan ^{-1}(y / x)}$
d) None of the above
118. The solution of the equation $\frac{d^{2} y}{d x^{2}}=e^{-2 x}$ is
a) $\frac{e^{-2 x}}{4}$
b) $\frac{e^{-2 x}}{4}+c x+d$
c) $\frac{1}{4} e^{-2 x}+c x^{2}+d$
d) $\frac{1}{4} e^{-2 x}+c+d$
119. If $x^{2}+y^{2}=1$, then
a) $y y^{\prime \prime}-\left(2 y^{\prime}\right)^{2}+1=0$
b) $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}+1=0$
c) $y y^{\prime \prime}-\left(y^{\prime}\right)^{2}-1=0$
d) $y y^{\prime \prime}+2\left(y^{\prime}\right)^{2}+1=0$
120. The equation of the curve whose slope is $\frac{y-1}{x^{2}+x}$ and which passes through the point $(1,0)$ is
a) $x y+x+y-1=0$
b) $x y-x-y-1=0$
c) $(y-1)(x+1)=2 x$
d) $y(x+1)-x+1=0$
121. The solution of the differential equation $x \frac{d y}{d x}=2 y+x^{3} e^{x}$, where $y=0$ when $x=1$, is
a) $y=x^{3}\left(e^{x}-e\right)$
b) $y=x^{3}\left(e-e^{x}\right)$
c) $y=x^{2}\left(e^{x}-e\right)$
d) $y=x^{2}\left(e-e^{x}\right)$
122. The solution of $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y-4 x^{2}=0$ is
a) $3 x\left(1+y^{2}\right)=4 y^{3}+c$
b) $3 y\left(1+x^{2}\right)=4 x^{3}+c$
c) $3 x\left(1-y^{2}\right)=4 y^{3}+c$
d) $3 y\left(1+y^{2}\right)=4 x^{3}+c$
123. A normal is drawn at a $P(x, y)$ of a curve. It meets the x-axis at Q . if $P Q$ is of constant length k, then the differential equation describing such a curve is
a) $y \frac{d y}{d x}= \pm \sqrt{k^{2}-y^{2}}$
b) $x \frac{d y}{d x}= \pm \sqrt{k^{2}-x^{2}}$
c) $y \frac{d y}{d x}= \pm \sqrt{y^{2}-k^{2}}$
d) $x \frac{d y}{d x}= \pm \sqrt{x^{2}-k^{2}}$
124. The solution of the differential equation $y_{1} y_{3}=3 y_{2}^{2}$ is
a) $x=A_{1} y^{2}+A_{2} y+A_{3}$
b) $x=A_{1} y+A_{2}$
c) $x=A_{1} y^{2}+A_{2} y$
d) None of these
125. If $x=A \cos 4 t+B \sin 4 t$, then $\frac{d^{2} x}{d t^{2}}$ is equal to
a) $-16 x$
b) $16 x$
c) x
d) $-x$
126. The order of the differential equation associated with the primitive $y=c_{1}+c_{2} e^{x}+c_{3} e^{-2 x+c_{4}}$, where $c_{1}, c_{2}, c_{3}, c_{4}$ are arbitrary constants, is
a) 3
b) 4
c) 2
d) None of these
127. The differential equation of all parabolas whose axes are parallel to axis of x, is
a) $\frac{d^{3} y}{d x^{3}}=0$
b) $\frac{d^{3} x}{d y^{3}}=0$
c) $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$
d) $\frac{d^{2} x}{d y^{2}}=0$
128. The solution of the differential equation $\left(x^{2}-y x^{2}\right) \frac{d y}{d x}+y^{2}+x y^{2}=0$ is
a) $\log \left(\frac{x}{y}\right)=\frac{1}{x}+\frac{1}{y}+c$
b) $\log \left(\frac{y}{x}\right)=\frac{1}{x}+\frac{1}{y}+c$
c) $\log (x y)=\frac{1}{x}+\frac{1}{y}+c$
d) $\log (x y)+\frac{1}{x}+\frac{1}{y}=c$
129. The solution of the differential equation $x d y-y d x-\sqrt{x^{2}-y^{2}} d x=0$ is
a) $y-\sqrt{x^{2}+y^{2}}=c x^{2}$
b) $y+\sqrt{x^{2}+y^{2}}=c x^{2}$
c) $y+\sqrt{x^{2}+y^{2}}=c y^{2}$
d) $x-\sqrt{x^{2}+y^{2}}=c y^{2}$
130. Solution of $\frac{d y}{d x}=\frac{x \log x^{2}+x}{\sin y+y \cos y}$ is
a) $y \sin y=x^{2} \log x+c$
b) $y \sin y=x^{2}+c$
c) $y \sin y=x^{2}+\log x$
d) $y \sin y=x \log x+c$
131. If integrating factor of $x\left(1-x^{2}\right) d y+\left(2 x^{2} y-y-a x^{3}\right) d x=0$ is $e^{\int P d x}$, then P is equal to
a) $\frac{2 x^{2}-a x^{3}}{x\left(1-x^{2}\right)}$
b) $2 x^{2}-1$
c) $\frac{2 x^{2}-1}{a x^{3}}$
d) $\frac{2 x^{2}-1}{x\left(1-x^{2}\right)}$
132. The solution of the differential equation $\frac{d y}{d x}+\frac{y}{x}=x^{2}$, is
a) $y=\frac{x^{2}}{4}+C x^{-2}$
b) $y=x^{-1}+C x^{-3}$
c) $y=\frac{x^{3}}{4}+C x^{-1}$
d) $x y=x^{2}+C$
133. The differential equation of all circles passing through the origin and having their centres on the x-axis is
a) $x^{2}=y^{2}+x y \frac{d y}{d x}$
b) $x^{2}=y^{2}+3 x y \frac{d y}{d x}$
c) $y^{2}=x^{2}+2 x y \frac{d y}{d x}$
d) $y^{2}=x^{2}-2 x y \frac{d y}{d x}$
134. If $y^{\prime \prime}-3 y^{\prime}+2 y=0$ where $y(0)=1, y^{\prime}(0)=0$, then the value of y at $x=\log 2$ is
a) 1
b) -1
c) 2
d) 0
135. The differential equation of all straight lines touching the circle $x^{2}+y^{2}=a^{2}$ is
a) $\left(y-\frac{d y}{d x}\right)^{2}=a^{2}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]$
b) $\left(y-x \frac{d y}{d x}\right)^{2}=a^{2}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]$
c) $\left(y-x \frac{d y}{d x}\right)=a^{2}\left[1+\frac{d y}{d x}\right]$
d) $\left(y-\frac{d y}{d x}\right)=a^{2}\left[1-\frac{d y}{d x}\right]$
136. The solution of the differential equation $\left(x^{2}-y x^{2}\right) \frac{d y}{d x}+y^{2}+x y^{2}=0$ is
a) $\log \left(\frac{x}{y}\right)=\frac{1}{x}+\frac{1}{y}+c$
b) $\log \left(\frac{y}{x}\right)=\frac{1}{x}+\frac{1}{y}+c$
c) $\log (x y)=\frac{1}{x}+\frac{1}{y}+c$
d) $\log (x y)+\frac{1}{x}+\frac{1}{y}=c$
137. The equation of the curve satisfying the equation $\left(x y-x^{2}\right) \frac{d y}{d x}=y^{2}$ and passing through the point $(-1,1)$ is
a) $y=(\log y-1) x$
b) $y=(\log y+1) x$
c) $x=(\log x-1) y$
d) $x=(\log x+1) y$
138. $y=2 e^{2 x}-e^{-x}$ is a solution of the differential equation
a) $y_{2}+y_{1}+2 y=0$
b) $y_{2}-y_{1}+2 y=0$
c) $y_{2}+y_{1}=0$
d) $y_{2}-y_{1}-2 y=0$
139. The solution of $y^{\prime}-y=1, y(0)=-1$ is given by $y(x)$, which is equal to
a) $-\exp (x)$
b) $-\exp (-x)$
c) -1
d) $\exp (x)-2$
140. The differential equation of the family of circles with fixed radius 5 unit and centre on the line $y=2$, is
a) $(x-2)^{2} y^{\prime 2}=25-(y-2)^{2}$
b) $(x-2) y^{\prime 2}=25-(y-2)^{2}$
c) $(y-2) y^{\prime 2}=25-(y-2)^{2}$
d) $(y-2)^{2} y^{\prime 2}=25-(y-2)^{2}$
141. Solution of the differential equation $\frac{d y}{d x}+y \sec ^{2} x=\tan x \sec ^{2} x$ is
a) $y=\tan x-1+c e^{-\tan x}$
b) $y^{2}=\tan x-1+c e^{\tan x}$
c) $y e^{\tan x}=\tan x-1+c$
d) $y e^{-\tan x}=\tan x-1+c$
142. The differential equation $y \frac{d y}{d x}+x=a$ (a is any constant) represents
a) A set of circles having centre on the y-axis
b) A set of circles on the x-axis
c) A set of ellipses
d) None of these
143. The equation of the curve for which the square of the ordinate is twice the rectangle contained by the abscissa and the intercept of the normal on x-axis and passing through $(2,1)$ is
a) $x^{2}+y^{2}-x=0$
b) $4 x^{2}+2 y^{2}-9 y=0$
c) $2 x^{2}+4 y^{2}-9 x=0$
d) $4 x^{2}+2 y^{2}-9 x=0$
144. The general solution of $y d x-x d y-3 x^{2} y^{2} e^{x^{3}} d x=0$, is equal to
a) $\frac{x}{y}=e^{x^{3}}+C$
b) $\frac{y}{x}=e^{x^{3}}+C$
c) $x y=e^{x^{3}}+C$
d) $x y=e^{x}+C$
145. The solution of $\frac{d y}{d x}=\frac{a x+h}{b y+k}$ represents a parabola, when
a) $a=0, b=0$
b) $a=1, b=2$
c) $a=0, b \neq 0$
d) $a=2, b=1$
146. The differential equation of all ellipses centred at the origin is
a) $y_{2}+x y_{1}^{2}-y y_{1}=0$
b) $x y y_{2}+x y_{1}^{2}-y y_{1}=0$
c) $y y_{2}+x y_{1}^{2}-x y_{1}=0$
d) None of these
147. If $y=a x^{n+1}$, then $x^{2} \frac{d^{2} y}{d x^{2}}$ is equal to
a) $n(n-1)$
b) $n(n+1) y$
c) $n y$
d) $n^{2} y$
148. The differential equation of the family of curves $y=a \cos (x+b)$ is
a) $\frac{d^{2} y}{d x^{2}}-y=0$
b) $\frac{d^{2} y}{d x^{2}}+y=0$
c) $\frac{d^{2} y}{d x^{2}}+2 y=0$
d) None of these
149. If $y(t)$ is a solution of $(1+t) \frac{d y}{d t}-t y=1$ and $y(0)=-1$, then $y(1)$ is equal to
a) $-\frac{1}{2}$
b) $e+\left(\frac{1}{2}\right)$
c) $e-\frac{1}{2}$
d) $\frac{1}{2}$
150. The integrating factor of the differential equation $\frac{d y}{d x}+\frac{y}{(1-x) \sqrt{x}}=1-\sqrt{x}$ is
a) $\frac{1-\sqrt{x}}{1+\sqrt{x}}$
b) $\frac{1+\sqrt{x}}{1-\sqrt{x}}$
c) $\frac{1-x}{1+x}$
d) $\frac{\sqrt{x}}{1-\sqrt{x}}$
151. The solution of the differential equation $\left(x^{2}+y^{2}\right) d x=2 x y d y$ is (here c is an arbitrary constant)
a) $x^{2}+y^{2}=c y$
b) $c\left(x^{2}-y^{2}\right)=x$
c) $x^{2}-y^{2}=c y$
d) $x^{2}+y^{2}=c x$
152. The real value of n for which the substitution $y=u^{n}$ will transform the differential equation $2 x^{4} y \frac{d y}{d x}+$ $y^{4}=4 x^{6}$ into a homogenous equation is
a) $1 / 2$
b) 1
c) $3 / 2$
d) 2
153. The differential equation satisfied by the family of curves $y=a x \cos \left(\frac{1}{x}+b\right)$ where a, b are parameters is
a) $x^{2} y_{2}+y=0$
b) $x^{4} y_{2}+y=0$
c) $x y_{2}-y=0$
d) $x^{4} y_{2}-y=0$
154. The solution of the differential equation $\frac{d y}{d x}=x \log x$ is
a) $y=x^{2} \log x-\frac{x^{2}}{2}+c$
b) $y=\frac{x^{2}}{2} \log x-\frac{x^{2}}{4}+c$
c) $y=\frac{x^{2}}{2}+\frac{x^{2}}{2} \log x+c$
d) None of these
155. Differential equation of $y=\sec \left(\tan ^{-1} x\right)$ is
a) $\left(1+x^{2}\right) \frac{d y}{d x}=y+x$
b) $\left(1+x^{2}\right) \frac{d y}{d x}=y-x$
c) $\left(1+x^{2}\right) \frac{d y}{d x}=x y$
d) $\left(1+x^{2}\right) \frac{d y}{d x}=\frac{x}{y}$
156. Solution of the differential equation $\frac{d y}{d x} \tan y=\sin (x+y)+\sin (x-y)$ is
a) $\sec y+2 \cos x=c$
b) $\sec y-2 \cos x=c$
c) $\cos y-2 \sin x=c$
d) $\tan y-2 \sec x=c$
157. The differential equation of the family of parabolas with focus at the origin and the x-axis as axis, is
a) $y\left(\frac{d y}{d x}\right)^{2}+4 x \frac{d y}{d x}=4 y$
b) $-y\left(\frac{d y}{d x}\right)^{2}=2 x \frac{d y}{d x}-y$
c) $y\left(\frac{d y}{d x}\right)^{2}+y=2 x y \frac{d y}{d x}$
d) $y\left(\frac{d y}{d x}\right)^{2}+2 x y \frac{d y}{d x}+y=0$
158. The integrating factor of the differential equation $\frac{d y}{d x}+y=\frac{1+y}{x}$, is
a) $\frac{x}{e^{x}}$
b) $\frac{e^{x}}{x}$
c) $x e^{x}$
d) e^{x}
159. The differential equation of all coaxial parabola $y^{2}=4 a(x-b)$, where a and b are arbitrary constants, is
a) $y \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=1$
b) $y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=1$
c) $y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0$
d) $y \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$
160. If $\frac{d^{2} y}{d x^{2}} \sin x=0$, then the solution of differential equation is
a) $y=\sin x+c x+d$
b) $y=\cos x+c x^{2}+d$
c) $y=\tan x+c$
d) $y=\log \sin x+c x$
161. The solution of $\frac{d y}{d x}+y=e^{-x}, y(0)=0$ is
a) $y=e^{-x}(x-1)$
b) $y=x e^{x}$
c) $y=x e^{-x}+1$
d) $y=x e^{-x}$
162. A curve having the condition that the slope of tangent at some point is two times the slope of the straight line joining the same point to the origin of coordinates, is a/an
a) Circle
b) Ellipse
c) Parabola
d) Hyperbola
163. The solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2}$ is
a) $y=\frac{x^{2}+c}{4 x^{2}}$
b) $y=\frac{x^{2}}{4}+c$
c) $y=\frac{x^{4}+c}{x^{2}}$
d) $y=\frac{x^{4}+c}{4 x^{2}}$
164. The solution of the differential equation $y \frac{d y}{d x}=x-1$ satisfying $y(1)=1$ is
a) $y^{2}=x^{2}-2 x+2$
b) $y^{2}=2 x^{2}-x-1$
c) $y=x^{2}-2 x+2$
d) None of these
165. The differential equation of the family of lines whose slope is equal to y-intercept, is
a) $(x+1) \frac{d y}{d x}-y=0$
b) $(x+1) \frac{d y}{d x}+y=0$
c) $\frac{d y}{d x}=\frac{x-1}{y-1}$
d) $\frac{d y}{d x}=\frac{x+1}{y+1}$
166. Solution of the equation $x^{2} y-x^{3} \frac{d y}{d x}=y^{4} \cos x$, when $y(0)=1$ is
a) $y^{3}=3 x^{3} \sin x$
b) $x^{3}=3 y^{3} \sin x$
c) $x^{3}=y^{3} \sin x$
d) $x^{3}=y^{3} \cos x$
167. A curve $y=f(x)$ passes through the point $P(1,1)$. The normal to the curve at point P is $a(y-1)+$ $(x-1)=0$. If the slope of the tangent at any point on the curve is proportional to the ordinate at that point, then the equation of the curve is
a) $y=e^{a x}-1$
b) $y=e^{a x}+1$
c) $y=e^{a x}-a$
d) $y=e^{a(x-1)}$
168. The solution of $\frac{d y}{d x}+1=e^{x+y}$ is
a) $e^{-(x+y)}+x+c=0$
b) $e^{-(x+y)}-x+c=0$
c) $e^{x+y}+x+c=0$
d) $e^{x+y}-x+c=0$
169. The solution of the differential equation $\left\{\frac{1}{x}-\frac{y^{2}}{(x-y)^{2}}\right\} d x+\left\{\frac{x^{2}}{(x-y)^{2}}-\frac{1}{y}\right\} d y=0$ is
a) $\operatorname{In}\left|\frac{x}{y}\right|+\frac{x y}{(x-y)}=c$
b) $\operatorname{In}|x y|+\frac{x y}{(x-y)}=c$
c) $\frac{x y}{(x-y)}=c e^{x / y}$
$\frac{x y}{(x-y)}=c e^{x y}$
d) where c is arbitrary constant)
170. Degree of differential equation $e^{d y / d x}=x$ is
a) 1
b) 2
c) 3
d) None of these
171. The order and degree of the differential equation $\left(1+\left(\frac{d y}{d x}\right)^{2}\right)^{3 / 4}=\left(\frac{d^{2} y}{d x^{2}}\right)^{1 / 3}$ is
a) $(2,4)$
b) $(2,3)$
c) $(6,4)$
d) $(6,9)$
172. $\tan ^{-1} x+\tan ^{-1} y=C$ is the general solution of the differential equation
a) $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$
b) $\frac{d y}{d x}=\frac{1+x^{2}}{1+y^{2}}$
c) $\left(1+x^{2}\right) d y+\left(1+y^{2}\right) d x=0$
d) $\frac{d y}{d x}=\frac{1-y^{2}}{1-x^{2}}$
173. The solution of $y^{\prime}=1+x+y^{2}+x y^{2}, y(0)=0$ is
a) $y^{2}=\exp \left(x+\frac{x^{2}}{2}\right)-1$
b) $y^{2}=1+c \exp \left(x+\frac{x^{2}}{2}\right)$
c) $y=\tan \left(c+x+x^{2}\right)$
d) $y=\tan \left(x+\frac{x^{2}}{2}\right)$
174. If $\frac{d y}{d x}=e^{-2 y}$ and $y=0$ when $x=5$, the value of x and $y=3$ is
a) e^{5}
b) $e^{6}+1$
c) $\frac{e^{6}+9}{2}$
d) $\log _{e} 6$
175. The solution of differential equation $(\sin x+\cos x) d y+(\cos x-\sin x) d x=0$ is
a) $e^{x}(\sin x+\cos x)+c=0$
b) $e^{y}(\sin x+\cos x)=c$
c) $e^{y}(\cos x-\sin x)=c$
d) $e^{x}(\sin x-\cos x+x)=c$
176. If $x d y=y(d x+y d y), y(1)=1$ and $y(x)>0$, then $y(-3)$ is equal to
a) 3
b) 2
c) 1
d) 0
177. The solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}+\frac{\phi\left(\frac{y}{x}\right)}{\phi^{\prime}\left(\frac{y}{x}\right)}$ is
a) $\phi\left(\frac{y}{x}\right)=k x$
b) $x \phi\left(\frac{y}{x}\right)=k$
c) $\phi\left(\frac{y}{x}\right)=k y$
d) $y \phi\left(\frac{y}{x}\right)=k$
178. The solution of $(x+y+1) \frac{d y}{d x}=1$ is
a) $y=(x+2)+c e^{x}$
b) $y=-(x+2)+c e^{x}$
c) $x=-(y+2)+c e^{y}$
d) $x=(y+2)^{2}+c e^{y}$
179. The differential equation of the family of the curves $x^{2}+y^{2}-2 a x=0$ is
a) $x^{2}-y^{2}-2 x y^{\prime \prime}=0$
b) $y^{2}-x^{2}=2 x y y^{\prime}$
c) $x^{2}+y^{2}+2 y^{\prime \prime}=0$
d) None of these
180. If $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ and c_{6} are constants, then the order of the differential equation whose general solution is given by
$y=c_{1} \cos \left(x+c_{2}\right)+c_{3} \sin \left(x+c_{4}\right)+c_{5} e^{x}+c_{6}$ is
a) 6
b) 5
c) 4
d) 3
181. The solution of the differential equation $\frac{x+y \frac{d y}{d x}}{y-x \frac{d y}{d x}}=x^{2}+2 y^{2}+\frac{y^{4}}{x^{2}}$ is
a) $\frac{y}{4}+\frac{1}{x^{2}+y^{2}}=c$
b) $\frac{y}{x}-\frac{1}{x^{2}+y^{2}}=c$
c) $\frac{x}{y}-\frac{1}{x^{2}+y^{2}}=c$
d) None of these
182. The solution of differential equation $(1+x) y d x+(1-y) x d y=0$ is
a) $\log _{e}(x y)+x-y=c$
b) $\log _{e}\left(\frac{x}{y}\right)+x+y=c$
c) $\log _{e}\left(\frac{x}{y}\right)-x+y=c$
d) $\log _{e}(x y)-x+y=c$
183. The differential equation representing the family of curves $y^{2}=2 c(x+\sqrt{c})$, where $c>0$ is a parameter is of order and degree as follows
a) Order 2 , degree 2
b) Order 1, degree 3
c) Order 1 , degree 1
d) Order 1, degree 2
184. The solution of the differential equation $\frac{d y}{d x}=\frac{1}{x^{2}+y^{2}}$ is
a) $y=-x^{2}-2 x-2+c e^{x}$
b) $y=x^{2}+2 x+2-c e^{x}$
c) $x=-y^{2}-2 y+2-c e^{y}$
d) $x=-y^{2}-2 y-2+c e^{y}$
185. Integrating factor of $\left(x+2 y^{3}\right) \frac{d y}{d x}=y^{2}$ is
a) $e^{\left(\frac{1}{y}\right)}$
b) $e^{-\left(\frac{1}{y}\right)}$
c) y
d) $\frac{-1}{y}$
186. The curve in which the slope of the tangent at any point equals the ratio of the abscissa to the ordinate of the point is
a) An ellipse
b) A parabola
c) A rectangular hyperbola
d) A circle
187. The solution of the differential equation $\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0$ is
a) $2 x e^{\tan ^{-1} y}=e^{2 \tan ^{-1} y}+c$
b) $x e^{\tan ^{-1} y}=\tan ^{-1} y+c$
c) $x e^{2 \tan ^{-1} y}=e^{\tan ^{-1} y}+c$
d) $(x-2)=c e^{-\tan ^{-1} y}$
188. The differential equation $\left(e^{x}+1\right) y d y=(y+1) e^{x} d x$, has the solution
a) $(y-1)\left(e^{x}-1\right)=c e^{y}$
b) $(y-1)\left(e^{x}+1\right)=c e^{y}$
c) $(y+1)\left(e^{x}-1\right)=c e^{y}$
d) $(y+1)\left(e^{x}+1\right)=c e^{y}$
189. The differential equation of all straight lines passing through origin is
a) $y=\sqrt{x} \frac{d y}{d x}$
b) $\frac{d y}{d x}=y+x$
c) $\frac{d y}{d x}=y-x$
d) None of these
190. The solution of the differential equation $\frac{d y}{d x}=\sin (x+y) \tan (x+y)-1$ is
a) $\operatorname{cosec}(x+y)+\tan (x+y)=x+c$
b) $x+\operatorname{cosec}(x+y)=c$
c) $x+\tan (x+y)=c$
d) $x+\sec (x+y)=c$
191. The differential equation for which $\sin ^{-1} x+\sin ^{-1} y=c$ is given by
a) $\sqrt{1-x^{2}} d y+\sqrt{1-y^{2}} d x=0$
b) $\sqrt{1-x^{2}} d x+\sqrt{1-y^{2}} d y=0$
c) $\sqrt{1-x^{2}} d x-\sqrt{1-y^{2}} d y=0$
d) $\sqrt{1-x^{2}} d y-\sqrt{1-y^{2}} d x=0$
192. The integrating factor of $x \frac{d y}{d x}+(1+x) y=x$ is
a) x
b) $2 x$
c) $e^{x \log x}$
d) $x e^{x}$
193. The solution of the differential equation $\left(x+2 y^{3}\right) \frac{d y}{d x}=y$, is
a) $x=y^{2}+C$
b) $y=x^{2}+C$
c) $x=y\left(y^{2}+C\right)$
d) $y=x\left(x^{2}+C\right)$
194. The order of the differential equation $\frac{d^{2} y}{d x^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{3}}$, is
a) 2
b) 1
c) 3
d) 4
195. The number of solutions of $y^{\prime}=\frac{y+1}{x-1}, y(1)=2$ is
a) Zero
b) One
c) Two
d) Infinite
196. The solution of the differential equation $x(x-y) \frac{d y}{d x}=y(x+y)$, is
a) $\frac{x}{y}+\log (x y)=c$
b) $\frac{y}{x}+\log (x y)=c$
c) $\frac{x}{y}+y \log x=c$
d) $\frac{x}{y}+x \log y=c$
197. The general solution of differential equation $\frac{d y}{d x}=\frac{x^{2}}{y^{2}}$, is
a) $x^{3}-y^{3}=C$
b) $x^{3}+y^{3}=C$
c) $x^{2}+y^{2}=C$
d) $x^{2}-y^{2}=C$
198. The solution of the differential equation $\frac{d^{2} y}{d x^{2}}=e^{-2 x}$ is $y=c_{1} e^{-2 x}+c_{2} x+x_{3}$, where c_{1} is
a) 1
b) $\frac{1}{4}$
c) $\frac{1}{2}$
d) 2
199. Solution of the equation $x\left(\frac{d y}{d x}\right)^{2}+2 \sqrt{x y} \frac{d y}{d x}+y=0$ is
a) $x+y=a$
b) $\sqrt{x}-\sqrt{y}=\sqrt{a}$
c) $x^{2}+y^{2}=a^{2}$
d) $\sqrt{x}+\sqrt{y}=c$
200. Form of the differential equation of all family of lines $y=m x+\frac{4}{m}$ by eliminating the arbitrary constant m is
a) $\frac{d^{2} y}{d x^{2}}=0$
b) $x\left(\frac{d y}{d x}\right)^{2}-y \frac{d y}{d x}+4=0$
c) $x\left(\frac{d y}{d x}\right)^{2}+y \frac{d y}{d x}+4=0$
d) $\frac{d y}{d x}=0$
201. The general solution $e^{x} \cos y d x-e^{x} \sin y d y=0$, is
a) $e^{x}(\sin y+\cos y)=C$
b) $e^{x} \sin y=C$
c) $e^{x}=C \cos y$
d) $e^{x} \cos y=C$
202. $y=a e^{m x}+b e^{-m x}$ satisfies which of the following differential equation?
a) $\frac{d y}{d x}-m y=0$
b) $\frac{d y}{d x}+m y=0$
c) $\frac{d^{2} y}{d x^{2}}+m^{2} y=0$
d) $\frac{d^{2} y}{d x^{2}}-m^{2} y=0$
203. The solution of $\frac{d y}{d x}+y=e^{-x}, y(0)=0$, is
a) $y=e^{-x}(x-1)$
b) $y=x e^{-x}$
c) $y=x e^{-x}+10$
d) $y=(x+1) e^{-x}$
204. The general solution of the differential equation $\left(1+y^{2}\right) d x+\left(1+x^{2}\right) d y=0$ is
a) $x-y=c(1-x y)$
b) $x-y=c(1+x y)$
c) $x+y=c(1-x y)$
d) $x+y=c(1+x y)$
205. If the integrating factor of the differential equation $\frac{d y}{d x}+P(x) y=Q(x)$ is x, then $P(x)$ is
a) x
b) $x^{2} / 2$
c) $1 / x$
d) $1 / x^{2}$
206.

The order of the differential equation $\frac{d^{2} y}{d x^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$ is
a) 3
b) 2
c) 1
d) 4
207. The solution of $\frac{d y}{d x}+\sqrt{\left(\frac{1-y^{2}}{1-x^{2}}\right)}=0$ is
a) $\tan ^{-1} x+\cot ^{-1} x=c$
b) $\sin ^{-1} x+\sin ^{-1} y=c$
c) $\sec ^{-1} x+\operatorname{cosec}^{-1} x=c$
d) None of these
208. Solution of the differential equation $x d y-y d x=0$ represents
a) A parabola whose vertex is at the origin
b) A circle whose centre is at the origin
c) A rectangular hyperbola
d) Straight lines passing through the origin
209. The differential equation of the family of circles passing through the fixed points $(a, 0)$ and $(-a, 0)$ is
a) $y_{1}\left(y^{2}-x^{2}\right)+2 x y+a^{2}=0$
b) $y_{1} y^{2}+x y+a^{2} x^{2}=0$
c) $y_{1}\left(y^{2}-x^{2}+a^{2}\right)+2 x y=0$
d) $y_{1}\left(y^{2}+x^{2}\right)-2 x y+a^{2}=0$
210. The solution of differential equation $(x+y)(d x-d y)=d x+d y$ is
a) $x-y=k e^{x-y}$
b) $x+y=k e^{x+y}$
c) $x+y=k e^{x-y}$
d) $(x-y)=k e^{x+y}$
211. The general solution of $y^{2} d x+\left(x^{2}-x y+y^{2}\right) d y=0$ is
a) $\tan ^{-1}\left(\frac{x}{y}\right)+\log y+c=0$
b) $2 \tan ^{-1}\left(\frac{x}{y}\right)+\log x+c=0$
c) $\log \left(y+\sqrt{x^{2}+y^{2}}\right)+\log y+c=0$
d) $\sin h^{-1}\left(\frac{x}{y}\right)+\log y+c=0$
212. The order and degree of the following differential equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{5 / 2}=\frac{d^{3} y}{d x^{3}}$ are respectively
a) 3,2
b) 3,10
c) 2,3
d) 3,5
213. The solution of $x d y-y d x+x^{2} e^{x} d x=0$ is
a) $\frac{y}{x}+e^{x}=c$
b) $\frac{x}{y}+e^{x}=c$
c) $x+e^{y}=c$
d) $y+e^{x}=c$
214. The solution of the differential equation $\frac{d y}{d x}=\frac{x-y+3}{2(x-y)+5}$ is
a) $2(x-y)+\log (x-y)=x+c$
b) $2(x-y)-\log (x-y+2)=x+c$
c) $2(x-y)+\log (x-y+2)=x+c$
d) None of the above
215. The differential equation whose solution is $A x^{2}+B y^{2}=1$, where A and B are arbitrary constants, is of
a) First order and second degree
b) First order and first degree
c) Second order and first degree
d) Second order and second degree
216. If $y=f(x)$ is the equation of the curve an its differential equation is given by $\frac{d y}{d x}=\frac{x+2}{y+3}$, then the equation of the curve, if it passes through $(2,2)$, is
a) $x^{2}-y^{2}+4 x-6 y+4=0$
b) $x^{2}-y^{2}+4 x+6 y=0$
c) $x^{2}-y^{2}-4 x-6 y=0$
d) $x^{2}-y^{2}-4 x-6 y-4=0$
217. The differential equation of the family of curves $y^{2}=4 a(x+a)$, is
a) $y^{2}=4 \frac{d y}{d x}\left(x+\frac{d y}{d x}\right)$
b) $y^{2}\left(\frac{d y}{d x}\right)^{2}+2 x y \frac{d y}{d x}-y^{2}=0$
c) $2 y \frac{d y}{d x}=4 a$
d) $y^{2} \frac{d y}{d}+4 y=0$
218. The integrating factor of the differential equation $x \log x \frac{d y}{d x}+y=2 \log x$ is given by
a) e^{x}
b) $\log x$
c) $\log (\log x)$
d) x
219. The differential equation which represents the family of plane curves $y=\exp (c x)$ is
a) $y^{\prime}=c y$
b) $x y^{\prime}-\log y=0$
c) $x \log y=y y^{\prime}$
d) $y \log y=x y^{\prime}$
220. The solution of $\frac{d y}{d x}+y \tan x=\sec x$ is
a) $y \sec x=\tan x+c$
b) $y \tan x=\sec x+c$
c) $\tan x=y \tan x+c$
d) $x \sec x=y \tan y+c$
221. The function $f(\theta)=\frac{d}{d \theta} \int_{0}^{\theta} \frac{d x}{1-\cos \theta \cos x}$ satisfies the differential equation
a) $\frac{d f}{d \theta}+2 f(\theta)=0$
b) $\frac{d f}{d \theta}-2 f(\theta)=0$
c) $\frac{d f}{d \theta}-2 f(\theta)=\tan \theta$
d) $\frac{d f}{d \theta}+2 f(\theta) \cot \theta=0$
222. The solution of $\frac{d y}{d x}=\left(\frac{y}{x}\right)^{1 / 3}$, is
a) $x^{2 / 3}+y^{2 / 3}=C$
b) $x^{1 / 3}+y^{1 / 3}=C$
c) $y^{2 / 3}-x^{2 / 3}=C$
d) $y^{1 / 3}-x^{1 / 3}=C$
223. If $x \sin \left(\frac{y}{x}\right) d y=\left[y \sin \left(\frac{y}{x}\right)-y\right] d x$ and $y(1)=\frac{\pi}{2}$, then the value of $\cos \left(\frac{y}{x}\right)$ is equal to
a) x
b) $\frac{1}{x}$
c) $\log x$
d) e^{x}
224.

The solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}+\frac{\phi\left(\frac{y}{x}\right)}{\phi^{\prime}\left(\frac{y}{x}\right)}$ is
a) $x \phi\left(\frac{y}{x}\right)=k$
b) $\phi\left(\frac{y}{x}\right)=k x$
c) $y \phi\left(\frac{y}{x}\right)=k$
d) $\phi\left(\frac{y}{x}\right)=k y$
225. If $\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}, y(1)=1$, then one of the values of x_{0} satisfying $y\left(x_{0}\right)=e$ is given by
a) $e \sqrt{2}$
b) $e \sqrt{3}$
c) $e \sqrt{5}$
d) $e / \sqrt{2}$
226. Solution of $\frac{d y}{d x}=3^{x+y}$ is
a) $3^{x+y}=c$
b) $3^{x}+3^{y}=c$
c) $3^{x-y}=c$
d) $3^{x}+3^{-y}=c$
227. Order of the differential equation of the family of all concentric circles centred at (h, k) is
a) 1
b) 2
c) 3
d) 4
228. The solution of $\frac{d y}{d x}=\cos (x+y)+\sin (x+y)$ is
a) $\log \left[1+\tan \left(\frac{x+y}{2}\right)\right]+c=0$
b) $\log \left[1+\tan \left(\frac{x+y}{2}\right)\right]=x+c$
c) $\log \left[1-\tan \left(\frac{x+y}{2}\right)\right]=x+c$
d) None of these
229. The general solution of the differential equation $\frac{d y}{d x}=\frac{\left(1+y^{2}\right)}{x y\left(1+x^{2}\right)}$ is
a) $\left(1+x^{2}\right)\left(1+y^{2}\right)=c$
b) $\left(1+x^{2}\right)\left(1+y^{2}\right)=c x^{2}$
c) $\left(1-x^{2}\right)\left(1-y^{2}\right)=c$
d) $\left(1+x^{2}\right)\left(1+y^{2}\right)=c y^{2}$
230. The general solution of $\frac{d y}{d x}=\frac{2 x-y}{x+2 y}$ is
a) $x^{2}-x y+y^{2}=c$
b) $x^{2}-x y-y^{2}=c$
c) $x^{2}+x y-y^{2}=c$
d) $x^{2}+x y^{2}=c$
231. The differential equation representing the family of curves $y^{2}=2 c\left(x+c^{2 / 3}\right)$, where c is a positive parameter, is of
a) Order 3, degree 3
b) Order 2, degree 4
c) Order 1, degree 5
d) Order 5, degree 1
232. The solution of the differential equation $\frac{d x}{x}+\frac{d y}{y}=0$ is
a) $x y=c$
b) $x+y=c$
c) $\log x \log y=c$
d) $x^{2}+y^{2}=c$
233. If $y=(x+\sqrt{1+x})^{n}$, then $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}$ is
a) $n^{2} y$
b) $-n^{2} y$
c) $-y$
d) $2 x^{2} y$
234. The order of the differential equation whose general solution is given by $y=\left(c_{1}+c_{2}\right) \cos \left(x+c_{3}\right)-$ $c 4 e x+c 5$ where $c 1, c 2, c 3, c 4$ and $c 5$ are arbitrary constants is
a) 5
b) 6
c) 3
d) 2
235. The differential equation obtained by eliminating arbitrary constants from $y=a e^{b x}$ is
a) $y \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$
b) $y \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=0$
c) $y \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{2}=0$
d) $y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0$
236. The differential equation of all non-horizontal lines in a plane is
a) $\frac{d^{2} y}{d x^{2}}=0$
b) $\frac{d x}{d y}=0$
c) $\frac{d y}{d x}=0$
d) $\frac{d^{2} x}{d y^{2}}=0$
237. The degree of the differential equation satisfying $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$ is
a) 1
b) 2
c) 3
d) None of these
238. The solution of the differential equation $\frac{d y}{d x}=e^{y+x}+e^{y-x}$ is
a) $e^{-y}=e^{x}-e^{-x}+c$
b) $e^{-y}=e^{-x}-e^{x}+c$
c) $e^{-y}=e^{x}+e^{-x}+c$
d) $e^{-y}+e^{x}+e^{-x}=c$
239. The integrating factor of the differential equation $\frac{d y}{d x}+\frac{1}{x} \cdot y=3 x$ is
a) x
b) $\ln x$
c) 0
d) ∞
240. The solution of the differential equation $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$ is
a) $\tan y \tan x=c$
b) $\frac{\tan y}{\tan x}=c$
c) $\frac{\tan ^{2} x}{\tan y}=c$
d) None of these
241. The equation of the curve in which subnormal varies as the square of the ordinate is (λ is constant of proportionality)
a) $y=C e^{2 \lambda x}$
b) $y=C e^{\lambda x}$
c) $\frac{y^{2}}{2}+\lambda x=C$
d) $y^{2}+\lambda x^{2}=C$
242. The general solution of the differential equation $\frac{d y}{d x}+\frac{1+\cos 2 y}{1-\cos 2 x}=0$ is given by
a) $\tan y+\cot x=c$
b) $\tan y-\cot x=c$
c) $\tan x-\cot y=c$
d) $\tan x+\cot y=c$
243. The solution of the differential equation $\left(e^{-2 \sqrt{x}}-\frac{y}{\sqrt{x}}\right) \frac{d y}{d x}=1$ is given by
a) $y e^{2 \sqrt{x}}=x+c$
b) $y e^{-2 \sqrt{x}}=\sqrt{x}+c$
c) $y=\sqrt{x}$
d) $y=3 \sqrt{x}$
244. The solution of the differential equation $e^{-x}(y+1) d y+\left(\cos ^{2} x-\sin 2 x\right) y d x=0$ subjected to the condition that $y=1$ when $x=0$ is
a) $y+\log y+e^{x} \cos ^{2} x=2$
b) $\log (y+1)+e^{x} \cos ^{2} x=1$
c) $y+\log y=e^{x} \cos ^{2} x$
d) $(y+1)+e^{x} \cos ^{2} x=2$
245. The solution of the differential equation $\frac{d y}{d x}=(4 x+y+1)^{2}$, is
a) $(4 x+y+1)=\tan (2 x+c)$
b) $(4 x+y+1)^{2}=2 \tan (2 x+c)$
c) $(4 x+y+1)^{3}=3 \tan (2 x+c)$
d) $(4 x+y+1)=2 \tan (2 x+c)$
246. An integrating factor of the differential equation $x+\frac{d y}{d x}+y \log x=x e^{x} x^{-\frac{1}{2} \log x},(x, 0)$ is
a) $x^{\log x}$
b) $(\sqrt{x})^{\log x}$
c) $(\sqrt{e})^{(\log x)^{2}}$
d) $e^{x^{2}}$
247. The order of differential equation of all parabola with it's axis parallel to y-axis and touch x-axis is
a) 2
b) 3
c) 1
d) None of these
248. The differential equation obtained on eliminating A and B from the equation $y=A \cos \omega t+B \sin \omega t$ is
a) $y_{2}=-\omega^{2} y$
b) $y_{1}+y=0$
c) $y_{2}+y_{1}=0$
d) $y_{1}-\omega^{2} y=0$
249. The solution of the differential equation $\frac{d y}{d x} \tan y=\sin (x+y)+\sin (x-y)$ is
a) $\sec y+2 \cos x=c$
b) $\sec y-2 \cos x=c$
c) $\cos y-2 \sin x=c$
d) $\tan y-2 \sec y=c$
250. The degree of the differential equation satisfying the relation $\sqrt{1+x^{2}}+\sqrt{1+y^{2}}=\lambda\left(x \sqrt{1+y^{2}}-\right.$ $y 1+x 2$, is
a) 1
b) 2
c) 3
d) None of these
251. The solution of the differential equation $\frac{d y}{d x}-y \tan x=e^{x} \sec x$ is
a) $y=e^{x} \cos x+c$
b) $y \cos x=e^{x}+c$
c) $y=e^{x} \sin x+c$
d) $y \sin x=e^{x}+c$
252. The degree of the differential equations $x=1+\left(\frac{d y}{d x}\right)+\frac{1}{2!}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{3!}\left(\frac{d y}{d x}\right)^{3}+\cdots$
a) 3
b) 2
c) 1
d) Not defined
253. If $y=y(x)$ and $\frac{2+\sin x}{y+1}\left(\frac{d y}{d x}\right)=-\cos x, y(0)=1$, then $y\left(\frac{\pi}{2}\right)$ equals
a) $\frac{1}{3}$
b) $\frac{2}{3}$
c) $-\frac{1}{3}$
d) 1
254. The solution of $\cos y \frac{d y}{d x}=e^{x+\sin y}+x^{2} e^{\sin y}$ is
a) $e^{x}-e^{\sin y}+\frac{x^{3}}{3}=c$
b) $e^{-x}-e^{-\sin y}+\frac{x^{3}}{3}=c$
c) $e^{x}+e^{-\sin y}+\frac{x^{3}}{3}=c$
d) $e^{x}-e^{\sin y}-\frac{x^{3}}{3}=c$
255. The solution of $y d x-x d y+3 x^{2} y^{2} e^{x^{3}} d x=0$ is
a) $\frac{x}{y}+e^{x^{3}}=C$
b) $\frac{x}{y}-e^{x^{3}}=0$
c) $-\frac{x}{y}+e^{x^{3}}=C$
d) None of these
256. The general solution of $\frac{d y}{d x}=\frac{2 x-y}{x+2 y}$ is
a) $x^{2}-x y+y^{2}=c$
b) $x^{2}-x y-y^{2}=c$
c) $x^{2}+x y-y^{2}=c$
d) $x^{2}+x y^{2}=c$
257. $y+x^{2}=\frac{d y}{d x}$ has the solution
a) $y+x^{2}+2 x+2=c e^{x}$
b) $y+x+x^{2}+2=c e^{2 x}$
c) $y+x+2 x^{2}+2=c e^{x}$
d) $y^{2}+x+x^{2}+2=c e^{x}$
258. The equation of curve passing through the point $\left(1, \frac{\pi}{4}\right)$ and having slope of tangent at any point (x, y) as $\frac{y}{x}-\cos ^{2}\left(\frac{y}{x}\right)$, is
a) $x=e^{1+\tan \left(\frac{y}{x}\right)}$
b) $x=e^{1-\tan \left(\frac{y}{x}\right)}$
c) $x=e^{1+\tan \left(\frac{x}{y}\right)}$
d) $x=e^{1-\tan \left(\frac{x}{y}\right)}$
259. The solution of $\frac{d y}{d x}=1+y+y^{2}+x+x y+x y^{2}$ is
a) $\tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=x+x^{2}+c$
b) $4 \tan ^{-1}\left(\frac{4 y+1}{\sqrt{3}}\right)=\sqrt{3}\left(2 x+x^{2}\right)+c$
c) $\sqrt{3} \tan ^{-1}\left(\frac{3 y+1}{3}\right)=4\left(1+x+x^{2}\right)+c$
d) $4 \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=\sqrt{3}\left(2 x+x^{2}\right)+c$
260. The solution of $\frac{d y}{d x}=2^{y-x}$ is
a) $2^{x}+2^{y}=c$
b) $2^{x}-2^{y}=c$
c) $\frac{1}{2^{x}}-\frac{1}{2^{y}}=c$
d) $\frac{1}{2^{x}}+\frac{1}{2^{y}}=c$
261. A function $y=f(x)$ has a second order derivative $f^{\prime \prime}=6(x-1)$. If its graph passes through the point $(2,1)$ and at point the tangent to the graph is $y=3 x-5$ then the function is
a) $(x-1)^{2}$
b) $(x-1)^{3}$
c) $(x+1)^{3}$
d) $(x+1)^{2}$
262. The solution of $\log \left(\frac{d y}{d x}\right)=a x+b y$ is
a) $\frac{e^{b y}}{b}=\frac{e^{a x}}{a}+c$
b) $\frac{e^{-b y}}{-b}=\frac{e^{a x}}{a}+c$
c) $\frac{e^{-b y}}{a}=\frac{e^{a x}}{b}+c$
d) None of these
263. For solving $\frac{d y}{d x}=4 x+y+1$, suitable substitution is
a) $y=v x$
b) $y=4 x+v$
c) $y=4 x$
d) $y+4 x+1=v$
264. The differential equation $\frac{d y}{d x}=\frac{x\left(1+y^{2}\right)}{y\left(1+x^{2}\right)}$ represents a family of
a) Parabola
b) Hyperbola
c) Circle
d) Ellipse
265. The differential equation of the system of all circles of radius r in the $x y$-plane, is
a) $\left[1+\left(\frac{d y}{d x}\right)^{3}\right]^{2}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
b) $\left[1+\left(\frac{d y}{d x}\right)^{3}\right]^{2}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}$
c) $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
d) $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}$
266. The differential equation of the family of parabola with focus as the origin and the axis as x -axis, is
a) $y\left(\frac{d y}{d x}\right)^{2}+4 x \frac{d y}{d x}=4 y$
b) $-y\left(\frac{d y}{d x}\right)^{2}=2 x \frac{d y}{d x}-y$
c) $y\left(\frac{d y}{d x}\right)^{2}+y=2 x y \frac{d y}{d x}$
d) $y\left(\frac{d y}{d x}\right)^{2}+2 x y \frac{d y}{d x}+y=0$
267. The equation of curve through point $(1,0)$ which satisfies the differential equation $\left(1+y^{2}\right) d x-$ $x y d y=0$ is
a) $x^{2}+y^{2}=4$
b) $x^{2}-y^{2}=1$
c) $2 x^{2}+y^{2}=2$
d) None of these
268. The equation of the curve through the point $(3,2)$ and whose slope is $\frac{x^{2}}{y+1^{1}}$, is
a) $\frac{y^{2}}{2}+y=\frac{x^{3}}{3}+5$
b) $y+y^{2}-x^{3}-21$
c) $y^{2}+2 y=\frac{2 x^{3}}{3}-10$
d) $\frac{y^{2}}{2}+y=\frac{x^{3}}{3}-5$
269. The equation of the curve through the point $(1,0)$ and whose slope is $\frac{y-1}{x^{2}+x^{\prime}}$, is
a) $2 x+(y-1)(x+1)=0$
b) $2 x-(y-1)(x+1)=0$
c) $2 x+(y-1)(x-1)=0$
d) None of these
${ }^{270}$. If $y(t)$ is a solution of $(1+t) \frac{d y}{d t}-t y=1$ and $y(0)=-1$, then $y(1)$ is equal to
a) $-\frac{1}{2}$
b) $e+\frac{1}{2}$
c) $e-\frac{1}{2}$
d) $\frac{1}{2}$
271. The order of the differential equation of all tangent lines to the parabola $y=x^{2}$ is
a) 1
b) 2
c) 3
d) 4
272. The differential equation for the family of curves $x^{2}+y^{2}-2 a y=0$, where a is an arbitrary constant, is
a) $2\left(x^{2}-y^{2}\right) y^{\prime}=x y$
b) $2\left(x^{2}+y^{2}\right) y^{\prime}=x y$
c) $\left(x^{2}-y^{2}\right) y^{\prime}=2 x y$
d) $\left(x^{2}+y^{2}\right) y^{\prime}=2 x y$
273. The solution of $\frac{d y}{d x}+1=\operatorname{cosec}(x+y)$ is
a) $\cos (x+y)+x=c$
b) $\cos (x+y=c$
c) $\sin (x+y)+x=c$
d) $\sin (x+y)+\sin (x+y)=c$
274. The solution of the differential equation $9 y \frac{d y}{d x}+4 x=0$ is
a) $\frac{y^{2}}{9}+\frac{x^{2}}{4}=c$
b) $\frac{y^{2}}{4}+\frac{x^{2}}{9}=c$
c) $\frac{y^{2}}{9}-\frac{x^{2}}{4}=c$
d) $y^{2}-\frac{x^{2}}{9}=c$
275. The differential equation of the rectangular hyperbola whose axes are the asymptotes of the hyperbola, is
a) $y \frac{d y}{d x}=x$
b) $x \frac{d y}{d x}=-y$
c) $x \frac{d y}{d x}=y$
d) $x d y+y d x=c$
276. A particular solution of $\log \left(\frac{d y}{d x}\right)=3 x+4 y, y(0)=0$ is
a) $e^{3 x}+3 e^{-4 y}=4$
b) $4 e^{3 x}-3 e^{-4 y}=3$
c) $3 e^{3 x}+4 e^{-4 y}=7$
d) $4 e^{3 x}+3 e^{-4 y}=7$
277. The differential equation $\frac{d^{2} y}{d x^{2}}=2$ represents
a) A parabola whose axis is parallel to x-axis
b) A parabola whose axis is parallel to y-axis
c) A circle
d) None of the above
278. If $x \frac{d y}{d x}=y(\log y-\log x+1)$, then the solution of the equation is
a) $\log \left(\frac{x}{y}\right)=c y$
b) $\log \left(\frac{y}{x}\right)=c x$
c) $x \log \left(\frac{y}{x}\right)=c y$
d) $y \log \left(\frac{x}{y}\right)=c x$
279. The general solution of $y^{2} d x+\left(x^{2}-x y+y^{2}\right) d y=0$ is
a) $\tan ^{-1}\left(\frac{y}{x}\right)=\log y+c$
b) $2 \tan ^{-1}\left(\frac{x}{y}\right)+\log x+c=0$
c) $\log \left(y+\sqrt{x^{2}+y^{2}}\right)+\log y+c=0$
d) $\sinh ^{-1}\left(\frac{x}{y}\right)+\log y+c=0$
280. The equation of the curve satisfying the differential equation $y_{2}\left(x^{2}+1\right)=2 x y_{1}$ passing through the point $(0,1)$ and having slope of tangent at $x=0$ as 3 is
a) $y=x^{3}+3 x+1$
b) $y=x^{3}-3 x+1$
c) $y=x^{2}+3 x+1$
d) $y=x^{2}-3 x+1$
281. The solution of differential equation $\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0$ is
a) $2 x e^{\tan ^{-1} y}=e^{2 \tan ^{-1} y}+k$
b) $2 x e^{\tan ^{-1} y}=e^{\tan ^{-1} y}+k$
c) $x e^{\tan ^{-1} y}=e^{\tan ^{-1} y}+k$
d) $x e^{\tan ^{-1} y}=e^{\tan ^{-1} y}+k$
282. The solution of $e^{d y / d x}=(x+1), y(0)=3$ is
a) $y=x \log x-x+2$
b) $y=(x+1) \log |x+1|-x+3$
c) $y=(x+1) \log |x+1|+x+3$
d) $y=x \log x+x+3$
283. The solution of the equation $x^{2} \frac{d^{2} y}{d x^{2}}=\log x$ when $x=1, y=0$ and $\frac{d y}{d x}=-1$ is
a) $y=\frac{1}{2}(\log x)^{2}+\log x$
b) $y=\frac{1}{2}(\log x)^{2}-\log x$
c) $y=-\frac{1}{2}(\log x)^{2}+\log x$
d) $y=-\frac{1}{2}(\log x)^{2}-\log x$
284. The order of the differential equation whose solution is $y=a \cos x+b \sin x+c e^{-x}$, is
a) 3
b) 1
c) 2
d) 4
285. The differential equation for which $\sin ^{-1} x+\sin ^{-1} y=c$, is given by
a) $\sqrt{1-x^{2}} d x+\sqrt{1-y^{2}} d y=0$
b) $\sqrt{1-x^{2}} d y+\sqrt{1-y^{2}} d x=0$
c) $\sqrt{1-x^{2}} d y-\sqrt{1-y^{2}} d x=0$
d) $\sqrt{1-x^{2}} d x-\sqrt{1-y^{2}} d y=0$
286. A continuously differential function $\phi(x)$ in $(0, \pi)$ satisfying $y^{\prime}=1+y^{2}, y(0)=0=y(\pi)$, is
a) $\tan x$
b) $x(x-\pi)$
c) $(x-\pi)\left(1-e^{x}\right)$
d) Not possible
287. A solution of the differential equation $\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0$ is
a) $y=2$
b) $y=2 x$
c) $y=2 x-4$
d) $y=2 x^{2}-4$
288. If $y=a \sin (5 x+c)$, then
a) $\frac{d y}{d x}=5 y$
b) $\frac{d y}{d x}=-5 y$
c) $\frac{d^{2} y}{d x^{2}}=-25 y$
d) $\frac{d^{2} y}{d x^{2}}=25 y$
289. An integrating factor of the differential equation $\left(1-x^{2}\right) \frac{d y}{d x}-x y=1$ is
a) $-x$
b) $-\frac{x}{\left(1-x^{2}\right)}$
c) $\sqrt{\left(1-x^{2}\right)}$
d) $\frac{1}{2} \log \left(1-x^{2}\right)$
290. The slope of a curve at any point is the reciprocal of twice the ordinate at the point and it passes through the point $(4,3)$. The equation of the curve is
a) $x^{2}=y+5$
b) $y^{2}=x-5$
c) $y^{2}=x+5$
d) $x^{2}=y-5$
291. The integrating factor of the differential equation $\cos x\left(\frac{d y}{d x}\right)+y \sin x=1$ is
a) $\sec x$
b) $\tan x$
c) $\sin x$
d) $\cot x$
292. The solution of the differential equation $\frac{d y}{d x}+\frac{2 x}{1+x^{2}} \cdot y=\frac{1}{\left(1+x^{2}\right)^{2}}$ is
a) $y\left(1-x^{2}\right)=\tan ^{-1} x+c$
b) $y\left(1+x^{2}\right)=\tan ^{-1} x+c$
c) $y\left(1+x^{2}\right)^{2}=\tan ^{-1} x+c$
d) $y\left(1-x^{2}\right)^{2}=\tan ^{-1} x+c$
293. The second order differential equation is
a) $y^{\prime 2}+x=y^{2}$
b) $y^{\prime} y^{\prime \prime}+y=\sin x$
c) $y^{\prime \prime \prime}+y^{\prime \prime}+y=0$
d) $y^{\prime}=y$
294. The differential equation $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{y}$ determines a family of circles with
a) Variable radii and a fixed centre $t(0,1)$
b) Variable radii and a fixed centre at $(0,-1)$
c) Fixed radius 1 and variable centres along the x-axis
d) Fixed radius 1 and variable centres along the y-axis
295. If $\frac{d y}{d x}+y=2 e^{2 x}$, then y is equal to
a) $c e^{x}+\frac{2}{3} e^{2 x}$
b) $(1-x) e^{-x}+\frac{2}{3} e^{2 x}+c$
c) $c e^{-x}+\frac{2}{3} e^{2 x}$
d) $e^{-x}+\frac{2}{3} e^{2 x}+c$
296. If the function $y=\sin ^{-1} x$, then $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}$ is equal to
a) $-x \frac{d y}{d x}$
b) 0
c) $x \frac{d y}{d x}$
d) $x\left(\frac{d y}{d x}\right)^{2}$
297. The solution of $d y=\cos x(2-y \operatorname{cosec} x) d x$, where $y=\sqrt{2}$, when $x=\pi / 4$ is
a) $y=\sin x+\frac{1}{2} \operatorname{cosec} x$
b) $y=\tan (x / 2)+\cot (x / 2)$
c) $y=(1 / \sqrt{2}) \sec (x / 2)+\sqrt{2} \cos (x / 2)$
d) None of the above
298. The solution of the differential equation $\left(1+y^{2}\right) \tan ^{-1} x d x+y\left(1+x^{2}\right) d y=0$ is
a) $\log \left(\frac{\tan ^{-1} x}{x}\right)+y\left(1+x^{2}\right)=c$
b) $\log \left(1+y^{2}\right)+\left(\tan ^{-1} x\right)^{2}=c$
c) $\log \left(1+x^{2}\right)+\log \left(\tan ^{-1} y\right)+c$
d) $\left(\tan ^{-1} x\right)\left(1+y^{2}\right)+c=0$
299. The solution of the differential equation $\frac{d y}{d x}=y \tan x-2 \sin x$, is
a) $y \sin x=c+\sin 2 x$
b) $y \cos x=c+\frac{1}{2} \sin 2 x$
c) $y \cos x=c-\sin 2 x$
d) $y \cos x=c+\frac{1}{2} \cos 2 x$
300. If $y(t)$ is a solution of $(1+t) \frac{d y}{d t}-t y=1$ and $y(0)=-1$ then $y(1)$ is equal to
a) $-\frac{1}{2}$
b) $e+\frac{1}{2}$
c) $e-\frac{1}{2}$
d) $\frac{1}{2}$
301. The differential equation of all straight lines passing through origin is
a) $y=\sqrt{x} \frac{d y}{d x}$
b) $\frac{d y}{d x}=y+x$
c) $\frac{d y}{d x}=y-x$
d) None of these
302. The solution of $\frac{d y}{d x}=\frac{x \log x^{2}+x}{\sin y+y \cos y}$ is
a) $y \sin y=x^{2} \log x+c$
b) $y \sin y=x^{2}+c$
c) $y \sin y=x^{2}+\log x+c$
d) $y \sin y=x \log x+c$
303. If c is an arbitrary constant, then the general solution of the differential equation $y d x-x d y=$ $x y d x$ is given by
a) $y=c x e^{-x}$
b) $y=c y e^{-x}$
c) $y+e^{x}=c x$
d) $y e^{x}=c x$
304. Solution of $x \frac{d y}{d x}+y=x e^{x}$, is
a) $x y=e^{x}(x+1)+C$
b) $x y=e^{x}(x-1)+C$
c) $x y=e^{x}(1-x)+C$
d) $x y=e^{y}(y-1)+C$
305. The general solution of the differential equation $100 \frac{d^{2} y}{d x^{2}}-20 \frac{d y}{d x}+y=0$ is
a) $y=\left(c_{1}+c_{2} x\right) e^{x}$
b) $y=\left(c_{1}+c_{2} x\right) e^{-x}$
c) $y=\left(c_{1}+c_{2} x\right) e^{\frac{x}{10}}$
d) $y=c_{1} e^{x}+c_{2} e^{-x}$
306. The equation of the curve whose subnormal is twice the abscissa, is
a) A circle
b) A parabola
c) An ellipse
d) A hyperbola
307. The solution of $2(y+3)-x y \frac{d y}{d x}=0$ with $y=-2$, where $x=1$, is
a) $y+3=x^{2}$
b) $x^{2}(y+3)=1$
c) $x^{4}(y+3)=1$
d) $x^{2}(y+3)^{3}=e^{y+2}$
308. The solution of $\frac{d y}{d x}-y=1, y(0)=1$ is given by $y(x)=$
a) $-\exp (x)$
b) $-\exp (-x)$
c) -1
d) $2 \exp (x)-1$
309. The solution of the differential equation $2 x \frac{d y}{d x}-y=3$ represents
a) Straight lines
b) Circles
c) Parabola
d) Ellipse

: ANSWER KEY :

1)	c	2)	a	3)	a	4)	b	189)	d	190)	b	191)	a	192)
5)	c	6)	b	7)	b	8)	b	193)	c	194)	a	195)	a	196)
9)	b	10)	a	11)	d	12)	a	197)	a	198)	b	199)	d	200)
13)	a	14)	c	15)	c	16)	a	201)	d	202)	d	203)	b	204)
17)	b	18)	c	19)	a	20)	c	205)	C	206)	b	207)	b	208)
21)	b	22)	b	23)	d	24)	b	209)	C	210)	c	211)	a	212)
25)	c	26)	d	27)	a	28)	b	213)	a	214)	c	215)	C	216)
29)	c	30)	c	31)	a	32)	c	217)	b	218)	b	219)	d	220)
33)	b	34)	d	35)	a	36)	b	221)	d	222)	c	223)	C	224)
37)	b	38)	b	39)	c	40)	c	225)	b	226)	d	227)	a	228)
41)	a	42)	d	43)	a	44)	a	229)	b	230)	b	231)	C	232)
45)	a	46)	b	47)	c	48)	c	233)	a	234)	c	235)	C	236)
49)	a	50)	a	51)	b	52)	c	237)	a	238)	b	239)	a	240)
53)	b	54)	d	55)	c	56)	c	241)	b	242)	b	243)	a	244)
57)	b	58)	c	59)	a	60)	a	245)	d	246)	c	247)	a	248)
61)	a	62)	a	63)	a	64)	b	249)	a	250)	a	251)	b	252)
65)	b	66)	b	67)	a	68)	a	253)	a	254)	c	255)	a	256)
69)	b	70)	c	71)	d	72)	a	257)	a	258)	b	259)	d	260)
73)	d	74)	b	75)	a	76)	d	261)	b	262)	b	263)	d	264)
77)	a	78)	c	79)	d	80)	c	265)	c	266)	b	267)	b	268)
81)	c	82)	a	83)	b	84)	c	269)	a	270)	a	271)	a	272)
85)	b	86)	b	87)	a	88)	c	273)	a	274)	b	275)	b	276)
89)	b	90)	b	91)	a	92)	d	277)	b	278)	b	279)	a	280)
93)	c	94)	c	95)	a	96)	b	281)	a	282)	b	283)	d	284)
97)	a	98)	a	99)	a	100)	a	285)	b	286)	d	287)	C	288)
101)	a	102)	c	103)	b	104)	b	289)	c	290)	c	291)	a	292)
105)	a	106)	b	107)	c	108)	d	293)	b	294)	c	295)	C	296)
109)	c	110)	a	111)	b	112)	b	297)	a	298)	b	299)	d	300)
113)	a	114)	b	115)	b	116)	c	301)	d	302)	a	303)	d	304)
117)	b	118)	b	119)	b	120)	a	305)	c	306)	d	307)	d	308)
121)	c	122)	b	123)	a	124)	a	309)	c					
125)	a	126)	a	127)	b	128)	a							
129)	b	130)	a	131)	d	132)	c							
133)	c	134)	d	135)	b	136)	a							
137)	a	138)	d	139)	c	140)	d							
141)	a	142)	b	143)	d	144)	a							
145)	c	146)	b	147)	b	148)	b							
149)	a	150)	b	151)	b	152)	c							
153)	b	154)	b	155)	c	156)	a							
157)	b	158)	b	159)	c	160)	a							
161)	d	162)	C	163)	d	164)	a							
165)	a	166)	b	167)	d	168)	a							
169)	a	170)	a	171)	a	172)	c							
173)	d	174)	C	175)	b	176)	a							
177)	a	178)	c	179)	b	180)	c							
181)	b	182)	a	183)	b	184)	d							
185)	a	186)	C	187)	a	188)	d							

: HINTS AND SOLUTIONS :

1 (c)
Equation of family of ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\Rightarrow \quad \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \cdot \frac{d y}{d x}=0$
$\Rightarrow \quad \frac{x}{a^{2}}+\frac{y}{b^{2}} \cdot \frac{d y}{d x}=0$
$\Rightarrow \quad \frac{1}{a^{2}}+\frac{y}{b^{2}} \cdot \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2} \frac{1}{b^{2}}=0$
$\Rightarrow \quad \frac{b^{2}}{a^{2}}+y\left(\frac{d^{2} y}{d x^{2}}\right)+\left(\frac{d y}{d x}\right)^{2}=0$
$\Rightarrow \quad-\frac{y}{x} \cdot \frac{d y}{d x}+y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0$
[from Eq. (i),
$\left.\frac{b^{2}}{a^{2}}=-\frac{y}{x} \cdot \frac{d y}{d x}\right]$
$\Rightarrow \quad x y \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}\left(x \frac{d y}{d x}-y\right)=0$
2 (a)
The given equation can be rewritten as
$\rho \cdot \frac{d^{2} y}{d x^{2}}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}$
On squaring both sides, we get
$\left(\rho \cdot \frac{d^{2} y}{d x^{2}}\right)=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}$
\Rightarrow order $=2$, degree $=2$.
3 (a)
Since,
$y=e^{2 x}(a \cos x+b \sin x)$
...(i)
$\Rightarrow \quad y_{1}=e^{2 x}(-\mathrm{asin} x+b \cos x)+$
$(a \cos x+b \sin x) 2 e^{2 x}$
$\Rightarrow \quad y_{1}=e^{2 x}(-a \sin x+b \cos x)+2 y$
...(ii)
$\Rightarrow \quad y_{2}=e^{2 x}(-a \cos x-b \sin x)+$
$(-a \sin x+b \cos x) e^{2 x} 2+2 y_{1}$

$$
=-y+2 e^{2 x}(-a \sin x+b \cos x)+
$$

$2 y_{1}$ (using eq.(ii))
$\Rightarrow \quad y_{2}=-y+2\left(y_{1}-2 y\right)+2 y_{1}$
(using eq.(ii))
$\Rightarrow \quad y_{2}=-y+4 y_{1}-4 y$
$\Rightarrow \quad y_{2}-4 y_{1}+5 y=0$
4
(b)

We have, $\frac{d y}{d x}=\frac{a x+g}{b y+f}$
$\Rightarrow \quad(b y+f) d y=(a x+g) d x$

On integrating, we get

$$
\begin{gathered}
\quad \frac{b y^{2}}{2}+f y=\frac{a x^{2}}{2}+g x+c \\
\Rightarrow \quad a x^{2}-b y^{2}+2 g x-2 f y+c=0
\end{gathered}
$$

This represents a circle, if $a=-b$
5 (c)
Given, $\frac{d y}{d x}+\frac{y}{x}=x^{2}$
$\therefore \quad \mathrm{IF}=e^{\int \frac{1}{x} d x}=e^{\log x}=x$
\therefore Complete solution is

$$
\begin{aligned}
& & y \cdot x & =\int x \cdot x^{2} d x+c \\
\Rightarrow & & y \cdot x & =\frac{1}{4} x^{4}+c \\
\Rightarrow & & y & =\frac{1}{4} x^{3}+c x^{-1}
\end{aligned}
$$

6 (b)
Given, $y=a x \cos \left(\frac{1}{x}+b\right)$
$\Rightarrow \quad y_{1}=-a x \sin \left(\frac{1}{x}+b\right) \times\left(-\frac{1}{x^{2}}\right)+$ $a \cos \left(\frac{1}{x}+b\right)$
$\Rightarrow \quad y_{1}=\frac{a}{x} \sin \left(\frac{1}{x}+b\right)+\operatorname{acos}\left(\frac{1}{x}+b\right)$
$\Rightarrow \quad x y_{1}=\operatorname{asin}\left(\frac{1}{x}+b\right)+y$
$\Rightarrow \quad y_{1}+x y_{2}=\operatorname{acos}\left(\frac{1}{x}+b\right)\left(-\frac{1}{x^{2}}\right)+y_{1}$
$\Rightarrow \quad x^{3} y_{2}=-\operatorname{acos}\left(\frac{1}{x}+b\right)$
$\Rightarrow \quad x^{4} y_{2}+y=0$
7 (b)
Given, $\frac{y d x+x d y}{x^{2} y^{2}}=-\frac{1}{y} d y$

$$
\begin{array}{ll}
\Rightarrow & d\left(-\frac{1}{x y}\right)=-\frac{1}{y} d y \\
\Rightarrow & -\frac{1}{x y}=-\log y+c
\end{array}
$$

[integrating]
$\Rightarrow \quad-\frac{1}{x y}+\log y=c$
$8 \quad$ (b)
The given differential equation is

$$
2\left(\frac{d^{2} y}{d x^{2}}\right)+3\left(\frac{d y}{d x}\right)^{2}+4 y^{3}=x
$$

Here, highest order is 2 and degree is 1 .
9 (b)
Given, $\cot y d x=x d y$
$\Rightarrow \frac{d x}{x}=\frac{d y}{\cot y} \Rightarrow \frac{d x}{x}=\tan y d y$
On integrating both sides, we get
$\int \frac{1}{x} d x=\int \tan \cdot y d y$
$\Rightarrow \log x=\log \sec y+\log c$
$\Rightarrow \log x=\log c \sec y$
$\Rightarrow x=c \sec y$
10 (a)
Given, $\frac{d y}{d x}=-\frac{3 x y+y^{2}}{x^{2}+x y}$
Put $\quad y=v x$
$\Rightarrow \quad \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\Rightarrow \quad v+x \frac{d v}{d x}=-\frac{3 v+v^{2}}{1+v}$
$\Rightarrow \quad x \frac{d v}{d x}=\frac{-2 v(v+2)}{v+1}$
$\Rightarrow \quad \frac{1}{x} d x=-\frac{(v+1)}{2 v(v+2)} d v$
$\Rightarrow \quad-\frac{2}{x} d x=-\left[\frac{1}{2(v+2)}+\frac{1}{2 v}\right] d v$
$\Rightarrow \quad-2 \log _{e} x=\frac{1}{2} \log (v+2)+\frac{1}{2} \log v-$
$\log c$
$\Rightarrow \quad v(v+2) x^{4}=c^{2}$
$\Rightarrow \quad \frac{y}{x}\left(\frac{y}{x}+2\right) x^{4}=c^{2}$
$\Rightarrow \quad\left(y^{2}+2 x y\right) x^{2}=c^{3}$
11 (d)
Given equation is $\sqrt{\frac{d y}{d x}}-4 \frac{d y}{d x}-7 x=0$
$\Rightarrow \quad \frac{d y}{d x}=16\left(\frac{d y}{d x}\right)^{2}+49 x^{2}+56 x \frac{d y}{d x}$
Obviously, it is first order and second degree differential equation.
12 (a)
Since, $\cos x d y=y \sin x d x-y^{2} d x$
$\Rightarrow \quad \frac{1}{y^{2}} \frac{d y}{d x}-\frac{1}{y} \tan x=-\sec x$
Put, $-\frac{1}{y}=z \Rightarrow \frac{1}{y^{2}} \frac{d y}{d x}=\frac{d z}{d x}$
$\Rightarrow \quad \frac{d z}{d x}+(\tan x) z=-\sec x$
This is a linear differential equation.
Therefore,
IF $=e^{\int \tan x d x}=e^{\int \log \sec x}=\sec x$
Hence, the solution is
$z .(\sec x)=\int-\sec x \cdot \sec x d x+c_{1}$
$\Rightarrow \quad-\frac{1}{y} \sec x=-\tan x+c_{1}$
$\Rightarrow \quad \sec x=y(\tan x+c)$
13 (a)
Given, $x=A \cos 4 t+B \sin 4 t$
...(i)
$\Rightarrow \quad \frac{d x}{d t}=-4 A \sin 4 t+4 B \cos 4 t$
$\Rightarrow \quad \frac{d^{2} x}{d t^{2}}-16 A \cos 4 t-16 B \sin 4 t$
$\Rightarrow \quad \frac{d^{2} x}{d t^{2}}=-16 x$
[from Eq. (i)]
(c)

Given, $\frac{d y}{d x}+y=2 e^{2 x}$
$\therefore \quad I F=e^{\int 1 d x}=e^{x}$
\therefore Required solution is

$$
\begin{aligned}
y e^{x} & =2 \int e^{2 x} e^{x} d x=\frac{2}{3} e^{3 x}+c \\
\Rightarrow \quad y & =\frac{2}{3} e^{2 x}+c e^{-x}
\end{aligned}
$$

(c)
$\frac{d t}{d x}-t \frac{\mathrm{~g}^{\prime}(x)}{\mathrm{g}(x)}=-\frac{t^{2}}{\mathrm{~g}(x)}$
$\Rightarrow-\frac{1}{t^{2}} \frac{d t}{d x}+\frac{1}{t} \frac{\mathrm{~g}^{\prime}(x)}{\mathrm{g}(x)}=\frac{1}{\mathrm{~g}(x)}$
Let $z=\frac{1}{t} \Rightarrow-\frac{1}{t^{2}} \frac{d t}{d x}=\frac{d z}{d x}$
\therefore From Eq. (i)
$\frac{d z}{d x}+\frac{\mathrm{g}^{\prime}(x)}{\mathrm{g}(x)} z=\frac{1}{\mathrm{~g}(x)}$
On comparing with $\frac{d z}{d x}+P z=Q$, we get
$P=\frac{\mathrm{g}^{\prime}(x)}{\mathrm{g}(x)}, Q=\frac{1}{\mathrm{~g}(x)}$
$\therefore I F=e^{\int \frac{\mathrm{g}^{\prime}(x)}{\mathrm{g}(x)} d x}$
$=e^{\log [\mathrm{g}(x)]}=\mathrm{g}(x)$
Thus, complete solution is
$z \cdot \mathrm{~g}(x)=\int \mathrm{g}(x) \cdot \frac{1}{\mathrm{~g}(x)} d x+c$
$\Rightarrow \frac{1}{t} \mathrm{~g}(x)=x+c \Rightarrow \frac{\mathrm{~g}(x)}{x+c}=t$
16 (a)
The equation of the family of circles of radius a is $(x-h)^{2}+\left(y-k^{2}\right)=a^{2}$, which is a two
parameter family of curves. So, its differential equation is of order two
17
(b)

Given, $\quad \frac{d y}{d x}=\frac{x^{3}+y^{3}}{x y^{2}}$
Put $\quad y=v x$
$\Rightarrow \quad \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\Rightarrow \quad x \frac{d v}{d x}+v=\frac{1+v^{3}}{v^{2}}$
$\Rightarrow \quad v^{2} d v=\frac{d x}{x}$
$\Rightarrow \quad \frac{v^{3}}{3}=\log x+\log c$
$\Rightarrow \quad \frac{1}{3}\left(\frac{y}{x}\right)^{3}=\log x+\log c$
$\Rightarrow \quad y^{3}=3 x^{2} \log c x$

18 (c)
Given, $\frac{d y}{d x}+\frac{y}{x}=\cos x+\frac{\sin x}{x}$
$\therefore \quad \mathrm{IF}=e^{\int \frac{1}{x} d x}=e^{\log x}=x$
\therefore Complete solution is

$$
\begin{array}{ll}
& x y=\int(x \cos x+\sin x) d x \\
\Rightarrow & x y=x \sin x+c \\
\text { At } y=1, x=\frac{\pi}{2}, c=0 \\
\therefore & y=\sin x
\end{array}
$$

19 (a)
Given, $x y=a e^{x}+b e^{-x}$
$\Rightarrow \quad x \frac{d y}{d x}+y=a e^{x}-b e^{-x}$
$\Rightarrow \quad x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+\frac{d y}{d x}=a e^{x}+b e^{-x}$
$\Rightarrow \quad x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-x y=0$
[from
eq. (I)]
20 (c)
The given equation can be written as
$\left(D^{2}+2 D+1\right) y=2 e^{3 x}$, where $\frac{d}{d x}=D$
Here, $F(D)=D^{2}+2 D+1$ and $Q=2 e^{3 x}$
The auxiliary equation is

$$
m^{2}+2 m+1=0
$$

$\Rightarrow \quad(m+1)^{2}=0$
$\Rightarrow \quad m=-1,-1$
$\therefore \quad$ The $\mathrm{CF}=\left(c_{1}+c_{2} x\right) e^{-1}$
and $\quad P I=\frac{1}{F(D)} 2 e^{3 x}=2 \frac{1}{D^{2}+2 D+1} e^{3 x}$

$$
=2 \frac{e^{3 x}}{9+6+1}=\frac{e^{3 x}}{8}
$$

\therefore The complete solution is

$$
y=\left(c_{1}+c_{2} x\right) e^{-x}+\frac{e^{3 x}}{8}
$$

21 (b)
We have,
$(2 y-1) d x=(2 x+3) d y$
$\Rightarrow \frac{1}{2 x+3} d x=\frac{1}{2 y-1} d y$
$\Rightarrow \int \frac{2}{2 x+3} d x=\int \frac{2}{2 y-1} d y$
$\Rightarrow \log (2 x+3)=\log (2 y-1)+\log C \Rightarrow \frac{2 x+3}{2 y-1}$
$=C$
22 (b)
We have,
$\frac{d y}{d x}=y(x y-1)$
$\Rightarrow d y=x y^{2} d x-y d x$
$\Rightarrow y d x+d y=x y^{2} d x \Rightarrow \frac{y d x+d y}{y^{2}}=x d x$
$\Rightarrow \frac{y e^{-x} d x+e^{-x} d y}{y^{2}}=x e^{-x} d x \Rightarrow-d\left(\frac{e^{-x}}{y}\right)$

$$
=x e^{-x} d x
$$

On integrating, we get
$-\frac{e^{-x}}{y}=-x e^{-x}-e^{-x}+C \Rightarrow \frac{1}{y}=x+1+C e^{-x}$
...(i)
It passes through $(0,1)$. Therefore, $1=1+C \Rightarrow$ $C=0$
Putting $C=0$ in (i), we get $\frac{1}{y}=x+1 \Rightarrow$
$y(x+1)=1$
ALTER We have,
$\frac{d y}{d x}=y(x y-1)$
$\Rightarrow \frac{d y}{d x}+y=x y^{2}$
$\Rightarrow \frac{1}{y^{2}} \frac{d y}{d x}+\frac{1}{y}=x$
$\Rightarrow-\frac{d v}{d x}+v=x$, where $v=\frac{1}{y}$
$\Rightarrow \frac{d v}{d x}-v=-x$
I. F. $=e^{-\int 1 . d x}=e^{-x}$

Multiplying (i) by e^{-x} and integrating, we get $v e^{-x}=x e^{-x}+e^{-x}+C \Rightarrow \frac{1}{y}=x+1+C e^{x}$
It passes through $(0,1)$
Hence, the equation of the curve is
$\frac{1}{y}=(x+1) \Rightarrow(x+1) y=1$
23
(d)

Given differential equation is

$$
x d y=y d x
$$

$\Rightarrow \quad \frac{d y}{y}=\frac{d x}{x} \Rightarrow \int \frac{d y}{y}=\int \frac{d x}{x}$
$\Rightarrow \quad \log _{e} y=\log _{e} x+\log _{e} c$
$\Rightarrow \quad y=c x$
Which is a straight line.
(b)

Given, $\frac{d y}{d x}=(1+x)(1+y)$
$\Rightarrow \quad \frac{1}{1+y} d y=(1+x) d x$
$\Rightarrow \quad \log (1+y)=x+\frac{x^{2}}{2}+c$
[integrating]
At $y(-1)=0$
$\Rightarrow \quad c=\frac{1}{2}$
$\therefore \quad \log (1+y)=\frac{x^{2}+2 x+1}{2}$
$\Rightarrow \quad y=e^{\frac{(1+x)^{2}}{2}}-1$
(c)

Given, $\frac{d y}{d x}+y \cdot \frac{1}{x} \log x=e^{x} x^{-(1 / 2) \log x}$
$\therefore \quad I F=e^{\int \frac{1}{x} \log x d x}=e^{\int \frac{(\log x)^{2}}{2}}=$
$(\sqrt{e})^{(\log x)^{2}}$
26 (d)
Given differential equation is

$$
y d y=(c-x) d x
$$

$\Rightarrow \quad \frac{y^{2}}{2}=c x-\frac{x^{2}}{2}+d$
$\Rightarrow \quad y^{2}+x^{2}-2 c x-2 d=0$
Hence, it represents a family of circles whose centres are on the x-axis.
27 (a)
Given, $\frac{d y}{d x}=\frac{x-y}{x+y}$
This is a homogeneous equation
Put $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Given equation becomes
$v+x \frac{d v}{d x}=\frac{x-v x}{x+v x}$
$\Rightarrow x \frac{d v}{d x}=\frac{1-v}{1+v}-v$
$\Rightarrow \frac{1+v}{2-(1+v)^{2}} d v=\frac{d x}{x}$
On integrating both sides, we get
$\int \frac{1+v}{2-(1+v)^{2}} d v=\int \frac{d x}{x}$
Put $(1+v)^{2}=t \Rightarrow 2(1+v) d v=d t$
$\Rightarrow \frac{1}{2} \int \frac{d t}{2-t}=\int \frac{d x}{x}$
$\Rightarrow-\frac{1}{2} \log (2-t)=\log x+\log c$
$\Rightarrow-\frac{1}{2} \log \left[2-(1+v)^{2}\right]=\log x c$
$\Rightarrow-\frac{1}{2} \log \left[-v^{2}-2 v+1\right]=\log x c$
$\Rightarrow \log \frac{1}{\sqrt{1-2 v-v^{2}}}=\log x c$
$\Rightarrow x^{2} c^{2}\left(1-2 v-v^{2}\right)=1$
$\Rightarrow x^{2} c^{2}\left(1-\frac{2 y}{x}-\frac{y^{2}}{x^{2}}\right)=1\left(\because v=\frac{y}{x}\right)$
$\Rightarrow \frac{x^{2} c^{2}\left(x^{2}-2 y x-y^{2}\right)}{x^{2}}=1$
$\Rightarrow y^{2}+2 x y-x^{2}=c$
(b)

Given equation is
$y=c_{1} e^{2 x+c_{2}}+c_{3} e^{x}+c_{4} \sin \left(x+c_{5}\right)$
$=c_{1} e^{c_{2}} e^{2 x}+c_{3} e^{x}+c_{4}\left(\sin x \cos c_{5}+\cos x \sin c_{5}\right)$
$=A e^{2 x}+c_{3} e^{x}+B \sin x+D \cos x$
Here, $A=c_{1} e^{c_{2}}, B=c_{4} \cos c_{5}, D=c_{4} \sin c_{5}$
29

We have,
$\frac{x}{x^{2}+y^{2}} d y=\left(\frac{y}{x^{2}+y^{2}}-1\right) d x$
$\Rightarrow \frac{x d y-y d x}{x^{2}+y^{2}}=-d x$
$\Rightarrow d\left\{\tan ^{-1}\left(\frac{y}{x}\right)\right\}=-d x$
$\Rightarrow \tan ^{-1} \frac{y}{x}=-x+C \Rightarrow y=x \tan (C-x)$
(c)

Given differential equation can be rewritten as

$$
\frac{d y}{d x}=\frac{x+y-1}{x+y+1}
$$

Put $\quad x+y=t$
$\Rightarrow \quad \frac{d y}{d x}=\frac{d t}{d x}-1$
$\therefore \quad \frac{d t}{d x}-1=\frac{t-1}{t+1}$
$\Rightarrow \quad \frac{1}{2}(t+\log t)=x+\frac{c}{2}$
$\Rightarrow \quad \frac{1}{2}(t+\log t)=x-y+c$
$\Rightarrow \quad \log (x+y)=x-y+c$
31 (a)
Given, $\quad y-x \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)$
$\Rightarrow \quad \frac{d y}{d x}(a+x)=y-a y^{2}$
$\Rightarrow \quad \int\left(\frac{1}{y}+\frac{a}{1-a y}\right) d y=\int \frac{d x}{a+x}$
$\Rightarrow \quad \log y-\log (1-a y)=\log (a+x)+$ $\log c$
$\Rightarrow \quad \log y=\log (1-a y)(a+x) c$
$\Rightarrow \quad y=c(1-a y)(a+x)$
32 (c)
Given differential equation can be rewritten as

$$
\left(1+3 \frac{d y}{d x}\right)^{2}=64\left(\frac{d^{3} y}{d x^{3}}\right)^{3}
$$

33
(b)

$$
\begin{aligned}
& \frac{d y}{d x}=y+2 x \\
& \Rightarrow \quad \frac{d y}{d x}-y=2 x \\
& \quad \mathrm{IF}=e^{\int-1 d x}=e^{-x}
\end{aligned}
$$

\therefore Solution of the differential equation is

$$
\begin{array}{rlrl}
& & y . e^{-x} & =2 \int x e^{-x} d x \\
& =2\left(-x e^{-x}-e^{-x}\right)+c \\
\Rightarrow \quad & y & =2 e^{x}\left(-x e^{-x}-e^{-x}\right)+c e^{x} \\
\Rightarrow \quad & y & =-2 x-2+c e^{x}
\end{array}
$$

For $c=2$
We get

$$
y=2\left(e^{x}-x-1\right)
$$

(d)

We have,
$y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=c$
$\Rightarrow y^{2}\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}=c^{2} \Rightarrow y^{2}\left(\frac{d y}{d x}\right)^{2}+y^{2}=c^{2}$
Clearly, it is a differential equation of degree 2
35 (a)
Given, $\frac{d y}{d x}+1=\operatorname{cosec}(x+y)$
Put $\quad x+y=t$
$\Rightarrow \quad 1+\frac{d y}{d x}=\frac{d t}{d x}$
$\therefore \quad \frac{d t}{\operatorname{cosec} t}=d x$
$\Rightarrow \quad \int \sin t d t=\int d x$
$\Rightarrow \quad-\cos t=x-c$
$\Rightarrow \quad \cos (x+y)+x=c$
36 (b)
Given differential equation can be rewritten as

$$
e^{2 y} d y=\left(e^{3 x}+x^{2}\right) d x
$$

On integrating, we get
$\Rightarrow \quad \frac{e^{2 y}}{2}=\frac{e^{3 x}}{3}+\frac{x^{3}}{3}+c$
37
(b)

We have,
$(x-h)^{2}+(y-k)^{2}=a^{2}$
Differentiating w.r.t. x, we get
$2(x-h)+2(y-k) \frac{d y}{d x}=0$
$\Rightarrow(x-h)+(y-k) \frac{d y}{d x}=0$
Differentiating w.r.t. x, we get
$1+\left(\frac{d y}{d x}\right)^{2}+(y-k) \frac{d^{2} y}{d x^{2}}=0$
From (iii), we get
$y-k=-\frac{1+p^{2}}{q}$, where $p=\frac{d y}{d x}, q=\frac{d^{2} y}{d x^{2}}$
Putting the value of $y-k$ in (ii), we get
$x-h=\frac{\left(1+p^{2}\right) p}{q}$
Substituting the values of $x-h$ and $y-k$ in (i), we get
$\left(\frac{1+p^{2}}{q}\right)^{2}\left(1+p^{2}\right)=a^{2}$
$\Rightarrow\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{3}=a^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$,
which is the required differential equation
$38 \quad$ (b)
The general equation of parabola whose axis is x-axis,is

$$
\begin{array}{cc}
& y^{2}=4 a(x-h) \\
\Rightarrow & 2 y \frac{d y}{d x}=4 a \\
\Rightarrow & y \frac{d y}{d x}=2 a \\
\Rightarrow & \left(\frac{d y}{d x}\right)^{2}+y \frac{d^{2} y}{d x^{2}}=0
\end{array}
$$

\therefore Degree $=1$, order $=2$
39 (c)
$\frac{d y}{d x}=\frac{x+y+1}{x+y-1}$
Put $\quad x+y=t$
$\Rightarrow \quad 1+\frac{d y}{d x}=\frac{d t}{d x}$
$\Rightarrow \quad \frac{d y}{d x}=\frac{d t}{d x}-1$
$\therefore \quad \frac{d t}{d x}-1=\frac{t+1}{t-1}$
$\Rightarrow \quad \frac{d t}{d x}=\frac{t+1+t-1}{t-1}$
$\Rightarrow \quad \frac{d t}{d x}=\frac{2 t}{t-1}$
$\Rightarrow \quad\left(\frac{t-1}{2 t}\right) d t=d x$
$\Rightarrow \quad\left(\frac{1}{2}-\frac{1}{2 t}\right) d t=d x$

On integrating, we get

$$
\begin{array}{cc}
& \frac{1}{2} t-\frac{1}{2} \log t=x+c_{1} \\
\Rightarrow & t-\log t=2 x+2 c_{1} \\
\Rightarrow & x+y-\log (x+y)=2 x+2 c_{1} \\
\Rightarrow & y=x+\log (x+y)+c
\end{array}
$$

40 (c)
$\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x^{2}-y^{2}}$, where, $\frac{d y}{d x}$ is the slope of the curve.
$\therefore\left(\frac{d y}{d x}\right)_{(1,0)}=\frac{1+0}{1-0}=1$
41 (a)
Given, $\quad \frac{d y}{d x}=3 x^{3}$
$\Rightarrow \quad d y=3 x^{3} d x$
On integrating, we get

$$
y=\frac{3 x^{3}}{3}+c
$$

$\Rightarrow \quad y=x^{3}+c$
It passes through ($-1,1$).
$\therefore \quad 1=(-1)^{3}+c$
$\Rightarrow \quad c=2$
$\therefore \quad y=x^{3}+2$
42 (d)
Given, $\quad(x+y)^{2} \frac{d y}{d x}=a^{2}$
Put $\quad x+y=v$
$\Rightarrow \quad \frac{d y}{d x}=\frac{d v}{d x}-1$
$\therefore \quad v^{2}\left(\frac{d v}{d x}-1\right)=a^{2}$
$\Rightarrow \quad \frac{d v}{d x}=\frac{a^{2}+v^{2}}{v^{2}}$
$\Rightarrow \quad\left(1-\frac{a^{2}}{a^{2}+v^{2}}\right) d v=d x$
$\Rightarrow \quad v-a \tan ^{-1}\left(\frac{v}{a}\right)=x+c$
[integrating]
$\Rightarrow \quad(x+y)-a \tan ^{-1}\left(\frac{x+y}{a}\right)=x+c$
$\Rightarrow \quad y=a \tan ^{-1}\left(\frac{x+y}{a}\right)+c$
43 (a)
We have, $y=c x-c^{2}$
On differentiating w.r.t ' x^{\prime}, we get

$$
y^{\prime}=c
$$

On putting this value in Eq. (i), we get

$$
y=x\left(y^{\prime}\right)-\left(y^{\prime}\right)^{2}
$$

\Rightarrow

$$
\left(y^{\prime}\right)^{2}-x y^{\prime}+y=0
$$

44 (a)
We have,
$\frac{d v}{d t}+\frac{k}{m} v=-g$
$\Rightarrow \frac{d v}{d t}=-\frac{k}{m}\left(v+\frac{m g}{k}\right)$
$\Rightarrow \frac{d v}{v+m g / k}=-\frac{k}{m} d t$
$\Rightarrow \log \left(v+\frac{m g}{k}\right)=-\frac{k}{m} t+\log C$
$\Rightarrow v+\frac{m g}{k}=C e^{-k / m t} \Rightarrow v=C e^{-k / m t}-\frac{m g}{k}$

(a)

Given equation is $\frac{d y}{d x}+y \tan x=\sec x$
Here, $P=\tan x$ and $Q=\sec x$
$\therefore \mathrm{IF}=e^{\int p d x}=e^{\int \tan x d x}$
$=e^{\log \sec x}=\sec x$
Hence, required solution
$y \sec x=\int \sec ^{2} x d x+c$
$\Rightarrow y \sec x=\tan x+c$
46 (b)
Given, $\quad \frac{d y}{d x}=\frac{y+x \tan \frac{y}{x}}{x}$
Put $\quad y=v x$
$\Rightarrow \quad \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\therefore \quad v+x \frac{d v}{d x}=\frac{v x+x \tan \left(\frac{v x}{x}\right)}{x}$
$\Rightarrow \quad x \frac{d v}{d x}=v+\tan v-v$
$\Rightarrow \quad \int \cot v d v=\int \frac{d x}{x}$
$\Rightarrow \quad \log \sin v=\log x+\log c \Rightarrow \sin \frac{y}{x}=x c$
(c)

We have,
$y^{2}=4 a(x+a)$
$\Rightarrow 2 y \frac{d y}{d x}=4 a \Rightarrow a=\frac{1}{2} y \frac{d y}{d x}$
Substituting the value of a in (i), we get

$$
\begin{aligned}
& \begin{aligned}
y^{2}=2 y \frac{d y}{d x}(x & \left.+\frac{1}{2} y \frac{d y}{d x}\right) \Rightarrow y^{2} \\
& =y \frac{d y}{d x}\left(2 x+y \frac{d y}{d x}\right)
\end{aligned} \\
& \Rightarrow y^{2}\left(\frac{d y}{d x}\right)^{2}+2 x y \frac{d y}{d x}-y^{2}=0
\end{aligned}
$$

48 (c)
Given, $\frac{d y}{d x}=e^{x} e^{y}$
$\Rightarrow \quad \int e^{-y} d y=\int e^{x} d x$
$\Rightarrow \quad-e^{-y}=e^{x}-c$
$\Rightarrow \quad e^{x}+e^{-y}=c$
49 (a)
The given equation is
$t=1+(t y)\left(\frac{d y}{d t}\right)+\frac{(t y)^{2}}{2!}\left(\frac{d y}{d t}\right)^{2}+\ldots \infty$
$\Rightarrow t=e^{t y\left(\frac{d y}{d t}\right)}$
$\Rightarrow \log t=t y \frac{d y}{d t}$
$\Rightarrow y d y=\frac{\log t}{t} d t$
On integrating both sides, we get
$\frac{y^{2}}{2}=\frac{(\log t)^{2}}{2}+k$
$\Rightarrow y= \pm \sqrt{(\log t)^{2}+2 k}$
$\Rightarrow y= \pm \sqrt{(\log t)^{2}+c}$
50 (a)
Given, $\frac{x d y-y d x}{x^{2}}+e^{x} d x=0$
$\Rightarrow \quad d\left(\frac{y}{x}\right)+d\left(e^{x}\right)=0$
$\Rightarrow \quad \frac{y}{x}+e^{x}=c$
[integrating]
51 (b)
We have,
$\frac{d y}{d x}+2 y \tan x=\sin x$
It is a linear differential equation with integrating factor
I.F. $=e^{\int 2 \tan x d x}=e^{2 \log \sec x}=\sec ^{2} x$

Multiplying (i) by $\sec ^{2} x$ and integrating, we get $y \sec ^{2} x=\int \sin x \sec ^{2} x d x$
$\Rightarrow y \sec ^{2} x=\int \sec x \tan x d x \Rightarrow y \sec ^{2} x$

$$
=\sec x+C
$$

53 (b)
Given, $\frac{d y}{d x}=e^{-y}\left(e^{x}+x^{2}\right)$
$\Rightarrow \quad \int e^{y} d y=\int e^{x} d x+\int x^{2} d x$
$\Rightarrow \quad e^{y}=e^{x}+\frac{x^{3}}{3}+c$
$\Rightarrow \quad e^{y}-e^{x}=\frac{x^{3}}{3}+c$
54 (d)
Given, $\frac{d^{2} y}{d x^{2}}=\frac{\log x}{x^{2}}$
$\Rightarrow \quad \frac{d y}{d x}=\frac{-(\log x+1)}{x}+c$
[integrating]
Since, $\left(\frac{d y}{d x}\right)_{(1,0)}=-1$
$\Rightarrow \quad \frac{-1}{1}+c=-1 \Rightarrow c=0$
$\Rightarrow \quad \frac{d y}{d x}=-\frac{(\log x+1)}{x}+0$
$\Rightarrow \quad y=-\frac{1}{2}(\log x)^{2}-\log x+c_{1}$
[integrating]
At $x=1, y=0 \Rightarrow c_{1}=0$
$\therefore \quad y=-\frac{1}{2}(\log x)^{2}-\log x$
55 (c)
Given, $\quad \frac{d y}{d x}+y=x^{2}$
$\therefore \quad \mathrm{IF}=e^{\int 1 d x}=e^{x}$

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

$\therefore \quad \mathrm{IF}=e^{\int P(x) d x}$
\therefore Both statements A and B are true and
$R \Rightarrow A$
56 (c)
The equation of the given family of ellipses is
$\frac{x^{2}}{4 a^{2}}+\frac{y^{2}}{a^{2}}=1$ or, $x^{2}+4 y^{2}=4 a^{2}$
Differentiating with respect to x, we get
$2 x+8 y \frac{d y}{d x}=0 \Rightarrow x+4 y y^{\prime}=0$
This is the required differential equation
57 (b)
Given that centre of circle is $(1,2)$.
Let radius of circle is a.

$$
\begin{array}{lr}
\therefore & (x-1)^{2}+(y-2)^{2}=a^{2} \\
\Rightarrow & 2(x-1)+2(y-2) \frac{d y}{d x}=0 \\
\Rightarrow & (x-1)+(y-2) \frac{d y}{d x}=0
\end{array}
$$

58 (c)
Given, $\quad y^{2}=4 a x+4 a^{2}$
$\Rightarrow \quad 2 y y^{\prime}=4 a$
On putting the value of $4 a$ in eq(i), we get

$$
\begin{aligned}
& y^{2}=2 y y^{\prime} x+4 \cdot \frac{y^{2} y^{\prime 2}}{4} \\
\Rightarrow \quad & y=2 y^{\prime} x+y y^{\prime 2}
\end{aligned}
$$

59 (a)
Given, $\quad y=A e^{x}+B e^{2 x}+C e^{3 x}$

$$
\begin{equation*}
\Rightarrow \quad y^{\prime} A e^{x}+2 B e^{2 x}+3 C e^{3 x} \tag{i}
\end{equation*}
$$

From Eq. (i),

$$
\begin{array}{rlrl}
& & A e^{x} & =y-B e^{2 x}-C e^{3 x} \\
\Rightarrow & y^{\prime} & =y+B e^{2 x}-C e^{3 x} \\
\therefore & y^{\prime \prime} & =y^{\prime}+B e^{2 x}+6 C e^{3 x} \tag{ii}
\end{array}
$$

From Eq. (ii),

$$
\begin{array}{ll}
& B e^{2 x}=y^{\prime}-y-2 C e^{3 x} \\
\therefore & y^{\prime \prime}=y^{\prime}+2 y^{\prime}-2 y-4 C e^{3 x}+6 C e^{3 x} \\
\Rightarrow & y^{\prime \prime}=3 y^{\prime}-2 y+2 C e^{3 x} \\
\ldots \text { (iii) } &
\end{array}
$$

Again, differentiating w.r.t. x, we get

$$
y^{\prime \prime \prime}=3 y^{\prime \prime}-2 y^{\prime}+6 C e^{3 x}
$$

From Eq. (iii),

$$
\begin{array}{ll}
& 2 C e^{3 x}=y^{\prime \prime}-3 y^{\prime}+2 y \\
\therefore & y^{\prime \prime \prime}=3 y^{\prime \prime}-2 y^{\prime}+3\left(y^{\prime \prime}-3 y^{\prime}+2 y\right) \\
\Rightarrow & y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0
\end{array}
$$

60 (a)
The equation of a member of the family of parabolas having axis parallel to y-axis is

$$
\begin{aligned}
y & =A x^{2}+B x+C \\
\Rightarrow \quad \frac{d y}{d x} & =2 A x+B \\
\Rightarrow \quad \frac{d^{2} y}{d x^{2}}=2 A & \Rightarrow \frac{d^{3} y}{d x^{3}}=0
\end{aligned}
$$

61 (a)
Let $x^{2}+y^{2}-2 k y=0$
$\Rightarrow \quad 2 x+2 y \frac{d y}{d x}-2 k \frac{d y}{d x}=0$
$\Rightarrow \quad k=\frac{k}{\left(\frac{d y}{d x}\right)}+y$
From Eq. (i),
$x^{2}+y^{2}-2\left(\frac{x}{(d y / d x)}+y\right) y=0$
$\Rightarrow \quad\left(x^{2}-y^{2}\right) \frac{d y}{d x}-2 x y=0$
(a)

Given, $\quad \frac{d y}{d x}=\tan \theta=2 x+3 y$
Put $2 x+3 y=z \Rightarrow 2+3 \quad \frac{d y}{d x}=\frac{d z}{d x}$
$\Rightarrow \quad \frac{d y}{d x}=\left(\frac{d z}{d x}-2\right) \frac{1}{3}$
$\therefore \quad \frac{d z}{d x}-2=3 z \Rightarrow \frac{d z}{3 z+2}=d x$
On integrating, we get

$$
\begin{aligned}
& \frac{\log (3 z+2)}{3}=x+C \\
\Rightarrow \quad & \frac{\log (6 x+9 y+2)}{3}=x+C
\end{aligned}
$$

Since, it passes through $(1,2)$.
$\therefore \quad \frac{\log (6+18+2)}{3}=1+C$
$\Rightarrow \quad C=\frac{\log 26}{3}-1$
$\therefore \quad \frac{\log (6 x+9 y+2)}{3}=x+\frac{\log 26}{3}-1$
$\Rightarrow \quad \log \left(\frac{6 x+9 y+2}{26}\right)=3(x-1)$
$\Rightarrow \quad 6 x+9 y+2=26 e^{3(x-1)}$
63 (a)
Given, $\frac{d y}{d x}-\frac{\tan y}{x}=\frac{\tan y \sin y}{x^{2}}$
$\Rightarrow \quad \cot y \operatorname{cosec} y \frac{d y}{d x}-\frac{\operatorname{cosec} y}{x}=\frac{1}{x^{2}}$
Put $\quad-\operatorname{cosec} y=t$
$\Rightarrow \quad \cot y \operatorname{cosec} y \frac{d y}{d x}=\frac{d t}{d x}$
$\therefore \quad \frac{d t}{d x}+\frac{t}{x}=\frac{1}{x^{2}}$
$\therefore \quad \mathrm{IF}=e^{\int P d x}=e^{\int \frac{1}{x} d x}=x$
\therefore Solution is $t x=\int x \cdot \frac{1}{x^{2}} d x-c$
$\Rightarrow \quad-\operatorname{cosec} y \cdot x=\log x-c$
$\Rightarrow \quad \frac{x}{\sin y}+\log x=c$
64
(b)

Given differential equation is

$$
5\left(\frac{d^{2} y}{d x^{2}}\right)^{5}+4\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+\left(\frac{d y}{d x}\right)^{3}+2 y+x^{3}=0
$$

Here, highest order derivative is 3 whose degree is 2.
65
(b)

Given differential equation can be rewritten as

$$
\begin{array}{ll}
& y-x \frac{d y}{d x}=\sqrt{a^{2}\left(\frac{d y}{d x}\right)^{2}+b^{2}} \\
\Rightarrow & y^{2}+\left(x \frac{d y}{d x}\right)^{2}-2 y x \frac{d y}{d x}=a^{2}\left(\frac{d y}{d x}\right)^{2}+ \\
b^{2} &
\end{array}
$$

Here, order is 1 and degree is 2 .
66 (b)
The displacement x for all SHM is given by
$x=a \cos (n t+b)$
$\Rightarrow \frac{d x}{d t}=-n a \sin (n t+b)$
$\Rightarrow \frac{d^{2} x}{d t^{2}}=-n^{2} a \cos (n t+b)$
$\Rightarrow \frac{d^{2} x}{d t^{2}}=-n^{2} x \Rightarrow \frac{d^{2} x}{d t^{2}}=+n^{2} x=0$
67 (a)
We have,
$\frac{d x}{x}+\frac{d y}{y}=0 \Rightarrow \log x+\log y=\log c \Rightarrow x y=c$
(a)

The general equation of all non-vertical lines in a plane is $a x+b y=1$, where $b \neq 0$
$\therefore \quad a+b \frac{d y}{d x}=0$
$\Rightarrow \quad b \frac{d^{2} y}{d x^{2}}=0$
$\Rightarrow \quad \frac{d^{2} y}{d x^{2}}=0$
69 (b)
Given, $\frac{d y}{d x}=\frac{y^{2}}{x y-x^{2}}$
Put $y=v x$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d y}{d x}=v+x \frac{d v}{d x} \\
& \therefore \quad v+x \frac{d v}{d x}=\frac{v^{2} x^{2}}{v x^{2}-x^{2}} \\
& \Rightarrow \quad x \frac{d v}{d x}=\frac{v}{v-1} \\
& \Rightarrow \quad\left(1-\frac{1}{v}\right) d v=\frac{d x}{x} \\
& \Rightarrow \quad v-\log v=\log x+\log k
\end{aligned}
$$

[integrating]

$$
\begin{array}{ll}
\Rightarrow & \frac{y}{x}=\log x k \frac{y}{x} \\
\Rightarrow & \frac{y}{x}=\log k y \\
\Rightarrow & k y=e^{v / x}
\end{array}
$$

Given differentiating equation is

$$
\begin{aligned}
& \left(1+4 \frac{d y}{d x}\right)^{2 / 3}=4 \frac{d^{2} y}{d x^{2}} \\
\Rightarrow \quad & \left(1+4 \frac{d y}{d x}\right)^{2}=4^{3}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}
\end{aligned}
$$

Here, highest order is 2 and degree is 3 .
71 (d)
We have,
$\frac{d y}{d x}=1+x+y^{2}+x y^{2}$
$\Rightarrow \frac{d y}{d x}=(1+x)\left(1+y^{2}\right)$
$\Rightarrow \frac{1}{1+y^{2}} d y=(1+x) d x$
$\Rightarrow \tan ^{-1} y=\left(x+\frac{x^{2}}{2}\right)+C$
It is given that $y(0)=0$ i.e. $y=0$ when $x=0$
$\therefore \tan ^{-1} 0=0+C \Rightarrow c=0$
Hence, $\tan ^{-1} y=x+\frac{x^{2}}{2} \Rightarrow y=\tan \left(x+\frac{x^{2}}{2}\right)$
72 (a)
Given, $\quad \frac{d y}{d x}+\frac{y}{x}=\sin x$
$\therefore \quad \mathrm{IF}=e^{\int \frac{1}{x} d x}=x$
\therefore Solution is $\quad y \cdot x=\int x \sin x d x+c$
$\Rightarrow \quad x y=-x \cos x+\sin x+c$
$\Rightarrow \quad x(y+\cos x)=\sin x+c$
73 (d)
Given differential equation can be rewritten as

$$
\begin{array}{rlrl}
& \frac{d x}{d y}=\frac{(\log y-x)}{y \log y} \\
\Rightarrow & \frac{d x}{d y}+\frac{x}{y \log y}=\frac{1}{y} \\
\therefore & & \mathrm{IF} & =e^{\int \frac{1}{y \log y} d y} \\
& =e^{\log \log y}=\log y
\end{array}
$$

74 (b)
Curve is $y=e^{a \sin x} \Rightarrow \sin x=\frac{\log y}{a}$
$\therefore \quad \frac{d y}{d x}=e^{a \sin x} a \cos x$
$\Rightarrow \quad \frac{d y}{d x}=y \cos x \cdot \frac{\log y}{\sin x}$
$\Rightarrow \quad y \log y=\tan x \frac{d y}{d x}$
75 (a)
Let the equation of parabola having the directrix parallel to x-axis is
$x^{2}=4 a(y+k)$
and equation of directrix is $y=p$
Here, 3 unknowns are in Eqs. (i) and (ii).
\therefore Order of DE such parabolas having directrix parallel to x-axis is 3 .

76 (d)
We have,
$x d y-y d x=\sqrt{x^{2}+y^{2}} d x \Rightarrow \frac{d y}{d x}-\frac{y}{x}=\frac{\sqrt{x^{2}+y^{2}}}{x}$
Putting $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$, we get
$v+x \frac{d v}{d x}-v=\sqrt{1+v^{2}} \Rightarrow \frac{1}{\sqrt{1+v^{2}}} d v=\frac{d x}{x}$
Integrating, we get
$\log \left|v+\sqrt{v^{2}+1}\right|=\log x+\log C$
$\Rightarrow v+\sqrt{v^{2}+1}=C x \Rightarrow y+\sqrt{x^{2}+y^{2}}=C x^{2}$
77 (a)
Given, $\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=x^{2}-1$
or $\frac{d y}{d x}+\frac{2 x}{1+x^{2}} y=\frac{x^{2}-1}{x^{2}+1}$
It is a linear differential equation.
On comparing with the standard equation $\frac{d y}{d x}+P y=Q$, we get
$P=\frac{2 x}{1+x^{2}}, Q=\frac{x^{2}-1}{x^{2}+1}$
$\therefore \mathrm{IF}=e^{\int P d x}=e^{\int \frac{2 x}{1+x^{2}} d x}$
$=e^{\log \left(1+x^{2}\right)}=1+x^{2}$
78 (c)
The equation of the family of circles is
$x^{2}+(y-k)^{2}=r^{2}$
Where k is a parameter
Differentiating w.r.t. x, we get
$2 x+2(y-k) y_{1}=0 \Rightarrow y-k=-\frac{x}{y_{1}}$
Eliminating k from (i) and (ii), we obtain

$$
\begin{gathered}
x^{2}+\frac{x^{2}}{y_{1}^{2}}=r^{2} \Rightarrow x^{2}=\frac{r^{2} y_{1}^{2}}{1+y_{1}^{2}} \Rightarrow x^{2}\left(y_{1}^{2}+1\right) \\
=r^{2} y_{1}^{2}
\end{gathered}
$$

79 (d)
Given, $y=a e^{x}+b x e^{x}+c x^{2} e^{x}$
...(i)
On differentiating w.r.t. x, we get
$y^{\prime}=a e^{x}+b\left(x e^{x}+e^{x}\right)+c\left(x^{2} e^{x}+\right.$ $2 x e^{x}$)
$\Rightarrow \quad y^{\prime}=a e^{x}+b x e^{x}+c x^{2} e^{x}+b e^{x}+$ $2 c x e^{x}$
$\Rightarrow \quad y^{\prime}=y+b e^{x}+2 c x e^{x}$
...(ii)
Again, differentiating w. r.t. x, we get

$$
\begin{array}{ll}
& y^{\prime \prime}=y^{\prime}+b e^{x}+2 c\left(x e^{x}+e^{x}\right) \\
\Rightarrow \quad & y^{\prime \prime}=y^{\prime}+b e^{x}+2 c x e^{x}+2 c e^{x} \\
\Rightarrow \quad y^{\prime \prime} & =2 y^{\prime}-y+2 c e^{x} \\
& . .(\text { (iii) }
\end{array}
$$

Eq. (ii)]
Again, differentiating w.r. t. x, we get

$$
y^{\prime \prime \prime}=2 y^{\prime \prime}-y^{\prime}+2 c e^{x}
$$

$\Rightarrow \quad y^{\prime \prime \prime}=2 y^{\prime \prime}-y^{\prime}+\left(y^{\prime \prime}-2 y^{\prime}+y\right)$
[from eq. (iii)]
$\Rightarrow \quad y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0$
80 (c)
Given, $\quad y=a e^{m x}+b e^{-m x}$
$\Rightarrow \quad \frac{d y}{d x}=m a e^{m x}-m b e^{-m x}$
$\Rightarrow \quad \frac{d^{2} y}{d x^{2}}=m^{2} a e^{m x}+m^{2} b e^{-m x}=m^{2} y$
$\Rightarrow \quad \frac{d^{2} y}{d x^{2}}-m^{2} y=0$
81 (c)
Given, $\quad \sqrt{\sin x}\left(1+\frac{d y}{d x}\right)=\sqrt{\cos x}\left(1-\frac{d y}{d x}\right)$
$\Rightarrow \quad \frac{d y}{d x}=\frac{\sqrt{\cos x}-\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}$
\therefore Order $=1$, degree $=1$
82 (a)
The equation of a family of circles of radius r passing through the origin and having centre on y-axis is
$(x-0)^{2}+(y-r)^{2}=r^{2} \Rightarrow x^{2}+y^{2}-2 r y=0$
This is one parameter family of circles so its differential equation is of order one
83 (b)
Given, $\frac{d y}{d x}=-\frac{1+y+x^{2} y}{x+x^{3}}$
$\Rightarrow \quad \frac{d y}{d x}+\frac{y}{x}=-\frac{1}{x\left(1+x^{2}\right)}$
$\therefore \quad I F=e^{\int \frac{1}{x} d x}=x$
84 (c)
Given, $\frac{d y}{d x}=\left(\frac{y}{x}\right)^{1 / 3}$
$\Rightarrow \frac{d y}{d x}=\frac{y^{1 / 3}}{x^{1 / 3}} \Rightarrow \frac{d y}{y^{1 / 3}}=\frac{d x}{x^{1 / 3}}$
On integrating both sides, we get
$\int \frac{d y}{y^{1 / 3}}=\int \frac{d y}{x^{1 / 3}}$
$\Rightarrow \frac{y^{2 / 3}}{\frac{2}{3}}=\frac{x^{2 / 3}}{\frac{2}{3}}+c_{1}$
$\Rightarrow \frac{3}{2} y^{2 / 3}=\frac{3}{2} x^{2 / 3}+c_{1}$
$\Rightarrow y^{2 / 3}-x^{2 / 3}=c\left(\right.$ where $\left.c=\frac{2}{3} c_{1}\right)$
85 (b)
Let $y=f(x)$ be the curve. The equation of tangent at (x, y) to this curve is

$$
\begin{equation*}
Y-y=f^{\prime}(x)(X-x) \tag{i}
\end{equation*}
$$

Put $X=0$ in Eq. (i), we get

$$
Y=y-x f^{\prime}(x)
$$

This ordinate is called the initial ordinate of the tangent. It is given that,
Initial ordinate of the tangent $=$ Subnormal
$\Rightarrow \quad y-x f^{\prime}(x)=y \frac{d y}{d x}$
$\Rightarrow \quad \frac{d y}{d x}=\frac{y}{x+y}$
[put
$\left.f^{\prime}(x)=\frac{d y}{d x}\right]$
Hence, it is a homogenous differential equation.
86 (b)
$y-x \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)$
$\Rightarrow y-a y^{2}=a \frac{d y}{d x}+x \frac{d y}{d x}$
$\Rightarrow y(1-a y)=(a+x) \frac{d y}{d x}$
$\Rightarrow \frac{d x}{(a+x)}=\frac{d y}{y(1-a y)}$
On integrating both sides, we get
$\int \frac{d x}{(a+x)}=\int \frac{d y}{y(1-a y)}$
$\Rightarrow \log (a+x)=\int\left[\frac{1}{y}+\frac{a}{(1-a y)}\right] d x$
$\Rightarrow \log (a+x)=\log y+\frac{a \log (1-a y)}{-a}+\log c$
$\Rightarrow \log (a+x)=\log y-\log (1-a y)+\log c$
$\Rightarrow \log (x+a)(1-a y)=\log c y$
$\Rightarrow(x+a)(1-a y)=c y$

(a)

We have,
Length of the normal $=y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$
It is given that
$y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sqrt{x^{2}+y^{2}}[\because$ Radius vector $=R$

$$
\left.=\sqrt{x^{2}+y^{2}}\right]
$$

$\Rightarrow y^{2}+y^{2}\left(\frac{d y}{d x}\right)^{2}=x^{2}+y^{2}$
$\Rightarrow y^{2}\left(\frac{d y}{d x}\right)^{2}=x^{2} \Rightarrow y d y \pm x d x=0 \Rightarrow y^{2} \pm x^{2}$

$$
=k^{2}
$$

88 (c)
Equation of tangent at (x, y) is
$Y-y=\frac{d y}{d x}(X-x)$
For y-axis $X=0$.
Then, $Y=y-x \frac{d y}{d x}$

Given, $\left(y-x \frac{d y}{d x}\right) \propto x^{3}$
$\Rightarrow y-x \frac{d y}{d x}=k x^{3}$
$\Rightarrow \frac{d y}{d x}-\frac{y}{x}=-k x^{2}$
$\mathrm{IF}=e^{\int 1 / x d x}=e^{-\operatorname{In} x}=e^{\operatorname{In}(1 / x)}=\frac{1}{x}$
Then, solution is
$y\left(\frac{1}{x}\right)=\int \frac{-k x^{2}}{x} d x$
$\Rightarrow \frac{y}{x}=-\frac{k x^{2}}{2}+c$
or $y=-\frac{k x^{3}}{2}+c x$
89
(b)

Given, $d y=-\left(\frac{\cos x-\sin x}{\sin x+\cos x}\right) d x$
$\Rightarrow \quad y=-\log (\sin x+\cos x)+\log c$
[integrating]
$\Rightarrow \quad y=\log \left(\frac{c}{\sin x+\cos x}\right)$
$\Rightarrow \quad e^{y}(\sin x+\cos x)=c$
90 (b)
We have,
$\frac{d x}{d t}=x+1$
$\Rightarrow \frac{1}{x+1} d x=d t \Rightarrow \log (x+1)=t+C$
Putting $t=0, x=0$, we get
$\log 1=C \Rightarrow C=0$
$\therefore t=\log (x+1)$
Putting $x=99$, we get
$t=\log _{e} 100=2 \log _{e} 10$
91 (a)
The equation to all given parabolas is
$y^{2}=4 a(x-b)$
$\Rightarrow 2 y \frac{d y}{d x}=4 a \Rightarrow y \frac{d y}{d x}=2 a \Rightarrow y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}$ $=0$
92 (d)
Given differential equation is
$\Rightarrow \quad \frac{(1+y)}{y} d y=\frac{(1+x)}{x} d x$
$\Rightarrow \quad \int\left(\frac{1}{y}+1\right) d y=\int\left(\frac{1}{x}+1\right) d x$
$\Rightarrow \quad \log y+y=\log x+x+\log c$
$\Rightarrow \quad y-x=\log \left(\frac{c x}{y}\right)$
93 (c)
$\mathrm{I} . \frac{d y}{d x}+2 x y=2 e^{-x^{2}}$
$\therefore \quad \mathrm{IF}=e^{\int 2 x d x}=e^{x^{2}}$
\therefore Complete solution is

$$
y e^{x^{2}}=2 \int e^{-x^{2}} e^{x^{2}} d x+c
$$

$\Rightarrow \quad y e^{x^{2}}=2 x+c$
II. $y e^{x^{2}}-2 x=c$
$\Rightarrow \quad y e^{x^{2}} \cdot 2 x+e^{x^{2}} \cdot \frac{d y}{d x}-2=0$
$\Rightarrow \quad e^{x^{2}} \cdot \frac{d y}{d x}=2-2 x y e^{x^{2}}$
$\Rightarrow \quad \frac{d y}{d x}=2 e^{-x^{2}}-2 x y$
\therefore I is true and II is false.
94 (c)
We have,
$y=a(x+a)^{2}$
$\Rightarrow \frac{d y}{d x}=2 a(x+a)$
Dividing (i) by (ii), we get
$\frac{y}{\frac{d y}{d x}}=\frac{x+a}{2} \Rightarrow x+a=\frac{2 y}{y_{1}}$, where $y_{1}=\frac{d y}{d x}$
Substituting $a=\frac{2 y}{y_{1}}-x$ in (i), we get
$y=\left(\frac{2 y}{y_{1}}-x\right)\left(\frac{2 y}{y_{1}}\right)^{2} \Rightarrow y_{1}^{3} y=4\left(2 y-x y_{1}\right) y^{2}$
Clearly, it is a differential equation of degree 3
95 (a)
Given differential equation is

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\sqrt[3]{1-\left(\frac{d y}{d x}\right)^{4}} \\
\Rightarrow \quad\left(\frac{d^{2} y}{d x^{2}}\right)^{3} & =1-\left(\frac{d y}{d x}\right)^{4}
\end{aligned}
$$

\therefore Order $=2$, degree $=3$
96 (b)
Given, $\quad \sin y d y=\cos x d x$
$\Rightarrow \quad-\cos y+c=\sin x$
[integrating]
$\Rightarrow \quad \sin x+\cos y=c$
97 (a)
Given, $\frac{d y}{d x}=\frac{x-2 y+1}{2 x-4 y}$
Put $x-2 y=z \Rightarrow 1-2 \frac{d y}{d x}=\frac{d z}{d x}$
$\therefore \quad \frac{1}{2}\left[-\frac{d z}{d x}+1\right]=\frac{z+1}{2 z}$
$\Rightarrow \quad z d z=-d x$
$\Rightarrow \quad \frac{z^{2}}{2}=-x+c_{1}$
[integrating]
$\Rightarrow \quad(x-2 y)^{2}+2 x=c$
(a)

The equation of the family of circles which touch both the axes is
$(x-a)^{2}+(y-a)^{2}=a^{2}$, where a is a parameter This is one parameter family of curves
So its differential equation is of order one

Given equation can be rewritten as

$$
\frac{d y}{d x}-\frac{1}{x} \cdot y=1
$$

$\therefore \quad I F=e^{-\int \frac{1}{x} d x}=e^{-\log x}=\frac{1}{x}$
\therefore Required solution is

$$
y\left(\frac{1}{x}\right)=\int \frac{1}{x} d x=\log x+c
$$

Since, $y(1)=1$
$\Rightarrow \quad c=1$
$\therefore \quad y=x \log x+x$
100 (a)
Given, $\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$
Put $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$
$\therefore v+x \frac{d v}{d x}=\frac{x^{2}+v^{2} x^{2}}{2 v x^{2}}$
$\Rightarrow x \frac{d v}{d x}=\left(\frac{1+v^{2}}{2 v}-v\right)$
$\Rightarrow \frac{2 v}{1-v^{2}} d v=\frac{d x}{x}$
On integrating both sides, we get
$\int \frac{2 v}{1-v^{2}} d v=\int \frac{1}{x} d x$
$\Rightarrow-\log \left(1-v^{2}\right)=\log x+\log c$
$\Rightarrow-\log \left(1-\frac{y^{2}}{x^{2}}\right)=\log x+\log c$
This curve passes through $(2,1)$.
$\therefore-\log \left(1-\frac{1}{4}\right)=\log 2+\log c$
$\Rightarrow-\log \left(\frac{3}{4}\right)=\log 2 c$
$\Rightarrow \log \left(\frac{4}{3}\right)=\log 2 c$
$\Rightarrow c=\frac{2}{3}$
On putting $c=\frac{2}{3}$ in Eq. (i), we get
$\log \left(\frac{x^{2}}{x^{2}-y^{2}}\right)=\log \frac{2}{3} x$
$\Rightarrow 2\left(x^{2}-y^{2}\right)=3 x$
101 (a)
The given differential equation can be rewritten as

$$
\begin{aligned}
& y+\frac{d^{2} y}{d x^{2}}=\left[a+\left(\frac{d y}{d x}\right)^{3 / 2}\right]^{2} \\
\Rightarrow \quad & y+\frac{d^{2} y}{d x^{2}}=x^{2}+\left(\frac{d y}{d x}\right)^{3}+2 x\left(\frac{d y}{d x}\right)^{3 / 2} \\
\Rightarrow \quad & {\left[y+\frac{d^{2} y}{d x^{2}}-x^{2}-\left(\frac{d y}{d x}\right)^{3}\right]^{2}=}
\end{aligned}
$$

$\left[2 x\left(\frac{d y}{d x}\right)^{3 / 2}\right]^{2}$
\therefore Order and degree of the given differential equation is 2 and 2 respectively.

102 (c)
Given differential equation is $\frac{d y}{d x}+y=e^{x}$
$\therefore \quad \mathrm{IF}=e^{\int P d x}=e^{\int 1 d x}=e^{x}$
Now, solution is

$$
\begin{aligned}
& & y e^{x} & =\int e^{2 x} d x \\
\Rightarrow & & y e^{x} & =\frac{e^{2 x}}{2}+\frac{c}{2} \\
\Rightarrow & & 2 y e^{x} & =e^{2 x}+c
\end{aligned}
$$

103 (b)
We have,
$\phi(x)=\phi^{\prime}(x)$
$\Rightarrow \frac{\phi^{\prime}(x)}{\phi(x)}=1$
$\Rightarrow \log \phi(x)=x+\log C \Rightarrow \phi(x)=C e^{x}$
Putting $x=1, \phi(1)=2$, we get $C=\frac{2}{e}$
$\therefore \phi(x)=2 e^{x-1} \Rightarrow \phi(3)=2 e^{2}$
104 (b)
Given equation
$\frac{d y}{d x}+\sin \left(\frac{x+y}{2}\right)=\sin \left(\frac{x-y}{2}\right)$
$\Rightarrow \frac{d y}{d x}=\sin \left(\frac{x-y}{2}\right)-\sin \left(\frac{x+y}{2}\right)$
$\Rightarrow \frac{d y}{d x}=-2 \sin \left(\frac{y}{2}\right) \cos \left(\frac{x}{2}\right)$
$\Rightarrow \operatorname{cosec}\left(\frac{y}{2}\right) d y=-2 \cos \left(\frac{x}{2}\right) d x$
On integrating both sides, we get
$\int \operatorname{cosec}\left(\frac{y}{2}\right) d y=-\int 2 \cos \left(\frac{x}{2}\right) d x+c$
$\Rightarrow \frac{\log \left(\tan \frac{y}{4}\right)}{\frac{1}{2}}=-\frac{2 \sin \left(\frac{x}{2}\right)}{\frac{1}{2}}+c$
$\Rightarrow \log \left(\tan \frac{y}{4}\right)=c-2 \sin \left(\frac{x}{2}\right)$
105 (a)
The family of curves is
$x^{2}+y^{2}-2 a x=0$
Differentiating w.r.t. to x, we get
$2 x+2 y \frac{d y}{d x}-2 a=0 \Rightarrow a=x+y \frac{d y}{d x}$
Substituting the value of a in (i), we obtain $x^{2}+y^{2}-2 x\left(x+y \frac{d y}{d x}\right)=0$ or, $y^{2}-x^{2}-$ $2 x y \frac{d y}{d x}=0$
106 (b)

Given, $y=\left(c_{1}+c_{2}\right) \cos \left(x+c_{3}\right)-c_{4} e^{x+c_{5}}$
$\Rightarrow \quad y=\left(c_{1} \cos c_{3}+c_{2} \cos c_{3}\right) \cos x$ $-\left(\mathrm{c}_{1} \sin \mathrm{c}_{3}+\mathrm{c}_{2} \sin \mathrm{c}_{3}\right) \sin x-c_{4} e^{c_{5}} e^{x}$
$\Rightarrow \quad y=A \cos x-B \sin x+C e^{x}$
Where, $\quad A=c_{1} \cos c_{3}+c_{2} \cos c_{3}$ $B=c_{1} \sin c_{3}+c_{2} \sin c_{3}$
And

$$
C=-c_{4} e^{c_{5}}
$$

Which is an equation containing three arbitrary constant. Hence, the order of the differential equation is 3 .
107 (c)
Given equation is $e^{x}+\sin \left(\frac{d y}{d x}\right)=3$
Since, the given differential equation cannot be written as a polynomial in all the
differential coefficients, the degree of the equation is not defined.
108 (d)
Given, $x=\sin t, y=\cos p t$

$$
\frac{d x}{d t}=\cos t, \frac{d y}{d t}=-p \sin p t
$$

$\therefore \quad \frac{d y}{d x}=-\frac{p \sin p t}{\cos t}$
$\Rightarrow \quad y_{1}=\frac{-p \sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}$
$\Rightarrow \quad y_{1} \sqrt{1-x^{2}}=-p \sqrt{1-y^{2}}$
$\Rightarrow \quad y_{1}^{2}\left(1-x^{2}\right)=p^{2}\left(1-y^{2}\right)$
$\Rightarrow \quad 2 y_{1} y_{2}\left(1-x^{2}\right)-2 x y_{1}^{2}=-2 y y_{1} p^{2}$
[differentiating]
$\Rightarrow \quad\left(1-x^{2}\right) y_{2}-x y_{1}+p^{2} y=0$
109 (c)
Given, $y=x e^{c x}$
...(i)
$\Rightarrow \quad \frac{d y}{d x}=e^{c x}+x e^{c x} \cdot c=\frac{y}{x}+y \cdot c$
...(ii)
From Eq. (ii),
$\log y=\log x+c x$
$\Rightarrow c \frac{1}{x} \log \frac{y}{x}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{y}{x}+\frac{y}{x} \log \frac{y}{x} \\
& =\frac{y}{x}\left(1+\log \frac{y}{x}\right)
\end{aligned}
$$

110

(a)

Given differential equation is

$$
\begin{aligned}
& y=x \frac{d y}{d x}+\left(a^{2}\left(\frac{d y}{d x}\right)^{2}+b^{2}\right)^{\frac{1}{3}} \\
\Rightarrow \quad & \left(y-x \frac{d y}{d x}\right)^{3}=a^{2}\left(\frac{d y}{d x}\right)^{2}+b^{2}
\end{aligned}
$$

\therefore Order and degree of the above differential
equations are 1 and 3 respectively.
111 (b)
We have,
$y_{3}^{2 / 3}+2+3 y_{2}+y_{1}=0$
$\Rightarrow y_{3}^{2 / 3}=-\left(3 y_{2}+y_{1}+2\right)$
$\Rightarrow y_{2}^{3}=-\left(3 y_{2}+y_{1}+2\right)^{3}$
Clearly, it is differential equation of third order and second degree
112 (b)
Given, $x^{2}+y^{2}=1$
On differentiating w.r.t. x, we get
$2 x+2 y y^{\prime}=0 \Rightarrow x+y y^{\prime}=0$
Again, on differentiating w.r.t. x, we get
$1+\left(y^{\prime}\right)^{2}+y y^{\prime \prime}=0$
113 (a)
We have,
$\frac{d y}{d x}=\frac{x \log x^{2}+x}{\sin y+y \cos y}$
$\Rightarrow \int(\sin y+y \cos y) d y=2 \int x \log x d x+\int x d x$
$\Rightarrow y \sin y=x^{2} \log x+C$
114 (b)
The given differential equation is

$$
\begin{aligned}
& \frac{d y}{d x}+P(x) y=Q(x) \cdot y^{n} \\
\Rightarrow \quad & \frac{1}{y^{n}} \cdot \frac{d y}{d x}+y^{-n+1} P(x)=Q(x)
\end{aligned}
$$

Put $\quad \frac{1}{y^{n-1}}=v$
$\Rightarrow \quad(-n+1) y^{-n} \frac{d y}{d x}=\frac{d v}{d x}$
$\therefore \quad \frac{1}{(-n+1)} \cdot \frac{d v}{d x}+P(x) \cdot v=Q(x)$
$\Rightarrow \quad \frac{d v}{d x}+(1-n) P(x) v=(1-n) Q(x)$
Hence, required substitution is $v=\frac{1}{y^{n-1}}$
115 (b)
Since, length of subnormal $=a$
$\Rightarrow \quad y \frac{d y}{d x}=a \Rightarrow y d y=a d x$
On integrating both sides, we get

$$
\frac{y^{2}}{2}=a x+b
$$

Where b is a constant of integration

$$
\Rightarrow \quad y^{2}=2 a x+2 b
$$

116 (c)
Given, $\frac{d x}{d t}=\cos ^{2} \pi x$
On differentiating w.r.t. x, we get
$\frac{d^{2} x}{d t^{2}}=-2 \pi \sin 2 \pi x=$ negative
The particle never reaches the point, it means
$\frac{d^{2} x}{d t^{2}}=0 \Rightarrow-2 \pi \sin 2 \pi x=0$
$\Rightarrow \sin 2 \pi x=\sin \pi$
$\Rightarrow 2 \pi x=\pi \Rightarrow x=\frac{1}{2}$
The particle never reaches at $x=\frac{1}{2}$
117 (b)
Given, $\quad \frac{d y}{d x}=\frac{x+y}{x-y}$
Put $\quad y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\therefore \quad v+x \frac{d v}{d x}=\frac{1+v}{1-v}$
$\Rightarrow \quad x \frac{d v}{d x}=\frac{1+v^{2}}{1-v}$
$\Rightarrow \quad \frac{1}{x} d x=\left(\frac{1}{1+v^{2}}-\frac{v}{1+v^{2}}\right) d v$
$\Rightarrow \quad \log _{e} x=\tan ^{-1} v-\frac{1}{2} \log _{e}\left(1+v^{2}\right)-$
$\log _{e} c \quad$ [integrating]
$\Rightarrow \quad \log _{e} x=\tan ^{-1}\left(\frac{y}{x}\right)-\frac{1}{2} \log _{e}[1+$
$y x 2-\log e c$
$\Rightarrow \quad c\left(x^{2}+y^{2}\right)^{1 / 2}=e^{\tan ^{-1}(y / x)}$
118 (b)
Given, $\quad \frac{d^{2} y}{d x^{2}}=e^{-2 x}$
$\Rightarrow \quad \frac{d y}{d x}=\frac{e^{-2 x}}{-2}+c$
[integrating]
$\Rightarrow \quad y=\frac{e^{-2 x}}{4}+c x+d$
[integrating]
119 (b)
Given, $x^{2}+y^{2}=1$
On differentiating w.r.t. x, we get

$$
\begin{array}{cc}
& 2 x+2 y y^{\prime}=0 \\
\Rightarrow & x+y y^{\prime}=0
\end{array}
$$

Again , differentiating, we get

$$
1+y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0
$$

120 (a)
We have,
$\frac{d y}{d x}=\frac{y-1}{x^{2}+x}$
$\Rightarrow \frac{1}{x^{2}+x} d x=\frac{1}{y-1} d y$
$\Rightarrow \int \frac{1}{x(x+1)} d x=\int \frac{1}{y-1} d y$
$\Rightarrow \int \frac{1}{x(x+1)} d x=\int \frac{1}{y-1} d y$
$\Rightarrow \int\left(\frac{1}{x}-\frac{1}{x+1}\right) d x=\int \frac{1}{y-1} d y$
$\Rightarrow \log x-\log (x+1)=\log (y-1)+\log C$
$\Rightarrow \frac{x}{x+1}=C(y-1)$
This passes through $(1,0)$
$\therefore \frac{1}{2}=-C$
Substituting the value of C in (i), we get
$\frac{x}{x+1}=-\frac{1}{2}(y-1)$
$\Rightarrow(x+1)(y-1)=-2 x \Rightarrow x y+x+y-1=0$
This is the required curve
121 (c)
Given, $\frac{d y}{d x}-\frac{2}{x} y=x^{2} e^{x}$
$\therefore \quad \mathrm{IF}=e^{-\int_{\frac{2}{x}}^{2} d x}=e^{-\log x^{2}}=\frac{1}{x^{2}}$
\therefore Complete solution is $\frac{y}{x^{2}}=\int \frac{x^{2} e^{x}}{x^{2}} d x+c$
$\Rightarrow \quad \frac{y}{x^{2}}=e^{x}+c$
$\Rightarrow \quad y=x^{2}\left(e^{x}+c\right)$
When $y=0, x=1$, then $c=-e$
$\therefore \quad y=x^{2}\left(e^{x}-e\right)$
122 (b)
Given, $\quad \frac{d y}{d x}+\frac{2 x}{1+x^{2}} \cdot y=\frac{4 x^{2}}{1+x^{2}}$
$\therefore \quad \mathrm{IF}=e^{\int \frac{2 x}{1+x^{2}} d x}=e^{\log \left(1+x^{2}\right)=\left(1+x^{2}\right)}$
\therefore Complete solution is

$$
\begin{array}{ll}
& y \cdot\left(1+x^{2}\right)=\int\left(1+x^{2}\right) \cdot \frac{4 x^{2}}{1+x^{2}} d x \\
\Rightarrow \quad & y\left(1+x^{2}\right)=\frac{4 x^{3}}{3}+c_{1} \\
\Rightarrow & 3 y\left(1+x^{2}\right)=4 x^{3}+c
\end{array}
$$

123 (a)
Given, $k=P Q=$ length of normal
$\Rightarrow \quad k=y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$
$\Rightarrow \quad \frac{k^{2}}{y^{2}}=1+\left(\frac{d y}{d x}\right)^{2}$
$\therefore \quad y \frac{d y}{d x}= \pm \sqrt{k^{2}-y^{2}}$
124 (a)
We have,
$y_{1} y_{3}=3 y_{2}^{2} \Rightarrow \frac{y_{3}}{y_{2}}=3 \frac{y_{2}}{y_{1}}$
Integrating both sides, we get
$\log y_{2}=3 \log y_{1}+\log c_{1}$
$\Rightarrow y_{2}=c_{1} y_{1}^{3} \Rightarrow \frac{y_{2}}{y_{1}^{3}}=c_{1} \Rightarrow \frac{d y_{1}}{y_{1}^{3}}=c_{1}$
Integrating both sides w.r.t. x, we get
$-\frac{1}{2 y_{1}^{2}}=c_{1} x+c_{2}$
$\Rightarrow y_{1}^{2}=\frac{1}{\left(-2 c_{1}\right) x+\left(-2 c_{2}\right)}$
$\Rightarrow y_{1}^{2}=\frac{1}{a x+b}$, where $a=-2 c_{1}, b=-2 c_{2}$
$\Rightarrow y_{1}=\frac{1}{\sqrt{a x+b}}$
Integrating both sides w.r.t. x, we get
$y=\frac{2}{a} \sqrt{a x+b}+c_{3}$
$\Rightarrow \frac{a y-c_{3}}{2}=\sqrt{a x+b}$
$\Rightarrow a x+b=\left(\frac{a x-c_{3}}{2}\right)^{2}$
$\Rightarrow x=\frac{a}{4} y^{2}-\frac{c^{3}}{2} y+\frac{1}{a}\left(\frac{c_{3}^{2}}{4}-b\right) \Rightarrow x=A_{1} y^{2}+$
$A_{2} y+A_{3}$,
where $=A_{1}=\frac{a}{4}, A_{2}=-\frac{c_{3}}{2}$ and $A_{3}=\frac{1}{a}\left(\frac{c_{3}^{2}}{4}-b\right)$
125 (a)
Here, $x=A \cos 4 t+B \sin 4 t$
On differentiating w.r.t. t, we get
$\frac{d x}{d t}=-4 A \sin 4 t+4 B \cos 4 t$
Again, on differentiating w. r.t. t, we get
$\frac{d^{2} x}{d t^{2}}=-16 A \cos 4 t-16 B \sin 4 t$
$=-16(A \cos 4 t+B \sin 4 t)$
$\Rightarrow \frac{d^{2} x}{d t^{2}}=-16 x$
126 (a)
We have,
$y=c_{1}+c_{2} e^{x}+c_{3} e^{-2 x+c_{4}}$
$\Rightarrow y=c_{1}+c_{2} e^{x}+c_{3} e^{-2 x} \cdot e^{c_{4}}$
$\Rightarrow y=c_{1}+c_{2} e^{x}+c_{3}{ }^{\prime} e^{-2 x}$, where $c_{3}^{\prime}=c_{3} e^{c_{4}}$
It is an equation containing three arbitrary
constants. So, the associated differential equation is of order 3
127 (b)
Equation of parabolas family can be taken as

$$
x=a y^{2}+b y+c
$$

Differentiating w.r.t. y we get

$$
\begin{aligned}
& \frac{d x}{d y}=2 a y+b \\
\Rightarrow \quad & \frac{d^{2} x}{d y^{2}}=2 a \Rightarrow \frac{d^{3} x}{d y^{3}}=0
\end{aligned}
$$

128 (a)
Given $\frac{1-y}{y^{2}} d y+\frac{1+x}{x^{2}} d x=0$
$\Rightarrow \quad \int\left(\frac{1}{y^{2}}-\frac{1}{y}\right) d y+\int\left(\frac{1}{x^{2}}+\frac{1}{x}\right) d x=0$
$\Rightarrow \quad \log \left(\frac{x}{y}\right)=\frac{1}{x}+\frac{1}{y}+c$
129 (b)
Given, $\quad \frac{d y}{d x}=\frac{\sqrt{x^{2}+y^{2}}+y}{x}$
Put $\quad y=v x$
$\Rightarrow \quad \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\therefore \quad v+x \frac{d v}{d x}=\frac{\sqrt{x^{2}+v^{2} x^{2}}+v x}{x}$
$\Rightarrow \quad \frac{d v}{\sqrt{1+v^{2}}}=\frac{d x}{x}$
$\Rightarrow \quad \log \left(v+\sqrt{1+v^{2}}\right)=\log x+\log c$
$\Rightarrow \quad \log \left(\frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}\right)=\log c x$
$\Rightarrow \quad y+\sqrt{x^{2}+y^{2}}=c x^{2}$
130 (a)
Given, $\frac{d y}{d x}=\frac{x \log x^{2}+x}{\sin y+y \cos y}$
$\Rightarrow \quad(\sin y+y \cos y) d y=\left(x \log x^{2}+\right.$
$x d x$

$$
\begin{aligned}
&\left(\frac{d}{d y} y \sin y\right) d y=\left(\frac{d}{d x} x^{2} \log x\right) d x \\
& \Rightarrow \quad y \sin y=x^{2} \log x+c
\end{aligned}
$$

131 (d)
Given, $x\left(1-x^{2}\right) d y+\left(2 x^{2} y-y-a x^{3}\right) d x=$ 0
$\Rightarrow \quad \frac{d y}{d x}+\frac{\left(2 x^{2}-1\right)}{x(1-x)} y=\frac{a x^{3}}{\left(1-x^{2}\right)}$
Here, $\quad P=\frac{2 x^{2}-1}{x\left(1-x^{2}\right)}$
132 (c)
We have,
$\frac{d y}{d x}+\frac{y}{x}=x^{2} \Rightarrow x \frac{d y}{d x}+y=x^{3} \Rightarrow \frac{d}{d x}(x y)=x^{3}$
Integrating, we get

$$
x y=\frac{x^{4}}{4}+C \Rightarrow y=\frac{x^{3}}{4}+C x^{-1}
$$

133 (c)

$$
\begin{array}{lc}
\text { Let } & x^{2}+y^{2}-2 g x=0 \\
\Rightarrow & 2 x+2 y \frac{d y}{d x}-2 g=0 \\
\Rightarrow & 2 g=\left(2 x+2 y \frac{d y}{d x}\right)
\end{array}
$$

On putting the value of 2 g in eq. (i), we get

$$
\begin{array}{ll}
& x^{2}+y^{2}-\left(2 x+2 y \frac{d y}{d x}\right) x=0 \\
\Rightarrow & y^{2}=x^{2}+2 x y \frac{d y}{d x}
\end{array}
$$

134 (d)
Given differential equation can be written as

$$
\begin{array}{cc}
& \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0 \\
\Rightarrow & \left(m^{2}-3 m+2\right) y=0 \\
\Rightarrow & (m-1)(m-2) y=0 \\
\Rightarrow & m=1,2
\end{array}
$$

\therefore Solution is $y=c_{1} e^{x}+c_{2} e^{2 x}$
$y^{\prime}=c_{1} e^{x}+2 c_{2} e^{2 x}$
From given condition
$y(0)=1$
$\Rightarrow c_{1}+c_{2}=1$.
And $y^{\prime}(0)=0$
$\Rightarrow c_{1}+c_{2}=1$
On solving Eqs. (i) and (ii)we get
$-c_{2}=1$
$\Rightarrow \quad c_{2}=-1$
And $c_{1}=2$
$\therefore \mathrm{y}=2 e^{x}-e^{2 x}$
$\therefore \quad$ at $x=\log _{e} 2$
$y=2 e^{\log 2}-e^{2 \log 2}$
$=2 \times 2-2^{2}=0$
135 (b)
The equation of straight line touching the given circle is

$$
\begin{equation*}
x \cos \theta+y \sin \theta=a \tag{i}
\end{equation*}
$$

On differentiating w.r.t. x, regarding θ as a constant
$\Rightarrow \quad \cos \theta+\frac{d y}{d x} \sin \theta=0$
...(ii)
From eqs. (i) and (ii), we get

$$
\begin{array}{ll}
& \cos \theta=\frac{a \frac{d y}{d x}}{x \frac{d y}{d x}-y} \text { and } \sin \theta=-\frac{a}{x \frac{d y}{d x}-y} \\
\therefore & \cos ^{2} \theta+\sin ^{2} \theta=1 \\
\therefore & \frac{a^{2}\left(\frac{d y}{d x}\right)^{2}+a^{2}}{\left(x \frac{d y}{d x}-y\right)^{2}}=1 \\
\Rightarrow \quad & \left(y-x \frac{d y}{d x}\right)^{2}=a^{2}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]
\end{array}
$$

136 (a)
The given differential equation can be rewritten as

$$
\begin{array}{ll}
\Rightarrow & \left(\frac{1}{y^{2}}-\frac{1}{y}\right) d y=-\left(\frac{1}{x^{2}}+\frac{1}{x}\right) d x \\
\Rightarrow & -\frac{1}{y}-\log y=-\left(-\frac{1}{x}+\log x\right)+c
\end{array}
$$

[integrating]

$$
\Rightarrow \quad \log \left(\frac{x}{y}\right)=\frac{1}{x}+\frac{1}{y}+c
$$

137 (a)
We have, $\left(x y-x^{2}\right)=y^{2}$
$\Rightarrow \quad y^{2} \frac{d x}{d y}=x y-x^{2}$
$\Rightarrow \quad \frac{1}{x^{2}} \frac{d x}{d y}-\frac{1}{x} \cdot \frac{1}{y}=-\frac{1}{y^{2}}$
Put $\frac{1}{x}=v \Rightarrow-\frac{1}{x^{2}} \frac{d x}{d y}=\frac{d v}{d y}$
$\therefore \quad \frac{d v}{d y}+\frac{v}{y}=\frac{1}{y^{2}}$, which is linear
$\therefore \quad I F=e^{\int \frac{1}{y} d y}=e^{\log y}=y$
\therefore The solution is $v y=\int \frac{1}{y^{2}} y d y+c$
$\Rightarrow \quad \frac{y}{x}=\log y+c$
$\Rightarrow \quad y=x(\log y+c)$
This passes through the point $(-1,1)$
$\therefore \quad 1=-1(\log 1+c)$
ie.,

$$
c=-1
$$

thus, the equation of the curve is

$$
y=x(\log y-1)
$$

138 (d)
Given, $y=2 e^{2 x}-e^{-x}$
$\Rightarrow \quad y_{1}=4 e^{2 x}+e^{-x}$
$\Rightarrow \quad y_{2}=8 e^{2 x}-e^{-x}$
$\Rightarrow \quad y_{2}=4 e^{2 x}+e^{-x}+4 e^{2 x}-2 e^{-x}$
$\Rightarrow \quad y_{2}=y_{1}+2\left(2 e^{2 x}-e^{-x}\right)$
$\Rightarrow \quad y_{2}=y_{1}+2 y$
$\Rightarrow \quad y_{2}=y_{1}+2 y$
$\Rightarrow \quad y_{2}-y_{1}-2 y=0$
139 (c)
Given equation is $\frac{d y}{d x}-y=1 \Rightarrow \frac{d y}{1+y}=d x$
On integrating both sides, we get
$\int \frac{1}{1+y} d y=\int d x$
$\Rightarrow \log (1+y)=x+c$
$\Rightarrow 1+y=e^{x} \cdot e^{c}$
At $x=0, y=-1$
Then $1-1=e^{0} \cdot e^{c} \Rightarrow e^{c}=0$
On putting the value of e^{c} in Eq. (i).
Therefore, solution becomes
$1+y=e^{x} \times 0 \Rightarrow y(x)=-1$
140 (d)
Let family of circles be

$$
\begin{gather*}
(x-\alpha)^{2}+(y-2)^{2}=5^{2} \\
\Rightarrow \quad x^{2}+\alpha^{2}-2 \alpha x+y^{2}-21-4 y=0 \tag{i}
\end{gather*}
$$

$\Rightarrow \quad 2 x-2 \alpha+2 y \frac{d y}{d x}-4 \frac{d y}{d x}=0$
$\Rightarrow \quad \alpha=x+\frac{d y}{d x}(y-2)$
On putting the value of α in Eq. (i), we get

$$
\left(x-x-\frac{d y}{d x}(y-2)\right)^{2}+(y-2)^{2}=
$$

5^{2}
$\Rightarrow \quad\left(\frac{d y}{d x}\right)^{2}(y-2)^{2}=25-(y-2)^{2}$
141 (a)
It is a linear differential equation of the form of
$\frac{d y}{d x}+P y=Q$.
$\Rightarrow P=\sec ^{2} x, Q=\tan x \sec ^{2} x$
$\therefore \mathrm{IF}=e^{\int P d x}=e^{\int \sec ^{2} x d x}=e^{\tan x}$
Solution is $y e^{\tan x}=\int \tan x e^{\tan x} \sec ^{2} x d x+c$
$\Rightarrow y e^{\tan x}=\tan x e^{\tan x}-e^{\tan x}+c$
$\Rightarrow y=\tan x-1+c e^{-\tan x}$
142 (b)
We have,
$y \frac{d y}{d x}+x=a \Rightarrow y d y+x d x=a d x$
Integrating, we get
$\frac{y^{2}}{2}+\frac{x^{2}}{2}=a x+C \Rightarrow x^{2}+y^{2}-2 a x+2 C=0$,
which represents a set of circles having centre on x-axis
143 (d)
\because Equation of normal at (x, y) is
$Y-y=\frac{d x}{d y}(X-x)$
Put, $y=0$
Then, $X=x+y \frac{d y}{d x}$
Given, $y^{2}=2 x X$
$\Rightarrow y^{2}=2 x\left(x+y \frac{d y}{d x}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{y^{2}-2 x^{2}}{2 x y}=\frac{\left(\frac{y}{x}\right)^{2}-2}{2\left(\frac{y}{x}\right)}$
Put $y=v x$, we get
$\frac{d y}{d x}=v+x \frac{d v}{d x}$
Then, $v+x \frac{d v}{d x}=\frac{v^{2}-2}{2 v}$
$\Rightarrow x \frac{d v}{d x}=-\frac{\left(2+v^{2}\right)}{2 v}$
$\Rightarrow \frac{2 v d v}{\left(2+v^{2}\right)}+\frac{d v}{x}=0$
On integrating both sides, we get
$\operatorname{In}\left(2+v^{2}\right)+\operatorname{In}|x|=\operatorname{In} c$
$\Rightarrow \operatorname{In}\left(|x|\left(2+v^{2}\right)\right)=\operatorname{In} c$
$\Rightarrow|x|\left(2+\frac{y^{2}}{x^{2}}\right)=c$
\because It passes through $(2,1)$, then
$2\left(2+\frac{1}{4}\right)=c$
$\Rightarrow c=\frac{9}{2}$
Then, $|x|\left(2+\frac{y^{2}}{x^{2}}\right)=\frac{9}{2}$
$\Rightarrow 2 x^{2}+y^{2}=\frac{9}{2}|x|$
$\Rightarrow 4 x^{2}+2 y^{2}=9|x|$
144 (a)
We have,
$y d x-x d y-3 x^{2} y^{2} e^{x^{3}} d x=0$
$\Rightarrow y d x-x d y=3 x^{2} y^{2} e^{x^{3}} d x$
$\Rightarrow \frac{y d x-x d y}{y^{2}}=3 x^{2} e^{x^{3}} d x$
$\Rightarrow d\left(\frac{x}{y}\right)=d\left(e^{x^{3}}\right) \Rightarrow \frac{x}{y}=e^{x^{3}}+C$
145 (c)
Given, $\frac{d y}{d x}=\frac{a x+h}{b y+k}$
$\Rightarrow \quad \int(b y+k) d y=-\int(a x+h) d x$
$\Rightarrow \quad \frac{b y^{2}}{2}+k y=\frac{a x^{2}}{2}+h x+c$
Thus, above equation represents a parabola, if

$$
a=0 \text { and } b \neq o
$$

Or $\quad b=0$ and $a \neq 0$
146 (b)
The equations of the ellipses centred at the origin are given by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a, b are arbitrary constants
Differentiating both sides w.r.t. to x, we get
$\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0$
$\Rightarrow \frac{x}{a^{2}}+\frac{y y_{1}}{b^{2}}=0$
Differentiating (i) w.r.t. x, we get
$\frac{1}{a^{2}}+\frac{y_{1}^{2}}{b^{2}}+\frac{y y_{2}}{b^{2}}=0$
Multiplying (ii) by x and subtracting it from (i), we get
$\frac{1}{b^{2}}\left\{y y_{1}-x y_{1}^{2}-x y y_{2}\right\}=0 \Rightarrow x y y_{2}+x y_{1}^{2}-$ y $y_{1}=0$
147 (b)
Given equation is $y=a x^{n+1}+b x^{-n}$

On differentiating with respect to x, we get
$\frac{d y}{d x}=a(n+1) x^{n}-b n x^{-n-1}$
Again, on differentiating, we get
$\frac{d^{2} y}{d x^{2}}=\operatorname{an}(n+1) x^{n-1}+b n(n+1) x^{-n-2}$
$\Rightarrow x^{2} \frac{d^{2} y}{d x^{2}}=\operatorname{an}(n+1) x^{n+1}+b n(n+1) x^{-n}$
$\Rightarrow x^{2} \frac{d^{2} y}{d x^{2}}=n(n+1)\left(a x^{n+1}+b x^{-n}\right)$
$\Rightarrow \frac{x^{2} d^{2} y}{d x^{2}}=n(n+1) y$
148 (b)
Given, $y=\operatorname{acos}(x+b)$
$\Rightarrow \quad \frac{d y}{d x}=-\operatorname{asin}(x+b)$
$\Rightarrow \quad \frac{d^{2} y}{d x^{2}}=-\operatorname{acos}(x+b)=-y$
$\Rightarrow \quad \frac{d^{2} y}{d x^{2}}+y=0$
149 (a)
Here, $\frac{d y}{d t}-\left(\frac{1}{1+t}\right) y=\frac{1}{(1+t)}$ and $y(0)=-1$
Which represents linear differential equation of first order.
$\mathrm{IF}=e^{\int-\left(\frac{t}{1+t}\right) d t}=e^{-t+\log |1+t|}=e^{-t}(1+t)$
\therefore Required solution is
$y(\mathrm{IF})=\left[\int Q(\mathrm{IF}) d t\right]+c$
$\Rightarrow y e^{-t}(1+t)=\int \frac{1}{1+t} \cdot e^{-t}(1+t) d t+c$

$$
=\int e^{-t} d t+c
$$

$\Rightarrow y e^{-t}(1+t)=-e^{-t}+c$
Since, $y(0)=-1 \Rightarrow-1 \cdot e^{0}(1+0)=-e^{0}+c$
$\Rightarrow c=0$
$\therefore y=-\frac{1}{(1+t)}$ and $y(1)=-\frac{1}{2}$
150 (b)
Given, $\frac{d y}{d x}+\frac{y}{(1-x) \sqrt{x}}=1-\sqrt{x}$
$\therefore \quad \mathrm{IF}=e^{\int \frac{1}{(1-x) \sqrt{x}} d x}$
Put $\quad \sqrt{x}=t$
$\Rightarrow \quad \frac{1}{2 \sqrt{x}} d x=d t$

$$
\begin{aligned}
\therefore \quad \mathrm{IF} & =e^{\int \frac{2}{1-t^{2}} d t} \\
& =e^{\frac{2}{2} \log \left(\frac{1+t}{1-t}\right)}=\frac{1+t}{1-t}=\frac{1+\sqrt{x}}{1-\sqrt{x}}
\end{aligned}
$$

151
(b)

Given, $\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$
Put $\quad y=v x$
$\Rightarrow \quad \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\therefore \quad v+x \frac{d v}{d x}=\frac{x^{2}+v^{2} x^{2}}{2 x v x}$
$\Rightarrow \quad x \frac{d v}{d x}=\frac{1-v^{2}}{2 v}$
$\Rightarrow \quad \frac{2 v}{1-v^{2}} d v=\frac{d x}{x}$
$\Rightarrow \quad-\log \left(1-v^{2}\right)=\log x+\log c$
$\Rightarrow \quad \log \left(1-v^{2}\right)^{-1}=\log x c$
$\Rightarrow \quad\left(\frac{x^{2}-y^{2}}{x^{2}}\right)^{-1}=x c$
$\Rightarrow \quad \frac{x^{2}}{x^{2}-y^{2}}=x c$
$\Rightarrow \quad x=c\left(x^{2}-y^{2}\right)$
152 (c)
$\because y=u^{n}$
$\therefore \frac{d y}{d x}=n u^{n-1} \frac{d u}{d x}$
On substituting the values of y and $\frac{d y}{d x}$ in the given equation, then
$2 x^{4} \cdot u^{n} \cdot n u^{n-1} \frac{d u}{d x}+u^{4 n}=4 x^{6}$
$\Rightarrow \frac{d u}{d x}=\frac{4 x^{6}-u^{4 n}}{2 n x^{4} u^{2 n-1}}$
Since, it is homogeneous. Then, the degree of
$4 x^{6}-u^{4 n}$ and $2 n x^{4} u^{2 n-1}$ must be same.
$\therefore 4 n=6$ and $4+2 n-1=6$
Then, we get $n=\frac{3}{2}$
153 (b)
Given equation is $y=a x \cos \left(\frac{1}{x}+b\right)$
On differentiating Eq. (i), we get
$y_{1}=a\left[\cos \left(\frac{1}{x}+b\right)-x \sin \left(\frac{1}{x}+b\right)\left(\frac{-1}{x^{2}}\right)\right]$
$\Rightarrow y_{1}=a\left[\cos \left(\frac{1}{x}+b\right)+\frac{1}{x} \sin \left(\frac{1}{x}+b\right)\right]$
Again, on differentiating Eq. (ii), we get
$y_{2}=a\left[-\sin \left(\frac{1}{x}+b\right)\left(-\frac{1}{x^{2}}\right)\right.$
$+\frac{1}{x} \cos \left(\frac{1}{x}+b\right)\left(-\frac{1}{x^{2}}\right)$
$\left.-\frac{1}{x^{2}} \sin \left(\frac{1}{x}+b\right)\right]$
$\Rightarrow y_{2}=\frac{-a}{x^{3}} \cos \left(\frac{1}{x}+b\right)=\frac{-a x}{x^{4}} \cos \left(\frac{1}{x}+b\right)=\frac{-y}{x^{4}}$
$\Rightarrow x^{4} y_{2}+y=0$
154 (b)
Given, $\quad d y=x \log x d x$
$\Rightarrow \quad y=\frac{x^{2}}{2} \log x-\int \frac{x}{2} d x$
[integrating]
$\Rightarrow \quad y=\frac{x^{2}}{2} \log x-\frac{x^{2}}{4}+c$
155 (c)
Given equation is $y=\sec \left(\tan ^{-1} x\right)$

On differentiating w.r.t. x, we get
$\frac{d y}{d x}=\sec \left(\tan ^{-1} x\right) \tan \left(\tan ^{-1} x\right) \cdot \frac{1}{1+x^{2}}$

$$
=\frac{x y}{1+x^{2}}\left[\because \tan \left(\tan ^{-1} x\right)=x\right]
$$

$\Rightarrow\left(1+x^{2}\right) \frac{d y}{d x}=x y$
156 (a)
$\frac{d y}{d x} \tan y=\sin (x+y)+\sin (x-y)$
$\Rightarrow \frac{d y}{d x} \tan y=2 \sin x \cos y$
$\Rightarrow \int \tan y \sec y d y=2 \int \sin x d x$
$\Rightarrow \sec y+2 \cos x=c$
157 (b)
Equation of family of parabolas with focus at (0 , 0) and x-axis as axis is
$y^{2}=4 a(x+a)$
On differentiating Eq. (i), we get
$2 y y_{1}=4 a$, putting the value of a in Eq. (i)
$\Rightarrow y^{2}=2 y y_{1}\left(x+\frac{y y_{1}}{2}\right)$
$\Rightarrow y=2 x y_{1}+y y_{1}^{2}$
$\Rightarrow y\left(\frac{d y}{d x}\right)^{2}+2 x \frac{d y}{d x}=y$
158 (b)
We have,
$\frac{d y}{d x}+y=\frac{1+y}{x} \Rightarrow \frac{d y}{d x}+\left(1-\frac{1}{x}\right) y=\frac{1}{x}$
\therefore I. F. $=e^{\int\left(1-\frac{1}{x}\right) d x}=e^{x-\log x}=\frac{1}{x} e^{x}$
159 (c)
Given, $\quad y^{2}=4 a(x-b)$
$\Rightarrow \quad 2 y \frac{d y}{d x}=4 a$
$\Rightarrow \quad 2 y \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{2}=0$
$\Rightarrow \quad y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0$
160 (a)
The given equation can be rewritten as,
$\frac{d^{2} y}{d x^{2}}=-\sin x$.
On integrating the given equation
$\int \frac{d^{2} y}{d x^{2}} d x=\int-\sin x d x+c$
$\Rightarrow \frac{d y}{d x}=-(-\cos x)+c=\cos x+c$
Again, on integrating, we get
$\int \frac{d y}{d x} d x=\int \cos x d x+\int c d x+d$
$y=\sin x+c x+d$
161
(d)

Given that, $\frac{d y}{d x}+y=e^{-x}$
It is a linear differential equation, comparing with the standard equation
$\frac{d y}{d x}+P y=Q$
$\Rightarrow P=1, Q=e^{-x}$
$\therefore \mathrm{IF}=e^{\int P d x}=e^{x}$
\therefore Required solution is
$y e^{x}=\int e^{-x} e^{x} d x+c=\int 1 d x+c$
$\Rightarrow y e^{x}=x+c$
At $x=0, y=0 \therefore c=0$
Hence, the required solution is
$y e^{x}=x \Rightarrow y=x e^{-x}$
162 (c)
Given, $\frac{d y}{d x}=2 \frac{y}{x}$
$\Rightarrow \quad \int \frac{d y}{y}=2 \int \frac{d x}{x}$
$\Rightarrow \quad \log y=2 \log x+\log c$
$\Rightarrow \quad y=c x^{2}$
Which represent a parabola of the form

$$
x^{2}=4 a y
$$

163 (d)
Given, $\frac{d y}{d x}+\frac{2}{x} y=x$
\therefore Integrating factor $=e^{\int_{\frac{2}{x}}^{2} d x}=x^{2}$
\therefore Required solution is

$$
\begin{array}{ll}
& y . x^{2}=\int x^{3} d x=\frac{x^{4}}{4}+\frac{c}{4} \\
\therefore \quad & y=\frac{x^{4}+c}{4 x^{2}}
\end{array}
$$

164 (a)
We have,

$$
\begin{aligned}
y \frac{d y}{d x}=x-1 \Rightarrow & y d y=(x-1) d x \Rightarrow \frac{y^{2}}{2} \\
& =\frac{x^{2}}{2}-x+C
\end{aligned}
$$

For $x=1$, we have $y=1$
$\therefore \frac{1}{2}=\frac{1}{2}-1+C \Rightarrow C=1$
Hence, $\frac{y^{2}}{2}=\frac{x^{2}}{2}-x+1 \Rightarrow y^{2}=x^{2}-2 x+2$
165 (a)
Equation of line whose slope is equal to y intercept, is

$$
\begin{array}{ll}
& y=c x+c=c(x+1) \\
\Rightarrow & \frac{d y}{d x}=c \\
\therefore & \frac{d y}{d x}=\frac{y}{x+1} \\
\Rightarrow & (x+1) \frac{d y}{d x}-y=0
\end{array}
$$

166
(b)

Given that, $x^{2} y-x^{3} \frac{d y}{d x}=y^{4} \cos x$
i.e.,

$$
x^{3} \frac{d y}{d x}-x^{2} y=-y^{4} \cos x
$$

on dividing by $-y^{4} x^{3}$, we get

$$
-\frac{1}{y^{4}} \frac{d y}{d x}+\frac{1}{y^{3}} \cdot \frac{1}{x}=\frac{1}{x^{3}} \cos x
$$

Put $\frac{1}{y^{3}}=V$
$\Rightarrow \quad-\frac{1}{y^{4}} \frac{d y}{d x}=\frac{1}{3} \frac{d V}{d x}$
$\therefore \quad \frac{1}{3} \frac{d V}{d x}+\frac{1}{x} V=\frac{1}{x^{3}} \cos x$
$\Rightarrow \quad \frac{d V}{d x}+\frac{3}{x} V=\frac{3}{x^{3}} \cos x$
Which is linear in V.
$\therefore \quad I F=e^{\int \frac{3}{x} d x}=e^{3 \log x}=x^{3}$
So, the solution is

$$
\begin{aligned}
& x^{3} V=\int x^{3} \cdot \frac{3}{x^{3}} \cos x d x+c \\
&=3 \sin x+c \\
& \Rightarrow \quad \frac{x^{3}}{y^{3}}=3 \sin x+c
\end{aligned}
$$

Putting $x=0, y=1$, we get $c=0$
Hence, the solution is $x^{3}=3 y^{3} \sin x$

167 (d)
\because Equation of normal at $P(1,1)$ is
$a y+x=a+1$
(given)
\because Slope of normal at $(1,1)=-\frac{1}{a}$
\therefore Slope of tangent at $(1,1)=a$
Also, given $\frac{d y}{d x} \propto y$
$\Rightarrow \frac{d y}{d x}=k y$
$\left.\frac{d y}{d x}\right|_{(1,1)}=k=a$ [from Eq. (i)]
Then, $\frac{d y}{d x}=a y$
$\Rightarrow \frac{d y}{y}=a d x$
$\Rightarrow \operatorname{In}|y|=a x+c$
\because It is passing through $(1,1)$, then $c=-a$
$\Rightarrow \operatorname{In}|y|=a(x-1)$
$\Rightarrow|y|=e^{a(x-1)}$
168 (a)
Given, $\frac{d y}{d x}+1=e^{x+y}$
Put $\quad x+y=z$
$\Rightarrow \quad 1+\frac{d y}{d x}=\frac{d z}{d x}$
$\therefore \quad \frac{d z}{d x}=e^{z}$
$\Rightarrow \quad \int e^{-z} d z=\int d x$
$\Rightarrow \quad-e^{-z}=x+c$
$\Rightarrow \quad x+e^{-(x+y)}+c=0$
169 (a)
The given equation can be written as
$\left(\frac{d x}{x}-\frac{d y}{y}\right)+\frac{\left(x^{2} d y-y^{2} d x\right)}{(x-y)^{2}}=0$
$\Rightarrow\left(\frac{d x}{x}-\frac{d y}{y}\right)+\frac{\left(\frac{d y}{y^{2}}-\frac{d x}{x^{2}}\right)}{\left(\frac{1}{y}-\frac{1}{x}\right)^{2}}=0$
$\Rightarrow\left(\frac{d x}{x}-\frac{d y}{y}\right)+\frac{\frac{d y}{y^{2}}-\frac{d x}{x^{2}}}{\left(\frac{1}{x}-\frac{1}{y}\right)^{2}}=0$
On integrating both sides, we get
$\operatorname{In}|x|-\operatorname{In}|y|-\frac{1}{\left(\frac{1}{x}-\frac{1}{y}\right)}=c$
$\Rightarrow \operatorname{In}\left|\frac{x}{y}\right|-\frac{x y}{(y-x)}=c$
$\Rightarrow \operatorname{In}\left|\frac{x}{y}\right|+\frac{x y}{(x-y)}=c$
170 (a)
We have, $e^{d y / d x}=x$
$\Rightarrow \frac{d y}{d x}=\log x$
\therefore Degree is 1 .
171 (a)
Given differential equation can be rewritten as

$$
\begin{aligned}
& {\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{4} \times 12}=\left(\frac{d^{2} y}{d x^{2}}\right)^{\frac{1}{3} \times 12} } \\
\Rightarrow \quad & {\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{9}=\left(\frac{d^{2} y}{d x^{2}}\right)^{4} }
\end{aligned}
$$

Here, we see that order of highest derivative is 2 and degree is 4 .

172 (c)
We have,
$\tan ^{-1} x+\tan ^{-1} y=C$
Differentiating w.r.t. to x, we get
$\frac{1}{1+x^{2}}+\frac{1}{1+y^{2}} \frac{d y}{d x}=0$
$\Rightarrow\left(1+x^{2}\right) d y+\left(1+y^{2}\right) d x=0$,
which is the required differential equation
173 (d)
Given that, $\frac{d y}{d x}=1+x+y^{2}+x y^{2}$
This can be rewritten as, we get
$\frac{d y}{1+y^{2}}=(1+x) d x$
On integrating both sides, we get
$\int \frac{d y}{1+y^{2}}=\int(1+x) d x$
$\Rightarrow \tan ^{-1} y=x+\frac{x^{2}}{2}+c$
At $x=0, y=0$
$\Rightarrow 0=0+0+c \Rightarrow c=0$
$\therefore \tan ^{-1} y=x+\frac{x^{2}}{2} \Rightarrow y=\tan \left(x+\frac{x^{2}}{2}\right)$
175
(b)
$\frac{d y}{d x}=-\left(\frac{\cos x-\sin x}{\sin x+\cos x}\right)$
$\Rightarrow d y=-\left(\frac{\cos x-\sin x}{\sin x+\cos x}\right) d x$
On integrating both sides, we get
$y=-\log (\sin x+\cos x)+\log c$
$\Rightarrow y=\log \left(\frac{c}{\sin x+\cos x}\right)$
$\Rightarrow e^{y}=\frac{c}{\sin x+\cos x}$
$\Rightarrow e^{y}(\sin x+\cos x)=c$
176 (a)
Given, $\quad \frac{x d y-y d x}{y^{2}}=d y$
$\Rightarrow \quad d\left(\frac{x}{y}\right)=-d y$
$\Rightarrow \quad \frac{x}{y}=-y+c$
[integrating]
As $\quad y(1)=1 \Rightarrow c=2$
$\therefore \quad \frac{x}{y}+y=2$
Again, for $x=-3$

$$
-3+y^{2}=2 y
$$

$\Rightarrow \quad(y+1)(y-3)=0$
Also, $\quad y>0$
$\Rightarrow \quad y=3$
[neglecting $y=-1$]

177 (a)
Given equation is, $\frac{d y}{d x}=\frac{y}{x}+\frac{\phi\left(\frac{y}{x}\right)}{\phi^{\prime}\left(\frac{y}{x}\right)}$
Put $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Now, Eq. (i) becomes
$v+x \frac{d v}{d x}=v+\frac{\phi(v)}{\phi^{\prime}(v)}$
$\Rightarrow \frac{\phi^{\prime}(v)}{\phi(v)} d v=\frac{d x}{x}$
On integrating both sides, we get
$\int \frac{\phi^{\prime}(v)}{\phi(v)} d v=\int \frac{1}{x} d x$
$\Rightarrow \log \phi(v)=\log x+\log k$
$\Rightarrow \log \phi(v)=\log x k$
$\Rightarrow \phi(v)=k x \Rightarrow \phi\left(\frac{y}{x}\right)=k x \quad\left(\because v=\frac{x}{y}\right)$
178 (c)
Given, $\quad \frac{d x}{d y}=x+y+1 \Rightarrow \frac{d x}{d y}-x=y+1$
$\therefore \quad \mathrm{IF}=e^{\int-1 d y}=e^{-y}$
\therefore Solution is $x . e^{-y}=\int(y+1) e^{-y} d y$
$\Rightarrow \quad x e^{-y}=-(y+1) e^{-y}+$
$\int e^{-y} d y$
$\Rightarrow \quad x e^{-y}=-(y+1) e^{-y}-e^{-y}+c$
$\Rightarrow \quad x=-(y+2)+c e^{y}$
179 (b)
Given, $\quad x^{2}+y^{2}-2 a x=0$
...(i)
$\Rightarrow \quad 2 x+2 y y^{\prime}-2 a=0$
$\Rightarrow \quad a=x+y y^{\prime}$
On putting the value of a in Eq. (i), we get

$$
\begin{array}{rr}
& x^{2}+y^{2}-2 x\left(x+y y^{\prime}\right)=0 \\
\Rightarrow & y^{2}-x^{2}=2 x y y^{\prime}
\end{array}
$$

180 (c)
Given, $\quad y=c_{1} \cos \left(x+c_{2}\right)+c_{3} \sin \left(x+c_{4}\right)+$ $c_{5} e^{x}+c_{6}$
$y=c_{1}\left[\cos x \cos c_{2}-\sin x \sin c_{2}\right]$
$+c_{3}\left[\sin x \cos c_{4}+\cos x \sin c_{4}\right]+c_{5} e^{x}+c_{6}$

$$
=\cos x\left(c_{1} \cos c_{2}+c_{3} \sin c_{4}\right)+
$$

$\sin x\left(-c_{1} \sin c_{2}+c_{3} \cos c_{4}\right)+c_{5} e^{x}+c_{6}$

$$
=A \cos x+B \sin x+C e^{x}+D
$$

Where $\quad A=c_{1} \cos c_{2}+c_{3} \sin c_{4}$

$$
B=-c_{1} \sin c_{2}+c_{3} \cos c_{4}, \quad C=
$$

$c_{5}, D=c_{6}$
Hence, order is 4 .
182 (a)
Given, $(1+x) y d x+(1-y) x d y=0$
$\Rightarrow \quad \frac{(1-y)}{y} d y+\frac{(1+x)}{x} d x=0$
$\Rightarrow \quad \int\left(\frac{1}{y}-1\right) d y+\int\left(\frac{1}{x}+1\right) d x=0$
$\Rightarrow \quad \log _{e} y-y+\log _{e} x+x=c$
$\Rightarrow \quad \log _{e}(x y)+x-y=c$
183 (b)
Given, $\quad y^{2}=2 c(x+\sqrt{c})$
$\Rightarrow \quad 2 y y_{1}=2 c$
$\Rightarrow \quad c=y y_{1}$
$\therefore \quad y^{2}=2 y y_{1}\left(x+\sqrt{y y_{1}}\right)$
$\Rightarrow \quad y^{2}-2 y y_{1} x=\sqrt{y y_{1}} \cdot 2 y y_{1}$
$\Rightarrow \quad\left(y^{2}-2 y y_{1} x\right)^{2}=4\left(y y_{1}\right)^{3}$
\therefore The degree of above equation is 3 and order is 1 .
184 (d)
Given differential equation is

$$
\frac{d y}{d x}=\frac{1}{x+y^{2}}
$$

$\Rightarrow \quad \frac{d x}{d y}-x=y^{2}$
Here, $\quad P=-1, Q=y^{2}$

$$
\mathrm{IF}=e^{\int-1 d y}=e^{-y}
$$

\therefore Solution is

$$
\begin{aligned}
x e^{-y} & =\int e^{-y} y^{2} d y \\
& =-e^{-y} y^{2}+\int 2 e^{-y} y d y \\
& =-e^{-y} y^{2}+2\left[-e^{-y} y+\right.
\end{aligned}
$$

$e-y d y+c$

$$
=-e^{-y} y^{2}+2\left[-e^{-y} y-e^{-y}\right]+
$$

C
$\Rightarrow \quad x e^{-y}=e^{-y}\left(-y^{2}-2 y-2\right)+c$
$\Rightarrow \quad x=-y^{2}-2 y-2+c e^{y}$
185 (a)
Given differential equation can be rewritten as
$\Rightarrow \quad \frac{d x}{d y}-\frac{x}{y^{2}}=2 y$
$\therefore \quad \mathrm{IF}=e^{-\int \frac{1}{y^{2}} d y}=e^{1 / y}$
186 (c)
It is given that $\frac{d y}{d x}=\frac{x}{y}$
On integration, we get $y^{2}-x^{2}=C$, which is a rectangular hyperbola
187 (a)
Given differential equation is

$$
\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0
$$

$\Rightarrow \quad\left(1+y^{2}\right) \frac{d x}{d y}=-x+e^{\tan ^{-1} y}$
$\Rightarrow \quad \frac{d x}{d y}+\frac{x}{1+y^{2}}=\frac{e^{\tan ^{-1} y}}{1+y^{2}}$
Which is a linear differential equation,
Here, $P=\frac{1}{1+y^{2}}, Q=\frac{e^{\tan ^{-1} y}}{1+y^{2}}$

$$
\mathrm{IF}=e^{\int P d y}=e^{\int \frac{1}{1+y^{2}} d y}=e^{\tan ^{-1} y}
$$

\therefore Solution is

$$
\begin{aligned}
x . \mathrm{IF}=\int Q . \mathrm{IF} d y+c \\
x e^{\tan ^{-1} y}=\int \frac{e^{\tan ^{-1} y}}{1+y^{2}} \cdot e^{\tan ^{-1} y}+\frac{c}{2} \\
\Rightarrow \quad x e^{\tan ^{-1} y}=\frac{e^{2 \tan ^{-1} y}}{2}+\frac{c}{2} \\
\therefore \quad 2 x e^{\tan ^{-1} y}=e^{2 \tan ^{-1} y}+c
\end{aligned}
$$

188 (d)
Given differential equation can be rewritten as

$$
\begin{array}{ll}
& \frac{y d y}{y+1}=\frac{e^{x} d x}{e^{x}+1} \\
\Rightarrow \quad & \left(1-\frac{1}{y+1}\right) d y=\frac{e^{x}}{e^{x}+1} d x \\
\Rightarrow \quad & y-\log (y+1)=\log \left(e^{x}+1\right)-\log c
\end{array}
$$

[integrating]
$\Rightarrow \quad y=\log \frac{\left(e^{x}+1\right)(y+1)}{c}$
$\Rightarrow \quad\left(e^{x}+1\right)(y+1)=c e^{y}$
189 (d)
The equation of all the straight lines passing through origin is

$$
\begin{array}{ll}
& y=m x \\
\Rightarrow \quad & \frac{d y}{d x}=m \tag{i}
\end{array}
$$

\therefore From Eq. (i), $\quad y=\frac{d y}{d x} x$
190 (b)
Given, $\frac{d y}{d x}=\sin (x+y) \tan (x+y)-1$
Put $\quad x+y=z \Rightarrow 1+\frac{d y}{d x}=\frac{d z}{d x}$
$\therefore \quad \frac{d z}{d x}-1=\sin z \tan z-1$
$\Rightarrow \quad \int \frac{\cos z}{\sin ^{2} z} d z=\int d x$
Put $\quad \sin z=t$
$\therefore \quad \int \frac{1}{t^{2}} d t=x-c \Rightarrow-\frac{1}{t}=x-c$
$\Rightarrow \quad-\operatorname{cosec} z=x-c$
$\Rightarrow \quad x+\operatorname{cosec}(x+y)=c$
191 (a)
Given, $\sin ^{-1} x+\sin ^{-1} y=c$
$\Rightarrow \quad \frac{d x}{\sqrt{1-x^{2}}}+\frac{d y}{\sqrt{1-y^{2}}}=0$
$\Rightarrow \quad \sqrt{1-y^{2}} d x+\sqrt{1-x^{2}} d y=0$
192 (d)

$$
\begin{aligned}
& x \frac{d y}{d x}+(1+x) y=x \\
& \Rightarrow \quad \frac{d y}{d x}+\frac{1+x}{x} y=1 \\
& \begin{array}{l}
I F=e^{\int \frac{1+x}{x} d x} \\
\quad=e^{\int \frac{d x}{x}+\int d x} \\
\quad=e^{\log x+x} \\
\quad=x e^{x}
\end{array}
\end{aligned}
$$

193 (c)
We have,
$\left(x+2 y^{3}\right) \frac{d y}{d x}=y$
$\Rightarrow y \frac{d y}{d x}=x+2 y^{3} \Rightarrow \frac{d x}{d y}-\frac{x}{y}=2 y^{2}$
This is linear differential equation with
I. F. $=e^{\int-\frac{1}{y} d y}=e^{-\log y}=\frac{1}{y}$

Multiplying (i) by I.F. and integrating, we get $\frac{x}{y}=\int 2 y d y \Rightarrow \frac{x}{y}=y^{2}+C \Rightarrow x=y\left(y^{2}+C\right)$
194 (a)
We have,
$\frac{d^{2} y}{d x^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{3}} \Rightarrow\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=1+\left(\frac{d y}{d x}\right)^{3}$
Clearly, it is a second order second degree differential equation
195 (a)
Given equation is $\frac{d y}{d x}=\frac{y+1}{x-1} \Rightarrow \frac{d y}{y+1}=\frac{d x}{x-1}$
On integrating both sides
$\int \frac{d y}{y+1}=\int \frac{d x}{x-1}$
$\Rightarrow \log (y+1)=\log (x-1)+\log c$
$\Rightarrow \log (y+1)=\log (x-1) c$
$\Rightarrow y+1=(x-1) c$
At $x=1 \Rightarrow y=-1$
Whereas $y(1)=2$.
Hence, the above solution is not possible.
196 (a)
Given, $\quad \frac{d y}{d x}=\frac{y(x+y)}{x(x-y)}$
Put $\quad y=v x$
$\Rightarrow \quad \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\therefore \quad v+x \frac{d v}{d x}=\frac{v x(x+v x)}{x(x-v x)}$

$$
\begin{aligned}
& \quad x \frac{d v}{d x}=\frac{2 v^{2}}{1-v} \\
& \Rightarrow \quad \frac{1}{2}\left[\frac{1}{v^{2}}-\frac{1}{v}\right] d v=\frac{d x}{x} \\
& \Rightarrow \quad \frac{1}{2}\left[-\frac{1}{v}-\log v\right]=\log x+c_{1} \\
& \Rightarrow \quad \frac{x}{v}+\log \left(\frac{y}{x}\right)+2 \log x=-2 c \\
& \Rightarrow \quad \frac{x}{y}+\log (x y)=c \\
& {\left[\operatorname{let} c=-2 c_{1}\right]}
\end{aligned}
$$

197 (a)
We have,
$y^{2} d y=x^{2} d x$
Integrating we get $y^{3}-x^{3}=C$
198 (b)
Given, $\frac{d^{2} y}{d x^{2}}=e^{-2 x}$
$\Rightarrow \quad \frac{d y}{d x}=-\frac{e^{-2 x}}{2}+c_{2}$
[integrating]

$$
\Rightarrow \quad y=\frac{e^{-2 x}}{4}+c_{2} x+c_{3}
$$

[integrating]
But $\quad y=c_{1} e^{-2 x}+c_{2} x+c_{3}$
[given]

$$
\therefore \quad c_{1}=\frac{1}{4}
$$

199 (d)
Given, $\quad x\left(\frac{d y}{d x}\right)^{2}+2 \sqrt{x y} \frac{d y}{d x}+y=0$

$$
\begin{array}{ll}
\Rightarrow & \left(\sqrt{x} \frac{d y}{d x}+\sqrt{y}\right)^{2}=0 \\
\Rightarrow & \frac{1}{\sqrt{y}} d y+\frac{1}{\sqrt{x}} d x=0 \\
\Rightarrow & 2 \sqrt{y}+2 \sqrt{x}=c_{1} \\
\Rightarrow & \sqrt{x}+\sqrt{y}=c
\end{array}
$$

200 (b)

$$
\begin{equation*}
y=m x+\frac{4}{m} \tag{i}
\end{equation*}
$$

$\therefore \quad \frac{d y}{d x}=m$
From Eq. (i), we get

$$
\begin{array}{ll}
& y=x\left(\frac{d y}{d x}\right)+\frac{4}{\left(\frac{d y}{d x}\right)} \\
\Rightarrow \quad & y\left(\frac{d y}{d x}\right)=x\left(\frac{d y}{d x}\right)^{2}+4 \\
\Rightarrow \quad & x\left(\frac{d y}{d x}\right)^{2}-y \frac{d y}{d x}+4=0
\end{array}
$$

Which is required differential equations.
201 (d)

We have,
$e^{x} \cos y d x-e^{x} \sin y d y=0$
$\Rightarrow \cos y d\left(e^{x}\right)+e^{x} d(\cos y)=0$
$\Rightarrow d\left(e^{x} \cos y\right)=0 \Rightarrow e^{x} \cos y=C \quad[0 \mathrm{n}$ integrating]
202 (d)
$y=a e^{m x}+b e^{-m x}$
On differentiating w.r.t. x, we get
$\frac{d y}{d x}=m a e^{m x}-m b e^{-m x}$
Again, on differentiating, we get
$\frac{d^{2} y}{d x^{2}}=m^{2} a e^{m x}+m^{2} b e^{-m x}$
$=m^{2}\left(a e^{m x}+b e^{-m x}\right)=m^{2} y$
$\Rightarrow \frac{d^{2} y}{d x^{2}}-m^{2} y=0$
203 (b)
We have,
$\frac{d y}{d x}+y=e^{-x}$
This is a linear differential equation with
I. F. $=e^{\int 1 \cdot d x}=e^{x}$

Multiplying both sides of (i) by I.F. $=e^{x}$ and integrating, we get
$y e^{x}=\int e^{x} e^{-x} d x+C \Rightarrow y e^{x}=x+C$
It is given that $y=0$ when $x=0$
$\therefore 0=0+C \Rightarrow C=0$
Hence, $y e^{x}=x \Rightarrow y=x e^{-x}$
204 (c)
Given, $\frac{d x}{1+x^{2}}+\frac{d y}{1+y^{2}}=0$
$\Rightarrow \quad \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} c$
[integrating]
$\Rightarrow \quad \frac{x+y}{1-x y}=c$
$\Rightarrow \quad x+y=c(1-x y)$
205 (c)
Given, $\mathrm{IF}=x$
$\therefore \quad e^{\int P d x}=x$
$\Rightarrow \quad \int P d x=\log x$
$\Rightarrow \quad P=\frac{d}{d x} \log x=\frac{1}{x}$
206
(b)

Given differential equation is

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} \\
\Rightarrow \quad & \left(\frac{d^{2} y}{d x^{2}}\right)^{2}=1+\left(\frac{d y}{d x}\right)^{2}
\end{aligned}
$$

Hence, order is 2.
207 (b)
Given, $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$
$\Rightarrow \quad \int \frac{d y}{\sqrt{1-y^{2}}}+\int \frac{d x}{\sqrt{1-x^{2}}}=0$
$\Rightarrow \quad \sin ^{-1} x+\sin ^{-1} y=c$
208 (d)
We have,
$x d y-y d x=0$
$\Rightarrow \frac{d y}{y}-\frac{d x}{x}=0$
$\Rightarrow \log y-\log x=\log C \quad$ [On integrating]
$\Rightarrow \frac{y}{x}=C \Rightarrow y=C x$
Clearly, it represents a family of straight lines passing through the origin
209 (c)
Let the equation of circle passing through given points is

$$
\begin{align*}
& x^{2}+y^{2}-2 f y=a^{2} \\
& \Rightarrow \quad 2 x+2 y y_{1}-2 f y_{1}=0 \tag{i}
\end{align*}
$$

$\Rightarrow \quad x=y_{1}(f-y)$
$\Rightarrow \quad x=y_{1}\left(\frac{x^{2}+y^{2}-a^{2}}{2 y}-y\right)$
[from Eq. (i)]
$\Rightarrow \quad y_{1}\left(y^{2}-x^{2}+a^{2}\right)+2 x y=0$
211 (a)
Given, $\quad \frac{d y}{d x}+\left(\frac{x}{y}\right)^{2}-\left(\frac{x}{y}\right)+1=0$
Put $v=\frac{x}{y} \Rightarrow x=v y$
$\Rightarrow \quad \frac{d x}{d y}=v+y \frac{d v}{d y}$
$\therefore \quad v+y \frac{d v}{d y}+v^{2}-v+1=0$
$\Rightarrow \quad \frac{d v}{v^{2}+1}+\frac{d y}{y}=0$
$\Rightarrow \quad \tan ^{-1} v+\log y+c=0$
[integrating]
$\Rightarrow \quad \tan ^{-1} \frac{x}{y}+\log y+c=0$
212 (a)
Given, $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{5 / 2}=\frac{d^{3} y}{d x^{3}}$
$\Rightarrow \quad\left(\frac{d^{3} y}{d x^{3}}\right)^{2}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{5}$
Here, order=3, degree=2
213 (a)
Given equation is
$x d y-y d x+x^{2} e^{x} d x=0$
$\Rightarrow \frac{x d y-y d x}{x^{2}}+e^{x} d x=0$
$\Rightarrow d\left(\frac{y}{x}\right)+d\left(e^{x}\right)=0$
$\Rightarrow \frac{y}{x}+e^{x}=c$
214 (c)
Given differential equation is

$$
\frac{d y}{d x}=\frac{x-y+3}{2(x-y)+5}
$$

Put $\quad x-y=v \Rightarrow \frac{d y}{d x}=1-\frac{d v}{d x}$
$\therefore \quad 1-\frac{d v}{d x}=\frac{v+3}{2 v+5} \Rightarrow \frac{d v}{d x}=\frac{v+2}{2 v+5}$
$\Rightarrow \quad \int\left(2+\frac{1}{v+2}\right) d v=\int d x$
$\Rightarrow \quad 2 v+\log (v+2)=x+c$
$\Rightarrow \quad 2(x-y)+\log (x-y+2)=x+c$
215 (c)
The given equation is $A x^{2}+B y^{2}=1$
$\Rightarrow \quad 2 A x+2 B y \frac{d y}{d x}=0$
$\Rightarrow \quad 2 A+2 B\left\{\left(\frac{d y}{d x}\right)^{2}+y \frac{d^{2} y}{d x^{2}}\right\}=0$
...(ii)
Eliminating A and B from Eqs. (i) and (ii), we get

$$
y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}-\frac{y}{x} \cdot \frac{d y}{d x}=0
$$

Here, order $=2$, degree $=1$
216 (a)
The given equation is
$(y+3) d y=(x+2) d x$
$\Rightarrow \frac{y^{2}}{2}+3 y=\frac{x^{2}}{2}+2 x+c$
Since, it passes through $(2,2)$.
$\therefore 2+6=2+4+c \Rightarrow c=2$
$\therefore \frac{y^{2}}{2}+3 y=\frac{x^{2}}{2}+2 x+2$
$\Rightarrow y^{2}+6 y=x^{2}+4 x+4$
$\Rightarrow x^{2}+4 x-y^{2}-6 y+4=0$
217
(b)

We have,
$y^{2}=4 a(x+a)$
Clearly, it is a one parameter family of parabolas
Differentiating (i) w.r.t. to x, we get
$2 y \frac{d y}{d x}=4 a \Rightarrow a=\frac{1}{2} y \frac{d y}{d x}$
Substituting this value of a in (i), we get

$$
\begin{aligned}
y^{2}=2 y \frac{d y}{d x}(x & \left.+\frac{1}{2} y \frac{d y}{d x}\right) \\
& \Rightarrow y^{2}\left(\frac{d y}{d x}\right)+2 x y \frac{d y}{d x}-y^{2}=0
\end{aligned}
$$

218 (b)
Given differential equation can be rewritten as
$\frac{d y}{d x}+\frac{1}{x \log x} \cdot y=\frac{2}{x}$
$\therefore \quad \mathrm{IF}=e^{\int \frac{1}{x \log x} d x}=e^{\int \frac{1 / x}{\log x} d x}=e^{\log \log x}=$ $\log x$
220 (a)
Given, $\frac{d y}{d x}+y \tan x=\sec x$
$\therefore \quad I F e^{\int P d x}=e^{\int \tan x d x}=\sec x$
\therefore Solution is $y \sec x=\int \sec ^{2} x d x+c$
$\Rightarrow \quad y \sec x=\tan x+c$
222 (c)
We have,
$\frac{d y}{d x}=\left(\frac{y}{x}\right)^{1 / 3}$
$\Rightarrow y^{-1 / 3} d y=x^{-1 / 3} d x$
$\Rightarrow \int y^{-1 / 3} d y=\int x^{-1 / 3} d x$
$\Rightarrow \frac{3}{2} y^{2 / 3}=\frac{3}{2} x^{2 / 3}+C$
$\Rightarrow y^{2 / 3}=x^{2 / 3}+C^{\prime}$, where $C^{\prime}=2 C$
$\Rightarrow y^{2 / 3}-x^{2 / 3}+C^{\prime}$

Given, $\frac{d y}{d x}=\frac{y \sin \left(\frac{y}{x}\right)-x}{x \sin \left(\frac{y}{x}\right)}=\frac{\frac{y}{x} \sin \left(\frac{y}{x}\right)-1}{\sin \left(\frac{y}{x}\right)}$
Put $\quad \frac{y}{x}=u$
$\Rightarrow \quad \frac{d y}{d x}=x \frac{d u}{d x}+u$
$\therefore \quad x \frac{d u}{d x}+u=\frac{u \sin u-1}{\sin u}$
$\Rightarrow \quad-\sin u d u=\frac{1}{x} d x$
$\Rightarrow \quad \cos u=\log x+c$
[integrating]
$\Rightarrow \quad \cos \left(\frac{y}{x}\right)=\log x+c$
$\therefore \quad y(1)=\frac{\pi}{2}$
$\therefore \quad \cos \frac{\pi}{2}=\log 1+c$
$\Rightarrow \quad c=0$
Thus, $\quad \cos \left(\frac{y}{x}\right)=\log x$
224 (b)
Given, $\quad \frac{d y}{d x}-\frac{y}{x}=\frac{\phi\left(\frac{y}{x}\right)}{\phi^{\prime}\left(\frac{y}{x}\right)}$
$\Rightarrow \quad \frac{\phi^{\prime}\left(\frac{y}{x}\right)\left(\frac{x d y-y d x}{x^{2}}\right)}{\phi\left(\frac{y}{x}\right)}=\frac{1}{x} d x$
$\Rightarrow \quad \int \frac{\phi^{\prime}\left(\frac{y}{x}\right) d\left(\frac{y}{x}\right)}{\phi\left(\frac{y}{x}\right)}=\int \frac{1}{x} d x+\log k$
$\Rightarrow \quad \log \phi\left(\frac{y}{x}\right)=\log x+\log k$
$\Rightarrow \quad \phi\left(\frac{y}{x}\right)=k x$
225 (b)
Given, $\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}$
Put $\quad y=v x$
$\Rightarrow \quad \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\therefore \quad v+x \frac{d v}{d x}=\frac{x^{2} v}{x^{2}\left(1+v^{2}\right)}$
$\Rightarrow \quad \int \frac{1+v^{2}}{v^{3}} d v=-\int \frac{d x}{x}$
$\Rightarrow \quad-\frac{1}{2 v^{2}}+\log v=-\log x+\log c$
$\Rightarrow \quad-\frac{1}{2} \cdot \frac{x^{2}}{y^{2}}+\log |y|=\log c$
$\therefore \quad y(1)=1,-\frac{1}{2}=\log c$
$\therefore \quad-\frac{1}{2} \cdot \frac{x^{2}}{y^{2}}+\log |y|=-\frac{1}{2}$
$\Rightarrow \quad \log _{e}|y|+\frac{1}{2}=\frac{x^{2}}{2 y^{2}}$
Again, when $x=x_{0}, y=e$

$$
1+\frac{1}{2}=\frac{x_{0}^{2}}{2 e^{2}} \Rightarrow x_{0}=\sqrt{3} e
$$

226 (d)
Given, $\quad 3^{-y} d y=3^{x} d x$
$\Rightarrow \quad \int 3^{-y} d y=\int 3^{x} d x$
$\Rightarrow \quad \frac{-3^{-y}}{\log 3}=\frac{3^{x}}{\log 3}+k$
$\Rightarrow \quad 3^{x}+3^{-y}=c$, where $c=-k \log 3$
227 (a)
$(x-h)^{2}+(y-k)^{2}=r^{2}$, here only one arbitrary constant r. So, order of differential equation $=1$.
229
(b)

Given differential equation can be rewritten as

$$
\begin{array}{cc}
& \frac{y}{\left(1+y^{2}\right)} d y=\frac{d x}{x\left(1+x^{2}\right)} \\
\Rightarrow \quad & \frac{1}{2} \int \frac{2 y}{\left(1+y^{2}\right)} d y=\frac{1}{2} \int \frac{2 x}{x^{2}\left(1+x^{2}\right)} d x \\
\Rightarrow \quad & \frac{1}{2} \int \frac{2 y}{\left(1+y^{2}\right)} d y=\frac{1}{2} \int \frac{d t}{t(1+t)} \\
\Rightarrow \quad\left[\text { put } x^{2}=t \text { in RHS integral }\right] \\
\Rightarrow \quad \frac{1}{2} \int \frac{2 y d y}{1+y^{2}}=\frac{1}{2} \int\left(\frac{1}{t}-\frac{1}{1+t}\right) d t \\
t+12 \log c
\end{array}
$$

$\Rightarrow \quad \log \left(1+y^{2}\right)=\log x^{2}-\log \left(1+x^{2}\right)+$
$\log c$
$\Rightarrow \quad \log \left(1+y^{2}\right)\left(1+x^{2}\right)=\log c x^{2}$
$\Rightarrow \quad\left(1+y^{2}\right)\left(1+x^{2}\right)=c x^{2}$
230 (b)
Given, $\quad \frac{d y}{d x}=\frac{2 x-y}{x+2 y}$
Put $\quad y=v x$
$\Rightarrow \quad \frac{d y}{d x}=v+\frac{x d v}{d x}$
$\therefore \quad v+x \frac{d v}{d x}=\frac{2-v}{1+2 v}$
$\Rightarrow \quad \frac{x d v}{d x}=\frac{2-v-v(1+2 v)}{1+2 v}$
$\Rightarrow \quad \int \frac{1+2 v}{2\left(1-v-v^{2}\right)} d v=\int \frac{1}{x} d x$
$\Rightarrow \quad \log k-\frac{1}{2} \log \left(1-v-v^{2}\right)=\log x$
$\Rightarrow \quad \log c=\log \left[x^{2}\left(1-v-v^{2}\right)\right]$
[put $k^{2}=c$]
$\Rightarrow \quad x^{2}-x y-y^{2}=c$
[put $v=\frac{y}{x}$]
231 (c)
$y^{2}=2 c\left(x+c^{2 / 3}\right)$
$\Rightarrow \quad 2 y \frac{d y}{d x}=2 c \Rightarrow c=y \frac{d y}{d x}$
$\therefore \quad y^{2}=2 y \frac{d y}{d x}\left(x+\left(y \frac{d y}{d x}\right)^{2 / 3}\right)$
$\Rightarrow \quad\left(\frac{y}{2 \frac{d y}{d x}}-x\right)=\left(y \frac{d y}{d x}\right)^{2 / 3}$
$\Rightarrow \quad\left(y-2 x \frac{d y}{d x}\right)^{3}=\left(2 \frac{d y}{d x}\right)^{3}\left(y \frac{d y}{d x}\right)^{2}$
$\Rightarrow \quad\left(y-2 x \frac{d y}{d x}\right)^{3}=8 y^{2}\left(\frac{d y}{d x}\right)^{5}$
Here, order $=1$, degree $=5$
(a)

Given equation is $\frac{d x}{x}+\frac{d y}{y}=0$
On integrating, we get
$\int \frac{d x}{x}+\int \frac{d y}{y}=0$
$\Rightarrow \log x+\log y=\log c$
$\Rightarrow \log (x y)+\log c \Rightarrow x y=c$
233 (a)
Given, $\quad y=\left(x+\sqrt{1+x^{2}}\right)^{n}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d y}{d x}=n\left[x+\sqrt{1+x^{2}}\right]^{n-1}\left(1+\frac{x}{\sqrt{x^{2}+1}}\right) \\
&=\frac{n\left[x+\sqrt{1+x^{2}}\right]^{n}}{\sqrt{1+x^{2}}} \\
& \Rightarrow \quad\left(\frac{d y}{d x}\right)^{2}\left(1+x^{2}\right)=n^{2} y^{2}
\end{aligned}
$$

Again, differentiating, we get
$2 \frac{d y}{d x} \cdot \frac{d^{2} y}{d x^{2}}\left(1+x^{2}\right)+2 x\left(\frac{d y}{d x}\right)^{2}=$
$2 n^{2} y \frac{d y}{d x}$
$\Rightarrow \quad \frac{d^{2} y}{d x^{2}}\left(1+x^{2}\right)+x \frac{d y}{d x}=n^{2} y$
[divide by $2 \frac{d y}{d x}$]
234 (c)
$y=\left(c_{1}+c_{2}\right) \cos \left(x+c_{3}\right)-c_{4} e^{x+c_{5}}$
$y_{1}=-\left(c_{1}+c_{2}\right) \sin \left(x+c_{3}\right)-c_{4} e^{x+c_{5}}$
$y_{2}=-\left(c_{1}+c_{2}\right) \cos \left(x+c_{3}\right)-c_{4} e^{x+c_{5}}$
$=-y-2 c_{4} e^{x+c_{5}}$
$y_{3}=-y_{1}-2 c_{4} e^{x+c_{5}}$
$y_{3}=-y_{1}+y_{2}-y$
\therefore Differential equation is
$y_{3}-y_{2}+y_{1}-y=0$
Which is order 3
235 (c)
The given equation is
$y=a e^{b x}$
$\Rightarrow \quad \frac{d y}{d x}=a b e^{b x}$
...(i)
$\Rightarrow \quad \frac{d^{2} y}{d x^{2}}=a b^{2} e^{b x}$
...(ii)
$\Rightarrow \quad a e^{b x} \frac{d^{2} y}{d x^{2}}=a^{2} b^{2} e^{2 b x}$
$\Rightarrow \quad y \frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$
[from eq. (ii)]
236 (d)
Let $a x+b y=1$, where $a \neq 0$
$\Rightarrow \quad a \frac{d x}{d y}+b=0$
$\Rightarrow \quad a \frac{d^{2} x}{d y^{2}}=0$
$\Rightarrow \quad \frac{d^{2} x}{d y^{2}}=0$
237 (a)
We have, $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$
Putting $x=\sin A, y=\sin B$, we get

$$
\cos A+\cos B=a(\sin A-\sin B)
$$

$\Rightarrow \quad \cot \frac{A-B}{2}=a$
$\Rightarrow \quad A-B=2 \cot ^{-1} a$
$\Rightarrow \quad \sin ^{-1} x-\sin ^{-1} y=2 \cot ^{-1} a$
On differentiating w. r.t. x, we get

$$
\begin{aligned}
& \frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-y^{2}}} \frac{d y}{d x}=0 \\
\Rightarrow \quad & \frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Clearly, it is differential equation of the first
order and first degree.
238 (b)
Given differential equation is

$$
\begin{array}{ll}
& \frac{d y}{d x}=e^{y+x}+e^{y-x} \\
\Rightarrow & \int e^{-y} d y=\int\left(e^{x}-e^{-x}\right) d x \\
\Rightarrow & -e^{-y}=e^{x}-e^{-x}-c \\
\Rightarrow & e^{-y}=e^{-x}-e^{-x}+c
\end{array}
$$

239 (a)
Given, $\frac{d y}{d x}+\frac{1}{x} \cdot y=3 x$
$\therefore \quad \mathrm{IF}=e^{\int \frac{1}{x} d x}=e^{\log x}=x$
240 (a)
Given, $\frac{\sec ^{2} x}{\tan x} d x=-\frac{\sec ^{2} y}{\tan y} d y$
$\Rightarrow \quad \int \frac{\sec ^{2} x}{\tan x} d x=-\int \frac{\sec ^{2} y}{\tan y} d y$
Put $\quad \tan x=u$
$\Rightarrow \quad \sec ^{2} x d x=d u$
And $\quad \tan y=v$
$\Rightarrow \quad \sec ^{2} y d y=d v$
$\therefore \quad \int \frac{d u}{u}=-\int \frac{d v}{v}$
$\Rightarrow \quad \log u=-\log v+\log c \Rightarrow u v=c$
$\therefore \quad \tan x \cdot \tan y=c$
241 (b)
We have,
$y \frac{d y}{d x}=\lambda y^{2} \Rightarrow \frac{d y}{d x}=\lambda y$
$\Rightarrow \frac{1}{y} d y=\lambda d x \Rightarrow \log y=\lambda x+\log C \Rightarrow y=C e^{\lambda x}$
242 (b)
We have,

$$
\frac{d y}{d x}+\frac{1+\cos 2 y}{1-\cos 2 x}=0
$$

Given, $\frac{d y}{d x}=-\frac{1+\cos 2 y}{1-\cos 2 x}=-\frac{2 \cos ^{2} y}{2 \sin ^{2} x}$

$$
\Rightarrow \quad \int \sec ^{2} y d y=-\int \operatorname{cosec}^{2} x d x
$$

$$
\Rightarrow \tan y=\cot x+c
$$

243 (a)
Given differential equation can be rewritten as

$$
\frac{d y}{d x}+\frac{y}{\sqrt{x}}=e^{-2 \sqrt{x}}
$$

Here, $\quad P=\frac{1}{\sqrt{x}}, Q=e^{-2 \sqrt{x}}$
$\therefore \quad \mathrm{IF}=e^{\int \frac{1}{\sqrt{x}} d x}=e^{2 \sqrt{x}}$
\therefore Solution is

$$
\begin{aligned}
y e^{2 x} & =\int e^{2 \sqrt{x}} e^{-2 \sqrt{x}} d x=\int 1 d x \\
\Rightarrow \quad y e^{2 \sqrt{x}} & =x+c
\end{aligned}
$$

244 (a)
Given, $\left(1+\frac{1}{y}\right) d y=-e^{x}\left(\cos ^{2} x-\sin 2 x\right) d x$
On integrating both sides, we get
$y+\log y=-e^{x} \cos ^{2} x+\int e^{x} \sin 2 x d x-$
$\int e^{x} \sin 2 x d x+c$
$\Rightarrow \quad y+\log y=-e^{x} \cos ^{2} x+c$

$$
\begin{aligned}
& \text { At } \mathrm{x}=0, \mathrm{y}=1 \\
& \quad 1+0=-e^{0} \cos 0+c \Rightarrow c=2
\end{aligned}
$$

\therefore Required solution is

$$
y+\log y=-e^{x} \cos ^{2} x+2
$$

245 (d)
Given, $\quad \frac{d y}{d x}=(4 x+y+1)^{2}$
Put $\quad 4 x+y+1=v$
$\Rightarrow \quad \frac{d y}{d x}=\frac{d v}{d x}-4$
$\therefore \quad \frac{d v}{d x}-4=v^{2}$
$\Rightarrow \quad \frac{d v}{v^{2}+4}=d x$
$\Rightarrow \quad \frac{1}{2} \tan ^{-1}\left(\frac{v}{2}\right)=x+c$
[integrating]
$\Rightarrow \quad \tan ^{-1}\left(\frac{4 x+y+1}{2}\right)=2 x+c$
$\Rightarrow \quad 4 x+y+1=2 \tan (2 x+c)$
246 (c)
Given differential equation is
$x \frac{d y}{d x}+y \log x=x e^{x} x^{-\frac{1}{2} \log x}$
$\Rightarrow \frac{d y}{d x}+\frac{y}{x} \log x=e^{x} x^{-\frac{1}{2} \log x}$
Here, $P=\frac{1}{x} \log x$ and $Q=e^{x} x^{-\frac{1}{2} \log x}$
\therefore IF $=e^{\int \frac{\log x}{x} d x}=e^{\frac{(\log x)^{2}}{2}}=(\sqrt{e})^{(\log x)^{2}}$
247 (a)
Let us assume the equation of parabola whose axis is parallel to y-axis and touch x-axis.
$y=a x^{2}+b x+c$
and $b^{2}=4 a c \quad(\because$ curve touches x-axis)
\because There are two arbitrary constant.
\therefore Order of this equation is 2 .
248 (a)
Here, $y=A \cos \omega t+B \sin \omega t$
On differentiating w. r.t. t, we get
$\frac{d y}{d t}=-\omega A \sin \omega t+\omega B \cos \omega t$

Again, on differentiating w.r.t. t, we get
$\frac{d^{2} y}{d t^{2}}=-\omega^{2} A \cos \omega t-\omega^{2} B \sin \omega t$
$\Rightarrow \frac{d^{2} y}{d t^{2}}=-\omega^{2}(A \cos \omega t-B \sin \omega t)$
$\therefore y_{2}=-\omega^{2} y \quad$ [from Eq. (i)]
249 (a)
Given, $\frac{d y}{d x} \tan y=\sin (x+y)+\sin (x-y)$
$\Rightarrow \quad \frac{d y}{d x} \tan y=2 \sin x \cos y$
$\Rightarrow \quad \tan y \sec y d y=2 \sin x d x$
$\Rightarrow \quad \sec y=-2 \cos x+c$
[integrating]
$\Rightarrow \quad \sec y+2 \cos x=c$
250 (a)
Putting $x=\tan A$, and $y=\tan B$ in the given
relation, we get
$\cos A+\cos B=\lambda(\sin A-\sin B)$
$\Rightarrow \tan \left(\frac{A-B}{2}\right)=\frac{1}{\lambda}$
$\Rightarrow \tan ^{-1} x-\tan ^{-1} y=2 \tan ^{-1}\left(\frac{1}{\lambda}\right)$
Differentiating w.r.t. to x, we get
$\frac{1}{1+x^{2}}-\frac{1}{1+y^{2}} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$
Clearly, it is a differential equation of degree 1
251 (b)
Given, $\frac{d y}{d x}-y \tan x=e^{x} \sec x$
$\therefore \quad \mathrm{IF}=e^{-\int \tan x d x}=e^{-\log \sec x}=\frac{1}{\sec x}$
\therefore Complete solution is
$\Rightarrow \quad y \cdot \frac{1}{\sec x}=\int e^{x} \sec x \cdot \frac{1}{\sec x} d x$
$\Rightarrow \quad \frac{y}{\sec x}=e^{x}+c$
$\Rightarrow \quad y \cos x=e^{x}+c$
252 (c)
$x=1+\frac{d y}{d x}+\frac{1}{2!}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{3!}\left(\frac{d y}{d x}\right)^{3}+\cdots$.
$\Rightarrow \quad x=e^{\frac{d y}{d x}} \Rightarrow \frac{d y}{d x}=\log _{e} x$
\Rightarrow Degree of differential equation is 1 .
253 (a)
Given, $\frac{d y}{y+1}=\frac{-\cos x}{2+\sin x} d x$
$\Rightarrow \quad \int \frac{d y}{y+1}=-\frac{\int \cos x}{2+\sin x} d x$
$\Rightarrow \quad \log (y+1)=-\log (2+\sin x)+\log c$
When $\quad x=0, y=1$
$\Rightarrow \quad c=4$
$\therefore \quad y+1=\frac{4}{2+\sin x}$

At $x=\frac{\pi}{2}, \quad y+1=\frac{4}{2+1}$
$\Rightarrow \quad y=\frac{1}{3}$
254 (c)
Given, $\quad \cos y \frac{d y}{d x}=e^{x+\sin y}+x^{2} e^{\sin y}$
$\Rightarrow \quad \cos y \frac{d y}{d x}=e^{\sin y}\left(e^{x}+x^{2}\right) d x$
$\Rightarrow \quad \int \frac{\cos y}{e^{\sin y}} d y=\int\left(e^{x}+x^{2}\right) d x$
Put $\sin y=t$ in LHS $\Rightarrow \cos y d y=d t$
$\therefore \quad \int \frac{d t}{e^{t}}=\int\left(e^{x}+x^{2}\right) d x$
$\Rightarrow \quad-e^{-t}=e^{x}+\frac{x^{3}}{3}-c$
$\Rightarrow \quad e^{x}+e^{\sin y}+\frac{x^{3}}{3}=c$
255 (a)
The given differential equation can be written as $\frac{y d x-x d y}{y^{2}}+3 x^{2} e^{x^{3}} d x=0 \Rightarrow d\left(\frac{x}{y}\right)+d\left(e^{x^{3}}\right)$

$$
=0 \Rightarrow \frac{x}{y}+e^{x^{3}}=C
$$

256 (a)
Given that, $\frac{d y}{d x}=\frac{2 x-y}{x+2 y}$
Let $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\therefore v+x \frac{d v}{d x}=\frac{2-v}{1+2 v}$
$\Rightarrow x \frac{d v}{d x}=\frac{2-v-v(1+2 v)}{1+2 v}$
$\Rightarrow \int \frac{1+2 v}{2\left(1-v-v^{2}\right)} d v=\int \frac{1}{x} d x$
$\Rightarrow \log k-\frac{1}{2} \log \left(1-v-v^{2}\right)=\log x$
$\Rightarrow 2 \log k-\log \left(1-v-v^{2}\right)=2 \log x$
$\Rightarrow \log c=\log \left[x^{2}\left(1-v-v^{2}\right)\right]$
$\Rightarrow c=x^{2}\left(1-\frac{y}{x}-\frac{y^{2}}{x^{2}}\right)$
$\Rightarrow x^{2}-x y-y^{2}=c$
257 (a)
Given $y+x^{2}=\frac{d y}{d x} \Rightarrow \frac{d y}{d x}-y=x^{2}$
This is the linear differential equation of the form
$\frac{d y}{d x}+P y=Q$
$\Rightarrow P=-1, Q=x^{2}$
$\therefore \mathrm{IF}=e^{\int P d x}=e^{\int-1 d x}=e^{-x}$
Hence, required solution is
$y e^{-x}=\int x^{2} e^{-x} d x$
$y \cdot e^{-x}=-x^{2} e^{-x}-2 x e^{-x}-2 e^{-x}+c$
$\Rightarrow y+x^{2}+2 x+2=c e^{x}$
(b)

Given, $\quad \frac{x d y-y d x}{x}=-\left(\cos ^{2} \frac{y}{x}\right) d x$
$\Rightarrow \quad \sec ^{2}\left(\frac{y}{x}\right)\left(\frac{x d y-y d x}{x^{2}}\right)=-\frac{d x}{x}$
$\Rightarrow \quad \sec ^{2}\left(\frac{y}{x}\right) d\left(\frac{y}{x}\right)=-\frac{d x}{x}$
$\Rightarrow \quad \tan \frac{y}{x}=-\log x+c$
[integrating]
When $x=1, y=\frac{\pi}{4} \quad \Rightarrow c=1$
$\therefore \tan \left(\frac{y}{x}\right)=1-\log x \quad \Rightarrow x=e^{1-\tan \left(\frac{y}{x}\right)}$
259 (d)
Given, $\frac{d y}{1+y+y^{2}}=(1+x) d x$
$\Rightarrow \quad \int \frac{d y}{\left(y+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=\int(1+x) d x$
$\Rightarrow \quad \frac{1}{\frac{\sqrt{3}}{2}} \tan ^{-1}\left(\frac{y+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)=x+\frac{x^{2}}{2}+\frac{c}{2}$
$\Rightarrow \quad 4 \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=\sqrt{3}\left(2 x+x^{2}\right)+c$
260 (c)
Given equation is
$\frac{d y}{d x}=2^{y} \cdot 2^{-x} \Rightarrow 2^{-y} d y=2^{-x} d x$
On integrating both sides, we get
$\frac{2^{-y}}{\log 2}(-1)=\frac{2^{-x}}{\log 2}(-1)+c_{1}$
$\Rightarrow-\frac{2^{-y}}{\log 2}=-\frac{2^{-x}}{\log 2}+c_{1}$
$\Rightarrow-2^{-y}=-2^{-x}+c_{1} \log 2$
$\therefore \frac{1}{2^{x}}-\frac{1}{2^{y}}=c_{1} \log 2=c$
261 (b)
Since, $\quad f^{\prime \prime}(x)=6(x-1)$
$\Rightarrow \quad f^{\prime}(x)=3(x-1)^{2}+c$
[integrating]
Also, at the point $(2,1)$ the tangent to graph is $y=3 x-5$
Slope of tangent $=3$
\Rightarrow

$$
f^{\prime}(2)=3
$$

$$
3(2-1)^{2}+c=3
$$

[from eq. (i)]

$$
\begin{array}{cr}
\Rightarrow & 3+c=3 \\
\Rightarrow & c=0
\end{array}
$$

From Eq. (i),

$$
\begin{array}{ll}
& f^{\prime}(x)=3(x-1)^{2} \\
\Rightarrow & f(x)=(x-1)^{2}+k \tag{ii}
\end{array}
$$

[integrating]
Since, it passes through $(2,1)$
$\therefore \quad 1=(2-1)^{2}+k \quad \Rightarrow k=0$

Hence, equation of function is

$$
f(x)=(x-1)^{2}
$$

262

(b)

$\because \log \left(\frac{d y}{d x}\right)=a x+b y$
$\Rightarrow \frac{d y}{d x}=e^{a x+b y}=e^{a x} e^{b y}$
$\Rightarrow e^{-b y} d y=e^{a x} d x$
On integrating both sides, we get
$\int e^{-b y} d y=\int e^{a x} d x$
$\Rightarrow \frac{e^{-b y}}{-b}=\frac{e^{a x}}{a}+c$
263 (d)
$y+4 x+1=V$ is the suitable substitution
$\because \frac{d y}{d x}=f(a x+b y+c)$ is
Solvable for substituting
$a x+b y+c=V$
264
Given, $\frac{d y}{d x}=\frac{\left(1+y^{2}\right) x}{y\left(1+x^{2}\right)}$
$\Rightarrow \quad \int \frac{2 y}{1+y^{2}} d y=\int \frac{2 x}{1+x^{2}} d x$
$\Rightarrow \quad \log \left(1+y^{2}\right)=\log \left(1+x^{2}\right)+\log k$
$\Rightarrow \quad\left(1+y^{2}\right)=\left(1+x^{2}\right) k$
This equation represents a family of hyperbola.
265 (c)
The equation of the family of circles of radius r is

$$
\begin{equation*}
(x-a)^{2}+(y-b)^{2}=r^{2} . \tag{i}
\end{equation*}
$$

Where a and b are arbitrary constants
$\Rightarrow \quad 2(x-a)+2(y-b) \frac{d y}{d x}=0$
$\Rightarrow \quad(x-a)+(y-b) \frac{d y}{d x}=0$
$\Rightarrow \quad 1+(y-b) \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0$
$\Rightarrow \quad(y-b)=-\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}$
...(iii)
From eq. (ii),

$$
\begin{equation*}
(x-a)=\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right] \frac{d y}{d x}}{\frac{d^{2} y}{d x^{2}}} \tag{iv}
\end{equation*}
$$

On putting the value of $(y-b)$ and $(x-a)$, in eq. (i), we get

$$
\begin{aligned}
& \frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]\left(\frac{d y}{d x}\right)^{2}}{\left(\frac{d^{2} y}{d x^{2}}\right)^{2}}+\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{2}}{\left(\frac{d^{2} y}{d x^{2}}\right)^{2}}=r^{2} \\
& \Rightarrow \quad\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=r^{2}\left[\frac{d^{2} y}{d x^{2}}\right]^{2}
\end{aligned}
$$

266 (b)
Given,
Focus $S=(0,0)$ let $P(x, y)$ be any point on the parabola,
Since, $S P^{2}=P M^{2}$
$\Rightarrow \quad(x-0)^{2}+(y-0)^{2}=(x+a)^{2}$
$\Rightarrow \quad y^{2}=2 a x+a^{2}$
...(i)
$\Rightarrow \quad 2 y \frac{d y}{d x}=2 a$
...(ii)
From Eqs. (i) and (ii), we get

$$
\begin{aligned}
& y^{2}=2 y \frac{d y}{d x} \cdot x+\left(y \frac{d y}{d x}\right)^{2} \\
\Rightarrow \quad & y^{2}\left(\frac{d y}{d x}\right)^{2}+2 x y \frac{d y}{d x}=y^{2} \\
\Rightarrow \quad & -y\left(\frac{d y}{d x}\right)^{2}=2 x \frac{d y}{d x}-y
\end{aligned}
$$

267 (b)
Given, $\frac{d x}{x}=\frac{y d y}{1+y^{2}}$
$\Rightarrow \quad \log x=\frac{1}{2} \log \left(1+y^{2}\right)+\log c$
$\Rightarrow \quad x=c \sqrt{1+y^{2}}$
But it passes through (1,0), so we get $c=1$
\therefore Solution is $x^{2}-y^{2}=1$
268 (d)
Given that, $\frac{d y}{d x}=\frac{x^{2}}{y+1}$
$\Rightarrow(y+1) d y=x^{2} d x$
$\Rightarrow \frac{y^{2}}{2}+y=\frac{x^{2}}{3}+c$
This curve passes through the point $(3,2)$.
$2+2=9+c$
$\Rightarrow c=-5$
\therefore Required curve is $\frac{y^{2}}{2}+y=\frac{x^{3}}{3}-5$
269 (a)
Given, $\frac{d y}{d x}=\frac{y-1}{x^{2}+x}$
$\Rightarrow \quad \int\left(\frac{1}{x}-\frac{1}{x+1}\right) d x=\int \frac{1}{y-1} d y$
$\Rightarrow \quad \log x-\log (x+1)=\log (y-1)+\log c$
$\Rightarrow \quad \frac{x}{x+1}=(y-1) c$
...(i)
Since, this curve passes through $(1,0) c=-\frac{1}{2}$
\therefore From Eq. (i) $2 x+(y-1)(x+!)=0$
270 (a)
Given, $\quad \frac{d y}{d t}-\left(\frac{1}{1+t}\right) y=\frac{1}{(1+t)}$ and $y(0)=-1$
$\therefore \quad I F=e^{\int-\left(\frac{t}{1+t}\right) d t}=e^{-\int\left(1-\frac{1}{1+t}\right) d t}$

$$
e^{-t+\log (1+t)}=e^{-t}(1+t)
$$

\therefore Required solution is,

$$
\begin{aligned}
y e^{-t}(1+t) & =\int \frac{1}{1+t} e^{-t}(1+t) d t+c \\
& =\int e^{-t} d t+c
\end{aligned}
$$

$\Rightarrow y e^{-1}(1+t)=-e^{-1}+c$
Since, $y(0)=-1$
$\Rightarrow \quad c=0$
$\therefore \quad y=-\frac{1}{(1+t)}$
$\Rightarrow \quad y(1)=-\frac{1}{2}$
271 (a)
Given curve is $y=x^{2}$
For this curve there is only one tangent line ie,

$$
x \text {-axis }(y=0)
$$

$\therefore \quad \frac{d y}{d x}=0$
Hence, order is 1.
272 (c)
Given, $\quad x^{2}+y^{2}-2 a y=0$
....(i)
$\Rightarrow \quad 2 x+2 y y^{\prime}-2 a y^{\prime}=0$
$\Rightarrow \quad \frac{2 x+2 y y^{\prime}}{y^{\prime}}=2 a$
...(ii)
\therefore From Eq. (i)

$$
\begin{gathered}
\\
2 a=\frac{x^{2}+y^{2}}{y} \\
\Rightarrow \quad \\
\frac{2 x+2 y y^{\prime}}{y^{\prime}}=\frac{x^{2}+y^{2}}{y}
\end{gathered}
$$

[from Eq. (ii)]
$\Rightarrow \quad\left(x^{2}-y^{2}\right) y^{\prime}=2 x y$
273 (a)
$\because \frac{d y}{d x}+1=\operatorname{cosec}(x+y)$
Let $x+y=t$
and $1+\frac{d y}{d x}=\frac{d t}{d x}$
$\Rightarrow \frac{d t}{\operatorname{cosec} t}=d x$
$\therefore \int \sin t d t=\int d x$
$\Rightarrow-\cos t=x-c$
$\Rightarrow \cos (x+y)+x=c$
274
(b)

Given, $\frac{y}{4} d y=-\frac{x}{9} d x$
$\Rightarrow \quad \frac{y^{2}}{4.2}=-\frac{x^{2}}{9.2}+\frac{c}{2}$
$\Rightarrow \quad \frac{y^{2}}{4}+\frac{x^{2}}{9}=c$
275 (b)
The differential equation of the rectangular hyperbola $x y=c^{2}$ is
$y+x \frac{d y}{d x}=0 \Rightarrow x \frac{d y}{d x}=-y$
(c)

Given, $\log \left(\frac{d y}{d x}\right)=3 x+4 y$

$$
\begin{array}{ll}
\Rightarrow & \frac{d y}{d x}=e^{3 x} e^{4 y} \\
\Rightarrow & e^{-4 y} d y=e^{3 x} d x
\end{array}
$$

On integrating both sides, we get

$$
\begin{array}{ll}
& \frac{e^{-4 y}}{-4}=\frac{e^{3 x}}{3}+c \\
\text { At } & x=0, y=0 \\
& -\frac{1}{4}=\frac{1}{3}+c \\
\Rightarrow & c=-\frac{7}{12}
\end{array}
$$

\therefore Solution is

$$
\begin{array}{ll}
& \frac{e^{-4 y}}{-4}=\frac{e^{3 x}}{3}-\frac{7}{12} \\
\Rightarrow \quad & 4 e^{3 x}+3 e^{-4 y}=7
\end{array}
$$

277 (b)
Given differential equation is
$\frac{d^{2} y}{d x^{2}}=2 \Rightarrow \frac{d y}{d x}=2 x+a$
$\Rightarrow y=x^{2}+a x+b$
\therefore It represents a parabola whose axis is parallel to y-axis.
278 (b)
Given, $\quad \frac{d y}{d x}=\left(\frac{y}{x}\right)\left[\log \left(\frac{y}{x}\right)+1\right]$
Put $\quad \frac{y}{x}=t$
$\Rightarrow \quad y=x t$
$\Rightarrow \quad \frac{d y}{d x}=t+x \frac{d t}{d x}$
$\therefore \quad t+x \frac{d t}{d x}=t(\log t+1)$
$\Rightarrow \quad \frac{1}{t \log t} d t=\frac{d x}{x}$
$\Rightarrow \quad \log (\log t)=\log x+\log c$
[integrating]
$\Rightarrow \quad \log \left(\frac{y}{x}\right)=c x$
279 (a)
Given, $\frac{d y}{d x}=\frac{-y^{2}}{x^{2}-x y+y^{2}}$
Put $y=v x$

$$
\begin{array}{cc}
\Rightarrow & \frac{d y}{d x}=v+x \frac{d v}{d x} \\
\therefore & v+x \frac{d v}{d x}=\frac{-v^{2}}{v^{2}-v+1} \\
& x \frac{d v}{d x}=\frac{-v^{3}-v}{v^{2}-v+1} \\
\Rightarrow & \frac{\left(v^{2}-v+1\right)}{-v^{3}-v} d v=\frac{1}{x} d x \\
\Rightarrow & \frac{-\left(v^{2}+1\right)+v}{v\left(v^{2}+1\right)} d v=\frac{1}{x} d x \\
\Rightarrow & \int-\frac{1}{v} d v+\int \frac{1}{v^{2}+1} d v=\int \frac{1}{x} d x \\
\Rightarrow & -\log v+\tan ^{-1} v=\log x+c \\
\Rightarrow & \tan ^{-1} v=\log x v+c \\
\Rightarrow & \tan ^{-1}\left(\frac{y}{x}\right)=\log y+c
\end{array}
$$

280 (a)
Given, $\quad \frac{d^{2} y}{d x^{2}}\left(x^{2}+1\right)=2 x \frac{d y}{d x}$
$\Rightarrow \quad \frac{\frac{d^{2} y}{d x^{2}}}{\frac{d y}{d x}}=\frac{2 x}{x^{2}+1}$
On integrating both sides, we get

$$
\begin{align*}
& \log \frac{d y}{d x}=\log \left(x^{2}+1\right)+\log c \\
\Rightarrow \quad & \frac{d y}{d x}=c\left(x^{2}+1\right) \tag{i}
\end{align*}
$$

As at $x=0, \frac{d y}{d x}=3$
$\therefore \quad 3=c(0+1)$
$\Rightarrow \quad c=3$
\therefore From Eq. (i),

$$
\begin{aligned}
& \quad \frac{d y}{d x}=3\left(x^{2}+1\right) \\
& \Rightarrow \quad \\
& d y=3\left(x^{2}+1\right) d x
\end{aligned}
$$

Again, integrating both sides, we get

$$
y=3\left(\frac{x^{3}}{3}+x\right)+c_{1}
$$

At point $(0,1)$

$$
\begin{aligned}
& 1=3(0+0)+c_{1} \Rightarrow c_{1}=1 \\
\therefore & y=3\left(\frac{x^{3}}{3}+x\right)+1 \\
\Rightarrow & y=x^{3}+3 x+1
\end{aligned}
$$

281 (a)
Given equation can be rewritten as

$$
\begin{aligned}
& \frac{d x}{d y}+\frac{1}{\left(1+y^{2}\right)} x=\frac{e^{\tan ^{-1} y}}{\left(1+y^{2}\right)} \\
\therefore \quad & I F=e^{\int \frac{1}{1+y^{2}} d y}=e^{\tan ^{1} y}
\end{aligned}
$$

\therefore Required solution is

$$
x e^{\tan ^{1} y}=\int \frac{e^{\tan ^{-1} y} e^{\tan ^{-1} y}}{1+y^{2}} d y
$$

Put $\quad e^{\tan ^{-1} y}=t \Rightarrow e^{\tan ^{-1} y} \frac{1}{1+y^{2}} d y=d t$
$\therefore \quad x e^{\tan ^{-1} y}=\int t d t=\frac{t^{2}}{2}+c$
$\Rightarrow \quad 2 x e^{\tan ^{-1} y}=e^{2 \tan ^{-1} y}+k$
282 (b)
Given, $\frac{d y}{d x}=\log (x+1)$
$\Rightarrow \quad d y=\log (x+1) d x$
$\Rightarrow \quad \int d y=\int \log (x+1) d x$
$\Rightarrow \quad y=(x+1) \log |x+1|-x+c$
$\therefore \quad x=0, y=3$
$\therefore \quad c=3$
$\therefore \quad y=(x+1) \log |x+1|-x+3$
283 (d)
Given equation is
$\frac{d^{2} y}{d x^{2}}=\frac{\log x}{x^{2}}$
On integrating, both sides we get
$\int \frac{d^{2} y}{d x^{2}} d x=\int \frac{\log x}{x^{2}} d x$
$\Rightarrow \frac{d y}{d x}=-\frac{\log x}{x}+\int \frac{1}{x^{2}} d x+c$
$\Rightarrow \frac{d y}{d x}=-\frac{\log x}{x}-\frac{1}{x}+c$
At $x=1, y=0$ and $\frac{d y}{d x}=-1 \Rightarrow c=0$
$\therefore \frac{d y}{d x}=-\frac{(\log x+1)}{x}$
Again on integrating, both sides we get
$\int \frac{d y}{d x} d x=-\int \frac{\log x+1}{x} d x+c_{1}$
$y=-\frac{1}{2}(\log x)^{2}-\log x+c_{1}$
At $x=1, y=0$
$\Rightarrow c_{1}=0$
$\therefore y=-\frac{1}{2}(\log x)^{2}-\log x$

285 (b)

Given equation is
$\sin ^{-1} x+\sin ^{-1} y=c$
On differentiating Eq. (i) w.r.t. x, we get
$\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{\sqrt{1-y^{2}}} \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=-\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}$
$\Rightarrow \sqrt{1-x^{2}} d y+\sqrt{1-y^{2}} d x=0$
This is the required differential equation.
286 (d
Given that, $\frac{d y}{d x}=1+y^{2}$
$\Rightarrow \frac{d y}{1+y^{2}}=d x$
On integrating both sides, we get
$\int \frac{d y}{1+y^{2}}=\int d x$
$\Rightarrow \tan ^{-1} y=x+c$
At $x=0, y=0$, then $c=0$
At $x=\pi, y=0$, then $\tan ^{-1} 0=\pi+c \Rightarrow c=-\pi$
$\therefore \tan ^{-1} y=x \Rightarrow y=\tan x=\phi(x)$
Therefore, solution becomes $y=\tan x$
But $\tan x$ is not continuous function in $(0, \pi)$
So, $\phi(x)$ is not possible in $(0, \pi)$.
287 (c)
Let $p=\frac{d y}{d x}$
\therefore Given differential equation reduces to
$p^{2}-x p+y=0$
Differentiating both sides w.r.t. x, we get
$2 p \frac{d p}{d x}-x \frac{d p}{d x}-p+p=0$
$\Rightarrow \frac{d p}{d x}(2 p-x)=0$
\Rightarrow Either $\frac{d^{2} y}{d x^{2}}=0$ or $\frac{d y}{d x}=\frac{x}{2}$
$\Rightarrow y=2 x-4$ will satisfy.
288 (c)
Given, $y=\operatorname{asin}(5 x+c)$
$\Rightarrow \quad \frac{d y}{d x}=5 \operatorname{acos}(5 x+c)$
$\Rightarrow \quad \frac{d^{2} y}{d x^{2}}=-25 a \sin (5 x+c)=-25 y$
289 (c)
Given, $\left(1-x^{2}\right) \frac{d y}{d x}-x y=1$
$\Rightarrow \frac{d y}{d x}-\frac{x}{1-x^{2}} y=\frac{1}{1-x^{2}}$
This is a linear equation, comparing with the equation
$\frac{d y}{d x}+P y=Q$
$\Rightarrow P=-\frac{x}{1-x^{2}}, Q=\frac{1}{1-x^{2}}$
$\therefore I F=e^{\int P d x}=e^{\int \frac{-x}{1-x^{2}} d x}$
$\Rightarrow \mathrm{IF}=e^{\frac{1}{2} \log \left(1-x^{2}\right)}=\sqrt{1-x^{2}}$
290 (c)
We have,
Slope $=\frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{1}{2 y} \Rightarrow 2 y d y=d x$
Integrating both sides, we get $y^{2}=x+C$
This passes through $(4,3)$
$\therefore 9=4+C \Rightarrow C=5$
So, the equation of the curve is $y^{2}=x+5$
291 (a)
The given differential equation is
$\frac{d y}{d x}+y \frac{\sin x}{\cos x}=\frac{1}{\cos x}$
$\therefore I F=e^{\int \frac{\sin x}{\cos x} d x}=e^{\log \sec x}=\sec x$
(b)

Given, $\frac{d y}{d x}+\frac{2 x}{1+x^{2}} \cdot y=\frac{1}{\left(1+x^{2}\right)^{2}}$
$\therefore \quad \mathrm{IF}=e^{\int \frac{2 x}{1+x^{2}} d x}=e^{\log \left(1+x^{2}\right)}=1+x^{2}$
The complete solution is

$$
\begin{aligned}
y\left(1+x^{2}\right) & =\int\left(1+x^{2}\right) \cdot \frac{1}{\left(1+x^{2}\right)^{2}} d x+c \\
\Rightarrow \quad y\left(1+x^{2}\right) & =\tan ^{-1} x+c
\end{aligned}
$$

\because The order of the differential equation is the order of highest derivative in the differential equation.
\therefore The second order differential equation is in option (b) $i e$,
$y^{\prime} y^{\prime \prime}+y=\sin x$
294 (c)
Given, $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{y}$
$\Rightarrow \quad \int \frac{y}{\sqrt{1-y^{2}}} d y=\int d x$
$\Rightarrow \quad-\sqrt{1-y^{2}}=x+c$
$\Rightarrow \quad(x+c)^{2}+y^{2}=1$
\therefore Centre $(-c, 0)$, radius $=1$
295 (c)
Given, $\frac{d y}{d x}+y=2 e^{2 x}$
$\therefore \quad \mathrm{IF}=e^{\int 1 d x}=e^{x}$
\therefore Required solution is

$$
\begin{aligned}
& y e^{x}=2 \int e^{2 x} e^{x} d x=\frac{2}{3} e^{3 x}+c \\
\Rightarrow & y=\frac{2}{3} e^{2 x}+c e^{-x}
\end{aligned}
$$

296 (c)
Given, $\quad y=\sin ^{-1} x$

$$
\begin{equation*}
\Rightarrow \quad \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}} \tag{i}
\end{equation*}
$$

$$
\Rightarrow \quad \frac{d^{2} y}{d x^{2}}=\frac{0-\frac{1}{2} \cdot \frac{(-2 x)}{\sqrt{1-x^{2}}}}{\left(\sqrt{1-x^{2}}\right)^{2}}
$$

$$
\Rightarrow \quad\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}=x \frac{d y}{d x} \ldots[\text { [from Eq.(i)] }
$$

297 (a)
Given, $\frac{d y}{d x}=2 \cos x-y \cos x \operatorname{cosec} x$
$\Rightarrow \quad \frac{d y}{d x}+y \cot x=2 \cos x$
$\therefore \quad \mathrm{IF}=e^{\int \cot x d x}=e^{\log (\sin x)}=\sin x$
\therefore Solution is $y \sin x=\int 2 \cos x \sin x d x+c$
$\Rightarrow \quad y \sin x=\int \sin 2 x d x+c$
$\Rightarrow \quad y \sin x=\frac{-\cos 2 x}{2}+c$
At $x=\frac{\pi}{4}, y=\sqrt{2}$
$\therefore \quad \sqrt{2} \sin \frac{\pi}{4}=\frac{-\cos 2(\pi / 4)}{2}+c$
$\Rightarrow \quad c=1$
$\therefore \quad y \sin x=-\frac{1}{2} \cos 2 x+1$
$\Rightarrow \quad y=-\frac{1}{2} \cdot \frac{\cos 2 x}{\sin x}+\operatorname{cosec} x$
$\Rightarrow \quad y=-\frac{1}{2 \sin x}\left(1-2 \sin ^{2} x\right)+\operatorname{cosec} x$
$\Rightarrow \quad y=\frac{1}{2} \operatorname{cosec} x+\sin x$
298
(b)

Given, $\frac{\tan ^{-1} x}{1+x^{2}} d x+\frac{y}{1+y^{2}} d y=0$
$\Rightarrow \quad \frac{\left(\tan ^{-1} y\right)^{2}}{2}+\frac{1}{2} \log \left(1+y^{2}\right)=\frac{c}{2}$
[integrating]
$\Rightarrow \quad\left(\tan ^{-1} x\right)^{2}+\log \left(1+y^{2}\right)=c$
299 (d)
Given, $\frac{d y}{d x}-y \tan x=-2 \sin x$
$\therefore \quad \mathrm{IF}=e^{-\int \tan x d x}=\cos x$
\therefore Solution is

$$
y(\cos x)=\int-2 \sin x \cos x d x+c=
$$

$-\int \sin 2 x d x+c$
$\Rightarrow y \cos x=\frac{\cos 2 x}{2}+c$
300 (a)
Given, $\frac{d y}{d t}-\left(\frac{1}{1+t}\right) y=\frac{1}{(1+t)}$ and $y(0)=-1$
$\therefore \quad \mathrm{IF}=e^{\int-\left(\frac{t}{1+t}\right) d t}=e^{-\int\left(1-\frac{1}{1+t}\right) d t}$

$$
=e^{-t+\log (1+t)}=e^{-t}(1+t)
$$

\therefore Required solution is

$$
\begin{array}{lrl}
& y e^{-t}(1+t) & =\int \frac{1}{1+t} e^{-t}(1+t) d t+c \\
& =\int e^{-t} d t+c \\
\Rightarrow & y e^{-t}(1+t) & =-e^{-t}+c \\
\text { Since, } & y(0)=-1 \\
\Rightarrow & c=0 \\
\therefore & y=-\frac{1}{(1+t)} \\
\Rightarrow \quad y(1)=-\frac{1}{2}
\end{array}
$$

301 (d)
The equation of all the straight lines passing through origin $(0,0)$ is
$y=m x$
Hence, required differential equation of all such lines is
$y=\left(\frac{d y}{d x}\right) x \quad\left(\because m=\frac{d y}{d x}\right)$
302 (a)
Given equation is $\frac{d y}{d x}=\frac{x \log x^{2}+x}{\sin y+y \cos y}$
$\Rightarrow(\sin y+y \cos y) d y=\left(x \log x^{2}+x\right) d x$

On integrating both sides, we get
$\int(\sin y+y \cos y) d y=\int\left(x \log x^{2}+x\right) d x$
$\Rightarrow-\cos y+y \sin y$

$$
\begin{gathered}
+\cos y \\
=\frac{x^{2}}{2} \log x^{2} \\
-\int \frac{x^{2}}{2} \frac{1}{x^{2}} 2 x d x+\int x d x+c \\
\Rightarrow y \sin y=\frac{x^{2}}{2} 2 \log x-\int x d x+\int x d x+c
\end{gathered}
$$

$$
\Rightarrow y \sin y=x^{2} \log x+c
$$

303 (d)
Given, $y(1-x) d x=x d y$
$\Rightarrow \quad\left(\frac{1}{x}-1\right) d x=\frac{1}{y} d y$
$\Rightarrow \quad \log x-x=\log y-\log c$
[integrating]
$\Rightarrow \quad x=\log \frac{x c}{y}$
$\Rightarrow \quad y e^{x}=x c$
304 (b)
We have,
$x \frac{d y}{d x}+y=x e^{x}$
$\Rightarrow x d y+y d x=x e^{x} d x$
$\Rightarrow d(x y)=x e^{x} d x$
$\Rightarrow \int 1 \cdot d(x y)=\int x e^{x} d x \Rightarrow x y=e^{x}(x-1)+C$
305 (c)
Differential equation is

$$
100 \frac{d^{2} y}{d x^{2}}-20 \frac{d y}{d x}+y=0
$$

Here Auxiliary equation is

$$
\begin{array}{rlrl}
& & \left(100 m^{2}-20 m+1\right) y & =0 \\
\Rightarrow & (10 m-1)^{2} y & =0 \\
\Rightarrow & & m & =\frac{1}{10}, \frac{1}{10}
\end{array}
$$

Hence the required solution is

$$
y=\left(c_{1}+c_{2} x\right) e^{\frac{1}{10}}
$$

(d)

We have,
$y \frac{d y}{d x}=2 x \Rightarrow y d y=2 x d x$
On integrating, we obtain
$\frac{y^{2}}{2}=x^{2}+C \Rightarrow y^{2}-2 x^{2}=2 C$
Clearly, it represents a hyperbola
307 (d)
$\because 2(y+3)-x y \frac{d y}{d x}=0$
$\Rightarrow 2(y+3)=x y \frac{d y}{d x}$
$\Rightarrow \int \frac{2}{x} d x=\int \frac{y}{y+3} d x$
$\Rightarrow 2 \log x=y-3 \log (y+0)+c$
Put $x=1$ and $y=-2$
$\Rightarrow 2=c$
$\therefore x^{2}(y+3)^{3}=e^{y+2}$
308 (d)
We have,
$\frac{d y}{d x}-y=1$
$\Rightarrow \frac{d y}{d x}=y+1$
$\Rightarrow \frac{1}{y+1} d y=d x$
$\Rightarrow \int \frac{1}{y+1} d y=\int d x$
$\Rightarrow \log (y+1)=x+C$
It is given that $y(0)=1$ i.e. $y=1$ when $x=0$
$\therefore \log 2=C$
Substituting the value of C in (i), we get
$\log (y+1)=x+\log 2$
$\Rightarrow y+1=2 e^{x} \Rightarrow y=2 e^{x}-1$
309 (c)
Given differential equation is
$2 x \frac{d y}{d x}-y=3$
$\Rightarrow 2 x \frac{d y}{d x}=3+y$
$\Rightarrow \int \frac{d y}{3+y}=\int \frac{d x}{2 x}$
$\Rightarrow \log (3+y)=\frac{1}{2} \log x+\log c$
$\Rightarrow \log (3+y)=\log c \cdot \sqrt{x}$
$\Rightarrow 3+y=c \cdot \sqrt{x}$
$\Rightarrow(3+y)^{2}=c^{2} x$
Which is an equation of a parabola.

