

5.CONTINUITY AND DIFFERENTIABILITY

Single Correct Answer Type

Let [x] denotes the greatest integer less than or equal to x and $f(x) = [\tan^2 x]$. Then, 1. a) $\lim_{x\to 0} f(x)$ does not exist b) f(x) is continuous at x = 0c) f(x) is not differentiable at x = 0d) f'(0) = 1The value of f(0) so that $\frac{(-e^x + 2^x)}{x}$ may be continuous at x = 0 is 2. a) $\log\left(\frac{1}{2}\right)$ d) $-1 + \log 2$ 3. Let f(x) be an even function. Then f'(x)a) Is an even function b) Is an odd function c) May be even or odd d) None of these If $f(x) = \begin{cases} [\cos \pi \ x], x < 1 \\ |x - 2|, 2 > x \ge 1 \end{cases}$, then f(x) is 4. a) Discontinuous and non-differentiable at x = -1 and x = 1b) Continuous and differentiable at x = 0c) Discontinuous at x = 1/2d) Continuous but not differentiable at x = 2If $f(x) = \begin{cases} \frac{|x+2|}{\tan^{-1}(x+2)}, & x \neq -2\\ 2, & x = -2 \end{cases}$, then f(x) is 5. a) Continuous at x = -2b) Not continuous x = -2c) Differentiable at x = -2d) Continuous but not derivable at x = -2If $f(x) = |\log |x||$, then 6. a) f(x) is continuous and differentiable for all x in its domain b) f(x) is continuous for all x in its domain but not differentiable at $x = \pm 1$ c) f(x) is neither continuous nor differentiable at $x = \pm 1$ d) None of the above If f'(a) = 2 and f(a) = 4, then $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$ equals 7. c) 2*a* + 4 a) 2a – 4 b) 4 - 2ad) None of these 8. If $f(x) = x(\sqrt{x} + \sqrt{x+1})$, then a) f(x) is continuous but not differentiable at x = 0 b) f(x) is differentiable at x = 0c) f(x) is not differentiable at x = 0d) None of the above If $f(x) = \begin{cases} ax^2 + b, \ b \neq 0, x \le 1 \\ x^2b + ax + c, \ x > 1 \end{cases}$, then, f(x) is continuous and differentiable at x = 1, if 9. c) a = b , c = 0a) c = 0, a = 2bd) $a = b, c \neq 0$ b) $a = b, c \in R$ For the function $f(x) = \begin{cases} |x-3|, x \ge 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, x < 1 \end{cases}$ which one of the following is incorrect? 10. c) Continuous at x = 3 d) Derivable at x = 3b) Derivable at x = 1a) Continuous at x = 111. If $f: R \to R$ is defined by $f(x) = \begin{cases} \frac{2\sin x - \sin 2x}{2x\cos x}, & \text{if } x \neq 0, \\ a, & \text{if } x = 0 \end{cases}$ Then the value of *a* so that *f* is continuous at 0 is a) 2 b) 1 d) 0 c) -1 12. f(x) = x + |x| is continuous for

10		b) $x \in (-\infty, \infty) - \{0\}$	c) Only $x > 0$	d) No value of <i>x</i>									
13.	If the function $\int (1 + \sin u)^{\frac{a}{ \sin u }} \qquad \pi < u < 0$												
	$f(x) = \begin{cases} \{1 + \sin x \}^{\frac{a}{ \sin x }} \\ b, \\ e^{\frac{\tan 2x}{\tan 3x}}, \end{cases}$	$-\frac{1}{6} < x < 0$											
	$f(x) = \begin{cases} b, \\ \tan 2x \end{cases}$	$x = 0$ π											
	$e^{\overline{\tan 3x}},$	$0 < x < \frac{\pi}{6}$											
	Is continuous at $x = 0$												
		b) $b = \log_e a$, $a = \frac{2}{3}$		d) None of these									
14.	11% (11)	$\frac{x^2}{(1+x^2)^2} + \dots + \frac{x^2}{(1+x^2)^n} + \dots$, the	n at x = 0, f(x)										
	a) Has no limit b) Is discontinuous												
	c) Is continuous but not differentiable												
	d) Is differentiable												
15.	Let $f(x) = \begin{cases} 1, & \forall & x < 0\\ 1 + \sin x, & \forall & 0 \le x \le \pi/2 \end{cases}$, then what is the value of $f'(x)$ at $x = 0$?												
	a) 1	b) -1	c) ∞	d) Does not exist									
16.	The function $f(x) = x - $	$ x-x^2 $ is											
	 a) Continuous at x = 1 c) Not defined at x = 1 		b) Discontinuous at x = 1d) None of the above	1									
17.	-	$(\mathbf{v}), f(\mathbf{z})$ for all $\mathbf{x}, \mathbf{v}, \mathbf{z}$ and f	f'(2) = 4, f'(0) = 3, then $f'(0) = 1$	(2) equals									
1/1	a) 12	b) 9	c) 16	d) 6									
18.	B. If $f(x) = \log_e x $, then $f'(x)$ equals												
	a) $\frac{1}{ x }, x \neq 0$												
	b) $\frac{1}{x}$ for $ x > 1$ and $\frac{-1}{x}$ for $ x < 1$												
	c) $\frac{-1}{x}$ for $ x > 1$ and $\frac{1}{x}$ for $ x < 1$												
	d) $\frac{1}{x}$ for $ x > 0$ and $-\frac{1}{x}$ for $x < 0$												
19.	If the function $f(x) = \begin{cases} \frac{1-\cos x}{x^2}, & \text{for } x \neq 0\\ k, & \text{for } x = 0 \end{cases}$ is continuous at $x = 0$, then the value of k is												
	a) 1	b) 0	c) $\frac{1}{2}$	d) -1									
20			$\frac{c}{2}$										
20.	Function $f(x) = x - 1 $ - a) Differentiable everywhere												
		2 differentiable everywher	e in <i>R</i>										
	c) Not continuous at $x =$												
	d) Increasing in <i>R</i>												
21.	The set of points where t	he function $f(x) = \sqrt{1 - e^x}$	$-x^2$ is differentiable is										
	a) (−∞,∞)	b) $(-\infty, 0) \cup (0, \infty)$		d) None of these									
22.	If $f(x) = x \sin\left(\frac{1}{x}\right), x \neq 0$, then the value of function	at $x = 0$, so that the function	on is continuous at $x = 0$ is									
	a) 1	b) —1	c) 0	d) Indeterminate									
23.	The value of $f(0)$ so that	the function $f(x) = \frac{2 - (256 - 1)}{2}$	$\frac{-7x^{1/8}}{2^{1/5}-2}$ ($x \neq 0$) is continuou										
	a) -1	b) 1	c) 26	d) None of these									
24.	The derivative of $f(x) =$,	<i>.,</i> . .										
	a) –1	b) 0	c) Does not exist	d) None of these									

If $f(x) = \begin{cases} \frac{(4^x - 1)^3}{\sin(\frac{x}{a})\log(1 + \frac{x^2}{3})}, & x \neq 0\\ 9(\log 4)^3, & x = 0 \end{cases}$ is continuous function at x = 0, then the value of a is equal to 25. c) 2 d) 0 a) 3 26. f(x) = |[x] + x| in $-1 < x \le 2$ is a) Continuous at x = 0b) Discontinuous at x = 1c) Not differentiable at x = 2,0d) All the above 27. Let $f(x) = [x^3 - x]$, where [x] the greatest integer function is. Then the number of points in the interval (1, 2), where function is discontinuous is a) 4 c) 6 d) 7 b) 5 28. If $y = \cos^{-1} \cos (|x| - f(x))$, where $f(x) = \begin{cases} 1, & \text{if } x > 0\\ -1, & \text{if } x < 0. \text{ Then, } (dy/dx) \ x = \frac{5\pi}{4} \text{ is equal to} \\ 0, & \text{if } x = 0 \end{cases}$ a) -1 b) 1 d) Cannot be determined c) 0 29. Let f(x + y) = f(x) + f(y) and $f(x) = x^2 g(x)$ for all $x, y \in R$, where g(x) is continuous function. Then, f'(x) is equal to a) g'(x) b) g(0) c) g(0) + g'(x)30. Let a function f(x) be defined by $f(x) = \begin{cases} x, x \in Q \\ 0, x \in R - Q \end{cases}$ Then, f(x) is d) 0 a) Everywhere continuous b) Nowhere continuous c) Continuous only at some points d) Discontinuous only at some points 31. The function $f(x) = \begin{cases} 1 - 2x + 3x^2 - 4x^3 + \dots & \cos x \neq -1 \\ 1, & x = -1 \end{cases}$ is a) Continuous and derivable at x = -1b) Neither continuous nor derivable at x = -1c) Continuous but not derivable at x = -1d) None of these $f(x) = \begin{cases} 2a - x & \text{in } -a < x < a \\ 3x - 2a & \text{in } a \le x \end{cases}$. Then, which of the following is true? 32. b) f(x) is not differentiable at x = aa) f(x) is discontinuous at x = ac) f(x) is differentiable at $x \ge a$ d) f(x) is continuous at all x < a33. Let f(x + y) = f(x)f(y) and $f(x) = 1 + (\sin 2x)g(x)$ where g(x) is continuous. Then, f'(x) equals a) f(x)g(0)b) 2f(x)g(0)c) 2g(0)d) None of these 34. If $f(x) = [x \sin \pi x]$, then which of the following is incorrect? a) f(x) is continuous at x = 0b) f(x) is continuous in (-1, 0)c) f(x) is differentiable at x = 1d) f(x) is differentiable in (-1, 1)If $f(x) = \begin{cases} 1, x < 0 \\ 1 + \sin x, 0 \le x \le \frac{\pi}{2} \end{cases}$ then derivative of f(x) at x = 0b) Is equal to 0 c) Is equal 35. c) Is equal to -1d) Does not exist 36. If the derivative of the function f(x) is everywhere continuous and is given by $f(x) = \begin{cases} bx^2 + ax + 4; \ x \ge -1\\ ax^2 + b; \ x < -1 \end{cases}$, then b) a = 3, b = 2 c) a = -2, b = -3 d) a = -3, b = -2a) a = 2, b = -3

If $f(x) = \begin{cases} \frac{x \log \cos x}{\log(1+x^2)}, & x \neq 0\\ 0, & x = 0 \end{cases}$, then a) f(x) is not continuous at x = 0b) f(x) is not continuous and differentiable at x = 0c) f(x) is not continuous at x = 0 but not differentiable at x = 0d) None of these If the function $f(x) = \begin{cases} Ax - B, \ x \le 1\\ 3x, \ 1 < x < 2 \end{cases}$ be continuous at x = 1 and discontinuous at x = 2, then $B \ x^2 - A, \ x \ge 2$ 38. a) $A = 3 + B, B \neq 3$ b) A = 3 + B, B = 3 c) A = 3 + Bd) None of these If $f(x) = \begin{cases} |x-4|, \text{ for } x \ge 1\\ (x^3/2) - x^2 + 3x + (1/2), \text{ for } x < 1 \end{cases}$ then 39. a) f(x) is continuous at x = 1 and x = 1b) f(x) is differentiable at x = 4c) f(x) is continuous and differentiable at x = 1d) f(x) is not continuous at x = 140. The function f(x) = a[x + 1] + b[x - 1], where [x] is the greatest integer function, is continuous at x = 1, is c) 2a - b = 0a) a + b = 0d) None of these 41. Let $f(x) = \begin{cases} 5^{1/x}, x < 0\\ \lambda[x], x \ge 0 \end{cases}$ and $\lambda \in R$, then at x = 0a) f is discontinuous b) *f* is continuous only, if $\lambda = 0$ c) *f* is continuous only, whatever λ may be d) None of the above 42. If for a continuous function f, f(0) = f(1) = 0, f'(1) = 2 and $y(x) = f(e^x)e^{f(x)}$, then y'(0) is equal to c) 0 a) 1 b) 2 c) 0 If $f(x) = \begin{cases} ax^2 - b, |x| < 1\\ \frac{1}{|x|}, |x| \ge 1 \end{cases}$ is differentiable at x = 1, then d) None of these a) 1 b) 2 43. a) $a = \frac{1}{2}, b = -\frac{1}{2}$ b) $a = -\frac{1}{2}, b = -\frac{3}{2}$ c) $a = b = \frac{1}{2}$ d) $a = b = -\frac{1}{2}$ 44. Let $f(x) = \frac{\sin 4 \pi [x]}{1 + [x]^2}$, where [x] is the greatest integer less than or equal to x, then a) f(x) is not differentiable at some points b) f'(x) exists but is different from zero c) f'(x) = 0 for all x d) f'(x) = 0 but f is not a constant function The value of k which makes $f(x) = \begin{cases} \sin(1/k), & x \neq 0 \\ k, & x = 0 \end{cases}$ continuous at x = 0 is 45. a) 8 c) −1 d) None of these b) 1 46. The function $f(x) = \max[(1 - x), (1 + x), 2], x \in (-\infty, \infty)$ is a) Continuous at all points b) Differentiable at all points c) Differentiable at all points except at x = 1 and d) None of the above x = -147. Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy $f\left(\frac{x}{y}\right) = f(x) - f(y)$ for all x, y and f(e) = 1. Then, b) $f\left(\frac{1}{x}\right) \to 0$ as $x \to 0$ c) $xf(x) \to 1$ as $x \to 0$ d) $f(x) = \ln x$ a) f(x) is bounded 48. Suppose a function f(x) satisfies the following conditions for all x and y: (i) f(x + y) = f(x)f(y) (ii) $f(x) = 1 + x g(x) \log a$, where a > 1 and $\lim_{x \to 0} g(x) = 1$. Then, f'(x) is equal to b) $\log a^{f(x)}$ c) $\log(f(x))^a$ a) $\log a$ d) None of these 49. Let g(x) be the inverse of the function f(x) and $f'(x) = \frac{1}{1+x^3}$. Then, g'(x) is equal to

	a) $\frac{1}{1 + (g(x))^3}$	b) $\frac{1}{1 + (f(x))^3}$	c) $1 + (g(x))^3$	d) $1 + (f(x))^3$									
50.	If $f(x) = x^2 - 4x + 3 $, then												
	a) $f'(1) = -1$ and $f'(3) = 1$												
	b) $f'(1) = -1$ and $f'(3)$												
	c) $f'(1) = -1$ does not e d) Both $f'(1)$ and $f'(3)$ d												
51.	The points of discontinui												
-	a) $n\pi$, $n \in I$	b) $2n\pi, n \in I$	c) $(2n+1)\frac{\pi}{2}, n \in I$	d) None of these									
52.	Let $f(x) = x - 1 $, then points where $f(x)$ is not differentiable, is/(are)												
	a) 0, ±1	b) ±1	c) 0	d) 1									
53.	$f(x) = \begin{cases} 2x, & x < 0\\ 2x + 1, & x > 0 \end{cases}$. T	`hen											
	a) $f(x)$ is continuous at $f(x)$ is continuous at $f(x)$ is continuous at $f(x)$ is discontinuous at $f(x)$ None of the above $f(x) = 0$												
	x = 0	$\int_{0}^{0} x = 0$	x = 0	2									
54.	Let $f(x) = [x] + \sqrt{x - [x]}$, where [x] denotes the greatest integer function. Then,												
	a) $f(x)$ is continuous on R^+												
	b) $f(x)$ is continuous on R												
	c) $f(x)$ is continuous on $R - Z$ d) None of these												
55.		$\frac{nx+\cos x}{\cos x}$ is not defined at x	$= \pi$. The value of $f(\pi)$, so the	f(x) is continuous at									
	$x = \pi$, is	$nx + \cos x$	- n. The value of $f(n)$, so the										
		b) ½	c) -1	d) 1									
56.	<i>,</i>	,	2										
	6. Let $f(x) = \begin{cases} (x-1)\sin\frac{1}{x-1}, & \text{if } x \neq 1 \\ 0, & \text{if } x = 1 \end{cases}$. Then, which one of the following is true?												
	a) <i>f</i> is differentiable at $x = 1$ but not at $x = 0$												
	b) f is neither differentiable at $x = 0$ nor at $x = 1$												
	c) f is differentiable at $x = 0$ and at $x = 1$ d) f is differentiable at $x = 0$ but not at $x = 1$												
57.	-												
57.	If $f(x) = \begin{cases} mx + 1, \ x \le \frac{\pi}{2} \\ \sin x + n, \ x > \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$, then												
	-	b) $m = \frac{n\pi}{2} + 1$		d) $m = n = \frac{\pi}{2}$									
50		r all x. If f(1) = -2 and f'(1)		2									
50.	a) $f(6) = 5$		c) $f(6) < 8$	d) $f(6) \ge 8$									
59.	,, , ,	,, , ,	$f(x) = m \lim_{x \to a^+} g(x)$, then t	,, , ,									
	a) Is not continuous at <i>x</i>	= a											
	b) Has a limit when $x \rightarrow 0$	-											
	c) Is continuous at $x = a$												
60	d) Has a limit when $x \rightarrow c$ Let $f(x)$ be a function sat	-	(y) for all $x, y \in R$ and $f(x)$	= 1 + x q(x) where									
50.	$\lim_{x \to 0} g(x) = 1.$ Then, f		\mathcal{F}										
	a) $g'(x)$	b) $g(x)$	c) $f(x)$	d) None of these									
61.	=	he function $f(x) = x x $ is											
()	a) $(-\infty, \infty)$	b) $(-\infty, 0) \cup (0, \infty)$		d) [0,∞)									
62.	If $f(x + y) = f(x)f(y)$ for a) 30	or all real <i>x</i> and <i>y</i> , <i>f</i> (6) = 3 b) 13	3 and $f'(0) = 10$, then $f'(6 c) 10$										
63	,	b) 13 here $\phi(x)$ is continuous fu	,	d) 0									
501		b) $f'(a^-) = \phi(a)$		d) None of these									
	, <u>-</u>		· · ·	, D D C Q									

If $f(x) = \begin{cases} xe^{-(\frac{1}{|x|} + \frac{1}{x})}, & x \neq 0, \text{ then } f(x) \text{ is} \\ 0, & x = 0 \end{cases}$ a) Continuous as well as differentiable for all x b) Continuous for all x but not differentiable at x = 0c) Neither differentiable nor continuous at x = 0d) Discontinuous everywhere 65. If $f(x) = \begin{cases} 3, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$ then a) Both f(x) and f(|x|) are differentiable at x = 0b) f(x) is differentiable but f(|x|) is not differentiable at x = 0c) f(|x|) is differentiable but f(x) is not differentiable at x = 0d) Both f(x) and f(|x|) are not differentiable at x = 066. If $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists finitely, then a) $\lim_{x \to c} f(x) = f(c)$ b) $\lim_{x \to c} f'(x) = f'(c)$ c) $\lim_{x\to c} f(x)$ does not exist d) $\lim_{x\to c} f(x)$ may or may not exist 67. The number of points at which the function $f(x) = |x - 0.5| + |x - 1| + \tan x$ does not have a derivative in the interval (0, 2), is $If f(x) = \begin{cases} \log_{(1-3x)}(1+3x), \text{ for } x \neq 0\\ k, & \text{ for } x = 0 \end{cases}$ is continuous at x = 0, then k is equal to a) -2 d) 4 68. d) -1 c) 1 69. Let f(x) be a function differentiable at x = c. Then, $\lim_{x\to c} f(x)$ equals c) $\frac{1}{f(c)}$ d) None of these a) f'(c)b) *f*''(*c*) 70. If $f(x) = ae^{|x|} + b|x|^2$; $a, b \in R$ and f(x) is differentiable at x = 0. Then a and b are b) a = 1, b = 2c) $b = 0, a \in R$ d) a = 4, b = 5a) $a = 0, b \in R$ 71. Let f(x) = (x + |x|)|x|. The, for all x a) *f* and *f* are continuous b) *f* is differentiable for some *x* c) *f* ' is not continuous d) f'' is continuous If $f(x) = \begin{cases} \frac{x-1}{2x^2 - 7x + 5}, & \text{for } x \neq 1 \\ -\frac{1}{3}, & \text{for } x = 1 \end{cases}$, then f'(1) is equal to a) $-\frac{1}{9}$ b) $-\frac{2}{9}$ c) $-\frac{1}{3}$ 72. d) $\frac{1}{2}$ 73. Suppose f(x) is differentiable at x = 1 and $\lim_{h \to 0} \frac{1}{h} f(1+h) = 5$, then f'(1) equals a) 6 b) 5 c) 4 d) 3 74. If $f: R \to R$ is defined by $f(x) = \begin{cases} \frac{x+2}{x^2+3x+2}, & \text{if } x \in R - \{-1, -2\} \\ -1, & \text{if } x = -2 \\ 0, & \text{if } x = -1 \end{cases}$ a) R b) $R - \{-2\}$ c) $R - \{-1\}$ d) R - (-1, -2)75. Let $f(x) = \frac{(e^{x}-1)^2}{\sin(\frac{x}{a})\log(1+\frac{x}{4})}$ for $x \neq 0$ and f(0) = 12. If f is continuous at x = 0, then the value of a is equal to a) 1 b) -1 c) 2 d) 3 76. If a function f(x) is given by $f(x) = \frac{x}{1+x} + \frac{x}{(x+1)(2x+1)} + \frac{x}{(2x+1)(3x+1)} + \dots \infty$ then at x = 0, f(x)a) 1 b) -1

a) Has no limit b) Is not continuous c) Is continuous but not differentiable d) Is differentiable 77. If f(x) is continuous function and g(x) be discontinuous, then a) f(x) + g(x) must be continuous b) f(x) + g(x) must be discontinuous c) f(x) + g(x) for all x d) None of these 78. A function $f: R \to R$ satisfies the equation f(x + y) = f(x)f(y) for all $x, y \in R$ and $f(x) \neq 0$ for all $x \in R$. If f(x) is differentiable at x = 0 and f'(0) = 2, then f'(x) equals a) f(x)b) -f(x)c) 2f(x)d) None of these Consider $f(x) = \begin{cases} \frac{x^2}{|x|}, & x \neq 0\\ 0, & x = 0 \end{cases}$ 79. a) f(x) is discontinuous everywhere b) f(x) is continuous everywhere c) f'(x) exists in (-1, 1) d) f'(x) exists in (-2, 2)80. If f(x) is continuous at x = 0 and f(0) = 2, then $\lim_{x\to 0} \frac{\int_0^x f(u) du}{x}$ is b) 2 c) f(2) d) None of these a) 0 81. Let f(x + y) = f(x)f(y) for all $x, y \in R$. Suppose that f(3) = 3 and f'(0) = 11 then, f'(3) is equal to b) 44 c) 28 If $f(x) = \begin{cases} x - 5, \text{ for } x \le 1 \\ 4x^2 - 9, \text{ for } 1 < x < 2, \text{ then } f'(2^+) \text{ is equal to} \\ 3x + 4, \text{ for } x \ge 2 \end{cases}$ a) 0 b) 2 d) None of these 82. d) 4 83. $f(x) = \sin |x|$. Then f(x) is not differentiable at c) Multiples of π d) Multiples of $\frac{\pi}{2}$ a) x = 0 only b) All x c) Multip 84. If $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} (\log_e a)^n$, a > 0, $a \neq 0$, then at x = 0, f(x) is a) x = 0 only b) All x a) Everywhere continuous but not differentiable b) Everywhere differentiable c) Nowhere continuous d) None of these 85. The function $f(x) = [x] \cos \left[\frac{2x-1}{2}\right] \pi$ where [.] denotes the greatest integer function, is discontinuous at a) All x b) No *x* d) *x* which is not an integer c) All integer points The function $f(x) = \begin{cases} 1, & |x| \ge 1\\ \frac{1}{n^2}, \frac{1}{n} < |x| < \frac{1}{n-1}, n = 2, 3, ...\\ 0, & x = 0 \end{cases}$ 86. a) Is discontinuous at finitely many points b) Is continuous everywhere c) Is discontinuous only at $x = \pm \frac{1}{n}$, $n \in \mathbb{Z} - \{0\}$ and x = 0d) None of these 87. Let *f* is a real-valued differentiable function satisfying $|f(x) - f(y)| \le (x - y)^2$, $x, y \in R$ and f(0) = 0, then f(1) equals a) 1 b) 2 c) 0 d) -1 88. Let $f(x) = [2x^3 - 5]$, [] denotes the greatest integer function. Then number of points (1, 2) where the

function is discontinuous, is a) 0 b) 13 c) 10 d) 3 89. $\ln[1,3]$ the function $[x^2 + 1]$, [x] denoting the greatest integer function, is continuous a) For all x b) For all x except at four points c) For all except at seven points d) For all except at eight-points 90. If $f(x) = |\log_{10} x|$, then at x = 1a) f(x) is continuous and $f'(1^+) = \log_{10} e$, $f'(1^-) = -\log_{10} e$ b) f(x) is continuous and $f'(1^+) = \log_{10} e$, $f'(1^-) = \log_{10} e$ c) f(x) is continuous and $f'(1^{-}) = \log_{10} e$, $f'(1^{+}) = -\log_{10} e$ d) None of these 91. The function $f(x) = |\cos x|$ is a) Everywhere continuous and differentiable b) Everywhere continuous and but not differentiable at $(2n + 1) \pi/2, n \in \mathbb{Z}$ c) Neither continuous nor differentiable at $(2n + 1) \pi/2, n \in \mathbb{Z}$ d) None of these Let $f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, x < 4\\ a+b, \quad x = 4\\ \frac{x-4}{|x-4|} + b, x > 4 \end{cases}$ 92. Then, f(x) is continuous at x = 4 when a) a = 0, b = 0 b) a = 1, b = 1 c) a = -1, b = 1 d) a = 1, b = -1If $f(x) = \begin{cases} \frac{2^{x}-1}{\sqrt{1+x}-1}, -1 \le x < \infty, \ x \ne 0 \\ k, \ x = 0 \end{cases}$ is continuous everywhere, then k is equal to a) $\frac{1}{2}\log_{e} 2$ b) $\log_{e} 4$ c) $\log_{e} 8$ d) $\log_{e} 2$ 93. The function $f(x) = \begin{cases} x^n \sin\left(\frac{1}{x}\right), x \neq 0\\ 0, x = 0 \end{cases}$ is continuous and differentiable at x = 0, if a) $n \in (0, 1]$ b) $n \in [1, \infty)$ c) $n \in (1, \infty)$ d) $n \in (-\infty, 0)$ The function $f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, x \neq 0\\ 0, x = 0 \end{cases}$ 95. a) Is continuous at x = 0b) Is not continuous at x = 0c) Is not continuous at x = 0, but can be made continuous x = 0d) None of these 96. A function $f(x) = \begin{cases} 1+x, & x \le 2\\ 5-x, & x > 2 \end{cases}$ is a) Not continuous at x = 2b) Differenti8able at x = 2c) Continuous but not differentiable at = 2d) None of the above 97. Let f(x + y) = f(x)f(y) for all $x, y \in R$. If f'(1) = 2 and f(4) = 4, then f'(4) equal to a) 4 b) 1 c) 1/2 d) 8 Let f(x) = [x] and $g(x) = \begin{cases} 0, x \in Z \\ x^2, x \in R - Z \end{cases}$ Then, which one of the following is incorrect? 98. a) $\lim_{x\to 1} g(x)$ exists, but g(x) is not continuous at x = 1b) $\lim_{x\to 1} f(x)$ does not exist and f(x) is not continuous at x = 1c) gof is continuous for all x d) fog is continuous for all xIf $f(x) = \begin{cases} x, & \text{for } 0 < x < 1\\ 2 - x, & \text{for } 1 \le x < 2. \text{Then, } f'(1) \text{ is equal to}\\ x - (1/2)x^2, & \text{for } x = 2 \end{cases}$ 99.

a) -1 c) 0 d) None of these b) 1 100. The function $f(x) = |x| + \frac{|x|}{x}$ is a) Discontinuous at origin because |x| is discontinuous there b) Continuous at origin c) Discontinuous at origin because both |x| and $\frac{|x|}{x}$ are discontinuous there d) Discontinuous at the origin because $\frac{|x|}{x}$ is discontinuous there 101. f(x) = |x - 3| is ... at x = 3a) Continuous and not differentiable b) Continuous and differentiable c) Discontinuous and not differentiable d) Discontinuous and differentiable 102. At $x = \frac{3}{2}$ the function $f(x) = \frac{|2x-3|}{2x-3}$ is b) Discontinuous c) Differentiable a) Continuous d) Non-zero 103. The following functions are differentiable on (-1, 2)a) $\int_{x}^{2x} (\log t)^2 dt$ b) $\int_{y}^{2x} \frac{\sin t}{t} dt$ c) $\int_{x}^{2x} \frac{1-t+t^2}{1+t+t^2} dt$ d) None of these 104. Let $f(x) = \frac{1-\tan x}{4x-\pi}, x \neq \frac{\pi}{4}, x \in \begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$. If f(x) is continuous in $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$, then $f\left(\frac{\pi}{4}\right)$ is a) 1 b) 1/2 c) -1/2 105. If $f(x) = \begin{cases} \frac{1-\cos x}{x}, x \neq 0\\ k, x = 0 \end{cases}$ is continuous at x = 0, then the value of k is d) -1 a) 0 c) $\frac{1}{4}$ d) $-\frac{1}{2}$ b) $\frac{1}{2}$ 106. Let f(x) = |x| + |x - 1|, then a) f(x) is continuous at x = 0, as well as at x = 1b) f(x) is continuous at x = 0, but not at x = 1c) f(x) is continuous at x = 1, but not at x = 0d) None of these 107. The function f(x) is defined as $f(x) = \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}$, if $x \neq 0$. The value of f to be assigned at x = 0 so that the function is continuous there, is a) $-\frac{1}{3}$ c) $\frac{2}{3}$ b) 1 d) $\frac{1}{3}$ 108. Let f(x) be an odd function. Then f'(x)b) Is an odd function a) Is an even function c) May be even or odd d) None of these 109. If $f(x) = \begin{cases} \frac{x-1}{2x^2 - 7x + 5}, & \text{for } x \neq 1 \\ -\frac{1}{3}, & \text{for } x = 1 \end{cases}$, then f'(1) is equal to a) $-\frac{1}{\alpha}$ b) $-\frac{2}{5}$ d) 1/3 c) —13 110. If $f: R \to R$ given by $f(x) = \begin{cases} 2\cos x, \text{ if } x \le -\frac{\pi}{2} \\ a + \sin x + b, \text{ if } -\frac{\pi}{2} < x < \frac{\pi}{2} \text{ is a continuous} \\ 1 + \cos^2 x, \text{ if } x \ge \frac{\pi}{2} \end{cases}$ Function on *R*, then (*a*, *b*) is equal to b) (0, -1) a) (1/2, 1/2) c) (0, 2) d) (1, 0) 111. If f(x + y) = f(x)f(y) for all $x, y \in R, f(5) = 2, f'(0) = 3$. Then f'(5) equals b) 3 c) 5 d) None of these a) 6 112. Let f(x) be a function satisfying f(x + y) = f(x) + f(y) and f(x) = x g(x) for all $x, y \in R$, where g(x) is continuous. Then,

	b) $f'(x) = g(x)$		d) None of these									
	b) [2,∞) – {4}		d) None of these									
^{114.} If $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), x \\ 0, x = 0 \end{cases}$	$\neq 0$, then											
a) f and f' are continuo b) f is derivable at $x = 0$	us at $x = 0$ 0 and f' is continuous at $x =$	= 0										
c) f is derivable at $x = 0$ d) f' is derivable at $x = 1$	0 and <i>f</i> ′ is not continuous at 0	x = 0										
115. If a function $f(x)$ is defined	ned as $f(x) = \begin{cases} \frac{x}{\sqrt{x^2}}, & x \neq 0\\ 0, & x = 0 \end{cases}$ the	ien										
a) $f(x)$ is continuous at $x = 0$ but not differentiable at $x = 0$ b) $f(x)$ is continuous as well as differentiable at $x = 0$												
c) $f(x)$ is discontinuous at $x = 0$ d) None of these												
116. If $f(x) = [\sqrt{2} \sin x]$, where $f(x)$ is periodic	ere $[x]$ represents the greate	est integer function, then										
b) Maximum value of $f($	x) is 1 in the interval $\left[-2\pi\right]$	2 <i>π</i>]										
c) $f(x)$ is discontinuous d) $f(x)$ is differentiable	2 7											
117. $\lim_{x \to 0} [(1+3x)^{1/x}] = k$ a) 3	x, then for continuity at $x = b$) -3	0, <i>k</i> is c) e^{3}	d) <i>e</i> ⁻³									
118. Let $f(x) = \begin{cases} \int_0^x \{5 + 1 - 5x + 1] \\ 5x + 1 \end{cases}$	t dt , if $x > 2L, if x \le 2$											
a) $f(x)$ is continuous at $x = 2$ b) $f(x)$ is continuous but not differentiable at $x = 2$												
c) $f(x)$ is everywhere d d) The right derivative of	of $f(x)$ at $x = 2$ does not exit	ist										
119. Let $f(x) = \begin{cases} \frac{1}{ x } \text{ for } x \\ ax^2 + b \text{ for } \end{cases}$	$ \geq 1$											
$(ax^2 + b \text{ for } x < 1$ If $f(x)$ is continuous and differentiable at any point, then												
	b) $a = -\frac{1}{2}$, $b = \frac{3}{2}$		d) None of these									
^{120.} If function $f(x) = \begin{cases} x \\ 1-x \end{cases}$, if <i>x</i> is rational <i>x</i> , if <i>x</i> is irrational then the	number of points at which	f(x) is continuous, is									
a) ∞	b) 1	c) 0	d) None of these									
121. The function $f(x) = e^{- x }$		h) Continuous and diffor	antichla augmuuhana									
a) $x = 0$	ere but not differentiable at	b) continuous and unier	entiable everywhere									
c) Not continuous at <i>x</i> =		d) None of the above										
122. The value of $f(0)$, so that												
$f(x) = \frac{\sqrt{a^2 - ax + x^2}}{\sqrt{a + x}}$	$\frac{-\sqrt{a^2+ax+x^2}}{\sqrt{a-x}}$											
Becomes continuous for	V CC IC											
a) $a^{3/2}$	b) $a^{1/2}$	c) $-a^{1/2}$	d) $-a^{3/2}$									
123. The value of k for which	the function											
$f(x) = \begin{cases} \frac{1 - \cos 4x}{8x^2}, & x \neq 0\\ k & x = 0 \end{cases}$	is continuous at $a = 0$, is											
	b) $k = 1$	c) $k = -1$	d) None of these									

124. The number of points at which the function $f(x) = (|x - 1| + |x - 2| + \cos x)$ where $x \in [0, 4]$ is not continuous, is a) 1 b) 2 c) 3 d) 0 If $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at x = 0, then the value of k is 125. c) 0 d) 2 a) 1 b) -1 126. Let f(x) be twice differentiable function such that f''(x) = -f(x) and f'(x) = g(x), $h(x) = \{f(x)\}^2 + (f(x))^2 + (f(x)$ ${q(x)}^2$. If h(5) = 11, then h(10) is equal to a) 22 b) 11 c) 0 d) None of these 127. if $f(x) = |x|^3$, then f'(0) equals a) 0 c) -1 b) 1/2 d) -1/2 128. Let function $f(x) = \sin^{-1}(\cos x)$, is a) Discontinuous at x = 0b) Continuous at x = 0c) Differentiable at x = 0d) None of these 129. Let $f(x) = \begin{cases} \frac{x^4 - 5x^2 + 4}{|(x-1)(x-2)|}, & x \neq 1, 2\\ 6, & x = 10\\ 12, & x = 2 \end{cases}$ Then, f(x) is continuous on the set a) R b) $R - \{1\}$ c) $R - \{2\}$ 130. The set of points, where $f(x) = \frac{x}{1+|x|}$ is differentiable, is d) $R - \{1, 2\}$ a) $(-\infty, -1) \cup (-1, \infty)$ b) $(-\infty, \infty)$ c) (0,∞) d) $(-\infty, 0) \cup (0, \infty)$ 131. Given f(0) = 0 and $f(x) = \frac{1}{(1 - e^{-1/x})}$ for $x \neq 0$. Then only one of the folloowing statements on f(x) is true. That id f(x), is a) Continuous at x = 0b) Not continuous at x = 0c) Both continuous and differentiable at x = 0d) Not defined at x = 0132. Let *f* and *g* be differentiable functions satisfying g'(a) = 2, g(a) = b and $f \circ g = I$ (identify function). Then, f'(b) is equal to a) 1/2 b) 2 c) 2/3 133. Let $f(x) = \begin{cases} \frac{\sin \pi x}{5x}, & x \neq 0\\ k, & x = 0 \end{cases}$, if f(x) is continuous at x = 0, then k is equal to a) 1/2 d) None of these b) - d) 0 c) 1 134. The number of discontinuities of the greatest integer function $f(x) = [x], x \in \left(-\frac{7}{2}, 100\right)$ is equal to b) 100 a) 104 c) 102 d) 103 135. For the function $f(x) = \frac{e^{1/x} - 1}{e^{1/x} + 1}$, x = 0, which of the following is correct? a) $\lim_{x\to 0} f(x)$ does not exist b) $\lim_{x \to 0} f(x) = 1$ c) $\lim_{x\to 0} f(x)$ exists but f(x) is not continuous at x = 0d) f(x) is continuous at x = 0136. If $f(x) = x^4 + \frac{x^4}{1+x^4} + \frac{x^4}{(1+x^4)^2} + \dots$ to ∞ then at x = 0, f(x) is a) Continuous but not differentiable b) Differentiable c) Continuous d) None of these

^{137.} If $f(x) = \begin{cases} 1+x, & 0 \le x \le 2\\ 3-x, & 2 < x \le 3 \end{cases}$ then the set of points of discontinuity of g(x) = fof(x), is c) {0, 1} d) None of these a) {1, 2} b) {0, 1, 2} 138. Let g(x) be the inverse of an invertible function f(x) which is differentiable at x = c, then g'(f(c)) equals b) $\frac{1}{f'(c)}$ d) None of these a) *f*′(*c*) c) *f*(*c*) 139. If $f(x) = \begin{cases} x^p \cos\left(\frac{1}{x}\right), x \neq 0\\ 0, \quad x = 0 \end{cases}$ is differentiable at x = 0, then c) p = 1a) *p* < 0 b) 0 < p < 1 d) p > 1140. At x = 0, the function f(x) = |x| is b) Discontinuous and differentiable a) Continuous but not differentiable d) Continuous and differentiable c) Discontinuous and not differentiable C) Discontinuous and not uncertainties 141. If $f(x) = \begin{cases} (x-2)^2 \sin(\frac{1}{x-2}) - |x-1|, \ x \neq 2 \\ -1, \ x = 2 \end{cases}$ then the set of points where f(x) is differentiable, is a) R b) $R - \{1, 2\}$ c) $R - \{1\}$ d) $R - \{2\}$ 142. The value of f at x = 0 so that function $f(x) = \frac{2^{x-2^{-x}}}{x}, x \neq 0$ is continuous at x = 0, is a) 0 b) $\log 2$ c) 4 d) $\log 4$ 143. If $f(x) = |\log_e x|$, then a) $f'(1^+) = 1, f'(1^-) = -1$ b) $f'(1^{-}) = -1, f'(1^{+}) = 0$ c) $f'(1) = 1, f'(1^{-}) = 0$ d) $f'(1) = -1, f'(1^+) = -1$ 144. Let f(x) be a function such that f(x + y) = f(x) + f(y) and $f(x) = \sin x g(x)$ for all $x, y \in R$. If g(x) is a continuous function such that g(0) = k, then f'(x) is equal to d) None of these a) k b) *kx* c) kg(x)145. The function f(x) = |x| + |x - 1|, is a) Continuous at x = 1, but not differentiable b) Both continuous and differentiable at x = 1c) Not continuous at x = 1d) None of these The set of points of differentiability of the function $f(x) = \begin{cases} \frac{\sqrt{x}+1-1}{x}, \text{ for } x \neq 0\\ 0, \text{ for } x = 0 \end{cases}$ is 146. c) $(-\infty, 0)$ d) $R - \{0\}$ a) R b) [0,∞] 147. Given that f(x) is a differentiable function of x and that f(x). f(y) = f(x) + f(y) + f(xy) - 2 and that f(2) = 5. Then, f(3) is equal to a) 10 b) 24 c) 15 d) None of these 148. If $f(x) = \frac{1}{2}x - 1$, then on the interval $[0, \pi]$, a) $\tan[f(x)]$ and $\frac{1}{f(x)}$ are both continuous b) $\tan[f(x)]$ and $\frac{1}{f(x)}$ are both discontinuous c) tan[f(x)] and $f^{-1}(x)$ are both continuous d) tan[f(x)] s continuous but $\frac{1}{f(x)}$ is not 149. If $f(x) = (x + 1)^{\cot x}$ be continuous at = 0, then f(0) is equal to a) 0 d) None of these b) –*e* c) e 150. Let $f(x) = \begin{cases} \frac{\tan x - \cot x}{x - \frac{\pi}{4}}, & x \neq \frac{\pi}{4} \\ a, & x = \frac{\pi}{4} \end{cases}$ the value of a so that f(x) is continuous at $x = \frac{\pi}{4}$ is a) 2 c) 3 d) 1

151. If $f(x) = \int_{-1}^{x} t dt, x \ge -1$, then											
a) f and f' are continuous for $x + 1 > 0$											
b) f is continuous but f' is not so for $x + 1 > 0$											
c) f and f' are continuous at $x = 0$											
d) f is continuous at $x = 0$ but f' is not so											
152. The set of points of discontinuity of the function	-										
$f(x) = \lim_{n \to \infty} \frac{x^{-n} - x^n}{x^{-n} + x^n}, n \in Z \text{ is}$											
a) {1} b) {-1}	c) {-1,1}	d) None of these									
153. The number of points of discontinuity of the fund	ction										
$f(x) = \frac{1}{\log x }$ is											
a) 4 b) 3	c) 2	d) 1									
154. $f(x) = \begin{cases} \frac{\sin 3x}{\sin x}, & x \neq 0\\ k, & x = 0 \end{cases}$ is continuous, if k is											
a) 3 b) 0	c) -3	d) -1									
155. For the function $f(x) = \frac{\log_e(1+x) + \log_e(1-x)}{x}$ to be on	continuous at $= 0$, the value of	of $f(0)$ is									
a) -1 b) 0	c) -2	d) 2									
156. Let $f(x) = \begin{cases} \frac{x-4}{ x-4 } + a, \ x < 4\\ a+b, \ x = 4\\ \frac{x-4}{ x-4 } + b, \ x > 4 \end{cases}$		-									
Let $f(x) = \begin{cases} x-4 \\ a+b, x = 4 \end{cases}$											
$\left(\frac{x-4}{x-4}+b, x>4\right)$											
Then, $f(x)$ is continuous at $x = 4$, when											
	c) $a = -1, b = 1$	d) $a = 1, b = -1$									
		a) w 2, ~ 2									
157. If $f(x) \begin{cases} \frac{[x]-1}{x-1}, x \neq 1\\ 0, x = 1 \end{cases}$ then at $x = 1, f(x)$ is											
(0, $x = 1$ a) Continuous and differentiable											
a) Continuous and differentiable b) Differentiable but not continuous											
c) Continuous but not differentiable											
d) Neither continuous nor differentiable											
158. If $f(x) = \begin{cases} \frac{1-\sqrt{2}\sin x}{\pi-4x}, & \text{if } x \neq \frac{\pi}{4} \\ a, & \text{if } x = \frac{\pi}{4} \end{cases}$ is continuous at $\frac{\pi}{4}$, then <i>a</i> is equal to											
a) 4 b) 2	c) 1	d) 1/4									
159. If the function $f: R \to R$ given by $f(x) = \begin{cases} x + a, \\ 3 - x^2, \end{cases}$	if $x \le 1$ if $x > 1$ is continuous at $x =$	= 1, thyen <i>a</i> is equal to									
a) 4 b) 3	c) 2	d) 1									
160. If $f: R \to R$ is defined by											
$f(x) = \begin{cases} \frac{\cos 3x - \cos x}{x^2}, & \text{for } x \neq 0\\ \lambda, & \text{for } x = 0 \end{cases} \text{ and if } f \text{ is contin}$	uous at $x = 0$, then λ is equal	l to									
a) -2 b) -4	c) -6	d) -8									
161. For the function $f(x) = \begin{cases} \frac{x^3 - a^3}{x - a}, & x \neq a \\ b, & x = a \end{cases}$, if $f(x)$ is a	continuous at $x = a$, then <i>b</i> is	s equal to									
a) a^2 b) $2a^2$	c) 3 <i>a</i> ²	d) 4 <i>a</i> ²									
162. If $y = f(x) = \frac{1}{u^2 + u - 1}$ where $u = \frac{1}{x - 1}$, then the function	to the network of th	=									
a) 1 b) 1/2	c) 2	d) -2									
163. If $f(x) = Min \{\tan x, \cot x\}$, then											
a) $f(x)$ is not differentiable at $x = 0, \pi/4, 5\pi/4$											
b) $f(x)$ is continuous at $x = 0, \pi/2, 3\pi/2$											

c)
$$\int_{0}^{\pi/2} f(x) dx = \ln \sqrt{2}$$
d) $f(x)$ is periodic with period $\frac{\pi}{2}$
164. If $f(x) = [|x| - |x - 1|^2, \text{then } f'(x) \text{ equals} a) 0 for al x
b) $2[|x| - |x - 1|]$
c) $[0 \text{ for } x < 0 \text{ and for } x > 1$
c) $[4(2x - 1)\text{ for } 0 < x < 1$
d) $[4(2x - 1)\text{ for } 0 < x < 1$
d) $[4(2x - 1)\text{ for } x > 0$
165. If $f(x) = (x - x_0)\phi(x)$ and $\phi(x)$ is continuous at $x = x_0$, then $f'(x_0)$ is equal to
a) $\phi'(x_0)$
b) $\phi(x_0)$
c) $x_0\phi(x_0)$
d) None of these
166. The function defined by
f(x) = $\left\{ (x^2 + e^{\frac{1}{2-x_0}})^{-1} x \neq 2 \text{ is continuous from right at the point $x = 2$, then k is equal to
a) 0
b) $\frac{1}{4}$
c) $-\frac{1}{2}$
d) None of these
167. If $f(x) = \left\{ \frac{1-\sin x}{(x - 2x)^2}, \frac{\log \sin x}{(\log 4x)^2 - 4\pi x + x^2)}, x \neq \frac{\pi}{2}$ is continuous at $x = \pi/2$, then $k = k, x = \frac{\pi}{2}$
a) $-\frac{1}{16}$
b) $-\frac{1}{32}$
c) $-\frac{1}{64}$
d) $-\frac{1}{28}$
168. If $f(x) = \left\{ \frac{\sin 5x}{x^2 + 2x}, x \neq 0$
is continuous at $x = 0$, then the value of k is
 $k + \frac{1}{2}, x \neq 0$
is continuous at $x = 0$, then the value of k is
 $k + \frac{1}{2}, x \neq 0$
is continuous but not differentiable at $x = 0$, if $a > n \in (0, 1]$
b) $\pi \in [1, \infty)$
c) $n \in (-\infty, 0)$
d) $n = 0$
170. The function $f(x) = \left\{ \frac{x^2}{4x^2}, \frac{1}{2x^2}, \frac{1}{4x^2}, \frac{1}{4x}, \frac{1}{4x} = 1$
171. Let $f(x) = |x| \text{ and } g(x) = |x|^3|$, then $a = 3$
b) Continuous at $x = 1$, but not differentiable at $x = 3$
c) continuous at $x = 1$, but not differentiable at $x = 0$
172.
If $f(x) = d(\text{ifferentiable } g(x)$ is not differentiable at $x = 0$
173.
If $f(x) = \begin{cases} \frac{\sin(x)}{x}, x < 0 \\ \frac{\sqrt{x^2 + \sqrt{x^2 + \sqrt{x$$$

c) $a = -\frac{3}{2}, b \in R - \{0\}, c = \frac{1}{2}$ d) None of these 173. If $f(x) = \begin{cases} \frac{36^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0\\ k, & x = 0 \end{cases}$ is continuous at x = 0, then k equals b) 16√2 ln 6 c) $16\sqrt{2} \ln 2 \ln 3$ d) None of these a) $16\sqrt{2} \log 2 \log 3$ 174. Let [] denotes the greatest integer function and $f(x) = [\tan^2 x]$. Then, a) $\lim_{x\to 0} f(x)$ does not exist b) f(x) is continuous at x = 0c) f(x) is not differentiable at x = 0d) f(x) = 1175. Let a function $f: R \to R$, where R is the set of real numbers satisfying the equation f(x + y) = f(x) + f(xf(y), $\forall x, y$ if f(x) is continuous at x = 0, then a) f(x) is discontinuous, $\forall x \in R$ b) f(x) is continuous, $\forall x \in R$ c) f(x) is continuous for $x \in \{1, 2, 3, 4\}$ d) None of the above 176. Let $f(x) = \begin{cases} \sin x, \text{ for } x \ge 0\\ 1 - \cos x, \text{ for } x \le 0 \end{cases}$ and $g(x) = e^x$. Then, (gof)'(0) is a) 1 177. The function $f(x) \begin{cases} (x+1)^{2-(\frac{1}{|x|}+\frac{1}{x})}, x \neq 0 \\ 0, x = 0 \end{cases}$ c) 0 d) None of these a) Continuous everywhere b) Discontinuous at only one point c) Discontinuous at exactly two points d) None of these 178. If $f(x) = \begin{cases} \frac{\log(1+ax) - \log(1-bx)}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ and f(x) is continuous at x = 0, then the value of k is a) a - b b) a + b c) $\log a + \log b$ d) None of the 179. The value of f(0), so that the function $f(x) = \frac{(27 - 2x)^{1/3} - 3}{9 - 3(243 + 5x)^{1/5}} (x \neq 0)$ is continuous is given by x = 2 b) 6 c) 2 d) 4d) None of these a) $\frac{2}{2}$ b) 6 d) 4 180. The function $f: \mathbb{R}/\{0\} \to \mathbb{R}$ given by $f(x) = \frac{1}{x} - \frac{2}{e^{2x} - 1}$ Can be made continuous at x = 0 by defining f(0) as function c) 0 a) 2 b) -1 d) 1 181. Which one of the following is not true always? a) If f(x) is not continuous at x = a, then it is not differentiable at x = ab) If f(x) is continuous at x = a, then it is differentiable at x = ac) If f(x) and g(x) are differentiable at x = a, then f(x) + g(x) is also differentiable at x = ad) If a function f(x) is continuous at x = a, then $\lim_{x \to a} f(x)$ exists 182. The value of the derivative of |x - 1| + |x - 3| at x = 2 is b) 1 a) 2 d) -2 On the interval I = [-2, 2], the function $f(x) = \begin{cases} (x+1) e^{-(\frac{1}{|x|} + \frac{1}{x})} \\ 0 & x = 0 \end{cases}$, $x \neq 0$ 183. a) Is continuous for all $x \in I - \{0\}$ b) Assumes all intermediate values from f(-2) to f(2)c) Has a maximum value equal to 3/e d) All the above ^{184.} Function $f(x) = \begin{cases} x - 1, x < 2 \\ 2x - 3, x \ge 2 \end{cases}$ is a continuous function a) For x = 2 only b) For all real values of x such that $x \neq 2$ c) For all real values of x d) For all integer values of x only

185. The function $f(x) = \begin{cases} \frac{\tan x}{x}, & x \neq 0\\ 1, & x = 0 \end{cases}$, is a) Continuous but not differentiable at x = 0c) Continuous and differentiable at x = 0186. At the point x = 1, the function $f(x) = \begin{cases} x^3 - 1, \ 1 < x < \infty \\ x - 1, \ -\infty < x \le 1 \end{cases}$ b) Discontinuous at x = 0a) Continuous and differentiable b) Continuous and not differentiable c) Discontinuous and differentiable d) Discontinuous and not differentiable If f(x) defined by $f(x) = \begin{cases} \frac{|x^2 - x|}{x^2 - x}, & x \neq 0, 1\\ 1, & x = 0\\ -1, & x = 1 \end{cases}$ then f(x) is continuous for all 187. a) x b) x except at x = 0c) x except at x = 1d) x except at x = 0 and x = 1188. The value of derivative of |x - 1| + |x - 3| at x = 2, is a) -2 b) 0 c) 2 d) Not defined 189. If $f(x) = \begin{cases} 1 & \text{for } x < 0 \\ 1 + \sin x & \text{for } 0 \le x \le \pi/2 \end{cases}$ then at x = 0, the derivative f'(x) is a) 1 b) 0 c) Infinite d) Does not exist 190. Let $g(x) = \frac{(x-1)^n}{\log \cos^m(x-1)}$; 0 < x < 2, m and n are integers, $m \ne 0$, n > 0, and let p be the left hand derivative of |x - 1| at x = 1. If $\lim_{x \to 1^+} g(x) = p$, then a) n = 1, m = 1191. The function $f(x) = \frac{2x^2+7}{x^3+3x^2-x-3}$ is discontinuous for b) x = 1 and x = -1 only a) x = 1 only c) x = 1, x = -1, x = -3 only d) x = 1, x = -1, x = -3 and other values of x 192. If for a function f(x), f(2) = 3, f'(2) = 4, then $\lim_{x\to 2} [f(x)]$, where [·] denotes the greatest integer function, is b) 3 c) 4 d) Non-existent a) 2 193. A function f(x) is defined as fallows for real x, $f(x) = \begin{cases} 1 - x^2, \text{ for } x < 1\\ 0, & \text{ for } x = 1\\ 1 + x^2, \text{ for } x > 1 \end{cases}$ Then, a) f(x), is not continuous at x = 1b) f(x) is continuous but not differentiable at x = 1c) f(x) is both continuous and differentiable at x = 1d) None of the above 194. Let $f: R \to R$ be a function defined by $f(x) = \min\{x + 1, |x| + 1\}$. Then, which of the following is true? a) $f(x) \ge 1$ for all $x \in R$ b) f(x) is not differentiable at x = 1d) f(x) is not differentiable at x = 0c) f(x) is differentiable everywhere If $f(x) = \begin{cases} mx + 1, & x \le \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2} \end{cases}$ is continuous t $x = \frac{\pi}{2}$, then a) m = 1, n = 0 b) $m = \frac{n\pi}{2} + 1$ c) $n = m\frac{\pi}{2}$ d) $m = n = \frac{\pi}{2}$ 195. ^{196.} If $f(x) = \frac{\log_e(1+x^2 \tan x)}{\sin x^3}$, $x \neq 0$, is to be continuous at x = 0, then f(0) must be defined as b) 0 c) $\frac{1}{2}$ a) 1 d) -1

197. Let $f(x) = \begin{cases} x^P \sin \frac{1}{x}, x \neq 0\\ 0, x = 0 \end{cases}$ then $f(x)$ is continuous but not differentiable at $x = 0$, if											
a) 0	b) $1 \le p < \infty$	c) $-\infty$	d) $p = 0$								
198. The function f defined by		у I									
$f(x) = \begin{cases} \frac{\sin x^2}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ a) Continuous and derivable at $x = 0$											
b) Neither continuous and											
c) Continuous but not de											
d) None of these	z = 0										
a) None of these 199. A function f on R into itself is continuous at a point a in R, iff for each $\in > 0$, there exists, $\delta > 0$ such that											
a) $ f(x) - f(a) < \in \Rightarrow z $	$ x - a < \delta$	h) $ f(x) - f(a) \ge \varepsilon \Rightarrow x $	$ a > \delta$								
c) $ x - a > \delta f(x) - f(x) $	$(a) \geq \epsilon$	b) $ f(x) - f(a) \ge \Rightarrow x $ d) $ x - a < \delta f(x) - f(a) $	$a) < \epsilon$								
200. The function $f(x) = x - $	$ x - x^2 - 1 \le x \le 1$ is cor	ntinuous on the interval									
a) [-1,1]		c) [−1,0) ∪ (0,1]	d) (−1, 0) ∪ (0, 1)								
201. if $f(x) = a \sin x + b e^{ x } + c x ^3$ and if $f(x)$ is differentiable at $x = 0$, then											
a) $a = b = c = 0$	b) $a = 0, b = 0; c \in R$	c) $b = c = 0, a \in R$	d) $c = 0, a = 0, b \in R$								
202. Let $f(x)$ be defined on R											
is a fixed constant). The	n,										
a) $f'(x) = 8x$	b) $f(x) = 8x$	c) $f'(x) = x$	d) None of these								
203. If $f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$, t											
	b) <i>R</i> − {−1, 1}	c) <i>R</i> − (−1, 1)	d) None of these								
204. Define f on R into itself	by										
$f(x) = \begin{cases} x \sin \frac{1}{x}, & \text{when } x \neq 0\\ 0, & \text{when } x = 0 \end{cases}$, then											
a) <i>f</i> is continuous at 0 b	ut not differentiable at 0	b) f is both continuous and differentiable at 0									
	t not continuous at 0	2									
205. The set of points where											
a) <i>R</i>		c) $R - \{-1\}$									
206. Let $f(x + y) = f(x)f(y)$) and $f(x) = 1 + xg(x)G(x)$), where $\lim_{x\to 0} g(x) = a$ a	nd $\lim_{x\to 0} G(x) = b$. Then								
f'(x) is equal to											
a) 1 + <i>ab</i>	b) <i>ab</i>	c) a/b	d) None of these								

5.CONTINUITY AND DIFFERENTIABILITY

_

	: ANSWER KEY :																
		2)		0)									404)		100		
1) 5)	b	2)	d	3)	b	4)		189) 102)	d		190)	С	191)	С	192	-	С
5) 0)	b	6) 10)	b	7)	b	8)	С	193) 107)	а		194)	С	195)	С	196	-	a
9) 12)	a	10) 14)	d h	11) 15)	d d	12) 16)		197) 201)	a h		198) 2022	a	199) 202)	a L	200	-	a
13) 17)	a	14) 10)	b h	15) 10)	d	16) 20)		201) 205)	b		202)	a J	203)	b	204	J	a
17) 21)	a L	18) 22)	b	19) 22)	C d	20) 24)	b h	205)	b	2	206)	d					
21) 25)	b	22) 26)	C d	23) 27)	d	24) 29)	b h										
25) 29)	a d	26) 30)	d h	27) 21)	C h	28) 22)	b b										
29) 33)	u b	30) 34)	b	31) 35)	b d	32) 36)											
33) 37)	b	34) 38)	с а	33) 39)	u a	30) 40)	с а										
41)	c	42)	a b	43)	a b	40) 44)	a C										
45)	d	46)	c	47)	d	48)	b										
49)	c	50)	d	51)	c	52)	a										
53)	c	50) 54)	b	55)	c c	52) 56)	d										
57)	c	58)	d	59)	b	60)	c										
61)	a	62)	a	63)	a	64)	b										
65)	d	66)	а	67)	С	68)	d										
69)	d	70)	а	71)	а	72)	b										
73)	b	74)	С	75)	d	76)	b										
77)	b	78)	С	79)	b	80)	b										
81)	d	82)	С	83)	а	84)	b										
85)	С	86)	С	87)	С	88)	b										
89)	С	90)	а	91)	b	92)	d										
93)	b	94)	С	95)	b	96)	С										
97)	d	98)	d	99)	d	100)	d										
101)	а	102)	b	103)	С	104)	С										
105)	а	106)	а	107)	d	108)	а										
109)	b	110)	а	111)	а	112)	С										
113)		114)		115)		-	С										
117)	С	118)	b	119)	b	120)	С										
121)	а	122)	С	123)	b	124)	d										
125)	C	126)	b	127)	a	128)	b										
129)	d	130)	b	131)	b	132)	a										
133) 127)	a	134) 129)	d h	135) 120)	a d	136) 140)	d										
137) 141)	a	138) 142)	b d	139) 142)	d	140) 144)	a a										
141) 145)	C 2	142) 146)	d d	143) 147)	a a	144) 148)	a h										
145) 149)	a c	146) 150)	d b	147) 151)	a a	148) 152)	b c										
149)	с b	150) 154)		151)	a b	152) 156)	c d										
155) 157)	d	154)	a d	153) 159)	d	130) 160)	u b										
161)	u C	150j 162)	u a	163)	u a	160) 164)	с С										
165)	b	162) 166)	b	167)	c c	164) 168)	c c										
169)	a	100) 170)	b	171)	a	172)	c c										
173)	c	174)	b	175)	b	176)	c										
177)	b	178)	b	179)	c	180)	d										
181)	b	182)	c	183)	d	184)	c										
185)	С	186)	b	187)	d	188)	b										
,		,		,		,											

: HINTS AND SOLUTIONS :

1 **(b)**

We have, $-\pi/4 < x < \pi/4$ $\Rightarrow -1 < \tan x < 1 \Rightarrow 0 \le \tan^2 x < 1 \Rightarrow [\tan^2 x]$ = 0: $f(x) = [\tan^2 x] = 0$ for all $x \in (-\pi/4, \pi/4)$ Thus, f(x) is a constant function on \in $(-\pi/4,\pi/4)$ So, it is continuous on $\in (-\pi/4, \pi/4)$ and f'(x) = 0 for all $x \in (-\pi/4, \pi/4)$ 2 (d) Since, f(x) is continuous at x = 0 $\therefore \quad \lim_{x \to 0} f(x) = f(0)$ $\Rightarrow \lim_{x \to 0} \frac{-e^x + 2^x}{x} = f(0)$ $\Rightarrow \lim_{x \to 0} \frac{-e^x + 2^x \log 2}{1} = f(0) \quad \text{[by L'Hospital's]}$ rule] $\Rightarrow f(0) = -1 + \log 2$ 3 **(b)** Since f(x) is an even function $\therefore f(-x) = f(x)$ for all x $\Rightarrow -f'(-x) = f'(x)$ for all x $\Rightarrow f'(-x) = -f'(x)$ for all x \Rightarrow f'(x) is an odd function 4 (c) We have, $f(x) = \begin{cases} [\cos \pi x], x < 1\\ |x - 2|, 1 \le x < 2 \end{cases}$ $\Rightarrow f(x) = \begin{cases} 2-x, & 1 \le x < 2 \\ 2-x, & 1 \le x < 2 \\ -1, & 1/2 < x < 1 \\ 0, & 0 < x \le 1/2 \\ 1, & x = 0 \\ 0, & -1/2 \le x < 0 \end{cases}$ It is evident from the definition that f(x) is discontinuous at x = 1/25 **(b)** We have, $\lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} f(2 - h)$ $= \lim_{h \to 0} \frac{|-2 - h + 2|}{\tan^{-1}(-2 - h + 2)}$ $\Rightarrow \lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} \frac{h}{\tan^{-1}(-h)} = \lim_{h \to 0} \frac{-h}{\tan^{-1}h} = -1$ and, $\lim_{x \to -2^+} f(x) = \lim_{h \to 0} f(-2+h)$ $= \lim_{h \to 0} \frac{|-2+h+2|}{\tan^{-1}(-2+h+2)}$

$$\Rightarrow \lim_{x \to -2^+} f(x) = \lim_{h \to 0} \frac{h}{\tan^{-1} h} = 1$$

$$\therefore \lim_{x \to -2^+} f(x) \neq \lim_{h \to 0} f(x)$$

So, f(x) is neither continuous nor differentiable at x = -2

(b)

6

9

From the graph of $f(x) = |\log|x||$ it is clear that f(x) is everywhere continuous but not differentiable at $x = \pm 1$, due to sharp edge

7 (b) We have, $\lim_{x \to a} \frac{xf(a) - a f(x)}{x - a}$ $= \lim_{x \to a} \frac{x f(a) - a f(a) - a \left(f(x) - f(a)\right)}{x - a}$ $\Rightarrow \lim_{x \to a} \frac{x f(a) - a f(x)}{x - a}$ $= \lim_{x \to a} \frac{f(a)(x-a)}{x-a}$ $- a \lim_{x \to a} \frac{f(x) - f(a)}{x-a}$ $\Rightarrow \lim_{x \to a} \frac{x f(a) - a f(x)}{x-a} = f(a) - a f'(a) = 4 - 2a$ 8 Given, $f(x) = x(\sqrt{x} + \sqrt{x+1})$. At x = 0 LHL of \sqrt{x} is not defined therefore it is not continuous.

Is not defined, therefore it is not continuous at

$$x = 0$$

Hence, it is not differentiable at $x = 0$
9 (a)
Here, $f'(x) = \begin{cases} 2ax, b \neq 0, x \leq 1 \\ 2bx + a, x > 1 \end{cases}$
Since, $f(X)$ is continuous at $x = 1$
 $\therefore \lim_{h \to 0} f(x) = \lim_{h \to 1^+} f(x)$
 $\Rightarrow a + b = b + a + c \Rightarrow c = 0$
Also, $f(x)$ is differentiable at $x = 1$
 \therefore (LHD at $x = 1$)=(RHD at $x = 1$)
 $\Rightarrow 2a = 2b(1) + a \Rightarrow a = 2b$
10 (d)
We have,

 $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left\{ \frac{x^2}{4} - \frac{3x}{4} + \frac{13}{4} \right\} = \frac{1}{4} - \frac{3}{2} + \frac{13}{4}$ $\lim_{x \to 1^+} f(x) = \lim_{x \to 1} |x - 3| = 2$ and, f(1) = |1 - 3| = 2 $\therefore \lim_{x \to 1^{-}} f(x) = f(1) = \lim_{x \to 1^{+}} f(x)$ So, f(x) is continuous at x = 1We have. $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3} |x - 3| = 0, \lim_{x \to 3^{+}} f(x)$ $= \lim_{x \to 3} |x - 3| = 0$ and, f(3) = 0 $\therefore \lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3)$ So, f(x) is continuous at x = 3Now, (LHD at x = 1) $= \left\{ \frac{d}{dx} \left(\frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4} \right) \right\}_{x=1} = \left\{ \frac{x}{2} - \frac{3}{2} \right\}_{x=1} = \frac{1}{2} - \frac{3}{2}$ (RHD at x = 1) = $\left\{\frac{d}{dx}(-(x-3))\right\}_{x=1} = -1$ \therefore (LHD at x = 1) = (RHD at x = 1) So, f(x) is differentiable at x = 111 (d) $f(x) = \begin{cases} \frac{2\sin x - \sin 2x}{2x\cos x}, & \text{if } x \neq 0, \\ a, & \text{if } x = 0 \end{cases}$ Now, $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2 \sin x - \sin 2x}{2x \cos x}$ $(\frac{0}{0} \text{ form})$ = $\lim_{x \to 0} \frac{2 \cos x - 2 \cos 2x}{2 (\cos x - x \sin x)}$ $= \lim_{x \to 0} \frac{2-2}{2(1-0)} = 0$ Since, f(x) is continuous at x = 0 \therefore $f(0) = \lim_{x \to 0} f(x)$ $\Rightarrow a = 0$ 12 (a) Given, f(x) = x + |x| $\therefore \quad f(x) = \begin{cases} 2x, & x \ge 0\\ 0, & x < 0 \end{cases}$ It is clear from the graph of f(x) is continuous for every value of *x* Alternate

Since, *x* and |x| is continuous for every value of *x*,

so their sum is also continous for every value of x 13 (a) Since f(x) is continuous at x = 0 $\lim_{x \to 0^{-}} f(x) = f(0) = \lim_{x \to 0^{+}} f(x)$ $\Rightarrow \lim_{x \to 0} \{1 + |\sin x|\}^{\frac{a}{|\sin x|}} = b = \lim_{x \to 0} e^{\frac{\tan 2x}{\tan 3x}}$ $\Rightarrow e^a = b = e^{2/3} \Rightarrow a = \frac{2}{3}$ and $a = \log_e b$ 14 (b) We have, $f(x) = \begin{cases} x^2 + \frac{(x^2/1 + x^2)}{1 - (1/1 + x^2)} = x^2 + 1, x \neq 0\\ 0, \quad x = 0 \end{cases}$ Clearly, $\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{+}} f(x) = 1 \neq f(0)$ So, f(x) is discontinuous at x = 015 (d) LHD= $\lim_{h \to 0} \frac{f(0-h) - f(0)}{-h}$ = $\lim_{h \to 0} \frac{1-1}{-h} = 0$ $\text{RHD} = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$ $= \lim_{h \to 0} \frac{1 + \sin(0+h) - 1}{h} = \lim_{h \to 0} \frac{\sin h}{h} = 1$ \Rightarrow LHD \neq RI 16 **(a)** Given, $f(x) = x - |x - x^2|$ At x = 1, f(1) = 1 - |1 - 1| = 1 $\lim_{x \to 1^{-1}} f(x) = \lim_{h \to 0} [(1-h) - |(1-h) - (1-h)^2|]$ $= \lim_{h \to 0} \left[(1-h) - |h-h^2| \right] = 1$ $\lim_{x \to 1^+} f(x) = \lim_{h \to 0} [(1+h) - |(1+h) - (1+h)^2|]$ $= \lim_{h \to 0} \left[1 + h - \left| -h^2 - h \right| \right] = 1$: $\lim_{x \to 1^{-1}} f(x) = \lim_{x \to 1^{+}} = f(1)$ (a)

17

We have, $f(x + y + z) = f(x)f(y)f(z) \text{ for all } x, y, z \quad \dots(i)$ $\Rightarrow f(0) = f(0)f(0)f(0) \quad [Putting x = y = z = 0]$ $\Rightarrow f(0)\{1-f(0)^2\}=0$ $\Rightarrow f(0) = 1$ [: $f(0) = 0 \Rightarrow f(x) = 0$ for all x] Putting z = 0 and y = 2 in (i), we get f(x+2) = f(x)f(2)f(0) $\Rightarrow f(x+2) = 4f(x)$ for all x $\Rightarrow f'(2) = 4f'(0)$ [Putting x = 0] $\Rightarrow f'(2) = 4 \times 3 = 12$ 18 **(b)** For x > 1, we have $f(x) = |\log|x|| = \log x \quad \Rightarrow \quad f'(x) = \frac{1}{x}$

For x < -1, we have $f(x) = |\log|x|| = \log(-x) \quad \Rightarrow \quad f'(x) = \frac{1}{x}$ For 0 < x < 1, we have $f(x) = |\log|x|| = -\log x \implies f'(x) = \frac{-1}{x}$ For -1 < x < 0, we have $f(x) = -\log(-x) \implies f'(x) = -\frac{1}{x}$ Hence, $f'(x) = \begin{cases} \frac{1}{x}, |x| > 1 \\ -\frac{1}{x}, |x| < 1 \end{cases}$ 19 (c) Since, $\lim_{x \to 0} f(x) = f(0)$ $\Rightarrow \lim_{x \to 0} \frac{1 - \cos x}{x^2} = k$ $\Rightarrow \lim_{x \to 0} \frac{-(-\sin x)}{2x} = k$ [using L 'Hospital's rule] $\Rightarrow \frac{1}{2} \lim_{x \to 0} \frac{\sin x}{x} = k \implies k = \frac{1}{2}$ 20 (b) Given, f(X) = |x - 1| + |x - 2| $= \begin{cases} x - 1 + x - 2, x \ge 2 \\ 1 - x + 2 - x, x < 1 \end{cases}$ $= \begin{cases} 2x - 3, x \ge 2 \\ 1, 1 \le x < 2 \\ 3 - 2x, x < 1 \end{cases}$ Hence, except x = 1 and x = 2, f(x) is

differentiable everywhere in *R*

21 **(b)**

Clearly, f(x) is differentiable for all non-zero values of x. For $x \neq 0$, we have

values of x. For
$$x \neq 0$$
, we have
 $f'(x) = \frac{x e^{-x^2}}{\sqrt{1 - e^{-x^2}}}$
Now,
(LHD at $x = 0$) = $\lim_{h \to 0} \frac{f(x) - f(0)}{x - 0}$
 $= \lim_{h \to 0} \frac{f(0 - h) - f(0)}{x - 0}$
 \Rightarrow (LHD at $x = 0$) = $\lim_{h \to 0} \sqrt{\frac{1 - e^{-h^2}}{h}}$
 \Rightarrow (LHD at $x = 0$) = $-\lim_{h \to 0} \sqrt{\frac{e^{h^2} - 1}{h^2}} \times \frac{1}{\sqrt{e^{h^2}}} = -1$
and, (RHD at $x = 0$) = $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} =$
 $\lim_{h \to 0} \frac{\sqrt{1 - e^{-h^2}}}{h}$
 \Rightarrow (RHD at $x = 0$) = $\lim_{x \to 0^+} \sqrt{\frac{e^{h^2} - 1}{h^2}} \times \frac{1}{\sqrt{e^{h^2}}} = 1$
So, $f(x)$ is not differentiable at $x = 0$
Hence, the set of points of differentiability of $f(x)$
is $(-\infty, 0) \cup (0, \infty)$
22 (c)
Since $f(x)$ is continuous at $x = 0$
 $\therefore f(0) = \lim_{x \to 0} x \sin(\frac{1}{x}) = 0$
23 (d)
For $f(x)$ to be continuous everywhere, we must
have,
 $f(0) = \lim_{x \to 0} x \sin(\frac{1}{x}) = 0$
24 (b)
We have,
 $f(x) = |x|^3 = \begin{cases} x^3, & x \ge 0\\ -x^3, & x < 0\\ \therefore$ (LHD at $x = 0$) = $\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} -\frac{x^3}{x}$
 $= 0$
and,
 $f(x) - f(0) = x^3$

 $\therefore (\text{RHD at } x = 0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^3}{x}$ = 0Clearly, (LHD at x = 0) = (RHD at x = 0)

Page | 21

Hence, f(x) is differentiable at x = 0 and its derivative at x = 0 is 0

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(\frac{4^x - 1}{x}\right)^3 \times \frac{\left(\frac{x}{a}\right)}{\sin\left(\frac{x}{a}\right)} \cdot \frac{ax^2}{\log\left(1 + \frac{1}{3}x^2\right)}$$
$$= (\log 4)^3 \cdot 1 \cdot a \lim_{x \to 0} \left(\frac{x^2}{\frac{1}{3}x^2 - \frac{1}{18}x^4 + \dots}\right)$$
$$= 3a (\log 4)^3$$
$$\because \lim_{x \to 0} f(x) = f(0)$$
$$\Rightarrow 3a (\log 4)^3 = 9(\log 4)^3$$
$$\Rightarrow a = 3$$

26 **(d)**

We have,

$$f(x) = |[x]x| \text{ for } -1 < x \le 2$$

$$\Rightarrow f(x) = \begin{cases} -x, & -1 < x < 0 \\ 0, & 0 \le x < 1 \\ x, & 1 \le x < 2 \\ 2x, & x = 2 \end{cases}$$

It is evident from the graph of this function that it is continuous but not differentiable at x = 0. Also, it is discontinuous at x = 1 and non-differentiable at x = 2

27 **(c)**

Given, $f(x) = [x^3 - 3]$ Let $g(x) = x^3 - x$ it is in increasing function $\therefore g(1) = 1 - 3 = -2$ and g(2) = 8 - 3 = 5Here, f(x) is discontinuous at six points

28 **(b)**

Given, $y = \cos^{-1} \cos(x - 1)$, x > 0 $\Rightarrow \quad y = x - 1, \qquad 0 \le x - 1 \le \pi$ $\therefore \quad y = x - 1, \qquad 1 \le x \le \pi + 1$ At $x = \frac{5\pi}{4} \in [1, \pi + 1]$ $\Rightarrow \frac{dy}{dx} = 1 \quad \Rightarrow \quad \left(\frac{dy}{dx}\right)_{x = \frac{5\pi}{4}} = 1$

29 (d)

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x) + f(h) - f(x)}{h} \qquad [\because f(x+y)]$$

$$= f(x) + f(y)]$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} \frac{h^2 g(h)}{h}$$

$$\Rightarrow f'(x) = 0 \times g(0) = 0 \qquad [\because g \text{ is continuous}]$$

$$\therefore \lim_{h \to 0} g(h) = g(0)]$$

(b)

30 (b)

Using Heine's definition of continuity, it can be

shown that f(x) is everywhere discontinuous

31

32

(b)
For
$$x \neq -1$$
, we have
 $f(x) = 1 - 2x + 3x^2 - 4x^3 + \dots \infty$
 $\Rightarrow f(x) = (1 + x)^{-2} = \frac{1}{(1 + x)^2}$
Thus, we have
 $f(x) = \begin{cases} \frac{1}{(1 + x)^2}, & x \neq -1 \\ 1, & x = -1 \end{cases}$
We have,
 $\lim_{x \to -1^-} f(x) \to \infty$ and $\lim_{x \to -1^-} f(x) \to \infty$
So, $f(x)$ is not continuous at $x = -1$
Consequently, it is not differentiable there at
(b)
At $x = a$,
 $LHL= \lim_{x \to a^-} f(x) = \lim_{x \to a} 2a - x = a$
And $RHL= \lim_{x \to a^+} f(x) = \lim_{x \to a} 3x - 2a = a$
And $f(a) = 3(a) - 2a = a$
 $\therefore LHL=RHL= f(a)$
Hence, it is continuous at $x = a$
Again, at $x = a$
 $LHD= \lim_{h \to 0} \frac{f(a-h)-f(a)}{-h} = -1$
and $RHD= \lim_{h \to 0} \frac{f(a+h)-f(a)}{-h} = -1$
and $RHD= \lim_{h \to 0} \frac{f(a+h)-f(a)}{-h} = 3$
 $\therefore LHD \neq RHD$
Hence, it is not differentiable at $x = a$

33 **(b)**

34

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - 1}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{1 + (\sin 2h)g(h) - 1}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{\sin 2h}{h} \times \lim_{h \to 0} g(h)$$

$$= 2f(x)g(0)$$
(c)

If $-1 \le x \le 1$, then $0 \le x \sin \pi x \le 1/2$ $\therefore f(x) = [x \sin \pi x] = 0, \text{ for } -1 \le x \le 1$ If 1 < x < 1 + h, where h is a small positive real number, then $\pi < \pi x < \pi + \pi h \Rightarrow -1 < \sin \pi x < 0 \Rightarrow -1$ $< x \sin \pi x < 0$ $\therefore f(x) = [x \sin \pi x] = -1$ in the right neighbourhood of x = 1Thus, f(x) is constant and equal to zero in [-1, 1]and so f(x) is differentiable and hence continuous on (-1,1)At x = 1, f(x) is discontinuous because $\Rightarrow \lim_{x \to 1^-} f(x) = 0$ and $\lim_{x \to 1^+} f(x) = -1$ Hence, f(x) is not differentiable at x = 135 (d) We have, (LHD at x = 0) = $\left\{\frac{d}{dx}(1)\right\}_{x=0} = 0$ (RHD at x = 0) = $\left\{\frac{d}{dx}(1 + \sin x)\right\}_{x=0} = \cos 0 = 1$ Hence, f'(x) at x = 0 does not exist 36 (c) Here, $f'(x) = \begin{cases} 2bx + a, \ x \ge -1 \\ 2a, \ x < -1 \end{cases}$ Given, f'(x) is continuous everywhere $\therefore \quad \lim_{x \to -1^+} f(x) = \lim_{x \to -1^-} f(x)$ $\Rightarrow -2b + a = -2a$ \Rightarrow 3*a* = 2*b* $\Rightarrow a = 2, b = 3$ or a = -2, b = -337 **(b)** We have, $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\log \cos x}{\log(1 + x^2)}$ $\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$ $= \lim_{x \to 0} \frac{\log(1 - 1 + \cos x)}{\log(1 + x^2)}$ $\frac{1-\cos x}{1-\cos x}$ $\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$ $= \lim_{x \to 0} \frac{\log\{1 - (1 - \cos x)\}}{1 - \cos x}$ $\frac{1-\cos x}{\log(1+x^2)}$

 $\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$ $= -\lim_{x \to 0} \log \frac{[1 - (1 - \cos x)]}{-(1 - \cos x)}$ $\times \frac{2\sin^2\frac{x}{2}}{4\left(\frac{x}{2}\right)^2} \times \frac{x^2}{\log(1+x^2)}$ $\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = -\frac{1}{2}$ Hence, f(x) is differentiable and hence continuous at x = 038 (a) Since f(x) is continuous at x = 1. Therefore, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) \Rightarrow A - B = 3 \Rightarrow A =$ 3 + B ...(i) If f(x) is continuous at x = 2, then $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) \Rightarrow 6 = 4 B - A$...(ii) Solving (i) and (ii) we get B = 3As f(x) is not continuous at x = 2. Therefore, $B \neq 3$ Hence, A = 3 + B and $B \neq 3$ 39 (a) We have, $f(x) = \begin{cases} x - 4, & x \ge 4\\ -(x - 4), & 1 \le x < 4\\ (x^3/2) - x^2 + 3x + (1/2), & x < 1 \end{cases}$ Clearly, f(x) is continuous for all x but it is not differentiable at x = 1 and x = 440 (a) It is given that f(x) is continuous at x = 1 $\therefore \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$ $\Rightarrow \lim_{x \to 1^-} a[x+1] + b[x-1]$ $= \lim_{x \to 1^+} a[x+1] + b[x-1]$ $\Rightarrow a - b = 2a + 0 \times b$ $\Rightarrow a + b = 0$ 41 (c) $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \lambda[x] = 0$ $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} 5^{1/x} = 0$ And $f(0) = \lambda[0] = 0$ \therefore *f* is continuous only whatever λ may be 42 **(b)** We have, $v(x) = f(e^x) e^{f(x)}$ $\Rightarrow \gamma'(x) = f'(e^x) \cdot e^x \cdot e^{f(x)} + f(e^x) e^{f(x)} f'(x)$ $\Rightarrow y'(0) = f'(1)e^{f(0)} + f(1)e^{f(0)}f'(0)$ $\Rightarrow y'(0) = 2$ [:: f(0) = f(1) = 0, f'(1) = 2] 43 **(b)** Since f(x) is differentiable at x = 1. Therefore,

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow \lim_{h \to 0} \frac{f(1 - h) - f(1)}{-h} = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$$

$$\Rightarrow \lim_{h \to 0} \frac{a(1 - h)^{2} - b - 1}{-h} = \lim_{h \to 0} \frac{\frac{1}{1 + h} - 1}{h}$$

$$\Rightarrow \lim_{h \to 0} \frac{(a - b - 1) - 2ah + ah^{2}}{-h} = \lim_{h \to 0} \frac{-h}{h(1 + h)}$$

$$\Rightarrow \lim_{h \to 0} \frac{-(a - b - 1) - 2ah - ah^{2}}{h} = -1$$

$$\Rightarrow -(a - b - 1) = 0 \text{ and so } \lim_{h \to 0} \frac{2ah - ah^{2}}{h} = -1$$

$$\Rightarrow a - b - 1 = 0 \text{ and } 2a = -1 \Rightarrow a = -\frac{1}{2}, b = -\frac{3}{2}$$

44 **(c)**

We have, $f(x) = \frac{\sin 4 \pi [x]}{1 + [x]^2} = 0 \text{ for all}$ $x \quad [\because 4\pi [x] \text{ is a multiple of } \pi]$ $\Rightarrow f'(x) = 0 \text{ for all } x$ 45 (d)

We have,

 $\lim_{x \to 0} f(x) = \lim_{x \to 0} \sin \frac{1}{x}$ $\Rightarrow \lim_{x \to 0} f(x) = \text{An oscillating number which}$ oscillates between -1 and 1 Hence, $\lim_{x \to 0} f(x)$ does not exist Consequently, f(x) cannot be continuous at x = 0for any value of k

46 **(c)**

It is clear from the graph that f(x) is continuous everywhere and also differentiable everywhere except $\{-1, 1\}$ due to sharp edge

47 **(d)**

We have, $\log\left(\frac{x}{y}\right) = \log x - \log y \text{ and } \log(e) = 1$ $\therefore f(x) = \log x$ Clearly, f(x) is unbounded because $f(x) \to -\infty$ as $x \to 0$ and $f(x) \to +\infty$ as $x \to \infty$ We have, $f\left(\frac{1}{x}\right) = \log\left(\frac{1}{x}\right) = -\log x$ As $x \to 0, f\left(\frac{1}{x}\right) \to \infty$

 $\lim_{x \to 0} xf(x) = \lim_{x \to 0} x \log x = \lim_{x \to 0} \frac{\log x}{1/x}$ $\Rightarrow \lim_{x \to 0} x f(x) = \lim_{x \to 0} \frac{1/x}{-1/x^2} = -\lim_{x \to 0} x = 0$ 49 (c) Since g(x) is the inverse of f(x). Therefore, fog(x) = x, for all x $\Rightarrow \frac{d}{dx} \{ f \circ g(x) \} = 1, \text{ for all } x$ $\Rightarrow f'(g(x))g'(x) = 1$, for all x $\Rightarrow \frac{1}{1 + \{g(x)\}^3} \times g'(x) = 1 \text{ for all } x \qquad \left[\because f'(x) = \right.$ 11 + x3 $\Rightarrow g'(x) = 1 + \{g(x)\}^3$, for all x 50 (d) We have, $f(x) = |x^2 - 4x + 3|$ $\Rightarrow f(x) = \begin{cases} x^2 - 4x + 3, & \text{if } x^2 - 4x + 3 \ge 0\\ -(x^2 - 4x + 3), & \text{if } x^2 - 4x + 3 < 0 \end{cases}$ $\Rightarrow f(x) = \begin{cases} x^2 - 4x + 3, & \text{if } x \le 1 \text{ or } x \ge 3\\ -x^2 + 4x - 3, & \text{if } 1 < x < 3 \end{cases}$ Clearly, f(x) is everywhere continuous Now, (LHD at x = 1) = $\left(\frac{d}{dx}(x^2 - 4x + 3)\right)_{\text{at}}$ \Rightarrow (LHD at x = 1) = $(2x - 4)_{\text{at } x=1} = -2$ and, (RHD at x = 1) = $\left(\frac{d}{dx}(-x^2 + 4x - 3)\right)_{x=0}$ \Rightarrow (RHD at x = 1) = (-2x + 4)_{at x=1} = 2 Clearly, (LHD at x = 1) \neq (RHD at x = 1) So, f(x) is not differentiable at x = 1Similarly, it can be checked that f(x) is not differentiable at x = 3 also ALITER We have, $f(x) = |x^2 - 4x + 3| = |x - 1| |x - 3|$ Since, |x - 1| and |x - 3| are not differentiable at 1 and 3 respectively Therefore, f(x) is not differentiable at x = 1 and x = 351 (c) The point of discontinuity of f(x) are those points where tan *x* is infinite. *ie*, $\tan x = \tan \infty$ $\Rightarrow \quad x = (2n+1)\frac{\pi}{2},$ $n \in I$ 52 (a) Using graphical transformation

$$\lim_{x \to \pi} \frac{1}{(1 + \cos x) + \sin x}$$

$$= \lim_{x \to \pi} \frac{2 \cos^2 x/2 - 2(\sin x/2) \cos x/2}{2 \cos^2 x/2 + 2(\sin x/2) \cos x/2}$$

$$= \lim_{x \to \pi} \tan\left(\frac{\pi}{4} - \frac{\pi}{2}\right) = -1$$
Since, $f(x)$ is continuous at $x = \pi$
 $\therefore f(\pi) = \lim_{x \to \pi} f(x) = -1$

56 **(d)**

$$f'(1^{-}) = \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h}$$

$$= \lim_{h \to 0} \frac{(1-h-1) \cdot \sin\left(\frac{1}{1-h-1}\right) - 0}{-h}$$

$$= -\lim_{h \to 0} \sin\frac{1}{h}$$
And $f'(1^{+}) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$

$$= \lim_{h \to 0} \frac{(1+h-1) \sin\left(\frac{1}{1+h-1}\right) - 0}{h}$$

$$= \lim_{h \to 0} \sin\frac{1}{h}$$

$$\therefore f'(1^{-}) \neq f'(1^{+})$$
f is not differentiable at $x = 1$
Again, now

 $f'(0^+) = \lim_{h \to 0} \frac{(0+h-1)\sin\left(\frac{1}{0+h-1}\right) - \sin 1}{h}$ $= \lim_{h \to 0} \frac{\left[-\left\{(h-1)\cos\left(\frac{1}{h-1}\right) \times \left(\frac{1}{(h-1)^2}\right)\right\} + \sin\left(\frac{1}{h-1}\right)\right]}{1}$ [using L 'Hospital's rule] $= \cos 1 - \sin 1$ And $f'(0^-) = \lim_{h \to 0} \frac{(0-h-1)\sin(\frac{1}{0-h-1}) - \sin 1}{-h}$ $= \lim_{h \to 0} \frac{(-h-1)\cos\left(\frac{1}{-h-1}\right)\left(\frac{1}{(-h-1)^2}\right) - \sin\left(\frac{1}{-h-1}\right)}{-1}$ [using L 'Hospital's rule] $= \cos 1 - \sin 1$ $\Rightarrow f'(0^-) = f'(0^+)$ \therefore *f* is differentiable at x = 057 (c) As f(x) is continuous at $x = \frac{\pi}{2}$ $\therefore \lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} f(x)$ $\Rightarrow m\frac{\pi}{2} + 1 = \sin\frac{\pi}{2} + n \Rightarrow m\frac{\pi}{2} + 1 = 1 + n \Rightarrow n$ $= \frac{m\pi}{2}$ 58 (d) Since, $\frac{f(6)-f(1)}{6-1} \ge 2$ $\left[\because f'(x) = \frac{y_2 - y_1}{x_2 - x_1} \right]$ $\Rightarrow f(6) - f(1) \ge 10$ $\Rightarrow f(6) + 2 \ge 10$ $\Rightarrow f(6) \geq 8$ 59 **(b)** We have, $\lim_{x \to a^{-}} f(x) g(x) = \lim_{x \to a^{-}} f(x) \cdot \lim_{x \to a^{-}} g(x) = m \times l$ = mland. $\lim_{x \to a^{+}} f(x) \ g(x) = \lim_{x \to a^{+}} f(x) \lim_{x \to a^{+}} g(x) = lm$ $\therefore \lim_{x \to a^{-}} f(x) \ g(x) = \lim_{x \to a^{+}} f(x) \ g(x) = lm$ Hence, $\lim_{x\to a} f(x) g(x)$ exists and is equal to lm60 (c) We have, $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$ $\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - 1}{h} \qquad [\because f(x + y)$ = f(x)f(y) $\Rightarrow f'(x) = f(x) \left\{ \lim_{h \to 0} \frac{1 + h g(h) - 1}{h} \right\} \quad [\because f(x)]$ = 1 + x g(x)] $\Rightarrow f'(x) = f(x) \lim_{h \to 0} g(h) = f(x) \cdot 1 = f(x)$

61 (a)

We have, $f(x) = \begin{cases} x^2, & x \ge 0 \\ -x^2, & x < 0 \end{cases}$ Clearly, f(x) is differentiable for all x > 0 and for all x < 0. So, we check the differentiable at x = 0Now, (RHD at x = 0) $\left(\frac{d}{dx}(x)^2\right)_{x=0} = (2x)_{x=0} = 0$

And (LHD at = 0)

$$\left(\frac{d}{dx}(-x)^2\right)_{x=0} = (-2x)_{x=0} = 0$$

$$\therefore \text{ (LHD at } x = 0) = (\text{RHD at } x = 0)$$

So, f(x) is differentiable for all x ie, the set of all points where f(x) is differentiable is $(-\infty, \infty)$ Alternate

It is clear from the graph f(x) is differentiable everywhere.

62 (a)

Since,
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 10$$

$$\Rightarrow \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = 10$$

$$\Rightarrow f(0) \left(\lim_{h \to 0} \frac{f(h) - 1}{h}\right) = 10 \quad ...(i)$$
[:: $f(0 + h) = f(0)f(h)$, given]
Now, $f(0) = f(0)f(0)$

$$\Rightarrow f(0) = 1$$

$$\therefore \text{ From Eq. (i)}$$

$$\lim_{h \to 0} \frac{f(h) - 1}{h} = 10 \quad ...(ii)$$
Now, $f'(6) = \lim_{h \to 0} \frac{f(6 + h) - f(6)}{h}$

$$= \lim_{x \to 0} \left(\frac{f(h) - 1}{h}\right) f(6) \quad [\text{from Eq. (ii)}]$$

$$= 10 \times 3 = 30$$

63 (a)

we have,

$$f'(a^{+}) = \lim_{x \to a^{+}} \frac{f(x) - f(0)}{x - a}$$

$$\Rightarrow f'(a^{+}) = \lim_{x \to a^{+}} \frac{|x - a|\phi(x)|}{x - a}$$

$$\Rightarrow f'(a^{+}) = \lim_{x \to a} \frac{(x - a)}{(x - a)}\phi(x) \quad [\because x > a \ \therefore |x - a|]$$

$$= x - a]$$

$$\Rightarrow f'(a^{+}) = \lim_{x \to a} \phi(x)$$

$$\Rightarrow f'(a^{+}) = \phi(a) \quad [\because \phi(x) \text{ is continuous at } x = b]$$

aand, $f'(a^{-}) = \lim_{x \to a^{-}} \frac{f(x) - f(0)}{x - a}$ $\Rightarrow f'(a^{-}) = \lim_{x \to a^{-}} \frac{|x - a|\phi(x)|}{|x - a|\phi(x)|}$ $\Rightarrow f'(a^{-}) = \lim_{x \to a} \frac{x - a}{(x - a)\phi(x)} \quad [\because x < a \ \therefore |x - a|]$ $\Rightarrow f'(a^-) = -\lim_{x \to a} \phi(x)$ $\Rightarrow f'(a^{-}) = -\phi(a)$ $[\because \phi(x) \text{ is continuous at } x = a]$ 64 **(b)** LHL= $\lim_{h\to 0} (0-h)_e^{-\left(\frac{1}{|-h|}+\frac{1}{(-h)}\right)} = \lim_{h\to 0} (-h) = 0$ RHL= $\lim_{h \to 0} (0+h)_e^{-\left(\frac{1}{|h|} + \frac{1}{(h)}\right)} = \lim_{h \to 0} \frac{h}{e^{2/h}} = 0$ LHL=RHL=f(0)Therefore, f(x) is continuous for all x Differentiability at x = 0 $Lf'(0) = \lim_{h \to 0} \frac{(-h)e^{-(\frac{1}{h} - \frac{1}{h})}}{(-h) - 0} = 1$ $Rf'(0) = \lim_{h \to 0} \frac{he^{-(\frac{1}{h} + \frac{1}{h}) - 0}}{h - 0}$ $= \lim_{h \to 0} \frac{1}{e^{2/h}} = 0$ $\Rightarrow Rf'(0)Lf'(0)$ Therefore, f(x) is not differentiable at x = 065 **(d)** We have, $f(x) = \begin{cases} 3, & x < 0\\ 2x + 1, & x \ge 0 \end{cases}$ Clearly, *f* is continuous but not differentiable at x = 0Now, f(|x|) = 2|x| + 1 for all x Clearly, f(|x|) is everywhere continuous but not differentiable at x = 067 (c) We have, $f(x) = |x - 0.5| + |x - 1| + \tan x, 0 < x < 2$ $\Rightarrow f(x) = \begin{cases} -2x + 1.5 + \tan x, & 0 < x < 0.5 \\ 0.5 + \tan x, & 0.5 \le x < 1 \\ 2x - 1.5 + \tan x, & 1 \le x < 2 \end{cases}$ It is evident from the above definition that $Lf'(0.5) \neq Rf'(0.5)$ and $Lf'(1) \neq Rf'(1)$ Also, the function is not continuous at = $\pi/2$. So, it cannot be differentiable thereat 68 **(d)** Given, $f(x) = \begin{cases} \log_{(1-3x)}(1+3x), \text{ for } x \neq 0 \\ k, & \text{ for } x = 0 \end{cases}$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\log(1 + 3x)}{\log(1 - 3x)}$$

$$= -\lim_{x \to 0} \frac{\log(1 + 3x)}{3x} \cdot \frac{(-3x)}{\log(1 - 3x)}$$

$$= -1$$
And $f(0) = k$

$$\therefore f(x) \text{ is continuous at } x = 0$$

$$\therefore k = -1$$
69 (d)
Since $f(x)$ is differentiable at $x = c$. Therefore, it is continuous at $x = c$
Hence, $\lim_{x \to c} f(x) = f(c)$
70 (a)
Given, $f(x) = ae^{|x|} + b |x|^2$
We know $e^{|x|}$ is not differentiable at $x = 0$ and $|x|^2$ is differentiable at $x = 0$.
$$\therefore f(x) \text{ is differentiable at } x = 0$$

$$\therefore f(x) \text{ is differentiable at } x = 0$$

$$f(x) = \begin{cases} (x - x)(-x) = 0, x < 0 \\ (x + x)x = 2x^2, x \ge 0 \end{cases}$$

$$f(x) = \begin{cases} (x - x)(-x) = 0, x < 0 \\ (x + x)x = 2x^2, x \ge 0 \end{cases}$$

$$f(x) = \begin{cases} f(x) = 0 \\ 0 \\ x' \end{cases}$$

$$f(x) = 0$$

As is evident from the graph of f(x) that it is continuous and differentiable for all *x* Also, we have

 $f^{\prime\prime}(x) = \begin{cases} 0, x < 0\\ 4x, x \ge 0 \end{cases}$ Clearly, f''(x) is continuous for all x but it is not

72 **(b)**
Given,
$$f(x) = \begin{cases} \frac{x-1}{2x^2-7x+5}, & x \neq 1 \\ -\frac{1}{3}, & x = 1 \end{cases}$$

 $f(x) = \begin{cases} \frac{1}{2x-5}, & x \neq 1 \\ -\frac{1}{3}, & x = 1 \end{cases}$
 $f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$
 $= \lim_{h \to 0} \frac{\frac{1}{2(1+h)-5} - (-\frac{1}{3})}{h}$
 $= \lim_{h \to 0} \frac{\frac{1}{2(1+h)-5} - (-\frac{1}{3})}{h}$
 $= \lim_{h \to 0} \frac{\frac{1}{2(1-h)-5} - (-\frac{1}{3})}{-h}$
 $= \lim_{h \to 0} -\frac{2}{3(2h+3)} = -\frac{2}{9}$
 $\therefore f'(1) = -\frac{2}{9}$
73 **(b)**
 $f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$
 $= \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$
Given, $\lim_{h \to 0} \frac{f(1+h)}{h} = 5$
So, $\lim_{h \to 0} \frac{f(1)}{h}$ must be finite as $f'(1)$ exist and $\lim_{h \to 0} \frac{f(1)}{h} = 0$
So, $f'(1) = \lim_{h \to 0} \frac{f(1+h)}{h} = 5$
74 **(c)**

differentiable at x = 0

74 **(c)**

Since, f(x) is continuous for every value of R except {-1, -2}. Now, we have to check that points At x = -2

LHL=
$$\lim_{h \to 0} \frac{(-2-h)+2}{(-2-h)^2+3(-2-h)+2}$$

=
$$\lim_{h \to 0} \frac{-h}{h^2+h} = -1$$

RHL=
$$\lim_{h \to 0} \frac{(-2+h)+2}{(-2+h)^2+3(-2+h)+2}$$

=
$$\lim_{h \to 0} \frac{h}{h^2-h} = -1$$

 \Rightarrow LHL=RHL= $f(-2)$
 \therefore It is continuous at $x = -2$
Now, check for $x = -1$
LHL=
$$\lim_{h \to 0} \frac{(-1-h)+2}{(-1-h)^2+3(-1-h)+2}$$

$$= \lim_{h \to 0} \frac{1-h}{h^2 - h} = \infty$$

RHL= $\lim_{h \to 0} \frac{(-1+h)+2}{(-1+h)^2 + 3(-1+h)+2}$
= $\lim_{h \to 0} \frac{1+h}{h^2 + h} = \infty$

⇒ LHL=RHL≠ f(-1)
∴ It is not continuous at x = -1
The required function is continuous in R - {-1}
75 (d)

$$f(0) = \lim_{x \to 0} \frac{(e^x - 1)^2}{\sin\left(\frac{x}{a}\right)\log\left(1 + \frac{x}{4}\right)}$$

$$\Rightarrow \qquad \lim_{x \to 0} \left(\frac{e^x - 1}{x}\right)^2 \cdot \frac{\frac{x}{a} \cdot a}{\sin\frac{x}{a}} \cdot \frac{\frac{x}{4} \cdot 4}{\log\left(1 + \frac{x}{4}\right)} = 12$$

$$\Rightarrow \qquad 1^2 \cdot a \cdot 4 = 12$$

$$\Rightarrow \qquad a = 3$$

76 **(b)**

We have,

$$f(x) = \frac{x}{1+x} + \frac{x}{(x+1)(2x+1)} + \frac{x}{(2x+1)(3x+1)} + \dots \infty$$

$$\Rightarrow f(x) = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{x}{((r-1)x+1)(rx+1)}, \text{ for } x$$

$$\neq 0$$

$$\Rightarrow f(x) = \lim_{n \to \infty} \sum_{r=1}^{n} \left\{ \frac{1}{(r-1)x+1} - \frac{1}{rx+1} \right\}, \text{ for } x$$

$$\neq 0$$

$$\Rightarrow f(x) = \lim_{n \to \infty} \left\{ 1 - \frac{2}{nx+1} \right\} = 1, \text{ for } x \neq 0$$
For $x = 0$, we have $f(x) = 0$
Thus, we have $f(x) = \begin{cases} 1, x \neq 0\\ 0, x = 0 \end{cases}$
Clearly, $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) \neq f(0)$
So, $f(x)$ is not continuous at $x = 0$
(b)
If possible, let $f(x) + g(x)$ be continuous. Then,
 $\{f(x) + g(x)\} - f(x)$ must be continuous
 $\Rightarrow g(x)$ must be continuous
Hence, $f(x) + g(x)$ must be discontinuous

78 (c)

77

We have, f(x + y) = f(x)f(y) for all $x, y \in R$ $\therefore f(0) = f(0)f(0)$ $\Rightarrow f(0)\{f(0) - 1\} = 0$ $\Rightarrow f(0) = 1 \quad [\because f(0) \neq 1]$ Now,

$$f'(0) = 0$$

$$\Rightarrow \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = 2$$

$$\Rightarrow \lim_{h \to 0} \frac{f(h) - 1}{h} = 2 \quad [\because f(0) = 1] \quad \dots(i)$$

$$\therefore f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h} \quad [\because f(x+y) = f(x)f(y)]$$

$$\Rightarrow f'(x) = f(x) \left\{ \lim_{h \to 0} \frac{f(h) - 1}{h} \right\} = 2f(x) \quad [\text{Using}$$

(i)]
79 **(b)**

We have,

$$f(x) = \begin{cases} \frac{x^2}{|x|}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} \frac{x^2}{2} = x, & x > 0\\ 0, & x = 0\\ \frac{x^2}{-x} = -x, & x < 0 \end{cases}$$

$$\Rightarrow \lim_{x \to 0} f(x) = \lim_{x \to 0} x = 0 \lim_{x \to 0} x = 0$$

 $\Rightarrow \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} -x = 0, \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} x = 0 \text{ and } f(0) = 0$ So, f(x) is continuous at x = 0. Also, f(x) is continuous for all other values of xHence, f(x) is everywhere continuous Clearly, Lf'(0) = -1 and Rf'(0) = 1Therefore, f(x) is not differentiable at x = 0**(b)**

80 **(b)**

Since f(x) is continuous at x = 0 $\therefore \lim_{x \to 0} f(x) = f(0) \Rightarrow f(0) = 2$...(i) Now, using L' Hospital's rule, we have $\lim_{x \to 0} \frac{\int_0^x f(u) \, du}{x} = \lim_{x \to 0} \frac{f(x)}{1}$ $= f(0) \quad [\because f(x) \text{ is continuous at } x]$ = 0] $\Rightarrow \lim_{x \to 0} \frac{\int_0^x f(u) \, du}{x} = 2$ [Using (i)] 82 (c) $f'(2^+) = \lim_{x \to 2^+} \left(\frac{f(x) - f(2)}{x - 2}\right)$ $= \lim_{x \to 2^+} \frac{3x + 4 - (6 + 4)}{x - 2} = \lim_{x \to 2} \frac{3x - 6}{x - 2} = 3$ 83 (a) $(\sin x, x > 0)$

Here,
$$f(x) = \begin{cases} \sin x, x > 0\\ 0, x = 0\\ -\sin x, x < 0 \end{cases}$$
$$\text{RHD} = \lim_{h \to 0} \frac{\sin |0+h| - \sin(0)}{h}$$
$$= \lim_{h \to 0} \frac{\sin h}{h} = 1$$

$$LHD = \lim_{h \to 0} \frac{\sin|(0-h)| - \sin(0)}{-h}$$
$$= \frac{-\sin h}{h} = -1$$
$$\therefore LHD \neq RHD \text{ at } x = 0$$

 $\therefore f(x) \text{ is not derivable at } x = 0$ Alternate

It is clear from the graph that f(x) is not differentiable at x = 0

84 **(b)**

We have,

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} (\log_e a)^n$$

$$\Rightarrow f(x) = \sum_{n=0}^{\infty} \frac{(x \log_e a)^n}{n!} = \sum_{n=0}^{\infty} \frac{(\log_e a^x)^n}{n!}$$

$$\Rightarrow f(x) = e^{\log_e a^x} = a^x, \text{ which is everywhen}$$

 $\Rightarrow f(x) = e^{\log_e a^x} = a^x$, which is everywhere continuous and differentiable

85 (c)

$$f(x) = [x] \cos\left[\frac{2x-1}{2}\right] \pi$$

Since, [x] is always discontinuous at all integer value, hence f(x) is discontinuous for all integer value

86 **(c)**

The function f is clearly continuous for |x| > 1We observe that

$$\lim_{x \to -1^{+}} f(x) = 1, \lim_{x \to -1^{-}} f(x) = \frac{1}{4}$$

Also,
$$\lim_{x \to \frac{1+}{n}} f(x) = \frac{1}{n^{2}} \text{ and, } \lim_{x \to \frac{1-}{n}} f(x) = \frac{1}{(n+1)^{2}}$$

Thus, f is discontinuous for $x = \pm \frac{1}{n}, n = 1, 2, 3, ...$

1

87 (c)

Since,
$$|f(x) - f(y)| \le (x - y)^2$$

$$\Rightarrow \lim_{x \to y} \frac{|f(x) - f(y)|}{|x - y|} \le \lim_{x \to y} |x - y|$$

$$\Rightarrow |f'(y)| \le 0$$

$$\Rightarrow f'(y) = 0$$

$$\Rightarrow f(y) = \text{constant}$$

$$\Rightarrow f(y) = 0 \Rightarrow f(1) = 0 \quad [\because f(0) = 0, \text{ given}]$$
88 **(b)**
Since $\phi(x) = 2x^3 - 5$ is an increasing function on
(1, 2) such that $\phi(1) = -3$ and $\phi(2) = 11$

Clearly, between -3 and 11 there are thirteen points where $f(x) = [2x^3 - 5]$ is discontinuous 89 **(c)**

Clearly, $[x^2 + 1]$ is discontinuous at $x = \sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt{8}$ Note that it is right continuous at x = 1 but not left continuous at x = 3

90 **(a)**

As is evident from the graph of f(x) that it is continuous but not differentiable at x = 1

Now,

$$f''(1^{+}) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{\log_{10}(1 + h) - 0}{h}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{\log(1 + h)}{h \cdot \log_{e} 10} = \frac{1}{\log_{e} 10} = \log_{10} e$$

$$f''(1^{-}) = \lim_{h \to 0} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow f''(1^{-}) = \lim_{h \to 0} \frac{f(1 - h) - f(1)}{h}$$

$$\Rightarrow f''(1^{-}) = \lim_{h \to 0} \frac{\log_{10}(1 - h)}{h} = \lim_{h \to 0} \frac{\log_{e}(1 - h)}{h \log_{e} 10}$$

$$= -\log_{10} e$$

91 **(b)**

It can be easily seen from the graph of f(x) = | cos x | that it is everywhere continuous but not differentiable at odd multiples of π/2
(d)

We have,

$$\lim_{x \to 4^{-}} f(x) = \lim_{h \to 0} f(4-h) = \lim_{h \to 0} \frac{4-h-4}{|4-h-4|} + a$$

$$\Rightarrow \lim_{x \to 4^{-}} f(x) = \lim_{h \to 0} -\frac{h}{h} + a = a - 1$$

$$\Rightarrow \lim_{x \to 4^{-}} f(x) = \lim_{h \to 0} f(4+h) = \lim_{h \to 0} \frac{4+h-4}{|4+h-4|} + b$$

$$= b + 1$$

and $f(4) = a + b$

and, f(4) = a + bSince f(x) is continuous at x = 4. Therefore, $\lim_{x \to 4^{-}} f(x) = f(4) = \lim_{x \to 4^{+}} f(x)$ $\Rightarrow a - 1 = a + b = b + 1 \Rightarrow b = -1 \text{ and } a = 1$ 93 **(b)** Mak

95

96

We have,

$$f(x) = \begin{cases} \frac{2^{x} - 1}{\sqrt{1 + x} - 1}, -1 \le x < \infty, & x \ne 0 \\ k, & x = 0 \end{cases}$$
Since, $f(x)$ is continuous everywhere
 $\therefore \lim_{x \to 0^{-}} f(x) = f(0) \dots(i)$
Now, $\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} \frac{2^{(0-h)} - 1}{\sqrt{1 + (0-h)} - 1}$
 $= \lim_{h \to 0^{-}} \frac{2^{-h} - 1}{\sqrt{1 - h} - 1}$
 $= \lim_{h \to 0^{-}} \frac{2^{-h} \log_{e^{2}} 2}{\frac{1}{2\sqrt{1 - h}}}$ [by L' Hospital's rule]
 $= 2 \lim_{h \to 0^{-}} 2^{-h} \log_{e} 2\sqrt{1 - h}$
 $= 2 \log_{e} 2$
From Eq. (i),
 $f(0) = 2 \log_{e} 2 = \log_{e} 4$
(b)
We have,
 $\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(-h) = \lim_{x \to 0^{-}} \frac{e^{-1/h} - 1}{e^{-1/h} + 1} = \lim_{h \to 0^{-1/h}} \frac{e^{-1/h}}{e^{-1/h}}$
 $= 1$
 $\therefore \lim_{x \to 0^{-}} f(x) \ne \lim_{h \to 0} f(x) = \lim_{x \to 0^{-}} \frac{e^{1/h} - 1}{e^{1/h} + 1} = \lim_{h \to 0^{-1/h}} \frac{e^{-1/h}}{e^{-1/h}}$
 $= 1$
 $\therefore \lim_{x \to 0^{-}} f(x) \ne \lim_{h \to 0} f(x)$
Hence, $f(x)$ is not continuous at $x = 0$
(c)
LHL= $\lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} \frac{f(2+h) - 1}{h} = -1$
 $\lim_{h \to 0^{-}} \frac{5 - (2+h) - 3}{h} = -1$
Lf''(2) $= \lim_{h \to 0^{-}} \frac{f(2-h) - f(2)}{-h}$
 $= \lim_{h \to 0^{-}} \frac{1 + (2-h) - 3}{-h} = 1$
 $\therefore Rf''(2) \ne Lf''(2)$
 $\therefore f$ is not differentiable at $x = 2$
Alternate

It is clear from the graph that f(x) is continuous everywhere also it is differentiable everywhere

y y'

except at x = 297 (d) We have, f(x + y) = f(x)f(y) for all $x, y \in R$ Putting x = 1, y = 0, we get $f(0) = f(1)f(0) \Rightarrow f(0)(1 - f(1)) = 0$ $\Rightarrow f(1) = 1 \qquad [\because f(0) \neq 0]$ Now, f'(1) = 2 $\Rightarrow \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = 2$ $\Rightarrow \lim_{h \to 0} \frac{f(1)f(h) - f(1)}{h} = 2$ $\Rightarrow f(1) \lim_{h \to 0} \frac{f(h) - 1}{h} = 2$ $\Rightarrow \lim_{h \to 0} \frac{f(h) - 1}{h} = 2$ [Using f(1) = 1] ...(i) $\therefore f'(4) = \lim_{h \to 0} \frac{f(4+h) - f(4)}{h}$ $\Rightarrow f'(4) = \lim_{h \to 0} \frac{f(4)f(h) - f(4)}{h}$ $\Rightarrow f'(4) = \left\{ \lim_{h \to 0} \frac{f(h) - 1}{h} \right\} f(4)$ $\Rightarrow f'(4) = 2 f(4)$ [From (i)] $\Rightarrow f'(4) = 2 \times 4 = 8$ 98 (d) We have, $\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{+}} g(x) = 1$ and g(1) = 0So, g(x) is not continuous at x = 1 but $\lim_{x\to 1} g(x)$ exists We have, $\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1-h) = \lim_{h \to 0} [1-h] = 0$ and,

99

 $\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1+h) = \lim_{h \to 0} [1+h] = 1$ So, $\lim_{x\to 1} f(x)$ does not exist and so f(x) is not continuous at x = 1We have, gof(x) = g(f(x)) = g([x]) = 0, for all $x \in R$ So, *gof* is continuous for all *x* We have, fog(x) = f(g(x)) $\Rightarrow fog(x) = \begin{cases} f(0), & x \in Z \\ f(x^2), & x \in R - Z \end{cases}$ $\Rightarrow fog(x) = \begin{cases} 0, & x \in Z \\ [x^2], & x \in R - Z \end{cases}$ Which is clearly not continuous (d) At x = 1, $\text{RHD} = \lim_{h \to 0^+} \frac{f(1+h) - f(1)}{h}$ $=\lim_{h\to 0}\frac{2-(1+h)-(2-1)}{h}=-1$

∵ RHL≠LHL

103 **(c)**

 \therefore f(x) is discontinuous at $x = \frac{3}{2}$

Since the functions $(\log t)^2$ and $\frac{\sin t}{t}$ are not defined on (-1, 2). Therefore, the functions in

options (a) and (b) are not defined on (-1, 2)The function $g(t) = \frac{1-t+t^2}{1+t+t^2}$ is continuous on

$$(-1, 2) \text{ and } f(x) = \int_{0}^{x} \frac{1-t+t^{2}}{1+t+t^{2}} dt \text{ is the integral function of } g(t)$$

Therefore, $f(x)$ is differentiable on $(-1, 2)$ such that $f'(x) = g(x)$
104 (c)
Since, $f(x) = \frac{1-\tan x}{4x-\pi}$
Now, $\lim_{x\to\pi/4} f(x) = \lim_{x\to\pi/4} \left(\frac{1-\tan x}{4x-\pi}\right)$
 $= \lim_{x\to\pi/4} \left(\frac{-\sec^{2} x}{4}\right) = -\frac{1}{2}$
Since, $f(x)$ is continuous at
 $x = \frac{\pi}{4}$
 $\therefore \lim_{x\to0} f(x) = \lim_{x\to0} \frac{1-\cos x}{x} = \lim_{x\to0} \frac{2\sin^{2} \frac{x}{2}}{4\left(\frac{x}{2}\right)^{2}} \cdot x = 0$
Also, $f(0) = k$
For, $\lim_{x\to0} f(x) = f(0) \Rightarrow k = 0$
106 (a)
We have,
 $f(x) = |x| + |x - 1|$
 $\Rightarrow f(x) = \begin{cases} -2x + 1, \quad x < 0$
 $1x + x - 1, \quad x \ge 1$
 $\Rightarrow f(x) = \begin{cases} -2x + 1, \quad x < 0 \\ 1, \quad 0 \le x < 1 \\ 2x - 1, \quad x \ge 1 \end{cases}$
Clearly, $\lim_{x\to0} -f(x) = 1 = \lim_{x\to0^{+}} f(x)$ and $\lim_{x\to0^{-}} f(x) = \lim_{x\to0} x + (x + \pi) - 1$
 $x = 0, 1$
107 (d)
 $f(0) = \lim_{x\to0} \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}$
 $= \lim_{x\to0} \frac{2 - \frac{\sin^{-1} x}{2x + \tan^{-1} x}}{2 + \frac{\tan^{-1} x}{x}}$
 $= \frac{2 - \frac{\sin^{-1} x}{2x}}{1 + \frac{1}{3}}$
109 (b)
 $f'(1) = \lim_{h\to0} \frac{f(1+h)-f(1)}{h}$
 $= \lim_{h\to0} \frac{\left(\frac{1+h-1}{h}\right)}{h} = \lim_{h\to0} \left(\frac{2h}{3h(2h-3)}\right) = -\frac{2}{9}$
110 (a)
LHL = $\lim_{h\to0} f(-\frac{\pi}{2} - h) = \lim_{h\to0} 2\cos(-\frac{\pi}{2} - h) = 0$

Page | 31

RHL= $\lim_{h \to 0} f\left(-\frac{\pi}{2} + h\right) = \lim_{h \to 0} 2 a \sin\left(-\frac{\pi}{2} + h\right) + b$ = -a + bSince, function is continuous. \therefore RHL=LHL $\Rightarrow a = b$ From the given options only (a) *ie*, $\left(\frac{1}{2}, \frac{1}{2}\right)$ satisfies this condition 1 (a)

111 **(a)**

We have,

$$f'(0) = 3$$

 $\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 3$
 $\Rightarrow \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h}$
 $= 3$ [Using: (RHD at $x = 0) = 3$]
 $\Rightarrow \lim_{h \to 0} \frac{f(0)f(h) - f(0)}{h}$
 $= 3$ [$\therefore f(x + y) = f(x)f(y)$]
 $\therefore f(0 + h) = f(0)f(h)$]
 $\Rightarrow f(0) (\lim_{h \to 0} \frac{f(h) - 1}{h}) = 3$...(i)
Now, $f(x + y) = f(x)f(y)$ for all $x, y \in R$
 $\Rightarrow f(0) = f(0)f(0)$
 $\Rightarrow f(0)\{1 - f(0)\} = 0 \Rightarrow f(0) = 1$
Putting $f(0) = 1$ in (i), we get
 $\lim_{h \to 0} \frac{f(h) - 1}{h} = 3$...(ii)
Now,
 $f'(5) = \lim_{h \to 0} \frac{f(5 + h) - f(5)}{h}$
 $\Rightarrow f'(5) = \lim_{h \to 0} \frac{f(5)f(h) - f(5)}{h}$
 $\Rightarrow f'(5) = \{\lim_{h \to 0} \frac{f(h) - 1}{h}\}f(5) = 3 \times 2 = 6$
[Using (ii)]

112 **(c)**

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f(x)' = \lim_{h \to 0} \frac{f(x) + f(h) - f(x)}{h}$$

$$\Rightarrow f(x)' = \lim_{h \to 0} \frac{f(h)}{h}$$

$$\Rightarrow f(x)' = \lim_{h \to 0} \frac{h g(h)}{h} \lim_{h \to 0} g(h) = g(0) \quad [$$

$$\because g \text{ is conti. at } x = 0]$$

113 **(b)**

The domain of f(x) is $[2, \infty)$ We have,

$$f(x) = \sqrt{\frac{\left(\sqrt{2x-4}\right)^2}{2}} + 2 + 2\sqrt{2x-4}$$

$$+ \sqrt{\frac{(\sqrt{2x-4})^2}{2}} + 2 - 2\sqrt{2x-4}$$

$$\Rightarrow f(x) = \frac{1}{\sqrt{2}}\sqrt{(\sqrt{2x-4})^2 + 4\sqrt{2x-4} + 4}$$

$$+ \frac{1}{\sqrt{2}}\sqrt{(\sqrt{2x-4})^2 - 4\sqrt{2x-4} + 4}$$

$$\Rightarrow f(x) = \frac{1}{\sqrt{2}}|\sqrt{2x-4} + 2| + \frac{1}{\sqrt{2}}|\sqrt{2x-4} - 2|$$

$$\Rightarrow f(x) = \begin{cases} \frac{1}{\sqrt{2}} \times 4, & \text{if } \sqrt{2x-4} < 2 \\ \sqrt{2} \cdot \sqrt{2x-4}, & \text{if } \sqrt{2x-4} > 2 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 2\sqrt{2}, & \text{if } x \in [2, 4) \\ 2\sqrt{x-2}, & \text{if } x \in [4, \infty) \end{cases}$$
Hence, $f'(x) = \begin{cases} \frac{1}{\sqrt{x-2}} & \text{if } x \in [4, \infty) \end{cases}$
Hence, $f'(x) = \begin{cases} \frac{1}{\sqrt{x-2}} & \text{if } x \in (4, \infty) \end{cases}$
114 (c)
We have,
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin(\frac{1}{x})}{x} = \lim_{x \to 0} x \sin\frac{1}{x} = 0$$
So, $f(x)$ is differentiable at $x = 0$ such that
$$f'(0) = 0$$
For $x \neq 0$, we have
$$f'(x) = 2x \sin(\frac{1}{x}) + x^2 \cos(\frac{1}{x}) \left(-\frac{1}{x^2}\right)$$

$$\Rightarrow f'(x) = 2x \sin\frac{1}{x} - \cos\frac{1}{x}$$

$$\Rightarrow \lim_{x \to 0} f'(x) = \lim_{x \to 0} 2x \sin\frac{1}{x} - \lim_{x \to 0} \cos(\frac{1}{x})$$
Since $\lim_{x \to 0} \cos(\frac{1}{x})$ does not exist
$$\therefore \lim_{x \to 0} f'(x)$$
 is not continuous at $x = 0$
115 (c)
We have,
$$f(x) = \begin{cases} \frac{x}{\sqrt{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} \frac{x}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} \frac{x}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} \frac{x}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} \frac{x}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
Clearly, $f(x)$ is not continuous at $x = 0$
117 (c)
$$\text{Given, } \lim_{x \to 0} [(1 + 3x)^{\frac{1}{x}}] = k$$

:. $e^{3} = k$ 118 **(b)** For x > 2, we have

$$f(x) = \int_{0}^{x} \{5 + |1 - t|\} dt$$

$$\Rightarrow f(x) = \int_{0}^{1} (5 + (1 - t)) dt + \int_{1}^{x} (5 - (1 - t)) dt$$

$$\Rightarrow f(x) = \int_{0}^{1} (6 - t) dt + \int_{1}^{x} (4 + t) dt$$

$$\Rightarrow f(x) = \left[6t - \frac{t^{2}}{2}\right]_{0}^{1} + \left[4t + \frac{t^{2}}{2}\right]_{1}^{x}$$

$$\Rightarrow f(x) = 1 + 4x + \frac{x^{2}}{2}$$

Thus, we have

$$f(x) = \begin{cases} 5x + 1, & \text{if } x \le 2\\ \frac{x^2}{2} + 4x + 1, & \text{if } x > 2 \end{cases}$$

Clearly, f(x) is everywhere continuous and differentiable except possibly at x = 2Now,

 $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2} 5x + 1 = 11$
and,

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2} \left(\frac{x^{2}}{2} + 4x + 1 \right) = 11$$

$$\therefore \lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x)$$

So, $f(x)$ is continuous at $x = 2$
Also, we have (LHD at $x = 2$) = $\lim_{x \to 2^{-}} f'(x) = \lim_{x \to 2^{-}} 5 = 5$

119 (b)

The given function is clearly continuous at all points except possibly at $x = \pm 1$ For f(x) to be continuous at x = 1, we must have $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$ $\Rightarrow \lim_{x \to 1} ax^{2} + b = \lim_{x \to 1} \frac{1}{|x|}$ $\Rightarrow a + b = 1$...(i)

Clearly, f(x) is differentiable for all x, except possibly at $x = \pm 1$. As f(x) is an even function, so we need to check its differentiability at x = 1 only For f(x) to be differentiable at x = 1, we must have

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow \lim_{x \to 1} \frac{ax^{2} + b - 1}{x - 1} = \lim_{x \to 1} \frac{\frac{1}{|x|} - 1}{x - 1}$$

$$\Rightarrow \lim_{x \to 1} \frac{ax^{2} - a}{x - 1} = \lim_{x \to 1} \frac{\frac{1}{x} - 1}{x - 1} \quad [\because a + b = 1]$$

$$\therefore b - 1 = -a]$$

$$\Rightarrow \lim_{x \to 1} a(x + 1) = \lim_{x \to 1} \frac{-1}{x}$$

 $\Rightarrow 2a = -1 \Rightarrow a = -1/2$ Putting a = -1/2 in (i), we get b = 3/2

At no point, function is continuous

121 **(a)**

It is clear from the figure that f(x) is continuous everywhere and not differentiable at x = 0 due to sharp edge

$$x' \underbrace{(0, 1)}_{y'} f(x) = e^{-|x|}$$

122 (c)

$$f(x) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}} \\ \times \frac{\sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2}}{\sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2}} \\ \times \frac{\sqrt{a + x} + \sqrt{a - x}}{\sqrt{a + x} + \sqrt{a - x}} \\ \Rightarrow \lim_{x \to 0} f(x) \\ = \lim_{x \to 0} \frac{-2ax(\sqrt{a + x} + \sqrt{a - x})}{2x(\sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2})} \\ = \frac{-a(2\sqrt{a})}{2x(\sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2})} \\ = \frac{-a(2\sqrt{a})}{(a + a)} = -\sqrt{a} \\ 123 \text{ (b)} \\ \text{Given, } f(x) = \begin{cases} \frac{1 - \cos 4x}{8x^2}, & x \neq 0 \\ k & x = 0 \end{cases} \\ \text{LHL} = \lim_{x \to 0^-} f(x) \\ = \lim_{h \to 0} \frac{1 - \cos 4(0 - h)}{8(0 - h)^2} \\ = \lim_{h \to 0} \frac{1 - \sin 4h}{8h^2} \\ = \lim_{h \to 0} \frac{4 \sin 4h}{16h} = 1 \text{ [by L 'Hospital's rule]} \\ \text{Since, } f(x) \text{ is continuous at } x = 0 \\ \therefore \quad f(0) = \text{LHL} \Rightarrow \quad k = 1 \\ 124 \text{ (d)} \\ \text{Given, } f(x) = |x - 1| + |x - 2| + \cos x \end{cases}$$

Since, |x - 1|, |x - 2| and $\cos x$ are continuous in [0, 4] $\therefore f(x)$ being sum of continuous functions is also

 \therefore f(x) being sum of continuous functions is also continuous

125 **(c)**

If function f(x) is continuous at x = 0, then $f(0) = \lim_{x \to 0} f(x)$

$$f(0) = k = \lim_{x \to 0} x \sin \frac{1}{x}$$
$$\Rightarrow k = 0 \qquad \left[\because -1 \le \sin \frac{1}{x} \le 1 \right]$$

126 **(b)**

We have,

$$h(x) = \{f(x)\}^2 + \{g(x)\}^2$$

 $\Rightarrow h'(x) = 2f(x)2f'(x) + 2g(x)g'(x)$
Now,
 $f'(x) = g(x)$ and $f''(x) = -f(x)$
 $\Rightarrow f''(x) = g'(x)$ and $f''(x) = -f(x)$
 $\Rightarrow -f(x) = g'(x)$
Thus, we have
 $f'(x) = g(x)$ and $g'(x) = -f(x)$
 $\therefore h'(x) = -2g(x)g'(x) + 2g(x)g'(x) = 0$, for
all x
 $\Rightarrow h(x) = \text{Constant for all } x$
But, $h(5) = 11$. Hence, $h(x) = 11$ for all x
127 (a)

$$f(x) = |x|^3 = \begin{cases} 0, & x = 0 \\ x^3, & x > 0 \\ -x^3, & x < 0 \end{cases}$$

Now, $Rf'(0) = \lim_{h \to 0} \frac{h^3 - 0}{h} = 0$
And $Lf'(0) = \lim_{h \to 0} \frac{-h^3 - 0}{-h} = 0$
 $\therefore Rf'(0) = Lf'(0) = 0$
 $\therefore f'(0) = 0$

We have, (LHL at x = 0) = $\lim_{n \to 0^-} f(x) = \lim_{h \to 0} f(0 - h)$ \Rightarrow (LHL at x = 0) = $\lim_{n \to 0} \sin^{-1}(\cos(-h))$ $= \lim_{h \to 0} \sin^{-1}(\cosh h)$ \Rightarrow (LHL at x = 0) = $\sin^{-1} 1 = \pi/2$ (RHL at x = 0) = $\lim_{x \to 0^+} f(x)$ \Rightarrow (RHL at x = 0) = $\lim_{h \to 0} f(0 + h)$ $= \lim_{h \to 0} \sin^{-1}(\cos h)$ \Rightarrow (RHL at x = 0) = $\sin^{-1}(1) = \pi/2$ and, $f(0) = \sin^{-1}(\cos 0) = \sin^{-1}(1) = \pi/2$ \therefore (LHL at x = 0) = (RHL at x = 0) = f(0)So, f(x) is continuous at x = 0Now, $f'(x) = \frac{-\sin x}{\sqrt{1 - \cos^2 x}} = \frac{\sin x}{|\sin x|}$ $= \begin{cases} \frac{-\sin x}{-\sin x} = 1, x < 0 \\ \frac{-\sin x}{\sin x} = -1, x > 0 \end{cases}$ \therefore (LHD at x = 0) = 1 and (RHD at x = 0) =

 $(\frac{1}{\sin x} = -1, x > 0)$ $\therefore \text{ (LHD at } x = 0) = 1 \text{ and (RHD at } x = 0) = -1$ Hence, f(x) is not differentiable at x = 0129 (d)

For any $x \neq 1, 2$, we find that f(x) is the quotient of two polynomials and a polynomial is everywhere continuous. Therefore, f(x) is continuous for all $x \neq 1, 2$ Continuity at x = 1: We have, $\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1-h)$ $\Rightarrow \lim_{x \to 1^{-}} f(x)$ $= \lim_{h \to 0} \frac{(1-h-2)(1-h+2)(1-h+1)(1-h-2)}{|(1-h-1)(1-h-2)|}$ $\Rightarrow \lim_{x \to 1^{-}} f(x) = \lim_{h \to 0^{+}} \frac{(3-h)(2-h)(-1-h)(-h)}{|(-h)(-1-h)|}$ $\Rightarrow \lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} \frac{(3-h)(2-h)h(h+1)}{h(h+1)} = 6$ and $\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1+h)$ $\lim_{x \to 1^+} f(x)$ $= \lim_{h \to 0} \frac{(1+h-2)(1+h+2)(1+h+1)(1+h-2)}{|(1+h-1)(1+h-2)|}$ $\lim_{x \to 1^+} f(x) = \lim_{h \to 0} \frac{(h-1)(3+h)(2+h)(h)}{|h(h-1)|}$ $\lim_{x \to 1^+} f(x) = -\lim_{h \to 0} \frac{(h-1)(3+h)(2+h)h}{h(1-h)} = -6$ $\therefore \lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x)$ So, f(x) is not continuous at x = 1Similarly, f(x) is not continuous at x = 2130 (b) Let $f(x) = \frac{g(x)}{h(x)} = \frac{x}{1+|x|}$ It is clear that g(x) = x and h(x) = 1 + |x| are differentiable on $(-\infty, \infty)$ and $(-\infty, 0) \cup (0, \infty)$ respectively Thus, f(x) is differentiable on $(-\infty, 0) \cup$ $(0, \infty)$.Now, we have to check the differentiable at x = 0 $\therefore \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{x}{1 + |x|} - 0}{x} = \lim_{x \to 0} \frac{1}{1 + |x|}$ Hence, f(x) is differntaible on $(-\infty, \infty)$ 131 (b) At x = 0. LHL= $\lim_{h\to 0} \frac{1}{1-e^{-1/(0-h)}} = \lim_{h\to 0} \frac{1}{1-e^{1/h}} = 0$ RHL= $\lim_{h\to 0} \frac{1}{1-e^{-1/(0+h)}} = \lim_{h\to 0} \frac{1}{1-e^{-1/h}} = 1$ \therefore FUnction is not continuous at x = 0132 (a) We have, fog = I $\Rightarrow fog(x) = x$ for all x

$$\Rightarrow f'(g(x))g'(x) = 1 \text{ for all } x$$

$$\Rightarrow f'(g(a)) = \frac{1}{g'(a)} = \frac{1}{2} \Rightarrow f'(b)$$

$$= \frac{1}{2} \quad [\because f(a) = b]$$
133 (a)
Since, $\lim_{x \to 0} f(x) = f(0)$

$$\Rightarrow \lim_{x \to 0} \frac{\sin \pi x}{5x} = k$$

$$\Rightarrow (1)\frac{\pi}{5} = k \Rightarrow k = \frac{\pi}{5} \quad [\because \lim_{x \to 0} \frac{\sin x}{x} = 1]$$
134 (d)
Given, $f(x) = [x], x \in (-3.5, 100)$
As we know greatest integer is discontinuous on
integer values.
In given interval, the integer values are
 $(-3, -2, -1, 0, ..., 99)$
 \therefore Total numbers of integers are 103.
135 (a)
LHL= $\lim_{h \to 0} f(0 - h)$
 $= \lim_{h \to 0} \frac{e^{-1/h} - 1}{e^{-1/h} + 1} = -1 \quad [\because \lim_{h \to 0} \frac{1}{e^{1/h} + 1} = 0]$
RHL= $\lim_{h \to 0} f(0 + h) = \lim_{h \to 0} \frac{e^{1/h} - 1}{e^{1/h} + 1}$
 $= \lim_{h \to 0} \frac{1 - \frac{1}{e^{1/h}}}{1 + \frac{1}{e^{1/h}}} = 1$
 \therefore LHL \neq RHL
So, limit does not exist at $x = 0$
136 (d)
We have,
 $f(x) = \frac{x^4}{1 - \frac{1}{1 + x^4}} = 1 + x^4$, if $x \neq 0$
Clearly, $f(x) = 0$ at $x = 0$
Thus, we have
 $f(x) = \begin{cases} 1 + x^4, & x \neq 0\\ 0, & x = 0\\ \end{cases}$
Clearly, $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = 1 \neq f(0)$
So, $f(x)$ is neither continuous nor differentiable
at $x = 0$
137 (a)
We have,
 $f(x) = \begin{cases} 1 + x, & 0 \le x \le 2\\ (3 - x, & 2 < x \le 3)\\ \therefore g(x) = f(f(x))\\ \Rightarrow f(x) = f(f(x))\\ \Rightarrow g(x) = \begin{cases} f(1 + x), & 0 \le x \le 2\\ f(3 - x), & 2 < x \le 3 \end{cases}$

 $\Rightarrow g(x) = \begin{cases} 1 + (1+x), & 0 \le x \le 1\\ 3 - (1+x), & 1 < x \le 2\\ 1 + (3-x), & 2 < x \le 3 \end{cases}$ $\Rightarrow g(x) = \begin{cases} 2+x, & 0 \le x \le 1\\ 2-x, & 1 < x \le 2\\ 4-x, & 2 < x \le 3 \end{cases}$ Clearly, g(x) is continuous in $(0, 1) \cup (1, 2) \cup$ (2,3) except possibly at x = 0, 1, 2 and 3 We observe that $\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (2+x) = 2 = g(0)$ and $\lim_{x\to 3^{-}} g(x) = \lim_{x\to 3^{-}} 4 - x = 1 = g(3)$ Therefore, g(x) is right continuous at x = 0 and left continuous at x = 3At x = 1, we have $\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} 2 + x = 3$ and, $\lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} 2 - x = 1$ $\therefore \lim_{x \to 1^+} g(x) \neq \lim_{x \to 1^-} g(x)$ So, g(x) is not continuous at x = 1At x = 2, we have $\lim_{x \to 2^{-}} g(x) = \lim_{x \to 2^{-}} (2 - x) = 0$ and, $\lim_{x \to 2^+} g(x) = \lim_{x \to 2^+} (4 - x) = 0$ $\therefore \lim_{x \to 2^-} g(x) \neq \lim_{x \to 2^+} g(x)$ So, g(x) is not continuous at x = 2Hence, the set of points of discontinuity of g(x) is {1,2} 138 (b) Since g(x) is the inverse of function f(x) \therefore gof (x) = I(x), for all x Now, gof(x) = I(x), for all x \Rightarrow gof (x) = x, for all x \Rightarrow (gof)'(x) = 1, for all x $\Rightarrow g'(f(x))f'(x) = 1$, for all x [Using Chain Rule] $\Rightarrow g'(f(x)) = \frac{1}{f'(x)}$, for all x $\Rightarrow g'(f(c)) = \frac{1}{f'(c)}$ [Putting x = c] 139 (d) Given, $f(x) = \begin{cases} x^p \cos\left(\frac{1}{x}\right), x \neq 0\\ 0, x = 0 \end{cases}$ Since, f(x) is differentiable at x = 0, therefore it is continuous at x = 0 $\therefore \lim_{x \to 0} f(x) = f(0) = 0$ $\Rightarrow \lim_{x \to 0} x^p \cos\left(\frac{1}{x}\right) = 0 \quad \Rightarrow \quad p > 0$ As f(x) is differentiable at x = 0 $\therefore \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$ exists finitely $\Rightarrow \lim_{x \to 0} \frac{x^p \cos \frac{1}{x} - 0}{x}$ exists finitely

It is clear from the graph that f(x) is continuous everywhere and also differentiable everywhere except at x = 0

141 (c)

We know that the function

$$\phi(x) = (x-a)^2 \sin\left(\frac{1}{x-a}\right)$$

Is continuous and differentiable at x = a whereas the function $\Psi(x) = |x - a|$ is everywhere continuous but not differentiable at x = aTherefore, f(x) is not differentiable at x = 1

142 **(d)**

 $\lim_{x \to 0} \frac{2^x - 2^{-x}}{x} = \lim_{x \to 0} 2^x \log 2 + 2^{-x} \log 2$ [by L' Hospital's rule] = log 4 Since, the function is continuous at x = 0 $\therefore \quad f(0) = \lim_{x \to 0} f(x) \Rightarrow \quad f(0) = \log 4$

143 (a)

As is evident from the graph of f(x) that it is continuous but not differentiable at x = 1

Now,

$$f''(1^{+}) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{\log_{10}(1 + h) - 0}{h}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{\log(1 + h)}{h \cdot \log_{e} 10} = \frac{1}{\log_{e} 10} = \log_{10} e$$

$$f''(1^{-}) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow f''(1^{-}) = \lim_{h \to 0} \frac{f(1 - h) - f(1)}{h}$$

$$\Rightarrow f''(1^{-}) = \lim_{h \to 0} \frac{\log_{10}(1 - h)}{h} = \lim_{h \to 0} \frac{\log_{e}(1 - h)}{h \log_{e} 10}$$

$$= -\log_{10} e$$

144 **(a)** We have

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x) + f(h) - f(x)}{h} \qquad [\because f(x) + y] = f(x) + f(y)]$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sinh g(h)}{h} = \lim_{h \to 0} \frac{\sinh h}{h} \lim_{h \to 0} g(h)$$

$$= g(0) = k$$

145 **(a)**

We have,

$$f(x) = |x| + |x - 1| = \begin{cases} -2x + 1, & x < 0\\ 1, & 0 \le x < 1\\ 2x - 1, & 1 \le x \end{cases}$$

Clearly,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} 1 = 1, \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} (2x - 1) = 1$$
and, $f(1) = 2 \times 1 - 1 = 1$
 $\therefore \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$
So, $f(x)$ is continuous at $x = 1$
Now, $\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{h \to 0} \frac{f(1 - h) - f(1)}{-h} = \lim_{h \to 0} \frac{1 - 1}{-h} = 0$
and,
 $\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$
 $\Rightarrow \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{h \to 0} \frac{2(1 + h) - 1 - 1}{h} = 2$
 \therefore (LHD at $x = 1$) \neq (RHD at $x = 1$)
So, $f(x)$ is not differentiable at $x = 1$
146 (d)

The given function is differentiable at all points except possibly at x = 0

(RHD at
$$x = 0$$
)

$$= \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{h+1} - 1}{h^{3/2}}$$

$$= \lim_{h \to 0} \frac{h}{h^{3/2}(\sqrt{h+1} + 1)} = \lim_{h \to 0} \frac{1}{\sqrt{h}(\sqrt{h+1} + 1)}$$

$$\to \infty$$

So, the function is not differentiable at x = 0Hence, the required set is $R - \{0\}$

147 **(a)**

We have, f(x) f(y) = f(x) + f(y) + f(xy) - 2 $\Rightarrow f(x) \cdot f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) + f(1) - 2$ $\Rightarrow f(x) \cdot f\left(\frac{1}{x}\right)$ = f(x) $+ f\left(\frac{1}{x}\right) \quad \begin{bmatrix} \because f(1) = 2 \text{ (Putting } x = y = 1 \\ \text{ in the given relation} \end{bmatrix}$ $\Rightarrow f(x) = x^n + 1$ $\Rightarrow f(2) = 2^n + 1$ $\Rightarrow 5 = 2^n + 1 \quad \begin{bmatrix} \because f(2) = 5 \text{ (given)} \end{bmatrix}$ $\Rightarrow n = 2$ $\therefore f(x) = x^2 + 1 \Rightarrow f(3) = 10$ 148 (b) We have, $f(x) = \frac{1}{2}x - 1, \text{ for } 0 \le x \le \pi$ $\therefore \{f(x)\} = \begin{cases} -1, \text{ for } 0 \le x \le \pi \\ 0, \text{ for } 2 \le x \le \pi \end{cases}$ $\Rightarrow \tan[f(x)] = \begin{cases} \tan(-1) = -\tan(1), 0 \le x < 2 \\ \tan 0 = 0, 2 \le x \le \pi \end{cases}$

 $\Rightarrow \tan[f(x)] = \begin{cases} \tan 0 = 0, & 2 \le x \le \pi \\ \tan 0 = 0, & 2 \le x \le \pi \end{cases}$ It is evident from the definition of $\tan[f(x)]$ that $\lim_{x \to 2^{-}} \tan[f(x)] = -\tan 1 \text{ and},$ $\lim_{x \to 2^{+}} \tan[f(x)] = 0$ So, $\tan[f(x)]$ is not continuous at x = 2Now, $f(x) = \frac{1}{2}x - 1 \Rightarrow f(x) = \frac{x - 2}{2} \Rightarrow \frac{1}{f(x)} = \frac{2}{x - 2}$

Clearly, f(x) is not continuous at x = 2So, $\tan[f(x)]$ and $\tan\left[\frac{1}{f(x)}\right]$ both are discontinuous at x = 2

149 **(c)**

$$\lim_{x \to 0} (1+x)^{\cot x} = \lim_{x \to 0} \left\{ (1+x)^{\frac{1}{x}} \right\}^{x \cot x}$$
$$= \lim_{x \to 0} e^{x \cot x} = e$$
Since $f(x)$ is continuous at $x = 0$
$$\therefore \quad f(0) = \lim_{x \to 0} f(x) = e$$

150 **(b)**

LHL=
$$\lim_{h \to 0} f(\frac{\pi}{4} - h)$$

= $\lim_{h \to 0} \frac{\tan(\frac{\pi}{4} - h) - \cot(\frac{\pi}{4} - h)}{\frac{\pi}{4} - h - \frac{\pi}{4}}$
= $\lim_{h \to 0} \frac{-\sec^2(\frac{\pi}{4} - h) - \csc^2(\frac{\pi}{4} - h)}{-1} = 4$

[by L 'Hospital's rule]

Since, f(x) is continuous at $x = \frac{\pi}{4}$, then LHL= $f\left(\frac{\pi}{4}\right)$ $\therefore a = 4$ 151 (a) If $-1 \le x < 0$, then $f(x) = \int_{-1}^{x} |t| dt = \int_{-1}^{x} -t dt = -\frac{1}{2}(x^2 - 1)$ If x > 0, then $f(x) = \int -t \, dt + \int -t \, dt = \frac{1}{2}(x^2 + 1)$ $\therefore f(x) = \begin{cases} -\frac{1}{2}(x^2 - 2), & -1 \le x < 0\\ \frac{1}{2}(x^2 + 1), & 0 \le x \end{cases}$ It can be easily seen that f(x) is continuous at x = 0So, it is continuous for all x > -1Also, Rf'(0) = 0 = Lf'(0)So, f(x) is differentiable at x = 0 $\therefore f'(x) = \begin{cases} -x, & -1 < x = 0 \\ 0, & x = 0 \\ x, & x > 0 \end{cases}$ Clearly, f'(x) is continuous at x = 0Consequently, it is continuous for all x > -1 i.e. for x + 1 > 0Hence, *f* and *f* ' are continuous for x + 1 > 0152 (c) We have, $f(x) = \lim_{n \to \infty} \frac{x^{-n} - x^n}{x^{-n} + x^n}$ $\Rightarrow f(x) = \lim_{n \to \infty} \frac{1 - x^{2n}}{1 + x^{2n}}$ $\Rightarrow f(x) = \begin{cases} \frac{1-0}{1+0} = 1, & \text{if } -1 < x < 1\\ \frac{1-1}{1+1} = 0, & \text{if } x = \pm 1\\ \frac{0-1}{0+1} = -1, & \text{if } |x| > 1 \end{cases}$ Clearly, f(x) is discontinuous at $x = \pm 1$ 153 (b) Clearly, $\log |x|$ is discontinuous at x = 0 $f(x) = \frac{1}{\log |x|}$ is not defined at $x = \pm 1$ Hence, f(x) is discontinuous at x = 0, 1, -1154 (a) For continuity, $\lim_{x \to 0} f(x) = k$ $\Rightarrow \lim_{x \to 0} \frac{\sin 3x}{\sin x} = k \Rightarrow \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \frac{3x}{\sin 3x} = k$

 \therefore f(0) = RHL f(x) = LHL f(x)Now, RHL $f(X) = \lim_{h \to 0} \frac{\log(1+0+h) + \log(1+0+h) + \log(1+h)}{0+h}$ = $\lim_{h \to 0} \frac{\log(1+h) + \log(1-h)}{h}$ $= \lim_{h \to 0} \frac{\frac{1}{1+h} - \frac{1}{1-h}}{1} = 0$ $\begin{bmatrix} \text{by L 'Hospital's rule} \end{bmatrix}$ $\therefore f(0) = \text{RHL } f(x) = 0$ $f(\mathbf{d})$ $f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, & x < 4\\ a+b, & x = 4\\ \frac{x-4}{|x-4|} + b, & x > 4 \end{cases}$ $\begin{bmatrix} -1 + a, x < 4\\ a+b\\ 1+b, x > 4 \end{cases}$ $= \lim_{h \to 0} \frac{\cos 3(0-h) - \cos(0-h)}{(0-h)^2}$ $= \lim_{h \to 0} \frac{\cos 3h - \cos h}{h^2}$ $= \lim_{h \to 0} \frac{-3\sin 3h + \sin h}{2h}$ $= \lim_{h \to 0} \frac{-9\cos 3h + \cos h}{2} = \frac{-9+1}{2} = -4$ $\therefore \lim_{x \to 0^-} f(x) = f(0) \Rightarrow \lambda = -4$ [by L 'Hospital's rule] 156 (d) LHL= $\lim_{x \to 4^{\mp}} f(x) = a - 1$ RHL= $\lim_{x \to 4^{\mp}} f(x) = 1 + b$ Since, LHL=RHL= f(4) \Rightarrow a-1 = a + b = b + 1a = 1 and b = -1157 (d) We have, $f(x) = \begin{cases} \frac{-1}{x-1}, & 0 < x < 1\\ \frac{1-1}{x-1} = 0, & 1 < x < 2 \end{cases}$ Clearly, $\lim_{x\to 1^-} f(x) \to -\infty$ and $\lim_{x\to 1^+} f(x) = 0$ So, f(x) is not continuous at x = 1 and hence it is not differentiable at x = 1158 (d) $\lim_{x \to \frac{\pi}{4}} f(x) = \lim_{x \to \frac{\pi}{4}} \frac{1 - \sqrt{2} \sin x}{\pi - 4x}$ $= \lim_{x \to \frac{\pi}{4}} \frac{-\sqrt{2}\cos x}{4} = \frac{1}{4} \quad [by L 'Hospital's rule]$ Since, f(x) is continuous at $x = \frac{\pi}{4}$ $\therefore \lim_{x \to \frac{\pi}{4}} f(x) = f\left(\frac{\pi}{4}\right) \quad \Rightarrow \quad \frac{1}{4} = a$ 163 (a) We have. $f(x) = \begin{cases} \tan x, & 0 \le x \le \pi/4\\ \cot x, & -\pi/4 \le x \le \pi/2\\ \tan x, & \pi/2 < x \le 3\pi/4 \end{cases}$ Since tan x and cot x are periodic functions with period π . So, f(x) is also periodic with period π It is evident from the graph that f(x) is not continuous at $x = \pi/2$. Since f(x) is periodic with period π . So, it is not continuous at $x = 0, \pm \pi/2, \pm \pi, \neq 3\pi/2$ Also, f(x) is not differentiable $x = \pi/4$, $3\pi/4$, $5\pi/4$ etc

Since, the function f(x) is continuous

159 (d) LHL= $\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} 1 - h + a = 1 + a$ RHL= $\lim_{x \to 1^+} f(x) = \lim_{h \to 0} 3 - (1+h)^2 = 2$ For f(x) to be continuous, LHL=RHL $\Rightarrow 1 + a = 2 \Rightarrow a = 1$ 160 **(b)** 161 (c) LHL= $\lim_{x \to a^{-}} \frac{x^3 - a^3}{x - a} = \lim_{h \to 0} \frac{(a - h)^3 - a}{a - h - a}$ $= \lim_{h \to 0} \frac{(a-h-a)\{(a-h)^2 + a^3 + a(a-h)\}}{-h}$ = $3a^2$

Since, f(x) is continuous at x = a \therefore LHL = f(a) $\Rightarrow 3a^2 = b$

Page | 38

164 (c)

We have, $f(x) = \{|x| - |x - 1\}^2$ $\Rightarrow f(x) = \begin{cases} (-x + x - 1)^2, & \text{if } x < 0\\ (x + x - 1)^2, & \text{if } 0 \le x < 1\\ (x - x + 1)^2, & \text{if } x \ge 1 \end{cases}$ $\Rightarrow f(x) = \begin{cases} 1, & \text{if } x < 0\\ (2x - 1)^2, & \text{if } 0 < x < 1\\ 1, & \text{if } x \ge 1 \end{cases}$ $\Rightarrow f'(x) = \begin{cases} 0, & \text{if } x < 0 \text{ or if } x > 1\\ 4(2x - 1), & \text{if } 0 < x < 1 \end{cases}$

165 **(b)**

We have,

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$\Rightarrow f'(x_0) = \lim_{x \to x_0} \frac{(x - x_0)\phi(x) - 0}{(x - x_0)}$$

$$\Rightarrow f'(x_0) = \lim_{x \to x_0} \phi(x) = \phi(x_0) \qquad [$$

$$\because \phi(x) \text{ is continuous at } x = x_0]$$

166 **(b)**

Since,
$$\lim_{x \to 2^+} f(x) = f(2) = k$$

 $\Rightarrow k = \lim_{h \to 0} f(2+h)$
 $\Rightarrow k = \lim_{h \to 0} \left[(2+h)^2 + e^{\frac{1}{2-(2+h)}} \right]^{-1}$
 $\Rightarrow \lim_{h \to 0} \left[4+h^2+4h+e^{-1/h} \right]^{-1} = \frac{1}{4}$

167 **(c)**

For f(x) to be continuous at $x = \pi/2$, we must have

$$\lim_{x \to \pi/2} f(x) = f(\pi/2)$$

$$\Rightarrow \lim_{x \to \pi/2} \frac{1 - \sin x}{(\pi - 2x)^2} \cdot \frac{\log \sin x}{\log(1 + \pi^2 - 4\pi x + 4x^2)} = h$$

$$\Rightarrow \lim_{h \to 0} \frac{1 - \cos h}{4h^2} \times \frac{\log \cos h}{\log(1 + 4h^2)} = k$$

$$\Rightarrow \lim_{h \to 0} \frac{1 - \cos h}{4h^2} \times \frac{\log\{1 + \cos h - 1\}}{\cos h - 1}$$

$$\times \frac{4h^2}{\log(1 + 4h^2)} \times \frac{\cos h - 1}{4h^2} = k$$

$$\Rightarrow -\lim_{h \to 0} \left(\frac{1 - \cos h}{4h^2}\right)^2 \frac{\log(1 + (\cos h - 1))}{\cos h - 1} \\ \times \frac{4h^2}{\log(1 + 4h^2)} = k \\ \Rightarrow -\lim_{h \to 0} \left(\frac{\sin^2 h/2}{2h^2}\right)^2 \frac{\log(1 + (\cos h - 1))}{\cos h - 1} \\ \times \frac{4h^2}{\log(1 + 4h^2)} = k \\ \Rightarrow -\frac{1}{64} \lim_{h \to 0} \left(\frac{\sin h/2}{h/2}\right)^4 \frac{\log(1 + (\cos h - 1))}{\cos h - 1} \\ \times \frac{4h^2}{\log(1 + 4h^2)} = k \\ \Rightarrow -\frac{1}{64} = k \\ 168 \text{ (c)} \\ \text{LHL} = \lim_{h \to 0} f(0 - h) = \lim_{h \to 0} \frac{\sin 5(0 - h)}{(0 - h)^2 + 2(0 - h)} \\ = -\lim_{h \to 0} \frac{\frac{\sin 5h}{5h}}{\frac{1}{5}(h - 2)} = \frac{5}{2}$$

Since, it is continuous at x = 0, therefore LHL= f(0) $\Rightarrow \frac{5}{2} = k + \frac{1}{2} \Rightarrow k = 2$ 169 (a) Since f(x) is continuous at x = 0 $\therefore \lim_{x \to 0} f(x) = f(0) = 0$ $\Rightarrow \lim_{x \to 0} x^n \sin\left(\frac{1}{x}\right) = 0 \Rightarrow n > 0$ f(x) is differentiable at x = 0, if $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$ exists finitely $\Rightarrow \lim_{x \to 0} \frac{x^n \sin \frac{1}{x} - 0}{x}$ exists finitely $\Rightarrow \lim_{x \to 0} x^{n-1} \sin\left(\frac{1}{x}\right)$ exists finitely $\Rightarrow \lim_{x \to 0} x^{n-1} \sin\left(\frac{1}{x}\right)$ exists finitely $\Rightarrow n - 1 > 0 \Rightarrow n > 1$ If $n \le 1$, then $\lim_{x \to 0} x^{n-1} \sin\left(\frac{1}{x}\right)$ does not exist and hence f(x) is not differentiable at x = 0

Hence f(x) is continuous but not differentiable at x = 0 for $0 < n \le 1$ i.e. $n \in (0, 1]$ 170 **(b)** Clearly, f(x) is not differentiable at x = 3Now, $\lim_{h \to 3^{-}} f(x) = \lim_{h \to 0} f(3-h)$ $= \lim_{h \to 0} |3 - h - 3|$ = 0 $\lim_{h \to 3^+} f(x) = \lim_{h \to 0} f(3+h)$ $=\lim_{h\to 0} |3+h-3| = 0$ and f(3) = |3 - 3| = 0 \therefore f(x) is continuous at x = 3171 (a) It can easily be seen from the graphs of f(x) and that both are continuous at x = 0Also, f(x) is not differentiable at x = 0 whereas g(x) is differentiable at x = 0172 (c) We have, $\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0 - h)$ $=\lim_{h\to 0}\frac{-\sin(a+1)h-\sin h}{-h}$ $\Rightarrow \lim_{x \to 0^-} f(x) = \lim_{h \to 0} f(0 - h)$ $= \lim_{h \to 0} \left\{ \frac{\sin(a+1)h}{h} + \frac{\sin h}{h} \right\}$ $\Rightarrow \lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0 - h) = (a + 1) + 1$ = a + 2and, $\lim_{x\to 0^+} f(x) = \lim_{h\to 0} f(0+h)$ $\Rightarrow \lim_{x \to 0^+} f(x) = \lim_{h \to 0} \frac{\sqrt{h + bh^2} - \sqrt{h}}{h h^{3/2}}$

$$\Rightarrow \lim_{x \to 0^+} f(x) = \lim_{h \to 0} \frac{h + bh^2 - h}{bh^{3/2}(\sqrt{h + bh^2} - \sqrt{h})}$$
$$= \lim_{h \to 0} \frac{1}{\sqrt{1 + bh} + 1} = \frac{1}{2}$$
Since $f(x)$ is continuous at $x = 0$. Therefore

Since, f(x) is continuous at x = 0. Therefore, $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0)$ $\Rightarrow a + 2 = \frac{1}{2} = c \Rightarrow c = \frac{1}{2}, a = -\frac{3}{2} \text{ and } b$ $\in R - \{0\}$

173 **(c)**

For f(x) to be continuous at x = 0, we must have $\lim_{x \to 0} f(x) = f(0)$

$$\Rightarrow \lim_{x \to 0} \frac{(9^x - 1)(4^x - 1)}{\sqrt{2} - \sqrt{2\cos^2 x/2}} = k$$
$$\Rightarrow \lim_{x \to 0} \frac{(9^x - 1)(4^x - 1)}{\sqrt{2} \cdot 2\sin^2 x/4} = k$$

 $\Rightarrow \lim_{x \to 0} \frac{16 \times \left(\frac{9^x - 1}{x}\right) \left(\frac{4^x - 1}{x}\right)}{2\sqrt{2} \left(\frac{\sin x/2}{x/4}\right)^2} = k$ $\Rightarrow \frac{16}{2\sqrt{2}}\log 9 \, . \log 4 = k = 4\sqrt{2}\log 9 \, . \log 4$ $= 16\sqrt{2}\log 3\log 2$ 174 (b) Given, $f(x) = [\tan^2 x]$ Now, $\lim_{x\to 0} f(x) = \lim_{x\to 0} [\tan^2 x] = 0$ And $f(0) = [\tan^2 0] = 0$ Hence, f(x) is continuous at x = 0175 (b) Let, f(x) = xWhich is continuous at x = 0Also, f(x + y) = f(x) + f(y) $\Rightarrow f(0+0) = f(0) + f(0)$ = 0 + 0 $\Rightarrow f(0) = 0$ f(1+0) = f(1) + f(0) $\Rightarrow f(1) = 1 + 0$ $\Rightarrow f(1) = 1$ As, it satisfies it. Hence, f(x) is continous for every values of x176 (c) Here, $gof = \{ e^{\sin x}, x \ge 0 \}$

$$(e^{1-\cos x}, x \le 0)$$

$$\therefore \text{ LHD} = \lim_{h \to 0} \frac{gof(0-h)-gof(h)}{-h}$$

$$= \lim_{h \to 0} \frac{e^{1-\cos h} - e^{1-\cos h}}{-h} = 0$$

$$\text{RHD} = \lim_{h \to 0} \frac{gof(0+h)-gof(h)}{h}$$

$$= \lim_{h \to 0} \frac{e^{\sin h} - e^{\sin h}}{h} = 0$$
Since, RHD=LHD=0

$$\therefore (gof)'(0) = 0$$

177 **(b)**

We have,

$$f(x) \begin{cases} (x+1)^{2-(\frac{1}{x}+\frac{1}{x})} = (x+1)^2, & x < 0 \\ 0, & x = 0 \\ (x+1)^{2-(\frac{1}{x}+\frac{1}{x})} = (x+1)^{2-\frac{2}{x}}, & x > 0 \end{cases}$$
Clearly, $f(x)$ is everywhere continuous except
possibly at $x = 0$
At $x = 0$, we have

$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x+1)^2 = 1$$
and, $\lim_{x \to 0^+} f(x) = \lim_{x \to 0} (x+1)^{2-\frac{2}{x}} = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^{-\frac{2}{x}} \log(1+x)} = e^{-2}$

$$\lim_{x \to 0^+} f(x) = e^{\lim_{x \to 0^-} \frac{2}{x}\log(1+x)} = e^{-2}$$
Clearly, $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x)$

So, f(x) is not continuous at x = 0178 (b) Since f(x) is continuous at x = 0. Therefore, $\lim_{x \to 0} f(x) = f(0)$ $\Rightarrow \lim_{x \to 0} f(x) = k$ $\Rightarrow \lim_{x \to 0} \frac{\log(1 + ax) - \log(1 - bx)}{x} = k$ $\Rightarrow a \lim_{x \to 0} \frac{\log(1 + ax)}{ax} - (-b) \lim_{x \to 0} \frac{\log(1 - bx)}{-bx} = k$ $\Rightarrow a + b = k$ 179 (c) Since f(x) is continuous at x = 0 $\therefore f(0) = \lim_{x \to 0} f(x)$ $\Rightarrow f(0) = \lim_{x \to 0} \frac{(27 - 2x)^{1/3} - 3}{9 - 3(243 + 5x)^{1/5}}$ $\left[\text{Form} \frac{0}{0} \right]$ $\Rightarrow f(0) = \lim_{x \to 0} \frac{\frac{1}{3}(27 - 2x)^{-\frac{2}{3}}(-2)}{-\frac{3}{-1}(243 + 5x)^{-\frac{4}{5}}(5)}$ $=\left(-\frac{2}{2}\right)\left(-\frac{1}{2}\right)\frac{3^{4}}{2^{2}}=2$ 180 (d) $\lim_{x \to 0} \frac{e^{2x} - 1 - 2x}{x(e^{2x} - 1)}$ $= \lim_{x \to 0} \frac{2e^{2x}-2}{(e^{2x}-1)+2xe^{2x}} \quad [using L 'Hospital rule]$ $= \lim_{x \to 0} \frac{4e^{2x}}{4e^{2x} + 4xe^{2x}} = 1 \quad [\text{using L 'Hospital's rule}]$ Since, f(x) is continuous at x = 0, then $\lim_{x \to \infty} f(x) = f(0) \quad \Rightarrow \quad 1 = f(0)$ 181 **(b)** If a function f(x) is continuous at x = a, then it may or may not be differentiable at x = a \therefore Option (b) is correct 182 (c) Let f(x) = |x - 1| + |x - 3| $= \begin{cases} x-1 & +x-3 & ,x \ge 3\\ x-1+3-x, & 1 \le x < 3\\ 1-x & +3-x, & x \le 1 \end{cases}$ $(2x-4, x \ge 3)$ = $\{2, 1 \le x < 3$ $(4-2x, x \leq 1)$ At x = 2, function is f(x) = 2 $\Rightarrow f'(x) = 0$ 183 (d) We have. $f(x) = \begin{cases} (x+1) \ e^{-\left(\frac{1}{x} + \frac{1}{x}\right)} = (x+1), & x < 0\\ (x+1) \ e^{-\left(\frac{1}{x} + \frac{1}{x}\right)} = (x+1)e^{-2/x}, & x > 0 \end{cases}$ Clearly, f(x) is continuous for all $x \neq 0$ So, we will check its continuity at x = 0

We have,

(LHL at x = 0) = $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} (x + 1) = 1$ (RHL at x = 0) = $\lim_{x \to 0^+} f(x) = \lim_{x \to 0} (x + 1) e^{-2/x}$ $=\lim_{x\to 0}\frac{x+1}{e^{2/x}}=0$ $\therefore \lim_{x \to 0^-} f(x) \neq \lim_{x \to 0^+ f}$ So, f(x) is not continuous at x = 0Also, f(x) assumes all values from f(-2) to f(2)and f(2) = 3/e is the maximum value of f(x)184 (c) Since, it is a polynomial function, so it is continuous for every value of *x* except at x = 2LHL= $\lim_{x\to 2^-} x - 1$ $=\lim_{h\to 0} 2-h-1=1$ $RHL = \lim_{x \to 2^{\mp}} 2x - 3 = \lim_{h \to 0} 2(2+h) - 3 = 1$ And f(2) = 2(2) - 3 = 1 \therefore LHL+RHL= f(2)Hence, f(x) is continuous for all real values of x 185 (c) Continuity at x = 0LHL= $\lim_{x\to 0^-} \frac{\tan x}{x} = \lim_{h\to 0^+} \frac{-\tan h}{-h} = 1$ $\text{RHL} = \lim_{x \to 0^+} \frac{\tan x}{x} = \lim_{h \to 0^+} \frac{\tan h}{h} = 1$ \therefore LHL=RHL= f(0) = 1, it is continuous Differentiability at x = 0LHD= $\lim_{h \to 0} \frac{f(0-h) - f(0)}{-h} = \lim_{h \to 0} \frac{\frac{\tan(-h)}{-h} - 1}{-h}$ $=\lim_{h\to 0}\frac{+\frac{h^2}{3}+\frac{2h^4}{15}+\cdots}{-h}=0$ RHD = $\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{\frac{\tan h}{h} - 1}{h}$ $= \lim_{h \to 0} \frac{\frac{h^2}{3} + \frac{2h^4}{15} + \dots}{-h} = 0$ ∴ LHD=RHD Hence, it is differentiable. 186 (b) We have, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} (x - 1) = 0$ and. $\lim_{x \to 1^+} f(x) = \lim_{x \to 1} (x^3 - 1) = 0$. Also, f(1) = 1 - 1 = 0So, f(x) is continuous at x = 1Clearly, (f'(1)) = 3 and Rf'(1) = 1Therefore, f(x) is not differentiable at x = 1187 (d) We have,

 $f(x) = \begin{cases} \frac{x^2 - x}{x^2 - x} = 1, & \text{if } x < 0 \text{ or } x > 1\\ -\frac{(x^2 - x)}{x^2 - x} = -1, & \text{if } 0 < x < 1\\ 1, & \text{if } x = 0\\ -1. & \text{if } x - 1 \end{cases}$ $\Rightarrow f(x) = \begin{cases} 1, \text{ if } x \le 0 \text{ or } x > \\ -1, \text{ if } 0 < x < 1 \end{cases}$ Now, $\lim_{x\to 0^-} f(x) = \lim_{x\to 0} 1 = 1$ and, $\lim_{x\to 0^+} f(x) =$ $\lim_{x \to 0} -1 = -1$ Clearly, $\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$ So, f(x) is not continuous at x = 0. It can be easily seen that it is not continuous at x = 1188 (b) We have, f(x) = |x - 1| + |x - 1| $\Rightarrow f(x) = \begin{cases} -(x-1) - (x-3), & x < 1\\ (x-1) - (x-3), & 1 \le x < 3\\ (x-1) + (x-3), & x \ge 3 \end{cases}$ $\Rightarrow f(x) = \begin{cases} -2x+4, & x < 1\\ 2, & 1 \le x < 3\\ 2x-4, & x \ge 3 \end{cases}$ Since f(x) = 2 for $1 \le x \le 3$ Since, f(x) = 2 for $1 \le x < 3$. Therefore f'(x) = 0 for all $x \in (1,3)$ Hence, f'(x) = 0 at x = 2189 (d) We have, Lf'(0) = 0 and $Rf'(0) = 0 + \cos 0^{\circ} = 1$ $\therefore Lf'(0) \neq Rf'(0)$ Hence, f'(x) does not exist at x = 0190 (c) Given, $g(x) = \frac{(x-1)^n}{\log \cos^m(x-1)}; \ 0 < x < 2, \ m \neq$ 0, *n* are integers and $|x - 1| = \begin{cases} x - 1; \ x \ge 1 \\ 1 - x; \ x < 1 \end{cases}$ The left hand derivative of |x - 1| at x = 1p = -1Also, $\lim_{x \to 1^+} g(x) = p = -1$ $\Rightarrow \lim_{h \to 0} \frac{(1+h-1)^n}{\log \cos^m (1+h-1)} = -1$ $\Rightarrow \lim_{h \to 0} \frac{h^n}{m \log \cos h} = -1$ $\Rightarrow \lim_{h \to 0} \frac{n \cdot h^{n-1}}{m \frac{1}{\cos h} (-\sin h)} = -1$ [using L 'Hospital's rule] $\Rightarrow \quad \left(\frac{n}{m}\right) \lim_{h \to 0} \frac{h^{n-2}}{\left(\frac{\tan h}{h}\right)} = 1$ $\Rightarrow n = 2 \text{ and } \frac{n}{m} = 1$ \Rightarrow m = n = 2191 (c)

Given, $f(x) = \frac{2x^2+7}{(x^2-1)(x+3)}$ Since, at $x = 1, -1, -3, f(x) = \infty$ Hence, function is discontinuous 193 (a) LHL= $\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0^{-}} [1 - (1 - h)^2] = 0$ RHL= $\lim_{x \to 1^+} f(x) = \lim_{h \to 0} \{1 + (1+h)^2\} = 2$ Also, f(1) = 0 \Rightarrow RHL \neq LHL = f(1)Hence, f(x) is not continuous at x = 1194 (c) It is clear from the graph that minimum f(x) is y = -x + 1_____ y = 1 f(x) = x + 1, $\forall x \in R$ Hence, it is a straight line, so it is differentiable everywhere 195 **(c)** Since, f(x) is continuous at $x = \frac{\pi}{2}$ $\lim_{x \to \frac{\pi^{-1}}{2}} (mx+1) = \lim_{x \to \frac{\pi^{+}}{2}} (\sin x + n)$ $\Rightarrow m\frac{\pi}{2} + 1 = \sin\frac{\pi}{2} + n$ $\Rightarrow \frac{m\pi}{2} = n$ 196 (a) This function is continuous at x = 0, then $\lim_{x \to 0} \frac{\log_{e}(1 + x^{2} \tan x)}{\sin x^{3}} = f(0)$ $\Rightarrow \lim_{x \to 0} \frac{\log_{e} \left\{ 1 + x^{2} \left(x + \frac{x^{3}}{3} + \dots \right) \right\}}{x^{3} - \frac{x^{9}}{3} + \frac{x^{15}}{3} - \dots} = f(0)$ $\Rightarrow \lim_{x \to 0} \frac{\log_{e}(1+x^{3})}{x^{3} - \frac{x^{9}}{2!} + \frac{x^{15}}{5!} - \dots} = f(0)$ [neglecting higher power of x in $x^2 \tan x$] $\Rightarrow \lim_{x \to 0} \frac{x^3 - \frac{x^6}{2} + \frac{x^9}{3} - \dots}{x^3 + \frac{x^9}{2} + \frac{x^{15}}{3} - \dots} = f(0)$ $\Rightarrow 1 = f(0)$ 197 (a) Given, f(x) is continuous at x = 0: Limit must exist *ie*, $\lim_{x\to 0} x^p \sin \frac{1}{x} = (0)^p \sin \infty = 0$, when, 0 ...(i)Now, RHD = $\lim_{h \to 0} \frac{h^p \sin \frac{1}{h} - 0}{h} = \lim_{h \to 0} h^{p-1} \sin \frac{1}{h}$

LHD =
$$\lim_{h\to 0} \frac{(-h)^p \sin(-\frac{h}{h}) - 0}{-h}$$

=
$$\lim_{h\to 0} (-1)^p h^{p-1} \sin \frac{1}{h}$$

Since, $f(x)$ is not differentiable at $x = 0$
 $\therefore p \le 1$...(ii)
From Eqs.(i) and (iii), $0
198 (a)
We have,
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{\sin x^2}{x} = \lim_{x\to 0} \left(\frac{\sin x^2}{x^2}\right) x = 1 \times 0$$

 $= 0 = f(0)$
So, $f(x)$ is continuous at $x = 0$. $f(x)$ is also
derivable at $x = 0$, because

$$\lim_{x\to 0} \frac{f(x) - f(0)}{x-0} = \lim_{x\to 0} \frac{\sin x^2}{x} = \lim_{x\to 0} \frac{\sin x^2}{x^2} = 1$$

exists finitely
199 (a)
A function f on R into itself is continuous at a
point a in R , iff for each $\in > 0$ there exist $\delta > 0$,
such that
 $|f(x) - f(a)| < \epsilon \Rightarrow |x - a| < \delta$
200 (a)
We have,
 $f(x) = \frac{x - |x - x^2|}{x^2}, \quad -1 \le x \le 1$
 $\Rightarrow f(x) = \frac{2x - x^2}{x^2}, \quad -1 \le x < 0$
 $x - (x - x^2), \quad 0 \le x \le 1$
 $\Rightarrow f(x) = \frac{2x - x^2}{x^2}, \quad -1 \le x < 0$
Also,
 $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^-} 2x - x^2 = -2 - 1 = -3$
 $= f(-1)$
and,
 $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^-} x^2 = 1 = f(1)$
So, $f(x)$ is right continuous at $x = -1$ and left
continuous at $x = 1$
Hence, $f(x)$ is continuous on $[-1, 1]$
201 (b)
Since $|\sin x|$ and $|e^{|x|}$ are not differentiable at
 $x = 0$. Therefore, for $f(x)$ to be differentiable at
 $x = 0$, we must have $a = 0, b = 0$ and c can be any
real number
202 (a)
We have,
 $f(u + v) = f(u) + kuv - 2v^2$ for all $u, v \in R$
...(i)
Putting $u = v = 1$, we get
 $f(2) = f(1) + k - 2 \Rightarrow 8 = 2 + k - 2 \Rightarrow k = 8$
Putting $u = x, v = h$ in (i), we get$

$$\frac{f(x+h)-f(x)}{h} = kx - 2h$$

$$\Rightarrow \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} = kx \Rightarrow f'(x)$$

$$= 8x \quad [\because k = 8]$$
203 (b)
Given, $f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$

$$\Rightarrow f'(x) = \frac{1}{\sqrt{1-\left(\frac{2x}{1+x^2}\right)^2}} \times \frac{d}{dx}\left(\frac{2x}{1+x^2}\right)$$

$$= \frac{1+x^2}{\sqrt{(1+x^2)^2}} \times \frac{2(1-x^2)}{(1+x^2)^2}$$

$$= \frac{2}{1+x^2} \times \frac{1-x^2}{|1-x^2|} = \begin{cases} \frac{2}{1+x^2}, \text{ if } |x| < 1 \\ -\frac{2}{1+x^2}, \text{ if } |x| > 1 \end{cases}$$

$$\therefore f'(x) \text{ does not exist for } |x| = i, ie, x = \pm 1$$
Hence, $f(x)$ is differentiable on $R - \{-1, 1\}$
204 (a)
LHL= $\lim_{x \to 0^-} f(x) = \lim_{h \to 0} -h \sin\left(\frac{1}{-h}\right) = 0$
RHL= $\lim_{x \to 0^-} f(x) = \lim_{h \to 0} n + \sin\left(\frac{1}{-h}\right) = 0$
RHL= $\lim_{x \to 0^-} f(x) = \lim_{h \to 0} n + \sin\left(\frac{1}{-h}\right) = 0$
RHL= $\lim_{x \to 0^-} f(x) = \lim_{h \to 0} \left[\frac{f(0-h)-f(0)}{-h}\right]$

$$= \lim_{h \to 0} \left[\frac{-h \sin\frac{h}{-0}}{-h}\right] = \text{does not exist}$$

$$\Rightarrow f(x) \text{ is continuous at } x = 0 \text{ but not differentiable at } x = 1$$

So, $f(x) = |x - 1|$ is not differentiable at $x = 1$
So, $f(x) = |x - 1|e^x$ is not differentiable at $x = 1$
Hence, the required set is $R - \{1\}$
206 (d)
We have,
 $f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$ [$\because f(x + y) = f(x)f(y)$]
 $\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - 1}{h}$

$$\Rightarrow f'(x) = f(x) \cdot \lim_{h \to 0} g(h) \ G(h)$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} G(h) \lim_{h \to 0} g(h) = ab \ f(x)$$