Single Correct Answer Type

1. Let $[x]$ denotes the greatest integer less than or equal to x and $f(x)=\left[\tan ^{2} x\right]$. Then,
a) $\lim _{x \rightarrow 0} f(x)$ does not exist
b) $f(x)$ is continuous at $x=0$
c) $f(x)$ is not differentiable at $x=0$
d) $f^{\prime}(0)=1$
2. The value of $f(0)$ so that $\frac{\left(-e^{x}+2^{x}\right)}{x}$ may be continuous at $x=0$ is
a) $\log \left(\frac{1}{2}\right)$
b) 0
c) 4
d) $-1+\log 2$
3. Let $f(x)$ be an even function. Then $f^{\prime}(x)$
a) Is an even function
b) Is an odd function
c) May be even or odd
d) None of these
4. If $f(x)=\left\{\begin{array}{c}{[\cos \pi x], x<1} \\ |x-2|, 2>x \geq 1\end{array}\right.$, then $f(x)$ is
a) Discontinuous and non-differentiable at $x=-1$ and $x=1$
b) Continuous and differentiable at $x=0$
c) Discontinuous at $x=1 / 2$
d) Continuous but not differentiable at $x=2$
5. If $f(x)=\left\{\begin{array}{c}\frac{|x+2|}{\tan ^{-1}(x+2)}, x \neq-2 \\ 2, \quad x=-2\end{array}\right.$, then $f(x)$ is
a) Continuous at $x=-2$
b) Not continuous $x=-2$
c) Differentiable at $x=-2$
d) Continuous but not derivable at $x=-2$
6. If $f(x)=|\log | x| |$, then
a) $f(x)$ is continuous and differentiable for all x in its domain
b) $f(x)$ is continuous for all x in its domain but not differentiable at $x= \pm 1$
c) $f(x)$ is neither continuous nor differentiable at $x= \pm 1$
d) None of the above
7. If $f^{\prime}(a)=2$ and $f(a)=4$, then $\lim _{x \rightarrow a} \frac{x f(a)-a f(x)}{x-a}$ equals
a) $2 a-4$
b) $4-2 a$
c) $2 a+4$
d) None of these
8. If $f(x)=x(\sqrt{x}+\sqrt{x+1})$, then
a) $f(x)$ is continuous but not differentiable at $x=0$
b) $f(x)$ is differentiable at $x=0$
c) $f(x)$ is not differentiable at $x=0$
d) None of the above
9. If $f(x)=\left\{\begin{array}{l}a x^{2}+b, b \neq 0, x \leq 1 \\ x^{2} b+a x+c, x>1\end{array}\right.$, then, $f(x)$ is continuous and differentiable at $x=1$, if
a) $c=0, a=2 b$
b) $a=b, c \in R$
c) $a=b, c=0$
d) $a=b, c \neq 0$
10.

For the function $f(x)=\left\{\begin{array}{c}|x-3|, x \geq 1 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4}, x<1\end{array}\right.$ which one of the following is incorrect?
a) Continuous at $x=1$
b) Derivable at $x=1$
c) Continuous at $x=3$
d) Derivable at $x=3$
11. If $f: R \rightarrow R$ is defined by
$f(x)=\left\{\begin{array}{c}\frac{2 \sin x-\sin 2 x}{2 x \cos x} \\ a, \quad \text { if } x=0\end{array}\right.$, if $x \neq 0$,
Then the value of a so that f is continuous at 0 is
a) 2
b) 1
c) -1
d) 0
12. $f(x)=x+|x|$ is continuous for
a) $x \in(-\infty, \infty)$
b) $x \in(-\infty, \infty)-\{0\}$
c) Only $x>0$
d) No value of x
13. If the function
$f(x)=\left\{\begin{aligned}\{1+|\sin x|\}^{\frac{a}{\sin x \mid},} & -\frac{\pi}{6}<x<0 \\ b, & x=0 \\ e^{\frac{\tan 2 x}{\tan 3 x},} & 0<x<\frac{\pi}{6}\end{aligned}\right.$
Is continuous at $x=0$
a) $a=\log _{e} b, b=\frac{2}{3}$
b) $b=\log _{e} a, a=\frac{2}{3}$
c) $a=\log _{e} b, b=2$
d) None of these
14. If $f(x)=x^{2}+\frac{x^{2}}{1+x^{2}}+\frac{x^{2}}{\left(1+x^{2}\right)^{2}}+\cdots+\frac{x^{2}}{\left(1+x^{2}\right)^{n}}+\cdots$, then at $x=0, f(x)$
a) Has no limit
b) Is discontinuous
c) Is continuous but not differentiable
d) Is differentiable
15. Let $f(x)=\left\{\begin{array}{ccc}1, & \forall & x<0 \\ 1+\sin x, & \forall & 0 \leq x \leq \pi / 2\end{array}\right.$, then what is the value of $f^{\prime}(x)$ at $x=0$?
a) 1
b) -1
c) ∞
d) Does not exist
16. The function $f(x)=x-\left|x-x^{2}\right|$ is
a) Continuous at $x=1$
b) Discontinuous at $x=1$
c) Not defined at $x=1$
d) None of the above
17. If $f(x+y+z)=f(x) . f(y) . f(z)$ for all x, y, z and $f(2)=4, f^{\prime}(0)=3$, then $f^{\prime}(2)$ equals
a) 12
b) 9
c) 16
d) 6
18. If $f(x)=\left|\log _{e}\right| x| |$, then $f^{\prime}(x)$ equals
a) $\frac{1}{|x|}, x \neq 0$
b) $\frac{1}{x}$ for $|x|>1$ and $\frac{-1}{x}$ for $|x|<1$
c) $\frac{-1}{x}$ for $|x|>1$ and $\frac{1}{x}$ for $|x|<1$
d) $\frac{1}{x}$ for $|x|>0$ and $-\frac{1}{x}$ for $x<0$
19. If the function $f(x)=\left\{\begin{array}{c}\frac{1-\cos x}{x^{2}}, \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$ is continuous at $x=0$, then the value of k is
a) 1
b) 0
c) $\frac{1}{2}$
d) -1
20. Function $f(x)=|x-1|+|x-2|, x \in R$ is
a) Differentiable everywhere in R
b) Except $x=1$ and $x=2$ differentiable everywhere in R
c) Not continuous at $x=1$ and $x=2$
d) Increasing in R
21. The set of points where the function $f(x)=\sqrt{1-e^{-x^{2}}}$ is differentiable is
a) $(-\infty, \infty)$
b) $(-\infty, 0) \cup(0, \infty)$
c) $(-1, \infty)$
d) None of these
22. If $f(x)=x \sin \left(\frac{1}{x}\right), x \neq 0$, then the value of function at $x=0$, so that the function is continuous at $x=0$ is
a) 1
b) -1
c) 0
d) Indeterminate
23. The value of $f(0)$ so that the function $f(x)=\frac{2-(256-7 x)^{1 / 8}}{(5 x+32)^{1 / 5}-2}(x \neq 0)$ is continuous everywhere, is given by
a) -1
b) 1
c) 26
d) None of these
24. The derivative of $f(x)=|x|^{3}$ at $x=0$ is
a) -1
b) 0
c) Does not exist
d) None of these
25.

If $f(x)=\left\{\begin{array}{c}\frac{\left(4^{x}-1\right)^{3}}{\sin \left(\frac{x}{a}\right) \log \left(1+\frac{x^{2}}{3}\right)}, x \neq 0 \\ 9(\log 4)^{3}, x=0\end{array}\right.$ is continuous function at $x=0$, then the value of a is equal to
a) 3
b) 1
c) 2
d) 0
26. $f(x)=|[x]+x|$ in $-1<x \leq 2$ is
a) Continuous at $x=0$
b) Discontinuous at $x=1$
c) Not differentiable at $x=2,0$
d) All the above
27. Let $f(x)=\left[x^{3}-x\right]$, where $[x]$ the greatest integer function is. Then the number of points in the interval (1, $2)$, where function is discontinuous is
a) 4
b) 5
c) 6
d) 7
28. If $y=\cos ^{-1} \cos (|x|-f(x))$, where
$f(x)=\left\{\begin{array}{l}1, \text { if } x>0 \\ -1, \text { if } x<0 . \text { Then, }(d y / d x) x=\frac{5 \pi}{4} \text { is equal to } \\ 0, \text { if } x=0\end{array}\right.$
a) -1
b) 1
c) 0
d) Cannot be determined
29. Let $f(x+y)=f(x)+f(y)$ and $f(x)=x^{2} g(x)$ for all $x, y \in R$, where $g(x)$ is continuous function. Then, $f^{\prime}(x)$ is equal to
a) $g^{\prime}(x)$
b) $g(0)$
c) $g(0)+g^{\prime}(x)$
d) 0
30. Let a function $f(x)$ be defined by $f(x)=\left\{\begin{array}{c}x, \\ 0, \\ 0, \\ x \in R-Q\end{array}\right.$ Then, $f(x)$ is
a) Everywhere continuous
b) Nowhere continuous
c) Continuous only at some points
d) Discontinuous only at some points
31. The function $f(x)=\left\{\begin{array}{cc}1-2 x+3 x^{2}-4 x^{3}+\cdots \text { to } \infty, x \neq-1 \\ 1, & x=-1\end{array}\right.$ is
a) Continuous and derivable at $x=-1$
b) Neither continuous nor derivable at $x=-1$
c) Continuous but not derivable at $x=-1$
d) None of these
32. $f(x)=\left\{\begin{array}{c}2 a-x \text { in }-a<x<a \text {. Then, which of the following is true? } \\ 3 x-2 a \text { in } a \leq x\end{array}\right.$.
a) $f(x)$ is discontinuous at $x=a$
b) $f(x)$ is not differentiable at $x=a$
c) $f(x)$ is differentiable at $x \geq a$
d) $f(x)$ is continuous at all $x<a$
33. Let $f(x+y)=f(x) f(y)$ and $f(x)=1+(\sin 2 x) g(x)$ where $g(x)$ is continuous. Then, $f^{\prime}(x)$ equals
a) $f(x) g(0)$
b) $2 f(x) g(0)$
c) $2 g(0)$
d) None of these
34. If $f(x)=\left[\begin{array}{ll}x \sin \pi x\end{array}\right]$, then which of the following is incorrect?
a) $f(x)$ is continuous at $x=0$
b) $f(x)$ is continuous in $(-1,0)$
c) $f(x)$ is differentiable at $x=1$
d) $f(x)$ is differentiable in $(-1,1)$
35. If $f(x)=\left\{\begin{array}{c}1, x<0 \\ 1+\sin x, 0 \leq x \leq \frac{\pi}{2}\end{array}\right.$ then derivative of $f(x)$ at $x=0$
a) Is equal to 1
b) Is equal to 0
c) Is equal to -1
d) Does not exist
36. If the derivative of the function $f(x)$ is everywhere continuous and is given by $f(x)=\left\{\begin{array}{c}b x^{2}+a x+4 ; x \geq-1 \\ a x^{2}+b ; x<-1\end{array}\right.$, then
a) $a=2, b=-3$
b) $a=3, b=2$
c) $a=-2, b=-3$
d) $a=-3, b=-2$
37. If $f(x)=\left\{\begin{array}{c}\frac{x \log \cos x}{\log \left(1+x^{2}\right)}, x \neq 0 \\ 0, x=0\end{array}\right.$, then
a) $f(x)$ is not continuous at $x=0$
b) $f(x)$ is not continuous and differentiable at $x=0$
c) $f(x)$ is not continuous at $x=0$ but not differentiable at $x=0$
d) None of these
38.

If the function $f(x)=\left\{\begin{array}{c}A x-B, x \leq 1 \\ 3 x, 1<x<2 \\ B x^{2}-A, x \geq 2\end{array}\right.$ be continuous at $x=1$ and discontinuous at $x=2$, then
a) $A=3+B, B \neq 3$
b) $A=3+B, B=3$
c) $A=3+B$
d) None of these
39.

If $f(x)=\left\{\begin{array}{c}|x-4| \text {, for } x \geq 1 \\ \left(x^{3} / 2\right)-x^{2}+3 x+(1 / 2), \text { for } x<1\end{array}\right.$, then
a) $f(x)$ is continuous at $x=1$ and $x=4$
b) $f(x)$ is differentiable at $x=4$
c) $f(x)$ is continuous and differentiable at $x=1$
d) $f(x)$ is not continuous at $x=1$
40. The function $f(x)=a[x+1]+b[x-1]$, where $[x]$ is the greatest integer function, is continuous at $x=1$, is
a) $a+b=0$
b) $a=b$
c) $2 a-b=0$
d) None of these
41. Let $f(x)=\left\{\begin{array}{cc}5^{1 / x}, & x<0 \\ \lambda[x], & x \geq 0\end{array}\right.$ and $\lambda \in R$, then at $x=0$
a) f is discontinuous
b) f is continuous only, if $\lambda=0$
c) f is continuous only, whatever λ may be
d) None of the above
42. If for a continuous function $\mathrm{f}, f(0)=f(1)=0, f^{\prime}(1)=2$ and $y(x)=f\left(e^{x}\right) e^{f(x)}$, then $y^{\prime}(0)$ is equal to
a) 1
b) 2
c) 0
d) None of these
43. If $f(x)=\left\{\begin{array}{c}a x^{2}-b,|x|<1 \\ \frac{1}{|x|},|x| \geq 1\end{array}\right.$ is differentiable at $x=1$, then
a) $a=\frac{1}{2}, b=-\frac{1}{2}$
b) $a=-\frac{1}{2}, b=-\frac{3}{2}$
c) $a=b=\frac{1}{2}$
d) $a=b=-\frac{1}{2}$
44. Let $f(x)=\frac{\sin 4 \pi[x]}{1+[x]^{2}}$, where $[x]$ is the greatest integer less than or equal to x, then
a) $f(x)$ is not differentiable at some points
b) $f^{\prime}(x)$ exists but is different from zero
c) $f^{\prime}(x)=0$ for all x
d) $f^{\prime}(x)=0$ but f is not a constant function
45. The value of k which makes $f(x)=\left\{\begin{array}{c}\sin (1 / k), x \neq 0 \\ k, x=0\end{array}\right.$ continuous at $x=0$ is
a) 8
b) 1
c) -1
d) None of these
46. The function $f(x)=\max [(1-x),(1+x), 2], x \in(-\infty, \infty)$ is
a) Continuous at all points
b) Differentiable at all points
c) Differentiable at all points except at $x=1$ and
d) None of the above
47. Let $f(x)$ be defined for all $x>0$ and be continuous. Let $f(x)$ satisfy $f\left(\frac{x}{y}\right)=f(x)-f(y)$ for all x, y and $f(e)=1$. Then,
a) $f(x)$ is bounded
b) $f\left(\frac{1}{x}\right) \rightarrow 0$ as $x \rightarrow 0$
c) $x f(x) \rightarrow 1$ as $x \rightarrow 0$
d) $f(x)=\ln x$
48. Suppose a function $f(x)$ satisfies the following conditions for all x and y : (i) $f(x+y)=f(x) f(y)$ (ii) $f(x)=1+x g(x) \log a$, where $a>1$ and $\lim _{x \rightarrow 0} g(x)=1$. Then, $f^{\prime}(x)$ is equal to
a) $\log a$
b) $\log a^{f(x)}$
c) $\log (f(x))^{a}$
d) None of these
49. Let $g(x)$ be the inverse of the function $f(x)$ and $f^{\prime}(x)=\frac{1}{1+x^{3}}$. Then, $g^{\prime}(x)$ is equal to
a) $\frac{1}{1+(g(x))^{3}}$
b) $\frac{1}{1+(f(x))^{3}}$
c) $1+(g(x))^{3}$
d) $1+(f(x))^{3}$
50. If $f(x)=\left|x^{2}-4 x+3\right|$, then
a) $f^{\prime}(1)=-1$ and $f^{\prime}(3)=1$
b) $f^{\prime}(1)=-1$ and $f^{\prime}(3)$ does not exist
c) $f^{\prime}(1)=-1$ does not exist and $f^{\prime}(3)=1$
d) Both $f^{\prime}(1)$ and $f^{\prime}(3)$ do not exist
51. The points of discontinuity of $\tan x$ are
a) $n \pi, n \in I$
b) $2 n \pi, n \in I$
c) $(2 n+1) \frac{\pi}{2}, n \in I$
d) None of these
52. Let $f(x)=||x|-1|$, then points where $f(x)$ is not differentiable, is/(are)
a) $0, \pm 1$
b) ± 1
c) 0
d) 1
53. $f(x)=\left\{\begin{array}{ll}2 x, & x<0 \\ 2 x+1, & x \geq 0\end{array}\right.$. Then
a) $\begin{aligned} & f(x) \text { is continuous at } \\ & x=0\end{aligned}$
b) $\begin{aligned} & f(|x|) \text { is continuous at } \\ & x=0\end{aligned}$
c) $\begin{aligned} & f(x) \text { is discontinuous atd) None of the above } \\ & x=0\end{aligned}$
54. Let $f(x)=[x]+\sqrt{x-[x]}$, where $[x]$ denotes the greatest integer function. Then,
a) $f(x)$ is continuous on R^{+}
b) $f(x)$ is continuous on R
c) $f(x)$ is continuous on $R-Z$
d) None of these
55. The function $f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}$ is not defined at $x=\pi$. The value of $f(\pi)$, so that $f(x)$ is continuous at $x=\pi$, is
a) $-1 / 2$
b) $1 / 2$
c) -1
d) 1
56. Let $f(x)=\left\{\begin{array}{c}(x-1) \sin \frac{1}{x-1}, \quad \text { if } x \neq 1 \text {. Then, which one of the following is true? } \\ 0, \quad \text { if } x=1\end{array}\right.$.
a) f is differentiable at $x=1$ but not at $x=0$
b) f is neither differentiable at $x=0$ nor at $x=1$
c) f is differentiable at $x=0$ and at $x=1$
d) f is differentiable at $x=0$ but not at $x=1$
57. If $f(x)=\left\{\begin{array}{c}m x+1, x \leq \frac{\pi}{2} \\ \sin x+n, x>\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$, then
a) $m=1, n=0$
b) $m=\frac{n \pi}{2}+1$
c) $n=\frac{m \pi}{2}$
d) $m=n=\frac{\pi}{2}$
58. Let f be differentiable for all x. If $f(1)=-2$ and $f^{\prime}(x) \geq 2$ for $x \in[1,6]$, then
a) $f(6)=5$
b) $f(6)<5$
c) $f(6)<8$
d) $f(6) \geq 8$
59. If $\lim _{x \rightarrow a^{+}} f(x)=l=\lim _{x \rightarrow a^{-}} g(x)$ and $\lim _{x \rightarrow a^{-}} f(x)=m \lim _{x \rightarrow a^{+}} g(x)$, then the function $f(x) g(x)$
a) Is not continuous at $x=a$
b) Has a limit when $x \rightarrow a$ and it is equal to $l m$
c) Is continuous at $x=a$
d) Has a limit when $x \rightarrow a$ but it is not equal to $l m$
60. Let $f(x)$ be a function satisfying $f(x+y)=f(x) f(y)$ for all $x, y \in R$ and $f(x)=1+x g(x)$ where $\lim _{x \rightarrow 0} g(x)=1$. Then, $f^{\prime}(x)$ is equal to
a) $g^{\prime}(x)$
b) $g(x)$
c) $f(x)$
d) None of these
61. The set of points where the function $f(x)=x|x|$ is differentiable is
a) $(-\infty, \infty)$
b) $(-\infty, 0) \cup(0, \infty)$
c) $(0, \infty)$
d) $[0, \infty)$
62. If $f(x+y)=f(x) f(y)$ for all real x and $y, f(6)=3$ and $f^{\prime}(0)=10$, then $f^{\prime}(6)$ is
a) 30
b) 13
c) 10
d) 0
63. If $f(x)=|x-a| \phi(x)$, where $\phi(x)$ is continuous function, then
a) $f^{\prime}\left(a^{+}\right)=\phi(a)$
b) $f^{\prime}\left(a^{-}\right)=\phi(a)$
c) $f^{\prime}\left(a^{+}\right)=f^{\prime}\left(a^{-}\right)$
d) None of these
64. If $f(x)=\left\{\begin{array}{c}x e^{-\left(\frac{1}{|x|}+\frac{1}{x}\right)}, x \neq 0 \\ 0, x=0\end{array}\right.$, then $f(x)$ is
a) Continuous as well as differentiable for all x
b) Continuous for all x but not differentiable at $x=0$
c) Neither differentiable nor continuous at $x=0$
d) Discontinuous everywhere
65. If $f(x)=\left\{\begin{array}{cc}3, & x<0 \\ 2 x+1, & x \geq 0\end{array}\right.$, then
a) Both $f(x)$ and $f(|x|)$ are differentiable at $x=0$
b) $f(x)$ is differentiable but $f(|x|)$ is not differentiable at $x=0$
c) $f(|x|)$ is differentiable but $f(x)$ is not differentiable at $x=0$
d) Both $f(x)$ and $f(|x|)$ are not differentiable at $x=0$
66. If $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists finitely, then
a) $\lim _{x \rightarrow c} f(x)=f(c)$
b) $\lim _{x \rightarrow c} f^{\prime}(x)=f^{\prime}(c)$
c) $\lim _{x \rightarrow c} f(x)$ does not exist
d) $\lim _{x \rightarrow c} f(x)$ may or may not exist
67. The number of points at which the function $f(x)=|x-0.5|+|x-1|+\tan x$ does not have a derivative in the interval $(0,2)$, is
a) 1
b) 2
c) 3
d) 4
68. If $f(x)=\left\{\begin{array}{cc}\log _{(1-3 x)}(1+3 x), \text { for } x \neq 0 \\ k, & \text { for } x=0\end{array}\right.$ is continuous at $x=0$, then k is equal to
a) -2
b) 2
c) 1
d) -1
69. Let $f(x)$ be a function differentiable at $x=c$. Then, $\lim _{x \rightarrow c} f(x)$ equals
a) $f^{\prime}(c)$
b) $f^{\prime \prime}(c)$
c) $\frac{1}{f(c)}$
d) None of these
70. If $f(x)=a e^{|x|}+b|x|^{2} ; a, b \in R$ and $f(x)$ is differentiable at $x=0$. Then a and b are
a) $a=0, b \in R$
b) $a=1, b=2$
c) $b=0, a \in R$
d) $a=4, b=5$
71. Let $f(x)=(x+|x|)|x|$. The, for all x
a) f and f^{\prime} are continuous
b) f is differentiable for some x
c) f^{\prime} is not continuous
d) $f^{\prime \prime}$ is continuous
72. If $f(x)=\left\{\begin{array}{c}\frac{x-1}{2 x^{2}-7 x+5}, \text { for } x \neq 1 \\ -\frac{1}{3}, \quad \text { for } x=1\end{array}\right.$, then $f^{\prime}(1)$ is equal to
a) $-\frac{1}{9}$
b) $-\frac{2}{9}$
c) $-\frac{1}{3}$
d) $\frac{1}{3}$
73. Suppose $f(x)$ is differentiable at $x=1$ and $\lim _{h \rightarrow 0} \frac{1}{h} f(1+h)=5$, then $f^{\prime}(1)$ equals
a) 6
b) 5
c) 4
d) 3
74. If $f: R \rightarrow R$ is defined by $f(x)=\left\{\begin{array}{cc}\frac{x+2}{x^{2}+3 x+2}, & \text { if } x \in R-\{-1,-2\} \\ -1, & \text { if } x=-2 \\ 0, & \text { if } x=-1\end{array}\right.$, then f is continuous on the set
a) R
b) $R-\{-2\}$
c) $R-\{-1\}$
d) $R-(-1,-2)$
75. Let $f(x)=\frac{\left(e^{x}-1\right)^{2}}{\sin \left(\frac{x}{a}\right) \log \left(1+\frac{x}{4}\right)}$ for $x \neq 0$ and $f(0)=12$. If f is continuous at $x=0$, then the value of a is equal to
a) 1
b) -1
c) 2
d) 3
76. If a function $f(x)$ is given by $f(x)=\frac{x}{1+x}+\frac{x}{(x+1)(2 x+1)}+\frac{x}{(2 x+1)(3 x+1)}+\cdots \infty$ then at $x=0, f(x)$
a) Has no limit
b) Is not continuous
c) Is continuous but not differentiable
d) Is differentiable
77. If $f(x)$ is continuous function and $g(x)$ be discontinuous, then
a) $f(x)+g(x)$ must be continuous
b) $f(x)+g(x)$ must be discontinuous
c) $f(x)+g(x)$ for all x
d) None of these
78. A function $f: R \rightarrow R$ satisfies the equation $f(x+y)=f(x) f(y)$ for all $x, y \in R$ and $f(x) \neq 0$ for all $x \in R$. If $f(x)$ is differentiable at $\mathrm{x}=0$ and $f^{\prime}(0)=2$, then $f^{\prime}(x)$ equals
a) $f(x)$
b) $-f(x)$
c) $2 f(x)$
d) None of these
79.

Consider $f(x)=\left\{\begin{array}{cc}\frac{x^{2}}{|x|}, & x \neq 0 \\ 0, & x=0\end{array}\right.$
a) $f(x)$ is discontinuous everywhere
b) $f(x)$ is continuous everywhere
c) $f^{\prime}(x)$ exists in $(-1,1)$
d) $f^{\prime}(x)$ exists in $(-2,2)$
80. If $f(x)$ is continuous at $x=0$ and $f(0)=2$, then
$\lim _{x \rightarrow 0} \frac{\int_{0}^{x} f(u) d u}{x}$ is
a) 0
b) 2
c) $f(2)$
d) None of these
81. Let $f(x+y)=f(x) f(y)$ for all $x, y \in R$. Suppose that $f(3)=3$ and $f^{\prime}(0)=11$ then, $f^{\prime}(3)$ is equal to
a) 22
b) 44
c) 28
d) None of these
82. If $f(x)=\left\{\begin{array}{c}x-5, \text { for } x \leq 1 \\ 4 x^{2}-9, \quad \text { for } 1<x<2, \text { then } f^{\prime}\left(2^{+}\right) \text {is equal to } \\ 3 x+4, \quad \text { for } x \geq 2\end{array}\right.$
a) 0
b) 2
c) 3
d) 4
83. $f(x)=\sin |x|$. Then $f(x)$ is not differentiable at
a) $x=0$ only
b) All x
c) Multiples of π
d) Multiples of $\frac{\pi}{2}$
84. If $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\left(\log _{e} a\right)^{n}, a>0, a \neq 0$, then at $x=0, f(x)$ is
a) Everywhere continuous but not differentiable
b) Everywhere differentiable
c) Nowhere continuous
d) None of these
85. The function $f(x)=[x] \cos \left[\frac{2 x-1}{2}\right] \pi$ where [.] denotes the greatest integer function, is discontinuous at
a) All x
b) No x
c) All integer points
d) x which is not an integer
86.

The function $f(x)=\left\{\begin{array}{c}1, \quad|x| \geq 1 \\ \frac{1}{n^{2}}, \frac{1}{n}<|x|<\frac{1}{n-1}, n=2,3, \ldots \\ 0, \quad x=0\end{array}\right.$
a) Is discontinuous at finitely many points
b) Is continuous everywhere
c) Is discontinuous only at $x= \pm \frac{1}{n}, n \in Z-\{0\}$ and $x=0$
d) None of these
87. Let f is a real-valued differentiable function satisfying $|f(x)-f(y)| \leq(x-y)^{2}, x, y \in R$ and $f(0)=0$, then $f(1)$ equals
a) 1
b) 2
c) 0
d) -1
88. Let $f(x)=\left[2 x^{3}-5\right]$, [] denotes the greatest integer function. Then number of points $(1,2)$ where the
function is discontinuous, is
a) 0
b) 13
c) 10
d) 3
89. $\ln [1,3]$ the function $\left[x^{2}+1\right],[x]$ denoting the greatest integer function, is continuous
a) For all x
b) For all x except at four points
c) For all except at seven points
d) For all except at eight-points
90. If $f(x)=\left|\log _{10} x\right|$, then at $x=1$
a) $f(x)$ is continuous and $f^{\prime}\left(1^{+}\right)=\log _{10} e, f^{\prime}\left(1^{-}\right)=-\log _{10} e$
b) $f(x)$ is continuous and $f^{\prime}\left(1^{+}\right)=\log _{10} e, f^{\prime}\left(1^{-}\right)=\log _{10} e$
c) $f(x)$ is continuous and $f^{\prime}\left(1^{-}\right)=\log _{10} e, f^{\prime}\left(1^{+}\right)=-\log _{10} e$
d) None of these
91. The function $f(x)=|\cos x|$ is
a) Everywhere continuous and differentiable
b) Everywhere continuous and but not differentiable at $(2 n+1) \pi / 2, n \in Z$
c) Neither continuous nor differentiable at $(2 n+1) \pi / 2, n \in Z$
d) None of these
92.

Let $f(x)=\left\{\begin{array}{l}\frac{x-4}{|x-4|}+a, x<4 \\ a+b, \quad x=4 \\ \frac{x-4}{|x-4|}+b, x>4\end{array}\right.$
Then, $f(x)$ is continuous at $x=4$ when
a) $a=0, b=0$
b) $a=1, b=1$
c) $a=-1, b=1$
d) $a=1, b=-1$
93. If $f(x)=\left\{\begin{array}{c}\frac{2^{x}-1}{\sqrt{1+x}-1},-1 \leq x<\infty, x \neq 0 \\ k,\end{array} \quad x=0 \quad\right.$ is continuous everywhere, then k is equal to
a) $\frac{1}{2} \log _{e} 2$
b) $\log _{e} 4$
c) $\log _{e} 8$
d) $\log _{e} 2$
94. The function $f(x)=\left\{\begin{array}{c}x^{n} \sin \left(\frac{1}{x}\right), x \neq 0 \\ 0, x=0\end{array}\right.$ is continuous and differentiable at $x=0$, if
a) $n \in(0,1]$
b) $n \in[1, \infty)$
c) $n \in(1, \infty)$
d) $n \in(-\infty, 0)$
95.

The function $f(x)=\left\{\begin{array}{c}\frac{e^{1 / x}-1}{e^{1 / x}+1}, x \neq 0 \\ 0, x=0\end{array}\right.$
a) Is continuous at $x=0$
b) Is not continuous at $x=0$
c) Is not continuous at $x=0$, but can be made continuous $x=0$
d) None of these
96. A function $f(x)=\left\{\begin{array}{ll}1+x, & x \leq 2 \\ 5-x, & x>2\end{array}\right.$ is
a) Not continuous at $x=2$
b) Differenti8able at $x=2$
c) Continuous but not differentiable at $=2$
d) None of the above
97. Let $f(x+y)=f(x) f(y)$ for all $x, y \in R$. If $f^{\prime}(1)=2$ and $f(4)=4$, then $f^{\prime}(4)$ equal to
a) 4
b) 1
c) $1 / 2$
d) 8
98. Let $f(x)=[x]$ and $g(x)=\left\{\begin{array}{c}0, x \in Z \\ x^{2}, x \in R-Z\end{array}\right.$ Then, which one of the following is incorrect?
a) $\lim _{x \rightarrow 1} g(x)$ exists, but $g(x)$ is not continuous at $x=1$
b) $\lim _{x \rightarrow 1} f(x)$ does not exist and $f(x)$ is not continuous at $x=1$
c) gof is continuous for all x
d) fog is continuous for all x
99.

$$
\text { If } f(x)=\left\{\begin{array}{lll}
x, & \text { for } & 0<x<1 \\
2-x, & \text { for } & 1 \leq x<2 \\
x-(1 / 2) x^{2}, & \text { for } x=2
\end{array} \text { Then, } f^{\prime}(1)\right. \text { is equal to }
$$

a) -1
b) 1
c) 0
d) None of these
100. The function $f(x)=|x|+\frac{|x|}{x}$ is
a) Discontinuous at origin because $|x|$ is discontinuous there
b) Continuous at origin
c) Discontinuous at origin because both $|x|$ and $\frac{|x|}{x}$ are discontinuous there
d) Discontinuous at the origin because $\frac{|x|}{x}$ is discontinuous there
101. $f(x)=|x-3|$ is \ldots at $x=3$
a) Continuous and not differentiable
b) Continuous and differentiable
c) Discontinuous and not differentiable
d) Discontinuous and differentiable
102. At $x=\frac{3}{2}$ the function $f(x)=\frac{|2 x-3|}{2 x-3}$ is
a) Continuous
b) Discontinuous
c) Differentiable
d) Non-zero
103. The following functions are differentiable on $(-1,2)$
a) $\int_{x}^{2 x}(\log t)^{2} d t$
b) $\int_{x}^{2 x} \frac{\sin t}{t} d t$
c) $\int_{x}^{2 x} \frac{1-t+t^{2}}{1+t+t^{2}} d t$
d) None of these
104. $\operatorname{Let} f(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{\pi}{2}\right]$. If $f(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is
a) 1
b) $1 / 2$
c) $-1 / 2$
d) -1
105. If $f(x)=\left\{\begin{array}{c}\frac{1-\cos x}{x}, x \neq 0 \\ k, \quad x=0\end{array}\right.$ is continuous at $x=0$, then the value of k is
a) 0
b) $\frac{1}{2}$
c) $\frac{1}{4}$
d) $-\frac{1}{2}$
106. Let $f(x)=|x|+|x-1|$, then
a) $f(x)$ is continuous at $x=0$, as well as at $x=1$
b) $f(x)$ is continuous at $x=0$, but not at $x=1$
c) $f(x)$ is continuous at $x=1$, but not at $x=0$
d) None of these
107. The function $f(x)$ is defined as $f(x)=\frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$, if $x \neq 0$. The value of f to be assigned at $x=0$ so that the function is continuous there, is
a) $-\frac{1}{3}$
b) 1
c) $\frac{2}{3}$
d) $\frac{1}{3}$
108. Let $f(x)$ be an odd function. Then $f^{\prime}(x)$
a) Is an even function
b) Is an odd function
c) May be even or odd
d) None of these
109. If $f(x)=\left\{\begin{array}{c}\frac{x-1}{2 x^{2}-7 x+5}, \text { for } x \neq 1 \\ -\frac{1}{3}, \text { for } x=1\end{array}\right.$, then $f^{\prime}(1)$ is equal to
a) $-\frac{1}{9}$
b) $-\frac{2}{9}$
c) -13
d) $1 / 3$
110. If $f: R \rightarrow R$ given by
$f(x)=\left\{\begin{array}{c}2 \cos x, \text { if } x \leq-\frac{\pi}{2} \\ a+\sin x+b, \text { if }-\frac{\pi}{2}<x<\frac{\pi}{2} \text { is a continuous } \\ 1+\cos ^{2} x, \text { if } x \geq \frac{\pi}{2}\end{array}\right.$
Function on R, then (a, b) is equal to
a) $(1 / 2,1 / 2)$
b) $(0,-1)$
c) $(0,2)$
d) $(1,0)$
111. If $f(x+y)=f(x) f(y)$ for all $x, y \in R, f(5)=2, f^{\prime}(0)=3$. Then $f^{\prime}(5)$ equals
a) 6
b) 3
c) 5
d) None of these
112. Let $f(x)$ be a function satisfying $f(x+y)=f(x)+f(y)$ and $f(x)=x g(x)$ for all $x, y \in R$, where $g(x)$ is continuous. Then,
a) $f^{\prime}(x)=g^{\prime}(x)$
b) $f^{\prime}(x)=g(x)$
c) $f^{\prime}(x)=g(0)$
d) None of these
113. If $f(x)=\sqrt{x+2 \sqrt{2 x-4}}+\sqrt{x-2 \sqrt{2 x-4}}$, then $f(x)$ is differentiable on
a) $(-\infty, \infty)$
b) $[2, \infty)-\{4\}$
c) $[2, \infty)$
d) None of these
114. If $f(x)=\left\{\begin{array}{c}x^{2} \sin \left(\frac{1}{x}\right), x \neq 0 \\ 0, x=0\end{array}\right.$, then
a) f and f^{\prime} are continuous at $x=0$
b) f is derivable at $x=0$ and f^{\prime} is continuous at $x=0$
c) f is derivable at $x=0$ and f^{\prime} is not continuous at $x=0$
d) f^{\prime} is derivable at $x=0$
115. If a function $f(x)$ is defined as $f(x)=\left\{\begin{array}{c}\frac{x}{\sqrt{x^{2}}}, x \neq 0 \\ 0, x=0\end{array}\right.$ then
a) $f(x)$ is continuous at $x=0$ but not differentiable at $x=0$
b) $f(x)$ is continuous as well as differentiable at $x=0$
c) $f(x)$ is discontinuous at $x=0$
d) None of these
116. If $f(x)=[\sqrt{2} \sin x]$, where $[x]$ represents the greatest integer function, then
a) $f(x)$ is periodic
b) Maximum value of $f(x)$ is 1 in the interval $[-2 \pi, 2 \pi]$
c) $f(x)$ is discontinuous at $x=\frac{n \pi}{2}+\frac{\pi}{4}, n \in Z$
d) $f(x)$ is differentiable at $x=n \pi, n \in Z$
117. $\lim _{x \rightarrow 0}\left[(1+3 x)^{1 / x}\right]=k$, then for continuity at $x=0, k$ is
a) 3
b) -3
c) e^{3}
d) e^{-3}
118. Let $f(x)=\left\{\begin{array}{c}\int_{0}^{x}\{5+|1-t|\} d t, \text { if } x>2 \\ 5 x+1, \text { if } x \leq 2\end{array}\right.$
a) $f(x)$ is continuous at $x=2$
b) $f(x)$ is continuous but not differentiable at $x=2$
c) $f(x)$ is everywhere differentiable
d) The right derivative of $f(x)$ at $x=2$ does not exist
119. Let $f(x)=\left\{\begin{array}{c}\frac{1}{|x|} \text { for }|x| \geq 1 \\ a x^{2}+b \text { for }|x|<1\end{array}\right.$

If $f(x)$ is continuous and differentiable at any point, then
a) $a=\frac{1}{2}, b=-\frac{3}{2}$
b) $a=-\frac{1}{2}, b=\frac{3}{2}$
c) $a=1, b=-1$
d) None of these
120. If function $f(x)=\left\{\begin{array}{c}x, \text { if } x \text { is rational } \\ 1-x \text {, if } x \text { is irrational }\end{array}\right.$, then the number of points at which $f(x)$ is continuous, is
a) ∞
b) 1
c) 0
d) None of these
121. The function $f(x)=e^{-|x|}$ is
a) Continuous everywhere but not differentiable at
b) Continuous and differentiable everywhere
c) Not continuous at $x=0$
d) None of the above
122. The value of $f(0)$, so that the function
$f(x)=\frac{\sqrt{a^{2}-a x+x^{2}}-\sqrt{a^{2}+a x+x^{2}}}{\sqrt{a+x}-\sqrt{a-x}}$
Becomes continuous for all x, is given by
a) $a^{3 / 2}$
b) $a^{1 / 2}$
c) $-a^{1 / 2}$
d) $-a^{3 / 2}$
123. The value of k for which the function
$f(x)=\left\{\begin{array}{c}\frac{1-\cos 4 x}{8 x^{2}}, x \neq 0 \\ k\end{array} \quad x=0\right.$ is continuous at $a=0$, is
a) $k=0$
b) $k=1$
c) $k=-1$
d) None of these
124. The number of points at which the function $f(x)=(|x-1|+|x-2|+\cos x)$ where $x \in[0,4]$ is not continuous, is
a) 1
b) 2
c) 3
d) 0
125. If $f(x)=\left\{\begin{array}{ll}x \sin \frac{1}{x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous at $x=0$, then the value of k is
a) 1
b) -1
c) 0
d) 2
126. Let $f(x)$ be twice differentiable function such that $f^{\prime \prime}(x)=-f(x)$ and $f^{\prime}(x)=g(x), h(x)=\{f(x)\}^{2}+$ $\{g(x)\}^{2}$. If $h(5)=11$, then $h(10)$ is equal to
a) 22
b) 11
c) 0
d) None of these
127. if $f(x)=|x|^{3}$, then $f^{\prime}(0)$ equals
a) 0
b) $1 / 2$
c) -1
d) $-1 / 2$
128. Let function $f(x)=\sin ^{-1}(\cos x)$, is
a) Discontinuous at $x=0$
b) Continuous at $x=0$
c) Differentiable at $x=0$
d) None of these
129.

Let $f(x)=\left\{\begin{array}{c}\frac{x^{4}-5 x^{2}+4}{|(x-1)(x-2)|}, x \neq 1,2 \\ 6, x=10 \\ 12, \quad x=2\end{array}\right.$ Then, $f(x)$ is continuous on the set
a) R
b) $R-\{1\}$
c) $R-\{2\}$
d) $R-\{1,2\}$
130. The set of points, where $f(x)=\frac{x}{1+|x|}$ is differentiable, is
a) $(-\infty,-1) \cup(-1, \infty)$
b) $(-\infty, \infty)$
c) $(0, \infty)$
d) $(-\infty, 0) \cup(0, \infty)$
131. Given $f(0)=0$ and $f(x)=\frac{1}{\left(1-e^{-1 / x}\right)}$ for $x \neq 0$. Then only one of the follo 0 wing statements on $f(x)$ is true. That id $f(x)$, is
a) Continuous at $x=0$
b) Not continuous at $x=0$
c) Both continuous and differentiable at $x=0$
d) Not defined at $x=0$
132. Let f and g be differentiable functions satisfying $g^{\prime}(a)=2, g(a)=b$ and $f o g=I$ (identify function). Then, $f^{\prime}(b)$ is equal to
a) $1 / 2$
b) 2
c) $2 / 3$
d) None of these
133. Let $f(x)=\left\{\begin{array}{c}\frac{\sin \pi x}{5 x}, \quad x \neq 0 \\ k, \quad x=0\end{array}\right.$, if $f(x)$ is continuous at $x=0$, then k is equal to
a) $\frac{\pi}{5}$
b) $\frac{5}{\pi}$
c) 1
d) 0
134. The number of discontinuities of the greatest integer function $f(x)=[x], x \in\left(-\frac{7}{2}, 100\right)$ is equal to
a) 104
b) 100
c) 102
d) 103
135. For the function $f(x)=\frac{e^{1 / x}-1}{e^{1 / x}+1}, x=0$, which of the following is correct?
a) $\lim _{x \rightarrow 0} f(x)$ does not exist
b) $\lim _{x \rightarrow 0} f(x)=1$
c) $\lim _{x \rightarrow 0} f(x)$ exists but $f(x)$ is not continuous at $x=0$
d) $f(x)$ is continuous at $x=0$
136. If $f(x)=x^{4}+\frac{x^{4}}{1+x^{4}}+\frac{x^{4}}{\left(1+x^{4}\right)^{2}}+\cdots$ to ∞ then at $x=0, f(x)$ is
a) Continuous but not differentiable
b) Differentiable
c) Continuous
d) None of these
137. If $f(x)=\left\{\begin{array}{l}1+x, 0 \leq x \leq 2 \\ 3-x, 2<x \leq 3\end{array}\right.$ then the set of points of discontinuity of $g(x)=f o f(x)$, is
a) $\{1,2\}$
b) $\{0,1,2\}$
c) $\{0,1\}$
d) None of these
138. Let $g(x)$ be the inverse of an invertible function $f(x)$ which is differentiable at $x=c$, then $g^{\prime}(f(c))$ equals
a) $f^{\prime}(c)$
b) $\frac{1}{f^{\prime}(c)}$
c) $f(c)$
d) None of these
139.

If $f(x)=\left\{\begin{array}{c}x^{p} \cos \left(\frac{1}{x}\right), x \neq 0 \\ 0, \quad x=0\end{array}\right.$ is differentiable at $x=0$, then
a) $p<0$
b) $0<p<1$
c) $p=1$
d) $p>1$
140. At $x=0$, the function $f(x)=|x|$ is
a) Continuous but not differentiable
b) Discontinuous and differentiable
c) Discontinuous and not differentiable
d) Continuous and differentiable
141. If $f(x)=\left\{\begin{array}{cc}(x-2)^{2} \sin \left(\frac{1}{x-2}\right)-|x-1|, x \neq 2 \\ -1, & x=2\end{array}\right.$ then the set of points where $f(x)$ is differentiable, is
a) R
b) $R-\{1,2\}$
c) $R-\{1\}$
d) $R-\{2\}$
142. The value of f at $x=0$ so that function $f(x)=\frac{2^{x}-2^{-x}}{x}, x \neq 0$ is continuous at $x=0$, is
a) 0
b) $\log 2$
c) 4
d) $\log 4$
143. If $f(x)=\left|\log _{e} x\right|$, then
a) $f^{\prime}\left(1^{+}\right)=1, f^{\prime}\left(1^{-}\right)=-1$
b) $f^{\prime}\left(1^{-}\right)=-1, f^{\prime}\left(1^{+}\right)=0$
c) $f^{\prime}(1)=1, f^{\prime}\left(1^{-}\right)=0$
d) $f^{\prime}(1)=-1, f^{\prime}\left(1^{+}\right)=-1$
144. Let $f(x)$ be a function such that $f(x+y)=f(x)+f(y)$ and $f(x)=\sin x g(x)$ for all $x, y \in R$. If $g(x)$ is a continuous function such that $g(0)=k$, then $f^{\prime}(x)$ is equal to
a) k
b) $k x$
c) $\operatorname{kg}(x)$
d) None of these
145. The function $f(x)=|x|+|x-1|$, is
a) Continuous at $x=1$, but not differentiable
b) Both continuous and differentiable at $x=1$
c) Not continuous at $x=1$
d) None of these
146.

The set of points of differentiability of the function $f(x)=\left\{\begin{array}{c}\frac{\sqrt{x+1}-1}{x}, \text { for } x \neq 0 \\ 0, \text { for } x=0\end{array}\right.$ is
a) R
b) $[0, \infty]$
c) $(-\infty, 0)$
d) $R-\{0\}$
147. Given that $f(x)$ is a differentiable function of x and that $f(x) \cdot f(y)=f(x)+f(y)+f(x y)-2$ and that $f(2)=5$. Then, $f(3)$ is equal to
a) 10
b) 24
c) 15
d) None of these
148. If $f(x)=\frac{1}{2} x-1$, then on the interval $[0, \pi]$,
a) $\tan [f(x)]$ and $\frac{1}{f(x)}$ are both continuous
b) $\tan [f(x)]$ and $\frac{1}{f(x)}$ are both discontinuous
c) $\tan [f(x)]$ and $f^{-1}(x)$ are both continuous
d) $\tan [f(x)]$ s continuous but $\frac{1}{f(x)}$ is not
149. If $f(x)=(x+1)^{\cot x}$ be continuous at $=0$, then $f(0)$ is equal to
a) 0
b) $-e$
c) e
d) None of these
150.

Let $f(x)=\left\{\begin{array}{ll}\frac{\tan x-\cot x}{x-\frac{\pi}{4}}, & x \neq \frac{\pi}{4} \\ a, & x=\frac{\pi}{4}\end{array}\right.$ the value of a so that $f(x)$ is continuous at $x=\frac{\pi}{4}$ is
a) 2
b) 4
c) 3
d) 1
151. If $f(x)=\int_{-1}^{x}|t| d t, x \geq-1$, then
a) f and f^{\prime} are continuous for $x+1>0$
b) f is continuous but f^{\prime} is not so for $x+1>0$
c) f and f^{\prime} are continuous at $x=0$
d) f is continuous at $x=0$ but f^{\prime} is not so
152. The set of points of discontinuity of the function $f(x)=\lim _{n \rightarrow \infty} \frac{x^{-n}-x^{n}}{x^{-n}+x^{n}}, n \in Z$ is
a) $\{1\}$
b) $\{-1\}$
c) $\{-1,1\}$
d) None of these
153. The number of points of discontinuity of the function $f(x)=\frac{1}{\log |x|}$, is
a) 4
b) 3
c) 2
d) 1
154. $f(x)=\left\{\begin{array}{ll}\frac{\sin 3 x}{\sin x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous, if k is
a) 3
b) 0
c) -3
d) -1
155. For the function $f(x)=\frac{\log _{e}(1+x)+\log _{e}(1-x)}{x}$ to be continuous at $=0$, the value of $f(0)$ is
a) -1
b) 0
c) -2
d) 2
156.

Let $f(x)=\left\{\begin{array}{c}\frac{x-4}{|x-4|}+a, \quad x<4 \\ a+b, \quad x=4 \\ \frac{x-4}{|x-4|}+b, \quad x>4\end{array}\right.$
Then, $f(x)$ is continuous at $x=4$, when
a) $a=0, b=0$
b) $a=1, b=1$
c) $a=-1, b=1$
d) $a=1, b=-1$
157.

If $f(x)\left\{\begin{array}{ll}\frac{[x]-1}{x-1}, & x \neq 1 \\ 0, & x=1\end{array}\right.$ then at $x=1, f(x)$ is
a) Continuous and differentiable
b) Differentiable but not continuous
c) Continuous but not differentiable
d) Neither continuous nor differentiable
158.

If $f(x)=\left\{\begin{array}{c}\frac{1-\sqrt{2} \sin x}{\pi-4 x}, \text { if } x \neq \frac{\pi}{4} \\ a, \quad \text { if } x=\frac{\pi}{4}\end{array}\right.$ is continuous at $\frac{\pi}{4}$, then a is equal to
a) 4
b) 2
c) 1
d) $1 / 4$
159. If the function $f: R \rightarrow R$ given by $f(x)=\left\{\begin{array}{c}x+a, \text { if } x \leq 1 \\ 3-x^{2}, \text { if } x>1\end{array}\right.$ is continuous at $x=1$, thyen a is equal to
a) 4
b) 3
c) 2
d) 1
160. If $f: R \rightarrow R$ is defined by $f(x)=\left\{\begin{array}{c}\frac{\cos 3 x-\cos x}{x^{2}}, \quad \text { for } x \neq 0 \\ \lambda, \quad \text { for } x=0\end{array}\right.$ and if f is continuous at $x=0$, then λ is equal to
a) -2
b) -4
c) -6
d) -8
161. For the function $f(x)=\left\{\begin{array}{ll}\frac{x^{3}-a^{3}}{x-a}, & x \neq a \\ b, & x=a\end{array}\right.$, if $f(x)$ is continuous at $x=a$, then b is equal to
a) a^{2}
b) $2 a^{2}$
c) $3 a^{2}$
d) $4 a^{2}$
162. If $y=f(x)=\frac{1}{u^{2}+u-1}$ where $u=\frac{1}{x-1}$, then the function is discontinuous at $x=$
a) 1
b) $1 / 2$
c) 2
d) -2
163. If $f(x)=\operatorname{Min}\{\tan x, \cot x\}$, then
a) $f(x)$ is not differentiable at $x=0, \pi / 4,5 \pi / 4$
b) $f(x)$ is continuous at $x=0, \pi / 2,3 \pi / 2$
c) $\int_{0}^{\pi / 2} f(x) d x=\ln \sqrt{2}$
d) $f(x)$ is periodic with period $\frac{\pi}{2}$
164. If $f(x)=\{|x|-\mid x-1\}^{2}$, then $f^{\prime}(x)$ equals
a) 0 for all x
b) $2\{|x|-|x-1|\}$
c) $\left\{\begin{array}{l}0 \text { for } x<0 \text { and for } x>1 \\ 4(2 x-1) \text { for } 0<x<1\end{array}\right.$
d) $\left\{\begin{array}{c}0 \text { for } x<0 \\ 4(2 x-1) \text { for } x>0\end{array}\right.$
165. If $f(x)=\left(x-x_{0}\right) \phi(x)$ and $\phi(x)$ is continuous at $x=x_{0}$, then $f^{\prime}\left(x_{0}\right)$ is equal to
a) $\phi^{\prime}\left(x_{0}\right)$
b) $\phi\left(x_{0}\right)$
c) $x_{0} \phi\left(x_{0}\right)$
d) None of these
166. The function defined by $f(x)=\left\{\begin{array}{c}\left(x^{2}+e^{\frac{1}{2-x}}\right)^{-1} \quad x \neq 2 \\ k, \quad x=2\end{array}\right.$ is continuous from right at the point $x=2$, then k is equal to
a) 0
b) $\frac{1}{4}$
c) $-\frac{1}{2}$
d) None of these
167.

If $f(x)=\left\{\begin{array}{c}\frac{1-\sin x}{(\pi-2 x)^{2}} \cdot \frac{\log \sin x}{\left(\log 1+\pi^{2}-4 \pi x+x^{2}\right)}, x \neq \frac{\pi}{2} \\ k, x=\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\pi / 2$, then $k=$
a) $-\frac{1}{16}$
b) $-\frac{1}{32}$
c) $-\frac{1}{64}$
d) $-\frac{1}{28}$
168. If $f(x)=\left\{\begin{array}{ll}\frac{\sin 5 x}{x^{2}+2 x}, & x \neq 0 \\ k+\frac{1}{2}, & x=0\end{array}\right.$ is continuous at $x=0$, then the value of k is
a) 1
b) -2
c) 2
d) $\frac{1}{2}$
169. Let $f(x)=\left\{\begin{array}{c}x^{n} \sin \frac{1}{x}, x \neq 0 \\ 0, x=0\end{array}\right.$. Then, $f(x)$ is continuous but not differentiable at $x=0$, if
a) $n \in(0,1]$
b) $n \in[1, \infty)$
c) $n \in(-\infty, 0)$
d) $n=0$
170. The function $f(x)=\left\{\begin{array}{cc}|x-3|, & \text { if } x \geq 1 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4}, & \text { if } x<1\end{array}\right.$ is
a) Continuous and differentiable at $x=3$
b) Continuous at $x=3$, but not differentiable at $x=3$
c) continuous and differentiable everywhere
d) continuous at $x=1$, but not differentiable at $x=1$
171. Let $f(x)=|x|$ and $g(x)=\left|x^{3}\right|$, then
a) $f(x)$ and $g(x)$ Both are continuous at $x=0$
b) $f(x)$ and $g(x)$ Both are differentiable at $x=0$
c) $f(x)$ is differentiable but $g(x)$ is not differentiable at $x=0$
d) $f(x)$ and $g(x)$ Both are not differentiable at $x=0$
172.

If $f(x)=\left\{\begin{array}{l}\frac{\sin (a+1) x+\sin x}{x}, x<0 \\ \frac{c, x=0}{\frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x \sqrt{x}}, x>0}\end{array}\right.$ is continuous at $x=0$, then
a) $a=-\frac{3}{2}, b=0, c=\frac{1}{2}$
b) $a=-\frac{3}{2}, b=1, c=-\frac{1}{2}$
c) $a=-\frac{3}{2}, b \in R-\{0\}, c=\frac{1}{2}$
d) None of these
173. If $f(x)=\left\{\begin{array}{c}\frac{36^{x}-9^{x}-4^{x}+1}{\sqrt{2}-\sqrt{1+\cos x}}, x \neq 0 \\ k, x=0\end{array}\right.$ is continuous at $x=0$, then k equals
a) $16 \sqrt{2} \log 2 \log 3$
b) $16 \sqrt{2} \ln 6$
c) $16 \sqrt{2} \ln 2 \ln 3$
d) None of these
174. Let [] denotes the greatest integer function and $f(x)=\left[\tan ^{2} x\right]$. Then,
a) $\lim _{x \rightarrow 0} f(x)$ does not exist
b) $f(x)$ is continuous at $x=0$
c) $f(x)$ is not differentiable at $x=0$
d) $f(x)=1$
175. Let a function $f: R \rightarrow R$, where R is the set of real numbers satisfying the equation $f(x+y)=f(x)+$ $f(y), \forall x, y$ if $f(x)$ is continuous at $x=0$, then
a) $f(x)$ is discontinuous, $\forall x \in R$
b) $f(x)$ is continuous, $\forall x \in R$
c) $f(x)$ is continuous for $x \in\{1,2,3,4\}$
d) None of the above
176. Let $f(x)=\left\{\begin{array}{c}\sin x, \text { for } x \geq 0 \\ 1-\cos x, \text { for } x \leq 0\end{array}\right.$ and $g(x)=e^{x}$. Then, $(g \circ f)^{\prime}(0)$ is
a) 1
b) -1
c) 0
d) None of these
177.

The function $f(x)\left\{\begin{array}{c}(x+1)^{2-\left(\frac{1}{|x|}+\frac{1}{x}\right)}, x \neq 0 \text { is } \\ 0,\end{array}\right.$
a) Continuous everywhere
b) Discontinuous at only one point
c) Discontinuous at exactly two points
d) None of these
178. If $f(x)=\left\{\begin{array}{c}\frac{\log (1+a x)-\log (1-b x)}{x}, x \neq 0 \\ k, x=0\end{array}\right.$ and $f(x)$ is continuous at $x=0$, then the value of k is
a) $a-b$
b) $a+b$
c) $\log a+\log b$
d) None of these
179. The value of $f(0)$, so that the function $f(x)=\frac{(27-2 x)^{1 / 3}-3}{9-3(243+5 x)^{1 / 5}}(x \neq 0)$ is continuous is given by
a) $\frac{2}{3}$
b) 6
c) 2
d) 4
180. The function $f: R /\{0\} \rightarrow R$ given by
$f(x)=\frac{1}{x}-\frac{2}{e^{2 x}-1}$
Can be made continuous at $x=0$ by defining $f(0)$ as function
a) 2
b) -1
c) 0
d) 1
181. Which one of the following is not true always?
a) If $f(x)$ is not continuous at $x=a$, then it is not differentiable at $x=a$
b) If $f(x)$ is continuous at $x=a$, then it is differentiable at $x=a$
c) If $f(x)$ and $g(x)$ are differentiable at $x=a$, then $f(x)+g(x)$ is also differentiable at $x=a$
d) If a function $f(x)$ is continuous at $x=a$, then $\lim _{x \rightarrow a} f(x)$ exists
182. The value of the derivative of $|x-1|+|x-3|$ at $x=2$ is
a) 2
b) 1
c) 0
d) -2
183. On the interval $I=[-2,2]$, the function $f(x)=\left\{\begin{array}{c}(x+1) e^{-\left(\frac{1}{|x|}+\frac{1}{x}\right)} \\ 0, \quad x=0\end{array}, x \neq 0\right.$
a) Is continuous for all $x \in I-\{0\}$
b) Assumes all intermediate values from $f(-2)$ to $f(2)$
c) Has a maximum value equal to $3 / e$
d) All the above
184. Function $f(x)=\left\{\begin{array}{c}x-1, x<2 \\ 2 x-3, x \geq 2\end{array}\right.$ is a continuous function
a) For $x=2$ only
b) For all real values of x such that $x \neq 2$
c) For all real values of x
d) For all integer values of x only
185. The function $f(x)=\left\{\begin{array}{c}\frac{\tan x}{x}, x \neq 0 \\ 1, x=0\end{array}\right.$, is
a) Continuous but not differentiable at $x=0$
b) Discontinuous at $x=0$
c) Continuous and differentiable at $x=0$
d) Not defined at $x=0$
186. At the point $x=1$, the function $f(x)=\left\{\begin{array}{l}x^{3}-1,1<x<\infty \\ x-1,-\infty<x \leq 1\end{array}\right.$
a) Continuous and differentiable
b) Continuous and not differentiable
c) Discontinuous and differentiable
d) Discontinuous and not differentiable
187.

If $f(x)$ defined by $f(x)=\left\{\begin{array}{c}\frac{\left|x^{2}-x\right|}{x^{2}-x}, x \neq 0,1 \\ 1, x=0 \\ -1, x=1\end{array}\right.$ then $f(x)$ is continuous for all
a) x
b) x except at $x=0$
c) x except at $x=1$
d) x except at $x=0$ and $x=1$
188. The value of derivative of $|x-1|+|x-3|$ at $x=2$, is
a) -2
b) 0
c) 2
d) Not defined
189. If $f(x)=\left\{\begin{array}{cc}1 & \text { for } x<0 \\ 1+\sin x & \text { for } 0 \leq x \leq \pi / 2\end{array}\right.$, then at $x=0$, the derivative $f^{\prime}(x)$ is
a) 1
b) 0
c) Infinite
d) Does not exist
190. $\operatorname{Let} g(x)=\frac{(x-1)^{n}}{\log \cos ^{m}(x-1)} ; 0<x<2, m$ and n are integers, $m \neq 0, n>0$, and let p be the left hand derivative of $|x-1|$ at $x=1$. If $\lim _{x \rightarrow 1^{+}} g(x)=p$, then
a) $n=1, m=1$
b) $n=1, m=-1$
c) $n=2, m=2$
d) $n>2, m=n$
191. The function $f(x)=\frac{2 x^{2}+7}{x^{3}+3 x^{2}-x-3}$ is discontinuous for
a) $x=1$ only
b) $x=1$ and $x=-1$ only
c) $x=1, x=-1, x=-3$ only
d) $x=1, x=-1, x=-3$ and other values of x
192. If for a function $f(x), f(2)=3, f^{\prime}(2)=4$, then $\lim _{x \rightarrow 2}[f(x)]$, where $[\cdot]$ denotes the greatest integer function, is
a) 2
b) 3
c) 4
d) Non-existent
193. A function $f(x)$ is defined as fallows for real x,
$f(x)=\left\{\begin{array}{c}1-x^{2}, \text { for } x<1 \\ 0, \quad \text { for } x=1 \\ 1+x^{2}, \text { for } x>1\end{array}\right.$ Then,
a) $f(x)$, is not continuous at $x=1$
b) $f(x)$ is continuous but not differentiable at $x=1$
c) $f(x)$ is both continuous and differentiable at $x=1$
d) None of the above
194. Let $f: R \rightarrow R$ be a function defined $\operatorname{by} f(x)=\min \{x+1,|x|+1\}$. Then, which of the following is true?
a) $f(x) \geq 1$ for all $x \in R$
b) $f(x)$ is not differentiable at $x=1$
c) $f(x)$ is differentiable everywhere
d) $f(x)$ is not differentiable at $x=0$
195. If $f(x)=\left\{\begin{array}{ll}m x+1, & x \leq \frac{\pi}{2} \\ \sin x+n, & x>\frac{\pi}{2}\end{array}\right.$ is continuous $\mathrm{t} x=\frac{\pi}{2}$, then
a) $m=1, n=0$
b) $m=\frac{n \pi}{2}+1$
c) $n=m \frac{\pi}{2}$
d) $m=n=\frac{\pi}{2}$
196. If $f(x)=\frac{\log _{e}\left(1+x^{2} \tan x\right)}{\sin x^{3}}, x \neq 0$, is to be continuous at $x=0$, then $f(0)$ must be defined as
a) 1
b) 0
c) $\frac{1}{2}$
d) -1
197. Let $f(x)=\left\{\begin{array}{c}x^{P} \sin \frac{1}{x}, x \neq 0 \\ 0, \quad x=0\end{array}\right.$ then $f(x)$ is continuous but not differentiable at $x=0$, if
a) $0<p \leq 1$
b) $1 \leq p<\infty$
c) $-\infty<p<0$
d) $p=0$
198. The function f defined by
$f(x)=\left\{\begin{array}{c}\frac{\sin x^{2}}{x}, x \neq 0 \\ 0, x=0\end{array}\right.$ is
a) Continuous and derivable at $x=0$
b) Neither continuous nor derivable at $x=0$
c) Continuous but not derivable at $x=0$
d) None of these
199. A function f on R into itself is continuous at a point a in R, iff for each $\in>0$, there exists, $\delta>0$ such that
a) $|f(x)-f(a)|<\epsilon \Rightarrow|x-a|<\delta$
b) $|f(x)-f(a)|>\in \Rightarrow|x-a|>\delta$
c) $|x-a|>\delta|f(x)-f(a)|>E$
d) $|x-a|<\delta|f(x)-f(a)|<\epsilon$
200. The function $f(x)=x-\left|x-x^{2}\right|,-1 \leq x \leq 1$ is continuous on the interval
a) $[-1,1]$
b) $(-1,1)$
c) $[-1,0) \cup(0,1]$
d) $(-1,0) \cup(0,1)$
201. if $f(x)=a|\sin x|+b e^{|x|}+c|x|^{3}$ and if $f(x)$ is differentiable at $x=0$, then
a) $a=b=c=0$
b) $a=0, b=0 ; c \in R$
c) $b=c=0, a \in R$
d) $c=0, a=0, b \in R$
202. Let $f(x)$ be defined on R such that $f(1)=2, f(2)=8$ and $f(u+v)=f(u)+k u v-2 v^{2}$ for all $u, v \in R(\mathrm{k}$ is a fixed constant). Then,
a) $f^{\prime}(x)=8 x$
b) $f(x)=8 x$
c) $f^{\prime}(x)=x$
d) None of these
203. If $f(x)=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$, then $f(x)$ is differentiable on
a) $[-1,1]$
b) $R-\{-1,1\}$
c) $R-(-1,1)$
d) None of these
204. Define f on R into itself by $f(x)=\left\{\begin{array}{c}x \sin \frac{1}{x}, \text { when } x \neq 0 \\ 0, \text { when } x=0\end{array}\right.$, then
a) f is continuous at 0 but not differentiable at 0
b) f is both continuous and differentiable at 0
c) f is differentiable but not continuous at 0
d) None of the above
205. The set of points where the function $f(x)=|x-1| e^{x}$ is differentiable, is
a) R
b) $R-\{1\}$
c) $R-\{-1\}$
d) $R-\{0\}$
206. Let $f(x+y)=f(x) f(y)$ and $f(x)=1+x g(x) G(x)$, where $\lim _{x \rightarrow 0} g(x)=a$ and $\lim _{x \rightarrow 0} G(x)=b$. Then $f^{\prime}(x)$ is equal to
a) $1+a b$
b) $a b$
c) a / b
d) None of these

: ANSWER KEY :														
1)	b	2)	d	3)	b	4)	c	189)	d	190)	c	191)	c	192)
5)	b	6)	b	7)	b	8)	c	193)	a	194)	c	195)	c	196)
9)	a	10)	d	11)	d	12)	a	197)	a	198)	a	199)	a	200)
13)	a	14)	b	15)	d	16)	a	201)	b	202)	a	203)	b	204)
17)	a	18)	b	19)	c	20)	b	205)	b	206)	d			
21)	b	22)	c	23)	d	24)	b							
25)	a	26)	d	27)	c	28)	b							
29)	d	30)	b	31)	b	32)	b							
33)	b	34)	c	35)	d	36)	c							
37)	b	38)	a	39)	a	40)	a							
41)	c	42)	b	43)	b	44)	c							
45)	d	46)	c	47)	d	48)	b							
49)	c	50)	d	51)	c	52)	a							
53)	c	54)	b	55)	c	56)	d							
57)	c	58)	d	59)	b	60)	c							
61)	a	62)	a	63)	a	64)	b							
65)	d	66)	a	67)	c	68)	d							
69)	d	70)	a	71)	a	72)	b							
73)	b	74)	c	75)	d	76)	b							
77)	b	78)	c	79)	b	80)	b							
81)	d	82)	c	83)	a	84)	b							
85)	c	86)	c	87)	c	88)	b							
89)	c	90)	a	91)	b	92)	d							
93)	b	94)	c	95)	b	96)	c							
97)	d	98)	d	99)	d	100)	d							
101)	a	102)	b	103)	c	104)	c							
105)	a	106)	a	107)	d	108)	a							
109)	b	110)	a	111)	a	112)	c							
113)	b	114)	c	115)	c	116)	c							
117)	c	118)	b	119)	b	120)	c							
121)	a	122)	c	123)	b	124)	d							
125)	c	126)	b	127)	a	128)	b							
129)	d	130)	b	131)	b	132)	a							
133)	a	134)	d	135)	a	136)	d							
137)	a	138)	b	139)	d	140)	a							
141)	c	142)	d	143)	a	144)	a							
145)	a	146)	d	147)	a	148)	b							
149)	c	150)	b	151)	a	152)	c							
153)	b	154)	a	155)	b	156)	d							
157)	d	158)	d	159)	d	160)	b							
161)	c	162)	a	163)	a	164)	c							
165)	b	166)	b	167)	c	168)	c							
169)	a	170)	b	171)	a	172)	c							
173)		174)	b	175)	b	176)	c							
177)	b	178)	b	179)	c	180)	d							
181)	b	182)	c	183)	d	184)								
185)	c	186)	b	187)	d	188)								

: HINTS AND SOLUTIONS :

1 (b)
We have,
$-\pi / 4<x<\pi / 4$
$\Rightarrow-1<\tan x<1 \Rightarrow 0 \leq \tan ^{2} x<1 \Rightarrow\left[\tan ^{2} x\right]$

$$
=0
$$

$\therefore f(x)=\left[\tan ^{2} x\right]=0$ for all $x \in(-\pi / 4, \pi / 4)$
Thus, $f(x)$ is a constant function on \in ($-\pi / 4, \pi / 4$)
So, it is continuous on $\in(-\pi / 4, \pi / 4)$ and
$f^{\prime}(x)=0$ for all $x \in(-\pi / 4, \pi / 4)$
2 (d)
Since, $f(x)$ is continuous at $x=0$
$\therefore \quad \lim _{x \rightarrow 0} f(x)=f(0)$
$\Rightarrow \lim _{x \rightarrow 0} \frac{-e^{x}+2^{x}}{x}=f(0)$
$\Rightarrow \lim _{x \rightarrow 0} \frac{-e^{x}+2^{x} \log 2}{1}=f(0) \quad[$ by L 'Hospital's rule]
$\Rightarrow f(0)=-1+\log 2$
3 (b)
Since $f(x)$ is an even function
$\therefore f(-x)=f(x)$ for all x
$\Rightarrow-f^{\prime}(-x)=f^{\prime}(x)$ for all x
$\Rightarrow f^{\prime}(-x)=-f^{\prime}(x)$ for all x
$\Rightarrow f^{\prime}(x)$ is an odd function
4 (c)
We have,
$f(x)=\left\{\begin{array}{c}{[\cos \pi x], x<1} \\ |x-2|, 1 \leq x<2\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{cc}2-x, & 1 \leq x<2 \\ -1, & 1 / 2<x<1 \\ 0, & 0<x \leq 1 / 2 \\ & 1, \\ 0, & x=0 \\ -1, & -3 / 2<x<0 \\ -1 / 2<x<-1 / 2\end{array}\right.$
It is evident from the definition that $f(x)$ is discontinuous at $x=1 / 2$

5
(b)

We have,
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{h \rightarrow 0} f(2-h)$

$$
=\lim _{h \rightarrow 0} \frac{|-2-h+2|}{\tan ^{-1}(-2-h+2)}
$$

$\Rightarrow \lim _{x \rightarrow 2^{-}} f(x)=\lim _{h \rightarrow 0} \frac{h}{\tan ^{-1}(-h)}=\lim _{h \rightarrow 0} \frac{-h}{\tan ^{-1} h}=-1$ and,

$$
\lim _{x \rightarrow-2^{+}} f(x)=\lim _{h \rightarrow 0} f(-2+h)
$$

$$
=\lim _{h \rightarrow 0} \frac{|-2+h+2|}{\tan ^{-1}(-2+h+2)}
$$

$\Rightarrow \lim _{x \rightarrow-2^{+}} f(x)=\lim _{h \rightarrow 0} \frac{h}{\tan ^{-1} h}=1$
$\therefore \lim _{x \rightarrow-2^{-}} f(x) \neq \lim _{\rightarrow-2^{+}} f(x)$
So, $f(x)$ is neither continuous nor differentiable at $x=-2$

From the graph of $f(x)=|\log | x| |$ it is clear that $f(x)$ is everywhere continuous but not differentiable at $x= \pm 1$, due to sharp edge

We have,
$\lim _{x \rightarrow a} \frac{x f(a)-a f(x)}{x-a}$
$=\lim _{x \rightarrow a} \frac{x f(a)-a f(a)-a(f(x)-f(a))}{x-a}$
$\Rightarrow \lim _{x \rightarrow a} \frac{x f(a)-a f(x)}{x-a}$

$$
=\lim _{x \rightarrow a} \frac{f(a)(x-a)}{x-a}
$$

$$
-a \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

$\Rightarrow \lim _{x \rightarrow a} \frac{x f(a)-a f(x)}{x-a}=f(a)-a f^{\prime}(a)=4-2 a$

(c)

Given, $f(x)=x(\sqrt{x}+\sqrt{x+1})$. At $x=0$ LHL of \sqrt{x} is not defined, therefore it is not continuous at $x=0$
Hence, it is not differentiable at $x=0$
Here, $f^{\prime}(x)=\left\{\begin{array}{c}2 a x, b \neq 0, x \leq 1 \\ 2 b x+a, x>1\end{array}\right.$
Since, $f(X)$ is continuous at $x=1$
$\therefore \lim _{h \rightarrow 0} f(x)=\lim _{h \rightarrow 1^{+}} f(x)$
$\Rightarrow a+b=b+a+c \Rightarrow c=0$
Also, $f(x)$ is differentiable at $x=1$
\therefore (LHD at $x=1$) $=$ (RHD at $x=1$)

$$
\Rightarrow 2 a=2 b(1)+a \Rightarrow a=2 b
$$

10
(d)

We have,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left\{\frac{x^{2}}{4}-\frac{3 x}{4}+\frac{13}{4}\right\}=\frac{1}{4}-\frac{3}{2}+\frac{13}{4}$

$$
=2
$$

$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}|x-3|=2$
and, $f(1)=|1-3|=2$
$\therefore \lim _{x \rightarrow 1^{-}} f(x)=f(1)=\lim _{x \rightarrow 1^{+}} f(x)$
So, $f(x)$ is continuous at $x=1$
We have,

$$
\begin{gathered}
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3}|x-3|=0, \lim _{x \rightarrow 3^{+}} f(x) \\
=\lim _{x \rightarrow 3}|x-3|=0
\end{gathered}
$$

and, $f(3)=0$
$\therefore \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=f(3)$
So, $f(x)$ is continuous at $x=3$
Now,
(LHD at $x=1$)
$=\left\{\frac{d}{d x}\left(\frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4}\right)\right\}_{x=1}=\left\{\frac{x}{2}-\frac{3}{2}\right\}_{x=1}=\frac{1}{2}-\frac{3}{2}$

$$
=-1
$$

$($ RHD at $x=1)=\left\{\frac{d}{d x}(-(x-3))\right\}_{x=1}=-1$
$\therefore($ LHD at $x=1)=($ RHD at $x=1)$
So, $f(x)$ is differentiable at $x=1$
11 (d)
$f(x)=\left\{\begin{array}{l}\frac{2 \sin x-\sin 2 x}{2 x \cos x} \\ a, \quad \text { if } x=0\end{array}\right.$, if $x \neq 0$,
Now, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{2 x \cos x} \quad\left(\frac{0}{0}\right.$ form $)$
$=\lim _{x \rightarrow 0} \frac{2 \cos x-2 \cos 2 x}{2(\cos x-x \sin x)}$
$=\lim _{x \rightarrow 0} \frac{2-2}{2(1-0)}=0$
Since, $f(x)$ is continuous at $x=0$
$\therefore \quad f(0)=\lim _{x \rightarrow 0} f(x)$
$\Rightarrow a=0$
12 (a)
Given, $f(x)=x+|x|$
$\therefore \quad f(x)= \begin{cases}2 x, & x \geq 0 \\ 0, & x<0\end{cases}$

It is clear from the graph of $f(x)$ is continuous for every value of x
Alternate
Since, x and $|x|$ is continuous for every value of x,
so their sum is also continous for every value of x
13 (a)
Since $f(x)$ is continuous at $x=0$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=f(0)=\lim _{x \rightarrow 0^{+}} f(x)$
$\Rightarrow \lim _{x \rightarrow 0}\{1+|\sin x|\}^{\frac{a}{\sin x \mid}}=b=\lim _{x \rightarrow 0} e^{\frac{\tan 2 x}{\tan 3 x}}$
$\Rightarrow e^{a}=b=e^{2 / 3} \Rightarrow a=\frac{2}{3}$ and $a=\log _{e} b$
14 (b)
We have,
$f(x)=\left\{\begin{aligned} x^{2}+\frac{\left(x^{2} / 1+x^{2}\right)}{1-\left(1 / 1+x^{2}\right)} & =x^{2}+1, x \neq 0 \\ 0, \quad x & =0\end{aligned}\right.$
Clearly, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=1 \neq f(0)$
So, $f(x)$ is discontinuous at $x=0$
(d)
$\mathrm{LHD}=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}$
$=\lim _{h \rightarrow 0} \frac{1-1}{-h}=0$
$\mathrm{RHD}=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$
$=\lim _{h \rightarrow 0} \frac{1+\sin (0+h)-1}{h}=\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$
\Rightarrow LHD \neq RHD
16
(a)

Given, $f(x)=x-\left|x-x^{2}\right|$
At $x=1, \quad f(1)=1-|1-1|=1$
$\lim _{x \rightarrow 1^{-1}} f(x)=\lim _{h \rightarrow 0}\left[(1-h)-\left|(1-h)-(1-h)^{2}\right|\right]$
$=\lim _{h \rightarrow 0}\left[(1-h)-\left|h-h^{2}\right|\right]=1$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0}\left[(1+h)-\left|(1+h)-(1+h)^{2}\right|\right]$
$=\lim _{h \rightarrow 0}\left[1+h-\left|-h^{2}-h\right|\right]=1$
$\because \lim _{x \rightarrow 1^{-1}} f(x)=\lim _{x \rightarrow 1^{+}}=f(1)$
17 (a)
We have,
$f(x+y+z)=f(x) f(y) f(z)$ for all $x, y, z \quad \ldots$ (i)
$\Rightarrow f(0)=f(0) f(0) f(0) \quad[$ Putting $x=y=z=0]$
$\Rightarrow f(0)\left\{1-f(0)^{2}\right\}=0$
$\Rightarrow f(0)=1 \quad[\because f(0)=0 \Rightarrow f(x)=0$ for all $x]$
Putting $z=0$ and $y=2$ in (i), we get
$f(x+2)=f(x) f(2) f(0)$
$\Rightarrow f(x+2)=4 f(x)$ for all x
$\Rightarrow f^{\prime}(2)=4 f^{\prime}(0) \quad$ [Putting $x=0$]
$\Rightarrow f^{\prime}(2)=4 \times 3=12$
18 (b)
For $x>1$, we have
$f(x)=|\log | x| |=\log x \quad \Rightarrow \quad f^{\prime}(x)=\frac{1}{x}$
For $x<-1$, we have
$f(x)=|\log | x| |=\log (-x) \quad \Rightarrow \quad f^{\prime}(x)=\frac{1}{x}$

For $0<x<1$, we have
$f(x)=|\log | x| |=-\log x \quad \Rightarrow \quad f^{\prime}(x)=\frac{-1}{x}$
For $-1<x<0$, we have
$f(x)=-\log (-x) \Rightarrow f^{\prime}(x)=-\frac{1}{x}$
Hence, $f^{\prime}(x)= \begin{cases}\frac{1}{x}, & |x|>1 \\ -\frac{1}{x}, & |x|<1\end{cases}$
19 (c)
Since, $\lim _{x \rightarrow 0} f(x)=f(0)$
$\Rightarrow \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=k$
$\Rightarrow \lim _{x \rightarrow 0} \frac{-(-\sin x)}{2 x}=k \quad$ [using L 'Hospital's rule]
$\Rightarrow \quad \frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin x}{x}=k \quad \Rightarrow \quad k=\frac{1}{2}$
20 (b)
Given, $f(X)=|x-1|+|x-2|$
$=\left\{\begin{array}{c}x-1+x-2, \quad x \geq 2 \\ x-1+2-x, \quad 1 \leq x<2 \\ 1-x+2-x, \quad x<1\end{array}\right.$
$=\left\{\begin{array}{c}2 x-3, \quad x \geq 2 \\ 1, \quad 1 \leq x<2 \\ 3-2 x, \quad x<1\end{array}\right.$
$f^{\prime}(x)=\left\{\begin{array}{cc}2, & x>2 \\ 0, & 1<x<2 \\ -1, & x<1\end{array}\right.$
Hence, except $x=1$ and $x=2, f(x)$ is
differentiable everywhere in R
$21 \quad$ (b)
Clearly, $f(x)$ is differentiable for all non-zero values of x. For $x \neq 0$, we have
$f^{\prime}(x)=\frac{x e^{-x^{2}}}{\sqrt{1-e^{-x^{2}}}}$
Now,
$($ LHD at $x=0)=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}$

$$
=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{x-0}
$$

$\Rightarrow($ LHD at $x=0)=\lim _{h \rightarrow 0} \frac{\sqrt{1-e^{-h^{2}}}}{-h}$

$$
=\lim _{h \rightarrow 0}-\frac{\sqrt{1-e^{-h^{2}}}}{h}
$$

$\Rightarrow($ LHD at $x=0)=-\lim _{h \rightarrow 0} \sqrt{\frac{e^{h^{2}}-1}{h^{2}}} \times \frac{1}{\sqrt{e^{h^{2}}}}=-1$
and, (RHD at $x=0)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=$ $\lim _{h \rightarrow 0} \frac{\sqrt{1-e^{-h^{2}}}-0}{h}$
$\Rightarrow($ RHD at $x=0)=\lim _{h \rightarrow 0} \sqrt{\frac{e^{h^{2}}-1}{h^{2}}} \times \frac{1}{\sqrt{e^{h^{2}}}}=1$
So, $f(x)$ is not differentiable at $x=0$
Hence, the set of points of differentiability of $f(x)$ is $(-\infty, 0) \cup(0, \infty)$
22 (c)
Since $f(x)$ is continuous at $x=0$
$\therefore f(0)=\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$
(d)

For $f(x)$ to be continuous everywhere, we must have,
$f(0)=\lim _{x \rightarrow 0} f(x)$
$\Rightarrow f(0)=\lim _{x \rightarrow 0} \frac{2-(256-7 x)^{1 / 8}}{(5 x+32)^{1 / 5}-2} \quad\left[\operatorname{Form} \frac{0}{0}\right]$
$\Rightarrow f(0)=\lim _{x \rightarrow 0} \frac{\frac{7}{8}(256-7 x)^{-\frac{7}{8}}}{(5 x+32)^{-4 / 5}}=\frac{7}{8} \times \frac{2^{-7}}{2^{-4}}=\frac{7}{64}$
24 (b)
We have,
$f(x)=|x|^{3}=\left\{\begin{array}{cc}x^{3}, & x \geq 0 \\ -x^{3}, & x<0\end{array}\right.$
$\therefore($ LHD at $x=0)=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0}-\frac{x^{3}}{x}$

$$
=0
$$

and,
$\therefore($ RHD at $x=0)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{3}}{x}$

$$
=0
$$

Clearly, $(\operatorname{LHD}$ at $x=0)=($ RHD at $x=0)$

Hence, $f(x)$ is differentiable at $x=0$ and its derivative at $x=0$ is 0
25 (a)
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left(\frac{4^{x}-1}{x}\right)^{3} \times \frac{\left(\frac{x}{a}\right)}{\sin \left(\frac{x}{a}\right)} \cdot \frac{a x^{2}}{\log \left(1+\frac{1}{3} x^{2}\right)}$ $=(\log 4)^{3} \cdot 1 \cdot a \lim _{x \rightarrow 0}\left(\frac{x^{2}}{\frac{1}{3} x^{2}-\frac{1}{18} x^{4}+\ldots}\right)$
$=3 a(\log 4)^{3}$
$\because \quad \lim _{x \rightarrow 0} f(x)=f(0)$
$\Rightarrow 3 a(\log 4)^{3}=9(\log 4)^{3}$
$\Rightarrow \quad a=3$
26 (d)
We have,
$f(x)=|[x] x|$ for $-1<x \leq 2$
$\Rightarrow f(x)=\left\{\begin{array}{cc}-x, & -1<x<0 \\ 0, & 0 \leq x<1 \\ x, & 1 \leq x<2 \\ 2 x, & x=2\end{array}\right.$
It is evident from the graph of this function that it is continuous but not differentiable at $x=0$. Also, it is discontinuous at $x=1$ and non-differentiable at $x=2$
27 (c)
Given, $f(x)=\left[x^{3}-3\right]$
Let $g(x)=x^{3}-x$ it is in increasing function
$\therefore g(1)=1-3=-2$
and $g(2)=8-3=5$
Here, $f(x)$ is discontinuous at six points
28
(b)

Given, $y=\cos ^{-1} \cos (x-1), x>0$
$\Rightarrow \quad y=x-1, \quad 0 \leq x-1 \leq \pi$
$\therefore y=x-1, \quad 1 \leq x \leq \pi+1$
At $x=\frac{5 \pi}{4} \in[1, \pi+1]$
$\Rightarrow \frac{d y}{d x}=1 \Rightarrow\left(\frac{d y}{d x}\right)_{x=\frac{5 \pi}{4}}=1$
29 (d)
We have,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x)+f(h)-f(x)}{h} \quad[\because f(x+y)$

$$
=f(x)+f(y)]
$$

$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(h)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} g(h)}{h}$
$\Rightarrow f^{\prime}(x)=0 \times g(0)=0 \quad\left[\begin{array}{l}\because g \text { is continuous } \\ \therefore \lim _{h \rightarrow 0} g(h)=g(0)\end{array}\right]$

(b)

Using Heine's definition of continuity, it can be
shown that $f(x)$ is everywhere discontinuous
31 (b)
For $x \neq-1$, we have
$f(x)=1-2 x+3 x^{2}-4 x^{3}+\cdots \infty$
$\Rightarrow f(x)=(1+x)^{-2}=\frac{1}{(1+x)^{2}}$
Thus, we have
$f(x)=\left\{\begin{array}{c}\frac{1}{(1+x)^{2}}, \quad x \neq-1 \\ 1, \quad x=-1\end{array}\right.$
We have,
$\lim _{x \rightarrow-1^{-}} f(x) \rightarrow \infty$ and $\lim _{x \rightarrow-1^{-}} f(x) \rightarrow \infty$
So, $f(x)$ is not continuous at $x=-1$
Consequently, it is not differentiable there at

At $x=a$,
LHL $=\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a} 2 a-x=a$
And RHL $=\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a} 3 x-2 a=a$
And $f(a)=3(a)-2 a=a$
$\therefore \mathrm{LHL}=\mathrm{RHL}=f(a)$
Hence, it is continuous at $x=a$
Again, at $x=a$
$\mathrm{LHD}=\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}$
$=\lim _{h \rightarrow 0} \frac{2 a-(a-h)-a}{-h}=-1$
and $\mathrm{RHD}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
$=\lim _{h \rightarrow 0} \frac{3(a+h)-2 a-a}{h}=3$
\therefore LHD $=$ RHD

Hence, it is not differentiable at $x=a$

(b)

We have,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x) f(h)-f(x)}{h}$
$\Rightarrow f^{\prime}(x)=f(x) \lim _{h \rightarrow 0} \frac{f(h)-1}{h}$
$\Rightarrow f^{\prime}(x)=f(x) \lim _{h \rightarrow 0} \frac{1+(\sin 2 h) g(h)-1}{h}$
$\Rightarrow f^{\prime}(x)=f(x) \lim _{h \rightarrow 0} \frac{\sin 2 h}{h} \times \lim _{h \rightarrow 0} g(h)$

$$
=2 f(x) g(0)
$$

$34 \quad$ (c)

If $-1 \leq x \leq 1$, then $0 \leq x \sin \pi x \leq 1 / 2$
$\therefore f(x)=[x \sin \pi x]=0$, for $-1 \leq x \leq 1$
If $1<x<1+h$, where h is a small positive real number, then
$\pi<\pi x<\pi+\pi h \Rightarrow-1<\sin \pi x<0 \Rightarrow-1$

$$
<x \sin \pi x<0
$$

$\therefore f(x)=[x \sin \pi x]=-1$ in the right
neighbourhood of $x=1$
Thus, $f(x)$ is constant and equal to zero in $[-1,1]$ and so $f(x)$ is differentiable and hence continuous on $(-1,1)$
At $x=1, f(x)$ is discontinuous because
$\Rightarrow \lim _{x \rightarrow 1^{-}} f(x)=0$ and $\lim _{x \rightarrow 1^{+}} f(x)=-1$
Hence, $f(x)$ is not differentiable at $x=1$
35 (d)
We have,
$($ LHD at $x=0)=\left\{\frac{d}{d x}(1)\right\}_{x=0}=0$
$($ RHD at $x=0)=\left\{\frac{d}{d x}(1+\sin x)\right\}_{x=0}=\cos 0=1$
Hence, $f^{\prime}(x)$ at $x=0$ does not exist
36 (c)
Here, $f^{\prime}(x)=\left\{\begin{array}{c}2 b x+a, x \geq-1 \\ 2 a, \quad x<-1\end{array}\right.$
Given, $f^{\prime}(x)$ is continuous everywhere
$\therefore \lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{-}} f(x)$
$\Rightarrow-2 b+a=-2 a$
$\Rightarrow \quad 3 a=2 b$
$\Rightarrow \quad a=2, \quad b=3$
or $a=-2, \quad b=-3$
37 (b)
We have,
$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\log \cos x}{\log \left(1+x^{2}\right)}$
$\Rightarrow \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\log (1-1+\cos x)}{\log \left(1+x^{2}\right)} \\
& \cdot \frac{1-\cos x}{1-\cos x}
\end{aligned}
$$

$\Rightarrow \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\log \{1-(1-\cos x)\}}{1-\cos x} \\
& \cdot \frac{1-\cos x}{\log \left(1+x^{2}\right)}
\end{aligned}
$$

$\Rightarrow \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$

$$
\begin{aligned}
&=-\lim _{x \rightarrow 0} \log \frac{[1-(1-\cos x)]}{-(1-\cos x)} \\
& \times \frac{2 \sin ^{2} \frac{x}{2}}{4\left(\frac{x}{2}\right)^{2}} \times \frac{x^{2}}{\log \left(1+x^{2}\right)} \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=-\frac{1}{2}
\end{aligned}
$$

Hence, $f(x)$ is differentiable and hence continuous at $x=0$
(a)

Since $f(x)$ is continuous at $x=1$. Therefore,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x) \Rightarrow A-B=3 \Rightarrow A=$ $3+B$
If $f(x)$ is continuous at $x=2$, then
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x) \Rightarrow 6=4 B-A$
...(ii)
Solving (i) and (ii) we get $B=3$
As $f(x)$ is not continuous at $x=2$. Therefore, $B \neq 3$
Hence, $A=3+B$ and $B \neq 3$
39 (a)
We have,
$f(x)=\left\{\begin{aligned} x-4, & x \geq 4 \\ -(x-4), & 1 \leq x<4 \\ \left(x^{3} / 2\right)-x^{2}+3 x+ & (1 / 2), \quad x<1\end{aligned}\right.$
Clearly, $f(x)$ is continuous for all x but it is not
differentiable at $x=1$ and $x=4$
40 (a)
It is given that $f(x)$ is continuous at $x=1$
$\therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$
$\Rightarrow \lim _{x \rightarrow 1^{-}} a[x+1]+b[x-1]$

$$
=\lim _{x \rightarrow 1^{+}} a[x+1]+b[x-1]
$$

$\Rightarrow a-b=2 a+0 \times b$
$\Rightarrow a+b=0$
41 (c)
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \lambda[x]=0$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} 5^{1 / x}=0$
And $f(0)=\lambda[0]=0$
$\therefore f$ is continuous only whatever λ may be
42
(b)

We have,
$y(x)=f\left(e^{x}\right) e^{f(x)}$
$\Rightarrow y^{\prime}(x)=f^{\prime}\left(e^{x}\right) \cdot e^{x} \cdot e^{f(x)}+f\left(e^{x}\right) e^{f(x)} f^{\prime}(x)$
$\Rightarrow y^{\prime}(0)=f^{\prime}(1) e^{f(0)}+f(1) e^{f(0)} f^{\prime}(0)$
$\Rightarrow y^{\prime}(0)=2 \quad\left[\because f(0)=f(1)=0, f^{\prime}(1)=2\right]$
43
(b)

Since $f(x)$ is differentiable at $x=1$. Therefore,
$\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}$
$\Rightarrow \lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h}=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
$\Rightarrow \lim _{h \rightarrow 0} \frac{a(1-h)^{2}-b-1}{-h}=\lim _{h \rightarrow 0} \frac{\frac{1}{|1+h|}-1}{h}$
$\Rightarrow \lim _{h \rightarrow 0} \frac{(a-b-1)-2 a h+a h^{2}}{-h}=\lim _{h \rightarrow 0} \frac{-h}{h(1+h)}$
$\Rightarrow \lim _{h \rightarrow 0} \frac{-(a-b-1)-2 a h-a h^{2}}{h}=-1$
$\Rightarrow-(a-b-1)=0$ and so $\lim _{h \rightarrow 0} \frac{2 a h-a h^{2}}{h}=-1$
$\Rightarrow a-b-1=0$ and $2 a=-1 \Rightarrow a=-\frac{1}{2}, b=-\frac{3}{2}$
44 (c)
We have,
$f(x)=\frac{\sin 4 \pi[x]}{1+[x]^{2}}=0$ for all
$x[\because 4 \pi[x]$ is a multiple of $\pi]$
$\Rightarrow f^{\prime}(x)=0$ for all x
45 (d)
We have,
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \sin \frac{1}{x}$
$\Rightarrow \lim _{x \rightarrow 0} f(x)=$ An oscillating number which
oscillates between -1 and 1
Hence, $\lim _{x \rightarrow 0} f(x)$ does not exist
Consequently, $f(x)$ cannot be continuous at $x=0$ for any value of k
(c)

It is clear from the graph that $f(x)$ is continuous everywhere and also differentiable everywhere except $\{-1,1\}$ due to sharp edge
47 (d)
We have,
$\log \left(\frac{x}{y}\right)=\log x-\log y$ and $\log (e)=1$
$\therefore f(x)=\log x$
Clearly, $f(x)$ is unbounded because $f(x) \rightarrow-\infty$ as $x \rightarrow 0$ and $f(x) \rightarrow+\infty$ as $x \rightarrow \infty$
We have,
$f\left(\frac{1}{x}\right)=\log \left(\frac{1}{x}\right)=-\log x$
As $x \rightarrow 0, f\left(\frac{1}{x}\right) \rightarrow \infty$
Also,
$\lim _{x \rightarrow 0} x f(x)=\lim _{x \rightarrow 0} x \log x=\lim _{x \rightarrow 0} \frac{\log x}{1 / x}$
$\Rightarrow \lim _{x \rightarrow 0} x f(x)=\lim _{x \rightarrow 0} \frac{1 / x}{-1 / x^{2}}=-\lim _{x \rightarrow 0} x=0$
(c)

Since $g(x)$ is the inverse of $f(x)$. Therefore,
$\operatorname{fog}(x)=x$, for all x
$\Rightarrow \frac{d}{d x}\{\operatorname{fog}(x)\}=1$, for all x
$\Rightarrow f^{\prime}(g(x)) g^{\prime}(x)=1$, for all x
$\Rightarrow \frac{1}{1+\{g(x)\}^{3}} \times g^{\prime}(x)=1$ for all $x \quad\left[\because f^{\prime}(x)=\right.$ $11+x 3$
$\Rightarrow g^{\prime}(x)=1+\{g(x)\}^{3}$, for all x
50 (d)
We have,
$f(x)=\left|x^{2}-4 x+3\right|$
$\Rightarrow f(x)=\left\{\begin{array}{cc}x^{2}-4 x+3, & \text { if } x^{2}-4 x+3 \geq 0 \\ -\left(x^{2}-4 x+3\right), & \text { if } x^{2}-4 x+3<0\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{cc}x^{2}-4 x+3, & \text { if } x \leq 1 \text { or } x \geq 3 \\ -x^{2}+4 x-3, & \text { if } 1<x<3\end{array}\right.$
Clearly, $f(x)$ is everywhere continuous
Now,
$($ LHD at $x=1)=\left(\frac{d}{d x}\left(x^{2}-4 x+3\right)\right)_{\text {at } x=1}$
$\Rightarrow($ LHD at $x=1)=(2 x-4)_{\text {at } x=1}=-2$
and,
$($ RHD at $x=1)=\left(\frac{d}{d x}\left(-x^{2}+4 x-3\right)\right)_{\text {at } x=1}$
$\Rightarrow($ RHD at $x=1)=(-2 x+4)_{\text {at } x=1}=2$
Clearly, (LHD at $x=1) \neq($ RHD at $x=1)$
So, $f(x)$ is not differentiable at $x=1$
Similarly, it can be checked that $f(x)$ is not
differentiable at $x=3$ also
ALITER We have,
$f(x)=\left|x^{2}-4 x+3\right|=|x-1||x-3|$
Since, $|x-1|$ and $|x-3|$ are not differentiable at 1 and 3 respectively
Therefore, $f(x)$ is not differentiable at $x=1$ and $x=3$
51 (c)
The point of discontinuity of $f(x)$ are those points where $\tan x$ is infinite.
ie, $\tan x=\tan \infty$
$\Rightarrow \quad x=(2 n+1) \frac{\pi}{2}, \quad n \in I$
52 (a)
Using graphical transformation

(iii) $y=||x|-1|$

As, we know the function is not differentiable at6 sharp edges and in figure (iii) $y=||x|-1|$ we have 3 sharp edges at $x=-1,0,1$
$\therefore f(x)$ is not differentiable at $\{0, \pm 1\}$
53 (c)
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} 2(0-h)=0$
And $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} 2(0+h)+1=1$
$\because \lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$
$\therefore f(x)$ is discontinuous at $x=0$
54 (b)
Draw a rough sketch of $y=f(x)$ and observe its properties
55
$\lim _{x \rightarrow \pi} \frac{(1+\cos x)-\sin x}{(1+\cos x)+\sin x}$
$=\lim _{x \rightarrow \pi} \frac{2 \cos ^{2} x / 2-2(\sin x / 2) \cos x / 2}{2 \cos ^{2} x / 2+2(\sin x / 2) \cos x / 2}$
$=\lim _{x \rightarrow \pi} \tan \left(\frac{\pi}{4}-\frac{\pi}{2}\right)=-1$
Since, $f(x)$ is continuous at $x=\pi$
$\therefore f(\pi)=\lim _{x \rightarrow \pi} f(x)=-1$
56 (d)
$f^{\prime}\left(1^{-}\right)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h}$
$=\lim _{h \rightarrow 0} \frac{(1-h-1) \cdot \sin \left(\frac{1}{1-h-1}\right)-0}{-h}$
$=-\lim _{h \rightarrow 0} \sin \frac{1}{h}$
And $f^{\prime}\left(1^{+}\right)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
$=\lim _{h \rightarrow 0} \frac{(1+h-1) \sin \left(\frac{1}{1+h-1}\right)-0}{h}$
$=\lim _{h \rightarrow 0} \sin \frac{1}{h}$
$\therefore \quad f^{\prime}\left(1^{-}\right) \neq f^{\prime}\left(1^{+}\right)$
f is not differentiable at $x=1$
Again, now
$f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{(0+h-1) \sin \left(\frac{1}{0+h-1}\right)-\sin 1}{h}$
$=\lim _{h \rightarrow 0} \frac{\left[-\left\{(h-1) \cos \left(\frac{1}{h-1}\right) \times\left(\frac{1}{(h-1)^{2}}\right)\right\}+\sin \left(\frac{1}{h-1}\right)\right]}{1}$
[using L 'Hospital's rule]
$=\cos 1-\sin 1$
And $f^{\prime}\left(0^{-}\right)=\lim _{h \rightarrow 0} \frac{(0-h-1) \sin \left(\frac{1}{0-h-1}\right)-\sin 1}{-h}$
$=\lim _{h \rightarrow 0} \frac{(-h-1) \cos \left(\frac{1}{-h-1}\right)\left(\frac{1}{(-h-1)^{2}}\right)-\sin \left(\frac{1}{-h-1}\right)}{-1}$
[using L 'Hospital's rule]
$=\cos 1-\sin 1$
$\Rightarrow f^{\prime}\left(0^{-}\right)=f^{\prime}\left(0^{+}\right)$
$\therefore f$ is differentiable at $x=0$
57 (c)
As $f(x)$ is continuous at $x=\frac{\pi}{2}$
$\therefore \lim _{x \rightarrow \frac{\pi_{-}}{2}} f(x)=\lim _{x \rightarrow \frac{\pi_{+}}{2}} f(x)$

$$
\begin{gathered}
\Rightarrow m \frac{\pi}{2}+1=\sin \frac{\pi}{2}+n \Rightarrow m \frac{\pi}{2}+1=1+n \Rightarrow n \\
=\frac{m \pi}{2}
\end{gathered}
$$

(d)

Since, $\frac{f(6)-f(1)}{6-1} \geq 2 \quad\left[\because \quad f^{\prime}(x)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right]$
$\Rightarrow f(6)-f(1) \geq 10$
$\Rightarrow f(6)+2 \geq 10$
$\Rightarrow f(6) \geq 8$
59 (b)
We have,
$\lim _{x \rightarrow a^{-}} f(x) g(x)=\lim _{x \rightarrow a^{-}} f(x) \cdot \lim _{x \rightarrow a^{-}} g(x)=m \times l$

$$
=m l
$$

and,
$\lim _{x \rightarrow a^{+}} f(x) g(x)=\lim _{x \rightarrow a^{+}} f(x) \lim _{x \rightarrow a^{+}} g(x)=\operatorname{lm}$
$\therefore \lim _{x \rightarrow a^{-}} f(x) g(x)=\lim _{x \rightarrow a^{+}} f(x) g(x)=l m$
Hence, $\lim _{x \rightarrow a} f(x) g(x)$ exists and is equal to $l m$
(c)

We have,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x) f(h)-f(x)}{h}$
$\Rightarrow f^{\prime}(x)=f(x) \lim _{h \rightarrow 0} \frac{f(h)-1}{h} \quad[\because f(x+y)$
$=f(x) f(y)]$
$\Rightarrow f^{\prime}(x)=f(x)\left\{\lim _{h \rightarrow 0} \frac{1+h g(h)-1}{h}\right\} \quad[\because f(x)$

$$
=1+x g(x)]
$$

$\Rightarrow f^{\prime}(x)=f(x) \lim _{h \rightarrow 0} g(h)=f(x) \cdot 1=f(x)$
61 (a)

We have, $f(x)=\left\{\begin{array}{cc}x^{2}, & x \geq 0 \\ -x^{2}, \quad x<0\end{array}\right.$
Clearly, $f(x)$ is differentiable for all $x>0$ and for all $x<0$. So, we check the differentiable at $x=0$ Now, (RHD at $x=0$)
$\left(\frac{d}{d x}(x)^{2}\right)_{x=0}=(2 x)_{x=0}=0$
And (LHD at $=0$)
$\left(\frac{d}{d x}(-x)^{2}\right)_{x=0}=(-2 x)_{x=0}=0$
$\therefore \quad($ LHD at $x=0)=($ RHD at $x=0)$
So, $f(x)$ is differentiable for all x ie, the set of all points where $f(x)$ is differentiable is $(-\infty, \infty)$

Alternate

It is clear from the graph $f(x)$ is differentiable everywhere.

62 (a)
Since, $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=10$
$\Rightarrow \lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=10$
$\Rightarrow f(0)\left(\lim _{h \rightarrow 0} \frac{f(h)-1}{h}\right)=10$
$[\because f(0+h)=f(0) f(h)$, given $]$
Now, $f(0)=f(0) f(0)$
$\Rightarrow f(0)=1$
\therefore From Eq. (i)
$\lim _{h \rightarrow 0} \frac{f(h)-1}{h}=10$
Now, $f^{\prime}(6)=\lim _{h \rightarrow 0} \frac{f(6+h)-f(6)}{h}$
$=\lim _{x \rightarrow 0}\left(\frac{f(h)-1}{h}\right) f(6) \quad$ [from Eq. (ii)]
$=10 \times 3=30$
63 (a)
We have,
$f^{\prime}\left(a^{+}\right)=\lim _{x \rightarrow a^{+}} \frac{f(x)-f(0)}{x-a}$
$\Rightarrow f^{\prime}\left(a^{+}\right)=\lim _{x \rightarrow a^{+}} \frac{|x-a| \phi(x)}{x-a}$
$\Rightarrow f^{\prime}\left(a^{+}\right)=\lim _{x \rightarrow a} \frac{(x-a)}{(x-a)} \phi(x) \quad[\because x>a \therefore|x-a|$

$$
=x-a]
$$

$\Rightarrow f^{\prime}\left(a^{+}\right)=\lim _{x \rightarrow a} \phi(x)$
$\Rightarrow f^{\prime}\left(a^{+}\right)=\phi(a) \quad[\because \phi(x)$ is continuous at $x=$
a]
and,
$f^{\prime}\left(a^{-}\right)=\lim _{x \rightarrow a^{-}} \frac{f(x)-f(0)}{x-a}$
$\Rightarrow f^{\prime}\left(a^{-}\right)=\lim _{x \rightarrow a^{-}} \frac{|x-a| \phi(x)}{x-a}$
$\Rightarrow f^{\prime}\left(a^{-}\right)=\lim _{x \rightarrow a} \frac{(x-a) \phi(x)}{(x-a)} \quad[\because x<a \quad \therefore|x-a|$

$$
=-(x-a)]
$$

$\Rightarrow f^{\prime}\left(a^{-}\right)=-\lim _{x \rightarrow a} \phi(x)$
$\Rightarrow f^{\prime}\left(a^{-}\right)=-\phi(a)$
$[\because \phi(x)$ is continuous at $x=a]$

(b)

$\left.\mathrm{LHL}=\lim _{h \rightarrow 0}(0-h)_{e}-\frac{1}{|-h|}+\frac{1}{(-h)}\right) \quad=\lim _{h \rightarrow 0}(-h)=0$
RHL $=\lim _{h \rightarrow 0}(0+h)_{e} e^{-\left(\frac{1}{|h|}+\frac{1}{(h)}\right)}=\lim _{h \rightarrow 0} \frac{h}{e^{2 / h}}=0$
$\mathrm{LHL}=\mathrm{RHL}=f(0)$
Therefore, $f(x)$ is continuous for all x
Differentiability at $x=0$
$L f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{(-h) e^{-\left(\frac{1}{h}-\frac{1}{h}\right)}}{(-h)-0}=1$
$R f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{h e^{-\left(\frac{1}{h}+\frac{1}{h}\right)-0}}{h-0}$
$=\lim _{h \rightarrow 0} \frac{1}{e^{2 / h}}=0$
$\Rightarrow R f^{\prime}(0) L f^{\prime}(0)$
Therefore, $f(x)$ is not differentiable at $x=0$
(d)

We have,
$f(x)=\left\{\begin{array}{cc}3, & x<0 \\ 2 x+1, & x \geq 0\end{array}\right.$
Clearly, f is continuous but not differentiable at $x=0$
Now,
$f(|x|)=2|x|+1$ for all x
Clearly, $f(|x|)$ is everywhere continuous but not differentiable at $x=0$
(c)

We have,
$f(x)=|x-0.5|+|x-1|+\tan x, 0<\mathrm{x}<2$
$\Rightarrow f(x)=\left\{\begin{array}{cc}-2 x+1.5+\tan x, & 0<x<0.5 \\ 0.5+\tan x, & 0.5 \leq x<1 \\ 2 x-1.5+\tan x, & 1 \leq x<2\end{array}\right.$
It is evident from the above definition that
$L f^{\prime}(0.5) \neq R f^{\prime}(0.5)$ and $L f^{\prime}(1) \neq R f^{\prime}(1)$
Also, the function is not continuous at $=\pi / 2$. So, it cannot be differentiable thereat
(d)

Given, $f(x)=\left\{\begin{array}{c}\log _{(1-3 x)}(1+3 x), \text { for } x \neq 0 \\ k, \\ \text { for } x=0\end{array}\right.$
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\log (1+3 x)}{\log (1-3 x)}$
$=-\lim _{x \rightarrow 0} \frac{\log (1+3 x)}{3 x} \cdot \frac{(-3 x)}{\log (1-3 x)}$

$$
=-1
$$

And $f(0)=k$
$\because f(x)$ is continuous at $x=0$
$\therefore \quad k=-1$
69 (d)
Since $f(x)$ is differentiable at $x=c$. Therefore, it is continuous at $x=c$
Hence, $\lim _{x \rightarrow c} f(x)=f(c)$
70 (a)
Given, $f(x)=a e^{|x|}+b|x|^{2}$
We know $e^{|x|}$ is not differentiable at $x=0$ and $|x|^{2}$ is differentiable at $x=0$
$\therefore f(x)$ is differentiable at $x=0$, if $a=0$ and $b \in R$
71 (a)
We have,
$f(x)=\left\{\begin{array}{c}(x-x)(-x)=0, x<0 \\ (x+x) x=2 x^{2}, x \geq 0\end{array}\right.$

(i)

(ii)

As is evident from the graph of $f(x)$ that it is continuous and differentiable for all x
Also, we have
$f^{\prime \prime}(x)=\left\{\begin{array}{l}0, x<0 \\ 4 x, x \geq 0\end{array}\right.$
Clearly, $f^{\prime \prime}(x)$ is continuous for all x but it is not
differentiable at $x=0$
72 (b)
Given, $f(x)=\left\{\begin{array}{cc}\frac{x-1}{2 x^{2}-7 x+5}, & x \neq 1 \\ -\frac{1}{3}, & x=1\end{array}\right.$
$f(x)= \begin{cases}\frac{1}{2 x-5}, & x \neq 1 \\ -\frac{1}{3}, & x=1\end{cases}$
$f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
$=\lim _{h \rightarrow 0} \frac{\frac{1}{2(1+h)-5}-\left(-\frac{1}{3}\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{\frac{1}{2 h-3}+\frac{1}{3}}{h}=\lim _{h \rightarrow 0} \frac{3+2 h-3}{3 h(2 h-3)}=-\frac{2}{9}$
$L f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h}$
$=\lim _{h \rightarrow 0} \frac{\frac{1}{2(1-h)-5}-\left(-\frac{1}{3}\right)}{-h}$
$=\lim _{h \rightarrow 0}-\frac{2}{3(2 h+3)}=-\frac{2}{9}$
$\therefore f^{\prime}(1)=-\frac{2}{9}$
73 (b)

$$
\begin{aligned}
f^{\prime}(1)=\lim _{h \rightarrow 0} & \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(1+h)}{h}-\lim _{h \rightarrow 0} \frac{f(1)}{h}
\end{aligned}
$$

Given, $\lim _{h \rightarrow 0} \frac{f(1+h)}{h}=5$
So, $\lim _{h \rightarrow 0} \frac{f(1)}{h}$ must be finite as $f^{\prime}(1)$ exist and
$\lim _{h \rightarrow 0} \frac{f(1)}{h}$ can be finite only, if $f(1)=0$ and
$\lim _{h \rightarrow 0} \frac{f(1)}{h}=0$
So, $f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)}{h}=5$
74 (c)
Since, $f(x)$ is continuous for every value of R
except $\{-1,-2\}$. Now, we have to check that points
At $x=-2$
$\mathrm{LHL}=\lim _{h \rightarrow 0} \frac{(-2-h)+2}{(-2-h)^{2}+3(-2-h)+2}$
$=\lim _{h \rightarrow 0} \frac{-h}{h^{2}+h}=-1$
RHL $=\lim _{h \rightarrow 0} \frac{(-2+h)+2}{(-2+h)^{2}+3(-2+h)+2}$
$=\lim _{h \rightarrow 0} \frac{h}{h^{2}-h}=-1$
$\Rightarrow \mathrm{LHL}=\mathrm{RHL}=f(-2)$
\therefore It is continuous at $x=-2$
Now, check for $x=-1$
$\mathrm{LHL}=\lim _{h \rightarrow 0} \frac{(-1-h)+2}{(-1-h)^{2}+3(-1-h)+2}$
$=\lim _{h \rightarrow 0} \frac{1-h}{h^{2}-h}=\infty$
RHL $=\lim _{h \rightarrow 0} \frac{(-1+h)+2}{(-1+h)^{2}+3(-1+h)+2}$
$=\lim _{h \rightarrow 0} \frac{1+h}{h^{2}+h}=\infty$
$\Rightarrow \mathrm{LHL}=\mathrm{RHL} \neq f(-1)$
\therefore It is not continuous at $x=-1$
The required function is continuous in $R-\{-1\}$
75 (d)
$f(0)=\lim _{x \rightarrow 0} \frac{\left(e^{x}-1\right)^{2}}{\sin \left(\frac{x}{a}\right) \log \left(1+\frac{x}{4}\right)}$
$\Rightarrow \quad \lim _{x \rightarrow 0}\left(\frac{e^{x}-1}{x}\right)^{2} \cdot \frac{\frac{x}{a} \cdot a}{\sin \frac{x}{a}} \cdot \frac{\frac{x}{4} \cdot 4}{\log \left(1+\frac{x}{4}\right)}=12$
$\Rightarrow \quad 1^{2} \cdot a \cdot 4=12$
$\Rightarrow \quad a=3$
76 (b)
We have,
$f(x)=\frac{x}{1+x}+\frac{x}{(x+1)(2 x+1)}$

$$
+\frac{x}{(2 x+1)(3 x+1)}+\cdots \infty
$$

$\Rightarrow f(x)=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{x}{((r-1) x+1)(r x+1)}$, for x

$$
\neq 0
$$

$\Rightarrow f(x)=\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left\{\frac{1}{(r-1) x+1}-\frac{1}{r x+1}\right\}$, for x

$$
\neq 0
$$

$\Rightarrow f(x)=\lim _{n \rightarrow \infty}\left\{1-\frac{2}{n x+1}\right\}=1$, for $x \neq 0$
For $x=0$, we have $f(x)=0$
Thus, we have $f(x)= \begin{cases}1, & x \neq 0 \\ 0, & x=0\end{cases}$
Clearly, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x) \neq f(0)$
So, $f(x)$ is not continuous at $x=0$
(b)

If possible, let $f(x)+g(x)$ be continuous. Then,
$\{f(x)+g(x)\}-f(x)$ must be continuous
$\Rightarrow g(x)$ must be continuous
This is a contradiction to the given fact that $g(x)$ is discontinuous
Hence, $f(x)+g(x)$ must be discontinuous
78 (c)
We have,
$f(x+y)=f(x) f(y)$ for all $x, y \in R$
$\therefore f(0)=f(0) f(0)$
$\Rightarrow f(0)\{f(0)-1\}=0$
$\Rightarrow f(0)=1 \quad[\because f(0) \neq 1]$
Now,
$f^{\prime}(0)=0$
$\Rightarrow \lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=2$
$\Rightarrow \lim _{h \rightarrow 0} \frac{f(h)-1}{h}=2 \quad[\because f(0)=1]$
$\therefore f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x) f(h)-f(x)}{h} \quad[\because f(x+y)$

$$
=f(x) f(y)]
$$

$\Rightarrow f^{\prime}(x)=f(x)\left\{\lim _{h \rightarrow 0} \frac{f(h)-1}{h}\right\}=2 f(x) \quad$ [Using
(i)]

79
(b)

We have,
$f(x)=\left\{\begin{array}{cc}\frac{x^{2}}{|x|}, & x \neq 0 \\ 0, & x=0\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{cc}\frac{x^{2}}{2}=x, \quad x>0 \\ 0, \quad x=0 \\ \frac{x^{2}}{-x}=-x, \quad x<0\end{array}\right.$
$\Rightarrow \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}-x=0, \lim _{x \rightarrow 0^{+}} f(x)=$ $\lim _{x \rightarrow 0} x=0$ and $f(0)=0$
So, $f(x)$ is continuous at $x=0$. Also, $f(x)$ is
continuous for all other values of x
Hence, $f(x)$ is everywhere continuous
Clearly, $L f^{\prime}(0)=-1$ and $R f^{\prime}(0)=1$
Therefore, $f(x)$ is not differentiable at $x=0$
80
(b)

Since $f(x)$ is continuous at $x=0$
$\therefore \lim _{x \rightarrow 0} f(x)=f(0) \Rightarrow f(0)=2$
Now, using L' Hospital's rule, we have
$\lim _{x \rightarrow 0} \frac{\int_{0}^{x} f(u) d u}{x}=\lim _{x \rightarrow 0} \frac{f(x)}{1}$
$=f(0) \quad[\because f(x)$ is continuous at x
$=0]$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\int_{0}^{x} f(u) d u}{x}=2 \quad$ [Using (i)]
82 (c)
$f^{\prime}\left(2^{+}\right)=\lim _{x \rightarrow 2^{+}}\left(\frac{f(x)-f(2)}{x-2}\right)$
$=\lim _{x \rightarrow 2^{+}} \frac{3 x+4-(6+4)}{x-2}=\lim _{x \rightarrow 2} \frac{3 x-6}{x-2}=3$
83 (a)
Here, $f(x)=\left\{\begin{array}{c}\sin x, x>0 \\ 0, x=0 \\ -\sin x, x<0\end{array}\right.$
$\mathrm{RHD}=\lim _{h \rightarrow 0} \frac{\sin |0+h|-\sin (0)}{h}$
$=\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$
$\mathrm{LHD}=\lim _{h \rightarrow 0} \frac{\sin |(0-h)|-\sin (0)}{-h}$
$=\frac{-\sin h}{h}=-1$
$\therefore \mathrm{LHD} \neq \mathrm{RHD}$ at $x=0$
$\therefore f(x)$ is not derivable at $x=0$

Alternate

It is clear from the graph that $f(x)$ is not differentiable at $x=0$
84 (b)
We have,
$f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\left(\log _{e} a\right)^{n}$
$\Rightarrow f(x)=\sum_{n=0}^{\infty} \frac{\left(x \log _{e} a\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{\left(\log _{e} a^{x}\right)^{n}}{n!}$
$\Rightarrow f(x)=e^{\log _{e} a^{x}}=a^{x}$, which is everywhere
continuous and differentiable
85 (c)
$f(x)=[x] \cos \left[\frac{2 x-1}{2}\right] \pi$
Since, $[x]$ is always discontinuous at all integer value, hence $f(x)$ is discontinuous for all integer value
86 (c)
The function f is clearly continuous for $|x|>1$
We observe that
$\lim _{x \rightarrow-1^{+}} f(x)=1, \lim _{x \rightarrow-1^{-}} f(x)=\frac{1}{4}$
Also, $\lim _{x \rightarrow \frac{1+}{n}} f(x)=\frac{1}{n^{2}}$ and, $\lim _{x \rightarrow \frac{1-}{n}} f(x)=\frac{1}{(n+1)^{2}}$
Thus, f is discontinuous for $x= \pm \frac{1}{n}, n=1,2,3, \ldots$.
87 (c)
Since, $|f(x)-f(y)| \leq(x-y)^{2}$
$\Rightarrow \lim _{x \rightarrow y} \frac{|f(x)-f(y)|}{|x-y|} \leq \lim _{x \rightarrow y}|x-y|$
$\Rightarrow \quad\left|f^{\prime}(y)\right| \leq 0$
$\Rightarrow \quad f^{\prime}(y)=0$
$\Rightarrow f(y)=$ constant
$\Rightarrow f(y)=0 \Rightarrow f(1)=0 \quad[\because f(0)=0$, given $]$
(b)

Since $\phi(x)=2 x^{3}-5$ is an increasing function on
$(1,2)$ such that $\phi(1)=-3$ and $\phi(2)=11$
Clearly, between -3 and 11 there are thirteen points where $f(x)=\left[2 x^{3}-5\right]$ is discontinuous
$89 \quad$ (c)
Clearly, $\left[x^{2}+1\right]$ is discontinuous at $x=$
$\sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt{8}$
Note that it is right continuous at $x=1$ but not
left continuous at $x=3$
90 (a)
As is evident from the graph of $f(x)$ that it is
continuous but not differentiable at $x=1$

Now,

$$
\begin{aligned}
& f^{\prime \prime}\left(1^{+}\right)=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1} \\
& \Rightarrow f^{\prime \prime}\left(1^{+}\right)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& \Rightarrow f^{\prime \prime}\left(1^{+}\right)=\lim _{h \rightarrow 0} \frac{\log _{10}(1+h)-0}{h} \\
& \Rightarrow f^{\prime \prime}\left(1^{+}\right)=\lim _{h \rightarrow 0} \frac{\log (1+h)}{h \cdot \log _{e} 10}=\frac{1}{\log _{e} 10}=\log _{10} e \\
& f^{\prime \prime}\left(1^{-}\right)=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1} \\
& \Rightarrow f^{\prime \prime}\left(1^{-}\right)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{h} \\
& \Rightarrow f^{\prime \prime}\left(1^{-}\right)=\lim _{h \rightarrow 0} \frac{\log _{10}(1-h)}{h}=\lim _{h \rightarrow 0} \frac{\log _{e}(1-h)}{h \log _{e} 10} \\
& =-\log _{10} e
\end{aligned}
$$

91 (b)
It can be easily seen from the graph of $f(x)=|\cos x|$ that it is everywhere continuous but not differentiable at odd multiples of $\pi / 2$
(d)

We have,
$\lim _{x \rightarrow 4^{-}} f(x)=\lim _{h \rightarrow 0} f(4-h)=\lim _{h \rightarrow 0} \frac{4-h-4}{|4-h-4|}+a$
$\Rightarrow \lim _{x \rightarrow 4^{-}} f(x)=\lim _{h \rightarrow 0}-\frac{h}{h}+a=a-1$
$\Rightarrow \lim _{x \rightarrow 4^{-}} f(x)=\lim _{h \rightarrow 0} f(4+h)=\lim _{h \rightarrow 0} \frac{4+h-4}{|4+h-4|}+b$
$=b+1$
and, $f(4)=a+b$
Since $f(x)$ is continuous at $x=4$. Therefore,
$\lim _{x \rightarrow 4^{-}} f(x)=f(4)=\lim _{x \rightarrow 4^{+}} f(x)$
$\Rightarrow a-1=a+b=b+1 \Rightarrow b=-1$ and $a=1$
(b)

We have,
$f(x)=\left\{\begin{array}{c}\frac{2^{x}-1}{\sqrt{1+x}-1},-1 \leq x<\infty, \quad x \neq 0 \\ k, \quad x=0\end{array}\right.$
Since, $f(x)$ is continuous everywhere
$\therefore \quad \lim _{x \rightarrow 0^{-}} f(x)=f(0) \quad \ldots$ (i)
Now, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} \frac{2^{(0-h)}-1}{\sqrt{1+(0-h)}-1}$
$=\lim _{h \rightarrow 0} \frac{2^{-h}-1}{\sqrt{1-h}-1}$
$=\lim _{h \rightarrow 0} \frac{-2^{-h} \log _{e} 2}{\frac{-1}{2 \sqrt{1-h}}}$ [by L'Hospital's rule]
$=2 \lim _{h \rightarrow 0} 2^{-h} \log _{e} 2 \sqrt{1-h}$
$=2 \log _{e} 2$
From Eq. (i),
$f(0)=2 \log _{e} 2=\log _{e} 4$
(b)

We have,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(-h)=\lim _{h \rightarrow 0} \frac{e^{-1 / h}-1}{e^{-1 / h}+1}=-1$
and,
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(h)=\lim _{x \rightarrow 0} \frac{e^{1 / h}-1}{e^{1 / h}+1}=\lim _{h \rightarrow 0} \frac{e^{-1 / h}}{e^{-1 / h}}$

$$
=1
$$

$\therefore \lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$
Hence, $f(x)$ is not continuous at $x=0$
96 (c)
LHL $=\lim _{x \rightarrow 2^{-}} f(x)=\lim _{h \rightarrow 0} 1+(2-h)=3$
RHL $=\lim _{x \rightarrow 2^{+}} f(x)=\lim _{h \rightarrow 0} 5-(2+h)=$
3, $f 2=3$
Hence, f is continuous at $x=2$
Now, $R f^{\prime \prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$
$=\lim _{h \rightarrow 0} \frac{5-(2+h)-3}{h}=-1$
$L f^{\prime \prime}(2)=\lim _{h \rightarrow 0} \frac{f(2-h)-f(2)}{-h}$
$=\lim _{h \rightarrow 0} \frac{1+(2-h)-3}{-h}=1$
$\therefore R f^{\prime \prime}(2) \neq L f^{\prime \prime}(2)$
$\therefore f$ is not differentiable at $x=2$

Alternate

It is clear from the graph that $f(x)$ is continuous everywhere also it is differentiable everywhere
except at $x=2$
97 (d)
We have,
$f(x+y)=f(x) f(y)$ for all $x, y \in R$
Putting $x=1, y=0$, we get
$f(0)=f(1) f(0) \Rightarrow f(0)(1-f(1))=0$
$\Rightarrow f(1)=1 \quad[\because f(0) \neq 0]$
Now,
$f^{\prime}(1)=2$
$\Rightarrow \lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=2$
$\Rightarrow \lim _{h \rightarrow 0} \frac{f(1) f(h)-f(1)}{h}=2$
$\Rightarrow f(1) \lim _{h \rightarrow 0} \frac{f(h)-1}{h}=2$
$\Rightarrow \lim _{h \rightarrow 0} \frac{f(h)-1}{h}=2 \quad[\operatorname{Using} f(1)=1]$
$\therefore f^{\prime}(4)=\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h}$
$\Rightarrow f^{\prime}(4)=\lim _{h \rightarrow 0} \frac{f(4) f(h)-f(4)}{h}$
$\Rightarrow f^{\prime}(4)=\left\{\lim _{h \rightarrow 0} \frac{f(h)-1}{h}\right\} f(4)$
$\Rightarrow f^{\prime}(4)=2 f(4) \quad[$ From (i)]
$\Rightarrow f^{\prime}(4)=2 \times 4=8$
(d)

We have,
$\lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{+}} g(x)=1$ and $g(1)=0$
So, $g(x)$ is not continuous at $x=1$ but
$\lim _{x \rightarrow 1} g(x)$ exists
We have,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)=\lim _{h \rightarrow 0}[1-h]=0$
and,
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0}[1+h]=1$
So, $\lim _{x \rightarrow 1} f(x)$ does not exist and so $f(x)$ is not
continuous at $x=1$
We have, $\operatorname{gof}(x)=g(f(x))=g([x])=0$, for all $x \in R$
So, $g o f$ is continuous for all x
We have,
$f o g(x)=f(g(x))$
$\Rightarrow f o g(x)=\left\{\begin{array}{c}f(0), \quad x \in Z \\ f\left(x^{2}\right), \quad x \in R-Z\end{array}\right.$
$\Rightarrow f o g(x)=\left\{\begin{aligned} 0, & x \in Z \\ {\left[x^{2}\right], } & x \in R-Z\end{aligned}\right.$
Which is clearly not continuous
99 (d)
At $x=1$,
$\mathrm{RHD}=\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}$
$=\lim _{h \rightarrow 0} \frac{2-(1+h)-(2-1)}{h}=-1$
$\mathrm{LHD}=\lim _{h \rightarrow 0^{-}} \frac{f(1-h)-f(1)}{-h}$
$=\lim _{h \rightarrow 0} \frac{(1-h)-(2-1)}{-h}=1$
\therefore LHD \neq RHD
100 (d)
Given, $f(x)=|x|+\frac{|x|}{x}$
Let $f_{1}(x)=|x|, f_{2}(x)=\frac{|x|}{x}$

1. $\mathrm{LHL}=\lim _{x \rightarrow 0^{-}} f_{1}(x)=\lim _{x \rightarrow 0^{-}}|x|=0$

And RHL $\lim _{x \rightarrow 0^{+}} f_{1}(x)=\lim _{x \rightarrow 0^{+}}|x|=0$
Here, $\mathrm{LHL}=$ RHL $=f(0), f_{1}(x)$ is continuous
2. $\mathrm{LHL}=\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{h \rightarrow 0} \frac{|0-h|}{0-h}=-1$

RHL $=\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{h \rightarrow 0} \frac{|0+h|}{h}=1$
\therefore LHL $\neq \mathrm{RHL}, f_{2}(x)$ is discontinuous
Hence, $f(x)$ is discontinuous at $x=0$
101 (a)
From the graph it is clear that $f(x)$ is continuous everywhere but not differentiable at $x=3$

102
(b)

Given, $f(x)=\left\{\begin{array}{cl}\frac{2 x-3}{2 x-3}, & \text { if } x>\frac{3}{2} \\ \frac{-(2 x-3)}{2 x-3}, & \text { if } x<\frac{3}{2}\end{array}\right.$
$=\left\{\begin{array}{l}1, \text { if } x>\frac{3}{2} \\ -1, \text { if } x<\frac{3}{2}\end{array}\right.$
Now, RHL $=\lim _{x \rightarrow \frac{3^{+}}{2}} f(x)=\lim _{x \rightarrow \frac{3^{+}}{2}} 1=1$
And LHL $=\lim _{x \rightarrow \frac{3^{-}}{2}} f(x)=\lim _{x \rightarrow \frac{3^{-}}{2}}(-1)=-1$
$\because \quad$ RHL $\neq \mathrm{LHL}$
$\therefore f(x)$ is discontinuous at $x=\frac{3}{2}$
103 (c)
Since the functions $(\log t)^{2}$ and $\frac{\sin t}{t}$ are not defined on $(-1,2)$. Therefore, the functions in options (a) and (b) are not defined on ($-1,2$)
The function $g(t)=\frac{1-t+t^{2}}{1+t+t^{2}}$ is continuous on
$(-1,2)$ and
$f(x)=\int_{0}^{x} \frac{1-t+t^{2}}{1+t+t^{2}} d t$ is the integral function of $g(t)$
Therefore, $f(x)$ is differentiable on $(-1,2)$ such
that $f^{\prime}(x)=g(x)$
104 (c)
Since, $f(x)=\frac{1-\tan x}{4 x-\pi}$
Now, $\lim _{x \rightarrow \pi / 4} f(x)=\lim _{x \rightarrow \pi / 4}\left(\frac{1-\tan x}{4 x-\pi}\right)$
$=\lim _{x \rightarrow \pi / 4}\left(\frac{-\sec ^{2} x}{4}\right)=-\frac{1}{2}$
Since, $f(x)$ is continuous at
$x=\frac{\pi}{4}$
$\therefore \lim _{x \rightarrow \pi / 4} f(x)=f\left(\frac{\pi}{4}\right)=-\frac{1}{2}$
105 (a)
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} \frac{x}{2}}{4\left(\frac{x}{2}\right)^{2}} \cdot x=0$
Also, $f(0)=k$
For, $\lim _{x \rightarrow 0} f(x)=f(0) \Rightarrow k=0$
106 (a)
We have,
$f(x)=|x|+|x-1|$
$\Rightarrow f(x)=\left\{\begin{array}{cc}-2 x+1, & x<0 \\ x-x+1, & 0 \leq x<1 \\ x+x-1, & x \geq 1\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{lr}-2 x+1, & x<0 \\ 1, & 0 \leq x<1 \\ 2 x-1, & x \geq 1\end{array}\right.$
Clearly, $\lim _{x \rightarrow 0^{-}} f(x)=1=\lim _{x \rightarrow 0^{+}} f(x)$ and
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)$
So, $f(x)$ is continuous at $x=0,1$
107
(d)
$f(0)=\lim _{x \rightarrow 0} \frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$
$=\lim _{x \rightarrow 0} \frac{2-\frac{\sin ^{-1} x}{x}}{2+\frac{\tan ^{-1} x}{x}}$
$=\frac{2-1}{2+1}=\frac{1}{3}$
109 (b)
$f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
$=\lim _{h \rightarrow 0} \frac{\frac{1+h-1}{2(1+h)^{2}-7(1+h)+5}-\left(\frac{1}{3}\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{\left(\frac{1}{2 h-3}+\frac{1}{3}\right)}{h}=\lim _{h \rightarrow 0}\left(\frac{2 h}{3 h(2 h-3)}\right)=-\frac{2}{9}$
110 (a)
$\mathrm{LHL}=\lim _{h \rightarrow 0} f\left(-\frac{\pi}{2}-h\right)=\lim _{h \rightarrow 0} 2 \cos \left(-\frac{\pi}{2}-h\right)=0$

RHL $=\lim _{h \rightarrow 0} f\left(-\frac{\pi}{2}+h\right)=\lim _{h \rightarrow 0} 2 a \sin \left(-\frac{\pi}{2}+h\right)+b$ $=-a+b$
Since, function is continuous.
$\therefore \quad$ RHL $=$ LHL $\Rightarrow a=b$
From the given options only (a) ie, $\left(\frac{1}{2}, \frac{1}{2}\right)$ satisfies this condition
111 (a)
We have,
$f^{\prime}(0)=3$
$\Rightarrow \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=3$
$\Rightarrow \lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$

$$
=3 \quad[\text { Using: }(\text { RHD at } x=0)=3]
$$

$\Rightarrow \lim _{h \rightarrow 0} \frac{f(0) f(h)-f(0)}{h}$

$$
=3 \quad\left[\begin{array}{l}
\because f(x+y)=f(x) f(y) \tag{i}\\
\therefore f(0+h)=f(0) f(h)
\end{array}\right]
$$

$\Rightarrow f(0)\left(\lim _{h \rightarrow 0} \frac{f(h)-1}{h}\right)=3$
Now, $f(x+y)=f(x) f(y)$ for all $x, y \in R$
$\Rightarrow f(0)=f(0) f(0)$
$\Rightarrow f(0)\{1-f(0)\}=0 \Rightarrow f(0)=1$
Putting $f(0)=1$ in (i), we get
$\lim _{h \rightarrow 0} \frac{f(h)-1}{h}=3$
Now,
$f^{\prime}(5)=\lim _{h \rightarrow 0} \frac{f(5+h)-f(5)}{h}$
$\Rightarrow f^{\prime}(5)=\lim _{h \rightarrow 0} \frac{f(5) f(h)-f(5)}{h}$
$\Rightarrow f^{\prime}(5)=\left\{\lim _{h \rightarrow 0} \frac{f(h)-1}{h}\right\} f(5)=3 \times 2=6$
[Using (ii)]
112 (c)
We have,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow f(x)^{\prime}=\lim _{h \rightarrow 0} \frac{f(x)+f(h)-f(x)}{h}$
$\Rightarrow f(x)^{\prime}=\lim _{h \rightarrow 0} \frac{f(h)}{h}$
$\Rightarrow f(x)^{\prime}=\lim _{h \rightarrow 0} \frac{h g(h)}{h} \lim _{h \rightarrow 0} g(h)=g(0) \quad[$
$\because g$ is conti. at $x=0$]

113 (b)

The domain of $f(x)$ is $[2, \infty)$
We have,
$f(x)=\sqrt{\frac{(\sqrt{2 x-4})^{2}}{2}+2+2 \sqrt{2 x-4}}$
$+\sqrt{\frac{(\sqrt{2 x-4})^{2}}{2}+2-2 \sqrt{2 x-4}}$
$\Rightarrow f(x)=\frac{1}{\sqrt{2}} \sqrt{(\sqrt{2 x-4})^{2}+4 \sqrt{2 x-4}+4}$
$+\frac{1}{\sqrt{2}} \sqrt{(\sqrt{2 x-4})^{2}-4 \sqrt{2 x-4}+4}$
$\Rightarrow f(x)=\frac{1}{\sqrt{2}}|\sqrt{2 x-4}+2|+\frac{1}{\sqrt{2}}|\sqrt{2 x-4}-2|$
$\Rightarrow f(x)=\left\{\begin{array}{cc}\frac{1}{\sqrt{2}} \times 4, & \text { if } \sqrt{2 x-4}<2 \\ \sqrt{2} \cdot \sqrt{2 x-4}, & \text { if } \sqrt{2 x-4} \geq 2\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{cc}2 \sqrt{2}, & \text { if } x \in[2,4) \\ 2 \sqrt{x-2}, & \text { if } x \in[4, \infty)\end{array}\right.$
Hence, $f^{\prime}(x)=\left\{\begin{array}{c}0 \text { if } x \in[2,4) \\ \frac{1}{\sqrt{x-2}} \text { if } x \in(4, \infty)\end{array}\right.$
114 (c)
We have,
$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{2} \sin \left(\frac{1}{x}\right)}{x}=\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$
So, $f(x)$ is differentiable at $x=0$ such that
$f^{\prime}(0)=0$
For $x \neq 0$, we have
$f^{\prime}(x)=2 x \sin \left(\frac{1}{x}\right)+x^{2} \cos \left(\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right)$
$\Rightarrow f^{\prime}(x)=2 x \sin \frac{1}{x}-\cos \frac{1}{x}$
$\Rightarrow \lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0} 2 x \sin \frac{1}{x}-\lim _{x \rightarrow 0} \cos \left(\frac{1}{x}\right)$
$=0-\lim _{x \rightarrow 0} \cos \left(\frac{1}{x}\right)$
Since $\lim _{x \rightarrow 0} \cos \left(\frac{1}{x}\right)$ does not exist
$\therefore \lim _{x \rightarrow 0} f^{\prime}(x)$ does not exist
Hence, $f^{\prime}(x)$ is not continuous at $x=0$
115 (c)
We have,
$f(x)=\left\{\begin{array}{cc}\frac{x}{\sqrt{x^{2}}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{cc}\frac{x}{|x|}, & x \neq 0 \\ 0, & x=0\end{array}=\left\{\begin{array}{cc}1, & x>0 \\ -1, & x<0 \\ 0, & x=0\end{array}\right.\right.$
Clearly, $f(x)$ is not continuous at $x=0$
117 (c)
Given, $\lim _{x \rightarrow 0}\left[(1+3 x)^{\frac{1}{x}}\right]=k$
$\therefore \quad e^{3}=k$
118 (b)
For $x>2$, we have
$f(x)=\int_{0}^{x}\{5+|1-t|\} d t$
$\Rightarrow f(x)=\int_{0}^{1}\left(5+(1-t) d t+\int_{1}^{x}(5-(1-t) d t\right.$
$\Rightarrow f(x)=\int_{0}^{1}(6-t) d t+\int_{1}^{x}(4+t) d t$
$\Rightarrow f(x)=\left[6 t-\frac{t^{2}}{2}\right]_{0}^{1}+\left[4 t+\frac{t^{2}}{2}\right]_{1}^{x}$
$\Rightarrow f(x)=1+4 x+\frac{x^{2}}{2}$
Thus, we have
$f(x)=\left\{\begin{array}{cc}5 x+1, & \text { if } x \leq 2 \\ \frac{x^{2}}{2}+4 x+1, & \text { if } x>2\end{array}\right.$
Clearly, $f(x)$ is everywhere continuous and
differentiable except possibly at $x=2$
Now,
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2} 5 x+1=11$
and,
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2}\left(\frac{x^{2}}{2}+4 x+1\right)=11$
$\therefore \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$
So, $f(x)$ is continuous at $x=2$
Also, we have (LHD at $x=2$) $=\lim _{x \rightarrow 2^{-}} f^{\prime}(x)=$ $\lim _{x \rightarrow 2} 5=5$
119 (b)
The given function is clearly continuous at all points except possibly at $x= \pm 1$
For $f(x)$ to be continuous at $x=1$, we must have
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$
$\Rightarrow \lim _{x \rightarrow 1} a x^{2}+b=\lim _{x \rightarrow 1} \frac{1}{|x|}$
$\Rightarrow a+b=1$
Clearly, $f(x)$ is differentiable for all x, except possibly at $x= \pm 1$. As $f(x)$ is an even function, so we need to check its differentiability at $x=1$ only For $f(x)$ to be differentiable at $x=1$, we must have
$\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}$
$\Rightarrow \lim _{x \rightarrow 1} \frac{a x^{2}+b-1}{x-1}=\lim _{x \rightarrow 1} \frac{\frac{1}{|x|}-1}{x-1}$
$\Rightarrow \lim _{x \rightarrow 1} \frac{a x^{2}-a}{x-1}=\lim _{x \rightarrow 1} \frac{\frac{1}{x}-1}{x-1} \quad[\because a+b=1$

$$
\therefore b-1=-a]
$$

$\Rightarrow \lim _{x \rightarrow 1} a(x+1)=\lim _{x \rightarrow 1} \frac{-1}{x}$
$\Rightarrow 2 a=-1 \Rightarrow a=-1 / 2$
Putting $a=-1 / 2$ in (i), we get $b=3 / 2$
120 (c)
At no point, function is continuous
(a)

It is clear from the figure that $f(x)$ is continuous everywhere and not differentiable at $x=0$ due to sharp edge

122 (c)

$$
\begin{aligned}
& \begin{array}{r}
f(x)=\frac{\sqrt{a^{2}-a x+x^{2}}-\sqrt{a^{2}+a x+x^{2}}}{\sqrt{a+x}-\sqrt{a-x}} \\
\\
\quad \times \frac{\sqrt{a^{2}-a x+x^{2}}+\sqrt{a^{2}+a x+x^{2}}}{\sqrt{a^{2}-a x+x^{2}}+\sqrt{a^{2}+a x+x^{2}}} \\
\\
\quad \times \frac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}+\sqrt{a-x}} \\
= \\
\lim _{x \rightarrow 0} f(x) \quad \\
=\lim _{x \rightarrow 0} \frac{-2 a x(\sqrt{a+x}+\sqrt{a-x})}{2 x\left(\sqrt{a^{2}-a x+x^{2}}+\sqrt{\left.a^{2}+a x+x^{2}\right)}\right.} \\
=\frac{-a(2 \sqrt{a})}{(a+a)}=-\sqrt{a}
\end{array}
\end{aligned}
$$

123 (b)
Given, $f(x)=\left\{\begin{array}{c}\frac{1-\cos 4 x}{8 x^{2}}, x \neq 0 \\ k \quad x=0\end{array}\right.$
$\mathrm{LHL}=\lim _{x \rightarrow 0^{-}} f(x)$
$=\lim _{h \rightarrow 0} \frac{1-\cos 4(0-h)}{8(0-h)^{2}}$
$=\lim _{h \rightarrow 0} \frac{1-\sin 4 h}{8 h^{2}}$
$=\lim _{h \rightarrow 0} \frac{4 \sin 4 h}{16 h}=1 \quad$ [by L 'Hospital's rule]
Since, $f(x)$ is continuous at $x=0$
$\therefore \quad f(0)=$ LHL $\Rightarrow \quad k=1$
124 (d)
Given, $f(x)=|x-1|+|x-2|+\cos x$
Since, $|x-1|,|x-2|$ and $\cos x$ are continuous in [0, 4]
$\therefore f(x)$ being sum of continuous functions is also continuous
125 (c)
If function $f(x)$ is continuous at $x=0$, then
$f(0)=\lim _{x \rightarrow 0} f(x)$
$\therefore f(0)=k=\lim _{x \rightarrow 0} x \sin \frac{1}{x}$
$\Rightarrow k=0 \quad\left[\because-1 \leq \sin \frac{1}{x} \leq 1\right]$
126 (b)
We have,
$h(x)=\{f(x)\}^{2}+\{g(x)\}^{2}$
$\Rightarrow h^{\prime}(x)=2 f(x) 2 f^{\prime}(x)+2 g(x) g^{\prime}(x)$
Now,
$f^{\prime}(x)=g(x)$ and $f^{\prime \prime}(x)=-f(x)$
$\Rightarrow f^{\prime \prime}(x)=g^{\prime}(x)$ and $f^{\prime \prime}(x)=-f(x)$
$\Rightarrow-f(x)=g^{\prime}(x)$
Thus, we have
$f^{\prime}(x)=g(x)$ and $g^{\prime}(x)=-f(x)$
$\therefore h^{\prime}(x)=-2 g(x) g^{\prime}(x)+2 g(x) g^{\prime}(x)=0$, for all x
$\Rightarrow h(x)=$ Constant for all x
But, $h(5)=11$. Hence, $h(x)=11$ for all x
127 (a)
$f(x)=|x|^{3}=\left\{\begin{array}{c}0, \quad x=0 \\ x^{3}, \quad x>0 \\ -x^{3}, \quad x<0\end{array}\right.$
Now, $R f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{h^{3}-0}{h}=0$
And $L f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{-h^{3}-0}{-h}=0$
$\because R f^{\prime}(0)=L f^{\prime}(0)=0$
$\therefore f^{\prime}(0)=0$
128 (b)
We have,
(LHL at $x=0)=\lim _{n \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)$
$\Rightarrow($ LHL at $x=0)=\lim _{n \rightarrow 0} \sin ^{-1}(\cos (-h))$

$$
=\lim _{h \rightarrow 0} \sin ^{-1}(\cosh h)
$$

$\Rightarrow($ LHL at $x=0)=\sin ^{-1} 1=\pi / 2$
(RHL at $x=0)=\lim _{x \rightarrow 0^{+}} f(x)$
$\Rightarrow($ RHL at $x=0)=\lim _{h \rightarrow 0} f(0+h)$

$$
=\lim _{h \rightarrow 0} \sin ^{-1}(\cos h)
$$

$\Rightarrow($ RHL at $x=0)=\sin ^{-1}(1)=\pi / 2$
and, $f(0)=\sin ^{-1}(\cos 0)=\sin ^{-1}(1)=\pi / 2$
$\therefore($ LHL at $x=0)=($ RHL at $x=0)=f(0)$
So, $f(x)$ is continuous at $x=0$
Now,

$$
\begin{aligned}
f^{\prime}(x)= & \frac{-\sin x}{\sqrt{1-\cos ^{2} x}}=\frac{\sin x}{|\sin x|} \\
& =\left\{\begin{array}{l}
\frac{-\sin x}{-\sin x}=1, x<0 \\
\frac{-\sin x}{\sin x}=-1, x>0
\end{array}\right.
\end{aligned}
$$

$\therefore($ LHD at $x=0)=1$ and $($ RHD at $x=0)=-1$
Hence, $f(x)$ is not differentiable at $x=0$

For any $x \neq 1,2$, we find that $f(x)$ is the quotient of two polynomials and a polynomial is everywhere continuous. Therefore, $f(x)$ is continuous for all $x \neq 1,2$
Continuity at $x=1$:
We have,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)$
$\Rightarrow \lim _{x \rightarrow 1^{-}} f(x)$
$=\lim _{h \rightarrow 0} \frac{(1-h-2)(1-h+2)(1-h+1)(1-h-}{|(1-h-1)(1-h-2)|}$
$\Rightarrow \lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} \frac{(3-h)(2-h)(-1-h)(-h)}{|(-h)(-1-h)|}$
$\Rightarrow \lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} \frac{(3-h)(2-h) h(h+1)}{h(h+1)}=6$
and,
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h)$
$\lim _{x \rightarrow 1^{+}} f(x)$
$=\lim _{h \rightarrow 0} \frac{(1+h-2)(1+h+2)(1+h+1)(1+h-:}{|(1+h-1)(1+h-2)|}$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} \frac{(h-1)(3+h)(2+h)(h)}{|h(h-1)|}$
$\lim _{x \rightarrow 1^{+}} f(x)=-\lim _{h \rightarrow 0} \frac{(h-1)(3+h)(2+h) h}{h(1-h)}=-6$
$\therefore \lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$
So, $f(x)$ is not continuous at $x=1$
Similarly, $f(x)$ is not continuous at $x=2$
130 (b)
Let $f(x)=\frac{g(x)}{h(x)}=\frac{x}{1+|x|}$
It is clear that $g(x)=x$ and $h(x)=1+|x|$ are
differentiable on $(-\infty, \infty)$ and $(-\infty, 0) \cup(0, \infty)$
respectively
Thus, $f(x)$ is differentiable on $(-\infty, 0) \cup$
$(0, \infty)$.Now, we have to check the differentiable at $x=0$
$\therefore \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\frac{x}{1+|x|}-0}{x}=\lim _{x \rightarrow 0} \frac{1}{1+|x|}$ $=1$
Hence, $f(x)$ is differntaible on $(-\infty, \infty)$
131 (b)
At $x=0$,
$\mathrm{LHL}=\lim _{h \rightarrow 0} \frac{1}{1-e^{-1 /(0-h)}}=\lim _{h \rightarrow 0} \frac{1}{1-e^{1 / h}}=0$
RHL $=\lim _{h \rightarrow 0} \frac{1}{1-e^{-1 /(0+h)}}=\lim _{h \rightarrow 0} \frac{1}{1-e^{-1 / h}}=1$
\therefore FUnction is not continuous at $x=0$
132 (a)
We have,
$f o g=I$
$\Rightarrow f \circ g(x)=x$ for all x
$\Rightarrow f^{\prime}(g(x)) g^{\prime}(x)=1$ for all x

$$
\begin{aligned}
\Rightarrow f^{\prime}(g(a))= & \frac{1}{g^{\prime}(a)}=\frac{1}{2} \Rightarrow f^{\prime}(b) \\
& =\frac{1}{2} \quad[\because f(a)=b]
\end{aligned}
$$

133 (a)
Since, $\lim _{x \rightarrow 0} f(x)=f(0)$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\sin \pi x}{5 \mathrm{x}}=k$
\Rightarrow (1) $\frac{\pi}{5}=k \Rightarrow k=\frac{\pi}{5} \quad\left[\because \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]$
134 (d)
Given, $f(x)=[x], x \in(-3.5,100)$
As we know greatest integer is discontinuous on integer values.
In given interval, the integer values are
($-3,-2,-1,0, \ldots, 99$)
\therefore Total numbers of integers are 103.
135 (a)
$\mathrm{LHL}=\lim _{h \rightarrow 0} f(0-h)$
$=\lim _{h \rightarrow 0} \frac{e^{-1 / h}-1}{e^{-1 / h}+1}=-1 \quad\left[\because \lim _{h \rightarrow 0} \frac{1}{e^{1 / h}}=0\right]$
RHL $=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} \frac{e^{1 / h}-1}{e^{1 / h}+1}$
$=\lim _{h \rightarrow 0} \frac{1-\frac{1}{e^{1 / h}}}{1+\frac{1}{e^{1 / h}}}=1$
\therefore LHL $=$ RHL
So, limit does not exist at $x=0$
136 (d)
We have,
$f(x)=x^{4}+\frac{x^{4}}{1+x^{4}}+\frac{x^{4}}{\left(1+x^{4}\right)}+\cdots$
$\Rightarrow f(x)=\frac{x^{4}}{1-\frac{1}{1+x^{4}}}=1+x^{4}$, if $x \neq 0$
Clearly, $f(x)=0$ at $x=0$
Thus, we have
$f(x)=\left\{\begin{array}{cc}1+x^{4}, & x \neq 0 \\ 0, & x=0\end{array}\right.$
Clearly, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=1 \neq f(0)$
So, $f(x)$ is neither continuous nor differentiable at $x=0$
137 (a)
We have,
$f(x)= \begin{cases}1+x, & 0 \leq x \leq 2 \\ 3-x, & 2<x \leq 3\end{cases}$
$\therefore g(x)=f o f(x)$
$\Rightarrow f(x)=f(f(x))$
$\Rightarrow g(x)= \begin{cases}f(1+x), & 0 \leq x \leq 2 \\ f(3-x), & 2<x \leq 3\end{cases}$
$\Rightarrow g(x)= \begin{cases}1+(1+x), & 0 \leq x \leq 1 \\ 3-(1+x), & 1<x \leq 2 \\ 1+(3-x), & 2<x \leq 3\end{cases}$
$\Rightarrow g(x)= \begin{cases}2+x, & 0 \leq x \leq 1 \\ 2-x, & 1<x \leq 2 \\ 4-x, & 2<x \leq 3\end{cases}$
Clearly, $g(x)$ is continuous in $(0,1) \cup(1,2) \cup$
$(2,3)$ except possibly at $x=0,1,2$ and 3
We observe that
$\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}}(2+x)=2=g(0)$
and $\lim _{x \rightarrow 3^{-}} g(x)=\lim _{x \rightarrow 3^{-}} 4-x=1=g(3)$
Therefore, $g(x)$ is right continuous at $x=0$ and left continuous at $x=3$
At $x=1$, we have
$\lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}} 2+x=3$
and, $\lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{+}} 2-x=1$
$\therefore \lim _{x \rightarrow 1^{+}} g(x) \neq \lim _{x \rightarrow 1^{-}} g(x)$
So, $g(x)$ is not continuous at $x=1$
At $x=2$, we have
$\lim _{x \rightarrow 2^{-}} g(x)=\lim _{x \rightarrow 2^{-}}(2-x)=0$
and,
$\lim _{x \rightarrow 2^{+}} g(x)=\lim _{x \rightarrow 2^{+}}(4-x)=0$
$\therefore \lim _{x \rightarrow 2^{-}} g(x) \neq \lim _{x \rightarrow 2^{+}} g(x)$
So, $g(x)$ is not continuous at $x=2$
Hence, the set of points of discontinuity of $g(x)$ is $\{1,2\}$

(b)

Since $g(x)$ is the inverse of function $f(x)$
$\therefore g \circ f(x)=I(x)$, for all x
Now, $g o f(x)=I(x)$, for all x
$\Rightarrow \operatorname{gof}(x)=x$, for all x
$\Rightarrow(g \circ f)^{\prime}(x)=1$, for all x
$\Rightarrow g^{\prime}(f(x)) f^{\prime}(x)=1$, for all $x \quad$ [Using Chain Rule]
$\Rightarrow g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}$, for all x
$\Rightarrow g^{\prime}(f(c))=\frac{1}{f^{\prime}(c)} \quad[$ Putting $x=c]$
139 (d)
Given, $f(x)=\left\{\begin{array}{c}x^{p} \cos \left(\frac{1}{x}\right), x \neq 0 \\ 0, \quad x=0\end{array}\right.$
Since, $f(x)$ is differentiable at $x=0$, therefore it is continuous at $x=0$
$\therefore \lim _{x \rightarrow 0} f(x)=f(0)=0$
$\Rightarrow \lim _{x \rightarrow 0} x^{p} \cos \left(\frac{1}{x}\right)=0 \Rightarrow p>0$
As $f(x)$ is differentiable at $x=0$
$\therefore \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$ exists finitely
$\Rightarrow \lim _{x \rightarrow 0} \frac{x^{p} \cos _{x}^{1}-0}{x}$ exists finitely
$\Rightarrow \lim _{x \rightarrow 0} x^{p-1} \cos \frac{1}{x}-0$ exists finitely
$\Rightarrow \quad p-1>0 \quad \Rightarrow \quad p>1$
140 (a)

It is clear from the graph that $f(x)$ is continuous everywhere and also differentiable everywhere except at $x=0$
141 (c)
We know that the function
$\phi(x)=(x-a)^{2} \sin \left(\frac{1}{x-a}\right)$
Is continuous and differentiable at $x=a$ whereas the function $\Psi(x)=|x-a|$ is everywhere continuous but not differentiable at $x=a$ Therefore, $f(x)$ is not differentiable at $x=1$
(d)
$\lim _{x \rightarrow 0} \frac{2^{x}-2^{-x}}{x}=\lim _{x \rightarrow 0} 2^{x} \log 2+2^{-x} \log 2$
[by L' Hospital's rule]
$=\log 4$
Since, the function is continuous at $x=0$

$$
\therefore \quad f(0)=\lim _{x \rightarrow 0} f(x) \Rightarrow f(0)=\log 4
$$

143 (a)
As is evident from the graph of $f(x)$ that it is continuous but not differentiable at $x=1$

Now,
$f^{\prime \prime}\left(1^{+}\right)=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}$
$\Rightarrow f^{\prime \prime}\left(1^{+}\right)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
$\Rightarrow f^{\prime \prime}\left(1^{+}\right)=\lim _{h \rightarrow 0} \frac{\log _{10}(1+h)-0}{h}$
$\Rightarrow f^{\prime \prime}\left(1^{+}\right)=\lim _{h \rightarrow 0} \frac{\log (1+h)}{h \cdot \log _{e} 10}=\frac{1}{\log _{e} 10}=\log _{10} e$
$f^{\prime \prime}\left(1^{-}\right)=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}$
$\Rightarrow f^{\prime \prime}\left(1^{-}\right)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{h}$
$\Rightarrow f^{\prime \prime}\left(1^{-}\right)=\lim _{h \rightarrow 0} \frac{\log _{10}(1-h)}{h}=\lim _{h \rightarrow 0} \frac{\log _{e}(1-h)}{h \log _{e} 10}$

$$
=-\log _{10} e
$$

144 (a)
We have,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x)+f(h)-f(x)}{h} \quad[\because f(x$

$$
+y)=f(x)+f(y)]
$$

$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(h)}{h}$
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sin h g(h)}{h}=\lim _{h \rightarrow 0} \frac{\sin h}{h} \lim _{h \rightarrow 0} g(h)$

$$
=g(0)=k
$$

145 (a)
We have,
$f(x)=|x|+|x-1|=\left\{\begin{array}{cc}-2 x+1, & x<0 \\ 1, & 0 \leq x<1 \\ 2 x-1, & 1 \leq x\end{array}\right.$
Clearly,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1} 1=1, \lim _{x \rightarrow 1^{+}} f(x)=$
$\lim _{x \rightarrow 1}(2 x-1)=1$
and, $f(1)=2 \times 1-1=1$
$\therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$
So, $f(x)$ is continuous at $x=1$
Now, $\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h}=$ $\lim _{h \rightarrow 0} \frac{1-1}{-h}=0$
and,
$\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
$\Rightarrow \lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{h \rightarrow 0} \frac{2(1+h)-1-1}{h}=2$
$\therefore($ LHD at $x=1) \neq($ RHD at $x=1)$
So, $f(x)$ is not differentiable at $x=1$
(d)

The given function is differentiable at all points except possibly at $x=0$
Now,

$$
\begin{aligned}
& (\text { RHD at } x=0) \\
& =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{h+1}-1}{h^{3 / 2}} \\
& =\lim _{h \rightarrow 0} \frac{h}{h^{3 / 2}(\sqrt{h+1}+1)}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{h}(\sqrt{h+1}+1)} \\
& \begin{array}{c}
\rightarrow \infty
\end{array}
\end{aligned}
$$

So, the function is not differentiable at $x=0$
Hence, the required set is $R-\{0\}$
147 (a)
We have,
$f(x) f(y)=f(x)+f(y)+f(x y)-2$
$\Rightarrow f(x) \cdot f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)+f(1)-2$
$\Rightarrow f(x) \cdot f\left(\frac{1}{x}\right)$
$=f(x)$
$+f\left(\frac{1}{x}\right) \quad\left[\begin{array}{c}\because f(1)=2 \text { (Putting } x=y=1 \\ \text { in the given relation) }\end{array}\right]$
$\Rightarrow f(x)=x^{n}+1$
$\Rightarrow f(2)=2^{n}+1$
$\Rightarrow 5=2^{n}+1 \quad[\because f(2)=5$ (given) $]$
$\Rightarrow n=2$
$\therefore f(x)=x^{2}+1 \Rightarrow f(3)=10$
148 (b)
We have,
$f(x)=\frac{1}{2} x-1$, for $0 \leq x \leq \pi$
$\therefore\{f(x)\}=\left\{\begin{array}{c}-1, \text { for } 0 \leq x<2 \\ 0, \text { for } 2 \leq x \leq \pi\end{array}\right.$
$\Rightarrow \tan [f(x)]=\left\{\begin{aligned} \tan (-1) & =-\tan (1), 0 \leq x<2 \\ \tan 0 & =0, \quad 2 \leq x \leq \pi\end{aligned}\right.$
It is evident from the definition of $\tan [f(x)]$ that
$\lim _{x \rightarrow 2^{-}} \tan [f(x)]=-\tan 1$ and,
$\lim _{x \rightarrow 2^{+}} \tan [f(x)]=0$
So, $\tan [f(x)]$ is not continuous at $x=2$
Now,
$f(x)=\frac{1}{2} x-1 \Rightarrow f(x)=\frac{x-2}{2} \Rightarrow \frac{1}{f(x)}=\frac{2}{x-2}$
Clearly, $f(x)$ is not continuous at $x=2$
So, $\tan [f(x)]$ and $\tan \left[\frac{1}{f(x)}\right]$ both are discontinuous at $x=2$
149 (c)
$\lim _{x \rightarrow 0}(1+x)^{\cot x}=\lim _{x \rightarrow 0}\left\{(1+x)^{\frac{1}{x}}\right\}^{x \cot x}$
$=\lim _{x \rightarrow 0} e^{x \cot x}=e$
Since $f(x)$ is continuous at $x=0$
$\therefore \quad f(0)=\lim _{x \rightarrow 0} f(x)=e$
150 (b)
$\mathrm{LHL}=\lim _{h \rightarrow 0} f\left(\frac{\pi}{4}-h\right)$
$=\lim _{h \rightarrow 0} \frac{\tan \left(\frac{\pi}{4}-h\right)-\cot \left(\frac{\pi}{4}-h\right)}{\frac{\pi}{4}-h-\frac{\pi}{4}}$
$=\lim _{h \rightarrow 0} \frac{-\sec ^{2}\left(\frac{\pi}{4}-h\right)-\operatorname{cosec}^{2}\left(\frac{\pi}{4}-h\right)}{-1}=4$
[by L 'Hospital's rule]

Since, $f(x)$ is continuous at $x=\frac{\pi}{4}$, then
$\mathrm{LHL}=f\left(\frac{\pi}{4}\right)$
$\therefore \quad a=4$
151 (a)
If $-1 \leq x<0$, then
$f(x)=\int_{-1}^{x}|t| d t=\int_{-1}^{x}-t d t=-\frac{1}{2}\left(x^{2}-1\right)$
If $x \geq 0$, then
$f(x)=\int_{-1}^{0}-t d t+\int_{-1}^{x}-t d t=\frac{1}{2}\left(x^{2}+1\right)$
$\therefore f(x)=\left\{\begin{array}{rc}-\frac{1}{2}\left(x^{2}-2\right), & -1 \leq x<0 \\ \frac{1}{2}\left(x^{2}+1\right), & 0 \leq x\end{array}\right.$
It can be easily seen that $f(x)$ is continuous at $x=0$
So, it is continuous for all $x>-1$
Also, $R f^{\prime}(0)=0=L f^{\prime}(0)$
So, $f(x)$ is differentiable at $x=0$
$\therefore f^{\prime}(x)=\left\{\begin{array}{rc}-x, & -1<x=0 \\ 0, & x=0 \\ x, & x>0\end{array}\right.$
Clearly, $f^{\prime}(x)$ is continuous at $x=0$
Consequently, it is continuous for all $x>-1$ i.e.
for $x+1>0$
Hence, f and f^{\prime} are continuous for $x+1>0$
152 (c)
We have,
$f(x)=\lim _{n \rightarrow \infty} \frac{x^{-n}-x^{n}}{x^{-n}+x^{n}}$
$\Rightarrow f(x)=\lim _{n \rightarrow \infty} \frac{1-x^{2 n}}{1+x^{2 n}}$
$\Rightarrow f(x)=\left\{\begin{array}{lc}\frac{1-0}{1+0}=1, & \text { if }-1<x<1 \\ \frac{1-1}{1+1}=0, & \text { if } x= \pm 1 \\ \frac{0-1}{0+1}=-1, & \text { if }|x|>1\end{array}\right.$
Clearly, $f(x)$ is discontinuous at $x= \pm 1$
153 (b)
Clearly, $\log |x|$ is discontinuous at $x=0$
$f(x)=\frac{1}{\log |x|}$ is not defined at $x= \pm 1$
Hence, $f(x)$ is discontinuous at $x=0,1,-1$
154 (a)
For continuity, $\lim _{x \rightarrow 0} f(x)=k$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin x}=k \Rightarrow \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \cdot \frac{3 x}{\sin 3 x}=k$
$\Rightarrow 3=k$
155 (b)

Since, the function $f(x)$ is continuous
$\therefore \quad f(0)=\operatorname{RHL} f(x)=\operatorname{LHL} f(x)$
Now, RHL $f(X)=\lim _{h \rightarrow 0} \frac{\log (1+0+h)+\log (1-0-h)}{0+h}$
$=\lim _{h \rightarrow 0} \frac{\log (1+h)+\log (1-h)}{h}$
$=\lim _{h \rightarrow 0} \frac{\frac{1}{1+h}-\frac{1}{1-h}}{1}=0$
[by L 'Hospital's rule]
$\therefore \quad f(0)=$ RHL $f(x)=0$
156 (d)
$f(x)=\left\{\begin{array}{c}\frac{x-4}{|x-4|}+a, \quad x<4 \\ a+b, \quad x=4 \\ \frac{x-4}{|x-4|}+b, \quad x>4\end{array}=\left\{\begin{array}{c}-1+a, x<4 \\ a+b \\ 1+b, x>4\end{array}\right.\right.$
$\mathrm{LHL}=\lim _{x \rightarrow 4^{\mp}} f(x)=a-1$
RHL $=\lim _{x \rightarrow 4^{\mp}} f(x)=1+b$
Since, $\mathrm{LHL}=\mathrm{RHL}=f(4)$
$\Rightarrow a-1=a+b=b+1$
$a=1$ and $b=-1$
157 (d)
We have,
$f(x)=\left\{\begin{aligned} \frac{-1}{x-1}, & 0<x<1 \\ \frac{1-1}{x-1}=0, & 1<x<2 \\ 0, & x=1\end{aligned}\right.$
Clearly, $\lim _{x \rightarrow 1^{-}} f(x) \rightarrow-\infty$ and $\lim _{x \rightarrow 1^{+}} f(x)=0$ So, $f(x)$ is not continuous at $x=1$ and hence it is not differentiable at $x=1$
158 (d)
$\lim _{x \rightarrow \frac{\pi}{4}} f(x)=\lim _{x \rightarrow \frac{\pi}{4}} \frac{1-\sqrt{2} \sin x}{\pi-4 x}$
$=\lim _{x \rightarrow \frac{\pi}{4}} \frac{-\sqrt{2} \cos x}{4}=\frac{1}{4} \quad$ [by L'Hospital's rule]
Since, $f(x)$ is continuous at $x=\frac{\pi}{4}$
$\therefore \lim _{x \rightarrow \frac{\pi}{4}} f(x)=f\left(\frac{\pi}{4}\right) \Rightarrow \frac{1}{4}=a$

159 (d)
$\mathrm{LHL}=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} 1-h+a=1+a$
RHL $=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} 3-(1+h)^{2}=2$
For $f(x)$ to be continuous, LHL=RHL

$$
\Rightarrow 1+a=2 \quad \Rightarrow \quad a=1
$$

160 (b)
$\mathrm{LHL}=\lim _{h \rightarrow 0} \frac{\cos 3(0-h)-\cos (0-h)}{(0-h)^{2}}$
$=\lim _{h \rightarrow 0} \frac{\cos 3 h-\cos h}{h^{2}}$
$=\lim _{h \rightarrow 0} \frac{-3 \sin 3 h+\sin h}{2 h}$
$=\lim _{h \rightarrow 0} \frac{-9 \cos 3 h+\cos h}{2}=\frac{-9+1}{2}=-4$
$\because \lim _{x \rightarrow 0^{-}} f(x)=f(0) \Rightarrow \lambda=-4$
161 (c)
$\mathrm{LHL}=\lim _{x \rightarrow a^{-}} \frac{x^{3}-a^{3}}{x-a}=\lim _{h \rightarrow 0} \frac{(a-h)^{3}-a^{3}}{a-h-a}$
$=\lim _{h \rightarrow 0} \frac{(a-h-a)\left\{(a-h)^{2}+a^{3}+a(a-h)\right\}}{-h}$
$=3 a^{2}$
Since, $f(x)$ is continuous at $x=a$
$\therefore \quad \mathrm{LHL}=f(a)$
$\Rightarrow \quad 3 a^{2}=b$

163 (a)
We have,
$f(x)=\left\{\begin{array}{cc}\tan x, & 0 \leq x \leq \pi / 4 \\ \cot x, & -\pi / 4 \leq x \leq \pi / 2 \\ \tan x, & \pi / 2<x \leq 3 \pi / 4 \\ \cot x, & 3 \pi / 4 \leq x<\pi\end{array}\right.$
Since $\tan x$ and $\cot x$ are periodic functions with period π. So, $f(x)$ is also periodic with period π
It is evident from the graph that $f(x)$ is not continuous at $x=\pi / 2$. Since $f(x)$ is periodic with period π. So,
it is not continuous at $x=0, \pm \pi / 2, \pm \pi, \neq 3 \pi / 2$
Also, $f(x)$ is not differentiable $x=\pi / 4,3 \pi / 4,5 \pi / 4$ etc

164 (c)
We have,
$f(x)=\{|x|-\mid x-1\}^{2}$
$\Rightarrow f(x)=\left\{\begin{array}{cc}(-x+x-1)^{2}, & \text { if } x<0 \\ (x+x-1)^{2}, & \text { if } 0 \leq x<1 \\ (x-x+1)^{2}, & \text { if } x \geq 1\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{cc}1, & \text { if } x<0 \\ (2 x-1)^{2}, & \text { if } 0<x<1 \\ 1, & \text { if } x \geq 1\end{array}\right.$
$\Rightarrow f^{\prime}(x)=\left\{\begin{array}{c}0, \quad \text { if } x<0 \text { or if } x>1 \\ 4(2 x-1), \quad \text { if } 0<x<1\end{array}\right.$
165 (b)
We have,
$f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$
$\Rightarrow f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{\left(x-x_{0}\right) \phi(x)-0}{\left(x-x_{0}\right)}$
$\Rightarrow f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \phi(x)=\phi\left(x_{0}\right)$
$\because \phi(x)$ is continuous at $x=x_{0}$]
166 (b)
Since, $\lim _{x \rightarrow 2^{+}} f(x)=f(2)=k$
$\Rightarrow \quad k=\lim _{h \rightarrow 0} f(2+h)$
$\Rightarrow \quad k=\lim _{h \rightarrow 0}\left[(2+h)^{2}+e^{\frac{1}{2-(2+h)}}\right]^{-1}$
$\Rightarrow \lim _{h \rightarrow 0}\left[4+h^{2}+4 h+e^{-1 / h}\right]^{-1}=\frac{1}{4}$
167 (c)
For $f(x)$ to be continuous at $x=\pi / 2$, we must have
$\lim _{x \rightarrow \pi / 2} f(x)=f(\pi / 2)$
$\Rightarrow \lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{(\pi-2 x)^{2}} \cdot \frac{\log \sin x}{\log \left(1+\pi^{2}-4 \pi x+4 x^{2}\right)}=k$
$\Rightarrow \lim _{h \rightarrow 0} \frac{1-\cos h}{4 h^{2}} \times \frac{\log \cos h}{\log \left(1+4 h^{2}\right)}=k$
$\Rightarrow \lim _{h \rightarrow 0} \frac{1-\cos h}{4 h^{2}} \times \frac{\log \{1+\cos h-1\}}{\cos h-1}$

$$
\times \frac{4 h^{2}}{\log \left(1+4 h^{2}\right)} \times \frac{\cos h-1}{4 h^{2}}=k
$$

$\Rightarrow-\lim _{h \rightarrow 0}\left(\frac{1-\cos h}{4 h^{2}}\right)^{2} \frac{\log (1+(\cos h-1))}{\cos h-1}$
$\times \frac{4 h^{2}}{\log \left(1+4 h^{2}\right)}=k$
$\Rightarrow-\lim _{h \rightarrow 0}\left(\frac{\sin ^{2} h / 2}{2 h^{2}}\right)^{2} \frac{\log (1+(\cos h-1))}{\cos h-1}$
$\times \frac{4 h^{2}}{\log \left(1+4 h^{2}\right)}=k$
$\Rightarrow-\frac{1}{64} \lim _{h \rightarrow 0}\left(\frac{\sin h / 2}{h / 2}\right)^{4} \frac{\log (1+(\cos h-1))}{\cos h-1}$
$\times \frac{4 h^{2}}{\log \left(1+4 h^{2}\right)}=k$
$\Rightarrow-\frac{1}{64}=k$
168 (c)
$\mathrm{LHL}=\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} \frac{\sin 5(0-h)}{(0-h)^{2}+2(0-h)}$
$=-\lim _{h \rightarrow 0} \frac{\frac{\sin 5 h}{5 h}}{\frac{1}{5}(h-2)}=\frac{5}{2}$
Since, it is continuous at $x=0$, therefore
$\mathrm{LHL}=f(0)$
$\Rightarrow \frac{5}{2}=k+\frac{1}{2} \Rightarrow k=2$
169 (a)
Since $f(x)$ is continuous at $x=0$
$\therefore \lim _{x \rightarrow 0} f(x)=f(0)=0$
$\Rightarrow \lim _{x \rightarrow 0} x^{n} \sin \left(\frac{1}{x}\right)=0 \Rightarrow n>0$
$f(x)$ is differentiable at $x=0$, if
$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$ exists finitely
$\Rightarrow \lim _{x \rightarrow 0} \frac{x^{n} \sin \frac{1}{x}-0}{x}$ exists finitely
$\Rightarrow \lim _{x \rightarrow 0} x^{n-1} \sin \left(\frac{1}{x}\right)$ exists finitely
$\Rightarrow n-1>0 \Rightarrow n>1$
If $n \leq 1$, then $\lim _{x \rightarrow 0} x^{n-1} \sin \left(\frac{1}{x}\right)$ does not exist and hence $f(x)$ is not differentiable at $x=0$

Hence $f(x)$ is continuous but not differentiable at $x=0$ for $0<n \leq 1$ i.e. $n \in(0,1]$
170 (b)
Clearly, $f(x)$ is not differentiable at $x=3$
Now, $\lim _{h \rightarrow 3^{-}} f(x)=\lim _{h \rightarrow 0} f(3-h)$
$=\lim _{h \rightarrow 0}|3-h-3|$
$=0$
$\lim _{h \rightarrow 3^{+}} f(x)=\lim _{h \rightarrow 0} f(3+h)$
$=\lim _{h \rightarrow 0}|3+h-3|=0$
and $f(3)=|3-3|=0$
$\therefore f(x)$ is continuous at $x=3$
171 (a)
It can easily be seen from the graphs of $f(x)$ and that both are continuous at $x=0$
Also, $f(x)$ is not differentiable at $x=0$ whereas $g(x)$ is differentiable at $x=0$
172 (c)
We have,

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h) \\
&=\lim _{h \rightarrow 0} \frac{-\sin (a+1) h-\sin h}{-h} \\
& \Rightarrow \lim _{x \rightarrow 0^{-}} f(x)= \lim _{h \rightarrow 0} f(0-h) \\
&=\lim _{h \rightarrow 0}\left\{\frac{\sin (a+1) h}{h}+\frac{\sin h}{h}\right\} \\
& \Rightarrow \lim _{x \rightarrow 0^{-}} f(x)= \lim _{h \rightarrow 0} f(0-h)=(a+1)+1 \\
&=a+2
\end{aligned}
$$

and, $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)$
$\Rightarrow \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} \frac{\sqrt{h+b h^{2}}-\sqrt{h}}{b h^{3 / 2}}$
$\Rightarrow \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} \frac{h+b h^{2}-h}{b h^{3 / 2}\left(\sqrt{h+b h^{2}}-\sqrt{h}\right)}$
$=\lim _{h \rightarrow 0} \frac{1}{\sqrt{1+b h}+1}=\frac{1}{2}$
Since, $f(x)$ is continuous at $x=0$. Therefore,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)$
$\Rightarrow a+2=\frac{1}{2}=c \Rightarrow c=\frac{1}{2}, a=-\frac{3}{2}$ and b

$$
\in R-\{0\}
$$

173 (c)
For $f(x)$ to be continuous at $x=0$, we must have
$\lim _{x \rightarrow 0} f(x)=f(0)$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\left(9^{x}-1\right)\left(4^{x}-1\right)}{\sqrt{2}-\sqrt{2 \cos ^{2} x / 2}}=k$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\left(9^{x}-1\right)\left(4^{x}-1\right)}{\sqrt{2} .2 \sin ^{2} x / 4}=k$
$\Rightarrow \lim _{x \rightarrow 0} \frac{16 \times\left(\frac{9^{x}-1}{x}\right)\left(\frac{4^{x}-1}{x}\right)}{2 \sqrt{2}\left(\frac{\sin x / 2}{x / 4}\right)^{2}}=k$
$\Rightarrow \frac{16}{2 \sqrt{2}} \log 9 \cdot \log 4=k=4 \sqrt{2} \log 9 \cdot \log 4$
$=16 \sqrt{2} \log 3 \log 2$
174 (b)
Given, $f(x)=\left[\tan ^{2} x\right]$
Now, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left[\tan ^{2} x\right]=0$
And $f(0)=\left[\tan ^{2} 0\right]=0$
Hence, $f(x)$ is continuous at $x=0$
175 (b)
Let, $f(x)=x$
Which is continuous at $x=0$
Also, $f(x+y)=f(x)+f(y)$
$\Rightarrow \quad f(0+0)=f(0)+f(0)$
$=0+0$
$\Rightarrow f(0)=0$
$f(1+0)=f(1)+f(0)$
$\Rightarrow f(1)=1+0$
$\Rightarrow f(1)=1$
As, it satisfies it.
Hence, $f(x)$ is continous for every values of x
176 (c)
Here, gof $=\left\{\begin{array}{cc}e^{\sin x}, & x \geq 0 \\ e^{1-\cos x}, & x \leq 0\end{array}\right.$
$\therefore \mathrm{LHD}=\lim _{h \rightarrow 0} \frac{\operatorname{gof}(0-h)-\operatorname{gof}(h)}{-h}$
$=\lim _{h \rightarrow 0} \frac{e^{1-\cos h}-e^{1-\cos h}}{-h}=0$
$\mathrm{RHD}=\lim _{h \rightarrow 0} \frac{\operatorname{gof}(0+h)-g o f(h)}{h}$
$=\lim _{h \rightarrow 0} \frac{e^{\sin h}-e^{\sin h}}{h}=0$
Since, RHD $=\mathrm{LHD}=0$
$\therefore(g \circ f)^{\prime}(0)=0$
(b)

We have,
$f(x)\left\{\begin{array}{cc}(x+1)^{2-\left(\frac{1}{x}+\frac{1}{x}\right)}=(x+1)^{2}, & x<0 \\ 0, & x=0 \\ (x+1)^{2-\left(\frac{1}{x}+\frac{1}{x}\right)}=(x+1)^{2-\frac{2}{x}}, & x>0\end{array}\right.$
Clearly, $f(x)$ is everywhere continuous except possibly at $x=0$
At $x=0$, we have
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(x+1)^{2}=1$
and, $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0}(x+1)^{2-\frac{2}{x}}=$
$\lim _{x \rightarrow 0}(x+1)^{-2 / x}$
$\Rightarrow \lim _{x \rightarrow 0^{+}} f(x)=e^{\lim _{x \rightarrow 0}-\frac{2}{x} \log (1+x)}=e^{-2}$
Clearly, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)$

So, $f(x)$ is not continuous at $x=0$
178 (b)
Since $f(x)$ is continuous at $x=0$. Therefore,
$\lim _{x \rightarrow 0} f(x)=f(0)$
$\Rightarrow \lim _{x \rightarrow 0} f(x)=k$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\log (1+a x)-\log (1-b x)}{x}=k$
$\Rightarrow a \lim _{x \rightarrow 0} \frac{\log (1+a x)}{a x}-(-b) \lim _{x \rightarrow 0} \frac{\log (1-b x)}{-b x}=k$
$\Rightarrow a+b=k$
179 (c)
Since $f(x)$ is continuous at $x=0$
$\therefore f(0)=\lim _{x \rightarrow 0} f(x)$
$\Rightarrow f(0)=\lim _{x \rightarrow 0} \frac{(27-2 x)^{1 / 3}-3}{9-3(243+5 x)^{1 / 5}} \quad\left[\right.$ Form $\left.\frac{0}{0}\right]$
$\Rightarrow f(0)=\lim _{x \rightarrow 0} \frac{\frac{1}{3}(27-2 x)^{-\frac{2}{3}}(-2)}{-\frac{3}{5}(243+5 x)^{-\frac{4}{5}}(5)}$

$$
=\left(-\frac{2}{3}\right)\left(-\frac{1}{3}\right) \frac{3^{4}}{3^{2}}=2
$$

180 (d)
$\lim _{x \rightarrow 0} \frac{e^{2 x}-1-2 x}{x\left(e^{2 x}-1\right)}$
$=\lim _{x \rightarrow 0} \frac{2 \mathrm{e}^{2 \mathrm{x}}-2}{\left(\mathrm{e}^{2 \mathrm{x}}-1\right)+2 \mathrm{xe}^{2 \mathrm{x}}} \quad$ [using L 'Hospital rule]
$=\lim _{x \rightarrow 0} \frac{4 e^{2 x}}{4 e^{2 x}+4 x e^{2 x}}=1 \quad$ [using L'Hospital's rule]
Since, $f(x)$ is continuous at $x=0$, then
$\lim _{x \rightarrow 0} f(x)=f(0) \Rightarrow 1=f(0)$
181 (b)
If a function $f(x)$ is continuous at $x=a$, then it may or may not be differentiable at $x=a$
\therefore Option (b) is correct
182 (c)
Let $f(x)=|x-1|+|x-3|$
$=\left\{\begin{array}{c}x-1+x-3, x \geq 3 \\ x-1+3-x, \quad 1 \leq x<3 \\ 1-x+3-x, \quad x \leq 1\end{array}\right.$
$=\left\{\begin{array}{c}2 x-4, x \geq 3 \\ 2,1 \leq x<3 \\ 4-2 x, x \leq 1\end{array}\right.$
At $x=2$, function is
$f(x)=2$
$\Rightarrow f^{\prime}(x)=0$
183 (d)
We have,
$f(x)=\left\{\begin{array}{l}(x+1) e^{-\left(\frac{1}{x}+\frac{1}{x}\right)}=(x+1), \quad x<0 \\ (x+1) e^{-\left(\frac{1}{x}+\frac{1}{x}\right)}=(x+1) e^{-2 / x}, x>0\end{array}\right.$
Clearly, $f(x)$ is continuous for all $x \neq 0$
So, we will check its continuity at $x=0$ We have,
$($ LHL at $x=0)=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}(x+1)=1$
$($ RHL at $x=0)=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0}(x+1) e^{-2 / x}$

$$
=\lim _{x \rightarrow 0} \frac{x+1}{e^{2 / x}}=0
$$

$\therefore \lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+} f(x)}$
So, $f(x)$ is not continuous at $x=0$
Also, $f(x)$ assumes all values from $f(-2)$ to $f(2)$ and $f(2)=3 / e$ is the maximum value of $f(x)$
184
(c)

Since, it is a polynomial function, so it is
continuous for every value of x except at $x=2$
$\mathrm{LHL}=\lim _{x \rightarrow 2^{-}} x-1$
$=\lim _{h \rightarrow 0} 2-h-1=1$
$\mathrm{RHL}=\lim _{x \rightarrow 2^{\mp}} 2 x-3=\lim _{h \rightarrow 0} 2(2+h)-3=1$
And $f(2)=2(2)-3=1$
$\therefore \mathrm{LHL}+\mathrm{RHL}=f(2)$
Hence, $f(x)$ is continuous for all real values of x
185 (c)
Continuity at $\boldsymbol{x}=\mathbf{0}$
$\mathrm{LHL}=\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x}=\lim _{h \rightarrow 0} \frac{-\tan h}{-h}=1$
$\mathrm{RHL}=\lim _{x \rightarrow 0^{+}} \frac{\tan x}{x}=\lim _{h \rightarrow 0} \frac{\tan h}{h}=1$
$\therefore \mathrm{LHL}=\mathrm{RHL}=f(0)=1$, it is continuous
Differentiability at $\boldsymbol{x}=\mathbf{0}$
$\mathrm{LHD}=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\lim _{h \rightarrow 0} \frac{\frac{\tan (-h)}{-h}-1}{-h}$
$=\lim _{h \rightarrow 0} \frac{+\frac{h^{2}}{3}+\frac{2 h^{4}}{15}+\cdots}{-h}=0$
$\mathrm{RHD}=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{\tan h}{h}-1}{h}$
$=\lim _{h \rightarrow 0} \frac{\frac{h^{2}}{3}+\frac{2 h^{4}}{15}+\cdots}{-h}=0$
$\therefore \mathrm{LHD}=$ RHD
Hence, it is differentiable.
186 (b)
We have,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}(x-1)=0$
and,
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left(x^{3}-1\right)=0$. Also,
$f(1)=1-1=0$
So, $f(x)$ is continuous at $x=1$
Clearly, $\left(f^{\prime}(1)\right)=3$ and $R f^{\prime}(1)=1$
Therefore, $f(x)$ is not differentiable at $x=1$
(d)

We have,
$f(x)=\left\{\begin{aligned} & \frac{x^{2}-x}{x^{2}-x}=1, \text { if } x<0 \text { or } x>1 \\ &-\frac{\left(x^{2}-x\right)}{x^{2}-x}=-1, \quad \text { if } 0<x<1 \\ & 1, \quad \text { if } x=0 \\ &-1, \quad \text { if } x=1\end{aligned}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{c}1, \text { if } x \leq 0 \text { or } x>1 \\ -1, \text { if } 0<x \leq 1\end{array}\right.$
Now,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0} 1=1$ and, $\lim _{x \rightarrow 0^{+}} f(x)=$ $\lim _{x \rightarrow 0}-1=-1$
Clearly, $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$
So, $f(x)$ is not continuous at $x=0$. It can be easily seen that it is not continuous at $x=1$
188 (b)
We have,
$f(x)=|x-1|+|x-3|$
$\Rightarrow f(x)=\left\{\begin{array}{cc}-(x-1)-(x-3), & x<1 \\ (x-1)-(x-3), & 1 \leq x<3 \\ (x-1)+(x-3), & x \geq 3\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{l}-2 x+4, \quad x<1 \\ 2, \quad 1 \leq x<3 \\ 2 x-4, \quad x \geq 3\end{array}\right.$
Since, $f(x)=2$ for $1 \leq x<3$. Therefore
$f^{\prime}(x)=0$ for all $x \in(1,3)$
Hence, $f^{\prime}(x)=0$ at $x=2$
189 (d)
We have,
$L f^{\prime}(0)=0$ and $R f^{\prime}(0)=0+\cos 0^{\circ}=1$
$\therefore L f^{\prime}(0) \neq R f^{\prime}(0)$
Hence, $f^{\prime}(x)$ does not exist at $x=0$
190 (c)
Given, $g(x)=\frac{(x-1)^{n}}{\log \cos ^{m}(x-1)} ; \quad 0<x<2, \quad m \neq$
$0, n$ are integers and $|x-1|= \begin{cases}x-1 ; & x \geq 1 \\ 1-x ; & x<1\end{cases}$
The left hand derivative of $|x-1|$ at $x=1$ is
$p=-1$
Also, $\lim _{x \rightarrow 1^{+}} g(x)=p=-1$
$\Rightarrow \quad \lim _{h \rightarrow 0} \frac{(1+h-1)^{n}}{\log \cos ^{m}(1+h-1)}=-1$
$\Rightarrow \lim _{h \rightarrow 0} \frac{h^{n}}{m \log \cos h}=-1$
$\Rightarrow \lim _{h \rightarrow 0} \frac{n . h^{n-1}}{m \frac{1}{\cos h}(-\sin h)}=-1$
[using L 'Hospital's rule]
$\Rightarrow\left(\frac{n}{m}\right) \lim _{h \rightarrow 0} \frac{h^{n-2}}{\left(\frac{\tan h}{h}\right)}=1$
$\Rightarrow n=2$ and $\frac{n}{m}=1$
$\Rightarrow m=n=2$

Given, $f(x)=\frac{2 x^{2}+7}{\left(x^{2}-1\right)(x+3)}$
Since, at $x=1,-1,-3, f(x)=\infty$
Hence, function is discontinuous
193 (a)
$\mathrm{LHL}=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0}\left[1-(1-h)^{2}\right]=0$
RHL $=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0}\left\{1+(1+h)^{2}\right\}=2$
Also, $f(1)=0$
\Rightarrow RHL $\neq \mathrm{LHL}=f(1)$
Hence, $f(x)$ is not continuous at $x=1$
194 (c)
It is clear from the graph that minimum $f(x)$ is

$f(x)=x+1, \quad \forall x \in R$
Hence, it is a straight line, so it is differentiable everywhere
195 (c)
Since, $f(x)$ is continuous at $x=\frac{\pi}{2}$
$\lim _{x \rightarrow \frac{\pi^{-1}}{2}}(m x+1)=\lim _{x \rightarrow \frac{\pi^{+}}{2}}(\sin x+n)$
$\Rightarrow \quad m \frac{\pi}{2}+1=\sin \frac{\pi}{2}+n$
$\Rightarrow \quad \frac{m \pi}{2}=n$
196 (a)
This function is continuous at $x=0$, then
$\lim _{x \rightarrow 0} \frac{\log _{\mathrm{e}}\left(1+x^{2} \tan x\right)}{\sin x^{3}}=f(0)$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\log _{\mathrm{e}}\left\{1+x^{2}\left(x+\frac{x^{3}}{3}+\ldots\right)\right\}}{x^{3}-\frac{x^{9}}{3!}+\frac{x^{15}}{5!}-\ldots}=f(0)$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\log _{\mathrm{e}}\left(1+x^{3}\right)}{x^{3}-\frac{x^{9}}{3!}+\frac{x^{15}}{5!}-\ldots}=f(0)$
[neglecting higher power of x in $x^{2} \tan x$]
$\Rightarrow \lim _{x \rightarrow 0} \frac{x^{3}-\frac{x^{6}}{2}+\frac{x^{9}}{3}-\cdots}{x^{3}+\frac{x^{9}}{3!}+\frac{x^{15}}{5!}-\ldots}=f(0)$
$\Rightarrow \quad 1=f(0)$
197 (a)
Given, $f(x)$ is continuous at $x=0$
\therefore Limit must exist
ie, $\lim _{x \rightarrow 0} x^{p} \sin \frac{1}{x}=(0)^{p} \sin \infty=0$, when,
$0<p<\infty$
Now, RHD $=\lim _{h \rightarrow 0} \frac{h^{p} \sin \frac{1}{h}-0}{h}=\lim _{h \rightarrow 0} h^{p-1} \sin \frac{1}{h}$
$\mathrm{LHD}=\lim _{h \rightarrow 0} \frac{(-h)^{p} \sin \left(-\frac{1}{h}\right)-0}{-h}$
$=\lim _{h \rightarrow 0}(-1)^{p} h^{p-1} \sin \frac{1}{h}$
Since, $f(x)$ is not differentiable at $x=0$
$\therefore \quad p \leq 1$...(ii)
From Eqs.(i) and (iii), $0<p \leq 1$
198 (a)
We have,
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}=\lim _{x \rightarrow 0}\left(\frac{\sin x^{2}}{x^{2}}\right) x=1 \times 0$

$$
=0=f(0)
$$

So, $f(x)$ is continuous at $x=0 . f(x)$ is also derivable at $x=0$, because
$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}=\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x^{2}}=1$ exists finitely
199 (a)
A function f on R into itself is continuous at a point a in R, iff for each $\in>0$ there exist $\delta>0$, such that
$|f(x)-f(a)|<\epsilon \Rightarrow \quad|x-a|<\delta$
200 (a)
We have,
$f(x)=x-\left|x-x^{2}\right|, \quad-1 \leq x \leq 1$
$\Rightarrow f(x)=\left\{\begin{array}{lr}x+x-x^{2}, & -1 \leq x<0 \\ x-\left(x-x^{2}\right), & 0 \leq x \leq 1\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{cc}2 x-x^{2}, & -1 \leq x<0 \\ x^{2}, & 0 \leq x \leq 1\end{array}\right.$
Clearly, $f(x)$ is continuous at $x=0$
Also,
$\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1} 2 x-x^{2}=-2-1=-3$

$$
=f(-1)
$$

and,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{2}=1=f(1)$
So, $f(x)$ is right continuous at $x=-1$ and left continuous at $x=1$
Hence, $f(x)$ is continuous on $[-1,1]$
201 (b)
Since $|\sin x|$ and $\mid e^{|x|}$ are not differentiable at $x=0$. Therefore, for $f(x)$ to be differentiable at $x=0$, we must have $a=0, b=0$ and c can be any real number
202 (a)
We have,
$f(u+v)=f(u)+k u v-2 v^{2}$ for all $u, v \in R$
...(i)
Putting $u=v=1$, we get
$f(2)=f(1)+k-2 \Rightarrow 8=2+k-2 \Rightarrow k=8$
Putting $u=x, v=h$ in (i), we get

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h}=k x-2 h \\
& \Rightarrow \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=k x \Rightarrow f^{\prime}(x) \\
& \quad=8 x \quad[\because k=8]
\end{aligned}
$$

203 (b)
Given, $f(x)=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$\Rightarrow f^{\prime}(x)=\frac{1}{\sqrt{1-\left(\frac{2 x}{1+x^{2}}\right)^{2}}} \times \frac{d}{d x}\left(\frac{2 x}{1+x^{2}}\right)$
$=\frac{1+x^{2}}{\sqrt{\left(1+x^{2}\right)^{2}}} \times \frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}$
$=\frac{2}{1+x^{2}} \times \frac{1-x^{2}}{\left|1-x^{2}\right|}=\left\{\begin{array}{cl}\frac{2}{1+x^{2}}, & \text { if }|x|<1 \\ -\frac{2}{1+x^{2}}, & \text { if }|x|>1\end{array}\right.$
$\therefore \quad f^{\prime}(x)$ does not exist for $|x|=i, i e, x= \pm 1$
Hence, $f(X)$ is differentiable on $R-\{-1,1\}$
204 (a)
LHL $=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0}-h \sin \left(\frac{1}{-h}\right)=0$
RHL $=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} h \sin \left(\frac{1}{h}\right)=0$
$\therefore \mathrm{LHL}=\mathrm{RHL}=f(0)$, it is continuous
$\mathrm{LHD}=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0}\left[\frac{f(0-h)-f(0)}{-h}\right]$
$=\lim _{h \rightarrow 0}\left[\frac{-h \sin \frac{1}{h}-0}{-h}\right]=$ does not exist
$\Rightarrow f(x)$ is not differentiable at $x=0$
$\therefore f(x)$ is continuous at $x=0$ but not
differentiable at $x=0$
205 (b)
Since, $|x-1|$ is not differentiable at $x=1$
So, $f(x)=|x-1| e^{x}$ is not differentiable at $x=1$
Hence, the required set is $R-\{1\}$
(d)

We have,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x) f(h)-f(x)}{h} \quad[\because f(x+y)$ $=f(x) f(y)]$
$\Rightarrow f^{\prime}(x)=f(x) \lim _{h \rightarrow 0} \frac{f(h)-1}{h}$
$\Rightarrow f^{\prime}(x)=f(x) \cdot \lim _{h \rightarrow 0} \frac{1+h g(h) G(h)-1}{h}$
$\Rightarrow f^{\prime}(x)=f(x) \cdot \lim _{h \rightarrow 0} g(h) G(h)$
$\Rightarrow f^{\prime}(x)=f(x) \lim _{h \rightarrow 0} G(h) \lim _{h \rightarrow 0} g(h)=a b f(x)$

