DCAM classes

4.DETERMINANTS

Single Correct Answer Type

1. If $\Delta_{k}=\left|\begin{array}{ccc}k & 1 & 5 \\ k^{2} & 2 n+1 & 2 n+1 \\ k^{3} & 3 n^{2} & 3 n+1\end{array}\right|$, then $\sum_{k=1}^{n} \Delta_{k}$ is equal to
a) $2 \sum_{k=1}^{n} k$
b) $2 \sum_{k=1}^{n} k^{2}$
c) $\frac{1}{2} \sum_{k=1}^{n} k^{2}$
d) 0
2.

The solutions of the equation $\left|\begin{array}{ccc}x & 2 & -1 \\ 2 & 5 & x \\ -1 & 2 & x\end{array}\right|=0$, are
a) $3,-1$
b) $-3,1$
c) 3,1
d) $-3,-1$
3.

The value of $\left|\begin{array}{lll}441 & 442 & 443 \\ 445 & 446 & 447 \\ 449 & 450 & 451\end{array}\right|$ is
a) $441 \times 446 \times 4510$
b) 0
c) -1
d) 1
4. If $f(\alpha)=\left|\begin{array}{ccc}1 & \alpha & \alpha^{2} \\ \alpha & \alpha^{2} & 1 \\ \alpha^{2} & 1 & a\end{array}\right|$, then $f(\sqrt[3]{3})$ is equal to
a) 1
b) -4
c) 4
d) 2
5.

If a, b, c are respectively the p th, q th, r th terms of an AP, then $\left|\begin{array}{lll}a & p & 1 \\ b & q & 1 \\ c & r & 1\end{array}\right|$ is equal to
a) 1
b) -1
c) 0
d) $p q r$
6. The minors of -4 and 9 and the cofactors of -4 and 9 in matrix $\left[\begin{array}{ccc}-1 & -2 & 3 \\ -4 & -5 & -6 \\ -7 & 8 & 9\end{array}\right]$ are respectively
a) $42,3,-42,3$
b) $-42,-3,42,-3$
c) $42,3,-42,-3$
d) $42,3,42,3$
7. If α, β, γ are the cube roots of unity, then the value of the
determinant $\left|\begin{array}{lll}e^{\alpha} & e^{2 \alpha} & \left(e^{3 \alpha}-1\right) \\ e^{\beta} & e^{2 \beta} & \left(e^{3 \beta}-1\right) \\ e^{\gamma} & e^{2 \gamma} & \left(e^{3 \gamma}-1\right)\end{array}\right|$ is equal to
a) -2
b) -1
c) 0
d) 1
8. A root of the equation $\left|\begin{array}{ccc}3-x & -6 & 3 \\ -6 & 3-x & 3 \\ 3 & 3 & -6-x\end{array}\right|=0$, is
a) 6
b) 3
c) 0
d) None of these
9. The value of $\left|\begin{array}{cc}\log _{3} 512 & \log _{4} 3 \\ \log _{3} 8 & \log _{4} 9\end{array}\right| \times\left|\begin{array}{ll}\log _{2} 3 & \log _{8} 3 \\ \log _{3} 4 & \log _{3} 4\end{array}\right|$ is
a) 7
b) 10
c) 13
d) 17
10.

The value of the determinant $\left|\begin{array}{ccc}a^{2} & a & 1 \\ \cos (n x) & \cos (n+1) x & \cos (n+2) x \\ \sin (n x) & \sin (n+1) x & \sin (n+2) x\end{array}\right|$ is independent of
a) n
b) a
c) x
d) None of these
11.

If $x \neq 0,\left|\begin{array}{ccc}x+1 & 2 x+1 & 3 x+1 \\ 2 x & 4 x+3 & 6 x+3 \\ 4 x+4 & 6 x+4 & 8 x+4\end{array}\right|=0$, then $x+1$ is equal to
a) x
b) 0
c) $2 x$
d) $3 x$
12. The value of the determinant $\left|\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right|$ is equal to
a) -4
b) 0
c) 1
d) 4
13. If x, y, z are different from zero and
$\Delta\left|\begin{array}{ccc}a & b-y & c-z \\ a-x & b & c-z \\ a-x & b-y & c\end{array}\right|=0$, then the value of the expression $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}$ is
a) 0
b) -1
c) 1
d) 2
14. If $a \neq p, b \neq q, c \neq r$ and $\left|\begin{array}{lll}p & b & c \\ a & q & c \\ a & b & r\end{array}\right|=0$, then the value of $\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}$ is
a) 0
b) 1
c) -1
d) 2
15. The value of $\Delta=\left|\begin{array}{ccc}a & a+b & a+2 b \\ a+2 b & a & a+b \\ a+b & a+2 b & a\end{array}\right|$ is equal to
a) $9 a^{2}(a+b)$
b) $9 b^{2}(a+b)$
c) $a^{2}(a+b)$
d) $b^{2}(a+b)$
16. The value of θ lying between $\theta=0$ and $\frac{\pi}{2}$ and satisfying the equation $\left|\begin{array}{ccc}1+\sin ^{2} \theta & \cos ^{2} \theta & 4 \sin 4 \theta \\ \sin ^{2} \theta & 1+\cos ^{2} \theta & 4 \sin 4 \theta \\ \sin ^{2} \theta & \cos ^{2} \theta & 1+4 \sin 4 \theta\end{array}\right|$ is
a) $\frac{7 \pi}{24}$
b) $\frac{5 \pi}{24}$
c) $\frac{11 \pi}{2}$
d) $\frac{\pi}{24}$
17. If $a_{i}^{2}+b_{i}^{2}+c_{i}^{2}=1(i=1,2,3)$ and $a_{i} a_{j}+b_{i} b_{j}+c_{i} c_{j}=0(i \neq j$ and $i, j=1,2,3)$, then the value of $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$ is
a) 0
b) $\frac{1}{2}$
c) 1
d) 2
18.

If α, β, γ are the cube roots of 8 , then $\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right|=$
a) 0
b) 1
c) 8
d) 2
19.

If $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1+b & 1+2 b & 1 \\ 1+c & 1+c & 1+3 c\end{array}\right|=0$, where $a \neq 0, b \neq 0, c \neq 0$, then $a^{-1}+b^{-1}+c^{-1}$ is
a) 4
b) -3
c) -2
d) -1
20. A root of the equation $\left|\begin{array}{ccc}0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0\end{array}\right|=0$, is
a) a
b) b
c) 0
d) 1
21. If $\left|\begin{array}{lll}x & 2 & 3 \\ 2 & 3 & x \\ 3 & x & 2\end{array}\right|=\left|\begin{array}{ccc}1 & x & 4 \\ x & 4 & 1 \\ 4 & 1 & x\end{array}\right|=\left|\begin{array}{ccc}0 & 5 & x \\ 5 & x & 0 \\ x & 0 & 5\end{array}\right|=0$, then the value of x values $(x \in R)$:
a) 0
b) 5
c) -5
d) None of these
22. $\left|\begin{array}{lll}b c & b c^{\prime}+b^{\prime} c & b^{\prime} c^{\prime} \\ c a & c a^{\prime}+c^{\prime} a & c^{\prime} a^{\prime} \\ a b & a b^{\prime}+a^{\prime} b & a^{\prime} b^{\prime}\end{array}\right|$ is equal to
a) $\left(a b-a^{\prime} b^{\prime}\right)\left(b c-b^{\prime} c^{\prime}\right)\left(c a-c^{\prime} a^{\prime}\right)$
b) $\left(a b+a^{\prime} b^{\prime}\right)\left(b c+b^{\prime} c^{\prime}\right)\left(c a+c^{\prime} a^{\prime}\right)$
c) $\left(a b^{\prime}-a^{\prime} b\right)\left(b c^{\prime}-b^{\prime} c\right)\left(c a^{\prime}-c^{\prime} a\right)$
d) $\left(a b^{\prime}+a^{\prime} b\right)\left(b c^{\prime}+b^{\prime} c\right)\left(c a^{\prime}+c^{\prime} a\right)$
23. If a square matrix A is such that $A A^{T}=I=A^{T} A$ then $|A|$ is equal to
a) 0
b) ± 1
c) ± 2
d) None of these
24.

If $\Delta_{1}=\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|, \Delta_{2}=\left|\begin{array}{lll}1 & b c & a \\ 1 & c a & b \\ 1 & a b & c\end{array}\right|$, then
a) $\Delta_{1}+\Delta_{2}=0$
b) $\Delta_{1}+2 \Delta_{2}=0$
c) $\Delta_{1}=\Delta_{2}$
d) $\Delta_{1}=2 \Delta_{2}$
25. If $\left|\begin{array}{lll}y+z & x & y \\ z+x & z & x \\ x+y & y & z\end{array}\right|=k(x+y+z)(x-z)^{2}$, then k is equal to
a) $2 x y z$
b) 1
c) $x y z$
d) $x^{2} y^{2} z^{2}$
26. A is a square matrix of order 4 and I is a unit matrix, then it is true that
a) $\operatorname{det}(2 A)=2 \operatorname{det}(A)$
b) $\operatorname{det}(2 A)=16 \operatorname{det}(A)$
c) $\operatorname{det}(-A)=-\operatorname{det}(A)$
d) $\operatorname{det}(A+I)=\operatorname{det}(A)+I$
27. If the matrix M_{r} is given by
$M_{r}=\left[\begin{array}{cc}r & r-1 \\ r-1 & r\end{array}\right],=1,2,3, \ldots$, then the value of $\operatorname{det}\left(M_{1}\right)+\operatorname{det}\left(M_{2}\right)+\ldots+\operatorname{det}\left(M_{2008}\right)$ is
a) 2007
b) 2008
c) $(2008)^{2}$
d) $(2007)^{2}$
28. l, m, n are the p th, q th and r th terms of an GP and all

Positive, then $\left|\begin{array}{lll}\log l & p & 1 \\ \log m & q & 1 \\ \log n & r & 1\end{array}\right|$ equals
a) 3
b) 2
c) 1
d) zero
29. The matrix $\left[\begin{array}{ccc}5 & 10 & 3 \\ -2 & -4 & 6 \\ -1 & -2 & b\end{array}\right]$ is a singular matrix, if b is equal to
a) -3
b) 3
c) 0
d) For any value of b
30. Consider the system of equations
$a_{1} x+b_{1} y+c_{1} z=0$
$a_{1} x+b_{2} y+c_{2} z=0$
$a_{3} x+b_{3} y+c_{3} z=0$
If $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=0$, then the system has
a) More than two solutions
b) One trivial and one non-trivial solutions
c) No solution
d) Only trivial solution $(0,0,0)$
31. If $\left|\begin{array}{lll}x^{n} & x^{n+2} & x^{n+3} \\ y^{n} & y^{n+2} & y^{n+3} \\ z^{n} & z^{n+2} & z^{n+3}\end{array}\right|=(y-z)(z-x)(x-y)$
$\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$, then n is equal to
a) 2
b) -2
c) -1
d) 1
32.

The determinant $\left|\begin{array}{ccc}a & b & a \alpha+b \\ b & c & b \alpha+c \\ a \alpha+b & b \alpha+c & 0\end{array}\right|$ is equal to zero for all values of α, if
a) a, b, c are in AP
b) a, b, c are in GP
c) a, b, c are in HP
d) None of these
33. The system of equations
$k x+y+z=1$
$x+k y+z=k$
$x+y+k z=k^{2}$
have no solution, if k equals
a) 0
b) 1
c) -1
d) -2
34.
$\Delta=\left|\begin{array}{ccc}a & a+b & a+b+c \\ 3 a & 4 a+3 b & 5 a+4 b+3 c \\ 6 a & 9 a+6 b & 11 a+9 b+6 c\end{array}\right|$, where $a=i, b=\omega, c=\omega^{2}$, then Δ is equal to
a) i
b) $-\omega^{2}$
c) ω
d) $-i$
35. If $\left|\begin{array}{lll}a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c\end{array}\right|=k\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$, then k is equal to
a) 4
b) 3
c) 2
d) 1
36. $\left|\begin{array}{ccc}\alpha & -\beta & 0 \\ 0 & \alpha & \beta \\ \beta & 0 & \alpha\end{array}\right|=0$, then
a) $\frac{\alpha}{\beta}$ is one of the cube roots of unity
b) α is one of the cube roots of unity
c) β is one of the cube roots of unity
d) $\alpha \beta$ is one of the cube roots of unity
37. $\Delta=\left|\begin{array}{lll}1 / a & 1 & b c \\ 1 / b & 1 & c a \\ 1 / c & 1 & a b\end{array}\right|=$
a) 0
b) $a b c$
c) $\frac{1}{a b c}$
d) None of these
38. Using the factor theorem it is found that $a+b, b+c$ and $c+a$ are three factors of the determinant $\left|\begin{array}{ccc}-2 a & a+b & a+c \\ b+a & -2 b & b+c \\ c+a & c+b & -2 c\end{array}\right|$
The other factor in the value of the determinant is
a) 4
b) 2
c) $a+b+c$
d) None of these
39.

The arbitrary constant on which the value of the determinant $\left|\begin{array}{ccc}1 & \alpha & \alpha^{2} \\ \cos (p-d) a & \cos p a & \cos (p-d) a \\ \sin (p-d) a & \sin p a & \sin (p-d) a\end{array}\right|$ does not depend, is
a) α
b) p
c) d
d) a
40. If ω is imaginary root of unity, then the value of
$\left|\begin{array}{ccc}a & b \omega^{2} & a \omega \\ b \omega & c & b \omega^{2} \\ c \omega^{2} & a \omega & c\end{array}\right|$ is
a) $a^{3}+b^{3}+c^{3}$
b) $a^{2} b-b^{2} c$
c) 0
d) $a^{3}+b^{3}+c^{3}-3 a b c$
41. If $\Delta_{1}=\left|\begin{array}{ccc}7 & x & 2 \\ -5 & x+1 & 3 \\ 4 & x & 7\end{array}\right|$ and $\Delta_{2}=\left|\begin{array}{ccc}x & 2 & 7 \\ x+1 & 3 & -5 \\ x & 7 & 4\end{array}\right|$, then the value of x for which $\Delta_{1}+\Delta_{2}=0$, is
a) 2
b) 0
c) Any real number
d) None of these
42. If $\Delta_{1}=\left|\begin{array}{lll}x & b & b \\ a & x & b \\ a & a & x\end{array}\right|$ and $\Delta_{2}=\left|\begin{array}{ll}x & b \\ a & x\end{array}\right|$ are the given determinants, then
a) $\Delta_{1}=3\left(\Delta_{2}\right)^{2}$
b) $\frac{d}{d x}\left(\Delta_{1}\right)=3 \Delta_{2}$
c) $\frac{d}{d x}\left(\Delta_{1}\right)=2 \Delta_{2}$
d) $\Delta_{1}=3 \Delta_{2}^{3 / 2}$
43. If $f(\theta)=\left|\begin{array}{ccc}\cos ^{2} \theta & \cos \theta \sin \theta & -\sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta & \cos \theta \\ \sin \theta & -\cos \theta & 0\end{array}\right|$. Then, for all θ
a) $f(\theta)=0$
b) $f(\theta)=1$
c) $f(\theta)=-1$
d) None of these
44.

If $C=2 \cos \theta$, then the value of the determinant $\Delta=\left|\begin{array}{lll}C & 1 & 0 \\ 1 & C & 1 \\ 6 & 1 & C\end{array}\right|$ is
a) $\frac{\sin 4 \theta}{\sin \theta}$
b) $\frac{2 \sin ^{2} 2 \theta}{\sin \theta}$
c) $4 \cos ^{2} \theta(2 \cos \theta-1)$
d) None of these
45. If $f(x)=\left|\begin{array}{ccc}\sin x & \cos x & \tan x \\ x^{3} & x^{2} & x \\ 2 x & 1 & 1\end{array}\right|$, then $\lim _{n \rightarrow 0} \frac{f(x)}{x^{2}}$, is
a) 3
b) -1
c) 0
d) 1
46. Let $[x]$ represent the greatest integer less than or equal to x, then the value of the determinant
$\left|\begin{array}{ccc}{[e]} & {[\pi]} & {\left[\pi^{2}-6\right]} \\ {[\pi]} & {\left[\pi^{2}-6\right]} & {[e]} \\ {\left[\pi^{2}-6\right]} & {[e]} & {[\pi]}\end{array}\right|$ is
a) -8
b) 8
c) 10
d) None of these
47. If $A=\left[\begin{array}{ll}3 & 5 \\ 2 & 0\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & 17 \\ 0 & -10\end{array}\right]$,then $|A B|$ is equal to
a) 80
b) 100
c) -110
d) 92
48. If $\Delta=\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 9 & 13\end{array}\right|$ and $\Delta^{\prime}=\left|\begin{array}{ccc}7 & 20 & 29 \\ 2 & 5 & 7 \\ 3 & 9 & 13\end{array}\right|$, then
a) $\Delta^{\prime}=3 \Delta$
b) $\Delta^{\prime}=\frac{3}{\Delta}$
c) $\Delta^{\prime}=\Delta$
d) $\Delta^{\prime}=2 \Delta$
49. $\left|\begin{array}{ccc}2 x y & x^{2} & y^{2} \\ x^{2} & y^{2} & 2 x y \\ y^{2} & 2 x y & x^{2}\end{array}\right|$ is equal to
a) $\left(x^{3}+y^{3}\right)^{2}$
b) $\left(x^{2}+y^{2}\right)^{3}$
c) $-\left(x^{2}+y^{2}\right)^{3}$
d) $-\left(x^{3}+y^{3}\right)^{2}$
50. In a $\triangle A B C, a, b, c$ are sides and A, B, C are angles opposite to them, then the value of the determinant $\left|\begin{array}{ccc}a^{2} & b \sin A & c \sin A \\ b \sin A & 1 & \cos A \\ c \sin A & \cos A & 1\end{array}\right|$, is
a) 0
b) 1
c) 2
d) 3
51. $\left|\begin{array}{lll}b^{2} c^{2} & b c & b+c \\ c^{2} a^{2} & c a & c+a \\ a^{2} b^{2} & a b & a+b\end{array}\right|$ is equal to
a) $\frac{1}{a b c}(a b+b c+c a)$
b) $a b+b c+c a$
c) 0
d) $a+b+c$
52. If $a^{-1}+b^{-1}+c^{-1}=0$ such that $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=\lambda$ then value of λ is
a) 0
b) $a b c$
c) $-a b c$
d) None of these
53. If a, b, c, are in A.P., then the value of
$\left|\begin{array}{lll}x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right|$, is
a) 3
b) -3
c) 0
d) None of these
54. $\left|\begin{array}{lll}a-b & b-c & c-a \\ x-y & y-z & z-x \\ p-q & p-r & r-p\end{array}\right|$ is equal to
a) $a(x+y+z)+b(p+q+r)+c$
b) 0
c) $a b c+x y z+p p r$
d) None of the above
55. $\left|\begin{array}{lcc}a-b+c & -a-b+c & 1 \\ a+b+2 c & -a+b+2 c & 2 \\ 3 c & 3 c & 3\end{array}\right|$ is
a) $6 a b$
b) $a b$
c) $12 a b$
d) $2 a b$
56.

In the determinant $\left|\begin{array}{ccc}0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0\end{array}\right|$, the value of cofactor to its minor of the element -3 is
a) -1
b) 0
c) 1
d) 2
57. If ω is a cube root of unity, then for polynomial is
$\left|\begin{array}{ccc}x+1 & \omega & \omega^{2} \\ \omega & x+\omega^{2} & 1 \\ \omega^{2} & 1 & x+\omega\end{array}\right|$
a) 1
b) ω
c) ω^{2}
d) 0
58. If $\left|\begin{array}{ccc}x+a & b & c \\ a & x+b & c \\ a & b & x+c\end{array}\right|=0$, then x equals
a) $a+b+c$
b) $-(a+b+c)$
c) $0, a+b+c$
d) $0,-(a+b+c)$
59. If a, b, c are the sides of a $\triangle A B C$ and A, B, C are respectively the angles opposite to them, then
$\left|\begin{array}{ccc}a^{2} & b \sin A & c \sin A \\ b \sin A & 1 & \cos (B-C) \\ c \sin A & \cos (B-C) & 1\end{array}\right|$ equals
a) $\sin A-\sin B \sin C$
b) $a b c$
c) 1
d) 0
60.

If $D_{r}=\left|\begin{array}{ccc}2^{r-1} & 3^{r-1} & 4^{r-1} \\ x & y & z \\ 2^{n}-1 & \left(3^{n}-1\right) / 2 & \left(4^{n}-1\right) / 3\end{array}\right|$, then the value of $\sum_{r=1}^{n} D_{r}$ is equal to
a) 1
b) -1
c) 0
d) None of these
61. If A, B and C are the angles of a triangle and
$\left|\begin{array}{ccc}1 & 1 & 1 \\ 1+\sin A & 1+\sin B & \sin C \\ \sin A+\sin ^{2} A & \sin B+\sin ^{2} B & \sin C+\sin ^{2} C\end{array}\right|=0$
then the triangle must be
a) Equilateral
b) Isosceles
c) Any triangle
d) Right angled
62.

Let $A=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$, where $0 \leq \theta<2 \pi$. Then, which of the following is not correct?
a) $\operatorname{Det}(A)=0$
b) $\operatorname{Det}(A) \in(-\infty, 0)$
c) $\operatorname{Det}(A) \in[2,4]$
d) $\operatorname{Det}(A) \in[-2, \infty)$
63.
$\left|\begin{array}{ccc}1 & 5 & \pi \\ \log _{e} e & 5 & \sqrt{5} \\ \log _{10} 10 & 5 & e\end{array}\right|$ is equal to
a) $\sqrt{\pi}$
b) e
c) 1
d) 0
64. If $a^{2}+b^{2}+c^{2}=-2$ and
$f(x)=\left|\begin{array}{ccc}1+a^{2} x & \left(1+b^{2}\right) x & \left(1+c^{2}\right) x \\ \left(1+a^{2}\right) x & \left(1+b^{2} x\right) & \left(1+c^{2}\right) x \\ \left(1+a^{2}\right) x & \left(1+b^{2}\right) x & \left(1+c^{2} x\right)\end{array}\right|$, then $f(x)$ is a polynomial of degree
a) 2
b) 3
c) 0
d) 1
65. If $c<1$ and the system of equations $x+y-1=0,2 x-y-c=0$ and $-b x+3 b y-c=0$ is consistent, then the possible real values of b are
a) $b \in\left(-3, \frac{3}{4}\right)$
b) $b \in\left(-\frac{3}{4}, 4\right)$
c) $b \in\left(-\frac{3}{4}, 3\right)$
d) None of these
66.

The value of $\left|\begin{array}{ccc}1 & 1 & 1 \\ \left(2^{x}+2^{-x}\right)^{2} & \left(3^{x}+3^{-x}\right)^{2} & \left(5^{x}+5^{-x}\right)^{2} \\ \left(2^{x}-2^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & \left(5^{x}-5^{-x}\right)^{2}\end{array}\right|$ is
a) 0
b) 30^{x}
c) 30^{-x}
d) 1
67. If A is an invertible matrix, then $\operatorname{det}\left(A^{-1}\right)$ is equal to
a) $\operatorname{det} b(A)$
b) $\frac{1}{\operatorname{det}(A)}$
c) 1
d) None of these
68. If $a \neq 0, b \neq 0, c \neq 0$, then $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|$ is equal to
a) $a b c$
b) $a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$
c) 0
d) $1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
69. If $f(x)=\left|\begin{array}{ccc}a & -1 & 0 \\ a x & a & -1 \\ a x^{2} & a x & a\end{array}\right|$, then $f(2 x)-f(x)$ is equal to
a) $a x$
b) $a x(2 a+3 x)$
c) $a x(2+3 x)$
d) None of these
70. If $\left|\begin{array}{ccc}-12 & 0 & \lambda \\ 0 & 2 & -1 \\ 2 & 1 & 15\end{array}\right|=-360$, then the value of λ is
a) -1
b) -2
c) -3
d) 4
71. If ω is a complex cube root of unity, then $\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|$ is equal to
a) -1
b) 1
c) 0
d) ω
72. The value of $\left|\begin{array}{lll}{ }^{10} C_{4} & { }^{10} C_{5} & { }^{11} C_{m} \\ { }^{12} C_{6} & { }^{11} C_{7} & { }^{12} C_{m+2} \\ { }^{12} C_{9} & { }^{13} C_{m+4}\end{array}\right|=0$, when m is equal to
a) 6
b) 5
c) 4
d) 1
73.

If $\left|\begin{array}{ccc}1 & 1 & 0 \\ 2 & 0 & 3 \\ 5 & -6 & x\end{array}\right|=29$, then x is
a) 1
b) 2
c) 3
d) 4
74. $\left|\begin{array}{ccc}\sin ^{2} x & \cos ^{2} x & 1 \\ \cos ^{2} x & \sin ^{2} x & 1 \\ -10 & 12 & 2\end{array}\right|=$
a) 0
b) $12 \cos ^{2} x-10 \sin ^{2} x$
c) $12 \sin ^{2} x-10 \cos ^{2} x-2$
d) $10 \sin 2 x$
75. If A and B are square matrices of order 3 such that $|A|=-1,|B|=3$ then $|3 A B|$ is equal to
a) -9
b) -81
c) -27
d) 81
76. If a, b, c are non-zero real numbers, then the system of equations
$(\alpha+a) x+\alpha y+\alpha z=0$
$\alpha x+(\alpha+b) y+\alpha z=0$
$\alpha x+\alpha y+(\alpha+c) z=0$
has a non-trivial solution, if
a) $\alpha^{-1}=-\left(a^{-1}+b^{-1}+c^{-1}\right)$
b) $\alpha^{-1}=a+b+c$
c) $\alpha+a+b+c=1$
d) None of these
77. The determinant $\left|\begin{array}{ccc}a & b & a \alpha-b \\ b & c & b \alpha-c \\ 2 & 1 & 0\end{array}\right|$ vanishes, if
a) a, b, c are in AP
b) $\alpha=\frac{1}{2}$
c) a, b, c are in GP
d) Both (b) or (c)
78. If -9 is a root of the equation $\left|\begin{array}{lll}x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|=0$, then the other two roots are
a) 2,7
b) $-2,7$
c) $2,-7$
d) $-2,-7$
79. If $a b+b c+c a=0$ and $\left|\begin{array}{ccc}a-x & c & b \\ c & b-x & a \\ b & a & c-x\end{array}\right|=0$, then one of the value of x is
a) $\left(a^{2}+b^{2}+c^{2}\right)^{1 / 2}$
b) $\left[\frac{3}{2}\left(a^{2}+b^{2}+c^{2}\right)\right]^{1 / 2}$
c) $\left[\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right)\right]^{1 / 2}$
d) None of these
80. The roots of the equation $\left|\begin{array}{ccc}x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1\end{array}\right|=0$, are
a) 1,2
b) $-1,2$
c) $1,-2$
d) $-1,-2$
81. $\left|\begin{array}{ccc}1 & 2 & 3 \\ 1^{3} & 2^{3} & 3^{3} \\ 1^{5} & 2^{5} & 3^{5}\end{array}\right|$ is equal to
a) $1!213$
b) $1!3!5$!
c) $6!$
d) 9 !
82. If $A=\left[\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right]$ and $\left|A^{3}\right|=125$, then the value of α is
a) ± 1
b) ± 2
c) ± 3
d) ± 5
83. The value of $\left|\begin{array}{lll}x & 4 & y+z \\ y & 4 & z+x \\ z & 4 & x+y\end{array}\right|$, is
a) 4
b) $x+y+z$
c) $x y z$
d) 0
84.

If A, B, C be the angles of a triangle, then $\left|\begin{array}{ccc}-1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1\end{array}\right|$ is equal to
a) 1
b) 0
c) $\cos A \cos B \cos C$
d) $\cos A+\cos B \cos C$
85.

One factor of $\left|\begin{array}{ccc}a^{2}+x & a b & a c \\ a b & b^{2}+x & c b \\ c a & c b & c^{2}+x\end{array}\right|$ is
a) x^{2}
b) $\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)$
c) $\frac{1}{x}$
d) None of these
86.

If $\left|\begin{array}{lll}x+1 & x+2 & x+3 \\ x+2 & x+3 & x+4 \\ x+a & x+b & x+c\end{array}\right|=0$ then a, b, c are in
a) AP
b) HP
c) GP
d) None of these
87.

If $A=\left|\begin{array}{lll}1 & 0 & 0 \\ x & 1 & 0 \\ x & x & 1\end{array}\right|$ and $I=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$, then
$A^{3}-4 A^{2}+3 A+I$ is equal to
a) $3 I$
b) I
c) $-I$
d) $-2 I$
88.

Determinant $\left|\begin{array}{ccc}1 & x & y \\ 2 & \sin x+2 x & \sin y+3 y \\ 3 & \cos x+3 x & \cos y+3 y\end{array}\right|$ is equal to
a) $\sin (x-y)$
b) $\cos (x-y)$
c) $\cos (x+y)$
d) $x y(\sin (x-y)$
89. If a, b, c are the positive integers, then the determinant $\Delta=\left|\begin{array}{ccc}a^{2}+x & a b & a c \\ a b & b^{2}+x & b c \\ a c & b c & c^{2}+x\end{array}\right|$ is divisible by
a) x^{3}
b) x^{2}
c) $\left(a^{2}+b^{2}+c^{2}\right)$
d) None of these
90.

If a, b, c are non-zero real numbers, then $\left|\begin{array}{lll}b c & c a & a b \\ c a & a b & b c \\ a b & b c & c a\end{array}\right|$ vanishes, when
a) $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
b) $\frac{1}{a}-\frac{1}{b}-\frac{1}{c}=0$
c) $\frac{1}{b}+\frac{1}{c}-\frac{1}{a}=0$
d) $\frac{1}{b}-\frac{1}{c}-\frac{1}{a}=0$
91.

If $f(x)=\left|\begin{array}{ccc}1 & 2(x-1) & 3(x-1)(x-2) \\ x-1 & (x-1)(x-2) & (x-1)(x-2)(x-3) \\ x & x(x-1) & x(x-1)(x-2)\end{array}\right|$
Then, the value of $f(49)$ is
a) $49 x$
b) $-49 x$
c) 0
d) 1
92.
if $\left|\begin{array}{ccc}1+a x & 1+b x & 1+c x \\ 1+a_{1} x & 1+b_{1} x & 1+c_{1} x \\ 1+a_{2} x & 1+b_{2} x & 1+c_{2} x\end{array}\right|=A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}$, then A_{0} is equal to
a) $a b c$
b) 0
c) 1
d) None of these
93. If A, B, C are the angles of a triangle, then the value of
$\Delta=\left|\begin{array}{ccc}-1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1\end{array}\right|$ is
a) $\cos A \cos B \cos C$
b) $\sin A \sin B \sin C$
c) 0
d) None of these
94. The value of the determinant
$\left|\begin{array}{ccc}1 & \cos (\beta-\alpha) & \cos (\gamma-\alpha) \\ \cos (\alpha-\beta) & 1 & \cos (\gamma-\beta) \\ \cos (\alpha-\gamma) & \cos (\beta-\gamma) & 1\end{array}\right|$ is
a) $4 \cos \alpha \cos \beta \cos \gamma$
b) $2 \cos \alpha \cos \beta \cos \gamma$
c) $4 \sin \alpha \sin \beta \sin \gamma$
d) None of these
95. If one root of determinant $\left|\begin{array}{lll}x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|=0$, is -9 , then the other two roots are
a) 2,7
b) $2,-7$
c) $-2,7$
d) $-2,-7$
96. If $0 \leq[x]<2,-1 \leq[y]<1$ and $1 \leq[z]<3,[\cdot]$ denotes the greatest integer function, then the maximum value of the determinant
$\Delta=\left|\begin{array}{ccc}{[x]+1} & {[y]} & {[z]} \\ {[x]} & {[y]+1} & {[z]} \\ {[x]} & {[y]} & {[z]+1}\end{array}\right|$, is
a) 2
b) 6
c) 4
d) None of these
97.

If $D=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y\end{array}\right|$ for $x \neq 0, y \neq 0$, then D is
a) Divisible by neither x nor y
b) Divisible by both x and y
c) Divisible by x but not y
d) Divisible by y but not x
98.

If $f(x)=\left|\begin{array}{ccc}1 & x & (x+1) \\ 2 x & x(x-1) & x(x+1) \\ 3 x(x-1) & x(x-1)(x-2) & x(x-1)(x+1)\end{array}\right|$ then $f(11)$ equals
a) 0
b) 11
c) -11
d) 1
99.

The roots of the equation $\left|\begin{array}{ccc}1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2 x & 5 x^{2}\end{array}\right|=0$
a) $-1,-2$
b) $-1,2$
c) $1,-2$
d) 1,2
100. One root of the equation
$\left|\begin{array}{ccc}3 x-8 & 3 & 3 \\ 3 & 3 x-8 & 3 \\ 3 & 3 & 3 x-8\end{array}\right|=$
a) $8 / 3$
b) $2 / 3$
c) $1 / 3$
d) $16 / 3$
101.

a) $(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)$
b) $(x+\alpha)(x+\beta)(x+\gamma)(x+\delta)$
c) $2(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)$
d) None of these
102.

In $\triangle A B C$ if $\left|\begin{array}{lll}1 & a & b \\ 1 & c & a \\ 1 & b & c\end{array}\right|=0$, then $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C$ is equal to
a) $\frac{4}{9}$
b) $\frac{9}{4}$
c) $3 \sqrt{3}$
d) 1
103. The value of determinant $\left|\begin{array}{lll}b+c & a+b & a \\ c+a & b+c & b \\ a+b & c+a & c\end{array}\right|$ is equal to
a) $a^{3}+b^{3}+c^{3}-3 a b c$
b) $2 a b c(a+b+c)$
c) 0
d) None of these
104. If $n=3 k$ and $1 \omega, \omega^{2}$ are the cube roots of unity, then $\Delta=\left|\begin{array}{ccc}1 & \omega^{n} & \omega^{2 n} \\ \omega^{2 n} & 1 & \omega^{n} \\ \omega^{n} & \omega^{2 n} & 1\end{array}\right|$ has the value
a) 0
b) ω
c) ω^{2}
d) 1
105. If $\left|\begin{array}{lll}x & 3 & 6 \\ 3 & 6 & x \\ 6 & x & 3\end{array}\right|=\left|\begin{array}{lll}2 & x & 7 \\ x & 7 & 2 \\ 7 & 2 & x\end{array}\right|=\left[\begin{array}{ccc}4 & 5 & x \\ 5 & x & 4 \\ x & 4 & 5\end{array}\right]=0$, then x is equal to
a) 9
b) -9
c) 0
d) -1
106. the system of simultaneous equations
$k x+2 y-z=1$
$(k-1) y-2 z=2$
$(k+2) z=3$
Have a unique solution if k equals
a) -2
b) -1
c) 0
d) 1
107. If α, β are non-real numbers satisfying $x^{3}-1=0$, then the value of $\left|\begin{array}{ccc}\lambda+1 & \alpha & \beta \\ \alpha & \lambda+\beta & 1 \\ \beta & 1 & \lambda+\alpha\end{array}\right|$ is equal to
a) 0
b) λ^{3}
c) $\lambda^{3}+1$
d) $\lambda^{3}-1$
108. If x, y, z are different from zero and $\Delta=\left|\begin{array}{ccc}a & b-y & c-z \\ a-x & b & c-z \\ a-x & b-y & c\end{array}\right|=0$, then the value of expression $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}$ is
a) 0
b) -1
c) 1
d) 2
109. The value of the determinant
$\left|\begin{array}{ccc}1 & \cos (\alpha-\beta) & \cos \alpha \\ \cos (\alpha-\beta) & 1 & \cos \beta \\ \cos \alpha & \cos \beta & 1\end{array}\right|$ is
a) 0
b) 1
c) $\alpha^{2}-\beta^{2}$
d) $\alpha^{2}+\beta^{2}$
110. If A, b, C are the angles of a triangle, then the determinant
$\Delta=\left|\begin{array}{ccc}\sin 2 A & \sin C & \sin B \\ \sin C & \sin 2 B & \sin A \\ \sin B & \sin A & \sin 2 C\end{array}\right|$ is equal to
a) 1
b) -1
c) $\sin A+\sin B+\sin C$
d) None of these
111. $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|$ is equal to
a) 0
b) $a+b+c$
c) $(a+b+c)^{2}$
d) $(a+b+c)^{3}$
112. A and B are two non-zero square matrices such that $A B=0$. Then,
a) Both A and B are singular
b) Either of them is singular
c) Neither matrix is singular
d) None of these
113. The system of linear equations
$x+y+z=2$
$2 x+y-z=3$
$3 x+2 y+k z=4$
Has a unique solution, is
a) $k \neq 0$
b) $-1<k<1$
c) $-2<k<2$
d) $k=0$
114. If $a_{1}, a_{2}, \ldots \ldots . ., a_{n}, \ldots \ldots$ are in GP and $a_{i}>0$ for each i, then the determinant $\Delta=\left|\begin{array}{ccc}\log a_{n} & \log a_{n+2} & \log a_{n+4} \\ \log a_{n+6} & \log a_{n+8} & \log a_{n+10} \\ \log a_{n+12} & \log a_{n+14} & \log a_{n+16}\end{array}\right|$ is equal to
a) 0
b) 1
c) 2
d) n
115.

The value of $\left|\begin{array}{lll}11 & 12 & 13 \\ 12 & 13 & 14 \\ 13 & 14 & 15\end{array}\right|$, is
a) 1
b) 0
c) -1
d) 67
116. The determinant $\left|\begin{array}{ccc}\cos C & \tan A & 0 \\ \sin B & 0 & -\tan A \\ 0 & \sin B & \cos C\end{array}\right|$ has the value, where A, B, C are angles of a triangle
a) 0
b) 1
c) $\sin A \sin B$
d) $\cos A \cos B \cos C$
117. If $0<\theta<\pi$ and the system of equations
$(\sin \theta) x+y+z=0$
$x+(\cos \theta) y+z=0$
$(\sin \theta) x+(\cos \theta) y+z=0$
Has a non-trivial solution, then $\theta=$
a) $\frac{\pi}{6}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{2}$
118. Let $\omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$, then the value of the determinant
$\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1-\omega^{2} & \omega^{2} \\ 1 & \omega^{2} & \omega^{4}\end{array}\right|$, is
a) 3ω
b) $3 \omega(\omega-1)$
c) $3 \omega^{2}$
d) $3 \omega(1-\omega)$
119.

Let $a x^{6}+b x^{5}+c x^{4}+d x^{3}+e x^{2}+f x+\mathrm{g}=\left|\begin{array}{rrr}(x+1) & \left(x^{2}+2\right) & \left(x^{2}+x\right) \\ \left(x^{2}+x\right) & \left(x^{2}+1\right) & \left(x^{2}+2\right) \\ \left(x^{2}+2\right) & \left(x^{2}+x\right) & (x+1)\end{array}\right|$. Then,
a) $f=3, \mathrm{~g}=-5$
b) $f=-3, \mathrm{~g}=-5$
c) $f=-3, \mathrm{~g}=-9$
d) None of these
120. In a $\triangle A B C$, if $\left|\begin{array}{lll}1 & a & b \\ 1 & c & a \\ 1 & b & c\end{array}\right|=0$, then $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C$ is equal to
a) $\frac{9}{4}$
b) $\frac{4}{9}$
c) 1
d) $3 \sqrt{3}$
121. The value of the determinant $\left|\begin{array}{lllc}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20\end{array}\right|$ is equal to
a) 0
b) -1
c) 1
d) 10
122.

If $\Delta(x)=\left|\begin{array}{ccc}f(x)+f(-x) & 0 & x^{4} \\ 3 & f(x)-f(-x) & \cos x \\ x^{4} & 2 x & f(x) f(-x)\end{array}\right|$ (where $f(x)$ is a real valued function of x), then the value of $\int_{-2}^{2} x^{4} \Delta(x)$
a) Depends upon the function $f(x)$
b) is 4
c) is -4
d) is zero
123. The value of $\left|\begin{array}{ccc}\cos (x-a) & \cos (x+a) & \cos x \\ \sin (x+a) & \sin (x-a) & \sin x \\ \cos a \tan x & \cos a \cot x & \operatorname{cosec} 2 x\end{array}\right|$ is equal
a) 1
b) $\sin a \cos a$
c) 0
d) $\sin x \cos x$
124. The roots of the equation $\left|\begin{array}{ccc}3 x^{2} & x^{2}+x \cos \theta+\cos ^{2} \theta & x^{2}+x \sin \theta+\sin ^{2} \theta \\ x^{2}+x \cos \theta+\cos ^{2} \theta & 3 \cos ^{2} \theta & 1+\frac{\sin 2 \theta}{2} \\ x^{2}+x \sin \theta+\sin ^{2} \theta & 1+\frac{\sin 2 \theta}{2} & 3 \sin ^{2} \theta\end{array}\right|=0$
a) $\sin \theta, \cos \theta$
b) $\sin ^{2} \theta, \cos ^{2} \theta$
c) $\sin \theta, \cos ^{2} \theta$
d) $\sin ^{2} \theta, \cos \theta$
125. If A is a square matrix of order n such that its elements are polynomial in x and its r-rows become identical for $x=k$, then
a) $(x-k)^{r}$ is a factor of $|A|$
b) $(x-k)^{r-1}$ is a factor of $|A|$
c) $(x-k)^{r+1}$ is a factor $|A|$
d) $(x-k)^{r}$ is a factor of A
126. If $\left|\begin{array}{ccc}x^{2}+x & 3 x-1 & -x+3 \\ 2 x+1 & 2+x^{2} & x^{3}-3 \\ x-3 & x^{2}+4 & 3 x\end{array}\right|$
$=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{7} x^{7}$,
The value of a_{0} is
a) 25
b) 24
c) 23
d) 21
127.

If $\left|\begin{array}{lll}a & \cot \frac{A}{2} & \lambda \\ b & \cot \frac{B}{2} & \mu \\ c & \cot \frac{C}{2} & \gamma\end{array}\right|=0$ where, $a, b, c A, B$ and C are elements of a $\triangle A B C$ with usual meaning. Then, the value of $a(\mu-\gamma)+b(\gamma-\lambda)+c(\lambda-\mu)$ is
a) 0
b) $a b c$
c) $a b+b c+c a$
d) $2 a b c$
128. The value of the determinant $\left|\begin{array}{ccc}b c & c a & a b \\ p & q & r \\ 1 & 1 & 1\end{array}\right|$, where a, b, c are the $p^{t h}, q^{t h}$ and $r^{t h}$ terms of a H.P., is
a) $p+q+r$
b) $(a+b+c)$
c) 1
d) None of these
129.

If $a, b . c$ are in AP, then the value of $\left|\begin{array}{lll}x+2 & x+3 & x+a \\ x+4 & x+5 & x+b \\ x+6 & x+7 & x+c\end{array}\right|$ is
a) $x-(a+b+c)$
b) $9 x^{2}+a+b+c$
c) $a+b+c$
d) 0
130. For the values of A, B, C and P, Q, R the value of
$\left|\begin{array}{lll}\cos (A-P) & \cos (A-Q) & \cos (A-R) \\ \cos (B-P) & \cos (B-Q) & \cos (B-R) \\ \cos (C-P) & \cos (C-Q) & \cos (C-R)\end{array}\right|$ is
a) 0
b) $\cos A \cos B \cos C$
c) $\sin A \sin B \sin C$
d) $\cos P \cos Q \cos R$
131. If $\Delta(x)=\left|\begin{array}{ccc}x^{n} & \sin x & \cos x \\ n! & \sin \frac{n \pi}{2} & \cos \frac{n \pi}{2} \\ a & a^{2} & a^{3}\end{array}\right|$, then the value of $\frac{d^{n}}{d x^{n}}[\Delta(x)]$ at $x=0$ is
a) -1
b) 0
c) 1
d) Dependent of a
132.
For positive numbers x, y and z, the numerical value of the determinant $\left|\begin{array}{ccc}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 1 & \log _{y} z \\ \log _{z} x & \log _{z} y & 1\end{array}\right|$ is
a) 0
b) 1
c) $\log _{e} x y z$
d) None of these
133.

The value of the determinant $\left|\begin{array}{lll}16! & 17! & 18! \\ 17! & 18! & 19!\end{array}\right|$ is equal to
a) $15!+16!$
b) $2(15!)(16!)(17!)$
c) $15!+16!+17!$
d) $16!+17!$
134.

If $\Delta=\left|\begin{array}{llll}3 & 4 & 5 & x \\ 4 & 5 & 6 & y \\ 5 & 6 & 7 & z \\ x & y & z & 0\end{array}\right|$, then Δ equals
a) $(y-2 z+3 x)^{2}$
b) $(x-2 y+z)^{2}$
c) $(x+y+z)^{2}$
d) $x^{2}+y^{2}+z^{2}-x y-y z-z x$
135. If the system of equations $2 x+3 y+5=0, x+k y+5=0, k x-12 y-14=0$ be consistent, then value of k is
a) $-2, \frac{12}{5}$
b) $-1, \frac{1}{5}$
c) $-6, \frac{17}{5}$
d) $6,-\frac{12}{5}$

136
If $\left|\begin{array}{ccc}b^{2}+c^{2} & a b & a c \\ a b & c^{2}+a^{2} & b c \\ c a & c b & a^{2}+b^{2}\end{array}\right|=k a^{2} b^{2} c^{2}$, then k is equal to
a) 3
b) 2
c) 4
d) None of these
137. The repeated factor of the determinant $\left|\begin{array}{lll}y+z & x & y \\ z+x & z & x \\ x+y & y & z\end{array}\right|$, is
a) $z-x$
b) $x-y$
c) $y-z$
d) None of these
138. The determinant $\left|\begin{array}{ccc}4+x^{2} & -6 & -2 \\ -6 & 9+x^{2} & 3 \\ -2 & 3 & 1+x^{2}\end{array}\right|$ is not divisible by
a) x
b) x^{3}
c) $14+x^{2}$
d) x^{5}
139.

If a, b, c are different, then the value of x satisfying $\left|\begin{array}{ccc}0 & x^{2}-a & x^{3}-b \\ x^{2}+a & 0 & x^{2}+c \\ x^{4}+a & x-c & 0\end{array}\right|=0$ is
a) a
b) b
c) c
d) 0
140. Determinant $\left|\begin{array}{ccc}b^{2}+c^{2} & a^{2} & a^{2} \\ b^{2} & c^{2}+a^{2} & b^{2} \\ c^{2} & c^{2} & a^{2}+b^{2}\end{array}\right|$ is equal to
a) $a b c$
b) $4 a b c$
c) $4 a^{2} b^{2} c^{2}$
d) $a^{2} b^{2} c^{2}$
141. If $a \neq p, b \neq q, c \neq r$ and $\left|\begin{array}{ccc}p & b & c \\ p+a & q+b & 2 c \\ a & b & r\end{array}\right|=0$, then $\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}$ is equal to
a) 0
b) 1
c) 2
d) 3
142. $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & 2 a+b+c & b \\ c & a & a+2 b+c\end{array}\right|$ is equal to
a) $(a+b+c)^{2}$
b) $2(a+b+c)^{2}$
c) $(a+b+c)^{3}$
d) $2(a+b+c)^{3}$
143. If [] denotes the greatest integer less than or equal to the real number under consideration and $-1 \leq x<0 ; 0 \leq y<1 ; 1 \leq z<2$, then the value of the determinant $\left|\begin{array}{ccc}{[x]+1} & {[y]} & {[z]} \\ {[x]} & {[y]+1} & {[z]} \\ {[x]} & {[y]} & {[z]+1}\end{array}\right|$ is
a) $[x]$
b) $[y]$
c) $[z]$
d) None of these
144. The values of x for which the given matrix
$\left[\begin{array}{ccc}-x & x & 2 \\ 2 & x & -x \\ x & -2 & -x\end{array}\right]$ will be non-singular, are
a) $-2 \leq x \leq 2$
b) For all x other then 2 and -2
c) $x \geq 2$
d) $x \leq-2$
145. If all the elements in a square matrix A of order 3 are equal to 1 or -1 , then $|A|$, is
a) An odd number
b) An even number
c) An imaginary number
d) A real number
146. Let a, b, c be such that $(b+c) \neq 0$ and
$\left|\begin{array}{ccc}a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1\end{array}\right|$
$+\left|\begin{array}{ccc}a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2} a & (-1)^{n+1} b & (-1)^{n} c\end{array}\right|^{1}=0$
Then the value of n is
a) Zero
b) Any even integer
c) Any odd integer
d) Any integer
147. Determinant $\left|\begin{array}{lll}1 / a & a^{2} & b c \\ 1 / b & b^{2} & c a \\ 1 / c & c^{2} & a b\end{array}\right|$ is equal to
a) $a b c$
b) $\frac{1}{a b c}$
c) $a b+b c+c a$
d) 0
148.

One root of the equation $\left|\begin{array}{ccc}x & -6 & -1 \\ 2 & -3 x & x-3 \\ -3 & 2 x & x+2\end{array}\right|=0$ is
a) 0
b) 1
c) -1
d) 3
149. The value of $\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ (a+1)^{2} & (b+1)^{2} & (c+1)^{2} \\ (a-1)^{2} & (b-1)^{2} & (c-1)^{2}\end{array}\right|$ is
а) $4\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1\end{array}\right|$
b) $3\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1\end{array}\right|$
c) $2\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1\end{array}\right|$
d) None of these
150. The value of the determinant
$\Delta=\left|\begin{array}{lll}\frac{1-a_{1}^{3} b_{1}^{3}}{1-a_{1} b_{1}} & \frac{1-a_{1}^{3} b_{2}^{3}}{1-a_{1} b_{2}} & \frac{1-a_{1}^{3} b_{3}^{3}}{1-a_{3} b_{3}} \\ \frac{1-a_{2}^{3} b_{1}^{3}}{1-a_{2} b_{1}} & \frac{1-a_{2}^{3} b_{2}^{3}}{1-a_{2} b_{2}} & \frac{1-a_{2}^{3} b_{3}^{3}}{1-a_{2} b_{3}} \\ \frac{1-a_{3}^{3} b_{1}^{3}}{1-a_{3} b_{1}} & \frac{1-a_{3}^{3} b_{2}^{3}}{1-a_{3} b_{2}} & \frac{1-a_{3}^{3} b_{3}^{3}}{1-a_{3} b_{3}}\end{array}\right|$ is
a) 0
b) Dependent only on a_{1}, a_{2}, a_{3}
c) Dependent only on b_{1}, b_{2}, b_{3}
d) Dependent on $a_{1}, a_{2}, a_{3} b_{1}, b_{2}, b_{3}$
151. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]$, then the value of the determinant $\left|A^{2009}-5 A^{2008}\right|$ is
a) -6
b) -5
c) -4
d) 4
152.

If $f(x)=\left|\begin{array}{ccc}x-3 & 2 x^{2}-18 & 3 x^{3}-81 \\ x-5 & 2 x^{2}-50 & 4 x^{3}-500 \\ 1 & 2 & 3\end{array}\right|$, then
$f(1) \cdot f(3)+f(3) \cdot f(5)+f(5) \cdot f(1)$ is equal to
a) $f(1)$
b) $f(3)$
c) $f(1)+f(3)$
d) $f(1)+f(5)$
153. The value of the determinant $\left|\begin{array}{lll}x & a & b+c \\ x & b & c+a \\ x & c & a+b\end{array}\right|=0$, if
a) $x=a$
b) $x=b$
c) $x=c$
d) x has any value
154. If the system of equations $x+k y-z=0,3 x-k y-z=0$ and $x-3 y+z=0$ has non-zero solution then k is equal to
a) -1
b) 0
c) 1
d) 2
155.

If $\left|\begin{array}{lll}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|=0$ and x, y, z are all distinct, then $x y z$ is equal to
a) -1
b) 1
c) 0
d) 3
156. Let $[x]$ represent the greatest integer less than or equal to x, then the value of the determinant
$\left|\begin{array}{ccc}{[e]} & {[\pi]} & {\left[\pi^{2}-6\right]} \\ {[\pi]} & {\left[\pi^{2}-6\right]} & {[e]} \\ {\left[\pi^{2}-6\right]} & {[e]} & {[\pi]}\end{array}\right|$ is
a) -8
b) 8
c) 10
d) None of these
157.

The determinant $\Delta=\left|\begin{array}{ccc}a & b & a x+b \\ b & c & b x+c \\ a x+b & b x+c & 0\end{array}\right|$ is equal to zero, if
a) a, b, c, are in A.P.
b) a, b, c, are in G.P.
c) a, b, c, are in H.P.
d) α is a root of $a x^{2}+b x+c=0$
158. Consider the following statements :

1. The determinants $\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|$ and $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$ are not identically equal.
2. For $a>0, b>0, c>0$ the value of the determinant $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ is always positive.
3.If $\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=\left|\begin{array}{lll}a_{1} & b_{1} & 1 \\ a_{2} & b_{2} & 1 \\ a_{3} & b_{3} & 1\end{array}\right|$, then the two triangles with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(b_{3}, b_{3}\right)$ must be congruent. Which of the statement given above is/are correct?
a) Only (1)
b) Only (2)
c) Only (3)
d) None of these
3. The arbitrary constant on which the value of the

Determinant $\left|\begin{array}{ccc}1 & a & a^{2} \\ \cos (p-d) a & \cos p a & \cos (p-d) a \\ \sin (p-d) a & \sin p a & \sin (p-d) a\end{array}\right|$
Does not depend, is
a) α
b) p
c) d
d) a
160. If $\left|\begin{array}{lll}a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x\end{array}\right|=0$, then x is equal to
a) $0,2 a$
b) $a, 2 a$
c) $0,3 a$
d) None of these
161. If the equations $2 x+3 y+1=0,3 x+y-2=0$ and $a x+2 y-b=0$ are consistent, then
a) $a-b=2$
b) $a+b+1=0$
c) $a+b=3$
d) $a-b-8=0$
162.

If $\Delta(x)=\left|\begin{array}{ccc}1 & \cos x & 1-\cos x \\ 1+\sin x & \cos x & 1+\sin x-\cos x \\ \sin x & \sin x & 1\end{array}\right|$, then $\int_{0}^{\pi / 2} \Delta(x) d x$ is equal to
a) $\frac{1}{4}$
b) $\frac{1}{2}$
c) 0
d) $-\frac{1}{2}$
163. If the system of equations
$x+a y+a z=0$
$b x+y+b z=0$
c $x+c y+z=0$
Where a, b and c are non-zero non-unity, has a non-trivial solution, then the value of $\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}$ is
a) 0
b) 1
c) -1
d) $\frac{a b c}{a^{2}+b^{2}+c^{2}}$
164. The system of equations $3 x-2 y+z=0, \lambda x-14 y+15 z=0, x+2 y-3 z=0$ has a solution other than $x=y=z=0$ then λ is equal to
a) 1
b) 2
c) 3
d) 5
165.

Let $D_{r}=\left|\begin{array}{ccc}2^{r-1} & 2.3^{r-1} & 4.5^{r-1} \\ \alpha & \beta & \gamma \\ 2^{n}-1 & 3^{n}-1 & 5^{n}-1\end{array}\right|$. Then, the value of $\sum_{r=1}^{n} D_{r}$ is
a) $\alpha \beta \gamma$
b) $2^{n} \alpha+2^{n} \beta+4^{n} \gamma$
c) $2 \alpha+3 \beta+4 \gamma$
d) None of these
166. In the interval $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, the number of real solutions of the equations $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$ is
a) 0
b) 2
c) 1
d) 3
167. If A, B and C are the angles of a triangle and $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1+\sin A & 1+\sin B & 1+\sin C \\ \sin A+\sin ^{2} A & \sin B+\sin ^{2} B & \sin C+\sin ^{2} C\end{array}\right|=0$ then the triangle $A B C$ is
a) Isosceles
b) Equilateral
c) Right angled isosceles
d) None of these
168. If $A=\left|\begin{array}{lll}a & b & c \\ x & y & z \\ p & q & r\end{array}\right|$ and $B=\left|\begin{array}{ccc}q & -b & y \\ -p & a & -x \\ r & -c & z\end{array}\right|$, then
a) $A=2 B$
b) $A=B$
c) $A=-B$
d) None of these
169. If $a=1+2+4+\cdots$ to n terms, $b=1+3+9+\cdots$ to n terms and $c=1+5+25+\cdots$ to n terms, then $\left|\begin{array}{ccc}a & 2 b & 4 c \\ 2 & 2 & 2 \\ 2^{n} & 3^{n} & 5^{n}\end{array}\right|$ equals
a) $(30)^{n}$
b) $(10)^{n}$
c) 0
d) $2^{n}+3^{n}+5^{n}$
170. If $c=2 \cos \theta$, then the value of the determinant
$\Delta=\left|\begin{array}{lll}c & 1 & 0 \\ 1 & c & 1 \\ 6 & 1 & c\end{array}\right|$ is
a) $\frac{\sin 4 \theta}{\sin \theta}$
b) $\frac{2 \sin ^{2} 2 \theta}{\sin \theta}$
c) $4 \cos ^{2} \theta(2 \cos \theta-1)$
d) None of these
171. The value of $\Delta=\left|\begin{array}{lll}1^{2} & 2^{2} & 3^{2} \\ 2^{2} & 3^{2} & 4^{2} \\ 3^{2} & 4^{2} & 5^{2}\end{array}\right|$, is
a) 8
b) -8
c) 400
d) 1
172.

The factors of $\left|\begin{array}{lll}x & a & b \\ a & x & b \\ a & b & x\end{array}\right|$ are
a) $x-a, x-b$, and $x+a+b$
b) $x+a, x+b$ and $x+a+b$
c) $x+a, x+b$ and $x-a-b$
d) $x-a, x-b$ and $x-a-b$
173. Coefficient of x in $f(x)=\left|\begin{array}{ccc}x & (1+\sin x)^{2} & \cos x \\ 1 & \log (1+x) & 2 \\ x^{2} & (1+x)^{2} & 0\end{array}\right|$, is
a) 0
b) 1
c) -2
d) Cannot be determined
174. If $a \neq b, b, c$ satisfy $\left|\begin{array}{ccc}a & 2 b & 2 c \\ 3 & b & c \\ 4 & a & b\end{array}\right|=0$, then $a b c=$
a) $a+b+c$
b) 0
c) b^{3}
d) $a b+b c$
175. Which one of the following is correct?

If A non-singular matrix, then
a) $\operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)$
b) $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$
c) $\operatorname{det}\left(A^{-1}\right)=1$
d) None of these
176. If $\left|\begin{array}{lll}a & b & 0 \\ 0 & a & b \\ b & 0 & a\end{array}\right|=0$, then
a) a is one of the cube roots of unity
b) b is one of the cube roots of unity
c) $\left(\frac{a}{b}\right)$ is one of the cube roots of unity
d) $\left(\frac{a}{b}\right)$ is one of the cube roots of -1
177. If $\left|\begin{array}{lll}b+c & c+a & a+b \\ a+b & b+c & c+a \\ c+a & a+b & b+c\end{array}\right|=k\left|\begin{array}{lll}a & b & c \\ c & a & b \\ d & c & a\end{array}\right|$, then the value of k, is
a) 1
b) 2
c) 3
d) 4
178.

If the value of the determinant $\left|\begin{array}{lll}a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c\end{array}\right|$ is positive, then
a) $a b c>1$
b) $a b c>-8$
c) $a b c<-8$
d) $a b c>-2$
179. The value of the determinant
$\left|\begin{array}{lcl}\cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ \cos (\alpha+\beta) & -\sin (\alpha+\beta) & 1\end{array}\right|$ is
a) Independent of α
b) Independent of β
c) Independent of α and β
d) None of these
180. If B is a non-singular matrix and A is a square matrix such that $B^{-1} A B$ exists, then $\operatorname{det}\left(B^{-1} A B\right)$ is equal to
a) $\operatorname{det}\left(A^{-1}\right)$
b) $\operatorname{det}\left(B^{-1}\right)$
c) $\operatorname{det}(B)$
d) $\operatorname{det}(A)$
181.

If matrix $\left[\begin{array}{ccc}0 & 1 & -2 \\ -1 & 0 & 3 \\ \lambda & -3 & 0\end{array}\right]$ is singular, then λ is equal to
a) -2
b) -1
c) 1
d) 2
182. If x, y, z are in AP, then the value of the $\operatorname{det} A$ is, where
$A=\left|\begin{array}{llll}4 & 5 & 6 & x \\ 5 & 6 & 7 & y \\ 6 & 7 & 8 & z \\ x & y & z & 0\end{array}\right|$
a) 0
b) 1
c) 2
d) None of these
183.

If $\Delta_{r}=\left|\begin{array}{ccc}1 & n & n \\ 2 r & n^{2}+n+1 & n^{2}+n \\ 2 r-1 & n^{2} & n^{2}+n+1\end{array}\right|$ and $\sum_{r=1}^{n} \Delta_{r}=56$, then n equals
a) 4
b) 6
c) 7
d) 8
184. $\left|1 \quad a \quad a^{2}-b c\right|$
$\left|\begin{array}{lll}1 & b & b^{2}-a c \\ 1 & c & c^{2}-a b\end{array}\right|$ is equal to
a) 0
b) $a^{3}+b^{3}+c^{3}-3 a b c$
c) $3 a b c$
d) $(a+b+c)^{3}$
185. If the matrix M_{r} is given by $M_{r}=\left[\begin{array}{cc}r & r-1 \\ r-1 & r\end{array}\right] r=1,2,3 \ldots$, then the value of det $\left(M_{1}\right)+\operatorname{det}\left(M_{2}\right)+\ldots+\operatorname{det}\left(M_{2008}\right)$ is
a) 2007
b) 2008
c) $(2008)^{2}$
d) $(2007)^{2}$
186.

If ω is the cube root of unity, then $\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|$ is equal to
a) 1
b) 0
c) ω
d) ω^{2}
187. If $1, \omega, \omega^{2}$ are the cube roots of unity, then $\Delta=\left|\begin{array}{ccc}1 & \omega^{n} & \omega^{2 n} \\ \omega^{n} & \omega^{2 n} & 1 \\ \omega^{2 n} & 1 & \omega^{n}\end{array}\right|$ is equal to
a) 0
b) 1
c) ω
d) ω^{2}
188. The value of the following determinant is
$\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|$
a) $(a-b)(b-c)(c-a)(a+b+c)$
b) $a b c(a+b)(b+c)(c+a)$
c) $(a-b)(b-c)(c-a)$
d) None of the above
189. The value of $\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|$, is
a) $6 a b c$
b) $a+b+c$
c) $4 a b c$
d) $a b c$
190. The value of $\left|\begin{array}{cc}\log _{5} 729 & \log _{3} 5 \\ \log _{5} 27 & \log _{9} 25\end{array}\right|\left|\begin{array}{ll}\log _{3} 5 & \log _{27} 5 \\ \log _{5} 9 & \log _{5} 9\end{array}\right|$ is equal to
a) 1
b) 6
c) $\log _{5} 9$
d) $\log _{3} 5 . \log _{5} 81$
191.

If $a+b+c=0$, then the solution of the equation $\left|\begin{array}{ccc}a-x & c & b \\ c & b-x & a \\ b & a & c-x\end{array}\right|=0$ is
a) 0
b) $\pm \frac{3}{2}\left(a^{2}+b^{2}+c^{2}\right)$
c) $0, \pm \sqrt{\frac{3}{2}\left(a^{2}+b^{2}+c^{2}\right)}$
d) $0, \pm \sqrt{\left(a^{2}+b^{2}+c^{2}\right)}$
192. If a, b and c are all different from zero and $\Delta=\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=0$, then the value of $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ is
a) $a b c$
b) $\frac{1}{a b c}$
c) $-a-b-c$
d) -1
193. If $(\omega \neq 1)$ is a cubic root of unity, then $\left|\begin{array}{ccc}1 & 1+i+\omega^{2} & \omega^{2} \\ 1-i & -1 & \omega^{2}-1 \\ -i & -1+\omega-i & -1\end{array}\right|$
a) zero
b) 1
c) i
d) ω
194. The value of $\sum_{n=1}^{N} U_{n}$ if $U_{n}=\left|\begin{array}{ccc}n & 1 & 5 \\ n^{2} & 2 N+1 & 2 N+1 \\ n^{3} & 3 N^{2} & 3 N\end{array}\right|$, is
a) 0
b) 1
c) -1
d) None of these
195. The integer represented by the determinant
$\left[\begin{array}{ccc}215 & 342 & 511 \\ 6 & 7 & 8 \\ 36 & 49 & 54\end{array}\right]$ is exactly divisible by
a) 146
b) 21
c) 20
d) 335
196. If A is a 3×3 non-singular matrix, then $\operatorname{det}\left(A^{-1} \operatorname{adj} A\right)$ is equal to
a) $\operatorname{det} A$
b) 1
c) $(\operatorname{det} A)^{2}$
d) $(\operatorname{det} A)^{-1}$
197. Let $A=\left|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right|$, where $0 \leq \theta \leq 2 \pi$, then the range of o $|A|$ is
a) $(2,4)$
b) $[2,4]$
c) $[2,4)$
d) All of these
198. In a third order determinant, each element of the first column consists of sum of two terms, each element of the second column consists of sum of three terms and each element of the third column consists of sum of four terms. Then, it can be decomposed into n determinant, where n has the value
a) 1
b) 9
c) 16
d) 24
199. If $a_{1}, a_{2}, \ldots, a_{n}, \ldots$. , are in GP, then the determinant $\Delta=\left|\begin{array}{cll}\log a_{n} & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8}\end{array}\right|$ is equal to
a) 2
b) 4
c) 0
d) 1
200.

If ω be a complex cube root of unity, then $\left|\begin{array}{ccc}1 & \omega & -\omega^{2} / 2 \\ 1 & 1 & 1 \\ 1 & -1 & 0\end{array}\right|$ is equal to
a) 0
b) 1
c) ω
d) ω^{2}
201. $\left|\log e \quad \log e^{2} \quad \log e^{3}\right|$ $\left|\begin{array}{lll}\log e^{2} & \log e^{3} & \log e^{4} \\ \log e^{3} & \log e^{4} & \log e^{5}\end{array}\right|$ is equal to
a) 0
b) 1
c) $4 \log e$
d) $5 \log e$
202.

The value of the determinant, $\left|\begin{array}{ccc}\sqrt{13}+\sqrt{3} & 2 \sqrt{5} & \sqrt{5} \\ \sqrt{15}+\sqrt{26} & 5 & \sqrt{10} \\ 3+\sqrt{65} & \sqrt{15} & 5\end{array}\right|$ is
a) $5(\sqrt{6}-5)$
b) $5 \sqrt{3}(\sqrt{6}-5)$
c) $\sqrt{5}(\sqrt{6}-\sqrt{3})$
d) $\sqrt{2}(\sqrt{7}-\sqrt{5})$
203. If $\Delta_{1}=\left|\begin{array}{ccc}10 & 4 & 3 \\ 17 & 7 & 4 \\ 4 & -5 & 7\end{array}\right|, \Delta_{2}=\left|\begin{array}{ccc}4 & x+5 & 3 \\ 7 & x+12 & 4 \\ -5 & x-1 & 7\end{array}\right|$ such that $\Delta_{1}+\Delta_{2}=0$, is
a) $x=5$
b) $x=0$
c) x has no real value
d) None of these
204. Let $\Delta=\left|\begin{array}{lll}1+x_{1} y_{1} & 1+x_{1} y_{2} & 1+x_{1} y_{3} \\ 1+x_{2} y_{1} & 1+x_{2} y_{2} & 1+x_{2} y_{3} \\ 1+x_{3} y_{1} & 1+x_{3} y_{2} & 1+x_{3} y_{3}\end{array}\right|$, then value of Δ is
a) $x_{1} x_{2} x_{3}+y_{1} y_{2} y_{3}$
b) $x_{1} x_{2} x_{3} y_{1} y_{2} y_{3}$
c) $x_{2} x_{3} y_{2} y_{3}+x_{3} y_{1} y_{3} y_{1}+x_{1} x_{2} y_{1} y_{2}$
d) 0
205.

If $\left|\begin{array}{ccc}a & a+d & a+2 d \\ a^{2} & (a+d)^{2} & (a+2 d)^{2} \\ 2 a+3 d & 2(a+d) & 2 a+d\end{array}\right|=0$, then
a) $d=0$
b) $a+d=0$
c) $d=0$ or $a+d=0$
d) None of these
206. Determinant $\left|\begin{array}{lll}b^{2}-a b & b-c & b c-a c \\ a b-a^{2} & a-b & b^{2}-a b \\ b c-a c & c-a & a b-a^{2}\end{array}\right|$ is equal to
a) $a b c(a+b+c)$
b) $3 a^{2} b^{2} c^{2}$
c) 0
d) None of these
207. If the system of equations
$b x+a y=c, c x+a z=b, c y+b z=a$
has a unique solution, then
a) $a b c=1$
b) $a b c=-2$
c) $a b c=0$
d) None of these
208.

If ω is a cube root of unity, then $\left|\begin{array}{ccc}x+1 & \omega & \omega^{2} \\ \omega & x+\omega^{2} & 1 \\ \omega^{2} & 1 & x+\omega\end{array}\right|$, is equal to
a) $x^{3}+1$
b) $x^{3}+\omega$
c) $x^{3}+\omega^{2}$
d) x^{3}
209. If A and B are two matrices such that $A+B$ and $A B$ are both defined, then
a) A and B are two matrices not necessarily of same order
b) A and B are square matrices of same order
c) Number of columns of $A=$ Number of rows of B
d) None of these
210.

The coefficient of x in $f(x)=\left|\begin{array}{ccc}x & 1+\sin x & \cos x \\ 1 & \log (1+x) & 2 \\ x^{2} & 1+x^{2} & 0\end{array}\right|,-1<x \leq 1$, is
a) 1
b) -2
c) -1
d) 0
211.

The value of $\left|\begin{array}{lll}a & a^{2}-b c & 1 \\ b & b^{2}-c a & 1 \\ c & c^{2}-a b & 1\end{array}\right|$, is
a) 1
b) -1
c) 0
d) $-a b c$
212.

The value of the determinant $\left|\begin{array}{ccc}1 & \omega^{3} & \omega^{5} \\ \omega^{3} & 1 & \omega^{4} \\ \omega^{5} & \omega^{4} & 1\end{array}\right|$, where ω is an imaginary cube root of unity, is
a) $(1-\omega)^{2}$
b) 3
c) -3
d) None of these
213. Let a, b, c, be positive and not all equal, the value of the Determinant $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ is
a) Positive
b) Negative
c) Zero
d) None of these
214. If $\left|\begin{array}{ccc}-12 & 0 & \lambda \\ 0 & 2 & -1 \\ 2 & 1 & 15\end{array}\right|=-360$, then the value of λ, is
a) -1
b) -2
c) -3
d) 4
215.

If $\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right| 0$ and vectors $\left(1, a, a^{2}\right),\left(1, b, b^{2}\right)$ and $\left(1, c, c^{2}\right)$ are non-coplanar, then the product $a b c$ equals
a) 2
b) -1
c) 1
d) 0
216. ω is an imaginary cube root of unity and
$\left|\begin{array}{ccc}x+\omega^{2} & \omega & 1 \\ \omega & \omega^{2} & 1+x \\ 1 & x+\omega & \omega^{2}\end{array}\right|=0$, then one of the value of x is
a) 1
b) 0
c) -1
d) 2
217. if x, y, z are in A.P., then the value of the $\operatorname{det}(A)$ is, where $A=\left[\begin{array}{llll}4 & 5 & 6 & x \\ 5 & 6 & 7 & y \\ 6 & 7 & 8 & z \\ x & y & z & 0\end{array}\right]$
a) 0
b) 1
c) 2
d) None of these
218.

If $\alpha, \beta, \gamma \in R$, then the determinant $\Delta=\left|\begin{array}{ccc}\left(e^{i \alpha}+e^{-i \alpha}\right)^{2} & \left(e^{i \alpha}-e^{-i \alpha}\right)^{2} & 4 \\ \left(e^{i \beta}+e^{-i \beta}\right)^{2} & \left(e^{i \beta}-e^{-i \beta}\right)^{2} & 4 \\ \left(e^{i \gamma}+e^{-i \gamma}\right)^{2} & \left(e^{i \gamma}-e^{-i \gamma}\right)^{2} & 4\end{array}\right|$ is
a) Independent of α, β and γ
b) Dependent of α, β and γ
c) Independent of α, β only
d) Independent of α, β only
219. If $a>0, b>0, c>0$ are respectively the $p^{t h}, q^{t h}, r^{\text {th }}$ terms of a GP, then the value of the determinant $\left|\begin{array}{lll}\log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1\end{array}\right|$, is
a) 1
b) 0
c) -1
d) None of these
220. The sum of the products of the elements of any row of a determinant A with the cofactors of the corresponding elements is equal to
a) 1
b) 0
c) $|A|$
d) $\frac{1}{2}|A|$
221. If a, b, c, d, e and f are in GP, then the value of
$\left|\begin{array}{lll}a^{2} & d^{2} & x \\ b^{2} & e^{2} & y \\ c^{2} & f^{2} & z\end{array}\right|$
a) Depends on x and y
b) Depends on x and z
c) Depends on y and z
d) independents on x, y and z
222. The value of $\left|\begin{array}{ccc}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 1 & \log _{y} z \\ \log _{z} x & \log _{z} y & 1\end{array}\right|$ is equal to
a) 0
b) 1
c) $x y z$
d) $\log x y z$
223.

The value of the determinant $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1-x & 1 \\ 1 & 1 & 1+y\end{array}\right|$ is equal to
a) $3-x+y$
b) $(1-x)(1+y)$
c) $x y$
d) $-x y$
224. If $\left|\begin{array}{ccc}x & y & z \\ -x & y & z \\ x & -y & z\end{array}\right|=k x y z$, then k is equal to
a) 1
b) 3
c) 4
d) 2
225. If $x=-5$ is a root of $\left|\begin{array}{ccc}2 x+1 & 4 & 8 \\ 2 & 2 x & 2 \\ 7 & 6 & 2 x\end{array}\right|=0$, then the other roots are
a) $3,3,5$
b) $1,3,5$
c) 1,7
d) 2,7
226. Let a, b, c be positive real numbers. The following system of equations in x, y and z $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1,-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ has
a) No solution
b) Unique solution
c) Infinitely many solutions
d) Finitely many solutions
227. $\left|\begin{array}{ccc}1+\sin ^{2} \theta & \sin ^{2} \theta & \sin ^{2} \theta \\ \cos ^{2} \theta & 1+\cos ^{2} \theta & \cos ^{2} \theta \\ 4 \sin 4 \theta & 4 \sin 4 \theta & 1+4 \sin 4 \theta\end{array}\right|=0$, then $\sin 4 \theta$ equals to
a) $1 / 2$
b) 1
c) $-1 / 2$
d) -1
228. If a, b, c are unequal what is the condition that the value of the determinant, $\Delta \equiv\left|\begin{array}{lll}a & a^{2} & a^{3}+1 \\ b & b^{2} & b^{3}+1 \\ c & c^{2} & c^{3}+1\end{array}\right|$ is 0 ?
a) $1+a b c=0$
b) $a+b+c+1=0$
c) $(a-b)(b-c)(c-a)=0$
d) None of these
229. If $\alpha+\beta+\gamma=\pi$, then the value of the determinant
$\left|\begin{array}{lll}e^{2 i \alpha} & e^{-i \gamma} & e^{-i \beta} \\ e^{-i \gamma} & e^{2 i \beta} & e^{-i \alpha} \\ e^{-i \beta} & e^{-i \alpha} & e^{2 i \gamma}\end{array}\right|$, is
a) 4
b) -4
c) 0
d) None of these
230. If $x^{a} y^{b}=e^{m}, x^{c} y^{d}=e^{n}, \Delta_{1}=\left|\begin{array}{ll}m & b \\ n & d\end{array}\right|, \Delta_{2}=\left|\begin{array}{ll}a & m \\ c & n\end{array}\right|$ and $\Delta_{3}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$, then the values of x and y are respectively
a) $\frac{\Delta_{1}}{\Delta_{3}}$ and $\frac{\Delta_{2}}{\Delta_{3}}$
b) $\frac{\Delta_{2}}{\Delta_{1}}$ and $\frac{\Delta_{3}}{\Delta_{1}}$
c) $\log \left(\frac{\Delta_{1}}{\Delta_{3}}\right)$ and $\log \left(\frac{\Delta_{2}}{\Delta_{3}}\right)$
d) $e^{\Delta_{1} / \Delta_{3}}$ and $e^{\Delta_{2} / \Delta_{3}}$
231. If $a \neq b \neq c$, then the value of x satisfying the equation
$\left|\begin{array}{ccc}0 & x^{2}-a & a-b \\ x+a & 0 & x-c \\ x+b & x-c & 0\end{array}\right|=0$ is
a) a
b) b
c) c
d) 0
232.

The value of the determinant $\left|\begin{array}{lll}10! & 11! & 12! \\ 11! & 12! & 13! \\ 12! & 13! & 14!\end{array}\right|$ is
a) $2(10!11!)$
b) $2(10!13!)$
c) $2(10!11!12!)$
d) $2(11!12!13!)$
233.

The number of distinct real root of $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$ in the interval $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ is
a) 0
b) 2
c) 1
d) 3
234.

The value of determinant $\left|\begin{array}{lll}\left(a^{x}+a^{-x}\right)^{2} & \left(a^{x}-a^{-x}\right)^{2} & 1 \\ \left(b^{x}+b^{-x}\right)^{2} & \left(b^{x}-b^{-x}\right)^{2} & 1 \\ \left(c^{x}+c^{-x}\right)^{2} & \left(c^{x}-c^{-x}\right)^{2} & 1\end{array}\right|$ is
a) 0
b) $2 a b c$
c) $a^{2} b^{2} c^{2}$
d) None of these
235.

The matrix $\left[\begin{array}{lll}\lambda & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & \lambda\end{array}\right]$ is non- singular
a) For all real values of λ
b) Only when $\lambda= \pm \frac{1}{\sqrt{2}}$
c) Only when $\lambda \neq 0$
d) Only when $\lambda=0$
236.

If $\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ (a+1)^{2} & (b+1)^{2} & (c+1)^{2} \\ (a-1)^{2} & (b-1)^{2} & (c-1)^{2}\end{array}\right|=k\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1\end{array}\right|$,
Then the value of k is
a) 1
b) 2
c) 3
d) 4
237. If $f(x), \mathrm{g}(x)$ and $h(x)$ are three polynomials of degree 2 and $\Delta(x)=\left|\begin{array}{ccc}f(x) & \mathrm{g}(x) & h(x) \\ f^{\prime}(x) & \mathrm{g}^{\prime}(x) & h^{\prime}(x) \\ f^{\prime \prime}(x) & \mathrm{g}^{\prime \prime}(x) & h^{\prime \prime}(x)\end{array}\right|$, then $\Delta(x)$ is polynomial of degree
a) 2
b) 3
c) At most 2
d) At most 3
238. The value of $\left|\begin{array}{ccc}x+y & y+z & z+x \\ x & y & z \\ x-y & y-z & z-x\end{array}\right|$ is equal to
a) $2(x+y+z)^{2}$
b) $2(x+y+z)^{3}$
c) $(x+y+z)^{3}$
d) 0
239.

If $f(x)=\left|\begin{array}{lll}1+a & 1+a x & 1+a x^{2} \\ 1+b & 1+b x & 1+b x^{2} \\ 1+c & 1+c x & 1+c x^{2}\end{array}\right|$, where a, b, c are non-zero constants, then value of $f(10)$ is
a) $10(b-a)(c-a)$
b) $100(b-a)(c-b)(a-c)$
c) $100 a b c$
d) 0
240. The value of λ, if $a x^{4}+b x^{3}+c x^{2}+50 x+d=\left|\begin{array}{ccc}x^{3}-14 x^{2} & -x & 3 x+\lambda \\ 4 x+1 & 3 x & x-4 \\ -3 & 4 & 0\end{array}\right|$, is
a) 0
b) 1
c) 2
d) 3
241. If $\left|\begin{array}{ccc}x^{2}+x & x+1 & x-2 \\ 2 x^{2}+3 x-1 & 3 x & 3 x-3 \\ x^{2}+2 x+3 & 2 x-1 & 2 x-1\end{array}\right|=A x-12$, then the value of A is
a) 12
b) 23
c) -12
d) 24
242.

The value of x obtained from the equation $\left|\begin{array}{ccc}x+\alpha & \beta & \gamma \\ \gamma & x+\beta & \alpha \\ \alpha & \beta & x+\gamma\end{array}\right|=0$ will be
a) 0 and $-(\alpha+\beta+\gamma)$
b) 0 and $(\alpha+\beta+\gamma)$
c) 1 and $(\alpha-\beta-\gamma)$
d) 0 and $\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)$
243. $\left|\begin{array}{ccc}1+a x & 1+b x & 1+c x \\ 1+a_{1} x & 1+b_{1} x & 1+c_{1} x \\ 1+a_{2} x & 1+b_{2} x & 1+c_{2} x\end{array}\right|=A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}$, then A_{1} is equal to
a) $a b c$
b) 0
c) 1
d) None of these
244. From the matrix equation $A B=A C$ we can conclude $B=C$ provided that
a) A is singular
b) A is non-singular
c) A is symmetric
d) A is square
245. If $a \neq b$, then the system of equation
$a x+b y+b z=0$
$b x+a y+b z=0$
$b x+b y+a z=0$
Will have a non-trivial solution, is
a) $a+b=0$
b) $a+2 b=0$
c) $2 a+b=0$
d) $a+4 b=0$
246. If ω is an imaginary cube root of unity, then the value of $\left|\begin{array}{ccc}a & b \omega^{2} & a \omega \\ b \omega & c & b \omega^{2} \\ c \omega^{2} & a \omega & c\end{array}\right|$, is
a) $a^{3}+b^{3}+c^{3}$
b) $a^{2} b-b^{2} c$
c) 0
d) $a^{3}+b^{3}+c^{3}-3 a b c$
247. The value of determinant $\left|\begin{array}{lll}a+b & a+2 b & a+3 b \\ a+2 b & a+3 b & a+4 b \\ a+4 b & a+5 b & a+6 b\end{array}\right|$ is
a) $a^{2}+b^{2}+c^{2}-3 a b c$
b) $3 a b$
c) $3 a+5 b$
d) 0
248. The value of the determinant $\left|\begin{array}{ccc}y+z & x & x \\ y & z+x & y \\ z & z & x+y\end{array}\right|$ is equal to
a) $6 x y z$
b) $x y z$
c) $4 x y z$
d) $x y+y z+z x$
249. If $\Delta_{1}=\left|\begin{array}{lll}x & b & b \\ a & x & b \\ a & a & x\end{array}\right|$ and $\Delta_{2}=\left|\begin{array}{ll}x & b \\ a & x\end{array}\right|$, then
a) $\Delta_{1}=3\left(\Delta_{2}\right)^{2}$
b) $\frac{d}{d x}\left(\Delta_{1}\right)=3 \Delta_{2}$
c) $\frac{d}{d x}\left(\Delta_{1}\right)=3 \Delta_{2}^{2}$
d) $\Delta_{1}=3\left(\Delta_{2}\right)^{3 / 2}$
250. For positive numbers x, y, z (other than unity) the numerical value of the determinant $\left|\begin{array}{ccc}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 3 & \log _{y} z \\ \log _{z} x & \log _{z} y & 5\end{array}\right|$, is
a) 0
b) $\log x \log y \log z$
c) 1
d) 8
251. The value of $\left|\begin{array}{lll}1990 & 1991 & 1992 \\ 1991 & 1992 & 1993 \\ 1992 & 1993 & 1994\end{array}\right|$ is
a) 1992
b) 1993
c) 1994
d) 0
252. If $\left|\begin{array}{lll}a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x\end{array}\right|=0$, then x is equal to
a) $0,2 a$
b) $a, 2 a$
c) $0,3 a$
d) None of these
253. The determinant $\Delta=\left|\begin{array}{ccc}b & c & b \alpha+c \\ c & d & c \alpha+d \\ b \alpha+c & c \alpha+d & a \alpha^{3}-c \alpha\end{array}\right|$ is equal to zero, if
a) b, c, d are in A.P.
b) b, c, d are in G.P.
c) b, c, d are in H.P.
d) α is a root of $a x^{3}+b x^{2}-c x-d=0$
254. If $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=5$, then the value of $\left|\begin{array}{lll}b_{2} c_{3}-b_{3} c_{2} & c_{2} a_{3}-c_{3} a_{2} & a_{2} b_{3}-c_{3} b_{2} \\ b_{3} c_{1}-b_{1} c_{3} & c_{3} a_{1}-c_{1} a_{3} & a_{3} b_{1}-a_{1} b_{3} \\ b_{1} c_{2}-b_{2} c_{1} & c_{1} a_{2}-c_{2} a_{1} & a_{1} b_{2}-a_{2} b_{1}\end{array}\right|$ is
a) 5
b) 25
c) 125
d) 0
255.

The determinant $\Delta=\left|\begin{array}{ccc}a^{2}+x^{2} & a b & a c \\ a b & b^{2}+x^{2} & b c \\ a c & b c & c^{2}+x^{2}\end{array}\right|$ is divisible by
a) x^{5}
b) x^{4}
c) $x^{4}+1$
d) $x^{4}-1$
256.

If $\Delta_{a}=\left|\begin{array}{ccc}a-1 & n & 6 \\ (a-1)^{2} & 2 n^{2} & 4 n-2 \\ (a-1)^{3} & 3 n^{3} & 3 n^{2}-3 n\end{array}\right|$, then $\sum_{a=1}^{n} \Delta_{a}$ is equal to
a) 0
b) 1
c) $\left\{\frac{n(n+1)}{2}\right\}\left\{\frac{a(a+1)}{2}\right\}$
d) None of these
257. Let the determinant of a 3×3 matrix A be 6 , then B is a matrix defined by $B=5 A^{2}$. Then, determinant of B is
a) 180
b) 100
c) 80
d) None of These
258.

The coefficient of x in $f(x)=\left|\begin{array}{ccc}x & 1+\sin x & \cos x \\ 1 & \log (1+x) & 2 \\ x^{2} & 1+x^{2} & 0\end{array}\right|,-1<x \leq 1$, is
a) 1
b) -2
c) -1
d) 0
259.

The value of $\left|\begin{array}{ccc}1 & 1 & 1 \\ b c & c a & a b \\ b+c & c+a & a+b\end{array}\right|$ is
a) 1
b) 0
c) $(a-b)(b-c)(c-a)$
d) $(a+b)(b+c)(c+a)$
260.

A factor of $\Delta(x)=\left|\begin{array}{ccc}x^{3}+1 & 2 x^{4}+3 x^{2} & 3 x^{5}+4 x \\ 2 & 5 & 7 \\ 3 & 14 & 19\end{array}\right|$ is
a) x
b) $(x-1)^{2}$
c) $(x+1)^{2}$
d) None of these
261.

If $p \lambda^{4}+q \lambda^{3}+q \lambda^{2}+s \lambda+t=\left|\begin{array}{ccc}b^{2}+c^{2} & a^{2}+\lambda & a^{2}+\lambda \\ b^{2}+\lambda & c^{2}+a^{2} & b^{2}+\lambda \\ c^{2}+\lambda & c^{2}+\lambda & a^{2}+b^{2}\end{array}\right|$ is an identity in λ, where p, q, r, s, t are constants, then the value of t is
a) 1
b) 2
c) 0
d) None of these
262.

The value of the determinant $\left|\begin{array}{lll}10! & 11! & 12! \\ 11! & 12! & 13! \\ 12! & 13! & 14!\end{array}\right|$ is
a) 2 (10! 11!)
b) 2 ($10!13$!)
c) $2(10!11!12!)$
d) $2(11!12!13!)$
263. If $A_{i}=\left[\begin{array}{cc}a^{i} & b^{i} \\ b^{i} & a^{i}\end{array}\right]$ and if $|a|<1,|b|<1$, then $\sum_{i=1}^{\infty} \operatorname{det}\left(A_{i}\right)$ is equal to
a) $\frac{a^{2}}{(1-a)^{2}}-\frac{b^{2}}{(1-b)^{2}}$
b) $\frac{a^{2}-b^{2}}{(1-a)^{2}\left(1-b^{2}\right)}$
c) $\frac{a^{2}}{(1-a)^{2}}+\frac{b^{2}}{(1-b)^{2}}$
d) $\frac{a^{2}}{(1+a)^{2}}-\frac{b^{2}}{(1+b)^{2}}$
264. If $\left[\begin{array}{ccc}1 & 2 & x \\ 4 & -1 & 7 \\ 2 & 4 & -6\end{array}\right]$ is a singular matrix, then x is equal to
a) 0
b) 1
c) -3
d) 3
265.

The value of $\left|\begin{array}{lll}x & p & q \\ p & x & q \\ p & q & x\end{array}\right|$ is
a) $x(x-p)(x-q)$
b) $(x-p)(x-q)(x+p+q)$
c) $(p-q)(x-q)(x-p)$
d) $p q(x-p)(x-q)$
266.

The roots of the equation $\left|\begin{array}{ccc}1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2 x & 5 x^{2}\end{array}\right|=0$ are
a) $-1,-2$
b) $-1,2$
c) $1,-2$
d) 1,2
267.

If $\left|\begin{array}{llr}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 40 & 3 & i\end{array}\right|=x+i y$, then
a) $x=3, y=1$
b) $x=1, y=3$
c) $x=0, y=3$
d) $x=0, y=0$
268. The determinant
$\Delta=\left|\begin{array}{ccc}\cos (\alpha+\beta) & -\sin (\alpha+\beta) & \cos 2 \beta \\ \sin \alpha & \cos \alpha & \sin \beta \\ -\sin \alpha & \sin \alpha & \cos \beta\end{array}\right|$ is independent of
a) α
b) β
c) α and β
d) Neither α nor β
269. $\left|\begin{array}{lll}x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right|=0$, then a, b, c are
a) In GP
b) In HP
c) Equal
d) In AP
270.

If $1+\frac{1}{a}+\frac{1}{c}+\frac{1}{c}=0$, then $\Delta=\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|$ is equal to
a) 0
b) $a b c$
c) $-a b c$
d) None of these
271. If $a \neq b \neq c$, the value of x which satisfies the equation $\left|\begin{array}{ccc}0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0\end{array}\right|=0$, is
a) $x=0$
b) $x=a$
c) $x=b$
d) $x=c$
272. If $D_{r}=\left|\begin{array}{ccc}r & 1 & \frac{n(n+1)}{2} \\ 2 r-1 & 4 & n^{2} \\ 2^{r-1} & 5 & 2^{n}-1\end{array}\right|$, then the value of $\sum_{r=0}^{n} D_{r}$ is
a) 0
b) 1
c) $\frac{n(n+1)(2 n+1)}{6}$
d) None of these
273.

If $f(\alpha)=\left|\begin{array}{ccc}1 & \alpha & \alpha^{2} \\ \alpha & \alpha^{2} & 1 \\ \alpha^{2} & 1 & \alpha\end{array}\right|$, then $f(\sqrt[3]{3})$ is equal to
a) 1
b) -4
c) 4
d) 2
274. The value of the determinant $\Delta=\left|\begin{array}{ccc}2 a_{1} b_{1} & a_{1} b_{2}+a_{2} b_{1} & a_{1} b_{3}+a_{3} b_{1} \\ a_{1} b_{2}+a_{2} b_{1} & 2 a_{2} b_{2} & a_{2} b_{3}+a_{3} b_{2} \\ a_{1} b_{3}+a_{3} b_{1} & a_{3} b_{2}+a_{2} b_{3} & 2 a_{3} b_{3}\end{array}\right|$ is
a) 1
b) $2 a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}$
c) 0
d) $a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}$
275.

If $A=\left[\begin{array}{lll}3 & 2 & 4 \\ 1 & 2 & 1 \\ 3 & 2 & 6\end{array}\right]$ and $A_{i j}$ are the cofactors of $a_{i j}$, then $a_{11} A_{11}+a_{12} A+a_{13} A_{13}$ is equal to
a) 8
b) 6
c) 4
d) 0
276. The equation $\left|\begin{array}{lll}x-a & x-b & x-c \\ x-b & x-c & x-a \\ x-c & x-a & x-b\end{array}\right|=0$, where a, b, c are different, is satisfied by
a) $x=0$
b) $x=a$
c) $x=\frac{1}{3}(a+b+c)$
d) $a=a+b+c$
277. $\left|\begin{array}{lll}x & p & q \\ p & x & q \\ q & q & x\end{array}\right|=$
a) $(x+p)(x+q)(x-p-q)$
b) $(x-p)(x-q)(x+p+q)$
c) $(x-p)(x-q)(x-p-q)$
d) $(x+p)(x+q)(x+p+q)$
278. ${ }^{\text {If } f(x)}=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 x & (x-1) & x \\ 3 x(x-1) & (x-1)(x-2) & x(x-1)\end{array}\right|$, then $f(50)$ is equal to
a) 0
b) 1
c) 100
d) -100

: ANSWER KEY :														
1)	b	2)	a	3)	b	4)	b	189)	c	190)	d	191)	c	192)
5)	c	6)	b	7)	c	8)	c	193)	a	194)	a	195)	c	196)
9)	b	10)	a	11)	b	12)	d	197)	d	198)	d	199)	c	200)
13)	d	14)	d	15)	b	16)	a	201)	a	202)	b	203)	a	204)
17)	c	18)	a	19)	b	20)	c	205)	c	206)	c	207)	c	208)
21)	c	22)	c	23)	b	24)	a	209)	b	210)	b	211)	c	212)
25)	b	26)	b	27)	c	28)	d	213)	b	214)	c	215)	b	216)
29)	d	30)	a	31)	c	32)	b	217)	a	218)	a	219)	b	220)
33)	d	34)	a	35)	c	36)	a	221)	d	222)	a	223)	d	224)
37)	a	38)	a	39)	b	40)	c	225)	b	226)	b	227)	c	228)
41)	d	42)	b	43)	b	44)	d	229)	b	230)	d	231)	d	232)
45)	d	46)	a	47)	b	48)	c	233)	c	234)	a	235)	c	236)
49)	d	50)	a	51)	c	52)	b	237)	c	238)	d	239)	d	240)
53)	c	54)	b	55)	c	56)	a	241)	d	242)	a	243)	b	244)
57)	d	58)	d	59)	d	60)	c	245)	b	246)	c	247)	d	248)
61)	b	62)	c	63)	d	64)	a	249)	b	250)	d	251)	d	252)
65)	c	66)	a	67)	b	68)	b	253)	b	254)	b	255)	b	256)
69)	b	70)	c	71)	c	72)	b	257)	d	258)	b	259)	c	260)
73)	b	74)	a	75)	b	76)	a	261)	d	262)	c	263)	b	264)
77)	d	78)	a	79)	a	80)	b	265)	b	266)	b	267)	d	268)
81)	c	82)	c	83)	b	84)	b	269)	d	270)	a	271)	a	272)
85)	a	86)	a	87)	b	88)	a	273)	b	274)	c	275)	a	276)
89)	d	90)	a	91)	c	92)	b	277)	b	278)	a			
93)	c	94)	d	95)	a	96)	c							
97)	b	98)	a	99)	b	100)	b							
101)	a	102)	b	103)	a	104)	a							
105)	b	106)	b	107)	b	108)	d							
109)	a	110)	d	111)	d	112)	b							
113)	a	114)	a	115)	b	116)	a							
117)	d	118)	d	119)	d	120)	a							
121)	c	122)	d	123)	c	124)	a							
125)	a	126)	d	127)	a	128)	d							
129)	d	130)	a	131)	b	132)	a							
133)	b	134)	b	135)	c	136)	c							
137)	a	138)	d	139)	d	140)	c							
141)	c	142)	d	143)	c	144)	b							
145)	b	146)	c	147)	d	148)	b							
149)	a	150)	d	151)	a	152)	b							
153)	d	154)	c	155)	a	156)	a							
157)	b	158)	d	159)	b	160)	c							
161)	a	162)	d	163)	c	164)	d							
165)	d	166)	d	167)	a	168)	c							
169)	c	170)	d	171)	b	172)	a							
173)	c	174)	c	175)	b	176)	d							
177)	b	178)	b	179)	a	180)	d							
181)	d	182)	a	183)	c	184)								
185)	c	186)	b	187)	a	188)								

: HINTS AND SOLUTIONS :

2 (a)
$\operatorname{Given}\left|\begin{array}{ccc}x & 2 & -1 \\ 2 & 5 & x \\ -1 & 2 & x\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}x & 2 & -1 \\ 2 & 5 & x \\ -3 & -3 & 0\end{array}\right|=0 \quad\left[R_{3} \rightarrow R_{3}-R_{2}\right]$
$\Rightarrow-1(-6+15)-x[-3 x+6]=0$
$\Rightarrow \quad x^{2}-2 x-3=0$
$\Rightarrow x=3,-1$
3
$\left|\begin{array}{lll}441 & 442 & 443 \\ 445 & 446 & 447 \\ 449 & 450 & 451\end{array}\right|=\left|\begin{array}{lll}441 & 1 & 1 \\ 445 & 1 & 1 \\ 449 & 1 & 1\end{array}\right|$
$C_{2} \rightarrow C_{2}-C_{1}$
$C_{3} \rightarrow C_{3}-C_{2}$
$=0$ [\because two columns are identical]
4 (b)
Given, $f(\alpha)=\left|\begin{array}{lll}1 & \alpha & \alpha^{2} \\ \alpha & a^{2} & 1 \\ \alpha^{2} & 1 & \alpha\end{array}\right|$
$=1\left(\alpha^{3}-1\right)-\alpha\left(\alpha^{2}-\alpha^{2}\right)+\alpha^{2}\left(\alpha-\alpha^{4}\right)$
$=\alpha^{3}-1-0+\alpha^{3}-\alpha^{6}$
$\Rightarrow f(\sqrt[3]{3})=3-1-0+3-3^{2}$
$=6-10=-4$
5 (c)
Let the first term and common difference of an AP are A and D respectively.
$\therefore a=A+(p-1) D, b=A+(q-1) D$, and $c=A+(r-1) D$
Now, $\left|\begin{array}{lll}a & p & 1 \\ b & q & 1 \\ c & r & 1\end{array}\right|=\left|\begin{array}{lll}A+(p-1) D & p & 1 \\ A+(q-1) D & q & 1 \\ A+(r-1) D & r & 1\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}-D C_{2}+D C_{3}$
$=\left|\begin{array}{lll}A & p & 1 \\ A & q & 1 \\ A & r & 1\end{array}\right|=A\left|\begin{array}{lll}1 & p & 1 \\ 1 & q & 1 \\ 1 & r & 1\end{array}\right|=0 \quad(\because$ two columns
are identical)
6 (b)
Minor of $(-4)=\left|\begin{array}{cc}-2 & 3 \\ 8 & 9\end{array}\right|=-42$
Minor of $9=\left|\begin{array}{ll}-1 & -2 \\ -4 & -5\end{array}\right|=-3$
Cofactor of $(-4)=(-1)^{2+1} \cdot\left|\begin{array}{cc}-2 & 3 \\ 8 & 9\end{array}\right|=42$
and cofactor of $9=(-1)^{3+3} \cdot\left|\begin{array}{ll}-1 & -2 \\ -4 & -5\end{array}\right|=-3$
$7 \quad$ (c)
Given, α, β and γ are the cube roots of unity, then assume
$\alpha=1, \beta=\omega$ and $\gamma=\omega^{2}$.
$\therefore\left|\begin{array}{lll}e^{\alpha} & e^{2 \alpha} & \left(e^{3 \alpha}-1\right) \\ e^{\beta} & e^{2 \beta} & \left(e^{3 \beta}-1\right) \\ e^{\gamma} & e^{2 \gamma} & \left(e^{3 \gamma}-1\right)\end{array}\right|$
$=\left|\begin{array}{lll}e^{\alpha} & e^{2 \alpha} & e^{3 \alpha} \\ e^{\beta} & e^{2 \beta} & e^{3 \beta} \\ e^{\gamma} & e^{2 \gamma} & e^{3 \gamma}\end{array}\right|+\left|\begin{array}{lll}e^{\alpha} & e^{2 \alpha} & -1 \\ e^{\beta} & e^{2 \beta} & -1 \\ e^{\gamma} & e^{2 \gamma} & -1\end{array}\right|$
$=e^{\alpha} e^{\beta} e^{\gamma}\left|\begin{array}{ccc}1 & e^{\alpha} & e^{2 \alpha} \\ 1 & e^{\beta} & e^{2 \beta} \\ 1 & e^{\gamma} & e^{2 \gamma}\end{array}\right|-\left|\begin{array}{ccc}1 & e^{\alpha} & e^{2 \alpha} \\ 1 & e^{\beta} & e^{2 \beta} \\ 1 & e^{\gamma} & e^{2 \gamma}\end{array}\right|$
$=\left|\begin{array}{lll}1 & e^{\alpha} & e^{2 \alpha} \\ 1 & e^{\beta} & e^{2 \beta} \\ 1 & e^{\gamma} & e^{2 \gamma}\end{array}\right|\left[e^{\alpha} e^{\beta} e^{\gamma}-1\right]=0$
$\left(\because e^{\alpha} e^{\beta} e^{\gamma}=e^{1+\omega+\omega^{2}}=e^{0}=1\right)$
8 (c)
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we obtain
$-x\left|\begin{array}{ccc}1 & -6 & 3 \\ 1 & 3-x & 3 \\ 1 & 3 & -6-x\end{array}\right|=0$
$\Rightarrow-x\left|\begin{array}{ccc}1 & -6 & 3 \\ 0 & 9-x & 0 \\ 0 & 9 & -9-x\end{array}\right|=0$
$\left[\begin{array}{c}\text { Applying } R_{2} \rightarrow R_{2}-R_{1} \\ R_{3} \rightarrow R_{3}-R_{1}\end{array}\right]$
$\Rightarrow-x(9-x)(-9-x)=0 \Rightarrow x=0,9,-9$
(b)
$\left|\begin{array}{cc}\log _{3} 512 & \log _{4} 3 \\ \log _{3} 8 & \log _{4} 9\end{array}\right| \times\left|\begin{array}{ll}\log _{2} 3 & \log _{8} 3 \\ \log _{3} 4 & \log _{3} 4\end{array}\right|$
$=\left(\log _{3} 512 \times \log _{4} 9-\log _{4} 3 \log _{3} 8\right) \times\left(\log _{2} 3\right.$ $\left.\times \log _{3} 4-\log _{8} 3 \times \log _{3} 4\right)$
$=\left(\frac{\log 512}{\log 3} \times \frac{\log 9}{\log 4}-\frac{\log 3}{\log 4} \times \frac{\log 8}{\log 3}\right)$
$\times\left(\frac{\log 3}{\log 2} \times \frac{\log 4}{\log 3} \times \frac{\log 3}{\log 8} \times \frac{\log 4}{\log 3}\right)$
$=\left(\frac{\log 2^{9}}{\log 3} \times \frac{\log 3^{2}}{\log 2^{2}} \times \frac{\log 2^{3}}{\log 2^{2}}\right) \times\left(\frac{\log 2^{2}}{\log 2}-\frac{\log 2^{2}}{\log 2^{3}}\right)$
$=\left(\frac{9 \times 2}{2}-\frac{3}{2}\right) \times\left(2-\frac{2}{3}\right)=\frac{15}{2} \times \frac{4}{3}=10$
10
(a)

Le $t \Delta=\left|\begin{array}{ccc}a^{2} & a & 1 \\ \cos (n x) & \cos (n+1) x & \cos (n+2) x \\ \sin (n x) & \sin (n+1) x & \sin (n+2) x\end{array}\right|$
Since, $\cos (n x)+\cos (n+2) x=2 \cos (n+$
$1 x \cos x$
and $\sin (n x)+\sin (n+2) x=2 \sin (n+1) x \cos x$
Applying $C_{1} \rightarrow C_{1}-2 \cos x \cdot C_{2}+C_{3}$
$\therefore \Delta$
$=\left|\begin{array}{ccc}a^{2}-2 a \cos x+1 & a & 1 \\ 0 & \cos (n+1) x & \cos (n+2) x \\ 0 & \sin (n+1) x & \sin (n+2) x\end{array}\right|$
$=\left(a^{2}-2 a \cos x+1\right)[\cos (n+1) x \sin (n+2) x$ $-\cos (n+2) x \sin (n+1) x]$
$=\left(a^{2}-2 a \cos x+1\right) \sin x$
$\therefore \Delta$ is independent of n.
11 (b)
Given $\left|\begin{array}{ccc}x+1 & 2 x+1 & 3 x+1 \\ 2 x & 4 x+3 & 6 x+3 \\ 4 x+4 & 6 x+4 & 8 x+4\end{array}\right|=0$
$\Rightarrow 2\left|\begin{array}{ccc}0 & x & 2 x \\ 2 x & 4 x+3 & 6 x+3 \\ 2 x+2 & 3 x+2 & 4 x+2\end{array}\right|=0$
[Using $\left(R_{1} \rightarrow 2 R_{1}-R_{3}\right)$]
$\Rightarrow 2\left|\begin{array}{ccc}0 & x & 0 \\ 2 x & 4 x+3 & -2 x-3 \\ 2 x+2 & 3 x+2 & -2 x-2\end{array}\right|=0$
[Using $\left.\left(C_{3} \rightarrow C_{3}-2 C_{2}\right)\right]$
$\Rightarrow-4 x\left[2 x^{2}+2 x-(2 x+3)(x+1)\right]=0$
$\Rightarrow-4 x\left[2 x^{2}+2 x-\left(2 x^{2}+5 x+3\right)\right]=0$
$\Rightarrow 4 x(3 x+3)=0$
$\Rightarrow x+1=0 \quad[\because x \neq 0$ given $]$
13 (d)
$\left|\begin{array}{ccc}a & b-y & c-z \\ a-x & b & c-z \\ a-x & b-y & c\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}a & b-y & c-z \\ -x & y & 0 \\ 0 & -y & z\end{array}\right|=0$
(Using $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{2}$)
$\Rightarrow a(y z)+x(b z-y z+c y-y z)=0$
$\Rightarrow a y z+b z x+c y x=2 x y z$
$\Rightarrow \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$
14 (d)
We have,
$\left|\begin{array}{lll}p & b & c \\ a & q & c \\ a & b & r\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}p & b & c \\ a-p & q-b & 0 \\ 0 & b-q & r-c\end{array}\right|=0$
$\left[\begin{array}{c}\text { Applying } R_{3} \rightarrow R_{3}-R_{2} \\ \text { and } R_{2} \rightarrow R_{2}-R_{1}\end{array}\right]$
$\Rightarrow\left|\begin{array}{ccc}\frac{p}{p-a} & \frac{b}{q-b} & \frac{c}{r-c} \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right|=0$
$\Rightarrow \frac{p}{p-a}+\frac{b}{q-b}+\frac{c}{r-c}=0$
$\Rightarrow \frac{p}{p-a}+\left(\frac{q}{q-b}-1\right)+\left(\frac{r}{r-c}-1\right)=0$
$\Rightarrow \frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}=2$

(b)

We have,
$\Delta=\left|\begin{array}{ccc}a & a+b & a+2 b \\ a+2 b & a & a+b \\ a+b & a+2 b & a\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}3 a+3 b & a+b & a+2 b \\ 3 a+3 b & a & a+b \\ 3 a+3 b & a+2 b & a\end{array}\right|$ Applying $C_{1} \rightarrow$
$C_{1}+C_{2}+C_{3}$
$\Rightarrow \Delta=3(a+b)\left|\begin{array}{ccc}1 & a+b & a+2 b \\ 1 & a & a+b \\ 1 & a+2 b & a\end{array}\right|$
$\Rightarrow \Delta=3(a+b)\left|\begin{array}{ccc}1 & a+b & a+2 b \\ 0 & -b & -b \\ 0 & b & -2 b\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$

$$
R_{3} \rightarrow R_{3}-R_{1}
$$

$\Rightarrow \Delta=3(a+b)\left(3 b^{2}\right)=9 b^{2}(a+b)$
16
(a)

Applying $C_{1} \rightarrow C_{1}+C_{2}$, we get
$\Rightarrow\left|\begin{array}{ccc}2 & \cos ^{2} \theta & 4 \sin 4 \theta \\ 2 & 1+\cos ^{2} \theta & 4 \sin 4 \theta \\ 1 & \cos ^{2} \theta & 1+4 \sin 4 \theta\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}2 & \cos ^{2} \theta & 4 \sin 4 \theta \\ 0 & 1 & 0 \\ 1 & \cos ^{2} \theta & 1+4 \sin 4 \theta\end{array}\right|=0$

$$
\left[R_{2} \rightarrow R_{2}-R_{1}\right]
$$

$\Rightarrow \quad(2+4 \sin 4 \theta)=0$
$\Rightarrow \sin 4 \theta=-\frac{1}{2}=-\sin \frac{\pi}{6}$
$\Rightarrow \quad 4 \theta=\mathrm{n} \pi+(-1)^{\mathrm{n}}\left(-\frac{\pi}{6}\right)$
\therefore The value of θ between 0 and $\frac{\pi}{2}$ will be $\frac{7 \pi}{24}$ and $\frac{11 \pi}{24}$
(c)

We have, $a_{i}^{2}+b_{i}^{2}+c_{i}^{2}=1$
and $a_{i} a_{j}+b_{i} b_{j}+c_{i} c_{j}=0$ for $(i=1,2,3)$
$\therefore\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|^{2}=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$
$=\left\lvert\, \begin{array}{ccc}a_{1}^{2}+b_{1}^{2}+c_{1}^{2} & a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} & a_{1} a_{3}+b_{1} b_{3}+c \\ a_{2} a_{1}+b_{2} b_{1}+c_{2} c_{1} & a_{2}^{2}+b_{2}^{2}+c_{2}^{2} & a_{1} a_{3}+b_{1} b_{3}+c \\ a_{3} a_{1}+b_{3} b_{1}+c_{3} c_{1} & a_{3} a_{2}+b_{3} b_{2}+c_{3} c_{2} & a_{3}^{2}+b_{3}^{2}+c_{3}^{2}\end{array}\right.$
$=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|=1$
18
(a)

We have,
$\alpha=2, \beta=2 \omega$ and $\gamma=2 \omega^{2} \Rightarrow \alpha+\beta+\gamma=0$
Now,
$\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right|$
$=\left|\begin{array}{lll}\alpha+\beta+\gamma & \beta & \gamma \\ \alpha+\beta+\gamma & \gamma & \alpha \\ \alpha+\beta+\gamma & \alpha & \beta\end{array}\right| \quad$ Applying $C_{1} \rightarrow C_{1}+C_{2}+$
C_{3}
$=\left|\begin{array}{lll}0 & \beta & \gamma \\ 0 & \gamma & \alpha \\ 0 & \alpha & \beta\end{array}\right|=0 \quad[\because \alpha+\beta+\gamma=0]$
(b)

Take a, b, c common from R_{1}, R_{2}, R_{3} respectively,
$\therefore \Delta=a b c\left|\begin{array}{ccc}\frac{1}{a}+1 & \frac{1}{a} & \frac{1}{a} \\ \frac{1}{b}+1 & \frac{1}{b}+2 & \frac{1}{b} \\ \frac{1}{c}+1 & \frac{1}{c}+1 & \frac{1}{c}+3\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$
$\Delta=a b c\left(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left|\begin{array}{ccc}1 & 1 & \frac{1}{1} \\ 1+\frac{1}{b} & 2+\frac{1}{b} & \frac{1}{b} \\ 1+\frac{1}{c} & 1+\frac{1}{c} & 3+\frac{1}{c}\end{array}\right|$
Now, applying $C_{3} \rightarrow C_{3}-C_{2}$ and $C_{2} \rightarrow C_{2}-C_{1}$ and on expanding, we get
$\Delta=2 a b c\left[3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right]=0$
$\because a \neq 0, b \neq 0, c \neq 0$
$\therefore a^{-1}+b^{-1}+c^{-1}=-3$
20 (c)
On expanding the given determinant, we obtain
$2 x^{3}+2 x(a c-a b-b c)=0 \Rightarrow x=0$
23
(b)

Given, A is a square matrix and $A A^{T}=I=A^{T} A$
$\Rightarrow\left|A A^{T}\right|=|I|=\left|A^{T} A\right|$
$\Rightarrow|A|\left|A^{T}\right|=I=\left|A^{T}\right||A|$
$\Rightarrow|A|^{2}=1 \quad\left[\because\left|A^{T}\right|=|A|\right]$
$\Rightarrow|A|= \pm 1$

25 (b)
We have,
$\left|\begin{array}{lll}y+z & x & y \\ z+x & z & x \\ x+y & y & z\end{array}\right|=k(x+y+z)(x-z)^{2}$
LHS $=(x+y+z)\left|\begin{array}{ccc}2 & 1 & 1 \\ z+x & z & x \\ x+y & y & z\end{array}\right| \quad\left(R_{1} \rightarrow R_{1}+\right.$
$\left.R_{2}+R_{3}\right)$
$=(x+y+z)\left|\begin{array}{lll}1 & 1 & 1 \\ x & z & x \\ x & y & z\end{array}\right|$
$=(x+y+z)\left\{1\left(z^{2}-x y\right)-1\left(x z-x^{2}\right)\right.$
$+1(x y-x z)\}$
$=(x+y+z)\left(x^{2}+z^{2}-2 x z\right)$
$\Rightarrow(x+y+z)(x-z)^{2}=k(x+y+z)(x-z)^{2}$
(given)
$\Rightarrow k=1$
(b)
$\operatorname{det}(2 A)=2^{4} \operatorname{det}(A)=16 \operatorname{det}(A)$
(c)
$\because \operatorname{det}\left(M_{r}\right)=r^{2}-(r-1)^{2}=2 r-1$
$\therefore \operatorname{det}\left(M_{1}\right)+\operatorname{det}\left(M_{2}\right)+\ldots+\operatorname{det}\left(M^{2008}\right)$

$$
=1+3+5+\ldots+4015
$$

$$
=\frac{2008}{2}[2+(2008-1) 2]
$$

$=2008(2008)=(2008)^{2}$
(d)

Let A and R be the first term and common ratio respectively.
$\therefore l=A R^{p-1}$
$\Rightarrow \log l=\log A+(p-1) \log R$
$m=A R^{q-1}$
$\Rightarrow \log m=\log A+(q-1) \log R$
and $n=A R^{r-1}$
$\Rightarrow \log n=\log A+(r-1) \log R$
Now,
$\left|\begin{array}{lll}\log l & p & 1 \\ \log m & q & 1 \\ \log n & r & 1\end{array}\right|=\left|\begin{array}{lll}\log A+(p-1) \log R & p & 1 \\ \log A+(q-1) \log R & q & 1 \\ \log A+(r-1) \log R & r & 1\end{array}\right|$
On multiplying R_{1}, R_{2} and R_{3} by $(q-r)$, $(r-$
pand $p-q$ and adding $R 1+R 2+R 3$, we get
$=(q-r+r-p+p-q) \cdot \log A+\{(q-r)(p-1)$
$+(r-p)(q-1)+(p-q)(r-1)\} \log R$
$=0$
29
(d)

Since, the given matrix is singular.
$\therefore\left[\begin{array}{ccc}5 & 10 & 3 \\ -2 & -4 & 6 \\ -1 & -2 & b\end{array}\right]=0$
$\Rightarrow 5(-4 b+12)-10(-2 b+6)+3(4-4)=0$
$\Rightarrow-20 b+60+20 b-60=0$
$\Rightarrow 0(b)=0$
\therefore The given matrix is singular for any value of b
31 (c)
Given, $\left|\begin{array}{lll}x^{n} & x^{n+2} & x^{n+3} \\ y^{n} & y^{n+2} & y^{n+3} \\ Z^{n} & z^{n+2} & z^{n+3}\end{array}\right|$
$=(y-z)(z-x)(x-y)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$
The degree of determinant
$=n+(n+2)+(n+3)=3 n+5$
and the degree of RHS $=2$
$\therefore 3 n+5=2 \Rightarrow n=-1$
(b)

Since , $\left|\begin{array}{ccc}a & b & a \alpha+b \\ b & c & b \alpha+c \\ a \alpha+b & b \alpha+c & 0\end{array}\right|=0$
Applying $R_{3} \rightarrow R_{3}-\left(\alpha R_{1}+R_{2}\right)$
$\Rightarrow\left|\begin{array}{ccc}a & b & a \alpha+b \\ b & c & b \alpha+c \\ 0 & 0 & -a \alpha^{2}-2 b \alpha-c\end{array}\right|=0$
$\Rightarrow-\left(a \alpha^{2}+2 b \alpha+c\right)\left(a c+b^{2}\right)=0$
$\Rightarrow b^{2}=a c$
Hence, a, b, and c are in GP.
33 (d)
The system of equations
$k x+y+z=1$
$x+k y+z=k$
$x+y+k z=k^{2}$
Is inconsistent, if
$\Delta=\left|\begin{array}{lll}k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k\end{array}\right|=0$ and one of the $\Delta_{1}, \Delta_{2} \Delta_{3}$ is non-
zero, where
$\Delta_{1}=\left|\begin{array}{ccc}1 & 1 & 1 \\ k & k & 1 \\ k^{2} & 1 & k\end{array}\right|, \Delta_{2}=\left|\begin{array}{ccc}k & 1 & 1 \\ 1 & k & 1 \\ 1 & k^{2} & k\end{array}\right|, \Delta_{3}$

$$
=\left|\begin{array}{ccc}
k & 1 & 1 \\
1 & k & k \\
1 & 1 & k^{2}
\end{array}\right|
$$

We have, $\Delta=(k+2)(k-1)^{2}, \Delta_{1}=-(k+$
$1 k-12$
$\Delta_{2}=-k(k-1)^{2}, \Delta_{3}=(k+1)^{2}(k-1)^{2}$
Clearly, for $k=-2$, we have
$\Delta=0$ and $\Delta_{1}, \Delta_{2}, \Delta_{3}$ are non-zero. Therefore, $k=-2$

(a)

We have,
$\Delta=\left|\begin{array}{ccc}a & a+b & a+b+c \\ 3 a & 4 a+3 b & 5 a+4 b+3 c \\ 6 a & 9 a+6 b & 11 a+9 b+6 c\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-3 R_{1}, R_{3} \rightarrow R_{3}-2 R_{2}$
$=\left|\begin{array}{ccc}a & a & a+b+c \\ 0 & a & 2 a+b \\ 0 & a & a+b\end{array}\right|$
$=a\left[a^{2}+a b-2 a^{2}-a b\right]$
$=-a^{3}=i \quad(\because a=i$, given $)$
35 (c)
$\mathrm{LHS}=\left|\begin{array}{lll}a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c\end{array}\right|$
The determinant can be written sum of $2 \times 2 \times 2=8$ determinants of which 6 are reduces to zero because of their two rows are identical.
$\therefore \quad$ LHS $=2\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$
(a)
$\left|\begin{array}{ccc}\alpha & -\beta & 0 \\ 0 & \alpha & \beta \\ \beta & \mathrm{q} & \mathrm{x}\end{array}\right|=0 \Rightarrow \alpha^{3}-\beta^{3}=0$
$\Rightarrow\left(\frac{\alpha}{\beta}\right)^{3}=1 \Rightarrow \frac{\alpha}{\beta}$ is one of the cube roots of unity.
(a)

Applying $R_{3} \rightarrow R_{3}-\alpha R_{1}-R_{2}$, we get
$\Delta=\left|\begin{array}{ccc}b & c & a \alpha+b \\ c & d & c \alpha+d \\ 0 & 0 & a \alpha^{3}+b \alpha^{2}+c \alpha+d\end{array}\right|$
$\Rightarrow \Delta=\left(a \alpha^{3}+b \alpha^{2}+c \alpha+d\right)\left(b d-c^{2}\right)$
$\therefore \Delta=0$
\Rightarrow either b, c, d are in G.P. or α is a root of $a x^{3}+b x^{3}+c x+d=0$
38 (a)
We have,
$\left|\begin{array}{ccc}\cos C & \tan A & 0 \\ \sin B & 0 & -\tan A \\ 0 & \sin B & \cos C\end{array}\right|$
$=\frac{1}{\cos ^{2} A}\left|\begin{array}{ccc}\cos C \cos A & \sin A & 0 \\ \sin B \cos A & 0 & -\sin A \\ 0 & \sin B & \cos C\end{array}\right|$
$\left[\begin{array}{c}\text { Applying } R_{1} \rightarrow R_{1} \cos A \\ R_{2} \rightarrow R_{2} \cos A\end{array}\right]$
$=\frac{1}{\cos A}\left|\begin{array}{ccc}\cos C & \sin A & 0 \\ \sin B & 0 & -\sin A \\ 0 & \sin B & \cos C\end{array}\right|$
$=\frac{1}{\cos A}\{\sin A \sin B \cos C-\sin A \sin B \cos C\}$
$=0$
39 (b)
Applying $C_{3} \rightarrow C_{3}-C_{1}$, we get
$\Delta=\left|\begin{array}{ccc}1 & \alpha & \alpha^{2}-1 \\ \cos (p-d) a & \cos p a & 0 \\ \sin (p-d) a & \sin p a & 0\end{array}\right|$
$=\left(\alpha^{2}-1\right)\{-\cos p a \sin (p-d) a$
$+\sin p a \cos (p-d) a\}$
$=\left(\alpha^{2}-1\right) \sin \{-(p-d) a+p a\}$
$\Rightarrow \Delta=\left(\alpha^{2}-1\right) \sin d a$
Which is independent of p.
(c)

Let $\Delta=\left|\begin{array}{ccc}a & b \omega^{2} & a \omega \\ b \omega & c & b \omega^{2} \\ c \omega^{2} & a \omega & c\end{array}\right|$
Applying $C_{3} \rightarrow C_{3}-\omega C_{1}$
$=\left|\begin{array}{ccc}a & b \omega^{2} & 0 \\ b \omega & c & 0 \\ c \omega^{2} & a \omega & 0\end{array}\right|$
$=0$
42 (b)
We have, $\Delta_{1}=\left|\begin{array}{lll}x & b & b \\ a & x & b \\ a & a & x\end{array}\right|=x^{3}-3 a b x+a b^{2}+$ $a^{2} b$
$\Rightarrow \frac{d}{d x} \Delta_{1}=3\left(x^{2}-a b\right)$ and $\Delta_{2}=\left|\begin{array}{ll}x & b \\ a & x\end{array}\right|=x^{2}-a b$
$\therefore \frac{d}{d x}\left(\Delta_{1}\right)=3\left(x^{2}-a b\right)=3 \Delta_{2}$
43 (b)
Given $f(\theta)=\left|\begin{array}{ccc}\cos ^{2} \theta & \cos \theta \sin \theta & -\sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta & \cos \theta \\ \sin \theta & -\cos \theta & 0\end{array}\right|$
$=\cos ^{2} \theta\left(0+\cos ^{2} \theta\right)-\cos \theta \sin \theta(0-\sin \theta \cos \theta)$
$-\sin \theta\left(-\cos ^{2} \theta \sin \theta-\sin ^{3} \theta\right)$
$=\cos ^{4} \theta+2 \sin ^{2} \theta \cos ^{2} \theta+\sin ^{4} \theta$
$=\cos ^{4} \theta+\sin ^{2} \theta \cos ^{2} \theta+\sin ^{2} \theta$
$=\cos ^{2} \theta\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+\sin ^{2} \theta=1$
\therefore For all, $\theta, f(\theta)=1$
44 (d)
Given that $C=2 \cos \theta$
and $\Delta=\left|\begin{array}{lll}C & 1 & 0 \\ 1 & C & 1 \\ 6 & 1 & C\end{array}\right|=C\left(C^{2}-1\right)-1(C-6)$
$\Delta=2 \cos \theta\left(4 \cos ^{2} \theta-1\right)-(2 \cos \theta-6)$
$(\because C=2 \cos \theta)$
$\Rightarrow \Delta=8 \cos ^{3} \theta-4 \cos \theta+6$
45
(d)

We have,
$f(x)=\left|\begin{array}{ccc}\sin x & \cos x & \tan x \\ x^{3} & x^{2} & x \\ 2 x & 1 & 1\end{array}\right|$
$\Rightarrow \frac{f(x)}{x}=\left|\begin{array}{ccc}\frac{\sin x}{x} & \cos x & \tan x \\ x^{2} & x^{2} & x^{2} \\ 2 & 1 & 1\end{array}\right|$
$\Rightarrow \frac{f(x)}{x^{2}}=\left|\begin{array}{ccc}\frac{\sin x}{x} & \cos x & \tan x \\ x & x & 1 \\ 2 & 1 & 1\end{array}\right|$
$\Rightarrow \lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=\left|\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & 1\end{array}\right|=-1(1-2)=1$
46 (a)
$\left|\begin{array}{ccc}{[e]} & {[\pi]} & {\left[\pi^{2}-6\right]} \\ {[\pi]} & {\left[\pi^{2}-6\right]} & {[e]} \\ {\left[\pi^{2}-6\right]} & {[e]} & {[\pi]}\end{array}\right|$
$=\left|\begin{array}{lll}2 & 3 & 3 \\ 3 & 3 & 2 \\ 3 & 2 & 3\end{array}\right|$
$=2(9-4)-3(9-6)+3(6-9)$
$=10-9-9=-8$
47
(b)
$A B=\left[\begin{array}{ll}3 & 5 \\ 2 & 0\end{array}\right]\left[\begin{array}{rr}1 & 17 \\ 0 & -10\end{array}\right]=\left[\begin{array}{rr}3 & 1 \\ 2 & 34\end{array}\right]$
$\Rightarrow \quad|A B|=\left[\begin{array}{cc}3 & 1 \\ 2 & 34\end{array}\right]=100$
48 (c)
Given that,
$\Delta=\left|\begin{array}{ccc}1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 9 & 13\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}+2 R_{3}$
$\Delta=\left|\begin{array}{ccc}7 & 20 & 29 \\ 2 & 5 & 7 \\ 3 & 9 & 13\end{array}\right|$
$\Rightarrow \Delta=\Delta^{\prime}$
49 (d)

$$
\begin{aligned}
& \left|\begin{array}{ccc}
2 x y & x^{2} & y^{2} \\
x^{2} & y^{2} & 2 x y \\
y^{2} & 2 x y & x^{2}
\end{array}\right| \\
& \quad=2 x y\left(x^{2} y^{2}-4 x^{2} y^{2}\right) \\
& \quad-x^{2}\left(x^{4}-2 x y^{3}\right)+y^{2}\left(2 x^{3} y-y^{4}\right) \\
& =-6 x^{3} y^{3}-x^{6}+2 x^{3} y^{3}+2 x^{3} y^{3}-y^{6} \\
& =-\left(x^{6}+y^{6}+2 x^{3} y^{3}\right) \\
& =-\left(x^{3}+y^{3}\right)^{2}
\end{aligned}
$$

50 (a)
We have,
$\Delta=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$
$\therefore \Delta=0 \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=-1$
51 (c)
$\left|\begin{array}{lll}b^{2} c^{2} & b c & b+c \\ c^{2} a^{2} & c a & c+a \\ a^{2} b^{2} & a b & a+b\end{array}\right|$
On multiplying R_{1}, R_{2}, R_{3} by a, b, c respectively and divide the whole by $a b c$
$=\frac{1}{a b c}\left|\begin{array}{lll}a b^{2} c^{2} & a b c & a(b+c) \\ b c^{2} a^{2} & b c a & b(c+a) \\ a^{2} b^{2} c & a b c & c(a+b)\end{array}\right|$
On taking common $a b c$ from C_{1} and C_{2}, we get
$=\frac{(a b c)(a b c)}{a b c}\left|\begin{array}{lll}b c & 1 & a b+a c \\ c a & 1 & b c+a b \\ a b & 1 & c a+b c\end{array}\right|$
Now, $C_{1} \rightarrow C_{1}+C_{3}$
$=a b c\left|\begin{array}{lll}a b+b c+c a & 1 & a b+a c \\ c a+b c+a b & 1 & b c+a b \\ a b+b c+c a & 1 & c a+b c\end{array}\right|$
$=(a b c)(a b+b c+c a)\left|\begin{array}{ccc}1 & 1 & a b+a c \\ 1 & 1 & b c+a b \\ 1 & 1 & c a+b c\end{array}\right|$
$=0 \quad[\because$ two columns are identical $]$
52 (b)
We have, $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=\lambda$
Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$
$\Rightarrow\left|\begin{array}{ccc}1+a & -a & -a \\ 1 & b & 0 \\ 1 & 0 & c\end{array}\right|=\lambda$
On expanding w.r.t. R_{3}, we get
$a b+b c+c a+a b c=\lambda$
Given $a^{-1}+b^{-1}+c^{-1}=0$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
$\Rightarrow a b+b c+c a=0$
From Eq. (i), $\lambda=a b c$
53 (c)
We have,
$\left|\begin{array}{lll}x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right|$
$=\frac{1}{2}\left|\begin{array}{ccc}x+1 & x+2 & x+a \\ 2 x+4 & 2 x+6 & 2 x+2 b \\ x+2 & x+4 & x+c\end{array}\right|$ [Applying
$\mathrm{R}_{2} \rightarrow 2 \mathrm{R}_{2}$]
$=\frac{1}{2}\left|\begin{array}{ccc}x+1 & x+2 & x+a \\ 0 & 0 & 0 \\ x+2 & x+4 & x+c\end{array}\right|\left[\right.$ Applying $\mathrm{R}_{2}-\left(\mathrm{R}_{1}+\right.$
R_{3})]
$=0$
54 (b)
$\left|\begin{array}{lll}a-b & b-c & c-a \\ x-y & y-z & z-x \\ p-q & p-r & r-p\end{array}\right|=\left|\begin{array}{lll}0 & b-c & c-a \\ 0 & y-z & z-x \\ 0 & q-r & r-p\end{array}\right|=0$
$\left(C_{1} \rightarrow C_{1}+C_{2}+C_{3}\right)$
55 (c)
$\left|\begin{array}{lll}a-b+c & -a-b+c & 1 \\ a+b+2 c & -a+b+2 c & 2 \\ 3 c & 3 c & 3\end{array}\right|$
$\left|\begin{array}{ccc}2 a & -2 a & 0 \\ a+b+2 c & -a+b+2 c & 2 \\ 3 c & 3 c & 3\end{array}\right|$
[using $R_{1} \rightarrow R_{1}+R_{2}-R_{3}$]
$=2 a(-3 a+3 b+6 c-6 c)+2 a(3 a+3 b+6 c$ $-6 c$)
$=12 a b$
56 (a)
Ratio of cofactor to its minor of the element -3 , which is in the 3rd row and 2nd column
$=(-1)^{3+2}=-1$
57 (d)
We have,
$\Delta=\left|\begin{array}{ccc}x+1 & \omega & \omega^{2} \\ \omega & x+\omega^{2} & 1 \\ \omega^{2} & 1 & x+\omega\end{array}\right|$
$\Rightarrow \Delta$
$=\left\lvert\, \begin{array}{ccc}x+1+\omega+\omega^{2} & x+\omega+\omega^{2}+1 & x+1+\omega- \\ \omega & x+\omega^{2} & 1 \\ \omega^{2} & 1 & x+\omega\end{array}\right.$
[Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$]
$\Rightarrow \Delta=\left(x+1+\omega+\omega^{2}\right)\left|\begin{array}{ccc}1 & 1 & 1 \\ \omega & x+\omega^{2} & 1 \\ \omega^{2} & 1 & x+\omega\end{array}\right|$
$\Rightarrow \Delta=x\left|\begin{array}{ccc}1 & 0 & 0 \\ \omega & x+\omega^{2}-\omega & 1-\omega \\ \omega^{2} & 1-\omega^{2} & x+\omega-\omega^{2}\end{array}\right|$
$\Rightarrow \Delta=x\left[\left(x+\omega^{2}-\omega\right)\left(x+\omega-\omega^{2}\right)-(1-\omega)(1\right.$

$$
\left.\left.-\omega^{2}\right)\right]
$$

$\therefore \Delta=0 \Rightarrow x=0$
59 (d)
Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$ to the given determinant and expanding it along first now, we get
$\Rightarrow(\sin B-\sin A)(\sin C-\sin A)$
$\times\left|\begin{array}{cc}1 & 1 \\ 1+\sin B+\sin A & 1+\sin C+\sin A\end{array}\right|=0$
$\Rightarrow(\sin B-\sin A)(\sin C-\sin A)(\sin C-\sin B)$

$$
=0
$$

$\Rightarrow \sin B=\sin A$ or $\sin C=\sin A$ or $\sin C=\sin B$
$\Rightarrow A=B$ or $B=C$ or $C=A$
$\Rightarrow \triangle A B C$ is isosceles
60 (c)
We have, $D_{r}=\left|\begin{array}{ccc}2^{r-1} & 3^{r-1} & 4^{r-1} \\ x & y & z \\ 2^{n}-1 & \left(3^{n}-1\right) / 2 & \left(4^{n}-1\right) / 3\end{array}\right|$
$\Rightarrow \sum_{r=1}^{n} D_{r}=\left|\begin{array}{ccc}\sum_{r=1}^{n} 2^{r-1} & \sum_{r=1}^{n} 3^{r-1} & \sum_{r=1}^{n} 4^{r-1} \\ x^{n} & y & z \\ 2^{n}-1 & \left(3^{n}-1\right) / 2 & \left(4^{n}-1\right) / 3\end{array}\right|$
$\Rightarrow \sum_{r=1}^{n} D_{r}=\left|\begin{array}{ccc}2^{n}-1 & \left(3^{n}-1\right) / 2 & \left(4^{n}-1\right) / 3 \\ x & y & z \\ 2^{n}-1 & \left(3^{n}-1\right) / 2 & \left(4^{n}-1\right) / 3\end{array}\right|$
$\sum_{r=1}^{n} D_{r}=0(\because$ two rows are same)
61
(b)

We have,
$\left|\begin{array}{ccc}1 & 1 & 1 \\ 1+\sin A & 1+\sin B & 1+\sin C \\ \sin A+\sin ^{2} A & \sin B+\sin ^{2} B & \sin C+\sin ^{2} C\end{array}\right|$ $=0$
$\Rightarrow\left|\begin{array}{ccc}1 & 1 & 1 \\ \sin A & \sin B & \sin C \\ \sin A+\sin ^{2} A & \sin B+\sin ^{2} B & \sin C+\sin ^{2} C\end{array}\right|$ $=0$
Applying $\mathrm{R}_{2} \rightarrow R_{2}-R_{1}$
$\Rightarrow\left|\begin{array}{ccc}1 & 1 & 1 \\ \sin A & \sin B & \sin C \\ \sin ^{2} A & \sin ^{2} B & \sin ^{2} C\end{array}\right|=0 \quad$ Applying $R_{3} \rightarrow$
$R_{3}-R_{2}$
$\Rightarrow(\sin A-\sin B)(\sin B-\sin C)(\sin C-\sin A)$

$$
=0
$$

$\Rightarrow \sin A=\sin B$ or, $\sin B=\sin C$ or, $\sin C=\sin A$
$\Rightarrow \triangle A B C$ is isosceles
62 (c)
We have,
$\operatorname{det}(A)=\left|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right|$

$$
=2\left(1+\sin ^{2} \theta\right)
$$

Now,
$0 \leq \sin ^{2} \theta \leq 1$ for all $\theta \in[0,2 \pi)$
$\Rightarrow 2 \leq 2+2 \sin ^{2} \theta \leq 4$ for all $\theta \in[0,2 \pi)$
$\Rightarrow \operatorname{Det}(A) \in[2,4]$
63 (d)
Let $\Delta=\left|\begin{array}{ccc}1 & 5 & \pi \\ \log _{e} e & 5 & \sqrt{5} \\ \log _{10} 10 & 5 & e\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 5 & \pi \\ 1 & 5 & \sqrt{5} \\ 1 & 5 & e\end{array}\right|=5\left|\begin{array}{ccc}1 & 1 & \pi \\ 1 & 1 & \sqrt{5} \\ 1 & 1 & e\end{array}\right| \quad(\because$
$\left.\log _{a} a=1\right)$
$=0 \quad(\because$ two columns are identical)
64 (a)
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get
$f(x)$
$=\left\lvert\, \begin{array}{lll}1+a^{2} x+x+x b^{2}+x+c^{2} x & \left(1+b^{2}\right) x & \left(1+c^{2}\right) \\ x+a^{2} x+1+b^{2} x+x+c^{2} x & \left(1+b^{2} x\right) & \left(1+c^{2}\right) \\ x+a^{2} x+x+b^{2} x+1+c^{2} x & \left(1+b^{2}\right) x & \left(1+c^{2} x\right.\end{array}\right.$.
$=\left|\begin{array}{ccc}1 & \left(1+b^{2}\right) x & \left(1+c^{2}\right) x \\ 1 & 1+b^{2} x & \left(1+c^{2}\right) x \\ 1 & \left(1+b^{2}\right) x & 1+c^{2} x\end{array}\right|$
$\left[\because a^{2}+b^{2}+c^{2}+2=0\right]$
Applying $R_{1} \rightarrow R_{1}-R_{3}, R_{2} \rightarrow R_{2}-R_{3}$
$=\left|\begin{array}{ccc}0 & 0 & x-1 \\ 0 & 1-x & x-1 \\ 1 & \left(1+b^{2}\right) x & 1+c^{2} x\end{array}\right|$ $=1[0-(x-1)(1-x)]$
$=(x-1)^{2}$
$\Rightarrow f(x)$ is a polynomial of degree 2
(c)

Since system of equations is consistent.
$\therefore\left|\begin{array}{ccc}1 & 1 & -1 \\ 2 & -1 & -c \\ -b & 3 b & -c\end{array}\right|=0$
$\Rightarrow c+b c-6 b+b+2 c+3 b c=0$
$\Rightarrow 3 c+4 b c-5 b=0$
$\Rightarrow c=\frac{5}{3+4 b}$
But $c<1 \Rightarrow \frac{5 b}{3+4 b}<1$
$\Rightarrow \frac{b-3}{3+4 b}<0$
$\Rightarrow b \in\left(-\frac{3}{4}, 3\right)$
(a)

Applying $R_{2} \rightarrow R_{2}-R_{3}$, we get
$\left|\begin{array}{ccc}1 & 1 & 1 \\ 4 & 4 & 4 \\ \left(2^{x}-2^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & \left(5^{x}-5^{-x}\right)^{2}\end{array}\right|$
$=4\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ \left(2^{x}-2^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & \left(5^{x}-5^{-x}\right)^{2}\end{array}\right|$
$=4 \times 0=0 \quad[\therefore$ two rows are identical $]$
(b)

We have,
$A A^{-1}=I$
$\Rightarrow \operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(I)$
$\Rightarrow \operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$
$\left[\begin{array}{c}\because \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \\ \text { and, } \operatorname{det}(I)=1\end{array}\right]$
$\Rightarrow \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$
(b)

We have,
$\left|\begin{array}{ccc}1+a x & 1+b x & 1+c x \\ 1+a_{1} x & 1+b_{1} x & 1+c_{1} x \\ 1+a_{2} x & 1+b_{2} x & 1+c_{2} x\end{array}\right|$
$=\left|\begin{array}{ccc}1+a x & (b-a) x & (c-a) x \\ 1+a_{1} x & \left(b_{1}-a_{1}\right) x & \left(c_{1}-a_{1}\right) x \\ 1+a_{2} x & \left(b_{2}-a_{2}\right) x & \left(c_{2}-a_{2}\right) x\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$

$$
\begin{aligned}
& =x^{2}\left|\begin{array}{ccc}
1+a x & b-a & c-a \\
1+a_{1} x & b_{1}-a_{1} & c_{1}-a_{1} \\
1+a_{2} x & b_{2}-a_{2} & c_{2}-a_{2}
\end{array}\right| \\
& =x^{2}\left[(1 + a x) \left\{\left(b_{1}-a_{1}\right)\left(c_{2}-a_{2}\right)\right.\right. \\
& \\
& \left.-\left(b_{2}-a_{2}\right)\left(c_{1}-a_{1}\right)\right\} \\
& \\
& -\left(1+a_{1} x\right)\left\{(b-a)\left(c_{2}-a_{2}\right)\right. \\
& \\
& \left.-(c-a)\left(b_{2}-a_{2}\right)\right\} \\
& \\
& \\
& \\
& \\
& -\left(1+a_{2} x\right)\left\{(b-a)\left(c_{1}-a_{1}\right)\right.
\end{aligned}
$$

$=x^{2}(\lambda x+\mu)$, where λ and μ are constants
$=\mu x^{2}+\lambda x^{3}$
Hence, $A_{0}=A_{1}=0$
69 (b)
$f(x)=\left|\begin{array}{ccc}a & -1 & 0 \\ a x & a & -1 \\ a x^{2} & a x & a\end{array}\right|$
Applying $R_{3} \rightarrow R_{3}-x R_{2}$
$f(x)=\left|\begin{array}{ccc}a & -1 & 0 \\ a x & a & -1 \\ 0 & 0 & a+x\end{array}\right|=(a+x)\left(a^{2}+a x\right)$
$\Rightarrow f(x)=a(a+x)^{2}$
$\therefore f(2 x)=a(a+2 x)^{2}$
$\Rightarrow f(2 x)-f(x)=a x(2 a+3 x)$
(c)
$\left|\begin{array}{ccr}-12 & 0 & \lambda \\ 0 & 2 & -1 \\ 2 & 1 & 15\end{array}\right|=-360$
$\Rightarrow-12(30+1)-4 \lambda=-360$
$\Rightarrow-372+360=4 \lambda \Rightarrow \lambda=-\frac{12}{4}=-3$
71 (c)
Let
$A=\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|=\left|\begin{array}{ccc}1+\omega+\omega^{2} & \omega & \omega^{2} \\ 1+\omega+\omega^{2} & \omega^{2} & 1 \\ 1+\omega+\omega^{2} & 1 & \omega\end{array}\right|$
$\left[C_{1} \rightarrow C_{1}+C_{2}+C_{3}\right.$
$=\left|\begin{array}{ccc}0 & \omega & \omega^{2} \\ 0 & \omega^{2} & 1 \\ 0 & 1 & \omega\end{array}\right|=0 \quad\left[\because 1+\omega+\omega^{2}=0\right]$
72 (b)
Applying $C_{1} \rightarrow C_{1}+C_{2}$, we get
$\left|\begin{array}{lll}{ }^{10} C_{4}+{ }^{10} C_{5} & { }^{10} C_{5} & { }^{11} C_{m} \\ { }^{11} C_{6}+{ }^{11} C_{7} & { }^{11} C_{7} & { }^{12} C_{m+2} \\ { }^{12} C_{8}+{ }^{12} C_{9} & { }^{12} C_{9} & { }^{13} C_{m+4}\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{lll}{ }^{11} C_{5} & { }^{10} C_{5} & { }^{11} C_{m} \\ { }^{12} C_{7} & { }^{11} C_{7} & { }^{12} C_{m+2} \\ { }^{13} C_{9} & { }^{12} C_{9} & { }^{13} C_{m+4}\end{array}\right|=0$
It means either two rows or two columns are identical.
$\therefore{ }^{11} C_{5}={ }^{11} C_{m},{ }^{12} C_{7}={ }^{12} C_{m+2},{ }^{13} C_{9}={ }^{13} C_{m+4}$
$\Rightarrow \quad m=5$
73 (b)
Given, $\left|\begin{array}{ccc}1 & 1 & 0 \\ 2 & 0 & 3 \\ 5 & -6 & x\end{array}\right|=29$
$\Rightarrow 1(0+18)-1(2 x-15)=29$
$\Rightarrow 2 x=4 \Rightarrow x=2$
74 (a)
Applying $C_{1} \rightarrow C_{1}+C_{2}$, we get
$\left|\begin{array}{ccc}\sin ^{2} x & \cos ^{2} x & 1 \\ \cos ^{2} x & \sin ^{2} x & 1 \\ -10 & 12 & 2\end{array}\right|=\left|\begin{array}{ccc}1 & \cos ^{2} x & 1 \\ 1 & \sin ^{2} x & 1 \\ 2 & 12 & 2\end{array}\right|=0$
75 (b)
Since, $|A|=-1,|B|=3$
$\therefore|A B|=|A||B|=-3$
Now, $|3 A B|=(3)^{3}(-3)=-81$
77 (d)
Applying $C_{3} \rightarrow C_{3}-\alpha C_{1}+C_{2}$ to the given
determinant, we get
$\left|\begin{array}{ccc}a & b & 0 \\ b & c & 0 \\ 2 & 1 & -2 \alpha+1\end{array}\right|=(1-2 \alpha)\left(a c-b^{2}\right)$
So, if the determinant is zero, we must have
$(1-2 \alpha)\left(a c-b^{2}\right)=0$
$\Rightarrow 1-2 \alpha=0$
or $\left(a c-b^{2}\right)=0$
$\Rightarrow \alpha=\frac{1}{2}$ or $a c=b^{2}$

Which means a, b, c are in GP.
78 (a)
We have, $\left|\begin{array}{lll}x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|=0$
$\Rightarrow(x+9)\left|\begin{array}{lll}1 & 1 & 1 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|=0\left(R_{1} \rightarrow R_{1}+R_{2}+R_{3}\right)$
$\Rightarrow(x+9)\left\{1\left(x^{2}-12\right)-1(2 x-14)\right.$

$$
+1(12-7 x)\}=0
$$

$\Rightarrow(x+9)\left(x^{2}-9 x+14\right)=0$
$\Rightarrow(x+9)(x-2)(x-7)=0$
\therefore The other two roots are 2 and 7 .
$79 \quad$ (a)
Let $A \equiv\left|\begin{array}{ccc}a-x & c & b \\ c & b-x & a \\ b & a & c-x\end{array}\right|=0$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$
$=\left|\begin{array}{ccc}a+b+c-x & c & b \\ a+b+c-x & b-x & a \\ a+b+c-x & a & c-x\end{array}\right|$
$=(a+b+c-x)\left|\begin{array}{ccc}1 & c & b \\ 1 & b-x & a \\ 1 & a & c-x\end{array}\right|$
$\Rightarrow(a+b+c-x)\left[1\left\{(b-x)(c-x)-a^{2}\right\}\right.$

$$
-c(c-x-a)+b(a-b+x)]
$$

$$
=0
$$

$\Rightarrow(a+b+c-x)\left[b c-b x-c x+x^{2}-a^{2}-c^{2}\right.$
$\left.+x c+a c+a b-b^{2}+b x\right]=0$
$\Rightarrow(a+b+c-x)\left[x^{2}-\left(a^{2}+b^{2}+c^{2}\right)+a b+b c\right.$

$$
+c a]=0
$$

$\because a b+b c+c a=0$ (given)
\Rightarrow either $x=a+b+c$ or $x=\left(a^{2}+b^{2}+c^{2}\right)^{1 / 2}$
80 (b)
We have,
$\left|\begin{array}{ccc}x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}x+1 & 1 & 1 \\ x+1 & x-1 & 1 \\ x+1 & 1 & x-1\end{array}\right|=0 \quad\left[\right.$ Applying $C_{1} \rightarrow$
$C 1+C 2+C 3$
$\Rightarrow(x+1)\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1\end{array}\right|=0$
$\Rightarrow(x+1)\left|\begin{array}{ccc}1 & 1 & 1 \\ 0 & x-2 & 0 \\ 0 & 0 & x-2\end{array}\right|=0$
$\left[\begin{array}{c}\text { Applying } R_{2} \rightarrow R_{2}-R_{1} \\ R_{3} \rightarrow R_{3}-R_{1}\end{array}\right]$
$\Rightarrow(x+1)(x-2)^{2}=0$
$\Rightarrow x=-1,2$
$81 \quad$ (c)
Let $A=\left|\begin{array}{ccc}1 & 2 & 3 \\ 1^{3} & 2^{3} & 3^{3} \\ 1^{5} & 2^{5} & 3^{5}\end{array}\right|=1.2 .3\left|\begin{array}{ccc}1 & 2 & 3 \\ 1^{2} & 2^{2} & 3^{2} \\ 1^{4} & 2^{4} & 3^{4}\end{array}\right|$
$=6\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 4 & 9 \\ 1 & 16 & 81\end{array}\right|=6\left|\begin{array}{ccc}1 & 0 & 0 \\ 1 & 3 & 5 \\ 1 & 15 & 65\end{array}\right|$
$\left[C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{2}\right]$
$=6.3 .5\left|\begin{array}{llc}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 5 & 13\end{array}\right|=90[1(13-5)]=720=6$!
82 (c)
$\because\left|A^{3}\right|=|A|^{3}=125$
$\Rightarrow\left[\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right]=5$
$\Rightarrow \alpha^{2}-4=5 \Rightarrow \alpha= \pm 3$
84
(b)

Given, angles of a triangle are A, B and C. We
know that $A+B+C=\pi$, therefore
$A+B=\pi-C$
$\Rightarrow \cos (A+B)=\cos (\pi-C)=-\cos C$
$\Rightarrow \cos A \cos B-\sin A \sin B=-\cos C$
$\Rightarrow \cos A \cos B+\cos C=\sin A \sin B$
Let $\Delta=\left|\begin{array}{ccc}-1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1\end{array}\right|$
$=-\left(1-\cos ^{2} A\right)$

$$
\begin{aligned}
& +\cos C(\cos C \\
& +\cos A \cos B) \\
& +\cos B(\cos B+\cos A \cos C)
\end{aligned}
$$

$=$
$-\sin ^{2} A+\cos C(\sin A \sin B)+\cos B(\sin A \sin C)$
[from Eq.(i)]
$=-\sin ^{2} A+\sin A(\sin B \cos C+\cos B \sin C)$
$=-\sin ^{2} A+\sin A \sin (B+C)$
$=-\sin ^{2} A+\sin ^{2} A=0 \quad[\because \sin (B+C)=$
$\sin \pi-A=\sin A]$
(a)

We have,
$\Delta=\left|\begin{array}{ccc}a^{2}+x & a b & a c \\ a b & b^{3}+x & b c \\ a c & b c & c^{2}+x\end{array}\right|$
$\Rightarrow \Delta=\frac{1}{a b c}\left|\begin{array}{ccc}a^{3}+a x & a^{2} b & a^{2} c \\ a b^{2} & b^{3}+b x & b^{2} c \\ a c^{2} & b c^{2} & c^{3}+c x\end{array}\right|$
$\left[\begin{array}{c}\text { Applying } C_{1}(a), \\ C_{2}(b), C_{3}(c)\end{array}\right]$
$\Rightarrow \Delta=\left|\begin{array}{ccc}a^{2}+x & a^{2} & a^{2} \\ b^{2} & b^{2}+x & b^{2} \\ c^{2} & c^{2} & c^{2}+x\end{array}\right|$
$\Rightarrow \Delta=\left(a^{2}+b^{2}+c^{2}+x\right)\left|\begin{array}{ccc}1 & 1 & 1 \\ b^{2} & b^{2}+x & b^{2} \\ c^{2} & c^{2} & c^{2}+x\end{array}\right|$
[Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$]
$\Rightarrow \Delta=\left(a^{2}+b^{2}+c^{2}+x\right)\left\{\left(b^{2} x+c^{2} x+x^{2}\right)\right.$

$$
\left.-\left(b^{2} x\right)+\left(-c^{2} x\right)\right\}
$$

$\Rightarrow \Delta=x^{2}\left(a^{2}+b^{2}+c^{2}+x\right)$
$\Rightarrow x^{2}$ is a factor Δ
$86 \quad$ (a)
Given that, $\left|\begin{array}{lll}x+1 & x+2 & x+3 \\ x+2 & x+3 & x+4 \\ x+a & x+b & x+c\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}-1 & -1 & x+3 \\ -1 & -1 & x+4 \\ a-b & b-c & x+c\end{array}\right|=0 \quad\binom{C_{1} \rightarrow C_{1}-C_{2}}{C_{2} \rightarrow C_{2}-C_{3}}$
$\Rightarrow\left|\begin{array}{ccc}0 & 0 & -1 \\ -1 & -1 & x+4 \\ a-b & b-c & x+c\end{array}\right|=0 \quad\left(R_{1} \rightarrow R_{1}-R_{2}\right)$
$\Rightarrow(-1)(-b+c+a-b)=0$
$\Rightarrow 2 b-a-c=0$
$\Rightarrow a+c=2 b$
$\therefore a, b, c$ in AP.
87 (b)
Given, $A=\left|\begin{array}{lll}1 & 0 & 0 \\ x & 1 & 0 \\ x & x & 1\end{array}\right| \Rightarrow A=1$
$\therefore A^{3}-4 A^{2}+3 A+I=(1)^{3}-4(1)^{2}+3(1)+I$ $=I$
88 (a)
Let $\Delta=\left|\begin{array}{ccc}1 & x & y \\ 2 & \sin x+2 x & \sin y+3 y \\ 3 & \cos x+3 x & \cos y+3 y\end{array}\right|$
$\left.=\left|\begin{array}{ccc}1 & x & y \\ 0 & \sin x & \sin y \\ 0 & \cos x & \cos y\end{array}\right| \begin{array}{l}R_{2} \rightarrow R_{2}-2 R_{1}, \\ R_{3} \rightarrow R_{3}-3 R_{1}\end{array}\right)$
$=\sin x \cos y-\cos x \sin y=\sin (x-y)$
89 (d)
We have, $\Delta=\frac{1}{a b c}\left|\begin{array}{ccc}a^{3}+a x & a^{2} b & a^{2} c \\ a b^{2} & b^{3}+b x & b^{2} c \\ c^{2} a & c^{2} b & c^{2}+x c\end{array}\right|$
Taking a, b, c common in columns Ist, IInd and IIIrd, we get,
$\Delta=\left|\begin{array}{ccc}a^{2}+x & a^{2} & a^{2} \\ b^{2} & b^{2}+x & b^{2} \\ c^{2} & c^{2} & c^{2}+x\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$
$=\left(a^{2}+b^{2}+c^{2}+x\right)\left|\begin{array}{ccc}1 & 1 & 1 \\ b^{2} & b^{2}+x & b^{2} \\ c^{2} & c^{2} & c^{2}+x\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{1}$
$=\left(a^{2}+b^{2}+c^{2}+x\right)\left|\begin{array}{ccc}1 & 1 & 0 \\ b^{2} & x & 0 \\ c^{2} & 0 & x\end{array}\right|$
$=x\left(x-b^{2}\right)\left(a^{2}+b^{2}+c^{2}+x\right)$
Hence, option (d) is correct.
90 (a)
Given, $\left|\begin{array}{lll}b c & c a & a b \\ c a & a b & b c \\ a b & b c & c a\end{array}\right|=0$
$\Rightarrow(a b)^{3}+(b c)^{3}+(c a)^{3}-3 a^{2} b^{2} c^{2}=0$
$\Rightarrow(a b+b c+c a)\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}-a b^{2} c\right.$
$\left.-b c^{2} a-c a^{2} b\right)=0$
$\Rightarrow a b+b c+c a=0$
$\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
91 (c)
Given,
$f(x)=$
$\left|\begin{array}{ccc}1 & 2(x-1) & 3(x-1)(x-2) \\ x-1 & (x-1)(x-2) & (x-1)(x-2)(x-3) \\ x & x(x-1) & x(x-1)(x-2)\end{array}\right|$
$=(x-1)(x-1)(x-2)\left|\begin{array}{ccc}1 & 2 & 3 \\ x-1 & x-2 & x-3 \\ x & x & x\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}-C_{2}, C_{2} \rightarrow C_{2}-C_{3}$
$=(x-1)^{2}(x-2)\left|\begin{array}{ccc}-1 & -1 & 3 \\ 1 & 1 & x-3 \\ 0 & 0 & x\end{array}\right|$
$=(x-1)^{2}(x-2) x(-1+1)=0$
$\Rightarrow f(x)=0$
$\therefore f(49)=0$
92 (b)
Given that, $\left|\begin{array}{ccc}1+a x & 1+b x & 1+c x \\ 1+a_{1} x & 1+b_{1} x & 1+c_{1} x \\ 1+a_{2} x & 1+b_{2} x & 1+c_{2} x\end{array}\right|$
$=A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}$
On putting $x=0$ on both sides, we get
$\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|=A_{0}$
$\Rightarrow A_{0}=0$
94 (d)
We have,
$\left|\begin{array}{lll}\cos \alpha & \sin \alpha & 0 \\ \cos \beta & \sin \beta & 0 \\ \cos \gamma & \sin \gamma & 0\end{array}\right|\left|\begin{array}{lll}\cos \alpha & \sin \alpha & 0 \\ \cos \beta & \sin \beta & 0 \\ \cos \gamma & \sin \gamma & 0\end{array}\right|$
$=\left|\begin{array}{ccc}1 & \cos (\beta-\alpha) & \cos (\gamma-\alpha) \\ \cos (\alpha-\beta) & 1 & \cos (\gamma-\beta) \\ \cos (\alpha-\gamma) & \cos (\beta-\gamma) & 1\end{array}\right|$
$\therefore\left|\begin{array}{ccc}1 & \cos (\beta-\alpha) & \cos (\gamma-\alpha) \\ \cos (\alpha+\beta) & 1 & \cos (\gamma-\beta) \\ \cos (\alpha-\gamma) & \cos (\beta-\gamma) & 1\end{array}\right|=0$
95 (a)
Given, $\left|\begin{array}{lll}x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|=0$
$\Rightarrow x\left(x^{2}-12\right)-3(2 x-14)+7(12-7 x)=0$
$\Rightarrow x^{3}-67 x+126=0$
$\Rightarrow(x+9)\left(x^{2}-9 x+14\right)=0$
$\Rightarrow(x+9)(x-2)(x-7)=0$
$\Rightarrow x=-9,2,7$
Hence, the other two roots are 2, 7
96 (c)
From the sine rule, we have
$\Rightarrow \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=k$ (say),
$\Rightarrow \sin A=a k, \sin B=b k$ and $\sin C=c k$
$\therefore\left|\begin{array}{ccc}a^{2} & b \sin A & c \sin A \\ b \sin A & 1 & \cos (B-C) \\ c \sin A & \cos (B-C) & 1\end{array}\right|$
$=\left|\begin{array}{ccc}a^{2} & a b k & a c k \\ a b k & 1 & \cos (B-C) \\ a c k & \cos (B-C) & 1\end{array}\right|$
$=a^{2}\left|\begin{array}{ccc}1 & \sin B & \sin C \\ \sin B & 1 & \cos (B-C) \\ \sin C & \cos (B-C) & 1\end{array}\right|$
$=a^{2}\left|\begin{array}{ccc}1 & \sin (A+C) & \sin (A+B) \\ \sin (A+C) & 1 & \cos (B-C) \\ \sin (A+B) & \cos (B-C) & 1\end{array}\right|$
$=a^{2}\left|\begin{array}{lll}\sin A & \cos A & 0 \\ \cos C & \sin C & 0 \\ \cos B & \sin B & 0\end{array}\right|\left|\begin{array}{ccc}\sin A & \cos A & 0 \\ \cos C & \sin C & 0 \\ \cos B & \sin B & 0\end{array}\right|$ $=a^{2} \times 0=0$
$97 \quad$ (b)
Given, $D=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C$ and $C_{3} \rightarrow C_{3}-C_{1}$
$=\left|\begin{array}{lll}1 & 0 & 0 \\ 1 & x & 0 \\ 1 & 0 & y\end{array}\right|=x y$
Hence, D is divisible by both x and y.
98 (a)
Taking x common from R_{2} and $x(x-1)$ common from R_{3}, we get
$f(x)=x^{2}(x-1)\left|\begin{array}{ccc}1 & x & (x+1) \\ 2 & (x-1) & (x+1) \\ 3 & (x-2) & (x+1)\end{array}\right|$
$\Rightarrow f(x)=x^{2}(x-1)(x+1)\left|\begin{array}{ccc}1 & x & 1 \\ 2 & x-1 & 1 \\ 3 & x-2 & 1\end{array}\right|$
$=x^{2}\left(x^{2}-1\right)\left|\begin{array}{ccc}1 & x & 1 \\ 1 & -1 & 0 \\ 2 & -2 & 0\end{array}\right| \quad\left[\begin{array}{l}R_{2} \rightarrow R_{2}-R_{1} \\ R_{3} \rightarrow R_{3}-R_{1}\end{array}\right]$
$\Rightarrow f(x)=x^{2}\left(x^{2}-1\right)(-2+2)=0$
$\Rightarrow \quad f(x)=0$ for all x
$\therefore \quad f(11)=0$
99 (b)
Applying $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$, we get
$\left|\begin{array}{ccc}1 & 4 & 20 \\ 0 & -6 & -15 \\ 0 & 2 x-4 & 5 x^{2}-20\end{array}\right|=0$
$\Rightarrow 1\left[-6\left(5 x^{2}-20\right)+15(2 x-4)\right]=0$
$\Rightarrow x^{2}-x-2=0$
$\Rightarrow(x-2)(x+1)=0$
$\Rightarrow \quad x=-1,2$
100 (b)
We have,
$\left|\begin{array}{ccc}3 x-8 & 3 & 3 \\ 3 & 3 x-8 & 3 \\ 3 & 3 & 3 x-8\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}3 x-2 & 3 & 3 \\ 3 x-2 & 3 x-8 & 3 \\ 3 x-2 & 3 & 3 x-8\end{array}\right|=0 \quad$ Applying $C_{1} \rightarrow$
$C_{1}+C_{2}+C_{3}$
$\Rightarrow(3 x-2)\left|\begin{array}{ccc}1 & 3 & 3 \\ 1 & 3 x-8 & 3 \\ 1 & 3 & 3 x-8\end{array}\right|=0$
$\Rightarrow(3 x-2)\left|\begin{array}{ccc}1 & 3 & 3 \\ 0 & 3 x-11 & 0 \\ 0 & 0 & 3 x-11\end{array}\right|=0$
Applying $R_{2} \rightarrow R_{2}-R_{1}$,
$R_{3} \rightarrow R_{3}-R_{1}$
$\Rightarrow(3 x-2)(3 x-11)^{2}=0$
$\Rightarrow x=2 / 3,11 / 3$
101 (a)
We have,
$\left|\begin{array}{llll}\alpha & x & x & x \\ x & \beta & x & x \\ x & x & \gamma & x \\ x & x & x & \delta\end{array}\right|$
$=\left|\begin{array}{cccc}\alpha & x-\alpha & x-\alpha & x-\alpha \\ x-(x-\beta) & 0 & 0 \\ x & 0 & -(x-\gamma) & 0 \\ x & 0 & 0 & -(x-\delta)\end{array}\right|$
$=\alpha\left|\begin{array}{ccc}-(x-\beta) & 0 & 0 \\ 0 & -(x-\gamma) & 0 \\ 0 & 0 & -(x-\delta)\end{array}\right|$
$-x\left|\begin{array}{ccc}x-\alpha & x-\alpha & x-\alpha \\ 0 & -(x-\gamma) & 0 \\ 0 & 0 & -(x-\delta)\end{array}\right|$
$+x \left\lvert\, \begin{array}{ccc}x-\alpha & x-\alpha & x-\alpha \\ -(x-\beta) & 0 & 0 \\ 0 & 0 & -(x-\delta)\end{array}\right.$
$-x\left|\begin{array}{ccc}x-\alpha & x-\alpha & x-\alpha \\ -(x-\beta) & 0 & 0 \\ 0 & -(x-\gamma) & 0\end{array}\right|$
$=-\alpha(x-\beta)(x-\gamma)(x-\delta)-(x-\alpha)(x-\gamma)(x$
$-\delta)$
$-x(x-\alpha)(x-\beta)(x-\delta)-x(x-\alpha)(x-\beta)(x$
$-\gamma)$
$=-\alpha(x-\beta)(x-\gamma)(x-\delta)+x(x-\beta)(x-\gamma)(x$ $-\delta)$
$-x(x-\beta)(x-\gamma)(x-\delta)-x(x-\alpha)(x-\gamma)(x$ $-\delta)$
$-x(x-\alpha)(x-\beta)(x-\delta)-x(x-\alpha)(x-\beta)(x$ $-\gamma)$
$=(x-\beta)(x-\gamma)(x-\delta)(x-\alpha)$
$-x[(x-\alpha)(x-\beta)(x-\gamma)$
$+(x-\beta)(x-\gamma)(x-\delta)$
$+(x-\gamma)(x-\delta)(x-\alpha)+(x$
$-\alpha)(x-\beta)(x-\delta)]$
$=f(x)-x f^{\prime}(x)$, where, $f(x)=(x-\alpha)(x-$
$\beta)(x-\gamma)(x-\delta)$

Given $\left|\begin{array}{lll}1 & a & b \\ 1 & c & a \\ 1 & b & c\end{array}\right|=0$
$\Rightarrow c^{2}-a b-a(c-a)+b(b-c)=0$
$\Rightarrow a^{2}+b^{2}+c^{2}-a b-b c-c a=0$
$\Rightarrow \frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]=0$
$\Rightarrow a=b=c$
So, $\triangle A B C$ is equilateral triangle.
$\therefore \angle A=60^{\circ}, \angle B=60^{\circ}, \angle C=60^{\circ}$
$\sin ^{2} A+\sin ^{2} B+\sin ^{2} C$
$=\sin ^{2} 60^{\circ}+\sin ^{2} 60^{\circ}+\sin ^{2} 60^{\circ}$
$=\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}$
$=3 \times \frac{3}{4}=\frac{9}{4}$
104 (a)
Given that, $\Delta=\left|\begin{array}{ccc}1 & \omega^{n} & \omega^{2 n} \\ \omega^{2 n} & 1 & \omega^{n} \\ \omega^{n} & \omega^{2 n} & 1\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$
$=\left|\begin{array}{ccc}1+\omega^{n}+\omega^{2 n} & \omega^{n} & \omega^{2 n} \\ 1+\omega^{n}+\omega^{2 n} & 1 & \omega^{n} \\ 1+\omega^{n}+\omega^{2 n} & \omega^{2 n} & 1\end{array}\right|$
$=\left|\begin{array}{ccc}0 & \omega^{n} & \omega^{2 n} \\ 0 & 1 & \omega^{n} \\ 0 & \omega^{2 n} & 1\end{array}\right|$
$\left(\because\right.$ If n multiple of 3 , then $\left.1+\omega^{n}+\omega^{2 n}=0\right)$
$=0$
105 (b)

$$
\begin{aligned}
& \left|\begin{array}{ccc}
x & 3 & 6 \\
3 & 6 & x \\
6 & x & 3
\end{array}\right|=\left|\begin{array}{lll}
2 & x & 7 \\
x & 7 & 2 \\
7 & 2 & x
\end{array}\right|=\left[\begin{array}{ccc}
4 & 5 & x \\
5 & x & 4 \\
x & 4 & 5
\end{array}\right]=0 \\
& \Rightarrow\left|\begin{array}{ccc}
x+9 & x+9 & x+9 \\
3 & 6 & x \\
6 & x & 3
\end{array}\right| \\
& =\left|\begin{array}{ccc}
9+x & x+9 & 9+x \\
x & 7 & 2 \\
7 & 2 & x
\end{array}\right| \\
& =\left[\begin{array}{ccc}
9+x & 9+x & 9+x \\
5 & x & 4 \\
x & 4 & 5
\end{array}\right]=0 \\
& \Rightarrow(x+9)\left|\begin{array}{ccc}
1 & 0 & 0 \\
3 & 3 & x-3 \\
6 & x-6 & -3
\end{array}\right| \\
& =(9+x)\left|\begin{array}{ccc}
1 & 0 & 0 \\
x & 7-x & 2-x \\
7 & -5 & x-7
\end{array}\right| \\
& =(9+x)\left|\begin{array}{ccc}
1 & 0 & 0 \\
5 & x-5 & -1 \\
x & 4-x & 5-x
\end{array}\right| \\
& =0 \\
& \Rightarrow x+9=0 \Rightarrow x=-9
\end{aligned}
$$

106 (b)
The given system of equations will have a unique solution, if
$\left|\begin{array}{ccc}k & 2 & -1 \\ 0 & k-1 & -2 \\ 0 & 0 & k+2\end{array}\right| \neq 0 \Rightarrow k(k-1)(k+2) \neq 0$

$$
\Rightarrow k \neq 0,1,-2
$$

108 (d)
$\left|\begin{array}{ccc}a & b-y & c-z \\ a-x & b & c-z \\ a-x & b-y & c\end{array}\right|=0$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{2}$
$\Rightarrow\left|\begin{array}{ccc}a & b-y & c-z \\ -x & y & 0 \\ 0 & -y & z\end{array}\right|=0$
$\Rightarrow a(y z)+x(b z-y z+c y-y z)=0$
$\Rightarrow a y z+b z x+c y x=2 x y z$
$\Rightarrow \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$
109 (a)
Given,
$\left|\begin{array}{ccc}1 & \cos (\alpha-\beta) & \cos \alpha \\ \cos (\alpha-\beta) & 1 & \cos \beta \\ \cos \alpha & \cos \beta & 1\end{array}\right|$ is symmetric
determinant.
\therefore Its value is
$1+2 \cos (\alpha-\beta) \cos \alpha \cos \beta$
$-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2}(\alpha-\beta)$
$=1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos (\alpha-\beta)$
$[\cos (\alpha-\beta)-2 \cos \alpha \cos \beta]$
$=1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos (\alpha-\beta)$
$[\cos (\alpha-\beta)-\cos (\alpha+\beta)-\cos (\alpha-\beta)]$
$=1-\cos ^{2} \alpha-\cos ^{2} \beta+\cos (\alpha-\beta) \cos (\alpha+\beta)$
$=1-\cos ^{2} \alpha-\cos ^{2} \beta$
$+\cos ^{2} \alpha \cos ^{2} \beta-\sin ^{2} \alpha \sin ^{2} \beta$
$=1-\cos ^{2} \alpha-\cos ^{2} \beta\left(1-\cos ^{2} \alpha\right)-\sin ^{2} \alpha \sin ^{2} \beta$
$=\left(1-\cos ^{2} \alpha\right)\left(1-\cos ^{2} \beta\right)-\sin ^{2} \alpha \sin ^{2} \beta$
$=\sin ^{2} \alpha \sin ^{2} \beta-\sin ^{2} \alpha \sin ^{2} \beta=0$
110 (d)
We have,
$\Delta=\left|\begin{array}{ccc}2 \sin A \cos A & \sin C & \sin B \\ \sin C & 2 \sin B \cos B & \sin A \\ \sin B & \sin A & 2 \sin C \cos C\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}2 k a \cos A & k c & k b \\ k c & 2 k b \cos B & k a \\ k b & k a & 2 k c \cos C\end{array}\right|$ [Using:
Sine rule]
$\Rightarrow \Delta=k^{3}\left|\begin{array}{ccc}2 a \cos A & c & b \\ c & 2 b \cos B & a \\ b & a & 2 c \cos C\end{array}\right|$
$\Rightarrow \Delta$
$=k^{3} \left\lvert\, \begin{array}{ll}a \cos A+a \cos A & a \cos B+b \cos A \\ a \cos B+b \cos A & b \cos B+b \cos B \\ c \cos A+a \cos C & b \cos C+c \cos B\end{array}\right.$
$c \cos t$ $b \cos ($ $c \cos ($
$\Rightarrow \Delta=k^{3}\left|\begin{array}{ccc}\cos A & a & 0 \\ \cos B & b & 0 \\ \cos C & c & 0\end{array}\right|\left|\begin{array}{lll}a & \cos A & 0 \\ b & \cos B & 0 \\ c & \cos C & 0\end{array}\right|$
$\Rightarrow \Delta=k^{3} \times 0 \times 0=0$
111 (d)
Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$ and taking common
$(a+b+c)$ from R_{1}, we get
$=(a+b+c)\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 b & b-c-a & 0 \\ 2 c & 0 & c-a-b\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$,
$=(a+b+c)\left|\begin{array}{ccc}1 & 0 & 0 \\ 2 b & -b-c-a & -2 b \\ 2 c & 0 & -a-b-c\end{array}\right|$
$=(c+b+c)[(-b-c-a)(-a-b-c)]$
$=(a+b+c)^{3}$
112 (b)
We know that
$|A B|=|A||B|$
$\Rightarrow A B=0$
$\Rightarrow|A B|=0$
$\Rightarrow|A||B|=0$
\Rightarrow either $|A|=0$ or, $|B|=0$
113 (a)
The given system of equations will have a unique solution, if
$\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & k\end{array}\right| \neq 0 \Rightarrow k \neq 0$
114 (a)
$\therefore a_{1}, a_{2}, \ldots, a_{n}$ are in GP.
$\Rightarrow a_{n}, a_{n}+2, a_{n+4}, \ldots$ are also in GP.
Now, $\left(a_{n+2}\right)^{2}=a_{n} \cdot a_{n+4}$
$\Rightarrow 2 \log \left(a_{n+2}\right)=\log a_{n}+\log a_{n+4}$
Similarly, $2 \log \left(a_{n+8}\right)=\log a_{n+6}+\log a_{n+10}$
Now, $\Delta=\left|\begin{array}{ccc}\log a_{n} & \log a_{n+2} & \log a_{n+4} \\ \log a_{n+6} & \log a_{n+8} & \log a_{n+10} \\ \log a_{n+12} & \log a_{n+14} & \log a_{n+16}\end{array}\right|$
Applying $C_{2} \rightarrow 2 C_{2}-C_{1}-C_{3}$
$\left\lvert\, \begin{array}{cc}\log a_{n} & 2 \log a_{n+2}-\log a_{n}-\log a_{n+4} \\ \log a_{n+6} & 2 \log a_{n+8}-\log a_{n+6}-\log a_{n+10} \\ \log a_{n+12} & 2 \log a_{n+14}-\log a_{n+12}-\log a_{n+16}\end{array}\right.$
$=\left|\begin{array}{ccc}\log a_{n} & 0 & \log a_{n+4} \\ \log a_{n+6} & 0 & \log a_{n+10} \\ \log a_{n+12} & 0 & \log a_{n+16}\end{array}\right|=0$
116 (a)
We have,
Coefficient of x in $\left|\begin{array}{ccc}x & (1+\sin x)^{3} & \cos x \\ 1 & \log (1+x) & 2 \\ x^{2} & (1+x)^{2} & 0\end{array}\right|$ $=$ coefficient of x in
$=\left|\begin{array}{ccc}x & \left(1+x-\frac{x^{3}}{3!}+\cdots\right)^{3} & 1-\frac{x^{2}}{2!}+\cdots \\ 1 & x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \ldots & 2 \\ x^{2} & 1+2 x+x^{2} & 0\end{array}\right|$
$=$ Coefficient of x in $\left|\begin{array}{ccc}x & 1 & 1 \\ 1 & x & 2 \\ x^{2} & 1 & 0\end{array}\right|$
$=$ Coefficient of x in $\left[x(0-2)-\left(0-2 x^{2}\right)+\right.$
$1-x 3=-2$
119 (d)
On putting $x=0$ in the given equation, we get
$g=\left|\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1\end{array}\right|=9$
On differentiating given equation and then put $x=0$, we get
$f=-5$
120 (a)
In $\triangle A B C$, given $\left|\begin{array}{lll}1 & a & b \\ 1 & c & a \\ 1 & b & c\end{array}\right|=0$
$\Rightarrow 1\left(c^{2}-a b\right)-a(c-a)+b(b-c)=0$
$\Rightarrow a^{2}+b^{2}+c^{2}-a b-b c-c a=0$
$\Rightarrow 2 a^{2}+2 b^{2}+2 c^{2}-2 a b-2 b c-2 c a=0$
$\Rightarrow\left(a^{2}+b^{2}-2 a b\right)+\left(b^{2}+c^{2}-2 b c\right)$ $+\left(c^{2}+a^{2}-2 c a\right)=0$
$\Rightarrow(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0$
Here, sum of squares of three numbers can be zero, if and only, if $a=b=c$.
$\Rightarrow \triangle A B C$ is an equilateral triangle.
$\Rightarrow \angle A=\angle B=\angle C=60^{\circ}$
$\therefore \sin ^{2} A+\sin ^{2} B$

$$
\begin{aligned}
& +\sin ^{2} C \\
& =\sin ^{2} 60^{\circ}+\sin ^{2} 60^{\circ}+\sin ^{2} 60^{\circ}
\end{aligned}
$$

$$
=\left(\frac{3}{4}+\frac{3}{4}+\frac{3}{4}\right)=\frac{9}{4}
$$

122
$\Delta(-x)$
$=\left|\begin{array}{ccc}f(-x)+f(x) & 0 & x^{4} \\ 3 & f(-x)-f(x) & \cos x \\ x^{4} & -2 x & f(-x) f(x)\end{array}\right|$
$\left|\begin{array}{ccc}f(x)+f(-x) & 0 & x^{4} \\ 3 & f(x)-f(-x) & \cos x \\ x^{4} & -2 x & f(x) f(-x)\end{array}\right|$

$$
=-\Delta(x)
$$

So, $\Delta(x)$ is an odd function.
$\Rightarrow x^{4} \Delta(x)$ is an odd function
$\Rightarrow \int_{-2}^{2} x^{4} \Delta(x) d x=0$
123 (c)
$\left|\begin{array}{ccc}\cos (x-a) & \cos (x+a) & \cos x \\
\sin (x+a) & \sin (x-a) & \sin x \\
\cos a \tan x & \cos a \cot x & \operatorname{cosec} 2 x\end{array}\right|$

$|$| $\cos (x-a)+\cos (x-a)$ | $\cos (x+a)$ | $\cos x$ |
| :---: | :---: | :---: |
| $\sin (x+a)+\sin (x-a)$ | $\sin (x-a)$ | $\sin x$ |
| $\cos a(\tan x+\cot x)$ | $\cos a \cot x$ | $\operatorname{cosec} 2 x$ |

$=\left|\begin{array}{ccc}2 \cos x \cos a & \cos (x+a) & \cos x \\ 2 \sin x \cos a & \sin (x-a) & \sin x \\ \cos a\left(\frac{\tan ^{2} x+1}{\tan x}\right) & \cos a \cot x & \operatorname{cosec} 2 x\end{array}\right|$
$=2 \cos a\left|\begin{array}{ccc}\cos x & \cos (x+a) & \cos x \\ \sin x & \sin (x-a) & \sin x \\ \operatorname{cosec} 2 x & \cos a \cot x & \operatorname{cosec} 2 x\end{array}\right|=0$
[\because two columns are identical]
(a)

Since $(x-k)$ will be common from each row which vanish by putting $x=k$. Therefore,
$(x-k)^{r}$ will be a factor of $|A|$
(d)

Putting $x=0$ in the given determinant equation we get
$a_{0}=\left|\begin{array}{ccc}0 & -1 & 3 \\ 1 & 2 & -3 \\ -3 & 4 & 0\end{array}\right|$
$=1(0-9)+3(4+6)$
$=30-9=21$

Given, $\left|\begin{array}{lll}a & \cot \frac{A}{2} & \lambda \\ b & \cot \frac{B}{2} & \mu \\ c & \cot \frac{C}{2} & \gamma\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{lll}a & \frac{s(s-a)}{\Delta} & \lambda \\ b & \frac{s(s-b)}{\Delta} & \mu \\ c & \frac{s(s-c)}{\Delta} & \gamma\end{array}\right|=0$
$\left[\because \cot \frac{A}{2}=\frac{s(s-a)}{\sqrt{(s-a)(s-b)(s-c)}}=\frac{s(s-a)}{\Delta}\right]$
$\Rightarrow \frac{1}{r}\left|\begin{array}{lll}a & s-a & \lambda \\ b & s-b & \mu \\ c & s-c & \gamma\end{array}\right|=0 \quad$ where $r=\frac{\Delta}{s}$
Applying $C_{2} \rightarrow C_{2}+C_{1}$
$\Rightarrow \frac{1}{r}\left|\begin{array}{lll}a & s & \lambda \\ b & s & \mu \\ c & s & \gamma\end{array}\right|=0$
$\Rightarrow \frac{\Delta}{r^{2}}\left|\begin{array}{lll}a & 1 & \lambda \\ b & 1 & \mu \\ c & 1 & \gamma\end{array}\right|=0$
Applying $R_{1} \rightarrow R_{1}-R_{2}, R_{2} \rightarrow R_{2}-R_{3}$
$\Rightarrow \frac{\Delta}{r^{2}}\left|\begin{array}{ccc}a-b & 0 & \lambda-\mu \\ b-c & 0 & \mu-\gamma \\ c & 1 & \gamma\end{array}\right|=0$
$\Rightarrow \frac{\Delta}{r^{2}}[(b-c)(\lambda-\mu)-(\mu-\gamma)(a-b)]=0$
$\Rightarrow b(\lambda-\mu)-c(\lambda-\mu)-a(\mu-\gamma)+b(\mu-\gamma)=0$
$\Rightarrow-a(\mu-\gamma)+b(\lambda-\mu+\mu-\gamma)-c(\lambda-\mu)=0$
$\Rightarrow-a(\mu-\gamma)+b(\lambda-\gamma)-c(\lambda-\mu)=0$
$\Rightarrow a(\mu-\gamma)+b(\gamma-\lambda)+c(\lambda-\mu)=0$
129 (d)
Let $\Delta=\left|\begin{array}{lll}x+2 & x+3 & x+a \\ x+4 & x+5 & x+b \\ x+6 & x+7 & x+c\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C_{1}$, we get
$\Delta=\left|\begin{array}{lll}x+2 & 1 & x+a \\ x+4 & 1 & x+b \\ x+6 & 1 & x+c\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$
$\Rightarrow \Delta=\left|\begin{array}{ccc}x+2 & 1 & x+a \\ 2 & 0 & b-a \\ 4 & 0 & c-a\end{array}\right|$
$=-1(2 c-2 a-4 b+4 a)$
$\Rightarrow \Delta=2(2 b-c-a)$
Since, a, b, c are in AP.
$\therefore b=\frac{a+c}{2}$
$\therefore \Delta=2(a+c-c-a)$
$=0 \quad$ [from Eq. (i)]
130 (a)
$\left|\begin{array}{lll}\cos (A-P) & \cos (A-Q) & \cos (A-R) \\ \cos (B-P) & \cos (B-Q) & \cos (B-R) \\ \cos (C-P) & \cos (C-Q) & \cos (C-R)\end{array}\right|$
$\mid \cos A \cos P+\sin A \sin P \quad \cos A \cos Q+\sin A \operatorname{si}$
$=\cos B \cos P+\sin B \sin P \quad \cos B \cos Q+\sin B \operatorname{si}$
$\cos C \cos P+\sin C \sin P \quad \cos C \cos Q+\sin C$ si
The determinants can be rewritten as 8
determinants and the value of each of these 8 determinants is zero.
ie, $\cos P \cos Q \cos R\left|\begin{array}{lll}\cos A & \cos A & \cos A \\ \cos B & \cos B & \cos B \\ \cos C & \cos C & \cos C\end{array}\right|=0$
Similarly, other determinants can be shown zero.
131 (b)
We have, $\Delta(x)=\left|\begin{array}{ccc}x^{n} & \sin x & \cos x \\ n! & \sin \frac{n \pi}{2} & \cos \frac{n \pi}{2} \\ a & a^{2} & a^{3}\end{array}\right|$
$\frac{d^{n}}{d x^{n}}[\Delta(x)]=\left|\begin{array}{ccc}\frac{d^{n}}{d x^{n}} x^{n} & \frac{d^{n}}{d x^{n}} \sin x & \frac{d^{n}}{d x^{n}} \cos x \\ n! & \sin \left(\frac{n \pi}{2}\right) & \cos \left(\frac{n \pi}{2}\right) \\ a & a^{2} & a^{3}\end{array}\right|$
(\because Differentiation of R_{2} and R_{3} are zero)
$\left|\begin{array}{ccc}n! & \sin \left(x+\frac{n \pi}{2}\right) & \cos \left(x+\frac{n \pi}{2}\right) \\ n! & \sin \left(\frac{n \pi}{2}\right) & \cos \left(\frac{n \pi}{2}\right) \\ a & a^{2} & a^{3}\end{array}\right|$
$\Rightarrow\left[\Delta^{n}(x)\right]_{x=0}$
$=\left|\begin{array}{ccc}n! & \sin \left(0+\frac{n \pi}{2}\right) & \cos \left(0+\frac{n \pi}{2}\right) \\ n! & \sin \left(\frac{n \pi}{2}\right) & \cos \left(\frac{n \pi}{2}\right) \\ a & a^{2} & a^{3}\end{array}\right|$
$=\left|\begin{array}{ccc}n! & \sin \left(\frac{n \pi}{2}\right) & \cos \left(\frac{n \pi}{2}\right) \\ n! & \sin \left(\frac{n \pi}{2}\right) & \cos \left(\frac{n \pi}{2}\right) \\ a & a^{2} & a^{3}\end{array}\right|$
$=0\left(\because R_{1}\right.$ and R_{2} are identical)
132 (a)
Let, $\Delta=\left|\begin{array}{ccc}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 1 & \log _{y} z \\ \log _{z} x & \log _{z} y & 1\end{array}\right|$
$=1\left(1-\log _{z} y \log _{y} z\right)$

$$
-\log _{x} y\left(\log _{y} x-\log _{y} z \log _{z} x\right)
$$

$$
+\log _{x} z\left(\log _{y} x \log _{z} y-\log _{z} x\right.
$$

$=\left(1-\log _{z} z\right)-\log _{x} y\left(\log _{y} x-\log _{y} z \log _{z} x\right)$
$+\log _{x} z\left(\log _{y} x \log _{z} y-\log _{z} x\right)$
$=(1-1)-\left(1-\log _{x} y \log _{y} x\right)+\left(\log _{x} z \log _{z} x-\right.$
$1=0 \quad($ Since, $\log x y \log y x=1)$
$=0-(1-1)+(1-1)=0$
133 (b)
Given determinant is
$\Delta=\left|\begin{array}{lll}15! & 16! & 17! \\ 16! & 17! & 18! \\ 17! & 18! & 19!\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{2}$
$\Delta=\left|\begin{array}{lll}15! & 15 \times 15! & 16 \times 16! \\ 16! & 16 \times 16! & 17 \times 17! \\ 17! & 17 \times 17! & 18 \times 18!\end{array}\right|$
$=(15!)(16!)(17!)\left|\begin{array}{lll}1 & 15 & 16 \times 16 \\ 1 & 16 & 17 \times 17 \\ 1 & 17 & 18 \times 18\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}-R_{2}, R_{2} \rightarrow R_{2}-R_{3}$
$=(15!)(16!)(17!)\left|\begin{array}{ccc}0 & -1 & -33 \\ 0 & -1 & -35 \\ 1 & 17 & 18 \times 18\end{array}\right|$
$=2 \times(15!)(16!)(17!)$
134 (b)
We have,
$\left|\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4\end{array}\right|$
$\left|\begin{array}{cccc}1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20\end{array}\right|$
$\left.=\left|\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 5 & 9 \\ 0 & 3 & 9 & 19\end{array}\right| \begin{array}{c}\text { Applying } R_{2} \rightarrow R_{2}-R_{1}, \\ R_{3} \rightarrow R_{3}-R_{1}, R_{4} \rightarrow R_{4}-R_{1}\end{array}\right]$
$=\left|\begin{array}{ccc}1 & 2 & 3 \\ 2 & 5 & 9 \\ 3 & 9 & 19\end{array}\right|$
$=\left|\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 3 & 10\end{array}\right|\left[\begin{array}{c}\text { Applying } R_{2} \rightarrow R_{2}-2 R_{1} \\ R_{3} \rightarrow R_{3}-3 R_{1}\end{array}\right]$
$=(10-9)=1$
135 (c)
The homogenous linear system of equations is consistent ie, possesses trivial solution,
if $\Delta \equiv\left|\begin{array}{ccc}2 & 3 & 5 \\ 1 & k & 5 \\ k & -12 & -14\end{array}\right| \neq 0$
$\Rightarrow 2(-14 k+60)-3(-14-5 k)+5\left(-12-k^{2}\right)$

$$
\neq 0
$$

$\Rightarrow 5 k^{2}+13 k-102 \neq 0$
$\Rightarrow(5 k-17)(k+6) \neq 0$
$\Rightarrow k \neq-6, \frac{17}{5}$
136 (c)
We have,
$\left|\begin{array}{ccc}b^{2}+c^{2} & a b & a c \\ a b & c^{2}+a^{2} & b c \\ c a & c b & a^{2}+b^{2}\end{array}\right|$
$=\frac{1}{a b c}\left|\begin{array}{ccc}a\left(b^{2}+c^{2}\right) & a^{2} b & a^{2} c \\ a b^{2} & b\left(c^{2}+a^{2}\right) & b^{2} c \\ c^{2} a & c^{2} b & c\left(a^{2}+b^{2}\right)\end{array}\right|$
[Applying $R_{1} \rightarrow R_{1}(a), R_{2} \leftrightarrow R_{2}(b), R_{3} \leftrightarrow R_{3}(c)$]
$=\frac{1}{a b c} a b c\left|\begin{array}{ccc}b^{2}+c^{2} & a^{2} & a^{2} \\ b^{2} & c^{2}+a^{2} & b^{2} \\ c^{2} & c^{2} & a^{2}+b^{2}\end{array}\right|$
$=\left|\begin{array}{ccc}0 & -2 c^{2} & -2 b^{2} \\ b^{2} & c^{2}+a^{2} & b^{2} \\ c^{2} & c^{2} & a^{2}+b^{2}\end{array}\right|$ Applying $R_{1} \rightarrow R_{1}-$
$\left(R_{2}+R_{3}\right)$
$=4 a^{2} b^{2} c^{2}$
$\therefore k a^{2} b^{2} c^{2}=4 a^{2} b^{2} c^{2} \Rightarrow k=4$

137 (a)
We have,
$\left|\begin{array}{lll}y+z & x & y \\ z+x & z & x \\ x+y & y & z\end{array}\right|$
$=\left|\begin{array}{ccc}2(x+y+z) & x+y+z & x+y+z \\ z+x & z & x \\ x+y & y & z\end{array}\right| \begin{array}{r}\text { App } \\ R_{1} \rightarrow R_{1} .\end{array}$
$=(x+y+z)\left|\begin{array}{ccc}2 & 1 & 1 \\ z+x & z & x \\ x+y & y & z\end{array}\right|$
$=(x+y+z)\left|\begin{array}{ccc}0 & 1 & 1 \\ 0 & z & x \\ x-z & y & z\end{array}\right|$ Applying C_{1}
$\rightarrow C_{1}-C_{2}-C_{3}$
Hence, the repeating factor is $(z-x)$
138 (d)
$\left|\begin{array}{ccc}4+x^{2} & -6 & -2 \\ -6 & 9+x^{2} & 3 \\ -2 & 3 & 1+x^{2}\end{array}\right|$
$=\left(4+x^{2}\right)\left[\left(1+x^{2}\right)\left(9+x^{2}\right)-9\right]$
$+6\left[-6\left(1+x^{2}\right)+6\right]-2\left[-18+2\left(9+x^{2}\right)\right]$
$=\left(4+x^{2}\right)\left(10 x^{2}+x^{4}\right)-36 x^{2}-4 x^{2}$
$=40 x^{2}+4 x^{4}+10 x^{4}+x^{6}-40 x^{2}$
$=x^{4}\left(x^{2}+14\right)$
Which is not divisible by x^{5}.
139 (d)
Since, for $x=0$, the determinant reduces to the determinant of a skew-symmetric matrix of odd order which is always zero. Hence, $x=0$ is the solution of the given equation.
140 (c)
$\left|\begin{array}{ccc}b^{2}+c^{2} & a^{2} & a^{2} \\ b^{2} & c^{2}+a^{2} & b^{2} \\ c^{2} & c^{2} & a^{2}+b^{2}\end{array}\right|$
$=-2\left|\begin{array}{ccc}0 & c^{2} & b^{2} \\ b^{2} & c^{2}+a^{2} & b^{2} \\ c^{2} & c^{2} & a^{2}+b^{2}\end{array}\right|\left[R_{1} \rightarrow R_{1}-\right.$
$\left.\left(R_{2}+R_{3}\right)\right]$
$\left.=-2\left|\begin{array}{ccc}0 & c^{2} & b^{2} \\ b^{2} & a^{2} & 0 \\ c^{2} & 0 & a^{2}\end{array}\right| \quad \begin{array}{l}R_{2} \rightarrow R_{2}-R_{1} \\ R_{3} \rightarrow R_{3}-R_{1}\end{array}\right)$
$=-2\left[-c^{2}\left(b^{2} a^{2}-0\right)+b^{2}\left(0-a^{2} c^{2}\right)\right]$
$=-2\left[-2 a^{2} b^{2} c^{2}\right]=4 a^{2} b^{2} c^{2}$
141 (c)
We have, $\left|\begin{array}{ccc}p & b & c \\ p+a & q+b & 2 c \\ a & b & r\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{lll}p & b & c \\ p & b & c \\ a & b & r\end{array}\right|+\left|\begin{array}{lll}p & b & c \\ a & q & c \\ a & b & r\end{array}\right|=0$
$\Rightarrow 0+\left|\begin{array}{lll}p & b & c \\ a & q & c \\ a & b & r\end{array}\right|=0$
$\Rightarrow p(q r-b c)-b(a r-a c)-c(a b-a q)=0$
$\Rightarrow-p q r+p b c+b a r+a c q=0$
On simplifying, we get
$\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}=2$
142
(d)

Let $\Delta=\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & 2 a+b+c & b \\ c & a & a+2 b+c\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$
$=\left|\begin{array}{ccc}2(a+b+c) & a & b \\ 2(a+b+c) & 2 a+b+c & b \\ 2(a+b+c) & a & a+2 b+c\end{array}\right|$
$=2(a+b+c)\left|\begin{array}{ccc}1 & a & b \\ 1 & 2 a+b+c & b \\ 1 & a & a+2 b+c\end{array}\right|$
$=2(a+b+c)\left|\begin{array}{ccc}0 & -(a+b+c) & 0 \\ 0 & (a+b+c) & -(a+b+c) \\ 1 & a & a+2 b+c\end{array}\right|$
$\binom{R_{1} \rightarrow R_{1}-R_{2}}{R_{2} \rightarrow R_{2}-R_{3}}$
$=2(a+b+c)^{3}\left|\begin{array}{ccc}0 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & a & a+2 b+c\end{array}\right|$
$=2(a+b+c)^{3}$
143 (c)
Since, $-1 \leq x<0$
$\therefore[x]=-1$
Also, $0 \leq y<1 \Rightarrow[y]=0$
and $1 \leq z<2 \Rightarrow[z]=1$
\therefore Given determinant becomes
$\left|\begin{array}{ccc}0 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & 0 & 2\end{array}\right|=1=[z]$
144 (b)
For singular matrix,
$\left[\begin{array}{ccc}-x & x & 2 \\ 2 & x & -x \\ x & -2 & -x\end{array}\right]=0$
Applying $C_{2} \rightarrow C_{2}+C_{1}, C_{3} \rightarrow C_{3}+C_{1}$
$\Rightarrow\left|\begin{array}{ccc}-x & 0 & 2-x \\ 2 & 2+x & 2-x \\ x & x-2 & 0\end{array}\right|=0$
$\Rightarrow(2-x)\left|\begin{array}{ccc}-x & 0 & 1 \\ 2 & 2+x & 1 \\ x & x-2 & 0\end{array}\right|=0$
Applying $R_{2} \rightarrow R_{2}-R_{1}$
$\Rightarrow(2-x)\left|\begin{array}{ccc}-x & 0 & 1 \\ 2+x & 2+x & 0 \\ x & x-2 & 0\end{array}\right|=0$
$\Rightarrow(2-x)(2+x)\left|\begin{array}{ccc}-x & 0 & 1 \\ 1 & 1 & 0 \\ x & x-2 & 0\end{array}\right|=0$
$\Rightarrow(2-x)(2+x)(x-2-x)=0$
$\Rightarrow x=2,-2$
\therefore
Given matrix is non -
singular for all x other than 2 and -2 .
146 (c)
$\left|\begin{array}{ccc}a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1\end{array}\right|$
$+(-1)^{n}\left|\begin{array}{ccc}a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ a & -b & c\end{array}\right|^{1}$
$=\left|\begin{array}{ccc}a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1\end{array}\right|$

$$
+(-1)^{n}\left|\begin{array}{llc}
a+1 & a-1 & a \\
b+1 & b-1 & -b \\
c-1 & c+1 & c
\end{array}\right|
$$

$==\left|\begin{array}{ccc}a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1\end{array}\right|$

$$
+(-1)^{n+1}\left|\begin{array}{ccc}
a+1 & a & a-1 \\
b+1 & -b & b-1 \\
c-1 & c & c+1
\end{array}\right|
$$

$C_{2} \leftrightarrow C_{3}$
$=\left(1+(-1)^{n+2}\right)\left|\begin{array}{ccc}a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1\end{array}\right|$
This is equal to zero only, if $n+2$ is odd ie, n is an odd integer.
147 (d)
Given that, $\left|\begin{array}{lll}\frac{1}{a} & a^{2} & b c \\ \frac{1}{b} & b^{2} & c a \\ \frac{1}{c} & c^{2} & a b\end{array}\right|=\frac{1}{a b c}\left|\begin{array}{lll}1 & a^{3} & a b c \\ 1 & b^{3} & a b c \\ 1 & c^{3} & a b c\end{array}\right|$
$=\frac{a b c}{a b c}\left|\begin{array}{lll}1 & a^{3} & 1 \\ 1 & b^{3} & 1 \\ 1 & c^{3} & 1\end{array}\right|$
$=0$
(\because columns C_{1} and C_{3} are same)
148 (b)
Given that, $\left|\begin{array}{ccc}x & -6 & -1 \\ 2 & -3 x & x-3 \\ -3 & 2 x & x+2\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}x & -6 & -1 \\ 5 & -5 x & -5 \\ -3 & 2 x & x+2\end{array}\right|=0\left(R_{2} \rightarrow R_{2}-R_{3}\right)$
$\Rightarrow 5\left|\begin{array}{ccc}x & -6 & -1 \\ 1 & -x & -1 \\ -3 & 2 x & x+2\end{array}\right|=0$
$\Rightarrow x\left(-x^{2}-2 x+2 x\right)-1(-6 x-12+2 x)$

$$
-3(6-x)=0
$$

$\Rightarrow-x^{3}+7 x-6=0$
$\Rightarrow x^{3}-7 x+6=0$
$\Rightarrow(x-1)(x-2)(x+3)=0$
$\Rightarrow x=1,2,-3$
\therefore Option (b) is correct.
149 (a)
$\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ (a+1)^{2} & (b+1)^{2} & (c+1)^{2} \\ (a-1)^{2} & (b-1)^{2} & (c-1)^{2}\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{3}$
$=\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ 4 a & 4 b & 4 c \\ (a-1)^{2} & (b-1)^{2} & (c-1)^{2}\end{array}\right|$
$=4\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a & b & c \\ (a-1)^{2} & (b-1)^{2} & (c-1)^{2}\end{array}\right|$
Applying $R_{3} \rightarrow R_{3}-\left(R_{1}-2 R_{2}\right)$
$=4\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1\end{array}\right|$
151 (a)
Given, $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]$
$\Rightarrow|A|=5-6=-1$
$\therefore\left|A^{2009}-5 A^{2008}\right|=\left|A^{2008}\right||A-5 I|$
$=(-1)^{2008}\left|\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]-\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]\right|$
$=\left|\begin{array}{cc}-4 & 2 \\ 3 & 0\end{array}\right|=-6$
152
(b)
$f(1)=\left|\begin{array}{ccc}-2 & -16 & -78 \\ -4 & -48 & -496 \\ 1 & 2 & 3\end{array}\right|=2928$
$f(3)=\left|\begin{array}{ccc}0 & 0 & 0 \\ -2 & -32 & -392 \\ 1 & 2 & 3\end{array}\right|=0$
and $f(5)=\left|\begin{array}{ccc}2 & 32 & 294 \\ 0 & 0 & 0 \\ 1 & 2 & 3\end{array}\right|=0$
$\therefore f(1) \cdot f(3)+f(3) \cdot f(5)+f(5) \cdot f(1)$
$=f(1) \cdot 0+0+f(1) \cdot 0=0=f(3)$ or $f(5)$
153 (d)
$\Delta=(x+a+b+c)\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right| \quad\left[C_{1}\right.$

$$
\left.\rightarrow C_{1}+C_{2}+C_{3}\right]
$$

$=(x+a+b+c)(a+b+c)\left|\begin{array}{lll}1 & 1 & b+c \\ 1 & 1 & c+b \\ 1 & 1 & a+b\end{array}\right|$
$=0 \quad\left[C_{2} \rightarrow C_{2}+C_{3}\right]$
Hence, x may have any value.
154 (c)
It has a non-zero solution, if $\left|\begin{array}{ccc}1 & k & -1 \\ 3 & -k & -1 \\ 1 & -3 & 1\end{array}\right|=0$
$\Rightarrow 1(-k-3)-k(3+1)-1(-9+k)=0$
$\Rightarrow-6 k+6=0$
$\Rightarrow k=1$
155
(a)

Given, $\left|\begin{array}{lll}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{lll}x & x^{2} & 1 \\ y & y^{2} & 1 \\ z & z^{2} & 1\end{array}\right|+\left|\begin{array}{lll}x & x^{2} & x^{3} \\ y & y^{2} & y^{3} \\ z & z^{2} & z^{3}\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{lll}x & x^{2} & 1 \\ y & y^{2} & 1 \\ Z & z^{2} & 1\end{array}\right|+x y z\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|=0$
$\Rightarrow(1+x y z)\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|=0$
$\Rightarrow 1+x y z=0$
$\Rightarrow x y z=-1$
156 (a)
$\left|\begin{array}{ccc}{[e]} & {[\pi]} & {\left[\pi^{2}-6\right]} \\ {[\pi]} & {\left[\pi^{2}-6\right]} & {[e]} \\ {\left[\pi^{2}-6\right]} & {[e]} & {[\pi]}\end{array}\right|$
$=\left|\begin{array}{lll}2 & 3 & 3 \\ 3 & 3 & 2 \\ 3 & 2 & 3\end{array}\right|$
$=2(9-4)-3(9-6)+3(6-9)$
$=10-9-9$
$=-8$
157 (b)
We have,
$\Delta=\left|\begin{array}{ccc}a & b & a x+b \\ b & c & b x+c \\ a x+b & b x+c & 0\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}a & b & a x+b \\ b & c & b x+c \\ 0 & 0 & -\left(a x^{2}+2 b x+c\right)\end{array}\right|$,
$\left[\begin{array}{c}\text { Applying } R_{3} \rightarrow R_{3}-x \\ R_{1}-R_{2}\end{array}\right]$
$\Rightarrow \Delta=\left(b^{2}-a c\right)\left(a c^{2}+2 b x+c\right)$
$\therefore \Delta=0$
$\Rightarrow b^{2}=a c$ or, $a x^{2}+2 b x+c=0$
$\Rightarrow a, b, c$ are in G.P. or, x is a root of the equation
$a x^{2}+2 b x+c=0$
(d)

All statements are false.
159 (b)
Applying $C_{3} \rightarrow C_{3}-C_{1}$, we get
$\Delta=\left|\begin{array}{ccc}1 & \alpha & \alpha^{2}-1 \\ \cos (p-d) a & \cos p a & 0 \\ \sin (p-d) a & \sin p a & 0\end{array}\right|$
$=\left(\alpha^{2}-1\right)\{\sin p a \cos (p-d) a$

$$
-\cos p a \sin (p-d) a\}
$$

$=\left(\alpha^{2}-1\right) \sin \{-(p-d) a+p a\}$
$\Rightarrow \Delta=\left(\alpha^{2}-1\right) \sin d a$
Which is independent of p.
160 (c)
Given, $\left|\begin{array}{lll}a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x\end{array}\right|=0$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$ and taking common
(3a-x)from C_{1}, we get

$$
\begin{aligned}
& (3 a-x)\left|\begin{array}{ccc}
1 & a-x & a-x \\
1 & a+x & a-x \\
1 & a-x & a+x
\end{array}\right|=0 \\
& \Rightarrow(3 a-x)\left|\begin{array}{ccc}
1 & a-x & a-x \\
0 & 2 x & 0 \\
0 & 0 & 2 x
\end{array}\right| \\
& \quad=0\left[\begin{array}{cc}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array}\right] \\
& \Rightarrow(3 a-x)\left(4 x^{2}\right)=0 \\
& \Rightarrow x=3 a, 0
\end{aligned}
$$

161 (a)
Since, the given equations are consistent.
$\therefore\left|\begin{array}{ccc}2 & 3 & 1 \\ 3 & 1 & -2 \\ a & 2 & -b\end{array}\right|=0$
$\Rightarrow 2(-b+4)-3(-3 b+2 a)+1(6-a)=0$
$\Rightarrow-2 b+8+9 b-6 a+6-a=0$
$\Rightarrow 7 b-7 a=-14$
$\Rightarrow a-b=2$
162 (d)
Given,
$\Delta(x)=\left|\begin{array}{ccc}1 & \cos x & 1-\cos x \\ 1+\sin x & \cos x & 1+\sin x-\cos x \\ \sin x & \sin x & 1\end{array}\right|$
Applying $C_{3} \rightarrow C_{3}+C_{2}-C_{1}$
$=\left|\begin{array}{ccc}1 & \cos x & 0 \\ 1+\sin x & \cos x & 0 \\ \sin x & \sin x & 1\end{array}\right|$
$=\cos x-\cos x(1+\sin x)$
$=-\cos x \sin x$
$=-\frac{1}{2} \sin 2 x$
$\therefore \int_{0}^{\pi / 2} \Delta x d x=-\frac{1}{2} \int_{0}^{\pi / 2} \sin 2 x d x$
$=-\frac{1}{2}\left[-\frac{\cos 2 x}{2}\right]_{0}^{\pi / 2}=-\frac{1}{2}$
163 (c)
For the non-trivial solution, we must have
$\left|\begin{array}{lll}1 & a & a \\ b & 1 & b \\ c & c & 1\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}1-a & 0 & a \\ b-1 & 1-b & b \\ 0 & c-1 & 1\end{array}\right|=0$
$\left[\begin{array}{c}\text { Applying } C_{1} \rightarrow C_{1}-C_{2} ; \\ C_{2} \rightarrow C_{2}-C_{3}\end{array}\right]$
$\Rightarrow(1-a)[(1-b)-b(c-1)]+a(b-1)(c-1)$ $=0$
$\Rightarrow \frac{1}{c-1}+\frac{b}{b-1}+\frac{a}{a-1}=0$
$\Rightarrow\left(\frac{1}{c-1}+1\right)+\frac{b}{b-1}+\frac{a}{a-1}=1$
$\Rightarrow \frac{c}{c-1}+\frac{b}{b-1}+\frac{a}{a-1}=1$
$\Rightarrow \frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=-1$
164 (d)
Given system equations are
$3 x-2 y+z=0$
$\lambda x-14 y+15 z=0$ and $x+2 y-3 z=0$
The system of equations has infinitely many (non-
trivial solutions, if $\Delta=0$.
$\Rightarrow \Delta=\left|\begin{array}{ccc}3 & -2 & 1 \\ \lambda & -14 & 15 \\ 1 & 2 & -3\end{array}\right|=0$
$\Rightarrow 3(42-30)-\lambda(6-2)+1(-30+14)=0$
$\Rightarrow 36-4 \lambda-16=0$
$\Rightarrow \lambda=5$
166 (c)
Since, $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$
$\Rightarrow \sin x\left(\sin ^{2} x-\cos ^{2} x\right)$
$-\cos x\left(\cos x \sin x-\cos ^{2} x\right)$
$+\cos x\left(\cos ^{2} x-\sin x \cos x\right)=0$
$\Rightarrow \sin x\left(\sin ^{2} x-\cos ^{2} x\right)$

$$
-2 \cos ^{2} x(\sin x-\cos x)=0
$$

$\Rightarrow(\sin x-\cos x)[\sin x(\sin x$
$\left.+\cos x)-2 \cos ^{2} x\right]=0$
$\Rightarrow(\sin x-\cos x)\left[\left(\sin ^{2} x-\cos ^{2} x\right)\right.$
$\left.+\left(\sin x \cos x-\cos ^{2} x\right)\right]=0$
$\Rightarrow(\sin x-\cos x)^{2}[\sin x+\cos x+\cos x]=0$
$\Rightarrow(\sin x-\cos x)^{2}(\sin x+2 \cos x)=0$
\Rightarrow Either $(\sin x-\cos x)^{2}=0$
or $\sin x+2 \cos x)=0$
\Rightarrow Either $\tan x=1$ or $\tan x=-2$
\Rightarrow Either $x=\frac{\pi}{4}$ or $\tan x=-2$
As $x \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right], \tan x \in[-1,1]$
Hence, real solution is only $x=\frac{\pi}{4}$
167 (a)
Applying $R_{1} \rightarrow R_{1}+R_{3}-2 R_{2}$, we get
$\Delta=\left|\begin{array}{cccc}0 & 0 & 0 & x+z-z y \\ 4 & 5 & 6 & y \\ 5 & 6 & 7 & z \\ x & y & z & 0\end{array}\right|$
$=-(x+z-2 y)\left|\begin{array}{ccc}4 & 5 & 6 \\ 5 & 6 & 7 \\ x & y & z\end{array}\right| \quad$ [Expanding along R_{1}]
$=-(x+z-2 y)\left|\begin{array}{ccc}0 & -1 & 6 \\ 0 & -1 & 7 \\ x-2 y+z & y-z & z\end{array}\right|$
$\left[\begin{array}{l}\text { Applying } C_{1} \rightarrow C_{1}+C_{3} \\ -2 C_{2} \text { and } C_{2} \rightarrow C_{2}-C_{3}\end{array}\right]$
$=-(x+z-2 y)^{2}\left|\begin{array}{ll}-1 & 6 \\ -1 & 7\end{array}\right|=(x-2 y+z)^{2}$

We have, $a=1+2+4+8+\ldots$ upto n terms
$=1\left(\frac{2^{n}-1}{2-1}\right)=2^{n}-1$
$b=1+3+9+\ldots$ upto n terms $=\frac{3^{n}-1}{2}$
and $c=1+5+25+\ldots$ upto n terms $=\frac{5^{n}-1}{4}$
$\therefore\left|\begin{array}{ccc}a & 2 b & 4 c \\ 2 & 2 & 2 \\ 2^{n} & 3^{n} & 5^{n}\end{array}\right|=2\left|\begin{array}{ccc}2^{n}-1 & 3^{n}-1 & 5^{n}-1 \\ 1 & 1 & 1 \\ 2^{n} & 3^{n} & 5^{n}\end{array}\right|$
$=2\left|\begin{array}{ccc}2^{n} & 3^{n} & 5^{n} \\ 1 & 1 & 1 \\ 2^{n} & 3^{n} & 5^{n}\end{array}\right| \quad\left[R_{1} \rightarrow R_{1}+R_{2}\right]$
$=2 \times 0=0 \quad[\therefore$ two rows are identical]
170 (d)
Let $\Delta=\left|\begin{array}{lll}c & 1 & 0 \\ 1 & c & 1 \\ 6 & 1 & c\end{array}\right|=c\left(c^{2}-1\right)-1(c-6)$
$=8 \cos ^{3} \theta-4 \cos \theta+6$
171 (b)

We have,

$\Delta=\left|\begin{array}{lll}1^{2} & 2^{2} & 3^{2} \\ 2^{2} & 3^{2} & 4^{2} \\ 3^{2} & 4^{2} & 5^{2}\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & 3 & 5 \\ 4 & 5 & 7 \\ 9 & 7 & 9\end{array}\right|$ Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow$
$C_{3}-C_{2}$
$\Rightarrow \Delta=\left|\begin{array}{lll}1 & 3 & 2 \\ 4 & 5 & 2 \\ 9 & 7 & 2\end{array}\right| \quad$ Applying $C_{3} \rightarrow C_{3}-C_{2}$
$\Rightarrow \Delta=2\left|\begin{array}{lll}1 & 3 & 1 \\ 4 & 5 & 1 \\ 9 & 7 & 1\end{array}\right|$
$\Rightarrow \Delta=2\left|\begin{array}{lll}1 & 3 & 1 \\ 3 & 2 & 0 \\ 8 & 4 & 0\end{array}\right|$ Applying $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow$
$R_{3}-R_{1}$
$\Rightarrow \Delta=2 \times-4=-8$
172 (a)
We have,
$\left|\begin{array}{lll}x & a & b \\ a & x & b \\ a & b & x\end{array}\right|$
$=\left|\begin{array}{ccc}x & a & b \\ a-x & x-a & 0 \\ a-x & b-a & x-b\end{array}\right|$
$\left[\begin{array}{c}\text { Applying } R_{2} \rightarrow R_{2}-R_{1} \\ R_{3} \rightarrow R_{3}-R_{1}\end{array}\right]$
$=(x-a)\left|\begin{array}{ccc}x & a & b \\ -1 & 1 & 0 \\ a-x & b-a & x-b\end{array}\right|$
$=(x-\alpha)\left|\begin{array}{ccc}x+a+b & a & b \\ 0 & 1 & 0 \\ 0 & b-a & x-b\end{array}\right|$
$\left[\begin{array}{c}\text { Applying } \\ C_{1} \rightarrow C_{1}+C_{2}+C_{3}\end{array}\right]$
$=(x-a)(x+a+b)(x-b) \quad[$ Expanding along
C_{1}]
173 (c)
We have,
$\Delta=\left|\begin{array}{ccc}{[x]+1} & {[y]} & {[z]} \\ {[x]} & {[y]+1} & {[z]} \\ {[x]} & {[y]} & {[z]+1}\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1 \\ {[x]} & {[y]} & {[z]+1}\end{array}\right|$
$\left[\begin{array}{c}\text { Applying } R_{1} \rightarrow R_{1}-R_{3} \\ R_{2} \rightarrow R_{2}-R_{3}\end{array}\right]$
$\Rightarrow \Delta=[z]+1+[y]+[x]=[x]+[y]+[z]+1$
Since maximum values of $[x],[y]$ and $[z]$ are 1,0 and 2 respectively
\therefore Maximum value of $\Delta=2+1+0+1=4$
174 (c)
We have,
$\left|\begin{array}{ccc}a & 2 b & 2 c \\ 3 & b & c \\ 4 & a & b\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}a-6 & 0 & 0 \\ 3 & b & c \\ 4 & a & b\end{array}\right|=0 \quad$ Applying $R_{1} \rightarrow R_{1}-2 R_{2}$
$\Rightarrow(a-6)\left(b^{2}-a c\right)=0 \Rightarrow b^{2}=a c \Rightarrow b^{3}=a b c$
176 (d)
We have, $\Delta \equiv\left|\begin{array}{lll}a & b & 0 \\ 0 & a & b \\ b & 0 & a\end{array}\right|=0$
$\Rightarrow \Delta \equiv a\left(a^{2}-0\right)-b\left(0-b^{2}\right)=a^{3}+b^{3}$
$\Rightarrow a^{3}+b^{3}=0 \Rightarrow\left(\frac{a}{b}\right)^{3}=-1$
$\therefore\left(\frac{a}{b}\right)$ is one of the cube roots of -1 .
(b)

We have,
$\left|\begin{array}{lll}b+c & c+a & a+b \\ a+b & b+c & c+a \\ c+a & a+b & b+c\end{array}\right|=k\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$
Applying $C_{1} \leftarrow C_{1}+\left(C_{2}+C_{3}\right)$ on LHS, we have
$\Rightarrow\left|\begin{array}{lll}2(a+b+c) & c+a & a+b \\ 2(a+b+c) & b+c & c+a \\ 2(a+b+c) & a+b & b+c\end{array}\right|=k\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$
$\Rightarrow 2\left|\begin{array}{lll}a+b+c & c+a & a+b \\ a+b+c & b+c & c+a \\ a+b+c & a+c & b+c\end{array}\right|=k\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{1}$ on LHS, we have
$\Rightarrow 2\left|\begin{array}{lll}a+b+c & -b & -c \\ a+b+c & -a & -b \\ a+b+c & -c & -a\end{array}\right|=k\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$ on LHS, we have
$\Rightarrow\left|\begin{array}{lll}a & -b & -c \\ c & -a & -b \\ b & -c & -a\end{array}\right|=k\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$
$\Rightarrow 2\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|=k\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$
$\therefore k=2$
178 (b)
Let $\Delta=\left|\begin{array}{lll}a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c\end{array}\right|=a b c-(a+b+c)+2$
$\because \Delta>0 \Rightarrow a b c+2>a+b+c$
$\Rightarrow a b c+2>3(a b c)^{1 / 3}$
$\left[\because \mathrm{AM}>\mathrm{GM} \Rightarrow \frac{a+b+c}{0}>(a b c)^{1 / 3}\right]$
$\Rightarrow x^{3}+2>3 x$, where $x=(a b c)^{1 / 3}$
$\Rightarrow x^{3}-3 x+2>0 \Rightarrow(x-1)^{2}(x+2)>0$
$\Rightarrow x+2>0 \Rightarrow x>-2 \Rightarrow(a b c)^{1 / 3}>-2$
$\Rightarrow a b c>-8$
179 (a)
Applying $R_{3} \rightarrow R_{3}-R_{1}(\cos \beta)+R_{2}(\sin \beta)$
$\left|\begin{array}{ccc}\cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ 0 & 0 & 1+\sin \beta-\cos \beta\end{array}\right|$
$=(1+\sin \beta-\cos \beta)\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)$
$=1+\sin \beta-\cos \beta$, which is independent of α
180 (d)
Given, $A=B^{-1} A B$
$\Rightarrow B A=A B$
$\therefore \operatorname{det}\left(B^{-1} A B\right)=\operatorname{det}\left(B^{-1} B A\right)=\operatorname{det}(A)$
181 (d)
Given, matrix is singular.
Therefore, $\left|\begin{array}{lrr}0 & 1 & -2 \\ -1 & 0 & 3 \\ \lambda & -3 & 0\end{array}\right|=0$
$\Rightarrow+1(0-6)+\lambda(3)=0$
$\Rightarrow-6+3 \lambda=0$
$\Rightarrow \lambda=2$
182 (a)
We have,
$|A|=\left|\begin{array}{llll}4 & 5 & 6 & x \\ 5 & 6 & 7 & y \\ 6 & 7 & 8 & z \\ x & y & z & 0\end{array}\right|$
$\Rightarrow|A|=\left|\begin{array}{cccc}4 & 5 & 6 & x \\ 10 & 12 & 14 & 2 \\ 6 & 7 & 8 & z \\ x & y & z & 0\end{array}\right|$ [Applying $R_{2} \rightarrow 2 R_{2}$]
$\Rightarrow|A|=\left|\begin{array}{llll}4 & 5 & 6 & x \\ 0 & 0 & 0 & 0 \\ 6 & 7 & 8 & z \\ x & y & z & 0\end{array}\right|$ [Applying $\left.R_{2} \rightarrow R_{2}-\left(R_{1}+R_{3}\right)\right]$
$\Rightarrow|A|=0 \quad[\because 2 y=x+z]$
183 (c)
Putting $r=1,2,3, \ldots, n$ and using the formula
$\sum 1=n$ and $\sum r=\frac{(n+1) n}{2}$
$\sum(2 r-1)=1+3+5+\ldots=n^{2}$
$\therefore \sum_{r=1}^{n} \Delta_{r}=\left|\begin{array}{ccc}n & n & n \\ n(n+1) & n^{2}+n+1 & n^{2}+n \\ n^{2} & n^{2} & n^{2}+n+1\end{array}\right|$

$$
=56
$$

Applying $C_{1} \rightarrow C_{1}-C_{3}, C_{2} \rightarrow C_{2}-C_{3}$
$\left|\begin{array}{ccc}0 & 0 & n \\ 0 & 1 & n^{2}+n \\ -n-1 & -n-1 & n^{2}+n+1\end{array}\right|$
$\Rightarrow n(n+1)=56$
$\Rightarrow n^{2}+n-56=0$
$\Rightarrow(n+8)(n-7)=0$
$\Rightarrow n=7 \quad(n \neq-8)$
184 (a)
$\left|\begin{array}{lll}1 & a & a^{2}-b c \\ 1 & b & b^{2}-a c \\ 1 & c & c^{2}-a b\end{array}\right|=$
$\left|\begin{array}{lll}0 & a-b & (a-b)(a+b+c)\end{array}\right|$
$\left|\begin{array}{ccc}0 & b-c & (b-c)(a+b+c) \\ 1 & c & c^{2}-a b\end{array}\right|$
$=(a-b)(b-c)\left|\begin{array}{ccc}0 & 1 & a+b+c \\ 0 & 1 & a+b+c \\ 1 & c & c^{2}-a b\end{array}\right|=0$
(\because rows R_{1} and R_{2} are identical)
185 (c)
$\because \operatorname{det}\left(M_{r}\right)=r^{2}-(r-1)^{2}=2 r-1$
$\therefore \operatorname{det}\left(M_{1}\right)+\operatorname{det}\left(M_{2}\right)+\ldots+\operatorname{det}\left(M_{2008}\right)$
$=1+3+5+\ldots+4015$
$=\frac{2008}{2}[2+(2008-1) 2]$
$=2008(2008)=(2008)^{2}$
186 (b)
$\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$
$=\left|\begin{array}{ccc}1+\omega+\omega^{2} & \omega & \omega^{2} \\ 1+\omega+\omega^{2} & \omega^{2} & 1 \\ 1+\omega+\omega^{2} & 1 & \omega\end{array}\right|\left(\because 1+\omega+\omega^{2}=0\right)$
$=\left|\begin{array}{ccc}0 & \omega & \omega^{2} \\ 0 & \omega^{2} & 1 \\ 0 & 1 & \omega\end{array}\right|$
$=0$
187 (a)
Given, $\Delta=\left|\begin{array}{ccc}1 & \omega^{n} & \omega^{2 n} \\ \omega^{n} & \omega^{2 n} & 1 \\ \omega^{2 n} & 1 & \omega^{n}\end{array}\right|$
$=1\left(\omega^{3 n}-1\right)-\omega^{n}\left(\omega^{2 n}-\omega^{2 n}\right)+\omega^{2 n}\left(\omega^{n}\right.$

$$
\left.-\omega^{4 n}\right)
$$

$=1(1-1)-0+\omega^{2 n}\left(\omega^{n}-\omega^{n}\right) \quad\left[\because \omega^{3}-1\right]$
$=0$
188 (a)
Given,
$\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|=\left|\begin{array}{ccc}1 & 0 & 0 \\ a & a-b & a-c \\ a^{3} & a^{3}-b^{3} & a^{3}-c^{3}\end{array}\right|$
$\left[C_{2} \rightarrow C_{1}-C_{2}, C_{3} \rightarrow C_{1}-C_{3}\right]$
$=(a-b)(a$
$-c)\left|\begin{array}{ccc}1 & 0 & 0 \\ a & 1 & 1 \\ a^{3} & a^{2}+a b+b^{2} & a^{2}+a c+c^{2}\end{array}\right|$
$=(a-b)(a-c)\left(c^{2}+a c-a b-b^{2}\right)$
$=(a-b)(b-c)(c-a)(a+b+c)$
189 (c)
We have,
$\Delta=\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}2(b+c) & 2(c+a) & 2(a+b) \\ b & c+a & b \\ c & c & a+b\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}$

$$
+2 R_{2}+R_{3}
$$

$\Rightarrow \Delta=2\left|\begin{array}{ccc}b+c & c+a & a+b \\ b & c+a & b \\ c & c & a+b\end{array}\right|$
$\Rightarrow \Delta=2\left|\begin{array}{ccc}b+c & c+a & a+b \\ -c & 0 & -a \\ -b & -a & 0\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$,

$$
R_{3} \rightarrow R_{3}-R_{1}
$$

$\Rightarrow \Delta=2\left\{(b+c)\left(0-a^{2}\right)-(c+a)(0-a b)\right.$ $+(a+b)(a c-0)\}$
$\Rightarrow \Delta=2\left\{-a^{2}(b+c)+a b(c+a)+a c(a+b)\right\}$
$\Rightarrow \Delta=2\left(-a^{2} b-a^{2} c+a b c+a^{2} b+a^{2} c+a b c\right)$
$\Rightarrow \Delta=4 a b c$

190 (d)
$\left|\begin{array}{cc}\log _{5} 729 & \log _{3} 5 \\ \log _{5} 27 & \log _{9} 25\end{array}\right|=\left|\begin{array}{cc}\log _{3} 3^{6} & \log _{3} 5 \\ \log _{5} 3^{3} & \log _{3^{2}} 5^{2}\end{array}\right|$
$=\left|\begin{array}{ll}6 \log _{5} 3 & \log _{3} 5 \\ 3 \log _{5} 3 & \frac{2}{2} \log _{3} 5\end{array}\right|$
$=6 \log _{5} 3 \log _{3} 5-3 \log _{5} 3 \log _{3} 5$
$=6-3=3$
And $\left|\begin{array}{ll}\log _{3} 5 & \log _{27} 5 \\ \log _{5} 9 & \log _{5} 9\end{array}\right|=\left|\begin{array}{ll}\log _{3} 5 & \log _{3^{3}} 5 \\ \log _{5} 3^{2} & \log _{5} 3^{2}\end{array}\right|$
$=\left|\begin{array}{cc}\log _{3} 5 & \frac{1}{3} \log _{3} 5 \\ 2 \log _{5} 3 & 2 \log _{5} 3\end{array}\right|$
$=2 \log _{5} 3 \log _{3} 5-\frac{2}{3} \log _{5} 3 \log _{3} 5$
$=2-\frac{2}{3}=\frac{4}{3}$
Now, $\left|\begin{array}{cc}\log _{5} 729 & \log _{3} 5 \\ \log _{5} 27 & \log _{9} 25\end{array}\right|\left|\begin{array}{ll}\log _{3} 5 & \log _{27} 5 \\ \log _{5} 9 & \log _{5} 9\end{array}\right|=$
3. $\frac{4}{3}=4$

Take option(d),
$\log _{3} 5 \cdot \log _{5} 81=\log _{3} 81=\log _{3} 3^{4}=4$
191 (c)
Given, $\left|\begin{array}{ccc}a-x & c & b \\ c & b-x & a \\ b & a & c-x\end{array}\right|=0$
Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$
$\Rightarrow(a+b+c-x)\left|\begin{array}{ccc}1 & 1 & 1 \\ c & b-x & a \\ b & a & c-x\end{array}\right|=0$
$\Rightarrow(a+b+c-x)\left|\begin{array}{ccc}1 & 0 & 0 \\ c & b-x-c & a-c \\ b & a-b & c-x-b\end{array}\right|=0$
$\Rightarrow(a+b+c-x)[1(b-x-c)(c-x-b)$
$-(a-c)(a-b)]=0$
$\Rightarrow(a+b+c-x)\left[b c-x b-b^{2}-x c+x^{2}+b x\right.$
$-c^{2}+c x+b c$
$\left.-\left(a^{2}-a b-a c+b c\right)\right]=0$
$\Rightarrow(a+b+c-x)\left[x^{2}-a^{2}-b^{2}-c^{2}+a b+b c\right.$
$+c a]=0$
$\Rightarrow x=a+b+c$ or x^{2}
$=a^{2}+b^{2}+c^{2}+a b+b c+c a$
$\Rightarrow x=0$ or $x^{2}=a^{2}+b^{2}+c^{2}+\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right)$
$\Rightarrow x=0$ or $x= \pm \sqrt{\frac{3}{2}\left(a^{2}+b^{2}+c^{2}\right)}$
192 (d)
We have,
$\Delta=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a b c \times 0$
193 (a)
Applying $R_{1} \rightarrow R_{1}+R_{3}$, we get
$\left|\begin{array}{ccc}1-i & \omega^{2}+\omega & \omega^{2}-1 \\ 1-i & -1 & \omega^{2}-1 \\ -i & -1+\omega-i & -1\end{array}\right|=0$
$\left[\therefore \omega^{2}+\omega=-1\right.$, so R_{1} and R_{2} become identical]
194 (a)
$\sum_{n=1}^{N} U_{n}=\left|\begin{array}{ccc}\sum n & 1 & 5 \\ \sum n^{2} & 2 N+1 & 2 N+1 \\ \sum n^{3} & 3 N^{2} & 3 N\end{array}\right|$
$=\left|\begin{array}{ccc}\frac{N(N+1)}{2} & 1 & 5 \\ \frac{N(N+1)(2 N+1)}{6} & 2 N+1 & 2 N+1 \\ \left(\frac{N(N+1)}{2}\right)^{2} & 3 N^{2} & 3 N\end{array}\right|$
$=\frac{N(N+1)}{12}\left|\begin{array}{ccc}6 & 1 & 5 \\ 4 N+2 & 2 N+1 & 2 N+1 \\ 3 N(N+1) & 3 N^{2} & 3 N\end{array}\right|$
Applying $C_{3} \rightarrow C_{3}+C_{2}$
$=\frac{N(N+1)}{12}\left|\begin{array}{ccc}6 & 1 & 6 \\ 4 N+2 & 2 N+1 & 4 N+2 \\ 3 N(N+1) & 3 N^{2} & 3 N(N+1)\end{array}\right|$
$=0(\because$ two columns are identical)
195 (c)
$\left[\begin{array}{ccc}215 & 342 & 511 \\ 6 & 7 & 8 \\ 36 & 49 & 54\end{array}\right]$
$=215(378-392)-342(324-288)$
$+511(294-252)$
$=-3010-12312+21462=6140$
Which is exactly divisible by 20
196 (a)
$\operatorname{det}\left(A^{-1} \operatorname{adj} A\right)=\operatorname{det}\left(A^{-1}\right) \operatorname{det}(\operatorname{adj} A)$
$=(\operatorname{det} A)^{-1}(\operatorname{det} A)^{3-1}=\operatorname{det} A$
197 (d)
$A=\left|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right|$
$=1\left(1+\sin ^{2} \theta\right)-\sin \theta(-\sin \theta+\sin \theta)+1\left(\sin ^{2} \theta\right.$

$$
+1)
$$

$=2\left(1+\sin ^{2} \theta\right)$
Since, the maximum and minimum value of $\sin ^{2} \theta$ is 1 and 0 .
$\therefore|A| \in[2,4]$
198 (d)
Since, the first column consists of sum of two terms, second column consists of sum of three terms and third column consists of sum four terms.
$\therefore n=2 \times 3 \times 4=24$
199 (c)
Given $, a_{1}, a_{2}, a_{3}, \ldots \in G P$
$\Rightarrow \log a_{1}, \log a_{2}, \ldots \in \mathrm{AP}$
$\Rightarrow \log a_{n}, \log a_{n+1}, \log a_{n+2}, \ldots \in \mathrm{AP}$
$\Rightarrow \log a_{n+1}=\frac{\log a_{n}+\log a_{n+2}}{2}$
Similarly, $\log a_{n+4}=\frac{\log a_{n+3}+\log a_{n+5}}{2}$
and $\log a_{n+7}=\frac{\log a_{n+6}+\log a_{n+8}}{2}$
Given, $\Delta=\left|\begin{array}{lll}\log a_{n} & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8}\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-\frac{C_{1}+C_{3}}{2}$
$\Delta=\left|\begin{array}{ccc}\log a_{n} & 0 & \log a_{n+2} \\ \log a_{n+3} & 0 & \log a_{n+5} \\ \log a_{n+6} & 0 & \log a_{n+8}\end{array}\right|=0$
200 (a)
$\left|\begin{array}{ccc}1 & \omega & -\omega^{2} / 2 \\ 1 & 1 & 1 \\ 1 & -1 & 0\end{array}\right|=-\frac{1}{2}\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ 1 & 1 & -2 \\ 1 & -1 & 0\end{array}\right|$
$=-\frac{1}{2}\left|\begin{array}{ccc}1+\omega+\omega^{2} & \omega & \omega^{2} \\ 0 & 1 & -2 \\ 0 & -1 & 0\end{array}\right| \quad\left(C_{1} \rightarrow C_{1}+C_{2}+\right.$
C_{3})
$=-\frac{1}{2}\left|\begin{array}{ccc}0 & \omega & \omega^{2} \\ 0 & 1 & -2 \\ 0 & -1 & 0\end{array}\right| \quad\left(\because 1+\omega+\omega^{2}=0\right)$
$=0$
201 (a)
$\left|\begin{array}{lll}\log e & \log e^{2} & \log e^{3} \\ \log e^{2} & \log e^{3} & \log e^{4} \\ \log e^{3} & \log e^{4} & \log e^{5}\end{array}\right|$
$\mid \log e^{3} \quad \log e^{4} \quad \log e^{5}$

$$
=\left|\begin{array}{cll}
\log e & 2 \log e & 3 \log e \\
2 \log e & 3 \log e & 4 \log e \\
3 \log e & 4 \log e & 5 \log e
\end{array}\right|
$$

$=\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right|=\left|\begin{array}{lll}1 & 1 & 1 \\ 2 & 1 & 1 \\ 3 & 1 & 1\end{array}\right|$
(Using $C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{2}$)
$=0[\therefore$ two columns are identical $]$
202 (b)

$$
\left|\begin{array}{ccc}
\sqrt{13}+\sqrt{3} & 2 \sqrt{5} & \sqrt{5} \\
\sqrt{15}+\sqrt{26} & 5 & \sqrt{10} \\
3+\sqrt{65} & \sqrt{15} & 5
\end{array}\right|
$$

$$
=\left|\begin{array}{ccc}
\sqrt{13} & 2 \sqrt{5} & \sqrt{5} \\
\sqrt{16} & 5 & \sqrt{10} \\
\sqrt{65} & \sqrt{15} & 5
\end{array}\right|+\left|\begin{array}{ccc}
\sqrt{3} & 2 \sqrt{5} & \sqrt{5} \\
\sqrt{15} & 5 & \sqrt{10} \\
3 & \sqrt{15} & 5
\end{array}\right|
$$

$$
=\sqrt{13} \cdot \sqrt{5} \cdot \sqrt{5}\left|\begin{array}{ccc}
1 & 2 & 3 \\
\sqrt{2} & \sqrt{5} & \sqrt{2} \\
\sqrt{5} & \sqrt{3} & \sqrt{5}
\end{array}\right|
$$

$+\sqrt{3} \cdot \sqrt{5} \cdot \sqrt{5}\left|\begin{array}{ccc}1 & 2 & 3 \\ \sqrt{5} & \sqrt{5} & \sqrt{2} \\ \sqrt{3} & \sqrt{3} & \sqrt{5}\end{array}\right|$
$=0+5 \sqrt{3}\left|\begin{array}{ccc}-1 & 2 & 1 \\ 0 & \sqrt{5} & \sqrt{2} \\ 0 & \sqrt{3} & \sqrt{5}\end{array}\right|=5 \sqrt{3}(\sqrt{6}-5)$
204 (d)
We can write $\Delta=\Delta_{1}+y_{1} \Delta_{2}$, where
$\Delta_{1}=\left|\begin{array}{lll}1 & 1+x_{1} y_{2} & 1+x_{1} y_{3} \\ 1 & 1+x_{2} y_{2} & 1+x_{2} y_{3} \\ 1 & 1+x_{3} y_{2} & 1+x_{3} y_{3}\end{array}\right|$
and $\Delta_{2}=\left|\begin{array}{lll}x_{1} & 1+x_{1} y_{2} & 1+x_{1} y_{3} \\ x_{2} & 1+x_{2} y_{2} & 1+x_{2} y_{3} \\ x_{3} & 1+x_{3} y_{2} & 1+x_{3} y_{3}\end{array}\right|$
In Δ_{1}, use $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$ so that,
$\Delta_{1}=\left|\begin{array}{lll}1 & x_{1} y_{2} & x_{1} y_{3} \\ 1 & x_{2} y_{2} & x_{2} y_{3} \\ 1 & x_{3} y_{2} & x_{3} y_{3}\end{array}\right|=0 \quad\left(\because C_{2}\right.$ and C_{3} are
proportional)
In $\Delta_{2}, C_{2} \rightarrow C_{2}-y_{2} C_{1}$ and $C_{3} \rightarrow C_{3}-y_{3} C_{1}$ to get $\Delta_{2}=\left|\begin{array}{lll}x_{1} & 1 & 1 \\ x_{2} & 1 & 1 \\ x_{3} & 1 & 1\end{array}\right|=0 \quad\left(\because C_{2}\right.$ and C_{3} are identical $)$ $\therefore \Delta=0$
206 (c)
Let $\Delta=\left|\begin{array}{lll}b^{2}-a b & b-c & b c-a c \\ a b-a^{2} & a-b & b^{2}-a b \\ b c-a c & c-a & a b-a^{2}\end{array}\right|$
$=(b-a)(b-a)\left|\begin{array}{lll}b & b-c & c \\ a & a-b & b \\ c & c-a & a\end{array}\right|$
$=(a-b)^{2}\left|\begin{array}{lll}b & b & c \\ a & a & b \\ c & c & a\end{array}\right| \quad\left(C_{2} \rightarrow C_{2}+C_{3}\right)$
$=0(\because$ two columns are same $)$
208 (d)
$\left|\begin{array}{ccc}x+1 & \omega & \omega^{2} \\ \omega & x+\omega^{2} & 1 \\ \omega^{2} & 1 & x+\omega\end{array}\right|$
$=\left|\begin{array}{ccc}x+1+\omega+\omega^{2} & \omega & \omega^{2} \\ x+1+\omega+\omega^{2} & x+\omega^{2} & 1 \\ x+1+\omega+\omega^{2} & 1 & x+\omega\end{array}\right|$
$\left.C_{1} \rightarrow C_{1}+C_{2}+C_{3}\right)$
$=x\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ 1 & x+\omega^{2} & 1 \\ 1 & 1 & x+\omega\end{array}\right|\left(\because 1+\omega+\omega^{2}=0\right.$
$=x\left[1\left\{\left(x+\omega^{2}\right)(x+\omega)-1\right\}+\omega\{1-(x+\omega)\}+\right.$
$\left.\omega^{2}\left\{1-\left(x+\omega^{2}\right)\right\}\right]$
$=x\left[\left(x^{2}+\omega x+\omega^{2} x+\omega^{3}-1+\omega-\omega x-\omega^{2}\right.\right.$

$$
\left.+\omega^{2}-\omega^{2} x-\omega^{4}\right]
$$

$=x^{3}\left(\because \omega^{3}=1\right)$
210
(b)

Given,$f(x)=\left|\begin{array}{ccc}x & 1+\sin x & \cos x \\ 1 & \log (1+x) & 2 \\ x^{2} & 1+x^{2} & 0\end{array}\right|$

$$
\begin{aligned}
& =x\left\{-2\left(1+x^{2}\right)\right\}-(1 \\
& \quad+\sin x)\left(-2 x^{2}\right) \\
& \quad+\cos x\left\{1+x^{2}-x^{2} \log (1+x)\right\} \\
& =-2 x-2 x^{3}+ \\
& \quad 2 x^{2} \\
& \\
& +2 x^{2} \sin x \\
& \\
& \quad+\cos x\left\{1+x^{2}-x^{2} \log (1+x)\right\}
\end{aligned}
$$

\therefore Coefficient of x in $f(x)=-2$.
211 (c)
Clearly, the degree of the given determinant is 3 .
So, there cannot be more that 3 linear factors.
Thus, the other factor is a numerical constant. Let it be λ. Then,
$\left|\begin{array}{ccc}-2 a & a+b & a+c \\ b+a & -2 b & b+c \\ c+a & c+b & -2 c\end{array}\right|=\lambda(a+b)(b+c)(c+a)$
Putting $a=0, b=1$ and $c=1$ on both sides, we get
$\left|\begin{array}{ccc}0 & 1 & 1 \\ 1 & -2 & 2 \\ 1 & 2 & -2\end{array}\right|=\lambda \times 1 \times 2 \times 1 \Rightarrow 2 \lambda \Rightarrow \lambda=4$
(b)

We have,
$\left|\begin{array}{ccc}1 & \omega^{2} & \omega^{5} \\ \omega^{3} & 1 & \omega^{4} \\ \omega^{5} & \omega^{4} & 1\end{array}\right|$
$=\left|\begin{array}{ccc}1 & 1 & \omega^{2} \\ 1 & 1 & \omega \\ \omega^{2} & \omega & 1\end{array}\right|$
$=2-\left(\omega^{2}-\omega\right)=2-(-1)=3$
213 (b)
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$ and taking common $(a+b+c)$ from C_{1}, we get
$(a+b+c)\left|\begin{array}{lll}1 & b & c \\ 1 & c & a \\ 1 & a & b\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get
$(a+b+c)\left|\begin{array}{ccc}1 & b & c \\ 0 & c-b & a-c \\ 0 & a-b & b-c\end{array}\right|$
$=(a+b+c)\left\{-(c-b)^{2}-(a-b)(a-c)\right\}$
$=-(a+b+c)\left\{a^{2}+b^{2}+c^{2}-a b-b c-c a\right\}$
$=-\frac{1}{2}(a+b+c)\left\{2 a^{2}+2 b^{2}+2 c^{2}-2 a b-2 b c-\right.$ 2ac\}
$\left.=-\frac{1}{2}(a+b+c)\{a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\}$
Which is always negative.
214 (c)
In a $\triangle A B C$, we have
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$\Rightarrow b \sin A=a \sin B c \sin A=a \sin C$
$\therefore\left|\begin{array}{ccc}a^{2} & b \sin A & c \sin A \\ b \sin A & 1 & \cos A \\ c \sin A & \cos A & 1\end{array}\right|$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
a^{2} & a \sin B & a \sin C \\
a \sin B & 1 & \cos A \\
a \sin C & \cos A & 1
\end{array}\right| \\
& =a^{2}\left|\begin{array}{ccc}
1 & \sin B & \sin C \\
\sin B & 1 & \cos A \\
\sin C & \cos A & 1
\end{array}\right| \\
& =a^{2}\left\{\left(1-\cos ^{2} A\right)\right. \\
& -\sin B(\sin B-\cos A \sin C) \\
& +\sin C(\sin B \cos A-\sin C)\} \\
& =a^{2}\left\{\sin ^{2} A-\sin ^{2} B\right. \\
& \left.+2 \sin B \sin C \cos A-\sin ^{2} C\right\} \\
& =a^{2}\left\{\sin (A+B) \sin (A-B)-\sin ^{2} C\right. \\
& +2 \cos A \sin B \sin C\} \\
& =a^{2}[\sin C\{\sin (A-B)-\sin C\} \\
& +2 \cos A \sin B \sin C] \\
& =a^{2}[\sin C\{\sin (A-B)-\sin (A+B)\} \\
& +2 \cos A \sin B \sin C] \\
& =a^{2}[\sin C \times-2 \cos A \sin B+2 \cos A \sin B \sin C] \\
& =0
\end{aligned}
$$

215 (b)
$\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|+\left|\begin{array}{lll}a & a^{2} & a^{3} \\ b & b^{2} & b^{3} \\ c & c^{2} & c^{3}\end{array}\right|$

$$
=0
$$

$\Rightarrow\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|+a b c\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|=0$
$\Rightarrow(1+a b c)\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|=0$
$\left[\therefore\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right| \neq 0\right]$
$\Rightarrow 1+a b c=0$
$\Rightarrow a b c=-1$
216 (b)
$\left|\begin{array}{ccc}x+\omega^{2} & \omega & 1 \\ \omega & \omega^{2} & 1+x \\ 1 & x+\omega & \omega^{2}\end{array}\right|=0$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$
$\left|\begin{array}{ccc}x & \omega & 1 \\ x & \omega^{2} & 1+x \\ x & x+\omega & \omega^{2}\end{array}\right|=0 \quad\left(\therefore 1+\omega+\omega^{2}=0\right)$
$\Rightarrow \quad x=0$ is one of the values of x which satisfy the above determinant equation.
217 (a)
We have,
$|A|=\left[\begin{array}{llll}4 & 5 & 6 & x \\ 5 & 6 & 7 & y \\ 6 & 7 & 8 & z \\ x & y & z & 0\end{array}\right]$
$\Rightarrow|A|=\left[\begin{array}{cccc}0 & 0 & 0 & x-2 y+z \\ 5 & 6 & 7 & y \\ 6 & 7 & 8 & z \\ x & y & z & 0\end{array}\right] \begin{gathered}\text { Applying } R_{1} \rightarrow R_{1} \\ -2 R_{2}+R_{3}\end{gathered}$
$\Rightarrow|A|=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 5 & 6 & 7 & y \\ 6 & 7 & 8 & z \\ x & y & z & 0\end{array}\right] \quad\left[\begin{array}{l}\because x, y, z \text { are in A.P. } \\ \therefore x-2 y+z=0\end{array}\right]$
$\Rightarrow|A|=0$
218 (a)
Given, $\Delta=\left|\begin{array}{lll}\left(e^{i \alpha}+e^{-i \alpha}\right)^{2} & \left(e^{i \alpha}-e^{-i \alpha}\right)^{2} & 4 \\ \left(e^{i \beta}+e^{-i \beta}\right)^{2} & \left(e^{i \beta}-e^{-i \beta}\right)^{2} & 4 \\ \left(e^{i \gamma}+e^{-i \gamma}\right)^{2} & \left(e^{i \gamma}-e^{-i \gamma}\right)^{2} & 4\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}-C_{2}$
$=\left|\begin{array}{lll}4 & \left(e^{i \alpha}-e^{-i \alpha}\right)^{2} & 4 \\ 4 & \left(e^{i \beta}-e^{-i \beta}\right)^{2} & 4 \\ 4 & \left(e^{i \gamma}-e^{-i \gamma}\right)^{2} & 4\end{array}\right|$
$=0$ (\because two columns are same)
Hence, it is independent of α, β and γ.
219 (b)
Let A be the first term and R be the common ratio of the GP. Then,
$a=A R^{p-1} \Rightarrow \log a=\log A+(p-1) \log R$
$b=A R^{q-1} \Rightarrow \log b=\log A+(q-1) \log R$
$c=A R^{r-1} \Rightarrow \log c=\log A+(r-1) \log R$
Now,
$\left|\begin{array}{lll}\log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1\end{array}\right|$
$=\left|\begin{array}{llll}(p-1) & \log R & p & 1 \\ (q-1) & \log R & q & 1 \\ (r-1) & \log R & r & 1\end{array}\right|$
$=\log R=\left|\begin{array}{lll}p-1 & p & 1 \\ q-1 & q & 1 \\ r-1 & r & 1\end{array}\right|\left[\right.$ Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-$
$\left.(\log A) C_{3}\right]$
$=\log R\left|\begin{array}{lll}0 & p & 1 \\ 0 & q & 1 \\ 0 & r & 1\end{array}\right|=0\left[\right.$ Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{2}+$
C_{3}]
220 (c)
We know that the sum of the products of the elements of a row with the cofactors of the corresponding elements is always equal to the value of the determinant $i e,|A|$.
221 (d)
$\because a, b, c, d, e$ and f are in GP.
$\therefore a=a, b=a r, c=a r^{2}, d=a r^{3}, e=a r^{4}$ and $f=$
$a r^{5}$
$\therefore\left|\begin{array}{lll}a^{2} & d^{2} & x \\ b^{2} & e^{2} & y \\ c^{2} & f^{2} & z\end{array}\right|=\left|\begin{array}{ccc}a^{2} & a^{2} r^{6} & x \\ a^{2} r^{2} & a^{2} r^{8} & y \\ a^{2} r^{4} & a^{2} r^{10} & z\end{array}\right|$
$=a^{4} r^{6}\left|\begin{array}{ccc}1 & 1 & x \\ r^{2} & r^{2} & y \\ r^{4} & r^{4} & z\end{array}\right|=0$

Thus, the given determinant is independent of x, y and z.
222 (a)

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & \log _{x} y & \log _{x} z \\
\log _{y} x & 1 & \log _{y} z \\
\log _{z} x & \log _{z} y & 1
\end{array}\right| \\
& =1\left(1-\log _{y} z \log _{z} y\right) \\
& -\log _{x} y\left(\log _{y} x-\log _{z} x \log _{y} z\right) \\
& +\log _{x} z\left(\log _{z} y \log _{y} x-\log _{z} x\right) \\
& =\left(1-\log _{y} y\right)-\log _{x} y\left(\log _{y} x-\log _{y} x\right) \\
& +\log _{x} z\left(\log _{z} x-\log _{z} x\right) \\
& =(1-1)-0+0=0
\end{aligned}
$$

223 (d)
$\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1-x & 1 \\ 1 & 1 & 1+y\end{array}\right|=\left|\begin{array}{ccc}1 & 0 & 0 \\ 1 & -x & 0 \\ 1 & 0 & y\end{array}\right|\left[\begin{array}{l}C_{2} \rightarrow C_{2}-C_{1} \\ C_{3} \rightarrow C_{3}-C_{1}\end{array}\right]$ $=-x y$
224 (c)
$\left|\begin{array}{ccc}x & y & z \\ -x & y & z \\ x & -y & z\end{array}\right|=\left|\begin{array}{ccc}x & y & z \\ -x & y & z \\ 0 & 0 & 2 z\end{array}\right| \quad\left[R_{3} \rightarrow R_{3}+R_{2}\right]$
$=2 z(x y+x y)=4 x y z$
On comparing with $k x y z$, we get $k=4$
225 (b)
Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$ and taking common
$(2 x+10)$ from R_{1}, we get
$(2 x+10)\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 2 x & 2 \\ 7 & 6 & 2 x\end{array}\right|=0$
$\Rightarrow(2 x+10)\left|\begin{array}{ccc}1 & 0 & 0 \\ 2 & 2 x-2 & 0 \\ 7 & -1 & 2 x-7\end{array}\right|=0$
$\left[C_{3} \rightarrow C_{3}-C_{1}\right.$ and $\left.C_{2} \rightarrow C_{2}-C_{1}\right]$
$\Rightarrow(2 x+10)(2 x-2)(2 x-7)=0$
$\Rightarrow x=-5,1, \frac{7}{2}$
Hence , other roots are 1 and $\frac{7}{2}$ or 1 and 3.5
226 (b)
Let $\frac{x^{2}}{a^{2}}=X, \frac{y^{2}}{b^{2}}=Y$ and $\frac{z^{2}}{c^{2}}=Z$
Then the given system of equations becomes
$X+Y-Z=1, X-Y+Z=1,-X+Y+Z=1$
The coefficient matrix is $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1\end{array}\right]$
Clearly, $|A| \neq 0$. So, the given system of equations has a unique solution
227 (c)
Applying $R_{1} \rightarrow R_{1}+R_{2}$, we get
$\left|\begin{array}{ccc}2 & 2 & 1 \\ \cos ^{2} \theta & 1+\cos ^{2} \theta & \cos ^{2} \theta \\ 4 \sin 4 \theta & 4 \sin 4 \theta & 1+4 \sin 4 \theta\end{array}\right|=0$
Applying $C_{1} \rightarrow C_{1}-2 C_{3}, C_{2} \rightarrow C_{2}-2 C_{3}$
$\left|\begin{array}{ccc}0 & 0 & 1 \\ -\cos ^{2} \theta & 1-\cos ^{2} \theta & \cos ^{2} \theta \\ -2-4 \sin 4 \theta & -2-4 \sin 4 \theta & 1+4 \sin 4 \theta\end{array}\right|=0$
$\Rightarrow\left[\cos ^{2} \theta(2+4 \sin 4 \theta)+(1\right.$

$$
\left.\left.-\cos ^{2} \theta\right)(2+4 \sin 4 \theta)\right]=0
$$

$\Rightarrow\left[2 \cos ^{2} \theta+4 \cos ^{2} \theta \sin 4 \theta+2+4 \sin 4 \theta\right.$

$$
-2 \cos ^{2} \theta
$$

$$
\left.-4 \cos ^{2} \theta \sin 4 \theta\right]=0
$$

$\Rightarrow 2+4 \sin 4 \theta=0$
$\Rightarrow \sin 4 \theta=-\frac{1}{2}$
228 (a)
Given determinant, $\Delta \equiv\left|\begin{array}{lll}a & a^{2} & a^{3}+1 \\ b & b^{2} & b^{3}+1 \\ c & c^{2} & c^{3}+1\end{array}\right|=0$
On splitting the determinant into two determinants, we get
$\Delta \equiv a b c\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|+\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=0$
$\Rightarrow(1+a b c)\left[1\left(b c^{2}-c b^{2}\right)-a\left(c^{2}-b^{2}\right)\right.$
$\left.\quad+a^{2}(c-b)\right]=0$
$\Rightarrow(1+a b c)[(a-b)(b-c)(c-a)]=0$
Since a, b, c are different, the second factor cannot be zero.
Hence, $1+a b c=0$
229 (b)
We have,
$\left|\begin{array}{lll}a & a^{2}-b c & 1 \\ b & b^{2}-c a & 1 \\ c & c^{2}-a b & 1\end{array}\right|$
$=\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|+\left|\begin{array}{lll}a & -b c & 1 \\ b & -c a & 1 \\ c & -a b & 1\end{array}\right|$
$=\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|$
$+\frac{1}{a b c}\left|\begin{array}{lll}a^{2} & -a b c & a \\ b^{2} & -a b c & b \\ c^{2} & -a b c & c\end{array}\right| \begin{gathered}\text { Applying } R_{1} \rightarrow R_{1}(a) \\ R_{2} \rightarrow R_{2}(b), R_{3} \rightarrow R_{3}(c) \\ \text { in the Ind determinant }\end{gathered}$
$=\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|-\left|\begin{array}{lll}a^{2} & 1 & a \\ b^{2} & 1 & b \\ c^{2} & 1 & c\end{array}\right|$
$=\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|-\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|=0$
(d)

Given that, $x^{a} y^{b}=e^{m}, x^{c} y^{d}=e^{n}$
and $\Delta_{1}=\left|\begin{array}{ll}m & b \\ n & d\end{array}\right|, \Delta_{2}=\left|\begin{array}{ll}a & m \\ c & n\end{array}\right|, \Delta_{3}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$
$\Rightarrow a \log x+b \log y=m$
$\Rightarrow c \log x+d \log y=n$
By Cramer's rule
$\log x=\frac{\Delta_{1}}{\Delta_{3}}$ and $\log y=\frac{\Delta_{2}}{\Delta_{3}}$
$\Rightarrow x=e^{\Delta_{1} / \Delta_{3}}$ and $y=e^{\Delta_{2} / \Delta_{3}}$
231 (d)
Clearly, $x=0$ satifies the given equation
232 (c)
Let $\Delta=\left|\begin{array}{lll}10! & 11! & 12! \\ 11! & 12! & 13! \\ 12! & 13! & 14!\end{array}\right|$
$=10!11!12!\left|\begin{array}{lll}1 & 11 & 11 \times 12 \\ 1 & 12 & 12 \times 13 \\ 1 & 13 & 13 \times 14\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$
$=10!11!12!\left|\begin{array}{ccc}1 & 11 & 11 \times 12 \\ 0 & 1 & 24 \\ 0 & 2 & 50\end{array}\right|$
$=(10!11!12!)(50-48)$
$=2 \cdot(10!11!12!)$
233 (c)
We have, $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$
$\Rightarrow\left|\begin{array}{lll}\sin x+2 \cos x & \cos x & \cos x \\ \sin x+2 \cos x & \sin x & \cos x \\ \sin x+2 \cos x & \cos x & \sin x\end{array}\right|=0$
$\Rightarrow(2 \cos x+\sin x)\left|\begin{array}{lll}1 & \cos x & \cos x \\ 1 & \sin x & \cos x \\ 1 & \cos x & \sin x\end{array}\right|=0$
Applying $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$
$\Rightarrow(2 \cos x$
$+\sin x)\left|\begin{array}{ccc}1 & \cos x & \cos x \\ 0 & \sin x-\cos x & 0 \\ 0 & 0 & \sin x-\cos x\end{array}\right|=0$
$\Rightarrow(2 \cos x+\sin x)(\sin x-\cos x)^{2}=0$
$\therefore \tan x=-2,1$ But $\tan x \neq-2$, because it does not lie in the interval $\left[-\frac{\pi}{4} \frac{\pi}{4}\right]$.
$\therefore \tan x=1$
So, $x=\frac{\pi}{4}$
234 (a)
$\left|\begin{array}{lll}\left(a^{x}+a^{-x}\right)^{2} & \left(a^{x}-a^{-x}\right)^{2} & 1 \\ \left(b^{x}+b^{-x}\right)^{2} & \left(b^{x}-b^{-x}\right)^{2} & 1 \\ \left(c^{x}+c^{-x}\right)^{2} & \left(c^{x}-c^{-x}\right)^{2} & 1\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}-C_{2}$
$=\left|\begin{array}{lll}4 & \left(a^{x}-a^{-x}\right)^{2} & 1 \\ 4 & \left(b^{x}-b^{-x}\right)^{2} & 1 \\ 4 & \left(c^{x}-c^{-x}\right)^{2} & 1\end{array}\right|=$
$4\left|\begin{array}{lll}1 & \left(a^{x}-a^{-x}\right)^{2} & 1 \\ 1 & \left(b^{x}-b^{-x}\right)^{2} & 1 \\ 1 & \left(c^{x}-c^{-x}\right)^{2} & 1\end{array}\right|=0$ (\because two columns are
identical)
235 (c)
Given matrix is non-singular, then
$\left|\begin{array}{lll}\lambda & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & \lambda\end{array}\right| \neq 0$
$\Rightarrow \lambda(2 \lambda-0) \neq 0$
$\Rightarrow \lambda \neq 0$
236 (d)
Let $\Delta=\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ (a+1)^{2} & (b+1)^{2} & (c+1)^{2} \\ (a-1)^{2} & (b-1)^{2} & (c-1)^{2}\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{3}$
$=\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ 4 a & 4 b & 4 c \\ (a-1)^{2} & (b-1)^{2} & (c-1)^{2}\end{array}\right|$
$=4\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a & b & c \\ (a-1)^{2} & (b-1)^{2} & (c-1)^{2}\end{array}\right|$
Applying $R_{3} \rightarrow R_{3}-\left(R_{1}-2 R_{2}\right)$
$=4\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1\end{array}\right|$
$\therefore k=4$
237 (c)
Let $f(x)=a_{0} x^{2}+a_{1} x+a_{2}$
and $g(x)=b_{2} x^{2}+b_{1} x+b_{2}$
Also, $h(x)=c_{0} x^{2}+c_{1} x+c_{2}$
Then, $\Delta(x)=\left|\begin{array}{ccc}f(x) & \mathrm{g}(x) & h(x) \\ 2 a_{0} x+a_{1} & 2 b_{0} x+b_{1} & 2 c_{0} x+c_{1} \\ 2 a_{0} & 2 b_{0} & 2 c_{0}\end{array}\right|$
$=x\left|\begin{array}{ccc}f(x) & \mathrm{g}(x) & h(x) \\ 2 a_{0} & 2 b_{0} & 2 c_{0} \\ 2 a_{0} & 2 b_{0} & 2 c_{0}\end{array}\right|+\left|\begin{array}{ccc}f(x) & \mathrm{g}(x) & h(x) \\ a_{1} & b_{1} & c_{1} \\ 2 a_{0} & 2 b_{0} & 2 c_{0}\end{array}\right|$
$=0+2\left|\begin{array}{ccc}f(x) & \mathrm{g}(x) & h(x) \\ a_{1} & b_{1} & c_{1} \\ a_{0} & b_{0} & c_{0}\end{array}\right|$
$=2\left[\left(b_{1} c_{0}-b_{0} c_{1}\right) f(x)-\left(a_{1} c_{0}-a_{0} c_{1}\right) g(x)\right.$ $\left.+\left(a_{1} b_{0}-a_{0} b_{1}\right) h(x)\right]$
Hence, degree of $\Delta(x) \leq 2$
238 (d)
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get
$\left|\begin{array}{ccc}2(x+y+z) & y+z & z+x \\ x+y+z & y & z \\ 0 & y-z & z-x\end{array}\right|$
$=(x+y+z)\left|\begin{array}{ccc}2 & y-z & z+x \\ 1 & y & z \\ 0 & y-z & z-x\end{array}\right|$
Applying $R_{2} \rightarrow 2 R_{2}-R_{1}$
$=(x+y+z)\left|\begin{array}{lll}2 & y+z & z+x \\ 0 & y-z & z-x \\ 0 & y-z & z-x\end{array}\right|$
$=0 \quad[\therefore$ two rows are identical $]$
(d)

Given, $f(x)=\left|\begin{array}{lll}1+a & 1+a x & 1+a x^{2} \\ 1+b & 1+b x & 1+b x^{2} \\ 1+b & 1+c x & 1+c x^{2}\end{array}\right|$
$\Rightarrow f(x)=\left|\begin{array}{lll}1+a & a(x-1) & a x(x-1) \\ 1+b & b(x-1) & b x(x-1) \\ 1+b & c(x-1) & c x(x-1)\end{array}\right|$
$=(x-1) x(x-1)\left|\begin{array}{lll}1+a & a & a \\ 1+b & b & b \\ 1+c & c & c\end{array}\right|=0$
(\therefore two columns are same)
240 (c)
We have,
$a x^{4}+b x^{3}+c x^{2}+50 x+d$

$$
=\left|\begin{array}{ccc}
x^{3}-14 x^{2} & -x & 3 x+\lambda \\
4 x+1 & 3 x & x-4 \\
-3 & 4 & 0
\end{array}\right|
$$

On differentiating with respect to x, we get
$4 a x^{3}+3 b x^{2}+2 c x+50$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
3 x^{2}-28 x & -1 & 3 \\
4 x+1 & 3 x & x-4 \\
-3 & 4 & 0
\end{array}\right| \\
& +\left|\begin{array}{ccc}
x^{3}-14 x^{2} & -x & 3 x+\lambda \\
4 & 3 & 1 \\
-3 & 4 & 0
\end{array}\right|
\end{aligned}
$$

Now, put $x=0$, we get
$50=\left|\begin{array}{ccc}0 & -1 & 3 \\ 1 & 0 & -4 \\ -3 & 4 & 0\end{array}\right|+\left|\begin{array}{ccc}0 & 0 & \lambda \\ 4 & 3 & 1 \\ -3 & 4 & 0\end{array}\right|$
$\Rightarrow 50=25 \lambda$
$\Rightarrow \lambda=2$
241 (d)
We have, $\left|\begin{array}{ccc}x^{2}+x & x+1 & x-2 \\ 2 x^{2}+3 x-1 & 3 x & 3 x-3 \\ x^{2}+2 x+3 & 2 x-1 & 2 x-1\end{array}\right|=$
$A x-12$
On putting $x=1$ on both sides, we get
$\left|\begin{array}{ccc}2 & 2 & -1 \\ 4 & 3 & 0 \\ 6 & 1 & 1\end{array}\right|=A-12$
Applying $C_{1} \rightarrow C_{1}-C_{2}$
$\Rightarrow\left|\begin{array}{ccc}0 & 2 & -1 \\ 1 & 3 & 0 \\ 5 & 1 & 1\end{array}\right|=A-12$
$\Rightarrow-2(1)+(-1)(-14)=A-12$
$\Rightarrow A=24$
242 (a)
We have, $\left|\begin{array}{ccc}x+\alpha & \beta & \gamma \\ \gamma & x+\beta & \alpha \\ \alpha & \beta & x+\gamma\end{array}\right|=0$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$
$\Rightarrow\left|\begin{array}{ccc}x+\alpha+\beta+\gamma & \beta & \gamma \\ x+\alpha+\beta+\gamma & x+\beta & \alpha \\ x+\alpha+\beta+\gamma & \beta & x+\gamma\end{array}\right|=0$
$\Rightarrow(x+\alpha+\beta+\gamma)\left|\begin{array}{ccc}1 & \beta & \gamma \\ 1 & x+\beta & \alpha \\ 1 & \beta & x+\gamma\end{array}\right|=0$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$
$\Rightarrow(x+\alpha+\beta+\gamma)\left|\begin{array}{ccc}1 & \beta & \gamma \\ 0 & x & \alpha-\gamma \\ 0 & 0 & x\end{array}\right|=0$
$\Rightarrow(x+\alpha+\beta+\gamma)\left(x^{2}-0\right)=0$
$\Rightarrow x=0$ or $x=-(\alpha+\beta+\gamma)$
243 (b)
We have,
$\Delta=\left|\begin{array}{lll}1 / a & 1 & b c \\ 1 / b & 1 & c a \\ 1 / c & 1 & a b\end{array}\right|$
$\Rightarrow \Delta$
$=\frac{1}{a b c}\left|\begin{array}{lll}1 & a & a b c \\ 1 & b & a b c \\ 1 & c & a b c\end{array}\right| \begin{gathered}\text { Applying } R_{1} \rightarrow R_{1}(a), \\ R_{2} \rightarrow R_{2}(b) \text { and } R_{3} \rightarrow R_{3}(c)\end{gathered}$
$\Rightarrow \Delta=\frac{a b c}{a b c}\left|\begin{array}{lll}1 & a & 1 \\ 1 & b & 1 \\ 1 & c & 1\end{array}\right| \quad$ [Taking $a b c$ common from
C_{3}]
$\Rightarrow \Delta=\frac{a b c}{a b c} \times 0=0$
244 (b
We have, $|A| \neq 0$. Therefore, A^{-1} exists
Now, $A B=A C$
$\Rightarrow A^{-1}(A B)=A^{-1}(A C)$
$\Rightarrow\left(A^{-1} A\right) B=\left(A^{-1} A\right) C \Rightarrow B=C$
(c)

Applying $C_{3} \rightarrow C_{3}-\omega C_{1}$, we get
$\left|\begin{array}{ccc}a & b \omega^{2} & a \omega \\ b \omega & c & b \omega^{2} \\ c \omega^{2} & a \omega & c\end{array}\right|=\left|\begin{array}{ccc}a & b \omega^{2} & 0 \\ b \omega & c & 0 \\ c \omega^{2} & a \omega & 0\end{array}\right|=0$
247 (d)
$\left|\begin{array}{ccc}a+b & a+2 b & a+3 b \\ a+2 b & a+3 b & a+4 b \\ a+4 b & a+5 b & a+6 b\end{array}\right|$
$=\left|\begin{array}{ccc}a+b & a+2 b & a+3 b \\ b & b & b \\ 2 b & 2 b & 2 b\end{array}\right|$ $\begin{aligned} & \binom{R_{2} \rightarrow R_{2}-R_{1}}{R_{3} \rightarrow R_{3}-R_{2}}\end{aligned}$
$=0 \quad\left(\because R_{2}\right.$ and R_{3} are proportional)
248 (c)
Applying $R_{1} \rightarrow R_{1}-\left(R_{2}+R_{3}\right)$, we get
$\left|\begin{array}{ccc}0 & -2 z & -2 y \\ y & z+x & y \\ z & z & x+y\end{array}\right|$
$=2 z\left(x y+y^{2}-y z\right)-2 y\left(y z-z^{2}-x z\right)$
$=2 x y z+2 y^{2} z-2 y z^{2}-2 y^{2} z+2 y z^{2}+2 x y z$
$=4 x y z$
249 (b)
We have,
$\frac{d}{d x}\left(\Delta_{1}\right)=\left|\begin{array}{lll}1 & 0 & 0 \\ a & x & b \\ a & a & x\end{array}\right|+\left|\begin{array}{ccc}x & b & b \\ 0 & 1 & 0 \\ a & a & x\end{array}\right|+\left|\begin{array}{ccc}x & b & b \\ a & x & b \\ 0 & 0 & 1\end{array}\right|$
$\Rightarrow \frac{d}{d x}\left(\Delta_{1}\right)=\left|\begin{array}{ll}x & b \\ a & x\end{array}\right|+\left|\begin{array}{ll}x & b \\ a & x\end{array}\right|+\left|\begin{array}{ll}x & b \\ a & x\end{array}\right|=3 \Delta_{2}$
(d)

Applying $C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{2}$, we get
$\left|\begin{array}{lll}1990 & 1 & 1 \\ 1991 & 1 & 1 \\ 1992 & 1 & 1\end{array}\right|=0$

253
(b)

We have,
Δ

$$
\begin{gathered}
=\left\lvert\, \begin{array}{ll}
1+a_{1} b_{1}+a_{1}^{2} b_{1}^{2} & 1+a_{1} b_{2}+a_{1}^{2} b_{2}^{2} \\
1+a_{2} b_{1}+a_{2}^{2} b_{1}^{2} & 1+a_{2} b_{3} \\
1+b_{2} b_{1}+a_{2}^{2} b_{2}^{2} & 1+a_{2} b_{3} \\
1 & 1+a_{3} b_{2}+a_{3}^{2} b_{2}^{2} \\
1+a_{2} b_{3}
\end{array}\right. \\
\left.\Rightarrow \Delta=\left|\begin{array}{lll}
1 & a_{1} & a_{1}^{2} \\
1 & a_{2} & a_{2}^{2} \\
1 & a_{3} & a_{3}^{2}
\end{array}\right| \begin{array}{lll}
1 & b_{1} & b_{1}^{2} \\
1 & b_{2} & b_{2}^{2} \\
1 & b_{3} & b_{3}^{2}
\end{array} \right\rvert\, \\
\Rightarrow \Delta=\left(a_{1}-a_{2}\right)\left(a_{2}-a_{3}\right)\left(a_{3}-a_{1}\right)\left(b_{1}-b_{2}\right)\left(b_{2}\right. \\
\left.-b_{3}\right)\left(b_{3}-b_{1}\right)
\end{gathered}
$$

(b)

Let $A \equiv\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=5$
$\therefore\left|\begin{array}{lll}b_{2} c_{3}-b_{3} c_{2} & c_{2} a_{3}-c_{3} a_{2} & c_{2} b_{3}-c_{3} b_{2} \\ b_{3} c_{1}-b_{1} c_{3} & c_{3} a_{1}-c_{1} a_{3} & a_{3} b_{1}-a_{1} b_{3} \\ b_{1} c_{2}-b_{2} c_{1} & c_{1} a_{2}-c_{2} a_{1} & a_{1} b_{2}-a_{2} b_{1}\end{array}\right|$
$|\operatorname{adj} A|=(5)^{3-1} \quad$ [from Eq. (i)]
$=5^{2}=25 \quad\left(\because|\operatorname{adj} A|=|A|^{n-1}\right)$
(b)

Let $a \neq 0$. Then,
$\Delta=\frac{1}{a}\left|\begin{array}{ccc}a^{3}+a x^{2} & a b & a c \\ a^{2} b & b^{2}+x^{2} & b c \\ a^{2} c & b c & c^{2}+x^{2}\end{array}\right|$ [Applying
$\left.C_{1} \rightarrow a C_{1}\right]$
$\Rightarrow \Delta$
$=\frac{1}{a}\left|\begin{array}{ccc}a\left(a^{2}+b^{2}+c^{2}+x^{2}\right) & a b & a c \\ b\left(a^{2}+b^{2}+c^{2}+x^{2}\right) & b^{2}+x^{2} & b c \\ c\left(a^{2}+b^{2}+c^{2}+x^{2}\right) & b c & c^{2}+x^{2}\end{array}\right|$
[Applying $C_{1} \rightarrow C_{1}+b C_{2}+c C_{3}$]
$\Rightarrow \Delta=\frac{1}{a}\left(a^{2}+b^{2}+c^{2}\right.$

$$
\left.+x^{2}\right)\left|\begin{array}{ccc}
a & a b & a c \\
b & b^{2}+x^{2} & b c \\
c & b c & c^{2}+x^{2}
\end{array}\right|
$$

$\Rightarrow \Delta=\frac{1}{a}\left(a^{2}+b^{2}+c^{2}+x^{2}\right)\left|\begin{array}{ccc}a & 0 & 0 \\ b & x^{2} & 0 \\ c & 0 & x^{2}\end{array}\right|$,
[Applying $C_{2} \rightarrow C_{2}-b C_{1}, C_{3} \rightarrow C_{3}-c C_{1}$]
$\Rightarrow \Delta=\left(a^{2}+b^{2}+c^{2}+x^{2}\right) x^{4}$
Clearly, Δ is divisible by x^{4}
If $a=0$, then also it can be easily seen that Δ is divisible by x^{4}
256 (a)
We have,
$\Delta_{a}=\left|\begin{array}{ccc}a-1 & 2 & 6 \\ (a-1)^{2} & 2 n^{2} & 4 n-2 \\ (a-1)^{3} & 3 n^{3} & 2 n^{2}-3 n\end{array}\right|$
$\therefore \sum_{a=1}^{n} \Delta_{a}\left|\begin{array}{ccc}\sum_{a=1}^{n}(a-1) & n & 6 \\ \left.\sum_{\substack{a=1 \\ n}}^{\sum_{a=1}^{n}(a-1)^{2}} \begin{array}{llc} & 2 n^{2} & 4 n-2 \\ & \\ & \sum_{a=1}^{n} \Delta_{a} & 3 n^{2}\end{array} \right\rvert\, 3 n^{2}-3 n\end{array}\right|$
$=\left|\begin{array}{ccc}\frac{n(n-1)}{2} & n & 6 \\ \frac{n(n-1)(2 n-1)}{6} & 2 n^{2} & 4 n-2 \\ \left(\frac{n(n-1)}{2}\right)^{2} & 3 n^{3} & 3 n^{2}-3 n\end{array}\right|$
$\Rightarrow \sum_{a=1}^{n} \Delta_{a}$
$=\frac{n(n-1)}{12}\left|\begin{array}{ccc}6 & n & 6 \\ 4 n-2 & 2 n^{2} & 4 n-2 \\ 3 n^{2}-3 n & 3 n^{3} & 3 n^{2}-3 n\end{array}\right|=0$
257 (d)
$B=5 A^{2}$
$\Rightarrow \operatorname{det}(B)=\operatorname{det}\left(5 A^{2}\right)=5^{3}[\operatorname{det}(A)]^{2}$
$=125(6)^{2}=4500 \quad[$ given $\operatorname{det} A=6]$
258 (b)
Given, $f(x)=\left|\begin{array}{ccc}x & 1+\sin x & \cos x \\ 1 & \log (1+x) & 2 \\ x^{2} & 1+x^{2} & 0\end{array}\right|$
$=x\left\{-2\left(1+x^{2}\right)\right\}-(1+\sin x)\left(-2 x^{2}\right)$
$+\cos x\left\{1+x^{2}-x^{2} \log (1+x)\right\}$
$=-2 x-2 x^{3}+2 x^{2}+2 x^{2} \sin x$
$+\cos x\left\{1+x^{2}-x^{2} \log (1+x)\right\}$
\therefore Coefficient of x in $f(x)=-2$
259 (c)
$\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ b c & c a & a b \\ b+c & c+a & a+b\end{array}\right|$
$=\left|\begin{array}{ccc}1 & 0 & 0 \\ b c & c(a-b) & a(b-c) \\ b+c & (a-b) & (b-c)\end{array}\right|\left[\begin{array}{c}C_{2} \rightarrow C_{2}-C_{1} \\ C_{3} \rightarrow C_{3}-C_{2}\end{array}\right]$
$=(a-b)(b-c)\left|\begin{array}{ccc}1 & 0 & 0 \\ b c & c & a \\ b+c & 1 & 1\end{array}\right|$
$=(a-b)(b-c)(c-a)$
260 (b)
Since, $\Delta(1)=0$ and $\Delta^{\prime}(1)=0$ so, $(x-$
12 is a factor of $\Delta(x)$
261 (d)
On putting $\lambda=0$, we get
$t=\left|\begin{array}{ccc}b^{2}+c^{2} & a^{2} & a^{2} \\ b^{2} & c^{2}+a^{2} & b^{2} \\ c^{2} & c^{2} & a^{2}+b^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$
Clearly, it depends on a, b, c.
262 (c)
Let $\Delta=\left|\begin{array}{lll}10! & 11! & 12! \\ 11! & 12! & 13! \\ 12! & 13! & 14!\end{array}\right|$
$=(10!)(11!)(12!)\left|\begin{array}{lll}1 & 11 & 11 \times 12 \\ 1 & 12 & 12 \times 13 \\ 1 & 13 & 13 \times 14\end{array}\right|$
$=(10!)(11!)(12!)\left|\begin{array}{ccc}1 & 11 & 11 \times 12 \\ 0 & 1 & 24 \\ 0 & 2 & 50\end{array}\right|$
$=2(10!)(11!)(12!)$
263 (b)
$\because \operatorname{det}\left(A_{1}\right)=\left|\begin{array}{ll}a & b \\ b & a\end{array}\right|=a^{2}-b^{2}$
$\operatorname{det}\left(A_{2}\right)=\left|\begin{array}{ll}a^{2} & b^{2} \\ b^{2} & a^{2}\end{array}\right|=a^{4}-b^{4}$
$\therefore \sum_{i=1}^{\infty} \operatorname{det}\left(A_{i}\right)=\operatorname{det}\left(A_{1}\right)+\operatorname{det}\left(A_{2}\right)+\ldots$
$=a^{2}-b^{2}+a^{4}-b^{4}+\ldots$
$=\frac{a^{2}}{1-a^{2}}-\frac{b^{2}}{1-b^{2}}=\frac{a^{2}-b^{2}}{\left(1-a^{2}\right)\left(1-b^{2}\right)}$
264 (c)
Since, A is a singular matrix
$\therefore|A|=0$
$\Rightarrow\left[\begin{array}{ccc}1 & 2 & x \\ 4 & -1 & 7 \\ 2 & 4 & -6\end{array}\right]=0$
$\Rightarrow 1(6-28)-2(-24-14)+x[16+2]=0$
$\Rightarrow-22+76+18 x=0 \Rightarrow x=-3$
265
(b)
$\left|\begin{array}{lll}x & p & q \\ p & x & q \\ p & q & x\end{array}\right|=\left|\begin{array}{lll}x+p+q & p & q \\ x+p+q & x & q \\ x+p+q & q & x\end{array}\right|$
$=(x+p+q)\left|\begin{array}{lll}1 & p & q \\ 1 & x & q \\ 1 & q & x\end{array}\right|$
$=(x+p+q)\left|\begin{array}{ccc}1 & p & q \\ 0 & x-p & 0 \\ 0 & q-p & x-q\end{array}\right|$
$=(x+p+q)\left[\begin{array}{cc}x-p & 0 \\ q-p & x-q\end{array}\right]$
$=(x-p)(x-q)(x+p+q)$
266 (b)
We have, $\left|\begin{array}{ccc}1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2 x & 5 x^{2}\end{array}\right|=0$

$$
\begin{array}{r}
\Rightarrow\left|\begin{array}{ccc}
0 & 6 & 15 \\
0 & -2-2 x & 5\left(1-x^{2}\right) \\
1 & 2 x & 5 x^{2}
\end{array}\right| \\
=0\binom{R_{1} \rightarrow R_{1}-R_{2}}{\text { and } R_{2} \rightarrow R_{2}-R_{3}}
\end{array}
$$

$\Rightarrow 3 \cdot 2 \cdot 5\left|\begin{array}{ccc}0 & 1 & 1 \\ 0 & -(1+x) & 1-x^{2} \\ 1 & x & x^{2}\end{array}\right|=0$
(Taking common, 3 from $R_{1}, 2$ from $C_{2}, 5$ from C_{3})
$\Rightarrow(1+x)\left|\begin{array}{ccc}0 & 1 & 1 \\ 0 & -1 & 1-x \\ 1 & x & x^{2}\end{array}\right|=0$
$\Rightarrow(1+x)(2-x)=0$
$\Rightarrow x+1=0$ or $x-2=0 \Rightarrow x=-1,2$
267 (d)
$x+i y=-3 i\left|\begin{array}{lrr}6 i & 1 & 1 \\ 4 & -1 & -1 \\ 20 & i & i\end{array}\right|=0$
$\Rightarrow x=0, \quad y=0$
268 (a)
We have,
$\Delta=\left|\begin{array}{ccc}\cos (\alpha+\beta) & -\sin (\alpha+\beta) & \cos 2 \beta \\ \sin \alpha & \cos \alpha & \sin \beta \\ -\sin \alpha & \sin \alpha & \cos \beta\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}0 & 0 & \cos 2 \beta+1 \\ \sin \alpha & \cos \alpha & \sin \beta \\ -\cos \alpha & \sin \alpha & \cos \beta\end{array}\right|$
$\left[\begin{array}{c}\text { Applying } R_{1} \rightarrow R_{1}+R_{2} \\ \sin \beta+R_{3} \cos \beta\end{array}\right]$
$\Rightarrow \Delta=(\cos 2 \beta+1)\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)$

$$
=\cos 2 \beta+1
$$

Which is independent of α
269 (d)
Given $\left|\begin{array}{lll}x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right|=0$
Applying $R_{1} \rightarrow+R_{1}+R_{3}-2 R_{2}$, we get
$\left|\begin{array}{ccc}0 & 0 & a+c-2 b \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right|=0$
$\Rightarrow(a+c-2 b)\left[x^{2}+6 x+8-\left(x^{2}+6 x+9\right)\right]=0$
$\Rightarrow(a+c-2 b)(-1)=0$
$\Rightarrow 2 b=a+c$
$\Rightarrow a, b, c$ are in AP
270 (a)
We have,
$\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|$
$=a b c\left|\begin{array}{ccc}1+\frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{1}{b} & 1+\frac{1}{b} & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & 1+\frac{1}{c}\end{array}\right| \begin{gathered}\text { Applying } R_{1} \rightarrow R_{1} \\ R_{2} \rightarrow R_{2}\left(\frac{1}{b}\right), R_{3} \rightarrow i\end{gathered}$
$=a b c \left\lvert\, \begin{array}{ccc}1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} & 1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} & 1+\frac{1}{a}+\frac{1}{b} \\ \frac{1}{b} & 1+\frac{1}{b} & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & 1+\frac{1}{c}\end{array}\right.$.
Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$
$=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left|\begin{array}{ccc}1 & 1 & 1 \\ \frac{1}{b} & 1+\frac{1}{b} & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & 1+\frac{1}{c}\end{array}\right|$
$=a b c\left(1+\frac{1}{a}+\frac{1}{b}\right.$
$\left.+\frac{1}{c}\right)\left|\begin{array}{lll}1 & 0 & 0 \\ \frac{1}{b} & 1 & 0 \\ \frac{1}{c} & 0 & 1\end{array}\right|\left[\begin{array}{c}\text { Applying } C_{2} \rightarrow C_{2}-C_{1} \\ C_{3} \rightarrow C_{3}-C_{1}\end{array}\right]$
$=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$
271 (a)
On putting $x=0$,we observe that the determinant becomes zero.
$\therefore \Delta=\left|\begin{array}{lrr}0 & -a & -b \\ a & 0 & -c \\ b & c & 0\end{array}\right|$
$=a(b c)-b(a c)=0$
Hence, $x=0$ is a root of the given equation
272 (a)
$\sum_{r=0}^{n} D_{r}=\left|\begin{array}{ccc}\sum r & 1 & \frac{n(n+1)}{2} \\ 2 \sum r-\sum 1 & 4 & n^{2} \\ \sum 2^{r-1} & 5 & 2^{n}-1\end{array}\right|$
$=\left|\begin{array}{ccc}\frac{n(n+1)}{2} & 1 & \frac{n(n+1)}{2} \\ n^{2} & 4 & n^{2} \\ 2^{n}-1 & 5 & 2^{n}-1\end{array}\right|=0$
[\because two columns are identical]
273 (b)
Given, $f(\alpha)=\left|\begin{array}{ccc}1 & \alpha & \alpha^{2} \\ \alpha & \alpha^{2} & 1 \\ \alpha^{2} & 1 & \alpha\end{array}\right|$
$=1\left(\alpha^{3}-1\right)-\alpha\left(\alpha^{2}-\alpha^{2}\right)+\alpha^{2}\left(\alpha-\alpha^{4}\right)$
$=\alpha^{3}-1-0+\alpha^{3}-\alpha^{6}$
$\Rightarrow f\left(\sqrt[3]{3}=3-1-0+3-3^{2}=6-10=-4\right.$
274 (c)
We have,

$$
\Delta=\left|\begin{array}{ccc}
2 a_{1} b_{1} & a_{1} b_{2}+a_{2} b_{1} & a_{1} b_{3}+a_{3} b_{1} \\
a_{1} b_{2}+a_{2} b_{1} & 2 a_{2} b_{2} & a_{2} b_{3}+a_{3} b_{2} \\
a_{1} b_{3}+a_{3} b_{1} & a_{3} b_{2}+a_{2} b_{3} & 2 a_{3} b_{3}
\end{array}\right|
$$

This can be written as
$\left|\begin{array}{lll}a_{1} & b_{1} & 0 \\ a_{2} & b_{2} & 0 \\ a_{3} & b_{3} & 0\end{array}\right|\left|\begin{array}{lll}b_{1} & a_{1} & 0 \\ b_{2} & a_{2} & 0 \\ b_{3} & a_{3} & 0\end{array}\right|=0$
275 (a)
$a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}$
$=3\left|\begin{array}{ll}2 & 1 \\ 2 & 6\end{array}\right|-2\left|\begin{array}{ll}1 & 1 \\ 3 & 6\end{array}\right|+4\left|\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right|$
$=3(12-2)-2(6-3)+4(2-6)$
$=30-6-16=8$
276 (c
We have,
$\left|\begin{array}{lll}x-a & x-b & x-c \\ x-b & x-c & x-a \\ x-c & x-a & x-b\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{lll}3 x-(a+b+c) & x-b & x-c \\ 3 x-(a+b+c) & x-c & x-a \\ 3 x-(a+b+c) & x-a & x-b\end{array}\right|=0$
[Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$
$\Rightarrow\{3 x-(a+b+c)\}\left|\begin{array}{lll}1 & x-b & x-c \\ 1 & x-c & x-a \\ 1 & x-a & x-b\end{array}\right|=0$
$\Rightarrow\{3 x-(a+b+c)\}\left|\begin{array}{lll}1 & x-b & x-c \\ 0 & b-c & c-a \\ 0 & b-a & c-b\end{array}\right|=0$
$\Rightarrow\{3 x-(a+b+c)\}\left(a^{2}+b^{2}+c^{2}-a b-b c\right.$

$$
-c a)=0
$$

$\Rightarrow x=\frac{1}{3}(a+b+c) \quad$ [
$\because a^{3}+b^{2}+c^{2}-a b-b c-c a$
$\neq 0]$
277 (b)
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we obtain
$\left|\begin{array}{lll}x & p & q \\ p & x & q \\ q & q & x\end{array}\right|$
$=\left|\begin{array}{lll}x+p+q & p & q \\ x+p+q & x & q \\ c+p+q & q & x\end{array}\right|$
$=(x+p+q)\left|\begin{array}{lll}1 & p & q \\ 1 & x & q \\ 1 & q & x\end{array}\right|$
$=(x+p+q)\left|\begin{array}{ccc}1 & p & q \\ 0 & x-p & 0 \\ 0 & q-p & x-q\end{array}\right|$
$\left[\begin{array}{c}\text { Applying } R_{2} \rightarrow R_{2}-R_{1} \\ R_{3} \rightarrow R_{3}-R_{1}\end{array}\right]$
$=(x+p+q)(x-p)(x-q) \quad[$ Expanding
along C_{1}]

Let
$f(x)=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 x & (x-1) & x \\ 3 x(x-1) & (x-1)(x-2) & x(x-1)\end{array}\right|$
$=(x-1)\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 x & x-1 & x \\ 3 x & x-2 & x\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}-C_{3}$ and $C_{2} \rightarrow C_{2}-C_{3}$
$=(x-1)\left|\begin{array}{ccc}0 & 0 & 1 \\ x & -1 & x \\ 2 x & -2 & x\end{array}\right|$
$=(x-1)[-2 x+2 x]=0$
$\therefore f(x)=0$
$\Rightarrow f(50)=0$

