

9.COORDINATION COMPOUNDS

Single Correct Answer Type

1.	The IUPAC name of Na ₃ [Co(ONO) ₆] is:		
	a) Sodium cobaltinitrite		
	b) Sodium hexanitritocobaltate(III)		
	c) Sodium hexanitrocobalt(III)		
	d) Sodium hexanitritocobaltate(II)		
2.	CuSO ₄ decolourises on addition of KCN, the produc	t is:	
	a) $Cu(CN)_4^{2-}$ b) $[Cu(CN)_4]^{3-}$	c) Cu(CN) ₂	d) CuCN
3.	Exchange of coordination group by a water molecu	le in complex molecule res	sults in:
	a) Ionization isomerism		
	b) Ligand isomerism		
	c) Hydration isomerism		
	d) Geometrical isomerism		
4.	The type of isomerism found in urea molecule is		
	a) Chain		
	b) Position		
	c) Tautomerism		
	d) None of these		
5.	The UIDAC name of the compound $= 0$ is		
	a) Butana 2 aldabuda — b) 2 mathul butanal	a) 2 other monoral	d) None of the above
6	a) Butane-2-aldenyue b) 2-methyi butanai	c) 2-ethyl propanal	uj None of the above
0.	Anison is a product obtained from phenol by the real	action known as:	d) Estarification
7	a) Coupling D) Etherincation	c) Oxidation	d) Esternication
7.	which of the following is diamagnetic in nature: $a > [E_2(CN)]^{3-}$ $b > [N:CL]^{2-}$	\sim [N;(CO)]	d) $[M_m C]_{12}^{-1}$
0	a) $[Fe(UN)_6]^\circ$ b) $[NIUI_4]^-$	$C \left[NI(CO)_4 \right]$	a) [MnCl ₄]-
ð.	which is the strongest held ligand?	a) NII	d) an
0	a) CN D) NO_2	C_{J} NH ₃	uj en
9.	Niti obelizene on reduction with Zir and uq . NH ₄ Ci j	gives:	
	a) Ainine h) Nitrosohanzana		
	c) N-nhenyl hydroxylamine		
	d) Hydrazobenzene		
10	The IUPAC name of $[C_0(NH_c) ONO]^{2+}$ ion is		
10.	a) Pentaammine nitrito cohalt (IV) ion	h) Pontaammino nitro (vohalt (III) ion
	c) Pentaammine nitrito cobalt (IV) jon	d) Pontaammine nitro (sobalt (IV) ion
11	The compound which does not show paramagnetis	is	
11.	a) NO_{-} b) NO_{-}	c) $\left[Ag(NH_{a})_{a} \right] C \right]$	d) [Cu(NH ₂), Cl ₂]
12	Which of the following is expected to undergo nitra	tion more easily and read	ily to furnish the
12.	corresponding nitro derivatives employing the usu	al nitrating mixture?	ny to runnish the
	a) C ₂ H ₂ b) C ₂ H ₂ NO ₂	c) C _c H _z CH ₂	d) C - H - · CCl -
13	The number of unnaired electrons calculated in [Co	$(NH_{2})_{c}^{3+}$ and $[Co(F_{c})]^{3-}$	are
10.	a) 4 and 4 b) 0 and 2	c) 2 and 4	d) 0 and 4
14.	The IIIPAC name of		uj o unu 1
± 11			
	$HO-N \longrightarrow COOH 1S$		
	a) 4-hydroxy amino benzene carboxylic acid	b) 4-(N-hydroxy) imino	benzene carboxvlic acid
	c) 4-hydroxy imino cyclohexanoic acid	d) 4-(N-hydroxy) imino	cyclohexane-1
		-carboxylic acid	-

15.	The IUPAC name of the coordination compound K ₂	$[Zn(OH)_4]$ is				
	a) Potassium tetrahydroxozine (II) b) Dipotassium tetrahydroxo(II)					
	c) Potassium tetrahydroxozincate (II)	d) Potassium tetrahydroz	xozincate (III)			
16.	Arrange in order of decreasing trend towards S_F re	actions,				
	Chlorobenzene, Benzene, Anilium chloride, Toluene	2:				
	I (II) (III) (IV)					
	a) $ I > I > III > IV$ b) $ II > I > II > IV$	c) $V > U < I > U$	d) I > II > III > IV			
17	Toluone is nitrated and the resulting product is red	used with tin and hydrochly	and $T = T = T = T$			
17.	obtained is diagoticed and then heated with suprov	s bromido. The reaction mi	vtura sa formad contains:			
	a) Mixture of a and m bromatalyanas	is bronnide. The reaction him	xture so for med contains.			
	a) Mixture of <i>o</i> - and <i>m</i> -biomotoluenes					
	b) Mixture of <i>o</i> - and <i>p</i> -bromotoluenes					
	c) Mixture of o- and p-dibromobenzenes					
10	a) Mixture of <i>o</i> - and <i>p</i> -bromoanlines					
18.	A positive carbylamine test is given by:					
	a) <i>N</i> , <i>N</i> -dimethylaniline					
	b) 2,4-dimethylaniline					
	c) <i>N</i> -methyl- <i>o</i> -methylaniline					
	d) <i>p</i> -methyl benzylamine					
19.	CN^- is strong field ligand. This is due to the fact that	it				
	a) It carries negative charge					
	b) It is a pseudohalide					
	c) It can accept electrons from metal species					
	d) It forms high spin complexes with metal species.					
20.	Which of the following is not true for ligand metal complex?					
	a) Highly charged ligand forms strong bond	a) Highly charged ligand forms strong bond				
	b) Greater the ionization potential of central metal,	the stronger is the bond				
	c) Larger the permanent dipole moment of ligand, t	the more stable is the bond				
	d) Larger the ligand, the more stable is the metal-lig	gand bond				
21.	The nitration of nitrobenzene with fuming HNO_3 w	ill give:				
	a) TNB b) 1,3-dinitrobenzene	c) Picric acid	d) 1,4-dinitrobenzene			
22.	A ligand can also be regarded as					
	a) Lewis acid b) Bronsted base	c) Lewis base	d) Bronsted acid			
23.	The correct statement with respect to the complexe	es Ni(CO) ₄ and [Ni (CN) ₄] ^{2–}	is			
	a) Nickel is in the same oxidation state in both					
	b) Both have terahedral geometry					
	c) Both have square planar geometry					
	d) Have tetrahedral and square planar geometry re	espectively				
24.	Which one of the following has lowest value of para	amagnetic behaviour?				
	a) $[Cr(CN_6)_4]^{3-}$ b) $[Mn(CN)_6]^{3-}$	c) [Fe(CN) ₆] ³⁻	d) [Co(CN) ₆] ^{3–}			
25.	In the reaction;					
	\bigcirc OCH ₃ $\xrightarrow{\text{HBr}}$					
	the products are:					
	a) Br \bigcirc OCH ₃ and H ₂					
	b) \longrightarrow Br and CH ₃ Br					

26. An octahedral complex is formed when central metal atom undergoes hybridization amongst the....orbitals.

	a) <i>sp</i> ³	b) dsp^2	c) <i>sp</i> ³ <i>d</i>	d) sp^3d^2	
27.	$ONa + CO_2 \xrightarrow{390 \text{ K}} X$				
	OH COOH ;the product .	X in the reaction is:			
	a) ONa COOH				
	b) OCOONa				
	c) OCOONa				
	d) OH COONa				
28.	Biological oxidation of C ₆ H	H_6 taking place in body of c	log, gives:		
	a) Benzoic acid	b) Toluic acid	c) Maleic acid	d) Muconic acid	
29.	Ammonia forms the comp	lex ion $[Cu(NH_3)_4]^{2+}$ with	copper ions in the alkaline	solutions but not in acidic	
	solutions .What is the reas	son for it?			
	a) In acidic solutions hydr	ation protects copper ions	nia moloculas forming NU	ions and NUL malagulas	
	b)	ons coordinate with annho	π_4	1011S and Nn ₃ molecules	
	are not available c) In alkaline solutions insoluble $Cu(OH)_{i}$ is precipitated which is soluble in excess of any alkali				
	d) Copper hydroxide is an	amphoteric substance		ess of any aman	
30.	Which of the following has	s the highest molar conduc	tivity in solution?		
	a) $[Pt(NH_3)_6]Cl_4$	b) [Pt(NH ₃) ₅ Cl]Cl ₃	c) $[Pt(NH_3)_4Cl_2]Cl_2$	d) [Pt(NH ₃) ₃ Cl ₃]Cl	
31.	Which of the following is r	not meta directing group?			
	a) —SO ₃ H	b) —NO ₂	c) —CN	d) $-NH_2$	
32.	Which of the following is a	an organometallic compour	nd?		
	a) Lithium methoxide		b) Lithium acetate		
	c) Lithium dimethylamine		d) Methyl lithium		
33.	Which among the following	ig is very strong <i>o-</i> , <i>p-</i> direc	ting group?		
	a) —Cl	b) —0 <i>R</i>	c) —NH ₂	d) —NH <i>R</i>	
34.	The type of hybridisation	in tetrahedral complexes o	of metal atom is	2	
	a) dsp^2	b) d^2sp	c) sp^3	d) sp^2	
35.	Chlorobenzene on heating	g with NaOH at 300°C under	r pressure gives:		
a -	a) Phenol	b) Benzaldehyde	c) Chlorophenol	d) None of these	
36.	The coordination number	of Fe in $[Fe(CN)_6]^{4-}$ $[Fe(C)_6]^{4-}$	$[N)_6]^{\circ-}$ and $[FeCl_4]^-$ are res	spectively.	
	aj 2, 3, 3	bJ 6, 6, 4	c) 6, 3, 3	d J 6, 4, 6	

37. Consider the following statements I. Chain and position isomerism are not possible together between two isomers II. Tautomerism is a chemical phenomenon which is catalysed by acid as well as base III. Tautomers are always metamers IV. Tautomers are always functional isomers Select the correct answer by using the codes given below a) Only III is correct b) III and IV are correct c) I, II and III are correct d) I, II and IV are correct 38. What is the EAN of nickel in $[Ni(CN)_4]^{2-2}$? a) 32 b) 35 c) 34 d) 36 39. Which of the following alcohols is dehydrated most readily with conc. H_2SO_4 ? a) $p-0_2NC_6H_4CH(OH)CH_3$ b) p-ClC₆H₄CH(OH)CH₃ c) p-CH₃OC₆H₄CH(OH)CH₃ d) $C_6H_5CH(OH)CH_3$ 40. The compound having tetrahedral geometry is a) $[Ni(CN)_{4}]^{2-}$ b) $[Pd(CN_4)]^{2-}$ c) $[PdCl_4]^{2-}$ d) $[NiCl_4]^{2-}$ 41. Identify '*Z*' in the change; $C_6H_5NH_2 \xrightarrow{NaNO_2/HCl} X \xrightarrow{CuBr/HBr} Z:$ Br Br Br /Br Br b) c) d) a) Br 42. Which of the following is most acidic? a) p-cresol b) *p*-chlorophenol c) *p*-nitrophenol d) p-aminophenol 43. Benzoylacetonato beryllium exhibit isomerism of the type a) Structural b) Geometrical c) Optical d) Conformational 44. Which one of the following has a square planar geometry? (At. No. Fe=26, Co=27, Ni=28, Pt=78) c) $[NiCl_4]^{2-}$ a) [CoCl₄]^{2−} b) $[FeCl_4]^{2-}$ d) $[PtCl_4]^{2-}$ 45. The number of ions formed on dissolving one molecule of $FeSO_4(NH_4)_2SO_4 \cdot 6H_2O$ in water is: a) 4 b) 5 d) 6 c) 3 46. A solution of potassium ferrocyanide would contains-ions a) 2 b) 3 c) 4 d) 5 47. Which of the following is not considerd as an organometallic compound? a) Grignard reagent b) *cis*-platin c) Zeise's salt d) Ferrocene 48. When phenol is reacted with CHCl₃ and NaOH followed by acidification, salicylaldehyde is obtained. Which of the following species are involved in the above mentioned reaction as intermediates? OH d) Both (a) and (b) CHCl₂ a) b) CHCl 49. Number of geometrical isomers for the molecule >C=C < R are

a) 2 b) 3	c) 6	d) 5
-----------	------	------

- 50. Which statement about coordination number of a cation is true?
 - a) Most metal ions exhibit only a single characteristic coordination number
 - b) The coordination number is equal to the number of ligands bonded to the metal atom
 - c) The coordination number is determined solely by the tendency to surround the metal atom with the same number of electrons as one of the rare gases
 - d) For most cations, the coordination number depends on the size, structure and charge of the ligands

51. Among the following, the strongest base is: b) $p-NO_2-C_6H_4NH_2$ c) $m-NO_2-C_6H_4NH_2$ a) $C_6H_5NH_2$ d) $C_6H_5CH_2NH_2$ 52. General formula for arenes is: d) $C_n H_{2n-6\nu}$ b) $C_n H_{2n+6\nu}$ c) $C_n H_{2n}$ a) $C_n H_{2n+6}$ 53. Which of the following doesn't have a metal-carbon bond? b) C_2H_5MgBr c) K[Pt(C_2H_4)Cl₃] d) Ni(CO)₄ a) Al $(0C_2H_5)_3$ 54. How many isomers are possible in $[Co(en)_2Cl_2]$? a) 2 b) 4 c) 6 d) 1 55. How many carbon atoms in the molecule $HOOC - (CHOH)_2 - COOH$ are asymmetric? a) 1 b) 2 c) 3 d) None of these 56. In benzene, there is a delocalisation of π -electrons. Hence, each π -electron is attached by....carbon nuclei. d) 4 a) 2 b) 3 c) 6 57. Which can be used to distinguish C₆H₅NH₂ and C₆H₅CH₂NH₂? a) Diazotisation followed with coupling with phenol b) Carbylamine reaction c) Reimer-Tiemann reaction d) None of the above 58. When RCOCl and AlCl₃ are used in Friedel-Craft's reaction, the electrophile is: c) $_{RCO}^{+}$ d) *R*⁺ a) *Cl*⁺ b) RCOCl 59. Thiophene is separated from benzene by: a) Chlorination of thiophene b) Sulphonation of thiophene c) Nitration of thiophene d) Oxidation of thiophene 60. A complex compound of CO^{3+} with molecular formula $COCl_x$. *y*NH₃ gives a total of 3 ions when dissolved in water. How many Cl⁻ions satisfy both primary and secondary valencies in this complex? a) 3 c) 4 d) Zero b) 1 61. The correct IUPAC name of alcohol [(CH₃)₂CH]₃COH is a) Tri isopropyl carbinol b) 2, 4-dimethyl-3-isopropyl pentan-3-ol c) 2,4-dimethyl-3-(1-methyl) ethyl pentan-3-ol d) None of the above 62. Colour of transition metal complexes can be explained by: a) Completely filled *d*-orbitals b) Vacant *d*-orbitals c) d - d transition d) None of the above 63. Which is most reactive towards electrophilic reagents: OH CH₂OH OCH₃ VHCOCH3 b) c) d) a) 64. Pick a poor electrolytic conductor complex in solution: a) $K_2[PtCl_6]$ b) $[Co(NH_3)_3](NO_2)_3$ c) $K_4[Fe(CN)_6]$ d) $[Co(NH_3)_4]SO_4$

65	Pongono noosta with aulphunia acid only when the a	aid ia.	
65.	benzene reacts with support actu only when the ac	-) Het and environtuated	
	a) Dilute and cold b) Dilute and not	c) Hot and concentrated	a) Mixed with HNO_3
66.	In the following reaction the catalyst used is:		
	H_2C $CH_2 \rightarrow HC$ $CH + 3H_2$		
	$H_2 - CH_2 - CH_2$ $H_2 - CH$		
	a) Cr_2O_3 b) Al_2O_3	c) Zn dust	d) Cr_2O_3 and Al_2O_3
67.	The alkane which has only primary hydrogen atom i	is	<i>J</i> <u>L</u> <u>J</u> <u>L</u> <u>J</u>
-	a) Pentane	b) <i>iso</i> pentane	
	c) <i>neo</i> pentane	d) 2. 2-dimethyl butane	
68	The correct IJIPAC name of the complex [•]	aj 2, 2 annotigi batano	
00.	OH		
	$H_3C - C = N^{\bullet}$		
	CoCl_2 is :		
	$H_3C - C = N^{\bullet}$		
	ОН		
	a) Dichlorodimethylglyoximato cobalt(II)		
	b) <i>Bis</i> (dimethylglyoxime) dichloro cobalt(II)		
	c) Dimethylglyoxime cobalt(II) chloride		
	d) Dichlorodimethylglyoxime-N,N-cobalt(II)		
69.	Which of the following nitroalkane will not show tax	itomerism?	
		$CH_3 - CH - CH_2NO_2$	
	a) CH ₃ CH ₂ CH ₂ CH ₂ NO ₂	b)	
		CH ₃	
	$CH_3CH - CH_2CH_3$	CH ₃	
	c)	d) $CH_3 \rightarrow C \rightarrow NO_2$	
	NO ₂	CH ₃	
70.	Which is low spin complex?		
	a) $[Fe(CN)_6]^{3-}$ b) $[Co(NO_2)_6]^{3-}$	c) $[Mn(CN)_{6}]^{3-}$	d) All of these
71.	The probable formula for Prussian blue is:		,
	a) $Fe_2[Fe(CN)_{\epsilon}]_2$ b) $Fe_2[Fe(CN)_{\epsilon}]_2$	c) Fe ₄ [Fe(CN) ₆] ₂	d) Fe ₂ [Fe(CN) ₆] ₄
72.	Which represents Reimer-Tiemann reaction?	J 4L ()015) <u>3</u> [()0] 1
	∧ ∠OH ∧ ∠OH		
	CHCl ₃ /NaOH		
	✓		
	b) $\left \bigcirc \right \xrightarrow{\text{NaOH/CO}_2} \left \bigcirc \right $		
	Соон		
	CH ₂ OH COONa		
	· CHO		
	$\begin{bmatrix} \bigcirc \end{bmatrix} \xrightarrow{\text{conc. (NaO11)}} \begin{bmatrix} \bigcirc \end{bmatrix} \xrightarrow{+} \begin{bmatrix} \bigcirc \end{bmatrix}$		
	$\left \bigcirc \right \xrightarrow{\text{NaOH,300°C}} \left \bigcirc \right $		
73.	The complex ion which has no ' d '-electron in the cer	ntral metal atom is :	
	a) $[MnO_4]^-$ b) $[Co(NH_3)_6]^{3+}$	c) [Fe(CN) ₆] ³⁻	d) $[Cr(H_20)_6]^{3+}$

P a g e **| 6**

74.	The shape of cobalt hexa molecules is:	aammine cation, which has	its central cobalt atom surr	ounded by six ammonia
	a) Tetrahedral	b) Octahedral	c) Square planar	d) Trigonal
75.	Which ligand is capable	of forming low spin as wel	l as high spin complexes?	
	a) CO	b) NO_{2}^{-}	c) CN ⁻	d) NH₃
76.	-)	··) · <u>·</u>	- , -	-) 3
	The IUPAC name of \searrow	is		
	a) 7-ethyl-2, 4, 5, 6-tetra	amethyl-deca-1, 9-diene	b) 7-ethyl-2, 4, 5, 6-tetra	methyl-deca-1, 8-diene
	c) 4-ethyl-4, 5, 6, 7-tetra	amethyl-deca-1, 9-diene	d) 7-(1-propenyl)-2, 3, 4,	, 5-tetramethyl-non-1-ene
77.	IUPAC name of [Pt(NH ₃]) ₃ Br(NO ₂)Cl]Cl is		
	a) Triamminechlorobro	monitro platinum (IV) chlo	oride	
	b) Triamminebromonitr	ochloro platinum (IV) chlo	oride	
	c) Triamminebromochle	oronitro platinum (IV) chlo	oride	
	d) Triamminenitrochlor	obromo platinum (IV) chlo	oride	
78.	An aromatic ether is not	cleaved by HI even at 525	K. The compound is:	
				$CH_2 - CH_2$
	a) C ₆ H ₅ OCH ₃	b) C ₆ H ₅ OC ₆ H ₅	c) $C_6H_5OC_3H_7$	d) CH_2 CH_2
				\sim
		_		0
79.	Phenol does not react w	ith:		
	a) Na_2CO_3	b) NaOH	c) NaHCO ₃	d) KOH
80.	[EDTA] ^{4–} is a			
	a) Monodentate ligand		b) Bidentate ligand	
	c) Quadridentate ligand		d) Hexadentate ligand	
81.	$[Pt(NH_3)_4Cl_2]Br_2$ and $[H_3]$	Pt(NH ₃) ₄ Br ₂]Cl ₂ are relate	d to	
	a) Optical isomer	b) Linkage isomers	c) Coordinate isomers	d) Ionization isomers
82.	Ferrocene is an example	e of		
	a) Sand-wiched complex	K		
	b) Pi-bonded complex			
	c) A complex in which a	ll the five carbon atoms of	cyclopentadiene anion are b	onded to the metal
	d) All of the above			
83.	Which compound is zero	o valent metal complex?		
	a) $[Cu(NH_3)_4]SO_4$	b) $[Pt(NH_3)_2Cl_2]$	c) [Ni(CO) ₄]	d) K_3 [Fe(CN) ₆]
84.	Which of the following c	compounds is 2, 2, 3-trimet	hyl hexane?	
	a) $(CH_3)_3CCH(CH_3)CH_2$	CH₂	b) $(CH_3)_3CCH_2(CH_3)_2$	
	c) $(CH_2)_2CH(CH_2)_2$ d) $(CH_2)_2CH(CH_2)_2$ d) $(CH_2)_2CCH(CH_2)CH_2CH_2CH_2$			
85.	The formula of phenoxy	benzene is:	-)(-))3 (-))- 2-	- 2 - 3
	a) C.H.C.H.	b) $C_cH_r = 0 = C_cH_r$	с) С.Н. — О — С.Н.	d) None of these
86	7jaglar-Natta catalyst is	an organometallic compou	ind containing	
00.	a) Iron	b) Titanium	c) Rhodium	d) Zirconium
97	aj 11011 Zioglor Natta cataluctic	bj manun		uj zircomum
07.	a) (Db D) DbCl	h K [D+C] (C H)]	\rightarrow [A] (C H) \pm TiC]]	
00	a) (PII ₃ P) ₃ KIICI The tendengy to show a	DJ $K[P(Cl_3(C_2\Pi_4)]$	$C_{J} [AI_2(C_2\Pi_6)_6 + \Pi CI_4]$	$u_{1}[re(c_{2}n_{5})_{2}]$
00.	a) a block	b) m block	a) d block	d) f block
00	aj S-DIOCK	ој <i>р</i> -ріоск	CJ <i>u</i> -DIOCK	u) / -DIOCK
89.	EDIA has coordination	number	-) Г	4) (
0.2	aj 3		CJ 5	a) b
90.	Which of the following is	s used in Friedel-Craft's ac	vlation reaction?	

a)
$$CH_3CO$$

 CH_3CO
 CH_3CO
b) CH_3CH_2Cl
c) CH_3COOCH_3
d) CH_3Cl

- 91. The correct IUPAC name of $Mn_3(CO)_{12}$ is
 - a) Dodacacarbonyl maganate (0)
 - c) Didacacarbonyl trimaganese (0)

b) Dodacacarbonyl maganate (II)d) Manganic dodecacarbanyl (0)

organometallic compound which has athene as one of its component is

- 92. The π –bonded organometallic compound which has ethene as one of its component is a) Zeise's salt b) Ferrocene c) Dibenzene chromium d) Tetraethyl tin
- 93. IUPAC name of the compound

$$CH_3$$

 CH_3 -C-COOC₂H₅ is

a) Ethyl-2-methyl-2-(*m*-nitro) phenyl propanoate

- b) Ethyl-2-methyl-2-(o-nitro) phenyl propanoate
- c) Ethyl-2-methyl-2-(3-nitro) phenyl propanoate d) Ethyl-2-methyl-2-(3-nitro) phenyl propanoic acid
- 94. What is the product obtained in the following reaction:

- 95. $[Co(NH_3)_6]Cl_3$ is called:
 - a) Hexaammine cobalt (III) chloride
 - b) Amino cobalt chloride (III)
 - c) Cobalt chloride hexaammine
 - d) Hexaammine tricobalt chloride
- 96. The complexes [PtCl₂(NH₃)₄]Br₂ and [PtBr₂(NH₃)₄]Cl₂ are example for isomerism
 a) Geometrical
 b) Optical
 c) Ionization
 d) Linkage
- 97. Geometrical shapes of the complexes formed by the reaction of Ni^{2+} with Cl^- , CN^- and H_2O , respectively, are
 - a) Octahedral, tetrahedral and square planar
 - c) Square planar ,tetrahedral and octahedral
- b) Tetrahedral ,square planar and octahedral

d) Octahedral, square planar and octahedral

98. Identify the correct order of reactivity in electrophilic substitution reactions of the following compounds:

$$\bigcirc (1) \quad , \quad \bigodot (2) \quad (3) \quad (1) \quad (2) \quad (1) \quad (2) \quad (1) \quad (1) \quad (2) \quad (2) \quad (3) \quad (1) \quad (2) \quad (2) \quad (3) \quad ($$

a)
$$1 > 2 > 3 > 4$$

99. The centric formula for benzene was proposed by:

b) 4 > 3 > 2 > 1

- a) Dewar
- b) Armstrong and Baeyer
- c) Ladenberg
- d) Kekule
- 100. Which is the correct statement?
 - a) Benzyl alcohol is more acidic than phenol
 - b) Ethanol is a powerful oxidizing agent
 - c) Phenol is more acidic than propanol
 - d) Ethane has high boiling point than ethanol

c) 2 > 1 > 3 > 4 d) 2 > 3 > 1 > 4

101. Phenol on sulphonation gives: a) o-phenol sulphonic acid b) p-phenol sulphonic acid c) *m*-phenol sulphonic acid d) Mixture of o-and p-phenol sulphonic acids 102. Which of the following organometallic compound is σ and π bonded? b) $[Co(CO)_5 NH_3]^{2+}$ c) $[Fe(\eta^5 - C_5H_5)_2]$ d) $K[PtCl_3(\eta^2 - C_2H_4)]$ a) $Fe(CH_3)_3$ 103. The number of double bonds in BHC (gammexane) is: a) 1 b) 2 c) 3 d) Zero 104. Given the molecular formula of the hexa coordinated complexes (A) $CoCl_3 \cdot 6NH_3$ (B) $CoCl_3 \cdot 5NH_3$ (C) $CoCl_3 \cdot 4NH_3$. If the number of coordinated NH_3 molecules in A, B and C respectively are 6, 5 and 4, primary valency in (A), (B) and (C) are d) 3, 3, 3 a) 0, 1, 2 b) 3, 2, 1 c) 6, 5, 4 105. Type of isomerism shown by $[Cr(NH_3)_5 NO_2]Cl_2$ is a) Optical b) Ionisation c) Geometrical d) Linkage 106. $[Sc(H_2O)_6]^{3+}$ ion is a) Colourless and diamagnetic b) Coloured and octahedral c) Colourless and paramagnetic d) Coloured and paramagnetic 107. Which one of the following octahedral complexes will not show geometrical isomerism? (A and B are monodentate ligands) d) $[MA_3B_3]$ a) $[MA_4B_2]$ b) $[MA_5B]$ c) $[MA_2B_4]$ 108. The IUPAC name of the following compound is $\begin{array}{c} O = C - CH - CH_2 \\ | & | \\ OH & NH_2 & OH \end{array}$ a) 3-amino-2-hydroxy propanoic acid b) 2-aminopropan-3-ol-1-oic acid c) 2-amion-3-hydroxy propanoic acid d) Aminohydroxy propanoic acid 109. Which of the following complex ion is not expected to absorb visible light? a) $[Ni(CN)_4]^{2-}$ b) $[Cr(NH_3)_6]^{3+}$ c) $[Fe(H_2O)_6]^{2+}$ d) $[Ni(H_20)_6]^{2+}$ 110. The correct sequence of activating power of a group in benzene is: a) $-NH_2 > -NHCOCH_3 > -CH_3$ b) $-NH_2 < -NHCOCH_3 < -CH_3$ c) $-NH_2 > -NHCOCH_3 < -CH_3$ d) $-NH_2 < -NHCOCH_3 > -CH_3$ 111. The pair of compounds having metals in their highest oxidation state is a) MnO₂, FeCl₃ b) $[MnO_4]^-, CrO_2Cl_2$ c) [Fe(CN)₆]^{3–}, [Co(CN)₃] d) $[NiCl_4]^{2-}$, $[CoCl_4]^{-}$ 112. Total number of geometrical isomers for the complex $[RhCl(CO)(PPh_3)(NH_2)]$ is a) 1 c) 3 d) 4 b) 2 113. The reaction of chloroform with alc. KOH and *p*-toluidine forms: -NHCHCl₂ a) H₃C

114. Which order is correct in spectrochemical series of ligands?

a) $Cl^- < F^- < [C_2O_4]^{2-} < NO_2^- < CN^-$

b) $CN^- < [C_2O_4]^{2-} < Cl^- > NO_2^- < F^-$

c) $[C_2O_4]^{2-} < F^- < Cl^- > NO_2^- < CN^-$

d) $F^- < Cl^- < NO_2^- < CN^- < [C_2O_4]^{2-1}$

- 115. The IUPAC name of compound $K_3[Fe(CN)_5NO]$ is
 - a) Pentacyano nitrosyl potassium ferrate(II)
 - c) Potassium pentacyanonitrosyl ferrate (III)
- 116. The colour of $[Ti(H_20)_6]^{3+}$ is due to:
 - a) Transfer of an electron from one Ti to another
 - b) Presence of water molecule
 - c) Excitation of electrons from d d
 - d) Intramolecular vibration
- 117. The oxidation number of Fe in $K_4[Fe(CN)_6]$ is

. . . .

c) +2

b) +4

d) −2

d) 2 ions

 $4M + 8CN^{-} + 2H_2O + O_2 \rightarrow 4[M(CN)_2]^{-} + 4OH^{-}$

 $\begin{array}{ccc} 2[M(CN)_2]^- + Zn \longrightarrow [Zn(CN)_4]^{2-} + 2M: \\ a) \ Nickel & b) \ Silver & c) \ Copper & d) \ Mercury \\ 120. \ EAN \ of \ Cr \ in \ [Cr(NH_3)_6] \ Cl_3 \ is: \\ a) \ 32 & b) \ 33 & c) \ 34 & d) \ 35 \end{array}$

- 121. The complex $[Pt(NH_3)_6]Cl_4$ furnishes: a) 5 ions b) 6 ions
- 122. Ammoniacal solution of $Ni(CN)_2$ reacts with C_6H_6 to produce a light violet coloured crystalline compound of the formula:

c) 4 ions

- a) Ni(CN)₂ · C₆H₅
 b) C₆H₅CH₃
 c) Ni(CN)₂C₆H₆
 d) Ni(CN)₂NH₃ · C₆H₆
 123. Ammonia forms the complex ion [Cu(NH₃)₄]²⁺ with copper ions in alkaline solution but not in acidic solution. What is the reason for it?
 - a) In acidic solutions, hydration protects copper ions
 - b) In alkaline solution, insoluble Ci(OH)₂ is precipited which in excess of any alkali
 - c) Copper hydroxide is an amphoteric substance
 - d) In acidic solutions, protons coordinate with ammonia molecules forming $\rm NH_4^+$ ions and $\rm NH_3$ molecules are not available
- 124. Which of the following shows geometrical isomerism?

a) 1, 2-dicholoroethan	е	b) 1, 2-dimethylcyclo	propane
,⊂O—NH	\backslash	d) All of the above	
c) CH ₃ CH <	CHCH ₃		
125 The shore of the serve	$\frac{1}{1}$		
125. The snape of the comp	$\left[\text{Ag}(\text{NH}_3)_2 \right]^2$ is:		
a) Octahedral	b) Square planar	c) Tetrahedral	d) Linear

- b) Potassium cyano pentanitrosyl ferrate(II)
- d) Potassium pentacyanonitrosyl ferrate (II)

126. The π -bounded organometallic compound which has ethane as one of its component is

c) Ferrocene

d) Tetraethyl tin

a) Dibenzene chromium b) Zeise salt

127. The major product of the following reaction is:

- a) Hybridization of Ni is sp^3
- b) Tetrahedral shape of the molecule
- c) Diamagnetic
- d) All are correct

129. The reaction, $C_6H_5N_2Cl \xrightarrow{Cu_2Cl_2/HCl} C_6H_5Cl + N_2$ is called:

b) Sandmeyer's reaction c) Wurtz-Fittig reaction d) Perkin's reaction a) Etard's reaction 130. Which of the following does not show optical isomerism?

a)
$$[Co(en)_3]^{3+}$$
 b) $[Co(en)_2Cl_2]^+$ c) $[Co(NH_3)_3Cl_3]^0$ d) $[Co(en)Cl_2(NH_3)_2]^+$
131. CH_3
 CH_3
Having the IUPAC name as
a) 1, 2-dimethyl cyclobutane b) 2, 3-dimethyl cyclobutene

c) 2, 3-dimethyl butane

d) 1, 2-dimethyl cyclobut-1-ene

132. Which of the follow	ing ions is produced when v	ve prepare nitrating mix	ture by mixing together
concentrated HNO ₃	and concentrated H ₂ SO ₄ ?		
a) NO ₂	b) NO ₂ ⁺	c) NO ₃	d) SO ₃ ⁺ H
133. The correct IUPAC	name of		
F			
Br			
is			
a) 1-brmo-2-chloro	-6-fluoro-4-iodobenzene	b) 1-bromo-6-chlo	oro-2-fluoro-4-iodobenzene
c) 2-bromo-1-chlor	o-3-floro-5-iodobenzene	d) 2-bromo-3-chlo	oro-1-floro-5-odobenzene
134. [Co(NH ₃) ₄ (NO ₂) ₂](Cl exhibits:		
a) Ionization isome	rism, geometrical isomerisn	n and optical isomerism	
b) Linkage isomeris	sm, geometrical isomerism a	nd optical isomerism	
c) Linkage isomeris	sm, ionization isomerism and	d optical isomerism	
d) Linkage isomeris	sm, ionization isomerism and	d geometrical isomerism	1
135. Which of the follow	ing complexes are not corre	ctly matched with hybri	disation of their central metal ion?
1. [Ni(CO)₄]	sp ³		
2 [Ni(CO), l^{2-}	sn ³		
2. $[11(00)_4]$ 3. $[C_0F_1]^{3-1}$	$d^2 \operatorname{sn}^3$		
$4 [E_0(CN)]^{13-1}$	$a^{3}p^{2}$		
$\frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right]$	sp u	bolow	
a) 1 and 2	h) 1 and 2	a) 2 and 4	d) 2 2 and 4
a) I dilu 2 126 Which of the follow	b) I allu S	CJ Z allu 4	u) 2, 5 anu 4
a) DCl	h) UNO		d) 246 trinitrophonol
a) PCI ₅	$D \int H N O_3$	$C_{6}H_{5}UH$	u) 2,4,6-trimtrophenoi
137. The coordination h	umber of Cr in $[Cr(NH_3)_3(H_3)(H_3)$	$_{2}O)_{3}$ JCI ₃ IS:	
a) 3	b) 4	CJ 6	
138. The major product	obtained when 3-phenyl-1, 2	2-propane-diol is heated	with H_2SO_4 is:
a) C_6H_5 — CH_2 — CO	—CH ₃		
b) C ₆ H ₅ —CH ₂ —CH	₂ —CHO		
c) C_6H_5 — CH_2 — CH	$= CH_2$		
d) $C_6H_5 - CH_2 - CH_2$	$I - CH_2$		
	\mathbf{v}_{0}		
139 Rate of substitution	in phenol is:		
a) Slower than as ir	henzene		
h) Faster than as in	henzene		
c) Faual to that as i	n honzono		
d) None of the abov			
140 Magnetic moment of	$f[\Lambda_{\sigma}(CN)]^{-}$ is zero. How m	any unnaired electrons	are there?
a) Zoro	h A		
a) Lei U	UJ 4 ordination compound having	cj 5 contral atom of	u) I
	h) Ma		4) K
al Ud 142 Which of the follow	DJ Mg	CJ Na	U) K
142. Which of the follow	ing statements is incorrect?	the coconderry veloper of	fforminion
a) III $K_3[Fe(CN)_6]$, (the secondary valency of	i lerricion.
b) In $K_3[Fe(CN)_6]$, t	the ligand has satisfied both	primary and secondary	valencies of ferric ion.
c) In $K_4[Fe(CN)_6]$, t	the ligand has satisfied both	primary and secondary	valencies of ferrous ion.
a) $In[Cu(NH_3)_4]SO_4$	4, the ligand has satisfied on	ly the secondary valened	cy of copper.
143. Maximum number	of open chain isomers that a	n alkene can have with t	The molecular formula C_4H_8 is
a) 5	b) 4	c) 3	d) 2
144. Which one is the wi	rong statement?		
a) Open chain comp	oounds are called aliphatic		

- b) Unsaturated compounds contain multiple bonds in them
- c) Saturated hydrocarbons are called alkene
- d) Aromatic compounds possess a characteristic aroma
- 145. According to postulates of Werner's theory for coordination compounds, which of the following is true?
 - a) Primary valencies are ionizable
- b) Secondary valencies are ionizable
- c) Only primary valencies are non-ionizable
- d) Primary and secondary valencies are nonionizable
- 146. Atomic numbers of Cr and Fe are respectively 24 and 26. Which of the following is paramagnetic with the spin of the electron?
- a) $[Cr(CO)_6]$ b) $[Fe(CO)_5]$ c) $[Fe(CN)_6]^{4-}$ d) $[Cr(NH_3)_6]^{3+}$ 147. Which of the following structures correspond to the product expected, when excess of C_6H_6 reacts with CH_2Cl_2 in presence of anly. AlCl₃ ?

a)
$$\bigcirc$$
 -CH- \bigcirc b) \bigcirc -CHCl₂ c) \bigcirc \bigcirc \bigcirc d) \bigcirc d)

148. Which of the following will give a pair of enantiomorphs?

- a) $[Co(en)_2Cl_2]Cl$ b) $[Cr(NH_3)_6][Co(CN)_6]$
- c) $[Pt(NH_3)_4][PtCl_6]$ d) $[Co(NH_3)_4Cl_2]NO_2$

149. The crystal field splitting energy for octahedral(Δ_0) and tetrahedral (Δ_t) complexes is related to

a)
$$\Delta_t = \frac{4}{9} \Delta_0$$
 b) $\Delta_t = \frac{1}{2} \Delta_0$ c) $\Delta_0 = 2\Delta_t$ d) $\Delta_0 = \frac{4}{9} \Delta_t$

150. The correct name of the compound $[Cu(NH_3)_4](NO_3)_2$, according to IUPAC system is:

- a) Cuprammonium nitrate
- b) Tetraamminecopper(II) dinitrate
- c) Tetraamminecopper(II) nitrate
- d) Tetraamminecopper(I) dinitrate
- 151. Which among the following will not show chain isomerism?

	-	-		
	a) C ₃ H ₈	b) C ₄ H ₁₀	c) C ₅ H ₁₂ O	d) C ₅ H ₁₀ O
152	. Phenol (1 mole) reacts w	ith bromine to give s-tribro	mophenol. How much brom	nine is needed?
	a) 1.5 mole	b) 3.0 mole	c) 4.5 mole	d) 6.0 mole
153	. Dimethyl glyoxime forms	a coloured complex with		
	a) Ag	b) Ni	c) Cr	d) Zn
154	. Which has regular tetrahe	edral geometry?		
	a) $[Ni(CN)_4]^{2+}$	b) SF ₄	c) [BF ₄] ⁻	d) XeF ₄
155	. In haemoglobin the iron s	shows oxidation state:		
	a) +2	b) +3	c) +1	d) +4
156	. For the given complex [Co	$\mathrm{oCl}_2(\mathrm{en})(\mathrm{NH}_3)_2]^+$, the num	ber of geometrical isomers	s, the number of optical
	isomers and total number	r of isomers of all type poss	ible respectively are	
	a) 2, 2 and 4	b) 2, 2 and 3	c) 2, 0 and 2	d) 0, 2 and 2
157	. Which can show aromatic	c character?		
	a) Furan	b) Pyrrol	c) Benzene	d) All of these
158	. Of the following complexe	es, the one with the largest	value of the crystal field sp	litting is:
	a) $[Fe(H_2O)_6]^{3+}$	b) $[Ru(CN)_6]^{3-}$	c) $[Fe(H_2O)_6]^{2+}$	d) $[Fe(NH_3)_6]^{3+}$
159	. The specific rotation of a	pure enantiomer is + 16°. I	ts observed rotation if it is	isolated from a reaction
	with 25% recemisation a	nd 75% retention is		
	a) –12°	b) +12°	c) +16°	d) −16°
160	. Lithium tetrahydridoalun	ninate is correctly represen	ited as:	
	a) Al[LiH ₄]	b) $Al_2[LiH_4]_3$	c) Li[AlH ₄]	d) $Li[AlH_4]_2$
161	. Which of the following co	mpounds is generally used	for hydrogenation of alken	les?

$\begin{array}{cccc} & \operatorname{C}_{6}\operatorname{H}_{6} + \operatorname{Cl}_{2} \xrightarrow{\operatorname{Sunlight}} \operatorname{is:} & & \\ & a) \operatorname{C}_{6}\operatorname{H}_{5}\operatorname{Cl} & b) \operatorname{o-C}_{6}\operatorname{H}_{4}\operatorname{Cl}_{2} & c) \operatorname{C}_{6}\operatorname{H}_{6}\operatorname{Cl}_{6} & d) \operatorname{p-C}_{6}\operatorname{H}_{4}\operatorname{Cl}_{2} \\ & 163. \left[\operatorname{Pt}(\operatorname{NH}_{3})_{6}\right]\operatorname{Cl}_{4} \operatorname{complex} \operatorname{gives} & & \\ & a) 4 \operatorname{ions} & b) 3 \operatorname{ions} & c) 2 \operatorname{ions} & d) 5 \operatorname{ions} \\ & 164. \operatorname{Which} \operatorname{does} \operatorname{not} \operatorname{obey} \operatorname{EAN} \operatorname{rule?} & & \\ & a) \left[\operatorname{Cu}(\operatorname{NH}_{3})_{4}\right]^{2+} & b) \left[\operatorname{Zn}(\operatorname{OH})_{4}\right]^{2-} & c) \left[\operatorname{HgI}_{4}\right]^{2-} & d) \operatorname{Fe}(\operatorname{CO})_{5} \\ & 165. \operatorname{Oxidation} \operatorname{number} \operatorname{of} \operatorname{Fe} \operatorname{in} \operatorname{K}_{3}[\operatorname{Fe}(\operatorname{CN})_{6}] \operatorname{is:} & & \\ & a) + 3 & b) + 2 & c) + 10 & d) 1 \\ & 166. \operatorname{Which} \operatorname{of} \operatorname{the} \operatorname{following} \operatorname{is} \operatorname{not} \operatorname{an} \operatorname{organometallic} \operatorname{compound?} & \\ & a) \operatorname{NaOC}_{2}\operatorname{H}_{5} & b) \left(\operatorname{CH}_{3}\right)_{3}\operatorname{Al} & c) \left(\operatorname{C}_{2}\operatorname{H}_{5}\right)_{4}\operatorname{Pb} & d\right) \operatorname{RMgX} \\ & 167. \operatorname{Considering} \operatorname{H}_{2}\operatorname{O} \operatorname{as} \operatorname{weak} \operatorname{field} \operatorname{ligand}, \operatorname{the} \operatorname{number} \operatorname{of} \operatorname{unpaired} \operatorname{electrons} \operatorname{in} & \\ & \operatorname{IMn}(\operatorname{H}_{4}\operatorname{O}) \right ^{2+} \operatorname{will} \operatorname{be} \left(\operatorname{Atomic} \operatorname{no} \operatorname{of} \operatorname{Mn=25}\right) \end{array}$					
$\begin{array}{cccc} C_{6}H_{6}+Cl_{2} & \ \ \ \ \ \ \ \ \ \ \ \ \ $					
a) C_6H_5Cl b) $o - C_6H_4Cl_2$ c) $C_6H_6Cl_6$ d) $p - C_6H_4Cl_2$ 163. $[Pt(NH_3)_6]Cl_4$ complex gives a) 4 ions b) 3 ions c) 2 ions d) 5 ions 164. Which does not obey EAN rule? a) $[Cu(NH_3)_4]^{2+}$ b) $[Zn(OH)_4]^{2-}$ c) $[HgI_4]^{2-}$ d) $Fe(CO)_5$ 165. Oxidation number of Fe in $K_3[Fe(CN)_6]$ is: a) +3 b) +2 c) +10 d) 1 166. Which of the following is not an organometallic compound? a) $NaOC_2H_5$ b) $(CH_3)_3Al$ c) $(C_2H_5)_4Pb$ d) $RMgX$ 167. Considering H_2O as weak field ligand, the number of unpaired electrons in $[Mn(H, O)]^{2+}$ will be (Atomic no. of $Mn=25$)					
163. $[Pt(NH_3)_6]Cl_4$ complex givesa) 4 ionsb) 3 ionsc) 2 ionsd) 5 ions164. Which does not obey EAN rule?a) $[Cu(NH_3)_4]^{2+}$ b) $[Zn(OH)_4]^{2-}$ c) $[HgI_4]^{2-}$ d) Fe(CO)_5165. Oxidation number of Fe in K_3[Fe(CN)_6] is:a) +3b) +2c) +10d) 1166. Which of the following is not an organometallic compound?a) NaOC_2H_5b) (CH_3)_3Alc) (C_2H_5)_4Pbd) RMgX167. Considering H_2O as weak field ligand, the number of unpaired electrons in $[Mn(H, Q), 1^{2+}$ will be (Atomic no. of Mn=25)					
a) 4 ions b) 3 ions c) 2 ions d) 5 ions 164. Which does not obey EAN rule? a) $[Cu(NH_3)_4]^{2+}$ b) $[Zn(OH)_4]^{2-}$ c) $[HgI_4]^{2-}$ d) $Fe(CO)_5$ 165. Oxidation number of Fe in $K_3[Fe(CN)_6]$ is: a) +3 b) +2 c) +10 d) 1 166. Which of the following is not an organometallic compound? a) $NaOC_2H_5$ b) $(CH_3)_3Al$ c) $(C_2H_5)_4Pb$ d) $RMgX$ 167. Considering H_2O as weak field ligand, the number of unpaired electrons in $[Mn(H_2O)_1]^{2+}$ will be (Atomic no. of Mn=25)					
164. Which does not obey EAN rule?a) $[Cu(NH_3)_4]^{2+}$ b) $[Zn(OH)_4]^{2-}$ c) $[HgI_4]^{2-}$ d) $Fe(CO)_5$ 165. Oxidation number of Fe in $K_3[Fe(CN)_6]$ is:a) +3b) +2c) +10d) 1166. Which of the following is not an organometallic compound?a) NaOC_2H_5b) $(CH_3)_3Al$ c) $(C_2H_5)_4Pb$ d) $RMgX$ 167. Considering H_2O as weak field ligand, the number of unpaired electrons in $[Mn(H, O), 1^{2+}$ will be (Atomic no. of Mn=25)					
a) $[Cu(NH_3)_4]^{2+}$ b) $[Zn(OH)_4]^{2-}$ c) $[HgI_4]^{2-}$ d) $Fe(CO)_5$ 165. Oxidation number of Fe in $K_3[Fe(CN)_6]$ is: a) +3 b) +2 c) +10 d) 1 166. Which of the following is not an organometallic compound? a) $NaOC_2H_5$ b) $(CH_3)_3Al$ c) $(C_2H_5)_4Pb$ d) $RMgX$ 167. Considering H_2O as weak field ligand, the number of unpaired electrons in $[Mn(H_2O)_1]^{2+}$ will be (Atomic no. of Mn=25)					
165. Oxidation number of Fe in $K_3[Fe(CN)_6]$ is:a) +3b) +2c) +10d) 1166. Which of the following is not an organometallic compound?a) NaOC ₂ H ₅ b) (CH ₃) ₃ Alc) (C ₂ H ₅) ₄ Pbd) RMgX167. Considering H ₂ O as weak field ligand, the number of unpaired electrons in[Mn(H, O), 1 ²⁺ will be (Atomic no, of Mn=25)]					
a) +3 b) +2 c) +10 d) 1 166. Which of the following is not an organometallic compound? a) NaOC ₂ H ₅ b) (CH ₃) ₃ Al c) (C ₂ H ₅) ₄ Pb d) <i>R</i> MgX 167. Considering H ₂ O as weak field ligand, the number of unpaired electrons in $[Mn(H, O)]^{2+}$ will be (Atomic no. of Mn=25)					
166. Which of the following is not an organometallic compound? a) $NaOC_2H_5$ b) $(CH_3)_3Al$ c) $(C_2H_5)_4Pb$ d) $RMgX$ 167. Considering H_2O as weak field ligand, the number of unpaired electrons in $[Mn(H_2O)]_{12^+}^{12^+}$ will be (Atomic no. of $Mn=25$)					
a) $NaOC_2H_5$ b) $(CH_3)_3Al$ c) $(C_2H_5)_4Pb$ d) $RMgX$ 167. Considering H_2O as weak field ligand, the number of unpaired electrons in $[Mn(H_2O)]^{1/2}$ will be (Atomic no. of $Mn=25$)					
167. Considering H ₂ O as weak field ligand, the number of unpaired electrons in $[Mn(H, O), 1^{2+} will be (Atomic no. of Mn=25)]$					
$[Mn(H, 0)]^{2+} \text{ will be (Atomic no. of Mn-25)}$					
a) Three b) Five c) Two d) Four					
168 The value of 'snin only' magnetic moment for one of the following configuration is 2.84 BM the correct one					
d^4 (in weak ligand field)					
a) d^3 (in weak igaid field) c) d^3 (in weak is strong field) d) d^5 (in weak ligand field)					
u = u = u = u (III weak light lie u) $u = u = u$ (III weak light lie u)					
169. Fluorobenzene (C_6H_5F) can be synthesized in the laboratory:					
a) By neating phenoi with HF and KF					
b) From aniline by diazotisation followed by heating the diazonium salt with HBF_4					
c) By direct fluorination of benzene with F_2 gas					
d) By reacting bromobenzene with NaF solution					
170. Which compound burns with a sooty flame?					
a) C ₆ H ₅ CH ₂ OH					
b) C ₆ H ₅ COOH					
c) CH ₃ OH					
d) $CH_3COC_2H_5$					
171. How many EDTA (ethylenediaminetetraacetic acid) molecules are required to make an octahedral					
complex with a Ca ²⁺ ion?					
a) Six b) Three c) One d) Two					
172. Intramolecular rearrangement of phenyl esters to give o -and p -derivatives in presence of AlCl ₃ is known					
as:					
a) Friedel-Craft's reaction					
b) Fries rearrangement					
c) Esterification					
d) Coupling					
173. Which reaction can produce R—CO—Ar species?					
a) $ArCOCl + H - Ar \xrightarrow{AICl_3} b) COCl + RMgX \rightarrow c) RCOCl + H - Ar \xrightarrow{AICl_3} d) R + CrO_3 \rightarrow c$					
174. Acidic character of phenol is due to:					
a) Resonance of phenoxide ion					
b) Tautomerism occurring in phenol					
c) The fact that the electronegativity of oxygen is more than that of hydrogen					
d) None of the above					
175 In triethylenediamine cohalt(III) chloride the coordination number of cohalt is:					
a) 3 b) 4 c) 6 d) 7					
176. Mark the unidentical compound					

CH ₃	∕∽ ≜ ^{Br}	∽ ▲ ^{Br}	H, A
a)	h)		d)
CH3	Br	Br	H ₃ C Br
177 A complex compound in	which the oridation numb	on of a motal is more is	
1/7. A complex compound in	which the oxidation numb b) K [E ₀ (CN)]	er of a metal is zero, is $c_{1} [N_{1}(CO)]^{1}$	d [D+(NU)]C]
178 In the halogenation of a	$M_3[re(GN)_6]$	$c_{1} [N(co)_{4}]$	the species is:
a) (]	h) Cl ⁺	c) Cl ⁻	d) Cl
179. Among [Ni(CN)] ^{2–} . [Ni	$Cl_{4}l^{2-}$ and $[Ni(CO)_{4}]$:		
a) [Ni(CN) $_{1}^{2-}$ is square	$e p anar and [NiC]_{2}^{2-}$. Ni(CO)₄ are tetrahedral	
b) [NiCl ₄] ²⁻ is square pl	anar and $[NiCN_{A}]^{2-}$, Ni(CO)) ₄ are tetrahedral	
c) Ni(CO) ₄ is square pla	nar and $[Ni(CN)_4]^{2-}$, $[NiCl_4]^{2-}$	$[1]^{2-}$ are tetrahedral	
d) None of the above			
180. Benzene is obtained by:			
a) Condensation of thre	e C ₂ H ₂ molecules		
b) Polymerization of thr	ee C ₂ H ₂ molecules		
c) Addition of three C ₂ H	I ₂ molecules		
d) Substitution of three	acetylene molecules		
181. IUPAC name of <i>t</i> -butyl c	hloride is		
a) 2-chloro butane		b) 1-chloro-2-methylpro	pane
c) 2-chloro-2-methylpro	opane	d) None of the above	
182. The <i>d</i> -electronic configu	iration of Cr ²⁺ , Mn ²⁺ , Fe ²⁺ ,	Ni ²⁺ are $3d^4$, $3d^5$, $3d^6$ and	3d ⁸ respectively. Which of
the following complex w	vill show minimum parama	gnetic behaviour?	$1)$ [M (H \circ) $12\pm$
a) $[Fe(H_2U)_6]^{2^+}$	b) $[N1(H_2O)_6]^2$	c) $[Cr(H_2O)_6]^2$	d) $[Mn(H_2O)_6]^2$
a) Ponzono ring ovists in	an cyclonexanol because:		
a) Delizelle i llig exists ll b) Cyclobeyane ring sho			
c) Phenol is noor in hyd	rogen		
d) Cyclohexanol is rich i	n hydrogen		
184. Total possible structura	l isomers (not stereo) of C ₄	H _c are	
a) 4	b) 6	c) 9	d) 12
185. In the reaction of <i>p</i> -chlo	rotoluene with KNH ₂ in liq	$. NH_3$ the major product is:	,
a) <i>o</i> -toluidine	b) <i>m</i> -toluidine	c) <i>p</i> -toluidine	d) <i>p</i> -chloroaniline
186. The type of isomerism i	n the molecule of compound	ds CH ₃ CH ₂ COCH ₂ CH ₃ and (CH ₃ CHC(OH)CH ₂ CH ₃ is
referred as:			
a) Metamerism			
b) Chain isomerism			
c) Functional isomerisn	1		
d) Tautomerism			
187. Phenol is less soluble in	water. It is due to:		
a) Non-polar nature of p	ohenol		
b) Acial chature of – OH	group		
d) None of the above	ons part in it		
188 When nhenol is treated	with excess bromine water	· it gives·	
a) <i>m</i> -bromonhenol	with excess biolinic water	, 10 51 0 65.	
b) <i>o</i> -and <i>p</i> -bromopheno	bl		
c) 2,4-dibromophenol			
d) 2,4,6-tribromopheno	1		
189. Which have octahedral	shape $(d^2 s p^3)$ hybridizatio	n of central atom?	

a) $[Cr(NH_3)_6]^{2+}$ 190. Which of the following n	b) [Fe(CN) ₆] ^{3–} nolecules/species are arom	c) $[Cu(NH_3)_6]^+$ tatic in character?	d) All are correct
$\bigcup_{\substack{\textcircled{\tiny \textcircled{\tiny \textcircled{\tiny \textcircled{\tiny \textcircled{\tiny \textcircled{\tiny \blacksquare}}}}}\\(1)}} (2)} (2) (3)$	(4)		
a) 2	b) 3	c) 4	d) 1
191. Among the following cor	npounds ;		
I. \bigcirc II. Et ₃ N III. \bigcirc NH ₂ NH ₂	IV. O		
the order of basicity is :			
a) $IV > III > II > I$	b) II > I > III > IV	c) $III > IV > II > I$	d) $I > III > IV > II$
192.			
The correct name of CO_3	$Fe \underbrace{CO}_{CO} Fe CO_3 is:$		
a) Tri-µ-carbonyl <i>bis-</i> (tr	ricarbonyl)iron (0)		
b) Hexacarbonyl iron (II	I) μ-tricarbonyl ferrate(0)		
c) Tricarbonyl iron(0) μ	tricarbonyl iron(0) tricarb	oonyl	
d) Nonacarbonyl iron			
193. Which is high spin comp	lex?		
a) [CoCl ₆] ^{3–}	b) [FeF ₆] ^{3–}	c) $[Co(NH_3)_6]^{2+}$	d) All are correct
194. The correct IUPAC name	e of tartaric acid is		
a) 1, 4-dicarboxy-2, 3-di	hydroxy ethane	b) α , α' -dihydroxy butane	e-1,4-dioic acid
c) 1, 4-dihydroxybutane	-2, 3-dioic acid	d) 2, 3-dihydroxybutane-	-1, 4-dioic acid
195. What is the overall form	ation equilibrium constant	for the ion $[ML_4]^{2-}$ ion, give	en that β_4 for this complex is
2.5×10^{13} ?	-		
a) 2.5 × 10 ¹³	b) 5 × 10 ⁻¹³	c) 2.5 × 10 ⁻¹⁴	d) 4.0 × 10^{-13}
196. The oxidation state of Cr	$(n + 1)^{1}$ in $[Cr(NH_2)_4 Cl_2]^+$ is	,	
a) 0	h) +1	c) +2	d) +3
197. Which of the following c	ompounds has the most aci	idic nature?	
Си Он			ОН
		OH	
a)	b)	c)	
198. The oxidation state of M	o in its oxo-complex specie	$s [Mo_2O_4(C_2H_4)_2(H_2O)_2]^{2-1}$	- is:
a) +2	b) +3	c) +4	d) +5
199. CH ₃ MgI is an organomet	allic compound due to	,	,
a) Mg —I bond	b) C —I bond	c) C—Mg bond	d) C —H bond
200. The effective atomic num	nber of Cr (At. No.=24)in [($Cr(NH_2)_2$]Cl ₂ is	
a) 35	b) 27	c) 33	d) 36
201. When aniline is heated y	vith benzaldehyde, the prod	duct is:	
a) Benzoin	h) Schiff 's hase	c) Unsaturated acid	d) Azoxy benzene
202. Slow heating of salicylic	acid gives:	-) chouraitatea aeta	
a) Benzoic acid	h) Phenol	c) Benzaldehvde	d) None of these
203. According to Hückel mo	nocyclic comnounds will st	how aromaticity when	
a) It has 4π -electrons	nocyclic compounds will si	now aromaticity which.	
h) It has no π -electron			
c) It has $4\pi \pm 2$ algorithms			

d) It has $(4n + 2)\pi$ -electrons

204. When phenol is distilled with zinc dust, it gives: a) Benzene b) Toluene

205. The IUPAC name of the given structure

c) C_6H_5CHO

d) None of these

,Br

a) N-chloro-N-bromoethanamide

c) N-bromo-N-chloroacetamide

b) N-bromo-N-chloroethanamide

d) N-chloro-N-bromoacetamide

206. Acetophenone when reacted with a base C₂H₅ONa, yields a stable compound which has the structure:

207. Which of the following has maximum resonance energy?

- b) Carbonyl complexes are usually formed with transition metals
- c) All transition metals form monometallic carbonyls

d) The decomposition of $Ni(CO)_4$ to give Ni is used in the extraction of Ni by Mond's process

212. The complex showing a spin-only magnetic moment of 2.82 BM is

b) $[NiCl_4]^{2-}$ d) $[Ni(CN)_4]^{2-}$ a) Ni(CO)₄ c) Ni(PPh₃)₄ 213. The IUPAC name of $[CoCl(NO_2)(en)_2]Cl$ is:

b) Chloronitro-bis(ethylenediamine)cobalt(II) chloride

c) Chloro-bis(ethylenediamine)nitrocobalt(III) chloride

d) Bis-(ethylenediamine)chloronitrocobalt(III) chloride

214. The product of acid catalysed hydration of 2-phenyl propene is:

- a) 3-phenyl-2-propanol
- b) 1-phenyl-2-propanol
- c) 2-phenyl-2-propanol
- d) 2-phenyl-1-propanol
- 215. Carbolic acid is the name used for:
 - a) Opium b) Phenol

216. The major product of the following reaction

c) Chloroform

d) H_2CO_3

217. The oxidation number of cobalt in $K[Co(CO)_4]$ is a) -1 b) +3

d) –3

218. Formaldehyde-phenol resin is: a) Orlon b) Nylon c) Teflon d) Bakelite 219. Among the ligands NH_3 , en, CN^- and CO, the correct order of their increasing field strength, is a) $CO < NH_3 < en < CN^$ b) $NH_3 < en < CN^- < CO$ c) $CN^- < NH_3 < CO < en$ d) en $< CN^{-} < NH_3 < CO$ 220. Cyclopentadienyl anion is aromatic due to the presence of: a) 6π -electrons b) 10 π -electrons c) 4 π -electrons d) 12 π -electrons 221. The IUPAC name of K_4 [Fe(CN)₆] is a) Potassium ferrocyanide b) Potassium hexa cyanoferrate (I) c) Tetra potassium hexa cyanoferrate (II) d) Potassium hexa cyanoferrate (II) 222. Which xylene is most easily sulphonated? a) Ortho b) Para d) All at the same rate c) Meta 223. The IUPAC name of following polyfunctional compound is , соон OHC. a) 2,4-dioxo cyclohexanoic acid b) 2,4-dioxo cycloheptanoic acid c) 4-formyl-2-oxo cyclohexane-1-carboxylic acid d) 2,4-dioxo cyclohexane-1-carboxylic acid 224. Alkyl groups are *o*- and *p*-directing because of: a) Resonance effect b) Inductive effect c) Resonance effect through hyperconjugation d) All of the above 225. Racemic modification can be resolved by a) The use of enzymes b) Fractional crystallisation c) Fractional distillation d) None of the above 226. Which of the following structure contain 1 primary and 7 secondary hydrogen atoms? $CH_3 - CH - CH_2 - CH_2$ | CH — CH₃ CH_3 a) CH₃ CH₃ b) $CH_3 - CH_2 - CH_2 - CH$ $CH_2 - CH_3$ CH_3 c) $CH_3 - CH_2 - CH - CH_2 - CH_3$ $CH_3 - CH_2 - CH_2 - CH_2$ d) $CH_2 - CH_3$ 227. Which of the following compounds does not dissolve in conc. H₂SO₄ even on warning? a) Ethylene b) Benzene c) Hexane d) Aniline 228. In the complex $Fe(CO)_x$, the value of x is and it is: a) 3, octahedral b) 4, tetrahedral c) 5, trigonal pyramidal d) 6, square pyramidal 229. The empirical formula of naphthalene is: d) $C_n H_{2n}$ b) C_5H_4 c) C_2H a) CH_2 230. The chemical formula of diammine silver (I) chloride is

231	a) [Ag(NH ₃)Cl] . For the square planar cor	b) $[Ag(NH_3)_3]Cl$ nplex $[M(a)(b)(c)(d)]$	c) [Ag(NH ₄) ₂]Cl (where , <i>M</i> =central metal	d) $[Ag(NH_3)_2]Cl$ and <i>a</i> , <i>b</i> , <i>c</i> , and <i>d</i> are		
-01	monodentate ligands), the number of possible geometrical isomers are					
	a) 1	b) 2	c) 3	d) 4		
232	. Which group is <i>meta</i> dire	ecting?	-) -			
-	a) $-CCl_3$	b) –0H	c) $-NH_2$	d)−CH₃		
233	. The IUPAC name of the co	p mpound [Cu(NH ₃) ₄ (N	$(0_3)_2$ is:	, ,		
	a) Cuprammonium nitrat	e				
	b) Dinitratotetraammine	copper(II)				
	c) Tetraamminecopper(I	I) dinitrite				
	d) Tetraamminecopper(I	II) dinitrite				
234	. Coordination number of l	Fe in the complexes [Fe	$(CN)_{6}]^{4-}$, $[Fe(CN)_{6}]^{3-}$ and	l [FeCl ₄] [–] would be respectively		
	a) 6, 4, 6	b) 6, 6, 4	c) 6, 3, 3	d) 2, 3, 3		
235	. Which statement is true f	or cyclohexane?				
	a) It has two possible iso	mers				
	b) It has three conformat	ions				
	c) Boat conformation is n	nost stable				
	d) Chair and boat conform	nations differ in energy	by 44 kJ/mol			
236	. Ligands in a complex salt	are:				
	a) Anions linked by coord	linate bonds to a centra	ll metal atom or ion			
	b) Cations linked by coor	dinate bonds to a centra	al metal atom or ion			
	c) Molecules linked by co	ordinate bonds to a cer	itral metal atom or ion			
~~-	d) Ions or molecules link	ed by coordinate bonds	to a central metal atom or	r ion		
237	The IUPAC name of CH_3C	$OCH_2COOC_2H_5$ is				
	a) Ethyl butanoate		b) Ethyl-(3-oxo)buta	anoate		
220	c) Etnyl butan-1-oate-2-0	one	d) Etnyl butan-4-oat	e-2-one		
238	.38. When benzene is treated with CO and HCl in presence of anhydrous aluminium chloride, benzaldehyde i					
	a) Eriodal Craft's reaction	nown as:				
	h) Rosenmund's reaction	1				
	c) Stephen's reaction					
	d) Gattermann-Koch's rea	action				
239	$(Cr(NH_2)_2)^{3+}$ ion is:					
_0,	a) Paramagnetic	b) Diamagnetic	c) Square planar	d) None of these		
240	. The following compound	can exhibits	o) oquur o prunur			
	CH ₃ , ,H					
	→c=c< _H					
	CH_3 CH_2 COO	Ц				
	a) Tautomorism	П	h) Ontical icomorism			
	a) fautomerical isomerica		d) Coometrical and c	ntical isomerism		
241	Which complex is diamage	netic?	uj deometricai and e	percai isoiner isin		
211	a) $[Fe(CN)_{c}]^{4-}$	h) $[Cu(NH_{a}), 1^{3+}]$	c) $[Ti(H_0)_2]^{3+}$	d) None of these		
242	Meso-tartaric acid is onti	cally inactive due to the	presence of	uj None or these		
	a) Molecular symmetry	carry materive and to the	b) Molecular asymm	etrv		
	c) External compensation	1	d) Two asymmetric (C-atoms		
243	. Complex forming tenden	cy increases with:	, <u> </u>			
	a) Increase in size of catio	on				
	b) Decrease in size of cati	on				
	c) Increase in size of anio	n				

257. Which of the following compounds would exhibit coordination isomerism?

a) $[Cr(H_2O)_6]Cl_2$ b) $[Cr(NH_3)_6][Co(CN)_6]$ c) $[Cr(en)_2]NO_2$ 258. In a reaction of aniline a coloured product C was obtained.

The structure of *C* would be:

259. The carboxyl functional group (–COOH) is present in:

- a) Picric acid
- b) Barbituric acid
- c) Ascorbic acid
- d) Aspirin

260. Which of the following is an example of electrophilic substitution reaction?a) Acylationb) Alkylationc) Benzoylationd) All of these

- 261. The number of ions given by $[Co(NH_3)_4]Cl_3$ in aqueous solution is:a) 2b) 3c) 1d) 4262. Which of the following is an organometallic compound?a) Ti $(OC_6H_5)_4$ b) Ti $(OCOCH_3)_4$ c) Ti $(OC_2H_5)_4$ d) Ti $(C_2H_5)_4$
- 263. A solution of CuCl in NH₄OH is used to measure the amount of which gas is a sample by simply measuring change in volume?
- a) CO_2 b) H_2 c) CO d) All of these 264. On passing benzene vapour through a tube at 700-800°C or through molten lead we get:
- a) Diphenylb) Phenolc) Toluened) Benzaldehyde265. Picric acid is a yellow coloured compound. Its chemical name is:
a) *m*-nitrobenzoic acidb) 2,4,6-trinitrophenolc) Trinitrotoluened) Trinitroaniline
- 266. The ideal starting material for the synthesis of *m*-chloronitro benzene is:
 a) Benzene
 b) Chlorobenzene
 c) Toluene
 d) Nitrobenzene
 267. In a reaction involving ring substitution of C. II. *K* the major product is material for the group *X*
- 267. In a reaction involving ring substitution of C_6H_5Y , the major product is *meta*-isomer. The group *Y* can be: a) $-NH_2$ b) -COOH c) $-CH_3$ d) -Cl
- 268. When ammonia is added to green aqueous solution of nickel(II) sulphate, the colour of the solution changes to blue violet. This is caused by:
 - a) Nickel undergoing a change in oxidation state
 - b) Ammonia molecules replacing water molecules surrounding nickel
 - c) Change in coordination number of nickel
 - d) Change in pH value of the solution

d) $[Ni(NH_3)_6][BF_4]_2$

Ρ	а	g	е	I	23

	a) Hexane-1, 2, 5-tricarbo	onitrile	b) Hexane-1, 3, 6-tricarbo	onitrile	
200	c) Butane-1, 2, 4-tricarbo	nitrile	d) Butane-1, 3, 4-tircarbo	nitrile	
280	. <i>Fac-mer</i> isomerism is ass	oclated with which one of t	$rac{1}{1}$ ine following complexes? (A	M = central metal)	
201	a) $[M(AA)_2]$ Which of the following is:	$DJ \left[MA_3 B_3 \right]$	C) $[M(AA)_3]$	(I) [MABCD]	
201	hutano?	the correct or der of stabilit	y of the following four dist		
	a) Staggered > Gauche >	Partially aclinsed > Fully a	clinsod		
	h) Gauche > Staggered >	nartially eclipsed $>$ Fully e	clinsed		
	c) Staggered > Partially e	clipsed $>$ Gauche $>$ Fully e	clipsed		
	d) Fully eclipsed > Stagge	ered > Partially eclipsed >	Gauche		
282	. <i>o</i> -nitrophenol can form h	ydrogen bonds within the r	nolecule. It thus, has:		
	a) Very high m.p.	b) Very high viscosity	c) Low m.p.	d) none of these	
283	. The element which does i	not form mononuclear carb	onyl is:	2	
	a) Fe	b) Mn	c) Ni	d) W	
284	. Which of the following is	hexadentate ligand?			
	a) Ethylene diamine		b) Ethylene diamine tetra	acetic acid	
	c) 1,10-phenanthroline		d) Acetyl acetonato		
285	. The molecular formula of	a saturated compound is C	$C_2H_4Cl_2$. The formula permi	ts the existence of two	
	a) Functional isomers	b) Position isomers	c) Optical isomers	d) <i>cis – trans</i> isomers	
286	. An octahedral complex is	formed when hybrid orbita	als of the following type are	e involved	
	a) <i>sp</i> ³	b) dsp^2	c) d^2sp^3	d) sp^2d^2	
287	. The IUPAC name of the gi	ven compound $CH_3 - CH =$	$= CH - COOC_2H_5$ is		
	a) Ethyl propenoate		b) Ethyl-2-butenoate		
	c) Ethyl-1-butenoate		d) Propene ethyl methano	oate	
288	. Which product is not obta	ained by heating wood or co	bal in the absence of air?	1) 141	
200	a) Coal-tar	b) Naphthalene	c) Benzene	d) Wax	
289	. Dry distillation of calcium	b) Reprove acid	mate gives:	d) Dongoia on hydrido	
200	a) Acetaidenyde Which will give Eo^{3+} iong	b) Benzoic aciu	cj Benzaldenyde	d) Benzoic annydride	
290	. WHICH WIII give Fe^{-1} lons	In solution?			
	a) $\left[Fe(CN)_{6} \right]$ b) $Fe_{1}(SO_{1})_{1}$				
	c) $[Fe(CN)_{2}]^{4-}$				
	d) NH $_{4}(SO_{4})_{a}$ · FeSO $_{4}$ · 6F	1-0			
291	Each metal possesses:	120			
	a) Primary valencies satis	sfied by anions only			
	b) Secondary valencies sa	itisfied by donor molecules			
	c) Coordination number	5			
	d) All of the above				
292	. Aspirin is:				
	a) Antibiotic	b) Antipyretic	c) Sedative	d) Psychedelic	
293	. Hybridisation, shape and	magnetic moment of K ₃ [Co	$(CO_3)_3$] is		
	a) $d^2 sp^3$, octahedral, 4.9	BM	b) sp^3d^2 , octahedral, 4.9 I	BM	
	c) dsp^2 , square planer, 4.	9 BM	d) <i>sp</i> ³ , tetrahedral, 4.9BM	[
294	. Among the following com	plexes (<i>K-P</i>),			
	$K_3[Fe(CN)_6](K)$, [Co(NH]	$_{3})_{6}]Cl_{3}(L),$			
	$Na_3[Co(ox)_3](M)$				
	$[Ni(H_2O)_6]Cl_2(N)$, and				
	$[Zn(H_20)_6](NO_3)_2(P)$ the	e diamagnetic complexes			

a) *K, L, M, N* b) *K, M, O, P* c) *L, M, O, P* d) *L, M, N, O* 295. Aniline when diazotised in cold and then treated with dimethyl aniline gives a coloured product. It

295. Aniline when diazotised in cold and then treated with dimethyl aniline gives a coloured product. It structure would be:

- 296. Pyridine possesses:
 - a) Aromatic nature
 - b) Unsaturated aliphatic nature
 - c) Alicyclic nature
 - d) Aliphatic nature
- 297. A reagent used for identifying nickel ion is:
 - a) Potassium ferrocyanide
 - b) Phenolphthalein
 - c) Dimethyl glyoxime
 - d) EDTA
- 298. Aniline was diazotised and subsequently reduced with stannous chloride and hydrochloric acid to yield: a) Phenyl aniline b) Phenyl hydrazine c) *p*-amino azobenzene d) Diazoamino benzene
- a) Phenyl aniline b) Phenyl hydrazine c) p-amino azobenzene 299. The reaction of toluene with Cl_2 in presence of FeCl₃ gives predominantly:
 - a) *m*-chlorobenzene
 - b) Benzoylchloride
 - c) Benzyl chloride
 - d) *o* and *p*-chlorobenzene

300. Which statement is not correct in the case of $[Co(NH_3)_6]^{3+}$ complex?

- a) It is octahedral in shape
- b) It involves d^2sp^2 -hybridization
- c) It has diamagnetic nature
- d) None of the above
- 301. Pick out the complex compound in which the central metal atom obeys EAN rule strictly

```
a) K_4[Fe(CN)_6] b) K_3[Fe(CN)_6] c) [Cr(H_2O)_6]Cl_3 d) [Cu(NH_3)_4]SO_4
```

```
302. Amongst the following, the compound that can be most readily sulphonated is:
```

a) Benzene b) Methoxy benzene c) Toluene d) Chlorobenzene 303. *p*-chloroaniline and anilium hydrochloride can be distinguished by:

	 · J· · · ·	8	
a) P ₂ O ₅	b) AgNO ₃	c) Carbylamine test	d) Sandmeyer's reaction
	 1		

- 304. Pyrogallol is.... trihydroxy benzene.
 - b) 1, 2, 3 c) 1, 3, 5
- 305. Phenol is weakly acidic but does not react with NaHCO₃ like carboxylic acids hence:
 - a) Phenol is weaker than carbonic acid
 - b) Phenol is stronger than acid
 - c) Phenol is stronger than carboxylic acid
 - d) None of the above

a) 1, 2, 4

306. *p*-cresol reacts with chloroform in alkaline medium to give compound (*A*) which adds hydrogen cyanide to form compound (*B*). The latter on acidic hydrolysis gives chiral carboxylic acid. The acid is:

d) None of these

$$\begin{aligned} & (H_{1}^{H_{1}}CHOHCOOH \ b) = (H_{1}^{H_{1}} \ c) = (H_{1}^{H_{1}}CH_{2}COOH \ c) = (H_{$$

330. Select pair of chain isomers from the following

a) I and II b) II and III	c) I and IV	d) II and III
331. Which ligand produces a high crystal field splitting	(a strong ligand field)?	,
a) CO b) NO_2^-	c) CN ⁻	d) All are correct
332. Benzene reacts with <i>n</i> -propyl chloride in the preser	nce of anhydrous AlCl ₃ to g	ive predominantly:
a) Isopropyl benzene		
b) No reaction		
c) <i>n</i> -propylbenzene		
d) 3-propyl-1-chlorobenzene		
333. Which of the following coordination compounds we	ould exhibit optical isomeri	sm?
a) Pentaamminenitrocobalt (III) iodide	b) Diamminedinitroplat	inum (II)
c) <i>trans</i> -dicyanobis (ethylenediamine)	d) Tris-(ethylenediamine	e) cobalt(III) bromide
334. What is the magnetic moment of $K_3[FeF_6]$?		
a) 3.87 BM b) 4.89 BM	c) 5.91 BM	d) 6.92 BM
335. The EAN of Cr in $[Cr(SCN)_6]^{3-}$ is:		
a) 35 b) 33	c) 34	d) 37
336. Which has maximum paramagnetic character?		
a) $[Fe(CN)_6]^{4-}$ b) $[Cu(H_2O)_4]^{2+}$	c) $[Cu(NH_3)_4]^{2+}$	d) $[Mn(H_2O)_6]^{2+}$
337. Phenol, when it first reacts with concentrated sulph	uric acid and then with cor	ncentrated nitric acid, gives:
a) Nitrobenzene		
b) 2, 4, 6-trinitrobenzene		
c) <i>o</i> -nitrophenol		
d) <i>p</i> -nitrophenol		
338. Activation of benzene ring by $-NH_2$ in aniline can l	pe reduced by treating with	1:
a) Dil. HCl b) Ethyl alcohol	c) Acetic acid	d) Acetyl chloride
339. Sulphonation of benzoic acid produces mainly:		
a) o-sulphobenzoic acid		
b) <i>m</i> -sulphobenzoic acid		
c) <i>p</i> -sulphobenzoic acid		
d) o - p -disulphobenzoic acid		
340. The IUPAC name for the complex $[Lo(NO_2)(NH_3)_5]$	Cl ₂ IS	a a a b a lt (II) a b la st d a
a) Nitrito -N- pentamminecobait (III) chloride	d) Donto ammino nitrito	iecodait (II) chioride
c) Pentaminine intrito-N- cobait (II) chloride 241 The ionization isomer of $[Cr(H, Q), C](NQ, C)$ is	d) Pentaammine mirito-	N- cobait (III) chioride
541. The following isolated of $[CI(\Pi_2 O)_4 CI(NO_2)C]$ is	b) $[C_{r}(\Pi \cap \Omega) \cap C[1](N \cap \Omega)$	
a) $[Cr(H_2O)_4(O_2N)]Cl_2$	$d = \begin{bmatrix} C_{1} (\Pi_{2} U)_{4} C_{12} \\ C_{2} (\Pi_{2} U)_{4} \\ C_{2$	л О.
342 Salicylic acid aspirin pylon plastics and pieric acid	u) $[CI(\Pi_2 O)_4 CI_2(IO_2)]$. I	rial namely:
a) Mathana b) Formic acid	c) Phonol	d) Alcohol
343 Illmann's reaction is used for the preparation of		uj Alconor
a) Dinhenvl b) Iodobenzene	c) Toluene	d) Nanhthalene
344 Which of the following statements is/are incorrect	for $D = (+)$ –glyceradehyd	
a) The symbol <i>D</i> not indicates the dextrorotatory n	ature of the compound	
b) The sign (+) indicates the dextrorotatory nature	of the compound	
The symbol <i>D</i> indicates that hydrogen atom lies	left to the chiral centre in th	he Fischer proiection
c) diagram		F
d) The symbol <i>D</i> indicates that hydrogen atom lies	right to the chiral centre in	the Fischer projection

diagram

345. Complexes with CN⁻ ligands are usually: a) High spin complexes b) Low spin complexes c) Both (a) and (b) d) None of these 346. The IUPAC of CH(CH₃)₂ is a) 2-cyclopentyl propane b) 1, 1-dimethyl-1-cyclopentyl methane c) 1-(1-methyl) ethyl cyclopentane d) None of the above 347. Which ion is paramagnetic? a) $[Ni(H_2O)_6]^{2+}$ c) $[Ni(CO)_4]$ d) $[Ni(CN)_4]^{2-}$ b) $[Fe(CN)_6]^{4-}$ 348. $HN \xrightarrow{CH_2} COOH and \xrightarrow{L}$ Configuration of a) *R*, *R* c) *S*, *S* d) *S*, *R* b) *R*, *S* 349. Dow process is used for the conversion of chlorobenzene to: b) Nitrobenzene d) Gammexane a) Benzene c) Phenol 350. Phenolphthalein is produced on heating phthalic anhydride and conc. sulphuric acid with: a) Salicylic acid b) Phenol c) Phenacetin d) Phenanthrene 351. Benzene is converted to toluene by: a) Friedel-Crafts reaction b) Grignard reaction c) Wurtz reaction d) Perkin's reaction 352. The number of ions formed when hexamine copper (II) sulphate is dissolved in water is? b) 2 c) 4 a) 1 d) 6 353. In a set of reactions *m*-bromobenzoic acid gave a product *D*, Identify the product *D*: COOH CONH₂ COOH NH_2 a) NH_{2} 354. In $[Cr(C_2O_4)_3]^{3-}$, the isomerism shown is: a) Ligand b) Optical c) Geometrical d) Ionization 355. The hybridization of Fe in K_4 [Fe(CN)₆] complex is: a) d^2sp^2 b) d^2sp^3 c) dsp^2 d) sp^3 CH₃-CH₂ CH_2 356. The correct name of a) Hex-3-yn-5-ene b) Hex-5-en-3-yne c) Hex-3-yn-1-ene d) Hex-1-en-3-yne 357. Nickel metal is in highest oxidation state in: a) Ni(CO)₄ b) $K_2 NiF_6$ c) $[Ni(NH_3)_6](BF_4)_2$ d) $K_4[Ni(CN)_6]$ 358. Which of the following complexes show six coordination number? a) $[Zn(CN)_4]^{2-}$ b) $[Ni(NH_3)_4]^{2+}$ c) $[Cu(CN)_4]^{2-}$ d) $[Cr(H_2O)_6]^{3+}$

359. Which of the following statements is wrong?

a`	The IUPAC	name of	alkenes	ends with	suffix-ene
ч,		nume of	unches	chus with	Sum che

b) The IUPAC name of alkynes ends with suffix-yne

c) The IUPAC name of acid amide is alkanamide

d) The substituents get lower number in comparison to principal functional group

360. The possible number of isomers for the complex $[MCl_2Br_2]SO_4$ is:

d) 5 a) 1 b) 2 c) 4 361. $K_3[(Al)(C_2O_4)_3]$ is called a) Potassium aliminium (III) oxalate b) Potassium alumino oxalate c) Potassium trioxalato aluminate (VI) d) Potassium trioxalato aluminate (III) 362. In Fe(CO)₅, the Fe — C bond possesses a) π – Character only b) Both σ and π –characters c) Ionic characters d) σ – Character only 363. The reaction, $[Fe(CNS)_6]^{3-} \rightarrow [FeF_6]^{3-}$ taken place with a) Decrease in magnetic moment b) Increase in magnetic moment c) Decrease in coordination number d) Increase in coordination number 364. Which chloro derivative of benzene among the following would undergo hydrolysis most readily with aqueous NaOH to furnish the corresponding hydroxyl derivative? NO_2

d) C_6H_5Cl

c) (CH:

365. Some salts although containing two different metallic elements give test for only one of them in solution. Such salts are:

a) Complex salts b) Double salts c) Normal salts d) None of these

366. Mixture X = 0.02 mole of $[Co(NH_3)_5SO_4]Br$ and 0.02 mole of $[Co(NH_3)_5Br]SO_4$ was prepared in 2 litre of solution.

1 litre of mixture X + excess AgNO₃ \rightarrow Y.

1 litre of mixture X + excess BaCl₂ \rightarrow Z.

No. of moles of *Y* and *Z* are.

a) 0.01, 0.01	b) 0.02, 0.01	c) 0.01, 0.02	d) 0.02, 0.02
367. The hybridization of	central metal ion and sha	pe of Wilkinson's catalyst is	
> 31 11.		1 2 3	

a) <i>sp³d</i> , trigonal bipyramidal	b) sp ³ ,tetrahedral
c) <i>dsp</i> ² ,squre planar	d) $d^2 s p^2$, octahedral

368. The *d*-electron configurations of Cr^{2+} , Mn^{2+} , Fe^{2+} and Co^{2+} are d^4 , d^5 , d^6 and d^7 respectively. Which one of the following will exhibit minimum paramagnetic behaviour?

a) $[Cr(H_2O)_6]^{2+}$

b)
$$[Mn(H_20)_6]^2$$

c) $[Fe(H_20)_6]^{2+}$

 $(Co(H_20)_6)^{2+}$

¹⁾ (At. Nos.
$$Cr = 24$$
, $Mn = 25$, $Fe = 26$, $Co = 27$)

369. An enantiomerically pure acid is treated with racemic mixture of an alcohol having one chiral carbon. The ester formed will be

- a) Optically active mixture
- c) meso compound

- b) Pure enantiomer
- d) Racemic mixture

370. Which of the following ring is most strained?

a) Cyclohexaneb) Cyclopentanec) Cyclobutaned) Cyclopropane371. Formylchloride has not been prepared so far. Which can function as formylchloride in formylation?a) HCHO + HClb) HCOOCH3 + HClc) CO + HCld) HCONH2 + HCl

372. In hexacyanomanganate (II) ion the Mn-atom assumes d^2sp^3 -hybrid state. The number of unpaired electrons in the complex is:

a) 1
b) 2
c) 3
d) 0
373. Which one of the following does not give a white precipitate with silver nitrate solution?
a) [Co(NH₃)₆]Cl₃
b) [Co(NH₃)₅Cl]Cl₂
c) [Co(NH₃)₄Cl₂]Cl
d) [Co(NH₃)₃Cl₃]

374. In a set of reactions, ethyl benzene yielded a product *D*.

$$CH_2CH_3 \xrightarrow{KMnO_4} B \xrightarrow{Br_2} C \xrightarrow{C_2H_5OH}_{H^+} D$$

D would be:

375. The oxidation number of Pt in $[Pt(C_2H_4)Cl_3]$ is a) +1 b) +2 c) +3 d) + 4376. Among $[Fe(H_2O)_6]^{3+}$, $[Fe(CN)_6]^{3-}$, $[Fe(Cl)_6]^{3-}$ species, the hybridization state of the Fe atom are, respectively b) $sp^{3}d^{2}$, $d^{2}sp^{3}$, $d^{2}sp^{3}$ c) $sp^{3}d^{2}$, $d^{2}sp^{3}$, $sp^{3}d^{2}$ d) None of these a) d^2sp^3 , d^2sp^3 , sp^3d^2 377. Of the following complex ions, which is diamagnetic in nature? b) [NiCl₄]²⁻ c) $[Ni(CN)_4]^{2-}$ d) $[CuCl_4]^{2-}$ a) $[CoF_6]^{3-1}$ 378. The IUPAC name of compound is a) 2-methoxycarbonylbenzoic acid b) Methyl-2-carboxy benzoate c) 2-carboxy phenyl ethanoate d) o-carboxyphenyl acetate 379. Which of the following are produced from coal-tar? a) Synthetic dyes b) Drugs c) Perfumes d) All of these 380. Chlorine is least reactive in: c) C_6H_5Cl a) CH₃Cl b) $CH_2 = CHCl$ d) C_2H_5Cl 381. Correct IUPAC name of compound $(CH_3)_2C(CH_2CH_3)CH_2CH(Cl)CH_3$ is a) 5-chloro-3,3-dimethylhexane b) 3-chloro-2-ethyl-2-methylpentane c) 2-chloro-4-ethyl-4-methylpentane d) None of the above 382. NO_2 Sn + HClIn the above reaction '*X* stands for: d) $^{+}_{NH_2Cl}$ a) NH_2 b) Cl c) $SnCl_2$

383. Which follows EAN rule? a) $Fe(CO)_5$ b) Ni(CO)₄ c) $K_4[Fe(CN)_6]$ d) All are correct 384. Which one is bidentate ligand? a) $C_2 O_4^{2-}$ b) $NH_2 \cdot CH_2 \cdot CH_2 \cdot NH_2$ c) Both (a) and (b) d) None of these 385. The reagent used for conversion of benzene diazonium chloride to benzene is: b) $Na_2SnO_2 + NaOH$ a) $H_3PO_2 + H_2O$ c) C_2H_5OH d) All of these 386. Which will not give the usual test for iron? a) $K_2Fe_2(SO_4)_4 \cdot 24H_2O$ b) $(NH_4)_2 Fe(SO_4)_2 \cdot 6H_2O$ c) $K_3[Fe(CN)_6]$ d) $Fe_2(SO_4)_3$ 387. $[Co(NH_3)_5SO_4]Br$ and $[Co(NH_3)_5 Br]SO_4$ are a pair of isomers. b) Ligand a) Ionisation c) Coordination d) Hydrate 388. The first organic compound prepared in the laboratory was b) Acetylene d) Methane a) Acetic acid c) Urea 389. Aniline on heating with conc. H_2SO_4 at 460 K gives: a) Aniline sulphate b) Benzene sulphonic acid c) Sulphanilic acid d) None of the above 390. Which of the following statements regarding phenols is not correct? a) Phenols are stronger acid than water and alcohols b) Phenols are weaker acids than carboxylic acids c) Phenols are soluble in both aqueous NaOH and aqueous NaHCO₃ d) Phenoxide ions are more stable than the corresponding phenols 391. Which would decolourise cold, *aq*. potassium permanganate solution? a) Benzoic acid b) Cinnamic acid c) p-toluic acid d) m-toluic acid 392. The magnetic moment of K_3 [Fe(CN)₆] is found to be 1.7 BM. How many unpaired electron (s) is/are present per molecule? d) 4 a) 1 b) 2 c) 3 393. The IUPAC name of the compound CH₂-CH-CH₂-CH₂ ĊΗ₂ is ĊH₂-ĊH-CH₂-ĊH₂ a) Bicyclo [2,5,0] nonane b) Bicyclo [5,0,2] nonane c) Bicyclo [5,2,0] nonane d) Bicyclo [0,2,5] nonane 394. The IUPAC name of the compound COOH is a) 2-oxocyclohexane-1-carboxylic acid b) Cyclohexane-2-oxo-1-carboxylic acid c) 6-oxocyclohexane-1-carboxylic acid d) None of the above 395. The IUPAC name of is a) Spiro [3.2.1] octane b) Bicyclo [3.2.2] octane c) Bicyclo [3.2.1] octane d) None of these 396. Which of the following deactivates benzene substitution? a) –NHR b) -0H c) −0*R* d) -COOR

Page | 32

397. Aniline, chloroform and alc. KOH on heating give:

b) Phenyl cyanide a) Phenyl isocyanide

398. In the chemical reactions, NH

$$\underbrace{\bigcirc}_{\text{HCl},278\text{K}}^{\text{NaNO}_2} A \xrightarrow{\text{HBF}_4} B$$

the compounds ''A'' and ''B'' respectively are :

- a) Nitrobenzene and chlorobenzene
- b) Nitrobenzene and fluorobenzene
- c) Phenol and benzene
- d) Benzenediazonium chloride and fluorobenzene
- 399. The incorrect statement for IUPAC system of nomenclature is
 - a) In an organic compound, the longest carbon chain is always selected for assigning the root word
 - b) There is no compound with the name 3-ethyl pentane
 - c) Out of $-NH_2$ and -OH groups present in an organic compound, $-NH_2$ is treated as substituent
 - d) Different alkyl groups are written alphabetically while, writing the IUPAC name
- 400. When sodium benzene sulphonate is fused with sodium hydroxide (solid), followed by hydrolysis the product formed is:
 - b) Sod. phenoxide
- c) Benzene thiophenol d) Phenol

b) Twist boat > chair > boat

d) Boat > twist boat > chair

b) $[Co(CN)_6]^{3-}$, MnO₃

c) Strongly basic

c) 4

d)

d) $[Fe(CN)_6]^{3-}$, $[Co(CN)_6]^{3-}$

b) CH₃CHBr₂ and CH₂Br₂ · CH₂Br

 $CH_3CH_2CHO and CH_3-CH-CH_2$

- 401. The correct order of stability of conformations of cyclohexane is
 - a) Chair > twist boat > boat
 - c) Boat > chair > twist boat
- 402. Phenol with dilute HNO₃ gives:
 - a) meta and para nitrophenol
 - b) ortho and para nitrophenol
 - c) Trinitrophenol

a) Benzene

- d) ortho and meta nitrophenol
- 403. The increasing order of boiling points of compounds given below is:
 - (I) 1,2-dihydroxy benzene
 - (II) 1,3-dihydroxy benzene
 - (III) 1,4-dihydroxy benzene
 - (IV) Hydroxyl benzene

a) I < II < III < IVb) I < II < IV < IIIc) IV < I < II < III

404. The pair of the compounds in which both the metals are in the higher possible oxidation state is

- a) CrO_2Cl_2 , $MnO_4^$
 - c) TiO_3 , MnO_2
- 405. The number of ions given by K₂[PtCl₆] in aqueous solution is: b) 3

406. Which of the following are functional isomers? a) CH₃CH₂Cl and CH₃CH₂Br

c) C₂H₅OC₂H₅ and CH₃OC₃H₇

- 407. Phenol is:
 - a) Strongly acidic b) Weakly acidic
- 408. The correct IUPAC name of $KAl(SO_4)_2 \cdot 12H_2O$ is:
 - a) Aluminium potassium sulphate-12-water
 - b) Potassium aluminium(III) sulphate-12-water
 - c) Potassium aluminate(III) sulphatehydrate
 - d) Aluminium(III) potassium sulphate hydrate-12

d) IV < II < I < III

d) Zero

d) Weakly basic

409. A complex shown below can exhibit:

a) Optical isomerism only

- b) Geometrical isomerism only
- c) Both optical and geometrical isomerism

d) None of the above

410. The IUPAC name of the complex [Co(NH₃)₄Cl₂]Cl is

- a) Dichloro tetraammine cobalt (III) chloride b) Tetraammine dichloro cobalt(III) chloride
- c) Tetraammine dichloro cobalt (II) chloride
- d) Tetraammine dichloro cobalt (IV) chloride
- 411. The correct decreasing order of their reactivity towards hydrolysis is:

(i) C_6H_5COCl

(ii)
$$O_2N$$
— \bigcirc —COCl
(iii) H_3C \bigcirc COCl

(iv) OHC-COCI

	$\underline{}$					
	a) (i)>(ii)>(iii)>(i	v)	b) (iv)>(ii)>(i)>(iii)	c) (ii)>(iv)>(i)>	(iii)	d) (ii)>(iv)>(iii)>(i)
412.	Nitrobenzene is gei	nerally	used for:			
	a) Preparing shoe p	oolish	b) Preparing floor polish	c) Preparing anili	ne	d) All of these
413.	In the coordination	comp	ound, K ₄ [Ni(CN) ₄], the oxid	lation state of nick	el is	
	a) -1		b) 0	c) +1		d) +2
414.	Salicylic acid as con	npared	l to benzoic acid:			
	a) Is more acidic		b) Has same acidity	c) Has less acidity	/	d) None of these
415.	Which ligand is exp	ected	to be bidentate?			
	a) $C_2 O_4^{2-}$		b) $CH_3C \equiv N$	c) Br ⁻		d) CH ₃ NH ₂
416.	Which one of the fo	llowin	g is most reactive towards	aqueous NaOH?		
	a) C ₆ H ₅ Cl		b) C ₆ H ₅ CH ₂ Cl	c) C ₆ H ₅ Br		d) BrC ₆ H ₄ Br
417.	. Which is not an aro	matic	compound?			
	a) Pyridine		b) Naphthalene	c) Xylene		d) Cyclohexane
418.	. Which one of the fo	llowin	g is wrongly matched?			
	a) $[Cu(NH_3)_4]^{2+}$	_	Square planar	b) [Ni(CO) ₄]	—	Neutral ligand
	c) $[Fe(CN_6)]^{3-}$		$sp^3 d^2$	d) [Co(en) ₃] ³⁺	-	Follows EAN rule
419.	Stereoisomers have	e differ	rent			
	a) Molecular formu	la		b) Structural form	nula	
	c) Configuration			d) Molecular mas	S	
420.	Which of the follow	ing wi	ll show optical isomerism?			

a) [Cu(NH₃)₄]²⁺ b) [ZnCl₄]²⁻

c)
$$[Cr(C_2O_4)_3]^{3-1}$$

d)
$$[Co(CN)_6]^{3-1}$$

421. A complex of cobalt has five ammonia molecules, one nitro group and two chlorine atoms for each cobalt atom. One mole of this compound produces three mole ions in aqueous solution which on treating with

excess of AgNO₃ give two mole of AgCl. The formula of the compound is:

a) $[Co(NH_3)_4NO_2Cl][(NH_3b) [Co(NH_3)_5Cl][ClNO_2] c) [Co(NH_3)_5NO_2]Cl_2 d) [Co(NH_3)_5][(NO_2)_2Cl_2]$ 422. Which one group is trivalent in nature?

a) Benzo b) Benzal

c) Benzyl

d) All of these

423. Benzene contains double bonds but does not give addition reactions because:

- a) Double bonds in benzene are strong
- b) Double bonds change their position rapidly
- c) Resonance lowers the energy of benzene molecule and leads to greater stabilization
- d) None of the above

424. Low spin complex of d^6 -cation in an octahedral field will have the following energy:

a) $\frac{-12}{5}\Delta_0 + P$ b) $\frac{-12}{5}\Delta_0 + 3P$ c) $\frac{-2}{5}\Delta_0 + 2P$ d) $\frac{-2}{5}\Delta_0 + P$

 $(\Delta_0 = \text{Crystal field splitting energy in an octahedral field, } P = \text{Electron pairing energy})$ 425. C₇H₈O show how many isomers?

- a) 2 c) 4 d) 5 b) 3 426. $>C-CCl_3$ The above structural formula refers to: a) BHC b) DNA c) DDT d) RNA 427. The compound Ft-HO-∬ 0 Have its IUPAC name as a) Octa dec-9-enoic acid b) Oleic acid c) Ethyl hexadic-9-enoic acid d) All of these 428. The type of isomerism present in nitropentaammine-chromium (III) chloride is : a) Optical c) Ionization b) Linkage d) polymerization 429. Which complex compound possesses sp^3d^2 hybridisation? c) $[Fe(CN)_6]^{3-1}$ a) $[Fe(NH_3)_6]^{3+}$ b) $[Fe(CN)_6]^{4-}$ d) $[Fe(Cl)_6]^{3-1}$ 430. Amongst the following carboxylic acids the strongest acid is: a) Benzoic acid b) o-methoxybenzoic acid c) *m*-nitrobenzoic acid d) p-nitrobenzoic acid 431. When EDTA solution is added to Mg²⁺ ion solution, then which of the following statements is not true? Four coordinate sites of Mg^{2+} are occupied by EDTA and remaining two sites are occupied by water a) molecules. b) All six coordinate sites of Mg^{2+} are occupied. c) P^H of the solution is decreased. d) Colourless $[Mg - EDTA]^{2-}$ chelate is formed.
- 432. The energy difference between chair and the boat conformation of cyclohexane is

a) 29.7 kJ b) 44 kJ c) 151 kJ d) 36 kJ 433. Compounds having the same molecular formula but different properties are called a) Isotopes b) Isobars c) Isomers d) Isomorphs 434. CH₃OCH₂CH₂CH₂OCH₂CH₃ is a) Ethylmethylpropyl diether b) Ethylmethoxypropyl ether c) 3-ethoxy-1-methoxy propane d) 1-ethoxy-3-methoxy propane 435. The benzene molecule contains: a) Six *sp*²-hybridized carbons b) Three sp^2 -hybridized carbons c) Six *sp*³-hybridized carbons d) Three sp^3 -hybridized carbons 436. The correct order of stability of conformations of $NH_2 - CH_2 - CH_2 - OH$ is b) Gauche > anti > eclipsed a) Gauche > eclipsed > anti c) Eclipsed > gauche > anti d) Anti > eclipsed > gauche 437. The solubility of AgCN increases by the addition of KCN because of: a) Complex formation b) Redox change d) None of these c) Salt formation 438. Alicyclic compounds are a) Aromatic cyclic compounds b) Aliphatic cyclic compounds c) Both (a) and (b) d) None of the above 439. Which of the following compounds reacts slower than benzene in electrophilic bromination? a) $C_6H_5 - NO_2$ b) $C_6H_5 - NH_2$ c) $C_6H_5 - OH$ d) $C_6H_6 - CH_3$ 440. The fraction of chlorine precipitated by AgNO₃ solution from [Cu(NH₃)₅Cl]Cl₂ is: b) 2/3 d) 1/4 a) 1/2 c) 1/3 441. Number of possible optical isomers in $[Co(en)_2Cl_2]^+$ is b) 3 d) 6 a) 2 c) 4 442. Dimethyl glyoxime gives a red precipitate with Ni²⁺ which is used for its detection. To get this precipitate readily, the best pH range is a) < 1 b) 3 – 4 c) 9 – 11 d) 2 - 3443. Predict the product: $NHCH_3$ — $NaNO_2$ +HCl \rightarrow ProductOH CH₂ a) CH₃ b) CH₃ c) NHCH₃ NHCH₃ d) NHO
- 444. Replacement of Cl of chlorobenzene to give phenol requires drastic conditions but chlorine of 2, 4dinitrochlorobenzene is readily replaced because:
 - a) NO_2 makes the electron rich ring at *ortho* and *para* positions
 - b) NO₂ withdraws electrons at *meta* position
 - c) NO₂ donate electrons at *meta*-position
 - d) NO₂ withdraws electrons at ortho and para positions
- 445. Salicylic acid on heating with soda lime forms:
- a) Phenolb) Benzyl alcoholc) Benzened) Benzoic acid446. Which of the following is an organometallic compound?
 - a) $Ti(C_2H_5)_4$ b) $Ti(0C_2H_5)_4$ c) $Ti(0C0CH_3)_4$
- 447. Which kind of isomerism is exhibited by octahedral $Co(NH_3)_4Br_2Cl$?
 - a) Geometrical and ionisation
 - c) Optical and ionisation
- 448. Which of the following is the strongest base?

449. Which of the following will be aromatic?

d) Ti $(0C_6H_5)_4$

b) Geometrical and optical

d) Geometrical only

458. Which of the following s	pecies will be diamagnetic?		
a) [Fe(CN) ₆] ^{4–}	b) [FeF ₆] ^{3–}	c) $[Co(C_2O_4)_3]^{3-1}$	d) [CoF ₆] ^{3–}
459. Which one of the followi	ng is an outer orbital compl	ex and exhibits paramagne	tic behaviour?
a) $[Cr(NH_3)_6]^{3+}$	b) [Co(NH ₃) ₆] ³⁺	c) $[Ni(NH_3)_6]^{2+}$	d) $[Zn(NH_3)_6]^{2+}$
460. Moth balls contain:			
a) Camphor	b) Benzoic acid	c) Naphthalene	d) Cinnamic acid
461. The number of unidenta	te ligands in the complex ion	n is called	-
a) Oxidation number		b) Primary valency	
c) Coordination number		d) EAN	
462. According to Hückel rule	e, the number of π-electrons	in anthracene is:	
a) 12	b) 14	c) 10	d) 20
463. In ethane and cyclohexa	ne which one of the followin	ig pairs of conformations a	re more stable?
a) Eclipsed and chair con	iformations	b) Staggered and chair co	nformations
c) Staggered and boat co	onformations	d) Eclipsed and boat conf	ormations
464. Among the following wh	ich is not π -bonded organoi	metallic compound?	
a) K[PtC] ₂ ($n^2 - C_2H_4$)]	b) Fe($n^5 - C_r H_r$) ₂	c) $Cr(n^6 - C_c H_c)_2$	d) $(CH_2)_4$ Sn
465, o, n-directing groups are	generally:	0) 01 (1) 0611672	
a) Activating groups	h) Deactivating groups	c) Neutral groups	d) None of these
466 Arvl halides are less read	tive towards nucleonhilic s	ubstitution reaction as com	upared to alkyl due halides
to:	tive towards nucleophine s		parea to any rule nanaes
a) The formation of less	stable carbonium ion		
h) Resonance stabilizati			
c) Longor carbon balogo	on hand		
d) The industive offect			
467 Which would be least re-	active towards bromins?		
467. Which would be least res	h) Anicele	a) Dhanal	d) Chlanch and an
a) Nitrobenze	b) Anisole	cj Phenol	d) Chlorobenzene
468. Which has a smell of old	b) Remarks and	a) Etherlard; and the	d) Matherlashindata
a) Benzaldenyde	b) Benzoic acid	c) Ethyl salicylate	d) Methyl salicylate
469. The coordination number	er of Pt in $[Pt(NH_3)_4Cl_2]^2$ ' i	on is	
a) Z	b) 4	c) 6	d) 8
470. C_6H_5Cl on treating with	NaOH at 300°C gives phenol	. However the yield is poor	because of side reaction
producing:			
a) C ₆ H ₅ Na	b) C ₆ H ₅ OCH ₃	c) C ₆ H ₅ OC ₆ H ₅	d) None of these
471. In $Cr(NH_3)_4Cl_2$]Cl the lig	ands are:		
a) NH ₃ only	b) Cl [–] only	c) Both NH ₃ and Cl [–]	d) Cr, NH ₃ , Cl [–]
472. Which statement is not o	correct regarding aniline?		
a) It is less basic than et	nyl amine		
b) It can be steam distille	ed		
c) It reacts with sodium	to give hydrogen		
d) It is soluble in water			
473. Among the following, ide	entify the species with an at	om of +6 oxidation state:	
a) [MnO ₄] ⁻	b) [Cr(CN) ₆] ^{3–}	c) [NiF ₆] ²⁻	d) CrO_2Cl_2
474. Which of the following a	lkanes contain primary, sec	ondary, tertiary and quater	nary carbon atom together?
a) (CH ₃) ₃ CH	b) (C ₂ H ₅) ₃ CH	c) $(CH_3)_3CCH_2CH(CH_3)_2$	d) (CH ₃) ₄ C
475. The hardness of water is	estimated by:		
a) Conductivity method	b) EDTA method	c) Titrimetric method	d) Distillation method
476. I_2 is stirred in between t	wo liquids, C ₆ H ₆ and water.	It:	
a) Dissolves more in C ₆ H	I ₆		
b) Dissolves more in H_2)		
c) Dissolve equally			

d) Dissolves in neither C₆H₆ nor water

477. The number of tertiary C-atoms in 2,2,4,4-tetra methyl pentane is b) 2 c) 3 d) 4 a) 1 478. Hydrogenation of benzoyl chloride in the presence of Pd on BaSO₄ gives: a) Benzyl alcohol b) Benzaldehyde c) Benzoic acid d) Phenol 479. The Clemmensen reduction of benzaldehyde gives: b) C₆H₅OH a) $C_6H_5NH_2$ d) C₆H₅COOH c) $C_6H_5CH_3$ 480. Which of the following ligand has lowest Δ_o value? a) CN⁻ b) CO c) F⁻ d) NH_3 481. Which one of the following has an optical isomer? (en=ethylenediamine)

a)
$$[Zn(en)(NH_3)_2]^{2+}$$
 b) $[Co(en)_3]^{3+}$ c) $[CO(H_2O)_4(en)]^{3+}$ d) $[Zn(en)_2]^{2+}$

483. Which fraction of coal-tar is rich in arene?

a) Ligh	t oil	b) Heavy oil	c) Green oil	d) Middle oil
484. The co	ordination number	r and oxidation number of	X in the following compoun	d $[X(SO_4)(NH_3)_5]$ Cl will be
a) 10 a	nd 3	b) 2 and 6	c) 6 and 3	d) 6 and 4
485. Benzyl	chloride is formed	l by treating toluene with (Cl ₂ in:	
a) Pres	ence of light			
b) Abse	ence of light			
c) Trea	ting benzene with	anhy. AlCl ₃		
d) Trea	ting benzene with	As_2S_3		
486. Which	complex cannot io	nize in solution?		
a) [CoC	$l_3(NH_3)_3]$	b) $K_4(Fe(CN)_6]$	c) $K_2[Pt(F_6)]$	d) $[Pt(NH_3)_6]Cl_4$
487. [Ni (CN	$]_4]^{2-}$, $[MnBr_4]^{2-}$	and [CoF ₆] ^{3–} , geometry, hy	/bridisation and magnetic n	noment of the ions
respect	ively, are			
ر Tetr	ahedral, square pl	anar, octahedral :		
sp^3 ,	$dsp^2, sp^3d^2: 5.9, 0$), 4.9		
L Tetr	ahedral, square pl	anar, octahedral :		

- b) $dsp^2, sp^3, sp^3d^2: 0, 5.9, 4.9$
- c) Square planar, tetrahedral, octahedral :

 dsp^2 , sp^3 , d^2sp^3 : 5.9, 4.9, 0 d) Square planar, tetrahedral, octahedral : dsp^2, sp^3, sp^3d^2 : 0, 5.9, 4.9 488. Ozonolysis of benzene gives: a) 1 molecule of glyoxal b) 2 molecules of glyoxal c) 3 molecules of glyoxal d) None of these 489. In benzene, C—C bond length is 1.39 Å; the C—H bond length is: a) 1.39 b) 1.08 c) 1.54 d) 1.46 490. The IUPAC name of following compound is a) N,N-dimethyl, 3-methyl pentan-3-amine b) 3-N,N-dimethyl, 3-methyl pentanamine c) 3-methyl-3-N, N-dimethyl pentane d) 3-methyl-3-N, N-dimethyl butane 491. Which of the following may be used as food preservative? a) Benzene b) Ethylene c) Sodium benzoate d) Sodium metaaluminate 492. Which compound is formed when sodium phenoxide is heated with ethyl iodide? b) Ethyl phenyl alcohol a) Phenetole c) Phenol d) None of these 493. In metal carbonyl (organometallic) complexes, the M— C bond is a) Ionic b) Covalent with ionic character c) Covalent d) Coordinate covalent 494. Octahedral complex a) cis b) *trans* c) mer d) fac 495. The correct order of magnetic moments (spin only values in BM) among the following is (Atomic no. Mn=25, Fe=26, Co=27) a) $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^{4-}$ b) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$ c) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$ d) $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$ 496. Aniline and methyl amine can be differentiated by: a) Diazotisation followed by coupling with phenol b) Reaction with chloroform and aqueous solution of KOH c) Reaction with HNO₂ d) None of the above 497. The functional group present in cresols is: a) Alcoholic (-OH)b) Aldehydic (— CHO) c) Phenolic (— OH) d) Carboxylic (— COOH) 498. In the reaction; H₂C

the structure of the product T is:

$H_{3}C - C O O O O O O O O O O O O O O O O O $		
b)		
c) H ₃ C-NH		
d) H_3C		
499. Which one of the following compounds is most acid	ic?	
a) OH NO ₂ b) Cl-CH ₂ -CH ₂ -OH	c) OH	d) OH CH ₃
500. The most unstable configuration of cyclohexane is		
a) Boat b) Chair	c) Twist boat	d) Half chair
 501. In which compound synergic effect is present? a) [Ni(CO)₄] b) [NiCl₄]²⁻ 502. The IUPAC name of the compound 	c) [CuCl ₄] ²⁻	d) $[Mn(H_2O)_6]^{2+}$
$CH_{2} CH_{3}$ $\parallel \qquad \qquad$		
a) 4-amino-2-ethyl pent-1-ene	b) 2-ethyl pentan-4-amir	ie
c) Amino-4-pentene	d) 4-ethyl pent-4-en-2-ai	mine
503. Aqua regia reacts with Pt to yield: a) $Pt(NO_{a})$, b) $H_{a}[PtC]_{a}$	c) PtCl.	d) PtCl_
504. $K_3[Al(C_2O_4)_3]$ is called:		
a) Potassium aluminooxalate		
b) Potassium alumino(III) oxalate		
d) Potassium trioxalatoaluminate(III)		
505. The IUPAC name of		
ois		
a) 6-oxo-1,2,2-tri methyl bicycle [2.2.1] heptane	b) 1,7,7-trimethyl bicyclo	o [2.2.1] heptan-2-one
c) 1,5,5-trimethyl bicyclo [2.1.1] hexane-2-one	d) 1,7,7-trimethyl bicyclo	o [2.1.2] heptan-2-one
506. Nitration of toluene takes place at:		
b) meta position		

c) para position d) Both ortho and para position 507. Estimation of calcium and magnesium is done by a) EDTA b) Oxalate c) Phosphate d) None of these 508. How many enantiomer pairs are obtained by monochlorination of 2, 3-dimethyl butane? a) Four c) Three b) Two d) One 509. Common reactions of benzene and its derivatives are: a) Electrophilic addition reactions b) Electrophilic substitution reactions c) Nucleophilic substitution reactions d) Nucleophilic addition reactions 510. The IUPAC name of the compound a) 1, 3, 5-triheptene b) 2, 4, 6-triheptene c) 2, 4, 6-heptatriene d) Hepta-1, 3, 5-triene 511. Name of compound a) 1, 2, 3-triformylpentane b) Propane-1, 2, 3-tricarbaldehyde c) 3-formylpentane-1, 5-dial d) Propane-1, 2, 3-trial 512. The attacking species in aromatic sulphonation is: a) SO_3 d) SO_{2}^{+} b) $H_3SO_4^+$ c) HSO_4 513. Which one of the following compound does not react with bromine? a) Ethyl amine b) Propene c) Phenol d) Chloroform 514. The magnetic moment (spin only) of $[Ni Cl_4]^{2-}$ is a) 1.82 BM b) 5.46 BM c) 2.82 BM d) 1.41 BM 515. undergoes electrophilic substitution reaction preferentially : a) At position-2 b) At position-3 c) At position-4 d) At positions-2 and 4 516. Ionization of K[Ag(CN)₂] will give: a) K^+ and $[Ag(CN)_2]^-$ ion b) KCN and AgCN c) K^+ , Ag^+ , $CN^$ d) None of the above 517. The coordination number and oxidation state of Cr in $K_3[Cr(C_2O_4)_3]$ are respectively a) +6 and +3 b) 3 and 0 c) 4 and +2 d) 3 and +3518. A complex of platinum, ammonia and chlorine produces four ions per molecule in the solution. The structure consistent with the observation is: b) $[Pt(NH_3)_2Cl_4]$ d) $[Pt(NH_3)_4Cl_2]Cl_2$ a) $[Pt(NH_3)_4]Cl_4$ c) $[Pt(NH_3)_5Cl]Cl_3$ 519. The type of magnetism exhibited by $[Mn(H_20)^{2+}]$ ion is a) Paramagnetism b) Diamagnetism c) Both (a) and (b) d) None of these 520. According to effective atomic number rule the central metal acquires: a) Inert gas configuration b) Duplet c) Octet

d) Quartet

535.	c) Colourless and paramag Benzene reacts with CH ₃ C	gnetic l in the presence of anhydr	d) Coloured and paramagi ous AlCl ₃ to form:	netic
536	a) Xylene	b) Toluene	c) Chlorobenzene	d) Benzylchloride
550.	a) 1.73	b) 2.83	c) 6.6	d) Zero
537.	The correct order of reacti	ivity towards electrophilic	substitution is:	,
	a) Phenol >Benzene>Chlo b) Benzoic acid>Chlorobe	orobenzene>Benzoic acid nzene>Benzene>Phenol		
	c) Phenol >Chlorobenzen	e>Benzene>Benzoic acid		
	d) Benzoic acid>Phenol>I	Benzene>Chlorobenzene		
538.	The product formed by the	e reaction of C ₆ H ₅ CN and C	H_2N_2 is:	
	a) \bigcirc -CH=CH ₂ N ₂	b) NNN	c) CH ₂ CH ₂	d) None of these
539	Increasing order of expect	red enol content	·	
559.	a) $CH_{a}COCH_{a}CHO > CH_{a}CHO$	$CH_{a} > CH_{a}CHO > CH_{a}CHO$	ОСНаСОСНа	
	b) $CH_2COCH_2COCH_2 > CH_2COCH_2 > CH_2COCH_2C$	$L_{2}COCH_{2}CHO > CH_{2}COCH_{2}$	$> CH_2CHO$	
	c) $CH_2CHO > CH_2COCH_2$	$> CH_2COCH_2CHO > CH_2CHO > CH_2CH_2CHO > CH_2COCH_2CHO > CH_2CHO > CH_2CHO > CH_2CH_2CHO > CH_2CH_2CHO > CH_2CHO > CH_2$	OCH ₂ COCH ₂	
	d) $CH_2COCH_2 > CH_2COCH$	$I_2COCH_2 > CH_2CHO > CH_2$	SCOCH2CHO	
540.	Out of the following the m	etal which forms polynucle	ar carbonyl is:	
	a) Na	b) Mg	c) Mn	d) All of these
541.	Picric acid and benzoic aci	d can be distinguished by:	-)	·)
	a) Aqueous NaHCO ₃	b) Aqueous NaOH	c) Aqueous FeCl ₃	d) Aqueous Na ₂ CO ₃
542.	The compound having the	lowest oxidation state of in	on is	J 1 2 J
	a) K_4 Fe(CN) ₆	b) K ₂ FeO ₄	c) Fe_2O_3	d) $Fe(CO)_5$
543.	The name of $[Pt(NH_3)_4Cl_2]$	$ ^{2+}$, $[PtCl_{4}]^{2-}$ is	<i>y</i> <u>2</u> <u>3</u>	, , , , , , , , , , , , , , , , , , ,
	a) Tetramminedichloropla	atinum(IV) tetrachloro plat	inate(II)	
	b) Dichloroplatinum (IV) t	etrachloroplatinate		
	c) Tetrachloroplatinum (I	I) tetrammineplatinate		
	d) Tetrachloroplatinum (I	I) dichlorotetraammine pla	itinate	
544.	<i>m</i> -dihydroxybenzene is al	so called:		
	a) Catechol	b) Resorcinol	c) Quinol	d) Pyrogallol
545.	The ion which exhibits gre	en colour		
	a) Cu ²⁺	b) Mn ²⁺	c) Co ²⁺	d) Ni ²⁺
546.	$X \xrightarrow{\text{Cl}_2} \text{Benzotrichloride} \xrightarrow{\text{Hydr}}$	$\xrightarrow{\text{rolysis}} Y$		
	X and Y respectively are:			
	a) Benzene, benzaldehyde			
	b) Toluene, benzaldehyde			
	c) Toluene, benzoic acid			
	d) Benzene, benzoic acid			
547.	Geometrical isomerism is	tound in coordination com	pounds having coordinatio	n number:
F 4 0	aj Z	bJ 3	cJ 4 (tetrahedral)	a) 6
548.	which one of the following 12^{+}	g complexes is not expected	to exhibit isomerism?	1) [N:(-)] 12+
E 4 0	a) $[N1(NH_3)_4(H_2U)_2]^{2}$	DJ $[PU(N\Pi_3)_2 \cup I_2]$	$CJ [NI(N\Pi_3)_2 CI_2]$	a) $[N1(en)_3]^2$
549.	The correct actuity order (or the following is:		

a) High spin complexes b) Low spin complexes c) Both (a) and (b) d) None of these 556. The hybridization involved in $[CoF_6]^{3-}$ is: a) d^2sp^3 b) d^3sp^2 d) sp^3d^2 c) dsp^3 557. Will have the name a) N-ethyl-N-methylethanamine b) N,N-diethylmethanamine c) N,N-diethylethanamide d) None of the above 558. The oxidation state of Fe in the brown ring complex $[Fe(H_2O)_5NO]SO_4$ is a) +3 b) 0 c) +2 d) +1 559. The metal ion in complex <u>A</u> has EAN identical to the atomic number of krypton . <u>A</u> is (At. no. of Cr=24, Fe=26, Pd=46) a) $[Pd(NH_3)_6]Cl_4$ b) $[Cr(NH_3)_5Cl]SO_4$ c) $Na_4[Fe(CN)_6]$ d) $K_3[Fe(CN)_6]$ 560. Which one of the following is expected to exhibit optical isomerism [en =ethylenediamine]? a) $trans - [Co(en)_2Cl_2]$ b) $cis - [pt(NH_3)_2Cl_2]$ d) $Trans - [pt(NH_3)_2Cl_2]$ c) $cis - [Co9en)_2 Cl_2$ 561. What is the magnetic moment of $K_3[FeF_6]$? a) 5.91 BM b) 4.89 BM c) 3.87 BM d) 6.92 BM 562. Identify '*Y*' in the change; $\xrightarrow{\text{HNO}_3/\text{H}_2\text{SO}_4} X \xrightarrow{\text{Sn/HCl}} Y:$ NH_2 NH_2 NH_2 NH_{2} NH₂ b) d) a) c) NH_2 563. Among the following statements on the nitration of aromatic compounds, the false one is: a) The rate of nitration of benzene is almost the same as that of hexadeuterobenzene b) The rate of nitration of toluene is greater than that of benzene c) The rate of nitration of benzene is greater than that of hexadeuterobenzene d) Nitration is an electrophilic substitution reaction 564. The bond length of C—O bond in carbon monoxide is 1.128Å. The C—O bond in Fe(CO)₅ is: a) 1.15 Å b) 1.128 Å c) 1.72 Å d) 1.118 Å 565. Which one is not correct for homologous series? a) All members are represented by same general formula b) All members have same chemical properties c) All members have same physical properties d) All members have same functional group 566. is named in IUPAC as a) 2, 3-dimethyl bicyclo [2.2.1] hept-5-ene b) 1, 2-dimethyl bicyclo [2.2.1] hept-4-ene c) 5, 6-dimethyl bicyclo [2.2.1] hept-2-ene d) 4, 5-dimethyl bicyclo [2.2.1] hept-1-ene 567. Ferric ion forms a prussian blue coloured solution due to the formation of: a) $K_4[Fe(CN)_6]$ b) $Fe(CNS)_3$ c) $Fe_4[Fe(CN)_6]_3$ d) $K_3[Fe(CN)_6]$ 568. What is the magnetic moment of $[FeF_6]^{3-2}$? b) 5.49 a) 5.92 c) 2.34 d) 4 569. Which of the following can exhibit geometrical isomerism? a) $[MnBr_4]^{2-}$ b) $[Pt(NH_3)_3Cl]^+$ d) $[Fe(H_2O)_5NO]^{2+}$ c) $[PtCl_2, P(C_2H_5)_3]_2$

570. A compound contains 2 di	issimilar asymmetric C-ato	ms. The number of optical	isomers are
a) 2	b) 3	c) 4	d) 5
571. Coordination number of N	li in $[Ni(C_2O_4)_3]^{4-}$ is:		
a) 3	b) 6	c) 4	d) 5
572. Which compound exhibits	sontical isomerism?	-)	-) -
a) Pentaamminenitrocoha	alt (III) iodide		
h) Diamminedichloronlati	inum (II)		
a) Trang diguana hig (ath	unum (II)	(III) chlarida	
d) Tria (athedan a diamina)	iyieneulanine) chi onnum	(III) chior lue	
d) Tris-(ethylenediamine)	(III) bromide		
5/3. Ruthenium carbonyl is:			
a) $Ru(CO)_4$	b) $Ru(CO)_5$	c) Ru(CO) ₈	d) $Ru(CO)_6$
574. Oxidation state of nitrogen	n is incorrectly given for		
Compound Oxidat	ion state		
a) $[Co(NH_3)_5Cl]Cl_2$)	b) NH_2OH –	1
c) $(N_2H_5)_2SO_4$ +2	2	d) Mg_3N_2 –	3
575. Which of the following car	n participate in linkage isor	nerism?	
a) NH ₃	b) H ₂ 0	c) H ₂ NCH ₂ CH ₂ NH ₂	d) NO_2^-
576. Ortho-nitrophenol is less	soluble in water than <i>p</i> -and	d <i>m</i> -nitrophenols because:	
a) <i>o</i> -nitrophenol shows in	tramolecular H-bonding	-	
b) <i>o</i> -nitrophenol shows in	termolecular H-bonding		
c) Melting point of <i>a</i> -nitro	ophenol is lower than those	of <i>m</i> -and <i>n</i> -isomers	
d) a-nitronhenol is more y	volatile in steam than those	of <i>m</i> -and <i>n</i> -isomers	
577 Among the following most	t basic compound is:	or m and p isomers	
a) Pongul amino	b) Anilino	a) Acotanilida	d) <i>n</i> nitro anilino
a) belizyi allille	DJ AIIIIIIe	c) Acetannice	u) <i>p</i> -mu o amme
578. The EAN of platinum in po	btassium nexachioropiatina	ite (IV) is:	1) 04
a) 46	b) 86	c) 36	d) 84
579. The number of ions forme	ed when copper ammonium	i sulphate is dissolved in w	vater is:
a) 1	b) 2	c) 4	d) Zero
580. Which of the following car	nnot show linkage isomeris	sm?	
a) NO ₂	b) NH ₃	c) CN ⁻	d) SCN ⁻
581. Xylenes on oxidation with	acidic KMnO ₄ gives:		
a) Phthalic acid	b) Isophthalic acid	c) Terephthalic acid	d) All of these
582. The ratio of σ -and π -bond	s in benzene is:		
a) 2	b) 4	c) 6	d) 8
583. The order of decreasing re	eactivity towards S_E reaction	on for the given compound	is:
(i)C _e H _e	5 1	0	
(ii)C_H_CH_			
$(ii)C_2H_2C_1$			
$(iv)C_{1}H_{-}OH$			
$(i) C_{6}^{(i)} (i) (i)$	b) $(iw) > (iii) > (iii) > (ii)$		d (i) $\langle (ii) \rangle \langle (iii) \rangle \langle (iv) \rangle$
a) $(1) > (1) > (1) > (11)$	$U_{1}(1) > (11) > (11) > (1)$	(1) (1) / (1) / (1) / (11)	
584. Which of the following col	mpounds is not optically ac	ctive?	н н
	GI Br	Br H	
			d) Br Br Br H
		H Br	
585. The number of geometrica	al isomers of [Co(NH ₃) ₃ (N	$(0_2)_3$] are:	
a) Zero	b) 2	c) 3	d) 4
586. Phenol is less acidic than	,	,	,
a) Water	h) <i>n</i> -methoxynhenol	c) <i>n</i> -nitronhenol	d) Ethanol
587 In the reaction	S, P memoryphenor		
sor, in the reaction,			

Page | 47

$C_6H_5CH_3 \xrightarrow{\text{Oxidation}} A$	$4 \xrightarrow{\text{NaOH}} B \xrightarrow{\text{Soda lime}} C$		
a) C ₆ H ₅ OH	b) C ₆ H ₆	c) C ₆ H ₅ COONa	d) C ₆ H ₅ ONa
588. Incorrect statement	is		
a) Ethane can have a	an infinite number of co	onformations	
b) Cyclopropane mo	lecule has considerable	e angle strain	
c) Eclipsed form of e	thane is less stable the	en staggered conformation	
d) Staggered conform	nation possess maxim	um energy	
589. The complex [Co(NH	I ₃) ₅ Br]SO ₄ will give wh	nite ppt. with:	
a) PbCl ₂	b) AgNO ₃	c) KI	d) None of these
590. Which of the following	ng complexes exhibits	the highest paramagnetic behavi	our?
a) [Fe(en)(bpy)(NH	$_{3})_{2}]^{2+}$		
b) [Co(OX) ₂ (OH) ₂] ⁻			
c) $[Ti(NH_3)_6]^{3+}$			
$[V(gly)_2(OH)_2(NH)_2($	$[1_3)_2]^+$		
d) Where, $gly = glyc$	ine, en = ethylenediam	nine and bpy = bipyridylmoities	
(At. No. Ti=22, V=	=23, Fe=26, Co=27)		
591. The coordination nu	mber in a/an cor	nplex may increase to 8.	
a) Cobalt	b) Osmium	c) Nickel	d) Iron
592. Compound used for	covering wounds cause	ed by bite of mad dog is:	
a) Benzoic acid	b) Aniline	c) Phenol	d) Salicylic acid
593. Cinnamic acid on de	carboxylation gives:		
a) Benzene	b) Toluene	c) Styrene	d) Benzaldehyde
594. In which of the follow	wing pairs both the cor	nplex show optical isomerism?	
a) Cis- $[Cr(C_2O_4)_2Cl_2]$	$_{2}]^{3-}$; cis-[Co(NH ₃) ₄ Cl ₂]] b) [PtCl(dien)]Cl, [NiC	$l_2Br_2]^{2-}$
c) $[Co(NO_3)_3(NH_3)_3]$], <i>cis</i> -[Pt(en) ₂ Cl ₂]	d) [Co(en) ₃]Cl ₃ , <i>cis</i> -[C	$o(en)_2 Cl_2 Cl_2$
595. The name of the ring	s structure complex cor	mpound formed between metal io	on and polydentate ligand is
a) Simple complex	b) Chelate comp	lex c) Polynuclear comple	ex d) None of the above
596. IUPAC name of			
$Cl_2CH - CH - CH -$	CCl ₃ is		
C_2H_5 C_2H_5	5		
a) 1,1,1,4,4-pentachl	loro-2,3-diethyl-butane		
b) 3-(dichloromethy	1)-4-(trichloromethyl)	-hexane	
c) 3-(trichloromethy	/l)-4-(dichloromethyl)	-hexane	
d) 1,1,4,4,4-pentachl	loro-2,3-diethyl butane		
597. Which statement is v	wrong with regard to a	cetaldehyde and benzaldehyde?	
a) Both react with hy	ydroxylamine to form (Dximes	
b) Both react with H	CN to form cyanonyari	n	
c) Both react with N	aOH to form polymers		
a) Both react with n_y	ydrazine to form nydra	120 nes	
598. The coordination nu	Linder of Cu in complex	$(Uu(H_2O)_4)^{-1}$ is	d) 1
dJ 4	UJ 3	U) Z	u) I
a) Chlorination nitr	ence would be best to	prepare s-chloroannine ironi ber	izene:
a) Chiof Induoti, Inda b) Nitration, chloring	ation, reduction		
c) Nitration, chioi ind	action, reduction		
d) Nitration reduction	on acatulation chlorin	ation hydrolysis	
600 The complexes (Coll	$[NH_{2}]_{2}$ [[Cr(C_O_)]] on	$d[Cr(NH_{2})]$	
a) Geometrical icom	erism	h) Ionization energy	
c) Coordination ison	nerism	d) Linkage isomericm	
cj coorumation ison	10113111	uj Linkage isomerism	

601. The reaction, $C_6H_5NHCOCH_3 \xrightarrow{B_2/Fe} BrC_6H_4NHCOCH_3$ is an example of: a) Substitution reaction b) Addition reaction c) Condensation reaction d) Elimination reaction 602. Given the molecular formula of the hexa coordinated complexes is (A) $CoCl_3 . 6NH_3$ (B) CoCl₃.5NH₃ (C) $CoCl_3 . 4NH_3$ If the number of coordinated NH₃molecules in *A*, *B* and *C* respectively are 6, 5 and 4 the primary valency in (*A*),(*B*) and (*C*) are a) 6, 5, 4 b) 3, 2, 1 c) 0, 1, 2 d) 3, 3, 3 603. C₆H₁₄ has two tertiary carbons. The IUPAC name is a) *n*-hexane b) 2-methylpentane c) 3-methylpentane d) 2,3-dimethylbutane 604. The compound [Co(NO₂)(NH₃)₅]Cl₂ and [Co(ONO)(NH₃)₅]Cl₂ are examples of: a) Geometrical isomers b) Linkage isomers c) Ligand isomers d) Ionization isomers 605. Which is not a π -bonded complex? a) Zeise salt b) Ferrocene c) Dibenzene chromium d) Tetraethyl lead 606. When phenol is treated with PCl₅, the yield of chlorobenzene is generally poor because of the formation of: b) *p*-chlorophenol a) Benzoyl chloride c) *o*-chlorophenol d) Tertiary phosphate 607. Which will show tautomerism? d) 608. The IUPAC name of compound a) N-phenylaminoethanone b) N-phenylethanamide c) N-phenylmethanamide d) N-phenylaminomethane 609. Which one of the following is most reactive towards electrophilic reagent? CH_3 CH₃ CH_3 CH_3 a) b) c) CH₂OH OCH₃ NHCOCH₃ OН 610. Which of the following shows dsp^2 hybridisation? a) NiCl₄^{2–} b) SCl₄ c) NH₄⁺ d) $PtCl_4^{2-}$ 611. Which one of the following is not an explosive? a) Trinitroglycerine b) o-aminotoluene d) TNT c) Dynamite

Page | 49

612. Spin only magnetic moment of the compound Hg[Co(SCN) ₄]is				
a) $\sqrt{3}$ b) $\sqrt{15}$	c) $\sqrt{24}$	d) $\sqrt{8}$		
613. When phenol is treated with NH_3 and $ZnCl_2$, it chang	es to:			
a) Aniline b) Salicylic acid	c) Cyclohexanol	d) None of these		
614. In which complex is the transition metal in zero oxid	ation state?			
a) $[Co(NH_3)_6]Cl_2$ b) $[Fe(H_2O)_6SO_4]$	c) $[Ni(CO)_4]$	d) $[Fe(H_2O)_3](OH)_2$		
615. The species having tetrahedral shape is				
a) $[NiCl_4]^{2-}$ b) $[Ni(CN)_4]^{2-}$	c) [PdCl ₄] ²⁻	d) $[Pd(CN)_4]^{2-}$		
616. An imperfect complex of a complex compound is 100	% ionized; the compound	is called:		
a) Double salt b) Complex salt	c) Acid salt	d) Normal salt		
617. For which transition metal ions are low spin complex	kes impossible?			
a) Zn ²⁺ b) Zr ²⁺	c) Ag ⁺	d) All are correct		
618. (A) $K_4[Fe(CN)_6]$				
$(B)K_3[Cr(CN)_6]$				
$(C)K_3[Co(CN)_6]$				
$(D)K_2[Ni(CN)_6]$				
Select the complexes which are diamagnetic.				
a) (A), (B) and (C) b) (B), (C) and (D)	c) (A), (C) and (D)	d) (A), (B) and (D)		
619. Wilkinson's catalyst, $(Ph_3P)_3RhCl$ is used for				
a) Hydrogenation of oils	b) Hydrogenation of alkyr	ies		
c) Hydrogenation of alkenes	d) Polymerization of alker	nes		
620. Among the following compounds, the most acidic is:				
a) <i>p</i> -nitrophenol				
b) <i>p</i> -hydroxybenzoic acid				
c) <i>o</i> -hydroxybenzoic acid				
d) <i>p</i> -toluic acid				
621. An aromatic primary amine with cold nitrous acid lea	ads to the formation of:			
a) Alcohol b) Nitrite	c) Diazonium salt	d) Benzene		
622. Chlorobenzene gives DDT when it reacts with:				
a) Phenol b) Naphthalene	c) Chloral	d) Acetaldehyde		
623. Under suitable conditions $C_6H_5CH_2OH(A)$, $C_6H_5OH(A)$	B) and C ₆ H ₅ COOH(<i>C</i>) can a	act as acids. The increasing		
order of their acidic strengths is:				
a) $A < B < C$ b) $A < C < B$	c) $B < A < C$	d) $C < B < A$		
624. Which is considered to be an anticancer species?				
CH_2				
	H ₂ N /Cl	H ₂ N /Cl		
a) C_1 $(H_2 b)$ Pt	c) Pt	d) Pt		
Cl	H ₃ N Cl	CI CI		
Cl				
625. The compound required for the formation of thermo	setting polymer with meth	anal is:		
a) Phenol b) Benzene	c) Benzaldehyde	d) All of these		
626. Which one of the following has highest number of iso	omers?			
a) $[Co(NH_3)_5Cl]^{2+}$ b) $[Co(en)_2Cl_2]^+$	c) $[Ru(NH_3)_4Cl^-]$	d) [In(PP ₃) ₂ H(CO)] ²⁺		
627. Which group is <i>o</i> - and <i>p</i> -directing?				
a) $-NO_2$ b) $-SO_3H$	с) —СООН	d) — NHCOCH ₃		
628. When benzyl chloride is boiled with aqueous solution product is:	n of lead nitrate in current	of carbon dioxide, the main		
a) Benzoic acid b) Benzyl alcohol	c) Benzaldehyde	d) Nitrobenzene		
629. Ligands in complex compounds	- •	-		

a) Donates electron pair b) Accept electron pair c) Neither accept electron pair nor donate d) All of the above 630. Aniline is separated by: a) Fractional crystallisation b) Fractional distillation c) Steam distillation d) Vacuum distillation 631. In which of the following octahedral complexes of Co (at. No. 27), will be magnitude of Δ_0 be the highest? c) $[Co(H_2O)_6]^{3+}$ a) $[Co(CN)_6]^{3-1}$ b) $[Co(C_2O_4)_3]^{3-1}$ d) $[Co(NH_3)_6]^{3+}$ 632. The IUPAC name of K₂[PtCl₆] is a) Hexachloroplatinate potassium b) Potassium hexachloroplatinate (IV) c) Potassium hexachloroplatinate d) Potassium hexachloroplatinum(IV) 633. Aqueous solution of nickel sulphate on treating with pyridine and then adding a solution of sodium nitrite gives dark blue crystals of: a) $[Ni(py)_4]SO_4$ b) $[Ni(py)_2(NO_2)_2]$ c) $[Ni(py)_4(NO_2)_2]$ d) $[Ni(py)_3(NO_2)]_2SO_4$ 634. Benzyl alcohol is obtained from benzaldehyde by: a) Fittig's reaction b) Cannizzaro's reaction c) Kolbe's reaction d) Wurtz's reaction 635. The structure of the compound that gives a tribromo derivative on treatment with bromine water is: CH₂OH CH_3 OH b) a) 636. The coordination number and the oxidation state of the element 'E' in the complex $[E(en)_2(C_2O_4)]NO_2$ (where (en) is ethylene diamine) are, respectively : a) 6 and 3 b) 6 and 2 c) 4 and 2 d) 4 and 3 637. Benzaldehyde reacts with PCl₅ to give: a) Benzyl chloride b) Benzo trichloride c) Benzal chloride d) Chlorobenzene 638. Which one of the following complex ions has geometrical isomers? a) $[Co(en)_3]^{3+}$ c) $[Co(NH_3)_2(en)_2]^{3+}$ d) $[Cr(NH_3)_4(en)]^{3+}$ b) $[Ni(NH_3)_5Br]^+$ 639. The strongest acid among the following aromatic compounds is: a) *Ortho*-nitrophenol b) *para*-chlorophenol c) *para*-nitrophenol d) *meta*-nitrophenol 640. The isomers observed in alkanes is a) Metamerism b) Chain isomerism d) Geometrical isomerism c) Position isomerism 641. The two compounds pentaamminesulphatocobalt (III) bromide and pentaamminesulphatocobalt(III) chloride represent: a) Linkage isomerism b) Ionization isomerism c) Coordination isomerism d) No isomerism 642. Both $[Ni(CO)_4]$ and $[Ni(CN)_4]^{2-}$ are diamagnetic. The hybridisation of nickel in the compounds respectively are : a) sp^3 , sp^3 b) sp^3 , dsp^2 c) dsp^2 , sp^3 d) dsp^3 , dsp^2 643. The following compounds on hydrolysis in aqueous acetone will give:

$$(\downarrow_{i}\subset i_{1}, 0 - \bigcirc (i_{1}, i_{1}, \dots, (i_{1}, i_{1}, \dots, (i_{1}, i_{1}, \dots, (i_{1}, i_{1}, \dots, (i_{1}, \dots, (i_{$$

a) d^2sp^3 -hybridization of Fe b) Paramagnetic c) One unpaired electron d) All of the above are correct 657. The IUPAC name of $[Ni(PPh_3)_2Cl_2]^{2+}$ is a) Bis-dichloro (triphenylphosphine)nickel(II) b) Dichloro bis (triphenylphosphine)nickel(II) c) Dichloro triphenylphosphine nickel(II) d) Triphenyl phosphine nickel (II) dichloride 658. The complex [Co(NH₃)₃Cl₃]is: a) Neutral b) Cationic c) Anionic d) None of these 659. From the stability constant (hypothetical values) given below, predict which is the strongest ligand? a) $Cu^{2+} + 4NH_3 \rightleftharpoons [Cu(NH_3)_4]^{2+}$; $(K = 4.5 \times 10^{11})$ b) $Cu^2 + 4CN \rightleftharpoons [Cu(CN)_4]^{2-}$; $(K = 2.0 \times 10^{27})$ c) $Cu^{2+} + 2en \rightleftharpoons [Cu(en)_2]^{2+}$; $(K = 3.0 \times 10^{15})$ d) $Cu^{2+} + 4H_20 \rightleftharpoons [Cu(H_20)_4]^{2+}$; $(K = 9.5 \times 10^8)$ 660. Which has highest m.p.? a) *o*-bromophenol b) *m*-bromophenol c) *p*-bromophenol d) *m*-chlorophenol 661. Hexafluorocobaltate(III) ion is found to be high spin complex, the probable hybrid state of cobalt in it is: a) d^2sp^3 b) sp^3 c) sp^3d d) sp^3d^2 662. Which isomeric dibromotoluene is most difficult to make from toluene? b) 2,4 d) 2,6 a) 2,3 c) 3.5 663. Which one of the following forms with an excess of CN⁻(cyanide) a complex? c) Ni²⁺ d) Fe^{2+} a) Cu⁺ b) Ag⁺ 664. Nitration of salicylic acid gives: a) 2,4,6-trinitrosalicylic acid b) 2,4,6-trinitrophenol c) 2,4,6-trinitrobenzoic acid d) None of the above 665. The IUPAC name of the compound $CH_3 - CH_2 - C - CH_2 - CH_3$ is a) N-hydroxy-3-amino pentane b) N-hydroxyamino pentane c) N-hydroxy-3-imino pentane d) None of the above 666. Which is not true of the coordination compound $[Co(en)_2Cl_2]Cl_2$ a) Exhibits geometrical isomerism b) Exhibits optical isomerism c) Exhibits ionisation isomerism d) Is an octahedral complex 667. The IUPAC name of ĊH₂Br is a) 3-(bromomethyl)-2-methyl butanoyl chloride b) 3-(bromomethyl)-2-methyl propanoyl chloride c) 2-(bromomethyl)-3-methyl butanoyl chloride d) None of the above 668. Aniline is reacted with bromine water and the resulting product is treated with an aqueous solution of sodium nitrite in the presence of dilute HCl. The compound so formed is treated with fluoroboric acid which is subsequently heated dry. The final product is: a) *p*-bromofluorobenzene b) *p*-bromoaniline

c) 2,4,6-tribromofluorobenzene

d) 1,3,5-tribromobenzene

669. Which of the following is a common donor atom in ligands?

a) Nitro 670. The rea	ogen ction of aniline w	b) Oxygen ith acetyl chloride in preser	c) Arsenic nce of NaOH gives:	d) Both (b) and (c)
a) Aceta 671. In the r	anilide eaction, the comp	b) Aniline hydrochloride ound "X" is:	c) <i>p</i> -chloroaniline	d) A red dye
Me-	\sim CHO + X $\frac{CH_3C}{H_2}$	OONa O →		
	Me-O-O	СН=СНСООН		
a) CH ₃ (СООН			
b) $Br \cdot (CU)$	H_2COOH			
d) CHO	· COOH			
672. Which o	of the following w	ill exhibit maximum ionic c	onductivity?	
a) K ₄ [F	e(CN) ₆]	b) [Co(NH ₃) ₆]Cl ₃	c) $[Cu(NH_3)_4]Cl_2$	d) [Ni(CO) ₄]
673. Dipole 1	moment of <i>p</i> -nitro	paniline, when compared to	nitrobenzene (X) and anil	ine (Y) will be:
a) Grea	ter than (X) and ((Y)		
b) Smal	ler than (X) and (X)	Y) maller than (V)		
d) Equa	$\frac{1}{1}$ to zero	maner than (1)		
674. The stru	ucture of iron pen	tacarbonyl is:		
a) Squa	re planar	b) Trigonal bipyramidal	c) Triangular	d) None of these
675. Turnbu	ll's blue is:			
a) Ferri	cyanide	b) Ferrous ferricyanide	c) Ferrous cyanide	d) Ferri ferrocyanide
676. The cor	rect IUPAC name	of		
CU				
CH ₂	$-C - CH_2$			
COOH	соон соон	is		
a) 2-hy	droxypropane-1, 2	2, 3-tricarboxylic acid	b) 3-carboxy-3-hydroxy-p	pentane-1, 5-dioic acid
CJ Z Car 677 The triv	boxy-4 nyaroxy-p vial name among t	bentane-1, 5-dioic acid	a) 3-carboxy-3-nyaroxy-1	nexane-1, 6-dioic acid
a) Acet	one	b) Acetylene	c) Uric acid	d) None of these
678. The IUP	PAC name of [Pt(N	$(H_3)_4(NO_2)Cl]SO_4$ is		
a) Chloi	ronitro tetrammir	ne platinum (IV) sulphate		
b) Tetra	ammine chloronit	ro platinum (II) sulphate		
c) Tetra	ammine chloronit	ro platinum (IV) sulphate		
d) Chlor	rotetrammine niti	coplatinum (IV) sulphate		
6/9. The over	eriapping in benze	h) sn – sn	rais of the type:	d) $cn^3 - cn^3$
a) p – p 680. Change	, in composition of	f coordination sphere vields	s which type of isomer?	$u_{J}sp = sp$
a) Geon	netrical	b) Ionization	c) Optical	d) None of these
681. The IUF	PAC name of K ₂ [N	i(CN) ₄] is		-
a) Potas	ssium tetracyanor	nickelate (II)	b) Potassium tetracyanat	onickelate (III)
c) Potas	ssium tetracyanat	onickel (II)	d) Potassium tetracyanor	nickel (III)
682. Aniline	in a set of the foll	owing reactions yielded a c	oloured compound Y:	
\int				
	$\xrightarrow{\text{NaNO}_2+\text{HCl}} X \xrightarrow{N,N}$	$\xrightarrow{\text{dimethyl aniline}} Y$		

a) $N=N-V$ CH_3 CH_3	
b) $HN - NH - NH - NH$	
c) $H_3C \longrightarrow N = N \longrightarrow N H_2$	
d) $\begin{array}{c} CH_3 \\ HN \end{array}$ $\begin{array}{c} CH_3 \\ HN \end{array}$ $\begin{array}{c} HN \end{array}$ $\begin{array}{c} CH_3 \\ HN \end{array}$	
683. The effective atomic number rule is less likely to apply if the metal-ligand bo	nd:
a) Is extremely weak	
c) Has a large amount of ionic character	
d) None is correct	
684. Potassium ferrocyanide is an example of a) Tetrahedral b) Octahedral c) Square planar	d) Linear
685. 1-phenyl, 2-chloropropane on treatment with aqueous KOH gives mainly:	
a) 1-phenylpropane b) 3-phenylpropane c) 1-phenylpropan-2-c	l d) 1-phenylpropan-3-ol
686. Which class of compounds can exhibit geometrical isomerism?	
$a) C_6 n_5 Ch = NOh$ $b) Ch_3 Ch = ChCh_3$ $d) All of the above$	
687. The product of oxidation of aniline with $K_2Cr_2O_7$ and conc. H_2SO_4 will be:	
b) p-benzogujnone	
c) Aniline black dye	
d) Phenyl hydroxylamine	
688. Among the following the Newmann projections of meso-2, 3-butanediol are	
Me Me	
P Q	
но н н он	
H OH	
a) $P.O$ b) $P.R$ c) $R.S$	d) 0.S
689. A new carbon-carbon bond is formed in:	-) V/-
a) Cannizzaro's reaction	
b) Friedel-Crafts reaction	
c) Clemmensen reduction	
d) None of the above	
obo. which of the following compounds can exhibit tautomerism?	

	СНО		NO_2	$CH_3 - CH - CH_3$
	aj		c)	a) NH2
691	. The most basic compoun	d among the following is:		
0,1	a) Benzylamine	b) Aniline	c) Acetanilide	d) <i>p</i> -nitroaniline
692.	. Which of the following ha	as least oxidation state of Fe	??	, , , , , , , , , , , , , , , , , , ,
	a) $K_3[Fe(OH)_6]$		b) K ₂ [FeO ₄]	
	c) FeSO ₄ (NH ₄) ₂ SO ₄ .6H ₂	0	d) $[Fe(CN)_6]^{3-}$	
693	. The spin only magnetic n	noment value (in Bohr magi	neton units) of Cr(CO) ₆ is	
	a) 0	b) 2.84	c) 4.90	d) 5.92
694	. Which is an excellent ant	iseptic?		
	a) Phenol	b) Benzyl alcohol	c) Benzaldehyde	d) Acetic acid
695.	Scientist who explained t	he structures and isomerisi	m in the complex compound	d was:
	a) Sidgwick	b) Pauling	c) Powell	d) Werner
696.	The cation that does not	form an ammine complex w	vith excess of ammonia is:	
	a) Al ³⁺	b) Ag+	c) Cu ²⁺	d) Cd^{2+}
697.	. The complex ion which h	as the highest magnetic mo	ment among the following	is
	a) $[CoF_6]^{3-}$	b) $[Co(NH_3)_6]^{3+}$	c) $[Ni(NH_3)_4]^{2+}$	d) $[Ni(CN)_4]^{2-}$
698.	For square planar comple	ex of platinum (II), $[Pt(NH_3)]$)(Br)(Cl)Py] ²⁺ , how many	isomeric forms are
	possible?		. –	
	a) Two	b) Three	c) Four	d) Six
699.	. Which of the following ha	as highest boiling point?		
-	a) Benzene	b) Phenol	c) Toluene	d) Ethyl benzene
700.	A nitrogen containing or	ganic compound on heating	with chloroform and alcoh	olic KOH evolved very
	unpleasant smelling vapo	burs. The compound could b		
701	a) Nitrobenzene	b) Benzamide	c) <i>N</i> , <i>N</i> -dimetnyl amine	a) Annine
/01	. Which of the following U.	1 M complex compound sol	utions will have the minim	um electrical conductivity?
	a) Dishlara tatrammina r	(IV) chiofide	d) Trichloro triammino n	atinum (IV) chlorida
702	C) Dichloro tetraminine p False statement is	fiaunum (TV) chioride	u) menoro triannine pi	atinum (IV) chioride
702.	a) Aprotic solvents incre-	ase the enal content in taut	omerism	
	h) Any deviation from the	e normal hond angles intro	luces angle strain in moleci	ule
	c) Diastereomers have id	entical physical properties	auces angle strain in molect	
	d) Chain isomers can also	be position isomers		
703.	The correct IUPAC name	of the compound is		
	$CH_3 - CH - CH - CH - CH$	$CH_2 - CH_3$		
		2 0		
	Cl Br I			
	a) 4-bromo-5-chloro-3-ic	odo hexane	b) 3-bromo-2-chloro-4-io	do hexane
	c) 3-bromo-4-iodo -2-chl	oro hexane	d) 2-bromo-3-bromo-4-io	do hexane
704	Benzyl chloride (C ₆ H ₅ CH	$_2$ Cl) can be prepared from t	toluene by chlorination wit	h:
	a) SO ₂ Cl ₂	b) SOCl ₂	c) S ₂ Cl ₂	d) NaOCl
705	. The compound 2,2'-bipyr	ridine has the structure		
	a) \bigvee_{N}		b) \bigvee_{N} \bigvee_{N}	
			$\widehat{\cap}$	
	c) \		d) $(N $	

706. The IUPAC name of

$$\begin{aligned} & \int_{O(H)} \int_{O($$

715. Oxidation of ethyl benzene by KMnO₄ gives:

a) Benzyl alcohol b) Benzophenone c) Acetophenone d) Benzoic acid 716. One of the following statements regarding Reimer-Tiemann reaction is false:

- a) Reaction of phenol with CHCl₃ and KOH
- b) CCl₂ acts as a nucleophile
- c) Reaction of phenol with CCl₄ and NaOH
- d) Reaction of phenol with formaldehyde to form bakelite

717. The structure representing a heterocyclic compound is

a)
$$CH_2$$
 CH_2

718. Phenol reacts with Br₂in CCl₄ at low temperature to give:

- a) *m*-bromophenol
- b) o-and p-bromophenol

c) p-bromophenol

d) 2,4,6-tribromophenol

719. The correct name of the compound $[Cu(NH_3)_4](NO_3)_2$, according to IUPAC system is

a) Cuprammonium nitrate

- b) Tetrammine copper (II) dinitrate
- c) Tetrammine copper (II) nitrate
- d) Tetrammine copper (II) dinitrite
- 720. Nitroethane can exhibit one of the following kind of isomerism

a) Metamerism b) Optical activity c) Tautomerism d) Position isomerism 721. What would be the correct IUPAC name of

a) 3,3-dimethyl-3-cyclopentyl propanal

b) 3-methyl-3-cyclopentyl butan-1-al

- c) 1-(1-methyl-1-formyl) methylethyl cyclopropane
- d) None of above

722. The number of unpaired electrons in the square planar
$$[Pt(CN)_4]^{2-}$$
 ion isa) 2b) 1c) 0d) 3723. The oxidation number of cobalt in K[Co(CO)_4] isa) +1b) +3c) -1d) -3724. IUPAC name of Na_3[Co(NO_2)_6] isa) Sodium hexanitrito cobaltate (II)c) Sodium hexanitrito cobaltate (III)d) Sodium cobaltinitrite(II)

725. The total number of possible isomers for the comp a) 6 b) 5	lex compound [Cu(NH ₃) ₄][1 c) 4	PtCl ₄] d) 3
726. Benzaldehyde reacts with excess of anhydrous eth	yl alcohol in the presence of	HCl, gives:
a) $C_6H_5COOC_2H_5$ b) $C_6H_5COOC_2H_5$	c) $C_6H_5CH(0C_2H_5)_2$	d) C ₆ H ₅ CH ₂ Cl
727. Which pair of isomerism is not possible together?		
a) Chain and position	b) Functional and position	on
c) Tautomerism and functional	d) All of the above	
728. Which type of conformation is shown by I and II?		
Ч ң Ң		
н н н н		
H ''		
(I) (III)		
a) I is eclipsed, II is staggered	b) II is eclipsed, I is stage	gered
c) Both are eclipsed	d) Both are staggered	
729. Which will give chiral molecule?		
LiAlH ₄	$L_{2}C_{2}H_{5}CHO \xrightarrow{CH_{3}MgBr}$	
a) $CH_3COCI \longrightarrow$	$H^{+}/H_{2}O$	
	H , CH ₃	C1
c) $(CH_3)_2 CHC_2 H_5 \xrightarrow{Cu}{\rightarrow}$	d) C=C	
	H_3C CH_3	
730. The neutral ligand is:		
a) Chloro b) Hydroxo	c) Ammine	d) Oxalato
731. The effective atomic number of cobalt in the compl	$ex [Co(NH_3)_6]^{3+}$ is	
a) 36 b) 24	c) 33	d) 30
732. K_4 [Fe(CN) ₆] is used to detect the presence of:		
a) Metallic ion b) Ferrous ion	c) Ferricion	d) None of these
733. p-nitro benzidehyde reacts with concentrated NaU	H solution at room tempera	iture to give:
a) <i>p</i> -nitrobenzamide		
b) <i>p</i> -nitro benzyl alconol and sod. <i>p</i> -nitrobenzoate		
c) Benzaldenyde		
a) p -nitrotoluene		
a) Ping chain isomorism		
a) King chain isomerism		
c) Tautomerism		
d) Functional		
isomerism		
735 The groups satisfying the secondary valencies of a	cation in a complex are call	ed.
a) Ligands b) Radicals	c) Primary valencies	d) None of these
736. Benzene was dicovered by:	ej i i initar y valencies	aj none or these
a) Cavendish b) Faraday	c) Berzelius	d) Wöhler
737. The number of structural and configurational isom	ers of a bromo compound ($L_{\rm H_0}$ Br obatined by the
addition of HBr on 2-pentyne respectively are	I I I I I I I I I I I I I I I I I I I	3 9 101 109 1
a) 1, 2 b) 2, 4	c) 4, 2	d) 2, 1
738. The primary valency of Fe in $K_3[Fe(CN)_6]$ is:	<i>, ,</i>	<i>.</i> .
a) 3 b) 2	c) 1	d) Zero
739. Which complex compound obeys 18-electron rule?	-	-
a) $[V(CO)_5]$ b) $[Fe(NH_3)_6]^{2+}$	c) [Ni(CO) ₆]	d) $[Mn(H_20)_6]^{2+}$

Page | 59

- 740. Two isomers X and Y with the formula $Cr(H_2O)_5 ClBr_2$ were taken for experiment on depression in freezing point. It was found that one mole of X gave depression corresponding to 2 moles of particles and one mole of *Y* gave depression due to 3 moles of particles. The structural formula of *X* and *Y* respectively, are
 - a) $[Cr(H_2O)_5Cl]Br_2; [Cr(H_2O)_4Br_2]Cl. H_2O$
 - c) $[Cr(H_2O)_5Br]BrCl; [Cr(H_2O)_4ClBr]Br.H_2O$
- 741. The IUPAC name of Ö

- a) 1-formyl-3-oxo-pentanoic acid
- c) 3-oxo-5-formyl pentanoic acid
- 742. The two complexes given below are:

b) $[Cr(H_2O)_5Cl]Br_2; [Cr(H_2O)_3ClBr_2].2H_2O]$ d) $[Cr(H_2O)_4Br_2]ClH_2O; [Cr(H_2O)_5Cl]Br_2$

b) 5-formyl-3-oxo pentanoic acid

d) 3-oxo-1-formyl pentanoic acid

- b) Position isomers c) Optical isomers
- d) Identical

a) Geometrical isomers 743. Which of the following statements is not correct?

- a) In oxyhaemoglobin Fe²⁺ is paramagnetic
- b) During respiration the size of Fe^{2+} increases when it changes from diamagnetic to paramagnetic state
- c) Four haeme groups are present in haemoglobin
- d) Haeme is the prosthetic group and it is non-protein part
- 744. Chlorination of toluene in the presence of light and heat followed by treatment with aqueous NaOH gives: a) o-cresol b) *p*-cresol c) 2,4-dihydroxytoluene d) Benzoic acid
- 745. Which of the following has maximum probability of showing tautomerism?

746. The halide which undergoes nucleophilic substitution most readily is:

d) None of the above c) 749. The Baeyer angle strain is minimum in a) Cyclopropane b) Cyclobutane d) Cyclohexane c) Cyclopentane 750. Among the following ions, which one has the highest unpaired electrons? b) $[Zn(H_20)_6]^{2+}$ c) $[Fe(H_20)_6]^{2+}$ a) $[Cr(H_2O)_6]^{3+}$ d) $[Cr(H_2O)_6]^{3+}$ 751. Which will give a white precipitate with AgNO₃ in aqueous solution? a) $[Co(NH_3)_5Cl](NO_2)_2$ b) $[Pt(NH_3)_6]Cl_4$ c) $[Pt(en)Cl_2]$ d) $[Cu(NH_3)_4]SO_4$ 752. The organic product formed in the reaction; $C_6H_5COOCH_3 \xrightarrow{(I)LiAlH_4}{(II)H_2O}$: a) C₆H₅CH₂OH and CH₃OH b) C₆H₅COOH and CH₄ c) C₆H₅CH₃ and CH₃OH d) $C_6H_5CH_3$ and CH_4 753. Complexes with bidentate ligands are called: a) Ligands b) Chelates c) Complexes d) None of these 754. Excited state configuration of Mn²⁺ is b) $t_{2a}^3 e_a^2$ c) $t_{2a}^4 e_a^2$ d) $t_{2a}^5 e_a^0$ a) t_{2g}^4 755. The IUPAC name of CH₃ COOC₂H₅ is a) Ethyl acetylate b) Ethyl methyl butenoate c) Ethyl acetoethanoate d) Ethyl (3-methyl) but-2-enoate 756. The compound which result from the coordination of carbon monoxide are known as c) Carbonyls a) Carbon permono b) Electronic d) None of these 757. The correct IUPAC name of AlCl₃(EtOH)₄ is: a) Aluminium(II) chloride-4-ethanol b) Aluminium(III) chloride-4-ethanol c) Aluminium(IV)chloride-4-hydroxy ethane d) Aluminium chloride-4-ethanol 758. The IUPAC name of $[Co(NH_3)_6][Cr(C_2O_4)_3]$ is a) Hexaamine cobalt (III) tris (oxalato) chromium b) Hexaamine cobalt (III) tris (oxalato) chromate(III) c) Hexaamine cobalt tris (oxalato) chromium(III) d) Hexaamine cobalt (III) chromium (III) oxalate 759. The insecticide, germicide gammexane is a formulation for: a) DDT b) Benzene hexachloride c) Hexachlorobenzene d) Chloral 760. Among $[Ni(CO)_4]^{2-}$, $[Ni(CN)_4]^{2-}$, $[NiCl_4]^{2-}$ species, the hybridisation states of the Ni atom are, respectively (Atomic no. of Ni=28) a) sp^3 , dsp^2 , dsp^2 b) sp^3 , dsp^2 , sp^3 c) sp^3 , sp^3 , dsp^2 d) dsp^2 , sp^3 , sp761. Which of the following complex ions is expected to absorb visible light? a) $[Zn(NH_3)_6]^{2+}$ b) $[Sc(H_2O)_3(NH_3)_3]^{3+}$ c) $[Ti(en)_2(NH_3)_2]^{4+}$ d) $[Cr(NH_3)_6]^{3+}$

H - C - OH | HO - C - H | COOH (ii) HOOC | H - C - OH H - C - OH | HOOC

a) Enantiomers b) Diastereomers c) Measomers d) Position isomers 777. Which of the following has lowest boiling point? c) *m*-nitrophenol a) Phenol b) *o*-nitrophenol d) *p*-nitrophenol 778. The IUPAC name of [Ni(NH₃)₄][NiCl₄] is a) Tetrachloro nickel (II) – tetraammine nickel (II) b) Tetraammine nickel (II) -tetrachloro nickel(II) c) Tetraammine nickel (II) -tetrachloro nickelate(II) d) Tetrachloro nickel (II) -tetraammine nickelate(0) 779. All ligands are: a) Lewis acid b) Lewis base c) Neutral d) None of these 780. Aspirin is known as: a) Phenyl salicylate b) Acetyl salicylate c) Methyl salicylic acid d) Acetyl salicylic acid 781. Which of the following has on optical isomer? b) $[Co(en)(NH_3)_2]^{2+}$ c) $[Co(H_2O)_4(en)]^{3+}$ d) $[Co(en)_2(NH_3)_2]^{3+}$ a) $[Co(NH_3)_3Cl]^+$ 782. The IUPAC name of the compound CH—CCl₃ is a) 1,1,1-trichloro-2,2-diphenyl ethane b) 2,4,5-trichloro hexanol c) 2,2,2-trichloro bicyclo [4.4.0] nenone d) 2,2,2-trichloro-1,1-diphenyl ethane 783. The property by virtue of which a compound can rotate the plane of polarised light is known as a) Polarisability b) Phosphorescence c) Optical activity d) Polarization 784. The molecules represented by the following two structures are $-OH HO - CH_3$ $-H H - C_2H_5$ Br d) Identical a) Epimers b) Diastereomers c) Enantiomers 785. The IUPAC name of the coordination compound K_3 [Fe(CN)₆] is a) Tripotassium hexacyanoiron (II) b) Potassium hexacyanoiron(II) d) Potassium hexacyanoferrate (II) c) Potassium hexacyanoferrate (III) 786. Which one of the following is an inner orbital complex as well as diamagnetic in nature? c) $[Ni(NH_3)_6]^{2+}$ a) $[Cr(NH_3)_6]^{3+}$ b) $[Co(NH_3)_6]^{3+}$ d) $[Zn(NH_3)_6]^{2+}$ 787. How many unpaired electrons are present in the central metal ion of $[CoCl_4]^{2-2}$? a) 3 b) 4 c) 5 d) 2 788. Show the coordination number of the metal ion, its oxidation number, the number of electrons in *d*-

orbitals and the number of ur	paired electrons <i>d</i> -orb	itals respectively in comple	$x [Co(H_2O)_4SO_3]Cl.$
a) 6, 3, 6, 4 b)	6, 3, 6, 0	c) 5, 3, 6, 4	d) 5, 3, 6, 0
789. Benzene reacts withto give	e acetophenone.		
a) Acetyl chloride			
b) Acetyl chloride in presence	e of anhy. AlCl ₃		
c) Anhy. AlCl ₃			
d) None of the above			
790. Which group would you intro	duce into a drug or a dy	ye to make it water soluble	?
a) —NO ₂ b)	—Cl	c) —SO ₃ H	d) —0H
791. In the coordination compound	d, K ₄ [Ni(CN) ₄],oxidatio	on state of nickel is	
a) –1 b)	+1	c) 0	d) +2
792. The IUPAC name of [Cr(NH ₃)]	₄ Cl ₂]NO ₃ is:		
a) Tetraaminodichlorochrom	ium (I) nitrate		
b) Tetraaminodichlorochrom	ium (III) nitrate		
c) Dichlorotetraamminechroi	mium (III) nitrate		
d) Tetraaminodichlorochrom	ium (II) nitrate		
793. Vanillin, used as a flavouring	agent is:		
a) An aliphatic alcohol b)	An aromatic aldehyde	c) A hydrocarbon	d) A carbohydrate
794. Which of the following will ex	hibit optical isomerism	1?	
a) $[Cr(en)(H_2O)_4]^{3+}$ b)	$[Cr(en)_3]^{3+}$	c) trans-[Cr(en) ₂ Cl ₂] ⁺	d) $[Cr(NH_3)_6]^{3+}$
795. Which one is a mixed ketone?			
a) Benzophenone b)	Benzenone	c) Acetophenone	d) Dibenzyl ketone
796. Transition metals can form co	omplexes in:	y 1	, , , , , , , , , , , , , , , , , , ,
a) Zero oxidation state b)	Cation form	c) Anion form	d) All of these
797. Toluene on oxidation with air	\cdot in presence of V ₂ O ₅ vie	elds:	,
a) Phenol b)	Benzoic acid	c) Benzaldehyde	d) Benzyl alcohol
798. $[Pt((NH_3)_4]Cl_2$ is		-	
a) Pvramidal b)	Pentagonal	c) Tetrahedral	d) Square planar
799. In Fe(CO) _{ε} , the FE—C bond p	OSSESS:	-)	
a) π -character only			
b) Both σ and π -characters			
c) Ionic character			
d) σ -character only			
800. Which molecule has tetrahed	ral geometry?		
a) $[C_0(NH_a)_c]^{3+}$ b)	$[Ni(CN)_{l}]^{2+}$	c) $Fe(CO)_{r}$	d) $[NiC]_{2}^{2-}$
$801 [Co(NH_2)_FBr]SO_4 and [Co(NH_2)_FBr]SO$	I_{2} , SO_{4}]Br are the example	nnles of:	
a) Linkage isomerism	1375004]D1 are ene ena	iipico oli	
b) Geometrical isomerism			
c) Ionization isomerism			
d) Ontical isomerism			
$R_{\rm NO}$ and $R_{\rm NO}$ and $R_{\rm NO}$ and	R = 0N0 are		
a) Geometrical isomers	in ono are	h) Functional isomers	
c) Metamors		d) Ontical isomers	
803 Which of the following Fische	r projection formula is	same as D-glyceraldehyde	,
CH_OH			СНО
a) OH CHO b)	НОН	c) OHCH ₂ OH	d) HCH ₂ OH
Ĥ	ĊНО	Ĥ	ÓН
904 (E) (NO.) (C) 1 (E) (C			
U_2 [Fe(NU ₂) ₃ Cl ₃ and [Fe(U – N	$J_3 U_3$] shows		
a) Linkage isomerism		b) Geometrical isomerism	

a) Cl ₂	2, hv	b) SO ₂ Cl ₂	c) SOCl ₂	d) Cl ₂ , H ₂ O				
816. Whic	816. Which of the following ions forms most stable complex compound?							
a) Fe	3+	b) Mn ²⁺	c) Ni ²⁺	d) Cu ²⁺				
817. Whic	7. Which one of the following cyano complexes would exhibit the lowest value of paramagnetic behaviour?							
(Ator	nic no. Cr=24, Mn=2	25, Fe=26, Co=27)						
a) [C	$(CN)_{6}]^{3-}$	b) [Fe(CN) ₆] ^{3–}	c) $[Mn(CN)_6]^{3-}$	d) $[Cr(CN)_6]^{3-}$				
818. Whic	h of the following sta	atements is not correct?						
a) Th	a) The complexes $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ differ in the state of hybridisation of nickel.							
b) Th	b) The complexes $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ differ in the magnetic properties.							
c) Th	e complexes [NiCl ₄]	²⁻ and [Ni(CN) ₄] ²⁻ differ in	n geometry.					
d) Th	e complexes [NiCl ₄]	^{2–} and $[Ni(CN)_4]^{2-}$ differ in	n primary valencies of nicke	el.				
819. In the	e complexes [Fe(H ₂ C	$(0)_6]^{3+}, [Fe(CN)_6]^{3-}, [Fe(C_2(CN)_6)^{3-}) = (C_2(CN)_6)^{3-}, [Fe(C_2(CN)_6)^{3-}) = (C_2(CN)_6)^{3-}, [Fe(CN)_6)^{3-}, [Fe(CN)_6)^$	$(D_4)_3]^{3-}$ and $[FeCl_6]^{3-}$, more	e stability is shown by:				
a) [Fe	$(H_2 0)_6]^{3+}$	b) [Fe(CN) ₆] ^{3–}	c) $[Fe(C_2O_4)_3]^{3-1}$	d) [FeCl ₆] ^{3–}				
820. In the	e reaction,							
		CONH2						
C_8H_6	$_{5}O_{4} \xrightarrow{\Delta} X \xrightarrow{\mathrm{NH}_{3}} \bigcirc$)						
		СООН						
the ir	itermediate 'X' is:							
a) Ph	thalic anhydride	b) Phthalic acid	c) <i>o</i> -xylene	d) Benzoic acid				
821. Whic	h of the following is	π complex?						
a) Tr	imethyl aluminium	b) Ferrocene	c) Diethyl zinc	d) Nickel carbonyl				
822. When	ו phenol is reacted א	vith chloroform and an alka	li like NaOH, the compound	l formed is salicyladehyde				
If we	use pyrene in place	of chloroform the product of	obtained is:					
a) Sa	licyladehyde	b) Phenolphthalein	c) Salicylic acid	d) Cyclohexanol				
823. Amoi	ng the properties (a)	reducing (b) oxidizing (c)	complexing, the set of prop	perties shown by CN ⁻ ion				
towa	rds metal species is							
a) B,	с	b) A, b, c	c) C, a	d) A, b				
824. Whic	h of the following is	most powerful meta direct	ing group?					
a) —	NO ₂	b) —SO ₃ H	c) —CHO	d) —COOH				
825. Whic	h among the following	ng compounds will show m	etamerism?					
a) CH	I ₃ COC ₃ H ₇	b) CH ₃ OC ₂ H ₅	c) CH ₃ SC ₂ H ₅	d) CH ₃ OCH ₃				
826. The h	ybridization of [PtC	$l_6]^{2-}$ ion is:						
a) <i>d</i> ²	sp ³	b) sp^2d^3	c) <i>sp</i> ³ <i>d</i>	d) sp^3d^2				
827. The c	correct name of [Pt(N	$\rm NH_3)_4 Cl_2][PtCl_4]$ is						
a) Te	trachloro platinum ((II) dichloro tetrammine pla	atinate					
b) Di	chloro tetremmine p	olatinum (IV) tetrachloro pl	atinate(II)					
c) Te	trammine dichloro p	olatinum (IV) tetrachloro p	latinate (II)					
d) Tetrachloro platinum (II) tetrammine platinate (IV)								
828. The c	xidation state of iro	n in K ₄ [Fe(CN) ₆]is						
a) 1		b) 4	c) 3	d) 2				
829. Form	ation of complex con	mpound can be detected by						
a) Ch	ange in colour	b) Change in solubility	c) Change in pH	d) All are correct				
830. The c	330. The complex that violates the EAN:							
a) Potassium ferrocyanide								
b) Potassium ferricyanide								
c) Ni	ckel carbonyl							
d) Cobalt(III) hexaammine chloride								
831. Chlorobenzene on heating with aqueous NH_3 under pressure in presence of Cu_2Cl_2 gives:								
a) An	iline	b) Benzamide	c) o-dichlorobenzene	d) Chloroaminobenzene				

832. The complex, [Pt(Py)(NH₃)BrCl] will have how many geometrical isomers?

a) 2 b) 3 c) 4 d) 0 833. Which one doesn't have π –bond? a) Grignard reagent b) Dibenzene chromium c) Zeise's salt d) Ferrocene 834. The IUPAC name of the compound $CH_2 - CH - COOH$ is NH₂ OH a) 1-hydroxy-2-aminopropanoic acid b) 2-hydroxy-3-aminopropanoic acid c) 3-amino-2-hydroxypropanoic acid d) 2-hydroxy-1-aminopropanoic acid 835. EDTA is a....ligand. a) Monodentate b) Hexadentate c) Bidentate d) Tridentate 836. Thymol, a phenol derivative is mainly used as: a) Germicide b) Insecticide c) Antibiotic d) Fragrance compound and antiseptic 837. Which of the following complex has zero magnetic moment (spin only)? a) $[Ni(NH_3)_6]Cl_2$ b) $Na_3[FeF_6]$ c) $[Cr(H_2O)_6]SO_4$ d) $K_4[Fe(CN)_6]$ 838. Which compound is zero valent metal complex? a) $[Ni(CO)_4]$ b) $K_3[Fe(CN)_6]$ c) $[Pt(NH_3)_2Cl_2]$ d) $[Cu(NH_3)_4SO_4]$ 839. The IUPAC name of b) Biphenyl a) Bicyclo [5.5.0] nonane c) Cyclopropyl cyclohexane d) Spiro [3.5] nonane 840. The tetrahedral crystal field splitting is only.....of the octahedral splitting. a) 1/9 b) 2/9 c) 4/9 d) 5/9 841. IUPAC name of $[Co(ONO)(NH_3)_5]Cl_2$ is a) Pentammine nitrocobalt (II) chloride b) Pentammine nitrosocobalt (III) chloride d) Pentammine oxo-nitrocobalt (III) chloride c) Pentammine nitritocobalt (III) chloride 842. Point out the central ion ligand in the complex $K_2[Cd(CN)_4]$; a) Cd⁺, CN¹⁻ b) Cd²⁺, CN¹⁻ c) Cd^{2+} , CN^{4-} d) Cd^{2+} , CN^{2-} 843. Number of chiral centres in $H_3C CH_3$ is/are a) 1 b) 2 c) 3 d) 4 844. From the equation, $3C_2H_2 \rightarrow C_6H_6$, find the volume of acetylene (NTP) for the manufacture of 3 mole of benzene: b) 134.4 litre c) 201.6 litre d) 33.8 litre a) 67.2 litre 845. According to IUPAC nomenclature sodium nitroprusside is named as b) Sodium pentacyanonitrosyl ferrate(III) a) Sodium pentacyanonitrosyl ferrate(II) c) Sodium nitroferricyanide d) Sodium nitroferrocyanide

846. Among $[Ni(CO)_4]$, $[Ni(CN)_4]^{2-}$ and $[NiCl_4]^{2-}$ species	the hybridisation states of	Ni atom are respectively:							
a) sp^3 , dsp^2 , dsp^2 b) sp^3 , dsp^2 , sp^3	c) sp ³ , sp ³ , dsp ²	d) dsp^2 , sp^3 , sp^3							
847. The chemical name of DDT is:									
a) Dichloro dinitro toluene	a) Dichloro dinitro toluene								
b) Dichloro dimethyl toluene	b) Dichloro dimethyl toluene								
c) p, p' -dichloro diphenyl trichloroethane	c) p, p' -dichloro diphenyl trichloroethane								
d) None of the above									
848. The stability of complexes of Cu^{2+} , Ni^{2+} , Co^{2+} and F	348. The stability of complexes of Cu^{2+} , Ni^{2+} , Co^{2+} and Fe^{2+} varies in the order								
a) $Cu^{2+} > Ni^{2+} > Co^{2+} > Fe^{2+}$	b) $Cu^{2+} > Fe^{2+} > Ni^{2+} >$	> Co ²⁺							
c) $Ni^{2+} > Co^{2+} > Fe^{2+} > Cu^{2+}$	d) $Cu^{2+} < Ni^{2+} < Co^{2+} < Fe^{2+}$								
849. The number of unpaired electrons in $Ni(CO)_4$ is									
a) 0 b) 1	c) 3	d) 4							
850. In sodium tetrafluorooxochromate(), Na ₃ [Cr(0)F.	4] the left out place should l	be filled with which of the							
following roman numerals?									
a) VI b) III	c) IV	d) None of these							
851. The IUPAC name of compound									
$CN - CH_2 - CH - CH_2 - COOCH_3$ is									
OCH ₃									
a) 3-methoxy-4-cyano methyl butanoate	b) Methyl-4-cyano-3-meth	noxy butanoate							
c) 4-cyano-3-methoxy methyl butanoate	d) Methyl-3-methoxy-4-cy	yano butanoate							
852. Cumene is:									
a) <i>o</i> -methyl phenol b) <i>p</i> -cresol	c) Isopropyl benzene	d) Phenyl <i>n-</i> propane							
853. In Etard's reaction toluene is oxidised to benzaldehy	de using:								
a) H_2O_2									
b) Cl ₂									
c) Chromium trioxide or CrO ₂ Cl ₂									
d) KMnO ₄									
854. Which of the following will exhibit geometrical isom	erism?								
a) Propene	b) Butene-2								
c) Butene-1	d) 1, 1-dichloro butane								
855. Ferrocene is:									
a) $Fe(\eta^5 - C_5H_5)_2$ b) $Fe(\eta^2 - C_5H_5)_2$	c) $Cr(\eta^5 - C_5H_5)_5$	d) $Os(\eta^5 - C_5H_5)_2$							
856. Which one is an outer orbital complex?									
a) $[Ni(NH_3)_6]^{2+}$ b) $[Mn(CN)_6]^{4-}$	c) [Co(NH ₃) ₆] ³⁺	d) [Fe(CN) ₆] ^{4–}							
857. The pair of $[Co(SO_4)(NH_3)_5]Cl$ and $[CoCl(NH_3)_5]SO_4$	4 constitutes								
a) Optical isomers b) Linkage isomers	c) Coordination isomers	d) Ionisation isomers							
858. The IUPAC name of $K_2[Cr(CN)_2O_2(O)_2(NH_3)]$ is									
a) Potassiumammine dicyanodioxoperoxochromate (VI)									
b) Potassiumammine cyanoperoxodioxochrometic (IV)									
c) Potassiumammine dicyanodioxoperoxochromium	c) Potassiumammine dicyanodioxoperoxochromium (IV)								
d) Potassiumammine dicyanodioxoperoxochromium (IV)									
859. In spectrochemical series chlorine is above than wat	ter <i>i.e.</i> , $Cl > H_2O$, this is due	e to							
a) Good π-acceptor properties of Cl									
b) Strong σ –donor and good π -acceptor properties of Cl									
c) Good π –donor properties of Cl	c) Good π –donor properties of Cl								
d) Larger size of Cl than H ₂ O									
860. The type of isomerism shown by $[Co(en)_2(NCS)_2]Cl$ and $[Co(en)_2(NCS)Cl]NCS$ is:									
a) Coordination b) Ionization	c) Linkage	d) All of these							
861. Which ion shows only the coordination number 4 in	complexes?								

b) Cr³⁺ a) Pt^{2+} c) Fe³⁺ d) Pt⁴⁺ 862. The spin magnetic moment of cobalt in $Hg[Co(SCN)_4]$ is : b) √8 d) $\sqrt{24}$ a) √<u>3</u> c) $\sqrt{15}$ 863. Which of the following is not an isomer of but-1-yne? a) But-2-yne b) Buta-1-3-diene c) Methyl cyclopropene d) But-2-ene 864. How many unpaired electrons are present in the central metal ion of $[CoCl_4]^{2-2}$? a) 2 b) 3 c) 4 d) 5 865. The brown ring complex compound is formulated as $[Fe(H_2O)_5NO]SO_4$. The oxidation state of Fe is: b) +2 c) +3 d) Zero a) +1 866. Correct IUPAC name of -Cl CCl₃-CH< is a) Gammexane b) Dichloro diphenyl trichloroethane c) Diparachlorophenyl trichloroethane d) 1,1,1-tirchloro-2,2-bis (4-chlorophenyl) ethane 867. IUPAC name of is a) Cumene b) 2-phenyl propane c) Phenyl propane d) 1-(2-propyl) benzene 868. Which of the following gives violet colour with an alcoholic solution of FeCl₃? a) Benzoic acid b) Toluene c) Salicylic acid d) Nitrobenzene 869. Which of the following is wrong statements? a) Ni(CO)₄, has zero oxidation number for Ni b) Ni(CO)₄, has oxidation number +4 for Ni c) Ni is metal d) CO is gas 870. Which of the following represents a chelating ligand? c) OHa) H_2O b) Cld) DMG 871. The correct order of reactivity of PhMgBr with; Ο Ph $-\ddot{C}$ -Ph CH₃ $-\ddot{C}$ -H CH₃ $-\ddot{C}$ -CH₃ is: (II)(III) dΠD a) I > II > IIIb) III > I > IIc) II > III > Id) II > I > III872. Which of the following will give maximum number of isomers? b) $[Ni(en)(NH_3)_4]^{2+}$ a) $[Co(NH_3)_4Cl_2]$ c) $[Ni(C_2O_4)(en)_2]$ d) $[Cr(SCN)_2(NH_3)_4]^+$ 873. CuCl reacts with KCN solution forming a complex. Coordination number of copper in the complex is: b) 3 a) 2 c) 4 d) 6 874. The terms stereoisomers, enantionmers and diastereomers will refer a) Only to configurational isomers including geometric isomers b) Only to configurational isomers c) To both configurational as well as conformational isomers d) To neither configuration nor conformational isomers

875. Aniline was acetylated. The product on nitration followed by alkaline hydrolysis gave:

a) *o*-nitroacetanilide b) *o*-and *p*-nitroaniline c) *m*-nitroaniline d) Acetanilide 876. The IUPAC name of the compound $[CuCl_2(CH_3NH_2)_2]$ is

a) Dichloro bis (dimethyl amine) copper(II)

b) Dichloro bis (methyl amine) copper(II)

c) Dimethyl amine copper (II) chloride d) Bis (dimethyl amine) copper (II) chloride 877. Which is the structure of compound 2-(1-cyclobutenyl)-1-hexene?

b) a) d) c) 878. On explosion TNT gives: a) $CO + N_2 + H_2 + CH_4 + CO_2$ b) $CO + N_2 + H_2$ c) $CO_2 + N_2 + H_2O$ d) $CO + N_2 + H_2O$ 879. Hexafluoroferrate(III) ion is an outer orbital complex. The number of unpaired electrons present in it is: b) 5 c) 4 d) Unpredictable a) 1 880. The EAN of Fe in K_3 [Fe(CN)₆] is: a) 36 b) 37 c) 38 d) 35 881. The IUPAC name of the compound .OH CH_{3 is} a) 4-methyl cyclopent-1-en-3-ol b) 5-methyl cyclopent-2-en-1-ol c) 2-methyl cyclopent-4-en-1-ol d) 3-methyl cyclopent-1-en-2-ol 882. Which one amongst the following, exhibit geometrical isomerism? a) $[Co^{III}(NH_3)_5Br]SO_4$ b) $Co^{III}[EDTA]^{1-}$ c) $[Cr^{III}(SCN)_{6}]^{3-}$ d) $[Pt^{II}(NH_3)_2Cl_2]$ 883. Chiral molecules are those which are a) Superimposable on their mirror images b) Non-superimposable on their mirror images c) Unstable molecules d) Capable of showing geometrical isomerism 884. At room temperature the eclipsed and the staggered forms of ethane cannot be isolated because a) Both the conformers are equally stable b) They interconvent rapidly There is a large energy barrier of rotation about d) The energy difference between the c) the σ -bond conformers is large 885. A group of atoms can function as a ligand only when a) It is a small molecule b) It has an unshared electron pair c) It is a negatively charged ion d) It is a positively charged ion 886. The IUPAC name of $Ni(CO)_4$ is: a) Tetracarbonyl nickelate(0) b) Tetracarbonyl nickelate(II) c) Tetracarbonyl nickel(0) d) Tetracarbonyl nickel(II) 887. 2-methyl phenol is: b) Catechol d) *m*-cresol a) o-cresol c) *p*-cresol 888. $NH_2 \cdot NH_2$ serves as:

	a) Monodentate ligand	b) Chelating ligand	c)	Bridging ligand	d) Both (a) and (c)			
889.	For blasting purpose TNT	is mixed with:						
	a) NH ₄ Cl	b) NH_4NO_3	c)	NH ₄ NO ₂	d) $(NH_4)_2SO_4$			
890.	During the debromination	of <i>meso</i> -dibromobutane,	the	major compound forme	ed will be			
	a) <i>cis</i> -2-butene	b) 1-butene	c)	<i>n</i> -butane	d) <i>trans</i> -2-butene			
891.	891. The IUPAC name of $K_2[Cr(CN)_2O_2(O)_2(NH_3)]$ is							
	a) Potassium ammine dicy (VI)	/ano dioxoperoxochromat	e b)	Potassium ammine cya peroxodioxochromium	no (VI)			
	c) Potassium ammine cya	no	d]	l) Potassium ammine cyano peroxodioxochromatic				
	peroxodioxochromium	(V)		(IV)				
892.	Benzene on reaction with	a mixture of HNO ₃ and H ₂	SO2	followed by reaction of	$Cl_2/FeCl_3$ gives:			
	a) 3-chloro-1-nitrobenzer	ie						
	b) 2-chloro-1-nitrobenzer	ie						
	c) 4-chloro-1-nitrobenzer	ie						
	d) A mixture of 2-chloro and 4-chloro-1-nitrobenzene							
893. The number of isomeric forms in which $[Co(NH_3)_4Cl_2]^+$ ion can occur is:								
	a) 2	b) 3	c)	4	d) 1			
894.	Nitration of benzene is:	-	-		-			
	a) Nucleophilic substitution	on						
	b) Electrophilic substitution	on						
	c) Electrophilic addition							
	d) Nucleophilic addition							
895.	Reimer-Tiemann reaction	involves a:						
	a) Carbonium ion interme	diate						
	b) Carbene intermediate							
	c) Carbanion intermediate	9						
	d) Free radical intermedia	ite						
896.	Which does not have a car	boxyl group?						
	a) Picric acid	b) Ethanoic acid	c)	Aspirin	d) Benzoic acid			
897.	In Cannizaro's reaction give	ven below:						
	2PhCHO <u>:ÖH</u> →PhCH ₂ OH	+Ph $\dot{\text{CO}}_{2}^{\circ}$						
	the slowest step is:							
	a) The transfer of hydride to the carbonyl group							
	b) The abstraction of proton from the carboxylic group							
	c) The deprotonation of PhCH ₂ OH							
	d) The attack of $: \overset{\circ}{O}H$ at the c	carboxyl group						
898.	The oxidation state of Ag i	n Tollens' reagent is:						
	a) Zero	b) +1	c)	+2	d) +1.5			
899.	Hybridization of Fe in $[K_3$	Fe(CN) ₆] is						
	a) <i>sp</i> ³	b) $d^{2}sp^{3}$	c)	sp^3d^2	d) <i>dsp</i> ³			
900.	900. Which of the following is not isomeric with diethyl ether?							
	a) Methyl <i>n</i> -propyl ether		b)	Butan-1-ol				
c) 2-methyl propan-2-ol			d)	d) Butan-2-one				
901.	In the given conformation conformation obtained is	C_2 is rotated about $C_2 - C_2$	2 ₃ b	ond anticlockwise by an	angle of 120° then the			

ĊH₃ C_1 a) Fully eclipsed conformation b) Partially eclipsed conformation c) Gauche conformation d) Staggered conformation 902. Crystal field stabilization energy for high spin d^4 octahedral complex is: b) $-1.6 \Delta_0 + P$ c) $-1.2 \Delta_0$ d) $-0.6 \Delta_0$ a) $-1.8 \Delta_0$ 903. Which kind of isomerism is exhibited by octahedral $[Co(NH_3)_4Br_2]Cl?$ a) Geometrical and ionisation b) Geometrical and optical c) Optical and ionisation d) Geometrical only 904. The IUPAC name of the following compound is >CH—CH₂—CH₂—CH—CH—COOH a) 5-cyclopropyl pent-2-en-1-oic acid b) 6-cyclopropyl pent-2-en-1-oic acid c) 5-cyclopropyl pent-1-en carboxylic acid d) 6-cyclopropyl pent-1-en carboxylic acid 905. Which of the following compounds will show a negative test with phenyl hydrazine? a) Glucose b) Ethyl alcohol c) A cetaldehyde d) Benzophenone 906. Friedel-Craft's reaction is not possible in: a) C_6H_5OH b) $C_6H_5C_2H_5$ c) $C_6H_5NO_2$ d) $C_6H_5CH_3$ 907. The geometry of Ni(CO)₄ and Ni(PPh₃)₂Cl₂ are a) Both square planar b) Tetrahedral and square planar respectively d) Square planar and tetrahedral respectively c) Both tetrahedral 908. The number of isomers possible for square planar complex K₂[PdClBr₂SCN] is: a) 2 b) 3 c) 4 d) 6 909. The correct order for the wavelength of absorption in the visible region is a) $[Ni(NO_2)_6]^{4-} < [Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+}$ b) $[Ni(NH_3)_6]^{2+} < [Ni(H_20)_6]^{2+} < [Ni(N0_2)_6]^{4-}$ c) $[Ni(H_2O_6)^{2+} < [Ni(NH_3)_6]^{2+} < [Ni(NO_2)_6]^{4-}$ d) $[Ni(NO_2)_6]^{4-} < [Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+}$ 910. The IUPAC name of CCl₃CH₂CHO is a) Chloral b) 1,1,1-trichloropropanol c) 2,2,2-trichloropropanol d) 3,3,3-trichloropropanol 911. The coordination number of Cu in $[Cu(H_2O)_4]^{2+}$ complex is a) 2 b) 1 c) 3 d) 4 912. Among the following, the correct statement is a) Prefixes are written before the name of compound b) Suffixes are written after the name of compound c) The IUPAC name is always written as a single word d) All of the above 913. In which of the following *p*-electrons of the halogens are not involved in delocalisation? c) Allyl chloride a) Chlorobenzene b) Bromobenzene d) Vinyl chloride 914. Which of the following does not have optical isomer? a) $[Co(en)(NH_3)_2Cl_2]Cl$ b) $[Co(en)_2Cl_2]Cl$ c) $[Co(NH_3)_3Cl]$ d) $[Co(en)_3]Cl_3$ 915. Ethylene diamine is an example of a) Monodentate ligand b) Bidentate ligand c) Tridentate ligand d) Polydentate ligand 916. In chlorobenzene, the —Cl group:
- a) Activates the benzene ring more via resonance effect than deactivating it via inductive effect
- b) Deactivates the benzene ring more via inductive effect than activating it via resonance effect
- c) Activates the benzene ring via resonance effect and deactivates it via inductive effect. Both these effects are more evenly matched
- d) None of the above
- 917. The *R*-isomer among the following are

$$\begin{array}{c} \begin{array}{c} \mathsf{CHO} & \mathsf{H} \\ \mathsf{H} \underbrace{\mathsf{CHO}}_{\mathsf{CH}_2\mathsf{OH}} & \mathsf{OH} \\ (i) \end{array} \\ \mathsf{H} \underbrace{\mathsf{CHO}}_{\mathsf{CH}_2\mathsf{OH}} & \mathsf{H}_3 \underbrace{\mathsf{COH}}_{\mathsf{H}_3\mathsf{H}_2} \\ (ii) \end{array} \\ \mathsf{H} \underbrace{\mathsf{CHO}}_{\mathsf{CH}_2\mathsf{CH}_3} & \mathsf{COOH} \\ \mathsf{H} \underbrace{\mathsf{CHO}}_{\mathsf{H}_3\mathsf{H}_2} & \mathsf{COOH} \\ \mathsf{H} \underbrace{\mathsf{CHO}}_{\mathsf{H}_3} & \mathsf{COOH} \\ \mathsf{C}_{\mathsf{H}_3} \mathsf{CHO} + \mathsf{CH}_3 \mathsf{CHO} \\ \mathsf{C}_{\mathsf{H}_3} \mathsf{CHO} \\ \mathsf{C}_{\mathsf{H}_3} \mathsf{CHO} + \mathsf{CH}_3 \mathsf{CHO} \\ \mathsf{C}_{\mathsf{H}_3} \mathsf{CHO} \\ \mathsf{C}_{\mathsf{H}_3} \mathsf{CHO} + \mathsf{CH}_3 \mathsf{CHO} \\ \mathsf{C}_{\mathsf{H}_3} \mathsf{CHO} \\ \mathsf{C}_{\mathsf{H}_3} \mathsf{CHO} \\ \mathsf{C}_{\mathsf{H}_3} \mathsf{CHO} + \mathsf{CH}_3 \mathsf{CHO} \\ \mathsf{C}_{\mathsf{H}_3} \mathsf{CHO} \\ \mathsf{CH}_3 \mathsf{CHO} \\ \mathsf{C}_{\mathsf{H}_3} \mathsf{CHO} \\ \mathsf{CH}_3 \mathsf{CHO} \\ \mathsf{C}_{\mathsf{H}_3} \mathsf{CHO} \\ \mathsf{C}_{\mathsf{H}_3} \mathsf{CH} \\ \mathsf{CH} \\ \mathsf{CHO} \\ \mathsf{CH}_3 \mathsf{CHO} \\ \mathsf{CH}_3 \mathsf{CHO} \\ \mathsf{C}_{\mathsf{H}_3} \mathsf{CHO} \\ \mathsf{CH}_3 \mathsf{CH} \\ \mathsf{CH}_3 \mathsf{CHO} \\ \mathsf{C}_{\mathsf{H}_3} \mathsf{CH} \\ \mathsf{CH}_3 \mathsf{CHO} \\ \mathsf{CH}_3 \mathsf{CH} \\ \mathsf{CH}_3 \\ \mathsf{CH}_3$$

a) Benzyl	l chloride	b) Benzal chloride	c) Benzoyl chloride	d) Chlorobenzene								
935. Phenol Is	: weaker than N	H.										
a) A base	b) An acid stronger than carbonic acid											
c) An aci	c) An acid weaker than carbonic acid											
d) Neutra	d) Neutral											
936. Which on	36. Which one is example of octahedral complex?											
a) Cu(NH	a) Cu(NH ₂) ²⁺ b) FeF ³⁻ c) Zn(NH ₂) ²⁺											
937. Which on	ie of the followi	ng statement is correct?	-) (),4									
a) Ferric	ions give a deep	o green precipitate on ad	ding potassium ferrocyanid	e solution.								
b) On boi	ling a solution h	naving K ⁺ , Ca ²⁺ and HCO	$\frac{1}{3}$ ions, we get a precipitate	of $K_2Ca(CO_3)_2$								
c) Manga	anese salt give a	a violet vortex test in red	ucing flame									
d) From a	a mixed precipit	tate of AgCl and AgI, amn	nonia solution dissolves onl	y AgCl								
938. Which of	the following fr	actions obtained in fract	tional distillation of coal-tar	contains benzene and								
toluene?												
a) Light o	bil											
b) Heavy	oil											
c) Middle	e oil											
d) Green	oil	1 1	1									
939. The tetra	inedral complex	tes have coordination nu	mber	0 (٢								
$a_{J,3}$	' hand langth in	D = D = D	CJ 4 Chond longth in allegnes	u) 8								
2) Less	, boliu leligui ili	b) More	c) Faual	d) None of these								
941. Which ar	e generally used	d for preparing derivativ	e of aldehydes and ketones?)								
a) Hvdro	xvlamine hvdro	chloride										
b) 2,4-dir	nitrophenylhydi	razine										
c) Pheny	lhydrazinehydr	ochloride										
d) All of t	he above											
942. In the rea	action,											
Phenol Zn	$(A) \xrightarrow{\text{Conc. H}_2\text{SO}_4} (A) \xrightarrow{\text{Conc. H}_2\text{SO}_4} (A)$	\rightarrow (B)										
Distina		Zn Zn										
		$(C) \leftarrow \text{NaOH}(aq.)$										
The comp	pounds (A) , (B)	and (<i>C</i>) are the followin	g:									
a) Benze	ne, nitrobenzen	e and aniline										
b) Benzei	ne, dinitrobenze	ene and <i>m</i> -nitroaniline										
c) Ioluer	ie, <i>m</i> -nitrobenz	ene and <i>m</i> -toluidine										
0.42 En is an c	ne, incrobenzen	e and nyurazobenzene										
a) Monoc	dentate ligand	h) Bidentate ligand	c) Tridentate ligand	d) Hevadentate ligand								
944 The main	or product obtai	ned when Br ₂ /Fe is treat	ted with	uj nezadentate nganu								
Н	N O											
H ₃ C	CH ₃											
ĬC) () is:											
\langle												
al H ₃ C		3										
ر ب ر	lojoj											

Ó

Br⁄

945. Phenol on treatment with dil. HNO_3 at room temperature gives:

d) All of the above 951. Write the IUPAC name of the compound

a) 5, 6-dimethyl bicyclo [2,2,1] heptane

- b) 2, 3-dimethyl bicyclo [2,2,1] heptane
- c) 2, 3-dimethyl bicyclo [1,2,2] heptane d) 3, 4-dimethyl bicyclo [2,1,2] heptane
- 952. Choose the correct statement from the ones given below for two anilium in:

NH₂ NH_3

a) II is not an acceptable canonical structure because carbonium ions are less stable than ammonium ions

- b) II is not an acceptable canonical structure because it is non-aromatic
- c) II is not an acceptable canonical structure because the nitrogen has 10 valence electrons
- d) II is an acceptable canonical structure
- 953. Which of the following statements is/are incorrect?
 - a) Metamerism belongs to the category of structural isomerism
 - b) Tautomeric structures are the resonating structures of a molecule
 - c) The violet colouration produce by a molecule with neutral ferric chloride solution indicates the presence of enolic group in the molecule
 - d) Geometrical isomerism is not shown by alkenes
- 954. Gives are (i) cyclohexanol; (ii) acetic acid; (iii) 2, 4, 6-trinitrophenol; and (iv) phenol. In these the order of decreasing acidic character will be:
- a) (iii)>(ii)>(iv)>(i) b) (ii)>(iii)>(i)>(iv) 955. Phenol and benzoic acid can be distinguished by: a) Aqueous NaHCO₃ b) Aqueous NaNO₃
- c) (ii)>(iii)>(iv)>(i) d) (iii)>(iv)>(ii)>(i)
 - c) Aqueous NaOH d) Conc. H_2SO_4
- 956. The functional groups OH, –COOH, –CHO, –OCH₃ attached to a chiral carbon is in the preference order a) $OH > COOH > CHO > OCH_3$ b) $OCH_3 > OH > CHO > COOH$
 - c) $OCH_3 > OH > COOH > CHO$
- d) OCH₃ > *COOH* > *CHO* > *OH*

957. The hypothetical complex chloro diaquatriammine cobalt(II) chloride can be represented as:

a) $[CoCl(NH_3)_3(H_2O)_2]Cl_2b) [Co(NH_3)_3(H_2O)Cl_3]$ c) $[C_0(NH_3)_3(H_2O)_2Cl]$ d) $[C_0(NH_3)_3(H_2O)_3]Cl_3$ 958. Which is expected to be paramagnetic?

a)
$$[Ni(H_2O)_6]^{2+}$$
 b) $[Ni(CO_4)]$ c) $[Zn(NH_3)_4]^{2+}$ d) $[Co(NH_3)_6]^{3+}$

959. The molecular formula of diphenyl methane

$$\bigcirc$$
 CH₂ \bigcirc is C₁₃H₁₂

- How many structural isomers are possible when one of the hydrogen is replaced by a chlorine atom? a) 8 b) 7 d) 4 c) 6 960. Among the properties (*A*)reducing, (*B*) oxidising (*C*) complexing , the set of properties shown by CN⁻ion towards metal species is
- d) *A, B, C* c) *C, A* a) *A, B* b) *B, C* 961. the double bonds are In

a) cis, cis c) trans, cis

- b) cis, trans d) trans, trans

962. The reaction of toluene with Cl_2 in presence of FeCl ₃	gives 'X' and the reaction i	n presence of light gives			
Y'.Thus, X' and Y' are:					
a) X = benzal chloride; $Y = o$ -chlorotoluene					
b) $X = m$ -chlorotoluene; $Y = p$ -chlorotoluene					
c) $X = o$ -and p -chlorotouene; Y =trichloro methyl be	enzene				
d) $X =$ benzal chloride; $Y = m$ -chlorotoluene					
963. Among the following four compounds:					
a) Phenol b) Methyl phenol	c) <i>meta-</i> nitrophenol	d) para-nitrophenol			
964. Which gives phthalic anhydride on reaction with hot	, conc. H ₂ SO ₄ in presence o	of Hg?			
a) Naphthalene b) Phenol	c) <i>p</i> -xylene	d) <i>m</i> -xylene			
965. Cis-trans-isomerism is found in square planar compl	exes of the molecular form	ula: (<i>a</i> and <i>b</i> are			
monodentate ligands)					
a) Ma_4 b) Ma_3b	c) Ma_2b_2	d) Mab ₃			
966. Which ion produces a small crystal field splitting (a v	weak ligand field)?				
a) I ⁻ b) Cl ⁻	c) F ⁻	d) All of these			
967. Benzene undergoes substitution reaction more easily	y than addition because:				
a) It has a cyclic structure	-				
b) It has three double bonds					
c) It has six hydrogen atoms					
d) Of resonance					
968 Isomers have essentially identical					
a) Structural formula	h) Chemical properties				
c) Physical properties	d) Molecular formula				
969 Which of the following pair is not correctly matched	7				
a) Absorption peak for $[Cr^{III}(NH)]^{3+} = 21680$ cm ⁻	-1				
a) Absolution peak for [CI $(NII_3)_6$] = 21000 CII b) Effective etemic no. of Dt in [DtCl $12^ 94$					
b) Effective atomic no. of Pt in [Pt G ₆] = 64	and field $-()00$				
c) Crystal field stabilization energy of a^{-1} in weak light	and held = $(-)0.8 \Delta_0$				
d) Example of weak ligand field for a° configuration :	$= [Mn^{11}F_6]^{11}$				
9/0. Aspirin (or acetyl salicylic acid) is obtained by action	$1 \text{ of } CH_3 COCI \text{ with:}$	12 4 11			
a) Salicylic acid b) Phenol	c) Benzaldehyde	d) Aniline			
971. CuCl dissolves in ammonia forming a complex. The c	oordination number of cop	per in the complex is:			
a) 1 b) 2	c) 4	d) 6			
972. IUPAC name of the following cycloalkane is					
СНо					
a) 8-methyl bicyclo [4,3,0] nonane	b) 1-methyl bicyclo [4,3,0]	nonane			
c) 3-methyl bicyclo [4,3,0] nonane	d) 4-methyl bicyclo [4,3,0]	nonane			
973. Schiff's bases are formed when aniline is condensed	with:				
a) Phenols b) Aromatic aldehydes	c) Aryl chlorides	d) Aliphatic alcohols			
974. Which of the following is not an organometallic com	pound?	y 1			
a) Zeise' s salt b) TEL	c) Sodium ethoxide	d) Ferrocene			
975. Molecular formula $C_rH_{12}O$ will show	-)				
a) Position					
h) Ontical isomerism					
c) Functional isomerism					
d) All of these					
976 Both Co^{3+} and Pt^{4+} have a coordination number of ci	iv Which of the following p	airs of complexes will show			
annrovimately the same electrical conductance for the	hair 0.001 M aquaous soluti	ins of complexes will show			
approximately the same electrical conductance for the 2 (of) ANH and $D(C) = ANH$	b) CoCl 2NU and D+Cl	5NH			
a) $COCI_2$. $HIII_3$ all $I = ICI_4$. $HIII_3$	d) $CoCl \in SNH and D+Cl$	Этиг ₃ 2NH			
c_1 c_0 c_1	uj uouizi oning allu riula.	514113			

977. Which of the following is not an organometallic compound? a) Sodium ethoxide b) Trimethyl aluminium c) Tetraethyl lead d) Ethyl magnesium bromide 978. The number of water molecule(s) directly bonded to the metal centre in $CuSO_4$. SH_2O is b) 2 d) 4 a) 1 c) 3 979. The formula of sodium nitroprusside is: a) Na_4 [Fe(CN)₅NO₂] b) $Na_2[Fe(CN)_5NO]$ c) NaFe[Fe(CN)₆] d) $Na_2[Fe(CN)_6NO_2]$ 980. The IUPAC name of the compound $H_2N - CH - CH_2OH$ is COOH a) 2-amino-2-carboxy pentanol b) 1-amino-2-hydroxy propanoic acid c) 1-hydroxy-2-amino-3-propanoic acid d) 2-amino-3-hydroxy propanoic acid 981. Which of the following complex species does not involve inner orbital hybridisation? a) [CoF₆]^{3–} b) $[Co(NH_3)_6]^{3+}$ c) $[Fe(CN)_6]^{3-1}$ d) $[Cr(NH_3)_6]^{3+}$ 982. The EAN of nickel in $K_2[Ni(CN)_4]$ is: b) 34 c) 36 d) 38 a) 35 983. The type of isomerism shown by, 6,6'-disitrodiphenic acid is a) Conformational b) Optical c) Geometrical d) Functional 984. Which one of the following compounds forms benzoic acid on oxidation? a) Chlorophenol b) Benzylchloride c) Chlorobenzene d) Chlorotoluene 985. Glycinato ligand is: a) CH₂ b) Bidentate ligand c) Two donor sites N and O⁻ d) All of the above 986. Which one is the most likely structure of $CrCl_3 \cdot 6H_2O$, if 1/3 of total chlorine of the compound is precipitated by adding AgNO₃ to its aqueous solution? a) $CrCl_3 \cdot 6H_2O$ b) $[Cr(H_2O)_3Cl_3] \cdot (H_2O)_3$ c) $[CrCl_2(H_2O)_4] \cdot Cl \cdot 2H_2O$ d) $[CrCl(H_2O)_5]Cl_2 \cdot H_2O$ 987. Carbon in benzene undergoes sp^2 -hybridization and the bond angle is 120°. The shape of benzene molecule is: b) Planar c) Pyramidal d) Planar hexagonal a) Linear 988. The example of coordination isomerism is a) $[Co (NH_3)_6] [Cr(CN)_6]$ and b) $[Co(NH_3)_5Br]SO_4$ and $[Co(NH_3)_5SO_4]Br$ $[Cr(NH_3)_6][Co(CN)_6]$ c) $Co(NH_3)_5NO_3$ SO₄ and $[Co(NH_3)_5SO_4]NO_3$ d) $[Pt(NH_3)_4Cl_2]Br_2$ and $[Pt(NH_3)_4Br_2]Cl_2$ 989. Coordination compounds have great importance in biological systems. In this context which of the following statement is incorrect? a) Haemoglobin is the red pigment of blood and contains iron b) Cyanocobalamin is B₁₂ and contains cobalt c) Chlorophylls are green pigments in plants and contains calcium d) Carbocypeptidase-A an enzyme and contains zinc

990.

The IUPAC name of the given structure *H* is

a) Diisohexane b) Isohexane

c) 2, 2-dimethylbutane

d) 2, 3-dimethylbutane

991. Aniline on treating with phosgene gives:

c) A neutral substance d) A tertiary base

a) Phenyl isocyanate b) A secondary base c) A neutral substance d 992. On boiling with conc. hydrobromic acid, phenylethylether will yield:

a) Phenol and ethyl bromide

b) Bromobenzene and ethanol

c) Phenol and ethane

d) Bromobenzene and ethane

- 993. Ammonia gas does not evolve from the complex FeCl₃. 4NH₃ but is gives white precipitate with aqueous solution of AgNO₃. Coordination number of central metal ion in above complex is six. Give IUPAC name of the complex.
 - a) Ammonium trichloro triammine ferrum(III)

b) Tetra ammine ferrum (III) chloride

- c) Dichloro tetraammine ferrate (II) chloride
 d) Dichloro tetraammine ferrum (III) chloride
 994. Nickel (Z=28) combines with a uninegative monodentate ligand X⁻ to form a paramagnetic complex[NiX₄]²⁻. The number of unpaired electron (*s*) in the nickel and geometry of this complex ion are respectively
- a) One , tetrahedral b) Two , tetrahedral c) One , square planar d) Two, square planar 995. Amongst the compounds given, the one that would form a brilliant coloured dye on treatment with $NaNO_2$ in dil. HCl followed by addition to an alkaline solution of β -naphthol is:

a)
$$N(CH_3)_2$$

b) $NHCH_3$
c) H_3C
d) CH_2CH_2

996. Identify 'Z' in the reaction given below;

997. A solution containing 2.675 g of CoCl₃ .6NH₃ (molar mass =267.5 g mol⁻¹) is passed through a cation exchanger. The chloride ions obtained in solution were treated with excess of AgNO₃to give 4.78 g of AgCl (molar mass=143.5 g mol⁻¹). The formula of the complex is (Atomic mass of Ag=108 u)

a) $[Co(NH_3)_6]Cl_3$ b) $[CoCl_2(NH_3)_4]Cl$ c) $[CoCl_3(NH_3)_3]$ d) [CoCl(NH₃)₅]Cl₂ 998. $[Cr(H_2O)_6]^{3+}$ ion has *d*-electrons equal to: a) 2 b) 3 c) 4 d) 5 999. Enol form is more stable in a) CH₃CHO b) CH₃COCH₃ c) CH₃COCH₂COOC₂H₅ d) Cyclohexanone 100 The coordination number of cobalt in $[Co(en)_2Br_2]Cl_2$ is: 0. a) 2 b) 4 d) 8 c) 6 100 Which one readily accepts a proton? 1. a) Acetylene b) Nitrobenzene c) Aniline d) Phenol 100 Identify '*Z*' in the reaction; CH₂-OH 2. $\underbrace{\frac{\text{Vigorous}}{\text{oxidation}}} X \xrightarrow{\text{Dry}} Z$ CH₂-OH СООН a) COOH COOH b) CO c) $\neg 0$ COOH d) CH₂OH

100 The number of σ and $\pi\text{-bonds}$ in a molecule of benzene is: 3.

a) 6σ and 9π b) 9σ and 3π c) 12σ and 3π d) 6σ and 6π 100 The phenomenon of optical activity will be shown by: 4.

100 5	CH ₃ H ₃ C					
Ј.						
	The correct name of the compound	H _{3 is}				
	a) 1,3,4-trimethyldecaline	b) 1,3,9-trimethyldecalin	e			
100	c) 1,8,10-trimethyldecaline	d) 1,3,10-trimethyldecali	ine			
100 6.	If NH_4OH is added to the $(PtCl_4)^2$ lon, the complex	formed represents:				
0.	a) Zero dipole b) Finite dipole	c) Infinite dipole	d) All of these			
100	Which one of the following will be able to show <i>cis</i> -a	trans-isomerism?				
7.						
	a) M_{A_3B}					
	b) $W(AA')_2$					
	C) M_{A_2BCD}					
	d) (AA') is unsymmetrical bidentate ligand. ABCD are	e unidentate ligands.)				
100	The coordination number of a metal in coordination	compound is				
8.		-				
	a) Same as primary valency	b) Sum of primary and secondary valencies				
100	c) Same as secondary valency The IUPAC name of K [Ni(CN)] is	d) None of the above				
9.	The for Ac hance of K4[M(GN)4] is					
	a) Tetrapotassium tetracyanonickelate (II)	b) Potassium tetracyano	nickel (II)			
	c) Potassium tetracyanonickelate (0)	d) Potassium tetracyano	nickelate (II)			
101	Which of the following compounds shows optical iso	omerism?				
0.	a) $[C_0(CN)_{\ell}]^{3-}$ b) $[Cr(C_2O_{\ell})_2]^{3-}$	c) [ZnCl₄] ^{2−}	d) $[Cu(NH_2)_4]^{2+}$			
101	$[C_6H_5]_2$ Pd(SCN) ₂] and $[(C_6H_5)_2$ Pd(NCS) ₂] are:	·) [2	-) [0u(113)4]			
1.						
101	a) Linkage isomers b) Coordination isomers	c) Ionization isomers	d) Geometrical isomers			
101 2	Mark the correct statement					
2.	a) Ethane has two conformations of which staggered conformation	l conformation is more sta	ble than the eclipsed			
	b) Ethane has an infinite number of conformations of	of which eclipsed conformation	tion is more stable than the			
	staggered conformation	which staggard conform	ation has the manimum			
	c) Ethane has an infinite number of conformation of	which staggered conform	ation has the maximum			
	d) Ethane has an infinite number of conformation of	which the staggered confo	ormation is possessed by			
	majority of the molecules at room temperature					
101 3.						
	Lactone $\begin{bmatrix} \bigcirc & \bigcirc $					

Of the following on heating with alkali followed with acid hydrolysis?

101 Which among the following will be named as dibromidobis (ethylene diamine) chromium (III) bromide?4.

	a) [Cr(en) ₂ Br ₂]Br	b) $[Cr(en)Br_4]^-$	c) [Cr(en)Br ₂]Br	d) $[Cr(en)_3]Br_3$							
101	Which one of the following complex is an outer orbital complex?										
5.	(Atomic no. Mn=25, Fe=2	24, Co=27, Ni=28)									
	a) $[Fe(CN)_6]^{4-}$	b) $[Mn(CN)_{6}]^{4-}$	c) $[Co(NH_3)_6]^{3+}$	d) $[Ni(NH_3)_6]^{2+}$							

101 Benzene can be directly obtained from:

- a) CH≡CH
- b) $CH_2 = CH_2$ and butadiene
- c) Chlorobenzene
- d) All of the above
- 101 Chlorobenzene on treatment with Raney nickel or Al in presence of alkali gives:
- 7.

a) Benzeneb) Chlorophenolc) Phenold) None of these101The compound that undergoes decarboxylation most readily under mild condition is:

a) $[Cr(C_2O_4)_3]^{3-}$ b) $[Cu(NH_3)_4]^{2+}$ c) $[Co(CN)_6]^{3-}$ d) $[ZnCl_4]^{2-}$ 102 The IUPAC name of $[Co(NH_3)_6]Cl_3$ is 3. a) Hexamine cobalt (II) chloride b) Triammine cobalt (III) trichloride c) Hexamine cobalt (III) chloride d) None of the above 102 In the following compounds, the order of acidity is: OH OH OH OH 4. (II) (III) (IV) (I) b) I > IV > III > IIa) III > IV > I > IIc) II > I > III > IV d) IV > III > I > II102 Consider the following structure and choose the correct statements 5. Ш a) I and II have *R*-configuration b) I and III have *R*-configuration c) Only III has S-configuration d) Both (a) and (c) are correct 102 Benzaldehyde, when heated with concentrated KOH solution, gives: 6. a) $C_6H_5CH_2OH$ b) C₆H₅COOH c) C_6H_5COOK d) Mixture of C₆H₅COOK and C₆H₅CH₂OH 102 Write the IUPAC name of the compound 0 7. a) Bicyclo-[2.2.2] octane-2,6-dione b) Bicyclo-[2.2.2] octane-3,5-dione c) Bicyclo – [2.2] octane 2,6-dione d) Bicyclo [2,2] octane-3,5-dione 102 3-chloro-4-methyl benzene sulphonic acid on steam distillation gives: 8. m-chloro benzene b) sulphonic acid c) p-methyl benzene sulphonic acid a) Toluene d) o-chloro toluene 102 The oxidation number of platinum in $[Pt(NH_3)_5Cl]Cl_3$ is 9. a) 2 b) 3 c) 4 d) 6 103 Which of the following is not an organometallic compound? 0. b) CH₃Mgl c) Tetraethyl tin a) C_2H_5ONa d) KC_4H_9 103 Which of the following pairs of compounds are enantiomers? 1. a) HO - H = H = HO - H = HO

Page | 84

	СН ₃	CH ₃	CH ₃	CH ₃					
	H—————————————————————————————————————	——н	H——OH and	НОН					
	с) но но но	——н	d) _{HO} —H	н—————————————————————————————————————					
	ĊH ₃	ĊН ₃	CH_3	ĊH ₃					
103 2.	Which complex has square p	olanar shape dsp^2 -hybrid	lization?						
	a) $[Ni(CN)_4]^{2-}$ b) $[Cu(NH_3)_4]^{2-}$	c) $[PtCl_4]^{2-}$	d) All of these					
103 3.	The complex used as an anti	icancer agent is							
	a) cis-[PtCl ₂ (NH ₃) ₂]		b) Na ₂ CO ₃						
	c) trans-[Co(NH ₃) ₃ Cl ₃]		d) cis -K ₂ [PtCl ₂ Br ₂]						
103 4.	Dyes are formed when diazo	onium salts react with:							
	a) Phenols								
	b) Aldehydes								
	c) Ketones								
	d) Alcohols								
103	Potassium ferrocyanide is a								
5.	a) Commission and) Double colt	a) Normal calt	d) Mixed calt					
102	The primary and secondary	y Double salt	c) Normal sait	diovalatochromium (III)					
103 6	are respectively		i the complex ion, diction of						
0.	a) 3.4 h) 4.3	c) 3.6	d) 6.3					
103	The restion C II + CII Cl Anhydr	^{ous} C H CH + HCl							
7.	is an example of: AICl ₃ AICl ₃ $AICl_3$	$\xrightarrow{3}$ C ₆ H ₅ CH ₃ + HCl							
	a) Friedel-Craft's reaction								
	b) Kolbe's synthesis								
	c) Wurtz's reaction								
	d) Grignard synthesis								
103 o	The correct statement relate	ed to IUPAC nomenclature	e is						
0.	a) If 2 or more chains of equ	al length are seen in the o	compound then the chain v	vith minimum number of					
	b) If double and triple bonds	s are at symmetrical posit	tions in a compound then t	riple bond gets lower					
	preference	5 1	1	1 0					
	c) Correct IUPAC name of Cl	H ₃ COC ₂ H ₅ is ethyl methy	l ketone						
	d) As far as possible, the IUP	PAC name of a compound	is written as a single word						
103 9.	Which of the following isom	erism is shown by ethyl a	acetoacetate?						
	a) Geometrical isomerism		b) Keto-enol tautomerism						
10.4	c) Enantiomerism		d) Diastereoisomerism						
104	The number of moles of ions	s given on complete ionis	ation of one mole of [Co(Nl	$H_3)_6$ Cl ₃ is/are					
υ.	a) 4 h) 3	പ് 2	d) 1					
104	The major products $(P \ O)$ in	n the given reaction are	CJ 2	uji					
1.									
1.	$\left(\bigcirc\right) + \operatorname{Cl}\cdot\operatorname{CH}_{2}\operatorname{CH}_{2}\operatorname{CH}_{3}\xrightarrow{\operatorname{AlCl}_{3}} P$	$\xrightarrow{(I) O_2, \Delta} Q + Phenol$							

a)
$$(-)$$
 and CH₃CHO
b) $(-)$ and CH₃COCH₃
c) $(-)$ and CH₃COCH₃
d) $(-)$ and $(-)$ an

a) The complex is high spin complex b) Both Fe atoms are in the same oxidation state c) The coordination number of iron is 4 d) Both Fe atoms are in different oxidation state 105 The number of chiral carbon atoms present in the molecule 1. is b) 4 c) 2 d) 1 a) 3 105 The complex that doesn't give a precipitate with AgNO₃ solution 2. c) $[Ag(NH_3)_2]Cl$ d) $[Cr(NH_3)_4Cl_2]Cl$ a) $[Co(NH_3)_33Cl_3]$ b) $[Co(NH_3)_6]Cl_3$ 105 The IUPAC name of the given compound [Co(NH₃)₅Cl]Cl₂ is 3. a) Penta amino cobalt chloride chlorate b) Cobalt penta ammine chloro chloride c) Pentamine chloro cobalt (III) chloride. d) Penta amino cobalt (III) chlorate 105 Amongst Ni(CO)₄, $[Ni(CN)_4]^{2-}$ and $[NiCl_4]^{2-}$ 4. a) Ni(CO)₄ is diamagnetic, $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ are paramagnetic b) Ni(CO)₄ and $[NiCl_4]^{2-}$ are diamagnetic and $[Ni(CN)_4]^{2-}$ is paramagnetic c) Ni(CO)₄ and $[Ni(CN)_4]^{2-}$ are diamagnetic and $[NiCl_4]^{2-}$ is paramagnetic d) $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ are diamagnetic and $Ni(CO)_4$ is paramagnetic 105 Which aromatic acid among the following is weaker than simple benzoic acid? 5. NO₂ CH_3 SO₃H a) b) CO₂H COOH COOH CO₂H 105 Which statement is incorrect? 6. a) Ni(CO)₄-tetrahedral, paramagnetic b) [Ni(CN)₄]^{2–}-square planar, diamagnetic c) Ni(CO)₄-tetrahedral, diamagnetic d) [NiCl₄]²⁻ -tetrahedral, paramagnetic 105 Which of the following has asymmetric C-atom? 7. Cl Br H Cl H Cl Η D Т b) H - C - C - Clc) H - C - C - Ha) H − C − C − H d) $CH_3 - C - C - CH_3$ Τ 1 Т Н Н Н Н Η Η Br OH 105 The IUPAC name of CH2-CH2-CH2-OH 8. is a) 1-phenyl-3-propanol b) 3-phenyl-1-propanol c) 1-hydroxy-3-phenyl-propane d) None of the above 105 The complexes [Co(NH₃)₆][Cr(CN)₆] and [Cr(NH₃)₆][Co(CN)₆] are the examples of which type of

0.

9.	isomerism?									
	a) Geometrical isomerism	1								
	b) Linkage isomerism									
	c) Ionization isomerism									
	d) Coordination isomeris	m								
106 0.	Racemic tartaric acid is op	ptically inactive due to								
	a) External compensation	l	b) Internal compensation	1						
	c) Presence of plane of sy	mmetry	d) All of the above							
106 1.	Nitration of aniline is don	e in:								
	a) Acidic medium									
	b) Alkaline medium									
	c) Neutral medium									
	d) In acidic medium by fir	st converting it into aceta	anilide before nitration							
106 2.	A bridging ligand possess	es:								
	a) Polydentate or monode	entate nature								
	b) Two or more donor cer	ntres								
	c) The tendency to get its	elf attached to two metal	ions							
	d) All of the above									
106 3.	What is the neutralization	n equivalent of benzoic ac	id?							
	a) 122	b) 61	c) 244	d) 488						
106	m-chlorobenzaldehyde on reaction with conc. KOH at room temperature gives:									
4.										
	a) Potassium <i>m</i> -chlorobe	nzoate and <i>m</i> -hydroxy be	enzaldehyde							
	b) <i>m</i> -hydroxybenzaldehy	de and <i>m</i> -chlorobenzylal	cohol							
	c) <i>m</i> -chlorobenzylalcoho	and <i>m</i> -hydroxy benzylal	cohol							
	d) Potassium <i>m</i> -chlorobe	nzoate and <i>m</i> -chlorobenz	cyl alcohol							
106	The oxidation number of	Fe in brown ring [Fe(H ₂ 0	$()_5 NO]^{2+}$ is							
5.										
100		b) +1	c) $+2$	d) +3						
106	$[Cr(H_2O)_6]Cl_3$ (at. No. of (2r=24) has a magnetic m	oment of 3.83 BM. The corre	ect distribution of 3d-						
6.	electrons in the chromiun	n of the complex:								
	a) $3d_{xy}^1$, $3d_{yz}^1$, $3d_{xz}^1$	b) $3d_{xy}^1$, $3d_{yz}^1$, $3d_{z^2}^1$	c) $(3d_{x^2-y^2}^1), 3d_{z^2}^1, 3d_{xz}^1$	d) $3d_{xy}^1$, $(3d_{x^2-y^2}^1)$, $3d_{yz}^1$						
106	Excess of silver nitrate so	lution is added to 100 mL	of 0.01 M pentaaqua chloro	chromium (III) chloride						
7.	solution. The mass of silv	er chloride obtained in gr	ams is [Atomic mass of silve	r is 108].						
	a) 287 × 10 ⁻³	b) 143.5 × 10 ⁻³	c) 143.5×10^{-2}	d) 287 × 10^{-2}						
106	The total number of possi	ble structural isomers of	the compound $[Cu^{II}(NH_3)_4]$	[Pt ^{II} Cl ₄] are:						
8.										
	a) 3	b) 5	c) 4	d) 6						
106	A similarity between opti	cal and geometrical isome	erism is that :							
9.										
	a) Each gives equal numb	er of isomers for a given of	compound							
	b) If in a compound one is	s present then so is the ot	her							
	c) Both are included in st	ereoisomerism								
4	d) They have no similarity	y .								
107	In $[Ni(NH_3)_4]SO_4$, the val	ency and coordination nu	imber of Ni will be respectiv	ely						

0.

a) 3 and 6 b) 4 and 4 c) 4 and 2 d) 2 and 4 107 C₆H₅CHO is different from aliphatic aldehyde in its reaction towards: 1. b) Schiff's reagent a) Tollen's reagent c) NaHSO₃ d) Fehling's solution 107 Oxidation of naphthalene by acidic KMnO₄ gives: 2. b) Benzaldehyde d) Benzoic acid a) Toluene c) Phthalic acid 107 The number of possible theoretical conformations of *n*-butane are 3. a) Two b) Three c) Four d) Infinite 107 Which is correct order for acidic nature of following acids? (I) PhCOOH (II) $o - NO_2C_6H_4COOH$ 4. (III) $p - NO_2C_6H_4COOH$ (IV) $m - NO_2C_6H_4COOH$ a) II > III > IV > Ib) II > IV > III > Ic) II > IV > I > IIId) I > II > III > IV107 Salicylic acid when treated with zinc dust gives: 5. b) Salicyladehyde c) Benzene d) Benzoic acid a) Phenol 107 Action of PCl₅ on salicylic acid produces: 6. a) o-chlorobenzoyl b) o-hydroxybenzoyl chloride c) o-chlorobenzoic acid d) None of the above 107 Which of the following species is most stable? 7. a) $p - O_2 N - C_6 H_4 - C_{H_2}^+$ b) $_{C_6H_5}$ + $_{CH_2}^+$ c) $_{p-C1-C_{6}H_{4}-CH_{2}}^{+}$ p-CH₃O-C₆H₄- $\overset{+}{C}$ H₂ d) 107 Give the IUPAC name of the following $\begin{array}{c} \mathsf{CH}_3 \ \mathsf{CH}_2 {-\!\!\!-} \mathsf{CH}_2 {-\!\!\!-} \mathsf{CH}_3 \\ | & | \\ \mathsf{CH}_3 {-\!\!\!-} \overset{\mathsf{CH}}{\mathsf{C}} {-\!\!\!-} \mathsf{CH} {-\!\!\!-} \mathsf{CH}_2 {-\!\!\!-} \mathsf{CH}_3 \end{array}$ 8. $\dot{C}H_2 - CH_2 - CH_3$ a) 5-ethyl-4, 4-dimethyloctane b) 4-ethyl-5, 5-dimetyloctane c) 3-ethyl-2-methyl-2-propyl hexane d) 4-ethyl-5-methyl, 5-propyl hexane 107 Which of the following reacts with KCN to form benzoin? 9. a) C_6H_5CHO b) C_6H_5Cl c) C₂H₅Cl d) $C_6H_5CH_3$ 108 Which one is an organometallic compound in the following? 0. a) C₂H₅ONa b) $C_2H_5 - S - C_2H_5$ d) Al(C_6H_5S)₃ c) $Al_2(CH_3)_6$ 108 The formula of picramide is: 1.

	NH ₂		NH ₂	CONH ₂
	NO ₂	$\stackrel{\rm NH_2}{\mid}$	O ₂ N NO ₂	O_2N NO_2
	a)	b)	c) ()	d) $\left(\begin{array}{c} \\ \\ \end{array} \right)$
	Ÿ		Ÿ	Ÿ
	$ _{NO_2}$	\checkmark	I NO ₂	NO ₂
108	An alkane forms isomers	if minimum number of C-a	tom is:	
2.				
100	a) 1	b) 2	c) 3	d) 4
108 3	Which will form geometr	ical isomers?		
5.	_CI		~ ~	d) All of these
	a)	b) $CH_3CH = NOH$	c)	,
	CI	, ,		
108	Choose the option which	show correct preferential o	order of groups among the	following
4.		NH		<u>OU</u>
	a) $-COOH_{1} - OH_{2} - OH_{$	-NH ₂ -CHO	d) $-COOH_{2}$, $-OH_{2}$, CHO_{2} , $-COOH_{2}$	он —ОН
108	The number of precipital	ble halide ions in [Pt(NH ₃)($Cl_2Br]Cl is:$	
5.				
100	a) 2	b) 3	c) 4	d) 1
108	which of the following is	polycyclic compound?		
0.	a) Xylene	b) Cumene	c) Styrene	d) Naphthalene
108	Among acetic acid, pheno	l and <i>n</i> -hexanol, which of t	he compound(s) will react	with NaHCO ₃ solution to
7.	give sodium salt and CO_2	?		
	a) Acetic acid and phenol			
	c) Phenol			
	d) <i>n</i> -hexanol			
108	Nitrosobenzene can be is	olated from nitrobenzene u	under:	
8.	a) Matal and asid			
	a) Metal and acid b) Zn dust and NH_4Cl			
	c) Alkaline sodium arsen	ite		
	d) None of the above			
108	Which of the following co	mplexes is an outer orbital	l complex?	
9.	a) $[Fe(CN)_{2}]^{4-}$	b) $[C_0(NH_a)_c]^{3+}$	c) $[Ni(NH_{a})_{c}]^{2+}$	d) None of these
109	In which of the following	complex ion, the central m	etal ion is in a state of $sp^3 c$	l^2 hybridisation?
0.	0	•		2
100	a) $[Co(F_6)]^{3-}$	b) [Co(NH ₃) ₆] ³⁺	c) $[Fe(CN)_6]^{3-1}$	d) $[Cr(NH_3)_6]^{3+}$
109	Give name of the complex	x, name should specify the p	position of ligands	
1.	H ₃ H			
	a) Bis <i>trans</i> phosphinecarl	bonylchloroiridium [II]	b) Carbonylchlorobis <i>tran</i>	sphosphineiridium[III]
	c) Carbonylchlorobis <i>trar</i>	<i>s</i> phosphineiridium[I]	d) Chlorocarbonylbis <i>tran</i>	sphosphineiridium [I]
109	The function of anhydrou	is aluminium chloride in th	e Friedel-Crafts reaction is:	

2. a) To absorb water b) To absorb hydrochloric acid c) To produce an electrophile d) To produce nucleophile 109 Coordination isomerism is caused by interchange of ligands between the 3. a) Complex cation and complex anion b) Inner sphere and outer sphere c) Low oxidation and higher oxidation states d) cis and trans structure 109 Which aldehyde is used in the manufacture of perfumes? 4. a) Cinnamaldehyde c) Benzaldehyde d) None of these b) Salicyladehyde 109 Which of the following statements is not correct? 5. a) A meso compound has chiral centres but exhibits no optical activity b) A meso compound has no chiral centres and thus are optically inactive A meso compound has molecules in which one half of molecule is superimposable on the other even through chiral centre is present in them A meso compound is optically inactive because the rotation caused by one half of molecule is cancelled d) by the rotation produced by another half 109 The volume (in mL) of 0.1 M AgNO₃ required for complete precipitation of chloride ions present in 30 mL 6. of 0.01 M solution of $[Cr(H_2O)_5Cl]Cl_2$, as silver chloride is close to a) 3 b) 4 c) 5 d) 6 109 Benzene is a resonance hybrid mainly of two Kekule structures. Hence: 7. a) Half of the molecules correspond to one structure, and half to the second structure b) At low temperatures benzene can be separated into two structures c) Two structures make equal contribution to resonance hybrid d) An individual benzene molecule changes back and forth between two structures 109 Keto form is more stable in 8. a) $CH_3COCH_2COOC_2H_5$ b) CH₃COCH₂COCH₃ c) CH_3COCH_3 d) CH₃COCH₂COC₂H₅ 109 The oxidation state and effective atomic number(EAN) of cobalt $(CoF_6)^{2-}$ are respectively 9 c) 4 and 37 d) 2 and 35 a) 3 and 36 b) 4 and 35 110 Benzamide on reaction with POCl₃ gives: 0. b) Chlorobenzene c) Benzylamine d) Benzonitrile a) Aniline 110 Which pair of carbon skeleton is an example of isomerism? 1. С С Τ a) C - C - C - C and C - C - CС С С b) C - C - C and C - C - CТ

С

110 Electrolytic reduction of nitrobenzene in weak acidic medium gives:

2.

a) Aniline

b) p-hydroxy aniline

c) Nitrobenzene

d) N-phenyl hydroxyl amine

110 In complexes, metal atom acts as:

3.

b) Bronsted acid a) Lewis base c) Bronsted base d) Lewis acid 110 When benzene is treated with concentrated HNO₃ at room temperature it will give: 4. a) CO_2 and H_2O b) Nitrochlorobenzene c) Dark red colour d) Dinitrobenzene 110 Which of the following compounds exhibit linkage isomerism? 5. b) $[Co(NH_3)_6][Cr(CN)_6]$ c) $[Co(en)_2NO_2Cl]Br$ d) $[Co(NH_3)_5Cl]Br_2$ a) $[Co(en)_3]Cl_3$ 110 The compound 6. have IUPAC name as a) Tricyclopropyl b) Tricyclopropane c) 1,1', 2', 1"-tercyclo propane d) None of the above

110 The most stable conformation of chlorohydrin at room temperature is

7. a) Fully eclipsed b) Partially eclipsed c) Gauche d) Staggered 110 Among Ni(CO)₄, $[Ni(CN)_4]^{2-}$ and $[Ni(Cl)_4]^{2-}$: 8. a) $[Ni(CO)_4]$, $[NiCl_4]^{2-}$ are diamagnetic and $[Ni(CN)_4]^{2-}$ is paramagnetic b) $[NiCl_4]^{2-}$, $[Ni(CN)_4]^{2-}$ are diamagnetic and $[Ni(CO)_4]$ is paramagnetic c) $[Ni(CO)_4]$, $[Ni(CN)_4]^{2-}$ are diamagnetic and $[NiCl_4]^{2-}$ is paramagnetic d) $[Ni(CO)_4]$ is diamagnetic and $[NiCl_4]^{2-}$, $[Ni(CN)_4]^{2-}$ are paramagnetic 110 The complex $Hg[Co(CNS)_4]$ is correctly named as: 9. a) Mercury tetrathiocyanatocobaltate(II) b) Mercury cobalt tetrasulphocyano(II) c) Mercury tetrasulphocyanidecobaltate(II) d) Mercury sulphocyanatocobalt(II) 111 Which of the following compounds is not coloured? 0. a) $Na_2[CuCl_4]$ b) $Na_2[CdCl_4]$ c) $K_4[Fe(CN)_6]$ d) $K_3[Fe(CN)_6]$

111 Which one has square planar geometry?

1.												
	a) [CoCl ₄] ²⁻	b) $[FeCl_4]^{2-}$	c) $[NiCl_4]^{2-}$	d) $[PtCl_4]^{2-}$								
111	Which exhibits highest me	olar conductivity?										
2.												
	a) [Co(NH ₃) ₆]Cl ₃	b) [Co(NH ₃) ₅ Cl]Cl ₂	c) $[Co(NH_3)_4Cl_2]Cl$	d) $[Co(NH_3)_3Cl_3]$								
111	Coordination compounds	have great importance in b	oiological systems. In this co	ontext which of the								
3.	following statement is incorrect?											
	a) Chlorophyll is green pigment in plants and contain calcium.											
	b) Haemoglobin is the red pigment of blood and contains iron.											
	c) Cyanocobalamin is vita	min B_{12} and contains coba	lt.									
	d) Carboxypeptidase-A is	an enzyme and contains zin	nc.									
111	1 Complex salt can be made by the combination of $[Co^{III}(NH_3)_5Cl]^x$ with											
4.												
	a) Cl ⁻	b) 2Cl ⁻	c) PO ₄ ³⁻	d) 2K ⁺								
111	Which of the following pa	irs represents linkage isom	ers?									
5.												
	a) $[Cu(NH_3)_4][PtCl_4]$ and	$[Pt (NH_3)_4][CuCl_4]$	b) $[Pd(PPh_3)_2 (NCS)_2]$ and	$d [Pd(PPh_3)_2 (SCN)_2]$								
	c) $[Co(NH_3)_5]NO_3SO_4$ and	$d [Co(NH_3)_5SO_4]NO_3$	d) $[PtCl_2(NH_3)_4]Br_2$ and $[$	$PtBr_2(NH_3)_4]Cl_2$								
111	The reaction products of ($C_c H_r OCH_2 + HI \rightarrow is:$										
6.	F	-05										
	a) $C_6H_5OH + CH_3I$	b) $C_6H_5I + CH_3OH$	c) $C_6H_5CH_3 + HOI$	d) $C_6H_6 + CH_3OI$								
111	An aromatic amine (A) wa	as treated with alcoholic po	tash and another compour	d (Y) when a foul smeling								
7.	gas was formed with form	$H_{6}H_{5}NC.(Y)$ was form	ed by reacting a compound	(<i>Z</i>) with Cl_2 in the								
	presence of slaked lime. C	ompound (<i>Z</i>) is:										
	a) C ₆ H ₅ NH ₂	b) CH ₃ OH	c) CH ₃ COCH ₃	d) CHCl ₃								
111	Chlorine is most reactive	in:										
8.												
	a) CH ₃ Cl	b) $CH_2 = CHCl$	c) C ₆ H ₅ Cl	d) C ₆ H ₅ CH ₂ Cl								
111	The C—C bond order in b	enzene is close to:										
9.												
110	a) 1.5	b) 2.5	$C = \frac{1}{2} $	d) 6.0								
112	Mixture $X = 0.02$ mole of	$[CO(NH_3)_5SO_4]Br and 0.02$	$2 \text{ mole of } [\text{Co}(\text{NH}_3)_5 \text{Br}]\text{SO}_4$	was prepared in 2 L of								
0.	solution											
	1 L of mixture $X + excess$	$\operatorname{AgNO}_3 \longrightarrow Y$										
	1 L OI IIIIXture $X + excess$	$BaCl_2 \rightarrow Z$										
	Number of moles of T and r_{2}	12 are	a) 0.02 0.01	4) 0 0 2 0 0 2								
117	a) 0.01, 0.01 Dhonal can be converted i	DJ 0.01,0.02	CJ 0.02, 0.01	uj 0.02, 0.02								
112	Phenor can be converted i	and sancyfic actu by:										
1.	a) Ftard's reaction											
	h) Kolhe's reaction											
	c) Reimer-Tiemann reacti	ion										
	d) Both (b) and (c)											
112	$Fe_2(CO)_0$ is diamagnetic.	Which of the following reas	ons is correct?									
2.	-2())	0										
	a) Presence of one CO as b	oridge group										
	b) Presence of monodenta	ate ligand										
	c) Metal-metal (Fe-Fe) bo	ond in molecule										
	d) Resonance hybridizatio	on of CO										
112	The formula of dichlorobi	s (urea) copper(II) is:										
		•										

3.

- a) $[CuO = C(NH_2)_2]Cl_2$ b) $[CuCl_2\{0 = C(NH_2)\}]$
- c) $[Cu{0 = C(NH_2)_2}Cl]Cl$
- d) $[CuCl_2][0 = C(NH_2)_2]H_2$

112 Which of the following facts about the complex $[Cr(NH_3)_6]Cl_3$ is wrong?

4.

5.

- The complex involves d^2sp^3 hybridisation and isb) The complex is paramagnetic. octahedral in shape. a)
- c) The complex is an outer orbital complex.
- d) The complex gives white precipitate with silver nitrate solution.

112 The compounds P, Q and S were separately subjected to nitration using HNO₃/H₂SO₄ mixture. The major

112 Aromaticity of benzene is due to:

- 6.
- a) Ring
- b) Three double bonds
- c) Delocalisation of π -electrons

d) None of the above 112 7. The IUPAC name of is a) 2, 2, 4, 4-tetramethyl pentane b) 2, 2-dimethyl propane c) 4-ethyl-3-methyl hex-3-ene d) Ethyl isopropyl ethene 112 Phenol is heated with a solution of mixture of KBr and KBrO₃. The major product obtained in the above 8. reaction is: a) 2-bromophenol b) 3-bromophenol c) 4-bromophenol d) 2,4,6-tribromophenol 112 The coordination number of a central metal atom in a complex is determined by 9. a) The number around a metal ion bonded by pi-bonds b) The number of only anionic ligands bonded to the metal ion c) The number of ligands around a metal ion bounded by sigma and pi-bonds both d) The number of ligands around a metal ion bonded by sigma bonds 113 The true statement about benzene is: 0. a) Because of d) Monosubstitution of There are two types of There is a cyclic unsaturation benzene benzene gives three b) C—C bonds in benzene c) delocalisation of π easily undergoes isomeric products molecule electrons in benzene additions 113 Which reagent can convert CO group to $C(C_6H_5)OH$? 1. c) C_6H_5MgBr b) $C_6H_5CH_2OH$ d) C_6H_5Cl a) C_6H_5OH 113 Which has highest paramagnetism? 2. c) $[Cu(H_2O)_6]^{2+}$ d) $[Zn(H_20)_6]^{2+}$ a) $[Cr(H_2O)_6]^{3+}$ b) $[Fe(H_2O)_6]^{2+}$ 113 Which is not true ligands metal complex? 3. a) Larger the ligand, the more stable is the metal-ligand complex b) Highly charged ligand forms stronger bonds c) Larger the permanent dipole moment of ligand, the more stable is the bond d) Greater the ionization potential of central metal, the stronger the bond 113 $[Co(NH_3)_4Cl_2]NO_2$ and $[Co(NH_3)_4Cl \cdot NO_2]Cl]$ are 4. a) Optical isomers b) Geometrical isomers d) Linkage isomers c) Ionization isomers 113 Acetophenone on oxidation by perbenzoic acid gives phenyl acetate. The reaction is named as: 5. a) Baeyer-Villiger oxidation b) Perkin's reaction c) Claisen condensation d) Reformatsky reaction 113 Friedel-Craft's reaction does not occur in case of: 6. a) Toluene b) Benzene c) Naphthalene d) pyridine 113 One mode of a complex compound Co(NH₃)₅Cl₃ gives three moles of ions on dissolution in water. One of the same complex reacts with two moles of AgNO₃ solution to yield two moles of AgCl(s). The structure of 7. the complex is b) $[Co(NH_3)_4Cl_2] \cdot Cl \cdot NH_3$ a) $[Co(NH_3)_3Cl_3] \cdot 2NH_3$ d) $[Co(NH_3)_5Cl]Cl_2$ c) $[Co(NH_3)_4Cl]Cl_2 \cdot NH_3$

Page | 95

113 8.	C ₆ H ₆ is a very good indus	trial solvent for:		
	a) Oil	b) Fat	c) Rubber	d) All of these
113 9.	Salol is used as:			
	a) Antiseptic	b) Antipyretic	c) Both (a) and (b)	d) None of these
114	Presence of nitro gp. in be	enzene ring:		
0.				
	a) Deactivates the ring for	$r S_E$ reaction		
	b) Activates the ring for S	_E reactions		
	c) Renders the ring basic			
	d) Deactivates the ring for	r S _N reaction		
114	Which of the following con	mplexes will show geometr	rical as well as optical isom	erism? (en =ethylene
1.	diamine)			
	a) $[Pt(NH_3)_2Cl_2]$	b) $[Pt(NH_3)_2Cl_4]$	c) $[Pt(en)_3]^{4+}$	d) $[Pt(en)_2Cl_2]$
114	The huge number of organ	nic compounds is due to the	e fact that	
2.		-		
	a) Tetravalency of carbon	L	b) Carbon possesses prop	erty of catenation
	c) Carbon compounds exh	nibits polymerisation	d) Both (b) and (c)	
114	When nitrobenzene is tre	ated with Br ₂ in presence of	of FeBr ₃ , the major product	formed is <i>m</i> -
3.	bromonitrobenzene. State	ements which are related to	o obtain the <i>m</i> -isomer are:	
	a) The relative electron de	ensity on <i>meta</i> carbon is m	ore than that of <i>ortho</i> and	para positions
	b) Loss of aromaticity wh	en Br ⁺ attacks at the <i>ortho</i>	and <i>para</i> positions and no	t at <i>meta</i> position
	c) Easier loss of H ⁺ to reg	ain aromaticity from the m	eta position than from <i>orth</i>	to and para positions
	d) None of the above	, j	•	
114	Which one of the followin	g compounds when dissolv	ved in water, gives a solutio	n with pH more than 7?
4.			5	-
	a) C ₆ H ₅ NH ₂	b) C ₆ H ₅ OH	c) C ₂ H ₅ OH	d) CH ₃ COCH ₃
114	Formula of ferrocene is:			
5.				
	a) $[Fe(CN)_6]^{4-}$	b) $[Fe(CN)_6]^{3+}$	c) $[Fe(CO)_5]$	d) $[(C_6H_5)_2Fe]$
114	What is the EAN of nickel	in $Ni(CO)_4$?		
6.				
	a) 38	b) 30	c) 36	d) 32
114	One mole of the complex of	compound Co(NH ₃)5Cl ₃ , gi	ves 3 moles of ions on disso	olution in water . One mole
7.	of the same complex react	ts with two moles of AgNO ₃	solution to yield two moles	s of AgCl(<i>s</i>). The structure
	of the complex is			
	a) [Co(NH ₃) ₅ Cl]Cl ₂		b) [Co(NH ₃) ₃ Cl ₂]. 2NH ₃	
	c) $[Co(NH_3)_4Cl_2]Cl.NH_3$		d) $[Co(NH_3)_4Cl]Cl_2.NH_3$	
114	Which one of the followin	g has largest number of iso	omers?	
8.	(<i>R</i> =alkyl group, en=ethyl	enediamine)		
	a) $[Ru(NH_3)_4Cl_2]^+$	b) $[Co(NH_3)_5Cl]^{2+}$	c) $[Ir(PR_3)_2H(CO)]^{2+}$	d) $[CO(en)_2Cl_2]^+$
114	Which complex is likely to	show optical activity?		
9.				
	a) Trans- $[Co(NH_3)_4Cl_2]^+$			
	b) $[Cr(H_2O)_6]^{3+}$			
	c) Cis- $[Co(NH_3)_2(en)_2]^{3+}$	-		
	d) Trans- $[Co(NH_3)_2(en)_2]$,] ³⁺		
115	A square planar complex	is formed by hybridization	of which atomic orbitals?	
0.	• • •			

	a) s, p_x, p_y, d_{yz}	b) $s, p_x, p_y, d_{x^2 - y^2}$	$-y^2$ c) s, p_x, p_y, d_{z^2} d) s, p_x, p_y						
115	The IUPAC name of the co	mpound							
1.	$CH_2 - CH - CH - CH_2COCl$ is								
	COCI COCI COCI								
	a) 1, 2, 3, 4-butanetetrach	lorocarbonyl	b) 1, 2, 3, 4-butanetetrachloroformyl						
	c) 1, 2, 4-butanetricarbox	ylic acid	d) None of the above						
115	Nitrobenzene can be prep	ared from benzene by usin	g a mixture of conc. HNO ₃ a	and conc. H ₂ SO ₄ . In the					
2.	nitrating mixture HNO ₃ ac	cts as a:							
	a) Base	b) Acid	c) Reducing agent	d) Catalyst					
115	In the compound lithium t	etrahydroaluminate, the li	gand is						
3.									
	a) H	b) H+	c) H ⁻	d) None of these					

9.COORDINATION COMPOUNDS

						: ANS	W	ER K	EY	:					
1)	b	2)	b	3)	С	4)	С	189)	d	190)	b	191)	b	192)	а
5)	b	6)	b	7)	С	8)	a	193)	d	194)	d	195)	а	196)	d
9)	С	10)	b	11)	С	12)	С	197)	b	198)	b	199)	С	200)	С
13)	d	14)	d	15)	С	16)	С	201)	b	202)	b	203)	d	204)	а
17)	b	18)	d	19)	b	20)	b	205)	b	206)	d	207)	d	208)	С
21)	а	22)	С	23)	d	24)	d	209)	b	210)	С	211)	С	212)	b
25)	d	26)	d	27)	d	28)	d	213)	С	214)	С	215)	b	216)	а
29)	b	30)	а	31)	d	32)	d	217)	а	218)	d	219)	b	220)	а
33)	d	34)	С	35)	а	36)	b	221)	d	222)	С	223)	С	224)	d
37)	d	38)	С	39)	С	40)	d	225)	а	226)	b	227)	С	228)	С
41)	а	42)	С	43)	С	44)	d	229)	b	230)	d	231)	С	232)	а
45)	b	46)	d	47)	b	48)	d	233)	b	234)	b	235)	d	236)	d
49)	b	50)	d	51)	d	52)	d	237)	b	238)	d	239)	а	240)	b
53)	а	54)	b	55)	b	56)	С	241)	а	242)	а	243)	b	244)	b
57)	а	58)	С	59)	а	60)	b	245)	а	246)	С	247)	b	248)	а
61)	С	62)	С	63)	а	64)	d	249)	С	250)	d	251)	d	252)	С
65)	С	66)	d	67)	С	68)	a	253)	С	254)	а	255)	а	256)	b
69)	d	70)	d	71)	С	72)	a	257)	b	258)	С	259)	d	260)	d
73)	а	74)	b	75)	d	76)	b	261)	d	262)	d	263)	С	264)	а
77)	С	78)	b	79)	С	80)	d	265)	b	266)	d	267)	b	268)	b
81)	d	82)	d	83)	С	84)	d	269)	b	270)	С	271)	d	272)	а
85)	b	86)	b	87)	С	88)	С	273)	d	274)	b	275)	С	276)	d
89)	d	90)	а	91)	С	92)	а	277)	d	278)	С	279)	С	280)	b
93)	С	94)	b	95)	а	96)	С	281)	а	282)	С	283)	b	284)	b
97)	b	98)	С	99)	b	100)	С	285)	b	286)	С	287)	b	288)	d
101)	d	102)	С	103)	d	104)	b	289)	С	290)	b	291)	d	292)	b
105)	d	106)	а	107)	b	108)	С	293)	b	294)	С	295)	С	296)	а
109)	а	110)	а	111)	b	112)	С	297)	С	298)	b	299)	d	300)	b
113)	b	114)	а	115)	d	116)	С	301)	а	302)	b	303)	b	304)	b
117)	С	118)	а	119)	b	120)	b	305)	а	306)	b	307)	b	308)	b
121)	а	122)	d	123)	d	124)	d	309)	b	310)	С	311)	b	312)	С
125)	d	126)	b	127)	а	128)	d	313)	С	314)	а	315)	а	316)	С
129)	b	130)	С	131)	d	132)	b	317)	b	318)	b	319)	d	320)	d
133)	С	134)	d	135)	d	136)	d	321)	b	322)	d	323)	d	324)	b
137)	С	138)	d	139)	b	140)	a	325)	d	326)	С	327)	b	328)	d
141)	b	142)	a	143)	a	144)	С	329)	b	330)	d	331)	d	332)	a
145)	а	146)	d	147)	d	148)	a	333)	d	334)	C	335)	b	336)	d
149)	a	150)	С	151)	а	152)	b	337)	d	338)	d	339)	b	340)	d
153)	b	154)	C	155)	a	156)	b	341)	b	342)	С	343)	а	344)	C
157)	d	158)	b	159)	b	160)	С	345)	b	346)	C	347)	а	348)	b
161)	b	162)	С	163)	d	164)	a	349)	c	350)	b	351)	a	352)	b
165)	a	166)	a	167)	b	168)	b	353)	d	354)	b	355)	b	356)	d
169)	b	170)	b	171)	С	172)	b	357)	b	358)	d	359)	d	360)	d
173)	С	174)	a	175)	С	176)	C	361)	d	362)	b	363)	b	364)	a
177)	С	178)	b	179)	а	180)	b	365)	а	366)	a	367)	С	368)	d
181)	C	182)	b	183)	а	184)	b	369)	a	370)	d	371)	С	372)	а
185)	b	186)	d	187)	С	188)	d	373)	d	374)	d	375)	С	376)	С

377)	С	378)	а	379)	d	380) c	581)	d	582)	b	583)	С	584)	d
381)	d	382)	а	383)	d	384) c	585)	b	586)	С	587)	b	588)	d
385)	d	386)	С	387)	а	388) c	589)	а	590)	С	591)	b	592)	С
389)	с	390)	С	391)	b	392) a	593)	С	594)	d	595)	b	596)	b
393)	с	394)	а	395)	С	396) d	597)	С	598)	а	599)	b	600)	С
397)	а	398)	d	399)	b	400) d	601)	а	602)	b	603)	d	604)	b
401)	а	402)	b	403)	с	404) a	605)	d	606)	d	607)	d	608)	b
405)	b	406)	d	407)	b	408) b	609)	с	610)	d	611)	b	612)	b
409)	а	410)	b	411)	С	412) d	613)	а	614)	С	615)	а	616)	а
413)	b	414)	а	, 415)	а	416) b	617)	d	618)	С	619)	С	620)	С
417)	d	418)	c	419)	c	420) c	621)	c	622)	c	623)	a	624)	C
421)	c	422)	a	423)	c	424) b	625)	a	626)	h	627)	d	628)	c
425)	d	426)	c	427)	a	428) h	629)	a	6 <u>3</u> 0)	c	631)	a	6 <u>3</u> 2)	h
429)	d	430)	d	431)	a	432) a	633)	u C	634)	с h	635)	a	636)	2
433)	u C	434)	c	435)	a	436) h	637)	c	638)	C	639)	u C	640)	h
437)	נ ה	438)	с h	430)	a n	430) b	641)	d d	642)	L h	643)	с 2	644)	C
437)	a h	430)	U C	437)	a h	440) D	64E)	u	646)	D O	647)	a	649)	L d
441) 445)	D	442J	C	443J 447)	D	444) u	045J	C	040J 650)	a	04/J (51)	C	040J 652)	u d
445J	a L	440J 450)	a a	44/J 451)	a h	440J a	049J	a d	050J	C	051J (55)	a a	052J	u d
449J	D	450J	a	451J	D	452) C	653J	a L	654J	a	055J	a	656J	a
453)	С	454J	a	455)	а	456) a	657)	D	658)	а	659)	D	660)	C
457)	а	458)	a	459)	C	460) c	661)	d	662)	С	663)	b	664)	b
461)	С	462)	b	463)	b	464) d	665)	С	666)	С	667)	С	668)	С
465)	а	466)	b	467)	а	468) d	669)	d	670)	a	671)	C	672)	а
469)	С	470)	С	471)	С	472) d	673)	а	674)	b	675)	b	676)	a
473)	d	474)	С	475)	b	476) a	677)	С	678)	С	679)	С	680)	b
477)	b	478)	b	479)	С	480) c	681)	а	682)	а	683)	С	684)	b
481)	b	482)	a	483)	а	484) c	685)	С	686)	d	687)	b	688)	b
485)	а	486)	а	487)	d	488) c	689)	b	690)	b	691)	а	692)	С
489)	b	490)	а	491)	С	492) a	693)	а	694)	а	695)	d	696)	а
493)	d	494)	d	495)	а	496) a	697)	а	698)	b	699)	b	700)	d
497)	С	498)	С	499)	а	500) d	701)	d	702)	С	703)	b	704)	а
501)	а	502)	d	503)	b	504) d	705)	d	706)	d	707)	С	708)	d
505)	b	506)	d	507)	а	508) d	709)	b	710)	b	711)	b	712)	С
509)	b	510)	d	511)	b	512) a	713)	а	714)	b	715)	d	716)	d
513)	d	514)	С	515)	b	516) a	717)	С	718)	b	719)	С	720)	С
517)	а	518)	С	519)	а	520) a	721)	b	722)	С	723)	С	724)	b
521)	b	522)	С	523)	d	524) a	725)	а	726)	С	727)	С	728)	b
525)	а	526)	d	527)	d	528) d	729)	b	730)	С	731)	а	732)	С
529)	d	530)	С	531)	а	532) b	733)	b	734)	а	735)	а	736)	b
533)	b	534)	а	535)	b	536) d	737)	b	738)	а	739)	b	740)	d
537)	а	538)	а	539)	b	540) c	741)	b	742)	d	743)	а	744)	d
541)	C	542)	d	543)	а	544) b	745)	d	746)	d	747)	b	, 748)	С
545)	d	546)	с	547)	d	548) c	749)	c	750)	C	751)	h	752)	a
549)	a	550)	b	551)	h	552) b	753)	b	754)	h	755)	d	756)	c
553)	d	554)	h	555)	a	556) d	757)	h	758)	h	759)	h	760)	h
557)	a	557)	ď	5555	r r	560) u	761)	d d	762)	h	763)	2	764)	ь И
561)	и 2	550) 562)	u h	562)	c c	564)	765)	u r	766)	2	767)	u h	769)	u r
565)	u C	566)	C	567)	c c	569) a	760)	h	770)	d d	771)	2	772)	с h
560)	c	5005	c c	5075	с h	5005 a 5721 a	7721	U S	774)	u d	775)	a A	776)	h
509J 5791	ι h	370J 874)	c c	3/1J 575)	u k	574j u	113J 777)	d L	//4J 770)	u	770) 770)	u h	770J	u k
3/3J 577)	U	3/4J 570)	C h	5/5J E70)	ս ւ	5/0J a	///J	ט ג	//ðj 703)	C	//YJ 702)	U	70UJ 70A)	u ג
5//J	a	578J	D	579)	D	580J b	/81)	a	782)	а	783)	C	784J	a

785)	С	786)	b	787)	а	788) c	973)	b	974)	С	975)	d 976) d	С
789)	b	790)	С	791)	С	792) c	977)	a	978)	d	979)	b 980) (d
793)	b	794)	b	795)	С	796) d	981)	а	982)	b	983)	b 984) l	b
797)	b	798)	d	799)	b	800) d	985)	d	986)	С	987)	d 988) a	a
801)	С	802)	b	803)	С	804) a	989)	С	990)	d	991)	a 992) a	а
805)	С	806)	d	807)	а	808) c	993)	d	994)	b	995)	c 996) (С
809)	b	810)	d	811)	d	812) b	997)	а	998)	b	999)	c 1000) (С
813)	b	814)	b	815)	С	816) b	1001)	С	1002]) C	1003)	c 1004) l	b
817)	а	818)	d	819)	С	820) a	1005)	b	1006]) b	1007)	c 1008) (С
821)	b	822)	С	823)	С	824) a	1009)	С	1010]) b	1011)	a 1012) (d
825)	а	826)	d	827)	С	828) d	1013)	b	1014]	a	1015)	d 1016) (d
829)	d	830)	b	831)	а	832) b	1017)	а	1018]) b	1019)	a 1020) a	a
833)	а	834)	С	835)	b	836) d	1021)	а	1022	a	1023)	c 1024)	d
837)	d	838)	а	839)	d	840) c	1025)	а	1026) d	1027)	a 1028) (d
841)	С	842)	b	843)	b	844) c	1029)	С	1030]	a	1031)	b 1032) o	d
845)	b	846)	b	847)	а	848) d	1033)	а	1034	a	1035)	a 1036) (С
849)	а	850)	b	851)	b	852) c	1037)	а	1038) d	1039)	b 1040) a	a
853)	С	854)	b	855)	а	856) a	1041)	С	1042	a	1043)	d 1044) a	a
857)	d	858)	а	859)	b	860) b	1045)	d	1046	b	1047)	d 1048)	C
861)	а	862)	С	863)	d	864) b	1049)	d	1050	b	1051)	c 1052) a	a
865)	а	866)	d	867)	d	868) c	1053)	С	1054) C	1055)	b 1056) a	a
869)	b	870)	d	871)	С	872) d	1057)	d	1058	b	1059)	d 1060) a	а
873)	С	874)	а	875)	b	876) b	1061)	d	1062) d	1063)	a 1064) (d
877)	b	878)	а	879)	b	880) d	1065)	b	1066	a	1067)	a 1068) o	C
881)	а	882)	d	883)	b	884) b	1069)	С	1070) d	1071)	d 1072)	C
885)	b	886)	с	887)	а	888) d	1073)	d	1074	a	1075)	d 1076) a	а
889)	b	890)	d	891)	а	892) a	1077)	d	1078	a	1079)	a 1080) o	C
893)	а	894)	b	895)	b	896) a	1081)	С	1082) d	1083)	d 1084) a	а
897)	а	898)	b	899)	b	900) d	1085)	d	1086) d	1087)	b 1088)	d
901)	с	902)	d	903)	а	904) a	1089)	С	1090	a	1091)	c 1092) o	C
905)	b	906)	с	907)	С	908) c	1093)	а	1094) C	1095)	b 1096) o	d
909)	а	910)	d	911)	d	912) c	1097)	С	1098	с	1099)	b 1100) o	d
913)	с	914)	с	915)	b	916) b	1101)	а	1102	a	1103)	d 1104)	С
917)	а	918)	d	919)	b	920) d	1105)	С	1106) C	1107)	c 1108)	C
921)	а	922)	с	923)	d	924) b	1109)	а	1110	b	1111)	d 1112) a	а
925)	а	926)	с	927)	b	928) d	1113)	а	1114	b	1115)	b 1116) a	а
929)	b	930)	d	931)	d	932) d	1117)	С	1118) d	1119)	a 1120) a	а
933)	a	934)	с	935)	С	936) b	, 1121)	d	1122) c	1123)	b 1124)	С
937)	d	938)	a	939)	С	940) b	, 1125)	С	1126) C	1127)	c 1128)	d
ý 941)	d	942)	d	943)	b	944) c	1129)	d	1130) c	1131)	c 1132)	b
945)	b	946)	a	947)	а	948) a	1133)	a	1134) C	1135)	a 1136) (d
949)	b	950)	d	951)	b	952) c	1137)	d	1138	d	1139)	a 1140) a	a
953)	b	954)	а	955)	а	956) c	1141)	d	1142	d	1143)	a 1144) a	a
957)	a	958)	a	959)	d	960) c	1145)	d	1146) c	1147)	a 1148) (d
961)	С	962)	С	963)	a	964) a	1149)	С	1150	b	1151)	a 1152) a	a
965)	С	966)	d	967)	d	968) d	1153)	c		, _			-
9691	b	970)	a	971)	b	972) a		-					
,	~		-		~	, u							

: HINTS AND SOLUTIONS :

(b) Follow IUPAC rules.

(b)

$$2CuSO_4 + 10KCN$$

 $\rightarrow 2K_3Cu(CN)_4 + (CN)_2 + 2K_2SO_4$

3 (c)

1

2

4

Follow definition of hydration isomerism.

(c) Urea, $NH_2 - C - NH_2$ || 0 shows tautomerism as $NH_2 - C = NH$

$$C_6H_5ONa + RX \rightarrow C_6H_5OR$$
 (Anisole)

Diamagnetic substances have all paired electron. 1. $[Fe(CN)_6]^{3-}$ Oxidation state of Fe=+3 Fe³⁺ 3d 4s 4n

 d^2sp^3 - hybridisation

It has one unpaired electron and is paramagnetic.

It has two unpaired electrons and is paramagnetic

It has no unpaired electron and is diamagnetic

4.
$$[MnCl_4]^{2-}$$
 Oxidation state of $Mn = +2$
 Mn^{2+} 1 1 1 1 1 As Ap
 sp^3 - hybridisation

 \therefore It is paramagnetic as it has five unpaired electrons.

8 **(a)**

CN⁻ is strongest field ligand. The spectrochemical series order is:

$$\begin{split} & {\rm I}^- < B{\rm r}^- < C{\rm I}^- < {\rm F}^- < [{\rm C}_2{\rm O}_4]^{2-} < {\rm H}_2{\rm O} < py < \\ & N{\rm H}_3 < en < {\rm NO}_2^- < C{\rm N}^- < C{\rm O}. \end{split}$$

10 **(b)**

[Co(NH₃)₅ ONO]²⁺ Penta ammine nitrito cobalt (III) ion.

11 **(c)**

In $[Ag(NH_3)_2]Cl$, Ag^+ contains d^{10} configuration. As others contain unpaired electrons

12 **(c)**

 CH_3 gp., an *o*-and *p*-directing group attached in nucleus activates the ring for S_E reactions. The presence of *m*-directing groups in benzene nucleous simply decreases electron density at *o*and *p*-, whereas no change in electron density at *m*-position is noticed.

On the contrary *o*-and *p*-directing groups in nucleus increases the electron density at *o*- and *p*-position.

Thus, presence of o- and p-directing groups provide seats for S_E reactions or activates the ring, whereas presence of m-directing groups does not activate the ring and thus, deactivate the ring for S_E reactions

13 **(d)**

In both $[Co(NH_3)_6]^{3+}$ and $[CoF_6]^{3+}$, Co is present as Co^{3+} .

Thus, the electronic configuration of Co is ${}_{27}\text{Co}=[\text{Ar}] 3d^7, 4s^2$

 $_{27}\text{Co}^{3+}=[\text{Ar}]3d^6, 4s^0$

In case of $[Co(NH_3)_6]^{3+}$, NH₃ is a strong field ligand, so pairing of electrons in 3*d*-orbital takes place.

$$_{27}$$
Co³⁺=[Ar]3d⁶, 4s⁰

(no unpaired electron)

In $[CoF_6]^{3+}$, F is a weak field ligand, thus doesn't cause pairing. Hence,

 $_{27}\text{Co}^{3+}=[\text{Ar}]3d^6, 4s^0$

18 **(d)**

It is a test for primary amines. No doubt 2,4dimethylaniline is also primary amine but it does not give test due to steric hindrance.

19 **(b)**

 CN^{-} is strong field ligand because it is an example of pseudohalide. Pseudohalide ions are stronger coordinating ligands and they have the ability to form σ bond and π -bond.

20 **(b)**

Higher the charge and smaller the size of ligand, more stable is the complex formed

21 (a)

Trinitrobenzene is an explosive compound formed during nitration of C_6H_6 with fuming HNO₃.

22 **(c)**

A ligand is a species that is capable of donating an electron pair(s) to the central metal ion. The substances which are capable of donating an electron pair are called Lewis base, so a ligand is also a Lewis base.

23 **(d)**

In Ni(CO)₄, Ni is in zero oxidation state. It has tetrahedral geometry but is diamagnetic. In [Ni (CN)₄]^{2–}, Ni is in +2 oxidation state. It is dsp^2 hybridised and have square planar shape. The compound is diamagnetic.

24 **(d)**

 $[Co(CN)_6]^{3-}$ has d^2sp^3 -hybridisation and six *d*-electrons are paired due to strong field ligand. Thus no unpaired electron.

25 **(d)**

 $HBr \rightarrow H^+ + Br^-$

Ether reacts with acid to give protonated ether. The next step involves nucleophilic attack by halide ion with the displacement of weakly basic alcohol molecule.

26 **(d)**

Octahedral complex should have six hybridized orbitals.

27 (d)

Kolbe-Schmidt's reaction.

29 **(b)**

The pair of electron present with nitrogen will not be available to be donated as H⁺ will consume that one.

30 **(a)**

It provides maximum number of ions (five) on ionization.

31 **(d)**

Follow Vorlander's rule.

32 **(d)**

Organometallic compounds are those in which metal is linked directly with carbon. CH_3Li , methyl lithium due to the presence of metal-carbon bond, is an organometallic compound.

33 **(d)**

The directive influence order is:

$$0^- > NR_2 > NHR > NH_2 > OH > OCH_3$$

 $\approx NHCOCH_3 > CH_3 > X$

HybridisationShape dsp^2 Square planar

sp ³	Tetrahedral
sp^2	Trigonal planar

Hence, in tetrahedral complexes metal atom is sp^3 hybridised.

36 **(b)**

The number of ligands attached to the central metal ion is called the coordination number. So, coordination numbers of Fe in

 $[Fe (CN)_6]^{4-}$, $[Fe(CN)_6]^{3-}$ and $[FeCl_4]^-$ are 6, 6 and 4 respectively.

37 **(d)**

Tautomers may or may not be metamers

38 **(c)**

EAN=(Atomic number – 0. S + 2 × C. N.) Hence, EAN of Ni in $[Ni(CN)_4]^{2-} = (28 - 2 + 2 \times 4=34)$

39 **(c)**

Electron repelling nature of methoxy gp. facilitate the protonation of alcohol.

40 **(d)**

 $[Ni(Cl)_4]^{2-}$ oxidation state of Ni is +2 So, configuration of

 $Ni^{2+} = 1s^2, 2s^22p^6, 3s^23p^63d^8$

In [NiCl₄]²⁻ **1**, **1**, **1**, **1**, **1**, **X**

4p

 sp^3 - hybridisation

Thus, due to sp^3 -hybridisation of Ni²⁺ in $[NiCl_4]^{2-}$, the shape of $[NiCl_4]^{2-}$ is tetrahedral.

41 **(a)**

This is Sandmeyer's reaction.

42 **(c)**

p-nitrophenols are more acidic.

43 **(c)**

Benzoylacetonato beryllium exhibit optical isomerism as follows

44 **(d)**

Cl⁻ is a weak ligand but Cl⁻ cause the pairing of electron with large Pt²⁺ and consequently give dsp^2 hybridisation and square planar geometry.

45 **(b)**

It is a double salt; $FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O$ $\rightarrow Fe^{2+} + 2SO_4^{2-} + 2NH_4^+$

46 **(d)**

Potassium ferrocyanide $K_4[Fe(CN)_6]$ will ionize as

 $K_4[Fe(CN)_6] \rightleftharpoons 4K^+ + [Fe(CN)_6]^{4-}$ So, it will give five ions in solution

47 **(b)**

cis-platin is not a organimetallic compound because it has no carbon- metal bonding

48 **(d)**

Follow mechanism of Reimer-Tiemann reaction.

49 **(b)**

When n =even number then for two identical ends, number of geometrical isomers $-2^{n-1} + 2^{n/2-1}$

$$= 2^{n} + 2^{n}$$

 $= 2^1 + 2^0$

= 3

50 **(d)**

The characteristics of coordination number.

51 **(d)**

Aliphatic amines are more basic than aromatic amines as the later are more stablised due to resonance.

52 **(d)**

Aromatic hydrocarbons are called arenes with general formula $C_n H_{2n-6y}$, where $n \not< 6$ and y is no. of cyclic rings. Benzene has one ring and n = 6, *i. e.*, no. of carbon atoms. Thus, general formula is $C_6 H_6$. All other aromatic hydrocarbons are derivative of benzene.

Al $(OC_2H_5)_3$ doesn't have metal-carbon bond.(*i.e.*, it is not an example of organometallic compound). 60

54 **(b)**

In $[Co(en)_2Cl_2]$, four isomers are possible, two geometrical isomers and two optical isomers.

Now, *cis*-isomer also show optical isomerism. *Cis* isomer exists in enantiomeric form as it is unsymmetrical.

55 **(b)**

A carbon atom which is attached by four different group is called an asymmetric carbon atom or chiral centre

 $HOOC(CHOH)_2COOH$ has two asymmetric carbon atom

56 **(c)**

Each π -electron is delocalised on each C-atom. (a)

An orange-red dye is formed with $C_6H_5NH_2$.

59 **(a)**

57

Thiophene reacts more readily with H_2SO_4 than C_6H_6 giving thiophene sulphonic acid which is water soluble and thus, can be separated from C_6H_6 . This can not be made by fractional

distillation because thiophene and C_6H_6 both have nearly same b.p.

(b)

As cobalt is present as CO^{3+} and coordination number of cobalt is 6, the molecular formula of compound should be $CoCl_3$. yNH_3 . Now, as it gives a total of three ions when dissolved in water, its structural formula must be $[CoCl(NH_3)_5]Cl_2$

 $[CoCl(NH_3)_5]Cl_2 \rightleftharpoons [CoCl(NH_3)_5]^{2+} + 2Cl^-$ Thus, only one Cl⁻ ion is satisfying both primary and secondary valency of Co³⁺ in this compound.

61 (c)

The structure of alcohol is

2,4-dimethyl-3-(1-methyl) ethyl pentan-3-ol

62 **(c)**

The transition metal cations during complex formation show *d*-*d* transition to give coloured ions.

63 **(a)**

 $-CH_3$ gp. Shows +ve inductive effect and -OH gp. shows resonance effect which increases the electron density on C_6H_6 ring.

64 **(d)**

It produces least number of ions in solution.

66 **(d)**

The process is known as aromatisation or cyclization.

67 **(c)**

neo-pentane

The structure shows that all the hydrogen atoms are attached to primary C-atoms hence these are primary hydrogens

68 **(a)**

Follow IUPAC rules.

69 **(d)**

 H_3C H_3C O O_2 H_2C O_2

 H_3C has no α -hydrogen. Hence, it will not show tautomerism

70 (d)

Both CN^- and NO_2^- are strong field ligands.

71 **(c)**

Prussian blue is $Fe_4^{III}[Fe^{II}(CN)_6]_3$ or $M^IFe^{III}[Fe^{II}(CN)_6]$, where M^I is Na, K, Rb, Li, Cs.

73 **(a)**

 Co^{3+} , Fe³⁺ and Cr³⁺ have 6*d*-electrons, 5*d*electrons and 3*d*-electrons respectively. Mn⁷⁺ has no *d*-electron.

74 **(b)**

All complexes of Co(III) have six ligands or coordination number of six and thus, are octahedral in shape.

75 **(d)**

NH₃ is weak as well as strong field ligand.

77 **(c)**

[Pt(NH₃)₃Br(NO₂)Cl]Cl Triamminebromochloronitro platinum (IV) chloride.

78 **(b)**

Both the carbon attached to 0 are part of aromatic system.

79 **(c)**

Phenol is weak acid.

80 **(d)**

[EDTA]^{4–} is a hexadentate ligand because it donates six pairs of electrons to central metal atom in a complex.

82 **(d)**

Ferrocene of bi-(cyclopentadienyl) iron is an orange-crystalline solid. It is $Fe(\eta^5 - C_5H_5)_2$. The structure of ferrocene is regarded as sandwiche structure, in which the iron atom is sandwiched between two C_5H_5 organic rings. The planes of the rings are parallel so that all the carbon atoms are at the same distance from the iron atom. It is a π -bonded complex. Its structure is as

83 **(c)**

 $[Cu(NH_3)_4]SO_4$ Oxidation number of $Cu \Rightarrow x+4 \times 0 - 2 = 0$

$$x-2=0$$

$$x=+2$$
0.N of Cu=+2
0.N of pt in [Pt(NH₃)₂Cl₂]
$$x+2 \times 0 + 2 \times -1 = 0$$

$$x-2=0$$

$$x=+2$$
0.N of Ni in [Ni(CO)₄]
$$x+4 \times 0=0$$

$$x=0$$
0.N of Fe in K₃[Fe(CN)₆]
$$3 \times (+1) + x + 6 \times -1=0$$

$$3 + x - 6=0$$

$$x=+3$$

 \therefore [Ni(CO)₄] is zero valent compound.

84 **(d)**

The compounds given have following structures $$\mathsf{C}\mathsf{H}_3$$

(b)
$$CH_3 + C - CH_2 - CH - CH_3$$

(c)
$${}^{6}_{CH_3}$$
 ${}^{5}_{CH_2}$ ${}^{4}_{CH_2}$ ${}^{3}_{CH_2}$ ${}^{2}_{CH_2}$ ${}^{1}_{CH_3}$ ${}^{1}_{CH_3}$ ${}^{1}_{CH_3}$ ${}^{1}_{CH_3}$

$$(d)CH_{3} - CH_{3} CH_{3}
(d)CH_{3} - C - CH - CH_{2}CH_{2}CH_{3}
CH_{2} CH_{2} CH_{3} CH_{3}$$

Out of these the (a) and (b) contain 5 C-atoms in their longest possible chains hence, these could not be the correct options for 2, 2, 3-trimethylhexane. Out of (c) and (d), the (c) is 2, 2, 5-trimethyl hexane and (d) is 2, 3, 3-trimethyl hexane

85 **(b)**

Phenoxy benzene is diphenyl ether.

86 **(b)**

Ziegler-Natta catalyst is an organometallic compound containing titanium. It is $TiCl_4$ and $(C_2H_5)_3$ Al. It is used in the preparation of polyethylene.

$$nCH_2 = CH_2 \xrightarrow{330-350 \text{ K}, 1-2 \text{ atm}}_{\text{TiCl}_4 + (C_2H_5)_3 \text{Al}} (-CH_2 - CH_2 -)_n$$

polyethylene

87 **(c)**

Al₂(C₂H₅)₆ + TiCl₄ is Zeigler Natta catalyst. 88 **(c)**

Transition metals have empty or half filled *d*-orbitals to accept electron pairs.

89 **(d)**

The number of atom of the ligand that are directly bound to the central metal atom or ion by coordinate bonds is known as the coordinate number of the metal or ion. It is actually the number of chemical bonds which the ligand form with the central metal atom or ion

90 **(a)**

Acyl chlorides or acid amhydrides are used in acylation.

92 **(a)**

Zeise's salt, $K[PtCl_3(C_2H_4)]$ is a π -bonded organometallic compound. Its structure is as

95 **(a)**

Follow IUPAC rules.

96 **(c)**

```
Since the complexes
```

 $[PtCl_2(NH_3)_4]Br_2$ and $[PtBr_2(NH_3)4Cl_2$ have the same molecular formula but on ionisation they give different ions, they exhibit ionisation isomerism.

 $[PtCl_2(NH_3)_4]Br_2 \rightleftharpoons [PtCl_2(NH_3)_4]^{2+} + 2Br^ [PtBr_2(NH_3)_4]Cl_2 \rightleftharpoons [PtBr_2(NH_3)_4]^{2+} + 2Cl^-$

97 **(b)**

 $\mathrm{Ni}^{2+} + 4\mathrm{CN}^{-} \rightarrow [\mathrm{Ni}(\mathrm{CN})_4]^{2-}$

Here Ni^{2+} has d^8 -configuration with CN^- as strong ligand.

 d^8 -configuration in strong ligand field gives dsp^2 hybridisation, hence square planar geometry.

 $\mathrm{Ni}^{2+} + 4\mathrm{Cl}^{-} \rightarrow [\mathrm{Ni}\mathrm{Cl}_4]^{2-}$

Here Ni^{2+} has d^{8-} configuration with CN^{-} as weak ligand.

 d^{8} -configuration in weak ligand field gives sp^{3} hybridisation, hence tetrahedral geometry. Ni²⁺ with H₂O forms [Ni(H₂O)₆]²⁺ complex and H₂O is a weak ligand.

Therefore, $[Ni(H_2O)_6]^{2+}$ has octahedral geometry. **(c)**

Benzene ring is activates for S_E reaction by the +Ieffect as well as hyperconjugation of CH₃ group -Cl deactivates as -I effect predominates over +M effect. -NO₂ group deactivates ring by -Ieffect and -M effect.

100 **(c)**

98

Alcohols are neutral.

101 **(d)**

—OH is *o*-and *p*-directing gp.

102 **(c)**

 $[Fe(\eta^5 - C_2H_5)_2]$ is the organometallic compound which has σ and π bonds present

103 **(d)**

BHC is $C_6H_6Cl_6$ a saturated cyclic molecule.

104 **(b)**

The complexes can be written as follows $[Co(NH_3)_6]Cl_3, [Co(NH_3)_5Cl]Cl_2, [Co(NH_3)_4Cl_4]Cl$ Hence, no. of primary valencies are 3, 2 and 1 respectively

105 **(d)**

 $[Cr(NH_3)_5 NO_2]Cl_2$ compound shows linkage isomerism because it has NO_2 group which is ambidentate ligand.

It can be linked *via* N atom $(-NO_2)$ or *via* O atom (-ONO) to form two different isomers.

112 (c)

[*M*(*abcd*)] complex is square planar so will have three geometrical isomers.

127 (a)

$\begin{vmatrix} a \\ M \\ d \end{vmatrix}$, $\begin{vmatrix} a \\ M \\ d \end{vmatrix}$, $\begin{vmatrix} a \\ M \\ d \end{vmatrix}$, $\begin{vmatrix} a \\ M \\ d \end{vmatrix}$

113 (b)

This is carbylamines reaction.

114 (a)

An experimental fact depending upon the ability of the ligand to cause crystal field splitting (i.e., strength of ligand).

115 (d)

 $K_3[Fe(CN)_5NO]$

Potassium pentacyanonitrosyl ferrate (II).

116 (c)

The *d*-*d* excitation is responsible for colour of $Ti(H_2O)_6^{3+}$ which has one unpaired electron.

117 (c)

The oxidation number of Fe in K_4 [Fe(CN)₆]is +2.

119 (b)

Both Ag and Au are extracted by complex formation method.

120 **(b)**

 $EAN = 24 - 3 + 2 \times (6) = 33.$

121 (a)

According to Werner's theory, only those ions are precipitated which are attached to the metal atoms with ionic bonds and are present outside the coordination sphere.

 $[Pt(NH_3)_6]Cl_4 \rightleftharpoons Pt(NH_3)_6^{4+} + 4Cl^{-}$

122 (d)

It is a fact.

123 (d)

In acidic solution, proton coordinate with ammonia to form NH₄⁺. NH₄⁺ does not act as ligand because nitrogen atom has no lone pair of electrons which it can donate to metal atom

124 (d)

Disubstituted cyclic compounds and disubstituted alkenes show geometrical isomerism

125 (d)

 $Ag(NH_3)_2^+$ has sp-hybridization and linear complex.

The replacement of Cl is due to the formation of stable benzyl carbocation. Alternatively Cl is present in side chain and thus replaced whereas Br is attached in benzene nucleus.

(iii) Also $[Co(NH_3)_4(NO_2)_2]$ Cl has its ionisation isomer as $[Co(NH_3)_4NO_2Cl]NO_2$.

135 (d)

Complex	Hybridization
$[Ni(CO)_4]$	<i>sp</i> ³
$[Ni(CO)_4]^{2-}$	dsp ²
[CoF ₆] ³⁻	sp^3d^2
$[Fe(CN)_{6}]^{3-}$	d^2sp^3

136 (d)

2, 4, 6-trinitrophenol is known as picric acid, an explosive.

137 **(c)**

It is a fact.

139 **(b)**

OH gp., an *o*- and *p*-directing group activates ring for reactions. The presence of *m*-directing groups in benzene nucleous simply decreases electron density at *o*- and *p*-, whereas no change in electron density at *m*-position is noticed.

On the contrary *o*-and *p*-directing groups in nucleus increases the electron density at *o*- and *p*-position.

Thus, presence of o- and p-directing groups provide seats for S_E reactions or activates the ring, whereas presence of m-directing groups does not activate the ring and thus, deactivate the ring for S_E reactions

140 **(a)**

If magnetic moment is zero the species should not have unpaired electrons.

141 **(b)**

Chlorophyll is a complex having Mg-atom.

142 **(a)**

Primary valency of metal is satisfied only by the anion. It is simply ionic valency. While secondary valency is satisfied by ligands (which can give a lone pair of electron). The ligands satisfying secondary valency, are always written in coordination sphere. This concept was given by Werner.

In K_3 [Fe(CN)₆], the CN⁻ ions satisfy both the primary as well as secondary valency of Fe³⁺ ion.

143 **(a)**

The following isomers the alkene have

(i)
$$CH_3 - CH_2 - CH = CH_2$$

(ii) $CH_3 - CH = CH - CH_3$
(iii) H_3C $C=C$ H
(iv) H_3C $C=C$ H

(v)
$$CH_3 - C = CH_2$$

145 **(a)**

According to postulates of Werner's theory for coordination compounds, metal atoms exhibit two types of valencies *i.e.*, primary valency and secondary valency. The primary valency is ionisable whereas the secondary valency is nonionisable.

146 **(d)**

 $[Fe(CN)_6]^{4-}$ is **diamagnetic** (Fe²⁺ has $3d^6$ configuration and the 6 electron pairs up in three *d*-orbitals followed by d^2sp^3 -hybridisation). $[Cr(NH_3)_6]^{3+}$ is paramagnetic (Cr³⁺ has $3d^3$ configuration. Hybridisation is d^2sp^3 . Due to 3 unpaired electrons it is paramagnetic)

 $[Cr(CO)_6: Cr(Z = 25): [Ar]^{18}4s^1, 3d^5.$ The one 4*s*-electron pairs up with five 3*d*electrons in three *d*-orbitals. This is followed by d^2sp^3 -hybridisation to give octahedral complex. No unpaired electron and hence complex is diamagnetic.

 $Fe(CO)_5$: Fe(Z = 26): $[Ar]^{18}4s^2$, $3d^6$. The six electrons in *d*-subshell pairs up in three *d*orbitals. This is followed by d^2sp^3 -hybridisation to give octahedral geometry with one vacant hybridised orbital. The resulting shape of the complex is square based pyramid. As there is no unpaired electron, the complex is **diamagnetic**.

147 (d)

A modified or extended Friedel-Crafts reaction. 148 (a)

cis[Co(en)₂Cl₂]Cl is optically active hence, it will give a pair

149 (a)

 Δ_t is roughly 4/9 times to Δ_0 .

150 (c)

Follow IUPAC rules.

151 (a)

Alkanes having less than four carbon atoms in basic chain will not show chain isomerism

152 **(b)**

3 mole of Br_2 are needed.

153 **(b)**

Diamethyl glyoxime forms a colour complex with nickel

154 (c)

 BF_4^- has sp^3 -hybridisation and tetrahedral.

155 (a)

Oxidation state of iron in haemoglobin is +2.

- 156 (b)
 - 5. Geometrical isomers have same structural formula but differ in spatial arrangement of groups.
 - 6. Different arrangement of atoms or groups in three dimensional space results in two optical isomers which are image of each other.

Therefore, number of geometrical isomers, optical isomers and total number of isomers are 2, 2 and 3 respectively.

157 (d)

Hetero aromatics show aromatic nature due to $4n + 2\pi$ electrons.

158 **(b)**

CN⁻ ligand has strong ligand field because of higher value of Δ .

159 (b)

% Enantiomeric excess

 $\frac{\text{observed specific rotation}}{\text{specific rotation of pure enantiomer}} \times 100$

Observed specific rotation $=\frac{3/4}{100} \times (+16^{\circ}) \times 100$ $= +12^{\circ}$

160 (c)

Follow IUPAC rules.

161 (b)

 $[(C_6H_5)_3P)_3RhCl]$ or $[(Ph_3P)_3RhCl]$ is a Wilkinson's catalyst, the most widely used of all catalysts for homogeneous hydrogenation.

162 (c)

Halogens attack double bond of C₆H₆ in presence

of light. In absence of light as well as in presence of only AlCl₃, S_E reactions are noticed. 163 (d) $[Pt(NH_3)_6]Cl_4$ complex gives five ions in the solution. $[Pt(NH_3)_6]Cl_4 \rightleftharpoons [Pt(NH_3)_6]^{4+} + 4Cl^-$ 164 (a) The EAN for Cu in $[Cu(NH_3)_4]^{2+}$ is 35 and not 36, the next inert gas at. No. 165 (a) $1 \times 3 + a + 6 \times (-1) = 0$, $\therefore a = +3$ 166 (a) In NaOC₂H₅, Na is attached to O-atom. 167 **(b)** In $[Mn(H_2O)_6]^{2+}$, Mn is present as Mn^{2+} or Mn (II), so its electronic configuration $=1s^2, 2s^22p^6, 3s^23p^63d^5$ 3*d* 4p1 1 4dIn $[Mn(H_2O)_6]^{2+}$, the coordination number of Mn is six, but in presence of weak field ligand, there will be no pairing of electrons in 3*d*. So, it will form high spin complex due to presence of five unpaired electron. $\ln [Mn(H_20)_6]^{2+}$ $1 \times \times \times \times \times \times \times$ unpaired electrons 170 (b) Due to aromatic nature; $C_6H_5CH_2OH$ is exception and does not burn with sooty flame. 171 (c) EDTA (Ethylenediaminetetraacetic acid) H₂CCOO >N---CH₂---N CH2COO⁻ It is H₂CCOO hexadentate (6 electron pairs) that's why for octahedral complex only one EDTA is required. 173 (c) It is Friedel-Crafts reaction. 174 (a) Resonance in phenoxide ion makes it more stable. More stable is ion less stable is phenol or more is acidic nature. 175 (c) Triethylenediamine cobalt(III) chloride is

 $[Co(NH_2CH_2CH_2NH_2)_3]Cl_3; NH_2CH_2CH_2NH_2$ is bidentate ligand and thus, coordination no. $= 3 \times 2 = 6.$ 177 (c) CO is a neutral ligand, so the oxidation state of metal in metal carbonyls is always zero. $[Ni(CO)_4]$ $x + (0 \times 4) = 0$ x=0178 (b) $\operatorname{FeCl}_3 + \operatorname{Cl}_2 \longrightarrow \operatorname{FeCl}_4^- + \operatorname{Cl}^+$ 179 (a) $[Ni(CN)_4]^{2-}$ has dsp^2 -hybridization while $[Ni(Cl_4)^{2-}]$ and $[Ni(CO_4)]$ have sp^3 -hybridization. 180 **(b)** $3C_2H_2 \xrightarrow{\Delta} C_6H_6$ 182 **(b)** Cr^{2+} , Mn^{2+} , Fe^{2+} and Ni^{2+} have 4, 5, 4 and 2 unpaired electrons respectively. 183 (a) It is a reason for the fact. 186 **(d)** 0 Ш $CH_3CH_2 - C - CH_2CH_3 \leftrightarrow$ (keto form) OH $CH_3 - CH = C - CH_2CH_3$ (enol form) 187 (c) Non-polr part C₆H₅ —shows more hydrophobic nature. 189 (d) All involve d^2sp^3 -hybridization. 191 **(b)** Aromatic amines are less basic than aliphatic amines. Also presence of electron attracting group decreases the basic character of aromatic amines. 192 (a) Follow IUPAC rules. 193 (d) All are weak field ligands and thus, give high spin complex. 194 (d) Tartaric acid is

$$HO - C - C - COOH$$
$$HO - C - C - COOH$$
$$HO - C - C - COOH$$
$$H - C - C - COOH$$
$$H - C - C - COOH$$

2,3-dihydroxybutane-1,4-dioic acid

195 **(a)**

 β_4 for $[ML_4]^{2-}$ can be written as $\beta_4 = \frac{[ML_4]^{2-}}{[M^{2+}][L^-]^4} = 2.5 \times 10^{13}$

The overall formation equilibrium constant can be written as

$$k = \frac{[ML_4]^{2^-}}{[M^{2^+}][L^{-1}]^4}$$

$$k = \beta_4 = 2.5 \times 10^{13}$$

 $x+4 \times 0+2(-1)=+1$

196 **(d)**

 $[Cr(NH_3)_4Cl_2]^+$ Let oxidation state of Cr = x NH_3=0 Cl=-1 Net charge =+1 $\therefore [Cr(NH_3)_4Cl_2]^+$

x = +3

197 **(b)**

:.

Phenols are acidic; alcohols are neutral.

198 **(b)**

 $2 \times a + 4 \times (-2) + 2 \times 0 + 2 \times 0 = -2,$ = +3

199 **(c)**

 CH_3MgI (Grignard reagent) is an organometallic compound due to C— Mg bond.

200 **(c)**

Effective atomic number =electrons in Cr^{3+} +electrons form $6NH_3$ ligands.

=21+6×2=33

203 (d)

Hückel rule for aromaticity suggests that an aromatic compound must possess $(4n + 2)\pi$ -electrons, where n = 0, 1, 2..., etc., as well as π -electrons cloud should embrace all the carbon atoms of the cyclic systems.

204 **(a)**

 $C_6H_5OH + Zn dust \rightarrow C_6H_6.$

205 **(b)**

CH₃-CO-N

N-bromo-N-chloro ethanamide

- 206 (d)
 - It is condensation reaction.

207 (d)

Due to more canonical forms.

208 **(c)**

$$2C_6H_5SO_2.0H \xrightarrow{P_2O_5} (C_6H_5SO_2)_2O$$

209 **(b)**

∴ а

Isomeric substances that differ only in the arrangement of carbon atoms forming the base chain are known as chain isomers CH₂CH₂CHCH₂CH₃

Cl

nd

and

$$Cl$$

 $H_3 - CH_2 - C - CH_3$
 H_2
 CH_2

If the compound with the same molecular formula differ in the position of the same functional group on the identical base chain the compounds are called position isomers

210 **(c)**

In $K_3[Fe(CN)_6]$, the ligands are negative which is present in coordination spheres shows a dual behavior. It may satisfied both primary and secondary valencies while, neutral ligand satisfied only secondary valencies

211 **(c)**

A number of transition metals form polymetallic carbonyls.

 $Ni: 3d^84s^2 \quad Ni^{2+}: 3d^8$

Since, Cl is a weak field ligand, it doesn't cause paring of electron.

 $NH_3 < en < CN^- < CO$

222 **(c)**

Follow mechanism of sulphonation on xylene.

224 **(d)**

All these are used to explain o-, p- directing nature of —CH₃ gp.

225 (a)

The separation of racemic mixture back into d and l isomers is known as resolution. It can be

done by (I) mechanical method (II) bio-chemical method using enzymes (III) chemical method (salt formation) 227 (c) Alkanes are not dissolved in H_2SO_4 . 228 (c) Monomeric form of iron carbonyl is $Fe(CO)_5$. 229 (b) Molecular formula of naphthalene is $C_{10}H_8$. 230 (d) It is clear from the chemical formulae that Ag is central metal atom and ligands are 2 ammonia molecule Hence, compound is $[Ag(NH_3)_2]Cl$ 231 (c) For [*M abcd*]square planar complex, the number of possible geometrical isomers is three which is obtained by fixing the position of one of the ligands say *a* while the other ligands *b*, *c* and *d* are placed *trans* to it. 232 (a) Follow exceptions of Vorlander's rule. 233 **(b)** Follow IUPAC rules. 234 (b) Coordination number is equal to total number of ligands in a complex 235 (d) Chair and boat conformations of cyclohexane differ in energy by 44 kJ/mol Chair form Boat form 236 (d) Ligands form coordinate bond with central atom or ion and donate electron pair. 238 (d) CHO + CO + HCl $\xrightarrow{ZnCl_2}$ This is Gattermann-Koch reaction -CHO gp. in C₆H₆ nucleus. 239 (a)

 $[Cr(NH_3)_6]^{3+}$ has three unpaired electrons. Electronic configuration of Cr^{3+} in $Cr(NH_3)_6$ is:

 $\times \times$ Electron pair donated by NH₃.

The above compound has chiral centre Hence, it can exhibit optical isomerism while geometrical isomerism is not possible due to presence of identical groups on double bonded carbon atom

241 (a)

It has no unpaired electron.

242 (a)

COOH | H - C - OH | plane of symmetry H - C - OH | COOH

Meso tartaric acid is optically inactive due to the presence of molecular symmetry. It I optically inactive due to internal compensation, *ie*, the effect of one half of the molecule is neutralized by other

243 **(b)**

Smaller is cation, more is effective nuclear charge, more is the tendency to attract electron pair from ligands.

245 (a)

Presence of *o*-, *p*-directing gp. facilitates the SE reactions.

246 **(c)**

 $\mathrm{K}_2\mathrm{S}_2\mathrm{O}_8$ gives quinol; KMnO_4 gives mesotartaric acid.

247 **(b)**

The compound is substituted octane, it has branches at carbon-3, carbon-4, carbon-5. The name is

4-sec-butyl-5-ethyl-3-metyl octane

248 **(a)**

The presence of *m*-directing groups in benzene

nucleous simply decreases electron density at *o*and *p*-, whereas no change in electron density at *m*-position is noticed.

On the contrary *o*-and *p*-directing groups in nucleus increases the electron density at *o*- and *p*-position.

Thus, presence of o- and p-directing groups provide seats for S_E reactions or activates the ring, whereas presence of m-directing groups does not activate the ring and thus, deactivate the ring for S_E reactions

249 **(c)**

 CuF_2 is blue coloured crystalline solid.

250 **(d)**

Different ionization gives different colour.

251 **(d)**

The complex has coordination number of six which is found in octahedral complex.

252 **(c)**

 ${\rm BF}_3$ has incomplete octet and is Lewis acid; it cannot donate electron pair.

253 **(c)**

Methyl thiomethyl group is inserted at *ortho* position by heating phenol with dimethyl sulphoxide and pyridine $-SO_3/(CH_3CO)_2O$.

254 **(a)**

$$[\mathrm{Ni}(\mathrm{H}_2\mathrm{O})_4]\mathrm{SO}_4 + \mathrm{NH}_4\mathrm{OH} \rightarrow [\mathrm{Ni}(\mathrm{NH}_3)_4]\mathrm{SO}_4$$

269 (b)

4-methyl benzene sulphonic acid is stronger than acetic acid thus it will release acid from sodium acetate.

256 **(b)**

Phthalein test is characteristics of phenols.

257 (b)

 $[Cr(NH_3)_6][Co(CN)_6]$ is isomer to $[Cr(CN)_6][Co(NH_3)_6]$, i.e., ligands are partially changes in complex anion and complex cation.

 CH_3 Compound has one chiral carbon atom thus, it has two geometrical (*cis* and *trans*) and two optical isomers

270 (c)

The directive influence order and tendency to release electron for *o*-and *p*-directing group is, $O_2^- > NR_2 > NHR > NH_2 > OH > OCH_3$ \approx NHCOCH₃ > CH₃ > X

271 (d)

In organometallic compound, carbon atom is directly bonded to metal atom. Methyl lithium (CH₃Li) is an organometallic compound.

272 (a)

This is crossed Cannizzaro's reaction in which HCHO is oxidized.

$$C_6H_5CHO + HCHO \xrightarrow{NaOH} C_6H_5CH_2OH + HCOONa$$
.

273 (d)

Gammexane is $C_6H_6Cl_6$.

274 **(b)**

Each ligand donates one electron pair.

- 275 (c)
 - 7. is isomer of $[Pt(NH_3)_2Cl_2]$ which is used as an anticancer drug for treating several types of malignant tumours.

276 (d)

$$C_6H_5CHO \xrightarrow{Reduction} C_6H_5CH_2OH.$$
Benzyl alcohol.

277 (d)

Petroleum and coal are main sources of aromatic compounds.

279 (c)

3 2 4 $CH_2 - CH - CH_2 - CH_2$ 1 1 CN CN CN

Butane-1,2,4-tricarbonitrile

280 **(b)**

Fac-mer isomerism is associated with $[MA_3B_3]$ type complexes.

cis isoment (-Fac isomer) trans isoment (Mer- isomer)

282 (c)

Intramolecular H-bonding gives rises to lower m.p.

- 283 (b)
 - Mn does not form mononuclear carbonyl.

284 (b)

Ethylenediamine tetraacetic acid is a hexadentate ligand because it has six donor centres.

ethylene diamine tetra acetate ion

(i)
$$-H - C - C - Cl$$
 1,1-dichloro ethane
| |
H Cl
(ii) H H
| |
H - C - C - H 1,2-dichloro ethane
| |
Cl Cl

Both are position isomers

н н

286 (c)

(-)		
Hybridisatio	Geometry of	
n	complex	
sp ³	Tetrahedral	
dsp ²	Square planar	
d^2sp^3	Octahedral	
sp^2d^2	Not possible	

287 (b)

$$CH_3 - CH = CH - COOC_2H_5$$
 is
Ethyl-2-butenoate

288 (d)

Waxes are not obtained obtained by destructive distillation of wood or coal.

289 (c)

Formaldehyde and benzophenone are also obtained.

290 (b)

It ionizes to Fe^{3+} and SO_4^{2-} .

291 (d)

These are the concepts of Werner's theory.

293 (b)

In $K_3[Co(CO_3)_3]$, cobalt shows the +3 oxidation state *i.e.*, (d^6) ion. Hence, Co (+3) has four unpaired electrons so, it is paramagnetic. The magnetic moment of Co(+3)

In K₃[Co(CO₃)₃] =
$$\sqrt{n(n+2)}$$
 BM
= $\sqrt{4(4+2)}$ BM=4.9 BM

Where, *n*=number of unpaired electrons CO_3^{2-} is a weak field bidentate ligand, so $3CO_3^{2-}$ ligands occupy six orbitals, thus it shows $sp^3 d^2$ hybridisation and octahedral in shape.

296 (a)

Some heterocyclic compounds (hetero aromatics) possess aromatic nature. Follow Hückel rule.

297 (c)

Nickel reacts with dimethylglyoxime to give red ppt. of nickel-dimethyl glyoxime complex.

285 **(b)**

$$\begin{array}{c} 3d^6. \\ 3d^6. \\$$

10. $Cr^0 = 3d^4, 4s^2$. Effective configuration =

Four lone pair for back bonding with CO.

P a g e | 117

1.	Light oil or	80-	Benzene,
	crude	170°C	toluene, xylenes,
2.	naphtha		etc.
	Middle oil or	170-	Phenol,
3.	carbolic acid	230°C	naphthalene,
	Heavy oil or		pyridine, etc.
4.	creosote oil	230-	Cresols,
	Green oil or	270°C	naphthalene
5.	anthracene		quinolone, etc.
	oil	270-	Anthracene,
	Pitch	360°C	phenanthrene,
			etc.
		Resid	90-94% of
		ue	carbon

319 **(d)**

The order of reactivity depends on the stability of intermediate carbocation formed due to heterolytic cleavage of C - X bond.

320 (d)

Greater is the number of chelate rings, greater is stability of the chelate. Hence, five fused cyclic system is most stable for a chelate.

321 **(b)**

 $HNO_3 + H_2SO_4$ acts as nitration mixture.

323 (d)

The negative charge density on V-atom favours easy electron pair donation.

324 **(b)**

Due to acidic nature.

325 **(d)**

If a substance rotates the plane polarised light in clockwise direction it is dextrorotatory (+). If it rotates the plane polarised light in anticlockwise direction then it is laevorotatory (-)

326 **(c)**

 $C_6H_6 \xrightarrow{HCN+HCl} C_6H_5CH=NH \xrightarrow{HOH} C_6H_5CHO$

327 **(b)**

EAN of Fe in K_4 Fe(CN)₆ = 26 - 2 + 2 × 6 = 36; the at. no. of next inert gas.

329 **(b)**

Both Ni (CO)₄ and Ni(PPh₃)₂Cl₂ have sp^3 -hybridisation

331 (d)

All are examples of strong ligand field, because all have greater value of Δ ; Δ represents the strength of ligand field.

332 (a)

333 (d)

Due to rearrangement because 2° carbon is more stable than 1° carbon.

Tris –(ethylenediamine) cobalt(III) bromide $([Co(en)_3]Br_3)$ exhibits optical isomerism.

334 (c)

$$K_3[FeF_6]$$

 $Fe^{3+} = [Ar] 3d^5 4s^0$

Number of unpaired electrons=5

Magnetic moment = $\sqrt{n(n+2)} = \sqrt{s(s+2)}$

$$=\sqrt{35}=5.91$$
 BM

335 **(b)**

EAN of $Cr = 24 - 3 + 6 \times 2 = 33$.

336 **(d)**

Paramagnetic character \propto number of unpaired electrons.

₂₅Mn²⁺ ion has maximum unpaired (five unpaired electrons)

electrons. So, $[Mn(H_2O)_6]^{2+}$ is most paramagnetic.

Picric acid

Note : The reaction gives 2, 4, 6-trinitrophenol. Choice is not given. Only option left is *o*nitrophenol, which is not formed in this course of reaction.

338 **(d)**

NH₂ in aniline is highly susceptible to oxidant and therefore nitration of aniline is carried out by protecting it against oxidation by acetyl chloride.

339 **(b)**

—COOH is *meta*-directing group.

 $[Co(NO_2)(NH_3)_5]Cl_2$

341 **(b)**

The ionisation isomer of

Page | 118

 $[Cr(H_2O)_4Cl(NO_2)]Cl$ is $[Cr(H_2O)_4Cl_2](NO_2)$ because of exchanging of ligand and counter ions.

342 **(c)**

All can be prepared from phenol.

343 **(a)**

Only iodobenzene gives Ulmann's reaction,

 $2C_6H_5I \xrightarrow{Cu} C_6H_5 \longrightarrow C_6H_5$

344 **(c)**

Fischer projection can be manipulated by rotating a group of any three ligands in clockwise (D) or anticlockwise (L) direction, the fourth ligand does not change its position

345 **(b)**

A strong filed ligand produces low spin complexes.

347 **(a)**

Ni in $[Ni(H_2O)_6]^{2+}$ has two unpaired electrons in it.

348 **(b)**

Compounds in which a chiral centre is part of a ring are handed in a analogous fashion

351 **(a)**

$$C_6H_6 + CH_3Cl \xrightarrow{AlCl_3 anhy.} C_6H_5CH_3$$

352 **(b)**

The formula of hexamine copper (II) sulphate $is[Cu(NH_3)_6]SO_4$. It dissolve in water as

$$[Cu(NH_3)_6]SO_4 \underbrace{[Cu(NH_3)_6]^{2+} + SO_4^2}_{2 \text{ ions}}$$

354 **(b)**

Complex of type $[M(AA)_3]$ show optical isomerism.

355 **(b)**

Electronic configuration of Fe^{2+} in $K_4Fe(CN)_6$ is:

 \times × Electron pair donated by CN⁻.

356 (d)

$$CH_3 - CH_2 - C \equiv C - CH = CH_2$$

6 5 4 3 2 1
hex-1-en-3-yne

357 **(b)**

Oxidation state of Ni in K_2NiF_6 is +4; the highest among all.

359 **(d)**

Substituents always get higher number than the principal functional group while, numbering the longest possible chain

360 **(d)**

Draw different isomers.

362 **(b)**

Metal carbonyl organometallic compounds possess both σ -and π -characters.

363 **(b)**

 $\rm F^-$ is a weak field ligand and $\rm [FeF_6]^{3-}$ is an outer-orbital complex

 $[FeF_6]^{3-}$ shows $sp^3 d^2$ hybridisation and Fe³⁺ has five unpaired electrons.

In $[Fe(CNS)_6]^{3-}$, CNS^- is a strong field ligand and is inner orbital complex.

 $[Fe(CNS)_{6}]^{3-}$

 sp^3d^2 - hybridisation

 $[Fe(CNS)_6]^{3-}$ shows $d^2 sp^3$ hybridisation and has one unpaired electron.

Hence, the reaction.

 $[Fe(CNS)_6]^{3-} \rightarrow [FeF_6]^{3-}$

takes place with increase in magnetic moment. 364 **(a)**

Presence of three $-NO_2$ gp. in chlorobenzene activates Cl atom to show S_N reactions.

365 **(a)**

Complex compounds or complex salts containing two different metallic elements give tests for only one element. For example, potassium hexacyanoferrate (II), K_4 [Fe(CN)₆] gives tests

	only for K ⁺ ions and not for Fe ²⁺ ions.	379	(d)
	$K_4[Fe(CN)_6] \rightleftharpoons 4K^+ + [Fe(CN)_6]^{4-}$		Coal-tar is source of all these.
366	(a)	380	(c)
	Only primary valencies are ionized.		Halogen attached to benzene nucleus is stabilized
	$[Co(NH_3)_5Br]SO_4 \xrightarrow{BaCl_2} [Co(NH_3)_5Br]^{2+} + BaSO_4$		due to resonance.
	$[C_0(NH_{\circ}), S_0] Br \xrightarrow{AgNO_3} [C_0(NH_{\circ}), S_0] + AgBr$	382	(a)
	0.01 mole of each by 0.01 mole of reactants		$-NO_2$ group is reduced to $-NH_2$ by Sn/HCl.
367	(c)	383	(d)
307	Wilkinson's catalyst (Ph. P), RhCl		Each central atom attains the EAN equal to at. No.
	$RH^+ - [Kr] Ad^8 c^0$	204	of next inert gas Kr, <i>i. e.</i> , 36.
	$ie dsn^2$ hybridisation	384	
	Bh atom in Wilkinson's catalyst is dsn^2 hybridised		A bidentate ligand has two donor sites available
	giving a square planar shape to the molecule		for coordination, e.g.,
368	(d)		
000	H_2O is weak field ligand, thus Co^{2+} has only 3		; NH ₂ CH ₂ CH ₂ NH ₂
	unnaired electrons.	295	
369	(a)	303	-N Clis reduced to H by either of these reducing
007	If an enantiomerically pure acid is treated with		-N ₂ Cl is reduced to it by either of these reducing
	racemic mixture of an alcohol having a chiral	386	(c)
	carbon, the product formed will be optically active	500	Fe is present in the form of complex ion <i>i e</i>
	mixture		$[Fe(CN)_c]^{3-}$ which is not ionized to Fe^{3+} and CN^- .
370	(d)	387	(a)
	Cyclopropane is most strained since it has a		$[Co(NH_3)_5SO_4]Br \rightleftharpoons [Co(NH_3)_5SO_4]^+ + Br^-$
	maximum angle strain of $24^\circ - 44'$		$[Co(NH_3)_5Br]SO_4 \rightleftharpoons [Co(NH_3)_5Br]^{2+} + SO_4^{2-}$
371	(c)		The molecular formula of both of the above
	CHO		compounds is same but on ionisation they give
			different ions in solution, so they are called
	$ () + CO + HCl \xrightarrow{ZHCl_2} () $		ionization isomers.
		390	(c)
	\checkmark		Phenols are weak acids and do not react with
	this is Gattermann-Koch reaction to introduce		$NaHCO_3$ (a weak base).
	$-CHO$ gp. in C_6H_6 nucleus.	391	(b)
372	(a)		$C_6H_5CH = CHCOOH$ is cinnamic acid; it has
	Mn in Mn(CN) $_{6}^{4}$ has configuration:		unsaturation.
	3d $4s$ $4p$	392	(a)
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Magnetic moment of
	$d^2 sp^3$		$K_3[Fe(CN)_6] = 1.7 BM$
373	(d)		Magnetic moment= $\sqrt{n(n+2)}$
	It does not ionize to give Cl^- ions and thus, white		n =number of unpaired electrons present in
	ppt. of AgCl will not be obtained.		molecule
375	(c)		$1.7 = \sqrt{n(n+2)}$
	$[Pt(C_2H_4)Cl_3]$		$-n^2 + 2n - 2.89 = 0$ then $n = 0.97$ or 1
	$x + 0 + (-1) \times 3 = 0$	393	(c)
	x + (-3) = 0		CH_2 — CH — CH_2 — CH_2
	x = +3		
377	(c)		
	Ni^{2+} has two unpaired (3 d^8) electrons. CN^- is		This compound contains 0 carbon atoms and
	strong field ligand and thus all the eight electrons		i nis compound contains 7 carbon atoms and

are paired giving dsp^2 -hybridisation.

9 carbon atoms and corresponding alkane is nonane. Three bridges contain 5, 2 and 0 carbon atoms. Therefore, the name of the compound is bicyclo [5.2.0] nonane

395 (c)

The compound have structure as written below

bicyclo [3.2.1] octane

396 **(d)**

It is *m*-directing gp.

397 **(a)**

Carbylamines reaction.

 $C_6H_5SO_3Na + NaOH → C_6H_5ONa + NaHSO_3$ $C_6H_5ONa \xrightarrow{HOH}_{H^+} C_6H_5OH^+NaOH$

401 (a)

The stability order of conformations of cyclohexane is Chair > twist boat > boat > half chair

402 **(b)**

Phenolic group is susceptible for oxidation and thus, to obtain *o*- and *p*-nitrophenol dil. HNO₃ is used in place of conc. HNO₃ + H_2SO_4 .

403 **(c)**

Lower is mol. Wt. lower is b.p., also 1, 2-dihydroxy benzene show chelation and thus have lower b.p. than 1,3 and 1,4-derivatives.

Phenol 1,2-dihydroxyb 1,3-dihyroxyb 1,4-dihydroxyb enzene enzene

enzene enzen enzene m.p. 43°C < 105°C <110°C <170°C b. p. < < <

405 **(b)**

 $K_2[PtCl_6] \rightleftharpoons 2K^+ + [PtCl_6]^-$

407 **(b)**

Phenols are weakly acidic due to resonance.

408 **(b)**

Follow IUPAC rules.

409 (a)

Compounds having coordination number six and following the general formula show geometrical and optical isomerism.

 $M_{A_4B_2}, M_{A_4BC}, M_{A_3B_3}$ and $M_{(AA)_2B_2}$ show geometrical isomerism and

 $M_{A_2X_2Y_2}, M_{A_2X_2YZ}, M_{A_2XYZL}$ $M_{ABXYZL}, M_{(AA)_3}, M_{(AA)_2}X_2$ show optical isomerism. (*AA*) is bidentate ligand.

410 **(b)**

 $[Co(NH_3)_4Cl_2]Cl$, Its IUPAC name is tetraammine dichloro cobalt III chloride.

411 **(c)**

The ease of hydrolysis depends upon the magnitude of the +ve charge on the carbonyl group.

412 **(d)**

All are the common uses of nitrobenzene.

413 **(b)**

$$K_{4}[Ni(CN)_{4}] \rightarrow 4K^{+} + [Ni(CN)_{4}]^{4-}$$
$$x + (4 \times -1) = -4$$
$$x - 4 = -4$$
$$x = 0$$

414 **(a)**

Presence of —OH gp. in C_6H_6 nucleus increases acidic nature.

416 **(b)**

Halogen attached on side chain behaves as in aliphatic molecule.

417 **(d)**

Cyclohexane is an aliphatic cyclic compound.

418 (c)

12. In
$$[Cu(NH_3)_4]^{2+}$$
, Cu is present as Cu^{2+}

$$\mathrm{Cu}^{2+} = [\mathrm{Ar}]3d^94s^0$$

$$[Cu(NH_3)_4]^{2+} = [Ar]$$

 $(NH_3 being a strong field ligand shifts one electron from 3$ *d*-orbital to 4*p*-orbital.)

- 13. In $[Ni(CO)_4]$, CO is a neutral ligand
- 14. In $[Fe(CN)_6]^{3-}$, Fe is present as Fe^{3+} .

 $Fe^{3+} = [Ar]3d^54s^0$

$$[Fe(CN)_6]^{3-} = [Ar]$$

$$\overbrace{11,11,1}^{3d} \times \overbrace{\times}^{4s} \times \overbrace{\times \times \times}^{4p}$$

Thus, its hybridization is d^2sp^3 not sp^3d^2 , i.e., it is

an inner orbital complex.

15. $[Co(en)_3]^{3+}$ contains total 36 electrons, *i. e.* follows EAN rule.

420 (c)

Optical isomerism is very common in octahedral complexes having general formula

$$\begin{bmatrix} M_{A_2B_2C_2} \end{bmatrix}^{n-}, \begin{bmatrix} M_{ABCDE} \end{bmatrix}^{n-}, \begin{bmatrix} M_{(AA)_3} \end{bmatrix}^{n-}, \\ \begin{bmatrix} M_{(AA)_3B_2} \end{bmatrix}^{n-} \begin{bmatrix} M_{(AA)_3BC} \end{bmatrix}^{n-} \text{ and } \begin{bmatrix} M_{(AB)_3} \end{bmatrix}^{n-} \\ \text{where } AA \text{ is symmetrical bidentate ligand like } \begin{bmatrix} \text{COO}^- \\ \text{COO}^- \end{bmatrix}$$

is unsymmetrical bidentate ligand.

421 (c)

 $[Co(NH_3)_5NO_2]Cl_2 \rightleftharpoons [Co(NH_3)_5NO_2]^{2+} + 2Cl^{-}$ 2Cl⁻ + Ag⁺(excess) \rightarrow 2AgCl \downarrow

422 **(a)**

 C_6H_5C is benzo gp.

423 (c)

It is the reason for given fact.

424 **(b)**

 d^6 -cation with low spin has electronic

configuration $t_{2g}^6 e_g^0$.

Total energy= $(-0.4 \Delta_0 \text{ per } e^- \times 6) + (e^- \text{ pairing energy of 3 pairs})$

$$= -2.4 \Delta_0 + 3P$$
$$= -\frac{12}{5}\Delta_0 + 3P$$

426 **(c)**

It is DDT, *i. e.*, p, p'-dichloro diphenyl trichloroethane.

428 **(b)**

 $[Cr(NO_2)(NH_3)_5]$ Cl show linkage isomerism.

 NO_2^- can link O-N=O or N

429 **(d)**

Cl, being a weak field ligand, does not cause pairing of *d*-electrons of the metal atom and thus, forms outer orbital complex as.

In $[Fe(Cl)_6]^{3-}$, Fe is present as Fe^{3+} Fe³⁺ = $[Ar]3d^5 4s^0 4p^0$

430 **(d)**

_p*K*_a for (a), (b), (c) and (d) are 4.17, 4.09, 3.49 and 3.43 respectively.

431 **(a)**

 $[\mathrm{H_2EDTA}]^{2-} + \mathrm{Mg}^{2+} \rightarrow [\mathrm{MgEDTA}]^{2+} + 2\mathrm{H^+}$

- In this complex, four donor sites are occupied by oxygen and two donor sites are occupied by nitrogen.
- 17. This complex is six coordinated.
- 18. Complex $[MgEDTA]^{2-}$ is colourless.
- 19. Increase in [H⁺]decreases pH of the solution.

433 **(c)**

Different compounds having the same molecular formula but different properties are called isomers

434 **(c)**

```
In the compound
```


Numbering will be done from this end because both are side chains and $- \text{OCH}_3$ is smaller than $- \text{OC}_2\text{H}_5$

3-ethoxy-1-methoxy-propane

435 **(a)**

Each carbon in benzene is sp^2 -hybridized. 436 **(b)**

So, gauche form stabilized by intermolecular hydrogen bonding hence, gauche is more stable than anti

437 **(a)**

 $AgCN + KCN \rightarrow K[Ag(CN)_2].$

438 **(b)**

Carbocyclic compounds which resemble aliphatic compounds in their properties are called alicylic compounds

-NO₂ gp. is deactivating gp.

440 **(b)**

The molecule contains three chlorine atoms out of which only two are ionized.

441 **(b)**

 $[Co(en)_2Cl_2]^+$ have three optical isomers which are given below.

d-*cis* form

trans-meso form

442 **(c)**

The reaction carried out in alkaline pH, ie, 9 – 11 444 (d)

 NO_2 gp. withdraws electrons from o –and pposition and thus, deactivates the ring. This deactivation stabilises the negatively charged intermediates formed during reaction and thus, replacement of—Cl becomes easier.

446 **(a)**

 $Ti(C_2H_5)_4$ is an organometallic compound because there is direct bonding of metal ion with carbon.

447 **(a)**

Octahedral Co(NH $_3$) $_4$ Br $_2$ Cl shows ionisation and geometrical isomerism.

In ionisation isomerism ligands show different coordination sphere and the anions present outside the coordination sphere.

These are exchanged with each other as follows

$$Co(NH_3)_4Br_2Cl \rightleftharpoons [Co(NH_3)_4Br_2]^+ + Cl^-$$

$$[Co(NH_3)_4BrCl]Br \rightleftharpoons [Co(NH_3)_4BrCl]^+ + Br^-$$

II

In geometrical isomerism, coordination number of central atom (cobalt) is six and shape is octahedral, so it shows following geometrical isomers.

448 **(a)**

Aliphatic amines are stronger base than aromatic amines.

449 **(b)**

Follow Hückel rule.

450 (d)

 \rightleftharpoons sign represents oscillating structures (Kekule) for C₆H₆;

451 **(b)**

$$C_6H_5CHCl_2 \xrightarrow{HOH} C_6H_5CHO.$$

453 **(c)**

Cr has coordination no. 6 in its carbonyl and other complexes.

454 **(d)**

Neutral FeCl₃ (aq.) gives violet coloured complex with phenol.

455 **(a)**

 $[CoF_6]^{3-}$ is an outer complex having sp^3d^2 -hybridization.

456 **(d)**

$$[Sc(CN)_6]^{3-}$$

Sc=21=1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹

3d

 $Ni(CN)_4^{2-}$

 $Sc^{3+} =$

Ni(G. S.)

$$3d$$
 $4s$
 $4p$

 11
 11
 11
 11

 $1s^2$, $2s^22p^6$, $3s^23p^63d^8$ configuration. It uses 4th orbital to show sp^3d^2 hybridisation to form outer complex with 2 unpaired electrons in 3d-orbital.

460 **(c)**

Moth repellent due to insecticide nature.

461 **(c)**

The number of unidentate ligand in the complex ion is called coordination number.

462 **(b)**

7double bonds and thus, 14 $\pi\text{-}$ electrons.

463 **(b)**

In ethane and cyclohexane, staggered and chair forms are more stable respectively

Staggered from of ethane Chair from of cyclohexane

464 **(d)**

 $(CH_3)_4$ Sn has no π -bond.

465 **(a)**

Halogens however o- and p-directing group but deactivate ring for S_E reactions due to electron withdrawing nature.

466 **(b)**

It is the reason for the fact.

467 **(a)**

 $-NO_2$ gp. is deactivating gp.

470 **(c)**

The side reaction produces diphenyl ether. The yield may be increased by adding little diphenyl ether with $C_6H_5Cl + NaOH$.

471 **(c)**

Atoms or groups donating electron pair to metal are ligands.

472 **(d)**

Aniline is insoluble in water.

473 **(d)**

 CrO_2Cl_2 has + 6 oxidation state of Cr.

475 **(b)**

It is a method to estimate hardness of water.

476 **(a)**

Both are non-polar; like gets dissolved in like. 477 **(b)**

$$\begin{array}{c} CH_{3} \\ | \\ CH_{3} - C \\ | \\ 1 \\ | \\ CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ | \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ | \\ CH_{3} \\ CH_$$

There are two carbon atoms, *ie*, C-2 and C-4 are tertiary C-atoms

478 **(b)**

Rosenmund's reaction.

479 **(c)**

 $C_6H_5CHO \xrightarrow{Zn-Hg/HCl} C_6H_5CH_3$

480 **(c)**

 F^- has lowest Δ_o value depending upon the splitting power of *d*-orbitals

481 **(b)**

Complex $[Co(en)_3]^{3+}$ has no plane of symmetry and centre of symmetry that's why it is optically active.

482 **(a)**

It is preparation of DDT.

483 (a)

Light oil mainly contains C_6H_6 , C_7H_8 , C_8H_{10} , etc. 484 (c)

Coordination number is the number of ligand σ bonded to metal-atom. Hence, coordination number of X in $[X(SO_4)(NH_3)_5]$ Cl is 6. Let oxidation state of X in the complex be 'y' then

$$y+(-2)+5(0)+(-1)=0$$

 $y-2-1=0$
 $y=+3$

485 **(a)**

 $C_6H_5CH_3 \xrightarrow{Cl_2} C_6H_5CH_2Cl_2$

In presence of light substitution occurs is side chain.

486 **(a)**

 $[CoCl_3(NH_3)_3]$ cannot ionize in solution because three chloride ions satisfy primary and secondary valencies. It will not be precipitated by the addition ofAgNO₃.

487 (d)

For $[Ni(CN)_4]^{2-}$, oxidation state of Ni is +2. CN⁻=strong field ligand Ni²⁺(ground state)=

 $In [Ni(CN)_4]^{2-}$ $Ni^{2+} =$

$$Ni^{2+} = \underbrace{\begin{array}{c|cccc} 3d & 4s & 4p \\ \hline 1 & 1 & 1 & \hline \times \times & \hline \times \times \times \\ CN^{-} & CN^{-} & CN^{-} & CN^{-} \\ dsp^{2} \end{array}}_{CN^{-} CN^{-} CN^{-} CN^{-} \\ dsp^{2} \end{array}}$$

*dsp*² hybridisation, *i.e.*, square planar geometry, zero unpaired electron, *i.e.*, zero magnetic moment

For $[MnBr_4]^{2-}$, oxidation state of Mn is +2. Br⁻= weak field ligand

 Mn^{2+} (in ground state) 3d 4s

In
$$[MnBr_4]^{2-}$$
,
 $Mn^{2+} =$
 $Mn^{2+} = \boxed{1 1 1 1 1}$
 $Br^- Br^-$

 sp^3 hybrisation, *i.e.*, tetrahedral geometry, five unpaired electrons, *i.e.*, magnetic moment=5.9 Co³⁺ in ground state=

For $[CoF_6]^{3-}$, oxidation state of Co is +3. F⁻=weak field ligand In $[CoF_6]^{3-}$

sp³ d² hybridisation *i.e.*, octahedral geometry
four unpaired electrons *i.e.*, magnetic moment is
4.91 BM.

489 **(b)**

An experimental value.

491 **(c)** A commonly used food preservative.

$$C_6H_5ONa + C_2H_5I \rightarrow C_6H_5OC_2H_5 + NaI$$

Phenetole

493 (d)

Metal carbonyl are regarded as the coordination compounds formed by the donation of lone pair of electron of CO into the suitable empty orbital of zero valent transition metals such as Ni, Fe etc. Therefore, the M— C bond is coordinate covalent.

494 **(d)**

When the three ligands (with same donor atoms) are on the same triangular face of the octahedron, the isomer is called *facial* or *fac* isomer.

The octahedral complex is *facial* or *fac* isomer.

In this complex, the three ligands are on the same triangular face of the octahedron.

495 **(a)**

Number of unpaired electrons in $[Fe(CN)_6]^{4-}$ is zero.

Thus, magnetic moment

 $=\sqrt{n(n+2)}=0 \text{ BM}$ (*n*=unpaired electrons) *n* in [MnCl₄]²⁻=5, $\sqrt{35}$ BM

$$n \text{ in } [\text{CoCl}_4]^{2-} = 3, \sqrt{15} \text{ BM}$$

496 (a)

Orange-red dye is formed with aniline.

499 (a)

It is a fact. Follow ortho effect.

500 **(d)**

Half chair is transition state conformation between the chair and boat conformation. The energy difference between the chair and half chair conformation being 44 kJ mol⁻¹. Hence it is most unstable

501 (a)

The *M*—C π -bond in metal carbonyl which is formed by the donation of an electron pair from a filled *d*-orbital of metal into the vacant antibonding π -orbital of CO, strengthens the *M*— C σ — bond. This is called synergic effect and is usually observed in metal carbonyls. Thus [Ni(CO)₄] exhibits synergic effect.

503 **(b)**

 $\operatorname{Pt} \xrightarrow{\operatorname{Aqua} \operatorname{regia}} \operatorname{H}_2[\operatorname{PtCl}_6] \xrightarrow{\Delta} \operatorname{PtCl}_4 + 2\operatorname{HCl}$

504 (d)

Follow IUPAC rules.

```
505 (b)
```


1,7,7-trimethyl bicyclo [2.2.1] heptan-2-one

506 **(d)**

 $-CH_3$ gp. is *ortho* and *para* directing.

507 (a)

Estimation of calcium and magnesium is done by EDTA.

508 (d)

$$\begin{array}{c} CH_{3}-CH-CH_{3}+Cl_{2} \longrightarrow CH_{3}-CH-CH_{2}Cl_{2}\\ CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}\\ 2,3-dimethyl butane \\ \end{array}$$

Due to the presence of chiral centre it shows the optical activity and its mirror image are non superimposable hence it shows one enantiomer pair

$$\begin{array}{c} \mathrm{CH}_3-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_2\mathrm{CI}\\ \mathrm{I}\\\mathrm{CH}_3\\\mathrm{CH}_3\\\mathrm{CH}_3\end{array} \qquad \begin{array}{c} \mathrm{CICH}_2-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_3\\ \mathrm{I}\\\mathrm{CH}_3\\\mathrm{CH}_3\\\mathrm{CH}_3\end{array}$$

509 **(b)**

 C_6H_6 and other aromatic compounds show characteristics S_E reactions.

510 (d)

$$CH_2 = CH - CH = CH - CH = CH - CH_3$$

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$
Hepta-1,3,5-triene
511 (b)
 $1 \quad 2 \quad 3$
 $CH_2 - CH - CH_2$
 $| \quad | \quad |$
 $CHO \quad CHO \quad CHO$
Propane-1, 2, 3-tricarbaldehyde
512 (a)
The attacking species in sulphonation is SO₃
 $H_2SO_4 \rightarrow H_3O^+ + SO_3 + HSO_4^-$
513 (d)
 $CHCl_3$ has no reaction with Br_2 .
514 (c)
 $[NiCl_4]^{2-}$; oxidation number of Ni,
 $x-4=-2$
 $\therefore x=+2$

 $Ni_{(28)} = [Ar]3d^8, 4s^2$

Page | 126

 $[\text{NiCl}_4]^{2-}$

×	×	×	X
sp ³	sp ³	sp ³	sp ³

sp^3 -hydrid orbitals, tetrahedral

Cl⁻ is a weak ligand and thus unpaired electrons are not paired. Lone pairs from 4Cl⁻are accommodated in four *sp*³ hybrid orbitals. *N*=unpaired electron=2, paramagnetic Magnetic moment (spin only) $= \sqrt{N(N+2)}$ BM $= \sqrt{8} =$

2.828 BM

515 **(b)**

Pyridine shows S_E reactions at position-3 preferentially and at 2,4-positions under specific conditions.

516 **(a)**

 $K[Ag(CN)_2] \rightleftharpoons K^+ + [Ag(CN)_2]^{1-}$

517 **(a)**

Its coordination number will be 6 because it is bonded with three bidentate ligands $x + 3(-2) + 3(+1) = 0 \Rightarrow x = +3$

518 (c)

The four ions on ionisation are possible only when three Cl⁻ are outside the coordination sphere. $[Pt(NH_3)_5Cl]Cl_3 \rightleftharpoons [Pt(NH_3)_5Cl]^{3+} + 3Cl^{-}$

519 **(a)**

In presence of H_2O which is a weak ligand no pairing occurs which results in unpaired electrons left in the compound, due to which it shows paramagnetism

520 **(a)**

This is a fact.

521 **(b)**

It is outer complex having $sp^3d^2[\text{CoF}_6]^{3-}$ ion.

Electronic configuration of Co^{3+} in $[CoF_6]^{3-}$ is:

 \times × Electron pair donated by F⁻

523 **(d)**

The two given compound have same composition but in solution both will give different ions. The isomerism is known as ionisation isomerism

524 **(a)**

Coordination number is the maximum covalency shown by a metal or metal ion. It is the maximum number of ligands attached to metal by sigma bonds or coordinate bonds.

525 **(a)**

 $C_6H_5COOH+N_3H\longrightarrow C_6H_5NH_2+CO_2+N_2$; this is Schmidt's reaction.

526 **(d)**

Each possess the tendency to have coordination number equal to six.

527 **(d)**

Hexadentate ligand donates six pair of electrons to central atom.

(a) 2, 2-dipyridyl-bidentate ligand

(b) DMG-bidentate ligand

$$CH_3 - C = N - O \rightarrow$$

$$CH_3 - C = N \rightarrow |$$

OH

(c) Ethylenediamine-pentadentate ligand

∴ None of the given ligand is hexadentate ligand.

$$\frac{\text{HNO}_{3}_{\text{Base}}}{\text{HSO}_{4}^{-}} \rightarrow \text{NO}_{2}^{+} + \text{H}_{3}\text{O}^{+} + \frac{1}{3}$$

20. d^5 in strong field

n =unpaired electron=1

Magnetic moment= $\sqrt{n(n+2)BM}$

$$=\sqrt{3}$$
 BM=1.73 BM

21. d^3 in strong/weak field

n = 3

Magnetic moment= $\sqrt{15}$ =3.87 BM

22. d^4 in weak field

n = 4

Magnetic moment= $\sqrt{24}$ =4.90 BM

23. d^4 in strong field

n = 2

Magnetic moment= $\sqrt{8}$ =2.83 BM

531 (a)

 $[Ni(CN)_4]^{2-}$ ion has dsp^2 hybridisation, zero magnetic moment and square planar structure. 3d 4s 4p

It has no unpaired electrons hence, its magnetic moment is zero.

534 (a)

 $_{21}$ Sc=[Ar] $3d^{1}4s^{2}$

 $Sc^{3+} = [Ar]3d^04s^0$ no unpaired electrons in *d*-subshell, so it is diamagnetic and colourless.

In $[Co(NH_3)_6]^{3+}$ the oxidation state of Co is +3.

 $[Co(NH_3)_6]^{3+}$ does not contain unpaired electron hence, its magnetic moment is zero.

537 **(a)**

Presence of o-, p-directing groups in benzene nucleus activates ring for S_E reaction. Presence of m-directing deactivates ring for S_E reaction. Also halogens deactivating gp. Due to -IE inspite of oand p-directing nature. The presence of mdirecting groups in benzene nucleous simply decreases electron density at o- and p-, whereas no change in electron density at m-position is noticed.

On the contrary *o*-and *p*-directing groups in nucleus increases the electron density at *o*- and *p*-position.

Thus, presence of o- and p-directing groups provide seats for S_E reactions or activates the ring, whereas presence of m-directing groups does not activate the ring and thus, deactivate the ring for S_E reactions

539 **(b)**

The percentage of enolic contents of some common compounds in decreasing order will be O

$$>$$
 C₆H₅COCH₂COCH₃ $>$ CH₃COCH₂COCH₃

 $> C_6H_5COCH_2COCH_3 > CH_3COCH_2COCH_3$ $> CH_3COCH_2COOC_2H_5 > CH_3COCH_2CHO$ $> CH_3COCH_3$

	O II		to $d - d$ transition in presence of ligand in Ni ²⁺
	> CH ₂ CHO >	E A C	cations.
		546	(C) Cl ₂ HOH
	$> CH_3CHO > O$	F 4 7	$C_6H_5CH_3 \rightarrow C_6H_5CCl_3 \longrightarrow C_6H_5COOH$
540	(c)	547	(d) Geometrical isomerism is found in compounds
	Mn forms $Mn_2(CO)_{10}$ carbonyl.		having coordination no. 4 (square planar and not
541	(c)		tetrahedral shape) as well as coordination no. 6.
F 4 2	Picric acid has phenolic gp.		Coordination no. 4 (square planar)
542	(a) (i) The sum of ovidation states of all atoms in a		M_{A_2BC} , $M_{A_2B_2}$
	compound is zero.		Showing geometrical isomerism M_{ABCD}
	1		Coordination no. 6 (octahedral)
	(ii) Oxidation state of metal in carbonyl is zero.		$M_{A_4B_2}, M_{A_4BC}$
	(a) K_4 Fe(CN) ₆		Showing geometrical isometrism. $M_{A,B}$, $M_{A,A}$, $B_{A,A}$
		548	$(A_{A_{3}B_{3}}, (A_{A})_{2}B_{2})$
	Let, oxidation state of Fe in K_4 Fe(CN) ₆ = x	010	Follow text.
	$\therefore \qquad +4+x+(-1\times 6)=0$	549	(a)
			Presence of electron repelling gp. decreases the
	$x = \pm 2$		acidic strength.
	(b) $K_2 FeO_4$		C_6H_5COOH <i>p</i> -methyl benzoic <i>p</i> -chloro
	Let ovidation state of Fe in K. FeQ. $-x$		acid
	Let, oritation state of i c in $K_2^{21} co_4 - x$		$Ka 6.76 \times 10^{-5}$ 1.26×10^{-5} $4.16 \times$
	$\therefore \qquad +1 \times 2 + x + (-2 \times 4) = 0$		10^{10} 1.05×10^{-10}
	\therefore $x=+6$	551	(b)
			It becomes brown (due to oxidation) on standing
	(c) $Fe_2 20_3$	L L J	in air.
	Let, oxidation state of Fe in $Fe_2O_3 = x$	552	(U) It is characteristics of aromatic compounds
	2	553	(d)
	$\therefore \qquad 2x + (-2 \times 3) = 0$		The colour of the complex $COCl_3 \cdot 5NH_3 \cdot H_2O$ is
	or 2 <i>x</i> =6		pink.
		554	(b)
	$\therefore \qquad \qquad x = -2 = +3$		$2 + 4 \times (-1) = x, \therefore x = -2$
	(d) Fe(CO) ₅	333	(a) Halide ligands have low values of A
	0 i j	556	(d)
	Oxidation state of Fe in $Fe(CO)_5=0$		Electronic configuration of Co^{3+} in $[CoF_6]^{3-}$ is:
	\therefore Oxidation state of Fe is least in Fe(CO) ₅ .		3d $4s$ $4p$ $4d$
543	(a)		
010	The name of $[Pt(NH_3)_4Cl_2]^{2+}$, $[PtCl_4]^{2-}$ is		sp^3d^2
	tetraamminedichloroplatinum (IV)		\times Electron pair donated by F ⁻
	tetrachloroplatinate (II). Since, positive ion is	558	(d) Lat the ovidation state of Fair
F 4 4	written first and negative ion later.		$[Fe(H_nO)_nO]SO_i$ is r
544	(D) Resorcinal is <i>meta</i> hydroxymhonal		$[Fe(H_2O)_5NO]^{2+}$
545	(d)		\Rightarrow x+0+1=2
0	The compounds of nickel are green coloured due		\therefore $x=+1$

Here, NO exists as nitrosyl ion (NO^+) .

559 **(c)**

EAN = Z - (ON) + 2 (C.N.) where, O.N.=oxidation number C.N.=coordination number Z = atomic number

 $[Fe(CN)_6]^{4-}$:

EAN=26- (2)+2(6) =26-2+12=36

561 (a)

In the complex $K_3[FeF_6]$, Fe is present in +3 oxidation state. ${}_{26}Fe=[Ar]3d^64s^2$ $Fe^{3+} = [Ar]3d^5$

Hence, number of unpaired electrons is five as F is weak ligand.

Magnetic moment= $\sqrt{n(n+2)}$ = $\sqrt{5(5+2)}$

$$= \sqrt{3(3+2)}$$

=5.91 BM

563 **(c)**

No doubt C— D bond cleavage is slower than C— H bond due to isotopic effect but rate of overall substitution is determined by the slow attachment of electrophile to carbocation (Morrison-Boyd 15.14P-532).

564 **(a)**

Due to synergic bond formation, bond order decreases and bond length increases a little.

566 **(c)**

It is a bicyclic compound having two common carbon atoms and three bridges. So, the IUPAC name is

5, 6-dimethyl bicyclo [2.2.1] hept-2-ene 567 **(c)**

 $Fe^{3+} + [Fe(CN)_6]^{4-} \rightarrow$ $Fe_4[Fe(CN)_6]_{3Prussian blue}$

568 **(a)**

The effective magnetic moment of a paramagnetic substance is given by the relation

$$\mu = \sqrt{n(n+2)} \text{ BM.}$$

where, *n*=number of unpaired electrons. In $[FeF_6]^{3-}$, Fe^{3+} has five unpaired electrons. μ of $[FeF_6]^{3-} = \sqrt{n(n+2)}$ $= \sqrt{5(5+2)}$ $=\sqrt{35}=5.92 \text{ BM.}$ 569 (c) [PtCl₂. P(C₂H₅)₃]₂ can exhibit geometrical isomerism, the geometrical isomers are P(C₂H₅)₃ Cl Cl Pt Cl Pt Pt P(C₂H₅)₃

trans isomer

as F is 570 (c)

The minimum possible isomers of compound will be

571 **(b)**

 $C_2O_4^{2-}$ is a bidentate group. As the complex contains three bidentate groups, the central metal ion has a coordination number of 6.

572 **(d)**

 $[Co(en)_3]^{3+}$ has d and l forms as

573 **(b)**

Ru forms two carbonyls with zero oxidation number. Mononuclear $Ru(CO)_5$ and trinuclear $Ru_3(CO)_{12}$.

574 **(c)**

Oxidation state of nitrogen in $(N_2H_5)_2SO_4$ is 4x + 10 - 2 = 0

x = -2 575 (d)

Linkage isomerism is exhibited by ambidentate ligands (ligands having two coordination sites). *e.g.*, NO_2^- .

If the bonding is through N, the ligand is named as

nitro and if it is through O, it is named as nitrito. NO_2^- \rightarrow nitro —N

 $0N0^- \rightarrow nitrito -0$

577 **(a)**

Due to resonance of electron pair in aniline, nitroaniline and acetanilide, these are weaker than $C_6H_5CH_2$ which does not involve lone pair of N in resonance. The basic order is: Benzyl amine >Aniline > Acetanilide > Nitroaniline.

578 **(b)**

Effective atomic no. (EAN) = at. No. of central atom -oxidation state $+2 \times (no. of ligands) =$ $28 - 0 + 2 \times 4 = 36$ EAN = $78 - 4 + 2 \times 6 = 86$.

579 **(b)**

 $[Cu(NH_3)_4]SO_3 \rightleftharpoons [Cu(NH_3)_4]^{2+} + SO_4^{2-}$ 580 **(b)**

Ammonia is not an ambident legand so it can donate electron only by N-atom

582 **(b)**

 12σ and 3π .

583 **(c)**

–OH gp. is activating whereas Cl— is deactivating.
 –CH₃ gp. is less activating than OH.

584 (d)

The compound H Br is symmetrical with respect to centre of the molecule

585 **(b)**

Two cis and trans forms.

586 **(c)**

p-nitrophenol is more stronger acid than phenol. 587 **(b)**

$$C_6H_5CH_3 \xrightarrow{[0]} C_6H_5COOH \xrightarrow{\text{NaOH}} C_6H_5COONa$$

 $\xrightarrow{\text{CaO+NaOH}} C_6H_6$

588 (d)

Staggered conformation is most stable due to its minimum energy

589 **(a)**

 $[Co(NH_3)_5Br]SO_4 \rightleftharpoons [Co(NH_3)_5Br]^{2+} + SO_4^{2-}$ Pb²⁺ + SO₄²⁻ \rightarrow PbSO₄ \downarrow White insoluble

590 **(c)**

Fe²⁺, Co⁵⁺, Ti³⁺, and V³⁺ have 4, 4, 1, 2 unpaired electron respectively. The pairing leads Fe²⁺ with no unpaired electron.

591 **(b)**

Os (Z=76) : [Xe] 4f¹⁴, 5d⁶, 6s²

Hence, the coordination number in an osmium complex may increase to 8.

592 **(c)**

Phenol has antiseptic property.

593 **(c)**

$$C_6H_5CH = CHCOOH \xrightarrow{NaOH+CaO} C_6H_5CH = CH_2$$

(Styrene)

594 **(d)**

 $[Co(en)_3Cl_3 ie, [Co(en)_3]^{3+}$

 $cis[Co(en)_2Cl_2]Cl ie, cis [Co(en)_2Cl_2]^+$

Mirror

595 **(b)**

The compound in which ligands form ring with the metal are called chelate complex.

597 **(c)**

Benzaldehyde undergoes Cannizzaro's reaction. 600 (c)

Coordination isomerism is possible when both positive and negative ions of a salt are complex ions and the two isomers differ in distribution of ligands in the cation and the anion

601 **(a)**

This is bromination of acetanilide, a $S_{\rm E}$ reaction.

602 **(b)**

The primary valency is ionizable valency. It corresponds to oxidation state of metal. The primary valency is always satisfied by anion.

$$[\operatorname{Co}(\operatorname{NH}_3)_6]\operatorname{Cl}_3 \to [\operatorname{Co}(\operatorname{NH}_3)_6] + 3\operatorname{Cl}^3$$
(A)

∴ Number of primary valency is 3

$$[Co(NH_3)_5Cl]Cl2 \rightarrow [Co(NH_3)_5Cl] +$$

2Cl⁻

(B)∴ Number of primary valency is 2 $[Co(NH_3)_4Cl_2]Cl \rightarrow [Co(NH_3)_4] + Cl^-$ ∴ Number of primary valency is 1.

603 **(d)**

The carbon atom which is attached to three

carbon atoms is called tertiary carbon atom. C_6H_{14} has two tertiary carbons hence, its structure is as

2,3-dimethyl butane

604 **(b)**

The ligand NO_2 has two types of linkage with central atom. In NO_2 , it is the N-atom which is donor and in O—NO it is the O atom which donates electron pair.

605 **(d)**

Tetraethyl lead is organometallic compound.

606 **(d)**

 $C_6H_5OH + PCl_5 \rightarrow (C_6H_5)_3PO_4$ is main product. 609 (c)

Directive influence order

 $-OH > -OCH_3 > -CH_3 > -NHCOCH_3 > -$ CH₂OH of *o*-, *p*- gps. This is due to effect of +*R* directing influence of gp.

610 **(d)**

 $[PtCl_4]^{2-}$ shows dsp^2 hybridization because internal *d*-orbitals participate in its hybridization.

611 **(b)**

Dynamite, TNT, TNB, trinitroglycerine are explosive.

612 **(b)**

In Hg[Co(SCN)₄], Co is present as Co²⁺. The configuration of Co²⁺ is given as following [Ar] $3d^7 4s^0$

$$\mathrm{Co}^{2+} = 1 1 1 1 1 1$$

unpaired electrons (n)

: Magnetic moment
$$(\mu) = \sqrt{n(n+2)}$$

 $\sqrt{3(3+2)} = \sqrt{15}$ BM

614 **(c)**

In metal carbonyls CO has ox. no. equal to zero.

615 **(a)**

 $[NiCl_4]^{2-}$ has tetrahedral shape. In this complex, Ni is in the +2 oxidation state and Ni²⁺ ion always forms tetrahedral complexes

616 **(a)**

It is a differentiating point in between complex and double salt.

617 **(d)**

All possess lesser number of unpaired electrons. 618 **(c)**

Structures
$$K_4[Fe(CN)_6], K_3[Co(CN)_6]$$

 $K_2[Ni(CN)_4]$ are diamagnetic.

619 **(c)**

Wilkinson's catalyst is used for hydrogenation of alkenes

620 **(c)**

Due to *ortho* effect; *ortho* benzoic acid is most acidic because its anion is highly stabilized due to strong intramolecular H-bonding.

$$S_{a}$$
: 1.0 × 10⁻⁵ 2.9 × 10⁻⁵ 1.26 × 10
5.9 × 10⁻⁸

623 **(a)**

 C_6H_5COOH is acid; phenol also as acid.

624 **(c)**

Cis-isomer of $[Pt(NH_3)_2Cl_2]$ is used as anticancer drug.

626 **(b)**

 $[Co(en)_2Cl_2]^+$ shows geometrical as well as optical isomerism

628 **(c)**

Lab method for preparation of benzaldehyde.

629 **(a)**

The ligand at least consist one donor atom having a lone pair of electrons which it can donate to metal atom or ion

630 **(c)**

Aniline is steam volatile.

631 **(a)**

CFSE (crystal field splitting energy) for octahedral complex, Δ_0 depends on the strength of negative ligand. Spectrochemically it has been found that the strength of splitting is as follows

 $\begin{array}{l} {\rm CO} > \ \underline{{\rm CN}^-} > NO_2^- > en > \ \underline{{\rm NH}_3} > py > \\ {\rm NCS}^- > {\rm H}_2 {\rm O} > {\rm O}^{2-} > O{\rm X}^{2-} > O{\rm H}^- > {\rm F}^- > \\ {\rm CI}^- > SC{\rm N}^- > {\rm S}^{2-} > B{\rm r}^- > {\rm I}^- \end{array}$

Therefore, magnitude of Δ_0 will be highest in case of $[Co(CN)_6]^{3-}$.

632 **(b)** K₂[PtCl₆]

Potassium hexachloroplatinate (IV).

633 (c)

The complex formed by the reaction of NiSO₄, pyridine and NaNO₂ gives $[Ni(py)_4](NO_2)_2$ a blue-coloured salt.

634 (b)

 $C_6H_5CHO \xrightarrow{KOH(aq.)} C_6H_5COOH + C_6H_5CH_2OH$

635 (a)

Only m-cresols give tribromo derivatives on treatment with Br₂ water.

636 (a)

 $[E(en)_2C_2O_4]NO_2$ \therefore Coordination number of E = 6: Oxidation number of $E = 3[E^{3+} + 0 + (-2) +$ (-1) = 0]

 $C_6H_5CHO \xrightarrow{PCl_5} C_6H_5CHCl_2$

638

	Complex	Isomerism shown
(a)	$[Co(en)]^{3+}$	Optical only
(b)	$[Ni(NH_3)_5Br]^+$	No geometrical
		isomer
(C)	$[Co(NH_3)_2(en)_2]^3$	<i>Cis</i> and <i>trans</i>
(d)	$[Cr(NH_3)_4(en)]^{3+}$	No geometrical
		isomer
(c)		

639 (c)

Presence of $-NO_2$ at *p*-position increases acidic character.

640 **(b)**

Alkanes are saturated hydrocarbons without any functional group, hence can show chain isomerism only

641 (d)

Both have different molecular formulae.

642 **(b)**

643 (a)

The product (*K*) is formed through simple nucleophilic substitution while major product (L) is formed through $\sim H^-$ shift *via* S_N 1 reaction and 655 (d) methoxy group stabilizes the carbocation intermediate of product(*L*).

645 (c)

In the Grignard reaction magnesium metal forms an organometallic bond

$$RX + Mg \xrightarrow{\text{Dry ether}} R - Mg - X$$

Grignard reagent

646 (a)

Aromatic hydrocarbons are called arenes with general formula $C_n H_{2n-6y}$, where $n \not< 6$ and y is no. of cyclic rings. Benzene has one ring and n =6, *i.e.*, no. of carbon atoms. Thus, general formula is C_6H_6 . All other aromatic hydrocarbons are derivative of benzene.

647 (c)

It is a fact.

648 (d)

Tri and tetravalent bridges derived from methane are given the prefix methyno and methyno respectively

methyno-1,1,1,1,-tetracyclohexane

649 (a)

The structure of the compound is

$$\begin{array}{c|ccccc} CH_3 & CH_3 \\ 5 & | 4 & 3 & | 2 & 1 \\ CH_3 - C - CH_2 - CH - C - H \\ & | \\ CH_3 & O \end{array}$$

2,4,4-trimethyl pentanal.

$$C_6H_5COONa \xrightarrow{NaOH+CaO} C_6H_6.$$

651 (a)

Complementary colours of absorbed light are seen.

652 (d)

Presence of $-SO_3H$ gp. increases solubility of drug or dyes.

653 (d)

It is a fact.

654 (a)

The directive influence order is:

$$\mathrm{O}^- > NR_2 > \mathrm{NH}R > \mathrm{NH}_2 > OH > \mathrm{OCH}_3$$

$$\approx$$
 NHCOCH₃ > CH₃ > X

 Ti^{4+} : $3d^0$ and Cu^+ : $3d^{10}$ can not show d-dtransition and thus colourless.

656 (d)

 $K_4[Fe(CN)_6]4K^+ + [Fe(CN)_6]^{4-}$ The oxidation number of Fe in $[Fe(CN)_6]^{4-}$ is +2. $Fe^{2+}: 1s^2, 2s^22p^6, 3s^23p^63d^6, 4s^04p$ $3d^6$ **4**s 11 1L х 1L X CN CN CN CN CN Since, CN⁻is a strong field ligand, pairing occurs and the hybridisation of $[Fe(CN)_6]^{4-}$ is d^2sp^3 and structure is octahedral. 685 (c) CH₃CHClCH₂C₆H₅ $\xrightarrow{\text{KOH}(aq.)} \text{CH}_3\text{CHOHCH}_2\text{C}_6\text{H}_{51-\text{phenyl propan-2-ol}} \ .$ 686 (d) All the compounds in which there should be restricted rotation about a bond in the molecule, show geometrical isomerism. Oximes of the type $CH_3 - CH = N - OH, C_6H_5 - CH = N - OH,$ $C_6H_5 - C = N - OH$ and cyclic CH₃ HOOCCH-CH2-CHCOOH Compound like show geometrical isomerism 687 (b) The oxidation of aniline by $K_2Cr_2O_7 + H_2SO_4$ (conc.) gives *p*-benzoquinone. 688 (b) Rotate through 180 Eclipsed Rotate through 60° HΟ Eclipsed Here, *P* and *R* represent *meso*-compound 689 **(b)** Friedel-Crafts reaction involves new C— C bond. 691 **(a)** Rest all show less tendency to donate electron pair due to resonance.

692 (c)

(a) $K_3[Fe(OH)_6]$ Let oxidation state of Fe in $K_3[Fe(OH)_6] = x$ $(+1\times3) + x + (-1\times6) = 0$ $\therefore \qquad x = +3$ (b) $K_2[FeO_4]$ Let oxidation state of Fe in $K_2[FeO_4] = x$ $(+1\times2)+x+(4\times-2)=0$ x = +6FeSO₄. (NH₄)₂SO₄ .6H₂O Let oxidation state of Fe in $FeSO_4$. $(NH_4)_2SO_4$. $6H_2O=x$ x+(-2)+2+(-2)=0:. x = +2(d) $[Fe(CN)_6]^{3-1}$ Let oxidation state of Fe in $[Fe(CN)_{6}]^{3-}=x$ ÷ $x + (6 \times -1) = -3$:. x = +3

 $FeSO_4$. $(NH_4)_2SO_4$ has Fe in lowest oxidation state.

693 **(a)**

CO is a strong ligand, all the six electrons of the valence shell of Cr is paired and spin only magnetic moment=0

694 **(a)**

Phenol is used in carbolic soaps.

695 **(d)**

Werner proposed theory for complex compounds to explain the structure and isomerism in them.

696 **(a)**

It is p-block element and thus, has no tendency to form complex.

697 **(a)** In

 $[CoF_6]^{3-}$ complex ion Co^{3+} is $sp^3 d^2$ hybridized. F⁻ is weak ligand and cannot pair up the *d*-electrons so, complex is high spin. Due to four unpaired electrons it is highly paramagnetic.

698 **(b)**

[*Mabcd*] type complexes exist in three isomeric forms.

699 **(b)**

Due to H-bonding.

700 (d)

A characteristics reaction of primary amine. This is carbylamines reaction.

701	(d) The formula of given complex are as follows:		$[Co(NH_3)_6][Cr(CN)_6]$ and $[Cr(NH_3)_6][Co(CN)]$ presents coordination isomerism.
	(a) Hexammineplatinum (IV) chloride	712	(c)
	$[Pt(NH_3)_6]Cl_4$		Co^{3+} and $Pt^{4+} = 6$ coordination number
	(b) Chloropentammine platinum (IV) chloride		$CoCl_3$.6NH ₃ and PtCl ₄ .5NH ₃
	$[PT(NH_3)_5 U]U_3$		$[Co(NH_3)_6]Cl_3 \xrightarrow{\text{in solution}} [Co(NH_3)_6]^{3+} + 3Cl^{-1}$
	(C) Dictinior of etta annume platinum (V) enformed $[Pt(NH_2)_4Cl_2]Cl_2$		$[PtCl(NH_3)_5]Cl_3 \xrightarrow{In solution} [PtCl(NH_3)_5]^{3+} + 3$
	(d) Trichlorotriammine platinum (IV) chloride $[Pt(NH_3)_3Cl_3]Cl$		Number of ionic species are same in the solu of both complexes, therefore their equimolar
	In aqueous solution the complex ionise is	-10	solutions will show same conductance.
	$[Pt(NH_3)_3 Cl_3]Cl \rightleftharpoons [Pt(NH_3Cl_3]^+ + Cl$	713	(a)
	Trichlorotriammine platinum (IV) 2 ions chloride		I niocyanato-N is the name when ligand SCN i
	gives the minimum number of ions in the solution.	715	(d)
700	Hence, it has the minimum electrical conductivity.	/15	Any side chain is oxidised to $-COOH$
/02	(C)	716	(d)
	such as much a	120	This is another reaction.
703	(h)	717	(c)
105	The decreasing order of priority of prefix in		CH=CH
	numbering the carbon chain of an organic		
	compound is		(Furan)
	Bromo > Chloro > Iodo		is heterocyclic compound
	1 2 3 4 5 6	719	(c)
	CH_3 — CH — CH — CH — CH_2 — CH_3		$[Cu(NH_3)_4](NO_3)_2$
	CI Br I		tetrammine copper (II) nitrate.
	3-bromo-2-chloro-4-iodo hexane	720	(c)
705	(d)		Nitorethane exhibits tautomerism
	The structure of the compound 2, 2'-bipyridine is		$CH_{CH_{1}} = N = CH_{2}CH_{2} = N = N$
			O OH
			nitro form aci form
706	(d)	722	(c)
	$ _2$		The electronic configuration Pt=[Xe]
	3 COOH		$4 f^{14}, 5d^9, 6s^1$
	OHC 4		$\therefore Pt^{2+} = [Xe]4f^{14}, 5d^8, 6s^0$
	4 formul 2 and availablements 1 contrarrilis acid		$[Pt(CN)_4]^{2-} = [Xe]4f^{14}$
	4-romyi-2-oxo-cyclonexane-r-carboxync acid		5d $6s$ $6p$
	substituents then numbering is done in such a		
	way that the sum of the locants is the lowest		
707	(c)		dsp^2 - hybridisation
	$-N_2$ Cl gp. Is reduced to $-H$ by reducing agent		\therefore No unpaired electron is present in [Pt(CN) ₄
	$C_2H_5OH/Cu.$		ion.
708	(d)	723	(c)
	All are the required facts for diethyl triamine.		Let the oxidation number of cobalt is x in K
709	(b)		$[U(U)_4].$
	$[Pt(NH_3)_4Cl_2]Cl_2 \rightleftharpoons [Pt(NH_3)_4Cl_2]^{2+} + 2Cl^$		1+x+0=0 v=-1
711	(b)	724	(h)
	When ligands are exchanged between metal atoms, coordination isomerism results. Hence,		The IUPAC name of $Na_3[Co(NO_2)_6]$ is sodium

 $_{5}$] and [Cr(NH₃)₆][Co(CN)₆] re on isomerism. oordination number $l_4 .5 NH_3$ $\xrightarrow{\text{lution}} [\text{Co(NH}_3)_6]^{3+} + 3\text{Cl}^ \xrightarrow{\text{olution}} [PtCl(NH_3)_5]^{3+} + 3Cl^{-}$ ecies are same in the solution herefore their equimolar same conductance. e name when ligand SCN has d by N-atom to metal. dised to -COOH. tion. ound (II) nitrate. tautomerism ► CH₃CH=N OН aci form guration Pt=[Xe] 5d⁸, 6s⁰ f^{14} 6*s* 6pX × Х sp^2 - hybridisation ron is present in $[Pt(CN)_4]^{2-}$ mber of cobalt is *x* in K x + 0 = 0x = -1

Page | 136

hexanitrocobaltate (III).

725 **(a)**

1. $[Cu(NH_3)_4][PtCl_4]$ 2. $[Cu(NH_3)_3Cl] \cdot [PtCl_3(NH_3)]$ 3. $[Cu(NH_3)_2] \cdot [PtCl_2(NH_3)_2] cis$ 4. $[Cu(NH_3)_2Cl_2][PtCl_2(NH_3)_2] trans$ 5. $[Cu(NH_3)Cl_3] \cdot [Pt(Cl)(NH_3)_3]$ 6. $[Pt(NH_3)_4] \cdot [CuCl_4]$

727 **(c)**

Tautomerism and functional isomerism is not possible together

732 **(c)**

$$Fe^{3+} + K_4Fe(CN)_6 \rightarrow KFe[Fe(CN)_6] + 3K^+$$

Prussian blue

733 **(b)**

This is Cannizzaro's reaction.

 $CH_3 - CH_2 - CH = CH_3$ and $CH_2 - CH_2$ | | $CH_2 - CH_2$ exhibit ring chain isomerism

735 **(a)**

Follow Werner's theory.

736 **(b)**

Faraday for the first time isolated C_6H_6 from coaltar.

737 **(b)**

CH₃CH₂-C \equiv C-CH₃ 2-pentyne \downarrow HBr CH₃CH₂-C \equiv C-CH₃ CH₃-CH₂-C \equiv C-CH₃ \downarrow \downarrow \downarrow Br H H Br 3-bromo pent-2-ene *E*, *Z E*, *Z*

Structural isomers (position) = 2 Stereo isomers = 4

738 **(a)**

According to Werner's theory, the primary valency of a metal is equal to the no. of charge on complex ion, *i. e.*, 3 on $[Fe(CN)_6]^{3-}$

739 **(b)**

The complex which contains 18 valence electrons, follows 18-electron rule. (a) $\ln [V(CO)_5]$

The number of valence electrons

 $= 5 + (2 \times 5)$ $= 15 e^{-1}$ (b) $\ln[Fe(NH_3)_6]^{2+}$, The number of valence electrons $=6+(6\times2)=6+12=18 e^{-12}$ (c) In $[Ni(CO)_6]$, The number of valence electrons = $10 + (2 \times 6) = 22$ e⁻ (d) $\ln [Mn(H_20)_6]^{2+}$, The number of valence electrons= $5+(6\times 2)=17$ e⁻ Thus, only $[Fe(NH_3)_6]^{2+}$ follows 18-electron rule. 740 (d) One mole of *X* gave depression corresponding to 2 moles of particles, *i.e.*, on ionisation X gives 2 moles of ions, thus it contains only 1 ion outside the coordination sphere and its structural formula is $[Cr(H_2O)_4Br_2]Cl. H_2O$ while Y gives 3 moles of ions, thus it contains two ions outside the

coordination sphere and its structural formula is $[Cr(H_2O)_5 Cl]Br_22$

742 **(d)**

Both represent only one molecule and no isomerism.

743 **(a)**

Haemoglobin is porphyrin complex of ferrous iron being coordinated to four nitrogen atoms and additionally coordinated to a water reversible by a molecule. The water molecule appears to be replaceable reversible by a molecule of oxygen to give oxyhaemoglobin. Fe²⁺ is diamagnetic due to strong field ligands.

746 **(d)**

—CN and —COOH gp. at p-position facilitate replacement of Cl gp. by S_N reactions to show normal S_N reactions.

747 **(b)**

 $(NH_4)_2S_x$ brings in selective reduction of one of the two $-NO_2$ group at *m*-position.

748 **(c)**

If the highest priority groups on two carbon atoms of the double bond are on the opposite side, the configuration is *E*. (Entgegen)

$$\begin{array}{c} \textcircled{0}\\ H_{3}C\\ \textcircled{0}\\ H_{3}C\\ \textcircled{0}\\ H \\ C = C \\ \begin{array}{c} \textcircled{0}\\ CH(CH_{3})_{2}\\ \textcircled{0}\\ (E) \end{array} \end{array}$$

749 (c)
Cyclopentane possess 0°44' angle strain which is minimum
750 (c)

 $[Fe(H_2O)_6]^{2+} has four unpaired electrons$ 751 **(b)** $[Pt(NH_3)_6]Cl_4 \rightleftharpoons Pt(NH_3)_6 + 4Cl^{-}$

 $Ag^+ + Cl^- \rightarrow AgCl \downarrow_{White ppt.}$

752 **(a)**

 $CH_{3}(CH_{2})_{3} \cdot NH_{2} \xrightarrow{KOH alc.} CH_{3}(CH_{2})_{3}NC + 3KCl + 3H_{2}(CH_{3})_{3}C \equiv CH + Amm \cdot AgNO_{3} \rightarrow CH_{3}C \equiv C \cdot Ag + HNO_{3}$

 $CH_3 \cdot CH_2COOCH_3 + NaOH \xrightarrow{\Delta} CH_3CH_2COONa$ + CH_3OH

$$CH_{3} - CH + anhy. ZnCl_{2} + HCl_{1}$$

$$CH_{3} - CH_{3}$$

 \rightarrow Cloudiness appears within 5 minute.

754 **(b)**

2°alcohol

Configuration of Mn^{2+} is [Ar] $3d^5$ According to CFSE (crystal field stabilisation energy), in excited state of Mn^{2+} ion, three electrons go in t_{2g} level (d_{xy} , d_{yz} and d_{zx}) and two electrons go in e_g level (d_{z^2} and $D_{x^2-y^2}$).

755 **(d)**

```
CH<sub>3</sub>

|

CH<sub>2</sub> = C - CH<sub>2</sub> - COOC<sub>2</sub>H<sub>5</sub>

4 3 2 1

ethyl (3-methyl) but-2-enoate

756 (c)

eg, Fe(CO)<sub>5</sub>, Ni(CO)<sub>4</sub>, etc.,

757 (b)

Follow IUPAC rules.

758 (b)

[Co(NH<sub>3</sub>)<sub>6</sub>][Cr(C<sub>2</sub>O<sub>4</sub>)]<sub>3</sub> its IUPAC name is hexa

amine cobalt (III) tris (oxalato) chromate (III).

759 (b)

Gammexane is C<sub>6</sub>H<sub>6</sub>Cl<sub>6</sub>.

760 (b)

1.In Ni(CO)<sub>4</sub>, nickel is sp^3-hybridised because in it

oxidation state of NI is zero. So, configuration of
```


(III)

$$CH_3 - CH - CH_2 - CH_3$$

(IV)

Here, only (I), (II) and (III) are chain isomers 763 **(a)**

2,2-dinitrodiphenyl or 4,4-dinitrodiphenyl is formed.

764 **(d)**

We have that by breaking two bond on the chiral centre configuration changes

765 **(c)**

Use of oleum ($H_2SO_4 + SO_3$) produces inclusion of $-SO_3H$ gp. in C_6H_6 ring.

766 **(a)**

 $\rm NO_2^-$ can participate in linkage isomerism because it may be bonded to metal through nitrogen or through oxygen.

 $[(NH_3)_5CoNO_2]Cl_2$ and $[(NH_3)_5CoONO]Cl_2$

Pentaamminenitropentaamminenitrocobalt (III) chloridecobalt (III) chloride

768 **(c)**

Cuprammonium salt, $[Cu(NH_3)_4]SO_4$ $[Cu(NH_3)_4]SO_4 \rightleftharpoons [Cu(NH_3)_4]^{2+} + SO_4^{2-}$ So, it will give two ions in water

769 **(b)**

(a) Shows tautomerism since aldehydes are more stable than vinyl alcohols

 $C_6H_5 - CH = CHOH \iff C_6H_5CH_2 - CH_2 - CH_2$ = 0

(b) Does not show tautomerism because it does not have hydrogens at α -positions

(c) Shows tautomerism because enol form is stabilized by H-bonding

(d) Shows tautomerism because enol form is stabilized by aromatic character

771 **(a)**

Main fractions of coal-tar and the compounds present there in are:

constituents range 1. Light oil or 80-Benzene, crude toluene, xylenes, 170°C 2. naphtha etc. Middle oil or 170-Phenol, 3. carbolic acid naphthalene, 230°C Heavy oil or pyridine, etc. 4. creosote oil 230-Cresols, Green oil or naphthalene 270°C 5. anthracene quinolone, etc. oil Anthracene, 270-Pitch phenanthrene, 360°C etc. 90-94% of Resid carbon ue

772 **(b)**

Octahedral complexes containing three bidentate ligands shows optical isomerism If A is a bidentate ligand then complex of type MA_3 show optical isomerism

773 **(a)**

Cl atom attached in side chain behaves as aliphatic in nature.

775 **(d)**

Due to electron deficient molecule it accepts lone pair of electron to produce electrophile.

$$AlCl_3 + Cl_2 \rightarrow AlCl_4^- + Cl_2^-$$

777 **(b)**

o –nitrophenol has intramolecular H-bonding.

778 **(c)**

IUPAC name is tetraammine nickel (II) – tetrachloronickelate (II).

779 **(b)**

Ligands are electron pair donor.

781 **(d)**

Cis- form of $[Co(en)_2(NH_3)_2]^{3+}$ is optically active.

Main fraction Temp. Chief

After two interchanges at each of the two chiral carbon atoms in second structure in such a way that CH_3 group is held vertically upward and C_2H_5 group vertically downward, we get first structure CH₃ ·CH₃ Make two interchanges Thus, the two structures are identical 785 (c) $K_3[Fe(CN)_6]$ cation anion Oxidation state of Fe in anion =+3Thus, it is potassium hexacyanoferrate (III). 786 **(b)** In $[Zn(NH_3)_6]^{3+}$, Zn exists as Zn^{2+} $_{30}$ Zn: 3d¹⁰, 4s² Zn^{2+} : $3d^{10}$; Thus, no unpaired electron but it is outer orbital complex. In $[Co(NH_3)_6]^{3+}$, Co exists as Co^{3+} $_{27}$ Co: 3d⁷, 4s² $Co^{3+}: 3d^6$; It is d^2sp^3 inner orbital complex with 3 electron paired in 3d. 787 (a) In [CoCl₄]^{2–} ion, central metal atom i.e., cobalt is in +2 oxidation state. Hence, $_{27}$ Co=[Ar] $3d^7 4s^2$ $\therefore {}_{27}\text{Co}^{2+}=[\text{Ar}]3d^7$ 11 11 1 Hence, number of unpaired electrons is three as Cl is weak ligand. 788 (c) Coordination number is the number of ligands in the coordination sphere. Hence, the coordination number of cobalt ion in $[Co(H_2O)_4SO_3]Cl$ is 5. Let the oxidation number of Co is *x*. x+4(0)+(-2)+(-1)=0x + 0 - 2 - 1 = 0x=3Number of unpaired electrons in *d*-orbital are 4 because H₂O is a weak ligand and therefore, pairing of *d*-electrons is not possible. 789 **(b)** $C_6H_6 + CH_3COCI \xrightarrow{AlCl_3} C_6H_5COOCH_3$ 790 (c) $-SO_3H$ is water soluble. 791 (c) $+1 \times 4 + x - 1 \times 4 = 0$ $4 + x - 4 = 0 \Rightarrow x = 0$ for Ni 792 (c) Follow IUPAC nomenclature.

793 (b) Due to bitter almond smell. It is

 $CH_3O(OH)C_6H_3CHO.$

795 (c)

C₆H₅COCH₃ acetophenone is a mixed ketone having one alkyl and other phenyl gp. attached on -C=O gp.

796 (d)

These are the facts about transition metal atoms to act as central atom.

798 (d)

Since, hybridization is dsp^2 so, it is square planar

799 (b)

Metal-carbon bond in metal carbonyls has σ as well as π characters.

800 (d)

The electronic configuration of Ni in $[Ni(CN)_4]^{2-}$, $[Ni(Cl)_4]^{2-}$ and $Ni(CO)_4$ are: Ni^{2+} in $[Ni(CN)_{4}]^{2-}$:

$$Ni^{2+}$$
 in $[Ni(Cl_4)]^{2-}$:

$$\begin{array}{c|c} 3d \\ \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \\ \hline \\ sp^{3} \\ \hline \\ sp^{3} \\ \hline \\ \end{array} \begin{array}{c} 4s \\ \times \times \\ \times \times \times \times \\ \\ sp^{3} \\ \hline \\ \end{array}$$

Ni in $[Ni(CO)_4]$:

801 (c)

Both produce different ions in solution state: $[Co(NH_3)_5Br]SO_4 \rightleftharpoons [Co(NH_3)_5Br]^{2+} + SO_4^{2-}$ $[Co(NH_3)_5SO_4]Br \rightleftharpoons [Co(NH_3)_5SO_4]^{1+} + Br^{-1}$

803 (c)

The configuration in which – OH group is on right side, H-atom is on left side, -CHO group is on upper side and CH₂OH is on lower side found in Fischer projection known as D-configuration

804 (a)

Linkage isomerism is shown by those complexes which have an ambidentate ligand such as NO_2^- , CN^- and $SC\overline{N}$ etc. In [Fe $(NO_2)_3Cl_3$], N is dono donor atom.

805 (c)

2,6-dimethyl hepta-2, 5-dienoic acid

806 **(d)**

NaHCO $_3$ reacts with acids to give CO $_2$ from HCO $_3^-$ ion.

 $H^+ + HCO_3^- \rightarrow H_2O + CO_2 \uparrow$

807 (a)

The species within the coordination sphere does not ionize.

808 (c)

The reverse of enolic contents of compound is ketonic contents. Thus, the correct order of ketonic contents are $CH_3CHO > CH_3COC_2H_5 > CH_3COCH_3$

$$> CH_3COCH_2COCH_3$$

809 **(b)**

The anhydrous complexes of Cu_2^{2+} do not involve d-d transition and are thus, colourless.

810 (d)

The valence of C-atom of ring is 5 at two methyl gp. attachment.

812 **(b)**

Aniline is basic and thus, reacts with acid.

814 **(b)**

The Riemer-Tiemann reaction is followed by dichloro carbene mechanism.

815 **(c)**

 $C_6H_5COOH \xrightarrow{SOCl_2} C_6H_5COCl + SO_2 + HCl; -OH$ group is replaced by PCl₅, PCl₃ or SOCl₂. 816 **(b)**

 Mn^{2+} will have half filled more stable d^5 configuration and without distributing it an outer orbital complex can be formed

817 **(a)**

	Hybridi	Unpair	Magneti
	zation	ed	С
		electro	momen
		ns	t
$1.[Co(CN)_6]^{3-}$	d^2sp^3	0	0
$2.[Fe(CN)_6]^{3-}$	d ² sp ³	1	$\sqrt{3}$ BM
3.	d^2sp^3	2	$\sqrt{8}$ BM
$[Mn(CN)_{6}]^{3-}$			
$4.[Cr(CN)_6]^{3-1}$	d^2sp^3	3	$\sqrt{15}$ BM

Thus, least paramagnetism is in (a).

818 (d)

The primary valencies of Ni, in the complexes $[Ni(Cl_4)]^{2-}$ and $[Ni(CN)_4]^{2-}$ is same *i.e.*, (+II). Primary valencies are those valencies which a metal exhibits in the formation of its simple salt, these are non-directional. It is also referred as oxidation state of central metal atom.

819 **(c)**

The central metal ion is Fe^{3+} and $C_2O_4^{2-}$ is negative bi-dentate ligand which forms more stable complex than neutral or mono-dentate ligand.

821 **(b)**

In π -complex, organic ligands use their π system to bond with metal, *e*.g., ferrocene.

823 **(c)**

CN⁻ ions act both as reducing agent as well as good complexing agent

824 (a)

The order of *meta* directing, gp. is: $Me_3N^+ > NO_2 > CN > SO_3H > CHO > COCH_3$ > COOH

825 (a)

CH₃COC₃H₇ can exhibit metamerism 0 CH₃ || || ||CH₃ - C - CH₂CH₂CH₃, CH₃ - C - CH - CH₃ and 0 ||CH₃CH₂ - C - CH₂CH₃ 826 **(d)** It has coordination no. six and thus, octahodral

It has coordination no. six and thus, octahedral or $sp^{3}d^{2}$ -hybridization.

828 **(d)**

Let the oxidation state of iron in $K_4[Fe(CN)_6]$ is *x*.

$$4(+1)+x+6(-1)=0$$

 $4+x-6=0$
 $x=+2$

829 **(d)**

These are the methods to test complex formation.

830 **(b)**

EAN of Fe in K_3 Fe(CN)₆ is: $26 - 3 + 2 \times 6 = 35$, *i.e.*, not 36 the next inert gas.

833 (a)

Grignard reagent is a σ -bonded organometallic compound because all the bonds present in the reagent are single bonds.

835 **(b)**

EDTA is C_2H_4 N(CH₂COO⁻)₂; it has six positions (*i.e.*, N(CH₂COO⁻)₂)

six electron pairs) available for attachment at central metal atom.

836 **(d)**

Thymol is 3-hydroxy-l-isopropyl-4-methyl benzene ($C_{10}H_{14}O$), a white crystalline phenol derivative, has smell of thyme, occurs in many essential oils used as fragrant material as well as mild antiseptic.

837 (d)

Ferrocyanide ion $[Fe(CN)_6]^{4-}$ is diamagnetic in nature hence $K_4[Fe(CN)_6]$ complex has zero magnetic moment.

838 **(a)**

CO ligand has zero oxidation state, that is why $[Ni(CO)_4]$ is a zero valent metal complex

840 (c)

A characteristic; follow ligand field theory. 842 **(b)**

843 **(b)**

844 **(c)**

9 mole or 9 \times 22.4 litre of C_2H_2 are needed.

845 **(b)**

IUPAC name of sodium nitroprusside Na₂[Fe(CN)₅NO] is sodium pentacyanonitrosyl ferrate (III) because in it NO is neutral ligand and the oxidation number of Fe is III, which is calculated as

 $2 \times ON$ of Na+ ON of Fe +5 $\times ON$ of CN

$$+1 \times ON \text{ of } NO=0$$

2×(+1)+ON of Fe +5× (-1) +1×0=0
ON of Fe =5-2=+3

846 **(b)**

The electronic configuration of Ni in $[Ni(CN)_4]^{2-}$, $[Ni(Cl)_4]^{2-}$ and $Ni(CO)_4$ are : Ni^{2+} in $[Ni(CN)_4]^{2-}$:

 Ni^{2+} in $[Ni(CO)_4]$:

848 **(d)**

When cations have same charge but number of *d*-electrons are different then the stability (or CFSE) decreases with increase in the number of *d*-electrons. Therefore, the correct order is $Fe^{2+} > Co^{2+} > Ni^{2+} > Cu^{2+}$

849 **(a)**

Oxidation state of Ni in $Ni(CO)_4$ is zero.

CO is a strong ligand. It causes pairing of electrons. Hence, there is no unpaired electrons in $Ni(CO)_4$.

850 **(b)** Ox. no. of Cr is calculated as: $3 \times 1 + a + 1 \times (-2) + 4 \times (-1) = 0; \quad \therefore a = +3$ 853 **(c)**

 CrO_3 or CrO_2Cl_2 and a mixture of $K_2Cr_2O_7$ + H_2SO_4 + NaCl can also be used.

854 **(b)**

Butane-2 exhibit geometrical (*cis*, *trans*) isomerism

855 **(a)**

Ferrocene is a π complex Fe $(\eta^5 - C_5H_5)_2$.

856 **(a)**

Ni in $[Ni(NH_3)_6]^{2+}$ has sp^3d^2 (outer complex) having octahedral geometry.

857 (d)

These examples are ionisation isomers because of chloride and sulphate ions.

859 **(b)**

When ligands are arranged in ascending order of crystal field splitting energy, Δ , they produce a spectrochemical series.

In comparison to H_2O , Cl is strong σ -donor and good π -acceptor, therefore it is a strong ligand than H_2O . Hence, in the spectrochemical series Cl is above than water.

860 **(b)**

On ionization different species are formed to show ionization isomerism:

 $[Co(en)_2(NCS)_2]Cl \rightleftharpoons [Co(en)_2(NCS)_2] + Cl^ [Co(en)_2(NCS)Cl]NCS$

$$\Rightarrow$$
 [Co(en)₂(NCS)Cl] + NCS⁻

861 **(a)**

Pt²⁺ has square planar complexes with coordination number four.

862 **(c)**

 $\sqrt{15}$

In Hg[Co(SCN)₄], Co exists as Co²⁺ $_{27}$ Co : $3d^7$, $4s^2$ $_{27}$ Co²⁺ : $3d^7$ SCN⁻ a strong field ligand provides four electron

to pair to show sp^3 -hybridisation in $[Co(SCN)_4]^{2-}$ and thus three unpaired electrons exists on CO^{2+} .

: Magnetic moment = $\sqrt{n(n+2)} = \sqrt{3(3+2)} =$

863 **(d)**

But-2-ene and but-1-yne do not have same molecular formula, thus are not isomers $CH_3 - CH = CH - CH_3$ $CH_3 - CH_2 - C \equiv CH$ But-2-ene but-1-yne (C_4H_8) (C_4H_6)

864 **(b)**

$$\begin{array}{c} {}_{27}\text{Co} \rightarrow [\text{Ar}]3d^74s^2 \\ \text{Co}^{2+} \rightarrow 3d^74s^0 \\ \hline \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \end{array}$$

865 (a)

NO in iron complexes has ox. no. equal to one.

$$a + 5 \times 0 + 1 - 2 = 0$$
, $\therefore a = +1$

868 **(c)**

Due to the presence of phenolic gp.

869 **(b)**

Ni(CO)₄ has a O.N. zero for Ni

870 **(d)**

Because it is a polydentate ligand which binds the central atom nickel forming a ring structure

871 **(c)**

Carbonyl compounds react with Grignard reagent following nucleophilic addition. More +ve is charge on C⁺ centre of carbonyl gp., easier is nucleophile attack.

(Positive charge on C⁺ is dispersed due to + I. E. of CH₃ gp.)

$$\begin{array}{c} H_{3}C \\ H_{3}C \\ (I) \end{array} \xrightarrow{C \longrightarrow C} \begin{array}{c} H_{3}C \\ H_{3}C \end{array} \xrightarrow{+} C \xrightarrow{-} O \end{array}$$

(Positive charge on C^+ is dispersed more due to +I.E. of two $CH_3 gp.$)

$$C_{6}H_{5} \xrightarrow{C_{6}H_{5}} C \xrightarrow{H_{5}C_{6}} \xrightarrow{+} C \xrightarrow{-\overline{O}} C$$

(Positive charge on C⁺ is intensified due to -I.E. of C₆H₅ gps.)

But in (III) conjugation of \sum CO gp. with π system

of benzene nucleus following resonance deactivates C⁺ centre to attack by nucleophile. Resonance effect overpowers over -I.E. of C_6H_5 gp.

 $[Cr(SCN)_2(NH_3)_4]^+$ shows geometrical (or *cis*-*trans*) and linkage isomerism.

873 **(c)**

 $CuCl + 4KCN \rightarrow K_3[Cu(CN)_4] + KCl.$ Thus, coordination no. of Cu is four.

876 **(b)**

The IUPAC name of the compound [CuCl₂(CH₃NH₂)₂] is dichloro bis-(methyl amine) copper (II).

877 **(b)**

2-(1-cyclobutenyl)-1-hexane

879 (b)

Electronic configuration of $[FeF_6]^{3-}$ is:

 \times × Electron pair donated by F⁻

880 (d)

Effective atomic no. (EAN) = at. No. of central atom -oxidation state $+2 \times (no. of ligands) =$ $28 - 0 + 2 \times 4 = 36$

$$EAN = 26 - 3 + 2 \times (6) = 35$$

882 (d)

 $[Pt^{II}(NH_3)_2Cl_2]$ shows geometrical isomerism.

884 **(b)**

Staggered and eclipsed conformers cannot be physically separated because the energy difference between them is so small that they most readily interconvent at room temperature

885 **(b)**

A species or group of atoms can act as ligand only when it carries an unshared pair, *i.e.*, lone pair of electrons.

886 **(c)**

Follow IUPAC rules.

888 (d)

 $\rm NH_2\cdot NH_2$ serves as monodentate as well as bridging ligand because a 3-membered ring will be too strained to be stable.

889 **(b)**

TNT mixed with NH_4NO_3 gives explosive material.

890 (d)

During debromination, *meso*-dibromobutane form *tran*-2-butene

891 (a)

The IUPAC name of compound is
$$K_2[Cr(CN)_2O_2(O)_2(NH_3)]$$
 is

Potassium ammine dicyano dioxoperoxo

chromate (VI)

893 **(a)**

It can show ionization isomerism: $[Co(NH_3)_4Cl_2]^+$ and $[Co(NH_3)_4Cl]^{2+}Cl$.

894 **(b)**

Replacement of H-atom of ring usually takes place following S_E reaction mechanism.

895 **(b)**

Follow mechanism of Reimer-Tiemann reaction.

896 **(a)**

It is 2,4,6-trinitrophenol.

897 **(a)**

Follow mechanism of cannizzaro's reaction.

898 **(b)**

Ag in Tollens' reagent exists as Ag_20 $2 \times a + 1 \times (-2) = 0$ $\therefore a = +1$

899 **(b)**

 $K_3[Fe(CN)_6]$

Electronic configuration of Fe = $[Ar]3d^{6}4s^{2}$ Electronic configuration of Fe³⁺ = $[Ar]3d^{5}$ Number of ligand (Coordination number)=6 Nature of ligand in strong field

902 **(d)**
$0.6\Delta_0$ *d*-orbitals in symmetrical field of ligand high spin d^4 configuration in octahedral field $CFSE = 3\lambda(-0.4)\Delta_0 + 0.6(\Delta_0) = 0.6\Delta_0$ 905 **(b)** Only carbonyl compounds show this test. 906 (c) Presence of *meta* directing gp. Deactivates ring for Friedel-Crafts reaction. 907 (c) $Ni(CO)_4$ and $Ni(PPh_3)_2Cl_2$ are tetrahedral in geometrical shape, because coordination number of Ni is four in both cases. 908 (c) Geometrical isomers (cis and trans) and linkage isomers (-SCN and - CNS). 909 (a) The absorption of energy of the observation of colour in a complex transition compounds depends on the charge of the metal ion and the nature of the ligands attached. The same metal ion with different ligands shows different absorption depending upon the type of ligand. The presence of weak field ligands make the central metal ion to absorb low energies *ie*, of higher wavelength. The field strength of ligands can be obtained from spectrochemical series, ie, (weak field) $I^- < Br^- < S^{2-} < Cl^- < NO_3^- <$ $F^- < OH^-$ < H₂0 < NH₃ < NO₂ < CN⁻ < CO (strong field) 911 (d) The total number of monodentate ligands attached to the central metal is known as coordination number. Hence, in $[Cu(H_2O)_4]^{2+}$ coordination number of Cu atoms is 4 912 (c) Prefixes and the root wo after the cor The IUPAC n single word 913 (c) $CH_2 = CH - CH_2CI \leftrightarrow ClCH_2 - CH = CH_2.$ 914 (c)

because it is of formula MA_3B_3 which does not show optical isomerism

915 (b)

Ethylenediamine is a bidentate ligand.

$$\begin{array}{c} \operatorname{CH}_{2} \longrightarrow \operatorname{NH}_{2} \\ | \\ \operatorname{CH}_{2} \longrightarrow \operatorname{NH}_{2} \end{array}$$

916 (b)

Electron withdrawing nature or -IE increases the activation of ring more effectively, however resonance opposes inductive effect for attachment at *o*-and *p*-position and hence, makes less deactivation for *o*-and *p*-positions.

918 (d)

All involves sp^3 -hybridization.

919 (b)

Chaisen condensation involves condensation of benzaldehyde with aliphatic aldehydes or ketones having two α-H-atoms, e.g.,

$$C_6H_5CHO + CH_3CH_2CHO \longrightarrow C_6H_5CH = C - CHO$$

920 (d)

All are transition elements with d-orbitals not filled to capacity.

921 (a)

Ag(II) has a d^9 -configuration and must contain unpaired electron but AgOis diamagnetic because AgO does not contain Ag(II) but is a mixed oxide of Ag^IAg^{III}O₂.

922 (c)

Friedel-Crafts reaction involves alkylation or acylation in benzene nucleus using alkylating or acylation reagents in presence of anhy. AlCl₃.

924 **(b)**

 $2C_6H_6 + 2HCl + O_2 \rightarrow 2C_6H_5Cl + H_2O$ 925 (a)

> CoCl₂ is a weak Lewis acid, reacting with chloride ions to produce salt containing the terrahedral $[CoCl_4]^{2-}$ ion. CoCl₂ is blue when anhydrous, and a deep magenta colour when hydrated, for this reason it is widely used as an indicator for water

926 (c)

Octahedral complexes of the type MA_5B do not show geometrical isomerism.

 $C_6H_5COOC_2H_5 \xrightarrow{NaOH} C_6H_5COONa + C_2H_5OH$ 928 (d)

 $[Co(NH_3)_3Cl_3]$ does not have optical isomers

			C-NH ₂				oil		Anthracene,		
	In th	is compound	U O	is principal			Pitch	270-	phenanthrene,		
	funct	tional group						360°C	etc.		
	Whil	e – CHO is substi	tuent gro	oup, hence					90-94% of		
		1 CONH ₂		-				Resid ue	carbon		
		4	CHO								
	/	2									
	5-for	3 5 mvl-2-methvl pent	t-3-en-1-a	mide	939	(c)					
929	(h)				The coordination number (C.N.) of a metal atom						
, ,	$C_{\rm cH_{2}CH_{2}NH_{2}}$ has least negative inductive effect					in a complex is the total number of bonds formed					
	and thus shows more basic nature.					by metal with ligands.					
930	(d)					In ca	se of tetrahedral	complex	tes the number of		
			CH ₃			bond	ls formed betwee	en metal	and ligand is four.		
	CH_3 — CH_2 — CH_2 — CH — CH_2 — CH_3				So, coordination number is also four.						
	7 6 5 4 3 2 1				940	940 (D)					
		4-ethyl-3-methy	vl heptane			and i	$1 \times 1 \times$	iu ieligui se in alka	ne C C bond is		
	Note • The prefix in a compound should be					1 54 Å and in alkene it is 1 34 Å					
	arrai	nged in alphabeti	ical orde	r	941	(d)	in und in uncene i	15 1.5 1			
931	(d)	0 1				C=0	$+ H_2 NNHC_6 H_5 -$	\rightarrow C=NN	IHC ₆ H ₅		
	All p	ossess lesser nur	nber of u	inpaired electrons.		All re	eagents do so.				
932	(d)				944	(c)					
	A mo	onodentate ligano	d has one	e donor site		Elect	rophilic substitu	tion occu	urs at electron rich		
	avail	able for coordina	ation.		centres usually at <i>o</i> - and <i>p</i> -positions. The ring						
933	(a)					attac	hed with –NH w	vill devel	op more electron		
024	It is t	benzene.				dens	ity at o- and p-po	ositions.	Since <i>o</i> -position is		
934	(C)	Cla				block	ked, thus electroj	phile will	attach at <i>p</i> -		
	C_6H_5	$CHO \xrightarrow{G12} C_6 H_5 CO$	Cl		045	posit	.1011.				
935	(c)				945	Follo	w text				
0.24	Phenol is weak acid.					(a)					
936	36 (b)					In th	e formation of d^2	² sp ³ hyb	rid orbitals, two		
	I ne coordination number in $[FeF_6]^\circ$ is 6, hence it					$(n-1)d$ orbitals of e_g set <i>i.e.</i> , $(n-1) d_{z^2}$ and $(n-1) d_{z^2}$					
937	37 (d)					1dx2	?– <i>y2</i> orbitals, on	e <i>ns</i> and	three <i>npnpx, npy</i>		
	$AgCl + 2NH_3 \rightarrow [Ag(NH_3)_2]Cl$					and a	<i>npz</i> orbitals com	bine toge	ether and form six		
020	(-)	5 1	Soluble	1		d^2sp	³ hybrid orbitals	5.			
938	(a) Main	fractions of coal	t ar and	the compounds							
	Main fractions of coal-tar and the compounds				947	(a)					
	pres	Main fraction	Temp.	Chief		EAN	of Fe = $26 - 2 + $	$-6 \times 2 =$	36.		
			range	constituents	948	(a)					
	1.	Light oil or	80-	Benzene,		K[Pt	$(\mathrm{NH}_3)_5\mathrm{Cl}_5] \rightleftharpoons \mathrm{K}^4$	+ [Pt(N	$[H_3)_5 Cl_5]^-$		
		crude	170°C	toluene, xylenes,	949	(b)					
	2.	naphtha		etc.	050	3KU	+ $\operatorname{Lucl} \rightarrow \operatorname{K}_3[\operatorname{C}]$	uCI ₄]; thi	s is soluble in water.		
		Middle oil or	170-	Phenol,	950		re characteristic	s tastes f	or phenol		
	3.	carbolic acid	230°C	naphthalene,	952	лп а (с)		5 103103 1	n phenoi.		
		Heavy oil or		pyridine, etc.	/32	N car	nnot have more t	han 8 ele	ements in its valence		
	4.	creosote oil	230-	Cresols,		shell					
		Green oil or	270°C	naphthalene	953	(b)					
	5.	anthracene		quinoione, etc.	1						

Tautomeric structures of a molecule are not the resonating structures of the molecule

954 (a)

2, 4, 6-trinitrophenol is strong acid than acetic acid but phenol is less acidic than acetic acid.

955 (a)

Phenol being weak acid does not react with aq. NaHCO₃.

956 (c)

If two atoms directly attached to the double bond have the same atomic number, then the elative priority of the groups is determined by a similar comparison of the atomic numbers of the next elements in the groups. Thus, the preference order of given group is $OCH_3 > OH > COOH > CHO$

957 (a)

Follow IUPAC name.

958 (a)

It possesses d^8 configuration of Ni²⁺.

959 (d)

There are four structural isomers possible for diphenyl methane when one H-atom is replaced by a Cl-atom

960 (c)

 CN^{-} is a better complexing agent (*C*) as well as a reducing agent(A)

Thus, properties (*A*) and (*C*) are shown.

Property (C):Ni²⁺ + 4CN⁻ \rightarrow [Ni(CN)₄]²⁻ Property(*A*):

I $CuCl2 + 5KCN \rightarrow K_3[Cu(CN)_4] + \frac{1}{2}(CN)_2 + 2KCl$

 $(CN^{-} reduces Cu^{2+} to Cu^{+})$

961 (c)

the double bonds are trans and In cis. The first and third bonds are identical

963 (a)

p –nitrophenol is most acidic (among these) as it has electron withdrawing $-NO_2$ gp.

965 (c)

Geometrical isomerism is found in compounds having coordination no. 4 (square planar and not tetrahedral shape) as well as coordination no. 6. Coordination no. 4 (square planar)

 $M_{A_2BC}, M_{A_2B_2}$

Showing geometrical isomerism M_{ABCD} Coordination no. 6 (octahedral)

 $M_{A_4B_2}, M_{A_4BC}$

Showing geometrical isomerism.

 $M_{A_3B_3}, M_{(AA)_2B_2}$

966 (d)

Follow crystal field theory.

967 (d)

Due to resonance C_6H_6 is stabilized and normal addition reactions (except addition of H₂, Cl₂ and ozonolysis) are not observed in C_6H_6 .

969 **(b)**

EAN of Pt in $[PtCl_6]^{2-} = 86$

971 (b)

 $CuCl + NH_3 \rightarrow [Cu(NH_3)_2]Cl$. The coordination no. = No. of ligands attached.

972 (a)

$$3^{3}_{4}$$
 5^{6}_{5} 7^{8}_{7} CH₃

Longest system : 1,2,3,4,5,6 Next longest system : 6,7,8,1 Shortest system : 1,6 The IUPAC name of compound is 8-methyl bicyclo [4,3,0] nonane

973 (b)

Aniline on condensation with aromatic aldehyde gives Schiff's base.

974 (c)

Organometallic compounds are those compounds in which metal is directly attached to the carbon atom. In sodium ethoxide, sodium attached to oxygen atom, hence it is not an organometallic compound.

975 (d)

(i) $CH_3CH_2CH_2CH_2CH_2OH$ and $CH_3CH_2CH_2 - CH - CH_3$

	are Position isomers		Due to restricted rotation about the carbon-
	H Asymmetric carbon atom		carbon single bond joining the two phenyl groups,
			the molecule as a whole is chiral and thus shows
	$ \begin{array}{c} (1) \Box \Pi_3 \longrightarrow \Box_3 \Box_7 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		optical isomerism
	ÓН	984	(b)
	Due the presence of asymmetry, optical		Any side chain is oxidised to COOH gp.
	isomerism is possible	985	(d)
	(iii) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH and		These are facts about glycinato ligand.
	CH ₃ CH ₂ OCH ₂ CH ₂ CH ₃ are functional isomerism	986	(c)
976	(c)	200	According to Werner's theory, only those ions are
	Co ³⁺ and Pt ⁴⁺ have 6 coordination number.		precipitated which are attached to the metal
	$CoCl_3$. $6NH_3$ and $PtCl_4$. $5NH_3$		atoms with ionic honds and are present outside
	In solution 13^{+} 13^{+}		the coordination sphere
	$[\text{LO}(\text{NH}_3)_6\text{LI}_3 \longrightarrow [\text{LO}(\text{NH}_3)_6]^{3^+} + 3\text{LI}$	007	(d)
	$[PtCl(NH_3)_5Cl_3 \xrightarrow{\text{In solution}} [PtCl(NH_3)_5]^{3+} + 3Cl^{-}$	907	(u)
	Number of ionic species are same in the solution		<i>sp</i> -nybridization leads to planar nexagonal
	of both complexes, therefore their equimolar	000	shape.
	solutions will show same conductance.	988	(a)
977	(a)		Coordination isomerism is caused by interchange
	Organometallic compounds are those compounds		of ligands with the metal atoms.
	in which carbon atom is directly linked to metal.	989	(c)
	But in sodium ethoxide as oxygen is attached to		Chlorophyll are green pigment in plant and
	attached to sodium metal so, it is not a		contain magnesium instead of caleium
	organometallic compound	991	(a)
978	(d)		$C_6H_5NH_2 + Cl_2OC \rightarrow C_6H_5N = C = 0 + 2HCl$
770	$[(u)(H_{-}\Omega_{+})]$ SO. H_O coordination number of (u) is	992	(a)
	<i>A</i>		$C_{e}H_{r}OC_{2}H_{r} \xrightarrow{HBr} C_{e}H_{r}OH + C_{2}H_{r}Br$
070	т. (h)	993	
,,,	Sodium nitronrusside is Na [Fe(CN) NO]		$[Fe(NH_2)_{4}, Cl_2]C]$
000	Solution introprossible is $Ma_2[Fe(CM)_5MO]$.		Tetraammine dichloro ferrum III chloride
900	(u)	994	(h)
	$NH_{2} - CH - CH_{2}OH$,,,,	$\sin Ni - [Ar] 3s^2 3n^6 4s^2 3d^8$
			$N_{12}^{28} - [\Lambda_r] 2_{02}^{22} 2_{06}^{26} 2_{04}^{28}$
	COOH		NI = [AI] 55 5p 5a
	1		
	2-amino-3-hydroxy propanoic acid		
981	(a)		
	$[CoF_{\epsilon}]^{3-}$ is an outer orbital complex ion. It		sp ³
	involves outer orbital hybridisation. It has sn^3d^2 -		Nickel has two unpaired electrons and geometry
	hybridisation because F^- is a weak ligand.		is tetrahedral due to sp^3 hybridisation.
		995	(c)
	$3d^6$ $4s$ $4p$ $4d$		It is a test for $-NH_2$ gp attached on benzene
			nucleus following diazotisation and coupling
			reaction.
	sp^{2}/d^{2} - hybridisation		

982 **(b)**

Effective atomic no. (EAN) = at. No. of central atom -oxidation state $+2 \times (no. of ligands) =$ $28 - 0 + 2 \times 4 = 36$ EAN = $28 - 2 + 2 \times 4 = 34$. 983 **(b)**

997 (a)

998 (b)

999 (c)

100 (c)

100 (c)

0

Two COOH on vicinal carbon atom lose H₂O on

- Benzene has 6 C—C, 6 C—H σ -bonds and 3C=C π -
- Rest all have plane of symmetry.
- The number of unpaired electrons in complex $[Pt(NH_3)_2]Cl_2$ are two.
- Geometrical isomerism is found in compounds having coordination no. 4 (square planar and not tetrahedral shape) as well as coordination no. 6. Coordination no. 4 (square planar)

Showing geometrical isomerism

 M_{ABCD}

Showing geometrical isomerism.

- According to the modern view primary valency of complex compound it its oxidation number while secondary valency is the coordination number
- The IUPAC name of $K_4[Ni(CN)_4]$ is potassium tetracyanonickelate (0).

Mirror image

is not superimposable hence, optical isomerism is

S-atom is donor in SCN and N-atom is donor in NCS. The linkage isomerism arises when ligand has two possibilities to attach on central atom.,

101 (d)

- 2 Ethane has an infinite number of conformation but staggered and eclipsed are preferred. Ethane molecule would exist in the staggered conformation due to its minimum energy and maximum stability
- 101 **(a)**
- 4 Follow IUPAC rules

101 **(d)**

5 The complex in which nd orbitals are used in hybridisation, are called outer orbital complex.
26. [Fe(CN)₆]⁴⁻ =

27.

 $[Mn(CN)_6]^{4-} =$

28.

 $[Co(NH_3)_6]^{3+} =$

29.

 $[Ni(NH_3)_6]^{2+} =$

- 101 (d)
- 6 In each case aromatisation leads to formation of C_6H_6 .
- 101 (a)

7
$$C_6H_5Cl \xrightarrow{H_2-Ni \text{ or } Al/NaOH} C_6H_6$$

- 101 **(b)**
- 8 β -keto acids undergo decarboxylation most easily on heating.

- 101 **(a)**
- 9 Ni in $[Ni(H_2O)_6]^{2+}$ has two unpaired electrons in it.

102 **(d)**

4 An electron attracting group $(-NO_2)$ disperses the negative charge on phenoxide ion and thus, makes it more stable or increases the acidic character of phenol. The substitution is more effective at *p*-position than in the *m*-position as the former involves a resonating structure bearing negative charge on the carbon attached to the electron withdrawing group. Also presence of electron repelling gp. $(-CH_3)$ intensifies the negative charge on phenoxide ion and thus, makes phenol less acidic.

102 **(d)**

6

$$2C_6H_5CHO \xrightarrow{NaOH} C_6H_5COOH + C_6H_5CH_2OH$$

Oxidised Reduced

9 Let the ON of Pt in [Pt(NH₃)₅Cl]Cl₃ is x.

$$x+5\times(0)-1-3=0$$

 $x-4=0$
 $x=+4$

103 **(a)**

0

- Organometallic compounds have carbon-metal bond, hence CH_3Mgl , tetraethyl tin and KC_4H_9 are organometallic compounds while C_2H_5ONa is not an organometallic compound due to absence of carbon-metal bond.
- 103 **(b)**
- 1 Optical isomers of a compound which are nonsuperimposable but related to each other as an object and its mirror are called enantiomers

$$\begin{array}{c|c} CH_3 \\ H \longrightarrow OH \\ HO \longrightarrow H \\ CH_3 \end{array} + \begin{array}{c} CH_3 \\ HO \longrightarrow H \\ HO \longrightarrow OH \\ CH_3 \end{array} + \begin{array}{c} CH_3 \\ HO \longrightarrow H \\ HO \longrightarrow OH \\ CH_3 \end{array}$$

103 (d)

- 2 All involve dsp^2 -hybridization.
- 103 (a)
- 3 Cis- isomer of [Pt(NH₃)₂Cl₂] is used as an anticancer drugs for treating several type of malignant tumours when it is inject into the blood stream the more reaction Cl groups are lost so, the Pt atom bonds to a N-atom in guanosine (a part of DNA). This molecule can bond to two different guanosine units and by bridging between them it upsets the normal reproduction of DNA

4
$$C_{i}H_{2}N_{2}Cl = \bigotimes_{P=min} Old = Ol$$

following

Ni in $[Ni(CN)_4]^{2-}$

Page | 151

104 **(a)**

It is a reason for the fact. 2

104 **(d)**

. but they

	3d $4s$ $4p$		∴ Mol. wt. = Eq. wt.
		106	(d)
	dan ²	4	Cannizzaro's reaction.
	usp	106	(b)
	NI^{-1} in $[NICI_4]^{-1}$	5	NO is in NO ⁺ form.
	3d $4s$ $4p$		Let the oxidation state of Fe is <i>x</i>
			$x+0 \times 5+(+1)=+2$
	sp^3		x=2-1
	Ni in $[Ni(CO)_{\lambda}]$		<i>x</i> =+1
	3d $4s$ $4p$		Hence, the oxidation number of Fe in brown ring
			$[Fe(H_2O)_5NO]^{2+}$ is +1.
		106	(a)
	sp ³	6	$Cr^{3+}: 1s^2, 2s^22p^6, 3s^23p^63d^3$. The $3d_{xy}^1, 3d_{xz}^1, 3d_y^1$
	CO and CN^- are strong ligands so, they induces		has lower energy.
	pairing of electrons so, their complexes are	106	(a)
	diamagnetic which, Cl [–] is a weak ligand so, it does	7	Number of moles of pentaaqua chloro chromium
	not induce the pairing of electrons so, its complex		III chloride in the solution.
	is paramagnetic		$n = \frac{0.01 \times 100}{0.01} = 0.001$
105	(b)		$\frac{1000}{1 \text{ mole of } [Cr(H, 0), Cl](Cl, gives 2 \text{ moles of } f)}$
5	Presence of CH_3 gp. (an electron repelling group)		chlorida ions
	decreases acidic character in benzoic acid.		Moles of chloride ions $-0.001 \times 2-0.002$
	Presence of electron withdrawing gps.		Moles of AgCl produced -0.002×143.5
105	(NO_2, CI, SO_3H) increases the acidic nature.		$-287.0 \times 10^{-3} \sigma$
105		106	-207.0×10 g
6	$N1(CO)_4$ is a tetrahedral complex and is	8	The four isomers are:
	diamagnetic due to the absence of unpaired	0	$[C_{11}(NH_{a}),]$ [PtC],] $[C_{11}(NH_{a}), C]$]
105	electron.		$[PtC]_{a}(NH_{a})] \cdot [Pt(NH_{a})_{a}C]][CuC]_{a}(NH_{a})] $
105	(u) Such a carbon atom to which four different atoms		
/	or groups are attached is called asymmetric	106	(c)
	carbon	9	Both optical isomerism and geometrical
	н р		isomerism are examples of stereoisomerism.
		107	(d)
	$CH_2 - C - C - CH_2$	0	$[Ni(NH_3)_4]SO_4$
	* *		x 0 -2
	Br OH		$x + 0 + (-2) = 0 \Rightarrow x = +2$ is valency and 4 is
105	(d)		C.N. of Ni
9	Coordination sphere is interchanged.	107	(d)
106	(a)	1	C ₆ H ₅ CHO does not reduce Fehling's solution.
0	Racemic tartaric acid is optically inactive due to	107	(d)
	external compensation. Racemic tartaric acid is an	3	<i>n</i> -butane can exist in an infinite number of
	equimolar mixture of optically active <i>d</i> - and <i>l</i> -		conformations
	forms. This form of tartaric acid is optically	107	(a)
	inactive due to external compensation	4	This is correct order of acidic nature of
106	(d)		nitrobenzoic acids. Also follow ortho effect.
1	$-NH_2$ gp. is highly susceptible to oxidant (HNO ₃)	107	(d)
	and thus, first protected by acetylation.	7	Positive charge on $$ ⁺ CH ₂
106	(d)		is dispersed due to electron releasing nature of
2	All are the required facts for bridging ligands.		methoxy group
106	(a)	108	(c)
3	C ₆ H ₅ COOH is monobasic acid;	100	

0 An organometallic compound is considered as a substance contains a carbon-metal bond *e.g.*, $Al_2(CH_3)_6$.

108 (c)

Picramide is 2, 4, 6-trinitroaniline. 1

108 (d)

Except alkynes, chain isomerism is observed 2 when the number of carbon atoms is four or more than four

108 (d)

The isomerism which arises due to restricted 3 rotation about a bond in a molecule is known as geometrical isomerism

All of these form geometrical isomers

108 (a)

4 The choice of principal functional group is made on the basis of the following order Carboxylic acid > sulphonic acid > anhydride > esters > acid halide > acid amide > nitrile > aldehyde > ketone > alcohol > amine

108 (d)

5 $[Pt(NH_3)Cl_2Br]Cl \rightleftharpoons [Pt(NH_3)Cl_2Br]^+ + Cl^ Cl^- + Ag^+ \rightarrow AgCl$

108 **(b)**

- 7 -COOH gp. reacts with NaHCO₃ to give effervescence.
- 108 (d)

 $C_6H_5NO_2 \xrightarrow{Fe/H_2O_2(v)} C_6H_5NO_2$ 8

108 (c)

- Complex ion Hybridisation of central atom 9 $[Fe(CN)_{6}]^{4-}$ d^2sp^3 (inner) $[Mn(CN)_{6}]^{4-}$ d^2sp^3 (inner) $[Co(NH_3)_6]^{3+}$ d^2sp^3 (inner) $[Ni(NH_3)_6]^{2+}$ $sp^{3}d^{2}(outer)$
- 109 (a)
- Electronic configuration of Co^{2+} ion 0 (a)

1

3

F⁻ is a weak ligand. It cannot pair up electrons with *d*-subshell and forms outer orbital octahedral complex.

interchange of ligands between complex cation

and complex anion

109 **(c)**

4 Due to bitter almond smell.

109 **(b)**

5 Compounds which do not show optical activity inspite of the presence of chiral carbon atoms are called *meso*-compounds

109 **(d)**

6 mmol of complex =30×0.01 =0.3 Also, 1 mole of complex [Cr(H₂O)₅Cl]Cl₂ gives only two moles of chloride ion when dissolved in solution.
 [Cr(H₂O)₅Cl]Cl₂ → [Cr(H₂O)₅Cl]²⁺ + 2 Cl⁻ ⇒mmol of Cl⁻ ion produced from its 0.3 mmol

=0.6

Hence, 0.6 mmol of Ag⁺ would be required for precipitation.

$$\Rightarrow$$
 0.60 mmol of Ag⁺=0.1 M × V (in mL)

$$\Rightarrow V=6 \text{ mL}$$

109 **(c)**

7 This is Kekule's view for C_6H_6 structure.

109 **(c)**

8 C = 0 double bond of a carbonyl group is a stronger bond (> C = 0, 364 kJ/mol) than the C = C bond strength 250 kJ/mol) of the enol. Thus, CH₃COCH₃ is more stable

109 **(b)**

9 Effective atomic number (EAN) =Atomic no. of metal

-Oxidation no.+ Coordination no.×2

For
$$[CoF_6]^{2-}$$
, the oxidation state of cobalt is 4.
EAN=(27-4)+6×2
=23+12=35

110 **(d)**

3 Metal atom or cation acts as Lewis acid or electron pair acceptor.

110 **(c)**

4 The nitration of C_6H_6 does not occur at room temperature. The solution becomes dark red due to absorption of NO₂ given out by HNO₃.

110 **(c)**

5 $[Co(en)_2NO_2Cl]Br$ exhibits linkage isomerism because the NO₂ group can exist as nitrito (— ONO) and nitro (—NO₂) group. The linkage isomers of $[Co(en)_2NO_2Cl]Br$ are as $[Co(en)_2NO_2Cl]Br$ and $[Co(en)_2ONOCl]Br$.

110 **(c)**

6 The compound will be numbered as and can be named as unbranched assembles containing 3 or more identical cycles

The gauch conformation is most stable due to presence of H-bonding between H atom of OH and Cl

110 **(c)**

The electronic configuration of Ni in [Ni(CN)₄]²⁻, [Ni(Cl)₄]²⁻ and Ni(CO)₄ are : Ni²⁺ in [Ni(CN)₄]²⁻ :

$$\begin{array}{c|c} 3d & 4s & 4p \\ \hline \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \times \times \\ \hline \\ dsp^2 \end{array}$$

 Ni^{2+} in $[Ni(Cl)_4]^{2-}$:

 Ni^{2+} in $[Ni(CO)_4]$:

- 110 **(a)**
- 9 Follow IUPAC rules.
- 111 **(b)**
- 0 Cd has no unpaired electron in $[CdCl_4]^{2-}$ ion.
- 111 **(d)**
- 1 It is a fact.
- 111 **(a)**
- 2 On ionization it gives maximum number of (four) ions.
- 111 **(a)**
- 3 Chlorophyll contains Mg, hence (a) is incorrect statement.
- 111 **(b)**

4 $[Co(NH_3)_5Cl]^{2+} + 2Cl^- \rightarrow [Co(NH_3)_5Cl]Cl_2$

111 **(b)**

5 Linkage isomerism is caused due to presence of ambidentate ligands.

 $[Pd(PPh_3)_2(NCS)_2]$ and $[Pd(PPh_3)_2(SCN)_2]$ are linkage isomers due to SCN, ambidentate ligand.

111 (a) Therefore, (c) is wrong. $C_6H_5OCH_3 \xrightarrow{HI} C_6H_5OH + CH_3I$ 112 (c) 6 5 NO₂⁺ attacks at ortho-para for (P) w. r. t. OH 111 (c) NO_2^+ attacks at ortho-para for (Q) w. r. t. CH₃ and 7 $C_6H_5NH_2 + KOH + (Y) \rightarrow C_6H_5NC$; (Y) is $CHCl_3$; OCH₃ both (*Y*) is formed from $(Z) + Cl_2 + Ca(OH)_2$ and NO_2^+ attacks at *ortho-para* for (S) with respect to thus, (Z) is CH_3COCH_3 . $-0C0C_6H_5$ 111 (d) 112 (c) Halogen attached on side chain behaves as in 8 6 Follow molecular orbital theory for C_6H_6 . aliphatic molecule. 112 (d) 111 (a) 5KBr $(aq.) + KBrO_3(aq.) \rightarrow 3Br_2(aq.)$ 8 9 MO theory reveals bond order in C_6H_6 lies in $5Br^- + Br^{5+} \rightarrow 3Br_2^0$ or between 1 and 2. OH OH 112 (a) Br. ∕Br $[Co(NH_3)_5SO_4]Br + AgNO_3 \rightarrow [Co(NH_3)_5 \cdot$ 0 SO4+AgBr $+Br_2(aq.)$ 0.02mol (Y) $[Co(NH_3)_5Br]SO_4 + BaCl_2$ \rightarrow [Co(NH₃)₅ Br]Cl₂ + BaSO₄ 2,4,6-tribromophenol 0.02mol (Z) 112 (d) On using one liter solution we will get 0.01 mole Y 9 The number of atoms of the ligand that are and 0.01 mole Zdirectly bounded to the central metal atom or ion 112 (c) by coordinated bond is known as the coordination 2 Metal-metal (Fe-Fe) bond pairs up the unpaired number of the metal atom or ion. Coordination electrons. number of metal = number of σ bonds formed by 112 **(b)** metal with ligand Follow IUPAC rules. 3 113 (c) 112 (c) 0 Follow MO diagram for C_6H_6 . $[Cr(NH_3)_6]$ 4 $Cl_3 \rightleftharpoons$ 113 (b) Coordinate sphere Ionisable 2 $[Fe(H_2O)_6]^{2+}$ has four unpaired electrons; $[Cr(NH_3)_6]^{3+} + 3Cl^{-} \xrightarrow{AgNO_3} AgCl \downarrow$ $[Cr(H_2O)_6]^{3+}, [Cu(H_2O)_6]^{2+}$ and $[Zn(H_2O)_6]^{2+}$ white precipitate have 3, 1, 0 unpaired electrons, respectively. $Cr(24)[Ar]3d^5 4s^1$ 113 (a) $Cr^{3+}[Ar]3d^{3}$ $4s^{0}$ 3 Larger is the ligand, less stable is metal-ligand 3*d* 4*s* 4pbond. Cr^{3+} [Ar] 1 113 (c) 4 Both produces different ions in solution state $[Cr(NH_3)_6]^{3+}[Ar]$ $[Co(NH_3)_4Cl_2]NO_2 \rightleftharpoons [Co(NH_3)_4Cl_2]^+NO_2^ [Co(NH_3)_4Cl \cdot NO_2]Cl$ | 1| 1 | 1 $\Rightarrow [Co(NH_3)_4Cl \cdot NO_2]^+ + Cl^-$ 113 (a) 5 The name of reaction is Baeyer-Villiger oxidation. $C_6H_5COCH_3 \xrightarrow{\text{Perbenzoic}} C_6H_5COOCH_3$ \times Indicates lone-pair of NH₃ donated to Cr 113 (d) 30. d^2sp^3 hybridisation, octahedral, thus, 6 Pyridine undergoes S_E reactions at 3-position but correct. 31. There are three unpaired electrons, hence under vigorous conditions, nitration, paramagnetic, thus correct. sulphonation and halogenation occurs only at 32. d^2sp^3 -inner orbital complex, thus 300°C. Friedel-Crafts reaction is not observed in incorrect

33. Due to ionisable Cl⁻ions, white precipitate with AgNO₃, thus correct.

pyridine because electron pair on N-atom (Lewis

base) form complex with AlCl₃ (Lewis acid) and

a+ve charge on N-atom so produced decreases the activity of pyridine for S_E reaction.

113 **(d)**

7

- 2Cl⁻ ions are inisable ∴ [Co(NH₃)₅Cl]Cl₂ $\rightleftharpoons \underbrace{[Co(NH_3)_5Cl]^{2+} + 2Cl^{-}}_{3 \text{ ions}}$ 2Cl⁻ + 2AgNO₃ \rightarrow 2AgCl + 2NO₃⁻
- 113 (d)
- 8 Benzene is very good solvent.
- 113 **(a)**
- 9 Salol is phenyl salicylate and is used as antiseptic.114 (a)
- 114 **(a)**
- $0 \qquad -NO_2 \text{ gp. is deactivating gp. for } S_E \text{ reaction.}$

114 **(d)**

1 Geometrical isomerism is found in compounds having coordination no. 4 (square planar and not tetrahedral shape) as well as coordination no.6. Coordination no. 4 (square planar)

 $M_{A_2BC}, M_{A_2B_2}.,$

Showing geometrical isomerism M_{ABCD} Coordination no. 6 (octahedral)

 $M_{A_4B_2}, M_{A_4BC},$

Showing geometrical isomerism.

 $M_{A_3B_3}, M_{(AA)_2B_2}$

114 **(a)**

3 The presence of *m*-directing groups in benzene nucleus simply decreases electron density at *o*- and *p*- whereas no change in electron density at *m*-position is noticed.

On the contrary *o*- and *p*-directing groups in nucleus increase the electron density at *o*- and *p*-position.

Thus, presence of o- and p-directing groups provide seats for S_E reactions or activates the ring, whereas presence of m-directing groups does not activate the ring and thus, deactivate the ring for S_Ereactions.

- 114 **(a)**
- 4 Aniline is basic.
- 114 **(d)**
- 5 Ferrocene is diphenyl iron complex.
- 114 **(c)**
- 6 Effective atomic number (EAN)

= Atomic no.
$$-0.S. + 2 \times C.N.$$

= 28-0+2×4
= 28+8

$$= 36$$

114 **(d)**

- 8 [CO(en)₂Cl₂] forms optical and geometrical isomers.
- 114 **(c)**
- 9 Only *cis*-octahedral compounds show optical activity.
- 115 **(b)**
- 0 A square planar complex results from dsp^2 hybridisation involving $(n-1) d_{x^2-y^2}$, ns, np_x and np_y atomic orbitals.

115 **(a)**

2 HNO₃ accepts a proton from H₂SO₄. H₂SO₄ \rightleftharpoons H⁺ + HSO₄⁻ HNO₃ + H⁺ \rightarrow H₂O + NO₂⁺

115 **(c)**

3

Lithium tetrahydroaluminate is Li[Al(H)₄]